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Synopsis 

The work presented within this thesis concerns the optimization of fimte element models 

of engIne structures to reduce radiated noise. For many engIneering problems, current methods 

of structural optimization proVide an effiCient means by which to identify an optimum design, 

subject to a set of imposed bounds and constraInts. They do not, however, have the flexibility 

to carry out effiCient investigation of a range of different constraint cnteria, and this IS often a 

requirement of a nOIse optImization study. 

In order to address tlus restrictIon, an alternative method of noise optimizatIOn is 

developed, which is based on the techniques of expenmental deSign theory and response, 

surface methodology. The main feature of this approach is that values of the response functIons 

of interest are calculated at a number of selected pOInts Within the design variable space, from 

which an approximating mathematical model is generated. It is thiS analytical model of the 

onginal responses which is used as the basis of the optImizatIon procedure. 

Expenmental design theory IS employed in order to ensure that a suffiCiently accurate 

model can be generated With the minimum number of function evaluations. A number of 

competIng experimental designs and mathematIcal models are conSidered, and numencal trials 

are carried out to evaluate their performance in representing the noise function. A quadratIc 

model is found to perform well throughout the design region, and can be estimated efficiently 

USIng a particular class of economic second-order designs. 

A number of detailed noise optimizatIon studies are presented, involving up to seven 

deSign variables, which Illustrate the ways In which the requirements of the noise optimization 

problem ~ be met using the response surface approach. 
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Preface 

This work is arranged in 10 chapters. In Chapter 1, the rums and scope of the work are 

descnbed, following which the general background to the noise optimization problem is 

introduced. A discussion of current approaches to structural optimization is presented, together 

with a brief survey of currently available software packages and an account of the use of a 

propnetary Iterative optimization routme to perfonn noise optimization. The response surface 

approach to optimization is then outlIned, and its advantages and disadvantages are discussed, 

together With restnctions on the use of the method. 

A review of the development of response surface methods is gIVen m Chapter 2, 

together with an introductIOn to a number of the concepts and definitions which are fundamental 

to the diSCUSSIOns of later chapters. 

Chapters 3-8 diSCUSS vanous experimental deSigns which may be employed in order to 

select the sample pOInts at which the response functIOns are to be evaluated. Chapter 3 

introduces first-order deSigns, which may be used to estimate the coefficients of linear mrun 

effects models and of models containing mam effect and linear interaction tenns. In Chapter 4, 

the results of experimental studies using flrst-order designs are presented, carried out usmg a 

concept level firute element model of a diesel engine cylInder block. 

Chapter 5 proVides a general introduction to second order models, m which quadratic 

tenns are also represented, wlulst Chapter 6 contruns a detailed investigation into one particular 

second order design, the Central Composite Design (CCD). Numencal results usmg thiS family 

of designs are presented. In Chapter 7, modifications to the standard CCD are discussed, the 

rum of which IS to address certaIn charactenstics of the function evaluation process which are 

unique to the field of computer 'experimentation'. Chapter 8 contains a survey of economic 

second-order designs, which seek to fit a second-order model With the minimum number of test 

points. One of these strategies is chosen for more detruled investigation, and numencal trials 

conducted to assess its suitability to the present application. 

Chapter 9 demonstrates the way in which the experimental designs introduced in 

previous chapters may be used within an optimization study. A number of examples are 

presented which illustrate the flexibility of the method in addressmg different combmations of 

objective and constraint functions, and different levels of constraint. An example of the use of 

non-continuous variables is also presented. 

Chapter 10 summarises the work presented in previous sections. Areas m which further 

work is required are lughlighted. 
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1. Introduction 

1.1 Research objectives 

The principal aim of the work descnbed in this thesIs is to develop an approach to 

optimization of engine structures for mirumum radiated nOise which allows engine designers 

and analysts to make informed decisIOns as to the trade-off between competing design 

objectives. This will enable designers to select an engine specification which performs well 

when measured against a number of different criteria. 

The motivation for seeIang an alternative method of optimization is that currently 

available techniques, based on a direct iterative approach to optimization, do not provide the 

range of mformation required by engme designers, and make inefficient use of the 

computationally expensive fmite element analyses which they perform. In particular, the 

following three charactenstics of the standard direct Iterative approach to optimization make it 

unsuitable for use In performmg noise oplImlzation of engIne structures. 

1. A separate optimization trial must be carried out for each combination of imposed 

constraint levels which are of interest. The consequent mcrease in computing 
reqUirements effectively prohibits the investigation of more than a few such alternative 

constraint scenanos. 

2. The method IS not robust With respect to the occurrence of local miruma. A single tnal 

cannot IdenlIfy whether the optimum found is local or global. 

3. The optimum deSign is generally sought with a higher level of precision than is 

appropriate to the characteristics of the noise analysis problem. 

These issues are discussed further in Sections 1.4 to 1.8. An alternative approach IS 

adopted, based on the theories of experimental design and response surface methodology, 

which has the potential to provide a far greater range of informalIon. 

1.2 Scope of work 

The present work describes an investigation into the use of response surface methods to 

represent the variation In radiated noise of mternal combustion engines with respect to changes 

in the structure of the engine. The aims of this investigation are to establish whether the 

vanation of the noise function within an n-dimensional design variable space can adequately be 
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represented by a low order polynomial model, and to identify appropriate expenmentaI designs 

which will facilitate this modelling process. A SImplified mathematical model of the nOIse 

response surface is sought, wluch may be used as the basis of a structural optimization 

capability. 

Optimization uSing the mathematical model of the original response surface IS earned 

out using standard iterative techniques. Development of alternative methods of solving this final 

optimization problem is not addressed within the present work. Discussion of this issue is 

undertaken in Chapter 9. 

The measure of radiated engine noise which is used as the objective function of the 

optimization problem is A-weighted sound power, summed from one-third octave band 

contributions in the range to 5 kHz. Evaluation of this function IS carried out using a purpose

written computer code based on finite element analysIs techniques. Detailed description of this 

program is not undertaken within the present work, but a summary of the theory underlying the 

noise analysis procedure, together with some notes on its development, is given in 

Appendix lA. Further details are gIven by Ogendo and Zhang (1989), Zhang (1992) and 

Milsted, Zhang and Hall (1993). 

A computer implementation of the response surface and optimization procedure which 

are discussed in this theSIS are incorporated in the computer program optrsm, which is 

introduced in AppendIX IB. Further details of the capabilities and operation of this program, 

together with a number of numencal examples, are given in Chapter 9. See also Hall (1992). 

The numerical examples which are presented WIthin the work have been conducted using a finite 

element model of a representative engine structure. This model is introduced and described in 

AppendIX lC. 

The remainder of the present chapter is arranged as follows. Firstly, the general 

background to the nOIse optimIzation problem is introduced, WIth discussion of previous 

approaches to the subject (Section 1.3). In Section 1.4, the dIrect iterative approach to 

optimization is described. A survey of currently available software packages for carrying out 

structural optimization is presented in Section 1.5, with particular emphasis on reduction of 

radiated engine noise. This is accompanied by an account of the use of a proprietary iterative 

optimization routine to perform structural optimization of the finite element model mentioned 

above (Section 1.6). It is this exercise which provides the motivation for seeking an alternative 

noise optimization strategy, which IS outlined in Section 1.7. The practical advantages of the , 
response surface technique are discussed in Section 1.8, together with restrictions on the use of 

the method. 
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1.3 Background to noise optimization 

Over the past few decades, much pressure has been brought to bear on manufacturers of 

motor vehicles to reduce the levels of noise generated by their products. This pressure has come 

from a number of sources, many of winch are closely related; a general trend towards a higher 

level of m-vehicle refinement has been coupled, in recent years, With a growmg awareness of 

environmental issues. Indeed, it IS largely this latter concern which has led to the introduction of 

mcreasingly strict legislation, both nalIonally and internalIonally, regarding the noise levels of all 

classes of vehicle. Environmental concerns, however, have also been instrumental in the rapid 

growth in the use of diesel engines In the passenger car sector, which has further increased the 

pressure on manufacturers to produce low-noise engine designs, since the combustion 

charactenstics of a compression ignition engine make It intrinsically noisier than a comparative 

spark ignllIon engine. 

Wlthm mdustry, early attempts at engme noise reduction were largely confined to 

experimental studies of particular engines, with modificalIons often beIng made on the basis of 

past expenence. A wide range of experimental approaches are reviewed by Pnede (1980), many 

of which contributed greatly to the theoretical understandmg of the mechanisms of noise 

generation, transmission and radiation. As tins theoretical understanding developed, it was 

natural for workers to try to predict the noise of engines during the design phase, so that low

nOIse characteristics could be built into a design at an early stage. Early attempts at dynamic 

simulation were carried out using discrete element models of the engine system, which 

employed lumped mass approxlmalIons to different parts of the structure, connected by spring 

and damper elements. Examples of this approach are given by DeJong (1976) and DeJong and 

Manning (1979), who investigated the effect of main bearing stiffness and structural 

mocitficatlOns on dynamic behaviour. 

The frequency range winch could accurately be modelled by such discrete element 

techniques was necessarily lImited by the number of parameters which could feasibly be 

included in the model, and this in turn was constrained by the computing power available at that 

time. As theoretical techniques and computing faCilities improved, however, discrete element 

modelling was gradually superseded by the finite element technique, with a number of 

commercial software packages becoming available to aId In the analysis. Using large mainframe 

computers, reasonably sophisticated finite element models could be used to calculate natural 

Vibration characteristics of the maIn engIne components, and comparison With expenmental 

modal analysis data enabled good correlation to be achieved wltrnn a far wider frequency range 

than had preVIOusly been poSSible. Turner, MIIsted and Hanks (1984), for example, described 

an analysis of a four-cylinder in-line engine structure, in winch good correlation of mode shapes 

and frequencies was obtained up to 2000 Hz, using a half-engine model containing fewer than 

1000 degrees of freedom. 
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With the increasing USe of the finIte element method came the first attempts at usmg the 

technique to detemllne beneficial ways in which to modify the structure, in order to enhance 

nOise and VibratiOn characteristics. Lalor (1979), Somkhanay (1982) and Lalor and Petyt (1982) 

used the static deflection of the cylinder block as a cntenon by which to judge dynamic 

response. Numerical optimization techniques were used to vary parts of the block structure m 

order to mmlmize the static deflecbon of the crankcase skirt or main bearings. The static loadmg 

applied was that associated with peak pressure in a single cylinder, applied at the cylinder head 

and at the adjacent main bearings. Although possessing a number of advantages, such as the 

relabvely low compubng cost associated with static analysis, this method suffered certain 

disadvantages, which prevented it from gainIng general acceptance as a practical optimization 

tool. Chief among these were the uncertamty as to whether the static deflection cntenon was an 

acceptable measure of dynamiC behaviour, and the inability of the static loading to represent the 

complex interaction of eXCltations imposed by the vanous cylinders of a multi-cylinder engine. 

In order to predict the radiated noise of the engme structure directly, however, further 

developments were reqUired to proVide a more adequate representation of the major excitation 

mechanIsms occumng withm the structure, and to incorporate the calculation of radiated noise 

from surface VIbration velocity. Martin and Law (1989) calculated the excitation at the cylinders 

and mam bearings, due to cylinder pressure loads, using an mteraction analYSIS which 

accounted for the fleXibility of the crankshaft, the cylinder block and the separatmg 011 films. 

Wilcox (1988) developed a dynamiC optimization procedure which incorporated shape 

optimization of the cylinder block, although this approach again suffered from the use of a 

smgle-force excitation model. The Importance of including correctly phased multiple-point 

eXCitation forces was demonstrated by Ogendo and Zhang (1989), who showed that a 

substantially dtfferent opbmum design IS reached if only single force eXCltations are imposed. 

Recent work by Milsted, Zhang and Hall (1992, 1993) and Zhang (1992) has 

established a comprehensive noise analysis capability which includes determinatIOn of the 

excitation model and which performs explicit calculation of one-thud octave band A-weighted 

radiated sound power. Initial attempts at performing optimization of concept-level finite element 

models With this noise prediction program were made using direct Iterative procedures, but 

these proved largely UlIsuccessful for all but the simplest one-dimensional problems. Although 

compounded by the relatively large computmg requirements of each analyser call, the main 

reasons for the poor performance of these numerical trials was the mismatch between the 

charactenstics of the direct iterative approach and the requirements of the noise optimization 

problem which are outlined m Section 1.1. It IS these shortcommgs of the direct iterative 

approach to optimization which the present work aims to address. 
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1.4 The direct iterative approach to optimization 

The majority of currently available FE-based optimizatIOn programs use iterative 

numerical optimization algonthms which obtain function mformation by calling an analyser 

routine directly. These routines seek to identify the combmation of input variable levels which 

returns the best value of a particular function (the objective function), whilst keepmg withm the 

allowed range of the input variables (the vanable bounds), and observmg user-defined limits on 

a number of other functions of these variables (constraint functions). In order to locate the 

optimum design, a wide variety of alternative search strategies are employed. A number of the 

more efficient algonthms use approximation techniques, or use sensitivity analysis, embedded 

within the FE code, to supply local gradient infonnation to the optimizer. 

Although these methods have the potential for rapid Identification of a single optimum, 

they make ineffiCient use of the computatlona1ly expensive fimte element analyses which have 

been requested, in that many function evaluations are often performed in an optimization trial, of 

which the analyst Will generally only be presented with the final Iteration. An additional 

characteristic of this rapid search for a single point in the multi-dimensional variable space is that 

It gives httle indication as to the relative effect of each variable on the functions of interest Of 

much greater Importance, however, is the fact that the variable combination which is located is 

optimum only for the particular set of bounds and constraints winch are specified by the user 

prior to commencing the search. 

If the nature of the problem being investigated IS such that only one combination of 

constraints is possible, or feasible, then this characteristic of the direct iterative approach is of 

no consequence. When carrymg out a practical optimization study, however, especially in the 

early 'concept' stages of an engine design, it is unlikely that the constraint levels which are to be 

Imposed will be known With any great precision. In the case of noise optimization subject to a 

mass constraint, for example, the exact mass of an initial engine block specification is often not 

a precisely defmed target. Thus, rather than being a rigid constraint which must be strictly 

adhered to, the mass of the structure can more appropriately be thought of as an additional 

variable in the optimization process. The goal of an optimization study, therefore, should not be 

restricted to the identification of one optimum, subject to a single mass constraint, but should be 

to provide some indication as to how the optimum noise level will vary over a range of possible 

constraints, so that the designer has the necessary information to enable him to select an 

appropriate trade-off between these conflicting requirements. 

If one were to seek to provide this infonnation using the direct iterative approach, 

however, it would be necessary to carry out a separate optimization trial for each constraint 

value, or for each combination of values if multiple constraint functions were being 

considered. Even if the number of function evaluations required for each optimization tnal were 

very low, the number of different constraint criteria winch could practically be mvestigated 

would still be extremely limited. 
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An additional problem which is encountered when using iterative search techniques IS 
that It IS not generally poSSible to Identify whether an optimum which has been located IS the 
globally optimum design Within the region of Interest, or is merely a local minimum. This IS an 

important issue in the present application, since Ogendo and Zhang (1989) have shown that 
there is substantial potential for the occurrence of local minima in the noise function, due to the 
fact that resonance Vibration of the engine structure IS a sigmficant component of the radiated 

noise. Although the nature of an optimum deSign can be further investigated by performing a 
number of optimization trials with dtfferent starting locations, each of these additional runs has a 
computational requirement sunilar to the Imtial trial, rendering this solution extremely costly. 

1.4.1 Identification of precise optima 

Of the three charactenstics of the direct Iterative approach to optimization which make it 

unsuitable for noise optimization purposes, as outlined in Section 1.1, the third concerns the 
relationship between the precision with which an optimum design is sought and the overall 
accuracy of the noise prediction process. This process necessarily involves a number of 
approximations and assumptions, derived from a variety of sources, which together result in a 
substantial margin of uncertainty in the function values which are computed. 

The first of these sources of approximation concerns the accuracy with which the finite 

element model of an engine component, for example a cylinder block, represents the nominal 
defimlton of that part as defined by the relevant engineering drawing. The discrete nature of the 

finite element technique is such that even a highly detatled model can only approximate to the 
continuous nature of the component being modelled, with the accuracy of the approximation 
increasing as the fineness of the mesh, and hence Its ability to represent localised geometnc 
detatl, is increased. (This of course assumes the ability of the analyst to construct a faithful 
representation of the engineering drawing, which, even with the latest generation of graphical 

preprocessing tools, is far from being a triVial task). When carrying out an optimizalton study, 
however, in which a substantial number of analyses must be performed, the model which tS 
employed must necessanly be coarser than that which would be used to carry out a single 

dynamic study, in order to ensure computational viability. In such situations, sigmficant 
reduction in the accuracy of the model is likely, although this can be mitigated to some extent by 
carrying out correlation with experimental test data. should hardware be aVailable. 

The second contributor to prediction uncertatnty is the solution method used to analyse 
the finite element model. Whilst the calculation of natural VIbration characteristics and frequency 
response functions is a well-established and reasonably accurate mathematical procedure, 

several alternative methods of calculating radiated sound power from surface vibration velocities 

may be used, offering different levels of compromise between numerical accuracy and speed of 
solution. In increasing order of complexity/accuracy/computational requirement, the three most 
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commonly used procedures are as follows: 

i) representation of the surfaces of the structure as sImple flat plate radIators 

ii) the Raybegh approximation method, idealIsing the structure as a set of simple sources 

ni) the Helmholtz boundary integral method 

Computational limItations often require the selection of either i) or 11), WIth the resulting 

numerical imprecision whIch this choIce entails, and it is the first of the methods which is 

implemented within the noise analysIs progTanl used in the present study, as discussed by 

Mllsted, Zhang and Hall (1993). 

Perhaps of more fundanJental importance is the source of inaccuracy associated with 

calculation of the excitation functions whIch are to be applied to the structure. Forces appbed by 

the cranktrain are often calculated using an interaction analysis winch takes account of the 

fleXlblbty of the crankshaft, the cylinder block and the separating oil films. Whilst cranktrain 

forces are likely to be the domInant source of excitation for the majority of engines, however, a 

number of other significant mechanisms are often unaccounted for in current noise analysis 

practice, (such as piston slap, valve train Impact forces, and gear and cham meshing 

excitatlons), WIth a subsequent reduction m overall accuracy. An issue related to the scope of the 

excitation is the scope of the fmite element model itself, since a cylinder block, or 

block/head/sump assembly, never VIbrates in isolation, but has a number of other components 
/ 

attached to it, whose mass and stIffness charactenstics will necessanly modify the dynamic 

behaviour of the bare block. Although such ISSUes have important consequences for the practical 

application of noise analysis and optimization, their mvestigatlon goes beyond the scope of the 

current work. 

Even if the nOIse function returned by the analyser progTanl could be relied upon as an 

accurate predIction of the perfonnance of the nominal engine design, however, there remains a 

further source of variability withm the noise analysis procedure, due to the effect of 

manufacturing tolerances. None of the engine structures which are manufactured wIll be an 

exact representation of the nOffilnaI design, and thus the finite element model is better considered 

as a typical member of a class of engines (which mayor may not have the nominal design as its 

mean) than as a representation of all of these structures. Tins is an important characteristic, SInce 

the corollary is that only well defined trends in the variation of function values with variable 

modification can be relied upon as being representative of the class as a whole, with small-scale 

effects being particular to individual members of the class. (There are also implications for the 

correlation of finite element models when comparison is made with expenmental data derived 

from a single member of this class). A further effect of manufacturing constraints, of course, is 

that there is no benefit in specIfying component dimensions to a higher degree of precision than 

can be achieved by the manufactunng process. 
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When carrying out an analysis at the concept stage of an engine design there is still one 

further cause of uncertainty, In that many aspects of the nominal design itself may be 

undetermined, either due to lack of detailed component drawings or because decisIOns are 

awaited as to major design features. This 'fluid' nature of the design clearly has the potential to 

introduce the most significant amount of uncertainty into the analysis process. 

All of these observations lead to the conclusion that the determinal10n of precise 

optimum designs is Inappropriate to the study of radiated sound power. It is potentially 

misleading, in that It may highlight variations in the nOise level of the nominal design, with 

respect to vanable modification, which cannot be expected to be representative of the engine 

population as a whole, (although this cannot of course be verified without conducting a detailed 

analysis, prototype manufacture and test program). Simply quoting the final optimum design to 

a lower degree of precision, or uSing coarser termination critena In the search for this optimum, 

is unhkely to prove a sallsfactory remedy, however, In that it does not address the 

manufactunng charactenstic of the distnbutlOn of actual components about the nominal design. 

It also effectively wastes the computallonal effort which has been invested in generallng the 

precise function values on which the optimizallon IS based. The underlying problem is the 

(potenllally) unrepresentative level of detail which is present in the defirution of the objecllve 

function which is used for the optimization phase of the investigation. 

1.4.2 Overview of the direct iterative optimization procedure 

Figure 1.1 shows a flowchart representing the main features of the direct iterative 

method of opl1mization. This illustrates the fact that the large computing requirements associated 

with mulllple dynamic analyses of the finite element model are incurred within the opllmization 

loop, and that the number of these analyses which are required to locate a single optimum is 

generally unknown pnor to entering the loop, thus preventing accurate planning of computer 

resource allocation. Whilst computing allocation presents little problem when iterations take a 

matter of seconds or minutes, considerable inconvenience may be caused when carrying out a 

noise optimizal1on exercise, since a single function call may itself take many hours to perform. 
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Figure 1.1 Flowchart showing direct iterative optimization procedure 

The flowchart also shows that each investigallon of a different set of constraint levels 

requires the executIOn of the optimization loop, with the large computmg costs which this 

entails. As mentioned previously, this places severe restrictions on the number of different 

constramt combinations which it is feasible to investigate. It is also worth considenng that the 

lOner optimization loop may Itself need to be executed several times when locating a smgle 

optimum, in order to establish that this minimum is global in nature. 

In addition to the fundamental theoretical conSiderations discussed above, the use of 

direct Iterative opllmlzallon techmques has a number of practical disadvantages when applied to 

noise optimization of engme structures, amongst which the followmg are important. Firstly, the 

general sensitivity mformatlOn required to assess local gradients IS not currently available for 

complex funcllons such as radiated noise. As a result, nOise optimization cannot be carried out 

directly using algorithms which require thiS information. Secondly, commercial optimizers 

which use direct iterative methods are almost inevitably linked With a proprietary finite element 

analysis package, since, as shown m Figure 1.1, they must be able to modify input variables 

and call the analyser t1irectly. The analyst is thus limited by the functionality of the particular 

finite element program used, which can cause particular problems in the case of noise 

optimization studIes, smce many codes do not have the capability to calculate complex dynamiC 

responses such as radiated noise. A related constraint is that many of the currently available 

structural opllmlzation packages are only able to motlify a very Iinnted range of variable types, 

such as material properl1es, or physical properties of shell elements. 
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1.5 A survey of currently available software packages 

A number of software package are currently available for carrying out structural 

optimization of finite element models, several of which are Incorporated within major finite 

element codes. 

One example of an Integrated package is the optimization capabilities contained in 

Version 66 of MSC/NASTRAN. This program implements the methods of Vanderplaats (1984), 

and its use is descnbed by Vanderplaats and Blakely (1989). The optlmizer uses closed-form 

response sensitivities and approximate analysIs techniques in its search for an optimum design, 

and the program is claimed to be able to solve "real-world design optlmization problems 

that contain many hundred deSign variables" (quoted from MSCINASTRAN sales literature, 

1992). The range of response functlons and design variables which can be Included within an 

optimization study are extremely limited, however, and may be summarised as follows: 

Response functions: weight or volume 

Design variables: 

frequency or buckling load factor 

stress, displacement or force 

composite stress component or failure criterion 

plate thickness 

beam properties (cross sectional area, moment of inema, etc.) 

matenal propemes 

These capabllltles clearly fall far short of the requirements of the noise optimization 

problem. When analysing a solid model, for example, the only charactenstics of the structure 

which can be varied are the matenal properties. Vanderplaats and Blakely (1989) state that 

"development efforts are already under way to include geometric design variables - the locations 

of the grid points of the finite element model", together with steady-state dynamic response 

optimization. Neither of these capabilities has as yet appeared. 

A very different implementation of the Vanderplaats methods has been carried out by 

RASNA, in their MECHANICA suite of programs. Finite element meshes are constructed from 

adaptive p-elements, and geometry is defined parametrically, allowing more convenient 

SpecificatIOn and modification of design vanables. The range of design variables which can be 

addressed is far greater than in NASTRAN, and includes a shape optimization capability, 

allowing movement of mesh nodes. The range of response functions is still limited, however, 

resulting from the need for sensitivity information. Functions include mass, stress, frequency, 
displacement and temperature. . 

Geometric shape optimization is also offered by the SDRC I-DEAS Optimization 

module, which again is integrated with a comprehensive suite of fimte element analysis 



11 

programs. Implementation of shape optlmizatlOn would appear to be less convenient than the 

RASNA approach, however, because of the possibility of causing severe distortion in elements 

when using a traditional h-method formulatIOn. Response function and design vanable 

capabilities are otheIWIse similar to those of NASTRAN and MECHANICA. 

In summary, the three popular commercial optlmizatlOn packages described above do 

not appear to have the reqmred functionality to carry out successful noise opumlzauon of engine 

structures, particularly in terms of the limited range of responses which can be included as 

objective or constraint functions. These limitations are in additIOn to the characteristics of the 

direct iterative optimizauon approach which are discussed in Section 1.4. 

1.6 An example of the use of iterative optimization techniques 

As discussed above, optImizatIon of radiated noise is not currently possible usmg the 

class of advanced optimizatIon algorithms which require senSItIVity information in order to 

assess local gradients. Direct iterative optImization can stIli be carried out however, by using 

optImization algonthms which use fimte difference approximations to the function gradients. 

These general-purpose algorithms have a number of disadvantages when used to carry out nOise 

optimizauon studies, however, amongst whIch the following are of Importance: 

1. Considerable computational effort IS required to assess the local gradients at the starting 

point in order that a search directIOn can be Identified. 

2. The search algorithms used tend to be very conservative, only making small changes in 

the input vanables at each call. 

3. As a result, a large number of calls are often reqUired to locate a minimum. 

4. The termination criteria of these algorithms also tend to be conservatIve, in that many 

additional function evaluations are often performed, in order to verify that an optimum 

has been reached. 

5. As with other Iterative approaches, it is not poSSible to identify whether the optimum 

which has been located IS local or global in nature Without carrying out further 

optimization trials from different starting points. 

As an example of the use of these iterative optimization routines, the following study 

was undertaken by Ogendo and Zhang (1989), and also discussed by Zhang (1992). This 

example uses the fimte element model of the diesel engine cylinder block which is described in 

Appendix 1 C, and investigates the effect on radiated noise of the three design variables which 

are listed in Table 1.1 and identified in Figure 1 C.l. 
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Thickness in mm 
Variable lower upper mean range 

A Crankcase slart 6.0 14.0 IQ.O 8.0 
B Bearing panels 1 and 5 20.0 32.0 26.0 12.0 
C Beanng panels 2 and 4 20.0 32.0 26.0 12.0 

Table 1.1 Variable values for the three variable iterative optimization study 

The search history of the optimization study is shown in Figure 1.2, and demonstrates 

the followmg charactenstics. 

1. The central difference calculation used to assess local gradient information requires an 

mltial (2n +1) = 7 function calls to Identify a search direction before optimization 

commences. 

2. When the search commences, only three substantial steps are taken before progress slows 

dramatically. This IS followed by 9 steps in which the vanable changes are extremely 
small before the next significant change IS made (m vanable C). 

3. The design specification at call 20 is effectively the same as that at call 45. An extra 25 

function evaluations have been carried out in order to verify that an optimum has been 

reached. 
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Figure 1.2 Search history - unconstrained optimization in three variables using 

direct iterative optimization 
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The Iterative optnnizatlon algorithm has thus taken 45 function calls in order to identify 

an unconstrained optimum ID three design variables. In comparison, Section 9.2 presents an 

example in which the response surface method IS used to carry out an unconstrained 

optimization ID seven vanables with a similar number of function calls (43 calls). In addition, 

the response surface approach will also allow the identification of a constrained nOise optimum 

subject to any feasible mass constraint, and the identification of an optimum mass design subject 

to any feasible noise constraint, without the need for further analyser calls. Direct iterative 

optimization studies IDvolving greater than three deSign variables were not found to be viable 

with the available search algorithm, which generally failed to converge to an optimum value, 

even after an unacceptably large number of function calls. 

Whilst it may be possible to improve the performance of the iterative optimization 

a1gonthm used above by, for example, usmg forward difference calculations mstead of central 

differences, and modifymg the tolerance of the terminatIOn cnterion, this study still illustrates 

the three fundamental requirements for which the use of direct iterative optimization IS 

inappropriate. Firstly, the algorithm aims to identify the optimum design with a higher level of 

preciSIOn than is appropriate to the formulation of the problem. Secondly, the method is not 

robust With respect to the occurrence of local minima, smce a single trial cannot identify whether 

the optimum found is local or global. Multiple optimization trials are then required to venfy the 

nature of the minImUm, and to locate a global optimum, necessarily incurring a substantial 

computational cosl More importantly, however, a separate optimization trial must be earned out 

for each combination of imposed constraint levels which are of interest, with a consequent 

mcrease m computing reqwrements. 

1.7 The response surface approach to optimization 

An alternative procedure to the direct Iterative technique described above is to build up a 

'database' of knowledge concerning the system under investigation by calculating the values of 

the required functions at a number of selected points Within the design variable space. In order 

to reduce the overall computational reqwrements, the sample points should be chosen such that 

a sufficiently accurate response surface can be generated with the minimum number of function 

evaluations. This objective may be achieved by using experimental design theory to determine 

the most efficient combmation of sample points at which to test A mathematical model can then 

be generated from the database, so that an approximating response surface is constructed usmg, 

for exanIple, low order polynomials. Optimization may then be carried out using this surface as 

a representation of the origmal response, with the difference that the evaluatIOn of each function 

and Its gradients takes negligible computing time. 
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A response surface-based opttmizatton study may be divided into four phases, as 

follows: 

Phase 1. Experimental design selection 

In this phase, experimental design theory is used to select the points in the design 

region at which to test. The only parameters which need to be supplied in order to generate the 

design are the number of vanables to be Investtgated and the bounds within which each of these 

variables may be modified. The type of deSign which is selected is determined by the 

complexity of the mathematical model which IS to be used to approximate the response function. 

If the response is to be approximated using a linear response surface, for example, then a design 

may be chosen which includes tests at combinatIOns of just two values of each variable. If a 

quadratic surface is to be fitted, however, then each variable must appear at at least three 

different levels withm the experimental design. 

Phase 2. Analysis 

In the analysis phase, the functIOns which are of interest are evaluated at each of the 

combinations of variable values which are Specified in the experimental design. The analysis 

program does not need to be directly linked with the optimizatIOn program, and the order in 

which the tests are earned out is unimportant. Thus, several tests may be earned out in parallel, 

USing mUltiple processors or multiple computers. 

Phase 3. Model building 

This phase may be subdivided into two sections, as follows: 

Phase 3a: response surface fitting. 

Surface fitting algorithms are used to estimate the coefficients of the mathematical model 

using the function values returned by the analyser program. 

Phase 3b: validation of response surfaces. 

For each response function, detailed lack-of-fit calculations are performed in order to 

assess how well the response surface is representing the variation of the original function 

throughout the whole of the design variable space. This stage is of vital importance to the 
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successful use of the response surface approach, SInce if the apprOlomating mathematical model 

is providing an inadequate representation of the calculated funCtion, the optimIzation process is 

lIkely to identify optimum designs which are substantIally in error. 

Phase 4. Optimization 

In the optimization phase, the engineer can speCIfy which of the calculated functions is 

to be the objective of the optimization, and which are to be constraints. In addItion to 

minimizing radIated noise subject to a mass constraint, for example, the engineer can also 

optimize the design for low mass, subject to a noise constraint. It is also poSSIble to carry out a 

sweep through the entire range of constraints, giving an explICIt trade-off between different 

functIOnal constraints without the need for further analyser calls. 

In the current work, attentIOn has largely been focused on detennimng the complexity of 

model that is reqUIred to represent the noise functIOn (Phase 3b), and selectIng an appropriate 

experimental design with which the model can be estimated USIng the minimum number of 

functIOn calls (Phase 1). Accurate representation of the computed responses is fundamental to 

the successful use of the overall procedure, and Chapters 3 - 8 are devoted to this subject The 

analysis phase of the procedure has been perfonned usmg the separate analyser program which 

is described In Appendix lA, and estimation of model coefficients is carried out using standard 

surface fitting algorithms, as descnbed in Section 2.13. The selectIon of an optimization 

a1gonthm to locate optimum designs on the approximating response surface IS discussed in 

Chapter 9, where a range of numerical studies are presented which demonstrate the capabilIties 

of the method. 

1.7.1 Overview of the response surface-based optimization procedure 

Figure 1.3 shows a flowchart depicting phases 2 and 4 of a response surface-based 

optimization study. 
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The flowchart for phase 4 of Ihis procedure is identical m form to Ihe flowchart of 

Figure 1.1 for Ihe direct iterntive approach. The dIfference lies in Ihe fact that, instead of calling 

Ihe finite element analysis progrnm in order to calculate function values, Ihls mformanon is 

obtained by simply evaluating the low-order maIhematical model ofIhe original response. The 

computationally intensive finite element calculation of funcnon values IS now carried out outside 

Ihe iteranve optimization loop, in phase 2, and full use is made of all of the analyses which are 

performed. InvestigatIOn of mulbple constraint critena still requires Ihe execution of Ihe inner 

opnmization loop, but this now incurs no SIgnificant computational cost 
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1.8 Characteristics of the response surface method 

The major advantages of the response surface approach to optimlzatlon are as follows: 

• In the testing phase, all functions which may be of interest are calculated and stored in a 
database of knowledge concerning the system under mvestlgation. These may be recalled 
during the optimization phase, and any combination of objective and constraint functions 
investigated interactlvely. 

• The coefficients of the response surface models indicate the relative importance of each of 
the deSign variables throughout the whole design region, giving the deSigner a valuable 
Insight mto the nature of the system. 

• Any continuous functIOn of the design variables which can be calculated or estimated at 
the reqUired sample points may be added to the database prior to optlmization. This 
would, for example, allow non-FE functions such as cost to be included wlthm an 
optimization study. Alternatively, the results of both static and dynamic analyses can be 
combmed in a smgle optimization study. Similarly, a number of different measures for 
assessing the radiated nOise level of running engines can be used, including vanous 
welghtmg curves and measures of noise quality. It is becommg mcreasmgly important for 

an engme to perform well under a range of these different criteria, and the response 
surface approach wdl allow the identification of designs based on each of these required 
measures, or on some appropnate combmatlOn of them, without incumng excessive 
computatIOnal cost 

• Because the finite element analyses are carried out outside the iterative optimization loop, 
any available analysis package, or even a combmation of different specialist packages, 
can be used to supply function information. 

• If a dedicated analyser program is used to carry out functlon evaluations, the modification 
of design vanables can be automated withm thiS code, as is possible when using the 
direct Iterative approach. Because analyses are performed outside the optimization loop, 
however, it is also poSSible to incorporate major modifications to the engine structure 
which are beyond the capability of automatic modification routines. These changes can be 
carried out either manually or semi-automatically. 

• The number of finite element analyses which need to be performed are known in advance, 
allowmg accurate prediction of computer usage. 

• Because analyses do not need to be run consecutively, parallel runmng may be carried out 
on multiple processors or machines, drastically reducing the elapsed time required for the 
testing phase of the study. 
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Disadvantages of the response surface approach: 

It is probable that an advanced software program for direct iteratIve optimizatIon wIll be 

able to find a constrained opllmum With fewer functIon evaluatIOns than would be required to 

establish an approximating response surface of sufficient accuracy. Thus, in cases where the 

value of each funClIonal constraint can be precisely determined pnor to optimization, so that the 

only requirement is the efficient identificatIon of a single opllmum, the direct iterative approach 

is lIkely to be the best method to follow. 

Restrictions on the use of the response surface approach: 

An essential requirement of this method IS that it must be possible to model the 

functions which are of Interest using response surface approximations. Any function of the 

design vanables can be used as either an objectIve or constraint function, as long as it fulfils the 
following three criteria: 

1. Computable at the required test pOints. 

2. Continuous function of the design vanables. 

3. Capable of being approximated by a low order polynomial. 

One of the pnncipal aims of the work is to establish that the noise response function 

fulfils these critena. Additional functions of the input vanables which may be of interest when 

carrying out dynamic analyses of engine and powertrrun models are discussed In 

Section 9.11.1. 
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Appendix lA 

A finite element analysis procedure for calculatIon of rruhated engine noise 

IA.I General approach 

The finite element analysis program which has been developed in order to compute the sound power 
radiated from an engine structure has as Its basis a much-modified version of the commercial fimte element 
analYSIS code PAFEC. A general description of the procedure is gtven in Milsted. Zbang and Hall (1993). and a 
more detailed discussion of the underlying theoreucal and physIcal considerauons can be found in Zbang (1992) 
An introductory user gnide to the program snite IS provIded by Hall and Zbang (1992). 

Early work concerned with the tailoring of this code m order to petform a radiated noise calculauon was 
carried out by Turner (1983). who wrote a set of forced response subrouunes to accompany the PAFEC free 
VIbration analysIs routines. Also Implemented at this stage was a dynannc substructunng capability. usmg a 
modified version of Kron's method (fumer. Mdsted. and Hanks. 1986). Following this work. a detailed 
investigauon mto the phYSIcal aspects of the nOIse radiation problem was undertaken by Ogendo and Zbang 
(1983). winch estabhshed A-Weighted sound power as an appropriate objective function for optimizauon 
purposes TIns work also highhghted the need for a complex set of excitauon forces which can accurately 
simulate the dynamic loadmg apphed to the structure. Vsmg the separate modules for generation of excitation 
forces and calcu1auon of sound power from surface vibration levels which are descnbed below. a theoretically 
sound method for predtcting rachated engtne nOIse had noW been establisbed. As part of a snbsequent 
invesugauon. (Milsted Zbang and Hall. 1989). substanual effort was devoted to increasmg the computanonal 
efficiency of the whole noise analysis procedure. in order to facdltate its use Wlthm a numerical opumization 
capabtlity. This work centred on the replacement of the standard PAFEC eigensoluuon. based on a master-slave 
reduction method. with a Lanczos eigensolution algonthm (Seluni. 1989) A sparse matnx approach to storage 
and computation was also implemented. together with a modtfied residual flexibtlity a1gonthm and a number of 
changes to the matnx assembly and general administration routines. 

In its present form. ooe complete noise analYSIS of a smgle-structure model consists of four main 
stages. as shown m the sllDphfied flow chart of Figure lA. I. Each of these stages is discussed in the follOWIng 
secuons 

Force Calculation 

+ Eigensolution 

+ Forced Response , 
Noise Calculation 

Figure IA.I. Schematic diagram of noise analysis procedure 
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lA.: Calculation of mechanical loads 

In the first of these phases. the eXCllabon forces which are to be applIed to the structure are computed. 
usmg a separate program module. A more detailed account of the mteraction analYSIS which IS used to calculate 
these eXCltabon forces may be found m ather Martin and Law (1989) or Ogendo and Zhang (1989). from which 
the following summary is taken 

"For the purpose of vibrabon and nOise predictton. the mechanical loads ansing from the combustion 
process can be usefully approXimated by a set of mscrete forces and moments acting on the cylInder block and 
head A suitable set IS comprised of forces and moments at each roam bearing. JlIston Side thrust forces on each 
cyhnd ... and the gas force on the cylind ... bead. The calculation of these forces can be approached at various levels 
of sophisticabon ranging from the elementary ngld crank tram and rigid block procedure through to a full 
interaction analYSIS between the fixed and the movmg parts of the engine using FE models of the block and 
crankshaft. The latter approach has been taken because it is the only means by which the Significant beanng-to
bearing force dtfferences can be predicted. .. [The procedure used] is a quasi-SlabC mteracbon analysis of a system 
comprismg the crank tram. the block and vanous 011 films which separate the two. Expenmentally measured. 
frequency-averaged cylinder pressure diagrams are used as the eXCllabon. TIris analysis involves the sequenbal 
solubon of the pemnent structural and hydrodynanuc equations which descnbe the important features of the 
engine. The structural equaUons are fonnulated m tenns of influence coefficients derived from representative 
substructured fimte element models of the crankshaft and engine structures. The hydrodynanuc operation of the 
roam bearings IS modelled by a 'mobtlity' method whtch proVides explIcit relationshtps for the translational 
velOClUes of the crankshaft JOurnals relative to the beanng sleeves. The load so oblamed IS a funcuon of the 
crankshaft angle and must th..-efore be transfonned to the frequency domain for subsequent use m the Vibration 
analysis. In this procedure the inerballoadings. the flexibility of the block and the crankshaft. as well as the 
nonhnear 011 fihn effects in the JOurnal beanngs are properly accounted for. but piston slap. gear and valve train 
impacts are not yet mcluded. Although the OnuSSlon of these impact forces does not affect the establishtnent of 
the numencal optinulauon procedure. it IS clear that their presence would mcrease the accuracy of the noise 
predlctton." 

lA.3 Solution of the eigenproblem 

The second portion of the nOise analYSIS procedure is the solution of the undamped etgenproblem 

(K-t..M)x=O (lA. I) 

wh..-e M and K are the mass and stiffness matrices respecuvely. TIris IS the most compulaUonally intensive part 

of the procedure. and that to which the most devdOJllUent effort has been devoted. 
The engine structures for which a nOise calculation is to be carried out will often be unrestramed. In 

ord ... to ensure the positive definiteness of the suffness matrix under such conditions. it is necessary. both h..-e 
and m the forced response calcu1anon, to use a shifted suffness matrix of the form 

(IA.2) 

The correspondtng shifted spectral matnx is then 

A=A+M (IA.3) 
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The shtft parameter 11 takes a positive value small enough m magmtude with respect to the eigenvalue of the 
lowest non-explicit mode that the resJdual fleXlbtlity approXImation outlmed m Section lA 4 remains valid For 
systems in which no ngtd-body modes are present. a value of 11 = 0 is used. 

As discussed above. a Lanczos elgensolver Mth partial re-orthogona1lsation has been implemented. 
(Sehmi. 1989). which also takes advantage of the sparse banded nature of the sllffness and mass matrices. The 
solution algonthm for a restraIned structure may be swomansed as follows. (Mdsled. Zhang and Hall. 1993) 
The general eigenproblem IS fIrst transfonned to the standard fonn 

(H- 91)y=0 (lA.4) 

The stIffness matnx is ~. " factonsed as 

(lA.S) 

using CholeskI decompoSItIon. so that 

(lA.6) 

The Lanczos method IS then employed to solve the standard eigenproblem for the fIrst k modes. givmg a modal 
matrix Yk and a spectral matnx E\. The solutIon of the onginal etgenproblem IS then obtained from 

(lA.?) 

IA.4 Foreed response 

Usmg the free VIbratIon informatIon generated withm the second phase of the program. a modal forced 
response calculation IS then earned out to gtve the steady-state vibration response of the structure. ThIs may be 
summarised as follows (Mt1sted, Zhang and Hall. 1993). 

The complete set of eigenvalues and mass-normalised eigenvectors are fIrst assembled into a diagonal 
spectral matnx A and a modal matrixX.respectively. Theforeed response at a frequency ID can then be written m 
the fonn of a receptance matnx as 

a= X [A( I + J 1) -aY- 1]-1 XT (lA.S) 

where 1) is a dJagonal matnx of the modal loss factors. The mode set is tnmcated at a frequency whtch is large 
enough to ensure accurate representatIon of all resonant bebaviour Mthin the frequency range of interest. A 
resIdual fleXlhility approXJmation to the discarded modes is used in order to take some account of the contnbution 
of those modes which bave not been exphCltly included in the calculation. so that equation (lA 8) becomes. 

(lA.9) 

where the subscript k denotes matrices of order equal to the nwnber of modes explicitly included (kept) in the 
analysts. 
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lA.S Radiated sound power calculation 

The final phase of the noise analYSIS procedure IS the calculabon of radiated noise from the surface 
vibral10n levels. which is earned out by a separate program module. The following summary of the procedure 
used is taken from Milsted, Zhang and Hall (1993). 

"CaIculal1on of radiated sound power from the surface vlbral10n levels can be earned out With varymg 
degrees of sophiSl1cabon In mcreasing order of complexity the three well established procedures are. 

(i) Idealisation of the engme structure as a set of simple flat plate radiators 
(ii) Rayleigh's method of idealisation of the structure into simple sources 
(iii)The Helmholtz boundary mtegral method 

'The choice is not parbcularly cribcal to the program structure as any of the three methods can be 
viewed simply as a post-processor operallng on the surface VIbration levels whose calculabon is the core of the 
procedure Using (i), the A-weighted sound power, summed from one-tInrd octave band contnbutions, is 
evaluated from 

W = pc L Wj (L O'JAj<vij» 
J 

(lA.lO) 

where pc is the characteristic impedance of air, Aj is the effective sound radiating area, ay is its associated 
radiation effiCiency; and <V y!l> IS the space averaged mean-square velocity normal to the sound radiating surface. 
The subscript i idenbfies the one-third octave band WIth A-Weighting w, and the subscript j denotes a panel 
region of the noise radiating surface " 

lA.6 Variable types 

The followmg classes of vanables can be modified by the current version of the noise analysis program: 

Physical properties of beam elements 
Physical properties of shell elements 
Material plOperties of 2D and 3D elements 
Nodal movement which does not require mesh alteration 
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Appendix IB 

The computer program optrsm 

As an integral part of the current invesbgation into the use of response surface teclmiques for the noise 
optinuzabon of engme structures, a computer program has been developed in order to aid the apphcabon of these 
methods. llis response surface methodology and 0Pbmization code forms part of a larger suite of programs 
wluch together allow a complete nOIse optimizabon srudy of an engine strucrure to be carried out using fmite 
element methods. The other main component of this suite of programs is the noise analysis program, descnbed 
in Appendix lA, which IS used to simulate the steady-state vibration of the engtne and hence predict radIated 
noise. Further dela!ls of this program, together WIth a descnption of the way in which the two programs are used 
together to carry out noise opbnuzabon, are given by Hall and Zhang (1992). 

The response surface methodology I optimization program optrsm is composed of two independent 
modules, the first of which is used to select an appropriate experimental design pnor to testing, whilst the second 
is used to process the results which are rerumed by the analyser program, and to perform the required modelling 

and opti11l1zabon tasks. Each of the modules IS higbly interactive, WIth ouly a tnImmal requirement for 
prevIOusly constructed Input data files The results presented witlun subsequent chapters of the present work have 
been generated using this program, with the noise analYSIS funcbon evaluations being provIded by the separate 
analyser program mentioned above 

The flow diagrams shown In Figures lB.l and lB 2 depIct the suggested procedure for carrying out a 
complete noise OpbmtSation srudy usmg both the expenmental design selection I opbnuzation program oplrsm 
and the separate noise analysis program llis procedure may be summarised as follows. 

Phase I 
The first phase of an analysis involves the construction of the base FE model, the speafication and 

selection of the design variables and the necessary checks of the data. For the noise analysis problem this includes 
the assembly of the two data files wluch must be supplied to the main analyser program, with the tangtble 
results of tlus initial phase bemg the finite element analYSIS data file and the analyser data file. 

Phasen 

llis phase constirutes the opbmization process prope& The preprocessing mode of oplrsm is fmt used 
to generate the test specifications for which function values are required (STEP 1) For each reqwred test, the 

spectfication consisls SImply of the value of each of the deSIgn variables llis list of test specifications is then 
Inserted into the analyser data file (STEP 2), and the separate noise analysis program executed (STEP 3). The 
result of each run is extracted from the output file (STEP 4), and the postprocessing mode of oplrsm is then used 
to analyse the results and perform the optimization (STEP 5). The execution of steps 2, 3 and 4 is described by 
Hall and Zhang (1992). The use of optrsm at steP 5 to process the results supplied by the analyser program is 
dela!led by Hall (1992), together with a description of the results which are generated during step 5, and gwdance 
as to their interpretabon. 
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Appendix le 
Finite element model of a representative engine structure 

In order to evaluate the various techruques winch are discussed in subsequent chapters, a series of 
numerical studies have been carried out, using the optimizallon program which has been developed as an integral 
part of the present work (see AppendIx lB). These studIes have been carried out using a ftnite element model of 
the cylinder block of a four-stroke dIrect injection diesel engIne, which has a four-cylinder, in-line conftguration, 
a capactty of 3 86 htres, and a rated speed of 2800 rev/min. The cyhnder block is manufactured from cast iron, 
with dry liners, and a highly nbbed waterjacket extericn: The fmite element model of the cylinder block is shown 
in Figure lC.1. The structure of the engine block IS a modifted version of a standard producllon unit, with a 
number of design alterations haVIng been made in order to reduce the level of radIated noise In parl1cu1ar,lt can 
be seen that three methods of main beanng support are employed; a pair of longitudina\ stiffeners connecting the 
sides of each maIn beanng bulkhead, a bearing beam tyIng together the four bearing caps, and lateral supports 
connecting each bulkhead to the skirts. Only the ftrst of these is found in the standard version of the engine block 
(fumer, 1983). 

Water jacket 
sidewa11 

Latetal 
bearing support 

Bearing cap lie 

End 
panel 

Figure le.l. Finite element model of engine block 

The ftnite element model of the engine block is constructed entirely from shell elements, with 840 
elements betng used, giving 3409 degrees of freedom. ExCltal10n forces, calculated USIng a non-linear coupled 
crank / block analysIS, as descnbed in Appendtx lA, are applied at 40 degrees of freedom withtn the structure; x 
and y components of force and moment at each of the mam beanngs, two normal forces on each cylinder sidewall 
face and one head force at each cylinder. Responses at 198 surface coordtnates are used to calculate the surface
averaged velocilles from which radIated sound power IS computed 
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Shell elements were chosen to model the engme structure, in preference to solid elements, for two main 
reasons. Firstly, modIficatIon of the structural features of the engine block model is substantially easier to carry 
out within the finite element analYSIS program If shell elements are used. As an example, the particular desIgn 
variables winch are addressed by the studies Included in the present work involve modIfication of the wall 
tlnckuess of vanous parts of the engme block casting When using a shell model, tins can be accomplished by 
altenng a single physical property defirntIon for each element involved, whereas, If solid elements were to be 
employed, the posItIon of several nodes on each element would have to be modtfied. Even if this could be 
aclneved without altering the pattern of nodal connectIVIty, the amonnt of computational effort required to 
Implement such a change would be sigmficantly greater than that reqnired for the corresponding shell model. 

A second reason for prefening a shell model to a solid model is that the SIze of the analysis problem is 
sIgnIficantly smaller, resulting ID a reduced solutIon time for a single noise calculatIon TIns IS partIcularly 
important in the present work, since, when carrying out an optimization study, a substantial number of fnnction 
calls are often reqwred. ReductIons in the time needed for a single analysis lead to more effectIve use of the 
avmlable computIng resource, either by allowing a more detuled model of the design vanable space to be 
constructed, or by enabhng more variables to be included In the study. 

It is recogmsed that the finite element model descnbed above is extremely coarse in comparison with 
current Industry practIce. In a commeraal envlromnent, a model used for a dynanuc analysis might typIcally be 
constructed entIrely from solid elements. It would exhibtt a much greater level of structural detail, and hence a 
higher mesh density, and might contain over ten tImes the number of degrees of freedom as the model used here 
It should be borne in mind. however, that the reasons for this level of model refinement are often commeraal as 
well as teclnucal, and that such a model would be used ether for a Single dynamic analySIS, or to examIDe the 
effect of a small number of manually Implemented desIgn changes A full formal optiouzation study using a 
model of this size would currently reqwre a level of computIng resource not reachly aV81lable to the majonty of 
analysis groups. 

Within a commerctal envlromnent, a numencal optimization study of a concept-stage engine ought 
thus be carried out using a swtable compromise between these two levels of modelling detail. Such a model 
might, for example, be constructed predODJinantly from shell elements, with an intermechate level of mesh 
denSIty, In order to gain some of the advantages possessed by such models, as outlined above. Solid elements are 
to be preferred for main bearing bulkheads and beanng caps, however, Mce it is widely recogmsed that the 
accurate representatIon of mass and stiffness chstnbution in this area is essential to the accurate prediction of 
dynamic behavIOur (see, for example, Zhang, 1992) Recent studies, for example Ott, Kaiser and Meyer (1990), 
have shown that nuxed shell and solid models of this type can gtve good correlation with expertmental modal 
analYSIS results up to at least 2000 Hz. 

The JustIficatIon for uSing an all-shell model ID the current work, however, IS that the purpose of the 
present investigatIon is to establish the validity of the theoretIcal approach outlined In subsequent chapters, rather 
than to draw particular conclUSIOns concerning the example engine block winch is being used as a test case. What 
is important WIthin this context is that the fmite element model used is a representatIve example of a posSIble 
engine design, rather than an accurate reflection of the original structure which it has been constructed to 
simulate, and that the tIme required for a single analysis is low enough to allow program development to proceed 
at a convenient pace. Use of the fmite element model descnbed above is further supported by a large body of test 
work which has been carried out in order to provide a correlation with numerical results. An expertmental modal 
analysis progranune was carried out USIng just the hare cylinder block, and a frequency correlation exercise 
performed with the analytical natural frequenCIes (fumer, 1983). The results of this investigation were then used 
to modify the original firnte element model in order to improve correlation. AnalYSIS of this updated model 
showed that, in the range to 2000 Hz, all but one of the experimental natural frequencies were being simulated 
WIth a frequency accuracy of ±\o%. Although the accuracy of the model above 2000 Hzhas not been verified, due 
to lack of experimental data, It is considered that inaccuracies in this range are nnhkely to substantIally alter the 
conclusions drawn from numerical trials, since the nOIse spectrum IS dominated by contributions from one-third 
octave bands in the range 400-2000 Hz, as shown in Figure le 2. Extensive compansons have also been made 
between calculated sonnd power levels and noise levels measured from a rnnning engine (Coul.on and Southa\I, 
1976). 
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Seven desIgn variables have been selected for investigation in the present work. each of which 
represents the t1uckness of a part. or parts. of the cylinder block structure. These are Identtfied tn figure IC.I. 
and the bounds between which they may vary are given in Table IC.1. 

Thickness in mm 
Variable lower upper mean range 

A Crankcase skirt 6.0 12.0 9.0 6.0 
B Beanng panels 1 and 5. end panels 20.0 32.0 26.0 12.0 
C Beanng panels 2. 3 and 4 20.0 32.0 26.0 12.0 
D Longitudinal stiffener 4.0 14.0 9.0 10.0 
E Lateral bearing support 10.0 25.0 17.5 15.0 
F Bearing cap tie 6.0 12.0 9.0 6.0 
G Water jacket sidewall 6.0 12.0 9.0 6.0 

Table IC.I Seven design variables of the four·cylinder engine block 
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2. Response Surface Methodology 

The first section of this chapter reviews the development of the techniques of response 

surface methodology when used for genernl experimental work. Following this, applications of 

the technique to the area of 'computer experimentation' are reviewed. The remaining sections of 

the chapter proVide an introduction to a number of the concepts, definitions, conventions and 
methods of analysis which underlie the work of Chapters 3 - 8. 

2.1 A review of RSM 

2.1.1 Early work in the use of response curves 

The family of techniques known collectively as Response Surface Methodology are 
genernlly considered to have had their beginmngs 10 work earned out in the field of agriculturnl 
research, particularly with regard to crop growth, in the late 1920's and 1930's. Here the need 

for planned experimentation was paramount, since a complete growing season was required to 
carry out a smgle study, with limited scope for iteratively bwlding a detailed experiment, due to 

the large seasonal fluctuatIons in, for example, weather conditions. Wishart (1938,1939) used 

orthogonal polynomials to approximate the growth rate of pigs, whilst Winsor (1932) used a 
'functional' or 'mechanistic' model to investigate a situation in which relative growth was 
thought to decrease exponentially with time. 

Although each of these studies involved the use of one-dimensional growth curves, 
multi-dimensional response surfaces were also being used in this period to investigate crop 

yields. An early example is provided by Mltscherlich (1930), and Crowther and Yates (1941) 
used response surfaces to evaluate the effect of different fertilisers on the yield of arable crops. 
In such investigations, the need to design an expenment for the specific purpose of fitting 

response surfaces was seldom addressed expliCitly, although an important paper by Yates 

(1935) used factorial experimental designs to collect response data, and provided the 
groundwork for much of the later research into the design and selectIOn of experimental 
schemes. This work also descnbed a simple tabular means of calculating the magnitudes of the 
various linear and interaction terms of first-order response surface equations (referred to as 
orthogonal contrasts). 
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2.1.2 The development of RSM in the 1950's 

The populanty of response surface methods mcreased markedly in the early 1950's, as 

did interest in the theoretical princIples underlymg the design of experiments. This 

popularisation was due, to a large extent, to a number of papers pubbshed by G.E.P. Box and 

his assocIates at ICI in Manchester. The dommance of trus group was such that Hill and Hunter 

(1966) opened theIr review paper on RSM with the statement that "Response surface 

methodology was initially developed and described by Box and Wilson (1951)". Although later 

workers and reviewer have acknowledged prevIous work m the field, such as that described in 

Section 2.1.1, this era was clearly an Important turning point in the general acceptance of the 

techmque. 

In the first major paper of thts period, Box and Wilson (1951) dIscussed a number of 

expenmental designs, whose atm was to identify an optimum location on the response surface 

WIth the mmimum number of observations. They assumed that the responses could be modelled 

usmg polynomial functions, and stressed the importance of orthogonal designs for esttmating 

model parameters (see Section 2.7). It was also in this paper that Box and Wilson introduced 

the Central Composite Design (CCD), whIch has become one of the most widely used second

order designs, and IS the subject of Chapters 6 and 7 of the present work. 

The tOpICS addressed by Box and Wilson were further discussed and extended by Box 

(1952, 1954), Davies (1954), and Box and Youle (1955), who also stressed the iterattve nature 

of an expenmental investtgation. Box and Hunter (1957) Judged competing experimental 

designs on the basis of prediction variance within the deSIgn variable space, and from this 

developed the important concept of rotatability of a deSIgn (see Section 2.8). A further Important 

development in the comparison of expenmental designs was presented by Box and Draper 

(1959), who discussed the robustness of a design to model mlsspeclfication, and introduced the 

bias critenon. 

In addltton to the work of Box et al., a number of other major areas of research into 

RSM were attracting attention within this penod, amongst which was the development of the 

theory of optimal deSIgn. This work was matnly undertaken by Kiefer (1958, 1959, 1960, 

1962a, 1962b) and Kiefer and Wolfowltz (1959, 1960), who developed a number of dIfferent 

criteria by which to judge experimental designs. These measures of design optimality are 

important when generating new types of experimental design, but are of less relevance to a 

practical use of RSM if standard designs are employed. 

In parallel with these developments in the theoretical fundamentals of RSM, a number 

of papers were aimed at popUlarising the methods, presenting practical applications of the theory 

which could more easily be assimilated by industrial statisticians. Among these, the series of 

papers by Bradley (1958), and Hunter (1958, 1959a, 1959b) are notable. 
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2.1.3 Designs for linear models 

One of the earliest two-level designs to be used for fitting linear models is the full 

factorial design. in wluch tests are carried out at all combinatIOns of the high and low bounds of 

each variable (see. for example. Yates. 1935). Tlus design allows estimation of the main effect 

terms of a linear model. as well as the interaction effects between all poSSible combinations of 

linear factors. It has the disadvantage. however. that the number of tests required grows 

quickly as the number of variables Increases. In order to address this drawback. a class of 
designs known as fractional factorial designs was introduced by Flnney (1945), In which a 2-P 

fraction of the full factorial design is used. selected so as to Yield the maximum information 

concerning interactions between vanables. The importance of these designs was quickly 

recognised. and examples of their use were discussed by Davies and Hay (1950) and Daniel 

(1959). amongst others. These designs are still widely used for estimating linear models. and 

are discussed In detail in Chapter 3. 

An alternative method of reducing the number of tests required by the full factorial 

design was developed by Plackett and Burman (1946). For a Plackett-Burman design in n 

variables. the number of tests reqUired is equal to n + 1. and IS a multiple of 4 rather than a 

power of 2. One disadvantage of this class of design is that It is not aVllllable for all values of n; 

Plackett and Burman presented deSigns for n = 3. 7. 11 •...• 99 variables. 

In 1957 the National Bureau of Standards. of the U.S. Department of Commerce. 

published a collection of fractional factorial designs. in which a selection of experimental 

arrangements requiring 2 n-p tests were presented for n = 5 •. _ .• 16 and p = 1 •...• 8. This 

publication provided a useful reference for those making practical use of response surface 

methods Within industry. and its use is discussed by Zelen and Connor (1959). Alternative 

methods of formulation and analysis of fractional factorial designs were presented by Box and 

Hunter (1961a. 1961b). Discussion of many aspects of two level designs. together with a 

number of variations on the standard methodology. was undertaken in a series of papers by 

Addleman (1961. 1962a. 1962b. 1963. 1964. 1969). 

Recent work concerning first-order designs has concentrated on modifications to the 

existing methodology in order to obtained improved estimation efficiency. (reducing the number 

of tests required to estimate a particular model). or to address specific industrial applications. 

e.g. Box and Jones (1989). 

2.1.4 Second·order models and designs 

Second-order experimental designs have attracted a large amount of attention. both by 

researchers and by practitioners of RSM. They offer an attractive compromise between the 
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simplIcity. and often inadequacy. of designs for lInear models. and the large number of tests 

reqUired by higher order designs. Three-level versions of the factorial and fractional factorial 

designs used for fitting linear models may be employed. but these tend to be large and 

inefficient unless the number of design vanables is extremely small. A selection of three-level 

fractional factonal designs was published by the NatIonal Bureau of Standards (1959). These 
designs compnse 3 n.p tests. and are presented for n = 4 •...• 10 and p = 1 •...• 5. The use of 

these designs was discussed by Zelen and Connor (1959). 

