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Synopsis

The work presented within this thesis concerns the optimization of fimte element models
of engine structures to reduce radiated noise. For many engineering problems, current methods
of structural optimization provide an efficient means by which to identify an optimum design,
subject to a set of imposed bounds and constraints. They do not, however, have the flexibility
to carry out efficient investigation of a range of different constraint cniteria, and this 1s often a
requirement of a noise optimization study.

In order to address this restriction, an alternative method of noise optimization is

developed, which is based on the techniques of expenmental design theory and response

surface methodology. The main feature of this approach is that values of the response functions
of interest are calculated at a number of selected points within the design variable space, from
which an approximating mathematical model is generated. It is this analytical model of the
onginal responses which is used as the basis of the optimization procedure.

Expenmental design theory 1s employed in order to ensure that a sufficiently accurate
model can be generated with the minimum number of function evaluations. A number of
competing experimental designs and mathematical models are considered, and numenical trials
are carried out to evaluate their performance in representing the noise function. A quadratic
model is found to perform well throughout the design region, and can be estimated efficiently
using a particular class of economic second-order designs.

A number of detailed noise optimization studies are presented, involving up to seven
design variables, which illustrate the ways 1n which the requirements of the noise optimization
problem can be met using the response surface approach.
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Preface

This work is arranged in 10 chapters. In Chapter 1, the aims and scope of the work are
descnbed, following which the general background to the noise optimization problem is
introduced. A discussion of current approaches to structural optimization is presented, together
with a brief survey of currently available software packages and an account of the use of a
proprietary iterative optimization routitte to perform noise optimization. The response surface
approach to optimization is then outlined, and its advantages and disadvantages are discussed,
together with restnctions on the use of the method.

A review of the development of response surface methods is given 1n Chapter 2,
together with an introduction to a number of the concepts and definitions which are fundamental
to the discusstons of later chapters.

Chapters 3-8 discuss vanous experimental designs which may be employed in order to
select the sample points at which the response functions are to be evaluated. Chapter 3
introduces first-order designs, which may be used to estimate the coefficients of linear main
effects models and of models containing main effect and linear interaction terms. In Chapter 4,
the results of experimental studies using first-order designs are presented, carried out using a
concept level fimte element model of a diesel engine cylinder block.

Chapter 5 provides a general introduction to second order models, 1n which quadratic
terms are also represented, whilst Chapter 6 contains a detailed investigation into one particular
second order design, the Central Composite Design (CCD). Numencal results using this family
of designs are presented. In Chapter 7, modifications to the standard CCD are discussed, the
aim of which 1s to address certain charactenstics of the function evaluation process which are
unique to the field of computer ‘experimentation’. Chapter 8 contains a survey of economic
second-order designs, which seek to fit a second-order model with the minimum number of test
points. One of these strategies is chosen for more detailed investigation, and numencal trials
conducted to assess its suitability to the present application.

Chapter 9 demonstrates the way in which the experimental designs introduced in
previous chapters may be used within an optimization study. A number of examples are
presented which illustrate the flexibility of the method in addressing different combrnations of
objective and constraint functions, and different levels of constraint. An example of the use of
non-continuous variables is also presented.

Chapter 10 summarises the work presented in previous sections. Areas 1n which further
work is required are huighlighted.




1. Introduction

1.1 Research objectives

The principal aim of the work described in this thesis is to develop an approach to
optimization of engine structures for minimum radiated noise which allows engine designers
and analysts to make informed decisions as to the trade-off between competing design
objectives. This will enable designers to select an engine specification which performs well
when measured against a number of different criteria.

The mouvation for seeking an alternative method of optimization is that currently
available techniques, based on a direct iterative approach to optimization, do not provide the
range of information required by engine designers, and make inefficient use of the
computationally expensive finite element analyses which they perform. In particular, the
following three charactenistics of the standard direct 1terative approach to optimization make it
unsuitable for use in performing noise optimzation of engine structures.

1. A separate optimization trial must be carried out for each combination of imposed
constraint levels which are of interest. The consequent increase in computing
requirements effectively prohibits the investigation of more than a few such alternative
constraint scenarnos.

2.  The method 1s not robust with respect to the occurrence of local mimma. A single tnal
cannot identif y whether the optimum found is local or global.

3. The optimum design is generally sought with a higher level of precision than is
appropriate to the characteristics of the noise analysis problem.

These issues are discussed further in Sections 1.4 to 1.8. An alternative approach 1s
adopted, based on the theories of experimental design and response surface methodology,
which has the potential to provide a far greater range of information,

1.2 Scope of work

The present work describes an investigation into the use of response surface methods to
represent the variation 1n radiated noise of internal combustion engines with respect to changes
in the structure of the engine. The aims of this investigation are to establish whether the
variation of the noise function within an n-dimensional design variable space can adequately be




2

represented by a low order polynomial model, and to identify appropriate expenmental designs
which will facilitate this modelling process. A simplified mathematical model of the noise
response surface is sought, which may be used as the basis of a structural optimization
capability.

Optimization using the mathematical model of the original response surface 1s carned
out using standard iterative techniques. Development of alternative methods of solving this final
optimization problem is not addressed within the present work. Discussion of this issue is
undertaken in Chapter 9.

The measure of radiated engine noise which is used as the objective function of the
optimization problem is A-weighted sound power, summed from one-third octave band
contributions in the range to 5 kHz. Evaluation of this function 1s carried out using a purpose-
written computer code based on finite element analysis techniques. Detailed description of this
program is not undertaken within the present work, but a summary of the theory underlying the
noise analysis procedure, together with some notes on its development, is given in
Appendix 1A. Further details are given by Ogendo and Zhang (1989), Zhang (1992) and
Milsted, Zhang and Hall (1993).

A computer implementation of the response surface and optimization procedure which
are discussed in this thesis are incorporated in the computer program optrsm, which is
introduced in Appendix 1B. Further details of the capabilities and operation of this program,
together with a number of numencal examples, are given in Chapter 9. See also Hall (1992).
The numerical examples which are presented within the work have been conducted using a finite
element model of a representative engine structure. This model is introduced and described in
Appendix 1C.

The remainder of the present chapter is arranged as follows. Firstly, the general
background to the noise optimization problem is introduced, with discussion of previous
approaches to the subject (Section 1.3). In Section 1.4, the direct iterative approach to
optimization is described. A survey of currently available software packages for carrying out
structural optimization is presented in Section 1.5, with particular emphasis on reduction of
radiated engine noise. This is accompanied by an account of the use of a proprietary iterative
optimization routine to perform structural optimization of the finite element model mentioned
above (Section 1.6). It is this exercise which provides the motivation for seeking an alternative
noise optimization strategy, which 1s outlined in Section 1.7. The practical advantages of the
response surface technique are discussed in Section I.é, together with restrictions on the use of
the method.




1.3 Background to noise optimization

Over the past few decades, much pressure has been brought to bear on manufacturers of
motor vehicles to reduce the levels of noise generated by their products. This pressure has come
from a number of sources, many of which are closely related; a general trend towards a higher
level of 1n-vehicle refinement has been coupled, in recent years, with a growing awareness of
environmental issues. Indeed, it 1s largely this latter concern which has led to the introduction of
increasingly strict legislation, both nationally and internationally, regarding the noise levels of all
classes of vehicle. Environmental concerns, however, have also been instrumental in the rapid
growth in the use of diesel engines 1n the passenger car sector, which has further increased the
pressure on manufacturers to produce low-noise engine designs, since the combustion
charactenstics of a compression ignition engine make 1t intrinsically noisier than a comparative
spark ignitton engine.

Within industry, early attempts at engine noise reduction were largely confined to
experimental studies of particular engines, with modifications often being made on the basis of
past expenience. A wide range of experimental approaches are reviewed by Pnede (1980), many
of which contributed greatly to the theoretical understanding of the mechanisms of noise
generation, transmission and radiation. As this theoretical understanding developed, it was
natural for workers to try to predict the noise of engines during the design phase, so that low-
noise characteristics could be built into a design at an early stage. Early attempts at dynamic
simulation were carried out using discrete element models of the engine system, which
employed lumped mass approximations to different parts of the structure, connected by spring
and damper elements. Examples of this approach are given by DeJong (1976) and DeJong and
Manning (1979), who investigated the effect of main bearing stiffness and structural
modifications on dynamic behaviour.

The frequency range which could accurately be modelled by such discrete element
techniques was necessarily limited by the number of parameters which could feasibly be
included in the model, and this in turn was constrained by the computing power available at that
time. As theoretical techniques and computing facilities improved, however, discrete element
modelling was gradually superseded by the finite element technique, with a number of
commercial software packages becoming available to aid in the analysis. Using large mainframe
computers, reasonably sophisticated finite element models could be used to calculate natural
vibration characteristics of the main engine components, and comparison with expenmental
modal analysis data enabled good correlation to be achieved within a far wider frequency range
than had previously been possible. Turner, Milsted and Hanks (1984), for example, described
an analysis of a four-cylinder in-line engine structure, in which good correlation of mode shapes
and frequencies was obtained up to 2000 Hz, using a half-engine model containing fewer than
1000 degrees of freedom.
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With the increasing use of the fimite element method came the first attempts at using the
technique to determine beneficial ways in which to modify the structure, in order to enhance
noise and vibration characteristics. Lalor (1979), Somkhanay (1982) and Lalor and Petyt (1982)
used the static deflection of the cylinder block as a cniterion by which to judge dynamic
response. Numerical optimization techniques were used to vary parts of the block structure in
order to mimmize the static deflection of the crankcase skirt or main bearings. The static loading
apphied was that associated with peak pressure in a single cylinder, applied at the cylinder head
and at the adjacent main bearings. Although possessing a number of advantages, such as the
relatively low computing cost associated with static analysis, this method suffered certain
disadvantages, which prevented it from gaining general acceptance as a practical optimization
tool. Chief among these were the uncertainty as to whether the static deflection cnterion was an
acceptable measure of dynamic behaviour, and the inability of the static loading to represent the
complex interaction of excitations imposed by the vanous cylinders of a multi-cylinder engine.

In order to predict the radiated noise of the engine structure directly, however, further
developments were required to provide a more adequate representation of the major excitation
mechanisms occurring within the structure, and to incorporate the calculatton of radiated noise
from surface vibration velocity. Martin and Law (1989) calculated the excitation at the cylinders
and main bearings, due to cylinder pressure loads, using an interaction analysis which
accounted for the flexibility of the crankshaft, the cylinder block and the separating oil films.
Wilcox (1988) developed a dynamic optimization procedure which incorporated shape
optimization of the cylinder block, although this approach again suffered from the use of a
single-force excitation model. The importance of including correctly phased multiple-point
excitation forces was demonstrated by Ogendo and Zhang (1989), who showed that a
substantially different opttmum design 1s reached if only single force excitations are imposed.

Recent work by Milsted, Zhang and Hall (1992, 1993) and Zhang (1992) has
established a comprehensive noise analysis capability which includes determination of the
excitation model and which performs explicit calculation of one-third octave band A-weighted
radiated sound power. Initial attempts at performing optimization of concept-level finite element
models with this noise prediction program were made using direct iterative procedures, but
these proved largely unsuccessful for all but the simplest one-dimensional problems. Although
compounded by the relatively large computing requirements of each analyser call, the main
reasons for the poor performance of these numerical trials was the mismatch between the
charactenstics of the direct iterative approach and the requirements of the noise optimization
problem which are outlined 1n Section 1.1. It 1s these shortcomungs of the direct iterative
approach to optimization which the present work aims to address.




1.4 The direct iterative approach to optimization

The majority of currently available FE-based optimization programs use jterative
numerical optimization algonthms which obtain function information by calling an analyser
routine directly. These routines seek to identify the combination of input variable levels which
returns the best value of a particular function (the objective function), whilst keeping within the
allowed range of the input variables (the vanable bounds), and observing user-defined limits on
a number of other functions of these variables (constraint functions). In order to locate the
optimum design, a wide variety of alternative search strategies are employed. A number of the
more efficient algonthms use approximation techniques, or use sensitivity analysis, embedded
within the FE code, to supply local gradient information to the optimizer.

Although these methods have the potential for rapid identification of a single optimum,
they make inefficient use of the computationally expensive finite element analyses which have
been requested, in that many function evaluations are often performed in an optimization trial, of
which the analyst will generally only be presented with the final iteration. An additional
characteristic of this rapid search for a single point in the multi-dimensional variable space is that
1t gives httle indication as to the relative effect of each variable on the functions of interest. Of
much greater importance, however, is the fact that the variable combination which is located is
optimum only for the particular set of bounds and constraints which are specified by the user
prior to commencing the search.

If the nature of the problem being investigated 1s such that only one combination of
constraints is possible, or feasible, then this characteristic of the direct iterative approach is of
no consequence. When carrying out a practical optirmzation study, however, especially in the
early ‘concept’ stages of an engine design, it is unlikely that the constraint levels which are to be
imposed will be known with any great precision. In the case of noise optimization subject to a
mass constraint, for example, the exact mass of an initial engine block specification is often not
a precisely defined target. Thus, rather than being a rigid constraint which must be strictly
adhered to, the mass of the structure can more appropriately be thought of as an additional
variable in the optimization process. The goal of an optimization study, therefore, should not be
restricted to the identification of one optimum, subject to a single mass constraint, but should be
to provide some indication as to how the optimum noise level will vary over a range of possible
constraints, so that the designer has the necessary information to enable him to select an
appropriate trade-off between these conflicting requirements.

If one were to seek to provide this information using the direct iterative approach,
however, it would be necessary to carry out a separate optimization trial for each constraint
value, or for each combination of values if multiple constraint functions were being
considered. Even if the number of function evaluations required for each optimization tnal were
very low, the number of different constraint criteria which could practically be investigated
would still be extremely limited.
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An additional problem which is encountered when using iterative search techniques 1s
that 1t 1s not generally possible to 1dentify whether an optimum which has been located 1s the
globally optimum design within the region of interest, or is merely a local minimum. This 1s an
important issue in the present application, since Ogendo and Zhang (1989) have shown that
there is substantial potential for the occurrence of Iocal minima in the noise function, due to the
fact that resonance vibration of the engine structure 1s a significant component of the radiated
noise. Although the nature of an optimum design can be further investigated by performing a
number of optimization trials with different starting locations, each of these additional runs has a
computational requirement similar to the imtial trial, rendering this solution extremely costly.

1.4.1 Identification of precise optima

Of the three charactenstics of the direct iterative approach to optimization which make it
unsuitable for noise optimization purposes, as outlined in Section 1.1, the third concerns the
relationship between the precision with which an optimum design is sought and the overall
accuracy of the noise prediction process. This process necessarily involves a number of
approximations and assumptions, derived from a variety of sources, which together result in a
substantial margin of uncertainty in the function values which are computed.

The first of these sources of approximation concerns the accuracy with which the finite
element model of an engine component, for example a cylinder block, represents the nominal
definition of that part as defined by the relevant engineering drawing. The discrete nature of the
finite element technique is such that even a highly detailed mode] can only approximate to the
continuous nature of the component being modelled, with the accuracy of the approximation
increasing as the fineness of the mesh, and hence 1ts ability to represent localised geometric
detail, is increased. (This of course assumes the ability of the analyst to construct a faithful
representation of the engineering drawing, which, even with the latest generation of graphical
preprocessing tools, is far from being a trivial task). When carrying out an optimization study,
however, in which a substantial number of analyses must be performed, the model which 1s
employed must necessanly be coarser than that which would be used to carry out 2 single
dynamic study, in order to ensure computational viability. In such situations, sigmficant
reduction in the accuracy of the model is likely, although this can be mitigated to some extent by
carrying out correlation with experimental test data, should hardware be available.

The second contributor to prediction uncertainty is the solution method used to analyse
the finite element model. Whilst the calculation of natural vibration characteristics and frequency
response functions is a well-established and reasonably accurate mathematical procedure,
several alternative methods of calculating radiated sound power from surface vibration velocities
may be used, offering different levels of compromise between numerical accuracy and speed of
solution. In increasing order of complexity/accuracy/computational requirement, the three most




commoniy used procedures are as follows:

i) representation of the surfaces of the structure as simple flat plate radiators
if) the Raylhiegh approximation method, idealising the structure as a set of simple sources
ni} the Helmholtz boundary integral method

Computational limitations often require the selection of either i) or 11), with the resulting
numerical imprecision which this choice entails, and it is the first of the methods which is
implemented within the noise analysis program used in the present study, as discussed by
Milsted, Zhang and Hall (1993).

Perhaps of more fundamentat importance is the source of inaccuracy associated with
calculation of the excitation functions which are to be applied to the structure. Forces applied by
the cranktrain are often calculated using an interaction analysis which takes account of the
flexibility of the crankshaft, the cylinder block and the separating oil films. Whilst cranktrain
forces are likely to be the dominant source of excitation for the majority of engines, however, a
number of other significant mechanisms are often unaccounted for in current noise analysis
practice, (such as piston slap, valve train impact forces, and gear and chain meshing
excitations), with a subsequent reduction 1n overall accuracy. An issue related to the scope of the
excitation is the scope of the finite element model itself, since a cylinder block, or
block/head/sump assembly, never vibrates in isolation, but has a number of other components
attached to it, whose mass and stiffness characten/stics will necessanly modify the dynamic
behaviour of the bare block. Although such i1ssues have important consequences for the practical
application of noise analysis and optimization, their investigation goes beyond the scope of the
current work.

Even if the noise function returned by the analyser program could be relied upon as an
accurate prediction of the performance of the nominal engine design, however, there remains a
further source of variability within the noise analysis procedure, due to the effect of
manufacturing tolerances. None of the engine structures which are manufactured will be an
exact representation of the nominal design, and thus the finite element model is better considered
as a typical member of a class of engines (which may or may not have the nominal design as its
mean) than as a representation of all of these structures. This is an important characteristic, since
the corollary is that only well defined trends in the variation of function values with variable
modification can be relied upon as being representative of the class as a whole, with small-scale
effects being particular to individual members of the class. (There are also implications for the
correlation of finite element models when comparison is made with experimental data derived
from a single member of this class). A further effect of manufacturing constraints, of course, is
that there is no benefit in specifying component dimensions to a higher degree of precision than
can be achieved by the manufactunng process.
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When carrying out an analysis at the concept stage of an engine design there is still one
further cause of uncertainty, 1n that many aspects of the nominal design itself may be
undetermined, either due to lack of detailed component drawings or because decistons are
awaited as to major design features. This ‘fluid’ nature of the design clearly has the potential to
introduce the most significant amount of uncertainty into the analysis process.

All of these observations lead to the conclusion that the determination of precise
optimum designs is mnappropriate to the study of radiated sound power. It is potentially
misleading, in that 1t may highlight variations in the noise ievel of the nominal design, with
respect to vanable modification, which cannot be expected to be representative of the engine
population as a whole, (although this cannot of course be verified without conducting a detailed
analysis, prototype manufacture and test program). Simply quoting the final optimum design to
a lower degree of prectsion, or using coarser termination criteria in the search for this optimum,
is unlikely to prove a satisfactory remedy, however, 1n that it does not address the
manufactuning charactenstic of the distnbution of actual components about the nominal design.
It also effectively wastes the computational effort which has been invested in generating the
precise function values on which the optimization 1s based. The underlying problem is the
(potentially) unrepresentative level of detail which is present in the defimition of the objective
function which is used for the optimization phase of the investigation.

1.4.2 Overview of the direct iterative optimization procedure

Figure 1.1 shows a flowchart representing the main features of the direct iterative
method of optmization. This illustrates the fact that the large computing requirements associated
with multiple dynamic analyses of the finite element model are incurred within the optimization
loop, and that the number of these analyses which are required to locate a single optimum is
generally unknown prior to entering the loop, thus preventing accurate planning of computer
resource allocation. Whilst computing allocation presents little problem when iterations take a
matter of seconds or minutes, considerable inconvenience may be caused when carrying out a
noise optimization exercise, since a single function call may itself take many hours to perform.
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Figure 1.1 Flowchart showing direct iterative optimization procedure

The flowchart also shows that each investigation of a different set of constraint levels
requires the execution of the optimization loop, with the large computing costs which this
entails. As mentioned previously, this places severe restrictions on the number of different
constraint combinations which it is feasible to investigate. [t is also worth constderng that the
inner optimization loop may 1tself need to be executed several times when locating a single
opttmum, in order to establish that this minimum is global in nature.

In addition to the fundamental theoretical considerations discussed above, the use of
direct 1terative optimization techniques has a number of practical disadvantages when applied to
noise optimization of engine structures, amongst which the following are important. Firstly, the
general sensitivity information required to assess local gradients 1s not currently available for
complex functions such as radiated noise. As a result, noise optimization cannot be carried out
directly using algorithms which require this information, Secondly, commercial optimizers
which use direct iterative methods are almost inevitably linked with a proprietary finite element
analysis package, since, as shown 1n Figure 1.1, they must be able to modify input vartables
and call the analyser directly. The analyst is thus limited by the functionality of the particular
finite element program used, which can cause particular problems in the case of noise
optimization studies, since many codes do not have the capability to calculate complex dynamic
responses such as radiated noise. A related constraint is that many of the currently available
structural optimization packages are only able to modify a very limited range of variable types,
such as material properties, or physical properties of shell elements.
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1.5 A survey of currently available software packages

A number of software package are currently available for carrying out structural
optimization of finite element models, several of which are incorporated within major finite
element codes.

One example of an integrated package is the optimization capabilities contained in
Version 66 of MSC/NASTRAN. This program implements the methods of Vanderplaats (1984),
and its use is descnibed by Vanderplaats and Blakely (1989). The optimizer uses closed-form
response sensitivities and approximate analysis techniques in its search for an optimum design,
and the program is claimed to be able to solve “real-world design optimization problems
that contain many hundred design variables” (quoted from MSC/NASTRAN sales literature,
1992). The range of response functions and design variables which can be included within an
optimization study are extremely limited, however, and may be summarised as follows:

Response functions:  weight or volume
frequency or buckling load factor
stress, displacement or force
composite stress component or failure criterion

Design variables: plate thickness
beam properties (cross sectional area, moment of inertia, etc.)
matenal properties

These capabilities clearly fall far short of the requrements of the noise optimization
problem. When analysing a solid model, for example, the only characteristics of the structure
which can be varied are the matenal properties. Vanderplaats and Blakely (1989) state that
“development efforts are already under way to include geometric design variables - the locations
of the grid points of the finite element model”, together with steady-state dynamic response
optimization. Neither of these capabilities has as yet appeared.

A very different implementation of the Vanderplaats methods has been carried out by
RASNA, in their MECHANICA suite of programs. Finite element meshes are constructed from
adaptive p-elements, and geometry is defined parametrically, allowing more convenient
specification and modification of design vanables. The range of design variables which can be
addressed is far greater than in NASTRAN, and includes a shape optimization capability,
allowing movement of mesh nodes. The range of response functions is still limited, however,
resulting from the need for sensitivity information. Functions include mass, stress, frequency,
displacement and temperature. ’

Geometric shape optimization is also offered by the SDRC I-DEAS Optimization
module, which again is integrated with a comprehensive suite of finite element analysis
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programs. Implementation of shape opttmization would appear to be less convenient than the
RASNA approach, however, because of the posstbility of causing severe distortion in elements
when using a traditional h-method formulation. Response function and design vanable
capabilities are otherwise similar to those of NASTRAN and MECHANICA.

In summary, the three popular commercial optimization packages described above do
not appear to have the required functionality to carry out successful noise optimization of engine
structures, particularly in terms of the limited range of responses which can be included as
objective or constraint functions. These limitattons are in addition to the characteristics of the
direct iterative optimization approach which are discussed in Section 1.4.

1.6 An example of the use of iterative optimization techniques

As discussed above, optimization of radiated noise is not currently possible using the
class of advanced optimization algorithms which require sensitivity information in order to
assess local gradients. Direct iterative optimization can still be carried out however, by using
optumization algonthms which use fimte difference approximations to the function gradients.
These general-purpose algorithms have 2 number of disadvantages when used to carry out noise
optimizatron studies, however, amongst which the following are of importance:

1.  Considerable computational effort 1s required to assess the local gradients at the starting
point in order that a search direction can be 1dentified.

2.  The search algorithms used tend to be very conservative, only making small changes in
the input vanables at each call.

3. Asaresult, alarge number of calls are often required to locate a minimum.

4.  The termunation criteria of these algorithms also tend to be conservanive, in that many
additional function evaluations are often performed, in order to verify that an optimum
has been reached.

5. As with other 1terative approaches, it is not possible to identify whether the optimum
which has been located 1s local or global in nature without carrying out further
optimization trials from different starting points.

As an example of the use of these iterative optimization rout:nes, the following study
was undertaken by Ogendo and Zhang (1989), and also discussed by Zhang (1992). This
example uses the fimte element model of the diesel engine cylinder block which is described in
Appendix 1C, and investigates the effect on radiated noise of the three design variables which
are listed in Table 1.1 and identified in Figure 1C.1.
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Thickness in mm
Variable lower upper mean range
A Crankcase skirt 6.0 14.0 10.0 8.0
B  Bearing panels 1 and 5 20.0 32.0 26.0 12.0
C  Beanng panels 2and 4 20.0 32.0 26.0 12.0

Table 1.1 Variable values for the three variable iterative optimization study

The search history of the optimization study is shown in Figure 1.2, and demonstrates
the following charactenstics.

1.  The central difference calculation used to assess local gradient information requires an
mitial (2n +1) = 7 function calls to 1dentify a search direction before optimization
commences.

2. When the search commences, only three substantial steps are taken before progress slows
dramatically. This 1s followed by 9 steps in which the vanable changes are extremely
small before the next significant change 1s made (1n vanable C).

3. The design specification at call 20 is effectively the same as that at call 45. An extra 25
function evaluations have been carried out in order to verify that an optimum has been

reached.
35 97
] vanable B
30 o b *
Thickness - mm | dB(A) re 1 pW
251" ] e YT ~ variable C
20 ] osaagea® - 96
15 |
sound power level
10
vanable A
S 1/ s ey et 95
0 10 20 30 40 50

Call number

Figure 1.2 Search history - unconstrained optimization in three variables using
direct iterative optimization
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The 1terative optimization algorithm has thus taken 45 function calls in order to identify
an unconstrained optimum 1n three design variables. In comparison, Section 9.2 presents an
example in which the response surface method 1s used to carry out an unconstrained
optimization 1n seven variables with a similar number of function calls (43 calls). In addition,
the response surface approach will also allow the identificatton of a constrained noise optimum
subject to any feasible mass constraint, and the identification of an optimum mass design subject
to any feasible noise constraint, without the need for further analyser calls. Direct iterative
optimization studies involving greater than three design variables were not found to be viable
with the available search algorithm, which generally failed to converge to an optimum value,
even after an unacceptably large number of function calls.

Whilst it may be possible to improve the performance of the iterative optimization
algonthm used above by, for example, using forward difference calculations 1nstead of central
differences, and modifying the tolerance of the termination criterion, this study still illustrates
the three fundamental requirements for which the use of direct iterative optimization 1s
inappropriate. Firstly, the algorithm aims to identify the optimum design with a higher level of
precision than is appropriate to the formulation of the problem. Secondly, the method is not
robust with respect to the occurrence of local minima, since a single trial cannot identify whether
the optimum found is local or global. Multiple optimization trials are then required to verify the
nature of the mimmmum, and to locate a global optimum, necessarily incurring a substantial
computational cost. More importantly, however, a separate optimization trial must be carned out
for each combination of imposed constraint levels which are of interest, with a consequent
Increase m computing requirements.

1.7 The response surface approach to optimization

An alternative procedure to the direct iterative technique described above is to build up a
‘database’ of knowledge concemning the system under investigation by calculating the values of
the required functions at a number of selected points within the design variable space. In order
to reduce the overall computational requirements, the sample points should be chosen such that
a sufficiently accurate response surface can be generated with the minimum number of function
evaluations. This objective may be achieved by using experimental design theory to determine
the most efficient combination of sample points at which to test. A mathematical model can then
be generated from the database, so that an approximating response surface is constructed using,
for example, low order polynomials. Optimization may then be carried out using this surface as
a representation of the original response, with the difference that the evaluation of each function
and 1ts gradients takes negligible computing time.
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A response surface-based optimization study may be divided into four phases, as
follows:

Phase 1. Experimental design selection

In this phase, experimental design theory is used to select the points in the design
region at which to test. The only parameters which need to be supplied in order to generate the
design are the number of vanables to be 1nvestigated and the bounds within which each of these
variables may be modified. The type of design which is selected is determined by the
complexity of the mathematical model which 1s to be used to approximate the response function.
If the response is to be approximated using a linear response surface, for example, then a design
may be chosen which includes tests at combinations of just two values of each variable. If a
quadratic surface is to be fitted, however, then each variable must appear at at least three
different levels within the experimental design.

Phase 2. Analysis

In the analysis phase, the functions which are of interest are evaluated at each of the
combinations of variable values which are specified in the experimental design. The analysis
program does not need to be directly linked with the optimization program, and the order in
which the tests are carried out is unimportant. Thus, several tests may be carmed out in parallel,
using multiple processors or multiple computers.

Phase 3. Model building
This phase may be subdivided into two sections, as follows:

Phase 3a: response surface fitting.
Surface fitting algorithms are used to estimate the coefficients of the mathematical model
using the function values returned by the analyser program.

Phase 3b: validation of response surfaces.

For each response function, detailed lack-of-fit calculations are performed in order to
assess how well the response surface is representing the variation of the original function
throughout the whole of the design variable space. This stage is of vital importance to the
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successful use of the response surface approach, since if the approximating mathematical model
is providing an inadequate representation of the calculated function, the optimization process is
likely to identify optimum designs which are substantially in error.

Phase 4. Optimization

In the optimization phase, the engineer can specify which of the calculated functions is
to be the objective of the optimization, and which are to be constraints. In addition to
minimizing radiated noise subject to a mass constraint, for example, the engineer can also
optimize the design for low mass, subject to a noise constraint. It is also possible to carry outa
sweep through the entire range of constraints, giving an explicit trade-off between different
functional constraints without the need for further analyser calls.

In the current work, attention has largely been focused on determining the complexity of
model that is required to represent the noise function (Phase 3b), and selecting an appropriate
experimental design with which the model can be estimated using the minimum number of
function calls (Phase 1). Accurate representation of the computed responses is fundamental to
the successful use of the overall procedure, and Chapters 3 — 8 are devoted to this subject. The
analysis phase of the procedure has been performed using the separate analyser program which
is described in Appendix 1A, and estimation of model coefficients is carried out using standard
surface fitting algorithms, as described in Section 2.13. The selection of an optimization
algornithm to locate optimum designs on the approximating response surface 1s discussed in
Chapter 9, where a range of numerical studies are presented which demonstrate the capabilities
of the method.

1.7.1 Overview of the response surface-based optimization procedure

Figure 1.3 shows a flowchart depicting phases 2 and 4 of a response surface-based
optimization study.
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Figure 1.3 Flowchart showing phases 2 and 4 of the
response surface-based optimization procedure

The flowchart for phase 4 of this procedure is identical in form to the flowchart of
Figure 1.1 for the direct iterative approach. The difference lies in the fact that, instead of calling
the finite element analysis program in order to calculate function values, this information is
obtained by simply evaluating the low -order mathematical model of the original response. The
computationally intensive finite element calculation of function values 1s now carried out outside
the iterative optimization loop, in phase 2, and full use is made of all of the analyses which are
performed. Investigation of multiple constraint critena still requires the execution of the inner

optimization loop, but this now incurs no significant computational cost.
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1.8 Characteristics of the response surface method

The major advantages of the response surface approach to optimization are as follows:

In the testing phase, all functions which may be of interest are calculated and stored in a
database of knowledge concering the system under investigation. These may be recalled
during the optimization phase, and any combination of objective and constraint functions
investigated interactively.

The coefficients of the response surface models indicate the relative importance of each of
the design variables throughout the whole design region, giving the designer a valuable
insight into the nature of the system,

Any continuous function of the design variables which can be calculated or estimated at
the required sample points may be added to the database prior to optimization. This
would, for example, allow non-FE functions such as cost to be included within an
optimization study. Alternatively, the results of both static and dynamic analyses can be
combined in a single optimization study. Similarly, a number of different measures for
assessing the radiated noise level of running engines can be used, including various
weighting curves and measures of noise quality. It is becoming increasingly important for
an engine to perform well under a range of these different criteria, and the response
surface approach will allow the identification of designs based on each of these required
measures, or on some appropriate combination of them, without incurring excessive
computational cost.

Because the finite element analyses are carried out outside the iterative optimization loop,
any available analysis package, or even a combination of different specialist packages,
can be used to supply function information.

If a dedicated analyser program is used to carry out function evaluations, the modification
of design vanables can be automated within this code, as is possible when using the
direct 1terative approach. Because analyses are performed outside the optimization loop,
however, it is also possible to incorporate major modifications to the engine structure
which are beyond the capability of automatic modification routines. These changes can be
carried out either manually or semi-automatically.

The number of finite element analyses which need to be performed are known in advance,
allowing accurate prediction of computer usage.

Because analyses do not need to be run consecutively, parallel runming may be carried out
on multiple processors or machines, drastically reducing the elapsed time required for the
testing phase of the study.
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Disadvantages of the response surface approach:

It is probable that an advanced software program for direct iterative optimization will be
able to find a constrained optimum with fewer function evaluations than would be required to
establish an approximating response surface of sufficient accuracy. Thus, in cases where the
value of each functional constraint can be precisely determined prior to optimization, so that the
only requirement is the efficient identification of a single optimum, the direct iterative approach
is likely to be the best method to follow.

Restrictions on the use of the response surface approach:

An essential requirement of this method 1s that it must be possible to model the
functions which are of interest using response surface approximations. Any function of the
design vanables can be used as either an objective or constraint function, as long as it fulfils the
following three criteria :

1. Computable at the required test pornts.
2. Continuous function of the design vanables.
3. Capable of bemng approximated by a low order polynomial.

One of the prncipal aims of the work is to establish that the noise response function
fulfils these critena. Additional functions of the input vaniables which may be of interest when
carrying out dynamic analyses of engine and powertrain models are discussed 1n
Section 9.11.1.
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Appendix 1A

A finite element analysis procedure for calculation of radiated engine noise

1A.1 General approach

The finite element analysis program which has been developed in order to compute the sound power
radiated from an engine structure has as its basis a much-modified version of the commercial fimte element
analysis code PAFEC. A general description of the procedure is given in Milsted, Zhang and Hall (1993), and a
more detanled discussion of the underlying theoretical and physical considerations can be found in Zhang (1992)
An introductory user guide to the program suite 15 provided by Hall and Zhang (1992).

Early work concerned with the tailoring of this code 1n order to perform aradiated noise calculation was
carried out by Turner (1983), who wrote a set of forced response subroutines to accompany the PAFEC free
vibration analysis routines. Also implemented at this stage was a dynamuc substructuring capability, using a
modified version of Kron’s method (Turner, Milsted, and Hanks, 1986). Following this work, a detailed
investigation 1nto the physical aspects of the noise radiation problem was undertaken by Ogendo and Zhang
(1983), which established A-weighted sound power as an appropriate objective function for optimization
purposes This work also highlighted the need for a complex set of excitation forces which can accurately
simulate the dynamic loadimg applied to the structure. Using the separate modules for generation of excitation
forces and calculation of sound power from surface vibration levels which are described below, a theoretically
sound method for predicting racdiated engine notse had now been established. As part of a subsequent
inveshgation, (Milsted Zhang and Hall, 1989), substantial effort was devoted to increasing the computational
efficiency of the whole noise analysis procedure, in order to facilitate its use within a numerical optimization
capabulity. This work centred on the replacement of the standard PAFEC eigensolution, based on a master-slave
reduction method, with a Lanczos eigensolution algonthm (Schmi, 1989) A sparse matnx approach to storage
and computation was also implemented, together with a modified residual flexibility algorithm and a number of
changes to the matnix assembly and general administration routines,

In its present form, one complete noise analysis of a single-structure model consists of four main

stages, as shown 1n the simplified flow chart of Figure 1A.1. Each of these stages is discussed in the following
sections

Force Calculation

Eigensolution

\

Forced Response

\

Noise Calculation

Figure 1A.1. Schematic diagram of noise analysis procedure
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1A.2 Calculation of mechanical loads

In the first of these phases, the excitation forces which are to be applied to the structure are computed,
using a separate program module. A more detailed account of the interaction analysis which 1s used to calculate
these excitation forces may be found 1n erther Martin and Law (1989) or Ogendo and Zhang (1989), from which
the following summary is taken

“For the purpose of vibration and noise prediction, the mechanical loads ansing from the combustion
process can be usefully approximated by a set of discrete forces and moments acting on the cylinder block and
head A suitable set 15 comprised of forces and moments at each main bearing, mston side thrust forces on each
cylinder and the gas force on the cylinder head. The calculation of these forces can be approached at various levels
of sophistication ranging from the elementary ngid crank train and rigid block procedure through to a full
interaction analysis between the fixed and the moving parts of the engine using FE models of the block and
crankshaft. The latter approach has been taken because it is the only means by which the significant bearing-to-
bearing force differences can be predicted. . . [The procedure used] is a quasi-static interaction analysis of a system
comprising the crank tramn, the block and various oil films which sepatate the two. Expenimentally measured,
frequency-averaged cylinder pressure diagrams are used as the excitation. This analysis involves the sequential
solution of the pertinent structural and hydrodynamc equations which descnibe the important features of the
engine. The structural equattons are formulated 1n terms of influence coefficients derived from representative
substructured finite element models of the crankshaft and engine structures. The hydrodynamic operation of the
main bearings 13 modelled by a ‘mobility’ method which provides explicit relationships for the translational
velocities of the crankshaft journals relative to the bearing sleeves. The load so obtained 1s a function of the
crankshaft angle and must therefore be transformed to the frequency domain for subsequent use 1n the vibration
analysis. In this procedure the inertial loadings, the flexibility of the block and the crankshaft, as well as the
nonlinear ol film effects in the journal beanngs are properly accounted for, but piston slap, gear and valve train
impacts are not yet included. Although the omussion of these impact forces does not affect the establishment of
the numencal optimization procedure, it 1s clear that their presence would increase the accuracy of the noise

prediction.”

1A.3 Solution of the eigenproblem

The second portion of the noise analysis procedure is the solution of the undamped exgenproblem
(K-AM)x=0 (1A.1)
where M and K are the mass and stiffness matrices respectively. This 13 the most computationally intensive part
of the procedure, and that to which the most development effort has been devoted.

The engine structures for which a noise calculation is to be carried out will often be unrestrained. In
order to ensure the positive definiteness of the stffness matrix under such conditions, it is necessary, both here
and 1n the forced response calculation, to use a shifted stiffness matrix of the form

K=K+3M (1A2)
The corresponding shufted spectral matnx is then

A=A+0I (1A.3)
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The shift parameter & takes a positive value small enough 1n magmtude with respect to the eigenvalue of the
lowest non-explicit mode that the residual flexibility approximation outlined 1n Section 1A 4 remains valid For
systems in which no ngid-body modes are present, a value of 3 =0 is used.

As discussed above, a Lanczos eigensolver with partial re-orthogonahisation has been implemented,
(Sehmi, 1989), which also takes advantage of the sparse banded nature of the stffness and mass matrices. The
solution algonthm for a restrained structure may be summansed as follows, (Milsted, Zhang and Hall, 1993)
The general eigenproblem 1s first transformed to the standard form

(H-0Dy=0 (1A4)
The stuffness matrix is =--- factonsed as
K=LLT (1A.5)
using Choleski decomposttion, so that
H=LMLT,y=L™xand 0= 1/A (1A.6)

The Lanczos method 15 then employed to solve the standard eigenproblem for the first k modes, giving a modal
matrix Yy and a spectral matnx 6,. The solution of the onginal eigenproblem 1s then obtained from

LTX, = Y and A, = 6" (1A.7)

1A.4 Forced response

Using the free vibration information generated within the second phase of the program, a modal forced
response calculation 1s then carned out to give the steady-state vibration response of the structure, This may be
summarised as follows (Milsted, Zhang and Hall, 1993).

The complete set of eigenvalues and mass-normalised eigenvectors are first assembled into a diagonal
spectral matnx A and a modal matrix X, respectively. The forced response at a frequency « can then be written 1n
the form of a receptance matnx as

(1=X[A(I+J"I)'w21]'1XT (1A.8)
where v is a diagonal matnx of the modal loss factors. The mode set is truncated at a frequency whch is large
enough to ensure accurate representation of all resonant behaviour within the frequency range of interest. A

residual flexibility approximation to the discarded modes is used in order to take some account of the contribution
of those modes which have not been explicitly included in the calculation, so that equation (1A 8) becomes,

a =Xy {IA T +jmd - o] - A X T+ K (1A.9)

where the subscript k denotes matrices of order equal to the number of modes explicitly included (kept) in the
analysis.
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1A.5 Radiated sound power calculation

The final phase of the noise analysis procedure 1s the calculation of radiated noise from the surface
vibration levels, which is camed out by a separate program module. The following summary of the procedure
used is taken from Milsted, Zhang and Hall (1993),

“Calculation of radiated sound power from the surface vibration levels can be carned out with varying
degrees of sophistication In ncreasing order of complexity the three well established procedures are,
(i) Idealisation of the engine structure as a set of simple flat plate radiators
{ii) Rayleigh's method of idealisation of the structure into simple sources
(iii) The Helmholtz boundary integral method

“The choice is not particularly critical to the program structure as any of the three methods can be
viewed sumply as a post-processor operating on the surface vibration levels whose calculation is the core of the
procedure Using (i), the A-weighted sonnd power, summed from one-third octave band contributions, is
evaluated from

W=pcd wi() oyAj<VA>) (1A.10)
1 [

where pc is the characteristic impedance of air, A; is the effective sound radiating area, o, is its associated
radiation efficzency; and <v ;2> 1s the space averaged mean-square velocity normal to the sound radiating surface.
The subscript i identifies the one-third octave band with A-weighting w, and the subscript j denotes a panel
region of the noise rachating surface ™

1A.6 Variable types

The following classes of vanables can be modified by the current version of the noise analysis program:

Physical properties of beam elements

Physical properties of shell elements

Material properties of 2D and 3D elements

Nodal movement which does not require mesh alteration
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Appendix 1B

The computer program optrsm

As an integral part of the current investigation into the use of response surface techniques for the noise
optimization of engine structures, a computer program has been developed in order to aid the application of these
methods. This response surface methodology and optimization code forms part of a larger suite of programs
which together allow a complete noise optimization study of an engine structure to be carried out using finite
element methods. The other main component of this suite of programs is the noise analysis program, described
in Appendix 1A, which 15 used to simulate the steady-state vibration of the engine and hence predict radiated

noise. Further details of this program, together with a descniption of the way in which the two programs are used
together to carry out noise optumization, are given by Hall and Zhang (1992).

The response surface methodology / optimization program optrsm is composed of two independent
modules, the first of which is used to select an appropriate experimental design prior to testing, whilst the second
is used to process the results which are returned by the analyser program, and to perform the required modelling
and optimization tasks. Each of the modules 1s highly interactive, with only a mimmal requirement for
previously constructed input data files The results presented within subsequent chapters of the present work have
been generated using this program, with the noise analysis function evaluations being provided by the separate
analyser program mentioned above

The flow diagrams shown 1n Figures 1B.1 and 1B 2 demct the suggested procedure for carrying out a
complete noise optimisation study using both the experimental design selection / optumuzation program optrsm
and the separate noise analysis program This procedure may be summarised as follows.

Phase [

The first phase of an analysis involves the construction of the base FE model, the speaification and
selection of the design variables and the necessary checks of the data, For the noise analysis problem this includes
the assembly of the two data files which must be supplied to the main analyser program, with the tangible
results of thig initial phase being the finite element analysis data file and the analyser data file.

Phase I

This phase constitutes the optimization process proper. The preprocessing mode of optrsm is first used
to generate the test specifications for which function values are required (STEP 1) For each requred test, the
specification consists sumply of the value of each of the design variables This list of test specifications is then
inserted into the analyser data file (STEP 2), and the separate noise analysis program executed (STEP 3). The
result of each run is extracted from the output file (STEP 4), and the postprocessing mode of opirsm is then used
to analyse the results and perform the optimization (STEP 5). The execution of steps 2, 3 and 4 is described by
Hall and Zhang (1992). The use of optrsm at step 5 to process the resnlts supplied by the analyser program is
detailed by Hall (1992), together with a description of the results which are generated during step 5, and gmdance
as to their interpretation.
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Appendix 1C

Finite element model of a representative engine structure

In order to evaluate the various techniques which are discussed in subsequent chapters, a series of
numerical studies have been carried out, using the optimization program which has been developed as an integral
part of the present work (see Appendix 1B). These studies have been carried out using a finite element model of
the cylinder block of a four-stroke direct injection diesel engine, which has a four-cylinder, in-line configuration,
a capacity of 3 86 litres, and a rated speed of 2800 rev/min. The cylinder block is manufactured from cast iron,
with dry liners, and a highly nbbed water jacket exterior. The finite element model of the cylinder block is shown
in Figure 1C.1. The structure of the engine block 1s a modified version of a standard production unit, with a
number of design alterations having been made in order to reduce the level of raciated noise In particular, 1t can
be seen that three methods of main beanng support are employed; a pair of longitudinal stiffeners connecting the
sides of each man beaning bulkhead, a bearing beam tying together the four bearing caps, and lateral supports
connecting each bulkhead to the skirts. Only the first of these is found in the standard version of the engine block
(Turner, 1983).

Water jacket e
sidewall

_‘\;“g

Skirt \ ra Sy Bearing panel
B

Longitudinal
beanng suffener

Figure 1C.1. Finite element model of engine block

The finite element model of the engine block is constructed entirely from shell elements, with 840
elements being used, giving 3409 degrees of freedom. Excitation forces, calculated using a non-linear coupled
crank / block analysis, as described in Appendix 1A, are applied at 40 degrees of freedom within the structure; x
and y components of force and moment at each of the man bearings, two normal forces on each cylinder sidewall
face and one head force at each cylinder. Responses at 198 surface coordinates are used to calculate the surface-
averaged velocitres from which raciated sound power1s computed.
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Shell elements were chosen to model the engine structure, in preference to solid elements, for two main
reasons. Firstly, modification of the structural features of the engine block model is substantially easier to carry
out within the finite element analysis program if shell elements are used. As an example, the particular design
variables which are addressed by the studies included in the present work involve modification of the wall
thickness of vanous parts of the engine block casting When using a shell model, this can be accomplished by
altenng a single physical property defimtion for each element involved, whereas, 1f solid elements were to be
employed, the position of several nodes on each element would have to be modified. Even if this could be
achieved without altering the pattern of nodal connectivty, the amount of computational effort required to
1mplement such a change would be sigmficantly greater than that required for the corresponding shell model.

A second reason for preferring a shell model to a solid model is that the s1ze of the analysis problem is
sigmficantly smaller, resulting 1n a reduced solution time for a single noise calculauon This 1s particularly
important in the present work, since, when carrying out an optimization study, a substantial number of function
calls are often required. Reductions in the time needed for a single analysis lead to more effective use of the
available computing resource, either by allowing a2 more detailed model of the design vanable space to be
constructed, or by enabling more variables to be included 1n the study.

It is recogmsed that the finite element model descnibed above is extremely coarse in comparison with
current 1ndustry practice. In a commercial environment, a model used for a dynamic analysis might typically be
constructed entirely from solid elements. It would exhibit a much greater level of structural detail, and hence a
higher mesh density, and might contain over ter imes the number of degrees of freedom as the model used here
It should be borne in mind, however, that the reasons for this Ievel of model refinement are often commercial as
well as technical, and that such a model would be used erther for a single dynamic analysis, or to examine the
effect of a small number of manually implemented design changes A full formal optimuzation study using a
model of this size would currently require a level of computing resource not readily available to the majonity of
analysis groups.

Within a commercial environment, a numerical optimization study of a concept-stage engine mught
thus be carried out using a swtable compromise between these two levels of modelling detail, Such a model
might, for example, be constructed predominantly from shell elements, with an intermediate level of mesh
density, 1n order to gain some of the advantages possessed by such models, as cutlined above. Solid elements are
to be preferred for main bearing bulkheads and beaning caps, however, since it is widely recogmsed that the
accurate representation of mass and stiffness distnbution in this area is essential to the accurate prediction of
dynamic behaviour (see, for example, Zhang, 1992) Recent studies, for example Ott, Kaiser and Meyer (1990),
have shown that muxed shell and solid models of this type can give good correlation with expenmental modal
analysis results up to at least 2000 Hz.

The justification for using an all-shell model 1n the current work, however, 1s that the purpose of the
present investigation is to establish the validity of the theoretical approach outlined 1n subsequent chapters, rather
than to draw particular conclusions concerning the example engine block which is being used as a test case. What
is important within this context is that the finite element model used is a representative example of a possible
engine design, rather than an accurate reflection of the original structure which it has been constructed to
simulate, and that the tzme required for a single analysis is low enough to allow program development to proceed
at a convenient pace. Use of the finite element model descnbed above is further supported by alarge body of test
work which has been carried out in order to provide a correlation with numerical results. An experimental modal
analysis programme was carried out using just the bare cylinder block, and a frequency correlation exercise
performed with the analytical natural frequencies (Turner, 1983). The results of this investigation were then used
to modify the original fimte element model in order to improve correlation. Analysis of this updated model
showed that, in the range to 2000 Hz, all but one of the experimental natural frequencies were being simulated
with a frequency accuracy of +10%. Although the accuracy of the model above 2000 Hz has not been verified, due
to lack of experimental data, 1t is considered that inaccuracies in this range are unlikely to substantially alter the
conclusions drawn from numerical trials, since the noise spectrum 1s dominated by contributions from one-third
octave bands in the range 400-—2000 Hz, as shown in Figure 1C 2. Extensive compansons have also been made
between calculated sound power levels and noise levels measured from a minning engine (Coulson and Southall,
1976).
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Figure 1C.2. One-third octave band sound power spectrum
for initial engine design

Seven design variables have been selected for investigation in the present work, each of which
represents the thickness of a part, or parts, of the cylinder block structure. These are 1dentified 1n Figure 1C.1,
and the bounds between which they may vary are given in Table 1C.1.

Thickness in mm

Variable lower upper mean range
A Crankcase skirt 6.0 12.0 9.0 6.0
B  Beanngpanels 1 and 5,end panels  20.0 32.0 26.0 12.0
C  Beanng panels 2,3 and 4 20.0 32.0 26.0 12.0
D  Longitudinal stiffener 40 14.0 9.0 10.0
E  Lateral bearing support 10,0 25.0 17.5 15.0
F  Bearing cap tie 6.0 12.0 9.0 6.0
G  Water jacket sidewall 6.0 12.0 9.0 6.0

Table 1C.1 Seven design variables of the four-cylinder engine block
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2. Response Surface Methodology

The first section of this chapter reviews the development of the techniques of response
surface methodology when used for general experimental work. Following this, applications of
the technique to the area of ‘computer experimentation’ are reviewed. The remaining sections of
the chapter provide an introduction to a number of the concepts, definitions, conventions and
methods of analysis which underlie the work of Chapters 3 - 8,

2.1 A review of RSM

2.1.1 Early work in the use of response curves

The famly of techniques known collectively as Response Surface Methodology are
generally considered to have had their beginmngs 1n work camed out in the field of agricultural
research, particularly with regard to crop growth, in the late 1920’s and 1930’s. Here the need
for planned experimentation was paramount, since a complete growing season was required to
carry out a single study, with limited scope for iteratively building a detailed experiment, due to
the large seasonal fluctuations in, for example, weather conditions. Wishart (1938,1939) used
orthogonal polynomials to approximate the growth rate of pigs, whilst Winsor (1932) used a
‘functional’ or ‘mechanistic’ model to investigate a situation in which relative growth was
thought to decrease exponentially with time.

Although each of these studies involved the use of one-dimensional growth curves,
multi-dimensional response surfaces were also being used in this period to investigate crop
yields. An early example is provided by Mitscherlich (1930), and Crowther and Yates (1941)
used response surfaces to evaluate the effect of different fertilisers on the yield of arable crops.
In such investigations, the need to design an experiment for the specific purpose of fitting
response surfaces was seldom addressed explicitly, although an important paper by Yates
(1935) used factorial experimental designs to collect response data, and provided the
groundwork for much of the later research into the design and selection of experimental
schemes. This work also described a simple tabular means of calculating the magnitudes of the
various linear and interaction terms of first-order response surface equations (referred to as
orthogonal contrasts).
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2.1.2 The development of RSM in the 1950°s

The populanty of response surface methods increased markedly in the early 1950's, as
did interest in the theoretical principles underlying the design of experiments. This
popularisation was due, to a large extent, to a number of papers published by G.E.P. Box and
his associates at ICI in Manchester. The dominance of this group was such that Hill and Hunter
(1966) opened their review paper on RSM with the statement that “Response surface
methodology was initrally developed and described by Box and Wilson (1951)”. Although later
workers and reviewer have acknowledged previous work 1n the field, such as that described in
Section 2.1.1, this era was clearly an important turning point in the general acceptance of the
techmque.

In the first major paper of this period, Box and Wilson (1951) discussed a number of
expernimental designs, whose aim was to identify an optimum location on the response surface
with the minimum number of observations. They assumed that the responses could be modelled
using polynomial functions, and stressed the importance of orthogonal designs for estimating
model parameters (see Section 2.7). It was also in this paper that Box and Wilson introduced
the Central Composite Design (CCD), which has become one of the most widely used second-
order designs, and 1s the subject of Chapters 6 and 7 of the present work.

The topics addressed by Box and Wilson were further discussed and extended by Box
(1952, 1954), Davies (1954), and Box and Youle (1955), who also stressed the iterative nature
of an experimental investigation. Box and Hunter (1957) judged competing experimental
designs on the basis of prediction variance within the design variable space, and from this
developed the important concept of rotatability of a design (see Section 2.8). A further important
development in the comparison of expenimental designs was presented by Box and Draper
(1959), who discussed the robustness of a design to model misspecification, and introduced the
bias criterion.

In addition to the work of Box et al., 2 number of other major areas of research into
RSM were attracting attention within this peniod, amongst which was the development of the
theory of optimal design. This work was marnly undertaken by Kiefer (1958, 1959, 1960,
1962a, 1962b) and Kiefer and Wolfowitz (1959, 1960), who developed a number of different
criteria by which to judge experimental designs. These measures of design optimality are
important when generating new types of experimental design, but are of less relevance to a
practical use of RSM if standard designs are employed.

In parallel with these developments in the theoretical fundamentals of RSM, a number
of papers were aimed at popularising the methods, presenting practical applications of the theory
which could more easily be assimilated by industrial statisticians. Among these, the series of
papers by Bradley (1958), and Hunter (1958, 19592, 1959b) are notable.
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2.1.3 Designs for linear models

One of the earliest two-level designs to be used for fitting linear models is the full
factorial design, in which tests are carried out at all combinations of the high and low bounds of
each variable (see, for example, Yates, 1935). This design allows estimation of the main effect
terms of a linear model, as well as the interaction effects between all possible combinations of
linear factors. It has the disadvantage, however, that the number of tests required grows
quickly as the number of variables increases. In order to address this drawback, a class of
designs known as fractional factorial designs was introduced by Finney (1945), 1n which a 2-P
fraction of the full factorial design is used, selected so as to yield the maximum information
concerning interactions between variables. The importance of these designs was quickly
recognised, and examples of their use were discussed by Davies and Hay (1950) and Daniel
(1959}, amongst others. These designs are still widely used for esimating linear models, and
are discussed 1n detail in Chapter 3.

