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ABSTRACT 

The contents of th1s thesis are a detailed study of the implementation 

of Finite Element method for solving linear and non-linear elliptic 

partial differential equations. It commences with a description and 

classification of partial differential equations, the related matrix and 

eigenvalue theory and the related matrix methods to solve the linear and 

non-linear systems of equations. 

In Chapter Three, we discuss the development of the, finite element 

method and its application w1th a full descript1on of an orderly step-by

step process. In Chapter Four, we discuss the implementation of developing 

an eff1cient easy-to-use finite element program for the general two

dimensional problem along with the capability of handling problems for 

different domains and boundary conditions and with a fully automated mesh 

generation and refinement technique along with a descript1on of generalised 

pre- and post-processors for the Fin1te Element Method. In Chapter Five, 

we consider the solution of a free boundary problem whose boundary 

position is in1tially unknown and must be determined as part of the 

solution to the problem, i.e. a sluice gate flow problem is considered. 

In Chapter Six, we consider the finite element method for the numerical 

solution of a class of two-dimensional elliptic boundary value problems 

which contain boundary singularities and where a number of different 

strategies are also considered. The numerical results compare favourably 

with those obtained by other techniques. 

Chapters Seven and Eight present the results obtained when solv1ng 

a useful population of complex linear and non-linear part1al differential 
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problems by the finite element method using different order polynomials 

basis function such as quadratic, cub~c and quartic. The results of 

different solution plots are presented as output. 

The thesis concludes with some general conclusions and recommendations 

for further study. 
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INTRODUCTION 
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1.1 INTRODUCTION 

It is not possible to identify the exact starting point of the 

finite element method, because the method makes use of many theories 

and techm.ques drawn from mathematics and continuum mechanics, and no 

single view of its origLns can cover all facts of the development process. 

Moreover, as more individuals and organizations began working with this 

method, the advances become increasingly more diffuse. However one of 

the early developments of the finite element method started in the middle 

of the twentieth century (some thirty years ago), with the analysis of 

aircraft structural engineering problems and over the years the finite 

element technique has been so well established that today it is considered 

to be one of the powerful methods for solving a wide variety of practical 

problems efficiently. In fact the method has become one of the active 

research areas for applied mathematics and engineers in which the 

development has reached the stage where there are very few problems which 

the method cannot tackle. 

Various types of boundary conditions, curved boundaries or complex 

geometries present no great difficulties for the method, and there are 

further techniques for dealing with problems which have crack, sLngularities, 

and many more difficult problems. 

Often th1s flexibility and the general applicability of this method 

1s a great advantage over various other numerical techniques of solving 

problems. 

Today the finite element method is considered to be one of the more 
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established and convenLent analysis tools by applied scientists and 

engineers and with the help and the power of the computer the finite 

element method has much to contrLbute in applLed research. 
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1.2 THE BASIC IDEAS 

The finite element method (FEM) is a numerical discretisation 

techn~que for obta~~ng the ap~rox~te solution to problems mainly 

governed by partial or ordinary differential equat~ons on specified 

domains. The g~ven specified domain is divided into a finite number of 

small non-overlapping regions which are called elements. These elements 

are considered to be interconnected at specif~ed joints which are called 

nodes or nodal points. 

Generally, stra~ght line segments are used for the one dimensional 

case, triangZes or rectangZes elements with algebraic curves as boundaries 

~n the space of two dimensions and tetrahedrans or hexahedrons in the 

space of three dimensions. 

In each element the solution is approximated by a simple function in 

the form of polynomials where parameters can be adJUSted to ensure the 

existence of continuity of the functions in adjacent elements. Our 

attention will be devoted almost exclusively to two dimensional triangular 

elements in this thesis, primarily because arb~trary regions in two 

dimensions can be approximated by polygons, which can always be divided 

up into a finite number of triangles more eas~ly than the other element 

shapes like rectangles. The approximate solution of the general problem 

by the finite element method always follows an orderly step by step 

process. These finite element analysis steps are: 

(i) Discretization of the domain or solution region, 

(ii) Selection of an interpolat~on model to represent the variation 

of the field variable, 



(iii) Derivation of the discrete approximation of the problem 

consisting of a finite set of algebraic equations 

4 

(iv) Solution of the set of algebraic equations derived in step (i~~) 

by an accurate method 

(v) Display and interpret the results (post processing). 

These various stages of the finite element method will be discussed later 

in Chapter 3. 
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1.3 REMARKS ON THE CLASSIFICATION OF PARTIAL DIFFERENTIAL 

EQUATIONS 

The partial differential equations which arise in many practical 

problems are equations that express a relationship between an unknown 

function of several variables (two or more), and ~ts partial derivatives. 

The order of a partial differential equation is the order of the 

highest derivative contained in the equation. 

A partial differential equation is Zinear, if it is of first degree 

in the unknown function and its derivatives, otherwise it is non-Zinear. 

For example, 

is a Zinear partial differential equation of second order, while the 

equation, 
2 

3~x~y + f(x,y,u) = o , 

is a non-Zinear partial differential equation of third order. 

A convenient and frequently used method for classifying the basic 

partial differential equations that characterize field problems follows 

from a consideration of the mathematical character of the solutions. This 

method of classification is briefly outlined next to provide a link with 

a more formal mathematical treatment. 

The majority of problems of practical importance are special cases 

of the general second order partial differential equation 

Lu = o , (1.1) 
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where L is a differential operator defined by, 

a2 a 2u 
2 

0 au + au c a u Lu - A~ + 2B axay + -- + E-
ax2 ai ax ay (1. 2) 

+ Fu + G =0 . 

If G=O the partial differential equation is termed as homogeneous. 

otherwise it is called inhomogeneous. 

Equation (1.2) is classified as elliptic. parabolia. hyperbolic, when 

the discrim1nant B2-4AC is negative. zero or positive, ~espectively. 

Because the coefficients A,B and C are, in general, functions of the 

independent variables x,y, the classification of an equation may change 

at different positions in space. However, if A,B and C are constants 

then the equation is of one type throughout the x,y plane. 

Well known examples of the three types are: 

Heat flow equation 

which 1s of parabolic type. 

Wave equation 

which is of hyperbolic type. 

Laplace equat1on 

which is of elliptic type. 

au 
at = 

a2
u a2

u --=--, 
at

2 
ax

2 

(1.3) 

(1.4) 

(1.5) 

Boundary-value problems are naturally associated with elliptic 

equations, while initial-value problems and m1Xed (initial/boundary value) 

problems arise in connection with hyperbolic and parabolic differential 
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equations. The boundary conditions can be one of the following three 

types: 

(i) Boundary-value problem of the f~rst kind. Also called the Dirichlet 

problem. Here the function u(x,y) is prescribed along the boundary, 

i.e. u is g~ven on the boundary aR. If the function takes zero values 

along the boundary, then the condition is called a homogeneous 

Dirichlet, otherwise it is an inhomogeneous Dirichlet condition. 

(ii) Boundary-value problem of second kind. Often called the Neumann 

problem. Here the normal derivative of the function u(x,y) ~s 

specified along the boundary, i.e. ~~ given on the boundary. We 

may also have homogeneous or inhomogeneous Neumann boundary conditions 

as before. 

(iii) Boundary-value problem of the third kind. Here the funct~on u(x,y) 

and its normal derivatives are prescribed along the boundary i.e. 

au u and an are g~ven along aR, we may also have homogeneous or 

~homogeneous mixed boundary conditions. It is often the case that 

an elliptic problem is specified by boundary conditions that are of 

different kinds along different parts aR. 

We assume throughout our discussion that our mathemat~cal problem is 

well posed,i.e. if the solution exists, it is unique and depends 

cont~uously on the given data. 

we would expect that small variations in the data should result in 

correspond~gly small variations in the solution. If this does not turn 

out to be true, we would be inclined to believe that the mathematical model 

has been badly formulated. 



CHAPTER TWO 

BASIC LINEAR ALGEBRAIC THEORY AND APPROXIMATION 

METHODS FOR SOLVING P.D.E.S 
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2.1 INTRODUCTION 

The numerical solution of partial differential equations by the 

finite element method or other numerical approaches like the f1nite 

difference method in all cases generates an associated algebraic problem. 

In general this algebraic problem involves the solut1on of a large 

set of equations of the form, 

n 
I aijxj = bi , (i=l,2, ••• ,n) , 

j=l 

wh1ch may be wr1tten as the matrix system 

Ax = b , 

(2 .1) 

(2.2) 

where the matrix A 1s usually square with real elements, and has n rows 

and columns and the elements aij (i,J=l,2, ••• ,n) are real numbers. 

vecton; x and b have n components. 

The 

The usual solution of the problem (2.2) is to find x when A and b 

are given. A unique solution of equation (2.2) which may be written 1n 

-1 
the form x =A £,exists for equation (2.2), when A is non-singular 

which is equ1valent to A having a non-singular determinant. Since equation 

(2.2) is a matrix representation of the differential equat1on after applying 

the proper numerical approach, the matrix A is usually sparse (many of its 

elements are zero), and possesses a definite structure (determined by its 

non-zero elements). 

The method of finding the solution for (2.2) particularly when the 

order n of the matrix A is large, depends very much on the structure of A. 

In this Chapter, an introduction to matrix techniques that are useful 
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for the solution of (2.2) is given along with very important definitions 

and theorems associated with the theoretical developments of the finite 

element method. We will consider also several alternative algorithmic 

methods for the solution of a large system of equations. We give 

particular prominence to those methods applicable to the solut1on of 

equations arising from finite element calculat1ons. 
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2.2 BASIC MATRIX ALGEBRA 

A review of notation and properties for a square matrix A of order 

n with real elements, which is relevant to the solution of the equat~on 

(2.2) is now given. 

2.2.1 USEFUL NOTATIONS 

A Square matr~x of order n 

aij real number, which is the element in the ith row and jth column 

of the matrix A 

I 

0 

p (A) 

X 

T 
X 

IIAI i 

11~11 

p 

transpose of A 

inverse of A 

unit matrix of order n 

null matrix 

determinant of A 

spectral radius of A 

column vector with elemenmxi' (i=l,2, ••• ,n) 

row vector with elements xj, (j=l,2, ••• ,n) 

norm of A 

the norm of x 

permutation matrix which has entries of zeros and ones only, with 

one non-zero entry ~n each row and column. 

2.2.2 DEFINITIONS 

The matrix A ~s: 

"non-singular" if IAI#o 

T 
"symmetr1.c '' 1.£ A=A 

-1 T "orthogonal" if A =A 



"null" if a =0 (i,j=l,2, ••• ,n) 
iJ 

"diagonally doml.nant" if 

"tridiagonal" J.f aij=O for 

"block dJ.agonal" J.f 

0 
' ' ' ' 

B s 

for all i 

11 

where each Bk' (k=l,2, ••• ,s) is a square matrix, not necessarily of the 

same order. 

"upper triangular" if a -o J.>j ij- , 

"lower triangular" if aij=O , j>i 

"irreducible" l.f there exists no permutation transformatJ.on 

PAP-1 , which reduces A to the form 

where P and Q are square submatrices of order p and q 

respectively (p+q=n) and 0 is a (pxq) null matrix. 

"sparse" if most of the elements aij are zero 

"dense" if most of the elements aiJ are non-zero. 

"The conJugate" of a matrix A whose elements aij which are not necessarily 

real numbers will be denoted by A. 

"The Hermitl.an transpose" (or conjugate transpose) of a matrix A will be 

H 
denoted by A • 

The matrl.x A is said to be a 'HermitJ.an' matrix if, 

A, i.e. if aj,i = ai,j' for all i and j, (i,j=l,2, ••• ,n). 
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The definit1on of a Hermitian matr1x impl1es that the diagonal elements 

of the matrix are real. 

A real symmetric matr1x is always Hermitian, but a Hermit1an matr1x 

1s symmetr1c only if it is real. 

2.2.3 PARTITIONING OF A MATRIX 

A matrix A can be partitioned 1nto submatrices, for example, 

all al2 al3 al4 al~ 
I 

A = a21 a22 a23 I .,._--':'~ I ---- -- - r 
a31 a32 a33 I a34 a35 I 

(2 .3) 

is shown partit1oned into four submatrices by the dotted lines. 

We may write, 

A = ' 
(2 .4) 

where A
11

,A
12

,A
21

,A
22 

themselves are submatrices. In perform1ng any 

matr1x operation, all the rules can first be applied as 1f each of the 

submatrices were scalar elements and then carrying out any further 

operat1on in the usual way. For example, 1f we have A as given above 

in (2.3) and, 
bll bl2 

b21 b22 
B = 

b31 b32 
(2. 5) 

b41 b42 

we may write again, 

B = ~:] (2 .6) 

Then, 
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AB= (2.7) 

can be verified as representing the complete product by further 

multiplLcation. The essential feature of partitionLng is that the size 

of subdLvLsions has to be such as to make the products of type A
11

a
1 

meaningful, i.e., the number of columns in A
11 

must be equal to the 

number of rows Ln a
1

, etc. If the above definition holds, then all 

further operatLons can be conducted on partitioned matrices treating 

each portLon as if it were a scalar. It should be noted that a matrix 

can be multiplLed by a scalar (number) here, obviously, the requLrement 

of equality of approprLate rows and columns no longer apply. 

If a symmetric matrix is divided into an equal number of submatrices 

AiJ rows and columns then, 

(2 .8) 

2.2.4 QUADRATIC FORMS 

Matrix notation is most often employed to deal with sets of linear 

equations. It LS also useful in symbolizing special nonlinear expressLons 

called quadratic forms. 

For a function of n variables x1 ~x2 , •.. ,xn' a quadratic form is 

defined as, 
n 

I 
L=l 

2 
+ ••• +a2 x

2
x + ••• +a 1x x

1
+ ••• +a x (2.9) 

n n n n nnn 

2 
A quadratic form in one variable, say, is simply ax

1
• 



In two variablex x
1 

and x2 , 

2 
G(xl,x2) = allxl + 

14 

the most general quadratic form is 

2 
2al2xlx2 + a22x2 

Using matrix notation, we can write this as, 

or (2 .10) 

Since equation (2.10) represents a quadratic form of two variables, 

then the same matrix symbol1sm also holds for a quadratic form of n 

variables 



15 

2.3 EIGENVALUES AND EIGENVECTORS 

The eigenproblem for a given matrix A of order n is to find the 

eigenvalues A and the eigenvectors x (=/Ol such that, 

Ax = AX • (2.11) 

The aharaateristia equation of the matrl.x A is gJ.ven by 

lA-Ail = 0 . (2.12) 

The eigenvalues of A are the roots Al. (i=l,2, ••. ,n) of the characteristic 

equation. 

Two matrices A and B are "sJ.milar" if they have the same eigenvalues 

-1 
A and C AC are Sl.ml.lar l.f C is a non-s1ngular matrix. 

c-1Ac is then called a similarity transformation of A. 

The speatral radius of a matrJ.x A is defined as, 

p(A) = max 
lsisn 

(2.13) 

Given a vector ~ and a Hermitian matrix A then the Hermitian form 1s, 

H 
xAx= 

n 

I 
i=l 

n 
La x x. 

j=l i,J l. J 

where xi l.S the complex conJugate of xi. 

(2 .14) 

Given a real vector x and a real symmetric matrix A then the 

"quadratic form .. is, 

T 
xAx 

Definition (2.3.1) 

= 
n 

I 
i=l 

n 

I 
j=l 

a .. xl..xJ. l.,J 
(2 .15) 

A Herm1t1an matrix 1s positive definite if its Hermitian form is 



positive for all ~IQ, i.e., 

H 
X Ax > 0 

Definition (2.3.2) 
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'IX ;I 0 • - - (2 .16) 

A real symmetr1c matrix is pos1tive definite if its quadratic 

form is pos1t1ve for all ~Q, i.e., 

T 
xAx>O, '!~;IQ., 

[JENNINGS, 1977]. 

(2.17) 

The following theorem 1s sometimes used as a def1nition of pos1t1ve 

defin1teness. 

Theorem (2.1) 

A real matrix is positive def1nite if and only if 1t is symmetric 

and all its eigenvalues are positive. [YOUNG 1971 ]. 

Theorem (2.2) 

A real pos1tive def1n1te matrix A has a unique real positive 

def1n1te square root B, such that B2=A. B 1s wr1tten A!. [YOUNG, 1971]. 

Theorem (2.3) 

A real symmetr1c matrix A is pos1tive definite if and only if it 

T 
can be written 1n the form Q Q=A, where Q is a non-s1ngular matrix of 

the same order. 

Proof: 

then for any vector x;l£ , 
T TT 
~Ax=~QQ~ 



T = (~ (~ >O 

~A is positive definite. 

(ii) If A is real and positLve definite, since A=A!A! and A! is 

symmetric, therefore A=(A!)TA!. 

As A! LS also posLtive defLnLte !A1 J#o. 

Thus, putting Q=A! gives the requLred condition. 

Theorem (2.4) 

Let A be an eigenvalue of A with eigenvector ~· Then, 

(L) aA is an eigenvalue of A with eigenvect~r ~ 

(Li) A-~ is an eigenvalue of A-~I wLth eigenvector x 

17 

(iLi) If A LS non-singular, then A#O and A-l is an eigenvalue 

-1 
of A wLth eLgenvector ~· [STEWART, 1973]. 
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2 • 4 VECTOR AND MATRIX NORMS 

The conce~t of a norm is very important for analysing the errors 

in the later chapters, in which the approximate methods are usually 

associated with some vectors and matrices of which their magnitude are 

measurable as a non-negative scalar. 

2. 4 .1 VECTOR NORM 

T 
Let the vector x be given by~ =[x

1
,x

2
, ••• ,xn). A norm of the 

vector xis a real number 11~11 satisfying the following requirements: 

( 1.) 11~ 11 ~o , for yo 1 

(ii) lla~ll = lal 11~11 , for any scalar a 

(il.i) ll~+y_ll ~ 11~11 + ll1.ll (triangle 1.nequality) 

The most frequently used vector norms are: 

(1 norm) (2.18) 

(Euclidean norm) (2.19) 

llxll = 
- m 

(m norm) (2.20) 

Equations (2.18),(2.19) are particular cases of the general L -norms 
p 

n 
llxll = { L lx lP }l/p 

- p i=l i 
(2. 21) 

2.4.2 MATRIX NORM 

In a sim1.lar manner, the norm of a square matrix A is a non-

negat1.ve number denoted by I IAI I satisfy1.ng the following conditions: 

( i) I I A 11 > 0' l.f A # 0 ' 

(ii) llaAII = la I I I All, for any scalar a 
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(J.ii) IIA+BII :; IIAII + llalland 

(iv) IIABII :; IIAII llall • 

Since matrices and vectors appear simultaneously, it is convenient to 

introduce the norm of a matrix in such a way that 1t is compatible with 

a given vector norm. 

A matr1x norm is said to be compatib~e w1th a given vector norm J.f 

11~11 :; IIAII 11=.11 , (2. 22) 

for all non-zero x. 

To convert the matrJ.x norm compatible WJ.th the vector norm, it is 

necessary that, 

IIAII 
11~11 

= max (2. 23) 

El9. 11=.11 
= max IIA.:~II (2.24) 

llxll=l 

The matrix norm which is defined by (2.24) is said to subordinate to 

the corresponding vector norm. 

The matrix norm subordinate to 

these norms satisfy the relations, 

is denoted by IIAII , and 
p 

(J.) IIAII
1 

= max L I a I , (maximum absolute column sum) 
j :! l.J 

(ii) IIAI 12 = (maxJ.mum eJ.genvalue of ATA)! 

(iii) 

Theorem (2.5) 

= 

max 
i 

If A is a matrix of order n, then, 

P (A) :i 11 A 11 

(maximum absolute row sum) 

(2.25) 
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Proof: 

If A 1s any eigenvalue of A and ~ 1s an eigenvector associated 

w1th the eigenvalue A, then ~=A~. 

Thus, IIA~II= 1>.111~11 = 11~11 
~ jjAjj 11.~11 

from which we conclude that 

1>.1 ~ I !AI I, for all eigenvalues of A. 

Theorem (2.6) 

For any real symmetr1c matrix A of order n, 

Proof: 

Since A is symmetric 

2 
= p (A) ' 

and hence the result follows. 
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2.5 CONVERGENCE OF SEQUENCE OF MATRICES 

Definition (2.5.1) 

2 
The matrix A converges to zero if the sequence of matrices A,A , 

3 A, ••• converges to the null matrix 0. 

Definition (2.5.2) 

A Jordan submatrix of A is a matrix of the form, 

(2.26) 

where X is an eigenvalue of A. The order of the Jordan submatrix 
1 

corresponds to the number of coincident e1genvalues Xi of A. Each 

Jordan submatrix has only one eigenvector. 

The Jordan canonical form of A is a block diagonal matrix composed 

of Jordan submatrices and is unique. Any matrix A can be reduced to a 

Jordan canonical form by a similarity transformat1on, 

-1 
J = Q AQ 

The diagonal elements of J are the eigenvalues of A. 

If A has n distinct eigenvalues, its Jordan canonical form 1s 

diagonal and its n associated eigenvectors are un1que and linearly 

independent. They form a complete system of eigenvectors and span the 

whole n-dimensional space. If A does not have n distinct eigenvalues, 

it may or may not possess n independent eigenvectors. 



Theorem (2. 7) 

Proof: 

and so the results 

Theorem (2. 8) 

lim Ar = 0 ' if IIAII < 1 • 
r+<o 

IIArll = I lA Ar-
1

11 

::: IIAII IIAr-lll 

~ IIAII
2

11Ar-
2

11 

~ I lAW 

follow. 

lim Ar = 0 1.f and only if lA. I < 1 l. 
r""" 

for all e1.genvalues ,_i' (i=l,2, ••• ,n) of A. 

Proof: 
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(2.27) 

consider the Jordan canonical form of A. A Jordan submatrix of A 

is of the form, 
A. 

l. 

1 A. 0 
' l. 

' ' ' ' ' ' ' ' ' 0 ' ' ' ' 1 Ai 

where Ai is an eigenvalue of A. If this matrix is raised to the power r, 

then the result tends to the null matrix as r+<o, if and only if IAil<l. 

i.e. p(A)<l. (Thl.s proof is given in more detail in(Varga (1962), p. 

13-15). 
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2.6 FUNDAMENTAL ANALYSIS 

Definition (2.6.1) 

A linear space (or linear vector space) is a non-empty set X of 

elements, in which any two elements ~·X. E X can be combined by a 

process called addition to give some element 1n X denoted by ~+z, 

provided the process of addition satisfies the follow1ng conditions: 

(i) ~+x. = X. + ~ • 

(iii) there exists a unique element 0 E X such that O+x = x+O 

for all x E X, 

(iv) for each~· there exists a negative -x such that 

It is also a necessary condition of a linear space that an element x E X 

can be combined with any real number or scalar a by scalar multiplication 

to give an element a~. 

The process of scalar mult1plicat1on must sat1sfy the following 

conditions: 

(vi} (a+Sl~ = a~+S~ , 

(vii) (aS)~= a($~) , 

(viii) 1,! = ~ 

Definition (2.6.2) 

An expression of the form 

(1) (2) (n) (i) 
a1~ +a2~ + ••• +an~ , for all x € X 

is called a linear combination of the ~·s. 
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Definition (2.6.3) 

(1) (2) (n) 
A finite set of vectors~ ·~ , ••• ,~ is linearly dependent 

if there are scalars a
1

,a
2

, ••• ,an not all zero, such that 

(1) (2) (n) 
a1~ + a~ + ••• +a~ = o . 

If this is not the case, the vectors are called linearly independent. 

Def1nition (2.6.4) 

Let n be a positive integer. Suppose that we can find a set of n 

(1) (2) (n) vectors ~ ·~ , ••• ·~ E X which are independent while every set of -

n+l vectors are dependent, then X is said to be a linear space of 

dimension n. If no such n exists, then X is called an infinite 

dimensional space. A system of linearly independent vectors is said to 

constLtute a basis for a space, if any vector of the space is a linear 

combination of vectors of the system. 

The number of vectors forming a basis is equivalent to the dimension 

of the space. 
' 

The n linearly independent vectors form a complete system and are 

said to span the whole n space. 

The "inner (or scalar) product" of two members~ and y_ of the vector 
n 

space is defined by (x,y_) = }:x.y .• 
- i=l L L 

The "length" of a vector~ LS given by, 

~ 
1(~,~) =j ~xi 

i 

The non-zero vectors~ andy_ are saLd to be "orthogonal" if (~,y_)=O. 

A system of vectors is orthogonal, if and only if, any two vectors 

of the system are orthogonal to one another. 
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Theorem (2.9) 

The vectors forming an orthogonal system are linear independent. 

Proof: 

(1) (2) (n) Let~ ,~ , ••• ,~ form an orthogonal system and suppose that, 

cl~ (1) + c~ (2) + •.. +c~ (n) = o 

If by taking the scalar product wLth ~(i), we obtain 

ci ~~(il .~<il > = o ' 

for any i=l,2, ••• ,n. Since by definition (~(i) ,~(i))#Q, it follows that, 

C. = 0, (i=l,2, ••• ,n) 
L 

Thus, the 
(1) (2) (n) vectors ~ ,~ , ••• ,~ are linear independent. 

A vector is said to be normaZised if it is multLplied by a scalar 

in order to produce the sLze of components to numbers of values less than 

or equal to 1 without changing the direction of the vector. 

TWO common ways of normalising a vector x is by selecting a scalar 

(2) f3 = max (x.), (i=l,2, ••• ,n) 
i L 

to obtain the normalised vector 

Definition (2.6.5) 

I • • • I 

X 
....!!.)T 
f3 • 
n 

A normed linear space (n.l.s.) is a linear space on whLch there is 

defined a norm 11~11 such that: 

(i) 11~11 >- o, 

(ii) 11~11 = 0 ' iff ~ = 0 ' 

(iii) ll~+z.ll :; 11~11 + llz.ll ' 

(iv) 11".!.11 = 1"1 11.!.11 • 
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Thus, we have the concept of the length of an element in the linear 

space. A semi-norm, satisfies (i),(iii),(iv) but not (ii). 

Defin1tion (2.6.6) 

An inner product space (i.p.s.) or scalar product space is a linear 

space in which there is defined a real-valued function <:(l) ,:<
2
ll for 

which, 

(ii) <: (1) ·: (2)) = <: (2) ·: (1)) (symmetry} 

(iii) (a: (l) •: (2)) = a<: (l) •: (2)) a real (homogenity) 

Definition (2.6.7) 

(a) A sequence of elements of the linear space X, {:(n}} is called a 

Cauchy sequence, if for every E > o, there is an integer N(E) such that 

for all n,m >. N, 

11: (n} -:(m) 11 < E , 

(b) {: (n)} is convergent sequence if there exists a point : in the i.p.s. 

such that for each E > 0, there exists some N=N(E) such that for all n>.N 

If every Cauchy sequence in a normed l1near space X converges to a 

point in the space, the space is said to be complete. 

A complete normed linear space is called a Banach space. 

An inner product space which is complete and in which all cauchy 

sequences are convergent sequences is called a Hi~bert space H. 
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Thus a Hilbert space is an infinite-dimensional Banach space in 

which an inner product 1s defined and which is complete w1th respect to 

the norm 11.!1 L= ,I{_!,_!). In analysis, a general1zation of the integral 

cons1dered by Lebesgue overcomes the limitation of the Riemann integral. 

Consider an 1ntegral J f{x)dx respresenting the area under the 

curve y=f{x). The Riemann integral can be approximated by the sum, 

Clearly the Riemann integral does not exist if f{x) oscillates too 

violently. The decisive idea in the Lebesgue integral.is the notion of 

measure. The measure of an open interval a<x<b is simply the length {a-b). 

If a set consists of a finite collection of such intervals, the measure 

is the sum of the lengths. The Lebesgue integral 1s then approximated 

by the sum, 
' {2.28) 

where m{ei) denotes the measure of the sets ei' i=l,2, ••• ,n. 

Riemann's definition breaks down if f{x) rema1ns close to yk whereas 

Lebesgue's definition cannot break down because f{x) is automatically 

close to yk throughout the set ek. 

So far, the spaces introduced have been such that a point in the 

space has represented a point on the real line, a vector or a matrix. 

In order to provide a Hilbert space which is readily applicable to the 

development of finite element methods, it is necessary to introduce a 

space in which the points represent functions. We can 1ntroduce one 

function L2 {R) where R is an interval [a,b) along the real line, then 

functions f{_!) are points in this space, if and only if, 

(f {_!) ,f {_!)) = r f
2 

{x) dx < 00 • 

a 



Such functions are said to be measurable. 

For any two points u and v € H the inner product is given by 

(u,v) = C u(~)v(~)~ , 

28 

where integration 1n the Lebesgue sense is 1mplied; u and v are orthogonal 

if (u,v)=O, and the norm given by, 

Vu € H. 

The space of all equivalence classes of real-valued (or complex-valued) 

Lebesgue-measurable functions u such that I ulp, , l~p~"" is a Banach 

space denoted Lp(R) and with the norm 

lluiiLP(R) = ( fR lulp dx)l/p 

Linear Differential Operator 

Consider a linear boundary value problem, 

Du= f in R , 

with Lu = g on 3R, 

(2.29) 

) (2 .30) 

where D and L are linear differential operators in the domain R and on 

the boundaries 3R. 

Consider the 2mth order operator in the form, 

D 
d2m 

= al --2- + 
dxm 

2m-l 
d + •• • + a 

n 
(2. 31) 

Let us construct an inner product of Du with another function v w1thin 

a domain x
1

<x<x2 • and w1th a
1
=l,a =a = ••• =a =0, then, 

x 2 3 n 

(Du,v) = J 2 (Du)vdx 
xl 

Integrating by parts yields, 
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rd2m-lu~ x2 rim-2u ~ Jx2 x2 d2m-2u 2 

= L~2m-2 dx + L dx2m-2 
d V dx 

L~2m-l J dx2 
xl xl 1 

rd2m-luvl 
x2 

lu 
d2m-ly~ x2 

X 

= [ 2 d2mv 

ldx2m-l J - ••• + ••• - dx2m-l 
+ u--z dx 

xl L xl 1 dx m 

(2.32) 

Equat1on (2.32) may be put in the form, 

W1th 

and 

(E) (N) x2 
(Du,v) = (u,D*v) + [L (u,v)+ L (u,v)] 

xl 

L (E) (u,v) = 

L (N) (u,v) = 
2m-l \' r+l 

L (-1) F*uG*v r r 
r=m 

(E) 
where G tFg and F*u =g 

(N) 
are called Dirchlet (essential) 

r r 

(natural) boundary conditions, respectively and G u and F*u 
r r 

as, 
do dl d2 m-1 d 

) G u = [0, '2 , ... , --]u 
r dxl m-1 

dx dx dx 

dm dm+l dm+2 2m-l d 
F*u = [- ' ' 

, ... , 2m-l]u r dxm dxm+l dxm+2 dx 

(2.33) 

and Neumann 

and defined 

(2.34) 

Here G and F are the boundary operators. The expression (2.33) is 
r r 

known as Green's formula. In two or three-dimensional problems, the 

Green's formula takes the form, 

(Du,v) = jr uD*vd dR + J [L (E) (u,v)+L (N) (u,v) ]ds 
R 3R r r 

It should be noted that for the 2mth equation, we have D*=D, 

and 

G; (r=2m-l ,2m-2, ••• ,m) = 

F; (r=2m-l ,2m-2, ••• ,m) = 

G (r=O,l, ••• ,m) 
r 

F (r=O,l, ••• ,m) 
r 

(2 .35) 

Equations with these conditions are referred to as seZf-adjoint; and the 

linear differential operator D is known as a self-adJOint operator. 

Moreover, the condition D*=D and v=u result in symmetric positive 
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definite properties for the inner product (Du,v). If D*FD, then D Ls a non-

self-adjoint operator, resulting in a nonself-adjoint equation. 

The partial differential equation (2.30) is seen to be equivalenL 

to the integral relatLon (2.35). We then say that u is a solution in 

the weak sense of the original equation if it satisfies this integral 

relatLon for all functions v of the class considered. 

To show how we apply Green's theorem in the derivation of the 

finite element equations for two dimensional p.d.e. problems, we 

consider the given problem, let 
2 2 

D = a(-a- + _a_) + a , < < 2 2 " xl x x2 ' 
ax ay 

where a and ll are constants. 

Then, 

(Du,v) 

Note that m=l here, and the results above can be written in the form 

(2.33), 

(Du,v) = (u,D*v) 

where, 
D = 

x2 
- a(G uF v-F*uG*v)) 

0 0 1 1 x
1 

+ ll ' 
a a 

= <ax + ay> 

Thus, we have D*=D and Gi=G
0

, and the operator D is the self-adjoint, 
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au av 
operator, with G

0
u=u and F u=(-- + --) are the Dirichlet and Neumann 

1 ax ay 

boundary conditions, respectively. 

Sobolev Spaces 

Let the set of ordered n-tuples of non-negative integers be given 

by, 

Also we define, 

n 
space-

1~1 = r hl
2

>
1 

i=l 
a al a2 an 

X = xl . x2 ..... X 
n 

and a al o:2 a 
D u(~) = a a a n 

= ((--) (--) ••• (--)) u (x) 
al a2 an -

together with the duality pair~ng, 

(u,v) = I~f~ ... J~u(~)v(~) 
oo -oo -oo 

= 
( 

J uvdx 
Rn -

axl ax2 axn 

(2.36) 

(2 .37) 

Sobolev spaces are the generalization of L spaces so that all the p 

weak derivatives of functions u(~) are included in LP whose norm is 

defined by (2 .29). If all partial derivat~ves of u(x) of order ::m, m being 

an integer ~0, are in L, then u(x) belongs to a Sololev space 
p -

denoted as 
m 

Wp (R), of order m,p on R, i.e., 

w:(R) = {u: Dau€ Lp(R) such that lal~m} 

(2 .3B) 
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0 
Clearly, for m=O W (R) = L (R). 

p p 

Since, for each a such that o~ial~m, Dau LS in L (R), the sum of p 

the L norms of all the weak derivatives of u of order ~m satisfies 
p 

the norm axioms and suggested naturally by the definition (2.37). 

m 
Thus, we may introduce for each u € WP(R) the norm, 

!lull m 
Wp(R) 

= ( J /. loaulp~)l/p 
RI~T~m 

=( /. lloaullp >
1/p 

iaT~m Lp(R) 
(2.39) 

Hereafter, whenever we refer to the Sobolev space W:<Rh we mean the 

normed space consisting of linear space of functLons given Ln (2.38) 

together with the Sobolev norm (2.39). 

Consider the spaces L
2

, w;,w; with an open interval on the real 

line R=(x
1

,x
2
). The associated Sobolev norms of u is given by, 

for u(x) € L2 (xl ,x2) 

for u(x) € wl 
2 

and for u(x) € w; 

!lull 2 
W (R) 

p 

lluiiL (x x ) 
2 1' 2 

u~ . 
= L:2dxl < '"· 

!lull 1 
= {J~u2 + (:)2]dx}t < <0' 

w2 (xl ,x2) xl 

m 
In the study of most linear boundary value problems, we encounter w2 (R) 
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spaces. These spaces are Hilbert spaces H (R}. 
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m Consider the space H (R} of function u(x} on R with m, an integer ~1 

defined by, _ 

~a such that JaJ~ m}, 

n a 
where R is a bounded open set in R , and 0 ~ denotes the weak ath 

derivative of u. 

m We provide H (R} w1th the inner product, 

= 

and the associated norm, 

I 
Jal~m 

a a 
(D u,D v}L (R} 

2 

L Jloaull 2 }t 
JaJ~m L 2 (R} 

= [(u,u} Jt < ~ 
ifl (R} 

In view of the definitions (2.38} and (2.39}, we see that 

(2.40} 

(2 .41} 

(2 .42} 

»7R} = ~(R} (2.43} 

The Hilbert space H7R} is thus a Sobolev space of order m,2. Hm(R} 

1s a complete Sobolev space of order m defined by (2.42} and with 

respect to the norm (2.40}. 

Also, if are two Sobolev spaces, ~~m2~o then, 

(2 .44} 

Note that it also follows from the defin1tions that, whenever m1~m2 , 

m 
and u E H(R}, 

Our aim here is to present only the essential features of the Sobolev 

and Hilbert spaces, for additional details on these subjects, the 

references listed at the end of the thesis can be consulted. In particular 

see ODEN [ 1976] • 
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2.7 SOLUTION OF FINITE ELEMENT EQUATIONS 

As we mentioned prev~ously, when the finite element method ~s used 

for solving a linear problem then an associated set of simultaneous 

algebraic equat~ons is generated which can be stated in the form g~ven 

by equat~on (2 .1) • Equation (2 .1) can be expressed in matrix form as, 

all al2- -- aln xl bl 

a21 a22- a2n x2 b2 
I I I 

I I I 
= I (2 .45) 

I I 
I 

anl an2--- a X b 
nn n n 

where the coeff~c~ents a . and the constants bi are either given or can 
~J 

be generated. The problem is to find the values x~, (i=l,2, ••• ,n) ~f 

they exist, which satisfy equation (2.45). 

A comparison of equations (2.1) and (2 .45) shows that, 

all al2--- aln xl bl 

a21 a22--- a2n x2 b2 
I I I A = I X= b = 

I 

I I 

anl a --- a X b n2 nn n n 

In finite element analysis, the order of the matrix A will be very 

large and A is non-singular and sparse (in many cases A is symmetric and 

positive definite). 

The feasibility of the application of the f~ite element method 
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hinges on, how fast can the equations be solved? And how accurate is 

the computed solution? The first question can be answered by counting 

the operations involved in the solution algorithm used. The second 

question is more fundamental since its answer determines whether it is 

meaningful to solve the equations numerically, the major consideration 

here is that of round-off error, which may lead to poor or even useless 

results. 

There are usually two kinds of methods used for solving a system 

of equations of large order: (1) direct methods and (2) iterative methods. 

A direct method is one which, after a finite number of operatLons, 

if all computations were carried out without round-off error, would lead 

to the exact solution of the algebraic system. An iterative method 

usually requires an infinite number of iterations to converge to the 

true solution. Within a tolerable error, there is no clear-cut answer 

as to which of these methods is best for a system such as (2.1). In 

practice, the round-off error is usually the controlling factor in 

determining whether a direct method of solution can be used. Either 

solutLon scheme wLll be seen to have certain advantages, however direct 

methods appear to hold an advantage in solving 2-dimensional systems 

arising out of the finite element methods, and iterative methods appear 

to have the edge Ln solving systems arising from fLnite difference 

equations. 

2.7.1 DIRECT SOLUTION METHODS USING TECHNIQUES BASED ON THE GAUSS 

ELIMINATION PROCESS 

The most effective direct solution techniques currently used are 

basically the applications of the Gauss elimination process, however, 
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although the basic Gauss solution scheme can be applied to almost any 

set of simultaneous linear equations, the effectiveness in finite 

element analysis depends on the specif1c properties of the finite 

element master matrix: symmetry, posit1ve definiteness, and bandedness 

The details of the method are as follows. Starting from the given 

system (2.1), ~=£,or, 

A(l)x = b(l) , where A= A(l), b = b(l) (2 .46) 

Step 1: The essence of this method is to reduce the matrix in the 

preceding equation into a lower triangular form by elimination. Toward 

this end we define n-1 multipliers, 

I i=2 I 3 I • • • ,n I m <l , 
1 

and subtract mi
1
times the first row from the ith row. 

If we define, 

' a.ij aij -milalj i=2, ..• ,n 

b~ = b~m.J!>1 j=l, ... ,n, 
1 1 J. . 

1t is easy to see that, 

a' = 0 i=2, .... ,n. 
11 

The resulting equat1ons are, 

all al2--- aln x1l bl 

0 a22--- a2n x2 b2 
I ' I I = I 

I I I I I 

I I I I I 

(2 .4 7) 

0 an2- -- ann X b n n 
or 

A (2)x = b (2) 
' 

(2.48) 

where in equation (2.47) we have renamed the ai'. and b~ to be a .. and 
J 1 1) 

bi to simplify the notation. We re-emphasize that these a. and b. are 
1) 1 

not the same coefficients appearing in (2.45~ We also stress that this 
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last system (2.47) has the same solution as does (2.45). It is easy 

to recognize that the preceding step is equivalent to the operation 

defined as A(2)=~1A(l) 1 where, 

1 

-m21 1 (1) ' 
-1 ' ail 

1\ = -;"21 0 ' mil =-- (2.49) 
I ' (1) 

' al,l I 
' I ' ' -m o-- --- 0 1 nl 

Step 2: We continue 1n a similar way such that at the kth stage we 

eliminate ~ by defining the multipliers 

where ak,k;o!o. Then, 

' a1.j = aiJ -m1k~j 
' bi = bi-ml.kbk 

, l.=k+l, •.. ,n 

for i=k+l, ••• ,n and j=k, ••• ,n. The index k takes on consecutive 

integer values from 1 to n-1. 

(2.50) 

(2 .51) 

(2.52) 

At the po1nt where k=n-1, we are eliminating x 1 from the last n-

equation. The final triangular set of equations 1.s thus given by, 

all al2 al3- -a ln xl bl 

0 a22 a23- - a2n x2 b2 

0 0 a33- _a3n x3 b3 (2.53) = I I 
I I 
I I 

I I 
a X b nn n n 

or A(n)x = b(n) = Sx I (2. 54) 

where A(n) -1 -1 -1 (1) fl s (2. 55) = Mn.l"Mn-2" .. • ·~ A . 
Ste2 3: A back-substituion process then produces the solution as follows:-



b 
n 

X =--n a 
nn 

bj-(a .. 1+ ••• +a. x ) 
J,J+ Jn n 

and f~nally, 
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(2 .56) 

The operations performed in the preceding elimination procedure can be 

compactly written, for any nxn matrix A, as follows, starting from, 

(1) 
all 

(1) 
a21 

A(l) = ---
(1) 

anl 

we have, 
1 

-m21 
-1 

Ml = -m31 

-m nl 
and 

1, 

0 ' 

-1 
'\ = 

o-

o-

0 

(1) (1) 
a ----- aln 12 

(1) • -a (l) 
a22 - - - 2n 

-- -
(1) 

an2 -----

1 

' 0 

0 

' 

' ' ' 

1 

' -m. ' J<+l,k 

-m n,k 

- 0 

' 

-
a (1) 

nn 

, ~1 

, "'k+l,k = 

1 

etc. 

(k) 
'i.: H ,k 

(k) 
ak,k 

(2.57) 

, etc. 

(2.58) 



Now 

u = 
0 

0 

(1) 
al2----- -

(2) 
a22 - - - -

0 

0 

(3) 
a ---33 

o-- - - a (n) 
nn 

-1 -1 -1 (1) 
= M lH 

2 
••• M

1 
A n- n-

Equation (2.59) can be equ~valently written as, 

A(l) = LU 

where 

1 

1 

= 
1 

m n,n-1 1 
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(2.59) 

(2 .60) 

(2.61) 

(2 .62) 

Thus, the solution process can be described by the pair of coupled 

equations, 
(2.63) 

If D denotes the diagonal entries of s, then it is evident that U=D LT 

when A is symmetric. Now equation (2.63) can be written as, 

T 
(LDL )~ =E. I (2 .64) 

For this reason, the procedure described above is called a LDl 

decomposition. Notice that y_ and b are related by, 

(2 .65) 

Thus, Gaussian elimination is nothing but the factorization of A into 
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the product A=LU, of a lower triangular matrix L times an upper tri-

angular matrix u. 
~ ~~ 

Thus x=A b is identical with ~=U L £• and the 

two triangular matrices are easy to invert. 

A very important requirement for successful Gaussian elim1nation 

is to guard aga1nst dividing by zero during the computations. Even 1f 

there are no zeros on the main d1agonal at the start of the computations, 

zeros may be created in subsequent steps. A useful strategy to avoid 

such zero divisors is to rearrange the equations so as to place the 

coefficient of largest magnitude on the diagonal at each step. This is 

called pivoting. Complete pivoting may require both re~ and column 

interchanges. Partial pivoting, which places the coefficient of largest 

magnitude per column on the diagonal by row interchanges only is usually 

adequate in many cases. 

Let us summarize the operat1on of the Gaussian elimination procedure 

in algorithm form that will fac1litate writing a computer program. 

Gauss1an El1mination Procedure 

To solve a system of linear equations we proceed as follows:-

1. Augment the (nxn) coefficient matrix with the vector b to form an 

nx(n+l) matrix. 

2. Interchange rows if necessary to make the value of a
11 

the largest 

magnitude of any coefficient in the first column. 

3. Subtract ai
1
;a

11 
times the f1rst row from the ith row (2~1~n). This 

should leave a column of zeros below the pivot element in the first 

column. 

4. Repeat steps (2) and (3) for the second through the (n-l)st rows, as 

follows: 
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(i) Implement the part1al pivot1ng strategy by cons1dering 

only rows j to n. 

(ii) Subtract a
1
j/ajJ times the jth row from the ith row so as 

to create zeros in all pos1tions in the jth column below 

the main d1agonal. At this stage, the system 1s upper-

triangular. 

