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ABSTRACT

The contents of this thesis are a detailed study of the implementation
of Finite Element method for solving linear and non-linear elliptic
partial differential equations. It commences with a description and
classification of partial differential equations, the related matrix and
eigenvalue theory and the related matrix methods to solve the linear and
non-linear systems of equations.

In Chapter Three, we discuss the development of the finite element
method and its application with a full description of an orderly step-by-
step process. In Chapter Four, we discuss the implementation of developing
an efficient easy-to-use finite element program for the general two-
dimensional problem along with the capability of handling problems for
different domains and boundary conditions and with a fully automated mesh
generation and refinement technique along with a description of generalised
pre—- and post-processors for the Finite Element Method. In Chapter Five,
we consider the solution of a free boundary problem whose boundary
position is initially unknown and must be determined as part of the
solution to the problem, i.e. a sluice gate flow problem is considered.

In Chapter Six, we consider the finite element methed for the numerical
solution of a c¢lass of two-dimensional elliptic boundary value problems
which contain boundary singularities and where a number of different
strategies are also considered. The numerical results compare favourably
with those obtained by other techniques.

Chapters Seven and Eighﬁ present the results obtained when solving

a useful population of complex linear and non-linear partial differential




problems by the finite element method using different order polynomials

basis function such as quadratic, cubic and quartic. The results of

different solution plots are presented as output.

The thesis concludes with some general conclusions and recommendations

for further study.
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CHAPTER ONE

INTRODUCTION




-

1.1 INTRODUCTION

It is not possible to identify the exact starting point of the
finite element method, because the method makes use of many theories
and techniques drawn from mathematics and continuum mechanics, and no
single view of its origins can cover all facts of the development process.
Moreover, as more individuals and organizations began working with this
method, the advances become increasingly more diffuse. However one of
the early developments of the finite element method started in the middle
of the twentieth century (some thirty years ago), with the analysis of
aircraft structural engineering problems and over the years the finite
element technique has been so well established that today it is considered
to be one of the powerful methods for solving a wide variety of practical
problems efficiently. In fact the method has become one of the active
research areas for applied mathematics and engineers in which the
development has reached the stage where there are very few problems which

the method@ cannot tackle.

Various types of boundary conditions, curved boundaries or complex
geometries present no great difficulties for the method, and there are

further techniques for dealing with problems which have crack, singularities,

and many more difficult problems.

Often this flexibility and the general applicability of this method
1s a great advantage over various other numerical techniques of solving

problems.

Teday the finite element method is considered to be one of the more




established and convenient analysis tools by applied scientists and
engineers and with the help and the power of the computer the finite

element method has much to contribute in applied research.




1.2 THE BASIC IDEAS

The finite element method (FEM) is a numerical discretisation
technique for obtaining the approximate solution to problems mainly
governed by partial or ordinary differential equations on specified
domains. The given specified domain is divided into a finite number of
small non-overlapping regions which are called elements. These elements
are considered to be interconnected at specified joints which are called

nodes or nodal points.

Generally, straight line segments are used for the one dimensional
case, triangles or rectangles elements with algebraic curves as boundaries
in the space of two dimensions and tetrahedrans or hexahedrons in the

space of three dimensions.

In each element the solution is approximated by a simple function in
the form of polynomials where parameters can be adjusted to ensure the
existence of continuity of the functions in adjacent elements. OQur
attention will be devoted almost exclusively to two dimensional triangular
elements in this thesis, primarily because arbitrary regions in two
dimensions can be approximated by polygons, which can always be divided
up into a finite number of triangles more easily than the other element
shapes like rectangles. The approximate sclution of the general problem
by the finite element method always follows an orderly step by step
process. The;e finite element analysis steps are:

(i) Discretization of the domain or solution region,

(ii} Selection of an interpolation model to represent the variation

of the field variable,




{i1ii) Derivation of the discrete approximation of the problem

consisting of a finite set of algebraic equations
(iv) Solution of the set of algebraic equations derived in step (i1i)
by an accurate method
(v) Display and interpret the results (post processing).
These various stages of the finite element methed will be discussed later

in Chapter 3.




1.3 REMARKS ON THE CLASSIFICATION OF PARTIAL DIFFERENTIAL

EQUATIQONS

The partial differential equations which arise in many practical
problems are equations that express a relationship between an unknown

function of several variables (two or more}, and i1ts partial derivatives.

The order of a partial differential equation is the order of the

highest derivative contained in the equation.

=

A partial differential equation is Iinear, L1f it is of first degree
in the unknown function and its derivatives, otherwise it is non-linear.

For example, 32u . a2u o
2 2 '
9x dy

is a linear partial differential equation of second order, while the

equation,

d )
44 Jaxg§ + £{x,y,u) =0,

is a non=linear partial differential equation of third order.

A convenient and frequently used method for classifying the basic

partial differential equations that characterize field problems follows

from a consideration of the mathematical character of the solutions. This

method of classification is briefly outlined next to provide a link with

a more formal mathematical treatment.

The majority of problems of practical importance are special cases
of the general second order partial differential equation

Im=0, (L.1)




where L is a differential operator defined by,

2
d u d u 3 u du
+c_+D—
2 Ix3y ay2 ax

+fFu+G=0.

+ E

du

3y (1.2)

If G=0 the partial differential equation is termed as homogeneous,

otherwise it is called inhomogeneous.

Equation (1.2) is classified as elliptie, parabolic, hyperbolic, when

the discriminant 32-4AC is negative, zero or positive, respectively.

Because the coefficients A,B and € are, in general, functions of the

independent variables x,y, the classification of an eguation may change

at different positions in space.

However, if A,B and C are constants

then the equation is of one type throughout the X,y plane.

Well known examples of the three types are:

Heat flow equation Ju _ azu
= [
ot 3x2
which 1s of parabolic type.
Wave edquation 32u ~ 32u
T T T a0
3t2 sz
which is of hyperbolic type.
Laplace equation 82u 32u
2t 279
ax oy

which is of elliptic type.

(1.3)

(1.4)

{L.5)

Boundary-value problems are naturally associated with elliptic

equations, while initial-value problems and mixed (initial/boundary value)

problems arise in connection with hyperbolic and parabolic differential




equations. The boundary conditions can be one of the following three

types:

(i)

(i)

(iii)

Boundary-value problem of the first kind. Also called the Dirichlet
problem, Here the function u(x,y) is prescribed along the boundary,
i.e. u is given on the boundary 9R. If the function takes zero values
aleng the boundary, then the condition is called a homegeneous

Dirichlet, otherwise it is an inhomogeneous Dirichlet condition.

Boundary-value problem of second kind. Often called the Neumann

-~

problem. Here the normal derivative of the function u(x,y) 1s

specified along the boundary, i.e. %ﬁ-given on the boundary. We
may also have homogeneous or inhomogeneous Neumann boundary conditions

as before.

Boundary-value problem of the third kind. Here the function u(x,y)
and its normal derivatives are prescribed along the boundary i.e.

u and-%% are given along d9R, we may also have homogeneous or
1nhomogeneous mixed boundary conditions. It is often the case that

an elliptic problem is specified by boundary conditions that are of

different kinds along different parts OdR.

We assume throughout our discussion that our mathematical problem is

well posed,i.e. if the solution exists, it is unique and depends

continuously on the given data.

We would expect that small variations in the data should result in

correspondingly small variations in the solution. If this does not turn

out to be true, we would be inclined to believe that the mathematical model

has been badly formulated.




CHAPTER Two

BASIC LINEAR ALGEBRAIC THEORY AND APPROXIMATION

METHODS FOR SOLVING P.D.E.S




2.1 INTRODUCTION

The numerical sclution of partial differential equations by the
finite element method or other numerical approaches like the fanite

difference methed in all cases generates an associated algebraic problem.

In general this algebraic problem involves the solution of a large

set of equations of the form,

n
Y a,,x, =b, , (i=1,2,...,n) , . (2.1)
jop 334

which may be wraitten as the matrix system
Ax = b, (2.2)

where the matrix A 1s usually square with real elements, and has n rows

and columms and the elements a, {i,3=},2,...,n) are real numbers. The

3

vectors X and b have n components.

The usual solution of the problem (2.2) is to find x when A and b
are given. A unique solution of equation (2.2) which may be written in
the form x = A-¥§, exists for equation (2.2), when A is non-singular
which is equaivalent to A having a non-singular determinant. Since equaticn
{2.2) is a matrix representation of the differential equation after applying

the proper numerical approcach, the matrix A is usually sparse (many of its

elements are zero), and possesses a definite structure (determined by its

non-zero elements). -

The method of finding the solution for (2.2) particularly when the

order n of the matrix A is large, depends very much on the structure of a.

In this chapter, an introduction to matrix techniques that are useful




for the solution of (2.2) is given along with very important definitions
and theorems associated with the theoretical developments of the finite
element method. We will consider also several alternative algorithmic
methods for the solution of a large system of eguations. We give
particular prominence to those methods applicable to the solution of

equations arising from finite element calculations.




2.2

BASIC MATRIX ALGEBRA

A review of notation and properties for a square matrix A of order

n with real elements, which is relevant to the sclution of the equation

(2.2) is now given.

2.2.1

USEFUL NOTATIONS

Square matrix of order n

real number, which is the element in the ith row and jth column
of the matrix A

transpose of A

inverse of A

unit matrix of arder n

null matrix

determinant of A

spectral radius of A

column vector with elements x,, (i=1,2,...,n)

i
row vector with elements xj, {j=1,2,...,n)
norm of A
the norm of x

permutation matrix which has entries of zeros and cones only, with

one non-zero entry in each row and column.

2.2.2 DEFINITIONS

The matrix A is:

"non-singular" if |A]#0

T
"symmetric" 1f A=A

"orthogonal™ if A_1=A?




"null™ if aiJ=O (i,3=1,2,...,n) ‘
"diagonally dominant" if |a,,| 2 } |a, | for all i

ii %1 ij
1470 oF ji-3]>1 |
"block diagonal" 1f

"tridiagonal" 1f a

where each Bk' (k=1,2,...,s) is a square matrix, not necessarily of the

same order.

"upper triangular” if a; =Q , 1>j

3

i3

"irreducible" i1f there exists no permutation transformation

"lower triangular" if a,.=0 , j>i
PAP_l, which reduces A to the form
P 0
R Q
- where P and Q are square submatrices of order p and q
respectively {p+q=n) and O is a (pxqg) null matrix.
"sparse" if most of the elements a,, are zero

i3

"dense" if most of the elements aj_J are non-zero.

"The conjugate" of a matrix A whose elements aij which are not necessarily

"The Hermitian transpose® (or conjugate transpose) of a matrix A will be

real numbers will be denoted by A.
H |
denoted by A . ‘

The matrix A is said to be a 'Hermitian' matrix if,

Al - a, i.e if 3 . =a, ., for all i and 3§, (i,3=1,2,...,n).
j.i i,3]
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The definition of a Hermitian matrix implies that the diagonal elements

of the matrix are real.

A real symmetric matrix is always Hermitian, but a Hermitian matrax

1s symmetric only if it is real.

2.2.3 PARTITIONING OF A MATRIX

A matrix A can be partitioned into submatrices, for example,

]
11 %42 33 1 *a 5‘15-;1
[}
A= 21 #22 %23 | : 325 , (2.3)
el S o R i SR
31 232 333 § %3a 235

is shown partitioned into four submatrices by the dotted lines.
We may write,

A A2

A= , (2.4)
A By

t -

where All'Al2'A21'A22 hemselves are submatrices. In performing any
matrix operation, all the rules can first be applied as if each of the
submatrices were scalar elements and then carrying out any further
operation in the usual way. For example, 1f we have A as given above

in (2.3) and,

"1 by,]
P21 oY)
B = ’ {2.5)
b3l b32
_bél b42_
we may write again,
%1
B = ' {2.6)
B2

Then,
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a8, + 2,8,

BBy ¥ BBy

(2.7)

&

can be verified as representing the complete product by further
multiplication. The essential feature of partitioning is that the size

of subdivisions has to be such as to make the products of type AllBl

meaningful, i.e., the number of columns in A must be equal to the

11

number of rows in Bl' etc., If the above definition holds, then all

further operations can be conducted on partitioned matrices treating
each portion as if it were a scalar. It should be noteé that a matrix
can be maltiplied by a scalar (number) here, obviocusly, the requirement
of equality of appropriate rows and columns no longer apply.

If a symmetric matrix is divided into an equal number of submatrices
Ai] rows and columns then,

Aij = AJi . (2.8)

2.2.4 QUADRATIC FORMS

Matrix notation is most often employed to deal with sets of linear
equations. It 1s also useful in symbolizing special nonlinear expressions
called quadratic forms.

For a function of n variables xlfx2""'xn' a guadratic form is

defined as,
n n

G{X, /X sueasX ) = ) Y a,,xx
172 n 121 §=1 ij13
= x2+ X . x_ + +a, X, X + +a,..X X
= A12717%2%1%2T ot Thp*) BT T1% Ny
2
+...+a2nx2xn+...+anlxnxl+...+annxn (2.9)

A gquadratic form in one variable, say, is simply axf
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In two variablex X, and Xyt the most general quadratic form is

_ 2 2
G(xl.xz) = allxl + 2a12x1x2 + a22x2 .

Using matrix notation, we can write this as,

a a X

11 12 1
G(xl,xz) = [xl,le ’
321 222] %2
or G(xl,xz) = 5?&5 . (2.10)

Since eguation (2.10) represents a quadratic form of two variables,
then the same matrix symbolism also holds for a quadratic form of n

variables
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2.3 EIGENVALUES AND EIGENVECTORS

The eigenproblem for a given matrix A of order n is to find the
eigenvalues A and the eigenvectors x (Efo) such that,

AxX = AX . (2.11)

The characteristic equation of the matrix A is given by

|a-az] = o . (2.12)

The eigenvalues of A are the roots Al {(i=1,2,...,n) of the characteristic

E

equation.

Two matrices A and B are "smmilar"™ if they have the same eigenvalues

-1 . +
A and C "AC are similar 1f C is a non-singular matrix.

¢ lac is then called a similarity transformation of A.

The spectral radius of a matrix A is defined as,

p(d) = max |x,]. (2.13)
i
lgign

Given a vector x and a Hermitian matrix A then the Hermitian form is,
n n

fax= ) 1
isl §=1

ai a r ( )
t

where x, 18 the complex conjugate of x

i

Given a real vector x and a real symmetric matrix A then the
"quadratic form" is,

n
5?35 = E { a . {2.15)

Definition {(2.3.1)

A Hermitian matrix 1s positive definite if its Hermitian form is




positive for all x#0, i.e.,

gc_HAlz_ >0 , vx#£0. (2.16)

Definition (2.3.2)

A real symmetric matrix is positive definite if its quadratic
form is positive for all x#0, i.e.,
T
XxAx >0, Vx#0Q, (2.17)

[JENNINGS, 1977].

The following theorem 1s sometimes used as a definition of positive

definiteness.

Theorem (2.1)

A real matrix is positive definite if and only if 1t is symmetric

and all its eigenvalues are positive., [YOUNG 1971 ].

Theorem (2.2)

A real positive definite matrix A has a unique real positive

2
definite square root B, such that B =A, B 15 wratten A&. [YOUNG, 1971].

Theorem (2.3)

A real symmetric matrix A is positive definite if and only if it
T
can be written in the form Q Q=A, where Q is a non-singular matrix of

the same order.

Proof:
T
(1) If A=Q'Q, with (|g|70) ,
then for any vector x#0 ,

T T T
XAX =X QQx
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T
= (0x) "{(Qx) > O
= A is positive definite.

{(ii) If A is real and positive definite, since A=A*A& and Ai is

symmetric, therefore A=(A&)TA}.
As A§ 1s also positive definite ]Ail#o.

Thus, putting Q=A% gives the required condition.

Theorem (2.4}

Let A be an eigenvalue of A with eigenvector x. Then,
(1) aX is an eigenvalue of A with eigenvector x
(1i) A-p is an eigenvalue of A-pI with eigenvector x
(iri) If A 1s non-singular, then A#0 and l-l is an eigenvalue

of A-l with eigenvector Xx. [STEWART, 19731].




2.4 VECTOR AND MATRIX NORMS

The concept of a norm is very important for analysing the errors
in the later chapters, in which the approximate methods are usually
associated with some vectors and matrices of which their magnitude are

measurable as a non-negative scalar.

2.4.1 VECTOR NORM

T
Let the vector x be given by §.=[x ,...,xn]. A norm of the

1'%2

vector x is a real number ||5J| satisfying the following requirements:

(1) [{x||20 , for X70
(1) flex|| = |e| ||x]] , for any scalar «
(111)  [lx+yf] € [Ix]] + [lg]] (triangle inequality)
The most frequently used vector norms are:
n
|]§J|1 = X ]xil ’ {1 norm) (2.18)
i=1l
n 2 %
H=ll, = C % IV, (Euclidean norm) (2.19)
i=1
Hxll, = max [x], (= norm) (2.20)
lgi¢n

Equations (2.18),(2.19) are particular cases of the general Lp-norms

® 1/
| =] lp ={} |Xj_|p P, 1¢pge (2.21)
i=1

2.4.2 MATRIX NORM
In a similar manner, the norm of a sguare matrix A is a non-
negative number denoted by |[A|| satisfying the following conditions:

(1) ||a]l] >0, 2£2# 0,

(ii) ||ea|| = || ||2a]|, for any scalar a




(2i1) []a+B|| < |{a]] + ||B]|and

(iv) ||aB|| < {lall] |iB]] .

Since matrices and vectors appear simultaneously, it is convenient to
introduce the norm of a matrix in such a way that it is compatible with

a given vector norm.

A matrix norm is said to be compatible with a given vectoxr norm 1f
Haxi| < {{all =[] (2.22)

for all non-zero x.

~

To convert the matrix norm compatible with the wvector norm, it is

necessary that, |

|ax| |
{|al] = max (2.23)
xfo ||z||
= max ]|A§] . (2.24)
[1x[{=1

The matrix norm which is defined by (2.24) is said to subordinate to

the corresponding vector norm.

The matrix norm subordinate to llEle is denoted by l|A||p, and

these norms satisfy the relations,

(1) IIAH1 = max ) |a13| » (maximum absclute column sum)
3 o2
(ii) |1A||2 = (maximum eigenvalue of ATA)i
= foa'a
(iii)  [|a][_ = max Z|aij| » (maximum absolute row sum)

i3

Theorem (2.5)

If A is a matrix of order n, then,

p(a) s ||afl (2.25)




Proof:

If XA 1s any eigenvalue of A and x 1s an eigenvector associated
with the eigenvalue A, then Ax=Ax.
Thus, |[Ax|[= |M}x]] = [[ax]]
s lall [1x]]

from which we conclude that

Al £ ||a]|. for all eigenvalues of A.

Theorem (2.6}

For any real symmetric matrix A of order n,
I1all, = o).
Proof :
Since A is symmetric
2 T 2 2
Hall5 = pa%a) = pa) = p%(a) ,

and hence the result follows.
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2.5 CONVERGENCE OF SEQUENCE OF MATRICES

Definition (2.5.1}

2
The matrix A converges to zero if the sequence of matrices A,A .,

A3,... converges to the null matrix O.

Definition (2.5.2)

A Jordan submatrix of A is a matrix of the form,

X,
1
Y .
N O
1\‘\\ , (2.26)
ATARN
SN
O \\ N
1A,
_ i

where Al is an eigenvalue of A. The order of the Jordan submatrix
corresponds to the number of coincident eigenvalues ki of A. Each

Jordan submatrix has only one eigenvector.

The Jordan canonical form of A is a block diagonal matrix composed

of Jordan submatrices and is unique. Any matrix A can be reduced to a
Jordan canonical form by a similarity transformation,

J = Q'lAQ .
The diagonal elements of J are the eigenvalues of A.

If A has n distinct eigenvaluesg, its Jordan canconical form 1is
diagonal and its n associated eigenvectors are unigue and linearly
independent. They form a complete gystem of eigenvectors and span the
whole n-dimensional space. If A dees not have n distinct eigenvalues,

it may or may not possess n independent eigenvectors.




Theorem (2.7)

Proof:

r

A

1]

A

7y

A

and so the results follow.

Thecrem (2.8)

for all eigenvalues ™

Proof:

=0, if |la]] <1 . (2.27)

-1
|la a7

[1all [1a*™

2(,r-2
lal %[ 2™ |

lim A" = O 1f and only if !lil <1l

(i=1,2,...,n} of A.

Consider the Jordan canonical form of A. A Jordan submatrix of A

is of the form,

where Ai is an eigenvalue of A. If this matrix is raised to the power r,

then the result tends to the null matrix as r»=, if and only if |li|<l.

i.e. p(A)<l. (This proof is given in more detail in{varga (1962), p.

13-15).



2.6 FUNDAMENTAL ANALYSIS

(1)
(i)

(1ii)

(iv)

conditions:
(v)
{vi}

{vii)

Definition (2.6.1)

A linear épace (or linear vector space) is a non-empty set X of
elements, in which any two elements x,y € X can be combined by a
process called addition to give some element in X denoted by x+y,

provided the process of addition satisfies the following conditions:

Xy =y + X .

xt(yrz) = (x+y)+z ,

there exists a unique element O € X such that O+x = xX+0
for all x € X,

for each x, there exists a negative -X such that

x+(=-x) = Q.

It is also a necessary condition of a linear space that an element x €x
can be combined with any real number or scalar a by scalar multiplication
to give an element oax.

The process of scalar multiplication must satisfy the following

o (§+1)

(!_}E‘le '

]

(a+B8)x = ax+fx ,

©@B)x = aldx) ,

(viii) 1x = x .

Definition (2.6.2)

An expression of the form

o x(l)m x(2}+...+un§_(n) » for all x

(1)
X oX €X

is called a linear combination of the x's.



Definition (2.6.3)

A finite set of vectors 5}1)'§f2)'._.'§}n) is linearly dependent

if there are scalars al,az,...,an not all zero, such that
(1) (2) (n)
+ X L X = .
o, % a,x o % 0

If this is not the case, the vectors are called linearly independent.

Definition (2.6.4)

Let n be a positive integer. Suppose that we can find a set of n
vectors 5}1){5(2),...,§fn) € X which are independent while every set of -
n+l vectors are dependent, then X is said to be a linear space of
dimension n. 1If no such n exists, then X is called an infinite
dimensional space. B system of linearly independent vectors is said to
constitute a basis for a space, if any vector of the space is a linear
conbination of vectors of the system.

The number of vectors forming a basis is equivalent to the dimension
of the space.

The n linearly independent vectors form a complefé system and are
said to span the whole n space.

The "i{nner (or scalar) product” of two members x and y of the vector

n

space is defined by (x,y) = { XY, -
i=1l

The "length” of a vector x 1s given by,

p— S o2
(l{_!i) = z xi .
i

The non-zero vectors x and y are said to be Porthogonal™ if (x,y)=0.
A system of vectors is orthogonal, if and only if, any two vectors

of the system are orthogonal to one another.




Theorem (2.9)

The vectors forming an orthogonal system are linear independent.

Proof:

Let 5}1){5(2},...{5(n) form an orthogonal system and suppose that,

[0 x(l) + C x(2)+...+c x(n)

1= 2= n— =2

If by taking the scalar product with 5}1), we cbtain
. (1) _ (1)
for any i=1,2,...,n. Since by definition (x ~,Xx )#£0, it follows that,
C. = 0 r (i=l,2,.--,n) .

i
Thus, the vectors EFl),E(z},...,E}n} are linear independent.

A vector is said to be normalised if it is multiplied by a scalar
in order to produce the size of components to numbers of values less than

or equal to 1 without changing the direction of the vector.

Two common ways of normalising a vector X is by selecting a scalar
f such that, either:
T 2
w8 =/1 x{
=1

(2) B = max (x,), (i=1,2,...,n)
i 1

i ) *n, T
to obtain the normalised vector qi— ’ E_ PR Erﬂ .
1 2 n

Definition (2.6.5)

A normed linear space (n.l.s.) is a linear space on which there is

defined a norm |l§J| such that:

{1zl 2 o,
(i1) |ix|| =0, ifE£ x =0,
(ii)  [1=eyll o< Hxd o+ Hyll

(i) |loxll = la] [lxl] .




Thus, we have the concept of the length of an element in the linear

space. A semi-norm, satisfies (i),(iii),(iv) but not (ii).

Definition {(2.6.6)

An inner product space (i.p.s.) or scalar product space is a linear

space in which there is defined a real-valued function (x (1) X (2)) for

which,
(1) (E(l)"'i(Z)'Z‘_(B)) - (E(l)'£(3))+(§(2)'£(3)) (Linearity)
(ii) (E(l) ,E(Z)) - (5(2) "_‘.(l)) (symmetry)
{iii) (a_:g(l) ,5_(2)) = a(i(l) ,5(2)) o real - (homogenity)

Definition (2.6.7)

{a} A sequence of elements of the linear space X, {E(n)} ig called a
Cauchy sequence, if for every ¢ > O, there is an integer N(e) such that
for all n,m = N,

2™ x™1] <e,
{b) {_:E(n)} is convergent sequence if there exists a point x in the i.p.s.

such that for each ¢ > O, there exists some N=N(g)} such that for all niN

Hx™ || <.

If every Cauchy sequence in a normed linear space X converges to a
point in the space, the space is said to be complete.

A complete normed linear space is called a Banach space.

Bn inner product space which is complete and in which all Cauchy

sequences are convergent sequences is called a Hilbert space B.
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Thus a Hilbert space is an infinite-dimensional Banach space in
which an inner product 1s defined and which is complete with respect to
the norm |[§|L; Y(x,x). In analysis, a generalization of the integral

considered by Lebesgue overcomes the limitation of the Riemann integral.

Consider an integral [ f(x)dx respresenting the area under the
curve y=£(x}. The Riemann integral can be approximated by the sum,

S = yl(xl—xo) + yz(x2-x1)+...+yn(xn-xn_l) .

Clearly the Riemann integral does not exist if £(x) oscillates too

viclently. The decisive idea in the Lebesgue integral is the notion of

measure. The measure of an open interval a<x<b is simply the length (a-b).

If a set consists of a finite collection of such intervals, the measure
is the sum of the lengths. The Lebesgue integral is then approximated
by the sum,

”

s = ylm(el) + yzm(e2)+...+ynm(en) R (2.28)

where m(ei) denotes the measure of the sets e =1,2,...,01.

i 1
Riemann's definition breaks down if f(x) remains close to Yy whereas

Lebesgue's definition cannot break down because f(x) is automatically

close to Yy throughout the set e -

So far, the spaces introduced have been such that a point in the
space has represented a point on the real line, a vector or a matrix,.
In order to provide a Hilbert space which is readily applicable to the
development of finite element methods, it is necessary to introduce a
space in which the points represent functions. We can aintroduce one
function L2(R) where R is an interval [a,b) along the real line, then
functions £(x) are points in this space, if and only if,

(£(x),£(x)) = thz(X)dﬁ <o .

a




Such functions are said to be measurable.

For any two points u and v € H the inner product is given by

. b
(u,v) = Ltu(yv(g)dgc_ '
where integration in the Lebesgue sense is implied; u and v are orthogonal

if (u,v)=0, and the norm given by,
2
||u||=ru(x)dx<°°. vu € H.
a

The space of all equivalence classes of real-valued (or complex=-valued)
Lebesgue-measurable functions u such that |ulp, , 1¢pse is a Banach

space denoted LP(R) and with the norm *
Hully @y = (J lul? ax/? . (2.29)
P R

Linear Differential Operator

Consider a linear boundary value problem,
Du =£f , inRkR ,
(2.30)
with Im =g , on 3R,
where D and L are linear differential operators in the domain R and on

the boundaries 9R.

Consider the 2mth order operator in the form,

d?m d2m-1
D =a + g, ————t ... t O . {2.31)
1 dx2m 2 dem-l n

Let us construct an inner product of Du with another function v within

1=l;°‘2=°‘3
(Du,v) = J 2 (pu) vdx
*1

a domain xl<x<x2. and with o = ...=an=0, then,

Integrating by parts yields,

X - -X X
2 [g2m-1 2 (2 201, g
{Du)vdx = a3 v - ~m-L ax
x dx dx

dx

1 1 "




PR ¥ §
de2m-l

—

=
ax m

Equation (2.32) may be put in the form,
X
{(Du,v) = (u,D*v) + [L(En(u,v)+ L(N)(u,v)]x2
1

m-1
T (-1 r+lGruF v

L(E)
r

{(u,v)
r=0
2m-1

(u,v) = E (

r=m

L(N) _l)r+1

and F*uG*v
r r

E
where Grlfg( )and F;u =g(N) are called Dirchlet (essential) and Neumann

(natural) boundary conditions, respectively and Gru and F:u and defined

as,
d

dx

[

dO
de

Fru = Ju

+ r
r dxm 1 ax

rerer T oo Y
m+2 dx2m 1
Here Gr and Fr are the boundary operators. The expression (2.33} is
known as Green's formula. In two or three-dimensional problems, the

Green's formula takes the form,

uD*vd drR + I [LQE)(u,v)+L£N)(u,v)]ds {2.35)

(Dv,v) = r
efpead,

R

It should be noted that for the 2mth equation, we have D*=D,

G;(r=2m-l,2m-2,...,m) Gr (r=0,1,...,m)

]

and F;(r=2m-l,2mr2,...,m) Fr {(r=0,1,...,m) .
Equations with these conditions are referred to as self-adjoint; and the
linear differential operator D is known as a self-adjoint operator.

Moreover, the condition D*=D and v=u result in symmetric positive




self-adjoint operator, resulting in a nonself-adjoint equation.

The partial differential equation (2.30) is seen to be equivalent
to the integral relation (2.35). We then say that u is a solution in
the weak sense of the original equation if it satisfies this integral

relation for all functions v of the class considered.

To show how we apply Green's theorem in the derivation of the
finite element eguations for two dimensional p.d.e. problems, we

consider the given problem, let

82 32

D= 0(—2+—2) + 8, xl<x<x2 ’
ax oy

where o and B are constants.
Then,
32 32u 32u
(Pu,v) = f [ct(—2 + __E) + Bulv dxdy
% 34 Yy

l X
X X 2
2
(‘“—' + Bu)v:| - J 2 (au v , 3u —av)dxdy + J Buv dxdy

Y ax ax 3y 3y

10X *1

x X

_ au | Ju 2 _ av |, av 2

= cn[(—ax + —-ay)]\zl c:t[u(--—ax + —ay)l:[
Xy X

1
X

2 %y %y 2
I ula(= + —5))dxdy + J Buv dxdy
X 9x Yy x

Note that m=l1 here, and the results above can be written in the form

+

{2.33),
*2
- * - -0 &
{Du,v) {u,D*v) a(GouFov Flule) ]x
where, 2 2
3 3 IR
D= al—5+—3) +8., G, =1, Fy= Gz +3
ox 3y
P _
F:l- 9x By)' 6 = 1.

Thus, we have D*=D and GI=GO, and the operator D is the self-adjoint,

definite properties for the inner product (Du,v). If D*#D, then D 1s a non-
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operator, with G0u=u and Flu=(g—;- + :—;-5) are the Dirichlet and Neumann

boundary conditions, respectively.

Scbolev Spaces

Let the set of ordered n-tuples of non-negative integers be given

by,
o = (al,uz, .o .,an)

Also we define,

o] = a,+o +. .t

I~
1

space-
n P

2
- Y IxlA?
i=1l
o xal 2 %n
Pkl l 'x2 L B IR N xn

L
|

»
0

and |al a. o. o
D u(x) = 57 uix) 31\ 92 Bn\

= — - —) () .o g )
1 2 1 n

n 2
Bxl .axz ....-an Bxl ox an

1]
——
—

(2.36)

together with the duality pairing,

{u,v) = ‘LOI_...J u{x) vix) dxl.dxz....-dxn

®© - 00
i

} Luvdx . (2.37)
R

Sobolev spaces are the generalization of Lp spaces so that all the

weak derivatives of functions u(x) are included in LP whose norm is

defined by (2.29). If all partial derivativesof u(x) of order sm, m being

an integer 20, are in LP, then u(x) belongs to a Sclolev space

m
denoted as Wp(R) , of order m,p on R, i.e.,

Wg(R) = {u: D%€ L,(R) VYo such that |afsm}
(2.38)

n'’ .
= (xl,xz,...,xn) € Rn , where R* is an n-dimensional




Clearly, for m=C Wg(R) = LP(R).

Since, for each a such that Os|afzm, Du 1s in LP(R), the sum of
the LP norms of all the weak derivatives of u of order <m satisfies

the norm axioms and suggested naturally by the definition (2.37).

Thus, we may introduce for each u € WE(R) the norm,
oll g = ¢] T Iulen™?
oalzm

W
b (R}

=¢ 7 [I0%l[3 (R))I/P (2.39)
al<m P

Hereafter, whenever we refer to the Sobolev space W?(R)y we mean the
normed space congisting of linear space of functions given 1n (2.38)

together with the Sobolev norm (2.39).

Consider the spaces L2, w;,wg with an open interval on the real

line R=(xl,x2). The associated Sobolev norms of u is given by,

for u(x}) € Lz(xl.xz) - %, 3
2. 1.
IR [al <,
1 -*
for u(x) € W2
[
Hull - { 22 o (gg)zmx}* <=,
Wz(xl,xz) -xl
and for u(x) € Wg
X 2
lall - [ R1al® 41523 1557 e
(x, 1X.,) ax dx
W3lxy %y %)

If the domain R=(xl,x2)X(yl,y2) € R2 and u(x,y) € W;, pzl, then the

Sobolev norm of u is,

X, 1Y 2
2:%2 3 3 3
ol , = | (22 s 222 . 2up, Zup
W_(R) L x.‘y 9x 24 3x2
p 1°1 1/p

azu P 32u P
+ Iml + l—a-Fl )dxdy_l -

In the study of most linear boundary value problems, we encounter W?(R)
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spaces. These spaces are Hilbert spaces Hm(R).
Consider the space Hm(R) of function u{x) on R with m, an integer 3]

defined by,
B (R) = {u: DPu € L,(R) ; Yo such that le|s m},

{2.40)
where R is a bounded open set in Rn, and Dga denotes the weak ath
derivative of u.

We provide Hm(R) with the inner product,

m ) (0%a,0%)
BE (R} Ja|sm

]

(u,v)
L, (R)

|§|5m IRDaunav dax . (2.41)

and the associated norm,

7 [1fal]?2 i

all | =
H (R) lefsm L, (R)
= [(u,u) 1w (2.42)
H (R)
In view of the definitions (2.38) and (2.39), we see that
H”('R) = w’zn(m ] (2.43)

) -

™  is thus a Sobolev space of order m,2. Hm(R)

The Hilbert space H(R)
1s a complete Sobolev space of order m defined by (2.42) and with

respect to the norm (2.40}.

m m
. 1 2
Also, if H(R) and H(R) are two Sobolev spaces, mlamzzo then,
oy ) 0
c = - -
H(R) .C_H(R) _H(R} L2 (R) (2.44)

Note that it also follows from the definitions that, whenever m12m2.

m
and u € H(R)'

Hall o s llall -
Hml H 2
(R) (R)

Our aim here is to present only the essential features of the Sobolev
and Hilbert spaces, for additional details on these subjects, the

references listed at the end of the thesis can be consulted. In particular

see ODEN{ 1976] .




2.7 SOLUTION OF FINITE ELEMENT EQUATIONS

As we mentioned previously, when the finite element method 1is used
for solving a linear problem then an associated set of simultaneous
algebraic equations is generated which can be stated in the form given

by equaticn (2.1). Equation (2.1) can be expressed in matrix form as,

- - _
E‘n 127" 34 1”1 bl-‘
31 - -= 3| %2 b,
1 ' I [ ] t
[ ! . N
| : | 11 = i , (2.45)
! ' '
i | | i |
®nl %2~~~ ®nn] _xn_ _bn_

i
be generated. The problem is to f£ind the values X, r {i=1,2,...,n) 1f

where the coefficients a:.j and the constants b, are either given or can

they exist, which satisfy equation (2.45).

A comparison of equations (2.1) and (2.45) shows that,

aq 21= =~ 3, X b,
2 8ya= == 3y, X b,
' 1 ! { |
A= 1 ' I e XS » b= 1,
)
( { !
1 |
I { ' b
%n1 02”77 % | n] _n]

In finite element analysis, the order of the matrix A will be very
large and A is non-singular and sparse (in many cases A is symmetric and

positive definite).

The feasibility of the application of the finite element method
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hinges on, how fast can the equatiocns be solved? And how accurate is
the computed solution? The first question can be answered by counting
the operations involved in the solution algorithm used. The second
question is more fundamental since its answer determines whether it is
meaningful to solve the equations numerically, the major consideration
here is that of round-off error, which may lead to poor or even useless

results.

There are usually two kinds of methods used for solving a system
of equaticns of large order: (1)} direct methods and (2) iterative methods.
A direct method is cne which, after a finite number of operations,
if all computations were carried out without round-off error, would lead
to the exact solution of the algebraic system. An iterative method
usually requires an infinite number of iterations to converge to the
true solution. Within a tolerable error, there is no clear-cut answer
as to which of these methods is best for a system such as (2.1). In

.

practice, the round-off error is usually the contrelling factor in
determining whether a direct method of solution can be used. Either
solution scheme will be seen to have certain advantages, however direct
methods appear to hold an advantage in solving 2-dimensional systems
arising out of the finite element methods, and iterative methods appear

to have the edge 1n solving systems arising from finite difference

equations.

| 2.7.1 DIRECT SOLUTION METHODS USING TECHNIQUES BASED ON THE GAUSS

ELIMINATION PROCESS

The most effective direct solution techniques currently used are

basically the applications of the Gauss elimination process, however,




36

although the basic Gauss solution scheme can be applied to almost any
set of simultaneous linear equations, the effectiveness in finite

element analysis depends on the specific properties of the finite

v

element master matrix: symmetry, positive definiteness, and bandedness
The details of the method are as follows. Starting from the given

system (2.1), Ax=b, or,

Ay o pM | herea =2, =" . ue

Step l: The essence of this method is to reduce the matrix in the

preceding equation into a lower triangular form by elimination. Toward

-

this end we define n-1 multipliers,
21

a
11
and subtract miltimes the first row from the ith row.

mil= I3 i=2,3,..-,n, ml<1 F

1f we define,
¥ = - . =
aij aij migalj . i=2,....n

' = - j =
bi bimiihl . 3=Ll,....m,

1t is easy to see that,

a' =90 i=2,...,0.
ll ! r [

The resulting equations are,

a1 ao-== 2 |1\ [P
0 a,, — == 2 X b
| ;22 2201 1R (2.47)
| | i | {
t | | ! 1
or o 202 =~ %and ¥l P
Ay - p@ (2.48)

where in equation (2.47) we have renamed the aij and b} to be a4 and

bi to simplify the notation. We re-emphasize that these a.i:l and bi are

not the same coefficients appearing in (2.45) We also stress that this




last system (2.47) hag the same solution as does (2.45). It is easy

to recognize that the preceding step is equivalent to the operation

defined as A(z) =M;1A(1), where,

1 ] '

TN L
1 N 441
M]_ == —le Q Y ~ . mil = (l) (2 .49)
| | N a
( | N 1,1
| | ~
Y
m, O=——=-01

Step 2: We continue in a similar way such that at the kth stage we

eliminate X by defining the multipliers .

o]

my k= ik ¢ 1=k+l,...,n {2.50)
' %%,k
whare ak'k#O. Then,
h = -
a:.j = ai] mlkakj ' (2.51)
~
bi a bi_ J_kbk R {2.52)

for i=k+l,...,n and j=k,...,n. The index k takes on consecutive

integer values from 1 to n-l.

At the point where k=n-l, we are eliminating X 1 from the last

equation. The final triangular set of equations 1s thus given by,

11 %12 2137 T3, (21 by
o 3 353~ ~ | [*2 b,
° ° 2337 =%m| [f3= |3 , (2.53)
- - - - - ‘ .
' '
- - - - a X b
- nnj ["n| {Un
or aMx =p™ =gy (2.54)
(n) _ ,~1 -1 -1 (1) A
where A = Mn-]_'Mn-Z""'Ml A =8 ., (2.55)

Step 3: A back-substituion process then produces the solution as follows:-




n

x T veeem—

n a
;{ ) bj-(aj,j+l+"'+ajnxn) (2.56)
. *33

and finally,

by=(a) % +..tay X))
xl = a .
11

The operations performed in the preceding elimination procedure can be

compactly written, for any nxn matrix A, as follows, starting from,

—~ (1) {n (1)
%11 al]2-"""'aln
(1) (1) (1)
1) ain 899 == = "3y,
A = o e o e e M - e - (2.57)
(1) (1) (1)
_a"nl 82 = ~"==" %m i
we have, f— —_
1
-m,, 1\ )
wh= |-m, o N o
1 31 ~ B r m21_a(l) y ELC.
~ 1,1
:mnl 0 = = -0 -1_
and
l\
o ~
Y
- = =1
~
(k)
- - - A
S Tkl ,k e 0
0~ - * M1k T o 0 S5
m]~:+2,.k k.k
° ",k o (2.58)




Now

~ (1) (1) (1)1
41 %277 """ %m
(2) R )
° 22 2n
(3) (3)
0 0 A, === a -1 - -
U= 33 3n =t LoawTta? (2059
n-1"n-2 1
0 ) 0= = = —a®
et nnd
Equation (2.59) can be equivalently written as,
A(l) = LU . : (2.6Q)
where L = Ml'Mz'..-.Mn“"l r (2.61)
1 —
m21 1l
m m 1
= 3L 32 (2.62)
innl Tha=== mn,n-l ];n

Thus, the solution process can be described by the pair of coupled

equations,
Ly =b, =y ' {2.63)

If D denotes the diagonal entries of 8, then it is evident that U=D LT
when A is symmetric. Now equation (2.63) can be written as,
T
@LbL)x =b , {2.64)
For this reason, the procedure described above is called a LDLT

decomposition. Notice that y and b are related by,

-1 -1 -1 -1,-1
Y=L b=M_ M ..M M'Db. (2.65)

Thus, Gaussian elimination is nothing but the factorization of A into
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the product A=LU, of a lower triangular matrix L times an upper tri-
‘angular matrix U. Thus E?A-HE is identical with E;U—IL—IE, and the
two triangular matrices are easy to invert.

