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SYNOPSIS 

This research is based on a study of the parameters affecting 
the adhesion of styrene-butadiene rubber (Solprene 1204) and po1y­
isoprene (Natsyn 2200) to monofilament brass-plated steel wire. 

Investigations are concentrated on the influence of compound­
ing ingredients and coupling agents on the adhesion between the 
rubber and wire using H-shape specimens. X-Ray Photo Electron 
Spectroscopy (ESCA) and Scanning Electron Microscopy (SEM) tech­
niques have been used to identify residues on the wire surface 
and to interpret the chemical and physical roles of carbon black 
and silica on the mechanism of bonding rubber to brass-plated wire. 

-The results show the proportions of carbon black, silica and 
sulphur in the rubber compound required to give optimum rubber to 
metal adhesion and optimum rubber mechanical properties. The results 
also indicate that the lubricant residue on the wire surface, iden­
tified by ESCA, has adverse effect on adhesion. 

Some organic coupling agents (Titanates) have recently been 
introduced as adhesion promoters. The effects of these agents on 
the adhesion characteristics between SBR and brass-plated wire have 
been investigated by using the titanates both as intermediaries 
between the rubber and brass layers and when incorporated into the 
rubber compound. On the latter direct bonding technique the 
influence of the coupling agents on the bulk SBR properties has 
also been studied. "" -

The results show that the titanates' which were,.used as 
intermediaries between rubber and brass-wire exhibited surface 
activity even though they were observed to produce adverse bond 
strength values. Titanates incorporated into the rubber also 
exhibited an effect on physical and bonding properties of SBR. 

-, 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction: Rubber-to-Metal Bonding 

High polymers, as natural and synthetic rubbers, possess 

a number of valuable properties: elasticity, absorbency of 

vibration, resistance to chemical action and high resistance 

to friction. Metals do not possess such properties, but they . 
do possess high strength and rigidity. Combinations of metal 

with rubber can have engineering applications which mainly are, 

to damp out mechanical vibration, to absorb shock loads, to aid 

in suppression of noise, and to contain liquids. 

Earlier methods introduced to bond rubber to metal consis-

ted of attaching the rubber by mechanical means, e.g. by bolting 

or by encasing in a housing or chemically using a layer of ebo­

nite and recently by the use of various chemical types of bonding 

agents to adhere rubber to metal. 

1.1.1 Identification and Classification of Rubber-to-Metal 
Adheslves 

Ebonite was used as the original bonding agent, it functions 

by simultaneously cross-linking and forming a strong attachment to 

metal. It consists essentially of natural rubber with a combined 

sulphur content of 32% and during its preparation the unsaturated 

rubber hydrocarbon becomes saturated due to substantial cross­

linking. Unlike soft vulcanized rubber, ebonite is thermoplastic, 
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and can be shaped and formed at temperatures over 60oC. This 

means that the ebonite bond between soft rubber and metal is 

also sensitive to rises in temperature and will weaken pro­

gressively as the unit is heated. Ebonite can be bonded satis­

factorily to most metals including iron, zinc, tin, but not to 

copper and not to certain brass compositions which contain high 

zinc contents. This technique is still in isolated use today, 

mainly for roller-covering and chemical plant lining. Typical 

ebonite mixes which are often used for bonding rubber-to-metal 

are listed in Table 1.1(1). 

These disadvantages challenged scientists to look for more 

reliable bonding systems. In one approach cyclised derivatives 

of rubber(2) were prepared, by treating the hydrocarbon with sul­

phuric acid or with certain sulphonic acids and these were found 

to have good bonding properties when applied between unvulcanized 

rubber and metal prior to vulcanizing(3). These compounds were 

unfortunately thermoplastic and deterioration of the bond occurred 

at temperatures above 60oC. 

A few years later other modified rubber derivatives were 

developed which showed excellent bonding properties without poss­

essing the major drawback of being thermoplastic. Typically of 

these were chlorinated and hydrochlorinated rubbers(4). Normally 

the chlorination process is carried out with the rubber in solution 

to which chlorine is added and this reacts with the double bonds 

until complete saturation takes place. During this sUbstitution 
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TABLE 1.1 

Typical Ebonite llixes(l) 

Ingredients A B C D 

Na tura 1 rubber 100 100 100 100 

Sulphur 45 35 40 45 

Ebonite dust - - 40 -
Magnesium carbonate - - - 25 

China clay 40 60 50 -
Barytes (barium sul- 40 - - -phate) 

Soft carbon black - 10 - 5 

Lime (calcium hydro-
xide or calcium oxide) 30 - 10 10 

Magnesi a (magnesium - - - 17.5 oXlde) 
Crumb rubber 30 - - -
Whiting (ground chalk) - 30 - -
Red iron oxide - - 25 -(ferric oxide) 

Boiled linseed oil 10 - - -
Brown factice* 5 2 - -

MBTS (dibenzthiazyl dis- - 2 -ulphide) -
DPG (diphenylquanidine) - - 2 -

Mineral rubber 4 4 - -
Litharge (P~O) - - - 3 

. 
304 243 267 202.5 

* Brown factice - is manufactured by reacting special vegetable 
or marine oil with sulphur at 140-160 C 
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reaction the evolution of hydrochloric acid gas occurs as a 

by-product which must be removed by washing before the chlori­

nated product can be used. Chlorinated rubbers which are 

usually proprietary materials, cannot be applied to all metallic 

surfaces with equal success. Effective control of their perfor­

mance and reproducibility was found to be difficult. Cleanliness 

of the rubber and the metal surfaces is of course extremely impor­

tant for good adhesion. 

Polyisocyanates were also found to be good bonding agents 

due to their reactivity at the nitrogen-carbon double bond. 

The di- and tri-isocyanates have proved to be the most interesting 

from the aspect of rubber to metal bonding. The bonding mechanism 

of polyisocyanate with rubber and metal is very complicated. 

The postu1ated(5) bonding mechanism between rubber and isocyanate 

is that an adduct form of isocyanate takes place in rubber forming 

a cross-1inklng thus: 

rubber 

1 

0 H H 0 l I I I 11 -6 C-
N-oCH2-Q-N-C 6"bb" 

OH ~ 

Bonding of isocyanate to metal might be that isocyanate unltes with 

the hydrated oxide layer on the surface of the metal giving a urethane 

linkage between the isocyanate and metal surface. The bond is not 

thermoplastic and when exposed to temperatures as high as 1500 C, 
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failure usually occurs within the rubber phase and not between 

rubber and metal. Triisocyanates can be used to bond all the 

natural and synthetic types of rubber in common use, with the 

exception of silicone rubber. 

It has been understood for a long time(6) that brass can be 

used as a bonding medium. The method of brass plating for 

achieving good adhesion has become one of the most important tech­

niques in industry (rubber to brass-plated metal bonding will be discussed 

in Section 1.2). In spite of a vast expansion in using brass as 

a means of rubber adhesion to metal, only a limited size of com-

ponent could be brass-plated due to handling or manipulation 

problems and process reproducibility, and therefore chemically 

based proprietary bonding agents are widely used especially for 

big items. Such chemical bonding agents are complex mixtures. 

Their composition has been kept secret because of market competi-

tion but they are believed to consist of mixtures of different 

ingredients such as epoxy resins, oxidized olefins, chlorinated 

and sulphonated rubbers, cobalt napthenate and other ingredients 

all of which are normally dissolved in solvent. Some examples of 

these types of bonding agents are listed according to their trade 

names, as given below: 

a) "Chemlok" rubber-to-metal adhesives(7) 

b) "Megum,,(8) 

c) "Thixon" bond agents(9) 
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By way of illustration different grades of Chem10k bonding 

agent for different rubbers and metals are shown in Table 1.2(7). 

1.1.2 Preparation of Metal Surface 

Proper preparation of the surface of metal to be bonded is 

one of the most important factors influencing the adhesion in 

any process. Metal surface preparation methods may be divided 

broadly into two classes, mechanical methods and chemical methods. 

Mechanical methods include such operations as blasting with sand, 

grit, metal oxides or glass beads, abrading with wire brushes, steel 

wool or baked abrasives and machining or scoring with cutting tools. 

Chemical methods use inorganic reagents to convert the metal sur­

face from the essentially free metallic state into metallic com­

pounds. 

A mechanical cleaning procedure for metal, such as steel, is 

where the steel surface is immersed in a trichloroethylene vapour 

degreasing bath to remove the weak oxide residue, mill scale and 

oil contaminants, as these are detrimental to wetting by the bon­

ding agent and thus adhesion. The second step of a mechanical pro­

cess is usually blasting with steel or a1umina grit. Blasting 

consists of impinging the abrasive particles against the metal sur­

face with an air stream. The duration of the blast, the shape and 

size of the blasting material and the hardness and porosity of 

the metal determine the topography of the resulting surface. 

Chemical cleaning methods for steel surfaces may be either 

acid or base and are normally followed by zinc or iron phosphate 

.. 



TABLE 1.2 

Manufacturer's Recommendations for Bonding Different types of Rubbers to Metals using Chemlok Bonding Agent 

Chemlok 2 -coa t Sys tem 
Chem10k 1- Metals Elastomer Coat System Primer Cover coat 

Butyl 220 205 220 or 233 Steel, or 2348 

Natural 220 205 220 or 233 Stainless 

Aluminium 
SBR 220 205 220 or 233 
SBR-natura 1 220 or 234B Brass 

220 or 233 Copper 
Po lyi soprene 220 205 or 234B Zinc 
Nitrile 205 220 or 233 Magnesium Carboxy modified 205 205 233 
Vinyl modified 205 233 Titanium 

Polybutadiene 220 205 220 or 233 Cadmium or 234B 

Fluoro elastomers 607 Lead - -
Si 1 ver 

EPm1 Required 2- 205 236 Platinum coat system Gold 
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conversion coating which is water soluble and thus this proce-

dure has to be followed by passivation through dipping into a 

hot chromic acid solution which forms an insoluble chromic/ 

phosphate complex(lO). 

1.1.3 Mechanism of Rubber-to-Metal Bonding Using Proprie­
tary Chemlcai Bondlng Nedlum 

The nature of the adhesive bond between metals and rubbers 

has not been clarified. The situation is complicated because 

such a bond may have not only a physicochemical character, 

but also, in adhesion of one high polymer to another, chemical 

interaction. 

Salomon and Schonlau(ll) have observed that a higher thermo­

plasticity in the joint shows that the adhesive bond is brought 

about by intermolecular interactions. By contrast, heating only 

slightly affects joint strength and this would indicate that adhe­

sion is based on chemical forces. They gave a diagram, reproduced 

in Figure 1.1, characterizing the temperature dependence of limiting 

tensile strength for a rubber stock bonded to metal by different 

adhesives. As shown, the chemical bonds are responsible for bon­

ding rubber to metal only when rubber stocks are vulcanized to brass-

plated metallic surfaces, or, when isocyanate adhesives are used. 

It is possible that a sufficiently high level of adhesion of rubber 

to metal may occur in a number of cases because of physical bonding. 

-------------------------------------------------------------- .. ~ 
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OL-~--~~~~~~~~~--~~ o 20 40 60 BO 100 120. 140 160 
Temperature [ -

FIGURE 1.1: Effect of Temperature. t. on the Bonding 
Strength of Rubber to Metals by Different 
Methods of Bonding: 

* 
** 

1. With triphenylmethane tri-isocyanate 
(Desmodur R); * 

2. \lith rubber hydrochloride ("Ty-ply")**; 
3. With latex- albumen mixture containing 

sulphur; 
4. With cyc1ized rubber; 
5. With ebonite; 
6. Vulcanization to a brass-plated surface; 
7. Lower limit of adhesive strength for a 

practical application (11). 

Bayer Chemical 
Anchor Chemicals 
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A number of factors are known to play an important role in 

the mechanism of rubber-to-metal bonding. They can be classi­

fied as follows: 

a) Factors dependent upon the structure and nature of the 

rubber to be bonded. 

b) Factors dependent upon the nature and structure of the com­

bination of polymeric materials, solvent, additives etc. 

present in the adhesive formulation. 

c) Factors dependent upon the ~etallurgical state and surface 

nature of the metal to be bonded. 

The Rubbe~ Facto~ 

The adhesion of rubber to be bonded to metal is usually rela­

ted to its polarity. In general it is true that the polar nitrile 

and polychloroprene rubber compounds can be bonded to metal with 

greater ease than the non-polar natural or styrene-butadiene 

rubber. The polarity of rubber can be def~ned by a number of 

methods. Contact angle measurement is usually used(12) to indicate 

polarity characteristics. Contact angle investigations usually 

measure, the degree of wetting, between the polymer in question 

and a reference liquid. The degree of adhesion between a polymer 

and a liquid that wets the polymer is usually higher than that 

when the polymer and liquid do not wet each other. Two materials 

of similar polarity will usually wet each other and exhibit a low 

wetting angle when placed in contact. By measuring the wettabi-
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lity of rubber against a reference liquid we can obtain some 

idea regarding relative polymer polarity. It has been shown(13) 

that complete wetting however is usually not sufficient to give 

adequate adhesion because many polymeric adhesives may \~et 

non-polar butadiene-styrene and natural rubbers, but the 

physical adhesion is inadequate. Good wetting and a reasonable 

degree of polarity of the joined materials must characterize 

the system. 

The possibility of adhering butadiene-styrene rubbers or 

natural rubbers to bonding agents by polar (physical) forces 

alone is quite remote, and some chemical cross-bridging mechanisms 

between the rubber and the polymeric adhesive must be introduced 

into the adhesive-rubber interface system. In most instances the 

chemical link is sulphur, and the mechanism of cross-linking is 

probably similar to the mechanis~ operative during the vulcani­

zation of rubber. The sulphur probably migrates to the interface 

to participate in a primary chemical bridging mechanism, and 

produces a chemical union between adhesive and rubber. Sulphur 

may initially be added to either the rubber or the adhesive (or 

both) and moves to the interface by either concentration migra­

tion or catephoretic effects(13). 

The Adhesive Faator 

The polarity factor is also important in characterislng a 

polymer adhesive. The bonding agent, however, in addition to demon-
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strating a high adhesion and low interfacial tension between 

itself and the rubber, must also demonstrate adhesion to the metal 

surface. Metal requires for adequate physical adhesion, a highly 

polar adhesive but this must not possess excessive polarity. 

The best physical adhesion between metals and polymers usually 

occurs when polymers have a contact angle against water as a 

standard of between 25 and 35 degrees(14). 

Sometimes there is adequate adhesion between rubber and 

bonding adhesive, but the adhesion between bonding adhesive and 

metal is inadequate. This problem can be solved by using a two­

coat bonding system in which the most polar coat, known as primer, 

is applied directly to the metal surface followed by a less 

polar cover coat. It is important that a type of cross-bridging 

process happens between cover-coat and e1astomer. Sexsmith(15) 

in his paper has evaluated the adhesion processes that may occur 

with two-coat bonding agent systems in the formation of rubber-to­

metal bond during vulcanization in the following way, Figure 1.2. 

1. Adsorption of primer ingredients at the metal surface. 

2. Adsorption and/or interdiffuslon of cover-coat and primer 

polymers. 

3. Interdiffusion of polymer and cross1inking agents across the 

rubber interface. 

4. Internal vulcanization of the bonding agent. 

5. Cross-bridging of the e1astomer interface. 

6. Internal vulcanization of the e1astomer. 



Interface (3) 

Adsorption 
and/or 
interdiffusion 
(2) 

FIGURE 1.2 

13 

Elastomer 
(6) 

Internal Vulcanization 

Cross-bridging (5) 
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Internal Vulcanization 
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Concept of Two-coat Bonding Agent System(14) 
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The MetaZ Factor 

There are a number of surface characteristics of metal 

which are important in the bonding of the metal to polymer 

adhesives. The fundamental atomic structure of the metal has 

been given some consideration by a number of authors. Lough­

borough and Snyder(16) stated that the magnitude of adhesion of 

a variety of metals to a reference commercial adhesive was depen­

dent upon the atomic spacing of the metal under consideration. 

For the adhesive, with measured ldentity period (lattice spacing) 

of 0.453 nm, metals with lattice spacings in excess of 0.4 nm 

gave the best adhesion, while metals with spacings less than 

this value did not adhere well. Such an observation is in agree­

ment withthe statement of Alstadt(13) that the interfacial free 

energies between adhering phases should be as low as possible; 

a 'matching' of the micro-dimensional periodicities would contri-

bute to a maximising of the force of attraction and a minimislng 

of the interfacial free energy. A theoretical evaluation of 

those characteristics of a pure metal surface conducive to the 

formation of physical adhesion to a reference polymer can be made 

on the basis of either thermodynamic or electrical considerations(13). 

The surface area and the roughness factor of the metal are 

significant in many adhesive applications. A very rough surface 

may result in a 'starved joint'; the peaks on the metal surface 

may actually 'pierce' the adhesive layer and contact the adjacent 

surface, the total bond area is thereby reduced. In the case of 

rubber-to-meta1 adhesion ncn-conforming surfaces oppose the metal, 

and starved joints are unlikely. 
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1.2 Rubber-to-Brass Bonding 

1.2.1 Historical Background 

As mentioned in the previous section brass can be used 

as a bonding agent between rubber and metal. It is not known 

who first observed this phenomena. but as early as 1862 Charles 

Anderson(6) specified that metal if to be covered with rubber 

should first of all be coated with a layer of brass applied by 

electrodeposition. Another scientist(17) adopted in 1911 a 

brass plating metal technique for obtaining a bond between rubber 

and metal in the production of rollers. 

After the second world war people like Buchan(18) and B10w(19) 

worked assiduously to explain the theoretical basis of brass 

adhesion to rubber. When the steel belted radial tyres came on 

the market brass-plating proved to be a more suitable adhesive 

for the tyre manufacturer. Since then the method of brass plating 

for achieving good adhesion has become one of the most important 

techniques in industry and has attracted much scientific research. 

Despite the feasibility of bonding rubber to brass-plated steel. 

many difficulties are associated with getting good reproducible 

adhesion. Only certain compositions can be employed and with 

these particular brasses only specific rubber formulations may 

be used if a vulcanized bond of a consistently high level of 

adhesion is to be maintained. The brass composition usually 

quoted as being the most suitable for bonding purposes consists 

of 70% copper and 30% zinc. 
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1.2.2 Brass Plating Process 

A solution that can be used for producing a brass deposit 

suitable for bonding to rubber must have properties and 

capabilities not possessed, necessarily, by solutions employed 

for producing decorative and protective finishes. The deposit 

must be uniform in composition and physical structure and it 

must be reproducible. The solution moreover should be stable 

in operation so as to reduce to a min1mum the amount of control 

that has to be exercised over it and should be capable of produ­

cing a satisfactory brass film over a comparatively wide range 

of conditions. In other words the solution should be easy to 

handle. From the economic and productive angles it should depo­

sit rapidly and at a low unit cost. 

In production a brass deposit 1S obtained by plating zinc 

and copper simultaneously from a solution of the salts of these 

two metals. When two metallic ions are present in solution the 

more electropositive will be deposited first of all and unless 

the two ions have approximately the same potential they will not 

deposit together to form an alloy. Because of the dissimilarity 

in their individual potentials, copper and zinc cannot be deposi­

ted simultaneously from a solution of their simple salts, such as 

copper and zinc sulphates or chlorides. By reducing the concen­

tration of copper ions in solution it is possible to make the 

copper less electropositive and by continuing the process to reach 

a stage, ultimately, where the copper and zinc would deposit simul-
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taneously from a solution of their simple salts. The concen­

tration of copper ions left in solution after continued dilution 

combined with the decrease in conductivity would be so small as 

to render this method impractical when simple copper and zinc 

salts are combined with other salts so as to form a complex 

radical. It is possible to prepare solutions of copper and zinc 

in which the individual potentials of the two metals are equal 

and in which the electrical conductivity is adequate for e1ectro­

deposition. Complex salts formed by dissolving copper and zinc 

simple salts in sodium or potassium cyanide are probably the 

most effective for this purpose. 

An excess of cyanide, above the amount required to put the 

metal cyanides into solution, is called the free cyanide, 

arbitrarily defined as the remaining theoretical concentration 

after the conversion of copper to Cu2(CH)3= and zinc to Zn(CN)4. 

Free cyanide is necessary to assist fn anode corrosion and as 

a reserve of cyanide ions to maintain the soluble metal cyanide 

complexes. Clarke(20) found that 5 gl-l of free cyanide was 

sufficient to prevent blistering. As the free cyanide is increa­

sed, the cathode efficiency decreases and there is also a decrease 

in the copper content of the deposit. 

Ammonlum ion is useful for controlling the colour of the brass 

deposit. Ammonium hydroxide has several functions, it acts as a 

complexing agent, assists in good anode solution, and acts as a 

means of pH control, small amounts (0.2-1.5 gl-l) have a remarkable 
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effect in correcting off colour deposits. The effect of ammonia 

on the composition of the deposit has been studied by several 

investigators and the curve in Figure 1.3 by Clarke(20) is 

typical of the results obtained. 

A typical brass solution for coating steel prior to rubber 

bonding is given in Table 1.3(21). 

TABLE 1.3 

Typical Brass Solution for Coating Steel for Rubber Bonding 

Cuprous cyanide, CuCN 

Zinc cyanide Zn(CN)2 

Sodium cyanide, NaCN 

Free cyanide, NaCN 

Copper CuI 

Zinc, Zn 

Solution ratio ,Cu/Zn 311 

Temperature, 35-500 ( 

Current density, 0.5 amp/dm2 

CUrrent Density 

N 

0.29 

0.19 

0.90 

0.13 

0.29 

0.19 

gl-1 

26.2 

11.3 

45.0 

6.4 

18.8 

6.2 

The cathodic current density controls to a l~rge extent the 

amount of brass which is deposited, as well as, to a more limited 

extent, lts composition. Ferguson and Sturdevant(22) found that 
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FIGURE 1.3: Effect of Ammonla on the Composition of 
the Brass Deposit from a Cu/Zn Solution (20) 
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with increasing current density the percentage of copper in 

the deposit layer decreased, while the cathodic polarisation 

increased. This is in agreement with the observation of Compton(23) 

that as the current density increases, the copper content of the 

deposit diminishes, passing through a minimum so that further 

increase in the current density causes the copper content to 

increase again, Figure 1.4. At higher current densities a 

dull brass was produced with burnt working along the edges, 

however operating the solution at a higher temperature was found 

to combat this tendency to a certain extent. 

Temperature 

Since the temperature of the plating solution was found to 

have a marked effect on the composition of the deposit, it has 

been investigated by several scientists. The copper content' 

increases with increase in temperature(23), Figure 1.5. Zentler­

Gordon and Robert(24) state that an increase in the bath of 10C 

will increase the copper content by approximately 2%. Efficiency 

increases with an increase in temperature permitting higher current 

densities. 

Hydrogen Ion Concentration 

The degree of alkalinity of the plating solution, controls 

to a marked extent, the composition of the brass deposited when 

the pH is high (i.e. the solution is more alkaline) and the per­

centage of copper in the brass falls. Whereas with a less alka-
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line solution the percentage rises, when a well buffered solution 

is employed. However it is possible to make a brass plating 

bath function satisfactorily without actually knowing its pH 

value. This has been done over a period of years by the 

addition of ammonia in appropriate amounts coupled with 

close analytical control of the deposit before and after its 

addition. The actual addition of ammonia to a buffered solution, 

which is already alkaline, may not affect its pH to an apprecia­

ble extent. It may be that the zinc forms a more ionisable com­

plex with the ammonia than it does with the cyanide and that it 

deposits more readily under the prevailing conditions. It has 

been pointed out by Hogaboom(21) that when the pH of brass 

solution is over 13.6 it will refuse to plate, but addition of 

a more aci d constituent such as NaHC03 wi 11 remedy thi s condi­

tion. 

The technique of wire or cord plating is different from the 

ordinary plating technique. A helical coil method of wire plating 

in rod form is used followed by subsequent consecutive redrawing 

and heat treatment to the required finished diameter(25). The open 

coil is passed through external roller and comb guide members 

spirally alonJ a rotating shaft held down by a similar roller 
, / 

shaft, asi\lv~\1'a!'r~in Figure 1.6. Electrical contact to the wire 
./ 

is accomplished by a roller contact on the rod opposed by a roller 

guide, functioning external to the plating bath. The internal anodes 

are semi-cylindrically disposed to the rod coil shape. Current 
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-2 densitles up to approximately 55 amps m are said to be employed. 

1.2.3 Wire Drawing Process 

The brass-plated wire or cord used as a reinforcing material 

in rubber (especially in tyres) is in the drawn form. The wire is 

usually produced by drawing of a high carbon steel hillet through 

a shaped die so that the wire is forced to conform to the size 

and shape of the die orifice. Although the deformation per pass 

is limited, it is possible to build up an enormous total defor­

mation by using many dies in sequence. Extreme measures often 

have to be taken before drawing and includes the use of various 

pretreatments such as coatings because it has been found that(26) 

coated steel can be drawn better than uncoated steel. These 

coatings include metallic copper, brass, tin and phosphate. 

The wire used for the reinforcement of rubber is usually coated 

with brass since it exhibits good bonding properties to rubber(6). 

During the wire drawing process, the surface of wire and die 

is in contact wlth each other. The contact area will be only 

possible at the tip of their asperities(27) because most surfaces 

are rough on an atomic scale. The real area of contact will gen­

erally be much smaller than the apparent, Figure 1.7. 

