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Abstract The M-integral can be used to quantify complex damage in materials subjected to 

mechanical deformation. However, the effect of viscoplasticity on the damage level 

associated with the M-integral has not been studied yet. In this paper, the variation of the M-

integral associated with viscoplastic deformation was investigated numerically using a user-

defined material subroutine. Effects of creep deformation and loading rate on the M-integral 

were also evaluated. In particular, the association of crack growth with the evolution of the 

M-integral was captured by the extended finite element method for different crack 

configurations. It was found that viscoplastic deformation has a great effect on the damage 

evolution of viscoplastic materials characterized by the M-integral. Crack growth leads to an 

increase of the M-integral, indicating progressive damage of the materials. Concerning the 

secondary cracks formed around a major crack, the results show that the M-integral is highly 

dependent on the numbers and locations of those secondary cracks. Shielding effect is mostly 

evident for microcracks with centres located just behind or vertically in line with the major 



crack tip. With the increasing number of microcracks, the shielding effect tends to decrease 

as reflected by the increasing M-integral values.  

Keywords: The M-integral; Viscoplastic material model; Multiple cracks; Extended finite 

element method; Crack growth; Shielding effect. 

 

1. Introduction 

Mechanical performance of materials is largely limited by the existence of defects such as 

cracks, voids, inclusions and dislocations [1-6]. For viscoplastic or time-dependent inelastic 

materials, it has been shown that viscoplastic deformation plays an important role in 

determination of stress/strain fields near a crack tip. Advanced constitutive models were 

generally adopted to describe the mechanical behaviour, study crack tip deformation and 

predict crack growth in viscoplastic materials. For instance, Lee et al. [7] introduced a 

viscoplastic model that considered the martensitic phase transformation of austenitic stainless 

steel to predict the material fracture under arbitrary loads. Through a user-defined subroutine, 

the results of the finite element simulations showed that the characteristics of crack 

propagation in an austenitic stainless-steel plate could be predicted effectively by their 

viscoplastic model. Chen and Liu [8] used a viscoplastic cohesive model to analyse the 

mechanical state and temperature increase in near-tip zone during steady crack propagation. 

Their model predictions showed a good consistency with the experimental results, in terms of 

temperature increase in the cohesive zone. In addition, the unified Chaboche viscoplastic 

model [9] was frequently used to simulate the time-dependent plastic deformation of nickel 

based superalloys, with model parameters optimised against monotonic, cyclic and creep 

experimental data. The model was also applied to study the stress-strain fields near a crack tip, 

revealing the near-tip strain accumulation feature under fatigue. The accumulated strain was 

subsequently used as a criterion to predict time-dependent crack growth rate in nickel alloys 



under fatigue loading, which was in good agreement with experimental results [10]. The 

model was also used in Farukh et al. [11] to predict the full process of fatigue crack growth in 

a nickel based superalloy, with the assistance of extended finite element method (XFEM). 

Again, model predictions compared very well with experimental results. 

In order to describe the damage evolution in engineering materials, several methods have 

been proposed [12-16]. Among these, the energy parameters are of great interest due to their 

advantage in describing the complex fracture state of materials. By combining the XFEM and 

interaction energy integral, stress intensity factors can be obtained during the whole process 

of crack propagation [17-19]. For instance, Dolbow and Gosz [17] proposed an interaction 

energy integral method for the computation of stress intensity factors of a mixed-mode crack 

in functionally graded materials. Yu et al. [18] developed an interaction integral method to 

calculate stress intensity factors for an interface crack, interacting with a near-tip inclusion, in 

bi-materials under impact loading condition. Yu and Kitamura [19] presented a new domain-

independent interaction integral (DII-integral) based on the assumption of a zero-mean stress 

field in order to consider the domain-dependence induced by the interface with thermo-

mechanical properties. In addition, the well-known energy-conservation contour integrals, 

such as the Jk- and L-integrals [20, 21] derived from Noether’s theorem, also received a lot of 

attentions during the past years. For instance, the Jk-integrals (k = 1, 2) have been widely used 

as energy fracture parameters to study the near-tip stress-strain state for crack problems [21]. 

However, the interaction methods mentioned above are limited to single crack problems, and 

not suitable for characterizing the energy state of multi-cracked bodies as it is unrealistic to 

track the behaviour of each individual crack tip. On the contrary, M-integral has a particular 

advantage in quantifying damage evolution for multiple cracks as it is calculated along a 

contour enclosing all cracks instead of a single crack tip.  