The scope for constructing different experimental schemes is far greater for 

second-order designs than for linear designs. and this is reflected in the number of competing 

arrangements which have been put forward. The family of Central Composite Designs was 

introduced by Box and Wilson (1951). in which a two level fractional factorial design is 

augmented with an additional (2n + 1) tests. in order to allow estimation of the pure quadratic 

components of a response surface. Hartley (1959) suggested a class of small composite 

designs. which are a variation on the CCD. A number of three-factor. three-level designs were 

discussed by DeBaun (1959). some of which were found to perfonn better than the full factorial 

design. Box and Behnken (1960) introduced a class of incomplete three level fractional 

factorial designs. which are generally rotatable. or almost rotatable. and which block 

orthogonally (see Section 2.10). Box-Behnken designs are. however. only available for certain 

problem sizes (n = 3-7.9-12. 16). 

A class of saturated designs. in which the number of parameters to be estimated is equal 

to the number of tests in the design. was introduced by Box and Draper (1971). for n = 2 and 

n = 3 variables. These designs were generalised for n ~ 4 by Box and Draper (1974). A family 

of economical deSigns for fitting the stnct quadratic model was developed by Hoke (1974). 

generalising earlier designs by Rechtschaffner (1967). These designs are based on partially 

balanced Irregular fraclIons of the 3D factonal. and are valid for any number of vanables n ~ 3. 

Although only requiring a small number of tests. Hoke showed that his designs compared 

favourably with both Box-Behnken designs and the CCD's of Hartley (1959). A further 

investigatIOn by Lucas (1976) compared the Hoke designs with the CCD and Box-Draper 

designs. and found that the Hoke designs perfonned better than the saturated designs of Box

Draper. and nearly as well as the CCD. although requiring far fewer tests. 

Doehlert (1970) and Doehlert and K1ee (1972) introduced unifonn shell designs. which 

are generated from the points of a regular simplex. such that the pomts lie on concentric 

spherical shells. The disadvantages of these designs are that they require a large number of test 

pomts and variable levels. Lucas (1976) found that they did not perfonn as well as either the 

Box-Behnken design or the CCD. Hybnd deSigns were introduced by Roquemore (1976). and 

are constructed from a CCD of dimension n-l. augmented With an extra row. The specification 

of this extra test IS detennined in such a way as to achieve a similar degree of orthogonality as 

the CCD. whilst also being nearly rotatable. 
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Among the many other schemes which have been put forward, an early example of a 

family of saturated deSigns is given by Koshal (1933), from which It is possible to construct 

specific designs of any order d In n variables. Designs which are based on irregular fractions of 

factorials, and are very nearly saturated, were introduced by Westlake (1965) for n = 5, 7 and 9 
I 

van abIes. As is the case for first-order designs, much recent work has aimed at reducing the 

number of tests which need to be performed, whilst maintaining an acceptable level of accuracy 

in the estimation of parameters. Examples of this approach are the small composite designs of 

Draper (1985) and Draper and Lin (199Oa). A set of saturated designs which are constructed 

using tests which form part of the three level factorial design were developed by Notz (1982). 

An additional area of research concerns the number of centre points which need to be 

included m a second-order expenmental design, and work in this area has been earned out by 
Lucas (1977) and Draper (1982), both of whom gave gUidelines for the selection of such 

points. 

2.1.5 Designs of higher dimensionality 

Experimental designs of order greater than two have received relatively little attention by 

RSM researchers and practitioners, mainly due to the increased number of test points which are 

required in order to estimate the parameters of a higher order model. When carrying out 

experiments In which random experimental error is of importance, it is often better to use any 

additional tests to obtain better estimates of the parameters of a second order model than to fit a 

model of higher dimensionaIity. 

Third-order designs are discussed by Gardmer, Grandage and Hader (1959), Draper 

(1960b, 1960c, 1961, 1962), Herzberg (1964) and Huda (1987). Fourth-order designs and 

models are discussed by Huda and Shafiq (1987), Arap Koske (1987) and Arap Koske and 

Patel (1987). 

2.1.6 Measures of design optimality 

Various criteria have been developed for judging the performance of an experimental 

design, many based on the optimal design theory work carried out by Kiefer and Wolfowitz, 

dating back to the late 1950·s. The most widely used measure of optimality is that of 

D-efficiency. with a D-optimal design being one in which the generalised vanance of the 

coefficients is a minimum. A related measure is that of G-efficiency. in which the maxtmum 

prediction vanance Within the design variable space is minimized, and both of these criteria were 

used by Lucas (1974) to compare four types of composite designs. Lucas (1976) also used 
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these two measures to compare a number of standard experimental designs, including the CCD 

(Box and Wilson, 1951), Box-Behnken designs (1960), uniform shell designs (Doehlert, 

1970), the designs of Hoke (1972), Box-Draper saturated deSigns (1971), and a class of 

D-optlmal designs proposed by Pesotchinsky (1975). Further comparisons, using these and 

other measures of optimallty are given by Stlvey (198O), Bandemer (198O), and Atkinson 

(1982). 

A related area of research has been the development of algorithms to construct 

D-optimal deSigns. Early work In this field was earned out by Wynn (1970) and Federov 

(1972), and computer programs have been developed for the purpose by Federov (1972) and 

Mitchell (1974a, 1974b). In an improved versIOn of Mitchell's algorithm, Galil and Kiefer 

(198O) presented a family of computer-search methods to identify optimum designs. Cook and 

Nachtshelm (1980) review a number of algorithms which are avrulable for this purpose. 

2.1.7 Locating the optimum 

Although obviously of great Importance in the practical use of an integrated RSM-based 

approach to optimization, techniques for locating the unconstrained or constrained optimum 

of a function are not the main focus of attention for those Involved In the use of response 

surface methods. These methods form a separate body of knowledge which Will not be 

reviewed ID detail here. Within the present work a standard numerical optimization algorithm 

from a commercial subroutine hbrary has been used to carry out optimization studies (see 

Chapter 9). In order to give a historical perspective to the search for optimum conditions, 

however, It is useful to conSider a number of the techniques whIch were in general use before 

advanced numerical optimization routines became avrulable. 

Early work on optimization was concerned mainly with the identification of stationary 

points on a response surface (unconstrruned optimization), and often relied on graphical 

methods to visualise the shape of the response surface. The use of such techmques is, of 

course, extremely limited when the number of deSign variables exceeds three. Two techniques 

which have been widely used for identifying optima are the method of steepest ascent, and ridge 

analYSIS. 

The method of steepest ascent IS descnbed by, amongst others, Davies (1954) and 

Khun and Cornell (1987), and involves locally approximating the response surface as a (linear) 

hyperplane, and using thts equation to determine the direction in which the response is expected 

to improve most rapidly. Experiments are performed along this "line of steepest ascent" until 

curvature of the expenmental response surface causes the result to deviate from the prediction of 

the hyperplane. At thts point, a new hyperplane approximation is derived, and the procedure 

continues iteratively unlll no further improvement is gained. The cruef disadvantage of this 
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approach would appear to be that It is highly susceptible to local gradient infonnation, and can 

thus only be expected to perform well on smooth surfaces. Ridge analysis was introduced by 

Hoer! (1959) and fonnalised by Draper (1963). Its purpose is to locate the maximum value of a 

response surface when no stationary point lies within the bounds of the design variable space. 

2.1.8 Other research directions 

Among the many other areas of research which have been investigated by RSM 

workers, the ability to deal efficiently with multiple response functions is of some considerable 

importance, SInce "nearly all pracncal RSM problems are truly multiple response in natJJre" 

(Myers, Khun and Carter, 1989). If the responses which are of Interest can be assumed to be 

independent, then standard expenmental deSIgns may readIly be employed, and each of the 

resulting response surface generated in the usual way. This approach is followed in the present 

work. If, however, there is slgruficant interaction between responses, as may occur, for 

example, in chemIcal processes (see for example :lIegel and Gorman, 1980), then an alternative 

methodology may be adopted, such as that of Box and Draper (1965), which accounts for these 

effects. A more recent example of this approach is given by Bates and Watts (1985). 

Whichever method is followed to generate the analytical response surfaces for each 

function, some means of performing a mUln-response optimization is reqUIred. This branch of 

opnmlzation is much less advanced than the methods used for SIngle-response optimization, 

with only a small number of commercIally available algonthms and computer routines. Some 

early attempts at muln-response optimization, such as those by Myers and Carter (1973) and 

Biles (1975) simply carried out a constrained optimization of a single objective function. A 

different technique, based on the concept of a desirability junction was used by Harnngton 

(1965), and more recently by Dernnger and Suich (1980). This achieved a compromise 
optimum, the location of which depended on the weighting, or deSIrabIlIty, ascribed to each 

objective functIon. In a simIlar manner, Khuri and Conlon (1981) used a distance junction to 
descnbe how far each response was from Its optimal value. 

Another area of research which is gaining in importance is the ability to deal with large 

numbers of design variables. The standard experimental designs are usually quoted for s 10 or 

12 design variables, and after this become impractically large in size. In many applications, 

however, the number of potennal design variables may be many tens or even hundreds, of 

which only a relanvely small number may have a significant effect on the response functions of 

interest. In such cases it may be impractical to carry out even a simplified two-level design in 

order just to estimate maIn effects. One posSIble strategy to deal WIth this situatJon is the Group 
Screening Method, discussed by Watson (1961). Using tIus technique, the design variables are 

arranged In a number of groups, and a standard experimental design is carried out, in which the 



36 

variable levels of each member of a group are varied together. If certain assumptions are made 

regardIng the nature of the effect of each of the variables, then any group which is found to have 

an insignificant effect on the response can be considered to have no sigmficant vanables. 

Groups which do have an effect on the response functtons are divided mto smaller groups, and 

the process repeated until either the number of potenttally active vanables IS reduced to a 

manageable size, or the group size is reduced to one. SimIlar approaches have been taken by 

Srivastava (1975) and Morris (1987) 

An alternative approach to screening was taken by Welch, Buck, Sacks, Wynn, Mitchell 

and Morris (1989), who present an example in which the six important factors are identified 

from a 20-dimensIOnal input, curvature and interactions are detected, and a predictive equation 

generated, WI th just 30 tests. 

2.1.9 The application of RSM to computer "experimentation" 

The use of response surface methods to mvestigate the effect of varying the inputs to a 

computer simulatIOn program has receIved very little attention in the publIshed lIterature, 

although its use appears to have become more widespread in recent years. An early example is 

given by McKay, Conover and Beckman (1979), who used Lattn hypercube sampling to select 

values of input variables to a computer code. Iman and Helton (1988) used a fractional factorial 

design to investigate a computer model, fItting the response surface usmg a least squares 

cnterion. They found that the linear response surface model was often madequate to represent 

the complexity of the computer model throughout the range of the input variables, but was 

useful in ranking the effects of these variables. Further investigation of the analytic response 

surface was carried out using Latin hypercube samplIng and Monte Carlo sampling. 

Sacks, Welch, Mitchell and Wynn (1989) modelled the deterministic output of a 

computer code as the realisation of a stochastic process, and drew a number of important 

dIstinctions between computer experiments and physical expenmentation. A simIlar approach 

was taken by Welch, Buck, Sacks, Wynn, Mitchell and Morris (1989), who used a method 

known as kriging (Matheron, 1963), and compared the classical frequenttst approach with a 

Bayesian method of prediction. 

Sacks, Schiller and Welch (1989) use this technique to model departures from a first- or 

second-order model, and present examples in which the test point coordinates of a gIven design 

are optimised to minimIse the integrated mean square error (IMSE) over the design vanable 

space. They present an example in which a seven dimensional CCD requiring 79 tests is used to 

investigate a methane combustion process. 
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2.1.10 Additional references 

Reviews of RSM have been published by Hill and Hunter (1966), Mead and Pike 

(1975), and Myers, Khun and Carter (1989). The three main texts on the subject are Myers 

(1971), Box and Draper (1987), and Khuri and Comell (1987). 

2.2 RSM concepts and definitions 

In the remaming sections of this chapter, a number of the concepts, defimtions, 

conventions and methods of analysis of RSM are introduced. More detailed descnptlons of 

many of the topics are aVaIlable in the pubhshed literature, and SUitable sources are referenced 

where appropnate. The method of codmg variable values is first described (Section 2.3), 

together With the effect which this has on the shape of the deSign vanable space (Section 2.4). 

Following this, the terminology used to describe mathematical models and expenmentaI designs 

is introduced (Section 2.5 and 2.6). The properties of orthogonality, rotatablhty and permutation 

invariance are then descnbed (Sections 2.7-2.9), as well as the practice of arrangmg tests in 

blocks (SectIOn 2.10). The characteristics of the moment matrix are descnbed in some detaIl m 

Sections 2.11 and 2.12, since reference to these results is made in the discussions of Chapters 

3-8. The fmal two sections cover the method of least squares (Section 2.13) and methods of 

testing lack of fit (Sections 2.14 and 2.15). 

2.3 Coding of variables 

When the set of input variables to be used in a particular mvestigation has been 

identified, it IS often found that the values of the bounds between which the variables may be 

varied is Significantly different for each of the factors involved. As an exrunple, Table 2.1 

shows the variable bounds in the original umts, together With the mean and range, used in an 

investigation of the behaviour of worsted yam under cycles of repeated loading, reported by 

Box and Draper (1987, p.28) 

bounds 
Variable lower upper mean range 

A Length of test specimen (mm) 250.0 350.0 300.0 100.0 
B Applied load (g) 40.0 50.0 45.0 10.0 
C Amphtude of load cycle (mm) 8.0 10.0 9.0 2.0 

Table 2.1 Variable values for the worsted yarn experiment 
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It can be seen that in this example the largest and smallest variable ranges differ by a 

factor of SO, with the result that, even if the effect of each vanable on the response function 

were equal, the resultIng coefficient values would dIffer SIgnificantly. This dIfference leads to 

difficultIes in interpretIng the relatIve effect of each of the deSIgn variables, and may also lead 

to problems when USIng Iterative optimization methods to locate a minimum on the fItted 

surface, since the search direction IS often determined by local gradient information, 

calculated In variable units. 

In order to eliminate this illusory difference in variable effects it is usual to scale the 

units of each variable such that standardised, or 'coded', vanable bounds are obtained, which 

are the same for each factor. These coded levels are obtained by applying the transformation 

shown in (2.1), which results in values of ±I for the bounds of each variable, and a value of 

o for each vanable mean. For each vanable I, the original variable value ~ is converted into 

the dimensionless value Xj. 

where M. 

X
• _X,-M, ,-

~, 

Xhi + X" is the mean of high and low bounds for variable i 
2 

~ - Xh, - Xli IS the half-range of variable i ,- 2 

= the distance from the mean to either of the variables bounds 

X hand Xh, are the lower and upper variable bounds respectively 

As an example, the upper bound of vanable A, from Table 2.1, is coded as 

_ 3SO.0 - 300.0 
SO.O 

1 

(2.1) 

The important property of equal coded range for each factor may be obtained solely 

by diviSIOn by the vanable half-range, WIth subtraction of the mean value gIving the 

convenient additional feature of distnbution about a zero value. An additional advantage of 

using thIS standardised notation is that, when each of the variables is tested only at Its mean 

or bounded values, the appearance of Integer values In the design matrix leads to increased 

simplicity in the estimation of model parameters. Note that, in some experimental designs, 

tests may not be carried out exactly at variable bounds, in which case the 'test range' will not 

be equal to the 'bound range' for a given variable, although if the design is permutation 
invariant (see Section 2.9), then trus test range wJiI be the same for each variable. Note also 

that if the tests to be performed are not symmetnc about the mean level Mi of each variable, 

then the mean, over the N tests, of the coded test values 
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will not be equal to the mean of the coded bounds, mj = 0 (see also Section 2.12). Further 
detaIls of the use of coded vanables can be found In Khuri and Cornell (1987) p.46, and Box 
and Draper (1987) p.20. 

2.4 The effect of variable coding on the shape of the design region 

Any particular deSign configuration, defined as a combination of n vanable values, can 
be visualised as lying within an n-dimensional design vanable space. If each of the vanables can 
independently vary between its bounded values, then the shape of the design van able space IS 
that of a hyper-rectangle. The effect of the variable coding described in the previous section is to 

normalise the bounds on each of the variables to ±1, so that the coded deSign vanable space is a 
hypercube. A normalised design region in three design variables is shown in Figure 2.1. 

(-1, 1, -1) 

(-1,1,1) f---t---II-----f, 

(1, -1, -1) 

(1, -1, 1) 

Figure 2.1. A cuboidal design space in three dimensions 
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2.5 Terminology for mathematical models and experimental designs 

A general polynomial model m n vanables may be regarded as consisting of T terms. 

each of the form 

YI xf" xg~ ... x~ .. (t = 1 •...• T) (2.2) 

where the xI. x2 •...• xn are the n vanable values. all (i =1 •...• n ; t =1 •...• T) is the index of 
the i th variable in the tth term. and YI IS the coefficient of the tth term. In order to complete the 

definition of a statistical model. an error term E is added to (2.2). A model contammg terms for 

which the (Xil(i =1 •...• n) are zero for all t. for example. would be as shown in (2.3) 

T 

Y = L YI + E = Ilo + E 
1=1 

(23) 

Such a model. however. is of little use as a predictJve tool. and in subsequent chapters a number 

of more complex mathematical models are used to represent the variation of the response 

functions throughout the design variable space. In order to distinguish between models of 

similar specification. the following convention has been adopted. 

A linear model is one in which no term contains a variable which has an index other 

than 0 or 1. Such a model may also be termed a first-order model. The simplest of these models 

is one in which each term contains no more than one variable which has a non-zero index. and 

an example of this is shown in equation (2.2). This is referred to as eIther a strict linear model 

or a main effects model. 

n 

Y = Ilo+ L fl,x, +E (2.4) 
,=1 

In contrast with the mam effects model. a linear model which contains a number 

of terms in which more than one vanable has a non-zero-index is described as a 

linear + interactions model. Each of the terms in wluch two vanables have a non-zero index may 

be described as mIxed quadratic terms. with each term containing three vanables being a mixed 

cubIC term, and so on. However. each of these terms represents an interaction between linear 

effects in each of the variables represented (see Section 3.2). and thus may also be descnbed as 

a linear interaction term. EquatJon (25) shows a linear + interactions model which contains all 

possible interaction terms. from the [n(n-l)/2] two-way interactions to the single n-way 

interaction. 
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n n-I n n-2 n-I n 

y = ~O + I ~IXI + I I ~irlXj + I I I ~IJkXIXrk + 
1=1 1=1 J=I+I 1=1 j=t+1 k=J+I 

(2.5) 
n-3 n-2 n-I n 

I I I I ~IJkIXIXJXkXI + ...... ~123 ··n XlX2X3·· ·Xn + t 
1=1 J=t+1 k=J+I l=k+1 

A model contairung tenns in which vanables may have an index of 0, 1 or 2 IS termed a 

quadratic, or second-order, model. A strict quadratic model is one In which, for each term, the 

sum of indices of the variables is not greater than 2. The terms which may appear are thus the 

mean, the main effect terms "i, (i = 1, n), the two-way Interaction (or mixed quadratic) terms 

x,.~, (i = 1, n, j = i, n), and the pure quadratic terms Xj2, (i = 1, n). Such a model is shown in 

equation (2.6). 

n n n 

y = ~+ I ~IXI + L I ~iJXIXJH (2.6) 
1=1 1=1 J=I 

In addition to the terms of equation (2.6) a quadratic + interactions model may contain 

any other term in which no variable has an Index other than 0, 1 or 2. These Include the 

remaining k-way, (2 < k s n), interaction terms of (2.5), as well as terms of the form 

n 

where I u l >2 
1=1 

These latter terms represent all possible interactions between quadratic effects, and 

between these quadratic effects and linear effects. A model containing all such terms is shown in 

equation (2.7) 

n n n 0-1 n n 

y = ~ + I ~.xl + L L ~IJX.xJ + L I I ~IJkX.xrk + 
1=1 1=1 J=I 1=1 J=I k=J 

01 
n-l n-l n n 

I I I L ~ljkIX.xrkXI + ...... ~1l2233 .•. nn xlx~x~xl· .. X~ + t 
1=1 J=I k=J I=k 

01 I>J 

(2.7) 

The above convention can, of course, be extended to models of order greater than two, 

with, for example, a strict cubic model being one in which, for each term, the sum of indices of 

the variables is not greater than 3, and a quartic + interactions model being one which may 

contain any term in which each variable has an Index in the range 0 - 4. In the present work, 

however, only models of order one and two will be considered in detail. 
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The above conventions also apply to experimental designs, with an nth-order design 

being one which, as a minimum requirement, allows for the eslImalIon of all the parameters of a 

strict n tb-order model. An nth-order design may also allow for estimation of some or all of the 

additional parameters of an nth-order + interaclIons model. Note that a design which allows the 

estimation of a full n th-order + InteraclIons model may also be used to fit a full kth-order + 
Interactions or strict kth..order model, (O:s k:s n-I), whilst a design which allows estimation of 

a strict nth-order model may be used to fit any strict kth-order model, (O:s k:s n-I). Due to a 

desire to mimmize the number of function evaluations which need to be performed, however, 

the abIlity of an expenmental design of a given order to yield models of a lower order is seldom 

of practical benefit 

2.6 Saturated designs 

The saturation ratio of a model/design combination may be defined as the ratio of the 

number of terms to be fitted to the number of tests in the deSign. A design in which the number 

of tests IS equal to the number of coefficients which are to be estimated is termed a saturated 

design. 

2.7 Orthogonallty 

An orthogonal design is one in which the parameter estimates of the terms in the fitted 

model are uncorrelated with one another. The prediction variance at any POInt in the design 

variable space is then expressible as a weighted sum of the variances of the parameter estimates 

in the model. The importance of this property lies in the fact that the independence of the 

parameter estimates facilitates the appraIsal of the parameter values obtained, as well as the 

comparison of relative precision of the parameter estimates for different terms of the model. In 

the present work, this independence is fundamental to the application of the probability plot 

technique, described in Appendix 4C, for testing the statistical sigmficance of individual 

parameters. 

In practice, a small degree of correlation between parameter eslImates will not normally 

Invalidate conclusions drawn from either probability plots or variance comparisons, and a 

requirement for exact orthogonality is often somewhat relaxed in cases where its attainment 

would lead to a large increase in the number of funclIon evaluations required. A related benefit 

of orthogonal designs is that the precision of the parameter estimates which are obtained is 

greater than that for comparable non-orthogonal designs (Box and Draper (1987), p.79). 
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2.8 Rotatability 

A rotatable design is defined as one in which the the prediction variance is the same at 

all points winch lie at the same distance from the centre of the design variable space, so that 

surfaces of constant prediction vanance form concentric hyperspheres. One of the advantages of 

a rotatable deSign IS the fact that the variances of indiVidual parameters, and the covariance 

effects between them, are unaltered if the design is rotated relative to the variable axes. 

Orthogonality is thus maintained under design rotation, so that prediction precision will not be 

adversely affected If the principal axes of the response surface are not aligned with the variable 

axes (Box and Draper (1987), p.484). For flTSt-order designs, the requirements for 

orthogonallty and rotatablhty are, in fact, identical (Box and Draper (1987), pA83). When 

investigating a cuboidal design region, however, concentric hyperspheres of constant prediction 

variance would not appear to be of any particular benefit The Identification of a constrained 

optima on low order polynomial surfaces, for example, often Identifies optimum variable 

combinations which lie at, or close to, one of the vertices of the design variable space (see 

Chapter 9), where prediction variance would be highest 

A much more useful design, when carrying out optlmization within the deSign variable 

space, would be one which resulted in the prediction variance being approximately constant 

within the region, Since the maximum vanatlon in prediction variance is arguably of more 

importance than the exact shape of the variance contours. Tins requirement for approximately 

constant vanance can be met by employing a SpeCial type of rotatable design known as a 

uniform precision deSign, in which the prediction vanance at points lying on a hypersphere of 

radius 1.0 is the same as that at the design centre. Second-order uniform precision designs are 

discussed in Section 5.3, below, where it is shown that strict conditions must be fulfilled in 

order to obtain them, often requiring many extra function evaluations, and that they cannot also 

be orthogonal. For these reasons the property of exact rotatability IS often compromised in the 

search for deSigns which have a small test requirement and are also orthogonal. Methods are 

available which can be employed to assess the degree of rotatabIiity of a design (Khuri, 1985), 

although their use is not Investigated here. 

2.9 Permutation invariance 

A further characteristic which is automatically possessed by rotatable designs is that the 

precision of the parameter estimates for each class of term are invariant under permutation of the 

factors in the model (permutation-invariant, for short, see Hoke, (1974), p.376), so that the 

estimates of the parameters do not change if the order of the vanables is changed. Thus, all the 

parameters of the same form are measured with equal precision; e.g. the variance of parameter 
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lid is independent of the value of i, and similarly for 11. and lIij' etc .. 
This is clearly an important property, since the ability accurately to compare different 

variables depends heavily on the avrulablhty of equally precise information concerning the effect 

of each of the factors. AdchtlOnally, it IS often not possible to estimate in advance which of the 

input variables is likely to have the greatest effect on the response functions, which would 

necessarily lead to difficulties in determming the appropriate order of variables if the design to 

be used were not permutation-invariant. This problem is compounded by the fact that certain of 

the variables may have a large effect on one or more of the computed responses, but a smaller, 

or even negligible, effect on other responses. Indeed, it is shown in Section 9.S that, when 

carrying out an optimization study, it is advantageous to include some variables which possess 

just this property. 

Although the majority of the commonly used experimental deSigns are Inherently 

permutation-invanant, a number of the more advanced schemes for estimating the parameters of 

second-order models deviate substantially from this ideal, in the search for deSigns which 

reduce the number of function evaluations to the theoretical minimum (see Chapter 8). Due to 

the reqUirement for mathematical models which will allow opnmization to be carried out within 

the deSign variable space, experimental deSigns winch are not permutation-invariant have not 

been invesngated within the current work 

2.10 Blocking of tests 

When carrying out experimental work of any nature, it is important that all test runs 

carried out as part of an experimental design are conducted under controlled conditions, so that 

vananons between test runs only occur in those variables which are being actively investigated. 

Studies involving the sampling of output from a manufacturing process, for example, should 

ideally test products made by the same machine from the same batch of raw materials, and 

manufactured on the same day. If this IS not possible for some reason, such as insufficient raw 

material being available in a single batch, then the resulting inconsistency between tests becomes 

an adchtionai variable in the experimental design. 

The effect of an adchtional vanable due to diffenng expenmentaI conditions is often of 

no interest in itself, but is of some considerable concern in that these variations may bias the 

estimates of the effects of other variables. A number of experimental designs have been 

developed in order to address this problem; see for example Box and Behnken (1960), Khuri 
and Comell (1987), Box and Draper (1987). USing these schemes, the required tests are 

divided into a number of groups, or 'blocks', with uncontrolled variables, such as raw material 

batch or day of manufacture, only differing between these blocks, and not Within them. The 

diVision of tests Into blocks is earned out in such a way that the effect of any uncontrolled 
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operating conditions IS orthogonal to the effect of any of the variables being investigated, and 

hence will not bias the estimation of the parameter coefficients. This method of orthogonal 

blocking ensures that estimation of deSign vanable parameters is independent of any unwanted 

effect winch may vary between blocks. 

When carrying out an "expenmental" programme usmg computer simulation, however, 

all relevant conditions are exactly repeatable. In this context, blocking of tests is not required, 

and hence the use of an experimental design scheme which allows orthogonal blocking of tests 

is of no particular advantage. Indeed, a number of these designs have a significant 

disadvantage, since additional function evaluations are often required in order to ensure that the 

tests block orthogonally. In selectIng suitable experimental designs with which to investigate the 

engme nOise problem, the ability to carry out orthogonal blocking of tests has thus not been a 

consideration, and the evaluation of designs which do posses this featl1re, as in Section 8.1, has 

been conducted solely on the basis of other relevant characteristics of the design. 

2. 11 The D, X and M matrices 

The specification of an experimental design can be expressed in terms of the design 

matrix, D, which contams the combinatIOn of vanable values to be used for each run. The 

design matrix for a three-level full factonal design in one dimension would thus be 

(2.8) 

Each row of the regressor matrix, X, is formed by calculating the values of each of the 

terms of the model equatIOn which result from the appropriate test combination. Thus, If the 

coeffiCients of the model 

(2.9) 

were to estimated from the above design, the appropriate regressor matrix would be 

[ 
1 -1 1] 

X = 1 0 0 
111 

(2.10) 

The moment matrix is then defined as M = N·IX'X, where N is the number of tests in 

the design, and X' represents the matrix transpose of X. For further details see Khuri and 

Comell (1987), p. 54. 
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2.12 Characteristics of the moment matrix 

The discussIOn in this section is based on that of Khurl and Cornell (1987, pp. 54-57, 

60-61). An experimental design may be assessed for rotatability by examining the elements of 

the moment matrix. For a first-order model in n vanables, for example, the X matrix in the 

coded variable levels is of the form (1, XI' x2' ..• , x,,). The moment matrix may then be written 

as follows. 

1 XI x2 x3 xn 
1 1 [1] [2] [3] [n] 

XI [11] [12] [13] [In] 

-1. X'X = x2 [22] [23] [2n] 
N ~3 [33] [3n] 

(2.11) 

symmetnc 
xn [on] 

where, for i, j = 1, ... , n, i;e j. 

N N N 

[i) = ~ L Xui 
u=1 

[iI] = ~ L X~i 
u=1 

[ij] = ~ L xwxuJ 
u=1 

(212) 

It can be seen that the value [i), called the first-order moment in the ith variable, is equal 
to the mean of the test levels x.u of the i th variable over the N tests. Similarly, the pure second

order moment [iI] is the mean of the squared variable values xui2• The value [ij], i ;e j, is termed 

the mixed second-order moment In order to simplify the moment matrix, it is usual to apply a 

scaling transformation to the coded variables, chosen such that the mean of the test values ID 

each vanable is zero, and hence [I] = O. Clearly, an additional critenon of [ii] = 0 is unattainable 

unless all the x.u are equal to zero, but a simplification of the moment matrix may be obtained by 

scaling the variable values such that [ii] = 1. 

The first of these criteria may be fulfilled by subtracting from each of the uncoded test 

values Xw, u = 1, ... , N, the mean value of the Ith vanable over the N tests, such that 

xu.=Xw-x, 

N 
- 1~ where X. = N L.- Xu. 

u=1 

(213) 

(2.14) 

Note that, if the test specifications are symmetric about the mean of the variable bounds ~, then 

the mean of the test val ues will be equal to zero. 
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It can be seen from (2.12) that the requirement [li] = 1 is met when 

N 

~ x~,=N 
u=1 

and this may be obtained by applying a scabng factor Cl to each of the N test values, such that 

(2.15) 

Thus, 

[ N J1I2 
c,= N/~ X~I 

0=1 

giving 

(2.16) 

The two criteria [i] = 0 and [ii] = 1 can be met simultaneously by first transforming the 

van able values to a zero mean using (2.13), and then scaling to give unit mean square by 

(2.16). The following relationships can then be formed: 

From (2.13), 

(2.17) 

By substitution into (2.16), 

(2.18) 

or 
(2.19) 
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where 

I t can be seen from inspection of this equatton that, in general, the attainment of these 
two criteria will not yield equal coded ranges for each variable, since the value of the scaling 

factor Xi. is dependent on the particular distnbution of test points in the i th variable. Thus, the 

adoption of this coding convention does not ensure the fulfilment of the requirement of 

Section 2.3, that the range of each of the variables be equal, as specified in equation (2.1): 

However, If the normalised distnbution of test values is the same for each variable, 

which is a necessary condition for the deSign to be permutation invariant, then the value of the 

scaling factor ~ will be the same, as a proportIOn of the variable range, for each variable. Thus, 

for the class of designs which are invariant with respect to permutatton of the variable order, 

(which mcludes all deSigns considered within the present work), the coded test range of each 

factor is identtcal, although not generally equal to ±1, and the reqUirement of Section 2.3 is 

fulfilled. Note that (2.18) is of a similar form to equatIOn (2.1), with the mean of the actual test 

values replacmg the mean of the variable bounds, and the denominator providing a measure of 

the spread of the test points in the direction of the Xi-axis. Indeed, if the test points are 

symmetrically distributed about the mean of the variable bounds, with only bounded values 

bemg tested (as for the factorial and fractional factorial designs introduced in Chapter 3), then 

the two expressions are identical. 

As discussed above, the effect of the scaling convention of (2.18) is to simplify the 

moment matrix by producing values of [i) = 0 and [ii] = 1, so that the moment matrix of 

equation (2.11) is of the form 

1 Xl X2 X3 xn 
1 1 0 0 0 0 
Xl 1 [12] [13] [In] 

.1 X'X = x2 1 [23] [2n] (2.20) 

N ~3 1 [3n] 
symmetric 

xn 1 

In the general case of a design in n variables, the elements of the moment matrix (also 

known as design moments), take the following form: 



N 
[16, 26, n6.] -1." x6, x6, X 6. ... - N £... ul u2 ••• un 

u=1 
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(221) 

where each of the indices IIj (i = 1. n) is a non-zero integer. A design moment for which the sum 

of the indices (Ill + 112 + ... + IIn) = 11 is termed a deSign moment of order 11. and. in general. a 

deSign of order d will have design moments of order 11 = O. 1. 2 •... 2d. Thus. a second-order 

design will have design moments of order up to 4. For such a design. the X matnx in the coded 

variable levels is of the form (1. XI. x2 ••••• x n• X12. X22 ••••• ~2. Xlx2. xlx3 ••••• xn_Ixn)' 

so that, for a two-dimensional problem: 

1 XI x 2 
x2 

I 
x2 

2 x l x 2 
1 1 [1] [2] [11] [22] [12] 
XI [11] [12] [111] [122] [112] 

(2.22) 
-L X'X = x 2 [22] [112] [222] [122] 
N xi [1111] [1122] [1112] 

x~ symmetnc [2222] [1222] 
xIXz [1122] 

The notation for array elements follows that of (2.11); thus. in addition to (2.12). for the 

general case of an n-<iimenslOnal design. and for i. j = 1 •...• n. i;e j. 

N N N 
[iii] = ~ ~ x~, 

u=1 
[ ... ] 1" 2 
IIJ = N £... XU,XUj 

u=1 
[iiii] = ~ ~ X~, 

u=1 
N 

[···]1"3 IIIJ = N £... x.,XUj 
u=1 

N 
[ .... ]_ 1" 2 2 
IIJJ - N £... XU,XUj 

u=1 

(2.23) 

As for a first-order design. adoptIOn of the scaling convention of (2.18) leads to a 
SimplIfied matrix: 

1 XI X2 
x2 

I 
x2 

2 XIX2 
1 1 0 0 1 1 [12] 
XI 1 [12] [111] [122] [112] 

1. X'X = x 2 1 [112] [222] [122] (2.24) 

N xi [1111] [1122] [1112] 
x~ symmetnc [2222] [1222] 

XI Xz [1122] 

Moment matrices for designs of order greater than two are constructed following a 
procedure analogous to that outlined above. 
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Khuri and Comell (p.56, p.60) show that, if a design is rotatable, its moment matnx 

will be of a particular form. For a rotatable first-order deSign in n variables, for example, the 

moment matrix must be as follows: 

~ x'x =[ 1 0'] 
o ;"2 In 

(2.25) 

where In is the n x n Identlty matrix. The sub-matrix ;"21n represents the [ii] entries of the 

moment matnx, which, under the scaling convention of (2.18), each have a value of 1. Thus, 

the scale factor ;"2 takes a value of 1. Additionally, since the moment matrix is diagonal, first

order rotatable designs are also orthogonal. 

For a second-order rotatable design in n vanables, the moment matrix is of the 

following form: 

1 XI ... xn x2 x2 x2 xI"z xI"J ... xn.lxn I 2 n 

1 1 0' ;"2 ;"2 ;"2 ;"2 

XI 0 0 0 0 0 
0 

;"2 In 

xn 0 0 0 0 

X2 
I ;"2 0 0 

-lx'x = ~ ;"2 0 0 
;"4 (21n + I n) 0 N ;"2 0 0 

X2 
n ;"2 0 0 

XI"z 

XIX3 
0 0 ~Ip 

Xn.IXn -
(2.26) 

where I n is an n x n matnx of ones, and p = n(n-l)/2. Thus, for a rotatable second-order 

design, the only non-zero elements in the moment matrix are [ii] = Az, [iiii] = 3;"4 and 

[ii.ii] = Az· As for first-order designs, the effect of the scaling convention is to set Az = 1. The 

value of the second parameter, ~ may be chosen to aclueve certain other design characteristics, 

such as orthogonality. The selection of a suitable value for this parameter will be discussed 

further in Chapters 5 and 6. 
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2.13 The method of least squares 

Once the reqUired function values have been evaluated at each of the test pomts of the 

experimental design, a method is required winch wIll eStimate the terms of the chosen 

mathematical model. In selecting a method by which to carry out this fitting process, It should 

be remembered that the mathematical model Will ultimately be used in the identification of an 

optimum vanable combmatlOn within the design variable space, and that it is generally not 

known in advance in which area of the experimental region an optimum is likely to lie. Indeed, 

if a number of optimIzation procedures are to be carried out with differing objective functions, 

constraint functions or constramt values, then many areas of the design variable space may be of . 

importance. In such a case, It IS appropriate to use a method which will ascribe equal importance 

to the function values calculated in all parts of the design vanable space. The method used in the 

current work, widely used for fitting equations to data, is the method of least squares, more 

detailed descriptions of which may be found in, for example, Press et al. (1986), p.499 et seq., 

Khuri and Cornell (1987), pp. 23-28, Box and Draper (1987), Chapter 3. This techmque also 

has the advantage that a large number of computer routines are readily aVaIlable, both from 

commercial software libranes (e.g. NAG, 1983) and from other sources (e.g. Press et aI., 

1986). The least squares method seeks to identify values of the unknown parameters of a model 

such that they minimise the sum, over all of the test pomts, of the squares of the errors between 

the predictions based on the fitted model and the calculated function values. A summary of the 

method is given in Appendix 2A. 

2.14 Testing lack of fit 

Following the construction of an approximating response surface, it is important that the 

next stage of any mvestigatlOn be the validation of this mathematical model, in order to ensure 

that it is a sufficiently accurate representation of the original function which It seeks to 

approximate. This validation is carried out by first selecting a number of locations within the 

design variable space, and comparing the response calculated by the original analysis program at 

each of these points With the value predicted by the approximating model. The difference 

between these two values is referred to as the 'lack of fit' of the response surface at the point in 

question. The lack of fit winch is found at the chosen points may be expressed in a number of 

ways, among which one of the most common is the analysis-of-variance (ANOVA) method. 

The ANOVA method is a standard statistical approach to evaluating the quality of fit of a 

predictive model (see, for example, Box, Hunter and Hunter, 1978). Using this technique, a 

comparison is made between the amount of variation about a mean value which occurs in the 

computed function values and the amount of variation which occurs in the predicted values, 
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calculated USIng the approximating mathematical model. A summary of the method is given in 

Appendix 2B. Perhaps one of the greatest disadvantages of the ANOVA approach is that the 

results which are produced are often hard to interpret, especially when used by engineers or 

designers who have no formal training In statistical methods. Additionally, the measures of fit 

which are obtained give little indIcation as to which areas of the response surface are being 

accurately represented, and in which regions sigmflcant discrepancies are occurring. Such 

information would be particularly useful in deternurung whether substantial improvements in the 

accuracy of the approximating response surface could be gained by moving to a higher order 

model. 

To avoid these concerns, an alternative approach has been taken In companng the 

various experimental designs and predIctive models which are discussed in Chapters 4 - 8. A 
measure of lack of fit is developed which presents the lack-of-fit data in a form which is directly 

related to the units of each of the original response functIOns, and is more amenable to 

interpretation by non-specialist users. 

2.15 Assessment of lack of fit for optimization purposes. 

Calculation of lack of fit is carned out for each function at all test points for which 

function value information has been computed. For the purposes of assessing lack of fit at 

different locatIOns withm the design variable space, these test points may be divided into a 

number of groups, such as, for example, the design points used to generate the model, and 

those extra pOInts which have been specIfically selected to provide additional lack of fit data. 

The categories of test points used in the present investigation are descnbed m Section 4.1.1, for 

first-order designs, and Section 6.5.1 for second-order designs. The lack-of-fit error E at each 

point is calculated, as for the analysis-of-variance method, as the difference between the 

computed function value and the predicted value at this point Thus, 

E= (Yu - y.J (2.27) 

where Y u is the computed function value at the uth test 

Yu IS the predicted function value at the uth test 

This absolute error value may be quoted in the original function umts, and provides a 

readily understandable measure of the performance of the predictive model at each point within 

the design region. Although tins absolute error value is instructive in assessing the suitability of 
the mathematIcal model, a more useful measure would be one which seeks to normalise the 

error term in some appropriate fashion, and an initial chOIce might be to calculate the error as a 

percentage of the measured value. When carrying out an optimization study, however, an 

important consIderation is the way in which the response surface would be dIstorted by such an 
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error, since It IS this distortion which leads to Incorrect identification of optimum variable 

combinations. A suitable measure of the error occurring at a test point would therefore seem to 

be one which links this error to the range over wJuch the function in question varies throughout 

the design variable space. The error may thus be expressed as a percentage of the function 

range, as follows: 

(2.28) 

where the absolute error E IS as defined above, and Fh and F\ are the extreme values of the 

function which occur wIthin the design region. 

The use of this normalised measure of lack of fit has the additional advantage that It 

enables general recommendations to be made as to when the fit of a model should be considered 

adequate. Errors which constitute less than, say, 5% of the function range are unhkely to cause 

substantial distortions In the overall shape of the response surface, and will hence not lead to 

large errors in the determmatlon of an optimum. Errors of 15-20% or more would, however, 

usually give cause for senous concern, and in such cases the investigator should make further 

inqwnes Into the dIstribution of these errors, and conSIder either conducting a further set of 

computatIOnal function evaluations m order to provide additional data, or use a predictive 

model of a higher order. Between these ranges, the level at which errors become unacceptable 

is largely a matter of judgment, and will often depend upon experience of a particular 

application. 
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Appendix 2A 

The method of least squares 

ConsIder a case In which the measured response Y is representable as a Slnct quadratic model in two 
variables, plus some error term ., as shown m equation (2A 1) 

(ZA,l) 

At each of the n test points, a measured function value Y U' (u=I, .. , N), is obtained, and the error term Eo at each 
pomt IS thus 

(ZA.2) 

The sum of the squares of the errors, .s2, is then as shown in equation (2A3), and It is tins value winch the least 
squares algonthm seeks to minimIse. 

N 

Es2 = L (Y u -130 -I3IXul - fuXu2 -l3ux ul - 1322X~2 - 1312XUIXUV
2 

0=1 
(2A.3) 

In order for the least squares estimates to be lI13Xlmum likelIhood estimates, a number of conditions 

must be placed on the error term. in the statistical model (2A.l). These conditions on. are as follows, 

1. They are statistically independent. 
2. They have zero mean and a common vanance, 02. 
3. They are normally distributed 

The valuhty of these conditions when cmrying out computer 'experimentation' is dIscussed in AppendIx 4C, 
although in any case the least-squares algorithm gives sensible results under a much WIder range of condItions. 

For the full set ofN tests, the model of equation (2A.l) can be expressed in matrix notation as follows 

Y = XI3 + £ (2A.4) 

where Y is a vector of measured funcl10n values, X is the regressor matnx, P is the vector of coefficientS and • IS 

a vector of error terms, as follows; 

X= 

1 

1 

1 

XTz Xn X12 

X~2 X21X22 
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130 

-=[!] 13= 
131 

1312 

It can be shown that the least square esbmates of the elements of 11 may be found by solving the normal 
equanons 

X'Xb=X'Y (2A.5) 

where b = (bo. b" .... bl~' are the least squares estimates of the coefficients 110.11" ..• 1111. respectively. and 
may be calculated as 

(2A.6) 

The covanance of the parameter esbmates is then given by equabon (2A.7). where each dtagonal 
element ell represents the vanance of the ilh element of b. and each off.diagonal element <;J represents the 

covanance between" and by 

Cov(b) = C = (x'x)'l02 (2A.7) 

The standard error of each bi is equal to the posibve square root of the variance value of that b I' 
1 VVar(b'> I. The response y(xm) which is predicted by the model at any point xm = (xml • xml)' is gtven by 
equation (2A 8). 

(2A.8) 

where x.,,' = (I. x ml. X ml. X ml 1. Xmz 1) is of the same form as a row of the X matnx of (2A 4). Finally. the 
vanance of Y("m). wbtch IS a measure of the preC1slOn of the prediction. may then be calculated as 

(2A.9) 

Note that. for an orthogonal deslgtl (see Section 2.7). the matrix X'X is dtagonal. so that the prediction variance 

at the point "m is equal to the sum over i of (Xml)2 bl• Addttionally. if the maximum value of each variable 

within the design regton is I O. then the maximum prediction variance is equal to the sum of the varianoes of the 
individual coefficient estimates. 
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Appendix 2B 

Analysis of Variance 

The ana1ysis-<lf-vanance method compares the amount of variation about a mean value which occurs in 
the computed function values WIth the amount of variation which occurs In the predIcted values, calculated using 
the approXllnatlng mathematical model.The vanatlon which occurs In the computed function values is termed the 
total sum of squares (SS]) and is calculated as follows: 

N _. 

SST= L (Y.-Y) (2B.I) 
•• 1 

when: Y. IS !he computed function value at the ulh test 

Y is !he mean function value over the N tests, Y = (Y I + Y. + ... + Y N) I N 

The number of statistical degrees of freedom associated wi!h SST is N - 1. The variation which occurs in the 
predicted values at the same test points IS refClTed to as the sum of squares due to regression (SSR). For a model 
which contaInS a total of p parameters (InclUding the mean value), the number of statistical degrees of freedom 
assOCIated WI!h SSR is p - 1. The sum of squares due to regressIon IS calculated as 

N _. 

SSR= L (y.-Y) (2B2) 
u=1 

when: y. is !he predIcted function value at the ulh test 

The lack of fit at each of the u =1, ., N selected POInts IS calculated as the dIfference bet~een the 
computed function value Yu' and the prechcted function value YU' The sum of the squares of !hese values is termed 
!he sum of squares of !he residuals (SSE), and may be expressed as 

N 

SSE= L (Y.-y.)' (2B3) 
u=1 

The number of statistical degrees of freedom assOCIated WIth the sum of squared reslduals IS equal to the 
thfference in number of degrees of freedom between SST and SSR, and is thus (N - I) - (p - I) = (N - p) These 
Ihree values, toge!her Wl!h their degrees of freedom are usually assembled in tabular form, as shown in 
Table 2B.1. This table highlights !he fact !hat the total sum of squares variation is partitioned into two 
components. Firstly, !he SSR represents the amount of !he variation in data values which is being accounted for 
by !he predIctive model. The SSE then gives the remaining vanation in the computed function values which is 
unaccounted for by the fitted model. 

Stabstical Degrees Sum of Mean 
Source of Variation of Freedom Squares Square 

Regression p -I SSR SSR I (p - I) 
Residual N-p SSE SSEI (N -p) 
Total N -I SST 

Table lB.I Analysis-of-Variance Table 

The above quantities may be used to assess the accuracy of the fitted model by testing !he null 
hypothesis !hat all model coefficients except Po are equal to zero. If the test shows !lus hypo!hesls to be untrue, 
!hen this allows acceptance of the alternative hypothesis; !hat at least one of the model coefficients is non-zero, 
In addition to !he mean. In order to test !he null hypothesis. !he sum of squares information calculated above is 
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fmt used to compute an F-stallstie. whtch IS of the form: 

F=Mean Square Regression = SSR I (p - 1) 
Mean Square Residual SSE I (N - p) 

(2B.4) 

nus value is then compared with standard tables. for the appropriate number of degrees of freedom. m 
order to assess whether the hypothesis is to be accepted or rejected at a given level of significance. An additional 
statislle whieh may be used to determme the quality of fit of the prediellve model IS the coeffiCIent of 
deternunal1on, defined as 

(2B S) 

The coefficient of determinallon reflects the proporl1on of the total variallon of the computed function values 
about thClr mean value which is bCJng explained by the filled model. 
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3. Two level factorial designs 

3.1 Introduction 

The general aim in the use of response surface techruques IS to construct a mathematical 

representation of the measured data which establishes a connection between the values of the 
mput variables and the level of the response functions of interest. This analytical model IS then 
used to predict the function values at combmations of input variable levels other than those 
initially tested. The simplest such representation is a linear model, also known as a 

'mam effects' model, the general form of which is as follows. 

n 

Y = 130+ L I'IIX1 (3.1) 

1=' 

In thiS equation, X" X2, ... , X n are the levels of the n input variables, Y is the value of 

a measured response funCtion, and 1'10' 1'1" ... , I'In are unknown coefficients which link the 
input vanables and the resulting response. The aim of the current chapter is to present a number 

of strategies for selecting variable combmatlons at which to carry out computational trials, in 
order to estimate the values of the unknown parameters With the greatest efficiency, whilst 

maIntaining an acceptable level of accuracy. In the following chapter the results of a number of 
experimental trials Will be presented, in order to establish the SUitability of these methods to the 
engme noise application. 

3.2 A simple method of estimating main effects 

Considering a simple one-variable example, the Imear model IS of the form 

(3.2) 

in which there are two unknown parameters to be estimated. At least two tests must therefore be 
carried out in order to obtain sufficient function information to be able to distinguish between 
the effects of the two terms. Having decided the range of variable values over which predictions 
of the response function are required, an appropriate choice for the two values of the variable at 
which to carry out tests would seem to be the low and high bounds of this range. This gives the 

advantage that all prediCtions over the required range are obtained by interpolation. 
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If a further vanable is added to the investigation, then the model becomes 

(3.3) 

in which three parameters are to be esttmated. The minimum test requirement is now for three 

trials, with the further provision that each of the variables must appear at a minimum of two 

different levels, with a suitable choice of settings being the low and high bounds of each 

variable, as above. A further parameter is added to the model with each extra variable which IS 

to be considered. For the general case of n variables, the minimum number of trials is thus 

n + I, with each variable appearing at at least two distinct levels. 

This requirement for test data may be met by carrying out a basic 'one at a time' test 

procedure, in which one trial is performed with all of the variables at, say, their low level, 

followed by n further trials, in each of which one of the variables is set to Its high value, with all 

others at the low level. Even if no pure quadratic effects occur in the response, however, this 

method can still lead to inaccuracies, since it assumes that the effect of each variable Will be 
independent of the value of all others. This may not be the case, as it is poSSible that the effect 

on the response functIOn of a small change In the value of a vanable A may be different when 

another variable B is at Its high level to the effect when B IS at Its low level. The occurrence of 

this connection between variables is termed interaction, With the present example representing 

AB interaction. An interaCtion effect is represented in the predictive model by a cross term 

involving the interacting variables, so that (3.3) would become 

(3.4) 

If many such effects are present in the variation of measured response, or a small 

number occur with large magnitude, then there is substantial scope for error in the prediction of 

the response throughout the region of Interest. In addition, the magnitude of this two-way 

interaction term may itself be different at different levels of some third variable C, leading to a 

three-way (or third order) interaction term ABC. In general, in fact, there exists the possibility 

of interactions of increasing complexity up to nth order for a problem in n variables, although 

their magnitudes are likely to decrease mpidly with increasing order. 

The limitations of the 'one at a time' approach may be demonstrated diagrammatically 

with reference to a three variable problem. Figure 3.1 shows the three-dimensional design 

variable space, together with four vanable combinations which might be tested using such a 

strategy. The low and high levels of each variable are here represented as -1 and (+) 1 

respectively. The distribution of test pOints throughout the experimental region clearly leaves 

much to be desired, with the constructed model being based on information collected from only 

a small portion of the total space. Although predictions at points which fall on the edges of the 
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cube between two adjacent POints are hkely to be fairly reliable, function evaluation at all other 

locations requires a varying degree of extrapolation. Two-way interaction effects may lead to 

Inaccuracies at, for example, the POints (-I, I, I), (I, -I, 1) and (1, I, -I), with the point 

(1, I, 1) being further subject to the possibilIty of a three-way interaction effect 

An equally Important defect of the 'one at a time' method is that, in addition to ignoring 
all interactIOn effects in the construction of a predictive model, It provides no means of 

assessing whether these effects are present or not. If the user is aware of these limitations, then 

the 'one at a time' approach can serve a useful purpose as an initial survey of a design variable 

space, in order to ascertain, for example, whether any of the selected input variables have a 

negligIble effect on the response function of interest. More detaJled investigation may then be 

posed In a reduced dImenSIOnal variable space, WIth a resultant saving in the cost of 
experimentation. 

(-I, I, -1) 
~-+--...:......:........;, 

(-1, I, 1) rL---I--~-t 

(1, -I, -1) 

(1, -I, 1) 
• test points 

Figure 3.1. A 'one at a time' test in three dimensions 

The adequacy of the model constructed using the 'one at a time' method may be 

assessed by carrying out further tests at one or more points within the experimental regton, such 

as at (1, I, 1) in Figure 3.1, and comparing the result with the value predicted by the model of 

equation (3.1). The magmtude of the dIfference between these two results proVIdes some 
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indication of the degree to which the model is failing to represent the true response. An initial 

Improvement to the constructed model may be obtained by improving the dIstribution of test 

pOints throughout the design variable space by, for example, testing at each of the vertices of the 

cube in Figure 3.1. Although this will reduce bias towards a particular area of the region, the 

representation of interaCtion effects is still precluded by the SImple natJJre of the main effects 

model of (3.1). Additionally, eIght tests are now being conducted to estimate just four 

parameters, and this ratio of model terms to test points WIll fall sharply if the number of design 

variables IS increased. It is at this stage that a more formalised approach to the selection of an 

appropriate experimental design is required. 

3.3 The factorial design 

The factorial design IS a WIdely used general purpose design for fItting a first-order 

model. It IS valid for any number of input vanables n, and has the further advantages that it IS 

both orthogonal and rotatable. A factonal deSIgn In n vanables is constructed by performing 

tests at all combinations of the high and low levels of each of the vanables. The total number of 

such combinations IS 2 n, and the test points may be visualised as lying at the vertices of an 

n-dimensional hypercube. The test pOints which are required for a three-dimensional case are 

shown In FIgure 3.2. 
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(-1. 1. -1) 
--1---:.....;.,. .... 

(-1. 1. 1)f1C---4--+-_(;., 

(1. -1. -1) 

(1. -1. 1) 

• test points 

Figure 3.2. A two level factorial design in three dimensions 

The variables are scaled in accordance with the convention descnbed in Section 2.12. 

so that for each of the i = 1 •...• n vanables in each of thej = 1 •...• Ntests. the value Xij is 

converted to the standardised level x,j by the transfonnation 

(3.5) 

The effect of tlus scaling is to nonnalise the values of the low and high bounds of each 

vanable to -1 and + 1 respectively. as shown in Figure 3.2. 



The design matnx for this three-variable design is then 

D= 

-1 -1 -1 
-1 -1 1 
-1 1 -1 
-1 1 1 
1 -1 -1 
1 -1 1 
1 1 -1 
1 1 1 

This leads to the following moment matrix M = N-I X' X 

1 
o 
o 
o 

o 
1 
o 
o 

o 
o 
1 
o 
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thus demonstratmg that the design meets the conditions for both orthogonality and rotatability as 
outlined in Sections 2.7 and 2.8. All of the two level factorial designs introduced in the present 
chapter display both of these properties. 

Since 2n tests have been performed, it is possible to fit a mathematical model which has 
up to 2D unknown parameters to be estimated. From Section 3.1, It is known that n + 1 of these 
terms are the mean plus main effect terms. The remairung 2D - (n + 1) terms are then the 
interactions between the n variables, and the factonal design thus allows the construction of a 
'linear + interactIons' model of the form shown in equation (3.6). 

n 0-1 n 0-2 0-1 n 

y = flo + L fl,x, + L L fl'jx,xj + L L L fl,jkX,xjXk + 
1=1 1=1 j=o+ I 1=1 j=1+ I k=j+ I 

(3.6) 
n-3 n-2 n-I n 

L L L L fl,jklX,XjXkXI + ...... flI23 ••. n XIX2X3·· ·Xn 
1=1 j=l+1 k=j+1 l=k+1 

It should be noted that only linear Interactions appear in (3.6); that is, terms in which no 
variable has an index greater than 1. The two-way Interactions may alternatively be considered 
as mixed quadratic terms, and the three-way interactions as mixed cubics, etc .. 
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The advantages of the full factorial design are that It IS easy to specify, and allows for 

the estimation of all possible linear interaction terms. This latter characteristic may be 

particularly useful when investigating a specific problem of an unfamiliar nature, in which the 

susceptiblhty to interactIOn effects IS unknown. The main disadvantage, however, is that the 

number of terms in the model of equation (3.6) successively doubles as the number of vanables 

is increased, as does the number of tests wruch must be performed ID order to estimate these 

parameters. This test reqwrement is easily met for problems containing up to, say, 4 or 5 

vanables (2n = 16 and 32 tests respectively), but quickly becomes excessive when the number 

of design variables exceeds 6 or 7. An investigation into the effect of 10 vanables would require 

1024 trials to be conducted, whilst With 15 variables this number increases to nearly 33,000. 

It is unlikely, however, that all of these terms will have a slgmficant effect on the 

predictive abllity of the fitted model, and in general the magmtude of coefficients is likely to 

decline as the order of interaction increases. The proportion of significant terms in the model 

may thus fall extremely rapidly as the number of variables IDcreases. If in a twelve variable 

study, for example, only effects up to and inc1udlDg fourth-order interactions were contributing 

to the model, then the number of significant terms would be 794 out of a total of 212 = 4096, or 

just over 19%. If the fourth-order interactions were negligible, trus figure would drop to 299 

terms (7.3%), and a linear plus two-way interactions model would contain Just 79 parameters; 

less than 2% of those appearing in the original model. A similar model in 15 variables would 

contain less than 0.4% significant terms, and even for 7 vanables the ratio is under 23%. 

In such cases the full factorial design IS an ineffiCient means of acquiring the necessary 

test data, and an alternative strategy is required ID which the number of tests to be performed 

may be reduced in line WIth the expected number of significant terms. 

In practice a full factonal design would only be considered If one or more of the 

following conditions were true: 

i) The number of variables is small (say < 7) 

ii) The cost of each test IS very low 

ill) All linear interaction terms are known to contnbute substantially to 

the predictive accuracy of the model. 

3.4 Economic first-order designs 

In reducing the number of expenmental test runs which needs to be carried out in order 

to estimate the required parameters of the mathematical model, a design is sought which will 

provide the necessary accuracy, and which will also maintain, If possible, the desirable 

properties of orthogonality and rotatability possessed by the full factorial design. Two 
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orthogonal designs for fittmg first-order models which may be employed are the Simplex 

Design (Box, 1952) and the Plackett-Burman design (Plackett and Burman, 1946). 

A simplex deSign in n variables uses n + 1 test points, posluoned at the vertices of an 

n-dimensional regular figure (a simplex) in order to asses the mean value and main effects 

represented by the linear model of equatlOn (3.1). The disadvantage of this design, however, is 

that the extremely low number of test points does not allow for the esumation of any of the 

interaction effects which may occur between vanables. 

The Plackett-Burman design is also largely aimed at fitting a mam effects model, 

although some interaction terms may be included. Its main drawback as a general technique, 

however, is that it is not available for every value of n, the number of design vanables. 

3.5 Fractional factorial designs 

One class of deSigns which does meet the above criteria is the family of fractional 

factonal deSigns, in which a 2·m fraction (1 :s m :s n-l) of the complete factorial design in n 

variables, as outlined m Section 3.3, is used to collect the necessary function mformation. The 

fractional factorial design is valid for all values of n > 1, and has the additional advantage that 

the value of m can be selected to successively halve the number of tests to be carried out The 

price to be paid for thiS reduction in test data, however, is a corresponding reduction m the 

number of terms of equatlOn (3.6) which can be estimated. It is clearly important that the terms 

which remain in a reduced model are those which contribute substantially to the accuracy of 

prediction, and this is determmed by the manner in which the original 2n tests are subdivided to 

produce the reduced experimental design. Before proceedmg further, a bnef discussion of 

notation is required. 

3.5.1 Notation for fractional factorial designs 

Although the elements of a design matrix and points Within a design variable space are 

most conveniently described using the ±1 notation used in the previous sections, an alternative 

method of Specifying design variable test combinations is useful in outlining the construction of 

a fractional factorial design. 

Under this convention, used by many authors, e.g. Davies (1954), each of the variables 

Xl, X2, ••• , ~ is denoted by a capital letter (A, B, C, ... etc.). Each treatment combination is 

then described by a string of k lowercase letters (k :s n), in which the letter relating to a 

particular variable appears in the string if that variable is to be tested at its high level, but is 

absent if the low level is to be tested Thus a test in five variables at the point (1, -1, -1, 1, I), in 
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which variables A, D and E are tested at their high level, with B and C at the low level, would 

be notated as 'ade'. Special provISIon IS made for the combination In which all variables are 

tested at their low level, and this IS wntten as '(I)'. 

Additionally, terms in the mathematical model are described using the appropriate capital 

letters in place of the XI' X 2, ••• , ~ of equation (3.5). Thus the main effect tenns are written 

as A, B, C, etc., and two-way interactions as AB, AC, BE, DF, etc .. In general, each 

Interaction of order k (k :5: n) will be notated as a string of k capital letters denoting the variables 

between which the interaction effect occurs. 

