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1. INTRODUCTION 

1.1) Structure and Properties of Epoxy Resins. 

Epoxy resins are used extensively in composile materials for a variety of 

structural and electromcs applicauons. They are the most versatile resins among 

the commercially avmlable matnx systems. Their relatively low cost, combined 

wilh a broad range of attractiVe physical properties, mechanical strength and 

processing capabilities make them invaluable matenals as thermoset matrices. 

The uncured resins are available m a vanety of physical forms, ranging 

from low-viscosity liquids to sohds. Combmed w1th a large selection of curing 

agents available, epoxy resms enable the composite fabncator to use a wide range 

of processmg methods. 

Commercial epoxy resms may contam ahphatic, cycloahphatic or aromatic 

backbone chams. The cros;linkmg agents used are organic matenals containing 

active hydrogen, the most common of them being polyamines, polycarboxylic 

acids and anhydride; The latter, however, require the additiOn of a tertiary amme 

to produce the active hydrogen. 

Dependmg on the chermcal structure of the resm and the curing agent it is 

possible to upgrade toughness, chemical and solvent resistance by the addition of 

modifying oligomer; No by-products are formed dunng cunng and the resultmg 

shrinkage IS low (1>. 

The chemistry mvolved m the u;e and application of epoxy resins is the 

key to their outstandmg performance All epoxy resms contain epoxide (also 

known as oxirane or ethoxylene) groups, represented by the formula: 



2 

The epoxide function is usually a 1,2- or a-epoxtde, i e.· 

called the glyctdyl group , which is attached to the remamder of the molecule by 

an oxygen, mtrogen or carboxyl linkage, hence the terms glyctdyl ether, glyctdyl 

amine or glyctdyl ester are normally u;ed to de;cnbe these re'>ms 

Cunng of the resin results from the reaction of the oxtrane group with 

compounds (hardeners or cataly>t) that contam reactive hydrogen atoms, such as 

amines, carboxylic acids, mercaptans and polyphenols. The time taken for the 

resin to set (cure) ts determmed by the reactivity of the hardener chosen as well 

as by the temperature of the mtxture. Cold and hot->etung processes differ m 

"gelation" time, bemg of a few mmutes m the ca,e of a hot-setting systems and 

rismg to several hours m the other. However, cold-;etung cunng leads to lower 

mechanical properties (e.g. strength) than hot-setung curmg. 

The most common epoxy resms used commerctally are the diepoxides 

produced by reacting btsphenol A wtth eptchlorohydnn The components are eo­

reacted under alkalme cond111on' OJ to an epoxy eqUJvalent wetght of about 190 

and a vtsco;Hy in the range of 12 to 16 Pa•>. (The epoxy eqUivalent weight is the 

wetght of resm m grammes contatnmg one gram eqUivalent of epoxy groups.) 

The dtglyctdy1 ether of bisphenol A (DGEBA) and its htgher homologues are 

characterised by excellent adheswn propertle>, whtch are due m part to the 

secondary hydroxy group located .tlong the molecul.tr chmn In addition, when 

cured they have good mechamcal and electncal propetties, dtmenswnal stability 

and good reststance to heat and chenucal attack These properties are derived 

mamly from the aromatic nature of bt>phenol A poruon of the molecule and the 

excellent chemtcal and thermal stabtllty of the phenolic-ether hnkage. Smce no 

small molecule, ;uch a> water, 1' liberated dunng the cunng of epoxy resins, they 

exhibit unusually low >hnnkage .tnd they can be formed and cured under contact 
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or low pressure Flame retardant verswn:. of the bt:.phenol A-epichlorohydrin 

resins are also avmlable. These re:.ms acqmre their ftre retardant characteristics 

through bromine substitutiOn m the phenyl nng of the bisphenol A <2J. 

Modtficatwn to the base resm usually consists of varying the epoxy 

eqmvalent weight and hydroxyl content, which re:.ults m an mcrea:.e m viscosity. 

The glyctdyl ethers of vanous "novolac" re:.ms are the second most 

important class of epoxy resms. They are manufactured by reacting 

epichlorohydnn with phenolic novolacs. These glycidyl novolacs are 

characten~ed by a rn,.:tifunctionality in their chain~ (the funcuonahty ranging 

from 2 5 to 6.0), whtch produce:. a ughtly cro;,;,hnked :.ystem with better 

elevated-temperature performance, chemtcal resi;,tance and adheswn but they 

have a htgher viscosity than the bt:.phenol A based res m~ Becau:.e of the greater 

cherrucal resistance and lngh temperature properue:., the epoxy novolac resins 

have found use m structural and electncal lammate;,, filament wound pipes, 

laboratory countertop:., high temperature adhe:.tve;, and electncal encapsulation 

by transfer and compressiOn mouldmg (3). By u:.mg other reacllve ingredients, 

however, a wide range of different epoxy resm:. can be manufactured with 

different properties and con:.equently dtfferent apphcauon field:. 

The tnglycidyl ether of tnphenyl methane (TGETMP) gives high Tg's, 

thermal oxidal!ve ;,tabihty and excellent motsture re:.istance <
4
J. Resorcmol 

diglyctdyl ethers (ROE) have good high-temperature perfonnances but they have 

limited u;,e because of their toxicity. The two last re;,m:, give products with low 

mOisture absorpuon, good hot/wet '>trength and Improved fracture toughness <S-?). 

Cycloahphatic epoxy re<;w;, are char .tctemed by excellent electrical 

properue:. even at high temperatures (150'CJ, low vt:.costty and arc-track 

resistance at htgh voltages, but they cannot be cured ea;,IIy at room temperatures. 

They are mamly used as lngh voltage m:.ulator;,, encapsulatwns for transformers, 

motors and coib, filament wound ptpe. nnsstle ca:.e;,, rocket motors, electrical 

and structural lamm.ttes 
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It ha> been already explamed that to convert a hqUJd epoxy resin into a 

tough, hard solid a cunng agent has to be added This cunng agent may be a true 

catalyst wh1ch mduces a self-polymensauon m the epoxy resm or a crosslinking 

agent which partiCipates directly in the reaction and becomes chemically bound 

withm the resm network Other reactive chemicals may be used to accelerate, 

promote or retard the;e crosshnkmg reaction;. 

It could be sa1d that three chemical reactions are of greatest importance in 

the curing of epoxy composite matnce>. the amine/epox1de reaction, the 

anhydnde/epoxide reaction and the Lewis acid-catalysed epoxide 

homopolymensanon. 

The most common cunng agents are the ammes, each of the ammo 

hydrogens bemg capable of reacting with one epox1de group. 

AhphatJc ammes and their compound; are recommended for ambient­

temperature cunng. Typ1cal applications mclude wet lay-up lammating 

operations ;uch .ts tank limngs, wet filament wmd1ng, patchmg (repairs), tooling, 

certain a1r frames and radomes and electncal m;uJauons. The use of simple 

compounds, such as d1ethylenetnamme (DTA) and tnethylenetetramine (TETA), 

g1ves products which, when properly post-cured, retain high strength at 

temperatures greater than 1 OOOC Although compound~ of this type are cheap and 

exhibit low viscosity, they are toxic, have h1gh vapour pressures and can cause 

surface "blushmg" on a laminate when expo;ed to the atmo;phere. To overcome 

these disadvantages, they are often used m the form of epoxy resin adducts, at the 

expense of higher v1scos1ty. 

In the case of the polyamide condensation products, elevated-temperature 

performance, chemical resistance and visco>Ity are ;acnf1ced m order to mcrease 

toughness, moisture re;istance, pot hfe and to achieve lower toxicity. 

CycloaliphatiC amme> offer a compronme between the room-temperature 

cunng agents and the higher-temperature cunng aromatic ammes Systems cured 

with these ammes requ1re lower cunng temperatures than systems cured with 

aromauc amme,. On the other hand, their elevated-temperature performance, 
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solvent resistance and chemical resistance are generally supenor to those 

obtained when the systems are cured at room temperature with ahphatic amines. 

Aromatic amines are widely used m composite fabncanon in both wet and 

dry lay-up applicatiOns for filament wmding, electncal applications, piping, 

toohng and whenever maximum chemical resistance IS needed. They provide 

moderate viscosity at room temperature with the Iiqmd resm, long pot hfe, 

excellent chemical resistance and electncal properties and good elevated­

temperature performance. Higher-temperature cures and longer cure times are 

required to achieve these advantages. 

The cunng chemistry of anhydride systems IS very complex. It was 

imtially proposed that the anhydnde reacts with hydroxy groups to form a half­

acid ester, which in turn reacts with the epoxide group to form a second ester 

linkage, producmg a new hydroxyl group. The reaction contmues m this manner 

until all of the reactive group; are con;umed. More recently It has been suggested 

that the reaction with anhydndes, often cataly;ed by tertiary amme, proceeds 

through the activatiOn of the anhydnde groups by the amme, followed by a 

subsequent attack of this "salt" on the epoxy groups (S.
9

J. It should be noted that in 

anhydnde cunng, one anhydnde group reacts with each epoxide group. This is 

important m calculatmg re>m/cunng agent ratios for anhydride systems, bearing 

in mind also the possibility of reaction> with hydroxyl groups, particularly during 

post-curing Consequently, larger amounts that the "nommal" calculated 

sto1chwmetnc quantities can be u;ed producmg a higher network 

ACid anhydrides are charactensed by a long pot hfe, better heat agemg in 

air at elevated temperatures, and better electncal properties. Their applications m 

composites are generally the >ame as for aromatic amwe>, and they are chosen to 

impart specific properties to the lammating sy>tem A large part of the reason 

why actd anhydndes can produce higher heat di>tortion temperatures than 

aromatic amme> IS that they are so much more effiCient m causing epoxy 

polymensation as well as cros>hnkmg through the reactive actd groups. Curing 

normally mvolves the additiOn of an accelerator, wch as benzyldimethylamine 

(BDMA) Because anhydrides ,tre hygro;copic m,Jterials, extended exposure to 
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moist atmosphere results m hydrolysis of the anhydnde to the parent acid. This 

can drastically reduce the elevated-temperature performance of the cured resin. 

The d1basic acid anhydrides with cycloahphatic nng structures, such as 

hexahydrophthahc anhydride (HHPA) and methyltetrahydrophthahc anhydride 

(MTHPA), perform equally well at elevated temperatures, giving a heat distortion 

temperature m the regwn of "'130 to 140'C, with the exception of methyl nadic 

anhydride (MNA), which g1ves a >Omewhat higher "heat distortion temperature", 

HDT (*) , due to additional crosslinks produced by free radical reactions at the 

double bond of MNA. All three anhydndes afford low VISCO>lty m the laminatmg 

resm system. Hexahydrophthahc anhydnde has excellent electncal properties and 

gives almost colourless lammates wtth >upenor weathenng and anti-yellowing 

properties. The anhydnde MTHPA abo h..t> excellent electncal properties, while 

providing low VISCO>lty at a moderate cost. 

Chlorendic anhydnde (CA) 1mparts fire retardancy, but is difficult to use it 

alone because of tts high reactivity, g1vmg a linnted pot life. Anhydrides of 

higher functiOnality cause handling problems because of their solid nature and 

lower solubility. but higher heat distortion temperatures are attainable with their 

use even as partial replacement of more common anhydndes. 

The third curing proce>> to cons1der IS epoxide homopolymensation 

through polyether formatiOn by means of Lewis acids as catalysts, which 

proceeds by a catiomc mechamsm The mo'>t common Lewi> acid used m epoxy 

composite> IS boron tnfluonde m the form of w, monoethylamme complex (BF3-

MEA). This cunng agent is charactensed by a long pot hfe and Imparts high Tg 

values. 

Dicyanamide (DICY), on the other h,md, I> a true "latent" catalyst for 

epoxy resm cunng, and m mixture> with >ome epoxy re>InS It has shown a room­

temperature storage hfe m exce" of 4 years wtth little or no change m viscosity. 

This cunng agent is used pnmanly for dry lay-up laminating, fmdmg their major 

(*)The HDT is an empmcal p.trameter wh1ch IS closely related to the 
glass tran>ttiOn temperature, Tg 
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use as circuit board matenab 1equmng good electncal properties, water 

resistance and retentiOn of >trength at elevated temperatures (IO)_ 

For specific apphcauon; liqUid modifiers can be u;e to reduce the resin 

viscosity (diluents) or to rmse 1mpact strength (flexibili>ers and plasticisers), or 

just to make the system cheaper (extenders). 

When primanly required to lower the vt;cosity of an epoxy resin, diluents 

can be divtded in two classe;. a) reactive dtluents (some glyc1dyl ethers, such as 

allyl, butyl, phenyl) are compounds that become permanently bound into the 

network and thus have the least degr.tdmg effect on properlles. As Implied from 

the examples given reacuve dtluent> are normally monofunctional and, therefore, 

will reduce the crosshnking denslly of the network b) non-reactive diluents 

(dibutyl phthalate, d1butyl ;ebacate, dwctyl phthalate, chlorinate biphenyl) do not 

react chemically with either the epoxy resm or the curing agent and therefore 

could migrate to the ;urface with lime 

Flexibt!isers ,md pla;llc~>er>, on the other hand, cons1st of flexible long­

chain molecules which are added to the mtxture enher as non-reactive 

(plasticisers) or spar;ely reacuve (flex1bi!tser;) The reactive long chams provide 

internal molecular cham flexibility, while the non-reacuve plasucisers reduce the 

interactiOns between group; wnhm the network. The function of a flexibihser or 

plasuciser Is a) to impart ;ome degree of resilience or toughnes;, b) to Improve 

peel and cleavage ;trength, c) to reduce mternal >tresse;, d) to decrease the 

exotherm and shnnkage, and e) to produce a generally better system for low­

temperature app!tcations, parucularly for adhe>Ive; OIJ It should be noted that 

some curing agents can also act as tlex1bJ!tsers A typical tlexibi!tser for epoxy 

resins is polypropylene glycollhglycidyl ether 
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1.2) Toughness Enhancement and Morphology of Epoxy Resins 

by the Addition of CTBN Oligomers. 

1 2.1) Toughening Mechanism. 

Although cured epoxy resins exhibit good engmeenng properties, such as 

h1gh stiffness and ~trength, creep resistance and chemical resistance, they are 

intnnsically brittle. For this reason they are frequently toughened by dissolving a 

small proportion (1 0-20%) of a hqmd rubber containing reactive end groups in 

the hqmd epoxy >ystem before cunng and allowmg the precipitation of 

crosshnked rubbery particle> dunng cunng 02l. It is e>>ential that the toughemng 

agent is a low molecular weight oligomer to en>ure that the viscosity of the resin 

is not increased excessively m order not to Imp:ur the proce>sabihty of the system 
(I3) 

For the effective toughemng of these re>m systems, the rubber-epoxy 

mterfacial bond play> an Important role In fact a weakly bonded rubber particle 

is almost mechamcally eqmvalent to a vOid, therefore they are completely 

meffective m toughening bnttle epoxy resins, particularly If they are fairly large 

in diameter 

A theory to explain rubber toughening of bnttle matenals IS due to 

Bucknall and Smith 04l. The bam of this theory IS that rubber particles both 

imtiate and control craze growth 05
l. Under tensile >tre>s, crazes are initiated at 

pomts of maximum pnncip.tl stram, which are u>u<~lly near the equators of rubber 

particles, and propagate outwards followmg the plane> of maximum principal 

strain. Craze growth IS termmated when the >tress concentration at the tip falls 

below the critical level for propagation, or when a large particle or other obstacle 

is encountered. This results m a large number of small crazes, which is in 

contrast with the >mall number of large crazes fom1ed m the same polymer in the 

absence of rubber particle> It c.tn be deduced the Import.mce of good adhesiOn 

between the matnx .md the rubber particle>. The craze terminatiOn mechanism 



9 

cannot operate when the bond between the rubber and the resm is weak. Instead 

of stabilismg the craze, a weakly bonded rubber particle 1s pulled away from the 

matrix, leaving a hole from wh1ch the craze can propagate further to form a 

crack 

Th1s mechamsm IS unlikely to operate in the case of highly cross-linked 

systems, such as epoxides, since the chain length between cross·lmks IS too short 

to produce effectively the fibnls of onented chams wh1ch act as bndges between 

the two mam surfaces of the craze 06). 

More recent theories li?·IY) for the toughemng of cro;,;,-linked polymers by 

rubber mclus10ns mvolve the concept of shear y1eldmg of the matrix around the 

particles as a mechanism for mcreasmg toughness. Th1s is basically achieved by 

changing locally the fracture mode from a crack opemng type to m1cro-yieldmg. 

For this reason the adhesion between matnx and rubber particles IS still a crucial 

factor in 1mproving toughnes;, by the ;,hear yielding mechanism. The greater 

deformability of the parlicle;, relatJve to the matnx provides, in fact, the 

mechanism for the onset of ;,hear defonnations in the matnx. Without mterfacial 

adhesion stresses cannot be transferred to the d1;,persed parl!cles and, therefore, 

the matnx remams under a state of temile stressing. When the particles are 

extremely small, on the other hand, the large mterfacwl area may be sufficient to 

ach1eve stress transfer acro;,;, the mterfaces even 1f the mtnn;.Jc chem1cal bonds 

are weak (1 e not covalent). Thi;. mechamsm, however, relies on the ability of the 

matrix around the particle;, to undergo a "degree" of y1eldmg or a highly non· 

linear deformatwnal behavwur. For th1s rea;,on it i;, unlikely to operate when the 

crosshnkmg density of the matnx IS very h1gh. For the latter case the only 

poss1bihty to toughen the resin IS by energy absorption through deformations 

withm the rubber particle nself, particularly through volumetric dilatations (e g. 

microv01dmg) 

The way to obtam J good bond between rubber particle;, and matrix is 

pnmanly a matter concerning mJ;.Cibillly between the two pha;,es. In fact it IS 

known that a mixture of two completely mrsc1ble polymers has properties 
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intermedwte between those of Its comutuents, and is in many respects similar to 

a random copolymer of the same composition. Full miSCibility between a rubber 

and a resm does not produce effective toughemng, but merely serves to plasticise 

the matnx. Total Immiscibihty is equally undesirable, smce a completely 

ImmiSCible rubber of reasonably high molecular weight (which would be reqmred 

to achieve an adequate level of mechamcal propertie;) will not form a fine 

dispersiOn in the resm (due to large dtfferences tn mterfacial energy between 

dispersed particles and matrix), nor will it produce a '>trong bond at the rubber­

matnx mterface The Ideal rubber for the purposes of toughemng IS one which IS 

semi-miSCible, I.e. it exhibits either lower cnucal ;olunon temperature (LCST) or 

upper cntical solution temperature (UCST) behaviOur within the curing 

temperature range. 

It is then poss1ble to 1mprove the adhe;ion between the epoxy matnx and 

the toughemng phase by allowmg the particle to precipitate through a spinodal 

decompositiOn so that they will contam not only the rubbery material but also the 

epoxy resm and pm.s1bly a catalyst to promote reacnons between the two The 

dem1xmg vm spmodal decomposlllon (SD) IS Important for the morphology 

design of polymer blends, smce the characteristic morphology can be fixed or 

frozen by quenchmg the de1mxed ;y;tem below Tg c~fter an appropnate time of 

phase decompo>ItiOn. For the materials design, however, more 111terest111g IS the 

SD induced by chemical reacuon (20
> In particular for epoxy systems the SD is 

expected to take place 111 the cunng process. It ha; been found that various 

reactive end groups 111 the structure of a hqmd rubber modifier, e g. carboxyl, 
(21 '2) hydroxyl, epoxy, mercaptan, phenol, methylol and amme, may be u;ed ·• , to 

induce particle precipnauon through reactiOns wtth the resm and to achieve a 

good interfacial bond. 

McGarry and Willner <
23

) ;howed that low molecular weight carboxy 

termmated butad1ene-acrylomtnle copolymer; (CTBN) are one of the most 

effective agents for 1mprovmg the fracture toughne;s of epoxy resms. CTBN 

used in epoxy resins ha; a molecular weight m the region of 2000-10000 and the 
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acrylonitnle content which allows the highest toughness of the resm is between 

12 and 18% by weight <21 >. It has been found that triphenylphosphine (TPP) is a 

very effective catalyst to promote the reacuon between carboxyl and epoxy 

groups <24>, which assist the nucleauon of the particles from the anginal solution. 

Havmg a relatively low VISCO~lly the addition of CTBN does not Impair 

appreciably the processabihty of the res m. 

The presence of fme rubbery preciplWted purucle> (1-5 J.lm) Imparts an 

enhanced resistance to crack propagation and Impact ~trengths to the multiphase 

matenal <ZSJ. By mducing the rubbery phase to preclpllate the epoxy network 

remmns essenllally unchanged, thereby pre>ervmg lls main properties <
26>. 

However, the use of large amount> of CTBN produce;, a >Imultaneous decrease m 

the glass tran>lliOn temperature and modulus of the re;,m <
27

> through 

plasticisation effects Both the;,e etfects are h1ghly unde;,irable because the main 

use of epoxy resin IS for structural apphcanons for wh1ch a h1gh glass transition 

IS usually required. 

The choice of rubber is detenmned by two factor>. FlfStly, there is a 

miscibility reqmrement, I.e. the rubber must dJs>olve and become dispersed m the 

resin, but It has also to precipitate before the occurrence of gelatiOn. Secondly, 

there is a chem1cal requirement, 1 e the rubber mu;,t react with the epoxide 

groups. Both reqmrements are met w1th the use of CTBN rubbers. The difference 

m solubility parameters between CTBN and DGEBA. for example, 1s sufficiently 

small to allow the rubber to d1s;,olve m the resm, but not so small that the 

polymers will not undergo pha-.e ;,eparat1on dunng cunng However, phase 

separation IS dnven by the reaction;, between the two before addmg the hardener, 

which force;, the gelallon of the re;,m to ;,tart at the activated sites, i.e. the 

JUnctions between the epoxy groups and the acid groups of CTBN. 
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1 2.2) Cunng Mecham!>m 

The following 1s a typ1cal formulation for an epoxy re!>m toughened with 

CTBN: 

DGEBA epoxy re;,1n 

CTBN rubber 

P1pendme (CH2);NH 

100 

10 

5 

Because of molecular weight difference>, there are about 100 epoxy 

groups and 10 amme groups for every carboxyl group m this formulation. 

Infrared studies have shown that the carboxyhc aCid forms first a salt with the 

amine (ZSJ (1 e. the activated >!le> leadmg to particle prec1p!lat10n): 

0 0 
11 11 -3 

R'~-OH + R3N-R'~-0 

where: R = H or/and alkyl 

The carboxylate salt then react> quite r,tpidly with the epoxy group: 

~ 

(R3 NH) _, 

0 0 0 

"' /"- 11 I 
0 
11 -3 

R'--C-0 R3NH + CH,~H-E- R'~-O~H,~H-E 

(1) 

(2) 

The rewltmg rubber adduct I> probably ;,mular m structure to an ABA 

block copolymer, where m t!m ca;e A I> compo;ed of DGEBA resin units and 

hardener, and B IS the poly(butadiene-co-acry!omtnle) cham of a smgle CTBN 

molecule Phase separation takes place as the epoxy resin begms to cure, and the 

molecular weight starts to m,e However, m addition to cau;mg phase separation, 

the cunng reactwns lead to an mcrea;,e m vl;,cm,Jty, and eventually to gelanon. 
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The resultmg reduction m molecular mobility lowers the rate of reactions. It 

appears that phase separation is confined to the early stages of curing, and stops 

well before the matnx resm reaches the gel pomt. 

Although the improvement m toughness of rubber-toughened epoxies can 

be quite large, not all thermosets can be toughened by the above technique, as 

they may not allow the precipitation of the toughenmg particles. In general the 

high stiffness and strength of thermoset resins are, to >ome extent, reduced by the 

presence of low stiffness elastomer particles and through plas ticisatlon effects, 

as it has already been pointed out. 

To avOid a reduction m the mherent stiffnes> and strength and a reduction 

m the Tg of the resm some engmeenng thermopla>tlcs, e g. polyethersulphone 

(PES) and polyethenmide (PEI) h..tve been used cz9
J to produce ductile particles 

dispersed in the epoxy matnx. The;e are dissolved m a solvent and then mixed 

with the epoxy re;m. The solvent IS allowed to evaporate and then the curing 

agents are added. Dunng cunng the engmeering thermoplastic component 

precipitates to produce small sphencal particles Furthermore the viscosity of the 

mixture IS consider ably higher than that of the parent res m and the adhesion 

between the two pha;es I> al>o rather poor, unle>> the>e are functionalised to 

react with the resm (see later). 

The search for alternative toughemng particles to CTBN IS also driven by 

the necessity to overcome their poor thermoxidative resistance resultmg from the 

unsaturation m the polymer cham>, even though the epoxy resms themselves are 

intrinsically fmrly resistant to oxidation It I> the pre>ence of double bonds m the 

chains that can cause cham 'Cl'>,IOn reaction; and/or further cro;shnking with the 

loss of elastomenc or ducule propertte; of the precipitated particles which, 

ultimately, become ngid and bnttle, though such a degradative process requires 

exposmg the elastomer to severe conditions 

One of the mam problem> of cured epoxy resm> is their capability to 

absorb and retam water. The great affinity wnh water I> explamed by the 

presence of highly polar group'> 111 the epoxy network. It has been proposed, in 
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fact, that the dll'fuswn of penetrant molecule> into polymers depends on two 

factors <
30

l: the forces of attractiOn between the polymer and the penetrant 

molecules, and the availability of appropnate molecular stze holes m the polymer 

network The ftrst factor concerns the chemical nature of the penetrant versus that 

of the polymer. The relanvely high water ab;orption capacity of epoxy resin 

derives from the presence of hydroxyl (OH) group; m the epoxy chains, which 

attract the polar water molecule> through hydrogen-bond formation <
3

1.
32

) • The 

second factor, on the other hand, Involve> the presence of holes determ10ed by 

the polymer structure and morphology, whtch 10 tUJ n depend> on the fluctuatiOns 

10 crosshnk density, and molecular cham stiffne>>, winch determines their ability 

to pack closely m an amorphous >ystem The formatwn of an appropriate hole 

also depends on the cohe>Ive energy den>lly of the polymer and on the stze of the 

penetrat10g molecules Water molecule>, for example, are hydrogen-bonded and 

can form clusters within the polymer <
33

l. Thus thl> particular factor affecting 

diffusiOn IS essentially a geometncal one, 1 e. the free volumes avatlable within 

the polymer for occupation by the penetrant molecule;. 

1.3) Aims of the Work. 

The tdea behind tins re;earch proJeCt IS to u>e a low molecular wetght 

crystalline thermoplastic polymer to toughen the epoxy matnx, us10g the same 

approach as 1n the CTBN technology To th1> end the work ha> been focused on 

to the compatibJhsation of a thermopLI>llc low molecular weight polyethylene 

with epoxy res10s through telechehc extensiOn> brought about by reactions with 

functional group>. 

The ;electiOn of a thermoplastic cry;talhne pha;e I> based on the 

hypothesis that a less detnmental effect would re;u!t on the wffnes> and strength 

of the cured epoxy re; m;, than by u>mg rubbery partiCle> 
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Low molecular weight funcuonah;ed polyethylene; as the toughemng 

agent have been cho;en, for the followmg rea;ons: 

a) there are no double bond; Jnd, therefore, are more thermally stable; 

b) lt may be possible to lower the cunng temperature to facilitate the 

precipitatiOn of the toughemng pha;e through crystallisanon, albeit Jt may still be 

possible to induce the precipit.ttlon of the polyethylene pha;e in the epoxy 

matnx even above Its meltmg pomt, Simply through chemical reactiOns at the 

functional groups as for CTBN, 

c) It IS poss1ble to reduce the water ab;orptwn of the epoxy resin by 

introducmg 111 Its ;tructure polyolefimc cham; which are intnns1cally 

hydrophobic. 

The mam objective of the pre;ent re;earch, therefore, I> to evaluate the 

misc1bihty of functwnahsed low molecular weight polyethylenes in epoxy resins 

cured wnh anhydncle hardener; and to mtroduce ;unable telechehc extensions 

v1a the functional groups m order to enhance their mi'>Cibiiity without adversely 

affecting the1r reactivity with the oxirane group> of the re;in 
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2. LITERATURE SURVEY 

2.1) Miscibility of Reactive Modifiers in Epoxy Resins. 

It is recognbed that the mtsctbility of polymers is determined by a balance 

between enthalptc and entroptc contnbutions to the free energy of mtxmg, ~Gm 

(
34

). Thus, the condttion of negative ch~mge in ~Gm for complete miscibility, is 

always satisfted for exothermic mixtures, while mtxmg ts unlikely to lead to 

misctbthty owing to the very small mcrease in entropy The miscibility of 

polymers, however, can be further enhanced by introducmg functional groups m 

the components capable of undergmng chemical reactions whtch would result in 

a higher reduction m enthalpy than 1' po>stble with phystcal interactions. 

Under spectfic condition,, a characten,uc mterpenetratmg structure is 

formed <
35

'
37>. The domam stze of the dt,per,ed pha;,e 1' mamly dependent on the 

interfacial tenswn, i.e. the stze u'ually decrease> a' the tnterfactal tension 

dimtmshes 

2.2) Toughness Enhancement of Epoxy Resin. 

The pnnctpal objective of rubber modtftc . .ltlon IS the improvement of 

fracture properties commensurate with the smallest po,stble decrease in modulus 

and strength. The CTBN and ATBN (carboxyl and amine-termmated butadtene 

acrylonitrile) copolymers have contnbuted considerably to achieving this 

objective but these two ela;,tomers po,,e.,, 'ome drawback,, e g. thetr glass 

transitiOn temperature ts relatively htgh (38), whtch ltmtts thetr use at very low 

temperatures 09 39>, and thetr htghly umaturated structure provides sites for 

degradation reaction m oxtdauve and htgh temperature environments <40
) 
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Several attempts have been made 1n the la;t two decades to find alternative 

polymeric systems to CTBN and A TBN for the toughemng of epoxy resins. The 

aim of the researchers 1n tillS f1eld ha; been to 1mpart better properties to the 

epoxy matrix, especially in terms of toughness and water absorption, while 

av01dmg the drawbacks associated with the use of CTBN and explOiting other 

benef1cial characteristics of new systems. 

Attempts to introduce t1uonne atom; 111 the network of crosslinked epoxy 

formulations have been made through the addltlon of specially functionahsed 

t1uoroelastomer; with the ann of enhancing simultaneously the toughness and 

thermal stability charactenst1cs <
41 ) The ela;tomer and the res111/hardener 

components were m1xed from solution; to obta111 an 1111tially monophase system 

wh1ch would subsequently allow the precipitation of the elastomer, after the 

evaporation of the solvent, wto fme part1cles through post-cunng heat treatments. 

Mijovic et al. <42
> have grafted funcnonal groups on a fluorocarbon elastomer to 

render them compatible and reactive with epoxy res111s. A large 111crease in 

fracture energy was observed with the additiOn of 15% ela;tomer in the res111, 

though th1s was accompamed by a decrease m Tg, probably due to the 

solubilisation of some elastomer molecules w1th111 the epoxy network. However, 

in both prevwu; ca;es the di;;olution of h1gh molecular we1ght polymers into a 

thermosettmg resin requires the use of ;olvent> which have to be removed by 

vacuum extracnon pnor the cunng. Th1s lnnltanon makes ;uch formulations 

usable only in thw layer ;ystem;, such as adhesiVe'> or fibre 1mpregnat1ons, m so 

far as there IS a large wcrea;e 111 v1scos1ty which lmp<urs the processing 

charactenstlcs, parncularly 111 low pre;sure application>. It IS for this reason, 

therefore, that functwnahsed ohgomenc modifier; are preferred. 

One approach that ha; been explored to enhance the toughness of bnttle 

thermo;etllng system; IS to prepare a thennoplastJC/thermoset blend consist111g of 

-----------------------------------------------------------------------------



18 

one linear polymer and one highly crosslinked polymer. Such a system is called 

sem1-IPN. 

An interpenetrating polymer network (IPN) is defmed as a combmation of 

two polymers both in network form, at lea;t one of wh1ch 1s ;ynthesised and/or 

crosslinked in the 1mmediate presence of the other <43
l. They are held together by 

permanent entanglements formed by crosshnkmg of the component networks. 

Therefore, unlike co-crosslmked resin mixtures, there IS no covalent bond 

between the two polymers, i e. monomer A reacts only wtth ttself. 

It is poss1ble to obtam three types of IPN: Simultaneous, sequential and 

sem1-IPN. In a Simultaneous IPN, the cro;slmkable monomers are mixed together 

and then polymensed ;eparately through different mecham;m; In the case of a 

sequential IPN, f1r;t one type of monomer t> cro;slmked, then a second type of 

monomer is added and polymen;ed wtthm the network of the f1rst. In a semi-IPN 

only one of the polymers forms crosslinks. In other words, it consists of a 

molecular mixture of a thermoset and a thermoplastic polymer. The thermoset 

polymer gtves high-temperature and chemical re>I>tance, while the thermoplastic 

provides toughness and reststance to Impact <
44

l. But not all polymers can be 

combmed to form IPNs, the two polymer; mu;t be miSCible m order to avoid 

phase separatiOn and to achieve a gre,tter Improvement m mechanical properties. 

Selfton and eo-workers <
45

l have mcorporated h1gh performance 

polyaromattc thermoplastics mto epoxy resm ;ystems agam m the attempt to 

carry over the very high toughne;s of thermoplastiCS m to the epoxy resm system. 

The results have shown that ill'> po;;tble to control the ;emi-IPN morphology by 

modifymg the thennopla;uc b,tckbone The different morpholog1es so obtained 

give nse to different degree; of toughemng by mvolvmg different energy 

absorbmg mechamsms. 

Another approach to the fonnatwn of IPN molecular structures has been 

reported by Sperling et al. <
461 and Touhsaent et al <

47
l These workers have 

synthesised two polymer network; by >llnultaneou; mdependent reactions in the 

same contamer They h,tve Indicated that mter-cro;shnkmg reactions are 
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eliminated m these ~Imultaneou;, mterpenetratmg network;, (SINs) by combinmg 

free radical (acrylate) and condemation (epoxy) polymerisation. By this method 

they modified epoxy resin with poly(n-butyl acrylate) polymer. They have found 

that a two-phase morphology emerged (con;,isting of eo-continuous dispersed 

rubber domains, their diameters being about 0.1-0 5 Jlm) within the epoxy resin 

which constituted the maJOr phase The dimensiOn of the dispersed rubber phase 

domains and the extent of molecular mixing between the two components were 

found to depend on the relative reaction rates (or gel times) m relation to the rate 

of phase ;,eparation. Better mechanical properties resulted when the extent of 

molecular mixing was minimised and heteropha;,e IPN's were produced. 

Other reports <
48

'
49

) have shown that the combmation of various chemical 

types of polymenc networks often re;,ult;, m different controlled morphologies. 

These produced IPNs with synergi;,tic properties such as improved adhesion, 

higher shock absorpuon and enhanced stress-stram propertie;,. 

Banthia et al. (SO) have used vanou;, carboxy terminated elastomeric 

acrylate ohgomers to toughen a diglycidyl ether of bisphenol A They have found 

that acrylate monomers exhibit extremely good mbcibihty with the conventional 

epoxy resin, but precipitate as a diWnct phase dunng network formation. A two 

phase morphology was obtamed and, in the ca;,e of inclusiOn of ethylhexyl 

acrylate ohgomers (4-10% by weight), the cured ca;,ungs were found to exhibit 

enhancements in impact strength comparable to traditiOnal toughened epoxy 

systems. In conclusiOn the above authors have found that carboxyl-terminated 

telechehc ethylhexyl acrylate oligomer;, are potenually effecuve elastomeric 

toughemng agents, exhibiting beuer oxidauve and them1al ;,tabihty with respect 

to CTBN toughenmg systems. 

Wang et al. <
22

) used as moditier;, to toughen epoxy resins novel 

polyfuncuonal elastomers with medium molecular weight. The polyfuncuonal 

poly(n-butylacrylates) reported m their ;,tudy were epoxy functionalised poly(n­

butylacrylate) (ETPnBA) and carboxy functionalrsed poly(n-butylacrylate) 

(CTPnBA), both obtained by photopolymerbation The effect of the functionality 
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and kind of functional group in the eLt;tomer; used a; toughening agents was 

mvestigated by tenstle and Impact te;r; and electron micro;copy. It was found 

that there exists an optimum functionality of elastomers for maximum Impact 

resistance in epoxy group (ETPnBA) and carboxyl groups (CTPnBA) copolymer­

modified systems. Studies on morphology of the modified epoxy resm system 

indicated that the better toughemng effect; of epoxy group; ETPnBA in an epoxy 

resin matnx can be attnbuted to the exi;tence of a multiple distnbution of 

particle Size;. The aggregation of rubber particle; occurnng with the use of 

carboxy functionahsed CTPnBA modified epoxy re;in was believed to be the 

cause of the observed reduction m toughness. 

Lee and eo-workers (SI> obtamed stmtlar results by u;ing a family of n­

butyl-acrylate/acryhc acid (nBA/AA) copolymers wtth a broad functiOnality 

range (1.62-9.93). They reported. m fact, that tmprovements of adhesive strength 

could be achieved by mcorporating the nBA/AA copolymer m a DGEBA epoxy 

matrix and that an optimum functionality for matrix adhe;wn strength existed. 

The search for functionah;ed oligomer; for the production of toughened 

epoxy resm; suitable for htgh temperature applications ha; also been the focus of 

attention of other re;e.rrch worker; 111 tlm area. 

For example Takaha;hi et al <SZJ have ex.tmmed ;everal amme terminated 

sthcone ohgomers a; toughemng .tgem; for epoxtdt;ed novolac resms for use as 

encapsulants for semiconductor Integrated Circuit devices, 1.e low electrical 

stress applicatiOn> In such cases s1loxane oligomers offer the advantage of a) 

lower Tg value; for the dispersed rubbery particles than conventiOnal elastomers, 

b) very good thermal ;tabt!Ity .md c) a reduction m thermal expansiOn coefficient 

of the cured mouldmg compound The mt>ctbthty of the ;1hcone ohgomers with 

epoxy resm wa; found to mcrea;e with mcrea;mg the ratio of phenyl methyl 

s1loxane umt; relative to dtmethyl ;tloxane unm m ;,taw,tical copolymers. Total 

solubtlity m the epoxy res10 wa; ,tchtevcd. however. only In the case of phenyl 

methyl stloxane homopolymer;, whtch produced tramparent, monophase, cured 
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products. For other siloxane ohgomers a two-phase morphology was observed in 

every case, but the dispersed particles became extremely small (I.e. about 0.01 

J..lm) when the Silicone oligomers were added to the resm as solutions m toluene. 

Siioxane elastomers have been chosen also by other workers as an 

attractive alternative to traditional toughening systems, although some of these 

oligomers are quite expensive. Beside the advantages already mentiOned, they 

exhibit good weatherab!lity, oxidative stability, high flexibility and moisture 

resistance, havmg hydrophobic characteristics <
53

l. Moreover, the non-polar 

nature and low ~urface energy of siloxanes constitute a thermodynamic driving 

force for them to migrate to the mr-polymer Interlace, provided the chams are 

sufficiently mobile Thi!> migration can occur with simple phy!>Ical blends as well 

as with systems containing chemically hnked microphase-!>eparated segments. 

During the early stages of cure of a SIIoxane-modified epoxy, i e. before 

extensive crosshnkmg begms to impair the diffusion charactenstics, such 

migration is con,Idered possible and IS believed to lead to the formation of a very 

hydrophobic and chemically bound 'urface coating <
54

l. Evidence suggests that 

such a surface layer reduced fncuon and Improves the wear properties of the 

epoxy substrate '55
l. 

YorkgJtis and eo-workers <
56

l have chemically modified epoxy resms with 

functionally termmated poly( d1methyls!loxane ), poly(dimethyl-co-

methyllrlfluoropropyl SIIoxane) and poly(d1methyl-co-d1phenyl siloxane) 

oligomers and have analysed the morphology, !>Ohd-,tate properties and fnction 

and wear properties of the sy!>tems. They have found that the miscibility of 

Siloxane modifiers 10 epoxy resms can be enhanced by mcrea,mg the percentage 

of methyltrifluoropropyl (TFP) siloxane or d1phenyl (DP) siloxane relative to 

dimethyl s!loxane 

It I!> known that the solubility parameter ~~ a good Indicator of the 

miSCibility of one 'ubstance wah another dnd, together with molecular weight 

and temperature, can adequately predict the po>>lble occurrence of phase 
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separation of the elastomer from the resin during cure. Through copolymerisation 

of dimethyl siloxane with partially aromatic diphenyl siloxane or polar 

methyltnfluoropropyl s1loxane, It IS possible to raise the ;olubility parameter of 
~ 3Ia . 

the siloxane elastomer from 3 7•10 (J/m) close to that of the epoxy resm, 

. 0-3 3 I/2 (I2) • • • h h h approximately 4 5•1 (1/m ) . This IS analogou; to the manner m w IC t e 

solubility parameter of ATBN and CTBN elastomers are controlled by adjusting 

the acrylomtnle content. In this way the level of miscibility of the siloxane 

modifier m the epoxy resm controls the Size and make-up of the phase-separated 

elastomeric domains, i.e. the morphology and the resultmg modulus and fracture 

toughness of the modified resm. The authors have reported that, while 

unmodified polydimethylsJ!oxane, due to the large difference in solubility 

parameter, phase separates from the epoxy restn mto large domains which do not 

increase the fracture strength, the fracture toughness of the epoxy resin can be 

Improved by modificatiOn with sJ!oxanes containing 40% or higher 

methyltrifluoropropyl content, or 20 and 40% diphenyl content. 