A very important requirement for successful Gaussian elimination
is to guard against dividing by zero during the computations. Ewven af
there are no zeros on the main diagonal at the start of the computations,
zeros may be created in subsequent steps. A useful strategy to awvoid
such zero divisors is to rearrange the equations so as to place the
coefficient of largest magnitude on the diagonal at each step. This is
called pivoting. Complete pivoting may require both row and column
interchanges. Partial pivoting, which places the coefficient of largest
magnitude per column on the diagonal by row interchanges only is usually

adequate in many cases.

Let us summarize the operation of the Gaussian elimination procedure

in algorithm form that will facilitate writing a computer program.

Gaussian Elimination Procedure

To solve a system of linear equations we proceed as follows:-
1. Augment the (nxn) coefficient matrix with the vector b to form an
nx{n+l) matrix.

2. Interchange rows if necessary to make the value of a the largest

11
magnitude of any coefficient in the first column.

3. Subtract ail/all times the first row from the ith row (2gign). This
should leave a columm of zerosg below the pivot element in the first
column.

4. Repeat steps {(2) and (3) for the second through the (n-l)st rows, as

follows:




(1)
only rows j to n.

Subtract a a
act a, /a4,

(i1}

the main diagonal.
triangular.
5. Solve for xn

a
_ n,n+l

n a
nn

6. Solve for x X

-1 %pap? o r¥yr ¥y

n

1,n+l
L )=itl
X

from the nth equation by

in turn, by using the back substitution process,

a X,
1] 1]

1 a,
i,z

"symmetric, and positive definite.

because the factorization A=LU exists.

41

Implement the partial pivoting strategy by considering

It is important to reflect upon the elimination process if A is

times the jth row from the ith row so as
to create zeros in all positions in the jth column below

At this stage, the system 15 upper-

from the (n-1)st to the first equation

First, the elimination process succeeds

each of the submatrices in the upper left corner of A, that is

The condition for success is that

- . 11 2 %13
11 12
Ay = lag, 1y Ay = A T L S PR KA
4 222 . .
a3 32 33
32 T8 %33 7 %1’ I#L.

should have a non-zero determinant. For a positive-definite matrix,

these determinants are all positive, and the elimination process can be
carried out with no exchanges of rows. Another important requirement is
that the pivot elements be not only non-zero but also sufficiently large.

Otherwise, round-off errors will dominate the solution. This type of




gensitivity of A to small perturbations is measured by the "condition

number" of A. This condition number is the ratio of the largest eigen-

value to the smallest eigenvalue of A.

For the computer implementation of the Gauss elimination solution a
minimum solution time is achieved, in addition, the high-speed storage
requirements should be as small as possible to avoid the use of back-up
storage. However, for large systems it will nevertheless be necessary to
use back-up storage, and for this reason it should also be possible to
modify the solution algorithm of the finite element analysis so that the

master matrix of the elements assemblage is not only symmetric and positive

definite but is also banded, i.e. ai =0 for j>i+mk, where mk is the half-

3
bandwidth of the system. The fact that in finite element analysis all
non-zero elements are clustered around the diagonal of the system matrix

greatly reduces the total number of operations and the high speed storage

required in the equation solution.

However, this property depends on the nodal point numbering of the
finite element mesh points, and the programmer must take care to obtain
an effective nodal numbering scheme, in order to estimaée the number of
operations that are necessary for the solution, because this enables the
analyst to estimate the computer cost for a specific problem. In addition
to the LDLT decomposition, various other schemes are used that are closely
related, all these methods are applications of the basic Gauss elimination

procedure.

i

In the Choleski factorization, the matrix A 1s decomposed as follows,

A=LL (2.66)

where L = LDi.
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Therefore, the Choleski factors could be calculated from the D and L

factors.

An operation count shows that slightly more operations are required
in the equation solution 1f the Choleskir factorization is used rather
than the LDLT decomposition. In addition, the Cholesk:i factorization is

only suitable for the solution of positive definite systems.

The other algorithm that can effectively be used 1s the Frontal

solution method which will be discussed now.

2.7.2 FRONTAL SOLUTION METHOD

The frontal solution technique first devised by B.M. ITrons, is a
variation of Gaussian elimination that makes the utilization of external
storage easy. It 1s customary to think of the process of assembling the
master matrix and the master vector of imposing boundary conditions, and
solving the system of equations,

Ax =b,
as distinct phases cccurring one after the other. However, these processes
can be performed in parallel in the Gaussian-elimination method. The
frontal routine starts by assembling each of the element matrices in turn
into the core storage, until the core area allocated to the solution
routine by the programmer is filled. Then, from within this assembled
part of the complete matrix, a pivotal search is made to determine the
largest entry from amongst those rows and columns which are fully summed,
i.e. rows and columns to which no further contributions will arise in the

subsequent assembly of the element matrices. The pivotal row is then used

to eliminate all the ccefficients in the pivotal column, after which it :s




placed on the backing storage disc. Wwhen sufficient coefficients have

been eliminated it is possible to assemble the next element matrix,
after which further elimination may take place. Finally after all the

coefficients have been eliminated the solution i1s obtained by a back-

substitution.

To demonstrate the procedure, consider the example shown in Figure
{2.1) with one degree of freedom per node. The element numbers are circled.

All the information contained in A and b for the degrees of freedom 1 to 3

FIGURE 2.1: Finite-element divisions for a frontal solution

has been assembled after the data for element 1 to 5 have been generated.
Thus, with the Gaussian technique, it is possible to impose any constraint
conditions which may occur at 1 to 3 and eliminate these degrees of
freedom, that is, the unconstrained degrees of freedom amongst 1 to 3 can

be expressed in terms of the degrees of freedom 4 to 6 before the data for



elements 6,7, etc., are generated. If this is done, then 1f each

condensed row required for the back-substitution phase is saved in
external storage, and if their core locations in the computer are used
to store the new information being generated from elements 6,7, etc. the

core storage requirement for a large problem may be reduced considerably.

A reference to Figure (2.1) shows that some care must be taken in
programming to realize fully the potential savings of Gaussian elimination.
For example information does not begin to appear for degrees of freedom
9 ané 10 until the data for element 10 are generated, and these degrees
of freedom may be eliminated after the data for element; 11,12,13 have
been assembled. Thus, a requirement exists, not only for a table of the
degrees of freedom to which each element connects, but also for some flags
to mark the first and last appearance of each degree. The flags serve
two purposes., They permit a calculaticn of the maximum storage reqguire-
ment, to be made in terms of the maximum number of degrees of freedom for
which the information must be held in core simultanecusly, and they are
also used to reserve subareas of storage as the information associated
with various degrees of freedom 1s shuffled in and out of core. Each of
these phases (assembly-constraint-forward elimination and back substitution)
propagates through the region from node to node like a wave, hence, the
frontral solution is also referred to as the wave front technique (Irons,

1970).

To illustrate the difference between the frontal and the regular

method, consider, the three elements five nodes mesh shown in Figqure (2.2).




FIGURE 2.2: Three element mesh

Then the totality of the finite element equations can be written as Ax = b.

After the assembly of the first element equations the state of this

matrix equation is as follows:

s R A7 BT
11 12 13 1l 1
I I I I

a5 a, a5y X, = b2 R (2.67)
I aI I bI

%31 32 33) 3] el

where superscript I denctes the element number from which the matrix
entry was derived. The difference between the frontal and band routines
is that in the frontal routines each equation can be eliminated at an
earlier stage than the band routines - as soon as 1t is complete - due to
the superior accounting process. Consequently core requirements are in

general less for the frontal routines.

Another effect of the frontal accounting process is that it allows
both column and row piveting without excessive non-zero entry growth.
This may be illustrated by carrying out the elimination of Xy which leads
to the following:
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— aI aI - S — aI —
aI -—-2—1-aI aI -Aal X bI-ibI
22 aI 12 23 I 13 2 2 aI 1l
11 11 11
aI aI I agl I - 289
aI __31 1 aI _ 31 aI x3 b3 - —i—-bl
32 aI 12 33 aI 13 all
11 1l N L - A

A subtraction of the Gaussian products does not increase the storage
required, since no terms are involved other than those found in equation

{2.68).

In order to minimize core requirements, the element numbering is
chosen in such a way as.to keep the "width" as small as possible. In
addition further core is required for the assembly of the next element's

equations.

Suppose now that the equations from the next element are assembled,

so that the matrix equation becomes:

— aI aI aI aI - - -
1 _ ‘212 on JI %3 o JIT N
32 I 22 23 I 23 24 2

11 11
aI aI aI aI
I 3112 II I 31 13 II II
332 I tas, 333 T T %3 234 X3
11 1
aII aII aII %
42 43 a4 4
- - L d
_ . -
LI 3515 , pIT
27T 2
11

(2.69)

From this it may be observed that although equations (2.67) and (2.68)
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were altered before they were fully assembled, the terms subtracted

involved only those components involving node 1 which were complete.

For this some advantage, of course, there is a price to pay because
the wave front method requires many shuffles in and out of core, which

means a longer execution time, and a table for tracing the degrees of

freedom currently in core, etc. This means more complicated programming.
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2.8 ITERATIVE METHODS

The procedure described in Section (2.7) for the solution of the
system of linear equations Ax = b were direct methods, involving a fixed
number of operations. Alternatively, iterative methods (to be described
here) start from a first approximation, which is successively improved

until a sufficiently accurate solution is obtained.

The majority of iterative methods for linear systems are stationary
linear iteration methods: that is they can be written as,

LR ()

—_— —

+¢ , k=0,1,2,... (2.70)
where M is a matrix depending upon A and ¢ is a column vector depending
on b. Most of the well-known 1terative methods are built around a partition

{or splitting) of the matrix A in the form,

A = (D+U+L) ,

where,

D= diag(all,azz,...,ann) '
ai, i<j

U= J {strictly upper triangular matrix),
0 izj
ai i>j

L= 3 (strictly lower triangular matrix).
0 ig3

2.8.1 JACOBI METHOD

The simplest of the iterative methods is widely known as Jacobi's
method or as the method of simultaneous displacements., In this scheme,

the approximate solution obtained at the end of the kth iteration cycle,
(k)

starting from some initial estimate X (initially‘E(o)), we construct




(k+1)
X

as follows,

Jacobi iteration,

n
{k)
b, - ) a, x,
- A P
xj(-k+l) _ ;:1 . 4=1,2,...,n. (2.71)
1,1
or
L ™ sy (2.72)

Comparing this with the general linear iterative scheme (2.70), we see |

that the choice, -1 -1 |
M, =-D (L+0) , c;=D b, (2.73) ;

characterize the Jacobi method. ) . !

The procedure (2.72) is repeated (for k=0,1,2,...) until it converges
to a stationary sclution for which, |
|
I

LD )

=9_'

according to some chosen norm.

In spite of its simplicity, it is seldom used as it is very slow to

converge, )

2.8.2 GAUSS-SEIDEL METHOD

The Gauss-Seidel method, also known as the method of successive

displacements, represents a refinement of the Jacobi method. 1In the

(k+1)

Jacobi method, one does not use the new values xr until every

(k+1)

component of the vector x has been evaluated. If new values X '
r=1,2,...,i-1, are used in evaluataing xik+l), then we have, instead of
(2.71):
i-1 n
Gauss-Seidel iteratioenm, {(k+1) (k)
LT T P
xik+l) - j=1 ~ =i+l (2.74)
i,i

1=1,2,...,n.



51
or in matrix notaticn,

1

=5 e Lo ¢ ey (2.75)

This 15 similar to equation (2.70) with,

-1
MGS = -(D+L) U ,
and Cog = o+ "1 .

Here, as the values of x, are successively updated and overwritten, i.e.

only one approximation for each x, needs to be stored at a time, thus

i

saving vital computer memory.

¥

2.8.3 AN ACCELERATION OR (OVER OR UNDER) RELAXATION METHOD

Startaing from the basic Jacobi and Gauss-Seidel iteration metheds;
one may generate families of iterative procedures by inserting an additional
parameter in the calculation with the intent of accelerating the rate of
convergence, the corresponding methods are called over- or under-relaxation

methods.

Jacobi Metheod with Acceleration

If we rewrite equation (2.72) of the Jacobi method as,

NS IS D5

x +0 -2 ™1 -

x(k) r(k) ' (2.76)

{k)

where r , the term in brackets, {.} is seen to be the correction in x

in the (k+1l)st iteration cycle.

To generate a family of accelerated iterative procedures, we multiply
this correction by the scalar quantity w, called the relaxation factor:

Hence we have,
E.(k+1) - x(k) + wr(k)

k)

i(k)

+ w{p b~ x - My, (2.77)
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which may also be written as,

L 1 e ® 4 o @™ (2.78)

When w=l, this expression becomes the Jacobi iteration, when w>l,
equation (2.78) is called overrelaxation and when w<l, it is called

underrvelaxation.

On a single equation basis, {2.78) may be written as

(k)
b - E a,.x,
xik+l) = (l—w)xik) +uw - 1#7 1] {2.79)
a,.
ii
Then equation (2.78) 1s equivalent to the following two‘steps:
w 2% - ppeewx ™y,
(2.80)
() = - e x® ag®
Aalk+1)

where X is the normal Jacobi result. Similarly, on a single equatieon

basis, we may write, (2.80),

n
(k)
(b, - E a, X
(i) i . 1377 }
Akt iz] , i=1,2,....n
i a,.
i1 (2.81)
(1) =2 o xR .
—i —i i

The Successive Overrelaxation (SOR) Method

This methed is closely related to the point Gauss-Seidel method.

Instead of equation (2.74), an acceleration is effected after each line

1~1 n
ass (bi - 2 ..x(k+l) - Z ai.x(k)’i
(k+1) _ (k) j=1 3 j=1+41 T (W
X, = X + f.IJ( _x‘l\_ )_
i 1 a, ~
i-1 il n
(b, aijx;k+l)- 3 i3 ;k))
= (l-m)xfk) + o j=1 J=itl (2.82)
i a .,

which may be expressed in matrix form as,
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1 (k+1) (k)
x —

5 Ciwx® s w b Uz ), (2.83)

or
- - - -1 -1 -1
§}k+1) = {(I+uD lL) l[(1—w}I+mD lU]E_(k)ﬂn(IﬂuD 1L) Db
{(k+1) _ (k)
i.e. x = MSOR X + ESOR .
Here M__ = (T+D 11) " [ (1-w) T+wD U]
ol SOR
and N (2.84)
Seor = (I+wD L) "wD b ,
where MSOR 1s called the successive overrelaxation (SOR) iteration matrix
and k 1s the iteration 1index.
2.8.4 CONVERGENCE OF POINT ITERATIVE METHODS
We shall now discuss the convergence rates for these iterative
methods. Converence is the property that the error,
e(k) =x - x(k) R {2.85)

possesses (where X 1s the exact solution of Ax=b) as it tends to zero as
k»w, The analysis of convergence is an important concern, because there
is no a prrori indication that any of these methods should converge at all.

Moreover, we shall see that the rate of convergence for methods with

acceleration depends (as expected) on the acceleration factor w.

A relation between the error in successive approximations can be
derived by subtracting from equation (2.70), the equation,
X=Mx +¢c, (2.86)

from which we obtain the result,

E(k+1) - ME(k)

. (2.87)

Therefore, using (2.87) successively we obtain,
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L (ke1)

_ M2£(k--2)
. (2.88)
- MkE(O) ,
where E(O) = _)5'-;5(0) , and x (©) is an arbitrary known set of initial values.

(1) _(2) (k)

The sequence of iterative values x X reee X r will converge to x

as k tends to infinity if,
(k)

lim ¢ =0.
)
Since x () and therefore _g._(o) is arbitrary it follows that the iteration

will converge if and only if
lim Mk =0. (2.89)
koo

Now, let the matrix M of order (nxn)} have eigenvalues ll'lZ""'An and

assume that the corresponding eigenvectors v.

RAZYEERRAAV I T linearly

independent. Then, we can expand the inatial error as,

n

(o) _ -
7= eV, tay, +...tav = izlaigi , (2.90)
where ai: 1=1,2,...,n are scalars, and thus,
n
E(l) - ME(O) _ z uiM.Y.J_ ,
i=1

but Mv = A v, , where ), is the eigenvalue corresponding to v,, therefore,
-1 1—i i =i

n
e(l) = Z a. A v .
- . i"i—
i=1
Similarly, we have,
n .
e® = 1 an My, . (2.91)
- i=1 i -

From this it follows that the ateration will converge from an arbitrary
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initial vector E}O) if and only 1f the eigenvalues of M satisfy,
|Ai| <1, 1=1,2,...,0.
Theroem {2.10)
. . . (k+1) (k)
A sufficient condition for the iterative method x = Mx  +¢ to

converge is that,

[l < 1.
Proof:
Since ”31 = Arzi '
we have HM_Y_lH = ||A:Lxl|| = IAi[ HE]_H'

But for any matrix norm that 1s compatible with a vector norm l|31||

we have,
v, (4 s [iml] e 1T -
Therefore,
3] bl o< Hml] ], ||
s0,
L s Lml] . (2.92)

It follows from (2.92) that a sufficient condition for ‘convergence 1s that
||M|l<l. It 1s not a necessary condition because the norm of M can exceed

unity, even when p{M)<1l.

Theorem (2.11) [VARGA, 1962]

Let A be a strictly or irreducibly diagonally deminant complex matrix
of order n. Then, both the associated point Jacobi and point Gauss-Seidel
iteration matrices are convergeﬁt, and the Jacobi iterative method and
Gauss-Seidel iterative methods for the problenm Ax=b are convergent for

any arbitrary initial approximation vector 5}0).




2.8.5 RATE OF CONVERGENCE

We now study the rate of convergence of a convergent linear point
iterative method. Since even if the iterative method converges it may
converge too slowly to be of any practical value. Therefore, it is
essential to determine the effectiveness of each method. To accomplish
this, assume that the eigenvalues of the i1teration matrix M are of
decreasing order as follows:

P L I N (2,93)

and that the matrix M has n linearly independent eigenvectors, 31,32,...,

!h' namely.

Now equation (2.91) i.e.,

n
(x) _ k
E = Z aiA131 s
1=1
can be rewritten as,
A A
(k) _ [k 2.k "n, k
£ = Al(argl + (A N P (A ) angn). (2.94)
r l 1
For large values of k we have that,
(x) _ .k ,
E = A, (2.95)
similarly,
{(k+1) _ , (k+l)
E = Al Vs o (2.96)
50,
PR Al_e_(k) . (2.97)
. (k} . (k)
If the ith component of ¢ is denoted by €, v it 1s seen that
(k)
I 1 1
1€(k+1)| |A1] p (M)
i
Hence, in L _-_ Lnp (M) gives an indication of the number of decimal

p (M)

digits by which the error i1s eventually decreased by each convergent

iteration. 8&ince, for convergence, 0<p(M}<l, the number of decimal
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digits of accuracy gained per iteration increases as p(M) decreases.

(k}_, _(k-1)
E

Alternatively, for large k, € =Ar_ , therefore,

_g_(k+P) A ot DU AL

1€ r P=1,2,... .

Hence, 1f we want to reduce the size of the error by a factor lo—q, say,
then the number of iterations needed to do this will be the least value

of p for which, _
X7 = eamP ¢ 107 .

Hence,
p > a/-wn(p(M}} , (2.98)

which shows that p decreases as -n{p(M)) increases, Clearly, the number
-in(p(M)) provides a measure for the comparison of the rates of convergence
of different iterative methods when k 1s sufficiently large. For thas
reason -4n{p(M)) is defined to be the asymptotic rate of convergence and

1s denoted by R_(M).

The average rate of convergence Rk(M) after k iterations is defined

by the quantity, 1 X

R (M) = -+ an| M7 . (2.99)
It can be proved that [VARGA, 1962] the asymptotic rate of convergence,

R _(M) = lim Rk(M) ' (2.100)

ke

(k}l[

and that the number of iterations required to reduce the error ||g

to |l§}o)||/a, for sufficrently large k is a(-zna)/Rn(M), [vounGg, 1971].

Theorem (2.,12) [vYouns, 1971}

~

Let the matrix A be irreducible with weak diagonal dominance, then,
(i) The Jacobi method converges, and the JOR method converges
for O0<weg 1.

{1i) Both the Gauss-Seidel and the SOR methods converges for

0O<pyg 1.




Theorem (2.13) [young, 1971]

Let A be a symmetric matrix with positive diagonal elements then the

SOR method converges if and only 1f A is positive definite and O<w<2.

Theorem (2.14)

For the 1teration matrix in the SOR method, we have

pM ) % w-1]

so the method only converges for O<w<2.
Proof:

Since the determinant of a triangular matrix is thé product of its
*

1

diagonal elements, and (I+wD-1L)- and [(l—m)I+wD-1U] are both triangular

matrices, hence we c¢btain,

1

det(M ) = det (I+uD 1) “Ydet [ (1-w) I+wD 1U]

R
if we use the standard result from matrix theory that the product of the

eigenvalues of a matrix i1s equal to its determinant; if the eigenvalues of

MSOR are denoted by ll,lz,...,xn, then,

Al.Az.....An det(MS0 )

R
-1_.-1 -1
det{I+wD L) “det[(l-w)I+wDP U] (2.101)

Both matrices appearing in the above are triangular (the inverse of a
triangular matrix is also a triangular matrix); and the determinant of a
triangular matrix is equal to the product of 1ts diagonal elements. Thus,
= (1oaD
ll-lz-...-ln (1 m) r

whence, max [A_| 2 |l-o] , O0w<2 , (2.102)

A
which proves the theorem.

In practice w usually lies between 1 and 2, and the optimum  denoted

by w + for the maximum rate of convergence is given by {YOUNG, 1971],

opt
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I (2.103)

w
opt
14/1-p2 ()

where p(M) is the eigenvalue of largest mcdulus of the Jacobi matrix M.
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2.9 SOLUTION OF THE EIGENVALUE PROEBLEM

When the finite element method 1s applied to the solution of the
eigenvalue problem, we obtain the following algebraic eigenvalue problem,
Ax = Ax {2.104)}
where A 1s a given (nxn) matrix, A is a scalar {called the eigenvalue or

characteristic value) of the matrix A and x 1s a column vector with n

components (called the ergenvector).

There are in general two types of methods for solving eigenvalue
problems, .

(1) methods which make use of similarity transformations which are
commonly referred to as direct methods or transformation metheds,
such as Jacobi, Given's and Householder's.

(ii) iterative methods where, an arbitrary initial approximation to
the eigenvector corresponding to the dominant eigenvalue (eigen-
value which is largest in modulus) or the smallest eigenvalue
is successively improved until some required’prec1sion is
reached. The iterative methods are most useful in the treatment
of large sparse matrices when good estimates of the eigenvectors
are available.

We shall concentrate our attention on the 1iterative methods.

(1} The Power Method

The Power method 1s a well-known iterative procedure for finding the

largest eigenvalue (Al), along with the corresponding eigenvector.

Let us consider an (nxn) matrix A, whose eigenvalues are ordered so

that,
= |A2| = .. = Ilrl N DN I aIAn

. (2.105)




1'—=2
....x and any arbitrary vector E}O) can be expressed in the form,
- (0) 5
z' = Ya x , (2.106)
. - 1L
1=1

where al are scalars, not all zero.

Let us define the iterative scheme given by,
z(k) - Ag(k-l)

r k=1,2,... {2.107)

(0)

where 2 is an arbitrary vector. Then,

L) 1)

- a2, (k-2) ‘

[}
I~1
=2
P
[
-

(2.108)

where we have used equation (2.106).

Now since al,az,....un are not all zero, the right-hand side of

equation (2.108) will be dominated by the terms,

I oA
1=1 i

61
By assuming there exists n linearly independent eigenvectors x. .X.,
X,
1 =i
\

If r=1, and we assume that ul#o we have,

n
(k) k Kk
z Ay logx, + izzaiullxl) x;} (2.109)

[}

k
A lagx, + g} (2.110)

for sufficiently large k, where & is a vector with very small components
when k 1s so large that € is negligible to the required precision, it
{k)

follows that 2z is an approximation to the un-normalized vector 51.

This forms the basis for the simple power method for computing the
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dominant eigenvalue.

Now since Efk+l) = lt+l{aL§1 + E}k+l)} , then for the ith
(E}k+l)h 31(51) + (k+1)
= . .111
=0, M e o™ > Ay as koo (2.111)
— 1 111

The rate of convergence will depend on the constant @ but more

essentially on the ratios,

|2,

1

A

L4

3

1 1l

from which it follows that the smaller these ratios are, the faster will

A

2
be convergence. In particular, 1f ~ is close to unity then the
1

convergence 1s likely to be very slow.

In order to keep the elements of E}k) within reasonable bounds
during computation to prevent ovexflow, it is usual to normalise the
vector at each iteration by dividing all its elements by the element of
largest modulus, the sequence of normalising factors then converges to Al.
That is, the elementsgfk) are scaled at each step, and egquation (2.107) 1is
replaced by the pair of equations

component of Eﬁk), we have,
x.(k) - A_z_(k-l)

(k)
S R
- (k) '
g™ 1,
In this case, x
Jeo I )
JENIS
and
g™ 1], > 2, » as ke .

Now suppose that r>l, and that equation (2.105} is satisfied with

Al =

2 = ...=lr .
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Then we have,

z(k)=A{Eax+ Eu()\/k)kx} (2.112)
- 1 i—i 1Y = :
i=1 1=r+l
r
’ = At {3 a,x, + e(k)} ' (2.113)
i=1

for sufficiently large k, where again E}k) is a vector with very small

elements.

Thus, the ceonvergence of the power method 1s not affected, and the
iterates Efk) tend to a vector which is some linear combination of the
elgenvectors corresponding to ll. Thus, the power method will only
supply one eigenvector corresponding to a multiple domihant eigenvalue,

for each 5}0).

However, the iterative procedure breaks down, if there are a number
of unequal eigenvalues of the same modulus.

This breakdown is characterized by the failure of the iterates to
converge, and by the changes 1in sign of the approximation to ll' (see

A.R. GOURILAY, 1973). .

{2) The Inverse Power Method

The other most powerful methods available in connection with solvang
matrix eigenproblems i1s the technique, known as inverse iteration. This
method is not only of general use in that it may be applied to the
computation of an eigenvalue and/or an eigenvector, but it also possesses
a fast rate of convergence.

A direct iteration of the form,

.‘L(kH') = pz'K

(k+1)
(k+1)
z -

= e (2.114)
—_ {k+1
IPasdii




gives under suitable conditions a convergent sequence of values

approximating to the dominant eigenvalue of B, and its associated eigen-

vector. The process defined by,
JAX(k+1) (k)

=z
k+1 k+1 k+1
P T T (2.115)
1s equivalent to (2.114), but with the matrix B = A_l. Thus, the
sequence (2.115) will converge to the eigenvalues of A of smallest
modulus.
To show this, assume, n .
2% - ¥ 4x . (2.116)
- . 1—i
i=1
Then equataion (2.115) gives,
n
(k) A .=k
2 =T, izl R (2.117)

where Tk is a scaling factor introduced by the rescaling part of equation

(2.115).

The vector E}k) is richest in the vector X corresponding to the

smaller eigenvalue An.

Therefore the sequence Efk) will tend to a multiple of X, as ko

and also, for each j in general
(k+1)
Z

The process (2.115) is known as the inverse iteration in its simplest

form. _ o T . . ’ B . ] -y




2.10 THE SOLUTION OF NON-LINEAR EQUATIONS

The finite element analysis of any physical or engineering problem
leads to a system of matrix equatléns, gome of the methods available
for solving the final system were presented in Section {2.7) and (2.8}.
Tt 15 to be noted that the problem has to be linear in order to apply
the solution of Section (2.7) and (2.8).

If the problem is non-linear, the resulting matrix equations will
also be non-linear irrespective of the t}pe of the problem (elliptic,

eigenvalue or parabolic problem), and some sort of iterative procedure

has to be used for finding the solution.

Wwe shall here be brief and mention just a few of the more recent
important contributions in this area. Perhaps the most important is the
book by Ortega and Rheinboldt (1970) which gives detailed and some

practical considerations of the solution of a set of nonlinear equations,

We consider in this section the problem of finding a solution of a

i

T
fixed point (stationary point) x* (xi,x;,...,x;) , of the system of n

nonlinear equations,

fl(xl,xz,...,xn) =0,
fz(xl,xz,...,xn) =0, (2.118)
fn(xl,xz,...,xn) = Q ,
which can be written as,
£(x) =0, (2.119)

|
where X 1s an n-dimensional column vector with component X, ,X,,... X and
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f(x) 1s an n-dimensicnal vector valued function, i.e., a column vector

with components fl (x} ,f2 (X)so.. 'fn (x).

We shall assume the existence of x* and also that some initial

supplied approximation 5(0) to x* 1s available.

Most of the methods to be described are i1terative methods which

generate a sequence of points,

E(l) '5(2) (k) }

ree. BSay, or {_:s_:_ (the superscripts denoting

iteration number)
hopefully converging to a fixed point x* which is the seolution to the
problem. If Fhe. problem functions which arise are smooth, that is
continuous and continuously differentiable (cl) . Therefore, for a function
£(x) at any point x there is a vector of first partial derivatives, or

gradient vector,

[0f |
Bxl -
of
alxz
1 = Vf(i) . {2.120)
l
of
| 2%
. 3 3 3 ,\T
where V denotes the gradient operator (v— , =— , <.y —) .
Bxl ax2 an

If f(x) 1s twice continuously differentiable (c2) then there exists

2
a matrix of second partial derivatives or Hessian matrix, written V £(x),
2
3 f

for which the i,jth element is ——
BxiaxJ

This matrix 1s square and symmetric, since any column (the jth say).,

1s V(a_?:f') » the matrix can strictly be written as V(VfT (x) .For example,

£(x) = ioo(x -x2)+(1-x )2 gives
~ 271 1




2
—400x1(x2-x1)-2(l»xl)

vE(x) = 2 ’
200(x2-xl)
1200x2-400x +2 400x
, -
V2 £(x) = 1 2 1 ,
-4002:1 r 200

2
and this illustrates that Vf and V f will in general depend upon x, and

vary from point to poaint.

The iterative methods which will be discussed to solve (2.119) will

-

have the following states:

(a) Initialisation: user supplied approximation 5}0),

(b} Iteration: §ﬁk+l) (k))

= ¢(x e k=0,1,2,... .,

(c} Termination: convergence criterion for (b).
The system (2.119) arises during the numerical solution of elliptic and
parabolic partial differential equations. Such a system of nonlinear
equations arises, for example in the finite element method via a minimum

variational principle {or via a Galerkin approximation), of the elliptic

equation,

AU = F(U) , (2.121)

f(U) =aU - F(U) =0 . (2.122)
It should be noted that,
(1) £(U) consists of a linear and nonlinear part, as might be

expected.

(1i) The matrix A is symmetric, positive definite, banded and sparse.
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(1ii) Each function Fi(g) depends on a small number {(determined by
the index i of the variables Uj'
We shall consider how each property ¢an be used to advantage in the

numerical solution of (2.122).

2.10.1 FUNCTIONAL ITERATION

One of the form in which the nonlinear equations may appear is

x =glx) , (2.123)

where g is a nonlinear vector function. The simplest procedure for
finding a solution of this system of equaticns is known.as functional
iteration or fixed point 1teration. It proceeds as follows. From some

(o) at the solution, the sequence of 1terates {E}k),

initial guess x
k=0,2,...} 1s defined by the relation,
D L g™y (2.124)

The convergence of this procedure is governed by the contracting mapping

theorem.

Theorem (2.14)

If g(x) satisfies,
o) -gtx [ sablx-gll (2.125)
£ (0) (0) .
or all vectors x,y such that [|§:§ IISD, IIXIE. |[$p with the
Lipschitz constant, A, satisfying,

OgA<1l.,.

Let the initial iterate,_i(o) satisfy,
0 0
oz -] ¢ a-np,

then (1) all iterates (2.124) satisfy,

k O
™2 <o
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(i1) the iterates converge to some vector, say
k
lim zc ) = x* ,
koo

which is the root of (2.118).
(iii) x* is the only root of (2.123) in lli-i(o) [ 150

The formal proof may be found in (Isaacson and Keller, 1966).

Now (2.121) can be written in the form (2.123) as, ;
u=3"r0 .
The method of functional iteration for solving (2.122) then consists of

the iteration,

U {(k+1) (k)

=2t @w®y , x=0,1,....

AH(k+1) (k)

or = F(U Y ., k=0,1,... . (2.126)

The iteration process (2.126) requires the solution of a sequence of (m<n)
linear systems with a constant matrix A and a varying right hand side

vector E(I_J_(k) Y, k=0,L,... .

This simple form results from using property (1) of the system (2.122).
We can also use property (11) to factorize A as,
A= 1oLt ,
where L is a unit diagonal, lower triangular matrix, and D is a diagonal
matrix. Then, each iteration of (2.126} consists of the evaluation of

F(U(k)) and forward and backward substitutions to give _[_l_(k+1) .

2.10.2 NEWTON'S METHOD

A particularly effective procedure for solwving {2.119) is known as

Newton's method whaich makes use of the iteration,

L e (2.127)

(k) (k),-1_,_(k)

where p = =-J(x" ") "f(x (2.128)

) ;




and J(x) 1s the (nxn) Jaccbian matrix of f(x)} with components

of . (x)
(x) = —— , (2.129)

J
i X,
ij j

There are many theorems concerning the convergence and its rate for

Newtons Method (Ortega and Rheinboldt, 1970) gives conditions on £ix},
(0)

J(x) and x which guarantee the convergence of the iteration (2.127).

Of course, the computation is not carried out in the form (2.127), but

rather by solving the system of linear equations,

(k) (et D) k) e )y (2.130)

J(x )

at each step of the iteration. N

The justification for Newton's method is taken from Taylor's theorem,
where the Taylor expansion of f in a point 3:_(]{) that lies in the
neighbourhood of a solution x* may be expressed as,

(k) (k (k)

£(x*} = £(x ))(E*'E ) + higher order terms, (2.131)

£ )+ J(x
But since x* is a root to f_(_:g) = 0, whence
0= Efz(k)) + J(gc_(k)) (-x_*-z(k)) ' (2.132)

This approximation may be solved for the unknown x*, giving precisely

the formula (2.127).

The basic Newton method as it stands is not suitable for a general
(k)

purpose algorithm, since the Jacobian J{x ') may not be positive

definite when E{k) is remote from the solution, therefore, a good initial

(k)

estimate must be provided. Furthermore even if J(x ') is positive

definite then convergence may not occur, in fact f (i(k)) may not even
decrease. The latter possibility can be eliminated by using Newton's

method with a damping factor in which correction is used to generate a

direction of search,




l‘.(k+1) - .’E.(k) +a(k)2(k) , (2.133)

where E}k) = —J(g}k))-%g(ng)), and a(k) is chosen such that |
|

e < g™ (2.139)

with O<esl.

(k)

There are many ways of choosing a ; one simple choice,

(k)

[ = ’ m=0,l,...

5 l"‘

where m is the smallest integer such that,

™) + 2™ s ellga™ 11 . (2.135)
2

L

Other good choices of a(k) are possible, see [GILL and MURRAY, 1974].

(k)

) is not too large then Gaussian elimaination

(k)

with partial pivoting could be used to factorise J(x ') as

Provided the matrix J(x

k
EJ(E( )) =1U ,
where p 1s a permutation matrix, L 1s a unit diagonal lower triangular
matrix and U is an upper triangular matrix, and forward and backward

(k)

substitution processes used to find p{x ). ’

We note that each iteration of Newton's methed requires the evaluation

and factorization of the (nxn) Jacobian matrix J(§fk)).

Hence, 1n general, Newton's method requires more operations per
iteration than the functional iteration of Section (2.10.2), although in

comparison Newton's method converges at a second order rate whach may

be particularly useful if accurate results are required.

Here, we will give a Theorem which guarantees the convergence of

Newton's method.
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Theorem (2.15)
(k)
X

If 1s sufficiently close to x* for some k, and if the Jacobian

matrix J{(x*) 1s positive definite, then Newton's method is well defined
for all kx, and converges at second order.
Proof:

It is assumed that £(x) € C2, and the elements of the Jacobian matrix
satisfy a Lipschitz conditicon,

lJij (x) -Jij (¥) | b3 U’l Iﬁ'll ‘ . {2.136)

Then the Taylor expansion of £ (E(k) +h) about x (k) is

£ = £+ 3:™n + o) n] 1D (2.137)

with h = i(k) -x* and,

(if we use order notation, i.e. F{x) = O(h(x)}, means that,

[F(x)| ¢ chix)

_1r1=~_1:1_(k) gives,

(k) (k). (k) (k) | |2)

0= £(x*) =f{x ) -Jx Hh " +0o(l|n (2.138)

Let E(k) be in a neighbourhood of x* for which J(E(k)) “is positive

definite and J(E(k)}-:L is bounded above.

Such a neighbourhood exists by a continuity of J(x). Then, the kth

iteration exists and by multiplying through (2,138) by J(x (k))-l gives

0=3x™) T ex™®)an® o n™® 13 (2.139)
- —B(k)-}l(k) + O(I lh(k) l |2) ,
= »_1_1_““’1) + ol Ig(k) i1 (2.140)

by definition of E(k"'l) .

Hence by definition of O(.) there exists a constant c¢ such that

e FIP I P T (2.141)
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(k)

If x 1s 1n a cleser neighbourhood for which [[_1_1_| Isa/c, where 0<a<l,

then it follows that
' 1% ] <ol n™] . 2.242)

E(k+l)

Thus, is in the neighbourhood, and by induction the iterat:ion :s ‘

well defined for all k and
k
™) 0.
Fainally, the iteration converges and the rate is shown to be second order

by (2.139).

The kth iteration of Newtons Method can be written
(k)

(a) calculate f£(x ') and,

{(b) solve for B(k) from J(_:E(k))i(l:_(k))

() evaluate x®1) grom D < ¥ L p®

(d) calculate E(E(k-l-l) ).

As the calculation of the Jaccbian matrix 1s very expensive for some
nonlinear problems, a variation of Newton's method exists in which the
Jacoblian matrix 1s not evaluated on every iteration, but the factors from

a previous iteration are used in its place. This saves effort in carrying

out the iteration, but slows down the overall rate of convergence.

Many modifications of Newton's method arise, especially when the

Jacobian is not positive definite, or when convergence may not occur.



CHAPTER THREE

THE FINITE ELEMENT METHOD




\
3.1 THE BASIC PROBLEM

The general problem to be solved takes the form of a differential
equation,

bu = f ,

(3.1)
-
In some region R in the space (x,y),

and subject to the condition,

Lu = g on the boundary 9R, |

where Qlel,D ,...,Dr]T are a set of differential operators which acts

2
on the unknown u=u(x,y} to generate the function Ef[fl,fz,...,fr]T,
and also EFELl'sz""Lr]T are again differential operators which

hold on the boundary 3R of the domain R and gf[gl,gz,...,gr]T is a

given function as shown in Figure (3.1).

The unknown u may be a scalar or a vector of several gquantities
and similarly the differential equation (3.l) may be single or a

set of simultaneous eguations.

The finite element approximation U(x,y) which is made up of a
linear combination of suitable functions and satisfies the given

boundary conditions is given by,

n
Ulx,y) = ) N (x,y)0 (3.2)

r
i=1 i

where Ni(x,y), {i=1,2,...,n) are "basis functions" or "shape
functions"” prescribed in terms of the independent variables x,y,

and Ui (i=1,2,...,n} are known parameters. The aim of the method is
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to determine the parameters Ul so that U(x,y) in some sense is a

good approximation to the true solution.

~

FIGURE 3.1

The general procedure to be adopted in.the various stages of the finite

element method is outlined in the following sections.

B description of the various alternative forms of the finite element
method are given such as the variational principles (method which is
based on Calculus of Variations), and also the weighted residuals method

which is a more widely used technique and more general in its applicaticns.
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3.2 DISCRETIZATION PROCESSES

(1) Type of the Element

The discreiization of the domain or solution region into a series
of finite elements (subregions) is the first step in the finite element
method. This is equivalent to replacing the domain having an infinite
number of degrees of freedom by a system having a finite number of
degrees of freedom. The number, shapes and sizes of the elements have
to be chosen carefully such that the original domain is simulated as
closely as possible with regard to the computational effort needed for

T

the solution.

Mostly, the choice of the type of the element is dictated by the
number of independent spatial coordinates necessary to describe the
system. Some of the most popular used elements are one-two-three-

dimensional straightside linear elements and are shown in Figures(3.2)

and (3.3) below.

node node
% K——- -———" ®
1 2

{a) One dimensional element with two nodes

Triangle Rectangle

(b) Two dimensional elements

FIGURE 3.2
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3
Tetrahedron Rectangular Prism

(¢} Three dimensional elements

FIGURE 3.3

For the discretization of problems involving curved geometries,
finite elements with curved sides are used. The ability to model curved
boundaries has been made possible by the addition of mid~side nodes.