For the applications of the engineering safety prediction, the M-integral has attracted more 

attention in recent years owe to its practical importance in predicting the crack stability and 

growth. Particularly, it can be used to assess damage for multiple cracks in linear elastic. For 

instance, Chen [22] discussed the problem of multiple microcracks in an infinite 2D brittle 

solid, and concluded that the M-integral calculated along a closed contour surrounding all 

cracks can be divided into two parts, with the first part related to the stress intensity factors 

(SIFs) and the second part controlled by the two components of the Jk integral. Moreover, 

based on the concept of the M-integral, a fracture parameter based on the critical value of the 

M-integral (Mc) was proposed by Chang and Lin [23], which was shown useful for 

evaluation of the surface energy associated with the creation of multiple curved cracks in 2D 

rubbery solid under large deformation. Based on the theory of configurational force, Yu and 

Li [24] physically interpreted the M-integral as self-similar expansion of a specific defect and 

subsequently proposed a new failure theory to investigate the evolution of multi-defects in a 

body. The application of M-integral for three dimensional models has also been confirmed in 

recent research efforts. In particular, based on the two-dimensional framework of M-integral, 

Chang et al. [25] reformulated a new invariant integral named as Mc-integral to evaluate the 

material fracture and structural integrity in three-dimensional (3D) elastic solids. And the 

finite element solutions of the 3D Mc-integral showed good accuracy and effectiveness. In 

summary, the M-integral can serve as an energy fracture parameter, but its application for the 

investigation of multi-cracked problems is still limited, especially the connection between the 

M-integral and crack growth. 

A number of computational methods have been developed to study crack growth problems, 

for example cohesive element [26] the XFEM [27,28] and meshless methods [29]. Among 

these methods, it is known that crack growth can be simulated effectively by the XFEM 

without remeshing. In recent years, the XFEM method has been widely applied to a variety of 



crack problems, such as crack branching problem, fatigue crack growth and the evolution of 

multiple cracks. For instance, Daux et al. [30] verified the effectiveness of XFEM in 

assessing the SIFs for different models involving branched and intersecting cracks. Budyn et 

al. [31] used XFEM for modelling the growth behaviour of multiple cracks in a linear elastic 

media. They considered randomly distributed cracks in both homogeneous and 

nonhomogeneous materials, and the method was shown to be efficient and accurate for 

prediction of crack coalescence and percolation. Using the XFEM, Singh et al. [32] evaluated 

the fatigue life of homogeneous plate with multiple defects such as holes, cracks and 

inclusions. The SIFs for model with different discontinuities were calculated under cyclic 

loading, and the results obtained by XFEM agreed well with the experimental and remeshing-

based FE solutions. Zhuang et al. [33] proposed an enhanced XFEM to investigate the crack 

branching phenomenon widely observed in engineering application. They developed two 

kinds of branching elements, named as “element crossed by two separated cracks” and 

“element embedded by a junction”, to simulate the growth of a branched mode I crack.  

Recently, some efforts have been made to study fracture toughness for viscoplastic materials 

using XFEM technique [34-36], and confirmed the validity of XFEM for viscoplasticity. For 

instance, Kastner et al. [34] investigated the effective viscoplastic behaviour of a 

unidirectional (UD) composite, based on XFEM simulation of representative volume element 

(RVE) and numerical homogenization technique. A good consistency was obtained between 

numerical and experimental results. Bergara et al. [36] studied the complex crack problem in 

a rectangular section of a viscoplastic beam and used XFEM as a new avenue to calculate 

stress intensity factors, which were in good agreement with experimental results.  

However, so far there are no published papers in assessing damage evolution in viscoplastic 

materials using a combination of the M-integral (damage level) and XFEM (crack growth). 

By combining the M-integral and XFEM, it is expected to provide an improved 



understanding of the failure behaviour of these materials and support their engineering 

applications. This paper evaluated the damage of a viscoplastic material, containing single 

and multiple cracks, using the M-integral and XFEM. The same viscoplastic model and 

XFEM technique have been adopted by Farukh et al. [11] to model fatigue crack propagation 

under three-point bending, in good agreement with experimental results in terms of crack 

growth rate and path. However, there are no attempts made for M-integral analyses in either 

viscoplastic or viscoelastic materials. There are no results available for comparison in the 

open literatures. 

The paper is constructed as follows. A brief description of the M-integral and XFEM is given 

in Section 2. Section 3 explains the formulation of a viscoplastic model used in this paper. 

Numerical simulations are presented in Section 4 to study the damage evolution based on the 

analysis of the M-integral. Specifically, the effects of plasticity, creep and loading rate on 

damage evolution were studied by the invariant parameter M-integral for the single crack 

problem. The analyses were then extended to the multiple-crack problem. The main 

conclusions are summarized in Section 5.  

2 The M-integral and extended finite element method 

2.1 Derivation of the M-integral 

Based on material configurational force theory [37, 38], the M-integral can be physically 

interpreted as the potential energy change during the self-similar expansion of the defects. 

The invariant M-integral has been widely applied to predict the stability of multiple defects 

[39, 40]. Since the M-integral is inherently related to the change of the total potential energy 

for a damaged material without concerning the specific damage information of every defect, 

it is an effective method to evaluate the damage evolution of materials containing complex 

defects. For instance, Chen [39] presented a description of the M-integral for an infinite 

brittle solid containing multiple micro-cracks, which was associated with the Eshelby’s 



energy momentum tensor and the corresponding invariant integrals such as Jk-integral and L-

integral. Based on Chen’s work [39], M-integral has been introduced as a damage parameter 

for evaluating the degradation of material and structural integrity induced by the evolution of 

multi-defects. For instance, Li et al. [40] successfully used M-integral to describe fracture of 

elastic-plastic material with multiple defects (e.g. voids) subjected to biaxial loading 

conditions. The feasibility of M-integral in evaluating multi-defect problems has been 

verified for different materials including piezoelectric, general anisotropic and elastic-plastic 

materials. In this study, we assessed M-integral for a viscoplastic material containing cracks. 