An alternative method of reducing the number of tests required by the full factorial
design was developed by Plackett and Burman (1946). For a Plackett-Burman design in n
variables, the number of tests required is equal to n + 1, and 1s a multiple of 4 rather than a
power of 2, One disadvantage of this class of design is that 1t is not available for all values of n;
Plackett and Burman presented designs forn=3, 7, 11, ..., 99 variables.

In 1957 the National Bureau of Standards, of the U.S. Department of Commerce,
published a collection of fractional factorial designs, in which a selection of experimental
arrangements requiring 27-P tests were presented forn = 5, ..., 16 and p = 1, ..., 8. This
publication provided a useful reference for those making practical use of response surface
methods within industry, and its use is discussed by Zelen and Connor (1959). Alternative
methods of formulation and analysis of fractional factorial designs were presented by Box and
Hunter (1961a, 1961b). Discussion of many aspects of two level designs, together with a
number of variations on the standard methodology, was undertaken in a series of papers by
Addleman (1961, 1962a, 1962b, 1963, 1964, 1969).

Recent work concerning first-order designs has concentrated on modifications to the
existing methodology in order to obtained improved estimation efficiency, (reducing the number
of tests required to estimate a particular model), or to address specific industrial applications,
e.g. Box and Jones (1989).

2.1.4 Second-order models and designs

Second-order experimental designs have attracted a large amount of attention, both by
researchers and by practitioners of RSM. They offer an attractive compromise between the
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simplicity, and often inadequacy, of designs for linear models, and the large number of tests
required by higher order designs. Three-level versions of the factorial and fractional factorial
designs used for fitting linear models may be employed, but these tend to be large and
inefficient unless the number of design vanables is extremely small. A selection of three-level
fractional factonal designs was published by the National Bureau of Standards (1959). These
designs comprise 31-P tests, and are presented for n =4, ..., 10 and p = 1, ..., 5. The use of
these destgns was discussed by Zelen and Connor (1959).

The scope for constructing different experimental schemes is far greater for
second-order designs than for linear designs, and this is reflected in the number of competing
arrangements which have been put forward. The family of Central Composite Designs was
introduced by Box and Wilson (1951), in which a two level fractional factorial design is
augmented with an additional (2n + 1) tests, in order to allow estimation of the pure quadratic
components of a response surface. Hartley (1959) suggested a class of small composite
designs, which are a variation on the CCD. A number of three-factor, three-level designs were
discussed by DeBaun (1959), some of which were found to perform better than the full factorial
design. Box and Behnken (1960) introduced a class of incomplete three level fractional
factorial designs, which are generally rotatable, or almost rotatable, and which block
orthogonally (see Section 2.10). Box-Behnken designs are, however, only available for certain
problem sizes (n = 3-7, 9-12, 16).

A class of saturated designs, in which the number of parameters to be estimated is equal
to the number of tests in the design, was introduced by Box and Draper (1971), forn =2 and
n = 3 variables. These designs were generalised for n = 4 by Box and Draper (1974). A family
of economical designs for fitting the stnct quadratic model was developed by Hoke (1974),
generalising earlier designs by Rechtschaffner (1967). These designs are based on partially
balanced irregular fractions of the 3™ factonal, and are valid for any number of vanables n 2 3.
Although only requiring a small number of tests, Hoke showed that his designs compared
favourably with both Box-Behnken designs and the CCD’s of Hartley (1959). A further
investigation by Lucas (1976) compared the Hoke designs with the CCD and Box-Draper
designs, and found that the Hoke designs performed better than the saturated designs of Box-
Draper, and nearly as well as the CCD, although requiring far fewer tests.

Doehlert (1970) and Doehlert and Klee (1972) introduced uniform shell designs, which
are generated from the points of a regular simplex, such that the points lie on concentric
spherical shells. The disadvantages of these designs are that they require a large number of test
points and variable levels. Lucas (1976) found that they did not perform as well as either the
Box-Behnken design or the CCD. Hybnd designs were introduced by Roquemore (1976), and
are constructed from a CCD of dimension n-1, augmented with an extra row. The specification
of this extra test 1s determined in such a way as to achieve a similar degree of orthogonality as
the CCD, whilst also being nearly rotatable,




33

Among the many other schemes which have been put forward, an early example of a
fanmly of saturated designs is given by Koshal (1933), from which 1t is possible to construct
specific designs of any order d 1n n variables, Designs which are based on irregular fractions of
factorials, and are very n?a.rly saturated, were introduced by Westlake (1965) forn=15, 7 and 9
vanables. As is the case for first-order designs, much recent work has aimed at reducing the
number of tests which need to be performed, whilst maintaining an acceptable level of accuracy
in the esimation of parameters. Examples of this approach are the small composite designs of
Draper (1985) and Draper and Lin (1990a). A set of saturated designs which are constructed
using tests which form part of the three level factorial design were developed by Notz (1982).

An additional area of research concerns the number of centre points which need to be
included 1n a second-order experimental design, and work in this area has been carried out by
Lucas (1977) and Draper (1982), both of whom gave gwidelines for the selection of such
points,

2.1.5 Designs of higher dimensionality

Experimental designs of order greater than two have received relatively little attention by
RSM researchers and practitioners, mainly due to the increased number of test points which are
required in order to estimate the parameters of a higher order model. When carrying out
experiments 1n which random experimental error is of importance, it is often better to use any
additional tests to obtain better estimates of the parameters of a second order model than to fit a
model of higher dimensionality.

Third-order designs are discussed by Gardiner, Grandage and Hader (1959), Draper
(1960b, 1960c, 1961, 1962), Herzberg (1964) and Huda (1987). Fourth-order designs and
models are discussed by Huda and Shafiq (1987), Arap Koske (1987) and Arap Koske and

Patet (1987).

2.1.6 Measures of design optimality

Various criteria have been developed for judging the performance of an experimental
design, many based on the optimal design theory work carried out by Kiefer and Wolfowitz,
dating back to the late 1950’s. The most widely used measure of optimality is that of
D-efficiency, with a D-optimal design being one in which the generalised vanance of the
coefficients is a minimum. A related measure is that of G-efficiency, in which the maximum
prediction vanance within the design variable space is minimized, and both of these criteria were
used by Lucas (1974) to compare four types of composite designs. Lucas (1976) also used
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these two measures to compare a number of standard experimental designs, including the CCD
(Box and Wilson, 1951), Box-Behnken designs (1960), uniform shell designs (Doehlert,
1970), the designs of Hoke (1972), Box-Draper saturated destgns (1971), and a class of
D-optimal designs proposed by Pesotchinsky (1975). Further comparisons, using these and
other measures of optimality are given by Silvey (1980), Bandemer (1980), and Atkinson
(1982).

A related area of research has been the development of algorithms to construct
D-optimal designs. Early work 1n this field was carned out by Wynn (1970) and Federov
(1972), and computer programs have been developed for the purpose by Federov (1972) and
Mitchell (1974a, 1974b). In an improved version of Mitchell’s algorithm, Galil and Kiefer
(1980) presented a family of computer-search methods to identify optimum designs. Cook and
Nachtsheim (1980) review a number of algorithms which are available for this purpose.

2,1.7 Locating the optimum

Although obviously of great importance in the practical use of an integrated RSM-based
approach to optimization, techniques for locating the unconstrained or constrained optimum
of a function are not the main focus of attention for those involved 1n the use of response
surface methods. These methods form a separate body of knowledge which will not be
reviewed 1n detail here. Within the present work a standard numerical optimization algorithm
from a commercial subroutine library has been used to carry out optimization studies (see
Chapter 9). In order to give a historical perspective to the search for optimum conditions,
however, 1t 1s useful to consider a number of the techniques which were in general use before
advanced numerical optimization routines became available.

Early work on optimization was concerned mainly with the identification of stationary
points on a response surface (unconstrained optimization), and often relied on graphical
methods to visualise the shape of the response surface. The use of such techmques is, of
course, extremely limited when the number of design variables exceeds three. Two techniques
which have been widely used for identifying optima are the method of steepest ascent, and ridge
analysis.

The method of steepest ascent 1s described by, amongst others, Davies (1954) and
Khun and Comell (1987), and involves locally approximating the response surface as a (linear)
hyperplane, and using this equation to determine the direction in which the response is expected
to improve most rapidly. Experiments are performed along this “line of steepest ascent” until
curvature of the experimental response surface causes the result to deviate from the prediction of
the hyperplane. At this point, 2 new hyperplane approximation is derived, and the procedure
continues iteratively until no further improvement is gained. The chief disadvantage of this
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approach would appear to be that 1t is highly susceptible to local gradient information, and can
thus only be expected to perform well on smooth surfaces. Ridge analysis was introduced by
Hoerl (1959) and formalised by Draper (1963). Its purpose is to locate the maximum value of a
response surface when no stationary point lies within the bounds of the design variable space.

2.1.8 Other research directions

Among the many other areas of research which have been investigated by RSM
workers, the ability to deal efficiently with multiple response functions is of some considerable
importance, since “nearly all practical RSM problems are truly mudtiple response in nature”
(Myers, Khun and Carter, 1989). If the responses which are of interest can be assumed to be
independent, then standard experimental designs may readily be employed, and each of the
resulting response surface generated in the usual way. This approach is followed in the present
work. If, however, there is sigmficant interaction between responses, as may occur, for
example, in chemical processes (see for example Ziegel and Gorman, 1930), then an alternative
methodology may be adopted, such as that of Box and Draper (1965), which accounts for these
effects. A more recent example of this approach is given by Bates and Watts (1985).

Whichever method is followed to generate the analytical response surfaces for each
function, some means of performing a multi-response optimization is required, This branch of
opttmization is much less advanced than the methods used for single-response optimization,
with only a small number of commercially available algonthms and computer routines. Some
early attempts at muiti-response optimization, such as those by Myers and Carter (1973) and
Biles (1975) simply carried out a constrained optimization of a single objective function. A
different technique, based on the concept of a desirability function was used by Harrington
(1965), and more recently by Dernnger and Suich (1980). This achieved a compromise
optimum, the location of which depended on the weighting, or desirability, ascribed to each
objective function. In a similar manner, Khuri and Conlon (1981) used a distance function to
descnibe how far each response was from 1ts optimal value.,

Another area of research which is gaining in importance is the ability to deal with large
numbers of design variables. The standard experimental designs are usually quoted for < 10 or
12 design variables, and after this become impractically large in size. In many applications,
however, the number of potential design variables may be many tens or even hundreds, of
which only a relatively small number may have a significant effect on the response functions of
interest. In such cases it may be impractical to carry out even a simplified two-level design in
order just to estimate main effects. One possible strategy to deal with this situation is the Group
Screening Method, discussed by Watson (1961). Using this technique, the design variables are
arranged 1n a number of groups, and a standard experimental design is carried out, in which the
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variable levels of each member of a group are varied together. If certain assumptions are made
regarding the nature of the effect of each of the variables, then any group which is found to have
an insignificant effect on the response can be considered to have no sigmficant vanables.
Groups which do have an effect on the response functions are divided 1nto smaller groups, and
the process repeated until either the number of potentially active vanables 1s reduced to a
manageable size, or the group size is reduced to one. Similar approaches have been taken by
Srivastava (1975) and Morris (1987)

An alternative approach to screening was taken by Welch, Buck, Sacks, Wynn, Mitchell
and Morris (1989), who present an example in which the six important factors are identified
from a 20-dimensional input, curvature and interactions are detected, and a predictive equation
generated, with just 30 tests.

2.1.9 The application of RSM to computer ‘“experimentation”

The use of response surface methods to investigate the effect of varying the inputsto a
computer simulation program has received very little attention in the published Iiterature,
although its use appears to have become more widespread in recent years. An early example is
given by McKay, Conover and Beckman (1979), who used Latin hypercube sampling to select
values of input variables to a computer code. Iman and Helton (1988) used a fractional factorial
design to investigate a computer model, fitting the response surface using a least squares
cnterion. They found that the linear response surface model was often inadequate to represent
the complexity of the computer model throughout the range of the input variables, but was
useful in ranking the effects of these variables. Further investigation of the analytic response
surface was carried out using Latin hypercube sampling and Monte Carlo sampling.

Sacks, Welch, Mitchell and Wynn (1989) modelled the deterministic output of a
computer code as the realisation of a stochastic process, and drew a number of important
distinctions between computer experiments and physical experimentation. A similar approach
was taken by Welch, Buck, Sacks, Wynn, Mitchell and Morris (1989), who used a method
known as kriging (Matheron, 1963), and compared the classical frequentist approach with a
Bayesian method of prediction.

Sacks, Schiller and Welch (1989} use this technique to model departures from a first- or
second-order model, and present examples in which the test point coordinates of a given design
are optimised to minimise the integrated mean square error (IMSE) over the design vanable
space. They present an example in which a seven dimensional CCD requiring 79 tests is used to
investigate a methane combustion process.
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2.1.10 Additional references

Reviews of RSM have been published by Hill and Hunter (1966), Mead and Pike
(1975), and Myers, Khun and Carter (1989). The three main texts on the subject are Myers
(1971), Box and Draper (1987), and Khuri and Comell (1987).

2.2 RSM concepts and definitions

In the remaining sections of this chapter, a number of the concepts, definitions,
conventions and methods of analysis of RSM are introduced. More detailed descniptions of
many of the topics are available in the published literature, and suitable sources are referenced
where appropnate. The method of coding variable values is first described (Section 2.3),
together with the effect which this has on the shape of the design vanable space (Section 2.4).
Following this, the terminology used to describe mathematical models and experimental designs
is introduced (Section 2.5 and 2.6). The properties of orthogonality, rotatability and permutation
invariance are then descnibed (Sections 2.7-2.9), as well as the practice of arranging tests in
blocks (Section 2.10). The characteristics of the moment matrix are described in some detail 1n
Sections 2.11 and 2.12, since reference to these results is made in the discussions of Chapters
3-8. The final two sections cover the method of Ieast squares (Section 2.13) and methods of
testing lack of fit (Sections 2.14 and 2.15).

2.3 Coding of variables

When the set of input variables to be used in a particular investigation has been
identified, it 1s often found that the values of the bounds between which the variables may be
varied is significantly different for each of the factors involved. As an example, Table 2.1
shows the variable bounds in the original unts, together with the mean and range, used in an
investigation of the behaviour of worsted yarn under cycles of repeated loading, reported by
Box and Draper (1987, p.28)

bounds
Variable lower upper mean range
A Length of test specimen (mm) 250.0 350.0 300.0 100.0
B  Applied load (g) 40.0 50.0 45.0 10.0
C  Amphtude of load cycle (mm) 8.0 10.0 9.0 2.0

Table 2.1 Variable values for the worsted yarn experiment
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It can be seen that in this example the largest and smallest variable ranges differ by a
factor of 50, with the result that, even if the effect of each vanable on the response function
were equal, the resulting coefficient values would differ significantly. This difference leads to
difficultes in interpreting the relative effect of each of the design variables, and may also lead
to problems when using 1terative optimization methods to locate a minimum on the fitted
surface, since the search direction 1s often determined by local gradient information,
calculated 1n variable units.

In order to eliminate this illusory difference in variable effects it is usual to scale the
units of each variable such that standardised, or ‘coded’, vaniable bounds are obtained, which
are the same for each factor. These coded levels are obtained by applying the transformation
shown in (2.1), which results in values of %1 for the bounds of each variable, and a value of
0 for each vanable mean. For each vanable 1, the original variable value X is converted into
the dimensionless value x;.

x; = K= M @.1)
A,
where M, = ZnitXh s the mean of hi gh and low bounds for variable i
A= K= Xii g the half-range of variable i

2
= the distance from the mean to either of the variables bounds

X}, and X, are the lower and upper variable bounds respectively

As an example, the upper bound of vanable A, from Table 2.1, is coded as

ththA‘MA =350.(;6{3)00.0 =1
Ap .

The important property of equal coded range for each factor may be obtained solely
by division by the variable half-range, with subtraction of the mean value giving the
convenient additional feature of distnbution about a zero value. An additional advantage of
using this standardised notation is that, when each of the variables is tested only at 1ts mean
or bounded values, the appearance of integer values 1n the design matrix leads to increased
simplicity in the estimation of model parameters. Note that, in some experimental designs,
tests may not be carried out exactly at variable bounds, in which case the ‘test range’ will not
be equal to the ‘bound range’ for a given variable, although if the design is permutation
invariant (see Section 2.9), then thus test range will be the same for each variable. Note also
that if the tests to be performed are not symmetric about the mean level M; of each variable,
then the mean, over the N tests, of the coded test values
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will not be equal to the mean of the coded bounds, m; = 0 (see also Section 2.12). Further
details of the use of coded vaniables can be found 1n Khuri and Cornell (1987) p.46, and Box
and Draper (1987) p.20.

2.4 The effect of variable coding on the shape of the design region

Any particular design configuration, defined as a combination of n vanable values, can
be visualised as lying within an n-dimensional design vanable space. If each of the vanables can
independently vary between its bounded values, then the shape of the design vanable space 1s
that of a hyper-rectangle. The effect of the variable coding described in the previous section is to
normalise the bounds on each of the variables to 1, so that the coded design vanable space is a
hypercube. A normalised design region in three design variables is shown in Figure 2.1.

Xy
A
('1! 1, '1) (1, l,y
('1, 1, 1) ’ 1, 1)
- X
(-1, -1, ; (1,-1,-1)
x3 (‘l, '1, 1) (10 'ls 1)

Figure 2.1. A cuboidal design space in three dimensions




2.5 Terminology for mathematical models and experimental designs

A general polynomial model 1n n vanables may be regarded as consisting of T terms,
each of the form

Ot 2t

Ye Xyt Xy XD (t=1,..T) 2.2)

where the x4, X, ..., X, are the n vanable values, o, (i =1, ..., n; t =1, ..., T) is the index of
the i variable in the t® term, and y, 1s the coefficient of the { term. In order to complete the
definition of a statistical model, an error term ¢ is added to (2.2). A model containing terms for
which the a;, (i =1, ..., n) are zero for all t, for example, would be as shown in (2.3)

T
Y= n+e=fo+e 2.3)
t=1

Such a model, however, is of little use as a predictive tool, and in subsequent chapters a number
of more complex mathematical models are used to represent the variation of the response
functions throughout the design variable space. In order to distinguish between models of
similar specification, the following convention has been adopted.

A linear model is one in which no term contains a variable which has an index other
than O or 1. Such a model may also be termed a first-order model. The simplest of these models
is one in which each term contains no more than one variable which has a non-zero index, and
an example of this is shown in equation (2.2). This is referred to as either a strict linear model
or a main effects model.

Y=fot Y B, +¢ (24)

1=1

In contrast with the main effects model, a linear model which contains a number
of terms in which more than one variable has a non-zero-index is described as a
linear + interactions model. Each of the terms in which two vanables have a non-zero index may
be described as mixed quadratic terms, with each term containing three vanables being a mixed
cubic term, and so on. However, each of these terms represents an interaction between linear
effects in each of the variables represented (see Section 3.2), and thus may also be descnibed as
a linear interaction term. Equation (2.5) shows a linear + interactions model which contains all
possible interaction terms, from the [n(n-1)/2] two-way interactions to the single n-way
interaction.
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n-2 n-1

Y= 50"]'2 lel'l'z z Bljxlxj+z z Z BiyrXi XXk +

1=1 j=1+1 1=1 j=1+1 k=j+1

(2.3)

n-3 n.2 n-1 n

22 D D BukiXXXkKi + eees B123..n X1X2X3: - X + €

1=l j=1+1 k=p+1 I1=k+1

A model containing terms in which vanables may have an index of 0, 1 or21s termed a
quadratic, or second-order, model. A strict quadratic model is one 1n which, for each term, the
sum of indices of the variables is not greater than 2. The terms which may appear are thus the
mean, the main effect terms x;, (i = 1, n), the two-way interaction (or mixed quadratic) terms
XX (i=1,n, j=1i,n), and the pure quadratic terms x;2, (i = 1, n). Such a model is shown in
equation (2.6).

Y =P+ Z ﬁ,x,+z Z Bixx, + ¢ (2.6)

j-—l

In addition to the terms of equation (2.6) a quadratic + interactions model may contain
any other term in which no variable has an index other than 0, 1 or 2. These include the
remaining k-way, (2 < k < n), interaction terms of (2.5), as well as terms of the form

n
R ey Vel where 3 a,>2
1=1

These latter terms represent all possible interactions between quadratic effects, and
between these quadratic effects and linear effects. A model containing all such terms is shown in
equation (2.7)

n n n n-l n n
Y= 30'*'2 Bx +Z Z ﬁuxxx_]“‘z Z z BurXX Xy +
=] 1=1 j=1 1=1 j=1 k=
k> 2.7
n-1n-1 n n
Z Z BijkiXXXiXy 4 <« oo v ﬁuzzss...nnx%xgxgxﬁ---X%+ €
1=l =1 k=g 1=k
k1 1>

The above convention can, of course, be extended to models of order greater than two,
with, for example, a strict cubic model being one in which, for each term, the sum of indices of
the variables is not greater than 3, and a quartic + interactions model being one which may
contain any term in which each variable has an index in the range 0 - 4. In the present work,
however, only models of order one and two will be considered in detail.
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The above conventions also apply to experimental designs, with an n**-order design
being one which, as a minimum requirement, allows for the esimation of all the parameters of a
strict nth-order model. An nth-order design may also allow for estimation of some or all of the
additional parameters of an nth-order + interactions model. Note that a design which allows the
estimation of a full nth-order + interactions model may also be used to fit a full kth-order +
interactions or strict ktt-order model, (0 < k < n-1), whilst a design which allows estimation of
a strict nh-order model may be used to fit any strict kth-order model, (0 sk <n-1). Duetoa
desire to minimize the number of function evaluations which need to be performed, however,
the ability of an experimental design of a given order to yield models of a lower order is seldom
of practical benefit.

2.6 Saturated designs

The saturation ratio of a model/design combination may be defined as the ratio of the
number of terms to be fitted to the number of tests in the design. A design in which the number
of tests 1s equal to the number of coefficients which are to be estimated is termed a saturated
design.

2.7 Orthogonality

An orthogonal design is one in which the parameter estimates of the terms in the fitted
model are uncorrelated with one another. The prediction variance at any point in the design
variable space is then expressible as a weighted sum of the variances of the parameter estimates
in the model. The importance of this property lies in the fact that the independence of the
parameter estimates facilitates the appraisal of the parameter values obtained, as well as the
comparison of relative precision of the parameter estimates for different terms of the model. In
the present work, this independence is fundamental to the application of the probability plot
technique, described in Appendix 4C, for testing the statistical sigmificance of individual
parameters.

In practice, a small degree of correlation between parameter estimates will not normally
invalidate conclusions drawn from either probability plots or variance comparisons, and a
requirement for exact orthogonality is often somewhat relaxed in cases where its attainment
would lead to a large increase in the number of function evaluations required. A related benefit
of orthogonal designs is that the precision of the parameter estimates which are obtained is
greater than that for comparable non—orthogonal designs (Box and Draper (1987), p.79).
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2.8 Rotatability

A rotatable design is defined as one in which the the prediction variance is the same at
all points which lie at the same distance from the centre of the design variable space, so that
surfaces of constant prediction vanance form concentric hyperspheres. One of the advantages of
a rotatable design 1s the fact that the variances of individual parameters, and the covariance
effects between them, are unaltered if the design is rotated relative to the variable axes.
Orthogonality is thus maintained under design rotation, so that prediction precision will not be
adversely affected 1f the principal axes of the response surface are not aligned with the variable
axes (Box and Draper (1987), p.484). For first-order designs, the requirements for
orthogonality and rotatability are, in fact, identical (Box and Draper (1987), p.483). When
investigating a cuboidal design region, however, concentric hyperspheres of constant prediction
variance would not appear to be of any particular benefit. The 1dentification of a constrained
optima on low order polynomial surfaces, for example, often identifies optimum variable
combinations which lie at, or close to, one of the vertices of the design variable space (see
Chapter 9), where prediction variance would be highest.

A much more useful design, when carrying out optimization within the design variable
space, would be one which resulted in the prediction variance being approximately constant
within the region, since the maximum vanation in prediction variance is arguably of more
importance than the exact shape of the variance contours. This requirement for approximately
constant variance can be met by employing a special type of rotatable design known as a
uniform precision design, in which the prediction vaniance at points lying on a hypersphere of
radius 1.0 is the same as that at the design centre. Second-order uniform precision designs are
discussed in Section 5.3, below, where it is shown that strict conditions must be fulfilled in
order to obtain them, often requiring many extra function evaluations, and that they cannot also
be orthogonal. For these reasons the property of exact rotatability 1s often compromised in the
search for designs which have a small test requirement and are also orthogonal. Methods are
available which can be employed to assess the degree of rotatability of a design (Khuri, 1985),
although their use is not investigated here.

2.9 Permutation invariance

A further characteristic which is automatically possessed by rotatable designs is that the
precision of the parameter estimates for each class of term are invariant under permutation of the
factors in the model (permutation-invariant, for short, see Hoke, (1974), p.376), so that the
estimates of the parameters do not change if the order of the vanables is changed. Thus, all the
parameters of the same form are measured with equal precision; e.g. the variance of parameter
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B,; is independent of the value of i, and similarly for B, and ﬁij' etc..

This is clearly an important property, since the ability accurately to compare different
variables depends heavily on the availabihty of equally precise information concerning the effect
of each of the factors. Additionally, it 1s often not possible to estimate in advance which of the
input variables is likely to have the greatest effect on the response functions, which would
necessarily lead to difficulties in determuning the appropriate order of variables if the design to
be used were not permutation-invariant. This problem is compounded by the fact that certain of
the variables may have a large effect on one or more of the computed responses, but a smaller,
or even negligible, effect on other responses. Indeed, it is shown in Section 9.5 that, when
carrying out an optimization study, it is advantageous to include some variables which possess
just this property.

Although the majority of the commonly used experimental designs are inherently
permutation-invanant, a number of the more advanced schemes for estmating the parameters of
second-order models deviate substantially from this ideal, in the search for designs which
reduce the number of function evaluations to the theorefical minimum (see Chapter 8). Due to
the requirement for mathematical models which will allow optimization to be carried out within
the design variable space, experimental designs which are not permutation-invariant have not
been investigated within the current work.

2.10 Blocking of tests

When carrying out experimental work of any nature, it is important that all test runs
carried out as part of an experimental design are conducted under controlled conditions, so that
vanations between test runs only occur in those variables which are being actively investigated.
Studies involving the sampling of output from a manufacturing process, for example, should
ideally test products made by the same machine from the same batch of raw materials, and
manufactured on the same day. If this 1s not possible for some reason, such as insufficient raw
material being available in a single batch, then the resulting inconsistency between tests becomes
an additional variable in the experimental design.

The effect of an additional vanable due to diffenng expenmental conditions is often of
no interest in itself, but is of some considerable concern in that these variations may bias the
estimates of the effects of other variables. A number of experimental designs have been
developed in order to address this problem; see for example Box and Behnken (1960), Khuri
and Cornell (1987), Box and Draper (1987). Using these schemes, the required tests are
divided into a number of groups, or ‘blocks’, with uncontrolled variables, such as raw material
batch or day of manufacture, only differing between these blocks, and not within them. The
division of tests into blocks is carned out in such a way that the effect of any uncontrolled
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operating conditions 1s orthogonal to the effect of any of the variables being investigated, and
hence will not bias the estimation of the parameter coefficients. This method of orthogonal
blocking ensures that estimation of design vanable parameters is independent of any unwanted
effect which may vary between blocks.

When carrying out an “expenmental” programme using computer simulation, however,
all relevant conditions are exactly repeatable. In this context, blocking of tests is not required,
and hence the use of an experimental design scheme which allows orthogonal blocking of tests
is of no particular advantage. Indeed, a number of these designs have a significant
disadvantage, since additional function evaluations are often required in order to ensure that the
tests block orthogonally. In selecting suitable experimental designs with which to investigate the
engine noise problem, the ability to carry out orthogonal blocking of tests has thus not been a
consideration, and the evaluation of designs which do posses this feature, as in Section 8.1, has
been conducted solely on the basis of other relevant characteristics of the design.

2.11 The D, X and M matrices

The specification of an experimental design can be expressed in terms of the design
matrix, D, which contains the combination of vanable values to be used for each run. The
design matrix for a three-level full factonal design in one dimension would thus be

-1
D =[ 0] 28)
1

Each row of the regressor matrix, X, is formed by calculating the values of each of the
terms of the model equation which result from the appropriate test combination. Thus, if the
coefficients of the model

Y= ﬁo + le + anz (2.9)
were to estimated from the above design, the appropriate regressor matrix would be

1-11
X:[l 0 0] (2.10)

111

The moment matrix is then defined as M= N-1X'X, where N is the number of tests in

the design, and X' represents the matrix transpose of X. For further details see Khuri and
Cornell (1987), p. 54.
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2.12 Characteristics of the moment matrix

The discussion in this section is based on that of Khuri and Cornell (1987, pp. 54-57,
60-61). An experimental design may be assessed for rotatability by examining the elements of
the moment matnx. For a first-order model in n vanables, for example, the X matrix in the
coded variable levels is of the form (1, x;, X5, ..., X;). The moment matrix may then be written
as follows.

1 Xy X, X3 .- Xp
17 1 @11 21 B1 ... 7
Xy [11] [12] [13] ... [In]
1xx= X2 [22] [23] ... [20] (211
N Xy 33] ... [31]
: symmetric K :
XnL [nn] |

where, fori,j=1,..,n, i=#j,

M=z

N N
=3 xe [l=gr X of =52 xaky (212)

u=l1 u=l1

1
N

[
—

i}

It can be seen that the value [i], called the first-order moment in the jth variable, is equal
to the mean of the test levels x, of the ith variable over the N tests, Similarly, the pure second-
order moment [i1] is the mean of the squared variable values x ;2 The value [ij], i % j, is termed
the mixed second-order moment. In order to simphfy the moment matrix, it is usual to apply a
scaling transformation to the coded variables, chosen such that the mean of the test values in
each vanable is zero, and hence [1} = 0. Clearly, an additional criterion of [ii] = O is unattainable
unless all the x,,, are equal to zero, but a simplification of the moment matrix may be obtained by
scaling the variable values such that [ii] = 1.

The first of these criteria may be fulfilled by subtracting from each of the uncoded test
values X ;, u=1, ..., N, the mean value of the 1 vanable over the N tests, such that

Xu = X - z (2.13)
where X, = - uE=1 X (2.14)

Note that, if the test specifications are symmetric about the mean of the variable bounds M,, then
the mean of the test values will be equal to zero.
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It can be seen from (2.12) that the requirement [1i] = 1 is met when

and this may be obtained by applying a scaling factor c, to each of the N test values, such that

N
Y @Xw?=N (2.15)
u=1
Thus,
N 172
G ={N/ Z Xﬁ,
u=l1
giving
XUI

Xul = [—;ﬁ—T (2- 16)
=y X
le "

The two criteria [i] = 0 and [ii] = 1 can be met simultaneously by first transforming the
vanable values to a zero mean using (2.13), and then scaling to give unit mean square by
(2.16). The following relationships can then be formed:

From (2.13), .
W-xn-X (2.17)

By substitution into (2.16),

_ Xui
x“""l N 2 172
.N-u=l (xm ) ]
Ko = . N e 2 , |12 (2.18)
I:ﬁ'uz:l (Xm - Xl) ]

or -
Xu =¥ [Xy - X (2.19)



48

where

N -142
K= [NLZ (X - Z){I

u=l

It can be seen from inspection of this equation that, in general, the attainment of these
two criteria will not yield equal coded ranges for each variable, since the value of the scaling
factor x, is dependent on the particular distribution of test points in the ih variable. Thus, the
adoption of this coding convention does not ensure the fulfilment of the requirement of
Section 2.3, that the range of each of the variables be equal, as specified in equation (2.1):

= Xui - My
A,

Xwm

However, 1f the normalised distnbution of test values is the same for each variable,
which is a necessary condition for the design to be permutation invariant, then the value of the
scaling factor k; will be the same, as a proportion of the variable range, for each variable. Thus,
for the class of designs which are invariant with respect to permutation of the variable order,
(which includes all designs considered within the present work), the coded test range of each
factor is identical, although not generally equal to 1, and the requirement of Section 2.3 is
fulfilled. Note that (2.18) is of a similar form to equation (2.1), with the mean of the actual test
values replacing the mean of the variable bounds, and the denominator providing a measure of
the spread of the test points in the direction of the X;-axis. Indeed, if the test points are
symmetrically distributed about the mean of the variable bounds, with only bounded values
being tested (as for the factorial and fractional factorial designs introduced in Chapter 3), then
the two expressions are identical.

As discussed above, the effect of the scaling convention of (2.18) is to simplify the
moment matrix by producing values of {i] = 0 and [ii] = 1, so that the moment matrix of
equation (2.11) is of the form

Xy Xo X3 - Xy
1{1 0 ¢ 0 ... 017
X 1 [12] [13] ... [ln]
L xrx = x; 1 [23] -.- [2n] (2.20)
N X3 1 ... [3n]
: symmetric R
XnL 1

In the general case of a design in n variables, the elements of the moment matrix (also
known as design moments), take the following form:



49

N
-1 6 )
o= L3 s xls
u=1

[19:282 (2.21)

where each of the indices §; (i = 1, n) is a non-zero integer. A design moment for which the sum
of the indices (8; + 6, + ... + ;) = d is termed a design moment of order , and, in general, a
design of order d will have design moments of order & = 0, 1, 2, ... 2d. Thus, a second-order
design will have design moments of order up to 4. For such a design, the X matnx in the coded

variable levels is of the form (1, X}, X3, ..., Xy, X12, Xo2, ..., X2, X1X3, X1X3, ooy X 1Xp)s
50 that, for a two-dimensional problem:
1 X, X, x? X3 XX,
1[ 1 (1] 21 @1 22 [12] ]
X, (111  [12]) [1i1] [122] [112]
Lyxe %2 221 [12] [2221 [122) (2.22)
N x4 [1111] [1122] [1112]
x3 symmetnc [2222] [1222]
1%L [1122] |

The notation for array elements follows that of (2.11); thus, in addition to (2.12), for the

general case of an n—dimensional design, and fori, j=1, ...

[iii] =

Fl".lz

L
N

[ii] = 'I%I‘Z xalxm
u=1

31 [ij] = ‘_'Z xulxuj

» 1, i#j,

N
[ii] =_1-2 x4
u=1

[iijj] = _z xm I.lj

(2.23)

As for a first-order design, adoption of the scaling convention of (2.18) leads to a

simplified matrix:

1 X,
1T 1 0
Xy 1

lxx= %

N XX = x3

x32 symmetnc
1%L

Xy
0
[12]
1

X
1
[111]
[112]

X3 X%,
1 [12]
[122] [112]
[222] [122]

{1111] [1122] ([1112]

[2222] [1222]

[1122] |

(2.24)

Moment matrices for designs of order greater than two are constructed following a

procedure analogous to that outlined above.
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Khuri and Comell (p.56, p.60) show that, if a design is rotatable, its moment matnx
will be of a particular form. For a rotatable first-order design in n variables, for example, the
moment matrix must be as follows:

N 0 Al

where I, is the n x n 1dentity matrix. The sub-matrix A1, represents the [ii] entries of the
moment matnx, which, under the scaling convention of (2.18), each have a value of 1. Thus,
the scale factor A, takes a valtue of 1. Additionally, since the moment matrix is diagonal, first-
order rotatable designs are also orthogonal.

For a second-order rotatable design in n vaniables, the moment matrix is of the
following form:

I R x3 x% x|21 X)Xy X(Xg -0 X X
1 1 o e A A Ay ]
Xy 0 0O 0 0 O
0
)*ZIn
X, 0O 0 0 o
X% 7\.2 0 0
2
1xix = X5 A O 0
N = A (21 0
N ;'-2 0 0 4 21y + Jpn)
2
X2 M O 0
X1 X2
X1X3
. 0 0 A Ip
xn-lxn

(2._26)

where J, is an n x n matnx of ones, and p = n(n-1)/2. Thus, for a rotatable second-order
design, the only non-zero elements in the moment matrix are [ii] = A,, [iili] = 3A4 and
[iijj] = A,. As for first-order designs, the effect of the scaling convention is to set A, = 1. The
value of the second parameter, A4, may be chosen to achieve certain other design characteristics,
such as orthogonality. The selection of a suitable value for this parameter will be discussed
further in Chapters 5 and 6.
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2.13 The method of least squares

Once the required function values have been evaluated at each of the test points of the
experimental design, a method is required which will estimate the terms of the chosen
mathematical model. In selecting a method by which to carry out this fitting process, 1t should
be remembered that the mathematical model will ultimately be used in the identification of an
optimum variable combination within the design variable space, and that it is generally not
known in advance in which area of the experimental region an optimum is hkely to lie. Indeed,
if a number of optimuzation procedures are to be carried out with differing objective functions,
constraint functions or constraint values, then many areas of the design variable space may be of .
importance. In such a case, 1t 1s appropriate to use a method which will ascribe equal importance
to the function values calculated in all parts of the design vanable space. The method used in the
current work, widely used for fitting equations to data, is the method of least squares, more
detailed descriptions of which may be found in, for example, Press et al. (1986), p.499 et seq.,
Khuri and Comell (1987), pp. 23-28, Box and Draper (1987), Chapter 3. This technique also
has the advantage that a large number of computer routines are readily available, both from
commercial software libraries (e.g. NAG, 1983) and from other sources (e.g. Press et al.,
1986). The least squares method seeks to identify values of the unknown parameters of a model
such that they minimuse the sum, over all of the test ponts, of the squares of the errors between
the predictions based on the fitted model and the calculated function values. A summary of the
method is given in Appendix 2A.

2.14 Testing lack of fit

Following the construction of an approximating response surface, it is important that the
next stage of any investigation be the validation of this mathematical model, in order to ensure
that it is a sufficiently accurate representation of the original function which 1t seeks to
approximate. This validation is carried out by first selecting a number of locations within the
design variable space, and comparing the response calculated by the original analysis program at
each of these points with the value predicted by the approximating model. The difference
between these two values is referred to as the ‘lack of fit’ of the response surface at the point in
question. The lack of fit which is found at the chosen points may be expressed in a number of
ways, among which one of the most common is the analysis-of-variance (ANOVA) method.

The ANOVA method is a standard statistical approach to evaluating the quality of fitof a
predictive model (see, for example, Box, Hunter and Hunter, 1978). Using this technique, a
comparison is made between the amount of variation about a mean value which occurs in the
computed function values and the amount of variation which occurs in the predicted values,
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calculated using the approximating mathematical model, A summary of the method is given in
Appendix 2B. Perhaps one of the greatest disadvantages of the ANOVA approach is that the
results which are produced are often hard to interpret, especially when used by engineers or
designers who have no formal training 1n statistical methods. Additionally, the measures of fit
which are obtained give little indication as to which areas of the response surface are being
accurately represented, and in which regions sigmficant discrepancies are occurring. Such
information would be particularly useful in determiming whether substantial improvements in the
accuracy of the approximating response surface could be gained by moving to a higher order
model.

To avoid these concerns, an alternative approach has been taken 1n companng the
various experimental designs and predictive models which are discussed in Chapters 4 - 8. A
measure of lack of fit is developed which presents the lack-of-fit data in a form which is directly
related to the units of each of the original response functions, and is more amenable to
interpretation by non-specialist users.

2.15 Assessment of lack of fit for optimization purposes.

Calculation of lack of fit is camed out for each function at all test points for which
function value information has been computed. For the purposes of assessing lack of fit at
different locations within the design variable space, these test points may be divided into a
number of groups, such as, for example, the design points used to generate the model, and
those extra points which have been specifically selected to provide additional lack of fit data.
The categories of test points used in the present investigation are descnbed tn Section 4.1.1, for
first-order designs, and Section 6.5.1 for second-order designs. The lack-of-fit error E at each
point is calculated, as for the analysis-of-variance method, as the difference between the
computed function value and the predicted value at this point. Thus,

E=(Yu-yu (2.27)

where Y, is the computed function value at the u™ test
Yu1s the predicted function value at the uth test

This absolute error value may be quoted in the original function units, and provides a
readily understandable measure of the performance of the predictive model at each point within
the design region. Although this absolute error value is instructive in assessing the suitability of
the mathematical model, a more useful measure would be one which seeks to normalise the
error term in some appropriate fashion, and an initial choice might be to calculate the error as a
percentage of the measured value. When carrying out an optimization study, however, an
important consideration is the way in which the response surface would be distorted by such an
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error, since 1t 15 this distortion which leads to incorrect identification of optimum variable
combinations. A suitable measure of the error occurring at a test point would therefore seem to
be one which links this error to the range over which the function in question varies throughout
the design variable space. The error may thus be expressed as a percentage of the function
range, as follows:

= KET. (2.28)
where the absolute error E 1s as defined above, and F}, and F; are the extreme values of the
function which occur within the design region.

The use of this normalised measure of lack of fit has the additional advantage that 1t
enables general recommendattons to be made as to when the fit of a model should be considered
adequate. Errors which constitute less than, say, 5% of the function range are unlikely to cause
substantial distortions 1n the overall shape of the response surface, and will hence not lead to
large errors in the determination of an optimum. Errors of 15-20% or more would, however,
usually give cause for serious concern, and in such cases the investigator should make further
inquinies 1nto the distribution of these errors, and consider either conducting a further set of
computational function evaluations 1n order to provide additional data, or use a predictive
model of a higher order. Between these ranges, the level at which errors become unacceptable
is largely a matter of judgment, and will often depend upon experience of a particular
application.
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Appendix 2A

The method of least squares

Constder a case m which the measured response Y is representable as a strict quadratic model in two
variables, plus some error term ¢, as shown 1n equation (2A 1)

Y = Bo+ Bix1 + Boxz + Br1x + B22xf + Braxixz + £ (2A.1)

At each of the n test points, a measured function value Yy, (u=1, . ., N), is obtained, and the error term ¢, at each
point 13 thus

€a = Yu - Bo - BrXu1 - BoXuz - Buixd - B22x2 - BroXuiXu2 (2A.2)

The sum of the squares of the errors, €,2, is then as shown in equation (2A.3), and 1t is this value which the least
squares algorithm secks to minimise.

N
2
g2 = ¥ (Yu-PBo-PBrXus - BoXuz - Buxd - B2oxZy - BroXurkuo) (2A.3)

u=l
In order for the least squares estimates to be maximum likehihood estimates, a number of conditions
must be placed on the error term € in the statishcal model (2A.1). These conditions on £ are as follows,

1. They are statistically independent.
2. They have zero mean and a common vaniance, o2,
3. They are normally distributed.

The valhidity of these conditions when carrying out computer ‘experimentation’ is discussed in Appendix 4C,
although in any case the least-squares algorithm gives sensible results under a much wider range of conditions.

For the full set of N tests, the model of equation (2A.1) can be expressed in matrix notation as follows

Y=XB+e (2A.4)

where Y is a vector of measured function values, X is the regressor matnx, @ is the vector of coefficients and e1s
a vector of error terms, as follows;

p= —

v 1 X11 X12 xt Xl XXz
1
1 X X X X2,  X21X
Y= Y? X = 21 ?2 %1 ?2 21- 22
YN 2 2
[ 1 NI XN2 XK X2 XN1XN2
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B= P1 e=| 2
: N
| B12

It can be shown that the least square esumates of the elements of f may be found by solving the normal
equanons

XXb = XY (2A.5)

where b =(by, by, ..., byy)' are the least squares estimates of the coefficients Bo, By, - -» B2, Tespectively, and
may be calculated as

b=(XXyIX'Y (2A.6)

The covanance of the parameter estimates is then given by equation (2A.7), where each diagonal
element C,; represents the vanance of the ith element of b, and each off-diagonal element Clj represents the
covanance between by and b,

Cov(b)=C = (X'X)'loz (A7)

The standard error of each b; is equal to the positive square root of the variance value of that b ,,

| ¥Var(h ) I. The response ¥(Xr,) which is predicted by the model at any point X, = (X;,ys Xpz)' is given by
equation {2A B),

¥(Xm) = Xnb (2A.8)

where X' = (1, X my, X m2, Xm1 2, Xy 2) i8 of the same form as a row of the X matnx of (2A 4). Finally, the
varnance of y(x,,), which 1s a measure of the precision of the prediction, may then be calculated as

Var[y(xp)] = Var[X,b] = X' (XX)1 X, o® (2A.9)

Note that, for an orthogonal design (see Section 2.7), the matrix X'X is diagonal, so that the prediction variance
at the point x., is equal to the sum over i of (er)2 b,. Additionally, if the maximum value of each variable
within the design region is 1 0, then the maximum prediction variance is equal to the sum of the variances of the
individual coefficient estimates.
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Appendix 2B
Analysis of Variance

The analysis-of-variance method compares the amount of variation about a mean value which occurs in
the computed function values with the amount of variation which occurs 1n the predicted values, calculated using
the approximating mathematical model. The vanation which occurs 1 the computed function values is termed the
total sum of squares (SST) and is calculated as follows:

N =2
SST= Y (Yu-Y) (2B.1)

u=l

where Y, 1s the computed function value at the u® test
Y is the mean function value over the N tests, Y = Y1+Y2+...+YN)/N

The number of statustical degrees of freedom associated with SST is N - 1. The variation which occurs in the
predicted values at the same test points 15 referred to as the sum of squares due to regression (SSR). For a model
which contains a total of p parameters (including the mean value), the number of statistical degrees of freedom
associated with SSR is p - 1. The sum of squares due to regression 1s calculated as

N —
SSR= 3 (u-7) (2B2)
u=1
where yy is the predicted function value at the u'h test

The lack of fit at each of the u =1, ., N selected pomnts 1s calculated as the difference between the
computed function value Yy, and the predicted function value y,,. The sum of the squares of these values is termed
the sum of squares of the residuals (SSE), and may be expressed as

N
SSE = 2_)1 (Yu-yo) (2B3)

The number of statistical degrees of freedom associated with the sum of squared residuals 1s equal to the
difference in number of degrees of freedom between SST and SSR, and is thus (N - 1) - (p - 1) = (N - p) These
three values, together with their degrees of freedom are usually assembled in tabular form, as shown in
Table 2B.1. This table highlights the fact that the total sum of squares variation is partitioned into two
components. Firstly, the SSR represents the amount of the variation in data values which is being accounted for
by the predictive model. The SSE then gives the remaining vanation in the computed function values which is
unaccounted for by the fitted model.

Statistical Degrees Sum of Mean
Source of Variation of Freedom Squares Square
Regression p-1 SSR SSR/(p-1)
Residual N-p SSE SSE/(N-p)
Total N-1 SST

Table 2B.1 Analysis-of-Variance Table

The above quantities may be used to assess the accuracy of the fitted model by testing the null
hypothesis that all model coefficients except B, are equal to zero. If the test shows this hypothesis to be untrue,
then this allows acceptance of the alternative hypothesis; that at least one of the model coefficients is non-zero,
1n addition to the mean. In order to test the null hypothesis, the sum of squares information calculated above is
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first used to compute an F-statistic, which 13 of the form:

F = Mean Square Regression _ SSR/ (p- 1) (2B.4)
Mean Square Residual  SSE/ (N - p)

This value is then compared with standard tables, for the appropriate number of degrees of freedom, 1n
order to assess whether the hypothesis is to be accepted or rejected at a given level of significance. An additional
statisuc which may be used to determune the quality of fit of the predictive model 1s the coefficient of
determunation, defined as

R? =SSR (2B 5)
SST

The coefficient of determination reflects the proportion of the total variaton of the computed function values
about therr mean value which is being explained by the fitted model.
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3. Two level factorial designs

3.1 Introduction

The general aim in the use of response surface techmgques 1s to construct a mathematical
representation of the measured data which establishes a connection between the values of the
input variables and the level of the response functions of interest. This analytical model 1s then
used to predict the function values at combinations of input variable levels other than those
initially tested. The simplest such representation is a linear model, also known as a
‘main effects’ model, the general form of which is as follows,

Y = o+ fj B.X, 3.1)

1=1

In this equation, X, X, ..., X , are the levels of the n input variables, Y is the value of
a measured response function, and B, 4, ..., B, are unknown coefficients which link the
input variables and the resulting response. The aim of the current chapter is to present a number
of strategies for selecting variable combinations at which to carry out computational trials, in
order to estimate the values of the unknown parameters with the greatest efficiency, whilst
maintaining an acceptable level of accuracy. In the following chapter the results of a number of
experimental trials will be presented, in order to establish the suitability of these methods to the
engine noise application.

3.2 A simple method of estimating main effects

Considering a simple one-variable example, the linear model 1s of the form
Y =6+ BiXy (3.2)

in which there are two unknown parameters to be estimated. At least two tests must therefore be
carried out in order to obtain sufficient function information to be able to distinguish between
the effects of the two terms. Having decided the range of variable values over which predictions
of the response function are required, an appropriate choice for the two values of the variable at
which to carry out tests would seem to be the low and high bounds of this range. This gives the
advantage that all predictions over the required range are obtained by interpolation.
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If a further vanable is added to the investigation, then the model becomes

Y =fo+ BiXn + f2Xa2 (33)

in which three parameters are to be estimated. The minimum test requirement is now for three
trials, with the further provision that each of the variables must appear at a minimum of two
different levels, with a suitable choice of settings being the low and high bounds of each
variable, as above. A further parameter is added to the model with each extra variable which 1s
to be considered. For the general case of n variables, the minimum number of trials is thus
n + 1, with each variable appearing at at least two distinct levels.

This requirement for test data may be met by carrying out a basic ‘one at a time” test
procedure, in which one trial is performed with all of the variables at, say, their low level,
followed by n further trials, in each of which one of the variables is set to 1ts high value, with all
others at the low level. Even if no pure quadratic effects occur in the response, however, this
method can stil] lead to inaccuracies, since it assumes that the effect of each variable will be
independent of the value of all others. This may not be the case, as it is possible that the effect
on the response function of a small change 1n the value of a vanable A may be different when
another variable B is at 1ts high level to the effect when B 1s at 1ts low level. The occurrence of
this connection between variables is termed interaction, with the present example representing
AB interaction. An interaction effect is represented in the predictive model by a cross term
involving the interacting variables, so that (3.3) would become

Y =fo+ P1Xy1 + B2Xz + B12X1 X2 (3.9

If many such effects are present in the variation of measured response, or a small
number occur with large magnitude, then there is substantial scope for error in the prediction of
the response throughout the region of interest. In addition, the magnitude of this two-way
interaction term may itself be different at different levels of some third variable C, leading to a
three-way (or third order) interaction term ABC. In general, in fact, there exists the possibility
of interactions of increasing complexity up to n'! order for a problem in n variables, although
their magnitudes are likely to decrease rapidly with increasing order.

The limutations of the ‘one at a time’ approach may be demonstrated diagrammatically
with reference to a three variable problem. Figure 3.1 shows the three-dimensional design
variable space, together with four vanable combinations which might be tested using such a
strategy. The low and high levels of each variable are here represented as -1 and (+)1
respectively. The distribution of test points throughout the experimental region clearly leaves
much to be desired, with the constructed model being based on information collected from only
a small portion of the total space. Although predictions at points which fall on the edges of the




60

cube between two adjacent pornts are likely to be fairly reliable, function evaluation at all other
locations requires a varying degree of extrapolation. Two-way interaction effects may lead to
mnaccuracies at, for example, the ponts (-1, 1, 1), (1, -1, 1) and (1, 1, -1), with the point
(1, 1, 1) being further subject to the possibility of a three-way interaction effect.

An equally important defect of the ‘one at a time’ method is that, in addition to ignoring
all interaction effects in the construction of a predictive model, 1t provides no means of
assessing whether these effects are present or not. If the user is aware of these limitations, then
the ‘one at a time’ approach can serve a useful purpose as an initial survey of a design variable
space, in order to ascertain, for example, whether any of the selected input variables have a
negligible effect on the response function of interest. More detailed investigation may then be
posed 1n a reduced dimensional variable space, with a resultant saving in the cost of
experimentation.

Xy
A
(-1, 1,-1) (1, 1, y
('1’ 1’ 1) i 1' 1)
e X
('1.'1,/ (1,-1,-1)
’/-1, 1,1 (1,-1,1)

X3 ( ) ® fest points

Figure 3.1. A ‘one at a time’ test in three dimensions

The adequacy of the model constructed using the ‘one at a time’ method may be
assessed by carrying out further tests at one or more points within the experimental region, such
asat(l, 1, 1) in Figure 3.1, and comparing the result with the value predicted by the model of
equation (3.1). The magmtude of the difference between these two results provides some
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indication of the degree to which the model is failing to represent the true response. An initial
improvement to the constructed model may be obtained by improving the distribution of test
points throughout the design variable space by, for example, testing at each of the vertices of the
cube in Figure 3.1. Although this will reduce bias towards a particular area of the region, the
representation of interaction effects is still precluded by the simple nature of the main effects
model of (3.1). Additionally, eight tests are now being conducted to estimate just four
parameters, and this ratio of model terms to test points wall fall sharply if the number of design
variables 1s increased. It is at this stage that a more formalised approach to the selection of an
appropriate experimental design is required.

3.3 The factorial design

The factonal design 1s a widely used general purpose design for fitting a first-order
model. It 1s valid for any number of input vanables n, and has the further advantages that it 1s
both orthogoenal and rotatable. A factonal design 1n n vanables is constructed by performing
tests at all combinations of the high and low levels of each of the variables. The total number of
such combinations 1s 22, and the test points may be visualised as lying at the vertices of an
n—dimensional hypercube. The test points which are required for a three-dimensional case are
shown 1n Figure 3.2,
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X2
. 1, 1)
- X
(-1!-19- (1! -11 -l)
X ’{11 1) (-1,
3 @ test points

Figure 3.2. A two level factorial design in three dimensions

The variables are scaled in accordance with the convention described in Section 2.12,
so that for each of thei = 1, ..., n vanablesin each of thej = 1,..., N tests, the value Xij is
converted to the standardised level X by the transformation

x,_, = le - Xl

(3.5

The effect of this scaling is to normalise the values of the low and high bounds of each
vanable to -1 and + 1 respectively, as shown in Figure 3.2.
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The design matnx for this three-variable design is then

X1 X2 X3

1 -1 -1

40 0-1 1
01 -1

p=| -1 1 1
1 -1 -1

1 -1 1

1 1 -1

L1 1 1.

This leads to the following moment matrix M= N-1 X'X

1 X3 X2 X3

1 1 0O 0 ¢

M= X 0 1 0 0
Xz 0 o0 1 O

X3 0O 0 O 1

thus demonstrating that the design meets the conditions for both orthogonality and rotatability as
outlined in Sections 2.7 and 2.8. All of the two level factorial designs introduced in the present
chapter display both of these properties.

Since 2 tests have been performed, it is possible to fit a mathematical model which has
up to 2™ unknown parameters to be estimated. From Section 3.1, 1t is known that n + 1 of these
terms are the mean plus main effect terms. The remaiming 22 - (n + 1) terms are then the
interactions between the n variables, and the factonal design thus allows the construction of a
‘linear + interactions’ mode! of the form shown in equation (3.6).

n n-1 n n2 n-l n |
Y=f+ 2 B, + 2 2 Buyx.x; + Z 2 Z BuykXeXXk + |
1=1 1=1 =1+l 1=1 1=1+1 k=j+1

(3.6)

n-3 n-2 n-l n

D2 2 2 BukXXXexyH oo B123...n X1X2X3+ - Xp

1=1 j=1+1 k=)+1 1=k+1

It should be noted that only linear interactions appear in (3.6); that is, terms in which no
variable has an index greater than 1, The two-way 1nteractions may alternatively be considered
as mixed quadratic terms, and the three-way interactions as mixed cubics, etc..
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The advantages of the full factorial design are that 1t 18 easy to specify, and allows for
the estimation of all possible linear interaction terms. This latter characteristic may be
particularly useful when investigating a specific problem of an unfamiliar nature, in which the
susceptibility to interaction effects 1s unknown. The main disadvantage, however, is that the
number of terms in the model] of equation (3.6) successively doubles as the number of vanables
is increased, as does the number of tests which must be performed 1n order to estimate these
parameters. This test requirement is easily met for problems containing up to, say, 4 or 5
vanables (2 = 16 and 32 tests respectively), but quickly becomes excessive when the number
of design variables exceeds 6 or 7. An investigation into the effect of 10 vanables would require
1024 trials to be conducted, whilst with 15 variables this number increases to nearly 33,000.