Typical elements having curved boundaries are shown in Figure (3.4).

2

Curved-line-element

1

Plane triangle with Annular element
curved sides

FIGURE 3.4: Finite elements with curved boundaries
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(2) 8ize and Number of the Elements

The size of the elements influences the convergence of the sclution
directly and hence it has to be chosen with care. If the size of the
elements is small, the final solution is expected to be more accurate.
However, we have to remember that the use of elements of smaller size
will also mean more computaticnal time. Sometimes, we may have to use
elements of different sizes in the same domain. In general, whenever
steep gradients of the solution region are expected, we have to use a
finer mesh in those regions. Also the number of elements to be chosen

for idealization is related to the accuracy desired, size of elements,

and the number of degrees of freedom involved. Provided that the elements

obey the reguirements for a convergent solution, we may expect that the
more elements we use to model the solution domain, the better accuracy of
our results. For any given problem, there will be a certain number of
elements beyond which the accuracy cannot be improved by any sign:ificant
amount. This behaviour is shown graphically in Figure (3.5). Moreover,
since increasing the number of elements leads to higher computational
expense, we may alsc have the added difficulty that we may not be able
to store the resulting matrices in the available computer memory. When
solving a particular type of problem for the first time, it is good
practice to obtain several solutions with different numbers of elements.
By comparing these results it is then possible to see whether enough
elements are being used in the solution. A similar trial-and-error
procedure is used for determining satisfactory mesh representagion of
domains of infinite extent. The procedure is to construct a finite

mesh encompassing the regions of the solution domain where the phenomena

are occurring. By comparing sclutions cbtained for meshes of increasing




extent, we can determine the point beyond which the location of the

boundary no longer has significant effect on the solution.

solution Exact solution

u

-~ Numerical sclution

= o=

¥ Number of elements

No significant improvement beyond Ao

FIGURE 3.5: Effect of varying the number of elements

(3} Node Numbering Scheme

The solution of the finite element problem often leads to matrix
equations in which the matrices involved will be banded. The reascns
most often presented for reducing the bandwidth of a matrax are to reduce
the storage and computation required to solve the system of equations.
The advances in the finite element analysis of large systems have been
made possible largely due to the banded nature of the matrices. Further,
since most of the matrices involved are symmetric, the demands on the
computer storage can be substantially reduced by storing only the
elements involved in the half band width instead of storing the whole

matrix.

The bandwidth of the finite element matrix depends mainly on the
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node numbering scheme. If we can minimize the bandwidth, the storage

requirements as well as the solution time can alsc be minimized.

The bandwidth can be minimized by using a proper node numbering
scheme. For any finite element network we define the bandwidth as the
largest difference in the node numbers occurring for all elements of the

assembled system.

This indicates that the bandwidth can be minimized by reducing the
differences in the node numbering that occur for all elements in the

T

given region of solution.

As an example, consider the rectangular region, with 171, elements
as shown in Figure (3.6). There are 200 unknowns in the final finite
element system. If the entire matrix is stored in the computer it will
require (200)2 = 40,000 locations. The bandwidth overall is 20 and thus
the storage required for the upper half bandwidth 1s only 20%x200=4000

locations.

1 2 3 4 20
a1l 22] 234 24 20
a1 42 43 44

1 i 1
t \ ]
[ 0 [
] [} |
| | |
| ! |
200

FIGURE (3.6): Numbering of the node of a rectangular
region with bandwidth 20
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A shorter bandwidth can be obtained simply by numbering the nodes

across the shorter dimension of the region.

This is clear from Figure (3.7) where the numbering of the nodes
along the shorter dimension produces a bandwidth egual to 10, and hence
the storage required for the upper half band is only 1l0x200=2000

locations.

11 21

1 191
2 12 22 O (T
3 13 23 e e

200 3

10 200

FIGURE (3.7): Numbering of the node along the shorter
dimension with bandwidth 10O

Several approaches are available for minimzing the bandwidth of the
finite element systems of algebraic equations, we will describe here

the Cuthill-Mckee algorithm for ordering the unknowns to produce a matrix
with reasonably narrow bandwidth.

1. THE CUTHILL-MCKEE ALGORITHM

When the number of nodal variables is sufficiently large for the




storage space and computing\time to be important, it is advisable to
attempt to arrange the order of the variables so as to give an

economical solution. An alternative procedure is to allow the variables
to be specified in an arbitrary order within the input data, and to
include an i1nitial segment in the program which automatically rearranges
the nodes numbering in a way that should give an efficient solution.
Cuthill and Mckee's algorithm provides a simple scheme for renumbering

the nodes of the finite element problem.

Before describing the algorithm we will summarize some of the
notation to be used as well as some definitions of required terms from
graph theory.

Consider the system of linear algebraic equations,

Ax = b,
where A is an (1xn) sparse symmetric positive definite matrix. The
elements of A will be designated aij, where i is a row index and J a

column index.

Definition (3.1l):

Let A be an {1x1) symmetric or lower triangular matrix with element
a For the ith row of A, i=1,2,...,n, we define,

#0}

is*
£,(a) = min{J: a4

that is fi(A) is the column subscript of the first non-zero element of

the ith row of A

that is, b, (A) is the band width of the ith row of A.

Then the bandwidth of A 1s given by,

B(a) = max{|i-j] : aij;éo}

for example if,
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sclk
o
o
>
o
O
ad |

i fi(A) bi(A)

1 1 o .
2 2 0

3 3 Q

4 1 3

5 F 2

6 3 3

7 1 6

B(A) = 6

and note that,
B(A) = max bi(A) .

Definition (3.2)

For a graph G(A) corresponding to the matrix A we will have n nodes

labelled, i=1,2,...,n. For each non-zero element a_

ij

will be an edge connecting ncdes i1 and j. From the graph of A we can

¢ i<j of A there

determine the position of all off~diagonal non-zero elements of A.

Definition (3.3)

Any two nodes of G(A) are said to be connected if there is a
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sequence of edges Joining them such that consecutive edges have a common
end point. Two nodes of G(A) are said to be adjacent if they are

connected by an edge.

A graph G{A) is said to be connected if every pair of nodes of the
graph are connected. If G(A) is connected, the correspending matrix is

irreducible.

A popular orderaing strategy is the Cuthill-Mckee algorithm. It
attempts to find a permutation matrix P for which PAﬁT has a small band-
width, when we permute the rows and columns of A using the permutation
matrix P generating PAPT, the graph of PAPT - namely G(PAPT), is
identical to A but the node labels have been permuted according to the

permutation matrax P.

The procedure presented here for determining P or equivalently a
renumbering scheme for G(A) is given as follows:

a. select a node to be relabelled 1, this node should be located at an
extremity of the graph and should have, if possible a few connections
to other sides.

b. the nodes adjacent to this node are numbered in sequence beginning
with 2 in the order of their increasing degree (the degree of a node
is the number of nodes to which it 15 connected). ,

c. The procedure is then extended by relabelling the other nodes which
are directly connected to the new node 2, in the order of their
increasing degree, and so on until the renumbering is complete.

The graph shown in Figure (3.8) is the application of the algorithm

to the Triangular Network starting at a corner node which produces a
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3 6 10 14
18
21
5 9 13 17
8 12 16 20 3
11 15 19 22 24

Bandwidth 4

FIGURE 3.8: Cuthill-Mckee numbering scheme for a triangular
network

matrix of bandwidth equal to 4, while another way of numbering the same

Triangular Network gives a matrix of bandwidth equal 7 as shown below

in Figure (3.9).

19

13

20 21 22 23 24
14 15 16 17 15
8l 9 10 11 12
2 3 -4 5 6
Bandwidth 7

FIGURE 3.9
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ii. THE REVERSE CUTHILL-MCKEE ORDERING

Mckee considered the reverse Cuthill-Mckee éigorithm which re-
numbers the Cuthill-Mckee ordering in the reverse way. Surprisingly,
this simple modification often yields an ordering superior to the
original ordering in terms of efficiency, although the bandwzdéh remains
unchanged but the reverse scheme is always at least as good, as far as

storage and operation counts are concerned. Here, reverse is used in

the sense that element say {(i,3j,k,%) moves to (N-i+l,N-j+1,N-k+l,N-R+1}.

Figures (3.10) and (3.11) show both the Cuthill-Mckee and the
reverse numbering algorithms arising in the use of finite element methods
for the solution of partial differential equations in a square region with

rectangular elements.

15 19 22 24 25 11 7 4 2 1

10 14 18 21} 23 16 12 8 3

. of 13] 17 20 20 17 13 3 6

3 5 sl 12| 16 23 2y 181 14

' 2 s 25 24 2 19 I
FIGURE 3.10 FIGURE 3.11

Cuthill-Mckee numbering Reverse Cuthill-Mckee numbering

with bandwidth 5 with bandwidth 5
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3.3 INTERPOLATION FUNCTIONS

The most crucial step in the finite element analysis of a given
problem is the choice of adequate interpolation functions. They must
be chosen to meet certain criteria such that the convergence to the
true solution of the governing differential equation is achieved. The
finite element interpolations are characterized by the shape of the

element and on the order of the approximations chosen.

In general, the choice of a finite element depends on the geometry
of the solution domain and the degree of accuracy desired in the solutien.
The functions used to represent the behaviour of the solution in each

element are called interpolation functions or approximating functions.

Polynomial type interpolation functions are the most common forms
of approximation for the finite element applications because they are
easy to handle, specifically, it is easier to perform differentiation
or antegration with polynomials and because it is possible to improve
the accuracy of the results by increasing the order of the polynom:al.
Theoretically, a polynomial of infinite order corresponds to the exact
solution, but in practice we take polynomials of finite order only as

an approximation.

While choosing the order of the polynomial in a polynomial type
interpolation function, the following considerations have to be taken
into account:

i) The interpolation polyncmial should satisfy, as far as possible,

the convergence requirements, the unknown must be continuous

within the elements, for this reason complete polynomials are




often favoured. Complete polynomials are those in which all

possible terms up to any given degree are present, the necessary

terms for all possible polynomials up to a complete order six

are shown in Figure (3.12), which is known as the Pascal triangle.
11) The polynomial representation within an element should not

change with a change in the local coordinate system {when a

transformation is made from one cartesian coordinate system to

another). This property is called geometric isotropy or geometric

invariance.

In order to achieve geometric invariance the polynomial should

contain terms which do not violate symmetry in Figure (3.12).

Name No. of terms
1 Constant 1
x Vg linear 3
2 2 .

X Xy vy quadratic 6
x3 x2y xy2 y3 cubic ) 10

4 ,
x x3y x2y2 xy3 y4 quartic 15

5 R
X x4y x3y2 x2y3 xy4 yS quantic 21
x6 xsy x4y2 x3y3 x2y4 xy5 y6 hexad:c 28

FIGURE 3.12: Array of terms in complete polynomials of various
orders in two dimensions

Thus, in the case of two dimensional linear elements (triangle), the
polynomial should include terms containing both x and y in additicn to
the constant term. In the case of the cubic polynomial 1f we neglect
the term x2 for any reason, we should not include xy and y2 also in

order to maintain geometric isotropy of the model.
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The other consideration in selecting the order of the
polynomial is to make the number of terms involved in the
polynomial equal to the total number of degrees of freedom
associated with the element otherwise the polynomial may not
be unique.

The satisfaction of this requirement enables us to express

the polynomial coefficients in terms of the nodel unknowns of
the element., For some problems, however, choosing interpolation
functions that meet all the requirements may be difficult and
may involve excessive numerical computation.® For this reason,
some investigators have ventured to formulate interpolation
functions for elements that do not meet all the requirements.
In some instances acceptable convergence has been obtained,
whereas in others no convergence or convergence to an incorrect

solution has occurred.
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3.4 THE TWO DIMENSIONAL TRIANGULAR ELEMENT

The two dimensicnal triangular element :is probably the most widely
used finite element. One reason for this is that arbitrary regions in
two dimensions éan be approximated by polygons, which can always be
divided up into a finite number of triangles. In addition the complete

mth order polynomial,

2 m
U= al+a2x+u3y+a4xy+a5x +a6xy+ ...+any . (3.3)
where ul,az,...,an are the coefficients of the polynomial, also known as
m+l
generalized coordinates, m is the degree of the polynomial and n = E j
J=1

can be used to interpolate a function say U, at }(m+l) (m+2) symmetrically

placed nodes in a triangle.

For example, the value\of a linear triangle function may be found at
any point 1f 1ts values at three nodes, typically the vertices are known.
For higher degrees of polynomial, we can generate the required nodes by
taking (n-1) equally spaced lines parallel to each side and defining the
nedes to be the intersections of these lines with each other and with

the sides of the triangle as shown in Figure (3.13).

We consider first the linear case as indicated in Figure (3.14).
Let the nodes be labelled as 1,2 and 3 and let the global coordinates of

the nodes 1,2 and 3 be given by (xl,yl),(xz,yz) and (x ) and the nodal

3'¥3

values of U(x,y) by Ul'UZ and U3 respectively.

4
linear quadratic cubic

FIGURE 3.13: Nodes for linear, quadratic and cubic approximations on a
single triangular element




u =
2 U(x,y) al+a2x+a2y

[ U
I

1

v
v

)

FIGURE 3.14

The variation of U inside the element is assumed to be linear and of the

form,
U(x,y) = Gl+GZX+03Y ’ (3.4) ‘

The ui are uniquely determined when the values of U(x,y) are specified

at the nodes.
We now evaluate U at each node of the triangle in Figure (3.14).

Thus,




=
[

1 Gl + szl + G3Yl

U2 = al + azxz + a3y2 {3.5)
U3 = al + 02x3 + a3y3
Solving eguations (3.5) for al,az and a3 yvields,
1
a, = EK(alUI+a202+a3U3)
1
a, = EK(b1U1+b202+b3U3) (3.6)
v =-3L(c U, +c, U, +c.0.)
3 2A°7171° 7272 7373
where 4 is the area of the triangle 1,2,3 given by,
1l 3 yl
A=1% |1 X, Yy
1 ox3 ¥
= *‘x1§2+xzy3+x3yl'xly3'x2y1'x3Y2) ' (3-7)
81 = X¥3 T %Y,
bl = ¥,"Y, {(3.8)
¢ T ¥

with the other a's, b's and ¢'s cbtainable by cyclic permutation of the
subscript 1,2,3.

\
The substitution of (3.6) into (3.5) with rearrangement yields the
\

equaticn,
U(x,y) = N{l)(x.y)ul + Nél)(x,y)Uz + N;lhx,y)03.
3
or U(x,y) = E Nil)(x,y)ui ' (3.9)
i=1l
where
! (1) _ 1 _
Ni {(x,y) = 2A(ai+bix+ciy) s i=1,2,3 (3.10)

(1) 1

The function Ni {x,y} is called an interpolation function or

'Shape Function', and has the value 1 at the ith node and the value




O at the other two nodes. Since Ni(x,y) is linear in the variables x

and y, it is identically zero con the side between nodes 2 and 3 and
the gradient of U in x or y direction will be a constant.
For the Quadratic approximation with nodes numbered as shown in

Figure (3.15), the complete polynomial is given by

2
Uix,y) = al+a2x+a3y+a4xy+a5x2+a6y {3.11)
2
5
- 1
7 4
FIGURE 3.15

A similar procedure to that given for the linear case yields the

approximation, (2)
1 L

U(x,y) = N

1

Il ~1CY

(X.Y)Ui ' (3.12)

where Ui (i=1,...,6) are the values of U(x,y) at the vertices. The Niz)(x,y)

(i=1,2,...,6) are given by,

(2) (1) S )
Nl (x,y) = Nl (2N1 1) ,
{2) _ L) (l)_
N2 (x,7) = NZ (2N2 1) ,
N;z) x,v) = N;l) (ZN:;I)']-) ’
(2) (1) (1) ( =5
1
N4 (x,y) = 4Nl N2 P
(2) _ {1)_ (1)
(2) - {1)..(1)
N6 (er) = 4Nl N3 . J
Again it follows that,
(2) ll' izjl
N - 1£1£3%6. (3.14)

| 0, i#j4,
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It is particularly satisfactory that the shape function Nizl(x,y)

(i=1,2,...,6) can be expressed in terms of the shape function Nfl)(x,y)
i
of the linear case and therefore to simplify the formula we shall denote

the Nil)(x,y) simply by Nl . (1=1,2,3}.

Finally, for the Cubic case (m=3) with nodes numbered as shown in

Figure (3.16) below,

FIGURE 3.16

The complete cubic polynomial is given by:

2 2 2 2 3 3
U(x,y) = a,+ta x +a6y +m7x y+a8xy +u9x +aloy (3.15)

pragxrayre, xyta

5
As before the approximate polynomial is given by,

3
Ulx,yy = ] N7, (3.16)
i=1

where Ui' (i=1,2,3) are the values of U(x,y) at the vertices (1,2,3},

Ui (i=4,5,...,9) are values at the points of trisection of the sides
and Ulo is the value of U(x,y) at the centroid of the triangle as shown
in Figure (3.16).

The shape functicns are given by,

(3) - - -

(3)
3

with NéB)(x.y) and N (x,y) similarly,

-
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(3)
N4 (x,y)

{(3)
N5 (x,v)

1N2(3N2-1) ’

(

with (900 (5,9 422,880 (5,) similarly, | (3.17)

(3) _
NlO = 27N1N2N3 .

/

The tenth parameter can be eliminated by using the linear relation,

(3) _ 1 1
Nig = Wt NN N ) = (N 4N +N,) (3.18)

to yield a function that will still interpolate the quadratic exactly.
This procedure is called the elimination of internal parameters.

Again, it follows that,

(3) 1 +=3 »
Ni (x,,v.) = . 121g3%10. (3.19)
In a similar manner the shape function can be generated for any order of

parameters.

We have created a set of shape functions Ni{xgy) which form a basis
for all functions which are linear on each element and continuous within

the element and so on for quadratic, cubic and cother higher order elements.

Another common element shape is a “rectangle™, on which in a similar
manner a family of shape functions can be developed, details are given

in ZIENKIEWICZ (1977).



3.5 CURVED BOUNDARIES

i

So far shape functions have been constructed for straight sides only.
To solve a problem with a curved boundary the mesh must be refined until
the boundary is sufficiently closely approximated by a series of straight-

line segments.

Another technique which is introduced into structured analysis by
ERGATOUDIS, IRONS, and ZIENKIEWICZ [1968], is to use a curved finite
element which is based on geometrical considerations, whereby inter-
polating functions are obtained directly in terms of x and y for the
triangle-angd quadrilateral with arbitrarily placed side points. These
local functions can be used to construct piecewise smooth global inter-
polating functions over regions possessing curved boundaries and composed
of elements which are triangles and parallelograms with arbitrarily

positioned side points.

This apprcach is called the "isoparametric formlation". The simplest
membey of the isoparametric family is the "linear" element and, by
definition, this may not have curved sides. A more useful isoparametric
element is the "quadratic" element because it may have curved sides and
therefore provides a better fit to the curved shape of the region. The
essential ideal underlying the development of elements with curved sides
centres on transforming simple geometric shapes in some local coordinate

system into distorted shapes in the global systemn.

For the case of a triangular element with straight sides and no
side points, the linear transformation from the local (p,q) system to the

global (x,y) system is given by,



X

px, + qax, + rx

3 (3.20}

Y = pYy tay, try,

In addition to these equations a third condition requiring that the sum

of p,q and r are unit, that is,
p+g+r=1 {(3.21)

From equation (3.21) it is clear that only two of the local systems p,q

can be independent, just as the original coordinate system, where there

are only two independent coordinates. Thus equation (3.20) can be written

as,

1

X (xl-x3)p + (xz-x3)q + x3
Y = (¥;-¥,)P + {y,-¥)a + ¥, (3.22)
where the various quantities are explained in Figure (3.17).

Inversion of equation (3.20) and (3.21) give the local coordinates

in terms of the global coordinates. Thus,

1
p Z—A[(yz-y3)x + (xz-xl)y + (x2x3-x3y2)1

{3.23)

1
q EK“Y3'Y1)" + (xl-x3)y + (x3yl-x1y3)l

where A is the area of the triangle.

$ 3

~
/2 \\
~ / p=
PRl SN ,'
’ ~
- ~ 4
q=0 \\ /
/
I'\\
I
q=1 p=1
» x

FIGURE 3.17




In the more general case of a triangle A.R. MITCHELL [1971] illustrates
the nature of the computations involved by considering an example
consisting of a triangular element with two straight sides and cone
curved side. To maintain generality, first a triangle with three
curvilinear sides as shown in Fiqure (3.18) is considered. Mitchell
proceeds to transform this triangle into the standard triangle in the

{(p,q) plane by using the transformation formulae,

Y q
A 3
2
4
51
b4 - > ? p
3 6 1

FIGURE 3.18: Treatment of curved boundaries via isoparametric
transformations

X = p(2p—1)xl+q(2q—1)x2+r(2r-1)x3+4pqx4+4qrx5+4rpx6
(3.24)
Yy = P(29-1)y1+q(2q-1)y2+r(2r--1)y3+4pqy4+4qry5+4rpy6
where r=1-p-gq, which can be rewritten in the form,
2 2
X = 2(xl+x3-2x6)p +2(x2+x3-2x5)q +4(x3+x4—x5-x6)pq+
(4x6-x1-3x3)p+(4x5—x2-3x3)q + x3 (3.25}



2
Yy = 2(yl+y3-2y6)pz+2(y2+y3~2y5)q +4(y3+y4-y5-y6)pq+

(4y6-yl-3y3)p+(4y5-y2-3y3)q Yy -
This time 1t 1s not an easy matter to solve (3.25) for the curvilinear

coordinates p and g in terms of x,y and the coefficients of the six

points. It is sufficient to say that the desired expressions for p and q

are, in general of quadratic form in the x and y. Hence, the local
curvilinear (p,q) system is uniquely determined in terms of the fixed

(x,y)} system and the location of the six points.

If the sides 2,5,3 and 3,6,1 are straight sides with 5 and 6 the

mid-points respectively, the transformation formulae reduce to

~

s e
b-4 XPS + xlp + x2q

Y=yri+yp+¥a,
e 1 2

where,

%e

~—
X=X Y = ¥Y,

X

~ A~ S N ~r ~t
202X R 4,01, Y = 2027, (T 4,0 .
After some considerable manipulation it can be shown
that the line p+g=1 for this case in the (p,q) plane corresponds to the

quadratic curve,

—_———— _———— 2 - — em - e — = = -
[(ylx-xly) + (yzx—xzy)l = (lez'xlyz)[(le'x1Y)’(sz’x2Y)]' (3.26)

where sz—§4, and'§=yJ§;. In the special case, where the points are
given by 1=(1,0) 2=(0,1), 3=(0,0) and 4=(%,2). Equation (3.26) reduces

to, x+y-2L

Tor - (3.27)

(x-y)2 =

The quadratic curve given by Equation (3.26) is, of course, only an
approximation to the oraginal curvilinear side of the triangle in Figure
(3.17}, thisexample illustrates a method of handling curvilinear sides.

For a more thorough discussion on the methods of treating isoparametric
elements, details are given by A.R. MITCHELL [1973].
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3.6 VARIATIONAL PRINCIPLES AND WEIGHTED RESIDUALS

3.6.1 VARIATIONAL FCRMULATION OF THE FINITE ELEMENT METHOD

Variational principles occur naturally in many physical and other
engineering problems and the approximate methods of solution of such

problems are often based on associrated variational principles.

We will discuss first a finite element approximate method which is
directly based on the variational principle. A general analysis of the

LY

variational principles is given by L. EISGOLTS ([1973].

Briefly, the mathematical formulation of a variational principle
1s that the integral of some typical function has a minimum or a maximum
value for the actual performance of the system than for any virtual

performance subject to the general conditions of the system.

A functional J (E) can be defined as a function of several functions
which has a value dependent on a function u and 1s defined by an integral
of the form,

du du
J(u) = J Flu, —,...})dR + J E {u, ——,... ) ds, (3.28)
- —" 3x - 9x

R oR
where F and E are specified operators and in general the unknown
function u is a vector.
The main idea in variational principle theory 1s to find the
function u which minimizes the value of J{(u). A necessary condition
for this is that the first variation in J(u)} &J(u) must be zero when u

is varied by an arbitrary small amount &u:

8J(w) = J(u + Su) - J(u)

o+ 0(632) . (3.29)

[
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Given a differential equation problem such as that specified by (3.1)

we say that the;e 1s a variational principle for the problem if the task
of finding the solution u of the original problem can be reformulated as
the problem of minim:zing a particular functional J(v) over a set of
admissible functions v, which satisfy certain conditions at the boundaries

of the domain of the problem.

The finite element method makes use of this 1dea, and in particular
it invelves a careful analysis of the set of admissible functions which
must satisfy the essential boundary conditions. In genéral, if the
functional (3.28) contains derivatives up to and including the pth, the
set of admissible functions in which we look for the solution has to be

the space HP

, defined as the space of all functions v which has finite
energy in all derivatives up to and including the pth derivatives, i.e.
1f v € Hp then,

2

J w2 vl e v® R < . (3.30)

R
In particular this means that Hp contains all functions with continuous

t!
(p-1) B derivatives.

We restrict the choice of v to those functions in #° which satisfy

the boundary conditions, i.e. to a subspace which we label Hp.

8

The finite element method makes use of the "weak form" of the
variational principle which is cbtained by integrating (3.28) by parts
to reduce the pth derivatives. In general,if p=2m, say, this may be
done m times, so that the maximum order derivative occurring in the

variational principle is m; this has some important consequences:

The new form of the functional J(u) contains lower order derivatives




of the unknown function é compared to the governing differential

equation, so the set of admissible functions can be enlarged and hence

an approximate solution can be cbtained using a larger class of functions.
Regardang the boundary conditions, the variational formulation

permits us to treat complicated boundary conditions as natural or free

boundary conditions:

(a) Natural Boundary Conditions

These are typically conditions on the higher derivatives, which
are absorbed into the new form of the functional when we integrate by

parts,

(b) Essential Boundary Conditions (or forced boundary conditions)

These have to be satisfied by the new space of admissable functions.
If the finite element equations are derived on the basis of the new
variational principle, the natural boundary conditions will be automatically
incorporated in the formulation and hence conditions are to be enforced

on the solution in order to obtain a unique solution, we denote the new

space of admissable function Hg, where m is the order of the new

functional derivatives and E refers to the fact that the function need

only satisfy the essential boundary conditions.
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3.6.2 DERIVATION OF FINITE ELEMENT EQUATIONS USING VARIATIONAL APPROACH

Let the general problem be defined as (3.28},

J(u) = I El(g,gx,...)dR + J Ez(g,gx,...)ds .
R aR

The finite element procedure for solving this problem can be stated by

the following steps:

1.

The solution domain R is divided into n smaller parts called
elements, the commonly used element shapes are gaven in Figures
(3.2), (3.3).
The unknown variable is assumed to vary in each element in a
suitable manner similar to those given in Equation (3.2), 1.e.,

n

u(x,y) = Z N (x,y}U_ .,
1 1
1=1

where Ni is the shape function, and Ui is the nodal wvalues

The solution of U(x,y) is obtained from the minimum of J(U) with
respect to all unknown nodal values Ui. This is equivalent to

havang,
§J{ulx,y) = Q0 or, (3.31)

(93 |
3Ul
3T

B_J_ = auz =

U (3.32)

[o]

-
-
-

9J
BUN

T -
where N denotes the total number of nodal unknowns in the problem.

If the functional J can be expressed as a summation of elemental

contributions as: E
g=73 % (3.33)
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where e indicates the element number, then equation (3.33) can be

expressed as,
ag'®)

i e=1 %Y

=0, i=1,2,...,N. (3.34)

b+
&
]

Il e~

In the special case, where J is a quadratic function of U and

its derivatives, we can obtain the element equations as,

33

aU(e)

£
vhere K(E) is the element characteristic matrix and f(ls the

(e)(e) _ c(e)

=K f R (3.35)

element characteristic vector.

To obtain the overall equations of the system, we rewrite equation

(3.35) as,
H-m-£-0, (3.36)
where E (e)
kK= IX
i=1
E -~ 1
g= ] £
e=1

and the summation sign indicates the assembly over all finite

elements in the region.

The linear simultaneous equations (3.36) can be solved after
applying the boundary conditions to find the unknowns U.

If J 1s not quadratic in U then we obtain a set of simultaneous
non-linear equations. These may be solved for U by using a
standard iterative method.

The main difficulty with this form of finite element method 1s

that it relies on reformulating the original problem as a variational
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principle. The governing differential equations have to be the
Euler equations of the functional, and while every functional has
a set of Euler equations, the reverse is not always true: not
every set of differential equations can be expressed as the Euler
equations of some functional. Thus, the range of application of
variational principles is somewhat limited, and we now look at

another method of solution based on weighted residuals.

3.6.2 THE METHOD COF WEIGHTED RESIDUALS

The method of weighted residuals which includes the Galerkin method
as a special case is an approximate method which seeks a solution that
is a good approximation to the exact solution over the whole domain of

the given problem,

To introduce the method, we consider the set of differential
equations (3.1).

The solution of (3.1) is equivalent to determining u so that,

((PE-E) OE) =__0_ r (3.37)
or -
J (Du-f)w dxdy = J [D,uw, + Djuw, + ... + Drgyr]dxdy
R R
-I [flw1 + f2w2 +...+frwr]dxdy =0 (3.38)

R
where E?[wl,wz,...,wi] , are a set of arbitrary weighting functions.
The converse is also true: if (3.37) is satisfied for all w then
{3.1) must be satisfied at all points of the region R. The solution u
must also satisfy the boundary conditions (3.2), and these are incorporated
either by considering only those functions which satisfy (3.2), on R,

or by specifying that,



[ Luw ds=0 , (3.39)

R
in the process of soluticn, where again E:is a vector of arbitrary

weighting functions. The two methods give the same results, but
sometimes 1t 1s easier to incorporate the boundary conditions 5'priori,
and sometimes easier to use them later in the solution process.

It is clear that if,

f -
J (Du-f) wrdxdy + J EE-ET ds = 0, (3.40)
R R

is satisfies for arbitrary w and w then (3.1) and (3.2) are satisfied,
and the converse is also true. Thus, any solution of (3.40) is a

solution of (3.1) and (3.2), and conversely.

As with the method of variational principles, we integrate by

parts and replace (3.40) by a form,

[ — T - - T

J {Du-f) c(w) dxdy + J Lu c(w)'ds = 0, (3.41)

R R
where § and -_IZ usually contain lower-order derivatives than those in D
and L, so a lower order of continuity is required in u but E_and'i
usually have to be more continuous., The same points about continuity
that were made for the variational principle form also apply here. The
next step in the application of the method of weighted residual to the
finite element formulation is to introduce a trial solution,

~

n
u= ] N (x,y)0, , (3.42)
i=1 1 1

r

which 1t is hoped, 1s close to u in some sense or can be made so if n
is large enough. The trial solution is chosen to satisfy the boundary

condition, and since the approximate solution should be capable of
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converging to the exact solution as n approaches infinity it is
important that the functionsNi are linearly independent and chosen from

a set of functions which is complete in the domain of interest.

Clearly, it will not generally be possible to make such an
approximation and also satisfy the differential equations (3.1) and (3.2)
exactly, but the integral form allows an approximation to be made if we
put a finite set of prescribed functions in place of the arbitrary

functions w and w,

E=E= ii » (2=1,2,...,0) . | (3.43)

and if we proceed by substituting the approximate solution (3.42) into
equation (3.40) and (3.41) we get,

[ f

Gy gaxdy + | Lu . 8) ds
R 3R

B

0, (i=l,...,n)  (3.44)

/

and,

r

Lu. g(gi)T ds , (1=1,2,...,n),(3.45)

x(x,y,U) .g(gi)dedy +I
R

‘R

wvhere r(x,y,U)=(DU-£f), represents the errors, or "residuals". It is
to be expected that r will be small, 1n some sense, but not zero

throughout, the domain in which the solution is sought.

Since r=0 throughout the domain when the exact solution is obtained,
r will be considered as a measure of error and since the exact solution
is not avairlable in general, the size and the distribution of r in the
domain can be used to assess the accuracy of the solution. Thus, if a
solution for a particular value of n has been obtained, r can be
evaluated., The effect of obtaining a new sclution with increased n

should cause a reduction in r in some average sense.



A different choice of the set of functions (¢l, i=1,...,n) give

rise to different methods which collectively are known as the methods

of weirghted residuals. A commen choice (which we have used throughout
the work) i1s to take the shape function Ni as ¢i i.e., the functions ¢i
are chosen from the same family as the trial functions in equation (3.42),
since the trial functions are chosen from a linearly independent set of
functions, complete in the domain of interest equations. This choice
leads to the "Galerkin Method", and the effect is to make the error
vector orthogonal to each of the shape functions and hence to any linear

combination of them.

It is known (see ZIENKIEWICZ [1977]1) that if a variational principle
exists for a linear problem, then the Galerkin method gives rise to
precisely the same equations as the variational prainciple, when the
finirte element method is applied. The advantage of the Galerkin method
1s that it 1s valid for problems which have no variational formulation,

and so it 1is more widely applicable.

The description of the method of weighted residuals given above
requires that the boundary conditions are satisfied exactly and that
the differential equation 1s satisfied approximately. This 1s called
an interior method. The converse is also possible. In the boundary
method the differential equation is satisfied exactly but the boundary

conditions are satisfied approximately.

To demconstrate the connection between the variational method (Ritz)

and the Galerkin method a problem governed by Poisson's equation is

considered. That is,




2
9—-‘5‘-+—3—‘;=f, (3.46)
ox oy

subject to the condition u=0 on the boundary.
The equivalent variational problem requires that,
Ay

J(w) = ”[(3“)2 42 L ofu) axdy , (3.47)

has a minimum corresponding to the exact solution, subject to the same

condition u=0 on the boundary.

Substituting eguation (3.42) into equation (3.47) gives,

§ aNi 2 ﬁ aN {
J(U) = J I[{ u — 1 +{ 9] —} + 2f UN ]dxdy
g b3 21 O i=1 t

(3.48)

Imposing the conditions given by equation (3.34) which require that

%%— = 0 (3=1,...,n) produces the result,
3
3 y 45 iy
+2f.Nj] dxdy = O (3.49)
or, aN N
2.8, 313, ey axday=o0 (3.50)
Ix 9x 3y a3y J

The application of the Galerkin methed to equation (3.46) gives,

2
”n[ag —-"lé--f] dxdy = O , (3.51)
1
Ix Yy

and by applying Green's theorem to the first two terms leads to the

result,

N N
BU i 3y __i 29U
J Nl[ax b 4 ay Eylds - JIlax 9% TR Jy 9y *EN, ]dxdy

(3.52)



Since Nl is chosen to satisfy homogenecus boundary conditions the first

term in eguation (3.52) disappears and equation (3.52) reduces to
equation (3.50).

Thus the two techniques are equivalent for this problem.
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3.7 ERROR ESTIMATES

Expressed in its simplest terms the finite element methed is a
procedure for finding a piecewlse smooth approximation to the solution
of some underlying differential equation or system of differential
equations. In most applications the polynomials defined on a partition
(element} of the given domain are used to form the trial and test function

spaces. ]

The finite element technique and computer implementation of the
method has been to arbitrarily set the polynomial degree p at a fixed
low value (typically, p=1,2,3 or 4) and to decrease the size of the
element subdomains in order to reduce the error in the approximate
solution. Error estimates showing the dependence of the rate of
convergence on the mesh are well known. In fact, since the mesh size
is.usually denocted by the letter h, we refer to this standard approach

as the h-version of the finite element method, see Figure (3,19).

There 138 also another approach that has arisen recently by BABUSKA
and DOOR [1981], in which they refer to the p-version of the finite
element method. Here, one fixes the mesh size and increases the degree
p of the piecewise polynomials in order to obtain the convergence of the
approximation solution to the exact solution. This method is analyzed
where the error estimates, in terms of the polynomial degree P are
obtained. In particular, it is shown that, if the rates of convergence
for the h-version using uniform refinement and the p-version are
expressed in terms of the number of degrees of freedom, the p-version

cannot have a slower rate of convergence than the h-version. Furthermore,
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when corner singularities are present, the rate of convergence of the
p-version is exactly twice that of the h-version. However, this is an
interesting theoretical method but it is difficult to see it ever being

widely used.

AN

l1-linear element 4-linear element 9-linear element l4~linear element

h-version finite elements

1 1
/\A
2 3 2 6 3 2

linear element quadratic element cubic element quartics element

p-version finite element

FIGURE 3.19: h- and p-version of the finite element method

Given a basic triangular element grid a display of opticons for

cbtaining a better solution may be set out as shown in Figure 3.19.



To write a program to increase the order p is likely to be

substantially more difficult than writing one which is capable of

decreasing h. In addition, the h-version will preduce a matrix with

substantially the same sparseness matrix, while the p-version will

lie with the h-version.

STRANG and FIX [1974] and MITCHELL and WAIT [1977] give a deta
analysis and proof of convergence. Here we will give only a statem

the error bounds which 1s relevant to the present work.

We consider the finite element subspace Sh € HE (m=0,1,2,...,)
the finite element method, an approximate solution is sought amongs
functions which belong to the closed subspace Sh. The gquestions th
arise then are "does the method converge as the mesh size decreases

as h*0} and can the error bounds be cbtained in terms of h.

Consider the discretization of some two-dimensional region R by

means of triangles.

The form used here is given by,

{2 w2 w2  .3%u2
Hullp— [{“u+(§;) e B o R

R Ix

P
+ (E—Eﬁz}dxdy]i .

3

The error e=u-U may be shown to satisfy an ineguality of the form,

2.2
llell, s & maxchu | 1w L 1u )

become comparatively less sparse, thus requiring more storage and more
work to solve the system of equations. This is offset by the better

convergence of the p-version, but on the whole the advantage seems to

iled

ent of

; in
t
at

(i.e.

{3.53)



i.e., the norm of the error behaves like h2 as h*0, for some constant C.

Although the bqunds on the error show that the method converges as h»0,
the manner in which convergence occurs is not apparent. MELOSH [1963]
gives the following sufficient condition "If each subdivision of the
finite element mesh containe the previous one as a subset, then the

eonvergence will be monotonic”.

Table (3.1) shows such convergence for Poisson's equation (3.54) in

a square, where the mesh 1s obtained by halving the dimensions of the

-

triangles (h-version) in Figure (3.20a)below:

12
2 6 5 9
13 11] 10 8
7 4
14 7
4 3
8 3 15 6
1 1 2 16 213 3
1 4
4 Elements 8 Elements 16 Elements

FIGURE 3.20{a)

and also we consider the convergence of the same problem (3.54) by
increasing the order of the triangles, and fixing the number of elements

{p-version) as shown in Figure (3.2Db) below:

®

b @ 2 ¢ p-version
@

Quadrataic Cubic Quartic node

(4 element) (4 element) (4 element)

FIGURE 3.20(b)
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Example 1
The governing equation is:

Vzu = Q, )

with the boundary conditions,

ay) = a-e"% —cos iy | (3.54
u(l,y) = 0 ’
u(x,zl) =0
J
which has the exact soclution,
i u = e-“/z x_ cos g'y . *

The following provide a good comparison of how the
accuracy of the problem given in equation (3.54), increases for

both h-version, and p-versicn finite element solutions.

No. of Elements L2 Error Norm

{(Triangles) Quadratic Cubic Quartic
12 5.3967x10 > [4.9248x10”% |3.1466x10™
25 1.07761x10 > |5.20561x10™> |2.68135x107°
36 8.2776x10" % |3.3992 x10™> |2.1310 x107°
50 6.1016 x10™{2.23794x10™> [2.04479x10~°
60 5.6662x10 " |1.8876x10 > [1.9830x10 °
75 1.38908x10 ]7.00277x10°® |1.8915%x10°®

TABLE 3.1

Also the results given in Table (3.1) are plotted in Figure (3.21), which
clearly show that the quartic element is more accurate than both cubic

and quadratic elements.




Legend

5.0~ A Quadratic
O Cubic
O Quartic

L2 Error Norm

Number of Elements

Figure (3.21)




3.8 ASSEMBLY OF ELEMENT MATRICES AND VECTORS

Once the element properties, namely, the element matrices and
element vectors are determined in a common global coordinate system, the
next step is to construct the overall system of equations. The procedure
for constructing the system equations from the element equations is the
same regardless of the type of the problem and the number and the type
of the elements used, i.e., even 1f the system is modelled with a mixture
of several different kinds of elements, the system equations are assembled

from the element equations in the same way.

The procedure of assembling the element matrices and vectors is
based on the requirement of "compatibility" at the element nodes, by
this we mean that at nodes where elements are connected the value (values)
of the unknown nodal variable {(or variables, if more than one exists at
the node) is (are) the same for all the elements connecting at that node.
The consequence of this rule 1s the basis for the assembly process,
which is an essential part of every finite element solution. If E and
N denote the total number of element and nodal unknowns (degrees of
freedom) respectively, U denotes the vector of N nodal degrees of
freedom, K the assembled system characteristic matrix (master matrix)
of order (N*N) and f the characteristic vector of order N, then the
global characteristic matrix (master matrix) and the global characteristic

vector can be obtained by algebraic addition,

¥ (o)
K= LK, (3.55)
e=1
and,
¥ (e
£= ) £°%, (3.56)




where K(E) and f(e) are the element characteristic matrix and the

element characteristic vector respectively.