The results confirmed that M-integral is also an effective parameter in quantifying damage 

related to crack growth in viscoplastic materials. 

For a multi-defect system as depicted in Fig.1, the M-integral is shown to be associated with 

the material configurational force. Firstly, it is well known that the Lagrangian density L is a 

function related to coordinates xi (i=1, 2), displacements uk and total strain tensor εkj. 

Therefore, in the absence of inertia terms and body force, the Lagrangian function L can be 

identified as the negative strain energy density of the system, 

    i k j i i k j iL L x u x W x u x  , ,, ( ) , ( )   (1) 

where uk represents the components of displacement, and the subscript prima “,” refers to the 

differentiation of a variable with respect to the coordinate.  

The M-integral can be obtained by taking the divergence of the Lagrangian function as 

follows,  
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where  expliW x   denotes the explicit dependence of W on xi. The parameter m represents 

xi,i and is identical to 2 for two dimensions. 
kj  refers to the Cauchy stress tensor. 

Considering the equilibrium condition, 
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The Eq. (2) can be rewritten as 
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Consequently, the derived configurational force equilibrium equation is obtained as, 
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Here, the term Mj is defined as the damage expansion configurational force of material, 

which is related to the change of the potential energy during the formation of defects in the 

initially undamaged system. As described in [38], it is similar to the definition of the Eshelby 

material forces. And the term Λ is treated as the source of material damage, which is induced 

by the discontinuities due to the presence of defects in materials. 

The M-integral is associated with the integration of the configurational force Mj along a 

closed contour. The global M-integral over the contour Г enclosing all defects can be 

interpreted as the sum of local energy release due to the self-similar expansion for each 

specific defect. Considering a two-dimensional space, integrating the component Mj,j  over 

area A, as shown in Fig. 1, leads to  

        1 2j j i ij jk k i i jA A
M M dA Wx u x dA i j k     , , ,

, , ,    (8) 

Using Green’s theorem, Eq. (8) can be rewritten as, 

   ,          , , 1,2i i k k i iM Wx n T u x dl i j k


                             (9) 



where Г is a counter-clockwise closed contour around the whole crack, W is the strain energy 

density of the material, k kj jT n  is the traction vector, ni is the outward unit vector normal 

to Г, l is the arc length, x is the position vector of the integration point.  

2.2 Computation of the M-integral  

In the present study, numerical computations are performed to obtain the value of the M-

integral for multi-crack problem in viscoplastic materials. Firstly, we obtain the all quantities 

of variables in Eq. (9) from the finite element method ABAQUS and the viscoplastic model 

presented in Section 3. Here, the variables refer to stress, strain and strain energy at Gauss 

integration points, and displacement at nodal points. And then, the values of M-integral for 

defined paths could be obtained by the numerical procedure of integration.  

The M-integral is a linear integral and can be rewritten as: 

,( ) =i i k k i i i iM Wx n T u x dl M n d
 

                          (10) 

To calculate the M-integral numerically, a domain integral method was introduced. Basically, 

a closed contour integral is replaced with a domain integral performed over the area or 

volume enclosed by the contour. The method has been widely used for calculation of fracture 

parameters, such as 3D energy release rate, interaction I-integral and J integral [41-43]. 

To start with, a weight function q is introduced firstly. Here, q denotes an arbitrary function 

which could go through the area A smoothly, as shown in Fig. 2. 

The identity relation is given as: 
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Integrating the Eq. (11) over an area A and applying the divergence theorem, we could obtain 

    , ,i i i i i iA
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Here, the integral area A is defined as the shadow region between two closed contours  and 

0 (see Fig. 2). The value of q-function is set as 0 and 1 on outer () and inner (0) contours, 



respectively. It has been demonstrated that the selection of q values on the inner and outer 

boundaries (0 and ) are not sensitive to the calculation of the M-integral, as it is just a 

transition function [41-43]. 

Combining Eqs. (10) and (12), and introducing 0i ,iM   in the zone A due to free of 

singularity, we have 
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The function q could be interpolated over the whole element with the aid of shape functions, 
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where Ni is the shape function related with coordinates (x, y) of the element, and (r, s) 

represents the position of Gauss point. Thus, the M-integral in a single element could be 

obtained by 
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where det(Je) denotes the determinant of Jacobi matrix for the corresponding element. Using 

Gauss integral method, the Eq. (15) could be approximately obtained by the sum of the 

values of I(r, s) on Gauss points: 

1 1 2 2 3 3 4 4( , ) ( , ) ( , ) ( , )eM I r s I r s I r s I r s                             (17) 



Here, four Gauss points were used in the integration for the entire domain in this study. In 

addition, as shown in Fig. 2, the integral domain A is an annular area which does not involve 

any cracked elements. Basically, M-integral computation was performed far away from the 

cracked region. Numerical calculations show that the results of M-integral are not sensitive 

with the crack tip fields. Therefore, no special technique is required for the crack tip. 