It is unlikely, however, that all of these terms will have a sigmificant effect on the
predictive ability of the fitted model, and in general the magmtude of coefficients is likely to
decline as the order of interaction increases. The proportion of significant terms in the model
may thus fall extremely rapidly as the number of variables increases. If in a twelve variable
study, for example, only effects up to and including fourth-order interactions were contributing
to the model, then the number of significant terms would be 794 out of a total of 212 = 4096, or
just over 19%. If the fourth-order interactions were negligible, this figure would drop to 299
terms (7.3%), and a linear plus two-way interactions model would contain just 79 parameters;
less than 2% of those appearing in the original mode!l. A similar model in 15 variables would
contain less than 0.4% significant terms, and even for 7 vanables the ratio is under 23%.

In such cases the full factorial design 1s an inefficient means of acquiring the necessary
test data, and an alternative strategy is required 1n which the number of tests to be performed
may be reduced in line with the expected number of significant terms.

In practice a full factonal design would only be considered 1f one or more of the
following conditions were true:

1) The number of variables is small (say <7)

ii) The cost of each test 1s very low

iii) All linear interaction terms are known to contribute substantially to
the predictive accuracy of the model.

3.4 Economic first-order designs

In reducing the number of experimental test runs which needs to be carried out in order
to estimate the required parameters of the mathematical model, a design is sought which will
provide the necessary accuracy, and which will also maintain, 1f possible, the desirable
properties of orthogonality and rotatability possessed by the full factorial design. Two
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orthogonal designs for fitting first-order models which may be employed are the Simplex
Design (Box, 1952) and the Plackett-Burman design (Plackett and Burman, 1946).

A simplex design in n variables uses n + 1 test points, positioned at the vertices of an
n—-dimensional regular figure (a simplex) in order to asses the mean value and main effects
represented by the linear model of equation (3.1). The disadvantage of this design, however, is
that the extremely low number of test points does not allow for the estimation of any of the
interaction effects which may occur between vanables.

The Plackett-Burman design is also largely aimed at fitting a main effects model,
although some interaction terms may be included. Its main drawback as a general technique,
however, is that it is not available for every value of n, the number of design vanables.

3.5 Fractional factorial designs

One class of designs which does meet the above criteria is the famly of fractional
factonal designs, in which a 2™ fraction (1 < m < n-1) of the complete factorial design in n
variables, as outlined 1n Section 3.3, is used to collect the necessary function information. The
fractional factorial design is valid for all values of n> 1, and has the additional advantage that
the value of m can be selected to successively halve the number of tests to be carried out. The
price to be paid for this reduction in test data, however, is a corresponding reduction 1n the
number of terms of equation (3.6) which can be estimated. It is clearly important that the terms
which remain in a reduced model are those which contribute substantially to the accuracy of
prediction, and this is deterrmned by the manner in which the original 22 tests are subdivided to
produce the reduced experimental design. Before proceeding further, a bnef discussion of
notation is required.

3.5.1 Notation for fractional factorial designs

Although the elements of a design matrix and points within a design variable space are
most conveniently described using the £1 notation used in the previous sections, an alternative
method of specifying design variable test combinations is useful in outlining the construction of
a fractional factorial design.

Under this convention, used by many authors, e.g. Davies (1954), each of the variables
X1 X3, ..., X, is denoted by a capital letter (A, B, C,... etc.). Each treatment combination is
then described by a string of k lowercase letters (k < n), in which the letter relating to a
particular variable appears in the string if that variable is to be tested at its high level, but is
absent if the low level is to be tested. Thus a test in five variables at the point (1, -1, -1, 1, 1), in
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which variables A, D and E are tested at their high level, with B and C at the low level, would
be notated as ‘ade’. Special provision 1s made for the combination 1n which all variables are
tested at their low level, and this 1s wntten as “(1)".

Additionally, terms in the mathematical model are described using the appropriate capital
letters in place of the X, X, ..., X, of equation (3.5). Thus the main effect terms are written
as A, B, C, etc., and two-way interactions as AB, AC, BE, DF, etc.. In general, each
mteraction of order k (k < n) will be notated as a string of k capital letters denoting the variables
between which the interaction effect occurs.

3.5.2 Construction of designs with m = 1

A method of specifying a 2™ fraction of a 27 factorial, following that of Khun and
Cornell (1988), is outlined in the following sections, and is valid for all n > 1. In order to aid
descniption of this method, the simplest case of m = 1 is first discussed. Following this, the
procedure 1s extended to designs employing a 2-2 fraction, and then to the general methodology
forany value of m in therange 1 s m=<n-1.

For a design employing a 2-! fraction of a full factonal design, the original 2 tests must
be divided 1nto two fractions. The first step 1s to nominate one p-way interaction (p < n) which
is thought to have a negligible influence on the model, and whose effect may be ‘sacnficed’.
This interaction should normally be of a high order, and, since only one is required, a logical
choice 1s the single n-way interaction.

Of the total of 22 test combinations, notated by a string of lowercase letters, as in the
previous section, half will have an even number of letters 1n common with this nominated
interaction, whilst half will have an odd number in common. This 1s the basis for dividing the
original tests into two fractions. The choice as to which of these two fractions to use as the
design is entirely arbitrary, as it cannot be known prior to testing whether one will yield better
results than the other. In practice it is usual to use the “principal fraction’, which is defined as
the fraction which has an odd number of letters in common with the nominated interaction if the
nominated interaction contains an odd number of letters, and an even number in common with it
if itis even.

It will be convenient, especially when considering designs for which m > 1, to denote
the fraction whose tests have an even number of letters in common with a nominated interaction
containing an even number of letters, or an odd number of letters 1n common with one
containing an odd number of letters, by the symbol ‘+’. Conversely, the fraction whose tests
have an even number of letters in common with a nominated interaction containing an odd
number of letters, or an odd number of letters in common with one containing an even number
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of letters, is denoted by the symbol -’, Clearly, each of the tests within a given fraction will
display the charactenstics of the fraction as a whole, and may also be given the appropnate
symbol.

As an example, consider the selection of a 2-1 fraction of a five variable factorial design
containing 25 = 32 tests. The full set of test combinations 1s as follows.

(D) d ad be abc ace bde abde

a e ae cd abd ade cde acde
ab be ce abe bed abed bede

c ac bd de acd bee abce abede

Table 3.1. Full set of 2" tests for a five variable problem

If the five-way interaction ABCDE is selected as the term to be ‘sacnficed’, then the
tests which have an even number of letters in common with this term are

(D ac ae bd cd de aboe acde
ab ad be be ce abcd abde  bede

Table 3.2. The first of two 2! fractions for a five variable problem
whilst the following have an odd number of letters in common with ABCDE

a c e abd acd ade bee cde
b d abc abe ace bed bde abcde

Table 3.3. The second of two 2! fractions for a five variable problem

Since ABCDE itself has an odd number of letters, it is this second fraction which, under
the convention given above, is the principal fraction, denoted by ‘+°.

Having decided which tests to perform, 1t is now necessary to determine which of the
original 2" terms may be retained in the reduced model. Twice as many terms were present in
the original model as there are now test results, with the result that the effect of pairs of terms
will be indistinguishable from each other. Such terms are said to be ‘confounded’. Any fitted
model must include only one term of each pair, although the parameter estimate will in fact
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represent the sum of the two effects. This may clearly lead to significant error if both of the
terms have a substantial influence on the function to be approximated. If, however, the terms
are paired such that only one of each set 1s significant, then little information will be lost. Since
the reduced model contains the same number of coefficients as there are tests in the fractional
design, an exact fit at all test points will always result, whichever term of each confounded pair
18 used. The effect of specifying an insignificant term of a patr will only become apparent when
the model is used to predict the response at points other than those used to construct the model.

The effect of using the nominated interaction, in the above case ABCDE, to divide the
factorial design into two fractions is that in all the tests of one fraction ABCDE is at its high
level, whilst in the other fraction all tests have ABCDE at the low level. The result of this is that,
whichever fraction 1s used, the ABCDE effect is only tested at one level, and 1s hence
indistinguishable from the mean value, or identity effect, denoted as I. This confounding with
the identity effect may be written as

ABCDE=1, (3.7)

and is termed the ‘defining relation’ for this particular design. This relation provides the basis
for determining the confounding between all other terms in the full model. To find which other
effect a particular term is confounded with, the term must be muluplied with the nominated
interaction; the square of any letter being removed from the resulting character string. The term

produced by this process is then the one with which the original term is confounded.

Returning to the above example, the term with which the main effect A is
confounded is:

A x ABCDE = A2BCDE = BCDE (3.8)
whilst the two-way interaction term CE is confounded with
CE x ABCDE = ABC2DE? = ABD 3.9

The full set of confounded parameters for the above example is then as given in
Table 3.4, below. Each term in the first column is confounded with the term appearing on the
same row of column two.
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mean ABCDE
A BCDE
B ACDE
C ABDE
D ABCE
E ABCD
AB CDE
AC BDE
AD BCE
AE BCD
BC ADE
BD ACE
BE ACD
CD ABE
CE ABD
DE ABC

Table 3.4. Pattern of confounding for a five variable problem

This design appears to provide a promising basis for accurately representing the true
response, since all of the main effect and two-way interaction terms may be estimated
independently of each other. The fitted model would contain those terms which appear in the
left-hand column. The predictive ability of the constructed model will depend on the size of the
three-way and four-way interaction coefficients with respect to the two-way interaction and
main effect terms respectively.

3.5.3 Construction of designs with m = 2

Designs which use a 2-2 fraction of the full factorial require that the number of tests be
reduced to one quarter of the onginal number. In order to achieve this, two interactions must be
nominated, to successively halve the number of tests. The choice of suitable nominated
interactions, however, is now not so apparent. For the five variable example introduced above,
an initial selection might be the five-way interaction ABCDE and one of the four-way
interactions, say ABCD.

As for the previous example, half of the 2 tests will have an even number of letters in
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common with the first of these nominated interactions, whilst half will have an odd number 1n
common. The same is true for the second interaction. Since the original parameter estimates of
the nominated interactions were orthogonal, the division of tests will also be orthogonal, so that
each half fraction created by either interaction will be further halved by the other. If the symbols
‘+> and ‘=’ are again adopted, then the complete set of 20 tests will be divided into four
fractions, as follows.

Interaction 1 Interaction 2
+ +
+ -
- +

The principal fraction is now defined as that fraction for which ‘+’ symbols are obtained
with respect to both defining relations.

For the five variable example considered earlier, the principal fraction for the 2-2 design
with defining relation ABCDE and ABCD may be found by further dividing the tests of Table
3.3, and selecting those which have an even number of letters in common with ABCD. These
are listed in Table 3.5.

e abe ace ade bee bde cde abcde

Table 3.5. Principal fraction for 2%°% design in five variables

Since both of the nominated interactions are now confounded with the mean effect,
there are two defining relations of the form

ABCDE=ABCD=1I, 3.10)

By multiplying each term of the full model by each of the two interactions, two terms
are generated with which the onginal effect is confounded. Since only one quarter of the terms
of the full model may now be represented, however, confounding must occur in sets of four
parameters. A third defining relation is therefore needed in order to produce the fourth member
of each set, and this is obtained by multiplying together the two nominated interactions already
defined, to form what may be termed a generalised interaction between the two. For the present
example, this would produce the term
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ABCDE x ABCD = A’B2C?D’E = E (3.11)
so that the defining relations are now
ABCDE=ABCD=E=I, (3.12)

The pattern of confounding 1s thus as shown 1n Table 3.6. Each term in a given column
1s confounded with each of the three terms appearing on the same row of the table.

mean ABCDE ABCD E

A BCDE BCD AE
B ACDE ACD BE
C ABDE ABD CE
D ABCE ABC DE
AB CDE CD ABE
AC BDE BD ACE
AD BCE BC ADE

Table 3.6. Table of confounding for a five variable problem

This 1s clearly a very poor design, as the mean value is confounded with one of the
main effects, each of the other main effects are confounded with one two-way interaction, and
the s1X remaining two-way interactions are confounded in pairs. On examination of the above
process it becomes apparent that if significant parameters are to be confounded only with higher
order interactions, and not with each other, the number of letters in each of the defining relations
must be kept as large as possible. More specifically, the worst case of confounding will be
determined by the shortest of these relations, and so the original interactions should be
nominated in such a way as to maximise the length of the shortest nominated or generalised
interaction. In forming the third defining relation, it is clear from equation (3.12) that it will
consist only of letters which occur in just one of the original terms. These terms must therefore
be selected in order to contain as high a ratio as possible of unique letters to common letters.

If, for example, the nominated interactions were ABCD and BCDE, then the third term,
formed by multiplication, would be AE, giving a minimum length of just two letters. An
alternative choice of ABCD and CDE, however, would yield ABE, and a minimum length of
three letters. This second choice would then result in the following confounding table.
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mean ABCD CDE ABE
A BCD ACDE BE

B ACD BCDE AE

C ABD DE ABCE
D ABC CE ABDE
E ABCDE CD AB
AC BD ADE BCE
AD BC ACE BDE

Table 3.7. Revised table of confounding for a five variable problem

This is certainly an improvement over Table 3.6, 1n that the mean value is now only
confounded with interactions of order three and four. It will still lead to substantial errors in the
fitted model, however, if the two-way interaction terms contnibute significantly, since
confounding occurs between each main effect and a two-way interaction, and in pairs between
the remaining two-way interaction terms. This, however, is the best design which can be
obtained when using a quarter fraction of a five vanable factorial design. This is as may be
expected when it is borne in mind that the total number of the mean + main effect + two-way
interaction terms is 16, whereas the number of test points is just 8.

3.5.4 Design resolution

In the previous section 1t was seen that a design which can disunguish between the
mean value and each of the main effects is more desirable than one in which confounding occurs
between a number of these terms. This ability to distinguish between the various parameters of
the model is termed the resolution of a design, with a full factonal being of full resolution since
it can independently estimate each of the 2™ terms of the complete linear + interactions model.

The resolution of a fractional factonal design is defined as the number of letters in the
shortest term which appears in the defining relations, with a higher value indicating a better
design. The value of the design resolution is usually written in Roman numerals as, for
example, resolution VII or resolution I1. The upper limit on such a value is clearly n, the
number of design variables, since this is the maximum number of letters available. The 21
design with defiming relation ABCDE = I, which produced the confounding pattern of Table 3.4
was thus of resolution V. In contrast, the first attempt at constructing a 2-2 design with defining
relations ABCDE = ABCD = E =, was only of resolution I, with the improved version using
ABCD = CDE = ABE =1 being of resolution III.
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In practice, attention is often focused on the accurate estimation of mean, main effect
and two-way interaction terms, and as a result the following three design resolutions are of
particular importance.

Resolution III.  In this design the mean is only confounded with interactions of order
three or higher. Main effects are distinct from each other but confounded with one or more
two—way interactions, plus higher terms. Two-way interaction terms may also be confounded
with each other.

Resolution IV.  Main effects are now confounded only with third-order interactions
and higher, although two-way interactions are still confounded among themselves. The mean is
independent of all interaction terms of order less than four.

Resolution V. The mean value is confounded only with interaction terms of order
five and above. Each of the main effects 1s confounded with interactions of order four and
above. Two—way interactions are now independent of each other, but are confounded with
third-order interactions.

3.5.5 Construction of general fractional factorial designs

Having introduced the special cases of fractional factonal designs involving 2-1 and 2-2
fractions of the full 2° factonal, the general method of constructing a 2™ fraction may be
described as follows.

1. Nominate m interactions which are to be confounded with the mean effect.

2. For each of the m nominated interactions, those tests which have an even number of
letters in common with a nominated interaction containing an even number of letters, or an odd
number of letters in common with one containing an odd number of letters, are given the
symbol ‘+’. Conversely, those tests which have an even number of letters i1n common with a
nominated interaction containing an odd number of letters, or an odd number of letters in
common with one containing an even number of letters, are given the symbol *-’.

3. The pnincipal fraction, which constitutes the required design, consists of all those
tests which have been assigned a ‘+’ sign with respect to each of the m nominated interactions.

4. The m nominated interactions are then multiplied together in all possible
combinations of between 2 and m terms, to give an additional 2™ - m - 1 generalised
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interactions. Together with the onginal m interactions, these form the 2™ - 1 parameters which
are confounded with the mean effect, producing 2™ - 1 defining relations. The nominated
interactions should be selected in such a way as to maximise the number of letters in the shortest
of these defining relations.

5. The table of confounding 1s produced by multiplying each term of the original model
by each of the 2™ - 1 defining relations. This then groups the 22 terms into 20 sets of 21
terms, and the new model 1s constructed by selecting that term from each of the 2™ sets which
is expected to make the most sigmficant contribution to the performance of the model. This will
usually be the term which consists of the fewest letters, although if two or more terms are of
equal length it 1s often not possible to make an informed choice. In such cases i1t may prove
useful to assess a number of possible models,

As an example, consider the construction of a 23 fraction of a 26 factorial array, with
six variables A to F. If the three nominated interactions are the three-way interaction terms ABC,
CDE and AEF, then the 2% = 64 tests are divided into eight fractions as shown in Table 3.8.

ABC CDE AFEF ABC CDE AFF
{1) - - - bed - - -
a + - + bce - - +
b + - - bef - + +
c + + - bde + - +
d - + - bdf + + +
e - + + bef + + -
f - - + cde + + +
ab - - + cdf + - +
ac - + + cef + - -
ad + + + def - - -
ae + + - abcd + - +
af + - - abce + - -
be - + - abef + + -
bd + + - abde - - -
be + + + abdf - + -
bf + - + abef - + +
cd + - - acde - + -
ce + - + acdf - - -
cf + + + acef - - +
de - - + adef + - +
df - + + bede - + +
ef - + - bedf - - +
abc + + + beef - - -
abd - + + bdef + - -
abe - + - cdef + + -
abf - - - abcde + + -
acd - - + abcdf + - -
ace - - - abcef + - +
acf - + - abdef - - +
ade + - - acdef - + +
adf + + - bedef - + -
aef + + + abcdef + + +

Table 3.8. Division of 26 tests into 23 fractions
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The principal fraction, containing those tests of Table 3.8 which are accompanied by
three ‘+’ signs, 1s then as follows.

ad be cf abc aef bdf cde  abedef
Table 3.9. Principal fraction for a 26-3 design

The generalised interactions are then formed by multiplying the three nominated
interactions together in all combinations, to give

ABC x CDE= ABDE
ABC x AEF =BCEF
CDE x AEF = ACDF
ABC x CDE x AEF = ABDE x AEF=BDF

so that the defining relations are
ABC=CDE = AEF = ABDE=BCEF = ACDF=BDF =1,

Since the shortest of these terms consists of three letters, the design is of resolution III,
in which the mean value and each of the main effects are distinguishable from each other, but in
which the main effects are confounded with one or more two-way interactions. The pattern of
confounding for this design is as shown 1n Table 3.10, 1n which each entry in a particular
column 15 confounded with all other terms appearing on the same line of the table. A suitable
model might then be composed of each of the terms in the first column of this table, although
substitution of either BE or CF for the term AD may prove to be more appropriate.

mean ABC CDE AEF ABDE BCEF ACDF BDF

A BC ACDE EF BDE ABCEF CDF ABDF’
B AC BCDE ABEF ADE CEF ABCDF DF

C AB DE ACEF ABCDE BEF ADF BCDF
D ABCD CE ADEF  ABE BCDEF ACF BF

E ABCE (D AF ABD BCF ACDEF BDEF
F ABCF CDEF AE ABDEF BCE ACD BD

AD BCD ACE DEF BE ABCDEF CF ABF

Table 3.10. Pattern of confounding for a 25-3 design
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3.5.6 Selection of an appropriate fractional factorial design

As has been demonstrated in the previous sections, the size of a {ractional factonal
design may be selected 1n order to give a particular design resolution, enabling the fitted model
to distinguish between certain of the possible linear + interaction terms. What is not yet clear,
however, is which of the possible values of m 1s appropniate for specifying a design of a desired
resolution 1n a given number of variables. The maximum resolution which can be obtained for a
particular value of m depends on the successful selection of m interactions which, when
mutltiplied together, will yield the maximum number of letters in the shortest of the defining
relations. This process of selecting interactions becomes increasingly difficult as the values of
both m and n increase, and is largely a matter of experimentation. Once a satisfactory
nomination of interactions has been made for a given combination of m and n, however, these
choices will be applicable to all future designs having the same values of m and n. It is therefore
convenient to denve switable interactions for all commonly used combinations of m and n, and
to use the known values of design resolution for each as the basts for selection of an appropnate
design when undertaking a particular investigation. The maximum design resolution which can
be obtained for an n variable problem using a 2™ fraction containing N tests 1s listed in Table
3.11 for 1 < n < 6, and in Table 3.12 for 7 < n < 12, together with an appropnate choice of
nominated interactions. Each of these combinations of nominated interactions has been
individually derived, although in many cases the choice of interactions which gives the
maximum resolution 1s not unique, and equivalent combinations may be found in the published
literature.

n m N nominated interactions resolution
1 0 2 FULL
2 0 4 FULL
2 1 2 AB I
3 0 8 FULL
3 1 4 ABC m
3 2 2 AB BC I
4 0 16 FULL
4 1 8 ABCD v
5 0 32 FULL
5 1 16 ABCDE \'A
5 2 8 ABC CDE )il
6 0 &4 FULL
6 1 32 ABCDEF VI
6 2 16 ABCD CDEF v
6 3 8 ABC CDE AEF m

Table 3.11. Fractional factorial designs for 1 < n < 6
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n m N nominated interactions resolution

7 0 128 FULL
7 1 64 ABCDEFG VI
7 2 32 ABCD CDEF v
7 3 16 ABCD CDEF ACFG v
7 4 8 ABD BCE ACF ABCG m
8 0 256 FULL
g8 1 128 ABCDEFGH VI
8 2 64 ABCDE DEFGH A
8 3 32 ABCD CDEF EFGH v
8 4 16 ABCD CDEF EFGH ACEH v
9 0 512 FULL
9 1 256 ABCDEFGHI X
9 2 128 ABCDEF DEFGHI VI
9 3 64 ABCD CDEF EFGH v
9 4 32 ABCD CDEF FFGH ACHI v
10 0 104 FULL
10 1 512 ABCDEFGHIJ X
10 2 256 ABCDEF EFGHD VI
10 3 128 ABCDE DEFGH AGHIJ \Y
10 4 64 ABCD CDEF EFGH GHIJ v
11 0 2048 FULL
11 1 1024 ABCDEFGHIIK XI
1 2 512 ABCDEFG EFGHIJK VI
11 3 256 ABCDE DEFGH GHUK A
11 4 128 BCDEH ABCEGI ABDEFJ AEFGK v
12 0 409% FULL
12 1 2048 ABCDEFGHIJKL XI
12 2 104 ABCDEFGH  EFGHIJKL VI
12 3 512 ABCDEF DEFGHI GHDKL A |
12 4 256 ABCDE DEFGH GHUK ADGKL A

Table 3.12. Fractional factorial designs for 7 = n =< 12

The above tables show that the advantages of using a fractional factonal design rather

than a full factorial grow substantially as the number of vaniables is increased. If, for example, a
design of resolution V is required, then any study in less than five variables will still require that
a full factorial be used. With 5, 6, or 7 variables, a half fraction can be used, with the necessary
fraction diminishing to 1/4 for 8 or 9 variables, 1/8 for 10 variables, and 1/16 for investigations
involving 11 or 12 factors. Even a 1/16 fraction of a 212 design still requires 256 tests to be
carried out, and it is perhaps at this point that a preliminary investigation would be useful in
order to ascertain whether all of the variables are indeed having a significant effect on the
vartation of the function. A main effects modet using a design of, say, resolution III would be
useful in such a case. Alternatively, if the number of potential vanables is extremely large,
e.g. 100+, then a specific strategy may be required for screening the initial input in order to
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identify those variables which are worthy of further investigation. A number of such strategies
have been advanced, (see for example Welch et al. (1989) and Watson (1961)), but further
investigation has not been undertaken within the present work. Attention has been focused on
designs suitable for studies in up to, say, 12 vanables.

A further characteristic of designs involving 7 to 12 vanables 1s that the cost of
obtaining a high resolution design becomes prohibitively large as n increases, whilst 1t is
probable that only a fairly small fraction of the terms in the model will be of significance. As a
result, an 1itial investigation in this number of factors would rarely be performed using a full
factorial design or a fractional factorial with resolution greater than, perhaps, resolution V. Only
if such a test had shown there to be significant underspecification in the model due to missing
higher order interaction terms would larger designs be considered. The nature of the fractional
factorial design then allows the data already collected to be incorporated into the new design,
thus minimising the number of additional tests which need to be carried out.

Tables 3.11 and 3.12 provide information as to which fractional factorial design to
choose 1n order to obtain a partrcular resolution for the number of design variables under
investigation. In order to specify a particular design, however, it is first necessary to determine
the level of resolution which is appropriate to the particular nature of the application to be
investigated. This is equivalent to establishing the degree of interaction, or possible interaction,
which is expected to occur within the model. Since this is entirely dependent on the
characteristics of the specific process which is to be studied, no general recommendation is
likely to be entirely satisfactory 1n every situation. When investigating an unfamiliar application
1n which the user has no prior knowledge as to the relative significance of interaction effects,
two alternative approaches are possible, as follows.

1)  Carry out an initial test on a representative study within the general category of the
problem to be addressed using a high resolution design, with the aim of assessing the
magnitude of high order interaction terms. This test may be conducted using a relatively
small number of design variables in order to minimise the number of tests which must be
performed.

1) Use a design of a lower resolution to investigate the particular problem under
consideration on the assumption that certain of the interaction terms will be negligible.
The validity of this assumption may be tested by carrying out additional trials within the
design variable space in order to assess the ability of the fitted model accurately to predict
the true response.

If a number of investigations are to be carried out in related fields, then the first of these
methods is perhaps the most useful, since it provides the investigator with a more
comprehensive view of the nature of the problem being addressed, which may be of substantial
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advantage in analysing the results of future studies. If only a single investigation is to be
conducted, then the quantity of additional information gained by this approach may not justify
the extra testing requirement.

When carrying out noise optimization studies on internal combustion engines, the
individual engine block or engine block/sump systems of different installations share a large
number of features in common. Additionally, the categones of variable which may be used in an
analysis/optimization study will also be similar. It1s thus reasonable to expect that this similanty
will extend to the general type of mathematical mode! which is needed in order to represent the
noise function adequately. This being the case, it is probable that detailed studies of a particular
engine system will lead to sigmficant insights into the ways in which design variables interact,
and influence the noise function, which will be broadly applicable to a wide range of potential
applications. Such a series of studies for the finite element model of Appendix 1C is presented
in the next chapter.
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4. Experiments using first-order designs

In this chapter, the results of a number of experimental studies using first-order designs
are presented. These numerical tnals have been conducted in order to assess the suitability of the
response surface models of the previous chapter to the computer prediction of radiated engine
noise, and are carried out using an FE model of a representative engine structure. A description
of the four-cylinder engine block model used, and of the seven design variables which are used
in the present investigation, may be found in Appendix 1C.

4.1 Full factorial design in seven variables

The first design to be investigated is the full factorial design of Section 3.3. For a
problem volving seven design variables, 27 = 128 tests are carried out. This design is used to
estimate the parameters of the full linear + interactions model of equation (3.6), 1n order to
assess whether radiated noise can be adequately represented by a linear model. Mathematical
models of both the noise function and the structural mass of the engine are obtained using the
surface fitting techniques outlined m Chapter 2. The full factonal is an orthogonal design, in
which no covanance effects occur between any model terms, and the variance value obtained for
each term is identical. A value of 7.8125x103 was obtaned for each.

4.1.1 The mass function

In order to provide an introduction to the use of response surface techniques, the
analysis of the mass function is first presented. This 1s a very simple function, since for each
variable the quantity being modified is the thickness of the relevant component part of the engine
block. The mass of the variable 1s directly proportional to this thickness, and the effect of
vanations 1n the thickness of one variable will not be affected by the thickness of any other
component, so that no interaction effects occur. It is expected that the vanation of mass
throughout the design vanable space can be accurately described using just the main effects
model of equation (3.1).

The 20 largest coefficients of the mass function model are listed 1n Table 4.1. The
coefficients are arranged in order of magmtude and are normalised for vanable values which are
scaled to lie 1n the range +1.
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1. MEAN 72.104 11. BCEFG 9.3749x10-10
2. F 4.8496 12. BEG 7.8126x10-10
3. D 3.2267 13. BEFG  6.2502x10-10
4. A 3.1984 14. BF 6.2500x10-10
5. B 3.1901 15. EG 6.2498x10-10
6. G 3.1151 16. DEG 4.6876x10-10
7. C 1.9894 17. BDF 4.6875x10-10
8. E 1.6699 18. BDEFG -4.6875x10-10
9. BC -1.3829x10-5 19. EFG 4.6875x10-10
10. CEFG -1.4063x10-° 20. BDEG  3.1251x10-10

Table 4.1 Mass coefficients for full factorial test (n=7)

It is clear from thus table that the model is dominated by the largest 8 coefficients, which
are the mean and main effect terms. The remaining 120 terms in the model are very close to
zero, with the small estimates obtained being due to round-up errors within the solution
algonthm. This lack of interaction terms within the mode! is as expected, due to the nature of the
particular function and variables involved.

In order to confirm that the fufl 128-term model 1s accurately representing the mass
function throughout the whole of the design variable space, the lack of fit between the predictive
model and the experimental response may be calculated at a number of points within the region
of interest. Two categones of test point have been used to test this lack of fit, as follows.

i) Design points. The lack of fit is calculated at each of the 2 test points which were
used to construct the analytical model. This indicates the ability of the chosen parameters to
account for the variations in the function value which occur at the points specified by the full
factonal design. Since the design contains the same number of tests as there are coefficients in
the full 128 term model (a saturated design), 1t is expected that the model will reproduce the
original data exactly, to machine precision, with no lack of fit at any of these points.

ii) Model under-specification due to the omission of higher order terms, such as, for
example, quadratic or cubic terms, can best be investigated by calculating the lack of fit which
occurs at points in the design space which are distant from those used to construct the model.
2n + 1 extra tests have been conducted in order to test this potential source of lack of fit. One of
these lies at the centre of the design vanable space (0, 0, ... , 0), with the other 2n points lying
at the centre of each of the n - 1 dimensional hypercubes formed by successively setting one of
the variables to either its high or low bound. These 2n tests are located at the points
(£1,0,...,0), (0, %1,...,0), ..., (0,0, ..., £1). They lie at the vertices of a cross-polytope,
or ‘star’, and are often termed ‘star points’. For the seven variable problem currently being
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investigated, the number of extra tests performed is thus 15. The exact specification of these
points, in the onginal variable unts, is given in Appendix 4A.,

The lack of fit which occurs in each of these two categories of test point is summarised
in Table 4.2.

No. of Maximum lack of fit Average lack of fit
Category tests kg Er kg Er
1) Design points 128 4.1211x1013 9.7018x10-13  1.1102x10-13 2.6136x10-13
i) Higherorder 15 4.0534x10-5 9.5422x10-5 2.9342x10-5 6.9074x10-3
Average over all 143 tests 3.0778x10-6 7.2455x10-6

Table 4.2 Summary of lack of fit calculations for 128 coefficient mass model
using full factorial design with 128 tests (n=7)

As expected, the lack of fit at any of the design points is approximately zero, due to the
saturated nature of the design. Calculation of lack of fit at the additional 15 points also shows a
negligible error in mass prediction, both 1n terms of the maximum and the average lack of fit at
these points. The increase in error over that at the design points is due to the small non-zero
estimates for the insigmficant model terms, which, although they exactly cancel at the design
points, do not necessanly do so at other points within the design vanable space. These results
confirm that the full model gives an almost exact prediction of mass variation throughout the
region of interest, and since only the mean and main effect terms contribute substantially to this,
they further suggest that exact prediction may also be attained using just the main effects model
of equation (3.1). If mass were the only function to be assessed, then this observation would
allow the use of a very low resolution fractional factorial design (resolution III), or even the
‘one at a time’ approach of Section 3.2. Since the vanation in noise of the system is also
required, however, with the two functions being calculated concurrently, no such saving in
experimental effort would be possible unless the noise function were also representable using
just a main effects model. As will be seen below, this is unlikely to occur in practice.

Due to its simple nature, the mathematical representation of the mass function need not
be analysed further.
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4.1.2 The noise function

For the noise function model, the full set of parameter estimates obtained is listed in
Table 4B.1 of Appendix 4B. The coefficients are again arranged in rank order and normalised
for vanable values which are scaled to lie in the range +1.

The lack of fit which occurs between the experimental noise level and the value
predicted by this model, for each of the two categones of test point described in the previous
section, is summarised 1n Table 4.3,

No. of Maximum lack of fit Average lack of fit
Category tests dB(A) Eg dB(A) Er
1) Design points 128 4.8317x10-13 6.4575x10-12  1.2512x10-13 1.6722x10-12
n) Higherorder 15 1.5486 20.697 1.1890 15.891
Average over all 143 tests 0.12472 0.16669

Table 4.3 Summary of lack of fit calculations for 128 coefficient noise model
using full factorial design with 128 tests (n=7)

Thus again shows that the saturated nature of the design leads to virtually zero lack of fit
at any of the design points. Calculation of lack of fit at the additionat 15 points, however,
shows that the error occurring at locations away from the factonal points is substantial,
indicating that there is a significant amount of curvature 1n the actual response surface. This is a
cause of considerable concern, as the maximum error at any of these additional points is over
1.5 dB(A), which represents over 20% of the range through which the noise function varies
within the expertmental region. The average error at these points 1s nearly 16%. If these values
are typical of the predictive ability of the model at locations away from the vertices of the
n—dimensional hypercube, then the use of this model is likely to prove extremely misleading 1n
the identification of favourable areas of the design variable space.

In order to improve the fit at these points it is necessary to use an enhanced predictive
model which will allow for the effect of higher order terms. This in turn requires a more
complex experimental design, in order to obtain the additional function information which is
needed. Such designs and models are the subject of subsequent chapters. If further parameters
are to be added to the present 128 terms of the fitted model, however, then a design for fitting a
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higher order model must also include at least 128 tests to allow all of the linear + interaction
terms to be estimated. It is important to establish, therefore, whether all of the terms of the
present model are contributing significantly to the overall predictive ability, or whether, as has
been found to be the case for the mass function, 2 number of these can be dispensed with
without adversely affecting the ability of the model to provide an accurate representation of the
true response surface.

4.1.3 Assessment of model parameters

The parameter listing of Table 4B.1 shows that the dominance of the marn effect terms
is much less pronounced than was the case for the mass function. Eleven of the interaction
terms have parameter estimates which are within an order of magnitude of the smallest of the
main effect terms, with a further 90 terms being within two orders of magnitude. In contrast
with the mass function, no prnior knowledge of the nature of the response is available to aid
interpretation of these parameter estimates. Since the noise response 1s known to be a highly
complex function of the design variables, however (see, for example, Zhang, 1992), it is
probable that the linear + interactions modet is insufficient to provide an accurate representation
of the variation in noise throughout the design variable space. This view is supported by the
lack-of-fit results of Table 4.3. It is also possible that a number of the terms of the present
model are in fact confounded with higher order terms (quadratic, cubic etc.}, the effects of
which cannot be independently assessed when tests are carried out at just two levels of each
vanable. If the higher order terms which have been neglected do not have a dominant influence
on the overall shape of the response surface, then their presence may be expected to have
relatively little effect on the estimation of the larger coefficients of the present model. Since the
model contains as many parameters as there are tests 1n the design, however, all variations in the
response at the test points must be attributed to those terms which are available. Confounding
between negligible linear interaction terms and the effect of unknown higher order terms may
thus result in non-zero parameters being ascribed to terms which in fact have no sigmficant
influence on the true response. The inclusion of these spurious effects will then lead to
misleading predictions of the response function at other points within the region of interest.

If the perturbations in the parameter estimates of the linear + interactions model which
are caused by underspecification of the fitted model can be considered as being randomly
distributed among the model terms, then this effect may be treated as a source of random error,
or statistical noise, in the construction of the mathematical model. If this is the case, then those
parameter estimates which are dominated by this effect will be expected to be indistinguishable
from a set of normally distributed random data. In order to determine which of the terms
represent real characternistics of the response surface, and which are due to confounding caused
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by underspecification of the fitted model, some means is required of testing the hypothesis that
all parameters are indeed just random values. The test which has been used within the present
work is the probability plot method, which is descnbed in Appendix 4C. The following sections
give examples of how probability plots have been used to assess which coefficients of the
linear + interactions model are statistically significant,

4.2 Use of probability plots in identifying significant parameters

A normal probability plot for the full set of 127 parameters 1in the model of
Section 4.1.2 (the mean is not included in a probability plot analysis) is shown in Figure 4.1.
The method used to calculate the ‘Z score’ value, which is a normalised measure of the rank
order of the coefficients, is described in Appendix 4C.
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Figure 4.1 Normal probability plot for full factorial test in seven variables
Function : noise
No. of coefficients = 127 of 127

[t can be seen from this graph that, of the 127 parameters plotted, the majority appear to
lie on an approximate straight line through the origin of the graph, suggesting that the smaller
coefficients (in magmtude terms) of the model may indeed be normally distributed, and with an
approximately zero mean vatue. The only parameters which deviate significantly from this line
are the seven coefficients with the largest negative magmtudes, and these must therefore be
removed from the plot, since they are clearly not due to random statistical noise. It seems
probable that a number of other terms may also lie away from the projected *statistical noise
line’, but these are extremely hard to identify from this initial plot, due to the compressed scale
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resulting from the magnitudes of the largest coefficients. With the seven largest coefficients
removed, the resulting graph, with the Z score values recalculated to reflect the reduced amount
of data, 1s shown 1n Figure 4.2.
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Figure 4.2 Normal probability plot for full factorial test in seven variables
Function : noise
No. of coefficients = 120 of 127

This graph allows the identification of a further seven parameters which have
magnitudes inconsistent with an assumption of normal distribution; five negative and two
positive. These seven are removed from the analysis, and the remaiming 113 terms plotted
against revised Z scores, as shown in Figure 4.3.
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Figure 4.3 Normal probability plot for full factorial test in seven variables
Function : noise
No. of coefficients = 113 of 127
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All of the parameters plotted in Figure 4.3 now lie on an approximate straight line
through the origin of the graph, with any slight deviations from linearity being attributable to
sampling error (see Appendix 4C). This result suggests that the parameter values of Figure 4.3
are indistinguishable from a set of normally distnibuted random data, and allows the investigator
to accept the hypothesis that the remaining 113 parameters of the model are due to ‘random’
effects, rather than to any underlying charactenstic of the system under investigation.

Itis interesting to note from the plot that the ‘statistical noise line’ passes almost exactly
through the ongin of the graph, with just four of the negative parameters having positive
Z scores, and that the two points lying at the ends of the distnbution are of very similar
magnitude (-2.184 and 2.258). This provides further reassurance as to the validity of the
method when applied to the present deterministic environment, since the parameters which have
been found to be statistically insignificant, and are hence assumed to be due to a random error
effect, have also been shown to have an approximately zero mean.

4.2.1 The half-normal probability plot

Upon reconsidering the above process, by which the significant terms of the model
have been identified, it is clear that no distinction has been made between terms which are of
equal magnitude and opposite sign. In determining which of the parameters to remove from the
probability plot analysis, 1t was purely the magnitude of the relevant parameters which was of
interest. This is of course due to the fact that the degree of impact which a given parameter,
whether positive or negative, has on the predictive ability of the fitted model is determined
simply by 1ts magnitude. This being the case, the parameter estimates may alternatively be
displayed using the half-normal probability plot, or Daniel plot, as descnibed in A ppendix 4C.

To compare the two methods, a half-normal probability plot of the original 127
parameters is shown in Figure 4.4.
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Figure 4.4 Half-normal probability plot for full factorial test in seven variables
Funetion : noise
No. of coefficients = 127 of 127

The scale of this plot 1s again compressed by the magnitude of the largest term, but
seven parameters are still identifiable as deviating substantially from the approximate straight
line formed by the smaller coefficients. Following the same procedure as used with the normal
probability plot, these seven terms are removed from the analysis and the Z scores recalculated
accordingly. The resulting plot is shown in Figure 4.5.
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Figure 4.5 Half-normal probability plot for full factorial test in seven variables
Function : noise
No. of coefficients = 120 of 127
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This shows that a further seven terms lie significantly above the projection of the
‘statistical noise line’, with all remaining parameters appearing to lie on a straight line through
the ongin. This may be confirmed by removing the seven significant terms from the analysis
and replotung, to give the graph of Figure 4.6.
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Figure 4.6 Half-normal probability plot for full factorial test in seven variables
Function : noise
No. of coefficients = 113 of 127

All parameters now lie on an approximate straight line, thus leading to the same
conclusion as was reached using the normal probability plot analysis; that 113 of the original
127 parameters are indistinguishable from normally distributed random data. Examination of the
data used 1n each analysis reveals that, as is expected, the parameters which have been found to
be significant are the same in each case. The advantage of using the half-normal probability plot,
however, is that all significant parameters deviate from the ‘statistical noise line’ in the same
direction, and at just one side of the graph. This allows the magnitude of all terms to be directly
compared, irrespective of sign, and may aid the rapid identification of significant parameters. As
the above example has demonstrated, however, equivalent results may be obtained using either
of these methods.
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4.2.1 Are probability plots necessary ?

Before studying further the reduced model which would result from removal of the
insignificant terms, it 1s perhaps worth considering whether the above identification of
significant parameters could have been successfully accomplished without recourse to the
method of probability plot analysis. An obvious alternative would be simply to plot the
magmtudes of the coefficients against their rank order, and try to differentiate between
significant and insignificant terms purely on the basis of their magnitudes. Figure 4.7 shows a
plot of coefficient magnitude against rank order for the full set of 127 parameters (the mean is
again removed prior to plotting).
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Figure 4.7 Model coefficients for full factorial test in seven variables
Function : noise
No. of coefficients = 127 of 127

So far the method appears to be promusing, since seven terms are again easily identified
as being substantially larger than the others. Further terms are hard to assess due to the scaling
imposed by the magmitude of the larger coefficients. Re-scaling the y-axis to exclude the seven
largest terms produces the plot of Figure 4.8
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Figure 4.8 Model coefficients for full factorial test in seven variables
Function : noise
No. of coefficients = 120 of 127

Again, a further seven terms have been revealed as being distinct from the remaining
parameters. Since the probability analysis has already shown there to be fourteen sigmficant
terms, one might conclude that an equivalent result had been obtained using this much
simplified method. If the method were used without this prior knowledge, however, the next
step of the procedure would necessanly be to re-scale the plot again to remove the seven largest
terms. This yields the graph of Figure 4.9.
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Figure 4.9 Model coefficients for full factorial test in seven variables
Function : noise
No. of coefficients = 113 of 127
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This graph now suggests that a further four terms may be worthy of inclusion in a
reduced model, although the ever increasing curvature of what 1s assumed to be a “statistical
noise line’ gives much cause for concern. It becomes increasingly clear that no distinct cut-off
point between significant and insignificant terms is likely to be forthcoming using this method,
so that the plotting of coefficient magnitudes against rank order leads to little advantage over the
parameter listing of Table 4B.1. This observation 1s further supported by the removal of the
largest four terms of the above plot, to give the graph shown in Figure 4.10, below.
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Figure 4.10 Model coefficients for full factorial test in seven variables
Function : noise
No. of coefficients = 109 of 127

It can be seen from comparison of this figure with the previous graphs that, as the
scaling of the y-axis is varied, small groups of coefficients are gradually detaching themselves
from the main body of parameters. This iterative procedure of removing the largest variables
from the plot and re-scaling 1s thus likely to continue for some considerable time, and lead to no
defimte conclusions as to the significance of the model terms. The curvature of the line formed
by the 109 plotted data points in Figure 4.10 is also 1n considerable contrast with the almost
exact straight lines obtained with 113 points in Figures 4.3 and 4.6.

The conclusion to be drawn from the above example, therefore, is that simply plotting
coefficient magnitude against rank order is insufficient to enable the identification of significant
terms 1n the original model. It should also be noted, however, that even 1f the analysis had
yielded a positive result, there is no sound fundamental basis on which to conclude that the
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parameters 1dentified are indeed statistically sigmficant, or that those rejected are not. The
procedure 1s reduced to an observation that some coefficients are bigger than others, with the
only cnterion for distinguishing ‘sigmficant’ parameters being a slightly larger drop in the
magnitude of adjacently ranked terms. This is clearly insufficient justification for making
judgments as to the feasibility of a reduced predictive model.

4.3 Validation of a reduced model

Returning to the results of the probability plot analysis, it was found that the statistically
significant terms are the fourteen which are ranked highest in terms of their
(magmtudel\/variance) parameter. Since the variance on the estimate of each parameter 1s
idenuical, the division of the coefficient values by the square root of the variance will not affect
the rank order of the terms, with the result that the terms found to contnbute significantly to the
model are the first fourteen (non-mean) terms of Table 4B.1. These, together with the mean, are
shown in Table 4.4.

1. MEAN 8.8082x10+1
2. A -2.2377

3. C -3.8596x10-1
4. G -3.3608x10-1
5. D -2.3021x101
6. F -2.2872x10-1
7. B -1.9920%x10-1
8. E -1.5888x10-1
9. AG -7.4246x10-2
10. AD 5.2756x10-2
11. AF -4.6907x10-2
12. CG -4.4956x10-2
13. AE -4.4724x10-2
14. FG -4.4068x10-2

15. ACG 3.5056x10-2

Table 4.4 Significant noise coefficients for full factorial test (n=7)

The results of the probability plot analysis indicate, therefore, that the only parameters
of the 128 term model which can be regarded as being statistically significant are the mean and
seven main effect terms, followed by six two-way interaction terms and just one three-way
interaction, If it 1s the case that the vanation in noise response can be adequately represented
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using a much reduced model contaiming just these fifteen terms, then 1t is likely that an
acceptable model could have been constructed using a much smaller quantity of function
informaton. Further, 1f it is generally true that the noise response of engine blocks is dominated
by main effect and two-way interaction terms, then there is clearly substantial scope for
reducing the number of tests which need be performed when undertaking an investigation of a
particular system.

Before such a conclusion can be reached, however, it 1s necessary to establish whether
these fifteen terms are indeed sufficient to provide an acceptable representation of the variation
of the noise function throughout the design vanable space. This can be determined by
consideration of the lack of fit between the fitted mode! and the actual response at the 22 test
points used to estimate the terms of the full 128 term model. If the fifteen terms of Table 4.4 are
necessary and sufficient adequately to represent the noise function, then it is expected that any
model lacking these terms will exhibit substantial lack of fit at the test points, whereas addition
of further terms will lead to negligible improvement in model accuracy. Since the iitial model of
128 terms contains as many parameters as there are tests in the expennmental design, zero lack of
fit (to machine precision) occurs between the actual test values and the representations of these
generated by the approximating model, as shown 1n Table 4.3. It 1s thus necessary that the
reduced 15 parameter model extubit neghgible lack of fit at these points.

The manner in which the lack of fit at the factorial test points varies with the number of
coefficients in the model may be investigated by using the full set of 27 = 128 test points to
successively construct models containing between 1 and 128 terms. The first of these models
will contain just the mean effect, with additional terms being introduced in decreasing order of
magmtude. For each model, the difference between the true noise response and the prediction of
the model is calculated at a number of the original test points. The lack of fit at each of these
points 18 then plotted against the number of coefficients 1n the predictive model. The results for a
randomly selected sample of five of these points, described by their locations in the normalised
design variable space, are shown in Figures 4.11 to 4.15.
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Figure 4.11 Lack of fit against number of coefficients in model
Test point = (-1, -1, -1, -1, -1, -1, -1)
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Figure 4.12 Lack of fit against number of coefficients in model
Test point = (1, 1, -1, -1, -1, -1, -1)
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Figure 4.13 Lack of fit against number of coefficients in model
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Figure 4.14 Lack of fit against number of coefficients in model
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Figure 4.15 Lack of fit against number of coefficients in model
Test point = (1, -1, -1, -1, 1, -1, -1)

Figures 4.11 to 4.15 show that, in each case, the imtially high Iack of fit drops rapidly
as the seven main effect terms are introduced. The high lack of fit value obtained when just one
parameter is included in the model is of no particular significance, since this term is the mean
value. Lack of fit using this model simply represents the difference between the average
response at the 2™ points and the response at the particular point being examined. For three of
the five points analysed (Figures 4.12, 4.13 and 4.14), the lack of fit obtained with the eight
term (mean plus main effects) model has already fallen to within 0.1 dB(A) — equivalent to just
1.3% of the function range. The lack of fit values at all five points lie within a 3.5% error band
(0.26 dB(A)), suggesting that the main effects model is providing a reasonably good
approximation to the original surface at the points tested.

The effect of including the remaining seven terms of Table 4.4, to give a total of 15
terms 1n the predictive model, 1s to bring the lack of fit at all five points within 0.1 dB(A). All
five graphs show that no significant improvement in accuracy is gained by the inclusion of
further terms. Although the lack of fit necessarily reduces to zero as the number of terms
approaches the full 128 parameters of the original model, the small lack of fit obtained using just
15 parameters provides little scope for any further reduction in the prediction error.
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Figure 4.16 Lack of fit against number of coefficients in model
Five factorial points

In order further to aid companson of the above results, a magmfied view of the lack of
fit at each of the five points, resulting from models containing between 4 and 24 terms, is
presented in Figure 4.16. This shows in more detail the convergence of the error at all points to
within the 0.1 dB(A) band. This appears to occur when the number of terms 1n the model
reaches 14, with the 15® term, which is the three way 1nteraction ACG, having, on average, a
substantially smaller effect on the degree of lack of fit in the model. The overall trend can be
seen more clearly by plotting the average lack of fit value obtained from these five individual
points, as shown 1n Figure 4.17. This confirms the presence of the characteristics already
noted. A rapid decline 1n lack of fit with the inclusion of the main effect terms is followed by a
more gradual reduction as the remaining sigmficant terms are introduced. Addition of further
terms leads to little further improvement.
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Figure 4.17 Lack of fit against number of coefficients in model
Average of five factorial points

Since the object of the modelling process is to provide an acceptable representation of
the oniginal response surface across the whole of the design variable space, and not just at the
factorial points, it 1s relevant to inquire whether it is possible to carry out an analysis of the
above type at other locations within the region of interest. A suitable selection of tests points
would appear to be the centre and star points introduced in Section 4.1, above, which are
situated at locations distant from the vertices of the hypercube.

In attempting to carry out the ‘lack of fit v. model size’ analysis at these points,
however, two main obstacles are encountered. The first of these is that, as shown in Table 4.3,
substantial lack of fit, due to curvature of the original response surface, is already known to
exist at these points. The magmtude of this error 1s such that it is likely to dominate any
calculations of modelling inaccuracy carried out at these points. Of much more importance,
however, is the fact that, at these locations, a maximum of just one variable has a non-zero
(normalised) value. The result of this is that, at the centre point, for example, where all variables
have a zero value, the only term which contnbutes to the model is the mean term, with all terms
involving any of the variable values being set to zero. A graph of lack of fit against model size
will thus simply yield a horizontal straight line, with the error value being equal to the difference

between the measured value and the mean term of the linear model. At the star points, where
one of the variables takes a value of +1, the only non-zero terms will be the mean value and the
main effect 1n that variable. All other main effects, as well as all interaction terms, which by
definition include at least one of the other (zero valued) variables, will again have no influence
on the model. This will produce a horizontal straight line with a single step in 1t, occurring when
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the non-zero term is introduced. These effects are demonstrated by the three points whose
results are plotted in Figure 4.18.
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Figure 4.18 Lack of fit against number of coefficients in model
centre point and two star points

It can be seen from Figure 4.18 that the step in the error value for the point
(0,0, 0,1,0, 0,0), with variable D having a non-zero value, occurs on the introduction of the
fifth model term. This corresponds with the result of Table 4.4, 1n which the main effect D is the
fifth largest parameter. Similarly, the step for the point (0, 0, 0, 0, 0, 1, 0), with variable F non-
zero, occurs as the sixth term 1s introduced, again agreeing with the parameter order of
Table 4.4. This last test point 1s also the location at which the maximum lack of fit occurnng at
any of the centre or star points 1s found. Its final error value of 1.55 dB(A) corresponds with
the maximum value given in Table 4.3.

Since these results have shown that test points lying on variable axes are of no use in
determining the effect on lack of fit of reducing the number of terms in the linear model, it is
necessary to choose some alternative test points at which to carry out the analysis. The
requirements for such points are that they should lie at sufficient distance from each of the
variable axes, and the centre point, and yet stiil be far enough away from the original test points

to provide more general information concerning the performance of the predictive model
throughout the design variable space as a whole. Switable candidates for such tests would
appear to be points which lie half way between the centre of the space and the factorial points, at
a distance of 0.5vh from the centre. These points then lie on an n—dimensional hypercube of
side n/2, having as its centre the centre of the design variable space, and with its sides aligned
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with the sides of the original 2™ factorial hypercube. This new hypercube will of course contain
2" points, although for reasons of economy a fraction of these points can be used, calculated as
for the fractional factorial design. In the present case a 1/8 fraction containing 16 tests has been
used. The exact specification of these points is given in Appendix 6A.

Calculation of the lack of fit at these points proceeds as for the onginal factorial points,
with each of the parameters of the full model being successively introduced in descending order
of magnitude. The results obtained for all 16 of these additional points are displayed in Figure
4.19.
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Figure 4.19 Lack of fit against number of coefficients in model
16 factorial points with parameter n/2

Two important features of these results may easily be tdentified. Firstly, 1n common
with the results at the centre and star points, the lack of fit at these locations is dominated by the
presence of higher order effects, which are not accounted for in the linear model. Thus, even
with the full 128 terms, significant error in model prediction still occurs. The second
observation, however, is that, in each case, the lack of fit appears to have stabilised at about this
final value with the inclusion of just 16 or so terms. These results thus appear to confirm the
conclusion drawn from the lack of fit calculations at the original test points, 1n that little
improvement in the predictive ability of the linear model is obtained by including terms other
than those which have been shown to be significant by the probability plot analysis.
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The purpose of the present analysis is to investigate the predictive ability of reduced
models in comparison with the performance of the full 128 term model, rather than to assess the
absolute lack of fit occurring at particular points. A better approach might therefore be to plot the
value of the error magnitude which occurs with respect to this full model, thus removing from
the analysis that component of the lack of fit which is due to higher order terms, and cannot be
represented by a linear + interactions model of any kind.