5. Solve for x from the nth equation by 
n 

X 
n 

= 
a 
n,n+l 
a nn 

6. Solve for xn-l'xn_2 , ••• ,x2 ,x1 from the (n-l)st to the f1rst equat1on 

in turn, by using the back substitut1on process, 

X = 
1 

n 
a -I a x. 
1,n+lJ=i+l 1J J 

a. 1,1 

It is 1mportant to reflect upon the eliminat1on process if A is 

symmetr1c, and positive defin1te. First, the elim1nation process succeeds 

because the factorization A=LU ex1sts. The condition for success is that 

each of the submatr1ces in the upper left corner of A, that is 

all a12 al3 
all a12 

Al = [all], A2 = A3 = a21 a22 a23 , ... 
a21 a22 

a31 a32 a33 

a12 = a21 aiJ = aji Jii. 

should have a non-zero determinant. For a pos1t1ve-definite matrix, 

these determinants are all pos1t1ve, and the elimination process can be 

carried out with no exchanges of rows. Another important requirement is 

that the pivot elements be not only non-zero but also sufficiently large. 

Otherwise, round-off errors will dominate the solut1on. This type of 
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sensitivity of A to small perturbations is measured by the "condition 

number" of A. This condit1on number is the rat1o of the largest eigen-

value to the smallest eigenvalue of A. 

For the computer implementation of the Gauss el1m1nat1on solution a 

minimum solution t1me is ach1eved, 1n addition, the high-speed storage 

requirements should be as small as possible to avo1d the use of back-up 

storage. However, for large systems 1t will nevertheless be necessary to 

use back-up storage, and for this reason it should also be possible to 

mod1fy the solution algorithm of the finite element analysis so that the 

master matr1x of the elements assemblage is not only symmetric and posit1ve 

def1nite but is also banded, i.e. aij=O for j>i+~, where ~ is the half

bandwidth of the system. The fact that in finite element analysis all 

non-zero elements are clustered around the diagonal of the system matrix 

greatly reduces the total number of operations and the h1gh speed storage 

required 1n the equation solution. 

However, this property depends on the nodal po1nt numbering of the 

finite element mesh points, and the programmer must take care to obta1n 

an effect1ve nodal numbering scheme, in order to estimate the number of 

operations that are necessary for the solution, because this enables the 

analyst to est1mate the computer cost for a specif1c problem. In addition 

T 
to the LDL decompos1tion, var1ous other schemes are used that are closely 

' related, all these methods are applicat1ons of the basic Gauss eliminat1on 

procedure. 

In the Choleski factorization, the matrix A 1s decomposed as follows, 

(2.66) 

where L = LDt. 
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Therefore, the Choleski factors could be calculated from the 0 and L 

factors. 

An operation count shows that slightly more operations are required 

~n the equation solut~on ~f the Cholesk~ factorization is used rather 

than the LDLT decomposition. In addition, the Cholesk~ factorizat~on is 

only suitable for the solution of posit~ve definite systems. 

The other algorithm that can effectively be used ~s the Frontal 

solution method which will be discussed now. 

2.7.2 FRONTAL SOLUTION METHOD 

The frontal solution techn~que f~rst devised by B.M. Irons, is a 

variation of Gauss~an el~mination that makes the utilization of external 

storage easy. It ~s customary to think of the process of assembling the 

master matrix and the master vector of impos~ng boundary condit~ons, and 

solving the system of equations, 

b=~. 

as distinct phases occurring one after the other. However, these processes 

can be performed ~n parallel in the Gauss~an-el~mination method. The 

frontal routine starts by assembling each of the element matrices ~n turn 

~nto the core storage, until the core area allocated to the solution 

routine by the programmer is f~lled. Then, from within this assembled 

part of the complete matrix, a p~votal search is made to determine the 

largest entry from amongst those rows and columns which are fully summed, 

i.e. rows and columns to which no further contributions w~ll arise in the 

subsequent assembly of the element matrices. The pivotal row is then used 

to eliminate all the coefficients in the pivotal column, after wh~ch it ~s 
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placed on the backing storage disc. When sufficLent coefficients have 

been elLminated it is possible to assemble the next element matrix, 

after which further elimination may take place. FLnally after all the 

coefficients have been elimLnated the solution LS obtained by a back

substitution. 

To demonstrate the procedure, consider the example shown in Figure 

(2.1) wLth one degree of freedom per node. The element numbers are circled. 

All the informatLon contaLned in A and b for the degrees of freedom 1 to 3 

4 

FIGURE 2.1: Finite-element dLvisions for a frontal solution 

has been assembled after the data for element 1 to 5 have been generated. 

Thus, with the GaussLan technique, it is possible to impose any constraLnt 

conditions which may occur at 1 to 3 and elLminate these degrees of 

freedom, that is, the unconstraLned degrees of freedom amongst 1 to 3 can 

be expressed Ln terms of the degrees of freedom 4 to 6 before the data for 
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elements 6,7, etc., are generated. If this is done, then 1f each 

condensed row required for the back-substitut1on phase is saved in 

external storage, and if their core locations in the computer are used 

to store the new information be1ng generated from elements 6,7, etc. the 

core storage requirement for a large problem may be reduced considerably. 

A reference to Figure (2.1) shows that some care must be taken in 

programming to realize fully the potential savings of Gaussian eliminat1on. 

For example information does not beg1n to appear for degrees of freedom 

9 and 10 until the data for element 10 are generated, and these degrees 

of freedom may be eliminated after the data for elements 11,12,13 have 

been assembled. Thus, a requirement exists, not only for a table of the 

degrees of freedom to which each element connects, but also for some flags 

to mark the f1rst and last appearance of each degree. The flags serve 

two purposes. They perm1t a calculat1on of the max1mum storage requ1re

ment, to be made in terms of the maximum number of degrees of freedom for 

which the information must be held in core simultaneously, and they are 

also used to reserve subareas of storage as the information associated 

w1th various degrees of freedom 1s shuffled in and out of core. Each of 

these phases (assembly-constraint-forward el1minat1on and back substitut1on) 

propagates through the region from node to node like a wave, hence, the 

frontral solut1on is also referred to as the wave front technique (Irons, 

1970). 

To illustrate the d1fference between the frontal and the regular 

method, consider, the three elements five nodes mesh shown in Figure (2.2). 
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2 4 

1 3 5 

FIGURE 2.2: Three element mesh 

Then the total1ty of the f1nite element equations can be wr1tten as Ax = b. 

After the assembly of the f1rst element equations the state of this 

matrix equation is as follows: 

I I I bi 
all a12 al3 xl 1 

I I I bi (2.67) a21 a22 a23 x2 = 2 

I I I bi 
a31 a32 a33 x3 3 

where superscript I denotes the element number from which the matrix 

entry was der1ved. The difference between the frontal and band routines 

is that in the frontal routines each equation can be eliminated at an 

earlier stage than the band rout1nes - as soon as 1t is complete - due to 

the superior account1ng process. Consequently core requirements are in 

general less for the frontal routines. 

Another effect of the frontal accounting process is that 1t allows 

both column and row p1voting without excessive non-zero entry growth. 

This may be illustrated by carrying out the elimination of x
1 

which leads 

to the following: 
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I I I 
I a21 I I a21 I bi a21 I 

a22 --I- al2 a23 -I al3 x2 --b 2 I 1 
all all all 

= I (2.68) 
I I 

bi a31 I 
I a31 I I a31 I x3 --b 

a32 ---a a33 - I al3 3 I 1 
I 12 all 

all all 

A subtraction of the Gaussian products does not increase the storage 

required, sLnce no terms are Lnvolved other than those found in equation 

(2 .68) • 

In order to minimLze core requirements, the element numbering is 

chosen Ln such a way as,to keep the "width" as small as· possible. In 

addition further core is required for the assembly of the next element's 

equations. 

Suppose now that the equations from the next element are assembled, 

so that the matrLx equatLon becomes: 
I I I I 

I a2lal2 II I a2lal3 II II 
a22 - + a22 a23 - + a23 a24 x2 I I 

all all 

I I I I 
I a3lal2 + II I a3lal3 II 

a32 - a33 - + a32 I a32 I 
all all 

II II 
a42 a43 

I 
bi a2lbl bii 

2 I + 2 
all 

bi I + bii (2. 69) = - a3lbl 3 3 

bii 
4 

From thLs it may be observed that although equations (2.67) and (2.68) 
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were altered before they were fully assembled, the terms subtracted 

involved only those components Lnvolving node 1 which were complete. 

For thLs some advantage, of course, there is a price to pay because 

the wave front method requires many shuffles in and out of core, which 

means a longer execution time, and a table for tracing the degrees of 

freedom currently Ln core, etc. This means more complLcated programming. 
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2. 8 ITERATIVE METHODS 

The procedure described in Section (2.7) for the solution of the 

system of linear equations A!=£ were direct methods, involving a fixed 

number of operations, Alternatively, iterative methods (to be described 

here) start from a first approximation, which is successively improved 

unt1l a sufficiently accurate solution is obtained. 

The maJority of iterat1ve methods for linear systems are stationary 

linear iteration methods: that is they can be written a~, 

(k+l) (k) 
X = Mx + C , k=O,l,2, ••• (2. 70) 

where M is a matrix depending upon A and£ is a column vector depending 

on b. Most of the well-known 1terative methods are built around a partition 

(or splitting) of the matr1x A in the form, 

A = (D+U+L) , 

where, 

u = {:ij 

i<j 

i~j 

(str1ctly upper triangular matrix), 

{:ij 

i>j 

i~J 

L = (strictly lower tr1angular matrix). 

2.8.1 JACOBI METHOD 

The simplest of the iterative methods is widely known as Jacobi's 

method or as the method of simultaneous displacements. In this scheme, 

the approximate solut1on obta1ned at the end of the kth iteration cycle, 

starting from some initial est1mate ~(k) (initially ~(Ol), we construct 



(k+ll x as follows, 

Jacobi iteration, 
n 

I 
i;iJ 

(k) 
ai x. 

J J 
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(k+l) 
xi 

'=1 , i=l,2, ... ,n. (2. 71) 

or 
(k+l) 

X (2. 72) 

Comparing th1s w1th the general linear iterative scheme (2.70), we see 

that the choice, 
-1 

MJ = -D (L+U) , (2. 73) 

characterize the Jacobi method. • 

The procedure (2.72) is repeated (for k=O,l,2, ••• ) unt1l it converges 

to a stationary solut1on for which, 

(k+ 1) (k) 
X - X = 0 

according to some chosen norm. 

In spite of 1ts simplicity, 1t is seldom used as it is very slow to 

converge. 

2.8.2 GAUSS-SEIDEL METHOD 

The Gauss-Seidel method, also known as the method of successive 

displacements, represents a refinement of the Jacob1 method. In the 

Jacobi method, one does not use the new values (k+l) 0 x unt1l every 
r 

component of the vector x has been evaluated. (k+l) 
If new values x , 

r 
(k+l) r=l,2, ..• ,i-l, are used in evaluat1ng x , then we have, 1nstead of 
1 

(2.71): 

Gauss-Se1del iteration, 

(k+l) 
xi ; 

i-1 
b. - I 1 j=l 

(k+l) n (k) 
aijxj I aijxJ 

j=i+l 

ai,i 
(2.74) 

1.=1,2, ... ,n. 
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or in matrix notation, 

(2. 75) 

This ~s similar to equation (2.70) with, 

MGS = 
-1 - (D+L) U , 

and ~s = (D+L)-lb . 
Here, as the values of x. are successively updated and overwritten, i.e. 

~ 

only one approximation for each xi needs to be stored at a t~me, thus 

sav~ng vital computer memory. 

2. 8. 3 AN ACCELERATION OR (OVER OR UNDER) RELAXATION METHOD 

Start~ng from the basic Jacobi and Gauss-Seidel iteration methods; 

one may generate families of iterat~ve procedures by inserting an addit~onal 

parameter ~n the calculation w~th the intent of accelerating the rate of 

convergence, the corresponding methods are called over- or under-relaxation 

methods. 

Jacobi Method with Acceleration 

If we rewrite equation (2.72) of the Jacobi method as, 

x(k+l) = ~(k)+{D-l[b-{L+U)~(k))-~{k)} 

(k) (k) 
=~ +!, , (2. 76) 

Where r (k) th t . b k t , e erm 1n rac e s, {.} is seen to be the correction in x 

in the (k+l)st iteration cycle. 

To generate a family of accelerated iterative procedures, we mult1ply 

this correction by the scalar quantity w, called the relaxation factor: 

Hence we have, 
x(k+l) = x(k) + wr{k) 

= x(k) + w{D-1[£-(L+U)~{k))-~(k)} ' ( 2. 77) 
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which may also be wr~tten as, 

~(k+l) = (1-w)~(k) + WD-l[£-(L+U)~(k)] , 

When w=l, this expression becomes the Jacobi iteration, when w>l, 

equat~on (2.78) is called overreU!xation and when w<l, it is called 

underrelaxation. 

On a single equation basis, (2.78) may be written as 

= (1-w)x~k) 
~ 

+w 
b -
~ 

n (k) L a .. x. 
~#] ~] J 

Then equat~on (2.78) ~s equ~valent to the follow~ng two steps: 

(i) ~(k+l) = D-1 ~-(L+U)~(k)] , 

(ii) (k+l) (1 ) (k) ,..(k+l) x = -w x +wx - -

(2. 78) 

(2. 79) 

(2.80) 

... (k+l) 0 where x ~s the normal Jacobi result. Similarly, on a single equat~on 

bas~s, we may write, (2.80), 

(i) 

= 

(b. -
~ 

n (k) 
L a,JxJ ) 

i#j ~ 
, i=1,2, ... ,n 

(ii) 
(k+l) 

~i 
= (1 ) (k) + .... (k+l) -w x. wx. i=l,2, ... ,n. 

-~ ~ 

The Successive OVerrelaxation (SOR) Method 

(2 .81) 

This method is closely related to the point Gauss-Se~del method. 

Instead of equat~on (2.74), an acceleration is effected after each line 

~-1 (k+l) n (k) as, (b - I I aijxJ a .. x 
(k+l) (k) i j=l j=~+l 

~] J (k) 
x. = X + w( X - ) -
~ ~ aii 

1,, 

i-1 (k+l) n (k) 
(b. - I aijxj - L a ijxj ) 

(1-w) x~k) 
~ j=l = + w j=i+l (2.82) 

~ aii 

which may be expressed in matrix form as, 



or 

i.e. 

Here 

and 

' 
x(k+l) = (I+wD-lL)-l[(l-w)I+wD-lU]~(k)+w(I+wD-lL)-lD-l£ 

(k+l) 
X 

(k) 
= MSOR ~ + EsoR 

-1 -1 -1 
= (I+wD L) [ (1-w) I+wD U) 

-1 -1 -1 c = (I+wD L) wD b , 
-"-SOR -

53 

(2 .83) 
• 

(2.84) 

where MSOR LS called the successive overrelaxatLon (SOR) iteration matrLx 

and k LS the iteration Lndex. 

2.8.4 CONVERGENCE OF POINT ITERATIVE METHODS 

We shall now discuss the convergence rates for these iterative 

methods. Converence is the property that the error, 

(k) (k) 
~ =~-~ , (2. 85) 

possesses (where x LS the exact solution of ~=£) as it tends to zero as 

k~. The analysis of convergence is an important concern, because there 

is no a prLori indication that any of these methods should converge at all. 

Moreover, we shall see that the rate of convergence for methods with 

acceleration depends (as expected) on the acceleration factor ~ 

A relation between the error in successive approximations can be 

derived by subtracting from equatLon (2.70), the equatLon, 

(2.86) 

from which we obtain the result, 

(2.87) 

Therefore, using (2.87) successively we obtain, 
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e: (k) = Me: (k-1) 

2 (k-2) = M e: 

(2 .88) 

(0) (0) 
where e: = x-x and x(O) is an arb1trary known set of initial values. 

(1) (2) (k) . 
The sequence of iterative values~ ,~ , ••• ,~ , w1ll converge to x 

as k tends to 1nfinity if, 

lim e: (k) = 0 • 

k->«> 

Since x(O) and therefore e:(O) is arbitrary it follows ~~at the iterat1on 

w1ll converge if and only if 

lim Mk = 0 
k->«> 

(2.89) 

Now, let the matr1x M of order (nxn) have eigenvalues A
1

,A
2

, •.. ,An and 

assume that the correspond1ng eigenvectors ~1 ,~2 , ••• ,~, are linearly 

1ndependent. Then, we can expand the in1tial error as, 

(0) 
e: = al~l + a~2 + • • • + a~ = 

where a
1

; 1=1,2, ... ,n are scalars, and thus, 

( 1) 
e: = Me:(O) = 

n 

I 
i=l 

n 
L a.v. 

i=l 1
--:L 

(2. 90) 

but M~ = A1~, where Ai is the eigenvalue correspond1ng to~· therefore, 

(1) 
e: = 

Similarly, we have, 

(k) 
£ = 

n 

I (2. 91) 
i=l 

From this it follows that the 1teration w1ll converge from an arbitrary 
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inLtLal vector x(O) if and only Lf the eigenvalues of M satisfy, 

11. I < 1 , L=l,2, ••• ,n. 
L 

Theroem (2.10) 

ff . d' · f th · t method x(k+l) A su LCLent con Lt1on or e Ltera 1ve = Mx(k)+c to - -
converge is that, 

IIMII < 1 . 

Proof: 

we have 

But for any matrix norm that LS compatible with a vector norm I lv I I 
--:1. 

we have, 
IIMII llv 11 • 

--:1. 

Therefore, 

so, 
(2.92) 

It follows from (2.92) that a sufficient condition for'convergence LS that 

I IMI 1<1. It LS not a necessary cond1tion because the norm of M can exceed 

unLty, even when p(M)<l. 

Theorem (2.11) [VARGA, 1962) 

Let A be a strictly or 1rreducibly d1agonally domLnant complex matrix 

of order n. Then, both the assocLated poLnt Jacobi and poLnt Gauss-SeLdel 

iteration matrices are convergent, and the Jacobi iterative method and 

Gauss-Seidel iterative methods for the problem ~-£ are convergent for 

(0) any arbitrary initial approximatLon vector x • 
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2.8.5 RATE OF CONVERGENCE 

we now study the rate of convergence of a convergent linear point 

iterat~ve method. s~nce even if the iterative method converges it may 

converge too slowly to be of any practical value. Therefore, it is 

essential to determine the effectiveness of each method. To accomplish 

this, assume that the e~genvalues of the ~terat~on matrix M are of 

decreas~ng order as follows: 

~ ••• ~lA I , 
n 

(2.93) 

and that the matrix M has n !~nearly independent eigenvectors, ~1 ,~2 , ••. , 

v , namely. 
-n 

Now equat~on (2.91) i.e., 

(k) n k 
e: = L aiA~~ 

~=1 

can be rewritten as, 

For large values of k we have that, 

s~m~larly, 

so, 

(k+l) 
e: 

(k+l) 
e: = A e:(k) 

1-

If the ith component of 
(k) (k) 

e: is denoted by e:i 

I e:~k> I 
le:~k+ll I 

1 
"fiJ= 

1 
p(M) 

An k 
(-;----) a v ) . 
"1 n-n 

it ~s seen that 

(2.94) 

(2.95) 

(2.96) 

(2.97) 

1 Hence, in p(M) = - inp(M) gives an indication of the number of decimal 

dig~ts by wh~ch the error ~s eventually decreased by each convergent 

iteration. Since, for convergence, O<p(M)<l, the number of decimal 
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digits of accuracy gained per iteration increases as p(M) decreases. 

Alternatively, for 
(k) (k-1) 

large k, E ~Al£ , therefore, 

, p=l,2, .•. 

Hence, 1f we want to reduce the size of the error by a factor 10-q, say, 

then the number of iterat1ons needed to do this will be the least value 

of p for which, 

Hence, 
p 3 q/-R.n(p(M)) , (2.98) 

which shows that p decreases as -R.n(p(M)) increases. Clearly, the number 

-in(p(M)) provides a measure for the comparison of the rates of convergence 

of different iterative methods when k 1s suff1ciently large. For th1s 

reason -in(p(M)) is defined to be the asymptotic rate of convergence and 

1s denoted by R (M). 
"" 

The average rate of convergence ~(M) after k iterations is defined 

by the quant1ty, 
(2. 99) 

It can be proved that [VARGA, 1962) the asymptot1c rate of convergence, 

R (M) = hm 
"" 

(2 .lOO) 

and that the number of iterations required to reduce the error ll£(k) 11' 

to I IE(O) I l/a, for suff1c1ently large k is 3(-ina)/Rn(M), [YOUNG, 1971). 

Theorem (2.12) [YOm~G, 1971) 

Let the matrix A be irreducible with weak diagonaldominance, then, 

(i) The Jacob1 method converges, and the JOR method converges 

for O<w~ 1. 

(1i) Both the Gauss-Seidel and the SOR methods converges for 

O<w:; 1. 
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Theorem (2.13) [YOUNG, 1971] 

Let A be a symmetric matrix with posit~ve diagonal elements then the 

SOR method converges if and only ~f A is positive definite and O<w<2. 

Theorem (2.14) 

For the ~teration matrix in the SOR method, we have 

so the method only converges for O<w<2. 

Proof: 

Since the determinant of a triangular matrix is the product of its 
' -1 -1 -1 diagonal elements, and (I+wD L) and [(1-w)I+wD U] are both triangular 

matrices, hence we obta1n, 

-1 -1 -1 
det(MSOR) = det(I+wD L) det[(l-w)I+wD U] 

if we use the standard result from matrix theory that the product of the 

eigenvalues of a matrix ~s equal to its determinant! if the eigenvalues of 

MSOR are denoted by A1 ,A2, ••• ,An' then, 

Al•A2 ·····An = det(MSOR) 

-1 -1 -1 = det(I+wD L) det[(l-w)I+wD U] (2.101) 

Both matrices appearing in the above are tr~angular (the inverse of a 

triangular matrix is also a triangular matr~xl1 and the determ~nant of a 

triangular matrix is equal to the product of ~ts d~agonal elements. Thus, 

whence, 

which proves the 

max I A_ I 
.L 

~ 

theorem. 

;: 11-w I , O<w<2 , (2 .102) 

In practice w usually lies between 1 and 2, and the optimum w denoted 

by w t' for the maximum rate of convergence is given by [YOUNG, 1971], op 
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w = opt 
2 (2 .103) 

where p(M) is the e1genvalue of largest modulus of the Jacobi matrix M. 
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2.9 SOLUTION OF THE EIGENVALUE PROBLEM 

When the finite element method LS applied to the solution of the 

eigenvalue problem, we obtain the following algebraic eigenvalue problem, 

(2.104) 

where A LS a gLven (nxn) matrix, A is a scalar (called the eigenvalue or 

characterLstLc value) of the matrix A and x LS a column vector with n 

components (called the eLgenvector). 

There are in general two types of methods for solving eigenvalue 

problems, 

(i) methods which make use of similarLty transformatLons which are 

commonly referred to as direct methods or transformation methods, 

such as Jacobi, Given's and Householder's. 

(ii) iterative methods where, an arbitrary initial approximation to 

the eLgenvector correspondLng to the domLnant eigenvalue (eigen

value which is largest in modulus) or the smallest eLgenvalue 

is successively Lmproved until some required'precLsion is 

reache~ The iterative methods are most useful in the treatment 

of large sparse matrices when good estimates of the eLgenvectors 

are available. 

We shall concentrate our attention on the LteratLve methods. 

(1) The Power Method 

The Power method LS a well-known iteratLve procedure for finding the 

largest eigenvalue (A
1
), along with the corresponding eigenvector. 

Let us consider an (nxn) matrix A, whose eigenvalues are ordered so 

that, 
(2.105) 
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By assuming there exLsts n lLnearly Lndependent eigenvectors ~1 .~2 , 

••• ,x and any arbLtrary 
-n 

(0) 
vector z can be expressed in the form, 

(0) 
z = 

n 
I (l. X , 

L=l L -:I. 

where a are scalars, not all zero. 
L 

Let us define the iterative scheme given by, 

z(k) = Az(k-1) k=l, 2 •••• 

(0) 
where z is an arbitrary vector. Then, 

z(k) = Az(k-1) 

= A2z(k-2) 

k (0) 
=A z 

n k 
= La.>.. x. 

i=l L L -L 

where we have used equatLon (2.106). 

(2.106) 

(2 .107) 

(2.108) 

Now since a
1

,a2 , ..• ,an are not all zero, the rLght-hand sLde of 

equation (2.108) will be dominated by the terms, 

If r=l, and we assume that a
1
¥o we have, 

(k) 
z 

k n k 
>.

1 
{a1~1 + La.(>. />.

1
> x.} 

i=2 L L -L 
(2 .109) 

(2 .110) 

for suffLciently large k, where ~ is a vector with very small components 

when k 1s so large that £ is negligible to the required precision, 1t 

follows that ~(k) is an approx1mation to the un-normal1zed vector ~1 • 

This forms the basis for the simple power method for computing the 
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dominant eigenvalue. 

Now since 
(k+l) 

z = ,k+l{ (k+l)} hl a1~1 + £ , then for the 1th 

(k) 
component of~- , we have, 

(~(k+l\ 

(z(k)) 
- 1 

= 

(k+l)} + e: 

(k) 
+ e: 

The rate of convergence will depend on the constant ai' but more 

essent1ally on the ratios, 

· · · · · I~: I . 

(2 .111) 

from which it follows that the smaller these ratios are, the faster will 

A2 
In part1cular, 1f ~ is close to un1ty then the 

1 
be convergence. 

convergence 1s likely to be very slow. 

(k) 
In order to keep the elements of z w1thin reasonable bounds 

during computation to prevent overflow, it 1s usual to normalise the 

vector at each 1terat1on by div1d1ng all its elements by the element of 

largest modulus, the sequence of normalising factors then converges to Al· 

That is, the elementsx(k) are scaled at each step, and equation (2.107) 1s 

replaced by the pair of equations 

1. (k) = A~ (k-1) 

(k) 
z = 

x.tkJ 

In this case, 
(k) ~1 

z ... , 

and 

Now suppose that r>l, and that equation (2.105) is sat1sfied with 

Al = A2 = ••• =Ar 
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Then we have, r n (k) >.k { I I k (2.112) z = ai.; + "i <>-/>.1) ~} 1 i=l 1.=r+l 

l 
r 

£(k)} = { L Cl.X. + (2.113) 
1 i=l l. --:1. 

(k) 
for sufficiently large k, where again e is a vector Wl.th very small 

elements. 

Thus, the convergence of the power method l.S not affected, and the 

iterates z(k) tend to a vector which is some linear combination of the 

eJ.genvectors corresponding to >.
1

• Thus, the power method will only 

supply one eigenvector correspondl.ng to a multiple dominant eigenvalue, 

for each z(O). 

However, the J.terative"procedure breaks down, if there are a number 

of unequal eigenvalues of the same modulus. 

Thl.s breakdown is characterized by the failure of the iterates to 

converge, and by the changes l.n s1.gn of the approximation to >.1 , (see 

A.R. GOURLAY, 1973). 

(2) The Inverse Power Method 

The other most powerful methods available in connection Wl.th solv1.ng 

matrix eigenproblems l.S the technique, known as inverse iteration. This 

method is not only of general use in that it may be appll.ed to the 

computation of an eigenvalue and/or an eigenvector, but it also possesses 

a fast rate of convergence. 

A direct iteration of the form, 

1.. 
(k+l) 

= Bz (k) 

(k+l) 
(k+l) 1.. 

z = lly_ (k+l) I I,. 
(2 .114) 
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gives under suitable conditions a convergent sequence of values 

approximat1ng to the dom1nant e1genvalue of B, and its associated eigen-

vector. The process defined by, 

Az<k+ll 

(k+l) 
z 

= z 

= 

(k) 

J.S equ1valent to (2.114), but with the matrix B = A-1 • Thus, the 

sequence (2.115) w1ll converge to the e1genvalues of A of smallest 

modulus. 

To show this, assume, 

Then equatJ.on (2.115) gives, 

z(k) = T 
k 

n 
I ~ x. 

(0) 
z = 

i=l J.->. 

n 
I; A -k 
1. a.A. 

i=l l. 
1 

(2 .115) 

(2.116) 

(2.117) 

where Tk is a scaling factor J.ntroduced by the rescaling part of equat1on 

(2.115). 

(k) The vector z is rJ.chest 1n the vector x correspondJ.ng to the 
-n 

smaller eigenvalue A • 
n 

(k) 
Therefore the sequence z w1ll tend to a multiple of x as k~ 

-n 

and also, for each j in general 

(k+l) 
zj 

(k) 
z 

J 

1 
A 
n 

, as k-+= • 

The process (2.115) is known as the inverse iteration in its simplest 

form. 
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2.10 THE SOLUTION OF NON-LINEAR EQUATIONS 

The fin1te element analysis of any physical or engineer1ng problem 

leads to a system of matr1x equat1ons, some of the methods available 

for solv1ng the final system were presented 1n Sect1on (2.7) and (2.8). 

It 1s to be noted that the problem has to be linear in order to apply 

the solution of Sect1on (2.7) and (2.8). 

If the problem is non-l1near, the resulting matr1x equat1ons will 

also be non-l1near 1rrespective of the type of the problem (elliptic, 

e1genvalue or parabolic problem), and some sort of iterative procedure 

has to be used for finding the solution. 

We shall here be br1ef and mention JUSt a few of the more recent 

important contributions 1n this area. Perhaps the most important 1s the 

book by Ortega and Rhe1nboldt (1970) which gives detailed and some 

practical considerations of the solution of a set of nonlinear equat1ons. 

we consider in th1s section the problem of f1nd1ng a solut1on of a 

fixed point (stationary point) ~* = (xi,xi•····x~)T, of the system of n 

nonlinear equations, 

f
1

!x
1

,x2 , ••• ,xn) = o 

f
2

(x
1

,x2 , ••• ,xn) = 0 

which can be written as, 

(2.118) 

(2.119) 

I 
where x 1s an n-d1mensional column vector w1th component x1 ,x2 , ••• ,xn and 
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!(~) LS an n-dLmensional vector valued function, i.e., a column vector 

We shall assume the existence of x* and also that some inLtial 

(0) 
supplLed approximatLon x to x* LS available. 

Most of the methods to be described are Lterative methods which 

generate a sequence of poLnts, 

(1) (2) 
X ~~ t • • • say, or {~(k)} (the superscrLpts denoting 

iteratLon number} 

hopefully converging to a fixed poLnt ~* which is the solution to the 

problem. If the problem functLons which arise are smooth, that is 

1 
continuous and continuously dLfferentLable (c). Therefore, for a function 

f(~) at any poLnt ~ there is a vector of first partial derivatives, or 

gradient vector, 
af 
ax1 

af 
ax2 I 

I 
I 

~ 
[!xn 

= 

where \7 denotes the gradient operator 

Vf (~) , 

... , _a_>T 
ax • 

n 

(2.120) 

2 If f(~) LS twice contLnuously differentiable (c ) then there exLsts 

a matrLx of second partLal derivatives or 2 
Hessian matrLx, written V f(~), 

for which the i,Jth element is a2
f 

ax. ax 
L J 

This matrLx LS square and symmetrLc, since any column (the jth say), 

LS V<a!f>, the matrix can strictly be 

j 2 2 
f(~) = lOO(x2-x

1
l+(l-x

1
l , gLves 

T written as V(v.E (~).For example, 



Vf(~) = 

r2oox~ -400x2 +2' 

L -4oox1 , 
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-4oox0 

200 J 
and this illustrates that Vf and V

2
f will in general depend upon~· and 

vary from point to po~nt. 

The ~terat~ve methods wh~ch will be discussed to solve (2.119) w~ll 

have the following states: 

(a) Initialisation: user suppl~ed approximat~on X 
(0) 

' 
(b) Iteration: (k+l) = <j>(~ (k)) k=0,1,2, ... X 

' ' 
(cl Terminat~on: convergence criterion for (b) • 

The system (2.119) ar~ses during the numerical solution of elliptic and 

parabolic partial d~fferential equations. Such a system of nonlinear 

equations arises, for example in the finite element method v~a a ~nimum 

variational principle (or via a Galerkin approx~mation), of the elliptic 

equation, 
2 2 

V u = u 

This equation gives the system of n nonlinear equations, 

(2.121) 

which system can be wr~tten as, 

f(U) = AU - F(U) = 0 (2.122) 

It should be noted that, 

(~) !!U) consists of a !~near and nonlinear part, as might be 

expected. 

(ii) The matrix A is symmetric, posit~ve def~n~te, banded and sparse. 
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(iii) Each function F. (U) depends on a small number (determined by 
J,-

the index i of the variables U .• 
J 

We shall consJ.der how each property can be used to advantage J.n the 

numerJ.cal solution of (2.122). 

2.10.1 FUNCTIONAL ITERATION 

One of the form J.n which the nonlinear equatJ.ons may appear is 

~ = .2_(X) , (2.123) 

where .2. is a nonlinear vector function. The simplest procedure for 

findJ.ng a solution of this system of equations is known.as functional 

iteration or fixed poJ.nt J.teration. It proceeds as follows. From some 

(0) { (k) J.nitial guess ~ at the solution, the sequence of J.terates ~ , 

k=0,2, ••• } J.s defined by the relatJ.on, 

(k+l) 
X (2.124) 

The convergence of this procedure is governed by the contractJ.ng mapping 

theorem. 

Theorem (2.14) 

If g(~) satisfJ.es, 

11 g (E -g (1,) I i ~A 11~-zll 
for all vectors ~·l. such that 11~-~ (O) !I ~P, ll.z-x (O) I! ~P with the 

Lipschitz constant, A, satisfying, 

o:;A<l 

(0) 
Let the inJ.tJ.al iterate, x satisfy, 

then (J.) all J.terates (2.124) satisfy, 

ll~(k) -~(O) 11 :; p ; 

(2.125) 



(iL) the Lterates converge to some vector, say 

hm x(k) = ~* , 
k-+<o 

which is the root of (2.118). 

(iii) x* is the only root of (2 .123) in 11~-x (O) 11 ~P 

The formal proof may be found in (Isaacson and Keller, 1966). 

Now (2.121) can be written in the form (2.123) as, 

U = A-lE:_(U) • 
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The method of functional iteration for solving (2.122) then consists of 

the J..teration, 
u<k+ll A -lE:_(!!_(k)) = k=O,l, ..• , 

or AU(k+l) = E:. (.!!_ (k) ) k=O,l, •.. (2.126) 

The iteration process (2.126) requLres the solutLon of a sequence of (n<n) 

linear systems wLth a constant matrLX A and a varyLng rLght hand side 

vector E:_(!!_(kl), k=O,l, •••• 

ThLs sLmple form results from usLng property (L) of the system (2.122). 

We can also use property (LL) to factorLze A as, 

A= LDLT , 

where L is a unit diagonal, lower triangular matrix, and D is a diagonal 

matrix. Then, each iteratLon of (2.126) consists of the evaluation of 

(k) (k+l) 
F(U ) and forward and backward substLtutLons to gLve .!!_ • 

2.10.2 NEWTON'S METHOD 

A particularly effective procedure for solving (2.119) is known as 

Newton's method whLch makes use of the iteratLon, 

(k+ 1) (k) (k) 
X =X + ~ I k=O,l, ... (2.127) 

where £(k) = -J(~(k)l-l!(~(k)) 
1 (2.128) 



and J(~) 1s the (nxn) Jacobian matrix of f(~) with components 

J. j (x) = 
1 -

af. (x) 
1-

axj 

70 

There are many theorems concern1ng the convergence and its rate for 

(2.129) 

Newtons Method (Ortega and Rheinboldt, 1970) g1ves cond1t1ons on f(~), 

J(~) and ~(O) which guarantee the convergence of the 1teration (2.127). 

Of course, the computation is not carr1ed out in the form (2.127), but 

rather by solving the system of linear equations, 

J(~ (k)) (~ (k+l) -~ (k)) = -f(~ (k)) 

at each step of the iteration. 

(2 .130) 

The JUstification for Newton's method is taken from Taylor's theorem, 

(k) 
where the Taylor expansion of f in a point x that l1es in the 

neighbourhood of a solut1on ~* may be expressed as, 

(2.131) 

• But since x* is a root to f(~) = Q• whence 

0 "' f (~ (k) ) + J (~ (k)) (~*-~ (k)) ' (2.132) 

This approx1mation may be solved for the unknown~*, g1v1ng prec1sely 

the formula (2.127). 

The basic Newton method as it stands is not suitable for a general 

purpose algorithm, since the Jacob1an J(x(k)) may not be positive 

definite when x(k) is remote from the solution, therefore, a good initial 

estimate must be provided. Furthermore even if J(~(k)) is positive 

(k) 
definite then convergence may not occur, in fact f(~ ) may not even 

decrease. The latter poss1b1lity can be eliminated by using Newton's 

method with a damping faator 1n which correction is used to generate a 

direction of search, 



(k+l) (k) (k) (k) 
x =x +a .12. , 

with O<e::S 1. 

There are many ways of choosing a(k); one s1mple cho~ce, 

(k) 
a = 

2m 
1 m=O,l, ... 

where m is the smallest integer such that, 

11 f(~(k)) + ~ .12.(k) 11 :" e:ll!<~(k)) 11 
2 
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(2.133) 

(2 .134) 

(2.135) 

Other good choices of a(k) are possible, see [GILL and MURRAY, 1974). 

Provided the matrix J(~(k)) is not too large then Gaussian elim~nation 

with partial p~voting could be used to factorise J(~(k)) as 

}8 (~ (k)) = LU , 

where p ~s a permutat~on matrix, L ~s a unit diagonal lower triangular 

matrix and U is an upper triangular matr~x, and forward and backward 

substitut1on processes used to find J2.(~(k)). 

We note that each iterat~on of Newton's method requires the evaluat~on 

and factorization of the (nxn) Jacobian matr~x J(~(kl). 

Hence, ~n general, Newton's method requires more operations per 

iteration than the funct1onal iteration of Section (2.10.2), although ~n 

compar1son Newton's method converges at a second order rate wh~ch may 

be particularly useful if accurate results are required. 

Here, we will g~ve a Theorem which guarantees the convergence of 

Newton's method. 
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Theorem (2 .15) 

If x(k) 1s sufficiently close to~* for some k, and if the Jacobian 

matrix J(~*) 1s positive definite, then Newton's method is well defined 

for all k, and converges at second order. 

Proof: 

It is assumed that f!x) E c2
, and the elements of the Jacob1an matrix 

satisfy a L1psch1tz condition, 

Then the Tay1or 

IJij<~l-Jij<x.> I ~ all~-zll 
(k) 

expansion of f!~ +~) about 

(k) 
with h = ~ -x* and, 

(k) 
x is 

(if we use order notation, i.e. F(~) = 0(~(~)), means that, 

h=-h(k) gives, 

Let x(k) be in a neighbourhood of~* for which J(~(k))'is positive 

defin1te and J(~(k))-l is bounded above. 

(2.136) 

(2.137) 

(2.138) 

Such a neighbourhood exists by a continuity of J(~). Then, the kth 

iterat1on exists and by multiplying through (2.138) by J(~(k)J-1 gives 

o = J(~(kll-1 f(~<kll-h<kl + o<ll~(kl 112> 

= -p_(kl_~!kl + o<ll~!kl 11 2> 

= -~(k+l) + 0( ll~(k) i 12 > 

by definition of ~(k+l). 

(2.139) 

(2.140) 

Hence by definition of 0(.) there exists a constant c such that 

(2.141) 
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If x(k) 1s 1n a closer ne1ghbourhood for which J J~JJ~a/c, where O<a<l, 

then it follows that, 
(2.142) 

(k+l) 
Thus, x is in the neighbourhood, and by induction the iterat1on 1s 

well def1ned for all k and 

ll~(k) 11 ... 0 

F1nally, the iteration converges and the rate is shown to be second order 

by (2.139). 

The kth iteration of Newtons Method can be written 

(a) 

(b) 

(c) 

(d) 

(k) 
calculate ! (~ ) and, 

(k+ 1) (k+l) (k) (k) 
evaluate x from x = x + £ 

(k+l) 
calculate !(~ ) . 

As the calculation of the Jacobian matrix 1s very expensive for some 

nonlinear problems, a variation of Newton's method exists 1n which the 

Jacobian matrix 1s not evaluated on every 1teration, but the factors from 

a previous iteration are used in its place. This saves effort 1n carrying 

out the 1teration, but slows down the overall rate of convergence. 

Many modifications of Newton's method arise, especially when the 

Jacobian is not positive definite, or when convergence may not occur. 



CHAPTER THREE 

THE FINITE ELEMENT METHOD 
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3.1 THE BASIC PROBLEM 

The general problem to be solved takes the form of a differential 

equation, 

(3 .1) 
In some region R in the space (x,y), 

and subject to the condition, 

Lu = !i on the boundary aR, 

T where £=!D
1

,o2 , ••• ,Dr] are a set of different1al operators which acts 

T 
on the unknown ~=~(x,y) to generate the function f=!f1 ,f2 , ••• ,fr] , 

T and also ~=[L1 ,L2 , ••• ,Lr] are again differential operators which 

T 
hold on the boundary aR of the domain Rand !i=[g1 ,g2 , ••• ,gr] is a 

given function as shown in Figure (3.1). 

The unknown ~ may be a scalar or a vector of several quantities 

and similarly the differential equation (3.1) may be single or a 

set of simultaneous equations. 

The finite element approximation U(x,y) which is made up of a 

linear combination of suitable functions and satisfies the given 

boundary conditions is given by, 

n 
U(x,y) = L Ni(x,y)Ui, 

i=l 

where Ni (x,y), (i=l,2, ••• ,n) are "basis functions" or "shape 

functions" prescribed in terms of the independent variables x, y, 

and Ui (i=l,2, ••• ,n) are known parameters. The aim of the method is 

(3 .2) 



to determine the parameters U so that U(x,y) 1n some sense is a 
1 

good approximat1on to the true solut1on. 

y 

R: Du = f 

<lR: ~ = 3. 

X 

FIGURE 3.1 
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The general procedure to be adopted in,the various stages of the finite 

element method is outlined in the following sections. 

A description of the various alternative forms of the finite element 

method are given such as the variational principles (method which is 

based on Calculus of Variations), and also the weighted res1duals method 

which is a more widely used technique and more general in its applications. 
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3.2 DISCRETIZATION PROCESSES 

(1) Type of the Element 

The discretization of the domain or solution region into a series 

of finite elements (subregions) is the first step in the finite element 

method. This is equivalent to replacing the domain having an infim.te 

number of degrees of freedom by a system having a finite number of 

degrees of freedom. The number, shapes and sizes of the elements have 

to be chosen carefully such that the original domain is simulated as 

closely as possible with regard to the computational effort needed for 

the solution. 

Mostly, the cho1ce of the type of the element is dictated by the 

number of independent spatial coordinates necessary to describe the 

system. Some of the most popular used elements are one-two-three

dimensional straightside linear elements and are shown in Figures(3.2) 

and (3.3) below. 

node node 

1 2 

(a) One dimensional element with two nodes 

3 3.--------, 4 

1'-------...l 2 
Triangle Rectangle 

(b) Two dimensional elements 

FIGURE 3.2 



' 

1 

3 
Tetrahedron 

4 

(c) Three dimens~onal elements 

FIGURE 3. 3 
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5 6 

Rectangular Pr~sm 

For the discretization of problems involving curved geometries, 

finite elements with curved sides are used. The ability to model curved 

boundaries has been made possible by the addition of mid-side nodes. 

Typical elements having curved boundaries are shown in Figure (3.4). 

2 

3 

Plane tr~angle with 
curved sides 

1 

2 

Curved-line-element 

2 

3 

3 

1 5 

Annular element 

FIGURE 3.4: Finite elements with curved boundaries 
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(2) Size and Number of the Elements 

The size of the elements influences the convergence of the solution 

directly and hence it has to be chosen with care. If the size of the 

elements is small, the final solution is expected to be more accurate. 

However, we have to remember that the use of elements of smaller size 

will also mean more computational time. Sometimes, we may have to use 

elements of different sizes in the same domain. In general, whenever 

steep gradients of the solution region are expected, we have to use a 

finer mesh in those regions. Also the number of elements to be chosen 

for idealization is related to the accuracy desired, si~e of elements, 

and the number of degrees of freedom 1nvolved. Provided that the elements 

obey the requirements for a convergent solution, we may expect that the 

more elements we use to model the solution domain, the better accuracy of 

our results. For any given problem, there will be a certain number of 

elements beyond which the accuracy cannot be improved by any sign1f1cant 

amount. This behaviour is shown graphically in Figure (3.5). Moreover, 

since increasing the number of elements leads to higher computational 

expense, we may also have the added difficulty that we may not be able 

to store the resulting matrices in the available computer memory. When 

solving a particular type of problem for the first time, it is good 

practice to obtain several solutions with different numbers of elements. 

By comparing these results it is then possible to see whether enough 

elements are being used in the solution. A similar trial-and-error 

procedure is used for determining satisfactory mesh representation of 

domains of infinite extent. The procedure is to construct a finite 

mesh encompassing the regions of the so~ution domain where the phenomena 

are occurring. By comparing solutions obtained for meshes of 1ncreasing 



79 

extent, we can determine the po>.nt beyond which the location of the 

boundary no longer has significant effect on the solution. 

sol uti 
u -- ·- , 

Exact solutJ.on 

NumerJ.cal solution 

Number of elements 

No sJ.gnJ.fJ.cant improvement beyond A
0 

FIGURE 3.5: Effect of varyJ.ng the number of elements 

(3) Node Numbering Scheme 

The solution of the finite element problem often leads to matrix 

equations in which the matrices involved will be banded. The reasons 

most often presented for reducing the bandwidth of a matrJ.X are to reduce 

the storage and computation required to solve the system of equations. 