By repeating the above procedure, the value of the M-integral corresponding to the chosen 

integral contour could be obtained by the sum of M e within the enclosed path. Therefore, in 

order to avert the unexpected path-dependent issues, the present study assumes that the 

nonlinear deformation is localized inside a damaged viscoplastic zone located at the centre of 

the plate while the outer region is assumed to be linear elasticity with infinitesimal elastic 

modulus (Fig. 3). Here, damage zone refers to a region which contains all cracks and plastic 

deformation. It should be mentioned that damage zone adopted in the computation of 

numerical examples should be sufficiently large to ensure the path-independency of M-

integral [24, 40, 44, 45]. However, the actual size of the damage zone does not affect 

numerical calculation of M-integral which is performed over area “A” free of defects (see Fig. 

2). 

2.3 Descriptions of XFEM 

The XFEM was developed by Belytschko and co-workers in 1999 [46]. It is an extension of 

the standard finite element method based on the concept of partition of unity, and is useful for 

the approximation of solutions with pronounced non-smooth characteristics in small parts of 

the computational domain, for example, near discontinuities and singularities. In the XFEM, 

a crack is modelled in an element by enriching degrees of freedom with special displacement 

functions. The displacement approximation for an arbitrary Gauss point in one element in the 

XFEM takes the following form: 
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where u represents the total displacement vector, n is the number of nodes in the mesh, Ni(x) 

is the shape function of node i, ui are the nodal displacement vectors, and ai and biα are the 

nodal enriched degree of freedom vector associated with the Heaviside step function H(x) 

and the asymptotic crack-tip functions Fα(x), respectively. The H(x) is the jump function, 

defined as 
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The crack-tip functions Fα(x) provide improved accuracy and are required if the crack-tip 

terminates inside an element. These functions are   

  1 4
2 2 2 2

F r rsin rcos rsin sin rcos sin
              

, , , , , ,   (20) 

where r, θ are local polar coordinates defined at the crack tip as shown in Fig. 4, in which the 

crack tip is the pole and the polar axis is along the crack propagation direction.  The 

enrichment functions are suitable for viscoplastic materials. These enrichment functions have 

already successfully used to deal with the crack problems in viscoplastic materials [47-49]. 

Additionally, the enrichment functions are also suitable for the case of micro-crack and 

interacting cracks. 

XFEM defines the elements containing at least one enriched node as enriched elements. 

Nodes of the cracked-element surrounded by yellow contour in Fig. 4 have shape functions 

that multiply H(x). Nodes of the tip-element represented by the blue square are enriched in 

the two Cartesian directions with Fα(x).  

3 Viscoplastic model 

3.1 Model description 



The viscoplastic model employed in this study is one of the classical constitutive 

relationships based on the consideration of yielding. The model was originally developed by 

Chaboche [9], who used both kinematic (α) and isotropic (R) hardening variables to describe 

the full stages of cyclic stress-strain response. The model is proved capable of describing 

time-dependent cyclic plastic deformation for a series of metallic materials such as stainless 

steels and nickel alloys considered in this work. 

For small strain regime, the strain rate tensor is additively decomposed into two parts, i.e., the 

elastic ( ε e ) and the inelastic (ε p ) parts: 

 e p ε ε ε       (21) 

The elastic part of the strain ( ε e ) follows the Hook’s law, 

  1
e
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where σ and I are the stress tensor and the unit tensor of order two, tr the trace, and E and v 

are the Young’s modulus and the Poisson’s ratio, respectively. 

The inelastic part of the strain (ε p ) consists of both plastic and creep components, and its rate 

can be expressed as [9]: 
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where m and Z are viscous constants, f  is the yield function, and the bracket is defined as: 
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According to the yield criterion of von Mises, the yielding function is given by 

     0f R k J R k    , , ,      (25) 

where α and R are the hardening variables, k is the initial radius of the yield surface, and J is 

given by:   
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In Eq. (26), α＇and σ＇ refer to the deviators of α and σ, and : denotes the product of tensors. 

Plastic deformation occurs only when f = 0 and f


: σ > 0. The kinematic (α) and isotropic 

(R) hardening variables are described by [9]:   
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where C1, a1, C2, a2, b and Q are material constants which decide the stress-strain loops 

during cyclic loading, and the accumulated inelastic strain rate p is given by: 
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3.2 Material and model parameters  

The material considered in this study is the nickel-based superalloy LSHR (Low Solvus High 

Refractory) which experiences viscoplastic deformation under the sustained loading and/or 

dwell-fatigue loading, especially at elevated temperatures. Nickel-based superalloys are 

widely used for blades and discs in gas turbine at high temperatures, since they were designed 

to provide superior combination of properties such as high temperature strength, exceptional 

fatigue and creep resistance, and good thermal performance. The turbine blades or discs are 

subjected to varying centrifugal and thermal stresses at high temperatures during service, 

which causes fatigue, creep and environmental damage. Therefore, understanding the crack 

initiation and growth in these alloys at high temperatures is crucial for ensuring the structural 

integrity of gas turbines.  

The viscoplastic model parameters were optimized by Farukh et al. [11] against the uniaxial 

tensile test data of LSHR at 725°C, with values given in Table 1 for completeness. Simulated 



strain-rate effects of four different strain rates (0.001/s, 0.01/s, 0.1/s and 8.310-5/s) are 

shown in Fig. 5 for monotonic tensile (maximum strain 1%). A comparison of the simulated 

response and experimental data was also included for a strain rate of 8.310-5/s, which shows 

a good agreement between the two.  

