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Abstract 

In this \York some many-body properties of isol.ttcrl mcsoscopK ungs ,ne mYes

tJgatcd Scwnd qth\Utlzatwn and tiglit-bindmg models !01 sy-,tems ol ~pmless 

fernuons and fermions With spin ,\re nscd to deli\e an expressiOn !or th<• peiSIS

tent wncnt The results obtamed f01 non-mteiactmg ~y~tems .\le In s.ttl'>f,lctory 

ag1eement \\'lth both expenmental me.tsmement' .111d other thcotetic.tl results. 

Then a Coulomb 1epulsion is cons!deied for,\ system olmtemctmg leruuons ,md 

a \'llll<ttion,tl .tppw.tch is adopted \Ve attempt to imprO\ e the de~cuptwn of 

th<, 5~ ~tem by iutroclncmg rotatwns ol the spm-qna11tmttion ax1~ 011 c.tcli &Ite 

Then \\ e go 011 to ,hO\\ how the e1uergPnt H.u tree- Foe k cqn<lt.Ious may be t.ll'at ed, 

\\'h,lt kind of effects h,t\e to be cousideiCd .utd ho\\' the tual \\1\\'e luuctwns can 

lw dw~en accordingly 
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Introduction 

\Vtt!un the !.t5t few ye.trs a J.tpid de1·e!opment of technology has 'itunn!.tt<•d many 

mtete'itmg mYesttg<~t!Ons m condensed matter phystcs The ability to m.mage 

temper.ttmes well below 1 Kelnu and to create sy<;tems of dmicuswuality of a 

few uucrometers allows the obsel\·ation of quantum effects "luch weie lucl<len 

befme. E1en m normal condnctmg metals It is now po'i'iible to obt.tm situations 

"·here the coherence length of the electron "·m·e functiOn becomes comparable to 

the system 'ilze; tlus IS called mesoscopics 

In tlus field the persistent-current problem has atou<;ecl partJcu!.u mte1est. 

It prondes .m excellent po'isil.llhty to compme the resn!ts of complicated rheoiet

icalmany-body descuptions of these nt.tteu,t!s With Ie,ll expeumental ute<lsllre

ment'> A petsistent current appears when smgle, Isolated noinHl-metalungs aie 

thteaded by a magnetic flux The basic obsetvation is that tlus cmrent depends 

ou tlw flux 111 a charactensttc way- .t linearly mucased m.1gnctic fie!<! leads to 

·lii o~< Ill.ttioum the current The peuod of tlus m.cillatiou h the eleuwnt.uy !lux 

qn,mtnm <I>n = ';': Heie hIS tlw Planck constant, c I'i the speed of hght .md e IS 

tlw ch,uge of .tn election 

The History of the Persistent Current 

Observation 

It 1_'3 mteiesnug that the lustmy of the pCI'iiStent untellt h.td .di<·.HI} sr,utl'd .t 

long runP befme tlw expeiimeutal eudeuce 1\',l'l found Fm m,t,tacc, .1 wotk by 

Aharonov .me! Bohm from1D59 [l]Is mentiOned \'PlY olrcn wlwu Hnx-d0pendent 

ftnctn.ltwn'i of cm rents are iun~stlg.ucd These ,\llthms actn.1lly rued to p101'e 

4 



INTRODUCTION 5 

the physical existence of the ,·ector potential A by suggesting an expenment in 

\duch <1n electron beam IS spht in two separate beams that enclose a solenoid 

and I> 1 ecombined afterwards. Although the electrons only mm e m field-tree 

space they still experience the ,·ector potentml connected to the flux <1.> through 

the solenoid Simple constdetdtlons as well ,,s exact solutions ol the ~c.1tteling 

p10blem led to the result that the cmrent ol the wcombmed be.un cl<•pends on 

the ph<~>e difference ~S/h = t~c <1.>. Tlms, the cnnent is peuochc mth Ie,p<•cr. to 

the flux In the middle of the t\\·o beams 

The \\01 k ol Biittiker, Imry and Laudauet [2]ut 1983 t<; usually quoted 

to be the fi1st p.1per that predicted the existence of <1 pctsJstent cunent m small 

one-dmtPllSIOJh11 nngs They pomted out th.tt dosmg ,, random pot<'ntial to ,, 

nng n•,ults m a peuod1c potentml mth the typJC.tll3loch-hke b,llld sttnctm<' m 

H'ciptoc al space. An acceleratmg electrical field E lot c<'s the ch.uged pm tides 

to mon~ \\"Jtlun the fi1st Bnllouin zone As soon as the field IS switched off the 

moH•nwnt stops, and the cunent 1emams w1th a fixed momentum, winch does not 

nc•ces,,uih· l1<1Ye to be zero. Acc01ding to 13uttiker, Inuy ,md L.llld,llleJ this e!lect 

lc•,t<ls to a pe1sistent current mtlnn the 1ing It 1s ,1lso mentiOned in the paper 

that the existence of an <1ccelet,1tmg field J> equi\·,1\ent to the .tppem.tiH e ol an 

extelllal !lux through the nng "·hic!Jmcre,"e' lineally 111 tuue Fmrheun01e, the 

fu•<JlH'IlC~ ol the mowment through the b,Uld 1~ the s,uue a<; [m >npelwnclncting 

nngs 1\'lth .t .Josephsou JUnctwn, except tlt<tt 2e i> Jcplacccl by e 

I11 1!J90 Levy et n.l [3] "'''r<' the first to ptovtcle cle.u e' idence tor tlw existence 

ol petol~t<'llt cnueut.s w1t.h t.hetr 1esnlts ot me,~<;utement.s 011 mesoscop!C coppe1 

1111gs They used 107 "n11gs'' ot coppe1, wluch act.lt.llly h<~tl ,t ~qu,ue sh.tpe ,m,] 

\\<'le loc<ll<'d Wlt.lun an ,ue.t of iuun2 The cucnmleieHce ol e,H h ol the nng'l 

\\.t.~ L ~ 2 2Jtlll The me,1sured quanttty \\',tS t.h<' tu.tgll<'tt'i.t!tou 11 ttlun .t SQUID 

m.tgnetomrtcr L<h·y et al con<;iderecl uot only the ,·,tine ol the <;<•cond .tml 

thud h,untomcs of the momentum, Jt2 1, !m T = 0, hut also then tempe1ature 

dependence 0\ e1 <Ill interval ol i to 400 mh: Thcor<'tic,ll assumptions pu·chct au 

expoHentt,ll deCJe,tse .tccorchng to the law J1 2•3 (T) = J1 2,3(0) Pxp[-kf']I<~.t,ing 

only Jln(O) as ,t f~ee par,uueter for fits. (Er IS the coueldtJOn enetgy .mcl eau 

lw .-,tun.tt<'cl) The results 111 gcueJ,tl confirm the t.IH'OIY 11~ed Esp<'Ct.t!ly, an 
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o~ctll.ttory beh,tnour in the flux dependence of the magnetic moment ''"as cle,uly 

obset ,·eel. "·hich inchc,ttes the existence of a petsistent cunent The magmtude 

of the moment is estimated to be 1.2 · ro- 1;;Am2, couespoudn1g to an ensemble

a,eraged cuuent of 0.-lnA ~ 3 ·10-3T per nug HmYe,et. piOIMbly i>c(;,\I!Se of 

the twcesqary ,weraging m·er a" hole system of Iings the peuod of oscdlatwu was 

found to be 1!0/2 (not if!o). 

Only one year J,tter Chandrasekhar et al. [4] pnbh<;hed the tesults of their 

experuuents on the magnetic response of a '3lltgle, tsol,lted gold loop Becau&e 

of the .thsence of an ensemble avetagmg they wete successful at hnchng ,, 11 hole 

flux f(1l<tlltum osctll,ttiOn. Tlaee chffcrent kinds ol gold loops, f,thttC.HN! on nxt

chzed St substrates using an electron-be,un lithogr,q>hy p1oce~s. 11e1e n'ed Thetr 

dmmeter w,ts 2.-1 fLm, 4 0 JLm (cucle) and 1 4 f/111 x 2 G pm (rectangular), re

specttwly In the temperature range around 10 mi{ ,m electron ph<tse-cohcrence 

length of 12 pm dnrl .t thermal dtffuswn length ol 8 7 fllll allow the appe<1rance 

of mcsos< optc effects The an,\lysts of the dat.a of .t de-SQUID m.tgnctonwter 

''"'\& connected wtth a number of problems Filst of ,\11 background fluctuatiOn 

of the ~.une 01de1 olmagmtude as pelststent. UJ!lent eflew., m,ulu 1t dtfhcnlt to 

extract stgnals Secondly, the temperature depeurlcnce 11•1'> ,unb1gnons ,mcl dtd 

not show exactly the expected exponential behaviour Thus, It wns not p0'3S1ble 

to extt,tpol,1te thP data to zero temperatme. i\'ewrt!teless, all tlnee gold loops 

sh<mwl an osull.ttwnm the magnetic tespon'e mth the peuocl '~' Tins w.ts the 

r<~'>e lot the fundameut,tl as well as for the fust h,umou!L <;tgu.tls Ho11e1·e1 the 

.tmplitudt> of t.lm o'3ctllatory componeut cOircspoml~ to ,\ pc1~1stent < n1n•nr of 

