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Abstract—This paper presents a comparison between two di-
rection of arrival (DoA) estimation methods using time modulated
linear arrays (TMLAs). The first method uses a two element array
and numerically derives the signal DoA by using the ratio of the
two harmonics created by array. The second method makes use
of a greater number of elements and known steering angles of the
array sidebands. Results of a numerical simulation are presented
which detail the accuracy in direction finding when using the two
techniques while the array is subject to environmental conditions
such as noise and coherent signal interference. It is shown that
whilst the second method requires a greater number of elements,
it has greater immunity to noise and multipaths.

Index Terms—time modulation, array, direction of arrival.

I. INTRODUCTION

Time Modulated Arrays (TMAs) were introduced by Shanks

and Bickmore [1], and in 1961, Shanks showed how these ar-

rays could be used to form simultaneous beams which operate

at different frequencies [2]. In summary, time modulation is

realised by switching individual elements in an array on and

off periodically. The periodic nature of the switching causes

an incident signal to have its power distributed into a number

of sidebands that exist at unique frequencies and depend on

the angle of incidence and the switching pattern.

TMAs offer reduced complexity over conventional arrays as

they do not require a phase shift network in order to produce a

beam pattern. The switching circuit is controlled digitally, and

therefore a wide range of beam patterns can arise out of the

possible combinations without having to alter the basic setup

of the array [3], [4].

Much of the literature on TMAs focuses on reducing the

sidebands created by the array [5], [6], [7]; however, recent

research has been made into using the sidebands for use in

Direction of Arrival (DoA) estimation. Tennant and Chambers

[8] showed that by adjusting the on-time ratio of a two element

array, it was possible to steer a deep null region which could

be used for target scanning. This technique requires the null

to be steered across a range of directions before an estimation

can be derived.

He et al. [9] showed that the harmonics of a two element

array could be used to find the target without sweeping a

particular beam. It was shown that a DoA estimation can be

obtained using the ratio of the frequency components produced

by the array. Using this method, only one set of data-points

need to be captured to find a signal within a ±90◦ range.

In ideal conditions, He et al.’s solution has zero error,

and can estimate the DoA of multiple incoherent signals

simultaneously. However, there is limited information about

how effective the algorithm is in a practical situation where

there is noise and multiple coherent signals, that originate from

multipaths for example. An alternative DoA finding method

was proposed that makes use of a larger number of sensors

[10] and compares the real-valued powers of the two largest

adjacent harmonic components and uses their known main-

beam angles to linearly interpolate a DoA estimation. This

method was demonstrated in the acoustics domain, but is also

applicable to antenna arrays.

The present paper compares the effectiveness of the two

harmonic analysis techniques when subject to realistic condi-

tions. First, the paper simulates a scenario where a target is

to be located in the presence of white, Gaussian-distributed

noise. Then, the two methods are used to locate a target in the

presence of an interfering coherent signal, such as one that

might originate from a multipath.

II. BACKGROUND THEORY

The output y(t) of an array at time t for a time modulated

linear array (TMLA) consisting of N elements and being

illuminated by a far-field signal x(t) as shown in Fig.1 is given

as [5]:

y(t) =

N−1
∑

n=0

x(t)Un(t)e
jknd sin θ (1)

where k is the wave number, d is the element spacing and

θ is the incident angle relative to the broadside of the array.

Un(t) is a periodic switching function that controls the element

amplitude at any time. In the case of a simple TMA, this

switching function is either 1 or 0 to represent an element in

the array being switched ‘on’ or ‘off’ at a particular point in

time.

Since Un(t) is periodic with time Ts, then the array factor

can be represented in the frequency domain as a Fourier

series. Frequencies of an input signal are distributed across

a series of harmonics which are separated by frequency

fs = 1/Ts and are centred on an input frequency f0. Due to
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Fig. 1. A typical setup of a Time Modulated Linear Array (TMLA) consisting
of N elements. In the present paper, only one element is switched on at any
time.

the periodic changes of signal phase as the array is switched

from one element to another, each of these harmonics have

an independent response to different signal DoAs [9], [10].

The complex amplitude for a particular harmonic h can be

calculated by performing a Discrete Fourier Transform (DFT)

at the frequency f0 + hfs.

A. Harmonic Characteristic (HC) Method

He et al.’s method uses the real and imaginary parts of the

FFT taken from the output of a two element TMLA switched

sequentially. A DoA estimation can be derived using the centre

and outer harmonics X0 and X1 respectively [9]:

θest = arcsin

(

2

kd
arctan

(

πX1

2X0

))

(2)

Equation (2) is derived analytically, so the only source of

error is numerical error. The method can locate a signal within

a ±90◦ angular range, however there is an assumption of ideal

conditions, i.e. no interference.