Cecere et al. (S
7J concentrated their efforts to the optimisation of both 

molecular weight and diphenyl contents of the poly(diphenyl-dimethyl) siloxane 

oligomers in order to obtain the maximum Impact strength m the modified epoxy 

networks without sacnficmg the flexural modulus They have found that siloxane 

copolymers when used a; Impact modifiers are not very effective m increasmg 

fracture toughness over that of an unmodified system. It appears that a system 

incorporating 15% by weight of a 40% diphenyl/60% dimethyl-copolymer with a 

molecular weight of approximately 5000 g/mole yield; the highe;t impact 

strength with a ;mall decrease in flexural modulu<> This sy;tem phase-separates 

into evenly dispersed particles with an average diameter of 1 J.IITI. 

More recently other worker; (581 have studied the rubber-modification of 

bifunctwnal and tetrafunctwnal epoxy matnces by means of a block copolymer 

of polydimethybJ!oxane and polyoxyethylene (PDMSO-co-PEO) elastomer or an 

anhydnde-grafted polybutene (PB-g-SA) The choice of these types of hquid 

reactive elastomers wa; detem11ned by their higher thermal and photo-oxidative 
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resistance compared with classical uns.lturated elm.tomers The results showed 

that the mechamsm of fracture of b1funcuonal resins can be posiuvely influenced 

by the addition of the above menuoned rubbery systems, while for a 

tetrafunctional epoxy resm, hke TGDDM, the same elastomers do not produce 

any improvement m impact properues. The above authors have tried to give an 

explanation on the basis of the different networks obtamed m the two matrix 

systems. In particular, m the ca;e of TGDDM the resm has a very high crosslink 

density and, therefore, Its capacity to deform by shear ywldmg is highly reduced. 

Hence the contributiOn of the rubbery particles to enhance fracture toughness by 

promotmg locah;ed ;hear y1eldmg m the matnx is rather ;mall. The authors have 

finally concluded that convenuonal rubber-toughemng procedure cannot achieve 

the desired results owmg to the lack of ducuhty of the TGDDM. 

The constant ;earch for thermally ;table system; to use as toughening 

agents for epoxy resin, ha; mduced some researchers to mvestigate several 

alternative; 

By reacting m solution an ac1d fluoride functionalised perfluoroligomer 

with a d1glycidyl ether of b1;phenol A, Ro;;er et al <
59

) have produced a 

prepolymer which wa~ ; u bseq ue n tl y to modify an 

epoxy/diammod1phenylsulphone re;m matnx for a glass cloth composite. They 

have demonstrated that th1; JmmiSCJble elastomenc prepolymer exhibits sufficient 

chemical reactivity with the epoxy re;m to g1ve n;e to Improvements in flexural 

ductility and 1mpact resistance, without Ios; of strength and modulus or lowenng 

the glass transitiOn temperature It wa; ;uggested that an mterpenetratmg polymer 

network wa; formed, wh1ch I> re;pon;Jble for the improvements m the 

mechamcal properties of the composite 

The u;e of mod1fied perfluoropolyether ohgomers m an epoxy resin was 

also found by Masc1a et al. <
60

) to produce both IPN and particulate two phase 

systems, the morphology dependmg on procedure detmls Hydroxy-termmated 

fluoroalkene oxtde oligomer; were reacted with chlorend1c anhydride and 
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subsequently with e-caprolactone to produce carboxy-termmated perfluoroether 

prepolymers that were totally misctble with dtglycidylether of btsphenol A. 

Curing the epoxy resin mixtures with hexahydrophthahc anhydride hardener and 

benzyl dtmethylamme catalyst produced transparent products exhibltlng a 

heterogeneous IPN morphology. Pre-reactmg the t1uoroalkenoxide prepolymers 

with an excess of epoxy resm, prior to the addition of hardener and catalyst, 

resulted in opaque products displaying a two-phase dispersed particles 

morphology Analysts of mechamcal properties showed for both systems 

remarkable improvements m fracture energy ( 450-600% ), flexural strength (24-

75%) and stram at break (300-500%), even with the u;,e of only small amounts of 

perfluoropolyethers, 1.e. 3 5-5 0%. However, the;,e were achteved at the expense 

of a small decrease m modulus (20-30%) and Tg (10-25'C). It must be noted that 

these effects were much more pronounced for products exhtbtung a two-phase, 

dispersed parucles morphology, than for IPN ;,ystems. The above authors <61
) also 

found that both IPN and particulate two-phase formulations showed a reduction 

in t1exural strength after 21 day;, agemg at 200'C, but the measured values were 

always much greater then for the non-aged control samples. The stram at break 

for IPN system;,, however, mcrea;,ed considerably with agemg m proportion to 

the concentrauon of prepolymer used, tht;, bemg a very unusual occurrence m the 

field of thermosets. 

High performance thermoplastic;,, such as polyetherimtde (PEI) and 

polyethersulphone (PES), have been al;,o u;,ed to Improve the fracture toughness 

of highly cro;,shnked thermosetung resm;,, leadmg to the additional advantage of 

causing no reduction of gla;,s transitiOn temperature and mechamcal properties. 

When a tetrafunctional epoxy resm ts toughened with PE!, Improved 

fracture toughness i;, obtamed, 1 e the Kc value ha;, been found to mcrease from 
I/2 • • 

0.5 to I 42 MPa (m) wtth the addlllon 25 phr of PE!, without any apprectable 

decrease m Young';, modulu;, <621
• Similar re;,ults have been also found with a 

trifunctwnal epoxy resm <
6
'l. The analysts of the morphology, m the latter case, 
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has shown the occurrence of pha;e m versiOn with a PE! content of about 15 wt% 

or greater, as it begins to form a contmuou<> phase The interfacial adhesion 

between the PEI dispersed phase and a tetrafunctwnal epoxy resm can be 

enhanced by using a mod1fied polyetherimide, obtamed through hydrolysis of 

PEI with NaOH solution <
64 65

l The results have confirmed that Improved 

toughening effect can be ach1eved m high performance epoxy resms by the 

incorporation of the mod1fied PE!. For th1s system a fracture toughness value 

40% higher than for the unhydrolysed PEI/epoxy resin system with equal PEI 

content, 1 e. 5 wt %. The hydrolysis lime has been found to play an Important 

role in controlling morphology of the cured ;ystem: the more hydrolysed the PEI, 

the more miscible il becomes wah epoxy res111. Thu;, the number and size of 

dispersed PEI parucles 1s reduced with mcreasmg hydrolysis time of PEI. 

Subsequently, an opumum hydroly;is time can be determined 

Raghava <66
l has blended a low molecular we1ght polyethersulphone (PES) 

containing hydroxyl end group> with a tetrafunctwnal epoxy. He expected that 

the reacuve end groups of PES would p.trl!Cipate m the chemical reactions during 

cunng of the epoxy resm For tlm reason the modified cured epoxy was expected 

to possess enhanced fracture toughne;; Analysis of fracture toughness of 

modified epoxy compared to that of unmod1f1ed system showed, however, that 

the mcrease m toughness of epoxy-polyethersulphone system was only marginal. 

Bucknall and Partndge <
67

·
68

l have confmned the results reported by 

Raghava. They have found only a small Incre.t;e m fracture toughness of blends 

of PES with tetrafuncuonal and tnfunctwnal epoxy resms, ;eparately cured with 

diammodiphenyl-sulphone (DOS) and dicyandJamJde (DJCY). They also 

reported that the PES-toughened tetrafuncuonal epoxy resm cured with both type 

of hardeners did not show phase ;eparation, while m the ca;e of a trifunctwnal 

resin phase separatiOn was observed 

Dutmont and Moulton (o
9
J have al>o mve>tigated the toughening of a 

tetrafunctwnal epoxy re>m u;1ng variou-. ductJk and tough thennoplasllc 

polymers po;se;smg a high ght<;s tran;!llon temperature They observed that a 
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mixture of epoxy and PES did not possess a two-pha>e structure and that the 

fracture toughness of the .modified system was not markedly different from the 

values measured for unmod1f1ed epoxy. The lack of toughemng effects in a 

tetrafuncuonal epoxy resm by simply mixmg it with a PES may be due to the 

high crosslink density of the resm. Polyethersulphone, perhaps, decreases the 

crosslink density by sh1eldmg the reaction site> of epoxy re>In. This is obviOusly 

not sufficient to mcrease the ductility of the modified system by promotmg shear 

banding in the matrix. Also, polyether>ulphone IS notch-sensitive and its impact 

properties are dependent upon specimen th1cknes> (?OJ. These factors reduce PES 

ductility and hence Its ability to toughen an epoxy IS reduced. In addition 

Bucknall <
68

J suggested that PES IS a polar matenal and actually has a higher 

solubility parameter than the epoxy network, which could limit the interfacial 

adhesion between resm and PES and con>equently reducmg the fracture 

toughness. More Importantly, the poly;ulphone modifier was >Imply physically 

blended mto the epoxy resm and d1d not chemically react thereby givmg poor 

interfacial adhesion. 

The miSCibility of a polyethersulphone and a tetrafunctwnal epoxy, cured 

with an aromatic anhydride, was studied by Raghava <
29

J using scanning electron 

microscopy and dynamic mechamcal spectroscopy. The mfluence of the 

morphology of the epoxy/PES blend on Its fracture toughness and toughening 

mechamsm were also analysed by the above author The modified system 

exhibited a two-phase bimodal particle dJstnbutJOn morphology. Dynamic 

mechamcal spectro;copy rewlt> d1d not ;how ,m Intermediate glass transitiOn 

temperature, but thJ> was attnbuted to the Tg of the pha;es not bemg sufficiently 

different. As m other studies, the ;ame :wthor found a lack of enhancement in 

low temperature fracture toughne;; values for PES modified epoxy resin. This 

was again attnbuted to the very h1gh cros;hnk den;Jty of the cured tetrafunctional 

epoxy. The mclu;ion of low concentr,ttiom of PES I> not ;uff1cient to produce 

formation of shear band'> The Young's modulm of the modified system was 

found to be slightly smaller than the value; for the neat epoxy resm. 
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Thts suggests that PES acts as a non-reactive diluent for the highly 

cros;Jinked epoxy, provtded it does not prectpitate out 

From the la;t examples, it emerges that the mcorporation of ductile 

polymenc modtfiers as a method to enhance the fracture toughness of epoxy 

resms not always ytelds satisfactory re;ults m the case of highly crosslinked 

epoxtes (tn- and tetra-funcuonal resms). 

As an alternative approach to toughen a htghly cro;;linked epoxy resin, 

Martuscelh and eo-workers (?!) have u;ed as modifier an engineenng ductile 

thermoplastic polymer, namely the bt;phenol-A ba;ed polycarbonate (PC). A 

cntical step towards the preparation of ;uccessful thermosettmg blends IS to start 

from a smgle-phase, homogeneous reactants mtxture, pnor to the curing process. 

This was achteved by a reacuve blendmg process in which the PC was dissolved 

at high temperature (220'C) m the uncured epoxy resin, giving a clear, 

homogeneou; soluuon. After the addttwn of the cunng agent and the accelerator 

at lower temperatures (SO' C), the temperature was tncreased agam for cunng and 

for post-cunng purposes. Accordmg to thts procedure, blends contmning 0 to 

20% in weight of PC were prepared. The FfiR analyst; performed on the 

uncured epoxy/PC mixtures demon;trated the occurrence of phystcal and 

chemical mteracuon; among the blend components In parucular, it was found 

that PC chams w!lh epoxtde .::nd groups were fonned dunng the dissolution 

process. The;e functwnaltttes take part m the ;ub;equent crosshnkmg reactwns, 

thus mcorporatmg PC backbones wtthtn the epoxy network. Dynamtc mechanical 

measurements and scanmng electron mtcroscopy (SEM) analy;ts of the epoxy/PC 

blends did not show any evtdence of pha;e ;eparatton of the minor component 

during the cunng proces; The fracture behavwur of tins blend system studted at 

low and htgh stram rate gave nse to a marked mcrease m toughness with 

increasing the amount of PC m the blend In parucular, for low speed tests the 

addil!on of 20% by we1ght of PC mcrea;e; the roughne;s of the epoxy matrix by 

a factor of about 7. while for the h1gh ;peed te>t> the mcrease is about 5. 
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Moreover, this toughemng effect with the u;e of PC wa; achieved without 

significantly reducmg other desirable properties of the matnx such as the elastic 

modulus. The modulu; decreased by le;s than 10% for a content of 25% of PC. 

From SEM analysis It was found that localised yieldmg at the crack-tip and the 

consequent crack-Up blunting is the mechamsm controlling the degree of plastic 

deformation dunng the fracture proce» 

The utilisation of functionali;ed thermopla;tic modifier; ha; been a major 

research focus in severallaboratone> 

Hednck et a[ (72} u;ed phenolic hydroxyl .md aromatic amme end 

functionalities m poly(arylene ether sulphone) ohgomers to modify chemically 

epoxy networks. The ohgomers were re..tcted with a large molar excess of epoxy 

resin and then cured mto cro»lmked network'> with .t ;toichwmetnc quantity of 

4,4'-diammodiphenyl>ulphone (DOS). The aryl ether ~ulphone was found to be 

molecularly mi>Cible with the epoxy precur>OI over the entire range of 

compositions and molecular weight> Investigated, developmg a two phase 

structure dunng cunng, m which poly;ulphone formed discrete particles evenly 

dispersed m the epoxy matnx. Oe;pite the exi>tence of a two-phase structure, the 

crosshnked ;ystem; were nearly transparent, due to a ;imilarity m refractive 

mdex of the two components. The fracture toughne;, of the;e modified networks 

under plane strain conditiOIJ:> wa; unproved '>Ignificantly with mmimal 

detenoranon m the tlexural modulu; The authors attnbuted this result to the 

presence of polysulphone particle> m the epoxy matnx, which deformed 

plastically dunng fracture and mduced ;hear yielding 111 the epoxy matrix. 

More recently Yoon and eo-workers (?
3

) u>ed ammophenyl terminated 

polyethersulphone to Impart better properue; to a difunctional epoxy resm. These 

authors showed that the ammophenyl functionality m poly>ulphone remarkably 

Improved the fracture toughne;; and adhe>Ive bond strength> of epoxy resins. In 

contrast to commercial PES mod1f1ed epoxy sy;tem>, the Improved properties by 

using reactive PES modi!katwn> were mamly attnbuted to the reactive end 
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groups which provided chemical linkages with the epoxy matrix. Moreover, it 

was found that the samples used for tensile tests, fracture toughness 

measurements and adhesion tests exhibited different phase separation behaviours, 

but a similar trend of properties was observed. 

Kemp et al. (74
) reported their attempts to incorporate several types of 

linear polysulphide rubber (I 0 to 20 phr) In a diglycidyl ether of bisphenol A. 

Their study covered the phy~ical microstructure of the toughened epoxide and its 

mechanical and dynamic-mechanical properties. The results showed that most of 

the cured materials featured disperse rubber particles with diameters of <lJlm. It 

was also found that additiOn of polysulphide rubber~ to the epoxy nearly always 

led to Improvements In properties, notably the development of ductility. 

However, It wa; not clear whether the~e Improvements were necessanly due to 

the presence of the rubber as a discrete particles or di~persed as IPN's in the 

matrix. 

Silicone rubber toughened epoxy resins seem to be an attractive alternative 

to CTBN and ATBN systems, exhibiting stable physical properties over a broad 

range of temperatures. Becau~e epoxy and ~Ihcone rubber are completely 

immiscible, the additiOn of a compaubiii~er I> nece;;ary to obtam a satisfactory 

dispersion of the rubber m the re~ m 

The main objective of Kasemura and eo-worker~ (751 was to fmd an 

appropnate surface active agent to reduce the Interfacial tensiOn between the 

resin and the rubber m order to compatlbih~e the two components. These authors 

achieved compatibility with the epoxy re~m with the u,e of .t polyether modified 

silicone od (EtMPS) to disper'>e aRTY (room temperature vulcamsmg) silicone 

rubber or silicone diamme The re~ult> showed that the Impact fracture energy of 

the resin wa~ Increa~ed by the addllion of the RTY Silicone rubber up to two 

times that of the unmodified resm, while the additiOn of silicone d~amine had 

almost no effect. possibly becau~e the molecular weight wa~ too low. Moreover, 

T-peel strengths of alummiUm plates bonded by epoxy resin filled with RTY 
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silicone rubber and with silicone d~amme effectively mcreased with the silicone 

content, showmg a maximum at 10-20 phr. By a scanning electron microscope, 

many particles of silicone rubber, 1-20 f.IID, were observed across the whole of 

the fracture surface. 

Finally Frischinger et al. reported (?
6

) an attempt to Introduce epoxidized 

vegetable Oils m a DGEBA epoxy. It was po~sible to obtam two-phase structures 

with rubbery parucles by usmg epoxidized soya bean liquid rubber (ESR), based 

on epoxidized soya bean ml and DDM, wh1ch exhibited a h1gh toughness, similar 

to that of other rubber-mod1f1ed (CTBN) epox1es, a~ well as a low water 

absorption. They exhibited. however, slightly lower Tg values and Young's 

modulus m companson to the unmodified resms, whereas the dielectnc 

properties remained unchanged. 

2.3) Toughening of Thermoset Polymers by Rigid Crystalline 

Particles. 

The quesuon of how to Improve best the toughness of highly crosslinked 

epoxy resms without detenoratmg other des1rable properties has led to the search 

of alternative systems. Engmeenng thermoplastics although can provide a high 

modulus and temperature resistance, have been found to be effective only in a 

few cases. In fact, a relatively h1gh fracture toughne>s was obtained only when 

the morphology became a two-pha;e eo-continuous micro;tructure, m absence of 

any interactions between the component~ Th1~ can lead to poor h1gh temperature 

creep resistance and/or reduced ~olvent re>I>tance. When a crystalline second 

phase IS successfully incorporated mto an epoxy matrix, the crystalline phase is 

expected to act a; a toughemng agent, without other drawbacks, such as 

reduction m modulus and glass transition temperature of the toughened resm. 
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One possible toughemng mechamsm in such ;ystems is phase 

transformation toughemng, which IS well known m ceramic matenals cnJ. An 

example 1s represented by zirconta-contammg ceramics <?S-X)J. The me tastable 

tetragonal phase of zircoma is incorporated mto the ceramic, and under the 

mfluence of the stress field ahead of a crack up, this phase transforms to the 

stable monoclinic phase. Because the monoclinic phase is less dense than the 

tetragonal phase, compressive stresses are set up on one of the phases, which 

supennposes on the tensile stre;s field ahead of the crack up producmg shear 

deformatiOns. wh1ch have the effect of increa;mg the cnucal fracture energy. 

Such a toughemng mech,tm;,m might be applicable to bnttle polymers if a 

stress-transformable crystalline polymer were used as the ngid second phase. 

However, only few >tudies have been earned out to venfy this hypothesis for 

polymenc materials (S
4

J. For di>persed crystalline polymers to be effective for 

toughemng by phase transformation, ;,everal properties similar to those of the 

metastable tetragonal pha;,e of Zircoma are required F1rst, the polymers should 

have a vanety of cry;,talhne ph.t;e:. ,md tran:.fornunon> from one to another can 

be induced by an applied >tre;,s. The dewed phase transformation is one in which 

volume d1latanon and distortion both occur m re;,ponse to the stress field ahead 

of a crack Up Second, the demed stre;;-free cry>talline phases should be stable 

or stabilisable m the temperature and pressure ranges under which the bnttle 

matrix resins are proces;ed Third. the'>e polymers ;,hould form strong mterfac1al 

bonds with the matnx 

Kim and Robertson CIJJ ;,tud1ed the toughenmg of an aromatic amine-cured 

diglycidyl ether of b1sphenol A epoxy with particles of cry>talhne polymers. The 

crystalline polymers cho;,en were poly(butylene terephthalate) (PBT), nylon 6 

and poly(vmyhdene tluonde) (PVDF). Each of the;e was found to be capable of 

undergomg phase tramfornunon a;, the re>ult of the .tpplicauon of a stress field, 

and each of the;,e polymer'> could be bonded to epoxie> For the case of PVDF, 

however, an amme cunng agent I> nece'>>ary to achieve a good bond with the 

epoxy resm. The authors reported that nylon 6 and PVDF were found to toughen 
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epoxy resins to an extent simtlar to what IS achtevable with an equivalent amount 

of CTBN rubber. Fracture toughness, on the other hand, was increased two-fold 

by the inclusion of PBT over that achteved with nylon 6 and PVDF. From 

microscopy studies the above authors found that the toughness of PBT-epoxy 

systems was mdependent of particle size, for particles m the range of tens of 

micrometers, whtle the toughness of nylon 6-epoxy system; decreased with 

increasmg particle stze, for parttcle; smaller than about 40 Jlffi. There was no 

reductiOn in either modulus or yteld strength of the epoxy resm with the inclusion 

of either nylon 6 or PBT and a lower reduction of such properties was observed 

with the mcluswn of PVDF than wtth the mcluswn of rubber 

In a recent work, Kubotera and Yee <~SJ mve;ugated the possibility of 

usmg a crystalline block copolymer, contammg amorphou; end chains, as a 

modifier to Improve the fracture toughnes; of htghly crosshnked epoxy resins. 

They reported that both polyetheretherketone (PEEK) and PBT units can form 

crystals when they are combined to form tnblock copolymers with amorphous 

PES. The DSC curves and the micrographs .,howed that even a short cham length 

of the PBT and PEEK umts, having only 3 and 4 repeatmg units, can form a 

crystalline phase. The mam rea;on for using copolymers rather than crystalline 

homopolymer> was that the copolymer; were expected to have better solubility 

with epoxy prepolymers, owing to the solubthty of the amorphous blocks. All 

copolymers, m fact, gave homogeneou; epoxy mixtures with loadings up to 15-

20% in weight, resulting m mulupha>e >tructures. The morphology of the cured 

blends was found to depend on the structure of the copolymer. From the 

micrographs 1t was recogmsed a ;econd pha;e dispersed m the epoxy phase. This 

second pha;e was not the re;ult ot ;pontaneous hquid-hquid phase separatiOn, 

but that of crystalhsatwn and agglomeration Fmally, the fracture toughness of 

each system wa> evaluated The re;ults showed that, although each blend 

presented some tmprovement in toughne>>, the average behaviOur was not very 

different from that of unmodified >)'>terns. The mo>t effective modifier, m terms 
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of toughness, appeared to be the tnblock PEEK-PES-PEEK system, which gave 

almost a s1ngle phase structure from optical micro;cope observations 

The study of miSCibility of polymer blends where one component is 

crystalhsable and another IS highly crosshnked has received relauvely little 

attention. 

N oshay and Robeson <
86

> mamtamed that the cunng of epoxy resms with 

anhydndes m the presence of dihydroxy-terminated polyester or polyether 

modifiers produce; block copolymer structures in which one block forms the 

crosshnked epoxy/anhydnde network, while the other segment acts as a non­

crosslinked diluent. The morphology of the cured system was found to be 

dependent upon the modifier molecular weight. Subsequently the above authors 

exanuned the miscibihty of a range of anhydnde-cured epoxy resms with poly(e­

caprolactone) (PCL) and poly(propylene oxide) of vanous molecular weights and 

with different end-group>. They concluded that above a cnucal molecular weight 

value m the region of 3000-5000 for the two modifiers, the mixtures had a two­

phase structure and that the PCL end-groups reacted with the anhydride-cunng 

agent to produce a type of block copolymer Below this level, however, single 

phase systems were obtamed The results ;howed that two-phase systems 

displayed a supenor balance of heat di>tortlon temperature and impact strength, 

thus providing tough ;y;tem; with better elevated temperature capabilities than 

were obtamed with single-phase >y>tem>. 

In another paper by Clark et a! <
87>, PCL blends with amine-cured epoxy 

resins were examined and attention was paid to the opportumty that existed to 

produce hydrogen bonds with amine-cured epoxy re;m/PCL blends. They found 

that PCL with average molecular weight about 20000 was partially miSCible with 

amme-cured epoxy Iesins although It was largely immiSCible with the anhydride­

cured epoxy resms reported by No;hay and Robe;on The different miscibility 

with PCL between amme-cured and anhydnde-cured sy;tem> was considered to 

be due to the pre>ence of group'> m the amme-cured sy;tem, which offer an 
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excellent potential for hydrogen-bonding interaction with the ester groups of PCL 

in blends. 

Qipeng and eo-workers c88
) have descnbed the results of a study on epoxy 

resin/poly( ethylene oxide) (PEO) blends and, m particular, the role of the degree 

of crosslmking with respect to the miSCibility of the epoxy resm with PEO and 

the phase structure of the resultmg blends. The preparatiOn of such blends was 

realised first by mixmg resin and PEO at a temperature above the melting point 

of PEO, then cooling the mixture at room temperature Fmally the curing agents 

were added and the mixture, after bemg stirred at lngher temperature, was cured 

at 11 o·c for 4 hour> (i.e. above the melting pomt of PEO). From the results, the 

authors concluded that PEO with Mn=20000 was miSCible with the uncured 

epoxy resm, but became Immi>cible when an amine hardener was added. It was 

concluded that PEO may be miscible with partially cured epoxy resm or partially 

miscible with an epoxy resin advanced to a higher degree of cure. The miscibility 

of epoxy resm /PEO blends was abo ;tudied more recently by Luo and eo­

workers cs9
). It was confrrmed that all the uncured DGEBA/PEO blends were 

misctble m the molten state. Moreover, 1n tlm case the system cured with 

phthaltc anhydnde (PA) resulted m a completely miSCible cross-hnked product. 

The presence of dis;olved PEO, however, cdu>ed mcornplete cunng of the epoxy 

resm and gave ri;e to a less perfect network. The presence of DGEBA in the 

blends, on the other hand, hmdered the cry>talh;ation of PEO, depressing the 

melting pomt and elevattng the crystalli>aUon temperature The addition of 

DGEBA results, in fact, m an mcrea;ed Tg (before and after curing) of the 

misctble blend, and thus reduces the molecular cham mobtl!ty of the crystalline 

component and the perfection of crystals. The meltmg pomt also decreases with 

increasing the amount of cunng agent (PA); on the other hand, the crystallisation 

temperatures mcrease because the mcrea;e m the hardener, that corresponds m an 

increase m cros;hnkmg dens!ly, cau>e> PEO cry;talh;auon to be difficult and 

reduces the perfection of PEO cry; tab. 
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2.4) Water Absorption in Epoxy Resins. 

Under service condmon; epoxy resm> are often subjected to varymg 

degrees of humtdity and temperatures. Motsture has a detnmental effect, 

especially at elevated temperature, on the mechanical properties of cured epoxy 

resins, which is particularly tmponant for composttes c90
"
91 >. The degradation of 

properties is evidently caused by water-induced plawctsatlon and the 

concomitant lowenng of the glass transitiOn temperature of the matnx resm en>, 

resultmg m structure degradation by hydrolyst>, matrix-fibre separation and crack 

formation c93
'
94J 

In the la;t decade many ,tttempts have been made to improve the 

hydrophobtctty of epoxy resms For m;tance, the mcorporatwn of halogens in the 

network structure of epoxtes wtll 1mprove the resm durabJ!Ity in mmst 

environments and lowers tts mo1sture sorption. 

According to D1amant et al. c95
J the dtffu;wn coefficient of water into an 

epoxy resm depends on four mam factor>: (1) the polymer network structure; (ii) 

the polymer polanty, determmmg polymer-water affimty; (m) the physical 

morphology of the polymer (e.g, a two-phase structure); and (iv) the 

development of m1crodamage under severe humidity condlllons. In his study, 

however, he concludes that it IS dtfficult to predict whtch of these factors, or 

combmatlon of them, dommates m mot>ture diffuswn proce;;e;. 

The sorbed water can cau;e degradatiOn of properties of cured epox1es, 

although 1t does not ;enously affect the cohe;1ve properues of the resm. Moisture 

can eas1ly penetrate and pla;ncise mo;t epoxtes, thu; lowenng the glass 

transition temperature (Tg) c96
"
97J and detenoratlng the mechamcal properties (e.g. 

strength and modulus) (98
·
99>. Mm;ture can also hydrolyse ester groups and cause 

chem1cal decomposition, as previously menuoned. 

Moreover, absorbed water may create ;enou; mterfacial problems 

especially tf there t> an adherent met,!lltc ;urface m contact. Pnmers which 

contain vmyb or ela;tomer'-> are ;omettmes u;ed a; mterfacial water barriers to 
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prevent corrosiOn of metal surfaces. The use of pnmers usually reduces the bond 

strength and their use IS JUSllfJed only in ~pec1al cases on, i e. when a strong 

protection against corrosiOn 1s requ1red In this case it is preferred to have a bond 

with a slightly lower strength but with a much longer durability. 

It should be pointed out that problems associated with moisture absorption 

in epoxy systems are more apparent when the epoxy is cured and used at elevated 

temperatures. Fisher and al. (lOO) have studied the Tg and mo1sture ab~orption of a 

tetraglycJdyl epoxy cured with an aromanc amme agent as a function of cure 

conditions The~e authors have found that the amount of mOJ>ture absorptiOn 

increases with extent of cure due to the mcrea>e m number of hydroxyl groups 

formed. Th1s IS very surpnsing, however, smce a more dense network would have 

a lower amount of free volumes to accommodate the >mall water molecules. The 

data have confirmed that the ab~orbed m01~ture mteracts primarily with the 

hydroxyl sites created dunng cunng, 1.e 111 the VICJmty of the amine groups 

which have reacted w1th the epoxy group~ 

Eck>tem noiJ u>ed a chlonnated diammodiphenyl methane to cure a 

diglycidyl ether of b1sphenol A epoxy and found the absorptiOn of moisture to be 

15% lower than the halogen-free counterpart> 

Bame et at (IOZ) stud1ed the effect of halogen contam111g substituents on 

the sorptiOn and transport of water 111 cured epoxy re>111S, such as tetraglycidyl 

4,4' diammodiphenyl methane/Jiaminodiphenyl >ulfoxJJe (TGDDM/DDS) 

systems. The result!> 111d1cate that the mtroducnon of halogen containing groups 

reduces the sorpnon over the whole acnvny r,mge However, the effect is greatest 

for the fluonne contaming ~ystem~. The mecham>m by which the presence of 

halogen reduces mOisture absorpnon IS sull unclear. 

F1sher et al. ooo) and Hu et a! 003
> demon>trated that the water absorpnon 

of epoxy TGDDM/DDS can decrea>e 

funcuonal groups (i.e. hydroxyl -OH, 

significantly by reacting the residual 
/o, 

anune -NHz, and epoxide -CH-CH2) 

with appropnate blockmg reagent> About 75% reduction 111 moisture absorption 

was obtained when the residual functiOnal group> were blocked by silylation, 
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cyanoethylation, or carboxylation. The optimum re;ult> were obtamed when the 

blocking reagents contamed fluonne. The treated epoxy re;m, m fact, was found 

to be stable to hydrolys~> even .tfter long expo;ure to mOisture at room 

temperature. 

Fluorinated epoxy resins were found to posse;s very low water absorption 

properties compared to pure unmodified epoxy resms 004
l, ;etung, m fact, the 

lower limit for water absorption and water vapour perme~tbdny. The works of 

Gnffith et al. oos.Io6) on the >ynthesi> of epoxy re;ms containing fluoro 

substituents m the ohgomenc chams h.ts demon>trated that a substantial 

reducuons in water absorption can be achteved even wnh the use of conventional 

curauves, ;uch as amines and anhydndes. It has been reported that an anhydride 

cured fluoroepoxy absorbs only 0 35% by weight of water, whereas a 

conventional epoxy absorbs 3.5% or more by weight for an Immerswn period of 

SIX months (I07l. Other mvewgators (IO'l have achieved >Im!lar results by using 

perfluoro-butenyloxyphthahc anhydnde a> cunng agent> for a diglycidylether 

bisphenol A resm. They found a reductiOn of water ab~orption of 75% compared 

with the methylnadic anhydnde cured >ystems. 

It has been earlier menuoned the attempt of Rosser et al. (S
9
) to use 

reactive perf!uoroether ohgomers in epoxy resin. An appreciable reduction in 

water uptake was obtained, which wa; attributed to the formation of solubilised 

fluorinated ohgomenc >pecie> m the matnx layers surroundmg the dispersed 

particles 
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2.5) Chemical Criteria and Modification of Toughening Agents 

for Epoxy Resins. 

There IS general agreement regarding the necessity to have full 

compatlbihty between hqmd rubber and uncured epoxy resm until the 

crosslinkmg reactions take place. 

Drake and Siebert 009
) md1cated that in ,my rubber-modified epoxy 

system, the compaubility between the rubber and the epoxy resm before and 

dunng cure IS a cntical chemical cntenon for toughemng the matnx 

R1ew and eo-workers CJJO)' on the other hand, suggested that the liquid 

polymer modifiers should have at least "some degree" of solubility in the epoxy 

resm without phase >eparauon or agglomeration before gelanon, while Sultan and 

McGarry (Ill) and Bucknall and Yoshu (JJZJ propo>ed that Initially the rubber 

should be completely >oluble 1n the epoxy re"n They also suggested that the 

solub1hty depends upon the Iml!al molecular we1ght of the rubber, the chemical 

composition of the funcuonal group> and the >olubilny parameters of the rubber 

and the epoxy. 

Gazlt and Bell 013
> md1cated that the rubber does not contnbute to the 

improvement of impact strength without good Imllal rubber d1ssolunon. He used 

poly(n-butyl acrylate) mod1fled. methylene dwmhne (MDA), cured epoxy 

systems m h1s work. Other> have >ugge>ted that the overall matnx toughness is 

probably >ignifJcant, but that poor elastomer-resm compatibility during the initial 

phase of cro,shnking prevents development of su1table particle s1ze <17). Some 

workers have concluded that the improved toughness was related to the particle 

size and the distribution of rubber domam> cn 4>, whereas others have indicated 

that the resin-rubber wmpaubil1ty detenmned the toughne" CII)J. 

Another important chem1cal cntenon for toughemng the epoxy matnx is 

the reactivity of functional group> of the hqu1d polymer> R1ew and eo-workers 

CIJO) demonstrated that the termm..tl re..tcnve group> are more effective than 

pendant groups m toughening epoxy re>ms Furthermore, they concluded that the 
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liqmd modifier should have at lea't two functional end-groups Moreover, they 

pointed out that the selecl!vity of the functional groups IS also very important. 

They indicated, m fact, that the acid functional end groups such as phenolic and 

carboxylic are highly selective m formmg amons with amine catalysts The order 

of selectivity, which is the reverse of that for reactivity, IS as follows. 

carboxybphenol>hydroxyl>mercaptan (1I 6
) In other words, oligomers with 

mercaptan end groups are the most reactive but give the least improvement in 

toughness 

Earher was reported the attempt of MIJOVIC and eo-workers <
42

) to improve 

the toughness of epoxy matnce' with tluorocarbon ela,tomers, which were 

initially incompatible with the re;in They introduced polar groups mto the 

fluorocarbon backbone exploiting the hypothesis that a chemical modification of 

the elastomer would result in mi,Cibiiity w1th the partially cured resin through 

vanous mtermolecular interactions. The latter, however, would be disrupted at 

high temperature (post-cure) leadmg to the 'eparation of the rubbery phase. They 

finally concluded that, through a careful control of po,t-cure conditions (time and 

temperature) It may be po~s1ble to produce "t~ulor-made" morphology and to 

Improve the resultmg physical and mechanical properties. 

It was mentioned earlier that m order to Improve the properties of epoxy 

resin (toughness, water ab,orption and heat agemg resistance) small amounts of 

perfluoropolyether oligomer' were 111corporated 111 the re;111 (ll?l. Mascia et al. 

have found, 111 fact, that chemical modification of the perfluoropolyether was 

necessary to Impart miscibility With epoxy re'111 <
6I) Th1s mod1f1cation mvolved 

reactions with acid anhydnde,, followed by further chain extension with e­

caprolactone to produce carboxy tenmnated prepolymers In this way It was 

demonstrated, by v1scosity mea,urements and mfra-red spectroscopy, that not 

only end capp111g but abo cha111 exten,IOn reactiOn' occur dunng the 

modification of pertluoropolyether The prepolymer obta111ed through the 

introduction of non-fluonnated segmenb at the cham end' wa' miscible with 

epoxy res111 at all concentrations Furthermore, chang111g the pre-reactwn time 
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and temperature of the epoxy-extended pre-polymer lt was po>s1ble to modify its 

molecular we1ght before cunng. This in turn was found to affect the 

morphological and mechamcal properties of the mod1f1ed cured system 
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3. EXPERIMENTAL 

3.1) Materials. 

The following low molecular weight functwnahsed polyethylenes were 

selected as potential modifiers for epoxy resm;: 

a) Oxidised homopolymer (AC 6702), 

b) Ethylene acrylic acid Copolymer (AC 540), 

c) Ethylene acrylic actd Copolymer (AC 5120) 

All the three materials were ;upplied by Alhed Stgnals Inc .. The first is in 

a waxy form, while the last two are supplied m solid granules. The main physical 

properties of the;e materials are summarised in the Table I. 

TABLE 1: Main physical properties of the three low molecular wetght 
functwnalised polyethylene> under mve;ugauon. 

Acid No. f Tm DP Mw Mn Mw/Mn Dens. Vi se. 
('C) ('C) (g/cc) (cps) 

AC 6702 15 0 26 63 88 2140 970 22 0.85 35 
ACS40 40 1 22 105 105 4560 1710 2.6 0.93 575 

AC 5120 120 2.15 89 92 3325 1005 3.3 094 650 

ACid No = actd number, DP =drop pomt, Dens = demlty, Vtsc = vtsco~lty at 140'C, all from 
the Data Sheet; provtdcd by Alhcd Chctmc,Jls f = luncttOnahty, c.Jlcu!Jted from Mn Tm = 
melnng pomt, from DSC andlysts Mw = wctght Jveragc molecular wctght, Mn = number 
average molccu!Jr wetght, Mw/Mn = polydtspcrslty, all me,J;utcd at RAPRA Technology LTD 

The followmg epoxy resms were selected for evaluatiOns: 

a) Eptkote 828, 

b) Araldue CY 179. 
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The fmt IS an unmodified liqUJd bisphenol A - epichlorohydrin epoxide 

resm (DGEBA) of medwm viscosity (12-14 Pa•s at 25'C), combming reasonable 

ease of handling with h1gh chem1cal and mechanical performance. It is the 

standard liquid resin in many industrial applications. The resin has an epoxide 

eqmvalent of 184-190 (1 e 184-190 g of resin contmn 1.0 g equivalent of 

epoxide). It was supplied by Shell Chem1cals. The chemical structure of Epikote 

828 is shown below: 

The >econd resm used, AraldJte CY 179, IS a cycloaliphauc liqUJd epoxy 

resm. It has a lower vJsco>Jty than Eptkote 828 (0 35 Pa•s at 25'C) and it is 

usually employed in electrical applications or when a low Viscosity IS required. It 

was supplied by Ciba-Geigy. The chem1cal structure of AraldJte CY 179 IS 

shown below: 

The fmt hardener chosen wa> hexahydrophthalic anhydnde (HHPA), 

supplied by Aldnch Chemtc,tl Co Ltd., correspondmg to CIS-1 ,2-

cyclohexanedJcarboxylic anhydnde, 1 e 

0 
H 0 

11 

c\ 
0 

cl H 0 11 
0 cts-form 
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It has a molecular weight of 154 Note that the melung point for the cis­

form of HHPA IS 32-34·c, whereas the trans- form has a melting point of 145-

147·c. (Other characteristics and the mam applicatwns of HHPA are reported in 

the Introduction). 

A second hardener wa; also chosen for evaluauon, the methyl nadic 

anhydnde (MNA), supplied by Aldnch Chemical Co Ltd.. It is a methyl-5-

norborene-2,3-dlcarboxyhc anhydnde, with a molecular we1ght of 179. The 

chemical structure IS shown below: 

It is the preferred cunng agent for elevated-temperature applications. 