The procedure 1s illustrated with reference to the assemblage of

numberang of each element indicated at the corners within each element.
Since there is one degree of freedom for each node, each element has
three degrees of freedom. There are ll degrees of freedom for the entire

domain. Thus, the order of K and f will be (11lx1l) and {11x1) respectively.

FIGURE 3.22: Local and global numbers in a finite element

\
the two dimensional problem shown below in Figure (3.22)}, with the local
division of a domain ‘

Table (3.2), emphasizes that the local number of each element 1s
just a way of indicating the ordering of the degrees of freedom in an
element while the global numbering scheme as indicated in Figure (3.22)

and Table (3.2) which establaishes the identification of these nodes and



elements which is an essential part of the solution process.

Once the numbering scheme has been established for the finite
element mesh, we must create the record of which nodes belong to each
elements. This record given as input to the computer program or generated
internally by the program, serves to define the connectivity of the
element mesh. In other words, it gives information on how the elements

are joined together.

Elements Local Numbers Global Numbers

1 1,2,3 1,2,4

2 " 3,1,4

3 " 6,3,4

4 n 2,6,4 )
5 " 3,6,9

) " 8,3,¢9

7 " 12,8,9

8 " 6,11,9

9 " 2,5,7

10 " 6,2,7
11 " 10,6,7

12 " 5,10,7

TABLE 3.2: The Local and the Global numbers for the elements of
the problem in Figure {3.22)

Having specified the record of which nodes belong to each elements,

which is simply the ordered numbering of the nodes, we can summarize the




general procedure of assembly in the following steps:

1. We set up a (NxN) null matrix and (Nx1) null vector (all zeroc-

entries), where N equals the number of system nodal unknowns.

2. Then, starting with one element, transform the element equations
from local to global coordinates, 1f these two coordinate systems
do not coancide.
3. Perform any necessary matrix operations on the element matrices,
where some times we have cne or more nodes which have no connectivity,
When thls occurs, it is necessary to eliminate the nodal unknowns or
degree of freedom associated with these nodes.
4. Using the established correspondence between local and global numbering
schemes, change to glcobal indices.
(i) the subscript indices of the coefficients in the square
matrix
(ii) the single subscript index of the terms in the column matrix.
5. Insert these terms into the corresponding (NxXN) and (Nxl) master
matrices in the locations designated by their indices. Each tame
that a term is placed in a location where another term has already
been placed, it is added to whatever value is there.
6. Return to step 2, and repeat this procedure for one element after

another until all the elements have been treated.

The result will be the (NXN) master matrix K, and (Nx1} vector f.
The complete system equations are then,
Ku=f, (3.57)

where U is the column vector of nodal unknowns for the assemblage.

The generality of this assembly process for the finite element method




offers a definite advantage. Once a computer program for the assembly

process has been developed for the solution of one particular class of
problems by the finite element method, it may be used again for the

finite element solution of cother classes of problems.

In fact, the procedure is applicable equally well to all types of
problems. We now consider developing the expanded element matrices for

our two-dimensional problem in Figure (3.22).

(1)

For the first element (1), the coefficients of element matrix K

(1)

and the element vector f can be written as shown in Table (3.3a) and

(1)

ij

by the global degrees of freedom Um n corresponding to the local degrees
r

(3.3b}, respectively, the location of any component k is identified

of freedom Ul 5 respectively, for i=1,2,3 and 3=1,2,3.
I

Thus, the location of the (N*N} components K(l) in K will be shown

in Table (3.3b), similarly, the location of the components of the
vector f(l) will also be shown in Table (3.3b). By proceeding in a

similar way for elements e=2,...,12, the final master matraix K and the

vector £ can be obtained as given in Tables (3.16) and (3.17) respectively.

For element () the corresponding relation between the local and

global numbering schemes indicates that the following holds,
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The local numbering The corresponding global numbering
u,, u+1 2 3 U,U0 »>1 2 4
i’ 75 m° n
+ (1) (1) {1) ¥ {1) (1) (1)
1 ki ka0 *qg 1 ki1 k2 Fpg
(1) (1) (1) (1) (1) (n
2 kyr Kap Ky * 2 ki ¥ ¥y
{1) (L (L) _{1) (1) (1)
3 k31 Kap K33 4 Rap Xaz kg
for the vector f(l) of the element @ the correspondence relation between

the local and global numbering schemes indicates that the following holds,

The local numbering The corresponding global numbering
1 f](_l) 1 £t
2 fél) + 2 f;l)
3 f;” 4 f;l)

TABLE 3.3a The correspondence between the local and global
numbering schemes for both coefficient element
matrix and element vector of element {1

Hence, when these coefficients are inserted into the expanded matrix K

(1)

, we have,

and the expanded vector £




1. The locaticn of K(l) in K.
Global—>» 1 2 3 4 5 6 7
¢ — -
{n (1) (1)
1 ki1 K12 ki3
(1) (1) (1)
2 ka1 K22 ka3
3
(1) (1) (1)
4 k31 X3 k13
5
(l)=
[
7
8 O
9
10
11
. (1)
2. The location of £ in £.
Glcbal
= _{1) -
1 fl
(1)
2 f2
3
(1)
4 f3
=5
6 O
8
10
11 B _

TABLE 3.3b: The location of both K

(1)

and £

(1)

10 11

in K and £
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For element @D, the correspendencerelation between the local and

global numbering schemes indicates that the feollowing holds.

The local numbering The corresponding global numbering
u, u-+1 2 3 U ,u> 3 1 4
4t 3 Jan =)
(1) (1) (1) (2) (2) 2
1 k11 K2 *g3 3 kg3 kg Ky,
(1) (1) (1) (2) (2) (2)
2 kap kap Ko L kg Ry Ry
(1) (1) (1} {2) (2) (2)
3 kap K3z ka3 4 kyy Ky Ky
Also, for the vector f(2) of element (2, the correspondencerelation

between the local and global numbering gschemes indicates that the

following holds.

The local numbering The corresponding global numberaing
(2) (2)
1 fl 3 f3
(2} (2)
2 f2 +> 1l fl
(2) (2)
3 f3 4 f4

TABLE 3.4a: The correspondence between the local and the global
numbering schemes, for both element matrix and
element vector of element number

Bence, when these coefficients are inserted into the expanded matrix

K(l) and the expanded vector f(l) we have,



1.

2.

(

The location of K

10

11

The location of £

(2)

TABLE 3.4b: The location of both K

1

(2)
k22

s

(2)
kl2

(2)
k32

Global

38}

WO 0 ~ O b W

10
11

2 3

k

2)

(2)

21

k

(2)

11

k

{2)

31

[ @
2

(2)
£

(2)
£,

O

(2)

-

in XK

4

(2)

k23

(2)
ki3

(2)

k

33

in £

(2)

and f

(2)

10 11

in K and f.



For element (3 the correspondence between local and global numbering

schemes indicates that the following holds,

The local numbering The corresponding global numbering
u.,uv-+ 1 2 3 Uu,0->6 3 4
P m n
(3) {3) (3) ¥ (3) (3) {3)
1 k11 K12 3 6 kg Koz Xeq
(3) {3) (3) (3) (3) (3)
2 kor ka2 *a3 7 3 kKyg X33 Kyq
(3} (3) (3) (3) (3) (3)
3 k31 K3z ka3 4 kye Kay Ry
for the vector f(3) of element (3 correspondencebetween local and

global numbering schemes indicates that the following holds,

The local The corresponding global
(3) (3)
1 fl 6 f6
(3) {3)
2 f2 +> 3 f3
(3) {(3)
3 f3 4 f4

TABLE 3.5a: The correspondence between the local and the global
nurbering schemes, for both coefficient elements
matrix and element vector of element number

Hence, when these coefficients are inserted into the expanded matrix K

(3)

and the expanded vector £ we have,

(3)
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1. The location of K(B) in K

Global — L. 2 3 4 5 6 7 8 9 10 11

i . -

1
2
; S
: I
5
@y
7
8
9 .
10 O
11 B _

2. The location of f(3) in £

Global
* p—
1 7]
2
(3)
3 £,
‘ £
£03)_
5
(3)
6 £
7
8
9
10 O
11 L _

TABLE 3.5b: The location of both k® ana £ in K and £
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For element @ the correspondence between local and global numbering

schemes indicates that the following holds.

The local numbering The corresponding global numbering

u, u-> 1 2 3 u,u+> 2 6 4
LA m' n

(4) (4) (4) + {4) (4) (4)

1 kip K2 k3 2 kyy' kyg kyy

4y (4 (4) (@) (4 (4

2 ka1 Kaa' Ko > 6 kgo  Kge  kgy

(4) (4) (4) {4) (4) (4)

3 k31 K3 ka3 4 kg Ry kyy

.

for the vector f(4) of element @ the correspondence between local and

the global numbering schemes indicates that the following holds.

The local The corresponding global
(4) (4}
1 fl 2 f2
(4) (4)
2 f2 ad 6 f6
(4) {4)
3 f3 4 f4

TABLE 3.5a: The correspeondence between the local and the global
numbering schemes for both coefficient element
matrix and element vector of element number

Hence, when these coefficients are inserted into the expanded matrix K(4),

(4)

and the expanded vector £ , we have



1,

(4)

2.

The location of K

Global -

10

11 L.

1

(4}

(4)
k11

(4)
31

(1)
k1

(4)

The location of £

Global

{(4) 5

O O o~ O

10
1l

TABLE 3.6b: The location of both K

f(4)

f(4)

g4

in K

in £

4)
k13

(4)
*33

(4)
k23

(4)

(4)
22

(4) and £

(

4)

in XK and £
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For element (5 the correspondence between local and global numbering

schemes 1ndicate that the following holds,

The local numbering The corresponding global numbering
u,,u_+1 2 3 v,u >3 6 9
i'"73 m n

+ (5) ,(5) (5) ¥ (5) (5} _(5)
L kg Ky Kz 3 k33 35 Kig

(5) _(5) (5) (5) _(5) _(5)

2 Ry kyp 3 > 6 k63 ¥ee Xoo

{5) ({5} (5) (5) . (5) , (5)

3 f3 K3y kg3 9 ko3 X956 *g99

*

for the vector f(s) of element (@ correspondence between local and

global numbering schemes indicates that the following holds,

The local The corresponding global
1 fis) 3 f;s)
2 féS) + 6 fés)
3 fés) 9 fés)

TABLE 3.7a: The correspondence between the local and the global
numbering schemes for both coefficient element
matrix and element vector of element number

Hence, when these coefficients are inserted into the expanded matrix K

and the expanded vector f(s) we have,

(5

)



1. The location of K

10

11

(5)
kll

(5)
k21

(5)
ka1

(5)

2. The location of £

Global
L)

1
2

(3)_

10
11

TABLE 3.7b: The location of hoth K

f(5)

f(5)

£5)

(5)

in X
4 5 6
(5)
kZL2
(5)
k22
(5)
k32
in_£

(5)

(5)
k13

{(5)
23

(5)
%33

and f(5)

10 11
T
@)
in K and £
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numbering schemes indicate that the following holds

The local numbering The corresponding global numbering
u,, U, >+ 1 2 3 U ,u-~>8 3 9
WL 3 m .0 ( )
(6) (6) (6) (6} 6) 6
L kir ¥z Fp3 8 kgg Xg3 kg
(6) (6) (6)
(6) (6} (6) 3 k k k
2 k21 k22 k23 > 38 33 39
(&) (6) (e) (6) (6) (6)
3 k31 Kz *a3 9 Kgg kg3 Kgg
for the vector f(s) of element & the correspondence between the local

and the glecbal numbering schemes indicates that the following holds

1

The local The corresponding global
(6) (6)
1 f1 8 f8
(6) (6)
2 f2 -+ 3 f3
{6) (6)
3 f3 9 f9

For element number & the correspondence between local and global

TABLE 3.8a The correspondence between the local and the glcbal
nunbering schemes for element both coefficient
matrix and element matrix of element number

(6)

Hence, when these coefficients are inserted into the expanded matrix K

and the expanded vector f(s), we have,




1. The location of K

10

O

11

2. The location of f

Global

(6) _

R ~ O " bW

10
11

TABLE 3.8b:

(6)

in K

(6}
22

(6)

k12
(6)

k32

(6) in £ ,

f(6)

f(G)

g6

L -
The location of both K

(6)

8 9 1o 11
(6) , (6)

ka1 ¥23

(6) {6)
k1 K3

(6) . (6)

k3 k33

and f(s) in K and £
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For element number @ the corresponding local and gleobal numbering

schemes indicate that the following holds

The local numbering The corresponding glebal numbering
UL'UJ > 1 2 3 Um,Un+ 11 8 9
R O e e

Lo e D
JRE ol

{7)

for the vector £ of element @ the correspondence between the local

and the global numbering schemes indicates that the following holds,

The local The corresponding global
1 fi7) 11 fiz)
5 fé?) - 8 fé7)
3 £l” o £

TABLE 3.9a: The correspondence between the local and the global
numbering schemes for both coefficient matrix and
element vector of element number

(7

Hence, when coefficients are inserted into the expanded matrix K

(N

and the expanded vector £ ; we have,




1.

[+ )TN ¥ B N PU IR I

A
—
=

0

~J

[os]

10

11

2.

(7)

The location of K

(7

The location of £ in £,

Global
!
l — —
2
3
(n_4 0
5
6
7
{7)
8 f2
{7)
9 f3
10
(7)
11 i fl i

TABLE 3.9b: The location of both K

(7)

8 9
O

(7} ,.(7)
Kya a3

N (1)
ki X33

(7) (D)
k120 K3
and f(7)

1o 11

(7)
21
(7
a1

%)
11

in K and £




For element number @& » the correspondence between local and global

numbering schemes indicates that the following holds

The local numbering

u,, o~ 1 2 3
L J

v (8) . (8)

1 k k k

k(8) k8

3 k k k

(8)

and for the vector f

(8}
11 12 13

(8)
21 X22 ka3

(8) (8) {8)
31 32 33

The corresponding global numbering

U .U+ 11 9
m n

4
(8) (8) (82)
© ks a1 X 69

8 (8 (8)
I ke ki kg

(8) k(8) k(B)

9 Kgg Kgiy Kog

of element ® s Ccorrespondence between local and

global numbering schemes indicates that the following holds,

The local The corresponding global
(8) (8)
1 f1 6 f6
(8) (8)
2 f2 11 fll
{8) (8)
3 f3 9 f9

TABLE 3.10a: The correspondence between the local and the global
numbering schemes for both coefficient element
matrix and element vector of element number

(8)

Hence, when coefficients are inserted into the expanded matrix K and

the expanded vector f(B)

, we have,
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{(8)

1. The location of K in K
1 2 3 4 5 6 7 8 9 10 11
"’ .
1
2
O
3
4
5
(8) (8) (8)
L@ ° 11 13 *12
7
8
C (8) (8) (8)
9 k31 k13 X33
10
(8) {8) (8)
il k21 *23 k22 |
, 8) ,
2, The location of £ in £,
Global
o
2
3
O
4
5 .
(8)
[ £
f(8) _ 1
7
8
(8)
9 f3
10
(8)
11 __f2 il
) (8) (8) |
TABLE 3.1O0h: The location of both K and f in X and £




For element number (& , the correspondence between local and global

numbering schemes indicates that the following holds,

The local numbering

u,u + 1 2 3

1y

' @ (9 . (9)

L ki1 K2 K3
) . (9) . (9)

2 ka1 Koz Ky
{(9) (2) {9)

3 k31 K3z ka3

and for the vector f(g)

The corresponding global numbering

u,u0~ 2
mn n
¥ (9}
2 k22
(9)
5 k52
(9)
7 k72

5

(9)
ks

(9)
ksg

(9)
ka5

k

k

k

7

(9)
27

(9)
57

(9)
77

of element @ , correspondence between local and

global numbering schemes indicates that the following holds,

The local

(9)
1 fl

(9)
2 £,

(9)
3 f3

TABLE 3.lla: The correspondence between the local and the glcbal
numbering schemes for both coefficient element matrix

The corresponding global

£9

<

£

9

(9)
11

f(9)

and element vector of element number

Hence, when coefficients are inserted into the expanded matrix K "and

the expanded vector ftg), we have,



1. The location of K

1 2
LT
C (9
2 kll
3
4
(9)
HON k21
6
(9)
k31
9
10
11 |

2. The location of £

Global
1!

1

(9)

W W =1 0 bk W

oo
[l o)

TABLE 3.1{9: The location of both K

(9

(9)

f(9)

(9)

f(9)

o

in K

(9)
k12

9)
k22

(9)
k32

in|£ .

(9) O
ko3

()
33

(g)’ and f(g)

11

in K and £

139
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For element . the correspondence between local and glecbal numbering

schemes indicates that the followring helds,

The local numbering The corresponding global numbering

U r Uj-* 1 2 3 Um,Un+6 2 7
R
O
U

and for the element vector f(]'O) of element ; correspondence between

local and glcobal numbering schemes indicates that the following holds,

The local The corresponding global
1 £ ](_10) 6 élo)
9 £ ;10} > - f2(].O)
3 f;J.O) 7 fj(rm)

TABLE 312a: The correspondence between the local and the global
numbering schemes for both coefficient element
matrix and element vector of element number

(10)

Hence, when coefficients are inserted into the expanded matrix K

and the expanded vector £ (10) , we have,




1. The location of K(lO) in K

141

1 2 3 4 5 (<) 7 8 9 10 11
1 [
(10} (10} , (10)
2 k2 ka1 ¥o3
3
4
5
K(10)_ : O
i (10) 10) , (10)
6 k 12 kll k].3
(10} (ro) , (10)
7 ks k3y K33
9
10 O
11 _
2. The location of £ (10) in £,
Global
'l' — -
1
(10)
2 f2
3
4
5
(10)
6 fl
(10)
£3
10 O
11 = .
TABLE 3.12b: The location of both K(]'O) and qu) in X and £
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For the element C:) , the correspondence between local and global

numbering schemes indicates that the following holds,

The local numbering The corresponding global numbering
U,u-> 1 2 3 u.,ug -+ 10 6 7
b I m n
¥ (11) (11) (11) + (1L) (11) (11)
1 ki3 k2 K3 10 X15,10 ¥10,6 F10,7
(11) (11) (11) (11} (1) {11}
2 kap Kag o k3 7 6 kg0 ¥es X7
(11} (11) {11} {(11) (1) (11)
3 k3 kap ka3 7 X500 K6 X7
(11) )
and for the element vector f of element (::), correspondence between

local and global schemes indicates that the following holds,

The local The corresponding global
1 fill) 10 fiél)
2 féll) > 6 f6(11)
3 f;11) 7 f;ll)

TABLE 3,.13a: The correspondence between the local and the global
numbering schemes for both coefficient element
matrix and element vector of element number

s s . 1
Hence, when coefficients are inserted into the expanded matrix K( 1

and the expanded vector f(ll), we have,



1. The locaticon of K

v b W N

10
11

2. The location of £

Global

[ SR VY

1) _

10
11

TABLE 3.13b: The location of both K

in £,

(11)
£,

(11)
£

(11)
£y

{11) k(ll)

10

(11)
ko1

(11)
k3l

(11}
11

in X and £




and for the element(::), the correspondence between local and global

numbering schemes indicates that the following holds,

The local numbering The corresponding global numbering
Ui' UJ+ 1 2 3 Um,Un+ 5 10 7
D a0 s e an
2 0 Ry Ky 7 10 Kgg Fgho Ko
A

(12)

and for the element wvector f , of element (:), correspondence between

local and global schemes indicates that the following helds,

The local The corresponding global
(12) {(12)
1 f1 5 f5
(12) {12)
2 f2 > 10 flO
(12} (12)
3 f3 7 f7

TABLE 3.l4a: The correspondence between the local and the global
numbering schemes for both coefficient element
matrix and element vector of the element number (32)

Hence, when coefficients are inserted into the expanded matrix K(lz)

and the expanded vector f(lz), we have,




l. The location of K

10

11

O

(12)

2. The location of £

TABLE 3.14b: The location of both K

Global

10

11

-

f(12)

{12)
£5

(12)
£

(12)

J

in K

(12)
11

(12)
31

(12)
21

in £,

(12)
13

K (12)

33

(12)
k23

(12)
an

10

(12)
12

k(12)

32

(12)
22

K and f

11
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{e)

After assembling the element characteristic matrices K and the

{e)

element characteristic vectors f , the overall or system equations of
the entire domain can be written as, equation (3.57), i.e.,

KU = £, (3.57)

These equations cannot be solved for U since the matrix K will be
singular and hence its inverse does not exist. However, for a unique
solution of equation (3.57) some boundary or support conditions have

to be applied to the equation (3.57), i.e., at least one and some times
more than one nedal variable must be specified and thus'g.must be
modified to render it non-singular. The required number of specified

nodal variables is dictated by the physics of the problem.

There are a number of ways to apply the boundary conditions to
equation (3.57), and when they are applied, the number of nodal unknowns
and the number of equations to be solved are effectively reduced.
However, it is most convenient to introduce the known nodal variables
in a way that leaves the original number of equations unchanged and

avoids major restructuring of computer storage.

Method 1

To illustrate this method we partition equation (3.57) in the form,

1 %2
, (3.58)

1 X2

where 22 is assumed to be the vector of specified nodal variables, and

Hl is a vector ofwknown nodal variables and Eh will be the vector of

unknown nodal variables.
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Equation (3.58) can be written as,

U =
El 121 + El 2=2 _f.l 4
= =X U .
1.e., 51191 Ei XY, s (3.59)
and T =
Here Eil will not be singular and hence equation (3.59) can be solved

to obtain,

- -l -
Y =5, 5% - (3.61)

Once gi is known, the vector of unknown nodal \.'rar:i.ables‘;f_2 can be found
from equation (3.60). 1In the special case, where all the prescribed

nodal variables are equal to zero, we can delete the rows and columns

correéponding to 22 and state the equations simply as,

.9 =5 - {3.62)

Since all the prescribed nodal degrees of freedom usually do not come
at the end of the vector U, the procedure of method 1 involves an
awkward renumbering scheme. Even when the prescribed nodal variables
are not zero, it can be seen that the rearrangement of equation (3.58)
and the soluticns of equation (3.59) and (3.60) are time consuming and

tend to destroy the bandedness property of the original matrix.

Hence the following equivalent method can be used for incorpeorating

the prescribed boundary conditiens 92.

5 Method 2

Equations (3.59) and (3.60) can be written together as,
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L IPIAY

(2.63)

In actual computations, the process indicated in equations (3.63) can

be performed without reordering the equations implied by the partitioning

as follows:
(1) 1If UJ is prescribed as ﬁj' the characteristic vector b is

modified as

fi = fi-kiJUj, for i=1,2,...,N.

-

(1i) The rows and columns of K corresponding to Uj are made zero

except the diagonal element, which 1s made unity, that is,

kji = kij =0, for i=1,2,...,N

k_ =1
J]

(i11) The prescribed value of UJ is inverted 1in the characteristic

vector as,

This procedure (i} to (ii1) is repeated for all prescribed nodal
variables UJ.

It can be noted that this procedure retains the symmetric property
of the equations and the matrix K can be stored in the band format with
little extra programming effort.

To illustrate this procedure for entering the boundary conditions,

we consider a simple example with only for system equations. Thus,

equation (3.57) expands to the form,




% k2 kg kgl (9] [E]
a1 k)2 kaa Kaap Y2 B2
ka1 %32 Ky kgl (U] T |Es) 360
ka1 K42 k43 K44 U4J £

Suppose that for this system nodal variables U3 and U4 are gspecified as

Wwhen these boundary conditions are inserted, the equations become,

koo ol [l [Eptgaasky ]
Koy Kap O Of Uy [EyTkya357kg 42y

o o 1 o |u" N (3.65)
_© Q 0 1] .04.L N a4 -

This system of eguations unaltered in dimension, 1s now ready to be

solved for all nodal variables.

The Assembly Process

Now we observe that the master matrix of equation (3.55) can be

(1),K(2) (12}

obtained by simply adding the matrices K rees K .
The mathematical statement of this assembly procedure is as follows

K= AR M

where £ is the total number of elements in the assemblage.
The master matrix K of our problem is given in Table (3.14). The

same expansion and summat:ion principle alsc applies for finding the



column vectors,

=

{e)

£= £ ’

0~

e=1

where f(e) is the expanded column vector for element e, and F is the
total number of elements. The master vector f of our problem is given
in Table (3.15).

In our example N=12, but in an actual problem there might be
several hundred elements. Even if the assemblage contains many different
kinds of elements, equation (3.55) still holds and each individual
element matrix 1s expanded (according to the glcbal numbering scheme)

to the dimension of the system matrix, and then these matrices are added.



Global —3 1 2 3 4 5 6 7 8 9 10 11
@ | oW (2) (1) . (2) 7]
Lok R | Ko X1 ki3 tho3
k§1)+k(4l
(1) 3 *K1y @ L (4) (10 . (9 (10}
2 k21 k(9 41O ko3 %3 | k2 Rz *Rar |13 Pees
e [rIpRE
e {2) 4k J
(2) 1 7R22% (2) (3) (3) ., (5) (6) (5) (6
3 k)2 e (50 4. {6) ki3 *kpy ka1 12 ko1 ki3 ko3
o b @ @)@, k§F a3 (3D (4)
31 7732 [732 TU31¢31 732 kﬁ)ﬂ{@) 31 732
(9) (9) (12 (9) ., (12) (12)
3 ka1 kyp gy L23 X3 X2
k(3)+ké4!
() (o] 3 | 3 (@ k3%)+kiz)a (10). (11) () (8 . (11) (8)
6 ko1 *Ri2 12 Koy 13 tRos &y Hif1z Y2 ko3 *Ry3| o1 k12
—_ kll +k22 ST—TI0)
(9) (10} (9)  (12) }‘33 +k33 (1) (12)
7 k31 a3 k3a K3y | (1) (12) k31 %32
33 K34
(6) w6 (ml® (7
8 k12 ki1 22 F13 o3 ko1
5T (6)
(5) . (6) (5) . (8) 6y , (M3 *k33™ (7). (8)
° k31 32 k32 31 K31 32 |17 e (®) K31 k32
33 *K33
(12) (11) (11) (12} ) (11) (12
10 ka1 k2 K13 K3 k11 K12
(8) (N (7) . (8) (7)., (8)
1 ks k12 13 a3 k11 Koo

TABLE 3.l5a: Assembled master matrix K

TIST
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Global
\ 1 -f](_]')+f§2) .

5 fél)+fi4)+fi9)+félo)
3 f{2)+fé3)+f{5)+fés)
4 f§1)+f§2)+f§3)+f§4)
5 fé9)+f£12)

pep (D), (D)

- £ 6 fJ(-3)+f2(4)+f2(5)+f](.8)+f](_10)+f2(11) ;
7 f§9)+f§10) +f;11)+f§12)
8 fi6)+f;7)
9 f§5)+f§6)+f§7)+f§a)
10 f{11)+f§12)
11 :'](_7)+f58) |

TABLE 3.15b: Assembled master vector £

As given in section (3.6.2), the finite element analysis leads
to a system of matrix eguations. After incorporating the boundary
conditions in the assembled system as outlined in the section we obtained

the final matrix equation which can be solved by using one of the methods

described 1in Chapter 2.




CHAPTER FOUR

A GENERAL PROGRAMMING SYSTEM FOR

THE FINITE ELEMENT METHOD




4,1 INTRODUCTION

The general applicability of the finite element method to a wide
variety of different engineering and mathematical fields, makes 1t a
powerful and versatile tocl. In fact, the method has become cne of the

most active research areas for applied mathematicians and engineers.

One of the main reasons for the popularity of the method in different
applications 1s that once a general computer program is written, it can
be used for the solution of many problems simply by changing the ainput

data.

Although applications are many and different, a typical finite
element program consists of a few well defined operations such as:
- The input deseription of the mathematical model
- The generation of the element matrices
~ The assembly of elements to form the Jacobian matrix
- A solution of the resulting linear or nonlinear system of equations
- The calculation of the element characteristics, and the
presentation of the results (post-processor).
Thus, provided a sufficiently general data problem has been defined, the
standard operations need to be programmed only onée and organized as

modules {subprograms) of a programning system or subroutine library.

Such a programming system is not intended to be used by itself to
solve the problems. It should be used as a tool for the programmer in
the develcpment of an executable, special or general purpose program by

organizing the modules or building blocks of a programming system. The



154

subroutines included in the programming system should cover the main
operations associated with the finite element analyses. In addition,
service routines for operations like data transfer between central memory
and peripheral storage, matrix operations, pre- and post-processing, etc.

are necessary modules when developing an executable program.

An executable (or application) program may in the present context he
characterized as follows:

The user has to describe the geometry, element, mesh, boundary
conditions, etc. of the model of the problem in accordance with the input
requirements of the application program, and after the program has
performed the finrte element analysis, the user has to interpret the

results.

Hence a number of computer program packages have been developed for
the solution of a variety of engineering problems. Some of the programs
have been developed in such a general manner (like TWODEPEP) that the
user can use the same program for the solution of problems belonging’£o
different branches of application fields with little modification in the

input data. A summary of the more widely used packages and their

capabilities can be found in NOOR [1981].

Here we will present the programming system TWODEPEP which copes with
all parts of a typical finite element program as listed previously. :As
the success of the "programming system philosophy" depends on the quality
and properties of the programming systems we will list some general
requirements and discuss our experiences with (TWODEPEP), referring to the

listed requirements. Thls experience comes from the development of the

solution to problems in several applications areas.
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4.2 GENERAL INFORMATION OF TWODEPEP

TWODEPEP is a production of IMSL which is a Fortran application
software finite element package for solving a large class of partial
differential equations. New releases of the program are generated at the

rate of about one per year.

TWODEPEP is a general purpose easy to use, finite element program
which solves a large class of elliptic (steady-~state), parabolic (time
dependent), eigenvalue problems, and other problems defined exclusively
by partial differential equations in general two-dimensional regions.
Applications include elasticity, diffusion, heat conduétion, fluid
mechanics, potential energy, time-dependent and time-independent,
Schrodinger equaticns, semi-conductor and shell problems. The program
includes a preprocessor and a graphical output package. The design
_priorities of TWODEPEP are in order: generality, easy to use, storage
efficiency, accuracy and speed. Most of the methods employed are general

and standard proven techniques.
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4.3 PROBLEM DEFINITION OF TWODEPEP

The most general form of the differential equat:ions solved by the

finite element program TWODEPEP is:

Ju 3 3
C1 3¢ “3x “x) T YUy) T H1
(4.1)
av _ 9 2
Ca3t “ax Oy Y3y Oy * F

In a two dimensional region R, where C ,C2 may be constants or a function

1

of (x,y,a,v,t) and cxx'dxy'cyx'cyy

(x,¥,u,v,t,u_,u .vx,vy), with

' Fl and Fz are in general functions of

x Y
u = FB, (s, t) )
v = FBz(s,t) , for s on part of the boundary BRl r (4.2)
and Oxxzx + cxyzy = GBl(s,u,v,t)
cyxzx + oyyly = GBZ(s,u,v,t) J

for s on the other part of the boundary 3R2. zx,zy are the unit outward

normal to the boundary, and,

u uo(x.y)
s for £=T

o ° {4.3)

v vb(x.y)

It is assumed that the problem is self-adjoint, although TWODEPEP can

solve some non-symmetric problems, but with less efficiency and accuracy.

However, TWODEPEP can also solve several simultaneous equations of
the above form, Elliptic (Cl=02=0), and eigenvalue problems can alsoc be
solved. In addition, the case of a single equation on one unknown can be
solved, and the problems with more than two unknowns can also be solved

iteratively, using the program's temporary solution storage capability.




4,4 METHOD OF SOLUTION

We will consider the case of the elliptic problem and describe the
techniques which are used by TWODEPEP, since the methods used to solve
time-dependent, eigenvalue and non-symmetric problems are extensions of

the same techniques used for the elliptic problems.

We seek a solution to the elliptic problems which can be put in the
form that permits a solution to be found by minimizing the equivalent

integral in the arbitrary two dimensional region R

Y

J(u) = ” Eltg,gx,t_zy) dxdy + f E,(u}ds , (4.4)
3R2

where u is a vector function satisfying the boundary condition u=FB € BRl.
Then the problem becomes one of finding a particular u which minimizes
the integral (4.4). -

Then, we must have, for any ¢ satisfying =0, on GRl,

83 m BEl X BEl aEl
B_G'(E"'-Gi) B Z {[f[au. IJ'.x +\_ _ du, iy " B, ¢i]dxdy
&0 i R ix - iy i
BE2
+ J _aui ¢i ds} =0 ' {4.5)

3R2
since the problems solved by TWODEPEP are in general two dimensional

preblems, and the vector u is normally a one or two component vector.

Thus m=1 or 2.

Let aIE:l - g
auix (ix)
BEl -y
du,  (iy)



du,
i

Now equation (4.5) can be written in the following form,

m

! { [ f["ix“’(ix) Oty * P Iy +[ GBi¢ids} =0
i1
R R,

Applying Green's theorem to equation (4.7) leads to,

m

izl{” O myxls ¥ Tuapryts T Fedy XA f (B, = %y ™
R 3R

2

Uiyzy)¢i}ds

This leads to the general form of the elliptic equations,

(]

u _,u ) (g_,gx.t_xy) +F (uu ru)

p:]
% c‘(J‘.x) (P‘-'-—x = * Ay c;(.‘i.}[)

in R, and,

u, = FBl on BRl

U(ix)!'x + U(iy)zy = GBi on 3R2 .

The finite element method minimizes the integral (4.1} over a class of

piecewise polynomials. The idea is to choose a finite number of trial

functions ¢1,¢2,...,¢N, and among all their linear combinations Z ai¢i

1
to find the one which is the minimum, the unknown a, are determined not

i
by the differential equation, but by a system of N discrete algebraic
equations which the computer can handle. Therefore, the goal is to
choose trial functions ¢i which are convenient enough for the given

integral (4.1) to be computed and minimized, and at the same time general

enough to approximate closely the unknown u.
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TWODEPEP starts by a subdivision of the given region into smaller

pieces which are triangles with standard six-node with a quadratic
basis function, and with one edge curved when adjacent to a curved
boundary according to the isoparametric method. It is also optional to
use 1o-point cubic (3rd degree) or the 15-points quartic (4th degree)

isoparametric triangular elements for greater accuracy.

Each time a triangle is partitioned, it 1s divided by a line from
the midpoint of its longest side to the opposite vertex. If this side
is not on the boundary, the triangle which shares that side must also be

divided to avoid non-conformng elements with discontinuous basis functions,

An initial triangulation with sufficient triangles to define the
region is supplied by the user, then the refinement and grading of this
triangulation is guided by a user supplied function D3EST which should be
largest where the final triangulation is to be most dense. The Cuthill-
Mckee algorithm is used to initially number the nodes, and a special
bandwidth reduction algorithm is used to decrease the bandwidth of the

Jacebian matrix even further.

In 2ll cases the algebraic system is solved by Newton's method. One
iteration per time step 1s done for parabolic problemg and one iteration
is sufficient for linear elliptic problems. The linear system which must
be solved to do an iteration of Newton's method is solved directly by
block Gaussian elimination, without row interchanges since pivoting is

unnecessary when the matrix is positive definite.
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Symmetry is also taken advantage of in the elimination process if
it is present then the storage and computational work are halved. If the
Jacobian matrix is too large to keep in core, the frontal method is used
to efficiently organize its storage out of core. For time-dependent
problems, the right hand side of equation (4.9) is replaced by C Uy, s

and initial conditions u;=u,. , are given, then the resulting system of

equations (4.8), after making the cbvious change to account for the extra

term, becomes a system of ordinary differential equations, and the unknown

coefficients are now functions of t. The implicit or Crank-Nicolson method

is used to discretize time steps, and a Richardson extrapolation may also
be done to increase the order of convergence in a manner similar to that

used to control the mesh grading, a user supplied function of t controls

the time step variation. The Newton iteration is handled in the same

manner as for elliptic problems.

The eigenvalue problem cbtained by adding Apiu to the left hand side

i
of equation (4.9), is solved for the smallest eigenvalue by the inverse

power method.

TWODEPEP can also solve non-symmetric problems of the form (4.9)
solving the corresponding non-symmetric system directly by block Gaussian

elimination.

TWODEPEP was basically designed for a maximum of two partial
differential equations. It is assumed that, in applications, systems of
several equations can often be divided into sets similar to (4.9), of one

or two unknowns, with strong coupling within each set but weak coupling
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between sets. Under this assumption, a system of several equations can
be handled by solving the different sets alternately, substituting the

latest calculated values for the unknowns corresponding to the other sets.




4.5 SUMMARY OF THE SPECIAL FEATURES OF TWODEPEP

TWODEPEP is a general purpose finite element program which solves

a large class of partial differential equations of the form (4.l1).

TWODEPEP has a preprocessor program which allows the user to

write the problem definition in a simple and readable format.

Hence, nearly all the Fortran programming involved can be
eliminated. The preprocessor also controls the dimension sizes
so that only storage necessary for that particular prcblem is

utilized.

TWCDEPEP uses a standard quadratic element, and optimal cubic and

quartic isoparametric triangular elements for more higher accuracy.

Solves up to nine simultaneous equations per set.

Drawsg a printer plot of the vertices and centres of triangles in

the final triangulation.

Provides automatic and accurate calculation of the user specified

function and/or its derivatives.

Provides a portable 3-dimensional graphical output program which

plots scalar, vector and stress fields.
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4.6 INPUT SUMMARIES

The TWODEPEP has a prefrocessor Fortran program which reads the user
input describing the problem in a format designed to minimize user effort,
and then outputs some problem-dependent subprograms which must then be
compiled and executed with the problem-independent subprograms. To
illustrate the simplicity of the input format, we will list below all
information necessary to construct the TWODEPEP input data set for the
problem which is similar to the two dimensional elliptic Poisson's

problem.

Problem

Solve the two dimensional problem,

d 9 d ]
ALY * 3oIAYIGI] + Blx,y)u + Clx,y) =0 €R,

with,
u = FB, (s) € 9R
1 1 (4.10)
Ju
n - GBl(s,u) 3 3R2

The TWODEPEP input for this problem is now given:

The boundary of the region R is divided into distinct arcs, each of
which possesses smooth boundary conditions. Thus at every point where the
boundary conditions have a discontinuity or corner point, a different
boundary condition is defined, a new boundary arc must begin. Each arc
is given a distinct identifying integer I, must be negative i1f u is given
on the boundary arc, and must be positive if the normal derivative of u

is given. Each curved arc 1s given by a parameter s, varying from O to 1;

the orientation of the arc being unimportant.
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The user creates an initial triangulation of R with only enough
triangles to define the region which has the following properties:

1. Each point where two of the boundary arcs meet is included as a
vertex in the triangulation.

2. HNo vertex of any triangulation touches ancther in a point which is
not a vertex of the second triangle {(1.e. the triangulation is
"conforming").

3. No triangle may have all three vertices on the boundary.

4, Small angles should be avoided wherever possible.

The input data set consists of three parts, as follows:

A. A single line giving the values of certain variables which must
be read in integer format.

B. A group of records defining the wvalues of wvariables and functions,
boundary conditions, initial/triangulation and solution method.

C. Functions which are too complicated to define in part B, a user-
supplied Fortran function subprogram may be defined at the end
of the input preprocessor.

The first line contains 3 integers NEQ, NTF, NDIM in free format at

least one blank between numbers, where

NEQ= number of simultanecus PDE's being solved
NTF= number of triangles desired in the final triangulation
NDIM= storage reserved for the Jacobian matrix. Should be about:

(1) 12 x 21/(NTF)3 s 1f only in-core storage to be used
{(2) 20 %X NTF ¢ if out-of-core storage is to be used.
If NDIM is input as 1 or 2, it will default to the first or the second

formula respectively.
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Fach of the following lines has a function or variable name

beginning in column 1.
defined using Fortran syntax.
must be defined or defaulted.

the lines is unimportant.

In columns 9-72 the function or variable is

All of the functions or variables below

Except as expressly noted, the order of

If **** js put in columns 1l-4, columns 5~72 may contain comments.

If any function definitions are too long to fit into a single

line, Fortran functions may be called jin their definition. These functions

can be defined after all other input by writing the functions subprograms

following a line with ADD in columns 1-4. The last line in the input

should have END in columns 1l-4.

NAME

1+
XX

o]
Xy

Fl

D3EST

5B A

YA

MEANTING
Alx,y)*U,
A(x.y)*uy
B(x,y) *U+C(x,Yy)

TWODEPEP tries to distribute D3EST(X,y)
xh(j} **3 evenly over the fin;l triangulation,
where h(3) is the diameter of triangle j. The
user normally will simply make D3EST largest
where he wants the triangulation to be most
dense. The triangulation may be plotted to
see if it is graded properly.

The solution will be output at the points

of the grid:

X

L}

A¥ + i*mx , i=0,...,NX

Y

YA + j*HY , j=O,...,NY



PLOT

Cubics

Quartics

*khw
de e ek

xknxk
*kkdk
Jede ke N
*dkk
hki
*kdW
% vk
o i e ke
xkkdk

*hkk
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Here XA=minimum value of x in R, ete. If output

is desired at an arbitrary sequence of points

(XA (M) ,YA (M) ,M=1...(NX+1) *(NY+l)), then HX=HY=0

and XA and YA are defined as functions of M.

OCutput logical unit number., 6=printer, 8,9=disk
files for postprocessing.

If PLOT=1, printer plots of the initial triangulation
and of the centers of the triangles in the final
triangulation will be generated, provided NDIM.GE.300.
if cubic=1l or gquartic=l, cubic or quartic isoparametric
elements will be used. They are of higher order

accuracy than the default gquadratic element.