(0 3- 2 O)T Tlm 1'3 mote th,m one otder of m.t!',llltlldc J,uget t!t,w p1cd1< ted 

h1· sun piP thcO!ettcal < ousJdet,tttous fot the dtff11s1ou 

Lttet, m 1!J!J3 D. Mailly, C. Chapelier and A. Beuoit [S]teporterl about 

JW1Ststent uurentq 111 '3emicondHctor smgle loops Theit G.t.-\1:\s/GaAs ung had 

.111 tute1n,tl ch,uueter of 2 JLlll aud .tll exte1n<~l dt.tl!H't<'1 ol 3-1 fill! In the t<'m

JWI.ttme range ,uomul 15 mK the el,tsttc me,tn hr·e p.tth "'.t'3 11 fllll. which 

COIIP'JlOllci'> to a n•ry weak chs01det. The ch,wllel ntnnhe1, ,nJ'>!llg due• to the 

tluce-duncllsion,tl geometty of the ung, "'•I~ "tth •'PJl10'-.llll.ttdy ~ ch,uuwls ex

t.Jemely sm.tll, too A modn!,ttion of the exte1ual m,tguett(; held ,uHI a Fnu1Iel 
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tr<tnsfouuatwn lead to power spectrums whidr clearly show the Ahawuov-Bohm 

o'ctll,ttiOn with the period l~c. The lugh senstth·ity of the SQUID BMgnetonwter 

allow<'ci a clear dt<;tinction between noise and stgt~<tls. An awragc over several 

measnrements led to a typical current amplitude of 4 ± 2 nA It is import.1nt to 

11otP th.\t m these measmements the value for the persistent current w«s m good 

.tgte('IIWllt with the the01etical prechction of T = 5 uA (usmg expeumeutal 

p.trameters) 

Interpretation 

The good .tgreemeut of the last measurement mth themetical assumptwn<; is 

mterprctcd to be due to the fact that the sy<;tem w.ts m the b.t!hstrc regnne [GJ 

Tins regime rs defined by the condrtron that the el.tstiC me.tll free path f01 an 

electro11 rs larger than the circumference of the nng, wluch me,\ns th.1t there rs 

ouh· we.tk dtsorder m the system 

In the former two measurements the effect of dtsotder '''"' much 5tronger 

.\ Situ.tt,IOu m which the cucumference of the ung is .tlr<>.tdy J,uger titan the 

eJa<;ttc nw,m free path, but still smaller than the locahzatton length IS c,tllecl chf

fusrw (01 metalhc) regrme. Scientrsts tned m numerou<; pubhc.1t10ns to explain 

'' hy the pPrststent curre11t can have such large n1lues 111 this regime The re

s,·,udt m.uuly concenttates on the effect of el.tsttc .uul itw!.t<;ttc srattetets and the 

t'i<'ctron-<'lectron-mter.tction, .mcl a few cx.tntp!e<; of dtfict cut dewloptneutfo slh\11 

lw llH'ntwnccl next . 

. \heady Landauer and Biittiker [7] extended then consaletatwn' by an 

im·e.,ttg,tt.Ion mto the effects of inelastrc scattenng They nndetstoo<l mcl,\sttc 

<;catteunl\ d'i ,; jump between the two upp<'r-most energy lcYels of the ptevtonsly 

nwutiOuecl Bloch system Thts effect of .1 small but fi11ttc t<'lllJl('l•ltlllc I<; of un

pott.tncr' 11 hen the flux is mcre.\sed lme.\rly m umc. It I<'<;nlts m a non-v,uuslung 

tuBe .nPI<Ige Accorclmg to L,mclauer .111d Iltttrtnget tltt' lwlt.tl 10111 r.lll he ex

pl.unPd b1· the change m the 11 1clth of the euetgy g.tp het11 ceu the t11o HJ>JWt-most 

kn•l' when tldYelling tluough the BllllOillll zo11e .md a !mite tel.tx.\tlon tnue 

~lo't of the precerhng publicatiOns constcletecl situatiOns whcte the flux is 

fixpd .-\ det.uled dt,cussiOn of the effect of scatterers m the rltHr•rent tcgimr•s can 
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for mstance be found m the papers of Cheung et al. [8]. They mamly found 

th,tt dll forms of disorder reduce the ,tmphtude of the persistent cnnent. 

Ambegaokar, Eckern and Schmidt [!J] stre~sed the importance of takmg 

,1 Coulomb electron mteractwn into consideratiOn They started their consider

ation., w1th Hartree-Fock app10xnnatwns and handled the InteJact.wn (l!'rtm ba

t.n·e!~-, usmg a dwgr<tmmatJc techmqne The autho1s concluded that snch mter

actwns c,m be used to expl,tin the high \·aliies of the pe!Sl%ent uuwnt m the 

expeument However, the results strongly depend on the chmce ol di,lgrams that 

,ue mcludedmto ,, calculatwn [10] 

Miiller-Groeling et al [11] have also mvest1gated the effect of Coulomb 

mtcr,lctwn on the pe!S!Stent current of one-dnnenswnal, contmnous ung<; at zero 

tempc•r,ttnre They used symmetry arguments am[ Jntwdnced a change ol van

,ti>lPs to many-p.ut1cle v,tlucs. Their chscusswn ,me! C(ll<tht,\tn·e descnpt1on led to 

the u•sult that the Coulomb mteractwn enh,tnces the pe!SIStrnt cunent 111 the 

presence of 1mpunty scattermg 

In another paper Cohen, Richter and Berkovits [12] 1epo1 t ahoiJt the1r 

cxpenence w1th Hart1ee-Fock equatwns for the same Situation Howewr, they 

snnphfied these equ,ttwns to mdma1y SdnodmgPr ecjlldt.JOn~ and t.ned to solve 

them In tins way they were able to obtam the result that as soon ,\<; ,, smgle 

se <lt.tc•n•J I<; mcludpd m the nng, the dec<t~ of the F1 u•del osull,\twns I< suppressed 

Knmnng th1s, it was poss1ble to Ill YOke ,tu ,, pproxnuate self-conSI'>tency and to 

g,nn statements regarding the pelSIStent cmient Cohen et al wported that m 

a ung "nh a weak delta-scattelel the mter<1Ct1on "1llnot. destroy the (WrSJ~tent 

cuucnt If ewn more scattere1s a1e introduced mto the nng, tlwn mteraction 

cnhanu•s the <1\'eJ<lge sample pe!Slstent ClllH'IIt (I <!the! th,tn supptessmg 1t) ,me[ 

mtroducc"3 ,, prefe1red dwmagnet1c cunent chrectwu 

Nunteucal invPstig,ttwns "·Jth much few<'! ""'unipt.Ion' \\'<'le fm lll't,\uce pe!

formcd by Kato and Yoshioka Flr5t [6], they m<~naged t.o n'>e the Ha1 t1 ee-Fock 

approxunatwn f01 a one-chmenswnal system of 100 Sites and -tO electrons and 

concluclecl tlMt the Coulomb interactiOn betm~eu electrons causes <1 reductwn of 

the persistent cnrrent also m the d1ffusn·e 1egmw Howe\·er, one yea1 J,tter the 

Sitme ,mthms found out that If the other tml dnueusious <'tie t<1ke11 mto cons1d-
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etation (,,system of 20 x 6 x 6 and 300 electrons was used) then the perststent 

current i~ enhanced 

F. V. Kusmartsev pubhshed ,, sene~ of pnpets ,utd lettcts wtth investi

g<lttollS tu the petststent cunellt problem He n'ed m Ius constdetattons ttght 

hmdutg models, mainly the Hubbatd model The Oll-'itte Conlotub tepnlstoll of 

S[Hll fenmons is described by .ut energy U IH most of 1\ tlSHMt t~e,·'s [M pets this 

mterRctton is treated wtth the help of the Bethe onsatz Tlus method leads to 

,, ch,uactensttc set of equations for the coefficients m the chosen w;we fnnctton, 

"luch also mcluuc the flux phase In the ltnut U --+ oo Kn&mat tsev "'as ,tble to 

solve these equations exactly and tO gh e intcreStlllg exp!,tn,tttOUS of!u'i I esultS 

In one of Ius early \\'orks [13] Knsmarr.sev g,n e exptes'iton'i for the gt onn<l 

'it,tte total energy of a fixed numbet of patttdc~, 1\1, on,\ tmg m tiJe pn•vtonsly 

menttoned lumt of strong mteractton They show a pcttndtc depeudeuce .ts well 

on the Hnx tlue<tded by the nng as on the nnmbet ofnp-sptll pnrttd<•s Tlunkmg 

of,\ 'ttnatwn whete all spms ,ue down at the begmning ,md the flux is iucreased 

ft om 7l't o, oue finds th,tt there exists a cet t<1m flux ,.,,lue (,me! m eqmdtst,mt step~ 

mote ,·,tines) when tt ts more favourable fm the ~ystPm th,\t two ol tlll' f<~rmtons 

clt,\uge theu spm dtr<'Ctton Tlus le,tds to .t h a1 twn,d :\h,Houo\ -Boluu df~ct, 

\\'ltetl• th<' cnttent a'i <1 function of the Hux ho~s a peiio<l 1/i\f. 