FIGURE 1.7 Contact between Flat Surfaces is C:>nsidered to occur 
only at {,sperity Tips 
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At these regions of real contact, the atoms on one surface will 

attract those on the other and produce strong adheslon. When 

drawing occurs, this adhesion has to be overcome, that is the 

junctions have to be sheared. The force to shear the junction 

is the cause of primary friction between surfaces. In addition 

one surface is harder (die) than the other (wire) hence any rough­

ness of the die will plough out grooves in the softer materials 

and this constitutes a second case of friction. We may write: 

Force of friction (F) = Force to shear Junctions (A) 

+ Force to plough (5) 

The most effective way of reducing friction and surface 

damage is to prevent contact between the surface of the wire 

and die by the use of lubricants. Usually a lubricant, which 

is able to prevent undesirable friction and surface damage has 

also a number of functions notably given as follows: 

1. To penetrate between the two contacting surfaces thus redu­

cing friction and changing the surface to surface contact 

phenomenon by distributing the pressure uniformly along the 

surfaces and thus preventing localised wear due to surface­

surface pressure. 

2. To prevent corrosion of the drawn wire. 

3. To aid dissipating heat caused by friction. 
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In industry many different techniques are in use accordlng 

to the metal being drawn. the size range. and the volume of 

production. There are two broad divisions in wire-drawing tech­

niques: wet drawing and dry drawing. The differences largely 

revolve around the pretreatment and lubrication methods used. 

but they also extend to the design of the wire drawing machine. 

Dry drawing is normally used for large and intermediate wire 

sizes. The main characteristics of wet drawing as opposed to 

dry drawing are that efficient cooling of the wire is possible 

and the product has a better finish(26). While tremendous 

quantities of steel wire (such as tyre cord wire) have been 

drawn by the wet drawing technique and since in the high tempera­

ture drawing of wire. the lubricant reacts with the brass surface 

giving surface 'staining' which is considered detrimental to wire­

rubber adhesion(28). 

The mechanism of wet drawing for wire is of a boundary type. 

A lubricant layer penetrates between the surfaces of the two 

bodies (die and wire) moving in contact against each other. A 

protective layer can be formed by physical (adsorption) and chemi­

cal reaction between the solid and surrounding bulk lubricants 

(see Figure 1.8). 

The thickness of the protective layer is often as small as 

2 nm (10-7 in) and the coefficient of friction for surface opera­

ting with a good boundary lubricant is 0.05 to 0.01 and the amount 
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Underlying Material! wire) 

FIGURE 1.8 The Formation of Protective Layer of Lubricant 
between the Two Sol id Surfaces Formed from ~/ire 
Drawi ng Di e a nd I:; re 

of wear may be 1000 to 10 000 times less than for unlubricated 

surfaces(27). In the boundary mechanism, the chemical and 

physical nature of the surface and lubricant is of major impor­

tance. Such films (protective layers) may contain only one or 

two layers of lubricant molecules. 

Good wire drawing lubricants for tyres must have certain 

properties and the most important of those properties are given 

as follows: 

1. 'Stability' of drawing lubricant emulsion. The lubricant 

used for tyre cord is generally an oiJ-in-water emulsion. 

This emulsion consists of at least one immiscible liquid 

intimately dispersed in the form of droplets. Such a system 

possesses only low stability, but it can be improved by 

chemical additlves, such as mixtures of soap and fatty acid 

which are often called "emulsifiers". McDonough(29) describes 

an emulsifier as a material which possesses surface active 

properties and which affects the stability of the oil-in-water 

emulsion. Emulsifiers can act as wettlng agents and increase 

the adhesion of lubricants to solid surfaces. 
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2. 'Film Strength'. The tern! of film strength in a drawing 

process is defined as the property of a lubricant to pre-

vent metal-metal contact between die and wire being drawn, 

to prevent excessive die wear, and to promote a smooth 

bright finish. In other words, film strength is the 

'ability' of the lubricant to draw the wire. The purpose 

of using extreme-pressure additives (such as organic chlorine 

or sulphur compounds) is to increase film strength of lubri­

cant. It is generally known in the wire drawing industry 

that high pressures are generated on the die approach angle 

when the wire is processed. 

3. Adhesion of rubber to drawn wire. Some researchers consider 

that. after drawing the wire, the residue of drawing lubri­

cant remaining on the wire surface is considered detrimental 
(28,30) 

to the adhesion of rubber to wire (thlS will be discussed in 

Chapter 3). 

Typical wire drawing lubricant ingredients, and their func­

tions as modern wet drawing lubricants, are given in Table 1.4. 

1.2.4 Mechanism of Rubber-to-Brass Bonding 

Although the discovery of the adhesion of brass to sulphur­

vulcanizable rubber dates back some 115 years(6), interest in 

the mechanism of the bond formation is only fairly recent. 

An interesting oxidation theory was developed by Blow(19) 

who suggested that during the cure of rubber in contact with brass, 
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Additive I Function 

Synthetic emulsifier Emulsify, wet metal surface, 
deterge, lubricate 

Amine soaps Haintain pH 

Liquid fats, chemically Lubricant 
modified fats or oils Lubricant and provide anti-

wear or extreme pressure 
properties 

Mineral oils Lubricate, reduce foaming 

Defoamers Reduce foaming 

. 
Che1ating agents Deactivate hard water salts, 

reduce metallic soap formation 

Water Product of reactions, assist 
in coupling 

Coupling agents Solubi11ze incompatible 
ingredients 

Inhibitors Prevent metal corrosion 
Inhibit lubricant oxidation 
Retard bacterial degradation 

TABLE 1.4 Wire Drawing Lubricants I ngredients and their Function 
in the Formulation of \~et Drawing Lubricants(26) 

I 

, 

I 
I , 

I 
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copper atoms diffuse into the compound and oxidisethe rubber 

which leads to an increased surface polarity of the rubber 

phase and it is this oxidised film that provides the adhesion. 

He considered the fact that copper and cobalt are at their most 

effective in catalysing the oxidation of rubber when in the 

form of their fatty acid soaps (which are soluble in hydrocar­

bons) as good evidence for the support of the oxidation theory 

insofar as brass deposits suitable for bonding contain copper 

in a form active towards stearic acid and therefore readily 

soluble in the rubber. In such a form these elements would 

promote the oxidation of the rubber. 

The second theory was based on the existence of chemical 

linkages between the rubber, sulphur and brass. This was first 

put forward by Hayford and Rogers(3l), and with experimental 

evidence provided later by Buchan and Rae(32). According to 

this theory, there are four possible reactants viz copper, zinc, 

sulphur and rubber. They established that sulphur bridges exist 

between Cu atoms at the brass surface and rubber molecules. Copper 

possesses a variable valency and can therefore form more than one 

chemical compound with sulphur and two stable sulphides are known 

to be formed, cuprous sulphide (Cu2S) and cupric sulphide (CuS). 

It was shown(33) that sulphur alone in carbon disulphide solution 

reacts with copper powder to give mostly cuprous sulphide. Sub­

sequently later reaction to the hlgher sulphide is slow and is 

thought to be governed by a diffusion process(34). This cuprous 

sulphide can react in three ways while in contact with the matrix 
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of vulcanizing rubber, as shown by the followlng reactions: 

1. It reacts with free sulphur to form the higher sulphide 

namely cupric sulphide. 

2. It can attach itself to a sulphur atom already bonded to 

the rubber. 

3. It can react directly to the rubber at one of the points 

of unsaturation in the dienes structure. 

Reaction (1) will take place to an appreciable extent only when 

in an excess of uncombined sulphur. Reaction (2) can take place 

at all concentrations of sulphur, but when there is excess pre­

sent there will be an added tendency for formation of sulphur 

chains between the copper and the rubber as shown below: 

-c-c-
I I 
S S 

Formula I I I 
S s 
f I 
Cu Cu 

-c-c-
I I 
s S 

Formul a 11 I I 
s Cu 
f 
Cu 

From a stereo-chemical point of view, structure (11) is less 

likely than structure I, hence the greater probability of a sulphur­

sulphur linkage occurring. If reaction (2) occurs, weak bond for­

mation is likely to result due to the low strength_of these chains 

as the chemical forces creating them are weak. With reaction (3), 

however, two possible structures are: 
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I I 

Formula III S S 
I I 
Cu Cu 
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-C-C­
I I 

Formula IV S Cu 
I 
Cu 

Again from stereochemical considerations structure (Ill) is more 

probable than structure (IV). It can be seen, therefore, that 

less sulphur is required to enter into combination with copper 

in reaction (3) than in reactions (1) and (2), and that, con­

sequently, bad bonding brasses will be characterised by exces­

sive sulphide formation. By the same reasoning, reaction (2) 

will be more likely to occur when fast curing stocks are vulca­

nized against brass, because of rapid saturation with sulphur 

at the reactive double bonds. 

Stuart has also observed(35) that a sulphide film is formed 

on the brass surface in spite of the oxide film initially present 

and that this film acts as the actual adhesive between metal and 

elastomer. According to his observation, good and poor bonding 

brasses differ in that they form different types of sulphide but 

he was not able to characterise these films further or to diff-

erentiate between structural differences of areas on the brass 

surface with good and poor properties due to the lack of suitable 

techl)iques. 

The advent of sophisticated laboratory equipment in the early 

1970's has enabled researchers to study the surface composition 

and structure of brass and brass-plated tyre cord a great deal. 
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Ooij was the first to apply the ESCA (Electron Spectroscopy 

for Chemical Analysis) technique to analyse the brass sheet, 

brass-plated steel cord and rubber-brass interfaces. Although 

most present day applications for the brass-to-rubber bond 

involves the use of brass-plated steel wire or cord, Ooij used 

0.5 mm brass sheet at well defined surface composition which 

could be bonded to rubber and separated smoothly under liquid 

nitrogen. Figure 1.9 shows the bonding specimens and method of 

preparation. 

The properties of the brass coating on steel cord or wire 

cannot really be imitated adequately by using massive brass 

sheets because: 

1. The brass coating on cord is more deformed and contains 

lattice defects and a different texture(36). 

2. The high curvature of the brass-plated filament probably 

increases their reactivity in corrosive media and may be 

different for different filament diameters(37). 

3. The cords contain lubricant residues which may affect the 

adhesion between wire and rubber(38). 

But Ooij claims that the trends observed by varying parameters 

such as compound recipes are similar to those observed when using 

brass-plated cord. His conclusion is probably correct on a quali­

tative basis and in particular is of interest in the identification 

of the mechanism of adhesion. However the results of interface 
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(a) 

(b) 

--(( ) 

(d) 

E 
:::E 
00 

FIGURE 1.9: Preparation of Speclmen (Ooij Experiment) 

a) Brass specimen (thin flat plate) 
b) Vulcanized rubber-brass sample for interface 

analysis 
c) Vulcanized rubber-brass sample for adhesion 

test 
d) Test fixture 
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analysis and depth profiling of rubber-to-brass sample are shown 

in Figure 1.10(39). The adhesion level was such that the bond 

strength would exceed the rubber strength if tested at room 

temperature. Therefore the result of Figure 1.10 is typical of 

a sample with good adhesion. Analysis of the rubber-brass inter­

face has shown that an interfacial film of reaction product is 

always formed. By means of the chemical shift principle (binding 

energy) this layer was identified as a duplex film consisting 

of ZnO and ZnS at the interface-meta1-inter1ayer and Cu2S at 

the interface-rubber-inter1ayer. The ESCA measurements indicate 

that adhesion is 

and rubber(40). 

a bonding between a Cu2S-coated brass surface 

No other chemical state of copper (e.g. CuS or 

Cu-S-rubber bonds) was observed. Haemers(41) has evaluated the 

same observation that during the vulcanization, a stable bond has 

to be obtained between the brass coating and rubber. This bond 

must be at its optlmum when the rubber reaches its optimal prop-

erties with increasing vulcanization time at given temperature­

pressure conditions. During vulcanization the free "S" decreases, 

while, the cross-linked sulphur (po1y-di or mono su1phlde) increa­

ses; simultaneously there occurs a gradual ~ncrease of sulphides 

on the cord side and an increasing amount of Cu at the rubber 

side. this is the adhesion process. The detected "S" on the cord 

side has been identified as Cu2S. by X-ray diffraction. In Figure 

1.11 some events occurring durlng the vulcanization are summarised. 

Modelling. Some modelling experinents 1avebeen performed on 

copper plates immersed in a paraffin bath containing su1phur(40) 
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FIGURE 1.10: Analysis by XPS and Argon Ion Depth 
Profiling of Ruboer-Brass Interface; 
Compound as Indicated; Polished brass 
of 65/35 Composition, Cured 25 mins 
at 1500C; Sampling broken in liquid 
nitrogen, 1 min of Argon Ion Sputtering 
Corresponds to 2 nm Material Removed (39) 
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using ESCA for quantitative analysis of thin films, identifi­

cation shows that the composition of the film is CUxS, The 

CU2P3/2Photo line observed for Cu at the interface with brass 

showed a negative shift when contrasted with controls based on 

metallic copper and Cu2S powder. Figure 1.12. The negative 

shift shown in (c) and (d) of Figure 1.12 can be explained on the 

basis of the non-stoichiometric composition of a sulphide film 

grown on brass. For good adhesion the value of x in CUxS ought 

to be 1.97. This implies that the surface of the growing CuxS 

film contains an excess of sulphur atoms. In the later stages of 

the vulcanization the brass is corroded by O2, OH and other groups. 

present in the rubber. Hence other phases are formed such as CU2_xS 
with x gradually changing from 0.18 to 0.45. 

A series of adhesion experiments were carried out with various 

metals and alloys which show the involvement of CuxS in the adhesion 

reaction(42). Some results are given in Table 1.5. They indicate 

that good adhesion is only obtained with metals which form a thin 

film of CUxS at the surface. and CuxS is identified as the actual 

bonding agent. As the films grow thicker different phases of CuxS 

are formed and this leads to a complete loss of adhesion. 

The mechanism of adhesion of CUxS to rubber is considered an 

autocatalytic effect(40) i.e. during vulcanization the brass sur-

face is corroded by sulphur which is assumed to diffuse by con­

tinuous adsorption-desorption process to the sulphide film and' 

reaction (1.1) occurs: 
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Copper 

i 

935 

CU2 S ( Powder) 

935 

CuxS at surface 
of Copper or brass 

935 

Cu at interface 
brass-rubber 

930 935 

FIGURE 1. 12: CU
2 

Photoline in Some Selected Samples Indi-
P3/2 

eating that Cu at the Interface (see (d)) of Brass­
rubber is in the Form of CUxS (see (c)) 
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TABLE 1.5 

Adhesion of Various rietals and Alloys to Rubber(42) 

, 

I Material (1) Adhesion XPS of Remarks 
Level (2) Interface 

I 
1 Iron, steel 0 - No adhesion 

2 Copper sheet 0 Excess Cu2S Some adhesion 

I if undercured 
I 3 Copper-plated 700-900 - Good adhesion if 

I 
steel (3) plating thickness 

<50 nm 

4 Steel+Cu2S 700-800 Good adhesion I -I coating (4) for fresh C~S 
I layer «50 ) 
I , 5 Zinc sheet 100-200 ZnS formation Poor adhesion 
I 

I 6 Copper-p 1 a ted 700-800 Cu2S formation Good adhesion if 
I zinc (4) plating thickness 
I <50 nm 

7 70/30 brass 700-1000 Formatlon of \GOOd adhesion 
sheet Cu2S and ZnS level depends on 

Isurface prepara-
tion 

I 

1. Vulcanized at 1500C for 25 mins 

2. N/64 11TI12 

3. Electroless il1Tl1ersion plating 

4. Prepared from sample 3 by reaction with sulphur in liquid 
paraffin at 1800 C 
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(1.1 ) 

and also at the sulphide-metal interface the reaction (1.2) takes 

place 

2 Cu ~ 2 Cu++ + 2e- (1.2) 

As CuxS grows, it participates in the rubber vulcanization leading 

to high rubber surface polarity. This polar surface bonds to the 

cuprous sulphide-coated surface by physical interaction (physical 

bonding). Figure 1.13 shows schematically the film grown of CUxS 

and its adhesion to rubber during the vulcanization process. This 

theory is in good agreement with the effect of temperature on the 

bond strength of rubber to brass(32) where low temperatures give 

high bond strength and vice versa. 

The mechanism of adhesion of rubber to brass can be summarized 

as follows: the formation of CUxS is necessary for good adhesion, 

and the total amount of CUxS should not exceed a certain value at 

the end of vulcanization process. Since we are dealing with the 

formation of a crucial film thickness, all factors which may acce-

lerate or retard sulphide formation will thus affect the adhesion 

performance. 

1.2.5 Parameters which Affect the Adhesion of Rubber-to-Brass 

As mentioned in the previous section, the bonding of rubber-to­

brass involves the formation of CUxS and bond strength depends on the 
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CUXS film thickness. The parameters which affect the rate of 

CuxS formation therefore, will have an effect on the bonding 

phenomena. 

1.2.5.1 Effect of Brass Surface Parameters 

Copper Content 

The most obvious parameter which determines the rate of 

cuprous sulphide formation is the copper content of the brass 

alloy. As stated before, several authors have observed that poor 

adhesion is accompanied by relatively large amounts of copper sul­

phide formation which results when too high a copper contents occur 

at the brass-rubber interface. Maesee1e and Debruyne(43) have stu­

died the effect of copper content in the brass and observed that 

the optimum copper content of a brass coating of constant plating 

thickness to give maximum adhesion depends on the rubber compounds. 

65-72% of copper content will usually give good adhesion with most 

types of rubber compounding practice. 

The effect of copper content on the su1phidisation rate of brass 

has been investigated by Ooij(40). His experiment is based on 

su1phidisation of brass sheets of different copper concentration 

in a paraffin medium at 1800C, see Figure 1.14. The experimental 

curves show a pronounced dependence of su1phidisation rate on copper 

content. As can be seen as the copper content increases, the rate 

of reactivity deviates from linearity. This effect is probably 

caused by differences in oxide formation. 
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PLating Thickness 

The brass-plating thickness may have a pronounced effect 

on the adhesion. This effect is, however, strongly dependent on 

the compound composition(43). For higher copper content (> 70%), 

a thin coating is required (i.e. less than 0.2 ~m) and for low 

copper content a higher plating weight (i.e. more than 0.2 ~m) is 

needed for optimum adhesion. A combination of low plating weight 

and low copper content is very difficult to bond satisfactorily. 

The effect of plating weights on cords are most likely caused by 

an increase of brass oxidation if the plating weight is reduced. 

This effect has been stressed by Weening(44), Murray(45) and 

00ij(42). Brassed cords of 2g/Kg plating weight show a considerably 

lower surface copper content and a lower reactivity than cords with 

8g/Kg. The underlying cause of this effect can be understood if one 

considers that drawing of brass-plated cords is an example of cold 

co-extrusion where the outer alloy (brass) can more easily be 

deformed than the actual material of the wire (steel). Therefore, 

the steel deformation produces more heat per unit of volume than 

brass deformation. The brass layer is not only coated onto the wire 

in order to confer adhesive properties, but it also improves the 

drawabilityof the steel, partly by absorbing and dissipating some 

of the deformation energy. If the thickness of the brass coating 

is reduced, its heat capacity decreases and so the surface tempera-

ture will be higher. For the cord producer this implies that in 

an optimized process he cannot simply reduce the plating weight 

keeping all other conditions constant. This may adversely affect 
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the adhesive properties of his material. In order to restore 

optimum bonding behaviour, the lubrlcant will have to be adjusted 

in such a way that it will disslpate heat from the brass surface 

more efficiently. 

1.2.5.2 Effect of ItJbber Compounding 

Many investigations have been done on the effect of rubber 

compounding variations on the adhesion of rubber to brass cord. 

These studies were mostly empirical and not fundamental since 

knowledge of the mechanism of adhesion has only recently become 

available. A rubber mix usually contains sulphur, zinc oxide, 

stearic acid, filler, accelerators, etc. The effect of some of 

these ingredients is to be discussed as follows. 

Sulphur and Sulphur/Aaaelerator Ratio 

It is generally accepted that sulphur is an essential lngre­

dient for adhesion of rubber-to-brass due to its involvement in 

the formation of CuxS. As was mentioned the formation of CuxS is 

based on the corrosion of brass by sulphur. Van Ooij(40) studied 
) 

the reaction of Cu or Cu/Zn (brass) with sulphur in a paraffin 

medium instead of rubber to eliminate the bonding reaction. Al­

though the result obtained differs from the within rubber result, 

it can give useful information to the understanding of brass corro­

sion by sulphur and the relative effects of sulphidisation. Some 

typical results of the sulphidation of copper and brass by sulphur 
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in paraffin are given in Figure 1.15. For both metals parabolic 

curves are obtained which indicate the rate determining step in 

the mechanism of film growth is the diffusion of copper atoms to 

the surface of the film and not the diffusion of sulphur molecules 

in the solution(46). Another observation is that a variation of 

sulphur concentration fromO.2 to 2.0 pphr has no effect on the 

rate of sulphidation. These results are in agreement with the 

model mentioned in Section 1.2.4 (Figure 1.13) that the surface 

of the growing CuXS film is completely covered with absorbed 

sul phur atoms. 

Other literature deals with empirical findings. It was found 

that the minimum amount of sulphur to give satisfactory adhesion 

is 2 pphr. Ayerst(47) observed that up to at least 10 pphr of 

sulphur gave a high bond strength. He also demonstrated that at 

a constant sulphur level, the adhesion drops to a very low value 

as the accelerator level increases above about 1 pphr. This effect 

is confirmed in several pUblications(48,49), 

SteCll'ia Aaid 

The effect of stearic acid dosage on adhesion has been studied 

by Hicks and LYOn(50). They reported a well-defined optimum stearic 

acid of 2 pphr for thiazole accelerated systems. Van 00ij(40) found 

that up to 2 pphr stearic acid markedly accelerated the rate of 

brass sulphidation in a paraffin medium (the model mentioned earlier) . 
. 

The omission of stearic acid was found to have two effects: first, 

that the Z1nc oxide particles in the reaction mixture are no longer 
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suspended and tend to settle; second, the rate of sulphidation 

is decreased markedly. Also it was noticed that the curve devia­

tes from linearity which indicates a different growth mechanism. 

Consequently, it was also found that the addition of stearic acid 

to a sulphidation mixture has two effects: it is adsorbed by the 

ZnO particles via the polar groups in the molecules thus keeping 

the ZnO particles in suspension; on the other hand, the corrosion 

of brass by sulphur is noticeably accelerated due to the effect of 

stearic acid on brass corrosion(46) . 

Zina Oxide 

A few authors have studied the effect of ZnO loading to 

rubber-brass adhesion. Rutz(51) in his experiments concluded 

that some ZnO, about 3 pphr, is required for activation of the cure 

system. Any additional ZnO had little effect on adhesion. Hick and 

LYOn(52) reported an optimum ZnO content of 15 pphr. Quantitatively 

a 10% gain in adhesion resulted when the ZnO content increased 

from 4 pphr to the optimum level. Ulbrich and Backhaus(53) state 

that adhesion to metal is influenced by the shape and purity of the 

zinc oxide as well as the degree of dispersion. Zinc oxide parti­

cles have traditionally been described as being acicular, molecular, 

or round because of their appearance under the optical microscope. 

A statistical study of the effect of ZnO was recently reported by 

Carpenter(54). He concluded that the adhesion increased with ZnO 

loading especially for cures longer than the optlmum cure, Figure 

1.16. He comments that when there is not enough ZnO in the compound 
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for vulcanization, then ZnO on the brass surface will be used so 

adhesion decreases because it has been known that the ZnO controls 

the CuxS formation. When ZnO is available in the rubber, the 

attack on the ZnO layer on the brass is reduced and adhesion 

increased. 

He also shows that decreasing the particle size of ZnO will 

increase the adhesion. This effect is considered due to the small 

particle size of the ZnO increasing the availability of ZnO so 

the ZnO on the brass surface will not be used. This effect is 

shown schematically in Figure 1.17 where the upper part of the 

figure represents compounds containing large ZnO particles, the 

lower part of the figure represents compounds containing small ZnO 

particles. Vulcanizing agents are considered to react with the 

closest available ZnO particle. Both dashed lines in Figure 1.17 

represent a divlsion between rubber-wire. Above the dashed line, 

vulcanizing agents will react with particles in the rubber. Below 

the dashed line, they will attack the ZnO layer on the brass. 

A comparison of the area under the dashed line ,is probably a good 

indication of the severity of the attack of the ZnO layer and 

consequently, the level of adhesion. 

Van Ooij found no effect of ZnO type or concentration on the 

rate of brass su1phidisation in his paraffin medium reaction, if 

the mixture contained no stearic acid. If the mixture did contain 

stearic acid, addition of some ZnO led to a higher rate of brass 

su1phidlsatlon(40) • 
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Acce l-erators 

Sulphenamide type accelerators are the most widely used for 

bonding of rubber to brass-plated cord since it has been reported 

that a sulphenamide accelerator gives high adhesion. Bertrand(55) 

compared 10 accelerators and concluded that only the sulphenamides 

CBS, TBBS, MBS and DCBS can give high bond strengths. Albrecht(4B) 

explained the good performance of sulphenamides on the basis of 

their longer scorch times, which resulted in a better wetting of 

the metal surface. He also reported that higher doses of sulphena­

mide will increase the rate of cross-linking and reduce the scorch 

time so adhesion should be reduced. Other publications(56) confirm 

that there will be a reduction in adhesion at levels of accelerator 

higher than 1 pphr, Figure 1.lB. The ultra-accelerators such as 

ZDEC, "[NTM, or TMTD, even if added in small amounts or in combina­

tion with sulphenamide accelerators lead to very low bond strengths. 

Hicks(50) suggested a qualitative adhesion rating of these ingre­

dients given in Figure 1.19. 

Van Ooij has studied the effect of sulphenamide accelerators 

on the rate of sulphidisation. He explained that sulphenamide­

types have a pronounced effect on the sulphidisation reaction. 