The above model has already been programmed into a user defined material subroutine 

(UMAT) and implemented into the finite element code ABAQUS [10]. The computational 

cost is between 10 and 40 minutes for most of examples simulated using single CPU i7 intel 

core (i7-6700 CPU @ 3.4GHz). Specifically, for the model containing one single crack in 

Section 4.1 and 4.2 (including the creep analysis), a job in ABAQUS could be completed 

within 40 minutes. The computational times in Section 4.3 are very similar to those in 

Section 4.1. The shielding analysis in Section 4.4 took about 10 to 20 minutes to finish, 

depending on the number of microcracks.  

4. Numerical results and discussions 

4.1 Effect of viscoplasticity  

Firstly, we considered a plate with a central single crack, under plane strain condition and 

subjected to uniform tension σ on its top side, as shown in Fig. 6a. The full dimension of the 

2D plate is 45 mm × 45 mm (length × width), while the dimension of the damage zone is 20 

mm × 20 mm (length × width). The centre crack has a length of 3 mm. The finite element 

mesh is shown in Fig. 6b, consisting of four-node plane-strain elements with full integration. 

In this problem, the applied tensile stress σ is 500 MPa over a period of 100 seconds. The 

criterion applied in XFEM to control crack growth is the maximum principle stress criterion, 

with a critical value of 800 MPa based on uniaxial tensile testing. And the angle of crack 

propagation is perpendicular to the direction of the maximum principal stress. For direct 

comparison, simulations were carried out for both elastic and viscoplastic material models. 



The elastic model has a Young’s modulus of 178 GPa and a Poisson’s ratio of 0.285. The 

viscoplastic model was described in Section 3.  

As shown in Fig. 7, the line with black symbols represents the evolution of the M-integral in 

an elastic material, while the line with red symbols denotes the results for a viscoplastic 

material. In general, the M-integral for the two material models increased monotonically with 

the increasing load level, but with a difference. The values of the M-integral in viscoplastic 

model are higher than those in the pure elastic model. The M-integral denotes the degree of 

damage for the material with defects. Specifically, the plastic deformation enclosed by the a 

rectangle integral path, with a length of 25 mm and a width of 26.5 mm (shown in Fig. 3) 

made additional contributions to the value of the M-integral. Compared to the pure elastic 

model, there’s no plastic strain. For instance, after a time point of 67 s, the difference 

between viscoplastic model and pure elastic model became very distinct. At a time point of 

100 s, the value of the M-integral was 25.33 J/m for pure elastic material model and increased 

to 29.12 J/m for viscoplastic model, i.e., an increase of nearly 15%. 

The XFEM-based simulations enabled the modelling of crack growth, and the crack was seen 

to propagate steadily after a time point of 39 seconds. As shown in Fig. 8, the increase of the 

M-integral is directly linked with amount of crack growth for both material models. Longer 

crack resulted in higher value of the M-integral, which indicates the increased degree of 

damage. The results confirmed the effectiveness of the M-integral as a parameter in 

evaluating the damage of viscoplastic material during crack growth. The crack propagation 

predicted at the end of loading is shown in Fig.8 for two material models.  Furthermore, the 

crack propagates mainly along the crack surface as the geometrical model is a standard Mode 

I crack problem, with an approximate growth of 1.2 mm for each crack tip at the end of 

loading. 



To verify the path-independence of M-integral for viscoplastic material, ten different 

rectangular paths were chosen to compute M-integral. Specifically, the size of the 10 

rectangle paths varied between 25 mm and 26.5 mm for both length and width (see Fig. 3). 

The results are given in Table 2, and confirm that M-integral has a conservation nature (with 

a difference of less than 0.9%) for a viscoplastic material.  

4.2 Time dependency of the M-integral in a viscoplastic material 

Numerical simulations were carried out to investigate the time dependency of the M-integral 

in viscoplastic materials. The geometry model used is the same as that in Section 4.1. Two 

loading cases were considered in the simulations. One is to investigate the influence of creep 

deformation, and the other one is to look at the effect of loading rate.  

4.2.1 Effect of creep deformation 

Creep deformation was simulated by subjecting the plate to a constant load over a sufficiently 

long period of times. As depicted in Fig. 9, there are two loading steps in the finite element 

analysis. Specifically, loading in step I was monotonic with a peak value of 500 MPa while 

loading in step II was held at a constant level of 500 MPa. The corresponding step time was 

50 s and two days, respectively. The evolution of the M-integral is presented in Fig. 9 for the 

two loading steps. See loading step I shown in Fig. 9, under monotonic loading, the value of 

the M-integral increases up to 28.30 J/m. During loading step II, the value of the M-integral 

increases slowly over time, e.g., from 31.47 J/m to 33.95 J/m. The results indicate the 

accumulation of material damage over creep deformation. However, the increase is a slow 

process, indicating limited creep deformation of the material.  