3.5.2 Construction of designs with m = 1 

A method of specifying a 2-m fraction of a 2n factorial, following that of Khun and 

Comell (1988), is outlined in the following seCtions, and is valid for all n > 1. In order to aid 

descn ptlOn of tlus method, the simplest case of m = 1 is first discussed. Following this, the 

procedure IS extended to designs employing a 2.2 fraction, and then to the general methodology 

for any value ofm in the range 1 s ms n-!. 

For a deSign employing a 2-1 fraction of a full factonal design, the original 2 n tests must 

be divided Into two fractions. The first step IS to nominate one p-way interaction (p :5: n) which 

is thought to have a negligible Influence on the model, and whose effect may be 'sacnficed'. 

This Interaction should normally be of a high order, and, since only one is required, a logical 

chOIce IS the single noway Interaction. 

Of the total of 2n test combinations, notated by a string of lowercase letters, as in the 

prevIOus section, half will have an even number of letters In common with this nominated 

Interaction, whilst half will have an odd number in common. This IS the basis for dividing the 

original tests into two fractions. The choice as to which of these two fractions to use as the 

design is entirely arbitrary, as it cannot be known prior to testing whether one will yield better 

results than the other. In practice it is usual to use the 'principal fraction', which is defined as 

the fraction which has an odd number of letters in common with the nominated interaction if the 

nominated interaction contains an odd number of letters, and an even number in common with it 

if it is even. 

It will be convenient, eSpecially when conSidering designs for which m > 1, to denote 

the fraction whose tests have an even number of letters in common with a nominated interaction 

containing an even number of letters, or an odd number of letters In common with one 

containing an odd number of letters, by the symbol '+'. Conversely, the fraction whose tests 

have an even number of letters in common with a nominated interaction containing an odd 

number of letters, or an odd number of letters in common with one containing an even number 
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of letters, is denoted by the symbol '-'. Clearly, each of the tests within a given fractIOn Will 
display the charactenstics of the fraction as a whole, and may also be given the appropnate 

symbol. 

As an example, consider the selection of a 2-1 fracnon of a five variable factorial design 
containing 25 = 32 tests. The full set of test combinations IS as follows. 

(1) 

a 
b 

c 

d 

e 
ab 

ac 

ad 

ae 

bc 

bd 

be 
cd 
ce 

de 

abc 

abd 

abe 

acd 

ace 
ade 

bed 
bee 

bde 
cde 
abed 
abee 

abde 
acde 
bede 
abede 

Table 3.1. Full set of 2D tests for a five variable problem 

If the five-way Interaction ABCDE is selected as the term to be 'sacnficed', then the 
tests which have an even number of letters in common With thIs term are 

(1) 

ab 
ac 
ad 

ae 

bc 

bd 

be 

cd 

ce 

de 

abed 

abce 
abde 

acde 
bede 

Table 3.2. The first of two 2D
• 1 fractions for a five variable problem 

whilst the following have an odd number of lettcrs in common with ABCDE 

a 
b 

c 
d 

e 
abc 

abd 

abe 

acd 

ace 
ade 

bed 
bee 

bde 

cde 
abede 

Table 3,3. The second of two 2D • 1 fractions for a five variable problem 

Since ABCDE itself has an odd number of letters, it is this second fraction which, under 
the conventIOn given above, is the principal fraction, denoted by '+', 

Having decided which tests to perform, It is now necessary to determine which of the 
original 2D terms may be retained in the reduced model. Twice as many terms were present in 

the original model as there are now test results, with the result that the effect of pairs of terms 
will be indistinguishable from each other. Such terms are said to be 'confounded', Any fitted 
model must include only one term of each pair, although the parameter estimate will in fact 
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represent the sum of the two effects. This may clearly lead to significant error if both of the 

terms have a substantial 10fluence on the function to be approximated. If, however, the terms 

are paired such that only one of each set IS significant, then little information will be lost Since 

the reduced model contains the same number of coefficients as there are tests in the fractional 

design, an exact fit at all test po1Ots will always result, whichever term of each confounded pair 

IS used. The effect of speclfy10g an 10significant term of a prur will only become apparent when 

the model is used to predict the response at pomts other than those used to construct the model. 

The effect of us10g the nominated 1Oteraction, in the above case ABCDE, to divide the 

factorial design into two fractions is that in all the tests of one fraction ABCDE is at its high 

level, whilst in the other fraction all tests have ABCDE at the low level. The result of this is that, 

whichever fraction IS used, the ABCDE effect is only tested at one level, and IS hence 

indistinguishable from the mean value, or identity effect, denoted as le" This confound1Og with 

the identity effect may be written as 

ABCDE=le (3.7) 

and is termed the 'defining relation' for thiS particular design. This relation provides the basis 

for determining the confound1Og between all other terms in the full model. To find which other 

effect a particular term is confounded with, the term must be mulllplied with the nom1Oated 

interacllon; the square of any letter being removed from the resulting character stnng. The term 

produced by this process is then the one with which the original term is confounded. 

Returmng to the above example, the term with which the main effect A is 

confounded is: 

A x ABCDE = A2BCDE = BCDE (3.8) 

whilst the two-way interaction term CE is confounded with 

CE x ABCDE = ABC2DE2 = ABD (3.9) 

The full set of confounded parameters for the above example is then as given m 

Table 3.4, below. Each term in the first column is confounded with the term appearing on the 

same row of column two. 
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mean ABCDE 

A BCDE 

B ACDE 

C ABDE 

D ABCE 

E ABCD 

AB CDE 

AC BDE 

AD BCE 

AE BCD 

BC ADE 

BD ACE 

BE ACD 

CD ABE 

CE ABD 

DE ABC 

Table 3.4. Pattern of confounding for a five variable problem 

This design appears to provide a promising basis for accurately representing the true 

response, since all of the main effect and two-way interaction terms may be estimated 

independently of each other. The fitted model would contam those terms which appear in the 

left-hand column. The predictive ability of the constructed model will depend on the size of the 

three-way and four-way interaction coefficients with respect to the two-way interaction and 

main effect terms respectively. 

3.5.3 Construction of designs with m = 2 

Designs which use a 2-2 fraction of the full factorial require that the number of tests be 

reduced to one quarter of the onginal number. In order to achieve this, two interactions must be 

nominated, to successively halve the number of tests. The choice of suitable nominated 

interactions, however, is now not so apparent. For the five variable example introduced above, 

an initial selection might be the five-way interaction ABCDE and one of the four-way 

interactions, say ABCD. 

As for the previous example, half of the 2 n tests will have an even number of letters in 



70 

common with the first of these nominated mteractions, whilst half will have an odd number m 
common. The same is true for the second interaction. Since the original parameter estimates of 
the nommated interactions were orthogonal, the division of tests will also be orthogonal, so that 
each half fraction created by either interaction wlil be further halved by the other. If the symbols 
'+' and '-' are again adopted, then the complete set of 2n tests will be diVided mto four 
fractions, as follows. 

Interaction 1 

+ 
+ 

Interaction 2 

+ 

+ 

The principal fraction is now defined as that fraction for which '+' symbols are obtained 
with respect to both defining relations. 

For the five variable example considered earlier, the prinCipal fraction for the 2.2 design 
with defining relation ABCDE and AB CD may be found by further dividing the tests of Table 
3.3, and selecting those which have an even number of letters in common with ABCD. These 

are hsted m Table 3.5. 

e abe ace ade bee bde cde abcde 

Table 3.S. Principal fraction for 2n•2 design In five variables 

Since both of the nominated interactions are now confounded with the mean effect, 

there are two defining relations of the form 

ABCDE = ABCD = le (3.10) 

By multiplying each term of the full model by each of the two interactions, two terms 
are generated with which the onginal effect is confounded. Since only one quarter of the terms 
of the full model may now be represented, however, confounding must occur in sets of four 
parameters. A third defining relation is therefore needed in order to produce the fourth member 
of each set, and this is obtained by multiplying together the two nominated interactions already 
defined, to form what may be termed a generalised interacticn between the two. For the present 
example, this would produce the term 



ABCDE x ABCD = A2B2CZOZE = E 

so that the defining relations are now 

ABCDE = ABCD = E = I e 
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(3.11) 

(3.12) 

The pattern of confoundmg IS thus as shown tn Table 3.6. Each tenn in a given column 

IS confounded with each of the three tenns appeanng on the same row of the table. 

mean ABCDE ABCD E 

A BCDE BCD AE 

B ACDE ACD BE 

C ABDE ABD CE 

D ABCE ABC DE 
AB CDE CD ABE 

AC BDE BD ACE 

AD BCE BC ADE 

Table 3.6. Table of confounding for a five variable problem 

This IS clearly a very poor design, as the mean value is confounded with one of the 

main effects, each of the other main effects are confounded with one two-way interaction, and 

the SIX remaining two-way interactions are confounded in pairs. On examination of the above 

process it becomes apparent that if significant parameters are to be confounded only With higher 

order interactIOns, and not with each other, the number of letters in each of the defining relations 

must be kept as large as possible. More specifically, the worst case of confoundtng Will be 

detenntned by the shortest of these relations, and so the original interactions should be 

nominated in such a way as to maximise the length of the shortest nominated or generalised 

interaction. In fomung the third defining relation, it is clear from equation (3.12) that it will 

consist only of letters which occur in just one of the original tenns. These tenns must therefore 

be selected in order to contain as high a ratio as posSible of unique letters to common letters. 

If, for example, the nominated interactIOns were ABCD and BCDE, then the third tenn, 

fonned by multiplication, would be AE, giving a minimum length of just two letters. An 

alternative choice of ABCD and CDE, however, would yield ABE, and a minimum length of 

three letters. This second choice would then result in the follOWIng confoundtng table. 
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mean ABCD CDE ABE 

A BCD ACDE BE 

B ACD BCDE AE 
C ABD DE ABCE 

D ABC CE ABDE 

E ABCDE CD AB 

AC BD ADE BCE 

AD BC ACE BDE 

Table 3.7. Revised table of confounding for a five variable problem 

This is certainly an improvement over Table 3.6, In that the mean value is now only 

confounded with interactIOns of order three and four. It WIll stiIllead to substantial errors in the 

fitted model, however, if the two-way mteraction terms contnbute significantly, since 

confounding occurs between each mam effect and a two-way mteractlon, and in pairs between 

the remaining two-way interaction terms. This, however, is the best design which can be 

obtained when using a quarter fraction of a five vanable factorial design. This is as may be 

expected when it is borne in mind that the total number of the mean + main effect + two-way 

interaction terms is 16, whereas the number of test points is Just 8. 

3.5.4 Design resolution 

In the prevIOus section It was seen that a design which can dIstinguish between the 

mean value and each of the main effects is more desirable than one in which confounding occurs 

between a number of these terms. This abili ty to diStinguish between the various parameters of 

the model is termed the resolution of a deSIgn, with a full factonal bemg of full resolution since 

it can independently estimate each of the 2n terms of the complete linear + interactions model. 

The resolutIOn of a fractional factonal design is defined as the number of letters in the 

shortest term which appears in the defining relatJons, with a higher value indicating a better 

design. The value of the design resolution is usually written in Roman numerals as, for 

example, resolutJon VII or resolution II. The upper limit on such a value is clearly n, the 

number of design variables, since this is the maximum number of letters available. The 2.1 

design with defimng relation ABCDE = le which produced the confounding pattern of Table 3.4 

was thus of resolution V. In contrast, the first attempt at constructing a 2.2 design with defining 

relations ABCDE = ABCD = E = le was only of resolution I, With the improved version using 

ABCD = CDE = ABE = le being of resolution Ill. 
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In practice, attention is often focused on the accurate estimation of mean, main effect 

and two-way interaction terms, and as a result the following three design resolutions are of 

particular importance. 

Resolution III. In this design the mean is only confounded with interacttons of order 

three or higher. Main effects are distinct from each other but confounded with one or more 

two-way interactions, plus higher terms. Two-way interaction terms may also be confounded 

With each other. 

Resolution IV. Main effects are now confounded only with third-order interactions 

and higher, although two-way interactions are stili confounded among themselves. The mean is 

independent of all mteractlOn terms of order less than four. 

Resolution V. The mean value is confounded only with interaction terms of order 

five and above. Each of the mam effects IS confounded with interactions of order four and 

above. Two-way interactions are now mdependent of each other, but are confounded With 

t1urd-order mteractions. 

3.5.5 Construction of general fractional factorial designs 

Havmg introduced the special cases of fractional factonal designs involving 2.1 and 2.2 

fractions of the full 2° factonal, the general method of constructmg a 2·m fraction may be 

descnbed as follows. 

1. Nominate m interactions which are to be confounded With the mean effect 

2. For each of the m nominated interactions, those tests which have an even number of 

letters in common with a nominated interaction contaIrung an even number of letters, or an odd 

number of letters in common With one contaIning an odd number of letters, are given the 

symbol '+'. Conversely, those tests which have an even number of letters In common with a 

nominated interaction containing an odd number of letters, or an odd number of letters in 

common With one containing an even number of letters, are given the symbol' -'. 

3. The pnncipal fraction, which constitutes the required design, consIsts of all those 

tests which have been asSigned a '+' sign with respect to each of the m nominated interactions. 

4. The m nominated interactions are then multiplied together in all possible 

combinations of between 2 and m terms, to give an additional 2m - m - 1 generalised 
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interactions. Together with the onginal m interactions, these form the 2m - 1 parameters whIch 
are confounded with the mean effect, producing 2m - 1 defining relations. The nominated 
interactions should be selected in such a way as to maximise the number of letters in the shortest 
of these defining relations. 

5. The table of confoundmg IS produced by multiplymg each term of the original model 
by each of the 2m - 1 defining relations. This then groups the 2n terms into 2n-m sets of 2m 

terms, and the new model IS constructed by selecting that term from each of the 2 n-m sets which 
is expected to make the most slgmficant contribution to the performance of the model. This wlll 
usually be the term which consists of the fewest letters, although if two or more terms are of 
equal length it IS often not possible to make an informed choice. In such cases It may prove 
useful to assess a number of possible models. 

As an example, consider the construction of a 2-3 fraction of a 26 factorial array, with 
six variables A to F. If the three nominated interactions are the three-way interaction terms ABC, 
CDE and AEF, then the 2n = 64 tests are divided into eight fracnons as shown in Table 3.8. 

(1) 
a 
b 
e 
d 
e 
f 
ab 
ae 
ad 
ae 
af 
be 
bd 
be 
bf 
cd 
ee 
ef 
de 
df 
ef 
abe 
abd 
abe 
abf 
aed 
ace 
aef 
ade 
adf 
aef 

ABC CDE AEF 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 

+ 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 

+ 

+ 
+ 
+ 
+ 
+ 

+ 

+ 
+ 

+ 

+ 
+ 
+ 
+ 
+ 

+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 

+ 

+ 

bed 
bee 
bef 
bde 
bdf 
bef 
ede 
edf 
eef 
def 
abed 
abee 
abef 
abde 
abdf 
abef 
aede 
aedf 
aeef 
adef 
bede 
bedf 
beef 
bdef 
edef 
abcde 
abedf 
abcef 
abdef 
acdef 
bedef 
abcdef 

ABC CDE AEF 

+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 

+ 

+ 
+ 
+ 
+ 
+ 

+ 

+ 

+ 
+ 
+ 

+ 

+ 
+ 
+ 

+ 

+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 

+ 

+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 

+ 

Table 3.8. Division of 26 tests into 23 fractions 
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The pnncipal fractIon, contaIning those tests of Table 3.8 which are accompanied by 

three '+' signs, IS then as follows. 

ad be cr abc aef bdf cde abcdef 

Table 3.9. Principal fraction for a 26•3 design 

The generalised interactions are then formed by mUltiplying the three nominated 

interactions together in all combinations, to gIve 

ABC x CDE = ABDE 

ABC x AEF = BCEF 

CDE x AEF = ACDF 

ABC x CDE x AEF = ABDE x AEF = BDF 

so that the defining relations are 

ABC = CDE = AEF = ABDE = BCEF = ACDF = BDF = I e 

Since the shortest of these terms consists of three letters, the design is of resolution Ill, 

in which the mean value and each of the main effects are distinguishable from each other, but in 

which the main effects are confounded wIth one or more two-way interactIOns. The pattern of 

confounding for this design is as shown In Table 3.10, In which each entry in a particular 

column IS confounded with all other terms appearing on the same line of the table. A suitable 

model might then be composed of each of the terms in the first column of this table, although 

substitution of eIther BE or CF for the term AD may prove to be more appropriate. 

mean ABC CDE AEF ABDE BCEF ACDF BDF 

A BC ACDE EF BDE ABCEF CDF ABDF· 

B AC BCDE ABEF ADE CEF ABCDF DF 

C AB DE ACEF ABCDE BEF ADF BCDF 

D ABCD CE ADEF ABE BCDEF ACF BF 

E ABCE CD AF ABD BCF ACDEF BDEF 

F ABCF CDEF AE ABDEF BCE ACD BD 

AD BCD ACE DEF BE ABCDEF CF ABF 

Table 3.10. Pattern of confounding for a 26•3 design 
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3.5.6 Selection of an appropriate fractional factorial design 

As has been demonstrated in the prevIOus seCtions, the size of a fractional factonal 

deSIgn may be selected In order to give a particular design resolution, enabling the fitted model 

to distinguish between certain of the possIble linear + interaction terms. What is not yet clear, 

however, is which of the possible values of m IS appropnate for specifying a design of a deSired 

resolutIon m a given number of variables. The maximum resolution which can be obtained for a 

particular value of m depends on the successful selection of m interactions which, when 

multiplied together, WIll yield the maximum number of letters In the shortest of the defining 

relations. This process of selecting interactions becomes increasingly difficult as the values of 

both m and n increase, and is largely a matter of experimentation. Once a satisfactory 

nommation of interactions has been made for a given combination of m and n, however, these 

choices WIll be applicable to all future deSIgns havmg the same values of m and n. It is therefore 

convenient to denve SUItable interactions for all commonly used combinations of m and n, and 

to use the known values of design resolution for each as the basis for selection of an appropnate 

design when undertaking a partIcular investigation. The maximum design resolution WhICh can 

be obtained for an n variable problem using a 2·m fraction containing N tests IS listed in Table 

3.11 for 1 :s n :s 6, and in Table 3.12 for 7 :s n :s 12, together WIth an appropnate choice of 

nommated interactions. Each of these combinations of nominated interactions has been 

Individually derived, although in many cases the choice of interactions which gives the 

mBXlmum resolution IS not unique, and equivalent combinations may be found in the published 

li terature. 

n m N nommated mteractions resolution 

1 0 2 RJlL 
2 0 4 RJlL 
2 1 2 AB n 
3 0 8 RJlL 
3 1 4 ABC m 
3 2 2 AB BC n 
4 0 16 RJlL 
4 1 8 ABm IV 
5 0 32 RJlL 
5 1 16 ABmE v 
5 2 8 ABC mE m 
6 0 64 RJlL 
6 1 32 ABmEl' VI 
6 2 16 ABm CDEF IV 
6 3 8 ABC mE AEF m 

Table 3.11. Fractional factorial designs for 1 :s n ::5 6 
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n m N nominated Interactions resolutton 

7 0 128 FUlL 
7 1 64 ABCDEFG VII 
7 2 32 ABCD CDEF IV 
7 3 16 ABCD CDEF ACFG IV 
7 4 8 ABO BCE ACF ABCG ill 
8 0 256 FUlL 
8 1 128 ABCDEFGH VIIl 
8 2 64 ABCDE DEFGH V 
8 3 32 ABCD CDEF EFGH IV 
8 4 16 ABCD CDEF EFGH ACEH IV 
9 0 512 FUlL 
9 1 256 ABCDEFGHl IX 
9 2 128 ABCDEF DEFGHl VI 
9 3 64 ABCD CDEF EFGH IV 
9 4 32 ABCD CDEF EFGH ACHl IV 

10 0 1024 FUlL 
10 1 512 ABCDEFGHlJ X 
10 2 256 ABCDEF EFGHlJ VI 
10 3 128 ABCDE DEFGH AGHlJ V 
10 4 64 ABCD CDEF EFGH GHlJ IV 
11 0 2048 FUlL 
11 1 1024 ABCDEFGHlJK XI 
11 2 512 ABCDEFG EFGHlJK VII 
11 3 256 ABCDE DEFGH GHlJK V 
11 4 128 BCDEH ABCEGI ABDEFJ AEFGK V 
12 0 4096 FUlL 
12 1 2048 ABCDEFGHIJKL XII 
12 2 1024 ABCDEFGH EFGHIJKL VIIl 
12 3 512 ABCDEF DEFGHl GHIJKL VI 
12 4 256 ABCDE DEFGH GHlJK AOOKL V 

Table 3.12. Fractional factorial designs for 7 :S n :s 12 

The above tables show that the advantages of using a fractional factonal design rather 

than a full factorial grow substanttally as the number of vanables is increased. If, for example, a 

design of resolutton V is required, then any study in less than five variables will sbll require that 

a full factorial be used. WIth 5, 6, or 7 variables, a half fraction can be used, with the necessary 

fraction diminislnng to 114 for 8 or 9 variables, 118 for 10 variables, and 1116 for investigations 

involving 11 or 12 factors. Even a 1116 fraction of a 212 design still requires 256 tests to be 

carried out, and it is perhaps at this point that a preliminary investigation would be useful in 

order to ascertain whether all of the variables are indeed having a significant effect on the 

variation of the functton. A main effects model using a design of, say, resolution III would be 

useful in such a case. Alternatively, if the number of potential vanables is extremely large, 

e.g. 100+, then a specific strategy may be required for screening the inibal input in order to 
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identify those variables whIch are worthy of further Investigation. A number of such strategies 

have been advanced, (see for example Welch et al. (1989) and Watson (1961», but further 

investigatIOn has not been undertaken within the present work. Attention has been focused on 

designs suitable for studies in up to, say, 12 vanables. 

A further characteristic of desIgns involving 7 to 12 vanables IS that the cost of 

obtainIng a high resolution design becomes prohIbitively large as n increases, whilst It is 

probable that only a faIrly small fraction of the terms in the model wIll be of significance. As a 

result, an InItial investigation in this number of factors would rarely be performed using a full 

factorial design or a fractional factorial WIth resolution greater than, perhaps, resolution V. Only 

If such a test had shown there to be significant underspecificatIOn in the model due to missing 

higher order interaction terms would larger designs be considered. The nature of the fractional 
factorial deSIgn then allows the data already collected to be incorporated into the new design, 

thus minImising the number of addItional tests which need to be carried out. 

Tables 3.11 and 3.12 provide Information as to whIch fractional factorial design to 

choose In order to obtain a particular resolution for the number of design variables under 

investigation. In order to specify a partIcular design, however, it is first necessary to determine 

the level of resolution which is appropriate to the particular nature of the application to be 

investigated. This is equivalent to establIshing the degree of interaction, or possible interaction, 

which is expected to occur withIn the model. Since this is entirely dependent on the 

characteristics of the specifIc process which is to be studied, no general recommendation is 

likely to be entirely satisfactory In every SItuatIOn. When investigating an unfamiliar application 

In whIch the user has no prior knowledge as to the relative significance of Interaction effects, 

two alternative approaches are poSSIble, as follows. 

I) Carry out an initial test on a representative study within the general category of the 

problem to be addressed using a high resolution design, with the aim of assessing the 

magnitude of high order interaction terms. This test may be conducted USIng a relatively 

small number of design variables in order to minimise the number of tests which must be 

performed. 

Ji) Use a design of a lower resolution to investigate the particular problem under 

consideration on the assumption that certain of the interaction terms will be negligIble. 

The validity of this assumption may be tested by carrying out additional trials within the 

design variable space in order to assess the ability of the fitted model accurately to predict 

the true response. 

If a number of investigations are to be carried out in related fields, then the first of these 

methods is perhaps the most useful, since it provides the investigator with a more 

comprehensive view of the nature of the problem being addressed, which may be of substantial 
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advantage in analysing the results of future studies. If only a slOgle investigation is to be 

conducted, then the quanttty of addJtional infonnation gained by thIs approach may not justify 

the extra testing requirement 

When carrying out noise opttmizatlOn studIes on internal combustion engines, the 

individual engine block or engine block/sump systems of different IOstallations share a large 

number of features in common. Additionally, the categones of variable which may be used in an 

analysis/optimlzatton study will also be similar. It IS thus reasonable to expect that this slmilanty 

will extend to the general type of mathematical model winch is needed in order to represent the 

noise functton adequately. This being the case, it is probable that detaIled studies of a particular 

engine system will lead to sigmficant insights IOto the ways in which design variables interact, 

and influence the nOIse function, which WIll be broadly applicable to a wide range of potential 

applications. Such a series of studies for the finite element model of AppendIx le is presented 

in the next chapter. 
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4. Experiments using first-order designs 

In this chapter, the results of a number of experimental studies using first-order designs 

are presented. These numerical tnals have been conducted in order to assess the suitability of the 

response surface models of the prevIous chapter to the computer prediction of radiated engine 

noise, and are carried out using an FE model of a representative engme structure. A description 

of the four-cylinder engme block model used, and of the seven deSign variables which are used 

in the present investigatIOn, may be found in Appendix IC. 

4.1 Full factorial design in seven variables 

The first design to be mvestlgated is the full factorial deSign of SectIOn 3.3. For a 

problem mvolving seven design variables, 27 = 128 tests are carried out. This deSign is used to 

estimate the parameters of the full linear + Interactions model of equatIOn (3.6), m order to 

assess whether radiated noise can be adequately represented by a linear model. Mathematical 

models of both the noise function and the structural mass of the engine are obtained using the 

surface fitting techniques outlined In Chapter 2. The full factonal is an orthogonal design, in 

which no covanance effects occur between any model terms, and the variance value obtained for 

each term is identical. A value of7.8125xlQ-3 was obtaJned for each. 

4.1.1 The mass function 

In order to provide an introduction to the use of response surface techniques, the 

analysIs of the mass function is first presented. This IS a very Simple function, since for each 

variable the quantity being modified is the thickness of the relevant component part of the engine 

block. The mass of the variable IS directly proportional to this thickness, and the effect of 

vanations In the tluckness of one variable will not be affected by the thickness of any other 

component, so that no interaction effects occur. It is expected that the vanatlon of mass 

throughout the design vanable space can be accurately described using just the main effects 

model of equation (3.1). 

The 20 largest coefficients of the mass function model are listed In Table 4.1. The 

coefficients are arranged in order of magmtude and are normalised for vanable values which are 

scaled to he m the range ±1. 
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1. MEAN 72.104 11. BCEFG 9.3749xlO-10 

2. F 4.8496 12. BEG 7.8126xlO-10 

3. D 3.2267 13. BEFG 6.2502xlO-10 

4. A 3.1984 14. BF 6.2500xlO-10 

5. B 3.1901 15. EG 6.2498xlO- lO 

6. G 3.1151 16. DEG 4.6876xlO-10 

7. C 1.9894 17. BDF 4.6875xlO-10 

8. E 1.6699 18. BDEFG -4.6875xlO-10 

9. BC -1.3829xlO-s 19. EFG 4.6875xlo-lO 

10. CEFG -1.4063xlO-9 20. BDEG 3.1251xlO-10 

Table 4.1 Mass coefficients for full factorial test (n=7) 

It is clear from tlns table that the model is dominated by the largest 8 coefficients, which 

are the mean and main effect terms. The remaining 120 terms in the model are very close to 

zero, with the small estimates obtained being due to round-up errors within the soluhon 

algonthm. This lack of interaction terms within the model is as expected, due to the nature of the 

particular function and variables involved. 

In order to confirm that the full 128-term model IS accurately represenhng the mass 

function throughout the whole of the design variable space, the lack of fit between the predictive 

model and the experimental response may be calculated at a number of points wltlnn the region 

of interest. Two categones of test POlDt have been used to test this lack of fit, as follows. 

i) Design points. The lack of fit is calculated at each of the 2n test points which were 

used to construct the analyncal model. This indicates the ability of the chosen parameters to 

account for the variations in the function value which occur at the points specified by the full 

factonal design. Since the design contains the same number of tests as there are coefficients in 

the full 128 term model (a saturated design), It is expected that the model will reproduce the 

original data exactly, to machine precision, With no lack of fit at any of these points. 

ii) Model under-specification due to the omiSSIOn of higher order terms, such as, for 

example, quadratic or cubic terms, can best be investigated by calculating the lack of fit which 

occurs at points in the design space which are distant from those used to construct the model. 

2n + 1 extra tests have been conducted in order to test this potential source of lack of fit. One of 

these bes at the centre of the design vanable space (0, 0, ... , 0), with the other 2n points lying 

at the centre of each of the n - 1 dimensional hypercubes formed by successively sethng one of 

the variables to either its high or low bound. These 2n tests are located at the points 

(±1, 0, ... , 0), (0, ± 1, ... , 0), ... , (0,0, ... , ±1). They lie at the vertices of a cross-polytope, 

or 'star', and are often termed 'star points'. For the seven variable problem currently being 
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Investigated, the number of extra tests performed is thus 15. The exact specification of these 

points, in the onginal variable umts, is given In Appendix 4A. 

The lack of fit which occurs in each of these two categories of test point is summarised 

in Table 4.2. 

Category 

No. of 

tests 

I) Design points 128 

ti) Higher order 15 
Average over all 143 tests 

Maximum lack of fit 

kg ~ 

Average lack of fit 

kg ~ 

4.1211xlO-13 9.7018xlo-13 1.1102xlO-13 2.6136xlO-13 

4.0534xlo-5 9.5422x1O-5 2.9342x10-5 6.9074x1o-5 
3.0778x10-6 7.2455x1o-6 

Table 4.2 Summary oC lack oC fit calculations Cor 128 coefficient mass model 
using Cull Cactorial design with 128 tests (n=7) 

As expected, the lack of fit at any of the design points is apprOlomately zero, due to the 

saturated nature of the design. Calculation of lack of fit at the additional 15 points also shows a 

negligible error in mass prediction, both In terms of the maximum and the average lack of fit at 

these points. The increase in error over that at the design points is due to the small non-zero 

estimates for the insigmficant model terms, which, although they exactly cancel at the design 

points, do not necessanly do so at other points within the deSign vanable space. These results 

confirm that the full model gives an almost exact prediction of mass variation throughout the 

region of interest, and since only the mean and main effect terms contribute substantially to this, 

they further suggest that exact prediction may also be attamed using JUst the main effects model 

of equation (3.1). If mass were the only function to be assessed, then thiS observation would 

allow the use of a very low resolution fractional factorial design (resolution Ill), or even the 

'one at a time' approach of Section 3.2. Since the vanation in nOIse of the system is also 

required, however, with the two functions being calculated concurrently, no such saving in 

experimental effort would be poSSible unless the noise function were also representable using 

just a main effects model. As will be seen below, trus is unhkely to occur in practice. 

Due to its simple nature, the mathematical representation of the mass function need not 

be analysed further. 



83 

4.1.2 The noise function 

, 
For the nOise function model, the full set of parameter esttmates obtained is listed in 

Table 48.1 of Appendix 48. The coefficients are again arranged in rank order and normalised 

for vanable values which are scaled to he in the range ±1. 

The lack of fit which occurs between the experimental noise level and the value 

predicted by this model, for each of the two categones of test point described in the previous 

section, is summarised In Table 4.3. 

Category 

No. of 

tests 

I) Design POints 128 

u) Higher order 15 

Average over all 143 tests 

Maximum lack of fit Average lack of fit 

d8(A) ~ d8(A) Ea 

4.8317xl(}-13 6.4575xl(}-12 1.2512xl(}-13 1.6722xl(}-12 

1.5486 20.697 1.1890 15.891 

0.12472 0.16669 

Table 4.3 Summary of lack of fit calculations for 128 coefficient noise model 

using full factorial design with 128 tests (n=7) 

Tills again shows that the saturated nature of the design leads to virtua1ly zero lack of fit 

at any of the design points. Calculation of lack of fit at the additional 15 POints, however, 

shows that the error occurring at locattons away from the factonal points is substantial, 

Indtcating that there is a significant amount of curvature In the actual response surface. This is a 

cause of considerable concern, as the maximum error at any of these additional points is over 

1.5 d8(A), which represents over 20% of the range through which the noise function varies 

within the experimental region. The average error at these points IS nearly 16%. If these values 

are typical of the predicttve abihty of the model at locations away from the vertices of the 

n-dimensional hypercube, then the use of this model is likely to prove extremely misleading In 

the identificatton of favourable areas of the design variable space. 

In order to improve the fit at these pOints it is necessary to use an enhanced predictive 

model which will allow for the effect of higher order terms. This in turn requires a more 

complex experimental design, in order to obtain the additional function information which is 

needed. Such deSigns and models are the subject of subsequent chapters. If further parameters 

are to be added to the present 128 terms of the fitted model, however, then a design for fitting a 
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higher order model must also include at least 128 tests to allow all of the linear + interactIOn 

terms to be estimated. It is important to establish, therefore, whether all of the terms of the 

present model are contributing significantly to the overall predictive abIlity, or whether, as has 

been found to be the case for the mass function, a number of these can be dispensed with 

WIthout adversely affecting the ability of the model to proVIde an accurate representation of the 

true response surface. 

4.1.3 Assessment of model parameters 

The parameter listing of Table 48.1 shows that the dominance of the main effect terms 

is much less pronounced than was the case for the mass function. Eleven of the interaction 

terms have parameter estimates which are WIthin an order of magnitude of the smallest of the 

mam effect terms, WIth a further 90 terms being within two orders of magnitude. In contrast 

with the mass function, no pnor knowledge of the nature of the response is avaJlable to aid 

interpretation of these parameter estimates. Since the noise response IS known to be a highly 

complex functIOn of the design variables, however (see, for example, Zhang, 1992), it is 

probable that the linear + interactions model is insufficient to provide an accurate representation 

of the variation in noise throughout the deSIgn variable space. This view is supported by the 

lack-of-fit results of Table 4.3. It is also possible that a number of the terms of the present 

model are in fact confounded with Iugher order terms (quadratic, cubIC etc.), the effects of 

which cannot be independently assessed when tests are carried out at just two levels of each 

van able. If the higher order terms which have been neglected do not have a dominant Influence 

on the overall shape of the response surface, then their presence may be expected to have 

relatively httle effect on the estimation of the larger coefficients of the present model. Since the 

model contains as many parameters as there are tests In the design, however, all variations in the 

response at the test points must be attributed to those terms which are available. Confounding 

between negligible linear interaction terms and the effect of unknown Iugher order terms may 

thus result in non-zero parameters being ascribed to terms which in fact have no sigmficant 

influence on the true response. The inclusion of these spurious effects will then lead to 

misleading predictions of the response function at other points within the region of interest 

If the perturbatlons in the parameter estimates of the linear + interactions model which 

are caused by underspecification of the fitted model can be considered as bemg randomly 

distributed among the model terms, then this effect may be treated as a source of random error, 

or statistical noise, in the construction of the mathematical model. If this is the case, then those 

parameter estimates which are dominated by t/us effect will be expected to be mdistlngmshable 

from a set of normally distributed random data. In order to determine which of the terms 

represent real charactenstics of the response surface, and which are due to confounding caused 
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by underspecification of the fitted model, some means is required of testing the hypothesis that 

all parameters are mdeed just random values. The test which has been used within the present 

work is the probablhty plot method, which is descnbed in Appendix 4C. The following sections 

give examples of how probabihty plots have been used to assess which coefficients of the 

linear + interaCtiOns model are statistically significant 

4.2 Use of probability plots in Identifying significant parameters 

A normal probability plot for the full set of 127 parameters m the model of 

Section 4.1.2 (the mean is not included in a probabihty plot analysis) is shown in Figure 4.1. 

The method used to calculate the 'Z score' value, which is a normalised measure of the rank 

order of the coefficients, is descnbed in Appendix 4C. 
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Figure 4.1 Normal probability plot for full factorial test in seven variables 
Function : noise 

No. of coefficients = 127 of 127 

It can be seen from this graph that, of the 127 parameters plotted, the majority appear to 

lie on an approXImate straight line through the origin of the graph, suggesting that the smaller 

coefficients (in magmtude terms) of the model may indeed be normally distributed, and with an 

approximately zero mean value. The only parameters which deviate significantly from this line 

are the seven coefficients With the largest negative magnltudes, and these must therefore be 

removed from the plot, since they are clearly not due to random statistical noise. It seems 

probable that a number of other terms may also lie away from the projected 'statistical noise 

line', but these are extremely hard to identify from this initial plot, due to the compressed scale 
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resulting from the magnitudes of the largest coefficients. With the seven largest coefficients 

removed, the resulting graph, with the Z score values recalculated to reflect the reduced amount 

of data, IS shown In Figure 4.2. 
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Figure 4.2 Normal probability plot for full factorial test in seven variables 

Function : noise 
No. of coefficients = 120 of 127 

This graph allows the identificatIOn of a further seven parameters which have 

magnitudes inconSistent With an assumption of normal distribution; five negative and two 

positive. These seven are removed from the analysis, and the remaimng 113 terms plotted 

against revised Z scores, as shown in Figure 4.3. 
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Figure 4.3 Normal probability plot for full factorial test in seven variables 

Function : noise 
No. of coefficients = 113 of 127 
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All of the parameters plotted in Figure 4.3 now he on an approximate straight line 

through the origin of the graph, With any slight deviations from linearity being attributable to 

sampling error (see Appendix 4C). ThiS result suggests that the parameter values of Figure 4.3 

are inrustinguishable from a set of normally rustnbuted random data, and allows the investigator 

to accept the hypotheSIS that the remairung 113 parameters of the model are due to 'random' 

effects, rather than to any underlying charactenstic of the system under investigation. 

It is interesting to note from the plot that the 'statistical noise line' passes almost exactly 

through the ongin of the graph, with just four of the negative parameters having positive 

Z scores, and that the two points lying at the ends of the distnbutlon are of very Similar 

magnitude (-2.184 and 2.258). This provides further reassurance as to the validity of the 

method when applied to the present determlrustlc environment, since the parameters which have 
been found to be statistically Inslgruficant, and are hence assumed to be due to a random error 

effect, have also been shown to have an approXimately zero mean. 

4.2.1 The half-normal probability plot 

Upon reconsidering the above process, by which the significant terms of the model 

have been identified, it is clear that no distinction has been made between terms which are of 

equal magnitude and opposite sign. In determining which of the parameters to remove from the 

probability plot analysis, It was purely the magnitude of the relevant parameters which was of 

Interest. ThiS is of course due to the fact that the degree of impact which a given parameter, 

whether positive or negative, has on the predictive ability of the fitted model is determined 

simply by Its magnitude. This being the case, the parameter estimates may alternatively be 

displayed using the half-normal probability plot, or Daniel plot, as descnbed in Appenrux 4C. 

To compare the two methods, a half-normal probability plot of the original 127 

parameters is shown in Figure 4.4. 



30 

25. 

20. 

Magnitude 
15. ;; variance 

10. 

5. 

0 

00 0.5 10 

+ + 
+++ .....-+ 

15 
Z score 

, , 
2.0 2.5 

88 

+ 

3.0 

Figure 4.4 Half-normal probability plot for full factorial test in seven variables 
Function : noise 

No. of coefficients = 127 of 127 

The scale of this plot IS again compressed by the magnitude of the largest term, but 

seven parameters are still identifiable as deviating substantially from the approximate straight 

line formed by the smaller coeffiCients. Followmg the same procedure as used With the normal 

probability plot, these seven terms are removed from the analysis and the Z scores recaIculated 

accordingly. The resulting piot is shown in Figure 4.5. 
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Figure 4.5 Half-normal probability plot for full factorial test in seven variables 
Function : noise 

No. of coefficients = 120 of 127 
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This shows that a further seven terms lie significantly above the projection of the 

'statistical nOise line', with all remaining parameters appearing to lie on a straight line through 

the ongm. This may be confirmed by removing the seven significant terms from the analysis 

and replottmg, to give the graph of Figure 4.6. 
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Figure 4.6 Half-normal probability plot for full factorial test in seven variables 
Function : noise 

No. of coefficients = 113 of 127 

All parameters now lie on an approximate straight line, thus leading to the same 

conclusion as was reached using the normal probability plot analysis; that 113 of the original 

127 parameters are indistinguishable from normally distributed random data. Examination of the 

data used m each analysis reveals that, as is expected, the parameters which have been found to 

be significant are the same in each case. The advantage of using the half-normal probability plot, 

however, is that all significant parameters deViate from the 'statistical noise line' in the same 

direction, and at just one Side of the graph. This allows the magnitude of all terms to be directly 

compared, irrespective of sign, and may aid the rapid identification of sigmficant parameters. As 

the above example has demonstrated, however, equivalent resulls may be obtained using either 

of these methods. 
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4.2.1 Are probability plots necessary ? 

Before studying further the reduced model which would result from removal of the 

insignificant terms, it IS perhaps worth considering whether the above identification of 

significant parameters could have been successfully accomplished wIthout recourse to the 

method of probability plot analYSIS. An obvious altematJve would be simply to plot the 

magmtudes of the coefficients against their rank order, and try to differentiate between 

significant and insignificant terms purely on the basis of their magnitudes. Figure 4.7 shows a 

plot of coefficient magnitude agamst rank order for the full set of 127 parameters (the mean is 

again removed prior to plotting). 
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Figure 4.7 Model coefficients for full faetorial test in seven variables 
Function : noise 

No. of coefficients = 127 of 127 

So far the method appears to be promIsing, since seven terms are again easily identified 

as being substantially larger than the others. Further terms are hard to assess due to the scaling 

Imposed by the magmtude of the larger coefficients. Re-scaling the y-axis to exclude the seven 
largest terms produces the plot of Figure 4.8 
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Figure 4.8 Model coefficients for full factorial test In seven variables 
Function : noise 

No. of coefficients = 120 of 127 

Again, a further seven tenns have been revealed as being distinct from the remairung 

parameters. Since the probability analysis has already shown there to be fourteen sigruficant 

tenns, one might conclude that an equivalent result had been obtaIned USIng this much 

simplified method. If the method were used without this prior knowledge, however, the next 

step of the procedure would necessanly be to re-scale the plot again to remove the seven largest 
tenns. This yields the graph of Figure 4.9. 
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Figure 4.9 Model coefficients for full factorial test In seven variables 

Function : noise 
No. of coefficients = 113 of 127 
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This graph now suggests that a further four terms may be worthy of inclusion in a 

reduced model, although the ever increasmg curvature of what IS assumed to be a 'statistical 

nOise line' gives much cause for concern. It becomes increasmgly clear that no distinct cut-off 

point between significant and insignificant terms is likely to be forthcoming usmg this method, 

so that the plotting of coeffiCient magnitudes against rank order leads to httle advantage over the 

parameter listing of Table 4B.1. This observation IS further supported by the removal of the 

largest four terms of the above plot, to give the graph shown in Figure 4.10, below. 
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Figure 4.10 Model coefficients Cor Cull Cactorial test in seven variables 
Function : noise 

No. of coefficients = 109 of 127 

It can be seen from comparison of this figure with the previous graphs that, as the 

scaling of the y-axis is varied, small groups of coefficients are gradually detaching themselves 

from the main body of parameters. This iterative procedure of removing the largest variables 

from the plot and re-scaling IS thus likely to continue for some considerable time, and lead to no 

defirute conclusions as to the sigruficance of the model terms. The curvature of the line formed 

by the 109 plotted data points in Figure 4.10 is also m considerable contrast With the almost 

exact straight lines obtained WIth 113 points in Figures 4.3 and 4.6. 

The conclusion to be drawn from the above example, therefore, is that Simply plotting 

coefficient magnitude against rank order is insufficient to enable the identification of significant 

terms ID the original model. It should also be noted, however, that even If the analysis had 

yielded a positive result, there is no sound fundamental basis on which to conclude that the 
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parameters Identified are Indeed statistically Significant, or that those rejected are not. The 

procedure IS reduced to an observation that some coefficients are bigger than others, with the 

only cnterion for distinguislung 'sigmficant' parameters being a slightly larger drop in the 

magnitude of adjacently ranked terms. This is clearly insufficient justification for making 

judgments as to the feasibility of a reduced predictive model. 

4.3 Validation oC a reduced model 

Returning to the results of the probability plot analYSIS, it was found that the statistically 

Significant terms are the fourteen which are ranked highest in terms of their 

(magmtude/v'variance) parameter. Since the variance on the estimate of each parameter IS 

identical, the division of the coefficient values by the square root of the variance will not affect 

the rank order of the terms, with the result that the terms found to contnbute significantly to the 

model are the first fourteen (non-mean) terms of Table 4B.1. These, together with the mean, are 

shown in Table 4.4. 

1. MEAN 8.8082xl()+1 
2. A -2.2377 
3. C -3.8596xl()-1 
4. G -3.3608xl()-1 
5. 0 -2.302lxl()-1 
6. F -2.2872x1()-1 
7. B -1.9920xl()-1 
8. E -1.5888x 1 ()-l 
9. AG -7.4246xl()-2 
10. AD 5.2756x1 ()-2 

11. AF -4.6907x 1 ()-2 

12. CG -4.4956xl()-2 
13. AE -4.4724xl()-2 
14. FG -4.4068xl()-2 
15. ACG 3.5056xl()-2 

Table 4.4 Significant noise coefficients Cor Cull Cactorlal test (n=7) 

The results of the probability plot analysIs Indicate, therefore, that the only parameters 

of the 128 term model which can be regarded as being statistically slgmficant are the mean and 

seven main effect terms, followed by SIX two-way interaction terms and just one three-way 

interaction. If it IS the case that the vanation in noise response can be adequately represented 
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USIng a much reduced model contaInIng just these fifteen terms, then It is likely that an 

acceptable model could have been constructed using a much smaller quantity of function 

informallon. Further, If it is generally true that the noise response of engine blocks is dominated 

by main effect and two-way Interaction terms, then there is clearly substanllal scope for 

reducing the number of tests which need be performed when undertaking an investigalion of a 

particular system. 

Before such a conclusion can be reached, however, it IS necessary to establish whether 

these fifteen terms are indeed sufficient to provide an acceptable representation of the variation 

of the noise function throughout the design vanable space. This can be determined by 

considerallon of the lack of fit between the fitted model and the actual response at the 2n test 

POInts used to estimate the terms of the full 128 term model. If the fifteen terms of Table 4.4 are 

necessary and suffiCient adequately to represent the noise function, then it is expected that any 

model lacking these terms will exhibit substantial lack of fit at the test points, whereas addition 

of further terms will lead to negligible Improvement in model accuracy. Since the Imtial model of 

128 terms contains as many parameters as there are tests in the expenmentaI design, zero lack of 

fit (to machine precision) occurs between the actual test values and the representations of these 

generated by the approximating model, as shown In Table 4.3. It IS thus necessary that the 

reduced 15 parameter model exhibit negligible lack of fit at these points. 

The manner in winch the lack of fit at the factorial test points varies With the number of 

coefficients in the model may be investigated by uSlllg the full set of 27 = 128 test points to 

successively construct models containing between 1 and 128 terms. The first of these models 

will contain just the mean effect, with additional terms being introduced in decreasing order of 

magrutude. For each model, the difference between the true noise response and the prediction of 

the model is calculated at a number of the original test points. The lack of fit at each of these 

points IS then plotted against the number of coefficients III the prediclive model. The results for a 

randomly selected sample of five of these points, described by their locations in the normalised 

design variable space, are shown in Figures 4.11 to 4.15. 
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Figure 4.11 Lack of fit against number of coefficients in model 
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Figure 4.12 Lack of fit against number of coefficients in model 
Test point = (I, I, -I, -I, -I, -I, -I) 
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Figure 4.13 Lack of fit against number of coefficients in model 
Test point = (1, -1, 1, -1, -1, -1, -1) 
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Figure 4.14 Lack of fit against number of coefficients in model 
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Figures 4.11 to 4.15 show that, in each case, the imtiaIly high lack of fit drops rapidly 

as the seven main effect terms are introduced. The high lack of fit value obtained when Just one 

parameter is included in the model is of no particular significance, since this term is the mean 

value. Lack of fit usmg this model simply represents the difference between the average 

response at the 2 n pomts and the response at the particular point being exammed. For three of 

the five points analysed (Figures 4.12, 4.13 and 4.14), the lack of fit obtained with the eight 

term (mean plus main effects) model has already fallen to within 0.1 dB(A) - equivalent to just 

1.3% of the function range. The lack of fit values at all five pomts lie within a 3.5% error band 

(0.26 dB(A», suggesting that the main effects model is providing a reasonably good 

approximation to the original surface at the pomts tested. 

The effect of includmg the remaining seven terms of Table 4.4, to give a total of 15 
terms m the predictive model, IS to bring the lack of fit at all five points Within 0.1 dB(A). All 

five graphs show that no significant improvement in accuracy is gained by the inclusion of 

further terms. Although the lack of fit necessarily reduces to zero as the number of terms 

approaches the full 128 parameters of the original model, the small lack of fit obtained usmg Just 

15 parameters provides little scope for any further reduction in the predictIOn error. 
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In order further to aid companson of the above results, a magrufied view of the lack of 

fit at each of the five points. resulting from models containing between 4 and 24 terms. is 

presented in Figure 4_16_ This shows in more detaIl the convergence of the error at all points to 

within the 0.1 dB(A) band. This appears to occur when the number of terms In the model 

reaches 14. with the 15th term. which is the three way Interaction ACG. having. on average. a 

substantially smaller effect on the degree of lack of fit in the modeL The overall trend can be 

seen more clearly by plotting the average lack of fit value obtaIned from these five indiVidual 

points. as shown In Figure 4_17. This confirms the presence of the characteristics already 

noted_ A rapid decline In lack of fit with the inclusion of the main effect terms is followed by a 

more gradual reduction as the remaining slgmficant terms are introduced_ Addition of further 
terms leads to little further improvement 
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Since the object of the modelling process is to provide an acceptable representatton of 

the onginal response surface across the whole of the design variable space, and not just at the 

factorial points, it IS relevant to inquire whether it is possible to carry out an analysis of the 

above type at other locations within the region of interest. A sUitable selection of tests pOInts 

would appear to be the centre and star points introduced in Sectton 4.1, above, which are 

SlttIated at locattons distant from the vertices of the hypercube. 

In attempting to carry out the 'lack of fit v. model size' analysis at these POInts, 

however, two main obstacles are encountered. The first of these is that, as shown in Table 4.3, 

substanttallack of fit, due to curvature of the original response surface, is already known to 

exist at these points. The magmtude of this error IS such that it is likely to dominate any 

calculations of modelling inaccuracy carried out at these points. Of much more importance, 

however, is the fact that, at these locations, a maximutn of Just one variable has a non-zero 

(normalised) value. The result of this is that, at the centre point, for example, where all variables 

have a zero value, the only term which contnbutes to the model is the mean tenn, with all terms 

involving any of the variable values being set to zero. A graph of lack of fit against model size 

will thus simply yield a horizontal StraIght line, with the error value being equal to the difference 

between the measured value and the mean term of the linear model. At the star points, where 

one of the variables takes a value of ±1, the only non-zero terms will be the mean value and the 

main effect In that variable. All other main effects, as well as all interaction terms, which by 

definition include at least one of the other (zero valued) variables, wi1\ again have no influence 

on the model. This will produce a horizontal straight line With a single step in It, occurring when 
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the non-zero term is introduced. These effects are demonstrated by the three pomts whose 

results are plotted in Figure 4.18. 
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Figure 4.18 Lack of fit against number of coefficients in model 
centre point and two star points 

It can be seen from Figure 4.18 that the step in the error value for the point 

(0,0,0,1,0,0,0), with variable D having a non·zero value, occurs on the introduction of the 

fifth model term. This corresponds with the result of Table 4.4, m whIch the mrun effect D is the 

fifth largest parameter. Similarly, the step for the point(O, 0,0,0,0, 1,0), With variable F non

zero, occurs as the Sixth term IS introduced, agrun agreeing with the parameter order of 

Table 4.4. This last test pomt IS also the location at which the m8X1mum lack of fit occumng at 

any of the centre or star pomts IS found. Its final error value of 1.55 dB(A) corresponds with 

the maximum value given in Table 4.3. 

Since these results have shown that test points Iymg on variable axes are of no use in 

determining the effect on lack of fit of reducing the number of terms in the linear model, it is 

necessary to choose some alternative test points at which to carry out the analysis. The 

requirements for such points are that they should lie at sufficient distance from each of the 

variable axes, and the centre point, and yet still be far enough away from the original test points 

to proVide more general information concerning the performance of the predictive model 

throughout the design variable space as a whole. SUitable candidates for such tests would 

appear to be points which lie half way between the centre of the space and the factorial points, at 

a distance of O.Sv'n from the centre. These points then lie on an n-dlmensional hypercube of 

side n12, having as its centre the centre of the design variable space, and with its Sides aligned 
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WIth the sIdes of the origInal 2n factorial hypercube. ThIs new hypercube will of course contain 

2n points, although for reasons of economy a frnction of these POInts can be used, calculated as 

for the frnctIOnal factorial design. In the present case a 118 frnctIon containing 16 tests has been 

used. The exact specification of these points is gIven in AppendIx 6A. 

Calculation of the lack of fit at these pOInts proceeds as for the onginal factonal points, 

WIth each of the parnmeters of the full model being successively Introduced in descending order 

of magnitude. The results obtained for all 16 of these addItional points are chsplayed in FIgure 

4.19. 
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Figure 4.19 Lack of fit against number of coefficients in model 
16 factorial points with parameter nl2 

Two important features of these results may easily be identified. Firstly, In common 

WIth the results at the centre and star points, the lack of fit at these locations is dominated by the 

presence of higher order effects, which are not accounted for in the linear model. Thus, even 

with the full 128 terms, signifIcant error in model prediction still occurs. The second 

observation, however, is that, in each case, the lack of fit appears to have stabilised at about this 

final value with the inclusion of just 16 or so terms. These results thus appear to confirm the 

conclusion drawn from the lack of fit calculations at the original test points, In that lIttle 

improvement in the predictive ability of the linear model is obtained by including terms other 

than those whIch have been shown to be SIgnificant by the probability plot analysis. 
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The purpose of the present analysis is to investigate the predictive ability of reduced 

models in comparison with the perfonnance of the full 128 tenn model, rather than to assess the 

absolute lack of fit occurring at particular pomts. A better approach might therefore be to plot the 

value of the error magmtude which occurs With respect to this full model, thus removing from 

the analysis that component of the lack of fit which is due to higher order tenns, and cannot be 

represented by a hnear + interactions model of any kind. 

Such a plot is shown in Figure 4.20, and provides a much clearer picture of the effect of 

model reducuon on prediction error. As was found for the analysis at the onginal test points, a 

rapid fall in lack of fit occurs as the seven main effect tenns are brought into the model. This is 

followed by a more gradual reduction as the next seven or so tenns are mtroduced, with 

virtua1ly all lack of fit having been eliminated by thts time. 
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Figure 4.20 Standardised lack of fit against number of coefficients in model 
16 factorial points with parameter nl2 

The graph of Figure 4.21 shows a magnified view of this plot, from which it may be 

seen that the 8 tenn main effects model produces, in all cases, a lack of fit value of less than 

0.06 dB(A) - representing 0.8% of the function range. The inclusion of 15 tenns reduces this 

error to less than 0.03 dB(A) (0.4%). 
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Figure 4.21 Standardised lack of fit against number of coemcients in model 
16 factorial points with parameter nl2 - magnified view 

This headline figure, however, masks !he fact !hat many of !he results are grouped at the 

lower end of the scale, as IS shown by Figure 4.22, in which the average of the above 16 lack 

of fit values is plotted against model size. The average error resulting from use of !he main 

effects model is now about 0.03 dB(A) (0.4% of range), with !he 15 term model giving an 

average of just 0.01 dB(A), or 0.13% of !he function range. 

The results of the lack of fit analysis at these addJtional16 test points !hus confirms !he 

conclusions drawn from !he tests carried out at the original design pomts. The overall 

conclusion from this analysis is that the 15 terms, including the mean, identified by the 

probability plot technique account for virtua1ly all of the variation in noise response which can 

be represented using a linear + interactions model. When using a 15 term model, substantial 

lack of fit still occurs at points away from !he vertices of !he design variable space, due to higher 

order terms. This lack of fit cannot be much reduced, however, by including the remaining 

terms of !he full linear + interactions model. 
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4.4 Conclusions based on full factorial test 
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1\\'0 independent methods have now been used to assess the coefficients of the 128 

tenn linear + interactions model denved from the results of the seven variable full factonal 
experimental design. The first of these, the probability plot analysis, provides a test of the 

statistical sigmficance of each parameter of the full model. This method showed that of the 128 

parameters, only fifteen were clearly distinguishable from random data, and hence only these 
tenns are reliable as indicators of the nature of the true response surface. 

In the second method, the lack of fit between the predicted response of the model and 

the experimental value is calculated at a selection of test points, and plotted against the number 

of tenns included in the model. This provides a test of what may be tenned 'engineering 

significance', in that it reflects the usefulness of each tenn in improving the quality of the 

decisions which are taken, based on the approximating model. This method confinned that 

those tenns found to be insigmficant by the probability plot analysis make a negligible 

contnbution to the prediction accuracy of the model throughout the design variable space. 

Further, It was found that httle additional lack of fit resulted from the use of a model containing 

just the mean and main effect tenns. 
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4.5 Use of redueed models 

The effect of a reductIOn in model size can be further demonstrated by calculating the 

maxImum and average lack of fit winch occurs in each of the categories of test points descnbed 

in Section 4.1.1. The results for three reduced models are summarised in Table 4.5. Only the 

results at the original 128 design POints are shown, since the lack of fit errors at the centre and 

star points are Identical in each case. As discussed in Section 4.3, this is because the functIOn 

prediction at these locations is only determined by the mean and main effect terms, which are 

present, and idenucal, in each model. 

The first of these models contains Just the mean and main effect terms, giving an 

average lack of fit at the deSign POints of 1.6% of the variable range. ThiS model suIl allows a 

maxImum error of nearly 8% (0.6 dB(A» at the design points, however, and this, foIlowing the 

discussion of Section 2.14, is likely to be of some concern in the idenufication of a favourable 

region of the deSign vanable space. 

The maximum error can be reduced to under 0.35 dB(A) (5%) by the use of the second 

model of Table 4.5, which includes all of those parameters found to be statistically significant 

by the probability plot analysis of Section 4.2. Additionally, the average lack of fit at the design 

pOints has been more than halved, to less than 0.06 dB(A) (0.8%). 

Model 

No. of 

terms 

Main effects 8 

Significant terms 15 

:S 2-way interactiOns 29 

Maximum lack of fit 

dB(A) ~ 

0.59851 

0.34961 

036697 

7.9236 

4.6718 

4.8582 

Average lack of fit 

dB(A) ~ 

0.12119 

0.05769 

0.05618 

1.6045 

0.7710 

0.7439 

Table 4.5 Summary of laek of fit ealeulatlons for various noise models 
using full fadorial design with 128 tests (n=7) 

The main problem which occurs in uSing a reduced predictive model containing only 

sigmficant terms is that It IS not in general poSSible to know in advance which of the terms are to 

be included. It is only by carrying out a probability plot analysis, or similar procedure, that this 

information can be gained. Such an analysIs can only be performed, however, if a sufficiently 

large number of tests are first carried out to enable all parameters to be estimated, thus 

precluding the use of a smaller experimental design. 
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To avoid thIs problem, a model may be used which mcludes all terms of each of the 

types thought likely to be sIgnificant. When mvestigating applications for which the results of 

Table 4.4 are representative, for example, a suitable model would be one which contains all 

malO effect and two-way interactIon terms. This procedure introduces two possIble sources of 

error mto the model specification. The first is due to the inclusion of terms which are in fact of 

no significance. As long as parameter estimates remam largely orthogonal, however, and the 

number of insigmficant terms is fairly small, this IS not expected to lead to substantial error. The 

second source of error is due to the exclusion from the model of significant parameters, such as, 

in the present example, the three-way mteraction Aca of Table 4.4. If the excluded parameters 

are small in number and do not dominate the analytIcal model, then the attendant loss of 

accuracy would probably be considered a small price to pay for the large reduction in the 

number of deSIgn points, compared with those which would need to be tested were all terms of 

that type to be mcl uded in the model. 

These observatIons are supported by the lack of fit values winch result from the use of 

the thIrd model of Table 4.5. This model contains the mean value and seven main effect terms, 

plus the 21 two-way IDteraction terms. The only statistically sigmficant term excluded from this 

model is the three-way mteraction term ACa. Table 4.5 shows that the performance of thIS 

model is little dIfferent to that of the previous model. Its advantage, however, is that it is lIkely 

to be more widely applIcable to other problems of a similar type. 

4.6 Use of fractional factorial designs 

Since It has now been established that a model containing just mean, malO effect and 

two-way interactIons terms is sufficient to represent adequately the variation of noise response 

at the vertices of the design variable space, It is now possible to seek an experimental design 

which WIll allow for the estImation of the required parameters using a minimum number of 

analyser calls. It was shown in Section 3.5.4 that in order to estimate independently the mean 

value and all of the main effect and two-way mteractIon terms, a fractIonal factorial design must 

be of at least resolution V.,Table 3.12 shows that the smallest design in seven variables which 

meets tins criterion IS the 2.1 fraction containing 27.1 = 64 tests, winch is of resolution VII. 

The 64 parameter estImates obtained usmg this resolution VII design are given m 

Table 4B.2 of Appendix 4B. Comparison of these with the values listed in Table 4.4 shows that 

the mean and main effect terms are all identical, to at least three significant figures, with the 

fifteen significant parameters identified by the probabIlity plot analysIs remaining the largest 

terms. The values of the two-way interactIon parameters have been modified slightly due to the 

presence of confounding, although this effect is fairly small due to the high resolution of the 

design. Using a resolution VII deSIgn, the mean value is only confounded with the single 
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seven-way interaction term, each main effect IS confounded with a six-way interaction, and 
two-way interactions are each confounded With an interaction of order five. 