They initially retard the reaction, but in a later stage an acce­

leration is observed(40). These results indicate that the 

accelerator is initially an inhibltor of brass corrosion by sul­

phur, probably as a resul t of a strong adsorption at the CUxS 

surface. 
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Fitters 

Filled rubbers generally have better adhesion to brass than 

unfilled rubbers. Each filler has an optimum loading for maximum 

adhesion usually giving in the range of SO-7S compound hardness 

(IRHD). Carbon black is the preferred loading or reinforcing 

agent for rubber when it has to be bonded to brass. It has been 

found that increasing carbon black proportions always increases 

the bonding of rubber to brass up to an optimum level and the 

bond strength depends upon the type and properties of the carbon 

black. Its first effect is by altering the rate of vulcanization 

in a direction that favourably affects the competing reactions of 

the rubber and brass for sulphur and second, it increases the rein­

forcementof the rubber. Hick and co-workers(SO) published a com­

prehensive study of carbon black loading and properties on the adhe­

sion. Above SO pphr, additional black hardly affects adhesion 

(Figure 1.20). Black properties such as dispersion, structure, 

porosity, activity, sulphur content, and concentration of volatiles 

were all found to affect adhesion quite noticeably. Hicks(52) 

explained these effects on the basis of the well-known effect of 

black properties on compound stiffness and, inasfar as volatiles were 

concerned on the pH of the mix. Poyarkova, Maloenko and Timofeeva 

also reported that the pUll-out force increases with carbon black 

loading, reaching an optimum at SO-60 pphr(S7). They found that 

at this loading the type of black had no marked effect. In a tech­

nical bulletin published by Monsanto it is reported that the type 

of carbon black has only a small effect on adhesion, but can have 

a major influence whenever certain adhesion promoters are used(49) • 
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Van Ooij was unable to detect any effect of low structure 

HAF black on the rate of brass sulphidisation in a DCBS system(40). 

On the other hand, the presence of HAF black increases the overall 

rate of reaction between rubber and sulphur and promotes desul­

phuration, thus leading to an increase of cross-link efficiency (58) 

The effect of silica and silicates fillers were studied by 

Creasy and co-workers(59). They observed that adhesion of natural 

rubber compounds to brass-plated wire was improved through the use 

of silica or silicates. The increase was only 10-30 percent, but, 

addition of resorcional and hexamethylene tetramine greatly 

improved adhesion. So silica should always be used with resorcional 

and hexamethylene tetramine. The increase in adhesion was claimed 

due to an improvement in wetting and hydrogen-bondlng between the 

rubber compound and substrate to which it adheres(59). Van 00ij(60) 

argues in a different way that the NR compound with an HRH system 

forms the usual ZnO-ZnS-CuxS interfacial layer, and it does not 

seem likely that wetting, hydrogen bond and surface energy change 

play a significant role in determining rubber-brass strength. 

1.3 Bonding of Synthetic Rubber to Brass 

Natural rubber has been used in most investigations of bonding 

to brass-wire. A few papers are concerned wlth the adhesion of 

synthetic to brass-wire. Generally synthetic rubbers can be 

divided into two general classes: those which have been developed 

to act as replacements for natural rubber, and those which are 

classed as "special purpose" rubbers. The various grades of co poly-
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mer butadiene and styrene have acted as substitutes for natural 

rubber, while polychloroprene, acrylnitrile-butadiene copolymer, 

butyl rubber exemplify the special purpose synthetics. 

In order to produce qualities which will bond to brass­

plating. the same general principles are followed as with natural 

rubber. but the proportion of ingredients must be adjusted largely 

by trial and error, so that the speed of vulcanization of the 

rubber balances the rate of reaction of the sulphur in the rubber 

with the brass. With styrene-butadiene rubber and acrylnitrile-

butadiene the proportion of sulphur. as a percentage of the total 

hydrocarbon, is usually less and the accelerator content higher. 

In butyl rubber stocks the sulphur may be normal but the accelera­

tor or accelerator combination is very fast curing compared with 

natural rubber usage. Buchan(61) compared the bond strength 

between natural rubber and SBR which consisted of a copolymer con­

taining usually 70% of butadiene and 30j; of styrene to brass-plated 

wire. under the same condition. He concl uded that the bond strength 

was less than that obtained from natural rubber. 

Generally, the rubber compounding additives play the more , 

important role in the bonding of rubber to brass and the type of 

rubber is not so important. 

1.4 Objectives of Present Work 

The purpose of this present work is to study parameters affec­

ting the adhesion of solution polymerised styrene-butadiene rubber 

(Solprene 1204) and synthetic polyisoprene (Natsyn 2200) to mono-
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filament brass-plated wire. These parameters are as follows: 

1. The effect of drawing lubricant residue on the adhesion 

between SBR and brass-plated wire. 

2. Optimization of the proportion of carbon black (HAF) and 

silica (VN3) and also sulphur proportion in filled SBR, 

filled IR and their gum form, according to their adhesion 

to brass-plated wire and to mechanical properties. 

3. Some recently introduced coupling agents (Titanates) may 

perhaps be useful as adhesion promoters hence the effect 

of some selected titanates on the adhesion characteristics 

between rubber and brass-plated wire will be investigated. 
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CHAPTER 2 

SPECIMEN PREPARATION AND TESTING 

2.1 Introduction 

The present work aimed to study adhesion of rubber to brass­

plated wire which finds its application in the tyre industry, much 

research work has been carried out on the adhesion of natural rubber 

to brass wire. As natural rubber is being increasingly substituted 

by synthetic rubber due to its high cost, it was considered useful 

to study the adhesion of synthetic rubber to brass-plated wire. 

Two different types of synthetic rubber commonly used for tyres, 

styrene-butadiene rubber and po1yisoprene rubber were chosen for 

this investigation. 

The techniques used for mixing, moulding, physical and adhesion 

testing are described in the following sections. 

2.2 Materials 

2.2.1 Brass-Plated Steel Wire 

Throughout this work a single filament type of brass-plated 

wire* of 0.3 mm diameter and 5-6 g/Kg (0.3~) thickness of brass­

coating was used. 

2.2.2 Styrene-Butadiene Rubber (Solprene 1204)** 

This is a solution type of SBR with random structure 1n which 

the ratio of butadiene to styrene is 75/25. It was selected due to 

* Supplied by Steel Cord Limited, Spondon, Derby 
** Supplied by Phi1ips Petroleum Chemical SA, B-1000 Brussels, Belgium 
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the relative absence of non-rubber additives, it has 98-99% 

purity compound to the emulsion grades of 92% purity. Due to its 

lower unsaturation curing being slower than with natural rubber, 

it requires higher accelerator levels. Solprene elastomers can 

be reduced in viscosity by mastication and by addjLtion of stearic 

acid (see Figure 2.1). 
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This is an important characteristic and used to control the Mooney 

Viscosity. Such a breakdown is temperature dependent and can be 

tenninated by the addition of reinforcing filler~. 
I \ I 

Another characteristic of Solprene 1204 is its low ~ve, i.e. 

elastic recovery, hence it sometimes tends to bond loosely on mills 

and occasionally it tends to stick to the mill rollers. 
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2.2.3 Polyisoprene (Natsyn 2200)* 

This is a high cis 1-4 polyisoprene of stereo specific struc­

ture which has a 96% cis content. The processing characteristics of 

Natsyn 2200 under normal mill mixing conditions forms a smooth band, 

usually after one minute, at which point filler and other ingredients 

may be added. Fi\ler incorporation is very rapid and the minimum of 

cross-cutting and folding is required. 

2.2.4 Fillers and Other Ingredients 

The two fillers used are given in Table 2.1 with nominal values 

of particle size and specific surface area and their supplier's 

name. / 

Type of Fi 11 er Classifi - Particle Specifi c 
and Commerci a 1 cation Size Surface Suppl i er 

Name (nm) Area 
m2/g 

Carbon black N330 29 75-88 Cabot HAF (Vulcan 3) Carbon 

Silica 11 -19 175 I.D. Chemical 
Ultrasil (VN3) - (Degussa) 

TABLE 2.1 Fillers Used, their Names and Properties 

Other compoundings used were zinc oxide(l), stearic acid(2), sulphur(3) 

(4 ) 

* Goodyear Compaigne, Francaise. Goodyear BP 31-91402, Orsey. 
1. Anchor Chemical Co. Ltd. 
2. Anchor Chemical Co. Ltd. 
3. Anchor Chemical Co. Ltd. 
4. Vulcafor, Vulnax International Ltd. 
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2.3 Preparation of Test Specimens 

2.3.1 Mixing of Rubber Compounds 

Rubber (SBR) or IR) and other ingredients were compounded on 

a two roll mill of 850 cc capacity. SBR tended to bond loosely 

on the mill; it was found that mixing of SBR at 90-1000 C roll 

temperature improves its mixing behaviour. 

Addition of compounding ingredients was done in two different 

ways, depending on the identity of the mix. The following mixing 

order was used for non-silica containing formulations: 

SBR ~ Activator (Zinc oxide/Stearic acid) + Filler (carbon black (HAF)) 

~ Accelerator ~ Curing agent 

IR ~ Activator (Zinc oxide/Stearic acid) + Filler (carbon black (HAF)) 

~ Accelerator ~ Curing agent 

In silica containing formulations, the activators (zinc oxide/ 

stearic acid) were added after silica in order to avoid any silica/ 

activator interaction as reported(63). The order of mixing used 

for such silica containing formulations was: 

SBR ~ Silica (VN3) ~ Coupling agent (Si 69) ~ Activator (Zinc oxide/ 

stearic acid) ~ Accelerator ~ Curing agent 

It was found that SBR/silica without coupling agent gives 

poor physical properties (see Chapter 4, Section 4.3.1). 
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2.3.2 Curing Characteristics 

After compounding the rubber, it was stored for 48 hours to 

allow any unknown chemical reactions to go to completion before 

vulcanization occurred. 

A Monsanto ODR, TM100 was used to measunecuring characteris­

tics. This instrument consisted of a die cavity located between 

electrically heated platens as shown in Figure 2.2. The temperature 

of the platens and dies are maintained to within ± 0.50C by propor­

tional temperature controllers. A rubber mix is placed within the 

vulcanization chamber so that a reciprocating biconical disc is 

embedded in the mix and the mix is maintained under high pressure 

throughout the test. The sinusoidal oscillation of the biconical 

disc at constant amplitude exerts a shear strain on the mix. As 

vulcanization proceeds the torque required to shear the mix increa­

ses and a curve of torque versus cure time is generated. The idea-

1 ised forms of cure curves are given in Figure 2.3. 

Scorch and cure time were calculated as follows: 

Scorch time = time taken to raise torque value of 2 units 

above the minimum point on the cure curve 

Cure time = 90 or 95% criterion was adopted calculating 

from the formula: 

(MM - ~lL) x (90 or 95) 
T90 or T95 = ML + - 100 minutes 

Cure rate index = 100. t· 1 t (xj _ t 1S propor 10na 
c sx 

to the average 

slope of the cure rate in the steep region. 
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2.4 Moulding Methods 

2.4.1 Physical Testing Samples 

Vulcanized rubber sheets were prepared using a mould with 

93 cm3 cavity volume where the blank produced was 2 ± 0.2 mm in 

thickness. The cured sheets were stored for 24 hours in poly­

thene bags for curing prior to testing in accordance with British 

Standards BS 903 procedures. 

2.4.2 Adhesion Samples 

Adhesion specimens were prepared using a specially designed 

mould (see Figure 2.4). The actual bonding of rubber to the brass­

plated wire takes place in tension as a sandwich between the two 

layers of rubber. The roll of brass-plated steel wire used for test 

specimen preparation was always kept in a dessicator with dry silica 

gel to prevent any moisture attack. The wire was normally taken out 

from the dessicator just before use and moulding. A special cleaning 

procedure was used for both the wire and the rubber. Wiping the 

wire with toluene several times was necessary to give consistent 

results (see Chapter 3) and the final wash was with acetone to remove 

the last bit of contamination. Unvulcanized rubber was cut to the same 

shape as the mould and placed in the mould cavity so that the clean 

surface of the rubber had contact with the wire (it was found that 

using solvent to clean the rubber surface affected bond strength). 

Moulding was always carried out at a pressure of 20 tons/m2 and a 

temperature of l700 C. 
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FIGURE 2.4 Showing the Compression Mould used in the Present 
Investigation where it Consists of Three Parts A, 
Band C. Those parts are Designed to Fit one Over 
the Other . 



68 

2.5 Rubber Testing 

2.5.1 Physical Testing 

For determining the vulcanized rubber compound properties, 

British Standard methods were employed. The JJ Tensile Testing 

machine of model T5002 (JJ Lloyd Instruments Ltd) was used in 

conjunction with an x-v plotter (PL 100 of JJ). All tests were 

carried out at a speed of 500 mm/min. 

2.5.1.1 Tensile strength (BS 903 A2 1971) 

Two different types of specimens were used. A dumbell shape 

and a spherical ring shaped sample for polyisoprene due to its 
, 

unusually high elongation at break, which the JJ extensometer was 

not able to otherwise measure. 

A. Dumbe Z7, B hape 

A dumbell shape cutter was used to prepare specimens for ten­

sile strength and elongation at break (Figure 2.5(a)). Tensile 

strength is calculated as the applied force per unit area of the 

original cross-section of the test length (unit MPa). The formula 

used to calculate the tensile strength is as follows: 

Tensile strength Force to break 
= Cross-sectlonal area MPa 

where the force to break is the stress applied so as to stretch the 

test piece. 
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B. Ring-Shaped TensiLe Strength speaimen 

This shape was only used to measure the tensile strength of 

gum po1yisoprene due to its high elongation which the JJ was 

unable to measure and a micro-dumbe11 shape was shown to undergo 

slippage in the standard grips and hence no reliable data could 

be obtained by this technique. Hence a micro-ring of internal 

diameter 23 mm and external diameter 27 mm was used and rings were 

cut by ring die (see Figure 2.5(b)). 

Ultimate tensile strength was calculated from the recorded 

load at break using the following formula: 

Force to break J 
UTS = 2 x sample thlckness x sample radlal wldth MPa 

Sample width = 2 mm (from dimensions of cutting die) 

UTS = Force to break MPa 
4 x Sample thickness 

2.5.1.2 Jear strength (BS 903 Part A3: 1972) 

A crescent shape cutter was used for the tear strength test 

(see Figure 2.5(c)). In this the force measured is that required 
• 

to cause a nick, cut in a rubber test piece, to extend by tearing 

of the rubber; the force acts in a direction substantially normal 

to the plane of the cut. The following equation was used to ca1-

cu1ate the tear strength: 
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ts F 
Tear Strength = --t- 2F 

='"1'" 

where: F = maximum force in KN 

t = thickness in m of test piece 

ts = standard thickness of test piece, 2 mm 

2.5.1.3 ~longation at break (BS 903 Part A2: 1971t 

A. DumbeZZ test pieae method 

In this technique elongation at break is defined as the tensile 

strain in the test length at the breaking point (unit %). It was 

calculated by subtracting the initial distance between the reference 

lines on the dumbe11 test piece from the distance between the line . 
at breaking point. 

B. Ring shape 

In this the sample elongation (%) is calculated from the follo­

wing equation:(64) 

where: 

E% = ~ (2D +' G - 11) 

M = mean circumference of sample 

G = constant of grip geometry (see Figure 2.6) 

D = vertical separation of grip spindle centres 

For grips used, G = 38.74 mm , 
For ring samples used, M = 78.55 mm 

i( 
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E% = 2.54620 - 50.682 (A) 

o = extension recorded on the chart (mm) (i.e. vertical 

displacement of grip) + 15 mm (initial setting of grip 

separation) 

Elongation at break is obtained from equation (A) by inser­

ting the value of 0 at break • 

. 2.5.1.4 Hardness (BS 903 Part A26) 

In this the modulus is measured at very small deformations, 

commonly by the use of a hemispherical indentor device. The appa­

ratus used was the British Standard micro-hardness (IRHO). 

2.5.1.5 Rupture energy 

This is related to the area under the stress-strain curve. 

Hence rupture energy was ca1cu'lated by measuring the area under 

stress-strain curve by cutting chart paper and ~Ieighing this on an 

analytical balance. 

2.5.1.6 Tensi le product 

In industry, tensile product is often used for quality control 

purposes as a measure of rupture energy. It can be calculated by 

multiplying ultimate tensile strength with elongation at break. 

Tensile product = tensile strength x elongation at break 
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Sample length = 2D + 2X + 2nR 
2X + 2nR = Constant, G 

Sample length = 2D + G 

FIGURE 2.6: Ring Sample Geometry Around Grips 
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2.5.2 Adhesion Testing 

From the bonding mould described in the previous section 

(Figure 2.4), a bonded brass-plated steel to rubber adhesion sample 

was obtained, as shown in Figure 2.7(a). To prepare the samples, all 

the wires between the solid arrows were cut as well as cutting 

through all the dotted arrows. An H-shape specimen was prepared 

(Figure 2.7(b)). Bond strength was determined by means of a JJ 

Tensile Testing machine, Model T5002, using a rate grip separation 

speed of 20 mm/min. Special grips were used(65) for holding the H­

shape samples in the tensile machine. Bond strength was calculated 

from the expression: 

Bond Strength = Force to rupture MPa 
~.d.1 

where d and 1 are the diameter and the length of the wire in contact 

with the rubber. In addition to the mechanical strength measure­

ment of bond strength observation, an assessment was made of the 

amount of rubber left attached to the surface of the wire after 

bond failure and this is referred to as rubber coverage. The wire 

was considered to have four sides (each covers 25% of the total % 

coverage) each of which was examined for percentage rubber coverage 

over the bonded areausing a stereo zoom microscope and the total 

percentage coverage of all four sides summed to give the rubber 

coverage. Figure 2.8 illustrates the different types of failures 

which occurred between the rubber and the wire. All bond strength 

results were repor.ted as the average of 10 test specimens. A 

typical sequence of such photographs is shown in Figure 2.7. 

I 

I L-________________________________________________________________________ ~ 
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(a) 

(b) 

FIGURE 2.7: Showing a Test Speclmen coming out from the llould 
(a) By Chopping the Wire between the Arrows from 
Both Sides and then Cutting the Rubber Along the 
Dotted Line, Five Test Pieces in the Shape of (b) 
wi 11 be Formed 

Wife- """p'eS ",,<.le P'tf"'f(J for e1(""',~..t, .. " ),(\ eo'sCA 

"11 oI'U'l'feflt- h.c:J,n,·,v!. ·"'vsi("lJ .:>/1 p. ,64-. 



(a) with rubber failure of 
the adhes ive bond 
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(b) rubber brass interfacial 
adhesion failure 

(c) partially with rubber failure 
and partially interfacial failure 

2.8: Di fferent Types of Fai l ure Between Rub ber and Brass­
Plated Wire 



77 

CHAPTER 3 

INFLUENCE OF WIRE DRAWING LUBRICANT ON THE ADHESION OF 

RUBBER TO BRASS-PLATED WIRE 

3.1 Introduction 

The adhesion between rubber and brass-plated wire is a 

vital factor that can be affected by many parameters. One 

such parameter is the residue left by the wire drawing lubri­

cant on the surface of the wire. During the manufacture of 

this special wire it is essential to apply a lubricant to reduce 

friction heat build-up between the wire and its drawing-to-size 

die. 

The effect which such lubricants have on adhesion can be 

divided into two categories. First, there is believed to occur 

some chemical interaction between the lubricant and the brass sur-

face caused by the drawing process particularly when a hot drawing 

process is utilised. Smith(28) has observed that the wire surface 

during the drawing operation can become chemically activated because 

of displacement of copper and/or zinc metal grains to form micro­

sized galvanic cells. The formation of these extremely small cells 

is considered the major reason for the surface of freshly drawn 

wire to react with lubricant with the formation of isolated dark 

coloured spots. The existence of such a stained area is known to 

inhibit the formation of a good and consistent adhesive bond between 

rubber and wire, as such coloured spots are not readily wetted by 

the hot molten rubber during the moulding and vulcanization process. 

The greater the number of stained spots the lower the overall bond 
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strength. The second category is less readily defined. In this 

instance the physical presence of the lubricant residue on the 

wire surface is considered to produce bond strengths which are 

inconsistent, being sometimes excellent and sometimes indifferent 

and of poor quality. Literature reports on the effect of wire 

drawing lubricant on rubber to wire adhesion arrive at inconsistent 

conclusions. McConnel and Richards(38) determined that the commonly 

used wire lubricants have a negative effect on the bond strength 

'pull out' adhesion forces. They also reported that there was no 

consistent decrease in adhesion with increasing quantity of lubri­

cant residue and interpreted this observation as an indication 

that some degree of chemical reaction was occurring between the 

rubber and wire drawing lubricant. Equally, Haemers and Mollet(66) 

have found no difference in adhesion due to the presence of 

lubricant residue on wire. 

Information published concerning typical wire drawing lubri­

cants(26,67) show them to consist of one or several combinations 

of fatty acid soaps e.g. calcium or zinc stearate, triethanolamine 

with either a vegetable oil or mineral oil. Also the use of a 

special poly siloxane-ethylene oxide condensation as an anti-foaming 

agent has been noted*. 

3.2 Experimental 

3.2.1 Acetone Extraction of \/i re 

This experiment was done to flnd out which type of drawing 

lubricant or additives within the lubricant had been used in industry. 

-----------------------------
* Private communication 

I 

I 

---------------------------------------~ 
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For this purpose a quantity (lOOg) of the brass-plated wire was 

refluxed with 300 ml of analytical quality acetone for 48 hours, 

after which the solvent was decanted into a watch-glass and eva­

porated to dryness and the residue subjected to infra-red spectro­

scopic analysis using Pye Unicam SP 200, and, also thermal analysis 

using Du Pont ~90 Thermal Analyser with an empty aluminium pan as a 

reference standard sample weight was 3 mg and the heating rate 

used was 200C/min. 

3.2.2 Preparation of Specimen for Adhesion Test 

Examination of the uncleaned wire showed that there was no 

black or coloured spots on its surface visible to the unassisted 

human eye. However, when this wire was wiped with clean white 

filter paper a black deposit was obtained, presumably due to wire 

drawing lubricant being wiped off the wire (Figure 3.1). Due to 

this observation, it was decided to clean some wire prior to bonding 

so that it could be compared with the "as received" wire. 

Cleaned wires were produced by the following procedures: 

1. The wire was wiped with cotton wool soaked in cold solvent with 

any solvent residue remaining being removed using an acetone 

wash. 

2. The wire was cleaned using the repeated condensation of freshly 

evaporated solvent, produced using a Soxhlet type apparatus. 

The solvents were used in sequence, toluene and carbon tetra­

chloride. Solvent residue of CC1 4 remaining on the wire sur­

face was removed by using a final acetone solvent wash. 
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FIGURE 3.1 Lubricating Oil Resides on Filter Paper after 
Wiping the Wire with Toluene 
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3.3 Results and Discussion 

3.3.1 Infra-red Analysis of Lubricant Residue 

The residue of extracted wire subjected to infra-red spectro­

scopic analysis. Figure 3.2 shows the spectrum obtained from 

which the following assignations of wave-number are made: Si-O-Si 

at 1000-1100 cm-l and an aliphatic group at 2900-3000cm-l • These 

IR spectra assignments correspond with those of Haslam and Willis(68} 

for silicones \~hich are known probably to consist of dimethyl­

siloxanes whose typical structure is as follows: 

poly (dimethyl siloxane) 

3.3.2 Effect of Lubricant Residue on the Adhesion of Rubber 
toBrass-Plated mre 

Bond strength and rubber coverage of ruptured bonds that are 

given in Tables 3.2-3.4 reveal that most of the various solvent clea­

ning procedures increased bond strength by about 10%. The coefficient 

of variation, however, between uncleaned and cleaned wire remained 

approximately constant at about 10-14%. Only in the case where CC1 4 
was used as a hot extract, and as the wire cleaning agent, did the 

bond strength decrease and the coefficient of variation increase. 

In this instance it is considered that the CC1 4 solvent, although 

of good quality, contained some trace of chlorine impurity which 

attacked the brass and reduced its bonding activity. 
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TABLE 3.2: Brass-Plated Wire Surface Cleaned using a Cold Solvent Ilash-Hipe Procedure Plus a Final Acetone Wash 

Sol vent Bond Standard Coefficient Rubber Standard Coefficient Change in Change in 
Treatment Strength Deviation of variation Coverage Deviation of variation bond rubber 

MPa of bond Bond Strength % of rubber rubber Strength coverage 
Strength % Coverage coverage % % 

MPa % % 

Untreated 12.9 1.9 14.7 48 8 15 - -

Carbon 
tetra- 14.4 2.0 13.9 60 11.8 19.6 +11 .6 +25 
chloride -

Tri-
ch10ro- 14.2 1.4 9.B 55 7.6 13.8 +10.1 +14.6 
ethylene 

Toluene 14.0 2.0 14.2 60 9.6 16 +8.5 +25 



TABLE 3.3: Wire Surface Cleaned by Condensation of Hot Solvent into a Soxh1et Thimble Plus a Final Cold {lcetone ~Jash 

So 1 vent Bond Standard Coefficient Rubber Standard Coefficient Change in Change in 
Trea tment Strength Deviation of varia tion Coverage Deviation of variation bond rubber 

MPa of bond Bond Strength % of rUbber rubber Strength coverage 
Strength % Coverage coverage % % MPa % % 

Toluene 14.8 1.6 10.8 60 10.2 17 +14.7 +25 

Carbon 
tetra- 9.4 2.0 21.3 25 5.0 20 -27 -51 
chloride 

ex> 
01 



TABLE 3.4: Wire Treated as Given Belowthen Finally I'liped with Trichloroethylene and Acetone Wash 

Solvent Bond Standard Coefficient Rubber Standard Coeffi ci ent Change in 

Treatment Strength Deviation of variation Coverage Deviation of variation bond 
MPa of bond Bond Strength of rubber rubber strength 

Strength coverage coverage 
MPa % % % % % 

CC1 4 + 

CHC1CC1 2+ 14 1.7 12 60 13.8 23 +8.5 
CH3COCH3 

C6H5CH3+ 

CHC1CC1 2+ 13.8 1.8 13 60 2.5 15.8 +7.0 

CH3COCH3 

Change in 
rubber 

coverage 

% 

+25 

+25 

co 
0> 
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An explanation for two of these observations (bond strength 

and rubber coverage) was now sought, namely the approximate 10% 

increase in bond strength and 25% increase in rubber coverage 

together with no change due to cleaning of their respective 

coefficients of variation, i.e. the cleaned wire is as variable 

in its response to rubber as the uncleaned wire. 