Distributions of von Mises stress for the entire domain were presented in Fig. 10 at different 

times of creep deformation. From 22.3 s to 50 s (Figs. 10a-10f), the model was under loading 

stage with increasing load level. However, the maximum stress at 28.2 s was found less than 

that at 22.3 s. Combining with the variation of M-integral shown in Fig. 9, it is clear that the 



stress distribution was influenced by the crack growth in the material. Although M-integral 

showed an increasing trend from 0 s to 50 s, the maximum value of von Mises stress may 

experience a sudden drop due to stress release associated with crack growth. During the creep 

deformation stage (Figs. 10g and 10h), the von Mises stress decreased slightly. The 

distribution of displacement was also shown in Fig. 11 for the same time points. It can be 

seen that the magnitude of displacement increased gradually during the whole loading 

process as a response to crack growth.  

For loading step I, the corresponding crack growth captured by XFEM is indicated a growth 

of 1.05 mm at each crack tip at the end of loading step. No crack growth was found for the 

loading step II (creep deformation). According to the evolution of the M-integral (loading 

step I & II) against the amount of crack growth, the M-integral has a monotonic increase 

during loading step I. However, during creep deformation (load holding period), the M-

integral only experienced a slight increase, reflecting the absence of crack growth. 

4.2.2 Effect of loading rate 

Three loading rates, 5 MPa/s, 50 MPa/s and 5000 MPa/s, were considered to investigate the 

dependency of the M-integral on the loading rate. The peak stress is 500 MPa, and the 

corresponding step time for the employed loading rates is 100 s, 10 s and 0.1 s respectively. 

The computed M-integral against the normalised time is presented in Fig. 12 for the three 

loading rates, from which we can see that the degree of damage decreases with the increasing 

loading rate. This is because the higher loading rate would lead to a lower strain level in the 

material. For instance, the values of the M-integral at end of the loading step were calculated 

as 29 J/m, 27.7 J/m and 25.13 J/m for three loading rates, 5 MPa/s, 50 MPa/s and 5000 MPa/s, 

respectively. It should be noted that this phenomenon is valid for load-controlled loading 

condition. For displacement controlled loading condition, the degree of damage would 

increase with the increasing loading rate due to the higher level of stress. Also, as shown in 



Fig. 12, when the normalized time is more than 0.4, it seems the M-integral corresponding to 

the loading rate of 5 MPa/s is higher than others. Obviously, the differences of M-integral for 

loading rate = 5 MPa/s could reach 4.7% and 15.4% compared to the values of M 

corresponding to the loading rates of 50 MPa/s and 5000 MPa/s. Therefore, the M-integral 

can directly indicate the influence of loading rate on the damage of viscoplastic material. 

The variation of the M-integral with the crack growth is shown in Fig. 13 for three loading 

rates, from which two main conclusions emerges. Firstly, for the same amount of crack 

growth, lower loading rate induced higher damage energy (represented by the M-integral). 

For instance, when the crack had a propagation of  1.2 mm, the value of M-integral is 29.00 

J/m for loading rate 5 MPa/s while M=25.13 J/m for loading rate 5000 MPa/s. Secondly, the 

M-integral could be the same even through the amount of crack growth was different for 

three loading rates. For instance, for a loading rate of 5000 MPa/s, the value of the M-integral 

was 18.94 J/m when the original crack had a growth of 0.9 mm. This value of the M-integral 

(18.94 J/m) correspond to the crack growth of 0.78 mm and 0.82 mm for loading rates of 5 

MPa/s and 50 MPa/s, respectively. Moreover, for the three loading rates, the corresponding 

crack growth, following the onset of crack propagation, is the same at the end of loading step, 

i.e., a growth of 1.2 mm at both crack tips at the end of loading time.  

4.3 The M-integral of two interacting cracks  

A plate containing two interacting cracks was considered, and the dimension of the plate and 

the loading condition are the same as that described in Section 4.1. Crack 1 has a length of 3 

mm and is parallel to the x axis. Crack 2 also has a length of 3 mm, and its centre is 

positioned at the x-axis with a distance of 3 mm from the centre of Crack 1. The angle α 

indicates the orientation of crack 2 with respect to x-axis, as shown in Fig. 14.  

Fig. 15 shows the evolution of M-integral with varying angle α. It is noted that the M-integral 

for α = 30 and α = 150 is almost the same, with a difference of less than 0.5% (Table 3; end 



of loading step). This is also the case for α = 60 and α = 120, confirming the symmetry of 

the model. Consequently, we only need to analyse the results between 0ο and 90ο. From Table 

3, the M-integral decreases when α increases from 0 to 30, with a sudden jump when α 

reaches 45 and a steady decline afterwards. 

Clearly, two collinear cracks induced the highest value of the M-integral (115.54 J/m). Profile 

of crack growth for two collinear cracks is given in Fig. 16. At the final state, both cracks 

propagated for 2.25 mm at the far tips. In addition, these two collinear cracks approached 

each other at the adjacent tips and became one crack with a growth of 1.5 mm. From the 

crack growth behaviour captured by XFEM, it can be concluded that the two collinear cracks 

in material will coalescence, and finally form one long crack which would induce higher 

damage, i.e., significantly increased value of the M-integral. 