The simtlanty between the estimates of model parameters wottld lead one to expect that 
the performance of the model throughout the deSign variable space would be comparable with 
the s 2-way Interaction model of Table 4.5. A summary of the lack of fit data for the resolution 
VII design, calculated at each of the full 27 = 128 factorial points, is shown in Table 4.6. The 
inclusion of all 128 points, rather than Just the 64 of the resolution VII design, is more 
representative of the overall predictive ability of the 64 term model, since the lack of fit at the 
resolution VII design pomts Will be effectively zero due to the saturated natltre of the design. 

Design No. of Maximum lack of fit Average lack of fit 
Resolution tests/terms dB(A) ~ , dB(A) ~ 

Full 128 4.8317xlQ-13 6.4575xlQ-12 1.2512xlQ-13 1.6722xlQ-12 

Resolution VII 64 0.2080 2.7814 0.0348 0.4652 
Resolution IV 32 0.3646 4.8724 0.0521 0.6959 
Resolution IV 16 0.5989 8.0047 0.0941 1.2571 

Resolution III 8 0.6677 8.4699 0.1605 2.0362 

Table 4.6 Summary of lack of fit calculations at 128 full factorial points 
using fractional factorial designs 

Table 4.6 shows that the 64 term model derived from the resolution VII deSIgn performs 
slightly better than the 29 term model of Table 4.5. ThiS is because the mild confounding 
introduced by halving the number of test points is more than outweighed by the inclusion of the 
35 three-way interaction terms. Although most of these are of fairly small magnitude, their 
inclusion leads to an exact fit at 64 of the 128 points. thus reducing the overall error. 

The lack of fit values resulting from the use of 2-2, 2-3 and 2-4 fractions are also 
included in Table 4.6. These show that the use of the resolution IV design involving 32 tests 
resttlts In only a modest increase in the predtctlon error at the original 128 points. This is despite 
the fact that confounding is now occurring between two-way interaction terms, several of which 
are known to be significant. The reason for this becomes clear when the pattern of confounding 
between parameters is examined. This pattern is given in Table 4B.3 of Appendix 4B, in which 
the terms listed In the left-hand column of the table are those which are included in the 32-term 
model. Each term of tills column is confounded with the three terms which appear on the same 
row of the table. Comparison of this table with the list of sigmficant paranteters of Table 4.4 
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shows that each of the significant terms appears in the left-hand column of Table 4B.3, and is 

hence included in the model. This may be regarded as a fortunate comcidence, since the 

particular relationship between the pattern of confoundtng and the SIgnificant terms has resulted 

in a model in which no two significant terms are confounded, and additionally, in which the 

significant term of each confounding set is the one which has been included in the model. In 

general, this cannot be expected to occur, with the result that the lack of fit errors throughout the 

design variable space would necessarily be greater. 

Inclusion of all significant temtS does not occur, however, for the 27.3 = 32 test design, 

in which the size of each confounding set is further doubled. Although this design is also of 

resolution IV, the pattern of confounding, shown in Table 4B.4 of Appendix 4B, reveals that a 

number of the significant parameters are now absent from the fitted model, with the result that a 

larger increase in prediction error occurs, as shown m Table 4.6. The maximum lack of fit at 

any of the 128 points is now over 8% of the function range, and, although the average error is 

sttllless than 0.1 dB(A), thIS model may be expected to yteld misleadmg results in the search 

for opttmum designs. 

The 8 term model which may be constructed usmg the resolutIOn HI deSIgn is identtcal 

to the main effects model of Table 4.5. The infenor prediction performance attained by the 

present model IS due to the high level of confoundmg which occurs, WIth each parameter being 

confounded with 15 others. Additionally, only a 1I16th fraction of the original points is being 

used to assess these terms. Bearing this in mind, It IS a reflection of the overall dommance of the 

main effect terms, as shown in Section 4.3, that the average lack of fit usmg this model is as 

low as the 2% of function range which is in fact obtained. 

The relatively low lack of fit values calculated at the vertices of the design variable space 

are, of course, in marked contrast with the predlctton errors whIch occur at the centre and star 

pomts. These values are given, for each of the above models, in Table 4.7. As discussed 

previously, the accuracy of prediction at these points IS determined enttrely by the values of the 

mean and mam effect terms. Since these are not confounded with any of the other significant 

parameters when the design is of resolution IV or greater, the error at the centre and star points 

is little changed from that obtain using the full 128 term model. When using a resolution HI 

design, however, the main effects are each confounded with a number of two-way interactions, 

so that their parameter estimates are substanttally modified, as shown in Table 4.8. Most 

nollceable are the changes to parameters C and E. 
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Design No. of Maximum lack of fit Average lack of fit 

Resolution tests/terms dB(A) Eft dB(A) Eft 

Full 128 1.5486 20.697 1.1890 15.891 

Resolution VII 64 1.5426 20.624 1.1847 15.839 

Resolution IV 32 1.5520 20.742 1.1900 15.904 

Resolution IV 16 1.5891 21.238 1.1993 16.029 

Resolution III 8 1.5505 19.668 1.1688 14.826 

Table 4.7 Summary of lack of fit calculations at centre and star points 

using fractional factorial designs 

Table 4.7 shows that the consequence of tins error in main effect estimation is actually a 

reduction in the average lack of fit at the centre and star pomts. This, however, is entirely 

attnbutable to the modified mean value. Examination of the mdividuallack of fit figures shows 

that in each case the mathematical model IS producing a prediction which is higher than the 
experimental result For each pair of star points, the effect of a modification to that particular 

vanable Will thus have an equal and opposite effect on each member of the pair. The slightly 

reduced mean will, however, reduce the lack of fit at every point, and comparison of Tables 4.7 

and 4.8 shows that the difference in average lack of fit between the full resolution and 

resolution III designs is equal to the change in the estimate of the mean parameter. 

Term Estimation based on 

full factorial design resolution I1I design 

MFAN 8.8082xlQ+1 8.8062xlQ+l 

A -2.2377 -2.2439 

C -3.8596xl(}1 -4.5327xl(}1 

G -3.3608xl(}1 -3.7115xl(}1 

D -2.3021xl(}1 -2.3684xl(}1 

F -2.2872xl(}1 -2.0659xl(}1 

B -1.9920xl(}1 -1.7140xl(}1 

E -1.5888xl(}1 -2.5857x 1 () 1 

Table 4.8 Estimates of mean and main effect parameters using 

designs of full resolution and resolution III 
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In InvestigatIng the increase which occurs in the maximum prediction error, compared 

with the full factorial desIgn, it is found that the greatest lack of fit using the full model occurred 

at the star point for whIch F is at its upper bound - (0, 0, 0, 0, 0, I, 0). The increased error is 

due to the fact that the decrease in magnitude of 0.0221 dB (A) in the parameter estimate of F is 

just larger than the drop of 0.0202 in the value of the mean. When F is at its high bound, these 

two effects oppose each other, such that the lack of fit Increases by (0.0221 - 0.0202) = 
0.0019 dB(A), as shown in Table 4.7. Although a larger increase in lack of fit occurs at other 

star points involving high bounded vanables, the increase is not sufficient to raIse the absol ute 

error higher than that found at (0, 0, 0, 0, 0, I, 0). 

These results show that the lack of fit throughout the design variable space is dominated 

by the error resultIng from the inability of the linear + interactions model to represent the effect 

of higher order terms. 

4.7 Suitability of linear models to the engine noise problem 

The main conclusions which may be drawn from the numencal tests which have been 
earned out using the engine noise example are as follows. 

• The mass function is, as expected, exactly representable using simply mean and main 

effect terms. 

• The use of probability plots provides a convement method of identifying those terms of a 

lInear + Interactions model which are statistically signIficant. 

• For the example investIgated, the significant parameters have been independently shown 

to be the only ones which substanllally influence the accuracy of the predictIve model. 

• Virtually all of the variation in the noise function at the test points is, for the present 

example, attnbutable to main effect and two-way interaction terms. The degree of 

similarity which exists between related applications suggests that, in general, little 

increase in lack of fit will result from the exclUSIOn of interaction terms higher than 

second order. 

• Such a model can be constructed from a fractional factorial design of at least resolullon V. 

This also allows for the inclusion in the model of a number of higher order interaction 

terms. 

• The use of a model of this type, wlulst accounting for all variation in the nOIse funcllon at 

the vertices of the design variable space, results in substantial lack of fit errors at locations 

which are distant from the original test points. In order to enhance the ability of the model 

to represent the true response It is necessary to include higher order terms. It is not, 

however, possible to estimate these terms USIng the two-level designs discussed above. 



Appendix 4A 

First order models constructed from full and fractional factorial designs 
Specification of test points used to estimate lack of fit 

due to higher order terms 

Variable 
A B C 0 E F G 

.0090 .0260 .0260 .0090 .0175 .0260 .0090 

.0060 .0260 .0260 .0090 .0175 .0260 .0090 

.0120 .0260 .0260 .0090 .0175 .0260 .0090 

.0090 .0200 .0260 .0090 .0175 .0260 .0090 

.0090 .0320 .0260 .0090 .0175 .0260 .0090 

.0090 .0260 .0200 .0090 .0175 .0260 .0090 

.0090 .0260 .0320 .0090 .0175 .0260 .0090 

.0090 .0260 .0260 .0040 .0175 .0260 .0090 

.0090 .0260 .0260 .0140 .0175 .0260 .0090 

.0090 .0260 .0260 .0090 .Qloo .0260 .0090 

.0090 .0260 .0260 .0090 .0250 .0260 .0090 

.0090 .0260 .0260 .0090 .0175 .0200 .0090 

.0090 .0260 .0260 .0090 .0175 .0320 .0090 

.0090 .0260 .0260 .0090 .0175 .0260 .0060 

.0090 .0260 .0260 .0090 .0175 .0260 .0120 
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1. MEAN 
2. A 
3. C 
4. G 
5. D 
6. F 
7. B 
8. E 
9. AG 
10 AD 
11. AF 
12. CG 
13. AB 
14 FG 
15. ACG 
16 AEF 
17. EF 
18. AC 
19. BCF 
20. ABCF 
21. ACF 
22. CE 
23. ABDFG 
24. EG 
25 BDFG 
26 DFG 
27. ACDF 
28. ADFG 
29. CD 
30. ADEF 
31 00 
32 ACOO 
33 BFG 
34. ABCFG 
35. BD 
36. ADO 
37. CFG 
38. CDEFG 
39. DE 
40. DF 
41. ABF 
42. ABO 
43. ABO 
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Appendix 4B 

Results of numencal tests usmg fractlonal factorial desIgns 

88082xl0+1 

-22377 
-38596xl0·1 

-33608xl0·1 

-23021xl0·1 
-2.2872xl0·1 

-1.992Oxl0·1 

-1.5888xl0·1 
-7.4246xl0·' 
52756xl0" 

-46907xl0" 
-44956xl0" 
-44724xlO" 
-4 406Sx 10·' 
3.5056xlO·' 
1.9958xlO·' 

-1.9304xlO·' 
1.7965xlO·' 
1.6793xlO·' 

-1.5657xI0·1 

-1.554Ox10·l 

1517OxlO" 
-1 489OxlO·l 

-14491xlO·l 

14209xlO·l 
13226xlO·l 

1.3167xlO·l 

-1.1497x 10.1 

1.1175xlO·l 

-1.0824xlO·' 
-I 0766x 10·' 
-1061OxlO·' 
-1.0457xl0·1 

-10397xlO·l 

9.3193xlO-3 

9.2839xlO·3 

-92465xl0-3 

86995xlO-3 
83466xI0-3 

-8.0816xI0-3 
-79288xI0-3 

7.9016xl0-3 
-75974xl0-3 

44. CDEG 7.4247xl0·3 

45. DEF 7.2312xl0·3 
46. CDF -72296xl0·3 

47. ABC 7.1612xlQ-3 
48. COO 70216xl0·3 

49. ACDEG -69616xI0·3 

50. BF -69547xl0·3 

51. CDFG -66769xlO-3 

52 ACDFG 66182xlO-3 

53. ABm 59315xl0-3 

54 ABE -58429xlO-3 

55. ABEG -5.7443xI0-3 

56. ABEF 54687xl0-3 
57. ACEF 
58. ABOEG 
59. BDEG 
60 BE 
61. BCDF 
62. BCEG 
63. BEG 
64. BDF 
65. AEFG 
66. ABCEF 
67. BCDE 
68. BCFG 
69. CEF 
70. BCD 
71. ABCE 
72. BCEF 
73. ABCDF 

54456xlQ-3 
54233xl0·3 

-52643xl0·3 
50225xlO·3 

-49464xlO·3 

-48705xlO·3 

47925xlQ-3 

-4.7858xlO-3 
-4.7292xlO-3 

-4.6608x 10-3 

46442xlQ-3 
45903xlO·3 

-45796x10·3 

45612xlQ-3 
-45580xlO-3 

4.523lxlQ-3 
4.5133xlQ-3 

74 ABCDEFG -43667xlO-3 

75. ABCEG 4. l502xlQ-3 
76 ACD 
77. ACDE 
78. ABCD 
79. CDE 
80. ABCOO 
81. ADE 

-40621xlO·3 

-4 0350x 10.3 

-3.9413x10·3 

3.7317x1Q-3 
-3.6975x10·3 
-3.6911x10-3 

82. ACDEFG -3.4924x10-3 
83. BCDEFG 3.4912xlO-3 

84. DEG -3 4698x 10-3 
85 BOE 33976x10-3 
86. BCDEF -33055xlO·3 

87. BOO 
88. ACE 
89. CEFG 
90 ADF 
91. BEFG 

-32154xlO-3 

3. 1474x 10.3 

3.0834x10·3 
3.0631x10·3 

-3 0467x 10·3 
92. ABoo 2.9337xlO-3 
93 ABDEFG -2.9106x10·3 

94. ACEFG -28335xlO-3 

95. BDEFG 28164xlO-3 

96. BC 
97. ABDF 

-2.7048x10-3 
2.5961x10-3 

98 BCDFG 2.5133xlO-3 
99 ADEFG -2.4929x10-3 
100. BCDEG 
101. ABCDE 
102. ACDEF 
103. BCOO 
104. BEF 
105. AB 
106. CF 
107. ABFG 
108. ABDE 
109. ABCDEG 
110. BCEFG 
111. DEFG 
112. AEG 
113. ABDEF 
114. ABCDEF 
115. BDEF 
116. BG 
117. ACEG 
118 AFG 
119. ADEG 
120. EFG 
121. ACFG 
122. ABCEFG 
123. CDEF 
124. BCE 
125. ABEFG 
126. ABCDFG 
127. Bm 
128 CEG 

24517x10-3 

-24162x10-3 
2.3762x10-3 
22716x10·3 

-2.1783x10·3 
-2.1579x10·3 

-2.0599xlO·3 

18338xlO·3 

1.7930x10-3 

-1.6555x10-3 

-1.5398x10-3 

1.4303x10-3 

-13100x10-3 
-1.2484x10-3 
1.2094x10-3 

1.0884xlO-3 

-8.7908x10" 
-7.7062x10" 
-68496xl0" 
-63499xlO" 
6.151OxlO" 
6. 1398x10" 
5.995Oxl0-4 

-5.7055xl0-4 
5437OxlO" 

-4.7396xlO" 
-1.74OOx10" 
-1.7328xlO" 
-1 5289xlO" 

Table 4B.l. Noise coefficients for full factorial test (n=7) 
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1. MEAN 88.078 23. BCF 1.6158x10-2 45. BD 6.4857x10-3 

2.A -2.2342 24. DO -1.5427x10-2 46.AEO -6.2564xl0-3 

3. C -3.8887xlo-l 25. BFO -1.4492xl0-2 47. CDE 5.5655xl0-3 

4.0 -3.3487xl0-1 26. BF -1.3916xl0-2 48. BDF -5.5565xl0-3 

5. F -2.3038xlo-l 27. ADO 1.3807xl0-2 49. BC -5.1977xl0-3 

6.D -2.2961xlo-l 28.DEF 1.3163xl0-2 5O.BDE 4.01 16xl0-3 

7. B -2.0269xl0-1 29. CDF -1.2974xl0-2 51. AFO 3.9592xl0-3 

8.E -1.5905x10-1 30. BEF -1.2788xl0-2 52. DF -3.9314xl0-3 

9.AO -7.7552x10-2 31. ABE -1.2520xl0-2 53. CF 3.3634xl0-3 

lO.AD 5. 1217xl0-2 32. CDO 1.2490xl0-2 54. EFO -3.3 262xl 0-3 

11. FO -4.6484xl0-2 33. BE 1. 1641xl0-2 55. CEO 2.4432xl0-3 

12. CO -4.6205xl0-2 34. BCO -1.0997xl0-2 56. BDO 2.2302xl0-3 

13. AF -4.4455xl0-2 35.ABD 1.0985xl0-2 57. DE -2.0508xl0-3 

14.AE -4.2211xl0-2 36. BCE -1.0953xl0-2 58.ADF -1.8074xl0-3 

15. ACO 3.6145xl0-2 37. CD 1.0701xl0-2 59. CEF -1.6460xl0-3 

16. EF -2.3002xl0-2 38. EO -9.9781xl0-3 60. BO 1.497 1 xl 0-3 

17. AEF 2.2230xl0-2 39. DFO 8.6681xl0-3 61.ADE 8.9918xl{}4 

18. ACF -2.0805x10-2 4O.ABC 8.5915xl0-3 62. ABF -5.0410xl{}4 

19. AC 2.0781xl0-2 41. ABO -8.1680xl 0-3 63. CE 2.8026xl{}4 

20. DEO -1.9127xl0-2 42. CFO -7.4534xl0-3 64. BCD -1.6804xl{}4 

21. BEO 1.7959xl0-2 43.ACD -7.1088xl0-3 

22. ACE 1.7357xl0-2 44. AB 6.5416xl0-3 

Table 4B.2. Parameter estimates for 27•1 fractional factorial design of 
resolution VII 
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MEAN ABCD CDEF ABEF 
A BCD ACDEF BEF 
B ACD BCDEF AEF 

C ABD DEF ABCEF 
D ABC CEF ABDEF 
E ABCDE CDF ABF 
F ABCDF CDE ABE 
G ABCDG CDEFG ABEFG 
AB CD ABCDEF EF 
AC BD ADEF BCEF 
AD BC ACEF BDEF 
AE BCDE ACDF BF 
AF BCDF ACDE BE 
AG BCDG ACDEFG BEFG 
BG ACDG BCDEFG AEFG 
CE ABDE DF ABCF 
CF ABDF DE ABCE 
CG ABDG DEFG ABCEFG 
DG ABCG CEFG ABDEFG 
EG ABCDEG CDFG ABFG 
FG ABCDFG CDEG ABEG 
ABG CDG ABCDEFG EFG 
ACE BDE ADF BCF 
ACF BDF ADE BCE 
ACG BDG ADEFG BCEFG 
ADG BCG ACEFG BDEFG 
AEG BCDEG ACDFG BFG 
AFG BCDFG ACDEG BEG 
CEG ABDEG DFG ABCFG 
CFG ABDFG DEG ABCEG 
ACEG BDEG ADFG BCFG 
ACFG BDFG ADEG BCEG 

Table 4B.3. Confounding between parameters for 27•2 fractional factorial 
design of resolution IV 
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MEAN ABm CDEF ABEF ACFG BDFG ADEG BCEG 

A Bm ACDEF BEF CFG ABDFG DEG ABCEG 

B Am BCDEI' AEF ABCFG DFG ABDEG CEG 
C ABO DEF ABCEF AFG BCDFG ACDEG BEG 

D ABC CEF ABDEI' ACDFG BFG AEG BCDEG 
E ABmE CDF ABF ACEFG BDEFG ADG BCG 

F ABCDF CDE ABE ACG BOO ADEFG BCEFG 
G ABCOO CDEFG ABEFG ACF BDF ADE BCE 
AB CD ABCDEF EF BCFG ADFG BDB] ACEG 

AC BD ADEF BCEF FG ABCDFG CDEG ABEG 

AD BC ACEF BOEF CDFG ABFG EG ABCDEG 
AE BCDE ACDF BF CEFG ABDEFG DG ABCG 

AF BCDF ACDE BE CG ABDG OEFG ABCEFG 
AG BCOO ACDEFG BEFG CF ABDF DE ABCE 

BG ACOO BCDEFG AEFG ABCF OF ABDE CE 
ABG coo ABCDEI'G EFG BCF ADF BOE ACE 

Table 4B.4. Confounding between parameters for 27-3 fractional factorial 
design of resolution IV 
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Appendix 4C 

4C.l The use of nonnal probability plots 

Nonnal probability plots are used wltlnn the present work ID order to assess whether the coefficients of 
predtctive models are statisbcally SIgnificant, and hence represent true characterisbcs of the response surface. or 
whether they are inwsbngmshable from a set of normally wstnbuted random data. Details of the use of tins 

technique is described by. for example. Box. Huuter and Huuter (1978). and Box and Draper (1987). The 
followmg is a summary of the uuderlYlDg theory, WIth some wscusslOn of Its apphcablhty to the engme noise 
opblDlzation problem Details of the implementabon of this tecbruque wltlnn the opblDlzabon program are given 
by Hall (1992). 

Nonnally wstnbuted data x which have a mean of fl and a vanance of 02 have a probabilIty density 
fuucbon of the form 

f(x) (4C.l) 

TIns funcuon IS shown m Figure 4C.1. The cumulabve density fuucbon. F(x), is the shaded area beneath the 

graph from·oo to x. and represents the probability that a given measurement point will have a value less than or 
equal to x 

f(x) 

fl-30 fl-2a fl-O fl 

FIgure 4C.l Nonnal probability density function 

The cumulabve denSIty funebon (c df) is as shown in equation (4C.2). When plotted, this function 
forms the'S' shaped curve shown ID Figure 4C 2. 

F(x) = IX 1 e-(I-ILl'/(2a'l dt 
ofEt' 

_00 

(4C.2) 
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11- 30 11-20 11- 0 11 

Figure 4C.2 Cumulative density function 

It is this graph winch forms the basis of the probablhty plot method. If a sample of normally 
distnbuted data IS displayed as in Figure 4C.2, such that the rank order of each measurement, scaled to lie in the 
range 0 0 to I 0, is plotted against its value, then all points will he apprOJumately on a c d f curve having the 
appropriate vanance. When plotting a set of random data wbich is drawn from a normally distnbuted population, 
any deviation from this line is due to samplmg error. If a sample of data to be invesbgated is plotted, then the 
degree to wbich the sample follows a normal distnbubon may be judged by the proxinnty of the points to the 
appropriate c d f. curve. Two main problems winch arise when using the c d f. curve are that the variance of the 
sample data may not be known prior to plotbng, and that companson of the data With the 'S' shaped curve of 
Figure 4C 2 IS difficult to carry out 

In order to facilitate this companson, the probability plot method modifies the vertical scale of the 
cd f , either by plotbng on SpeCial normal probability paper, or by carrying out a normalisation of the rank 
orders. For implementation Within a compubng enVIronment, it is the second of these two approaches wbich has 
been followed witlnn the present work. The effect of carrymg out this modification of the vertical axis is that the 
'S' shaped curve of Figure 4C 2 is stretched into a straight line. This mds mterpretation of the cd f. graph, since 
a sample of random data can be judged to bave a normal distnbution If it lies on any strmght line, with the slope 
of the hne bemg determined by the variance of the distribution. 

If the data is found to be normally distnbuted, then both the mean and variance of the sample may be 
deduced directly from the probability plot as follows. 

i) The mean of the sample is the x value associated With a c.df. F(x) = 0.5. 

ii) The value of the c.df. for the data point x =11 + 0 IS F(x) = 0.8314, and hence the 

value of 0 2 is equal to (x[F(x)=O 8314] - x[F(x)=O 5] 'P. 

In usmg the method to Idenbfy wbich coefficients of a predictive model represent real effects, it has 
been convement to invert the probability plot such that the coefficient magnitudes are plotted against their 
normahsed rank. The normalisation of rank order has been carried out using a rabonai approximation to the 
inverse c d f., to give a 'Z score'. This is performed in such a way that the normalised rank for the mean value is 
00, rather tInm 0 5. Adilitionally, in companng coefficient estimates of predicbve models, it is essential to 
compare values wbich have been estimated with equal precIsion. In order to achleve tins, the coefficient values 
bave each been divided by their standard error prior to plotting. 

Figures 4C 3 - 4C 5 show examples of normal probabihty plots of the form used withm the present 
investigation Each of the three data sets shown is drawn from a normally distributed population With zero mean, 
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and in each case it can be seen that all of the data points lie on an approximately Straight line. Note that the effect 
of samplIng error increases as the size of the sample is reduced, so that the straightened c d f. line is less well 
defmed, makmg it harder to identify values which do not conform to the normal distnbution. 

-3 -2 

+++ 
+ 

20 

Value 
10 

-20 

+ + 

1 2 3 
Z score 

Figure 4C.3 Nonnal probability plot of a random sample of 160 data points 
drawn from a nonnally distributed population 
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1 ++ 
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Figure 4C.4 Nonnal probability plot of a random sample of 40 data points 
drawn from a nonnally distributed population 
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Figure 4C.S Normal probability plot of a random sample of 10 data points 
drawn from a normally distributed popUlation 
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When invesllgating the stallSIlca\ significance of the coefficient value of a respouse surface model. these 
are plotted as shown above. Any which hes slgnUlcantly away from the Straight line fonned by the majority of 
the points is conSidered IDconslstent With an assumpllon of normal distnbution. and IS taken to represent a true 
characteristic of the data set from which it IS derived. Such values must be removed from the graph. and the 
remaimng values replotted using recalculated Z scores in order to establish whether all the remaming coefficients 
confonn to an assumption of nonnal distnbution figure 4C.6 shows an enmple of a data set ID which a 
number of the values deviate substantially from the normal distnbution line; five of them negative and two 
positive. 

I 

Value + 
+ 

-3 -2 I 2 3 
Z score 

++++ 

+ 
-I 

Figure 4C.6 Normal probability plot of a normally distributed sample 
with seven outIiers 

For analyses In which it IS only the magmtudes of the data points which are of interest. a modified 
version of the normal probability plot can be used. 11ris vanallon was introduced by Damel (1959). and is known 
as the half-normal probability plot. or Damel plot Usmg this techmque. the magnitude of each data point IS 

again plotted against ItS nonnalised rank. but With the nonnalisation earned out on the assumption that the 
sample has a smgle-slded nonnal distribution with zero mean. figure 4C.7 shows the data of Figure 4C 6. 
displayed usmg a Damel plot. 
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Figure 4C.7 Half.nonnal probability plot of a nonnally distributed sample 
with seven outllers 

4C.2 'Ireatment of random experimental error in detenninistic applications 
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The use of the probabilIly plol is inlended 10 proVIde a 1001 10 aid the investtgalor in dtfferentiating 
between those effects which are due 10 random expenmental error, and those which are due 10 the underlying 

characlensttcs of the syslem belDg investigaled When USlDg computer simulation methods 10 provide the 
functton infonnauon from which the model IS to be consuncted, however, no random experimental error can 
occur, since a given combinallon of lDput variables wtll always produce identical results The only poSSIble cause 

of lack of fit between the values of the response functions generated by the simulallon program and the 
mathemaucal model which IS denved from the origiual sample POlDts is Ihus underspectfication of the fitted 

model. The valulity of the probabthty plot technique when applied to such delenmmstic applications clearly rests 
upon the assumpuon thal the effect of model underspectfication introduces errors in the parameter estimates 
which may, in some sense, be regarded as bemg randontly dtstnbuted 

Although a detatled lDvestigauon into the Valldtty of this assumpuon IS beyond the scope of the present 

work, a useful lest of ils apphcabihlY IS to examine the nature of the discrepancy between the FE analysis result 
and the response surface predtction at each tesl point of the expenmental deSIgn. Two lests which may be 

perfonned on these residuals are: 
I) Plot reSIdual values againsl the value of each of the design variables to assess correlation WIth 

vanable value 
ii) Consunct a probability plol of the reslduals to assess whether these error terms are nonnally 

dtstributed 

In order to derive meanmgful infonnation from these tests, the design used must be of a non-saturated 
nature, SlDce otherwtse all residuals will be due purely to rounding error The saturated factorial designs presented 
in Chapter 4 are thus unswted to this type of investigation. ResullS are presenled below for the 7 vanable 
Central Composite Design of Section 6 53, compnsmg 79 tests, to which a 36 term strict second-order model is 

fitted. In Figures 4C 8 - 4C 14 the residuals are plotted agamst each of the variable values, and these show that 
there is no noticeable correlation between the lack-of-fit values and the levels of any of the design variables. 
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Figure 4C.lS show. a normal probabthty plot of the residuals, winch may be used to assess whether 
the residual values are drawn from a normally dtstnbuted population. This plot shows that, apart from two clear 
OUtIlers, the residuals lie on an approximately straight line, indicating that the errors are indeed normally 
dtstnbuted Additioually, tins strmght line passes approXimately through the origin of the plot aXIS. suggesbng 
that the mean of the error values is approximately zero. 
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3 

Figure 4C.lS Normal probability plot of residual. 

In conclusion, invesbgation of the residuals at the test points of a non-saturated experimental design 
shows that these values are uncorrelated with any of the variable levels, and that they are randomly distributed 
With a zero mean These results suggest that there IS some validity in assuming that the effect of model 
underspeafication introduces errors which may be treated sumlarJy to random expenmental error. Bearing in mind 
the restncbons imposed upon the use of a probabihty plot analysis by the deterministic nature of the noise 
simulation process, experience has shown that an informed use of this technique provides an extremely useful 
tool ID assesSlDg the parameters of a mulb-<itmenslonaJ mathematical model. 
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5. Designs for quadratic models 

5.1 Introduction 

When an analysis of the type carried out m the previous chapter, usmg just a hnear + 
interactions model, has shown that there IS substantial lack of fit at points away from the corners 

of the design vanable space, due to curvature of the actual response surface, then the next step 

in an investigation is to include terms in the prediction model which WIll account for these 

effects. 
Such terms include those whtch mvolve higher powers of each variable, and the 

simplest extensIOn to the origmallinear model of equation (4.1) is the quadratic model 

n n n 

Y = !Jo + ~ !J,X, + ~ ~ !J'JXXi (5.1) 
;=1 ,=1 J=; 

Analysis of the simple one-dImensional case shows that there are now three free 

parameters in the equation; 

(5.2) 

and hence at least three test points are reqUIred in order to fit the model. This feature generalises 

to multiple dImensions as in Chapter 4, such that each variable must appear m the expenmental 

design matnx at at least three different levels. 

As for the fIrst order deSIgns of Chapter 4, the values of the independent vanables are 

normalised using the convention of Section 2.12. The second-order stnct quadratic model can 

be expressed in these normalIsed coord1Oates as 

n n n 

Y = fJo + ~ !J,x, + ~ ~ !J'Jx,xJ (53) 
,=1 ,=1 J=' 

Before considering spec1fic designs for fitting second order models, the following two 

sections discuss the characteristics which a second order design must possess in order to meet 

the requIrements of orthogonality and rotatablhty. 
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S.2 Orthogonal second-order designs 

As stated in Appendix 2A. the condition which must be met for a design to be 

orthogonalls that the moment matrix N-IX'X must be diagonal. Considering a general second

order design for the simple case of n=2, the moment matnx, using the notation of SeCDon 2.12, 

is of the form 

1 xI Xz 
xZ I 

xZ Z xlxZ 
1 1 [1] [2] [11] [22] [12] 

XI [11] [12] [111] [122] [112] 
(5.4) 

..l. X'X = 
Xz [22] [112] [222] [122] 

N xi [1111] [1122] [1112] 
XZ symmetnc [2222] [1222] 

z 
xI Xz [1122] 

for which all of the off-diagonal terms must be equal to zero If the design IS to be orthogonal. It 

can be seen from equation (5.4) that these off-diagonal elements include terms of the form [ii] 

and [iijj], which are the sums of the products l.x.Z and XjZ.xl respectively. Since each of the 

columns X. and ".i must necessanly contain non-zero elements, and since each element of x.z 

and ~ Z must be greater than or equal to zero, each of the [Ii] and [ii]] must be non-zero, so that 

a diagonal moment rnatnx is impossible to obtain. 

An alternative approach to second-order orthogonality was derived by Box and Hunter 

(1957), who first defined a set of orthogonal polynomials of degree rn in each of the variables 

X. (i=I, ... , n), such that 

With each value of a chosen such that 

N 
~ xlU(m)x,u(m-p) = 0, 
11=1 

p = 1,2, ... , m 

The original equations Y = XIl can then be expressed in terms of these polynomials as 

Y = (XP) (P-IIl) = X~ 

(5.6) 

(5.7) 

where P is the transformation matrix which maps the onginal independent variables to the new 

set. 



A design is now orthogonal if 

is diagonal. The reqUirements for tlns are that, for I < j < p < q, 

[iJ] = [iJj] = [Iij] = 0 

[iiiil = 1 

[iijp] = [Iilp] = [Ijpp] = 0 
[iiIj] =[Ili.J] = 0 
[Ijpq] = [ijp] = 0 
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Appendix 5A demonstrates the orthogonaIity of a three level factorial design of the type 

described In SectIon 5.4 below. 

5.3 Rotatability in second-order designs 

satisfy 

Refemng to the conditions for rotatablhty of Section 2.12. a second-order design must 

[Ii] = ~ 
[iiil] = ~ 
[iiii] =3~ 

for i. j = 1. 2 •...• n and i < j 

where the reqUired value of ~ = 1 is fixed as a consequence of the scaling convention. This 

leaves only "'4 to be determined, which may be selected in order to achieve other design 

critena. If the design is also to be orthogonal. for example, then Section 5.2 shows that a value 

of ~ = [iijj] = 1 is required. 

However. an analysIs by Box and Hunter (1957), showed that, for a rotatable design, 

the prediction variance (see Appendix 2A) at a point x at radius p from the design centre, such 

that p2 = x'x. is 

Var [y(x)] = A{ 2(n+2)~ + 2"-4(Aot-l)(n+2)pZ + [(n+l)Aot - (n-l)]p4} (5.S) 

where 

For the orthogonaI case of "'4 = 1, the change of variance with radius p is very marked, 

with a much Iugher value being obtained at p = 1 than at the design centre p = O. Since the 
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Investigator would ideally like to be able to predict the response at all points within the design 

variable space With equal precision, this is a very worrying characteristic. Plotting the variance 

against p for a number of different values of A4, it IS found that at a certain value of A4 the 

variance at p = 1 is equal to that at p = 0, and Box and Hunter suggest that the orthogonality 

requirement be relaxed slightly so as to allow the value of A4 to be chosen to meet this 

criterion. A design which satisfies tins reqUIrement is known as a uniform precision design. 
The requirement, then, is that the value of variance evaluated from equation (5.8) 

should be the Salne for p = 0 and p = 1. From (5.8), It can be seen that the value of both A and 

the term 2(n+2)t.; are invanant with p, so that the criterion is met if the expression 

2A.t(i-r 1)(n+2)p2 + [(n+ 1)A.t - (n-1)]p4 (5.9) 

is equal at values of p = 0 and p = 1. 

Since the above expression IS equal to zero when p = 0, uniform precision is achieved 

if, at p = 1, 

2A.t<A.t-1)(n+2) + (n+1)A.t - (n-1) = 0 (5.10) 

and hence 
A _ (n+3) ± -J9n2 + 14n - 7) 
4- 4n+8 (5.11) 

Evaluating this expression for various values of n gives 

n A4 

1 0.6666 
2 0.7844 
3 0.8385 
4 0.8704 
5 0.8918 
6 0.9070 
7 0.9184 
8 0.9274 
9 0.9346 

10 0.9404 
11 0.9453 
12 0.9495 

showmg that the uniform precision design is almost orthogonal for all but small n, and grows 

more so as the number of vanables increases. It is interesting to note that if equation (5.10) is 
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evaluatedfor~= 1, then 

(n+l) - (n-l) = 0 

which is only approXimated as n - co, demonstrating that a second order design cannot be both 

exactly orthogonal and rotatable with uniform precision. 

5.4 The three level factorial design 

A simple deSign which allows the estimation of the required terms in equation (5.1) is 
the three level factonal experiment This is constructed on the model of the 20 full factonal 
design of Section 3.3, with the design matrix consistmg of every combmatlOn of the three levels 

of each vanable, glvmg a total of 3D points. Figure 5.1 shows the test points which are required 
m the three-dimensional case. 

(-1, 1, -1) 
_-1-..._--.... 

(1, -1, -1) 

(1, -1, 1) 

Figure 5.1. A three level factorial design in three dimensions 
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for which the associated design matrix IS 

Xl X2 x3 

-1 -1 -1 
-1 -1 0 
-1 -1 1 
-1 0 -1 
-1 0 0 
-1 0 1 
-1 1 -1 
-1 1 0 
-1 1 1 

0 -1 -1 
0 -1 0 
0 -1 1 
0 0 -1 

D= 0 0 0 
0 0 1 
0 1 -1 
0 1 0 
0 1 1 
1 -1 -1 
1 -1 0 
1 -1 1 
1 0 -1 
1 0 0 
1 0 1 
1 1 -1 
1 1 0 
1 1 1 

Since there are 3n tests, it is in fact possible to fit a total of 3n terms, allowing the 

construction of a second order plus interactions model of the form 

n n n 0·1 n n 

Y = fJo + 2: fJ1X1 + 2: 2: fJ IYC1Xj + 2: 2: 2: fJljkX1XYCk + 
;=1 1=1 j=1 1=1 J=I k=j 

1<>1 
n·l n·l n n 
2: 2: 2: 2: !JljkIX.xYCkXI + ...... !J112233 ... nnXrx~xjx~ ... xa 
1=1 J=I k=J I=k 

1<>1 I>J 

(5.12) 

in which no more than two of the subscripts in any term may take the same value. An example 
of the complete set of terms generated by this equation is given in Appendix 5B for the four 
variable case. The example of Appendix SA shows that a 3n design is orthogonal. It also 
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shows, however, that the rotatabllity requirement of [iiii] = 3 [iijj] is not met This IS because, m 

this case, [iijj] = 1 (a necessary condilton for orthogonality) whilst filii] = 3/2. 

The principal disadvantage of the three level factorial design, however, is that the 

number of test po1Ots rises rapidly with increasing n, such that for 5 variables, 35 = 243 tests 

are required; for 7 variables, 2187; and for 12 variables over 530,000 tests are 

needed. Although it is possible to construct fractional factorial deSigns contaimng 3n-m terms, 

by a procedure analogous to that followed for two level testing, even qwte small fractions are 

still prohibitively large when the original full factonal array is of this size. As an example, the 

smallest fraction of the 7 variable factorial test which will allow all of the two-way 

linear x hnear interactions to be estimated Without mutual confounding is the 37-2 design, a 119 

fraclton, which still contains 243 tests (National Bureau of Standards, 1959). The simple three 

level factorial test is thus impracltcal unless either the number of factors involved is very small, 

or the cost of performing each test is extremely low. 

Addtllonally, analysis of equalton (5.1) shows that the stnct quadratic model contains 

Just (k+ 1)(k+2)/2 terms. For a seven variable example just 36 terms are involved, whIlst the 

model of equatIOn (5.12) contains 2187 terms, With the additional 2151 terms representing 

interaction effects between the hnear and quadratic components. It has been shown in the 

previous chapter, however, that even interacltons of order greater than two between linear terms 

have been found to be 10significant for the engine noise application, and it IS therefore unlikely 

that many of the addllional interactIOns in the present model will have a measurable effect In 

cases where the coeffiCients of the strict quadratic model are the only Significant ones, the ratio 

of significant terms to the number of tests carried out m a seven variable three-level factorial 

design is therefore likely to be around 1.67%, improv1Og only to around 14.8% for the 119 

fraclton. ThIs significance ratio IS reduced if a larger number of vanables IS to be invesllgated, 

such that for a 12 variable example the full model contams fewer than 0.02% of significant 

terms. 

A simtlar view of the efficiency of a deSign for fitting a particular model was taken by 

Box and Behnken (1960), who defined a redundancy factor as the ratio of the number of tests 

earned out to the number of coefficients to be fitted. ThIs factor is the 10verse of the saturation 
ratio defmed in Section 2.6, and, when only sigmficant terms are fitted, is also the inverse of 

the significance ratio described above. They commented that "in Situations in which the 

experimental error variance is not so large as to require large numbers of observations to obtain 

necessary precision, deSigns having small redundancy factors are deSirable", suggesting further 

that a value of two or less (more that 50% saturallon) would be appropriate. When It is borne in 

m10d that in the present application no random expenmental error is experienced, it is clear that 

the unmodified three level full and fractional factorial designs represent an extreme over-teSllng 

of the region of interest, when compared With the model to be fitted. For this reason the Simple 

three level factorial design Will not be considered further within the present work. 
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Appendix SA 

Orthogonahty and rotatabIlity characteristics of the three level factorial design 

The desIgn matrix of a three level factorial design m two vanables, with variable levels coded as -I, 0 and +1, is 

Normalising using the convention of Section 2 12, 

The denominator of thts expression IS calculated as 

:.Xw=gXui 

The normalised regressor matnx IS thus 

1 XI 

1 -g 

1 -g 

1 -g 

x= 1 0 

1 0 

1 0 

1 g 

1 g 

1 g 

-1 -1 
-1 0 
-1 1 
0-1 
o 0 
o 1 
1 -1 
1 0 
1 1 

where 

Xl xl I 

-g gl 

0 gl 

g gl 

-g 0 

0 0 

g 0 

-g gl 

0 gl 

g g2 

g=.l.. 
Y6 

xl l XIXl 

gl gl 

0 0 

gl gl 

gl 0 

0 0 

gl 0 

gl gl 

0 0 

g2 gl 
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The moment matnx for this desIgn is 

1 xl X2 
x2 2 

I X2 x I X2 

1 1 0 0 2 2 2 2 0 -g -g 
3 3 

Xl 
2 2 -g 
3 

0 0 0 0 

x 2 
2 2 0 0 0 

.l. X'X = -g 
3 

N 2 4 4 4 
XI symmetnc -g -g 0 

3 9 

x~ 
2 4 0 -g 
3 

xlx2 
4 4 -g 
9 

from which It can be seen that 

[nii] =6 g4=6[1.J4=6 ~ =~ 
9 9iO] 9'362 

[Iijj] =4 g4=4[1.J4 =4 81 = 1 
9 9 iOJ 9'36 

Thus tins design meets the orthogonahty cnterion of [Iljj] = 1, but not the rotatabiltty cntenon of 

[nii] = 3[iIJJ] 
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Appendix 5B 

Complete set of tenus for a three level full factorial test in 4 variables 

1. A 31. A2B2 61. ABCJ)2 

2. B 32. AZBC 62. ACZJ)2 

3. C 33. AZBD 63. BZCZO 

4. 0 34. A2C2 64. BZCD2 

5. A2 35. AZCD 65. BC2D2 

6. AB 36. A2[)2 66. A2B2C2 

7. AC 37. ABZC 67. AZBleO 

S. AD 3S. ABZO 6S. A2B202 

9. B2 39. ABCZ 69. AZBCZO 

10. BC 40. ABCD 70. AZBcJ)2 

11. BD 41. ABJ)2 71. A2C2D2 

12. Cl 42. AC2D 72. ABZCZO 

13. CD 43. ACJ)2 73. ABZCJ)2 

14. J)2 44. BZC2 74. ABC2J)2 

15. AZB 45. BleD 75. BZCZ02 

16. AZC 46. BZ02 76. A2B2C2D 

17. AZO 47. BCZO 77. A2B2CD2 

IS. AB2 4S. BCJ)2 7S. A2BC2D2 

19. ABC 49. CZ02 79. AB2C202 

20. ABO 50. A2B2C SO. A2B2C2D2 

21. ACZ 51. AZBZO 

22. ACD 52. A2BC2 plus process mean 

23. AD2 53. AZBCD 

24. BZC 54. AZBJ)2 

25. BZO 55. A2C20 

26. BC2 56. AZCJ)2 

27. BCD 57. AB2C2 

2S. BJ)2 SS. ABZCD 

29. CZO 59. AB2[)2 

30. CJ)2 60. ABC2D 

The first fourteen tenus plus the mean are those winch appear in the strict quadratic 

model of equation 5.1. 
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6. The Central Composite Design (CCD) 

Perhaps one of the most wIdely established of the second-order desIgns is the Central 

Composite Design, or CCD, introduced by Box and WIIson (1951) as a less costly alternative to 

the 3n factorial design. This design is formed by adding to a two-level factorial or fractional 

factorial design a small number of tests at a third level of each variable. The CCD lends itself to 

sequentJal investigation of a design variable space, since the results of a prevIOus two-level 

expenment can be incorporated into the second-order design. 

The main purpose of the present chapter is to establish whether the CCD is suitable as a 

design for computer experiments, and in particular whether it can successfully be used to 

estimate the coefficients of radiated noise response surfaces. Before carrying out numerical trials 

using the CCD, however, the standard orthogonality, rotatabIlity and uniform precision criteria 

which apply when investigating a general expenmental region are presented in Section 6.3. An 

understanding of these critena is extremely important to the successful use of the CCD, Since it 

is these reqUirements which determine the values of the various parameters of the CCD WhICh 

are chosen for a particular experiment. ConsideratIOn of these parameters motivates the 

discussIon, in Section 6.4, of the constraints which the computer simulation environment 

imposes on the use of the CCD. A number of ways of addressing these limitatIOns is 

considered. In Section 6.5 the results of numerical tests using appropnately selected designs are 

presented, from which the SUItability of the CCD to the present application IS assessed 

(Section 6.6). 

Chapter 7 descnbes a new method of extending the CCD, which has been developed as 

part of the present work in order to address the problem of executing replicate tests when 

investigating determmistic systems. 

6.1 Introduction to the CCD 

The standard CCD, as used for general experimental applications, IS made up of three 
separate poruons, as follows; 

1. Alaetorial portion, consisting of a full or fractional two level factorial design. 

Selection of the appropriate fraction proceeds In the same way as for the first-order designs of 

Chapter 3, with the reqUirement often being that this portion should be of resolution V or 

higher. The variable values are again encoded to ±1, as descnbed in Section 3.3. In the analyses 

which follow, the number of tests in this factonal portion will be denoted by F. 
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2. An axial portion. consisting of a total of 2n points. each of which bes on the axis of 

one of the design variables. at a distance a from the design centre. The points have the 

specificatIOn (±n. O. O •...• 0). (0. ±n. O •...• 0) ...... (0. O •...• O. ±a. 0 ). (0. o ..... O. ±n). 

and form the vertices of a cross-polytope or "star". The choice of the parameter a IS disCllSSed 

in Section 6.3. below. 

3. Centre points. A certain number no of replicate tests performed at the centre of the 

design space (0. O ..... 0). The choice of no is discussed in Section 6.3. below. 

An example of a Centra! Composite Design in three dimensions with a full 23 factorial 

portion is shown in Figure 6.1. 

(-a, O. 0) 

(0. O. -a) 

(0. a, 0) 

(-1. 1. -1) 

(1. -1. 1) 

(0. -a, 0) 

(0. O. a) 

(a, O. 0) 

(1. -1. -1) 

• Factorial portion 
o Axial portion 

• Centre point(s) 

Figure 6.1 A CCD In three dimensions 
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The desIgn matrix in this case is of the form 

-1 -1 -1 
-1 -1 +1 
-1 +1 -1 
-1 +1 +1 F 
+1 -1 -1 
+1 -1 +1 
+1 +1 -1 
+1 +1 +1 

D= -a 0 0 
+a 0 0 

0 -a 0 2n 
0 +a 0 
0 0 -a 
0 0 +a 
0 0 0 

no 
0 0 0 

6.2 Scaling of variable values 

Refemng to the scaling convention of equatiqn (3.23), both the scale factor K, (which IS 

the same for each vanable, since the CCD is permutation invanant) and the scaled variable value 

Xw may be denved explicitly m terms of the parameters of the CCD. The derivation of this 

scaling is seldom found in standard works on the subject, but is presented here in some detail, 

since an understandmg of it aids the dIscussion of the moment matnx, and orthogonallty and 

rotatability cnteria, which follows. 

Consldenng first the average value over the N tests of a variable i, whose upper and 

lower bounds are bw and bJi respectively, the mean of the bounded levels is given by 

J.t. = (bui + ~,) 12, and the dIstance from this mean to eIther bound is 1'1, = (bui - bn) 12. Thus 

bui = J.t. + 1'1" and ~1 = 11, - 1'1 .. The average value over all of the tests of the CCD may then be 

expressed as follows 

x, =~ ~I XO, = ~ [~ (J.t.+1'I,) + ~ (J.t.-1'IJ + 1(Ilt+a1'lJ + 1(Ilt-a1'lJ + (2n-2)(1I1> + no(!lt> ] 

= ~ [(F + 2n + no) Ilt] 
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since N = F + 2n + no 

This confmns that the average value of each variable over all tests IS equal to the mean 
of the bounded levels. This is due to the fact that the factorial portion of the deSIgn contains an 
equal number of points for which variable i is at its high and low bounds, and that the .star 
pomts occur in equal and opposIte paIrs. The scale factor!<: of (2.19) may now be expressed as 

r,N ] ·112 
K = L~I (Xu, - x,iFt N 

= ~ [~ «J1,+IIJ-lli + ~ «Ili-IIJ-Ill + «J1,+aIlJ-J1,)2 + «J1,-aIlJ-lll 

+ (2n-2+no)(J1,-Il,)2] ] ·112 

The StandardISed vanable value may now be explicitly expressed as 

or 

(6.1) 

The term (Xw - N/lli has the effect of standardising the variable range to ±1, so that, 
for example, when x.n IS the upper bound J1, + 11" 

(1li+II,) - J1, 
Xw= g=g 

11, 

and for the star pomt Xw = J1, + all" 

(J1,+all,) - J1, 
Xui= g=ag 

11, 
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The design matrix for the CCD may now be written In the following form 

-g -g -g 
-g -g +g 
-g +g -g 
-g +g +g F 

+g -g -g 
+g -g +g 
+g +g -g 
+g +g +g 

D= -ag 0 0 (6.2) 
+ag 0 0 

0 -ag 0 2n o +ag 0 
0 0 -ag 
0 o +ag 
0 0 0 

no 
0 0 0 

If the bounds on variable I are already normalised to ±I, then, since!', = 0 and 11. = I, 
equation (6.1) reduces to 

Xui=gx..., where g = [N I (F + 2a2)] 112 (6.3) 

6.3 Orthogonality and rotatability 

6.3.1 The moment matrix for a CCD 

For a CCD having a design matrix scaled as in equation (6.1), the regressor matrix is as 
follows, here shown for two variables. 
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1 xl X2 X[ X~ XlX2 
1 -g -g g2 g2 g2 

1 -g +g g2 g2 _g2 

1 +g -g g2 g2 _g2 (6.4) 

1 +g +g g2 g2 g2 

1 
X= 

-ag 0 a 2g2 0 0 

1 +ag 0 a 2g2 0 0 

1 0 -ag 0 a 2g2 0 

1 0 +ag 0 a 2g2 0 

1 0 0 0 0 0 

1 0 0 0 0 0 

so that the moment matnx is of the form 

1 Xl X2 XI X22 Xlx2 

1 1 0 0 ~ [Fg2+2a2g2] ~ [Fg2+2a2g2] 0 

~ [Fg2+2a2g2] Xl 0 0 0 0 0 

X2 0 0 ~ [Fg2+2a2g2] 0 0 0 
N-lX'X= 

XI ~ [Fg2+2a2g2] 0 0 ~ [Fg4+2a4g4] l..Fg4 0 
N 

X~ ~ [Fg2+2a2g2] 0 0 l..Fg4 
N ~ [Fg4+2a4g4] 0 

XlX2 0 0 0 0 0 l..Fg4 
N 

Using the notation of Section 2.12. it may be verified that the CCD meets the following 

requirements. for all i < j < p < q. as outlined in Section 5.2. 

[ij] = [ilJ] = [Iij] = 0 
[iijp] = [I]p] = [ijpp] = 0 
[Iiij] =[iJij] = 0 

[Ijpq] = [ijp] = 0 
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also for any variable i, 

[H] = N-i[Fg2+ 2a2g2] = g2 N-i[F+ 1nl] 

The adoption of the scaling conventIOn of equation (6_1), in which 

g = [N I (F + 2a2)]l/2, results in a value of [H] = I, and also yields 

6.3.2 Orthogonality 

[iiii] = N-i[Fg4+ 2a4g4] 
and [ujj] = N-i Fg4 

For a second order design to be orthogonal, Section 5_2 requires that It must also meet 
the condItIon [iijj] = L From the above, 

Substituting for g yields 

so that for an orthogonal design 

[Iijj] = 1.. Fg4 
N 

[Hjj] FN 
(F+2a2) 2 

FN = (F+-2a2) 2 

This may be re-arranged for a to give 

(6_5) 

(6_6) 

(6_7) 

Thus for a seven variable example with a half fraction of the 27 factorial containing 64 test 

points, and with no centre point replicatIons, the required value of a is 

(6_8) 
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which for various 110 gives 

o 1.824 
1 1.885 
2 1.943 
3 2.000 
4 2.055 
5 2.108 

6.3.3 RotatabiIity 

The conditIOns for rotatabllity of second order designs, as outlined in Section 5.3, 

include the requirements that [ii] = 1 and [itii] = 3 [iijj]. The fust of these is automatically met 

when the scaling convention of equation (6.1) is followed. Referring to the moment matnx 

above, the second is that 

Fg4 + 2a4g4 = 3 Fg4 

a 4g4= Fg4 

or 

Thus for the seven variable example above, with F = 64, the required value of a is 

a = 64114 = 2.8284 

(6.9) 

Comparing this value with those required for orthogonality m the previous sectIOn, it is 

apparent that a large number of centre point replications would be necessary before the two 

requirements coinCided, producing a design which is both orthogonal and rotatable. This is 

formalised in the following section. 

6.3.4 Choice of parameters for both orthogonality and rotatability 

If both orthogonality and rotatabillty are desired, then the value of a is necessanly set 

by the rotatability requirement of a = F1I4. Thus only the number of centre points can be 

modified in order to attain orthogonallty. Substituting a = pll4 mto equation (6.6), 



but N = F + 2n + no. so that 

rearrangmg for no. 

F (F + 2n + no) = (F+2F1I2) 2 

F2 + 2nF + Fno = F2 + 4F + 4F(F)1I2 

F + 2n + no = F + 4 + 4(F)1I2 

no = 4(F)1I2 - 2n + 4 

Thus for the seven vanable example With F = 64, 

no = 4(64)112 - 14 + 4 = 22 
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(6.10) 

which is clearly a substantial requirement for centre point runs, representing 22% of the total 

test burden for this design. 

6.3.5 Uniform precision designs 

The uniform precision cnterion, descnbed in Section 5.3, is an a1ternatlve requirement 

to that of orthogonality. Since a uniform precision design must also be rotatable, the value of a 

is again set to a = F1I4. The required value of no may be assessed by substituting the identity 

[iijj] = ""4 mto equation (6.5), 

[iijj] = ~ = FN 
(F+2a2)

2 
(6.11) 

Introducmg the rotatabihty conditlon a = F1I4, 
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(6.12) 

The value of no for a particular design is obtamed by substituting the appropnate value 

of ~ calculated from equatIon (5.11). Thus, for the seven variable case (n = 7, F = 64), which 

reqUires "'4 = 0.9184, this yields 

no = 0.9184 (64 + 4 + 4(64)112) - 64 - 14 = 13.84 .. 14 

Equations (6.12) and (6.10) show that a deSign which is both orthogonal and rotatable 

will have an additional .6.no centre pomt runs, compared with the uniform precision design, 
where: 

Hence, for n = 7, F = 64, and "'4 = 0.9184, 

.6.no = (1 - 0.9184) (64 + 4 + 4(64)112) = 8.16", 8 

6.3.6 Selection of parameters for the CCD 

The influence of the above critena on the selection of parameters for the CCD may be 

summansed as follows. The first step in the specification of a CCD in n variables is to 

determine the appropriate factorial portion to use in the design, following the procedures of 

Chapter 3. With the values of n and F known, the remaining parameters a and no may be 

chosen to meet one or more of the following criteria. 

(I) For orthogonality 

any convement combination of a and no may be selected which meets these requirements, as 

descnbed in Section 6.3.2. 

(i1) For rotatabihty a = FII4; the value of no does not affect the attainment of rotatability. 

(iii) For both orthogonallty and rotatabdity, a = f1/4 and no = 4(F)1I2 - 2n + 4. 

(iv) For uniform precision, a = FII4 and no = "'4 (F + 4 + 4(F)1I2) - F -2n. 
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6.4 Special requirements for engine noise simulation using the CCD 

As descnbed in Section 2.4, normalisation of the bounds set on each of the van abIes 
gives nse to a desIgn variable region which is hypercuboidal in nature. If the vanable values 
chosen for the factorial portion of the CCD are the vanable bounds, then the normalised factorial 
POInts (±1, ±1, ... , ±1) lie at the extreme edge of the range of variables. The requirement for 
rotatabIlity, however, is that a = F1I4, which must be greater than 1, since F> 1. Thus the star 
points of the CCD would lie well beyond the limits of each of the variables, which is likely to 
gIve nse to engIne designs which are physically implausible and/or mathematically impossIble. 

As an exanJple, consider the variables of the engine model descnbed in Appendix 1C, in 
which the thickness of the crankcase skirt varies between physically sensible limits of 6mm and 
12mm. The mean value of the variable is thus 9mm, and if the bounds are scaled to ±1, the star 
POInts at a = 2.8284 would lie at O.Slmm and 17.49mm. In this case the upper star point, 
although higher than would generally be considered in practice, is not a partIcular problem. The 

lower value of O.Slmm, however, is clearly impractical as an engine block skirt thickness, both 
from the point of view of manufactunng capabIlity and of stress levels and structural Integrity 
under load. 

This, however, is not the main reason for the lower star point beIng unacceptable, since 

the lower bound of 6mm would prevent such a deSIgn from beIng selected at the optImizatIon 

stage of an analysis. Of much more Importance is the fact that the value of the noise function is 

hkely to become highly non-linear as the thickness of this component approaches zero, 
especially as the slart IS one of the major noise radIatIng surfaces. This unrepresentative value is 

therefore lIkely to be extremely misleading when a model is constructed over the normal variable 
range. 

The problem IS even greater in the case of the longitudinal stiffener, whose bounds of 
4mm and 14mm would lead to star points of -S.lmm and 23.1mm if a = 2.8284. It is clearly 

impossible to obtain meaningful results from the FE analysis when negative thicknesses are 
specifIed, and a value of zero thickness is only possible if the variable is removed from the 
model. 

In order to avoid this problem, it is necessary to modify the experimental design so that 
the star points do not lie at such inconvenient values. Since, in general, it is not clear where 
such values become 'inconvenient', a sensible choice of design would seem to be one in which 
the star pOInts he at the extreme values of each variable, and not beyond This condition may be 
met in one of two ways. The first of these is to modify the variable values in the factorial 

portion, such that the new range multiplied by a results in star points which lie on the original 
variable bounds. As an example, if the values of skirt thickness in the factorial portion of the 
design were modified from 6mm/12mm to 7.94mmlIO.06mm, then, for a value of a = 2.8284, 

the star points would lie at 9±[2.8284 x (9-7.94)]mm, which yields 6mm and 12mm. This 
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approach is clearly unsatisfactory, since the inteIVal between the lugh and low values of the 

factorial portion of the design is now reduced from 6mm to 2.12mm, and will thus provide a 

much inferior estimate of the linear and Interaction terms of the model. For a single variable (of 

the seven introduced In Appendix 1C) only 35% of the range is enclosed within the new 

bounds. If the same scaling is applied to k :s 7 of the vanables, then the total volume enclosed is 

just (0.35k)x100%, so that for all seven vanables only 0.069% of the original design variable 

space is covered. 

The alternalive approach is to relax the requirement for exact rotatability, which, as 

discussed in Section 2.8, IS not necessanly a benefiCial property when investigating a 

non-spherical design vanable space. The star points may then be set at the edges of the 

deSign region, with the factonal points unchanged. For the cuboidal region of the present 

example, tlus leads to a value of a = 1, whicli, from equalion (6.9) will only give rotatability 

when F = 1. Since a factorial portion containing a single test is clearly of little value, (6.9) 

shows that no practical CCD With a = 1 is rotatable. 

so that 

If a = 1, then the reqwrement for orthogonality, from equation (6.6), IS that 

FN = (F+2a2) 2 

FN= (F+2) 2 

FN = (f2+ 4F + 4) 

N = F + 2n + no = (F2+ 4F + 4) I F 

no= (F+4+4IF)-F-2n 

no= 4+41F-2n (6.13) 

Since F ~ 1, no can only possibly have a positive value for n:s 4, and is likely to be negative for 

all praclical deSigns in n> 2. E.g. for n = 7, F = 64, 

no= 4+4164-14=-9.9375 

demonstraling that an orthogonal design is generally unattainable for a CCD with a = 1. This is 

in agreement With the analysis of Section 6.3.2, where it was seen that for orthogonal deSigns a 

decreases With decreasing no, but that even at no = 0 a value of a = 1.824 is required when 

n=7andF=64. 
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Since for a design to be of uniform precision It must first be rotatable. It is clear that 

uruform precision designs cannot be achieved with a = 1. This may be confirmed by 

substitution of a = 1 into equatIOn (6.11): 

FN = A.t(f2+ 4F + 4) 

no= ,-,(F +4+4/F) - F - 2n 

so that for n=7, F=64, ""4=0.9184, 

no = 0.9184 (64 + 4 + 4/64) - 64 - 14 = -15.49 

Thus for all practical Central Composite DeSigns, the chOice of parameter a = 1 

prevents selection of designs which are either rotatable, orthogonal or of uniform precision. 