3.3.3 Surface flicroscopy of Brass-Plated \lire 

Uncleaned and solvent cleaned wire (toluene of cleaning pro­

cedure (1» was examined using a Scanning Electron Microscope (SEM) 

and the observations are shown as photomicrographs in Figure 3.3(a) 

and 3.3(b). These reveal the presence of irregularly shaped dark 

patches (arrowed on the micrograph) which it is thought to represent 

areas of unremoved wire drawing lubricant. 

3.3.4 Analysis of ~ire Surface by Electron Spectroscopy for 
~hemical Analysls (EsCAl 

EseA technique has been widely used to examine the brass-plated 

wire-rubber bonding(60) and it is now used to try to determine whether 

any reaction was occurring between the wire drawing lubricant, now 

known to contain some siloxane, on the wire surface. The ESeA 

spectra are given in Figure 3.4. Figure 3.4(a) is the EseA spectra 

of the unbonded wire which contains lubricant on its surface, and 

Figure 3.4(b) the wire surface after it was bonded to rubber and 

then the bond was broken by freezing the specimen in liquid N2 and 

then removing the brittle rubber by a sharp blow with a hammer. 

It can be seen that the two binding energies for Si 2p ' Si 2s of 
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FIGURE 3.3(a) SEM Micrograph of Uncleaned Brass-pl ated Wire 
showing what appears to be a Very Heavy Deposit 
of Wi re Drawing Lubricant Recognised as a Dark 
Co where shown the Arrows Ma ificati n 1. 2K) 

FIGURE 3.3(b) SEM Microg s been 
Cleaned with a Toluene Wipe . Long Streaks can be 
seen Running Diagonally across the Micrograph (see 
Direction of Arrow). It is thought that these Streaks 
Represent Drawing Lubricant Remaining Behind on the Wire 
Surface after Cleaning (Magnification 1.2K) 
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104.3 eV and 154.3 eV, clearly seen in Figure 3.4(a), have almost 

disappeared in Figure 3.4(b) showing that most, but not all, of 

the siloxane has taken part in the bond forming vulcanization 

process. It is also to be noted that the debonded wire surface 

was not covered with rubber and is thus thought to be free from 

the deposit of vulcanisation by-products as it had a bright shiny 

surface. 

The Cu3p and Zn3p peaks in Figure 3.4(a) cannot be used to 

fonn an internal reference standard as in Figure 3.4(b) the Cu3p 
and Zn

3P 
peak intensity ~as changed relative to the Si during the wire­

rubber bonding reaction. An internal reference standard which can 

be used is that of carbon, and this is seen in both Figures 3.4(a) 

and 3.4(b) at 284.7 eV; the intensities observed are identical on 

the wire surface before and after bonding. 

3.3.5 Thermal Pnalysis of i:he I-lire Drawing Lubricant Residue 

The result is shown in Figure 3.5. This reveals the presence 

of a sharp exothermic event in the siloxane lubricant which commences 

between 110-1300 C. Normal vulcanization temperatures for rubber 

are greater than 1300C hence this DSC thermogram may be evidence 

that this siloxane wire drawing lubricant is chemically active 

over the conventional curing range for rubber. 
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CHAPTER 4 

EFFECT OF COMPOUNDING ADDITIVES ON PHYSICAL PROPERTIES 

OF SBR, IR WITH RESPECT TO THEIR ADHESION TO BRASS-PLATED WIRE 

4.1 Introduction 

Since the brass-plated steel belted radial tyres came on the 

market, and as the adhesion between rubber and brass is a vital 

factor in the performance of a tyre, many investigations have been 

carried out by researchers to understand and find better bonding 

systems. 

There is no systematic and universal approach or model of com-

pounding which gives the rubber high bond strength to brass-plated 

wire since often a small amount of each compounding ingredient has a 

disproportionate effect on bond performance. Hence it is necessary 

to determine by experlment the adhesion of each specific rubber mix 

formulation to brass-plated wire. Sometimes the effect of some rubber 

compounding ingredients can be predicted from previous knowledge. 

For instance a delayed action type accelerator, such as a sulphena­

mide type usually gives good adhesion. The ultra accelerators such 

as ZDEC, TMTM or TMTD cannot be used, because even if added 1n small 

amounts low bond strength results. Bertrand(55) found that only the 

sulphenamides CBS, TBBS, MBS and DCBS can give high bond strengths. 

Sulphur is also an essentlal ingredient for adhesion of rubber 

to wire. The minimum sulphur loading before a high bond strength can 

be formed is around 2 pphr and often up to at least 10 pphr is needed. 

A conventional and used industrial level of sulphur is 4 pphr. 
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Adhesion seems to be less affected by zinc oxide proportions 

and up to 15 pphr shows good adhesion(50). Stearic acid should be 

low due to its well known internal lubrication function. 

Filler such as carbon black is an important ingredient in rubber. 

Several investigators have suggested 40 to 50 pphr of carbon black 

as a satisfactory range, but this depends on the particular carbon 

black properties(50). Silica is another fi1)er for reinforcement of 

rubber after carbon black and due to its white colour finds appli­

cation in a wide range of coloured products. Because of its high 

polarity and its hydrogen bonding capacity, silica is often added 

to enhance its adhesion between dissimilar rubbers, between rubber 

and textiles or metals. 

4.2 Experimental 

In this chapter the effect of a wide range of compounding 

ingredients on the physical properties and bond strength of solution 

styrene-butadiene rubber (Solprene 1204) and synthetic po1yisoprene 

(Natsyn 2200) to brass-plated steel wire is investigated. Carbon 

black (HAF) and silica (U1trasi1 VN3) in proportions of between 10-

70 pphr and at a sulphur proportion varying between 1-10 pphr in both 

unfilled (gum) and filled rubbers was examined. The effect of DCBS 

accelerator dosage on SBR and the effect of antioxidant on IR were 

also investigated. 
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* A mercapto si1ane (Si 69) with following structure: 

Bis-(3-(triethoxisi1y1)-propy1)-tetrasu1phane. 

I~as used in the SBRlsi 1 i ca mi x as it was found that SBR rei nforced 

with silica gives poor physical properties. The amount of si1ane 

used was 4% by weight of silica content (as recommended by the manu­

facturers) . 

Silica is well known to retard cure time. The cure retarding 

effect of silica has been shown to be due to its tendency to absorb 

the accelerator. To overcome this problem, either the amount of 

accelerator should be increased or a secondary accelerator or acti­

vator should be used(58,69). In the SBRlsi1ica formulation a secon-

dary accelerator was used. 

4.3 Results and Discussion 

* 

The mix formulations are given in Table 4.1. ~ix No. 1 was 

Degussa AG 
Geschaftsberich Pigments 
Postfach 2644, 6000 Frankfurt 1 
Fed. Rep. of Germany 

• 

_______________ J 
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prepared on a t\~O roll mill with roll temperature of about 700e, 
mix No. 2 at 150-1800 e and in mix No. 3 the mercapto coupling 

agent (Si 69) was added at 700e. The vulcanizate properties and 

bond strength results are given in Table 4.2. Poor physical prop­

erties and bond strength were observed in mix No. 1. This is con­

sidered due to the combination of insufficient adherence between 

the SBR molecules and silica and insufficient dispersion of silica 

in SBR(70). 

In mix No. ~ which was treated at 150-1800e, the physical 

properties and bond strength increased by comparison with mix No.l. 

This might be due to the fact that during mixing at high temperature 

some silica adsorbed molecules (e.g. water or other low molecular­

weight absorbates) can be removed (or released) which may enhance 

the silica-polymer interaction and also improve the dispersion of 

silica in SBR. An interesting observation was that although the 

bond strength increased from 4.2 to 8.5 MPa, the rubber coverage 

was still low (10-25%). The literature offers an explanation that 

heat treatment of silica filled rubber reduces adhesion(71). 

In these results mix No. 3 has the highest properties (tensile 

strength, tear strength and bond strength) due to the use of the 

silane. This silane has an alkoxysilyl group which is considered 

to react with the silica surface to form a stable siloxane linkage, 

and its organic functionality can participate in reactions that lead 

to linkages with rubber, so it appears that silanes with the appro­

priate functionality provide chemically bonded coupling between the 

silica and the rubber network. Such coupling is apparently responsible 
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TABLE 4.1: Evaluation of the Filler Treating Agent (Si 69) together 
with the Effect of a Hot t1ixing Process using an SBRI 
Silica Formulatlon 

Formulation Mi x No. 

pphr 1 2 3 

SBR* (1204) 100 100 100 

Zinc oxi de 10 10 10 

Stearic acid 3 3 3 

Silica (V~13) 40 40 40 

Sulphur 4 4 4 

DCBS 1.4 1.4 1 

DPG - - 1 

Si 69 - - 2 

, 

* Solprene 

~< 

TABLE 4.2: Effect of Si 69 and Hot taxing on the Physical Properties 
and Bond Strength of SBRISihca I"ix 

Formulation No. (Table 4.1) 
Physical 

/ 
! 

Properties 
1 2 3 

Tensile strength 5.2 9 11.8 
(MPa) I 
Elongation at break 360 340 I 310 (%) 

Tear strength 40.3 58 60.8 (kll m-I) 

Bond strength (MPa) 4.2 8.5 12.8 

Rubber coverage (%) 0-10 10-25 50-60 
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for the fully reinforcing action of the silica. Also improved 

dispersion of the silica in the SBR may result. 

It was also found that using Si 69 was an effective means of 

reduc1ng viscosity. 

4.3.2 Effect of Compounding Additives on the Physical Proper­
t1es and Sond Strength of SBR and IR 

4.3.2.1 Influence of the Accelerator DCBS Proportions 
on Bond Strength of SBR to Brass-plated !hre 

This experiment was done to optimize the proportion of DCBS 

to give the highest bond strength (Table 4.3) which was found to 

be obtained at the level of 1 pphr of DCBS (see Table 4.4 and 

Figure 4.1). An explanation for the rapid reduction in adhesion 

that occurs when the optimum proportion of DCBS is exceeded is now 

attempted. 

For an ideal bond strength to develop complete contact between 

rubber and brass surface is necessary. To achieve this condition 

sufficient time must be allowed to elapse for the rubber to wet 

the wire surface during the vulcanization process. Since higher 

a~ounts of DCBS will increase the rate of cross-l1nking and reduce 

the scorch time then this will result in shorter periods of t1me 

being available for wire surface wetting and consequently the rubber 

to W1re bonding should be reduced(4B). But as is shown in Table 4.4 

the scorch time at 2.5 pphr of DCBS is still 5 minutes which is a long 

scorch time hence the above explanation ~annot be correct. The drop 

in the bond strength as DCBS level rises might be due to interference 

1n the sulphidisation of sulphur with copper during vulcanization. 
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TABLE 4.3: Formulation used to Evaluate DSBC Rroportions in SBR 
on Bond Strength 

Formul ation Mix No. 
pphr 1 2 3 4 5 6 

SBR (1204) 100 100 100 100 100 100 
Zinc oxide 10 10 10 10 10 10 
Stearic acid 3 3 3 3 3 3 
Carbon black 40 40 40 40 40 40 (HAF) 
Sulphur 4 4 4 4 4 4 
DSBC 0.5 0.7 1 1.5 2 2.5 

TABLE 4.4: Effect of DSBC Proportions on Bond Strength of SBR to 
Brass-Pl ated Wi re 

Formulation No. (Table 4.3) 
Physical 1 2 I 3 i 4 I 5 6 Properties I 

Bond Strength 13.5 15.1 15.4 14.8 14.1 11.5 (MPa) 
Rubber cover- 80 100 90-100 100 70 30 age (%) 

Scorch time 
t2 (mins) 7 7 6 5 5 5 
@ l700 C 

I Cure time t,5 25 18 17 14.5 12 11.5 (mins) 
@ l700 C 
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4.3.2.2 Effect of Sulphur progortions on Bonding and physical 
Propertles of unhlle 5BR and IR 

Hix formulations are given for SBR and IR in Tables 4.5 and 

4.6 respectively. Results are shown in Table 4.7, Figure 4.2(a), 

4.2(b) for SBR and Table 4.8, Figures 4.3(a), 4.3(b) for IR. 

SBR 

Poor physical properties were obtained due to the absence of 

a reinforcing filler in the non-strain crystallisable SBR. Bond 

strength and rubber coverage are also low «3 MPa and 5-20% respec­

tively) which indicates that no adhesion is formed between the SBR 

and the wire. Low strength and non-polarity of rubber might be the 

reason for this poor adhesion. Also it is not possible to draw con­

clusions from the results of these sulphur levels in SBR due to the 

low properties of the vulcanizates. A later experiment will determine 

the effect of sulphur proportions on a filled reinforced SBR. 

IR 

Unlike SBR, IR is a self-reinforcing rubber which has high 

strength in gum form due to its ability to strain crystallize. 

Ring samples were used to measure tensile strength and elongation 

since IR has a high elongation and the JJ machine was unable to mea­

sure it uSlng the normal dumbell. 

Bond strength of unfilled IR to wire was found to be higher 

than that obtained with unfilled SBR due to higher rubber strength 

and this indicates that bond strength can be related to the strength 

of rubber. The failure is mostly interfacial (i .e. bet\~een rubber and 
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TABLE 4.5: Formulation used to Evaluate Sulphur Proportions in 
Unfilled (gum) SBR 

Formulation Mix No. 

pphr 1 2 3 4 5 6 7 8 

SBR (1204) 100 100 100 100 100 100 100 100 
Zinc oxide 10 10 10 10 10 10 10 
Stearic acid 3 3 3 3 3 3 3 

DCBS 1 1 1 1 1 1 1 
Sulphur 0.5 1 1.5 2 3 4 6 

TABLE 4.6: Formulation Used to Evaluate Sulphur Proportions in 
Unfilled (Gum) IR 

Formulation MlX No. 

pphr 1 2 3 4 5 

IR (2200) 100 I 100 100 100 100 
Zinc oxide 10 10 10 10 10 
Stearic acid 3 3 3 3 3 

OCBS 0.7 0.7 0.7 0.7 0.7 
Sulphur 1 2 3 4 6 

10 
3 

1 
8 

6 

100 
10 
3 

0.7 
8 



------------------------- - ------------, 

102 

TABLE 4.7: Effect of Sulphur Prop'ortions on Physical Properties 
and Bond Strength of Unfilled (Gum) SBR 

Physical Formulation No. (Table 4.5) 

Properties 
1 2 3 4 5 6 7 8 

Hardness (IRHD) 38 40 43 .48 48 50 50 53 

Tear strength 
(k N m-i) 14.1 17.5 18.1 20.5 20.4 22.3 20 18.8 

rr~~,l~ strength 
(MPa) 1.4 1.6 1.6 1.6 1.8 1.9 2.2 2.2 

Elongation at 880 690 p60 ~80 ~50 360 235 230 
break (%) 

Tensile product 12.3 11 8.9 9.3 8.1 6.8 5.2 5.1 
(MPa x %) 102 ~ - -
Rupture 0.6 0.75 0.71 0.74 0.66 0.5 0.5, 0.35 
energy (J) 

Bond strength - - 1.7 
(MPa) 

2.2 2.2 2.4 2.4 2.5 

Rubber - - 0-5 0-5 0-5 5-H 5-2C 15-25 
coverage (%) 

Scorch time 
t 2(mins) 21 17.5 16 12 13.5 8 8 6 
@ 1700 C 

Cure time 
25 -22 t~5 (mi ns) 55 44 35 27.5 27 25 

@ 1700 C 
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TABLE 4.8: Effect of Sulphur Proportions on Physical Properties 
and bond ~trength of Unfilled (Gum) IR 

Physical Formulation No. (Table 4.6) 
Properties 

1 2 3 4 5 

Hardness (IRHD) 30 32 34 37 41 

Tear strength 
(kN m-I) 38.9 51.9 61.0 66.7 37.2 

Tensile strength 3 4.5 7.9 8 4.6 (MPa)* 

Elongation at 1000 945 920 870 340 break (X) . 
Tensile product 
(f4Pa X %) 102 30 42.5 72.7 69.6 15.6 

Rupture energy 0.72 0.72 0.92 1.15 0.6 
(J) 

Bond strength 4.1 5.2 8.8 9.4 6.9 (MPa) 

Rubber coverage 0 20 40 40 40 ( %l 

Scorch time t2 8.5 6.5 6 5.5 4.5 (mlns) @ 1700 C 

Cure time tS5 14 14 (mins6 25 18 15 
@ 170 C 

* Rlng sample 

6 

43 

24 

1.7 

280 

4.8 

0.23 

6.2 

30 

4 

13 
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wire) which shows that there is only poor adhesion between the 

unfilled IR and the wire. However, bond strength achieves its 

optimuM value (9.4 NPa) at 3-4 pphr of sulphur then drops rapidly 

as the sulphur proportion exceeds the 4 pphr level. 

Results show that bond strength can be related to the tensile 

strength, tear strength, rupture energy and tensile product (see 

Figures 4.3(a) and 4.3(b)). 

4.10. 

SBR 

4.3.2.3 Effect of Carbon Black (HAF§ Proportions on Bonding 
and Physlcal Propertles of BR and IR 

flix formulations for SBR and IR are given in Tables 4.9 and 

HAF carbon black, having a particle size of 29 nm, was used 

at different levels of loading in order to determine the optimuM 

level which gives the highest bond strength and physical properties. 

Results are shown in Table 4.11, and Figures 4.4(a), 4.4(b), for 

SBR where a sharp increase was observed in physlcal properties and 

~ond strength. 15 pphr of carbon black increased tensile strength 

and bond strength about 6 and 5 tlmes respectively in comparison 

with the gum form. Bond strength and tensile strength progressively 

increased each to its own optimum level then decreased as carbon black 

content further lncreased. An optimum bond strength of 15.5 r~Pa and 

tensile strength of 23.2 tlPa respectively were achieved at the 45 and 

55 pphr of carbon black levels. Also rubber coverage increased from 

0-5% level of gum form of SBR to 100% when a 35 pphr of carbon black 

content was used. However as an increase in bond strength and rubber 
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coverage occurs it can be considered that carbon black has a 

large effect on the bonding of SBR to brass-plated Wlre. Over 

35 pphr, carbon black loading is shown to have a small effect 

on bond strength and rubber coverage which remains approximately 

constant. 

IR 

Carbon black increases the bond strength of IR to brass-plated 

wire from 9 MPa in unfilled rubber to 15.9 MPa and rubber coverage 

from 40% to 100% at the optimum level of carbon black, indicating 

again its ability to give good bonding. The mechanical values for 

the tensile strength and bond strength at optimum filler level had 

similar values to those of the SBR/carbon black mixes, however a 

lower content (35 pphr) of carbon black gave optimum bonding with 

IR (compared with 45 pphr for SBR){see Tables 4.11 and 4.12). 

Increasing the carbon black content over the optimum level caused 

a big drop in bond strength with IR. This might be due to the large 

decrease in tensile strength (see Figure 4.5{a)). 

Investigations using HAF carbon black on bond strength of SBR 

(1204) and IR (2200) to brass-plated wire have now been shown to 

have beneficial effects on bond strength. SEM (Scanning Electron 

Microscopy) photomicrographs ofwire surfaces debonded from unfilled 

SBR (Figure 4.6{a)) and carbon black filled SBR (Figure 4.7{b)) 

provide good evidence for the influence of carbon black on the 

adhesion of rubber to brass-plated wire. To explain the increase 

in bond strength from these results and SEM observations it is 

suggested that carbon black loading has two effects, first 

is that it reinforces (increases the strength of) rubber, hence 
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with this enhanced strength progressively more energy to deform 

the rubber-wire interface is needed, thus leading to a higher bond 

strength. Second increasing carbon black content might have an 

effect on the su1phidisation between copper and sulphur. Because 

it was observed that the colour of the wire surface debonded from 

the carbon black filled SBR was greenish-blue (see Figure 4.7(a)) 

which indicated the formation of copper sulphide. The colour of 

the wire surface which was de bonded from the unfilled rubber was 

ye110~1 (see Figure 4.7(b)) (this will be discussed in detail in 

Chapter 7). 

A good relationship appears to exist between bond strength, 

tensile strength, rupture energy and tensile product (see Figures 

4.4(a), 4.4(b) and Figures 4.5(a), 4.5(b)). Tear strength did not 

show any correlation to bond strength in SBR/carbon black mixes, 

but it did demonstrate a correlation in IR/carbon black mixes. 

In summary the maximum bond strength was obtained for SBRf 

carbon black and IR/carbon black between 35-65 pphr and 25-45 pphr 

of carbon black content respectively. Rubber coverage in this range 

was 100% i.e. failure is within the rubber. The highest bond strength 

for SBR/carbon black and IR/carbon black was achieved at values of 

15.5 HPa and 15.9 ~lPa which indicated that the type of rubber i.e. 

non-strain crysta11isab1e or strain crysta11isab1e does not make 

a significant difference. 



TABLE 4.9: Formulation used to Evaluate Carbon Black (HAF) Prop­
orti ons in SBR 

Formulation Mix No. 

pphr 1 2 3 4 5 6 7 

SBR (1204) 100 100 100 100 100 100 100 
Zinc oxi de 10 10 10 10 10 10 10 
Stearic acid 3 3 3 3 3 3 3 
Carbon black (HAF) 15 25 35 45 55 65 75 
DCBS 1 1 1 1 1 1 1 
Sulphur 4 4 4 4 4 4 4 

TABLE 4.10: Formulation Used to Evaluate Carbon Black (HAF) Prop­
ortions in IR 

Formulation Mix No. 

pphr 1 2 3 4 5 6 7 

IR (2200) 100 100 100 100 100 100 100 
Zinc oxide 10 10 10 10 10 10 10 
Stearic acid 3 3 3 3 3 3 3 
Carbon black (HAF) 15 25 35 45 55 65 75 
DCBS 0.7 0.7 0.7 0.7 0.7 0.7 0.7 
Sulphur 4 4 4 4 4 4 4 

( 
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TABLE 4.11: Effect of Carbon Black (HAF) Pr:>portions on Physical 
Properties and Bond Strength of SBR 

, 

Physical 
Formulation No. (Table 4.9) 

Properties 1 2 3 4 5 6 7 

Hardness' (IRHD) 54 59 64 70 74 80 82 

Tear strength 31.3 39.2 46.6 53 57.7 60.4 61.2 (k.N m- 1 ) , 

Tensile strength 8.5 13.7 16.6 20.5 23.2 21.5 20.5 (MPa) 

Elongation at 470 44Q 450 375 . 337 300 253 break (%) 

Tensile product 40 60.3 74.7 76.9 78.2 64.5 51.9 (MPa x %) 102 

Rupture ellergy 2.37 4.1 5.35 5.75 5.77 5.35 5.~ 
(J) 

Bond strength 9.5 12.1 15.2 15.5 15.2 15.5 14.1 
(MPa) 

-

Rubbe r cove ra ge 60 90 100 100 100 100 70 
(%) 

Scorch time t? 8.5 7 7 5.5 5 5 4.5 
(mins6 @ 170 C 

Cure time t~5 28 24 22.5 22 22 22 20 
(mins) -

@ 1700C - -
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TABLE 4.12: Effect of Carbon Black (HAF) Proportion on Pnysical Properties 
and Bond Strength of IR I 

Physical Formulation No. (Table 4.10) 

Properties 1 2 3 4 5 6 7 

Hardness (IRHO) 41 52 59 62 64 68 70 

Tear strength 44.5 60.3 69 67.5 63.8 61 52.4 
(k.N m-I) 

Tensile strength 15.8 19.1 22 20.6 18.9 18.7 16.5 
(MPa) 

Elongation at 620 5L~0 500 440 430 380 350 
. b"'ea( ('::) 
• 
Tensil e product 
(MPa x %) 102 

97.9 103 1111 90.6 81.3 71 57.S 

Rupture energy 6 6.5 7.15 6.23 5.81 5.13 3.8 (J) 

Bond strength 11.7 15.9 15.2 14.3 13.2 9.8 9.5 (MPa) 

Rubber coverage 50-60 90-100 lUO 100 80 60 30 
(%) 

Scorch time t2 
(mins) 6.5 5.5 5.S 5 5 4.5 4 
@ 1700 C 

Cure time t~5 16 14 13 12.5 11 11.5 10 (minS6 @ 170 C 
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FIGURE 4.6(a) SEM Micrograph of Wire Surface Oebonded from the 
Unfilled SBR. It shows there is no Rubber Bonded 
to the Wire Surface (~lagnification 100) 

FIGURE 4.6( b) SEM Micrograph of Wire Surface Oebonded from the 
Carbon Black Filled SBR . Marked Areas are Rubber 
Bonded to Wire (Magnificati on 160) 
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FIGURE 4.7(a) The Wire Surface Debonded from the Carbon Bl ack 
Fill ed SBR. The Greenish-Blue i s the Sign of 
Copper Sulphide Formation 

FIGURE 4.7(b) The Wire Surface Debonded from the Unfilled SBR. 
The Original Colour of the Brass-wire i s Unchanged . 
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4.3.2.4 Effect of Sulphur Pro~ortions on Bonding and Physical 
Propert1es of Carbon lack Filled SBR and lR 

The mix formulations are given in Tables 4.13 and 4.14 for 

SBR/carbon black and IR/carbon black respectively. 

In this investigation, for a constant accelerator level (1 pphr 

DCBS), the sulphur dosage was varied between 1-8 pphr in both SBR/ 

carbon black and IR/carbon black to find the highest bond strength. 