The advances in the finite element analysJ.s of large systems have been 

made possible largely due to the banded nature of the matrices. Further, 

since most of the matrJ.ces involved are symmetrJ.c, the demands on the 

computer storage can be substantially reduced by storing only the 

elements involved in the half band width instead of stor>.ng the whole 

matrix. 

The bandwidth of the finite element matrix depends mainly on the 



.------------------------------------- - - --- -
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node numbering scheme. If we can minimize the bandwidth, the storage 

requirements as well as the solution t1me can also be minimized. 

The bandw1dth can be minimized by using a proper node numbering 

scheme. For any finite element net"WOrk we define the bandMidth as the 

largest difference 1n the node numbers occurring for all elements of the 

assembled system. 

This ind1cates that the bandwidth can be minim1zed by reduc1ng the 

differences in the node numbering that occur for all elements in the 

g1ven reg1on of solut1on. 

As an example, consider the rectangular region, with 171. elements 

as shown in Figure (3.6). There are 200 unknowns in the final finite 

element system. If the entire matr1X is stored in the computer it will 

require (200)
2 

= 40,000 locations. The bandwidth overall is 20 and thus 

the storage required for the upper half bandwidth 1s only 20X200=4000 

locations. 

1 
2 3 4 

21 22 2 24 

41 
42 4 44 

I I I 
I I I 
I I I 
I I I 
I I I 
I I I 

FIGURE (3.6): Number1ng of the node of a rectangular 
region with bandwidth 20 

20 

40 

200 
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A shorter bandwidth can be obtained simply by numbering the nodes 

across the shorter dimension of the region. 

This is clear from Figure (3.7) where the numbering of the nodes 

along the shorter dimension produces a bandwidth equal to 10, and hence 

the storage required for the upper half band is only lOx200=2000 

locations. 

l 
ll 21 191 

12 22 ------------- 192 2 

3 
11 ?> --------- ---

?n ,, 
10 200 

FIGURE (3.7): Numbering of the node along the shorter 
dimension with bandwidth 10 

Several approaches are available for minimzing the bandwidth of the 

finite element systems of algebraic equations, we will describe here 

the CUthill-Mckee algor~thm for ordering the unknowns to produce a matrix 

with reasonably narrow bandwidth. 

~. THE CUTHILL-MCKEE ALGORITHM 

When the number of nodal variables is sufficiently large for the 
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storage space and computing time to be important, it is advisable to 

attempt to arrange the order of the variables so as to give an 

economical solution. An alternative procedure is to allow the variables ' 

to be specif1.ed in an arbitrary order within the input data, and to 

include an 1.nitial segment in the program which automatJ.cally rearranges 

the nodes numbering in a way that should give an efficient solution. 

Cuthill and Mckee's algorithm provides a simple scheme for renumbering 

the nodes of the finite element problem. 

Before describing the algorithm we will summarize ~ome of the 

notation to be used as well as some definitions of required terms from 

graph theory. 

Consider the system of linear algebraic equations, 

Ax = b ' 

where A is an (nxn) sparse symmetric positive definite matrix. The 

elements of A will be designated a. , where i is a row index and j a 
l.J 

column index. 

Definition (3.1): 

Let A be an ~ ,.,_) symmetric or lower triangular matr1.x with element 

aij" For the ith row of A, i=l,2, ••• ,n, we define, 

fi(A) = min{J: aijFo} 

that is f.(A) is the column subscript of the first non-zero element of 
l. 

the ith row of A 

b. (A) = 1.-f. (A) , 
l. l. 

that is, bi(A) is the band width of the ith row of A. 

Then the bandwidth of A is given by, 

B(A) = max{li-jl : aijFO} 

for example if, 



X 0 0 X 0 

0 X 0 0 X 

0 0 x· 0 X 

X 0 0 X 0 
A = 

0 X X 0 X 

0 0 X 0 0 

X 0 X X 0 

i 

1 

2 

3 

4 

5 

6 

7 

and note that, 
B(A) 

Definition (3.2) 

0 X 

0 0 

X X 

0 X 

0 0 

X 0 

0 X 

f. (A) bi (A) 
l. 

1 0 

2 0 

3 0 

1 3 

4 3 

3 3 

1 6 

B(A) = 6 

= max b.(A) • 
l. 
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For a graph G(A) correspondJ.ng to the matrix A we will have n nodes 

labelled, i=l,2, ••• ,n. For each non-zero element aij' i<j of A there 

will be an edge connecting nodes i and j. From the graph of A we can 

determine the position of all off-diagonal non-zero elements of A. 

Definition (3.3) 

Any two nodes of G(A) are said to be connected if there is a 
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sequence of edges JOining them such that consecutive edges have a common 

end point. Two nodes of G(A) are sa1d to be adjacent if they are 

connected by an edge. 

A graph G(A) is sa1d to be connected if every pair of nodes of the 

graph are connected. If G(A) is connected, the corresponding matrix is 

irreducible. 

A popular order1ng strategy is the Cuthill-Mckee algorithm. It 

attempts to find a permutation matrix P for which PAPT has a small band-

width, when we permute the rows and columns of A us1ng the permutation 

T T T 
matrix P generating PAP, the graph of PAP -namely G(PAP ), is 

identical to A but the node labels have been permuted according to the 

permutation matr1x P. 

The procedure presented here for determining P or equivalently a 

renumbering scheme for G(A) is given as follows: 

a. select a node to be relabelled 1, this node should be located at an 

extremity of the graph and should have, if possible a few connect1ons 

to other sides. 

b. the nodes adjacent to this node are numbered in sequence beginn1ng 

with 2 in the order of their increasing degree (the degree of a node 

is the number of nodes to wh1ch it 1s connected). 
r 

c. The procedure is then extended by relabelling the other nodes which 

are directly connected to the new node 2, in the order of their 

increasing degree, and so on unt1l the renumbering is complete. 

The graph shown in Figure (3.8) is the application of the algorithm 

to the Triangular Network starting at a corner node which produces a 



Bandwidth 4 

FIGURE 3.8: Cuthill-Mckee numbering scheme for a triangular 
network 
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matrLx of bandwidth equal to 4, while another way of numbering the same 

TrLangular Network gives a matrLx of bandwidth equal 7 as shown below 

Ln Figure (3.9). 

BandwLdth 7 

FIGURE 3.9 
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ii. THE REVERSE CUTHILL-MCKEE ORDERING 

Mckee considered the reverse Cuthill-Mckee algorithm which re-

numbers the Cuthill-Mckee ordering in the reverse way. Surpr1singly, 

th1s simple mod1ficat1on often y1elds an order1ng superior to the 

original ordering in terms of efficiency, although the bandw1dth remains 

unchanged but the reverse scheme is always at least as good, as far as 

storage and operat1on counts are concerned. Here, reverse is used in 

the sense that element say (i,j,k,JI.) moves to (N-i+l,ll-j+l,N-k+l,N-.!.+1). 

Figures (3.10) and (3.11) show both the Cuth111-Mckee and the 

reverse numbering algorithms arising in the use of finite element methods 

for the solution of partial d1fferential equat1ons in a square region w1th 

rectangular elements. 

15 19 22 24 25 

10 14 18 21 23 

6 
9 13 17 20 

3 
5 8 12 __ 16_ 

1 
2 4 7 

FIGURE 3.10 

Cuthill-Mckee numbering 
with bandwidth 5 

11 

11 7 4 2 1 

16 1~ 8 ~ 

20 1' 13 9 E 

23 2 18 14 1 

25 24 22 19 15 

FIGURE 3.11 

Reverse Cuthill-Mckee numbering 
with bandwidth 5 
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3.3 INTERPOLATION FUNCTIONS 

The most crucial step in the fLnite element analysis of a given 

problem is the choice of adequate interpolation functions. They must 

be chosen to meet certain crLteria such that the convergence to the 

true solution of the governLng differential equation is achieved. The 

finLte element interpolations are characterized by the shape of the 

element and on the order of the approximations chosen. 

In general, the choice of a finite element depends on the geometry 

of the solutLon domain and the degree of accuracy desired in the solution. 

The functLons used to represent the behaviour of the solution in each 

element are called interpolation functions or approximating functLons. 

Polynomial type interpolation functions are the most common forms 

of approximation for the finite element applications because they are 

easy to handle, specifically, it is easier to perform differentiation 

or Lntegration with polynomials and because it is possible to improve 

the accuracy of the results by increasing the order of the polynomLal. 

Theoretically, a polynomial of infinite order corresponds to the exact 

solution, but in practice we take polynomials of finite order only as 

an approximation. 

While choosing the order of the polynomial in a polynomial type 

interpolation function, the following considerations have to be taken 

into account: 

i) The interpolatLon polynomial should satisfy, as far as possible, 

the convergence requirements, the unknown must be continuous 

within the elements, for this reason complete polynomials are 
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often favoured. Complete polynomials are those in wh1ch all 

possible terms up to any g1ven degree are present, the necessary 

terms for all possible polynomials up to a complete order six 

are shown in Figure (3.12), which is known as the Pascal triangle. 

11) The polynomial representation within an element should not 

change w1th a change in the local coordinate system (when a 

transformation is made from one cartesian coordinate system to 

another). This property is called geometric isotropy or geometric 

1nvariance. 

In order to achieve geometr1c invar1ance the polynom1al should 

contain terms which do not violate symmetry in Figure (3.12). 

Name No. of terms 

1 constant 1 

X y linear 3 

2 2 quadratic 6 X xy y 

3 2 2 3 cubic 10 X X y xy y 

4 3 2 2 3 4 quartic 15 X X y X y xy y 

5 4 3 2 2 3 4 5 quantic 21 X X y X y X y xy y 

6 5 4 2 3 3 2 4 5 6 hexad1c 28 X xy X y X y X y xy y 

FIGURE 3.12: Array of terms 1n complete polynomials of various 
orders ~ two dimensions 

Thus, in the case of two dimensional linear elements (triangl~, the 

polynom1al should include terms containing both x and y in addition to 

the constant term. In the case of the cubic polynomial 1f we neglect 

2 2 the term x for any reason, we should not include xy and y also in 

order to maintain geometric isotropy of the model. 
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iii) The other consideration in selecting the order of the 

polynomial is to make the number of terms involved in the 

polynomial equal to the total number of degrees of freedom 

associated with the element otherwise the polynomial may not 

be un~que. 

The satisfaction of this requirement enables us to express 

the polynomial coefficients in terms of the nodel unknowns of 

the element. For some problems, however, choosing interpolation 

functions that meet all the requirements may be d~fficult and 

may involve excessive numerical computation.· For this reason, 

some investigators have ventured to formulate ~terpolation 

functions for elements that do not meet all the requirements. 

In some instances acceptable convergence has been obtained, 

whereas in others no convergence or convergence to an incorrect 

solution has occurred. 
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3.4 THE TWO DIMENSIONAL TRIANGULAR ELEMENT 

The two dimensional triangular element ~s probably the most widely 

used finite element. One reason for this is that arbitrary regions in 

two dimensions can be approximated by polygons, which can always be 

divided up into a finite number of tr~angles. In addit~on the complete 

mth order polynomial, 

(3.3) 

where a1 ,a2 , ••• ,an are the coeff~c~ents of the polynomial, also known as 
~1 

generalized coordinates, m is the degree of the polynomial and n = L j 
j=l 

can be used to interpolate a function say u, at !(m+l) (m+2) symmetrically 

placed nodes in a triangle. 

For example, the value, of a linear triangle function may be found at 

any point ~f ~ts values at three nodes, typically the vertices are known. 

For higher degrees of polynomial, we can generate the required nodes by 

taking (n-1) equally spaced lines parallel to each side and defining the 

nodes to be the intersections of these lines with each other and with 

the sides of the triangle as shown in Figure (3.13). 

We consider first the Zinear ease as indicated in Figure (3.14). 

Let the nodes be labelled as 1,2 and 3 and let the global coordinates of 

the nodes 1,2 and 3 be given by (x
1

,y
1
),(x

2
,y2) and (x

3
,y

3
) and the nodal 

values of U(x,y) by u
1

,u
2 

and u
3 

respectively. 3 

1 2 2 1 2 
4 

linear quadratic cubic 

FIGURE 3.13: Nodes for linear, quadratic and cubic approx~mations on a 
s~ngle tr~angular element 



U(x,y) 

X 

I 
I , 

FIGURE 3.14 

I 
I 

y 
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The variation of U inside the element is assumed to be linear and of the 

form, 
U(x,y) = a

1
+a

2
x+a

3
y , (3.4) 

The a. are uniquely determined when the values of U(x,y) are specified 
l. 

at the nodes. 

We now evaluate U at each node of the triangle in Figure (3.14). 

Thus, 



ul ~ al + a2xl + a3yl 

u2 ~ al + a2x2 + a3y2 

u3 ~ al + a2x3 + a3y3 

Solving equations (3. 5) for a1 ,a2 and a 3 
yields, 

1 
al ~ 2a<a1U1+a2U2+a3U3) 

1 
a2 ~ 2a(b1Ul+b2U2+b3U3) 

1 
a3 = 2a (clul+c2U2+c3U3) 

where a is the area of the triangle 1,2,3 given by, 

1 xl yl 

a = t 1 x2 y2 

1 x3 y3 

= t(xl~2+x2y3+x3yl-xly3-x2yl-x3y2) 

al = x2y3 - x3y2 

bl = y2-y3 

cl = x3-x2 
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(3 .5) 

(3 .6) 

(3. 7) 

(3.8) 

with the other a's, b's and c's obtainable by cyclic permutation of the 

subscript 1,2,3. 

The substitution of (3.6) into (3.5) with rearrangement yields the 

equation, 
(1) (1) U(x,y) = N1 (x,y)U

1 
+ N2 (x,y)U2 

3 (1) 
U(x,y) = L N. (x,y)U. 

i=l ~ ~ 
or 

where, 

The function N~11 (x,y) is called an interpolation function or 
~ 

(3.9) 

(3 .10) 

'Shape Function', and has the value 1 at the ith node and the value 
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0 at the other two nodes. Since N.(x,y) is linear in the variables x 
~ 

and y, it is identically zero on the side between nodes 2 and 3 and 

the gradient of U in x or y direction will be a constant. 

For the Quadratic approximation with nodes numbered as shown in 

Figure (3.15), the complete polynomial is given by 

U(x,y) = (3 .11) 

FIGURE 3.15 

A sim~lar procedure to that given for the linear case yields the 

approximation, 
U(x,y) = 

6 (2) L Ni (x,y)Ui • 
~=1 

where U. (i=l, ••• ,6) are the values of U(x,y) at the vertices. 
~ 

(i=l,2, ••• ,6) are given by, 

N{2) (x,y) = N(l) (2~ll_l) • 1 1 

N~2 ) (x,y) = N(l) (2N(l)_l) 
2 2 

N~2 ) (x,y) = N(l) (2N(l) -1) 
3 3 • 

(2) 4N(l)N(l) N
4 

(x,y) = 1 2 

N~2 l (x,y) = 4N(l)N(l) 
2 3 

Ni2) (x,y) = 4N(l)N(l) 
1 3 

Again it follows that, 

{ N(2) 
1, i=J, 

= l:"i:"J:"6. 
i o, iFj, 

(3.12) 

(2) 
The Ni (x,y) 

(3.13) 

(3 .14) 
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It is particularly satisfactory that the shape function Ni
21 

(x,y) 

(i=l,2, ••• ,6) can be expressed in terms of the shape function N~l) (x,y) 
l. 

of the linear case and therefore to simplify the formula we shall denote 

(1) the N. (x,y) simply by N 
l. l. 

' (J.=l,2, 3). 

Finally, for the Cubia case (m=3) with nodes numbered as shown in 

Figure (3.16) below, 

3 

1 2 

FIGURE 3.16 

The complete cubic polynomial is given by: 

(3 .15) 

As before the approximate polynomial is given by, 

U(x,y) = 
10 (3) 

L N (x,y)U. , 
i=l l. l. 

(3.16) 

where Ui, (i=l,2,3) are the values of U(x,y) at the vertJ.ces (1,2,3), 

U. (i=4,5, ••• ,9) are values at the points of trisection of the sides 
l. 

and u
10 

is the value of U(x,y) at the centroid of the triangle as shown 

in Figure (3.16). 

The shape functions are given by, 
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(3) 9 
N4 (x,y) = 2*1N2 (3N1-l) , 

(3) 9 
NS (x,y) = ZN1N2 (3N2-l) , 

(3) (3) 
with (N

6 
(x,y), ••• ,N

9 
(x,y)) similarly, (3 .17) 

Ni;) = 27N1N2N3 • 

The tenth parameter can be eliminated by using the linear relat1on, 

(3.18) 

to yield a function that will still interpolate the quadratic exactly. 

This procedure is called the elim1nation of internal parameters. 

Again, it follows that, 

i=j 
(3.19) 

In a similar manner the shape function can be generated for any order of 

parameters. 

We have created a set of shape functions N.(x,y) which form a basis 
1 

for all functions which are linear on each element and continuous within 

the element and so on for quadratic, cubic and other higher order elements. 

Another common element shape is a "rectangle", on which in a s=ilar 

manner a family of shape functions can be developed, details are given 

in ZIENKIEWICZ (1977). 
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3.5 CURVED BOUNDARIES 

So far shape functions have been constructed for straight sides only. 

To solve a problem with a curved boundary the mesh must be refined until 

the boundary is sufficiently closely approx1mated by a series of straight

line segments. 

Another technique which is introduced into structured analysis by 

ERGATOUDIS, IRONS, and ZIENKIEWICZ [1968), is to use a curved finite 

element which is based on geometrical considerations, whereby Lnter

polating funct1ons are obtained directly in terms of x and y for the 

triangle·an~ quadrilateral with arbitrarily placed side points. These 

local functions can be used to construct piecewise smooth global inter

polating functions over regions possessing curved boundaries and composed 

of elements which are triangles and parallelograms with arbitrarily 

positioned side points. 

This approach is called the "isoparametric formulat1on". The simplest 

member of the isoparametric family is the "linear" element and, by 

definition, this may not have curved sides. A more useful isoparametric 

element is the "quadratic" element because it may have curved s1des and 

therefore provides a better fit to the curved shape of the region. The 

essential ideal underlying the development of elements with curved sides 

centres on transforming simple geometric shapes in some local coordinate 

system into distorted shapes in the global system. 

For the case of a triangular element with straight sides and no 

side points, the linear transformation from the local (p,q) system to the 

global (x,y) system is given by, 



97 

(3.20) 

In addition to these equations a th1rd condit1on requiring that the sum 

of p,q and r are unit, that is, 

p + q + r = 1 (3 .21) 

From equation (3.21) it is clear that only two of the local systems p,q 

can be independent, just as the original coordinate system, where there 

are only two independent coordinates. Thus equation (3.20) can be written 

as, 

x = (x
1
-x

3
)p + (x

2
-x

3
)q + x3 

y = (yl-y3)p + (y2-y3)q + y3 ' 

where the var1ous quantities are explained in Figure (3.17). 

(3.22) 

Inversion of equation (3.20) and (3.21) give the local coordinates 

in terms of the global coordinates. Thus, 

1 
p = 2£1 [ (y 2-y 3)x + (x2 -xl )y + (x2x3 -x3y2) I 

1 
q = u,!(y3-yl)x + (xl-x3)y + (x3yl-xly3)) 

where ~ is the area of the triangle. 

3 

, ' , 1' , 
' ' I 

' ', I q=O ' ; ' , ;; , ' , 
q=l p=l 

' ' ' p=O 

~------------------------------~x 

FIGURE 3.17 

(3 .23) 



98 

In the more general case of a triangle A.R. MITCHELL [1971] illustrates 

the nature of the computations in~lved by considering an example 

consisting of a triangular element wLth two straight sides and one 

curved side. To maLntain generality, first a triangle with three 

curvilinear sides as shown in Figure (3.18) is considered. Mitchell 

proceeds to transform this triangle Lnto the standard triangle in the 

(p,q) plane by using the transformation formulae, 

y q 

4 
"', • 4 

q=O •, , ' , 'f. ,;'1( • 
q=! '\ , , \ X p=! 

q=l p=l 

5 
p=O 

X '----o-----+---~p 
3 6 1 

FIGURE 3.18: Treatment of curved boundarLes via isoparametric 
transformations 

where r=l-p-q, which can be rewritten in the form, 

(3.24) 

(3 .25) 
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and 

This time Lt LS not an easy matter to solve (3.25) for the curvilinear 

coordinates p and q in terms of x,y and the coefficients of the six 

points. It is sufficient to say that the desired expressions for p and q 

are, in general of quadratic form in the x and y. Hence, the local 

curvLlLnear (p,q) system is uniquely determined in terms of the fixed 

(x,y) system and the locatLon of the six points. 

If the sides 2,5,3 and 3,6,1 are straight sides with 5 and 6 the 

mid-points respectively, the transformation formulae reduce to 

where, ...., 
X = 

After some considerable manipulation it can be shown 

that the line p+q=l for this case in the (p,q) plane corresponds to the 

quadratic curve, 

where x=x-x
4

, and y=y-y
4

• In the special case, where the points are 

given by 1:(1,0) 2:(0,1), 3:(0,0) and 4:(£,£). Equation (3.26) reduces 

to, 
( 

_ )2 _ x+y-2£ 
X y - 1-2£ (3 .27) 

The quadratic curve given by Equation (3.26) is, of course, only an 

approximation to the orLginal curvilinear side of the triangle in Figure 

(3.17),thisexample illustrates a method of handling curvilinear sides. 

For a more thorough discussion on the methods of treating isoparametric 

elements, details are given by A.R. MITCHELL [1973). 
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3.6 VARIATIONAL PRINCIPLES AND WEIGHTED RESIDUALS 

3.6.1 VARIATIONAL FORMULATION OF THE FINITE ELEMENT METHOD 

Variational principles occur naturally in many physical and other 

engineering problems and the approx~te methods of solution of such 

problems are often based on assoc~ated variational principles. 

We will discuss first a finite element approximate method which is 

d~rectly based on the variational principle. A general analysis of the 

variational pr~nc~ples is g~ven by L. EISGOLTS [1973]. 

Briefly, the mathematical formulat~on of a variat~onal principle 

~s that the ~ntegral of some typical function has a minimum or a maximum 

value for the actual performance of the system than for any virtual 

performance subject to the general conditions of the system. 

A functional J(~) can be def~ned as a function of several functions 

which has a value dependent on a function u and ~s defined by an integral 

of the form, 

= I au 
F(~, ax' ... )dR + 

au 
(~. ax' ... ) ds, (3.28) 

R 

where F and E are specified operators and in general the unknown 

function u is a vector. 

The main idea in var~ational princ~ple theory ~s to find the 

function u wh~ch m~n~m~zes the value of J(~. A necessary condition 

for this is that the first variation ~n J(~ oJ(u), must be zero when u 

is varied by an arbitrary small amount ou: 

oJ<~> = J(~ + o~> - J<~> 

= o + o<o~2> ( 3. 29) 
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Given a d1fferential equat1on problem such as that specif1ed by (3.1) 

we say that there 1s a variational principle for the problem if the task 

of finding the solut1on ~ of the or1ginal problem can be reformulated as 

the problem of minim1zing a particular functional J(v) over a set of 

adm1ssible functions ~· wh1ch satisfy certa1n cond1tions at the boundaries 

of the doma1n of the problem. 

The finite element method makes use of this 1dea, and in particular 

it 1nvolves a careful analysis of the set of admissible functions which 

must satisfy the essential boundary conditions. In general, if the 

functional (3.28) contains derivatives up to and including the pth, the 

set of admissible functions 1n which we look for the solution has to be 

the space HP, defined as the space of all functions~ which has f1nite 

energy in all derivatives up to and including the pth derivatives, i.e. 

1f v E Hp then, 

J 
2 2 ( ) 2 

(v + v' + ••• + v p )dR < ~. (3.30) 

R 
In particular this means that Hp contains all functions w1th continuous 

th 
(p-1) derivatives. 

We restrict the choice of v to those functions in HP which satisfy 

the boundary condit1ons, i.e. to a subspace which we label H~. 

The fin1te element method makes use of the "weak form" of the 

variational principle which is obtained by integrating (3.28) by parts 

to reduce the pth derivatives. In general,if p=2m, say, this may be 

done m times, so that the maximum order derivative occurring in the 

variational principle is m1 this has some important consequences: 

The new form of the functional J(~ conta1ns lower order der1vatives 
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of the unknown function u compared to the governing differential 

equation, so the set of admissible functions can be enlarged and hence 

an approximate solution can be obta1ned using a larger class of functions. 

Regard1ng the boundary cond1t1ons, the variational formulation 

permits us to treat compl1cated boundary conditions as natural or free 

boundary condit1ons: 

(a) Natural Boundary Cond1tions 

These are typically condit1ons on the higher derivat1ves, which 

are absorbed into the new form of the functional when we 1ntegrate by 

rarts. 

(b) Essent1al Boundary Conditions (or forced boundary cond1tions) 

These have to be satisfied by the new space of admissable functions. 

If the finite element equations are derived on the basis of the new 

variational princ1ple, the natural boundary condit1ons w1ll be automatically 

incorporated 1n the formulation and hence conditions are to be enforced 

on the solution in order to obtain a unique solution, we denote the new 

m 
space of admissable funct1on HE, where m is the order of the new 

functional derivatives and E refers to the fact that the function need 

only satisfy the essential boundary conditions. 
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3.6.2 DERIVATION OF FINITE ELEMENT EQUATIONS USING VARIATIONAL APPROACH 

Let the general problem be def1ned as (3.28), 

J(u) = J E1 (u,u , ••• )dR + J E2 (u,u , ••• )ds - --x ----x 
R 3R 

The f1nite element procedure for solving th1s problem can be stated by 

the following steps: 

1. The solution doma1n R is d1vided 1nto n smaller parts called 

elements, the commonly used element shapes are g1ven in Figures 

(3.2)' (3.3). 

2. The unknown var1able 1s assumed to vary in each element in a 

su1table manner s1milar to those given in Equation (3.2), 1.e., 

U(x,y) = N (x,y)U 
1 1 ' 

where N. is the shape function, and U is the nodal values 
1 i 

3. The solution of U(x,y) is obtained from the minimum of J(U) with 

respect to all unknown nodal values u .• This is equivalent to 
1 

hav1ng, 
oJ("Q(x,y)) = o or, 

~ 

2!!.... 
au

1 
aJ 

aJ au2 0 = = ay 

(3. 31) 

( 3. 32) 

where N denotes the total number of nodal unknowns in the problem. 

If the funct1onal J can be expressed as a summation of elemental 

contributions as: 
E 

J = L J (e) 
' 

(3 .33) 
e=l 
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where e indicates the element number, then equation (3.33) can be 

expressed as, 
E 

}: = 0, i=l,2, ... ,N. (3.34) 
e=l 

In the spec~al case, where J is a quadratic function of U and 

its derivatives, we can obtain the element equations as, 

aJ(e) = K(e)U(e) - f(e) 
au (e) ' 

(3.35) 

(e) . (e) 
where K is the element characterist~c matr~x and f 1s the 

element character1st1c vector. 

4. To obtain the overall equations of the system, we rewrite equation 

(3.35) as, 

aJ 
KU-f=Q (3.36) -= ' au 

where E 
K = L K(e) 

i=l 

E 
f (e) f = }: 

e=l 

and the summation sign indicates the assembly over all finite 

elements in the reg~on. 

5. The linear s~multaneous equat~ons (3.36) can be solved after 

applying the boundary cond1t~ons to find the unknowns U. 

If J ~s not quadratic in U then we obtain a set of simultaneous 

non-linear equations. These may be solved for ~by using a 

standard iterative method, 

The main d~fficulty with this form of finite element method ~s 

that it rel1es on reformulating the original problem as a variat1onal 
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principle. The govern1ng differential equat1ons have to be the 

Euler equations of the functional, and while every functional has 

a set of Euler equations, the reverse is not always true: not 

every set of differential equations can be expressed as the Euler 

equations of some functionaL Thus, the range of application of 

variational principles is somewhat limited, and we now look at 

another method of solution based on weighted residuals. 

3. 6. 3 THE METHOD OF WEIGHTED RESIDUALS 

The method of weighted residuals which includes the Galerkin method 

as a special case is an approximate method which seeks a solution that 

is a good approximation to the exact solution over the whole doma1n of 

the g1ven problem. 

To introduce the method, we cons1der the set of d1fferential 

equations (3.1). 

The solution of (3.1) is equivalent to determ1n1ng ~so that, 

or 

((Du - !_) ,!!.) = 0 , 

= J [D1~w1 + D2~w2 + ••• + D~wr]dxdy 
R 

-J [f1w1 + f 2w2 + ••• +frwr]dxdy = 0 

R 

(3 .37) 

(3.38) 

T 
where ~[w1 ,w2 , ••• ,wr] , are a set of arbitrary we1ghting functions. 

The converse is also true: if (3.37) is satisfied for all w then 

(3.1) must be satisfied at all po1nts of the region R. The solution u 

must also satisfy the boundary conditions (3.2), and these are incorporated 

either by considering only those functions which satisfy (3.2), on 3R, 

or by specify1ng that, 
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J 
-T Lu .!!. ds = 0 , 

aR 
(3.39) 

in the process of solution, where again .!!. is a vector of arb1trary 

weighting functions. The two methods g1ve the same results, but 

somet1mes 1t 1S eas1er to incorporate the boundary conditions a priori, 

and sometimes eas1er to use them later in the solut1on process. 

It is clear that if, 

I -T 
+ !:~·.!!. ds = o , 

aR 
(3 .40) 

is sat1sfies for arbitrary.!!. and.!!. then (3.1) and (3.2) are sat1sf1ed, 

and the converse is also true. Thus, any solut1on of (3.40) is a 

solut1on of (3.1) and (3.2), and conversely. 

As with the method of variational principles, we integrate by 

parts and replace (3.40) by a form, 

( 3. 41) 

where £ and L usually contain lower-order derivat1ves than those in D 

and L, so a lower order of continu1ty is required 1n ~but w and w 
usually have to be more continuous. The same po1nts about cont1nuity 

that were made for the var1ational princ1ple form also apply here. The 

next step in the applicat1on of the method of weighted res1dual to the 

fin1te element formulation is to introduce a trial solution, 

n 
u - u = I 

i=l 
N. (x,y)U, 

1 1 
( 3. 42) 

which 1t is hoped, 1s close to u in some sense or can be made so if n 

is large enough. The trial solution is chosen to satisfy the boundary 

condition, and since the approximate solution should be capable of 
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converg~ng to the exact solution as n approaches infinity it is 

important that the functiomN. are linearly independent and chosen from 
~ 

a set of functions wh~ch is complete in the domain of ~nterest. 

Clearly, it will not generally be possible to make such an 

approximation and also satisfy the differential equations (3.1) and (3.2) 

exactly, but the integral form allows an approximat~on to be made if we 

put a finite set of prescribed functions in place of the arb1trary 

functions ~ and ~· 
w = w = !i , (1=1,2, ••• ,n) • (3.43) 

and if we proceed by subst~tuting the approximate solution (3.42) into 

equation (3.40) and (3.41) we get, 

J E_(x,y,!!.) .4dxdy + J Lu 

and, R aR 

~: ds = 0 , (i=l, ••• ,n) 
-1 

( 3. 44) 

+J Lu. 
aR 

T 
!:_(~) ds , (~=1,2, ••• ,n), (3.45) 

where E_(x,y,_!!)=(E_!!-!_), represents the errors, or "residuals". It is 

to be expected that E. will be small, ~n some sense, but not zero 

throughout, the domain in which the solution is sought. 

Since E_=O throughout the doma1n when the exact solution is obtained, 

r w~ll be cons~dered as a measure of error and since the exact solution 

is not ava~lable in general, the size and the d1str~bution of r ~n the 

doma1n can be used to assess the accuracy of the solution. Thus, if a 

solution for a particular value of n has been obta~ned, E. can be 

evaluated. The effect of obta1ning a new solut~on w~th ~ncreased n 

should cause a reduction in r in some average sense. 
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~ 

108 

rise to d~fferent methods which collect~vely are known as the methods 

of we~ghted res~duals. A common choice (which we have used throughout 

the work) ~s to take the shape function ~- as ~- i.e. the funct~ons ~-
~ L 1. ~ 

are chosen from the same f~ly as the trial funct~ons in equat~on (3.42), 

since the trial functions are chosen from a l~nearly independent set of 

functions, complete ~n the domain of interest equat~ons. This choice 

leads to the "Galerkin Method", and the effect is to make the error 

vector orthogonal to each of the shape functions and hence to any linear 

comb~nation of them. 

It is known (see ZIENKIEWICZ [1977]) that if a variational principle 

ex~sts for a l~near problem, then the Galerk~n method gives r~se to 

prec~sely the same equations as the variational pr~nciple, when the 

fin~te element method is appl~ed. The advantage of the Galerkin method 

~s that it ~s valid for problems which have no variational formulation, 

and so it ~s more widely applicable. 

The description of the method of we~ghted res~duals given above 

requires that the boundary condit~ons are satisfied exactly and that 

the differential equation ~s satisfied approximately. Th~s ~s called 

an inter~or method. The converse is also possibl~ In the boundary 

method the differential equation is satisfied exactly but the boundary 

conditions are satisfied approximately. 

To demonstrate the connection between the variational method (Ritz) 

and the Galerkin method a problem governed by Poisson's equat~on is 

cons~dered. That is, 
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(3.46) 

subJeCt to the cond1t1on u=O on the boundary. 

The equivalent variational problem requires that, 

JJ 
au 2 

J(u) = l<ax> + (3.47) 

has a minimum correspond1ng to the exact solution, subject to the same 

cond1t1on u=O on the boundary. 

Substituting equat1on (3.42) 1nto equation (3.47) gives, 

J(U) = J J[{ I U, 
i=l 1 

aN. 2 __!,} 
ax 

Impos1ng the conditions given by 

2.!!.... = 0 
auj 

(J=l, ••• ,n) produces the 

aNi 2 
u -} + 2f 

i ay 

equation (3.34) which 

result, 

n 
L u N )dxdy 

i=l 1 1 

(3.48) 

require that 

n 
aJ 

=JJ 
aNj n aN aN aN. 

.{ }: u -!.}+2..:.i{ L U, _1} 
au. 

12 ax 
1=1 i ax ay ]. ay 

J 

or, 
au + aNj au + 
ax ay ay 

f N I dxdy = 0 
J 

i=l 

(3.49) 

( 3. 50) 

The application of the Galerkin method to equation (3.46) gives, 

f) dxdy = 0 , ( 3. 51) 

and by apply1ng Green's theorem to the first two terms leads to the 

result, 

J 
N. I au 9. + au 9. I ds -

1 ax x ay y JJ
!aNi au 
ax ax 

au + f N.ldxdy = o 
ay 1 

( 3. 52) 
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Since N is chosen to sat1sfy homogeneous boundary condit1ons the first 
1 

term 1n equat1on (3.52) disappears and equation (3.52) reduces to 

equation (3.50). 

Thus the two techn1ques are equivalentfor this problem. 
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3.7 ERROR ESTIMATES 

Expressed Ln its s1mplest terms the f1n1te element method is a 

procedure for finding a p1ecew1se smooth approximation to the solution 

of some underly1ng d1fferential equat1on or system of differential 

equations. In most applications the polynomials defined on a partit1on 

(element) of the g1ven domain are used to form the trial and test function 

spaces. 

The f1nite element technique and computer implementat1on of the 

method has been to arbitrarily set the polynomial degree p at a f1xed 

low value (typ1cally, p=l,2,3 or 4) and to decrease the size of the 

element subdomains in order to reduce the error in the approx1mate 

solut1on. Error estimates showing the dependence of the rate of 

convergence on the mesh are well known. In fact, since the mesh s1ze 

is~usually denoted by the letter h, we refer to this standard approach 

as the h-version of the finite element method, see Figure (3.19). 

There 1s also another approach that has ar1sen recently by BABUSKA 

and DOOR [1981], in which they refer to the p-version of the finite 

element method. Here, one fixes the mesh size and increases the degree 

p of the piecew1se polynomials in order to obtain the convergence of the 

approximation solut1on to the exact solution. This method is analyzed 

where the error estimates, in terms of the polynom1al degree p are 

obtained. In particular, it is shown that, if the rates of convergence 

for the h-vers1on using uniform refinement and the p-vers1on are 

expressed in terms of the number of degrees of freedom, the p-vers1on 

cannot have a slower rate of convergence than the h-vers1on. Furthermore, 
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when corner singular1ties are present, the rate of convergence of the 

p-version is exactly twice that of the h-version. However, this is an 

interesting theoretical method but it is difficult to see it ever being 

widely used. 

1-linear element 4-linear element 9-linear element 1&-linear element 

h-version finite elements 

1 1 1 1 

7 8 9 3 

linear element quadratic element cubic element quartics element 

p-version finite element 

FIGURE 3.19: h- and p-version of the finite element method 

Given a basic triangular element grid a display of options for 

obtaining a better solution may be set out as shown in Figure 3.19. 
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To write a program to increase the order p is likely to be 

substantially more difficult than writing one which is capable of 

decreasing h. In addition, the h-version w1ll produce a matrix with 

substantially the same sparseness matrix, wh1le the p-vers1on will 

become comparat1vely less sparse, thus requiring more storage and more 

work to solve the system of equations. This is offset by the better 

convergence of the p-vers1on, but on the whole the advantage seems to 

lie with the h-version. 

STRANG and FIX [1974) and MITCHELL and WAIT [1977]"give a detailed 

analys1s and proof of convergence. Here we will g1ve only a statement of 

the error bounds which 1s relevant to the present work. 

h m 
we consider the f1nite element subspace S € HE (m=O,l,2, ••• ,), in 

the f1nite element method, an approximate solution is sought amongst 

h 
functions which belong to the closed subspace S The questions that 

arise then are "does the method converge as the mesh size decreases (i.e. 

as h->0) and can the error bounds be obtained 1n terms of h. 

Cons1der the discret1zation of some two-<limens1onal region R by 

means of triangles. 

The form used here is given by, 

2 ( aul 2 u +- + ax 

The error e=u-U may be shown to sat1sfy an inequality of the form, 

(3.53) 
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i.e., 
2 

the norm of the error behaves l~ke h as h~, for some constant C. 

Although the bounds on the error show that the method converges as h~, 

the manner ~n which convergence occurs is not apparent. MELOSH [1963) 

gives the following sufficient condition "If each subdivision of the 

finite element mesh contains the pPevious one as a subset, then the 

convePgence will be monotonic". 

Table (3.1) shows such convergence for Poisson's equation (3.54) in 

a square, where the mesh ~s obta~ed by halving the dimens~ons of the 

triangles (h-version) in Figure (3.2Qalbelow: 

4 Elements 8 Elements 16 Elements 

FIGURE 3.20(a) 

and also we consider the convergence of the same problem (3.54) by 

increasing the order of the triangles, and f~x~ng the number of elements 

(p-vers~on) as shown ~n Figure (3.2Db) below: 

Quadrat~c 

(4 element) 
Cubic 

(4 element) 

FIGURE 3.20(b) 

p-vers~on 

Quartic node 
(4 element) 



Example 1 

The governing equat~on ~s: 

2 
\7 u ~ 0 , 

with the boundary cond~tions, 

u(O,y) ~ (1-e-~12 > 

u(l,y) ~ o 

u(x,±l) ~ 0 

wh~ch has the exact solution, 

-~/2 X 
u = e 

~ 
cos 2 y 

~ 
cos 2 y 

The following provide a good comparison of how the 

accuracy of the problem g~ven ~n equat~on (3.54), ~ncreases for 

both h-vers~on, and p-vers~on finite element solut~ons. 

No. of Elements L2 Error Norm 

(Triangles) Quadratic Cub~c Quart~c 

12 5.3967Xl0-J 4.9248Xl0 
-4 3.1466XlQ-S 

25 1.07761Xl0-J 5.20561XlQ-S 2.68135Xl0-6 

36 8.2776Xl0 
-4 3.3992 XlQ-S 2.1310 XlO 

-6 

50 b.l016 XlQ -4 2.23794XlQ-S 2.04479XlQ-6 

60 5.6662xl0 
-4 

1.8876xlo -5 1.9830XlQ 
-6 

75 
-4 

1.38908Xl0 7.00277XlQ 
-6 

1.8915XlQ 
-6 

TABLE 3.1 
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(3.54) 

Also the results given ~n Table (3.1) are plotted in Figure (3.21), which 

clearly show that the quartic element is more accurate than both cub~c 

and quadratic elements. 
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Legend 
b Quadratic 

0 Cubic 

0 Quartlc 

0.0 .+l;l----r--===;:::::::=--r-----r---r---r---S--. 
10 20 30 40 50 60 70 80 

Number of Elements 

Figure (3.21) 
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3.8 ASSEMBLY OF ELEMENT MATRICES AND VECTORS 

Once the element properties, namely, the element matrices and 

element vectors are determLned in a common global coordinate system, the 

next step is to construct the overall system of equations. The procedure 

for constructing the system equatLons from the element equations is the 

same regardless of the type of the problem and the number and the type 

of the elements used, i.e., even Lf the system is modelled with a mixture 

of several different kLnds of elements, the system equations are assembled 

from the element equations in the same way. 

The procedure of assemblLng the element matrices and vectors is 

based on the requirement of "compatiliility" at the element nodes, by 

this we mean that at nodes where elements are connected the value (values) 

of the unknown nodal variable (or variables, if more than one exists at 

the node) is (are) the same for all the elements connecting at that node. 

The consequence of this rule LS the basis for the assembly process, 

which is an essential part of every finite element solutLon. If E and 

N denote the total number of element and nodal unknowns (degrees of 

freedom) respectively, ~denotes the vector of N nodal degrees of 

freedom, K the assembled system characteristic matrix (master matrix) 

of order (NXN) and! the characterLst1c vector of order N, then the 

global characteristic matrix (master matrix) and the global characterLst1C 

vector can be obtained by algebraic addition, 

E 

K = L K(e) 
• (3.55) 

e=l 
and, 

E 
f (e) f = I • ( 3. 56) 

e=l 
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(e) (e) . where K and f are the element characteristLc matrix and the 

element characteristic vector respectively. 

The procedure LS illustrated with reference to the assemblage of 

the two dimensLonal problem shown below in Figure (3.22), with the local 

numberLng of each element indicated at the corners wLthLn each element. 

Since there is one degree of freedom for each node, each element has 

three degrees of freedom. There are 11 degrees of freedom for the entire 

domaLn. Thus, the order of ~ and ! will be (llXll) and (llxl) respectively. 

local n.~------~:/ 
globa 1~--------------~~--------------~ 

no. 3 8 

FIGURE 3.22: Local and global numbers Ln a finite element 
divisLon of a domain 

Table (3.~, emphasLzes that the local number of each element LS 

JUSt a way of indLcatLng the ordering of the degrees of freedom in an 

element while the global numbering scheme as indicated Ln FLgure (3.22) 

and Table (3.2) which establLshes the identification of these nodes and 
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elements which is an essential part of the solution process. 

Once the numbering scheme has been established for the finite 

element mesh, we must create the record of which nodes belong to each 

elements. ThLs record given as input to the computer program or generated 

Lnternally by the program, serves to define the connectivLty of the 

element mesh. In other words, it gives information on how the elements 

are JOLned together. 

Elements Local Numbers Global Numbers 

1 1,2,3 1,2,4 

2 .. 3,1,4 

3 .. 6,3,4 

4 .. 2,6,4 

5 .. 3,6,9 

6 .. 8,3,9 

7 .. 11,8,9 

8 .. 6,11,9 

9 .. 2,5,7 

10 .. 6,2,7 

11 .. 10,6,7 

12 .. 5,10,7 

TABLE 3.2: The Local and the Global numbers for the elements of 
the problem Ln Figure (3.22) 

Having specified the record of which nodes belong to each elements, 

which is simply the ordered numbering of the nodes, we can summarize the 
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general procedure of assembly in the following steps: 

1. We set up a (NxN) null matrix and (Nxl) null vector (all zero

entrLes), where N equals the number of system nodal unknowns. 

2. Then, starting with one element, transform the element equations 

from local to global coordinates, Lf these two coordLnate systems 

do not coLncide. 

3. Perform any necessary matrix operations on the element matrices, 

where some tLmes we have one or more nodes which have no connectLvLty, 

When thLs occurs, Lt is necessary to eliminate the nodal unknowns or 

degree of freedom associated with these nodes. 

4. Using the established correspondence between local and global numberLng 

schemes, change to global Lndices. 

(i) the subscript Lndices of the coefficients in the square 

matrLx 

(ii) the single subscript index of the terms in the column matrix. 

5. Insert these terms Lnto the corresponding (NxN) and (NXl) master 

matrices Ln the locatLons designated by theLr indLces. Each tLme 

that a term is placed in a location where another term has already 

been placed, it is added to whatever value is there. 

6. Return to step 2, and repeat thLs procedure for one element after 

another untLl all the elements have been treated. 

The result WLll be the (NXN) master matrix ~· and (NXl) vector f. 

The complete system equatLons are then, 

(3.57) 

where U is the column vector of nodal unknowns for the assemblage. 

The generality of this assembly process for the finite element method 



121 

offers a def~nite advantage. Once a computer program for the assembly 

process has been developed for the solution of one part~cular class of 

problems by the finite element method, it may be used again for the 

finite element solut~on of other classes of problems. 

In fact, the procedure is applicable equally well to all types of 

problems. We now cons~der developing the expanded element matr~ces for 

our two-dimensional problem ~n Figure (3.22). 