B. Weighted Average (WA) Method

An alternative method uses the power values in the harmonic

bins of an array. For example, an array with five elements will

have five distinct responses at the frequencies f0±2fs, f0±1fs
and f0 as shown in Fig. 2. A TMLA of N elements will have

harmonics indexed in the range of ±N/2 and each of these

sidebands have a main beam which have direction

θh = arcsin

(

h

RN

)

(3)

where R is the ratio between signal wavelength and element

distance. At the angular point at which each of these sidebands

have a maximum response, all other sidebands have a minimal
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Fig. 2. The array factor for a 5-element array, showing the frequency response
of five different sidebands indexed by h.

response. This comparative relationship can be exploited to

linearly derive a DoA estimation using the two largest adjacent

harmonics Xα and Xα+1 and their known main beam angles

θα and θα+1 respectively [10]:

θest =
(Xαθα) + (Xα+1θα+1)

Xα +Xα+1

(4)

Unlike He et al.’s method, there are theoretical limitations in-

herent from this method as it involves interpolation. However,

the purpose of the paper is to demonstrate that the interpolation

has some benefits in improving noise immunity compared

to the original method. It can be shown that the theoretical

limitations are less significant as the number of elements in

the array increases, even when keeping the total number of

captured samples the same. It should also be noted that only

one input stage is required for data acquisition regardless of the

number of elements used, since only one element is expected

to be on at any one time for the purposes of DoA estimation.

III. NUMERICAL SIMULATION

To compare the two methods, a numerical simulation was

used. A 1 GHz, single-tone sinusoidal signal was assumed,

and modelled as impinging at an angle θ, on a linear array

with isotropic elements spaced half a wavelength apart. For

each angle measured within a ±90◦ range, 1350 samples were

generated at a rate of 10 Gsamples/sec. During the generation

process the effect of time modulation was implemented by

introducing periodic delays related to the element position.

For the harmonic characteristic method, two elements were

used; for the weighted average method, five, nine and fifteen

elements were used. Since the total number of samples re-

mained constant throughout each simulation, this meant that

for a 2-element array 675 samples were taken for each element

consecutively; for a 5-element array, 270 samples were taken

for each element consecutively etc.

Fig.3 shows the typical estimation error for each method

without interference. It appears that the harmonic characteristic

method is the preferred method for DoA estimations in this
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Fig. 3. Simulated error in direction finding when using the harmonic
characteristic method (HC) and the weighted average method (WA) for 5,
9 and 15 elements, and ideal environmental conditions.

scenario since the errors are entirely numerical, and the angular

range of accurate estimation is greater than that of the weighted

average method.

The mean computation time of the 100 simulations was

taken. This was measured from the time that the DFTs are

complete to the time at which a DoA estimation is obtained).

In The weighted average method, this included the time in

finding the largest DFT and the level of its adjacent sideband

and took 0.87µs, 0.96µs and 1.14µs to estimate the DoAs

using 5, 9 and 15 elements respectively. For the harmonic

characteristic method, the elapsed time was 1.31µs, showing

that the weighted average method is computationally simpler,

although it should be noted that a greater number of DFTs

are required when using the weighted average method with a

greater number of elements and this cannot always be done in

parallel to sampling.

In the following sections, common environmental situations

are considered. For each variable changed, 100 simulations

were carried out and the best-case and worst-case (as measured

by the root mean squared error (RMSE) between ±80◦) results

were recorded. The starting phase in each simulation was

changed to a random position, since the phase is unknown

in the real world.

A. Estimations in the Presence of Noise

The simulation was modified to include Gaussian distributed

noise. The output of the array in the presence of noise n(t) is

assumed to be:

y(t) = n(t) +

N−1
∑

n=0

x(t)Un(t)e
jknd sin θ (5)

Results are produced based on varying levels of noise. For

each repeated test, DoA results were fairly similar, so only the

worst case simulation is shown. Fig. 4, Fig. 5 and Fig. 6 show

the error in direction finding in the presence of noise at 20 dB,

10 dB and 0 dB signal-to-noise ratio (SNR) respectively. It can

be seen that the weighted average method is generally more

noise immune, however the harmonic characteristic method
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Fig. 4. Worst case simulated error in direction finding when using the
harmonic characteristic method (HC) using 2 elements and the weighted
average method (WA) for 15 elements, when the array is illuminated in the
presence of noise at 20 dB SNR.
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Fig. 5. Worst case simulated error in direction finding when using the
harmonic characteristic method (HC) using 2 elements and the weighted
average method (WA) for 15 elements, when the array is illuminated in the
presence of noise at 10 dB SNR.

maintains a greater angular range. It can also be seen that

the error in estimation using the weighted average method

is greatest at the angles calculated by (3). Errors at these

specific regions when using the weighted average method

become similar to the errors at any position using the harmonic

characteristic method at noise levels greater than 10 dB SNR.

With decreased SNR, the difference in noise immunity

becomes apparent. It should be noted that this is the case for

a small number of samples taken. The harmonic characteristic

method has been shown to perform well with larger sample

counts in [9].