Iu a l.ttet paper [1-l] Kusmartsev et al m\·esttgated the ft,tctioH,ll .-\ltaiOito\·

Bohm dfect further. It ts shown analytically fm the case of two p.uttde,, nu

meuc,tlly fot three particles ant! pet tm batt,·ely for M particles that thts eflect 

Cdll ext,t for any finite ,,tine of U The comhtion IS that n = t!\lfUN IS<> small 

nnmbe1. whete N ts the number ofsttes and t the hopptug tutegtal Ftutherm<Jre, 

there 1.., tl ~cahng behaviout of the gtouud ~t<tte enPtgy, depeudu1g onh~ on o 

.-\ t hotongh analyst~ of the fit 'it Otdl•J r 01 u~r nons of the BPt he t'ft u,tttou'i m the 

P•ll<lllletcr o te\·cals that there tS even mote ftne Stiiictme m the Hnx dependence 

of thP <-'ll<'tgy Kusmartsev [15] chscnssed that wtthin certam pai.tlllcter tauges 

the com·<·nttonal Ahatono\·-Bolun effect can coexist not onlv \nth ,m oslill.uion 

\\ tth pettod 1/ M but ,tlso with au lift/M osullatmy heh,n·iom Hete, i\ft is the 

nnmbet of down-spm particles 
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This Paper on the Persistent Current 

The g1ven hst of pnbhcations is of course far from complete. E<;pecially aftt>r the 

first cxpelimental wsults were 1eportecl 111 l!l!JO the utuube1 of p.tpeiS about the 

fWISIStent-cnrrent problem has mcreaserl!.tptdly Tins <;ho"' th,tt the1e Wd~ .mcl 

st!II ex1sts a g1 eat interest in tlus topic The examples mentwned show further

mole that some questions a1e the subJect of conttowtsJ,tl chscusswn. Although <1 

lot of p!OgJCss m understanding tlus phenomenon h.ts bern made, some questions 

Jem.tin to be answered It IS the1efow w.tsonable .tnd n<>l'ful to de.d 1nth the 

pP!Sl"-tent.-cnrrent p1ohlem Witlun th1s m,t'>tcr thes1s 

The intentiOn of tins papet goes in t110 dn<'cttons Fnstly, thl' <1uthor makes 

1t po'>Slble to g.un ,, deeper mstght into the~ c.ut'>l''> ol JH'l'>l'>tenr cuLLent. ,md 

tt<; dern·,ttton For this purpo~e a founahsm IS de,·cloped ami the <;uccessive 

steps are explamed in some detatl. Vauous Px,tct tesu!t<; have been gained ,md 

oH' dN nsscd 1\Iost of these results were obt auwd ntrlep0IHlently of .tny other 

publll atwn, but h,we been compared With other mn ks .tftctw.ucl'> 

The abm·e mentwnecl fouualisrn uses tight-hlllding models Tlnoughont the 

1\'ho!P p.tper second quanttzatwn and ,, l.tLL.ltion.tl .tpJHO.tch 1~ used to cv.tlu

<tte the .tppe<lring Hamtltomans. The m.tln t."k !<; .tll .tu,t!Y"-IS ot the .tppear

mg H,u ttee-Fock eCJII.ttwns B.1sed on both, tight-bmdmg models and Hartree

Fork .tpp!O'I:tm.ttion, many mtcrestmg tcsnlts ,ue pub!t<;hcd m the ltter.tture 

[G. 8. D, 10 11, 12, 13] However, then comhtn.ttwn, ,, thsocte Ha1 ttcc-Fock 

p!Ctllle I'> Hst•d ll'LY <;PJdom [Gj 

SPwndly, It WoS the intentiOn to imprme th0 fi15t tesnlts by pcdoumng mote 

complLCntt'cl decompO'-Ltwns The tcle,\ "'"' to .tllow ciiHc!ent spin-sti nctnrcs for 

tht• gJOHnd '>tate, winch depend on the flux For rlno Je,tson JOt.ttion~ ol the spm

qu,mttz.ttwn <lXLS for e.tch of the Sites ll'ete mttoducecl. It tllllled out th,tt, tlus task 

LS quite< ompltc,tted .• md e<;pect<llly .tn appwp!I.\te lhoice of the 1\',t\'e functiOn 

,,.," not P.tsy to find This JMpet documeutc, the ddieu•ut tu,tl'>, the coududed 

Ic><;ults ,md the JC,t<;ons for mochhcatiOIIS It doe' not <'Hd wtth ,, JHOpci lC'Illt, 

h11t wtth ,\suggestion for wlt,tt ts, m the opiniOn of the <1nthot, the lwst \l,n· to 

m.tn.tge the p1oposed ~pm-sttll< tme 

ThP sttllCtnre of tlus thesis is chosen .tu mthugly !t ,t,n ts II'Jt,h some b.tsic 
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n·mmks on the t1ght-bmdmg models m dmpte1 1 In chapter 2 the phys1cal 

b,1ckgronnd is expl,uned and ,\n expression for the persistent current is denved 

~tep by ~tep. Howe,·er, the model IS st1ll snnple because no mter<~ction IS taken 

mto cons1deratwn Tlus happens in chapter 3, in wlucl1 it IS ,,!so explained 

m detail how the Hartree-Fock calculation i~ done. The fitst p,1rt ends \\·ith 

expressions for the energy in the Heisenlwrg model and the st,lmlard Hubb,ud 

modeL 

In the second part. the notwu of rotatwn I'> mtroduced In c.h,lpter 4 some 

concepts are expttined and 1t IS tested in which w,ty the rot,ttwn should be m

eluded The last d1<1pt.er IS entitled "Tuals of Imprm cmcnt" and off<>IS solutions 

for the vanons problems which appeated m the ptecedmg chapter. The paper 

fim~hc>s with some conclnswns 

Dnung the tmte of research 1t was necess<~ry to make use of some mathcmat

K,tl tec.hmques. In Older not to mtenupt the a1gnmentat10n too ofteu longer 

exptu1,ttums of such teclnuqnes are occaswn,tlly 1110\'Pd to the ,tppenchc es I3 to 

F Th15 m<tkcs 1t. also ea~1er fm readers who are famtl1<1r wtrh this field, to om1t 

those pat ts smce the mam body of the fMpel is fo1mnl<tted Jndcpendeut.h· of the 

appendtccs. Appendtx A m1ght be especially helpfuL It cont.ams a hst of almost 

all symbols used m tins paper 
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Chapter 1 

The Heisenberg Hamiltonian and 

its Transformations 

1.1 The Heisenberg Spin-Hamiltonian 

The HctsPnberg Hamdtonian has 1ts gte.ttest llll]JOl t,t11cc lll the t11al to fmd an 

explan,ttwn of magnettsm [1G, 17] In tlus ate,,,, mean- or molecul,n-fi~ld theory 

1s <~p[>dtcntly not ~nfficicnt to desclihe ,,ll ex1~tmg dfect~ Thetefme, Hetsc11berg 

tntwdnccd .t local moment theory He (<1nd 111dependeutly Dn·,•c) ht't of ,,ll sug

gl'Stl•d ,, quantum mechanical exchange mter,Ktwn to expl,tin the singlet-triplet 

'Phttmg m the hchum spectrum. Two }rats l,ttet, 111 1028, he .tpphcd tlu~ idea 

to llldgnctlSlll 

Hund's rules ,1llo" the possibtlity to assoctate 11 tth each stte ol ,1 lattice a 

crrtmn spm Accorchug to these rules, eYety atom tncs to h,n·e patallel spm~ 111 

1ts outer shell Hence, electrons wtth a cettam spm chrectwn <tre tcpell<>d, others 

ate not Tins le<tds, e1en1f thete tS a constdctable electton flnctnatlon. to a fi,ed 

spm of a p,trttcnlM sne 

The Hie,, to mcludP tlus ~lcctron spmm the ""'·e lt11tl tton ]t,,, tr> b<tckgtonnd 

m thP Panh excluswn pnnctple Smc.e thetc ts .111 merl.tp ol the 1\,tl<' lunctwns 

olneighbounng sites, the exclusiOn pn11ctple unpltes a cmrel,ttwn bet11·ern spms 

ol t\\·o el<'ctrons Tlu<o can be exp1essed by d so-< alled Hetsenberg enetgY wludt 

12 
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ts proportional to the dot product of the spms 

Hueos = -J L S,·S1 , 

(•,J) 

"·here (z,J) mchcates that the sum goes owr nemcst tJeighboms only 

13 

(1 1} 

J ts called the exchange mtegtal. whtch has uo cl.1sstcal .tnalogue lwcause tt 

ts ba,o;ed on the Pauli exclusion ptinctple It. ts supposed to be ideuttcal f01 all 

np,uest neighbour pans, which is of course a snnphficatton The value of J can 

lw c.llcul.tted from specific heat measurements and 'Plll-w.tve consuleratwns For 

mstance Hofmann et al [18] found for Hon andmckel J"'" 0 01-0 02elf and for 

gadolnnum l"'" 0 0002eF Howewr, theotet.tc.11 estnnations [1!J] lead to dtffetent 

,·,tlues, which shows the \\'eakncss of the model. 