For the f~rst element CD, the coeff~cients of element matrix K(l) 

and the element vector f(l) can be written as shown in Table (3.3a) and 

(3.3b), respectively, the location of any component k~~) is identified 

by the global degrees of freedom U corresponding to the local degrees 
m,n 

of freedom U , respectively, for i=l,2,3 and J=l,2,3. 
~.J 

Thus, the locat~on of the (NXN) components K(l) in K will be shown 

~Table (3.3b), sim~larly, the location of the components of the 

vector f(l) will also be shown in Table (3.3b). By proceeding in a 

sim~lar way for elements e=2, ••• ,12, the final master matr~x K and the 

vector f can be obtained as given in Tables (3.16) and (3.17) respect~vely. 

For element CD the correspond~ng relation between the local and 

global numbering schemes indicates that the follow~ng holds, 
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The local numbering The corresponding global number~ng 

ui, 

.1 

2 

3 

for 

the 

The 

1 

2 

3 

U,+ 1 2 3 u • u + 1 2 4 
J m n 

k(l) 
11 

k (1) 
12 

k (1) 
13 

• 1 k(l) 
11 

k (1) 
12 

k (1) 
14 

k (1) 
21 

k (1) 
22 

k (1) 
23 

+ 2 k (1) 
21 

k (1) 
22 

k (1) 
24 

k (1) 
31 

k (1) 
32 

k (1) 
33 4 J< (1) 

41 
k (1) 

42 
k (1) 

44 

(1) 
the vector f of the element (j) the correspondence relation between 

local and global number~ng schemes ~ndicates that the following holds, 

local number~ng The corresponding global numbering 

f (1) 
1 1 f(l) 

1 

f(l) 
2 2 f (1) 

2 

f (1) 
3 4 f (1) 

4 

TABLE 3.3a The correspondence between the local and global 
numbering schemes for both coeff~c~ent element 
matr~x and element vector of element G) 

( 1) 
Hence, when these coefficients are inserted into the expanded matr~x K 

( 1) 
and the expanded vectorf , we have, 
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1. The location of K 
(1) 

in K. 

Global-'> 1 2 3 4 5 6 7 8 9 10 11 
.j, 

k (1) k (1) k (1) 
1 

11 12 13 

2 

3 

4 0 

7 

8 0 

9 

10 

11 

2. The location of f(l) in f. 

Global 

+ f (1) 1 
1 

2 f(l) 
2 

3 

4 f (1) 
3 

f (1) 
= 5 

6 0 

7 

8 

9 

10 

11 

TABLE 3.3 b: 
(1) (1) 

The location of both K and f inK and f 
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For element (2) , the correspondence relat~on between the local and 

global numbering schemes ind~cates that the following holds. 

The local numbering The corresponding global numbering 

u ' U,+ 1 2 3 U ,U+ 3 1 4 
~~ J ~m n 

1 k (1) k (1) k (1) 3 k (2) k (2) k(2) 
11 12 13 33 31 34 

2 k(l) 
21 

k (1) 
22 

k (1) 
23 1 k (2) 

13 
k (2) 

11 
k (2) 

14 

3 k (l) 
31 

k (1) 
32 

k (1) 
33 4 k (2) 

43 
k (2) 

41 
k (2) 

44 

(2) 
Also, for the vector f of element (2), the correspondencerelation 

between the local and global number~ng schemes indicates that the 

following holds. 

The local numbering The corresponding global number~ng 

1 f (2) 
1 3 f(2) 

3 

2 f(2) 
2 

+ 1 f(2) 
1 

3 f (2) 
3 4 f(2) 

4 

TABLE 3 .4a: The correspondence between the local and the global 
numbering schemes, for both element matr~x and 
element vector of element number (2) 

Hence, when these coefficients are inserted into the expanded matrix 

(1) (1) 
K and the expanded vector f we have, 
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1. Th . (2) K e locat1on of K 1n 

1 2 3 4 5 6 7 8 9 10 11 

1 k (2) 
22 

k (2) 
21 

k (2) 
23 

2 

3 k (2) 
12 

k (2) 
11 

k(2) 
13 0 

4 k (2) 
32 

k (2) 
31 

k (2) 
33 

5 
K(2)= 

6 

7 

8 
0 

9 

10 

11 

2. The location of f( 2 ) in f 

Global 
..(, 

f(2) 1 
2 

2 

3 f(2) 
1 

4 f(2) 

5 
3 

f(2) = 
6 

7 0 
8 

9 

10 

11 

TABLE 3.4b: The location of both K( 2) and f (2) inK and f. 
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For element CD the correspondence between local and global numbering 

schemes indicates that the follow1ng holds, 

The local number1ng The corresponding global numbering 

u.' U-> 1 2 3 U ,U -> 6 3 4 
~1 J m n 

1 k (3) k (3) k (3) ~ 6 k (3) k (3) k (3) 
11 12 13 66 63 64 

2 k (3) k (3) k (3) .... 
21 22 23 3 k (3) 

36 
k (3) 

33 
k(3) 

34 

3 k (3) 
31 

k (3) 
32 

k (3) 
33 

4 k (3) 
46 

k(3) 
43 

k (3) 
44 

(3) 
for the vector f of element ~ corresponde<oebetween local and 

global number1ng schemes 1ndicates that the following holds, 

The local 

1 f(3) 
1 

2 f(3) 
2 

3 f(3) 
3 

TABLE 3.5a: 

The correspond1ng global 

6 f(3) 
6 

3 f (3) 
3 

4 f(3) 
4 

The correspondence between the local and the global 
numbering schemes, for both coeff1cient elements 
matrix and element vector of element number GU 

Hence, when these coeff1c1ents are 1nserted into the expanded matr1x K( 3) 

(3) 
and the expanded vector f we have, 
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1. The location of K( 3) in K 

Global~ 1 . 2 3 4 5 6 7 8 9 10 11 

l 
1 

2 

3 k (3) 
22 

k (3) 
23 

k (3) 
21 

4 k (3) 
32 

k (3) 
33 

k (3) 
31 0 

5 

K( 3)= 6 k (3) 
12 

k (3) 
13 

k (3) 
11 

7 

8 

9 

10 0 

11 

2. The locatJ.on of f(3) in f 

Global 

"' 1 

2 

3 f(3) 
2 

4 f (3) 

f(3)= 
3 

5 

6 f (3) 
1 

7 

8 

9 

10 0 
11 

TABLE 3.Sb: 
. (3) (3) 

The locatl.on of both K and f in K and f 
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For element @ the correspondence between local and global numbering 

schemes ~ndicates that the following holds. 

The local numbering The corresponding global number~ng 

u. U+ 1 2 3 u ,u + 2 6 4 

"'~ J m n 

1 k(4) k(4) k (4) .j. 2 k(4) k (4) k(4) 
11 12 13 22 26 24 

2 k (4) 
21 

k (4) 
22 

k (4) 
23 6 k (4) 

62 
k (4) 

66 
k (4) 

64 

3 k (4) 
31 

k (4) 
32 

k (4) 
33 4 k (4) 

42 
k (4) 

46 
k (4) 

44 

for 
(4) 

the vector f of element G) the correspondence between local 

the global numbering schemes indicates that the following holds. 

The local The corresponding global 

1 f (4) 
1 

2 f(4) 
2 

3 f (4) 
3 

TABLE 3.6a: 

2 

6 

4 

The correspondence between the local and the global 
numbering schemes for both coeffic~ent element 
matrix and element vector of element number @ 

and 

Hence, when these coefficients are inserted into the expanded matr~x K( 4), 

(4) 
and the expanded vector f , we have 



1. The location of K( 4) in K 

Global-+ 1 2 
,J. 

1 

2 k (4) 
11 

3 

4 k (4) 
31 

5 
K(4)= 

k (4) 6 21 

7 

8 

9 

10 

11 

2. The location of f 
(4) 

Global 
-l-
1 

2 

3 

4 

f(4)= 5 

6 

7 

8 

9 

10 

11 

0 

3 

0 

in f 

4 5 6 7 8 9 10 

k (4) 
13 

k (4) 
12 

k (4) 
33 

k (4) 
32 

0 

k (4) 
23 

k(4) 
22 

TABLE 3.6b: The locat1on of both K(
4

) and f(
4

) in K and f 
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For element ® the correspondence between local and global numben.ng 

schemes Lndicate that the following holds, 

The local numbering The correspondLng global numbering 

ui,uJ ... 1 2 3 u ,u +3 6 9 
m n 

+ 1 k (5) k (5) k (5) +3 k(5) k (5) k (5) 
11 12 13 33 36 39 

2 k (5) k (5) k (5) 6 k (5) k (5) k (5) 
21 22 23 ... 63 66 69 

3 f (5) 
31 

k(5) 
32 

k (5) 
33 

9 k (5) 
93 

k (5) 
96 

k (5) 
99 

for the vector f 
(5) 

of element @ correspondence between local and 

global numbering schemes indicates that the following holds, 

The local The corresponding global 

1 f(5) 
1 

3 f(5) 
3 

2 f(5) 
2 

6 f (5) 
6 

3 f(5) 
3 

9 f(5) 
9 

TABLE 3.7 a: The correspondence between the local and the global 
numbering schemes for both coefficient element 
matrix and element vector of element number ~ 

Hence, when these coefficients are inserted into the expanded matrix K(
5

) 

( 5) 
and the expanded vector f we have, 
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l. The location of K (5) 
in K 

1 2 3 4 5 6 7 8 9 10 11 

1 

2 

3 k (5) k (5) k(S) 
11 12 13 

4 

K(5)=5 
0 

6 k(5) k (5) k (5) 
21 22 23 

7 

8 

9 k(5) k (5) k (5) 
31 32 33 

10 0 
11 

2. The location of f (5) in f 

Global 
.1-
1 

2 

3 f(5) 
1 

4 

f(5)= 
5 

f(5) 6 
2 

7 

8 

9 f(5) 
3 

10 

11 

TABLE 3. 7b: The location of both K( 5) and f (5) in K and f - -
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For element number ® the correspondence between local and global 

numbering schemes indicate that the following holds 

The local numbering The correspondLng global numbering 

u.' U, ... 1 2 3 u ,u ... 8 3 9 
~L J m ~n 

1 
k (6) k (6) k(6) 8 k (6) k (6) k (6) 

11 12 13 88 83 89 

2 k (6) k (6) k(6) 3 k (6) k (6) k(6) ... 38 33 39 
21 22 23 

3 k (6) 
31 

k(6) 
32 

k (6) 
33 9 k(6) 

98 
k(6) 

93 
k (6) 

99 

(5) C'. 
for the vector f of element ~ the correspondence between the local 

and the global numberLng schemes Lndicates that the following holds 

The local 

1 f(6) 
1 

2 f(6) 
2 

3 f(6) 
3 

TABLE 3.8a: 

The corresponding global 

8 f(6) 
8 

+ 3 f(6) 
3 

9 f (6) 
9 

The correspondence between the local and the global 
numberLng schemes for element both coefficient 
matrLx and element matrLx of element number ~ 

Hence, when these coefficLents are inserted into the expanded matrix K(
6

) 

(6) 
and the expanded vector f , we have, 



l. 

1 

2 

3 

4 

5 

K(6)=6 

7 

8 

9 

10 

11 

2. 

0 K(6) The locatl.on of 

1 2 3 

k(6) 
22 

k(6) 
12 

k(6) 
32 

0 

The 1 ° f f (6) ocatl.on o 

Global 

f(6)= 

"' 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

inK 

4 5 6 7 8 9 10 11 

k (6) 
21 

k (6) 
23 

0 

k(6) 
11 

k (6) 
13 

k (6) 
31 

k (6) 
33 

in f , 

TABLE 3.8b: The location of both K(6 ) and f( 6) inK and f 
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For element number Q) the correspondJ.ng local and global numbering 

schemes J.ndicate that the following holds 

The local numbering The correspondJ.ng global numbering 

u ,u ... 1 2 3 u ,u + 11 8 9 
l. J m n 

~ 
1 k(7) k(7) k(7) ~11 k(7) k(7) k(7) 

11 12 13 11,1 ll.fl 11,9 

2 k(7) k(7) k(7) ... 8 k(7) k(7) k(7) 
21 22 23 8,11 88 89 

3 k (7) 
31 

k (7) 
32 

k(7) 
33 

9 k(7) 
9,11 

k(7) 
98 

k(7) 
99 

for the vector 
(7) 

f of element Q) the correspond~nce between the local 

and the global numberJ.ng schemes J.ndicates that the following holds, 

The local The corresponding global 

1 f(7) 
1 

ll. f (7) 
ll. 

2 f(7) 
2 

8 f(7) 
8 

3 f(7) 
3 

9 f(7) 
9 

TABLE 3.9a: The correspondence between the local and the global 
numbering schemes for both coeffJ.cient matrix and 
element vector of element number Q) 

Hence, when coefficients are inserted into the expanded matrix K(
7

) 

(7) 
and the expanded vector f , we have, 



' f K(7 ) i K 1. The locat~on o n 

1 2 3 4 5 

1 

2 

3 

4 

5 

K(7)=6 

7 

8 

9 
0 

10 

11 

2. The location of f(
7

) ~n !• 

Global 

.!. 
1 

2 

3 

f(7)= 4 

5 

6 

7 

8 

9 

10 

11 

0 

f (7) 
1 

6 7 8 9 10 11 

0 

k(7) 
22 

k(7) 
23 

k(7) 
21 

k (7) 
32 

k(7) 
33 

k (7) 
31 

k(7) 
12 

k(7) 
13 

k(7) 
11 

TABLE 3.9b: The location of both K( 7 ) and f( 7 ) inK and f 
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For element number @ , the correspondence between local and global 

numbering schemes indicates that the following holds 

The local numbering The correspond~ng global numbering 

u., u.+ 1 2 3 u ,u +6 11 9 
+l. J tm n 

1 k (8) k (8) k (8) 6 k (8) k(8) k (8) 
11 12 13 66 6,11 69 

2 k (8) k (8) k (8) ... 11 k(8) k(8) k (8) 
21 22 23 116 11,11 1J,9 

3 k (8) 
31 

k (8) 
32 

k (8) 
33 9 k(8) 

96 
k(8) 

9,11 
k(8) 

99 

(8) 
and for the vector f of element @ , correspondence between local and 

global number~ng schemes indicates that the following holds, 

The local The corresponding global 

1 f(8) 
1 6 f(8) 

6 

2 f(8) 
2 11 f(8) 

11 

3 f(8) 
3 9 f(8) 

9 

TABLE 3 .lOa: The correspondence between the local and the global 
numbering schemes for both coefficient element 
matrix and element vector of element number @ 

(8) Hence, when coefficients are inserted ~nto the expanded matrix K and 

(8) 
the expanded vector f , we have, 



1. The location of K(8) 1n K 

1 

2 

3 

4 

5 

(8) 6 
K = 

7 

8 

9 

10 

11 

1 2 3 4 5 

0 

2. The location of f( 8 ) in f, 

Global 

"' 1 

2 

3 
0 

4 

5 

f (8) 
6 f(8) 

1 
= 

7 

8 

9 f (8) 
3 

10 

11 f(8) 
2 

TABLE 3.10b: The location 
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6 7 8 9 10 11 

0 

of both K(8) and f( 8) in K and f 
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For element number @1 , the correspondence between local and global 

number1ng schemes indicates that the follow1ng holds, 

The local numbering The corresponding global numbering 

u • u ... 1 2 3 u ,u ~ 2 5 7 
1 J m n 

+1 k (9) k (9) k(9) + 
2 k(9) k (9) k (9) 

11 12 13 22 25 27 

2 k (9) 
21 

k (9) 
22 

k (9) 
23 5 k(9) 

52 
k (9) 

55 
k (9) 

57 

3 k (9) 
31 

k (9) 
32 

k(9) 
33 

7 k (9) 
72 

k (9) 
75 

k (9) 
77 

(9) 
and for the vector f of element @, correspondence between local and 

global numbering schemes 1ndicates that the following holds, 

The local The corresponding global 

1 f(9) 
1 

2 f (9) 
6 

2 f (9) 
2 5 f(9) 

11 

3 f (9) 
3 

7 f (9) 
9 

TABLE 3.lla: The correspondence between the local and the global 
numbering schemes for both coefficient element matrix 
and element vector of element number @ 

(9) 
Hence, when coeffic1ents are 1nserted 1nto the expanded matr1x K and 

(9) 
the expanded vector f , we have, 



1. 

1 

2 

3 

4 

(9) 5 
K =6 

7 

8 

9 

10 

11 

The location of K(g) ~n K 

1 2 3 4 5 

0 

2. 
(9) 

The location of f in ! , 

Global 

~ 
1 

2 

3 

f(9)= 
4 

5 

6 

7 

8 

9 

10 0 
11 

6 7 8 9 10 11 

0 

(9) (9) 
TABLE 3.llb: The location of both K , and f ~n K and f 
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For element ~ , the correspondence between local and global number~ng 

schemes indicates that the follow~ng holds, 

The local numbering The corresponding global number~ng 

ui, u + 
j 

1 2 3 u ,u .... 6 2 7 
m n 

+ 
k (10) k (10) k (10) 

+ 
k (10) k (10) k (10) 

1 6 
11 12 13 66 62 67 

2 k (10) k (10) k (10) .... 
21 22 23 

2 k (10) 
26 

k (10) 
22 

k(lO) 
27 

3 k(lO) 
31 

k (10) 
32 

k (10) 
33 

7 k (10) 
76 

k(lO) 
72 

k (10) 
77 

and for the element vector (10) @ f of element 10 , correspondence between 

local and global numbering schemes ~ndicates that the following holds, 

The local 

1 f (10) 
1 

2 f{lO) 
2 

3 f{lO) 
3 

TABLE 3.12 a: 

The corresponding global 

6 f(lO) 
6 

.... 2 f(lO) 
2 

7 f(lO) 
7 

The correspondence between the local and the global 
numbering schemes for both coeffic~ent element 
matrix and element vector of element number@) 

. (10) 
Hence, when coeff~cients are ~nserted into the expanded matr~x K 

(10) 
and the expanded vector f , we have, 



(10) 
1. The locat1on of K in K 

1 

7 

8 

9 

10 

11 

1 2 

k (10) 
22 

k(lO) 
12 

k(lO) 
32 

3 4 5 

0 

2. The location of f(lO) in! , 

Global 
J, 
1 

2 
f(lO) 

2 
3 

4 

5 

6 f(lO) 
1 

7 f(lO) 
3 

8 

9 

10 
0 

11 

6 7 8 9 10 11 

k (10) k (10) 
21 23 

0 

TABLE 3.12b: 
. ( 10) (10) 

The locat1on of both K and f inKandf 
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For the element (gO , the correspondence between local and global 

numbering schemes Lndicates that the following holds, 

The local numberLng The corresponding global numbering 

u , u.+ 1 2 3 u ,u .... 10 6 7 
L J m n 

+ k (11) k (11) k (11) \o k (11) k (11) k (11) 
1 11 12 13 10,10 10,6 10,7 

2 k(11) k(11) k(11) .... 
21 22 23 

6 k (11) 
6,10 

k(11) 
66 

k(11) 
67 

3 k(11) 
31 

k(11) 
32 

k (11) 
33 

7 k (11) 
7,10 

k (11) 
76 

k(11) 
77 

and for the element vector f 
(11) 

of element @, correspondence between 

local and global schemes indicates that the following holds, 

The local The corresponding global 

1 f(11) 
1 

10 f(11) 
10 

2 f(11) 
2 

+ 6 f(11) 
6 

3 f(11) 
3 

7 f (11) 
7 

TABLE 3.13a: The correspondence between the local and the global 
numbering schemes for both coefficient element 
matrix and element vector of element number @ 

(11) 
Hence, when coefficients are inserted into the expanded matrix K 

(11) 
and the expanded vector f , we have, 
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l. The 
. (ll) 

locatl.on of K inK 

l 2 3 4 5 6 7 8 9 10 ll 

l 

2 
0 

3 

4 

5 

k (ll) k (ll) (ll) 
6 

22 23 k2l 

K(ll)=7 k(ll) k (ll) k(ll) 
32 33 31 

8 

9 
0 

10 k(ll) k (ll) k (ll) 
12 13 ll 

ll 

2. The locatl.on of f 
(ll) 

in !• 

Global 
.J. 
l 

2 

3 0 
f(ll)_4 

-5 

6 f(ll) 
2 

7 f(ll) 
3 

8 

9 

10 f(ll) 
l 

ll 

TABLE 3.13b: The (ll) (ll) 
location of both K and f inKandf 
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and for the element~, the correspondence between local and global 

number1ng schemes indicates that the following holds, 

The local number1ng The corresponding global numbering 

ui, u + 1 2 3 U ,U + 5 10 7 
J m n 

+ k (12) k (12) k (12) + k (12) k (12) k (12) 1 5 
11 12 13 55 5,10 57 

2 k (12) k (12) k(l2) + 10 k (12) k (12) k (12) 
21 22 23 10,5 10,10 10,7 

3 k (12) 
31 

k (12) 
32 

k(l2) 
33 7 k (12) 

75 
k (12) 

7,10 
k (12) 

77 

(12) (!3) and for the element vector f , of element 12 , correspondence between 

local and global schemes ind1cates that the follow1ng holds, 

The local 

1 f(l2) 
1 

2 f(l2) 
2 

3 f(l2) 
3 

The corresponding global 

5 

10 

7 

f(l2) 
10 

f(l2) 
7 

TABLE 3.14a: The correspondence between the local and the global 
numbering schemes for both coeff1cient element 
matrix and element vector of the element number (gD 

(12) 
Hence, when coeff1cients are inserted into the expanded matr1x K 

(12) and the expanded vector f , we have, 



1. The location of K(l2) inK 

1 2 3 4 5 

1 

2 

3 

4 

5 k (12) 
11 

6 

7 k (12) 
31 

8 

9 

10 k (12) 
21 

11 0 

(12) 
2. The location of f in f, 

Global 

l 
1 

2 

3 

4 

7 

8 

9 

10 

11 

0 

6 7 8 9 10 

0 

k (12) 
13 

k (12) 
12 

k (12) 
33 

k (12) 
32 

k (12) 
23 

k(l2) 
22 

TABLE 3.14b: The location of both K(l2) and f(l2) in K and f - -
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(e) 
After assembling the element characteristic matr~ces K and the 

element characterist~c vectors f(e), the overall or system equat~ons of 

the ent~re domain can be written as, equat~on (3.57), i.e., 

KU = f , (3.57) 

These equations cannot be solved for U since the matrix K will be 

s~ngular and hence its inverse does not exist. However, for a unique 

solut~on of equation (3.57) some boundary or support conditions have 

to be appl~ed to the equation (3.57), i.e., at least one and some t~mes 

more than one nodal var~able must be specified and thus'K must be 

modified to render it non-s~ngular. The required number of specified 

nodal variables is d~ctated by the physics of the problem. 

There are a number of ways to apply the boundary conditions to 

equation (3.57), and when they are applied, the number of nodal unknowns 

and the number of equat~ons to be solved are effect~vely reduced. 

However, it is most convenient to introduce the known nodal variables 

in a way that leaves the or~ginal number of equations unchanged and 

avoids major restructuring of computer storage. 

Method 1 

To illustrate this method we partition equation (3.57) in the form, 

(3.58) 

where ~2 is assumed to be the vector of specified nodal variables, and 

~l is a vector of~nown nodal variables and £2 will be the vector of 

unknown nodal variables. 



Equation (3.58) can be written as, 

1.e., 

and 

K u = !1-!12u2 • -11-1 

T 
!12£1 + !22£2 = !2 • 

147 

(3.59) 

(3.60) 

Here !
11 

will not be s~ngular and hence equation (3.59) can be solved 

to obtain, 
(3.61) 

Once u is known, the vector of unknown nodal variables·!2 can be found 
-1 

from equat~on (3.60). In the special case, where all the prescribed 

nodal var~ables are equal to zero, we can delete the rows and columns 

corresponding to ~2 and state the equations simply as, 

(3.62) 

s~nce all the prescribed nodal degrees of freedom usually do not come 

at the end of the vector U, the procedure of method ~ involves an 

awkward renumbering scheme. Even when the prescribed nodal variables 

are not zero, ~t can be seen that the rearrangement of equation (3.58) 

and the solutions of equation (3.59) and (3.60) are time consuming and 

tend to destroy the bandedness property of the original matrix. 

Hence the following equ~valent method can be used for incorporating 

the prescribed boundary cond~tions £
2

• 

Method 2 

Equations (3.59) and (3.60) can be written together as, 
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(3.63) 

In actual computations, the process indicated in equations (3.63) can 

be performed without reordering the equat~ons implied by the partitioning 

as follows: 

(i) If U is prescribed as U,, the characteristic vector b is 
J J 

mod~fied as 
f 1 = f.-k. U,, for i=l,2, ••• ,N. 

~ ~] J 

The rows and columns of K corresponding to U, are made zero 
J 

except the diagonal element, which ~s made unity, that is, 

kji = kij = O, for i=l,2, ••• ,N 

k = 1 
JJ 

(i~~) The prescribed value of U is inverted ~n the characterist~c 
J 

vector as, 

f = f 
J J 

This procedure (i) to (i~~) is repeated for all prescr~bed nodal 

variables U • 
J 

It can be noted that this procedure retains the symmetric property 

of the equations and the matrix K can be stored ~n the band format with 

l~ttle extra programming effort. 

To illustrate th~s procedure for entering the boundary conditions, 

we consider a s~mple example with only for system equations. Thus, 

equation (3.57) expands to the form, 
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kll kl2 kl3 kl4 ul fl 

k21 k22 k23 k24 u2 f2 
= (3.64) 

k31 k32 k33 k34 u3 f3 

k41 k42 k43 k44 u4 f4 

Suppose that for this system nodal variables u
3 

and u4 are specif1ed as 

u3 = a3 ' u4 = a4 • 

When these boundary cond1tions are inserted, the equations become, 

kll kl2 0 0 ul fl-kl3a3-kl4a4 

k21 k22 0 0 u2 f2-k23a3-k24a4 
= ( 3. 65) 

0 0 1 0 u3 a3 

0 0 0 1 u4 a4 

This system of equations unaltered in dimension, 1s now ready to be 

solved for all nodal variables. 

The Assembly Process 

Now we observe that the master matrix of equation (3.55) can be 

. (1) (2) (12) 
obtained by s1mply adding the matn.ces K ,K , ••• ,K • 

The mathematical statement of this assembly procedure is as follows 

K = K(l) + K(2) (12) + ••• + K 

= 
E L K(e) 

e=l 

where E is the total number of elements in the assemblage. 

The master matr1x K of our problem is given 1n Table (3.14). The 

same expansion and summat1on principle also applies for finding the 



column vectors, 
E 

f = L f(e) , 
e=l 
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where f(e) is the expanded column vector for element e, and F. ~s the 

total number of elements. The master vector f of our problem is given 

~n Table (3.15). 

In our example N=l2, but in an actual problem there m~ght be 

several hundred elements. Even if the assemblage contains many different 

k~nds of elements, equat~on (3.55) st~ll holds and each indiv~dual 

element matrix ~s expanded (according to the global numbering scheme) 

to the dimension of the system matrix, and then these matrices are added. 



Global~ 1 2 3 4 5 6 7 8 9 10 11 

! 
1 

r- -
k(l) k(2) k (1) k (2) k(l) k(2) 
r<11 + 22 12 21 13 + 23 

k~ 1l+k<1~ 
k(l) k 141 k (9) k (4) ~10) k (9) *10) k (1) 2 11 

21 k~~~ +kW 23 + 13 12 12 + 21 13 + 23 2 

k (2) 
~H1 +kH~ k(2) k(3) k(3) k(5) k(6) k(5) k(6 

12 "(5) +k (6) 13 + 23 21 + 12 21 13 + 23 
11 12 3 

4 k (1) k (2) 
31 + 32 

k (1) k (4) 
32 + 31 

"·(2) k (3) 
31 + 32 ~t+~r+ ~) +k ~) 

k (3) +k (4) 
31 32 

k (9) k(9)+*12) k(9) k(l2) k (12) 

21 22 11 
k

131 
... xW 

23 + 13 12 

k (4) *10) k(3) k(5) lk(3) k(4) kU1+kH1 k(l0\(11) k (5) *8) k (11) k(8) 
21 + 12 12 + 21 13 + 23 k(lO) k(ll 1'13 '1- 22 23 + 13 21 12 

ll .. 22 
k~)l +k~~u. 

k (9) +*10) k(9) *12 k (11) *12) 
31 32 32 + 31 !<(11) k (12) 31 + 32 

33 '1- 33 

5 

6 

7 

k(6) k(6) k(7) k 161 k(7) k (7) 

12 11 + 22 ~"13 + 23 21 8 

IJ<(5) k(6) k (5) +k (8) k (G) +k (7) knl +kj~~- k (7) +k (8) 
31 + 32 32 31 31 32 ~(7) +k (8) 31 32 

33 33 
9 

(12) k (11) 
k21 12 10 

. 
11<(11)*12) 

13 '1- 23 
k(11l*U 

11 + 12 

11 
k (8) 

21 
k (7) 

12 
lk(7) k 181 

13 + 23 
k(7) k( 8 ) 

11 + 22 

L- -
TABLE 3.15a: Assembled master matrix K 



Global 

~ 

f =f(l) f(2) + + ••• 

+f(n) = 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

f (l) f(2) f(3) f(4) 
3 + 3 + 3 + 3 

f (3) f(4) f(S) f(S) f(lO) f(11) 
1 + 2 + 2 + 1 + 1 + 2 

f (9) f (10) f (11) f (12) 
3 + 3 + 3 + 3 

f (S) f(6) f(7) f(S) 
3 + 3 + 3 + 3 

f (11) f(l2) 
1 + 2 

f (7) f(S) 
1 + 2 

TABLE 3.15b: Assembled master vector f 
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As given in section (3.6.2), the f1n1te element analysis leads 

to a system of matrix equations. After incorporating the boundary 

conditions in the assembled system as outlined in the section we obtained 

the f1nal matr1x equation which can be solved by us1ng one of the methods 

described 1n Chapter 2. 



CHAPTER FOUR 

A GENERAL PROGRAMMING SYSTEM FOR 

THE FINITE ELEMENT METHOD 
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4.1 INTRODUCTION 

The general applicability of the finite element method to a wide 

variety of different engineering and mathemat~cal fields, makes ~t a 

powerful and versatile tool. In fact, the method has become one of the 

most active research areas for appl~ed mathemat~c~ans and engineers. 

One of the main reasons for the popularity of the method in different 

appl1cations ~s that once a general computer program is written, it can 

be used for the solution of many problems simply by changing the 1nput 

data. 

Although applications are many and different, a typical fin1te 

element program consists of a few well defined operations such as: 

The input desa~iption of the mathematiaa~ mode~ 

The gene~tion of the e~ement mat~aes 

The assemb~y of e~ements to fo~ the Jaaobian mat~x 

A so~ution of the ~esu~ting ~inea~ o~ non~inea~ system of equations 

The aa~u~ation of the e~ement aha~ate~stias, and the 

p~esentation of the ~esu~ts (post-p~oaesso~J. 

Thus, provided a suffic~ently general data problem has been defined, the 

standard operations need to be programmed only once and organized as 

modules (subprograms) of a p~gramming system or subroutine library. 

Such a programming system is not intended to be used by itself to 

solve the problems. It should be used as a tool for the programmer in 

the development of an executable, special or general purpose program by 

organizing the modules or building blocks of a programming system. The 
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subrout1nes included in the programmLng system should cover the main 

operations associated with the finite element analyses. In addition, 

service routines for operations like data transfer between central memory 

and peripheral storage, matrix operations, pre- and post-processing, etc. 

are necessary modules when develop1ng an executable program. 

An executable (or application) program may in the present context be 

characterized as follows: 

The user has to describe the geometry, element, mesh, boundary 

conditions, etc. of the model of the problem in accordance wLth the 1nput 

requirements of the application program, and after the program has 

performed the finLte element analysis, the user has to interpret the 

results. 

Hence a number of computer program packages have been developed for 

the solution of a variety of engineering problems. Some of the programs 

have been developed in such a general manner (like TWODEPEP) that the 

user can use the same program for the solution of problems belonging to 

dLfferent branches of applLcation fields with little modification in the 

input data. A summary of the more widely used packages and their 

capabilities can be found in NOOR [1981) • 

• 

Here we will present the programming system TWODEPEP whLch copes wLth 

all parts of a typical finite element program as lLsted prevLously. ·As 

the success of the "programming system philosophy" depends on the qualLty 

and properties of the programming systems we will list some general 

requirements and discuss our experiences with (TWODEPEP), referring to the 

listed requirements. ThLs experience comes from the development of the 

solution to problems in several applications areas. 
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4.2 GENERAL INFORMATION OF TWODEPEP 

TWODEPEP is a production of IMSL which is a Fortran application 

software finite element package for solving a large class of partial 

differential equations. New releases of the program are generated at the 

rate of about one per year. 

TWODEPEP is a general purpos~ easy to use, finite element program 

which solves a large class of elliptic (steady-state),parabolic (time 

dependent), eigenvalue problems, and other problems defiped exclusively 

by partial different~al equations in general two-dimens~onal regions. 

Applications ~elude elastic~ty, diffusion, heat conduction, fluid 

· mechaniCS,potent~al energy, time-dependent and t~me-~dependent, 

Schrodinger equat~ons, semi-conductor and shell problems. The program 

includes a preprocessor and a graphical output package. The design 

priorities of TWODEPEP are in order: generality, easy to use, storage 

efficiency, accuracy and speed. Most of the methods employed are general 

and standard proven techniques. 
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4.3 PROBLEM DEFINITION OF TWODEPEP 

The most general form of the differential equat~ons solved by the 

f~nite element program TWODEPEP is: 

au a (a ) 
a 

(axy> cl at =- +- + Fl ax XX ay 
(4 .1) 

av a 
(a ) 

a (a ) c2 at =- +- + F2 ax yx ay yy 

In a two dimensional region R, where c1 ,c2 may be constants or a function 

of (x,y,u,v,t) and a ,a ,a ,a , F
1 

and F2 are in general functions of 
XX xy yx yy 

(x,y,u,v,t,u ,u ,v ,v ), with 
X y X y 

and 

u = rn
1 

(s, t) 

V= FB2 (s,t) , fors on part of the boundary aR1 

a R. +a R. = GB
1

(s,u,v,t) 
XXX xyy 

a R. 
yxx 

(4 .2) 

fors on the other part of the boundary aR
2

• R. ,R. are the unit outward 
X y 

normal to the boundary, and, 

u = u
0

(x,y) 

V= v
0

(x,y) 
, for t=T

0 
• (4 .3) 

It is assumed that the problem is self-adjoint, although TWODEPEP can 

solve some non-symmetric problems, but with less efficiency and accuracy. 

However, TWODEPEP can also solve several simultaneous equations of 

the above form, Elliptic (c1=e2=0), and eigenvalue problems can also be 

solved. In addition, the case of a single equation on one unknown can be 

solved, and the problems with more than two unknowns can also be solved 

iterat~vely, using the program's temporary solution storage capability. 
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4.4 METHOD OF SOLUTION 

We will consider the case of the elliptic problem and describe the 

techniques which are used by TWODEPEP, since the methods used to solve 

time-dependent, e1genvalue and non-symmetric problems are extensions of 

the same techniques used for the ell1ptic problems. 

We seek a solut1on to the elliptic problems which can be put in the 

form that permits a solution to be found by minimizing the equivalent 

integral in the arbitrary two dimensional region R 

(4.4) 

where u is a vector function satisfy1ng the boundary condition~=~ € oR
1

• 

Then the problem becomes one of find1ng a particular u which minimizes 

the integral (4.4). 

Then, we must have, for any .P._ satisfying .P._"'Q_, on oR
1

, 

since the problems 

+ 

J 

oE2 
+ -- tj>1, au. 

3R2 1 

solved by TWODEPEP 

ds} = 0 (4 .5) 

are in general two dimensional 

problems, and the vector u is normally a one or two component vector. 

Thus m=l or 2. 

Let 
aE

1 --= a(ix) auix 

aE1 au:- = a (iy) 
1Y 
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3E
1 

F -- = au. J. J. 

and 
3E

2 
GiBi --= 

au. 

(4 .6) 

J. 

Now equation (4.5) can be written in the following form, 

(4. 7) 

Applying Green's theorem to equation (4.7) leads to, 

+I (GBJ.- cr(ix)tx-
3R2 

cr. t )~.}ds = 0 . J.Y y J. 

This leads to the general form of the elliptic equations, 

in R, and, 

u = FB 
-i J. 

GB. on J. 

(4 .8) 

(4. 9) 

The finite element method minimizes the integral (4.1) over a class of 

piecewise polynomials. The idea is to choose a finJ.te number of trial 

functions ~1 .~ 2 , .•• ,$N' and among all their linear combinations L ai$i 
J. 

to find the one which is the minimum, the unknown ai are determined not 

by the differential equation, but by a system of N discrete algebraic 

equations which the comPuter can handle. Therefore, the goal is to 

choose trial functions $i which are convenient enough for the given 

integral (4.1) to be COmPuted and minimized, and at the same time general 

enough to approximate closely the unknown ~· 
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TWODEPEP starts by a subdivision of the g~ven region into smaller 

pieces which are triangles with standard six-node with a quadratic 

basis function, and with one edge curved when adjacent to a curved 

boundary according to the isoparametric method. It is also optional to 

usel~int cubic (3rd degree) or the 15-points quartic (4th degree) 

isoparametric triangular elements for greater accuracy. 

Each time a triangle is partitioned, it ~s divided by a line from 

the midpoint of its longest side to the opposite vertex. If th~s side 

is not on the boundary, the triangle which shares that side must also be 

divided to avo~d non-confor~ng elementsw~thdiscontinuous basis functions. 

An initial triangulation with sufficient triangles to define the 

region is supplied by the user, then the refinement and grading of this 

triangulation is guided by a user supplied function D3EST which should be 

largest where the final triangulation is to be most dense. The Cuthill

Mckee algorithm is used to initially number the nodes, and a special 

bandwidth reduction algorithm is used to decrease the bandwidth of the 

Jacobian matrix even further. 

In all cases the algebraic system is solved by Newton's method. One 

iteration per time step ~s done for parabolic problems and one iteration 

is sufficient for linear elliptic problems. The linear system which must 

be solved to do an iterat~on of Newton's method is solved directly by 

block Gaussian elimination, without row interchanges since pivoting is 

unnecessary when the matrix is positive definite. 
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Symmetry is also taken advantage of in the elimination proces~ if 

it is present then the storage and computational work are halved. If the 

Jacobian matrix is too large to keep in core, the frontal method is used 

to efficiently organize its storage out of core. For time-dependent 

problems, the right hand side of equation (4.9) is replaced by ciuit' 

and initial condit~ons ui=uio are given, then the resulting system of 

equations (4.8), after making the obvious change to account for the extra 

term, becomes a system of ordinary differential equations, and the unknown 

coefficients are now functions of t. The implicit or Crank-Nicolson method 

is used to discretize time steps, and a Richardson extrapolation may also 

be done to increase the order of convergence in a manner similar to that 

used to control the mesh grading, a user suppl~ed function of t controls 

the time step variation. The Newton iteration is handled in the same 

manner as for elliptic problems. 

The eigenvalue problem obtained by adding Ap.ui to the left hand side 
l. ' 

of equation (4.9), is solved for the smallest eigenvalue by the inverse 

power method. 

TWODEPEP can also solve non-symmetric problems of the form (4.9) 

solving the corresponding non-symmetric system directly by block Gaussian 

elimination. 

TWODEPEP was basically designed for a maximum of two partial 

differential equations. It is assumed that, in applications, systems of 

several equations can often be divided into sets similar to (4.9), of one 

or two unknowns, with strong coupling within each set but weak coupling 
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between sets. Under this assumption, a system of several equations can 

be handled by solvLng the different sets alternately, substituting the 

latest calculated values for the unknowns corresponding to the other sets. 
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4.5 SUMMARY OF THE SPECIAL FEATURES OF TWODEPEP 

TWODEPEP is a general purpose finite element program which solves 

a large class of partial differential equations of the form (4.1). 

TWODEPEP has a preprocessor program which allows the user to 

write the problem definition in a simple and readable format. 

Hence, nearly all the Fortran programming involved can be 

eliminated. The preprocessor also controls the dimension sizes 

so that only storage necessary for that particular problem is 

utilized. 

TWODEPEP uses a standard quadratic element, and optLmal cubic and 

quartic Lsoparametric triangular elements for more higher accuracy. 

Solves up to nine simultaneous equations per set. 

Draws a printer plot of the vertices and centres of triangles in 

the final triangulation. 

Provides automatic and accurate calculation of the user specified 

function and/or its derivatives. 

Provides a portable 3-dLmensional graphical output program which 

plots scalar, vector and stress fields. 
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4.6 INPUT SUMMARIES 

The TWODEPEP has a preprocessor Fortran program which reads the user 

input describing the problem 1n a format designed to ~nimize user effort, 

and then outputs some problem-dependent subprograms which must then be 

compiled and executed with the problem-independent subprograms. To 

illustrate the s~plicity of the input format, we will list below all 

information necessary to construct the TWODEPEP input data set for the 

problem which is similar to the two dimensional elliptic Poisson's 

problem. 

Problem 

Solve the two dimensional problem, 

a au a au 
ax[A(x,ylaxl + ay[A(x,ylayl + B(x,y)u + c(x,y) = o € R, 

W1th 1 

u = FB
1 

(s) ) (4 .10) 

The TWODEPEP input for this problem is now given: 

The boundary of the region R is divided into distinct arcs, each of 

which possesses smooth boundary conditions. Thus at every point where the 

boundary conditions have a discontinuity or corner point, a different 

boundary condition is defined, a new boundary arc must begin. Each arc 

is given a distinct identifying integer I, must be negative 1f u is given 

on the boundary arc, and must be positive if the normal derivative of u 

is given. Each curved arc 1s given by a parameter s, varying from 0 to 1; 

the orientation of the arc being unimportant. 
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The user creates an in~tial triangulation of R with only enough 

triangles to define the region which has the following propert~es: 

1. Each point where two of the boundary arcs meet is included as a 

vertex in the triangulation. 

2. No vertex of any triangulation touches another in a point which is 

not a vertex of the second triangle (~.e. the triangulat~on is 

"conforming"). 

3. No triangle may have all three vertices on the boundary. 

4. Small angles should be avoided wherever poss~le. 

The input data set consists of three parts, as follows: 

A. A single line giving the values of certain variables which must 

be read in integer format. 

B. A group of records defining the values of var~ables and functions, 

boundary cond~tions, init~al/triangulation and solut~on method. 

c. Functions wh~ch are too complicated to def~ne ~n part B, a user-

supplied Fortran function subprogram may be defined at the end 

of the input preprocessor. 

The first line conta=s 3 integers NEQ, NTF, NDIM in free format at 

least one blank between numbers, where 

NEQ= 

NTF= 

NDIM= 

number of simultaneous PDE's being solved 

number of triangles desired in the final triangulation 

storage reserved for the Jacobian matrix. Should be about: 

(1) 12 x 2~NTF) 3 , if only in-core storage to be used 

(2) 20 X NTF , if out-of-core storage is to be used. 

If NDIM is input as 1 or 2, it will default to the first or the second 

formula respectively. 
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Each of the following lines has a function or variable name 

beginning in column l. In columns 9-72 the function or van.able is 

defined using Fortran syntax. All of the functions or var1ables below 

must be defined or defaulted. Except as expressly noted, the order of 

the lwes is unimportant. 

If **** is put in columns 1-4, columns 5-72 may conta1n comments. 

If any function definitions are too long to fit into a single 

line, Fortran functions may be called in their definition. These functions 

can be defined after all other input by writing the functions subprograms 

following a line with ADD in columns 1-4. The last line in the input 

should have END w columns 1-4. 

NAME 

axy 

Fl 

D3EST 

NX 

N'i 

XA 

HX 

YA 

HY 

MEANING 

A(x,y)*Ux 

A(x,y) *Uy 

B(x,y)*U+C(x,y) 

TWODEPEP tries to distribute D3EST(x,y) 

xh(j)**3 evenly over the final tr1angulation, 

where h(J) is the diameter of triangle j. The 

user normally will simply make D3EST largest 

where he wants the tr1angulation to be most 

dense. The triangulation may be plotted to 

see if it is graded properly. 

The solution will be output at the points 

of the grid: 

X = AX + i*HX , i=O, ••• ,NX 

Y = YA + j*HY , j=O, ••• ,NY 



MWR 

PLOT 

Cubl.CS 

Quartl.cs 

... ,.. 
**** 

**** 

**** 

**** 

**** 

**** 

**** 

**** 

**** 

**** 

**** 

X 

y 

} 

166 

Here XA=minimum value of x in R, etc. If output 

is desired at an arbitrary sequence of points 

(XA(M),YA(M),M=l ••• (NX+l)*(NY+l)), then HX=HY=O 

and XA and YA are defined as functions of M. 

OUtput logical unit number. 6=printer, 8,9=disk 

files for postprocessing. 

If PLOT=l, printer plots of the initial triangulation 

and of the centers of the tr1.angles in the final 

trl.angulation will be generated, proyided NDIM.GE.SOO. 

if cubic=l or quartic=l, cubic or quartic isoparametric 

elements will be used. They are of higher order 

accuracy than the default quadratic element • 

BOUNDARY FUNCTIONS 

For each boundary arc (except those on which all 

boundary functions are defaulted) there is a line 

with ARC= in columns 1-4 immediately followed 

(within the next 12 columns) by the arc number. 