As outlined above, an intrinsic characteristic of the CCD IS the use of replicate tests at 

the centre of the deSign variable space. When carrying out a programme of physical 

experimentation, tlus replicatIOn of tests serves the purpose of reducing the effect of random 

expenmental error, allowing imprOVed estimation of the amount of curvature exhibited by each 

response surface. When using computer simulation techniques, however, the value of a 

response function which IS obtained for a particular combination of Input variable levels 

will always be identical (to machine precision). Thus, replication of centre points Yields no 

additional information in a deterministic environment, imposmg an Important and fundaniental 

constraint upon the choice of parameters for the CCD. 

There would appear to be three possible ways of dealing with tins restnctlon: 

(i) Include the replicate centre pomts within the design, as for normal experimental practice, 

and simply return Identical results for each. 

(ii) Reduce the number of centre points in the design to 110 = 1, so that no replication is 

reqUired. 

(iii) Simulate multiple centre pomts in some way, so as to proVide the required information 

concerning response surface curvature, whilst avoiding the problem of duplicate results 

which do not contribute to the investigator's knowledge of the system. 

Of these three approaches, the first would seem to be the least satisfactory, as it 

effectively involves misleading the surface-fit algorithm by suggesting that quite independent 

tests at this POint In the deSign space have led to exactly identical answers. The result of this Will 
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be that the model will be constructed with artifiCIally hIgh confidence levels in the values of the 
calculated coefficients, with the model itself bemg unduly influenced by the mulnple Idenncal 
test data. This effect is briefly discussed in Section 6.5.4. 

The second option provides the simplest way of avoidmg the problem. The main 
disadvantage of thIS approach is that only a small amount of data is collected for estimation of 
the pure quadratic terms of the model. This option IS considered In Secnon 6.5, below, where 
the extent to which the reduced amount of centre point informanon affects parameter estimatIOn 
IS investigated in detail. An additional disadvantage of thIS method is that It IS not possible to 
select the number of centre point replIcations In order to fulfil the orthogonality or uniform 
precision criteria In cases where testing beyond the variable bounds are infeasible, however, 
this second consideranon IS of less Importance, since the above discussion has shown that, with 
the necessary value of a = I, it is not generally possible to construct a standard CCD which is 
eIther orthogonal or of uniform preciSIOn. 

The thIrd option requires making fundamental modIfications to the standard Central 
Composite DeSIgn. The aim IS to allow a greater quantity of information to be gathered close to 
the centre of the deSIgn space, both for determInistic systems generally, and for the case of noise 
optimization in particular. Tlus important topic is the subject of Chapter 7. 
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6.5 Numerical tests using the CCD 

In order to assess the suitabilIty of the CCD to the optimization of computer simulated 
radiated nOise, a senes of numerical studies has been carried out using the seven variable 
example descnbed in Appendix IC, based on the FE model of a four cylInder engine block. 

The tests outlined below are presented in four sections. Firstly, in Section 6.5.1, a 79 

test CCD is used to construct a model contaJning all 64 of the available linear + interaction terms 
and the seven pure quadratic coefficients. The performance of this model is discussed, 

follOWing which the probability plot analYSIS, prevIOusly employed with the linear models of 

Chapter 4, is used to determine which of the 71 parameters are statistically significant 
The second section, 6.5.2, employs the same experimental design to fit a model 

contalmng Just those parameters identified to be statistically significant. The charactenstlcs of 
this model are discussed, and its predictive ability compared with that of the previous model. 

In order to Widen the scope of the procedure to address cases in which the Investigator 
has no pnor knowledge concerrung the identity of the significant parameters, Section 6.5.3 

investigates the SUitabilIty of the strict quadratic model of equation (5.1), again using the 79 test 
CCD. 

Finally, in SectIOn 6.5.4, the use of Simple replicate centre points is bnefly discussed, 

with sample results for the strict quadratic model of Section 6.5.3. Further details of tests 

carried out using simple centre point replIcation are included in Appendix 68. 

6.5.1 Use of the CCD with a = 1, Do = 1 and 71 coefficients 

A standard CCD was first employed, with an axial parameter of a = 1 and a single 
centre point. As recommended in the discussion of Chapter 4, the factorial portion was chosen 
to be of at least resolution V. In order to obtain this resolution it is necessary to use a 27- 1 

fraction contaimng 64 test points, which is of resolution VII. The total number of tests is thus 
64 + (2 x 7) + 1 = 79. This design allows the construction of a model containing the mean value 
and up to 63 linear plus interaction terms, to which are added the seven pure quadratic terms, 
gi Vlng a total of 71 coefficients. 

The complete list of coefficient estimates obtained from the analysis is given in 
Thble 6.1. The coefficients are arranged in rank order and are normalised for variable values 
scaled to lie in the range ±1. 
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1. MEAN 86711xlO+1 26. AC 2078lxlO-1 51. AB 65416xI0-3 
2. A -2.2352 27. DEG -1.9127xlO-1 52. BD 6.4857xlO-3 
3. A2 98271xlO·1 28. BOO 1.7959xlO-1 53. AEG -62564xlO·3 
4. C -38703xlO-1 29. ACE 1.7357xlO-1 54. CDE 5.5655xlO-3 
5. G -3355OxlO·1 30. BCF 1.6158xlO-1 55. BDF -5.5565xI0-3 
6 F -23327xlO-1 31. 00 -1.5427xlO-1 56. BC -5.1977xlO-3 
7. D -2.2783xlO-1 32. BFG -1.4492x 10-1 57. BDB 40116xlO-3 

8. B -20402xlO-1 33. BF -13916xlO-1 58. AFG 3.9592xlO·3 
9. 02 19729xlO-1 34. ADG I 3807xlO-1 59_ DF -3.93 14x 10.3 
10 B -I 5832xlO-1 35. DEF 13163xlO-1 60. CF 33634xI0-3 

11. Q2 1.1884xlO-1 36. CDF -1.2974xlO·1 61. EFG -33262xlO-3 
12. F2 -7.867OxlO-1 37. BEF -1.2788xlO-1 62. CEG 2.4432xlO·3 
13. AG -7.7552xlO-1 38_ ABB -1.252OxlO-1 63. BOO 2.2302xlO·3 
14. C2 65926xlO-1 39. COO 1.249OxlO-1 64. DB -2 0508x 10·3 
IS. E2 58004xlO-1 40_ BB 1.164lxlO-1 65. ADF -1.8074x 10-3 
16. AD 5.1217xlO-1 41. BCG -1.0997xlO-1 66. CEF -I 646OxlO-3 
17. FG -46484xlO-1 42. ABD 1.0985xlO-1 67. 00 I 497lxlO-3 

18 CG -46205xlO-1 43. BCE -1.0953x 10-1 68. ADB 89918xlO-4 
19. AF -44455xI0-1 44. CD 1.070 Ix 10-1 69. ABF -504IOxlO-4 
20 AB -42211xlO-1 45. EG -9978IxlO-3 70 CB 28026xlO-4 
21. ACG 3_6145xlO-1 46. DFG 8668lxlO-3 71. BCD -I 6804x10-4 
22. BF -23002xlO-1 47. ABC 85915xlO-3 
23. B2 2.2509xlO-1 48. AB} -8. I680x 10-3 
24. AEF 22230xlO-1 49. CFG -7.4534x10-3 
25. ACF -2.0805xlO-1 SO. ACD -7.I088xI0·3 

Table 6.1 Noise coefficients for CCD with 79 tests and 71 coefficients (n=7) 

ExamInatlon of t1us hst rcveals that all of the pure quadratic tenns appear within the first 
23 places, together with the mean effect. the seven main effects, seven of the two-way 
interactions and just one three-way interaction. The pure quadratic terms are thus making a 
substantial contnbution to the overall model, confirming the conclusion of Section 4.1.2 that 
sigmficant curvature exists wIthin the design vanable space. Indeed, four of the pure quadratic 
terms (A2, D2, 0 2 and F2), are of greater magnitude than any of the interaction terms, and the 

effect of A2 is second only to the main effect of that variable. 

In evaluating the performance of this design, three factors should be considered; 

(i) The relative precision of the parameter estimates for dIfferent coefficients 

(ii) The statistical Independence of each of the estimates 

(iIi) The accuracy of the analytical model In representing the onginal response surface. 
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The first two cnteria can be assessed by examining the elements of the covariance 

matrix for the fitted model. Because the CCD is a permutation Invariant desIgn, each coefficient 

of a given type (main effect, linear Interaction, etc.) has the same variance as all others of the 

same type, and the values of these may be summansed as follows: 

Class of Term 

Mean 
Main effects 
Linear interactions 
Pure quadratic 

Variance 

0.0158 
0.0152 
0.0156 
0.1915 

Table 6.2 Variance values for CCD with 79 tests 
and 71 coefficients (n=7) 

These results show that the variance on the pure quadratic terms IS much greater than 

those on other terms in the model, indicating that the quadrahc parameters have been estimated 

with much less precision than the linear and interaction terms of the model. This IS a source of 

considerable concern since the quadratic terms are of large magnitude, and hence have a 

SIgnificant influence on the overall shape of the fitted surface. 

This difference in variance values IS clearly a reflection of the differing amount of data 

avaIlable to evaluate the terms. The eshmates of the linear interaction terms rely only upon data 

being aVaIlable at two levels of each vanable, as supplied by the factorial portion of the deSIgn 

(64 points). The eshmation of main effect parameters is also affected by the data collected at star 

points, since at each of these one of the van abIes is at either its high or low bound. The star 

points camlOt contribute to estimation of interactIOn effects, however, since only one variable 

has a non-zero value at these points, and tlus accounts for the slightly lower variance on the 

main effect terms than on the interaction terms. This factor also explains why the parameter 

estimates for the interachon terms are the same as the values gained from the linear plus 

interactIOns model of SectIOn 4.6, (Table 4B.2 of Appendix 4B), based on the resolution VII 

two-level factorial design. The main effects, however, are slightly modified by the additional 

star-point data, although comparison of Table 6.1 with Table 4B.2 shows that these 

modifications are fairly small, and that all linear plus interaction parameters occur in the same 

order in each table. 

In order to estimate the pure quadratic terms of the model, tests must also be carried out 

at a third value of each of the variables, and this information is provided only by the star and 

centre porhons of the design (15 points). This relative scarcity of third level data leads to a less 

precIse estimate of the pure quadratic terms, compared with the linear and interaction 

coeffiCIents, and is reflected in the higher variance values for the quadratic parameters. 
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Estimation of the mean effect IS based on the full set of 79 analyser tests, and might thus 

be expected to have been carried out with greater certainty, and hence lower vanance, than that 

for any other parameter. Table 6.2, however, shows this not to be the case, as the variance value 

is marginally higher than those for either the main effect or linear interaction terms. The reason 

for this becomes clear when the magrutude of the covariance effects between different variables 

are examined. The only non-zero off -diagonal elements of the variance-covanance matrix are the 

following. 

Class of Term 

between mean and each pure quadrabC term 
between each pair of pure quadratic terms 

Covariance 

-0.0018 
-0.0308 

Table 6.3 Covariance values for CCD with 79 tests 

and 71 coefficients (n=7) 

Because the factorial portion of the design is an orthogonal array, no covariance exists 

between main effect or linear interaction terms. These terms are also orthogonal to the pure 

quadratic terms, with the only dependence being between pairs of pure quadratic terms, and 

between each of these and the mean. This then is the reason for the reduced precision of the 

estimate of the mean parameter, since, although a large number of tests is avrulable on which to 

base the estimate, the posSibility exists that the esbmate is being distorted by the presence of the 

poorly defmed quadrabc terms. Companson of the magnitudes of these covariance values with 

the variance on quadratic terms given m Table 6.2 shows that the covariances are significantly 

smaller than the variance values, so that the quadratic parruneter estimates are still largely 

independent. 

The above analysis suggests that there IS a significant mismatch between the 

characteristics of the fitted model and the charactenstics of the expenmental design which has 

been carried out in order to estimate the coefficients of the model. A model has been constructed 

which IS considerably influenced by quadratic terms of large magnitude, but these have been 

esbmated with poor precision. Sixty four tests are used to evaluate the linear plus interaction 

coefficients, many of which are of small magnitude, whilst only fifteen tests have been added in 

order to assess the important effect of the pure quadratic terms. 

The adverse effect of the relatively low preciSion of estimation of pure quadratic terms is 

further demonstrated by the use of the probability plot technique to assess the statistical 

significance of the model terms. An lrutial plot of all 70 parameters (the mean is not Included in 

this analysis) for the noise function is shown in Figure 6.2. 
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From this it is clear that at least the eight largest parameters deviate above the Ime formed by the 

smaller terms. In order to assess the remaimng terms, the obvIOusly significant terms are first 

removed from the plot, and the Z score then recalculated for the reduced number of parameters. 

The resulung plot is shown in Figure 6.3. 
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Figure 6.3 CCD in seven variables with 71 terms 
Function : noise - No. of coefficients = 62 of 70 

This plot shows a further eight terms to be significant, with the remaining terms all 

appearing to lie on an approximate strrught line. This may be confirmed by again removmg the 

sigmficant terms and replotting. Figure 6.4. shows that no further terms deviate above the 

'statistical noise' line. 
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The probability plot analysis mdicates that, including the mean, only 17 of the mlllal71 

terms are makmg a slgmflcant contribution to the accuracy of the model in representing the 

variallon of the original response. The terms which contribute significantly to the model, listed 

in order of slgmficance, are the following. 

Term Coefficient value Variance Coeff I V(Var) 

MEAN 8.6711x 10+1 l.5773x10-1 6_9769x10+1 
A -2_2352 1.5152x10-1 -18159x10+1 

C -38703x10-1 15152x10-1 -3 1443 
G -3355Oxl0-1 1.5152xl0-1 -2.7256 
F -23327xl0-1 1.5152xl0-1 -18951 
D -22783xl0-1 1.5152xl0-1 -1.8509 
B -2 0402x10-1 15152xl0-1 -1.6574 
A1 98271xl0-1 19147xl0-1 14972 
E -1.5832xl0-1 1.5152xl0-1 -1.2862 
AG -7.7552xl0-1 1.5625xl0-1 -6.2041xl0-1 
AD 5. 1217xl0-1 1.5625xl0-1 40973xl0-1 
FG -46484xl0-1 1.5625xl0-1 -3.7188xl0-1 
CG -46205xl0-1 15625x10-1 -36964xl0-1 
AF -44455xl0-1 15625xl0-1 -3.5564xlO-1 

AE -42211xl0-1 1.5625xl0-1 -33769xl0-1 
Dl 1.9729xl0-1 1.9147xl0-1 3.0058xl0-1 
ACG 36145xl0-1 15625xl0-1 28916xl0-1 

Table 6.4 Significant noise coefficients for CCD with 79 tests and 71 
coefficients (n=7), listed in order of significance. 
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Comparison of this coefficient lIst with Table 6.1 shows that a number of coefficients 

appear in a different position within the list. This is due to the fact that, m order to assess 

statistical significance, the values used in constructing the probability plot are first divided by 

the square root of their variance. These values are given m the 'Coeff I -v'(Var)' column of 

Thble 6.4. Examination of the two lists shows that those mam effect and lInear interaction terms 

wluch have been shown to be significant appear m the same order with respect to each other in 

both tables, due to their similar vanance values. The change in the order of the coefficients is 

thus due to the fact that the pure quadratic terms have moved further down the table. Of the six 

pure quadratic terms which appear in the first 17 places of Table 6.1, only two have been found 

to be statistically significant. The A2 term IS now lower in the list than all but one of the main 

effects, despite the fact that Its magrutude is second only to the main effect of A. This is entirely 

attnbutable to the higher variance values which apply to the quadratic terms, and further 

Illustrates the fact that the constructed model is heavily influenced by parameters which are of 

large magnitude, but for which there IS insufficient test data to enable them to be distinguished 

from random nOise. Comparison of Table 6.4 with Table 4.4 shows that those linear and 

interactIOn parameters which are identified as bemg significant are the same as were identified 

using the 128-term first-order model. 

The accuracy of the analytical model in representing the original response surface may 

be assessed by calculating the lack of fit between the model prediction and the measured value at 

a number of points within the design vanable space. The points used to test the lack of fit in the 

present model fall into three categones, chosen to investigate three different sources of model 

inaccuracy. These are as follows. 

i) Design points. The lack of fit is calculated at those test points which were used to 

construct the analytical model. This mdicates the ability of the chosen parameters to account for 

the vanations in the function value which occur at the points specified by the CCD. If a design 

contains the same number of tests as there are coefficients in the model (a saturated deSign), 

then the model will reproduce the original data exactly, to machine precision, with no lack of fit 

at any of these pomts. In the present case there are 79 tests and 71 coefficients, so that a very 

close approximation to the original points can be expected. 

ii) Factorial points. These are the remaining 64 tests of the complete 21 factorial portion 

which are not included in the CCD. Sizeable lack of fit at these points would indicate that a 

number of important higher order interaction terms have been omitted from the model. The 

above probability analysis, showing that only low order interactions contribute significantly, 

together with the results of Section 4.6, suggests that substantial lack of fit at these pomts IS 

unlikely. Although useful for the purpose of demonstratIOn, it should be noted that the FE 

results at these points would not normally be available during an analysis, since their calculation 

would nearly double the total number of tests required. 
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Ih) Model under-specification due to omission of higher order terms can best be 

investigated by calculating the lack of fit which occurs at points m the design space which are 

distant from those used to construct the model. SUitable candidates for such tests would appear 

to be those points which lie at a radius of O.sv'n from the centre of the space and are half way 

between the centre of the space and the factorial tests at radius ..,In. These points then lie on an 

n-dimenslonal hypercube of side nl2, having as its centre the centre of the deSign vanable 

space, and with its Sides aligned With the sides of the 2D factorial hypercube. This hypercube 

will of course contain 2D points, although for reasons of economy a fraction of these points can 

be used, calculated as for the fractional factorial design. In the present case a 118 fraction 

contalDmg 16 tests has been used. The exact speCification of these points IS given in 

Appendix 6A. 

The lack of fit results for each of the above categories is summarised in Table 6.5. 

Category 
No. of 

tests 

i) Design points 79 
ii) Factorial points 64 
iil) Higher order 16 

Average over all 159 tests 

Maximum lack of fit 
dB(A) Eft 

0.094 
0.208 
0.473 

1.25 
2.75 
6.25 

Average lack of fit 
dB(A) ER 

O.oIl 
0.070 
0.207 
0.055 

0.15 
0.93 
2.73 
0.72 

Table 6.5 Summary of lack of fit calculations for CCD 

with 79 tests and 71 coeffieients (n=7) 

As expected, the lack of fit at each of the design points is extremely small, due to the 

near-saturated nature of the design. The maximum value is less than 0.1 dB(A), which is only 

Just over 1% of the function range, With the average value bemg only 0.15% of the range. 

CalculatIOn of lack of fit at the remaining factorial pomts also shows a very small average error 

of less than 1 % of the range, with a maximum of less than 3% (0.2 dB(A», confirming that the 

confounding of the 64 higher order tenns has little effect on model accuracy. 

Of most interest are the lack of fit values at the 16 additional tests, which show that the 

average prediction error at points lying midway between the centre pomt and factorial points IS 

0.2 dB(A), or 2.73% of the variable range, with a maximum of 6.25% ; less than 0.5 dB(A). If 

the test points chosen are mdlcative of the design variable region as a whole, then these results 

suggest that the analytic response surface is providing a very close approximation to the results 

of the fimte element analysis for this particular problem. Although there may well be some 

locations in the design vanable region where the prediction error exceeds the 6.25%-of-range 

maximum found m these trials, an average error of less than 3% is likely to be sufficiently 
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accurate to enable the location of a desIgn which IS at least in a highly favourable region of the 

design vanable space, even if it is not the absolute optimum. If the average over all of the above 

tests IS computed, then a mean error throughout the region of 0.055 dB(A), or less than 0.75% 

is obtained. These results show that the second-order model is clearly a substantial improvement 

on the hnear plus-interactions models used in Chapter 4 

6.5.2 Use of the CCD with IX = 1, "0 = 1 and 17 coefficients 

The probabihty plot analysIs canied out above indicated that, including the mean value, 

only 17 of the initial 71 terms contribute sigruficantly to the accuracy of the model in 

representing the vanation of the onginal response throughout the design variable space. It is 

reasonable to suppose that a better fit to the original data might be achieved if the insignificant 

terms were removed from the model and the avrulable data used to obtain a better estimate of 

those parameters which are known to be sigruficant. If, using the same CCD consishng of 79 
test points, the model IS respec1fied to contain only those terms listed in Table 6.4, then the 

reVIsed parameter estimates, again arranged in rank order and normalised for variable values 

scaled to lie in the range ±1, are as follows. 

Term 

MEAN 
A 
A1 
C 
G 
!)Z 

F 
o 
B 
E 
AG 
AD 
FG 
CG 
AF 
AB 
ACG 

Coefficient 
value 

86727xlO+1 

-22352 
UJ666 

-3 8703xl0·1 

-3.355Oxl0·1 

28113xl0-1 

-23327xl0-1 

-2.2783xl0-1 
-2.0402><10-1 

-1.5832xl0-1 
-7.7552xl0-2 
S.1217xlO-2 

-4 6484x 10-2 
-46205xl0-2 

-44455xlO-2 
-4221lxlO-2 

3614Sxl0-2 

Table 6.6 Noise coefficients for CCD with 79 tests 
and 17 coefficients (n=7) 
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Estimation of the mam effect and hnear mteraction parameters is unaffected by this 

reduction in model specification, as these terms are orthogonal to all others within the model. 

The removal of five of the seven pure quadratic terms, however, has resulted in modified 

estimates of both the mean and the two remaining pure quadratic terms. Although the 

coefficients of the mean and A2 terms have been raIsed slightly, the most noticeable change is in 

the value of the))2 parameter, which has increased m magnitude by over 40% and is now larger 

than the linear 'main' effect of that variable. The variance values for each type of coefficient are 

now as follows. 

Class of Term 

Mean 
Main effects 
linear interactions 
Pure quadratic 

Variance 

0.0155 
0.0152 
0.0156 
0.1224 

Table 6.7 Variance values for CCD with 79 tests 

and 17 coefficients (n=7) 

The variance on the remaining pure quadratic terms has been substantially reduced 

(36%) by the removal of five of these terms, since far fewer parameters are now being estimated 

with the same amount of data. The potentJal for distortion of the mean value estimate by pure 

quadratic terms is also now diminished, leading to a slightly smaller variance on this parameter 

(reduced by 2%). Only three covariance effects now occur, as follows. 

Class of Term 

between A 2 and mean 
between D2 and mean 
between A 2 and ))2 

Covanance 

-0.0057 
-0.0057 
-0.0998 

Table 6.S Covariance values for CCD with 79 tests 

and 17 coefficients (n=7) 

The covariance between the two quadratic terms is now more than three tJmes 

its previous value, but is still small with respect to the variance of the pure quadratic 

terms. Although the covariance between each quadratic term and the mean has increased by a 
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factor of approximately 3.2, thts is just outweighed by the reduction in the number of quadratic 

terms by a factor of 3.5, leading to the slight reduction In variance on the mean value. 

Recalling the three categories of test point used to assess the accuracy of the model 

throughout the design region, as descnbed In Section 6.5.2, the lack of fIt results for the 

reduced model may be summansed as follows. 

Category 
No. of 

tests 

i) Design pOints 79 
u) Factorial pomts 64 
UI) Higher order 16 

Average over all 159 tests 

Maximum lack of fit 
dB(A) E1< 

0.354 
0.237 
0.490 

4.64 
3.11 
6.43 

Average lack of fit 
dB(A) E1< 

0.059 
0.059 
0.199 
0.073 

0.77 
0.78 
2.62 
0.96 

Table 6.9 Summary of lack of fit calculations for CCD 

with 79 tests and 17 coefficients (n=7) 

The minImal lack of fit at design points when using the 71 parameter model of 

Section 6.5.1 is largely due to the near-saturated nature of the design, and Table 6.9 shows that 

the reduction in model size to just 17 terms results in reduced accuracy at these points. The 

average lack of fit at the design points, however, is still less than 0.06 dB(A), or approximately 

0.78% of the variable range, with a maximum error of about 0.35 dB(A). 

At the factorial pOints and at the additional 16 test pomts the average lack of fit has 

improved slightly compared with the 71 coefficient model. This Indicates that, although the 

accuracy of fit at design points has diminished, the predictive ability of the model throughout the 

complete design region has been moderately enhanced. MaxImum errors In each of these 

categories are marginally increased. Calculation of the average lack of fit over all 159 tests 

shows only a small Increase from 0.055 dB(A) to 0.073 dB(A), and this is still less than 1 % of 

the variable range. 

The above results show that the predictive abIlity of the reduced size model is 

approximately equal to that of the ongInal model, despite the fact that the reduced model 

contains less than a quarter of the terms used by the original. This confIrms the findings of the 

probabIlity plot analysIs that many of the terms contribute little to the overall accuracy of the 

model. If this IS generally true for noise analysis applications of a similar nature, then this 

provides further evidence that the CCD is less than ideally SUIted to the charactenstics of the 

response surface being investigated. The low value of the ratio of the number of signifIcant 
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terms to the number of test points in the design indIcates that the CCD involves substantial 

over-testing for the model which is constructed. At the same time, the selection of these design 

pomts is inadequate to allow a precise enough eStimation of those quadratic terms which are 

significant A poSSIble solution to this problem would be to use a different experimental design 

from which to construct the model; one which mvolved a smaller total number of test points, but 

in whIch the design pomts were selected in such a way that the estimates of each of the 

parameters of interest were atlained with roughly equal precIsion. The use of designs whtch 

address these requirements IS the subject of Chapter 8. 

6.5.3 Use of the CCD with a = 1, Do = 1 and 36 coefficients 

As was the case WIth the linear models of Chapter 4, the main problem whtch occurs in 

using a smaller experimental design to fit a reduced model contaJrung only significant terms is 

that it IS not in general poSSIble to know in advance which of the terms are to be included. It is 

only by carrying out a probabIlity plot analYSIS, or SImilar procedure, that thIS information can 

be gained. Such an analysIs can only be performed, however, if a larger number of tests are 

first carried out to enable all parameters to be estimated. 

To avoid this problem, a model may be used which includes all terms of each of the 

types thought likely to be sigruficant When investigating applications for whtch the results of 

Table 6.6 are representative, for example, a suitable model would be one which contains all 

main effect, two-way interaction and quadratic terms. The strict quadratic model of 

equation (5.1) IS such a model. This procedure introduces two possible sources of error into the 

model specification. The first is due to the inclusion of terms which are in fact of no 

sigruficance. As long as parameter estimates remain largely orthogonal, however, and the 

number of insignificant terms is fairly small, tlus is not expected to lead to substantial error. The 

second source of error is due to the exclUSIon from the model of significant parameters, such as, 

in the present example, the three-way interaction ACG of Table 6.6. If the excluded parameters 

are small in number and do not dominate the analytical model, then the attendant loss of 

accuracy would often be conSIdered a small price to pay for the large reduction in the number of 

design points which need to be tested. 

In order to test the suitabIlity of the strict quadratic model in representing the original 

noise response, this model was constructed using the same CCD consIsting of 79 test points, to 

enable comparison with the results of Sections 6.5.1 and 6.5.2, above. The model contains a 

total of 36 coefficients, and the parameter estImates obtained from this analysis, arranged in 

rank order and normalised for vanable values scaled to lie in the range ±1, are as folIows. 
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Tenn Coefficient value Tenn Coefficient value 

1. MEAN 86711xlO+1 19. AF -4.4455xl0-· 
2. A -2.2352 20. AB -42211x10" 
3. A' 98271x10·1 21. EF -23002x10" 
4. C -38703xlO-1 22. B2 22509x10-' 
5. G -3355Ox1O-1 23. AC 20781x10-' 
6. F -23327x10-1 24. DG -1.5427x10-' 
7. D -2.2783x10-1 25. BF -13916x10-' 
8. B -2.0402x10-1 26. BE 1.l641x10-· 
9. D' 1.9729xlO-1 27. CD 10701x10-' 
10. E -1.5832x10-1 28_ EG -99781x10-3 

11. G' 1.l884x10-1 29. AB 65416x10·3 

12. F2 -7.867Ox10-· 30. BD 64857x10·3 

13. AG -7.7552x10-· 31. BC -5.1977x10-3 

14. CO 6.5926x10·· 32. DF -39314x10-3 

15. E' 58004x10" 33 CF 33634x10-3 

16. AD 5.1217x10·· 34 DE -2.0508x10-3 
17. FG -46484x10-' 35. BG 1.4971x10-3 

18 CG -4 6205x 10-' 36. CE 28026x10" 

Table 6.10 Noise coefficients for CCD with 79 tests 
and 36 coefficients (n=7) 

The only parameters which have been removed from the original 71 term model of 

SectIOn 6.5_1 are the linear interactions of order three and higher, the estimates of which are 

orthogonal to all others in the model. In consequence, the parameter esllmates for all remaining 

terms are Identical to those obtained using the full model. All terms of Table 6.10 appear in the 

same order with respect to each other as in Table 6_1, with the only difference being the removal 

of the higher order mteraction terms. The variance and covanance values for each type of 

coefficient are also identical to those for the complete model, given in Tables 6.2 and 6.3. A 

summary of the lack of fit results for the stnct quadratic model, calculated at each of the three 

categories of test point, as descnbed in SectIOn 6.5.2, above, is given in Table 6.11_ 

No. of Maximum lack of fit Average lack of fit 
Category tests dB(A) ~ dB(A) 

1) Design points 79 0.306 4.02 0.052 

ii) Factonal points 64 0_202 2_65 0.065 

ui) Higher order 16 0.476 6.24 0.199 

Average over all 159 tests 0.072 

Table 6.11 Summary of lack of fit calculations for CCD 
with 79 tests and 36 coefficients (n=7) 

~ 

0.68 

0.86 

2.61 

0.94 
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As may be expected, the above results show that the effect of including 36 terms in the 

model rather than 17 has been to improve the fit at the design points. The average lack of fit at 

the factorial points, however, has worsened shghtly (but by less than 0.01 dB(A», perhaps due 

to the exclUSIOn from the model of the three-way Interaction factor ACG. 

More important are the results of the lack of fit calculattons earned out at the additional 

sixteen test points. These show that the error In function estimation is virtuaIly identical to that 

occurring when the 17 coefficient model is used. At these test points the omission of the three

way interaction term IS of far less Significance than the effect of the vanous pure quadratic 

parameters. The probabIlIty plot analysis earned out earlier indicated that there IS Insufficient test 

information to be able to distinguish from random data the five quadratic terms not appeanng in 

the 17 coefficient model. The accuracy at these additional points suggests, however, that the 

actual error in their estImation IS well within the probable range indicated by the variance values. 

The uncertainty over the validity of this observatton is a further reflection of the inadequacy of 

the 79 test CCD for fitting a second-order model, due to the relatively small number of tests in 

which each variable appears at a third level. 

6.5.4 Use of the CCD with a = 1 and replicate centre points 

The results of Sections 6.5.1 - 6.53 have shown that one of the major factors winch 

impede the successful applicatton of the CCD to the investigatton of deterministic systems is the 

relanvely low precision of estimation which is obtained for the pure quadratic coefficients of the 

fitted model. When the CCD is used in general expenmentaI practice for the investtgatIon of 

non-deterministic systems, this problem is alleVIated to some extent by the inclusion of rephcate 

tests at the centre of the design variable space. in order to provide additional data at the mean 

level of the variables. As described in Sectton 6.4, one simple way of increasing the amount of 

third level information over that available to the designs of 6.5.1 - 6.5.3 would be to include 

multiple tests at the centre of the design variable space. This does not require further tests to be 

carried out, since with a deterministic system the function values calculated at this point will 

always be identical, and the only action which need be taken is for the appropriate result set to 

be replicated in the anal yser output file. 

As discussed in Section 6.4, the result of the inclusion of these extra data sets IS hkely 

to be an artificial increase in the confidence levels with which pure quadratic components are 

estimated, without any real gain in the accuracy of the model. This is because the addition of 

replicate tests effectively involves misleading the surface-fit algorithm by suggesting that quite 

independent tests at this point In the design space have led to exactly identtcal answers. The 

variance of all parameters In the model could quite easily be decreased, for example, by 

replicating the entire design. Any apparent gain in accuracy of parameter estimates would be 

entirely Illusory, however, as it would be derived from identical test data, and could not be 
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expected to result in increased accuracy of predictIon at other locations within the design 

vanable space. 

In order to assess the effect of using a standard CCD wIth simple centre point replicates 

when mvestigatmg a deterministic system, the above examples of SectIOns 6.5.1 - 6.5.3 were 

repeated using designs contaIning between 5 and 20 centre points. More detaIled results of these 

tests are presented in Appendix 68. In each case, the net result of the addition of replicate points 

is to sigmficantly reduce the variance value for the mean parameter, win 1st not substantially 

improving those for other parameters of the model, or modIfying the parameter estimates 

themselves. Consequently, no significant Improvement in the predictive abIlity of the model 

throughout the deSIgn space is achieved. As an example of the negligible improvement in 

predictive abIlIty which is obtained, Table 6.12 shows a summary of the lack of fit data for the 

36 parameter stnct quadratic model introduced in SectIon 6.5.3. The table lists the prediction 

error for each of the three categories of test pomt descnbed in SectIon 6.5.1, USIng designs 

containing a dIffering number of centre pOInts no-

MaxImum lack of fit - ~ Average lack of fit - ~ 

Ilo Design Factorial Higher Design Factorial Higher 

1 4.0151 2.6508 6.2354 0.67564 0.85803 2.6048 
5 4.0169 2.6527 6.2851 0.65136 0.85811 2.6025 

10 4.0182 2.6540 6.3196 0.61978 0.85816 2.6009 
15 4.0190 2.6547 6.3404 0.58955 0.85819 2.6000 
20 4.0195 2.6552 6.3544 0.56144 0.85821 2.5933 

Table 6.12 Variation of lack of nt with number of centre points no 
for CCD with 78 + no tests and 36 coefficients (n=7) 

These results, together with those of ApPendIX 6B, confirm that simple replicatIon of 

centre points YIelds no advantage within the present determirustIc environment 

6.6 Observations on the use of the standard CCD for engine noise simulation 

• Although the CCD is WIdely used in general experimental practice, where the value of the 

parameters a and Ilo can be chosen to achieve certaIn desirable design properties, its 

usefulness in investigating the results of an engine noise simulation exercise is adversely 

affected by the constramts winch are placed upon these two parameters by the nature of 

the problem. Firstly, the value of the axial parameter is limited to a :s 1 by the strictly 

cuboidal design variable space, with the result that it is not possible to specify designs 

which are eIther orthogonal or rotatable. Secondly, the determInistIc nature of the engine 
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noise calculation procedure precludes the use of replicate centre point tests, which would 

provide additional information concerning the charactenstics of the response functions at 

the centre of the design vanable space. 

o Numencal tests have shown that a seven vanable CCD with a resolution VII factorial 

portion, an axial parameter of a = I, and a single centre point can be used to construct a 

second order model which gives a close approximation to the original noise response 

throughout the region of interest. The predictive abIlity of the model can be further 

enhanced by removing those coefficients which, using a probability plot technique, have 

been found to be statistically insignificant. Further results suggest that when the identity 

of the significant terms is not known, little lack of performance results from the 

substitution of a strict quadratic model, in which no linear interaction terms are included 

of order higher than two. 

o The mam concern in the use of tIns design IS that the small number of tests which involve 

a third level of each of the design variables leads to a low level of preciSIOn in the 

estimation of the pure quadratic terms of the model. This is of particular importance, since 

many of the quadratic coefficients have a dominant effect on the performance of the 

model, and yet, due to the relative Imprecision of their estimated values, It is not poSSible 

to say with certainty whether their inclUSion IS justified by the available data. 

• When investigating non-determirustlc systems, tIns problem is alleviated to some extent 

by the use of replicate centre point tests, in order to improve the quality of the estimate of 

the actual response at this pomt, and to counter the bias m the design towards testing at 

the outer limits of the design variable space. In a determirustlc environment, however, no 

gain in information results from such a strategy, and numerical tests have confirmed that 

negligible gains in predictive performance of the fitted model are achieved by including 

even a fairly large number of replicate tests. 

o The results of the numencal tests have thus verified that the main issue winch needs to be 

addressed in using the CCD to investigate the engine noise simulation problem, and 

determmistlc systems in general, is the improvement of the precision With which each of 

the quadratic terms are estimated, With the aim of enhancmg the overall performance of 

the fitted model. It appears likely that some benefit may be obtained by inclusion of 

modifications to the CCD which allow a greater quantity of information to be gathered in 

the vicinity of the design space centre. The rum of such modifications is to achieve a high 

level of prediction accuracy throughout the region of interest, and to aid m diStinguishing 

between the effects of the various quadratic terms in the model. Possible strategies which 

address these shortcomings of the standard CCD are the subject of Chapter 7. 
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Appendix 6A 

Second order model constructed from CCD 

Specification of test points used to estimate lack of fit 
due to higher order terms 

Variable 
8 C D E F G 

.0230 .0230 .0064 .01375 .0230 .0075 

.0290 .0230 .0064 .01375 .0230 .0105 

.0230 .0290 .0064 .02125 .0230 .0075 

.0230 .0230 .0115 .01375 .0290 .0075 

.0290 .0290 .0064 .01375 .0290 .0075 

.0290 .0230 .0115 .02125 .0230 .0075 

.0230 .0290 .0115 .01375 .0230 .0105 

.0230 .0230 .0064 .02125 .0290 .0105 

.0290 .0290 .0115 .01375 .0230 .0075 

.0290 .0230 .0064 .02125 .0290 .0075 

.0230 .0290 .0064 .01375 .0290 .0105 

.0230 .0230 .0115 .02125 .0230 .0105 

.0290 .0290 .0064 .02125 .0230 .0105 

.0290 .0230 .0115 .01375 .0290 .0105 

.0230 .0290 .0115 .02125 .0290 .0075 

.0290 .0290 .0115 .02125 .0290 .0105 
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Appendix 6B 

Use of the standard CCD with a = 1 and rephcate centre points 

CCD with a = 1 and 71 coefficients 

The designs used are based on that of Sections 65 I, WIth a number of centre point replications added. 

The model to be constructed is identical to the 71 coefficient model of Section 6 5.1. 

Esllmates of the maID effect and interacbon parameters are unaffected by the IDclusion of addlbonal 

centre pomt data, since at the centre point each vanable is at its mean value (normaIised as zero), and no 

iuformation IS provided on the linear effects of these vanables. 

The variation of mean and pure quadrabC coefficients with no IS given in Table 6B.1. The telIDs are 
hsted, from left to nght,ID order of magmtude. The vanance and covariance values are given ID Table 6B 2. 

Do MEAN A2 !)2 G2 F2 Cl El B2 

I 86.711 09827 01973 01188 -00787 00659 0.0580 0.0225 

5 86716 09820 0.1%5 01181 -00794 00652 0.0573 0.0218 
10 86720 0.9815 0.1960 01176 -00799 00647 0.0567 00212 
IS 86722 09811 0.1957 0.1173 -00802 00643 0.0564 00209 

20 86.724 0.9809 01955 0.1171 -00805 0.0641 0.0562 00207 

Table 68.1 Variation of noise coefficients with number of centre points Do 
for CCD with 78 + no tests and 71 coefficients (n=7) 

Varianoes Covananoes 

Do MEAN Quadratic MEAN/Quad Quad/Quad 

1 00158 0.1915 -000176 -00308 
5 00134 0.1912 -000104 -00310 

10 0.0118 01911 -000054 -0.0311 
IS 0.0109 0.1910 -000024 -00312 
20 0.0102 01909 -000003 -0.0313 

Table 68.2 Variation of variance and covariance values with number of centre points no for 
CCD with 78 + Do tests and 71 coefficients (n=7) 

The variance value for the mean tenn has been greatly reduoed, whilst the magmtude of the coeffiCIent 

remams virtually unchanged. This small effect on the mean coefficient is as may be expected, since the additional 

results used to fit the model are all calculated at the centre of the design space. When using linear or quadratic 

models the model prediction at the centre point is by definition equal to the value of the mean coefficient of the 

model. Since the tests of 6.5 2 bave shown that the lack of fit between the model and the actual result at this 

point is small, this means that the value of the mean tenn in the model is already almost idenbcal to the actual 
value at the design centre, and addition of further results can have little effect. 

The reduction in vanance value reflects the illusory gain in preciSIon which results from using an 
increased number of test points to esbmate the parameter value. 
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The vanance values for the pure quadranc terms remain virtually unchanged by the increase in centre 

point informabon, whilst the covariance effects between them Increase. The reason for this is that the additional 

test points provide function Information at a point at wluch all of the vanables are at their mean level, so that the 

indJvidual effect of each term cannot be separately idenbfied. Indeed, the proporbon of third level tests which 

represent the effect of all of the quadratic components IS now larger, and leads to greater mterdependency of the 

parameter esbmates, and hence lugher covanance values. 

The small change in parameter estimates for the quadratic terms is also due to the small lack of fit 

occurring m the onginal model. The addJtional tests have the effect of reducing the lack of fit at the centre point, 

equivalent to weighbng a single test result at this point, and the scope for such a reduction is extremely limited. 

The I1llIX1mum and average percenlage lack of fit for each value of Do at each category of test potnt, as 

defmed in Section 6 5 I, are shown in Table 6B3. 

1 
5 

10 
15 

20 

Maximum lack of fit - &t Average lack of fIt - Ea 
Destgn Factorial Higher Design Factonal Higher 

1.2483 2.7467 6.2519 015039 0.93156 2.7334 
13058 2.7486 63022 015145 0.93143 2.7312 
13457 2.7499 63371 014830 0.93134 2.7297 
13698 2.7507 63582 0.14346 093129 2.7287 

13859 2.7512 63723 013812 093125 2.7281 

Table 68,3 Variation of lack of fit with nnmber of centre points no 
for CCD with 78 + no tests and 71 coefficients (n=7) 

Although the number of tests pomts in these designs has increased by between 5% and 24%, virtually 

no gam m accuracy has been obtained. 

The maximum reducbon of 0 005% in average lack of fit at the addJtional 16 test points from 2.7334 to 

27281 does not compare favourably with the reduction to 2.6160 which was gained in Section 6.52 by using 

the origtnal design and just 17 coefficients. 

The shghtly larger reducbon at the desIgn points IS of no practical significance as the fit at these points 
is already close to zero. 

The addition of replicate centre pomts has thus resulted in a sigmficant reducbon in the variance value 

for the mean parameter, WIth no substanbal improvement in those for other parameters. 

There IS no significant modJficabon of parameter values, and no significant Improvement in the 

predicbve ability of the model throughout the desIgn space has been achieved. 

CCD with a = 1 and 17 coefficients 

The same selecbon of designs is used as in the above analysis. 

The reduced model of Secbon 6 5.2 is employed, which contains the 17 terms listed in Table 6.6. 

The estimates of the main effect and interaction parameters are agatn unaffected by the inclusion of 
additional centre point data. 

Only two of the seven pure quadratic terms appear in this reduced model, so that only the mean value 

and the two quadrabc terms A2 and D> may be affected by the additional data. 

The vanation of these coefficients with no is gtven in Table 6B.4, and their variance and covarianoe 

values are given m Table 6B.5. 



Do MEAN AZ 

I 86.727 UJ666 0.2811 

5 86.728 10661 0.2807 
10 86.729 10658 02804 
15 86729 10656 02802 
20 86.729 1.0654 0.2800 

Table 6B.4 Variation of noise coefficients with number of centre points Do 
for CCD with 78 + no tests and 17 coefficients (n=7) 
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Again. all parameter magnitudes are vutually unchanged, as are the variance values of the pure quadratIc 

terms. The variance of the mean value is sigmficantly reduced. whilst the covanance effects between the two pure 

quadrallc terms gradually increases With ~ 

I 
5 

10 
15 
20 

MEAN 

00155 
00134 
00118 
00109 
00102 

Variances 
AZ arlDZ 

0.1224 
0.1200 
0.1l83 
0.1l72 
0.1l65 

Covariances 
MEAN I AZ <r DZ AZ I DZ 

-000571 -00998 
-000342 -0.1022 
-000179 -01039 
-000079 -01050 
-OOOOll -01057 

Table 6B.5 Variation of variance and covariance values with number of centre points no for 
CCD with 78 + Do tests and 17 coefficients (n=7) 

The lD3Xlmum and average percentage lack of fit are as follows. 

I 
5 

10 
15 
20 

Maximum lack of fit - &t Average lack of fit - &t 
Design Factonal Higher Design Factorial Higher 

4.6395 3.1124 64331 077241 0.77967 2.6160 

4.6399 3.1124 64423 0.73677 0.77973 26157 
46403 3.1124 6.4488 069597 0.77976 26154 
46404 3.1124 6.4528 065918 0.77979 26153 
4.6406 31124 64555 062595 077980 2.6152 

Table 6B.6 Variation of lack of fit with number of centre points no 
for CCD with 78 + no tests and 17 coefficients (n=7) 

There IS virtually no change in the lack of fit calcalauons The reducllon in lack of fit at the design 

points is made possible by the greater inItial error resulting from the small number of coefficients in the model 
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CCD with a = 1 and 36 coefficients 

The model used is the 36 parameter strict qwdrallc, which contams all seven pure qwdratic terms. 

The variation of these coeffiCIents with no is given in Table 6B.7, and their variance and covariance 

values are gIven in Table 6B 8. The values of all parameter esllmates, vanance and covanance values are identical 

to those of the 71 coefficient model. 

The IIIlIX1mum and average percentage lack of fit are shown m Table 6B.9. 

Do MEAN A1 ))1 G1 F1 ca 

1 86.711 0.9827 0.1973 0.1188 -00787 0.0659 0.0580 0.0225 
5 86.716 0.9820 01965 01181 -00794 00652 00573 0.0218 

10 86720 09815 01960 0.1176 -00799 00647 00567 00212 
15 86722 09811 0.1957 01173 -00802 00643 0.0564 00209 
20 86724 09809 01955 01171 -00805 00641 0.0562 00207 

Table 6B.7 Variation of noise coeffieients with number of centre points Do 
for CCD with 78 + no tests and 36 coeffieients (n=7) 

Vanances Covariances 

Do MEAN Quadranc MEAN/Quad Quad/Quad 

I 00158 01915 -000176 -00308 
5 00134 0.1912 -0.00104 -00310 

10 00118 0.1911 -000054 -00311 
15 00109 01910 -000024 -0.0312 
20 00102 0.1909 -000003 -0.0313 

Table 6B.8 Variation of variance and covariance values with number of centre points no for 
CCD with 78 + Do tests and 36 coeffieients (n=7) 

Do 

1 
5 

10 
15 
20 

MaxImum lack of fit -~ Average lack of fit -~ 
Design Factorial Higher Design Factorial Higher 

4.0151 2.6508 62354 067564 0.85803 2.6048 
40169 2.6527 62851 065136 085811 2.6025 
4.0182 26540 6.3196 061978 085816 2.6009 
4.0190 26547 6.3404 0.58955 085819 2.6000 
4.0195 2.6552 63544 0.56144 0.85821 2.5933 

Table 6B.!' Variation of lack of fit with number of centre points no 
for CCD with 78 + no tests and 36 coeffieients (n=7) 

The average lack of fit at both the factorial pomts and the additional test pomts are essentially 

unchanged for each value of Do. The reductton ID lack of fit at the design points IS agam made possible by the 

mitial error caused by the relatively high rallo of tests to coefficients, compared WIth the full 71 tenn model. 
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7. Centre point replication 

The results of the previous chapter have shown that one of the major disadvantages of 

the standard CCD is the poor precisIOn with which the pure quadratic coefficients of a response 

surface are estimated. This is a particular problem when investigating deterministic systems, 

since it IS not possible to gain additional information concerning the effect of pure quadratic 

terms by performing replicate tests at the centre of the design space. 

The purpose of the present chapter is to describe a number of strategies which have 

been developed within the current work in order to simulate centre point replication 

when investJgating determiDlstic systems. Investigation of proposed designs falls into two 

categories. Theoretical consIderations, based on the proposed design matrix, establish the effect 

on the orthogonality and rotatabtlity characteristJcs of the standard CCD. These are followed by 

numencal trials to assess improvements in parameter estimation and quality of fit of the 

predictive model. 

In Section 7.1 the general requirements of a strategy for simulated centre-point 

repltcation are first descnbed. In Section 7.2 a modlficatJon to the standard CCD is proposed 

which ~ncorporates a second axial portion of tests close to the centre of the design variable 

space, and the design matrix, moment matnx and scaling factor for this design are derived. The 

orthogonallty and rotatability criteria for the design are developed m Sections 7.2.1-7.23. It IS 

shown that, although the criteria dIffer slightly from those of the standard CCD, the 

orthogonality and rotatability characteriSIJCS of this design are little altered from those of the 

standard CCD. In SectJon 7.3 a variant of thts design is proposed, in which only one pair of the 

additional axial pomts is included. It is shown that this results in a need for multiple scale 

factors, wmch lead to multiple critena for rotatability and orthogonality which cannot be fulfilled 

simultaneously. The small dIfference ID scaling factors is shown to be of no practical 

importance, however, so that the standard CCD scaling can be employed with little error. In 

Section 7.4 the results of tms analysis are shown to be valid for designs which involve more 

than one pair of additional axial points. The application of these designs, and possible 

extensions to the modifications, are discussed in Section 75. 

The results of numencal tests usmg the modified designs are presented in 

SeclJons 7.6.1 to 7.6.3, and these are mtroduced in more detail in Section 7.6. Section 7.7 

summarises the results of these trials, and assesses the use of simulated centre point 

replications. 
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7.1 Requirements of a strategy for simulation of centre point replication 

The rum of a centre point replication simulation strategy is to provide a means of 
collecting additional response function infonnation at points close to the centre of the region of 
interest. The purpose of this is both to improve the distnbutlon of test points throughout the 
design vanable space, and to enhance the abIlity of the deSIgn to estimate the effect of pure 
quadratic tenns in a fitted model. In order to be of use, any strategy which attempts to achieve 
such an aim must fulfil the following requirements: 

I) The data collected must be calculated at test points which are sufficiently separate from each 
other that the values returned do genwnely give addItional infonnation on the process under 
investigatIOn. Quite what the lower bound on such separation should be is unclear, with the 
limItIng case being that in which zero separation between the multiple POInts occurs, as 
employed in the investigation of non-detenninistic system. 

11) A contrasting constraint on thIS separation is that the multiple points must each still lie in the 
reqUIred sectIOn of the design region. Centre point 'approxImatIons' which lie close to the 
penmeter of the design region are clearly unacceptable, but again, the specificatIon of an 
upper bound on the allowable separation IS far from straightforward. 

ii) A further consideration when selectIng a suitable strategy for replication simulatIon is that 
the points chosen to be added to the original CCD should ideally not compromise other 
benefiCIal characteristics of the design, such as rotatabllIty or orthogonality. 

7.2 Addition of the £·star portion 

One poSSIble strategy which appears to have the potential to meet the requirements 
described above is the addItion of a further 'star' portion to the existing Central Composite 
Design, but WIth parameter £ replacIng the value of a defined in Section 6.1. Within this general 
class of deSIgn, the value of £ can be selected to provide the required separatIon between the test 
points, as well as maintaining other desirable design properties. A typical design matrix for such 
an augmented CCD, here shown for three variables, would be of the fonn 
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-g -g -g 
-g -g +g 
-g +g -g 
-g +g +g F 
-g -g -g 
-g -g +g 
-g +g -g 
-g +g +g 

-ag 0 0 
+ag 0 0 

D= 0 -ag 0 
2n (7.1) 

0 +ag 0 
0 0 -ag 
0 o +ag 

-Eg 0 0 
+eg 0 0 

0 -Eg 0 2n 
0 +eg 0 
0 0 -Eg 
0 0 +eg 
0 0 0 no 

where the factorial and axial portions are the same as for the standard CCD, and the E-star 

portion is of the same fonn and consists of the same number of tests as the axial portion, but 

with parameter E. Since the object of adding tins portion is to avoid replicate centre POints, 110 

should clearly only take a value of 0 or 1. 

In a similar analysis to that for the standard CCD, the value of the scaling factor g may 

be calculated according to the scaling convention of Section 2.12, so that 

and hence 

N 

Xi = J L XUI = J [(F + 2n + 2n + no) Ili] = !1. 
11=1 

The gives the value of the sciIled vanable as 

X, - !1. 
X, = g 

ll, 
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where 

g=[N I (F+ 2a2 + 2£2)]} (7.2) 

Note that the only difference between thIs scaling and that used for the standard CCD is in the 
expression for the scalmg factor g. The regressor matnx for this design is as follows 

1 XI X2 X3 xf x~ xj XIX2 XIX3 X2X3 

1 -g -g -g g2 g2 g2 g2 g2 g2 

1 -g -g +g g2 g2 g2 g2 _g2 _g2 

1 -g +g -g g2 g2 g2 _g2 g2 _g2 

1 -g +g +g g2 g2 g2 _g2 _g2 g2 

1 +g -g -g g2 g2 g2 _g2 _g2 g2 

1 +g -g +g g2 g2 g2 _g2 g2 _g2 

1 +g +g -g g2 g2 g2 g2 _g2 _g2 

1 +g +g +g g2 g2 g2 g2 g2 g2 

1 -ag 0 o a 2g2 0 0 0 0 0 

1 +ag 0 Oa2g2 0 0 0 0 0 

X= 1 0 -ag 0 o a 2g2 0 0 0 0 

1 o +ag 0 o a 2g2 0 0 0 0 

1 0 0 -ag 0 o a 2g2 0 0 0 

1 0 o +ag 0 o a 2g2 0 0 0 

1 -£g 0 o ~g2 0 0 0 0 0 

1 +£g 0 o £2g2 0 0 0 0 0 

1 0 -£g 0 0 £2g2 0 0 0 0 

1 0 +£g 0 o ~g2 0 0 0 0 

1 0 0 -£g 0 o £2g2 0 0 0 

1 0 0 +£g 0 o £2g2 0 0 0 

1 0 0 0 0 0 0 0 0 0 

Calculation of the elements of the moment matnx N-IX'X shows that, as for the 

standard CCD, this design meets the following requirements, for all i < j < p < q, as outlined in 
Section 5.2. 



and that for any vanable i, 

[ij] = bil] = [iij] = 0 

[iijp] = [ljJp] = [ijpp] = 0 

[liIj] =[ijjj] = 0 

[ijpq] = bJP] = 0 
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[ii] = N'! [Fg2 + 2a2g2 + 2£2g2J = g2 N'! [F+ 2a2 + 2£2] 

The adoption of the scaling conventIOn of equation (7.2), in which 

g = [N I (F + 2a2+ 2£2)]112, results In a value of [ii] = 1, and also yields 

7.2.1 Orthogonality 

[lIIi] = N'! [Fg4 + 2a4g4 + 2E"g4] 

and [11]] = N'! Fg4 

The requirement for orthogonality, as described in Section 5.2, is that [iiJj] = 1, so that, 

from the above 
l..F[N I (F + 2a2+ 2£2)]2 = 1 
N 

FN= (F+2a2+2£~2 (7.3) 

Since both F and N are necessanly positive, and N :!: F, this equation can be rearranged 

fora and £ as 

(7.4) 

Thus, with F and N set, it is possible to choose the value of either a or £ and solve for 

the other. With a value of £ = 0, tins equatIOn is clearly identical to equation (6.7) for the 

standard CCD, and returns a value for the axial parameter of a = 2.5641 for the seven variable 

case with F = 64 and N = F + 2n + 2n + 1 = 93. Specification of values of £ within the range to 

£ = 0.1 give the following values for a. 

E a 

0.000 2.5641 
0.025 2.5640 
0.050 2.5636 
0.075 2.5630 
0.100 2.5622 
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SelectIOn of even a fairly large E parameter thus has a virtually neghgible effect on the 
chOice of axial parameter a. It is therefore reasonable to employ the same value of a as would 
be used In a standard CCD, wluch will result in little loss of orthogonallty. This analysis 
indicates that the deSign may be treated as though It were a standard CCD with 2n + 110 centre 
points, but with rephcate centre points replaced with the E-Star POints. Substitution of 
appropriate values into equation (7.4) show that this is generally true for all practical designs, 
with either 110 = 1 or 110 = o. 

In cases where the design region is strictly cuboidal, such as the nOise radiation problem 
currently under Investigation, the value of a is already fixed at a = 1.0, as discussed In 
Section 6.4. There IS then only one possible value of E which will give an orthogonal design, 
and, for the seven variable example, (7.4) gives values of E =2.361 for no = 1, and E =2.317 
for 110 = o. These points are clearly unacceptable as centre point approximations, and it is 
generally true that orthogonal designs of this type are unattainable when a = 1.0, as indeed is 
the case for the standard CCD. 

7.2.2 RotatabiIlty 

The rotatability requirement, as discussed in Section 5.3, is that [Iiii] = 3 [iijj], where for 
the CCD plus £-star design 

so tl!at for rotatabih ty 

giving 

[iiii] = N·I [Fg4 + 2a4g4 + 2~g4) 

and (iljj] = N·l Fg4 

(7.5) 

For any £ which is small enough to give tests which apprOlamate the centre point 
replications, the value of ~ wiIl clearly be small in relation to the magnitude of F, so tl!at for all 
designs of this type the value of a from equation (7.5) is In practice identical to that of (6.9) for 
the standard CCD. This value is independent of both the number of centre points 110 and the total 
number of test points. For the seven variable example with F = 64, the reqUIred value of a, If 
£ = 0.05, is 2.8284, only differing at the ninth significant figure from that required for the 
standard CCD. There is therefore little error in treating this design as a standard CCD With 
replicate centre points, and choosing the value of a according to (6.9). 
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As is the case for the standard CCD, the imposition of a value of a = 1.0 prevents any 

design from beIng rotatable. From (7.5), the reqUIrement would be that E = (F - 1) 114, which 

requires E = 0 for F = 1, and E ~ 1 for F ~ 2, and so Will not yield sufficiently small values of E 

for any practical F. 

7.2.3 Choice of parameters for both orthogonaIity and rotatablllty 

If both of these properties are desired, then values of a and E must be chosen such that 

they simultaneously satisfy both (7.4) and (7.5). Unlike the standard CCD, the number of 

centre points cannot be freely selected to aid the attainment of these requirements, and must be 

set to either 0 or 1. The two cntena which must be met are then 

and 

with the restriction that the only solution of these equations which is of practical use is one for 

which both a and E are both real and positive. Since all of the terms of the above equatIous must 

then be positive, it is possible to form 

(FN)lIz = (F + 2az + 2~ 

without loss of sign information. Also, SInce £ = (F - a 4)1I4> 0, 

(FN) 1IZ = F + 2az + 2(F _ a4) IIZ 

so that 

giving 

[
(FN) 112 - F - 2azF 

(F - a 4) = .:..-..:....--::2:----j 

8a4 + a Z(4F - 4(FN) 1IZ) + (pZ + FN - 2F(FN) 1IZ - 4F) = 0 

a 2 = [-(4F - 4(FN) 112) ± 4(4F - 4(FN) 112)2 - 32(pZ + FN - 2F(FN) IIZ - 4F) ] 116 (7.6) 

The positive value of a Z which this analysis produces, together with the value of £z 
which is necessary to satisfy both of the initial equations, IS tabulated In Appendix 7A for all 

designs in 3 < n < 12 whIch have factorial portions of resolution V or greater. This clearly 

shows that In general it IS not poSSible to produce deSigns of this type which are both 

orthogonaJ and rotatable, SInce for a positive value of a 2 the value of £z which results is almost 

always negative. Of the designs considered in Appendix 7A, the only one which is feasible is 
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the resolution V design m 5 variables, which yields a '" 2.00 and E '" 0.411. Even this design is 

not acceptable, however, as the value of E obtained places the resulting points at a considerable 

distance from the design centre. For any problem which has a strictly cuboidal desIgn regIon, 

the value of a '" 2.00 is also unacceptable. 

Sections 7.2.1 and 7.2.2 have shown that the orthogonality and rotatability criteria of 

the standard CCD can be used with little resultmg error. If the standard CCD criterion IS used m 

the present case, however, then Section 6.3.4 shows that, for the seven vanable example, a 

value of no = 22 IS required. Since the maxImum number of centre point and pseudoreplicate 

tests available when usmg an addItional E star IS no = 2n + 1, giving 15 points for n = 7, the 

rotatablhty and orthogonality cntena cannot simultaneously be met WIth the present design. An 

extension to the deSIgn which allows for additional pseudoreplicate tests is discussed in 

SeCtIon 7.5. 

7.2.4 Observations on the use of the CCD with additional E-star portion 

In summary, the analyses of the previous sections have shown that the addItion of an 

axial portIOn of 2n tests with parameter E « a causes no significant change in rotatability and 

orthogonality characteristIcs compared with the standard CCD. This deSIgn shares WIth the 

standard CCD the feature that an imposed value of a = 1 leads to designs which are neither 

orthogonal nor rotatable. 

7.3 The CCD with one E pair 

If the additional number of test points introduced by the incorporation into the CCD of a 

complete E star is considered excesSIve, then a possible modification to this design is to mclude 

only a fraction of these points. In general, the augmentation mIght consist of k (~ n) pairs of 

points with parameter ±E Iymg on each of k variable axes. Unless specIfic knowledge of the 

applicatIOn suggests particular choices of variable, this selection IS entirely arbitrary, although 

the choice would not normally be expected to be critical, since the points are closely grouped 

around the centre of the design variable space in comparison with the dimension of the complete 

design region. In the f ollowmg sections a design incorporating just one E pair is analysed in 

detail. In Section 7.4 it is shown that these results, together with the results of the standard 

CCD and the CCD with full E star, are sufficient to allow conclUSIOns to be drawn regarding all 

designs with 1 ~ k ~ n E pairs. 
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For the case in winch the c pair for just one variable is included, the design matnx for a 

three variable example is as follows, with the value of no beIng either 0 or 1, as above. 