The origm of mistakes ts mamly the assumption of localized nMgnettc mo

ments, attached to the atomtc cores ut the m.1teual Especially, f01 elements 

mth lngh atomtc numbers the electtons of the outer shells are unlikely to be 

localized He1e from a physical pomt of vie'"' itmerant electron theoues seem 

to be m01e faYourable, e,·en so, they a1e much m01e chfficult to h.mdle F01 3d 

ti.mstttonmetals both, the localized .1nd the ttmetant theory, h,n e t.hetr JHSttftca

tion The former expl,nns for mstance spm wave phenomena .md the tC'mpetature 

<l<•pendence of the specific he.tt, the l.tttet m.tguctic motneurs "it h non-mtegt.ll 

numbers of Bohr nBgnetons pe1 atom 

NPvcrtheless, only the Heisenbc1g ulca of loc<thzed magnetic moments .md 

thctr mtcractwn IS used m tins \\'Otk Fust of .Ill, tt iq II<'C<'~'i.uy to cle:,cube 

spin operators for spm one-h.1!1 p.utides mathematically This can be done mth 

the• help of P.utlt spnt m.ttttccs m the foun S, = 11ia for sttc nHmhet t The 

components of these spm m.ttuccs ate 

( 
0 1 ) ( () -1 ) ar = a(1} = , ay= a(2} = 
1 0 I () 

.utda, = a(3} = ( 
1 0 

) 
0 -1 

(1.2} 

If, furthermore, the laddct operators 

s± = S' ± tS'' 
' ' ' 
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ate mtrocluced, eventually the following set of spm operators 

aud sz = ~ ( 1 
• 2 0 

0 ) . 
-1 

c,m be ohtamecl 

It IS e.1.sy to show that 

"·Inch has two consequences. Firstly, It allows the rcwntmg of the wmmon 

pwduct of two spm operators 

s.sj = s.· s; + s; Sff + s: s; = ~ ( s~ s1- + s,-s;) + s,' s;. (1 3) 

St•coiHlly, It shows that the ant1commutator of spm opera tots on the same site is 

ptoptn tiOIMI to Ideutity 

(1 4) 

1.2 Transformation to Bosons 

F01 augular momentum ope1ators m geueral, especially If the spm quantumnum

lwts or!' lotge, a tre,ttment wrth matrices might lw cumbersome It is often more 

conn•meut to "·o1k in second quantizatwn. One possilJihty to replace spm oper

,um ~ is the couplecl-boson 1epresentatwn It. &hall he descubecl he1e m b1enty 

lwtdllSe It fits mto the context. Howe,·el, it i~ of httle unpmtanu> fo1 the IJI<1111 

hocly of t Ius paper. 

Coupled I3osou Representation 

The tOuplcd-boson reprl'~entation was fii;t p1opmed hy Schwinger [20]' He 

iutwclucl'd spmo1 ope1ators 

and b = ( IJI ) 
h 

( l 5) 

'"'P also ~latt1s [21] chap 3 8 01 He1zbacher (22] cl!dp 21.2 



CHAPTER 1 THE HEISENBERG HAMILTONIAN 15 

winch consist of two Bose creation and anmlnlation operatots, respectn·ely The 

latter fulfil the usual commutatiOn relations for bosons 

(1.6} 

and are well defined if a Yacuum state I 0} ts mtroducecl together mth the con-

str;unt 

b,IO) = 0 or (Oib! = 0 '<h (l. 7) 

u,mg the Pauh SJHnmatnces (1.2} the reptesentatHJn lot <1 genetal .mgular mo

lllPUtUlll oper,\tor (not neceos,ut!y h,llf-spin) h.ts the lollowmg form 

n t s = -b . (j. b 
2 

(1 8} 

Proof: It has to be shown that the typical commut,1t10n rel,ltions for the com

ponents of ,1ngular momentum operators ,ue fulfilled by S In ordet t.o wtite 

tins in a compact fmm (S', SY, sz) is rep!Me<l by (5 1• 51, 5 3) and Emstem's sum 

conwut1011 IS USPd 

0 

H,1vmg defined the angular momentum m tins w.ty, tt. tS .tl~o pnssthle to give 

an expre~~10n for the cigenstatcs m terms of' tPatton oper,ttm<o The re"I!t 

I SUI} = (1 !l} 

<knotes a state with the eigenmlues t!2s(s+ 1) and inn of S2 and Sz, re,pPctn·ely 

I 0} = I 00} ts agam the vacuum state 
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Proof: It h,ls to be shown that the l.lclder operatOJS s+ = sx + IS'1 .tnd 

s- = sx - 1SY nse and lower the m-' alne cm rectly and that S2 gn es the con ect 

eigem·alue of h2 s(s + 1) The forme1 is clear after findmg that 

(1 10) 

the latter IS ob,·ious by shomng that 

"·here 

0 

The1efo1e, an mte1actioa of spin opel,\tOJ ~ Ill the fouu 

1i. = -.! L s, SJ + <]Jia L n SJ. (1 11) 
(•,J) J 

also tadudmg an interactiOn mth an exten~<tl mo~gnetJL field n (y <~nd {ta are 

coust.1nts) can be tr<~n<;forml'<i mth the help of (1 8) to an exptcssion mth bosonic 

c1catton <~nd anmlulatwn oper<~tors ExpectatiOn values can be calt.ulatecl in 

&rcoud quanttzation, usmg the e1genstates p1oposed m (1 9). 

Variations 

TheH' exist ,·anons y,mations of the abm·e mentiOned ICPI<'Sent.ltiOil }lost of 

them h.ne the aim to replace oue of the bosom<. OJH'J,ltOJs \Vit.h thP hPlp of 

qnasi-cla'istcal arguments it IS tried to wo1k "·ith one klnd of boson~ only One 

finds !or mot aucP m Merzbachci [22] "hy a IPIIOnMgnetiC approximatwn lead<; to 

(1 12) 

.-\uothe1 possth1hty IS the Ho]<;tein-Piuu,\kof! tran&follnatiOn [23], wlli< h re

f>nlts m the follmnng 1epresentatiou: 

(113) 
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1.3 Transformation to Fermions 

For the special case of spin one-half operators it IS sometimes more helpful to 

work mth ,t fernuomc representatiOn. One mtght tlunk of a c.onplcd fermion 

l<'pre,entatwn since (1.8) is ,tlso valid for fcumons. Ho"·eve1, there are also \mys 

to m,mage wtthout a ~econd creation operdtor Tin<> section mtroduces the most 

\ndely M.cepted posstlnhty to make a ttan,fotllMtiou m tht& dnect10n, the 

Jordan-Wiguer Transformation 

Fermions ate characterized by the following anticommutntion relatwns of anmhi

l,lt!On operntors c, ,md cteatton oper,ttors c!: 

(1.14) 

They cue well defined with the help of a V<l(lllllll &tate [0), lot \\Inch liolds 

c, [0) = 0 or (O[c! = 0 '<h (1 15) 

The ttnusfonnation proposed by Jmdau and Wtgnet m 1028 [2·*]2 m<~kes use 

ot smul,u propetttes of spm operators and letmwus. It ho~s illre<~dy bePn pomted 

out (1 4) that the anttcommutator of spin opet<~tots on the same stte ts 

HPnce, an tdenttfic,ttJOn of spin opera tots wtth fenmomc ope1atm <>m the form 

S<'Clll<> to be natur<1l Unfortunately, 1t is not tli,lt c.tsy Sptn opet,ltms lot <htlctent 

sil<'s m part.tcles commute 1\'lth one ,mother 

[S;", S;J_ = 0 !m z f- J, (1 16) 

\YIH'l l'c\'> fennionic operator& anticommnte. Fm tlns 1 ea son a ph as<> factor U, for 

"'''h 'lte z IS necessary to dt.tuge anttcmnmutmg to commutmg U, 'ilwuld be. 

a HU!t.try operatot (as e\ef}· phase f<~ct01), \Yhkh only cont.nbntes a 'tgn t.o the 

2,, <bcuptwn C<lll for mst,mce he found m i\lnttts [21] dt<>p 3 12 .1n<l m Tsvehk [25] dtdp 18 
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expre,swns for the spm operators It is comenient to use the fenmonic operators 

c, for tins purpose. Jordan and Wigner proposed to do that m the following" ay: 

U, = exp [i1r L c! ck] 
k<• 

= IT exp[mc!c~.] =IT (1- 2clck) 
"-<t k<t 

"Inch holds for one chmension Hence, the spin operatms hm·e the form 

S+ = ' - lic;u, = lie; exp [i-. L clck] , 
k<t 

- nu;c, = nexp [-i1r :L clck] c, 
k<t 

s-, 

Sz = ' - li. (c;u,U,'c,- ~) = iz (c;c,- D 

(1 17) 

(1 18) 

In order to check that this phase factor h«s the desired properties, 1t is snffi

ctent to notice that the opetator product clck is an occupcltwn nnmber operator 

it1. An mclering of the sttes z = 1, . , N 1~ introduced, .md therefore the sum 

m (1 11) count~ the numbet of occupied stte~ coming befme the site 1 If this 

nmubt>t IS e\en, then U, = 1, otherwtse It is -1 In the wmmutatot 

a~~111111ng J < z, only the sttes k with J :S: k < z are unpoitant (the rest ts counted 

twtw) Owmg to the fact that U, appe.tr~ m the fitst sutntu.tllcl left to c1 dnd 111 
•-1 

tlw &Pcond 'umm.tucl nght to c1, the s•nu I: iik chflet~ h} 1 111 these two cases 
~;] 

Tlu~ gi,·e-; the H'quued adchtion.t! ph.t~e f.tGt.ol -1 \due h ch.tuges ant.iconmmting 

to cmnmutmg The argumentation for J > z ts smul,u·, 

13,. usmg (1 3), (1 16) alHI (118), the kmettc energy teinl 111 the Het,enuerg 

H,umltoman becomes in one clunensiOn 

11. = J :L s, S1 = J:L g ( s; s;-+1 + s)- s)++l) + s;s;+l} 
(• J) J -

_ r/.J:L {c;cJ+l +c;+lcJ + (c;c)- D (c;+l";+l- ~)} 
J -

(1 19) 

It ts deat th,lt m (1 19) the phaoe f<~ctot U1 dew~ not .tp]HMl any mme Tlus 

ts dm• to the fact that fm the sum o\·er the occup.ttwn uutubms m U1 only the 
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Sites k with J :S k < J + 1 Me important (the Ie<;t is counted twice). Ho"·ever, 

for J = k either the occupatiOn number operator 1i.1. or the feumonic operator c~ 

giws zero 01ving to the Pauh exclusiOn pnnciple 

Variations 

V,mations appear If the one-dunenswnal chain of operdtors IS closed to a nng. 