The results are shown in Table 4.15, Figures 4.8(a), 4.8(b) for 

SBR/carbon black and Table 4.16, Figures 4.9(a), 4.9(b) for IR/car-

bon black. For both sharp increases were observed in bond strength 

up to an optimum sulphur level after which an excess of sulphur has 

a small adverse effect on bond strength in comparison to an adverse 

effect of sulphur level on physical properties (tensile strength and 

tear strength). Physical properties slowly increased until the 

optimum level of sulphur was reached and then a sharp adverse effect 

was observed on the physical properties. Opt1mum bond strength was 

obtained between 3-4 pphr and 4-6 pphr of sulphur level for SBR/ 

carbon black and IR/carbon black respectively. In both cases the 

maximum physical properties (tensile strength and tear strength) 

were achieved at the lower sulphur proportion. From these results 

it can be concluded that for high bond strength relatively large 

amounts of sulphur is necessary. At optimum levels of sulphur con­

tent, rubber coverage 1n both cases was 100% i.e. failure occurred 

within the rubber. 

Inspection showed that optimum tensile strength, rupture energy, 

and tensile product values do not exactly correlate with bond 

strength but do demonstrate a general relationship. 
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TABLE 4.13: Formulation Used to Evaluate the Effect of Sulphur 
Proportions on Bonding and Physical Properties in 
Carbon Black Filled SBR 

Formulation Mix No. 
ppnr 1 2 3 4 5 6 

SBR (1204) 100 100 100 100 100 100 

Zinc oxide 10 10 10 10 10 10 

Stearic acid 3 3 3 3 3 3 

Carbon black (HAF) 35 35 35 35 35 35 

DCBS 1 1 1 1 1 1 

Sul phur 1 2 3 4 6 8 

TABLE 4.14: Formulations Used to Evaluate Sulphur Proportions in 
Carbon Black ri11ed IR 

Formulation t4ix No. 

pphr 1 2 3 i 4 1 5 6 , 
I 

I , 
IR (2200) 100 100 1100 

1

100 100 100 
I 

Zinc oxide 10 10 I 10 ' 10 10 10 

I 3 Stearic acid 3 3 3 3 3 

Carbon black (HAF) 25 25 25 25 25 25 
I 

DCBC 0.7 0.7 0.7 0.7 0.7 0.71 
I 

Sulphur 1 ? 3 4 6 8 ,-



122 

TABLE 4.15: Effect of Sulphur Proportion op Physical Properties 
and Bond Strength of Carbon Black Filled SBR 

Physical Fonnu1 ation No. (Table 4.13) 

Properties 1 2 3 4 5 

Hardness (IRHD) 51 60 62 65 68 

Tear strength 56 60.2 56.5 50.1 46 (kN m-1j 

Tensile strength 16.2 18.5 18 17.4 14.6 
(MPa) 

6 

69 

35.8 

12.9 

Elongation at 630 575 450 370 220 160 
break (%) 

Tensi 1 e product 
(MPa x %) 102 102 106.3 81 64.4 32.1 20.6 

Rupture energy 9.1 9.9 8.3 7.35 5.21 4.2 
(J) 

Bond strength 11.2 13.6 15.8 15.1 14.3 13.6 
(MPa) 

Rubber coverage 45 60 90-100 90-100 70 50 
(%) 

Scorch time t2 
(mins) 
@ 1700 C 

11 8.5 8 7 6 5.5 

Cure time t,s 
(mins) 30 23 22.5 22 20 15 
@ 1700C 
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TABLE 4.16: Effect of Sulphur Proportions dn Physical Properties 
and Bond Strength of C3rbon Black Filled IR 

Physical Formulation No. (Table 4.14) 

Properties 1 2 3 4 5 6 

Hardness (IRHO) 43 48 56 59 60 63 

Tear strength 49.2 64.1 66.7 73 58.1 59.1 
(kNm- 1) 

Tensile strength 12.2 14.1 16.6 18.0 13.9 10.5 
(MPa) 

Elongation at 700 620 580 520 430 330 
break (%) 

Tensi 1 e product 
(MPa x %) 102 85.4 87.4 96.3 93.6 59.8 36.6 

Rupture energy 7.55 7.95 
(J) 

7.8 8 4.35 2.6 

Bond strength 9.7 10.8 
(MPa) 

12.9 15.2 15.8 14.1 

Rubber coverage 30 50 60 100 100 80 
(%) 

Scorch time t2 
(mi ns) 
@ 1700C 

4.5 4.2 4 3.5 3 2.5 

Cure time t45 
12 12 11.5 10.5 12 14.0 (mins6 @ 170 C 
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The effect of precipitated silica (VN3) on bonding and phy-

sical properties of SBR was studied in the present investigation. 

The mixing cycle for the silica based mix used was the following 

order: SBR-+-Silica-+-Coupling Agent (Si 69)-+-Activators (Zinc 

oxide/Stearic acid) -+-Accelerators -+-Curing agent. 

This mixing cycle and the use of the coupling agent in SBR/ 

silica mix have already been described in Chapter 2 and Chapter 4 

(Sectlon 4.3.1) - mix formulation is shown in Table 4.17. 

TABLE 4.17 

Formulation Used to Evaluate the Silica (VN3) Proportions in SBR 

Formulatlon Mix No 

I 
, 

I pphr i 2 3 4 5 6 I 7 
I 

SBR (1204) 100 100 100 100 100 100 100 

Zinc oxide 10 10 10 10 10 10 10 

Stearic acid 3 3 3 3 3 3 3 

DCBS . 1 1 1 1 1 1 1 

DPG 1 1 1 I 1 1 1 1 

Sulphur 4 4 4 I 4 4 4 4 I 
I , 

Si 69 0.4 0.8 1.2 J 1.6 2 2.4 2.8 
I 

Silica (VN3) 10 I 20 30 I 40 50 60 70 
i 
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maximum values of 12.5 MPa for tensile strength and 9.9 MPa for 

bond strength were respectively observed at the 50 and 40 pphr 

levels of silica content (see Table 4.18 and Figures 4.10(a), 

4.10(b). These strength values are lower in comparison with 

those obtained for the carbon black filled SBR (optimum tensile 

strength of 23.2 MPa and bond strength of 15.5 MPa). Such low 

tensile strength might be due to poor interaction of the silica 

with the SBR during mixing (as will be discussed in Chapter 7): 

consequently bond strength was lower. A rubber coverage of 40% 

was the best result obtained with silica thus relatively poor 

adhesion of the SBR/si1ica mix to brass-plated wire was expressed 

(i.e. the failure was partially within the rubber and partially 

interfacial). Over 35 pphr silica loading is shown to have small 

effect on bond strength and rubber coverage which remains approxi­

mately constant. 

The colour of the wire surface debonded from the silica filled 

SBR was examined to be similar to the colour of the wire surface 

debonded from the unfilled SBR (see Figure 4.7(b)). Hence it seems 

that silica has no effect on the su1phidisation of copper and sul­

phur (as will be discussed in Chapter 7). 

Again bond strength can be related to the tensile strength, 

rupture energy and tensile product. 
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TABLE 4.18 

Effect of silica (VN3) Proportions on Physical Properties and 
Bond Strength of SBR 

Physical Fonnu1ation No. (Table 4.20) 
Properties 1 2 3 4 5 6 

Hardness (IRHO) 58 64 70 76 79 79 

Tear Strength 
(kN m-l) 28.4 38.6 50 60.1 66.6 70.5 

Tensile Strength 7.2 8.7 9.2 11 12.5 1l.9 (MPa) 

Elongation at 280 275 280 240 180 120 break (%) 

Tens il e Product 20.2 23.9 25.8 26.4 22.5 14.3 (MPa x %) 102 

Rupture Energy l.2 1.8 2.5 2.9 2.5 l.7 (J) 

Bond Strength 5.1 6.4 9.5 9.9 9.5 9.4 (HPa) 

Rubber Coverage 50 25 40-50 40 40 40 (%) 

Scorch time t2 
(mins) @1700 C 4.5 5 5.5 5.5 5 4.5 

Cure time tge 25 31 34 35 35 32 (mins) (? 170 

I 

7 

81 

73.1 

10.7 

100 

10.7 

l.5 

8.8 

35 

5 

34 



/0-_ ..... 
/ -....,~ .-- -10 70 &5 12 

,/-' -,-' ~ 
. ..,.. 3 "-J ----; .... 0 "-

~ 

1 

./ J:f / , .. 
11 9· .. ' "- 60 80 / .... . .. , . ,,·0'" , ... , ... '" o· .. ' . , 

/ .. ' ... , / / .... 0 
/ /' 

.' 
m / .. / 

70 0- 10 ~8 '(J .',... 50"'e ~ 

L ,... .'/ 
Z w L / .0,... ~ , x .c . 

,/ / Cl .... .c ,/ .c:. :c ....- /..-en Cl // 0 .... Cl:: e: e: y- Cl ..... ~ (1/7 / o ~ 5 • ..... 9 .l:: / '- :::l VI VI 
1-,... 
VI Ql 

/.' ,... c: (1/ 
'0 /.' 0 ........ Bond Strength -0-- '0 ~ 

'- '-III e: ,7 . ,/ m rv 0 Tensile Streng,th ---0--- 30 t-!!! 60 :r: e: ru6 ,/ 
,/ 

~ 8 , " 
Tear Strength - -~.--
Hardness • .... ·0· 

7 5 20 55 
20 30 40 SO 60 70 

Silic a • pphr -
FIGURE 4.1 O( a) Effect of Silica Proportions on Physical Properties and Bond Strength of SBR 



26 10 

24 9 

N 

~6 ~20 
x :L 

.... ..c:: 
U -+-
=:J Cl 
"0 C 

e 18 n.. E7 .... 
V) 

~ 
III "0 
C C 

~ 14 ~6 

10 5 

3 

_ - -r::::&., - ,. - / .... , 
...... 0 / ',,-./ ..... 

./ / " 2·6 ./ " 3/ 'J/ ',,~ 
/. 'q, 

/ " / , , 
2·2 :. / , , , I , 

" 
>-I /I Cl 
L-/ \ , cu / c I \ , 

\ UJ 

<I \ ~ 1 8 cu 
/ \ L-

\ 
, 

=:J 

/ \ , -+-Bond Strength ~---- c.. 
/ \ " =:J 

~ 
, er 

/ Tensile Product -- -0- -- 1 4 
/ , 

Rupture Erergy _ --9--- _ 
, , 

"-
"- ..... 

1 
10 20 30 40 50 60 70 

Silica, pphr ~ 

FIGURE 4.l0(b): Relationship Betlteen Silica Proportions Versus Bond Strength, Rupture Energy, 
and Tensile Product in SBR 

~ 

W 
N 



133 

4.3.2.6 Effect of Sulphur Proportjons on Bonding and 
Physlcal Propertles of!)i1ica Fl11ed SBR 

For a constant proportion of accelerators (1 pphr of DCBS and 

1 pphr of DPG) the sulphur content was varied between 1-8 pphr 

(see Table 4.19). 

TABLE 4.19 

Formulation Used to Evaluate the Sulphur Proportions in Silica 
Filled SBR 

Formulation Mix No 

pbw 1 2 3 4 5 6 

SBR (1204) 100 100 100 100 100 100 

Zinc oxide 10 10 10 10 10 10 

Stearic acid 3 3 3 3 3 3 

Silica (VN3) 40 40 40 40 40 40 
, DCBS 1 1 1 1 1 I 1 

I 

DGP 1 1 1 1 1 
I 

1 

Si 69 1.6 1.6 1.6 1.6 1.6 1.6 

Sulphur 1 2 3 4 6 8 

-----------------------------------------------------------------------
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An optimum bond strength ~Ias obtained at the 4 pphr of sulphur 

content (similar to carbon black filled SBR) but the optimum ten­

sile strength was achieved at lower sulphur proportions. Again it 

can be considered that for high bond strength a relatively large 

amount of sulphur is necessary. Excessive sulphur contents over 

the optimum level had only a small adverse effect on bond strength. 

The rubber coverage at maximum bond strength is 60% (i.e. failure 

is partially within rubber and partially interfacial). 

Again, tensile strength, rupture energy and tensile product 

values do not exactly correlate with bond strength but do demonstrate 

a general relationship (Figures 4.11 (a), 4.11 (b)). 

4.3.2.7 Effect of Antioxidant on Adhesion of IR to Brass­
Plated I'hre 

An interesting and surprising observation was made ~Ihen a new 

batch of po1yisoprene (Natsyn 2200) was obtained half way through 

the project. It showed an unusually low bond strength to the wire 

compared to earlier deliveries of IR (which had been stored at 

least 6 years, on the shelf, in our laboratory). 

It was thought that the poor adhesion of new IR to wire could be 

due to the presence of an antioxidant which is usually added to 

synthetic rubber. 

According to the literature the majority of antioxidants in 

use have been found not to exert a great effect on brass adhesion. 

Rutz(51) found no significant effect of PBN at up to 6 pphr; at 

higher contents of antioxidant blooming occurred and a drastic decrease 
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TABLE 4.20 

Effect of Sulphur Proportion on Physical Properties and Bond 
Strength of Silica Filled SBR 

Formulation No. (Table 4.19) 
Physical 

Properties) 1 2 3 4 5 6 

Hardness (IRHD) 59 69 74 75 76 76 

Tear Strength 
(kN m-I) 52.4 57.5 57.3 50 43.9 36.9 

Tensile Strength 5.9 10.2 10.9 9.4 8 7.2 (MPa) 

Elongation at 510 440 320 220 200 140 break (%) 

Tensile product 
(11Pa x %) 102 30.1 44.9 34.9 20.7 16 10.1 

Rupture Energy I 3.251 4.65 4.1 2.4 1.65 1.05 (J) 

4.2 1 Bond strength 7.2 9 9.5 8.5 7.4 (MPa) 

Rubber coverage 10 40-50 40 60 50 50 (%) 

Scorch timeo t2 
(mins)@ 170 C 5 5 5 4.5 4 3.5 

Cure tlme t~5 
(mi ns) @ 1700 40 32.5 31.5 30 24 18 
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(48) 
of adhesion was the result. Albrecht found an adverse effect of 

r~8T on bonding due to its strong reduction of the r~ooney scorch 

time. This postulation seems to be correct, in view of the nega­

tive effect on bonding of accelerators with very short scorch times. 

Bertrand(72), who used a black NR/BR compound with DCBS and cobalt 

naphthenate reported no effect of several antioxidants on initial 

adhesion. 

In this study the investigation was carried out using three 

mixes (Table 4.21). Mix No. 1 contained old IR, mix No. 2 contained 

new IR and specially extracted new IR (acetone extraction) was used 

in mix No. 3. The results are given in Table 4.22. According to 

the results the physical properties (hardness, tear strength, 

tensile strength) of the old IR and new IR were the same only the 

small difference recorded is due to testing variation. But the 

bond strength results are contradictory. The new IR gave a very 

poor bond strength of 3.2 ~1Pa and rubber coverage of 0-5%. Some 

improvement in bond strength (8.3 MPa) and rubber cover-age (40%) 

were observed when the extracted IR was compared with its counterpart. 

From these results it can be considered that the deterioration of 

bond strength might be due to the presence of antioxidant in the new 

IR which is known from the supplier to be BHT*. 

The old and new IR were analysed ** and the antioxidant amounts 

in old and new IR found to be as follows: 

* BHT = 2,6-di-t butyl-p-cresol 

** They were sent to Goodyear Research Centre to be analysed. 
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% antioxi dant 

0.59% by weight 

0.40% by weight 

The above does not support a postulation of better adhesion with 

diminishing levels of residual stabiliser so this observation thus 

remains a mystery. There was no more old IR to carry out further 

investigation. Due to this reason the effect of silica (VN3) prop­

ortions on the physical and bonding properties of IR rubber to 

brass-plated wire was not studied. 
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TABLE 4.21 

Fonnulation Used to E-valuate the Effect of Antioxidant on Bond 
Strength of IR 

Fonnu1ation Mix No. 

1 2 3* 
old IR New IR 

IR (2200) 100 100 100 

Zinc oxide 10 10 10 

Steari c aci d 3 3 3 

Carbon black (HAF) 35 35 35 

Sulphur 4 4 4 

DCBS 0.7 0.7 0.7 

* New IR with antioxidant extracted 

TABLE 4.22 

Effect of Antioxidant on Bond Strength of IR to Brass-~'ire 

Physical Formulation No. (Table 4.21) 
Properties 1 2 3 

Hardness 58 57 -
Tear strength 
(kN m-l) 66.2 68 -
Tensile Strength 20.9 21.3 -(MPa) 
Bond Strength (MPa) 15.3 3.2 8.3 

Rubber Coverage (%) 100 0-5 40 

Scorch time t 
(mi ns) @ 1700C2 5.5 5.5 5.5 

Cure time t 5 
(mins) @ 1700~ 14 14 14 
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CHAPTER 5 

AN INVESTIGATION INTO THE EFFECT OF TITANATES ON THE 
PHYSICAL PROPERTIES OF SBR AND ITS ADHESION TO BRASS-PLATED WIRE 

5.1 Introduction 

Before the development of 'integral' or 'direct' rubber-to-

metal bonding systems the conventional method of adhesion in use 

to bond rubber to metal was where one or more adhesive layers were 

applied as a sandwich between the rubber and metal. In the recently 

developed so-called direct rubber-metal adhesion systems, a bonding 

promoter is mixed with the rubber which tends to enhance the affinity 

of the rubber to metal substrate resulting in effective adhesion. 

Many tyre manufacturers use either cobalt salts, usually cobalt naph­

thenate or a hexamethylene tetramine-resorcionol-silica system (HRH) 

or both of these together in their steel cord skim compounds. These 

bonding promoters are usually lncorporated by mixing into the rubber. 

Another way to possibly improve rubber to steel wire adhesion is to dip 

the wire or cord into a solution of bonding promoter in imitation of the 

procedure which is usually used for textile cords; this method was 

investigated for a number of silane coupling agents but the results 

were rather poor(73). The dipping method has also been used by employing 

a solution of inorganic or organic phosphates, preferably tricresyl 

phosphate and various sulphur-containing rubber vulcanization accel­

erating agents(74). 

A new class of coupling agents was recently introduced by Kenrich 

* Petrochemical Inc. They can be considered to function as a molecular 

* Kenrich Petrochemicals Inc. 
Foot of East 22nd Street, Bayonne, N.J. 07002, USA 
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bridge between the interface of the inorganic and the organic matrix. 

They are unique in their reaction enabling the free protons at the 

inorganic (filler, metal, etc) interface to form organo-functional 

monomolecular layers on the inorganic surface. Then these monomolecular 

layers can link to the polymer through either organic groups with 

titanates acting as a bridge between polymer and inorganic surfaces 

(filler, substrate). 

The design of the molecule is similar to that of a siloxane 

coupling agent with additional complications and may be represented 

as follows:(75) 

(R I 0 )m-Ti-( O-X-R"-y In 

The R'O groups are considered to react with protons on the filler or 

metal surface, the remainder of the molecule can then react with 

functional groups in the polymer. X can be phosphite or phosphate, 

carboxyl or sulphonyl thus donating. at will, antioxidant, corrosion 

inhibition, flame retardant, or thixotropic properties to the polymer, 

R" is the group which is thought able to bond to thermoplastic polymers 

and may be aliphatic or aromatic in character whilst Y has the function 

of bonding to thermoset and may be amino, or merely a non-reactive hydro­

gen termination. Appendix I shows in detail the titanates various struc-

tures and functions. 

Titanate coupling agents have been suggested principally for use 

in plastics, although examples of their use in rubber have been cited(76). 

But the use of these coupling agents in rubber compounding has not been 



143 

widely practised. 

Some of these titanate coupling agents have been suggested as 

bonding promoters and also by permitting the formation of a monolayer 

on the steel surface, to prevent corrosion(77,78). 

A preliminary investigation was carried out to find the effect 

of several types of titanates on the physical properties of SBR and 

its adhesion to brass-plated steel wire. 

5.2 Experimental 

Seven different types of titanates were selected according to 

their structure. The Kenrich Petrochemical Inc. code names are quoted 

and their structure and their code names are presented in Table 5.1. 

These titanates have been used in two different ways. 

i) Applied directly to the wire surface. 

ii) Incorporated by mixing into the rubber. 

5.2.1 Titanate Applied Directly to the Nire Surface 

In the wire industry, a surface lubricant it used to cool down 

the wire during the drawing process and this generates high frictional 

heat. Usually such a lubricant leaves a residue which reduces the 

adhesion between the rubber and wire. The purpose of this work was to 

determine if these titanium coupling agents would enhance the strength 

and permanence of the bond between rubber and brass-plated wire. If 

so, they may perhaps be used as a wire drawing lubricant either alone 

or in a special formulation modified using this additive. 



TABLE 5.1: Chemical Structure of Titanate Coupling Agents 

Chemical Structure 
Code Chemical Description Wire or filler active group Polymer active group 

TTS Isopropyl triisostearoyl titanate 
CH3 -+- 0 ] 

CH3- bH - 0 - Ti 0 - ~ - C17H35 3 

CH [0 0 0 CH] Isopropyl tri(dioctylpyrophosphato) 3 • H/ - S17 KR-3SS CH-~H-O-Ti- O-P-O-P,,-titanate 
3 bH 0 -GSH17 3 

o 0 0 
KR-13SS Titanium di(cumylphenylate)oxyacetate ~ 0 t ft I 1 ~ - "T. 0 - P - 0 - P -+-0 - CSH17) Z 

H 0/ 1 I 2 2 OH 

CH3 1 KR-66S Isopropyl tri(3-mercaptopropionyl) 
CH3 - ~H - 0 - H t fH -- CH = CH2 titanate 

SH 3 

CH3 KR-44S Isopropyl tri(N-ethylamino-ethylamino) CH3 - bH - 0 - Ti -t 0 - C2H4 - NH - C2H4 - NHZ]3 titanate 

KR-41B Tetrai sopropyl 
titanate 

di(dioctylphosphito) CH3 0 ] 
(CH3- bH -0-tTi -ltl~ -+-0 - CSH17)2 2 
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The method used to apply the titanate to the wire surface was 

derived from the work of McConnell(38) and Smith(28) who have investi-

gated the effect of different types of lubricant on the adhesion of 

rubber to wire. 

For this experiment a 2% solution* of the selected titanates were 

prepared, Table 5.2. Their surface tension and interfacial tension 

with the wire was measured with a Du Nuoy Torsion Balance. Also, any 

change in their structure over the temperature (ambient - 1700C) was 

measured by Du Pont Thermal Analyser 990 (DSC) at a heating rate of 

200C/min. To examine the effects of these titanate solutions on adhe-

sion, each piece of wire was first cleaned with toluene to remove the 

lubricant residue and the contamination from the surface of the wire 

with absorbant paper until no black residue shows on the paper. These 

cleaned wires were weighed and one was kept as a standard sample. The 

rest were dipped in the titanate test solutions and then washed with 

the same solvent to remove the unreacted titanate, and suspended ver­

tically and allowed to dry. Then they were weighed to determine the 

amount of solution retained on the wire. The retained solution on the 

wire surface varied between 1-4 mg/g of wire. The mix formulation used 

to evaluate bonding is shown in Table S.3(a). 

* Kenrich normally recommend use of a 1% solution for direct appli­
cation to a surface 
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5.2.2 Titanate Incorporated into the Rubber 

Addition of compounding ingredients followed one of the follo­

wing cycles: 

Carbon black mixing cycle 

SBR ~ Activators (Zinc oxide/Stearic acid) + Carbon black (HAF) 

+ Titanate + Accelerator + Curing agent 

Silica mixing cycle 

SBR + Silica (VN3) + Silane (Si 69) + Titanate + Activators 

(Zinc oxide/Stearic acid) ~ Accelerators ~ Curing Agent 

It was found that the addition of titanate in the early stages of 

mixing made the processing easy. A recommended amount of titanate 

for use with a small particle size filler such as carbon black (HAF) 

and silica (VN3) is ~ - l~% of the filler weight(77) but in this 

experiment, the amount used was 4% of the filler weight to enable 

a broad assessment of its effects to be made. The mix formulation 

used is given in Table 5.3(b). 

5.3 Results and Discussion 

5.3.1 Wetting the Wire Surface 

Results as shown in Table 5.4 indicate that the addition of 

titanate did not make any difference to the interfacial tension 

between the wire and solutions. It is the solvent which wets the 

wire surface and due to its low interfacial tension most parts of the 

wire surface were wetted by the solutions (i.e. there is good wetta­

bility between wire and solutions). 
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TABLE 5.2: Solvents used for Different Types of Titanates 

Solvent Titanate 

Isopropanol KR-138S, KR-38S, KR-44, KR-41B 

Chlorofonn KR-TTS 

TABLE 5.3: Mix Fonnulation Used to Evaluate the Bonding Ability 
of Titanates 

(a) (b) 

pphr 1 . pphr 1 2 

SBR (1204 ) 100 SBR (1204 ) 100 100 
Zinc oxide 10 Zinc oxide 10 10 
Stearic acid 3 Stearic acid 3 3 
Carbon black (HAF) 35 Carbon black (HAF)35 -
Sulphur 2 Sil i ca - 30 
DCBS 1 DCBS 1 1 
Titanate applied as DPG - 1 
a 2% solution on Si 69 1.2 the wire surface -

Ti tanate 1.4 1.2 

(a) Titanate applied directly to the wire surface 
(b) Titanate incorporated directly into the rubber for direct 

bonding examination. 
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5.3.2 DSC Analysis of Titanates 

According to the DSC thermogram of titanates, Figure 5.1, 

titanates KR-TTS, KR-38S, KR-138S and KR-66S show little change 

in state over the temperature ambient -170oC. However, KR-44S 

and KR-41B are seen to show thermal transitions below 1700C 

(1700C is the vulcanization temperature) and hence indicates that 

some bonding response may occur with these materials. 