BOUNDARY FUNCTIONS

For each boundary arc (except those on which all
boundary functions are defaulted) there is a line
with ARC= in columns 1-4 immediately followed
{within the next 12 columns) by the arc number.
Immediately following this line the appropraiate
boundary functions (X,Y¥,FBl,GBl) for that arc are
defined. On any arc the functions FBl, GBl may be
described as functions of X and ¥. On curved arcs
they may alternatively be described as functions
of the arc parameters,

line (X(S),¥(S)).(G.LE.5.LE.1l) are the parametric

equations for arc number I {curved arc only).



FB1(S,X,Y) on arc number I (I negative)
GBl1(S,X,¥Y,U) on boundary arc number I (I

positive)

Initial Triangulation Arrays

The arrays VXY, IABC, I defining the initial tri-
angulation are defined by free format lists (at
least one comma or blank separating entries). If
more than one line is needed, the list can be
continued on the immediate followaing lines if the
array name 1s repeated on the continuation laines.
vX(1),vY(1),vx(2),v¥(2),...,VX(NV) ,VY¥(NV) where
vX(I) ,V¥(I) are the coordinates of vertex number I.
The vertices may be listed in any numbers referred
to in IARC.

1a(1),18(1),...,IA(NT) ,IB(NT) ,IC(NT) where TA({X),IB(K),
IC(K) are the numbers {(as listed in VXY of the
vertices A,B,C of triangle k). A,B,C must be order
counter-clockwise and such that C is not on the
boundary.

I(1),1(2),...,I{NT}, where I(K)} 1s the identifying

integer of the boundary arc cut off by the base, AB,

of triangle k. I(k)=0 if none.
SYMMETRY 1, for thais application

Since the following two matrices are symmetric,
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g /u g Jua g Jv g /v o /u g /v
XX X X ¥ XX X xX Y XX xAX
6 /u o /u g /v o /v o /u g /v
Xy X Xy ¥ Xy Y Xy Xy
¢ Ju g /u g /v o /v g /ua o /v
vX X ¥X ¥X X ¥vx' 'y ¥X v
o /u / g /v g /v g /u o [v
vy x Iyy' Yy vww x vy vy vy
-Fl/ux —Fl/uy -Fl/vx -Fl/v? -Fl/u —Fllv
-Fz/ux -Fz/uy -Fz/vx -Fz/vy —F2/u -F2/v
and
GBl/u GBl/v
Gleu GB2/v

If the problem 18 symmetric, the elements above the diagonal in these
two matrices need not be defined, and the storage required for the
Jaccbian will be cut in half. A warning message should be issued if
SYMMETRY is set to 1 when the problem is non-symmetric on output, the

values of u and (9,0 )=(A*U ,A*U )} will be printed.
xx' xy x y



4.7 REQUIREMENTS OF THE 2DEPEP PROGRAMMING SYSTEM

1
f

The requirements of a general programming system used as a toocl by
the programmer for special or general purpose finite element analysis
programs will of course depend on the type of the problem to be solved

and the application of the system.

However, ideally a general programming system for special or general
purpose finite element analysis programs should be:

1. Versatile {machine independent)

2. General

3. Capable of handling any reasonable prcblem size

4. Efficient

5. Relaiable

6. Easy to use and maintain

7. Easy to modify and extend (open-ended)
We shall here refer to this list while discussing the experience gained

with the programming system (TWODEPEP).

1. VERSATILITY

Although most of the finite element programs are wraitten in standard
Fortran IV language, programs developed on one computer system may not
be entirely compatible with other systems due to the difference in I/0Q
facilities operating system, precision of the machine, i.e. VAX, PRIME,

CDC or many other machines.
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2. GENERALITY

This criterion was given a high priority during the development of
TWODEPEP. It proved to be a well equipped tool for the advanced
programmer for special or general purpose finite element analysis programs

during the course of this work.

No restrictions have been found on the number or type cof elements.
The completely dynamic manner in which the data is stored on peripheral

storage also adds to the generalaity and flexibility of the system.

b

The TWODEPEP package offers a very large range of applications in
linear and non-linear analysis, with effective methods of solution. The
programs contain state-of-art finite element procedures together with
the implementation of nonlinear models in iteration procedures with

accuracy and cost effectiveness,

The programs can be employed effectively in linear analysis, and
then, with only a few input changes; several linear elliptic problems
which are to be solved on the same triangulation may be sclved in one

run, and also in many nonlinear analysis.,

However, it is very dirfficult to satisfy all the requirements of
generality saimultaneously and there are notable limitations in using
TWODEPEP, such as,

(i) The partial differential egquations solved by TWODEPEP should
be restricted to this form,

du d ]

du _ 3 3
Cz(x,y,u,v,t)dt = ax(cyx) + ay(oyy) + F2



0 ,0 , F. and F. are functions of
Xy ¥yx vy 1 2

where ¢ ,0
XX

Vv Lt).

{(x,v,u,v,u ,v ,u
l'Ylllxl‘xlyy

There are many different linear and nonlinear, variable

coefficient problems which do not satisfy these above forms.

(ii) Restriction on the boundary conditions. These should be of
the form,
u = FBl(S,t) € R,
v = FBz(s,t)
and
6 % + g & =GB, (s,u,v,t)
XX X xy'y 1 € mg
nyzx + Uyyly = GBZ(s,u,v,t)
and
u =g
v o= v,

i.e. TWODEPEP does not solve problems with boundéry conditions
of different types, all equations must have boundary conditions
of the same type on each boundary arc, except for very special
cases only. This is indeed a very weak property of TWODEPEP
in handling different boundary conditions.

(iii) Round-off error appears to be present in the solution of some

problems, which may be diminished with some experience.

3. PROBLEM SIZE

In princaiple, the programming system TWODEPEP does not impose any
limitation on the size of the problem (i.e. number of the unknowns). We
can solve any cne or two dimensional problem and up to nine equations per
set with a maximum of five sets being permitted, the only real limitations

with the work on PRIME has proved to be the availability of computing




172

time and the peripheral storage capacity.

Finally, TWODEPEP has the capability to make a realistic analysas

of really large problems.

4. EFFICIENCY

It 1s difficult to satisfy simultaneously the requirements of both
generality and efficiency. Normally, in the case of conflict generality
has been given the higher pricrity in the programming systems discussed
here. The numerical operations are, however performed Efficiently. AllL

key operations are carried out in ‘the Fortran language.

In general, for all types of problems that fit the programming
system TWODEPEP format and its boundary conditions, TWODEPEP is very
efficient. While estimating efficiency of an application program the
cost of man hours 1s very often neglected. However, in practical
applications of the finite element method, this may be  decisive for the
total cost of the project. Using all the features available in the
TWODEPEP programming system, a program can be built to minimize the

regquirements in man-time for providing input, output data.

5. RELIABILITY

The programming systems {TWODEPEP) consists of a number of well-
defined modules (subroutines and functions) each of which has been
thoroughly tested, resulting in systems which have proved to be extremely

reliable.

The main features of TWODEPEP have been used in application programs,
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and the number of program errors which have been found in TWODEPEP over
a period of a year is 1.

The detection of an error is always accompanied by a printed

T

f ]
message which will help to pinpoint the error. Errors in the hardware
i

¥y

or operating system are, of course, not the responsibility of a programming

system.

Another aspect of reliability is the numerical precision and the
accuracy of the results which may be checked by computing the residuals

or error nerm. Double precision 1s also available.

6. MODIFICATIONS AND EXTENSIONS

A general programming system will never, due to its very nature,
be complete. New applications may call for modifications and the
applicab1lity will depend on the success with which the weaknesses of

the system may be improved.

The programming systems (TWODEPEP) are designed to be open-ended,
and (up to now) modifications and extensions have proved to be easily

accommodated and incorporated.




4.8 GENERALIZED PRE- AND POST-PROCESSORS FOR FINITE ELEMENT

PROGRAMS

A crucial factor in all finite element analysis is the large number
of input data required and the numerous output results obtained. For
nearly all finite element programs in use nowadays a detailed description
of the problem to be solved must be fed into the computer in an unfavourable
manner to the user which easily promotes errors. Therefore, many pre-
processors are designed which allow a short and compact description of the
problem to be automatically transformed into the input data. Similarly,

a post-processor transforms the output data into graphs, diagrams, tables
etc. Therefore, the purpose of a general preprocessor is to:

l. Mimnimize the amount of input data to be specified by the user

2. Ensure reliability of input data

3. Reduce the total elapsed time for the analysis.

Correspondingly, the post-processing programs should give a simple
means to present, interpret and analyse the results. For a typical
analysis with an existing program it is reasonable to believe that about
40% of the costs are spent in the model definition and input ;peciflcation

phase, 30% is related to the computer costs for solving the problem, and

30% is used in the presentation and interpretation of analysing the results.

Future trends will lead to steadily decreasing price/performance of
computers and increasing man-power costs. It is obviously then good
economy to develop tools which reduce the man-power spent on the analysis.
It is believed that the input specification task is the most attractive

to attack because this is where most of the tedious work time is spent.
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The develcpment of efficient pre- and post-processors is not only
a matter of good economy, but it compensates for the predicted shortage

of development work by increasing the research capability.

(i) PREPROCESSORS

The need for efficient pre-processors including auntomatic input data
generators has been realized from the beginning of the development of

finite element programs.

Considerable efforts have been made in developing batch pre-processors
which generate all necessary input data from a minimum ¢f input. Input
devices for the transfer of previously calculated data (from other
programs) are also available. Automatic checking of input data, print
and plot of generated data (e.g. geometry and element mesh). For huge
and complex problems, 1t 1s necessary to have batch and interactive
specifications, probably the most efficient use of interactive graphic
pré-processors is for the editing of data. In designing such a pre-
processor the following requirements are essential and will guide the
development of general interactive and batch preprocessors.

1. The preprocessors must be easy to learn and use

2. It must offer possibilities of control

3. The preprocessors should be able to work both in batch mode

and in interactive mode handling input Qdata from the keyboard
and graphic input devices. The selection of a mede should be
controlled by a special command in the input system.

4. Backup generation. If a fatal error is committed during the

operation of the preogram, the informatiocn generated up to a



certain stage should be available‘for a capability.

5. The preprocessor should also contain effective 3 dimensional
geometry generators.
6. The interactive routines communicating with the user should

supply the user with sufficient instructions on request.

One of the main points in the design of finite element programs is
to have a standardization of the data problem between the preprocessor
and the analysis programs so that the preprocessor can be used for
different types of analysis and even be linked to different finite
element programs, by this procedure we are atming at a standardization

of the input data to many commonly used finite element programs.

This is very attractive and important, because the user need only be
familiar with one input system from which he can have access to different
analysis programs. This is perhaps the most difficult requirement to
gsatisfy. However the idea has been brought forth by finite element software

developers worldwide.

As an example of a preprocessor which has been linked to different
analysis programs is FEMGEN, however it seems that none of the available

systems offer sufficient generality.

We can define now an ideal preprocessor as one that allows the user
to generate the necessary information with the least effort for as wide
a range of problems as possible. The term "user friendly" has been used

to describe a preprocessor that can be operated with relative ease.
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(1i) POSTPROCESSORS

The aim of the postprocessors described here is to provide users
of finite element programs with tools for selection and presentation of
analysis and results (velocity, displacements, etc.) in the form of
printed tables, and drawings, interactive graphics, etec.
It may be suitable to distinguish between:
1. General postprocessors, i.e. programs which are applicable for
many types of problems and for different applications.
2. Application dependent postprcoccessors, i.e. programs which are
unique to a specific problem or specific research.
The general postprocessors should have the properties of:
1. Presentation of the computed quantities or field variables in the
form of, )
(a) Diagrams, isoplots, etc.
{b) Selected printout, e.g. velocity above a given level,
displacements at certain nodes, etc.
(c) Scaling and combination of analysis from different cases
and alternative analysis
According to the above requirements, there are many programs which perform,
print and plot an analysis of the results (as an example PRE for the

TWODEPEP system and NV340 is a general postprocessor to SESAM.69).

In the next generation of general postprocessors it will be possible
to select and present analysis results also from interactive graphic
terminals. This gives an efficient means of scanning through the analysis

results before scaling data for permanent print and plots. Thus, it wall
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be possible for the researchers to directly access and present analysis
results, and hence the corresponding data base may serve as an easily

accessible permanent data storage.

Normally it will be advantageous to perform pre- and post-processing
on minicomputers, and hence the easy transfer of data between different
computers should be provided. Requirement of the postprocessors may be
application dependent and may also be unique to specific projects. For
this reason special purpose post-processors are frequently developed

either separately or by modification of the general programs.

In order to facilitate the development of special post-processors, a
thorough documentation of the data analysis and special programs to

handle transfer of this data are required.

An interesting problem arises in displaying results from non-linear
or time dependent problems which have variations with respect to a given
parameter (time, etc.). The easiest and most widely used method 1s to
present the results by a series of separate or "frozen" pictures or
graphs corresponding to the step in the solution process. An alternative
procedure is to present the results by movies cbtained by animation of
the results computed at different instants of time. This method which has
been demonstrated by CHRISTIANSEN [1981] is very instructive. It will be
neither desirable nor possible for one designer to develop all the software

of pre~ and post-processors that are needed in an institution.

For this reason co~operation with other institutions and companies is
needed in order to share the costs of development and try to implement

existing software into the system.




CHAPTER FIVE

THE FINITE ELEMENT METHOD FOR

FREE SURFACE PROBLEMS
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5.1 INTRODUCTION

The application of the finite element method to the solution of
some partial different:ial equations in a region characterised by flows
having a boundary which is not known (free surface) a priori has grown
very rapidly and become an important area for many researchers and

scientists.

Wakes constitute an example of such problems. These phencmena are
produced in reality by placing an obstacle such as a plate in a moving
stream so that the flow separates from the obstacle along the separating
streamlines, the fluid between these streamlines constitutes the wake.

In high speed motion of a liquid, the wake may become gaseous and thus
form a cavity. Jets offer another example in which a free surface is
present, a jet may be of water in air, water in water, etc. Porous media
flows from another category of physical problems in which there is a free

surface, seepage under or through dams, moisture flow through saturated

-

or partially saturated soils and flows to and from drains, ditches or wells.

Conductive heat transfer with change ¢f phase, evaporation of liquid
from porous media or precipitation of products in chemical solutions

give rise to a class of unsteady free surface (interface) problems.

Open channel flows offer a rich source of real examples of steady-
free surface problems with a strong nonlinearity and complicated

singularities,

A large number of different flow situations can be considered in

open channels. Typical examples are:
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flows under a sluice gate, flows over a weir, flows over a
spillway, flows over a step and other bed configuration.
Many effects on the free surface of the flow such as surface tension and
gravity give rise to different approximationg to the real problem. The
governing differential eguations represents an approximation of the

phencmena of interest,

In the case of open channel flows it i1s reasonable to assume that
the effects of gravity are predominant over the effects of surface tension.
Moreover, the flow may be assumed to be inviscid, incomp;essible and
1rrotational. Such approximations represent effects of non-uniqueness

and limiting cases of steady flows and standing waves.

Analytical treatment of the governing differential equations 1is
possible in some situations but at the expense of further simplification.
The hodograph transformation (see OCKENDON and TAYLER [1979])), 1is a good
technique that can be used when dealing with two-dimensional potential
flows with a free surface. An illustration of this analytical approach

is provided by BENJAMIN([1956] who computed the flow under a sluice gate.

The numerical approach has become more widely used technique for
solving free surface broblems in general, one of the advantages over
analytical methods is that it can be applied to more general physical

problens.

One of the first reported successful attempts to solve some open
channel problems numerically is due to SOUTHWELL and VAISEY [1946],

where they used the finite difference relaxation technique to solve




problems of flow under a sluice gate, jets, stationary waves of finite

amplitude, flows under a planing surface and wakes, The great merit of
the work by Scuthwell and Vaisey is that they treat the full potential
problem with free surface, However, the technique used is subject to
problems of accuracy for curvilinear field geometries which is precisely

an important feature of free surface problems.

In any numerical approach for the analysis of the free surface
problems the exact position of the free surface is not known a priori
and its location forms part of the analysis. We note here the difference
between free and moving boundary problems: a free surface problem is a
part of a steady state problem and does not in fact move at all.
Generally, extra conditions are specified on a free boundary and this
enables its free position to be located, a moving boundary problem is
generally a time-dependent problem and an essentlal feature of these
problems is the presence of a sharp boundary surface that moves through
the medium, the mathematical formulation of this problem arises in the

study of heat flow in a medium that undergoes a phase change,

As a result the finite element method has become a very popular

numerical technique in fluid mechanics.

A description of the method is provided in many text books such as

ZIENKIEWICZ [1971], and MITCHELL and WAIT [1977]. When the flow 1s known
then the finite element method is directly and easily applicable to solve
potential flow problems. However, a major problem is posed when the flow

has a free surface.




182

The variational principles in the finite element method has
become of great importance MITCHELL [1972], their principles governing
a variety of free surface flows are presented by many researchers;
O'CARROLL [1978] who discusses the problem of choosing the appropriate
functional associated with the stream function and velocity potential.
The fundamental features of the introduced variational principle is that

they govern both the internal flow and the free surface position problems.

The method for locating the free surface positions is acknowledged
to be the major difficulty in these free surface problems and we list
below some of the difficulties which arise in solving free surface
problems:

1. a varying domain - where the position of the free surface is

not known a priori.

2. the occurrance of non-linear boundary conditions, and

3. a central region where the critical depth 1s not known.

The prediction of the position of the free surface can be carried
out numerically, which was first done in finite difference by SOQUTHWELL
and VAISEY [1946]. If the finite elements are used to model the flow,
three main approaches can be used:

1) To extend the finite element mesh from the bed to the free
surface flow, and as iterations are performed, to move the
mesh to follow the free surface and satisfy the total energy
criteria.

2) To fix the element mesh and to vary the element properties, so

as to model the position of the free surface. This method has



only been used for seepage and other similar flows, in which

the kinetic energy of the flow is small.

c} To invert the problem using co-ordinates as the dependent
variables and using the stream function and velocity potential
as independent variables, this method has only been applied using
relaxation techniques, not finite elements. Although it appears
to be very promising, this method was first suggested in the
context of free surface problems by MARKLAND [1965] who applied
it to the free flow over an overfall, using a relaxation
technique. It was subsequently applied to largé amplitude waves

by WILLIAMS [1974],

Another important method is that deviced by VAROGLU and FINN (19781,
which is a semi-inverse method and thus falls between methods 1 and 3 above.
Method 1 and the Varoglu and Finn method have only been applied to date
using simple linear triangle elements. Our method is based on strategy
1 and by using quadratic and quartic triangular elements with a dense
area of elements near the free surface flow. We will discuss in detail

the problem later in this chapter.

A typical problem involving the percolation of a fluid through
porous material is illustrated in Figure (5.1), typically an earth or
sand construction in which part of the porous medium is wet and the
remainder is dry and we have to calculate the position of the dividing

line between the wet and dry (the free surface).
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D u=y

FIGURE 5.1: Water Seepage through an earth dam

Normally the problem involving Laplace's equation

2
Vu=0 inR,

as well asg the following boundary conditions:

on AB u = Hi
BC .a_li=0
oy
CD u = hi
DE u =y
au -
and AE free surface 5;-= o .

One problem of this type has become a standard test problem in the field

of free surface solutions. It is usually known as the classical dam

problem and is i1llustrated in Figure (5.1).
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This problem assumed a dramatic new importance when it was shown
by Biaocchi [1972] that the region of solution can be extended to the
complete rectangle ABCF, i.e. we solve a modified problem that does not
involve the position of the free surface explicitly and then locate the
free boundary from this extended solution. The original purpose of
Biaocchi's work was to provide a proof of the existence and uniqueness
of the solution to the original mathematical problem. However, such a
formulation 1s very convenient for a numerical solution and has been
shown to be successful on this limited standard problem (see AITCHISON
[;977]). In general, we have the free surface problem sﬁown in Figure
(5.2), where the differential equation,

Du = O in the region R , (5.1)
and subject to the condition,

Iu = 0 on BRl, the boundary of R, (5.2)
and the free boundary 3R in BRl:

Cu=0, (5.3)

where D,L,C are a set of differential operators,

9R_ : Lu=0

FIGURE 5.2: The general free boundary problem
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The problem is to determine the shape and location of the free boundary AC.

The trial free boundary method which involves the solution of a
sequence of problems with different fixed boundaries is applicable to all
free boundary surface problems and requires no preliminary analysis,
although some analysis may often be desirable to make a good initial guess

at the position of the free boundary.

Some conclusions can be drawn in regard to using the trial free

problem by the finite element technigque. These include:

- 1f the differential operator D is linear in equafion (5.1}, then
the computational effort is to solve only a linear set of equatiocns,
while if D is Aot linear, then it leads to a nonlinear system of
equations, which can be solved iteratively by using one of the
methods discussed in Chapter 2,

- general or special purpose packages can often be used to solve
the differential equations, where special techniques are not needed.

- with the very rapid growth of the finite elemen; method, it 1is
easier to implement the method than i1t was when finite differences
were the only common methed of solution.

- a characteristic of free boundary problems is that they generally
require the differential equation to be solved on a region with
normally a curved free surface. This irregular shaped boundary
can be approximated by using elements with straight sides or
matched exactly using element curved boundaries. However the
finite element method is not limited to regular shapes with
easily defined boundaries, whereas programming this with the

finite differences may be more difficult.



187

- the successful application of the trial free boundary method,
over a large number of free surface problems has perhaps tended
to discourage work on other free boundary methods, and this in
turn means that there is a limited work on other methods, with
which to compare the results which we obtain.

— despite its many applications, there is remarkably little
thecretical understanding of why 1t works and how it is affected
by different boundary conditions and different problems.

There are, of course, certain disadvantages in the use of the trial free
boundary method, such as: '

- The solution processes involve the computations of a sequence of
solutions {u™® }, kx=1,2,..., for different fixed boundaries which
requires a large amount of computer time and storage.

- It seems to be that there is no fixed rules which ensure
convergence since generally speaking different techniques are
needed for different problems. Often it is not clear which of
the available conditions to use for solving the differential
equation (i.e. Lu=0, or Cu=0).

= It is difficult to obtain high accuracy, and hard to estimate

{k)

the error in u and on SR(k), particularly since at each stage

(k) '

we only find an approximation u to u. In some problems the
shape of the free boundary is very sensitive to small errors in
the condition Cu=0, and so it is difficult to achieve high

accuracy near points of separation.

Alternative methods for solving free boundary problems have been

devised such as the third approach described at the beginning of this
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chapter. Aitchison, Baiochi used a method which avoided the outer
iteration to find the position of the free boundary. The problem is
then reformulated as a quadratic minimization problem on a fixed reqion,
and it works well, but it is only used on porous flow problems, which

are not easily applicable to more general problems.

Viscous flow problems are particularly difficult to solve, and for

this case only the trial free boundary method is available at present.
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5.2 FINITE ELEMENT SOLUTION OF SLUICE GATE FLOW

The first to consider the influence of gravity on flows under a
sluice gate appears to have been PAJER [1937}; he assumed that, while a
circle in the hodograph plane corresponded to the limiting case of zero
gravity, an ellipse could be used to replace the circle when gravity is
present. This fixed the shape of the free streamline, but the boundary
condition of constant pressure was not verified. The resulting streamline

was correct at the end points, and nearly correct at intermediate points.

An improvement of Pajer's method was devised by BENJAMIN [1956]. He
assumed the shape of the hodograph as the arc of an ellipse to a region
on the streamline where the solution essentially matched that of a solitary
wave based on the downstream Froude number. The boundary condition of

constant pressure was also not verified for this result either.

Infinite series were used by PERRY [1957] for improving the hodograph
method to include gravity. An inverse hodograph of arbitrary shape was
mapped onto a ¢ircle. By increasing the number of terms in the series,

a mapping of the free streamline was made to satisfy the constant pressure
condition at an increasing number of points. Changing the number of

terms in the series changes the values of the constants, and the method
was dropped in favour of one treating flows with gravity as a perturbation
of the flow without gravity. The resulting shape of the free streamline

in the hodograph plane was essentially that of a shifted circle.

The contraction coefficient was found to be theoretically related to

the total head, H, and the gate opening, b, by,
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0.0170

C_ = 0.6110 - ===, (5.4)
c H
5 -1

All the preceding solutions assume an infinite reservoir with no free-

surface upstream from the gate, The effect of the upstream free surface

was 1included by Southwell and Vaisey. They solved Laplace's equation for

a sluice gate by substituting a finite Qifference equation for the

partial differential equation and applying relaxation procedures. For a

gate opening to total head ratio of approximately 0.53, the only configuration

reported, the downstream depth was 0.608 of the gate opening.

~

T.S. Strikoff proposed a general method for solving gravity flows
and applied it to the sharp-crested weir. An integral equation resulted,
which was then scolved by a numerical, iterative procedure. The method 1s
adaptable to other rapidly varied open-channel flows in which the
boundaries are horizontal and vertical. The formulation of a boundary-
value problem for the sluice gate is based on this method. J.A. MCCORQUODALE
[1971], presents a finite element procedure for computing the hydraulic
characteristics of sluice gates with two-dimensional irrotaticonal gravity

flow.

PROBLEM FORMULATION

This section presents a numerical procedure for computing the hydraulic
characteristics of a sluice gate with two dimensional irrotational gravity
flow. The procedure for solving free surface potential flow problems
involves solving Laplace's equation as usual plus satisfying the conditaons
that the velocity normal to the free surface be zero and the pressure

along the free surface be constant.
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The method used to locate the free surface is to select a trial
free surface shape, then solve the Laplace equation and calculate the

velocity components along the assumed free surface profile.

From the solution obtained the pressure condition is checked at

each surface node by means of the equation,
1 %2, 8y 2 .
29 [(3x) + (ay) l]+y=E,

which is then used to correct the surface position in order to obtain a
new demain for solving the problem, until the prescribed error criterion

is satisfied.

Consader the analysis of a sluice gate flow performed as follows.
The formulation is in terms of the stream function §, velocities u and v

can be obtained from the stream function ¢ by

- . - 9
u 3Y ’ v 3% - (5.5)
The pressure energy equation is given by, ‘

=g oL 32 892
p=E 29 [(ax) +(ay)] Y {5.6)

where E 1s the total energy, and y is equal to the potential energy.
AY

V=0 . — - ——_ line of total head

A____—_A—_?_
———— B

x=k y-k
v 3R:(-—!)2+(——-- 2 =0
_ n H ! s
x—xo A
— C free surface
PN V=0
b : D
—_— L! » X
F P=0 o} E

FIGURE 5.3
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and thus under the stated physical assumption yields the Laplace equation,

vy =0 inR , (5.7)

]

as well as the following boundary conditions,

oy _ _ -
i 0 for X=X and x=h , (5.8)
and,
1 09,2 . 3y 2 _ _
T3 [(ax) + (ay) ] +y==©8, for y=h . (5.9)

In addition there are the imposed boundary condition,

L]
b

¢ for y=h , (5.10)

O for y=0 . {5.11)

The function h(x) is unknown but it must be located so that the boundary

conditions (5.9) and (5.10) are satisfied.

The upstream (subcritical) portion of the free surface AB (as given
in Figure (5.3) can initially be taken hZE, since the velocity head is
very small.

Later h can be corrected for velocity head.

The downstream (supercritical) portion h must be treated more

carefully as follows. An elliptical curve,

x=-k y-k
—42 . (—3—2)2 =0 , (5.12)
a4 2

was selected to describe the outflow free surface since this function can

be made to satisfy the tangency condition at the gate lip by setting a

1

and a, (see FPigure 5.3). .
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5.3 MOVING STRATEGY

From the description of the finite element method in Chapter 3,
and its application we will now look at the problem of locating the
position of the free surface, a problem described in Section (5.2. ).
If the position of the free boundary CD (which we denote by BRJ) were
known then (5.7), and the boundary conditions (5.8},...,(5.1l1l) would
suffice to solve the prcblem for ¥, but since 3R is not known a priori,

then moving the free boundary BR(k) to BR(k+l)

, 1=1,2,..., often turns
ocut to be the most difficult aspect of the trial free boundary surface.
Mostly, authors simply say, the trial free surface was adjusted until

both the given boundary conditions were satisfied, and give no further

details.

The prediction of the position of the free surface in the early
days was first done by hand, such as Southwell and Vaisey [1946], and
they did not use any specific rules to move the free surface. Basically
it is desirable to have a given scheme for moving the boundary so that

this can be done automatically.

To implement any moving strategy on a computer it is convenient to

regard the boundaries BR(k) as being defined by a number of parameters

aik),aék),...,a;k), say these define, for instances, the vertices of a

curved boundary giving the curve the formula,

(k)

s = ™

(k) _(X) (x)
al 3, "'-l'an ) .

( (5.13)

Here we will discuss now the methods of moving the boundary, which may

be divided into three categories, local, integral and global.
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To describe these methods we consider the free surface part of the free
surface problem, which is illustrated in Figure (5.4), and in terms of

the velocity potential u=¢, with,

2
Du=Vu=0, 1n R
Im =0 ; on gR
Cu=0 r On 9R

together with appropriate boundary conditions on the fixed boundary.

p
LS |
~
NN
~
(k) \\\\x\
b MONO (k+1)
~ ~
~ ]
~ 6
-~ \\ ~ . aR(k'i-l)
RN

FIGURE 5.4: Movement strategy

5.3.1 LOCAL MOVEMENT STRATEGY

From Figure (5.4) above, in this strategy, the adjustments to BR(k)

are made at individual points on the basis of the error in Cu(k) at these

points will be minimum. Thus, Cu(k) is computed at m points,




P;k) € 3R(k) ¢ 1$3sm,

I1f Cu(k) is not zero at the point p;k), then another point in the

;k) is found p;k+l) where the boundary condition Cu=0

is satisfied better.

1
3R‘k+1) is then drawn through the points p;k+ )

neighbourhood of p

¢ (j=ll2l---rm) .

Convergence of this strateqy, 1s of course, not guaranteed, nor easily
obtained for some problems. Sometimes it has been found that an error
over one part of the boundary can only be reduced by moving a different

T

part of the boundary.

With the high-speed computer it has become desirable to automate

the movement of points along the boundary curve.

The approach usually is to determine the points p;k+l) according to
the condition that,
cu® (p;k+1)) =0, (5.14)
together with the condition that,
p(k+1) - P(k) + Ol(k)sgk) , (5.15)

b 3 1 =3
(k)

where s(k) is a specified direction vector, and aJ a constant to be

_j
determined which minimizes the error. The different methods correspond
to different ways of choosing_g(k) in (5.15), while possible choices for

gék) are: the unit outward normal to BR(k) at p;k).

Thus, some form of line search is performed along the directron

ssk). The computation of p;k+l)

course upon the structure of C.

so as to satisfy (5.13), dependé of
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The most obvious approach based on Newton's method is to define

a function f;k)(u) by

£ () ek )

J (a¢) =Cu " ( 3 o}
= c® R 4 asRy (5.16)
3 J
and then find a root of fﬁk){a). Then compute or estimate,
da _(k)
a £y @l o (5.17)
and then set,
(k) _ _-(k) 4d _{k) :
Oy = ~E 0V /g0 £ @] ) - (5.18)

However, various other approaches have been used, [CRYER (1976)].

in a number of instances it has been found desirable to smooth the points

p(k+1)
]

so as to prevent undesirable oscillations.

FINNEMORE and PERRY [1968] used a standard smoothing subroutine,

CRYER [1970] determined m points p§k+l), 1%3¢m, and then fitted a curve

(etl) _ gfketl)

dR(a) of prescribed form through these points to cbtain R

In summary then a local strategy has been used very successfully

despite their apparent arbitrariness.

5.3.2 MOVEMENT STRATEGY: INTEGRAI, APPROACH

In an integral strategy of moving the free boundary condition:
Cua=20,

can be expressed in an implicit form such as:

Glu(s) ,u,(s),u (s),x(s) x(s)) =0, (5.19)



where x(s) is the free boundary curve, and iﬁs) denotes the derivatives

of x(s) with respect to the arc-length s.

Given aR(k) and u(k)' the curve 3R(k+1) is obtained by integrating

the differential equation for x(s), in an approximate form,

c@™

A(k)
(s) :uy

(s) 'G(k) .’.‘.(k+l) "E(k+l)

X

(s), (s) (s}) =0, (5.20)

(k)(s), etc. represents approximations to the value of u(k)(s) etc.

(k+1)

A
where u

at the point p.S (s} and may be obtained by interpolation or extra-

(k)

polation. Often, u (s} is taken to be the value of u(%) at a gridpoint

nearest toli(k+1)(s). Many applications of integral methods have been -
made. NICHELL and CASWELL [1974] compute the flow of a viscous jet
extruded from a tube. Most of the applications show, the integral

method has proved itself of great value, and it seems clear that many

more applications will be found.

5.3.3 MOVEMENT STRATEGY: GLOBAL APPROACH

In a global methed of moving the free boundary BR(k), a set of
rerturbed boundaries,

{k} _(k) (k)

(k+3)
aR j ,aJ_'_l;-..,an

a(k) (k) (k) (k)

= 9R[ 1 % ""'a]—l'aj

,5& ] !

for j=1,2,...,n ,

and corresponding solutions G(k'j) are generated,

Thus, this information makes 1t possible to estimate the dependence

of the error Cu(k) on the parameterslgtk).

+
The new position of the free boundary aR(k b is chosen to minimize

k+
the error Cu( 1 1n some sense.




(k+1)

In order to minimize the error Cu we must have a measure for

this error, E(a), say. Some choices for E have been used:

n

W B @y = ) @®e®nit, (5.22)
1 j=1 3
that is, E (g(k)) is the m-vector of the errors at n points p(k)

j *
where El is the least square error.
Examples of the use of this method are:
(1) SANKAR [1967, p.l53} and FOX and SANKAR [1973] solves the
flow 1n an axially symmetric Riabouchinaky cavity.
(2) MCCORQUODALE and LI {1971] consider the problem of sluice gate

flow.




5.4 NUMERICAL RESULTS

From a description of the general trial free boundary methods, we
will now apply the global strategy to the free surface problem presented
in Section (5.2). For the trial global strategy, the elliptic curve
which is given 1in equation(5.12) was selected to describe the outflow
free surface CD, which can be made to satisfy condition (5.10), by setting
the constants al and ay the streamline ABCD is assigned a stream _
function ¢=Qo, then an approximate solution for the internal flow field
can be found from solving the finite element equatioms (5.7)...(511).Conditions
along the free surface BR(k), {k=0,1,...,m) can be checked. If an error

is found between the given energy E, and the computed energy Ec along CD

the assumed a; and a, should then be adjusted so as to minimize this error,

m
2
E (Ei-Ec )" , where m is the number of

1=1 o

mesh points along CD. (5.23)
We computed s, the sum of squares of the error for the points along CD,

for several values of al and a2. A search is then made for a1 and d;

-

which gives a minimum value of s.

The flow geometries-, b/H=0.4 and Q.36 were investigated, and a
typical surface profile is shown in Figure (5.5) with both downstream

profiles, shown in Figure (5.6).

Quadratic triangular elements were used to model the problem and the

n

gecmetry of the top layer of the free surface elements was allowed to

change, i.e. the constants al and a, were varied above and below the

first guess, in general if the guess is close to the correct values, the
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algorithm will converge to the correct solution with only a few
-

iterations. Only a few of the many results have been plotted so as to

avoid confusion.

A line of total head

e e e e .

-

o e
n

the free surface
1
: b/H
| I c, (b/fg
F ¢ 4 -
-1.0 o) 0.5 E
0.0

FIGURE 5.5: Typical flow profile

. o)

FIGURE 5.6: Downstream surface profile
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The computed constants a ,a2 and the ratio ch/H for the flow geometries

1
b/HE = .4 and .36 are given below.

b/H al a, Cc ch/H
0.4 1.0 0.16016 | 0.5996 0.23984
0.36 1.0 0.14335 ] 0.6079 0.21665

where, b is the gate opening,
H total head on the gate,

Cc contraction coefficient.

A plot of the potential flow solution in the given region with b/H=0.4

is shown in Figure (5.7).

Southwell and Vaisey determined the gate opening for a given
discharge, but the region near the gate has a large curvature, making
an accurate determination too difficult because there the contraction

coefficient Cc, and the profile is too large.

Experimental Cc values reported by BENJAMIN {1956] are much larger
than theoretical values, he explained that different contraction
coefficients for the two gate openings indicate that variables other
than the geometric ratio b/H have a significant influence on the flow.

He clearly shows that apparently a major discrepancy which appears in



in the plot of Cc versus b/H is due to the presence of a boundary

layer on the channel bottom in the real flow downstream from the gate,
but when a proper allowance is made for the boundary layer, theory and

experiment agree satisfactorily.
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FIGURE 5.7: Potential flow solution with b/H .4
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5.5 CONVERGENCE AND ERROR ANALYSIS FOR THE FREE BOUNDARY

PROBLEM

Some theoretical work has been done on the convergence of the trial
free boundary problem. On a fixed region it is possible to analyse the
errors even if the region has a curved boundary. This 1s done for the
finite element method by, for example, STRANG and FIX [1974]} and their

_analysis can be applied to the problems studied here for the fixed region.

It is much more difficult to analyse the errors in a free boundary
problem. CRYER [1976] has given a proof for the following medel problem
in ideal flow. The model free boundary problem to be considered is as
follows, Find u satisfying,

V2u =nu + u =0, in R, (5.24)
XX Yy

where R is as shown in Figure (5.8).

(0,%)

(0,0)

FIGURE 5.8: Cryer model free boundary problem




The boundary conditions are given by:

( u-(1l-y), on AC,

tu=0=4{3, /0, on BC,
on

Ju
L"ag-l, on AB.

and the extra free boundary condition is,

Cau=0=u-1%, on BC, {5.25)

The free boundary is the curve 3R.

The auxiliary restraints are that 3R should pass through the fixed

peint C on 3R and should be a monotone decreasing function of x.

The problem is constructed so that if BR(k)

passing through C, with the condition Cu(k) = Q on aR(k+1) for moving

the boundary, then aR(k+l) is also a straight line passing through C,

is a straight line

k
that 1s, BR( ) is assumed to be of the form,

(k) (k)

vy=3%+m "%, on 8R . (5.26)
and also: y=3%+ m(k+l)x.on aR(k+l) ‘
where m(k) and m(k+l) are the gradients of the lines. The true solution
of this problem is given by,
u: u=1-y - 3x, {5.27)
3R: y = } - 3x. (5.28)

Then, the problem,

u(k) + u(k) =0, in R(k) ’
XX vy
Lu(k) = 0, on aR(k) R

has the exact solution,



(k)

u = 1-y+x{[10[m(k)

]2 + 1)]* - 1}/m(k) . (5.29)

+
The condition that Cu(k)=0 on BR{k 1 is satisfied exactly if m(k+1) is

defined by:

(k). 2 3 (k)

m(k+1) = {[10([m "] +1)])°-1}/m . {5.30)

k)

Thus, in this simple problem the approximate solutions u( and the

approximate free boundary solution BR(k) are known exactly. To analyse

the behaviour of the gradient m(k) it is helpful to observe that if,

f(m) = [1+m2]i - 10i ’ (5.31)

then, (k+1) (k) (k)
m =n

-ty e @™y, (5.32)

so the sequence m(k) is identical with the sequence which would be

obtained by starting with the initial guess m(o) and applying one of
the iterative methods like Newton's method to the equation £(m)=0, noting
that £{m) is convex for mg0 and that for £(0)<0O, we have the following

theorem from Henrici [1964, p.79].

THEOREM 1
(0)

For any initial guess m <0, the sequence of approximate free
boundary's solution BR(k) converges quadratically to the free boundary

9R (true solution).

(k}

Now, given an approximate free boundary 3R and an approximate

(k)

solution u +« to obtain error estimates, we must be able to estimate

two quantities:

(i} The difference u ”-u(k), where u(k) is the approximate solution
of the problem, Du(k) =0, in R(k) , (5.33)
Cu(k) =0, in aR(k) .
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(k)

{ir) The difference u-u(k), where u satisfies (5.33) and u is the

solution of the problem,

Du = O in R, (5.34)

O on 9JR.

Cu
There are often several different approaches to estimate the given
equations {5.33), (5.34), for further details, many references are given

in CRYER [1976].

k
Much of the literature is based on the assumption that BR( ) is

smooth and therefore not always applicable to free boundary problems

(k)

which usually involves corners, but the case when 3R -has corners has
been considered. WIGLEY [19%9] has derived asymptotic expansions for
the solution of second order elliptic equations in the neighbourhood of
corners. The elimination of the singularity by conformal mapping was
applied by Mason and Farkas {1972] ain conjunction with a trial free
boundary. The question of domain variations arises in the theory of
the finite elements, because in general the boundaries of the finite

elements do not always coincide with the boundary of the domzin of the

problem being solved.

STRANG and BERGER [1974] give estimates for the difference u—u(k)

(k)

and grad{u-u )} for Poissons' equation in the plane. AITCHISON [1977]
used complex variable analysis to obtain an expansion for the free

boundary in the neighbourhood of the singularity.



CHAPTER SIX

FINITE ELEMENT FOR PROBLEMS

INVOLVING SINGULARITIES
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6.1 INTRODUCTION

The problem of boundary singularities in the numerical solution of
elliptic and parabolic partial differential equations has received a
great deal of attention. These singularities arise when sudden changes
occur erther in the direction of the boundary, as at a re-entrant corner,
or they may be associated with mixed boundary conditions. Such
singularities are found in a wide variety of physical problems, such as
stress analysis in regions with cracks, discontinuities, point sources,
etc. (see BERNAL and WHITEMAN [1970]), flow arcund an obstacle, seepage
of a water through a dam (AITCHISON [1972]), heat flow, diffusion or

potential problems in regions with re-entrant corners, electrodes heat

sources or sinks {(BELL and CRANK [19731).