Such a plot is shown in Figure 4.20, and provides a much clearer picture of the effect of
model reduction on prediction error. As was found for the analysis at the onginal test points, a
rapid fall in lack of fit occurs as the seven main effect terms are brought into the model. This is
followed by a more gradual reduction as the next seven or so terms are introduced, with
virtually all lack of fit having been eliminated by this time.
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Figure 4.20 Standardised lack of fit against number of coefficients in model
16 factorial points with parameter n/2

The graph of Figure 4.21 shows a magnified view of this plot, from which it may be
seen that the 8 term main effects model produces, in all cases, a lack of fit value of less than
0.06 dB(A) — representing 0.8% of the function range. The inclusion of 15 terms reduces this
error to less than 0.03 dB(A) (0.4%).

t
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Figure 4.21 Standardised lack of fit against number of coefficients in model
16 factorial points with parameter n/2 - magnified view

This headline figure, however, masks the fact that many of the results are grouped at the
lower end of the scale, as 1s shown by Figure 4.22, in which the average of the above 16 lack
of fit values is plotted against model size. The average error resulting from use of the main
effects model is now about 0.03 dB(A) (0.4% of range), with the 15 term model giving an
average of just 0.01 dB(A), or 0.13% of the function range.

The results of the lack of fit analysis at these additional 16 test points thus confirms the
conclusions drawn from the tests carried out at the original design points. The overall
conclusion from this analysis is that the 15 terms, including the mean, identified by the
probability plot technique account for virtually all of the variation in noise response which can
be represented using a linear + interactions model. When using a 15 term model, substantial
lack of fit still occurs at points away from the vertices of the design variable space, due to higher
order terms. This lack of fit cannot be much reduced, however, by including the remaining
terms of the full linear + interactions model.
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Figure 4.22 Average standardised lack of fit
against number of coefficients in model
16 factorial points with parameter n/2 - magnified view

4.4 Conclusions based on full factorial test

Two independent methods have now been used to assess the coefficients of the 128
term linear + interactions model denved from the results of the seven variable full factonal
experimental design. The first of these, the probability plot analysis, provides a test of the
statistical sigmficance of each parameter of the full model. This method showed that of the 128
parameters, only fifteen were clearly distinguishable from random data, and hence only these
terms are reliable as indicators of the nature of the true response surface.

In the second method, the lack of fit between the predicted response of the modg:l and
the experimental value is calculated at a selection of test points, and plotted against the number
of terms included in the model. This provides a test of what may be termed ‘engineering
significance’, in that it reflects the usefulness of each term in improving the quality of the
decisions which are taken, based on the approximating model. This method confirmed that
those terms found to be insignificant by the probability plot analysis make a negligible
contnbution to the prediction accuracy of the model throughout the design variable space.
Further, 1t was found that little additional lack of fit resulted from the use of a model containing
just the mean and main effect terms.
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4.5 Use of reduced models

The effect of a reduction in model size can be further demonstrated by calculating the
maximum and average lack of fit which occurs in each of the categories of test points descnibed
in Section 4.1.1. The results for three reduced models are summarised in Table 4.5. Only the
results at the original 128 design points are shown, since the lack of fit errors at the centre and
star points are 1dentical in each case. As discussed in Section 4.3, this is because the function
prediction at these locations is only determined by the mean and main effect terms, which are
present, and identical, in each model.

The first of these models contains just the mean and main effect terms, giving an
average lack of fit at the design points of 1.6% of the variable range. This model still allows a
maximum error of nearly 8% (0.6 dB(A)) at the design points, however, and this, following the
discussion of Section 2.14, is likely to be of some concern in the identification of a favourable
region of the design vanable space.

The maximum error can be reduced to under 0.35 dB(A) (5%) by the use of the second
mode! of Table 4.5, which includes all of those parameters found to be statistically significant
by the probabulity plot analysis of Section 4.2. Additionally, the average lack of fit at the design
points has been more than halved, to less than 0.06 dB(A) (0.8%).

No. of Maximum lack of fit Average lack of fit

Model terms dB(A) Ep dB(A) Ex
Main effects 8 0.59851 7.9236 0.12119 1.6045
Significant terms 15 0.34961 46718 0.05769 0.7710
<2-way interacttons 29 036697 4.8582 0.05618 0.7439

Table 4.5 Summary of lack of fit calculations for various noise models
using full factorial design with 128 tests (n=7)

The main problem which occurs in using a reduced predictive model containing only
significant terms is that 1t 1s not in general possible to know in advance which of the terms are to
be included. It is only by carrying out a probability plot analysis, or similar procedure, that this
information can be gained. Such an analysis can only be performed, however, if a sufficiently
large number of tests are first carried out to enable all parameters to be estimated, thus
preciuding the use of a smaller experimental design.
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To avoid this problem, a model may be used which includes all terms of each of the
types thought likely to be significant. When investigating applications for which the results of
Table 4.4 are representative, for example, a suitable model would be one which contains all
main effect and two-way interaction terms. This procedure introduces two possible sources of
error into the model specification. The first is due to the inclusion of terms which are in fact of
no significance. As long as parameter estimates remain largely orthogonal, however, and the
number of insigmficant terms is fairly small, this 1s not expected to lead to substantial error. The
second source of error is due to the exclusion from the model of significant parameters, such as,
in the present example, the three-way interaction ACG of Table 4.4, If the excluded parameters
are small in number and do not dominate the analytical model, then the attendant loss of
accuracy would probably be considered a small price to pay for the large reduction in the
number of design points, compared with those which would need to be tested were all terms of
that type to be included in the model.

These observations are supported by the lack of fit values which result from the use of
the third model of Table 4.5. This model contains the mean value and seven main effect terms,
plus the 21 two-way 1nteraction terms. The only statistically sigmficant term excluded from this
model is the three-way interaction term ACG. Table 4.5 shows that the performance of this
model is little different to that of the previous model. Its advantage, however, is that it is likely
to be more widely applicable to other problems of a similar type.

4.6 Use of fractional factorial designs

Since 1t has now been established that a model containing just mean, main effect and
two-way interactions terms is sufficient to represent adequately the variation of noise response
at the vertices of the design variable space, 1t is now possible to seek an experimental design
which will allow for the estimation of the required parameters using a minimum number of
analyser calls. It was shown in Section 3.5.4 that in order to estimate independently the mean
value and all of the main effect and two-way interaction terms, a fractional factorial design must
be of at least resolution V.-Table 3.12 shows that the smallest design in seven variables which
meets this criterion 1s the 2-1 fraction containing 27-! = 64 tests, which is of resolution VII.

The 64 parameter estimates obtained using this resolution VII design are given in
Table 4B.2 of Appendix 4B. Comparison of these with the values listed in Table 4.4 shows that
the mean and main effect terms are all identical, to at least three significant figures, with the
fifteen significant parameters identified by the probability plot analysis remaining the largest
terms. The values of the two-way interaction parameters have been modified slightly due to the
presence of confounding, although this effect is fairly small due to the high resolution of the
design. Using a resolution VII design, the mean value is only confounded with the single
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seven-way 1interaction term, each main effect 1s confounded with a six-way interaction, and
two—way interactions are each confounded with an interaction of order five.

The similanty between the estimates of model parameters would lead one to expect that
the performance of the model throughout the design variable space would be comparable with
the < 2-way interaction model of Table 4.5. A summary of the lack of fit data for the resolution
VII design, calculated at each of the full 27 = 128 factorial points, is shown in Table 4.6. The
inclusion of all 128 points, rather than just the 64 of the resolution VII design, is more
representative of the overall predictive ability of the 64 term model, since the lack of fit at the
resolution VII design points will be effectively zero due to the saturated nature of the design.

Design No. of Maximum lack of fit Average lack of fit
Resolution  tests/terms dB(A) Er . dB(A) Er
Full 128 4.8317x10-13 6.4575x10-12  1.2512x10-13 1.6722x10-12
Resolution VII 64 0.2080 2.7814 0.0348 0.4652
Resolution IV 32 0.3646 4.8724 0.0521 0.6959
Resolution IV 16 0.5989 8.0047 0.0941 1.2571
Resolution II1 8 0.6677 8.4699 0.1605 2.0362

Table 4.6 Summary of lack of fit calculations at 128 full factorial points
using fractional factorial designs

Table 4.6 shows that the 64 term model derived from the resolution VII design performs
slightly better than the 29 term model of Table 4.5. This is because the mild confounding
introduced by halving the number of test points is more than outweighed by the inclusion of the
35 three-way interaction terms. Although most of these are of fairly small magnitude, their
inclusion leads to an exact fit at 64 of the 128 points, thus reducing the overall error.

The lack of fit values resulting from the use of 2-2, 2-3 and 2-4 fractions are also
included in Table 4.6. These show that the use of the resolution IV design involving 32 tests
results 1n only a modest increase in the prediction error at the original 128 points. This is despite
the fact that confounding is now occurring between two-way interaction terms, several of which
are known to be significant. The reason for this becomes clear when the pattern of confounding
between parameters is examined. This pattern is given in Table 4B.3 of Appendix 4B, in which
the terms listed 1n the left-hand column of the table are those which are included in the 32-term
model. Each term of this column is confounded with the three terms which appear on the same
row of the table. Comparison of this table with the list of sigmficant parameters of Table 4.4
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shows that each of the significant terms appears in the left-hand column of Table 4B.3, and is
hence included in the model. This may be regarded as a fortunate comncidence, since the
particular relationship between the pattern of confounding and the significant terms has resulted
in a model in which no two significant terms are confounded, and additionally, in which the
significant term of each confounding set is the one which has been included in the model. In
general, this cannot be expected to occur, with the result that the lack of fit errors throughout the
design variable space would necessarily be greater.

Inclusion of all significant terms does not occur, however, for the 273 = 32 test design,
in which the size of each confounding set is further doubled. Although this design is also of
resolution IV, the pattern of confounding, shown in Table 4B.4 of Appendix 4B, reveals that a
number of the significant parameters are now absent from the fitted model, with the result that a
larger increase in prediction error occurs, as shown 1n Table 4.6. The maximum lack of fit at
any of the 128 points is now over 8% of the function range, and, although the average error is
still less than 0.1 dB(A), this model may be expected to yield misleading results in the search
for optimum designs.

The 8 term model which may be constructed using the resolution III design is identical
to the main effects model of Table 4.5. The infenor prediction performance attained by the
present model 1s due to the high level of confounding which occurs, with each parameter being
confounded with 15 others. Additionally, only a 1/16% fraction of the original points is being
used to assess these terms. Bearing this in mind, 1t 1s a reflection of the overall dominance of the
main effect terms, as shown in Section 4.3, that the average lack of fit using this model is as
low as the 2% of function range which is in fact obtained.

The relatively low lack of fit values calculated at the vertices of the design variable space
are, of course, in marked contrast with the prediction errors which occur at the centre and star
points. These values are given, for each of the above models, in Table 4.7. As discussed
previously, the accuracy of prediction at these points 15 determined entirely by the values of the
mean and main effect terms. Since these are not confounded with any of the other significant
parameters when the design is of resolution IV or greater, the error at the centre and star points
is little changed from that obtain using the full 128 term model. When using a resolution II1
design, however, the main effects are each confounded with 2 number of two-way interactions,
so that their parameter estimates are substantially modified, as shown in Table 4.8. Most
noticeable are the changes to parameters C and E.
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Design No. of Maximum lack of fit Average lack of fit
Resolution  tests/terms dB(A) Er dB(A) Ep
Full 128 1.5486 20.697 1.1890 15.891
Resolution VII 64 1.5426 20.624 1.1847 15.839
Resolution IV 32 1.5520 20.742 1.1900 15.904
Resolution [V 16 1.5891 21.238 1.1993 16.029
Resolution IiI 8 1.5505 19.668 1.1688 14.826

Table 4.7 Summary of lack of fit calculations at centre and star points
using fractional factorial designs

Table 4.7 shows that the consequence of this error in main effect estimation is actually a
reduction in the average lack of fit at the centre and star points. This, however, is entirely
attnibutable to the modified mean value. Examination of the individual lack of fit figures shows
that in each case the mathematical model 1s producing a prediction which is higher than the
experimental result. For each pair of star points, the effect of a modification to that particular
vanable will thus have an equal and opposite effect on each member of the pair. The slightly
reduced mean will, however, reduce the lack of fit at every point, and comparison of Tables 4.7
and 4.8 shows that the difference in average lack of fit between the full resolution and

resolution III designs is equal to the change in the estimate of the mean parameter.

Term

Estimation based on

full factorial design

resolution III design

MEAN

mwTogoan»>

8.8082x10+!
-2.2377
-3.8596x10-1
-3.3608x10-1
-2.3021x101
-2.2872x101
-1.9920x10-1
-1.5888x101

8.8062x10+1
-2.2439
-4,5327x101
-3.7115%101
-2.3684x10-!
-2.0659x10-1
-1.7140%x101
-2.5857x10!

Table 4.8 Estimates of mean and main effect parameters using
designs of full resolution and resolution III
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In investigating the increase which occurs in the maximum prediction error, compared
with the full factorial design, it is found that the greatest lack of fit using the full model occurred
at the star point for which F is at its upper bound - (0, 0, 0, 0, O, 1, 0). The increased error is
due to the fact that the decrease in magnitude of 0.0221 dB(A) in the parameter estimate of F is
just larger than the drop of 0.0202 in the value of the mean. When F is at its high bound, these
two effects oppose each other, such that the lack of fit increases by (0.0221 - 0.0202) =
0.0019 dB(A), as shown in Table 4.7. Although a larger increase in lack of fit occurs at other
star points involving high bounded vanables, the increase is not sufficient to raise the absolute
error higher than that found at (0, 0, 0,0, 0, 1, 0).

These results show that the lack of fit throughout the design variable space is dominated
by the error resulting from the inability of the linear + interactions model to represent the effect
of higher order terms.

4.7 Suitability of linear models to the engine noise problem

The main conclusions which may be drawn from the numencal tests which have been
carned out using the engine noise example are as follows.

¢ The mass function is, as expected, exactly representable using simply mean and main
effect terms.

* The use of probability plots provides a converuent method of identifying those terms of a
linear + interactions model which are statistically sigmficant.

» For the example investigated, the significant parameters have been independently shown
to be the only ones which substantially influence the accuracy of the predictive model.

¢ Virtually all of the variation in the noise function at the test points is, for the present
example, attnibutable to main effect and two-way interaction terms. The degree of
similarity which exists between related applications suggests that, in general, little
increase in lack of fit will result from the exclusion of interaction terms higher than
second order.

¢ Such a model can be constructed from a fractional factorial design of at least resolution V.
This also allows for the inclusion in the model of a number of higher order interaction
terms.

¢ The use of a model of this type, whilst accounting for all variation in the noise function at
the vertices of the design variable space, results in substantial lack of fit errors at locations
which are distant from the original test points. In order to enhance the ability of the model
to represent the true response 1t is necessary to include higher order terms. It is not,
however, possible to estimate these terms using the two-level designs discussed above.




First order models constructed from full and fractional factorial designs

Appendix 4A

Specification of test points used to estimate lack of fit

due to higher order terms
Variable
A B Cc D E F G

0090 0260 .0260 .0090 .0175 .0260 .0090
0060 0260 .0260 009 .0175 .0260 .0090
0120 0260 .0260 .0090 .0175 .0260 .0090
0090 .0200 .0260 009 .0175 .0260 .0090
0090 .0320 .0260 .0090 0175 .0260 .0090
0090 .0260 .0200 .0090 .0175 .0260 .0090
0090 0260 .0320 .0090 .0175 .0260 .0090
0090 .0260 .0260 .0040 0175 .0260 .0090
0090 .0260 .0260 .0140 .0175 .0260 .0090
009 .0260 .0260 .0090 .0100 .0260 .00S0
0090 0260 .0260 .0090 .0250 .0260 .0090
0090 .0260 .0260 0090 .0175 .0200 .0090
0090 0260 .0260 0090 .0175 .0320 .0090
009 0260 .0260 .0090 .0175 .0260 .0060
0090 .0260 .0260 .0090 .0175 .0260 .0120
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Appendix 4B

Results of numencal tests using fractional factorial designs

MEAN 8 8082x10+1 44, CDEG 7.4247x103 87. BDG

A -22377 45. DEF 7.2312x103 88. ACE

C -3 8596x10-1 46, CDF -7 2296x10-3 89. CEFG

G -33608x10-! 47. ABC 7.1612x10-3 90 ADF

D -2.3021x10-! 48. CDG 70216x103 91. BEFG

F -2.2872x101 49. ACDEG  -69616x103 92. ABDG

B -1.9920x10-1 50. BF -6 9547x10-3 93 ABDEFG
E -1.5888x10-1 51. CDFG -6 6769x10-3 94. ACEFG
AG -7.4246x10-2 52 ACDFG  66182x103 95. BDEFG
AD 52756x10-2 53. ABQGG 59315x103 96. BC

AF -4 6907x10-2 54 ABE -58429x103 97. ABDF
CG -4 4956x10-2 55. ABEG -5.7443x10-3 98 BCDFG
AE 4 4724x10-2 56, ABEF 54687103 99 ADEFG
FG -4 4068x10-2 57. ACEF 54456x10-3 100. BCDEG
ACG 3.5056x10-2 58. ABDEG 54233x103 101. ABCDE
AEF 1.9958x10-2 59, BDEG -52643%10-3 102. ACDEF
EF -1.9304x10-2 60 BE 50225x10:3 103, BCDG
AC 1.7965x10-2 61. BCDF -4 9464x103 104. BEF
BCF 1.6793x10-% 62. BCEG 4 8705x10-3 105. AB
ABCF -1.5657x10-2 63. BEG 4 7925x10-3 106. CF

ACF -1.5540x10-2 64. BDF -4.7858x10-3 107. ABFG
CE 1 5170x10-2 65. AEFG -4.7292x103 108. ABDE
ABDFG  -14890x10-2 66. ABCEF  -4.6608x103 109. ABCDEG
EG -14491x10-2 67. BCDE 4 6442x10-3 110. BCEFG
BDIG 1 4209x10-2 68. BCFG 4 5903x103 111. DEFG
DFG 1.3226x10-2 69. CEF -4 5796x10-3 112. AEG
ACDF 1.3167x10-2 70. BCD 4 5612x103 113. ABDEF
ADFG -1.1497x10-2 71. ABCE -4 5580x10-3 114, ABCDEF
CcDh 1.1175x102 72. BCEF 4.5231x103 115. BDEF
ADEF -1.0824x10-2 73. ABCDF 4.5133x103 116. BG

DG -1 0766x10-2 74 ABCDERG -4.3667x10-3 117. ACEG
ACDG -10610x10-2 75. ABCEG 4.1502x103 118 AFG
BFG -1.0457x10-2 76 ACD -40621x10-3 119. ADEG
ABCFG  -10397x10-2 77. ACDE -4 0350x103 120. EFG

BD 9.3193x10-3 78. ABC(D -3.9413x10-3 121. ACFG
ADG 9.2839x10-3 79. CDE 3.7317x103 122. ABCEFG
CFG -9 2465x10-3 80. ABCDG  -3.6975x10-3 123. CDEF
CDEFG 8 6995x10-3 81. ADE -3.6911x10-3 124. BCE

DE 83466x10-3 82. ACDEFG -34924x10-3 125. ABEFG
DF -8.0816x10-3 83. BCDEFG 3.4912x103 126. ABCDFG
ABF -79288x10-3 84. DEG -3 4698x10-3 127. BCG
ABD 7.9016x10-3 85 BDE 3 3976x103 128 CEG
ABG -7 5974x10-3 86. BCDEF  -33055x103

Table 4B.1. Noise coefficients for full factorial test (n=7)
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-3 2154x103
3.1474x103
3.0834x10-3
3.0631x10-3

-3 0467x10-3
2.9337x103

-2.9106x10-3

-2 8335x10-3
2 8164x10-3

-2.7048x10-3
2.5961x10-3
2.5133x10-3

-2.4929x10-3
24517x10-3

-24162x10-3
2.3762x10-3
2 2716x103

-2.1783x10-3

-2.1579x10-2

-2.0599x%10-3
18338x10-3
1.7930x10-3

-1.6555%10-3

-1.5398x10-3
1.4303x10-3

-1.3100x10-3

-1.2484x10-3
1.2094x10-3
1.0884x10-3

-8.7908x 104

-71.7062x10-4

-6 8496x10-4

-6.3499x10-4
6.1510x104
6.1398x10-4
5.9950x104

-5.7055x104
54370x104

-4.7396x104

-1.7400x10-4

-1,7328x104

-1 5289<104




1. MEAN
2.A
3.C

4. G

5. F
6.D
7.B
8.E

9. AG
10. AD
11. FG
12. CG
13. AF
14. AE
15. ACG
16. EF
17. AEF
18. ACF
19. AC
20. DEG
21. BEG
22. ACE

88.078
-2.2342
-3.8887x10-1
-3.3487x10-1
-2.3038x10-1
-2.2961x101
-2.0269x10!
-1.5905x10-1
-7.7552x102
5.1217x102
-4.6484x10-2
-4.6205x10-2
-4.4455x10-2
-4.2211x10-2
3.6145x102
-2.3002x10-2
2.2230x10-2
-2.0805x10-2
2.0781x102
-1.9127x10-2
1.7959x10-2
1.7357x10-2

23. BCF
24. DG
25. BFG
26. BF
27. ADG
28. DEF
29. CDF
30. BEF
31. ABE
32. CDG
33. BE
34. BCG
35. ABD
36. BCE
37.CD
38. EG
39, DFG
40. ABC
41. ABG
42. CFG
43. ACD
44. AB

1.6158x10-2
-1.5427x10-2
-1.4492x10-2
-1.3916x10-2
1.3807x10-2
1.3163x10-2
-1.2974x10-2
-1.2788x10-2
-1.2520x10-2
1.2490x10-2
1.1641x10-2
-1.0997x10-2
1.0985x10-2
-1.0953x10-2
1.0701x10-2
-9.9781x103
8.6681x103
8.5915%x103
-8.1680x10-3
-7.4534x103
-7.1088x10-3
6.5416x103

45. BD
46. AEG
47.CDE
48. BDF
49. BC
50. BDE
51. AFG
52. DF
53. CF
54. EFG
55. CEG
56. BDG
57. DE
58. ADF
59. CEF
60. BG
61. ADE
62. ABF
63. CE
64. BCD
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6.4857x103
-6.2564%103
5.5655x103
-5.5565%10-3
-5.1977x103
4.0116x103
3.9592x103
-3.9314x103
3.3634x103
-3.3262x103
2.4432x103
2.2302x103
-2.0508x10-3
-1.8074x10-3
-1.6460x10-3
1.4971x103
8.9918x10-4
-5.0410x104
2.8026x10-4
-1.6804x10-4

Table 4B.2. Parameter estimates for 27-1 fractional factorial design of
resolution VII
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ABG
ACE
ACF
ACG
ADG
AEG
AFG
CEG
CFG
ACEG
ACFG

BCDE
BCDF
BCDG
ACDG
ABDE
ABDF
ABDG
ABCG
ABCDEG
ABCDFG
CDG
BDE
BDF
BDG
BCG
BCDEG
BCDFG
ABDEG
ABDFG
BDEG
BDFG

CDEF
ACDEF
BCDEF
DEF
CEF
CDF
CDE
CDEFG
ABCDEF
ADEF
ACEF
ACDF
ACDE
ACDEFG
BCDEFG
DF

DE
DEFG
CEFG
CDFG
CDEG
ABCDEFG
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ABEF
BEF

ABCEF
ABDEF
ABF
ABE
ABEFG

BCEF
BDEF
BF

BE
BEFG
AEFG
ABCF
ABCE
ABCEFG
ABDEFG
ABFG
ABEG
EFG
BCF
BCE
BCEFG
BDEFG
BFG
BEG
ABCFG
ABCEG
BCFG
BCEG

Table 4B.3. Confounding between parameters for 27-2 fractional factorial
design of resolution IV
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MEAN ABCD CDEF ABEF ACFG BDFG ADEG BCEG

A BCD ACDEF BEF CFG ABDIG DEG ABCEG
B ACD BCDEF AEF ABCFG DFG ABDEG CEG

c ABD DEF ABCEF AFG BCDFG ACDEG BEG

D ABC CEF ABDEF ACDFG BRG AEG BCDEG
E ABCDE CDF ABF ACEFG BDEFG ADG BCG

F ABCDF CDE ABE ACG BDG ADEFRG BCEFG
G ABCDG CDEFG ABEFG ACF BDF ADE BCE

AB CD ABCDEF EF BCFG ADFG BDEG ACEG
AC BD ADEF BCEF FG ABCDFG  CDEG ABEG
AD BC ACEF BDEF CDFG ABFG EG ABCDEG
AE BCDE ACDF BE CEFG ABDEFG DG ABCG
AF BCDF ACDE BE cG ABDG DEFG ABCEFG
AG BCDG ACDEFG  BEFG CF ABDF DE ABCE
BG ACDG BCDEFG  AEFG ABCF DF ABDE CE

ABG CDG ABCDEFG EFG BCF ADF BDE ACE

Table 4B.4. Confounding between parameters for 27-3 fractional factorial
design of resolution IV
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Appendix 4C

4C.1 The use of normal probability plots

Normal probability plots are used withun the present work 1n order to assess whether the coefficients of
predictive models are statistically sigmficant, and hence represent true characteristics of the response surface, or
whether they are indisingwshable from a set of normally distnbuted random data. Details of the use of this
technique is described by, for example, Box, Hunter and Hunter (1978), and Box and Draper (1987). The
following is a summary of the underlying theory, with some discusston of its applicability to the engine noise
optimzation problem Details of the implementation of this techmque within the optimuzation program are given
by Hall (1992).

Normally distnbuted data x which have a mean of p and a vartance of 62 have a probability density
function of the form

f(x) = ~ #12&_ e x-pyi20% (4c.1)

Thus funcuon 1s shown 1n Figure 4C.1. The cumulative density function, F(x), is the shaded area beneath the
graph from -©° to x, and represents the probability that a given measurement point wall have a value less than or
equal to x

f(x)

1

r T ?
B H+0 p+2o0p+30

Figure 4C.1 Normal probability denmsity function

The cumulative density function (¢ d.f ) is as shown in equation (4C.2). When plotted, this function
forras the ‘S’ shaped curve shown 1n Figure 4C 2.

-

X
E(x) = 1 w420 d¢ 4C.2
(x) L ovEC (4C2)
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Figure 4C.2 Cumulative density function

It is this graph which forms the basis of the probabihity plot method. If a sample of normally
distnbuted datas displayed as in Figure 4C.2, such that the rank order of each measurement, scaled to lie in the
range 0 0 to 1 0, is plotted against its value, then all points will he approximately on a cdf curve having the
appropriate vanance. When plotting a set of random data which is drawn from a normally distnibuted population,
any deviation from this line is due to sampling error. If a sample of data to be investigated is plotted, then the
degree to which the sample follows a normal distribution may be judged by the proximuty of the points to the
appropriate c d f. curve. Two main problems which arise when using the ¢ d f. curve are that the variance of the
sample data may not be known prior to plottng, and that companson of the data with the *S” shaped curve of
Figure 4C 2 18 dufficult to carry out.

In order to facilitate this companson, the probability plot method modifies the vertical scale of the
cdf, cither by plotting on spectal normal probability paper, or by carrying out a normalisation of the rank
orders. For implementation within a computing environment, it is the second of these two approaches which has
been followed within the present work. The effect of carrying out this modification of the vertical axis is that the
‘S’ shaped curve of Figure 4C 2 is stretched into a straight line. This aids interpretation of the ¢ d f. graph, since
a sample of random data can be judged to have a normal distnbution if it lies on any straight line, with the slope
of the line being determined by the variance of the distribution.

If the data is found to be normally distributed, then both the mean and variance of the sample may be
deduced directly from the probability plot as follows,
i) The mean of the sample is the x value associated with a c.df. F(x) = 0.5.
ii)} The value of the ¢.d.f. for the data point x =p + o 18 F(x) = 0.8314, and hence the

valueof 62 is equal to (I[F(x)=0 8314] - X[F(x)=0 5} r.

In using the method to 1dentfy which coefficients of a predictive model represent real effects, it has
been conventent to invert the probability plot such that the coefficient magnitudes are plotted against their
normahised rank. The normalisation of rank order has been carried out using a rational approximation to the
inverse cdf., to give a *Z score’. This is performed in such a way that the normalised rank for the mean value is
00, rather than 0 5. Additionally, in comparing coefficient estimates of predictive models, it is essential to
compare values which have been estimated with equal precision. In order to achieve ths, the coefficient values
have cach been divided by their standard error prior to plotting,

Figures 4C 3 — 4C 5 show examples of normal probability plots of the form used within the present
investigation Each of the three data sets shown is drawn from a normally distributed population with zero mean,
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and in each case it can be seen that all of the data points lie on an approximately straight line. Note that the effect
of sampling error increases as the size of the sample is reduced, so that the straightened c df. line is less well
defined, making it harder to identify values which do not conform to the normal distnibution.

Figure 4C.3 Normal probability plot of a random sample of 160 data points
drawn from a normally distributed population

3
7 +
' +
2 4 +
Value 4 +F
1 - +*
+

JRCT AR I
+HH i Z score
+
2
+
3 4

Figure 4C.4 Normal probability plot of a random sample of 40 data points
drawn from a normally distributed population




119

Figure 4C.5 Normal probability plot of a random sample of 10 data points
drawn from a normally distributed population

When investigating the statisucal significance of the coefficient value of a response surface model, these
are plotted as shown above. Any which hes significantly away from the strarpht line formed by the majority of
the points is considered 1nconsistent with an assumption of normal distribution, and 1s taken to represent a true
characteristic of the data set from which it 15 derived. Such values must be removed from the graph, and the
remaiming values replotted using recalculated Z scores in order to establish whether all the remarning coefficients
conform to an assumption of normal distnbution Figure 4C.6 shows an example of a data set 1n which a
number of the values deviate substantially from the normal distribution line; five of them regative and two
positive.

1_
Value +
+
+
T v T v -1 T Y ]
-3 2 - 1 2 3
Z score
++H
+
1

Figure 4C.6 Normal probability plot of a normally distributed sample
with seven outliers

For analyses 1n which it 18 only the magmtudes of the data pomts which are of interest, a modified
version of the normal probability plot can be used. This vanation was introduced by Dantel (1959), and is known
ag the half-normal probability plot, or Danel plot Using this techmque, the magnitude of each data point 1s
again plotted against 1ts normalised rank, but with the normalisation carrted out on the assumption that the
sample has a single-sided normal distribution with zero mean. Figure 4C.7 shows the data of Figure 4C 6,
displayed using a Damiel plot.
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Figure 4C.7 Half-normal probability plot of a normally distributed sample
with seven outliers

4C.2 Treatment of random experimental error in deterministic applications

The use of the probability plot is intended to provide a tool to aid the investigator in differentiating
between those effects which are due to random expenmental error, and those which are due to the underlying
charactenstics of the system being investigated When using computer simulation methods to provide the
function information from which the model 1s to be constructed, however, no random experimental error can
occur, since a given combination of input variables will always produce identical results The only possible cause
of lack of fit between the values of the response functions generated by the simulation program and the
mathematical model which 1s denved from the original sample points is thus underspeafication of the fitted
model. The validity of the probability plot technique when applied to such determrmstic applications clearly rests
upon the assumption that the effect of mode] underspecification introduces errors in the parameter estimates
which may, in some sense, be regarded as being randomly distributed

Although a detaled 1nvestigation into the validity of this assumption 18 beyond the scope of the present
work, a useful test of its applicability 15 to examine the nature of the discrepancy between the FE analysis result
and the response surface prediction at each test point of the experimental design. Two tests which may be
performed on these residuals are:

1) Plot residual values against the value of each of the design variables to assess correlation with
vanable value

ii) Construct a probability plot of the residuals to assess whether these error terms are normally
distributed.

In order to derive meaningful information from these tests, the design used must be of a non-saturated
nature, since otherwise all residuals will be due purely to rounding error The saturated factorial designs presented
in Chapter 4 are thus unsated to this type of investigation. Results are presented below for the 7 vanable
Central Composite Design of Section 6 5.3, compnsing 79 tests, to which a 36 term strict second-order model is
fitted. In Figures 4C 8 — 4C 14 the residualg are plotted against each of the varigble values, and these show that
there is no noticeable correlation between the lack-of-fit values and the levels of any of the design variables.
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Figure 4C.15 shows a normal probability plot of the residuals, which may be used to assess whether
the residual values are drawn from a normally distnbuted population. This plot shows that, apart from two clear
outliers, the residuals lie on an approximately straight line, indicating that the errors are indeed normally
distnbuted Additionally, this straght line passes approximately through the origin of the plot axis, suggesting
that the mean of the error values is approximately zero.
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Figure 4C.15 Normal probability plot of residusals

In conclusion, investigation of the residuals at the test points of a non-saturated experimental design
shows that these values are uncorrelated with any of the variable levels, and that they are randomly distributed
with a zero mean These results suggest that there 15 some validity in assuming that the effect of model
underspecification introduces errors which may be treated sumlarly to random expenmental error. Bearing in mind
the restrictions imposed upon the use of a probability plot analysis by the deterministic nature of the noise
simulation process, experience has shown that an informed use of this technique provides an extremely useful
tool 1n assessing the parameters of a mulu-dimensional mathematical model.
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5. Designs for quadratic models

5.1 Introduction

When an analysis of the type carried out in the previous chapter, using just a linear +
interacthons model, has shown that there 1s substantial lack of fit at points away from the corners
of the design variable space, due to curvature of the actual response surface, then the next step
in an investigation is to include terms in the prediction model which will account for these
effects.

Such terms include those which involve higher powers of each variable, and the
simplest extension to the original linear mode! of equation (4.1) is the quadratic model

n n

Y=o +§1 B.X, + Z E Buxlxj (5.1

1=1 =i

Analysis of the simple one-dimensional case shows that there are now three free
parameters in the equation;

Y =Bo + 1 X1 + B1iX§ (5.2)

and hence at least three test points are required in order to fit the model. This feature generalises
to multiple dimensions as in Chapter 4, such that each variable must appear 1n the expenmental
design matnx at at least three different levels.

As for the first order designs of Chapter 4, the values of the independent vanables are
normalised using the convention of Section 2.12. The second-order strict quadratic model can
be expressed in these normalised coordinates as

Y=p+ Z Bux, + z z ByxX, (53)

1=1 1=l =1

Before considering specific designs for fitting second order models, the following two
sections discuss the characteristics which a second order design must possess in order to meet
the requirements of orthogonality and rotatability.
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5.2 Orthogonal second-order designs

As stated in Appendix 2A, the condition which must be met for a design to be
orthogonal 1s that the moment matrix N-IX'X must be diagonal. Considering a general second-
order design for the simple case of n=2, the moment matnx, using the notation of Section 2.12,
is of the form

1 X, Xy x3 X2 XX,
17 1 1] (2] {11] [22] [12] 7
X, [11] (12} (1111 [122] [112]
1xxe X [22) 121 [222]1 [122] (54)
N - x% [1111] [1122] [1112]
X3 symmetnc [2222] [1222]
XXy L [1122] |

for which all of the off-diagonal terms must be equal to zero 1if the design 1s to be orthogonal. It
can be seen from equation (5.4) that these off-diagonal elements include terms of the form [ii]
and [iijj], which are the sums of the products 1.x,? and x;2.x 2 respectively. Since each of the
columns X, and X; must necessanly contain non-zero elements, and since each element of x 2
and xJ2 must be greater than or equal to zero, each of the [1i] and [ii)j] must be non-zero, so that
a diagonal moment matnix is impossible to obtain.

An altemative approach to second-order orthogonality was derived by Box and Hunter
(1957), who first defined a set of orthogonal polynomials of degree m in each of the variables
X, (i=1,..., n), such that

X]_(m)=xlm + am-l.mxlm-l + am-z'mxlm-z + .+ a]_‘mx.l + ao‘m (5-5)

with each value of a chosen such that

N
Y X @xymP =0, p=1,2,.,m (56

u=l

The original equations Y = X can then be expressed in terms of these polynomials as

Y =(XP) (P1B)=Xp 57

where P is the transformation matrix which maps the oniginal independent variables to the new
set.
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A design is now orthogonal if
NIX'X
is diagonal. The requirements for this are that, for1<j<p<gq,

[l = [i] = [ijl =0

liili]=1
liijp] = [yjp] = Ojppl =0
(i) =[py] =0

[1jpal = [ijp] = 0

Appendix 5A demonstrates the orthogonality of a three level factorial design of the type
described 1n Section 5.4 below.

5.3 Rotatability in second-order designs

Referning to the conditions for rotatability of Section 2.12, a second-order design must
satisfy

hil =2,
[iij)] =24 fori,j=1,2,...,nand i<j
[iiii] = 324

where the required value of A, = 1 is fixed as a consequence of the scaling convention. This
leaves only A4 to be determined, which may be selected in order to achieve other design
critena. If the design is also to be orthogonal, for example, then Section 5.2 shows that a value
of M4 = [iijj] = 1 is required.

However, an analysis by Box and Hunter (1957), showed that, for a rotatable design,
the prediction variance (see Appendix 2A) at a point x at radius p from the design centre, such
that p2 = x'x, is

Var [y(0)] = A{ 20+2)A3 + (- 1)(042)p? + [(n+D)g - (0-1)]p%} (5.8
where A = {2NA[(n+2)24 - n]}!

For the orthogonal case of A, = 1, the change of variance with radius p is very marked,
with a much higher value being obtained at p = 1 than at the design centre p = 0. Since the
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investigator would ideally like to be able to predict the response at all points within the design
variable space with equal precision, this is a very worrying characteristic. Plotting the variance
against p for a number of different values of A4, it 1s found that at a certain value of A, the
variance at p = 1 is equal to that at p = 0, and Box and Hunter suggest that the orthogonality
requirement be relaxed slightly so as to allow the value of A4 to be chosen to meet this
criterion. A design which satisfies this requirement is known as a uniform precision design.

The requirement, then, is that the value of variance evaluated from equation (5.8)
should be the same for p=0and p = 1. From (5.8), 1t can be seen that the value of both A and
the term 2(n+2)A4¢ are invanant with p, so that the criterion is met if the expression

2h(Aa1)(n+2)p? + [(n+ Dy - (-1)]p* (5.9)

is equal at values of p=0and p= 1.

Since the above expression 1s equal to zero when p = 0, uniform precision is achieved
if,atp=1,

2h(Ag-D(n42) + (n+1)Ag - (n-1)=0 (5.10)
A _(n+3):49n2+14n-7) 5.11)
and hence 4= a0+ 8 5.

Evaluating this expression for various values of n gives

n 7\,4

0.6666
0.7844
0.8385
0.8704
0.8918
0.9070
0.9184
0.9274
0.9346
10 0.9404
1t 0.9453
12 0.9495

VOO~ bW

showing that the uniform precision design is almost orthogonal for all but small n, and grows
more so as the number of vanables increases. It is interesting to note that if equation (5.10) is
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evaluated for A4 = 1, then
(n+D)-(n-1)=0

which is only approximated as n — o, demonstrating that a second order design cannot be both
exactly orthogonal and rotatable with uniform precision.

5.4 The three level factorial design

A simple design which allows the estimation of the required terms in equation (5.1) is
the three level factonal experiment. This is constructed on the model of the 2° full factonal
design of Section 3.3, with the design matrix consisting of every combination of the three levels
of each vanable, giving a total of 3™ points. Figure 5.1 shows the test points which are required
1n the three-dimensional case.

- X1

(1,-1,-1)

Figure 5.1. A three level factorial design in three dimensions
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for which the associated design matrix 1s

X1 X2 X3

-1 -1 -1
-1 -1 0
-1 -1 1
-1 0 -1
-1 0 0
-1 0 1
-1 1 -1
-1 1 o
-1 1 1
0 -1 -1
0 -1 o0
0 -1 1
0 0 -1

D = 0o 0 0
o 0 1
0 1 -1
0 1 0
0 1 1
1 -1 -1
1 -1 o0
1 -1 1
1 0 -1
1 0 o0
1 0 1
1 1 -1
1 1 o0

1 1 1.

Since there are 3™ tests, it is in fact possible to fit a total of 3% terms, allowing the
construction of a second order plus interactions model of the form

n n-l n n

Y= BO"‘Z Bx +2 Z Bljxlxj"'z z Z BuykXe XXk +
=1 1=1 3=1 1=1 y=1 k=)
k>1 (5.12)
n-ln-l1 n n
- 2 2 BukiXXXixy+ ---ee B112233...0n X3X3x3X%: - XA
1=1 j=1 k=5 1=k
1 1>)

in which no more than two of the subscripts in any term may take the same value. An example
of the complete set of terms generated by this equation is given in Appendix 5B for the four
variable case. The example of Appendix 5A shows that a 3® design is orthogonal. It also
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e e

this case, [iijj] = 1 (a necessary condition for orthogonality) whilst [fii] = 3/2.

The principal disadvantage of the three level factorial design, however, is that the
number of test points rises rapidly with increasing n, such that for 5 variables, 35 = 243 tests
are required; for 7 variables, 2187; and for 12 variables over 530,000 tests are
needed. Although it is possible to construct fractional factorial designs containing 3%™ terms,
by a procedure analogous to that followed for two level testing, even quite small fractions are
still prohibitively large when the original full factonal array is of this size. As an example, the
smallest fraction of the 7 variable factorial test which will allow all of the two-way
linear x linear interactions to be estimated without mutual confounding is the 37-2 design, a 1/9
fraction, which still contains 243 tests (National Bureau of Standards, 1959). The simple three
level factorial test is thus impractical unless either the number of factors involved is very small,
or the cost of performing each test is extremely low.

Additionally, analysis of equation (5.1) shows that the strict quadratic model contains
jJust (k+1)(k+2)/2 terms. For a seven variable example just 36 terms are involved, whilst the
mode! of equation (5.12) contains 2187 terms, with the additional 2151 terms representing
interaction effects between the linear and quadratic components. It has been shown in the
previous chapter, however, that even interactions of order greater than two between linear terms
have been found to be 1nsignificant for the engine noise application, and it 1s therefore unlikely
that many of the additional interactions in the present model will have a measurable effect. In
cases where the coefficients of the strict quadratic model are the only significant ones, the ratio
of significant terms to the number of tests carried out 1n a seven variable three-level factorial
design is therefore likely to be around 1.67%, improving only to around 14.8% for the 1/9
fraction. Thus significance ratio 1s reduced if a larger number of vanables 1s to be investigated,
such that for a 12 variable example the full model contains fewer than 0.02% of significant
terms.

A simlar view of the efficiency of a design for fitting a particular model was taken by
Box and Behnken (1960), who defined a redundancy factor as the ratio of the number of tests
carned out to the number of coefficients to be fitted. This factor is the inverse of the saturation
ratio defined in Section 2.6, and, when only sigmficant terms are fitted, is also the inverse of
the significance ratio described above. They commented that “in situations in which the
experimental error variance is not so large as to require large numbers of observations to obtain
necessary precision, designs having small redundancy factors are desirable”, suggesting further
that a value of two or less (more that 50% saturation) would be appropriate. When 1t is borne in
mind that in the present application no random expenmental error is experienced, it is clear that
the unmodified three level full and fractional factorial designs represent an extreme over-testng
of the region of interest, when compared with the model to be fitted. For this reason the simple
three Ievel factonial design will not be considered further within the present work.
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Appendix 5A
Orthogonality and rotatability characteristics of the three level factorial design

The design matrix of a three level factorial design m two vanables, with variable levels coded as -1, 0 and +1, is

Normalising using the convention of Section 2 12,

X
1N s 172
ﬁ'z_ Xun

u=l

The denominator of this expression 18 calculated as

N 112
[ﬁ-z Xﬁ.] =L aen2e302+3.0%] =4[5

u=l

X =

S Xa = 8 Xai where g= .%
The normalised regressor matnx 1s thus
1 x, X, X2 X% XX,
C 1 g -5 g8 & & ]
1 g 0 g2 0 ©
1 g g g g &
e 0 2
X = 1 0 2 g
1 0 O 0
1 0 g g2
1 g -8 g g ¢
1 g 0 g 0 0
| 1 g g g g g |
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The moment matnx for this design is

|
1 x; X, X3 X} XX,
1 1 0 O %g %g 0
X, 280 0 0 0
2 2
X £ 0O o0 o
%X'X: 2 3g
44 4
x% symmetric %8 -‘-9"-3 0
4
x3 %g 0
4
%2 | %8 _
|

from which 1t can be seen that

Thus this design meets the orthogonality cnterion of [itjj] = 1, but not the rotatability cntenion of
[iafi] =30y]
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The first fourteen terms plus the mean are those which appear in the strict quadratic
model of equation 5.1.

|
Appendix 5B
Complete set of terms for a three Jevel full factorial test in 4 variables

1. A 31. A2B2 61. ABCD?

2. B 32. AZBC 62. ACD?

3. C 33. AZBD 63. BXD

4, D 34. AC? 64, B2CD?

5. A2 35. AXD 65. BCZD?

6. AB 36. AD? 66. A2B2C2

7. AC 37. ABXC 67. AZB2CD

8. AD 38. ABD 68. A2B2D?

9. B2 39. ABC? 69. AZBCZD

10. BC 40. ABCD 70. AZBCD?

11. BD 41. ABD? 71. AC2D2

12. C? 42. ACD 72. ABXC?D

13. CD 43, ACD? 73. ABXD?

14. D2 44. BX? 74. ABCD?

15. A%B 45. BXD 75. BACID?

16. AC 46. B2D? 76. A2B2C2D

17. A2D 47. BCD 77. A2B2CD?

18. AB? 48. BCD? 78. A2BC2D2

19. ABC 49, CD2 79. AB2CZD?

20. ABD 50. A2B2C 80. A2B2C2D?

21. AC? 51. A2BD

22. ACD 52. ABC? plus process mean

23. AD? 53. AZBCD

24, BXC 54. A2BD?

25. BD 55. AZCD

26. BC? 56. AXCD2

27. BCD 57. AB2C?

28. BD? 58. ABXD

29. CD 59. ABMD?

30. CD? 60. ABCD
\
|
|
|
\
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6. The Central Composite Design (CCD)

Perhaps one of the most widely established of the second-order designs is the Central
Composite Design, or CCD, introduced by Box and Wilson (1951} as a less costly alternative to
the 3® factorial design. This design is formed by adding to a two-level factorial or fractional
factorial design a small number of tests at a third level of each variable. The CCD lends itself to
sequential investigation of a design variable space, since the results of a previous two-level
expenment can be incorporated into the second-order design.

The main purpose of the present chapter is to establish whether the CCD is suitable as a
design for computer experiments, and in particular whether it can successfully be used to
estimate the coefficients of radiated noise response surfaces. Before carrying out numerical trials
using the CCD, however, the standard orthogonality, rotatability and uniform precision criteria
which apply when investigating a general expenimental region are presented in Section 6.3. An
understanding of these critena is extremely important to the successful use of the CCD, since it
is these requirements which determine the values of the various parameters of the CCD which
are chosen for a particular experiment. Consideration of these parameters motivates the
discussion, in Section 6.4, of the constraints which the computer simulation environment
imposes on the use of the CCD. A number of ways of addressing these limitations is
considered. In Section 6.5 the results of numerical tests using appropnately selected designs are
presented, from which the suitability of the CCD to the present application 1s assessed
(Section 6.6).

Chapter 7 describes a new method of extending the CCD, which has been developed as
part of the present work in order to address the problem of executing replicate tests when
investigating deterministic systems.

6.1 Introduction to the CCD

The standard CCD, as used for general experimental applications, 1s made up of three
separate portions, as follows;

1. A factorial portion, consisting of a full or fractional two level factorial design.
Selection of the appropriate fraction proceeds 1n the same way as for the first-order designs of
Chapter 3, with the requirement often being that this portion should be of resolution V or
higher. The variable values are again encoded to 1, as descnibed in Section 3.3. In the analyses
which follow, the number of tests in this factonal portion will be denoted by F.
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2. An axial portion, consisting of a total of 2n points, each of which lies on the axis of
on¢ of the design variables, at a distance a from the design centre. The points have the
specification (x«, 0, 0, ... ,0), (0, xa, 0, ... ,0),...., (0, O, ..., 0, +c, 0), (0, 0, ..., 0, ),
and form the vertices of a cross-polytope or “star”. The choice of the parameter o 1s discussed
in Section 6.3, below.

3. Centre points. A certain number ny of replicate tests performed at the centre of the
design space (0, 0, ... , 0). The choice of n, is discussed in Section 6.3, below.

An example of a Central Composite Design in three dimensions with a full 23 factorial
portion is shown in Figure 6.1,

e (0,a0,0)
( ) (0,0, o)
-1, 1, -1 /;
(-a,0,0) (Q,0,0)
o —0

/ 1, -1,-1)
/ / ® Factorial portion
/ o Axial portion

(L-1,1) :
(0, 0, -0) ©® Centre point(s)

0 (0,-a,0)

Figure 6.1 A CCD in three dimensions
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The design matrix in this case is of the form

-1 -1 -1
-1 -1 +1 i
-1 +1 -1
-1 +1 +1
+1 -1 -1 F
+1 -1 +1
+1 +1 -1
+1 +1 +1
D= -a 0 0
+a O 0
0 - 0
0 +a o] |
0 0 -«
0 0 +a
0 0 O
. . ng
= 0 0 0|

6.2 Scaling of variable values

Refernng to the scaling convention of equation (3.23), both the scale factor k, (which 1s
the same for each vanable, since the CCD is permutation invartant) and the scaled variable value
X,, may be denved explicitly in terms of the parameters of the CCD. The derivation of this
scaling is seldom found in standard works on the subject, but is presented here in some detail,
since an understanding of it aids the discussion of the moment matnix, and orthogonality and
rotatability cnteria, which follows.

Considenng first the average value over the N tests of a variable i, whose upper and
lower bounds are b, and bj; respectively, the mean of the bounded levels is given by
w, = (by; + by} /2, and the distance from this mean to either bound is 8, = (b; - by;) /2. Thus
by = 1, + 8, and by, =, - 3. The average value over all of the tests of the CCD may then be
expressed as follows

N
K=& Xus= -15—[ (mr+8) + £ u-0) + 1(pivard) + 1praid) + 2n-2)() + () ]

u=

—

P—}I-[(F +2n + no)
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XK=l since N=F + 2n + ny

This confirms that the average value of each variable over all tests 1s equal to the mean
of the bounded levels. This is due to the fact that the factorial portion of the design contains an
equal number of points for which variable i is at its high and low bounds, and that the star
points occur in equal and opposite pairs. The scale factor x of (2.19) may now be expressecf as

N _ -1/2
x=| > (Xu-XW N]

L u=]

{

[T

= [ B rt)g? + by + () + (Qeadn)’

+ (2n-24n0) ()21 |12

é[ﬁ'( F+2a2)] 12

The standardised vanable value may now be explicitly expressed as

Xun'l"l

X =

[N7(F+202)] 2

or
Xu-y

Xm=

g, where g =[N/ (F + 2a2)] 12 (6.1)

1

The term (X, - n)/5; has the effect of standardising the variable range to 1, so that,
for example, when X, 1s the upper bound p, + 8,

.= Witd) - g=

u g
O,
and for the star point X;; =, + a d,,
+ad,) -
q= Batad) - u g=ag

8,




The design matrix for the CCD may now be written in the following form

-8
-8
-8
-2
+g
+8
+2
+8
D= -ag
+ag

0

0
0
0
0

0

ey

& -8
g +8
g -8
+2  +8
8 g
g *8
+8 -8
+8 18
0 o

0 0O
-ag O
+ag 0
0 -ag

0 +ag

0 O

0 o0

2n
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(6.2)

If the bounds on variable 1 are already normalised to 1, then, since g, =0 and §, = 1,

equation (6.1) reduces to

xui=gxun

6.3 Orthogonality and rotatability

6.3.1 The moment matrix for a CCD

where g =[N / (F + 2a2)] 12

(6.3)

For a CCD having a design matrix scaled as in equation (6.1), the regressor matrix is as

follows, here shown for two variables.
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1 X1 Xz x12 X% X1X2 _
1 -2 g & g ¢
1 g +g g g -g
1 +g -g g2 g - 64)
1 +g +g g2 g g
X = 1 -ag 0 a%2 0 O
1 +ag 0 a%2 0 O
1 0 -ag 0 a2g2 0
1 0 +ag 0 a2g2 0O
1 0O 0 0 o 0
.1 0 0 0 0 0 _
so that the moment matnx is of the form
_ 1 X1 X2 X% X22 X1X2 _
L|Fo240a202| L|Fp242a202
1 1 0 0 N[Fg+2ag]N[Fg+2ag] 0
X1 0 ﬁ[ng+2a2g2] 0 0 0 0
X2 0 0 %[Fg2+2a2g2] 0 0 0
NXX= 1 1 1
2 1 1 |Eo2424202 L 4 =
Xt | [Fg +2a°g ] 0 0 N [Fg4+2a g4] N Fg4 0
2 | 1|Eo2490202 L 1 4 0
%3N [Fg +20°g ] 0 0 N Fg4 N [Fg4+2a g4]
X1X3 0 0 0 0 0 I%.Fg4

Using the notation of Section 2.12, it may be verified that the CCD meets the following
requirements, for all i <j < p <q, as outlined in Section 5.2.

[ij]={iy) = hij] =0
[iijp] = [yjp] = [ijppl =0
Liij] =[jj] =0

[ipql = [ijp] =0
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also for any variable i,
[ii] = N-1{Fg2 + 2a?g?] = g2 N'![F+ 2a?]

The adoption of the scaling convention of equation (6.1), in which
g =[N/ (F + 2a3)]1"2, results in a value of [ii] = 1, and also yields

[iiii] = N-1[Fg* + 2a4g4]
and [ujj] = N-1Fg4

6.3.2 Orthogonality

For a second order design to be orthogonal, Section 5.2 requires that 1t must also meet
the condition [iiji] = 1. From the above,

ves =l.
[iji) = - Fg*
Substituting for g yields

liijj] = ﬁ F [N / (F+2a2)] ?

fifj] = —EN— 6.5)
(F+2a?)
so that for an orthogonal design
FN = (F+203) 2 (6.6)

This may be re-arranged for a to give

L
o= [@_);i.‘i] 2 6.7

Thus for a seven variable example with a half fraction of the 27 factorial containing 64 test
points, and with ng centre point replications, the required value of « is

- [[64 (64+14+ng)]12 - 6415 68

2 |
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which for various ny gives

ny o
0 1.824
1 1.885
2 1.943
3 2.000
4 2.055
5 2.108

6.3.3 Rotatability

The conditions for rotatability of second order designs, as outlined in Section 5.3,
include the requirements that [ii] = 1 and [iiii] = 3[iijj]. The first of these is automatically met
when the scaling convention of equation (6.1) is followed. Referring to the moment matnx
above, the second is that ’

Fg? + 204g4 =3 Fg?
o'gt=Fg!
at=F
or a =F# (6.9

Thus for the seven variable example above, with F = 64, the required value of « is

o =6414 = 2.8284

Comparing this value with those required for orthogonality 1n the previous section, it is
apparent that a large number of centre point replications would be necessary before the two
requirements coincided, producing a design which is both orthogonal and rotatable. This is
formalised in the following section.

6.3.4 Choice of parameters for both orthogonality and rotatability
If both orthogonality and rotatability are desired, then the value of  is necessanly set

by the rotatability requirement of a = F1/4. Thus only the number of centre points can be
modified in order to attain orthogonality. Substituting @ = F1*4 1nto equation (6.6),
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FN = (F+2F1/2) 2
but N =F + 2n + ny, so that
F (F + 2n + ng) = (F+2F1/2) 2
rearranging for ng,
F? + 20F + Fnp=F2 + 4F + 4F(F)12

F+2n+np=F+ 4+ 4(F)!"2

ng=4F)!2.2n+4 (6.10)
Thus for the seven vanable example with F = 64,
ng=464)12-14+4=22

which is clearly a substantial requirement for centre point runs, representing 22% of the total
test burden for this design.