-g -g -Ii 
-g -g +h 
-g +g -h 
-g +g +h 

F 
-g -g -h 
-g -g +h 
-g +g -h 
-g +g +h 

-ag 0 0 
+ag 0 0 

D= 0 -ag 0 
2n (7.7) 

o +ag 0 
0 0 -ah 
0 o +ah 
0 0 +ch 

2 0 0 -ch 
0 0 0 }no 

For those van abies which do not appear at non-zero values In the now reduced c-star 

portion of the design (non-c variable), the value of the scale factor g, calculated from equation 

(5.3), is identical to that for the standard CCD, i.e., 

In order that the variable which does appear at non-zero values in the c-star portion (c variable) 

achieves the cnterion [li] = 1, the value of the scale factor h is required to be the same as for the 

variables of the full c-star design; 

1 
h = [N I (F + 2a2 + 2c2)]2" 
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The regressor matnx for the single E-paIr design is then of the form 

1 XI X2 X3 xl ~ xj XIX2 XlX3 x2x3 

1 -g -g -h g2 g2 h2 g2 gh gh 

1 -g -g +h g2 g2 h2 g2 -gh -gh 

1 -g +g -h g2 g2 h2 _g2 gh -gh 

1 -g +g +h g2 g2 h2 _g2 -gh gh 

1 +g -g -h g2 g2 h2 _g2 -gh gh 

1 +g -g +h g2 g2 h2 _g2 gh -gh 

1 +g +g -h g2 g2 h2 g2 -gh -gh 

1 +g +g +h g2 g2 h2 g2 gh gh 

X= 1 -ag 0 Oa2g2 0 0 0 0 0 

1 +ag 0 o a 2g2 0 0 0 0 0 

1 0 -ag 0 o a 2g2 0 0 0 0 

1 o +ag 0 o a 2g2 0 0 0 0 

1 0 0 -ah 0 o a 2h2 0 0 0 

1 0 o +ah 0 o a 2h2 0 0 0 

1 0 0 -Eh 0 o E2h2 0 0 0 

1 0 0 +Eh 0 o E2h2 0 0 0 

1 0 0 0 0 0 0 0 0 0 

As for the previous design possessing a complete E-star portion, calculation of the 
elements of the moment matnx N-IX'X shows that thiS design meets the follOWing 
requirements, for all i < j < p < q, as described In Section 5_2. 

[iJ] = [ijj] = [Iij] = 0 
[iiJp] = [iJjp] = [Ijpp] = 0 

[iiij] =[iJiJ] = 0 
[ijpq] = [ijp] = 0 

and that for any non-E variable i, 
[ii] = N·I[Fg2 + 2a2g2] = g2 N-I[F+ 2aZ] 

whilst for the E variable; 

[ii] = N-I [Fh2 + 2a2h2+ 2E2hZ] = h2 N-I[F+ 2a2+ 282] 

so that the values of the scaling factors g and h have resulted in the required value of [ii] = 1. 
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This difference in scaling factors for the two classes of vanable leads to complications 
In the assessment of rotatability and orthogonahty. The values of the non-zero fourth-order 
moments are as follows. 

[iijj] = N·! Fg4 
[iijj] = N·! Fg2h2 

[iiii] = N-! [Fg4 + Za4g4] 

[iiii] = N·! [Fh4 + Za4h4 + Ze4h4] 

beiWeen iWo non-£ variables; 
beiWeen £ and non-£ vanables; 

for non-£ variables; 

for the £ variable; 

Thus to satisfy the orthogonality requirement [iiii] = I, iWo separate conditions must be met: 

(i) beiWeen two non-£ variables 

.l.Fg4 = 1 
N 

~ F[N I(F+Za2)J2= 1 

FN=(F+2a2)2 

(iJ) beiWeen £ and non-£ variables; 

.l.Fg2h2 = 1 
N 

.l.F[N21 (F + Z(2)(F + Za2+ Z£2)] = 1 
N 

FN = (F + Z(2)(F + Za2 + Z£2) 

Clearly, (7.8) and (7.9) cannot simullaneously be true unless £ = 0 

SimIlarly, for rotatabIlity [ihi] = 3 [iiii], and a design must meet the four conditions: 

Fg4 = 3 (Fg4 + 2a4g4) 

Fg4 = 3 (Fh4 + 2a4h4 + 2£4h4) 

Fg2h2 = 3 (Fg4 + 2a4g4) 

Fg2h2 = 3 (Fh4 + 2a4h4 + 2£4h4) 

which again cannot be simullaneously fulfilled unless £ = o. 

(7.8) 

(7.9) 

On considering the expressions for the iWo scaling variables g and h, however, it is 
apparent that the difference between the iWo is purely due to the additional term Z£2. Since the 

value of £ itself is chosen to be small in magnitude, it is reasonable to neglect the difference in 
scale factors. As an example, Table 7.1 shows the required values of g and h for the seven 
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variable case in which F = 64, N = F + 2n + 2, when a = 2.8284 (standard CCD rotatability 

critenon) or 1.0, and E = 0.05 or 0.10. 

a E g h g-h glh (g - h)/g % 

2.8284 0.05 1.00000 0.99997 3. 125xl(}5 1.0000312 0.00312 
1.0000 0.05 1.10096 1.10092 4. 170xl(}5 1.0000379 0.00379 

2.8284 0.10 1.00000 0.99988 1.250xl(}4 1.0001250 0.01250 
1.0000 0.10 1.10096 1.10080 1.668xl(}4 1.0001515 0.01515 

Table 7.1 Values of the scaling variables for a CCD with single &-pair 

There wIll clearly be linle error in the calculation of parameter requirements for 

orthogonality and rotatability If identIcal values are chosen for g and h. Parameter values can 

thus be selected as for a standard CCD with 2 + 110 centre pomts. The inclusion of an exact 

centre point in the design, thus incrementmg the value of N by I, has no effect on the ratio of 

the two scaling factors, and no significant effect on the magnitude of the difference between 

them unless (F + 2n + 2) is small: even with n = 3, F = 23 = 8, the change in (g - h) is 

(17/16)112, or just 3.078 %, when the exact centre point is added. 

The value of E = 0.10 used in the above calculatIons might be considered to be a typical 

upper limit for the approximatIon of centre pomts. The dIfference in scaling factors is still 

negligible at this value, however, although its effect will of course increase with smaller values 

of F, resultIng from eIther fewer variables or a lower resolution deSIgn. If a limiting value for 

(g - h)/g % were specIfIed as, say, 0.1 %, then calculation shows that, m the present example, a 

value of E = 0.2829 is acceptable with a = 2.8284, and E = 0.2570 with a = 1.0. Thus even 

this very tight constraint stIll allows E points which are between a quarter and a third of the 

distance to the variable bound. Since this value wIll necessarily fall with decreasing F, it is 

appropnate to consider a severe case of n = 3, F = 23 = 8, a = 1.0. For tins design the 0.1 % 

limit still allows a value of E = 0.100025, and so it may be concluded that m general the 

introduction of an E-star portion leads to insigmficant changes in the scaling of the variables. 

In summary, the results of this investIgation lead to the same conclusions as for the 

CCD with complete E-star portion, that the practical choice of a for orthogonality or rotatability 

is unchanged from that for the standard CCD. In this case, however, the value of a would be 

that chosen for a design with either 2 or 3 centre points, depending on whether a centre point 

test is included in the present deSIgn. Further investigation reveals the additional simIlarity, that 

designs which are both orthogonal and rotatable are not generally obtainable, and that neIther 

property may be achieved if an axIal parameter of a = 1.0 is employed. 
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In the above analysis It was shown that the multJple criteria for orthogonaluy occur as a 

result of the different scaling factors which must be applied to different variables, in order to 

meet the reqUlrement that [ii] = 1. An alternative method of meetJng this requirement IS to 

modify the axial porDon of the design by choosing different values of the paranieter a for the 

£ variable and non-£ vanables, so that equal sca1mg factors are achieved for each variable. The 

advantage of a single scaling factor is that a single orthogonallty cnterion is obtained, with two 

rotatability cnteria replacmg the four obtained above. A detailed analysis of this alternative 

method of specifying the single £-pair design is presented m AppendiX 7B. The results of this 

analysis show that the difference between the two values of a is negligible for all acceptable 

values of £, and hence confirm the conclusion that the parameters for the CCD with one 

addltJonal £ pair may be specified as for the appropnate standard CCD. 

7.4 Designs containing several £ pairs 

Detailed analyses have now been presented for augmented Central Composite Designs 

in n vanables for which the number of £ variables is zero, n or 1 (Chapter 6, Section 7.2 and 

SectJon 7.3 respectively). Assessment of the effect of the mclusion of £ pair tests on the 

rotatability and orthogonality characteristics of the CCD has been based solely on the criteria 

[iijj] = 1 

[iiii] = 3 [llll] 

for orthogonallty 

for rotatability. 

InspectIOn of these criteria reveals that, irrespective of the total number of vanables in the 

design, orthogonality and rotatablhty may be assessed by just considering combinations of pairs 

of variables. The above analyses have also shown that all non- £ variables will have the same 

pure second order moment [ii] as each other, as will all £ vanables. When analysing a general 

CCD with 1 :s; k:s; n £ pairs, there are thus only three possible values of the mixed fourth order 

moment [iijj], in which either both variables are £ variables, both are non-£ variables, or one 
variable is of each type. Each of these combinations has been considered in the preceding 

analyses, so that the conclusions drawn concerning the CCD with one £ pair and the CCD with 

a full £ star may be generalised to designs in which 1 :s; k:s; n £ pairs are present 
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7.5 Observations on the inclusion of E-palr tests 

Although the preceding analyses have shown that the value of the parameter E must be 

relatIvely small (less than about 0.1) In order not to invalidate either the approximatIon to the 

centre POint, or the companson with the standard CCD, no further gUidance as to a suitable 

choice has emerged. There remains the issue of what a lower bound to this value may be which 

stIli genuinely prOVides additional information on the vanation of the response functIons. This 

lower bound is likely to be largely dependent on the nature of the problem being addressed, and 

general recommendations are unlikely to prove reliable. It IS recommended that if this class of 

design is to be employed, some preliminary investigation of the nature of the response surface 

for the particular application under consideratIOn should be carried out prior to the execution of 

the mrun body of test work. Such an investigation into the variation around the centre of the 

deSign variable space of the radiated noise level predicted by the FE analysis program IS 

presented In Section 7.6.2. The results of this investigatIOn suggest that the value of the 

parameter E may be reduced to at least as low as 0.025 Without encountering the problem of 
Identical test results which the use of the E-Star portion is intended to address. The choice of 

value within this range IS discussed In Section 7.6.1, below, With reference to numencal 

examples. 

The analyses of Sections 7.2 and 7.3 have shown that for an n-dimenslOnal CCD, the 

Inclusion of either 1 or n pairs of axial tests With parameter E:S 0.1 may be carried out without 

the need to modify either the value of the axial parameter a or the way in which the vanable 

values are scaled. Orthogonallty and rotatability may be assessed with little error by simply 

treating the design as a standard CCD in which the number of centre point tests 110 is equal to the 

number of tests Included in the E-Star portion, plus the exact centre point, if this is included. As 

descnbed in SectIon 7.4, these conclUSIOns may be generalised to cover all designs containing 

between 1 and n pairs of axial tests With parameter E:S 0.1. 

The flexibility to specify the number of E pairs to be included allows for a procedure 

analogous to that employed With the standard CCD, in which the number of centre point tests 

may be chosen in order to aid the fulfilment of, for example, orthogonality or rotatability 

critena. Having ascertained from the analysis of a standard CCD the number of centre point 

tests which is required, the appropriate number of E pairs can be included in the design in 

place of the replicate points. As an example, consider again the seven vanable example with 

F = 64. If an axial parameter of a = 2.257 were employed, then equation (6.7) shows that a 

total of 8 centre point tests would be required In order to attain rotatability of the deSign. When 

investigating a deterministic system, this requirement for replicate centre points may be 

approximately met by the inclusion of four prurs of E-Star POints, with no exact centre point 

test The choice of which axes the additional tests should lie on is unlikely to significantly alter 

the accuracy With which the model is constructed, due to the proximity of the pOints involved. 
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The only restnction on the selection of E-points in order to fulfil a particular requirement 

for centre point tests is that both pomts of a paIr must appear in the design. If an odd number of 

centre points is reqwred, then the additional test may be supplied by including a single test at the 

exact centre of the design variable space. 

As a further example, the condition that must be fulfilled m order to obtain a standard 

CCD which IS both orthogonal and rotatable is glven in equation (6.10). ThiS shows that the 

seven variable problem with F = 64 requires a centre portion of Ilo = 22. Since the total number 

of points available within the E-Star is just 14, it is clearly not possible to meet thiS requirement 

using any of the designs so far descnbed. Examinatlon of the analysis of the previous sections 

reveals, however, that the construction of the standard portion of the CCD will need no 

modificatlon as long as the ratio E2 : a 2 remains small. Thus, in order to achieve the required 

centre pomt tests, two separate E-Star portions may be specified, With parameters El and E2 

respecovely, With E-pairs selected from them 10 any combination up to the total number 

required. If, in general, SE-Star portions are included m the design, then the standard portIon of 

the CCD Will need no modification as long as the raoo (E12 + ~2 + ... + Es2) : a 2 remains 

small. The values of El' E2' ... Es must also be selected in such a way that each lies wlthm the 

allowed range for E, and that the difference between them is also greater than the permitted 

lower bound. Together with the above ratio to the axial parameter a, these conditions may be 

expressed, for two E-Star portions, as follows. 

Eunn:S El, E2:S Emax 

I El - ~ I 2: Emm 

(E12+ ~2): a 2 < 1 %, say 

Even for the case of a = 1 0, this last condition Will always be met if both E parameters 

are smaller than OJJ7. Alternatively, one possible combination would be El = OJJ75 and 

~ = 0.025, giving (0.075 2 + 0.0252 ): 1.0 = 0.625%. The requirement of no = 22 could thus 

be met using a full E star with parameter E = OJJ75, and four E pairs with parameter E = 0.025. 

As noted in Section 6.4, the nature of the variables under investigation in the present 

application leads to a strictly cuboidal design vanable space, with the result that the axial 

parameter is constrained to a = 1. The consequence of this IS that the noise simulation problem, 

as currently posed, cannot be investigated with a standard CCD which is either orthogonal or 

rotatable. The analysis of the present chapter has shown that the charactenstics of the standard 

portion of the augmented CCD under consideration here are unaffected by the addition of an 

E star portion. It follows that the designs of this chapter share with the standard CCD the feature 

that the properties of orthogonaIity and rotatabtlity are both unattainable with a = 1. 
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Since the exact fulfilment of these cnteria is no longer an objective, the precise number 

of simulated replications which are to be performed need not be specifically tailored to achieve 

thiS goal. The aim in carrymg out replicated centre points IS now to collect additional 

information on the variation of the response functions at or around the centre of the deSign 

variable space. These data may then be used to obtain improVed estimates of the pure quadratic 

components of a fitted model, and ultimately to develop an enhanced predictive model of the 

ongmal surface throughout the region of interest There IS now no clear indication, however, as 

to the preferred number of tests to be included m order to produce such an improvement, 

although an mitial conSideration would suggest that the predictive accuracy will increase with 

the number of points tested. 

7.6 Numerical tests using the CCD with additional E portion 

In order to investigate the many issues arismg from the above diSCUSSions, a senes of 

numencal tests has been carried out, again usmg the FE model of AppendiX IC as an example. 

To enable companson with those tests involving the standard CCD wluch were carried out m the 

prevIOus chapter, the same seven variable example has been used, With a 27- 1 factonal portion 

containing 64 tests, and an axial parameter of a = 1. 

In Section 7.6.1 numerical trials are carried out using a CCD With full E star. A number 

of designs are investigated in which the parameter E takes values in the range 0.025 to 0.1. The 

results of these tests show that there is no practical improvement in the predictive ability of the 

fitted model, and little change in the coefficient values of the model. There IS a substantial 

reduction in the variance of the mean value, but no significant reduction in the variance of the 

pure quadratic terms, wlulst the covariance between pairs of quadratic terms shows a slight rise. 

In Section 7.6.2 it is shown that the reason for the lack of improvement in model fit on 

inclusion of the E star tests is that the fit of the model is already good m !Ius region. It is also 

demonstrated that genuine additional information concerning the original response function may 

be gained by testing at simulated centre-point replicates which have parameter E ~ 0.025. 

The inclusion of just one pair of E tests is investigated in Section 7.6.3. Designs are 

tested in which each of the seven variables are included as the E pair. The results of these trials 

confirm that the effect of including a smgle E pair is substantially less than the effect of the full E 

star. 
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7.6.1 The CCD with E star 

To assess the performance of the expenmental designs descnbed in Section 7.2, 

constructed using an addItional star portion WIth axial parameter E, a selection of such designs 

has first been investIgated. Four dIfferent values of the parameter E were chosen: 0.025, 0.05, 

0.075 and 0.1, and tests conducted both with and wIthout an exact centre point Each of the 

resulting designs were used to fit the models of Sections 6.5.1 - 6.5.3, containing 71, 17 and 

36 parameters, respectively, and the results of these tests then compared with those obtained 

using the standard CCD, as described in Section 6.5.1. Comparison was also made with 

designs containing the same number of exact centre point replications as contaIned in the E-Star 

portion (plus centre POInt, if applIcable) of the modIfied desIgns, as discussed in Sections 6.4 

and 6.5.4. 

For the 36 coefficient stnct quadratic model of SectIon 6.5.3, Table 7.4 shows the 

maximum and average lack of fit, for each desIgn, which occurs within the three categories of 

test points descnbed In Section 6.5.1. Each of the modified designs of Table 7.4 Includes one 

exact centre point (no = 1). The first hne of the table refers to the standard CCD of Section 

6.5.3, contaImng a single centre pOInt, with the second line of data referring to a CCD which 

Includes a total of 2n + no = 15 exact centre point tests (identical to the 15 centre pOInt design 

used in Section 6.5.4). The corresponding lack of fit data for models contaIning 71 and 17 

parameters are gIven in AppendIx 7C, together WIth the results obtained with each model when 

no exact centre point IS specified In the modIfied designs. 

Maximum lack of fit - ~ Average lack of fit - ~ 
Design Factorial HIgher Design Factorial Higher 

standard 4.0151 2.6508 6.2354 0.67564 0.85803 2.6048 
0.0 4.0190 2.6547 63404 0.58955 0.85819 2.6000 
0.025 4.0195 2.6553 6.3491 0.59321 0.85819 2.5995 
0.05 4.0185 2.6543 6.3192 0.60006 0.85814 2.6006 
0.075 4.0183 2.6545 6.3255 0.60159 0.85819 2.6001 
0.1 4.0180 2.6549 6.3244 0.60827 0.85822 2.5998 

Table 7.4 Variation of lack of fit with B-star parameter 
for augmented CCD with 93 tests and 36 coefficients (n = 7, no = 1) 

The results of Table 7.4 show that the predIction accuracy using each of the modified 

designs is almost identical to that achieved using the standard CCD. Taking as an example the 

average lack of fit in the third category of test points (,Higher'), an imtial examination suggests 

that a slight improvement has been achieved by the use of each of the modified designs, with the 
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design in which £ = 0.025 performing best. The difference between the lack of fit value for this 

design and the result obtained using the standard CCD is, however, just 0.0053% of the 

vanable range, With only 0.0011% of the range separating the best and the worst of the 

modified deSigns. Thus, the inclusion of the additional £-star portion has not led to any practical 

improvement in the ability of the predictive model to represent the variation of the computed 

nOise functIOn within the design variable space. This feature is also displayed by each of the 

result sets given 10 Tables 7C.l to 7C.6 of Appendix 7C. 

The fact that the inclUSIOn of the additional simulated centre point replicates has little 

effect on the performance of the model throughout the region of interest suggests that the 

parameter estimates for each of the coefficients wltlun the model will also be largely unchanged 

by the introduction of the £-star portion. Indeed, since each of the additional points has Just one 

variable at a non-zero value, the estimates of all bnear IOteraction terms, of winch the 36 term 

model contains 21 two-way interaction terms, must be identical to those obtained with the 

standard CCD. The only parameters to be affected are the mean, main effect and pure quadratic 

terms. Additionally, only two of the £-star tests will contribute to the estimation of each of the 

mam effect parameters, with the calculation of these being dominated by the 64 tests of the 

factorial portion of the design. The extent to which the parameter estimates of the mean, main 

effect and pure quadratic terms are modified by the inclusion of the additional data is 

demonstrated in Table 7.5, in which these terms are compared for the standard CCD and the 

£-star design with £ = 0.1. 

Term 

MEAN 
A 
8 
C 
D 
E 
F 
o 
A2 
8 2 

C2 

D2 
E2 
p2 

0 2 

Standard CCD 

86.711 
-2.2352 
-0.20402 
-0.38703 
-0.22783 
-0.15832 
-0.23327 
-0.33550 
0.98271 
0.02250 
0.06593 
0.19729 
0.05800 

-0.07867 
0.11884 

£= 0.1 

86.721 
-2.2351 
-0.20404 
-0.38704 
-0.22793 
-0.15830 
-0.23334 
-0.33553 
0.98129 
0.02113 
0.06458 
0.19589 
0.05667 

-0.07999 
0.11747 

Table 7.S Comparison of parameter estimates between standard CCD 
and CCD with £-star portion (£ = 0.1) and no = 1 : 36 coefficients 
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This table confirms that the main effect terms are vlftually unchanged, with their values 

only diffenng at the fourth or fifth slgruficant figure. Changes to the mean and pure quadratic 

coefficients, although greater, are stIll relatively minor. The variance and covanance values for 

each class of terms are given in Tables 7.6 and 7.7, below. 

Class of Term Standard CCD 8 = 0.1 

Mean 0.0158 0.0109 
Main effects 0.0152 0.0151 
Linear interactions 0.0156 0.0156 
Pure quadratic 0.1915 0.1910 

Table 7.6 Comparison of variance values between standard CCD 
and CCD with 8-star portion (8 = 0.1) and no = 1 : 36 coefficients 

Class of Term 

between mean and each pure quadralIc term 
between each pair of pure quadratic terms 

Standard CCD 

-0.0018 
-0.0308 

8 = 0.1 

-0.0002 
-0.0312 

Table 7.7 Comparison of covariance values between standard CCD 
and CCD with 8-star portion (8 = 0.1) and no = 1 : 36 coefficients 

These tables show that, when usmg a modified design with 8 = 0.1, the variance value 

for the mean term has been greatly reduced, compared With that obtained using the standard 

CCD, refleclIng the gain in preciSIOn which results from using an increased number of test 

points from which to estimate the parameter value. In contrast, the vanance values for the pure 

quadratic terms remain virtually unchanged by the Increase in information, whilst the covariance 

effects between them actually increase. The reason for this is that the additional test points 

provide function informatIon at a point at which all but one of the variables are at their mean 

level, with the remaining vanable only slIghtly altered from its mean value. It is thus extremely 

hard to identify explicitly the effect of each of the variables. Indeed, a larger proportion of the 

avrulable third level tests now lIes at or close to the centre of the design space, and this leads to 

greater interdependency of the parameter estImates, and hence higher covariance values. The 

change in the parameter estimates and variance values of the main effect and pure quadratic 

terms is not large enough to have any appreciable effect on the outcome of a probability plot 

analysis, which, USing the full 71 parameter model, produces results which are essentially 

identical to those of Section 6.5.1. 
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Companson with Table 68.8 of Appendix 68 shows that the changes in variance and 

covariance values are almost identical to those produced using a standard CCD with IS exact 

centre point tests. In contrast with the results of Appendix 68, however, these are authentic 

changes caused by the genuine inclusion of additional function information, whereas those of 

Appendix 68 were illusory gams resulting from the inappropriate use of the standard analysIs 

procedure, based upon an invalid assumption of random experimental error. 

7.6.2 Investigation of noise variation at &-star points 

In order to determine the reason for the relallvely poor improvement in the performance 

of the mathematical model which has resulted from the inclusion of the &-star portion, it is 

necessary to invesllgate the relationship, at each of the additional test points, between the value 

of the noise function calculated by the FE analysis and the response surface prediction obtained 

uSing Just a standard CCD. As an example, Figure 7.1 shows the comparison between these 

funcllons at the centre pOint of the deSign variable space (& = 0), and at each of the £-star pOints 

for which the variable A (skirt thickness) has a non-zero value. The four values of £ chosen are 

those used in the analysis of Secllon 7.6.1, above. The predictions at these points are obtained 

using the 36 parameter strict quadratic model described previously, constructed using a 79 test 

CCD with a = 1 and no = 1. 

870 

869 

868 

dB{A) re 1 pW 867 

866 

865 

864 

.0.10 -005 

--0- FE prediction 

I response swface 
prediction 

0.00 005 0.10 

a parameter 

Figure 7.1 Comparison of FE analysis noise value with that predicted 
using a standard CCD with 79 tests and 36 eoefficients 

(n = 7, a = 1, Do = 1) at &-star points with variable A non-zero 
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This graph shows that, over the range mvestigated, the slope of the predIctive model is 

closely approximating that of the true response, with little error occurring at the £-star points, 

even with £ = 0.1. The graph shows the middle 10% of the bound-to-bound variable range of 

the slart thickness variable. Since there is such close correspondence between measured and 

predIcted values, it IS unsurpnsing that tiJe approximating model is little changed by the 

inclusion of a pair of these data points. 

This effect can be seen more clearly by considenng the magnitude of the errors which 

occur at each of the £-star points. Figure 7.2 shows the error values, in dB(A), for each of the 

points of Figure 7.1. 

004,-__________________________ -, 

002 

000 
dB(A) re 1 pW 
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-004 

-OJJ6 +-~ __ _._--~--._-J--_._--~__1 
-010 -005 000 005 0.10 

a parameter 

Figure 7.2 Prediction error using a standard CCD with 79 tests 

and 36 coefficients (n = 7, a = 1, no = 1) 

at £-star points with variable A non-zero 

The maximum error occumng at any of the £-star points is thus of magnitude 

0.06 dB(A), which is less than 0.8% of the function range. Comparing this WltiJ the lack of fit 

data given m the first line of Table 7.4, it can be seen that even this maximum error at tiJe £-star 

points is only slightly greater than the average error at the design points, and significantly less 

tiJan the maximum error at these locations. This, then, is the reason that little modification to the 

parameter values is reqUIred in order to minimIse the error at the design points, using a least 

squares critenon, when the additional £-star points are introduced. 

It is noticeable from Figure 7.2 that the maximum error occurring at the £-star points 

WltiJ variable A non-zero (the dommant variable ID the model), is obtamed with a value of 
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E = 0.025, which is also the value which yields the greatest change in overall prediction error 

(fable 7.4) and parameter values. 

The above analysis may also be repeated for each set of E-Star points in which one of the 

other variables is at a non-zero level. These confirm that there is little lack of fit between the FE 

analysIs value and the prediction based on the standard CCD at these points, and hence only 

minor modifications will be made to the model parameters when such pomts are included in the 

experimental deSign. As an example, Figure 7.3 shows the measured and predicted values for 

the variable C (bearing panels 2 & 4), m which the maximum error is 0.021 dB(A), which IS 

Just over 0.25% of the function range. 
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Figure 7.3 Comparison of FE analysis noise value with that predicted 

using a standard CCD with 79 tests and 36 coefficients 

(n = 7, a = 1, 110 = 1) at E-star points with variable C non-zero 

In addition to explaining the small improvement gained by including the E-star points, 

these tests also demonstrate that it is possible to obtain genuine additional information 

concerrung the variation of the noise function by carrying out tests close to the centre of the 

design variable space. This observation is valid for tests With an E value as low as E - 0.025. 

7.6.3 The CCD with single E pair 

It has been shown in Sectlon 7.6.1 that the mclusion of a complete E-star portion in the 

experimental design leads to little Improvement in the overall predictive ability of the 

mathematical model constructed from this design. It is therefore unlikely that the designs 
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outlined in Section 7.3, which include just two of the ongmal 2n £-star points, will prove to be 

of any practical use In addressing the noise simulation problem. Since the number of additional 

tests is now much smaller, the effect on the variance value is expected to be greatly reduced, 

with all parameter estimates remaining essentially unchanged from those of the standard CCD. 

In order to confirm this, and to investigate the effect of using £ pairs with different selections of 

the non-zero parameter, the following tests have been conducted. Seven expenmental designs 

have been constructed, each containing the 79 tests of the standard CCD, as descnbed 

previously, plus two additional points lying at ±£ = 0.025 on one of the variable axes, to give a 

total of 81 test pomts. Each of these designs has then been nsed to fit the 36 term strict quadratic 

model used above, and the results compared with both the standard CCD and the CCD With full 

E-Star portion (E = 0.025) described m the previous section. 

The results of the lack of fit calculations In each of the three test categories are shown in 

Table 7.8. The first line of this table refers to the results obtamed using the standard CCD. The 

next seven lines refer to the £-prur designs currently being investigated, with the first column 

indicating the vanable which takes a non-zero value m the two extra tests. The final line shows 

the results obtained using the full £-star portion with parameter £ = 0.025, and IS as shown In 

Table 7.4. 

Maximum lack of fit - &l. Average lack of fit - &l. 
Variable DeSign Factorial Higher Design Factorial Higher 

standard 4.0151 2.6508 6.2354 0.67564 0.85803 2.6048 
A 4.0171 2.6528 6.2808 0.66716 0.85808 2.6026 
8 4.0161 2.6519 6.2628 0.66363 0.85807 2.6035 
C 4.0162 2.6519 6.2640 0.66385 0.85807 2.6035 
D 4.0161 2.6519 6.2647 0.66398 0.85808 2.6034 
E 4.0161 2.6519 6.2641 0.66387 0.85808 2.6034 
F 4.0161 2.6520 6.2643 0.66390 0.85808 2.6034 
G 4.0162 2.6519 6.2637 0.66381 0.85807 2.6035 
full star 4.0195 2.6553 6.3491 0.59321 0.85819 2.5995 

Table 7.8 Variation of lack of fit with £-pair variable for augmented 
CCD with 81 tests and 36 coefficients (n = 7, no = 1, E = 0.025) 

These lack of fit data show the expected result that the inclusion of an £ pair in the 

design Yields virtually no improvement in predictive accuracy. Additionally, it can be seen that, 

although the use of an £ pair usmg the dominant variable A gives marginally better results In 

terms of minimiSing the average lack of fit at the 'Higher' test points, this deSign performs 
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worst in other categories, and in general there IS no practical advantage in selecting a particular 

vanable In preference to any of the others. 

In analysing the variance values for each of the designs, it is found that, as may be 

expected, the variance value for the e variable IS the same in each design, as are the values for 

each of the non-e variables. A similar correspondence is found between covariance values. 

These values are summarised In Tables 7.9 and 7.10, and are valid for all seven of the e-pair 

designs. 

Class of Term Standard CCD e pair 

Mean 0.015773 0.014434 
Main effect (e) 0.015152 0.015151 
Main effect (non-e) 0.015152 0.015152 
Linear interaction 0.015625 0.015625 
Pure quadratic (e) 0.19147 0.19134 
Pure quadratic (non-e) 0.19147 0.19134 

Table 7.9 Comparison of variance values between standard CCD 
and CCD with E pair (E = 0.025) and no = 1 : 36 coefficients 

Class of Term 

mean I pure quadratic (E) 
mean I pure quadratic (non-e) 
pure quadratic (E) I pure quadratic (non-E) 
pure quadratIc (non-e) I pure quadratic (non-e) 

Standard CCD 

-0.001757 
-0.001757 
-0.030754 
-0.030754 

E paIr 

-0.001351 
-0.001341 
-0.030881 
-0.030884 

Table 7.10 Comparison of covariance values between standard CCD 
and CCD with E pair (£ = 0.025) and no = 1 : 36 coefficients 

These results confirm that the variance of the mean effect is altered much less than was 

the case for the E-star design. All other vanance and covariance effects are also largely 

unchanged from the values obtained using the standard CCD. 

Table 7.11 shows the parameter estImates which are obtained when fitting the 36 term 

model to the standard CCD, the CCD with smgle e pair in vanable A (e = 0.025), and the CCD 

with full e star (E = 0.025). The lInear interaction terms are not shown, as these are identical in 

each case. The table shows that the degree of modificatIon which occurs in each parameter 
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esttmate, compared with the standard CCD, increases as the number of additional tests rises. As 

discussed in the previous section, the main effect terms are virtually unchanged by the small 

amount of additIOnal data, and even the mean and quadratic terms are little modified by the 

inclusion m the experimental design of either a smgle s pair or a complete e-star portion. 

Term Standard CCD e pair (A) full star 

MEAN 86.711 86.716 86.723 
A -2.2352 -2.2352 -2.2352 
8 -0.20402 -0.20402 -0.20402 
C -0.38703 -0.38703 -0.38703 
D -0.22783 -0.22783 -0.22784 
E -0.15832 -0.15832 -0.15832 
F -0.23327 -0.23327 -0.23328 
G -0.33550 -0.33550 -0.33550 
A2 0.98271 0.98204 0.98101 
8 2 0.02250 0.02182 0.02080 
C2 0.06593 0.06524 0.06215 
1)2 0.19729 0.1%60 0.19558 
E2 0.05800 0.05732 0.05629 
F2 -0.07867 -0.07936 -0.08038 
G2 0.11884 0.11816 0.11713 

Table 7.11 Comparison of parameter estimates between standard CCD, 
CCD with e pair (s = 0.025, variable A) and no = 1 and 

CCD with s-star portion (e = 0.025) and no = 1: 36 coefficients 

7.7 Observations on the use of simulated centre point replications 

The numerical results of the previous sections have shown that it is possible to obtain 

genuine additional information concermng the variation of the noise function by performing 

tests at points close to the centre of the design variable space. The use of an s-star portion has 

been shown to yield a similar small increase in the accuracy of the fitted model as was obtained 

by simply mcluding the same number of exact centre point replicates, With the advantage that the 

present results represent a real improvement in model performance, rather than an illusory gain 

based on the adoption of invalid error assumptions. 

Addittonally, although precluded in the present noise analysis example by the CUboidal 

nature of the design variable region, theoretical studies have shown that in general deterministic 
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expenmental environments, the specification of an E-Star or E-pair portion can be made without 

significantly compromising the orthogonal or rotatable nature of a standard CCD. 

In the specific case investigated,little improvement in model accuracy has been obtained 

over that of the approximating model denved from the standard CCD, due to the small lack of fit 

wluch occurs at points close to the centre of the region. In such cases the advantage to be gained 

from including centre-point pseudoreplicates is mmimal. If, however, the onginal response 

surface exlubited a substantial amount of high-frequency fluctuation, or 'peakiness', then 

repeated testmg over a small area would be lIkely to result in a significant gain m the predictive 

accuracy of the fitted model. These multiple tests would provide a better picture of the overall 

trend of vanauon in the response funcuon, rather than relying on data collected at a single pomt, 

which may be excessively influenced by the peaks and troughs of a heavily fluctuating 

surface. For the partlcular case of radiated noise, such a response may result from the use of a 

low value of structural dampmg wlthm the engine model, as discussed by MIlsted, Zhang and 

Hall (1993). 

The numerical examples of the previous secuons have shown, however, that if the 

response IS smooth, With a close correspondence between the original response and the 

predlcuon based on the standard CCD, then lIttle IS to be gained from this type of multiple 

tesung. In this case, the most effective use of additional test points IS not to provide an increase 

m the density of tesung in certaIn areas, but to improve the distribution of test points throughout 

the entire design variable space. A modified design could, for example, include some fraction of 

a second 2n hypercube, with levels ±1I2. These points could be specified using a procedure 

SimIlar to that followed m Section 6.5.1 to select additional pomts at which to test the lack of fit 

due to lugher order terms. A design of this type would also allow the possibility of retaining the 

properties of orthogonallty and rotatability . 

The effect of such a modification, however, would be to substanually increase the total 

test requirement for the deSign. It should be borne in mind that the results of the previous 

chapter have shown that, even for the standard CCD, the ratio of significant terms to number of 

tests, for the seven vanable example, may be as small as 17/79", 22 %, and IS unlikely to be 

greater than 361 79", 46 %. With a full E-star portion this falls to 36/93 '" 39 %, whilst with a 

second hypercube containing as few as 16 points, the ratio is 36 1 95 '" 38 %. If a second 

hypercube were to be included, then one could perhaps reconsider the function of the onginal 

star portion, since tests at addIuonal variable levels would now be aVailable. However, a design 

m which this level of modification has taken place IS, of course, no longer a CCD. A further 

disadvantage of the CCD which needs to be addressed is the relati ve imprCCIsion with which the 

pure quadratic components of the second order model are estimated, as discussed in detail in 

Secuon 6.5.1. What is required IS an economic second order design, constructed specifically to 

estimate just the parameters of the strict quadratic model, and to estimate these with 

approximately equal accuracy. Such designs are considered in detaIl in the next chapter. 
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Appendix 7A 

Values of a 2 and £2 for both orthogonahty and rotatablhty of CCD WIth £-star portion 

n F Resolutton 110 N a 2 .2 

3 8 Full 0 20 2.79 -0.465 
3 8 Full 1 21 281 -0329 
4 16 Full 0 32 3.95 -0.635 
4 16 Full 1 33 397 -0482 
5 32 Full 0 52 554 -1.14 
5 32 Full 1 53 557 -0.980 
5 16 V 0 36 400 0000 
5 16 V 1 37 400 0169 
6 64 Full 0 88 7.70 -2.18 
6 64 Full 1 89 7.74 -201 
6 32 VI 0 56 564 -0471 
6 32 VI 1 57 565 -0.295 
7 128 Full 0 156 106 -395 
7 128 Full 1 157 107 -3.78 
7 64 Vll 0 92 786 -1.49 
7 64 Vll 1 93 789 -132 
8 256 Full 0 288 145 -6.74 
8 256 Full 1 289 146 -6.58 
8 128 Vlll 0 160 108 -3.28 
8 128 Vlll I 161 109 -310 
8 64 V 0 96 7.96 -0.771 
8 64 V 1 97 798 -0583 
9 512 Full 0 548 198 -11 0 
9 512 Full 1 549 19.9 -10.8 
9 256 IX 0 292 148 -609 
9 256 IX 1 293 149 -592 
9 128 VI 0 164 110 -257 
9 128 VI 1 165 11.1 -239 
10 1024 Full 0 1064 27.0 -17.1 
10 1024 Full 1 1065 27.1 -17.0 
10 512 X 0 552 20.1 -103 
10 512 X 1 553 20.2 -102 
10 256 VI 0 296 IS I -542 
10 256 VI 1 297 15.1 -5.25 
10 128 V 0 168 11.2 -184 
10 128 V 1 169 11.2 -165 
11 2048 Full 0 2092 37.0 -26.1 
11 2048 Full 1 2093 371 -259 
11 1024 Xl 0 1068 274 -165 
11 1024 Xl 1 1069 27.5 -16.4 
11 512 Vll 0 556 205 -968 
11 512 Vll 1 557 205 -952 
11 256 V 0 300 153 -4.72 
11 256 V 1 301 153 -4.55 
11 128 V 0 172 113 -1.07 
11 128 V 1 173 113 -0876 
12 4096 Full 0 4144 508 -389 
12 4096 Full 1 4145 509 -387 
12 2048 xn 0 2096 374 -255 
12 2048 xn 1 2097 37.5 -253 
12 1024 Vlll 0 1072 27.8 -15.9 
12 1024 Vlll 1 1073 27.9 -15.7 
12 512 VI 0 560 20.8 -9.02 
12 512 VI 1 561 208 -885 
12 256 V 0 304 155 -401 
12 256 V 1 305 155 -382 
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Appendix 7B 

The CCD With one t pair and equal scaling 

In order to sausfy the moment matnx condiuon [ii] = I, wlnlst avmdIng the need for two dIfferent 

scahng factors, the value of the axial parameter a of the ongina! star pomon for the • vanable may be modIfied 

from a to y. The correspondIng design matrix for a three variable example is then of the form 

-g -g -g 
-g -g +g 
-g +g -g 
-g +g +g 
-g -g -g 
-g -g +g 
-g +g -g 
-g +g +g 

-ag 0 0 
+ag 0 0 

D= 0 -ag 0 
o +ag 0 
0 0 -yg 
0 0 +yg 
0 0 +eg 
0 0 -tg 
0 0 0 

For the non·. variables the value of the scale factor g is agam 
I 

g =[N I (F + 2(2)] 2 

wlnlst for the. vanable its value must be 

Equating these two expressIOns yields 

andhenoe 

I 
g=[N I (F + 2y2 + 2t2)]2 

F 

2n (7B.l) 

2 

}no 

(7B.2) 

The appropnate value of y can then be calculated for known values of a and •. For the seven variable case, for 

example, the following would be applicable 
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a £ y 

2.8284 0.05 28280 
2.8284 0.10 28267 
1.0000 005 09987 
1.0000 010 09950 

Table 7B.t Values of a and y for a CCD with one e-palr and equal scaling 

Thts example Illustrates the general feature that for the small values of £ reqwred to sll~lUlate centre 

point replications the dtfference of £1 between the values of a1 and y1 is of small magmtude. 

The regressor matnx for tins design is then of the form 

1 XI X2 X3 x2 I ~ xj XIX2 XIX3 X2X3 

1 -g -g -g g2 g2 g2 g2 g2 g2 

1 -g -g +g g2 g2 g2 g2 _g2 _g2 

1 -g +g -g g2 g2 g2 _g2 g2 _g2 

1 -g +g +g g2 g2 g2 _g2 _g2 g2 

1 +g -g -g g2 g2 g2 _g2 _g2 g2 

1 +g -g +g g2 g2 g2 _g2 g2 _g2 

1 +g +g -g g2 g2 g2 g2 _g2 _g2 

1 +g +g +g g2 g2 g2 g2 g2 g2 

x= 1 -ag 0 o a 2g2 0 0 0 0 0 

1 +ag 0 o a 2g2 0 0 0 0 0 

1 0 -ag 0 o a 2g2 0 0 0 0 

1 o +ag 0 o a 2g2 0 0 0 0 

1 0 0 -Vg 0 o y2g2 0 0 0 

1 0 0 +yg 0 o rg2 0 0 0 

1 0 0 -Eg 0 o £2g2 0 0 0 

1 0 0 +Eg 0 o e2g2 0 0 0 

1 0 0 0 0 0 0 0 0 0 

Calculallon of the elements of the moment matrix N·IX'X shows that this design also meets the 

followmg reqwrements of Section 5.2. for all i < j < p < q 



[ij) = [ijj] = [iij) = 0 

[ujp) = [iiJp) = [iJpp) = 0 

[llIj) =[lJJJl = 0 
[ijpq) = [ijp) = 0 

It can also be seen that the values of the pure second-order moments are as follows: 

[u) = N-I[Fg1 + 2a1g1) = gl N-I[F+ 2a1) for non-£ variables 

[ll) = N-I[Fg1 + 2y1g1 + 2£lgl) = glN-I[F+ 2y1 + 2£1) for the £ vanable, 

Since 2a1 =2yl+ 2£1, the value of the scaling factor g gives [li) = 1 for each vanable. 

The values of the non-zero fourth order moments for this design are: 

[llJJ) = N-I Fg4 

[iiii) = N-I[Fg4 + 2a4g4) 

[Iill) = N-I[Fg4 + 2y4g4 + 2e4g4) 

for all vanables; 

for non-£ variables; 

for £ vanable; 
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The conditlon for satlsfymg the orthogonallty requirement [iijj] = 1 is thus Identical to that for the 

standard CCD 

For rotatablhty, however, two conditions are obtamed. 

These cannot be Simultaneously fulfilled unless £ = 0 and y = a (since otherwise y4 + £4 ~ a 4). 

The amount 11 by winch the nght-hand side of (7B.4) differs from that of (7B3) IS 

b = a4 _ (a2 _ 82)2 _ 84 

b = 0 4 - (04 - 20282 + ,,4) _ ,,4 

b = 202,,2 - 284 

b=2~[02_E2] 

(7B.3) 

(7B.4) 

As an example of the small magnitude of this difference, the following table shows the values of 11 ad 
fractlonal difference ID the right-hand side of the equatlon for the seven variable case, with F = 64 The values of 

the parameters used are a =2 8284 (standard CCD rotatalnhty critcrion) and a = 10, e =005 ande = 0.10. 
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a a 4 61 a 4 % 

28284 005 00400 64 0.062 
10000 005 0.0050 1 0499 

28284 010 0.1598 64 0250 
10000 0.10 00198 1 1980 

Table 7B.2 Values of 11 for a CCD with one E-pair and equal scaling 

The amount by winch the rotatabllity condition for the E variable deviates from that for the standard 

CCD is thus extremely small for the seven vanable example. This amount WIll of course increase with 

decreasing a, and increaslUg E, although it is independent of the value of F. Even for the case of n = 3, 

F = 2' = 8, a = I 0 and E = 0.1, the value of 6 I a4 is stili 1.980%. 

It may thus be concluded that ID general the mcluslon of an E-plllr with equally scaled variables leads to 

insigmficant changes IU the ortbogouallty and rotatabllity cnteria of the standard CCD. Since the results of Table 

7B 2 have shown that the dIfference between the two axial parameters a and y is also negligtble, It is reasonable 

to employ the same value of a - y as would be used in a standard CCD. This a1ternallve specrlical!on of the 

CCD with slUgle E pmr and equal scallUg IS thus Idenllcal, IU pracllce, to the ongiual description of Section 73, 

in which dIfferent scallDg factors were apphed to the variable values, according to whether they appeared at 
non-zero levels within the E-Star portion. 
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Appendix 7C 

Lack of fit data for CCD WIth £-star portion 

Maximum lack of fit - E,. Average lack of fit - ER 

• DesIgn Factonal Higher DesIgn Factonal Higher 

staodmd 12483 2.7467 6.2519 015039 0.93156 2.7334 
0.0 13658 2.7506 6.3547 0.14449 093130 2.7289 
0025 1.3764 2.7513 6.3638 0.14817 093130 2.7284 
005 1.3410 2.7510 63323 0.15481 093139 2.7296 
0075 13492 2.7523 63390 0.15628 0.93135 2.7291 
0.1 13489 2.7539 63379 016292 0.93138 2.7287 

Table 7C.I Variation of lack of fit witb .·star parameter 
for augmented CCD witb 92 tests and 71 coefficients (n=7, no=O) 

Maximum lack of fit - E,. Average lack of fit - ER 

• DesIgn Factorial Higher Design Factonal Higher 

staodmd 46395 3.1124 6.4331 0.77241 0.77967 2.6160 
0.0 46404 3.1124 6.4521 066624 0.77978 2.6153 
0025 46411 3.1123 6.4612 067626 077979 26149 
005 46396 3.1123 64298 068395 077954 26158 
0.075 46396 3.1126 64365 068906 077952 26153 
0.1 46393 3.1127 64354 069638 0.77938 26150 

Table 7C.2 Variation of lack of fit with .·star parameter 
for augmented CCD with 92 tests and 17 coefficients (n=7, no=O) 

Maxtmum lack of fit - E,. Average lack of fit - ER 

• DesIgn Factorial Higher Design Factorial Higher 

staodmd 40151 2.6508 62354 0.67564 0.85803 26048 
00 40189 2.6546 63369 0.59544 0.85818 26001 
0.025 40194 2.6551 6.3460 0.59910 085818 25996 
005 4.0183 26542 6.3148 060568 085814 2.6008 
0075 4.0182 26544 63214 060711 085818 2.6003 
0.1 40179 26548 63203 061369 085821 2.6000 

Table 7C.3 Variation of lack of fit with .·star parameter 
for augmented CCD witb 92 tests and 36 coefficients (n=7, no=O) 
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Maximum lack of fit - &t Average lack of fit - ER 
Design Factorial Highet Design Factorial Highet 

standard 12483 2.7467 62519 0.15039 093156 27334 
0.0 1.3698 2.7507 63582 0.14346 093129 2.7287 
0025 13800 27515 63670 0.14713 093129 2.7282 
005 13460 2.7511 63367 0.15405 093138 2.7294 
0075 13539 2.7524 63431 0.15561 0.93134 2.7289 
0.1 13536 2.7541 63420 0.16235 093136 27285 

Table 7C.4 VariatIoD of lack of fit with E·star parameter 
for augmeDted CCD with 93 tests aDd 71 coefficleDts (D=7, no= 1) 

MaxImum lack of fit - &t Average lack of fit - ER 
e Design Factorial Highet DesIgn Factonal Highet 

standard 46395 3.1124 64331 077241 077967 2.6160 
00 46404 3.1124 64528 065918 0.77979 2.6153 
0025 46411 3.1123 64615 0.66909 0.77979 26149 
005 46397 31123 64313 067708 077955 2.6157 
0075 46396 31126 64377 0.68204 077953 2.6153 
01 46393 31127 64367 068929 077939 2.6149 

Table 7C.S VariatIoD of lack of fit with e·.tar parameter 
for augmeDted CCD with 93 tests aDd 17 coefficients (n=7, no=l) 

Maximum lack of fit - &t Average lack of fit - ER 
e DesIgn Factorial Highet Design Factonal Highet 

standard 40151 2.6508 62354 0.67564 085803 26048 
00 40190 26547 63404 058955 085819 2.6000 
0025 40195 26553 63491 059321 085819 25995 
005 40185 26543 63192 060006 085814 26006 
0.075 40183 2.6545 63255 060159 0.85819 26001 
0.1 40180 2.6549 6.3244 060827 0.85822 2.5998 

Table 7C.6 VariatloD of lack of fit with E·.tar parameter 
for augmeDted CCD with 93 tests aDd 36 coefficients (D=7, Do=l) 
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8. Economic second-order designs 

The results of numerical tests using both the linear + interactIons model of Chapter 4 

and the 71 term quadratic model in Chapter 6 have shown that, m the present engine noise 

mvestigation, the effect of interactIons of order greater than two is extremely small, but that 

pure quadratIC terms contrIbute significantly to the overall shape of the response 

surface. AddItIonally, the results of Section 6.5.1 have shown that the distribution of test points 

in the Central ComposIte Design results in a much less precise estImate of the pure quadratic 

effects than of the linear and interactIOn components. This reveals a mIsmatch between the 

model which IS to be fitted and the tests which are performed in order to estimate this model. 

In order to achieve a better match between design and model, an experimental design is 

sought which is specIfically constructed to assess only those terms which have been shown to 

be of interest, but to estImate them with approximately equal precision and a minimal number of 

tests. These terms are of the followmg form. 

n 0-1 n n 

y = 110 + 2: II,X, + 2: 2: lI,jX,XJ + 2: IIIIX? (8.1) 
,=1 ,=1 )=1+1 ;=1 

Here the second and tJurd terms on the nght hand side of the equatIon represent the mam effect 

and two-way interaction terms respectIvely, of the Imear + interactIons model, WIth the final 

term representmg the pure quadratIC contributions. Since the two-way interactIon terms are 

SImply mIxed quadratic terms, (8.1) is in fact Identical to the stnct quadratic model of 
equatIon (5.1). 

n n n 

y = 110 + 2: II,Xj + 2: 2: lI,jX,x) 
,=1 ,=1 )=, 

In the fmal term of this equatIOn the COIncidence of I and j produces the pure quadratic terms, 

which can alternatively be described as self-interaction terms. 

As discussed in Section 5.4, comparison of (8.1) with the complete quadratic plus 
interactions model of equation (5.12), wluch may be constructed from a full three level factorial 

experiment, shows that the successful use of the strict quadratic model to represent the 

behavIOur of the system depends on the assumption that no significant Interactions occur which 

involve more than two factors, and, further, that the only two factor interactions wluch do occur 

are the linear by lInear ones, XjXj' WIth the cubic X. 2Xj, XjX/ and quartic ~2X/ terms also 

omitted. 
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8.1 A survey of available second-order designs 

Due to the widespread use of quadratic models, a substantial body of theoretical, 

numerical and expenmental work has been published on the subject of economic second-order 

designs. However, a comprehensive companson of all available designs in the context of the 

computer simulation of engme noise radiation is not within the scope of the current work. Of 

more Importance is the identification of a sw table existing experimental scheme. Smce a general 

approach IS required, it is important that a particular deSign be available for a wide range of the 

number of design variables, n. This section outhnes the charactenstics of the more commonly 

used designs. 

8.1.1 Box-Behnken 

The class of designs mtroduced by Box and Behnken (1960) are widely used in general 

expenmental work. Their two mam advantages are that they require Just three levels of each of 

the design vanables, and that many of the designs may also be blocked orthogonally. The first 

of these factors may be important if quantitative vanables are used, or if, for some or all of the 

variables, only a limited number of levels may feasibly be tested. In contrast with the Box

Behnken deSigns, a general CCD, as described m Section 6.1, requires that each of the 

vanables be tested at five levels (-0, -I, 0, 1, 0), although this is of course reduced to three 

levels If 0 = 1. As discussed in SectIOn 2.10, blocking is necessary if it is not possible to 

conduct all experimental tests under identical conditions. Orthogonal blocking ensures that 

estimation of design variable parameters IS independent of any unwanted effect which may vary 

between blocks. An additional advantage of the Box-Behnken design is that, although not 

aVaIlable for all n, Box and Behnken (1960) hst designs for a number of different problem sizes 

(n = 3-7, 9-12, 16). 

The disadvantages of the Box-Behnken designs are that, although highly orthogonal, 

With only the mean and pure quadratic terms correlated (as for the CCD), they are not always 

block orthogonal, nor are they always rotatable. Perhaps of more importance in the present 

application IS the fact that the test reqwrement IS stili substantially greater than the number of 

parameters to be estimated. For a seven variable problem, for example, 36 parameters are to be 

estimated, whereas the Box-Behnken deSign contaIns 62 test pomts' giving a ratio of 58%. This 

falls slightly With problem Size, so that for 10 vanables this saturation ratio is 39%. 

In the computer analysis of radiated engine noise, blockmg of tests is not required, as 

discussed in Section 2.10, smce all relevant conditions are exactly repeatable. Additionally, 

there is no hffilt on the number of different variable levels which can be tested, although there is, 

of course, a restriction on the magnitude of each level. The rather high number of tests IS thus 

not compensated for, in tlte present noise analysis exmnple, by other beneficial qualities. 
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8.1.2 Box-Draper saturated designs 

A number of saturated designs, in which the number of parameters to be estimated is 

equal to the number of tests in the design, were introduced by Box and Draper (1971). Designs 

involvmg n = 2 and n = 3 vanables were given which are optimal in terms of maximising the 

determmant IX'XI. The designs were generalised for n:2: 4 by Box and Draper (1974), although 

these are not necessarily opttmal, judged on the above criterion. 

8.1.3 Hoke 

A class of economical designs for fitting the strict quadratic model was developed by 

Hoke (1974), generalising earlier designs by Rechtschaffner (1967). These designs are based 

on partially balanced JITegular fractions of the 3 n factonal, and are valid for any number of 

vanables n :2: 3. The Hoke designs fall into two categories; firstly, a class of desIgns in which 

the number of tests IS equal to the number of parameters to be estimated, known as a 'satl1rated' 

desIgn; and secondly, a class of 'minimally augmented' desIgns, in which extra tests are added 

to the saturated desIgn in order to improve efficiency and to provide a number of degrees of 

freedom for esttmatlon of errors. 

The price to be paId for obtaIning such a small experimental design, and thus high 

saturatIOn ratIo, IS that the designs are neither orthogonal nor rotatable, although as discussed in 

Section 2.8, neIther of these properties is absolutely indIspensable. One Important feature of the 

Hoke desIgns, however, is that they are mvariant under permutation of the factors in the model, 

so that, as descnbed in Section 2.9, the estimates of the parameters do not change if the order of 

the van abIes IS changed. Thus all the parameters of the same form are measured with equal 

precision; e.g. the variance of parameter fl-u is independent of the value of i. 

Despite the small number of tests used, Hoke showed that his designs compared 

favourably WIth both Box-Behnken designs and a particular class of CCD employed by Hartley 

(1959), which, additionally, are not permutation-invariant. A further investigation by Lucas 

(1976) compared the Hoke designs with the CCD and Box-Draper designs, and found that the 

Hoke designs performed better than the satl1rated designs of Box-Draper, and nearly as well as 

the CCD, although requiring far fewer tests. 
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8.1.4 Uniform shell designs 

These were developed by Doehlert (1970) and Doehlert and Klee (1972), and are 

generated from the points of a regular simplex by calculatmg the difference between the 

corresponding variable values of pairs of points. The location of these pomts is such that they 

are umformly spaced and lie on concentnc spherical shells. The disadvantages of these designs 

are that a large number of variable levels are reqwred, and, more importantly, that the number of 

points on a each shell IS n2 + n. Thus even a single shell plus centre point would contain 

0.5n2 + O.5n more tests than there are parameters in the model. For a seven variable test, for 

example, the number of tests required is 57, givmg a significance ratio of 63%. Additionally, 

Lucas (1976) found that the umform precision deSign did not perform as well as either the Box

Behnken deSign or the CCD. 

8.1.5 Hybrid designs 

Introduced by Roquemore (1976) these deSigns are constructed from a CCD of 

dimension n-l, augmented with an extra row. The specification of tlus extra test is determmed 

m such a way as to achieve a slmllar degree of orthogonality as the CCD, whllst also being 

nearly rotatable. The pnnclpai disadvantages of the hybnd design are that it is only available for 

a fairly limited range of problem sizes (n = 3, 4, 6 or 7), and that many of its points lie well 

beyond the bounds of the unit hypercube. 

8.1.6 Other second-order designs 

Of the many other schemes wluch have been put forward for the selection of test points 

m a second-order design, the following are worthy of mention. An early example of a family of 

saturated deSigns is given m Koshal (1933), from which It is possible to construct specific 

designs of any order d in n vanables. DeSigns which are based on irregular fractions of 

factorials, and are very nearly saturated, were mtroduced by Westlake (1965) for n = 5, 7 and 9 

vanables. Much simpler designs which achieved a similar, or in some cases improved, level of 

saturation were suggested by Draper (1985). A set of saturated designs which are constructed 

usmg tests which form part of the three level factorial design were developed by Notz (1982). 
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8.2 Selection of an appropriate design 

In selecting an economic second-order design to use in the investigation of engine 

nOise, the two pnncipal reqUIrements are that a better estimate be obtained for the pure quadratic 

terms of the model, and that the number of tests be kept as low as possible Without 

compromising the precision with which each of the parameters IS estimated. It is not clear, 

however, to what extent the number of test points in the design may be reduced before 

substantial errors occur in the construction of the predictive model. Box and Draper (1987, 

p.520) suggest that designs which are either saturated or near to saturation are likely to be of 

interest If one of the followmg conditions apply. 

1. Runs might be extremely expensive. 

2. The checking of assumptions, the need for an internal error eStimate, the need to 

check fit might not be regarded as important in a particular applicatIOn. 

3. The objective might be to approximate a function that can be computed exactly at 

any given combination of the mput vanables; that IS, there is no experimental error. 

Of these, the first and third are certainly true for the process under current investigation, 

with the Importance of the second criterion being substantially reduced by the lack of 

experimental error. It is thus likely that, for the noise analysis problem, a design wluch is close 

to saturation will provide sufficient information to allow the necessary parameters to be 

estimated with the reqUired precision. Of those designs described in Section 8.1 wluch are of a 

saturated or near-saturated nature, the most appropriate m the present circumstances would 

appear to be the class of designs due to Hoke. These possess the advantage that both saturated 

and near-saturated designs are available within the same scheme, and that these are valid for all 

n 2: 3. A further advantage is that, in addition to the tests conducted by Hoke, mdependent 

investigators have found that these designs perfonn well in comparison with alternative designs 

having a similar, or greater, number of test points (Lucas, 1976, Khun and Cornell, 1987). For 

these reasons, the Hoke designs have been chosen for use in the further investigation of the 

engme noise problem, and the remaimng discussIOns of the present chapter Will be restricted to 

deSigns of this class. 

• 
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8.3 Description of the Hake designs 

The description of the Hoke designs presented in this section IS based on that given by 

Hoke (1974). Before demonstrating the way in which the Hoke designs are generated, it is 

useful to adopt the folloWIng conventions. As WIth the designs of previous chapters, the scaling 

convention of Section 2.12 is adopted, wluch, for tests drawn from the three level factorial 

design, results in normalised vanable levels of -1, 0 and +1. Additionally, each of the test points 

of the design is notated as (xl x2 x3 ... x,J, at wluch each vanable i (for i=l, ... , n) is set to the 
(normalised) level ~, which may take the value -1, 0 or 1. Further, let;t ( ... ) represent the 

famIly of test points obtained by permuting the symbols enclosed within the brackets. As an 

example,;t (-1 0 1) gives the set of POInts {(-I 0 1), (-1 1 0), (0 -1 1), (0 1 -1), (1 -10), 

(lO-I)}. 