Immediately following this line the appropr1.ate 

boundary funct1.ons (X,Y,FBl,GBl) for that arc are 

defined. on any arc the functions FBl, GBl may be 

descr1.bed as functions of X and Y. on curved arcs 

they may alternatively be described as functions 

of the arc parameters. 

line (X(S),Y(S)).(G.LE.S.LE.l) are the parametric 

equations for arc number I (curved arc only). 



FBl 

GBl 

**** 
**** 

**** 

**** 

**** 

**** 

**** 

**** 

VXY 

IABC 

I 

SYMMETRY 
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0 

0 

FBl(S,X,Y) on arc number I (I negative) 

GBl(S,X,Y,U) on boundary arc number I (I 

positive) 

Initial Tr1angulation Arrays 
'-

The arrays VXY, IABC, I defining the init1al tri

angulation are defined by free format l1sts (at 

least one comma or blank separating entries). If 

more than one line is needed, the list can be 

continued on the immediate follow1ng lines if the 

array name 1s repeated on the continuation l1nes. 

VX(l),VY(l),VX(2),VY(2), ••• ,VX(NV) ,VY(NV) where 

VX(I),VY(I) are the coord1nates of vertex number I. 

The vert1ces may be listed in any numbers referred 

to in IABC. 

IA(l) ,IB(l), ••• ,IA(NT) ,IB(NT) ,IC(NT) where IA(K) ,IB(K), 

IC(K) are the numbers (as listed in VXY of the 

vertices A,B,C of triangle k). A,B,C must be order 

counter-clockwise and such that C is not on the 

boundary. 

I(l),I(2), ••• ,I(NT), where I(K) 1s the 1dent1fy1ng 

integer of the boundary arc cut off by the base, AB, 

of triangle k. I(k)=O if none. 

1, for th1s application 

Since the follow1ng two matr1ces are symmetric, 



and 

o /u 
XX X 

o /u 
xy x 

o /u 
yx x 

o /u 
yy X 

-F /u 
1 X 

-F /u 2 X 

o /u 
XX y 

o /u 
xy y 

o /u 
yx Y 

o /u yy y 

-F /u 
1 y 

-F /u 
2 y 

o /v 
XX X 

o /v 
xy x 

o /v yx x 

o /v 
yy X 

o /v o /u 
XX y XX 

o /v o /u 
xy y xy 

o /v o /u yx y yx 

o /v o /u 
yy y yy 

-F /v -F /u 
1 y 1 

-F /v -F
2
/u 

2 y 

o /v 
XX 

o /v 
xy 

o /v yx 

o /v 
yy 

-F /v 
1 

-F/v 

168 

If the problem ~s symmetr~c, the elements above the diagonal in these 

two matrices need not be def~ned, and the storage required for the 

Jacob~an w~ll be cut ~n half. A warn~ng message should be ~ssued if 

SYMMETRY is set to 1 when the problem is non-symmetric on output, the 

values of u and (o ,o )=(A*U ,A*U ) w~ll be printed. 
XX xy X y 



169 

4. 7 REQUIREMENTS OF THE 2DEPEP PROGRAMMING SYSTEM 

The requirements of a general programming system used as a tool by 

the programmer for special or general purpose fLnite element analysLs 

programs wLll of course depend on the type of the problem to be solved 

and the application of the system. 

However, ideally a general programming system for special or general 

purpose fin1te element analysLs programs should be: 

1. VersatLle (machine independent) 

2. General 

3. Capable of handling any reasonable problem size 

4. Efficient 

5. Rehable 

6. Easy to use and maintain 

7. Easy to modify and extend (open-ended) 

We shall here refer to this list while dLscussing the exper1ence ga1ned 

w1th the programming system (TWODEPEP). 

1. VERSATILITY 

Although most of the finite element programs are wr1tten Ln standard 

Fortran IV language, programs developed on one computer system may not 

be entirely compatLble with other systems due to the difference in I/O 

fac1l1t1es operating system, precis1on of the machLne, i.e. VAX, PRIME, 

CDC or many other machines. 
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2. GENERALITY 

This criterion was given a h1gh pr1or1ty during the development of 

TWODEPEP. It proved to be a well equipped tool for the advanced 

programmer for special or general purpose finite element analysis programs 

during the course of this work. 

No restrict1ons have been found on the number or type of elements. 

The completely dynamic manner in which the data is stored on peripheral 

storage also adds to the general1ty and flexib1lity of the system. 

The TWODEPEP package offers a very large range of applications in 

linear and non-linear analysis, with effective methods of solut1on. The 

progr&as contain state-of-art f1nite element procedures together with 

the implementation of nonlinear models in 1teration procedures with 

accuracy and cost effectiveness. 

The programs can be employed effectively 1n linear analysis, and 

then, w1th only a few 1nput changes1 several linear elliptic problems 

wh1ch are to be solved on the same triangulat1on may be solved in one 

run, and also in many nonlinear analysis._ 

However, it is very d1fficult to satisfy all the requ1rements of 

generality s1multaneously and there are notable limitations in using 

TWODEPEP, such as, 

(i) The part1al different1al equat1ons solved by TWODEPEP should 

be restricted to this form, 

du a c
1

Cx,y,u,v,tl--d =--a (a l 
t X XX 

a 
+ ay(axyl + Fl 

+ a~(ayyl + F2 



(ii) 

(iii) 

where a ,a ,a ,a , F
1 

and F
2 

are functions of 
XX xy yx yy 

(x,y,u,v,ux,vx,uY,vY,t). 
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There are many d1fferent linear and nonlinear, var1able 

coefficient problems which do not sat1sfy these above forms. 

Restriction on the boundary cond1tions. These should be of 

the form, 

and 

and 

u = FBl (s,t) 

V = FB
2 

(s,t) 

a i + a i 
XXX xyy 

a i + a i yxx yyy 

= GB
1 

(s,u,v,t) 
€ 

= GB2 (s,u,v,t) 

' i.e. TWODEPEP does not solve problems with boundary conditions 

of d1fferent types, all equations must have boundary condit1ons 

of the same type on each boundary arc, except for very special 

cases only. This is indeed a very weak property of TWODEPEP 

1n handling different boundary condit1ons. 

Round-off error appears to be present in the solution of some 

problems, which may be d1minished with some exper1ence. 

3. PROBLEM SIZE 

In pr1nc1ple, the programming system TWODEPEP does not impose any 

lim1tation on the size of the problem (i.e. number of the unknowns) . We 

can solve any one or two dimensional problem and up to nine equations per 

set w1th a maximum of f1ve sets being permitted, the only real limitations 

with the work on PRIME has proved to be the availability of computing 
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time and the peripheral storage capac1ty. 

Finally, TWODEPEP has the capability to make a realistic analys1s 

of really large problems. 

4. EFFICIENCY 

It 1s difficult to satisfy s1multaneously the requirements of both 

general1ty and efficiency. Normally, 1n the case of conflict generaZity 

has been given the higher prior1ty in the programming systems discussed 

here. The numer1ca1 operations are, however performed efficiently. All 

key operations are carried out in the Fortran language. 

In general, for all types of problems that fit the programming 

system TWODEPEP format and its boundary conditions, TWODEPEP is very 

efficient. While estimat1ng efficiency of an appl1cation program the 

cost of man hours 1s very often neglected. However, in practical 

applications of the finite element method, th1s may be'decis1ve for the 

total cost of the project. Using all the features available in the 

TWODEPEP programming system, a program can be built to minimize the 

requirements in man-time for providing input, output data. 

5. RELIABILITY 

The programming systems (TWODEPEP) consists of a number of well

defined modules (subroutines and functions) each of wh1ch has been 

thoroughly tested, resulting in systems which have proved to be extremely 

reliable. 

The main features of TWODEPEP have been used in application programs, 
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and the number of program errors wh~ch have been found in TWODEPEP over 

a period of a year is 1. 

The detect~on of an error is always accompan~ed by a printed 

message which will help to pinpoint the error. • ... " E~rors ~n the hardware 

or operating system are, of course, not the responsibility of a programming 

system. 

Another aspect of reliability is the numer~cal prec~sion and the 

accuracy of the results wh~ch may be checked by computing the residuals 

or error norm. Double precision ~s also available. 

6. MODIFICATIONS AND EXTENSIONS 

A general programming system w~ll never, due to ~ts very nature, 

be complete. New applications may call for modif~cations and the 

applicab~lity w~ll depend on the success with which the weaknesses of 

the system may be improved. 

The programming systems (TWODEPEP) are designed to be open-ended, 

and (up to now) modif~cations and extens~ons have proved to be easily 

accommodated and incorporated. 
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4.8 GENERALIZED PRE- AND POST-PROCESSORS FOR FINITE ELEMENT 

PROGRAMS 

A crucial factor in all finite element analysis is the large number 

of input data required and the numerous output results obtained. For 

nearly all f1n1te element programs in use nowadays a detailed description 

of the problem to be solved must be fed into the computer 1n an unfavourable 

manner to the user which easily promotes errors. Therefore, many pre

processors are designed which allow a short and compact descr1pt1on of the 

problem to be automatically transformed into the input data. Similarly, 

a post-processor transforms the output data into graphs, diagrams, tables 

etc. Therefore, the purpose of a general preprocessor is to: 

1. M1nimize the amount of input data to be specified by the user 

2. Ensure reliability of input data 

3. Reduce the total elapsed time for the analysis. 

Correspondingly, the post-processing programs should give a simple 

means to present, interpret and analyse the results. For a typical 

analysis with an existing program it is reasonable to believe that about 

40% of the costs are spent in the model definition and input specif1cation 

phase, 30% is related to the computer costs for solving the problem, and 

30% is used in the presentation and interpretation of analysing the results. 

Future trends will lead to steadily decreasing price/performance of 

computers and increasing man-power costs. It is obviously then good 

economy to develop tools which reduce the man-power spent on the analysis. 

It is believed that the input specification task is the most attractive 

to attack because this is where most of the tedious work time is spent. 



175 

The development of efficient pre- and post-processors is not only 

a matter of good economy, but it compensates for the predicted shortage 

of development work by increasing the research capability. 

(i) PREPROCESSORS 

The need for efficLent pre-processors including automatic input data 

generators has been realized from the beginning of the development of 

finite element programs. 

Considerable efforts have been made in developing ~atch pre-processors 

which generate all necessary Lnput data from a minimum of input. Input 

devices for the transfer of previously calculated data (from other 

programs) are also avaLlable. AutomatLc checking of input data, print 

and plot of generated data (e.g. geometry and element mesh). For huge 

and complex problems, Lt LS necessary to have batch and interactive 

specifications, probably the most efficient use of interactive graphic 

pre-processors is for the edLtLng of data. In designing such a pre

processor the following requLrements are essential and will guide the 

development of general interactive and batch preprocessors. 

1. The preprocessors must be easy to learn and use 

2. It must offer possibilities of control 

3. The preprocessors should be able to work both in batch mode 

and in interactive mode handling input data from the keyboard 

and graphic input devices. The selection of a mode should be 

controlled by a special command in the input system. 

4. Backup generation. If a fatal error is committed during the 

operation of the program, the information generated up to a 



176 

certain stage should be available for a capab~lity. 

5. The preprocessor should also contain effective 3 dimens~onal 

geometry generators. 

6. The interactive routines communicating with the user should 

supply the user with sufficient instruct~ons on request. 

One of the main points in the design of finite element programs is 

to have a standardization of the data problem between the preproaessor 

and the analysis programs so that the preproaessor aan be used for 

different types of analysis and even be linked to different finite 

element programs, by this proaedure we are aiming at a standardization 

of the input data to many aommonly used finite element programs. 

This is very attractive and important, because the user need only be 

famil~ar with one input system from which he can have access to different 

analysis programs. This is perhaps the most difficult requirement to 

satisfy. However the idea has been brought forth by finite element software 

developers worldwide. 

As an example of a preprocessor which has been linked to different 

analysis programs is FEMGEN, however it seems that none of the available 

systems offer sufficient generality. 

We can define now an ideal preproaessor as one that allows the user 

to generate the necessary information with the least effort for as wide 

a range of problems as possible. The term "user friendly" has been used 

to describe a preprocessor that can be operated with relative ease. 
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(ii) POSTPROCESSORS 

The aim of the postprocessors described here is to provide users 

of finite element programs with tools for selection and presentation of 

analysis and results (velocity, displacements, etc.) in the form of 

printed tables, and drawings, interactive graphics, etc. 

It may be suitable to distinguish between: 

1. General postprocessors, i.e. programs which are applLcable for 

many types of problems and for different applications. 

2. Application dependent postprocessors, i.e. programs which are 

unique to a specific problem or specific research. 

The general postprocessors should have the properties of: 

1. PresentatLon of the computed quantitLes or fLeld variables in the 

form of, 

(a) Diagrams, isoplots, etc. 

(b) Selected printout, e.g. velocity above a given level, 

displacements at certain nodes, etc. 

(c) Scaling and combination of analysis from different cases 

and alternative analysis 

According to the above requirements, there are many programs which perform, 

print and plot an analysis of the results (as an example PRE for the 

TWODEPEP system and NV340 is a general postprocessor to SESAM.69). 

In the next generatLon of general postprocessors it will be possible 

to select and present analysis results also from interactive graphic 

terminals. This gives an efficient means of scanning through the analysis 

results before scalLng data for permanent print and plots. Thus, it WLll 
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be poss1ble for the researchers to directly access and present analys1s 

results, and hence the corresponding data base may serve as an easily 

accessible permanent data storage. 

Normally it will be advantageous to perform pre- and post-processing 

on min1computers, and hence the easy transfer of data between different 

computers should be provided. Requirement of the postprocessors may be 

application dependent and may also be unique to specific projects. For 

this reason spec1al purpose post-processors are frequently developed 

either separately or by modification of the general programs. 

In order to facilitate the development of special post-processors, a 

thorough documentation of the data analysis and special programs to 

handle transfer of th1s data are required. 

An interesting problem arises 1n display1ng results from non-linear 

or time dependent problems which have variations with respect to a given 

parameter (time, etc.). The easiest and most widely used method 1s to 

present the results by a series of separate or "frozen" pictures or 

graphs corresponding to the step in the solution process. An alternative 

procedure is to present the results by movies obtained by animat1on of 

the results computed at different instants of t1me. This method wh1ch has 

been demonstrated by CHRISTIANSEN [1981] is very instructive. It will be 

neither desirable nor possible for one designer to develop all the software 

of pre- and post-processors that are needed in an institution. 

For this reason co-operation with other institutions and companies is 

needed in order to share the costs of development and try to implement 

existing software into the system. 



CHAPTER FIVE 

THE FINITE ELEMENT METHOD FOR 

FREE SURFACE PROBLEMS 
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5.1 INTRODUCTION 

The application of the finite element method to the solution of 

some partial different~al equations in a region character~sed by flows 

hav~ng a boundary which is not known (free surface) a priori has grown 

very rapidly and become an important area for many researchers and 

sc~entists. 

Wakes const~tute an example of such problems. These phenomena are 

produced ~n reality by placing an obstacle such as a plate Ln a moving 

stream so that the flow separates from the obstacle along the separating 

streamlines, the fluid between these streamlines constitutes the wake. 

In h~gh speed motion of a liqu~d, the wake may become gaseous and thus 

form a cav~ty. Jets offer another example in which a free surface ~s 

present, a Jet may be of water in air, water in water, etc. Porous media 

flows from another category of physical problems ~n which there is a free 

surface, seepage under or through dams, mo~sture flow through saturated 

or partially saturated soils and flows to and from dra~ns, ditches or wells. 

Conductive heat transfer with change of phase, evaporation of l~qu~d 

from porous media or precipitat~on of products in chem~cal solutions 

give rise to a class of unsteady free surface (interface) problems. 

Open channel flows offer a rich source of real examples of steady

free surface problems w~th a strong nonlinearity and complicated 

singularities. 

A large number of different flow s~tuations can be considered in 

open channels. Typical examples are: 



flows under a sluice gate, flows over a weir, flows over a 

spillway, flows over a step and other bed configuration. 
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Many effects on the free surface of the flow such as surface tension and 

grav1ty give rise to different approximat1ons to the real problem. The 

governing differential equations represents an approximation of the 

phenomena of 1nterest. 

In the case of open channel flows it 1s reasonable to assume that 

the effects of gravity are predominant over the effects of surface tension. 

Moreover, the flow may be assumed to be inviscid, incompressible and 

1rrotational. Such approximations represent effects of non-uniqueness 

and limiting cases of steady flows and standing waves. 

Analytical treatment of the governing differential equations 1s 

possible in some situations but at the expense of further s1mplif1cation. 

The hodograph transformation (see OCKENDON and TAYLER [1979)), 1s a good 

technique that can be used when dealing with two-dimens1onal potential 

flows with a free surface. An illustration of this analytical approach 

is provided by BENJAMIN[l956) who computed the flow under a sluice gate. 

The numer1cal approach has become more widely used technique for 

solving free surface problems in general, one of the advantages over 

analytical methods is that it can be applied to more general phys1cal 

problems. 

One of the first reported successful attempts to solve some open 

channel problems numer1cally is due to SOUTBWELL and VAISEY [1946), 

where they used the finite difference relaxation techn1que to solve 
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problems of flow under a slu~ce gate, jets, stat~onary waves of finite 

amplitude, flows under a planing surface and wakes. The great merit of 

the work by Southwell and Vaisey is that they treat the full potent~al 

problem with free surface. However, the technique used is subject to 

problems of accuracy for curvilinear field geometries which is precisely 

an important feature of free surface problems. 

In any numer~cal approach for the analysis of the free surface 

problems the exact position of the free surface is not known a priori 

and its locat~on forms part of the analysis. We note here the d~fference 

between free and moving boundary problems: a free surface problem is a 

part of a steady state problem and does not in fact move at all. 

Generally, extra condit~ons are specified on a free boundary and this 

enables its free position to be located, a moving boundary problem is 

generally a t~me-dependent problem and an essential feature of these 

problems is the presence of a sharp boundary surface that moves through 

the medium, the mathematical formulation of this problem arises in the 

study of heat flow in a medium that undergoes a phase change. 

As a result the fin~te element method has become a very popular 

numerical technique in fluid mechanics. 

A description of the method is provided in many text books such as 

ZIENKIEWICZ [1971), and MITCHELL and WAIT [1977). When the flow ~s known 

then the finite element method is directly and easily applicable to solve 

potential flow problems. However, a major problem is posed when the flow 

has a free surface. 
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The variational princ~ples in the finite element method has 

become of great importance MITCHELL [1972), their pr~nciples governing 

a variety of free surface flows are presented by many researchers; 

O'CARROLL [1978) who d~scusses the problem of choosing the appropr~ate 

funct~onal associated with the stream function and veloc~ty potent~al. 

The fundamental features of the introduced variat~onal principle is that 

they govern both the internal flow and the free surface position problems. 

The method for locating the free surface pos~tions is acknowledged 

to be the maJor d~ff~culty in these free surface problem~ and we list 

below some of the difficulties which arise in solving free surface 

problems: 

1. a varying domain - where the position of the free surface is 

not known a priori. 

2. the occurrance of non-linear boundary cond~tions, and 

3. a central reg~on where the critical depth ~s not known. 

The prediction of the position of the free surface can be carr~ed 

out numerically, which was first done in finite difference by SOUTHWELL 

and VAISEY [1946). If the finite elements are used to model the flow, 

three main approaches can be used: 

1) To extend the fin~te element mesh from the bed to the free 

surface flow, and as iterat~ons are performed, to move the 

mesh to follow the free surface and satisfy the total energy 

cr~ter~a. 

2) To fix the element mesh and to vary the element propert~es, so 

as to model the position of the free surface. This method has 
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only been used for seepage and other similar flows, in which 

the kinetic energy of the flow is small. 

c) To ~nvert the problem using co-ordinates as the dependent 

variables and us~ng the stream function and velocity potential 

as independent var~ables, this method has only been applied us~ng 

relaxation techniques, not finite elements. Although it appears 

to be very promising, this method was first suggested in the 

context of free surface problems by MARKLAND [1965) who applied 

it to the free flow over an overfall, using a relaxation 

technique. It was subsequently applied to large amplitude waves 

by WILLIAMS [1974). 

Another ~mportant method is that deviced by VAROGLU and FINN [1978), 

which is a semi-inverse method and thus falls between methods 1 and 3 above. 

Method 1 and the Varoglu and Finn method have only been applied to date 

using s~mple linear triangle elements. Our method is based on strategy 

1 and by using quadratic and quartic triangular elements with a dense 

area of elements near the free surface flow. We will discuss ~n detail 

the problem later ~n this chapter. 

A typical problem involving the percolation of a fluid through 

porous material is ~llustrated in Figure (5.1), typically an earth or 

sand construction in which part of the porous medium is wet and the 

rema~nder is dry and we have to calculate the position of the dividing 

line between the wet and dry (the free surface). 
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FIGURE 5.1: Water Seepage through an earth dam 
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2 
V u = 0 in R, 

as well as the following boundary condJ.tions: 

on AB u= Hi 

BC 
au 

0 -- = ay 

CD u = hi 

DE u = y 

and AE free 
au . 

0 surface--= 
an 

184 

One problem of this type has become a standard test problem J.n the field 

of free surface solutions. It is usually known as the classical dam 

problem and is J.llustrated l.n Figure (5.1). 
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This problem assumed a dramatic new 1mportance when it was shown 

by Biaocch1 [1972) that the region of solution can be extended to the 

complete rectangle ABCF, i.e. we solve a modif1ed problem that does not 

involve the position of the free surface explic1tly and then locate the 

free boundary from th1s extended solution. The or1g1nal purpose of 

Biaocch1's work was to provide a proof of the existence and uniqueness 

of the solut1on to the original mathematical problem. However, such a 

formulation 1s very convenient for a numerical solut1on and has been 

shown to be successful on this lim1ted standard problem (see AITCHISON 

[~977)). In general, we have the free surface problem shown in Figure 

(5.2), where the d1fferential equation, 

Du = 0 in the region R , 

and SubJect to the condition, 

Lu = 0 on 3R
1

, the boundary of R, 

and the free boundary 3R in 3R
1

: 

cu = 0 ' 

where D,L,C are a set of differential operators, 

, ... 

(5 .1) 

(5.2) 

(5.3) 

,, .... ,, 
' ' ' 3R: Cu=O and 
''' R: Du=O ''' ', \ Lu=O ,, ' ,, ,, \ 

' I 

c 

FIGURE 5.2: The general free boundary problem 
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The problem is to determ~ne the shape and location of the free boundary AC. 

The tr~al free boundary method which involves the solution of a 

sequence of problems with different f~xed boundaries is applicable to all 

free boundary surface problems and requires no prelim~nary analys~s, 

although some analysis may often be desirable to make a good initial guess 

at the position of the free boundary. 

Some conclusions can be drawn in regard to us~ng the trial free 

problem by the finite element technique. These include: 

~f the differential operator D is linear in equation (5.1), then 

the computational effort is to solve only a linear set of equations, 

while if D is not l~near, then it leads to a nonl~near system of 

equat~ons, which can be solved iteratively by using one of the 

methods d~scussed in Chapter 2. 

general or special purpose packages can often be used to solve 

the different~al equations, where special techn~ques are not needed. 

with the very rapid growth of the fin~te element method, ~t ~s 

easier to implement the method than ~t was when finite d~fferences 

were the only common method of solution. 

a characteristic of free boundary problems is that they generally 

require the differential equation to be solved on a region w~th 

normally a curved free surface. This irregular shaped boundary 

can be approximated by using elements with straight s~des or 

matched exactly using element curved boundaries. However the 

finite element method is not limited to regular shapes with 

easily defined boundaries, whereas programm~ng this w~th the 

finite differences may be more difficult. 
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the successful application of the trial free boundary method, 

over a large number of free surface problems has perhaps tended 

to discourage work on other free boundary methods, and th~s in 

turn means that there is a limited work on other methods, with 

which to compare the results which we obtain. 

despite its many applications, there is remarkably little 

theoretical understanding of why ~t works and how it is affected 

by d~fferent boundary conditions and different problems. 

There are, of course, certain disadvantages in the use of the trial free 

boundary method, such as: 

The solution processes involve the computations of a sequence of 

solutions {u(k)}, k=l,2, ••• , for different fixed boundaries which 

requires a large amount of computer t~me and storage. 

It seems to be that there is no fixed rules wh~ch ensure 

convergence since generally speaking d~fferent techniques are 

needed for different problems. Often it is not clear which of 

the ava~lable conditions to use for solv~ng the differential 

equation (i.e. Lu=O, or Cu=O). 

It is difficult to obtain h~gh accuracy, and hard to est~mate 

(k) (k) 
the error in u and on aR , particularly since at each stage 

(k) 
we only find an approximation u to u. In some problems the 

shape of the free boundary is very sensitive to small errors in 

the condition Cu=O, and so it is difficult to achieve high 

accuracy near points of separat~on. 

Alternative methods for solv~ng free boundary problems have been 

devised such as the third approach described at the beginning of this 



188 

chapter. Aitchison, Ba1ochi used a method wh1ch avoided the outer 

iteration to find the position of the free boundary. The problem is 

then reformulated as a quadratic min1mization problem on a fixed reg1on, 

and it works well, but it is only used on porous flow problems, which 

are not easily appl1cable to more general problems. 

Viscous flow problems are particularly difficult to solve, and for 

this case only the trial free boundary method is available at present. 
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5.2 FINITE ELEMENT SOLUTION OF SLUICE GATE FLOW 

The first to consider the influence of gravity on flows under a 

sluice gate appears to have been PAJER [1937); he assumed that, while a 

circle 1n the hodograph plane corresponded to the l1miting case of zero 

grav1ty, an ellipse could be used to replace the circle when gravity is 

present. This fixed the shape of the free streamline, but the boundary 

condition of constant pressure was not verified. The resulting streamline 

was correct at the end points, and nearly correct at intermediate points. 

An improvement of Pajer's method was devised by BENJAMIN [1956). Be 

assumed the shape of the hodograph as the arc of an ellipse to a region 

on the streamline where the solution essent1ally matched that of a solitary 

wave based on the downstream Froude number. The boundary condit1on of 

constant pressure was also not verified for this result either. 

Infinite series were used by PERRY [1957) for improving the hodograph 

method to include gravity. An inverse hodograph of arbitrary shape was 

mapped onto a c1rcle, By 1ncreas1ng the number of terms in the series, 

a mapping of the free streamline was made to sat1sfy the constant pressure 

condition at an increasing number of po1nts. Changing the number of 

terms 1n the series changes the values of the constants, and the method 

was dropped in favour of one treating flows with gravity as a perturbation 

of the flow without gravity. The resulting shape of the free streaml1ne 

in the hodograph plane was essentially that of a shifted circle. 

The contraction coefficient was found to be theoretically related to 

the total head, B, and the gate opening, b, by, 
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c = 0.6110 - 0 •0170 
c H -l 

b 

(5 .4) 

All the preceding solutions assume an inf~nite reservoir with no free-

surface upstream from the gate. The effect of the upstream free surface 

was ~ncluded by Southwell and Vaisey. They solved Laplace's equat~on for 

a sluice gate by substituting a fin~te difference equation for the 

part~al differential equation and apply~ng relaxation procedures. For a 

gate open~ng to total head ratio of approximately 0.53, the only conf~guration 

reported, the downstream depth was 0.608 of the gate opening. 

T.S. Strikoff proposed a general method for solving gravity flows 

and appl~ed it to the sharp-crested weir. An integral equation resulted, 

which was then solved by a numerical, iterative procedure. The method ~s 

adaptable to other rapidly var~ed open-channel flows in which the 

boundar~es are horizontal and vertical. The formulation of a boundary-

value problem for the sluice gate is based on this method. J.A. MCCORQUODALE 

[1971], presents a finite element procedure for comput~ng the hydraul~c 

characterist~cs of sluice gates with two-dimensional ~rrotational grav~ty 

flow. 

PROBLEM FORMULATION 

This section presents a numerical procedure for computing the hydraulic 

characteristics of a sluice gate with two dimensional irrotational gravity 

flow. The procedure for solving free surface potential flow problems 

~nvolves solving Laplace's equation as usual plus satisfying the condit~ons 

that the velocity normal to the free surface be zero and the pressure 

along the free surface be constant. 
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The method used to locate the free surface is to select a trial 

free surface shape, then solve the Laplace equation and calculate the 

veloc1ty components along the assumed free surface profile, 

From the solution obtained the pressure condition is checked at 

each surface node by means of the equation, 

which is then used to correct the surfacepos1tion 1n order to obta1n a 

new domain for solv1ng the problem, until the prescr1bed,error criterion 

is satisfied. 

Cons1der the analysis of a sluice gate flow performed as follows. 

The formulation is in terms of the stream funct1on ~. veloc1t1es u and v 

can be obtained from the stream function ~ by 

V= (5 .5) 

The pressure energy equation is given by, 

(5.6) 

where E 1s the total energy, and y is equal to the potential energy. 
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and thus under the stated phys~cal assumption yields the Laplace equat~on, 

2 V ljl = 0 in R , (5. 7) 

as well as the follow~ng boundary conditions, 

a.p -ax - 0 for x=xo and x=h ' (5 .B) 

and, 

(5.9) 

In addition there are the imposed boundary cond~tion, 

ljl = Q for y=h (5.10) 

ljl = 0 for y=O (5 .11) 

The function h(x) is unknown but it must be located so that the boundary 

conditions (5.9) and (5.10) are satisfied. 

The upstream (subcritical) portion of the free surface AB (as given 

in Figure (5.3) can init~ally be taken h~E, s~nce the velocity head is 

very small. 

Later h can be corrected for velocity head. 

The downstream (supercritical) port~on h must be treated more 

carefully as follows. An elliptical curve, 

y-k2 2 
+ (--) =0 ' 

a2 
(5.12) 

was selected to describe the outflow free surface s~nce this function can 

be made to satisfy the tangency condit~on at the gate lip by setting a
1 

and a2 (see Figure 5.3). 
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5.3 MOVING STRATEGY 

From the descr~ption of the f~nite element method in Chapter 3, 

and its application we will now look at the problem of locat~ng the 

position of the free surface, a problem described in Section (5.2c ). 

If the posit~on of the free boundary CD (wh~ch we denote by aR,l were 

known then (5.7), and the boundary conditions (5.8), ••• ,(5.11) would 

suffice to solve the problem for ~. but since aR is not known a pr~ori, 

(k) (k+i) then mov~ng the free boundary aR to aR , i=l,2, ••• , often turns 

out to be the most d~fficult aspect of the tr~al free b~l!ldary surface. 

Mostly, authors s~mply say, the trial free surface was adJusted until 

both the g~ven boundary conditions were satisfied, and give no further 

details. 

The prediction of the pos~t~on of the free surface in the early 

days was f~rst done by hand, such as Southwell and vaisey [1946), and 

they did not use any specific rules to move the free surface. Basically 

it is des~rable to have a given scheme for moving the boundary so that 

th~s can be done automat~cally. 

To implement any mov~ng strategy on a computer it is convenient to 

regard the boundaries aR(k) as being defined by a number of parameters 

(k) (k) (k) • 
a

1 
,a2 , ••• ,an , say these def~ne, for instances, the vertices of a 

curved boundary giving the curve the formula, 

'R(k) ( (k) (k) (k)) 
o a

1 
,a

2 
, ••• ,an (5.13) 

Here we w~ll discuss now the methods of moving the boundary, which may 

be d~vided ~nto three categor~es, ZoaaZ, integral and global. 
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To describe these methods we consider the free surface part of the free 

surface problem, which is illustrated in Figure (5.4), and ~n terms of 

the velocity potential u=$, with, 

2 
Du = V u = 0 , ~n R 

Lu = 0 , on aR 

Cu = 0 on aR 

together with appropriate boundary condit~ons on the fixed boundary. 

c 
"' (k+l) 

' ... ,pi ,, "' }1. .... 
.... .... 

(k) .... , .... """ 
p~ 'x. .... (k+l) 

' ...... , p 
', .......... 'Ho. ..... ] 

.... "' ........ ... aR (k+ll 
(k) ...... ... 

pj ...... , ....... :: ......... .... 

aR (kl .......... .._:... D 

FIGURE 5.4: Movement strategy 

5. 3 .1 LOCAL MOVEMENT STRATEGY 

From Figure (5.4) above, in this strategy, the adJUStments to aR(k) 

are made at individual points on the basis of the error in cu(k) at these 

points will be minimum. Thus, cu(k) is computed at m points, 
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(k) E oR (k) 
pj ' l~J~m, 

(k) (k) 
If Cu is not zero at the po1nt p , then another point 1n the 

J 
. (k) (k+ 1) 

ne1ghbourhood of pj is found pJ where the boundary condition Cu=O 

is satisfied better. 

oR(k+l) is then drawn through the points p~k+l) , (j=l,2, ••• ,m). 

Convergence of th1s strategy, 1s of course, not guaranteed, nor easily 

obtained for some problems. Sometimes it has been found that an error 

over one part of the boundary can only be reduced by moving a different 

part of the boundary. 

With the high-speed computer it has become desirable to automate 

the movement of points along the boundary curve. 

(k+l) 
The approach usually is to determine the po1nts pj according to 

the condition that, 

Cu (k) (p ~k+l)) = 0 ' 
J 

together with the condition that, 

(k+l) 
pj 

(k) 
= pj + 

(k) (k) 
aJ ~ 

(5.14) 

(5.15) 

where ~k) is a specified direction vector, and a~k) a constant to be 

determined wh1ch minimizes the error. The different methods correspond 

to different ways of choosing ~(k) in (5.15), while possible cho1ces for 

s(k) are: the unit outward normal to aR(k) at p~k). 
J J 

Thus, some form of line search is performed along the direct1on 

(k) 

~· 
(k+l) 

The computation of pj so as to satisfy (5.1~), depends of 

course upon the structure of c. 
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The most obvious approach based on Newton's method is to define 

a function f~k) (a) by 
J 

= Cu(k) (p(k+l)) = 0 
J 

= c (k) ( (k) + (k) ) 
u pj asj 

(k) 
and then find a root of fk (a). Then compute or estimate, 

_.!!.. f (k) (a) I 
da j a=o 

, 

and then set, 

a (k) = -f ~k) (0) ;-!!.. f (k) (a) I ) • 
j J da J a=o 

(5.16) 

(5.17) 

(5.18) 

However, various other approaches have been used, [CRYER (1976)]. 

In a number of ~nstances it has been found desirable to smooth the points 

(k+l) 
pj so as to prevent undesirable oscillations. 

FINNEMORE and PERRY [1968] used a standard smooth~ng subroutine. 

(k+l) 
CRYER [1970] dete~ned m points p. , l~J~m, and then fitted a curve 

J 

' ( ) . i ' (k+l) -- 'lk+l) (~) • oR ~ of prescr~bed form through these po~nts to obta n oR o~ 

In summary then a local strategy has been used very successfully 

desp~te their apparent arb~trariness. 

5.3.2 MOVEMENT STRATEGY: INTEGRAL APPROACH 

In an integral strategy of moving the free boundary condit~on: 

Cu = 0 , 

can be expressed in an impl~cit form such as: 

G(u(s) ,u (s) ,u (s) ,x(s) ,x(s)) = o , 
X y - - ( 5 .19) 
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where ~(s) is the free boundary curve, and i<sl denotes the derivatives 

of ~(s) with respect to the arc-length s. 

(k) (k) (k+l) 
G1ven aR and u , the curve aR is obtained by integrating 

the differential equat1on for ~(s), in an approximate form, 

G(u (k) (s) .~(k) (s) .~(k) (s) ,x (k+l) (s) ,x (k+l) (s)) = o , (5.20) 
X y - -

.. (k) (k) 
where u (s), etc. represents approx1mat1ons to the value of u (s) etc. 

(k+l) 
at the point ~ (s) and may be obtained by interpolat1on or extra-

polation. Often, u(k) (s) is taken to be the value of u(~) at a gr1dpoint 

nearest to x(k+l) (s). Many appl1cations of integral methods have been 

made. NICHELL and CASWELL [1974) compute the flow of a v1scous jet 

extruded from a tube. Most of the applications show, the integral 

method has proved itself of great value, and it seems clear that many 

more applications will be found. 

5.3.3 MOVEMENT STRATEGY: GLOBAL APPROACH 

(k) In a global method of moving the free boundary aR , a set of 

perturbed boundaries, 

for j=l,2, .•• ,n , ( 5. 21) 
A(k,j) and corresponding solutions u are generated. 

Thus, this informat1on makes 1t possible to estimate the dependence 

(k) (k) of the error Cu on the parameters ~ • 

The new position of the free boundary aR(k+l) is chosen to minimize 
(k+l) 

the error Cu 1n some sense. 
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. . (k+l) 
In order to m1nim1ze the error Cu we must have a measure for 

this error, E(a), say. Some choices forE have been used: 

El (a(k)) 
n 

(Cu(k) (p~k)))2)t (i) = [ I , (5.22) 
j=l 

that is, E (a(k)) 
1-

is the m-vector of the errors at n points 
(k) 

pj 

where E
1 

is the least square error. 

Examples of the use of this method are: 

(1) SANKAR [1967, p.l53) and FOX and SANKAR [1973) solves the 

flow 1n an axially symmetric Riabouchinaky cavity. 

(2) MCCORQUODALE and LI [1971) consider the problam of sluice gate 

flow. 
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5.4 NUMERICAL RESULTS 

From a descript1on of the general trial free boundary methods, we 

will now apply the global strategy to the free surface problem presented 

in Section (5.2). For the trial global strategy, the ell1ptic curve 

which is given 1n equation(5.12) was selected to describe the outflow 

free surface CD, wh1ch can be made to satisfy condition (5.10), by setting 

the constants a
1 

and a2 , the streamline ABCD is assigned a stream. 

funct1on $=Q
0

, then an approximate solution for the internal flow field 

can be found from solving the finite element equatiom (5,.7 ) ... (511) .Conditions 

(k) 
along the free surface oR , (k=O,l, ••• ,m) can be checked. If an error 

is found between the given energy E, and the computed energy E along CD 
c 

the assumed a
1 

and a
2 

should then be adjusted so as to m1nim1ze this error, 

m 2 
s = L (E. -E i) 

1.=1 l. c 
where m is the number of 

mesh po1nts along CD. (5.23) 

We computed s, the sum of squares of the error for the points along CD, 

for several values of a
1 

and a
2

• A search is then made for a
1 

and a
2 

wh1ch gives a m1nimum value of s. 

The flow geometrie<·, b/H=0.4 and 0.36 were investigated, and a 

typ1cal surface profile is shown in Figure (5.5) with both downstream 

profiles, shown 1n Figure (5.6). 

Quadrat1c triangular elements were used to model the problem and the 

geometry of the top layer of the free surface elements was allowed to 

change, i.e. the constants a
1 

and a2 were varied above and below the 

first guess, 1n general if the guess is close to the correct values, the 

l 

I 
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algorithm will converge to the correct solution w1th only a few -
iterations. Only a few of the many results have been plotted so as to 

avoid confusion. 

Ar---~~----------------~B 
7 

line of total head 

I 

H c 

JH 
the freE\ surface 

I 

I " I 1 cc(b/~ 
F 1 
-1.0 0 0.5 E 

0.0 

FIGURE 5.5: Typ1cal flow profile 

0 E 

FIGURE 5.6: Downstream surface profile 
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The computed constants a
1

,a2 and the ratio Ccb/H for the flow geometries 

b/H = .4 and .36 are given below. 

b/H al a2 

0.4 1.0 0.16016 

0.36 1.0 0.14335 

where, b is the gate opening, 

H total head on the gate, 

C contraction coefficient. c 

c C b/H 
c c 

0.5996 0.23984 

0.6079 0.21665 

A plot of the potential flow solution in the gLven region with b/H=0.4 

is shown in Figure (5.7). 

Southwell and Vaisey determined the gate opening for a given 

dLscharge, but the region near the gate has a large curvature, making 

an accurate determination too difficult because there the contraction 

coefficient C , and the profile is too large. 
c 

Experimental C values reported by BENJAMIN [1956] are much larger c 

than theoretical values, he explained that different contraction 

coefficients for the two gate openings indicate that variables other 

than the geometric ratio b/H have a signLficant influence on the flow. 

He clearly shows that apparently a major discrepancy which appears in 



in the plot of C versus b/H is due to the presence of a boundary 
c 
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layer on the channel bottom 1n the real flow downstream from the gate, 

but when a proper allowance is made for the boundary layer, theory and 

experiment agree satisfactorily. 
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FIGURE 5.7: Potential flow solution with b/H = .4 
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5. 5 CONVERGENCE AND ERROR ANALYSIS FOR THE FREE BOUNDARY 

PROBLEM 

Some theoretical work has been done on the convergence of the trial 

free boundary problem. On a f~xed region it is possible to analyse the 

errors even if the region has a curved boundary. This ~s done for the 

finite element method by, for example, STRANG and FIX [1974) and their 

_analys~s can be appl~ed to the problems studied here for the fixed region. 

It is much more diff~cult to analyse the errors in a free boundary 

problem. CRYER [1976) has given a proof for the follow~ng model problem 

in ideal flow. The model free boundary problem to be considered is as 

follows. Find u satisfying, 

2 
V u = u 

XX 

where R is as shown ~n F~gure 

c (0, !l 

+ u = o, in R, 
yy 

(5.8). 

2 R: V u=O 

A*-----------------~----
(0,0) 

B 

FIGURE 5.6: Cryer model free boundary problem 

(5.24) 
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The boundary conditions are given by: 

u-(1-y), on AC, 

0 au liO, BC, Lu = = -+ on an 

au 1 on AB • 
an • 

and the extra free boundary condition is, 

Cu = 0 = u- t, on BC (5.25) 

The free boundary is the curve 3R. 

The auxiliary restraints are that aR should pass through the fixed 

point C on 3R and should be a monotone decreasing function of x. 

The proble~ is constructed so that if aR(k) is a straight line 

passing through C, with the cond1tion CU(k) = o on aR(k+l) for moving 

the boundary, then 3R(k+l) is also a straight line passing through C, 

(k) 
that 1s, 3R is assumed to be of the form, 

y 
(k) t + m x, on aR <k> , (5.26) 

and also: 

Where m(k) and m(k+l) are the d t f th 1" gra 1en s o e 1nes. The true solution 

of this problem is given by, 

u: u = 1 - y - 3x, ( 5. 27) 

aR: y = t - 3x. (5. 28) 

Then, the problem, 

(k) (k) 
= 0 • in R (k) u + u • XX yy 

Lu (k) = o, on aR<k> 
• 

has the exact solution, 
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(5.29) 

d . h (k) ' (k+l) i fi d tl if (k+l) . The con 1t1on t at Cu =0 on oR s sat1s e exac y m 1s 

def1ned by: 

(5.30) 

(k) 
Thus, in this s1mple problem the approximate solutions u and the 

approximate free boundary solution oR(k) are known exactly. To analyse 

the behav1our of h d
. (k) 

t e gra 1ent m it is helpful to observe that if, 

(5.31) 

then, (k+l) (k) 
m =m f(m (k)) /f' (m (k)) (5.32) 

so the sequence m(k) is identical with the sequence which would be 

obtained by starting with the init1al guess m(O) and applying one of 

the iterative methods like Newton's method to the equat1on f(m)=O, noting 

that f(m) is convex for m~O and that for f(O)<O, we have the following 

theorem from Henrici [1964, p.79]. 

THEOREM 1 

For any initial guess m(O)<O, the sequence of approximate free 

(k) 
boundary's solution oR converges quadrat1cally to the free boundary 

oR (true solution) • 

Now, given an approximate free boundary oR(k) and an approximate 

(k) 
solution u , to obtain error estimates, we must be able to estimate 

two quant1t1es: 

(i) -1 (k) (k) 
The difference u -u , where u is the approximate solution 

of the problem, Du(k) = 0 in R(k) 

Cu(k) = 0 in oR(k) 

(5.33) 
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(i1) The difference u-u(k) where u(k) satisfies (5.33) and u is the 

solution of the problem, 

Du = 0 in R, (5.34) 

Cu = 0 on aR. 

There are often several d1fferent approaches to estimate the ~iven 

equat1ons (5.33), (5.34), for further details, many references are given 

in CRYER [1976). 

Much of the literature is based on the assumpt1on that aR(k) is 

smooth and therefore not always applicable to free boundary problems 

which usually involves corners, but the case when aR(k) -has corners has 

been considered. WIGLEY [1969) has derived asymptotic expansions for 

the solut1on of second order ell1ptic equations in the neighbourhood of 

corners. The elim1nation of the singularity by conformal mapping was 

applied by Mason and Farkas [1972) 1n conjunction w1th a trial free 

boundary. The quest1on of domain variations arises in the theory of 

the f1n1te elements, because in general the boundaries of the finite 

elements do not always coincide w1th the boundary of the doma1n of the 

problem be1ng solved. 

(k) 
STRANG and BERGER [1974) give estimates for the difference u-u 

and grad(u-u(k)) for Poissons' equation in the plane. AITCHISON [1977) 

used complex variable analysis to obtain an expansion for the free 

boundary in the neighbourhood of the s1ngularity. 



CHAPTER SIX 

FINITE ELEMENT FOR PROBLEMS 

INVOLVING SINGULARITIES 
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6.1 INTRODUCTION 

The problem of boundary singularities in the numerical solut1on of 

elliptic and parabol1c partial differential equat1ons has received a 

great deal of attention. These singularities arise when sudden changes 

occur e1ther in the d1rection of the boundary, as at a re-entrant corner, 

or they may be associated with m1xed boundary cond1t1ons. Such 

s1ngularit1es are found in a w1de variety of phys1cal problems, such as 

stress analysis in regions w1th cracks, discontinuities, point sources, 

etc. (see BERNAL and WHITEMAN [1970]), flow around an obstacle, seepage 

of a water through a dam (AITCHISON [1972]), heat flow, diffusion or 

potential problems in reg1ons with re-entrant corners, electrodes heat 

sources or sinks (BELL and CRANK [1973]). 