6.3.5 Uniform precision designs

The uniform precision cniterion, described in Section 5.3, is an alternative requirement
to that of orthogonality. Since a uniform precision design must also be rotatable, the value of «
is again set to a = FV4, The required value of ny, may be assessed by substituting the identity
[iijj] = A4 1nto equation (6.5),

[iijj] = Ag = —EN__ (6.11)
(F+2a2) 2

Introducing the rotatability condition o = F1/4,

FN__ .
(F+2F172) 2

N= [14 (F+2F112) "'-]1 F

F+2n+no=[x4(1:2 +4F+4F(I~‘)"2)]IF
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no=MF+4+4FHVYH-F-2n (6.12)

The value of ng for a particular design is obtained by substituting the appropnate value
of Ay, calculated from equation (5.11). Thus, for the seven variable case (n = 7, F = 64), which
requires A, = 0.9184, this yields

no=0.9184 (64 + 4+ 4(64)12) - 64 - 14=13.84 ~ 14

Equations (6.12) and (6.10) show that a design which is both orthogonal and rotatable
will have an additional Any centre pont runs, compared with the uniform precision design,
where:

. no=(1-Ag) (F+4+4(F)?
Hence, forn=7, F =64, and A = 0.9184,

Ang=(1-0.9184) (64 + 4 + 4(64)1'%) =8.16 =8
6.3.6 Selection of parameters for the CCD

The influence of the above critena on the selection of parameters for the CCD may be
summansed as follows. The first step in the specification of a CCD in n variables is to
determine the appropriate factorial portion to use in the design, following the procedures of
Chapter 3. With the values of n and F known, the remaining parameters a and ny may be
chosen to meet one or more of the following criteria.

(1) For orthogonality

L
. [(FN);’2 - Flz

any convenient combination of a and ny may be selected which meets these requirements, as
descrnibed in Section 6.3.2.

(1) For rotatabihity o = F1/4; the value of ny does not affect the attainment of rotatability.

(iii) For both orthogonality and rotatability, a = F1/4 and ny = 4(F)!/2 - 2n + 4.

(iv) For uniform precision, a = F14and ny = A, (F + 4 + 4)12) - F -2n.
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6.4 Special requirements for engine noise simulation using the CCD

As descnibed in Section 2.4, normalisation of the bounds set on each of the vanables
gives nse to a design variable region which is hypercuboidal in nature. If the vanable values
chosen for the factorial portion of the CCD are the vanable bounds, then the normalised factorial
points (x1, £1, ... , £1) lie at the extreme edge of the range of variables. The requirement for
rotatability, however, is that a = F1"4, which must be greater than 1, since F > 1. Thus the star
points of the CCD would lie well beyond the limits of each of the variables, which is likely to
give nse to engine designs which are physically implausible and/or mathematically impossible.

As an example, consider the variables of the engine model descnbed in Appendix 1C, in
which the thickness of the crankcase skirt varies between physically sensible limits of 6mm and
12mm. The mean value of the variable is thus ©mm, and if the bounds are scaled to %1, the star
points at a = 2.8284 would lie at 0.51mm and 17.49mm. In this case the upper star point,
although higher than would generally be considered in practice, is not a particular problem. The
lower value of 0.51mm, however, is clearly impractical as an engine block skirt thickness, both
from the point of view of manufactuning capabulity and of stress levels and structurai integrity
under load.

This, however, is not the main reason for the lower star point being unacceptable, since
the lower bound of 6mm would prevent such a design from being selected at the optimization
stage of an analysis. Of much more importance is the fact that the value of the noise function is
likely to become highly non-linear as the thickness of this component approaches zero,
especially as the skirt 1s one of the major notse radiating surfaces. This unrepresentative value is
therefore hikely to be extremely misleading when a model is constructed over the normal variable
range.

The problem 1s even greater in the case of the longitudinal stiffener, whose bounds of
4mm and 14mm would lead to star points of -5.1mm and 23.1mm if a = 2.8284. It is clearly
impossible to obtain meaningful results from the FE analysis when negative thicknesses are
specified, and a value of zero thickness is only possible if the variable is removed from the
model.

In order to avoid this problem, it is necessary to modify the experimental design so that
the star points do not lie at such inconvenient values. Since, in general, it is not clear where
such values become ‘inconvenient’, a sensible choice of design would seem to be one in which
the star points lie at the extreme values of each variable, and not beyond. This condition may be
met in one of two ways. The first of these is to modify the variable values in the factorial
portion, such that the new range multiplied by a results in star points which lie on the original
variable bounds. As an example, if the values of skirt thickness in the factorial portion of the
design were modified from 6émm/12mm to 7.94mm/10.06mm, then, for a value of a = 2.8284,
the star points would lie at 9+[2.8284 x (9-7.94)]mm, which yields 6mm and 12mm. This
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approach is clearly unsatisfactory, since the interval between the high and low values of the
factorial portion of the design is now reduced from 6mm to 2.12mm, and will thus provide a
much inferior estimate of the linear and nteraction terms of the model. For a single variable (of
the seven introduced 1 Appendix 1C) only 35% of the range is enclosed within the new
bounds. If the same scaling is applied to k < 7 of the vanables, then the total volume enclosed is
just (0.35¥)x100%, so that for all seven vanables only 0.069% of the original design variable
space is covered.

The alternative approach is to relax the requirement for exact rotatability, which, as
discussed in Section 2.8, 1s not necessarily a beneficial property when investigating a
non-spherical design vanable space. The star points may then be set at the edges of the
design region, with the factorial points unchanged. For the cuboidal region of the present
example, this leads to a value of « = 1, which, from equation (6.9) will only give rotatability
when F = 1. Since a factorial portion containing a single test is clearly of little value, (6.9)
shows that no practical CCD with a = 1 is rotatable.

If o = 1, then the requirement for orthogonality, from equation (6.6), 1s that

FN = (F+2a2) 2
FN = (F+2) 2

FN = (F2+ 4F + 4)

so that

N=F+2n+np= (F>+4F+4)/F
np= (F+4+4/F)-F-2n
no= 4+4/F-2n (6.13)

Since F = 1, n, can only possibly have a positive value for n <4, and is likely to be negative for
all practical designsinn>2. E.g. forn=7, F=64,

no= 4+ 4/64 - 14 =-99375

demonstrating that an orthogonal design is generally unattainable for a CCD with a = 1. This is
in agreement with the analysis of Section 6.3.2, where it was seen that for orthogonal designs o
decreases with decreasing ng, but that even at ny = 0 a value of o = 1.824 is required when
n="7and F=64.
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Since for a design to be of uniform precision 1t must first be rotatable, 1t is clear that
umiform precision designs cannot be achieved with a = 1. This may be confirmed by
substitution of a = 1 into equation (6.11):

FN = M(F2+ 4F + 4)
ng=MF+4+4/F)-F-2n
so that for n=7, F=64, A,=0.9184,

ng = 0.9184 (64 + 4 + 4/64) - 64 - 14 = -15.49

Thus for all practical Central Composite Designs, the choice of parameter a = 1
prevents selection of designs which are either rotatable, orthogonal or of uniform precision.

As outlined above, an intrinsic characteristic of the CCD 1s the use of replicate tests at
the centre of the design variable space. When carrying out a programme of physical
experimentation, this replication of tests serves the purpose of reducing the effect of random
expenmental error, allowing improved estimation of the amount of curvature exhibited by each
response surface. When using computer simulation techniques, however, the value of a
response function which 1s obtained for a particular combination of input variable levels
will always be identical (to machine precision). Thus, replication of centre points yields no
additional information in a deterministic environment, imposing an important and fundamental
constraint upon the choice of parameters for the CCD.

There would appear to be three possible ways of dealing with this restniction:

(i) Include the replicate centre points within the design, as for normal experimental practice,
and simply return identical results for each.

(ii) Reduce the number of centre points in the design to ng = 1, so that no rephication is
required.

(iii) Simulate multiple centre points in some way, so as to provide the required information
concerning response surface curvature, whilst avoiding the problem of duplicate results
which do not contribute to the investigator’s knowledge of the system.

Of these three approaches, the first would seem to be the least satisfactory, as it
effectively involves misleading the surface-fit algorithm by suggesting that quite independent
tests at this point 1n the design space have led to exactly identical answers. The result of this will
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be that the model will be constructed with artificially high confidence levels in the values of the
calculated coefficients, with the model itself being unduly influenced by the multiple 1dentical
test data. This effect is briefly discussed in Section 6.5.4.

The second option provides the simplest way of avoiding the problem. The main
disadvantage of this approach is that only a small amount of data is collected for estimation of
the pure quadratic terms of the model. This option 1s considered 1n Section 6.5, below, where
the extent to which the reduced amount of centre point information affects parameter estimation
1s investigated in detail. An additional disadvantage of this method is that 1t 1s not possible to
select the number of centre point replications 1n order to fulfil the orthogonality or uniform
precision criteria. In cases where testing beyond the variable bounds are infeasible, however,
this second consideration 1s of less importance, since the above discussion has shown that, with
the necessary value of a = 1, it is not generally possible to construct a standard CCD which is
either orthogonal or of uniform precision.

The third option requires making fundamental modifications to the standard Central
Composite Design. The aim 1s to allow a greater quantity of information to be gathered close to
the centre of the design space, both for determnistic systems generally, and for the case of noise
optimization in particular. This important topic is the subject of Chapter 7.
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6.5 Numerical tests using the CCD

In order to assess the suitability of the CCD to the optimization of computer simulated
radiated notse, a series of numerical studies has been carried out using the seven variable
example descnibed in Appendix 1C, based on the FE model of a four cylinder engine block.

The tests outlined below are presented in four sections. Firstly, in Section 6.5.1, a 79
test CCD is used to construct a model containing ali 64 of the available linear + interaction terms
and the seven pure quadratic coefficients. The performance of this model is discussed,
following which the probability plot analysis, previously employed with the linear models of
Chapter 4, is used to determine which of the 71 parameters are statistically significant.

The second section, 6.5.2, employs the same experimental design to fit a model
containing just those parameters identified to be statistically significant. The charactenstics of
this model are discussed, and its predictive ability compared with that of the previous model.

In order to widen the scope of the procedure to address cases in which the 1nvestigator
has no prior knowledge concerning the identity of the significant parameters, Section 6.5.3
investigates the suitability of the strict quadratic model of equation (5.1), again using the 79 test
CCD.

Finally, in Section 6.5.4, the use of simple replicate centre points is brniefly discussed,
with sample results for the strict quadratic model of Section 6.5.3. Further details of tests
carried out using simple centre point replication are included in Appendix 6B.

6.5.1 Use of the CCD with a = 1, nj = 1 and 71 coefficients

A standard CCD was first employed, with an axial parameter of a = 1 and a single
centre point. As recommended in the discussion of Chapter 4, the factorial portion was chosen
to be of at least resolution V. In order to obtain this resolution it is necessary to use a 27-1
fraction contaimng 64 test points, which is of resolution VII. The total number of tests is thus
64 + (2 x 7) + 1 =79. This design allows the construction of 2 model containing the mean value
and up to 63 linear plus interaction terms, to which are added the seven pure quadratic terms,
giving a total of 71 coefficients.

The complete list of coefficient estimates obtained from the analysis is given in
Table 6.1. The coefficients are arranged in rank order and are normalised for variable values
scaled to lie in the range +1.




MEAN

PN AW

24. AFF
25. ACF

86711x10+1
-2.2352
9 8271x10-1
-3 8703x10-1
-3.3550x%10-1
-2.3327%10-1
2.2783x10-1
-2 0402x10-1
1 9729x10-1
-1 5832x10-1
1.1884x10-1
-7.8670x10-2
-7.7552x10-2
6 5926x10-2
5 8004x10-2
5.1217x10-2
-4 6484102
-4 6205x10-2
-4 4455x10-2
-42211x10-2
3.6145x102
-23002x10-2
2.2509x10-2
2 2230x10-2
-2.0805x10-2

26.
27.
28.
29,
30.
31.
32.
33.
34,
3s.
36.
37.
38.
39,
40,
41.
42,
43.
44,
45.
46.
47.
48.
49,
50,

AC

DEG
BEG
ACE
BCF
DG

BFG
BF

ADG
DEF
CDF
BEF
ABE
CDG
BE

BCG

ABD
BCE
D
EG

DFG
ABC
ABG
CFG
ACD

2 0781x10-2
-1.9127x10-2
1.7959x10-2
1.7357x10-2
1.6158x10-2
-1.5427x10-2
-1.4492x10-2
-13916x10-2
1 3807x10-2
13163x10-2
-1.2974x10-2
-1.2788x10-2
-1.2520x10-2
1.2490x10-2
1.1641x10-2
-1.0997x10-2
1.0985x10-2
-1.0953x10-2
1.0701x10-2
-99781x10-3
8 6681x10-3
8 5915x103
-8.1680x10-3
-7.4534x10-3
-7.1088x10-3

51
52,

55,
56.
57.
58.
59.
60.
6l.

68.
69.

70

71.

AFKRBD

BDE
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6 5416x10-3
6.4857x103
-6 2564x10-3
5.5655%103
-5.5565x10-3
-5.1977x10-3
40116x10-3
3.9592x10-3
-3.9314x10-3
33634x103
-3.3262x10-3
2.4432x10-3
2.2302x103
-2 0508x10-3
-1.8074x10-3
-1 6460x10-3
14971x10-3
8 9918x10+4
-50410x104
2 8026x10-4
-16804x10-4

Table 6.1 Noise coefficients for CCD with 79 tests and 71 coefficients (n=7)

Examination of this list reveals that all of the pure quadratic terms appear within the first
23 places, together with the mean effect, the seven main effects, seven of the two-way
interactions and just one three-way interaction. The pure quadratic terms are thus making a
substantial contribution to the overall model, confirming the conclusion of Section 4.1.2 that
sigmficant curvature exists within the design vanable space. Indeed, four of the pure quadratic
terms (A2, D2, G2 and F2), are of greater magnitude than any of the interaction terms, and the
effect of A2 is second only to the main effect of that variable.

In evaluating the performance of this design, three factors should be considered;

(i) Therelative precision of the parameter esimates for different coefficients

(ii) The statistical independence of each of the estimates

(1) The accuracy of the analytical model 1n representing the onginal response surface.
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The first two cnteria can be assessed by examining the elements of the covariance
matrix for the fitted model. Because the CCD is a permutation invariant design, each coefficient
of a given type (main effect, linear interaction, etc.) has the same variance as all others of the
same type, and the values of these may be summansed as follows:

Class of Term Vartance
Mean 0.0158
Main effects 0.0152
Linear interactions 0.0156
Pure quadratic 0.1915

Table 6.2 Variance values for CCD with 79 tests
and 71 coefficients (n=7)

These results show that the variance on the pure quadratic terms 1s much greater than
those on other terms in the model, indicating that the quadratic parameters have been estimated
with much less precision than the linear and interaction terms of the model. This 1s a source of
considerable concern since the quadratic terms are of large magnitude, and hence have a
significant influence on the overall shape of the fitted surface.

This difference in variance values 1s clearly a reflection of the differing amount of data
available to evaluate the terms. The estimates of the linear interaction terms rely only upon data
being available at two levels of each vanable, as supplied by the factorial portion of the design
(64 points). The estimation of main effect parameters is also affected by the data collected at star
points, since at each of these one of the vanables is at either its high or low bound. The star
points cannot contribute to estimation of interaction effects, however, since only one variable
has a non-zero value at these points, and this accounts for the slightly lower variance on the
main effect terms than on the interaction terms. This factor also explains why the parameter
estimates for the interaction terms are the same as the values gained from the linear plus
interactions model of Section 4.6, (Table 4B.2 of Appendix 4B), based on the resolution VII
two-level factorial design. The main effects, however, are slightly modified by the additional
star-point data, although comparison of Table 6.1 with Table 4B.2 shows that these
modifications are fairly small, and that all linear plus interaction parameters occur in the same
order in each table.

In order to estimate the pure quadratic terms of the model, tests must also be carried out
at a third value of each of the variables, and this information is provided only by the star and
centre portions of the design (15 points). This relative scarcity of third level data leads to a less
precise estimate of the pure quadratic terms, compared with the linear and interaction
coefficients, and is reflected in the higher variance values for the quadratic parameters,
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Estimation of the mean effect 1s based on the full set of 79 analyser tests, and might thus
be expected to have been carried out with greater certainty, and hence lower vanance, than that
for any other parameter. Table 6.2, however, shows this not to be the case, as the variance value
is marginally higher than those for either the main effect or linear interaction terms. The reason
for this becomes clear when the magmitude of the covariance effects between different variables
are examined. The only non-zero off-diagonal elements of the variance-covanance matrix are the
following.

Class of Term Covariance
between mean and each pure quadratic term -0.0018
between each patr of pure quadratic terms -0.0308

Table 6.3 Covariance values for CCD with 79 tests
and 71 coefficients (n=7)

Because the factorial portion of the design is an orthogonal array, no covariance exists
between main effect or linear interaction terms. These terms are also orthogonal to the pure
quadratic terms, with the only dependence being between pairs of pure quadratic terms, and
between each of these and the mean. This then is the reason for the reduced precision of the
estimate of the mean parameter, since, although a large number of tests is available on which to
base the estimate, the possibility exists that the estimate is being distorted by the presence of the
poorly defined quadratic terms. Comparnson of the magnitudes of these covariance values with
the variance on quadratic terms given 1n Table 6.2 shows that the covariances are significantly
smaller than the variance values, so that the quadratic parameter estimates are still largely
independent.

The above analysis suggests that there 1s a significant mismatch between the
characteristics of the fitted model and the charactenstics of the experimental design which has
been carried out in order to estimate the coefficients of the model. A model has been constructed
which 1s considerably influenced by quadratic terms of large magnitude, but these have been
estimated with poor precision. Sixty four tests are used to evaluate the linear plus interaction
coefficients, many of which are of small magnitude, whilst only fifteen tests have been added in
order to assess the important effect of the pure quadratic terms.

The adverse effect of the relatively low precision of estimation of pure quadratic terms is
further demonstrated by the use of the probability plot technique to assess the statistical
significance of the model terms. An 1mtial plot of all 70 parameters (the mean is not included in
this analysis) for the noise function is shown in Figure 6.2.
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Figure 6.2 CCD in seven variables with 71 terms
Function : noise — No. of coefficients = 70 of 70

From this it is clear that at least the eight largest parameters deviate above the line formed by the
smaller terms. In order to assess the remaining terms, the obviously significant terms are first
removed from the plot, and the Z score then recalculated for the reduced number of parameters.
The resulting plot is shown in Figure 6.3.
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Figure 6,3 CCD in seven variables with 71 terms
Function : noise — No. of coefficients = 62 of 70

This plot shows a further eight terms to be significant, with the remaining terms all
appearing to lie on an approximate straight line. This may be confirmed by again removing the
sigmficant terms and replotting. Figure 6.4. shows that no further terms deviate above the
‘statistical noise’ line.
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Figure 6.4 CCD in seven variables with 71 terms
Function : noise — No. of coefficients = 54 of 70

The probability plot analysis indicates that, including the mean, only 17 of the imtial 71
terms are making a sigmficant contribution to the accuracy of the model in representing the
variation of the original response. The terms which contribute significantly to the model, listed
in order of signuficance, are the following.

Term Coefficient value Variance Coeff / V(Var)
MEAN 8.6711x10+! L5773x10-2 6.9769x10+2
A -2.2352 1.5152x10-2 -1 8159x10+t
C -3 8703x10-1 1 5152x10-2 -3 1443

G -3.3550x10-1 1.5152%x10-2 -2.7256

F -2.3327x10-1 1.5152x10-2 -1 8951

D -22783x10-1 1.5152x10-2 -1.8509

B -2 0402x10-1 1 5152x102 -1.6574

Az 9 8271x101 19147x10-1 14972

E -1.5832x10-1 1.5152x10-2 -1.2862

AG -1.7552x10-2 1.5625x10-2 -6.2041x10-1
AD 5.1217x10-2 1.5625x102 4 0973x10-1
FG -4 6484x10-2 1.5625x10-2 -3.7188x10-1
CG -4 6205x10-2 15625102 -3 6964x10-1
AF -4 4455%10-2 15625x10-2 -3.5564x10-1
AE -4 2211x10-2 1.5625x10-2 -3.3769x10-1
D2 1.9729x101 1.9147x10-1 3.0058x10-1
ACG 3 6145x102 1 5625%10-2 2 8916x10-1

Table 6.4 Significant noise coefficients for CCD with 79 tests and 71

coefficients (n=7), listed in order of significance.
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Comparison of this coefficient hst with Table 6.1 shows that 2 number of coefficients
appear in a different position within the list. This is due to the fact that, 1n order to assess
statistical significance, the values used in constructing the probability plot are first divided by
the square root of their variance. These values are given in the ‘Coeff / v(Var)’ column of
Table 6.4. Examination of the two lists shows that those marn effect and linear interaction terms
which have been shown to be significant appear 1n the same order with respect to each other in
both tables, due to their similar vanance values. The change in the order of the coefficients is
thus due to the fact that the pure quadratic terms have moved further down the table. Of the six
pure quadratic terms which appear in the first 17 places of Table 6.1, only two have been found
to be statistically significant. The A2 term 1s now lower in the list than all but one of the main
effects, despite the fact that 1ts magnitude is second only to the main effect of A. This is entirely
attributable to the higher variance values which apply to the quadratic terms, and further
illustrates the fact that the constructed model is heavily influenced by parameters which are of
large magnitude, but for which there 1s insufficient test data to enable them to be distinguished
from random noise. Comparison of Table 6.4 with Table 4.4 shows that those linear and
interactton parameters which are identified as being significant are the same as were identified
using the 128-term first-order model.

The accuracy of the analytical model in representing the original response surface may
be assessed by calculating the lack of fit between the model prediction and the measured value at
a number of points within the design vanable space. The points used to test the lack of fit in the
present model fall into three categories, chosen to investigate three different sources of model
inaccuracy. These are as follows. :

i) Design points. The lack of fit is calculated at those test points which were used to
construct the analytical model. This indicates the ability of the chosen parameters to account for
the vanations in the function value which occur at the points specified by the CCD. If a design
contains the same number of tests as there are coefficients in the model (a saturated design),
then the model will reproduce the original data exactly, to machine precision, with no lack of fit
at any of these ponts. In the present case there are 79 tests and 71 coefficients, so that a very
close approximation to the original points can be expected.

ii) Factorial points. These are the remaining 64 tests of the complete 27 factorial portion
which are not included in the CCD. Sizeable lack of fit at these points would indicate that a
number of important higher order interaction terms have been omitted from the model. The
above probabulity analysis, showing that only low order interactions contribute significantly,
together with the results of Section 4.6, suggests that substantial lack of fit at these points 1s
unlikely. Although useful for the purpose of demonstration, it should be noted that the FE
results at these points would not normally be available during an analysis, since their calculation
would nearly double the total number of tests required.
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1i1) Model under-specification due to omission of higher order terms can best be
investigated by calculating the lack of fit which occurs at points 1n the design space which are
distant from those used to construct the model]. Suitable candidates for such tests would appear
to be those points which lie at a radius of 0.5vh from the centre of the space and are half way
between the centre of the space and the factorial tests at radius vn. These points then lie on an
n—dimensional hypercube of side n/2, having as its centre the centre of the design vanable
space, and with its sides aligned with the sides of the 2 factorial hypercube. This hypercube
will of course contain 2" points, although for reasons of economy a fraction of these points can
be used, calculated as for the fractional factorial design. In the present case a 1/8 fraction
containing 16 tests has been used. The exact specification of these points 1s given in
Appendix 6A.

The lack of fit results for each of the above categories is summarised in Table 6.5.

No. of Maximum lack of fit Average lack of fit

Category tests dB(A) Er dB(A) Ep

i) Design points 79 0.094 1.25 0.011 0.15
ii) Factorial points 64 0.208 2.75 0.070 0.93
iin) Higherorder 16 0.473 6.25 0.207 2.73
Average over all 159 tests 0.055 0.72

Table 6.5 Summary of lack of fit calculations for CCD
with 79 tests and 71 coefficients (n=7)

As expected, the lack of fit at each of the design points is extremely small, due to the
near-saturated nature of the design. The maximum value is less than 0.1 dB(A), which is only
jJust over 1% of the function range, with the average value being only 0.15% of the range.
Calculation of lack of fit at the remaining factorial points also shows a very small average error
of less than 1% of the range, with a maximum of less than 3% (0.2 dB(A)), confirming that the
confounding of the 64 higher order terms has little effect on model accuracy.

Of most interest are the lack of fit values at the 16 additional tests, which show that the
average prediction error at points lying midway between the centre point and factorial points 1s
0.2 dB(A), or 2.73% of the variable range, with a maximum of 6.25% ; less than 0.5 dB(A). If
the test points chosen are indicative of the design variable region as a whole, then these results
suggest that the analytic response surface is providing a very close approximation to the results
of the fimte element analysis for this particular problem. Although there may well be some
locations in the design vanable region where the prediction error exceeds the 6.25%-of-range
maximum found 1n these trials, an average error of less than 3% is likely to be sufficiently
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accurate to enable the location of a design which 1s at least in a highly favourable region of the
design vanable space, even if it is not the absolute optimum. If the average over all of the above
tests 1s computed, then a mean error throughout the region of 0.055 dB(A), or less than 0.75%
is obtained. These results show that the second-order model is clearly a substantial improvement
on the linear plus-interactions models used in Chapter 4

6.5.2 Use of the CCD with a =1, ny = 1 and 17 coefficients

The probability plot analysis carried out above indicated that, including the mean value,
only 17 of the initial 71 terms contribute sigmficantly to the accuracy of the model in
representing the vanation of the onginal response throughout the design variable space. It is
reasonable to suppose that a better fit to the original data might be achieved if the insignificant
terms were removed from the model and the available data used to obtain a better estimate of
those parameters which are known to be significant. If, using the same CCD consisting of 79
test points, the model 1s respecified to contain only those terms listed in Table 6.4, then the
revised parameter estimates, again arranged in rank order and normalised for variable values
scaled to lie in the range +1, are as follows.

Term Coefficient
value

MEAN 8 6727x10+1
A -22352

Az 1.0666

C -3 8703x10-1
G -3.3550x10-1
D2 2 8113x10-1
F -23327x10-1
D -2.2783x10-1
B -2.0402x10-1
E -1.5832x101
AG -7.7552x10-2
AD 5.1217x10-2
FG -4 6484x10-2
CG -4 6205x10-2
AF -4 4455%10-2
AE 4 2211x10-2
ACG 36145x10-2

Table 6.6 Noise coefficients for CCD with 79 tests
and 17 coefficients (n=7)
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Estimation of the man effect and linear interaction parameters is unaffected by this
reduction in model specification, as these terms are orthogonal to all others within the model.
The removal of five of the seven pure quadratic terms, however, has resulted in modified
estimates of both the mean and the two remaining pure quadratic terms. Although the
coefficients of the mean and A2 terms have been raised slightly, the most noticeable change is in
the value of the D? parameter, which has increased in magnitude by over 40% and is now larger
than the linear ‘main’ effect of that variable. The variance values for each type of coefficient are
now as follows.

Class of Term Variance
Mean 0.0155
Main effects 0.0152
Linear interactions 0.0156
Pure quadratic 0.1224

Table 6.7 Variance values for CCD with 79 tests
and 17 coefficients (n=7)

The variance on the remaining pure quadratic terms has been substantially reduced
(36%) by the removal of five of these terms, since far fewer parameters are now being estimated
with the same amount of data. The potential for distortion of the mean value estimate by pure
quadratic terms is also now diminished, leading to a slightly smaller variance on this parameter
(reduced by 2%). Only three covariance effects now occur, as follows.

Class of Term Covanance
between A2 and mean -0.0057
between D2 and mean -0.0057
between A2 and D2 -0.0998

Table 6.8 Covariance values for CCD with 79 tests
and 17 coefficients (n=7)

The covariance between the two quadratic terms is now more than three times
its previous value, but is still small with respect to the variance of the pure quadratic
terms. Although the covariance between each quadratic term and the mean has increased by a
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factor of approximately 3.2, this is just outweighed by the reduction in the number of quadratic
terms by a factor of 3.5, leading to the slight reduction 1n variance on the mean value.

Recalling the three categories of test point used to assess the accuracy of the model
throughout the design region, as described 1n Section 6.5.2, the lack of fit results for the
reduced model may be summansed as follows.

No. of Maximum lack of fit Average lack of fit

Category tests dB(A) Ex dB(A) Ep

i) Designpomnts 79 0.354 4.64 0.059 0.77
1) Factorial ponts 64 0.237 3.1 0.059 0.78
u1) Higherorder 16 0.490 6.43 0.199 2.62
Average over all 159 tests 0.073 0.96

Table 6.9 Summary of lack of fit calculations for CCD
with 79 tests and 17 coefficients (n=7)

The minimal lack of fit at design points when using the 71 parameter model of
Section 6.5.1 is largely due to the near-saturated nature of the design, and Table 6.9 shows that
the reduction in model size to just 17 terms results in reduced accuracy at these points. The
average lack of fit at the design points, however, is still less than 0.06 dB(A), or approximately
0.78% of the variable range, with a maximum error of about 0.35 dB(A).

At the factorial points and at the additional 16 test points the average lack of fit has
improved slightly compared with the 71 coefficient model. This indicates that, although the
accuracy of fit at design points has diminished, the predictive ability of the model throughout the
complete design region has been moderately enhanced. Maximum errors in each of these
categories are marginally increased. Calculation of the average lack of fit over all 159 tests
shows only a small increase from 0.055 dB(A) to 0.073 dB(A), and this is still Iess than 1% of
the variable range.

The above results show that the predictive ability of the reduced size model is
approximately equal to that of the original model, despite the fact that the reduced model
contains less than a quarter of the terms used by the original. This confirms the findings of the
probabulity plot analysis that many of the terms contribute little to the overall accuracy of the
model. If this 1s generally true for noise analysis applications of a similar nature, then this
provides further evidence that the CCD is less than ideally suited to the charactenstics of the
response surface being investigated. The low value of the ratio of the number of significant
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terms to the number of test points in the design indicates that the CCD involves substantal
over-testing for the model which is constructed. At the same time, the selection of these design
points is inadequate to allow a precise enough estimation of those quadratic terms which are
significant. A possible solution to this problem would be to use a different experimental design
from which to construct the model; one which involved a smaller total number of test points, but
in which the design points were selected in such a way that the estimates of each of the
parameters of interest were attained with roughly equal precision. The use of designs which
address these requirements 1s the subject of Chapter 8.

6.5.3 Use of the CCD with o = 1, ny = 1 and 36 coefficients

As was the case with the linear models of Chapter 4, the main problem which occurs in
using a smaller experimental design to fit a reduced model containing only significant terms is
that it 1s not in general possible to know in advance which of the terms are to be included. It is
only by carrying out a probabulity plot analysis, or similar procedure, that this information can
be gained. Such an analysis can only be performed, however, if a larger number of tests are
first carried out to enable all parameters to be estimated.

To avoid this problem, a model may be used which includes all terms of each of the
types thought likely to be sigmificant. When investigating applications for which the results of
Table 6.6 are representative, for example, a suitable model would be one which contains all
main effect, two-way interaction and quadratic terms. The strict quadratic model of
equation (5.1) 1s such a model. This procedure introduces two possible sources of error into the
model specification. The first is due to the inclusion of terms which are in fact of no
sigmficance. As long as parameter estimates remain largely orthogonal, however, and the
number of insignificant terms is fairly small, this is not expected to lead to substantial error. The
second source of error is due to the exclusion from the model of significant parameters, such as,
in the present example, the three-way interaction ACG of Table 6.6. If the excluded parameters
are small in number and do not dominate the analytical model, then the attendant loss of
accuracy would often be considered a small price to pay for the large reduction in the number of
design points which need to be tested.

In order to test the suitability of the strict quadratic model in representing the original
noise response, this model was constructed using the same CCD consisting of 79 test points, to
enable comparison with the results of Sections 6.5.1 and 6.5.2, above. The model contains a
total of 36 coefficients, and the parameter estimates obtained from this analysis, arranged in
rank order and normalised for vanable values scaled to lie in the range +1, are as follows.
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Term Coefficient value Term  Coefficient value
1. MEAN 8 6711x10+1 19. AF 4.4455x10-2
2. A -2.2352 20. AE -42211x10-2
3. A2 98271x101 21. EF -2.3002x10-2
4. C -3 8703x10-1 22, B 2 2509x10-2
5. G -33550x10-1 23. AC 2 0781x10-2
6. F -23327x10-1 24. DG -1.5427x10-2
7. D -2.2783x10-1 25. BF -13916x10-2
8. B -2.0402x10-1 26. BE 1.1641x10-2
9, D2 1.9729x10-1 27. CD 10701x10-2
10. E -1.5832x10-1 28. EG -99781x10-3
11. G2 1.1884x10-1 29, AB 6 5416x10-3
12. F2 -7.8670x10-2 30. BD 6 4857x103
13. AG =7.7552x10-2 31. BC -5.1977x10-3
14, C2 6.5926x10-2 32. DF -39314x10-3
15. E2 58004x10-2 33 CF 3.3634x103
16. AD 5.1217x102 34 DE 2.0508x10-3
17. FG -4 6484x10-2 35. BG 1.4971x10-3
18 CG -4 6205%x10-2 36. CE 2 8026x104

Table 6.10 Noise coefficients for CCD with 79 tests
and 36 coefficients (n=7)

The only parameters which have been removed from the original 71 term model of
Section 6.5.1 are the linear interactions of order three and higher, the estimates of which are
orthogonal to all others in the model. In consequence, the parameter esimates for all remaining
terms are 1dentical to those obtained using the full model. All terms of Table 6.10 appear in the
same order with respect to each other as in Table 6.1, with the only difference being the removal
of the higher order interaction terms. The variance and covanance values for each type of
coefficient are also identical to those for the complete model, given in Tables 6.2 and 6.3. A
summary of the lack of fit results for the stnict quadratic model, calculated at each of the three
categories of test point, as descnibed in Section 6.5.2, above, is given in Table 6.11.

No. of Maximum lack of fit Average lack of fit

Category tests dB(A) Eg dB(A) Eg

1) Design points 79 0.306 4.02 0.052 0.68
ii) Factonal points 64 0.202 2.65 0.065 0.86
ui) Higher order 16 0.476 6.24 0.199 2.61
Average over all 159 tests 0.072 0.94

Table 6.11 Summary of lack of fit calculations for CCD
with 79 tests and 36 coefficients (n=7)
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As may be expected, the above results show that the effect of including 36 terms in the
model rather than 17 has been to improve the fit at the design points. The average lack of fit at
the factorial points, however, has worsened slightly (but by less than 0.01 dB(A)), perhaps due
to the exclusion from the model of the three-way interaction factor ACG.

More important are the results of the lack of fit calculations carned out at the additional
sixteen test points. These show that the error in function estimation is virtually identical to that
occurring when the 17 coefficient model is used. At these test points the omission of the three-
way interaction term 18 of far less significance than the effect of the vanious pure quadratic
parameters. The probability plot analysis carned out earlier indicated that there s insufficient test
information to be able to distinguish from random data the five quadratic terms not appeanng in
the 17 coefficient model. The accuracy at these additional points suggests, however, that the
actual error in their estimation 1s well within the probable range indicated by the variance values.
The uncertainty over the validity of this observation is a further reflection of the inadequacy of
the 79 test CCD for fitting a second-order model, due to the relatively smail number of tests in
which each variable appears at a third level.

6.5.4 Use of the CCD with a¢ = 1 and replicate centre points

The results of Sections 6.5.1 - 6.53 have shown that one of the major factors which
impede the successful application of the CCD to the investigation of deterministic systems is the
relatively low precision of estimation which is obtained for the pure quadratic coefficients of the
fitted model. When the CCD is used in general experimental practice for the investgation of
non-deterministic systems, this problem is alleviated to some extent by the inclusion of replicate
tests at the centre of the design variable space, in order to provide additional data at the mean
level of the variables. As described in Section 6.4, one simple way of increasing the amount of
third level information over that available to the designs of 6.5.1 - 6.5.3 would be to include
multiple tests at the centre of the design variable space. This does not require further tests to be
carried out, since with a deterministic system the function values calculated at this point will
always be identical, and the only action which need be taken is for the appropriate result set to
be replicated in the anal yser output file.

As discussed in Section 6.4, the result of the inclusion of these extra data sets 1s Iitkely
to be an artificial increase in the confidence levels with which pure quadratic components are
estimated, without any real gain in the accuracy of the model. This is because the addition of
replicate tests effectively involves misleading the surface-fit algorithm by suggesting that quite
independent tests at this point 1n the design space have led to exactly identical answers. The
variance of all parameters 1n the model could quite easily be decreased, for example, by
replicating the entire design. Any apparent gain in accuracy of parameter estimates would be
entirely 1llusory, however, as it would be derived from identical test data, and could not be
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expected to result in increased accuracy of prediction at other locations within the design
vanable space. ,

In order to assess the effect of using a standard CCD with simple centre point replicates
when 1nvestigating a deterministic system, the above examples of Sections 6.5.1 - 6.5.3 were
repeated using designs containing between 5 and 20 centre points. More detailed results of these
tests are presented in Appendix 6B. In each case, the net result of the addition of replicate points
is to sigmficantly reduce the variance value for the mean parameter, whilst not substantially
improving those for other parameters of the model, or modifying the parameter estimates
themselves. Consequently, no significant improvement in the predictive ability of the model
throughout the design space is achieved. As an example of the negligible improvement in
predictive ability which is obtained, Table 6.12 shows a summary of the lack of fit data for the
36 parameter strict quadratic model introduced in Sectton 6.5.3. The table lists the prediction
error for each of the three categories of test point descnibed in Section 6.5.1, using designs
containing a differing number of centre pornts ng

Maximum lack of fit — Eg Average lack of fit — Ep
Ny Design  Factorial  Higher Design  Factorial Higher

1 40151 2.6508 6.2354 0.67564 0.85803 2.6048
5 4.0169 2.6527 6.2851 0.65136 0.83811 2.6025
10 40182 2.6540 63196 0.61978 0.85816 2.6009
15 40190 2.6547 63404 0.58955 0.85819 2.6000
20 40195 2.6552 63544 0.56144 0.85821 2.5933

Table 6.12 Variation of lack of fit with number of centre points n,
for CCD with 78 + n, tests and 36 coefficients (n=7)

These results, together with those of Appendix 6B, confirm that simple replication of
centre points yields no advantage within the present deterministic environment.

6.6 Observations on the use of the standard CCD for engine noise simulation

» Although the CCD is widely used in general experimental practice, where the value of the
parameters o and n, can be chosen to achieve certain desirable design properties, its
usefulness in investigating the results of an engine noise simulation exercise is adversely
affected by the constraints which are placed upon these two parameters by the nature of
the problem. Firstly, the value of the axial parameter is limited to @ < 1 by the strictly
cuboidal design variable space, with the result that it is not possible to specify designs
which are erther orthogonal or rotatable. Secondly, the determunistic nature of the engine
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noise calculation procedure precludes the use of replicate centre point tests, which would
provide additional information concerning the charactenstics of the response functions at
the centre of the design vanable space.

Numencal tests have shown that a seven vanable CCD with a resolution VII factorial
portion, an axial parameter of a = 1, and a single centre point can be used to construct a
second order model which gives a close approximation to the original noise response
throughout the region of interest. The predictive ability of the model can be further
enhanced by removing those coefficients which, using a probability plot technique, have
been found to be statstically insignificant. Further results suggest that when the identity
of the significant terms is not known, little lack of performance results from the
substitution of a strict quadratic model, in which no linear interaction terms are included
of order higher than two.

The main concern in the use of this design 1s that the small number of tests which involve
a third level of each of the design variables leads to a low level of precision in the
estimation of the pure quadratic terms of the model. This is of particular importance, since
many of the quadratic coefficients have a dominant effect on the performance of the
model, and yet, due to the relative imprecision of their estimated values, 1t is not possible
to say with certainty whether their inclusion 1s justified by the available data.

When investigating non-determinustic systems, this problem is alleviated to some extent
by the use of replicate centre point tests, in order to improve the quality of the esimate of
the actual response at this point, and to counter the bias 1n the design towards testing at
the outer limits of the design variable space. In a determimistic environment, however, no
gain in information results from such a strategy, and numerical tests have confirmed that
negligible gains in predictive performance of the fitted model are achieved by including
even a fairly large number of replicate tests.

The results of the numencal tests have thus verified that the main issue which needs to be
addressed in using the CCD to investigate the engine noise simulation problem, and
deterministic systems in general, is the improvement of the precision with which each of
the quadratic terms are estimated, with the aim of enhancing the overall performance of
the fitted model. It appears hikely that some benefit may be obtained by inclusion of
modifications to the CCD which allow a greater quantity of information to be gathered in
the vicinity of the design space centre. The aim of such modifications is to achieve a high
level of prediction accuracy throughout the region of interest, and to aid 1n distinguishing
between the effects of the various quadratic terms in the model. Possible strategies which
address these shortcomings of the standard CCD are the subject of Chapter 7.
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Second order model constructed from CCD
Specification of test points used to estimate lack of fit

due to higher order terms
Variable
B C D E F G
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.0075
.0105
.0105
.0105
.0075
0075
0075
0075
0105
0105
.0105
.0105
0075
0075
0075
0105

0230 .0230 .0064 .01375 .0230 .0075
0290 .0230 .0064 .01375 .0230 .0105
0230 .0200 .0064 .02125 .0230 .0075
0230 .0230 .0115 .01375 .0290 .0075
.0290 .0290 .0064 .01375 .0290 .0075
.0290 .0230 .0115 .02125 .0230 .0075
.0230 .0290 .0115 .01375 .0230 .0105
0230 .0230 .0064 .02125 .0290 .0105
0290 .0290 .0115 .01375 .0230 .0075
0290 .0230 .0064 .02125 .0290 .0075
0230 .0290 .0064 .01375 .0290 .0105
0230 .0230 .0115 .02125 .0230 .0105
0200 .0290 .0064 .02125 .0230 .0105
0290 .0230 .0115 .01375 .0290 .0105
0230 .0290 .0115 .02125 .0290 .0075
0290 .0290 .0115 .02125 .0290 .0105




Appendix 6B

Use of the standard CCD with a = 1 and replicate centre points

CCD with a = 1 and 71 coefficients
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The designs used are based on that of Sections 6 5 1, with a number of centre point replications added.
The model to be constructed is identical to the 71 coefficient model of Section 6 5.1,

Estimates of the main effect and interaction parameters are unaffected by the inclusion of additional
centre point data, since at the centre point each variable is at its mean value (normalised as zero), and no

information 1s provided on the linear effects of these vanables,

The variation of mean and pure quadratic coefficients with ny 18 given in Table 6B.1. The terms are

listed, from left to nght, in order of magmtude. The vanance and covariance values are given i Table 6B 2.

n, MEAN  A? D2 G2 F2 Cz E2 B

1 8711 09827 01973 01188 00787 00659 00580 00225
5 86716 09820 0195 01181 00794 00652 00573  0.0218
10 86720 09815  0.1960 01176 00799 00647 0057 00212
15 86722 09811 01957 01173 00802 00643 00564 00209
20 86724 09809 01955 01171  -00805 00641 00562 00207

Table 6B.1 Variation of noise coefficients with number of centre points n,

for CCD with 78 + n, tests and 71 coefficients (n=7)

Variances Covanances
n, MEAN Quadratic MEAN / Quad Quad/ Quad
1 00158 0.1915 -000176 -00308
5 00134 0.1912 -000104 -00310
10 0.0118 01911 -0 00054 -0.0311
15 0.0109 0.1910 -000024 00312
20 0.0102 0 1909 -0 00003 -0.0313

Table 6B.2 Variation of variance and covariance values with number of centre points ny for
CCD with 78 + n, tests and 71 coefficients (n=7)

The variance value for the mean term has been greatly reduced, whilst the magmtude of the coefficient
remains virtually unchanged. This small effect on the mean coefficient is as may be expected, since the additional
results used to fit the model are all calculated at the centre of the design space. When using linear or quadratic
models the model prediction at the centre point is by definition equal to the value of the mean coefficient of the

model. Since the tests of 6.52 have shown that the lack of fit between the model and the actual result at this

point is small, this means that the value of the mean term in the model is already almost identical to the actual
value at the design centre, and addition of further results can have little effect.

The reduction in vanance value reflects the illusory gain in precision which results from using an
increased number of test points to estimate the parameter value.
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The vanance values for the pure quadratic terms remain virtually unchanged by the increase in centre
point information, whilst the covariance effects between them 1ncrease. The reason for this is that the additional
test points provide function information at a point at which all of the vanables are at their mean level, so that the
individual effect of each term cannot be separately identfied. Indeed, the proportion of third level tests which
represent the effect of all of the quadratic components 1s now larger, and leads to greater interdependency of the
parameter esttmates, and hence lugher covanance values,

The small change in parameter estimates for the quadratic terms is also due to the small lack of fit
occurring 1 the onginal model. The additional tests have the effect of reducing the lack of fit at the centre point,
equivalent to weighting a single test result at this point, and the scope for such a reduction is extremely limited.

The maximum and average percentage lack of fit for each value of n, at each category of test pont, as
defined in Section 6 5 1, are shown in Table 6B.3.

Maximum lack of fit - By Average lack of f1t - Eg
ny Design Factorial Higher Design Factonal Higher
1 1.2483 2.7467 6.2519 015039 0.93156 2.7334
5 13058  2.7486 6.3022 015145 093143 27312
10 1.3457 2.7499 6.3371 0 14830 0.93134 2.7297
15 13698 27507 6.3582 0.14346 093129  2.7287
20 13859 2.7512 63723 013812 093125 2.7281

Table 6B.3 Variation of lack of fit with number of centre points n,
for CCD with 78 + ng tests and 71 coefficients (n=7)

Although the number of tests points in these designs has increased by between 5% and 24%, virtually
no gain n accuracy has been obtained.

The maximum reduction of 0 005% in average lack of {it at the additional 16 test points from 2.7334 to
27281 does not compare favourably with the reduction to 2.6160 which was gained in Section 6.52 by using
the original design and just 17 coefficients.

The shghtly larger reduction at the design points 1s of no practical significance as the fit at these points
is already close to zero.

The addition of replicate centre points has thus resulted in a significant reduction in the variance value
for the mean parameter, with no substantial improvement in those for other parameters.

There 18 no significant modification of parameter values, and no significant improvement in the
predictive ability of the model throughout the design space has been achieved.

CCD with a = 1 and 17 coefficients

The same selection of designs i3 used as in the above analysis,

The reduced model of Section 6 5.2 is employed, which contains the 17 terms listed in Table 6.6.

The estimates of the main effect and interaction parameters are again unaffected by the inclusion of
additional centre point data.

Cnly two of the seven pure quadratic terms appear in this reduced model, so that only the mean value
and the two quadratic terms A? and D? may be affected by the additional data.

The vanation of these coefficients with ny is given in Table 6B .4, and their variance and covariance
values are given 1n Table 6B.5.
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ny MEAN Az Dz
1 86.727 1.0666 0.2811
5 86.728 10661 0.2807
10 86.729 1 0658 02804
15 86729 1 0656 02802
20 86,729 1.0654 0.2800

Table 6B.4 Variation of noise coefficients with number of centre points n,
for CCD with 78 + n, tests and 17 coefficients (n=7)

Again, all parameter magnitudes are virmally unchanged, as are the variance values of the pure quadratic
terms. The variance of the mean value is sigmficantly reduced, whilst the covarntance effects between the two pure
quadratic terms gradually increases with n,,

Variances Covariances
ng MEAN A? and D2 MEAN/ A2 or D2 AT/Ie
1 00155 0.1224 -000571 00998
5 00134 0.1200 000342 -0.1022
10 00118 0.1183 -000179 -01039
15 00109 0.1172 -000079 -0 1050
20 00102 0.1165 -000011 -01057

Table 6B.5 Variation of variance and covariance values with nember of centre points n, for
CCD with 78 + n, tests and 17 coefficients (n=7)

The maximum and average percentage lack of {it are as follows.

Maximum lack of fit - Bz Average lack of fit - Eg
ng Design Factenal Higher Design Factorial Higher
1 46395  3.1124 64331 077241  0.77967 26160
46399 3.1124 64423 0.73677  0.77973 26157
10 4 6403 3.1124 6.4488 069597 0.77976 26154
15 4 6404 3.1124 6.4528 065918 0.77979 26153
20 46406 31124 64555 062595 077980  2.6152

Table 6B.6 Variation of lack of fit with number of centre points n,
for CCD with 78 + n, tests and 17 coefficients (n=7)

There 1s virtually no change in the lack of fit calenlattions The reduction in lack of fit at the design
points is made possible by the greater imtial etror resulting from the small number of coefficients in the model
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CCD with @ = 1 and 36 coefficients

The model used is the 36 parameter strict quadratic, which contains all seven pure quadratic terms.

The variation of these coefficients with ny is given in Table 6B.7, and their variance and covariance
values are given in Table 6B 8. The values of all parameter esumates, vanance and covanance values are identical
to those of the 71 coefficient model.

The maximum and average percentage lack of fit are shown 1n Table 6B.9.

np MEAN Az D2 Gt F2 c E2 B2

1 86711 0.9827 0.1973 0.1188 00787 0.0659 0.0580 0.0225
5 86716 0.9820 01965 01181 -00794 00652 00573 0.0218
10 86720 09815 0 1960 0.1176 -00799 00647 00567 00212
15 86722 09811 0.1957 01173 -0 0802 00643 0.0564 00209
20 86724 0 9809 01955 01171 -0 0805 00641 0.0562 00207

Table 6B.7 Variation of noise coefficients with number of centre points n,
for CCD with 78 + n, tests and 36 coefficients (n=7)

Vanances Covariances
n, MEAN Quadratic MEAN / Quad Quad/ Quad
1 00158 01915 -000176 00308
5 00134 0.1912 -0.00104 -0 0310
10 00118 0.1911 -0 00054 -0 0311
15 00109 01910 -000024 -0.0312
20 00102 0.1909 -0 00003 -0.0313

Table 6B.8 Variation of variance and covariance values with number of centre points n, for
CCD with 78 + n, tests and 36 coefficients (n=7)

Maximum lack of fit - Fy Average lack of fit - Eg
0y Design Factorial Higher Design Factorial Higher
1 40151 2.6508 62354 067564  0.85803 2.6048
5 40169  2.6527 62851 065136 085811  2.6025
10 4.0182 26540 6.3196 061978 085816  2.6009
15 4.0190 26547 6.3404 0.58955 085819  2.6000
20 40195  2.6552 63544 0.56144  0.85821  2.5933

Table 6B.9 Variation of lack of fit with number of centre points n,
for CCD with 78 + n, tests and 36 coefficients (n=7)

The average lack of fit at both the factorial points and the additional test points are essentially
unchanged for each value of n,. The reduction 1n lack of fit at the design points 1s again made possible by the
initial error caused by the relatively high ratio of tests to coefficients, compared with the full 71 term model.
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7. Centre point replication

The results of the previous chapter have shown that one of the major disadvantages of
the standard CCD is the poor precision with which the pure quadratic coefficients of a response
surface are estimated. This is a particular problem when investigating deterministic systems,
since it 1s not possible to gain additional information concerning the effect of pure quadratic
terms by performing replicate tests at the centre of the design space.

The purpose of the present chapter is to describe a number of strategies which have
been developed within the current work irn order to simulate centre point replication
when investigating determinustic systems. Investigation of proposed designs falls into two
categories. Theoretical considerations, based on the proposed design matrix, establish the effect
on the orthogonality and rotatability characteristics of the standard CCD. These are followed by
numerical trials to assess improvements in parameter estimation and quality of fit of the
predictive model.

In Section 7.1 the general requirements of a strategy for simulated centre-point
replication are first descnibed. In Section 7.2 a modification to the standard CCD is proposed
which incorporates a second axial portion of tests close to the centre of the design variable
space, and the desi gn matrix, moment matrix and scaling factor for this design are derived. The
orthogonality and rotatability criteria for the design are developed 1n Sections 7.2.1—7.2.3. It1s
shown that, although the criteria differ slightly from those of the standard CCD, the
orthogonality and rotatability characteristics of this design are little altered from those of the
standard CCD. In Section 7.3 a variant of this design is proposed, in which only one pair of the
additional axial points is included. It is shown that this results in a need for multiple scale
factors, which lead to multiple critena for rotatability and orthogonality which cannot be fulfilled
simultaneously. The small difference 1n scaling factors is shown to be of no practical
importance, however, so that the standard CCD scaling can be employed with little error. In
Section 7.4 the results of this analysis are shown to be valid for designs which involve more
than one pair of additional axial points. The application of these designs, and possible
extensions to the modifications, are discussed in Section 7.5.

The results of numerical tests using the modified designs are presented in
Sections 7.6.1 to 7.6.3, and these are introduced in more detail in Section 7.6. Section 7.7
summarises the results of these trials, and assesses the use of simulated centre point
replications.
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7.1 Requirements of a strategy for simulation of centre point replication

The aim of a centre point replication simulation strategy is to provide a means of
collecting additional response function information at points close to the centre of the region of
interest. The purpose of this is both to improve the distnbution of test points throughout the
design vanable space, and to enhance the ability of the design to estimate the effect of pure
quadratic terms in a fitted model. In order to be of use, any strategy which attempts to achieve
such an aim must fulfil the following requirements:

1) The data collected must be calculated at test points which are sufficiently separate from each
other that the values returned do genunely give additional information on the process under
investigation, Quite what the lower bound on such separation should be is unclear, with the
limting case being that in which zero separation between the multiple points occurs, as
employed in the investigation of non-deterministic system.

1) A contrasting constraint on this separation is that the multiple points must each still lie in the
required section of the design region. Centre point ‘approximations’ which lie close to the
penimeter of the design region are clearly unacceptable, but again, the specification of an
upper bound on the allowable separation 1s far from straightforward.

ii) A further consideration when selecting a suitable strategy for replication simulation is that
the points chosen to be added to the original CCD should ideally not compromise other
beneficial characteristics of the design, such as rotatability or orthogonality.

7.2 Addition of the g-star portion

One possible strategy which appears to have the potential to meet the requirements
described above is the addition of a further ‘star’ portion to the existing Central Composite
Design, but with parameter € replacing the value of a defined in Section 6.1. Within this general
class of design, the value of & can be selected to provide the required separation between the test
points, as well as maintaining other desirable design properties. A typical design matrix for such
an augmented CCD, here shown for three variables, would be of the form




170

‘8 & -8
g -8 +8
2 +8 -8
8 +g +g F
g8 & -8
g -8 +8
€ +8 -8
8 +8 +8
g 0 0]
+ag 0 O
D= 0 -ag O 7.1)
0 +ag O ’ 20 (
0 O -ag
0 0 +ag
g 0 O 1
+eg 0 0
0 -egg O
0 +eg O 2n
0 O -
0 O +¢g
| 0 0 0 rng

where the factorial and axial portions are the same as for the standard CCD, and the e-star
portion is of the same form and consists of the same number of tests as the axial portion, but
with parameter . Since the object of adding this portion is to avoid replicate centre ponts, n,
should clearly only take a value of O or 1.