In forming the Hoke deSIgns, the complete set of 3D factonal tests SFS is first diVIded 

into subsets, such that each member of the r th subset Sf lies on the hypersphere of radius r ll2 

about the centre point of the design (0 0 0 ... 0), for 0 ::;; r::;; n. The total set is thus partitioned as 

(8.2) 

where L ® represents disjOInt union 

In order to lie on the hypersphere of radius r1l2, each member of the set Sf must have 

exactly r variables which take a non-zero value, such that 

r n - r -,. - ... 
Sr=11:(±I:!:l ... ±100 ... 0) (8.3) 

Each Sf is then divided Into further subsets S,(j), in whIch exactly j of the non-zero 

terms take the value + 1, and the remaining r-J take the value -1. Each subset is then of the form 

j nor 
~ ~ 

S'(J) = 11: ( + 1 + 1 ... + 1 0 0 ... 0 -1 -1. .. -1 ) (8.4) 

Special notation is used for the following three test points, within each of which all 

variables are at the same level. 
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8n(0) = (-1-1 ... -1) =-1 

80 = (0 0 ... 0) = 0 

8n(n) = (+1 +1 ... +1) = 1 

As an example, the four variable subset 82(1) = n (1 00 -1) consIsts of the following 
twelve test points 

1 0 
1 0 
1 -1 
o 1 
o 1 
o 0 
o 0 
o -1 
o -1 

-1 1 

o -1 
-1 0 
o 0 
o -1 

-1 0 
1 -1 

-1 1 
1 0 
o 1 
o 0 

-1 0 1 0 
-1 0 0 1 

and the complete three level factonal is composed of the subsets 

set r j No. (1) No.(O) No.(-I) 

=j = nor =r-J 

80 0 0 0 4 0 
8 1(0) 1 0 0 3 1 
8 1(1) 1 1 1 3 0 
82(0) 2 0 0 2 2 
82(1) 2 1 1 2 1 
82(2) 2 2 2 2 0 
83(0) 3 0 0 1 3 
83(1) 3 1 1 1 2 
83(2) 3 2 2 1 1 
83(3) 3 3 3 1 0 
84(0) 4 0 0 0 4 
84(1) 4 1 1 0 3 
84(2) 4 2 2 0 2 
84(3) 4 3 3 0 1 
84(4) 4 4 4 0 0 

= ( 0 0 o 0) 

= n(O 0 0-1) 

= n ( 1 o 0 0) 

= n(O o -1 -1) 

= n ( 1 o 0 -1) 

= n( 1 1 o 0) 

= n( 0 -1 -1 -1) 

= n( 1 o -1 -1) 

= n( 1 1 o -1) 

= n ( 1 1 1 0) 

= (-1 -1 -1 -1) 

= n( 1 -1 -1 -1) 

= n ( 1 1 -1 -1) 

= n( 1 1 1 -1) 

= ( 1 1 1 1 ) 
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As a companson with previous designs, examination of the above table shows that the 

subset Sn comprises the vertices of the hypercube, which are also the members of the Z n full 

factorial design introduced in Section 4.3. Similarly, the star points of the CCO form the set SI 

if a value of a = 1 is used (see Sections 6.1 and 6.4). The set of pOints So lying on a 

hypersphere of radius zero contains just the Single point (0 0 ... 0), which is the centre point of 
the deSign space. 

Worlang first with a seven variable example, and then generalising the results for n ~ 3, 

Hoke selected four classes of these subsets as follows: 

CI:-I,O,I 

Cz : SI(O), SI (1), So.I(O), So_l(n-l), So(1), So(n-l) 

~ : ~(O), SI (Z), So_2(0), So_in-Z), So(Z), So(n-Z) 

C4 : l%(0), S3(3), So.3(0), So_3(n-3), So(3), So(n-3) 

From these four classes, subsets were then combined so as to generate all of the 

possible designs having (k+ 1)(k+Z)/Z tests, each of these saturated designs then being analysed 

to determine the most efficient In terms of minimizing the trace of the inverse information 

matnx, tr[(X'X)-I]. Note that, for a given deSign Size, X'X only differs by a constant from the 

moment matnx N·IX'X used in prevIOUS chapters. The follOWing three designs were found to 

yield the best performance. 

0 1: -I, So(n-l), SI(1), So(Z) 

Oz: -I, So(n-l), SI(O), So(Z) 

0 3 : 0, So(n-l), 80_1(0), So(Z) 

These designs are valid for all n > 3. When n = 3 the subsets So(n-l) and So(Z) are 

identically l%(Z), and the subset So(Z) is replaced With Sn(1) in each of the above designs. 

A senes of minimally augmented designs was then derived by adding to each of the 

above deSigns that subset of Cz not already performed which gives the sharpest rise in precision 

of estimation of parameters. The four best combinations were found to be 

0 4 = 0 1 (flSI(O) 

05 = 0 1 (flSo_I(O) 

0 6 = Oz (flSo_l(n-l) 

0 7 = 0 3 (flSI(l) 

Substitution of So(1) for So(Z) is again made when n = 3. 
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Hoke denves expressions for the parameters, variance multipliers var(~)/02 for each 

parameter, and values of tr[(X'X)·I] and IX'XI as a function of n, and quotes the following 

performance data for each design In the case of n = 7. 

var (~o) var (~l) var (f31j) var (~ll) tr[(X'X)·I] IX'XI 

DI 0.047 0.050 0.050 0.101 2.165 0.5273x1()48 

D2 0.055 0.050 0.050 0.101 2.172 0.5273x1()48 

D3 0.152 0.049 0.049 0.106 2.274 0.3847x 1 ()48 

D4 0.039 0.046 0.050 0.048 1.748 0.1319x1OSI 

D5 0.043 0.047 0.049 0.051 1.757 0.2777xIOSI 

D6 0.055 0.043 0.049 0.051 1.735 0.3725x1OS1 

D7 0.041 0.047 0.049 0.051 1.758 0.2611xlOS1 

Table 8.1 Comparison of Hoke designs for seven variables 

The best of the saturated designs, judged on a minimum tr[(X'X)·I] critenon is thus 

DI, with the best mmimally augmented design being D6. It is interesting to note that designs DI, 

D2 and D4 contain only subsets of Sn and SI' whose members are all contained in the 2n 

factorial and CCD star portion respectively. In contrast with the CCD, however, the total 

number of pomts In each of the Hoke designs is substanttally lower, so that for a seven vanable 

example 36 tests are required for a saturated design and 43 for a minimally augmented deSign, 

compared With 79 tests for a CCD with half factonal (resolution VII) linear portion. A further 

contrast with the CCD is that the values of the variance parameters for each class of variable are 

of roughly Similar magnitude. For the 36 term model derived from the 79 test CCD, Table 6.11 

shows that the ratio of highest to lowest variance values was 12.6: 1, whilst for the Hoke DI 

design, above, it isjust 2.1: I, and for the minimally augmented deSign D6 falls to less than 

1.3 : 1. Taking the D 6 design as an example, this equalisation has been partly achieved at the 

expense of an approximately three-fold increase in the variances of the mean, main effect and 

interaction terms. More importantly, however, the vanance of the pure quadrattc parameters has 

decreased by a factor of over 3.75. 
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8.4 Application of the Hoke designs 

Detailed numerical tests have been earned out using two of the Hoke designs described 

in the previous sectton. To enable comparison with prevIOus results, the seven variable noise 

analysis problem Introduced in Appendix lC IS agaIn used as an example. The two Hoke 

designs selecled are the best performing saturaled design, DI, containing 36 tests, and the best 

of the minimally augmenled designs, D<;. which contaInS 43 tests. In each case, the model to be 

constructed using these designs is the strict quadratic model of equation (8.1), which In seven 

dimensions contains 36 parameters. The results of these tests are compared with those obtained 

in Sectton 6.5.3, also generated using the 36 parameter stnct quadratic model, derived from the 

79 test CCD. 

The exact specification of the full set of test points used in each of the Hoke designs is 

given In Appendix 8A. It is interesting to note the following features of each of these designs, 

which may also be inferred directly from the descnption of Sectton 8.3. 

1. Both designs Include the subsets -I, S7 (6) and S7(2). These are the pomts 

(-1 -1-1-1-1-1 -1) 1 point 

1t (1 1 1 1 1 1 -1) : 7 points 

1t (1 1-1 -1 -1-1-1) : 21 points 

which all he at the vertices of the two-level hypercube, and are thus members of the 

2° factonal array. Each deSign thus includes 29 of the two-level factorial POInts. 

2. Design DI contains the subset SI(I), whose members are 1t (1 000000), which, 

for a CCD With a = I, are the 'upper' star points having parameter +<1. Similarly, 

design D6 contains the subset SI(O), whose members are 1t (0 0 0 0 0 0 -I), which 

are the 'lower' star points of the CCD, haVIng parameter -a. 

3. DeSign D6 contains the additional seven points SJ.. 6), or 1t (1 1 1 1 1 1 0), which lie 

at the centre of those edges of the hypercube which meet at (1 1 11 1 11). These 

points can be expecled to yield a particular advantage, since each will estimate the 

effect of just one of the pure quadratic terms of the model, and will thus aid in 

distinguishing between these parameters; a particular problem of the CCD. 

4. In summary, the difference between the two Hoke designs is that Dl uses the upper 

star points, whilst D6 uses the lower star POInts, and also contains the seven 

additional 'edge' points. Comparison with the 79 test CCD shows that each of the 

two Hoke deSigns contains just under half the number of two level factorial tests, 

half the number of star points, and no centre point test D6 also contains seven 

additional tests not featl1red in the CCD. 
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8.4.1 Comparison of model coefficients 

The parameter estimates which are obtained using the CCD and each of the Hoke 
designs are shown In Table 8.2. 

Parameter CCD HokeD l HokeD6 

l. MEAN 86.711 86.691 86.713 
2. A -2.2352 -22425 -2.2389 
3. Al 98271xlO-1 9.7734xlO-1 10363 
4. C -3.8703xlO-1 -3.7112xlO-1 -3.7145xlO-1 

5 G -3355Ox1O-1 -3 2932x 10-1 -33063xlO-1 

6. F -23327xlO·1 -23200xlO-1 -23522x1O-1 
7_ D -2.2783xlO-1 -22216xlO-1 -22337xlO-1 

8. B -20402xlO-1 -1.964OxlO-1 -20124xlO·1 

9. Dl 1.9729xlO-1 2.6731xlO-1 1.382OxlO-1 
10 E -1.5832xl0-1 -1.5679xlO-1 -1.5687xlO-1 

11. Gl 1. 1884x 10-1 1.1132xlO-1 1.3657xlO-1 
12. P -7867OxlO-l -1.5393xlO-1 -80867xlO-3 

13 AG -77552xlO-l -94246xlO-l -94643xlO·l 

14. Cl 6.5926xlO-l 1.2nlxlO-1 2.1857xl0-1 
15. El 58004xl0-1 98444xlO-l 3.7231xlO-l 
16 AD 51217xl0-1 53462xlO-l 5309OxlO-' 
17. FG -46484xlO-' -38167xlO-' -4.0363xlO-· 
18. CG -46205xlO-l -5619Ox10·1 -57624xlO-l 

19. AF -44455xlO-l -5.0221xlO-l -5. ll24x 10·1 
20_ AE -42211xlO-' -49408x1O-' -49483x10-1 
21 EF -23002x10-1 -43094xlO-l -44967xlO-' 
22_ HZ 22509x10-1 -88783xlO·3 36786xlO" 
23. AC 2.0781xlO-l 8.4686xlO·3 83275xlO-3 

24. DG -1.5427xlO-l -1.7113x10-1 -1.sn7xlO-· 
25_ BF -13916xlO-l -56973xlO-3 -8822OxlO-3 
26. BE 1.1641xlO-· -16102xlO-' -1 8399xlO-l 
27. CD 1.0701xlO-· 2.1987xlO-l 2.0578xlO-l 
28. EG -9.9781xlO-3 -I 8383x 10-1 -1.9751xlO-l 
29. AB 65416x10-3 -I 8266xlO-3 -3 1523xI0-3 
30. B!) 6.4857xI0·3 l.5883xlO-l 1.329Ox10-· 
31. BC -51mxlO-3 -4.4122x 10-' -4 6485x 10·1 
32 DF -39314xlO-3 -30036xlO-l -3.2207xI0-l 
33. CF 3.3634xlO·3 l.2399xlO-l 1.0459x1O-l 
34. DE -20508xI0-3 1.9413xlO-· 1.8071xI0-· 
35 BG 1.4971xI0-3 23847xI0-' 2. 1228x10-l 
36. CE 28026xI0-4 5.1286xlO-l 50174xlO-l 

Table 8.2 Variation of parameter values for CCD and Hoke designs 

It can be seen from this table that the use of either of the Hoke designs results in little 
modificatlon to the parameter estimates for the largest eight terms, compared with the estimates 

obtained using the CCD. Many of the remaining estimates, however, differ substantially 

between the three designs, with the pure quadratic terms being especially sensitive to the 
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particular dtstrIbutIon of test points. As an example, the highest estimate for the 1)2 term IS over 

35% greater than the lowest value obtained, With the ratio of highest to lowest estimates for C2 

being 5.8, and for f2 over 19. There is also a large degree of fluctuation in the estImation of 

smaller interaction terms, With the parameter CE differing between designs by a factor of nearly 

180. 

The effect of different designs on the value of the estimated parameters can be seen 

more clearly In Figure 8.1, In which terms 6 to 36 of Table 8.2 are plotted against their rank 
order (using the CCD magmtudes as reference). 

024 • CCD 

0 HokeD I 

-0-- HokeD. 

Parameter 012 
Value 

~ 
000 --rJ"-
-0.12 

c 

~24.~---T----r---~--~r---~---; 
6 16 26 36 

Rank order of parameter for CCD 

Figure 8.1 Variation of parameter values for CCD and Hake designs 

This graph shows that the general trend of values for each parameter is broadly similar 

for each of the designs, With the major differences occurring, with the exception of a number of 

the pure quadratIc terms, in parameters of lower value, lying towards the right hand side of the 

graph. In interpreting these variations one should bear in mind the results of Sections 4.6.3 and 

6.5.1. In the first of these It was shown that virtually all of the noise variation at two-level 

factonal points can be accounted for using just the main effect terms of the linear model, whtlst 

SectIon 6.5.1 showed that, using the CCD, the only quadratic parameters which are found to be 
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statistically sIgnificant are the terms A 2 and D2. With the sole exception of the J)2 effect, the 

estimate of each of these terms IS largely unaffected by the use of eIther of the Hoke designs 

shown In Table 8.2, and it is thus likely, despite the dIscrepancy In the estimation of smaller 

parameters, that each of these models will yield similar predictions throughout the whole design 

varIable space. 

8.4.2 Variance values 

The VarIance values which are obtained from the three designs for each class of term are 

shown in Table 8.3. 

Class of Term 

Mean 
MaIn effects 
Linear InteractIons 
Pure quadratic 

CCD 

0.0158 
0.0152 
0.0156 
0.1915 

0.0465 
0.0503 
0.0503 
0.4048 

0.0547 
0.0425 
0.0489 
0.2027 

Table 8.3 Variance values for CCD and Hoke designs (n=7) 

The variance values of the models derived from each of the Hoke designs which gIve 

most cause for concern are thus those of the pure quadratic terms, as was the case using the 

CCD. The halving of the number of star POInts in D1, compared with the CCD, has resulted in 

an approxImate doubling of the variance values of the quadratic terms. A considerable increase 

has also occurred in the variances of the mean, main effect and interactIon terms, but these are 

stIll of relatIvely small magnitude. As expected, the inclusion of the seven addItional 'edge' 

points in design D6 has led to a large reduction in the variances of the quadratIc terms, so that 

the performance of the Hoke D6 design is roughly comparable with that of the CCD, despite 

containing httle more than half the number of test points. 

Comparison of these variance values with those derived by Hoke, given in Table 8.1, 

shows that, although the values for the mean, main effect and Interaction terms are identical, 

those for the quadratic terms are substantIally different The reason for this is a difference In the 

scaling of the pure quadratIc columns of the regressor matrix, a description of which IS given in 

Appendix 8B. The result of this difference In the specification of the fitted model is that, wlnlst 

the coefficient values of the predictive model of equation (8.1) remain unchanged, as do 

predictions calculated USIng these coefficients, dIfferent values are obtained for the elements of 

the covariance matrix for the fitted model. An important effect of this difference in scaling is that 
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the pure quadratic variances shown in Table 8.3 are exactly four ttmes those obtained by Hoke. 

ThIs dtfference IS of httle Importance in comparing the ability of the three designs of Table 8.3 to 

esttmate accurately the pure quadratic parameters, since the adoption of an alternative scaling 

method would result in the pure quadratic variances for each design being modified, equally, by 

a factor of four. 

What is of more importance, however, is that the vanances obtained using Hoke's 

scalmg suggest that, for 0 6 , an error m estimatton of one of the pure quadratic terms will lead 

to an approximately equal predictIon error as would an error in the estimation of any of the 

mean, main effect or interaction terms (see Table 8.1). This is not the case, however, since, as 

discussed m AppendIx 88, the peak value of each of the (scaled) quadratic terms of Hoke's 

fitted model is twice that of the other terms in the model, leading to a predIction error which IS 

proportional to four ttmes the variance value, whilst for the other terms the prediction error is in 

dIrect proportton. In contrast, if the scaling used to obtain the results of Table 8.3 is adopted, 

the peak magnitude of each of the terms is equally 1.0, with the result that the error in prediction 

is dIrectly proportional to each vanance term, leading to a more informative comparison of the 

variance values for each class of term. 

8.4.3 Effect of scaling on the selection of optimum designs 

A further important consideration, which is related to the choice of scaling for the 

quadratic terms of the X matnx, is that Hoke's cnterion for selecttng the most efficient deSIgns, 

within the general class outlined in Section 8.3, is that the trace of the inverse mformation 

matrix, tr[(X'X)-I), be mlnimized_ The value of the trace IS numerically equal to the sum of the 

vanances for each parameter m the fitted model, and will clearly change if the pure quadratic 

variances are modtfied by a change in scaling. The trace may be obtained, for a given design, by 

multiplying each of the appropriate vanance values of Table 8.1 or 8.3 by the number of terms 

to which it applies, and summing the resulting four values_ Since the change in scaling 

descnbed above WIll only affect the magnitude of the pure quadratic variances, the relative 

contribution to the trace made by these values will vary by a factor of four. Since, addItionally, 

the proportion of the trace value which is due to the quadratic variances differs between designs, 

it follows that the relative size of tr[(X'X)-I) between different designs will also be modified if 

an alternative quadratic scaling IS adopted. This IS likely to lead to a different conclusion as to 

which of the full set of possible designs IS the most efficient, in terms of the chosen criterion. 

As an example, consider the two best saturated deSIgns of Table 8.1, °1 and °2, and 

the two best augmented deSIgns, D6 and 04' Table 8.4 shows the variance values and the 

resulting trace using each of the scalIng methods, in which the numeral 'I' refers to the pure 

quadratic variance and trace obtained using Hoke's scaling, as in Table 8.1, whIlst '2' refers to 
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the values obtained using the scaltng of Table 83, in which the pure quadratic variances are four 

times as large. The vanances of the mean, main effect and Interaction terms apply to both 

methods. 

0 1 
O2 

0 4 
0 6 

var(fIo) var <1\) var (fl1j) var (fljj) 1 var (flJi)2 trace 1 

0.047 0.050 0.050 0.101 0.405 2.165 
0.055 0.050 0.050 0.101 0.404 2.172 

0.039 0.046 0.050 0.048 0.192 1.748 
0.055 0.043 0.049 0.051 0.203 1.735 

Table 8.4 The erred of quadratic scaling on the trace of 
Hoke designs in seven variables 

trace 2 

4.290 
4.295 

2.757 
2.799 

Companson of the traces for the two saturated deSigns shows that the advantage of 0 1 

over O2 is sltghtly smaller using the scaling of Table 8.3 than if Hoke's scaling is used. For the 

augmented deSigns, Table 8.4 shows that the chOice of most efficient design will change If the 

scaling of Table 83 is adopted, with 0 4 now having a smaller trace than the previously optimal 

0 6. 

If this alternative method of scaling is used, then It is clear that, since the effect of 

quadratic vanance on the value of the trace is now much greater, the characteristics of an optimal 

design, whether saturated or augmented, are likely to be substantially different to those reqUired 

previously. Therefore, Since each of the designs listed in Table 8.1 are optimal, or nearly so, 

when using the previous scaling method, they are unlikely to be optimal if the alternative 

approach is used. In order to Identify an optimum design based on the new scaling it is thus 

necessary to consider all poSSible combinations of the subsets of the 3D full factorial array, as 

descnbed in Section 8.3. An investigation of this nature would be a major undertaking in Itself, 

and goes beyond the scope of the present work. 

8.4.4 Covariance 

It was shown in Section 6.5.1 that the only non-zero off-diagonal elements of the CCO 

covariance matrix are those representing covariance effects between the mean and pure quadratic 

terms, and between pairs of pure quadratic tenns. Each of the two Hoke designs, however, 

have a dense covariance matrix, with covariance effects occurring between all pairs of tenns of 

the fitted model. The value of all non-zero elements of the covariance matrix for each of the 

three deSigns are given In Table 8.5. 
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Class of Tenn CCD HokeD. HokeD6 

MEAN ~i 0.0040 0.0065 
MEAN ~ii -0.0018 -0.0009 -0.0013 
MEAN ~ij -0.0048 -0.0060 

~i ~j -0.0043 -0.0033 

~i ~ii -0.0299 -0.0071 

~i ~.J.i 0.0066 0.0020 

~1 ~lj 0.0043 0.0023 

~1 ~jk -0.0035 -0.0031 

~li ~.J.i -0.0308 -0.0640 -0.0309 

~ii ~ij -0.0048 -0.0055 

~1l ~Jk 0.0004 0.0013 

~ij ~lk -0.0043 -0.0051 

~Ij ~kl 0.0035 0.0033 

Table 8.5 Covariance values for CCD and Hoke designs (0=7) 

This !able shows that, although the covariance matrix for each of the Hoke designs is 

full, many of the terms are of a very small magnitude. The two largest tenns for D. are the 
interactIOn between a given main effect and the quadratic effect in the same variable, and 

between pairs of quadratic effects. For D6 only the covariance between pairs of quadratic terms 
is significant, and the value of this effect is Similar to that obtamed for the CCD. 

8.4.5 Predictive ability of Hoke designs 

To assess the prediction accuracy of the designs derived from each of the Hoke models, 
the lack of fit was calculated at locations specified by the three categories of test pomts descnbed 
in Section 6.5.1. When companson of these results is made with the results obtained using the 

CCD it should be borne in mind that the number of points which lie within each category is not 
necessarily the same in each case. Additionally, since each of the two Hoke designs only use 
half of the CCD star portion and do not contain a centre point, these extra eight tests, which lie 

at important locations within the design space, are included as a separate category. Note that 
design D. uses the 'upper' star points and D6 the 'lower', so that the identJty of the seven Slar 
points used solely to calculate lack of fit is different in each case. The numbers of tests which 
fall in each category for the three designs are shown in Table 8.6. 



Number of points In each category 
Design Design Factorial Star Higher Total 

CCD 79 64 16 159 
HokeD1 36 99 8 16 159 
HokeD6 43 99 8 16 166 

Table 8.6 Number of points used to calculate 
lack of fit data for CCD and Hoke designs (n=7) 
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Since each of the Hoke deSigns contain 29 of the 2n factorial points, compared with 64 

for the CCD, the additional 35 points are included in the 'Factorial' lack-of-fit category. The 

extra seven tests which are used for the D6 design are the 'edge' points which constitute the 

augmentatton to the saturated deSign, as described In Section 8.4. The 16 pomts which form the 

'Higher' category are identical for each design, and are as specified ID Section 6.5.1 and 

Appendix 6A. 

The maximum and average lack of fit values which occur within each of the categories 

of test point are given ID detail in Appendix 8C. A summary of the average lack of fit values, in 

terms of the percentage of the functton range, is given in Table 8.7. 

DeSIgn 

CCD 
HokeDI 
HokeD6 

Average lack of fit - ~ 
Design Factorial Star Higher AIJ tests 

0.68 
0.00 
0.13 

0.86 
1.40 
1.44 

1.08 
1.01 

2.61 
2.66 
2.62 

Table 8.7 Summary of lack of fit data 
for CCD and Hoke designs (n=7) 

0.94 
1.20 
1.20 

As discussed ID previous chapters, the lack of fit which occurs at design points IS 

largely determined by the degree of saturation of the experimental design, with the saturated DI 

design giving zero lack of fit at these points. The performance of the two Hoke designs at the 

factonal points IS substantially worse than the CCD, reflecting the fact that over 50% more tests 

are tncluded in this category for the Hoke designs. The highest average lack of fit for each 

design occurs at the 'Higher' test points, and at these locations the Hoke designs are performing 

almost identtcally to the CCD, with D6 marginally better than D1• The star points and centre 

point are important measures of the performance of the model, since they lie at the highest 

distance from any of the deSign points of the Hoke designs, and at these points the average lack 

of fit IS lower than at either the 'Factorial' or 'Higher' pOints. Over the fuU set of tests, the 

average lack of fit for the two Hoke designs is virtually identical, with the performance of each 

of them only slightly Inferior to that of the CCD. This is despite the fact that the number of tests 
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In design Dl is only 46% of that used in the CCD, whilst the augmented design contains just 

54% of this number. These results show that the Hoke designs meet the requirements of 

mInimising the required number of tests, whilst not compromising the prediction accuracy of the 

resulting model. 

8.5 Observations on the use of Hoke's economical second order designs 

The main conclusions to be drawn from the numerical tests carried out in the prevIOus 
section are as follows. 

• The prediction accuracy of each of the two Hoke designs tested was found to be similar to 

that of the 79 test CCD, despite requiring far fewer tests. On the basiS of prediction 

errors, no reason was found for choosing the minimally augmented design, D 6, rather 

than the saturated deSign DI, wluch reqUIres fewer tests. 

• The parameter estimates for the main effects of the predictive model were found to be 

very simIlar whichever of the three designs (CCD, D1, D<;l was used. The value of the A2 

parameter, which IS the dominant quadratic effect, was also found to vary little between 

designs, although other quadratiC coefficients, and a number of small magnitude 

interaction parameters, were found to exlubit a high degree of variability. 

• The largest of the variance terms obtained using the Hoke designs are those for the pure 

quadratic terms. A disadvantage of the saturated design Dl is that these variances are 

tWice the size of the corresponding values for the CCD, whilst the minimally augmented 

deSign D6 yields vanances of approXimately equal magmtude to the CCD. 

• The way in which the pure quadratic columns of the regressor matrix are scaled has a 

critical Influence on the selection of an optimum design. If an alternative scaling factor to 

that used by Hoke is adopted, in which the quadratic terms have a peak value of 1.0, then 

the design D 4 has a lower trace than the previously optimum design D6. Other designs of 

the full set investigated by Hoke are likely to perform better under this new scaling 

method. 

• Hoke's economical second order designs have been found to provide an extremely useful 

alternative to the CCD for the approXimation of the engine noise response surface which 

is used in the current investigation, in that they yield approximately the same accuracy of 

prediction throughout the design variable space, whilst having a much reduced test 

requirement No improvement over the CCD has been found, however, in terms of 

reducing the variance of the pure quadratic terms of the fitted model. Under the alternative 

scaling method, which results in a greater contnbution to the matrix trace from the 

quadratic variances, it is likely that improved deSigns may be found which reduce both 

the overall trace and the quadratic variance. Further work is reqUIred in this area. 
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Specification of test points for Hoke designs in seven variables 
(SectIOn 8.4) 

A B c 

0060 0200 0200 
0060 0320 .0320 
0120 0200 .0320 
0120 0320 ,0200 
0120 .0320 .0320 
.0120 .0320 0320 
0120 .0320 .0320 
0120 .0320 .0320 
0120 .0260 .0260 
.0090 0320 .0260 
0090 .0260 .0320 
0090 .0260 0260 
.0090 .0260 .0260 
0090 0260 .0260 
0090 0260 .0260 
0120 0320 0200 
0120 .0200 0320 
.0120 .0200 0200 
.0120 .0200 ,0200 
0120 0200 0200 
.0120 0200 0200 
0060 0320 .0320 
0060 0320 ,0200 
0060 0320 0200 
.0060 .0320 0200 
.0060 .0320 0200 
.0060 ,0200 .0320 
0060 0200 .0320 
0060 .0200 0320 
.0060 .0200 .0320 
.0060 .0200 0200 
0060 0200 0200 
0060 0200 .0200 
0060 0200 0200 
0060 .0200 0200 
.0060 .0200 0200 

Hoke Dl 

Variable 

D 

.0040 

.0140 
0140 
0140 
0040 
0140 
0140 
0140 
.0090 
.0090 
0090 
0140 
0090 
0090 
0090 
0040 
0040 
.0140 
.0040 
0040 
.0040 
0040 
0140 
.0040 
.0040 
.0040 
.0140 
0040 
0040 
.0040 
.0140 
.0140 
0140 
0040 
0040 
.0040 

E 

0100 
0250 
0250 
.0250 
.0250 
0100 
0250 
0250 
.0175 
.0175 
.0175 
.0175 
0250 
.0175 
.0175 
.Ql00 
.0100 
0100 
0250 
0100 
.Ql00 
.Ql00 
.Ql00 
0250 
0100 
.0100 
.Ql00 
.0250 
.Ql00 
0100 
.0250 
.Ql00 
.Ql00 
0250 
0250 
.Ql00 

F G 

.0200 .0060 

.0320 .0120 
0320 .0120 
0320 .0120 
.0320 .0120 
.0320 .0120 
,0200 .0120 
.0320 .0060 
0260 .0090 
.0260 0090 
.0260 .0090 
.0260 0090 
.0260 .0090 
.0320 0090 
0260 0120 
.0200 0060 
.0200 .0060 
.0200 .0060 
.0200 .0060 
0320 0060 
0200 .0120 
0200 0060 
.0200 0060 
.0200 .0060 
.0320 .0060 
.0200 .0120 
0200 .0060 
.0200 0060 
.0320 .0060 
.0200 .0120 
0200 .0060 
0320 .0060 
.0200 0120 
.0320 .0060 
.0200 .0120 
0320 .0120 
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Vmiable 

A B c o E F G 

0060 0200 0200 .0040 0100 .0200 0060 
0060 .0320 0320 .0140 0250 .0320 0120 
.0120 0200 0320 0140 .0250 0320 .0120 
0120 0320 0200 .0140 0250 .0320 .0120 
0120 0320 .0320 0040 0250 0320 .0120 
0120 0320 0320 .0140 0100 0320 .0120 
0120 0320 0320 .0140 0250 0200 0120 
.0120 0320 0320 0140 .0250 0320 0060 
.0060 .0260 0260 .0090 0175 .0260 0090 
.0090 .0200 0260 .0090 0175 0260 0090 
.0090 0260 0200 0090 0175 0260 0090 
.0090 .0260 0260 .0040 0175 .0260 0090 
0090 0260 0260 0090 0100 0260 0090 
.0090 0260 .0260 0090 0175 0200 0090 
.0090 .0260 .0260 0090 .0175 0260 .0060 
.0120 .0320 .0200 0040 .0100 0200 .0060 
.0120 .0200 .0320 0040 .0100 .0200 .0060 
0120 .0200 0200 .0140 0100 0200 .0060 
0120 .0200 0200 .0040 0250 0200 0060 
.0120 0200 .0200 0040 0100 .0320 0060 
0120 0200 0200 0040 0100 0200 0120 
0060 0320 0320 .0040 0100 .0200 0060 
0060 0320 0200 0140 0100 0200 0060 
0060 0320 0200 0040 0250 0200 0060 
.0060 0320 0200 0040 0100 0320 0060 
.0060 0320 0200 0040 0100 0200 0120 
0060 .0200 .0320 .0140 0100 .0200 .0060 
.0060 .0200 .0320 .0040 0250 .0200 .0060 
.0060 .0200 .0320 0040 .0100 0320 .0060 
.0060 .0200 .0320 0040 0100 0200 .0120 
.0060 .0200 .0200 .0140 0250 .0200 .0060 
0060 .0200 0200 .0140 0100 0320 .0060 
.0060 0200 0200 0140 0100 .0200 0120 
0060 .0200 0200 .0040 0250 0320 0060 
0060 0200 0200 0040 0250 .0200 0120 
0060 0200 0200 0040 0100 0320 0120 
0090 0320 .0320 0140 .0250 0320 .0120 
.0120 .0260 .0320 .0140 .0250 .0320 .0120 
.0120 .0320 .0260 .0140 .0250 .0320 .0120 
.0120 .0320 .0320 .0090 0250 .0320 .0120 
.0120 .0320 0320 .0140 0175 0320 .0120 
0120 .0320 0320 .0140 0250 0260 0120 
.0120 0320 0320 0140 0250 0320 0090 
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Appendix 8B 

Scaling of orthogonal polynomials 

It was shown In Section 5 2 that a chagonal moment matrix cannot be obtained when fitring a quadratic 
model, so that the design cannot meet the orthogonality cnteria outlmed in Section 2 12. An alternative approach 
may be taken, however, by rearrangmg the prediclive model in terms of certam polynormal funcllons of the input 
vanables (Box and Hunter, 1957). These polynormal functions may be chosen in such a way as to achieve 
mutnal orthogonality. As an example, consider a Simple one-dimensional design consisting of three tests at levels 
-1,0 and +1. If the model to be estimated from these tests is of the form 

y = Po + PIXI + Puxi 

then the X matnx will be as follows: 

x =[ 
1 

1 
1 

1 

XI 
-1 

o 
1 

(SB.l) 

(8B.2) 

It can be seen that, whilst the second column is orthogonal to each of the other two, the first and third 
colunms are not orthogonal. Orthogonality may be achieved by rewnling the prechctive model in terms of 
polynormal funCllons of the original vanable, as follows: 

y = "0 + "IXI + "u(3xi - 2) 

where the original coefficients of (SH.l) may be expressed as 

f!o = "0 - 2"U 

The design matnx is now 

X =[ 

PI = "1 
Pu = 3"11 

1 

1 
1 

1 

XI 
-1 
o 
1 

(SB3) 

(8B.4) 

with each of the colunms orthogonal to the other two. An adchllonal effect of rewnllng the prediction equation as 
(SB3), however, is that the peak magmtude of the thmI term is twice that of each of the other two. The result of 
this is that the maximum contnbution to the standard prechCllon error wluch is made by an error in the estimation 
of the third term is proportional to twice the standard error of the coefficient in that term. In general, this does not 
cause a particular problem for the investigator, smce the values of the coefficients of the origmal predictive 
equallon (SB.l) remain unchanged, as does the prediction at any chosen point in the design variable space. A 
problem anses, however, if the standard errors of the coefficient estimates (or their variance values, wluch are the 
squares of the standard errors) are used independently as a measure of the performance of an expenmental design. 

In parllcular, one critenon which may be adopted for the assessment of designs is the minimization of 
the prechCllon variance. If the design is orthogonal, with eqnal peak values in each of the fitted terms, then the 
maximum variance in prediction wluch is contributed by each term is in direct ptoportion to the vanance on the 
estimate of that term (see Appendix 2B). One possible measure of prechction variance, then, is the trace of the 
covariance matrix, which is eqnal to the sum of the Individnal coefficient variances. If, however, as in the 
example of equation (SB 3), the peak vaIne of each of the terms in the predictive equation IS not eqnal, then the 
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trace of the oovarianoe matrix is no longer a measure of the sum of oontnbuttons to the prediction varianoe of the 
indIvidual terms. In this case, a weIghted sum of individual oontnbutions might perhaps be used, with the 
weighttng reflecting the relattve peak value of each of the terms Involved. 

Sections 83 and 8.4 are an example of the use of the traoe of the oovarianoe matrix In assessing 
oompeting desIgns. In tins case, however, the orthogonaI polynomials are chosen as shown in (SB3) and (SB.4), 
wInIst the criterion for judging designs is simply the sum of the unWelghted coefficient varianoes. The use of this 
cntenon is thus Inappropriate to the choioe of orthogonaI polynomials, and does not give an accurate indication 
of the maximum likely error in predlc!Jon. 

A simple means of rectifying the msparity in peak vanable values of the model of equation (SB3) is to 
scale the third polynomial function such that its peak magnitude is eqnaI to those of the other two. The modified 
preWcuve model would then be as shown In equation (SB 5). 

Y = 1jlo + 1jlIXI + 1jlH [t(3xf - 2)] (SB.5) 

The onginal coefficients of (SB.l) may then be expressed as 

flo = 1jlo -1jlll 

The design matnx now beoomes 

x =[ 

PI =1jl1 
P 11 = 1.5tp 11 

I 

I 
I 
I 

XI 
-I 
o 
I 

WIth the columns mutually orthogonaI, and each having a peak magmtude of I. 

(8B.6) 

Even in tins case, however, there sull remains the question of whether a nummal covarianoe matnx 
traoe is a srutable measure of the performanoe of a design, If it i. the prediction varianoe wInch the investtgator 
seeks to reduoe. It should be noted that the traoe of the oovananoe matnx provides an Indication of the maximum 
prediction vananoe which oould occur If all of the terms of the fitted equatton were simultaneously to take their 
peak values. If, in the simple one><limell8lonaI example delnonstrated here, the terms to be estimated were those 
of equalJon (SB I), (i.e. the mean, the linear term x" and the quadrallc term X,1), then a value of x = 1 would 
indeed result in each term SImultaneously tabng a value of 1. If the orthogonaI polynomial. of either (SB3) or 
(SB 5) are used, however, then (SB 4) and (SB 6) show that the maximwn value of the third term of the predictive 
equation occurs when x = 0, so that maximum prediction error cannot be sunultaneously oontributed by all three 
terms. A better measure of maximwn pre<hctton error might thus be one which takes into acoount the relative 
magmtudes of the terms of the predic!Jve equation at different levels of the original input variables. Further work 
" required In this area. 
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Appendix SC 

Lack of fit data for CCD and Hoke designs 

In each of the followmg tables. the CCD used oompnses 79 tests (see Section 6 5.1). wlnlst the Hoke 

DJ desJgn contains 36 tests and the Hoke D. has 43 (see Secbon 83). In each case the model constructed using 

the three designs IS the 36 term strict quadrabc model introduced in Secbon 6 53. 

No oflof Maximum lack of fit Average lack offit 
Design tests d8(A) Ea d8(A) Ea 
CCD 79 0306 402 0052 0.68 
HokeDJ 36 0000 000 0000 000 
HokeD. 43 0046 062 0010 013 

Table SC.1 Snmmary of lack of fit at design points for CCD and Hoke designs (n=7) 

No oflof Maximum lack of fit Average lack of fit 
Design tests d8(A) ER d8(A) Ea 
CCD 64 0202 265 0.065 0.86 
HokeDJ 99 0.317 4.14 0107 1.40 
HokeD. 99 0338 449 0108 1.44 

Table SC.2 Summary of lack of fit at factorial points for CCD and Hoke designs (n=7) 

Design 

HokeDJ 
HokeD. 

No.oflof 
tests 

8 
8 

Maximum lack of fit 

d8(A) ER 

0.188 
0.164 

2.45 
218 

Average lack of fit 

d8(A) Ea 

0.083 
0076 

1.08 
1.01 

Table 8C.3 Summary of lack of fit at star points for CCD and Hoke designs (n=7) 

No.oflof Maximum lack of fit Average lack of fit 
Design tests d8(A) Ea d8(A) Ea 
CCD 16 0476 6.24 0199 2.61 
Hoke~ 16 0.510 665 0204 266 
HokeD. 16 0.520 6.90 0197 262 

Table SC.4 Summary of lack of fit at additional points for CCD and Hoke designs (n=7) 
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9. Optimization using response surfaces 

The purpose of the present chapter is to demonstrate the way in which practical 

optimization studies may be carried out using the response surface methods discussed in 

previous chapters. A number of case studies are presented which demonstrate the flexibIlIty of 

this method in investigating a large number of combinations of different objective and constraint 

functions. Each example uses the firute element model of the four cylinder in-line dIesel engine 

introduced in AppendIx IC, and the design variables used are selected from the seven which are 

described in that section. 

Five examples are presented, the aims of which are as follows. 

I. Unconstrained noise optimization. 

2. Noise optimization WIth a known mass constraint. 

3. Mass opllmization with a known noise constraint 

4. Sweep through the full range of possible mass constraints to gIve the 

noise-mass trade-off within the design variable space. 

S. Optimization using discontinuous variables. 

These numencal trials have all been carried out using the computer program optrsm, 

which IS described in Appendix lB. The 'computer experiments' which were performed in 

order to obtam the functIOn values at the reqUIred test pomts were earned out using the analyser 

program descnbed in Appendix lA. In many of the examples the mathematical models of the 

response surfaces which are used have been introduced and discussed in earlier chapters. These 

are referenced where appropriate, and may be consulted for further information on, for 

example, coefficient values and qualIty of fit 

9.1 The optimization algorithm 

The optimization routine used for all of the numerical examples presented in this chapter 

is taken from the NAG software library (NAG, 1983). It IS designated E04VDF, and is 

designed to perform minimization of any arbitrary smooth objective function, subject to a 

number of constraints. These constraints may Include simple bounds on the input variables and 

functional constraints which are either linear or smoothly non-linear. It should be noted that !Ius 

routme is different from that used in the example of Section 1.6. The principal reason for 

selecting a dIfferent routme is that, in contrast WIth the direct iterative method, the use of a 
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simplIfied mathematical representation of each function allows analytic calculation of gradient 

information. The use of gradient Information is extremely beneficial, in that it Yields a 

substantial increase in the effiCiency of the numencal optimization procedure, smce it IS both 

more accurate and less computationally expensive than the calculation of finite difference 

approximations to the required gradients. 

The information which must be supplied to the optimization routine is as follows. 

1. Number of design variables 

2. Upper and lower bounds on each variable. 

3. A subroutine which calculates the value and gradients of the objective 

function at a given point 

4. A subroutine which calculates the value and gradients of each of the 

constramt functions at a given point 

5. Upper and lower bounds on each of the constraint functions. 

6. The location of a point in the design variable space at which to commence. 

Of these six reqwrements, the first two will already have been decided prior to carrying 

out the computer experiments. Items 3 and 4 access the mathematical representations of, each 

function which have been generated usmg the response surface methods developed in previous 

chapters. Since each response surface IS a simple polynomial expression, a general a1gonthm 

for the calculation of first denvative information with respect to each of the design variables is 

readily formulated, and has been included in the program optrsm. The chOice of appropriate 

constraint bounds is discussed in Section 9.6, below. For both the design variables and the 

constraint functions, an equality constraint can be specified by setting the upper and lower 

bounds to Identical values. Alternatively, each variable or constraint may be left unbounded in 

either dlfection. 

The final piece of information which must be supplied to the optimization routine is the 

specification of a point in the design space at which to commence optimization. The location of 

this pomt is only critical if the response surface has a number of local mimma, smce the 

selection of an alternative starting point may then lead to a different, and better, minimum. If the 

routine can be relied upon to identify a global optimum under all conditions, however, then the 

only benefit to be gained from a better selectIOn of this point is a reductIOn in computational 

effort - a point chosen close to the location of the required optimum can be expected to result in 

a smaller number of function calls. When using Iow order polynomial response surface, the 

scope for such local minima is very limited, and it has been found, in practice, that the selection 

of an alternative starting point is needed only rarely. 
A procedure wluch has been developed for the selection of a starting point is to choose 

the test point which has the 'best' objective functIOn value, whilst stili observing each of the 

constraint conditions. The choice of this point is automated within the optrsm program, and has 
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the advantage that it IS more likely to lie close to the final optimum than any of the other 

expenmental test points, and much more likely than any random selection within the design 

variable space. It should be noted that this method of providing a 'head start' for the 

optimizatIOn cannot be used when using a direct iterative approach to optimization, slOce an 

essential prerequisite is a substantial amount of Widely distributed functIOn information. If it IS 

found that the startlOg point chosen results in the identification of a local minimum, then an 

alternative starting polOt can be selected, such as the point at which all vanables are at their low 

(or high) bound. An example of such a case is given m Section 9.8. 

9.2 Unconstrained noise optimization 

As an introduction to the use of response surfaces for optimization, the first example 

involves the search for the lowest possible nOise value withlO the design variable space, 

lITespective of the value of any other function. All seven of the deSign variables described m 

Appendix lC are included in this study. The deSign region is lOvestigated uslOg a full factorial 

design, lOvolving 128 tests, winch IS the same as that presented in Section 4.1. Table 9.1 shows 

the specification of the optimum design which is identlfied in this study, and it can be seen, by 

companson with Table lC.I, that thiS design lies at the high bound of each of the design 

vanables. 

Optlmum value of noise functlon = 84.1 dB(A) 
Total mass of block at optimum = 185.3 kg 
Optimum value of vanable A = 12.0 mm 
Optimum value of variable B = 32.0 mm 
Optlmum value of variable C = 32.0 mm 
Optimum value of variable D = 14.0 mm 
Optimum value of variable E = 25.0 mm 
Optimum value of variable F = 32.0 mm 
Optimum value of variable G = 12.0 mm 

Table 9.1 Unconstrained noise optimum using full factorial design 

Before considering the implications of the locatlon of this optimum, some observations 

are reqUired on the nature of the approximating response surface used, and on the effect of this 

choice on the optimization process. 
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In this introductory example the response surface denved from the tests only contains 

terms which are either main effects or linear interaction terms, so that Identification of the 

minimum nOise design IS extremely easy to carry out Indeed, it is possible to make an estimate 

of the location of the optimum design by simply considering the coefficient values of the 

mathematical model. It was shown in Sections 4.2 and 4.3 that the noise surface is dominated 

by the largest fifteen coeffiCients, which are listed In Table 4.4, repeated here as Table 9.2. 

1. MEAN 
2. A 
3. C 
4. G 
5. D 
6. F 
7. B 
8. E 
9. AG 
10. AD 
11. AF 
12. CG 
13. AE 
14. FG 
15. ACG 

8.8082xl()+1 
-2.23n 
-3.8596xl(}1 
-3.3608xl(}1 
-2.3021xl(}1 
-2.2872xl(}1 
-1.9920xl(}1 
-1.5888x 1 (} I 
-7.4246x1 (}2 
5.2756x1 (}2 

-4.6907xl(}2 
-4.4956x1 (}2 
-4.4724xl(}2 
-4.4068xl(}2 
3.5056xl(}2 

Table 9.2 Significant noise coefficients Cor Cull Cactorial test (n=7) 

It can be seen that all of the main effect coeffiCients have a negative sign, as do all but 

one of the two-way interactIOn terms. This suggests that the lowest noise value will be found 

when all variables have their largest values. If this is the case, then the optimum will occur at 

one of the original test POints, since all of the vertices of the hyperspace are tested in a full 

factorial design. This presents a problem when selecting a starting point for demonstration 

purposes, since, if the test point which has the best objective function value IS chosen, as 

suggested above, then this will result in the optimum point being used as the starting point, and 

no iterations will be performed. In order to demonstrate the search for an optimum value, an 

alternative staring point has been chosen for the example presented here. This is the point at 

which each of the vanables has its lowest value, which hes at the furthest possible distance from 

the expected optimum. 

The search history of this optimization test is presented in Table 9A.l of Appendix 9A, 

and shown graphically in Figure 9.1. 
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Figure 9.1 Search history - unconstrained optimization in seven variables using 
a full factorial design (128 tests) 

The search history shows that the optimum has been identified using just 11 function 

calls, and that, as expected for a simple linear function, the noise decreases monotomcally with 

Increasing mass. The small number of iterations performed IS in contrast with the example of 

direct Iterative optimization shown in Section 1.6, which mvolves just three design vanables, 

and yet requires 20 calls to locate the minimum, and a further 25 to confirm It 

Although the number of function calls required at the optimization stage is far fewer 

than the example of Section 1.6, it should be remembered that in order to construct the analytic 

response surface, 128 calls to the analyser program were performed. Additionally, the analysis 

of SectIon 4.1.2 showed that there was significant lack of fit at locatIons away from the vertices 

of the hypercube when using a linear model, so that there is the possibility that some inaccuracy 

in locating the optimum has occurred due to the presence of higher order components of the 

noise response. The analyses of Chapters 6 - 8 have shown that both of these issues can be 

addressed by using an economic second-order design, such as those of Hoke. 

If the optimization is repeated usmg the minimally augmented Hoke design D6 (see 

Section 8.3), then the optimum which is found is that shown in Table 9.3. Since the value of 

each of the quadratic terms IS substantially lower than the main effect in the same variable, as 

shown by the parameter listing of Table 8.2, it IS expected that the unconstramed optimum will 

still lie approXimately at the upper bound of all variables. Table 9.3 shows that this is indeed the 

case, With only vanable D moving away from its upper bound. The fact that variable D is the 

most likely to move away from its bound can be deduced from Table 8.2, which shows that 
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variable D has the highest mtio of quadmtic coefficient magrutude to main effect magnitude. The 

search history is shown gmphically in FIgure 9.2. 

Optimum value of noise function = 84.0 d8(A) 
Total mass of block at optimum = 184.1 kg 
Optimum value of variable A = 12.0 mm 
Optimum value of variable 8 = 32.0 mm 
Optimum value of variable C = 32.0 mm 
Optimum value of variable D = 12.1 mm 
Optimum value of variable E = 25.0 mm 
Optimum value of variable F = 32.0 mm 
Optimum value of van able G = 12.0 mm 

Table 9.3 Unconstrained noise optimum using Hoke design 
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Figure 9.2 Search history • unconstrained optimization in seven variables using 

a minimally augmented Hoke design D6 (43 tests) 

Although a second-order model is now being used, this only contains 36 coefficients, 

mther than the 128 coefficients of the full factorial design, with the result that the solution 

converges after just 8 function calls. In addition, the number of calls to the analyser program 

required by the Hoke design is just 43 - two less than the 3 variable direct optimization problem 

of Section 1.6. 
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Returning to the location of the optimum design, this example suggests that, If no 

constraints are applied, the optimization routIne wIll select a deSIgn which is as heavy as 

possible, so that the location of the optimum is determIned solely by the specification of the 

upper bound of each van able. This agrees both WIth experimental findings and wIth vibration 

theory, since an Increase in component dimensIon WIll result in a linear increase in mass, but a 

larger increase in stiffness, due to the squared increase In cross section. The natural frequencies 

of the structure will thus Increase, so that fewer resonance conditIOns can occur in the frequency 

range of Interest. Of more importance IS that, at a given engIne speed, each resonance wIll be 

eXCIted by higher orders of engine eXCItation, which are in general of lower magnitude. These 

factors will together lead to a reduction In both VIbration response and radiated noise. 

In the present example, the ongInal block design, whose specification is given in 

AppendIX 1C, produced a noise level of 92.9 dB(A), with a mass of 139.2 kg. Although a 

predicted reduction in noise of nearly 9 dB(A) has been achieved, an increase in mass of nearly 

45 kg has been incurred, which IS nearly a one-third increase in the total block mass. A mass 

Increase of thIS magnitude IS unlIkely to be acceptable to the engine designer, and it IS for this 

reason that an unconstrained nOIse optimum is rarely of practical use. Only if the range of each 

vanable is extremely limited, or the number of vanables small, is the maximally heavy deSIgn 

likely to be an acceptable result. If thIS is the case, however, then there IS little benefit in 

caJTYIng out a numencal optimization study, and the upper bound of each variable can be 

selected without the need for detaIled analysis. 

9.3 Noise optimization with a known mass constraint 

The second example expands on the prevIOus study, in that a mass constraint WIll now 

be applied to the optimization problem. The aim is to identify which combination of the five 

vanables included In the original deSIgn wIll have the lowest radiated noise value, whilst 

incurring no mass increase over the onginal engine block. A seven variable example with a 

zero-mass-change constraint is not possible in the present case, since, if all seven variables were 

included, the mass constraint would be violated even with each at its lower bound. 

The response surface was investigated using a five-dImensional minimally augmented 

Hoke design D", whIch requires 26 tests. The parameter estimates which were obtained for the 

noise surface are given in Table 9A.2 of Appenchx 9A. The lack of fit in the model was tested 

both at the design points and at a set of additional points, which are those tests of the 

appropriate CCD (with full factorial portion and a = 1) not included in the Hoke design. A 

summary of the lack of fit calculatIOns is given in Table 9.4, and suggests that the model 

constructed is providing a good representation of the origInal response. 



No. of Maximum lack of fit 

Category tests dB(A) ER 

i) Design points 26 

it) Additional points 17 

Average over all 43 tests 

0.1584 

0.4647 

2.6909 

7.8936 

Average lack of fit 

dB(A) ~ 

0.0488 

0.2119 

0.1133 

0.8290 

3.5997 

1.9244 

Table 9.4 Summary of lack of fit calculations for Hoke D4 design 

with 26 tests and 21 coefficients (n=5) - Function : noise 
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The optimIzation tnal was then carried out, with the mass constraint chosen to give a total 

block mass of 139.2 kg, which is the mass of the onginal deSIgn. A summary of the search 

history, starting from the test point which has the lowest noise, whilst obeying the mass 

constraint, is given in Table 9A.3 of Appendix 9A, and is shown in graphical form in 

Figure 9.3. This graph shows that the solution converges very rapIdly. The reason for tlus can 

be seen from Table 9A.3, wluch shows that the search commences from a point at which three 

of the five vanables are already at their oplJmum values. 
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Figure 9.3 Search history - optimization with zero-change mass constraint 

starting from best constrained test point 
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This example demonstrates the advantage of commencing the optimizatIOn search from the 

analyser test which has the best constrained objective function value. If the search is started 

from the original deSign point, which has no variables at their optimum values, as shown in 

Table 9A.4, then nearly 50% more calls are required to locate the optimum, as shown in 

Figure 9.4. 

93 ,..---------------------r 47 202 
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47.198 

47.196 

47.194 

91 +-----.--,-----.--,--.---.--..---r-.,........,.-.,.....-+ 47.192 
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Figure 9.4 Search history - optimization with zero-change mass constraint 
starting from initial design point 

The speCification of the opttmum which has been located, together with that of the initial 

design, is shown in Table 9.5. This shows that a predicted reductIOn in nOIse of 1.5 dB(A) has 

been gained, with no increase ID mass. It is interesting to note that the optimlzer has chosen to 

increase the thickness of bearings 1 and 5 (variable B), and yet reduce the thickness of the three 

middle bearings (variable C). The results also show that it is much more beneficial to increase 

the thickness of the crankcase skirt (variable A) than that of the longitudinal stiffener, even 

though this was mc1uded in the original design with the particular aim of reducing noise. These 

changes m variable value prOVIde a good illustration of the need for a comprehensive numerical 

optimization approach to noise reduction, since without such a tool a designer would be 

extremely unlikely to choose such a combination of wall thicknesses. 
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Variable Mass NOise 
A B C D G kg dB(A) 

Initial 9.0 26.0 26.0 9.0 9.0 139.2 92.9 
Optimum 12.0 32.0 20.0 6.0 6.6 139.2 91.4 

Table 9.5 Initial and optimum designs under zero-ehange mass constraint 

It can also be seen from Table 9.5 that, in contrast with the unconstrained optimIzation 

study, in whIch all deSIgn variables increased from their initial values, only some of the 

variables have gamed in tluckness. The others have not just remained unchanged, but have 

actually been reduced, even though, as shown by the coefficient values of Table 9A.2, their 

reduction leads to an increase m noise. ThIS reductIOn is a direct result of the ImposItion of a 

functional constraint. A more detailed dIscussion of thIS charactenstic is undertaken in 

Section 9.5, particularly with regard to Its mfluence on the selection of design variables prior to 

optimIzation, and the investigation of multiple levels of a constraint function. 

9.4 Mass optimization 

In addItion to carrying out a mass constrained optimIzation study, the flexibIlity of the 

response surface approach allows the engineer to investigate the optimum mass deSIgn for a 

gIven noise constraInt without having to carry out any more expensive analyser calls. This 

ability may be of particular benefit if, for example, a design IS required to conform to a 

maxImum noise level imposed by legIslation. Using the same response surfaces as those of the 

prevIOus example, a mass optimizatIOn trial has been earned out using a noise constraint of 

92.9 dB(A), which is equal to the noise level of the original design. The search lustory of this 

trial, startmg from the imtial deSIgn point, IS shown In Figure 9.5, where, after allowing a 

temporary violation, the effect of the noise constraInt can be clearly seen. The specification of 

the optimum design which results from tlus trial, together with that of the initial desIgn is shown 

in Table 9.6. 
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Figure 9.S Search history - optimization with zero-change noise constraint 

starting from initial design point 

Variable Mass Noise 
A 8 C D G kg d8(A) 

Initial 9.0 26.0 26.0 9.0 9.0 139.2 92.9 
Optunum 12.0 20.0 20.0 6.4 6.0 132.4 92.9 

Table 9.6 Initial and optimum designs under zero-change noise constraint 

9.S Selection of variables for optimization 

The factors which influence the selection of design variables for various types of noise 

optimization study can be illustrated by considering m a simphfied way a method by which an 

investigator might amve at an optimum combination of design variable values. Suppose that a 

strictly linear (main effects only) response surface is being used, and that a minimum noise 

deSign is sought. Assume also that an increase in design vanable value Yields both an increase 

in mass and a decrease in noise, as m the examples presented above. 

Suppose first that no functional constraints are applied, but that, as is always the case in 

practice, a limit is placed on the number of deSign variables which it is practical to investigate 
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with the available resources. In selectmg which variables to include, the investigator simply 

seeks to choose those whIch will give the greatest reduction in noise with respect to changes in 

the parameter being vaned, such as component thickness. Thus, variables which have a high 

noise sensitivity are of great interest, whilst those displaying a low noise sensitivity are of 

relatively little interest 
When carrymg out a constramed optimization, however, the situation is substantially 

different, in that the investigator is not necessarily free to exploit all of the noise reduction 

potential of the design variables he has chosen. He must also consider the change which occurs 

m some other (constrained) function, such as structural mass, which must be kept within a 

predefined range. If a constraint level is appbed which allows an increase in mass over the mitial 

deSign, then, m modifying the component thicknesses of the initial design in order to reduce 

nOise, the investigator might be considered as having a certain amount of 'free' mass to 

allocate. In choosing which vanable(s) to allocate this 'free' mass to, he seeks to gain the 

maximum return, in terms of noise reduction, for the mass allocated. At thiS stage, the 

procedure for selection of variables is only a slight modification of that followed for 

unconstrained optimization, in that variables are now sought which will give the greatest 

reduction m nOise With respect to changes in the structural mass, rather than in component 

thickness. Vanables are thus selected which have a large noise/mass senSItiVity. 

Once this 'free' mass has been allocated, however, no more mass may be added to the 

system, and the only way m whIch further noise reductions can be gained is by reallocating that 

which IS already there. The most efficient way in which to do thiS IS to add mass to the variable 

which gives the largest decrease in nOise per unit mass increase, whilst at the same time taking 

away mass from that vanable which will give the smallest increase in noise per unit mass 

decrease. When either of these variables reaches its bound, mass is then added to (subtracted 

from) the next most (least) noise/mass sensitive variable. This process continues until a 

maximum of one variable remains unbounded, at which point the optimum has been identified 

for the mass constraint under consideration. Clearly, the noise gains to be derived from the 

'high sensitivity' variables can only be exploited to the full if the number of 'Iow sensitivity' 

variables is suffiCient to ensure that enough mass will be available for reallocation. Thus, in 

order to gain the 'best' optimum design for a given mass constraint, it is Vital that the 

mvestigator include not only those variables which have the greatest noise/mass sensitiVity, but 

also a number of variables which have a low noise/mass sensitivity. 

This requirement is clearly substantially different from the method for selectlDg 

variables which is usually followed when carrying out a simple 'manual' or one-at-a-time 

optimization study. However, an understanding of this reallocation process is fundamental to an 

efficient use of any numencal tool for constrained optimization, whether It is based on the 

response surface methods used here, or employs a direct iterative approach. 
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The example used in thIs section is clearly very sImplistic ID nature, and differs from 

practtcal optimlzatton studies in two main aspects. FIrstly, the search methods employed by 

numerical opttmlzation routIDes are far more sophtsticated than that presented here. Addtttonally, 

when using response surfaces other than the simple maID effects model, the noise/mass 

sensit1V1ty of each variable wIll not be a fIxed quanttty, but wIll vary throughout the design 

region. However, neIther of these considerattons IDvalidate the observations made above. 

When carrying out an opttmlzation study which has mUltiple constraint functions, the 

method for selectton of variables can be generalised as follows. Variables are first selected 

which are expected to have a beneficial effect on the obJecttve functton, although each of these 

may also incur substanttal change m one or more of the constrained functions. In order to enable 

functional reallocation, a number of further variables are selected, each of whtch IS expected to 

have a relatively low objective functton sensitivity and a relatively high sensittvity in one or 

more of the constraIDt functtons. In circumstances where a large number of constraint functions 

are to be applied, the selectIOn of appropnate deSIgn variables IS clearly an extremely complex 

procedure, and is made much more so by the fact that the relative functtonal sensitivities of 

various parts of the structure are unlikely to be known WIth great precision. In such 

circumstances, it may be useful to precede the formal numerical optimization methods 

consIdered ID the present work with a sensitivity study of the initial design, at the finite element 

level, in order to ascertaID which areas of the contlDuous block structure might most 

conveniently be grouped into a common design vanable. This discussion htghltghts the fact that 

the expertise and experience of the mdlvidual investigator is still required when carrying out an 

optimIzation study, not so much to identify the best design for the chosen combinatton of 

variables, but to select these variables in the most advantageous manner. 

As a practtcal example of the selection of design variables, conSIder agaID the 

mass-constrained optimlzatton example shown ID Section 9.3. Table 9.7 shows the 

bound-ta-bound change in the noise and mass functtons due to just the main eITect coefficients, 

as well as the ratio of these. Note that these values would not change if the effect of pure 

quadratic terms were also included, since these would contribute an equal amount to the 

function value at each bound, and so would cancel; only the effect of interaction terms is 

omitted. ThIS table shows that the noise/mass sensitivity of the first two variables is 

substantially higher than that of the others, as reflected ID the opttmum value of Table 9.5. The 

reason that the longttudinal stiffener was kept close to its low bound IS also shown, even though 

the table confirms that It is having a signtficant effect in reducing noise. Its mass sensitivity is 

the greatest of the fIve variables, so that its ratio of noise reduction to mass increase IS much 

reduced, and thIS explains why it is not favoured by the optimization routtne. 