The first catalyst used was a benzyld1methylamme (BDMA). It is a N,N­

dlmethylbenzylamme with a melting pomt of -75"C and a boiling pomt of 183-

184 ·c. As reported in hterature, It i> often used to accelerate the curing rate 

when an acid anhydnde IS u>ed as hardener (normally I part by weight of BDMA 

per hundred part of res m (phr) at I oo·c). It wa; supplied by Aldnch Chemical 

Co. Ltd .. The chem1cal structure IS shown below· 
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Another catalyst wa; used, tnphenylphosphine (TPP). It has a melting 

point of 79-81 'C and a boiling point of 377'C. Agam It was ;upphed by Aldnch 

Chemical Co Ltd .. Its chemical structure 1s 

As a modifier of the acryhc acid copolymer AC 5120 was chosen E­

caprolactone (supplied by Aldnch Chemical Co. Ltd.) It IS an internal ester of£­

hydroxy caproic ac1d (6-hexanolactone, 2-oxepanone). It is a liqmd with a 

boilmg point of 96-97'C. The chemical ;tructure IS shown below 

0 
11 

... c~ 
CH ~0 
I 2 \ 

CH2 CH2 
' / H2C-CH2 

The most Important property of E-caprolactone IS the readmes; with which Its 

ring is opened by a vanety of chemical;; 1t can react with hydroxyl and 

carboxylic ac1d compound;, and polyrneme;, readily to polycaprolactone. 

The second mod1f1er for the acryhc acid copolymer AC 5120 was Eurepox 

RVP (p-t-butylphenol-glyc1dyl ether) It 1s an aromatic monofunctional resin, 

normally used a; reactive d!luent for epoxy sy;,tem>. It has an epoxy equivalent 

of 213-233 and wa;, ;upphed by Witco Corporation lJK L1m1ted The chemical 

structure of Eurepox RVP I> ;,l10wn below· 
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Finally montamc acid was chosen to modify Epikote 828. It IS an 

octacosan01c acid (C28Hs602) with a molecular weight of 424 and a melting 

point of 92-94 'C. It was supplied by Hoechst. Techmcal grades are mainly 

obtained by acid oxidation of dere;inif1ed crude wax and are generally used, in 

the form of acids or esters, as mternal and external lubricant for plastics. The 

structure of montanic acid is shown below: 

3 I 1) Preparation of Bmary and Ternary Mixtures 

Binary mixtures were prepared by m1xing each of the funcuonalised 

polyethylenes m different ratios w1th the epoxy resm; The compositions used, 

generally, were 10, 25, 50, 75 and 90 wt % of polyethylene m the epoxy resin. 

The pre-weighed mixtures were heated in an oven for d1fferent penods of time at 

a fixed temperature, chosen on the ba;Js that 1t ;hould be higher than the melting 

point of the polyethylene modifiers, but Jt ;hould be abo >Uitable for m1xing the 

hardener and the catalyst withm reasonable time without mcurring the nsk of 

premature curing On the bao,is of these considerations the temperature of 115'C 

was chosen. The heatmg time m the oven was varied m steps until an apparent 

miscibility between the polyethylene and the epoxy resm was achieved (I.e. a 

transparent mixture wa; obtamed) The heatmg ume wa> vaned from 10 minutes 

to 24 hours 

Bmary mixture'> of the h,trdener HHPA with each of the two 

po1yethylenes, AC 540 and AC 5120, and each of the two epoxy resins, were also 

prepared. The amount; of HHPA used m the bmary blends with the 

polyethylene> were 25, 50 and 75 wt %, while the ratio of anhydnde to epoxy 
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resin was 50!50. The preparation technique was the same that in the previous 

case, i.e. the mixing temperature was agam 115'C and the heating time 1 hour. 

Ternary mixtures, over a wide range of compositions, were prepared by 

addmg different amount of hardener HHPA to binary mixtures of the epoxy 

resins with polyethylene modifiers AC 540 or AC 5120, and subsequently 

heatmg m an oven at 115'C for different umes. The heating time for preparing 

the binary mixtures polyethylene-epoxy resm was vaned from 10 mmutes to 24 

hours, while the mixtures containing the hardener were heated for only 10 

minutes at 115'C 

To obtain a companson with a well known sy;tem and to test the efficacy 

of the method used, binary and ternary mixtures consisting of a 

carboxyltermmated butadiene acrylonitnle oligomer (CTBN, 1 e. Hycar 1300x8, 

by BFGoodrich Chemicals), Epikote 828 and HHPA were also prepared, using 

the same procedure and compositions descnbed earlier. 

3.2) Modifications of AC 5120 Polymer. 

From the given acid number, which was also checked by utratwns (see 

later), and the mea;ured molecular weight, the funcuonahsed polyethylene AC 

5120 was found to have the highe;t funcuonahty value (see Appendix 7.1), i.e. 

approximately 2.0 . Complete miscibility between this polymer and each of the 

two epoxy resms, however, wa; never achieved. For this reason chemical 

modificatiOns of AC 5120 were performed to extend the polymer chains With 

soluble telechehc segments and m turn to mcrea;e the level of ;olubihsation in 

mixtures With epoxy re;ms. 
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3.2.1) Reactions with e-Caprolactone. 

e-Caprolactone was ftrst chosen to modify the functlonahsed polyethylene 

AC 5120. A characteristic of caprolactones is the readmess with which the ring 

can be opened, e g wtth compounds contaimng hydroxyl and carboxylic acid 

groups. This reacuon has already been successfully used to modtfy chemically 

perfluoropolyether oligomers m order to render them miscible with epoxy resins 
(60, II7) 

Following the same pnnciple, mixture' of e-caprolactone and AC 5120 

were prepared. The reaction occumng between e-caprolactone and the polymer is 

shown below: 

0 
11 

(AC 5120)--C--OH ~ 

0 0 
11 11 

HO--C--(CH2) 5--0--C--(AC 5120) 

The two reactants were added m a glass t1a,k, placed m an ml heated bath 

and continuously stirred. To prevent oxidi,mg reactiom, a flux of nitrogen was 

passed over the surface of the sample and a water condenser was used to reflux 

caprolactone, bemg the temperature' used well above Its boiimg temperature (96-

97'C). To follow the progress of the reaction, samples were taken every hour and 

subsequently analysed by a hot stage mtcroscope ('ee 3 6). These were also 

weighed before and after a I hour treatment m a vacuum oven at 120'C in order 

to evaporate the unreacted caprolactone. The re,ults were used to determine the 

ume required to reach a constant degree of conver,ion. Fmally, utrations (see 

3.5.1) were performed on fmal products to determme the reaction yield. 

Mtxture' with two different compositiOn' were prepared, takmg into 

account the molecular weight difference of the two components, to achieve 

respectively 25 and I 00% reaction of the acid group' 
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The fJrSt composition was a 50/5 weight ratio of AC 5120/caprolactone, 

givmg a molar ratio 1/0 6. As the functiOnality of AC 5120 is equal to 2.1, about 

a quarter of the total acid groups of the functionalised polyethylene were 

expected to react with e-caprolactone. The reactants were first heated and stirred 

at 115'C for 7 hours and 40 minutes. Then the temperature was raised to 160'C, 

the condenser removed to evaporate the unreacted caprolactone and the mixture 

was stirred for 2 hours and 30 minutes. 

A second composition, 50/20 AC 5120/caprolactone, was chosen in order 

to mcrease the extent of reaction of the acid groups react with caprolactone. In 

this case every acid group has the possibility to react with more than 1 molecule 

of caprolactone, bemg the molar ratiO AC 5120 to caprolactone equal to 1/2.4 . 

The mixture was heated at 115'C and continuously stmed for 6 hours and 30 

mmutes. Then the temperature was nsen to 160'C and the sample stirred for 8 

hours without the condenser to remove the exces> caprolactone. The loss of 

weight was agam used to e>tlmate the extent of reaction, while the possible 

formation of telemenc chain branches wa> exammed by measuring the molecular 

weight distnbutwn by gel permeatiOn chromatography (see 3.5.3). 

The miSCibility of caprolactone with Epikote 828 was verified by 

producmg 50/50 mixture at room temperature Thi> wa> to establish that the 

chain extensiOn carried out on the polyethylene IS able to enhance its solubility in 

the epoxy resm. 

Mixtures with the two caprolactone modifications of AC 5120 and Epikote 

828 at 50/50 weight ratio, were prepared and placed In an oven at 115'C for 10 

minutes and 2 hours for the ca>e of AC 5120-caprolactone (50/5)/Epikote 828, 

and only for 10 mmutes for the ca>e of AC 5120-caprolactone (50/20)/Epikote 

828. 

The hardener HHPA wa<; added to two mixtures of AC 5120-

caprolactone/Epikote 828 previously prepared as descnbed above. The resulting 

mixtures, with composition AC 5120-caprolactone/Epikote 828/HHPA IOn0/20, 

were heated at 1 IS'C for 10 mmute>. 
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3.2.2) Reactions with MonofunctiOnal Epoxy Modifier 

The functionahsed polyethylene AC 5120 was also modified with a 

monofunctional epoxy resm, Eurepox RVP. The chemical reaction occurring 

between RVP and AC 5120 is shown below: 

0 0 OH 0 
/ \ 11 I If 

(RVP)--CH--CH2 + (AC5120)--C--OH --7 (RVP)--CH--CH2--0--C--(AC5120) 

i.e. each carboxylic acid group from AC 5120 produces a hydroxyl group, 

through chemical reaction with RVP. 

The compositiOn cho>en wa> 69 8/30 2 weight ratw for AC 5120/RVP, 

corresponding to the calculated stoichwmetnc amounts with 5% in excess of 

RVP, to ensure that each acid group in the polyethylene had the possibility to 

react with one molecule of RVP. 

The two components, pre-weighed m a glass flask, were placed m an Oil 

bath and heated at 140°C for 9 hours with continuous stlmng A flow of nitrogen 

was passed on the >urface of the sample to prevent oxidation, while a water 

condenser was used to avOid any evaporatiOn of the components from the flask. 

Agam, the progres> of the reaction was followed by takmg small amounts of 

mixture every hour and subsequently examined them m hot stage microscope (see 

3.6). To complete the reaction, the sample sealed m the flask, was placed m a 

oven at 90°C for 12 hour> 

Mixtures of AC 5120 modified with RVP, at 25, 50 and 75 wt %, and the 

two epoxy resm>, Epikote 828 and CY 179, were prepared and heated at 115°C 

for 10 mmute<; and 3 hours. 

To increa<;e the solubility of modified AC 5120 m the epoxy resms, further 

reactiOns were earned out to transform the hydroxyl groups mto carboxylic acid 

groups, bemg these more reactive with epoxy end groups At the same time the 
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telechelic extensiOns were expected to mcrease further the llllSCJb!lity. To 

achieve this, the AC 5120 modified With RVP was allowed to react with HHPA 

at molar ratio of 1:1 (+ 10% excess), correspondmg to a composition of 80 wt% 

AC 5120-RVP and 20 wt % HHPA. The reactiOn IS expected to follow the 

scheme below: 

OH 0 
I 11 

(RVP)--CH--CH2--0--C--(AC5120) + 

0 

" (RVP)--CH--CH2--0--C--(AC5120) 
I 
0 
I 

O=C Y"'l 
O=CAJ 

I 
OH 

Another advantage that arises from this type of modification is the 

ehmmatJon of the need to remove any residual (unreacted) anhydride from the 

mixture, as 1t would subsequently act as a hardener for the epoxy resm. 

To produce the above modification, the components were again pre­

weighed in a flask and placed m an oil bath at 140°C for 6 hours. During this 

t1me, they were stmed frequently by hand and samples were taken to be 

examined m the hot stage microscope (see 3 6). A flow of mtrogen on the surface 

of the sample and a water condenser were used as in the prevwus expenments. 
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To this mixture was added at 115'C Ep1kote 828, both alone and with 

HHPA. For comparative stud1es with ternary mixtures previously examined, were 

also prepared mixtures of anhydnde extended AC 5120-RVP with CY 179 and 

HHP A. The heatmg time used to prepare the mixtures was 10 minutes in all 

cases. 

To accelerate the chemical reaction between AC 5120 and RVP, 1.0 and 

1.5 wt % triphenylphosphine (TPP) catalyst wa;, added to each mixture 69 8/30.2 

AC 5120/RVP. The reaction was earned out m the same conditions described 

above. To the fmal m1xture was added a quantity of HHPA as m the previous 

case. To dete1mme the time reqmred to reach the maximum conversion of all the 

reactions descnbed, a titration procedure was again employed Binary and ternary 

mixtures were realised at 115'C with the additiOn of Epikote 828 and or HHPA. 

Fmally, the adduct of AC 5120 with RVP wa;, mixed at 140'C with the 

hardener MNA using the same procedure as for HHPA. The composltlon used, 

(AC 5120/RVP 69 8/30.2)/MNA 77.9/22.1, wa;, cho;,en m order to permit the 

reaction of each OH group of modified AC 5120 with a molecule of MNA with a 

10% excess of MNA Tmauons were agam employed to follow the progress of 

the reaction. Binary and ternary mixtures of AC 5120-RVP with MNA were 

produced at 115'C to be compared with ;,m1Ilar mixtures with HHPA 

3.3) Modifications of Epoxy Resin Epikote 828 with Montanic 

Acid. 

The po;,sibiiity of reacting montamc acid with an epoxy resin to improve 

its miSCJbiiHy wJth polyolefms, ha;, prevwu;,ly been explored at IPTME (liS>. The 

reactiOn of mont,tmc acid wHh epoxy re;, m wa;, u;,ed to produce a cham extension 
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at the two ends of the resm. In this way It was posstble to obtain an ABA 

oligomer, having the two ends misctble with the polyolefin. 

In the present study it was thought to u>e the same cham extension with 

montanic acid usmg the re>in Epikote 828, as It wa> expected that the montanate 

chains would solubilise into the ethylene acryhc acid copolymers used as 

modifiers. A further mcrease m level of solubliisation would be achieved using 

AC 5120 modified with caprolactone, monomenc and oligomenc umts being 

totally miscible with Eptkote 828 

The reacuon between Epikote 828 and montamc acid was earned out in a 

flask, placed m an oil bath, heated at 150'C for 9 hour> and continuously stmed. 

The reacuon between montamc acid and Eptkote 828 IS expected to follow the 

scheme below: 

+ 

0 
/\ 

CHz--CH--(Epikote 828) 

0 OH 
11 I 

CH3--(CHz)w-C--O--CH2--CH--(Epikote 828) 

The composition wa> 6 6/1 weight ratio of Eptkote 828/montamc acid, 

eqmvalent to 1 mole montamc acid for every 8 mole> of Eptkote 828, i.e. the 

maximum of 1 m 16 epoxy groups of Ep1kote 828 i> expected to react with 

montanic actd. In th1s way the >olubility of AC 5120 m Ep1kote 828, could be 

increased without decreasmg appreciably the number of epoxy groups necessary 

to carry on the cunng proce>s. The progress of the reaction was agam monitored 

by a titrauon procedure. 
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A 75/25 mixture of AC 5120/montamc ac1d was also prepared by heating 

the components at l15°C for 10 mmutes, m order to venfy the rmscibility 

between the components. 

Fmally the Ep1kote 828 modified With montamc ac1d was mixed in 

compositiOn 50150 w1th AC 5120, both by Itself and m the modified forms w1th 

caprolactone. 

3.4) Reaction of HHPA with Montanic Acid. 

ExaminatiOns m the hot stage microscope suggested that HHPA by 

Itself or m mixtures with epoxy resms or acryhc acid copolymers could be 

transformed from the c1s-form to the trans-form. The possJbihty to overcome this 

transformatiOn was envisaged by formmg a eutectic rmxture w1th montamc acid. 

It was thought that the two could form strong physical interactiOns or could even 

chemically react to form a mixed ac1d/anhydnde system, as shown below: 

+ 
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HHPA/montanic acid miXtures, at 90/10, 80/20, 70/30, 60/40 and 50/50 

weight ratios, were heated together In an oven at 115'C for I 0 minutes and 1 

hour. 

The wide range of compositions were chosen to determine the lowest 

content of montanic acid at which the transformation of HHP A from the cis- to 

the trans-form could be prevented. From molecular weight calculations, in the 

case of the mixture With only 10% w/w montamc acid, only I molecule of HHPA 

in 25 could react with montamc acid. On the other hand, I molecule of HHPA in 

11 can react m the mixture with 20% of mont~m1c acid and I in 3 of the same 

when the montanic acid content IS 50 %. 

The Introduction of montamc acid, e~pec1ally at low concentrations, was 

expected to mcrea;e also the miSCibility of Epikote 828 with acrylic acid 

functionahsed polyethylene m the presence of HHP A as hardener. For this 

reason, bmary mixtures of HHPA with AC 5120, unmodified or modified with 

RVP, and with Ep1kote 828, and ternary mixtures with both unmodified, or 

modified, AC 5120 and Ep1kote 828, were prepared in different compositions 

usmg a heating time of I hour for bmary blend> and 10 nnnutes for ternary 

mixtures. 

3.5) Characterisations of Pure Materials and Reaction Products. 

The mixtures produced were charactensed by a ~enes of tests to follow the 

progress of modification reaction~ and, whenever po~s1ble, also to determine the 

level of misCibility between components. For comparison the ~ame tests were 

performed also on the pure materiab used. 
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3.5.1) Acid Titration. 

In order to calculate the residual acid groups in the products of the 

reactions and, therefore, to follow the progress of the reactions, acid number 

measurements were made on the different modifications of AC 5120 and on 

Epikote 828 reacted with montanic acid. The samples were analysed at the 

beginning of each reaction and at intermediate times m order to calculate the time 

necessary to reach the maximum degree of conversiOn. Titration experiments 

were performed also on the pure materials, I.e. AC 5120, Epikote 828, RVP and 

montanic acid as controls. 

Once verified that all the samples were soluble in a mixture of 50!50 by 

volume of xylene/DMF, the samples were dissolved m this solvent mixture at 

about 85°C, and kept at this temperature to prevent precipitation during titration. 

Acid number determinations were then made using alcoholic KOH at two 

different concentrations to check the reproducibility of the test; 0.01M and 

0.05M, using phenolphtalem as indicator, whose colour changes from colourless 

(acid) to pink (alkali). During the titration the pH values and temperatures of the 

solutiOns were recorded by an electrode, immersed m each solution, connected to 

a digital pHmeter. Two measurements were made for each sample using the two 

alcoholic solutions of KOH, and the results with each solution averaged and 

compared. 

3.5.2) Molecular Weight of the Modified Copolymers. 

The molecular weight distributions of the three polyethylenes were 

determined usmg high temperature GPC procedure in the laboratories of RAPRA 

Technology Ltd. The procedure of the analysis was as follows: 
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Solutwns were prepared by addmg 50 ml of boiling solvent to 50 mg of 

sample and gently bmling for 20 mmutes. A part of each solutiOn was filtered 

through a gla's fibre pad at 160'C and the filtered solution' were re-heated to 

near boiling immediately pnor to inJeCtiOn. 

The chromatographic conditions were· 

Columns PI gel 2 x mtxed gel-B, 30 cm, 10 f.LII1 

Solvent 1,2 dtchlorobenzene, with antioxidant 

Flow-rate I .0 ml/mm (nommal) 

Temperature : 140'C (nommal) 

Detector refractive mdex measunng devtce 

Each solutiOn wa' run m dupltc,tte The GPC 'Y'tem u>ed for this work was 

calibrated with polystyrene and a nommal correction was u'ed to allow for the 

diference m molecular wetght of the monomenc units between styrene and 

ethylene. 

For the sample AC 5120 the analysts was repeated on a dtfferent occasion 

to check the reproducibthty of the GPC techmque 

In the case of AC 5120 modtfied with caprolactone, the deterll1!natwn of 

the molecular weight dt,tnbution was performed to obtam an mdtcation of the 

type of reactiOn> occurnng between the component' It ts possible, in fact, that 

instead of the more desmtble umtary graftmg, m whtch one molecule of 

caprolactone reacts with one actd group of AC 5120, polymerisation reactions 

may occur, with caprolactone molecules reacting together to form oligomeric 

chains. 

3.5.3) Differential Scannmg Calonmetry of Uncured Mixture' 

Dtfferential Scannmg Calonmetry (DSC) wa~ used to determine and 

compare thennal propertte;, of the m,ltenab w,ed and of the mixtures prepared. A 



57 

Du Pont 910 DSC and a Mettler TA 4000 DSC were used, both operating in 

nitrogen atmosphere, to avoid oxidative degradation of the specimens, and both 

equipped with a controlled cooling system. The specimens prepared were of 

about 10 mg in weight and were enclosed in alummmm pans, closed by lids but 

not sealed. All the expenments were performed by heating the samples from 

-2o·c to 2oo·c (i e. well above the meltmg pomt of the matenals) at a heating 

rate of 20"C/mm and kept for 3 mmute> at the maximum temperature before they 

were cooled also at 20.C/mw down to room temperature. The DSC mstrument 

was connected to a computer and the analysrs data elaborated by a software 

whrch pnnted directly all the required parameters, ;uch as tran>Ition temperature 

and peak areas 

3.6) Miscibility Studies by Hot Stage Microscope. 

The mrscrbilisation of the epoxy resins and the ethylene acrylic acid 

copolymers was the first hurdle to overcome m order to assure an effective 

toughening of the re,m. The mixture~ prepared with only Epikote 828 and each 

of the three polyethylenes were Immi>cible, 1 e. gave a cloudy appearance even at 

temperatures well above the melting point of the polyethylene; The miscibrlity 

was consequently studied u>mg a Rerchert optical microscope eqmpped with an 

hot stage devrce and a Mettler FP52 temperature controller This apparatus 

enables microstructural changes to be ob;erved as a function of temperature and 

time Any sample to be exammed was !Ir>t melted on a hot plate at about 115•c 

and a droplet of the melted mixture wa; then squeezed between glass slides. 

The hot >tage micro>cope wa; then used to detennme both the 

approximate meltmg point of the >amples and the temperature at which 

mrscrbility took place, r.e. above the melting pomt of the crystallme phase. For 

the latter expenment~ all the ;amples analysed were heated at lOT/mm up to 
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2so·c or unt1l misciblhty h,td been reached The samples were then cooled at a 

cooling rate of 3 ·c/mm to room temperature. Polansed hght was used both m the 

heatmg and m the cooling cycles to deterrnme the melting and the crystallisation 

temperatures. Micrographs were also taken at different temperatures in both the 

heating and cooling ;tage to record the thermal tranw10n events 

In a few cases the mJSCibihsatiOn of the component; of the mixtures was 

also studied under J>othermal condmon; by monnonng the decrease in the 

dimensions of the disper;ed particles with time (see ;ection 3.7 for details). 

3.6 I) Phase Diagram-, of Unmodified and Modified Mixtures. 

In the hot stage microscope analyses were recorded the temperature at 

wh1ch the d1;appearance ot d1;persed droplets took place during the heating 

stage, and then the temperature at wl11ch preclpltatJOn of one of the phases 

occurred on subsequent cooling. The magmtude of the temperature difference 

between ;olubihsation m the he,tling ;tage and ;ub;equent precipllatwn m the 

cooling stage prov1ded an mdicauon of the d1ffus10n rate of the two components. 

Micrographs were also taken to record the events; from them ternary diagrams 

were constructed to identify the mi;cJbilny regwn. The max1mum temperature for 

the observations wa; 2so·c. as tlus was cons1dered to be the maximum practical 

temperature at wh1ch cunng of the ;y;tems could be camed out 
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3.7) Particle Size Analysis of Uncured Mixtures. 

To analyse better the effect of the chemical modifications on mixtures of 

AC 5120/Eplkote 828 50/50, a ;tudy of dimenswns and ;hapes of the second 

phase droplets was earned out. 

Four 50/50 mixtures were studied: AC 5120/Eplkote 828; [AC 5120-graft­

caprolactone (50/20))/Eplkote 828; AC 5120/[Eplkote 828-graft-montanic acid 

(6.6/l)]; and [AC 5120-graft-caprolactone (50/20) J/[Epikote 828-graft-montanic 

acid (6 6/1)]. The samples were placed in the oil bath at !30"C and stirred at a 

constant rate for I minute Then a droplet of sample was qUJckly taken, poured 

on a glass slide, placed on a hot plate at 140"C, and covered with a glass shp. 

Analysis in the hot stage microscope was earned out, heatmg each sample at 

IO'C/mm up to 120'C and holdmg Jt at this temperature for 5 minutes. 

M1crographs were taken before ,md after the ISOthermal step to record any change 

m droplets' shape and dimemwn;. The ;ample;, then, were allowed to cool to 

room temperature at 3"C/mm 

Using the hot stage m1croscope the kmetJc; of the solubJ!isatJOn of the 

components of the mixtures were abo ;tudied 50/50 mixtures of Ep1kote 828 

with AC 540 and AC 5120 re;pecuvely were u;ed for th1s purpose. The two 

mixtures were fmt heated m an oven at IIS"C for 24 hour;, for the case of AC 

540, and 6 hours, for the ca;,e of AC 5120. The;,e them1al treatments were carried 

out to ensure that all chem1cal reacuon; were completed pnor to being examined 

for misc1bJ!Jty. The sample~ were then placed m the hot stage at different 

constant temperatures, above the meltmg pomt of the polyethylene component. 

Photographs we1e taken at different time mterv,tb to monitor the decrease of the 

dimensions of the d1;persed droplet;, a'> function of time 

Two temperature; were cho;en 1n the ca;e of the AC 540/Epikote 828 

50/50 mixture, respectively !I O'C and 160'C. The f1r;,t was considered to be 

probably too low for complete solubih;ation of the di;persed phase even after 

~-----------------------------------------------------------------------
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long time; while the second temperature was considered to be h1gh enough to 

achieve a fmrly rap1d solublii;auon. For the mixture AC 5120/Epikote 828 50/50 

the temperatures cho;en were 110', 130' and !60'C. 

3.8) Cured Mixtures of Unmodified and Modified Systems. 

To analyse the possible difference; m crosshnked ;ystems due to the 

introduction of ethylene acryhc acid copolymers and their chemically modified 

products, a ;enes of formulation; were cured according to the conditions and 

procedures described below The them1al and morphological properties of the 

cured system; were then determmed. 

3.8.1) Formulation; and Cunng Procedure;. 

In Appendix 7.2, Tables I to 5, are reported the detmls of the fonnulations 

of the cured systems examined. 

Different control sample; were first produced to analy>e the effect of a) 

type of hardeners (HHPA and MNA); b) .unount of h.trdener, c) concentration of 

catalyst; and d) cunng and po;t-cunng temperature. The ;ame effects were also 

examined on the modified ;ample;, obtamed by di;solving m the hqmd resin 

Epikote 828 different content> of the three unmodified polyethylenes or the 

modified AC 5120, i.e. previOusly reacted wnh RVP (wnh or without TPP) and 

HHPA In ;ome formulatwn; (all those reported m Table; I, 2, 4 plus M!, M3, 

RI and R3) the quanuty of the hardener was cho;en to give a total amount of acid 

from HHPA (or M:\fA) and the olefm ohgomer, equal to the amount of acid 

present m the hardener u'>ed In the control formulauom, I e 80 parts per hundred 

of epoxy, which IS the amount typic.tlly u;ed m commercial products Additional 
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formulations (M'2, M'3, R'2 and R'3) were also produced with a constant 

amount of HHPA (1 e. 80 parts per hundred) to monnor pos>1ble reductions in Tg 

through plastJCI>atJon due to the pre;ence of di>solved olefm1c phase. In other 

formulations (K1, K2 and K3) the effects of mtroducmg >mall amounts of the 

catalyst TPP m the miXtures dunng the curing proce>s was studted and compared 

to systems with similar composition. 

Two cunng temperatures were selected, respectively 115'C and 60'C. The 

first IS above the meltmg temperature of the functionahsed polyethylene (Tm~ 

90'C); whde the second temperature wa> expected to tnduce the prectpllation of 

oligomenc mod1f1er through cry;talhsatton pnor to cunng en>unng the formation 

of two-phase cured products 

The schedule of the cunng cycle w..ts· 

a) Ep1kote 828 was mixed wllh dtfferent amount> of ethylene acrylic acid 

copolymers or modtfted AC 5120 and placed m an oven at 115'C for 30 minutes, 

to ensure that phys1cal solubthsation took place 

b) For the ca;e of mtxture> Kl. K2 and K3, to en;ure that the reactwns between 

modifier and epoxy resms were completed, TPP wa> also added and the mixtures 

were placed m the oven at 115'C for 5 hours. 

c) The hardener wa; added to all the mtxture; at llYC, stirred to dissolve the 

components and then placed m a vacuum oven at 115'C for 30 mmutes, m order 

to remove air bubbles. 

d) The catalyst BDMA wa~ added to the mtxture; and qutckly ;tirred. This was 

the crucial pomt of the proce>'>. becau;e the mtxture> had to remam in the melt 

state and to av01d cry>t<tlh>..!tlOn and ;ep<trauon of ethylene acrylic acid 

copolymers from the mtxtures and at the ;ame ume to prevent crosshnking during 

m1xmg 

e) Each mixture was ca<.,t m Teflon moulds (60 x 12 x 2.5mm, to produce 

specimen; u;ed m dynan11c mechantcal analy>t> and flexural tests; 80 x 10 x 

4mm for fracture toughne;; and Cl~<trpy unp.tct tew,) and cured m an oven at 

115'C for 6 hour; and at 60'C for 40 hour;, re;pecuvely, except for the samples 
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contaimng a larger amount of BDMA (5 part>) which were cured at 60'C for 24 

hours and subsequently at 115'C for 4 hour~ 

f) Fmally post-cunng was carried out m an oven at 150'C for 3 hours followed, 

in some ca;e;, by 1 hour post-cunng ;tage at !SOT. 

The cured samples were allowed to cool to room temperature and then removed 

from the moulds 

In Table 5 is also reported the composmon of a ;ample contaming 10 parts 

of CTBN liqUid rubber, prepared, cured and post-cured a; previously descnbed. 

It was used as reference m order to as;ess the efficiency of a traditional 

toughening agent m the system; analysed 

AdditiOnal sample; contammg an amount of RVP equal to that present 

unreacted in some of the prevwu; ;amples contammg modified AC 5120 and 

calculated from the conver;wn degree of the reacuon between AC 5120 and 

RVP, with or without TPP, were also prepared and cured followmg the same 

procedure as before. The compo>ltlon> are reported 1n Table; 6 and 7 

3 8 2) DSC Analysis on Cured Samples 

Thermal analysis wa; earned out on the cUied system;, produced using a 

Du Pant 910 DSC or a Mettler TA 4000 DSC The procedure was the same as 

that reported in section 3 5 4 A flfSt heaung cycle from -20'C to 200'C at 

20'C/mm was followed by a cooling cycle at 20T/rmn to room temperature, 

after a 3 mmute;, Isotherm at !SO'C. Smce pha;,e separation occurred m most of 

the systems containing ethylene acrylic acid copolymers, causing the 

polyethylene phase to migrate to the surface, the thermal analysis m such cases 

was carried out in different zone'> of the ;ample;, 1 e. at the ;,urface and in the 

middle 
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3.8.3) SEM Examinations of Cured Samples. 

Morphological stud1es were performed on the cured systems using 

scanning electron microscope (Cambridge Stereoscan 360 SEM). 

The samples to be analysed were obtained by cooling the cured specimens 

of different formulations keeping them in hqmd nitrogen (-196°C) for about 5 

mmutes. They were then quickly removed and broken to produce a brittle 

fracture. The samples were fixed on the appropriate stubs and the fracture surface 

of each sample was coated with a gold-palladium alloy, using vacuum coatlng 

techmques, m order to produce a conductive surface suitable for SEM 

exammation. 

The SEM micrographs were subsequently used to analyse morphology, 

fracture characteristlcs, particle size and volume fraction of the dispersed phase. 

3.9) Evaluation of Mechanical Properties. 

3.9.1) Dynamic Mechanical Analysis. 

Dynamic mechanical tests were carried out on some of the control cured 

samples as well as on modified systems, using a Du Pont 983 DMA System 

instrument. In 1t a sample is clamped and subjected to flexural deformations 

while a sensor detects 1ts response to the applied forces. From this, the machine is 

able to calculate the v1scoelastic properties of the material: storage modulus (G'), 

loss modulus (G") and tan o. 
To determine the dynamic moduli (G' and G") at room temperature, first 

Isothermal tests at 25°C were performed at a frequency of 1 Hz and at an 

amplitude of oscillation of 0 25 mm for 5 rmnutes. Dynamic tests were then 
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performed In the temperature range 25'C to 160'C at a frequency test of I Hz, 

with an amplitude of 0 30 mm and at an heatmg rate of 3'C/mm. 

3.9.2) Flexural Tests on Cured Samples. 

Flexural strength, modulus and strain at break of >ome of the cured 

specimens were measured at room temperature usmg an Instron tenstle testmg 

machme eqmpped with a 5 kN load cell A Ihree-pomt bend1ng >y>tem was used 

and the crosshead speed wa;, 10 mm/mui. At lea>t five >pecimem were tested for 

each formulation cho;,en. 

The specimens used for the flexural tests had the geometry shown in 

Ftgure 3.1; the span (S) to thickne;,;, (d) ratio used was 16:1, according to ASTM 

D 790-92 Flexural strength, flexural modulus and stram at break were calculated 

directly by the software of the In '>Iron ;,ystem. 

s 

Figure 3.1: Flexural te;,t, 3-pomt bendmg specimen geometry. 
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3.9 3) Fracture Toughnes> Tests 

The same procedure wa> u;ed as for the tlexural te>t> (see 3.9.2) except 

that the spec1men used for the fracture toughne>s tests was a smgle edge notched 

spec1men and the spec1mens were loaded edge-WJ>e rather than tlat-w1se. The 

geometry of the specimen J> shown m Figure 3 2 A I kN load cell was chosen, 

while the span (S) to width (W) rauo u>ed was 4·1, accord1ng to ASTM D 5045-

93. 

The notch was produced by means of a saw at the centre of each specimen 

across the w1dth to depth> approximately of 3 to 5 mm. At least 3 spec1mens 

were prepared for each notch length A >mall cut at the up of the slits was made 

w1th the md of a \harp razor blade The total length of the notch (a) was 

measured wJth the aid of an opucal micro>cope and a graduated ocular. 

w 

s 

Figure 3.2: Fracture test, 3-pomt bendmg spec1men geometry. 
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The cntlcal stress mtensity factor, Kc, was calculated as the slope of the 

straight lme obtamed by plotting P agamst (BW112)/Y, where P is the load at 

fracture, B the thickness of each sample, W the width and Y is the compliance 

calibration factor, which is a functiOn of the crack length to width ratio (a/W) and 

can be obtained from appropriate tables (119). The intercept of the straight lme 

must be zero, i.e. the line passing through the axes origin. 

The critical stram energy release rate, Gc, on the other hand, was 

calculated using the formula: 

Kc2 

E' 

where E' is the effective modulus, corresponding to the Young's modulus under 

plane stress conditiOns, i.e. for very thick specimens. (It was obtained for each 

formulatiOn from flexural tests, as reported in 3.9.2). 

The impact strength of unnotched specimens was also determined by 

Charpy impact test, accordmg to ISO 179-1992 E. Rectangular specimens of 

control sample CL as well as sample with modified AC 5120, i.e. M1 and M'2, 

all cured at l15°C, were analysed usmg a span to width ratio of 4:1. The Charpy 

Impact strength (acu) was calculated as the ratio between the impact energy 

effectively absorbed in breaking the specimen, i e. the energy consumed to propel 

the sample was measured and subtracted from the total energy recorded, and the 

original cross-sectional area of the same specimen: 

acu=U/A 

At least 5 samples of each formulation were tested and the results averaged. 
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4.RESULTS 

4.1) Miscibility of Uncured Epoxy Systems. 

The results of the hot stage microscope analy~ performed on pure 

materials and on all the mixtures prepared are reported below. 

4.1.1) Binary Mixtures. 

In Table 8 (Appendix 7.2) are summarised the results of the miscibility 

studies for the binary mixtures AC 6702/Epikote 828 subjected to two different 

heating treatments carried out m oven. For each mixture, as well as for pure AC 

6702, at least two experiments were performed to check the reproducibility of the 

results. In Table 8 are reported the average values obtained from the different 

experiments. 

The frrst point to note is that the melting and crystalhsation temperatures 

of the polyethylene phase seem to have not been affected very much by the 

presence of the epoxy resin, even in the mixtures heated for 24 hours in the oven. 

Regardmg the miscibihsatlon and phase precipitatwn temperatures, it IS 

noted that the mixtures heated for only 10 nunutes at ll5°C are completely 

Immiscible, at least up to the maximum temperature of 250°C used m the 

experiments. This means that at this high temperature it was stlll possible to 

discern the presence of droplets of the dispersed phase. In the case of nuxtures 

heated for 24 hours at ll5°C, on the other hand, in some cases it was possible to 

observe the occurrence of solubilisatlon, albeit this may have occurred at 

temperatures well above 200°C. The mixtures with the lower solubility 

temperatures are those with mtermediate polyethylene content, 1.e. 25% and 50%. 

The phase separatwn temperature on cooling is also very high and not very 
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different from the corre;pondmg solubthsation temperature It has been noted the 

tendency of the ;mall droplets to coale;ce m the heating stage at temperatures 

higher than 130'C, remmmng ;egregated from the mixture, and to separate again 

in small particles on cooling. 

These results show clearly the difficulty to reach complete miscibility of 

oxidtsed polyethylene and Epikote 828. Thts result ts m accordance with the low 

functionality value (- 0.26) for the AC 6702 (see Table 1 and Appendix 7.1). 

This means that on average only one cham m four contams an actd group capable 

of reactmg with the epoxy resm. 

Becau;e of the dtfficulty to solubtlise >uch a type of system, it was 

decided not to constder It for curable epoxy formulations, as it would be 

Impossible to reach very htgh temperatures, neces;ary for the mtsctbihsauon, 

when the hardener and the catalyst have to be added to cure the system. 

The results of mtsctbilny studtes on mixtures with the ethylene acrylic 

acid copolymer AC 540 and the two epoxy resms, Eptkote 828 and CY 179, are 

summansed m the Table 9 and 10 (Appendix 7.2), respectively, showmg the 

average values of at least two experiments for each sample. The behaviour of the 

mixtures heated m an oven at two dtfferent heating times ts compared with that of 

AC 540 by Jt;elf. 

The meltmg and crystalh>atwn temperatures of the mixtures were slightly 

lower than those of the pure AC 540, e;pectally for the mixtures heated for 24 

hours. 

For the mixtures of AC 540 with Eptkote 828, solubilisation of the two 

phases occurred much more easily than for the case of AC 6702. In fact even 

only 10 mmutes heating m the oven at I I 5'C wa> found to be sufftctent to 

solubthse the two components The cnttcal solutiOn temperature decreases when 

these mixture; are heated for longer time> ,tt I IYC, but never become lower than 

200'C. The mo;t mtsctble compositiOns are tho;e contmmng 25, 50 and 75% of 

AC 540 On the other hand, tho;e contammg 90% AC 540 were immiscible up to 
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25o·c. Furthermore the temperature of phase separation on cooling IS lower in 

the case of the m1xtures heated for 24 hours m the oven. In a few cases when the 

temperature is lowered, the mixtures remam homogeneous until crystallisation of 

the polyolefm occurs. 

Solub1hsation seems to be even eas1er for AC 540 mixtures with the 

cycloaliphatic epoxy CY 179. The 50!50 m1xture JS soluble at JUSt above the 

melting pomt even when the mixture is heated for only 10 minutes m the oven. 

For the other composition; 1t was possible to reach complete solubilisation at 

temperatures not much h1gher than 2oo·c Again the effect of mcreasing the 

heating time m the oven was to 1mprove the solub1hty between the two phases. 

For almost all the mixtures based on AC 540 and CY 179, when complete 

solub1hsatwn was ach1eved, the system remained soluble even when the 

temperature was decreased, until crystallisation of the ethylene copolymer 

occurred. The m1xtures with AC 540 were also found to show a tendency for the 

small droplets to coalesce together JUSt above the melt temperature 

The result; are 1n ,tccordance with what was expected from the higher 

functionality of AC 540, which was estimated to be about 1.2 (see Appendix 

7.1). A h1gher functionality means a greater ability for the ethylene copolymer 

chains to react with the epoxy resm 

In Table; 11 and 12 are reported the hot ;tage microscope results for 

miXtures of the other ethylene ,tcryhc acid copolymer, AC 5120, with Epikote 

828 and CY 179. re;pectively 

In the f1rst ca;e mixtures heated for different penod; of time m the oven at 

llS"C were analysed, while m the second the mixtures were heated only for 10 

minutes at 115"C 

Analysmg first the melting ,md crystalh;auon behavwur, m both cases the 

meltmg temperature; of the mixture; ;eem to be not very different from that of 

the ethylene copolymer 
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The tests to detenmne the cnucal 'oluuon temperature of the mixtures 

with Eptkote 828 showed that 'olub!lt,aUon occur' quite easily and the upper 

critical soluuon temperature appears to be alway' around 200'C, but once 

solubilised mo't of the mixture remmns soluble on subsequent cooling until 

crystallisation of the ethylene copolymer takes place. Thts ume the heatmg pre­

treatments m the oven 'eem to have no influence on the misctbilisatlon 

temperatures of the mixtures. At temperatures above the melting point, again 

droplets showed the tendency to coalesce and to 'egregate from the mixture. In 

these mixtures gelauon was observed after about 21 hours at 115'C for 

composition with 25% AC 540, mcreasmg to 23 hour' for 50/50 mixtures and 24 

hours for 75/25 mixtures. 