The approximate solutions of the boundary value problem of
mathematical physics can usually be found by methods such as the finite
difference, or finite element method, as long as the problems contain
no singularities inside the integration domain or on its boundary, as is
often the case with mixed boundary value problems when singularities
occur with one or more coefficients of the partial differential equation
becoming singular there. In such problems, the solution will ordinarily
also become singular, and the method which we are using (the finite
element or the finite difference, etc.} will produce inaccurate results
in the neighbourhood of the boundary singularities. It is often possible
to reduce the region affected by the singularity, by using analytical
solutions based on separable-variable or integral transform techniques
for infinite or semi-infinite regions with relatively simple governing

equations (usually Laplace's), however, such solutions are, in general,




difficult to obtain for finite regions with more complicated equations ‘

and boundary conditions and so a numerical solution is considered.

Special numerical schemes have been devised to obtain accurate
solutions. The most popular methods being:
1. By using modified approximations to the governing differential
equation and its solution near the singularity.
2, Methods based on conformal transformations, modified integral
equations, modified collocation, power series, dual series for
the removal of the singularities.

3. Grad refinement in the neighbourhood of the singularity.

In the approach 1, the standard approximations near the singularity
are replaced by modified approximations based on the local analytical
form of the singularity, such as a form of an asymptotic expansion by
separable-variable or complex variable techniques. WAIT ET AL [1971] used
finite element method, with bilinear basis functions supplemented by
singular functions to solve the elliptic boundary value problems with

corner singularities.

Approach 2 proved to be accurate and efficient for the solution of
elliptic problems in simply-connected polygonal regions with general
mixed boundary conditions, but the method is limited to differential
equations which remain invariant under conformal transformations,
PAPAMICHAEL [1978) considered the use of a conformal transformation
method for the solution of some class of the two dimensional linear

elliptic boundary value problems in simply-connected domains. He shows |

that this type of transformation of the preblem overcomes the difficulties
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associated with the numerical solution of the problems involving curved
boundaries and boundary singularities and produces solutions of good

accuracy.

Although approach 3, is more computationally involved than the other
methods, since the order of the matrix is increased it is a viable
alternative in that no knowledge of the form of the singularity as
required and any symmetry present 1s preserved. In addition, with the
fast growth of high speed computers in recent years, it appears that this
concept to use finite elements that allow an easy transition from a
region where a finite element solution is required at a high deqree of
refinement to a region where the degree of refinement 1s sufficient is
most promising has proved to be highly accurate for the solution of
elliptic problems in simply-connected polygonal regions with general
mixed boundary conditions, as can be seen from the results obtained from

the next sections.
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6.2 PROBLEM FORMULATIONS

The boundary value problems which are considered here fall into two
classes; one consisting of problems from potential theory and the other
consisting of problems from elastostatics. Both classes are discussed

for two-space dimensions.

The potential problems in two-space dimensions have the general

forms,
via = fl(xuy) » (x,y) €R,
u = gl(xfy) ¢ (x,¥) € aRl . (6.1)
du
3 g, (x,¥) , (x,¥) € 3R2 .

where R € Ilz in (6.1) is a simply connected open bounded polygonal

domain, with the boundary 9R, in (6.1) the polygonal boundary 3R consists
' g - 2
of disjoint parts aRl and aR2 so that 8R_3Rl U 3R2, and ™ is the

derivative in the direction of the ocutward normal to the boundary. The

homogeneous Dirichlet forms of (6.1) can be written as,

-

Va=f, 1in R, {6.2)
with u=0 on 3R.
In the usual Sobolev space setting the weak solution u € Hé(R) of
(6.2) satisfies the relation,
afu,v) = IVu.Vv dr = J fvdrR = F(v) , {(6.3)
: YvE ﬁt(R) .

Many two dimensional problems of linear elasticity can be formulated in

terms of the biharmonic operator so that,

v = £,609) , (xy) €R
u = 93(3:17) ’ (le) € 3R, (6.4)
au

94(X:Y) ’ (x,¥) € oR ,

an
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where R, 9R and-ﬁ% are as defined for (6.1).

The weak solution u € Hé(R) of (6.4) satisfaies,

alu,v) = J fv dr s ¥ v E Hz(R) . {(6.5)
R Q

Examples of two dimensional linear elastic problems are those of the
bending of a thin plate, for which u is the transverse deflection from
the equilibrium position under the action of a load, and of plane strain

in which u is the Axrry stress function.

Typical two-dimensional regions which present singularities when the

boundary of R contain a re-entrant corner 1s that of an L shaped region.

A re-entrant corner is a point where the boundary changes direction through

an angle exceeding Tt as shown in Figure (6.1) below.

D B

3n( e
2 0

F G

FIGURE 6.1: Re-entrant corner at Q.



6.3 SINGULARITIES IN TWO-SPACE DIMENSIONS AND THE FINITE

|
ELEMENT METHOD
\
|

We consider the two-dimensional problems of the type (6.2) and refer

i=1,2,...,M, with associated interior angles o,, where

i

o 3 TS 1
0 <& s5 M ’
and that at the jth vertex RJ denotes the intersection of R with a disc
M
centred on tj and containing no other corner. Let Rosﬁ\d UR, .
=1

FIGURE 6.2

When the finite element method is applied to the two-dimensional form
of (6.2) and (6.4) the solutions u € Hg(R), are approximated by w € Sh,
where Sh c Hg(R) is a finite dimensional space and w satisfies

h

\

to Figure (6.2) below. Suppose that the boundary YR has vertices tj'
= |

a(uh.vh) = F(vh) :r ¥ N €Es , (6.6) |

If a{u,v) is continuous over Hg(R) and Hg - elliptic, then 1t 1s well-

known that,



h
oyl < ellegll ) v es®, ©
HO(R) HO(R)
and further than, if Sh consists of piecewise polynomial conforming
trial functaions of degree p on a uniform triangular partition of R with
mesh size h then the raight-hand side of (6.7) can be bounded so that,
| Juu, || m < kh”|u|k , (6.8)
Hy(R)
where Y depends on both k and p. The major determining factor for y is

the reqularity of the solution u,

If we restrict ourselves further to two-dimensional second order
problems of the form (6.2), for the bound (6.8) to be 0(h), the solution
u must be in H2(R). When re-entrant corners are present, which reduce
the rate of convergence of llu-uh|l . SCHATZ and WAHLBIN [1978] have
for the two dimensional problems ongéz)type (6.2} shown that, for a

domain R with corners al,uz,...,aM and the definitions given previously

mln(W/?J-P+1'2“/“M)-S r 3°1,2,...,M

hmin(p+1,2w/au)-e

£cC ' (6.9)

| u-u, 1
h''L (R

The bound (6.9) indicates that the singularity causes a reduction in the
rate of convergence both in the neaighbourhood of the singularity and also

away from 1it.

Taking the example of an L-shaped region with corners 4, 50,= ...
=ac =1/2, aM§36=3w/2, the respective rates of convergence, in the case
of Sh consisting of piecewise linear functions, are O(h2/3) and O(h4/3).

These should be compared with the O(hz) which is expected when no

singularities are present.
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The analysis for the two-dimensional Poisson problem shows that
scme special adaptation of the finite element method is necessary in
the neighbourhood of a singularity. A survey of different strategies

is given by WHITEMAN and AITKIN [1979].




6.4 NUMERICAL RESULTS

TEST PROBLEM 1

The problem of Motz requires the sclution of Laplace's equation in a
rectangle with a slit, i.e. a re-entrant corner of internal angle 2
[see Figure (6.3)]. It has been treated by many authors to demonstrate

the effectiveness of their singularity treatments.

WOODS [1953], and WAIT ET AL[1971] both gave an alternative formulation
based on the fact that (u-500) is antisymmetric about the line EB
containing the slit and by imposing the boundary condition u=500 on COE,
only needed to consider the top half of the rectangle (see Figure (6.4)).

It is in this same form that the problem is treated in the literature

later on.
u__ Ay
y 0
D C
2
Vu=
u=0 u=1000
Ju ;
=— =0 B
du =0 Ep ) * Y,
ox
% _all. =0 H
Y
u=
\
|
F G
du_
oy

FIGURE 6.3



FIGURE 6.4: The modified source problem

Examples of such singularities occur in potential problems concerning
transmission lines with microstrips, and in diffusion problems with
narrow band type electrodes. The modified region and the boundary

conditions are illustrated in Figure (6.4), where the problem is scaled

by setting, V‘u=0,

in the region EDCB, {-lgxs1}x{0Ogysl} containing the singular point O.

A prainter plot of the geometry of the region with the initial

triangulation generated by TWODEPEP is shown in Figure (6.5).

The results are quoted in Table (6.1) of the finite element solution
of 300 elements and by using different basis functions (i.e. quadratic
and the more accurate cubic basis functions), with the 2 different
techniques i.e.,

i. equally distributed elements (both quadratic, and cubic) over

the region as shown in Figure (6.6).
ii. with more refined elements in the neighbourhood of the

singularity region as shown inFigure (6.7).




Comparing the results for both techniques, we note that the
improvement 1n accuracy 1s better when we use (ii). The results of
Table (6.2) are compared with the table of results given by J. CRANK

and R.M. FURZELAND [1977].

The results in Table (6.2) show that a high degree of accuracy can
be obtailned, and agree very well over the solution region with the high
accuracy of the results given by PAPAMICHAEL ET AL [1973]. The results
of the highly accurate refined cubic elements is plotted in Figures (6.83

and (6.8b) which shows the behaviour of the solution u in the given region.




h
—
o ”e.vv”sevsevsse...ssssssavsssssssssssS.S.S.$$.S.555335533335353355335533.333.5.333.5.33333333535333353””
owr
" wn v o
@ A wo o
[ d " wor e
o er w» w
Fiq > oo w
o w»o "33 >
o v o b4
L i (" Y [ 2] o
v "o oo g
v Bnn Mg a
a " wir ©
“w o btd @
o o “» “
» wo wo g
P4 v W «
" o> bt "
j#4 (79" vr w
4 o P "
o wo "o e
bid L 1 1% 3
[ B 0w b4
o o s b
4 oy U e bve
o Prges o b
74 noun won o
74 (13" il b4
4 v 2979 o
e s g 74
e s o b4
w “u [V X7 v
w "o owu 44
b4 v " o
© 7974 “o b1
” o> sss L d
w hig 4
4 e "o © _J
o [ XT3 “»n “
w o 7473 " Le]
o w»v oo b4
“» o @ oo
W$WW$$$$$$$$$$$$$$$$S_S.S.S$S.S.$$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$$3$353.3.3.5533$$$$$$$3$$$Mwﬁ$uw
o o ©ww "
o e [TR7S o O
o> " (7 X" 1.3 -
o (2% 3 wo " R
o »n o o
o Vv et (%3
wr v @ o
@ wu wo o
/8 " hiaid a
w B0 hidhid @
o ©w v “
74 © w @
a o o oy
o e “ror 4
o v in wuv o
o 7Y’y " hid
P XY e b4
v wo v brd
a v Bu b4
- 478 & -
» 0w au a
pre av hidhid e
o [’x’". Y " bg
©* wno hidid o
@ o (7873 b
v " Lol a
w X3 v "
“w o« hid o
“ s hidhid o
© nun “an o
@ o [ 23 o
bid w "o o
i oo @ o
o oo wo o
4 35.53. SS.S.S W
e > (7" w
bd o w»uv "
Buao N2
e
3358.3.3.5.SS$$$$$S.$.S.$$.$$$$ss.s.s.$$S.S.S.$$$$S.333S.5.35.53$$$$$$$$$$$$$$$$$$$$$$3$3$$$$$$$$S$$$$$
tttttttfrntttt-tt...-*.-tt.._...-...+a-stt*t*t...w...-..tat_-i+..-*tt......t*+t.-t....-.-*...t...t..-att_..tw...it...tt_-..tt+...at...*..-tr

| R R I R




Q
o~
o
=
o » » » ] " s »
- = » M b
%3 »
& » vy » = =
m ¢ » » o %
; .
P ! ] ” T 7]
” > » » ] >
oy
—-—
»® » »
@ x “ o % \ %
L N
> —d
e » » ™ » » »
~ m ] ™ ) | o » e 4
ﬁ > » » » -] »
w ¢ » » ™ ™ »
o >
@ P> 1 » » »® » b » ™ »®
“r * »” ” » » " E ! »
o o \0
x L]
o » * » v » ﬂ = R o W
“ » » » » > =
[ ]
prd > » » ol o » 5 o » 5 » " » » m
thr o P / \.\l\\\“ - H
” t] \x\\ » 2 — / b s »
S ] » o—u2 s L ¢ ] - x "
o » x > M » » = » N
o » » »” » »” ]
& > PN n\x =)
“ » o ” E » » =
@ » > » > » = » » »
] x
o ] » % » o » » » "
W » - x o » » > ™
» 1 e
@ » x ” » = » Y ® »
w o Y 1 » » v [ ]
3
@ > » % 4 » ¥ »
w E ) = » ] »
o x : > X = M4 ol ¢ a
o * { » * » e * »
” > ” » »” " » “ o » » Y] » o
- L VA= -w.mto. VPR v YT Y-y 3 vV . SR XQTS..S.:

LR R R FEREREE R FER LR N I N R N A R R R N R I I I R I R s e N e L E EEE R R LN RN R NEE NN NN




VRBDBBBNBBBODUB BB BN

221

BRBRARBRABBBB BB BRBEABNRBRBBBRBBGRBLBBVNOY ﬁ BUBRBBOGOBBOBBBYLBNY
L] »

LY. X.)

X
X

P P0e9505955985954855555558
X
X
X
X
X
X
X
X
i

X

X

X

X

X

X
gseccAnssalacae
VP FTEIRISOTTE

£
X
D
/
X
X

X
X
X
X
X
b 4.4
X
X

s A
> v s & oy v >4 aL o Or—r¢
s T = H
@ » e * > » » ~
“W » 3¢ » » ~ ] ¢ -
@ » » e » = T ot
" ¢ o » o v ) e MR ON ]
v » e ) b g xmmmx
A i = 4 » wxmn m
" e » XNHNTHG e
m x ] 3 u unx nOn x F
" » x a
brid " %]
b » " » -
gl
g vl ; 3
w " o " » »
“w » ~
m " e »
o » ] >
R
o N »* - '
o
@
“ M v »
o« o
e » » "
o>
a " %
o » e » “ »
o >4
L
w » » »
Ve

BB RBRRBN NG

titattti.fttttttttt+t....-t..t.-.*.-+ttttthttt+t.._ttttttb+-ttttitt+*tttiit*t+¢tittii*t._.a...iitti-t._.t.-ttttt..t




ou

3y " ©
591.33{590.96 608.87[608.45 645.48/644.96 702.12)701.55 776.281775.74 8e2.01[861.64 953.45[053.33 1600
501.31590.59 608.861608.02 645.45|644.45 702.09|700.96 776.280775.21 862.011861.26 953.44]953.20
574.09[573.78  589.79|589.41 624.74|624.21 683.89|683.20 764.82|764.15 856.66{856.21 951.98|951.82 1000
574.091573.47 589.78|589.02 624.73|623.68 683.86|682.50 764.800763.48 856.641855.76 951.981951.67
541.75(541.57 551.97{551.71 578.54|578.05 641.53|640.47 743.78|742.77 848.62|848.04 949.92|949.73 1000
541.78|541.38  551.95]551.45 578.54]577.51 641.53{639.36 743.69[741.70 848.61|847.46 949.92|249.55
500 500 500 500 728.43|727.03  844.35|843.68 948.93{948.72
o 728.34 725.61 844,32 842.99 943,91 948,51 1000
u = 500 §5_= o
TABLE 6.1 3y

At each point the numbers represent:

Finite element solution with cubic
refined elements around O

Finite element solution with cubic

equally distributed elements

u=1000

Fanite element solution with
quadratic refined elements around O

Finite element sclution with
quadratic egually distributed elements

Zee




At each point the numbers represent:

our solution

Papamichael solution

Motz method

Woods method

du _
D 8y -
591.331591.3 608.87 |608.9 645.481645.5 702.121702.1 7176.281776.3 g862.01]862.0 953.46]953.5 1000.00
592 (591 609 {608 645 (644 7021701 17171776 8631863 9541954
574.09]1574.1 589.791589.8 624.74]624.8 683.891683.9 764.821764.8 856,66|856.,7 951,98]952.0 1000. 00
5751574 591]590 625|624 6831683 7661765 8571858 89521953
EE. =0 u = 1000
ax 541.,75]541.8 551.971552.0 578.54[578.6 641.53[041.6 7432.781743.8 848.62{848.6 949,92(949.4 1000.00
5431542 553|553 5791579 6401642 7461744 8491849 9501950
£ 500 500 500 500 728.43}1728.5 844.351844.4 948.931948.9 1000.00
728 730 844 844 949 949
u = 500 du =0
ay
TABLE 6.2

gee
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TEST PROEBLEM 2

The problem 1llustrated in Figqure (6.9) has a boundary singularity

at the origin. The given problem is,

2
Viu(x,y) = 2u(x,y). (x,y) € R,
X+
ulx,y) = .25 , (x,y) € 9R,
- 2 2 -1
where R = {(x,y}: x +y €1, tan (y/x) < w/4}.
This problem is chosen to illustrate the effectiveness of using the
finite element p and h versions which were discussed in Chapter 3, and

to demonstrate the effectiveness of the procedure for removing the

singularity by mesh refining.

A
b4
xX=r cos(%e) ; Y=T sin(%e)
y=.2ex+y
V2u=2u u=.2ex+y
/4
(0,0) > x
O u=.2e% (1,0}
FIGURE 6.9

An estimate of the convergence of the numerical approximat:ion to the
A Ju ity
exact solution can be obtained by computing u-u, or an sz-at a number
of selected points.
Because of the high accuracy obtained and the reliability of the
error estimates, then for comparison purposes we list the following

results:
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The error norm L2 obtained by using the finite element p and
h version directly to the given boundary value problem for the

function u(x,y). The results are listed in Table (6.3).

The values obtained from the application of the 50,75 and 100
triangular finite elements and by applying quadratic, cubic
and quartic basis functions for each case and alsoc the values
computed from the analytic sclution

u = O.2ex+y R

are listed in Table (6.4).

Values are obtained for the mesh points near the origin, for the
both cases of equally distributed and more refined elements
around the singularity. We note that the estimates computed at
a set of test points in the region, suggest that an accuracy of
five significant figures has been cobtained for most cases. We

list the results in Table {6.5).

Printer plots of the geometry of the region with the initial
triangulation generated by TWODEPEP is shown in Figqure (6.10},
also Figures (6.11) and (6.12) show the discretised region of
test problem 2 by using 300 triangular elements, with both
equally distributed, and refined mesh procedures near the

singularity respectively.
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FIGURE 6.12




The error L

version, and also as the degree of the polynomial is increased, i.e.

Element

No.of order

lelements Quadratics Cubics Quartics
>0 3.4 x 1070 3.55 x 1070 | 2.24 x 107°
Triangles
3 -5 -6 -6
Triangles 1.04 x 10 2.00 x 10 2.00 x 10
100 9.27 x 10 | 2.00x 106 »
Triangles

TABLE 6.3: Error I.., norm

2

the p version of:

where,

+
with the exact solution is 0.2ex

R =

u

2

20 E R

.2ex+y € 3R

2 2 -
{(le): X+y €1, tan l(Y/X) £

Y

+ as the number of elements is subdivided, i.e. the h

T/4} ;




50 75 100
ELEMENTS ELEMENTS ELEMENTS Exact
% v solution
quad- cubacs quart- }quad- cubics quad- cubics
ratics ics ratics ratics
0.0(0.0 [.20000 {.20000 |.20000 |.20000 |.20000 }.20000 |.20000 |.20CC0
0.2|0.0 1.24431 |.24428 |.24428 |.24428 | ,24428 |.24428 [.24428 | .24428
0.6{0.0 |.36440 | .36442 [.36442 | .36442 | .36442 |.36443 |.36442 | .36442
0.0}0.1 {.22090 { .22104 }.22103 |.2228B6 } .22088 j.22088 }.22088 | .22088
0.3|0.1 |.29835 |,29837 |.29836 |.29836 | .29836 |.29836 |.29836 |.29836
0.5]0.1 |.36443 | .36442 |.36442 |.36442 | .36442 |.36442 |.36442 | ,36442
0.710.1 |.44512 | .44511 |.44511 | .44512 | .44511 [.44511 |.44511 | .44511
0.2]0.2 |.29826 |.29837 |.29836 |.29835 [ .29836 |.29836 |.29836 § .29836
0.4]0.2 |.36442 | .36442 {.36442 | .36440 | .36442 |.36442 |.36442 | ,36442
0.6]0.2 |.44510 | .44511 |[.44511 |.44511 | .44511 |.44511 [.44511 | .44511
0.7]0.2 |.49192 | .49192 |.49192 |.49191 | .49192 |.49192 |.49192 | .49192
0.9]0.2 |.60083 {.60083 |.60083 |.60084 | .60083 |.60083 |.60083 | .60083
0.3]0.3 |.36453 §.36442 |.36442 |.36442 | .36442 | .36442 |.36442 | .36442
0.5{0.3 {.44507 | .44511 |.44511 |.44510 | .44511 | .44511 |.44511 | .44511
0.8]0.3 |.60075 | .60084 |.60083 | .60083 | .60083 {.60083 |.60083 | .60083
0.410.351.42333 | .42340 |.42340 | .42338 | .42340 }.42340 {.42340 ! .42340
0.6{0.35},51716 | .51714 }.51714 | .51714 | .51714 | .51714 {.51714 | .51714
0.9{0.35(.69812 | .69806 |.69807 |.69811 | .69807 | .69807 |.69807 { .69807
0.4]|0.4 [.44495 |.44511 |.44511 |.44511 | .44511 |.44511 |.44511 | .44511
0.5]0.4 [.49192 |.49192 |.49192 |.49192 | .49192 |.49192 |.49192 | .49192
0.8]0.4 [.66404 | .66403 |.66402 |.66402 | .66402 | .66402 |.66402 | .66402
0.9/0.4 [.73392 |.73386 |.73386 |.73388 |.73385 |.73386 |.73386 |.73286
0.5]0.451.51720 | .51714 |.51714 |.51712 | .51714 }.51714 |.51714 | .51714
0.6|0.45|.57155 |.57153 [.57153 |.57155 }.57153 |.57153 |.57153 | .57153
0.8]0.45 |.69807 |.69806 |.69807 |.69804 |.69807 | .69807 |.69807 | .69807
0.5|0.5 [.54383 |.54366 |.54366 |[.54367 |.54366 | .54366 |.54366 |.54366
0.7|0.5 (.66401 |.66402 |.66402 |.66403 |.66402 | .66402 |.66402 | .66402
0.6]0.551.63153 {.63164 |.63164 |.63164 | .63164 | .63164 |.63164 | .63164
0.710.55{.69805 |.69807 |.69807 |.69806 |.69807 | .69807 |.69807 | .69807
0.710.6 |.73394 |.73384 |[.73387 |.73383 |.73386 | .73386 [.73386 | .73386
0.7|0.651.77164 |.77148 |.77148 |.77151 |.77148 | .77148 |.77148 | .77149
0.7]0.7 |.81113 |.81104 }.81104 |.81106 |.81104 | .81104 |.81104 {.81104
TABLE 6.4: Comparison of discretization errors, for test problem 2




At each peint the numbers represent the values computed by using 300

elements with different basis functions as indicated below:

300 300
quadratics elements cubics elements
X Yy Equally Equally sgizz:on
distributed | Refined |distributed | Refined

0.0 | 0.0 « 20000 « 20000 . 20000 . 20000 - 20000
0.1 |0.0 | .22103 .22103 .22103 .22103 .22103
0.2 (0.0 | .24428 .24428 .24428 .24428 .24428
0.3 10.0 | .26997 .26997 .26997 .26997 .26997
0.4 |0.0 § .298B36 .29836 .29836 .29836 .29836
0.5 |0.0 | .32974 .32974 .32974 .32974 -32974

.0 |0.05} .21044 .21025 .21025 .21025 .21025
0.1 |0.05} .23237 .23237 .23237 .23237 .23237
0.2 |0.05{ .25680 .25680 .25681 .25681 .25681
0.3 |0.05} .28381 .28281 .28381 .28381 - .28381
0.4 |0.05] .31366 .31366 .31366 .31366 .31366
0.5 | 0.05] .34665 .34665 .34665 .34665 -34665
0.0 |0.1 | .22103 .22104 .22103 .22103 .22103
0.1 |0.1 | .24428 .24428 .24428 .24428 .24428
0.2 }0.1 | .26997 .26997 .26997 .26997 .26997
0.3 {o.1 | .29836 .29836 .29836 .29836 .29836
0.4 |0.1 | .32975 .32974 .32974 .32974 .32974
0.5 |0.1 | .36442 .36442 .36442 .36442 .36442
0.0 |0.15| .23237 .23237 .23237 .23237- .23237
0.1 }0.15]| .25676 .25681 .25680 .25681 .25681
0.2 |0.15] .28381 .28381 .28381 .28381 .28381
0.3 |0.15] .31366 .31366 .31366 .31366 .31366
0.4 {0.15] .34665 .34665 . 34665 .34665 -34665
0.5 10.15| .38311 .38311 .38311 .38311 .38311
0.0 Jo.2 .24429 .24429 .24429 .24428 .24428
0.1 |o.2 .26982 .26694 .26997 .26997 -26997
0.2 |o.2 .29837 .29837 .29836 .29836 .29836
0.3 0.2 .32974 .32974 .32974 -32974 .32974
0.4 |0.2 | .36442 .36442 .36442 .36442 .36442
0.5 jo.2 .40275 .40275 -40275 .40275 .40275

TABLE 6.5
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TEST PROBLEM 3

The problem illustrated in Figure (6.13) involves a re-entrant

corner of internal angle %;, at which a boundary singularity occurs.

Statement of the problem:

2 -(16x2+1)u + 4cos(2x2-y) €R

Vus=
2
u = sin(2x"-y) € BRl
Ju _
a:._o EBRz

where R 1s the circular sector:
2 - 3
R = {(x,y): x2+y £ 1, tan 1(%) < —21}
and 3R = BRl U 8R2
BRl = {(x,y): -l<x<1, O<y<l},
3R, = {(0,y): -1<y<0},
with the analytic solution,
. 2
u = sin(2x ~y) .
For comparison purposes we list the following results:
1. The error norm L2 obtained by using the finite element p and h versions
directly to the given boundary value’problem for the function u({x,y);

we list the result in Table (6.6).

2, Values obtained at the mesh points near the singularity by applying
the procedure of mesh refining near the singularity; we list the

results in Table (6.7).

3. Printer plots of the geometry of the region with the initial
triangulation generated by TWODEPEP is shown in Figure (6.14), also
Figures (6.15) and (6.16) shows the discretised region of this test
problem by using 300 triangular elements with equally distributed and

mesh refining procedure respectively.



R:

Vou -(l6x2+1)u+4 cos(2x2-y)

FIGURE 6.13
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No. Element

of element order Quadratics Cubics Quartics
'i'giangles 2.82 x 107 4.33 x 107 | 5,36 x 207
;iiangles 3.03 x 107 1.65 x 107% |2.53 x 107>
éggangles 1.12 x 1073 1.11 x 104

TABLE 6.6: The error L

o horm,

as the number of elements

is subdivided (the h version) and also as the

order. of the polynomial is increased {the p

version) of test problem 3.



At each point the numbers represent the values computed by using 300

elements with different basis functions as indicated below:

300 300
quadratics elements cubics elements
X y Refined Equally dis-| Refined Equally das- Exact
around O tributed around O |[tributed solution

C.0 |-1.0 | .84147 .84147 .84147 .84147 .84147
-.4 | -.8 .90018 .90025 .20011 . 90005 .90010
-2 | -.8 . 77050 .77224 .77074 . 77078 .77074
0.0 | -.8 .71700 .71700 .71736 .71738 .71736
-.6 | ~-.6 .96929 .96707 .96872 .96869 .96872
-.4 | -.6 .79524 .79464 .79560 .79558 .79560
-.2 ] -6 .62890 .6298L .6288 .62875 .62879
0.0 | -.6 .56473 .56453 .56464 .56464 .56464
-. -.4 | .993%4 .99347 .93404 .99393 -99404
- -.4 - 20006 .89996 .90010 .20014 .90010
- ~-.4 .65972 .65956 .65939 .65939 .65938
- ~.4 | .46176 .46187 .46178 .46178 .46178
0.0 | -.4 .38943 .38949 . 38942 .38942 .38942
-.8 | -.2 . 99609 .99623 .99589 .99589 .99588
-6 | =-.2 .79582 .79581 . 79560 .79561 .79560
-.4 | -2 | .4986 .49649 .49688 . 49687 .49688
-.2 | -.2 -27632 .27641 .27636 .27636 .27636
0.0 | -.2 .19866 .91871 .19867 .19867 .18867
-1.0 | 0.0 | .90930 .90930 -90930 .90930 .80930
-.8 | 0.0 .95901 .96341 .95803 .95807 .95802
-.6 | 0.0 | .66156 .66156 .65951 .65951 .65934
-.4 | 0.0 | .31450 .31481 .31457 .31457 .31457
~.2 | 0.0 | .079881 .079956 .079914 .079916 .079915
.0 | 0.0} 0.0 0.0 0.0 C.0 0.0

-.8 1.2 -88226 .88201 .88195 .88194 .88196
-.6 | .2 . 49679 .49696 .49688 .49686 .49688
-.4 | .2 .11953 .11982 .11969 .11968 .11971
-2 | .2 -.11961 -.11961 -.11972 ~.11971 -.11971
0.0 | .2 -.19862 -.19859 -.19867 -.19867 -.19867
-.2 | .4 -.31444 -.31436 -.31457 -. 31457 -.31457
0.0 | .4 -.39841 -.38937 .=38942 -.38942 -.38942

TABLE 6.7
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TEST PROBLEM 4

The harmonic prcblem 1llustrated in Figure {6.17) invelves a re-
entrant corner, of internal angle 3m/2, at which a boundary singularity
occurs. The problem arises 1n a study of diffusion in a continuum

containing non-permeable rectangular prisms; [see BELL and CRANK (1974}].

(-1,1) u=1 (1,1)
Vzu =0 Ju
_= 0
ax
v .
A, in (1,0)
X > >
o) du _ o
dy
Ju
9x ©
0,-1
("l;"l) = ( r )

FIGURE 6.17

1. The results obtained are given in Table (6.8) and are compared with
the conformal transformation method of PAPAMICHAEL (1978). These

results are extremely accurate, and correct to the number of figures

quoted.

2. The results in Table (6.9) are obtained by using quadratic triangular
elements as basis functions, and are compared with the numerical
solution given by SYMM (1973), who uses an integral equation approach
modified to deal with the singularity at a re-entrant corner., The

results obtained are also extremely accurate.




The results given in Table (6.10) compare two finite element solutions
by using the piecewise polyncmial functions of the same degree, but

the first set is obtained with a mesh refinement around the singularity.
The same number of elements was used in both procedures. The farst

set of results in Table (6.10) indicates that we can attain the

accuracy required without refining the whole region.

Printer plots of the geometry of the region wath the initial
triangulation generated by TWODEPEP is shown in Figure (6.18). Also
Faigures (6.19) and (6.20) show the discretised region of test problem

4 with equally distributed triangles and mesh refining near the

singularity respectively.
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1.0000 .96425 .9425 .9206 .9056 .9007
1.000 .9700 .9426 .9205 .9059 .9009
.9700 .9426 .9205 .9059 .9009 TABLE £.8
1.00¢ - 9687 -9399 -9165 - 9009 -8955 At each peant the numbers represent:
1.0000 .9687 .9400 .9166 .9011 .8957
1.0000 .9687 .9400 .9166 .9012 .8957
' 1 Equally distributed cubic triangular elements
1.0000 .9648 .9320 . 9046 .5858 .8790 2 Cubic triangular elements {(dense around the
1.0000 .9648 .9321 .9048 .8860 .8792 singularities)
L. -9648 -9322 -9048 -8860 -8793 3 Conformal transformations method of
Papamichael (1978).
1.0000 .9585 .9189 .8841 .8583 .8484
1.0000 .9585 .9191 .8843 .B586 .8487
1.0000 .9585 .9191 .8843 .8586 .8487
1.0000 .9502 .92014 .8550 .8150 .7956
1.0000 .9503 .9015 .8552 .8154 .7961
1.0000 .9503 .9015 .8553 .8154 .7961
1.0000 L9411 .8817 .8209 .7563 L6652 .4882 .3582 .2366 .1178 0.0000
1.0000 .9412 .8818 .8210 .7565 .6667 .4870 .3580 .2364 L1177 0.0000
1.0000 .9412 .8818 .8210 . 7565 6667 .4870 .3580 .2365 .1179 0.0000
1.0000 .9325 .8633 .7898 .7066 L6026 .4784 .3552 .2353 L1173 0.0000
1.0000 .9325 .8633 .7898 .7066 L6019 .4780 . 3550 .2352 1172 0.0000 N
1.0000 .9325 .8633 .7898 . 7066 .6020 .4781 3550 .2352 .1173 g:

continued...ss.0.




1.0000 .9254 .8487 .7672 .6673 .5758 .4644 .3488 .2324 .1161
1.0000 .9254 .8487 .7671 .6771 .5756 .4642 .3489 .2322 .1161
1.0000 .9254 .8487 .7671 6772 .5757 .4642 .3486 .2323 .1161
1.0000 .2204 .8388 .7528 .6604 . 5605 .4538 .3426 .2292 .1148
1.0000 .2204 .8387 .7528 .6604 . 5604 .4536 .3425 L2291 .1148
1.0000 .9204 .8387 .7528 6604 .5604 .4537 .3425 .2291 .1148
1.0000 .9175 .8331 . 7450 .6516 .5523 .4475 .3386 .2270 .1138
1.0000 .9175 .8331 .7449 .6515 .5522 .4474 .3385 .2269 .1138
1.0000 .9175 .8331 .7449 .6515 .5522 4474 . 3385 . 2269 .1138
1.0000 .9166 .8313 .7425 .5488 .5497 .4455 .3372 .2262 .1136
1.000 .9166 .8313 . 7424 .6487 .5496 .4454 .3371 2261 .1134
1.0000 .9166 .8313 .7424 .6487 .5496 .4454 .3371 .2261 .1134
TABLE 6.8: continued

0.0000

0.0000
©.0000

0.0000

0.0000
0.0000

©.0000

0.0000
0.0000

0.0000

0.0000
©.0000

Lve



1.0000 . 8701 .9427 .9204 .9059
. .0000 .9700 .9427 .9205 . 9060
1., CO00 .9686 .9401 .9165 .9011
L .0000 .9687 +9400 .9166 .9012
L . 0000 .9647 .9321 »9047 .B860
l .0000 .9648 .9322 .2048 .8860
| . 0000 .9585 .91%90 .8842 .8586

| .00C0O

+9585

.9191

.8843

.8586

TABLE 6.9

At each point the numbers represent:

Finite element method with
(quadratic triangular elements)

2 Integral equation method of Symm (1973)




1.0000 L9701 9427 9204 -9059 .9008
1.0000 . 9699 .9429 .9201 .9055 L9004
1.0000 . 9686 .9401 .9165 29011
; TABLE 6.10
1.0000 . 9686 .9398 .9162 .9007 .8952 -
1..0000 .9647 L9321 .9047 .8860 At each point the numbers represent:
1.0000 . 3647 .9319 .9043 .8855 .8787
1 Finite element method with dense
1.0000 .9585 .9190 .BB42 .8586 elements around singularity
1.0000 .9584 .9188 .8838 .8579 .8481
5 Finite element method with equally

1.0000 .9503 L9015 .8552 .8154 .79489 distributed element
1.0000 .9502 .9012 .8547 .8145
1.0000 9503 .8818 .8210 1565 6667 4870 -3580 22365 21177
1.0000 .9501 .8816 .8207 . 7560 .6654 4855 .3587 .2368 .1179 >, CCO0
1.0000 .9325 .8633 .7898 . 7066 .6019 .4781 .3550 .2352 1172
1.0000 .9325 .8632 .7897 . 7066 .6027 L4788 .3556 .2356 .1162 0., 0000
1 .0000 .9254 .8487 .7672 .6772 .5757 .4642 . 3486 .2323 -1161
1 ., 0000 .9254 .8487 .7672 .6774 .5760 .4647 .3490 .2326 .1162 0. 0000
1 .0000 .9204 .8388 .7528 .6604 . 5604 .4537 .3425 .2292 .1147

. 0000 .9204 .8388 .7529 .6606 L. 5607 .4540 .3428 .2293 .1149 0.0000
L .0000 9176 .8331 . 7450 .6515 L5522 .4474 .3385 .2269 .1138

0000 L9176 .8332 .7450 L6517 L5524 4477 .3387 .2271 .1139 0. 0000

. 0000 .9165 .8313 .7424 .6487 L 5496 .4454 .3371 .2261 .1134 0000
1.0000 .2166 .8313 . 7425 .6489 .5498 .4456 .3374 .2262 L1135

6¥cC
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6.5 DISCUSSION

The importance of singularities in certain problems has over recent
years caused a large number of special finite element adaptations to be
proposed for their treatment. We have discussed here the mesh refinement
approach which is one of the more successful treatments. The short-
coming of refining over the whole of the reg%on R 1s that many mesh points
remote from the singularity are introduced needlessly so that the resulting
master matrix becomes unnecessarily large. Thus, in order to keep the
total number of elements in the discretization to as smell a number as
possible for a given significant figure accuracy, we refine only in the

neighbourhood of the singularity O,

The success of mesh refinement in improving the accuracy of the

numerical solutions 1s evident.

Indeed with continued mesh refinement we reach the stage that the
finite element solution is more accurate near the singularity than at

nodes in the far region R remote from the sinqularaity.

The effect of the singularity on the numerical solution has thus
been neutralized by the mesh refinement and by using a space of piecewise

polynomial function of higher degree.

For the problem of the type discussed, there seems to be little to
choose between the finite element and the other specialised methods used
to golve the problem, when comparing the accuracy obtained, but it is
indeed the finite element method which is more general and the range of

the problems to which 1t can he applied far wider.




CHAPTER 7

FINITE ELEMENT SOLUTION FOR NONLINEAR

PARTIAL DIFFERENTIAL EQUATIONS




7.1 INTRODUCTION

In this chapter we look at the solution of two-dimensional nonlinear
partial differential equations on general domains. A finite element

solution for a given set of test problems will be obtained by TWODEPEP.

As basis functions we use a class of polynomials which are of:
i. degree two - with six node triangular elements
1i., degree three -~ with ten node triangular elements

iii. degree four - with fifteen node triangular elements

Newton's method which is described in detail ip Chapter 2 is used to
solve the resulting nonlinear system of finite element egquations. The
computational performance of the method is measured over a problem
population of:

1. The minimal surface problem

11. A set of nonlinear elliptic partial differential equat:ions

iii., The highly nonlinear coupled elliptic se&i-conductor
problem.

We present here the solution of this set of problems using the different
classes of polynomials as given above, and with a different number of

elements for each problem.
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7.2 THE NUMERICAL SOLUTION OF THE MINIMAL SURFACE EQUATION

BY USING THE FINITE ELEMENT METHOD

In this section, the numerical solution of a second order, elliptic
quasi-linear partial differential equation arising in two-dimensional
magnetostatic field problems is considered (Plateau's Problem). The
type of problems discussed are those arising, for example, in the design
of particle accelerators where the desired magnetic field strengths

are so large as to be principally in the domain of the nonlinear. The

two-dimensional triangular element is used to solve the: test problem.

The performance of the method is verified by numerically solving a
sample problem and comparing the results according to the degree of the
polynomials used and the number of triangular elements used in each
type of polynémial. A graphical output of the solution is also

presented.

7.2.1 FORMULATION COF THE PROBLEM

Consider a two-dimensional simply connected region R in the (x-y)

plane with boundary 3R.

Let £(x,y) be a single-valued function defined on the boundary 3R
and Yy represents the height of a given space curve above the point (x,y)
on R. Let ulx,y) represent the (single-valued) height, above the point
{x,¥) 1n R of the surface of minimal area through the given space curves
then the problem in variational form, is that of finding a function u(x,y)

twice continuously differentiable in R satisfying,

u(x,y) = f{x,y), on 23R, (7.1)




and minimizing the surface area

A= IJ (1 + u2 + uz}% dxdy .
X Y
R

The Euler-Lagrange equation corresponding to Equation {7.2)

r(l+q”) - 2spq + t(l+p°) = O , (7.3)

2 2
g; ;s T gxgy and t=2—% sy Or in vector-operator
oy

notation the Euler Equation (7.2) takes the form,

Ju
where p o ! q

v.ty(|va|Yvul = 0,

vilval®l = +|vul®H? .