In a similar analysis to that for the standard CCD, the value of the scaling factor g may
be calculated according to the scaling convention of Section 2.12, so that

N
Xi=ﬁl-z Xu,=1—31-[(F+2n+2n+no) wl=w

£

and hence

N =112
k=l Y (Xu-XP N] =a.[ﬁ(1=+ 2a2+2s2)]'”2
=1

The gives the value of the scaled vanable as

=X|"l‘1

X g

3,
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where

L
g= [N I (F+2a?+ 282)]2 (7.2)

Note that the only difference between this scaling and that used for the standard CCD is in the
expression for the scaling factor g. The regressor matnx for this design is as follows

1 x x3 X3 X X3 X3 X1Xp X1X3 X2X3
1 g g g o2 g2 g g g g |
1 g -8 +8 & g g ¢ g &
1 g +¢ g & g g 88 g2 g
- 1 g +g + g g g -2 g ¢
1 +¢ ¢ -5 g g g -g2 g g
1 +g -g +8 g2 g2 g g2 g g2
1 +g +g -g g2 g g g -g2 -g
1 +g +g +g g2 g2 g g g g
l-ag 0 Oa22 0 0 0 O O
l4ag 0 Oa%g2 0 0 O O O
X= 1 -ag 0 Oa2g2 0 0 0 O
1 +ag 0 Oa?g2 0 0 0 O
1 0ag 0O Oa?g2 0 O O
1 O+ag 0 Ocu?g2 0 O O
1 €.g 0 02 0 0 0 0 O
1 +eg 0 O0eg2 0 0 0 0 O
1 0 e O O0+€g 0 0 0 0
1 O0+eg 0 02 0 0 0 O
1 0 0 -.g 0 02 0 O O
1 0 O+4g O O0¢€g2 0 0 O
| 1 0 0 0 0 0 O 0 O O_|

Calculation of the elements of the moment matrnix N-1X'X shows that, as for the
standard CCD, this design meets the following requirements, for all i < j < p < q, as outlined in
Section 5.2.
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[ij] = [tj)] = [iij] = O
liijp] = [yjsp] = ijppl = 0
fif] =[iij) =0
lijpql = [yp] =0
and that for any vanable i,
[ii] = N-1[Fg2+ 2a2g2 + 2e2g2] = g2 N-1[F+ 202 + 2¢2]

The adoption of the scaling convention of equation (7.2), in which
g =[N/ (F + 2a2+ 2e2)]1/2, results 1n a value of [ii] = 1, and also yields

[ni] = N-1[Fg4 + 2atgt + 2e4g4)
and [u)] =N-1Fg4

7.2.1 Orthogonality

The requirement for orthogonality, as described in Section 5.2, is that fiijj] = 1, so that,
from the above
-I%J-F[NI(F+2a2+2£2)]2= 1

FN = (F + 202 + 2¢3) 2 (7.3)

Since both F and N are necessanly positive, and N 2 F, this equation can be rearranged
fora and € as

1
aﬂz[w] 0

Thus, with F and N set, it is possible to choose the value of either « or € and solve for
the other. With a value of & = 0, this equation is clearly identical to equation (6.7) for the
standard CCD, and returns a value for the axial parameter of a = 2.5641 for the seven variable

case with F =64 and N = F + 2n + 2n + 1 = 93. Specification of values of € within the range to
£ =0.1 give the following values for a.

£ o
0.000 2.5641
0.025 2.5640
0.050 2.5636
0.075 2.5630

0.100 2.5622
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Selection of even a fairly large € parameter thus has a virtually neghgible effect on the
choice of axial parameter a. It is therefore reasonable to employ the same value of a as would
be used 1n a standard CCD, which will result in little loss of orthogonality, This analysis
indicates that the design may be treated as though 1t were a standard CCD with 2n + n, centre
points, but with replicate centre points replaced with the e-star points. Substitution of
appropriate values into equation (7.4) show that this is generally true for all practical designs,
with erther ng =1 orny = 0.

In cases where the design region is strictly cuboidal, such as the noise radiation problem
currently under investigation, the value of « is already fixed at a = 1.0, as discussed 1n
Section 6.4. There 1s then only one possible value of € which will give an orthogonal design,
and, for the seven variable example, (7.4) gives values of ¢ =2.361 for ng= 1, and £ =2.317
for ny = 0. These points are clearly unacceptable as centre point approxXimations, and it is
generally true that orthogonal designs of this type are unattainable when a = 1.0, as indeed is
the case for the standard CCD,

7.2.2 Rotatability

The rotatability requirement, as discussed in Sectron 5.3, is that [iiii] = 3[iijj], where for
the CCD plus e-star design

[ifii] = N [Fg# + 2adg4 + 2¢%g7]
and [ijj] = N-1 Fg4

so that for rotatability
gt 4,54y _3 8
N(F+2;::z +23)-3NF

giving
at+ef=F (7.5

For any € which is small enough to give tests which approximate the centre point
replications, the value of £ will clearly be small in relation to the magnitude of F, so that for all
designs of this type the value of a from equation (7.5) is 1n practice identical to that of (6.9) for
the standard CCD. This value is independent of both the number of centre points ny and the total
number of test points. For the seven variable example with F = 64, the required value of a, if
g = 0.05, is 2.8284, only differing at the ninth significant figure from that required for the
standard CCD. There is therefore little error in treating this design as a standard CCD with
replicate centre points, and choosing the valuve of « according to (6.9).
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As is the case for the standard CCD, the imposition of a value of & = 1.0 prevents any
design from being rotatable. From (7.5), the requirement would be that € = (F - 1)1/4, which
requires ¢ = 0 for F=1, and £ = 1 for F = 2, and so will not yield sufficiently small values of &
for any practical F

7.2.3 Choice of parameters for both orthogonality and rotatability

If both of these properties are desired, then values of a and € must be chosen such that
they simultaneously satisfy both (7.4) and (7.5). Unlike the standard CCD, the number of
centre points cannot be freely selected to aid the attainment of these requirements, and must be
set to either O or 1. The two critena which must be met are then

FN = (F + 202 +2¢2) 2
and at+ef=F

with the restriction that the only solution of these equations which is of practical use is one for
which both « and ¢ are both real and positive. Since all of the terms of the above equations must
then be positive, it is possible to form

(FN)V2 = (F + 202 + 2¢9)
without loss of sign information. Also, since £ = (F - a4)14> 0,

(FN) V2 = F 4 202 + 2(F - o) 12

12 _pm.942]2
(F-a4)=[(FN) F - 202]
2 1
so that
8at + a(4F - 4FN) 12) + (F2 + FN - 2F(FN) 12 . 4F) =0
giving

o? = [-(41: - 4(FN) 12) « 4/(4F - 4(FN) 12)* - 32(F2 + FN - 2F(FN) 2. 4F) |/ 16 (7.6)

The positive value of a2 which this analysis produces, together with the value of €2
which is necessary to satisfy both of the initial equations, 1s tabulated 1n Appendix 7A for all
designs in 3 < n < 12 which have factorial portions of resolution V or greater. This clearly
shows that 1n general it 1s not possible to produce designs of this type which are both
orthogonal and rotatable, since for a positive value of a2 the value of €2 which results is almost
always negative. Of the designs considered in Appendix 7A, the only one which is feasible is
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the resolution V design 1n 5 variables, which yields & = 2.00 and € = 0.411. Even this design is
not acceptable, however, as the value of ¢ obtained places the resulting points at a considerable
distance from the design centre. For any problem which has a strictly cuboidal design region,
the value of a = 2.00 is also unacceptable.

Sections 7.2.1 and 7.2.2 have shown that the orthogonality and rotatability criteria of
the standard CCD can be used with little resuling error. If the standard CCD criterion 1s used 1n
the present case, however, then Section 6.3.4 shows that, for the seven vanable example, a
value of ny = 22 1s required. Since the maximum number of centre point and pseudoreplicate
tests available when using an additional € star 18 ng = 2n + 1, giving 15 points for n = 7, the
rotatability and orthogonality cnitena cannot simultaneously be met with the present design. An
extension to the design which allows for additional pseudoreplicate tests is discussed in
Section 7.5.

7.2.4 Observations on the use of the CCD with additional e-star portion

In summary, the analyses of the previous sections have shown that the addition of an
axial portion of 2n tests with parameter € << « causes no significant change in rotatability and
orthogonality characteristics compared with the standard CCD. This design shares with the
standard CCD the feature that an imposed value of a = 1 leads to designs which are neither
orthogonal nor rotatable.

7.3 The CCD with one & pair

If the add:tional number of test points introduced by the incorporation into the CCD of a
complete € star is considered excessive, then a possible modification to this design is to include
only a fraction of these points. In general, the augmentation might consist of k (< n) pairs of
points with parameter e lying on each of k variable axes. Unless specific knowledge of the
application suggests particular choices of variable, this selection 1s entirely arbitrary, although
the choice would not normally be expected to be critical, since the points are closely grouped
around the centre of the design variable space in comparison with the dimension of the complete
design region. In the following sections a design incorporating just one £ pair is analysed in
detail. In Section 7.4 it is shown that these results, together with the results of the standard
CCD and the CCD with full ¢ star, are sufficient to allow conclusions to be drawn regarding all
designs with 1 < k < n ¢ pairs.
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For the case in which the € pair for just one variable is included, the design matnx for a
three variable example is as follows, with the value of n being either O or 1, as above.

8 -8 -H])
-2 -g +h
-2 +g -h
-2 +g +h B
2 -8 -h
g8 -g +h
-2 +g -h
-8 +g +h
~OLg 0O o0
+ag 0O O
D= 0 -ag 0 7.7
O+ag 0| | M 7
0 O -ah
0 O +ah
0 O +eh
0 O -¢h
0 0 0 }ng

For those vanables which do not appear at non-zero values 1n the now reduced e-star
portion of the design (non-¢ variable), the value of the scale factor g, calculated from equation
(5.3), is identical to that for the standard CCD, i.e.,

g=[N/(F+2a2)]3

In order that the variable which does appear at non-zero values in the e-star portion (& variable)
achieves the cnterion [1i] = 1, the value of the scale factor h is required to be the same as for the
variables of the full e-star design;

h:[NI(F+2a2+262)]%'
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The regressor matnx for the single e-pair design is then of the form

1 x3 X2 X3 xf x5 x} Xi1X2 X1X3 XoX3
[ 1 -g -g -h g g W g gh gh
1 -g -g +h g g2 h* g2 -gh —gh

1 -g +g -h g g2 K -g2 gh -gh

1 -g +g +h g2 g2 K -g2 -gh gh

1 +g -g -h g g2 h -g2 -gh gh

1 +g -g +h g2 g2 h -g2 gh -gh

1 +g +g -h g2 g h g2 -gh -gh

1 +g +g +h g2 g2 h*? g gh ¢gh

X= l1-ag 0 Oa%g2 0 0 O 0 O
l+ag O 0Oa2g22 0 O O O O

1 0-ag O Oa’g2 0 O O O

1 O4ag O O0a?2 0 0 0 O

1 0 0-ch 0 O0a?h? 0 0 O

1 0 O+ach 0 O0a?h? 0 O O

1 0 0 -h O O0e€eh2 0 0 O

1 0 O0+h O O0eeh? 0 0 O
1 0 0 0 0 0 0 0 0 O

As for the previous design possessing a complete e-star portion, calculation of the
elements of the moment matrix N-1X'X shows that this design meets the following
requirements, for all i <j <p < q, as described 1n Section 5.2.

(] = [ijji] = hijl =0
(iiyp] = [ijp] = [1jpp] =0
i) =fii] = 0
[ijpq] = fijp] =0
and that for any non-¢ variable i,
[ii] = N-1[Fg2 + 2a2g2] = g2 N-![F+ 2a?]
whilst for the € variable;
[ii] = N-1[Fh2 + 202h2 + 2e2h?] = h2 N-1{F+ 2a2+ 2¢2]

so that the values of the scaling factors g and h have resulted in the required value of fii] = 1.
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This difference in scaling factors for the two classes of vanable leads to complications
1n the assessment of rotatability and orthogonality. The values of the non-zero fourth-order
moments are as follows.

[iijj] = N-1 Fg4 between two non-e variables;
[iijj] = N-1 Fg2h2 between € and non-e vanables;
[iiii] = N-1[Fg4 + 2a4g4] for non-¢ variables;

[iiii] = N-1[Fh? + 20%h4 + 2¢%h?]  for the e variable;
Thus to satisfy the orthogonality requirement [iijjj = 1, two separate conditions must be met:

(i) between two non-¢ variables
1 Rt =
yFet=1
%F [N/ (F+2a2)]?=1
FN = (F+ 20?) 2 (7.8)
(i1) between ¢ and non-¢ variables;
L po2p2 =
N Fg?h* =1
#F [N2/ (F +20%)(F + 202+ 2¢%)] = 1
FN = (F + 20))(F + 202 + 2¢) (7.9)

Clearly, (7.8) and (7.9) cannot simultaneously be true unless £ = 0

Simlarly, for rotatabulity [ini] = 3[iijj], and a design must meet the four conditions:
Fg* =3 (Fg* + 2a%g%
Fg* =3 (Fh?* + 20%h? + 2¢%h%)
Fg?h? = 3 (Fg* + 2agd)
Fg2h? =3 (Fh? + 2a*h? + 2¢%h%)
which again cannot be simultaneously fulfilled unless € = 0,

On considering the expressions for the two scaling variables g and h, however, it is
apparent that the difference between the two is purely due to the additional term 2¢2. Since the
value of & itself is chosen to be small in magnitude, it is reasonable to neglect the difference in
scale factors. As an example, Table 7.1 shows the required values of g and h for the seven
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variable case in which F = 64, N = F + 2n + 2, when a = 2.8284 (standard CCD rotatability
critenion) or 1.0, and £ = 0.05 or 0.10.

a e g h g-h g/h (g-h)g %

2.8284 0.05 1.00000 0.99997 3.125x10-5 1.0000312 0.00312
1.0000 0.05 1.10096 1.10092 4.170x10-5> 1.0000379  0.00379

2.8284 0.10 1.00000 0.99988 1.250x104 1.0001250  0.01250
1.0000 0.10 1.10096 1.10080 1.668x104 1.0001515 0.01515

Table 7.1 Values of the scaling variables for a CCD with single e-pair

There will clearly be little error in the calculation of parameter requirements for
orthogonality and rotatability if identical values are chosen for g and h. Parameter values can
thus be selected as for a standard CCD with 2 + ng centre points, The inclusion of an exact
centre point in the design, thus incrementing the value of N by 1, has no effect on the ratio of
the two scaling factors, and no significant effect on the magnitude of the difference between
them unless (F + 2n + 2) is small; even with n =3, F =23 = 8, the change in (g - h) is
(17/16)12, or just 3.078 %, when the exact centre point is added.

The value of €= 0.10 used in the above calculations might be considered to be a typical
upper limit for the approximation of centre points. The difference in scaling factors is still
negligible at this value, however, although its effect will of course increase with smaller values
of F, resulting from either fewer variables or a lower resolution design. If a limiting value for
(g - h)/g % were spectfied as, say, 0.1%, then calculation shows that, 1n the present example, a
value of € = 0.2829 is acceptable with & = 2.8284, and ¢ = 0.2570 with a = 1.0. Thus even
this very tight constraint still allows e points which are between a quarter and a third of the
distance to the variable bound. Since this value will necessarily fall with decreasing F, it is
appropnate to consider a severe case of n =3, F=23=8, a = 1.0. For this design the 0.1%
limit still allows a value of & = 0.100025, and so it may be concluded that 1n general the
introduction of an e-star portion leads to insigmficant changes in the scaling of the variables.

In summary, the results of this investigation lead to the same conclusions as for the
CCD with complete -star portion, that the practical choice of a for orthogonality or rotatability
is unchanged from that for the standard CCD. In this case, however, the value of o would be
that chosen for a design with either 2 or 3 centre points, depending on whether a centre point
test is included in the present design. Further investigation reveals the additional similarity, that
designs which are both orthogonal and rotatable are not generally obtainable, and that neither
property may be achieved if an axial parameter of a = 1.0 is employed.
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In the above analysis 1t was shown that the multiple criteria for orthogonality occur as a
result of the different scaling factors which must be applied to different variables, in order to
meet the requirement that [ii] = 1. An alternative method of meeting this requirement 1s to
modify the axial portion of the design by choosing different values of the parameter a for the
¢ variable and non—¢ vanables, so that equal scaling factors are achieved for each variable. The
advantage of a single scaling factor is that a single orthogonality cniterion is obtained, with two
rotatability cniteria replacing the four obtained above. A detailed analysis of this alternative
method of specifying the single e—pair design is presented in Appendix 7B. The results of this
analysis show that the difference between the two values of « is negligible for all acceptable
values of €, and hence confirm the conclusion that the parameters for the CCD with one
additional € pair may be specified as for the appropnate standard CCD.

7.4 Designs containing several £ pairs

Detailed analyses have now been presented for augmented Central Composite Designs
in n vanables for which the number of ¢ variables is zero, n or 1 (Chapter 6, Section 7.2 and
Section 7.3 respectively). Assessment of the effect of the inclusion of £ pair tests on the
rotatability and orthogonality characteristics of the CCD has been based solely on the criteria

liijjl=1 for orthogonality
[iiii] = 3[uy3] for rotatability.

Inspection of these criteria reveals that, irrespective of the total number of vanables in the
design, orthogonality and rotatability may be assessed by just considering combinations of pairs
of variables. The above analyses have also shown that all non-¢ variables will have the same
pure second order moment [ii] as each other, as will all € vanables. When analysing a general
CCD with 1 <k <n ¢ pairs, there are thus only three possible values of the mixed fourth order
moment [iijj], in which either both variables are ¢ variables, both are non-e variables, or one
variable is of each type. Each of these combinations has been considered in the preceding
analyses, so that the conclusions drawn concerning the CCD with one ¢ pair and the CCD with
a full € star may be generalised to designs in which 1 <k < n ¢ pairs are present.
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7.5 Observations on the inclusion of e-pair tests

Although the preceding analyses have shown that the value of the parameter € must be
relatively small (less than about 0.1) 1n order not to invalidate either the approximation to the
centre point, or the companson with the standard CCD, no further guidance as to a suitable
choice has emerged. There remains the issue of what a lower bound to this value may be which
still genuinely provides additional information on the vanation of the response functions. This
lower bound is likely to be largely dependent on the nature of the problem being addressed, and
general recommendations are unlikely to prove reliable. It 1s recommended that if this class of
design is to be employed, some preliminary investigation of the nature of the response surface
for the particular application under consideration should be carried out prior to the execution of
the main body of test work. Such an investigation into the variation around the centre of the
design variable space of the radiated noise level predicted by the FE analysis program 1s
presented 1n Section 7.6.2. The results of this investigation suggest that the value of the
parameter £ may be reduced to at least as low as 0.025 without encountering the problem of
identical test results which the use of the e-star portion is intended to address. The choice of
value within this range 1s discussed in Section 7.6.1, below, with reference to numerical
examples.

The analyses of Sections 7.2 and 7.3 have shown that for an n-dimensional CCD, the
inclusion of either 1 or n pairs of axial tests with parameter € < 0.1 may be carried out without
the need to modify either the value of the axial parameter « or the way in which the vanable
values are scaled. Orthogonality and rotatability may be assessed with little error by simply
treating the design as a standard CCD in which the number of centre point tests ng is equal to the
number of tests included in the e-star portion, plus the exact centre point, if this is included. As
described in Section 7.4, these conclusions may be generalised to cover all designs containing
between 1 and n pairs of axial tests with parameter £ < 0.1.

The flexibility to specify the number of e pairs to be included allows for a procedure
analogous to that employed with the standard CCD, in which the number of centre point tests
may be chosen in order to aid the fulfilment of, for example, orthogonality or rotatability
critena. Having ascertained from the analysis of a standard CCD the number of centre point
tests which is required, the appropriate number of £ pairs can be included in the design in
place of the replicate points. As an example, consider again the seven vanable example with
F = 64. If an axial parameter of a = 2.257 were employed, then equation (6.7) shows that a
total of 8 centre point tests would be required 1n order to attain rotatability of the design. When
investigating a deterministic system, this requirement for replicate centre points may be
approximately met by the inclusion of four patrs of e-star points, with no exact centre point
test. The choice of which axes the additional tests should lie on is unlikely to significantly alter
the accuracy with which the model is constructed, due to the proximity of the points involved.
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The only restnction on the selection of e-points in order to fulfil a particular requirement
for centre point tests is that both points of a pair must appear in the design. If an odd number of
centre points is required, then the additional test may be supplied by including a single test at the
exact centre of the design variable space.

As a further example, the condition that must be fulfilled 1n order to obtain a standard
CCD which 1s both orthogonal and rotatable is given in equation (6.10). This shows that the
seven variable problem with F = 64 requires a centre portion of ny = 22. Since the total number
of points available within the e-star is just 14, it is clearly not possible to meet this requirement
using any of the designs so far described. Examination of the analysis of the previous sections
reveals, however, that the construction of the standard portion of the CCD will need no
modification as long as the ratio €2 : a2 remains small. Thus, in order to achieve the required
centre point tests, two separate e-star portions may be specified, with parameters ¢, and ¢,
respectively, with e-pairs selected from them 1n any combination up to the total number
required. If, in general, s e-star portions are included 1n the design, then the standard portion of
the CCD will need no modification as long as the ratio (2,2 + &2 + ... + £2) : a? remains
small. The values of ¢, €5, ... £, must also be selected in such a way that each lies within the
allowed range for ¢, and that the difference between them is also greater than the permitted
lower bound. Together with the above ratio to the axial parameter a, these conditions may be
expressed, for two e-star portions, as follows,

®min S E1, 825 €y
lep - lze
(e12+82): a2 < 1%, say

Even for the case of a = 10, this [ast condition will always be met if both £ parameters
are smaller than 0.07. Alternatively, one possible combination would be g; = 0.075 and
g, = 0.025, giving (0.0752 + 0.0252): 1.0 = 0.625%. The requirement of ny = 22 could thus
be met using a full ¢ star with parameter £ = 0.075, and four ¢ pairs with parameter € = 0.025.

As noted in Section 6.4, the nature of the variables under investigation in the present
application leads to a strictly cuboidal design vanable space, with the result that the axial
parameter is constrained to o = 1. The consequence of this 1s that the noise simulation problem,
as currently posed, cannot be investigated with a standard CCD which is either orthogonal or
rotatable. The analysis of the present chapter has shown that the charactenstics of the standard
portion of the augmented CCD under consideration here are unaffected by the addition of an
¢ star portion. It follows that the designs of this chapter share with the standard CCD the feature
that the properties of orthogonality and rotatablity are both unattainable with @ = 1.
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Since the exact fulfilment of these cnteria is no longer an objective, the precise number
of simulated replications which are to be performed need not be specifically tailored to achieve
this goal. The aim in carrying out replicated centre points 1s now to collect additional
information on the variation of the response functions at or around the centre of the design
variable space. These data may then be used to obtain improved estimates of the pure quadratic
components of a fitted model, and ultimately to develop an enhanced predictive model of the
ongmal surface throughout the region of interest. There 1s now no clear indication, however , as
to the preferred number of tests to be included n order to produce such an improvement,
although an 1nitial consideration would suggest that the predictive accuracy will increase with
the number of points tested.

7.6 Numerical tests using the CCD with additional € portion

In order to investigate the many issues arising from the above discussions, a senes of
numerical tests has been carried out, again using the FE model of Appendix 1C as an example.
To enable comparison with those tests invol ving the standard CCD which were carrted out 1n the
previous chapter, the same seven variable example has been used, with a 27-1 factonal portion
containing 64 tests, and an axial parameter of o = 1.

In Section 7.6.1 numerical trials are carried out using a CCD with full € star. A number
of designs are investigated in which the parameter e takes values in the range 0.025 to 0.1. The
results of these tests show that there is no practical improvement in the predictive ability of the
fitted model, and hittle change in the coefficient values of the model. There 1s a substantial
reduction in the variance of the mean value, but no significant reduction in the variance of the
pure quadratic terms, whlst the covariance between pairs of quadratic terms shows a shight rise.

In Section 7.6.2 it is shown that the reason for the lack of improvement in model fit on
inclusion of the € star tests is that the fit of the model is already good 1n this region. It is also
demonstrated that genuine additional information concerning the original response function may
be gained by testing at simulated centre-point replicates which have parameter £ = 0.025.

The inclusion of just one pair of € tests is investigated in Section 7.6.3. Designs are
tested in which each of the seven variables are included as the € pair. The results of these trials
confirm that the effect of including a single € pair is substantially less than the effect of the full €
star.




184
7.6.1 The CCD with & star

To assess the performance of the expenimental designs descnbed in Section 7.2,
constructed using an additional star portion with axial parameter &, a selection of such designs
has first been investigated. Four different values of the parameter € were chosen: 0.025, 0.05,
0.075 and 0.1, and tests conducted both with and without an exact centre point, Each of the
resulting designs were used to fit the models of Sections 6.5.1 - 6.5.3, containing 71, 17 and
36 parameters, respectively, and the results of these tests then compared with those obtained
using the standard CCD, as described in Section 6.5.1. Comparison was also made with
designs containing the same number of exact centre point replications as contained in the e-star
portion (plus centre point, if applicable) of the modified designs, as discussed in Sections 6.4
and 6.5.4.

For the 36 coefficient strict quadratic model of Section 6.5.3, Table 7.4 shows the
maximum and average lack of fit, for each design, which occurs within the three categonies of
test points described 1n Section 6.5.1. Each of the modified designs of Table 7.4 includes one
exact centre point (ng = 1). The first line of the table refers to the standard CCD of Section
6.5.3, containing a single centre point, with the second line of data referring to a CCD which
includes a total of 2n + ny = 15 exact centre point tests (identical to the 15 centre point design
used in Section 6.5.4). The corresponding lack of fit data for models containing 71 and 17
parameters are given in Appendix 7C, together with the results obtained with each model when
no exact centre point 1s specified 1n the modified designs.

Maximum lack of fit — Eg Average lack of fit — Eg

€ Design Factorial Higher Design Factorial Higher
standard 4.0151 2.6508 6.2354 0.67564 0.85803 2.6048
0.0 40190 2.6547 63404 0.58955 0.85819 2.6000
0.025 4.0195 2.6553 6.3491 0.59321 0.85819 2.5995
0.05 4.0185 2.6543 63192 0.60006 0.85814 2.6006
0.075  4.0183 2.6545 63255 0.60159 0.85819 2.6001
0.1 4.0180 2.6549 63244 0.60827 0.85822 2.5998

Table 7.4 Variation of lack of fit with e-star parameter
for augmented CCD with 93 tests and 36 coefficients (n = 7, nyp= 1)

The results of Table 7.4 show that the prediction accuracy using each of the modified
designs is almost identical to that achieved using the standard CCD. Taking as an example the
average lack of fit in the third category of test points (‘Higher’), an imitial examination suggests
that a slight improvement has been achieved by the use of each of the modified designs, with the
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design in which & = 0.025 performing best. The difference between the lack of fit value for this
design and the result obtained using the standard CCD is, however, just 0.0053% of the
vanable range, with only 0.0011% of the range separating the best and the worst of the
modified designs. Thus, the inclusion of the additional e-star portion has not led to any practical
improvement in the ability of the predictive model to represent the variation of the computed
noise function within the design variable space. This feature is also displayed by each of the
result sets given 1n Tables 7C.1 to 7C.6 of Appendix 7C.

The fact that the inclusion of the additional simulated centre point replicates has little
effect on the performance of the model throughout the region of interest suggests that the
parameter estimates for each of the coefficients within the model will also be largely unchanged
by the introduction of the e-star portion. Indeed, since each of the additional points has just one
variable at a non-zero value, the esttmates of all linear interaction terms, of which the 36 term
model contains 21 two-way interaction terms, must be identical to those obtained with the
standard CCD. The only parameters to be affected are the mean, main effect and pure quadratic
terms. Additionally, only two of the e-star tests will contribute to the estimation of each of the
main effect parameters, with the calculation of these being dominated by the 64 tests of the
factorial portion of the design. The extent to which the parameter estimates of the mean, main
effect and pure quadratic terms are modified by the inclusion of the additional data is
demonstrated in Table 7.5, in which these terms are compared for the standard CCD and the
e-star design with e = 0.1.

Term Standard CCD e=0.1
MEAN 86.711 86.721

A -2.2352 -2.2351
B -0.20402 -0.20404
C -0.38703 -0.38704
D -0.22783 -0.22793
E -0.15832 -0.15830
F -0.23327 -0.23334
G -0.33550 -0.33553
A? 0.98271 0.98129
B2 0.02250 0.02113
c2 0.06593 0.06458
D2 0.19729 0.19589
E? 0.05800 0.05667
F2 -0.07867 -0.07999
G2 0.11884 0.11747

Table 7.5 Comparison of parameter estimates between standard CCD
and CCD with e-star portion (£ = 0.1) and ny= 1 : 36 coefficients
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This table confirms that the main effect terms are virtually unchanged, with their values
only differing at the fourth or fifth sigmificant figure. Changes to the mean and pure quadratic
coefficients, although greater, are still relatively minor. The variance and covanance values for
each class of terms are given in Tables 7.6 and 7.7, below.

Class of Term Standard CCD e=0.1

Mean 0.0158 0.0109
Main effects 0.0152 0.0151
Linear interactions 0.0156 0.0156
Pure quadratic 0.1915 0.1910

Table 7.6 Comparison of variance values between standard CCD
and CCD with e-star portion (e = 0.1) and ny= 1 : 36 coefficients

Class of Term Standard CCD £=0.1
between mean and each pure quadratic term -0.0018 -0.0002
between each pair of pure quadratic terms -0.0308 -0.0312

Table 7.7 Comparison of covariance values between standard CCD
and CCD with e-star portion (¢ = 0.1) and ny= 1 : 36 coefficients

These tables show that, when using a modified design with € = 0.1, the variance value
for the mean term has been greatly reduced, compared with that obtained using the standard
CCD, reflecting the gain in precision which results from using an increased number of test
points from which to estimate the parameter value. In contrast, the vanance values for the pure
quadratic terms remain virtually unchanged by the increase in information, whilst the covariance
effects between them actually increase. The reason for this is that the additional test points
provide function information at a point at which all but one of the variables are at their mean
level, with the remaining vanable only slightly altered from its mean value. It is thus extremely
hard to identify explicitly the effect of each of the variables. Indeed, a larger proportion of the
available third level tests now lies at or close to the centre of the design space, and this leads to
greater interdependency of the parameter estimates, and hence higher covariance values. The
change in the parameter estimates and variance values of the main effect and pure quadratic
terms is not large enough to have any appreciable effect on the outcome of a probability plot
analysis, which, using the full 71 parameter model, produces results which are essentially
identical to those of Section 6.5.1.
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Companson with Table 6B.8 of Appendix 6B shows that the changes in vartance and
covariance values are almost identical to those produced using a standard CCD with 15 exact
centre point tests. In contrast with the results of Appendix 6B, however, these are authentic
changes caused by the genuine inclusion of additional function information, whereas those of
Appendix 6B were illusory gains resulting from the inappropriate use of the standard analysis
procedure, based upon an invalid assumption of random experimental error.

7.6.2 Investigation of noise variation at ¢-star points

In order to determine the reason for the relanvely poor improvement in the performance
of the mathematical mode] which has resulted from the inclusion of the e-star portion, it is
necessary to investigate the relationship, at each of the additional test points, between the value
of the noise function calculated by the FE analysis and the response surface prediction obtained
using just a standard CCD. As an example, Figure 7.1 shows the comparison between these
functions at the centre point of the design variable space (e = 0), and at each of the e-star points
for which the variable A (skirt thickness) has a non-zero value. The four values of £ chosen are
those used in the analysis of Section 7.6.1, above. The predictions at these points are obtained
using the 36 parameter strict quadratic model described previously, constructed using a 79 test
CCDwitha=1and ny= 1.
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Figure 7.1 Comparison of FE analysis noise value with that predicted
using a standard CCD with 79 tests and 36 coefficients
(m =7, a =1, ny =1) at g-star points with variable A non-zero




188

This graph shows that, over the range investigated, the slope of the predictive model is
closely approximating that of the true response, with little error occurring at the e-star points,
even with £ = 0.1. The graph shows the middle 10% of the bound-to-bound variable range of
the skart thickness variable, Since there is such close correspondence between measured and
predicted values, it 1s unsurpnsing that the approximating model is little changed by the
inclusion of a pair of these data points.

This effect can be seen more clearly by considening the magnitude of the errors which
occur at each of the e-star points. Figure 7.2 shows the error values, in dB(A), for each of the
points of Figure 7.1.

004
002
error 1
000 e
dB(A) re 1 pW

5

004 _

-0.06 ¥ T bl T v T v
-010 005 000 005 0.10

¢ parameter

Figure 7.2 Prediction error using a standard CCD with 79 tests
and 36 coefficients (n =7, a=1, ny3= 1)
at e-star points with variable A non-zero

The maximum error occurning at any of the e-star points is thus of magnitude
0.06 dB(A), which is less than 0.8% of the function range. Comparing thus with the lack of fit
data given 1n the first line of Table 7.4, it can be seen that even this maximum error at the e-star
points is only slightly greater than the average error at the design points, and significantly less
than the maximum error at these locations. This, then, is the reason that little modification to the
parameter values is required in order to minimise the error at the design points, using a least
squares criterion, when the additional e-star points are introduced.

It is noticeable from Figure 7.2 that the maximum error occurring at the e-star points
with variable A non-zero (the dominant variable 1n the model), is obtained with a value of
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¢ = 0.025, which is also the value which yields the greatest change in overall prediction error
(Table 7.4) and parameter values.

The above analysis may also be repeated for each set of e-star points in which one of the
other variables is at a non-zero level. These confirm that there is little lack of fit between the FE
analysis value and the prediction based on the standard CCD at these points, and hence only
minor modifications will be made to the model parameters when such points are included in the
experimental design. As an example, Figure 7.3 shows the measured and predicted values for
the variable C (bearing panels 2 & 4), in which the maximum error is 0.021 dB(A), which 1s
Just over 0.25% of the function range.
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Figure 7.3 Comparison of FE analysis noise value with that predicted
using a standard CCD with 79 tests and 36 coefficients
(n=7, a =1, nj =1) at e-star points with variable C non-zero

In addition to explaining the small improvement gained by including the e-star points,
these tests also demonstrate that it is possible to obtain genuine additional information
concerning the variation of the noise function by carrying out tests close to the centre of the
design variable space. This observation is valid for tests with an e value as low as ¢ = 0.025.

7.6.3 The CCD with single & pair

It has been shown in Section 7.6.1 that the incluston of a complete e-star portion in the
experimental design leads to little improvement in the overall predictive ability of the
mathematical model constructed from this design. It is therefore unlikely that the designs
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outlined in Section 7.3, which include just two of the onginal 2n e-star points, will prove to be
of any practical use in addressing the noise simulation problem. Since the number of additional
tests is now much smaller, the effect on the variance value is expected to be greatly reduced,
with all parameter estimates remaining essentially unchanged from those of the standard CCD.
In order to confirm this, and to invesugate the effect of using ¢ pairs with different selections of
the non-zero parameter, the following tests have been conducted. Seven expenmental designs
have been constructed, each containing the 79 tests of the standard CCD, as descnibed
previously, plus two additional points lying at ¢ = 0.025 on one of the variable axes, to give a
total of 81 test points, Each of these designs has then been used to fit the 36 term strict quadratic
model used above, and the results compared with both the standard CCD and the CCD wath full
e-star portion (& = 0.025) described in the previous section.

The results of the lack of fit calculations 1n each of the three test categories are shown in
Table 7.8. The first line of this table refers to the results obtained using the standard CCD. The
next seven lines refer to the e-pair designs currently being investigated, with the first column
indicating the vanable which takes a non-zero value n the two extra tests. The final hne shows
the results obtained using the full e-star portion with parameter £ = 0.025, and 1s as shown 1n
Table 7.4.

Maximum lack of fit — Eg Average lack of fit — Eg
Variable Design  Factorial  Higher Design  Factorial  Higher

standard 4.0151 2.6508 6.2354 0.67564 0.85803 2.6048

A 40171 2.6528 6.2808 0.66716 0.85808 2.6026
B 4.0161 2.6519 6.2628 0.66363 0.85807 2.6035
C 4.0162 2.6519 6.2640 0.66385 0.85807 2.6035
D 4.0161 26519 6.2647 0.66398 0.85808 2.6034
E 4.0161 2.6519 6.2641 0.66387 0.85808 2.6034
F 4.0161 2.6520 6.2643 0.66390 0.85808 2.6034
G 40162 2.6519 6.2637 0.66381 0.85807 2.6035
full star  4.0195 2.6553 6.3491 0.59321 0.83819 2.5995

Table 7.8 Variation of lack of fit with e-pair variable for augmented
CCD with 81 tests and 36 coefficients (n = 7, ny= 1, £ = 0.025)

These lack of fit data show the expected result that the inclusion of an ¢ pair in the
design yrelds virtually no improvement in predictive accuracy. Additionally, it can be seen that,
although the use of an e pair using the dominant variable A gives marginally better results in
terms of minimising the average lack of fit at the ‘Higher’ test points, this design performs
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worst in other categories, and in general there 1s no practical advantage in selecting a particular
vanable 1n preference to any of the others.

In analysing the variance values for each of the designs, it is found that, as may be
expected, the variance value for the € variable 1s the same in each design, as are the values for
each of the non-¢ variables, A similar correspondence is found between covariance values.
These values are summarised 1n Tables 7.9 and 7.10, and are valid for all seven of the s-pair
designs.

Class of Term Standard CCD € pair
Mean 0.015773 0.014434
Main effect () 0.015152 0.015151
Main effect (non-£) 0.015152 0.015152
Linear interaction 0.015625 0.015625
Pure quadratic (&) 0.19147 0.19134
Pure quadratic (non-¢) 0.19147 0.19134

Table 7.9 Comparison of variance values between standard CCD
and CCD with £ pair (e = 0.025) and ny= 1 : 36 coefficients

Class of Term Standard CCD € pair
mean / pure quadratic (g) -0.001757 -0.001351
mean / pure quadratic (non-g) -0.001757  -0.001341
pure quadratic (g) / pure quadratic (non-g) -0.030754  -0.030881

pure quadratic (non-¢) / pure quadratic (non-g)  -0.030754  -0.030884

Table 7.10 Comparison of covariance values between standard CCD
and CCD with ¢ pair (e = 0.025) and ny= 1 : 36 coefficients

These results confirm that the variance of the mean effect is altered much less than was
the case for the e-star design. All other vanance and covariance effects are also largely
unchanged from the values obtained using the standard CCD.

Table 7.11 shows the parameter estimates which are obtained when fitting the 36 term
model to the standard CCD, the CCD with single ¢ pair in vanable A (g = 0.025), and the CCD
with full ¢ star (e = 0.025). The linear interaction terms are not shown, as these are identical in
each case. The table shows that the degree of modification which occurs in each parameter
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estimate, compared with the standard CCD, increases as the number of additional tests rises. As
discussed in the previous section, the main effect terms are virtually unchanged by the small
amount of additional data, and even the mean and quadratic terms are little modified by the
inclusion 1n the experimental design of either a single & pair or a complete e-star portion.

Term Standard CCD € pair (A) full star
MEAN 86.711 86.716 86.723
A -2.2352 -2.2352 -2.2352
B -0.20402 -0.20402 -0.20402
C -0.38703 -0.38703 -0.38703
D -0.22783 -0.22783 -0.22784
E -0.15832 -0.15832 -0.15832
F -0.23327 -0.23327 -0.23328
G -0.33550 -0.33550 -0.33550
A? 0.98271 0.98204 0.98101
B2 0.02250 0.02182 0.02080
C? 0.06593 0.06524 0.06215
DR 0.19729 0.19660 0.19558
E2 0.05800 0.05732 0.05629
F2 -0.07867 -0.07936 -0.08038
G2 0.11884 0.11816 0.11713

Table 7.11 Comparison of parameter estimates between standard CCD,
CCD with £ pair (e = 0.025, variable A) and ny=1 and
CCD with s-star portion (e = 0.025) and n;= 1: 36 coefficients

7.7 Observations on the use of simulated centre point replications

The numerical results of the previous sections have shown that it is possible to obtain
genuine additional information concermng the variation of the noise function by performing
tests at points close to the centre of the design variable space. The use of an e-star portion has
been shown to yield a simular small increase in the accuracy of the fitted model as was obtained
by simply including the same number of exact centre point replicates, with the advantage that the
present results represent a real improvement in model performance, rather than an illusory gain
based on the adoption of invalid error assumptions.

Additionally, although precluded in the present noise analysis example by the cuboidal
nature of the design variable region, theoretical studies have shown that in general deterministic
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expenmental environments, the specification of an e-star or e-pair portion can be made without
significantly compromising the orthogonal or rotatable nature of a standard CCD.

In the specific case investigated, little improvement in model accuracy has been obtained
over that of the approximating model denved from the standard CCD, due to the small lack of fit
which occurs at points close to the centre of the region. In such cases the advantage to be gained
from including centre-point pseudoreplicates is minimal. If, however, the onginal response
surface exhibited a substantial amount of high-frequency fluctuation, or ‘peakiness’, then
repeated testing over a small area would be likely to result in a significant gain 1n the predictive
accuracy of the fitted model. These multiple tests would provide a better picture of the overall
trend of vanation in the response function, rather than relying on data collected at a single point,
which may be excessively influenced by the peaks and troughs of a heavily fluctuating
surface. For the particular case of radiated noise, such a response may result from the use of a
low value of structural damping within the engine model, as discussed by Milsted, Zhang and
Hall (1993).

The numerical examples of the previous sections have shown, however, that if the
response 1s smooth, with a close correspondence between the original response and the
prediction based on the standard CCD, then hittle 1s to be gained from this type of multiple
testing. In this case, the most effective use of additional test points 1s not to provide an increase
1n the density of testing in certain areas, but to improve the distribution of test points throughout
the entire design variable space. A maodified design could, for example, include some fraction of
a second 2" hypercube, with levels +1/2. These points could be specified using a procedure
similar to that followed 1n Section 6.5.1 to select additional pornts at which to test the lack of fit
due to higher order terms. A design of this type would also allow the possibility of retaining the
properties of orthogonality and rotatability .

The effect of such a modification, however, would be to substantially increase the total
test requirement for the design. It should be borne in mind that the results of the previous
chapter have shown that, even {or the standard CCD, the ratio of significant terms to number of
tests, for the seven vanable example, may be as small as 17/ 79 = 22 %, and 1s unlikely to be
greater than 36 / 79 = 46 %. With a full e-star portion this falls to 36 / 93 = 39 %, whilst witha
second hypercube containing as few as 16 points, the ratio is 36 / 95 = 38 %. If a second
hypercube were to be included, then one could perhaps reconsider the function of the onginal
star portion, since tests at additional variable levels would now be available, However, a design
in which this level of modification has taken place 1s, of course, no longer a CCD. A further
disadvantage of the CCD which needs to be addressed is the relative imprecision with which the
pure quadratic components of the second order model are estimated, as discussed in detail in
Section 6.5.1. What is required 1s an economic second order design, constructed specifically to
estimate just the parameters of the strict quadratic model, and to estimate these with
approximately equal accuracy. Such designs are considered in detail in the next chapter.
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Values of a2 and €2 for both orthogonality and rotatability of CCD with g-star portion

n F Resolution n, N a? g2
3 8 Full 0 20 279 -0.465
3 8 Full 1 21 281 -0329
4 16 Full 0 32 395 -0.635
4 16 Full 1 33 397 0482
5 32 Full 0 52 554 -1.14
5 32 Full 1 53 557 -0.980
5 16 v 0 36 400 0000
5 16 \ 1 37 400 0169
6 64 Full 0 88 7.70 -2.18
6 64 Full 1 89 774 201
6 32 VI 0 56 564 0471
6 32 VI 1 57 565 -0.295
7 128 Futl 0 156 106 -395
7 128 Full 1 157 107 -3.78
7 64 vII 0 7] 786 -1.49
7 64 v 1 a3 789 -132
8 256 Full 0 288 145 -6.74
8 256 Full 1 289 146 -6.58
8 128 vl 0 160 108 -3.28
8 128 Vi 1 161 109 310
8 64 Vv 0 96 796 -0.771
8 64 v 1 97 798 -0 583
9 512 Full 0 548 198 -110

9 512 Full 1 549 19.9 -10.8

9 256 IX 0 292 148 609
9 256 X 1 293 149 592
9 128 VI 0 164 110 -257
9 128 VI 1 165 11.1 -239
10 1024 Full 0 1064 27.0 -17.1
10 1024 Full 1 1065 27.1 -17.0
10 512 X 0 552 20.1 -103
10 512 X 1 553 20.2 -102
10 256 VI 0 296 151 -542
10 256 VI 1 297 15.1 -5.25
10 128 v 0 168 11.2 -184
10 128 v 1 169 11.2 -165
11 2048 Full 0 2092 37.0 -26.1

11 2048 Full 1 2093 371 -259
11 1024 XI 0 1068 274 -165
11 1024 XI 1 1069 275 -16.4
11 512 VI 0 556 205 -968
11 512 VI 1 557 205 -952
11 256 v 0 300 153 4.72
11 256 Vv 1 301 153 -4.55
11 128 v 0 172 113 -1.07
11 128 A 1 173 11.3 -0876
12 4096  Full 0 4144 508 -389
12 4096  Full 1 4145 509 -387
12 2048 X 0 2096 374 -255
12 2048 X1 1 2097 375 -253
12 1024 VI 0 1072 278 -159
12 1024 VI 1 1073 279 -157
12 512 VI 0 560 208 -9.02
12 512 VI 1 561 208 885
12 256 A 0 304 155 401
12 256 A 1 305 155 -382
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Appendix 7B

The CCD with one ¢ pair and equal scaling

In order to satisfy the moment matnx condition {ii] = 1, whilst avoiding the need for two different
scaling factors, the value of the axial parameter & of the onginal star portion for the £ vanable may be modified
from a toy. The corresponding design matrix for a three variable example is then of the form

-2 -8 -8 \
-2 -8 +8
-8 +8 -8
-8 +g +g ? F
-2 -8 -8
-8 -8 +8
g +g g
g +5 +g {
-ag 0 0
+ag 0 O
D= 0 -ag O 7B.1
O+ag O Zn ( )
0 0 -g
0 0 +yg
0 O +eg 3 5
0 O -eg
0 0 0 In

For the non-¢ variables the value of the scale factor g is again

g =[N/ (F+202)]2

whilst for the ¢ variable its value must be

g=[N/(F+22 + 27

Equating these two expressions yields

v+ =a?

and hence

= Va2 - & (7B.2)

The appropnate value of y can then be calculated for known values of o and €. For the seven variable case, for
example, the following would be applicable
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2.8284
2.8284
1.0000
1.0000

Table 7B.1 Values of a and y for a CCD with one ¢-pair and equal scaling

0.05
0.10
005
010

2 8280
2 8267
09987
09950
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This example 1l]ustrates the general feature that for the small values of ¢ requured to simulate centre
point replications the difference of £2 between the values of o2 and y2 is of small magmtude.

The regressor matnx for this design is then of the form

I x1 X2 X3 X{
1 g g g g
1 -g -g +g g

1 -g +g -g g

1 -g +g +g gt

1 +g -5 -g g

1 +g -g +g g

1 +g +g -g g

1 +g +g +g g

X= 1 -ag 0 Oa?g2
1+ag 0 Oa2g?

1 0-ag 0 O

1 O+ag O O

1 0 0 «wg O

1 0 0 +g O

1 0 0 -eg O

1 0 0 +eg O
1 0 0 0 O

X5 X3 X1X2 X1X3 X2X3
g2 @ @ g g |
g2 g g* g2 -g?
g2 g g2 g -g?
g2 g g2 g2 ¢
g2 g g2 g2 &
g2 g g2 g g
g2 g g g2 -g
g2 g g g g
0 0 0 O O
6 0 0 O O
a’g2 0 0 O O
alg2 0 0 0 O
0y2 0 0 O
0yg2 0 O O
0e?2 0 0 O
0elg2 0 O O
0 0 0 0 O0_

Calculation of the elements of the moment matrix N-1X'X shows that this design also meets the

following requrements of Section 5.2, foralli<j<p<q
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fij] = [ijjl = [iij] =0
[i1p] = [ijp] = [pp]l = 0
[yl =fyp] =0

lijpq] = liip] =0

It can also be seen that the values of the pure second-order moments are as follows:

[u] = N-1[Fg? + 202g2] = g2 N-1[F+ 2a2]  for non-e variables
[u] =N-1[Fg? + 2y2g2 + 2e2g2] = p2N-1[F+ 2y2 + 2e2] forthee vanable,

Since 202 =2y2+ 2¢2, the value of the scaling factor g gives [1i] = 1 for each vanable.

The values of the non-zero fourth order moments for this design are:

(3] = N-? Fg4 for all vanables;
and

[itii] = N1[Fg4 + 20tg4] for non-¢ variables;

[rin] = N-1[Fg4 + 2yig4 + 2edgd] for e vanable;

The condition for satisfying the orthogonality requirement [iijj] = 1 is thus 1dentical to that for the
standard CCD

FN = (F +2a%)?
For rotatability, however, two conditions are obtaned.
3F=F+20* — F=ot (7B.3)
3F=F+2¥4+284 - F='{4+s4 (7B.4)
These cannot be simultanecusly fulfilled unless & = 0 and y = a (since otherwise y* + £4 = a4).
The amount & by which the nght-hand side of (7B.4) differs from that of (7B.3)1s

d=al-(y*+¢%)
and since y2 = a2 - g2,
d=at-(a2-e2)%-¢t

d=a%- (04 - 2a2e? + e%) - ¢4
8 = 2a2e? - 2¢4

§=2¢2 [or.2 - 82]

As an example of the small magnitude of this difference, the following table shows the values of & and
fractional difference 1n the right-hand side of the equation for the seven variable case, with F = 64 The values of
the parameters used are a = 2 8284 (standard CCD rotatability criterion}and a = 1 0, € =005 ande = 0.10.




198

o £ 8 ad 6/at %
28284 005 00400 64 0.062
1 0000 005 0.0050 1 0499
28284 010 0.1598 &4 0250
1 0000 0.10 00198 1 1980

Table 7B.2 Values of 8 for a CCD with one e-pair and equal scaling

The amount by which the rotatablity condition for the ¢ variable deviates from that for the standard
CCD is thus extremely small for the seven vanable example. This amount will of course increase with
decreasing o, and increasing £, although it is independent of the value of F Even for the case of n = 3,
F=23=8, o =10and ¢ =01, the value of & / o is sull 1.980%.

It may thus be concluded that tn generat the inclusion of an e-pair with equally scaled variables leads to
insignificant changes 1n the orthogonality and rotatabulity criteria of the standard CCD. Since the results of Table
7B 2 have shown that the difference between the two axial parameters o and y is also negligible, 1t is reasonable
to employ the same value of @ = y as would be used in a standard CCD, This alternative specification of the
CCD with single ¢ pair and equal scaling 18 thus :dentical, 1n practice, to the onginal description of Section 7.3,
in which different scaling factors were applied to the variable values, according to whether they appeared at
non-zero levels within the e-star portion.
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Lack of fit data for CCD with e-star portion

Maximum lack of fit — Eg Average lack of fit — Fy

e Design Factonal Higher Design Factonal Higher
standard 12483 2.7467 6.2519 015039 093156 27334
0.0 13658  2.7506 6.3547 0.14449 093130  2,7289
0025 13764  2.7513 6.3638 0.14817 093130 27284
005 13410  2.7510 63323 0.15481 093139 27296
0075 13492 27523 6339 0.15628 093135 27291
0.1 13489  2.7539 63379 016292 093138 2.7287

Table 7C.1 Variation of lack of fit with e-star parameter
for augmented CCD with 92 tests and 71 coefficients (n=7, ny;=0)

Maximum lack of fit — Eg Average lack of fit — Eg

£ Design Factorial Higher Design Factonal Higher
standard 46395 3.1124 6.4331 0.77241 0.77967  2.6160
0.0 4 6404 3.1124 64521 066624 0.77978 2.6153
0025 46411 3.1123 64612 067626 077979 26149
005 4 6396 3.1123 6 4298 0 68395 077954 26158
0.075 4 6396 3.1126 64365 0 68906 077952 26153
0.1 46393  3.1127 64354 069638 077938 26150

Table 7C.2 Variation of lack of fit with e-star parameter
for augmented CCD with 92 tests and 17 coefficlents (n=7, n,=0)

Maximum lack of fit — Eg Average lack of fit — Ep

£ Design Factorial Higher Design Factorial Higher
standand 40151 2.6508 62354 067564 085803 26048
00 40189  2.6546 6.3369 059544 085818 26001
0.025 40194 2.6551 6.3460 0.5991C¢ 085818 2 5996
005 40183 26542 6.3148 060568 085814 2.6008
0075 40182 26544 63214 060711 085818  2.6003
0.1 40179 26548 63203 061369 085821 2.6000

Table 7C.3 Variation of lack of fit with e-star parameter
for augmented CCD with 92 tests and 36 coefficients (n=7, ny=0)
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Maximum lack of fit — Eg Average lack of fit — Eg

£ Design Factorial Higher Design Factorial Higher
standard 12483 2.7467 62519 0.15039 093156 27334
0.0 1.3698 2.7507 63582 0.14346 093129  2.7287
0025 13800 27515 63670 0.14713 093120 2.7282
005 1.3460 27511 63367 0.15405 093138  2.7294
0075 13539 2.7524 63431 0.15561 093134 27289
0.1 13536 2.7541 6.3420 0.16235 093136 27285

Table 7C.4 Variation of lack of fit with e-star parameter
for augmented CCD with 93 tests and 71 coefficients (n=7, n,=1)

Maximum lack of fit — Eg Average lack of fit — Ex

€ Design Factorial Higher Desigm Factonal Higher
standard 46395  3.1124 64331 077241 077967 26160
00 46404  3.1124 64528 065918 0.77979  2.6153
0025 46411 3.1123 64615 0.66909 077979 26149
005 46397 31123 64313 067708 077955  2.6157
0075 46396 31126 64377 0.68204 077953  2.6153
01 46393 31127 64367 0 68929 077939 26149

Table 7C.5 Variation of lack of fit with e-star parameter
for augmented CCD with 93 tests and 17 coefficients (n=7, ny=1)

Maximum lack of fit — Eg Average lack of fit — Ex

£ Design Factorial Higher Design Factonal Higher
stamdard 40151 2.6508 62354 0.67564 035803 26048
00 40190 26547 63404 0 58955 085819 2.6000
0025 40195 2 6553 63491 059321 085819 25995
005 40185 26543 6.3192 0 60006 085814 2 6006
0.075 40183 2.6545 6.3255 060159 0.85819 26001
0.1 40180 2.6549 6.3244 0 60827 085822  2.5998

Table 7C.6 Variation of lack of fit with g-star parameter
for augmented CCD with 93 tests and 36 coefficients (n=7, ns=1)
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8. Economic second-order designs

The results of numerical tests using both the linear + interacttons model of Chapter 4
and the 71 term quadratic model in Chapter 6 have shown that, 1n the present engine noise
investigation, the effect of interactions of order greater than two is extremely small, but that
pure quadratic terms contribute significantly to the overall shape of the response
surface. Additionally, the results of Section 6.5.1 have shown that the distribution of test points
in the Central Composite Design results in a much less precise estimate of the pure quadratic
effects than of the linear and interaction components. This reveals a mismatch between the
model which 1s to be fitted and the tests which are performed in order to estimate this model.

In order to achieve a better match between design and model, an experimental design is
sought which is specifically constructed to assess only those terms which have been shown to
be of interest, but to estimate them with approximately equal precision and a minimal number of
tests. These terms are of the following form.