The mixtures with AC 5120 and CY 179 were found to be totally miscible 

at temperatures JUSt above the meltmg temperature On cooling, phase separation 

occurred only through the crystallisation of AC 5120 

The results are agmn m accordance with the htgh functionality of AC 

5120, estimated to be about 2.0 ('ee Appendix 7 1), which allows the copolymer 

to react readily with epoxy resm' 

A confmnation of the occurrence of a greater solubility with Eptkote 828 

with increasmg the content of acid groups m the polyethylene chams IS obtained 

from an inspectiOn of the optical micrographs m Ftgures I, 2 and 3 (Appendix 

7.3). It IS known that m a bmary hqmd mixture, under 'tat1c conditions, the 

dimensions of the droplets of the dt,per,ed pha'e depend mainly on the 

difference between the interfactal ten>JOn<; of the two components The lower the 

difference the 'maller the dimensiOns of the droplets In accordance with this, 

Figures 1, 2 and 3 reveal the droplet dimensiOns m the order: AC 6702 > AC 540 

> AC 5120, i.e. the mcrease of the functionality in the olefm oligomer reduces 

the interfacial tension between the two component' and bnngs about a reduction 

in the size of the dtsper,ed parucle' Smce the visco,ity of the three 

functiOnal bed polyolefms 1' approximately the 'ame, the controlling factor is the 

interfacial ten,wn. 
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Passing to analyse the miscibility results for the mixtures of the hardener 

HHPA with AC 540 and AC 5120, m Tables 13 and 14 are reported the data from 

the hot stage microscope. For comparison the results for pure ethylene acrylic 

acid copolymers and HHPA, respectively, are also shown. 

An unexpected behaviOur of HHPA was found from the hot stage 

microscopy analysis. Although the disappearance of some crystals was observed 

to start at 40°C, the hardener seemed to reach complete melting at much higher 

temperatures, r.e. m the range 108-136°C. These values compare with a melting 

point of 32-34°C for the cis-form and 145-147°C for the trans-form. It can be 

hypothesised that a partial transformatiOn of HHPA from the cis- to the trans­

form takes place and that the lower meltmg point of the trans form could be due 

to the formatiOn of m eutectic with the cis form. The poor reproducibility of the 

upper Tm could be due to vanabihties m such eutectics. 

In the mixtures with the two acrylic acid copolymers, AC 540 and AC 

5120, the peculiar behaviour of HHPA that was observed m tests as a single 

component, seemed to become more pronounced. In all cases the melting and 

crystallisation temperatures of the ethylene copolymer nch phase did not differ 

from those of pure polymers, AC 540 and AC 5120. Few crystals, probably of 

HHP A, remained unmelted up to temperatures even higher than for pure HHP A. 

In the case of mrxtures with AC 540, a first crystalhsation was observed on 

coolmg at a temperature similar to that of melting. No crystallisation of the 

HHPA rich phase was observed, on the other hand, in mixtures with AC 5120. 

For all mixtures the crystallisation of the ethylene copolymer rich phase seemed 

to occur at temperatures very simrlar to crystallisation temperature of the pure 

polymers, AC 540 and AC 5120 

In Tables 13 and 14 are reported as solubilisation temperatures the meltmg 

temperatures of the HHP A rich phase because the mixture appeared to be 

completely miscible above this temperature There are also reported in brackets 

the temperature at which the mixture became a smgle phase, except for the 

presence of residual HHPA crystals. 
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On cooling, the mixtures with AC 540 seemed not to phase separate and 

the crystallisation temperature of HHP A phase could be considered the 

denuscibihsation temperature. The nuxtures with AC 5120, on the contrary, did 

not show crystalhsat10n of the HHP A component but phase separation was 

observed at temperatures not very different from those at which miscibility 

occurred on heatmg. 

The mixtures of HHPA with Epikote 828 and CY 179, respectively, were 

also analysed with the aid of hot stage microscope; the results are listed in Table 

15. The two mixtures appeared to be completely miscible above the meltmg point 

of HHPA, which in both cases was about 100°C. Moreover, no crystallisation 

occurred m the cooling stage, even at room temperature after long time. 

4.1.2) Ternary Mixtures. 

The results of the hot stage nucroscope analysis for the ternary nuxtures of 

AC 540, Epikote 828 and HHPA, are summarised in Table 16. 

As in the case of binary mixtures, the meltmg and crystallisat10n 

temperatures of the ethylene copolymer phase, are almost unaffected by the 

presence of the other components. Melting and crystallisation of the HHP A 

component, on the other hand, did not take place at all, 1.e. the hardener was 

always found to remam dissolved m the epoxy resin. 

The most striking result is the immiscibihty of most mixtures; only the 

mixtures containing a large amount of epoxy resm were found to be senu­

miscJble. This means that, even if the binary mixtures With individual pairs of the 

three components were miscible, though only at high temperatures, the 

simultaneous presence of the three components reduces the miscibihty of the 

system. 
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In Figure; 4, 5 and 6 (Appendix 7.3) are ;hown the ternary mixtures of AC 

540/Epikote 828/HHPA of compositiOns 10/70/20, 14/62/24 and 16.7/50/33.3, 

respectively, at 250'C It IS clear that decreasing the epoxy resm content leads to 

a detenoration in miscibility between the different phases. 

The results of the hot stage analysis for the ternary mixtures with AC 540, 

CY 179 and HHPA, are summansed m Table 17. 

Agam the melting and cry>talhsauon temperature; of the ethylene 

copolymer phase are only slightly affected by the presence of the other two 

components and the meltmg and crystallt;auon temperatures of the HHPA 

component was not observed 

As for the previOus ternary mixtures, parttal miscibtltty IS achieved only 

with respect to compositions contammg large amounts of epoxy resm. Miscibility 

in this case seems to be more difficult, m contra>t to the easier miscibility 

observed for the bmary mixture> with AC 540 and CY 179 On the mixture 

33.3/33 3/33 3 was also performed an additiOnal test to inve>tigate the possible 

influence of HHPA transformation, from the ci;- to the trans-form, on the 

miscibility of the system The mixture was heated at 145'C (around the 

temperature at which the HHPA tran;formatton i> expected to take place) and It 

was kept at thts temperature for about 30 mmute; Mtcro;cope observatiOns dtd 

not show any change in dtmenswm and shapes of the dtsper;ed droplets, I.e. the 

mixture remaming completely Immi>Ctble 

In Table 18 are reported the results from hot stage microscope analysis for 

the ternary mixture> with AC 5120, Eptkote 828 and HHPA. 

The meltmg temperature of the AC 5120 phase was not affected by the 

presence of the other component> Furthermore, the cry;talhsauon temperature 

was found to be >imtlar to that of the pure acrylic actd copolymer only in the case 

of mixtures with larger amount> of AC 5120 Meltmg and crystallisation of 

HHP A was agam not observed m hot stage mtcro;cope tests 
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The greater propen~ny of AC 5120 to become miscible tn Epikote 828, 

observed tn thetr bmary mtxture~. was again revealed m ternary mtxtures. In the 

latter, it was possible to reach total mtsctbility at temperature~ even lower than 

those observed for binary mixtures of AC 5120/Eptkote 828, except for the case 

of a low amount of acrylic acid copolymer (5% by weight). In this last case, in 

fact, the mtxture never reaches total miscibility at reasonable temperatures even 1f 

heated at 115"C for more than 2 hours. Once solubilised, the ternary mixtures 

remained miscible with decreasmg the temperature, unul crystallisation took 

place. 

In Ftgures 7 and 8 (Appendix 7.3) are ~hown the microgaphs taken at 

200'C on the sy;tems AC 5120/Eptkote 828/HHPA of compositions 5/60/35 and 

33.3/33.3/33 3, respectively. In the ftrst mixture wa' evtdent the presence of two 

phases, while the other sy;tem was found to be completely miscible at this 

temperature. 

Ftnally, the results of the hot ~tage analyst~ for the ternary mixtures with 

AC 5120, CY 179 and HHP A are reported m Table 19 

In this ca;e is evident a decrea'e m the cry,tallisatwn temperature of the 

mixtures wtth respect to the acryl!c acid copolymer by Hself. It must be said, 

however, that on cooling only very few and small cry~tals were observed in the 

samples. An explanation for the lower crystallt~auon temperatures could be that 

it was not posstble to detect the occurrence of crystallisatiOn due to the small s1ze 

of the crystal lite' formed. 

The effect of tntroducmg HHPA m bmary mixtures with acrylic acid 

copolymer and CY 179 seems agam to lead to a decrea~e of mtscibtlity of the 

system The temperature at whtch tm;ctbtli~auon takes place 1~ always htgher 

than that for the bmary mtxture-, of AC 5120 wllh CY 179 and only partial 

mtsctbtlity 1s po,stble to reach tor the ca~e of mtxture' contaimng lower amounts 

of AC 5120 (5% by wetght) Al>o the'e 'Y'tem' clid not ~how any phase 

separatwn tn cooling stage before crystall!satwn took place. 
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4 1.3) Bmary and Ternary Mixtures based on Modified AC 5120 

The fmt micro~copic analy'I' was earned out on mixtures of AC 5120 

grafted with £-caprolactone. 

From the difference m weights of the samples of the two mixtures before 

and after the thermal treatment in the vacuum oven, It ha' been possible to 

calculate the percentage of caprolactone unreacted and in turn to have an estimate 

of the progress of each reactiOn. It was found that the mixture AC 5120-graft­

caprolactone 50/5, reacted for 2 hour~ at 115'C under reflux conditiOns, reached 

the maximum conversiOn of about 75% and approached a 90% conversion when 

the reaction temper,uure wa' r~med at 160'C and the reflux removed. For the 

mixture AC 5120-graft-caprolactone 50/20 11 was estimated that, after a 2 hours 
' 

reaction at 115'C under reflux conditions, a constant conversiOn of caprolactone 

of about 65% was reached. W!lh Increasmg the reacuon temperature to 160'C 

and removmg the retlux, the conver~ion of caprolactone mcreased to about 95%. 

The unreacted caprolactone wa' completely removed by vacuum extraction of all 

the sample' of AC 5120-graft-caprolactone before mixmg with other 

components. Because of the incomplete reactiOns, the compositions of such 

mixtures should be considered only nommal 

The results of hot >tage analyse> performed on some of the mixtures of AC 

5120-graft-caprolactone are reported m Table 20. The two different compositions 

used were analy>ed after >Urnng m an Oil bath at 115'C for 5 hours. 

In both cases the melting and crystallisation temperatures of the miXtures 

were very similar to those recorded for the acrylic acid copolymer by itself, 

though for the mixture with the lower amount of caprolactone a flfSt meltmg was 

also observed at a lower temperature. At about 47'C, m fact, was noted the 

disappearance ot few and bnghter crystals, with different >hape from those of AC 

5120. 
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The behaviour with respect to miscibdJsation was found to be different for 

the two mixture;. While the mixture contammg AC 5120 grafted with the lower 

amount of c.tprolactone became soluble .tt a h1gh temperature and phase 

separated at a Similar temperature on cooling, the mixture contaming the higher 

amount of caprolactone, appeared to become soluble just above its melting point 

and did not phase separate on subsequent cooling until crystallisation took place. 

Mixtures of AC 5120 modified with £-caprolactone at two levels with 

Epikote 828 were subsequently analysed. The results are reported m Tables 21 

and 22. Tests were performed on ;amples of AC 5120 wnh caprolactone reacted 

for different time; at high temperature;, 1.e 115" and 160'C. The mfluence of the 

heatmg time for the mixture; with Epikote 828 wa; also analysed. (For a better 

understanding compare with Table 11, keepmg m mind that the effective amounts 

of AC 5120 m the mixtures with caprolactone are different from that m 50/50 

mixture AC 5120/Epikote 828, owmg to the presence of caprolactone which 

reduces the amount of AC 5120) 

In all cases a decrea;e in melting and crystalli;,ttion temperatures relative 

to those of AC 5120 by It~elf was ob;erved, an effect which was even more 

marked than that ob;erved for 50!50 mixture AC 5120/Epikote 828. 

For all mixtures, miSCibiiJ>atwn w~b found to be >trongly affected by the 

reaction time. 1 e the mi'-Cibi h>,tllon temperature seemed to mcrease with 

increasmg the reacuon tJme, which In turn corre;pond; to a greater extent of 

reaction of the acrylic acid copolymer with caprolactone. For the mixtures 

contammg the AC 5120 grafted with lower amount of caprolactone, the heating 

time used m addmg Ep1kote 828 ;eemed to have had no influence on 

miscibiii;auon temperature; The;e mixtures appeared to become more easily 

dissolved than tho~e with higher amount of caprolactone, for equal reactiOn ume 

at 115'C. Fmally, for almo>t all the mixture; pha;e ;eparatiOn was not observed 

on cooling Furthermore an adchuonal te;t was performed on the sample AC 

5120-graft-caprolacrone 50/20 heated for longer lime at 115'C fiTSt and then at 
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160'C (last row of Table 22). The mixture wa> allowed to reach 160'C in the hot 

stage device ,md it was kept at that temperature for 18 hour~. during this time 

observations were made. Even after 18 hours the sample did not show miscibility 

but two well separate phases were a! ways present. 

In Table 23 are reported the re>ults of the hot >tage analysis on ternary 

mixtures obtamed wllh AC 5120 mod1f1ed w!lh caprolactone (two compositions). 

The results can be compared w!lh tho>e in Table 18, even though there is not a 

perfect equivalence of compositiOns due to the presence of caprolactone. 

Agam 11 IS observed a >trong mfluence of the mod1ficanon w!lh 

caprolactone on the behaviOur of the mixture>. The comparison shows that 

meltmg and crystalli>allon temperatures are lower than those found for the 

similar mixture wllhout the modification, and crystallisanon appears not to have 

occurred at all 111 the mixture wllh larger amount of caprolactone However, 

neither mixtures seem to have reached complete mi'>Cibilisauon. 

In conclu>wn. the graftmg of the acrylic ac1d copolymer AC 5120 with e­

caprolactone does not lead to an appreciable mcrea>e m miSCJbii!ly neither 111 

b111ary mixtures w11h Ep1kote 828 nor 1n ternary mixtures with HHPA. That is to 

say that thi> modificanon only changes the melnng and crystallisation 

charactensncs but not miscibility. 

The re>ult> of the >econd modifiCJ.tiOn proce» obtamed by grafnng AC 

5120 with a monofunctiOnal epoxy reactant, RVP. are >hown 111 Table 24. It 

reports the data obtamed in the hot >tage analysis for reaction products, at 140'C, 

of AC 5120 with RVP, in the presence or not ofTPP 

Melting and crystalli>anon temperatures were found to be slightly lower 

than those of the acrylic acid copolymer alone. Moreover, the most stnkmg result 

is the occurrence of complete mi>Cibilny for all the mixtures JU>t above their 

meltmg pOint No pha>e '>ep.trauon wa> ob>erved m the mixture> on cooling unnl 

crystalhsatiOn occurred The re>ult> .tppear to be mdependent of the heatmg 



78 

conditions and irrespective of whether TPP was used to catalyse the grafting 

reaction. 

In Tables 25 and 26 are shown the results of the hot stage analysis for the 

mixtures of AC 5120, grafted with RVP, and the two epoxy resins, Ep1kote 828 

and CY 179. These results can be compared w1th those in Tables 11 and 12, 

though the compositions are not exactly the same owing to the presence of RVP. 

While there is no effect on melting and crystallisation temperature values, 

the modificatiOn of AC 5120 w1th RVP was found to have a very large effect on 

the miscibility characteristics. The solubility temperatures appeared to be 

considerably lower than those of unmodified systems, espec1ally in the case of 

the mixtures with Ep1kote 828. Phase separation on coohng almost always took 

place before crystalhsat10n and at temperatures generally lower than those at 

which miscibilisation had occurred on heating stage. In these experiments was 

also noted a delay in the occurrence of solubilisation of about 10°C m the edges 

of the samples with respect to the centre. In the same way, on cooling phase 

separation appeared to take place f1rst in the edges and then m the centre of the 

samples. (The values of temperature reported in Tables 25 and 26 refers to the 

centre of samples). 

In Table 27 are shown the results of analys1s performed on rruxtures of AC 

5120-graft-RVP with HHPA. A comparison can be made with results in Table 

14, although (due to the presence of RVP) the compositions in the two tables are 

not exactly the same. 

Both melting and crystalhsat10n temperatures seem to be slightly lower 

than those for pure AC 5120 and for m1xtures AC 5120/HHPA reported in Table 

14. Furthermore, the high temperatures of meltmg and crystalhsation of the 

HHPA component were not observed in mixtures with AC 5120-graft-RVP. 

Solubilisation was reached JUSt above the melting point of the ethylene 

copolymer and no phase separatiOn before crystallisation was observed on 
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cooling. The heating times of the two mixtures did not seem to influence their 

miscibility and crystallisation behaviour. 

In Tables 28 and 29 are reported the results from the hot stage analysis on 

ffilxtures of AC 5120-graft-RVP w1th HHPA and Epikote 828 and also with CY 

179, respectively. (A qualitative comparison can be made with the data in Tables 

18 and 19, respectively). 

As in previous cases, a small decrease m meltmg and crystallisation 

temperatures was observed and, m certain instances, crystallisation did not take 

place in the cooling cycle. 

With respect to the misc1bilisation of the mixtures, there appeared to be no 

distinctly clear trends. The reaction of HHPA with AC 5120-graft-RVP seems to 

be effective in mcreasmg the solubility with Epikote 828. 

It appears that the modification of AC 5120 with the monofunctiOnal 

epoxy resin, RVP, leads to an enhancement in ffi!Scibility of ffi!Xtures with 

Epikote 828 and the hardener HHP A only when HHP A has been previously 

reacted with AC 5120-graft-RVP, i.e. the acid groups appear to be more effective 

in ffi!SCibilising the epoxy resin than hydroxyl groups. 

In Tables 30 and 31 are reported the results of the hot stage measurements 

for mixtures of AC 5120, grafted with RVP in presence of 1 part of TPP 

(catalyst), and Ep1kote 828 

Comparing these results with those of Tables 11 and 25, again the melting 

and crystallisatiOn temperatures appear to have not been affected by the grafting 

of RVP in presence of TPP. On the other hand, the presence of TPP in the 

reaction between AC 5120 and RVP produces a further increase in miscibility 

with Epikote 828. This clearly results from the higher yield of grafted RVP when 

the TPP catalyst IS used. The heating time in the modification reaction, on the 

other hand, has only a small influence on solubilisation temperatures. It is to be 
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noted, fmally, that pha;e ;eparatwn never occurred before crystallisation took 

place. 

No mixtures ofEpikote 828 and AC 5120 modified with RVP m presence 

of 1.5 parts of TPP were prepared smce the presence of a larger amount of TPP 

did not produce any increa;e of conversion m the reactiOn with AC 5120 and 

RVP (see 4.3.1). 

In Table 32 are pre;ented the hot stage results of mixtures of AC 5120, 

modified with RVP m pre;ence of I part ofTPP, and HHPA heated at 140'C for 

different nme>. They can be compared with Tables 14 and 27 

The behaviOur of all mtxture;, on heanng a; well a; on coohng, IS similar 

to that reported In Table 27, 1.e. when the catalyst TPP IS absent. In graftmg RVP 

on AC 5120, the use of reacnon nmes no longer than tho;e required to obtain the 

maximum conversiOn can Improve miSCibihsanon between the phases. 

In Table; 33 and 34 are reponed the results of hot stage analysis 

performed on mtxture; of AC 5120, modtfied with RVP m presence of 1 part of 

TPP and, then reacted with HHPA for different heatmg times, with Epikote 828 

andHHPA. 

Due to the absence of crystals, 1t was not always possible to record the 

meltmg and cry;talhsauon temperature; In few cases, meltmg points similar to 

those observed 111 Table 14 for HHPA nch pha;e were found (;ee Table 34). 

A companson with data m Tables 18 and 28 suggest; that a certam 

increase m misctbihty m ternary blend; can be obtamed only when the heating 

nmes used were tho;e ;tnctly necessary to obtain the maximum conversion in 

both reactions, 1 e AC 5120+RVP+TPP and (AC 5120-graft-RVP(fPP)+HHPA. 

At long reactiOn nmes the ;olubdi;auon with epoxy resm became always more 

diff1cult, pos-.Ibly due to unde-.mtble reacnon> of unreacted catalyst TPP with 

Epikote 828 and or HHPA, when longer heanng umes were employed, or 



81 

possibly because the reaction with HHPA was not complete at short times. As 

observed for other ternary mixtures, the nnscibilisatlon temperature decreased 

with increasing the content of Eprkote 828. It is noted that m these cases phase 

separation took place almost always as a result of crystallisation. 

In conclusiOn, the modrficatlon of AC 5120 with RVP appears to have 

been effective in solubrhsmg Eprkote 828 at lower temperatures, especially when 

the modrficatwn was carried out m presence of TPP. On the other hand, the 

addition of HHPA in nnxtures of grafted AC 5120 wrth Eprkote 828 leads, in 

some cases, to an increase of solubilisation temperatures, even wrth respect to the 

mixtures containing not modified AC 5120. It is also important to note that an 

appropriate heating trme was reqmred to prepare the mixtures, i.e. sufficiently 

long to reach a final maxrmum conversion. 

An indrcatwn of the effect of the nature of the hardener on the solubility in 

(AC 5120-graft-RVPffPP 69.8/30 2/1)/Epikote 828 blends can be obtained from 

an analysis of the data in Table 35, where are reported the results from hot stage 

tests performed on mixtures of MNA hardener with modified AC 5120 and/or 

Epikote 828. 

The 50/50 mixture Epikote 828/MNA rs completely miscible at room 

temperature. 

Companng the melting and crystallisation temperatures of a (AC 5120-

graft-RVP)/MNA mixture with those of the analogous nnxtures with HHPA, 

Table 32, rt can be seen that all the transition temperatures are srmilar, although 

always slightly higher, than those of mixtures wrth HHPA. 

A sinnlar behaviour for the two mixtures rs also observed with respect to 

miscrbilisation, which always occurs JUSt above the melting point, and phase 

separation, which does not take place before crystallisation. 

The ternary mixtures of Table 35 can be compared with those of Table 33. 
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Melung temperature~ are .tgam >Imilar to tho>e of mixtures containing 

HHPA. It was often difficult to record the>e temperatures due to the small 

dimensiOn> of the cry>tals, wh1ch could probably also explain the apparent 

absence of crystals on cooling 

All the mixtures With MNA were completely ImmiSCible, even at very high 

temperatures. 

In concluswn, the u>e of MNA hardener m modified AC 5120/Eptkote 828 

blends does not Improve nmcJbdt>atton. On the contrary, It leads to a more 

difficult solubilisation proce>s. 

In Table 36 .tre shown the dat:t from the hot >tage analysis of mixtures 

montamc aCJd/AC 5120 and montanic acJd/Eptkote 828, together with respective 

controls. 

Montamc acid appear'> to be completely misctble with AC 5120 JUSt above 

Its meltmg pomt and with Epikote 828 at a >hghtly higher temperature, however 

phase separation on cooling takes place only for the mixture with Epikote 828 

In Table 37 are shown the re>ults of the anJly>t> for the miXtures of AC 

5120 with montamc acid modified Ep1kote 828 

A companson with Table 11 (keepmg m mmd the difference of 

compositiOn due to the pre>ence of montamc acid) >how> that the crystallisation 

and meltmg temperature> are clo~er to tho>e of pwe AC 5120 than to the 50/50 

mixture of AC 5120/Epikote 828 The solubthsation occurs at temperatures 

always lower than tho>e ob>erved for the mixture without montamc actd, and 

phase separatiOn on cooling does not take place until crystallisation occurs. 

Dunng the he.tttng stage .tg:un wa~ noted a delay of the edge> of each sample in 

reaching completely ~olub1hty relauve to the centre This ts probably due to the 

thermal lag, 1 e the temperature m middle t> alway> htgher than at edge. The 

heatmg ume >eems to have only a >mall mfluence on the behavwur of mtxtures. 
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In Table 38 are shown the data obtained from the hot stage analysis 

performed on mixtures of AC 5120, modified with E-caprolactone at two 

concentrations, and Ep1kote 828 modified with montanic acid. 

It appears clear that the modificatiOn of AC 5120 with caprolactone leads 

to a decrease of miscibility of the mixtures, reaching complete solubility at 

temperatures even higher than those for 50/50 mixture AC 5120/Epikote 828 

(Table 11). 

A companson of nuscib11ity data of all the 50/50 nuxtures AC 

5120/Epikote 828, modified or not, IS presented in Table 39. Here are reported 

the values of the solubilisatiOn and phase separation temperatures, taken from 

Tables 11, 21, 22, 25, 30, 37 and 38, for mixtures kept at high temperatures for 

the time required to assure the completion of all the chemical reactions. 

The graftmg of caprolactone to AC 5120 leads, in all cases, to a decrease 

in miscibility, even when montanic acid is used as modifier for Ep1kote 828. The 

most effective modification appears to be the reaction of AC 5120 with RVP in 

presence of TPP, although by modifying Ep1kote 828 with montanic acid some 

improvements in the solubility of acrylic acid copolymer in epoxy resm are also 

obtained. 

In Table 40 are reported the results of the analysis performed on nuxtures 

of HHP A with montanic acid. 

It appears that the introduction of small amounts of montanic acid is able 

to prevent the undesirable transformation of HHPA from the cis- to the trans­

form. All the mixtures containing amounts of montanic acid equal to or higher 

than 20% did not show a second meltmg temperature. Furthermore, these 

mixtures become soluble at about 100°C on heating and phase separate at sinular 

temperatures on cooling. Since a reductiOn of melting and crystallisation 

temperatures of mixtures with respect to those of pure constituents is observed, 
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HHP A and montamc acid could probably form an eutectic. (Therefore, their 

mixtures will be indicat~as HHPA-e-montanic acid.) 

In Table 41 are shown the results of the hot stage analysis performed on 

blends of AC 5120 (both mod1f1ed and unmodified with RVP) w1th HHPA pre­

mixed with montamc ac1d (1 e. HHPA-e-montanic acid). 

A qualitative comparison with Tables 14 and 27 shows melting and 

crystallisatiOn temperatures slightly lower than those measured in mixtures m 

which HHPA is added alone, i.e. in the absence of montamc acid 

In binary mixtures with unmod1f1ed AC 5120 the addition of montamc 

ac1d to HHP A avoids the transformation of the latter from the cis to the trans­

form, i.e. higher melting pomts are not observed (Table 14). For the mixture With 

AC 5120 mod1f1ed w1th RVP, rmsc1bilisation is reached JUSt above the melting 

point, as for pure HHPA. It IS noted that phase separation, on coolmg, always 

occurs before crystallisatiOn. 

In Table 42 1t can be observed that the melting and crystallisation 

temperatures of blends of Epikote 828 with HHPA-e-montanic acid correspond to 

those of montanic acid, reported in Table 40. On the other hand, a comparison 

with Table 15 reveals higher solubilisation and phase separation temperatures 

than those observed for the straight mixture Epikote 828/HHP A. 

In Tables 43 and 44 are presented the hot stage results found for ternary 

mixtures of unmodified or modified AC 5120, Epikote 828 and HHPA-e­

montanic acid, respectively. They can be compared with those m Tables 18 and 

28. 

Wh1le similar, or slightly lower, melting and crystallisation temperatures 

are observed m all cases, solubilisation seems to occur always at higher 

temperatures when montamc ac1d 1s added to HHPA. It is noted that phase 

separation takes place before crystallisation. 
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In conclusion, even If It IS possible to overcome the transformation of 

HHPA to the trans-form by forming an eutectic solution with montanic acid 

(>20% ), this modification is not effective in avoidmg the demiscibilisation effect 

that HHPA has when added to binary blends of the acrylic acid copolymer with 

the epoxy resin. 

4.1.4) Phase Diagrams of Ternary Mixtures. 

The miscibility data of most of the rmxtures studied by hot stage 

rmcroscope analysis are reported as ternary phase diagrams to show clearly the 

locatiOn of the solubility areas. 

In Figures 4.1 and 4.2 are shown the ternary diagrams for the systems with 

AC 540, HHPA and Epikote 828 and with AC 540, HHPA and CY 179, 

respectively. (The number adJacent to each composition corresponds to Its 

solubilisation temperature.) 

In both cases the trend is the same, I.e. only the mixtures with large 

amount of epoxy resm are serm-miscible and it is not possible to reach complete 

miscibility for any composition tested, though the bmary mixtures are always 

miscible. The mixtures with CY 179 are less miscible than those with Ep1kote 

828, even though the binary mixtures with AC 540 become miscible at lower 

temperatures. It can be hypothesised that miscibility of AC 540 and each of the 

two epoxy resins is chemically induced. When HHPA is present, this reacts 

preferentially with the epoxy resin and, therefore, decreases the extent of reaction 

of the latter with AC 540, thereby reducing miscibility. 
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e I M MISCIBLE (UP TO 250'C) 
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Figure 4.1: Phase diagram for the miXtures of AC 540, Epikote 828 and HHPA. 

CY 179 

AC 540 143 158 

0 MISCIBLE 
~SEMI-MISCIBLE 
e IMMISCIBLE (UP TO 250'C) 

Figure 4.2: Phase diagram for the mixtures of AC 540, CY 179 and HHPA. 
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In Figure> 4 3 and 4.4 are shown the ternary diagram> for the mixtures AC 

5120 with HHPA and Ep1kote 828 and AC 5120 with HHPA and CY 179, 

respectively. 

These mixtures appear to be more miscible at .!11 compositions than those 

with AC 540. Almost always It IS possible to reach complete solubility in both 

systems. This time the mixtures with CY 179 seem to be even more miscible than 

those with Ep1kote 828 show111g lower solubility temperature>. In both cases, the 

mixture with lowest content of AC 5120, 1 e. 5%, IS the lea>t miscible 

The diagram> 111 Figures 4 1 and 4.3 can be compared with that of Figure 

4.5 for the sy>tem CTBN/HHPA/Ep1kote 828. 

All the mixtures appear to be completely miSCible at room temperatures or 

at temperatures always lower than 1 OO'C. The>e re>ults show clearly the 

possibility 111 such >y>tems to reach >olubihty, I.e. the pre>ence of HHPA does 

not hinder the miscibdi>.ttion between the epoxy resm and the liquid rubber. 

In Figures 4.6 and 4 7 are reported the ternary diagrams for the systems 

contam111g AC 5120, grafted with £-caprolactone at two levels, HHP A and 

Ep1kote 828. As already reported, the conversiOn of the reactions with 

caprolactone wa'> calculated from the difference m weight a>: 90% and 95% for 

50/5 and 50/20 compo>ItJOn>, re>pectively. 

Even with very few pouw, 111 the diagrams, It IS po>sible to have a clear 

indication of the mfluence of £-caprolactone on >Oiubdity Compansons with the 

d1agrarn 111 Figure 4.3 show that the gr.tfung with c..tprolactone has resulted 111 a 

large decrease in mi>Cibdity of the >ystem>, not reachmg complete solubility even 

with a high content of Ep1kote 828 Furthermore, It I> noted that the decrease in 

solubility becomes even more pronounced when higher amounts of caprolactone 

have been used to modify the .ICryhc .tcid copolymer 
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EPIKOTE 828 

0 MISCIBLE 
~ SEMI· MISCIBLE 
e I M MISCIBLE (UP TO 250'C) 

164 185 155 HHPA 

Figure 4.3: Phase diagram for the m1xtures of AC 5120, Epikote 828 and HHPA. 

CV 179 

164 185 155 

0 MISCIBLE 
~SEMI-MISCIBLE 
e IMMISCIBLE (UP TO 250'C) 

HHPA 

Figure 4.4: Phase diagram for the mixtures of AC 5120, CY 179 and HHPA. 



EPIKOTE 828 

30 

0 MISCIBLE 
<%>SEMI-MISCIBLE 
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e IMMISCIBLE (UP TO 250'C) 

Figure 4.5: Phase diagram for the mixtures of CTBN, Epikote 828 and HHPA. 

EPIKOTE 828 

AC 5120 
(IN AC51201CAPROLACTONE 5015) 

0MISCIBLE 
<%>SEMI-MISCIBLE 
e I M MISCIBLE (UP TO 250'C) 

Figure 4.6: Phase diagram for the mixtures of AC 5120 grafted With £­

Caprolactone, at weight ratio 50/5, Epikote 828 and HHPA. 
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EPIKOTE 828 

0MISCIBLE 
1%1 SEMI· MISCIBLE 
e IMMISCIBLE (UP TO 250'C) 

(IN AC 51201CAPROLACTONE 50120) 

Figure 4.7: Phase diagram for the mixtures of AC 5120 grafted with E­

Caprolactone, at weight ratiO 50/20, Epikote 828 and HHPA. 

EPIKOTE 828 

0MISCIBLE 
1%1 SEMI-MISCIBLE 
e I M MISCIBLE (UP TO 250'C) 

AC 5120 
(IN AC5120/AVP 698/302) 

s Htfol Af ns"c 

Figure 4.8: Phase diagram for the mixtures of AC 5120 grafted with RVP for 5 
mmutes, Epikote 828 and HHPA. 
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In Figures 4.8 and 4 9 are ~hown the ternary dwgram~ for the mixtures AC 

5120, grafted with RVP at two conversiOn leveh, I.e. 7% and 21%, respectively 

(see 4.3.1), HHPA and Epikote 828 The;e can be compared with the diagram of 

Figure 4.3. 

The conversiOn level in all cases seems to play an important role in 

solubility of systems, i.e. the binary and ternary mixtures contaimng the product 

of graftmg reaction at high conversion are more easily to solubilise than those 

contaimng the product of reaction at low level of conversiOn. 

The comparison of pha;e diagrams of Figures 4 3 and 4 9, suggests that 

the final product of the grafnng re,\cllon giVes higher solubility in binary 

mixtures with epoxy resm than !.Imilar mixtures contaming unmodified AC 5120. 

In ternary mixtures, on the other hand, the grafting with RVP does not give large 

improvement~ in miscibility. In some ca;e; the ;olubihty temperatures are even 

higher than those reported for unmodified ;ystems. but always lower than those 

observed for the system; modified wnh caprolactone 

Similar conclu;wns can be denved from the data of the diagram reported 

m Figure 4.10, for the ;y;tem (AC 5120-graft-RYP 69.8/30.2)/HHPA/CY 179, 

when compared with the analogous system of Figure 4 4 

The final conclusiOn IS that the modificatiOn of AC 5120 with RVP is not 

effective m wcreasmg the solubility of mixture; with any of the two epoxy resins 

and HHPA, possibly due to the low conver>IOn that are obtmned, even at very 

long reaction times. 

In Figures 4.11 and 4.12 are shown the phase diagrams for the mixtures of 

AC 5120-graft-RVP/TPP 69.8/30 2/1, with a conversiOn of the modification 

reaction equal to 82% (>ee 4 3.1 ), Epikote 828 and HHPA or MNA, respectively 

While the modification of AC 5120 with RVP 111 pre<,ence of TPP catalyst 

leads to an wcrea~e m nmcibdny for bmary blend; with Epikote 828, It seems to 

be less efficient m ternary blend;, I e when a hardener ts also present, even if it 
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EPIKOTE 828 

0MISCIBLE 
1%1 SEMI· MISCIBLE 
e I M MISCIBLE (Up TO 250'C) 

84 

{IN AC!5120/AVP 698/302) 

Figure 4.9: Phase diagram for the mixtures of AC 5120 grafted With RVP, Epikote 
828 and HHP A. 

CY179 

0MISCIBLE 
1%1 SEMI-MISCIBLE 
e I M MISCIBLE (UP TO 250'C) 

AC 5120 
{IN AC5120/RVP 698/302) 

Figure 4.10: Phase diagram for the mixtures of AC 5120 grafted With RVP, CY 179 
andHHPA. 
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EPIKOTE 828 

0 MISCIBLE 
<%1 SEMI· MISCIBLE 
e IMMISCIBLE (UP TO 250'C) 

(IN AC5120/RVP!TPP 698/30211} 

Figure 4.11: Phase d1agram for the mixtures of AC 5120 grafted with RVP, m 
presence ofTPP, Ep1kote 828 and HHPA. 

EPIKOTE 828 

0MISCIBLE 
<%1 SEMI· MISCIBLE 
e I M MISCIBLE (UP TO 250'C) 

(IN AC5120/AVP/TPP 69 8/30 211) 

Figure 4.12: Phase diagram for the mixtures of AC 5120 grafted with RVP, in 
presence ofTPP, Epikote 828 and MNA. 
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is pre-reacted at high temperature (140.C) with the respective hardener. With 

respect to the chemical modifications performed on AC 5120 with caprolactone, 

that performed with RVP seem~ to giVe better results in terms of miscibility. 

However, the ternary mixtures are not completely miSCible at low temperatures in 

any composition. The u~e of a different hardener, I e MNA instead of HHPA, 

lowers the level of solubilisation of ternary mixtures. 

Finally, in Figures 4.13 and 4.14 are reported the ternary diagrams of 

mixtures based on unmodified and grafted AC 5120. HHPA-e-montamc acid and 

Epikote 828. re~pecuvely 

In both cases the mixing of the montamc acid m the hardener to produce 

an eutectic doe' not produce any appreciable mcrea~e m solubility of ternary 

mixtures. 



EPIKOTE 828 

114 113 131 

0 MISCIBLE 
<%!SEMI· MISCIBLE 
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e IMMISCIBLE (UP TO 250'C) 

(IN HHPA/MONTANIC ACID 80/20) 

Figure 4.13: Phase dwgram for the mixtures of AC 5120, Epikote 828 and HHPA­
e-Montamc Acid. 

EPIKOTE 828 

0 MISCIBLE 
<%1 SEMI· MISCIBLE 
e I M MISCIBLE (UP TO 250'C) 

80 HHPA 
(IN AC5120/RVP 698/302) (IN HHPAIMONTANIC ACID 80/20) 

Figure 4.14: Phase diagram for the mixtures of AC 5120 grafted with RVP, Epikote 
828 and HHPA-e-Montanic Acid. 
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4.2) Particle Size Analysis of Uncured Mixtures. 

In Appendix 7.3 are reported some miCrograph> (Figures 9 to 16), taken on 

the hot stage mtcroscope, for four 50!50 mtxtures of modtfied and unmodified 

AC 5120/Epikote 828, as descnbed m 3.7. 