The approx1mate solutions of the boundary value problem of 

mathematical physics can usually be found by methods such as the finite 

difference, or fin1te element method, as long as the problems contain 

no singuZarities ins1de the integration domain or on its boundary, as is 

often the case w1th mixed boundary value problems when singularit1es 

occur with one or more coefficients of the partial differential equation 

becoming s1ngular there. In such problems, the solution will ordinarily 

also become singular, and the method which we are us1ng (the fin1te 

element or the finite difference, etc.) will produce inaccurate results 

in the neighbourhood of the boundary s1ngularities. It is often possible 

to reduce the region affected by the singularity, by using analytical 

solutions based on separable-var1able or integral transform techniques 

for infinite or semi-infinite regions with relat1vely simple governing 

equat1ons (usually Laplace's), however, such solutions are, in general, 
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difficult to obtain for finite regions w~th more complicated equations 

and boundary conditions and so a numerical solution is considered. 

Special numer~cal schemes have been devised to obtain accurate 

solutions. The most popular methods being: 

1. By using modified approx~mations to the governing differential 

equat~on and its solution near the singularity. 

2. Methods based on conformal transformations, mod~fied integral 

equations, modified collocat~on, power ser~es, dual series for 

the removal of the singularities. 

3. Gr~d refinement in the ne~ghbourhood of the s~ngularity. 

In the approach 1, the standard approximations near the singular~ty 

are replaced by mod~fied approximat~ons based on the local analytical 

form of the singular~ty, such as a form of an asymptotic expansion by 

separable-var~able or complex var~able techniques. WAIT ET AL [1971] used 

f~nite element method, with bilinear basis functions supplemented by 

singular functions to solve the elliptic boundary value problems with 

corner singular~t~es. 

Approach 2 proved to be accurate and effic~ent for the solution of 

elliptic problems in simply-connected polygonal reg~ons w~th general 

mixed boundary conditions, but the method is lim~ted to differential 

equations wh~ch remain invariant under conformal transformat~ons, 

PAPAMICHAEL [1978] considered the use of a conformal transformation 

method for the solution of some class of the two dimensional linear 

ell~ptic boundary value problems in simply-connected domains. He shows 

that this type of transformation of the problem overcomes the d~fficulties 
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associated with the numerical solution of the problems involv~ng curved 

boundaries and boundary singularities and produces solutions of good 

accuracy. 

Although approach 3, is more computationally involved than the other 

methods, s~nce the order of the matr~x is increased it is a viable 

alternat~ve ~n that no knowledge of the form of the singularity ~s 

required and any symmetry present ~s preserved. In addition, with the 

fast growth of high speed computers in recent years, it appears that this 

concept to use finite elements that allow an easy transit~on from a 

region where a finite element solut~on is requ~red at a h1gh degree of 

refinement to a region where the degree of refinement ~s sufficient is 

most promising has proved to be highly accurate for the solution of 

ellipt~c problems ~n simply-connected polygonal regions with general 

mixed boundary conditions, as can be seen from the results obtained from 

the next sections. 
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6.2 PROBLEM FORMULATIONS 

The boundary value problems which are considered here fall into two 

classes; one consisting of problems from potent1al theory and the other 

consist1ng of problems from elastostatics. Both classes are discussed 

for two-space dimensions. 

The potential problems in two-space dimensions have the general 

forms, 

•lu = f
1 

(x,y) (x,y) € R, 

u = gl (x,y) (x,y) € aR1 
(6 .1) 

au 
g2(x,y) (x,y) € aR

2 
= , 

an 

where R € m 2 in (6.1) is a s1mply connected open bounded polygonal 

doma1n, with the boundary aR, in (6.1) the polygonal boundary aR consists 

a of disjo1nt parts aR
1 

and aR
2 

so that aR:aR
1 

U aR
2

, and a; is the 

der1vative in the direct1on of the outward normal to the boundary. The 

homogeneous Dirichlet forms of (6.1) can be written as, 

2 
V u = f , 1n R , (6 .2) 

with u=o·on aR. 

In the usual Sobolev space setting the weak solut1on u € H~(R) of 

(6.2) satisfies the relation, 

a(u,v) = J~u.Vv dR = J fvdR = F(v) , 

Y V € ~(R) • 

(6. 3) 

Many two dimensional problems of linear elasticity can be formulated in 

terms of the biharmonic operator so that, 

v4
u = f

2
(x,y) (x,y) € R 

u = g3(x,y) (x,y) € aR, (6.4) 

au 
g4(x,y) (x,y) € aR , -= 

an 
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a 
where R, aR and an are as defined for (6.1). 

The weak solution u € H~(R) of (6.4) satisf1es, 

, lf V € H~(R) (6 .5) 

Examples of two d1mensional linear elastic problems are those of the 

bend1ng of a thin plate, for which u is the transverse deflection from 

the equilibr1um position under the action of a load, and of plane strain 

in which u is the A1ry stress function. 

Typical two-d1mensional regions which present singular1ties when the 

boundary of R contain a re-entrant corner 1s that of an L shaped region. 

A re-entrant corner is a po1nt where the boundary changes d1rection through 

an angle exceeding ~ as shown in Figure (6.1) below. 

Dr-------------------------, B 

3~ r.,.:....._ ________ __, 
2"\jj 0 A 

F G 

FIGURE 6.1: Re-entrant corner at 0. 
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6.3 SINGULARITIES IN TWO-SPACE DIMENSIONS AND THE FINITE 

ELEMENT METHOD 

We consLder the two-dimensional problems of the type (6.2) and refer 

to Figure (6.2) below. Suppose that the boundary a R has vertices t., 
J 

j=l,2, ••• ,M, with associated interior angles ai, where 

o < a
1 

~ a2 .•• ~aM~ 2~, 

and that at the Jth vertex R 
J 

denotes the intersection of R with a disc 
M 

centred on t. and containing no other corner. 
J 

Let R :R\( U R.) 
0 j=l J 

FIGURE 6.2 

When the finite element method is applied to the two-dLmensional form 

of (6.2) and (6.4) the solutLons u E H~(R), are approximated by ~ E sh, 

where Sh c H~(R) is a finite dimensional space and ~ satisfies 

(6 .6) 

If a(u,v) is contLnuous over H~(R) and H~ - elliptic, then Lt 1s well

known that, 
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(6. 7) 

h and further than, if s consists of piecewise polynomial conforming 

trial funct1ons of degree p on a uniform triangular part1tion of R with 

mesh size h then the r1ght-hand side of (6.7) can be bounded so that, 

llu-uhll ~ khylulk ' (6.8) 

H~(R) 
where y depends on both k and p. The major determining factor for y is 

the regular1ty of the solution u. 

If we restrict ourselves further to two-d1mensional second order 

problems of the form (6.2), for the bound (6.8) to be O(h), the solution 

2 u must be 1n H (R). When re-entrant corners are present, which reduce 

the rate of convergence of I lu-~1 I SCHATZ and WAHLBIN [1978] have 
L (R) 
~ 

for the two dimensional problems of the type (6.2) shown that, for a 

doma1n R with corners a1 ,a2 , ••• ,aM and the definitions given previously 

hmin(~/a ,p+l,2~/a )-E 
~ c .J M , J=l,2, ••• ,M 

I I _ I I < hmin(p+l,2~/aM)-E 
u uh L (R ) ' c ' 

~ 0 
(6.9) 

The bound (6.9) indicates that the singularity causes a reduct1on in the 

rate of convergence both in the ne1ghbourhood of the singularity and also 

away from 1t. 

Taking the example of an L-shaped region with corners a =a = 
1 2 

=a
5 
=~/2, aM:a6=3~/2, the respect1ve rates of convergence, 1n the case 

h 2/3 4/3 of S consisting of piecewise linear functions, are O(h ) and O(h ) • 

2 These should be compared with the O(h ) which is expected when no 

singularities are present. 
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The analysis for the two-dimensional Poisson problem shows that 

some spec1al adaptation of the finite element method is necessary in 

the neighbourhood of a singularity. A survey of d1fferent strategies 

is given by WHITEMAN and AITKIN [1979). 

\ 
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6.4 NUMERICAL RESULTS 

TEST PROBLEM 1 

The problem of Motz requires the solution of Laplace's equation 1n a 

rectangle with a slit, i.e. a re-entrant corner of internal angle 2~ 

[see F1gure (6.3)). It has been treated by many authors to demonstrate 

the effectiveness of the1r s1ngularity treatments. 

WOODS [1953), and WAr.r ET AL[l971] both gave an alternative formulat1on 

based on the fact that (u-500) is antisymmetric about the l1ne EB 

contain1ng the slit and by impos1ng the boundary condition u=500 on OE, 

only needed to cons1der the top half of the rectangle (see Figure (6.4)). 

It is 1n this same form that the problem is treated 1n the literature 

later on. 

D 

au =0 E 
ax 

F 

au =0 
ay 

2 
V u=O 

0 

au =< 
ay 

y 

c 

u=lOOO 

au =0 
av B 

X 

au =0 H 
ay 

u=O 

G 

FIGURE 6.3 



au =0 

Dr---------~ay~---------,C 

au =0 
ax 

E 
u=SOO 

2 
'V u=O 

0 

~=0 
ay 

u=lOOO 

B 

FIGURE 6.4: The mod~fied source problem 
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Examples of such singularit~es occur ~n potential problems concerning 

transm~ssion l~nes w~th microstrips, and in diffusion problems with 

narrow band type electrodes. The modified region and the boundary 

conditions are illustrated ~n Figure (6.4), where the problem is scaled 

by setting, v2u=O, 

in the region EDCB, {-l~x~l}x{o~y~l} containing the singular point 0. 

A pr~nter plot of the geometry of the reg~on with the initial 

triangulat~on generated by TWODEPEP is shown in Figure (6.5). 

The results are quoted in Table (6.1) of the f~nite element solution 

of 300 elements and by using different basis functions (i.e. quadratic 

and the more accurate cubic basis functions), with the 2 different 

techn~ques i.e., 

i. equally distributed elements (both quadratic, and cub~c) over 

the region as shown in Figure (6 .6) • 

ii. with more ref~ned elements in the neighbourhood of the 

singularity region as shown inFigure (6.7). 
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Comparing the results for both techniques, we note that the 

improvement ~n accuracy ~s better when we use (ii). The results of 

Table (6.2) are compared with the table of results g~ven by J. CRANK 

and R.M. FURZELAND [1977]. 

The results in Table (6.2) show that a h~gh degree of accuracy can 

be obta~ned, and agree very well over the solution region with the high 

accuracy of the results given by PAPAMICHAEL ET AL [1973]. The results 

of the highly accurate refined cubic elements is plotted in Figures (6.84 

and (6.8b) wh~ch shows the behaviour of the solution u in the given region. 
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au = 0 
ox 

D 

E 

591.33 590.96 608.87 608.45 645.48 

591.31 590.59 608.86 608.02 645.45 

574.09 573.78 589.79 589.41 624.74 

574.09 573.47 589.78 589.02 624.73 
' 

541.75 541.57 551.97 551.71 578.54 

541.78 541.38 551.95 551.45 578.54 

500 500 500 

u = 500 

At each po1nt the numbers represent: 

au 
ay = o 

644.96 702.12 701.55 776.28 775.74 

644.45 702.09 700.96 776.28 775.21 

624.21 683.89 683.20 764.82 764.15 

623.68 683.86 682.50 764.80 763.48 

578.05 641.53 640.47 743.78 742.77 

577.51 641.53 639.36 743.69 741.70 

500 728.43 727.03 

0 728.34 725.61 

TABLE 6.1 

Fin1te element solution with cubic 
refined elements around 0 

F1nite element solution with 
quadratic ref1ned elements around 0 

862.01 861.64 

862.01 861.26 

856.66 856.21 

856.64 855.76 

848.62 848.04 

848.61 847.46 

844.35 843.68 

844.32 842.99 

au = 0 
ay 

c 
953.45 953.33 

1000 
953.44 953.20 

951.98 951.82 
1000 

951.98 951.67 

949.92 949.73 
1000 

949.92 949.55 

948.93 948.72 

949.91 948.51 
B 1000 

F1nite element solution w1th cubic 
equally distr1buted elements 

Finite element solution with 
quadrat1c equally d1str1buted elements 

u=lOOO 



D 

au 
= 0 ax 

591.33 591.3 608.87 608.9 645.48 645.5 

592 591 609 608 645 644 

574.09 574.1 589.79 589.8 624.74 624.8 

575 574 591 590 625 624 

541.75 541.8 551.97 552.0 578.54 578.6 

543 542 553 553 579 579 

500 500 500 

u = 500 

At each po~nt the numbers represent: 

au = 0 
a oy 

702.12 702.1 

702 701 

683.89 683.9 

683 683 

641.53 641.6 

640 642 

500 

776.28 776.3 

777 776 

764.82 764.8 

766 765 

743.78 743.8 

746 744 

728.43 728.5 

728 730 

862.01 862.0 953.46 953.5 

863 863 954 954 

856.66 856.7 951.98 952.0 

857 858 952 953 

848.62 848.6 949.92 949.4 

849 849 950 950 

844.35 844.4 948.93 948.9 

844 844 949 949 

~= 0 ay 
TABLE 6.2 

our solution Papam~chael solution 

Motz method Woods method 

~----------------------------------------------------------

1000.00 

1000.00 

1000.00 

1000.00 

u = 1000 
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TEST PROBLEM 2 

The problem 1llustrated in Figure (6.9) has a boundary singularity 

at the or1g1n. The given problem is, 

2 
V u(x,y) = 2u(x,y), (x,y) E R, 

u(x,y) = .2ex+y 
' 

(x,y) E 3R, 

where 
2 2 -1 

R = {(x,y): x +y ~1, tan (y/x) ~ w/4}. 

Th1s problem is chosen to illustrate the effectiveness of using the 

finite element p and h vers1ons which were discussed in Chapter 3, and 

to demonstrate the effectiveness of the procedure for removing the 

singularity by mesh refining. 

y 

FIGURE 6.9 

x=r cos(~), y=r sin(~) 

x+y u=.2e 

An estimate of the convergence of the numer1cal approximat1on to the 

exact solut1on can be obtained by computing u-~. au ali or - - - at a number an an 
of selected points. 

Because of the high accuracy obtained and the rel1abil1ty of the 

error estimates, then for compar1son purposes we list the follow1ng 

results: 
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1. The error norm L
2 

obtained by using the finite element p and 

h version directly to the given boundary value problem for the 

function u(x,y). The results are listed in Table (6.3). 

2. The values obtained from the appl~cation of the 50,75 and lOO 

triangular f~nite elements and by applying quadratic, cubic 

and quartic bas~s functions for each case and also the values 

computed from the analyt~c solution 

x+y 
u = 0.2e , 

are listed ~n Table (6:4). 

3. Values are obtained for the mesh points near the origin, for the 

both cases of equally distributed and more refined elements 

around the s~ngularity. We note that the estimates computed at 

a set of test points in the region, suggest that an accuracy of 

f~ve signif~cant f~gures has been obtained for most cases. We 

list the results ~n Table (6.5). 

4. Pr~nter plots of the geometry of the region with the initial 

tr~angulat~on generated by TWODEPEP is shown in Figure (6.10), 

also Figures (6.11) and (6.12) show the discretised reg~on of 

test problem 2 by using 300 triangular elements, w~th both 

equally distributed, and refined mesh procedures near the 

singularity respectively. 
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50 
Triangles 

75 
TrJ.angles 

lOO 
Triangles 

QuadratJ.cs 

-5 3.4 X 10 

-s 1.04 X 10 

9.27 X 10-6 

TABLE 6.3: Error L
2 

norm 

231 

CubJ.cs QuartJ.cs 

3.55 X 10-6 2.24 X 10-6 

2.00 X 10-6 2.00 X 10-6 

-6 
2.00 X 10 " 

The error L2 , as the number of elements is subdivJ.ded, i.e. the h 

version, and also as the degree of the polynomial is increased, i.e. 

the p version of: 

where, 

R = 

u = .2ex+y E 3R 

2 2 
{(x,y): x +y ~ 1, 

WJ.th the exact solution is 0.2ex+y 

-1 
tan (y/x) ~ ~/4} 
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so 75 lOO 
ELEMENTS ELEMENTS ELEMENTS Exact 

solution 
X y quad- quart- quad- quad-Cubl.CS cubics Cubl.CS rat1cs l.CS ratics ratics 

o.o o.o .20000 .20000 .20000 .20000 .20000 .20000 .20000 .20000 

0.2 o.o .24431 .24428 .24428 .24428 .24428 .24428 .24428 .24428 

0.6 0.0 .36440 .36442 .36442 .36442 .36442 .36443 .36442 .36442 

o.o 0.1 .22090 .22104 .22103 .22286 .22088 .22088 .22088 .22088 

0.3 O.l .29835 .29837 .29936 .29836 .29836 .29836 .29936 .29836 

o.s 0.1 .36443 .36442 .36442 .36442 .36442 .36442 .36442 .36442 

0.7 0.1 .44512 .44511 .44511 .44512 .44511 .44511 .44511 .44511 

0.2 0.2 .29826 .29937 .29836 .29835 .29836 .29836 .29836 .29836 

0.4 0.2 .36442 .36442 .36442 .36440 .36442 .36442 .36442 .36442 

0.6 0.2 .44510 .44511 .44511 .44511 • 44511 .44511 .44511 .44511 

o. 7 0.2 .49192 .49192 .49192 .49191 .49192 .49192. .49192 .49192 

o. 9 0.2 .60083 .60083 .60083 .60084 .60083 .60083 .60083 .60083 

0.3 0.3 .36453 .36442 .36442 .36442 .36442 .36442 .36442 .36442 

0.5 0.3 .44507 .44511 .44511 .44510 .44511 .44511 .44511 .44511 

0.8 0.3 .60075 .60084 .60083 .60083 .60083 .60083 .60083 .60083 

0.4 0.35 .42333 .42340 .42340 .42338 .42340 .42340 .42340 .42340 

0.6 0.35 • 51716 .51714 .51714 .51714 .51714 .51714 .51714 .51714 

0.9 0.35 .69812 .69806 .69807 .69811 .69807 .69807 .69807 .69807 

0.4 0.4 .44495 .44511 .44511 .44511 .44511 .44511 .44511 .44511 

0.5 0.4 .49192 .49192 .49192 .49192 .49192 .49192 .49192 .49192 

0.8 0.4 .66404 .66403 .66402 .66402 .66402 .66402 .66402 .66402 

0.9 0.4 .73392 .73386 .73386 .73388 .73385 .73386 .73386 .73386 

o.s 0.45 .51720 .51714 .51714 .51712 .51714 .51714 .51714 .51714 
. 

0.6 0.45 .57155 • 57153 .57153 .57155 .57153 .57153 .57153 .57153 

0.8 0.45 .69807 .69806 .69807 .69804 .69807 .69807 .69807 .69807 

0.5 0.5 .54383 .54366 .54366 .54367 .54366 .54366 .54366 .54366 

o. 7 0.5 .66401 .66402 .66402 .66403 .66402 .66402 .66402 .66402 

0.6 0.55 .63153 .63164 .63164 .63164 .63164 .63164 .63164 .63164 

0.7 0.55 .69805 .69807 .69807 .69806 .69807 .69807 .69807 .69807 

o. 7 0.6 .73394 .73384 .73387 .73383 .73386 .73386 .73386 .73386 

o. 7 0.65 .77164 .77148 .77148 • 77151 .77148 .77148 • 77148 .77149 

o. 7 0.7 .81113 .81104 .81104 .81106 .81104 .81104 .81104 .81104 

TABLE 6.4: Comparison of dl.scretization errors, for test problem 2 



At each point the numbers represent the values computed by using 300 
233 

elements with different bas1s functions as indicated below: 

300 300 
quadratics elements cubics elements 

Equally 
Exact 

X y Equally solut1on distributed Refined distributed Ref1ned 

o.o 0.0 .20000 .20000 .20000 .20000 .20000 

0.1 0.0 .22103 .22103 .22103 .22103 .22103 

0.2 o.o .24428 .24428 .24428 .24428 .24428 

0.3 0.0 .26997 .26997 .26997 .26997 .26997 

0.4 o.o .29836 .29836 .29836 .29836 .29836 

0.5 0.0 .32974 .32974 .32974 .32974 .32974 

o.o 0.05 .21044 .21025 .21025 .21025 .21025 

0.1 0.05 .23237 .23237 .23237 .23237 .23237 

0.2 0.05 .25680 .25680 .25681 .25681 .25681 

0.3 0.05 .28381 • 28281 .28381 .28381 • .28381 

0.4 0.05 .31366 • 31366 • 31366 .31366 .31366 

0.5 0.05 .34665 .34665 .34665 .34665 .34665 

0.0 0.1 .22103 .22104 .22103 .22103 .22103 

0.1 0.1 .24428 .24428 .24428 .24428 .24428 

0.2 0.1 .26997 .26997 .26997 .26997 .26997 

0.3 0.1 .29836 .29836 .29836 .29836 .29836 

0.4 0.1 .32975 .32974 .32974 .32974 .32974 

0.5 0.1 .36442 .36442 .36442 .36442 .36442 

o.o 0.15 .23237 .23237 .23237 .23237' .23237 

0.1 0.15 .25676 .25681 .25680 .25681 .25681 

0.2 0.15 .28381 .28381 .28381 .28381 .28381 

0.3 0.15 .31366 .31366 .31366 .31366 .31366 

0.4 0.15 .34665 .34665 .34665 .34665 .34665 

0.5 0.15 .38311 .38311 • 38311 .38311 .38311 

0.0 0.2 .24429 .24429 .24429 .24428 .24428 

o.l 0.2 .26982 .26694 .26997 .26997 .26997 

0.2 0.2 .29837 .29837 .29836 .29836 .29836 

0.3 0.2 .32974 .32974 .32974 .32974 .32974 

0.4 0.2 .36442 .36442 .36442 .36442 .36442 

0.5 0.2 .40275 .40275 .40275 .40275 .40275 

TABLE 6.5 



TEST PROBLEM 3 

The problem illustrated in Figure (6.13) involves a re-entrant 

311 
corner of internal angle :f• at which a boundary singular~ty occurs. 

Statement of the problem: 

•iu 2 2 
= - (16x +1) u + 4cos (2x -y) ER 

2 u = sin(2x -y) 

au 
0 -= ax 

where R ~s the circular sector: 

{(x,y): 2 2 
1, -1 y 311 

} R= X +y ~ tan (-) ~ 2 X 

and aR = aR
1 

u aR2 

aR1 = {(x,y): -l<x<l, O<y<l}, 

aR
2 = { (O,y): -l<y<O}, 

with the analyt~c solution, 

u = sin (2x2 -y) 

For comparison purposes we l~st the follow~ng results: 

234 

1. The error norm L2 obtained by using the finite ele~ent p and h versions 

directly to the given boundary value problem for the funct~on u(x,y); 

we list the result in Table (6.6). 

2. Values obtained at the mesh points near the singularity by applying 

the procedure of mesh refining near the singularity; we l~st the 

results in Table (6.7). 

3. Pr~nter plots of the geometry of the region with the initial 

triangulation generated by TWODEPEP is shown in Figure (6.14), also 

Figures (6.15) and (6.16) shows the discretised region of this test 

problem by using 300 triangular elements with equally d~stributed and 

mesh refining procedure respect~vely. 



R: 

IY 

I 

I 
2 2 2 

V u = -(16x +l)u+4 cos(2x -y) 

3Tr 

--------~fi~--------'----
0 

FIGURE 6.13 

235 

X 



236 

~ o. 
order of element Quadratics Cubl.CS Quartics 

so 2.82 X lo-3 4.33 X 
-4 

5.36 X 10-s 
Triangles 10 

75 lo-3 -4 -5 
Triangles 3.03 X 1.65 X 10 2.53 X 10 

lOO 1.12 X 10-J 1.11 X 10-4 
Triangles 

TABLE 6.6: The error L2 norm, as the number of elements 

is subdivided (the h vers1.on) and also as the 

order_of the polynomial 1.s 1.ncreased (the p 

version) of test problem 3. 
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At each point the numbers represent the values computed by us1ng 300 

elements w1th different basis funct1ons as indicated below: 

300 300 
quadrat1cs elements cubics elements 

Ref1ned Equally d1s- Refrned Equal.ly d1s- Exact 
X y 

around 0 tributed around o tr1butea solution 

o.o -1.0 .84147 .84147 .84147 .84147 .84147 

-.4 -.8 .90018 .90025 .90011 .90005 .90010 

-.2 -.8 • 77050 • 77224 .77074 .77078 • 77074 

o.o -.8 .71700 .71700 .71736 .71738 • 71736 

-.6 -.6 .96929 .96707 .96872 .96869 .96872 

-.4 -.6 .79524 .79464 .79560 .79558 .79560 

-.2 -.6 .62890 .62981 .6288 .62875 .62879 

0.0 -.6 .56473 .56453 .56464 .56464 .56464 

-.8 -.4 .99394 .99347 .99404 .99393 .99404 

-.6 -.4 .90006 .89996 .90010 .90014 .90010 

-.4 -.4 .65972 .65956 .65939 .65939 .65938 

-.2 -.4 .46176 .46187 .46178 .46178 .46178 

0.0 -.4 .38943 .38949 .38942 .38942 .38942 

-.8 -.2 .99609 .99623 .99589 .99589 .99588 

-.6 -.2 .79582 .79581 .79560 .79561 .79560 
-.4 -.2 .49686 .49649 .49688 .49687 .49688 

-.2 -.2 .27632 .27641 .27636 .27636 .27636 

o.o -.2 .19866 .91871 .19867 .19867 .19867 
-1.0 0.0 .90930 .90930 .90930 .90930 .90930 

-.8 0.0 .95901 .96341 .95803 .95807 .95802 

-.6 0.0 .66156 .66156 .65951 .65951 .65934 

-.4 0.0 .31450 .31481 .31457 • 31457 .31457 

-.2 0.0 .079881 .079956 .079914 .079916 .079915 
o.o o.o o.o 0.0 o.o 0.0 0.0 
-.8 .2 .88226 .88201 .88195 .88194 .88196 
-.6 .2 .49679 .49696 .49688 .49686 .49688 
-.4 .2 .11953 .11982 .11969 .11968 .11971 
-.2 .2 -.11961 -.11961 -.11972 -.11971 -.11971 
o.o .2 -.19862 -.19859 -.19867 -.19867 -.19867 
-.2 .4 -.31444 -.31436 -.31457 -.31457 -.31457 
0.0 .4 -.39841 -.38937 .-38942 -.38942 -.38942 

TABLE 6.7 
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TEST PROBLEM 4 

The harmon~c problem ~llustrated in Figure (6.17) involves a re-

entrant corner, of internal angle 3rr/2, at wh~ch a boundary singularity 

occurs. The problem arises ~n a study of diffusion in a cont~nuum 

conta~ning non-permeable rectangular pr1sms; [see BELL and CRANK (1974)). 

(-1,1) u=l (1,1) 

v2u = 0 au -= 0 
ax 

y 

~= 0 3rr ( 1'\ (1 ,0) ax 
2 'l 0 au 

0 -= ay 

au 
0 -= 

ax 

(-1,-l)L.... ______ __. (0,-1) 
u=O 

FIGURE 6.17 

1. The results obta1ned are given in Table (6.8) and are compared w1th 

the conformal transformation method of PAPAMICHAEL(l978). These 

results are extremely accurate, and correct to the number of f~gures 

quoted. 

2. The results in Table (6.9) are obtained by using quadrat~c triangular 

elements as bas1s functions, and are compared with the numerical 

solution given by SYMM (1973), who uses an 1ntegral equation approach 

modified to deal w1th the singularity at a re-entrant corner. The 

results obtained are also extremely accurate. 
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3. The results given 1n Table (6.10) compare two finite element solutions 

by us1ng the piecewise polynomial functions of the same degree, but 

the first set is obtained w1th a mesh ref1nement around the singularity. 

The same number of elements was used in both procedures. The f1rst 

set of results in Table (6.10) ind1cates that we can atta1n the 

accuracy required without refining the whole region. 

4. Pr1nter plots of the geometry of the region w1th the in1t1al 

tr1angulat1on generated by TWODEPEP is shown 1n Figure (6.18). Also 

F1gures (6.19) and (6.20) show the discret1sed region of test problem 

4 with equally distr1buted tr1angles and mesh refining near the 

s1ngularity respect1vely. 
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1.0000 .96425 .9425 .9206 .9056 .9007 

1.000 .9700 .9426 .9205 .9059 .9009 
.9700 .9426 .9205 .9059 .9009 

1.0000 .9687 .9399 .9165 .9009 .8955 

Loooo .9687 .9400 .9166 .9011 .8957 
1.0000 .9687 .9400 .9166 .9012 .8957 

1.0000 .9648 .9320 .9046 .8858 .8790 

1.0000 .9648 .9321 .9048 .8860 .8792 
1.0000 .9648 .9322 .9048 .8860 .8793 

1.0000 .9585 .9189 .8841 .8583 .8484 

1.0000 .9585 .9191 .8843 .8586 .8487 
1.0000 .9585 .9191 .8843 .8586 .8487 

1.0000 .9502 .9014 .8550 .8150 .7956 

1.0000 .9503 .9015 .8552 .8154 .7961 
1.0000 .9503 .9015 .8553 .8154 .7961 

1.0000 .9411 .8817 .8209 .7563 .6652 

1.0000 .9412 .8818 .8210 .7565 .6667 
1.0000 .9412 .8818 .8210 .7565 .6667 

1.0000 .9325 .8633 .7898 • 7066 .6026 

1.0000 .9325 .8633 .7898 .7066 .6019 
1.0000 .9325 .8633 .7898 • 7066 .6020 

.4882 

.4870 

.4870 

.4784 

.4780 

.4781 

TABLE 6.8 

At each po1nt the numbers represe nt: 

1 

2 

3 

.3582 

.3580 

.3580 

.3552 

.3550 

.3550 

Equally distributed cub 1c triangular elements 

Cubic tr1angular elemen ts (dense around the 
s1ngularities) 

Conformal transformat1o ns method of 
Papam1chael (1978) • 

.2366 .1178 

.2364 .1177 

.2365 .1179 

.2353 .1173 

.2352 .1172 
• 2352 .1173 

0.0000 

0.0000 
0.0000 

0.0000 

0.0000 

continued •••••••• 

N .... 
"' 



1.0000 

1.0000 
1.0000 

1.0000 

1.0000 
1.0000 

1.0000 

1.0000 
1.0000 

1.0000 

1.000 
1.0000 

.9254 

.9254 

.9254 

.9204 

.9204 

.9204 

.9175 

.9175 

.9175 

.9166 

.9166 

.9166 

.8487 

.8487 

.8487 

.8388 

.8387 

.8387 

.8331 

.8331 

.8331 

.8313 

.8313 

.8313 

• 7672 

• 7671 
• 7671 

.7528 

.7528 

.7528 

.7450 

.7449 

.7449 

.7425 

.7424 

.7424 

.6673 

.6771 

.6772 

.6604 

.6604 

.6604 

.6516 

.6515 

.6515 

.6488 

.6487 

.6487 

.5758 

.5756 

.5757 

.5605 

.5604 

.5604 

.5523 

.5522 

.5522 

.5497 

.5496 

.5496 

.4644 

.4642 

.4642 

.4538 

.4536 

.4537 

.4475 

.4474 

.4474 

.4455 

.4454 

.4454 

TABLE 6.8: continued 

.3488 

.3489 

.3486 

.3426 

.3425 

.3425 

.3386 

.3385 

.3385 

.3372 

.3371 

.3371 

.2324 

.2322 

.2323 

.2292 

.2291 

.2291 

.2270 

.2269 

.2269 

.2262 

.2261 

.2261 

.1161 

.1161 

.1161 

.1148 

.1148 

.1148 

.1138 

.1138 

.1138 

.1136 

.1134 

.1134 

0.0000 

0.0000 
o.oooo 

0.0000 

0.0000 
0.0000 

0.0000 

0.0000 
0.0000 

0.0000 

0.0000 
0.0000 

N ... _, 



1 0000 . . 9701 . 9427 . 9204 . 9059 

fL•OOOO .9700 • 9427 .9205 .9060 

.0000 .9686 .9401 .9165 .9011 

.0000 .9687 .9400 .9166 .9012 

.0000 .9647 .9321 .9047 .8860 

.0000 .9648 .9322 .9048 .8860 

.0000 .9585 .9190 .8842 .8586 

.0000 .9585 .9191 .8843 .8586 

1.0000 .9503 .9015 .8552 .8154 

1.0000 .9503 .9015 .8553 .8154 

1.0000 .9411 .8818 .8210 .7565 

1.0000 .9412 .8818 .8210 .7565 

1.0000 .9325 .8633 .7898 .7066 

1.0000 .9325 .8633 • 7898 • 7066 

1.0000 .9254 .8489 • 7672 .6772 

1.0000 .9254 .8427 • 7671 .6772 

1.0000 .9204 .8388 .7528 .6604 

1.0000 .9204 .8387 .7527 .6603 

1.0000 .9176 .8331 .7450 .6515 

1.0000 .9175 .8331 • 7448 .6515 

ll.oooo .9165 .8313 .7424 .6487 

1.0000 .9166 .8313 .7424 .6487 

. 9008 

.9009 

.8956 

.8957 

.8792 

.8793 

.8487 

.8487 

.7961 

.7961 

.6667 

.6667 

.6019 

.6019 

.5757 

.5756 

.5604 

.5604 

.5522 

.5521 

.5496 
.5495 

TABLE 6.9 

At each point the numbers represent: 

l 

2 

.4870 .3580 

.4869 .3579 

4781 -~~~0 

.4780 .3549 

.4642 .3486 

.4642 .~486 

.4537 .3425 

.4536 .3425 

.4474 .3385 

.4474 .3385 

.4454 .3371 
.4453 .3371 

Finite element method wit h 
ments) (quadratic triangular ele 

Integral equation method of Symm (1973) 

.2365 .1177 0.0000 

.2364 .1177 

_?1~? - 117? 0.0000 

.2352 .1172 

2323 11 1>1 0.0000 

.2323 .1161 

_22q? Ll147 
0.0000 

.2291 1147 

.2269 1138 
0.0000 

.2269 1138 

.2261 ~1134 
.2261 .1134 

o.oooo 



1.0000 9701 .9427 .9204 .90S9 

1.0000 .9699 .9429 .9201 .9055 

1.0000 .9686 .9401 .9165 .9011 

1.0000 .9686 .9398 .9162 .9007 

1.0000 .9647 .9321 .9047 8860 
1.0000 .9647 .9319 .9043 .8855 

1.0000 .9585 .9190 .8842 .8586 

1.0000 .9584 .9188 .8838 .8579 

1.0000 .9503 .9015 .8552 .8154 
1.0000 .9502 .9012 .8547 .8145 

1.0000 .9503 881R .R?lO 7~.-~ 

1.0000 .9501 .8816 .8207 .7560 

1.0000 .9325 .8633 .7898 .7066 

.0000 .9325 .8632 .7897 • 7066 

.0000 .9254 .8487 • 7672 .6772 
,0000 .9254 .8487 • 7672 .6774 

.0000 .9204 .8388 .7528 .6604 

fL•OOOO .9204 .8388 .7529 .6606 

.0000 .9176 .8331 .7450 .6515 

1'-·0000 .9176 .8332 .7450 .6517 

1'-·0000 .9165 .8313 .7424 .6487 

1.0000 .9166 .8313 .7425 .6489 

.9008 

.9004 

.8952 

.8787 

.8481 

.79489 

.6667 

.6654 

.6019 

.6027 

.5757 

.5760 

.5604 

.5607 

5522 

5524 

5496 

.5498 

TABLE 6.10 

At each point the numbers represent: 

1 

2 

4870 .3580 

4855 .3587 

.4781 .3550 

.4788 .3556 

.4642 .3486 

.4647 .3490 

.4537 .3425 

.4540 .3428 

.4474 .3385 

.4477 .3387 

.4454 .3371 

.4456 .3374 

Fin1te element method w ith dense 
rity elements around singula 

Fin1te element method w 
distributed element 

.2365 1177 

.2368 .1179 p 

.2352 .1172 

.2356 .1162 b 

.2323 .1161 

.2326 .1162 0 

.2292 .1147 

.2293 .1149 0 

.2269 .1138 

.2271 .1139 0 

.2261 .1134 

.2262 .1135 

ith equally 

.0000 

.0000 

.0000 

.0000 

.0000 
..., ... 

• 0000 U) 
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6.5 DISCUSSION 

The importance of singularities in certain problems has over recent 

years caused a large number of special finite element adaptations to be 

proposed for their treatment. We have discussed here the mesh refinement 

approach which is one of the more successful treatments. The short-

coming of ref~ning over the whole of the reg~on R ~s that many mesh points 

remote from the singular~ty are ~ntroduced needlessly so that the result~ng 

master matrix becomes unnecessar~ly large. Thus, in order to keep the 

total number of elements in the d~scretization to as small a number as 

possible for a g~ven sign~ficant f~gure accuracy, we refine only in the 

neighbourhood of the singularity o. 

The success of mesh ref~nement in improving the accuracy of the 

numerical solutions ~s evident. 

Indeed w~th continued mesh refinement we reach the stage that the 

finite element solution is more accurate near the s~ngularity than at 

nodes in the far reg~on R remote from the s~ngular~ty. 

The effect of the singularity on the numer~cal solution has thus 

been neutralized by the mesh refinement and by us~ng a space of piecew~se 

polynomial funct~on of higher degree. 

For the problem of the type discussed, there seems to be little to 

choose between the finite element and the other specialised methods used 

to solve the problem, when comparing the accuracy obtained, but it is 

~ndeed the fin~te element method which is more general and the range of 

the problems to wh~ch ~t can be applied far wider. 



CHAPTER 7 

FINITE ELEMENT SOLUTION FOR NONLINEAR 

PARTIAL DIFFERENTIAL EQUATIONS 
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7.1 INTRODUCTION 

In th1s chapter we look at the solution of two-dimensional nonlinear 

part1al differential equat1ons on general domains. A finite element 

solution for a g1ven set of test problems will be obtained by TWODEPEP. 

As basis functions we use a class of polynomials which are of: 

i. degree two - with six node triangular elements 

1i. degree three - with ten node triangular elements 

iii. degree four - with f1fteen node tr1angular elements 

Newton's method which is described in detail in Chapter 2 is used to 
' 

solve the resulting nonlinear system of f1nite element equat1ons. The 

computat1onal performance of the method is measured over a problem 

population of: 

1. The minimal surface problem 

11. A set of nonlinear elliptic partial different1al equat1ons 

iii. The highly nonlinear coupled elliptic semi-conductor 

problem. 

We present here the solut1on of this set of problems using the different 

classes of polynomials as given above, and with a d1fferent number of 

elements for each problem. 
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7.2 THE NUMERICAL SOLUTION OF THE MINIMAL SURFACE EQUATION 

BY USING THE FINITE ELEMENT METHOD 

In this section, the numerical solution of a second order, elliptic 

quasi-linear partial differential equation aris~ng in two-dimensional 

magnetostatic field problems is considered (Plateau's Problem). The 

type of problems d~scussed are those aris~ng, for example, in the design 

of particle accelerators where the desired magnetic field strengths 

are so large as to be principally in the domain of the nonlinear. The 

two-dimensional triangular element is used to solve the· test problem. 

The performance of the method is verified by numerically solv~ng a 

sample problem and compar~ng the results according to the degree of the 

polynom1als used and the number of triangular elements used 1n each 

type of polynomial. A graphical output of the solution is also 

presented. 

7.2.1 FORMULATION OF THE PROBLEM 

Consider a two-dimensional simply connected region R in the (x-yl 

plane with boundary oR. 

Let f(x,y) be a single-valued function defined on the boundary oR 

and y represents the he1ght of a given space curve above the point (x,y) 

on R. Let u(x,y) represent the (s1ngle-valued) height, above the point 

(x,y) 1n R of the surface of min1mal area through the given space curves 

then the problem in variational form, is that of finding a function u(x,y) 

twice continuously differentiable in R satisfying, 

u(x,y) = f(x,y), on oR, (7.1) 



and min~~zing the surface area 

A=H(l+ 
R 

The Euler-Lagrange equat~on corresponding to Equat~on (7.2) 

2 2 
r(l+q ) - 2spq + t(l+p ) = o , 
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(7 .2) 

(7 .3) 

au au 
where p=ag , q =ay , and , or in vector-operator 

notat~on the Euler Equat~on (7.2) takes the form, 

(7.4) 

where, 
2 2 ! 

yl lvul I = !l+IVul ) 

If the d~fferentiations ~Equation (7.4) are carried out, one obtains 

the more fam~liar form of the m~nimal surface equation as, 

X y 
{ 

2u u } 
o. (7 .5) 

In order to satisfy the requirement of the partial differential 

equat~on given by TWODEPEP which has the general form, 

a a 
-a la (x,y,u ,u ,u) I +-a la (x,y,u ,u ,u) I = o 
XXX Xy yxy XY 

(7.6) 

we can rewr~te equat~on (7.5) in the form, 

(7. 7) 

where 

a 2 2 -! 
-a lu (l+u +u ) 1 

X X X y 
1 2 2 -3/2 2 2 -! = - -
2 

u (l+u +u ) (2u u +2u u )+u (l+u +u ) 
X X y X XX y yX XX X y 

(7 .8) 



and a 2 2 -t 
--a [u (l+u +u ) 1 y y X y =- ~2 (l+u2+u2>-312 (2u u +2u u )+u 

y x y xxy yyy yy 

(l+u2+u2) -t (7.9) 
X y 

If we add (7.8) and (7.9) we get, 

2 

{ 
(l+u ) } 

(1 
2 2)3/2 uxx

+u +u 
X y 

which is s~m~lar to Equation (7.5). 

7.2.2 TEST PROBLEM 1 
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Solve the nonlinear minimal surface problem (7.5) over the region 

O<x<l, O<y<l with the boundary conditions, 

2 2 ! 
U = (cosh y - X 1 on aR. ( 7 .10) 

F~gure (7.1) is shown below which illustrates Test Problem 1. 
2 2 ! u=[cosh y-x 1 

(0,1) ..-----------------, (1,1) 

R: 

u= 
2 t u= [cosh y-11 

(0,0) L---------::2i"Tt _____ ___, 
u = [1-x 1 

(1,0) 

FIGURE 7.1: Test Problem 1 
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Results for Test Problem 1 are given in Table (7.1) which compare 

the discretizat1on error obta1ned by the present F1nite Element method 

with those of the Concus and Greenspan methods. The problem has the 

exact solution uE~(cosh2y-x2)t which is used as an 1nit1al value to g1ve 

a good estimate to solve the non-linear system generated by TWODEPEP. 

F.E. Method Concus Green span Exact 
X y Solution Solut1on Solution Solut1on 

0.95 0.00 .32539 .31225 .31225 .31225 

0.65 0.05 .76156 .76158 .76097 .76158 

0.30 0.10 .95918 .95918 .95901 .95918 

o.8o 0.10 .60833 .60833 .60584 .60850 

0.55 0.20 .84863 .84863 .84776 .84863 

0.40 0.20 .93837 .93837 .93792 .93837 

0.95 0.20 .37264 .37241 .36439 .37153 

0.20 0.25 1. 0118 1. 0118 1.0118 1.0118 

o. 70 0.30 • 77638 • 77641 .77434 • 77636 

0.55 0.40 .93072 .93074 .92997 .93071 

0.95 0.45 .56043 .56054 .55868 .56040 

0.35 0.50 1.0719 1.0719 1.0720 1.0719 

0.65 0.65 1.0310 1.0310 1.0311 1.0310 

0.85 0.70 .92356 .92363 .92352 .92355 

0.15 0.75 1.2860 1.2860 1.2863 1.2860 

0.50 o. 75 1.1942 1.1943 1.1948 1.1942 

0.20 0.80 1.3224 1.3224 1.3228 1.3224 

0.45 0.85 1.3083 1.3083 1.3088 1.3083 

0.95 0.85 1.0058 1.0058 1.0060 1.0058 

0.30 0.90 1.4013 1.4013 1.4017 1.4013 

0.70 0.90 1.2505 1.2505 1.2509 1.2505 

0.05 0.95 1.4854 1.4854 
' 

1.4855 1.4854 

0.65 0.95 1.3366 1.3366 1.3368 1.3365 

TABLE 7.1: Comparison of the discretization errors with those of the 
Concus and Greenspan methods 



For 300 quadratic basis functions, the present method converges 

with an error I luN-uEII
2
=3.2453Xl0-

4
, while with 300 cubic bas1s 

funct1ons the error 1s 11~-uEI l 2=6.3584xlo-
5

• It is immediately 
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apparent that the cub1c basis funct1on behaves better than the quadratic 

basis function for the same number of elements. Plots of the solution 

u showing the behaviour of the funct1on over the g1ven region are g1ven 

in Figure (7.2) and (7.3). The prom1s1ng results obtained for th1s 

minimal surface problem suggest the method discussed 1n this thes1s is 

very useful for solving nonlinear partial differential equations. 
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7.3 A POPULATION OF TWO DIMENSIONAL MILDLY NONLINEAR 

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 

7.3.1 THE MODEL PROBLEM 

We consider here the numerical approx1mat1on of two-dimensional 

mildly non-linear elliptic boundary value problems of the form, 

Du = f (u, u • u ) • (x, y) E aR • 
X y 

subject to the mixed type boundary conditions, 

Lu = g(u) , on aR 

(7.11) 

(7.12) 

Several authors G.F. ALIER [1971), E.N. HOUSTIS [1979), etc. have studied 

the solution of (7.11), (7.12) using fin1te-difference discretizat1on. 