5.3.3 

The results are given in Table 5.5. By reference to the table 

it can be seen that all the titanates applied to the wire surface 

reduced the bond strength in comparison with the control. The poorest 

were isopropyl tri(N-ethy1amino-ethy1amino) titanate (KR-44S), and 

tetra isopropyl di(diocty1phosphito) titanate (KR-41B) which reduced 

both bond strengths from 12.2 MPa to 1.9 MPa and rubber coverage 

from 45% to 0%. This is considered due to the thermal transitions 

of these titanates below the vulcanlzation temperature (1700 C) 

see Figure 5.1. During the vulcanization process the titanates 

apparently decompose so no surface activity probably occurs between 

titanates and wire or rubber and hence they may remain at the inter­

face between wire and rubber acting as a lubricant. In the case of 

lsopropy1 di(4-aminobenzoy1) isostearoyl titanate (KR-38S) and 

titanium di(dioctylpyrophosphate) oxyacetate (KR-138S), the bond 

strength values were slightly lower than the control values. The 

relatively slight deterioration in bond strength that is observed 
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TABLE 5.4: Surface Tension and Interfacial Tension Measurements 
of Titanate Solutions 

Titanate Solvent Surface Interfaci a 1 
Solution Tension Tension 

Nm- 1 x 10-3 Nm-1 x 10-3 

- Isopropano 1 22 7 

- Ollorofonn 28 8 

KR-TTS Chlorofonn 28 8 

KR-138S Isopropanol 22 7 

KR-38S Isopropano 1 22 7 

KR-44 Isopropanol 22 7 

KR-41B Isopropanol 22 7 

TABLE 5.5: Effect of Titanates on Bond Strength (Titanate Solution 
Applied to the Wire Surface) 

I i 

I 
, 

Titanate Bond Strength Rubber Coverage Comments 
t1Pa % 

• 

Control 12.2 45 -No titanate 
KR-TTS 11.8 43 Equal to con-

trol 

KR-138S ,10.3 26 51 ightly 
poorer 

KR-38S 10.9 29 51 i ghtly 
poorer 

KR-44 1.9 0 No bonding 

KR-41B 1.9 0 No bonding 
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when KR-38S and KR-138S are used may be due to hydro1yzation of 

the titanates at the meta1-titanate interface by the presence of 

water in that region (there is little water present in all rubber 

compounds). Cotton and Wi1kinson(79) state that titanium a1koxide 

can be hydro1yzed by small traces of water. Isopropyl triisostea­

roy1 titanate (KR-TTS) shows an adhesion result equal to the control 

indicating some surface activity of KR-TTS between wire and rubber 

surface. 

In general it is concluded that the titanates which were studied 

exhibited some surface activity but were observed to produce adverse 

bond strength values. 

5.3.4 

As stated earlier, the titanates which were applied to the wire 

surface exhibited surface activity Slnce they produced negative 

results. It was decided to investigate the effect of these titanates 

on the adhesion of SBR to wire and on the physical properties of the 

rubber when they are incorporated into the rubber. 

The results are given in Table 5.6. Reference to the results 

of these titanates show positive and negative results compared with 

the control. Negative results with respect to bond strength were 

obtained with KR-44S (2 MPa bond strength and 0-5% rubber coverage), 

K-41B (7.7 MPa bond strength and 8% rubber coverage) and KR-66S 

(9.5 MPa bond strength and 30% bond strength), see Figure 5.2. 



TABLE 5.6: Effect of Different Types of Titanates on Physical Properties of Carbon Black Filled SBR and on its Adhesion 
to Brass-plated Wire 

Cure rate properties Comments 
Titanate at 1700C Mooney Hardness Tear Tensile Elongation Bond Rubber on bond 

Scorch Cure time Viscosity ( IRHD) Strength Strength at break Strength Coverage strength 
time t2 t95 

4(ML+1) kN m-1 (t1Pa) (%) (MPaj (%) and 
(mins) (mins) rubber 

coverage 
, 

Control 10 27 63 58 56.4 18.5 670 13 45 -
KR-TTS 13 33 58 56 57.7 19.3 710 15.8 95-100 Better than 

control 

KR-138S 13.5 43 60 56 56.8 18 730 13.5 95-100 " 

KR-38S 13.5 43 58 57 56.6 21.6 810 14.2 95-100 " 

KR-66S 2.5 17 59 58 78.2 16.6 700 9.5 30 Poorer 

KR-44 2 17.5 70 61 80 11.3 760 2 0 Much poorer 

KR-41B 13 32 58 57 59.8 21.3 810 7.7 8 Poorer 



66S 44S 41B 

FIGURE 5.2: Effect of Different Types of Titanate on Bond Strength and Rubber Coverage 
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Deterioration of adhesion may perhaps be due to the effect of 

KR-66S and KR-44S on the scorch time. Scorch time reduced from 

the control's 1D minutes to 2 minutes as shown in Figure 5.3. 

Other effects such as decomposition (KR-44S and KR-41B undergo 

a change of state below the vulcanization temperature of 17DOC) 

or effect on the rate of sulphidisation between sulphur and copper 

should be considered. An important point is that KR-41B bloomed 

heavily to the rubber surface and the low bond strength observed 

might be due to this effect as well as its relatively low decompo­

sition temperature. 

Positlve or increased bond strength resulted when KR-3BS, KR-

138S and KR-TTS were mixed into the rubber. In all cases the rubber 

coverage increased from 45% in control to 100% (i.e. failure occurred 

within the rubber). It can be considered that these titanates can 

be used as bonding promoters in carbon black filled SBR (the mecha­

nism will be discussed in Chapter 7). 

The effect of these titanates on physical properties is now 

discussed. As mentioned earlier, KR-44 and KR-66S reduced the 

scorch time and accelerated the cure time. This may be due to the 

amino and mercapto groups in KR-44S and KR-66S respectively which may 

function as accelerators. KR-138S and KR-385 increased the scorch 

and cure time (see Figure 5.3). KR-TTS has a cure time closer to 

that of the control value than the other titanates examined. Mooney 

viscosity and hardness were reduced with all titanates except in 

the case of KR-44 (Mooney vis~sity of 70 and hardness of 61 IRHD 

obtained for SBR/carbon b1ack/KR-44 mix in comparison with Mooney 

viscosity of 63 and hardness of 58 IRHD for the control). A signi-
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FIGURE 5.3: Effect of Titanates on Cure Rate Properties of Carbon Black Filled SBR at l700 C 
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ficant increase was observed in the tear strength of SBR/carbon black 

mix with KR-44S and KR-66S. Tensile strength was observed to increase 

with KR-38S and KR-41B. However tensile strength substantially 

decreased with KR-44. High elongations were obtained with all 

titanates (the above effects on bond strength and physical proper­

ties of carbon black filled SBR will be discussed in Chapter 7). 

The effect of titanates KR-TTS, KR-138S and KR-38S on the 

physical properties of silica filled SBR and its adhesion to wire 

was investigated, (see Table 5.7). In all cases, the bond strength 

reduced from 9.5 MPa to between 2.2-3.7 MPa and rubber coverage from 

45% to 0-5%. No significant effects were observed in physical prop­

erties. 



TABLE 5.7: Effect of Different Types of Titanateson Physical Properties of Silica Filled SBR and its Adhesion to 
Brass-Plated Wire 

Cure rate properties 
at l700 C Hardness Tear Tensile Elongation Bond Rubber Comments on 

Titanate bond strength 
Scorch Cure time (IRHD) Strength Strength at break Strength Coverage and 
time t95 kN m-l (MPa) (X) (MPa) (X) rubber 

t2 (min5) (mins) coverage 

Control 5.5 34 70 50 9.2 280 9.5 40-50 -
KR-TTS 5 38 68 50.6 8.6 300 3.7 0- 5 Poorer 

KR-138S 5.5 41 67 48.1 9 260 2.4 0- 5 Poorer 

KR-38S 6 41 67 48.8 8.3 220 2.2 O- S Poorer 
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CHAPTER 6 

ANALYSIS OF BRASS-PLATED WIRE SURFACE AND THE 
WIRE-RUBBER INTERFACE BY MEANS OF ELECTRON 
SPECTROSCOPY FOR CHEHICAL ANALYSIS (ESCA) 

6.1 Introduction 

Information (compositional, chemical state and molecular bon­

ding information) about the topmost atomic layers of solid specimens 

(metals, organic and inorganic chemicals, polymers) is crucial in 

order to gain a knowledge and understanding of the manner in which 

those specimens will behave when placed in any particular environ­

ment. 

A number of techniques are now available to acquire this type of 

knowledge. There are three major techniques, viz. Auger Electron 

Spectroscopy (AES), X-Ray Photo-Electron Spectroscopy (ESCA) and 

Secondary Ion Mass Spectroscopy (SIMS). Each of these techniques has 

the ability to measure the composition of the outermost atomic layers, 

but each technique has advantages and disadvantages and some Judgement 

is necessary when choosing the appropriate technique for a particular 

problem, Table 6.1. This is possible only through familiarity with 

,the tec~niques, their fields of application, and the complementary 

nature of the information that they supply. XPS has been used 1n the 

investigation of rubber-to-brass adhesion(39)(66) since it permits 

quantitative analysis of oxide composition. XPS has also a considerable 

advantage in compar1son to AES in composition depth-profiling since 

depth information can be obtained not only by angular variation, but 

also by varying the kinetic energy of the photoelectrons by using 

different excitation sources. In general, for all depths, the major 



TABLE 6.1: MethoDs of Surface Analysis 

X-ray Photoelectron Auger Electron Secondary low mass 
Spectroscopy (ESeA) Spectroscopy (AES) Spectroscopy (SII1S) 

Incident particle X-ray (1254 eV and Electrons (1-10) KeV Ions (100 eV - 5 KeV) 
1487 eV) 

Emitted particle Photoelectron Auger electrons Sputtered ions 
(20 - 2000) eV (20 - 2000) eV 

Element range > He (Z = 2) > Li (Z = 3) > H (Z = 1) 

Detection limit 0.5 atom % 0.1 atom % > 10-4 atom % 

Depth of analysis 'V 2 nm '" 2 nm '" 1 nm 

Lateral resolution > 1 mm > 0.5 IJm > 11J m 
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advantages of XPS over t,ES is that it provides chemical information 

and it can be used with delicate materials, hence XPS was chosen as 

the primary investigation method in this research. 

6.2 Principle of ESCA 

Each atom present in the surface (exoept hydrogen) possesses 

core electrons not involved in the bonding. The so-called "binding 

energy" of each core electron (conceptually equivalent to the ioni­

sation energy of that electron) is characteristic of the individual 

atom. Core electron binding energies vary with atomic number. For 

any given electron shell, the K shell for instance, the electron 

binding energy increases with increasing atomic number. Thus, 

information of the binding energies of electrons within a sample 

allows qualitative elemental ana1ysls. 

In the basic ESCA experiment, the sample surface is irradiated 

by a source of low-energy X-ray (generally A1Ka or M9 Ka ) under u1tra­

high vacuum (UHV, 10-8 - 10-11 torr of Hg) conditions which eject core 

electrons, directly from the surface atoms. These core electrons, 

originally with a binding energy Eb which are then emitted with a 

kinetic energy EK given by: 

(6.1 ) 

where: hv = X-ray photon energy 

Eb = binding energy of electrons 

$ = work function of solid containing the atom. 

---------------------------------- - - --
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Since the value of hv and EK (measured from spectrum) are known, 

the binding energy Eb can be calculated using equation 6.1. 

Figure 6.1 schematically represents the principle of XPS. 

6.3 Experimental 

It is the purpose of this work to present the results of a 

preliminary study of the bonding mechanism and of a search for the 

various parameters which have an effect on adhesion. This study 

can be broken down into three parts: 

i) Surface composition of brass-plated wire (used in this project). 

ii) Identification of the che~ical compounds which are formed at 

the rubber-wire interface during vulcanization. 

iii) Effect of rubber compound (carbon black and silica) on the 

chemical compositions which are formed between rubber and wire. 

During this study the X-ray Photoelectron Spectroscopy (XPS or ESCA) 

analysis were performed on a Vacuum Generator Model VG SCAlAB spec­

trometer using A1 Kal ,2 radiation and pressure of 10-8 torr. Sputter­

depth profiling of wire and rubber surface were performed with beams 

of Ar+ ions of ]0-5 torr pressure and 3 KeV energy and 12 ~A/cm2. 

The surface of wire and rubber sputtered at the rate of approximately 

20 nm/min (i.e. a layer of 20 nm was removed from the surface after 

one mlnute). Quantitative evaluation of spectra will be described 

in Section 6.3.2. 
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FIGURE 6.1: X-Ray Photoelectron Spectroscopy (XPS) 
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6.3.1 Sample Preparatlon 

In order to provide a specimen suitable for ESCA analysis, 

it was necessary to prepare a sample with at least one cm l surface 

area. The single wire "H-test" adhesion type sample used earlier in 

this project was found to be not suitable for ESCA analysis due to 

its small surface area (0.3 mm diameter x 8 mm length). It was 

decided to develop a sample that could give a large surface area 

(see Figure 6.2). Wire was wound around a frame with strands tou­

ching to each other and kept in tension, the band of wires were 

cleaned with toluene for several times to remove the lubricant resi-

due as much as possible concluding with the wire surface being finally 

wiped off with acetone to remove any toluene residue. The cleaned 

wire was then sandwiched between two pieces of rubber and the whole 

vulcanized. The moulding procedure was the same as mentioned in Sec­

tion 2.4.2. Then the vulcanized was frozen in nitrogen liquid to sepa­

rate the rubber from the wire. A small piece of the wire bond (about 

one cm-2 was cut from the wire and rubber and using double sided 

Sellotape mounted on the specimen probe ready for analysis by ESCA. 

6.3.2 t1easurement of Binding Energy and Concentration of 
Elements (Atom %) 

As stated earlier, the binding energy is a characteristic of 

individual atoms, so the blnding energy of an electron on the surface 

of a substrate indicates the elements present. 
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FIGURE 6.2: A Sample Used in ESeA Technique: 
A. Wire Side 
B. Rubber Side 
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MeasUl'ement of Binding Energy -The binding energy of each peak in the XPS spectrum (see 

Figure 6.3) was obtained from the literature which gives the ref­

erence peak of namely carbon ls which has a binding energy of 284.7 eV. 

However in practice the use of an internal reference is also necessary 

as then the carbon ls photoelectron peak automatically takes account 

of the charge build-up at the surface which occurs as a result of 

the ejection of photoelectrons from the sample. Due to this factor 

the binding energy of the so-called 284.7 eV for carbon ls obtained 

experimentally is inaccurate. Hence to measure an accurate binding 

energy for reference purposes, high resolution of the reference peak 

is necessary. In this investigation such high resolution of this 

reference peak did not prove possible due to experimental problems 

hence a ± 5 eV error can exist in the results. After measuring its 

bind1ng energy each peak was identified by reference to the ph! hand-

book. (See Appendix 11). 

CaZculation of the Concentration (Atom %) of Each EZement 

The atom % which gives the concentration of each element on the 

sample surface either is outer layer or in depth can be calculated 

as follows: 

Number of atoms (N) a ~* 
of each element ~ 

where h = the height of the peak in the XPS 

S = sensitivity factor 

* Equation 6.2 is given 1n greater detail 1n Appendix Ill. 

(6.2) 
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The sensitivity factor obtained from the chemical standard for 

detected elements are given in Table 6.2. 

TABLE 6.2: Sensitivity Factors for Some Elements 

Element C 0 Cu Zn S 

S 0.34 1 2.3 3 0.65 

The atom % can be obtained from the equation below: 

Atom % of 
each element = -=n:-,-N,-- x 1 00 

L Ni 
i =1 

Si 

0.33 

(6.3) 

where N represents the number of elements on the surface of the 

substrate. 

6.3.3 Problems Associated with the ESCA Technique Used 

1. For a satisfactory analysis the test specimen was required to be 

flat and large in area. Especially for sputter-depth profiling, 

for good depth resolution, it required a uniform surface. If a 

slng1e wire was used then due to its round surface and small 

radius this was found to be inadequate to obtain an accurate 

depth scale. 

2. The ESCA technique was observed to be sensitive to surface con-

tamination (e.g. high carbon intensity) and especially in the case 

when strong rubber-wire adhesion occurred, then it was found difficult 
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to remove the rubber completely from the wire and then the 

carbon present in the rubber interfered with the ESCA analysis 

of the wire surface. This disadvantage could lead to inaccu­

rate experimental observations. 

3. As the ESCA technique is expensive and not easily accessible, 

only a limited examination of the sample was possible. 

6.4 Results and Discussion 

6.4.1 Surface, Composition of Brass-Plated Steel Wire 

It has long been recognised that the bonding of Cu/Zn alloys to 

sulphur-vulcanizable rubber compounds is the result of a reaction 

between copper and sulphur(35)(42). The quality of the rubber-to­

wire bond is therefore likely to depend on the rate of attack of the 

brass surface by the sulphur. Consequently, the brass oxide thickness 

and composition play an important role in determining the adhesion 

behaviour of a given type of brass. For this purpose the elements 

on the wire (used in the whole of this project) surface were identi­

fied and their concentration (atom %) on the outer layer and in-depth 

profile were measured and given in Table 6.3 and Figure 6.4. 

The only detectable elements are seen to be Cu, Zn, 0 and C. 

Carbon is the main contaminant and shows the higher concentration, 

and as mentioned ealier, this is one of the disadvantages of XPS. 

It is difficult to state whether Zn or Cu is in the form of metal 

or oxide since their binding energies are close to each other (Table 

6.4). The oxidation state of Cu or Zn can be established from the 

shifts of their photo lines, auger transitions or other details (shake 
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TABLE 6.3 

Evaluation of Atom % of Elements on the Brass-Plated Hire Surface 
(0.3 Diameter) 

Sputter time = 0 

C 0 Si Cu Zn 

h 21.9 20.4 7.8 14.4 19.2 

N 64.4 20.4 23.6 6.3 6.4 

Atom % 53.2 16.8 19.4 5.2 I 5.3 

Sputter time = 3 (mins) 

h 2.8 2.5 - 32. 18 

N 7.4 2.5 - 13.9 6 
, 

Atom ~~ 24.8 8.4 - 46.6 I 20 
I 

Sputter tlme = 6 (mins) 

h 2 1 - 45 13.8 

N 5.9 1 I - 19.6 I 4.6 

Atom % 19.6 3.3 I - 65.1 I 15.3 
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FIGURE 6.4: XPS and Argon Ion Depth Profiling Analysis of 
Brass-Plated Wire (0.3 mm Diameter) Surface, 
70/30 Composition 
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TABLE 6.4 

Binding Energies of Detected Elements on the Brass-Plated I~ire 
Surface and Rubber-Ill re Interface 

Element Binding energy(a) Binding energy(b) 
(eV) (eV) 

C1S 284.7 284.7 

°lS 534.7 531.6 

Si 104.3 103.4 

I 
2P 

S8 164.7 163-164 

I 
I 
I , 

I 
I 
! 

CU 2P 
CuD 

Cu20 

Cu2S 

Zn 2P 
ZnO 

ZnS 

I 

I 
I 
, 

934.7 

I 
I 

1029.7 ! 

932-933 

933-934 

932-934 

932-933 

1021-1022 

1021-1023 

1022-1023 

~----------~----------------~------------~ 

(a) Using C1S = 284.7 eV as reference, estimated accuracy ± 5 eV. 

(b) phi handbook. 



173 

up Phenomena)(80). In this analysis the Auger transition was not 

examined due to experimental problems and the results are explained 

by referring to the observations of other researchers. Haemer(66) 

examined the surface composition of a 0.22 mm diameter brass-plated 

wire by ESCA. He detected Cu. Zn. 0 and etc. and stated that oxygen 

is bonded to the zinc (i.e.zinc is present as ZnO in the outermost 

layer). 00ij(81) also observed that the surface composition of 

freshly polished cold-worked brass (64/36) showed the formation of 

a thin rich zinc oxide layer. This oxide film on brass. interpreted 

as a defect structure of ZnO. contains Cu and Zn atoms which can 

diffuse to the surface. where the zinc atoms are preferentially pre­

sent in the form of oxide. According to the above observation and 

the presence of oxygen at high concentration (see Figure 6.4). it 

can be deduced that Zn is in the form of zinc oxide and probably 

copper in the form of copper oxide at the outer layer. He also 

stated that the thickness of the zinc oxide film increases as temp­

erature rises. It is probable that a thick zinc oxide layer forms 

during the vulcanization process when brass wire bonds to rubber. 

6.4.2 Interfacial Analysis of Unfilled and Filled SBR to 
Brass-Plated Wire Samples 

The results of the interface analysis and depth profiling of 

unfilled and filled (carbon black HAF and silica VN3) SBR-wire are 

given in Tables 6.5a - 6.7b and Figures 6.5a - 6.7b. 

In all cases on the wire side. sulphur was detected indicating 

the migration of sulphur from the rubber to the interface between 

rubber and Wlre. On the rubber side of the sample a considerable 

amount of zinc and copper are detected originating from the brass. 
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In the carbon black filled SBR wire interface, the relative con­

centration of Cu, Zn, 0 and S is found to be low relative to the 

high concentration of carbon ls that is observed both on the rubber 

and wire sides. The high Cls concentration on the rubber side is expec­

ted; however it is unexpected on the wire side and considered to be 

due to the results from good adhesion between carbon black filled 

SBR and wire as it is very difficult to remove all the rubber 

from the wire surface even using the liquid nitrogen fracture tech­

nique. 

By inspection of the ESCA spectrum oxygen is obviously pre­

sent at the interface. 

Again, as was stated in Section 6.4.1, to distinguish between 

the (1) metal, (2) oxide and (3) the sulphide forms of Zn and Cu, 

the Auger transition should be examined. This is because Cu with 

copper oxide and copper sulphide, and Zn with Zlnc oxide and zinc 

sulphide, have close binding energies (see Table 6.4). It was not 

possible to carry out an Auger examination due to experimental 

problems. 

The interpretation of the results uses the observations of 

other researchers. 00ij(40) has analysed the interfacial composition 

of rubber bonded to Wlre by ESCA and confirms that an interfacial 

layer is present between rubber and wire. On the basis of the observed 

electron binding energles and relatlve concentration this layer has 

been identified as a mixture of ZnO, ZnS and cuprous sulphide (Cu2S). 

By reference to the experimentally found in-depth concentration of Cu, 

Zn, S, and 0 by ESCA and referring to the observations of Ooij it 
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can be implied that the reaction of wire with rubber had led to 

the formation of an interfacial zone consisting of sulphide and 

oxide forms of Cu and Zn. 

Comparison of a carbon black filled SBR-wire interface with 

the unfilled SBR - wire interface indicates that rubber compounding 

additives have an influence on the concentration of chemical com­

position in the outer layer and in-depth (see Figures 6.5(a) -

6.6(b». The results shown in Tables 6.5(a), 6.5(b) and Figures 

6.5(a), 6.5(b) are typical of a sample with a very low adhesion 

level (interfacial failure). The results shown in Tables 6.6(a), 

6.6(b) and Figures 6.6(a), 6.6(b) are typical of a sample, which 

if tested at room temperature, the bond strength would exceed the 

rubber strength (failure within rubber). As can be.seen there are 

big differences in chemical composition at the interface between 

these two types of failure. The results of silica filled SBR-wire 

interface were found to be similar to the results for unfilled SBR­

wire interface (Tables 6.7(a), 6.7(b) and Figures 6.7(a), 6.7(b». 