For the case of the unmodtfted 50!50 mtxture and that where Eptkote 828 

was grafted with montanic actd, (Figures 9, 10, 11 and 12) IS noted the presence 

of a number of Lu-ge and small particles whtch do not ;eem to change dimension 

and shape dunng the enure heatmg penod at 120'C In the other micrographs, 

(Ftgures 13, 14, 15 and 16), are ;hown the compan;on between the mixtures in 

whtch only AC 5120 ha> been modifted with E-c.tprolactone with those where 

AC 5120 has been moditied with c,tprolactone and the Eptkote 828 has been 

modified with montamc actd. This ume the maJority of particles of both systems 

seems to be very small, even if some large, two-pha;e regwns are also observed, 

especially in the case of grafted AC 5120/grafted Epikote 828 miXtures. The 

duration of the treatment at 12CrC does not ;eem to affect dimensiOns and shapes 

of the droplets 1n the mixture (AC 5120-g-caprolactone)/Eptkote 828, while the 

size of the two-phase regwm ob>erved for the other mixture appear to be reduced 

after the 5 mmutes. The compan;on of data m Ftgure 9 with those in Figure 3 

reveals that the heaung ume used to prepare the mixture has an effect on the 

dimensions of the dtsper;ed particle>. the dimen;wns, m fact, appear generally 

smaller when a longer heatmg ume I> u;ed 

In Figures 4.15 and 4 16 are illu>trated how the dimenswns of the 

dispersed droplets change with ume under t>othermal conditions at various 

temperatures. relatl\'e to mixture> 50!50 of AC 540/Epikote 828 and AC 

5120/Eptkote 828, re;pecuvely. 
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0 T = 110°C 
11 T = 160°C 
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Figure 4.15: SolubilisatiOn kinetics of dispersed particles for the system AC 
540/Ep!kote 828 50150. (Ra = 1mtial radms and R, = radius of the 
particle at time, t.) 
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Figure 4.16: SolubilisatiOn kinetics of dispersed particles for the system AC 
5120/Eptkote 828 50/50. (R, = mitial radms and R, =radius of the 
particle at ttme, t.) 
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In Figures 4.15a and 4.16a it is shown how the test temperature affects the 

average dimensions of the particles. For the 50/50 mtxture of AC 540/Epikote 

828 at 11 O'C a rather long time IS required to achteve complete solubility 

between the phases. In fact after one hour and 20 minutes, only 30% of the 

droplets with the original dimensiOns remained. At 160'C, on the other hand, 

complete mtsctbthty of the system IS reached within one hour. For the system AC 

5120/Eptkote 828, the disappearance of the particles of the second phase takes 

place more easily, taking about 25 minutes at 160'C and requmng about 4 hours 

at llO'C Thts result contirms the greater abthty of AC 5120 to solubilise m 

Epikote 828 relative to AC 540, owmg to m higher functionality 

In mixtures with AC 540 the average dtameter of the droplets is almost 

always larger th,m those for mixtures with AC 5120. Smce the viscosity of the 

two oligomers i; approximately the ;ame (see 3.1), the difference m behaviour 

must be attributed to a difference m Interfacial tension. In Figures 17 and 18 

(Appendix 7.3) are reported the micrographs relative to the system AC 

540/Epikote 828 50/50 ..tt IIO'C. The micrograph; ;how the system at the 

begmning of the expenment and after I hour and 20 mmute; at 110'C. For the 

micrographs In Figures 19 and 20 the test temperature IS agam 11 o·c but the 

system is the mtxture 50/50 AC 5120/Eptkote 828 From a comparison of Figures 

17 and 18 with 19 and 20, It 1; clear that AC 5120 IS more ;oluble than AC 540 

in the epoxy res m. 

In Ftgure~ 4 15b and 4 16b the proce>'> '' analy;ed kmetically. In these 

figures the normabed dunemton, 1 e the r,ttiO between the radtus of each 

particle at time. t, and the mmal radw; of the same particle, is plotted as a 

functiOn of ttme for the two mixtures con;~dered At lower temperatures two 

regions are noted: an honzontal part of the curve and a second, almost linear, 

descending part. related to the dtfferent proce;ses that take place during the 

solubthsation. At 160'C, on the other hand, only the ;econd linear descendmg 

part can be observed. In a fu ;t >tage, corre;pondmg to the honzontal !me, a 
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strong aggregation phenomenon of the particles was observed, i.e. small droplets 

coalesce to form larger particles. Th1s phenomenon can be related to differences 

in mterfacial tension between the phases present in the mixtures. It is interesting 

to note that the aggregation occurs over only for a short time for the AC 

540/Epikote 828 mixture for both test temperatures, whereas it is strongly 

dependent on test temperature for the case of AC 5120/Epikote 828 mixtures, 

being almost absent at 160'C. The ;econd part of the curve shows a linear 

decrease of the dimensions of the particles with time and can be related to the 

d1ffusion process It can be hypothesised, in fact, that the diffusion process is 

Fickian and that the slope of the curve JS related to the diffusiOn coefficient. This 

slope depends on the test temperature; and on the functionality of the 

polyethylene, i.e the higher the te;t temperature or the functionality value the 

faster the disappearance of the ;econd phase droplet>. 

From all the;e observations, It can be concluded that both phenomena that 

take place in the solubili>auon process depend on the polyethylene used and on 

test temperature The AC 5120 oligomer ;how; a strong aggregation at the 

begmmng, due probably to a higher Interfacial tensiOn, and a faster diffusiOn 

process at longer time; U>mg h1gh temperature;, on the other hand, the process 

of coalescence become> more difficult to occur while the d1ffusion takes place 

easily. 

4.2.1) Analy>I> of the Ditfu;wn Proce;; T,tkmg Place m two Phases 

Systems dunng Solubihsauon 

The dJffu>JOn process taking place from the precipitated particles into the 

surroundmg hqUid system, contaimng mainly the epoxy resm, can be exammed 

analytically The followmg ;cheme 1s hypothemed: 
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a) If the gap between the glass shdes IS very small with respect to the surface area 

of the system, each particle can be considered to be a cylinder with a height, o, 
equal to the distance between the slides. 

b) Each particle has a concentration (with respect to the bulk) of polyethylene 

mixed with a small amount of epoxy resin, cp, which remains constant with time, 

since It seems reasonable to assume that the two components diffuse together 

from the particle into the bulk of the system during the misCibilisation process. 

c) On the other hand, the effective number of moles of polyethylene, mtxed with 

low amounts of epoxy resin, contamed in each particle ch,mges with time, I.e. 

decreasing as the mi>Cibdt;anon proceed>, 

d) The radiUs of the particle, Indicated as R, decrea>e> with time again as a result 

of the solubtlisatton process, 

e) Outside each particle the concentration of polyethylene, mdicated as c, 

decreases from the border of the particle to the bulk of the system. The gradient 

of concentration changes with time A fast change in concentration at the 

begmning of the process t> expected and It become; constant at longer times 

For a ;mgle particle, therefore, the removal of polyolefm from the particle 

with time can be wntten as. 

d( moles) 

dt 
concentration 

d(volume) 
=cp 

dt 

dR 
=[cp 1t o (2 R)]­

dt 

d(7t R 2 o) 
= 

dt 

(!) 

From a molar balance on a Ideal ;y;tem taken outside the second phase 

particle, the opposite of the vanatwn wtth ume of the moles is equal to the molar 

flow, i e. Jr, which is to be multtphed by the surface through whtch the process 

takes place, 1 e. the latent! ;urface of the cyhndncal particle If the process 

follows the Fickian law of dtffu>IOn, the molar diffu>IOn flow from the particle 

can be expre;secl a>. 



where: 

de 
Jr=-V­

dR i< 

- 'D the diffusion coefficient; 
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- de I dR IS the denvative of concentration with radius and it is 

calculated at the border of the particle (i.e. at radius R). It is 

generally time dependent 

Substituting this la;t expressiOn for Jr m eq. (1), give;: 

[ ] dR de I - cp 1t o (2 R) -=-V- [2 1t R o] 
dt dR i< 

The last equation becomes· 

c dR =V del 
p dt dR i< 

(2) 

If now we consider the proces; far from It> Initial ;tage and for short periods of 

time, the gradient of concentration outside the particle can be supposed constant 

with time. In this hypothesis, equation (2) can be integrated m time, giving· 

del 
cp R =V-I t+Const 

dR i< 
(3) 

where the constant could be calculated con>Idenng that at the Initial time for the 

diffusiOn proces; (t = 0) the radiU> mu;t be equal to Ro . Then, Const. = cp • Ro . 

Dividmg equatiOn (3) by (cp • R0), the variation of normalised radius is obtained 

as a function of the nme, 1 e 



R(t) ( 'D ~ ) l Ro= cp Ro dR]R: ·t + 

The previous equatiOn can be wntten also a;: 

R(t) =(C t)+l 
Ro 
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(4) 

In the hypothesiS made, the con;tant C IS negative, being proportional to the 

vanation of concentration wilh the radw; that must be negative, since the 

concentration decrea;es gomg away from the borders of the particle. 

The equauon (4) correlates well the expenmental data of the fmal part of 

the curves m Figure; 4.15b and 4.16b, conflrmmg that the hypothesis made can 

be considered correct. Moreover, the slope of the hnear part of each curve could 

be used to calculate the d1ffuswn coeff1c1ent of each system at different 

temperatures from the d1men;wn of the mltlal rad1us of the particles, if the 

concentratiOn in each particle, cp, and the grad1ent of concentration at the border 

of the same part1cle are known 

4.3) Data from Physical and Chemical Evaluations of Uncured 

Mixtures. 

The results of the phy;1cal and chem1cal test; performed on some of the 

uncured, mod1f1ed and unmod1f1ed, m1xture; prepared, are reported below. 
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4.3 .I) Acid Titration. 

In Table 11 are reported the results of the acid number measurements 

performed on final samples of each reaction earned out, as well as on pure 

materials. The acid number values, defmed as the number of mg of KOH 

required to neutralise all the acid groups contained in I g of resin, are compared 

with those either reported in literature or given in data sheets, or those calculated 

theoretically (see Appendix 7 I) The two different alcoholic solutions of KOH 

used were found to give approximately the same results for each sample. 

TABLE 11: Results from titration test!, performed on pure components and on 
the products of their reactions. 

Sample Acid Acid Degree 
No.O> No.(2) Conv. 

AC 5120 119.5 120 

£-Caprolactone 0 

RVP 09 0 
HHPA 0 
MNA 0 

Epikote 828 0.2 0 
Montamc Acid 148 3 132 

AC 5120-g-Caprolactone 50/5 109 I 113.5 n.a. 
AC 5120-g-Caprolactone 50/20 99 6 97.7 n.a. 

AC 5120-g-RVP 69 8/30 2 65 9 21 
AC 5120-g-RVP/TPP 69 8/30 2/1 15 2 82 

AC 5120-g-RVP/TPP 69.8/30 2/1 5 15.9 81 
(AC 5120-g-RVP 69 8/30.2)/HHPA 80/20 143 0 125 4 

(AC 5120-g-RVP/TPP 69 8/30.2/l)/HHPA 80/20 87.1 84 9 
(AC 5120-g-RVP/TPP 69 8/30 2/1 )/:V1NA 77.9/22.1 780 81 0 

Epikote 828-g-Montamc Acid 6 6/1 l I 94 

Ac1d No ttl (mg KOH/g re"n) = ac1d number cJlcul.lted from tltral!on tests, Ac1d NoY> (mg 
KOH/g resm) = ac1d number reported on dJtJ sheets or calculated theoretically, Degree Conv 
(%)=degree of conver!>mn of ,\Cl cl group~ n a =not applicable 

The acid number found for .tlmo;t all the pure matenals are m accordance 

with those reported m data ,beet> or obtamed by theoretical calculatwns, except 
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for montamc ac1d, who;e v.tlue; of ac1d number dtlfei by about 10%. Montamc 

acid used 1s a techmcal grade and 1t i; not expected to be pure. Moreover, there 

can be also expenmental errors a;sociated with some possible precipitatiOn 

dunng titration tests. 

Except for reactions with £-caprolactone, the conversion for the reactions 

were calculated as the ratio between the acid groups con;umed dunng each 

reaction and the imtial actd groups. The reacuon of AC 5120 with £­

caprolactone, m fact, leads to an extent of chains without the disappearance of 

the acid group at the chain end, i e each ac1d group produces another acid group. 

The calculatiOn of the degree of converswn of ac1d groups gives null values, i.e. 

the same number of acid groups are present before and after the reaction, even if 

the true conversiOn J> .tlmo>t 100% In thi> ca;e, the ume required to reach a 

constant degree of conver;wn for the re.tcuon wa> calculated by monitonng the 

res1dual amount of caprolactone, as already explained 111 4.1.3. Moreover, since 

the expenmental acid numbers found for both the fmal mixtures of AC 5120 with 

caprolactone are sJmtlar to tho'>e calculated theoretically (Appendix 7 .1) with the 

hypothesi~ that AC 5120 reacted >tOJchwmetncally with caprolactone, the 

occurrence of competition of tht> reacnon with that for the homopolymerisation 

of caprolactone can be excluded In the latter case, in fact, an increase m 

molecular we1ght would occur m the fmal mixtures, due to the formation of 

polycaprolactone, with a reducuon of ac1d numbers relative to the values 

calculated 111 Appendtx 7 I . 

For the reacuon of AC 5 I 20 with the monofunctiOnal epoxy resin RVP, it 

can be observed m Table 45 (Appendix 7 2) 

Conven.wn after 5 mm at I 15'C = 7o/c 

Fmal Conver;wn = 21%. 

Allowmg for expenmental errors, 1t can be ;tated that even after 9 hours at 140'C 

with a continuous sumng followed by I2 hours 111 the oven at 90'C, It is never 
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possible to reach a conver;,wn h1gher than 21%, even If for the composition 

chosen a I 00% conver>ion should have been po>>Ible. 

As expected, the inclusiOn of low percentages of the catalyst TPP extends 

further the reaction between AC 5120 and R VP Table !I reports conversions 

higher than 80% for compositions contaming I and 1.5 parts of TPP. From Table 

45 (Appendix 7 2), on the other hand, It c..tn be seen that 1t 1s possible to reach 

the fmal conversiOn of the reactwn after I hour and 30 mmute>, with I part TPP, 

and only after 30 mmutes by mcreasmg the TPP concentration to 1.5 parts. Since 

the only advantage in u;,mg a larger amount of TPP re;,1des in reducing the 

reaction time. as no mcrea;,e m fmal conver>Ion IS ob;,erved, the use of 1.5 parts 

of TPP wa;, precluded, as ,m exce;,;, of cataly>t wnh a longer reacuon ume than 

that reqmred to reach the complete conver>ion, could lead to undesirable 

reactions with HHPA and/or Ep1kote 828 In the final mixture. 

The expenmental re'>ults of titration te>ts performed on the products of 

reaction of mod1fied AC 5120, with or without TPP, with HHPA and MNA are in 

good accordance with the theoretical value;,, abo reported m Table !I, especially 

m the case of the reaction;, 111 wh1ch TPP wa;, present. For the latter case, it can 

be said that an almost complete converswn of the alcoholic groups to acid groups 

was obtained. When TPP wa;, ab>ent. on the other hand, there was an mitial 

lower amount of alcoholic group;, 111 AC 5120-graft-RVP mixture, due to the 

incomplete reactiOn between AC 5120 and RVP, wh1ch give;, a final ac1d content 

different from that expected theoretically on the a;,;,umption that each molecule 

of HHPA had reacted with an alcoholic group. 

It can be also noted, Table 45, that both the reactwn;, of AC 5120-graft­

RVP with HHPA or MNA reach completion m about 2 hours. 

For the reaction between Ep1kote 828 and montamc acid the final 

conversiOn was 94%, 1 e an almost total conver;,wn wa;, obtamed. This, 

therefore, reflects the Importance of havmg mi>Cible component;,. lt I> possible, 

however, that the uneven d"tnbuuon of the functwnahty 111 the AC 5120 is 
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responsible for the low solubility and the mcomplete conver~ion m any reaction. 

It is posstble that there could be large .tmounts of chams with funclionahty less 

than 2. 

4 3 2) Molecular Wetght of Unmodtfted and Modtfted Copolymers. 

In Table 46 are reported the re;,ulb of molecular wetght measurements 

performed by GPC on the three funclionalised polyethylene~ and on the products 

of the modiftcauon of AC 5120 with E-caprolactone at two dtfferent ratiOs and 

two different reaction times. 

The lack of reproductbdity between the te~ts performed at dtfferent limes 

was commented by RAPRA as follow;,: '"It ~hould be noted that the long term 

reproducibility of GPC 1s not particularly good. It IS best to treat the results m a 

simple comparative manner'" (24th June 1992) '"Whatever the problems of long 

term reproductbthty and poor low molecular mas~ re~oluuon, the short term 

comparison of samples is u~ually very good'" (1st March 1993) In Figure 4.17a 

are reported the two curves of molecular wetght dt~tnbuuons obtained at 

different lime;, for AC 5120. They appear to be very dtfferent even in the shape. 

In F1gure 4.17b the curve;, of molecular we1ght dtstnbulions for the three 

functionahsed polyethylene~ are reported Fmally, m F1gure 4.17c the curves of 

molecular wetght dtstnbutwns for AC 5 I 20 and its modtfications with E­

caprolactone are shown From tht'> ftgure and from Table 46 1t appear~ clear that 

the presence of caprolactone has only .t very ;,m,tll mfluence on the apparent 

molecular ma;,ses, the differences beconung larger with increasmg the content of 

e-caprolactone. Tht~ re;,ult contirm;, that the reactwn of the acrylic acid 

copolymer wtth caprolactone has produced a umtary graftmg, 1.e. most of the 

aCid groups of polyethylene have re.tcted wnh caprolactone without the formation 

of polycaprolactone. If the latter case had occurred, the curve of molecular 
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weight d1stnbuuon would have become broader or >lnfted to higher values of 

molecular weights. 

Finally, a comparbon between the molecular weights found from GPC 

measurements on both mixtures with e-caprolactone (Table 46) and those 

calculated m Appendix 7.1, used to evaluate the acid numbers, shows an 

appreciable difference between the>e values only 111 the case of the 50/20 

mixture It mw,t be stre>sed agam, however, the poor reliability of the GPC 

technique fgr these system>. 
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Figure 4.17: Molecular weight measurements performed at GPC on the three 
functwnahsed polyethylenes and on AC 5120 grafted with E­

Caprolactone m two compositions. 
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4.3.3) DSC Analy>I> of Uncured Mixture; 

The thermal properties of the three funcuonaii;ed polyethylenes, 

determined by DSC with scans from room temperature to 200'C, are reported in 

Table 47, Appendix 7.2. 

The results of the thermal analysis can be summansed as follows: 

a) all three ethylene acrylic acid copolymers show a broad melting peak; 

b) the crystallisation peak 1> narrower and the heat of crystallisation IS 

lower than the heat of fu;wn recorded m the fmt heaung cycle 

The fact that all three polyethylenes have broad meltmg peaks IS probably 

due to a wide d1spersity of molecular >tructure. That IS, the meltmg of the less 

perfect crystals takes place at lower temperatures, while a h1gher temperature is 

reqmred to melt the more perfect cry;tab 

The d,tta of the analy>~> by DSC te;ts for ;ome of the bmary mixtures 

investigated, are reported m Table; 48, 49 and 50 (Appendix 7 2). In these are 

compared the them1al data of the mixtures with the corre>ponding functionalised 

polyethylene For greater clanty, the DSC rewlts of the controls are also 

reported 

From the data m Table 48. rel.tted to mixture; of AC 6702 with Ep1kote 

828, 1t IS noted that the melung peak temperatures of the mixtures are 16-18'C 

higher than that of the pure AC 6702 and that meltmg starts at a lower 

temperature. The meltmg enthalptes of the miXtures, normalised to polyethylene 

content, however, are approximately the ;ame a; that of the pure AC 6702. 

Furthermore, It " noted that m the crystalli;auon proce;s the peak temperature of 

the mixtures IS not very dtfferent from that of pure AC 6702 and that the imual 

and fmal cry;talli;auon temper,tture; are ;lightly lower than for the 

correspondmg temperature> of the pure polyethylene; The most smkmg result m 

this study I> the higher heat of cry-,ralhsatwn for the mixture; with respect to that 

of pure AC 6702, bemg about double for the ca>e of mixtures with the higher 
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polyethylene content, t.e. 75%, and even h1gher at 50'7< polyethylene content. An 

explanatiOn for the;,e ob>ervanon'> could be that, m the ca;,e of the oxidised 

polyethylene, cry;,t"dh;,anon 1;, ;,low, ;,mce 1t con;,1st;, of "I m1xture of chams 

containmg termmal ac1d groups and non-functlonallsed chains. When the 

polymer IS mixed with the epoxy resm and reacts with lt, by heatmg the mixture 

for a long penod of time at h1gh temperature, fractionanon takes place and allows 

the non-reactive homopolymer chams to crystallise more freely. 

If these results are compared with the data trom the hot stage microscope 

analys1s (Table 8) 11 1s noted that m all ca;,es the meltmg ,md the crystallisation 

temperature obtained from the DSC are lower then tho;,e obtamed from the hot 

stage. It must be remembered that m the hot ;,tage an<~ly;,e;, are recorded only the 

temperatures at wh1ch the cry;,tab d1;,appear or are formed during coohng, and 

not the lll!Ual melung. Furthermore the heating and cooling rates m the two 

expenment;, were d1fferent 

The thermal data for the m1xture;, contmnmg one of the two acrylic acid 

copolymers and Epikote 828, can be di'>Cus;,ed together, smce they show s1m1lar 

trends. In all cases the meltmg peaks are less ;,harp and occur at lower 

temperatures than the corre;,pondmg polyethylene in 1solat1on. In the case of the 

mixtures of AC 540 With Ep1kote 828, the >hape of the meltmg areas are closer to 

those of pure AC 540, while for the ca>e of the mixture;, of AC 5120 the shape of 

the trace 1;, quite d1fferent, exh1b1t1ng "t larger decrease m the melung peak 

temperature;, (about 15'C). A;, the;,e ;,y;,tem;, are random copolymer;, and there is 

a high probab!luy that all the chain;, contam ac1d groups, 1t could be hypothesised 

that m all three cases the reaction wJth the epoxy resm takes place primarily with 

the polyethylene chams of higher molecular weight;,, as these are expected to 

have more ac1d groups m the cham A ;,upport for tlm hypothe;,is can be found in 

the observation that the fm"tl melung temper,nure'> are ,Jiw"ty> slightly lower than 

those of the pure polyethylene;,, 1 e about 5-7'C 
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The companson of the heats of fuswn shows that, in the majority of the 

cases, these value> are lower than those of the corresponding acrylic acid 

polyethylene>, probably mdtcattng that only tho>e ch..tin> that have not reacted 

with the epoxy resm or have produced only mono-esters, are capable of 

crystalhsmg. Moreover, It mu>t be remembered that the 'amples have been 

subject to different thermal h1stones, and this could be a major source of 

vananons. 

If now are compared the re,ults of the cry>talltsatJOn proce's (i e. the 

cooling cycle of the DSC analy,1s), It 1' ob;,erved that m all cases the peak 

temperature' of the mtxture'> are htgher than tho'>e of the pure polyethylenes. The 

onset temperature for the cry>talltsatton proce» t> not very dtfferent to that of the 

pure polyethylene, especwlly for the mixtures with AC 540, while the 

temperature for completiOn of the crystalhsauon ts h1gher, especially for the 

mixtures with AC 540 and tho>e of AC 5120 with CY 179 

In all the mixture> with Eptkote 828 the dtfferences m heats of 

crystalli>atton are very >m,tll t10m the pure acrylic actd copolymer, while m 

mixtures with CY 179 the polyethylene ph..t'e >how> alway> a h1gher heats of 

crystallisatiOn wtth respect to the corre,pondmg polyethylene m isolation. 

The companson of DSC re>ults for the bmary mixtures with AC 540 with 

those obtained from the te>ts on the hot stage microscope, Tables 9 and 10, 

shows that the melung temperature> obt~uned trom the two techmques are quite 

similar; while the cry>tallt-,,ttton temperature> obtatned m the DSC are at least 

woe lower than tho>e obtained trom the hot >tage 

For AC 5120, the meltmg pomt mea>ured m the hot stage microscope is 

exactly the same as that measured by DSC (Tables 11 and 12), whtle the values 

for the crystalli>auon temperature are very dtfferent For Its mixtures both 

melung and cry>talltsauon temperature> mea'iured In the hot >tage microscope are 

h1gher (I 5-200C) than the value> obt,uned on the DSC teq>. 
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The data from DSC analysis for the hardener HHP A and some of its 

mixtures with AC 540 and AC 5120 are reported m Table 51 For pure HHPA It 

can be noted that after the expected meltmg temperature of 31 'C there is another 

endothermtc peak at 173 'C. It can be hypothe;,t;,ed that 1t represents the 

evaporatiOn of HHPA, (the reported boiling p01nt of the cts-form is 158'C). This 

explanation ts supported by the ob;,ervauon that the DSC trace for HHP A in the 

coohng stage do not pre>ent any cry>talhsauon and that the sample pan appears 

to be empty at the end of the DSC test. 

For the mtxtures with the two acryhc actd copolymers It seems that only 

the 50!50 mtxture of HHPA wllh AC 540 ;,haws the melung of HHPA at 32'C, 

as thts does not appe<tr m the: ca;,e of the 50/50 nnxture of HHPA with AC 5120. 

In the first ca;,e the meltmg peak I> narrow m relauon to that of pure HHP A and 

the heat of fusion ts ;,maller 

From the comparison of DSC data for AC 540 and AC 5120 and those for 

the mixtures with HHPA are noted the narrow melttng peaks of the mtxtures and 

lower value> of heats of fuswn. The heat> of crystalh;,auon are closer to those of 

the pure acrylic acid polyethylene;, <tnd have ;,mtiiar value;, of the melung 

enthalpy of the heattng stage. Al;,o tor the;,e mixture;, It has been noted that after 

the melting of the polyethylene pha;,e an endothermic peak appears, which is 

probably due to the evaporauon of all or part of the HHPA. For this reason it 

seems correct to normahse the heats of crystalhsatwn to the imual weight of 

acrylic actd polyethylene tn the mixture>. 

Companng the result;, ot HHPA from DSC with tho;,e from the hot stage 

analysts, Tables 13 and 14. a notable difference t> ob;,erved The DSC results 

appear to be clo;,er to tho;,e reported m literature and no melttng at higher 

temperatures IS ob>erved. 

Simtlarly for the mixtures of HHPA wnh the two acrylic actd copolymers, 

in the DSC trace there wa;, no melt111g peak after the melting of polyethylene 

phase, nor any crystallisatiOn at temperature;, higher than tho;,e of AC 540 and 

AC 5120, which ,tre ob<,erved In the hot ,t,t>:e However. ll mu>t be remembered 
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the different conduiom of samples m the two te;ts. The HHPA entrapped 

between the gla;sy slides could be not able to evaporate and this makes possible 

its transformation to the trans-form. 

In Tables 52 and 53 are reported the ternary mixture~ of the two acrylic 

acid copolymers, re;pecuvely, with the two epoxy re;m; u;ed and the hardener 

HHPA 

In all the mixtures there IS only one melting peak and one crystallisation 

peak, m all cases similar to those of the respective pure polyethylenes The peak 

temperature; are slightly lower 111 the melting proce;,; and higher in the 

crystallisatiOn proce;,;, 

The theoretical value; of the heats of fus1on, reported m brackets and 

calculated with the 1 ule of mixture<; applied to each polyethylene and HHPA, are 

in most cases higher than the expenmental value; The heats of crystallisation, 

normalised for polyethylene content, are ;1mdar to those of the pure 

polyethylene;. 

Finally the re;ult; from DSC te;,t;, appear this time Similar to those by hot 

stage analys1s, Tables 16, 17, 18 and 19, except for the crystallisation 

temperatures that are lower for the DSC test; 

In Table 54 are reported the data from DSC tests for the 50/5 and 50/20 

mixtures of AC 5120 grafted with caprolactone. 

In Figure 4.18a, b .md care ;hown the DSC curve; for pure AC 5120 and 

for the mixture; 50/5 and 50/20 of AC 5120-graft-caprol.tctone, kept for longer 

time at 160'C. A broader melting peak I'> ob;erved for all the mixtures with 

respect to the pure AC 5120, begmn1ng the meltmg proce;; at lower temperatures 

(about 15'C). Moreover, the pe.tk temperatures are progre;>~vely shifted to lower 

values with mcreasmg the content of caprolactone and the reaction time. The 

explanation for thl!> behaviOur h.t;, to be connected to the occurrence of reactions 

with the functional group' In AC 5120 cham;, 
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In Table 54 are reported the total heats of fusiOn, even though a direct 

comparison with pure AC 5120 I> not possible owmg to the presence of 

caprolactone Regardmg the cry>talhsauon proce's on cooling, the peak 

crystallisation temperature of the mixtures IS higher than that of pure AC 5120 

and the peaks appear to be wider m relation to that of pure polyethylene. 

In Table 55 are reported the DSC re,ults for the mixtures of the two 

different AC 5120-graft-caprolactone system' with Ep1kote 828 

A comparison of the'e re,ults with those in Table 54 shows very similar 

temperature values tor the melnng "md cry'>talh>anon proce><.,e,. The melting and 

crystalh,auon enthalpies, norm"th;,ed to polyethylene plus caprolactone content, 

are also very Simii,tr to tho,e for the mixtures of AC 5120-graft-caprolactone. 

Moreover, from a comparison wllh Table 50 IllS noted that the temperatures and 

the enthalpy values for both meltmg and cry;,talhsation proce,ses are very similar 

to those of bmary mixture> 50/50 of unmodified AC 5120 with Ep1kote 828. 

From a direct ob,ervanon of the DSC trace;, for 50/50 mixture' of AC 5120, 

unmodified or e-caprolactone modified, with Epikote 828, It 1' noted the 

comc1dence of the curve;, which become;, ex.1ct m the ca>e of mixtures AC 

5120/Epikote 828 and (AC 5120-gr,tft-caprolactone 50/5)/Epikote 828. 

In Table 56 are reported the DSC data for the mixtures of AC 5120-graft­

RVP 69.8/30.2 ;,ubJected to dilferent heating condlllon>, and In Figure 4.19 is 

shown the DSC trace for the re,tction product AC 5120-graft-RVP, which can be 

compared wllh that m Figure 4 18"t (control ;,ample). 

From the'>e u ace> and the dJt,t In Ltble 56 It I'> noted " >Imiiar trend for 

AC 5120-graft-RVP ;,ystem' reLttive to the sy,tem' grafted with caprolactone. In 

both case;,, In fact. the modification of AC 5120 leads to an w1denmg of the 

meltmg and crystallisation peak<;, to lower melting pe,tk and higher crystallisation 

peak temperature'>. The explanation could be the ;,ame that tor the modification 
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with caprolactone. This time the enthalpy value;,, normah;,ed to AC 5120 content, 

are very stmilar to tho;,e of pure AC 5120. 

In Table 57 are reported the DSC results for the mixtures of AC 5120-

graft-RVP with Epikote 828 and CY 179 

The shapes of the melting and crystallisation peaks of the mixtures with 

the two epoxy resin;, are very "'mlar to tho;,e of AC 5120-graft-caprolactone and 

Epikote 828, and in turn with tho;,e of 50/50 mtxture;, of unmodified AC 5120 

with Epikote 828 and CY 179, respectively. The peaks are agmn very broad and 

the transition temperature;, .tre very ;,untlar to tho;,e of AC 5120-graft-RVP in 

isolation. 

In Table 58 are reported the re;,ult;, of the DSC analysis for the mixtures of 

AC 5120-graft-RVP reacted wtth HHPA for dtfferent penods of time at 14o·c. 

The DSC trace of the mtxture heated for 6 hours at l4o·c ts ;,hown m Figure 

4.20. 

From the companson with Table 56 and Figure 4.19 It I' noted that the 

crystallisation peak;, are very ;,mular to tho;,e relative to AC 5120 grafted with 

RVP, whtle the melting temperature> of the mixture;, with HHPA are slightly 

higher than those of AC 5120-gratt-RVP. In no case It b ob;,erved the presence 

of the HHPA melting peak (normally .tt 31.C). The meltmg and crystallisation 

enthalptes of the reaction product wtth HHPA, normalt<,ed to AC 5120-graft-RVP 

content, are very similar to tho;,e of AC 5120-gr.tft-RVP by melf. From all these 

observations It ;,eems that the .t<Jdttwn of HHPA h,t;, no effect on the thermal 

behavwur of the;,e mtxture-, From Ftgure 4 20 It " noted, however, the beginning 

of a new endotherm1c peak .1t temperature;, h1gher tlun l20-130·c. stmilar to the 

peak ob;,erved for pure HHPA, albett for the latter It occurs at higher 

temperatures Thi;, ktnd of phenomenon has not been ob;,erved, however, for AC 

5120-graft-RVP (Ftgure 4.19) 
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In Table 59 are reported the DSC results for the ternary mixtures of AC 

5120-graft-RVP, HHPA and Epikote 828 and CY 179, respectively. These results 

can be compared with those of Table 53 for ternary mixtures with unmodified 

AC 5120 

The result; are m all ca;es very Similar to those of the mixtures with 

unmodified AC 5120 With respect to peak temperatures and also for the shapes of 

meltmg and crystallisation peaks. The enthalpy value; are in all the cases very 

different from the theoretical values and also from those of similar ternary 

mixtures contaimng unmodified AC 5120. 

In Tables 60 .md 61 are reported the result; from DSC analysis performed 

on AC 5120 grafted with RVP m presence of TPP as catalyst at two 

compositions. In the tables can also be observed the influence of the reaction 

time on thermal behaviOur of these mixtures. 

From a companson with Table 56 It can be deduced that the introduction 

of the catalyst TPP m the reacuon of AC 5120 with RVP ha; an mfluence only 

on the fuswn and crystalh;ation cnthalpies, which have been reduced 

considerably with re-,pect to tho-,e reported In Table 56 This can be explained by 

the higher degree of conver;1on of the reaction with RVP when TPP IS present, 

i e. a larger number of polyethylene chams are not able to crystallise having 

reacted w1th RVP. 

From a companson between the data m Tables 60 and 61, It can be 

concluded that, as in the c.tse of sy;tem; grafted without TPP, the reactiOn time 

does not have an apprec1able etfect on the thermal charactemtics of these 

mixtures. 

The mfluence of each mod1f1cation on the thermal characteristics, 

expressed m term; of peak cry-;talhsation temperature (Tc) and heat of 

crystalh;ation (L'>.Hc) m the cooling cycle. IS ;ummamed m Table 62. 



120 

The thennal treatment alone can have a subwmtial effect on the 

crystallisation behaviOur of AC 5120, particularly the crystalhsation temperature. 

Wnh respect to this sample, the data reveal a slight mcrease in crystallisation 

temperature for systems modified With caprolactone and a small reduction for 

systems modified w!lh RVP. All modified samples, except those modified with 

RVP at low conversiOn leveb. ;how a reduction m heat of crystallisatiOn, 

denotmg a lowenng of the level of cry;talhmty, which IS particularly Sigmficant 

for systems modified wnh RVP at high levels of conversions. The residual RVP 

m systems at low levels of modificatiOn probably has a solvent effect on the 

crystallisation of the oligomer. 

In Table 63 are reported the data from DSC te;t; performed on montanic 

acid and on !ls mixtures wnh AC 5 I 20 and Ep1kote 828. For comparison the DSC 

results for pure AC 5120 are also shown. 

The mixture of mont..1mc acid with AC 5120 ;hows melung peaks similar 

to those of both pure components. This IS because the two components melt at 

similar temperatures Furthermore, the heat of fusion of the mixture has a value 

similar to that calculated from the rule of mixture, reported m brackets. Similar 

results are ob-,erved for cry>talhsauon proces;, With an enthalpy very similar to 

the theoretical value. This time, however, the crystallisation peaks of the two 

single components. found m DSC experiments, are very different (by about 

20'C) and for this rea;on on cooling stage a crystalhsauon area has been found 

charactensed by two d1fferent peak temperatures This could be explained by the 

presence of two ~mgle cry>talhne pha>e> wnh no mteractwn between them. 

The DSC trace of Ep1kote 828 grafted w!lh montanic acid appears very 

different from that of pure montamc acid. The meltmg peak temperature IS shifted 

to a lower value. though another small peak dunng melting IS observed at 81 'C. 

The heat of fusiOn normalised to montanic acid content is ;imiiar to that of pure 

montanic acid. The cry>talh;anon peak of the mixture 1; also very s1milar to that 

of pure montanic acid, even though the shape of the curve IS very different and 
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shows another peak value at 50°C, which was not ob,erved during crystallisatiOn 

of pure montamc acid Tlm time the normah,ed heat of crystallisation is lower 

than that of pure montanic acid. 

The results from the DSC analysis of the mixtures with AC 5120, pure or 

grafted with caprolactone, and Epikote 828 grafted with montanic acid, are 

reported in Table 64 

From a companson with the DSC data of the other 50/50 mixtures of AC 

5120, unmodified or modified, with Epikote 828 (Tables 50, 55 and 57) it is 

observed that the melting and crystallisation temperatures are very Similar in all 

cases. It mu't be smd, however, that the mixtures with Epikote 828 grafted with 

montanic acid present meltmg and cry'>talh,atwn shapes different from those of 

the 50/.~0 mixtures of unmodified or modified AC 5120 With non-grafted Epikote 

828. 

Finally, the DSC data of the mnture' HHPA-e-montamc acid are reported 

m Table 65. For gre,tter clanty .tre alo,o reported the DSC re,ults for pure HHPA 

and montanic acid 

In all the mixtures It IS noted the presence of melting and crystallisation 

peaks relative to the montan1c ac1d nch pha'e with 'lightly lower values for the 

peak temperature re,pect to tho'e of pure montamc acid. At the same time only 

for mixtures with high HHPA contents (higher than 70%) IS observed the 

presence of a fmt melting peak relauve to the HHPA nch pha,e. 

The normalised heats of fu,Ion and crystallisatiOn appear, in most cases, to 

be lower than those of the pure components, except m the ca'e of the mixtures 

that show only a 'mgle meltmg peak. Moreover, all the mixtures analysed exhibit 

m the heating stage the begmmng of a new peak after the melting of the montamc 

acid nch pha,e, at temperature'> lower than that ob,erved for pure HHPA. As for 

the hardener by melf, It is thought that thi' peak could be related to the 

evaporation of HHP A phase 
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Comparing Tables 65 and 40 sim!lar value~ of melting and crystallisation 

temperatures pertaimng to the montamc ac1d nch pha~e are observed for the DSC 

and hot stage microscope expenments. 

4.4) Characteristics of Cured Systems. 

From the re~ults of the miscibility ~tudies performed on ternary mixtures 

of unmodified or modified polycthylene:- w11h Epikote 828 and HHPA or MNA 

(see 4.1.4 ), 11 1s possible to obtam an mdicauon of the ~olubliisauon temperature 

of each of the mixture~ m relauon to the cunng and post-cunng procedure to be 

used. (For details of formulations of cured mixtures refer to sectwn 3.8.1 and 

Appendix 7.2, Tables I to 5 ) 

Regardmg the miXture~ with each of the three unmodified polyethylenes 

with Ep1kote 828 and MNA, 1 e. 11, 12, 13, Kl, K2 and K3, I! ha~ been found that 

AC 5120-graft-RYP 1s completely Immiscible wllh Ep1kote 828 and MNA 

hardener. Hence, these m1xtures have to be deemed to be mwluble before cunng. 

The mixtures contammg AC 5120, Ep1kote 828 and HHPA, 1 e SI, S3, Ul 

and U3, are probably m1~C1ble at temperature~ close to 158'C, a~ can be 1mplied 

from Figure 4.3 (see 4.1 4) 

The solub!l1;,ation temperature;, are much lower for m1xtures containing 

AC 5120-graft-RYP, Ep1kote 828 and HHPA. The data m Figure 4.9 show that 

the solubiii<;atJon temperature 1s "tround !33'C for 13, P3, L3, Q3, FHA and FHZ, 

and somewhat lower for 11, PI, Ll and Q I. 

Partial misc1b1hty IS expected for m1xtures contmmng AC 5120-graft­

RVP, prepared in presence of TPP cataly~t and then reacted with HHPA, i.e. M!, 

R1, M'2 and R '2, from the ctll"l ob:-erved m F1gure 4 I!; a lower degree of 

miSCibility, on the other h.md. I> apected for the compo;,111ons M'3, R '3, M3 

and R3 (1.e mixture;, con taming 20 part;, of AC 5120-graft-RYP{fPP). 
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Complete miscibility at temperatures between 80-1 OO'C results in 

mixtures, RU. contmmng CTBN hqmd rubber, 1 e a non-crystallisable oligomer. 

4 4.1) DSC Analysis of Cured Sy;tem; 

As previously explained, DSC tests were performed on samples taken 

from different pam of the cured bar;, the surface of wluch bemg ncher m acrylic 

acid copolymer component. The ;.unples cont:umng one of the three unmodified 

polyethylene'>. for Instance, ;how d melting peak only m the upper part of the 

specimen; while the analys1; of the lower part of the;e ;amples shows only the 

Tg of the epoxy resm. The ;ample; contaimng AC 5120-graft-RYP, on the other 

hand, show In both the parts of each specimen both the Tg of the epoxy resin and 

a melting peak, even If the enth.1lpy of '>pecunen; at the surface IS often higher 

than that mea;ured In the lower part ot the sample The Tg values, finally, are 

mdependent of the part of the ;pec1men analysed. From these observations it can 

be concluded that. when there 1; a low level of miSCibility between the 

polyethylene. the epoxy re;m and the h<~rdener, as for unmodified polyethylenes 

with Ep1kote 828 and MNA, phase separation take; place before gelation of the 

system and the phase ncher 1n polyethylene m1grates towards the surface of the 

sample, due to the lower den;ny of the polyethylene modifier relative to the 

epoxy pha;e M1cro-,cop1c ob;erv.tttons on the;e ;amples confirm the existence of 

non-tran;parent J;olated zone> on their top. The samples contaming AC 5120 

grafted with RVP, on the other h.md, appear more umform and homogeneous, 

with the presence of only few separated zones, confirmmg the higher solubility of 

these sy;tem'>. A fmal ob>ervauon I'> related to the appearance of the samples m 

relation to the cunng temper.tture employed The modified samples cured at a 

temperature higher than the melttng pomt of the polyethylene pha;e (Tc = 115'C) 
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appear to be more rransparent than those cured at lower temperatures (Tc 

60'C). 