In th1s work we use the finite element method which is based on the class 

of piecewise polynomials approximation given in Section (7.1). 

The procedure consists of the following components: 

Elements: 

A number of triangular elements are placed over the domain 

of the g1ven problem. 

Approximating Space: 

A space of piecewise polynomials of second, third or fourth 

degree are used. 

The resulting non-linear algebraic system is solved by Newton's 

method. 

7.3.2 COMPUTATIONAL PERFORMANCE 

We present the results of a populat1on of second order mildly 

nonlinear equations which represents characteristics from both the 
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"real world" and "ideal" situations. 

A summary of results for the 4 test problems, is presented as 

follows: 

(a) Defin1tion of the test problems 

(b) Tables which give the solution u, the exact solution in the 

x,y dimensions and also the error norm 2 for a different 

polynomial order. 

(c) Plots of the solution u showing the behaviour of the function 

u over the given region. 

Mildly Nonlinear Elliptic Partial Differential Equations 

Test Problem 1 

Equat1on: 2 
V u+(2-sinycosx)u = U U 

X y 

Boundary condition: Dirichlet 

Domain: Unit square 

Exact solution: u = sinxcosy • 

Comments: Non-constant coefficient, nonlinearities in the derivatives 

of the solution, nonhomogeneous boundary conditions. 

Results: The tabulated results show the error, as the number of 

elements is subdivided, (the h version and also as the degree 

of the polynomial is increased, (the p version). 

~ 50 70 100 
Elements Elements Elements 

Quadratic 8.Q812XlQ -S 3.4991XlQ -s 2 .08Q2XlQ -6 

Cub1c 2.4988Xl0-6 2.082XlQ - 6 2.056XlQ-6 

Quartic 2 .0254XlQ - 6 2.0254XlQ-6 -

TABLE 7.2 
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Figures (7.4) and (7.5) show the contour lines and the surface of the 

solution u for lOO cubic elements. 

Test Problem 2 

Equation: v2u- u(u +u )e-(x+y) ' 
X y 

Boundary condLtion: 

Domain: Unit square 

Exact solution: 
x+y 

e 

Dirichlet, 

Comments: Nonlinearities in the solution and the fLrst derivatLves of 

the solution, nonhomogeneous boundary conditions. 

Results: The tables show the error as the number of elements LS subdiviced 

(the h version) and also as the degree of the polynomial is 

increased (the p version) • 

~ so 70 lOO 
Elements Elements Elements 

Quadratic 3 .9549XlQ - 4 -4 2 .0377XlQ 1. 5582Xl0 - 4 

Cubic 2.4954XlQ -5 2 .2791XlQ -S 2 .2 72QXlQ -S 

Quartic 2 .2507XlQ -S 2.2507Xl0 -s -
TABLE 7.3 

Figures (7.6) and (7.7) show the contour lines and the surface of the 

solution u, for 70 quartic elements. 

Test Problem 3 

Equation: 

Boundary condition: Dirichlet, homogeneous, 

Domain: 1 1 Rectangle (0,2)x(o,4) 

Exact solution: u = sin2~Xsin4~y 
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Comments: Adapted from real world problem. 

Results: The tables show the error, as the number of elements is 

subdivided, (the h version) and also as the degree of the 

polynomial is increased (the p version). 

~ 50 70 lOO 
e 

:s 
Elements Elements Elements t 

Quadratic 3 .2712XlQ - 3 2.1388Xl0-3 7.3088Xl0-4 

Cubic 2 .5027XlQ - 4 1.485QX1Q - 4 2.7599Xl0-S 

Quartic 1. 5412XlQ -S 7 .6831XlQ -6 -
TABLE 7.4 

FLgures (7.8) and (7.9) show the contour lines and the surface of the 

solutLon u, for 70 quartic elements. 

Test Problem 4 

Equation: u 
- ~ = f(x,y) , 

Boundary condition: Dirichlet 

Domain: Unit square 

Exact solution: cosey + sine(x-y) 

<a> e=~r , (b) a= 8. 

Comments: The value of f(x,y) is determined so that the given true 

solution is correct. Nonhomogeneous boundary conditions, 

oscillatory solution. 

Results: The tables show the errors as the number of elements is 

subdivided (the h version) and also as the degree of the 

polynomial is increased (the p version) with e=!r. 
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~~ 23 46 69 
Elements Elements Elements 

Quadratic l.269XlQ 
-2 4.6156XlQ -3 l, 7Q81XlQ - 3 

Cubl.C 7.9156XlQ 
-4 2,5092XlQ -4 5 ,842XlQ - 5 

Quart1.c 6 .19Q6XlQ -S 2.1912XlQ-5 -
TABLE 7.5 

Figures (7.10) and (7.11) show the contour lines and the surface of the 

solution y for 69 cub1.c elements. 

The obJect of the present set of test problems is to show how the 

finite element method when supplemented by adequate quaeratic, cubic or 

the highly accurate quartic basis functions can produce highly accurate 

results and present no difficulty in dealing with mildly nonl1.near 

elliptic part1.al different1.al equat1.ons. 
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7.4 A SEMI-CONDUCTOR PROBLEM 

A h1ghly non-linear coupled ell1ptic partial differential equation 

which is one of the most important problems for the scientific computing 

community is that which models the 1ntrinsic behaviour of semi-conductor 

devices. 

These equat1ons may be written in the form of a two-dimensional 

model, 2 
-"l u + n (x,y) - p(x,y) = k(x,y) ' (7.13) 

'VJ = n 0 (7.14) 

"lJ = 0 ( 7 .15) 
p 

where u(x,y) is the electrostatic potential, n(x,y), p(x,y) are the 

electron and hole densities respectively, and k(x,y) is the doping 

profile (impurity concentration), J and J are, respectively, the 
n P 

electrons and holes current densities. 

They are further spec1fied in the usual drift-diffusion equations by 

(7.16) 

JP =-M (x,y) p(x,y)'Vu- D (x,y)'Vp • p p 
( 7 .17) 

The current densities Jn and JP are composed of a dr1ft component, 

-Mnn"lu or -Mpp'Vu, and a d1ffusion component, Dn'Vn or Dp"lp. Assuming 

the validity of the Einstein relat1on, M=D and no recombination occurs, 

Equations (7.16) and (7.17) can be rewritten as, 

J = M [-n'Vu+"ln] = -M eu-v'Vv 
n n n 

(7.18) 

(7.19) 

where n(x,y) = eu-v, and p = ew-u define implicitly the quasi-Fermi 

potential levels v and w for electrons and holes, respectively. Using 
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this change of varLables in Equations (7.13) to (7.15) leads to the 

equat~ons, 

2 u-v w-u (7.20) -V u + e - e = k(x,y) 
' 

u-v (7.21) -V(M e Vv) = 0 ' n 
w-~ -V(M e w) p = 0 (7.22) 

If we compare the original equations with Equations (7.20) to (7.22), 

then it is clear that both the EinsteLn relation and the changing of 

the variable have significantly reduced the degree of difficulty of the 

original problem. 

In EquatLon (7.21) if we know u then we have a self-adjoint elliptic 

PDE in v which perhaps can be easily solved. But in (7.14) Lf u is 

known we still have the Vn term in addition to the V2n term. A similar 

problem occurs in Equation (7.15). 

This formulation of the semi-conductor equations are highly non-

linear and computational difficulties may be encountered when EquatLons 

(7.20) to (7.22) are solved numerically by TWODEPEP. The first of these 

diffLculties is the very large dynamic range of the solutions. 

Another dLfficulty is the fact that for very small devices the 

validity of the Einstein relation for hLgh electric field strengths is 

questionable. Hence Equations (7.21) and (7.22) may not apply. 

Problem Definition and Results 

For given mobility coefficients, M ,M and diffusion coefficLents 
n P 

D ,D Equations (7.20) to (7.22) are posed on the unions of rectangular 
n P 

regions as shown in Figure (7.12). Dirichlet boundary conditions are 
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imposed on the gate (G), source (S), drain (D) and substrate (B) by 

the applied bias voltage; Newnann boundary conditions are assumed at 

the unspecified edges. 

No attempt is made to solve the Poisson equation for the potential 

distribution inside the gate, but rather an approximate boundary 

condition along the interface is made. 
F u~ E 

u5~ ~=60 

H G - - - - - - - - - - - - - - - - - - - - -D C 

u-v w-u 
e + e = 0 

~0 
an ~0 

an 
a a u-v av av 

-<ax + ay> (Mne <a;;:+ ay» = 0 

a a w-u aw aw 
-<ax + ay><Mpe <ax +ay»= 0 

A~--------------------------------------~B 
UB~ 

FIGURE 7.12 

FLgures (7.13) and (7.14) summarise the results of the finLte 

element solution for the electrostatLc potential u in the region, 

0 ~ x-~ 2.8, 0 ~ y ~ .92, 

with the boundary condition given in Figure (7.12). 150 quadratic 

trLangular elements were used to solve thLs hLghly non-linear problem. 
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CHAPTER 8 

APPLICATION OF THE FINITE ELEMENT METHOD 

TO THE SOLUTION OF COMPLEX PROBLEMS 
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8.1 INTRODUCTION 

In this chapter the finite element solut~on of a class of part~al 

different~al equat~ons for the follow~ng complex problems w~ll be 

presented. Firstly, from Elastic~ty we will consider the numer~cal 

solut~on of the Biharmonic problem of a s~mply supported rectangular 

plate in the two dimensional plane. Secondly, two problems of viscous 

flow in fixed regions, namely the potential flow around an elliptic 

obstacle in a channel, and that of inviscid laminar flow in a channel 

past a disc. Thirdly, we look at the solution of the two dimensional 

unsteady incompress~ble Navier Stokes equations ~n a rectangular region, 

and finally we will consider the solution of the eigenvalue problem for 

the Laplace Operator ~n an L-shaped region. 

• I 
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8.2 THE BIHARMONIC EQUATION 

In this section we shall consider the numerical approx1mation of 

the 4th order linear partial differential equation 

f(x,y) , (8 .1) 

1n which f(x,y) is some specified function of x and y. 

Th1s equation is termed the B1harmon1c equation, and is well known 

1n many branches of Mathemat1cal Phys1cs - notably Hydrodynam1cs, where 

1t governs the slow two-d1mensional mot1on of a v1scous fluid, u 

represent1ng the stream-function (usually denoted by ~) , and f being 

zero when the body forces are conservat1ve. Biharmon1c equat1ons also 

appear 1n the theories of extension and of flexure for flat elast1c 

plates in Elasticity. 

The bas1c laws of elast1c1ty corresponding to the general 

conservat1on pr1nc1ples are the equations of equilibrium and compat1bility. 

In the general application of these equat1ons then to relate the stress 

and the stra1n in an elast1c body, it is convenient to define a stress 

function ~ according to 

<j>XX = (J 
X 

<l>yy = (J 
y 

and <l>xy = pxy ' 

where cr and cr are the normal stresses in the x and y directions, 
X y 

respectively, and p is the corresponding shear stress. 
xy 



279 

Under static conditions, equil1brium and compatib1lity then leads 

to the b1harmon1c equation which takes the form (8.1). Equation (8.1) 

1s an elliptic equation analogous to Laplace's equat1on 1n other systems, 

if f=O. 

In general, we can class1fy the B1harmonic equations into three 

classes of problems: 

Stat1c Beam: 
4 a42 

+ .u = ~+ 2 0 ' 
ax

4 
ax

2
al ay4 

4 a4q. a4q. .D. u+ 2 
a/al 

+ -- = k 2 ' ax
4 ay4 at 

Beam V1brat1on: 

4 a4q. 
+ li = ~+ 2 f(x,y) 

ax
4 2 2 4 

ax ay ay 
and Loaded Beam: 

A RECTANGULAR PLATE PROBLEM 

We consider a rectangular plate in the two dimensional plane bounded 

by the l10es O~x~a, O~y~b. 

A load q=q(x,yl 1s assumed to be d1stributed over the surface of 

the plate. 

Then, the differential equat1on for the deflection u=u(x,y) 1s 

found to be 

(8.2) 

where D is a physical quantity called the "flexural rigidity of the plate". 

If the edges of the plate are simply supported, the boundary 

cond1.tions are, 
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= o, a
2
u o, for x=O and x=a u --= • 

ax
2 

l 
(8. 3) 

u = o, __.}! = o, for y=O and y=b • al 
i 1!X,1TVh d We will consider the case in which q='!o s n -a Sl.n b' w ere ~ enotes 

the intens1.ty of the load at the centre of the plate. 

It is clear that all the boundary condit1.ons (8.3) are sat1.sf1.ed 

1.f we take for the deflection, the expression, 

u = c sin 2!:! sin 2!l. 
a b 

1.n wh1.ch c is a constant that must be chosen so that u will satisfy 

equat1.on (8.2) w1.th q=~ s1.n :x s1.n ~· if we substitute (8.4) 1.nto 

equation (8.2) we find that, 

4 1 1 2 
11 (- + -) c 

2 2 
a b 

'!o 
=-

D 

(8.4) 

solving for c we find that the solution of this special problem is g1.ven 

by, 4 -1 1 1 -2 1!X 2!l_ 
u = q0 !11 D) <2 + 2 1 sin<-a> sin( b l 

a b 
(8. 5) 

Now, the fourth order plate problem (8.2) can be solved by TWODEPEP by 

defining, 

(8.6) 

Then equation (8.2), becomes a system of two s1.multaneous second order 

equations, 

(8. 7) 
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and the boundary cond~tions become 

U = 0, V = 0, on x=O and x=a 
(8 .8) 

u = o, v = 0 , on y=O and y=b , 

We solve the set of two s~multaneous equations (8.7) and the given 

boundary conditions (8.8) with a=l, b=l. The input to the preprocessor 

should be manipulated ~nto a symmetric form, in which greater efficiency 

and, often, greater stabil~ty ~s ach~eved. To illustrate the effectiveness 

and the accuracy of using the p and h versions, and for comparison 

purposes, we l~st the following results: 

1. Results are given ~n Table (8.1) which compare the numer~cal 

solution with the given exact results. The very good agreement 

between the two sets of results displayed in Table (8.1) 

~nd~cates that the "Numerical" finite element method solut~on 

of thLs type of problem ~s extremely accurate. 

2. The error norms L 2 obtained by usLng the fLnite element p and h 

versions to the given problem are l~sted Ln Table (8.2). 

3. The results of the highly accurate cubic elements are plotted 

~n Figures (8.1) and (8.2) and shows the behavLour of the 

functLon u over the given regLon. 



mesh lengths ox=.l, oy=.2 

(0,1' 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
' 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0000 4.6591XlQ -4 8.8671Xl0-4 1. 2203Xl0- 3 1.4346Xl0 - 3 1. 5085XlQ- 3 1.4346Xl0 - 3 1.2203XlQ-3 8.8669Xl0-4 

0.0000 4.661JX1Q -4 8.8663Xl0-4 1. 2203XlQ- 3 1.4346XlQ - 3 1.5684Xl0 - 3 
1.4345XlQ 

-3 
1.2203Xl0 

3 
8.8651Xl0 

-4 

0.0000 7 • 5424Xl0 - 4 1.4347Xl0-3 1. 9745XlQ - 3 2.3214XlQ-3 2.4406Xl0- 3 2.J213XlQ -3 1. 9745XlQ - 4 1.4346XlQ - 3 

0.0000 7.5428XlQ 
-4 1.4347Xl0 - 3 1.9747XlQ-3 2.3214Xl0-3 2.4408XlQ 

-3 
2. 3213Xl0 

-3 
1.9746Xl0 

-4 1. 4345XlQ - 3 

0.0000 7.5428XlQ 
-4 1.4347Xl0 - 3 1.9745Xl0-3 2.3214Xl0-3 2.4407Xl0 

-3 2.3214Xl0-J 1.9745Xl0 
-3 1.4346XlQ-3 

0.0000 7 .5431Xl0 
-4 1.4348Xl0-3 1. 9748Xl0 - 3 2.3215Xl0-3 2.4409Xl0 

-3 
2.3214Xl0 

-3 
1.9746XlQ 

-3 1.4346Xl0 -J 

0.0000 4.6591Xl0 
-4 8.8675Xl0-~ 1.2203XlQ 

-3 1.4347Xl0 - 3 -3 1. 4347Xl0 -;J -3 -4 
1.5085XlQ 1.2203Xl0 8.8670Xl0 

0.0000 4.6617X1Q-4 8. 86 7ox w-4 1. 22o4x w-3 1.4347xlo-3 1.5085xl0-3 1.4347xw-3 1.2204xl0 3 8.867oxw-4 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
(0,0) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

TABLE 8.1: At each po1nt the numbers represent: 

Finite element solution with lOO cub1c bas1s funct1on 

The exact solut1on 

0.0000 

0.0000 

4.6590Xl0 
-4 

4.6599Xl0-4 

7.5422Xl0-4 

7.5406Xl0-4 

7.5423Xl0-4 

7.5408Xl0 
-4 

4.6591Xl0 
-4 

4 .6617xl0-4 

(1, 1) 
0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 
(1,0) 
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:~ Quadratic Cubic 

25 1.594XlQ-S 9,Q6X1Q -7 

50 6.027xl0 -6 3,258XlQ-? 

75 2 ,OQJXlQ -6 
1.202XlQ -7 

TABLE 8.2 

The error norms L 2, as the number of elements LS subdivided, i.e. the 

h version, and also as the degree of the polynomLal is increased L.e. 

the p version of the rectangular plate problem. 
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8.3 POTENTIAL FLOW PROBLEM 

We determine the potent1al flow past a right circular cylinder 

w1th the direction of flow perpendicular to the axis of the cylinder 

and the stream flow 1n a channel at a normal incidence to the disc. 

The flu1d is assumed to be both inviscid and incompressible. Inv1sc1d 

fluids experience no shearing stress, and when they come into contact 

w1th a solid boundary, they slip tangentially along it w1thout resistance. 

Dynamic aspects of fluid motion can be character1zed by such 

concepts as laminar or irrotat1onal and turbulent or rotational. 

Invisc1d irrotat1onal flow is called potential flow because the 

velocity field in the flow can be derived from a potent1al function, 

traditionally denoted by the letter ~. 

For a two-dimensional, 1ncompress1ble, irrotationaL flow, the 

governing equat1on for the problem is, 

0 • (8.9) 

Two-dimensional flows can also be characterised by 1ntroduc1ng the stream 

function ~. which also satisfies Laplace's equation 

a2~ a2,,, -
-- + -"---"- - 0 

ai al 
(8.10) 

The potential function $ and the stream function ~ are related to the 

x- and y- components of velocity, denoted by u and v respectively. Then, 

u = -~ V =~ ' ay ax 
(8 .11) 

and u = _it 
V = _2.1 

ax ay 
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whether we use the potential or stream functLon formulatLon 

mathematically the problem LS the same as that of solving Laplace's 

equatLon, the difference arising only in the application of the boundary 

condLtions. 

APPLICATIONS 

i. InviscLd laminar flow around an elliptic obstacle in a channel 

The actual solutLon domain is LnfinLte; for computational purposes 

it is necessary to construct a finLte domain as shown in Figure (8.3). 

F G D 

___. 
___. 

H ___. 

---+ J' . 
---+ 

---+ 

A B 

FIGURE 8.3: Flow past a circular obstacle Ln a channel 

The nature of the boundary conditions for this rectangular domain are 

as follows, 

on AF and BD 

the velocity of the fluLd is undisturbed by the solLd body, because the 
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flow is Zaminar, there is no flow across the line AB and FD, that is, 

1.1 =a.!_= o , along AB and FD. 
an ay 

In addition, because there can be no flow through the cylinder wall 

1.1 = 0 
an 

along the circumference of the circle. 

With the properly specLfied boundary conditLons it is possLble by 

tak1ng advantage of symmetry to consider only a quarter of the domain 

(FLgure (8.4)). The boundary conditions on FG, FK, KJ and JH are the 

same as those determLned earlier, whLle the boundary condition on GH LS 

$=0. Thus, we have Neumann boundary condLtions everywhere except on the 

lLne GH, where the Dirichlet condLtLons apply. 

We will study the following two cases: 

(1) Solve Laplace's Equation (8.9) Ln the regLon, 

-4 'S X 'S 0, os.ys.2, 

and on JH we define the ellipse, 

0 • 

(2) Solve Laplace's Equation (8.9) in the region, 

-4 'S X 'S 0, 0 ~ Y ~ 2 1 

and on JH we define the ellipse (x~h) 2+(y;k> 2=o 

F 

a$ 
r---------~avL-=_o __________________ ~G 

K 
J 

-
.£.! = 0 
an 

$=0 

H 



21 = 0 
F r------:..:3Y:..._ ___________ __, G 

21 =1 ax 
2 

'V "' = 0 

KL-----------------..J 

cf>=O 
H 

0 

J 

FIGURE 8.4: Boundary conditions for the quarter domain 
for both cases (1) and (2) respectively 

The Numerical Results 
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The numerical values obtained with the finite element method for 

the regions given in Figure (8.4) are shown ~n Tables (8.3) and (8.4) 

respectively. 

Solutions were calculated with 300 cubic elements, for the case (U, 

x-h 2 y-k 2 
where JH has the form <-z-> +(--1-J =0, we note that et> has values: 

0~$~5.2516. While for the case (2), when JH has the form (x~h) 2+(y;k)=O, 

we note that et> has values: 0~$~6.1655. 

This sl~ght difference ~n the values of et> are due to replacing the 

minor and maJOr axes of the ellipse within the same region. Th~s is 

shown more clearly in F1gures (8.5) and (8.6) wh1ch shows the behaviour 

of both solutions in the given region. 



mesh points: ox=.4, oy=.4 
G F~5~-=2=2~73~ __ ;4~.8~2~4~9~_,4~-~4~1~6~6---r3~-~9~99~5~--r3~-~5~6~7~3--;3~-~l~o~9~8---r2~.6~1~1~9~-.r2~-~o~~~~2--~-~4~~2QR~-,~-~7<~~Rl __ ~o.o 

5.2274 .8249 f*-4167 ~-9995 3.5673 ~.1098 ~.6120 2.0562 .4298 • 733588 o.o 

~5~-~22~9=6~~~-~8~27~6~~~~-~4~2~0~8---r~-00~6~6---+~3~.5~7~9~5--~-~12~9~7~-f~~-~6~4~12~-;~2~-~0~92~8~-F~-4~6~5~6--lf.~75~8~4~1--~0.0 
5.2296 .8277 .4209 f1.0067 3.5796 .1297 1'-6413 2.0929 fl--4656 .75843 o.o 

ls.2356 .8348 .4320 .0259 3.6135 .1871 t1.7305 2.2115 . 5868 . RR~~ 1 
~-2357 .8349 .4321 .0260 3.6135 .1871 .7306 2.2116 586 .83654 