The role of each detected element on the adhesion of rubber to wire 

will be discussed in chapter 7. 
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TABLE 6.5{a): Wire Side 

ESCA Evaluation of Atom % of Elements at the Interface Between 
Unfilled SBR and the ~ire 

Sputter time = 0 

S C 0 Cu Zn 

h 3.5 5.3 10 9.3 56.5 

N 5.4 15.6 10 4.0 18.9 

Atom % 10 28.9 18.5 7.4 35 

Sputter time=2 (mins) 

h 3.6 2.5 12 17 93.3 

N 5.5 7.3 12 7.4 31.1 

Atom % 8.7 11 .5 18.9 11.7 49.1 

Sputter time=4 (mins) 

h 3 2.4 11.7 21 96 

N 4.6 7.1 11.7 9.1 32 

Atom % 7.1 11 18.1 14.1 49.6 

Sputter time=6 (mins) 

h 2.2 2 10 42.7 83.3 

N 3.4 5.9 10 18.6 27.8 

Atom % 5.2 8.9 I 15.2 28.3 42.3 

I , 
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TABLE 6.5(b): Rubber S,de 

ESCA Evaluation of Atom % of Elements at the Interface Between 
Unfilled SBR and the ~ire 

Sputter time = 0 

S C 0 Cu Zn 

h 4.1 4.7 4.3 11 33.3 

N 6.3 13.8 4.3 4.8 11. 1 

Atom % 15.6 34.2 10.7 11.9 27.5 

Sputter time = 2 (mins) 

h 5 3.8 3.7 22.3 39.3 

N 7.7 11.2 3.7 9.7 l3.1 

Atom % 17 24.7 8.1 21.4 28.8 

Sputter time = 4 (mins) 

h 5.1 I 3.6 2.3 I 35 26.7 

I , 
N 7.8 10.6 2.3 I 15.2 8.9 

Atom % 17 .4 23.7 5.1 33.9 19.9 

Sputter time = 6 (mins) 

h 5.1 4 I 2.1 33.3 26.7 , 

N 7.8 I 11.8 2.1 14.5 8.9 

Atom % 17.3 I 26.2 4.6 I 32.1 19.7 



1 

00 20 

178 

!~ire Side 

2 3 

SBR ---------.100 
Znc oxide --- --10 
St-earl c acid - - -- 3 
$ulphur- - -- --4 
0(B5---------1 

4 5 6 

Sputter Time, mini • 

60 80 1bo 
Oept-h. nm 

FIGURE 6.5(a): XPS and Argon Ion Depth Profiling Analysis 
of Interface between Unfilled SBR and I/ire, 
Compound as Indicated 
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FIGURE 6.5(b) XPS and Argon Ion Depth Profiling Analysis 
of Interface between Unfilled SBR and Wire, 
Compound as Indicated 
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TABLE 6.6(a): Wire Side 
ESCA Evaluation of Atom % of Elements at the Interface Between 
Carbon Black Filled SBR and the lIire 

Sputter time = 0 

S C 0 Cu Zn 

h 2 16.7 11. 7 31 19.7 

N 3.1 49.1 11. 7 13.5 6.6 

Atom % 3.7 58.5 13.9 16.1 7.8 

Sputter time = 2 (mins) 

h 2.8 18.3 6 I 42.7 28.7 

N 4.3 53.8 6 18.7 9.6 

Atom % 4.7 58.3 6.5 20.2 10.4 

r Sputter time = 4 (mins) ! 
t 

I I h 2.6 15.7 ! 5.7 I 42 28.7 , 

I N 4 46.2 5.7 18.3 9.6 

I Atom % 4.8 55.1 6.8 21.8 11.5 

Sputter time = 6 (mins) 

I I 
t 

h 2.4 19 8.3 72.7 44.7 

I N . 3.7 55.9 8.3 I 
I 

31.6 14.9 

Atom % 3.2 48.9 I 7.3 I 27.6 I 13 
-

, 
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TABLE 6.6(b): Rubber Side 

ESCA Evaluation of Atom % of Elements at the Interface Between 
Carbon Black Filled SBR and the Wire 
,--

Sputter time = 0 

S C 0 Cu Zn 

h 1.2 20 10 18.3 3 

N 1.8 58.8 10 6.1 1.3 

Atom ~b 2.3 75.4 12.8 7.8 1.7 

Sputter time = 2 (mins) 

h 2.5 23.3 8.7 34.3 4 

N 3.8 68.5 8.7 11.4 1.7 

Atom % 4 72.8 9.2 12 1.8 

Sputter time = 4 (mi ns) 
, , 

h 2.7 24.3 
, 

6.7 32 3 I 
I 

N 4.1 71.5 6.7 10.7 1.3 

Atom % 4.3 75.8 7.1 11.3 1.4 

Sputter time = 6 (mins) 

h 2.9 23.3 5 28 4.3 

N 4.5 68.5 5 9.3 1.9 

Atom % 5.0 76.8 5.6 10.4 2.1 

. 
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FIGURE 6.6(a) XPS and Argon Ion Depth Profiling Analysis 
of Interface between Carbon Black Filled SBR 
and Wire, Compound as Indicated 
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FIGURE 6.6(b): XPS and Argon Ion Depth Profiling Analysis 
of Interface Between Carbon Black Filled 
SBR and ~Iire, Compound as Indicated. 
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TABLE 6.7(a): Wire Side 
ESeA Evaluation of Atom % of Elpments at the Interface Between 
Silica Filled SBR and the Wire 

Sputter time = 0 

S C 0 Cu Zn 

h 7.7 12.3 15 24.7 73.3 

N 11.8 36.2 15 10.7 24.4 

Atom % 12 36.9 15.3 10.9 24.9 
-

Sputter time = 2 (mins) 

h 8.7 7.3 15.5 42.7 134.7 

N 13.4 21.5 15.5 18.6 44.9 

Atom % 11.8, 18.9 13.6 16.3 39.4 

Sputter t,me = 4 (mins) 

h 8 6.7 20 I 45.3 I 134.7 

N 12.3 19.7 20 19.7 I 44.9 

Atom ~; 10.5 I 16.9 17.2 I 16.8 I 38.5 

Sputter time = 6 (mi ns) 

h 6.7 6.7 14.3 77.3 129.3 

N 10.3 19.7 14.3 I 33.6 43.1 , 

Atom % 8.5 16.3 11.8 27.8 35.6 

i 
I , 
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TABLE 6.7(b): Rubber Side 

ESCA Evaluation of Atom % of Elements at the Interface Between 
Silica Filled SBR and the lIire 

Sputter time = 0 

S C 0 Cu Zn 

h 3.9 8 5.2 10 24 

N 6 23.5 5.2 4.3 8 

Atom % I 12.8 50 11.1 9.1 17 

Sputter time = 2 (mins) 

h 6.2 5.7 7.3 12 29 

N 9.5 16.8 7.3 5.2 9.7 

Atom % 19.6 34.6 15 10.7 20 

I 
I Sputter time = 6 (mins) I 

I 
I 

h I 6.2 6.4 2 45 22.3 

N 9.5 18.8 I 2 19.6 7.4 

Atom % 16.6 32.8 ! 3.5 34.2 I 12.9 

------------------------------------ -
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Ilire Side 

SBR (1204) --------------- 100 
Silica (VN3) -------------- 60 
Zlnc oxide ---------------- 10 

, 

20 

2 
Spufter 
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Sulphur ------------------- 4 

Z02P 
DCBS 1.4 

3 4 5 6 
Tmie, mins 

~ 60 80 100 120 
Depth, nm • 

FIGURE 6.7(a): XPS and Argon Ion Depth Profiling Analysis of 
Interface between Silica Filled SBR and 
Hi re. Compound as Indi cated. 
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Rubber side 

SBR (1204) --------------- 100 
Silica (VN3) ------------- 60 
Zinc oxide --------------- 10 
Stearic acid ------------- 3 
Sulphur ------------------ 4 
OCBS --------------------- 1.4 

Z 3 4 
Sputter Time, mlOs 
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FIGURE 6.7(b): XPS and Argon Ion Depth Profiling Analysis of 
Interface bebleen Silica Filled SIlR 
and Wire,Compound as Indicated. 
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CHAPTER 7 

GENERAL DISCUSSION 

In any bonding investigation, it is important to identify 

the two primary criteria that together constitute the total 

adhesion forces. These criteria are the chemical reaction and 

physical chemistry wetting forces that apply at the interface of 

the two adherents. 8onding, due to the formation of chemical 

valency, must always be stronger than that of surface wetting 

energy and such valency bonds can only fail by internal rupture 

of one of the adherents. Wetting energy adhesion failure can be 

recognised by interfacial separation of its adherents such that 

a clear adherent surface is visible. Therefore in any evaluation 

of rubber-wire bonding it is necessary to consider the following: 

a) The total force required to break the bond is the sum of both 

chemical valency and surface energy forces. 

b) The proportion of the weaker adherent, in this instance the 

rubber, adhering to the strong adherent substrate, the brass, 

and giving a separate and independent measure of the chemical , 
valence adhesion force. 

Percentage rubber coverage of the brass-plated wire after a 

bond strength test can be regarded as a method through which the 

contribution made by valency forces can be quanti sed. 

There are a number of factors which directly influence the 

adhesion between brass-plated wire and rubber. In the present work 
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the effect of the following parameters on the adhesion of rubber 

to brass-plated steel wire were investigated and are discussed 

below on the basis of results obtained in the preceding chapters. 

1. Effect of wire drawing lubricant residue on bonding. 

2. Effect of compounding additives (carbon black (HAF), Silica 

(VN3), sulphur) proportions on bonding and physical properties 

of rubber. 

3. Effect of various organic titanates on the bonding and physical 

properties of SBR rubber. 

7.2 Effect of the Brass-Plated Steel Wire Surface Factors on 
Bondlng 

7.2.1 Effect of Wire Drawing Lubricant Residue 

While the drawing of brass-plated wire lubricant is usually 

required to reduce the tension, this lubrication was found to have 

an effect on rubber-wire adhesion which can be due to: 

1. Chemical and Physical changes in the brass (heat dissipation) 

as a result of lubricant-brass interaction. 

2. The effect which residual lubricants on the wire surface exert 

on the wire adhesion. 

If case one happens, i.e. the lubricant reacts chemically with the 

brass, which is very reactive chemically during the drawlng process, 

this chemical reaction causes staining of the wire surface. Such 

wire, if bonded to rubber, results in the deterioration of the adhe­

sion because the rubber cannot wet the stained area(28) which thus 
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causes a reduction in bond strength. This usually happens when 

the drawing temperature is high. The other effect of high temp-
. 

erature drawing is to increase the formation of zinc oxide on the 

brass-plated wire surface and, as will be discussed later, the 

zinc oxide film, due to the individual properties, retards the 

formation of CUxS, therefore the loss of adhesion. 

In case two there is no chemical reaction between the drawing 

lubricant and the wire and the effect which the residual lubri-

cants at the wire surface exert on the rubber adhesion of the wire 

and the reduction is low and also inconsistent results are usually 

obtained. McConnel and Richards(38) who studied the effect of 

commonly used lubricants found them to adversely affect adhesion. 

In the present investigation solvent cleaning of the surface 

of brass-plated steel wire is considered to increase the rubber-

wire bond strength by 10%: this increase is considered statistically 

significant, being based on the averaging of a minimum of 10 speci­

mens and supported by consistently higher rubber coverage percen­

tages. Perhaps of more importance is that increases in the percen­

tage rubber coverage exhibited by a solvent-cleaned specimen is as 

much as 25%. However, the coefficient of variation, i.e. bond 

irreproducibility remains high despite such surface cleaning. This 

higher bond irreproducibility is considered to be due to the wire 

drawing lubricant, identified in part as a siloxane, being only 

partially adsorbed simultaneously into the rubber and the brass sur­

face during vulcanization, as shown by the ESCA technique (Figure 

3.4). 
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Despite the use of extraction or physical washing tech­

niques, as SEM studies reveal, a minor, but significant, propor­

tion of residue always remains behind on the surface of the 

cleaned wire. It is considered that this tenacious residue has 

an adverse effect on the consistency of the rubber-wire bond 

strength. It is also thought that it is this small residue that 

accounts for the element of bond strength irreproducibility and 

that this is due to the presence of wire drawing lubricant. 

It is difficult to explain how an organic wire drawing lubri­

cant mixture can so tenaciously adhere to a wire surface such that 

its removal by strong solvents is either impossible or can be 

only partially successful. A hypothesis is that possibly some 

reaction occurs between drawing lubricant and the copper and/or 

zinc in the brass during operation as then, for a short instant of 

time (mlcroseconds), a very high temperature is generated between 

wire and drawlng die. Zinc and copper are known to react readily 

with many organic compounds forming organo-metallic complexes and 

possibly this occurs in a typical wire drawing operation. This 

implication is that the rubber would not bond well to wire in areas 

containing such patches of organo-metalllc complex. 

Some evidence in support of the above hypothesis is offered 

by IR studies which showed the lubricant to contain in its composi­

tion a rubber active siloxane which DSC examination established as 

being chemically active during the normal vulcanization temperature 

range (Figure 3.5). Commercial wire drawing lubricants (as mentioned 
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earlier) are known to be mixtures and probably in addition to the 

siloxane there may be present a metallic stearate (Zn or Ca) and 

possibly a fatty acid amine (e.g. triethanolamine). If these 

additives were present on this particular wire they were not 

extracted by solvent and hence not detectable by IR spectroscopy 

and may have remained behind on the wire surface in conjunction 

with some of the siloxane. 

7.2.2 Composition of the Brass-Plated Wire Surface 

After the steel wire is brass-plated (coating of Cu-Zn alloy) 

it undergoes various thermal'and chemical (lubricant) treatments 

which allow physical and chemical changes to occur on the brass 

surface. As has already been discussed, the wire drawing lubricant 

might react with the brass surface (Section 7.2.1); the other appa­

rent changes are the drawing marks and the formation of ZnO on the 

brass surface which are believed to affect adhesion. The effect of 

drawing marks on bond strength is outside the scope of this discus­

sion. Only the composition of brass surface is discussed here. 

An in-depth profile composition of the brass-plated wire sur-

face detected the elements Zn, Cu and 0 (Figure 6.4). The presence 

of oxygen implies that Zn and Cu are in the form of oxide up to a 

certain depth. The affinity of Zn to 0 is higher than Cu to oxygen, 

thus it can be considered that there is a thin layer of ZnO on the 

top of CuD or Cu. The thickness of this layer is a function of 

temperature and increased proportionally with temperature(8l). If 

this ZnO layer exceeds a critical thickness, it will prevent the 
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rubber-brass reaction, and consequently adhesion formation due to 

its n-type semiconductor properties (and these will be discussed 

in Section 7.3.1). This is in agreement with the results of ESCA 

analysis of this investigation which showed that the concentration 

of Zn, in the form of ZnO or ZnS increases during the vulcanization 

process (Figure 6.S(a)). This increase can be due to two factors; 

one is the presence of zinc oxide in the vulcanization process and 

the second, as mentioned above, is that the concentration of ZnO 

at the bond interface increases with temperature, so that at the 

vulcanization temperature (1700C) the ZnO layer is relatively 

high thus adversely affecting bonding. 

7.3 Effect of Compounding Additives 

In addition to the factors described earlier, and associated 

with brass-plated wire that influence rubber-wire adhesion, some 

commonly used rubber ingredients are also known to affect bonding. 

These ingredients, such as fillers, sulphur and bonding promoters, 

have been found to have a marked influence on both the mechanical 

properties of rubber and its adhesion to brass-plated wire. The aim 

of the present work was to investigate the influence of these ingre­

dients in order to achieve a good combination of bonding and rubber 

physical properties. The compounding ingredients selected were 

varlOUS proportions of sulphur in unfilled and filled rubber, carbon 

black (HAF), silica (VN3) and organic titanate coupling agents (bon­

ding promoters). Each of these were separately studied, keeping all 

other variables constant. 
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7.3.1 Effect of Carbon Black (HAF) 

As carbon black is one of the most important ingredients 

commonly used in the rubber industry for both reducing the total 

cost and to improve service life of the rubber articles, its 

influence on rubber properties (physical and bonding to brass­

plated wire) was investigated and it was found that carbon black 
/ 

had a marked effect. It may now be useful to give a brief dis­

cussion of the properties of carbon black, such as 0 and H con­

taining functional groups, and then its effect on the physical 

properties of the rubber and its adhesion to brass-plated wire. 

The presence of carbon-hydrogen bonds on the surface of car-

bon black. and even inside the mass of the particle, has been found 

by using bromine and chlorine substitution at room temperature(82.83}. 

Similarly the existence of oxygen in the form of oxides has been 

found by several workers(84,85) and their characteristics studied 

(86,87). Boehm and Vo11 proposed a model for oxides present on the 

carbon blackosurface (shown below), indicating possible arrangements 

I 
~ 

o 

o 



195 

of pyrone-like structures on the carbon black surface. Sulphur 

has also been detected by various workers(88,89) where the exis­

tence of sulphurous surface comp1exes(90) and other su1Phides(91) 

were found. Sykes and White(92) postulated the presence of sur­

face sulphides and proposed the following structure: 

5 5 

5 5 s C5 (5 5 

\ =_ =~- f 

Lewis et a1(93) showed by means of an isotope technique with 

sulphur 35, that the sulphur present in carbon blacks is highly 

reactive and that about 20% of the total sulphur content is loca­

ted on the particle surface in the form of po1ysu1phide complexes. 

In the present investigation the carbon black used with its particle 

size and ultimate composition is given in Table 7.1. 

C1assi- Particle U1tlmate Composition-Dry Basis % 
t:arbon fica- Dlameter Black tion (nm) H C Ash S 0 

HAF(Vu1can 3) N330 26-30 0.3 97.57 0.24 0.56 1.33 

TABLE 7.1: Particle Size and Composition of HAF Carbon Black 



196 

It is apparent from the Table 7.1 that this black essentially 

contalns about 96% carbon plus significant traces of. other reac­

tive functional groups containing H, S, 0 and Ash. These func­

tional groups are considered to have some influence on the phy­

sical and bonding properties of rubber(94,95). 

It is known that carbon black, due to its properties, is always 

used as a reinforcing filler in the rubber industry. The term 'rein­

forcement' is used to indicate an improvement of strength in the 

properties of the rubber. In reinforced rubber, strong carbon­

polymer bonds are formed with the result that the filler particles 

are actually a part of the elastomer network. The net result is 

improved tensile strength, tear strength, modulus and abrasion 

resistance. It is notable that the strong polymer-black associa-

tion which results in reinforcement lnvolves chemical interaction 

between polymer and black (H, 0 and S functional groups). It should 

be mentioned that there is a severe limitation on the quantity of 

black which can associate closely with the rubber, and so be active 

in reinforcement. Gessler(96), using a butyl-black system containing 

a series of carbon black concentrations, found (as shown in Figure 

7.1) that for an appreciable tensile strength to be obtained chemi­

cal oxidation of the carbon black surface is necessary. No chemical 

oxidation leads to no improvement in tensile strength. 

In this research an HAF carbon black was used and the results 

of this work are given in Chapter 4, Section 4.3.2.3 and can be 

summarised as follows: 
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FIGURE 7.1: Tensile Strength of Butyl Systems, Heat Treated 
with Untreated and Chemlcally Oxidized Black 
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- The carbon black increased the tensile strength and tear 

strength of the IR rubber and in particular the non-crysta11i­

zab1e SBR whose tensile strength increased from 2 MPa to 22 MPa 

at optimum filler levels. The bond strength also increased 

together with the tensile strength up to a maximum level which 

depended on the proportion of carbon black present. The maximum 

values for bond strengths were obtained for SBR/carbon black and 

IR/carbon black respectively as 15.5 MPa and 15.9 MPa over the 

carbon black ranges 35-65 and 25-45 pphr respectively. Rubber 

coverage was 100% in these ranges (i.e. failure was within the 

rubber). 

From the above results, one effect of using carbon black to 

improve bond strength is by its ability to increase the strength 

of the rubber as a stronger rubber will requlre progressively more 

energy to deform at the rubber-wire interface than is possessed 

by a weaker rubber thus leading to a higher pull-out force. 

Hence it can be considered that the bond between rubber and wire is 

partially physical in nature. Hicks and co-workers(50) have pub-, 
lished a comprehensive study of carbon black proportions and proper­

ties on the adhesion of rubber to brass cord. Black properties such 

as dispersion, structure, porosity, activity, sulphur content, and 

concentration of vo1atiles were all found to affectadhesion quite 

noticeably and he explained these observations on the basis of the 

well known effect of black properties on compound stiffness and, 

insofar as the vo1atiles were concerned, on the pH of the mix. 
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Another effect of carbon black which was found in this 

investigation to be important was the relative concentration of 

the elements e.g. Zn, Cu, S, 0, C at the rubber-wire interface. 

These results are given in Chapter 6, Section 6.4.2. Comparison 

of elements concentration between the interfacial layers of res-

pectively unfilled SBR (Figure 6.5) with carbon black filled SBR­

wire (Figure 6.6) shows that carbon black has an influence in 

elemental concentration at the interfacial films and consequently 

on the adhesion of SBR to wire. 

According to the results of the ESCA analysis, the in-depth 

concentration of Cu, Zn, Sand 0 found on both rubber and wire 

surfaces implies that the reaction of brass with rubber led to the 

formation of an interfacial zone consisting of zinc oxide, zinc 

sulphide, copper oxide, and copper sulphide. The copper sulphide 

film present has been identified(40) but was imprecisely defined 

in terms of a non-stoichiometric structure and in the form of CUxS 

which formed during vulcanization; it is this CUxS which is con­

sidered the real adhesive between rubber and brass wire. Levels of 

adhesion depend on the amount of CUxS present but should not exceed 

specific maximum and minimum values at the end of the vulcanization 

process, because it was observed(40) that too little or too much 

CuxS adversely affects wire-rubber adhesion, as shown in the sche­

matic diagram overleaf. 
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The rate of film growth has been considered to be determined by 

cationic diffusion(41) i.e. transport of metal ions and free 

electrons through the sulphide layer; at the sulphur-sulphide 

interface where the reaction 7.1 occurs: 

S + 2e (7.1 ) 

while at the sulphide-metal interface the reaction 7.2. takes 

place: 

+ -2 Cu ... 2Cu + 2e (7.2) 

If any of these steps are omitted or accelerated by the presence 

of certain chemical compounds at the sulphide surface then sul­

phide film growth may be retarded or accelerated. One of these 

chemical compounds is the ZnO film. Haemers(66) stressed the impor­

tance of the ZnO on the brass surface. He explained its importance 

in terms of its partial transformation into ZnS which, due to its 

n-type semiconductor properties, will reduce the CUxS formation. 
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However, this seems doubtful as the reaction 

ZnO + S 4 ZnS + ~ O2 (7.3) 

is thermodynamically impossible under the conditions of cure(97). 

It is well documented that ZnS is formed during the rubber vulca­

nization process and that this reaction takes place via the form­

ation of soluble zinc stearate which itself is produced in the 

rubber by reaction between the ZnO and stearic acid(98). Fur­

ther, it has been shown that ZnS ;s also formed on brasses ini­

tially devoid of any ZnO(39, 99) film. It can also be argued that 

ZnO has n-type characteristics with a growth mechanism via inter­

stitial Zn2+ ion diffusion, so the ZnO will control Cu+ ion diffu­

sion in its own right. Such a mechanism has been demonstrated by 

other researchers using sulphidization experiments on brass sur­

faces which were initially enriched with copper or zinc(40). In 

contrast to the above CuO and Cu2S have p-type semiconductor prop­

erties and increase the CUxS formation. It seems that CuO reacts 

very rapidly with elemental sulphur, probably according to the 

following equation: 

(7.4) 

[SCA analysis ef the unfilled SBR-wire interface (see Table 6.5 

and F1gure 6.5, rubber and wire side) shows that the concentration 

of the ZnO/ZnS layer is higher than the concentration of CuO/CuxS, 

Due to the n-type semiconductor characteristics of ZnO/ZnS the 

diffusion of Cu+ 1S very slow in a gum stock and forms not enough 
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CUxS to give good adhesion. By contrast the concentration of 

ZnO/ZnS is relatively lower than the concentration of CuO/CuxS 

at the carbon black filled SBR-wire interface (see Table 6.6 and 

Figure 6.6, rubber and wire side) and due to p-type properties 

of CuO/CuxS, the accelerated diffusion rate of Cu+ leads to the 

formation of a film of CUxS, which gives very good adhesion. 

When a sulphide film is formed during bonding a colour change 

is observed on the wire surface which can be explained on the basis 

of copper sulphide properties. The colour of the surface of the wire 

debonded from unfilled SBR is observed to be yellow (see Figure 

4.7(b)) indicating that copper sulphide is not formed (the colour 

of copper sulphide is blue) and here no adhesion is obtained. How­

ever the surface colour of the wire debonded from carbon black filled 

SBR was seen to be greenish-blue (see Figure 4.7(a)) indicating the 

formation of copper sulphide, where high adhesion is obtained. 

This observation is in agreement with other recent observations(lOO) 

that: 

1. There is much more ZnO in the yellow film. 

2. There is an enrichment of Zn and 0 (ZnO) on top of the Cu 5 
x 

layer of the ye11o~1 film. 

3. The concentration of Zn in the CUx5 film is higher in the 

yellow film than in the blue one. 

The high growth of the CUx5 film at the interface of carbon black 

filled SBR-wire can be presumed to be the result of involvement 

carbon black in activatlng the sulphur thus; sulphur is in the form 

of the 58 ring: 
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This is opened during the vulcanization process for example Sa 

is normally opened by negative ions (anions) 

which may come from accelerators. It is also known that carbon 

black can promote the opening of the Sa ring(lCl). Some of the 

activated sulphur is involved in the cross-linking of rubber and 

some migrates to the interface between rubber and wire and reacts 

with Cu+ by the adsorption-desorption process (see Figure 1.13) 

which leads to the growth of CUxS. 

In summary an increase in the bond strength of SBR to wire in 

the presence of carbon black can be interpreted as a combination 

of two effects: first, increase in the bond strength of rubber leads 

to high mechanical bond strength (physical type); secondly, promo­

tion of the formation of copper sulphide results in good adhesion 

of a chemical type (see through the percentage rubber coverage 

values). 



- -- ----------------------------------------------------------

204 

7.3.2 Effect of Silica (Ultrasil VN3) 

Of the many inorganic fillers which have been used in 

rubber compounding the finely divided silicas are the most 

highly reinforcing. Besides the unique physical properties 

(tensile, tear strength) imparted to rubber by silica, it is now 

possible to add adhesion promotion. The reinforcing and adhesion 

promotion characteristics of silica are assumed to be due to the 

presence of reactive oxygen in the silica structure. The follo­

wing is a schematic concept of the silica structure showing oxy­

gen atom distribution 

OH OH OH 

Ji - 0 - ~i - 0 - ~i-
I I I 
OH OH OH 

In this investlgation, it was found that the silica filled SBR 

vulcanizate gave poor physical properties (tensile and tear strength) 

and consequently poor bond strength (see Table 4.2). This was consi­

dered to be due to the lack of interaction between silica and rubber 

in that it is thought SBR does not wet the silica particle adequately 

thus the unwetted particles of silica are assumed to cause a drop 

in the mechanical strength-characteristics of the vulcanizate(70). 

These physlcal properties were found to be improved by the use of a 

mercapto type silane coupling agent (Bis-(3-[triethoxisilyl]-propyl)-

tetrasulphane). It seems that the silane's functionality was capable 

of chemlcal reactivity with both the silica and the rubber network. 
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The a1koxysi1anes are known to readily bond to surface si1ano1s 

of silica via stable si10xane linkage and their organic functio­

nality can participate in reactions that lead to a linkage with 

the rubber. 