Variable 

A Crankcase sklTt 
B 1 & 5, end panels 
C Bearings 2, 3 and 4 
D LongItudmal stiffener 
G Water jacket sidewall 

Mass 
kg range 

6.40 
6.38 
3.98 
6.45 
6.23 

Noise 
dB(A) range dB(A)/kg 

-2.696 -0.421 
-1.891 -0.296 
-0.399 -0.100 
-0.831 -0.129 
-0.223 -0.036 

Table 9.7 An example of functional sensitivity 
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Of these five variables, the water Jacket sldewall, variable G, was particularly selected 

because It was expected to have relatively low noise sensitivity, whilst also having high mass 

sensitivity due to Its large area. This has been a particularly successful choice, in that, usmg the 

above figures, the penalty for removing mass from variable G IS only just over one-third of that 

for the least sensitive of the remaining variables. 

9.6 Investigating a range of constraint criteria 

The above examples have served to confirm that the response surface approach can be 

successfully used to carry out smgle optimizatIOn studies of the type which are usually 

performed using direct iterative optimization techniques. When carrying out a single 

optimizatIOn tnal, however, the response surface method does not have any particular 

advantages over the direct optimization method. Indeed, the discussions of Chapter 1 suggest 

that an advanced software program for direct iterative optimization is likely to find a constrained 

optimum with fewer functIOn evaluations than would be required to establish an approximatmg 

response surface of suffiCient accuracy. Thus, in cases where the value of each functional 

constramt can be precisely determmed pnor to optimization, so that the only requirement is the 

effiCient identification of a single optimum, the direct iterative approach is almost certainly the 

best method to follow. 

When carrymg out a practical optimization study, however, especially in the early 

'concept' stages of an engme design, it IS unlikely that the constramt levels which are to be 

imposed Will be known with any great precision. ConSidering the present application of noise 

optimization subject to a mass constraint, for example, the exact mass of an mitial engine block 

speCification is likely to be a result of the desigIi process, and strength/durability considerations, 

rather than being a precisely defined target in itself. Thus, rather than being a rigid constraint 

which must be stnctly adhered to, the mass of the structure can more appropriately be thought 

of as an additional variable in the optimization process. The goal of an optimization study, 

therefore, should not be restricted to the identification of one optimum, subject to a single mass 
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constraint, but should be to provide some indication as to how the optimum noise level wIll vary 

over a range of possible constraints, so that the designer has the necessary information to enable 

!um to select an appropnate trade-off between these conflicting requirements. 

If one were to seek to provide this information using the direct iterative approach, 

however, It would be necessary to carry out a separate optimization trial for each constraint 

value, or for each combination of values if multiple constraint functions were being 

considered. Even If the number of function evaluations reqwred for each optimization trial were 

very low, the number of different constraint cnteria which could practically be investigated 

would stilI be extremely limited. It is in this role that the response surface approach has been 

found to have the greatest advantage over the direct method, since, once an approximating 

response surface has been generated, a large number of different objective function and 

constraint level combinations can be investigated without the need to perform further evaluations 

of the original functions. 

The power of this method IS such that it is not limited to the investigation of a small 

number of discrete constraint values at, for example, ±2 kg mass change, ±4 kg mass change, 

etc., but can be used to generate what IS effectively a continuous trade-off of optimum nOIse 

against structural mass throughout the entire range of feasible mass constraints. This may be 

earned out by performing a separate optimization trial at closely spaced increments of mass 

constraint which vary between the lowest possible mass value (which occurs when all variables 

are at their lower bound), and the highest possible mass value (when all variables are at their 

upper bound). ThiS procedure may be termed a 'sweep' through the possible range of the 

constraint, and a numerical example of this method is given in the next section. The method can 

of course be extended to other constraint types and multiple constraint functions. AdditIOnally, 

the fleXibility of the procedure is such that, With no further analyser calls, the investigator may 

also carry out a mass optimization study of the type shown in Section 9.4, using radiated noise 

as a constraint funCtion, or may simply evaluate the noise and mass functions for a variable 

combination which is of particular interest. 

9.7 Numerical example of constraint sweep 

To demonstrate the way in w!uch a sweep throughout the entire range of a constraint 

may be performed in practice, the five variable example of Section 9.3 is again used, in which a 

26 test Hoke design was employed to find a single optimum value, subject to a zero-change 

mass constraint. Using the same response surface models, based solely on the 26 tests of the 

Hoke design, Figure 9.6 shows the range of optimum noise values which results from carrying 

out optimization trials at intervals of 0.1 kg between the lowest possible mass of 124.5 kg and 

the highest pOSSible mass of 154.0 kg. Figure 9.5 is thus the result of trials at 296 different 

constraint levels. The process of performmg the complete sequence of optimization trials is 
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automated within the optrsm computer program, and using a Hewlett Packard 700 series Unix 

workstation takes just a few seconds of elapsed time, enabling it easily to be carried out 

interactively. It IS notable that, although graphs of this type could be produced when using 

response surface methods to analyse the results of phYSIcal experimental programmes, no 

reference to such a use has been found in the pubbshed literature. 
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The speclficatJon of each of the optimum designs which results from this investigation 

IS given in Appendix 98. Comparison of this table with Figure 9.6 shows that, although the 

change In the optimum noise value is very smooth, the change in the value of each of the 

variables can often be much more abrupt, as the optimizer switches to a different area of the 

design variable space In order to attain a slightly better function value. Figure 9.6 also shows 

that, as mass is added to the low-bounded design, the noise level falls fairly rapidly, since mass 

in being allocated to the most noise/mass sensitive of the vanables. As the mass increases, these 

variables reach their upper bounds, and mass is then added to variables which have a lower 

nOIse/mass senSItivity, givmg a smaller reduction in noise. The rate of noise reduction thus 

slows with Increasing mass, as fewer variables remain to be increased. 

In addition to the minimum-noise/mass trade-off, it is also possible to construct a graph 

of maximum noise against constramt value, as shown in Figure 9.7. This trade-off line is the 

result of a further 296 optJrnizatJon trials, agam using the mathematical models derived from the 
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same 26 function calls. The convergence of the two lines as the mass constrnint reaches either of 

its extremes IS, of course, a consequence of the fact that there IS only one possIble combination 

of vanables whIch gives the maxJmum, or mlmmum, mass. The angle of inclination of these 

lines reflects the observation that an increase in mass will, in general, YIeld a decrease in 

radiated noise. 
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Figure 9.7 Maximum and minimum noise against structural mass 

Although maximum-noise designs are clearly of little practical use, the graph of 

Figure 9.7 IS of considerable interest, since it shows the nOIse range wlthtn which all possIble 

designs must fall. The magmtude of thIS noise range highlights the need for a formal 

optimization tool, SInce, for a partIcular mass constraint. the choice of an inappropriate 

combination of deSIgn variables could result in a deSIgn which is up to 3.75 dB(A) worse than 

the optimum. As an example, consider the initial design, which lies close to the centre of both 

the mass and noise ranges, reflecting the fact that each of the five variables is at its mid-bound 

value. The vertical cross hair represents the zero-change mass constrnint. and demonstrates that 

the worst no-mass-change design YIelds a nOIse level of 95.1 dB(A) - over 2 dB(A) worse than 

the origmal deSIgn and 3.7 dB(A) worse than the no-mass-change optimum. The specifications 

of these three deSIgns are gIven in Table 9.8, showing the expected result that the variable 

values of the worst deSIgn are close to the opposite bound of those for the optimum. Figure 9.7 

also shows that. as an alternative to a noise reduction of 1.5 dB(A) with no mass increase, it is 

also poSSIble to reduce the mass by 7 kg WIthout mcurring a nOIse increase. If the distribution of 
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mass IS not carried out correctly. however. it is also possIble to add over 7.5 kg without 
achIeving any reduction in noise. The range of poSSIble no-noise-change designs IS shown in 

Table 9.9. The optimum designs of Tables 9.8 and 9.9 are of course those deSIgns identified in 
Sections 9.3 and 9.4. respectively. 

Variable 
A 8 C D 

Worst 6.0 20.0 26.2 14.0 
Initial 9.0 26.0 26.0 9.0 
Optimum 12.0 32.0 20.0 6.0 

G 

12.0 
9.0 
6.6 

Mass Noise 
kg d8(A) 

139.2 95.1 
139.2 92.9 
139.2 91.4 

Table 9.S The range of possible no-mass-change deSigns 

Variable 
A 8 C D 

Worst 6.0 31.0 32.0 14.0 
Initial 9.0 26.0 26.0 9.0 
Optimum 12.0 20.0 20.0 6.4 

G 

12.0 

9.0 

6.0 

Mass Noise 
kg d8(A) 

146.8 92.9 

139.2 92.9 
132.4 92.9 

Table 9.9 The range of possible no-noise-change designs 

9.S Local minima problems 

The previous constraint sweep study provides an example of the occurrence of local 

minima problems when using response surfaces. As dIscussed in Section 9.1. there is much 
less scope for local minima to exist in a low-order polynomial response surface than in the often 

complex function winch it represents. Indeed. when carrying out an unconstrained optimization 

using a simple main effects model. no such local minima can occur. If the approximating 

polynomial is more complex. however. and especially if functIOnal constramts are being 
applied. then a number of local minima may be found. 
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Figure 9.8 Noise/mass trade-off starting from 'best' constrained test point 

As an example, Figure 9.8 shows the nOise/mass trade-off graph which is obtamed If 

each optimIzation trial of Section 9.7 IS started from the 'best' test pomt which obeys the 

constraint, as described m Section 9.1. Because the full range of optimum deSIgns is shown, 

any local minima which may occur are extremely easy to Identify. There are clearly a number of 

constraint levels between 140 and 145 kg, for example, where a local minimum has been 

located, since it is Impossible for an optimization trial with a more relaxed constraint to yield a 

worse optimum. A sudden drop in optimum objectIve function value is another indication of 

local mimma which IS displayed by this example. The sudden drop in function value just after 

135 kg, preceded by a gradual swing away from what otherwise seems to be a well-defmed 

curve, suggests that a problem IS also occurring in this area. 

As is the case when carrying out direct iterative optimization, the usual procedure for 

avoiding a local mJrumum is to restart the optimization trial from a dIfferent location. When 

using response surface methods, however, there are two major factors which gIve substantial 

assistance in solving this problem. These are as follows. 

1. As shown by the example of Figure 9.8, the avrulability of a constraint sweep graph 

results in local mimma being very easy to identIfy. This is in contrast with the direct Iterative 

method, where one of the greatest problems with local mimma is that it is often not possible to 

know whether the optimum which has been located is a global optimum within the design 

variable space, or is simply a local minimum. 
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2. The computational cost of carrying out additional optimization trials uSing an 

approximating response surface IS negligible, since no further analyser calls are required. It is 

thus feasible to carry out a number of different tnals for a given set of constraint critena, each 

one starting from a different location in the design vanable space. This procedure can easily be 

automated within a computer program, which might, for example, choose a number of random 

starting points and then select the best of these multiple optima m a way which is totally 

transparent to the user. This is again in contrast with the direct iterative technique, where the 

computational cost of performing each successive trial is approXimately equal to the cost of the 

original. 

To Illustrate the way in which local mlmma problems may be addressed using response 
surface methods, Figures 9A.l and 9A.2 of Appendix 9A show the noise/mass trade-off graphs 

which result from starting each optimization tnal at the low bound of all variables and high 

bound of all variables, respectively. Whilst it can be seen that the second of these has its own 

minor local mimma problem at around 134 kg, the combinatIOn of these two graphs with that of 

Figure 9.8 is hkely to give a complete picture throughout the constraint range. These three plots 

are overlaid In Figure 9A.3 in order to confirm that they are COincident at all points other than 

those at which local minima have been identified. The 'true' noise/mass trade-off which results 

from this exercise is then the graph of Figure 9.6, used in the constraint sweep example of 

Section 9.7. Thus, although it is true, as stated in Section 9.7, that this graph IS 'the result of 

trials at 296 different constraint levels', the number of trials earned out to produce thiS graph is 

in fact 296 x 3 :: 888. 

Even If a direct Iterative optimization program could locate a Single optimum in an 

average of 5 function calls, generation of this graph would still require 4440 calls. If Just two 

calls per trial were needed, the number would reduce to 1776. Using the response surface 

approach, the required number of calls is 26. 
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9.9 Structural additions using discontinuous variables 

The above examples have illustrated that the abilIty to identify the opllmum combinallon 

of existing portions of an engine structure is an extremely powerful analytic tool when used at 

the concept design stage of an engme development programme. An important extension to this 

method, however, would be the ability to mvestigate the most benefiCIal combination of a 

number of structural additions to the base design, such as alternative means of main bearing 

support, or the relative merits of structural and non-structural sumps. In order to be able to carry 
out studIes of this nature, however, the methods used in the above examples need to be 

extended m two main areas, as follows: 

9.9.1 Modifications to the noise analysis program 

The fIrst area m whIch extensIOns to the existing methodology are required is in the 

evaluatIOn of the function values, using the separate fmite-element analyser program. In order to 

automate the process of function evaluation at each of the required test points, it is necessary 

that the specIfication of the mitial model include the required information concerning each of the 

removable variables, with the removal of the appropnate elements being earned out within the 

firute-element program. This capabIlIty has been implemented within the analyser program by 

Zhang (1992). As noted in Section 1.8, it is also possible to perform manual modification of the 

desIgn, if Inclusion within an automated procedure proves mfeaslble. 

9.~~2' Response surface representation of discontinuous variables 

In order to investigate the addition or removal of component parts of the engine 

structure, the response surface method must be able to represent the effect of variables that can 

either take a zero value, or, if non-zero, can vary between upper and lower bounds in the 

normal manner. There would appear to be two distinct methods of approaching this problem, 

the first of which uses mathematical models of the type used m previous examples, and 

provides detailed informatIOn at the cost of a significant increase in functIon calls. The second 

aIms at mlnimlzmg the number of function evaluations required, but provides less detaIled 

information, and requires substantial modIfication to the methodology which has been used 

within the present work. The two approaches are as follows. 

1. Investigation of discontmuous vanables can be achIeved within the current 

methodology by treating the problem as a main design variable space, in which all of the 
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variables vary between their bounds, together with a number of subspaces of reduced 

dimension, in which one or more vanables are removed. An example of this approach is shown 

in Figure 9.9, where two of the three variables (XI and xi> may be removed from the design. 

The main design variable space is thus three-dimensional, with the individual removal of 

vanables x I and x2 resulting in subspace 'a' and subspace 'b', respectively, each of which are 

two-dimensional. Additionally, the one-dimensional subspace 'c' IS obtained when both x I and 

x2 are removed together. 

main destgn variable space 

subspacea 

/ 
subspacec subspaceb 

Figure 9.9 Investigation of discontinuous variables 
by division into subspaces 

Although the use of this approach can potentially result in a large increase in the number 

of analyser calls which are reqUIred, there are two factors which suggest that the method will 

often be feasible in practise. Firstly, the number of subspaces which need to be investigated is 

determined by the number of vanables wluch may take a zero value (for k such variables there 

are 2k - 1 additional subspaces), and for practical problems the number of variables which may 

be removed from the struCIDre will often be a small proportion of the total number of variables, 



246 

giving only a small number of subspaces. Additionally, each of these subspaces is of a reduced 

dImension, so that the number of tests required to Investigate each diminishes rapidly as the 

number of vanables whIch are sImultaneously removed increases. A seven vanable example of 

the use of this approach, in winch minimally augmented Hoke designs are used to investigate 

each of the subspaces, is presented in the next secl1on. 

2. An alternative approach is to reformulate the definition of the response surface 

within the main design variable space in order to account explicitly for the effect of vanable 

removal. Although this method IS likely to reqUIre far fewer analyser calls than the 

subspace-investigation method, the use of such an approach raises the following two issues: 

i) To mlmmize the reqUIred number of tests, the current subspace models are derived from 

Hoke designs, which are either saturated or minimally augmented. There is, therefore, 

little scope for further reduction of the number of tests, without sacrificing some of the 

terms of these subs pace models. In order to represent the subspace response by the 

addll10n of a relatively small number of extra parameters to the main response surface 

defimtlOn, it would thus be necessary to make certain assumptions as to whIch of these 

effects could be neglected. This clearly calls for a detailed analysis of the nature of these 

subspace response surfaces, particularly with regard to theIr relationship with the main 

desIgn variable space, and with each other. 

ii) The inclUSIOn of the effect of vanable removal WIll necessanly lead to a response surface 

whICh exhibits a number of discontinUltles. This a particular problem for iterative 

optimizer of the type which has been used here to carry out optimization on the response 

surfaces, since their methods of search are dependent on the analysis of local gradIent 

information. The use of a single response surface model to represent variable 

discontinuity would thus require a substantially dIfferent approach to the final numencal 

optimization problem. 

For these reasons, development of this second method of investigal1ng the addition and removal 

of structural parts has not been addressed within the present work. It should be emphasised, 

however, that the subspace-investigation approach used here will, in fact, gIve a superior 

indication of the effect of variable removal, since the response in each subspace is being 

represented by a complete quadratIC model. The disadvantage of this procedure is the large 

increase in the number of analyser calls which must be earned out if several discontinuous 

variables are to be investigated. 
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9.10 Numerical example using discontinuous variables 

To Illustrate the way in which an optimization study may be carried out using 

discontinuous variables, the seven variable example of Section 9.2 is again investigated. In the 
present example, however, each of the three methods of supporting the main bearing bulkheads 
(vanables D, E and F) may be removed from the design. In order that all possible combinations 
of these stiffeners were investigated, the problem was broken down into eight separate 
sub-problems, as shown in Table 9.10. A Hoke D4 design of the appropnate dimensionality 

was used to investigate each of the subspaces, with the number of tests used for each shown in 
Table 9.10. The mass range of each subspace is also shown. 

Variable No. of No. of Mass range 
subspace D E F van abIes tests kg 

main • • • 7 43 142.9 - 185.3 
a • • 6 34 140.3 - 176.3 
b • • 6 34 140.7 - 179.7 
c • • 6 34 126.7 - 159.4 
d • 5 26 138.1 - 170.7 
e • 5 26 124.2 - 150.4 
f • 5 26 124.5 - 153.9 
g 4 19 121.9 - 144.8 

242 121.9 - 185.3 
• vanable included 

vanable omitted 

Table 9.10 subspaces used for Investigation of main bearing support methods 

A separate sweep through the range of possible mass constraints, at intervals of 0.1 kg, 

was carried out for each of the subspaces. Commencing optimization at three different locations 
for each of the 2612 different combinations of mass constraint and subspace, this gave a total of 
7836 separate optimizatIOn trials, resulting in eight noise/mass trade-off graphs. These eight 
separate analyses were then combined by selecting the lowest optimum design for each mass 

constraint from among the subspaces, to give a single overall noise/mass trade-off graph. This 

graph is shown in Figure 9. 10. 

------ -
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Figure 9.10 Noise/mass trade-off showing percentage change from Initial mass 

Figure 9.10 shows that, when compared with the noise/mass trade-off graph of 

Figure 9.6, a substantial 'lank' occurs at about 143 kg, somewhat similar to the local mmima 

symptom of Figure 9.8. FIgure 9.10 dIffers from thIS, however, in that there IS no sudden drop 

back to the 'true' trade-off line. In this example, the reason for the apparent deviation is that 

Figure 9.10 is effectively displaYIng two curves of the form shown in Figure 9.6, with the 

sudden change in charactenstlc occumng when the bearing-tie (variable F) is brought into the 

design. Table 9.11 shows that this variable has a bound-to-bound mass change of 9.7 kg, equal 

to a rate of 0.81 kg/mm. Since the lower bound of this variable is 20 mm, the mass constraint 

must be at least (121.9 + 20 x 0.81) = 138.1 kg before it can be brought into the design. 

Variable Mass Noise 
kg range dB(A) range dB(A)lkg 

A Crankcase skirt 6.40 -4.489 -0.702 
B 1 & 5, end panels 6.38 -0.402 -0.063 
C Bearings 2, 3 and 4 3.98 -0.733 -0.184 
D LongitudInal stiffener 6.45 -0.433 -0.067 
E Lateral bearing support 3.34 -0.308 -0.090 
F Beanng cap tie 9.70 -0.481 -0.050 
G Water Jacket sldewall 6.23 -0.663 -0.106 

Table 9.11 Functional sensitivity when all variables are present 
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Although Table 9.11 shows that the noise/mass sensitivity of this variable is low once 

included In the design, there is clearly a large advantage in introducing Il Tlus can be seen from 

the list of optlmum designs in the range 142.1 to 143.0 kg given in Table 9.12, which show that 

in order to bring In vanable F, the longitudinal stiffener (D) IS removed from the deSign, the five 

bearing bulkheads (8 and C) are reduced to their lowest bound, and the crankcase skirt also 

reduced sigmficantly. The only way in which variable D could be introduced earlier would be to 

remove variable E from the design. This, however, is the main bearing lateral StIffener, and the 

chOice of optimum design clearly shows that, hke the beanng cap tie, there is much advantage in 

its presence, even at the lowest bound. 

Variable - mm Mass Noise 
subs pace A 8 C D E F G kg d8(A) 

c 12.0 32.0 27.9 4.0 10.0 0.0 6.0 142.1 89.40 
c 12.0 32.0 28.2 4.0 10.0 0.0 6.0 142.2 89.39 
c 12.0 32.0 28.5 4.0 10.0 0.0 6.0 142.3 89.38 
c 12.0 32.0 28.8 4.0 10.0 0.0 6.0 142.4 89.38 
c 12.0 32.0 29.1 4.0 10.0 0.0 6.0 142.5 89.37 
a 8.2 20.0 20.0 0.0 10.0 20.0 6.0 142.6 89.35 
a 8.3 20.0 20.0 0.0 10.0 20.0 6.0 142.7 89.26 
a 8.4 20.0 20.0 0.0 10.0 20.0 6.0 142.8 89.18 
a 8.5 20.0 20.0 0.0 10.0 20.0 6.0 142.9 89.11 
a 8.6 20.0 20.0 0.0 10.0 20.0 6.0 143.0 89.03 

Table 9.12 Introduction of the bearing cap tie (variable F) 

Table 9.12 also shows the reason for the change in slope of the nOise/mass trade-off 

graph when the bearing cap tie IS introduced. As the mass constraint nears 142.5 kg, the most 

noise/mass sensitive variables of subspace 'c' are already at their upper bounds, so that the rate 

of noise reduction has slowed sigmficantly. Once variable F is introduced, however, all 

variables are free to Increase, and the rate of nOise reduction suddenly rises as mass IS agam 

added to the most noise/mass sensitlve variable (variable A). 

A further investlgatlOn shows that the slope change at around 139 kg IS due to a similar 

cause. Table 9.13 shows that the optimlzer has located a minimum in subspace 'e', which it 

cannot escape from until enough mass IS available to introduce another variable, in this case 

variable D, the longitudinal stiffener, which of course is removed again shortly afterwards to 

make way for the beanng cap tie (vanable F). 
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Variable - mm Mass Noise 
subspace A 8 C D E F G kg d8(A) 

e 12.0 31.44 20.0 0.0 10.0 0.0 7.3 45.9 89.9817 
e 12.0 31.46 20.0 0.0 10.0 0.0 7.3 46.0 89.9815 
e 12.0 31.48 20.0 0.0 10.0 0.0 7.4 46.07 89.9814 
e 12.0 31.48 20.0 0.0 10.0 0.0 7.4 46.07 89.9814 
e 12.0 31.48 20.0 0.0 10.0 0.0 7.4 46.07 89.9814 
e 12.0 31.48 20.0 0.0 10.0 0.0 7.4 46.07 89.9814 
e 12.0 31.48 20.0 0.0 10.0 0.0 7.4 46.07 89.9814 
e 12.0 31.48 20.0 0.0 10.0 0.0 7.4 46.07 89.9814 
e 12.0 31.48 20.0 0.0 10.0 0.0 7.4 46.07 89.9814 
c 11.7 31.29 20.0 4.0 10.0 0.0 6.0 46.8 89.9450 
c 11.7 31.44 20.0 4.0 10.0 0.0 6.0 46.9 89.9073 
c 11.8 31.59 20.0 4.0 10.0 0.0 6.0 47.0 89.8695 
c 11.8 31.74 20.0 4.0 10.0 0.0 6.0 47.1 89.8317 

Table 9.13 Introduction of the longitudinal stiffener (variable D) 

The nOise/mass trade-off graph of Figure 9.10 is again shown in Figure 9.11, with 

lines of percentage mass change superimposed. These hIghlight the fact that the inclusion of 

seven variables, of whIch three can be completely removed, leads to an extremely wide range of 

mass constraints. Even Within the range of ±6% mass change, however, the noise level vanes 

over a range of 4.5 dB(A). The specificatIOn of the optima which lie on these mass constraint 

lines are gIven m Table 9.14. 
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Figure 9.11 Noise/mass trade-off showing pereentage ebange from initial mass 
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Vanable-mm Mass % Noise 
A B C D E F G kg change dB(A) 

11.1 22.4 20.0 0.0 10.0 0.0 6.0 130.9 -6 91.9 
12.0 25.8 20.0 0.0 10.0 0.0 6.0 133.6 -4 90.6 
12.0 31.1 20.0 0.0 10.0 0.0 6.0 136.4 -2 90.0 
11.8 31.9 20.0 4.0 10.0 0.0 6.0 139.2 89.8 
12.0 32.0 27.3 4.0 10.0 0.0 6.0 142.0 +2 89.4 
10.1 20.0 20.0 0.0 10.0 20.0 6.0 144.8 +4 88.0 
11.3 20.0 24.8 0.0 10.0 20.0 6.0 147.6 +6 87.4 

Table 9.14 A selection of optimum designs having mass change within ±6% 

These optimum deSigns show that, as expected from the noise/mass sensitivity 

information of Table 9.11, the crankcase slart and outside bearings (van abies A and B) are 

Identified by the optimization a1gonthm as the most efficient parts of the structure to which to 

add structural mass. As discussed above, the bearing cap tie (variable F) is introduced as soon 

as suffiCient mass IS avrulable, but this is not until nearly a 2.5% mass Increase has been 

incurred. Note that, even with a mass reduction of 6% over the initial design, a noise reduction 

of 1 dB(A) can stili be achieved. Comparison of the no-mass-change optimum with that 

obtained using the five variables of Section 9.3, as shown in Table 9.15, reveals that the 

introduction of the lateral bearing support (variable E) has led to a further reduction of 1.6 
dB(A), giving a deSign which is over 3 dB(A) quieter than the original. 

Initial 
n=5 
n=7 

Variable - mm Mass 
A B C D E F G kg 

9.0 26.0 26.0 9.0 0.0 0.0 9.0 139.2 
12.0 32.0 20.0 6.0 0.0 0.0 6.6 139.2 
11.8 31.9 20.0 4.0 10.0 0.0 6.0 139.2 

Table 9.15 Initial design and no·mass-change optima 

with five or seven design variables 

Noise 
dB(A) 

92.9 
91.4 
89.8 

The increased rate of nOIse reduction which follows the introduction of the bearing cap 

tie suggests that further reductions in noise could be obtained at the lower mass constraints If 

this variable could be introduced with a lower thickness, and hence lower mass penalty. If this 

were the case, the optimum designs shown in Tables 9.12 and 9.13 suggest that there would no 
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longer be a need to Introduce the longitudinal stiffener (variable D) In this mass range, thus 

allowing further mass reallocation to more noise/mass senslllve vanables. In order to investigate 

these possibilities, a further series of tests were carried out, in which variable D was eliminated 

from the analysis, and variable F allowed to vary between bounds of 8 and 20 mm. The use of 

the lower bound of the original test range as the new upper bound allows a significant number 

of the original tests to be used. Although thiS additional study was investigated with a six

dimensional Hoke D4 design comprising 34 tests, only 23 more calls to the analyser program 

were needed, cutting the additIOnal computation time by one third. 

A sweep through the mass range of the additional subspace was carried out, and the 

results combined with the previous trade-off graphs to give the family of optimum deSigns 

shown in Table 9.16. Companson of these results with the optimum designs of Table 9.14 
reveals that, except at the -6% mass constraint, all of the optimum deSigns lie in the additional 

subspace, resulting in a further reduction of 1.6 dB(A) for the no-mass-change constraint 

Variable - mm Mass % Noise 
A B C D E F G kg change dB(A) 

11.1 22.4 20.0 0.0 10.0 0.0 6.0 130.9 -6 91.9 
8.8 20.0 20.0 0.0 10.0 8.0 6.0 133.6 -4 90.2 

10.7 20.0 20.0 0.0 10.0 9.1 6.0 136.4 -2 89.0 
11.3 20.0 20.0 0.0 10.0 11.6 6.0 139.2 88.2 
12.0 20.0 20.0 0.0 10.0 14.1 6.0 142.0 +2 87.7 
12.0 25.7 20.0 0.0 10.0 13.8 6.0 144.8 +4 87.4 
11.6 20.0 32.0 0.0 10.0 14.1 8.0 147.6 +6 86.9 

Table9.I6 Optimum designs obtained with an available 

bearing cap tie thickness of 8 - 20 mm 

The nOise levels of these optimum designs are shown graphically in Figure 9.12, where 

they are contrasted with that of the original design and the mass of the "worst" no-mass-change 

design, identified by carrying out a maximum-noise sweep through each of the design vanable 

subspaces, as descnbed in Section 9.7. The no-mass-change optimum is now 4.7 dB(A) quieter 

than the onginal design, and there is a range of nearly 7 dB(A) between the best and worst 

designs. 
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Figure 9.12 A range of optimum designs for varying mass constraints 

9.11 Enhancements to the noise optimization procedure 

The aim of the present chapter has been to demonstrate a number of the features of the 

response surface method which make it particularly suitable for carrying out an in-depth noise 

optimization study of a concept-stage engine design. In addItion to these features, however, a 

number of extensIOns to the methodology are outlined below, which, if Incorporated into the 

suite of computer programs developed as part of the present work, would significantly enhance 

the capabJIitJes of the method. 
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9.11.1 Use of other function information 

All of the examples presented in thiS chapter involve the use of just two functions of the 

design variables - radiated noise and structural mass. However, any function of the design 

variables can be used as either an objective or constraint function, as long as it fulfils the 

following three criteria: 

1. Computable at the reqwred test points. 

2. Continuous function of the design variables. 

3. Capable of being approximated by a low order polynomial. 

The following are examples of additIOnal functions which may be obtained from the 

noise analysis program used in the present work. 

• Mass or weight of any mdividual component of the analysis structure. 

• Dynamic response, such as displacement, velocity or acceleratIOn, at specified 

nodes of the fmlte element mesh. This would be of particular interest when 

investlgatmg, for example, the Vibration transmission characteristics at engme 

mounting points, or the attachment points of engine covers. 

• Maximum dynamic response within the structure. 

• Individual natural frequency. If using a model of a complete powertrain, for 

example, an important use of this facility would be to ensure that the fundamental 

bending frequency exceeded the required design target When carrying out noise 

optimizatIOn It is necessary to specify tlus requirement explicitly, since the low 

frequency of powertrain bendmg (usually below 400 Hz for light velucles) IS such 

that minimizatIOn of vibration in thiS range is of little consequence from a nOise 

standpoint. 

Although no detailed numencal investigations using the above functions have been 

carried out, preliminary tnals suggest that they have considerable potential for inclusion in 

response surface-based optimization studies. In addition to the above, future work might 

investigate the inclusion of the following finite element analysis-based functions 

• Alternative measures of radiated noise. This may include the use of unweighted 

, noise values, different weighting scales, or a number of measures of sound 

'quality' which are currently being used by mvestigators. 

• Subdivision of the single sound power level into contnbutlons from different areas 

of the structure surface. This would enable the use of a scaling factor to take into 

account, for example, variation in noise attenuation effects which occur when the 

unit is installed in a vehicle. 
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Although, in principal, measures of stress could be used as functIOns in the optimization 

process, the calculation of these values would reqUIre a finite element model of much greater 

sophisttcatlOn than those currently used for vibration analysis of concept-stage engine 

structures. It is thus unlikely that the inclusion of stress informatton will be practical within the 

foreseeable future. 

In addItion to the use of alternative mformatton supplied by the finite element program, 

the fleXibility of the response surface method allows any other non-FE function which obeys the 

criteria outlined above to be included at the opttmlzation stage. Functions of this nature might 

include, for example, some measure of cost, such as material cost, manufacturing cost, the 

effect of increased sales revenue resulting from a quieter engme, or some combination of 

these. The use of such functions is, of course, dependent on an abIlity to esttmate them with the 

reqUIred accuracy. 

In conSIdering the inclusion of alternative functtons, It is useful to bear in mind the 

followmg two features of the response surface method. 

1. When the test points of the experimental design are analysed, all functtons which can 

be calculated WIth little or no additional computational cost should be evaluated. If these are 

found to be of no use at the optimization stage, then lIttle IS lost If even a single function is 

omitted, however, and later found to be required, then the cost of re-analysing each of the test 

points could be consIderable. 

2. At the analysis stage, there is no differentiation between the objecttve function and 

the constramt functtons. It IS not unttl the optimization tnals are earned out, using the 

mathematical models of the original functions, that a choice of objective functIon, constramt 

functIOns and constraint levels must be made. Thus, because this optimizatton process incurs 

virtually no computational cost, it IS feasIble to carry out multiple studies of objective/constraint 

trade-offs usmg, for example, different measures of sound power and nOIse qUality. This may 

yield a better understanding of the necessary compromises which must be made to give 

acceptable performance against a number of dIfferent criteria 

9.11.2 Multiple objective and constraint functions 

Optimization of a single objective function subject to multtple constraints can be 

performed usmg the optimization routine employed m the above examples. A number of 

methods are currently aVaIlable which allow the simultaneous optimization of two or more 

objective functions, subject to mUltiple constraInts, although no routines of this nature are 

presently included in the NAG library. Discussion of this topic may be found in Khuri and 

Comell (1987, Chapter 7), Hill and Hunter (1966), Myers, Khuri and Carter (1989). The 
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Implementation of such a routine would, for example, allow the optimization of both radiated 

noise level and engine mount vIbration velocities subject to a minimum powertrain bending 

frequency and a range of possible mass constraints. 

9. 11.3 Analytic optimization on the response surface 

Since an exact specification of each of the approximating response surfaces is available, 

it would be feasible to solve these equations dIrectly to give the reqUIred optimum, rather than 

using an iterative search algorithm. However, preliminary investigations of poSSIble methods 

which have been undertaken within the present work have Indicated that techniques such as the 

Kuhn-Tucker theory, whilst guaranteeing to find a constrained minimum, cannot guarantee to 

locate a global optimum (Banks, 1986). Since the routines currently used do not do so either, 

however, there would stili seem to be scope for the use of such a method, espeCIally if a 

reductIOn in solution time of the final optimization trial could be gained. 
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Appendix 9A 

Optimlzatton Informatton 

Variable - mm Mass Noise 
Call A B C D E F G kg dB(A) 

1 6.0 200 200 40 100 200 60 142.87 91.603 
2 12.0 214 22.1 53 106 20.7 63 152.56 'In 117 
3 12.0 225 243 62 12.1 220 7.4 15699 86691 
4 12.0 23.7 265 7.2 13.7 234 8.5 161.60 86242 
5 12.0 24.9 28.7 8.1 15.2 250 9.6 16637 85.767 
6 12.0 26.1 31.0 90 167 268 108 17132 85.260 
7 12.0 273 32.0 9.9 182 28.7 120 17596 84.808 
8 120 285 32.0 107 197 30.8 12.0 17923 84567 
9 12.0 314 32.0 125 232 32.0 120 18366 84.236 

10 120 32.0 32.0 140 250 32.0 12.0 18532 84.121 
11 120 32.0 32.0 140 250 32.0 120 18534 84.120 

Table 9 A.I Search history • unconstrained optimization in seven variables 
using a full factorial design (128 tests) 

1. MEAN 92.722 12. 0 2 1.0723xlQ-1 

2. A -1.3483 13. BG -6.S169xlQ-2 

3. B -9,4553x1O'I 14. CD -6.6992xlQ-2 / 

4. D ·4. 158SxlO'I 15. AC 5.3423xlQ-2 

5. A2 2.6124xlO'I 16. C2 4.6248xlQ-2 

6. AB 2,4908x 1 0'1 17. CG 4.3133xlQ-2 
7. C ·1.9983xlO'I IS. AG ·3.5197xlQ-2 
S. D2 1.7826xlO'I 19. AD ·1.5580xlQ-2 

9. B2 -1. 6608x 1 0'1 20. BC 7.3936x1 Q-3 
10. BD 1.2992xlO'I 21. DO -2.6639xlQ-3 
11. 0 -1.1148x1O'I 

Table 9A.2 Noise coefficients for Hoke D4 design with 26 tests (n=5) 
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Variable - mm Mass Noise 
Call A B C 0 G kg dB(A) 

1 12.0 320 200 40 60 137.25 91.733 
2 12.0 320 200 57 6.7 13920 91.435 
3 120 320 200 59 67 139.20 91.432 
4 12.0 320 200 59 6.7 13920 91.432 
5 12.0 32.0 200 60 6.6 139.20 91431 
6 120 32.0 200 60 6.6 13920 91431 
7 120 32.0 200 6.0 66 13920 91.431 

Table 9A.3 Search history, starting from best constrained test point 

Variable - mm Mass NOIse 
Call A B C 0 G kg dB(A) 

1 90 260 260 90 90 13919 92.722 
2 110 276 24.7 7.7 7.4 13920 91983 
3 120 308 228 6.6 6.0 13920 91578 
4 120 320 21.7 61 60 13920 91450 
5 12.0 320 213 62 61 13920 91.445 
6 12.0 320 20.0 63 64 13920 91.432 
7 12.0 320 20.0 63 6.5 139.20 91.432 
8 120 320 200 60 6.6 139.20 91.431 
9 120 320 200 6.0 6.6 139.20 91.431 

10 120 32.0 200 60 66 139.20 91431 

Table 9A.4 Search history, starting from Initial design point 
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Figure 9A.l Noise/mass trade-off starting from low variable bounds 
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Figure 9A.2 Noise/mass trade·ocr starting from high variable bounds 
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Figure 9A.3 Comparison of noise/mass trade-ocr graphs 
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Appendix 9B 

Sweep through range of mass constraints 
Five variable example 

Variable - mm Mass Noise 
A B C D G kg dB(A) 

603 2000 2000 400 600 1l4S 96447 
612 2000 2000 400 600 1146 96381 
621 2000 2000 400 600 1241 96315 
631 2000 2000 400 600 1148 96250 
640 2000 2000 400 600 1%49 96186 
649 2000 1000 400 600 1150 96122 
659 2000 2000 400 600 1151 96058 
668 2000 2000 400 600 1151 95995 
678 2000 2000 400 600 1153 95933 
687 1000 :10 00 400 600 1254 95871 
696 2000 2000 400 600 1155 9S 810 
706 1000 2000 400 600 US6 95749 
715 2000 :1.000 400 600 1157 9S 689 
724 2000 2000 400 600 U58 95629 
734 2000 2000 400 600 1259 95569 
743 2000 2000 400 600 1160 9S 511 
753 1000 2000 400 600 1161 9S 452 
762 2000 2000 400 600 1162 9S 395 
771 2000 2000 400 600 1163 95337 
781 1000 2000 400 600 1164 95280 
790 2000 2000 400 600 1265 95224 
799 2000 2000 400 600 1%66 9S 168 
809 2000 2000 400 600 1267 95113 
818 2000 2000 400 600 1268 95059 
828 2000 2000 400 600 1269 95004 
837 1000 2000 400 600 1270 94951 
846 2000 2000 400 600 ll1! 94897 
856 2000 1000 400 600 1212 94845 
865 2000 1000 400 600 1173 94793 
874 2000 2000 400 600 1214 94741 
884 2000 2000 400 600 U1S 94690 
893 2000 2000 400 600 1276 94639 
903 2000 2000 400 600 1277 94589 
9 12 2000 2000 400 600 1178 94539 
921 2000 2000 400 600 1219 94490 
931 2000 2000 400 600 1280 94441 
940 2000 2000 400 600 1281 94393 
950 2000 2000 400 600 1282 94346 
959 2000 2000 400 600 1183 94299 
9 '8 2000 2000 400 600 1184 94252 
978 2000 2000 400 600 1285 94206 
987 2000 2000 400 600 1286 94161 
997 2000 2000 400 600 1287 94116 

1006 2000 2000 400 600 1288 94071 
10 IS 2000 2000 400 • 00 1289 94027 
102S 2000 2000 400 600 1290 93984 
1034 2000 2000 400 600 129 I 93941 
1043 2000 2000 400 600 1292 93898 
10 S3 2000 2000 400 600 1293 93856 
ID 62 2000 2000 400 600 1294 9381S 
1071 1000 1000 400 600 1295 93774 
1081 2000 1000 400 600 1296 93733 
1090 1000 1000 400 600 1297 93693 
1I 00 1000 2000 400 600 1198 936S4 
1I 09 2000 1000 400 600 1299 93615 
1Il8 1000 2000 400 600 1300 93577 
1I18 1000 1000 400 600 130 I 93539 
11 37 2000 1000 400 600 1301 93502 
1147 1000 1000 400 600 1303 9346S 
11 S6 1000 2000 400 600 1304 93418 
11 65 1000 2000 400 600 1305 93392 
11 75 2000 2000 400 600 1306 93357 
11 84 2000 2000 400 600 1307 93321 
11 93 2000 2000 400 600 1308 93288 
1200 2000 2000 4 os 600 1309 93256 
12 00 2000 2000 420 600 1310 93230 
12 00 2000 2000 436 .00 131 I 9320S 
1200 2000 2000 451 600 1311 93179 
11 00 2000 2000 467 600 1313 93154 
12 00 2000 2000 48% 600 1314 93130 
1200 2000 2000 498 600 1315 9310S 
12 00 2000 2000 513 600 1316 93081 
12 00 2000 2000 529 600 1317 93058 
11 00 2000 2000 544 600 131.8 93035 
11 00 2000 2000 560 600 131 9 93012 
12 00 2000 2000 575 .00 1310 91989 
11 00 2000 2000 591 600 1311 92967 
11 00 2000 2000 606 600 1322 92945 
11 00 2000 2000 62% 600 1323 91923 
12 00 2000 2000 637 600 1324 92902 
12 00 2000 2000 653 600 1325 92881 
12 00 2000 2000 668 600 1326 92861 
12 00 2000 2000 684 600 1327 92841 
1200 2000 2000 699 600 1328 92811 
12 00 2000 2000 71S 600 1329 92 SDI 
12 00 2000 1000 730 600 1330 92.782 
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1100 1000 2000 746 600 133.1 92763 
1200 1000 1000 761 600 133 :1 91745 
12 00 1000 1000 777 600 1333 9271.7 
1200 2000 2000 791 600 1334 91709 
1100 1000 2000 807 600 133 S 91691 
1200 1000 1000 813 600 1336 91674 
1200 1000 1000 839 600 133.7 91658 
1200 2000 2000 854 600 1338 91641 
12 00 2000 2000 869 600 1339 92615 
895 3200 2000 400 600 1340 92592 
905 3100 2000 400 600 1341 92 SS7 
914 3100 2000 400 600 1341 92523 
913 3200 2000 400 600 .343 92490 
933 3200 2000 400 600 1344 92457 
941 3200 2000 400 600 1345 92424 
951 3100 2000 400 600 1346 92393 
961 3200 2000 400 600 1347 91361 
970 32. 00 2000 400 600 1348 91330 
980 3200 2000 400 600 1349 92300 
989 3100 2000 400 600 1350 92270 
998 3200 2000 400 600 135 I 92241 

1008 3200 2000 400 600 t3S :1 9221% 
1017 3100 2000 400 600 1353 91184 
1027 3200 2000 400 600 1354 92156 
1036 32 00 2000 400 600 t3S 5 92128 
1045 3200 2000 400 600 t3S 6 92102 
10 SS 3100 2000 400 600 13S 7 92075 
1064 3200 2000 400 600 13S 8 92049 
1073 3200 :lO 00 400 600 t3S 9 92024 
1083 3200 2000 400 600 1360 91999 
1092 3200 2000 400 600 1361 91975 
11 01 3200 2000 400 600 1361 91.951 
1111 3100 2000 400 600 1363 91918 
11 20 3200 2000 400 600 1364 91906 
1130 3200 2000 400 600 1365 91883 
1139 3200 2000 400 600 1366 91862 
1148 3200 2000 400 600 1367 91840 
11 58 3100 2000 400 600 1368 91820 
11 67 3200 2000 400 600 1369 91800 
1177 3200 2000 400 600 1370 91780 
11 86 3200 2000 400 600 137 I 91761 
11 95 3200 2000 400 600 1372 91742 
12 00 3200 2000 408 600 1373 91714 
1Z 00 3200 2000 423 600 1374 91706 
1Z 00 3200 1000 439 600 1375 91689 
1200 3200 2000 454 600 1376 91671 
12 00 3200 2000 470 600 1377 91655 
12 00 3100 2000 485 600 1378 91638 
1200 3200 2000 501 600 1379 916U 
12 00 3100 2000 516 600 1380 91606 
12 00 3100 1000 531 600 138 I 91590 
12 00 3100 2000 544 601 1382 91575 
12 00 3200 2000 550 608 1383 91560 
12 00 3200 2000 556 614 1384 91546 
12 00 3200 1000 561 610 1385 91531 
12 00 3100 2000 568 615 1386 91516 
12 00 3l 00 1000 574 631 1387 91501 
12 00 3100 2000 580 637 1388 91487 
12 00 3100 2000 587 643 1389 91473 
12 00 3100 2000 5.3 64. 1390 91459 
12 00 3200 2000 599 655 1391 91445 
12 00 3100 2000 605 660 1392 91431 
1100 3200 2000 611 666 1393 91418 
1200 3100 2000 617 671 1394 91404 
12 00 3200 2000 613 678 1395 91391 
1100 3200 2000 619 684 1396 91378 
1100 3200 2000 635 690 1397 91364 
12 00 3100 2000 641 696 1398 91351 
1200 3200 2000 647 701 1399 91339 
1100 3200 2000 654 707 1400 91326 
1200 3200 2000 660 713 140 I 91313 
12 00 3100 2000 666 719 1402 91301 
UOo 3200 2000 672 715 1403 91288 
1100 3100 2000 678 731 1404 91276 
1100 3200 2000 684 736 1405 91164 
Il 00 3100 2000 690 741 1406 91252 
1100 3100 2000 696 748 1407 91241 
1200 3200 2000 702 754 1408 91229 
12. 00 3100 2000 708 760 1409 91117 
12. 00 3100 2003 714 765 1410 91206 
1100 3100 20 IS 720 767 1411 91195 
Il 00 3100 2028 725 769 1412 91.183 
Il 00 3200 2041 731 771 1413 91172 
12 00 3200 20 S4 736 773 1414 91 161 
12 00 3200 2066 741 776 1415 91150 
1200 3200 2079 747 778 1416 91139 uoo 3200 2092 753 780 1417 91128 
12. 00 3200 21 OS 758 781 1418 91118 
12 00 3200 21 18 764 784 1419 91107 
12 00 3200 2130 770 786 1420 91096 
12 00 3200 2143 775 788 1421 91086 
12 00 3200 21 56 781 790 1422 91075 
12 00 3200 2169 786 793 1423 91065 
Il 00 3200 2182 791 795 1424 91055 
12 00 3200 2194 797 797 1425 91044 
12 00 3200 2207 803 799 1426 91034 
12 00 3200 22 20 808 801 1427 91024 
1200 3100 2233 814 803 1428 91014 
12 00 3200 2.245 819 805 1429 91004 
12 00 3200 22 58 815 807 1430 90994 
12 00 3200 2271 8.30 809 143 I 90985 
1200 3200 2184 836 81l 1431 90975 
12 00 3200 2296 841 814 1433 90965 
12 00 3200 2309 847 816 1434 909S6 
1100 3200 23U 851 818 143.5 90946 
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1% 00 3200 2335 858 820 1436 90937 
1200 3200 2348 803 8n 1437 90928 
1200 3200 2360 809 824 1438 909.9 
1200 3200 2373 874 826 1439 90909 
1200 3200 2386 880 828 144 0 90900 
1200 3200 2399 880 831 144 1 90891 
noD 3200 2411 891 833 144 2 9088% 
1200 3200 24Z4 890 o 835 1443 90874 
1200 3200 2437 902 837 1444 90865 
12 00 3200 2450 908 839 1445 90856 
1200 3200 2463 913 841 144 0 90848 
11 00 3200 2475 919 843 144 7 90839 
1100 3200 2488 924 845 144 8 90831 
noD 3200 2501 930 848 144 9 90812 
12 00 3200 2514 935 850 1450 90814 
12. 00 3100 2527 941 852 1451 90806 
1Z 00 3100 2539 946 854 1451 90798 
1Z 00 3200 255% 952 850 1453 90789 
1%00 3200 2565 957 858 1454 90782 
12 00 3200 2578 903 800 1455 90774 
1200 3200 2591 .08 802 1456 90766 
12 00 3200 2603 974 8 .. 145.7 90758 
1200 3200 2616 .79 807 1458 90750 
11 00 3200 2629 985 809 1459 90743 
12 00 3200 2642 990 871 146 0 90735 
1100 3200 2054 • 90 8" 1461 90728 
1200 3200 2667 1001 875 146 2 90720 
1200 3100 2680 1001 877 1463 90713 
1200 3200 2693 lOll 879 1464 90700 
1200 3200 2706 10 18 881 1465 90699 
12 00 3100 2718 10 Z4 8 .. 1466 90692 
1200 3200 2731 1029 880 1467 90685 
1200 3100 2744 1035 888 1468 90678 
12 00 3200 2757 1040 890 146 9 90671 
1200 3200 2769 1046 892 1470 90664 
12 00 3100 2782 1051 894 1471 90658 
1200 3200 2795 1057 890 1472 90651 
1200 3200 2808 1062 898 1473 90644 
1200 3200 2820 1068 901 1474 90038 
1200 3200 2833 1073 903 1475 90632 
1200 3200 2846 1079 905 1476 90625 
1200 3200 2859 1084 907 1477 90619 
1200 3200 2872 1090 909 1478 90613 
1200 3200 2884 1095 911 1479 90607 
1200 3200 2897 11 01 913 1480 90601 
1200 3200 2910 11 06 915 1481 90595 
1200 3200 2923 11 12 918 1482 90589 
Il00 3200 2936 11 17 920 1483 90584 
1200 3200 2948 11 23 921 1484 90578 
1200 3200 2961 11 28 924 1485 90572 
Il00 3200 2974 1134 920 1486 90567 
IlOO 3200 2987 1139 928 1487 90561 
11 00 3200 3000 1145 9.30 1488 90556 
11 00 3200 3011 11 SO 931 1489 90551 
12 00 3200 3025 11 56 934 1490 90545 
1200 3200 3038 11 61 937 1491 90540 
1200 3200 3051 11 67 939 1492 90535 
12 00 3200 3063 11 73 941 1493 90530 
1200 3200 3076 11 78 943 1494 90525 
12 00 3200 3089 11 84 945 1495 90521 
11 00 3200 3102 11 89 947 1496 90516 
1200 3200 3115 11 95 949 1497 90511 
1200 3200 3127 1200 951 1498 90507 
12 00 3200 3140 1Z 00 953 1499 90 SOl 
1200 3200 3153 1211 956 1500 90498 
11 00 3200 31 00 1217 958 1501 90493 
11 00 3200 31.78 1222 960 ISO 2 90489 
1200 32. 00 31.91 1128 962 ISO 3 90485 
1200 3200 3200 12 33 965 1504 90481 
11 00 3200 3200 1240 971 ISO 5 90477 
1200 3200 3200 12 46 977 ISO 6 90473 
1100 32. 00 31.00 12. 52 983 ISO 7 90469 
1100 3200 3100 1158 989 1508 90465 
12 00 3200 3100 1164 994 1509 90462 
1200 3200 3100 12 70 1000 1510 90459 
12 00 3100 3100 12 76 1006 151.1 90455 
1100 3100 3100 12 82 1012 1512 90452 
1200 3200 3200 12 88 1018 1513 90449 
1200 3200 3100 1294 1024 1514 90447 
1200 32. 00 3100 1300 10.30 1515 90444 
1200 3200 3200 1307 1035 1516 90441 
1200 3200 3100 1313 1041 1517 90439 
1200 3200 3200 13.19 1047 1S18 90437 
1Z 00 3100 3100 13 25 1053 1519 90435 
1Z 00 3200 3200 1331 1059 1520 90433 
1200 3200 3200 13 37 1065 1521 90431 
1200 3200 3200 13 43 1070 1522 90419 
1200 3200 3100 13 49 1076 1513 90417 
1100 3200 3200 13 SS 1082 1514 90426 
1100 3200 3100 13 61 1088 1525 90414 
1200 3200 3200 1367 1094 1S26 90413 
11 00 3200 3200 13 74 11 00 Ul7 90422 
1200 3200 3200 1380 11 06 lSl8 90421 
11 00 3200 3200 13 86 1111 Ul9 90420 
12 00 3200 3100 1392 1117 1530 90420 
11 00 3200 3200 13 98 11 23 153 I 90419 
12 00 3200 3200 1400 11.31 1532 90419 
11 00 3200 3200 1400 1141 153.3 90419 
1200 3200 3200 1400 1144 1533 90419 
11 00 3200 3200 1400 1144 1533 90419 
12. 00 3200 32 00 1400 1144 1533 90419 
1200 3200 3200 1400 1144 1533 90419 
12 00 3200 3200 1400 1144 1S33 90419 
12 00 3200 3100 1400 1144 1533 90419 
12 00 3200 3100 1400 1144 153.3 90419 
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10. Summary and conclusions 

The work presented within this thesis has served to demonstrate the potential of 

response surface methods for carrying out numerical optimization of engtne structures for 

reduced noise. Investigation of a selection of existing experimental designs and classes of 

response surface model has identified a suitable combination with which to address the noise 

optimization problem. Using this approach, the variatIOn of the radiated noise function 

throughout the design variable space can be accurntely represented with an acceptable number of 

analyser calls. Optimization using the low-order mathematical model of the original responses 

offers a level of functionality not currently aVailable usmg trnditional direct iterntive optimizallon 

techniques. 

10.1 Summary of results 

The main conclusions which may be drnwn from the theoretical studies and numerical 

tests which have been earned out within the present work are as follows. ConclUSIOns drnwn 

from numencal studies are derived from the particular engine structure which has been 

investigated. 

Chapter 4: Experiments using first-order deSigns and models 

• The mass function is exactly representable UStng mean and main effect terms. 

• Virtually all of the variation in the noise function at the vertices of the design variable 

space is attributable to main effect and two-way internction terms. 

• The use of probability plots provides a convenient method of identifying statistically 

Significant model coeffiCients. 

• An independent analysis confinns that the significant parnmeters are the only ones which 

substanllally influence the accurncy of the predictive model. 

• Such a model can be constructed from a frnctional factonal design of at least resolution V. 

This also allows for the tnclusion in the model of a number of higher order interaction 

tenns. 

• The use of a first-order model results in substantial lack of fit at locations which are 

distant from the test points. The inclusion of higher order tenns is required to improve the 

predicllve ability of the model . 
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Chapter 6: The Central Composite Design (CCD) 

• The usefulness of the CCD is adversely affected by the constramts which the nature of the 
noise analysis problem place upon the axIal parameter a and the number of centre point 
tests no- The result of these constraints IS that It is not poSSIble to specIfy designs which 
are either orthogonal or rotatable. 

• Numerical tests have shown that a seven variable CCD WIth a resolution VII factorial 
portion, an axial parameter of a = 1, and a single centre pomt can be used to construct a 
second order model which gives a close approXImation to the onginal noise response 
throughout the region of interest 

• The predIctive ability of the model can be further enhanced by removmg those coefficients 
which the probabIlIty plot techmque has found to be statlsttcally inSIgnIficant. 

• Further results suggest that when the identity of the SIgnificant terms IS not known, lIttle 
lack of performance results from the substitution of a stnct quadratic model, in which no 
linear mteractton terms are mcluded of order higher than two. 

• The small number of tests which mvolve a third level of each of the design variables leads 

to a low level of preCIsion m the estimation of the pure quadrattc terms of the model. This 
is of particular importance, since many of the quadrattc coeffiCIents have a dominant 
effect on the performance of the model, and yet, due to the relative imprecision of their 
estimated values, It IS not possible to say with certainty whether their mclusion is justified 
by the avatlable data. 

• The inclUSIOn of replIcate centre pomts gives no additional information when investtgating 
a determIrustlc application. 

Chapter 7: Centre point replication 

• It is poSSIble to obtain genuine addItional informatton concerning the variation of the 
nOIse function by performing tests at points close to the centre of the design variable 
space. 

• Modificatton of the CCD to include an E-star or E-patr portion can be made without 
significantly compromising the orthogonal or rotatable nature of the design. 

• In the specIfic case investigated, little improvement in model accuracy has been obtained 
over that of the approximattng model derived from the standard CCD, due to the small 
lack of fit which occurs at points close to the centre of the region. 

• If the onginal response surface exhibits a substanttal amount of high-frequency 
fluctuation, then repeated testing over a small area may result in a slgmficant gain in the 
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predictive accurncy of the fitted model. 

• The most effective use of additional test points IS not to provide an Increase in the density 

of testing In certain areas, but to Improve the distribution of test points throughout the 

entire design vanable space. 

Chapter 8: Economic second-order deSigns 

• The predictIOn accuracy of each Hoke design IS similar to that of the CCD, despite 

requiring far fewer tests. On the basis of prediction errors, no reason was found for 

choosing the nnmmally augmented design rather than the saturated design, which requires 

fewer tests. 

• The use of a minimally augmented design is recommended in order to provide lack-of-fit 

Information. 

• The vanance for the pure quadratic terms of the saturated Hoke deSigns are twice the size 

of the corresponding values for the CCD, whilst the minimally augmented deSign Yields 

variances similar to the CCD. 

• The way In which the pure quadratic columns of the regressor matrix are scaled has a 

cntical Influence on the selection of an optimum design. If an alternative scaling factor IS 

adopted, then the design D4 is superior to the previously optimum design D6• Other 

designs of the full set investigated by Hoke are likely to perform better under this new 

scaling method. 

• Hoke's economical second order designs have been found to provide an extremely useful 

alternative to the CCD, yielding approximately the same accuracy of prediction wlulst 

having a much reduced test requirement 

Chapter 9: OptimizatiOn 

• A standard iterative optimization algorithm can successfully be used to locate optima on 

the approximating response surface. 

• Unconstrained noise optimization is seldom of prnctical use due to the associated increase 

in structural mass. 

• The response surface approach can be successfully used to carry out single optimization 

studies of the type usually performed using direct iterative optimization. 

• In order to gain the 'best' optimum noise design for a given mass constraint, it is 

important to include not only vanables which have a high noise/mass sensitivity, but also 

a number of variables which have a low noise/mass sensitivity. 
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• The response surface approach can investigate a wide range of different constraint criteria 
without the need to perform additional fimte element analyses. A 'sweep' through the 

possible range of constraints gives an explicit trade-off between competing design 

objectives, such as low noise and low mass. 

• The avrulability of a constraint sweep graph allows local minima to be easily identified. 

When using the response surface approach, the cost of carrying out additional 

Optimization tnals to avoid local miruma is very small. 

• Discontinuous variables can be incorporated Within an optmuzatlon study, thus a1lowmg 

investigation of structural additions to the base engine design. 

• A number of additional classes of response function have the potential for incorporation 

Within a response surface-based optinuzatlOn study. 

10.2 Recommendations for further work 

• All of the statistical analyses which have been carried out within the present work have 

been based on the assumption that errors due to underspecification of the approximating 

model can be treated as though they are randomly distributed and uncorrelated. Whilst 

adoptIOn of this assumption has allowed the application of a number of standard statistical 

techniques which are based on this error model, it was recognised in Appendix 4C that 

the assumption is not strictly valid in the deterministic environment of computer 

Simulation. A more rigorous approach to this problem, together with the development of 

an alternative approach to the modelling of errors, would represent an important extension 

to the investigallons made within the current work. 

• As With the adoption of a more appropriate error model, it is pOSSible that the 

determinisllc nature of computer experimentation can be better addressed by alternative 

approaches to experimental deSigns. The field of computer simulallon would, for 

example, appear to hold considerable potential for the application of sequential 

expenmentation techniques, in which the location of future test points is determined by 

information obtruned from previous tests. 

• Within the present work, little use has been made of the various measures of design 

optimality which are employed to judge competing deSigns. Further work in this area is 

reqUired, particularly With regard to the effect of scaling on the performance of the Hoke 

designs, as discussed in Section 8.4.3 and AppendiX 88. 

• If a different optimality criterion is adopted for judging the Hoke designs, it is likely that 

the full range of poSSible designs will need to be re-examined in order to identify which 

perform best under the new criterion. 
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• The method used for dealing with discontmuous variables provides detailed information 

on the characteristics of the response functions within the design variable subspaces, but 

at the cost of a substantial increase m the number of function evaluatIOns which are 

required. Further work is necessary in order to assess whether the removal of structural 

parts can be accounted for within the response surface model of the mam design space 

without sacrificing overall predlct:tve ability. 

• Preliminary work has been earned out to mvestlgate the inclusion of a number of different 

response functions Within a response surface-based optimization study, although no 

results have been presented within the present work. Further investigation is required in 

order to establish the range of such functions which lend themselves to approximation 

usmg low-order mathematical models. 

• A number of different approaches to optimization of multiple objective functions have 

been reported m the literature. Incorporation of these techniques is likely to lead to a 

sigmficant increase m functionahty when carrymg out a comprehensive optimization 

study involving a large range of potential objectlves. 

• Optimization on the response surface is presently performed usmg a standard Iterative 

a1gonthm from a commercial subroutine library. Further work is required to assess 

whether more appropriate techniques might be applied to this final optimization problem. 

In particular, the capabihty to carry out analytic optimization on the response surface is 

hkely to offer a substantial advantage in efficiency and functionality. 
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