Tlus happens when the index N + 1 is Ideutifleciwith the index number 1. That 

mt'•\11~ physically that periodic bounda1y comhtiOII~ .11e ImplcmeHtcd anti math

ematically that all site mdice<; are uHdcrstood to I><• take11 (III()(l N). 

In snth ,\SituatiOn one has to theck the beh,lnour of the tcllll s; S,+I· It does 

not. cause any problems a<; long as z # N Howen•r, for 1 = N the t1ansfounation 

fotnmlas (1 18} lead to 

- c~ exp [I7T 2:= clc~.] exp [-I7T 2:= c!ck] c1 
k<N I.<I 

- c~ exp[m(M- 1}] GI ·liHI 

= cl exp [m 2:= cl c~.] exp [-IT. L ck] c11. 
1.<1 1.</V 

- cl exp[-i1r(M- 1}] eN 

N 
Here .U IS the expectatiOn Yalue of I: c! c, It IS rqnll·alcHt to the u11rnbei of 

k=I 
pa1 tides of the system, wine h is s11ppo~ed to be fixed 

The ph.tse factor em(M-I) IS equal to nmtv fm the c.1se of dll odd number of 

!Mrt.H le<; Howene>r, 1t gives a mm us Sign If tlie IIIIIUIWI ol p.11 t1de>< IS e1 en I To 

lw pi<'Use, one therefore has to wutc mste.1d of (1 1!J} 

1i = 

(1 20} 

Iu sudt a form the ch,tra~tei of the Heiseulwig H.uuiltom,ui IS pieserwd ,me! a 

ch,uu of spms IS descnbed The SitndtiOII is usnc~llv c,dled the "a-cythc" pwblem 

[26, 21] 3 

JThe letter a has 1ts ougm m the fatt that L1eb et al denotPd m the1r paper the operators 

s; cllHl 8,- \\lth the S)Inhols a; and al, respettlY€1.) 
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On the other IMnd the addrtwnal teun proportronal to ( e•r.(M-r) - 1) rs in the 

lnmt of a l<trge number of sites, N, negligrblc To 01111t rt also me,<ns to desclibe 

a cychc problem of re,,] fermions The Hamiltom,m 

(1 21) 

rs c.llled "c-cychc' .md rs \\'ell to chstingmsh hom the pre\ ions one. 

The mam differences are the rmphed bound.trv condrtrons [21] The a-cjclic 

p10blcm has by wnstrnctwn a!ll'ays peuodic bonud.try condrtwn~ In the c-cychc 

p10blem this rs only the ca~e for an odd number ol particles If the number of 

p,u trdes IS even, then the boundary condrtious are antrpeliochc, how rt should be 

for rr,<l fermwns. 

The reason rs tlh\t there are the follo\\'mg rnle" ho\V fcurnou annrlulatwn .md 

creatwn operators act on Fock states in second qu,tutrz.ttion [28]: 

c~.IM, .,n"'' ) - (-l)Af'<l,.o,ol:\1+1, ,11,.,+1. ) 

c.,, lA!, .. ,n,,, ) - (-1)AI'8,
0
,.riAI-1, .. ,11", -1, .. ), 

\\'here 

Hcnc<', 1t 1s 

and Ytce vetsa 

r-1 

.!llr = L n,., 
t=O 

cl eN IM,O, ., 1) = (-1)M-rl.11, 1, ,0) 
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1.4 Related Hamiltonians 

The result of the Jordan-Wtgner transformation of the Hub bard Hamiltonian IS 

1i. = li 2.J~ { cJc1+1 + cJ+1c1 + (cJc,- D (cJ+IcJ+I- ~)} 

• 2.] 'I\' { t t t t I } - a L; c1c1+1 + c1+Ic1 +~ -c1c1 

fio i• 

It consists mamly of two parts H0 descnbes the qu<tntnm meth,uuc,ll hoppmg 

of electrons; i' can be understood as an iuter<tctwn of difieient elections The 

n·maining term Is a particle self energy. It. 1~ worth noting that the product 

cJc, = it1 Is the occupatiOn numbe1 opei.ttoi in second qu,mtiz,ttiOn Summed 

OH'I ,tll stte~ J, the totalumuber of p,trtttle' ol the sy~rem IS obr .. unt>d In the 

c<Ilcul,u.wns of tlus paper tlus number is supposed to be wn~tant, winch ,tllows 

n'> to igno1e the last term as <In unimport,utt enmgy slulr 

In a more general form it IS posstble [28] to WJite the Hanultonw1 for a 

comhmatwn of the one-particle kmetlc energy and a !\m-particle mtet<~ctwn in 

S<'tond quanttzatwn a~ 

(1 22) 

tgnonug many-p,uttcle mteJ,Ittwns, "·Inch ,ue ~elclom 

The <'quation wlndt follows hom the Jmcl,m-\\'tgnet tJ,m~louu,ttton I' .JHSt 

a ~peual case of tins rcptcsent<ttion A hopping I"; oul~ ,tllowed !rout one Site 

to <Ill .td)acent stte, which essentially leads to a Ktonecket-clelta iustP.tcl of the 

r:qJl'ttat.wn v,Jlue of H1 Fm theuuore, the uttciHGI!On op<'t<ltm H2 gn·c-; the \'.tine 

1· lm nc,uc~t netghbonrs only .. -\11 othei expPct.,\tion ,·,11tH'S ol H2 ,·,uu'h 

The Heisenbet g Model 

A H,umltoman of the fmm 

1i. = -t I: ( c!ck+l + h c)+ l' L i1ki1k+l (1.23) 
k ' 

1' c<tlled m tlus p<~per the Heiseuberg model In thts expt e"wn th<' < onstant 

m hont ol the fiist snm h,ls been Ien,uned to -t = li 2.J ,md lS G,tlle<l "hop-

pmg mtegl<~i", l' IS a tepnlsive Coulomb potenti<tl, 'h c" st .. tnd, lot · h<'rnHtlan 
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conJugate". The HPisenberg model wo1ks with spinless fernuons and includes a 

hopping ,md an mteractwn between nearest ne1ghbonrs in one dimension. 

The Hubbard Model 

-~ furthe1 step IS not to c,tlculate with spmles~ fernuons but to mclude the spin 

of pcu ticlrs into consideratiOn. In this Cd~e the mtewction IS u~u.t!ly ~;imphfied 

e,·en more. Not even the effects of nea1 est neighbours on a fernuon on a certam 

sitP ,ue conside1ed The calculations <~re Ieduced to the Coulomb repulswu of 

t\YO part1des which a1e located on the same Site, but h<~ve difleient spm In the 

case of spinless fermions tins term did uot .1ppear bcc,m~e of the P,wh cxduown 

pimCiple; the spm degeneracy allows such contnbutwns. The H.umltouian h,lS 

the form 

(1 24) 

Hcie c!.a ,llld ck,a are the Cieatwn and amululatiou opei\ltOis of ,t fenmon with 

~pm u ou the Site/,, ICSpectncly, f!k,a IS the LOlle>pomling occupatiOn number 

opeldtor 

In eitlwr form, (1.23) and (1 24), the Hamdtoman IS only an dppwxim.ttwn 

l\e' ei theless, such approximations can ah e,!d} lead to inteic~tmg and nontrivml 

u•,ults Unfortunately, eYen sunphfic.ttwns hke this c.tnnot cllw.tys lw solved 

analytically Numenc.1! methods or approxnnations aie necessaiy 



Chapter 2 

Rings of Fermions and Bosons 

2.1 Heisenberg Model with Spinless Particles 

As a first sunple example of electronic mtetactwns of chatgerl pm tides tt ts pos

~lhle to u~P the Hebeube1g model It IS the pnrpose of this sectiOll to sh0\1' how 

mt lull t hP He1senberg model the total ene1gy for .t S<'t of p.u tH le~ on .t 1 ing can 

lw ohtaiucd Tlus happens lust of all m subscctiOll 2 1 1 !or Olliy ow~ pm ttcle 

All exp1e~sion for the ene1gy of more pmt1des IS de11vcd 111 2 1 2, and the uec

Pssnry considerations to mm1m1ze this exptesswn are finally explauwd m 2.1 3 

Snh~cctwn 2 14 adds some 1ematks on the thstnbutiOn of the p:uttcles 

2.1.1 One Particle on the Ring 

\\'r• hr•gm om COllSIC!eratwns 11'it h lookiug Ollh' .1 t. the lwppmg p.u t nf t lte Het,en

lwtg model That me<tns the Hanultoman has the follrm illg ~tiiict.nre 

N N 

11. = /i,
2 JI::{cJcJ+l+cJ+lcJ}=-ti::{cJcJ+l+hc} (2.1) 

J=l J=l 

- -t { c)c2 + dc1 + c~cJ + c1c2 +. + c~cN-t + c~c 1 +cl eN}. 

ThP l',ni.thle N gtYes the number of Sites ll'ttiull the ~y~t<'Ill Gt<c.tuc;c• Olliy one 

chmeus10n ts taken mto constdetatton, the ~ystem founs .t hue of .tdj<~cent sites, 

S<'pfll.Ited by .t distance a. Thuo, the length of the !me ts L =" N Olle Cdn see 

fwm the sign m fwllt of the last two terms that "e use the c-cychc p1oblem, the 

c!Pscription wtth renl fermions. 