Although the use of the mercapto si1ane coupling agent 

(Si 69) improved the tensile strength and bond strength of the 

SBR/si1ica mix such values were still lower than the best values 

obtained with SBR/carbon black mix (see Table 7.2). The tensile 

strength value of the SBR/si1ica mix was expected to be at least 

similar to the tensile strength value of the SBR/carbon black 

mix since the particle size of silica (19 nm) isswa11erthan car­

bon black (29 nm) and its surface area (170 g/m2) is larger than 

carbon black (88 g/m2). The lower tensile strength can be consi­

dered to be due to the inadequate physico-chemical interaction 

between silica particles and SBR rubber. The low bond strength and 

rubber coverage can be explained by considering two effects: 

i) the low strength of the silica filled rubber, and 

ii) the ESCA analysis results of the silica filled SBR-wire 

interface. 

These results indicate that the ZnO/ZnS concentrations are higher 

than the CuxS/CuO concentration (see Table 6.7 and Figure 6.7, 

rubber and wire sides) for silica filled SBR; thus according to 

the bonding mechanism proposed in Sectlon 7.3.1, there is not 

enough CUxS formed to produce a satisfactory film, thus leading to 

poor adhesion. It was also observed that the colour of the wire 

surface debonded from the silica filled SBR is similar to the wire 

surface colour debonded from unfilled SBR (see Figure 4.7(b)). 
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Tensile Tear I Bond Rubber 
Mix Strength Strength 

I 
Strength Coverage 

MPa kN m- 1 MPa % 

SBR/Car- 20.5 53 15.5 100 bon black 

SBRI 11.0 60.1 9.9 40 Silica 

TABLE 7.2: A Comparison of the Physical Properties of SBRI 
Carbon Black and SBRISi1ica Mixes 

This is further evidence that during the cure silica prevents 

the formation of CUxS, therefore poor adhesion results. The 3-

fold increase in bond strength between silica filled SBR and wire 

is due to an increase in SBR rubber strength as a result of filler 

reinforcement. Hence this bond is considered more of a physical 

type rather than a chemical type. 

The reason that the presence of silica in SBR prevents the for­

mation of enough CUxS at the rubber-wire interface can be explained 

by a similar route to that given in Section 7.3.1: during the 

vulcanization and bonding processes, which occur at the same time, 

sulphur (S8) must be actlvated lnto forming an S 10n by the presence 

of an amine type accelerator. It lS known that silica can absorb 

such an accelerator thus retarding such activation of sulphur. Due 

to this silica absorption effect cure time is delayed and probably 

retards the diffusion of activated sulphur to the bond interface. 
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Carbon black is often preferred to silica because: 

a) Carbon black has better reinforced properties and bond 

strength. 

b) The processing of carbon black is easier than silica as 

the latter increases rubber viscosity and consequently 

sticks to the mill during mixing. 

c) The use of a coupling agent 1n silica filled SBR is neces-

sary. 

7.3.3 Effect of Sulphur 

Sulphur is the key reactant during the bonding reaction. 

Ruober mixes containing no sulphur give no adhesion to brass wire 

because sulphur takes place with the formation of copper sulphide 

which is real adhesive for bonding of rubber to wire. 

The existence of sulphur found at both the W1re interface and 

rubber interface by ESCA analysis, can be interpreted in that, 

during the vulcanization of the rubber, ZnO reacts with the vulca­

nization accelerator and with sulphur (S8) which, in a very complex 

reaction scheme. ,results in the formation of active sulphur atoms. 

Some of the active sulphur reacts with the rubber molecules to form 

sulphur cross-links, (rubber side) and some diffuse to the rubber­

wire interface (see Figure 1.13) and react with Cu+ to form copper 

sulphide. 00ij(39) observed that the sulphur at the rubber-wire 

interface is in the form of activated sulphur and rubber-sulphur 

cross-links (-C SxC -), which are mixtures of various bonds of the 

following types: 
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Also another hypothetical scheme of the reactions occurring 

during the cure of brass in rubber is postulated by Heamer(102) 

(see Figure 7.2). 

In this study, it was found that a relatively high level 

of sulphur is needed to give optimum bond strength (maximum bond 

strengths were obtained for SBR/carbon black and SBR/silica at 

levels of 3-4 pphr of sulphur and for IR/carbon black at 4-6 pphr 

of sulphur). These results were supported by the Weening postula­

tion(73) that the presence of polysulphide cross-links in the 

vulcanizate network is required for bonding to wire. This postu­

lation argues that as the bonding of rubber to wire is partially 

physical in type therefore polysulphide cross-links increase the 

modulus of rubber in the reglon close to the brass surface hence 

high energy is required to pull out the rubber from the bond inter-

face thus leading to high pull out forces. 

7.3.4 Relationship Between Bond Strength and Mechanical Fai-. 
lure of a Vulcanlzate 

In prlnciple when bondlng rubber to metal there are three types 

of failure: 

1. 'Rubber failure' means that the rubber is ruptured and the wire 

is completely covered by rubber (cohesive). 
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FIGURE 7.2: General Reaction Scheme of Possible Interaction 
During the Vulcanization of Rubber in Contact 
with Brass 
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2. 'Bond failure' is failure between rubber and wire at adhe­

sive layer (interfacial). 

3. Partial rubber failure and partial bond failure. 

In a well bonded rubber-brass specimen adhesion failure should be 

within the rubber itself and not at the interface of the brass 

substrate and rubber adherent, hence ideal bond strength values 

can be considered as those of the mechanical failure properties 

of the rubber. Figure 2.8 illustrates practical examples of 

these phenomena. In Figure 2.8(a) 'within rubber' failure has 

occurred and this is regarded as the ideal situation in which 

rupture is within the weaker adherent. Figure 2.8(b) represents 

interfacial failure between rubber and brass substrate which is 

an undesirable state to occur in the engineering design of bonds. 

Figure 2.8(c) represents a failure that is partially interfacial 

and partially within the rubber. 

The relationship between bond strength and vu1canizate prop­

erties was examined by progressively increasing the reinforcing 

filler content (carbon black (HAF) and precipitated silica (VN3)) 

and sulphur content in a rubber (SBR, IR) to wire bonding formula­

tion known to give 'within rubber' bond failure until the optimum~~ 

filler or sulphur content for various mechanical properties was 

exceeded. The results obtained when carbon black, silica and sul­

phur levels in SBR and IR were increased, have shown that physical 

properties (tensile and tear strength) along the bond strength 

increases to achieve an optimum level then reduces as optimum prop­

ortions are exceeded. Highest bond strengths were obtained at low 
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levels of filler content than those required to give maximum 

tensile strength (see Figures 4.4(a), 4.5(a) and 4.10(a)). 

Also maximum bond strengths were achieved at levels of sulphur 

greater than those giving maximum tensile strength (see Figures 

4.8(a), 4.9(a) and 4.11(a)). 

Comparison of vulcanizate properties, tensile strength and 

rupture energy showed a good relationship to bond strength. 

7.4 Bonding Promoters 
eSlon to rass-

The terms 'bonding promoters' and 'adhesion systems' are in 

fact misleading. These terms stem from the use of these materials 

in textile cord adhesion which cannot be bonded directly and requires 

the use of an adhesive between cord and rubber. 

In steel-cord to rubber adhesion the actual adhesive is the 

brass coating on the steel. Excellent bonds, both initial and aged, 

can be obtained. Therefore in discussing the effect of the various 

adhesion promoters we have to evaluate how they affect the strength 

or durability of the bond which would have been formed in their 

absence. It is of special interest if one could conclude whether 

the observed effects of adhesion promoters were due to modification 

of the interfacial film of reaction products or changes in the 

rubber properties. As mentioned earlier, the adhesion between rubber 

and wire depends on copper sulphide formation and also the many 

rubber properties. 
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The study of the effect of titanates on the interfacial 

film (copper sulphide layer) was not carrled out because for 

such an lnvestigation a model similar to the Ooij model is 

needed. He used a paraffin (bath) as a model hydrocarbon 

instead of rubber at 1800 C, and then investigated the effect 

of compounding additives on the rate of sulphidisation between 

sulphur and copper. Here the results are discussed on the basis 

of the effect of titanates on the physical properties of rubber. 

Many of these physical properties are related to bond strength. 

However in this study some of the organic titanate coupling 

agents which can be used as bonding promoters were investigated. 

They were KR-TTS, KR-138S, KR-38S, KR-66S, KR-44S and KR-41B 

(the chemical descriptions and structures are given in Table 5.1). 

These titanates were used in two different methods: 

i) A solution of each titanate was directly applied to the wire 

surface. 

ii) Each titanate was incorporated by mixing it into the rubber. 

7.4.1 Titanate Applied to the Wire Surface 

The mechanism of these organic titanates coupling agents is 

complicated but some general rules apply. The general formulation 

of titanates is as follo~ls: 



213 

The function 1 reacts with free protons at the inorganic 

(filler. substrate) interface. This results in the formation 

of organo-functional monomolecular layers on the inorganic sur­

face. The other functions react with organic or (polymer) com­

ponents. It is supposed that when a solution of selected tita­

nate is applied to the wire surface. function 1 reacts with free 

protons of the wire and the other functions react with SBR 

rubber. 

However results show that all five titanates reduced the 

bond strength and rubber coverage between rubber and wire in com­

parison with the control. Two of these (KR-44S and KR-41B) severely 

reduce bond strength, and KR-TTS. KR-138S and KR-38S slightly. 

decreased bond strength (see Table 5.5). Deterioration of bond 

strength when KR-44S and KR-41B are used is considered to be due 

to changes in their structure which occur during heat to the vul­

canlzation temperature of 1700C. Apparently they are decomposed 

on the wire surface during the vulcanization process (see Figure 

5.1), so no surface activity can occur between the wire and the 

rubber and therefore KR-44S and KR-41B seem only to act as lubri­

cants. 

In the case of KR-138S, KR-38S, the bond strength values are 

slightly lower than the control value. It is considered that these 

two exhibit some surface activity towards wire and rubber and it is 

known that KR-38S and KR-138S contain phosphato and phosphito groups 

respectively (Table 5.1): hence this offers the possibility of some 
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complexing between the metal and the phosphato or phosphito radi­

cals. Some slight deterioration due to the presence of water at 

the wire-titanate interface may al so occur as it ~Ias observed 

by Cotton and Wilkinson(79) that titanium alkoxides can be hydro­

lysed by small traces of water and all rubbers and their compoun­

ding ingredients contain a little water. 

KR-TTS has shown equal adhesion results to the control indi­

cating some reaction of KR-TTS between wire and rubber. 

Electron Spectroscopy for Chemical Analysis (ESCA) was 

employed to try and detect the presence of titanium or phosphorous 

on the wire surface, but none was detected. 

In general, it is concluded that the titanates which were 

studied exhibited some surface activity though this resulted in 

adverse bond strength values. 

7.4.2 Titanate Incorporated into the Rubber 

It has already been discussed that the adhesion between rubber 

and brass-plated wire is based on the formatlon of copper sulphide 

(CuxS) and also the strength of rubber. Any compounding additives 

which have an influence on these two parameters may have an effect 

on adhesion. For example the improvement in adhesion of sulphenamide­

accelerated systems to brass of low copper content was explained by 

postulating that the accelerator-sulphur complex reacts with the 

cobalt leading to the formation of the following complex: 
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A - S - CoX ~ Co - S - X + A - S cc x 2 Y 2 cc x-y 

This cobalt complex was assumed to promote 

of the brass with low copper content(60). 

the CuxS formation 

Rutz(51) also showed 

that in the presence of cobalt stearate, sulphur is used more 

efficiently for bonding the NR to brass of low copper content: 

it also increases the cross-link density. These blo factors com­

bined to lead to a higher adhesion level. 

As mentioned earlier the effect of titanate on the formation 

of CuxS was not examined. The effect of these titanates on bond 

strength is now discussed in relation to its effect on physical 

properties. 

Negative bond strengths were obtained with the titanates 

KR-44S, KR-41B and KR-66S. The reduction in bond strength with 

KR-66S and KR-44S can be explained on the basis of the effect of 

these two on the scorch time (see Figure 5.3). It is well known 

in bonding technology that poor adhesion results when the scorch 

time is very short. In the case of KR-44S and KR-66S perhaps there 

was not enough time for the rubber to wet the wire surface during 

the vulcanization. The effect of these two titanates on scorch time 

is considered due to the presence of amlno and mercapto groups 

which can function as accelerators. KR-41B was observed to bloom 

heavily to the rubber surface and thus gave low bond strength. 

The effect of KR-38S, KR-138S and KR-TTS on bond strength were 

to give beneficial results though quantitatively the increase in 
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bond strength was (4-20%). However the rubber coverage increased 

from 45% in the control to 100% when all these titanates were 

incorporated. This increase in bond strength might also be due 

to some increase in tensile strength (4-16%) when KR-TTS and 

KR-38S are used (see Table 5.6). It is noted that in the case 

of KR-138S no tensile strength increase is found. As has already 

been discussed, bond strength can be related to tensile strength. 

The [SeA technique was employed to trace the presence of any 

titanium on the wire surface but no titanium was detected and this 

was assumed to be due to the high molecular weight of titanates 

which thus contained very low amounts of titanium. 

An important observation was that those titanates (KR-138S, 

KR-38S and KR-TTS) which showed beneficial results of bond strength 

when applied. directly to the wire surface, also showed positive 

results when they were incorporated by mixing into the rubber. 
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CONCLUSIONS 

The following conclusions are drawn on the basis of the 

experimental results and discussion: 

A. Wire Effect: 

1. It is considered that an lmportant factor contributing to 

bond strength irreproducibility in the adhesion of rubber to 

brass-plated wire is the presence of a wire drawing lubricant. 

A further consideration is that such a lubricant cannot be 

removed effectively by conventional solvent washing or extract 

techniques. It is hypothesised that possibly some reaction 

occurs between drawing lubricant and the copper or zinc in 

the brass during the dravling operation and forms complexes 

rendering the surface inactive to adhesion. 

In normal industrial use, such as tyre manufacture, no attempts 

are usually made to remove this lubricant. It is interesting 

to speculate whether the present amount of lubricant applied 

during the wire drawing process is necessary. Ideally none 

should be used; thislsprobably impractical for industry but its 

presence does seem to adversely affect rubber-wire bond strength 

criteria and hence by inference must lead to poor adhesion values 

between the plies of a Wlre reinforced tyre. 

2. It was observed that the concentratlon (atom%) of copper which 

is probably in the form of CuO is relatively higher than the 

concentration of Zn/ZnO on the surface of unbonded brass-plated 
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wire. When this wire was bonded to unfilled rubber the 

Zn/ZnO concentration increased. This increase was thought 

to be due to the presence of ZnO in the vulcanization process 

and also due to the vulcanization temperature. A relatively 

high ZnO concentration has adverse effects on bond strength. 

B. Rubber Ingredient Effects: 

1. Carbon black (HAF) was found to have a significant effect on 

bond strength. This effect was considered to be due to an 

increase in strength of rubber which occurs when the rubber is 

reinforced with filler so stronger rubber will require more 

energy to deform it at the rubber-wire interface than is 

possessed by a weaker rubber thus leading to a higher pull-out 

force (physical type of adhesion). Also the carbon black has an 

effect on the concentration of various elements (Zn, Cu, 5) at 

the rubber-wire interface. It is thought that carbon black (HAF) 

promotes the activation of sulohur by formation of S* from its 

normal stable 58 state, thus accelerating the formation of CUx5 

at the rubber-wire interface (chemical type of adhesion). 

2. Silica filled 5BR vulcanizates showed relatively poor physical 

properties (tensile and tear strength). This was thought to be 

due to the lack of phYSlco-chemlcal interaction between silica 

and rubber, hence the use of a mercapto type si1ane was necessary 

to bond the silica filler to the rubber. 
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Relatively poor bond strength was observed between silica 

filled SBR and wire in comparison to carbon black filled 

SBR. This low bond strength was considered due to the 

combination of the relatively low tensile strength of silica 

filled SBR vu1canizate and the relatively neutral effect of 

silica on the concentration of elements at the rubber-wire 

interface. 

3. Sulphur detected on the wire surface by ESCA analysis indi­

cated that the migration of sulphur occurred from the rubber 

to the wire-rubber interface and reacted with Cu to form CuxS 

which forms the actual bond between rubber and wire. 

It was observed that a relatively high level of sulphur is 

needed to give optimum bond strength. 

c. Effect of Organic Tltanates as Bonding Agents: 

It was found that the various titanates used had effects on 

the physical properties of SBR and its adhesion to brass-plated 

wire. Titanates KR-TTS, KR-138S and KR-38S have shown beneficial 

results in the bonding of SBR to wire when they were either applied 

directly to the wire surface in the form of solution, or were incor­

porated by mixing into the rubber. 
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RECOMHENDATIONS FOR FURTHER WORK 

1. Further investigation of the different lubricating oils 

that affect rubber-wire adhesion is required to try to 

obtain a selective oil that shows the least interference 

in adhesion mechanism. 

2. A detailed study of the effects of different functional 

groups present on carbon black on rubber-wire adhesion could 

be rewarding. Consideration of black particle size may provide 

a useful relationship between the physical properties and adhe­

sion of rubber to wire. 

3. The influence of different particle size silicas due to their 

varying reinforcement properties could provide useful informa­

tion regarding physical properties and adhesion of rubber to 

wi re. 

4. The investigation of the effects of different types of anti­

oxidant can provide useful information in relation to the 

adhesion between rubber and wire. 

5. A detailed study of the effects of different types of organic 

tltanate coupling agents on the rubber-wlre adhesion could be 

rewarding. It would be convenlent to use squaline as a model 

that represents rubber employing the same vulcanizing systems 

and conditions. Hence it would be possible to study the effect 

of each titanate on the rate of sulphidisation between sulphur 

and copper by employing X-ray fluorescence analysis. 
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6. Investigation of sulphur migration from rubber, and the 

migration of copper and zinc from the brass-plated wire 

surface, to the interface between the rubber and vii re to 

form CuxS at the interface during vulcanization would be 

useful by employing ESeA and AES techniques. 



APPENDIX I 

MECHANISM OF ORGANIC TITANATE 

COUPLING AGENTS 
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APPENDIX I 

~Titanate coupling agents can provide a chemical bridge 

between the inorganic (substrate. filler) and organic polymer. 

The chemical mechanism of titanate coupling may be linked to 

pregnancy wherein the head of the spermatozoan is similar to the 

alkoxy group (function 1) of the titanate coupling agent and the 

tail of the spermatozoan is similar to the organo-functional 

ligands (functions 2 to 6) of the titanate coupling agent. The 

"egg" is the lnorganic filler. fibre. metal. or wood substrate. 

or proton bearing species. Pregnancy or filler coupling is achie­

ved when the alkoxy group of the titanate reacts with the protons 

of the inorganic (see Figure I). Further success of the titanate 

coupled filler now depends upon the compatibility and interaction 

of functions 2 to 5 of the titanate coupler's organic llgand in 

the organic phase. 

The titanate molecule has six basic areas of functionality 

as shown below: 

<D ® 
( R--O tm Ti -1-( - 0 -- Xl - R2 - Y )n 

They are identified as follows: 

Function <D (R--{}-~ concerns itself with the attachment of the 

coupling agent molecule to the surface of the inorganic. Water 

and free protons (H+) on the filler interface are the reaction 

sites for coupling agents. 
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Function® --t-- relates to the ability of the titanate mole-

cule to transesterify. This phenomenon results in crosslinking 

between the titanate and carboxyl-bearing polymers and permits 

titanates, filler and polymer to cross-link. 

FunctionQ) - 0 - Xl. The portion of the titanate molecule 

immediately adjacent to the titanium centre - the titanium centre 

bindlng group - affects performance as determined by the chemistry 

of alkylate, carboxyl, sulphonyl, phenolic, phosphato, pyrophos­

phato and phosphito groups. 

Function@ - R2 -- The long carbon chain entanglement group 

provides Van der Waals entanglement for thermoplastic impact lmprove­

ment, internal lubricity for improved processing and a superior 

plasticizing effect. 

Function@ -- Y when a functlonal group such as a methacrylate 

is attached to the titanate organic backbone, a reaction site for 

a curative is provided. The filler or inorganic substrate becomes 

chemically bound to the polymer. 

Function@ -)n The difunctionality and trifunctionality, or 

presence of two to three pendant groups, allows all functionality 

to be controlled to first, second, or third degree levels. 
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FIGURE I: The Reaction of a Monoalkoxy. Triorganofunctional 
Titanate Coupllng Agent with the Surface of a Proton 
Bearing Inorganlc Resulting in the Formation of an 
Organic Titanium Monomolecular Layer on the Inorganic 
Surface 
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APPENDIX III 

QUANTIFICATION TO GIVE THE CONCENTRATION OF 

ELEMENTS ON THE SURFACE OF SUBSTRATE 
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APPENDIX III 

The intensity of a photoelectron peak depends on the number 

of atoms of that element in the surface region and also on a 

variety of parameters associated with the photoemission process 

and the instrument used for the analysis. These factors must be 

taken into account in obtaining a quantitative analysis and, 

broadly speaking, there are two different approaches. The rele­

vant factors may be calculated from flrst principles or by using 

the various empirical relationships that have been proposed. 

This method has proved successful in some instances (1) but 

is not often used in routine analysis. The second approach is to 

calibrate the system using standard samples of known composition. 

This is the method generally used in routine analysis and gives 

good results provided suitable well characterised standards can 

be obtained (2). 

Each of the two approaches outlined above will be treated 

in turn. The former since it conveniently summarises the various 

factors involved in determining the relative intensity of peaks 

in the photoelectron spectrum and the latter since it is generally 

applicable and widely used. 

Quantification without reference standards 

The area (lA) under a photoelectron peak due to atoms of type 

A in a homogeneous sample (S) may be written: 
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(1 ) 

NA - is the number of atoms of type A per unit volume of the 

sample 

0A - is the total photoionisation cross-section for electrons 

in the appropriate orbital of atom A. 

Values of ° have been calculated for X-ray energies commonly used 

in ESeA (3) and are in broad agreement with those values determined 

experimentally (4). 

LA(y) is known as the angular asymmetry parameter. LA(y) 

takes account of the fact that the probability of observing photo­

emission from an orbital processing strong angular dependence . 
(i.e. P. d. f ••• orbitals) depends on the angle y between the 

lncoming X-ray photon and the ejected photoelectron. y is deter­

mlned by the geometry of the spectrometer used for the analysis: 

(2 ) 

and values of SA have been tabulated (5). 

AS(EA) is the inelastic mean free path of an electron having 

kinetic energy EA in a sample S. A varlety of empirical relation­

ships have been proposed for the estimatlon of A (5): 

A(E) = 538 mC2 + 0.13 (m3E)0.s [elements] (3) 

A(E) = 2170 mE-2 + 0.23 (m 3E)0.s [compounds] (4) 

A(E) = OEO.75 (5) 
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>.(E) = 
E 

[a(ln E + b)j 
(6) 

where m is the monolayer thickness and D, a and b depend on the 

electron density in the sample. However, inelastic mean free 

paths estimated using the above relationships may be in error by 

as much as 30-40% (5). x is the X-ray flux at the sample. 

T(Ep' EA' w) represents the fraction of electrons transmitted by 

the lens electron energy analyser system. 

D(Ep) is the detector efficiency. This is constant for a 

hemispherical analyser operating in the CAE mode. 

Provided all the above factors may be determined with suffi­

cient accuracy then equation (1) may be used to give a quantitative 

analysis. However, in view of the possible errors involved, a 

recent study (6) has concluded that data obtained from standards 

is still to be preferred for quantification of spectra. 

Quantification using reference standards 

This is more straightforward than the previous method. The 

concentration (NA) of atoms of type A 1S assumed to be related to 

the intensity (lA)' of a given photoelectron peak due to that 

element, by the equat10n 
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where SA is the relative sensitivity factor for photoemission 

from the appropriate orbital an atom A. Sensitivity factors are 

determined experimentally using standards of known composition 

and are often expressed relative to the oxygen or fluorine ls 

orbitals. SA is assumed to take account of the various factors 

and the concentration (CA) of element A in a sample of unknown 

composition may then be determined using the equation 
I 

100 A 
~ 

CA = 1 . 

'f. -2-
1 

where the sum is over all elements present in the sample surface. 

The accuracy of the concentrations determined by this method will 

obviously depend on the standards used. Errors of 10% and above 

have been quoted (2) for routine analyses obtained by this method. 

However this should be capable of further lmprovement by choice, 

where possible, of standards appropriate to the system being 

studied. 

Relative sensitivity factors may be based on the measurement of 

peak area or peak height. Tables of relative sensltivity factors 

have been published (7) and may be used in quantification provided 

possible differences between spectrometers in the angular asymmetry 

factor and electron energy analyser characteristics are taken into 

account. This introduces additional sources of error. Provided well 

characterised standards can be obtained it is preferable to use 

sensitivity factors determined on the same spectrometer used for the 

analysis. 
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The measurement of peak area 

Two methods have been adopted for the measurement of 

area under a photoelectron peak (Figure Ill, a,b). The first 

assumes a straight line background drawn from sensible points 

either side of the peak. The second assumes that each photo­

electron is associated with a small constant background to lower 

energies starting at the photoelectron energy. The choice of 

background clearly makes little difference for a single symme­

tric peak (Figure IlIa). However, the presence of satellites 

to the photoelectron peak will result in different numerical 

values being obtained by the two methods. Such satellites are 

fairly common in [SeA spectra and may be due to shake up (where 

a valence electron is left in an excited state), shake off 

(where a valence electron is simultaneously ejected from the 

atom) and plasmon loss (quanti sed collective oscillations of 

electrons (8) ) processes accompanying photoemission. Provided 

the choice of background is consistent for the standard and the 

sample being analysed, errors in the quantiflcation will be kept 

to a minimum. 



, , 

i' 
i, 
I' 
i' 
" 

236 

'9S:;' s- SI£"- ~:'.~" s: s: 

FIGURE Ill: 

o,,",0·n9 ener;y It'. 

Copper 2p Photoelectron Peaks from 
(a) Meta111c Copper 
(b) CuD Powder Showlng Two Modes of Background Sub­

tractlon. 

Taken from Reference 10 
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