If the differentiations in Equation (7.4) are carried cut, one obtains
the more familiar form of the minimal surface equation as,

{ 2 2)3/2}uxx - { 2}3/2}“xy * { 7 u2)3/2}uYY = 0. (7.5)
Y

(l+u +u (1+u2+u (l+u +
X ¥ X Yy X

In order to satisfy the requirement of the partial differential

equation given by TWODEPEP which has the general form,

3 2 ~
ax[crxx(x,y.ux.uY,u)] + 3Y[crxy{x.y,ux..uy.u)] =0 (7.6)

we can rewrite equation (7.5) in the form,

2 2 2 -3 ) 2 2.~
ax[ux(l+ux+uy) 1 + 3y[uy(l+ux+uy) 1=0 (7.7)
where
2 (1+u2+u2)-}] --1y (1+u2+u2)-3/2(2u u +2uu Y4u (L+uieudy?
X x X ¥y 2 'x X v X XX Y ¥yX XX X Yy

(7.8)




and
oy

If we add (7.8} and (7.9) we get,

Ji[u (1+u2+u )
¥ X ¥y

2

{(1+

(1+u }
2 2 3/2}
Y

7.2.2 TEST PROBLEM 1

Solve the nonlinear minimal surface problem (7.5) over the region

0<x<1l, O<y<l with the boundary conditions,

Figure (7.1l) is shown below which illustrates Test Problem 1.

2.3

u=[cosh2y-x 1

(o, 1)

—il = (1+ 2 2) 3/2(2u u +2uu )+u
Y X Xy Yy Yy YY
(1+u2+u y % (7.9)
X ¥
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2u u (1+u2)
(1r2 2, 2372 Yy (140 2+ 2,372
Y Y

which is similar to Equation (7.5).

2.3

u = [coshzy -x 1]

on 9R. (7.10)

{1,1)

R:

u=[cosh2y--l]i

{(1+u ) 1 {
(J.+u +u2)3"/2j xx {1+u 2+ ; 3/2

{ (1+u ) }
+
{l+u +u )3/2

2u u
x v }

(0,0)

2%

u = [1-x]

FIGURE 7.1: Test Problem 1

(1,0
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Results for Test Problem 1 are given in Table (7.1) which compare
the discretization error cbtained by the present Finite Element method
with those of the Ceoncus and Greenspan methods, The problem has the

3

2 .
exact solution uE=(cosh y-xz) which is used as an 1nitial value to give

a good estimate to solve the non-linear system generated by TWODEPEP,

% y F.E. Method Concus Green§pan Exact
Solution Solution Solution Solution
0.95{ 0.00 -32539 .31225 .31225 .31225
0.65 0.05 . 76156 .76158 . 76097 .76158
0.30{ 0.10 | .95918 .95918 .95901 " .95918
0.80 | 0.10 .60833 .60833 .60584 . 60850
0.55 0.20 .84863 .84863 .B4776 .84863
0.40 | 0.20 .93837 .23837 .93792 .93837
0.95 0.20 .37264 .37241 .36439 .37153
0.20 | 0.25 1.0118 1.0118 1.0118 1.0118
0.70 | 0.30 .77638 .77641 .77434 .77636
0.55 | 0.40 .93072 .93074 .92997 .93071
0.95 | 0.45 .56043 .56054 .55868 . 56040
0.35 1 0.50 1.0719 1.0719 1.0720 1.0719
0.65 | 0.65 1.0310 1.0310 1.0311 1.0310
0.85 | 0.70 .92356 .92363 .92352 .92355
0.15 | 0.75 1.2860 1.2860 1.2863 1.2860
0.50 | 0.75 1,1942 1.1943 1.1948 1.1942
Q.20 | ©.80 1.3224 1.3224 1.3228 1.3224
©0.45 | 0.85 1.3083 1.3083 1.3088 1.3083
0.95 { 0.85 1.0058 1.0058 1.0060 1.0058
0.30 | 0.920 | 1.4013 1.4013 1.4017 1.4013
0.70 | ©0.90 | 1.2505 1.2505 1.2509 1.2505
0.05 | 0.95 1.4854 1.4854 . 1.4855 1.4854
0.65 | 0.95 1.3366 - 1.3366 1.3368 1.3365

TABLE 7.1: Compariscn of the discretization errors with those of the
Concus and Greenspan methods




For 300 quadratic basis functions, the present method converges

with an error IIuN-uE||2=3.2453X10-4, while with 300 cubic basas

functions the error is [luN-u =6.3584x107°. It is immediately

Ellz
apparent that the cubic basis function behaves better than the guadratic
basis function for the same number of elements. Plots of the solution

u showing the behaviour of the function over the given region are given
in Fiqure (7.2) and (7.3). The promising results obtained for thas

minimal surface problem suggest the method discussed in this thesais is

very useful for solving nonlinear partial differential equaticns.
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7.3 A POPULATION OF TWO DIMENSIONAL MILDLY NONLINEAR

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

7.3.1 TEE MODEL PROBLEM

We consider here the numerical approximation of two-dimensional
mildly non-linear elliptic boundary value problems of the form,
Du = f(u.ux,uy) ¢ (X, 7)E3R, (7.11)
subject to the mixed type boundary conditions,

Lu = g(u) , on 3R . (7.12)

Several authors G.F. ALIER [1971], E.M. HOUSTIS [1979], etc. have studied
the solution of (7.11), (7.12) using finite-difference discretization.
In this work we use the finite element method which is based on the class

of piecewise polynomials approximation given in Section (7.1).

The procedure consists of the following components:
Elements:
A number of triangular elements are placed over the domain
of the given problem.
Approximating Space:
A space of piecewise polynomials of second, third or fourth
degree are used.
The resulting non-linear algebraic system is solved by Newton's

method.

7.3.2 COMPUTATIONAL PERFORMANCE

We present the results of a population of second order mildly

nonlinear equations which represents characteristics from both the
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|
"real world" and "ideal" situations.
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A summary of results for the 4 test problems, is presented as

follows:
(a)
{b)

(<)

Tables which give the solution u, the exact solution in the
%,y dimensions and also the error norm 2 for a different
polynomial order.

Plots of the sclution u showing the behaviour of the function

u over the given region.

Mildly Nonlinear Elliptic Partial Differential Equations

Test Problem 1
Equation: V2u+(2-sinycosx)u = Uny
Boundary condition: Dirichlet
Domain: Unit square
Exact solution: u = sinxcosy .
Comments: Non-constant coefficient, nonlinearities in the derivatives
of the solution, nonhomogeneous boundary cenditions.
Results: The tabulated results show the error, as the number of

elements is subdivided, (the h version and also as the degree

of the polynomial is increased, (the p version).

Definition of the test problems

50 70 100
Elements Elements Elements
8.0812x10™° | 3.4991x10"° |2.0802x10~° ‘
2.4988x10 % | 2.082x10° | 2.056x107® |
guartic 2.0254x10"° | 2.0254x107° - ‘

TABLE 7.2



Figures (7.4) and (7.5) show the contour lines and the surface of the

solution u for 100 cubic elements.

Test Problem 2

V2u - uf{u_+u )e—(x+y) '
X ¥

Equation:
Boundary condaition: DPirichlet,

Domain: Unit square

Exact solution: ex+y
Comments: Nonlinearities in the solution and the first derivatives of
the solution, nonhomogeneous boundary conditions.

Results: The tables show the error as the number of elements 1s subdiviced

{the h version) and also as the degree of the polynomial is

increased (the p version).

Number of
elemen 50 70

Elements

Order

of the 100

Elements Elements

element

4 4 4

Quadratic
Cubic

Quartic

3.9549%x10

2.4954x10 >

2.2507%10 >

2.0377%10

2.2791x10"°

2.2507%10"°

1.5582%10

2.2720%10"°

TABLE 7.3
Figures (7.6) and (7.7) show the contour lines and the surface of the

solution u, for 70 quartic elements.

Test Problem 3

Equation: vy = e + £(x,y)

Boundary condition: Dirichlet, homogeneous,

Domain: Rectangle (0;%)*(0,%9

Exact solution: u = sin2wxsindny .




Comments: Adapted from real world problem.

Results: The tables show the error, as the number of elements is
subdivided, (the h version) and also as the degree of the
polynomial is increased (the p version).

Number of
Orde elementd 50 70 100
of the Elements Elements Elements
element
-3 ~-3 -4
Quadratic 3.2712x10 2.1388%10 7.3088x10
Cubic 2.5027x10™ | 1.4850%0™* | 2.7599x107°
Quartic 1.5412x107° | 7.6831x10°° -
TABLE 7.4

Figures (7.8) and (7.9) show the contour lines and the surface of the

solution u, for 70 quartic elements.

Test Problem 4

. 2 u
Equations Viua 10

= f{x,y) ,

Boundary condition: Dirichlet
Domain: Unit square

Exact solution: cosBy + sinB (x-y)
(a) B=mr , (b} B= 8.

Comments: The value of f(x,y) is determined so that the given true
solution is correct. Nonhomogeneous boundary conditions,
oscillatory solution.

Results: The tables show the errors as the number of elements is
subdivided (the h wversion) and also as the degree of the

polynomial is increased {the p version) with B=v.




Number of
g;dﬁie lements 23 a6 69
element Elements Elements Elements |,
Quadratic 1.269x10" 2 4.6156x10"° | 1.7081x107>
Cubic 7.9156x10 2.5092x10~% | 5.842x10™°
Quartic 6.1906x10 > 2.1912x10"° -
TABLE 7.5

Figures (7.10) and (7.11) show the contour lines and the surface of the

solution y for 69 cubic elements.

The object of the present set of test problems is to show how the
finite element method when supplemented by adequate quadratic, cubic or
the highly accurate quarti¢ basis functions can produce highly accurate
results and present no difficulty in dealing with mildly nonlinear

elliptic partial differential equations.
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7.4 A SEMI-CONDUCTOR PROBLEM

A highly non-linear coupled ellaptic partial differential equation
which is one of the most important problems for the scientific computing
community is that which models the intrinsic behaviour of semi-conductor

devices.

These equations may be written in the form of a two-dimensional

model, 5
-Y7u + n(x,y) - p(x,y) = k(x,y) . (7.13)
=0, . (7.14)
VJP =0, (7.15)

where u(x,y) is the electrostatic potential, n(x,y), pi{x,y) are the
electron and hole densities respectively, and k(x,y) is the doping
profile (impurity concentration), Jn and Jp are, respectively, the

electrons and holes current densities.

They are further specified in the usual drift-diffusion equations by

Jn = -Mn(x,y) ni{x,y)Vu + qi(x,y)Vn R {7.16}
Jp = —Mp (x,y) plx,y)Vu - Dp(x,y)Vp . (7.17)

The current densities Jn and Jp are composed of a drift component,
-MnnVu or -Mpqu, and a diffusion component, DnVn or Dpr. Assuning
the validity of the Einstein relation, M=D and no recombination occurs,

Equations (7.16) and (7.17) can be rewritten as,

u-v,

Jn = Mn[—nVu+Vn] = -Mhe Vv . (7.18)
W~

J_ =M _[-pVu-V = -M e v .19

b p[pu pl b W o, (7.19)

where n(x,y} = eu-v' and p = ew-u define implicitly the quasi-Fermi

potential levels v and w for electrons and holes, respectively. Using
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this change of variables in Equations (7.13) to (7.15) leads to the

equations,
2+ &V - e - kixyy) . (7.20)
-vmne““’vv) =0, - (7.21)
-vae“““Vw) =0 . (7.22)

If we compare the original equations with Equations (7.20) to (7.22),
then it is clear that both the Einsteain relation and the changing of
the variable have significantly reduced the degree of difficulty of the

original problemn.

In Equation (7.21) if we know u then we have a self-adjoint elliptic
PDE in v which perhaps can be easily solved. But in (7.14) 1f u is
known we still have the Vn term in addition to the V2n term. A similar

problem occurs in Equation (7.15).

This formulation of the semi-conductor equations are highly non-
linear and computational difficulties may be encountered when Equations
(7.20) to (7.22) are solved numerically by TWODEPEP. The first of these

difficulties is the very large dynamic range of the solutions.

Another difficulty is the fact that for very small devices the
validity of the Einstein relation for high electric field strengths is

questionable. Hence Equations (7.21) and (7.22) may not apply.

Problem Definition and Results

For given mobility coefficients, Mn'Mp and diffusion coefficients
Dn'Dp Equations (7.20) to (7.22) are posed on the unions of rectangular

regions as shown in Figqure (7.12). Dirichlet boundary conditions are



imposed on the gate ({(G), source (S}, drain (D) and substrate (B) by

the applied bias voltage; Neumann boundary conditions are assumed at

the unspecified edges.

No attempt is made to solve the Polsson equation for the potential
distribution inside the gate, but rather an approximate boundary

condition along the interface is made.

F un#D E
u_ =0 =60
H S g bl __ SR . | "D C
2 2
9 u + o u UV L QWU
2 2 .
22=0 Ix dy EE:O
on an
9 9 u~v ov av
- ” + ay)(mne (ax + ayn 0
] 9 w-u oW aw
- 0Gx + By)(Mpe (ax + 3;» o
A B
uB=0
FIGURE 7.12

Figures (7.13) and (7.14) summarise the results of the finite

element sclution for the electrostatic potential u in the region,
0 <x<2.8 0sgy¢g .92,

with the boundary condition given in Figure (7.12). 150 quadratic

triangular elements were used to solve this highly non-linear problem.



FIGURE 7.13
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CHAPTER 8

APPLICATION OF THE FINITE ELEMENT METHOD

TO THE SOLUTION OF COMPLEX PROBLEMS




8.1 INTRODUCTION

In this chapter the finite element solution of a class of partial
differential equations for the following complex problems will be
presented. Firstly, from Elasticity we will consider the numerical
solution of the Biharmonic problem of a simply supported rectangular
plate in the two dimensional plane. Secondly, two problems of viscous
flow in fixed regions, namely the potential flow around an elliptic
cbstacle in a channel, and that of inviscid laminar flow in a channel
past a disc. Thirdly, we look at the solution of the two dimensional
unsteady incompressible Navier Stokes equations in a rectangular region,
and finally we will consider the solution of the eigenvalue problem for

the Laplace Operator in an L-shaped region.



8.2 THE BIHARMONIC EQUATION

In this section we shall consider the numerical approximation of
the 4th order linear partial differential equation

4 4 4
3u+23u +a:=f(x,y),

4 2, 2
ax ox 3y Iy

in which £(x,y) is some specified function of x and y.

This equation is termed the Biharmonic equation, and is well known
in many branches of Mathematical Physics - notably Hydrodynamics, where
1t governs the slow two-dimensional motion of a viscous fluid, u
representing the stream-function (usually denoted by ¥), and f being
zero when the body forces are conservative, Biharmonic equations also
appear 1in the theories of extension and of flexure for flat elastic

plates in Elasticity.

The basic laws of elasticity corresponding to the general
conservation principles are the equations of equilibrium and compatibility.
In the general application of these equations then to relate the stress
and the strain in an elastic bedy, it is convenient to define a stress
function ¢ according to

¢

XX

*yy

and
¢XY

where Ux and Uy are the normal stresses in the x and y directions,

respectively, and pxy is the corresponding shear stress.




Under static conditions, equilibrium and compatibility then leads

to the biharmonic equation which takes the form (8.1). Equation (8.1)
1s an elliptic equation analogous to Laplace's equaticon in other systems,

if £=0.

In general, we can classify the Biharmonic equations into three

classes of problems:

4 4 4

Static Beam: 89 + 2 32¢ 5 + 3 2 =0,
ax ox dy dy
4 4 4 2

Beam Vibration: 9 2 + 2 32¢ > + 3 2 =k 2 ; P
Ix Ix Ay dy ot
4 4 4

and Loaded Beam: 3¢, 2 32¢ 20 flx,y) .

K x dy ay

A RECTANGULAR PLATE PROBLEM

We consider a rectangular plate in the two dimensional plane bounded

by the lines Ogxga, Of5ysb.

A load g=q{x,y) is assumed to be distributed over the surface of

the plate.

Then, the differential equation for the deflection u=u(x,y) 1s

found to be

4 4
3 u du ,3du_g

2, 2 4 p
ax 3x 3y y

(8.2)

where D is a physical quantity called the "flexural rigidity of the plate".

If the edges of the plate are simply supported, the boundary

conditions are,




2
u=0, 3—% = Q,
X

=o'

for x=0 and x=a ,

for y=0 and y=b ,

(8.3)

We will consider the case in which 9=q, sin %? sin %?, where 9, denotes

the intensity of the load at the centre of the plate.

It is clear that all the boundary conditions (B.3) are satisfied

1f we take for the deflection, the expressiocn,

. X
u =c¢ sin :; sin ¥y ’

in which ¢ is a constant that must be chosen so that u will satisfy

equation (8.2} wath q=q,, Sin %?'Sln

equation (8.2} we find that,

4
n

solving for ¢ we find that the solution of this special problem is gaven

by r 1. 1

b

b
L, L2 %
27 22 ¢
a b

u= g '+ S sin@sin

EZ, if we substitute (8.4) into

(8.4)

(8.5)

Now, the fourth order plate problem (8.2) can be solved by TWODEPEP by

defining, 2

2
a

ax 3y

Then equation (8.2), becomes

equations, 2 2

3 u 9 u
_+—-2

ax oy

Py, v
.

ox 3y

(8.6)

a system of two simultaneous second order

9
D

[4

8.7
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and the boundary conditions beccme

u=0, v=0, on x=0 and x=a ,
{8.8)

u=0, v=0, ony=0and y=b ,
We solve the set of two simultaneocus equations (8.7) and the given
boundary conditions (8.8) with a=1, b=1l. The input to the preprocessor
should be manipulated into a symmetric form, in which greater efficiency
and, often, greater stability is achieved. To illustrate the-éffectiveness
and the accuracy of using the p and h versions, and for compariscn
purposes, we list the following results:
1. Results are given in Table (8.1) which compare the numerical
solution with the given exact results. The very good agreement
between the two sets of results displayed in Table (8.1)
indicates that the "Numerical” finite element method socluticn
of this type of problem is extremely accurate.
2. The error norms L2 obtained by using the finite element p and h
versions to the given problem are listed in Table (8.2).
3. The results of the highly accurate cubic elements are plotted

an Figures (8.1) and (8.2) and shows the behaviour of the

function u over the given reg:icn.
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TABLE 8.1: At each point the numbers represent:

0.0000

0.0000

0.0000

0.0000

lgiFinite element soclution with 100 cubic basas function

The exact solution

0.0000

0.0000

(1,0)

(4214



283

Element
No. o rder
elements Quadratic Cubic
-5 -7
25 1.594x10 9.06%10
-6 =7
50 6.027x10 3.258%10
-6 -7
75 2.003x10 1.202x10
TABLE 8.2

L3

The error norms L2, as the number of elements i1s subdivided, i.e. the

h version, and also as the degree of the polynomial is increased :.e.

the p version of the rectangular plate problem.
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8.3 POTENTIAL FLOW PROBLEM

We determine the potential flew past a right circular cylinder
with the direction of flow perpendicular to the axis of the cylinder
and the stream flow in a channel at a normal incidence teo the disc.
The fluid is assumed to be both inviscid and incompressible. Inviscad
fluids experience no shearing stress, and when they come into contact
with a solid boundary, they slip tangentially along it without resistance.

Dynamic aspects of fluid motion can be characterized by such

¥

concepts as laminar or irrotational and turbulent or rotational,

Inviscid irrotaticnal flow is called potential flow because the
velocity field in the flow can be derived from a potential function,

traditionally denoted by the letter ¢.

For a two-dimensional, incompressible, irrotational flow, the

governing equation for the problem is,

2 2

M+_a._i=o_ (8.9)
2 2

X oy

Two-dimensional flows can alsoc be characterised by introducing the stream

function ¥, which also satisfies Laplace's equation

2 2
3-%’-+3—‘£-= 0 (8.10)
ox ay

The potential function ¢ and the stream function i are related to the

x- and y- components of velocity, denoted by u and v respectively. Then,

u=—%q'- ' v=%'£.
¥ x (8.11)
and u‘-_-—ai v=_-a;¢_'

ox Ay
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”

whether we use the potential or stream function formulation
mathematically the problem 1s the same as that ¢of solving Laplace's
equation, the difference arising only in the application of the boundary

conditions.

APPLICATIONS

i. Inviscid laminar flow around an elliptic obstacle in a channel

The actual solution domain is infinite; for computational purposes

it is necessary to construct a finite domain as shown in Figure (8.3).

AN
N

Lyl

FIGURE 8.3: Flow past a circular obstacle in a channel

The nature of the boundary conditions for this rectangular domain are
as follows,

on AF and BD

the velocity of the fluid is undisturbed by the solid body, because the



flow is laminar, there is no flow across the line AB and FD, that is,

B¢ 3¢ _
™ e O , along AB and FD.

In addition, because there can be no flow through the cylinder wall

9 _
on o

along the circumference of the circle.

With the properly specified boundary conditions it is possible by
taking advantage of symmetry to consider only a quarter of the domain
{Figure (8.4)). The boundary conditions on FG, FK, KJ and JH are the
same as those determined earlier, while the boundary cogdition on GH 1s
$=0. Thus, we have Neumann boundary conditions everywhere except on the

line GH, where the Dirichlet conditions apply.

We will study the fellowing two cases:
(1} Solve Laplace's Equation (8.9) in the region,
-4 £ x 50, cCsgsysg2,
and on JH we define the ellipse,
x-h, 2

x-h, ¥y-k,2 _
(2) +(l) =0

{2) Solve Laplace's Equation (8.9) in the region,

4 £x$0, Osys2,

and on JH we define the ellipse (x—?l) 2+(1-2'1]i) 20
F Y
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F ¥ G
$=0
H
3¢ _ 2, _ 3
-1 Ve =0 5o =0
K
J
.a_¢=o
Y

FIGURE 8.4: Boundary conditions for the quarter domain
for both cases (1) and (2) respectively

The Numerical Results

The numerical values obtained with the finite element method for
the regilons given in Figure (8.4) are shown in Tables (8.3) and (8.4)

respectively.

Solutions were calculated with 300 cubic elements, for the case (1),

where JH has the form (x h)2 (y k)2-—0, we note that ¢ has values:

X- h 2
+

0£¢55.2516, While for the case (2), when JH has the form (== ( ) =0,

we note that ¢ has values: 0£¢£6.1655.

This slight difference in the values of ¢ are due to replacing the
minor and major axes of the ellipse within the same region. This is
shown more clearly in Paigures (8.5) and (8.6) which shows the behaviour

of both scolutions in the given region.



mesh points: 6x=.4, dy=.4

£ 5.2273  4.8249  4.4166  3.9995 3.5673  3.1098  2.6119 2.0562 _ 1.4298 __ .7358]1 _C 0.0
5.2274 .8249  h.4167 [.999s 3.5673 B.1o%8  b.s6120 2.0562 h.4298 |.733588 |o.0
5.2296  ©.8276  W.4208  |.0066 3.5795 B.1297  Pp.e412 2.0028 h.a656 |.75841 0.0
5.2296  4.8277  h.4209 h.0o67 3.5796 B.1297 b.e4a13 2.0029 h.1656 {.75843 0.0
5.2356  §.8348  h.4320 h.o259 3.6135 pB.1871  p.7305 2.2115 _h.5s68  1.88663 0.0
5.2357 1.8349  4.4321  }.0260 3.6135 B.1871 p.7306 2,2116 [L.5868  |-83654 g 0.0

H
5.2431  4.8438  N.4463  M.0512 3.6596 _ PB.2717 __ b.8793 2.4401 ‘/”//”’/
5.2432  4.8439  K.4463  h.0513 3.6597 B.2718  p.8793 2.439
5.2492  4.8512  R.4581  {.0728 3.7014 PB.3564  [3.0603
52403 4.8513  h.4582  h.0729 3.7015 B.3565 |3.0604

« p-2516 .8541  ©.4627  h.os13 3.7186 B.3941 [3.120

5.2516  4.8542  4.4628  4.0814 3.7187 3.3943  3.1594° -

lrFlnite element solution with gquadratic 300 elements

TABLE 8.3: At each point the numbers represent:

I Finite element solution with cubic 300 elements

062




mesh point 8x=6y=.4

TABLE 8.4: At each point the numbers represent:

[_Finite element with quadratic 300 elements

P 6.1434 5.7411 5.3334 4.9172 4.4860 4.0272 3.5179 2.9180 2.1632 1.1844 G0.0
6.143 5.7414 5.3337 4.9175 4.4862 .0275 3.5182 2.9182 2.1637 h.1848 0.0
6.1455 5.7436 5.3374 4.9243 4.4989 L.0510 3.5613 2.9932 2.2806 ..3091 0.0
6.1457 5.7439 5.3377 4.9246 4.492 1.0513 3.5613 2.9938 2.2815 QN.3099 0.0

: H
6.1510 5.7503 5.3479 4.9428 4.5330 1.1141 3.6775 3.2048 2.6496
6.1512 5.7505 5.3482 4.9431 4.5332 1.1143 3.6778 3.2052 2.6505
6.1578 5.7585 5.3609 4.9659 4.5754 1.1933 3.8261 3.4869
6.1581 5.7588 5.3611 4.9661 4.5757 1.1936 3.8266 3.4868
6.1634 5.7652 5.3714 4.9846 4.6101 L.2584 3.9496 3.722
6.1636 5.7654 5.3717 4.9848 4.6103 L.2586 3.9498 3.72
K 6.1635 5.7677 5.3754 4.9917 4.6233 .2834 3.9971 3.8318
0
6.1657 5.7680 5.3757 4.9920 4.6236 4.2836 3.9972° 3.8124

Finite element with cubic 300 elements
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FIGURE 8.5
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1i. Inviscid laminar flow in a channel past a disc

The stream function Y represents the flow 1n a channel at a normal
incidence to the disc, as shown 1n Figure (8.7} which because of the

symmetry only a quarter of the domain needs to be considered.

The prescribed boundary conditions for the problem are as follows:

I}
2%
-

en DC ¢

cn AD ¢

]
g

on AB ¢ = O ,
on co-gm =0,
on :
and on OB ¢y =0 .

An infinite speed will be acquired by the stream at point O, the edge of

the plane, giving rise to a singularity in the scolution.

. c
? 0
A B
—

~

FIGURE 8.7a: Flow past a disc in a channel

p=2
5 c
3 _
Y=y an O
v2y=0 o
P=0
a B
=0

FIGURE 8.7kx Boundary conditions for a quarter domain




The Numerical Results

Table (8.5) summarizes the results of the finite element solution
of the stream function ¢ in the region,

-2

A

xs0, Osys2,

and the boundary conditions given in Figure (8.7b). Both 300 quadratic,
and cubic triangular elements were used to solve this problem. For the
Q.B.F. (Quadratic Basis Function) and the C.B.F. (Cubic Basis Function),
the small differences in the results given in Tabkle (8.5) around the
boundary line OC which are higher than anywhere else in the given domain
are due to the infinite speed at the point 0, the edge uf the plate, i.e.
the sudden change of the boundary condation at O from V=0 to %% =0
gives rise to a singularity in the solution which we tried to minimize
by using the same procedure as that applied in Chapter 6. Graphs of the

solution Y showing the behaviour of the solution over the given region

are presented also in Figures (8.8a) and (8.8b}.



2.0000 2.0000 2,0000 2.0000 2.0000 2.0000 2.0000 2.000 2.0000 2,0000 2.0000
2.0000 2.0000 2.0000 2.0000 2,0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
1.6000 1.5901 1.5792 1.5667 1.5516 1.5329 1.5102 1.4839 1.4564 1.4338 1.4247
1.600C0 1.5901 1.5793 1.5667 1.5515 1.5329 1.5102 1.4839 1.4565 1.4340 1.4250
1.2000 1.1836 1.1653 1.440 1.1173 1.0829 1.0379 .97841 -90134 .80927 .75083
1.2000 1.1835 1.654 1.440 1.1174 1.0830 1.0380 .97868 .90161 .80957 .75127
. 8000 . 78310 .76414 .74180 .71286 .67467 .62197 .54715 .43715 .26599 0.00000
-80000 . 78302 .76427 . 74176 . 71302 .67470 .62201 .54734 .43738 .26612 0.00000
- 40000 .38935 37737 .36302 .34474 .31991 .28616 .23955 .17650 .094887 0.00000
+ 40000 .38929 .37742 . 36307 .34461 .31991 .28610 .23957 .17645 .094947 0.00000
0.00000 |0.00000 0. 00000 0.00000 0.00000 0.00000 0.00000 0.00000 {0.00000 0.00000 Q.00000
0.00000  0.00000 0.C0000 0.00000 0.00000 0.00000 0. 00000 0.00000  0.0000C 0.00000 0.0C000

TABLE 8.5: At each point the numbers represent:

Finite element solution with quadratic elements

Finite element solution with cubic elements
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FIGURE 8.8a
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8.4 THE EIGENVALUE PROBLEM

Let R be a bounded@ two-dimensional domain with boundary 3R, A an
eigenvalue of Laplace operator V2 over the region R, for which there

exists a non-zero function u defined on R, such that,

Va+tu=0, (x3) ER,
with u = gl, (x,y) € BRl R (8.12)
ou _
and e g2, {x,y) € 3R2 .
The eigenfunctions may be normalized so that,
l, k=%
J u(k)u(l)dxdy = { } (8.13)
0, k#%

We are interested in computing an accurate approximation to the smallest
eigenvalue and its corresponding eigenfunction. Furthermore, we want to
estimate the accuracy of cur approximation by comparing the finite
element solution of different approximations. We also examine the
possibilities of accelerating the convergence, as the size of the elements
gets smaller, by various adaptations of the procedure of grid refinement

as used 1n Chapter 6.

Firstly, we consider the L-shaped membrane eigenvalue problem, in
which we determine the smallest eigenvalue and eigenfunction of equation

(8.12), 1in the region of Figure (8.9) below, with u=0 on the boundary.



FIGURE 8.9: L-Shaped region for the eigenvalue problem

Since the problem jillustrated in Figure (8.9) involves a re—entrant
corner of internal angle %; at which a boundary singularity occurs,
therefore, we obviously need the mesh refinement procedure which is
discussed in Chapter Six in order to produce a useful answer, so we will
consider the procedure of refining the elements in the neighbourhcod of
the singular point 0, and examine the possibilities of accelerating the
convergence as the number of elements and the degree of the basis
function 1s increased. When the finite element method is applied to
this problem it gives rise to an approximating matrix eigenvalue problem

which is solved by the inverse power method.




An estimate of the smallest eigenvalue An is given in Table (8.6),

where the problem is solved without the adoption of a grid refinement
procedure, the results obtained reveal that the convergence to the
correct value An for the three cases (guadratic, cubic and guartic

elements) are slow indeed as the number of elements increases.

No. of elements Value of ln Value of An Value of An
with =30 for the quadratic | for the cubic | for the quartic
case case case
n 9.74199 9.67078 9.65595
2n 9.70149 9.66194 9.65119
3n 9.69670 9.66191 -
TABLE 8.6

We note that the value of An=9.6397 which is correct to £ive significant
figures was obtained by REID and WALSH [1965]. Other estimates of the
smallest eigenvalue ln are given in Table (8.7), where this time the
problem was solved with the adoption of a grid refinement procedure
around the singular point O, This time the values of hn appear to be
converging quite rapidly to the accurate wvalue. Note that we obtained
the best estimated value of ln which is equal to 9.63990 by solving the

problem with 300 cubic elements dense around the singular point O.




CONTOUR HEIGHT 1914

FPIGURE 8.10: The Eigenfunction u corresponding to ln=9.6399
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No. of elements Value of An Value of A Value of A,
{(with n=50) for the quadratie |for the cubio for the quartic
case case case
n 9.83687 9.64859 3.64294
2n 9.69799 9.64207 9.64049
3n 9.65760 9.64047 -

TABLE 8.7: The dependence of An upon the number of elements and

the order of the elements

The results of the eagenfunction u corresponding to the.smaller eigen-

value ln=9.63990 is plotted in Figure (8.10) and shows the behaviour of

the eigenfunction u in the given region.

Secondly we consider the two-dimensional problem given by Equation

(B.12a) defined on the following three regions.

The first region is given in Figure (8.11) which is reduced by

symmetry to only one quarter i.e. Figure (8.12). The boundary conditions

thus are such that the function u{x,y) vanishes on the boundary and has

zero normal derivative on the lines of symmetry.

=1
1
]
1
1
|
I
1
]
|
uw=l | ___ _“Qf}_--r__gfk _______ u=1
!
i
O ju=1
) )
1
)
I
)
]
=1

FIGURE 8.11




FIGURE 8.12

Now Table (8.8) lists the value of the smaliest eigenvalue An
obtained with 300 quadratic and cubic elements. The results of the eigen-
function u corresponding to the smallest eigenvalue ln=.963360 is plotted
in Figure (8.13) which shows the behaviour of the eigenfunction u in the

given region.

Order of Equally Distributed Dense elements arcund
the element elements the singular point O
Quadratic .963449 .963471

Cubic . 963360 .963360

TABLE 8.8: Values of An with 300 elements

The second region is given in Figure (8.14) which again is reduced
to only one half by symmetry in Figure (8.15). The function u(x,y)
vanishes on the boundary and has zero normal derivative on the lines of

symmetry as shown in Figure (8.15).
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FIGURE 8.13: The Eigenfunction u corresponding to An=.96330
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FIGURE 8.14
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FIGURE 8.15

Table (8.9) below lists the value of the smallest eigenvalue for the
region of Figure (8.15) and is obtained with 300 quadratic and cubic
elements.

Also, the results of the eigenfunction u corresponding to the smallest
eirgenvalue ln=.925756, is plotted in Figure (8.16) which shows the

behaviour of the eigenfunction u in the given region.
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FIGURE 8.16: The Eigenfunction u corresponding to An=.925756




Order of the Equally distributed Dense elements
elements elements around the singular
point O
Quadratic .925815 .92514
Cubic 925714 .925756

TABLE B8.9: Value of An with 300 elements

The third region is given as in Figure (8.17) which 1s again

reduced to only one quarter by symmetry in Figure (8.18).

Y

The function u(x,y} vanishes on the boundary and has zero normal

derivative on the line of symmetry, as given in Figure (8.18).

u=1

u=1

=1

o]

u=1

=1

=1

u=1

FIGURE 8.17



u=1

O u=l

quadratic and cubic elements.

22:0 (1,.5)
an
2 2
-2—121-+§—‘21+Au=0 u=1
ox dy
(0,0) {1,0)
du _
an
FIGURE 8.18

Table (8.10) below lists the value of the smallest.eigenvalue ln

for the L~shaped region of Figure (8.18) which is obtained with 300

Also the numerical results of the eigenfunction u corresponding to
the smallest eigenvalue An=.841250 1s plotted in Figure (8.19) which

shows the behaviour of the eigenfunction u in the given region.

Order of the

Equally distributed

Dense element around

elements element the singular point ©
Quartaic .841995 .841511
Cubic .841232 .841250

TABLE 8.10: Value of An with 300 elements




CONTOUR HEIGHT %19~3

FIGURE 8.19: The Eigenfunction u corresponding to An=.841250



8.5 FINITE ELEMENT SOLUTIONS OF THE WAVIER~STOKES EQUATIONS

The class of problems considered in this section consists of those
which are governed by the two-dimensional Navier-Stokes equations. The
fluid motion considered is assumed to be laminar, steady and isothermal

and the fluid assumed to be incompressible.

With these assumptions the mathematical description ¢of the fluid

motion consists of the equations of motion,

2 2
u sgu _ 3P 37u  37u
pua-+pva—y— Y v 2+ 2) (8.14)
9x dy .
2 2
v av ap 3°v 3w
PUT— 4PV — 5 = — +V (—= + —=) {8.15)
ax dy Iy axz 5 2
and the continuity equation,
au v
o8 L2V . 8.
»x ¥ oy o (8.16)

where.u and v denote the velocity components, P the pressure, p the

density and v the kinematic viscosity.

Now if v=1, then the analytic solution is given by,

ul{x,y) = - cos x siny
(8.17)
vi{x,y) = sin x cos y
The substitution of (8.17) in (8.14) and (8.15), with v=1 gives,
1l 0P _
S % (2 sin y + sin x} cos x
L3e (siny - 2 sin %) cos y (8-1%)
p 3y

It is clearly difficult to find a function p{x,y) satisfying both

equations (8.18) exactly.
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However, the case of the Navier-Stokes equations is of some
interest and we can construct a problem based on the exact expressions
(8.17), to illustrate the numerical solution of the pair of simultaneous
equaticns (8.14) and (8.15) by the finite element method. Thisg can be
done by substituting the expressions (8.18) for the pressure terms in
(8.14) and (8.15), then the resulting equations were solved by TWODEPEP
within the square region: Ogxsw,0sysm using the boundary velocities given

by (8.17).

Numerical solutions were obtained using 100 cubic alements and are
compared with the numerical sclutions given by DENNIS and HUDSON [1979]

who used finite-difference approximations to solve the problem.

The results obtained for the velocity u(x,y) are accurate and are

given in Table (8.11) below.

y/m Finite element | DENNIS solution | DENNIS sclution | Exact
Solution (First aporox.) | (Second approx.)} Solution
0 o] 0 0 o)
0.1 0.18160 0.1828 0.18095 0.18164
0.2 0.34556 0.3475 0.34429 0.34549
0.3 0.47549 0.4781 0.47383 0.47553
0.4 0.55901 0.5620 0.55689 0.55902
0.5 0.58779 0.5909 0.58549 0.58797

TABLE B8.11: A comparison between the finite element sclution of u(x,y)
with those of DENNIS and HUDSON and the exact solution of
the Navier-Stokes equation for v=1, x=.7wm, and values of
y/7T in the range 0.0-0.5

Similar accuracy was obtained for v(x,y}.




We note that also the solution given by ROSCOE {1975, p.300, |

accurate, and with 100 cubic elements, the present method converges with

an L, norm = 0.36403X10-4 which is very promising. A plot of the

functions u(x,y) values showing the behaviour of the solution over the

Table 2] are not in agreement with (8.17), however our results are

region are presented in Figures (8.20) and (8.21).
|
|
|
|
\




FIGURE 8.20: Contour lines for the velocity u of Navier-Stckes problem
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CHAPTER NINE

CONCLUSIONS
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In the feoregoing chapters, the implementation of the finite element

method has been studied on many different types of preoblems.

-

rd

As a result of the research described in this thesis several general
conclusions can be drawn in regard to the overall scope and use of the
finite element procedure when applied to the problems discussed in the
previous chapters. These conclusions are:-~

- The accuracy of the finite element method will obviously depend
upon how well the trial functions can approximate the true
solution of a problem, the results confirm that- if the approx-
imating space is admissable and if the true solution u is smecoth
enough then an increase in the p version gives an equivalent
decrease in the error bound.

- At various points we have presented the agreement of our finite
element solutions with other numerical solutions and with the
exact solution if available. We have also explored different
sets of boundary conditions, the results obtaihed were extremely
accurate,

— The ability of using finite elements of varying order {(quadratic,
cubic and quartic), i.e. the p version and that of increasing
the numbers of elements, i.e. the h version has been investigated,
from a practical point of view and the p version is found to be
a better approximation for all the test problems.

- One of the difficulties associated with selving the free boundary
problem is the almost total lack of any analytical results on
convergence and error bounds. More is needed to be done in this

field.




- The success of the mesh refinement technique for improving the

accuracy of the numerical solution of a singularity region is
evident, while the short comings of refining over the whole

region is that many elements remote from the singularity are
needlessly introduced so that the resulting master matrix

becomes unnecessarily large. Thus, mesh generation and refine-
ment for a fully automated finite element method to be used on

a computer is very important so good mesh generation and refine-
ment routines should be developed. Packages are now being
produced which should improve this part of the algorithm; TWODEPEP
has a good mesh generation and refinement strategy.

- Finally, it is likely that finite element programming systems
will become more wider and economically written and hence easier
to run, due to the development of new techniques in programming
and the widespread introduction of software packages.