4.4 The M-integral and microcrack shielding effect 

Crack propagation is usually accompanied by the formation of microcracks in the plastic 

zone or process zone at the main crack tip. For instance, multiple slip band cracks which have 

certain inclined angles with respect to the main crack path are formed in the crack-tip plastic 

zone in a polycrystalline Ni-based superalloy at room temperature [50]. Also, secondary grain 

boundary cracks, formed around the main grain boundary crack and parallel to main crack 

plane (normal to loading direction), are observed in a polycrystalline Ni-based superalloy 

under the fatigue-oxidation conditions based on both 2D metallographic observation and 3D 

computed tomography examination [51,52]. These secondary cracks, either discontinuous or 

interlinked, strongly interact with the main crack. The interaction is usually associated with 

the redistribution and/or reduction of the near-tip stresses, leading to decelerated or 

accelerated crack propagation due to the crack tip shielding or amplification effects [53]. It is 

reported that microcracks have strong influences on the crack opening profile, especially 

when they are parallel to the main crack plane [54]. 



In this Section, the M-integral was used to investigate microcrack toughening effect, for 

which varied number and distribution of microcracks, near a main crack tip and parallel to the 

main crack plane, were considered. All simulations were assumed to be plane strain and 

under a uniaxial tensile stress of 500 MPa (as previous sections). The model with a single 

main crack, as depicted in Fig. 6, was also simulated. The main crack has a length of 6 mm 

and the value of M-integral was computed as 138.36 J/m. This was used a reference state to 

evaluate the microcrack toughening effect in the following analyses.  

Here, a plate containing a main crack and a vertical row of parallel microcracks was 

investigated. We assumed that all the added microcracks had the same length of 0.6 mm, and 

separated by a space of 0.4 mm from each other. Micro-crack mentioned in this study refers 

to a much shorter length when compared to the length of the main crack. So, no special 

treatment or new parameter was required in the XFEM formulation. For instance, Loehnert 

and Belytschko [55] presented a multiscale method for simulations of crack propagation 

between macroscale and microscale, where the same XFEM technique was used to carry out 

simulations for both macrocarcks and microcracks. Guidault et al. [56] and Svenning et al. 

[57] also simulated the evolution of microcracks using XFEM method without any special 

treatment. 

As depicted in Fig. 17, three sets of models were considered by varying the distance (denoted 

as d) between the centre line of the microcracks and the right tip of the main crack. 

Specifically, the centre line of the vertical row of microcracks was chosen to be located 

behind (d = 0.3 mm; Fig. 17a), in line with (d = 0 mm; Fig. 17b) and ahead of (d = 0.3 mm; 

Fig. 17c) the right tip of the main crack, respectively. The varied numbers of microcracks 

were 2, 4, 8, 16 and 32. 

As shown in Fig. 18, the lines with black, red and blue symbols represent the values of the M-

integral against the number of added microcracks for the three models considered. The 



reference value of the M-integral (138.36 J/m for a single main crack) was plotted as a dashed 

line to judge the shielding or amplification effects caused by the microcracks. Firstly, the 

relative position of microcracks to the main crack tip has a significant influence on the value 

of the M-integral. This indicates that the microcrack-toughening effect is associated with the 

relative position of the microcracks to the main crack tip. The minimum value of the M-

integral was obtained for the model with two added microcracks. In particular, when the 

centre line of microcracks is ahead of the main crack, both shielding and amplification effects 

can be obtained as shown in Fig. 18. It is because the value of M-integral consists of two 

main contributing factors for three models. One is the propagation of the main crack and the 

microcracks, and the other is the interaction between the main crack and the microcracks. For 

the model shown in Fig. 17c, the position of microcracks is further away from the main crack 

surface/plane, which weakens the interaction between the microcracks and the main crack. 

Also, the damage induced by the propagation of these microcracks would increase the values 

of M-integral. For this situation, the shielding effect can only be observed for the model with 

two added microcracks, as indicated by the black line with blue symbols in Fig. 18. Also, 

irrespective of the positions of microcracks, the damage represented by the M-integral always 

increases with the increasing number of microcracks, due to the collective propagation of 

microcracks. This indicates a dependency of the shielding effect on the number of 

microcracks. 

In addition, two different sizes of microcrack, i.e., a = 0.3 mm and 0.6 mm, were considered 

to study the effect of microcrack length. The centreline of the microcracks was assumed to be 

vertically in line with the main crack tip. The number of microcracks also varied, between 2 

and 32. As shown in Fig. 19, longer microcracks induce higher toughening effect in materials. 

Growth of the main crack is also presented for the model with two microcracks (a = 0.6 mm), 

as shown in Fig. 20a. It can be seen that the main crack has a propagation of 2.7 mm at the 



left tip and 0.5 mm at the right tip at the end of loading step. For comparison, crack growth 

for the model with a single main crack is also shown in Fig. 20b, which clearly indicates that 

the growth of the main crack is weakened due to the growth of microcracks.  

5. Conclusions 

In this paper, the M-integral of a viscoplastic material containing single and multiple cracks 

was investigated using the extended finite element method. The results showed that the M-

integral can be used as an effective parameter to evaluate the damage evolution during crack 

growth. Major conclusions are as follows: 

(1) The M-integral is influenced by the viscoplastic material properties. In detail, for the 

same amount of crack growth, higher M-integral was obtained for a viscoplastic 

model compared to the pure elastic model due to the plastic deformation. Under creep 

loading condition, the results show that the increase of the M-integral is a slow and 

steady process. And for the loading rate investigation, we find that higher loading rate 

generally leads to increased values of the M-integral. 