23 
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It is ,llso posstble to use the expres~ion (2.1) for the case tli<tt the operators 

ohpy the commutatiOn rules of bosons !'vim<! spectfically, suth a model would 

describe hard-core bosons These aJe particles "'Inch beha,·e accmding to Bose 

st.tttsttcs, hut only n1 = 0 and 1 are allowed as occupation numbers. 

Howe\ er, for a system wtth only one particle, as examined next, thete are 

no differences between these t\\'O descnptiOBs because no commutators appear. 

In both cases (fermio11s and bosons) the Heisenberg Hanultoman amulul,ttes the 

p.lrttd<' on ,l certam Site and cteates a ne"' 011e on both pos>tble ,ldJ.Kent sites 

The ~1tes Nand 1 are undetstood to be adJ,lCent 

The descnption of the Hamiltonian m terms of .tBnihilatwn and ctcation op

et ,1 tm ~ imphes the usage of second quanttzdtton. For this rellBOn, a Fock- or 

O< tu pat toll-number representatioll for the eigenst,ltPS IS used· 

11/J) = ettiO. 001) + etziO 010) + 

Then the Kuuiltoman 1i m (2.1) c,m 

,1bo he wntten in m<1trix repte&ent,l

twn. Intlepenclent of the number of 

p.1rtidcs the matnx has fotm shown 

ught. 

The 'et of etgennll UP~ of 1i ts tden

tll,d mth the spcctnun of the sh01nt 

nt.1ttix The latter could be e,·,tluated 

nnment ,tlly. Howewt, t Ius oeems not 

to lw Be< t'~~ary smce the giYell set of 

cqudttom .. for the etgem·,llue >. C<lll be 

~oh Pd <'X<Ictly by .ts<;ummg tl1<1t thew

PfhCI<'nts ·11<' I3loch "'a\e functiOn'>, 

1 
n1 = --e'k 1 (2 3) 

..;N 

-t 

I) 1 

1 () 1 

1 () 

I) 

1 

1 

0 

1 

() 1 

1 () 

(2.2) 

(2 4) 

-t (nz + ON) = .Xa1 

I3c•(,\11SP the pPnodtc boundaty condttiOu n;•;+
1 n1 mnst ])(' sa tbfied for 
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e,·ery J, 1t turns out that only certain values fork are allowed· 

n = 0, 1, . . , N - 11 (2.5) 

Hl'nce, the etgenvalues ate determmed by the following equation 

-t ( e'1"' (J-I) + e'k" (;+!)) - A,e''" 1 

-t ( e-'k" + e'k•) = A,. 

These munhers An «re the eigenvalues of the Hannltou oper.ttor 1£, and theref01e 

the posstble energy states for one particle on a ling with N Sites «te 

En= -2tcoskn = -2tcos(~n) (2 6) 

2.1.2 Two or More Particles 

The c.tse of two particles on the ung must be h,mdled ~ep.tratdy lot fetllliOns and 

for bo>ons The followmg c,tlculations concentt,\te on the former ones \Ve shall 

come back to bosons in section 2 3 

The e1genstates of the Hannltoman 1i gtv<'ll in the foun (2.1) c,ut be dcscnbed 

b,· two qnantum numbets n, m wtth n # m In second qnantiz,ttwn the form 

(2 7) 

If. appropliate The p!Opertt<'S of the coefficients o;:/' <lit' (hscnssPd m ,nbsection 

2 1 -l .-\t the moment they arc jnst. fnnctwn<; of the f.Ites 1. ,utd J which ,tlso 

cl<'pencl on the quantum numbers n and m 

The Schrodinger equation 1i !1/1) = E,"' 1'\&) lot t.lns pwhlem c.1n be han-
n,n~ ' " ut 

cllt'd 111 dtlferent ways One of themts ,, stratght lor\\·,uclnsage of the conmmtatwn 

rd<t twns 

1 
--1£ 11}J) t 11,111 

- 2::C<irn (eh+!+ cl+1c,) c!cJ IO) 
l]k 

= I: c.,;:jm (c!ck+lc!cJ (riHI,z + 6k+!,1 ) + cl+lckc!cJ (Sk,z + 6!,1 )) IO) 
•Jk 

= I: a;:-;n (cL 1c,c!cJ + cJ-tc1G!GJ + c;+tc,c!cJ + c)-Hc,c!cJ) IO) 
'J 

I~('(' al<;o diSCUSSIOll 1U <;eCtlOU 2 3 
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- La~jm(c;_ 1c]-c]_ 1 c; +c;+lc] -c]+lc!) IO) 
1) 

- L a~jm ( c;_ 1c] + c;cj_ 1 + c;+l c] + c; c]+l) I 0) 
1) 

~ ( n,rn n,rn n,nt n,1n ) j j I 0) - L a 1_ 1,1 + Q 1J+l + a 1+1•1 + n,,1 _ 1 C1 G1 
I) 

Iu the fourth line of tlus cakulatron the fac.t that all terms ll'lth 1 = J <h,appear 

due to the Pauh exclusion pnnc1ple for felmwns has !wen mcluded. In the last 

!me there 1s a shift of the summatiOn index 

.-\ conlp,msoniVlth the nght hand side of the Sduochnge1 equation shows that 

for all pails { 1, J} the equat1on 

(2 8) 

h,!'> to he fulfilled 

It IS not difficult to see that again Bloch w,n·e functions sat1sfy t]uq 'iet. of 

C'(jUiltlOn'i Actunlly, the factm a;:jm, wluch stauds fm the w,we fuuctwu of two 

f<'lllllOns on the nng, eau b<> factorized, which me,u1s th,!t the two fcun1ons can 

be handled ns nou-interactmg particles· 

n m _ n,m _ 1 . [27i! ( l] a, ·a1 =ct,,1 - Nexp N m+mJ (2.9) 

In thl'i I!']Hesentatron the case n = rn l'i not ,<IIOin>d The 1cnsnn 1s that 

11 = m le,Hls to p,!r,tmeters wluch are symmetnc 1n the s1te mdcx, a;:;"= a7.~m, 
and heucc 

I o) 

IO) = 0. 

Th<lt. implies that the w '" e fuuc twn 11,0) n,n 11·ould chs,1 ppe,tr ewr:ndtcl c 

!3y U'iing Bloch w,t\'e functwns in the form (2 !J) one obt,uns the follm1 ing 

exptP,swn for the energy 

( (
?71' ) ()" )) E,,m = -2t cos :v n + W~ :v 111 (2 lD) 
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It should not be a great problem to accept the gener.1hzatron of this expressiOn 

to the case of M particles on the ring: 

(2.11) 

2.1.3 Total Energy 

The ( ,t!culat.ed energy m (2 11) still depends on the set of quantum numbers 

{n,}f~I In order to obtain the ground state of the system at tcmpetatme T = 0 

tlus set must be chosen in snch a way that the total enetgy ts ,, nuninmm The 

sttuatwn IS visualized m fignre 2.1. 

Em= -2tcos(~m) 

0 1 "' N 

Ftgure 2 1. Energy states due to the hoppmg part of the Hezsenbe1g model The 
cn9e of a rznq wzth N = 16 szzes and 111 = 7 part1cles 1s shown The ;mall ttcks 
ou the T-(l'nS mdzcate the dz!Jerent posszble m values. 

In th(• c.1sc of spmles~ fenmons each of the mcl!L<It<'d pomts tn u:npwc.1! space 

C<~n he occupted by not mote than one p,uttdc The tc<tsou !01 tlus t'i the P.mh 

cxclm.ion ptlllCiple. For 1\f = N, which IS tefl'ued to half fillznq lll the liter,tture, 

there ts only one posstbthty, wluch gtves a total enetgy 

Fm ,, uumber of p.1rttcle 11! < N the loll·l·<;t <'uetgy !en·!~ ate tho~c 1\"ltich are 

dose to h = 0 (mod N). Hence, the chstnbutiou ocuns 111 ,, 11.ty smuldt to the 

Sitnatwu ohown m fignre 2.1. whe1e dots teptesent 'tuglc JMttidc' 
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For a large number of Sizes and a 

small number of particles, or more 

ptecisely for ~ « 1, the Situation 

1s similat to that of free pat tides. 

For small x the cos-function can be 

approximated as being 

1 
cos 2 ~ 1 - - x2 

. 2 ' 

"Inch gn·es the picr.m e !01 free 

fermions on the nght hand side 

Em 

\ 
_ (2~) 2 ,2 1 

E,.--2t +t N m/_ 

-~"'" 7 !![ 
- ~ - N 

Figure 2 2 Enerqy states for a large 
number of srtes {N = 30} a.nd a small 
number of free fermrons {li! = 7} 

In order to calculate the total energy of the system, tt ts necessary to dtstm

guish bet\wen an odd and an e\·en number of parttclcs !If. 