1 n-l n n
Y=fo+Y BX+Y 2 BXX+ D BuXl @8.1)
1=1 i=1

1=1 =i+l

Here the second and third terms on the nght hand side of the equation represent the main effect
and two-way interaction terms respectively, of the linear + interactions model, with the final
term representing the pure quadratic contributions. Since the two-way interaction terms are
simply mixed quadratic terms, (8.1) is in fact 1dentical to the strict quadratic model of
equation (5.1).

n n

Y= ﬁo+§ BXi+ Y > ByXX,

1=1 J=t

In the final term of this equation the coincidence of 1and j produces the pure quadratic terms,
which can alternatively be described as self-interaction terms.

As discussed in Section 5.4, comparison of (8.1) with the complete quadratic plus
interactions model of equation (5.12), which may be constructed from a full three level factorial
experiment, shows that the successful use of the strict quadratic model to represent the
behaviour of the system depends on the assumption that no significant interactions occur which
involve more than two factors, and, further, that the only two factor interactions which do occur
are the linear by [inear ones, Xin, with the cubic xﬁxj, Xin2 and quartic XiZXj2 terms also
omitted.
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8.1 A survey of available second-order designs

Due to the widespread use of quadratic models, a substantial body of theoretical,
numerical and expenimental work has been published on the subject of economic second-order
designs. However, a comprehensive companson of all available designs in the context of the
computer simulation of engine noise radiation is not within the scope of the current work. Of
more importance is the identification of a suitable existing experimental scheme. Simce a general
approach 1s required, it is important that a particular design be available for a wide range of the
number of design variables, n. This section outhines the charactenstics of the more commonly
used designs.

8.1.1 Box-Behnken

The class of designs introduced by Box and Behnken (1960) are widely used in general
expenimental work. Their two main advantages are that they require just three levels of each of
the design vanables, and that many of the designs may also be blocked orthogonally. The first
of these factors may be important if quantitative vanables are used, or if, for some or all of the
variables, only a limited number of levels may feasibly be tested. In contrast with the Box-
Behnken designs, a general CCD, as described 1n Section 6.1, requires that each of the
vanables be tested at five levels (-a, -1, 0, 1, «), although this is of course reduced to three
levels if a = 1. As discussed in Section 2.10, blocking is necessary if it is not possible to
conduct all experimentai tests under identical conditions. Orthogonal blocking ensures that
estimation of design variable parameters 1s independent of any unwanted effect which may vary
between blocks. An additional advantage of the Box-Behnken design is that, although not
available for all n, Box and Behnken (1960) list designs for a number of different problem sizes
(n=3-7,9-12, 16).

The disadvantages of the Box-Behnken designs are that, although highly orthogonal,
with only the mean and pure quadratic terms correlated (as for the CCD), they are not always
block orthogonal, nor are they always rotatable. Perhaps of more importance in the present
application 1s the fact that the test requirement 1s still substantially greater than the number of
parameters to be estimated. For a seven vartable problem, for example, 36 parameters are to be
estimated, whereas the Box-Behnken design contains 62 test points, giving a ratio of 58%. This
falls slightly with problem size, so that for 10 vanables this saturation ratio is 39%.

In the computer analysis of radiated engine noise, blocking of tests is not required, as
discussed in Section 2.10, since all relevant conditions are exactly repeatable. Additionally,
there is no hmit on the number of different variable levels which can be tested, although there is,
of course, a restriction on the magnitude of each level. The rather high number of tests 1s thus
not compensated for, in the present noise analysis example, by other beneficial qualities.

——__4
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8.1.2 Box-Draper saturated designs

A number of saturated designs, in which the number of parameters to be estimated is
equal to the number of tests in the design, were introduced by Box and Draper (1971). Designs
involving n = 2 and n = 3 vanables were given which are optimal in terms of maximising the
determinant [X'X|. The designs were generalised for n = 4 by Box and Draper (1974), although
these are not necessarily optimal, judged on the above criterion.

8.1.3 Hoke

A class of economical designs for fitting the strict quadratic model was developed by
Hoke (1974), generalising earlier designs by Rechtschaffner (1967). These designs are based
on partially balanced 1rregular fractions of the 3® factonal, and are valid for any number of
vanables n = 3. The Hoke designs fall into two categories; firstly, a class of designs in which
the number of tests 1s equal to the number of parameters to be estimated, known as a ‘saturated’
design; and secondly, a class of ‘minimally augmented’ designs, in which extra tests are added
to the saturated design in order to improve efficiency and to provide a number of degrees of
freedom for estimation of errors.

The price to be paid for obtaining such a small experimental design, and thus high
saturation ratio, 1s that the designs are neither orthogonal nor rotatable, although as discussed in
Section 2.8, netther of these properties is absolutely indispensable. One important feature of the
Hoke designs, however, is that they are invariant under permutation of the factors in the model,
so that, as described in Section 2.9, the estimates of the parameters do not change if the order of
the vanables 1s changed. Thus all the parameters of the same form are measured with equal
precision; e.g. the variance of parameter §;, is independent of the value of i.

Despite the small number of tests used, Hoke showed that his designs compared
favourably with both Box-Behnken designs and a particular class of CCD employed by Hartley
(1959), which, additionally, are not permutation-invariant. A further investigation by Lucas
(1976) compared the Hoke designs with the CCD and Box-Draper designs, and found that the
Hoke designs performed better than the saturated designs of Box-Draper, and nearly as well as
the CCD, although requiring far fewer tests.
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8.1.4 Uniform shell designs

These were developed by Doehlert (1970) and Doehlert and Klee (1972), and are
generated from the points of a regular simplex by calculating the difference between the
corresponding variable values of pairs of points. The location of these points is such that they
are uniformly spaced and lie on concentric spherical shells. The disadvantages of these designs
are that a large number of variable levels are required, and, more importantly, that the number of
points on a each shell 1s n2 + n. Thus even a single shell plus centre point would contain
0.5n2 + 0.5n more tests than there are parameters in the model. For a seven variable test, for
example, the number of tests required is 57, giving a significance ratio of 63%. Additionally,
Lucas (1976) found that the umform precision design did not perform as well as either the Box-
Behnken design or the CCD.

8.1.5 Hybrid designs

Introduced by Roquemore (1976) these designs are constructed from a CCD of
dimension n-1, augmented with an extra row. The specification of this extra test is determuined
1n such a way as to achieve a similar degree of orthogonality as the CCD, whlst also being
nearly rotatable. The pnncipal disadvantages of the hybnd design are that it is only available for
a fairly limited range of problem sizes (n = 3, 4, 6 or 7), and that many of its points lie well
beyond the bounds of the unit hypercube.

8.1.6 Other second-order designs

Of the many other schemes which have been put forward for the selection of test points
1n a second-order design, the following are worthy of mention. An early example of a family of
saturated designs is given 1in Koshal (1933), from which 1t is possible to construct specific
designs of any order d in n vanables. Designs which are based on irregular fractions of
factorials, and are very nearly saturated, were ntroduced by Westlake (1965) forn=5,7and 9
variables. Much simpler designs which achieved a similar, or in some cases improved, level of
saturation were suggested by Draper (1985). A set of saturated designs which are constructed
using tests which form part of the three level factorial design were developed by Notz (1982).
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8.2 Selection of an appropriate design

In selecting an economic second-order design to use in the investigation of engine
noise, the two principal requirements are that a better estimate be obtained for the pure quadratic
terms of the model, and that the number of tests be kept as low as possible without
compromising the precision with which each of the parameters 1s estimated. It is not clear,
however, to what extent the number of test points in the design may be reduced before
substantial errors occur in the construction of the predictive model. Box and Draper (1987,
p.520) suggest that designs which are either saturated or near to saturation are likely to be of
interest 1f one of the following conditions apply.

1. Runs might be extremely expensive.

2. The checking of assumptions, the need for an internal error estimate, the need to
check fit might not be regarded as important in a particular application.

3. The objective might be to approximate a function that can be computed exactly at
any given combination of the input vanables; that 1s, there is no experimental error.

Of these, the first and third are certainly true for the process under current investigation,
with the importance of the second criterion being substantially reduced by the lack of
experimental error. It is thus likely that, for the noise analysis problem, a design which is close
to saturation will provide sufficient information to allow the necessary parameters to be
estimated with the required precision. Of those designs described in Section 8.1 which are of a
saturated or near-saturated nature, the most appropriate 1n the present circumstances would
appear to be the class of designs due to Hoke. These possess the advantage that both saturated
and near-saturated designs are available within the same scheme, and that these are valid for all
n = 3. A further advantage is that, in addition to the tests conducted by Hoke, independent
investigators have found that these designs perform well in comparison with alternative designs
having a similar, or greater, number of test points (Lucas, 1976, Khun and Cornell, 1987). For
these reasons, the Hoke designs have been chosen for use in the further investigation of the
engine noise problem, and the remaiming discussions of the present chapter will be restricted to
designs of this class.
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8.3 Description of the Hoke designs

The description of the Hoke designs presented in this section 1s based on that given by
Hoke (1974). Before demonstrating the way in which the Hoke designs are generated, it is
useful to adopt the following conventions. As with the designs of previous chapters, the scaling
convention of Section 2.12 is adopted, which, for tests drawn from the three level factorial
design, results in normalised vanable levels of -1, 0 and +1. Additionally, each of the test points
of the design is notated as (X; X5 X3 ... X,), at which each vanable i (for i=1, ..., n) is set to the
(normalised) level x;, which may take the value -1, O or 1. Further, let v (...) represent the
famly of test points obtained by permuting the symbols enclosed within the brackets. As an
example, 7w (-1 0 1) gives the set of ponts {(-101),(-110),(0-11),(01-1),(1-10),
(10-D)}.

In forming the Hoke designs, the complete set of 3™ factonal tests Sg is first divided
into subsets, such that each member of the r ' subset S, lies on the hypersphere of radius rl/2
about the centre point of the design (000 ... 0), for 0 < r < n. The total set is thus partitioned as

n
Srs=2 @S, (8.2)
f=0

where Y @ represents disjoint union

In order to lie on the hypersphere of radius r/2, each member of the set S, must have
exactly r vanables which take a non-zero value, such that

r n-r
— e —— e ——
S;=n(zl=l...x10 0 ... 0) (8.3)

Each S, is then divided 1nto further subsets S(j), in which exactly j of the non-zero
terms take the value +1, and the remaining r—j take the value -1. Each subset is then of the form

j n-r r-j
—— i et — . ot— e,
S(D=n(+1+1...410 0 ... 0 -1-1...-1) (8:4)

Special notation is used for the following three test points, within each of which all
variables are at the same level,
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$,0 =(¢1-1..-1) = -1
Sy =(00..0 =0
Syn) = (#1+1..+1) =1
As an example, the four variable subset S,(1) =t (1 0 0 -1) cons:sts of the following
twelve test points
xl Xz X3 X4
1 0 0 -1
1 0 -1 O
1 -1 0 O
0O 1 0 -1
0O 1 -1 0
0 o 1 -1
0O o0 -1 1
0 -1 1 0O
0 -1 0 1
-1 1 0 0
-1 0 1 O
-1 0 0 1

and the complete three level factonal is composed of the subsets

set r j  No.l) No.(0) No.(-1)

=j =n-r =1
S : 0 0 0 4 0 = (000 0)
S$:(0) : 1 0 0 3 1 = n(0 0 0-1)
S : 1 1 1 3 0 = n(1 0 0 0)
S,(0) : 2 0 0 2 2 = x(0 0-1-1)
Sx(1) : 2 1 1 2 1 =xn(l 0 0-1)
Sx(2) 2 2 2 2 0 =n(l 1 0 0)
S3(0) : 3 0 0 1 3 = n(0-1-1-1)
S3(1) : 3 1 1 1 2 = x(l 0-1-1)
S3(2) : 3 2 2 1 1 = xwm(1 1 0-1)
S3(3) : 3 3 3 1 0 =n(1 11 0)
S400) : 4 0 0 0 4 = (-1-1-1-1)
Su(1) : 4 1 1 0 3 = n{l1l-1-1-1)
542 : 4 2 2 0 2 =n(l 1-1-1)
S4(3) : 4 3 3 0 1 =xn(111-1)
S44) : 4 4 4 0 0 = (1111)
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As a companson with previous designs, examination of the above table shows that the
subset S, comprises the vertices of the hypercube, which are also the members of the 22 full
factorial design introduced in Section 4.3. Similarly, the star points of the CCD form the set S,
if a value of a = 1 is used (see Sections 6.1 and 6.4). The set of ponts Sq lying on a
hypersphere of radius zero contains just the single point (0 0 ... 0), which is the centre point of
the design space.

Working first with a seven variable example, and then generalising the results forn = 3,
Hoke selected four classes of these subsets as follows:

C:-1,0,1

Cz: 51(0), 81(1), S5.1(0), Sp.1(n-1), S,(1), Sy(n-1)
Cs : 840), S;(2), S,.5(0), Sp2(n-2), S,(2), S,(n-2)
Cyq : S3(0), S3(3), S,.5(0), S,,.5(n-3), S,(3), S,(n-3)

From these four classes, subsets were then combined so as to generate all of the
possible designs having (k+1)(k+2)/2 tests, each of these saturated designs then being analysed
to determine the most efficient 1n terms of minimizing the trace of the inverse information
matnx, tr{(X'X)-1]. Note that, for a given destgn size, X'X only differs by a constant from the
moment matnx N-1X'X used in previous chapters. The following three designs were found to
yield the best performance.

D, : -1, S,(n-1), S(1), S,(2)
D,: -1, S,(n-1), $4(0), S,(2)
Ds: 0, S,(n-1), S,.1(0), S,(2)

These designs are vahd for all n > 3. When n = 3 the subsets S (n-1) and S,(2) are
identically S(2), and the subset S(2) is replaced with S (1) in each of the above designs.

A sernies of minimally augmented designs was then derived by adding to each of the
above designs that subset of C, not already performed which gives the sharpest rise in precision
of estimation of parameters. The four best combinations were found to be

D,=D, ®S,(0)
D5= Dl @Sn-l(o)
Dg= D, ®S, ,(n-1)
D,=D;®S,(1)

Substitution of S (1) for S,(2) is again made when n = 3.
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Hoke denves expressions for the parameters, variance multipliers var(g)/o? for each
parameter, and values of tr[(X'X)-!] and |X'X! as a function of n, and quotes the following
performance data for each design in the case of n=7.

varB)  var(B) var(By) var(B,) u[(X’Xy] IX'XI

D, 0.047 0.050 0.050 0.101 2.165 0.5273x10%8
D, 0.055 0.050 0.050 0.101 2.172  0.5273x10%8
Dy 0.152 0.049 0.049 0.106 2.274 0.3847x1048
D, 0.039 0.046 0.050 0.048 1.748  0.1319x1051
Dy 0.043 0.047 0.049 0.051 1.757 0.2777x105!
Dg 0.055 0.043 0.049 0.051 1.735 0.3725x1051
D4 0.041 0.047 0.049 0.051 1.758 0.2611x1051

Table 8.1 Comparison of Hoke designs for seven variables

The best of the saturated designs, judged on a minimum tr[(X'X)-1] critenon is thus
D,, with the best minimally augmented design being Dy, It is interesting to note that designs Dy,
D, and D, contain only subsets of S and S,, whose members are all contained in the 2%
factorial and CCD star portion respectively. In contrast with the CCD, however, the total
number of points 1n each of the Hoke designs is substantially lower, so that for a seven variable
example 36 tests are required for a saturated design and 43 for a munimally augmented design,
compared with 79 tests for a CCD with half factonal (resolution VII) linear portion. A further
contrast with the CCD is that the values of the variance parameters for each class of variable are
of roughly similar magnitude. For the 36 term model derived from the 79 test CCD, Table 6.11
shows that the ratio of highest to lowest variance values was 12.6 : 1, whilst for the Hoke D,
design, above, itis just 2.1 ; 1, and for the minimally augmented design D falls to less than
1.3 : 1. Taking the D¢ design as an example, this equalisation has been partly achieved at the
expense of an approximately three-fold increase in the variances of the mean, main effect and
interaction terms. More importantly, however, the vanance of the pure quadratic parameters has
decreased by a factor of over 3.75.
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8.4 Application of the Hoke designs

Detailed numerical tests have been carned out using two of the Hoke designs described
in the previous sectton. To enable comparison with previous results, the seven variable noise
analysis problem introduced in Appendix 1C 1s again used as an example. The two Hoke
designs selected are the best performing saturated design, D,, containing 36 tests, and the best
of the minimally augmented designs, Dy, which contains 43 tests. In each case, the model to be
constructed using these designs is the strict quadratic model of equation (8.1), which 1n seven
dimensions contains 36 parameters. The results of these tests are compared with those obtained
in Section 6.5.3, also generated using the 36 parameter strict quadratic model, derived from the
79 test CCD.

The exact specification of the full set of test points used in each of the Hoke designs is
given 1n Appendix 8A. It is interesting to note the following features of each of these designs,
which may also be inferred directly from the descniption of Section 8.3.

1. Both designs include the subsets -1, S;(6) and S4(2). These are the points

(-1-1-1-1-1-1-1) : 1 point
(1 11111-1) : 7points
(1l 1-1-1-1-1-1) : 21 points

which all hie at the vertices of the two-level hypercube, and are thus members of the
2" factonial array. Each design thus includes 29 of the two-level factorial points.

2. Design D, contains the subset S,(1), whose members are &t (1 0 0 0 0 0 0), which,
for a CCD with a = 1, are the ‘upper” star points having parameter +a. Similarly,
design D contains the subset S,(0), whose members are 7t (0 0 0 0 0 0 -1), which
are the ‘lower’ star points of the CCD, having parameter -a.

3. Design Dy contains the additional seven points S¢(6), ormw (11111 1 0), which lie
at the centre of those edges of the hypercube which meetat (1 1 11 1 1 1). These
points can be expected to yield a particular advantage, since each will estimate the
effect of just one of the pure quadratic terms of the model, and will thus aid in
distinguishing between these parameters; a particular problem of the CCD.

4. In summary, the difference between the two Hoke designs is that D, uses the upper
star points, whilst Dg uses the lower star points, and also contains the seven
additional ‘edge’ points. Comparison with the 79 test CCD shows that each of the
two Hoke designs contains just under half the number of two level factorial tests,
half the number of star points, and no centre point test. D¢ also contains seven
additional tests not featured in the CCD.
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8.4.1 Comparison of model coefficients

The parameter estimates which are obtained using the CCD and each of the Hoke
designs are shown 1n Table 8.2.

Parameter CCD Hoke D, Hoke Dy

1. MEAN 86.711 86.691 86.713

2. A -2.2352 -22425 -2.2389

3. A? 98271x101 9.7734x10- 10363

4. C -3.8703x10-1 -3.7112x10-1 -3.7145x10-1
5 G -3.3550x10-t -3 2932x10-t -3.3063x10-1
6. F -23327x10-1 -2.3200x10-t -23522x101
7. D -2.2783x10-1 -2 2216x101 -22337x10-t
8& B -2 0402x10-1 -1.9640x10-1 -20124x10-1
9. D2 1.9729x10- 2.6731x107 1.3820x101
10 E -1.5832x10-1 -1.5679x10-1 -1.5687x10-1
11. G2 1.1884x10-1 1.1132x10-! 1.3657x101
12. F2 -78670x10-2 -1.5393x10-1 -8 0867x10-3
13 AG -77552x10-2 -94246x10-2 -94643x10-2
14. C2 6.5926x10-2 1.2771x101 2.1857x10-2
15. E2 58004x10-2 9 8444x10-2 3.7231x10-2
16 AD 51217x10-2 53462x10-2 53050x10-2
17. FG -4 6484x10-2 -3 8167x102 4.0363x10-2
18. CG -4 6205x10-2 -56190x10-2 -57624x10-2
19. AF -4 4455x10-2 -5.0221x10-2 -5.1124x10-2
20. AE -42211x10-2 -4 9408x10-2 -4 9483x10-2
21 FEF -23002x10-2 -24.3094x10-2 -4 4967x 102
22. B 2 2509%10-2 -8 8783x10-3 3 6786x10-2
23. AC 2.0781x10-2 8.4686x10-2 83275x10-3
24. DG -1.5427x10-2 -1.7113x10-2 -1.8777x10-2
25. BF -1.3916x10-2 -56973x10-3 -8 8220x10-3
26. BE 1.1641x10-2 -16102x10-2 -1 8399x10-2
27. CD 1.0701x10-2 2.1987x10-2 2.0578x10-2
28. EG -9.9781x10-3 -18383x10-2 -1.9751x10-2
29. AB 6 5416x10-3 -1 8266x10-3 -3 1523x103
30. BD 6.4857x10-3 1.5883x10-2 1.3290x10-2
31. BC -5 1977x103 4.4122x10-2 -4 6485x10-2
32 DF -3 9314x10-3 -3 0036x10-2 -3.2207x10-2
33. CF 3.3634x103 1.2399x10-2 1.0459x10-2
34. DE -2 0508x10-3 1.9413x10-2 1.8071x10-2
35 BG 1.4971x10-3 2 3847x102 2.1228x10-2
36. CE 2 8026x104 5.1286x10-2 50174x10-2

Table 8.2 Variation of parameter values for CCD and Hoke designs

It can be seen from this table that the use of either of the Hoke designs results in little
modification to the parameter estimates for the largest eight terms, compared with the estimates
obtained using the CCD. Many of the remaining estimates, however, differ substantially
between the three designs, with the pure quadratic terms being especially sensitive to the
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particular distribution of test points. As an example, the highest estimate for the D2 term 1s over
35% greater than the lowest value obtained, with the ratio of highest to lowest estimates for C2
being 5.8, and for F2 over 19, There is also a large degree of fluctuation in the estimation of
smaller interaction terms, with the parameter CE differing between designs by a factor of nearly
180.

The effect of different designs on the value of the estimated parameters can be seen
more clearly 1n Figure 8.1, in which terms 6 to 36 of Table 8.2 are plotted against their rank
order (using the CCD magmtudes as reference).

—o0— HokeD,

—o— HokeDs

Parameter 12 |

Yalue
crd
000 L. LE
Y

-0.12

j a
02 .11-_! \ : : : :

6 16 26 36

Rank order of parameter for CCD

Figure 8.1 Variation of parameter values for CCD and Hoke designs

This graph shows that the general trend of vatues for each parameter is broadly similar
for each of the designs, with the major differences occurring, with the exception of a number of
the pure quadratic terms, int parameters of lower value, lying towards the right hand side of the
graph. In interpreting these variations one should bear in mind the results of Sections 4.6.3 and
6.5.1. In the first of these 1t was shown that virtually all of the noise variation at two-level
factonal points can be accounted for using just the main effect terms of the linear model, whilst
Section 6.5.1 showed that, using the CCD, the only quadratic parameters which are found to be
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statistically significant are the terms A2 and D2. With the sole exception of the D? effect, the
estimate of each of these terms 1s largely unaffected by the use of erther of the Hoke designs
shown 1n Table 8.2, and it is thus likely, despite the discrepancy 1n the estimation of smaller
parameters, that each of these models will yield similar predictions throughout the whole design
vanable space.

8.4.2 Variance values

The vanance values which are obtained from the three designs for each class of term are
shown in Table 8.3.

Class of Term CCD Hoke D, Hoke Dg
Mean 0.0158 0.0465 0.0547
Main effects 0.0152 0.0503 0.0425
Linear interacttons 0.0156 0.0503 0.0489
Pure quadratic 0.1915 0.4048 0.2027

Table 8.3 Variance values for CCD and Hoke designs (n=7)

The variance values of the models derived from each of the Hoke designs which give
most cause for concern are thus those of the pure quadratic terms, as was the case using the
CCD. The halving of the number of star points in D, compared with the CCD, has resulted in
an approximate doubling of the variance values of the quadratic terms. A considerable increase
has also occurred in the variances of the mean, main effect and interaction terms, but these are
still of relatively small magnitude. As expected, the inclusion of the seven additional ‘edge’
points in design D¢ has led to a large reduction in the variances of the quadratic terms, so that
the performance of the Hoke D¢ design is roughly comparable with that of the CCD, despite
containing little more than half the number of test points.

Comparison of these variance values with those derived by Hoke, given in Table 8.1,
shows that, although the values for the mean, main effect and interaction terms are identical,
those for the quadratic terms are substantially different. The reason for this is a difference 1n the
scaling of the pure quadratic columns of the regressor matrix, a description of which s given in
Appendix 8B. The result of this difference 1n the specification of the fitted model is that, whilst
the coefficient values of the predictive model of equation (8.1) remain unchanged, as do
predictions calculated using these coefficients, different values are obtained for the elements of
the covariance matrix for the fitted model. An important effect of this difference in scaling is that
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the pure quadratic variances shown in Table 8.3 are exactly four times those obtained by Hoke.
This difference 1s of Iittle importance in comparing the ability of the three designs of Table 8.3 to
estimate accurately the pure quadratic parameters, since the adoption of an alternative scaling
method would result in the pure quadratic variances for each design being modified, equally, by
a factor of four.

What is of more importance, however, is that the vanances obtained using Hoke’s
scaling suggest that, for D , an error 1n estimation of one of the pure quadratic terms will lead
to an approximately equal prediction error as would an error in the estimation of any of the
mean, main effect or interaction terms (see Table 8.1). This is not the case, however, since, as
discussed 1n Appendix 8B, the peak value of each of the (scaled) quadratic terms of Hoke’s
fitted model is twice that of the other terms in the model, leading to a prediction error which 1s
proportional to four times the variance value, whilst for the other terms the prediction error is in
direct proportion. In contrast, if the scaling used to obtain the results of Table 8.3 is adopted,
the peak magnitude of each of the terms is equally 1.0, with the result that the error in prediction
is directly proportional to each vanance term, leading to a more informative comparison of the
variance values for each class of term.

8.4.3 Effect of scaling on the selection of optimum designs

A further important consideration, which is related to the choice of scaling for the
quadratic terms of the X matnx, is that Hoke’s cniterion for selecting the most efficient designs,
within the general class outlined in Section 8.3, is that the trace of the inverse information
matrix, tr[(X'X)-1], be minimized. The vatue of the trace 1s numerically equal to the sum of the
vanances for each parameter 1n the fitted model, and will clearly change if the pure quadratic
variances are modified by a change in scaling. The trace may be obtained, for a given design, by
multiplying each of the appropriate vanance values of Table 8.1 or 8.3 by the number of terms
to which it applies, and summing the resulting four values. Since the change in scaling
described above will only affect the magnitude of the pure quadratic variances, the relative
contribution to the trace made by these values will vary by a factor of four. Since, additionally,
the proportion of the trace vatue which is due to the quadratic variances differs between designs,
it follows that the relative size of tr[( X'X)-1] between different designs will also be modified if
an alternative quadratic scaling 1s adopted. This 1s likely to lead to a different conclusion as to
which of the full set of possible designs 1s the most efficient, in terms of the chosen criterion.

As an example, consider the two best saturated designs of Table 8.1, D; and D5, and
the two best augmented designs, Dy and D,. Table 8.4 shows the variance values and the
resulting trace using each of the scaling methods, in which the numeral “1° refers to the pure
quadratic variance and trace obtained using Hoke’s scaling, as in Table 8.1, whulst ‘2’ refers to
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the values obtained using the scaling of Table 8.3, in which the pure quadratic variances are four

times as large. The vanances of the mean, main effect and interaction terms apply to both
methods.

var (B}  var(B) va.r([:!lj) var (B;;)1 var(f;)2 tracel trace 2

Dy 0.047 0.050 0.050 0.101 0.405 2.165 4.290
D, 0.055 0.050 0.050 0.101 0.404 2.172 4.285

Dy 0.039 0.046 0.050 0.048 0.192 1.748 2.757
Dg 0.055 0.043 0.049 0.051 0.203 1.735 2.799

Table 8.4 The effect of quadratic scaling on the frace of
Hoke designs in seven variables

Comparnson of the traces for the two saturated designs shows that the advantage of D,
over D, is slightly smaller using the scaling of Table 8.3 than if Hoke’s scaling is used. For the
augmented designs, Table 8.4 shows that the choice of most efficient design will change 1if the
scaling of Table 8.3 is adopted, with D, now having a smaller trace than the previously optimal
D

If this alternative method of scaling is used, then 1t is clear that, since the effect of
quadratic vanance on the value of the trace is now much greater, the characteristics of an optimal
design, whether saturated or augmented, are likely to be substantially different to those required
previously. Therefore, since each of the designs listed in Table 8.1 are optimal, or nearly so,
when using the previous scaling method, they are unlikely to be optimal if the alternative
approach is used. In order to 1dentify an optimum design based on the new scaling it is thus
necessary to consider all possible combinations of the subsets of the 32 full factorial array, as
described in Section 8.3. Aninvestigation of this nature would be a major undertaking in 1tself,
and goes beyond the scope of the present work.

8.4.4 Covariance

It was shown in Section 6.5.1 that the only non-zero off-diagonal elements of the CCD
covariance matrix are those representing covariance effects between the mean and pure quadratic
terms, and between pairs of pure quadratic terms. Each of the two Hoke designs, however,
have a dense covariance matrix, with covariance effects occurring between all pairs of terms of
the fitted model. The value of all non-zero elements of the covariance matrix for each of the
three designs are given in Table 8.5.
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Class of Term CCD Hoke Dy Hoke Dg
MEAN B; 0.0040 0.0065
MEAN Bii -0.0018 -0.0009 -0.0013
MEAN By -0.0048 -0.0060
B; B -0.0043 -0.0033
B; B;; -0.0299 -0.0071
B; Bjj 0.0066 0.0020
B, Byj 0.0043 0.0023
B, Bix -0.0035 -0.0031
B Byj -0.0308 -0.0640 -0.0309
B;; Bi; -0.0048 -0.0055
B, Bk 0.0004 0.0013
Bij Bk -0.0043 -0.0051
Byj B 0.0035 0.0033

Table 8.5 Covariance values for CCD and Hoke designs (n=7)

This table shows that, although the covariance matrix for each of the Hoke designs is
full, many of the terms are of a very small magnitude. The two largest terms for D, are the
interaction between a given main effect and the quadratic effect in the same variable, and
between pairs of quadratic effects. For D¢ only the covariance between pairs of quadratic terms
is significant, and the value of this effect is similar to that obtained for the CCD.

8.4.5 Predictive ability of Hoke designs

To assess the prediction accuracy of the designs derived from each of the Hoke models,
the lack of fit was calculated at locations specified by the three categories of test points described
in Section 6.5.1. When companson of these results is made with the results obtained using the
CCD it should be borne in mind that the number of points which lie within each category is not
necessarily the same in each case. Additionally, since each of the two Hoke designs only use
half of the CCD star portion and do not contain a centre point, these extra eight tests, which lie
at important locations within the design space, are included as a separate category. Note that
design D, uses the ‘upper’ star points and Dg the ‘lower’, so that the identity of the seven star
points used solely to calculate lack of fit is different in each case. The numbers of tests which
fall in each category for the three designs are shown in Table 8.6.
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Number of points 1n each category

Design Design  Factorial  Star Higher Total
CCD 79 64 16 159
Hoke D, 36 99 8 16 159
Hoke Dg 43 99 8 16 166

Table 8.6 Number of points used to calculate
lack of fit data for CCD and Hoke designs (n=7)

Since each of the Hoke designs contain 29 of the 2™ factorial points, compared with 64
for the CCD, the additional 35 points are included in the ‘Factorial’ lack-of-fit category. The
extra seven tests which are used for the Dg design are the ‘edge’ points which constitute the
augmentation to the saturated design, as described in Section 8.4. The 16 points which form the
*Higher’ category are identical for each design, and are as specified 1n Section 6.5.1 and
Appendix 6A.

The maximum and average lack of fit values which occur within each of the categories
of test point are given 1n detail in Appendix 8C. A summary of the average lack of fit values, in
terms of the percentage of the function range, is given in Table 8.7.

Average lack of fit — Eg
Design Design  Factorial  Star Higher  All tests

CCD 0.68 0.86 2.61 0.94
Hoke D, 0.00 1.40 1.08 2.66 1.20
Hoke Dg 0.13 1.44 1.01 2.62 1.20

Table 8.7 Summary of lack of fit data
for CCD and Hoke designs (n=7)

As discussed 1n previous chapters, the lack of fit which occurs at design points 15
largely determined by the degree of saturation of the experimental design, with the saturated D,
design giving zero lack of fit at these points. The performance of the two Hoke designs at the
factonal points 1s substantially worse than the CCD, reflecting the fact that over 50% more tests
are included in this category for the Hoke designs. The highest average lack of fit for each
design occurs at the ‘Higher’ test points, and at these locations the Hoke designs are performing
almost identically to the CCD, with Dy marginally better than D,. The star points and centre
point are important measures of the performance of the model, since they lie at the highest
distance from any of the design points of the Hoke designs, and at these points the average lack
of fit 1s lower than at either the ‘Factorial’ or ‘Higher’ points. Over the full set of tests, the
average lack of fit for the two Hoke designs is virtually identical, with the performance of each
of them only slightly inferior to that of the CCD. This is despite the fact that the number of tests
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in design D, is only 46% of that used in the CCD, whilst the augmented design contains just
54% of this number. These results show that the Hoke designs meet the requirements of
munimising the required number of tests, whilst not compromising the prediction accuracy of the
resulting model.

8.5 Observations on the use of Hoke’s economical second order designs

The main conclusions to be drawn from the numerical tests carried out in the previous

section are as follows.

The prediction accuracy of each of the two Hoke designs tested was found to be similar to
that of the 79 test CCD, despite requiring far fewer tests, On the basis of prediction
errors, no reason was found for choosing the minimally augmented design, D, rather
than the saturated design D;, which requires fewer tests.

The parameter estimates for the main effects of the predictive model were found to be
very similar whichever of the three designs (CCD, D,, Dy) was used. The value of the A2
parameter, which 1s the dominant quadratic effect, was also found to vary little between
designs, although other quadratic coefficients, and a number of small magnitude
interaction parameters, were found to exhibit a high degree of variability.

The largest of the variance terms obtained using the Hoke designs are those for the pure
quadratic terms. A disadvantage of the saturated design D, is that these variances are
twice the size of the corresponding values for the CCD, whilst the minimaily augmented
design Dg yields vanances of approximately equal magmtude to the CCD.

The way in which the pure quadratic columns of the regressor matrix are scaled has a
critical influence on the selection of an optimum design. If an alternative scaling factor to
that used by Hoke is adopted, in which the quadratic terms have a peak value of 1.0, then
the design D4 has a lower trace than the previously optimum design Dg. Other designs of
the full set investigated by Hoke are likely to perform better under this new scaling
method.

Hoke’s economical second order designs have been found to provide an extremely useful
alternative to the CCD for the approximation of the engine noise response surface which
is used in the current investigation, in that they yield approximately the same accuracy of
prediction throughout the design variable space, whilst having a much reduced test
requirement. No improvement over the CCD has been found, however, in terms of
reducing the variance of the pure quadratic terms of the fitted model. Under the alternative
scaling method, which results in a greater contribution to the matrix trace from the
quadratic variances, it is likely that improved designs may be found which reduce both
the overall trace and the quadratic variance. Further work is required in this area.




Appendix 8A

Specification of test points for Hoke designs in seven variables
(Section 8.4)

Hoke D,

Variable
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Hoke Dﬁ
Variable
A B C D E F
0060 0200 0200 0040 0100 0200
0060 0320 0320 0140 0250 0320
0120 0200 0320 0140 0250 0320
0120 0320 0200 0140 0250 .0320
0120 0320 0320 0040 0250 0320
0120 0320 0320 0140 0100 0320
0120 0320 0320 0140 0250 0200
.0120 0320 0320 0140 0250 0320
0060 .0260 0260 0090 0175 0260
0090 .0200 0260 0090 0175 0260
0090 0260 0200 0090 0175 0260
0090 0260 0260 0040 0175 0260
0090 0260 0260 0090 0100 0260
.0090 0260 0260 0090 0175 0200
0090 0260 0260 0090 B175 0260
0120 0320 .0200 0040 0100 0200
.0120 0200 0320 0040 0100 0200
0120 0200 0200 0140 0100 0200
0120 .0200 0200 0040 0250 0200
0120 0200 0200 0040 0100 0320
0120 0200 0200 0040 0100 0200
0060 0320 0320 0040 0100 0200
0060 0320 0200 0140 0100 0200
0060 0320 0200 0040 0250 0200
0060 0320 0200 0040 0100 0320
0060 0320 0200 0040 0100 0200
0060 0200 .0320 0140 0100 0200
0060 0200 .0320 0040 0250 0200
0060 0200 0320 0040 0100 0320
0060 0200 0320 0040 0100 0200
0060 0200 0200 0140 0250 0200
0060 0200 0200 0140 0100 0320
0060 0200 0200 0140 0100 0200
0060 0200 0200 .0040 0250 0320
0060 0200 0200 0040 0250 0200
0060 0200 0200 0040 0100 0320
0090 0320 0320 0140 0250 0320
0120 0260 0320 0140 .0250 0320
0120 0320 0260 0140 0250 .0320
0120 0320 0320 0090 0250 0320
0120 0320 0320 0140 0175 0320
0120 .0320 0320 0140 0250 0260
0120 0320 0320 0140 0250 0320

0120
0120
0120
0120
0120

0120

0120

0120

0120
0120
0120
0120
0120
0120
0120
0120
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Appendix 8B
Scaling of orthogonal polynomials

It was shown 1n Section 5 2 that a diagonal moment matrix cannot be obtained when fitting a quadratic
model, so that the design cannot meet the orthogonality cniteria outlined in Section 2 12, An alternative approach
may be taken, however, by rearranging the predictive model in terms of certain polynomual functions of the input
vartables (Box and Hunter, 1957). These polynomal functions may be chosen in such a way as to achieve
mutual orthogonality. As an example, consider a simple one-dimensional design consisting of three tests at levels
-1, 0 and +1. If the mode] to be estimated from these tests is of the form

Y =Bo + B1x1 + Puxt (8B.1)
then the X matnx will be as follows:

I X1 x%
1 -1 1

X=| 1 0 0 (8B.2)
1 1 1

It can be seen that, whilst the second column is orthogonal to each of the other two, the first and third
columns are not orthogonal. Orthogonality may be achieved by rewnting the predictive mode! in terms of
polynomal functons of the original vanable, as follows:

Y = oo + cix1 + an(3xf - 2) (8B 3)

where the original coefficients of (8B.1) may be expressed as

o =99 - 2ay
B =
B11=3ay;

The design matrix is now

0o -2 (8B4)

b b s
]
)
et

with each of the columns orthogonal to the other two. An addrtional effect of rewniting the prediction equation as
(8B.3), however, is that the peak magmmude of the third term is twice that of each of the other two. The result of
this is that the maximum contribution to the standard prediction error which is made by an error in the estimation
of the third term is proportional to twice the standard error of the coefficient in that term. In general, this does not
cause a particular problem for the investigator, since the values of the coefficients of the original predictive
equation (8B.1) remain unchanged, as does the prediction at any chosen point in the design variable space. A
problem arises, however, if the standard etrors of the coefficient estimates {or their variance values, which are the
squares of the standard errors) are used independently as a measure of the performance of an experimental design.
In particular, one criterion which may be adopted for the assessment of designs is the minimization of
the prediction variance. If the design is orthogonal, with equal peak values in each of the fitted terms, then the
maximum variance in prediction which is contributed by each term is in direct proportion to the vanance on the
estimate of that term (see Appendix 2B). One possible measure of prediction variance, then, is the trace of the
covariance matrix, which is equal to the sum of the individual coefficient variances. If, however, as in the
example of equation (8B 3), the peak value of each of the terms in the predictive equation 1s not equal, then the
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trace of the covariance matrix is no Ionger a measure of the sum of contnbutions to the prediction variance of the
individual terms. In this case, a weighted sum of individual contnbutions might perhaps be used, with the
weightung reflecting the relative peak value of each of the terms involved.

Sections 8 3 and 8.4 are an example of the use of the trace of the covariance matrix 1n assessing
competing designs. In this case, however, the orthogonal polynomials are chosen as shown in (8B.3) and (8B .4),
whlst the criterion for judging designs is simply the sum of the unweighted coefficient variances. The use of this
critenion is thus inappropriate to the choice of orthogonal polynomials, and does not give an accurate indication
of the maximum likely error in prediction.

A simple means of rectifying the disparity in peak vanable values of the model of equation (8B.3) is to
scale the third polynomial function such that its peak magnitude is equal to those of the other two. The modified
predictive model would then be as shown 1n equation (8B 5).

Y=wo+lplx1+w:1[-;-(3xf-2)] (8B.5)
The onginal coefficients of (8B.1) may then be expressed as
Bo=vo -¥11
B =¥
B11= 1591
The design matrix now becomes
1 Xl 1’28!%-2)
1 A )
X= 1 0 -1 (8B.6)
1 1 lp

with the columns mutually orthogonal, and each having a peak magmitude of 1.

Even in this case, however, there stll remains the question of whether a mummal covariance matnx
trace is a suitable measure of the performance of a design, 1f it is the prediction variance which the investigator
seeks to reduce. It should be noted that the trace of the covanance matnx provides an 1ndication of the maximum
prediction vanance which could occur of all of the terms of the fitted equation were simultaneously to take their
peak values. If, in the simple one-dimenstonal example demonstrated here, the terms to be estimated were those
of equation (8B 1), (i.e. the mean, the linear term x,, and the quadratic term x,2), then a value of x = 1 would
indeed result in each term simultaneonsly taking a value of 1, If the orthogonal polynomials of either (8B.3) or
(8B 5) are used, however, then (8B 4) and (8B 6) show that the maximum value of the third term of the predictive
equation occurs when x = 0, so that maximum prediction error cannot be simuitaneously contributed by all three
terms. A better measure of maximum prediction error might thus be one which takes into account the relative
magmtudes of the terms of the predicuve equation at different levels of the original input variables. Further work

13 required 1n this area.
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Appendix 8C
Lack of fit data for CCD and Hoke designs
In each of the following tables, the CCD used compnises 79 tests {see Section 6 5.1), whilst the Hoke

D, design contains 36 tests and the Hoke D¢ has 43 (see Section 8.3). In each case the model constructed using
the three designs 1s the 36 term strict quadratic model introduced in Secion 6 5.3,

No of Iof Maximum lack of fit Average lack of it
Design tests dB(A) Fr dB(A) Eg
CCD 79 0306 402 0052 0.68
Hoke D, 36 0000 000 0000 000
Hoke Dy 43 0046 062 0010 013

Table 8C.1 Summary of lack of fit at design points for CCD and Hoke designs (n=7)

No of lof Maximum lack of fit Average lack of fit
Design tests dB(A) Egx dB(A) Ep
CCD 64 0202 265 0.065 0.86
Hoke D, 99 0.317 4.14 0107 1.40
Hoke Dy 99 0338 449 0108 144

Table 8C.2 Summary of lack of fit at factorial points for CCD and Hoke designs (n=7)

No. of lof Maximum lack of fit Average lack of fit
Design tests dB(A) Ep dB(A) Er
Hoke D, 8 0.188 245 0.083 1.08
Hoke Dy 8 0.164 218 0076 1.01

Table 8C.3 Summary of lack of fit at star points for CCD and Hoke designs (n=7)

No. of lof Maximum lack of fit Average lack of fit
Design tests dB(A) Eg dB(A) Ex
CCD 16 0476 6.24 0199 261
Hoke Dy 16 0.510 665 0204 266
Hoke Dy 16 0.520 6.90 0197 262

Table 8C.4 Summary of lack of fit at additional points for CCD and Hoke designs (n=7)
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9. Optimization using response surfaces

The purpose of the present chapter is to demonstrate the way in which practical
optimization studies may be carried out using the response surface methods discussed in
previous chapters. A number of case studies are presented which demonstrate the flexibility of
this method in investigating a large number of combinations of different objective and constraint
functions. Each example uses the fimte element model of the four cylinder in-line diesel engine
introduced in Appendix 1C, and the design variables used are selected from the seven which are
described in that section.

Five examples are presented, the aims of which are as follows.

Unconstrained noise optimization.

Noise optimization with a known mass constraint .

Mass optimization with a known noise constraint.

Sweep through the full range of possible mass constraints to give the
noise-mass trade-off within the design variable space.

5. Optimization using discontinuous variables.

WD

These numerical trials have all been carried out using the computer program optrsm,
which 1s described in Appendix 1B. The ‘computer experiments’ which were performed in
order to obtain the function values at the required test points were carried out using the analyser
program descnibed in Appendix 1A. In many of the examples the mathematical models of the
response surfaces which are used have been introduced and discussed in earlier chapters. These
are referenced where appropriate, and may be consulted for further information on, for
example, coefficient values and quality of fit.

9.1 The optimization algorithm

The optimization routine used for all of the numerical examples presented in this chapter
is taken from the NAG software library (NAG, 1983). It 1s designated EQ4VDF, and is
designed to perform minimization of any arbitrary smooth objective function, subject to a
number of constraints. These constraints may include simple bounds on the input variables and
functional constraints which are either linear or smoothly non-linear. It should be noted that this
routine is different from that used in the example of Section 1.6. The principal reason for
selecting a different routine is that, in contrast with the direct iterative method, the use of a
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simplified mathematical representation of each function allows analytic calculation of gradient
information. The use of gradient information is extremely beneficial, in that it yrelds a
substantial increase in the efficiency of the numencal optimization procedure, since it 1s both
more accurate and less computationally expensive than the calculation of finite difference
approximations to the required gradients.

The information which must be supplied to the optimization routine is as follows.

1. Number of design variables

2. Upper and lower bounds on each variable.

3. A subroutine which calculates the value and gradients of the objective
function at a given point.

4. A subroutine which calculates the value and gradients of each of the
constraint functions at a given point.

5. Upper and lower bounds on each of the constra:nt functions.

6. The location of a point in the design variable space at which to commence.

Of these six requirements, the first two will already have been decided prior to carrying
out the computer experiments. Items 3 and 4 access the mathematical representations of, each
function which have been generated using the response surface methods developed in previous
chapters. Since each response surface 1s a simple polynomial expression, a general algornthm
for the calculation of first denvative information with respect to each of the design variables is
readily formulated, and has been included in the program optrsm. The choice of appropriate
constraint bounds is discussed in Section 9.6, below. For both the design variables and the
constraint functions, an equality constraint can be specified by setting the upper and lower
bounds to 1dentical values. Alternatively, each variable or constraint may be left unbounded in
either direction.

The final prece of information which must be supplied to the optimization routine is the
specification of a point in the design space at which to commence optimization. The location of
this point is only critical if the response surface has a number of local minima, since the
selection of an alternative starting point may then lead to a different, and better, minimum. If the
routine can be relied upon to identify a global optimum under alt conditions, however, then the
only benefit to be gained from a better selection of this point is a reduction in computational
effort — a point chosen close to the location of the required opumum can be expected to result in
a smaller number of function calls. When using low order polynomial response surface, the
scope for such local minima is very limited, and it has been found, in practice, that the selection
of an alternative starting point is needed only rarely.

A procedure which has been developed for the selection of a starting point is to choose
the test point which has the ‘best’ objective function value, whilst still observing each of the
constraint conditions. The choice of this point is automated within the optrsm program, and has
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the advantage that it 1s more likely to lie close to the final optimum than any of the other
expenimental test points, and much more likely than any random selection within the design
variable space. It should be noted that this method of providing a ‘head start’ for the
optimization cannot be used when using a direct iterative approach to optimization, since an
essential prerequisite is a substantial amount of widely distributed function information. If it1s
found that the starting point chosen results in the identification of a local minimum, then an
alternative starting point can be selected, such as the point at which all vanables are at their low
(or high) bound. An example of such a case is given 1n Section 9.8.

9.2 Unconstrained noise optimization

As an introduction to the use of response surfaces for optimization, the first example
involves the search for the lowest possible noise value within the design variable space,
1respective of the value of any other function. All seven of the design variables described 1n
Appendix 1C are included in this study. The design region is investigated using a fuil factorial
design, involving 128 tests, which 1s the same as that presented in Section 4.1. Table 9.1 shows
the specification of the optimum design which is identified in this study, and it can be seen, by
companson with Table 1C.1, that this design lies at the high bound of each of the design
vanables.

Optimum value of noise function = 84,1 dB(A)
Total mass of block at optimum = 1853 kg
Optimum value of vanable A = 120 mm
Optimum value of variable B = 320 mm
Optimum value of variable C = 320 mm
Optimum value of variable D = 140 mm
Optimum value of variable E = 250 mm
Optimum value of variable F = 320 mm
Optimum value of variable G = 120 mm

Table 9.1 Unconstrained noise optimum using full factorial design

Before considering the implications of the [ocation of this optimum, some observations
are required on the nature of the approximating response surface used, and on the effect of this
choice on the optimization process.
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In this introductory example the response surface denved from the tests only contains
terms which are either main effects or linear interaction terms, so that identification of the
minimum noise design 1s extremely easy to carry out. Indeed, it is possible to make an estimate
of the location of the optimum design by simply considering the coefficient values of the
mathematical model. It was shown in Sections 4.2 and 4.3 that the noise surface is dominated
by the largest fifteen coefficients, which are listed 1n Table 4.4, repeated here as Table 9.2.

1. MEAN 8.8082x10+1
2. A -2.2377

3. C -3.8596x101
4. G -3.3608x101
5. D -2.3021x101
6. F -2.2872x101
7. B -1.9920x10-1
8. E -1.5888x10-1
9. AG -7.4246x1(r2
10. AD 5.2756x10-2
11. AF -4,6907x10-2
12. CG -4.4956x10-2
13. AE -4.4724x102
14. FG -4.4068x10-2

15. ACG 3.5056x10-2

Table 9.2 Significant noise coefficients for full factorial test (n=7)

It can be seen that all of the main effect coefficients have a negative sign, as do all but
one of the two-way interaction terms. This suggests that the lowest noise value will be found
when all variables have their largest values. If this is the case, then the optimum will occur at
one of the original test points, since all of the vertices of the hyperspace are tested in a full
factorial design. This presents a problem when selecting a starting point for demonstration
purposes, since, if the test point which has the best objective function value 1s chosen, as
suggested above, then this will result in the optimum point being used as the starting point, and
no iterations will be performed. In order to demonstrate the search for an optimum value, an
alternative staring point has been chosen for the example presented here. This is the point at
which each of the vanables has its lowest value, which hes at the furthest possible distance from
the expected optimum.

The search history of this optimization test is presented in Table 9A.1 of Appendix 9A,
and shown graphically in Figure 9.1.
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Figure 9.1 Search history - unconstrained optimization in seven variables using
a full factorial design (128 tests)

The search history shows that the optimum has been identified using just 11 function
calls, and that, as expected for a simple linear function, the noise decreases monotomcally with
increasing mass. The small number of iterations performed 1s in contrast with the example of
direct 1terative optimization shown in Section 1.6, which involves just three design vanables,
and yet requires 20 calls to locate the minimum, and a further 25 to confirm 1t.

Although the number of function calls required at the optimization stage is far fewer
than the example of Section 1.6, it should be remembered that in order to construct the analytic
response surface, 128 calls to the analyser program were performed. Additionally, the analysis
of Section 4.1.2 showed that there was significant lack of fit at locations away from the vertices
of the hypercube when using a linear model, so that there is the possibility that some inaccuracy
in locating the optimum has occurred due to the presence of higher order components of the
noise response. The analyses of Chapters 6 - 8 have shown that both of these issues can be
addressed by using an economic second-order design, such as those of Hoke.

If the optimization is repeated using the minimally augmented Hoke design D¢ (see
Section 8.3), then the opiimum which is found is that shown in Table 9.3. Since the value of
each of the quadratic terms 1s substantially lower than the main effect in the same variable, as
shown by the parameter listing of Table 8.2, it 1s expected that the unconstrained optimum will
still lie approximately at the upper bound of all variables. Table 9.3 shows that this is indeed the
case, with only vanable D moving away from its upper bound. The fact that variable D is the
most likely to move away from its bound can be deduced from Table 8.2, which shows that
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variable D has the highest ratio of quadratic coefficient magmtude to main effect magnitude. The
search history is shown graphically in Figure 9.2.

Optimum value of noise function = 84,0 dB(A)
Total mass of block at optimum = 1841 kg
Optimum value of variable A = 120 mm
Optimum value of variable B = 320 mm
Optimum value of variable C = 320 mm
Optimum value of variable D = 121 mm
Optimum value of variable E = 250 mm
Optimum value of variable F = 320 mm
Optimum value of vanable G = 120 mm

Table 9.3 Unconstrained noise optimum using Hoke design
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Figure 9.2 Search history - unconstrained optimization in seven variables using
a minimally augmented Hoke design Dg (43 tests)

Although a second-order model is now being used, this only contains 36 coefficients,
rather than the 128 coefficients of the full factorial design, with the result that the solution
converges after just 8 function calls. In addition, the number of calls to the analyser program
required by the Hoke design is just 43 - two less than the 3 variable direct optimization problem
of Section 1.6.
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Returning to the location of the optimum design, this example suggests that, 1f no
constraints are applied, the optimization routine will select a design which is as heavy as
possible, so that the location of the optimum is determined solely by the specification of the
upper bound of each vanable. This agrees both with experimental findings and with vibration
theory, since an increase in component dimension will result in a linear increase in mass, but a
larger increase in stiffness, due to the squared increase 1n cross section. The natural frequencies
of the structure will thus increase, so that fewer resonance conditions can occur in the frequency
range of interest. Of more importance 1s that, at a given engine speed, each resonance will be
excited by higher orders of engine excitation, which are in general of lower magnitude. These
factors will together lead to a reduction 1n both vibration response and radiated noise.

In the present example, the onginal block design, whose specification is given in
Appendix 1C, produced a noise level of 92.9 dB(A), with a mass of 139.2 kg. Although a
predicted reduction in noise of nearly 9 dB(A) has been achieved, an increase in mass of nearly
45 kg has been incurred, which 1s nearly a one-third increase in the total block mass. A mass
increase of this magnitude 1s unlikely to be acceptable to the engine designer, and it 1s for this
reason that an unconstrained noise opttmum is rarely of practical use. Only if the range of each
vanable is extremely limited, or the number of vanables small, is the maximally heavy design
likely to be an acceptable result. If this is the case, however, then there 1s little benefit in
carrying out a numerical optimization study, and the upper bound of each variable can be
selected without the need for detailed analysis.

9.3 Noise optimization with a known mass constraint

The second example expands on the previous study, in that a mass constraint will now
be applied to the optimization problem. The aim is to identify which combination of the five
vanables included 1n the original design will have the lowest radiated noise value, whilst
incurring no mass increase over the oniginal engine block. A seven variable example with a
zero-mass-change constraint is not possible in the present case, since, if all seven variables were
included, the mass constraint would be violated even with each at its lower bound.

The response surface was investigated using a five-dimensional minimally augmented
Hoke design D4, which requires 26 tests. The parameter estimates which were obtained for the
noise surface are given in Table 9A.2 of Appendix 9A. The lack of fit in the model was tested
both at the design points and at a set of additional points, which are those tests of the
appropriate CCD (with full factorial portion and a = 1) not included in the Hoke design. A
summary of the lack of fit calculations is given in Table 9.4, and suggests that the model
constructed is providing a good representation of the original response.
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No. of  Maximum lack of fit Average lack of fit
Category tests  dB(A) Eg dB(A) Er
i) Design points 26 0.1584 2.6509 0.0488 0.8290
i1y Additional points 17 0.4647 7.8936 0.2119 3.5997
Average over all 43 tests 0.1133 1.9244

Table 9.4 Summary of lack of fit calculations for Hoke D4 design
with 26 tests and 21 coefficients (n=5) - Function : noise

The optimization tnal was then carried out, with the mass constraint chosen to give a total
block mass of 139.2 kg, which is the mass of the onginal design. A summary of the search
history, starting from the test point which has the lowest noise, whilst obeying the mass
constraint, is given in Table 9A.3 of Appendix 9A, and is shown in graphical form in
Figure 9.3. This graph shows that the solution converges very rapidly. The reason for this can
be seen from Table 9A.3, which shows that the search commences from a point at which three
of the five vanables are already at their optimum values.
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Figure 9.3 Search history - optimization with zero-change mass constraint
starting from best constrained test point
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This example demonstrates the advantage of commencing the optimization search from the
analyser test which has the best constrained objective function value. If the search is started
from the original design point, which has no variables at their optimum values, as shown in
Table 9A.4, then nearly 50% more calls are required to locate the optumum, as shown in
Figure 9.4.