There remains a good deal of scope for work on the finite element method

and especially so on free surface problems.
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% ke dok ok dodekkdkkdk

A SAMPLE OF OUR PROGRAM FOR OUR THREE DIMENSIONAL

SURFACE PLOTS, AND THE ISOPARAMETRIC PLOTS.
kdkddk ki ik

*dkk ki

LIBRARY 'GINOGRAF'
LIBRARY 'GINOSURF?
LIBRARY 'GINO'
LIBRARY 'VAPPLB'

LIBRARY 'LUSUBV!
ki dkk

OOCO0O0O0O000000

$INSERT SYSCOM ASKEYS
C  hkkkkk

C  *kkkkk

DIMENSION X(900) ,Y(900) ,U(900) ,0X(900) ,DY {900)
5,VX (900) ,VY (900) ,VV(900) ,AZ(50,50) ,W (5000) ,ERQ{900)
(8 ddkkkdk
CALL CLOSS$A(L)
CALL OPENSA(1,'NAVSTOE2.OUTPUT2',16,1)
c kkkkkk
WRITE (1,100)
100 FORMAT(2X,'1=T4010 2=VDU 3=TREND 4=SIGMA 5=PLOTEE
*6=SE281'//)
C *kRkkkk
WRITE (1,199)
199  FORMAT{2X,'PLEASE SUPPLY DEVICE TEEMINAL'/)
C *hkkkk
READ(1,*) IDIV
IF(IDIV.EQ.1) GO TO 1l
IF(IDIV,EQ.2) GO TO 22
IF(IDIV,EQ.3) GO TO 33
IF(IDIV.EQ.4) GO TO 44
IF(1DIV.EQ.5) GO TO 55
IF(IDIV,EQ.6) GO TO 66
11 CALL T4010

GO TO 300
22 CALL VU
GO TO 300
33 CALL TREND
GO TO 300
44 CALL 55660
GO TO 300 - :
55 CALL ClO051IN E
C *kkkk
C *kkkk -
C *kktkk
CALL ERRMAX(200)
GO TO 300
66 CALL SE281
g *kkk

300 DO 400 1=1,1000

400 READ(5,*,END=500) X (1) ,Y (1) ,U(I) ,DX(I} ,DY(I) ,VX(1} VY (I} ,W(D)
| CALL CHAMOD

* CALL PICCLE
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500 NPOINT=I-l
XMIN=X(1)
YMIN=Y (1)
NP=NPOINT
WRITE(1,600) NP

600 FORMAT (2X,15)

C Fikkk

c

C

c COMPAIRING THE NUMERICAL SOL. WITH THE

c THEORATIC-SOL. AND FINDING THE

c AVERIGE ERROR NORM,

C Fekkkkk

C *kkkkk

c
WRITE (1,30)

30 FORMAT(/7X,'NUM AND THR SOL AND ERR',/)

WRITE(1,40)

40  FORMAT (5X,'X',106X,'Y",18X,"NUM.SOL!,11X, ' THE.SOL' ,11X,'ERROR" ,2X
3,/74%,5('-" ,5%,5('-") ,9%,10('-") ,9X,10('-"} ,7X,10("~") ,2X)
C kkkkkk
C  THEORETICL SOL.
ER1=0,0
ER2=0,0
' THER1=0.0
DO 50 J=1,NPOINT
X1=X{J)
Y1=Y(J)
Ul=U(J)
THER1=(1./389.636364) *SIN(3.14169*X1) *SIN(3.14169*Y1)
ER1=SQRT (ABS (UL-THER1) **2)
ER2=ER2+ER1
WRITE(1,70) X1,Y1,Ul,THER1,ER1
50 CONTINUE
ER3=ER2/NPOINT
C *hkek kR
WRITE (1,60} ER3
60 FORMAT(//10X,"AVERAGE ERROR=',E13.5)
70  FORMAT(2X,F8.4,1X,F8.4,2X,3E13.5,2X)
DO 700 y=2,NP
IF (XMIN.GT.X{(J)) XMIN=X(J)
IF(YMIN.GT.Y(J))} YMIN=Y(J)
700 CONTINUE
WRITE (1,800) XMIN,YMIN
800 FORMAT (2X,2F9.5)
DO 900 J=2,NP
XMAX=X (1)
YMAX=Y (1)
IF (XMAX,LT.X{J)) XMAX=X (J)
IF(YMAX.LT.Y(J))} YMAX=Y (U}
900  CONTINUE
WRITE (1,1000) XMAX , YMAX
1000 FORMAT (2X,2F9.5)
C khkkkk
CALL WINDOW(3)
CALL LEVELS{-1.0,1.000)

CALL LABCON(0,1,3,0)
¢ Rkkkkk
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CALL RANGRD{NP,X,Y,U,30,XMIN,XMAX,30,YMIN,YMAX AZ,4900,W)

CALL DRACON (30,XMIN,XMAX,30,YMIN,YMAX,AZ,20,1,4900,W)
C  *kkkkk

CALL CHAMOD

READ(1,%*)

CALL PICCLE

CALL RANGRD(NP,X,Y,U,30,XMIN,XMAX,30,YMIN,YMAX,AZ,4900,W)
C v dedekkdk

CALL ISOPRJ(30,XMIN,XMAX,30,YMIN,YMAX,AZ,1,4900,W)

C % kekkkk
CALL CHAMOD
READ(1,*)
CALL PICCLE
CALL RANGRD(NP,X,Y,U,30,XMIN,XMAX,30,YMIN,YMAX ,AZ,4900,W)
CALL ISOPRU(30,XMIN,XMAX,30,YMIN,YMAX ,AZ,2,4900,W)
CALL CHAMOD
CALL PICCLE
CALL CHAMOD
READ(1,*)
CALL DEVEND
CALL CLOSSA(1)
CALL EXIT
END
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**%% THE FOLLOWING PAGES DESCRIBES THE USER INPUT DATA SET,
#k%  WHICH COMPLETELY SPECIFIES THE TEST PROBLEMS

#+x*  SOLVED PY TWODEPEP,

kkdkk

Hhkk CHAPTER 3

i SECTION(3-7)

*kkk

#xk%  THE FIRST LINE CONTAINS 3 INTEGERS-NEQ,NTF,NDIM IN FREE
#ak%  FORMAT MWHERE

##x%  NT=NUMBER OF TRIANGLES IN THE INITIAL TRIANGULATIONS
#xxx  NTF=NUMBER OF TRIANGLES DESIRED IN FINAL TRIANGULATION
#+x%  NDIM= RESERVED FOR JACOBIAN IF NDIM=1 IN-CORE STORAGE
#x%%  ONLY USED, AND IF NDIM=2 QUT-OF CORE STORAGE USED
*kkk

1 75 1

*kkk

****  THE P,D.E
Rk

OXX UX
OXX/UX 1.0
OXY vy
oXy/uY 1.0

*kkk
*kkk )

*#*x THE SOLUTION WILL BE OUTPUT AT THE POINTS OF THE

kdkkk GRID,

dkkk A=XA +1 *HX I=0'--07NX
*kkk Y=YA H*HY  J=0,,..,NY
hkkk

XA 0.0

HX 0.1

NX 10

kkkk

YA -1.0

HY 0.2

NY 10

dkkik

*hkk PRINTER PLOT OF THE INITIAL TRIANGULATION WILL BE PLOTED
PLOT 1

hkk

*REk THE PROBLEM IS SYMMETRIC

SYMMETRY 1
Rkkk

kkdkk

hkk USING CUBIC ISOPARAMETRIC TRIANGULAR ELEMENTS
dekkd

CUBICS 1l

*kkk

kkkk THE BOUNDEARY CONDITONS
ARC=-1001

FB1 6.0

ARC=-1002

FBL 0,207879576*0DC0OS (1,5707963*Y)
ARC=-1003

FBl 0.0

ARC=~1004

FBl DCOS (1.5707963*Y)
ddekk



kkkk
* kK
Rkkk
*kkk
VXY
ek kk
kkkk
hkkk
hkedk
1ABC
*kkk
ek
kkkik

END.
Rk kk

INITIAL TRIANGULATION ARRAYS
THE COORDINATES OF THE VERTICES OF THE
TRIANGULATION IN THE FORM
VX{1) VY (1) ;e e s s VXINV) [VX(NV)
0.;’1.' 1."'"1.; 1.'1.' 0.'1.' 0.5,0.

LIST THE NUMBERS OF THE VERTICES OF EACH TRANGLE IN
IA(1) ,IB(1), IC(1),0es JANNT) ,IB(NT) ,IC(NT)
THIS ORDER DEFINES THE INITIAL TRIANGLE NUMBERS.
1,2,5, 2,3,5, 3,4,5, 4,1,5

AN IDENTIFYING INTEGER OF THE BOUNDARY ARC CUT OFF BY
THE BASE,AB,OF TRIANGLE K. I{K)=0 IF NONE.
-1001,-1002,-1003 ,-1004
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ke

Fkkk CHAPTER S,

ek oded SECTION(5-4)

*kdk TEST PROBLEM 1

*hkxw

*%%%  FREE SURFACE PROBLEM FOR THE SLUICE GATE PROBLEM
kkk WITH FLOW GEOMETRY B/H=0.4
dkkk

kkkk

1 300 1

kedkd

OXX ux

0XX/UX 1.0

OXY uYy

oxy/uy 1.0

kkdk

XA -1.0

HX 0,2

NX 10

YA 0.0

HY 0.1-

NY 10

*kkk

**%% THE FREE SURFACE BOUNDARY
ARC=~1001

X 1.0-DCOS (1.57079*5)

Y 0.4-0.16016*DSIN(1.57079*S)
'FB1 + ~0,3599

ARC=1002 <l

GBl 0.0

ARC=-1003

FB1 0.0

ARC=1004

GB1 0.0

ARC=-1005

FB1 0.35996 ;7

ARC=~1006 o

FB1 0.35996

*k%kk

*kkk .

SYMMETRY 1

ki

PLOT 1

dede sk de

VXY 0.0,0.4, 1.0,0,23984, 1.0,0.0, 0.0,0.0,
XY -100'0.0' -100'0.4' "1.0'1.0' 0.0;1-0;
VXY -0.5,0.70, -0.5,0.2, 0.0,0.1
ki

IABC 2,1,11, 3,2,11, 4,3,11, 4,11,10, 11,1,10, 5,4,10,
iﬁgs 6,5,10, 1,6,10, 6,1,9, 1,8,9, 8,7,9, 7,6,9
I '-1001' 1002' -1003p 0' 0'

 { -1003' 1004; 0' 0' "'1006'

I -1005, 1004
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|

kkk® ‘

*4#x  CHAPTER 5.
#4%%  SECTION(5-4)
x#k*  TEST PROBLEM 2
*kkk
*kkk THE FREE SURFACE PROBLEM OF THE SLUICE GATE PROBLEM
*xk%  WITH FLOW GEOMETRY B/H=0.36
kkkd
1 300 1
© kkkk
OXX Ux
OXX/UX 1.0
oxXy uy
oXY/UY 1.0
*kkk
XA -1.0
HX 0.1 \
NX 20
YA 0.0
RY 0.05
NY 20
*kkk v
hkkk
ARC=-1001
X 1.0-DC0S (1.57079%*5)
Y 0,36-0.143354769*DSIN(1.57079%S)
FB1 0.31995
ARC=1002
GB1 0.0
ARC=-1003
FBl 0.0
ARC=1004
GBl 0.0
ARC==1005
FB1 0,31995
ARC=-1006 )
FBl 0,31995
dkkkk
kdkded
SYMMETRY 1
kkkk
PLOT 1
*dkdkk
VXY 0.6,0.36, 1.0,0.21664523, 1.0,0.0, 0.0,0.0,
VXY -1.0'0.0’ “1.0,0.4' -100'1.0' 0.0[1.0;
VXY _0¢5'0070' -0.5,0.2' 000'0.1
*hkk
IABC 2,11, 3,2,11, 4,3,11, 4,11,10, 11,1,10, 5,4,10,
IABC 6,5,10, 1,6,10, 6,1,9, 1,8,9, 8,7,9, 7,6,9
*kkk
I -1001' 1002' -1003' 0' 0'
I -1003' 1004' 0; 0; -1006p
1 =1005, 1004
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dekkd

#xkk  CHAPTER 6

*dkk

e SECTION{(6-4)

#x%%  TEST PROBLEM 1.

*kk%  MOTZT PROBLEM

x#%%  CORNER SINGULARITIES IN ELLIPTIC PROBLEMS-

Skkk

1 300 1

kkdk

OXX UXx

OXY uy

kkkk

XA -1.0

HX 0.28571428
NX 7

YA 0.0

HY 0.314159265
NY 10

kkkR

*khk MORE FINER ELEMENTS AROUND THE SINGULAR POINT O.
Kk

D3EST 1.0/ (X¥*24Y**2)
dhkkk

Jckedkk

ARC=1002

FBL 1000,0
k% ke

ARC=-1005

FB1 500.0
dedkkdk

*kkk

CUBICS 1

dkdk
SYMMETRY 1
*dkdk
Rk

VXY 0.'00' 1.,0.' 1.'1.' 0.'1.,
VXY -1.,1.' -1"0.’ -5'.5' -.5'.5
ek

IABC 1'2'7' 2'3'7' 3,4'7' 4,1'7'
1ABC 1,4,8, 4,5,8, 5,6,8, 6,1,8
kkkk

I ¢, 1003, 1004, -1005

"END.



dodedok
Kdkdkk
kkkk
*kdkk
*kkk
hkkk
kkkk
kkkk
kkkk
*kkk

1 300
ek

XX

kkkk

Fl

F1/U
ik

kkkk

YA

kkkk
*kkk

ARC=-1

FB1
kkkk

ARC=-1001

dokdkk
kkkk

D3EST
ik

SYMMETRY
ek

CUBICS

kkkk
kkkk
*kkk

IABC
*kkk

CHAPIER 6.
SECTION{(6-4)
TEST PROBLEM 2,

NOMERICAL SCOLUTION OF ELLIPTIC BOUNDARY
VALUE PROBLEM WITH BOCUNDARY SINGULARITY "

DCOS(.785398*S)
DSIN(.7853598*S)
0.2* (DEXP(X+Y))

0.2* {DEXP (X+Y) )

1,0/ (X**2+Y**2)

1

1

1
0.0,0.0, 1.0,0.0, 0,7071069,0.7071069, 0.5,0.25
1,2,4, 2,3,4, 3,1,4

-1001,-1, -1001
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dekkd
*kkk
kdkk
*eddedk
kkkk
*kk¥
kkkk
kkkk
kkkk

1 300
kdedek
0XX
XY
kkkdk
F1
F1/u
*hkkk
XA

HX

NX
dekdkk
YA

NY

HY
vk
ARC=-1001
FB1
kkkk
ARC=-1
X

Y

F8l
*kkk
ARC=1002
GB1
*kkk

SYMMETRY
*kkk

CUBICS
Rk

PLOT
*kkk
kkdk

VXY
VXY
kkdkok
1ABC
IABC
IABC
*kkk
I

I

1
END.

CHAPTER 6.
SECTION{(6-4)

TEST PROBLEM 3

NUMERICAL SOLUTION OF ELLIPTIC BOUNDARY
VALUE PROBLEM WITH BOUNDARY SINGULARITY

l

Ux
vy

(16 . *X*X+1,) *U~4,*DCOS (2, *X*X-Y)
(16, *X*X+1,)

-1.0
0.2
10
-1.0

10
0.2

DSIN(2,0*X**2-Y)

DCOS (4,71239%S)
DSIN(4,71239%S)
DSIN(2,0%X**2-Y)
0.0
1
1
1
0.0,000; 1.0,0.0; 0.0,1.0' -l-OpOoO'
0.0,”1.0; 0.25[0.25; “0.25,0.25' -0025,-0.25
1,2,6, 2,3,6, 3,1,6,
113'7' 3'4'7f 4lll7f
1,4,8, 4,5,8, 5,1,8
-1001' -1, 0'

0; -1' 0
0, -1, 1002



*kkk

#4k%  CHAPTER 6
#bk%  SECION(6-4)
x+%*  TEST PROBLEM 4.

*#%*  NUMERICAL SCLUTION OF ELLIPTIC BOUNDARY
#kx* YALUE PROBLEM WITH BOUNDARY SINGULARITY -

ki

1 300
P
OxXX
oxy
kkkk
Xa
HX
NX
YA
HY
NY

ke kdkk
dekkik

ARC=1001
GBl
ARC=-1002
FBl
ARC-1003
GBl
ARC=1004
GBl
ARC=1005
GBl
ARC=-1006
FBl

kkkk

SYMETRY
kdkk

D3EST
*dkkk
*dkk

PLOT
*hkk

2 |E

-

F‘C)SDF‘C)CD
-=o - o

0.0
0.0
0.0
0.0
1.0
1

1./ ((X=,5) **2+(Y~,5) **2)

1,

;0.0’
1.0,

0
0
2,9, 2
1001’ 0' 0’ -10%'

1001, -1002, 1003, O,
0, 1004, 1005, -1006

.5,0.0,1.0,0.0,1.0,0.5,0,5,0.5,0.5,1.0,
.0,0.5,0.25,0.25,0.75,0.25,0.25,0.75

+5/9, 5,8,9, 8,1,9,
2,3,10, 3,4,10, 4,5,10, 5,2,10,
8,5,11, 5,6,11, 6,7,11, 7,8,11
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ki
wkkk CHAPTER 7.

4

khkk SECTION(7-1)
THE MINMAL . SURFACE PROBLEM
1l 300 2
khkk
oxXX UX/SQ(UX,UY)
OXX/UX (1.+UY**2) /SQ(UX,UY) *¥*3
oxy - UY/SQUX,UY)
OXY/UX —UX*UY/SQ(UX ,UY) *%3
oxXY/uY (1.+UX**2) /SQ(UX,UY}**3
hkkd
TF 4
kkkik
XA 0 .0
HX 0.1
NX 1
YA 0.0
HY 0.1
NY 1
kkkk
ARC=-1001
FBl (1.0-X**2) *k (1./2.)
ARC=-1002
FBl1 FFU(X,Y)
ARC=-1003
FB1 (2,381097845-x**2) **(1,/2,)
ARC=-1004
FB1 (DEXP (Y)+DEXP({-Y)}/2,0
*kkk
SYMMETRY 1
*kkk
CUBICS 1
*kddk
ALPHA 2
*kikk
VXY 0.0,0.0, 1,0,0,0, 1.0,1.0, 0.0,1.0, 0.5,0.5
kkkk
IABC 1]2,5, 2'3;5' 3'4'5, 4,1,5
kkkk
I ~1001, ~1002,-1003,-1004
*kkk
ADD,

DOUBLE PRECISION FUNCTION SQUX,UY)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
SQ=DSQRT (1. +(UX**24UY**2) )

RETURN
END
DOUBLE PRECISION FUNCTION FFU(X,Y)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
1F(X,EQ.1.0.AND.Y.EQ.0.0) FFU=0,0
IF(X.EQ.1.0.AND.Y .GT.0,0) FFU=DSQRT(0.25* (DEXP(YHDEXP(-Y)
4) **2=x¥*2)
RETURN
END
END.




kkkk

*hEk CHAPTER 7,
kkkk SECTION(7-3)
*hdk TEST PROBLEM 1

*kkk
hkkk

COMMENTS : =

**kk  NON CONSTANT COEFFICIENT NON-LINEARTES IN FIRST

*kkk
dkkk

1 300
Fkhde

10).4
OXX/UX
OXY
OxY/uY
*kkk

F1

F1/U
F1/UX
F1/uY
*hkdk

TF
*kkk

NOUT
*kdkk

CUBICS
*dkkk
XA

HX

NX

YA

HY

NY
kkkk

ALPHA
*hkk

uo
kkkk
sk

ARC=-1001
FB1
ARC=~1002
FB1
ARC=-1003
FB1
ARC=-1004
Fgel

*kkk
SYMMETRY
*kkk

*kkk

VXY
*kkk

IABC
*kkk

I
*kkk

END.,

DER IVATIVES'
1

UXx
1.0
uy
1.0

(2.-DSIN(Y) *DCOS (X)) *U-{UX*UY)
{2,-DSIN(Y) *DCOS (X))

')

=UX

L ] L d
Ll = = O

N HCoCOoOHOO ol L] o

DSIN(X) *DCOS (Y)

DSIN{X}
DSIN(X)*DCOS (Y}
DSIN(X)*DCOS (Y}
0.0

1l

ODOfoool 100'0.0' 100'100' 0-0'1-0'0.5,0.5
1,2,5, 2,3,5, 3,4,5, 4,1,5
-1001 ,~1002,-1003,-1004




#ax%  CHAPTER 7.
kkk*  SECTION(7-3)

bodadaind TEST PROBLEM 2
*kkk

kkkk
*kkk

bbbl NON-LINEARITIES IN SOLUTION AND FIRST DERIVATIVES
OF SOLUTION NON HOMOGENEOUS BOUNDARY CONDITIONS:

fdckk
kkkk

1 50
ek
OXX
0XX/UX
oxyY
oxY/uyY
*kdkk
Fl
Fl/U
FL/UX
F1/UY

kkik

TF
*kkk

NOUT
*kkk

CUBICS
*kdk

XA

HX

NX

YA

HY

NY

*kkk
ARC=-1001
FB81
ARC=-1002
FBl
ARC=-1003
FBl
ARC=-1004
F81

*hkk

SYMMETRY
*hkk

ALPHA
dkkk

VXY

khkk

IABC
*khk
I

END,

COMMENTS:—

1

—U* (UXHUY) * (DEXP (=(X+Y)))
=(UX4UY) * (DEXP (= (X+Y}))
~U* (DEXP (=(X+Y)))

~U* (DEXP (~(X+Y) )} )

Ux
1.0
Uy
1.0

o]
.

. PR
-0 [l =]

HOOKROO - ©

DEXP (X)
DEXP(Y+1)
DEXP (X+1)
DEXP(Y)

1

2

0-0'0003 loofocor 1.0'100' 0-0'1.0’0.5'005
1,2,5, 2,3,5, 3,4,5, 4,1,5
~1001 ,~1002,-1003,~1004




*kkk
ki
kkkk
*kkk
*kkk

34g
CHAPTER 7

SECTION(7-3)
TEST PROBLEM 3

kkdk COMMENTS : -

*kkk%  NON CONSTANT COEFFICIENT NON-LINEARITIES IN FIRST
*kkk DERNATIVES

1 30 1

kkdk

OXX ux

OXX/UX 1.0

OXY uy

oxXy/uY 1.0

* ki .
F1 197.392088*DS IN(6,283185*X) *DS IN (12, 56637%Y) +FUN(X,Y ,U)
F1/u ~DEXP (U)

kkkk

TF 4.

*kkk

NOUT 4

*kkk

kkkd

XA 0.0

HX 0.05

NX 10

YA 0.0

HY 0.025

NY 10

kekkdk

ARC=-1001

FB1 0.0

ARC=-1002

FB1 0.0

ARC=-1003

FB1 0.0

ARC=-1004

FB1 0.0

kkdkk

SYMMETRY 1

kkkk

uo DS IN(6,283185*X) *DS IN(12.5663706+Y)
kkkk

QUARTICS 1

kkkk

VXY 0.0'0.0' 0.5,0.0' 005'0.25' 0.0'0.25' 0-25'0-125
kkk%

IABC 1,2,5, 2,3,5, 3,4,5, 4,1,5

kkkk

I -1001,-1002,-1003,~1004

kkkd

ADD,

DOUBLE PRECISION FUNCTION FUN(X,Y,U)

IMPLICIT DOUBLE PRECISION (A-H,0~2)

FUN=DEXP (DSIN(6.2831853*X) *DSIN(12,566371*Y) } ~DEXP (U)
RETURN

END




CHAPTER 7

SECTION(7-3)

TEST PROBLEM 4

COMMENTS 2=

THE VALUE OF F(X,Y) IS DETERMINED SO THAT THE TRUE

. SOLITTION IS CORRECT,NONHOMOGENEOUS BOUNDARY CONDITIONS
; OSCILLATORY SQLUTTON -

1.
U/ {H10) +FF (X, Y)
W (U‘H.O o) **2-1 c/ (I.H‘lo o)

1.+DSITN(3.14159*X)

DCOS (3,14159*Y) +DSIN(3.14159* (1-Y))
-1 ,+DSIN(3.14159* (X-Y))
DCOS (3.14159* (Y} ) -DSIN(3.14159*Y)

0.0,0.0, 1.0,0.0, 1.0,1.0, 0.0,1.0,0.5,0.5

1’2;5, 2;3;5' 3,4;5, 4'1,5
-1001,-1002,-1003,-1004

DOUBLE PRECISION FUNCTION FF(X,Y)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
FF=9.8696* (2. *DSIN(3.14159* (X-Y) ) +DC0S (3.14159*Y))

*+(DCOS(3,14159+*Y) +DSIN(3,14159* (X-Y}) )/ (DCOS(3.141
*59*Y) +DSIN(3.14159* (X-Y) ) +10.)
RETURN
END

-




*kkk
kkkk
*kkk
kkdkk
kkkk

CHAPTER 7
SECTION(7-4)

*kkk SEMICONDUCTOR PROBLEM

kkkk
kkkk
3 100
*hkk
*kkk
Seddk
*kkk
*kkok

01X
0ly
Fl
F1/Ul
F1/uU2
F1/U3

*kdkk
kdkkk
ddede ke

02X
02x/Ul
02x/u2
02y
02v/ul
02y/u2
03X
03x/U1
03X/U3
0X) 4
03y/ul
03Y/U3

Kkokk
*kkk

ARC=-1001
FB1

FB2

FB3

Rk
ARC=1002
GB1

GB2

GB3

*kkk
ARC=-1003
FBl

FB2

FB3
*kkk

ARC=1004
GBl
GB2

GB3
kkk

2
SEMICONDUCTOR PROBLEM
POISSON EQUATION

U1X

uly

B(T)* (-DEXP (U1-U2) 4DEXP (U3-U1) }
B(T)* (-DEXP(U1-U2) -DEXP (U3-U1))
B (T)* (DEXP (U1-U2))

B(T) * (-DEXP(U3-U1))

CONTINUITY (DIFFUSION) EQUATIONS

(DEXP ((U1-U2) *B(T)) ) *U2x*0,588
B(T) * (DEXP ((U1-U2) *B(T))) *U2X*0,588
=B (T) * (DEXP ( (U1-U2) *B(T) ) ) *U2X*0,588
(DEXP ((U1-U2) *B(T)))*U2Y*(0,588
B(T) * (DEXP ( (U1-U2) *B(T) ) ) *U2Y*(0,588
=B (T) * (DEXP ( (U1-U2)} *B(T)) ) *U2Y*(0,588
(DEXP ((U3-U1) *B(T) ) ) *U3X*0.0588
=B(T) * (DEXP{ (U3-U1) *B(T)) ) *U3X*0,0588
B (T) * (DEXP ( (U3-U1)} *B(T) ) ) *U3X*0,0588
(DEXP( (U3-U1) *B(T))) *U3Y*0,0588
-B (T) * (DEXP ( (U3-U1) *B(T) ) ) *U3Y*0.0588
B (T) * (DEXP ( (U3-U1) *B(T) }) *U3Y*0,0588

BOUNDARY CONDITIONS

0.
0.
0

[=R= Y=

C)EDCD
(=R =N =)

350




ARC=-1005
FB1 0.0
FB2 0.0
F83 0.0
*kkk
ARC=1006
681 0.0
GB2 0.0
GB3 0.0
*kkk
kdkki
PLOT 1
Rkt
TF 15
*kkk
NOUT 5
kkikk
NX 15
NY 8
kkkik
uo 1.0
*kkk
ALPHA 2
*kk®
VXY 0.0, 0.0, 0.4,0.0, 2.40,0.0,
VXY 2.8,0.0, 2.8,0.46, 2.40,0.46,
VXY 0.40,0.46, ©.0,0.46,0.20,0,23,
VXY 1.40,0.23, 2.60,0.23
kiR
1ABC 1,2,9, 2,7,9, 7,8,9, 8,1,9,
IABC 2,3,10, 3,6,10, 6,7,10, 7,2,10,
IABC 3,4[11’ 4,5'11’ 5;6,11' 6'3'11,
*kkdk
I -1001, 0, -1005, 1006,
I -1001, 0, 1004, O,
I -1001, 1002, -1003, O
*kkk
ADD,
DOUBLE PRECISION FUNCTION B(T)
C FUNCTION B VARIES FROM O TO 1 TO GRADUALLY INCREASE
c THE DIFFICUILTY OF THE PROBLEM
DOUBLE PRECISION T
B=0,05* (T-1)
B=DMIN1 (B¥*2,1,0)
RETURN
END
END.
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dedkedoke

xkxk  CHAPTER 8

*kkk  SECTION(B-3)

#xxx  TEST PROBLEM 1

#xk%  CASE 1

kkkd

#*%*  THE FIRST LINE CONTAINS 3 INTEGERS-NEQ,NTF,NDIM IN FREE
adrk  FORMAT WHERE

*#%k%  NT=NUMBER OF TRIANGLES IN THE INITIAL TRIANGULATIONS
*%#%  NTF=NUMBER OF TRIANGLES DESIRED IN FINAL TRIANGULATION
#%k%  NDIM= RESERVED FOR JACOBIAN IF NDIM=1l IN-CORE STORAGE
x+%%  ONLY USED, AND IF NDIM=2 QUT-OF CORE STORAGE USED
*hkk

1 300 1
Rk

****  THE P.D.C
Rkkk

OXX UX
OXX/UX 1.0
oxy uy
oxY/uy 1.0

kkik
kkkk

k%%  THE SOLUTION WILL BE OUTPUT AT THE POINTS OF THE

x%xx  GRID,

kkkk X=XA +I*HX I=0 fosse ,NX
*kkd Y=YA 'l'\J*HY J=0 [ IXE) 'NY
*kki

XA 0.0

HX 0.1

NX 10

kkkk

YA -1.0

HY 0.2

NY 10

khdk

*hhk PRINTER PLOT OF THE INITIAL TRIANGULATION WILL BE PLOTED
PLOT 1
*kkk

Tk THE PROBLEM IS SYMMETRIC

SYMMETRY 1

kkki

*kkk

*xxx  USING CUBIC ISOPARAMETRIC TRIANGULAR ELEMENTS
*ikh

CUBICS 1

kkd

**#%  THE BOUNDEARY CONDITONS
ARC=1001

Y DSIN(L.570796*S)

X ~OSQRT (2.0) *DCOS (1.570796*S)
GBl 0.0

ARC=-1002

FB1 0.0

ARC=1003

GB1 0.0

ARC=1004

GB1 1.0

ARC=1005

GBl 0.0
*hkh




*kk%
ke kkk
* kkk
kkkk

VXY
VXY

VXY
kkkk

*kkk
*kkk
wkkk

1ABC
IABC

TIABC
*hkk

*kkk
kkkk

*kkk

END.
Kk

INITIAL TRIANGULATION ARRAYS
THE COORDINATES OF THE VERTICES OF THE
TRIANGULATION IN THE FORM
VX{1) VY (1) o oo VX{NV) ,VX(NV)
-1,41421335,0., -.99999969,.707107,
0.,1.' 0-;2.; -2.'20' -4¢’2.' -4.pOop
-zopoc, -1.5,1.25, -2.;1-; -3.'10

LIST THE NUMBERS OF THE VERTICES OF EACH TRANGLE IN

TA(1) ,1B(1) , IC(1} ... JAINT) IBINT) ,IC(NT)

THIS ORDER DEFINES THE INITIAL TRIANGLE NUMBERS,
1'2'9' 2,3,9, 3[4;9' 4'5'9' 5;10[9' 5,11,10'
5,6,1, 6,7,11, 7,8,11, 11,8,10, 10,8,9,
8,1,9

AN IDENTIFYING INTEGER OF THE BOUNDARY ARC CUT OFF BY
THE BASE,AB,OF TRIANGLE K. I(K)=0 IF NONE,.

1001,1001, -1002, 1003, 0, O,

1003, 1004, 1005, 0, O, 1005




*hkk CHAPTER 8.

wehkk SECTION{8=3)

Hhkk TEST FROBLEM 1

*kkk CASE 2

i POTENTIAL FLOW PROBLEM

ikl PROGRAM NAME ILFX3SI.INPUT
dkkk

1 300 1

kkkd

19).0 4 UXx

OXX/UX 1.0

OXY uy

oXY/uY 1.0

dkkde

*kkik

XA -4.0

HX 0.2

NX 20

*kkk

YA 0.0

HY 0.2

NY 10

dkkk

SYMMETRY 1

kkdkk

*kkk

ARC=1001

X ~DC0S({1,570796*S)

Y DSQRT(2.0) *DSIN(1,570795*S)
GBl 0.0

ARC=-1002

Fal 0.0

ARC=1003

G581 0.0

ARC=1004

Gsl 1.0

ARC=1005

G5l 0.0

*kkix

VXY -1.0,0, -0,707107,0.99999969, 0.,1.414213562,
VXY 0.,2.' _2-p2-' -4o;2s; —4.'091 _201001
VXY —10511055; -2.rlc' —3orlo
ki

1ABC 1,2,9, 2,3,9, 3,4,9, 4,5,9, 5,10,9, 5,11,10,
IASC 5,6,11, 6,7,11, 7,8,11, 11,8,10, 10,8,9,
IABC 8,1,9

kkkk

I
I
END.

ipo1,1001, -1002, 1003, O, O,
1003, 1004, 1005, 0, O, 1005




b2k

*hkk CHAPTER 8.
fubaloded TEST PROBLEM 3,

*kfek

*x%k  INVISCID LAMINAR FLOW IN A CHANNEL
*hkk PAST A DISC .

kdkk

1 300 1

kkkk

0XX ux

1974 4 uYy

kkkk

NX 20

*khk

NY 10

*kkk

SYMMETRY 1l

ki

PLOT 1

kded

*kkk

D3EST 1,0/ (X**2+(Y=1,) **2)

dkdkk

khkkk

ARC=-1001

FBL 0.0

ARC=-1002

FBl 0.0

ARC=1003

GBl 0.0

ARC=-1004

FBL 2.0

ARC=-1005

FBL Y

kkkk

CuBICS 1

kkik

VXY 0.,0.’ 0011.; 0.;2.' -10'2., -20,251'
VXY -2.,1.' -2.'0.' -1.,0.' -1.'1-
*kdedk

IABC 1;2'9’ 2;3}9' 3'4!9! 4l'509F
IABC 5,6,9, 6,7,9, 7,8,9, 8,1,9
*%kkk

I -1002, 1003, -1004, -1004,
I ~1005, -1005, -1001, -1001

END,
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CHAPTER 8.
SECTION(8-2)

THE BIHARMONIC PROBLEM
A RECTANGULAR PLATE PROBLEM.

2 74 2
kdkkk

(8) 4.4 vX
OXX/VX 1.
oxy VY
OXY/VY 1,
oYX ux
OYX/UX 1.
oYy uY
oYY/VY 1.
F1 ~SIN(3.1416*X) *SIN(3,1416*Y)
F2 -V
Fl/V -10
ki

kkk

ARC=-1001

FBl 0.0
FB2 0.0
ARC=-1002

FB1 0.0
FB2 0.0
ARC=-1003

FB1 0.0
FB2 0.0
ARC=-1004

FB1 0.0
FB2 0.0
*kkk

kdedok

XA 0.0
HX 0.1
NX 20.0
YA 0.0
HY 0.1
NY 10.0
kkkk

SYMMETRY 1
kkkk

CUBICS 1
kkkk

dededk

VXY 0.0,0.0, 1.0,0.0, 1.0,1.0, 0.0,1.0, 0.5,0.5
*kkkk

IABC 1,2,5, 2,3,5, 3,4,5, 4,1,5

*kkk

I
END,

-1001, -1002, -1003, ~1004

356
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kkkk
*hkdkk

*xEk CHAPTER 8.
Kk SECTION(8-4)
KEkH FIGURE (8-9)
xRk TEST PROBLEM 1.

*dkk
*kkk

*kdk THE EIGEN-VALUE PROBLEM
*kkk

1 300 1

dkkdk

(0).0.4 UX
(0).4'4 [1)'¢
o

Fl USET (1)
dkhk

*hkk

uo 1
*kkk

*kkk

kkkk

XA 0.0 .
HX 0.5
X 2
ek

YA 0.0
HY 0.5
Ny

*kkk

TF 15,
*khk

NORMAL 1l
P

ARC=-1001

FB1 0.0
ARC=-1002

FBl 0 L ] 0
ARC=-1003

FBl1 0.0
ARC=-1004

FBl 0.0
ARC=-1005 .

FBl 0.0
ARC=-1006

FBl 0.0
ARC=-1006

FBl 0.0
ARC=-1007

FB1 0.0
ARC=-1008 ’
FBl 0.0

SYMMETRY 1
CUBICS 1
D3EST 1./ (X%*24Y%%2)
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0.0'0.0' 0.0'1.0’ -1.0'100' -1.0,0.0'
_1-0,-1.0' 0.0'-130' 1.0;-1.0, 1.0'0.0'
-0.5'0.5' "'0.5'-0051 0-5'-0.5

1!'2'9! 23319f 314!9' 4fll'9!
l,4,10, 4,5,10, 5,6,10, 6,1,10,
l,6,11, 6,7,11, 7,8,11, 8,1,11

-1001, -1002, -1003, O,
0, -1004, -1005, 0,
0, -1006, -1007, -1008
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*kkkk

fabdald CHAPTER 8,

Lbbid SECTION{8-4)

kkkk FIGURE(8-12)
kkkk TEST PRCBLEM 1

*dkk

*kkk THE EIGEN-VALUE PRCBLEM
*dkh

1 300 1
*dkh

oxXxX X
oxy uY
dekkk

Fl USET{D)
dedkkdk

vo 1
*kkk

D3EST 1./ (X**247%#2)
dhkk

NCRMAL

*kkk

0 12
NY 12
kkkk

TF 9.
%Rk

NOUT 3
*kkk

ARC= -1001

FB1 1.0
ARC= 1002

FB1 1.0
ARC=-1004

FBL 1.0
ARC=-1005

FBL 1.0

NUPDT 0

*dkk

VXY 0.0'0.0’0.5'0.0,1.0'0.0'1.0'0.5’0.5’0.5,0.5'1.0'
\:ﬁ* 0.0’1.0'0-0'005f0025'0. 5'0.75'0.25'0.25'0075
IABC 1,2,9, 2,5,9, 5,8,9, 8,1,9,

IABC 2,3,10, 3,4,10, 4,5,10, 5,2,10,

IABC 8,5,11, 5,6,11, 6,7,11, 7,8,11

*kxk

I -1001, 0, 0, -1002,

1 -1001, 1003[ -1004' 0,

I 6, -1005, 1006, -1002




dekdek
kkEkk

Tk CHAPTER 8.
ki SECTION(8-4)
*kdk TEST PROBLEM 2
faladedd FIGURE{8~15)

*kkk

*kk%  THE EIGEN-VALUE PROBLEM

hkkk
1 300
Oxx
Ooxy
*kkk

F1
*kkk
XA
HX
NX
YA
HY

NY
*kdk

kkkk
D3EST

kkkk

TF
kkkk

NOUT

*kkk
ARC=-1001
FBl
ARC=-1003
FBl
ARC=-1004
FBl
ARC=-1005
F8l
ARC=-1006
FB1

*kkk

SYMMETRY
*kkk

NUPDT
*kdkk

uo
*kkk

NORMAL
*kkk
VXY
VXY
*kdk
IABC
[ABC
TABC
kkdk
1

1

I
END,

1
ux
vy

USET (1)

0.0
0,5
2
0.0
0.5
2

1./ (X**24Y**2)

12.
3

1.0
1.0
1.0
1.0
1.0

/0.
0

o,1.0,0.0,1.0,0.5,0.5,0.5,0.5,1.0,
+0.5,0

.25,0.25,0.75,0.25,0.25,0.75

1l2!91 '5'9l 51819f 8,1,9'
2'3;10' 3,4'10' 4;5,10' 5'2'10'
8,5,11, 5,6,11, 6,7,11, 7,8,11

-l¢01, 0, O, 1002,
-1001, -1003, -1004, O,
0' -1005' -1005' 1002

360



khdkk

END,

**kk  CHAPTER 8,

*k*%  SECTION(B-4)

*+#%  TEST PROBLEM 3

*k#%  FIGURE(8-18)

ek

Rhkkk

ity THE EIGEN-VALUE PROBLEM
dedkdek

1 300 1

*kkk

oxX ux

OXY uy

*kkk

F1 USET(1)

*kdk

vo 1

kkkk

D3EST 1./ (X**24Y%*2)

*kkk

NORMAL 1

*kkk

XA 0.0

Hx 0.1

NX 10

YA 0.0

HY 0.1

NY 10

kkkk

TF 9.

kkkk

NOUT 3

*kkk

ARC= -1003

FBl 1.0

ARC= -1004

FBl 1.0

ARC= -1005

FB1 1.0

ARC= -1006

F81 1.0

kkkk

SYMMETRY 1l

*kkd

NUPDT 0

*kkk ;

VXY 0.9,0.0,0.5,0.0,},0,0.0,}.0,0.5,0.5,0.5,0.5,1.0,

XXY 0.¢0,1.0,0.0,0.5,0.25,0,25,0.75,0.25,0.25,0.75
xkk

IABC 1;2,9, 2'5'9’ 5,8'9' 8'1’9'
IABC 2,3,10, 3,4,10, 4,5,10, 5,2,10,
1ABC 8,5,11, 5,6,11, 6,7,11, 7,8,11
dkdkk

I 1004, ¢, 0, 1002,

I 1004' ”1003, -1004' 0'

0, -1005, -1006, 1002

361




362

hkk CHAPTER 8.
*kk%  SECTION (B-5)

kkdd
dkdked

*kkk

2 130
OXX

OxXy

oYX

oYY

F1

kkkk

F
kkkk

NOUT
kkkk

ALPHA
kdkk

uo

*kkdk

Vo
*kkk
XA
HX
NX
*kk%
YA
NY

HY
khkk

*kdk

ARC=-1001
FBl
FB2
ARC=-1002
FB1
FB2
ARC=-1003
FB1
FB2
ARC=-1004
FBl

FB2
*okdk

%k

VXY
VXY
IABC
Tk

I
kkkk

*k&% FLUID MECHANLLS PROBLEM

faladaded NAVIER-STOKES PROBLEM

2
-1 ,D5*REDINT* (UX+VY) +UX
Uy

VX
=1 .D5*REDINT* (UX+VY) +VY
PARA (T) * (=U*UX=V*UY) (2, *DS IN(Y) +DS IN(X) ) *DCOS (X)
PARA (T) * (—U*VX=V*VY) =(DS IN(Y) =2, *DS IN{X} ) *DCOS (Y)
10.
5
2
=DCOS (X) *DSIN(Y)
DS IN{X) *DCOS (Y}
0.0
2,199114858
2
0.0

10
0.1

-DCOS (X) *DSIN(Y)
DSIN(X) *DCOS (Y)

-DCOS (X) *DSIN(Y)
DS IN(X) *DCOS (Y)

=DCOS (X) *DSIN(Y)
DSIN(X)*DCOS (Y)

-DCOS (X) *DS IN(Y)
DSIN(X)*DCOS (Y)

0.0,0.0, 3.14159,0., 3.14159,3.14159,
0.0,3.14159, 1,57079%,1.57079%
1,2,5, 2,3,5, 3,4,5¢ 4,1,5

-1001, -1002, -1003, -1004



DOUBLE FRECISION FUNCTION PARA(T)
IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
PARA=DMINI (1.0, (T~1.0)/3.0)

RETURN

END