(2) For the model containing two cracks, the M-integral is affected by crack interaction, 

and strongly dependent on the relative positions and orientations of those interacting 

cracks. It can be concluded that collinear cracks produce the highest M-integral. 

(3) The M-integral can be used to evaluate microcrack-toughening in viscoplastic 

materials. The results showed that the relative position of microcracks to the main 

crack tip would significantly affect the value of the M-integral. Maximum shielding 

effect was observed for two-microcrack model, especially when the centre line of 

microcracks were located behind the main crack tip. When the microcracks are ahead 

of the main crack tip, both shielding and amplification effects were observed due to 

the varied number of microcracks. In addition, considering the effect of microcrack 

length, longer microcracks induced higher toughening effect in materials.  
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Table 1 Optimised parameter values for the viscoplastic constitutive model [12]. 

Parameters Optimised values 

E (GPa) 178.773 

k (MPa) 126.23 

b 

Q (MPa) 

a1 (MPa) 

C1 

a2 (MPa) 

C2 

Z 

n 

6.37 

171.49 

272.45 

2123.61 

306.78 

2587.69 

2018.32 

5.17 

 



Table 2 Values of the M-integral for ten different paths at the end of loading (time 100 s). 

Path 1 2 3 4 5 
Dimension length=25mm 

width=26.5mm 
length=25.2mm 
width=26.3mm 

length=25.4mm 
width=26.1mm 

length=25.6mm 
width=26 mm 

length=25.8mm 
width=25.8mm 

M-integral 
(J/m) 27.24 27.31 27.43 27.52 27.23 

Path 6 7 8 9 10 
Dimension length=26mm 

width=26mm 
length=26.2mm 
width=25.6mm 

length=26.4mm 
width=25.4mm 

length=26.5mm 
width=25.2mm 

length=25mm 
width=25mm 

M-integral 
(J/m) 27.30 27.43 27.53 27.30 27.37 

 

  



Table 3 Values of the M-integral for different orientation of Crack 2. 

 0ο 30 ο 45 ο 60 ο 90 ο 120 ο 150 ο 

M-integral 

(J/m) 
115.54 39.09 51.28 38.37 27.05 38.30 38.96 
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Fig. 1. Multiple cracks with integral contour in a 2D plane. 
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Fig. 2. Sketch of domain integral method for the M-integral calculation. 

 

   



 

 

 

Fig. 3. A viscoplastic plate with randomly distributed multi-cracks in a local damage zone. 
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Fig. 4. Sketch of nodal enrichment and crack tip polar coordinate system 
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Fig. 5. Simulated strain-rate effects of four strain rates (0.001/s, 0.01/s, 0.1/s and 8.310-5/s) 

for monotonic tensile (maximum strain 1%), and a comparison of the simulated response and 

experimental data for a strain rate of 8.310-5/s. 

  



                                                                   

(a)                                                     (b) 

Fig. 6. (a) A sketch of the geometrical model and (b) finite element mesh. 
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Fig. 7. Evolution of the M-integral for elastic and viscoplastic material models.  

 

 

 

 

  



 

 

Fig. 8. The M-integral versus the crack growth length for two material models. 

  



 

Fig. 9. Loading condition and the corresponding variation of M-integral  

 

  



 

(a)                                                                        (b) 

 

(c)                                                                        (d) 

 

(e)                                                                         (f) 

 

(g)                                                                         (h) 

Fig. 10. The distributions of von-Mises stress for different times (a) t=22.3 s, (b) t=28.2 s, (c) 
t=29.3 s, (c) t=30.1 s, (e) t=31.6 s, (f) t=50 s, (g) t=53 s and (h) t=172850 s. 

t = 22.3s t = 28.2s 

t = 29.3s t = 30.1s 

t = 31.6s t = 50s 

t = 53.0s t = 172850s 
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Fig. 11. The distributions of displacement for different times (a) t=22.3 s, (b) t=28.2 s, (c) 
t=29.3 s, (c) t=30.1 s, (e) t=31.6 s, (f) t=50 s, (g) t=53 s and (h) t=172850 s. 

t = 22.3s t = 28.2s 

t = 29.3s t = 30.1s 

t = 31.6s t = 50s 

t = 53.0s t = 172850s 



 

Fig. 12. The variation of M-integral for three different loading rates. 

  



 

Fig. 13. The variation of M-integral against crack growth for three different loading rates. 

  



 

Fig. 14. Sketch of damage zone with two interacting cracks  
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Fig. 15. Evolution of the M-integral for different orientations of Crack 2.  

  



 

Fig. 16. Growth profile for two collinear cracks at the end of loading step  

(a deformation scale factor of 10). 
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(a)                                          (b)                                          (c) 

Fig. 17. The model containing a vertical row of microcracks with the centres (a) behind, (b) 

in line with and (c) ahead of the right tip of the main crack. 
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Fig. 18. The M-integral for different numbers of microcracks with centres behind, in line with, 

and ahead of the main crack tip. 

  



 

Fig. 19. The M-integral for different numbers of microcracks with a length of 0.3 mm and 0.6 

mm, respectively. 
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(b) 

Fig. 20. Crack propagation captured by XFEM at the end of loading step: (a) a main crack 

with two microcracks (b) a single main crack and (a deformation scale factor of 10). 
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