In Appendtx 7.2 (Tables 66 to 72) are reported the DSC results for all the 

cured systems produced. The analyst> of the thermal data reported m these tables 

prompts the followmg comments. 

* For samples with identical compositions, the Tg J> not affected by the curing 

temperature (115 or 60'C), nor by the post-curing cycle employed (3 hrs at 

150'C or 3 hrs at 150'C plus 1 hr at I SO'C). 

* MNA and HHPA h.trdener> give the 'ame Tg value for control samples. 

* The reduction of !0 part;, of hardener content produces a decrea;,e of about 

IO'C m Tg. 

* The Tg value decreases as the content of the catalyst (BDMA and/or TPP) 

mcreases For instance, a 5 fold wcrease m BDMA content leads to a decrease 

m the gla;,s transition temperature by about 15'C This could be explained by 

the presence of an exce» of cataly;,t which may act as d1luent for the system, 

or 1t could be due to a reducnon m degree of crosshnking through a decrease 

m amount of anhydnde available for cunng, as a result of the formation of a 

quaternary salt wllh the BDMA 

* The introducnon of an unmodifted or modified polyethylene leads in any case 

to a lowenng of the Tg wllh re;,pect to control samples The plasticisation 

effect of the polyolefm ph.t;,e becomes more ev1dent at h1gher contents of 

polyethylene;, and for RVP modified ;,ystems, 1 e at a h1gher level of 

solubih;,auon of the AC 5120 component 10 the epoxy matnx. It must be 

observed, however, that ;,ome of the samples containing larger amounts of 

polyethylenes were prepared with a reduced quantity of the hardener (70 

parts), m the behef that pan of the ac1d groups neces;,ary for the crosslinking 

reaction of the epoxy re>m could be denved from the functionahsed 

polyethylenes The reducuon m Tg 1n the>e ca;,es c.tn also be due, therefore, to 

the lower content of hardener 
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*The pre;ence of larger amounts of unreacted RVP abo produces an appreciable 

reduction 111 Tg values. 

* All the ;amples contaming the ethylene oligomer;, unmod1fied as well as 

mod1f1ed, show a meltmg transition wnh a peak temperature lower than that 

found for the corre;pond 1 ng polyethylene, unmod1fied or modified, in 

Isolatwn 

* It IS not po;;Jble to make ,my comment on meltmg enthalp1es of cured systems 

bemg unknown the exact content of the polyethylene component in the 

specimens analysed, as it change; from zone to zone. 

In concluswn. the analyo.to. of the thennal properttes ;uggests that the 

presence of a polyolefm modifier reduce-, the demny of the epoxy network. The 

softemng of the epoxy matrix could be attnbuted 111 part to the dilution effect of 

the polyethylene pha;e, solubtlt;ed m the hqmd re;m before Its hardening, and m 

part to the plastJctsatton effect by the unreacted monofunctional epoxy modifier. 

4.4 2) SEM Ob;ervauom on Cured Sy;tems. 

The re-,ults of the SEM analy'>IS performed on cured systems are presented 

in F1gures 21 to 38 (Appendix 7 3), where are shown some of the micrographs 

taken on the wrface of '>ample; fractured .n low temperature; 

For comp,m;on purpo'>e>, the mtcro;tructure of the control sample (CL) 

cured at 11 YC I> shown f1r>t tn F1gure 21. 

A feature similar to that ob<,erved tn the control (CL) sample, i.e distinct 

fracture !me; charactensuc of bnttle resms, IS found 111 sample 13 (F1gures 22 

and 23). Like the other cured ;y>tem; prepared wnh unmodified funcuonalised 

polyethylene. 13 present> on ;urface a layer nch 111 polyethylene component, 

while no di'>persed particle<, are ob'>erved 111 the bulk of the sample. It is, 



126 

therefore, confirmed that for all the sy~tems prepared with unmodified 

functionalised polyethylenes the second phase Introduced in the epoxy system 

separates and migrates to the top of the sample, and IS not avmlable, therefore, to 

act as a toughemng agent in the bulk of the sample. 

The effectiveness of the acrylic aCid copolymer AC 5120 as toughening 

agent begms to be revealed, on the other hand, when it IS modified with the 

monofunctional epoxy re~in RVP (Figures 24 to 27). Although a part of 

polyethylene phase agam accumulate;, on the surface of the cured sample, as 

shown in Figllre 24, ~ome particles are present in the bulk, as shown m Figures 

25 and 26, for the sy~tem cured below the melting pomt of AC 5120 (FHZ), and 

in Figure 27, for the ;,ystem cured at 115'C (FHA). In Figure 25, in particular, It 

is possible to ob;,erve the well di;per;,ed particles at the edge of the advancmg 

fracture planes, acnng a;, crack ;,topper'> The sphencal particle;, range m Size 

from 5.0 to 25 ~m. In Figure 26 J!> -;hown 111 detail one of the larger particles. It IS 

noted the different feature of the fracture ;urface m;,1de the particle relative to the 

brittle fracture of the epoxy matnx, i e the particle appears to be fractured in a 

ductile manner. The ability to slow down the propagation of the bnttle fracture 

through the matnx IS abo demonstrated by the ductile fmlure of the particles of 

the system FHA, a-; ~hown 111 Figure 27. Fmally, the adhesiOn between these 

particles and the matnx m both ;,y;,tems .tppears to be very good, suggestmg that 

the parucle;, could contam .tbo ,1 certam amount of epoxy resin. Similar 

consideratwn;, can be made for the ;,y;,tem;, contammg lower amount of AC 

5120-graft-RVP. shown in Figure;, 28 to 31. It IS agmn po~s1ble to observe in 

these system;, the presence of ;,mall ;,phencal particle;, potentially capable of 

arrestmg the fracture prop.tgauon 111 Ihe matn'l. The feature of the fracture 

surface through the particles, moreover. IS charactensuc of aggregated particles. 

The thickne;, of the ;eparated layer on ;urface, on the other hand, diminishes 

with decreasmg the content of modified AC 5120 

When the functionah;,ecl polyethylene I!> modified with RVP in presence 

of TPP (1.e. at h1gh extent ot conver;,wn), the sphencal particles are able to 
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precipitate in a more umform way and display a reduced migratiOn effect to the 

surface, as shown m Figures 32 to 38. For systems cured at higher temperatures, 

these particles appear at the end of bnttle fracture planes, acting as crack 

stoppers, mdependently of their compositiOn (Figures 32 to 34) When the curing 

temperature used IS lower, on the other hand, it seems that a higher content of 

modified AC 5120 IS necessary to arrest the propagation of the fracture inside 

each particle (Figures 35 to 38). For the ;amples cured at 60'C, the particles 

appear to fracture m a more ductile way (Figures 36 and 38) than those present in 

systems cured at 115'C (Figures 33 and 34) which are more smooth and regular. 

In other word;, at 60'C the system IS below the meltmg point of the polyethylene 

phase and, therefore, It retains much ot the onginal ductility of this phase. The 

particles that precipitate from the high temperature cunng ;chedule, on the other 

hand, contain epoxy re;in and hardener and are likely to be crosshnked 

In Figure 39 is shown the sy;tem contmmng CTBN hqmd rubber as 

modifier. Even If not very clear, the presence of numerous very small particles 

(0.5-0.7 ~-tm) IS noted also m thi; case. The Size di>tnbution of these particles, 

however, Is very umform relattve to tho'>e observed m the systems containing the 

modified AC 5120. 

In Table I1I me reported the value;, of the volume fraction of the particles 

of some cured sy;,tems, Vp, calculated mea;unng the dimen;,wn; of the particles 

on SEM micrographs, as;ummg that they have broken exactly in the middle, 

relative to the volume of the matnx. correspondmg to the total area of the 

photograph, I.e. 

Total Area of Parncles In the Photograph 

Area of the Photograph 
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In Table rrr is also shown the theoretical volume fraction, i.e. V M , 

expected in each system for the polyethylene modifier, calculated using the 

followmg formula: 

where: W M IS the weight fraction of the polyolefm modifier, 

Wi IS the weight fractiOn of the epoxy resm; 

PM IS the den;Ity of the polyolefm modifier(: 0 85 g/cm3
); 

PE I> the density of the epoxy resm (: 1.15 g/cm3
) 

TABLE Ill: Volume fraction values calculated on some of the cured system. 

Sample w" V\r Vp 
RI 5 66 3.7 
R3 17 21 7 8.3 
M3 17 21 7 4.6 

WM (%) = wctght fractiOn of the polycthylcnc modifier. 1 e AC 5120-graft-RVP{fPP, V \I(%)= 
volume fractiOn of the polyethylene modilicr. Vp (%) = volume fractiOn of the prectpttated 
particles (Formulallon' ior RI. R3 Jnd M3 .uc 'hown m T Jblc 5, Appcndtx 7 2) 

The volume fractton of the precrpitated particles calculated through the 

observation of the SEM micrograph> are alway; much lower than those 

calculated theoretically from the content of the polyethylene m each sample. 

Although the theoretical volume fractiOn value; are subjected to some errors, 

since the den-.Ity of the modifier IS con>Idered to be the same as of the polyolefin, 

the values m Table lii ;how cle.Irly that only a fractiOn of polyethylene phase is 

precipitated as ;,pherical parttcles Especially for the sample cured at high 

temperature, r.e. M3, It was difficult, however, to mea;ure accurately the 

dimension; of the parttcle;, hence the results may, again, not be very accurate. 
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Beanng m mmd the-,e IImHarion>, the mo>l nnpre>>Ive re>ult I> the diminishing of 

the effective (precipitated) volume fraction wnh mcrea>mg the curing 

temperature w.ed. 

In conclusion, the different cunng remperature> employed seem to have an 

appreciable effect on the nature and the characteriStics of the precipitated 

particles that form m>ide the epoxy matnx. The systems cured at temperatures 

lower than the melung pomt of the polyethylene, m fact, >hould contam particles 

formed by addition..tl polyerhylene pha>e precipllating out a> primary particles 

separated through chenuc.d reacuon> When the cunng temperature IS h1gher than 

the melting pomt, on the other hand, the only mechanbm acting is that of 

nucleauon and growth. In rhe f1r>t ca~e. the cunng process produces particles 

very rich m the cry'>talhsable component, explaimng the very ductile surface of 

the parucles. In the >econd, the precipitatiOn mvolves a mixture of modified 

polyethylene wnh epoxy re>m giVIng me to amorphou> particles not too different 

from the >urroundmg brmle matnx, bur wll able ro acr a'> crack >toppers. Both 

systems, however, >how ..t very good adhe>wn between the matnx and the 

particles The dimensiOns and the number of the prec1p1lated part1cles, finally, 

seem to be influenced by the cunng temperature and by the amount of modif1ed 

polyethylene. The dimenswns of rhe pamcles, m fact, mcrease with the content 

of AC 5120-graft-RVP(TPP and u>mg .tlower cunng temperature (60'C) Their 

number decrea>e'> when u>ing a higher cunng temperature. 

4 4 3) Mechamc.tl Charactem!JC> of Cured Sy>tems. 

4 4 3.1) Dynamic Mechanical Anc~lym 

The re-,ull'> of the D.'vfA re'>t> performed on >ome of the samples, cured at 

115 or 60'C and a! way> po>r-cured at !50 ..tnd ISO'C, are >hown m Figures 4 21, 

4.22 and m Table 73 (Appendix 7 2) 
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Figure 4.21: DMA scans performed on a) control sample, CL; b) sample with 5 
parts of grafted AC 5120, Ml; and c) sample wllh 20 parts of grafted 
AC 5120, M'3. 
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Figure 4.22: DMA scans performed on a) control sample, CR; b) sample with 5 
parts of grafted AC 5120, RI; and c) sample With 20 parts of grafted 
AC 5120, R'3. 
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It can be first noted that the cunng temperature used seems to have a 

certam mfluence on both dynamic moduli, i e. a lower curing temperature 

produces a general decrease (- 15-20%) of these moduh In examming the 

influence of the addition of modified polyethylene on dynamic moduli at room 

temperature, it IS revealed that for lower contents of AC 5120 grafted with RVP 

(M! and RI sample;) the storage modulus is ;lightly lowered (5-10%), while the 

loss modulus shows an mcrease of about 25%. Less clear IS the trend when the 

content of modified AC 5120 IS mcreased to 20 parts. The storage modulus 

appears to decrease by different amount and the loss modulus has values similar 

to or twice a; large as to the control samples, both dependmg on the cunng 

temperature employed. In conclu;wn, It can be ;:ud that the inclusiOn of low 

percentages of the modified polyethylene AC 5120 has only a small effect on the 

dynamic-mechamcal properties of the cured samples. Increasmg the amount used, 

the decrea;e m storage modulus becomes more pronounced 

Some comments can also be made from the observation of the curves 

relative to dynamic parameter; mea;ured m temperature ;can; for control and 

modified samples, reported m Figure> 4 21 and 4.22. The presence of large peaks 

m G' curve~ found for almo~t all the modified samples at about 90"C, 

temperature clo>e to the melung pOLnt of the cry;tallme phase, suggests that the 

melting process h<b a cert:un effect on the ;torage modulu;. For the sample 

containmg 20 parts of grafted AC 5120 and cured at 60"C (R '3) It can be also 

noted a peak in G" curve at a lngher temperature, 1 e at about 105"C. It is 

thought that thi> peak could be a con-.equence of the pre~ence of a dispersed 

phase, even If is not clear the effect of till> pha;e on the lo;s modulus. 

From a comp,mson of Table 73 with Tables 68 and 70, fmally, It can be 

observed that the Tg values, calculated m temperature ;can tests as the 

temperature at which the maximum of the G" curve IS reached, are m good 

agreement with those measured by DSC technique (I.e. they are about 2"C higher 

than those found by the DSC analy>t>J 
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4 4.3.2) Flexural Te>ts 

In Tables 74 to 76 (Appendix 7 2) are reported the results of Flexural 

Tests performed on 'ome of the cured samples produced. The values of flexural 

modulus, >trength at break and stram at break can be compared at dtfferent curing 

and post-cunng temperatures with re,pect to the content of modified AC 5120. 

Companng ftrst the control sample,, all the mechamcal properties 

measured 'eem do not seem to be affected by the cunng and post-cunng cycles 

used, although 'ome anomalous re~ults are ob,erved (for mstance the properties 

found for the control cured at 60'C with 5 pam of the cataly't BDMA (CQ) are 

higher than those found for the control cured at the same temperature wtth only 1 

part of BDMA, 1 e. CR. This behaviOur IS not found for the other control cured at 

60'C with 5 pam of catalyst but post-cured only at 150'C (CP) 

The mclw,ion of a low percentage of RVP grafted AC 5120, mespective 

of whether the catalyst TPP was u>ed or not, has no mfluence on the flexural 

charactenstiC> with respect to the control sample' On the other hand, when the 

content of modified polyethylene b mcrea,ed, the modulus and strength 

measured 111 flexural te,ts are reduced by more than 15-20% It must be 

remembered that all the ;,amples analy>ed with 20 parts of modified AC 5120 

contain only 70 parts of the hardener HHPA. Therefore, the true cause of the 

decrease of the mechamcal properue' could be as>OCiated with the low degree of 

crosslink1ng of these systems, a> already venfied by the Tg values measured m 

the DSC te't<. No clear trend 1' tound for the re,ult' of elongation at break. 

In conclu>wn, the presence of limited percentage (5 parts) of polyolefin 

leaves almost unaffected the flexural properties found for the control samples. 

These properties 'eem to be very >lightly mt1uenced by the level of modification 

of the polyethylene added to the epoxy res m. 
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4.4.3 3) Fracture Toughne'>s Test>. 

In Table 77 are reported the re;ult; from Fracture Toughness Tests in 3 

point bendmg performed on some of the cured samples realised. 

For both the toughness parameters mea;ured, i e. Kc and Gc. the results 

depend on the cunng cycle used. S.tmples cured at 60'C pre;ent values of both 

Kc and Gc lower by about 10% with re;pect to analogous ;amples cured at 115'C. 

The .tddiUon of a polyethylene phase produces an mcrease (about 10%) in 

the cnucal srres> intensity factor, Kc. only at a low percentage of modified AC 

5120 (5%), while Kc remams almost unaffected when the percentage reaches 

10%. Low content~ of the polyolefm lead to an even more remarkable 

enhancement m the cnucal ;mun energy release rate Gc , 1 e about 20%. These 

increase; are recorded mdependently from the cunng temperature; employed. It 

must be menuoned. however, the not very good reproducibility of the tests, 

especially for small lengths of notches (<50% of the total w1dth). In Figures 4 23 

and 4 24 are ;hown the result'> of the te>t> performed on a control (CL) and a 

modified (M'2) cured sample, re'>pecuvely. In the;e f1gures P is plotted agamst 

(BW112 )/Y m order to calculate K" a> the ;lope of the ;trmght line fitting the 

experimental data 

In Table 77 i'> also reported the Kc value found for the system containing 

CTBN rubber An mcrease of about 17% is observed for th1s system with respect 

to the control, 1.e. CL 
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Figure 4.23: Plot for cntical stress intensity factor (Kc) of control sample, CL. Kc = 
1.65 MPa*m112
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The re;ulb of Charpy Imp.tct Strength for the unnotched samples analysed 

are reported m Table 78. Appendix 7 2 It IS noted that the mclusion of low 

percentages (5 and 10 %) of modtfied AC 5120 p10duces an mcrease m impact 

strength values of about 10 and 15%, respectively, with re;pect to the control 

sample lt seems. therefore, that by mcreasmg the content of modified 

polyethylene It IS pos;tble to obtam a certam mctea;e m the toughness of the 

cured samples. It mu;t be ;atd, however, th.tt all the modtfted ;dmples showed a 

wide vanabilny of re;ulr;, 1.e larger than in the ca;e of the control samples. This 

is probably due to the fact that It IS not possible to obtam completely 

homogeneom, cured samples, as already observed, wnhout zones with the 

modified AC 5120 dem1xed from the sy'>!em. 

In conclu;wn, the addition of low percentage; of the modified AC 5120 

produce; a hmned mcrease m all the parameter; rel.tted to the toughness 
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5. DISCUSSION 

5.1) Effects of the Functionality of Low Molecular Weight 

Polyethylenes on their Miscibility with Epoxy Resins. 

The miscibility of the binary mixtures of the two epoxy resins w1th any of 

the three functwnalised polyethylenes under invesl!gation has been found to be 

strongly dependent on the functionality of the polyethylene 

An aid to the solubilisation process was found m the prolonged heating of 

the m1xtures at temperatures higher than the meltmg pomt of the polyethylenes. 

Nevertheless, to achieve complete miscibility between the different phases, it 1s 

necessary to heat the mixtures at high temperatures, even h1gher than 200°C for 

the polyethylenes With lower values of functionality (i.e f = 0.26 and 1.22). It 1s 

thought that for these systems the solubilisation process takes place through 

chem1cal reactions of the acid groups of the functionalised polyethylenes With the 

epoxy resm, often resultmg m crosslinked products before ach1evmg complete 

misc1b1lisation. In support of th1s hypothesis there IS the observation that most of 

the mixtures of the acrylic acid copolymers with higher functiOnality values, once 

solubilised, did not show the prec!p!tatwn of particles of the second phase in the 

cooling stage. This is also confirmed by the strong adheswn between the glass 

covers at temperatures h1gher than the melting point of the polyethylene 

The inducement of m!sclbllisation of different phases IS related to the 

d1ffuswn processes between these phases The studies on diffuswn m the 

mixtures of functwnalised polyethylenes with epoxy resms gave a confirmatwn 

of the influence of functiOnality, i.e. an mcrease in the diffusion rate from the 

particles into the resm was found With mcreasmg the functionality of the 

polyethylene component. Moreover, from the observations of the solubilisation 

and precipitation temperatures in hot stage expenments, and beanng in mind that 

a w1de gap between these temperatures indicates a slow diffusion process and a 

narrow temperature gap indicates a fast diffusion, it is possible to arnve to the 
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same conclusion. The acrylic acid copolymer AC 540, having a functwnahty of 

1 2 and showing a wide temperature gap, IS characterised by a slow diffusiOn 

rate. The opposite IS the case for AC 5120 which has a functionahty of about 2 

The functwnahty of the acrylic acid copolymers plays an Important role 

also for the solubility of their ternary mixtures with an epoxy resin and a 

hardener 

Agam the mixtures with the polyethylene having lower functionality, AC 

540, turn out to be less miscible than those With AC 5120. It IS also noted that the 

addition of the hardener HHPA decreases the solubihty of the ternary mixtures, 

which IS probably due to an Isomorphic transformation of the hardener when 

heated or simply to a change of the solubihty parameters Most of the ternary 

mixtures, in fact, show a solubilisation temperature higher than that of the 

correspondent binary mixture Larger amounts of epoxy resin seem to make 

easier the solubilisatiOn process with the polyethylene and the hardener. 

Solubilisation between different phases can carry on through purely 

physical diffusion, driven pnmanly by entropy, or through both physical and 

chemical processes, which will be characterised by both entropy and enthalpy 

terms If the latter is the case of the mixtures With HHPA, I.e. the solubihsation in 

these mixtures is chemically mduced, the endothermic heats recorded m DSC 

expenments on heating must be related to the enthalpy of mixing On the other 

hand, the total enthalpy recorded in the heatmg cycle of the DSC expenments 

take mto account also the melting of the crystalline phases (AC 5120 and 

HHPA), and It is not easy to separate the single contnbutwns, due to the fact that 

is not well understood in which form ( cis- or trans-) is present HHP A Finally, a 

confirmation of the occurrence of solubihsation through chemical reactions for 

these mixtures can be derived from the observatiOn under the optical microscope 

that phase separatiOn not always occurs in the cooling stage. The irreversibihty of 

chemical reactions, in fact, hinders the reformations of the second phase particles 

on cooling. 
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5.2) Effects of Chemical Modifications of the Polyolefin 

Component on its Miscibility with Epoxy Resins. 

The modifications performed on the acrylic acid copolymer with the 

higher functiOnality, AC 5120, have not always led to an mcreased miscibility of 

its mixtures with the epoxy resins used 

The reaction of AC 5120 with E-caprolactone gave nse to modified 

systems that show a defimte detenoration in miscibility with epoxy resms for 

both binary and ternary mixtures. Increasing the content of caprolactone and/or 

its reactiOn time With AC 5120, the mixtures become even less miSCible. As the 

molecular weight of AC 5120 remains approximately constant after the reaction 

With caprolactone (see paragraph 4.3.2, Figure 4 17c, and data m Table 46 m 

Appendix 7 2) and the meltmg and crystallisation temperatures of AC 5120-graft­

caprolactone decrease with respect to unmodified AC 5120 (see DSC data in 

Table 54, Appendix 7 .2), it can be concluded that the reactiOn between AC 5120 

and caprolactone leads to an effective umtary graftmg of AC 5120 and that the 

formatiOn of side branches hmders crystallisation. The explanatiOn for the 

reduced miscibility of AC 5120-graft-caprolactone with Epikote 828 and/or 

HHPA must related, therefore, to mtnnsic chemical factors For example, the 

branches produced through the grafting reactiOns could reduce the diffusiOn rate 

m the solubilisation process 

On the other hand, by modifying AC 5120 with a monofunctional epoxy 

resm it IS possible to achieve a substantial Improvement m miscibility with epoxy 

resms. Moreover, almost all the binary mixtures, once solubilised in the heating 

stage, phase separate on coolmg A further mcrease m miscibility is promoted by 

the use of a catalyst capable of producmg a higher conversiOn for the acid groups 

of AC 5120. This time, however, no phase separation on coolmg stage is 

recorded and, therefore, it shows that the UCST curve has moved to much lower 

temperatures. 
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The ternary mixtures of AC 5120 grafted with RVP, Ep1kote 828 and 

HHP A, however, are not much more misc1ble relat1ve to similar systems based on 

unmodified AC 5120. The HHPA hardener, in fact, causes agam the demixmg of 

the modified polyethylene from the epoxy resin. The sto1chiometnc chemical 

reactiOn of HHPA With AC 5120-graft-RVP, in presence of the catalyst, leads to 

a certain improvement in the solubility of the total mixtures, espec1ally relat1ve to 

the modification with caprolactone (see Figures 4 3, 4 6, 4 7, 4.11) As already 

stressed in the presentatiOn of the results, the reactiOn t1me for all the chem1cal 

reactwns employed to produce modified systems 1s very important A better 

miscibility is achieved heating the mixture only long enough to obtam the 

maximum conversion in each reaction. 

Vanous attempts have also been made to achieve better m!SC!bihty 

between the components A different hardener, MNA for istance, added to binary 

mixtures of RVP grafted AC 5120 with Epikote 828 gives rise to completely 

immiscible mixtures. 

Also the attempt to modifY the epoxy resm Ep1kote 828 with montamc 

acid has not been very successful. The montamc ac1d seems not to affect the 

diffusion processes occurring between the different components m a mixture, 

processes that are responsible of the solub1lisat10n of the components. The studies 

on the hot stage microscope have shown Similar solub!IJsatwn temperatures for 

systems differing only for the presence of montamc ac1d. Again, the addition of 

caprolactone m these systems produces a decrease in solubility 

The montanic ac1d has been also used to prevent any isomorphic 

transformation of the hardener HHP A that could cause the low miscibility m 

mixtures of functionalised polyethylenes and epoxy resins Even 1f th1s 

expenment succeeded, 1 e the use of small amounts of montamc ac1d prevents 

the transformation of HHP A to the trans-form, th1s mod1ficat10n IS not effective 

in enhancmg the m1scib1lity of ternary m1xtures However, these experiments 

have been useful since they revealed the peculiar behaviour of HHP A, i e 1ts 
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high sensitivity to mOisture, which could more readily promote the isomorphic 

transformation, even in presence of montanic acid 

Fmally, miscibJ!isatwn stud1es performed on mixtures of Ep1kote 

828/HHP A in which a CTBN based hquid rubber was added, have revealed that 

these systems form totally miscible mixtures Th1s proves that the initial system, 

resm plus hardener, is miSCible even at room temperatures with traditional 

ohgomenc systems used as toughenmg agents It can be mferred, therefore, that 

the mJscJbihsatwn of the polyethylene based modifiers must have resulted from 

chem1cal reactwns with the epoxy resm, unlike the case of CTBN whrch rs 

physically miSCible w1th the epoxy resm . 

5.3) Effect of Chemical Modifications of the Polyolefin 

Component on its Crystallinity. 

All the chemical modifications performed on AC 5120 produced some 

effects on the crystallinity of the polyethylene 

The modification reactwns, leading to an extension of the chain length of 

the polyethylene, gave nse to a decrease in the crystallisation enthalpy. This 

decrease is more marked for the products of the reactwns with a higher level of 

conversion and IS accompanied by an increase in the peak crystallisatiOn 

temperatures 

The occurrence of a further decrease m heats of crystallisation, produced 

by the thermo-mechanical treatments (i.e. the stming of the materials m the 

meltmg state), remains less clear to explam. The effect of the crystallisable 

component on crystalhsatwn should be considered, therefore, as the net effect of 

both the difficulty to crystallise the longer chams and the treatment employed 
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5.4) Phase Separation Phenomenon during Curing of Epoxy 

Resins Containing a Functionalised Low Molecular Weight 

Polyethylene. 

As already discussed, the modification of the acrylic acid copolymer AC 

5120 With the monofunctional epoxy res m RVP, m the presence of a catalyst, was 

found to be the most effective in increasmg the miscibility with the epoxy resm 

and to produce a two-phase system m a cured epoxy matnx, shown in SEM 

micrographs (see Figures from 32 to 38 m Appendix 7.3). 

The use of AC 5120 without any modification to prepare cured epoxy 

systems was found to be ineffective, leading only to a migratiOn of polyolefin 

component to the surface of the sample The centre of the sample, in fact, 

appeared to be transparent, not containmg any particles Moreover, m comparing 

the Tg values of systems contammg a functionahsed polyethylene With that of a 

control sample, cured with the same amounts of hardener and catalyst, a small 

decrease in the Tg was observed (up to 4°C for a content of20 parts of AC 5120) 

With respect to the corresponding control samples. This could suggest that the 

po1yethylene present m the centre of each sample acts as a plasticiser only for 

samples with higher contents of AC 5120. On the other hand, a notable decrease 

m Tg values was found for the systems prepared With modified AC 5120, which 

becomes more pronounced with increasmg the content of AC 5120. This time, 

both the more soluble polyethylene phase and the unreacted R VP could act as 

plasticisers It must be stressed, however, that even m these systems a completely 

stable and homogeneous system is never reached, since a part of polyethylene 

still migrates to the surface of the samples, as shown by the DSC analysis, which 

revealed the presence of a melting peak only in the upper part of the specimens 

It can be concluded that the modification of AC 5120 with RVP, in the 

presence of TPP, Improves the miscibility in mixtures With the epoxy resin and 

provides cured systems m which the polyethylene phase separates to give nse to a 
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precipitated particles morphology. Smce the modification reactiOn when the 

catalyst TPP IS present goes to a htgh conversiOn, m the cured samples there must 

be only a low amount ofunreacted RVP as potential plasticiser for the matnx On 

the other hand, in the same samples the plastlcisation effect of the more soluble 

modified AC 5120 IS stronger Therefore, the best results m terms of lowest 

reduction in glass transition temperature and greatest uniformity of particles 

distributiOn m precipitated systems, are achieved at low contents ( 5-10 parts) of 

AC 5120 grafted with RVP m presence ofTPP. 

The lower values of the volume fractiOn of the precipitated particles 

calculated from the SEM micrographs, with respect to those obtamed 

theoretically from the precise amount of grafted AC 5120 added to the systems 

indicate that a large part of the polyolefin modifier does not precipitate as 

particles and, therefore, remains dtssolved m the epoxy matnx and acts as 

plasticiser 

The effect of the cunng temperature on the precipitatiOn of second phase 

particles, though not detected in the DSC analysts, was revealed from SEM 

observations. Systems cured at different temperatures are subjected to different 

precipitation mechanisms, as observed from the dtfferent features of the fractured 

surfaces and the charactenst1cs (dimensiOns, numbers and volume fractiOn 

values) of the spherical particles precipitated m the epoxy system. On the other 

hand, the matrix cons1stmg of epoxy resin mixed with a certam amount of 

modified AC 5120 shows the same morphology and Tg values, Irrespective of the 

cunng temperature 

5.5) Mechanical Properties of Modified Cured Samples. 

Both the content of modified AC 5120 and the curing temperature have an 

appreciable effect on mechamcal properties 
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The introduction of 5 parts of the polyethylene, prevwusly grafted With 

RVP m the presence ofTPP, leads to an increase in the toughness properties from 

about 10% , for Kc and acu , to 20% , for Gc At the same time, the flexural and 

dynam1c-mechamcal moduli of these samples remamed unaffected or slightly 

lowered w1th respect to the control samples Lower enhancements m toughness 

properties are found for samples containing I 0 parts of mod1fied AC 5120 Only 

the acu data for these samples show an m crease of about 15% When the content 

of modified polyethylene is mcreased to 20 parts, on the other hand, the modulus 

showed, generally, a significant decrease (up to 25%) Only a slightly higher 

enhancement m toughness, as measured by Kc , was found for the system 

contammg !0 parts of CTBN liqmd rubber, 1.e an mcrease of about 15% with 

respect the control CL. 

From these observatiOns it is concluded that the addition of e1ther a 

polyolefin or a liquid rubber mod1fier, due to their ability to produce prec1p1tated 

particles mside the cured systems, leads to better toughness properties, though 

these mcreases are lower than those expected, owmg to the low y1eld of 

prec1p1tated particles. Moreover, m the case of the modified polyethylene, the low 

enhancement in properties could also be attributed to the prec1p1tated particles 

being too soft and not able to give rise to shear deformations in the matnx, the 

required cond1t10n for an effective toughenmg The prec1p1tatwn of ductile 

particles, therefore, may not be a suffic1ent reqmrement to impart the desired 

properties to the system, even if a good adhesion between particles and matnx 1s 

assured. 

From a comparison of the results found in th1s study w1th those reported 

by other authors on toughened systems, however, some discrepancies are 

observed. 

It 1s reported that neat DGEBA resms cured With different agents (1.e. 

piperidme, diammod1phenyl sulphone (DOS), diaminod1phenyl methane (DDM), 

anhydndes) generally present lower values of storage modulus, G', from 0.9 GP a 
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(I
20

·I
2

I) to 1 4 (I 22) and 2 GPa (I 23), than those found for the systems examined in 

this study (I e. 2.4 GPa for CL and I 95 GPa for CR) On the other hand, the 

above authors too have found that the mcluswn of a toughening agent produces a 

shght decrease m G', i e 20% (1
22

), while a very strong mcrease was found for 

G", i e. up to 12-fold <60
) 

The expenmental data found for the flexural modulus and the strength at 

break are more in !me with those reported in the literature Several studies, in 

fact, have reported for standard DGEBA resins a value for the tlexural modulus 

of 2 25-2 5 GPa <
56

'
72

) or shghtly higher, 1 e 2 96-3 37 GPa <
60 7

I I 2~ I25 ) All the 

researchers reported a decrease in flexural modulus from 10% to 30% when 

introducmg a toughening agent, not always a rubber, depending on the nature and 

the amount of this modifier The flexural strength reported m the hterature <
60

·I
26

) 

is, however, lower, i e. varymg from 78 6 and 76.1 MPa, than those found m this 

work, in the range of 99 1-97 0 MPa Also for the other researchers the additiOn 

of low amounts of modifier leads to an increase m flexural strength, but at higher 

levels of additiOn It decreases to values even lower than those found for the 

control samples However, 1t must be sa1d that these systems are probably more 

likely to give complete precipitation with respect to the systems of this study. 

While no authors performed fracture toughness tests employmg a Charpy 

pendulum on unnotched samples, many studies were concerned with toughness 

properties m slow speed 3 point-bendmg tests Also the Kc and Gc values 

obtained in this study are different to some extent to those reported by other 

authors. They have reported, for a standard DGEBA res m cured With HHP A 

hardener, values of Gc rangmg from 0.136 to 0 !53 kJ/m2 
(I

27
l, which are much 

lower than those found m this research for control systems, i e. I 15 and I 0 I 

kJ/m2
• Similar values have been found for a DGEBA resm by other authors 

<
6 I 7 l. 76·I 22·I 2~ I2S-I30), 1 e Gc = 0.09-0.39 kJ/m2, With increases up to 600% when a 

rubber modifier is added (I 2~.I 28 ); while the mcreases m Gc are more limited (I 0-

170%) when a thermoplastic toughenmg agent is employed, PC, PES, PI 

<
7

I,I
22

·I
28

l. The higher toughness of unmodified systems studied With respect to 
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sim1lar systems reported by others could explam the limited effect of the 

toughenmg agents found in this study. 

The values reported for Kc usmg Similar resins are again lower than those 

found in th1s study, corresponding to 1.65 and 1 52 MPa(m) 112
• The disagreement 

in this case, however, IS less significant, i e. Kc values range from 0 6 to 1 1 

MPa(m) 112 
<
56

•
72

•
73

•
76

•
122

•
124

•
128

-
1321 Moreover, the Tg values found for most of the 

DGEBA cured systems are much h1gher (from about 150°C <
13 56601221 to around 

200°C <
72

•
73

•
76

•
1281

) than those found for the control systems m this study (-132°C) 

Therefore, the system analysed in this research could be mtrmsically more ductile 

than those reported by the above authors, wh1ch IS confirmed also from the lower 

values of flexural modulus Again, the more remarkable mcreases m Kc are 

recorded with the additiOn of a rubbery modifier, i e. from 80 up to 210% 

<
124

•
128

•
131·I 32>, while increases ranging from 15 to 75% only are found with about 

10% of thermoplastic modifiers <
72

'
73

'
122

•
1281 

The enhancement in toughness of bnttle resins IS stnctly related to the 

volume fractiOn of the dispersed particles, i e. on increasmg the volume fraction 

the toughness generally increases up to a level reaching a plateau or a maximum. 

In rubber toughened epoxy systems, moreover, the volume fraction of the 

precipitated particles IS always h1gher than the volume fractiOn of the modifier 

added <60
•
61

•
1241, suggestmg that the particles are formed by a mixture of modifier 

and resin This last observation may constitute the mam explanation for the lower 

enhancement in toughness reached in the systems modified with grafted AC 

5120, i.e. only a fraction of polyolefin modifier is capable of precip1tatmg and 

formmg dispersed particles On the other hand, for the system m which the 

toughening agent is the rubber oligomer CTBN the lower increase in toughness 

w1th respect to the control (CL) can be explained by the use of a crosslinking 

agent different from those usually employed, I e. generally ammes <
56 1241281 or 

piperidme (IJI, 1321 which are capable of mducmg effectively the precipitation of 

particles However, comparing the Kc value found in this study for the sample 

containing 10% of CTBN and cured w1th anhydride (Kc = 1.93 MPa(m) 112
) with 
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those reported in literature, i e. from 2.0 to 2 20 MPa(m)112
, for samples 

containmg similar amounts of CTBN or A TBN rubbers cured at similar 

temperatures (-120°C) with different hardeners (124
•
131 132

l, the results are very 

similar. 

The effect of lowering the curing temperature from I I 5°C to 60°C on 

mechamcal properties is to decrease the dynamic modulus, by about 15-20% , 

and toughness properties, i e Kc and Gc by about 10%. Smce these detenoratwns 

of properties are also observed for control samples, they cannot be attnbuted to 

the different nature of particles precipitated through different mechamsms and/or 

different values of volume fractwn for the two curing temperatures. Therefore, 

they are mtrmsically related to the crosslinkmg network of the matnx 

It is known that the properties of a neat resin depend markedly upon the 

curing temperature, even if an identical post-curing cycle is subsequently 

employed (!33,IJ4l. Cunng at different temperatures can lead to diverse network 

topologies and, in turn, to different mechamcal characteristics of the matrix, also 

in toughened systems (134
•
135l. The development of good mechamcal properties 

requires the attainment of a sufficiently high degree of crosslinkmg Th1s 

condition 1s typically obtained by curing or post-cunng at high temperatures, but 
(I '6) It does not necessarily result m better mechamcal properties o Networks 

obtamed at high temperatures, m fact, show a progressive mcrease of the fracture 

toughness and a correspondmg reductiOn of the glass transitiOn temperature and 

elastic modulus in the rubbery plateau (133). 

The cunng temperature can influence properties in several ways. Morgan 

and O'Neal showed that DGEBA can crystallise when the resm IS cured at low 

temperature (137
l. On subsequent heatmg for post-curing the small crystals melt 

and diffuse mto the surrounding matrix, thus leavmg numerous holes, which 

exert a weakening actwn On the other hand, Gillham has demonstrated that 

dunng the cure of epoxy resms two phenomena take place, 1 e gelation and 

vitrification (IJSJ. Gelation results from an increase m the viscosity of the medmm 
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subsequent to branching reactions, whereas Vitrification begins when the glass 

transition temperature reachs the cunng temperature Since the mobility of the 

unreacted functional groups at th1s stage is appreciably reduced, further cunng in 

the glassy state IS controlled by diffusion The degree of polymerisation at 

vitrificatiOn mcreases with increasing the curing temperature. When the matenals 

are post-cured, particularly above the Tg, the crosslink reactwns start anew and 

eventually go to completiOn. In th1s step cycle, different network structures can 

result due to different extent of converswn attained at v1tnfication. A further 

complication is due to a possible volatilisatwn of the hardener, particularly at 

h1gh curing temperatures 039
• 
140

\ though some researchers did not ob~erve any 

weight loss durmg the polymerisatiOn at 120°C <
141

) Ox1datwn of the hardener 

also occurs as mdicated by the progressive darkening of castmgs as the curing 

temperature is increased. Both phenomena can lead to less dense networks and 

then explam the decrease m T g at high cure temperatures < 
135

) It has frequently 

been observed, finally, that glasses obtamed at low temperature have h1gher 

moduli, m sp1te of their lower crosslink density <
136

'
142

'
144>. Th1s effect has been 

attnbuted to the h1gher free-volume content in glasses cured at high temperature 

In another study <
145

) the variation of the molecular we1ght between 

crosslinks of a DGEBA resm, 1.e Me, was related to the curmg temperature It 

was found that Me IS strongly dependent on the cunng cycle, as already 

suggested by other researchers <
146>, and that the network structure can develop 

more effectively givmg a lower Me value at low temperatures An mcrease m Me 

has a remarkable mfluence on properties, 1.e the glass transition temperature 

decreased while ductility and fracture toughness were found to increase <147
) The 

correlation found between Me, tensile bulk properties and fracture toughness 

reflect the effect of the microstructure on bulk properties of DGEBA cured 

resms 

The above discusswn may in part explain the effect of the cunng 

temperature on some properties of cured samples found m this study The resin of 

this study, however, did not show any variatwn m Tg or flexural modulus values 
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with the cunng temperature, which is in contrast with the results reported m the 

above mentioned papers 

In conclusiOn, a general consideration of the mechamcal characteristics of 

all the cured samples analysed suggests that better toughness properties With 

lower losses in moduli are achievable m samples containing 5-l 0 parts of 

modified AC 5120 and cured at ll5°C The results for modified systems, 

however, are characterised by a certam scatter, probably due to the fact that these 

systems are not completely homogeneous. The results are in good agreement with 

those obtamed from DSC analysis and SEM observations. 