93 47 202
*— - ———————& ~ 47.200
A kg
dB(A) re 1 pW . 47.198
92 -
—0— Nose
- 47.196
~—&— Mass
o———o—o—o—o° - 47.194
91 — T v T v T T — 47.192

Call number

Figure 9.4 Search history - optimization with zero-change mass constraint
starting from initial design point

The specification of the opttmum which has been located, together with that of the initial
design, is shown in Table 9.5. This shows that a predicted reduction in noise of 1.5 dB(A) has
been gained, with no increase in mass. It is interesting to note that the optimizer has chosen to
increase the thickness of bearings 1 and 5 (variable B), and yet reduce the thickness of the three
middle bearings (variable C). The results also show that it is much more beneficial to increase
the thickness of the crankcase skirt (variable A) than that of the longitudinal stiffener, even
though this was 1ncluded in the original design with the particular aim of reducing noise. These
changes 1n variable value provide a good illustration of the need for a comprehensive numerical
optimization approach to noise reduction, since without such a tool a designer would be
extremely unlikely to choose such a combination of wall thicknesses.
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Variable Mass Noise
A B C D G kg dB(A)

Initial 9.0 260 260 90 90 139.2 92,9
Optimum 12.0 32,0 200 6.0 6.6 130.2 91.4

Table 9.5 Initial and optimum designs under zero-change mass constraint

It can also be seen from Table 9.5 that, in contrast with the unconstrained optimization
study, in which all design variables increased from their initial values, only some of the
variables have gained in thickness. The others have not just remained unchanged, but have
actually been reduced, even though, as shown by the coefficient values of Table 9A.2, their
reduction leads to an increase 1n noise. This reduction is a direct result of the imposition of a
functional constraint. A more detailed discussion of this charactenstic is undertaken in
Section 9.5, particularly with regard to 1ts influence on the selection of design variables prior to

optrmization, and the investigation of multiple levels of a constraint function.

9.4 Mass optimization

in Table 9.6.

In addition to carrying out a mass constrained optimization study, the flexibility of the
response surface approach allows the engineer to investigate the optimum mass design for a
given noise constraint without having to carry out any more expensive analyser calls. This
ability may be of particular benefit if, for example, a design 1s required to conform to a
maximum noise level imposed by legislation. Using the same response surfaces as those of the
previous example, a mass optimization trial has been carmed out using a noise constraint of
92.9 dB(A), which is equal to the noise level of the original design. The search history of this
trial, starting from the initial design point, 1s shown 1n Figure 9.5, where, after allowing a
temporary violation, the effect of the noise constraint can be clearly seen. The specification of
the optimum design which results from this trial, together with that of the initial design is shown




234

933

932

93.1 -
dB(A) re 1 pW

93.0 J

929 -

928

927

Call number

Figure 9.5 Search history - optimization with zero-change noise constraint
starting from initial design point

Variable Mass Noise
A B C D G kg dB(A)

Initial 90 260 260 90 9.0 1392 92,9
Optimum 12.0 200 20.0 64 6.0 1324 929

Table 9.6 Initial and optimum designs under zero-change noise constraint

9.5 Selection of variables for optimization

The factors which influence the selection of design variables for various types of noise
optimization study can be illustrated by considering 1n a simplified way a method by which an
investigator might amve at an optimum combination of design variable values. Suppose that a
strictly linear (main effects only) response surface is being used, and that a minimum noise
design is sought. Assume also that an increase in design vanable value yields both an increase
in mass and a decrease in noise, as 1n the examples presented above.

Suppose first that no functional constraints are applied, but that, as is always the case in
 practice, a linut is placed on the number of design variables which it is practical to investigate
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with the available resources. In selecting which variables to include, the investigator simply
seeks to choose those which will give the greatest reduction in noise with respect to changes in
the parameter being vaned, such as component thickness. Thus, variables which have a high
noise sensitivity are of great interest, whulst those displaying a low noise sensitivity are of
relatively little interest.

When carrying out a constrained optimization, however, the situation is substantially
different, in that the investigator is not necessarily free to exploit all of the noise reduction
potential of the design variables he has chosen. He must also consider the change which occurs
1n some other (constrained) function, such as structural mass, which must be kept within a
predefined range. If a constraint level is applied which allows an increase in mass over the itial
design, then, 1n modifying the component thicknesses of the initial design in order to reduce
noise, the investigator might be considered as having a certain amount of ‘free’ mass to
allocate. In choosing which vanable(s) to allocate this ‘free’ mass to, he seeks to gain the
maximum return, in terms of noise reduction, for the mass allocated. At this stage, the
procedure for selection of variables is only a slight modification of that followed for
unconstrained optimization, in that variables are now sought which will give the greatest
reduction 1n noise with respect to changes in the structural mass, rather than in component
thickness. Vanables are thus selected which have a large noise/mass sensitivity.

Once this ‘free’ mass has been allocated, however, no more mass may be added to the
system, and the only way 1n which further noise reductions can be gained is by reallocating that
which 1s already there. The most efficient way in which to do this 1s to add mass to the variable
which gives the largest decrease in noise per unit mass increase, whilst at the same time taking
away mass from that vanable which will give the smallest increase in noise per unit mass
decrease. When either of these variables reaches its bound, mass is then added to (subtracted
from) the next most (least) noise/mass sensitive variable. This process continues until a
maximum of one variable remains unbounded, at which point the optimum has been identified
for the mass constraint under consideration. Clearly, the noise gains to be derived from the
‘high sensitivity’ variables can only be exploited to the full if the number of ‘low sensitivity’
variables is sufficient to ensure that enough mass will be available for reallocation. Thus, in
order to gain the ‘best’ optimum design for a given mass constraint, it is vital that the
1nvestigator include not only those variables which have the greatest noise/mass sensitivity, but
also a number of variables which have a low noise/mass sensitivity.

This requirement is clearly substantially different from the method for selecting
variables which is usually followed when carrying out a simple ‘manual’ or one-at-a-time
optimization study. However, an understanding of this reallocation process is fundamental to an
efficient use of any numencal tool for constrained optumization, whether 1t is based on the
response surface methods used here, or employs a direct iterative approach.
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The example used in this section is clearly very simplistic 1n nature, and differs from
practical optimization studies in two main aspects. Firstly, the search methods employed by
numerical optimzation routines are far more sophusticated than that presented here. Additionally,
when using response surfaces other than the simple main effects model, the noise/mass
sensitivity of each variable will not be a fixed quantity, but will vary throughout the design
region. However, neither of these considerations invalidate the observations made above,

When carrying out an optimmization study which has multiple constraint functions, the
method for selection of variables can be generalised as follows. Variables are first selected
which are expected to have a beneficial effect on the objective function, although each of these
may also incur substantial change 1n one or more of the constrained functions. In order to enable
functional reallocation, a number of further variables are selected, each of which 1s expected to
have a relatively low objective function sensitivity and a relatively high sensitivity in one or
more of the constrarnt functtons. In circumstances where a large number of constraint functions
are 1o be applied, the selection of appropnate design variables 1s clearly an extremely complex
procedure, and is made much more so by the fact that the relative functional sensitivities of
various parts of the structure are unlikely to be known with great precision. In such
circumstances, it may be useful to precede the formal numerical optimization methods
considered 1n the present work with a sensitivity study of the initial design, at the finite element
level, in order to ascertain which areas of the continuous block structure might most
conveniently be grouped into a common design vanable. This discussion highlights the fact that
the expertise and experience of the individual investigator is still required when carrying out an
optimization study, not so much to identify the best design for the chosen combination of
variables, but to select these variables in the most advantageous manner.

As a practical example of the selection of design variables, consider again the
mass-constrained optimization example shown in Section 9.3. Table 9.7 shows the
bound-to-bound change in the noise and mass functions due to just the main effect coefficients,
as well as the ratio of these. Note that these values would not change if the effect of pure
quadratic terms were also included, since these would contribute an equal amount to the
function value at each bound, and so would cancel; only the effect of interaction terms is
omitted. This table shows that the noise/mass sensitivity of the first two variables is
substantially higher than that of the others, as reflected 1n the optimum value of Table 9.5. The
reason that the longitudinal stiffener was kept close to its low bound 1s also shown, even though
the table confirms that 1t is having a sigmificant effect in reducing noise. Its mass sensitivity is
the greatest of the five variables, so that its ratio of noise reduction to mass increase 1s much
reduced, and this explains why it is not favoured by the optimization routine.
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Variable Mass Noise
kgrange dB(A)range dB(A)kg

A Crankcase skurt 6.40 -2.696 -0.421
B 1&S5, end panels 6.38 -1.891 -0.296
C Bearings 2,3 and 4 3.98 -0.399 -0.100
D  Longitudinal stiffener 6.45 -0.831 -0.129
G  Water jacket sidewall 6.23 -0.223 -0.036

Table 9.7 An example of functional sensitivity

Of these five variables, the water jacket sidewall, variable G, was particularly selected
because 1t was expected to have refatively low noise sensitivity, whilst also having high mass
sensitivity due to 1ts large area. This has been a particularly successful choice, in that, using the
above figures, the penalty for removing mass from variable G 1s only just over one-third of that
for the least sensitive of the remaining variables.

9.6 Investigating a range of constraint criteria

The above examples have served to confirm that the response surface approach can be
successfully used to carry out single optimization studies of the type which are usually
performed using direct iterative optimization techniques. When carrying out a single
optimization trial, however, the response surface method does not have any particular
advantages over the direct optimization method. Indeed, the discussions of Chapter 1 suggest
that an advanced software program for direct iterative optimization is likely to find a constrained
optimum with fewer function evaluations than would be required to establish an approximating
response surface of sufficient accuracy. Thus, in cases where the value of each functional
constraint can be precisely determined prior to optimization, so that the only requirement is the
efficient identification of a single optimum, the direct iterative approach is almost certainly the
best method to follow.

When carrying out a practical optimization study, however, especially in the early
‘concept’ stages of an engine design, it 1s unlikely that the constraint levels which are to be
imposed will be known with any great precision. Considering the present application of noise
optimization subject to a mass constraint, for example, the exact mass of an 1nitial engine block
specification is likely to be a result of the design process, and strength/durability considerations,
rather than being a precisely defined target in itself. Thus, rather than being a rigid constraint
which must be strictly adhered to, the mass of the structure can more appropriately be thought
of as an additional variable in the optimization process. The goal of an optimization study,
therefore, should not be restricted to the identification of one optimum, subject to a single mass
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constraint, but should be to provide some indication as to how the opumum noise level will vary
over a range of possible constraints, so that the designer has the necessary information to enable
him to select an appropnate trade-off between these conflicting requirements.

If one were to seek to provide this information using the direct iterative approach,
however, 1t would be necessary to carry out a separate optimization trial for each constraint
value, or for each combination of values if multiple constraint functions were being
considered. Even 1f the number of function evaluations required for each optimization trial were
very low, the number of different constraint cnteria which could practically be investigated
would still be extremely limited. It is in this role that the response surface approach has been
found to have the greatest advantage over the direct method, since, once an approximating
response surface has been generated, a large number of different objective function and
constraint level combinations can be investigated without the need to perform further evaluations
of the original functions.

The power of this method 1s such that it is not limited to the investigation of a small
number of discrete constraint values at, for example, +2 kg mass change, +4 kg mass change,
etc., but can be used to generate what 1s effectively a continuous trade-off of optimum noise
against structural mass throughout the entire range of feasible mass constraints. This may be
carned out by performing a separate optimization trial at closely spaced increments of mass
constraint which vary between the lowest possible mass value (which occurs when all variables
are at their lower bound), and the highest possible mass value (when all variables are at their
upper bound). This procedure may be termed a ‘sweep’ through the possible range of the
constraint, and a numerical example of this method is given in the next section. The method can
of course be extended to other constraint types and multiple constraint functions. Additionally,
the flexibility of the procedure is such that, with no further analyser calls, the investigator may
also carry out a mass optimization study of the type shown in Section 9.4, using radiated noise
as a constraint function, or may simply evaluate the noise and mass functions for a variable
combination which is of particular interest,

9.7 Numerical example of constraint sweep

To demonstrate the way in which a sweep throughout the entire range of a constraint
may be performed in practice, the five variable example of Section 9.3 is again used, in which a
26 test Hoke design was employed to find a single optimum value, subject to a zero-change
mass constraint. Using the same response surface models, based solely on the 26 tests of the
Hoke design, Figure 9.6 shows the range of optimum noise values which results from carrying
out optimization trials at intervals of 0.1 kg between the lowest possible mass of 124.5 kg and
the highest possible mass of 154.0 kg. Figure 9.5 is thus the result of trials at 296 different
constraint levels. The process of performing the complete sequence of optimization trials is
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automated within the optrsm computer program, and using a Hewlett Packard 700 series Unix
workstation takes just a few seconds of elapsed time, enabling it easily to be carried out
interactively. It 1s notable that, although graphs of this type could be produced when using
response surface methods to analyse the results of physical experimental programmes, no
reference to such a use has been found in the published literature.
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Figure 9.6 Noise/mass trade-off over complete range of
possible mass constraints

The specification of each of the optimum designs which results from this investigation
1s given in Appendix 9B. Comparison of this table with Figure 9.6 shows that, although the
change 1n the optimum noise value is very smooth, the change in the value of each of the
variables can often be much more abrupt, as the optimizer switches to a different area of the
design variable space 1n order to attain a slightly better function value. Figure 9.6 also shows
that, as mass is added to the low-bounded design, the noise level falls fairly rapidly, since mass
in being allocated to the most noise/mass sensitive of the vanables. As the mass increases, these
variables reach their upper bounds, and mass is then added to variables which have a lower
noise/mass sensitivity, giving a smaller reduction in noise. The rate of noise reduction thus
slows with 1ncreasing mass, as fewer variables remain to be increased.

In addition to the minimum-noise/mass trade-off, it is also possible to construct a graph
of maximum noise against constraint value, as shown in Figure 9.7. This trade-off line is the
result of a further 296 optimization trials, again using the mathematical models derived from the
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same 26 function calls. The convergence of the two lines as the mass constraint reaches either of
its extremes 1, of course, a consequence of the fact that there 1s only one possible combination
of variables which gives the maximum, or mimmum, mass. The angle of inclination of these
lines reflects the observation that an increase in mass will, in general, yield a decrease in
radiated noise.
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Figure 9.7 Maximum and minimum noise against structural mass

Although maximum-noise designs are clearly of little practical use, the graph of
Figure 9.7 1s of considerable interest, since it shows the noise range within which all possible
designs must fall. The magnitude of this noise range highlights the need for a formal
optimization tool, since, for a particular mass constraint, the choice of an inappropriate
combination of design variables could result in a design which is up to 3.75 dB(A) worse than
the optimum. As an example, consider the initial design, which lies close to the centre of both
the mass and noise ranges, reflecting the fact that each of the five vartables is at its mid-bound
value. The vertical cross hair represents the zero-change mass constraint, and demonstrates that
the worst no-mass-change design yields a noise level of 95,1 dB(A) — over 2 dB(A) worse than
the original design and 3.7 dB(A) worse than the no-mass-change optimum. The specifications
of these three designs are given in Table 9.8, showing the expected result that the variable
values of the worst design are close to the opposite bound of those for the opumum. Figure 9.7
also shows that, as an alternative to a noise reduction of 1.5 dB(A) with no mass increase, it is
also possible to reduce the mass by 7 kg without incurring a noise increase. If the distribution of
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mass 1s not carried out correctly, however, it is also possible to add over 7.5 kg without
achieving any reduction in noise. The range of possible no-noise-change designs 1s shown in
Table 9.9. The optimum designs of Tables 9.8 and 9.9 are of course those desi gns identified in
Sections 9.3 and 9.4, respectively.

Variable Mass Noise
A B C D G kg dB(A)
Worst 6.0 20.0 262 14.0 120 139.2 095.1
Initial 9.0 260 260 90 9.0 136.2 92,9
Optimum 12.0 32.0 20.0 6.0 6.6 1392 91.4

Table 9.8 The range of possible no-mass-change designs

Variable Mass Noise
A B C D G kg dB(A)

Worst 6.0 31.0 320 140 120 146.8 92,9
Inital 90 260 260 90 90 139.2 92,9

Optimum 120 200 200 64 6.0 1324 929

Table 9.9 The range of possible no-noise-change designs

9.8 Local minima problems

The previous constraint sweep study provides an example of the occurrence of local
minima problems when using response surfaces. As discussed in Section 9.1, there is much
less scope for local minima to exist in a low-order polynomial response surface than in the often
complex function which it represents. Indeed, when carrying out an unconstrained optimization
using a simple main effects model, no such local minima can occur. If the approximating
polynomial is more complex, however, and especially if functional constraints are being
applied, then a number of local minima may be found.
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Figure 9.8 Noise/mass trade-off starting from ‘best’ constrained test point

As an example, Figure 9.8 shows the noise/mass trade-off graph which is obtained 1f
each optimization trial of Section 9.7 1s started from the ‘best’ test point which obeys the
constraint, as described 1n Section 9.1. Because the full range of optimum designs is shown,
any local minima which may occur are extremely easy to 1dentify. There are clearly a number of
constraint levels between 140 and 145 kg, for example, where a local minimum has been
located, since it is impossible for an optimization trial with a more relaxed constraint to yield a
worse optimum. A sudden drop in optimum objective function value is another indication of
local minima which 1s displayed by this example. The sudden drop in function value just after
135 kg, preceded by a gradual swing away from what otherwise seems to be a well-defined
curve, suggests that a problem 1s also occurring in this area.

As is the case when carrying out direct iterative optimization, the usual procedure for
avoiding a local mimimum is to restart the optimization trial from a different location. When
using response surface methods, however, there are two major factors which give substantial
assistance in solving this problem. These are as follows.

1. As shown by the example of Figure 9.8, the availability of a constraint sweep graph
results in local minima being very easy to ident:ify. This is in contrast with the direct iterative
method, where one of the greatest problems with local minima is that it is often not possible to
know whether the optimum which has been located is a global optimum within the design
variable space, or is simply a local minimum.
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2. The computational cost of carrying out additional optimization trials using an
approximating response surface 1s negligible, since no further analyser calls are required. It is
thus feasible to carry out a number of different tnals for a given set of constraint critena, each
one starting from a different location in the design vanable space. This procedure can easily be
automated within a computer program, which might, for example, choose a number of random
starting points and then select the best of these multiple optima 1n a way which is totally
transparent to the user. This is again in contrast with the direct iterative technique, where the
computational cost of performing each successive trial is approximately equal to the cost of the
original.

To 1llustrate the way in which local mimma problems may be addressed using response
surface methods, Figures 9A.1 and 9A.2 of Appendix 9A show the noise/mass trade-off graphs
which result from starting each optimization tnal at the low bound of all variables and high
bound of all variables, respectively, Whilst it can be seen that the second of these has its own
minor local minima problem at around 134 kg, the combination of these two graphs with that of
Figure 9.8 is likely to give a complete prcture throughout the constraint range. These three plots
are overlaid 1n Figure 9A.3 in order to confirm that they are comcident at all points other than
those at which local minima have been identified. The ‘true’ noise/mass trade-off which results
from this exercise is then the graph of Figure 9.6, used in the constraint sweep example of
Section 9.7. Thus, although it is true, as stated in Section 9.7, that this graph 1s ‘the result of
trials at 296 different constraint levels’, the number of trials carned out to produce this graph is
in fact 296 x 3 = 888.

Even 1f a direct 1terative optimization program could locate a single optimum in an
average of 5 function calls, generation of this graph would still require 4440 calls. If just two
calls per trial were needed, the number would reduce to 1776. Using the response surface
approach, the required number of calls is 26.
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9.9 Structural additions using discontinuous variables

The above examples have illustrated that the ability to identfy the optmum combination
of existing portions of an engine structure is an extremely powerful analytic tool when used at
the concept design stage of an engine development programme. An important extension to this
method, however, would be the ability to investigate the most beneficial combination of a
number of structural additions to the base design, such as alternative means of main bearing
support, or the relative merits of structural and non-structural sumps. In order to be able to carry
out studies of this nature, however, the methods used in the above examples need to be
extended 1in two main areas, as follows:

9.9.1 Modifications to the noise analysis program

The first area 1n which extensions to the existing methodology are required is in the
evaluation of the function values, using the separate finite-element analyser program. In order to
automate the process of function evaluation at each of the required test points, it is necessary
that the specification of the initial model include the required information concemning each of the
removable variables, with the removal of the appropnate elements being carried out within the
finite-element program. This capability has been implemented within the analyser program by
Zhang (1992). As noted in Section 1.8, it is also possible to perform manual modification of the
design, if inclusion within an automated procedure proves infeasible.

9.9.2 Response surface representation of discontinuous variables

In order to investigate the addition or removal of component parts of the engine
structure, the response surface method must be able to represent the effect of variables that can
either take a zero value, or, if non-zero, can vary between upper and lower bounds in the
normal manner. There would appear to be two distinct methods of approaching this problem,
the first of which uses mathematical models of the type used 1n previous examples, and
provides detailed information at the cost of a significant increase in function calls. The second
aims at minimizing the number of function evaluations required, but provides less detailed
information, and requires substantial modification to the methodology which has been used
within the present work. The two approaches are as follows.

1. Investigation of discontinuous vanables can be achieved within the current
methodology by treating the problem as a main design variable space, in which all of the




245

variables vary between their bounds, together with a number of subspaces of reduced
dimension, in which one or more vanables are removed. An example of this approach is shown
in Figure 9.9, where two of the three variables (x; and x,) may be removed from the design.
The main design variable space is thus three-dimensional, with the individual removal of
vanables x; and X, resulting in subspace ‘a’ and subspace ‘b’, respectively, each of which are
two-dimensional. Additionally, the one-dimensional subspace ‘c’ 1s obtained when both x; and
X, are removed together.

X2

}

main design variable space

//

subspace a - X1
X3
subspace ¢ subspace b

Figure 9.9 Investigation of discontinuous variables
by division into subspaces

Although the use of this approach can potentrally result in a large increase in the number
of analyser calls which are required, there are two factors which suggest that the method will
often be feasible in practise. Firstly, the number of subspaces which need to be investigated is
determined by the number of vanables which may take a zero value (for k such variables there
are 2k - 1 additional subspaces), and for practical problems the number of variables which may
be removed from the structure will often be a small proportion of the total number of variables,
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giving only a small number of subspaces. Additionally, each of these subspaces is of a reduced
dimension, so that the number of tests required to investigate each diminishes rapidly as the
number of vanables which are simultaneously removed increases. A seven vanable example of
the use of this approach, in which minimally augmented Hoke designs are used to investigate
each of the subspaces, is presented in the next section.

2. An alternative approach is to reformulate the definition of the response surface
within the main design variable space in order to account exphicitly for the effect of vanable
removal. Although this method 1s likely to require far fewer analyser calls than the
subspace-investigation method, the use of such an approach raises the following two issues:

) To minimize the required number of tests, the current subspace models are derived from
Hoke designs, which are either saturated or minimally augmented. There is, therefore,
little scope for further reduction of the number of tests, without sacrificing some of the
terms of these subspace models. In order to represent the subspace response by the
addition of a relatively small number of extra parameters to the main response surface
definition, it would thus be necessary to make certain assumptions as to whch of these
effects could be neglected. This clearly calls for a detailed analysis of the nature of these
subspace response surfaces, particularly with regard to their relationship with the main
design variable space, and with each other.

ii)  The inclusion of the effect of vanable removal will necessanly lead to a response surface
which exhibits a number of discontinmties. This a particular problem for iterative
optimizer of the type which has been used here to carry out optimization on the response
surfaces, since their methods of search are dependent on the analysis of local gradient
information. The use of a single response surface model to represent variable
discontinuity would thus require a substantially different approach to the final numencal
optimization problem.

For these reasons, development of this second method of investigating the addition and removal
of structural parts has not been addressed within the present work. It should be emphasised,
however, that the subspace-investigation approach used here will, in fact, give a superior
indication of the effect of variable removal, since the response in each subspace is being
represented by a complete quadratic model. The disadvantage of this procedure is the large
increase in the number of analyser calls which must be carned out if several discontinuous
variables are to be investigated.
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9.10 Numerical example using discontinuous variables

To 1illustrate the way in which an optimization study may be carried out using
discontinuous variables, the seven variable example of Section 9.2 is again investigated. In the
present example, however, each of the three methods of supporting the main bearing bulkheads
(vanables D, E and F) may be removed from the design. In order that all possible combinations
of these stiffeners were investigated, the problem was broken down into eight separate
sub-problems, as shown in Table 9.10. A Hoke D, design of the appropnate dimensionality
was used to investigate each of the subspaces, with the number of tests used for each shown in
Table 9.10. The mass range of each subspace is also shown.

Variable No. of No. of Mass range

subspace D E F  vanables tests kg
main . . . 7 43 1429 - 185.3
a - . . 6 34 140.3 - 176.3
b . - . 6 34 140.7 - 179.7
c . . - 6 34 126.7 - 159.4
d - - . 5 26 138.1 - 170.7
e - . - 5 26 124.2 - 150.4
f . - - 5 26 124.5 - 153.9
g - - - 4 19 121.9 - 144.8
242 121.9 - 185.3

¢ vanable included
— vanable omitted

Table 9.10 subspaces used for investigation of main bearing support methods

A separate sweep through the range of possible mass constraints, at intervals of 0.1 kg,
was carried out for each of the subspaces. Commencing optimization at three different locations
for each of the 2612 different combinations of mass constraint and subspace, this gave a total of
7836 separate optimization trials, resulting in eight noise/mass trade-off graphs. These eight
separate analyses were then combined by selecting the lowest optimum design for each mass
constraint from among the subspaces, to give a single overall noise/mass trade-off graph. This
graph is shown in Figure 9.10.
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Figure 9.10 Noise/mass trade-off showing percentage change from initial mass

Figure 9.10 shows that, when compared with the noise/mass trade-off graph of
Figure 9.6, a substantial ‘kink’ occurs at about 143 kg, somewhat similar to the local minima
symptom of Figure 9.8. Figure 9.10 differs from this, however, in that there 1s no sudden drop
back to the ‘true’ trade-off line. In this example, the reason for the apparent deviation is that
Figure 9.10 is effectively displaying two curves of the form shown in Figure 9.6, with the
sudden change in charactenstic occurnng when the bearing-tie (variable F) is brought into the
design. Table 9.11 shows that this variable has a bound-to-bound mass change of 9.7 kg, equal
to a rate of 0.81 kg/mm. Since the lower bound of this variable is 20 mm, the mass constraint
must be at least (121.9 + 20 x 0.81) = 138.1 kg before it can be brought into the design.

Variable Mass Noise
kgrange dB(A)range dB(A)kg

A Crankcease skirt 6.40 -4.489 -0.702
B 1 & 5, end panels 6.38 -0.402 0.063
C  Bearings 2,3 and 4 3.98 -0.733 -0.184
D  Longitudinal stffener 6.45 -0.433 -0.067
E  Lateral bearing support 3.34 -0.308 -0.090
F  Beanngcaptie 9.70 -0.481 -0.050
G  Water jacket sidewall 6.23 -0.663 -0.106

Table 9.11 Functional sensitivity when all variables are present
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Although Table 9.11 shows that the noise/mass sensitivity of this variable is low once
included 1n the design, there is clearly a large advantage in introducing 1t. This can be seen from
the list of optimum designs in the range 142.1 to 143.0 kg given in Table 9.12, which show that
in order to bring 1n vanable F, the longitudinal stiffener (D) 1s removed from the design, the five
bearing bulkheads (B and C) are reduced to their lowest bound, and the crankcase skirt also
reduced sigruficantly. The only way in which variable D could be introduced earlier would be to
remove variable E from the design. This, however, is the main bearing lateral stiffener, and the
choice of optimum design clearly shows that, like the beanng cap tie, there is much advantage in
its presence, even at the lowest bound.

Varigble - mm Mass Noise

subspace A B C D E F G kg dB(A)
c 12.0 320 279 40 100 0.0 6.0 142.1 89.40
c 12.0 320 282 40 100 00 6.0 142.2 89.39
¢ 12.0 320 285 40 100 00 6.0 1423 89.38
c i2.0 320 288 40 100 00 6.0 142.4 890.38
c 120 320 291 40 100 0.0 6.0 142.5 89.37
a 82 200 200 00 100 200 6.0 142.6 89.35
a 83 200 200 0.0 100 200 6.0 142.7 89.26
a 834 200 200 00 100 200 6.0 142.8 89.18
a 85 200 200 00 100 200 6.0 142.9 89.11
a 86 200 200 0.0 100 200 6.0 143.0 80.03

Table 9.12 Introduction of the bearing cap tie (variable F)

Table 9.12 also shows the reason for the change in slope of the noise/mass trade-off
graph when the bearing cap tie 1s introduced. As the mass constraint nears 142.5 kg, the most
noise/mass sensitive variables of subspace ‘c’ are already at their upper bounds, so that the rate
of noise reduction has slowed sigmficantly. Once variable F is introduced, however, all
variables are free to increase, and the rate of noise reduction suddenly rises as mass 1s again
added to the most noise/mass sensitive variable (variable A).

A further investigation shows that the slope change at around 139 kg 1s due to a similar
cause. Table 9.13 shows that the optimizer has located a minimum in subspace ‘e’, which it
cannot escape from until enough mass 1s available to introduce another variable, in this case
variable D, the longitudinal stiffener, which of course is removed again shortly afterwards to
make way for the beaning cap tie (vanable F).
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Variable - mm Mass Noise

subspace A B C D E F G kg dB(A)
€ 12.0 3144 200 00 100 00 73 45.9 89,9817
e 120 3146 200 00 100 00 73 46.0 89.9815
e 12.0 31.48 200 0.0 1100 00 7.4 46.07 89.9814
e 12.0 3148 200 00 100 00 74 46,07 89,9814
e 12.0 31.48 200 00 100 00 7.4 46.07 89,9814
e 120 3148 200 0.0 100 00 74 46.07 89.9814
e 120 3148 200 0.0 100 00 74 46.07 89.9814
e 12.0 31.48 200 0.0 100 00 7.4 46.07 89.9814
€ 12.6 31.48 20.0 0.0 10.0 0.0 7.4 46.07 89.9814
c 11.7 31.29 20.0 4.0 100 0.0 6.0 46.8 89.9450
c 11.7 3144 20,0 4.0 100 0.0 6.0 46.9 89.9073
c 11.8 31.59 200 40 100 00 6.0 47.0 89.8695
C 11.8 3174 20,0 4.0 100 00 6.0 47.1 89.8317

Table 9.13 Introduction of the longitudinal stiffener (variable D)

The noise/mass trade-off graph of Figure 9.10 is again shown in Figure 9.11, with
lines of percentage mass change superimposed. These highlight the fact that the inclusion of
seven variables, of which three can be completely removed, leads to an extremely wide range of
mass constraints. Even within the range of +6% mass change, however, the noise level vanes
over a range of 4.5 dB(A). The specification of the optima which lie on these mass constraint
lines are given 1n Table 9.14.
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Figure 9.11 Noise/mass trade-off showing percentage change from initial mass
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Vanable - mm Mass % Noise

A B C D E F G kg change dB(A)
11.1 224 200 0.0 100 00 6.0 130.9 -6 91.9
12.0 258 200 0.0 100 0.0 6.0 133.6 -4 90.6
12.0 311 200 0.0 100 0.0 6.0 136.4 2 90.0
11.8 319 200 40 100 00 6.0 139.2 89.8
120 320 273 4.0 100 0.0 6.0 142.0 +2 89.4
10.1 200 200 0.0 100 200 6.0 1448 4 88.0
11.3 200 248 0.0 100 200 6.0 1476 +6 87.4

Table 9.14 A selection of optimum designs having mass change within 6%

These optimum designs show that, as expected from the noise/mass sensitivity
information of Table 9.11, the crankcase skirt and outside bearings (vanables A and B) are
1dentified by the optimization algonthm as the most efficient parts of the structure to which to
add structural mass. As discussed above, the bearing cap tie (variable F) is introduced as soon
as suffictent mass 1s available, but this is not until nearly a 2.5% mass increase has been
incurred. Note that, even with a mass reduction of 6% over the initial design, a noise reduction
of 1 dB(A) can sull be achieved. Comparison of the no-mass-change optimum with that
obtained using the five variables of Section 9.3, as shown in Table 9.15, reveals that the
introduction of the lateral bearing support (variable E) has led to a further reduction of 1.6
dB(A), giving a design which is over 3 dB(A) quieter than the original.

Variable - mm Mass Noise

A B C D E F G kg dB(A)
Initial 90 260 260 90 00 00 90 139.2 92.9
n=>5 12.0 320 200 6.0 00 00 6.6 139.2 91.4
n=7 11.8 31.9 200 40 100 0.0 6.0 139.2 80.8

Table 9.15 Initial design and no-mass-change optima
with five or seven design variables

The increased rate of noise reduction which follows the introduction of the bearing cap
tie suggests that further reductions in noise could be obtained at the lower mass constraints 1f
this variable could be introduced with a lower thickness, and hence lower mass penalty. If this
were the case, the optimum designs shown in Tables 9.12 and 9.13 suggest that there would no
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longer be a need to mntroduce the longitudinal stiffener (variable D) 1n this mass range, thus
allowing further mass reallocation to more noise/mass sensitive vanables. In order to investigate
these possibilities, a further series of tests were carried out, in which variable D was eliminated
from the analysis, and variable F allowed to vary between bounds of 8 and 20 mm. The use of
the lower bound of the original test range as the new upper bound allows a significant number
of the original tests to be used. Although this additional study was investigated with a six-
dimensional Hoke D, design comprising 34 tests, only 23 more calls to the analyser program
were needed, cutting the addinonal computation time by one third.

A sweep through the mass range of the additional subspace was carried out, and the
results combined with the previous trade-off graphs to give the family of optimum designs
shown in Table 9.16. Companson of these results with the optimum designs of Table 5.14
reveals that, except at the -6% mass constraint, all of the optimum designs lie in the additional
subspace, resulting in a further reduction of 1.6 dB(A) for the no-mass-change constraint.

Variable - mm Mass % Noise
A B C D E F G kg change dB(A)
11.1 224 20.0 0.0 10.0 0.0 6.0 130.9 -6 91.9

88 200 200 00 100 8.0 6.0 133.6 -4 90.2
107 200 200 00 100 9.1 6.0 136.4 -2 89.0

11.3 20.0 200 0.0 100 11.6 6.0 139.2 88.2
12.0 20.0 200 00 100 141 6.0 1420  +2 87.7
12.0 257 200 0.0 100 13.8 6.0 1448 +4 87.4

11.6 200 320 0.0 100 141 8.0 1476 +6 86.9

Table 9.16 Optimum designs obtained with an available
bearing cap tie thickness of 8 - 20 mm

The noise levels of these optimum designs are shown graphically in Figure 9.12, where
they are contrasted with that of the original design and the mass of the “worst” no-mass-change
design, identified by carrying out 2 maximum-noise sweep through each of the design vanable
subspaces, as descnibed in Section 9.7. The no-mass-change optimum is now 4.7 dB(A) quieter
than the onginal design, and there is a range of nearly 7 dB(A) between the best and worst
designs.
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Figure 9.12 A range of optimum designs for varying mass constraints

9.11 Enhancements to the noise optimization procedure

The aim of the present chapter has been to demonstrate a number of the features of the
response surface method which make it particularly suitable for carrying out an in-depth noise
optimization study of a concept-stage engine design. In addition to these features, however, a
number of extensions to the methodology are outlined below, which, if 1ncorporated into the
suite of computer programs developed as part of the present work, would significantly enhance
the capabilities of the method.
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9.11.1 Use of other function information

All of the examples presented in this chapter involve the use of just two functions of the
design variables — radiated noise and structural mass. However, any function of the design
variables can be used as either an objective or constraint function, as long as it fulfils the
following three criteria:

1. Computable at the required test points.
2. Continuous function of the design variables.
3. Capable of being approximated by a low order polynomial.

The following are examples of additional functions which may be obtained from the
noise analysis program used in the present work.

» Mass or weight of any individual component of the analysis structure.

* Dynamic response, such as displacement, velocity or acceleration, at specified
nodes of the fimite element mesh. This would be of particular interest when
investigating, for example, the vibration transmission characteristics at engine
mounting points, or the attachment points of engine covers.

¢ Maximum dynamic response within the structure.

* Individual natural frequency. If using a model of a complete powertrain, for
example, an important use of this facility would be to ensure that the fundamental
bending frequency exceeded the required design target. When carrying out noise
optimization 1t is necessary to specify this requirement explicitly, since the low
frequency of powertrain bending (usually below 400 Hz for light vehicles) 1s such
that minimization of vibration in this range is of little consequence from a noise
standpoint.

Although no detailed numencal investigations using the above functions have been
carried out, preliminary trials suggest that they have considerable potential for inclusion in
response surface-based optimization studies. In addition to the above, future work might
investigate the inclusion of the following finite element analysis-based functions

» Alternative measures of radiated noise. This may include the use of unweighted
" noise values, different weighting scales, or a number of measures of sound
‘quality’ which are currently being used by investigators.

» Subdivision of the single sound power level into contributions from different areas
of the structure surface. This would enable the use of a scaling factor to take into
account, for example, variation in noise attenuation effects which occur when the
unit is installed in a vehicle.




255

Although, in principal, measures of stress could be used as functions in the optimization
process, the calculation of these values would require a finite element model of much greater
sophistication than those currently used for vibration analysis of concept-stage engine
structures. It is thus unlikely that the inclusion of stress information will be practical within the
foreseeable future.

In addition to the use of alternative information supplied by the finite element program,
the flexibility of the response surface method allows any other non-FE function which obeys the
criteria outlined above to be included at the optimization stage. Functions of this nature might
include, for example, some measure of cost, such as material cost, manufacturing cost, the
effect of increased sales revenue resulting from a quieter engine, or some combination of
these. The use of such functions is, of course, dependent on an ability to estimate them with the
required accuracy.

In considering the inclusion of alternative functions, it is useful to bear in mind the
following two features of the response surface method.

1. When the test points of the experimental design are analysed, all functions which can
be calculated wath little or no additional computational cost should be evaluated. If these are
found to be of no use at the optimization stage, then little 1s lost. If even a single function is
omitted, however, and later found to be required, then the cost of re-analysing each of the test
points could be considerable.

2. At the analysis stage, there is no differentiation between the objective function and
the constramnt functions. It 1s not until the optimization tnials are carried out, using the
mathematical models of the original functions, that a choice of objective function, constraint
functions and constraint levels must be made. Thus, because this optimization process incurs
virtually no computational cost, it 1s feasible to carry out multiple studies of objective/constraint
trade-offs using, for example, different measures of sound power and noise quality. This may
yield a better understanding of the necessary compromises which must be made to give
acceptable performance against a number of different criteria.

9.11.2 Multiple objective and constraint functions

Optimization of a single objective function subject to multiple constraints can be
performed using the optimization routine employed 1n the above examples. A number of
methods are currently available which allow the simultaneous optimization of two or more
objective functions, subject to multiple constraints, although no routines of this nature are
presently included in the NAG library. Discussion of this topic may be found in Khuri and
Cornell (1987, Chapter 7), Hill and Hunter (1966), Myers, Khuri and Carter (1989). The
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mmplementation of such a routine would, for example, allow the optimization of both radiated
noise level and engine mount vibration velocities subject to a minimum powertrain bending
frequency and a range of possible mass constraints.

9.11.3 Analytic optimization on the response surface

Since an exact specification of each of the approximating response surfaces is available,
it would be feasible to solve these equations directly to give the required optimum, rather than
using an iterative search algorithm. However, preliminary investigations of possible methods
which have been undertaken within the present work have indicated that techniques such as the
Kuhn-Tucker theory, whilst guaranteeing to find a constrained minimum, cannot guarantee to
locate a global optimum (Banks, 1986). Since the routines currently used do not do so either,
however, there would sull seem to be scope for the use of such a method, especially if a
reduction in solution time of the final optimization tria! could be gained.
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Appendix 9A

Optimization Information

Variable - mm Mass Noise

Call A B C D E F G kg dB(A)
1 6.0 200 200 40 100 200 60 142.87 91.603
2 120 214 221 53 106 207 63 152.56 87117
3 12.0 225 243 62 12.1 220 14 156 99 86 691
4 12.0 23.7 265 7.2 13.7 234 8.5 161.60 86 242
5 12.0 249 28.7 8.1 15.2 250 9.6 16637 85.767
6 12.0 26.1 31.0 90 167 268 108 17132 85.260
7 12.0 273 320 929 182 28.7 120 17596 84.808
8 120 285 320 107 197 308 12.0 17923 84 567
9 12.0 314 320 125 232 320 120 183 66 84.236
10 120 32.0 32.0 140 250 320 12.0 18532 84.121
11 120 32.0 320 140 250 320 120 18534 84.120

Table 9A.1 Search history - unconstrained optimization in seven variables
using a full factorial design (128 tests)

1. MEAN 92722 12. G2 1.0723x10-1
2. A -1.3483 13. BG -6.8169x10-2
3. B -9.4553x10r! 14. CD -6.6992x10-2 7
4. D -4,1588x101 15. AC 5.3423x10-2
5. A2 2.6124x10! 16. C? 4.6248x10-2
6. AB 2.4908x10-! 17. CG 4.3133x10-2
7. C -1.9983x10-1 18. AG -3.5197x10-2
8. D? 1.7826x10-1 19. AD -1.5580x10-2
9. B2 -1.6608x101 20. BC 7.3936x10-3
10. BD 1.2992x1(0+1 21. DG -2.6639x10-3
11. G -1.1148x10!

Table 9A.2 Noise coefficients for Hoke D, design with 26 tests (n=5) |
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Variable - mm Mass Noise

Call A B C D G kg dB(A)
1 120 320 200 40 60 137.25 91.733
2 120 320 200 57 6.7 13920 91.435
3 120 320 200 590 67 139.20 91432
4 120 320 200 59 6.7 13920 91.432
5 120 320 200 60 6.6 139.20 91431
6 120 320 200 60 6.6 13920 91 431
7 120 320 200 6.0 66 13920 91431

Table 9A.3 Search history, starting from best constrained test point

Variable - mm Mass Noise

Call A B C D G kg dB(A)
1 90 260 260 90 90 13919 92.722
2 110 276 247 7.7 7.4 13920 91 983
3 120 308 228 6.6 6.0 13920 91 578
4 120 320 217 61 60 13920 91 450
5 120 320 213 62 61 13920 91.445
6 120 320 200 63 64 13920 91432
7 12.0 320 200 63 6.5 139.20 91.432
3 120 320 200 60 6.6 139.20 91.431
9 120 320 200 6.0 6.6 139.20 91.431
10 120 320 200 60 66 139.20 91 431

Table 9A.4 Search history, starting from initial design point
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Figure 9A.1 Noise/mass trade-off starting from low variable bounds
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Figure 9A.2 Noise/mass trade-off starting from high variable bounds
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Appendix 9B

Sweep through range of mass constraints
Five variable example

Vatiable - mm Mass Noise

A B C D G kg dB(A)
603 2000 2000 400 600 124§ 96 447
612 2000 2000 400 6 00 1246 96 381
621 2000 2000 400 6 00 1247 96 315
631 2000 2000 400 600 1248 96 250
640 2000 2000 400 6 00 1249 96 186
649 2000 2000 400 6 00 1250 96 122
659 2000 2000 400 600 1251 96 058
668 2000 2000 400 600 1252 95 995
678 2000 2000 400 6 00 1253 95933
68T 2000 2000 400 6 00 1254 95 871
696 2000 2000 400 6 00 125 § 95 810
706 2000 2000 200 600 125 6 55 749
718 2000 2000 400 6 00 1257 95 689
724 2000 2000 400 600 1258 95 629
734 2000 2000 400 6 00 1259 95 560
743 2000 2000 400 6 00 126 0 95 511
753 2000 2000 400 6 00 126 1 95 452
762 2000 2000 400 6 00 1262 95 395
771 2000 2000 400 600 1263 95 337
7 81 2000 2000 400 600 126 3 95 280
700 2000 2000 400 600 126 § 95224
709 2000 2000 400 6 00 126 6 95 168
809 2000 2000 4 00 6 00 1267 95 113
818 2000 2000 4 00 600 126 8 95 059
828 2000 2000 400 6 00 126 9 95 004
837 2000 2000 4 00 6 00 1270 94 951
846 2000 2000 400 600 1271 94 897
856 2000 2000 400 6 00 1272 94 845
865 2000 2000 400 600 1273 94 793
£74 2000 2000 4 00 600 1274 94 741
884 2000 2000 400 6 00 1275 94 690
893 2000 2000 400 600 1276 94 639
903 2000 2000 400 6 00 1277 94 589
912 2000 2000 4 00 600 1278 94 539
921 2000 2000 4 00 & 00 1279 94 190
9 31 2000 2000 4 00 6 00 1280 94 441
930 2000 2000 400 6 00 128 1 94 393
956 2000 2000 400 6 00 1282 94 346
959 2000 2000 400 6 00 1283 943 299
958 2000 2000 4 00 6 00 1284 94 252
978 2000 2000 400 6 00 1285 94 206
987 2000 2000 400 6 00 128 6 94 161
997 2000 2000 400 6 00 1287 94 116
1006 2000 2000 400 6 00 1288 94 071
1015 2000 2000 4 00 6 00 1289 94 027
1025 2000 2000 400 6 00 1290 93 934
1034 2000 2000 400 6 00 129 1 93 941
10 a3 2000 2000 4 00 6 00 1202 93 898
1053 2000 2000 400 6 00 1293 93 856
1062 2000 2000 400 6 00 1293 93 815
1072 2000 2000 400 6 00 129§ 93 774
10 81 2000 2000 400 6 00 1206 93 733
1090 2000 2000 400 6 00 1297 93 693
1100 2000 2000 460 6 00 1208 03 654
1109 2000 2000 400 600 1296 93 615
1118 2000 2000 400 600 1300 93 571
1128 2000 2000 400 6 00 130 1 93 539
1137 2000 2000 400 6 00 1302 93 502
1147 2000 2000 409 600 1303 93 463
1156 2000 2000 400 6 00 1303 93 428
1165 2000 2000 400 600 130 5 93 392
1175 2000 2000 400 600 1306 93357
1184 2000 2000 400 6 00 130 7 93 323
1193 2000 000 400 600 1308 93 288
1200 2000 2000 405 6 00 1309 93 256
1200 2000 2000 4120 600 131 0 93 230
1200 2000 2000 436 600 1311 93 703
1200 2000 2000 47%] 600 1312 93173
1200 2000 2000 467 600 1313 93 154
1200 2000 2000 482 600 1314 93 130
1200 2000 2000 498 600 131 5 93 108
1200 2000 2000 513 600 131 6 93 081
1200 2000 2000 519 600 1317 93 058
1200 2000 2000 544 6 00 131.8 93 035
1200 2000 2000 560 600 1319 93 012
1200 2000 2000 578 6 00 1320 92 985
1200 2060 2000 591 6 00 132 1 92 967
1200 2000 2000 6506 600 1322 92 045
1200 2000 2000 622 600 13213 92 923
1200 2000 2000 637 600 1324 92 902
1200 2000 2000 653 600 132§ 92 881
12 00 2000 2000 668 600 1326 92 861
12 00 2000 2000 684 600 1327 92 841
1200 2000 2000 6 99 600 1328 92 821
12 00 2000 2000 718 6 00 1329 92 801
12 00 2000 2000 730 6 00 1330 92.782
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10. Summary and conclusions

The work presented within this thesis has served to demonstrate the potential of
response surface methods for carrying out numerical optimization of engine structures for
reduced noise. Investigation of a selection of existing experimental designs and classes of
response surface model has identified a suitable combination with which to address the noise
optimization problem. Using this approach, the variation of the radiated noise function
throughout the design variable space can be accurately represented with an acceptable number of
analyser calls. Optimization using the low-order mathematical model of the original responses
offers a level of functionality not currently available using traditional direct iterative optimization
techniques.

10.1 Summary of results

The main conclusions which may be drawn from the theoretical studies and numerical
tests which have been carrnied out within the present work are as follows. Conclusions drawn
from numencal studies are derived from the particular engine structure which has been
investigated.

Chapter 4: Experiments using first-order designs and models

» The mass function is exactly representable using mean and main effect terms.

¢ Virtually all of the variation in the noise function at the vertices of the design variable
space is attributable to main effect and two-way interaction terms.

* The use of probability plots provides a convenient method of identifying statistically
significant model coefficients.

* Anindependent analysis confirms that the significant parameters are the only ones which
substantially influence the accuracy of the predictive model.

* Such amodel] can be constructed from a fractional factorial design of at least resolution V.
This also allows for the inclusion in the model of a number of higher order interaction
terms.

* The use of a first-order model results in substantial lack of fit at locations which are
distant from the test points. The inclusion of higher order terms is required to improve the
predictive ability of the model .
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Chapter 6: The Central Composite Design (CCD)

» The usefulness of the CCD is adversely affected by the constraints which the nature of the
noise analysis problem place upon the axial parameter o and the number of centre point
tests ngp The result of these constraints 1s that 1t is not possible to specify designs which
are either orthogonal or rotatable,

* Numerical tests have shown that a seven variable CCD with a resolution VII factorial
portion, an axial parameter of & = 1, and a single centre point can be used to construct a
second order model which gives a close approximation to the onginal noise response
throughout the region of interest.

» The predictive ability of the model can be further enhanced by removing those coefficients
which the probability plot techmque has found to be statistically insignificant.

¢  Further results suggest that when the identity of the significant terms 1s not known, little
lack of performance results from the substitution of a stnct quadratic model, in which no
linear interaction terms are included of order higher than two.

* The small number of tests which 1nvolve a third level of each of the design variables leads
to a low level of precision 1n the estimation of the pure quadratic terms of the model. This
is of particular importance, since many of the quadratic coefficients have a dominant
effect on the performance of the model, and yet, due to the relative imprecision of their
estimated values, 1t 1s not possible to say with certainty whether their inclusion is justfied
by the available data.

* The incluston of replicate centre points gives no additional information when investigating
a determinustic application .

Chapter 7: Centre point replication

¢ It is possible to obtain genuine additional information concerning the variation of the
noise function by performing tests at points close to the centre of the design variable
space.

* Modification of the CCD to include an e-star or g-pair portion can be made without
significantly compromising the orthogonal or rotatable nature of the design.

* In the specific case investigated, little improvement in model accuracy has been obtained
over that of the approximating mode! derived from the standard CCD, due to the small
lack of fit which occurs at points close to the centre of the region.

» If the onginal response surface exhibits a substantial amount of high-frequency
fluctuation, then repeated testing over a small area may result in a sigmificant gain in the
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predictive accuracy of the fitted model.

e The most effective use of additional test points 1s not to provide an increase in the density
of testing 1n certain areas, but to improve the distribution of test points throughout the
entire design vanable space.

Chapter 8: Economic second-order designs

* The prediction accuracy of each Hoke design 1s similar to that of the CCD, despite
requiring far fewer tests. On the basis of prediction errors, no reason was found for
choosing the mimmally augmented design rather than the saturated design, which requires
fewer tests.

¢ The use of a minimaily augmented design is recommended in order to provide lack-of-fit
information.

¢ The varance for the pure quadratic terms of the saturated Hoke designs are twice the size
of the corresponding values for the CCD, whilst the minimally augmented design yields
variances simular to the CCD.

* The way 1n which the pure quadratic columns of the regressor matrix are scaled has a
cntical influence on the selection of an optimum design. If an alternative scaling factor 1s
adopted, then the design D, is superior to the previously optimum design Dg. Other
designs of the full set investigated by Hoke are likely to perform better under this new
scaling method.

* Hoke’s economical second order designs have been found to provide an extremely useful
alternative to the CCD, yielding approximately the same accuracy of prediction whilst
having a much reduced test requirement.

Chapter 9: Optimization

* A standard iterative optimization algorithm can successfully be used to locate optima on
the approximating response surface.

* Unconstrained noise optimization is seldom of practical use due to the associated increase
in structural mass.

* The response surface approach can be successfully used to carry out single optimization
studies of the type usually performed using direct iterative optimization.

* In order to gain the ‘best’ optimum noise design for a given mass constraint, it is
important to include not only vanables which have a high noise/mass sensitivity, but also
a number of variables which have a low noise/mass sensitivity.
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» The response surface approach can investigate a wide range of different constraint criteria
without the need to perform additional finite element analyses. A ‘sweep’ through the
possible range of constraints gives an explicit trade-off between competing design
objectives, such as low noise and low mass.

* The availability of a constraint sweep graph allows local minima to be easily identified.
When using the response surface approach, the cost of carrying out additional
optimization tnals to avoid local mimma is very small.

* Discontinuous variables can be incorporated within an optimization study, thus allowing
investigation of structural additions to the base engine design.

* A number of additional classes of response function have the potential for incorporation
within a response surface-based optimization study.

10.2 Recommendations for further work

» All of the statistical analyses which have been carried out within the present work have
been based on the assumption that errors due to underspecification of the approximating
model can be treated as though they are randomly distributed and uncorrelated. Whlst
adoption of this assumption has allowed the application of a number of standard statistical
techniques which are based on this error model, it was recognised in Appendix 4C that
the assumption is not strictly valid in the deterministic environment of computer
simulation. A more rigorous approach to this problem, together with the development of
an alternative approach to the modelling of errors, would represent an important extension
to the investigations made within the current work,

» As with the adoption of a more appropriate error model, it is possible that the
deterministic nature of computer experimentation can be better addressed by alternative
approaches to experimental designs. The field of computer simulaton would, for
example, appear to hold considerable potential for the application of sequential
expenmentation techniques, in which the location of future test points is determined by
information obtained from previous tests.

¢ Within the present work, little use has been made of the various measures of design
optimality which are employed to judge competing designs. Further work in this area is
required, particularly with regard to the effect of scaling on the performance of the Hoke
designs, as discussed in Section 8.4.3 and Appendix 8B.

» If a different optimality criterion is adopted for judging the Hoke designs, it is likely that
the full range of possible designs will need to be re-examined in order to identify which
perform best under the new criterion.




267

The method used for dealing with discontinuous variables provides detailed information
on the characteristics of the response functions within the design variable subspaces, but
at the cost of a substantial increase in the number of function evaluations which are
required. Further work is necessary in order to assess whether the removal of structural
parts can be accounted for within the response surface model of the main design space
without sacrificing overall predictive ahility.

Preliminary work has been carnied out to investigate the inclusion of a number of different
response functions within a response surface-based optimization study, although no
results have been presented within the present work. Further investigation is required in
order to establish the range of such functions which lend themselves to approximation
using low-order mathematical models.

A number of different approaches to optimization of multiple objective functions have
been reported 1n the literature. Incorporation of these techniques is likely to lead to a
sigmficant increase 1n functionality when carrying out a comprehensive optimization
study involving a large range of potential objectives.

Optimization on the response surface is presently performed using a standard 1iterative
algonthm from a commercial subroutine library. Further work is required to assess
whether more appropriate techniques might be applied to this final optimization problem.
In particular, the capabihity to carry out analytic optimization on the response surface is
likely to offer a substantial advantage in efficiency and functionality.
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