11! eVPn I 

E.,ven = -2t +ti cosC~m) =-/~I { cxp[~~~ (m-
1~)] +he} 

m=-¥ rn-0 

1ri 1-exp[2;'11I] 
- -texp[--11I] +he 

N 1- exp[ 2
;'] 

exp[-Hlll]- exp[%111] 1- exP[-%2] 
- -t . + h c 

1 - exp [ ~~'] 1 - exp [- 2
;'] 

cos(N- (M- 2))- eo~(*" (M+ 2)) 
- -~--~~--~~~~--~L 

1- cos(~) 

Tins expiesswn can sttll be snnphfied by usmg some tmportant tugonometnc 

tdentities 
cos(x+y) = COS'l:Cosy-SlllXSlllY 

cos(1:- y) CO~ 'L CO~ 7j +Sill 7: sin 7j 

Slll 22 = 2 ~lll 'L W., 1 
(2 12) 

2 Sl112 :L 1 -CO~ 21 

Henc<', 

2sin(N-2) sin(N-11I) 
Ee,en = -t ( 2 ) 

1 - CO~ .2!: 
J\ 

_ 2sm(N-) ws(N-) (!!... ) 
- -2t ( ) Slll 111f , ') sm2 2L 1\ 

- N 
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which gn·es the final result for the case of an even number of let mwns 

(2.13) 

The calculatiOns for the other case are analogous 

I M odd I 

Eudd = -2t +t' cos(~~ m) = -/f { exp[~~~ (m- M; 
1
)] + h c} 

m==-H;l m=U 

• [ 1r1 ]1- exp[~M] 
_ -texp -,,(lif-1) [ ] +he. 

" 1- exp 2
;' 

exp[-N (M -1)]- exp[N (M+ ll] 1- exP[-N2] 
= -t + h c 

1 - exp [ 2;'] 1 - cxp [- 2
;'] 

2cos(~ (1\I -1))- 2cos(~ (M+ 1)) 
= -t---2~----~--~~~----~ 

1- cosC;) 

2 sm(~) sm(~lii) 
= - 2t -~'_!_~:..:..._...!... 

2 5in2 (~) 

"Inch gn·es the final result fm the case of nn odd numbet of fenmons 

Eodd = - 2t ( ) sin ( 7r' M) 
"111 f, i\ 

(2 14) 

:\. contpanson of these t\YO results (2 13) and (2 14) sho"·s tli<\t they only 

chH"et bv ,t factor of cos(~) Thi~ factor a pp eats m tll<' case of an even number 

of p,u ttclcs due to the fact that one parttclc IS not located synunetncally For 

,m odd number of pnrttcles, all enctgy len~ls ,\[J.\1 t from m = 0 die occnpred 

t" tee m the gronnd state, bPcanse E, = E_m Thts 1~ not po~~ible for ,m e,·en 

nnmhet of fernuons, "·here one p,uttde ts left. m·et Ho"c'·''t, the 1mpott.ance of 

tln~ f,Ktor cos(~) decrease:, 1\'lth ,t uswg numbe1 of sttc~ Non the nng Tlus ts 

uiHletstdndable with the same argmucntdtiOn Tins [Milty pwblcm rq d1scussed 

ag,un Ill chnpter 2 3 after the notiOn of magnetrc Hux h,1s been wtwdnccd. 
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2.1.4 Distribution of the Particles 

Alter looking at the behaviOur of the energy and therefore the eigenvalucs of the 

Hanultoman under consider,ttJOn, It might also be inte1esting to ex,tmme the be

h,n·ionr of the corresponding w,n e functions In p,trt!Lular, we are mterested 111 

the expectation values of the occupation number opetator, wluch tells us some

t.hmg about the distributiOn of pai ttcles over the possible sites of the nng. Smular 

to the energy evaluation the calculations we1e done m sewral step~. 

One particle 

In this case the wave function has the form (2 2) ,,·Juch can also be wntten as 

N N 

11/J)n = l:>~c! ID); n(w I= (0 I L (n;•)* c7 (2 15) 
t:=l J=l 

and the des1red expectatiOn v,t!ue IS 

I,J 

t,] 

(2 16) 

Hence, 111 the case of one p,uttcle la~ 12 gil·es the piOb<~lnhty that the particle IS 

IocatPd on Site I, Tins probability is 1/N tf 13loch wal'e functions are used. 

Two particles 

The 11·ave function for tlus c,tse, as already propo,cd rn (2 1) 

(1/J I = (o I"' (n~:'')' c,c, n,m L 
·'' 

(21/) 

unpiH's the followmg Jesuit 
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L: a~;" ( a~.im)' (o lc,c.clckc!c} I o) (<>k, + ok.Jl 
t,J,s,t 

- L: (a~::")' (Oic,c,ctc; IO) (az:;"- n;,t') (cl,,,cl,,J + o,,A,k) 
J,S,t 

- L: ( ( a~.~nr- ( a;,kmn (a~:;"- a;~~") 
J 

"'I n,m n,ml2 
- L... akJ - a,,k (2.18) 

J 

- L: {H:;"I 2 

+ la;,~"l
2

- 2Re ((a;,r)* a~;;")} 
J 

- ;;={~2+ ~2-0}= 1~, (2 10) 

\\·here the last !me is again the result for Bloch wave functions in the form (2.9). 

However, without tins assumptiOn the result (2 18) looks chfferently than ex

pcctecl 

Tlus 1s e\·en mme the ca~e \Yhen one nn·estlg<ttes the expect,tt!On v,\lue of the 

oper,\tor product ihit1 One would expect to obt,tln 2/N2 m the Cdse of Bloch 

\\,ne functions, because 1t is the prob,tblhty2 of h,nmg one particlc~ on s1te k ,md 

the othe1 on s1te l at the same time Inste<~el, cdlculatwns le,\cl to 

(c/Jiil 1i I·'·) -11,m J. l '+' n,m -

= L: (a:'t")' (Oic,c,c[c.cJc; IO) (a;:;'"- n;',i'") (okt + c5~,.,,) 
J,'l,/ 

- 01,,/ L: ( ( 0 ~;· )' - (a~'.~" n ( n~;"' - a;',;'") 
J 

- ( (a~:;»)* - ( a;:zn) *) ( n;:tl - a~:;u) 
< "'I n,m n,ml 2 +I 11,ul n,1nl2 

- uk,l L... ak,J - o 1,1. n 1 ,t - u 1,k (2 20) 
J 

The lCSnlt 1s cons1steut w1th the prevwns one (2 18), "Inch IS JUSt k = l Fnr

t.hcrmote, the behaviour fot A· -+ l and fm 11 = 111 1s !C,\sonablc Hom•n•r, 1t l'i 

not consistent wtth the expected ,·alue The term 

.!Note that In tins context ~'ptobab1hty" IS not Hmmahzcd to 1 but to AI 
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,,lso gives a non-tnnal contnbution for Bloch waw functions. 

Char,lctenstics hke this lead to the conclusion that e1·en m n tepresentatwn 

hke (2 D) the two particles do not live mdependently of each othc1 The existence 

of one of them influences the probability dtstnbutwn of the other one. 

Remark: It mtght well be that such a behaviOur IS associated wtth Fnedel 

Of>CJII,\tiOns in solid state phystcs In the appendix of Ius m ttcle on 'The Distnbu

atJon of Electrons Round Impuuties ml\'lonol·alcnt Metals" [2D] Fnedel suggested 

that ,\ sphencally symmetrical potentwl gtves tise to an osctll,ttton of the 11·ave 

functiOn 111 ,t stnusmdal form In one dimension !,n· enough 1111',\~ from <1 suffi

Ciently fast decreasing potential the electron densrty beh,n·es hke [30] 

( ) 
cos(2kpJxl + J) 

n x ex J:~,J , 

\YheH' -c rs a spatial wordrnate, /,p the Fermi momentum ,md J is a wnstant 

dependent on the structure of the potentral Cohen et ol [12] al~o shm1·ed m a 

contmuons Hmtree-Fock calculation the existence of such densrty o~ctllanons for 

onr-duncnsronal nngs However, rt nePd~ !m thPI lll\'<'Strg.u.ron'> to find connec

trons to tins effect. 

N'e,·ertheless, there IS appmently no straight forward mterprctatwn of the 

physical meaning of v,tlues hke la:~.Jmr 

M particles 

The structure of the wm·e functiOn for the 11!-p,ut.rcle c<~se rs a c,monrc,ll geuet

,,hzation of the ptenous case 

J,P)n1 n.u = L (2 21) 
ii' ,t '1.1 

ProvtdPcl th,tt the coetficrents ,ue 1\'a\ e lunct.rous of the l31och type, the~ l1m e the 

form 

11 hett' N and AI me the number of srte~ and ]l<\I tr< les, l'-''l"'ctn·ely, ,urd n, # n1 

for t # J at<' the quantum numbe1s 
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-\::;;::1 11 1 M 
Jt J.\{ 

(a )'(-l)A-Io,_,,, (Oicm .,c1,c!c;,, ;[- .. c!,,
1

ID) 

=(-1)-l-t{O]<-JU c;
1
c!

1 
et c:AJJO) 

(2 22) 

In the last !me the prune at one of the sums mdicates that the summatwn mdtces 

should be dtstmct: ik f. z1 fo1 k f. l Hm,·ewr, it is shown m Append1x C that 

this const1amt IS not Important and can be forgotten 

P(lii) IS the set of all peunutations of the set. of tunnbe1s { 1, , lii} If 

I3loch "·m·e functions are agam cons1de1ed, only one of them gne'i a non-'·"ntslung 

contnbutwn For p = td the sums aboYe reduce to 

For all other permutatiOns cx1sts at least one x f. I. mth p-1 ( 1.) f. x ,1nd in all 

sums <1ppe<t1s the factor 

Hence, for :1/-partlcle Bloch wm·e functwns the probab1hty to find a Jlal tide on 

a ce1 tam ctte ts 

(2 23) 

It IS \\orth noting that tins tesult does uot depend on the sttc /., nor doe'i tt 

ckp<'ncl on the set of quantum numbets {n 11 , IIAJ} 



CHAPTER 2. RINGS OF FERMIONS .4ND BOSONS 34 

2.2 Magnetic Flux through the Ring 

Of specml mterest is the Situation when a nng of fenmons is placed inside a 

magnetic field B(r, t) Compared to the calculatwns of the ptenous ch,tpter a few 

alter<~tious hm·e to be clone m order to descuhe this Sitn,ttwn couectly However, 

lwfote ,1 new exptesswn for the total energy can be detn·ed m snbsect1on 2 2 3 

~ome expl,matwns ha1·e to be gnen Snhscawn 2 2 1 prondcs iu btcvity some 

genet,tl consequences of the extstence of a magnettc field !\lost of the statenwnts 

ate ptOI'en ,utd explained m more cletatl in .tppen<IIx B In 2 2 2 it ts shown that 

1t ts posstble to handle the flux wtthin the Hnbbatd model 111 a conwment w.ty. 