5.6) Additional Studies. 

Havmg ascertained the possibility to Improve the toughness of an epoxy 

resm through the addition of a low molecular weight polyolefin, previOusly 

chemically modified in order to reach a better miscibility with the uncured resm, 

many routes can be taken to continue the present work to optimise the 

enhancement in properties. 

Some attempts have already been made in order to find alternative 

polyolefin components able to promote a better miscibility with the epoxy resms 

used. F ollowmg the same approach of the present work, It was first thought to use 

again a low molecular weight polyolefin possibly havmg a different type of 

functiOnality and, to this end, the mfluence of hydroxyl groups on miSCibility in 

bmary and ternary mixtures within the main chains of the copolymer was 

analysed 

In a first attempt, work carried out by an ERASMUS student (148
l, an 

ethylene acrylic acid vinyl acetate terpolymer (AC 1450, from Allied Signals 

Inc.), havmg an acid number of 35 and an acid functionality of 2, and an ethylene 
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acrylic acid vinyl acetate - vinyl alcohol polymer terpolymer (AC 80, from Allied 

Signals Inc ), containing both hydroxyl and carboxyl groups with an average ac1d 

functwnahty equal to the average OH functionality, both equal to 1, were 

exammed Chemical modifications were again performed to improve the 

m1Sc1biho/ of the polyethylenes with the epoxy resin (Ep1kote 828) and/or the 

hardener (HHP A) used The modificatiOns that were foud effect1ve m enhancmg 

the solubtlity were those performed on AC 80, which was mtnnsically more 

miscible than AC 1450 With epoxy resm and hardener It was found that 

success1ve reactions of AC 80 w1th RVP, chlorendic anhydnde (CA) and E­

caprolactone give rise to a large decrease m solubilisation temperatures of bmary 

systems, lowering these below the 1 00°C 

In another experimental work 049
) a low molecular weight hydroxyl 

functwnahsed polyethylene (ethylene vmyl alcohol copolymer or EVOH) was 

stud1ed as a potential toughening agent for Ep1kote 828 using again HHPA A 

EVOH with functionality of 2 was chosen, i e. havmg an average of 2 hydroxyl 

groups at the end of each chain EVOH not bemg completely soluble w1th the 

epoxy resin in binary mixtures, telechelic extenswns of EVOH were made 

through reactions with chlorend1c anhydnde and subsequently w1th E­

caprolactone It was found that the modification with CA in the ratio 1 0. 75 

EVOH/CA leads to an improvement of m1sc1b1hty in binary m1xtures with 

Epikote 828 The further chain extenswn With caprolactone improved the 

miscibility of ternary mixtures of compositions close to those used for cured 

formulations (solubilisation temperature estimated close to the meltmg pomt of 

the polyethylene phase) The cured epoxy resin modified by 3% of EVOH/CA + 

caprolactone appeared to offer the best potential as modifier agents for the resin, 

smce the Tg of these cured systems was unaffected No mechamcal tests or SEM 

observations have been performed on these cured samples, therefore, it is not 

known the effectiveness of these systems as toughenmg agents 



151 

In concluswn, these parallel studies confirmed the validity of the research 

leaving open many possibilities in order to continue and find the best modified 

polyethylene system able to modifY effectively an epoxy resin 
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6. SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR 

FURTHER WORK 

6.1) Summary. 

The major results obtained from th1s study concemmg three different low 

molecular weight functionalised polyethylenes used as potential toughening 

agents for epoxy resins, using the same approach as m the CTBN technology, are 

as follows. 

* Misc1b1lity of Funct10nalised Ethylene Acrylic Acid Copolymers w1th 

Epoxy Resins. 

Miscib1lisat10n of the functionalised ethylene acrylic acid copolymers With 

a DGEBA epoxy resin, wh1ch is the essential reqmrement in order to assure an 

effective toughenmg of the resm, is strictly related to the functiOnality of the 

copolymer. 

* M1scib1lity of Grafted Modifications of Ethvlene Acrvlic Acid Copolymers 

w1th Epoxy Resms 

In order to increase further the miscibility between the ethylene copolymer 

having the h1ghest functiOnality (AC 5 I 20) and the DGEBA epoxy res m, several 

chemical modificatiOns have been performed on the polyethylene phase by 

reactiOns through functional groups. The modifications have been realised by 

graftmg on the ethylene copolymer different polymers. In th1s way the cham 

length of the polyethylene was increased wh1le maintaming the same reactive 

functiOnality, i.e. acid, at the end of each chain In all grafting reactiOns, the 

employment of reactiOn times stnctly necessary to obtam the maximum 

conversiOn 1s the cruc1al reqmrement to mcrease effectively the miscibility 

between the product of the graftmg reactiOn and the epoxy resin. 
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* Miscibility of Functionalised Ethylene Acrylic Acid Copolymers with a 

DGEBA Epoxy Resin Partially Estenfied with Montanic Acid 

A second route to enhance the miscibility between the ethylene copolymer 

with the highest functiOnality, AC 5120, and the epoxy resm comprised a grafting 

reactiOn of montamc acid on the DGEBA resin While this attempt succeeded m 

bmary mixtures of AC 5120 copolymer with the epoxy resin, when the epoxy 

resm grafted With montanic acid was mixed with AC 5120-graft-caprolactone, 

solubilisation temperatures higher than 200°C were found. Finally, the 

solubilisation temperatures recorded for the system AC 5120/Epikote 828-graft­

montanic acid were always higher than those found for the bmary systems of 

Epikote 828 with AC 5120-graft-RVP. 

* Miscibility of Ternary Mixtures of Funct10nalised Ethylene Acrylic Acid 

Copolymers. a DGEBA Epoxy Resin and an Anhydride Hardener 

The mtroduction of an anhydnde hardener m a binary mixture of an 

ethylene acrylic acid copolymer with an epoxy resin leads always to a 

considerable increase of the solubilisation temperature, even when one of the two 

components of the bmary system has been chemically modified to enhance the 

miscibility m the final system. The reaction performed on HHP A With montanic 

acid, in order to obtain an eutectic between the two reactants, even if capable of 

avoiding the transformatiOn of HHPA from the cis- to the trans-form, was 

ineffective in reducmg the demiscibilising action of HHP A in binary mixtures of 

ethylene copolymer and epoxy res m 

* Phase Separation and Momhology Development during Curing of Epoxy 

Resms Containmg Modified Ethvlene Acrylic Acid Copolymers 

The reactiOn of graftmg of the monofunctional epoxy resm, RVP. on the 

polyethylene having highest functionality, AC 5120, has been found an essential 

step in order to obtain almost homogeneous systems after a thermal curing with 
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an anhydride hardener The SEM analysis revealed, in fact, the precipitatiOn m 

these systems of small spherical particles (via nucleation and growth) able to 

arrest the fractures that propagate easily inside the brittle matrix. The high 

solubihty between grafted AC 5120 and the DGEBA epoxy resin involved, on the 

other hand, a decrease in the glass transition temperature (Tg) of the cured 

system, brought about by the plastiCisation effect of both polyethylene and 

unreacted RVP in the epoxy matrix, ascertamed also by a lower value of the 

volume fractiOn of the particles measured on SEM micrographs than that 

obtained from theoretical calculatwns. 

* Mechamcal Properties of Cured of Epoxy Resins Containmg Modified 

Ethylene Acrylic Acid Copolymers. 

The analysis of mechamcal properties, measured both in static and 

dynamic conditions, performed on epoxy cured systems modified with the grafted 

ethylene acryhc acid copolymer have shown that better characteristics m terms of 

higher enhancements m toughness properties and lower decreases in moduh, as 

well as m the glass transition temperature, are achieved With the additiOn m the 

resm of low contents (5-10%) of grafted polyethylene It has been also found that 

the use of h1gh curing and post-curing temperatures leads to higher dynamic 

moduh and toughness properties. 

A comparison between the data found in this study and those reported by 

different authors revealed that the enhancements in toughening achievable by 

adding the grafted polyolefin to the epoxy resin are considerably lower than those 

attained usmg traditional toughenmg agents 

6.2) Conclusions. 

The conclusions that can be denved from this study are 
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a) only the low molecular weight functionahsed polyethylene with the 

h1ghest functionality value (1.e. 2.0) reaches complete miscibility w1th the 

DGEBA epoxy resin; 

b) the most effective polymer used to mod1fy this polyethylene in 

enhancing 1ts misc1bility with the epoxy resin, has been found to be the 

monofunctiOnal epoxy resm (RVP), 

c) neither the modification of epoxy resin w1th montamc ac1d nor the 

reactiOn performed on HHP A w1th montamc ac1d, were effective to enhance the 

mJscJbJhty w1th the low molecular weight funct10nalised polyethylene, 

d) the addition of the RVP-grafted polyethylene to the DGEBA epoxy 

resin cured with HHP A, resulted m the precipitatiOn of small spherical particles 

together w1th a decrease m the glass transition temperature of the cured system; 

e) some limited enhancements in toughness properties of the cured 

materials are achievable with the additiOn m the epoxy resin of low contents of 

grafted polyethylene. 

The mam conclusiOn IS that the procedure employed to modify the 

polyethylene and/or the same polyolefin are unlikely to represent the best 

conditions, smce completely homogeneous cured systems have not been attamed. 

6.3) Suggestions for Further Work. 

Th1s present study has shown that is possible to misc1bihse ethylene 

acrylic ac1d oligomers with an epoxy resin through telechehc extension react10ns 

w1th appropnate chain modifiers The anhydride cured systems, however, did not 

allow the development of an effic1ent particle precipitatiOn mechamsm to achieve 

the full benefit of the modificatiOns m terms of enhancement m mechamcal 
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properties. Smce conventional CTBN showed a similar behaviour, it can be 

inferred that an amine or a Lewis acid curing catalyst, known to be effective for 

CTBN, should be more favourable for the precipitatiOn of the olefinic phase 

during curing of the resm 

It IS recommended, therefore, that the experiments concerned with the 

effect of curing conditwns will be repeated usmg either a BF 3 complex or an 

Imidazole catalyst. It IS suggested also that attempts should be made to measure 

the m1crohardeness of precipitated particles for systems cured at temperatures 

below and above the melting point of the ohgomenc modifier. This could be 

related to the modulus of the precipitated particles to develop favourable 

mechanical conditwns for the shear yielding of the surrounding matrix. 

Capitalising on the success of Mascm et al. (60
'
6

I> to achieve an efficient 

particle precipitation mechanism with modified perfluoroether ohgomers, even 

with anhydnde cured systems, it IS suggested to use the following curmg 

schedule using the HHP A adduct of the RVP modified AC 5120 oligomer, i e. 

the same schedule used by the above researchers 

a) Prereact branched carboxy funclionahsed oligomer with a large excess of 

epoxy resin in the presence ofTPP, as selective catalyst, for different times. 

b) Follow the VIscosity of the reaction mixture unlil precipitation of some 

crosslinked species takes place 

c) Select systems reacted for penods shorter than the time for incipient particle 

precipitation 

d) Add the reqmred amount of anhydnde (HHP A) for cunng and then the BDMA 

catalyst. 

e) Gel at I 20°C, cure at I sooc and post cure at I 80°C. 
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7.APPENDIX 

' 7.1) Determination of Acid Number and Functionality of Pure 

Materials and Products of their Reactions. 

Functionality is defined as the number of reactive functional groups 

present in each polymer molecule. 

Referring to the montanic acid, which has the following chellllcal formula: 

CH3 (CHz)z6 COOH 

and a molecular weight of 424, It IS obvious that its functionality is exactly equal 

to 1. This means that 424 g of polymer contain 1 acid eqmvalent, i e. 1 mole of 

acid groups; or that 1 g of polymer contains 1/424 = 2.36* 1 o·3 acid eqmvalent. 

By defimtion, the "Acid Number" of a polymer represents the mg of KOH 

required to neutralise all the acid groups contamed in 1 g of the polymer. Smce 

the functionality of montamc acid IS equal to 1, It is necessary to have one mole 

of KOH, that IS 56 g of KOH (bemg 56 the molecular weight of KOH), to 

neutralise one mole of acid groups, i.e. one mole of acid eqmvalent. D1vidmg for 

1000: 

i.e. 10"3 Acid Equivalent= 56 mg KOH . 

From simple proportiOnality: 56 : 10·3 = x : 2.36*10.3 

where x represents the acid number, because 2 36*10.3 are the acid equivalent 

contained in 1 g of polymer. From the calculation, the acid number of the 

montamc acid results to be 132. Hence, for analogy with a system with twice Its 

molecular weight (i.e. 848) the acid number would be half, I.e. 66; with a triple 

molecular weight (i.e. 1272) the acid number would be one third, i.e. 44; and so 

forth. 

It IS possible to calculate, therefore, the acid number of three polymers 

with functiOnality of 1, as before, but with molecular weights equal to those of 

the three polyethylenes: 
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- A molecular weight of 970 (Mn of the oxidised polyethylene AC 6702) IS equal 

to 2.29 times 424. Therefore, the acid number of this polymer would be 132 I 

2.29 = 57.70. 

- A molecular weight of 1710 (Mn of AC 540) IS equal to 4.03 times 424. 

Therefore, the acid number would be 132/4.03 = 32.73 . 

- Fmally, a molecular weight of 1005 (Mn of AC 5120) IS equal to 2.37 times 

424. Therefore, the ac1d number would be 132/2.37 = 55.69 . 

For the polyethylene AC 6702, havmg an acid number of 15, form a simple 

proportiOn 

f = 15/ 57 70 = 0.26 . 

In the same way, for AC 540, which has an acid number equal to 40, the 

functionality IS: 

f = 40/32.73 = 1 22. 

Finally, the functionality of AC 5120, havmg an acid number of 120, is calculated 

as· 

f = 120/55.69 = 2.15. 

These values can be considered an estimate of tne true values of the 

functmnahties of the three polyethylenes. 

Followmg a similar procedure, It IS possible calculate the theoretical acid 

number of the final mixtures of AC 5120 with E-caprolactone. 

The first compositiOn employed, 50/5 AC 5120/caprolactone, was chosen 

with the view of reactmg 25% of the acid groups of AC 5120 With caprolactone 

Hence, the molecular weight of the grafted product is· 

1000 + [114 * ( 2/4)] = 1057 

I.e.: Molecular weight of AC 5120 = 1000 

Molecular weight of E-caprolactone = 114 

Number of moles of caprolactone reactmg With one mole of AC 5120 = 
2/4. 
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The acid groups contruned m the final mixture must be equal to those 

initially contained mAC 5120 calculated respect to the final molecular weight: 

(1000 I 1057) * 120 = 113 5 

1 e.: Actd number of AC 5120 = 120. 

Therefore, the acid number of the final mixture is 113.5 . 

For the llllxture AC 51201caprolactone 50120, the values can be calculated 

in the same way: 

Molecular weight: 1000 + (114 * 2) = 1228 

Acid number: (1000 I 1228) * 120 = 97.7. 

On the other hlllld, usmg for AC 5120 a molecular weight of 675 (the 

second value measured by GPC, see 4.3.2) the values for AC 51201caprolactone 

50/5 are: 

Molecular weight· 675 + [114 * (2 I 4)] = 732 

Acid Number: (675 I 732) * 120 = 110.7 

and for AC 5120/caprolactone 50120: 

Molecular Weight: 675 + (114 * 2) = 903 

Acid Number: (675 I 903) * 120 = 89.7 . 

The acid number of HHP A is equal to zero, provided it is not reacted with 

water to form phthalic acid. The reaction of the hardener HHPA with AC 5120-

graft-RVP 69.8130.2 gtves nse to a total number of acid groups equal to the sum 

of the restdual acid groups initially present in AC 5120-graft-RVP, corresponding 

to an acid number of 65.9, plus the acid groups formed through the reaction with 

HHP A. The latter Cllll be calculated constdering 1 g of final Jlllxture that contains 

0.2 g of HHPA, 1 e. 0.2/154 moles of HHPA, bemg 154 the molecular weight of 

HHPA. 
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Followmg the stoichiometry of the reaction, each mole of HHPA gives nse 

to one mole of acid groups (provided that no crosslinks are found) From Its 

definition, the acid number of the final mixture is equal to: 

(0.2 I 154) *56* 1000 = 72.7 mg KOH. 

The total acid number will be then: 

(65.9 * 0.8) + 72.7 = 125.4 . 

In the same way, the total acid number for the fmal mixture (AC 5120-

graft-RVP/TPP 69.8130.211) I HHPA 80120 can be calculated as: 

(15.2 * 0.8) + 72.7 = 84.9 . 

The product of the reaction AC 5120-graft-RVP/TPP (69.8130.211) + 

MNA, being the composition 77.9% AC 5120-g-RVP/TPP and 22.1% MNA, has 

a final acid number equal to: 

[(0.221 I 179) *56* 1000] + (15.2 * 0.779) = 81 0 

bemg 175 the molecular weight of MNA. 



7.2 Additional Tables 

List of Symbols 

For Tables 8 to 44: 

Tm Melting temperature (heatmg stage). 

Tc Crystallisation temperature (cooling stage). 

T' m Melting temperature for HHPA phase (heating stage). 

T'c CrystallisatiOn temperature for HHPA phase (cooling stage). 
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T, SolubilisatiOn temperature (heatmg stage). SolubilisatiOn 

temperatures With (*) correspond to sem~-miscible mixtures. Can be 

also reported, in brackets, the temperatures at wh1ch the mixtures, 

though not completely melted, become a smgle phase (see text 

4.4.1). 

Phase separatiOn temperature (cooling stage). 

For Table 46: 

Mw 

Mn 

Mw/Mn 

Weight Average Molecular We1ght (kmdly measured by Steve 

Holding at RAPRA Technology LTD). 

Number Average Molecular Weight (kindly measured by Steve 

Holdmg at RAPRA Technology LTD). 

Polydispersity. 

For Tables 47 to 65: 

T mp Melting temperature peak. 

T ITil Initial meltmg temperature. 

T m1 Fmal meltmg temperature. 

~Hm Heat of fusion (normahsed to polyethylene content). Can be also 

reported, in brackets, the theoretical value. 

T' mp Meltmg temperature peak for the HHP A rich phase. 

T' ITil Initial melting temperature for the HHP A rich phase. 
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T' mf Final melting temperature for the HHP A nch phase. 

LiH' m Heat of fusion (normalised to HHPA content). 

Te1 Initial evaporation temperature for the HHPA nch phase. 

Tcp CrystallisatiOn temperature peak. 

Tc1 Initial crystallisation temperature. 

Tcr Fmal crystallisation temperature. 

LiHc Heat of crystallisatiOn (normalised to polyethylene content). 

For Tables 66 to 72: 

T g Glass transition temperature. 

T m Melting temperature peak. 

For Table 73: 

G' Storage modulus. 

G" Loss modulus. 

Tg Glass transition temperature (from G" peak). 

For Tables 74 to 76. 

E Modulus. 

For Table 77: 

For Table 78: 

Strength at break. 

Strain at break. 

Critical stress intensity factor. 

Cntical stram energy release rate. 

acu Charpy Impact strength. 
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CP Pl P3 FHZ 
E ikote 828 IOO IOO IOO IOO 100 IOO IOO IOO 

HHPA 80 78 70 70 80 78 70 70 
AC 5120- -RVP (69.8/30.2) 5 20 30 5 20 30 

BDMA I I I 2 5 5 5 3 
115 115 115 115 60 60 60 60 

TABLE 2: CompositiOns (parts by weight) of samples cured with MNA hardener 
and ost-cured at I50°C. 

Cl J1 J2 J3 Kl K2 K3 
E ikote 828 IOO 100 100 100 100 IOO 100 

MNA 80 78 75 64 78 75 64 
AC 6702 10 IO 
AC540 10 IO 

AC5120 10 
BDMA I I I I I I I 

TPP I I I 
Curin 115 II5 115 115 115 115 115 

TABLE 3: Compositions (parts by weight) of control samples post-cured at 
I50°C and I80°C. 

CL CS CR CT CQ 
E ikote 828 IOO IOO IOO IOO IOO 

HHPA 80 70 80 70 80 
BDMA I I I I 5 

Curin 115 II5 60 60 60 

TABLE 4: Compositions (parts by weight) of samples post-cured at I50°C and 
I80°C. 

Sl S3 L1 L3 Ul U3 Ql Q3 
E ikote 828 100 100 100 IOO IOO 100 IOO IOO 

HHPA 78 70 78 70 78 70 78 70 
AC5120 5 20 5 20 

AC 5120- -RVP (69.8/30.2) 5 20 5 20 
BDMA I I I I I I 5 5 

115 115 115 115 60 60 60 60 
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TABLE 5: Compositions (parts by weight) of samples post-cured at 150°C and 
180°C. 

Ml M'2 M'3 M3 Rl R'2 R'3 R3 RU 
Epikote 828 100 100 100 100 100 100 100 100 100 

HHPA 78 80 80 70 78 80 80 70 80 
AC 5120-g-RVPffPP (69.8130.2/1) 5 10 20 20 5 10 20 20 

CTBN 10 
BDMA 1 1 1 1 I 1 1 1 1 

Curing Temperature (0 C) 115 115 115 115 60 60 60 60 115 

TABLE 6: Compositions (parts by weight) of samples containing free RVP and 
ost-cured at 150°C and 180°C. 

T'Ml TMl TLl TM'3 TM3 TL3 
E ikote 828 100 100 100 100 100 100 

HHPA 80 78 78 80 70 70 
RVP 0.327 0.327 1.208 1.310 1.310 4.832 

BDMA 1 1 1 1 1 1 
Curin 115 115 115 115 115 115 

TABLE 7: Composttlons (parts by wetght) of samples containing free RVP and 
ost-cured at 150°C and 180°C. 

T'Rl TRl TQl TR'3 TR3 TQ3 
E ikote 828 100 100 100 100 100 100 

HHPA 80 78 78 80 70 70 
RVP 0.327 0.327 1.208 1 310 1.310 4.832 

BDMA 1 1 5 1 1 5 
Curin 60 60 60 60 60 60 
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TABLE 8: Melting, crystallisation, solub!ltsation and phase separation 
temperatures of binary mixtures AC 6702/Epikote 828 obtained 
f h . . rom ot stage mtcroscope expenments 

Tm Tc T, Tp Tm Tc T, Tp 
("C) (OC) ("C) (°C) ("C) ("C) (OC) (°C) 

AC 6702/Epikote 828 88 77 >250 >250 88 80 248 244 
10/90 

AC 6702/Epikote 828 86 76 >250 >250 89 76 233 228 
25n5 

AC 6702/Epikote 828 88 79 >250 >250 87 81 237 246 
50/50 

AC 6702/Epikote 828 85 77 >250 >250 89 78 257 255 
75/25 

AC 6702/Epikote 828 88 78 >250 >250 87 79 >250 >250 
90/10 

AC6702 89 76 

Heating Time at l15°C 10 min 24 h 

TABLE 9: Melting, crystallisation, solubilisation and phase separation 
temperatures of binary mixtures AC 540/Epikote 828 obtained from 
h . . ot stage mtcroscope ex penments. 

Tm Tc T, Tp Tm Tc T, Tp 
("C) (oC) (oC) (oC) (OC) ("C) (°C) ("C) 

AC 540/Epikote 828 103 93 238 243 98 92 243 128 
10/90 

AC 540/Epikote 828 98 93 229 198 
25/75 

AC 540/Epikote 828 102 89 247 --- 99 94 236 188 
50/50 

AC 540/Epikote 828 99 86 211 ---
75/25 

AC 540/Epikote 828 101 90 >250 > 250 98 87 > 250 >250 
90/10 

AC540 102 93 

Heating Time at 115°C 10 min 24 h 
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TABLE 10: Meltmg, crystallisation, solubilisatiOn and phase separation 
temperatures of bmary lllixtures AC 540/CY 179 obtained from 
h . ot stage microscope expenments. 

Tm Tc T, Tp Tm Tc T, Tp 
(oC) (oC) (oC) (oC) ("C) ("C) ("C) ("C) 

AC 540/CY 179 98 95 198 --- 99 95 145 123 
25/75 

AC 540/CY 179 100 95 100 ---
50/50 

AC 540/CY 179 99 95 160 --- 99 94 158 ---
75/25 

AC540 102 93 

Heating Time at ll5°C 10 min 2 h 

TABLE 11: Melting, crystallisation, solubilisation and phase separation 
temperatures of binary lllixtures AC 5120/Epikote 828 obtained 
f h rom ot stage microscope expenments. 

Tm Tc T, Tp Tm Tc T, Tp Tm Tc T, Tp 
I ("C) I <"C) ("C) (oC) ("C) (OC) I (OC) I eq (OC) ("C) ("C) I (o(:) 

AC 5120/ 80 68 203 --- Gel 
Epikote828 

10/90 
AC 5120/ 84 66 173 196 Gel Gel Gel Gel Gel 

Epikote828 
25/75 

AC5120/ 81 71 212 198 84 72 199 198 78 74 190 --- Gel 
Epikote828 

50/50 
AC 5120/ 86 56 198 --- 87 74 183 --- Gel 

Epikote828 
75/25 

AC 5120/ 85 77 189 198 Gel 
Epikote828 

90/10 
AC5120 87 86 

HeatmgT1me 10 lllin 6 h 21 h 24h 
at ll5°C 
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TABLE 12: Melting, crystallisation, solubilisation and phase separation 
temperatures of binary mixtures AC 5120/CY 179 obtamed from 
hot sta e microsco e ex enments. 

Tm (°C) Tc (0C) T, (OC) T (OC) 

AC 5120/CY 179 25n5 86 85 105 
AC 5120/CY 179 50/50 88 79 88 
AC 5120/CY 179 75/25 88 85 88 

AC5120 87 86 

All the mixtures were heated at ll5°C for 10 minutes. 

TABLE 13: Melting, crystallisation, solubilisation and phase separatiOn 
temperatures of binary rruxtures AC 540/HHPA obtained from hot . . 
stage microscope expenments. 

Tm Tc T, Tp T'm T'c 
(OC) (OC) (oC) (oC) CO C) CO C) 

HHPA 120 ---

AC540/HHPA 100 95 172 168 172 168 
25175 (100) 

AC 540/HHPA 100 96 158 --- 158 ---
50/50 (100) 

AC540/HHPA 100 94 143 143 143 143 
75/25 (100) 

AC540 102 93 

All the rruxtures were heated at 115°C for 1 hour. 
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TABLE 14: Melting, crystallisation, solubilisation and phase separation 
temperatures of binary mixtures AC 5I20/HHPA obtamed from 
h 0 ot stage nucrosco e expenments. 

Tm Tc T, Tp T'm T' c 
(OC) (oC) (oC) (OC) (OC) (OC) 

HHPA I20 ---

AC 5120/HHPA 87 86 I 55 113 I 55 ---
25/75 (123) 

AC 5120/HHPA 87 85 I85 118 I85 ---
50/50 (88) 

AC 5120/HHPA 88 85 I64 116 I64 ---
75/25 (II8) 

AC5120 87 86 

All the mixtures were heated at ll5°C for I hour 

TABLE 15: Melting, crystallisation, solubilisation and phase separation 
temperatures of binary nuxtures Ep1kote 828/HHP A and CY 
179/HHP A obtruned from hot sta e microsco e ex eriments. 

T' m T' c 
(OC) (OC) 

HHPA I20 

Epikote 828/HHP A 98 98 
50/50 

CY 179/HHPA 95 95 
50/50 

All the mixtures were heated at II5°C for I 0 minutes. 
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TABLE 16: Melting, crystallisation, solubilisatiOn and phase separation 
temperatures of ternary mixtures AC 540/Epikote 828/HHPA 
b . df h o tame rom ot stage m1crosco e expenments. 

Heating Time Tm Tc T, Tp 
at l15°C (OC) (OC) (oC) ("C) 

AC 540/Epikote 828/HHPA 2h+ 10min 100 93 >250 > 250 
5/60/35 

AC 540/Epikote 828/HHPA 2h+10mm 100 92 158* ---
1ono120 

AC 540/Epikote 828/HHPA 2h+ 10min 101 90 178* ---
10/80/10 

AC 540/Epikote 828/HHPA 1h+10min 101 94 >250 >250 
14/62/24 

AC 540/Epikote 828/HHPA 24h+ 10mm 98 87 >250 > 250 
16.7/50/33.3 

AC 540/Epikote 828/HHPA 10min 101 96 >250 >250 
20/40/40 

AC 540/Epikote 828/HHPA 2h+10min 101 89 158* ---
2ono11o 

AC 540/Epikote 828/HHPA 10min 101 96 >250 >250 
33.3/33.3/33.3 

AC 540/Epikote 828/HHPA 1 h + 10 min 101 92 >250 >250 
42/48/10 

TABLE 17: Melting, crystallisation, solubilisation and phase separation 
temperatures of ternary nuxtures AC 540/CY 179/HHPA obtained 
f h . . rom ot stage microscope expenments. 

Heating Time Tm Tc T, Tp 
at l15°C (oC) (oC) (oC) ("C) 

AC 540/CY 179/HHPA 2 h+ 10 min 98 86 >250 > 250 
5/60/35 

AC 540/CY 179/HHPA 2h+ 10 mm 99 92 >250 >250 
10170/20 

AC 540/CY 179/HHPA 2h+ 10min 100 94 178* 165 
10/80/10 

AC 540/CY 179/HHPA 2h+ 10 mm 98 89 >250 >250 
14/62/24 

AC 540/CY 179/HHPA 2h+ 10min 98 94 >250 >250 
20170/10 

AC 540/CY 179/HHPA 10 min 100 92 >250 >250 
33.3/33.3/33.3 
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TABLE 18: Melting, crystalhsatJ.on, solubilisation and phase separatiOn 
temperatures of ternary mixtures AC 5120/Epikote 828/HHPA 
bt 

0 

d f h t t 
0 0 

t o ame rom o S age ffi!CfOSCO pe expenmen So 

Heating Time Tm Tc T, Tp 
at l15°C (OC) (OC) (OC) CO C) 

AC 5120/Epikote 828/HHPA 2 h + 10 min 86 76 >250 > 250 
5/60/35 

AC 5120/Epikote 828/HHPA 12h+ 10mm 87 73 > 200 >200 
5/60/35 

AC 5120/Epikote 828/HHPA 1 h+ 10 min 88 85 158 ---
10/50/40 

AC 5120/Epikote 828/HHPA 2h+ 10min 87 86 158 ---
10/70/20 

AC 5120/Epikote 828/HHPA 2h+ 10min 88 85 168 ---
20/70/10 

AC 5120/Epikote 828/HHPA 2h+ 10min 86 85 185 ---
33.3/33.3/33.3 

TABLE 19: Melting, crystallisation, solubilisation and phase separation 
temperatures of ternary mixtures AC 5120/CY 179/HHPA 
b 

0 

df h o tame rom ot stage m1crosco oe expenments 
Heating Time Tm Tc T, Tp 

at l15°C (oC) (oC) (OC) (OC) 

AC 5120/CY 179/HHPA 30 min + 10 min 95 48 150* ---
5/60/35 

AC 5120/CY 179/HHPA 3h+10min 81 76 110* ---
5/60/35 

AC 5120/CY 179/HHPA 30 min + 10 min 85 73 137 ---
10/70/20 

AC 5120/CY 179/HHPA 30 min + 10 min 85 77 106 ---
2ono110 

AC 5120/CY 179/HHPA 30mm+ 10min 85 49 120 ---
33.3/33.3/33.3 
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TABLE 20: Melting, crystallisation, solubilisation and phase separation 
temperatures for the rruxtures of AC 5120 grafted w1th E­

Ca rolactone obtained from hot sta e microsco e ex eriments. 
Tm Tc T. Tp 

(OC) (OC) (OC) (OC) 

AC 5120-g-Caprolactone 50/5 
(5 h at l15°C 

86 86 178 168 

AC 5120-g-Caprolactone 50/20 
(5 h at l15°C) 

85 84 85 

TABLE 21: Meltmg, crystallisation, solub1lisation and phase separation 
temperatures of the 50150 mixtures of AC 5120 grafted with E­

Caprolactone and Epikote 828 obtamed from hot stage microscope 
expenments. 

Tm Tc Ts Tp 
eq (OC) eq (OC) 

AC 5120-g-Caprolactone + Epikote 828 85 84 161 ---
50/5 (10 min at l15°C) 

(1 h at l15°C) + Epikote 828 82 78 158 ---
(2 h at l15°C) 

AC 5120-g-Caprolactone + Epikote 828 83 84 183 108 
50/5 (10 min at l15°C) 

(2 h at l15°C) + Epikote 828 81 79 188 ---
(2 h at l15°C) 

AC 5120-g-Caprolactone + Epikote 828 81 69 218 ---
50/5 (10 min at l15°C) 

(7 h 40 min at l15°C + + Epikote 828 82 69 213 ---
2 h 30 min at 160°C) (2 h at l15°C) 
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TABLE 22: Melting, crystallisation, solubilisation and phase separation 
temperatures for the 50/50 mixtures of AC 5120 grafted with £­
Caprolactone and Epikote 828 obtained from hot stage nucroscope 
expenments. 

Tm Tc T. Tp 
(OC) (QC) (OC) ("C) 

AC 5120-g-Caprolactone 50/20 + Epikote 828 83 72 198 ---
(1 h at ll5°C) (10 min ll5°C) 

AC 5120-g-Caprolactone 50/20 + Epikote 828 83 74 213 ---
(6 h at ll5°C) (10 min ll5°C) 

AC 5120-g-Caprolactone 50/20 + Epikote 828 83 69 233 ---
(6h 30min ll5°C + 2h 15min 160°C) (10 min ll5°C) 

AC 5120-g-Caprolactone 50/20 + Epikote 828 83 78 238 138 
(6 h 30 min at ll5°C + 8 hat 160°C) (10 min ll5°C) 

TABLE 23: Melting, crystallisation, solubilisation and phase separation 
temperatures for ternary nuxtures of AC 5120 grafted with £­
Caprolactone, Epikote 828 and HHP A ob tamed from hot stage 
m1crosco e ex eriments. 

(AC 5120-g-Caprolactone 50/5)/ 
E ikote 828/HHPA 10170/20 

Heating Time Tm Tc Ts Tp 
at 115°C (°C) (°C) (°C) (0C) 

2 h + 10 mm SO 73 233* 

(AC 5120-g-Caprolactone 50/20)/ 2 h + 10 min 76 >250 
E ikote 828/HHPA 10170/20 

Heating conditions refer to mixtures of AC 5120, grafted with £-Caprolactone, 
Epikote 828 and HHP A. 
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TABLE 24: Melting, crystallisation, solubilisation and phase separation 
temperatures for the mixtures of AC 5120 grafted with the 
Monofunctional Epoxy Resm (RVP), with or without TPP, 
b . df h o tame rom ot stage microsco Je expenments. 

Tm Tc T, Tp 
(OC) COC) (OC) (OC) 

AC 5120-g-RVP 69.8/30.2 85 79 85 ---
(10 min at 140°C) 

AC 5120-g-RVP 69.8/30.2 82 81 82 ---
(I h at 140°C) 

AC 5120-g-RVP 69.8/30.2 83 80 83 ---
(3 h at 140°C) 

AC 5120-g-RVP/TPP 69.8/30.2/1 78 75 78 80 
(1 h 30 min at 140°C) 

TABLE 25: Meltmg, crystallisatiOn, solubilisation and phase separation 
temperatures for the mixtures of AC 5120 grafted with the 
Monofunctional Epoxy Resm (RVP) and Epikote 828 obtained 
f h . rom ot stage microscope expenments. 

Heating Time Tm Tc T, Tp 
at ll5°C COC) CO C) (oC) (OC) 

(AC 5120-g-RVP 10min 75 83 153 89 
69.8/30.2)/ 

Epikote 828 3h 83 82 163 146 
25n5 

(AC 5120-g-RVP 10min 81 82 168 ---
69.8/30.2)/ 

Epikote 828 3h 80 83 172 ---
50/50 

(AC 5120-g-RVP IOmin 82 80 143 128 
69.8/30.2)/ 

Epikote 828 3h 83 82 155 86 
75/25 

Heating conditions refer to mixtures of AC 5120, grafted with RVP, and Epikote 
828. 
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TABLE 26: Melting, crystallisation, solubilisation and 
temperatures for the mixtures of AC 5120 

phase separation 
grafted with the 
9 obtamed from Monofunctional Epoxy Resm (RVP) and CY 17 

hot stage microscope experiments. 
Heating Time Tm Tc T, Tp 

at nsoc (OC) ( oq (OC) (OC) 

(AC S120-g-RVP 69.8/30.2)/CY 179 IOmin 87 84 98 88 
2sns 

(AC S120-g-RVP 69.8/30.2)/CY 179 10min 87 74 87 76 
SO/SO 

(AC S120-g-RVP 69.8/30.2)/CY 179 IOmin 86 82 86 
75/25 

Heating conditions refer to mixtures of AC 5120, grafted with R VP,andCY179. 

TABLE 27: Meltmg, crystallisation, solubilisation and p hase separation 
grafted with the 
obtmned from hot 

temperatures for the mixtures of AC 5120 
Monofunctional Epoxy Resin (RVP) and HHPA 
stage microscope experiments. 

Heating Time Tm Tc T, Tp 
at 140°C (OC) (0 C) (°C) (°C) 

(AC S120-g-RVP 69.8/30.2)/HHPA IOmm 85 8 3 85 
80/20 

(AC S120-g-RVP 69.8/30.2)/HHPA 3h 84 8 2 84 
80/20 

Heating conditions refer to mixtures of AC 5120-graft-RVP With HHPA. 
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TABLE 28: Melting, crystallisation, solubilisation and phase separation 
temperatures for the mixtures of AC 5120 grafted with the 
Monofunctional Epoxy Resin (RVP), Epikote 828 and HHPA 
obtained from hot sta e m1crosco e ex eriments. 

Tc T. Tp 
(oC) (oC) (oC) 

(AC 5120-g-RVP 69.8/30.2)/Epikote 828/HHPA 84 82 133 
15/50/35 (*) 

(AC 5120-g-RVP 69.8/30.2)/Epikote 828/HHPA 81 > 250 > 250 
15/50/35 (10 min at l15°C 

(AC 5120-g-RVP 69.8/30.2)/Epikote 828/HHPA 79 71 203 158 
21.8n2.8/5.4 (**) 

Heating conditions: 
(*) { (AC 5120-g-RVP 69.8/30.2)/HHPA 80/20 6 hat 140°C} + Epikote 828 + 
rest of HHPA 10 min at l15°C 
(**) {(AC 5120-g-RVP 69.8/30 2)/HHPA 80/20 6 hat 140°C} + Epikote 828 
10 mm at l15°C. 

TABLE 29: Meltmg, crystallisation, solubilisatiOn and phase separation 
temperatures for the rmxtures of AC 5120 grafted with the 
Monofunctional Epoxy Resin (RVP), CY 179 and HHP A ob tamed 
from hot sta e rmcrosco e ex eriments. 

Tm Tc Ts Tp 
(oC) (cC) (cC) (cC) 

(AC 5120-g-RVP 69.8/30.2)/CY 179/HHPA 88 153 
15/50/35 10 min at l15°C 

(AC 5120-g-RVP 69.8/30.2)/CY 179/HHPA 78 70 173 
21.8172.8/5.4 (*) 

Heatmg conditions· 
(*) {(AC 5120-g-RVP 69.8/30.2)/HHPA 80/20 6 hat 140°C} + CY 179 10 min 
at l15°C. 
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Meltmg, crystallisatio n, solubihsation and phase separation 
of the mixtures of AC 5120 grafted with 

oxy Resin (RVP) in presence of TPP, and 
om hot sta e microsco e ex eriments. 

temperatures for some 
the Monofunctional Ep 
Epikote 828 obtamed fr 

Tm Tc T, Tp 
("C) ("C) (°C) ("C) 

+Epikote 82 85 85 155 
AC 5120-g-RVPffPP (IOmin at 

8 25n5 
l15°C) 

69.8/30.2/1 +Epikote 82 8 50/50 
l15°C 

84 86 146 
(]Omin at 

(1 h 30 min at 140°C) + Epikote 82 8 75/25 85 84 85 

TABLE 31: 

(]Omin at l15°C) 

Melting, crystallisatio n, solubilisation and phase separation 
ast mixtures of AC 5120 grafted with the 

Resm (RVP) in presence of TPP, and 
om hot sta e microsco e ex eriments. 

temperatures for the I 
Monofunctional Epoxy 
Epikote 828 obtained fr 

Tm Tc T, Tp 
(

0 C) (°C) ("C) (DC) 
AC 5120-g-RVPffPP 69.8/30.2/1 +E pikote 828 50/50 

0 min at ll5°C) 
81 83 142 

(6 h at J40°C) 
AC 5120-g-RVPtrPP 69.8/30.2/1 

(9 h at J40°C) 

(1 
+E pikote 828 50/50 

0 min at ll5°C) (1 
79 85 133 

TABLE 32: Melting, crystallisatio n, solub1hsatton and phase separation 
mixtures of AC 5120 grafted w1th the 
Resin (RVP) in presence of TPP, and 

temperatures for the 
Monofunctional Epoxy 
HHP A obtained from h ot sta e microsco e ex eriments. 