V
fl-· 8 ~ 

5.2431 .8438 .4463 .0512 3.6596 .2717 ~.8793 2 44nl 
~~~.2~4~3~2~~~.~84~3~9~~~.~4~46~3~~~.~0~5~13~--~3~.~6~5~9~7--~.2~7WlW8---¥2~.~87~9~3~-t~~22~ •• ~~43~9~~ 

f~~-~24~9~2~--t·~8~5_1_2 __ -t~·~4~5~8l ____ ~.o~7~2~a __ _,~3~-~7~o_l4 __ -t~·~3~56~4--~~3~.o~6~o~3---1~ 
~.2493 .8513 .4582 ~.0729 3. 7015 .3565 3.0604 

K Jj.2516 

5.2516 

.8541 

4.8542 

.4627 

4.4628 

~-0813 
4.0814 

3. 7186 • 3941 

3. 7187 3.3943 

3.120 

3.1594J . 

o.o 
0.0 

H 

F1nite element solution with quadratic 300 elements 
TABLE 8.3: At each point the numbers represent: 

Finite element solut1on with cubic 300 elements 



F 6.1434 

6.143 

6.1455 

6.1457 

6.1510 

6.1512 

6.1578 

6.1581 

6.1634 

6.1636 

6.1635 
K 

6.1657 

mesh point ox=oy=.4 

5 7411 . 5 3334 . 4.9172 4 4860 4 0272 . . 
5. 7414 5.3337 4.9175 4.4862 .0275 

5.7436 5.3374 4.9243 4.4989 .0510 

5.7439 5.3377 4.9246 4.492 .0513 

5.7503 5.3479 4. 9428 4.5330 ji.1141 

5.7505 5. 3482 4.9431 4.5332 .1143 

5.7585 5.3609 4.9659 4.5754 .1933 

5.7588 5. 3611 4.9661 4.5757 .1936 

5.7652 5.3714 4.9846 4.6101 .2584 

5.7654 5. 3717 4.9848 4.6103 .2586 

5. 7677 5.3754 4.9917 4.6233 h.2834 

5. 7680 5.3757 4.9920 4.6236 4.2836 

TABLE 8.4: At each point the numbers represent: 

3.5179 2 9180 . 
3.5182 2.9182 

3.5613 2.9932 

3.5613 2.9938 

3.6775 3.2048 

3.6778 3.2052 

3.8261 3.4869 

3.8266 3.4868 

3.9496 3. 722 

3.9498 3. n'f 

3.9971 3.8' 18 
J 

3.9972. 3.8124 

2.1632 1.1844 

2.1637 .1848 

2.2806 .3091 

2.2815 t'-.3099 

2.6496 

V 

G 
0.0 

0.0 

o.o 
0.0 

H 

Finite element with quadratic 300 elements 

Finite element with cubLc 300 elements 
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~i. Invisc~d lam~nar flow in a channel past a d~sc 

The stream funct~on w represents the flow ~n a channel at a normal 

inc~dence to the disc, as shown ~n Figure (8.7) which because of the 

symmetry only a quarter of the domain needs to be cons~dered. 

The prescribed boundary cond~t~ons for the problem are as follows: 

on DC w = 2 

on AD w = y 

on AB w = 0 • 
on eo~= o 

an • 
and on OB W = 0 

An infinite speed will be acquired by the stream at point O, the edge of 

the plane, giv~ng rise to a s~ngular~ty in the solution. 

D c 
0 

A 
B ---

-
FIGURE 8.7a: Flow past a d~sc ~n a channel 

w=2 
or---------------.,c 

w=y 
2 

'il w=o 

~=0 
an 

0 

w=o 

A L-----------------1 B 

w=o 
FIGURE 8.~ Boundary condit~ons for a quarter domain 
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The Numerical Results 

Table (8.5) summarizes the results of the f1nite element solution 

of the stream function w in the reg1on, 

-2 ~ X 'S 0 r 

and the boundary conditions given in Figure (8.7b). Both 300 quadratic, 

and cubic triangular elements were used to solve this problem. For the 

Q.B.F. (Quadratic Bas1s Function) and the C.B.F. (Cubic Basis Funct1on), 

the small d1fferences 1n the results given in Table (8.5) around the 

boundary line OC which are higher than anywhere else in the given doma1n 

are due to the infinite speed at the point o, the edge of the plate, i.e. 

the sudden change of the boundary cond1tion at 0 from w=o to ~~ = 0 

gives r1se to a singularity in the solution which we tried to minim1ze 

by using the same procedure as that applied in Chapter 6. Graphs of the 

solution W showing the behaviour of the solut1on over the g1ven region 

are presented also 1n Figures (8.8a) and (8.8b). 

• 



2 0000 . 2 0000 . 2 0000 . 2 0000 . 2 0000 . 2 0000 . 2 0000 . 2 000 . 2 0000 . 2 0000 . 2 0000 . 
D 

2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 
c 

1.6000 1.5901 1.5792 1.5667 1.5516 1.5329 1.5102 1.4839 1.4564 1.4338 1.4247 

1.6000 1.5901 1.5793 1.5667 1.5515 1.5329 1.5102 1.4839 1.4565 1.4340 1.4250 

1.2000 1.1836 1.1653 1.440 1.1173 1.0829 1.0379 .97841 .90134 .80927 .75083 

1.2000 1.1835 1.654 1.440 1.1174 1.0830 1.0380 .97868 .90161 .80957 .75127 

0 

.8000 .78310 .76414 .74180 • 71286 .67467 .62197 .54715 .43715 .26599 0.00000 

.80000 .78302 .76427 .74176 .71302 .67470 .62201 .54734 .43738 .26612 0.00000 

.40000 .38935 .37737 .36302 .34474 .31991 .28616 .23955 .17650 .094887 o.ooooo 

.40000 .38929 .37742 .36307 .34461 .31991 .28610 .23957 .17645 .094947 0.00000 

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 A B 
0. 00000 0. 00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

TABLE 8.5: At each point the numbers represent: 

Finite element solution with quadrat1c elements 

F1nite element solution w1th cubic elements 
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I • 8 I • 8 

I . 4 I • 4 

I .o I • 0 

.6 .6 

.2 ·2 

.o -2.0 

1 .2 -.a 

I. 6 -. 4 

2.0 .o 

I • 8 I • 8 

I. 4 I . 4 

I . 0 I • 0 

.6 .6 

.2 .2 

-2.0 

-.o -.o 
FIGURE 8.~: Isoparametr1c proJection w1th d1fferent angles 
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8.4 THE EIGENVALUE PROBLEM 

Let R be a bounded two-d1mens1onal doma1n with boundary a~ A an 

2 eigenvalue of Laplace operator V over the reg1on R, for which there 

ex1sts a non-zero function u defined on R, such that, 

2 V u + AU = Q 1 (x,y) E R, 

with u = gl, (x,y) E aR
1 I (8.12) 

and au (x,y) E aR
2 

-= g2, an 

The e1genfunctions may be normalized so that, 

I u(k)u(i)dxdy = { 
1, k=i 

} 
o, k#i R 

(8 .13) 

We are interested in comput1ng an accurate approx1mation to the smallest 

eigenvalue and its corresponding e1genfunct1on. Furthermore, we want to 

est1mate the accuracy of our approx1mation by comparing the fin1te 

element solution of different approximations. We also examine the 

possib1l1t1es of accelerat1ng the convergence, as the s1ze of the elements 

gets smaller, by various adaptat1ons of the procedure of grid refinement 

as used 1n Chapter 6. 

Firstly, we consider the L-shaped membrane eigenvalue problem, in 

which we determine the smallest eigenvalue and eigenfunction of equation 

(8.12), 1n the region of F1gure (8.9) below, w1th u=O on the boundary. 



(-1,1) 

u=o 

u=O 
.------..;;_----, (0' 1) 

u=O· 

0 

a2u a2 
2 

+ --..!!. + AU = 0 
ax al 

u=O 
(1,0) 

u=O 

(-1,-1) '----------------J (1,-1) 
u=O 

FIGURE 8.9: L-Shaped region for the eigenvalue problem 

SLnce the problem illustrated in Figure (8.9) involves a re-entrant 

311 corner of internal angle :2 at which a boundary singularity occurs, 

therefore, we obviously need the mesh refinement procedure which is 

300 

dLscussed Ln Chapter SLx Ln order to produce a useful answer, so we will 

consider the procedure of refining the elements in the neighbourhood of 

the singular poLnt o, and examine the possLbilities of accelerating the 

convergence as the number of elements and the degree of the basis 

function LS increased. When the finite element method is applLed to 

this problem it gives rise to an approximating matrix eigenvalue problem 

which is solved by the inverse power method. 

·I 
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An estimate of the smallest eigenvalue A is given ~n Table (8.6), 
n 

where the problem is solved without the adoption of a grLd refinement 

procedure, the results obtained reveal that the convergence to the 

correct value A for the three cases (quadratic, cubic and quartic 
n 

elements) are slow ~ndeed as the number of elements increases. 

No. of elements Value of A Value of A Value of A 
n n n with n=50 for the quadratic for the cubic for the quartic 

case case case 

n 9.74199 9.67078 9.65595 

2n 9.70149 9.66194 9.65119 

3n 9.69670 9.66191 -

TABLE 8.6 

We note that the value of A =9.6397 which is correct to f~ve significant 
n 

fLgures was obtained by REID and WALSH [1965]. Other est~mates of the 

smallest eigenvalue A are given in Table (8.7), where th~s time the 
n 

problem was solved wLth the adoptLon of a grid refinement procedUre 

around the singular point o. This t~me the values of A appear to be 
n 

convergLng quite rapidly to the accurate value. Note that we obtained 

the best estimated value of A which is equal to 9.63990 by solving the 
n 

problem with 300 cubic elements dense around the singular po~nt o. 



.6 

.2 
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-1 .0 -.6 -.2 .2 1 • 0 

CONTOUR HEIGHT *10-14 

FIGURE 8.10: The Eigenfunct1on u corresponding to A =9.6399 
n 
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No. of elements Value of A Value of). Value of An 
(with n=50) for the qzJldrotic for the c w for the quartic 

case case case 

n 9.83687 9.64859 9.64294 

2n 9.69799 9.64207 9.64049 

3n 9.65760 9.64047 -

TABLE 8.7: The dependence of A upon the number of elements and 
n 

the order of the elements 

The results of the e1genfunction u corresponding to the.smaller eigen-

value A =9.63990 is plotted in Figure (8.10) and shows the behaviour of 
n 

the eigenfunction u in the given region. 

Secondly we consider the two-dimensional problem g1ven by Equat1on 

(8.12a) defined on the follow1ng three regions. 

The first region is g1ven in Figure (8.11) which is reduced by 

symmetry to only one quarter i.e. Figure (8.12). The boundary conditions 

thus are such that the function u(x,y) vanishes on the boundary and has 

zero normal derivative on the lines of symmetry. 

·----

I 

I 
I 
I 

I 
I 

u=l 1 u=l ---- t--- :-o~. 

I 
I 

0 tu=l 
• 
I 
I 
I 
I 

FIGURE 8.11 

_________________________________________________________________________________________ _j 



au =0 
(0,1) ,---..ll.ll ~"------, ( .5,1) 

u=l 

u=l 

o u=l 
~-------,(1,.5) 

2 2 
~ + ~ + AU = 0 

ax2 a/ 
au 
an = 0 

(0,0) .__ ____________ __. (1,0) 
u=l 

FIGURE 8.12 

Now Table (8.8) lists the value of the smallest eigenvalue A 
n 
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obtained w~th 300 quadratic and cubic elements. The results of the eigen-

function u corresponding to the smallest eigenvalue A =.963360 is plotted 
n 

~n F~gure (8.13) which shows the behaviour of the eigenfunction u in the 

given req~on. 

Order of Equally Distributed Dense elements around 
the element elements the 

Quadrat1.c .963449 

Cubic .963360 

TABLE 8.8: Values of A with 300 elements 
n 

s~ngular point o 

.963471 

.963360 

The second reg~on is given ~n Figure (8.14) which again is reduced 

to only one half by symmetry in Figure (8.15). The function u(x,y) 

vanishes on the boundary and has zero normal derivative on the lines of 

symmetry as shown ~n Figure (8.15). 
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.2 .4 .6 .8 

CONTOUR HEIGHT *10-3 

FIGURE 8.13: The E1genfunct1on u corresponding to A =.96330 
n 

1 • 0 
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u-1 -
I 

u=l I u=l 
1 

u=l • 0 u=l 
I 
I 

u=l 
I 

I 
u=l 

I 
• I 

u=l 

FIGURE 8.14 

(0, 1) u=l 
(. 5' 1) 

u=l 

au =0 
an 

) u=l (1,.5) 

a2 a2 
_.E.+~+ ~u = 0 u=l 
a} al 

(0,0) 
u=l (1,0) 

FIGURE 8.15 

Table (8.9) below lists the value of the smallest e1genvalue for the 

region of Figure (8.15) and is obtained with 300 quadratic and cubic 

elements. 

Also, the results of the eigenfunction u corresponding to the smallest 

e1genvalue A =.925756, is plotted in Figure (8.16) which shows the 
n 

behaviour of the eigenfunction u in the given region. 



FIGURE 8.16: The Eigenfunction u corresponding to A =.925756 
n 

307 
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Order of the Equally distributed Dense elements 
elements elements around the singular 

Quadratic .925815 

Cubic .925714 

TABLE 8.9: Value of ~ with 300 elements 
n 

point 0 

.92514 

.925756 

The third region is given as in Figure (8.17) which 1s again 

reduced to only one quarter by symmetry in Figure (8.18). 

The function u(x,y) van1shes on the boundary and has zero normal 

derivative on the line of symmetry, as given in Figure (8.18). 

u=l 

' 
I u=l u=l I 
I 

u=l I 0 u=l 
I 

I 

I 

I 
u=l u=l 

--- -- -- --1-- --- -----
I 
I 

I 
I 
I 
I u-1 

I u=l 
u=l I 

I 

I 

u=l 

FIGURE 8.17 

- -------------------------------' 
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(0,1) 
u=l 

(- 5 '1) 

u=l 

~0 
0 u=l 

(1, .5) 
an 

a
2

u a
2

u 
-- + -- +Au = 0 u=l 
ax

2 
a/ 

(0,0) (1,0) 
dU =Q 
an 

FIGURE 8.18 

Table (8.10) below lists the value of the smallest·eigenvalue A 
n 

for the L-shaped region of Figure (8.18) which is obtained WLth 300 

quadratic and cubic elements. 

Also the numerical results of the eigenfunction u corresponding to 

the smallest eigenvalue A =.841250 LS plotted Ln Figure (8.19) whLch 
n 

shows the behavLour of the eigenfunction u in the given region. 

Order of the Equally dLstrLbuted Dense element around 
elements element the singular point 0 

QUartLc .841995 .841511 

CubLC .841232 .841250 

TABLE 8.10: Value of A with 300 elements 
n 
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FIGURE 8.19: The Eigenfunction u corresponding to A =.841250 
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8.5 FINITE ELEMENT SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 

The class of problems considered in this section consists of those 

which are governed by the two-dimensional Navier-Stokes equat1ons. The 

fluid motion considered is assumed to be laminar, steady and 1sothermal 

and the fluid assumed to be 1ncompressible. 

With these assumptions the mathematical description of the fluid 

motion cons1sts of the equations of motion, 

au au aP p u-+pv-= --+V 
ax ay ax 

p av av u-+pv-= 
ax ay 

ap 
--+V 

ay 

and the continuity equation, 

au av -+-= 0 
ax ay 

2 2 
<a u + ~> 
ax

2 
ay

2 

2 2 
<a v + a vl 

ax
2 al 

(8.14) 

( 8 .15) 

(8.16) 

where-u and v denote the velocity components, P the pressure, p the 

density and v the kinematic viscosity. 

Now if v=l, then the analytic solution is g1ven by, 

u(x,y) = - cos x sin y } v(x,y) = sin x cosy 
(8 .17) 

The substitution of (8.17) in (8.14) and (8.15), with v=l gives, 

1 aP p ax = (2 sin y + sin X) COS X 

1 aP P ay = (sin y - 2 sin x) cos y ) (8.18) 

It is clearly difficult to find a function p(x,y) satisfying both 

equations (8.18) exactly. 
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However, the case of the Navier-Stokes equations is of some 

interest and we can construct a problem based on the exact expressions 

(8.17), to illustrate the numerical solution of the pair of simultaneous 

equations (8.14) and (8.15) by the finite element method. This can be 

done by substituting the expressions (8.18) for the pressure terms in 

(8.14) and (8.15), then the resulting equations were solved by TWODEPEP 

within the square region: O~x~n,O~y~~ using the boundary velocities given 

by (8.17). 

Numerical solutions were obtained using lOO cubic ~lements and are 

compared with the numerical solutLons given by DENNIS and HUDSON [1979) 

who used finite-difference approximations to solve the problem. 

The results obtained for the velocLty u(x,y) are accurate and are 

given in Table (8.11) below. 

y/n Finite element DENNIS solution DENNIS solution Exact 
Solution (First aporox.) (Second approx.) Solution 

0 0 0 0 0 

0.1 0.18160 0.1828 0.18095 0.18164 

0.2 0.34556 0.3475 0.34429 0.34549 

0.3 0.47549 0.4781 0.47383 0.47553 

0.4 0.55901 0.5620 0.55689 0.55902 

0.5 0.58779 0.5909 0.58549 0.58797 

TABLE 8.11: A comparison between the finite element solution of u(x,y) 
with those of DENNIS and HUDSON and the exact solution of 
the Navier-Stokes equation for V=l, x=.7n, and values of 
y/n in the range o.o-o.5 

Similar accuracy was obtained for v(x,y). 
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We note that also the solution given by ROSCOE [1975, p.300, 

Table 2) are not in agreement with (8.17), however our results are 

accurate, and with lOO cubic elements, the present method converges with 

-4 an L
2 

norm = 0.36403Xl0 which is very promising. A plot of the 

functions u(x,y) values showing the behaviour of the solution over the 

region are presented in Figures (8.20) and (8.21). 
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FIGURE 8.20: Contour lines for the velocity u of Navier-Stokes problem 

.ese 

.259 
.309 

-ss9 
see ... 

. •ee 
.358 
.309 

.259 

2.50 

.209 
,ISiiJ 

••• . ese 

3.00 3.25 

w .... .... 



I .0 
.a 
.6 
. 4 
.2 

-.o 
-.2 
-.4 
-.6 
-.a 

I . 0 
.a 
.6 
.4 
·2 

-.o 
-.2 
-.4 
-.6 
-.a 

1.25 

I . 75 

2.25 

2.75 

1.25 

I. 75 

2.25 

2.75 

I . 50 

2.00 

2.50 

.oo 

t. 7& 

1.25 

.75 

.25 

315 

I . 0 
.a 
.6 
• 4 
.2 
-.o 
-·2 
-.4 
-.6 
-.a 

.oo 

I • 0 
.a 
.6 
. 4 
.z 
-.o 
-.z 
-.4 
-.6 
-.8 

FIGURE 8.21: Isoparametric proJection of the velocity u with different angles 



CHAPTER NINE 

CONCLUSIONS 



316 

In the foregoing chapters, the implementation of the finite element 

method has been studied on many different types of problems. 

As a result of the research described in this thesis several general 

conclusions can be drawn in regard to the overall scope and use of the 

finite element procedure when applied to the problems discussed in the 

prev1ous chapters. These conclusions are:-

The accuracy of the finite element method will obviously depend 

upon how well the trial functions can approximate the true 

solution of a problem, the results confirm that, if the approx-

imating space is admissable and if the true solution u is smooth 

enough then an increase in the p version gives an equivalent 

decrease in the error bound. 

At various points we have presented the agreement of our finite 

element solutions with other numerical solutions and with the 

exact solution if available. We have also explored different 

' 
sets of boundary conditions, the results obtained were extremely 

accurate. 

The ability of us1ng finite elements of vary1ng order (quadratic, 

cubic and quartic), i.e. the p version and that of increas1ng 

the numbers of elements, i.e. the h version has been investigated, 

from a practical point of view and the p version is found to be 

a better approximation for all the test problems. 

One of the difficulties associated with solving the free boundary 

problem is the almost total lack of any analytical results on 

convergence and error bounds. More is needed to be done in this 

field. 
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The success of the mesh refinement technique for improving the 

accuracy of the numerical solution of a singularity region is 

evident, while the short comings of ref1ning over the whole 

region is that many elements remote from the s1ngularity are 

needlessly introduced so that the resulting master matrix 

becomes unnecessarily large. Thus, mesh generation and refine

ment for a fully automated f1nite element method to be used on 

a computer is very important so good mesh generat1on and refine

ment routines should be developed. Packages are now being 

produced which should improve this part of the algorithm: TWOOEPEP 

has a good mesh generation and refinement strategy. 

Finally, it is likely that finite element programming systems 

will become more wider and econom1cally written and hence easier 

to run, due to the development of new techniques in programming 

and the widespread introduction of software packages. 

There remains a good deal of scope for work on the finite element method 

and especially so on free surface problems. 
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.1\PPE:-ID I X 



c ************** 
C A SAMPLE OF OUR PROGRAM FOR OUR THREE DIMENSIONAL 
C SURFACE PLOTS, AND THE ISCPARAMETRIC PLOTS, 
c ************ 
c ****** 
C LIBRARY 'GINOGRAF' 
C LIBRARY 'GINOSURF' 
C LIBRARY 'GINO' 
C LIBRARY 'VAPPLB' 
C LIBRARY 'LUSUBV' 
c ****** 
c 
$INSERT SYSCOM A$KEYS 
c ****** 
c ****** 

DIMENSION X(900) 1Y(900),U(900),DX(900),DY(900) 
51VX(900) 1VY(900) 1VV(900),AZ(50,50),W(5000),ERQ(900) 

c ****** 
CALL CLOS$A(l} 
CALL OPEN$A(1,'NAVSTOE2.0UTPUT21 ,16 11) 

c ****** 
WRITE (1,100) 

100 FORMAT(2X 1 '1=T4010 2=VDU 3=TREND 4=SIGMA 5=PLOTEE 
*6=5E281 1 I/) 

c ****** 
WRITE (1,199) 

199 FORMAT(2X,'PLEASE SUPPLY DEVICE TEEMINAL 1
/) 

c ****** 
READU, *) IDIV 
IF(IDIV.EQ,1) GO TO 11 
IF(IDIV,EQ,2) GO TO 22 
IF(IDIV,EQ,3) GO TO 33 
IF(IDIV.EQ,4) GO TO 44 
IF(IDIV.EQ.5) GO TO 55 
IF(IDIV,EQ,6) GO TO 66 

11 CALL T4010 
GO TO 300 

22 CALL WU 
GO TO 300 

33 CALL TREND 
GO TO 300 

44 CALL S5660 
GO TO 300 

55 CALL C1051N 
c ***** 
c ***** 
c ****** 

CALL ERRW.X(200) 
GO TO 300 

66 CALL SE281 
c 
c **** 
300 DO 400 I=1,1000 
400 READ(5,*,END=500)X(I),Y(I),U(I) 1DX(I},DY(I),VX(I),VY(I},VV(I) 

CALL CtW10D 
CALL PICCLE 
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500 NPOINT=I-1 
XMIN=X(1) 
YMIN=Y(l) 
NP=NPOINT 
WRITE (1~600) NP 

600 FORMil.T (2X, I 5) 
c ***** 
c 
c 
c 
c 
c 

COfJPAIRING THE NUMERICAL SOL. WITH THE 
THEORATIC• SOL. AND FINDING THE 

AIIERIGE ERRCR NCRM. 
c ****** 
c ****** 
c 

WRITE (1,30) 

335 

30 FQRM/l.T (/7X, 'NUM AND THR SOL AND ERR 1 
1/) 

WRITE !1,40) 
40 FCRI-'AT(SX,'X' ,10X 1

1Y1 ,1BX,'NUM.SOL 1 ,llX,'THE.SOl 1 
111X,'ERR<R 1 

12X 
3,/4X,5( '-') ,SX,S( '-') ,9X 110( '-') ,9X,10( '-') 17X,10( '-') ,2Xl 

c ****** 
C THEORETICL SOL. 

ER1=0.0 
ER2=0.0 
THER1=0.0 
DO 50 J=1,NPOINT 
X1=X(J) 
Y1=Y(J) 
U1=U(J) 
THER1=(1./389.636364l*SIN(3.14169*Xl)*SIN(3.14169*Y1) 
ER1=5~T (ASS (U1-THER1) **2) 
ER2=ER2-I£R1 
WRITE(1 170) X1 1Y1 1U1 1THER1,ER1 

50 CONTINUE 
ER3=ER2/NPOINT 

c ***** 
WRITE (1,60) ER3 

60 FORI-'AT(//10X 1
1A\IERAGE ERROR= 1 ,E13.5) 

70 FOR~"T(2X,F8.4,1X 1F8,4 12X,3E13.5,2X) 
DO 700 J=2,NP 
IF(XMIN.GT.X(J)) XMIN=X(J) 
If(YMIN.GT.Y(J)) YMIN=Y(J) 

700 CONTINUE 
WRITE(1,800)XMIN 1YMIN 

800 FORMil.T(2X,2F9.5) 
DO 900 J=2,NP 
XMAX=X(l) 
YMAX=Y(l) 
IF(XMAX,LT.X(J)) XMAX=X(J) 
IF(YMAX.LT.Y(J)) YMAX=Y(J) 

900 CONTINUE 
WRITE(1,1000)XMAX 1YMAX 

1000 FORMil.T(2X,2F9.5) 
c ****** 

CALL WINDOW(3) 
CALL LE\/ELS(-1.0,1.000) 
CALL LABCON(0 11 13,0) 

c ****** 



CALL RANGRD(NP,X,Y,U,30,XMIN,XMAX,30,YMIN,YMAX,AZ,4900,W) 
CALL DRACON(30,XMIN,XMAX,30,YMIN,Y~~,AZ,20,1,4900,W) 

c ****** 
CALL CH.<IMOD 
READ(l,*) 
CALL PICCLE 
CALL RANGRD(NP,X,Y,U,30,XMIN,~~X,30,YMIN,YMAX,AZ,4900,W) 

c ****** 
CALL ISOPRJ(30,XMIN,XMAX,30,YMIN,YMAX,AZ,l,4900,W) 

c ****** 
CALL CH.<IMOD 
READ(l,*) 
CALL PICCLE 
CALL RANGRD(NP,X,Y,U,30,XMIN,XMAX,30,YMIN,YMAX,AZ,4900,W) 
CALL ISOPRJ(30,XMIN,XMAX,30,YMIN,YMAX,AZ,2,4900,W) 
CALL CH.<IMOD 
CALL PICCLE 
CALL CHPMOD 
READ(!,*) 
CALL DEVEND 
CALL CLOS$A(l) 
CALL EXIT 
END 
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**** THE FOLLOWING PAGES DESCRIBES TI-lE USER INPUT IY<TA SET, 
**** WHICH COMPLETELY SPECIFIES TI-lE TEST PROBLEMS 
**** SOLVED PY TWODEPEP. 
**** 
**** CHAPTER 3 
**** SECTION(3-7l 
**** 
**** THE FIRST LINE CONTAINS 3 INTEGERS-NEQ,NTF,NDIM IN FREE 
**** FORMAT,WHERE 
**** NT=NUMBER OF TRIANGLES IN TI-iE INITIAL TRIANGULATIONS 
**** NTF=NUMBER OF TRIANGLES DESIRED IN FINAL TRIANGULATION 
**** NDIM= RESERVED FOR JACOBIAN IF NDIM=1 IN-<:ORE STORAGE 
**** ONLY USED, AND IF NDIM=2 OUT-DF CORE STORAGE USED 
**** 

1 75 1 
**** 
**** THE P.D.E 

**** oxx ux 
OXX/UX 1.0 
OXY UY 
OXY/UY 1.0 
**** 
**** 
**** 
**** 
**** 

THE SOLUTION WILL BE OUTPUT AT THE POINTS OF THE 

**** 
**** 
XA 
HX 
NX 
**** 

GRID, 
X=XA +I*HX 
Y=YA -hi*HY 

o.o 
0.1 
10 

YA -1.0 
HY 0.2 
NY 10 
**** 

I=O, ••• ,NX 
J=O, ••• ,NY 
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**** PRINTER PLOT OF THE INITIAL TRIANGULATION ~/ILL BE PLOTED 
PLOT 1 
**** 
**** THE PROBLEM IS S'I'W'IETRIC 
Sm\ETRY 1 
**** 
**** 
**** USING CUBIC ISOPARAM:TRIC TRIANGULAR aEMENTS 

**** 
CUBICS 1 
**** 
**** THE BOUNDEARY CONDITONS 
ARC-1001 
FB1 0.0 
ARC-1002 
FB1 0.207879576*DCOS (1.5707963*Yl 
ARC=-1003 
FB1 0.0 
ARC=-1004 
FB1 DCOS (1.5707963*Yl 
**** 
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**** INITIAL TRIANGLLATI<l'l AAR.AYS 
**** THE C~DINATES OF THE VERTICES OF THE 
**** TRIANGULATION IN THE FORM 
**** VX (1) , VY ( 1) , ••• , VX (NV) , VX (NV) 
vxY o.,-1., 1.,-1., 1.,1., 0.,1., o.s,o. 
**** **** LIST THE NUMBERS OF THE VERTICES OF EACH TRANGLE IN 
**** IA(l) ,IB (1) , IC (1) r• •• ,IA(NT) ,IB (NT) ,IC(NT) 
**** THIS <RDER DEFINES THE INITIAL TRIANGLE NUMBERS. 
IABC 1,2,5, 2,3,5, 3,4,5, 4,1,5 
**** **** AN IDENTIFYING INTEGER OF THE Ba.JNMRY ARC CuT OFF BY 
**** THE BASE,AB,OF TRIANGLE K. I(K)=O IF N<l'lE. 
I -1001,-1002,-1003,-1004 
END. 
**** 



**** 

**** CHAPTER 5, 
**** SECT ION (5-4) 
**** TEST PROBLEM 1 
**** 
**** FREE SURFACE PROBLEM FOR 1HE SLUICE GATE PROBLEM 
**** WITH FLOW GEOMETRY B/H=0.4 
**** 
**** 
1 300 1 
**** 
oxx ux 
OXX/UX 1,0 
OXY UY 
OXY/UY 1,0 
**** 
XA -1.0 
HX 0,2 
NX 10 
YA 0.0 
HY 0.1· 
NY 10 
**** 
**** THE FREE SURFACE BOUNDARY 
ARC=-1001 
X 
y 

'FBI 
ARC=l002 
GBl 
ARC=-1003 
FBI 
ARC=l004 
GBl 
ARC=-1005 
FBI 
ARC=-1006 
FBI 
**** 
**** 

1.o-ocos u.s7079*S> 
0,4-G.l6016*DSIN(l,57079*S) 

. 0.35996 :? 
o.o 

o.o 

o.o 

0.35996 7 
0,35996 

SYMMETRY 1 
**** 
PLOT 
**** 

1 

VXY o.o,o.4, I.o,o.23984, 1.o,o.o, o.o,o.o, 
VXY -1,0,0.0, -1,0,0.4, -1,0,1,0, 0.0,1,0, 
VXY -o.s,o.?o, -o.s,o.2, o.o,o.1 
**** 

**** 

IABC 2,1,11, 3,2,11, 4,3,11, 4,11,10, 11,1,10, 5,4,10, 
IABC 6,5,10, 1,6,10, 6,1,9, 1,8,9, 8,7,9, 7,6,9 

I -1001, 1002, -1003, 0, 0 1 
I -1003, 1004, O, 01 -1006, 
I -lOOS, 1004 
END, 
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**** 
**** CHAPTER 5, 
**** SECTIONC5-4) 
**** TEST PROBLEM 2 
**** 
**** THE FREE SURFACE PROBLEM OF THE SLUICE GATE PROBLEM 
**** WITH FLOW GEO'-IETRY B/H=0,36 
**** 
1 300 1 

-**** 
oxx ux 
OXX/UX 1.0 
OXY UY 
OXY/UY 1,0 
**** 
XA 
HX 
NX 
YA 
HY 
NY 
**** 
**** 
ARC-1001 
X 
y 
FB1 
ARC=1002 
GB1 
ARC-1003 
FB1 
ARC=1004 
GB1 
ARC-1005 
FB1 
ARC-1006 
FB1 
**** 
**** 

-1.0 
0.1 
20 
o.o 
0.05 
20 

1.0-DCOSC1.57079*S) 
0,36-D.143354769*DSINC1,57079*S) 
0.31995 

0,0 

o.o 

o.o 

0,31995 

0,31995 

S'IMI'1ETRY 1 
**** 
PLOT 
**** 

1 

vxv o.o,o.36, 1,o,o.21664523, 1.o,o.o, o.o,o.o, 
vxv -1.o,o.o, -1.o,o.4, -1.0,1.o, o.o,1.o, 
vxv -o.5,o,7o, -o.5,0.2, o.o,o.1 
**** 
IABC 2,1,11, 3,2,11, 4,3,11, 4,11,10, 11,1,10, 5,4,10, 
IABC 6,5,10, 1,6,10, 6,1,9, 1,8,9, 8,7,9, 7,6,9 
**** 
I -1001, 1002, -1003, O, 0 1 
I -1003, 1004, O, O, -1006, 
I -1005, 1004 
END, 
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**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
1 300 
**** 
oxx 
OXY 
**** 
XA 
HX 
NX 
YA 
HY 
NY 
**** 
**** 
**** 
D3EST 
**** 
**** 

CHAPTER 6 

SECTION(6-4l 
TEST PROBLEM 1. 
MOTZt::-PROBLEM 
CORNER SINGIJLI>RITIES IN ELLIPTIC PROBLEMS • 

1 

ux 
UY 

-1.0 
0.28571428 
7 
o.o 

0.314159265 
10 

MORE FINER ELEMENTS MOUND THE SINGULAA pOINT O. 

1.0/ (X**2+Y**2l 

ARC=-1002 
FB1 1000.0 
**** 
ARC=-1005 
FB1 500.0 
**** 
**** 
CUBICS 1 
**** 
SYM'IETRY 1 
**** 
**** 
vxv o.,o., 1.,o., 1.,1., o.,1., 
VXY -1.,1., -1.,0., .5,.5, -.5,.5 
**** IABC 1,2,7, 2,3,7, 3,4,7, 4,1,7, 
IABC 1,4,8, 4,5,8, 5,6,8, 6,1,8 
**** 
I 1001, -1002, 1003, 0, 
I O, 1003, 1004, -1005 
END. 
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**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
1 300 
**** 
oxx 
OXY 
**** 
F1 
Fl/U 
**** 
XA 
HX 
NX 
**** 
YA 
HY 
NY 
**** 
**** 
ARC=-1 
X 
y 
FB1 
**** 
ARC=-1001 
FB1 
**** 
**** 
D3EST 
**** 

CliAPl.'ER 6 • 
SECTION ( 6-4) 
'm>T PRCBLEM 2. 

NJ~!ERICAL S:X.IlriON OF ELLIPriC BaJN01\RY 
VALUE PRCBLEM r1I'lH BClJNDARY SIN:;ULARITY. 

2 

ux 
UY 

-2.0*U 
-2.0 

o.o 
0.1 
10 

o.o 
0.05 
20 

IXm( .785398*S) 
OOIN(. 785398*S) 
0.2* CDEXPCX+Y)) 

0.2*CDEXPCX+Y)) 

1. 0/ (X**2+Y**2) 

SYI<!ME'mY 1 
**** 
anncs 1 
**** 
PLOl' 1 
**** 
VXY 0.0,0.0, 1.0,0.0, 0.7071069,0.7071069, 0.5,0.25 
**** 
IABC 1,2,4, 2,3,4, 3,1,4 
**** 
I -1001,-1, -1001 
aiD. 
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**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
1 300 
**** 
oxx 
OXY 
**** 
F1 
Fl/U 
**** 
XA 
HX 
NX 
**** 
YA 
NY 
HY 
**** 
ARC=-1001 
FB1 
**** 
ARC=-1 
X 
y 
FB1 
**** 
ARC=1002 

CHAPTER 6. 
SECTION(6-4) 

TEST PROBLEM 3 

NUMERICAL SOLUTION OF ELLIPTIC BOUNQO.RY 
VALUE PROBLEM ~IITH BOUNU4RY SINGULARIT:Y 

1 

ux 
UY 

C16.*X*X+1.)*U-4.*DCOSC2.*X*X-Yl 
Cl6.*X*X+l.) 

-1.0 
0.2 
10 

-1.0 
10 
0.2 

DSINC2.0*X**2-Y) 

DCOS (4. 71239*S) 
DSINC4.71239*S) 
DSIN(2.0*X**2-Y) 

GB1 0.0 
**** 
S~ETRY 1 
**** 
CUBICS 
**** 
PLOT 
**** 
**** 
VXY 
VXY 
**** 

1 

1 

o.o,o.o, 1.o,o.o, o.o,1.o, -1.o,o.o, 
o.o,-1.0, 0.25,0.25, -0.25,0.25, -0.25,-0.25 

IABC 1,2,6, 2,3,6, 3,1,6, 
IABC - 1,3,7, 3,4,7 r 4,1,7 r 
IABC 1,4,8, 4,5,8, 5,1,8 
**** 
I 
I 
I 
END. 

-1001, -1, o, 
o, -1, 0 

o, -1, 1002 
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**** 
**** CHAPTER 6 
**** SECION(6-4) 
**** TEST ffiCBLEM 4. 
**** NUI-IERICAL SCLt1riON OF ELLIETIC BOOID!\RY 

**** VALUE PRCBLEM WI'lH B<XJI:n\RY SIN:>Uil\RIT.i · 
**** 
1 300 
**** 
oxx 
OXY 
**** 
XA 
llX 
NX 
YA 
HY 
NY 
**** 
**** 
ARC=1001 
GBl 
ARC=-1002 
FBl 
ARC=1003 
GBl 
ARC=1004 
GBl 
ARC=1005 
GBl 
ARC=-1006 
FB1 
**** 
S'il-11-IE'lRY 
**** 
D3EST 
**** 
**** 
PLO!' 
**** 
VXY 
VXY 
**** 
IABC 
IABC 
IABC 
**** 
I 
I 
I 
END. 

1 

ux 
UY 

o.o 
0.1 
10 
o.o 
0.1 
10 

o.o 
o.o 
o.o 
o.o 
o.o 
1.0 

1 

1./ ( (X-.5) **2+(Y-.5) **2) 

1 

o.o,o.o,o.s,o.o,l.o,o.o,l.o,o.s,o.s,o.s,o.s,l.o, 
o.o,l.o,o.o,o.s,o.2s,o.2s,o.7s,o.2s,o.2s,o.7s 
1,2,9, 2,5,9, 5,8,9, 8,1,9, 
2,3,10, 3,4,10, 4,5,10, 5,2,10, 
8,5,11, 5,6,11, 6,7,11, 7,8,11 

1001, o, o, -1006, 
1001, -1002, 1003, o, 
O, 1004, lOOS, -1006 
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**** .. 
**** CHAPTER 7. 
**** SECTION(7-1l 

THE MINIMAL , SURFACE PROBLEM 
1 300 2 -
**** 
oxx 
OXXIUX 
OXY 
OXY/UX 
OXY/UY 
**** 
TF 
**** 
XA 
HX 
NX 
YA 
HY 
NY 
**** 
ARC=-1001 
FB1 
ARC=>-1002 
FB1 
ARC=-1003 
FB1 
ARC=-1004 
FB1 
**** 

UX/SQ(UX,UY) 
(1.+UY**2)/SQ(UX,UY)**3 
UY/SQ(UX,UY) 
-ux*UY/SQ(UX,UY)**3 
(1.+UX**2)/SQ(UX,UY)**3 

4 

o.o 
0.1 
10 
o.o 
0.1 
10 

(l.O-X**2) ** (1.12.) 

FFU(X,Y) 

( 2.381097845-X**2) ** (1./2.) 

(OEXP(Y)+OEXP(-Y))/2.0 

SYMMETRY 1 
**** 
CUBICS 1 
**** 
ALPHA 2 
**** 
vxv o.o,o.o, 1.o,o.o, 1.0,1.0, o.o,1.o, o.5,0.5 
**** 
IABC 1,2,5, 2,3,5, 3,4,5, 4,1,5 
**** 
I 
**** 
AOO. 

-1001, -1002,-1003,-1004 

DOUBLE PRECISION FUNCTION SQ(UX,UY) 
IMPLICIT DOUBLE PRECISION (A-+t,O-Z) 
SQ=DSQRT(1.+(UX**2+UY**2)) 
RETURN 
END 
DOUBLE PRECISION FUNCTION FFU(X,Y) 
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It-PLICIT DOUBLE PRECISION (A-+t,O-Z) 
IF(X.EQ.1.0.AND.Y.EQ.O.O) FFU=O.O 
IF(X.EQ.1.0.AND.Y.GT.O.O) FFU=OSQRT(0.25*(DEXP(Y)+OEXP(-Y) 

END. 

4) **2-X**2) 
RETURN 
END 



**** 
**** CHAPTER 7. 
**** SECTION (7-3) 
**** TEST PROBLEM I 
**** 
**** COMMENTS:-
**** NCXII CONSTANT COEFFICIENT NCXII·LINEARITIES IN FIRST 
**** OER IVATIVES, ~ 

**** 
I 300 I 

**** oxx ux 
OXX/UX I.O 
OXY UY 
OXY/UY I.O 
**** 
Fl 
Fl/U 
Fl/UX 
Fl/UY 
**** 
TF 
**** 

(2.-DSIN(Y)*DCOS(X))*U-(UX*UY) 
(2.-DSIN(Y)*DCOS(X)) 
-uy 
-ux 

B. 

NOUT 4 
**** 
CUBICS I 
**** 
XA 
HX 
NX 
YA 
HY 
NY 
**** 

o.o 
O.I 
IO 
o.o 
O.I 
IO 

ALPHA 2 
**** 
uo 
**** 
**** 
ARC=-IOOI 
FBI 
ARC=-I002 
FBI 
ARC=-I003 
FBI 
ARC=-I004 
FBI 
**** 

OS IN (X) *DCOS (Y) 

OSIN(X) 

OS IN (X) *DCOS (Y) 

OS IN (X) *DCOS (Y) 

o.o 
SYI'V~ETRY I 
**** 
**** vxv o.o,o.o, I.o,o.o, I.o,I.o, o.o,I.o,o.s,o.5 
**** 
IABC 
**** 
I 
**** 
END. 

I,2,S, 2,3,5, 3,4,5, 4,I,5 

-IOOI,-I002,-I003,-I004 

346 



**** 
**** 
**** 
**** 

CHAPTER 7. 
SECTION(7-3) 
TEST PR06LEM 2 

**** 
**** 
**** 
**** 
**** 

COM-1ENTS:-
NON-LINEARITIES IN SOLUTION AND FIRST DERIVATIVES 

OF SOLUTION NON I-I<HOGENEOUS BCliNMRY CONDITIONS· 
**** 
1 50 1 
**** oxx ux 
OXXIUX 1.0 
OXY UY 
OXY/UY 1.0 
**** 
Fl 
Fl/U 
Fl/UX 
Fl/UY 
**** 
TF 
**** 

-u*(UX+UY)*(OEXP(-(X+Y))) 
-(UX+UY)*(OEXP(-(X+Y))) 
-u*(OEXP(-(X+Y))) 
-u*(OEXP(-(X+Y))) 

B. 

NOUT 8 
**** 
CUBICS 1 
**** 
XA 
HX 
NX 
YA 
HY 
NY 
**** 
ARC=-1001 
FB1 
ARC=-1002 
FB1 
ARC=-1003 
FB1 
ARC=-1004 
FB1 
**** 

o.o 
0.1 
10 
o.o 
0.1 
10 

DEXP(X) 

OEXP(Y+l) 

DEXP(X+l) 

DEXP(Y) 

SYI'METRY 1 
**** 
ALPHA 2 
**** 
VXY 
**** 
IABC 
**** 
I 
END. 

o.o,o.o, 1.o,o.o, 1.0,1.0, o.o,1.o,o.5,0.5 

1,2,5, 2,3,5, 3,4,5, 4,1,5 

-1001,-1002,-1003,-1004 
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**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
I 50 
**** 
oxx 
OXX/UX 
OXY 
OXY/UY 
**** 

CHAPTER 7 
SECTION (7-3) 
TEST PROBLEM 3 

CO~MENTS:-
N<l'l CONSTANT COEFFICIENT Nel'l-LINEARITIES IN FIRST 

DERIVATIVES 
I 

ux 
I.O 
UY 
I.O 
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FI 
FI/U 

I97 .392088*05 IN ( 6. 283I85*X) *OS IN (12. 56637*Y) tf'UN (X, Y, U) 
-DEXP(U) 

**** 
TF 4. 
**** 
NOUT 4 
**** 
**** 
XA 
HX 
NX 
YA 
HY 
NY 
**** 
ARC=-IOOI 

o.o 
0.05 
IO 
o.o 
0.025 

IO 

FBI 0.0 
ARC=-I002 
FBI 0.0 
ARC=-I003 
FBI 0.0 
ARC=-I004 
FBI 0.0 
**** 
5 YMI-1ETR Y I 

**** uo OS IN (6.283I85*X) *DSIN(l2.5663706*Y) 
**** 
QUARTICS I 
**** 
VXY 0.0,0.0, 0.5,0.0, 0.5,0.25, 0.0,0.25, 0.25,0.I25 
**** 
IABC 
**** 
I 

**** 
ADD. 

**** 
END. 

I,2,5, 2,3,5, 3,4,5, 4,I,5 

-IOOI,-I002,-I003,-I004 

DOUBLE PRECISION FUNCTION FUN(X,Y,U) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
FUN=OEXP(DSIN(6.283I853*X)*DSIN(I2.56637I*Y))-DEXP(U) 
RETURN 
END 



**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
**** 
1 
**** 
oxx 

100 

QIAPl'ER 7 
SECl'ION ( 7-3 l 
TEST PRCBLEM 4 
cm INENTS :-
'!HE VALUE OF F(X,Yl IS DETERMINED SO '!HAT '!HE TRUE 
SOLt'l'riON IS a:>RRECl'.IDNHCUJGENEXlJS BClll'UIRY <XlNDITIONS 
; OSCt LLATCRY SCLllriON • 

, -· 
1 

OXX/UX 
ux 

1.0 
UY 
1.0 

OXY 
OXY/UY 
F1 
Fl/U 
**** 
TF 
**** 
XA 
HX 
NX 
YA 
BY 
NY 
**** 

-U/(U+10l+FF(X,Yl 
U/(U+10,)**2-1,/(U+10,l 

3. 

o.o 
0.2 

5 
o.o 
0.2 
5 

PLC1J: 1 
**** 
**** 
ARC=-1001 
FB1 1.+DSIN(3.14159*Xl 
ARC=-1002 
FB1 DOOS(3,14159*Yl+DSIN(3,14159*(1-Yll 
ARC=-1003 
FB1 -1,+DSIN(3,14159*(X-Yll 
ARC=-1004 
FB1 DCOS(3.14159*(Y))-DSIN(3,14159*Yl 
**** 
SYMME'lRY 1 
**** 
aJBICS 1 
**** 
VXY o.o,o.o, 1.o,o.o, 1.0,1.0, o.o,1.o,o.5,0.5 
**** 
IABC 
**** 
I 
**** 
ADD, 

END, 

1,2,5, 2,3,5, 3,4,5, 4,1,5 

-1001,-1002,-1003,-1004 

DOUBLE PRECISION FUNCTION FF(X,Yl 
IMPLICIT DOUBLE PREX:ISION (A-H,o-Zl 
FF=9.B696*(2.*DSIN(3.14159*(X-Yll+DODS(3,14159*Yll 

*+(DODS(3.14159*Yl+DSIN(3.14159*(X-Ylll/(DCOS(3.141 
*59*Yl+DSIN(3,14159*(X-Yll+10,) 
REWm " 
END 
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**** 
**** CHAPTER 7 
**** SECTION(7-4) 
**** 
**** 
**** SEMICONDUCTOR PROBLEM 
**** 
**** 
3 
**** 
**** 
**** 
**** 
**** 
OlX 
01Y 
F1 
Fl/U1 
Fl/U2 
Fl/U3 
**** 
**** 
**** 

100 

02X 
02X/U1 
02X/U2 
02Y 
02Y/U1 
02Y/U2 
03X 
03X/U1 
03X/U3 
03Y 
03Y/U1 
03Y/U3 
**** 
**** 
ARC=-1001 
FB1 
FB2 
FB3 
**** 
ARC=1002 

2 

SEMICONDUCTOR PROBLEM 

POISSON EQUATION 

UlX 
U1Y 
B(T)*(-DEXP(U1-u2)+DEXP(U3-u1)) 
B(T)*(-DEXP(U1-u2)-DEXP(U3-u1)) 
B(T)*(DEXP(U1-u2)) 
B(T)*(-DEXP(U3-u1)) 

CONTINUITY (DIFFUSION) EQUATIONS 

(DEXP((U1-u2)*B(T)))*U2X*0.588 
B(T)*(DEXP((U1-u2)*B(T)))*U2X*0.588 

-B(T)*(DEXP((U1-u2)*B(T)))*U2X*O.S88 
(DEXP((U1-u2)*B(T)))*U2Y*O.S88 
B(T)*(DEXP((U1-u2)*B(T)))*U2Y*O.S88 

-B(T)*(DEXP((U1-u2)*B(T)))*U2Y*0.588 
(DEXP((U3-u1)*B(T)))*U3X*0.0588 

-B(T)*(DEXP((U3-u1)*B(T)))*U3X*0.0588 
B(T)*(DEXP((U3-u1)*B(T)))*U3X*0.0588 
(DEXP((U3-u1)*B(T)))*U3Y*0.0588 

-B(T)*(DEXP((U3-u1)*B(T)))*U3Y*0.0588 
B(T)*(DEXP((U3-u1)*B(T)))*U3Y*0.0588 

BOUNDARY CONDITIONS 

o.o 
o.o 
o.o 

GB1 0.0 
GB2 0.0 
GB3 0.0 
**** 
ARC=-1003 
FB1 60 
FB2 0.0 
FB3 0.0 
**** 
ARC=1004 
GB1 0.0 
GB2 0.0 
GB3 0.0 
**** 
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ARC=-1005 
FB1 0.0 
FB2 0.0 
FB3 0.0 
**** 
ARC=1006 
GB1 0.0 
GB2 0.0 
GB3 0.0 
**** 
**** 
PLOT 
**** 
TF 
**** 
NOUT 
**** 
NX 
NY 
**** 
uo 
**** 

1 

15 

5 

15 
8 

1.0 

ALPHA 2 
**** VXY 0.0, 0.0, 0.4,0.0, 2.40,0.0, 
VXY 2.8,0.0, 2.8,0.46, 2.40,0.46, 
VXY 0.40,0.46, 0.0,0.46,0.20,0.23, 
VXY 1.40,0.23, 2.60,0.23 
**** 
IABC 1,2,9, 2,7,9, 7,8,9, 8,1,9, 
IABC 2,3,10, 3,6,10, 6,7,10, 7,2,10, 
IABC 3,4,11, 4,5,11, 5,6,11, 6,3,11, 
**** 
I 
I 
I 
**** 
ADD. 

-1001, 0, -1005, 1006, 
-1001, o, 1004, o, 
-1001, 1002, -1003, 0 

DOUBLE PRECISION FUNCTION B(T) 
C FUNCTION B VARIES FRa-1 0 TO 1 TO GRADUALLY INCREASE 
C THE DIFFICUILTY OF THE PROBLEM 

DOUBLE PRECISION T 
B=0.05* <T-1) 
6=DMIN1(B**2,1.0l 
RETURN 
END 

END. 
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**** 
**** 
**** 
**** 
**** 
**** 

CHAPTER 8 
SECTION (8-3) 
TEST PROBLEM 1 
CASE 1 

**** THE FIRST LINE CONTAINS 3 INTEGERS-NEQ,NTF,NDIM IN FREE 
**** FORMAT,WHERE 
**** NT=NUMBER OF TRIANGLES IN THE INITIAL TRIANGULATIONS 
**** NTF=NUI-'SER OF TRIANGLES DESIRED IN FINAL TRIANGULATION 
**** NDIM= RESERVED FOR oJACOBIAN IF NDIM=1 IN-<:ORE STORAGE 
**** CM. Y USED, AND IF NDIM=2 OUT-QF CORE STORAGE USED 
**** 
1 300 1 
**** 
**** THE P.D.E 
**** 
oxx ux 
OXX/UX 1.0 
OXY UY 
OXY/UY 1.0 
**** 
**** 
**** THE SOLUTION ~/ILL BE OUTPUT AT THE POINTS OF THE 
**** GRID, 
**** X=XA +I*HX I=O, ••• ,NX 
**** Y=YA ~*HY J=O, ••• ,NY 
**** 
XA 0.0 
HX 0.1 
NX 10 
**** 
YA -1.0 
HY 0.2 
NY 10 
**** 
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**** PRINTER PLOT OF THE INITIAL TRIANGULATION WILL BE PLOTED 
PLOT 1 
**** 
**** THE PROBLEM IS S'tMMETRIC 
SYI'METRY 1 
**** 
**** 
**** USING CUBIC ISOPARAMETRIC TRIANGULAR ELEMENTS 
**** 
CUBICS 1 
**** 
**** THE BOUNOEARY CONDITONS 
ARC=1001 
y 
X 
GB1 
ARC-1002 
FB1 
ARC=1003 
GB1 
ARC=1004 
GB1 
ARC=1005 
GB1 
**** 

DSIN(1.570796*S) 
-QSQRT(2.0)*DCOS(1.570796*S) 
o.o 
o.o 
o.o 
1.0 

o.o 



**** INITIAL TRIANGULATION ARRAYS 
**** THE COORDINATES OF THE VERTICES OF THE 
**** TRIANGULATION IN THE FORM 
**** VX(1l,VY(1), ••• ,VX(NV),VX(NV) 
VXY -1.414213356,0., -,99999969,.707107, 
VXY 0,,1., 0.,2., -2.,2., -4.,2., -4.,0., 
VXY -2.,0., -1,5,1.25, -2.,1., -3.,1. 

**** **** LIST THE NUI·1BERS OF THE VERTICES OF EACH TRANGLE IN 
**** IA(l),IB(l), IC(l), ••• ,IA(NT),IB{NT),IC(NT) 
**** THIS ORDER DEFINES THE INITIAL TRIANGLE NU~1BERS. 
IABC 1,2,9, 2,3,9, 3,4,9, 4,5,9, 5,10,9, 5,11,10, 
IABC 5,6,11, 6,7,11, 7,8,11, 11,8,10, 10,8,9, 
IABC 8,1,9 

**** **** AN IDENTIFYING INTEGER OF THE B()JNQA.RY ARC CUT OFF BY 
**** THE BASE,AB,OF TR JANGLE K, I (K) =0 IF NONE. 
I 1001,1001, -1002, 1003, 0, 0, 
I 1003, 1004, 1005, O, O, 1005 
**** 
END. 
**** 
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**** CHAPTER B. 
**** SECTION ( 8-3) 
**** TEST PROBLEM 1 
**** CASE 2 
**** POTENTIAL FLO;I PROBLEM 
**** PROGRAM NAME ILFX35 I. INPUT 
**** 
1 300 1 
**** 
oxx ux 
OXX/UX 1.0 
OXY UY 
OXY/UY 1.0 
**** 
**** 
XA -4.0 
HX 0.2 
NX 20 
**** 
YA 
HY 
NY 
**** 

o.o 
0.2 
10 

SY1,1.'1ETR. Y 1 

**** 
**** 
ARC=lOOl 
X 
y 
GBl 
AKC~l002 
Fal 
ARC=l003 
GS1 
ARC=1004 
Gal 
ARC=l005 
GB1 
**** 

-ocos n.570796*Sl 
DSQRT(2.0) *DS IN(1.570796*5) 
o.o 
o.o 
0.0 

1.0 

o.o 
VXY -1.0,0, -0.707107,0.99999969, 0.,1.414213562, 
VXY 0.,2., -2.,2., -4.,2., -4.,0., -2.,0., 
VXY -1.5,1.55, -2.,1., -3.,1. 
**** 
IASC 1,2,9, 2,3,9, 3,4,9, 4,5,9, 5,10 19, 5,11,10, 
IASC 5,6,11, 6,7,11, 7,8,11, 11,8,10, 10,8,9, 
IABC 8,1,9 
**** 
I 
I 
END. 

1001,1001, -1002, 1003, o, 0, 
1003, 1004, 1005, o, o, 1005 
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**** 
**** CHAPTER 8. 
**** TEST PROBLEM 3. 
**** 
**** INVISCID LAMINAR FLOW IN A CHANNEL 
**** PAST A DISC , 
**** 
1 300 
**** 
oxx ux 
OXY UY 
**** 
NX 
**** 
NY 
**** 

20 

10 

S't!-'METR Y 1 
**** 
PLOT 
**** 
**** 

1 

1 

D3EST 
**** 
**** 

1,0/(X**2+(Y-1,)**2l 

AAC=-1001 
FB1 0,0 
ARC=-1002 
FBl 0,0 
ARC=1003 
GBl 0,0 
ARC=-1004 
FB1 2,0 
ARC=-1005 
FBl Y 
**** 
CUBICS 1 
**** 
VXY 0,,0,, 0,,1,, 0,,2., -1.,2., -2.,2., 
VXY -2,,1,, -2.,0., -1.,0., -1,,1, 
**** 
IABC 1,2,9, 2,3,9, 3,4,9, 4,5,9, 
IABC 5,6,9, 6,7,9, 7,8,9, 8,1,9 
**** 
I 
I 
END, 

-1002, 1003, -1004, -1004, 
-1005, -1005, -1001, -1001 
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**** 
**** CHAPTER 8. 
**** SECTION(S-2) 
**** 
**** 
**** 

THE BIHARMONIC PROBLEM 
A RECTANGULAR PLATE PROBLEM. 

**** 
**** 
2 
**** 

74 

oxx 
OXX/VX 
OXY 
OXY/VY 
OYX 
OYX/UX 
OYY 
OYY/UY 
F1 
F2 
Fl/V 
**** 
**** 
ARC=-1001 

2 

vx 
1. 
VY 
1. 

ux 
1. 

UY 
1. 

-SIN(3.1416*X)*SIN(3.1416*Y) 
-V 
-1. 

FB1 0.0 
FB2 0.0 
ARC=-1002 
FB1 0.0 
FB2 0.0 
ARC=-1003 
FB1 0.0 
FB2 0.0 
ARC=-1004 
FB1 0.0 
FB2 0.0 
**** 
**** 
XA 
HX 
NX 
YA 
HY 
NY 
**** 

o.o 
0.1 
20.0 
o.o 
0.1 
10.0 

SYM'IETRY 1 
**** 
CUBICS 1 
**** 
**** VXY 0.0,0.0, 1.0,0.0, 1.0,1.0, 0.0,1.0, 0.5,0.5 
**** 
IABC 
**** 
I 
END. 

1,2,5, 2,3,5, 3,4,5, 4,1,5 

-1001, -1002, -1003, -1004 
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**** 
**** 
**** CliAPl'ER 8. 
**** SECl'ION(8-4) 
**** FIGURE(8-9) 
**** TEST PRCBLEM I. 
**** 
**** 
**** TBE EIGEN-VALUE PRCBIDI 
**** 
I 
**** 
oxx 
OXY 
**** 
FI 
**** 
**** uo 
**** 
**** 
**** 
XA 
HX 
NX 
**** 
YA 
HY 
NY 
**** 
TF 
**** 
**** 

300 

ARC=-IOOI 

I 

ux 
UY 

USET(ll 

I 

o.o 
0.5 
2 

o.o 
0.5 
2 

I5. 

FBI 0.0 
ARC=-I002 
FBI 0.0 
ARC=-I003 
FBI 0.0 
ARC=-I004 
FBI 0.0 
ARC=-I005, 
FBI 0.0 
ARC=-1006 
FBI 0.0 
ARO=-I006 
FB1 0.0 
AR0=-1007 
FB1 0.0 
ARO=-I008 
FBI 0.0 
**** 
SYMI-IE'lRY I 
**** 
runes I 
**** 
D3EST 
**** 

1.1 (X**2+Y**2) 
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tUPOr 

**** 
**** 

0 

VXY 0.0,0.0, 0.0,1.0, -1.0,1.0, -1.0,0.0, 
VXY -1.0,-1.0, o.o,-1.o, 1.0,-1.0, 1.o,o.o, 
V?a( -o.5,o.5, -o.5,-0.5, o.5,-o.5 
**** 
IABC 1,2,9, 2,3,9, 3,4,9, 4,1,9, 
IABC 1,4,10, 4,5,10, 5,6,10, 6,1,10, 
IABC 1,6,11, 6,7,11, 7,8,11, 8,1,11 
**** 
I 
I 
I 
END. 

-1001, -1002, -1003, o, 
o, -1004, -1005, o, 
o, -1006, -1007, -1008 
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**** 
**** 
**** 
**** 

**** 
**** 
**** 
**** 
1 
**** 
oxx 
OXY 
**** 
F1 
**** 
uo 
**** 
D3EST 
**** 

**** 
NX 
NY 
**** 

CHAPl'ER 8, 
SECriON ( 8-4) 
FIGURE(B-12) 

TEST ffiCBWI1 

'!liE EIGEN-VALUE ffi.CBW1 

300 1 

ux 
UY 

USET(l) 

1 

1./ (X**2+Y**2) 

12 
12 

TF 9. 
**** 
NOOT 3 

**** ARC= -1001 
FB1 1.0 
ARC= -1002 
FB1 1,0 
ARC=-1004 
FB1 1.0 
AR0=-1005 
FB1 1.0 
**** 
SJW-IE'IRY 1 

**** 
NUPOl' 0 
**** 
VXY 
VXY 
**** 
IABC 
IABC 
IABC 
**** 
I 
I 
I 
END. 

O,O,O.O,O.S,0.0,1,0,0.0,1.0,0.5,0,5,0,5,0.5,1.0, 
o.o,1.o,o.o,o.5,o.2s,o.25,o.75,o.25,o.25,o.75 

1,2,9, 2,5,9, 5,8,9, 8,1,9, 
2,3,10, 3,4,10, 4,5,10, 5,2,10, 
8,5,11, 5,6,11, 6,7,11, 7,8,11 

-1001, o, o, -1002, 
-1001, 1003, -1004, o, 
o, -1005, 1006, -1002 
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**** 
**** 
**** 
**** 
**** 

CHAPTER 8. 

**** 
**** 

SECT ION ( 8-4) 
TEST PROBLEM 2 
FIGURE(S-15) 

**** 
**** 

THE EIGEN-VALUE PROBLEM 

1 300 1 
oxx ux 
OXY UY 
**** 
Fl 
**** 
XA 
HX 
NX 
YA 
HY 
NY 
**** 
**** 
D3EST 
**** 
TF 
**** 

USET{l) 

o.o 
0.5 
2 
o.o 
0.5 
2 

1./ (X**2+Y**2) 

12. 

NOUT 3 
**** 
ARC=-1001 
FB1 1.0 
ARC=-1003 
FB1 1.0 
ARC=-1004 
FB1 1.0 
ARC=-1005 
FB1 1.0 
ARC=-1006 
FB1 1.0 
**** 
SYMMETRY 1 
**** 
NUPDT 0 
**** 
uo 
**** 
NCRMAL 
**** 
VXY 
VXY 
**** 
IABC 
IABC 
IABC 
**** 

1 

0.0,0.0,0.5,0.0,1.0,0.0,1.0,0.5,0.5,0.5,0.5,1.0, 
o.o,1.o,o.o,o.5,0.25,o.25,o.75,o.25,o.25,o.75 

1,2,9, 2,5,9, 5,8,9, 8,1,9, 
2,3,10, 3,4,10, 4,5,10, 5,2,10, 
8,5,11, 5,6,11, 6,7,11, 7,8,11 

I -1001, 0, O, 1002, 
I -1001, -1003, -1004, O, 
I 0, -1005, -1006, 1002 
END. 
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**** 
**** 
**** 
**** 
**** 
**** 
**** 

CHAPTER 8. 
SECTION(8-4l 
TEST PROBLEM 3 
FIGURE(8-18) 

**** THE EIGEN~VALUE PROBLEM 
**** 
1 
**** 
oxx 
OXY 
**** 
F1 
**** 
uo 
**** 
D3EST 
**** 

300 1 

ux 
UY 

USET(l) 

1 

1./ (X**2+Y**2l 

NORM6.L 1 
**** 
XA 
HX 
NX 
YA 
HY 
NY 
**** 
TF 
**** 

o.o 
0.1 
10 
o.o 
0.1 
10 

9. 

NOUT 3 
**** 
ARC: -1003 
FB1 1.0 
ARC= -1004 
FB1 1.0 
ARC= -1005 
FB1 1.0 
ARC= -1006 
FB1 1.0 
**** 
SYW-IETRY 1 
**** 
NUPDT 0 
**** 
VXY 
VXY 
**** 
IABC 
IABC 
IABC 
**** 
I 
I 
I 
END. 

o.o,o.o,o.5,o.o,1.o,o.o,1.o,o.5,o.5,0.5,o.5,1.o, 
o.o,1.o,o.o,o.s,o.2s,o.25,o.75,o.25,0.25,0.75 

1,2,9, 2,5,9, 5,8,9, 8,1,9, 
2,3,10, 3,4,10, 4,5,10, 5,2,10, 
8,5,11, 5,6,11, 6,7,11, 7,8,11 

1004, o, o, 1002, 
1004, -1003, -1004, o, 
o, -1005, -1006, 1002 
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**** CHAPTER 8. 
**** SECTION (8-5) 
**** **** FLUID MECHANl\:S PROBLEM 
**** 
**** NAVIER-5TOKES PROBLEM 
**** 
2 ISO 2 
OXX -I.D5*REDINT*(UX+VY)+UX 
OXY UY 
OYX VX 
OYY -I.DS*REDINT*(UX+VY)+VY 
FI PARA(T)*(-u*UX-V*UY)-(2.*DSIN(Y)+DSIN(X))*DCOS(X) 
F2 PARA(T)*(-u*VX-V*VY)-(DSIN(Y)-2.*DSIN(X))*DCOS(Y) 
**** 
TF IO. 
**** 
NOUT 5 
**** 
ALPHA 2 
**** 
UO -DCOS(X)*DSIN(Y) 
**** 
vo OS IN (X) *DCOS (Y) 
**** 
XA 0.0 
HX 2.I99II4858 
NX 2 
**** 
YA 0.0 
NY IO 
HY O.I 
**** 
**** 
ARC=-IOOI 
FBI 
FB2 
ARC=-I002 
FBI 
FB2 
ARC=-I003 
FBI 
FB2 
ARC=-I004 
FBI 
FB2 
**** 
**** 

-DCOS(X)*DSIN(Y) 
OS IN (X) *DCOS (Y) 

-DCOS(X)*DSIN(Y) 
OS IN (X) *DCOS (Y) 

-DCOS(X)*DSIN(Y) 
DSIN(X)*DCOS(Y) 

-DCOS(X)*DSIN(Y) 
OS IN (X) *DCOS (Y) 

VXY 0.0,0.0, 3.I4159,0., 3.I4159,3.I4159, 
VXY 0.0,3.I4159, I.570796,I.570796 
IABC I,2,5, 2,3,5, 3,4,5, 4,I,5 
**** 
I -IOOI, -I002, -I003, -I004 
**** 
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ADD, 

END. 

OOUBLE PRECISION FUNCriOO PARA(T) 
IMPLICIT IXXJBLE PREX:ISION (A-H,D-Z) 
PARA=IMINl (1,0, (T-1.0)/3,0) 
RE'lUm 
END 

36.3 