B. Estimations in the Presence of an Interfering Signal

The simulation was modified further to include a secondary

interfering signal. The interfering signal was set at the same

frequency but at 10% amplitude compared to the target signal

and was kept at a fixed angle of 30◦. In this scenario, the best

and worst results are given in Fig. 7 and Fig. 8 respectively

and the phases of the source and interfering signals in those

cases are given as φs and φi respectively.
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Fig. 6. Worst case simulated error in direction finding when using the
harmonic characteristic method (HC) using 2 elements and the weighted
average method (WA) for 15 elements, when the array is illuminated in the
presence of noise at 0 dB SNR.
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Fig. 7. Best case simulated error in direction finding when using the harmonic
characteristic method (HC) using 2 elements and the weighted average method
(WA) for 15 elements, when the array is illuminated with an interference signal
at 30◦ .
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Fig. 8. Worst case simulated error in direction finding when using the
harmonic characteristic method (HC) using 2 elements and the weighted
average method (WA) for 15 elements, when the array is illuminated with
an interference signal at 30◦.

As can be seen in the figures, the weighted average method

maintains a similar result to its measurement during ideal

conditions, but is most affected near the region of the interferer.

The results do not vary significantly between best and worst

case which suggests a good immunity to multiple coherent sig-

nals. Conversely, the harmonic characteristic analysis method

varies greatly between best-case and worst-case simulations.

It is clear that the accuracy of this method depends greatly on

the phase of the incoming signals.

IV. CONCLUSION

The harmonic characteristic method should be the preferred

choice when determining the DoA in ideal conditions. How-

ever in the presence of noise or interference from a coherent

signal, the weighted average method offers a good alternative

whilst maintaining the small computational effort. Methods of

reducing the spikes of inaccuracies in the weighted average

method have been discussed in [10]; however, the caveat of

using this method is the use of a greater number of elements

in the array which increases the cost of the system, especially

since the number of switches needed will also increase. The

number of operations required to obtain a DoA estimation also

increases as a DFT needs to be performed at a greater number

of frequencies; however, the use of time-modulation means that

only one input stage is necessary regardless of the number of

elements used.

ACKNOWLEDGMENT

The authors are grateful for the financial support of

Loughborough University’s mini Centre for Doctorial Training

(mCDT) in “Building a research future in digital communica-

tions”.

REFERENCES

[1] H. E. Shanks and R. W. Bickmore, “Four-Dimensional Electromagnetic
Radiators,” Can. J. Phys., vol. 37, no. 3, pp. 263–275, mar 1959.

[2] H. E. Shanks, “A new technique for electronic scanning,” IRE Trans.

Antennas Propag., vol. 9, no. 2, pp. 162–166, mar 1961.
[3] M. M. Abusitta, R. A. Abd-Alhameed, I. T. E. Elfergani, A. D.

Adebola, and P. S. Excell, “Beam Steering of Time Modulated Antenna
Arrays Using Particle Swarm Optimization,” in PIERS Proceedings.
Marrakesh: PIERS, 2011, pp. 488–452.

[4] Y. Tong and A. Tennant, “Simultaneous control of sidelobe level and
harmonic beam steering in time-modulated linear arrays,” Electron. Lett.,
vol. 46, no. 3, p. 200, 2010.

[5] L. Poli, P. Rocca, L. Manica, and A. Massa, “Handling Sideband Radia-
tions in Time-Modulated Arrays Through Particle Swarm Optimization,”
IEEE Transactions on Antennas and Propagation, vol. 58, no. 4, pp.
1408–1411, apr 2010.

[6] E. Afacan, “Sidelobe Level and Sideband Optimization for Thinned
Planar Antenna Arrays Using Time Modulation,” in 2013 7th European

Conference on Antennas and Propagation (EuCAP), no. Eucap. IEEE,
2013, pp. 328–330.

[7] C. He, H. Yu, X. Liang, J. Geng, and R. Jin, “Sideband Radiation
Level Suppression in Time-Modulated Array by Nonuniform Period
Modulation,” IEEE Antennas and Wireless Propagation Letters, vol. 14,
pp. 606–609, 2015.

[8] A. Tennant and B. Chambers, “A Two-Element Time-Modulated Ar-
ray With Direction-Finding Properties,” Antennas Wirel. Propag. Lett.,
vol. 6, no. 11, pp. 64–65, 2007.

[9] C. He, X. Liang, Z. Li, J. Geng, and R. Jin, “Direction Finding by
Time-Modulated Array With Harmonic Characteristic Analysis,” IEEE

Antennas Wirel. Propag. Lett., vol. 14, pp. 642–645, 2015.
[10] B. Clark and J. A. Flint, “Acoustical Direction Finding with Time-

Modulated Arrays,” Sensors, vol. 16, no. 12, p. 2107, dec 2016.