Tm Tc T, Tp 
oq (OC) (OC) (OC) 

AC 5120-g-RVPffPP 69.8/30.2/1 + llliPA 80/20 80 77 80 81 
(I h 30 min at 140°C) (2h 30 min at 140°C) 

AC 5120-g-RVPffPP 69.8/30.2/1 + HHP A 80/20 83 84 83 
(6 h at 140°C) (I 0 min at 140°C 

AC 5120-g-RVPtrPP 69.8/30.2/1 + HHP A 80/20 84 85 84 
(9 h at J40°C) (I 0 min at 140°C) 
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TABLE 33: Meltmg, crystallisation, solubilisation and phase separatiOn 
temperatures for some of the mixtures of AC 5120 grafted with 
the Monofunctional Epoxy Resm (RVP) in presence of TPP, 
Epikote 828 and HHP A obtained from hot stage microscope 

t expenmen s. 

Tm Tc T, Tp 
(OC) (OC) (OC) (OC) 

/Epikote 828/HHP A 68 --- 178* ---
7.1/58.7/34.2 

/Epikote 828/HHP A --- --- >250 >250 
AC 5120-g-RVP/TPP 8.5/52.6/38.9 

/Epikote 828/HHP A 83 58 143* ---
13.9/67.0119.1 

69.8/30.2/1 /Epikote 828/HHP A --- --- > 250 ---
15.0/50.0/35.0 

/Epikote 828/HHP A --- 58 146 86 
(1 h 30 min at 140°C) 21.8n2.8/5.4 

/Epikote 828/HHP A 80 --- >250 ---
42.0/29.0/29.0 

Heatmg conditiOns: 
{ (AC 5120-g-RVP 69.8/30 2)/HHPA 80/20 2 h 30 min at 140°C} + Epikote 828 
+rest of HHPA 10 min at l15°C. 

TABLE 34: Melting, crystallisatron, solubilisation and phase separation 
temperatures for the last mixtures of AC 5120 grafted with the 
Monofunctional Epoxy Resin (RVP) in presence of TPP, Epikote 
828 d HHPA b . d f h . . an o tame rom ot stage rrucroscooe expenments. 

Tm Tc T, Tp 
(OC) (OC) (OC) (OC) 

AC 5120-g-RVP/TPP /Epikote 828/HHP A 138 70 >250 > 250 
69.8/30.2/1 15.0/50.0/35.0 

(6 h at 140°C) /Epikote 828/HHP A --- 83 >250 > 250 
21.8n2.8/5.4 

AC 5120-g-RVP/TPP /Epikote 828/HHP A 153 72 >250 >250 
69.8/30.2/1 15.0/50.0/35.0 

(9 h at 140°C) /Epikote 828/HHP A --- 84 153* 198 
21.8n2.8/5.4 

Heating conditions: 
{(AC 5120-g-RVP 69.8/30.2)/HHPA 80/20 10 mm at 140°C} + Epikote 828 + 
rest of HHPA 10 min at l15°C. 
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TABLE 35: Meltmg, crystalhsation, solubilisation and phase separation 
temperatures for mixtures of MNA with AC ~120 grafted with the 
Monofunctional Epoxy Resm (RVP) il1! presence of TPP, and or 
E "k t 828 bt . d f h . . ~PI o e 0 ame rom ot stage microscope ex Jenments. 

Epikote 828/MNA 
50/50 (*) 

(AC 5120-g-RVP/TPP 69.8/30.2/1)/MNA 
77.9/22.1 (**) 

(AC 5120-g-RVP/TPP 69.8/30.2/1)/Epikote 828/MNA 
7.0/58.7/34.3 (***) 

(AC 5120-g-RVP/TPP 69.8/30.2/1)/Epikote 828/MNA 
13.9/47.8/38.3 (***) 

(AC 5120-g-RVP/TPP 69.8/30.2/1)/Epikote 828/MNA 
13.9/67.0/19.1 (***) 

(AC 5120-g-RVP/TPP 69.8/30.2/1)/Epikote 828/MNA 
21.6n1.8/6.6 (***) 

(AC 5120-g-RVP/TPP 69.8/30.2/1)/Epikote 828/MNA 
42.0/29.0/29.0 

Heating Conditions: 
(*)10 min at ll5°C 
(**) 2 h 30 min at 140°C 

(***) 

Tm Tc T. Tp 
coq coq (OC) (OC) 

--- --- 25 ---

90 81 90 ---

78 --- >250 > 250 

--- --- > 250 > 250 

78 --- >250 > 250 

75 --- >250 >250 

--- --- >250 >250 

(***) { (AC 5120-g-RVP/TPP 69.8/30.211)/MNA 77.9/22.1 2 h 30 min at 
140°C} + Epikote 828 +rest of MNA 10 min at ll5°C. 

TABLE 36: Melting, crystallisation, solubJ!tsation and phase separation 
temperatures for the mixtures of Montamc Acid with AC 5120 and 
E 1kote 828 obtained from hot sta e microsco e ex eriments. 

Tm Tc T. Tp 
(

0 C) COC) (0 C) COC) 
Montanic Acid 82 76 

AC 5120 

Montanic Acid/AC 5120 2sns 
(10 min at l15°C 

Epikote 828-g-Montanic Acid 6.6/1 
(9 h at 150°C) 

87 

86 

83 

86 

83 86 

79 114 105 
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TABLE 37: Melting, crystallisation, solubilisation and phase separation 
temperatures for the 50150 rruxtures of AC 5120 and Ep1kote 828 
grafted with Montanic Acid obtamed from hot stage microscope 
experiments. 

Tm Tc Ts Tp 
(oC) (oC) (oC) (oC) 

r---~~----~~~--~~~--~~~~~~~~~ 
AC S120/(Epikote 828-g-Montanic Acid 6.6/1) 85 84 163 

SO/SO (10 min at l15°C) 
AC S120/(Epikote 828-g-Montanic Acid 6.6/1) 86 80 158 

SO/SO (lh at l15°C) 
AC S120/(Epikote 828-g-Montanic Acid 6.6/1) 83 84 178 

SO/SO (3 h at l15°C) 

TABLE 38: Melting, crystallisatiOn, solubilisatiOn and phase separation 
temperatures for the mixtures of AC 5120 grafted with e­
Caprolactone and Epikote 828 grafted with Montanic Acid 
obtained from hot stage microsco Je expenments. 

(AC S120-g-Caprolactone SO/S)/ 
(Epikote 828-g-Montanic Acid 6.6/1) 

S0/50 (10 min at l15°C) 
(AC S120-g-Caprolactone S0/20)/ 

(Epikote 828-g-Montanic Acid 6.6/1) 
SO/SO (10 min at l15°C) 

Tm Tc T. Tp 
(

0 C) (°C) ("C) ("C) 
80 74 213 

83 75 238 205 
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TABLE 39: Solubilisation and phase separation temperatures for the 50/50 
mixtures of unmodified and modified AC 5I20 and unmodified and 
mod1fied Epikote 828 obtained from hot stage rrucroscope 
expenments. 

Ts Tp 
(OC) ec) 

AC 5120/Epikote 828 I93 ---
50/50 

(AC 5120-g-Caprolactone 50/5)/Epikote 828 2I3 ---
50/50 

(AC 5120-g-Caprolactone 50/20)/Epikote 828 238 ---
50/50 

(AC 5120-g-RVP 69.8/30.2)/Epikote 828 I72 ---
50/50 

(AC 5120-g-RVP/TPP 69.8/30.2/1)/Epikote 828 I46 ---
50/50 

AC 5120/(Epikote 828-g-Montanic Acid 6.6/1) I78 ---
50/50 

(AC 5120-g-Caprolactone 50/5)/(Epikote 828-g-Montanic Acid 6.6/1) 213 ---
50/50 

(AC 5120-g-Caprolactone 50/20)/(Epikote 828-g-Montanic Acid 6.6/1) 238 205 
50/50 

The rruxtures were obtained with the final products of each modification reaction, 
i.e. using the heatmg time reqmred for the maximum conversion. 

TABLE 40: Melting, crystallisation, solubilisation and phase separatiOn 
temperatures of binary mixtures HHPA-e-Montanic Acid obtained 
f h . . rom ot sta e m1croscope expenments. 

Heating Time Tm Tc T. Tp T' m T'c 
at 140°C (OC) (OC) (OC) (oC) (OC) (oC) 

HHPA I20 ---
HHPA-e-Montanic Acid 10min 78 67 98 --- 98 ---

90/10 I h 79 72 101 95 10I ---
HHPA-e-Montanic Acid 10min 80 75 I03 IOO --- ---

80/20 Ih 80 75 107 104 --- ---
HHPA-e-Montanic Acid IOmin 80 74 105 I02 --- ---

70/30 Ih 80 74 I02 IOO --- ---
HHPA-e-Montanic Acid IOmin 79 74 102 100 --- ---

60/40 I h 79 74 97 94 --- ---
HHPA-e-Montanic Acid IO min 78 73 98 90 --- ---

50/50 Ih 78 73 9I 88 --- ---
Montanic Acid 82 76 
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TABLE 41: Melting, crystallisation, solubi!tsatmn and phase separation 
temperatures for binary rrnxtures of AC 5120, unmodified and 
modified with RVP, and HHPA-e-Montamc Actd obtained from 
h ot stage microscope expenments. 

Tm Tc T, Tp 
(OC) (OC) (oC) (OC) 

AC 5120/(HHPA-e-Montanic Acid 80/20) 86 80 131 130 
21.1n8.9 

AC 5120/(HHPA-e-Montanic Acid 80/20) 82 80 113 90 
44.4/55.6 

AC 5120/(HHPA-e-Montanic Acid 80/20) 82 81 114 83 
70.6/29.4 

(AC 5120-g-RVP 69.8/30.2)/ 80 76 80 82 
(HHPA-e-Montanic Acid 80/20) 77.5/22.5 

All the mixtures were heated 1 hat 115°C. 

TABLE 42: Melting, crystallisatiOn, solubilisation and phase separation 
temperatures for binary mixtures of Epikote 828 and HHPA-e-
M t . A . d bt d f h t t t on aruc Cl 0 rune rom o s age rrncroscope expenmen s. 

Tm Tc T, Tp 
(OC) (OC) (OC) (oC) 

Epikote 828/(HHPA-e-Montanic Acid 80/20) 82 76 160 140 
44.4/55.6 

The mixture was heated 10 mm at 115°C. 

TABLE 43: Melting, crystallisation, solubthsation and phase separation 
temperatures for ternary mixtures of AC 5120, Epikote 828 and 
HHPA-e-Montamc Acid obtained from hot stage microscope 
expenments. 

Tm Tc T, Tp 
(OC) (OC) (OC) (oC) 

AC 5120/Epikote 828/(HHPA·e·Montanic Acid 80/20) 88 78 230* 81 
4.6/55.2/40.2 

AC 5120/Epikote 828/(HHPA-e-Montanic Acid 80/20) 76 74 >250 >250 
9.5/66.7/23.8 

AC 5120/Epikote 828/(HHPA·e-Montanic Acid 80/20) 83 77 193 80 
15.8176.8/7.4 

All the mixtures were heated 10 min at 115°C. 
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TABLE 44: Melting, crystalhsatwn, solubilisation and phase separation 
temperatures for ternary rruxtures of AC 5120 grafted with RVP, 
Epikote 828 and HHPA-e-Montanic Acid obtained from hot stage 
microscope experiments. ----.----,--.....------.----, 

(AC 5120-g-RVP 69.8/30.2)/Epikote 828/ 86 73 >250 >250 
(HHP A -e-Montanic Acid 80/20) 6.5/=-54-:::.1::::/=-:39:...:·..:..4 -il--==--+--=c:---f--:--:-:-+--=-::--1 

(AC 5120-g-RVP 69.8/30.2)/Epikote 828/ 77 70 210 79 
(HHPA-e-Montanic Acid 80/20) 13.1/-=-64..:..:·.::.:0/=22=·=-9 +---+---+---l-_, 

(AC 5120-g-RVP 69.8/30.2)/Epikote 828/ 85 83 156 108 
(HHP A-e-Montanic Acid 80/20) 21.1:....:n..=2;.;;.0:...::/6;,;:.9;..,JL._--J __ .~-_....~...._ ....... 

All the mixtures were heated 10 min at l15°C. 
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TABLE 45: Results of tritation tests performed on AC 5120 grafted with RVP, 
Wl th th tTPP(1 dl5 b) dHHPA MNA OrWl ou an . 'PIW ,an or 

Heating Acid Number Degree of 
Conditions (mg KOH/g resin) Conversion 

5 min at 77.3 7 
AC 5120-g-RVP 115°C 

69.8/30.2 9 hat 140°C + 65.9 21 
12 hat 90°C 
Oh at 140°C 84.3 0 

1 hat 140°C 15.7 81 

1 h 30 min 15.2 82 
AC 5120-g-RVP/TPP at 140°C 

3 hat 140°C 15.1 82 
69.8130.211 

9 hat 140°C 15.2 82 

9 hat 140°C + 15.2 82 
12 hat 90°C 
Oh at 140°C 63.3 23 

30 min at 15.3 81 
AC 5120-g-RVP/TPP 140°C 

3 hat 140°C 15.6 81 
69.8130.211.5 

9 hat 140°C 15.9 81 

0 hat 140°C 29.3 

(AC 5120-g-RVP/TPP 1 hat 140°C 85.9 
69.8130.211) I 

HHPA 2 hat 140°C 87.1 
80/20 

2h30mm 87 1 
at 140°C 

0 hat 140°C 22.9 

(AC 5120-g-RVP/TPP 1 hat 140°C 80.1 
69.8130.211) I 

MNA 2 hat 140°C 78 3 
77.9/22.1 

2h 30 min 77.5 
at 140°C 



-----------------------

193 

TABLE 46: Molecular weight results, measured at RAPRA Technology LTD, 
for the three functionalised polyethylenes and for AC 5120 grafted 
with e-Caprolactone. 

Mw 

AC 6702 2140 (*) 

AC540 4560(*) 

AC 5120 3325(*) 
1385(**) 

AC 5120-g-Caprolactone 50/5 1490(**) 
(at 90% conversion) 

AC 5120-g-Caprolactone 50/20 1595(**) 
(at 95% conversion) 

(*)Refers to tests performed on June 1992 
(**)Refers to tests performed on February 1993 

Mn Mw/Mn 

970(*) 2.2(*) 

1710(*) 2.6(*) 

1005(*) 3.3(*) 
675(**) 2.0(**) 
710(**) 2.1(**) 

725(**) 2.2(**) 

TABLE 47: DSC results for the three low molecular weight functwnahsed 
ol ethylenes. 

Tmp Tmt Tmr L1Hm Tcp Tct Tcr LlHc 
(OC) (QC) COC) (J/ ) CO C) (oC) (OC) (J/) 

AC6702 63 35 101 44 67 81 44 13 
AC540 105 28 123 101 78 93 32 76 
AC5120 89 37 110 54 51 71 43 25 

TABLE48 DSC : . hAC6702 1 ~ f h b resu ts or some o t e mary mixtures w1t 

Tmp Tmt Tmr LlHm Tcp Tc1 Tcr LlHc 
(°C) (oC) (oC) (J/g) (OC) (OC) (oC) (J/g) 

AC 6702 63 35 101 44 67 81 44 13 

AC 6702/Epikote 828 79 26 100 56 64 76 33 34 
50/SO 

AC 6702/Epikote 828 81 26 99 44 64 74 33 27 
75/25 
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TABLE 49 DSC 1 £ f h b" . hAC540 : resu ts or some o t e mary mixtures wit 

Tmp Tm, Tmr dHm Tcp Tci Tcr dHc 
(CC) eq (CC) (J/g) (CC) (CC) ec) (J/g) 

AC540 105 28 123 101 78 93 32 76 

AC 540/Epikote 828 94 23 115 242 79 89 42 197 
10/90 

AC 540/Epikote 828 101 23 118 91 83 92 53 64 
50/50 

AC 540/Epikote 828 lOO 22 117 92 84 92 50 62 
75/25 

AC 540/Epikote 828 101 21 121 91 82 90 41 70 
90/10 

AC 540/CY 179 96 22 114 159 83 92 41 131 
25n5 

AC 540/CY 179 99 27 115 87 81 91 41 72 
75/25 

TABLE 50 DSC 1 I) : resu ts or some o fth b" . hAC 5120 e m~ mixtures Wit 

Tmp Tm, Tmr dHm Tcp Tci Tcr dHc 
eq (CC) eq (J/g) eq (CC) eq (J/g) 

AC5120 89 37 110 54 51 71 43 25 

AC 5120/Epikote 828 74 22 105 37 59 75 42 25 
50/50 

AC 5120/Epikote 828 74 23 104 43 59 78 46 26 
75/25 

AC 5120/CY 179 76 20 114 67 54 81 23 66 
50/50 

AC 5120/CY 179 75 21 113 46 51 82 24 44 
75/25 
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TABLE 51: DSC results for HHPA and for 50/50 mixtures of HHPA with AC 
540 and with AC 5120 

T'mp T' ~ T'mr Ml'm Tmp T~ Tmr Mlm T., T"' T" T" Ml, 
(OC) ("C) ("C) (J/~) (OC) ("C) ("C) (J/~) ("C) (OC) (oC) (oC) (J/~) 

HHPA 31 12 61 99 173 

AC540 105 28 123 101 78 93 32 76 

AC5120 89 37 110 54 51 71 43 25 

HHPA/AC 32 24 51 38 99 57 Ill 72 152 83 94 57 70 
54050/50 

HHPA/AC --- --- --- --- 85 28 108 44 169 61 75 29 50 
5120 50/50 

TABLE 52 DSC I t: f h . hAC540 . resu ts or some o t e ternary mtxtures wtt . 
Tmp Tnu Tmr Llllm Tcp Tc, Tcr Llllc 
(cC) (CC) (OC) (J/g) (CC) (CC) (CC) (J/g) 

AC 540/Epikote 828/HHPA 101 84 113 5 84 100 60 53 
5/60/35 (98) 

AC 540/Epikote 828/HHPA 99 20 114 88 85 92 38 101 
33.3/33.3/33.3 (99) 

AC 540/Epikote 828/HHPA 101 23 116 73 85 94 41 114 
42/48/10 (100) 

AC 540/CY 179/HHPA 102 21 122 124 79 98 57 85 
20/70/10 (100) 

AC 540/CY 179/HHPA 101 21 116 92 85 96 48 88 
33.3/33.3/33.3 (99) 

TABLE 53 DSC 1 t: f h . hAC 5120 . resu ts or some o t e ternary mtxtures wtt . 
Tmp Tm, Tmr ll.Hm Tcp Tci Tcr ll.Hc 
(OC) (CC) ("C) (J/g) (cC) (cC) (cC) (J/g) 

AC 5120/Epikote 828/HHPA --- --- --- --- --- --- --- ---
5/60/35 

AC 5120/Epikote 828/HHPA 74 23 97 3 65 77 54 10 
10170/20 (83) 

AC 5120/Epikote 828/HHPA 74 22 106 33 66 76 51 21 
33.3/33.3/33.3 (76) 

AC 5120/CY 179/HHPA 80 20 111 66 56 66 42 26 
20/70/10 (69) 

AC 5120/CY 179/HHPA 79 21 111 19 52 72 41 12 
33.3/33.3/33.3 (76) 
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TABLE 54: DSC results for the mixtures of AC 5120 grafted with e­
C 1 apro actone. 

Tmp Tmi Tmr .Mlm Tcp Tci Tcr dHc 
(OC) (OC) (OC) (J/g) (OC) eq (OC) (J/g) 

AC5120 89 37 110 54 51 71 43 25 

AC 5120-g-Caprolactone 50/5 76 22 106 43 66 91 26 38 
(5 h l15°C) 

AC 5120-g-Caprolactone 50/5 75 23 105 44 65 83 28 30 
(7 h 40 min l15°C+3 h 160°C) 
AC 5120-g-Caprolactone 50/20 75 22 107 33 66 84 35 27 

(Sh l15°C) 
AC 5120-g-Caprolactone 50/20 53 22 105 47 66 83 37 24 
(6 h 30 min l15°C+7 h 160°C) 

The heats of fusiOn and crystallisation, dHm and dHc, are the total heats 
measured. 

TABLE 55: DSC results for the 50/50 mixtures of AC 5120 grafted with E­

Ca rolactone and E ikote 828. 

Tmp Tmi Tmr .Mlm Tcp Tci Tcr dHc 
(OC) ec) (OC) (J/ ) (OC) (OC) (OC) (JI) 

(AC 5120-g-Caprolactone 50/5)/ 75 23 104 40 65 83 47 21 
E ikote 828 50/50 

(AC 5120-g-Caprolactone 50/20)/ 76 24 104 36 67 79 47 17 
E ikote 828 50/50 

The heats of fusion and crystallisation, dHm and dHc, are normalised to 
polyethylene plus e-Caprolactone content. 

TABLE 56: DSC results for the mixtures of AC 5120 grafted with the 
M f 1 E R . (RVP) ono unctwna !poxy esm 

Tmp Tmi Tmr .Mlm Tcp Tci Tcr dHc 
(OC) (OC) (OC) (J/g) (OC) (OC) (OC) (J/g) 

AC 5120 89 37 110 54 51 71 43 25 

AC 5120-g-RVP 69.8/30.2 79 28 103 57 61 75 38 22 
(10 min 140°C) 

AC 5120-g-RVP 69.8/30.2 82 27 102 52 60 74 39 23 
(9 h 140°C) 

AC 5120-g-RVP 69.8/30.2 73 26 107 49 64 78 39 20 
(9 h 140°C + 12 h 90°C) 

---------------------------------------------- -



197 

TABLE 57: DSC results for the mixtures of AC 5120 grafted with the 
M f ti 1 E R . (RVP) dE 'k t 828 CY 179 ono unc ona ~pox' esm an ~PI 0 e or 

Tmp Tmi Tmr dHm Tep TCI Ter me 
(OC) (OC) (OC) (J/g) (oC) (oC) ("C) (J/g) 

(AC 5120-g-RVP 69.8/30.2)/ 71 24 106 38 62 75 45 21 
Epikote 828 50/50 

(AC 5120-g-RVP 69.8/30.2)/ 71 23 104 37 62 76 44 22 
Epikote 828 75/25 

(AC 5120-g-RVP 69.8/30.2)/ 72 25 115 50 65 80 52 10 
CY179 50/50 

(AC 5120-g-RVP 69.8/30.2)/ 83 26 113 44 63 77 37 19 
CY179 75/25 

TABLE 58: DSC results for the 80/20 mixtures of AC 5120 grafted with the 
M f t lE R . (RVP) dHHPA ono unc wna poxy esm an 

Tmp Tm1 Tmr dHm Tcp Tci Ter me 
(OC) (oC) (OC) (J/g) ("C) (oC) ("C) (J/g) 

(AC 5120-g-RVP 69.8/30.2)/ 
HHPA 80/20 85 27 107 23 62 75 37 12 
(10 min at 140°C) (28) 

(AC 5120-g-RVP 69.8/30.2)/ 
HHPA 80/20 87 26 109 27 61 75 34 14 

(6 hat 140°C) (34) 

The heats of fusion are the total heats measured. Those reported m brackets are 
normalised to polyethylene plus RVP content. 
The heats of crystallisation are normalised to polyethylene plus RVP content. 
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TABLE 59: DSC results for the mixtures of AC 5120 grafted with the 
Monofunctwnal Epoxy Resin (RVP), Ep1kote 828 or CY 179 and 
HHPA 

Tmp Tmi Tmr .:lllm Tcp Tc, Tcr ~He 
(OC) eq eq (J/g) (OC) (OC) (OC) (J/g) 

(AC 5120-g-RVP 69.8/30.2)/ 
Epikote 828/HHP A 72 25 101 25 62 73 48 41 

15/50/35 (10 min at l15°C) (79) 
(AC 5120-g-RVP 69.8/30.2)/ 

Epikote 828/HHPA 73 24 104 19 63 73 52 8 
21.8/72.8/5.4 (*) (47) 

(AC 5120-g-RVP 69.8/30.2)/ 
CY 179/HHPA 88 25 106 16 52 65 41 21 

15/50/35 (10 min at l15°C) (79) 
(AC 5120-g-RVP 69.8/30.2)/ 

CY 179/HHPA 80 27 104 34 51 64 37 17 
21.8/72.8/5.4 (*) (47) 

(*){ (AC 5120-g-RVP 69.8/30.2)/HHPA 80/20 6 hat 140°C} + Epikote 828 (or 
CY 179) 10 mm at ll5°C. 

The heats of fusion and are normalised to polyethylene-graft-RVP plus HHPA 
content. Those reported in brackets are the theoretical values. 
The heats of crystallisation are normalised to polyethylene-graft-RVP content. 

TABLE 60: DSC results for the rruxtures AC 5120-g-RVP/TPP 69.8/30.2/1 at 
different reactwn times. 

Heating Tmp Tm, Tmr ~Hm Tcp Tci Tcr ~He 
Conditions (CC) ec) COC) (J/g) (OC) CO C) (°C) (J/g) 
0 hat 140°C 80 39 107 39 62 78 44 11 

3 hat 140°C 79 32 114 43 58 73 42 9 

6 hat 140°C 80 32 111 48 57 71 42 9 

9 hat 140°C 84 31 106 42 57 73 40 12 

9 hat 140°C + 78 32 Ill 37 53 70 38 15 
12 hat 90°C 
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TABLE 61: DSC results for the rrnxtures AC 5120-g-RVP!TPP 69 8/30.2/1.5 at 
different reaction times 

Heating Trnp Trni Trnr LUirn Tcp Tc, Tcr .iHc 
Conditions eq eq (OC) (J/1!) (OC) (OC) (oC) (J/1!) 
0 hat 140°C 86 35 112 47 62 74 41 113 

30 min at 140°C 81 35 108 41 54 71 41 12 

1 hat 140°C 81 34 110 45 53 70 40 14 

3 hat 140°C 81 33 109 40 57 71 40 11 

9 hat 140°C 80 33 110 43 58 72 39 11 

TABLE 62: Crystallisation temperatures and enthalpies from DSC tests for AC 
5120 and its modifications. 

Tc .iHc 
(OC) (J/g) 

AC 5120 49 27 

AC5120 61 20 
(thermally treated) (*) 

AC 5120-g-Caprolactone 50/5 65 17 
(at 90% conversion) 

AC 5120-g-Caprolactone 50/20 66 16 
(at 95% conversion) 

AC 5120-g-RVP 69.8/30.2 60 24 
(at 21% conversion) 

AC 5120-g-RVP/TPP 69.8/30.2/1 58 9 
(at 82% conversion) 

AC 5120-g-RVP/TPP 69.8/30.2/1.5 54 12 
(at 81% conversion) 

(*) SubJected to the same thermal history as that used m the cherrncal modified 
products. 
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TABLE 63: DSC results for Montamc Acid and its mixtures with AC 5120 and 
E 'k 828 ~PI ote 

Tmp Trm Tmr Llllm Tcp Tcr Tcr Llllc 
eq (OC) (OC) (J/g) (QC) eq (QC) (J/g) 

AC5120 89 37 110 54 51 71 43 25 

Montanic Acid 83 30 104 188 71 80 28 165 

AC 5120/Montanic Acid 80 24 106 75 54/66 77 31 63 
75/25 (87) (*) (60) 

Epikote 828-g-Montanic Acid 51 24 118 170 71 79 37 75 
6.6/1 (**) (**) 

(*) The firSt crystallisation temperature is related to the polyethylene component, 
while the second to Montanic Acid. 
The values(**) are normalised to Montan1c Acid content. 

TABLE 64: DSC results for the 50/50 mixtures of AC 5120 grafted with E-

C I dE 'k 828 af d 'thM A 'd apro actone an ~p1 ote gr te w1 ontan1c Cl • 

Tmp Tm, Tmr dHm Tcp Tci Tcr dHc 
("C) ("C) (OC) (J/f.!) (OC) (OC) ("C) (J/f,!) 

AC5120/ 
(Epikote 828-g-Montanic Acid 6.6/1) 74 23 102 30 66 78 35 21 

50/50 
(AC 5120-g-Caprolactone 50/5) I 

(Epikote 828-g-Montanic Acid 6.6/1) 75 23 103 28 66 78 37 18 
50/50 

(AC 5120-g-Caprolactone 50/20) I 
(Epikote 828-g-Montanic Acid 6.6/1) 75 24 101 25 64 83 37 16 

50/50 

The heats of fusion and crystallisation, dHm and dHc, are the total heats 
measured. 
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TABLE 65: DSC results for the mixtures ofHHPA and Montanic Acid 
T'mp T'm~ T'mr Ml' T.,. T~ Tmr ll.Hm T., T"' Ta T" ll.H, m 
CC) ('C) ('C) (J/g) ('C) ('C) ('C) (Jig) ('C) ('C) ('C) ('C) (J/g) 

HHPA 31 12 61 99 173 

HHPA-e- 35 21 59 75 79 59 96 10 150 68 78 33 12 
Montanic (84) (104) (117) 
Acid 90/10 
HHPA-e- 32 18 51 48 77 56 99 22 169 67 77 20 26 
Montanic (60) (108) (128) 
Acid 80/20 
HHPA-e- 33 23 51 41 78 57 97 32 170 67 77 26 37 
Montanic (59) (107) (123) 
Acid 70/30 
HHPA-e- ... ... ... ... 78 28 97 74 137 60 69 26 59 
Montanic (185) (147) 
Acid 60/40 
HHPA-e- ... ... ... ... 77 22 99 87 163 60 70 27 75 
Montanic (174) (150) 
Acid 50/50 
Montanic 83 30 104 188 71 80 28 165 

Acid 

The heats of fusion and crystallisation, 6.Hm and 6.Hc, are the total heats relative 
to Montamc Acid phase. Those reported in brackets are normalised to Montanic 
Acid content. 
The values of heats of fusion dH' m are the total heats relative to HHPA phase. 
Those reported in brackets are normalised to HHP A content. 

Details of Formulations reported in Tables 66 to 78 are reported in Tables 1 
to 7. 

TABLE 66: DSC results for samples cured at 115 or 60°C and post-cured at 
150°C. 

Cl 11 13 FHA CP Pl P3 FHZ 
T eq 136 109 109 106 110 106 108 117 

Tmec) 42 63 85 65 47 88 
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TABLE 67: DSC results for sam les cured at 115°C and ost-cured at 150°C. 
Cl J1 J2 

Te (°C) 133 --- ---
Tm (0 C) --- 90 100 

J3 Kl 
109 129 
89 57 

K2 
122 
92 

K3 
106 
54 

TABLE 68: DSC results for control samples cured at 115 or 60°C and p ost-cured 
at 150°C and 180°C. 

11 

CL 

I 
CS 

I 
CR I CT 

TgeC) 132 122 132 119 

TABLE 69: DSC results for samples cured at 115 or 60°C and post-
150°C and 180°C. 

SI S3 L1 L3 Ul U3 Ql 
Te (0 C) 132 118 130 117 134 116 121 
Tm (0 C) 43 48 73 67 47 70 54 

TABLE 70: DSC results for samples cured at 115 or 60°C and post-
150°C and 180°C. 

Ml M'2 M'3 M3 RI R'2 R'3 
Te (0 C) 127 123 122 109 129 122 122 
Tm (0 C) 49 46 46 47 45 47 46 

TABLE 71: DSC results for samples containing free RVP cured at 11 
post-cured at 150°C and 180°C. 

T'Ml TMI TLI TM'3 TM3 
Te (0 C) 127 133 124 114 118 

TABLE 72: DSC results for samples containing free RVP cured at 6 
post-cured at 150°C and 180°C. 

T'Rl TRI TQI TR'3 TR3 
Te (oC) 130 135 117 112 118 

CQ 
116 

cured at 

Q3 
108 
55 

cured at 

R3 
111 
45 

TL3 
111 

TQ3 
105 
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TABLE 73: Results from DMA tests for samples cured at 115°C or 60°C and 
d 150°C d 180° post-cure at an c. 
G' (GPa) G" (GPa) T2 (

0 C) 
CL 2.24 27.0 132 
Ml 2.10 34.5 129 
M'3 1.68 27.0 124 
CR 1.95 20.0 134 
Rl 1.71 25.0 129 
R'3 1.86 41.0 126 

The moduli G' and G'' are calculated at room temperature. 

TABLE 74: Results from Flexural tests for samples cured at 115°C or 60°C and 
d 150°C post-cure at 
E (GPa) crh (MPa) Eb(%) 

Cl 2.37 92.7 6.7 
11 2.32 105.7 6.7 
13 1 81 90.1 6.6 
CP 2 33 105.4 10.4 
Pl 2.35 101.3 70 
P3 1.90 75.5 5.4 

TABLE 75: Results from Flexural tests for samples cured at 115°C or 60°C and 
d 150°C d 180°C post-cure at an 
E (GPa) crb (MPa) Eb(%) 

CL 2.37 99.1 8.4 
CR 2.28 97.0 7.0 
CQ 3.11 116.9 6.5 
Ql 2.66 99.9 5.9 
Q3 2.14 81.2 5.5 



TABLE 76: Results from Flexural tests 
w1th RVP, in presence of 
cured at 150°C and 180°C. 

E (GPa) 
Ml 2.36 
M3 2.17 
Rl 2.21 
R3 2.13 
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for samples contaming AC 5120 grafted 
TPP, cured at 115°C or 60°C and post-

crh (MPa) 
111.4 7.7 
86.2 5.4 
96 3 5.7 
866 58 

TABLE 77: Results from Fracture To ughness tests, in 3 point bending, for 
oc and ost-cured at 150°C and 180°C. samples cured at 115 or 60 

K., (MPa*m112
) Gc (kJ/m) 

CL 1.65 1.15 
Ml 1.81 1.39 
M'2 1.67 
CR 1.52 1.01 
Rl 1.64 1.22 
R'2 1.49 
RU 1.93 

TABLE 78: Results from Charpy Im pact Strength tests for samples cured at 
sooc and 180°C. 115°C and post-cured at 1 

acu (kJ/m) 
CL 14.9 
Ml 16.2 
M'2 17.1 



7.3 Additional Figures 

Figure 1: AC 6702/Epikote 828 50/50 (T = 100°C) (Heating 

time at l15°C = 24 hrs) Scale= 1/400 
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Figure 2: AC 540/Epikote 828 50/50 (T = 100°C) (Heating time 

at 115°C = 24 hrs) Scale= 11400 



Figure 3: AC 5120/Epikote 828 50/50 (T = 100°C) (Heating 

tlme at 115°C = 21 hrs) Scale= 1/400 

Figure 4: AC 540/Epikote 828/HHPA 10170/20 (T = 250°C) 

(Heating time at 115°C = 10 min) Scale= 1/400 

206 



Figure 5: AC 540/Epikote 828/HHPA 14/62/24 (T = 250°C) 

(Heating time at ll5°C = 10 min) Scale= 11400 
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Figure 6: AC 540/Epikote 828/HHPA 16.7/50/33.3 (T = 250°C) 

(Heating time at ll5°C = 10 min) Scale= 1/400 



Figure 7: AC 5120/Epikote 828/HHPA 5/60/35 (T = 200°C) 

(Heating time at 115°C = 10 min) Scale= 1/400 
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Figure 8: AC 5120/Epikote 828/HHPA 33.3/33.3/33.3 (T = 200°C) 

(Heating time at l15°C = 10 min) Scale= 1/400 



Figure 9: AC 5120/Epikote 828 50/50 (T = l20°C, 0 min) 

(Heating time at 115°C = 6 hrs) Scale= 11400 

. 
••• 
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Figure 10: AC 5120/Epikote 828 50/50 (T = l20°C, 5 min) 

(Heating time at l15°C = 6 hrs) Scale= 11400 
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Figure 11: AC 5120/(Epikote 828-g-Montanic Acid 6.611) 50150 

(T = l20°C, 0 min) (Heating time at 115°C = 3 hrs) 

(Scale = 1/400) 

Figure 12: AC 5120/(Epikote 828-g-Montanic Acid 6.611) 50150 

(T = l20°C, 5 min) (Heating time at 115°C = 3 hrs) 

(Scale = 1/400) 
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Figure 13: (AC 5120-g-Caprolactone 50/20)/Epikote 828 50/50 

(T = l20°C, 0 min) (Heating time at 115°C = 10 min) 

Scale = 1/400 

Figure 14: (AC 5120-g-Caprolactone 50/20)/Epikote 828 50/50 

(T = l20°C, 5 min) (Heating time at 115°C = 10 min) 

Scale = 1/400 



Figure 15: (AC 5120-g-Caprolactone 50/20)/(Epikote 828-g­

Montanic Acid 6.6/1) 50150 (T = l20°C, 0 min) 

(Heating time at 115°C = 10 min) Scale= 1/400 

Figure 16: (AC 5120-g-Caprolactone 50/20)/(Epikote 828-g­

Montanic Acid 6.6/1) 50150 (T = l20°C, 5 min) 

(Heating time at 115°C = 10 min) Scale= 1/400 
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Ftgure 17: AC 540/Epikote 828 50/50 (T = 110°C, 0 min) 

(Heating time at 115°C = 24 hrs) Scale= 1/400 
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Figure 18: AC 540/Epikote 828 50/50 (T = ll0°C, 1 hr 20 min) 

(Heating time at ll5°C = 24 hrs) Scale= 1/400 



Figure 19: AC 5120/Epikote 828 50/50 (T = 110°C, 0 min) 

(Heating time at 115°C = 6 hrs) Scale= 1/400 
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Figure 20: AC 5120/Epikote 828 50/50 (T = l10°C, 1 hr 30 min) 

(Heating time at 115°C = 6 hrs) Scale= 1/400 



215 

Figure 21: CL Cured System (Control Sample, Tcure = ll5°C) 

Figure 22: J3 Cured System (10 parts AC 5120, Tcure = 115°C) 
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Figure 23: J3 Cured System (10 parts AC 5120, Tcure = 115°C) 



Figure 24: FHZ Cured System (30 parts (AC 5120-g-RVP 

69.8/30.2), Tcure = 60°C) 

Figure 25: FHZ Cured System (30 parts (AC 5120-g-RVP 

69.8/30.2), Tcure = 60°C) 
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Figure 26: FHZ Cured System (30 parts (AC 5120-g-RVP 

69.8/30.2), Tcure = 60°C) 

Figure 27: FHA Cured System (30 parts (AC 5120-g-RVP 

69.8/30.2), Tcure = 115°C) 
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Figure 28: 13 Cured System (20 Parts (AC 5120-g-RVP 

69.8/30.2), Tcure = 115°C) 

Figure 29: 13 Cured System (20 Parts (AC 5120-g-RVP 

69.8/30.2), Tcure = 115°C) 
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Figure 30: P3 Cured System (20 parts (AC 5120-g-RVP 

69.8/30.2), Tcure = 60°C) 

Figure 31: P3 Cured System (20 parts (AC 5120-g-RVP 

69.8/30.2), Tcure = 60°C) 
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Figure 32: M1 Cured System (5 parts (AC 5120-g-RVP!fPP) 

Tcure = 115°C) 

Figure 33: M1 Cured System (5 parts (AC 5120-g-RVP!fPP) 

Tcure = 115°C) 
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Figure 34: M3 Cured System (20 parts (AC 5120-g-RVP!TPP) 

Tcure =115°C) 
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Figure 35: R1 Cured System (5 parts (AC 5120-g-RVPffPP 

69.8/30.211) Tcure = 60°C) 

Figure 36: R1 Cured System (5 parts (AC 5120-g-RVPffPP 

69.8/30.211) Tcure = 60°C) 

223 



224 

Figure 37: R3 Cured System (20 parts (AC 5120-g-RVP!TPP 

69.8/30.211) Tcure = 60°C) 

Figure 38: R3 Cured System (20 parts (AC 5120-g-RVP/TPP 

69.8/30.211) Tcure = 60°C) 
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Figure 39: RU Cured System (10 parts CTBN Tcure = ll5°C) 