2.2.1 General Consequences 

In g<>neral, the vector potentt,tl A(r, t), defined hy B = \1 x A, ts much more 

n·lev,mt for clenvatwns than the magncttc field itself For tnstauce, ,t uou-zero 

wctor potential can be taken into constdetatwn by suhsttt.utmg the expres&ion 

fm the momentum m the form 

p --+ j)- eA 

P --+ i1- ~A 

SI llllltS, 

G.utssi,\Il nntts, 
(2 24) 

11 het<' e ts the element.-try chmge 01 the clt.ttgt' of an elect. ton and c tS the 1·elouty 

of light 3 

Holl·e,·et, in electromagnetism only the ndds E(r, t) ,uHI B(r, t) ate measur

able qu,lllttt!Cs. The scal,tr potenttal r/>(r. t) .tnd the l'l'Lior poteutt,tl A(r, t) are 

<lliXtliary nelds, winch elf€ not nmqucly dctPtnnned A g.l!lge ttansfoun.ttl<ln, that 

t& .1n .tltt•r.ttion of the ph,tse of the fields by,\ fnnctwn x(r t) without alretmg 

the me,t,nr.tble physKal quanttttcs, i<> po<>sthle It. h.ts tiH' tnll01nng fottu 

r/>--+ 
A --+ 

r/>' = !/> - l i!.x(r t) 
( dt ' 

A'= A+ 'Vx(r, t) 
(2 25) 

\\"1th the help of such gauge trans!otm.Htons one c,lll ptoYe the fol!oll'lng: 

If <1 1 ector potential IS intwducecl, theu the free-pm ttde Hanultom,m in hrst 

':\Io~t of the formulds (\re gnen m Gausswn mut~ To get the e'\ptP<;'HOHS m the Sl-.;;ystem 

om-' m.nnl) h,t<; to ouut c eYery\\ het e 
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qnanttzatwn transforms together with the momentnm to 

(2 26) 

In order to keep the Schrodinger equatiOn itmmant a Sllllnlt.meons tJ,ms!OJmation 

of the mn-e function of the form 

(2 2i) 

I'> necessary [32]. That means, if 1/;(r, t) fulfils the Sduodmget eqmmon for a free 

electron wtth chargee then \f!(r, t) does the s.une for the H.umltoman (2 26) 

The question ts how to modtfy the Hei~PIIbetg Hnnultonwn, w11tten 111 the 

!oun 

1l = -t L { Gl(r)c(r') + h c.}, 
(r,r') 

atwHhngly. For the sproal case tlhtt A ts not dependent on the coOJchnntes 

A(r, t) = A(t) tins IS posstble wtth the help of n double Fomier tr.tns!OJm.tt!On 

Th,tt me,ms that the gtYen H.umltonian is tt.tn'>fmmed to moutcntum rcptesen

tatwu, then a change of the momeutum .tcwtdmg to (2 2-1) ts clone there, and 

,lftt'l'\\'drcls the Fonllet tr.msfotul<\t!On ts .1pphed .tg.un Tin~ JHOt<·dure giws f01 

cM:h fernnomc operator an aclclttional phase factor winch gn·e togethet 

1l = -t L { ct(r) ef.:A(r'-r)c(r') + h c.} 
(r ,r'} 

Fm the mote genet.tl CdSe th.tt A(r, t) IS .1i'>o .1 fuucttou of the comclmates, the 

tt.1n~!OJmatton tutns out. to be a little btt tllote clitftcnlt .• n .. J the t<'snlt.~. 1-tHtll'll 

a' PPI~t!s substttutwn [33], ts gn·e11 hy 

1l = -t L { ct(r) ef.: r:Adrc(t') + h c} 
(r ,r'} 

(2 28) 

Ewn so a ugorous proY<~ ts uot giwn, th<' ""b't1tntwn ~eems to be wty tea

hondhle "·henlookmg .tt the ptel'ious commeuts The hoppmg patt teptesents the 

kmcttc enctgy of the particles, cl(r)c(r') de~utlws n mm·cnwnt. of a fetmwn f10m 

'>ll<' r' to stte r. Equatwns (2.26) ,UJd (2 21) >ho\1' the LOIIS<'<I'Iellce' of .tnou-zeJO 

''cP fm mstance Ftadkm [31], ch.tp 2 2 2 
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,·ector potenttal on the kmetic energy aud the wave funct10nm fitst qu,mtizatlOn 

The Peterls substttution has exactly the same structure, with the only dtfference 

that the phase-f<lctor lS put mto Hamiltomau and not mto the ,,·,u·e function 

It is furthermore teasonable to state tl1<1t m mteract10n terms witlun the 

Hetscnberg model, which consist of ocCUJMtlOn number operatms of the form 

cl(r)r(r), snch a phase factor does not appear Here, no movement ts clescnbed 

As a next, step the case where the par-

ttcle moves along ,1 closed path around 

an Mc,t which ts threaded by a mag

m•ttc field B ts constdered. Everywhere 

along the p,tth B = 0, winch is called a 

Aharonov-13ohm sttuation 

For such a situation the mtegral in 

the exponent of (2.27) has to be taken 

along a closed path. Acc01cling to 
Ftgme 2 3 Closed path a1ound an 
area of nonzero jinx 

Stoke's theorem 1t can be t1ansformed 

in tlH• followmg w,ty 

f A(s) ds = f curiA· d2S = f B · c!2S =<I>, 
''het<' <I> ts the flux of B tluough the loop. 

(2 29) 

H<m·evet, tlus tesult ts only correct fot a simply connected p,tth If the p.tth 

gm•s o<'\·eral tunes along the loop, then one ,,u otdiugly gets 2<I>, 3<I> ,utd so on 

Ftom ,, phystcal pomt of vtew it should be chu that tlw w,we hmctton w(r, t) 

mnst lw smgle valued, tts value must not depend on ho,,· often one goes along the 

loop Thts can only be fulfilled tf the atgument of the exponentl<tl funct10n in 

W ( r, t) = 7/J ( r, t) exp [-;,:<I>] 

h,ts the foun -2rrin '' tth n an mteget 

Thet<>fme, the constt,unt of a single ,·,duedw,\\"e fnnctton nuphes a quanttza

twn of the flux through the loop of the folln 

<I> = n<I>o with 
2rrlic he 

<I>o ·= -- =-
e e 

(2 30) 

<I>0 JS c<~Iled "elemeutary flux quantum". 
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2.2.2 Gauge Invariance in the Heisenberg Model 

It sttll remains the task to obtam the spectrum of eigem·alues of the Heisenberg 

Hatmltoman However, thts operator has after including the flux via Peterls 

snbstttutwn (2 28) the form 

1i = 

(2 31) 

<>JteJ 

11 hcte rp,,1 = J A dr t& the necessary gauge field 
s•te z 

Ac c!lldmg to chffetent g.tuges the ph.1ses rp,,1 c.Hl h.tve ,t chffewnt sttuctnre. 

Only the total flux 

<I>= f A(s) ds = f curiA· d2S = f B d2S 

IS mdependent of the gauge A gauge transformation of the fmm 

A'=A+'Vx 

kads to the result 

r'=c;•teJ 

'P:,1 = j A' dr = rp,,1 + x(r') - x(r) 
r:;;;;<;Jtt> t 

The im·,umnce of the H,umltoman can be explamed (as for mstance m Fradkm 

[31]) ,\sa U(1) symmetry with the local ch,mge of phase gtven by 

e 
B(r) = --x(t) 

fie 

Hmt·eter, the author wants to gtve his own pwof of the fact that the spectrum 

of the H,Hmltoman under cons1detatwn doe'i not depend on the g,\llge 
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As a first step in this direction cons1der 

the c.1se of four s1tes arranged m a rect

angular shape in the xy-pl,me. In the 

z-directwn there is a magnetic field 

B = Boe •. 

ly 

() 

y 
.4 

·1 

() 
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.3 

.2 

'· 
.L 

flglll'e 2 4 Fom s1.tes on a rectun-
For this case two important g,mges are 

poss1hle. 
rJ7dar 

1st gauge (symmetric gauge) 2nd gauge (Lorcntz gauge) 

A - Bx~~(+l A - (-BoY l ! 13 X r = 1 B~:L 

92,3 - Bolxly 'Pl,2 - 94,1 = 0 

'P1.2 - 'P3,4 = Y4 I =0 'P2,3 - 'Pl,4 = !Bol,ly 

0 1 () 1 () 1 () 1 

_lH 1 0 e•f 0 
_ll{ 

1 0 e•f/2 0 
= -I 

0 e-•f 0 1 
t 

0 e-•//2 0 e•f/2 

1 0 1 0 1 0 e-•f/2 () 

HCJe H 1s the matnx of the Hamiltonian 1-l for each ol the g,tllges respectl\·el:; It 

dPscubes the mappmg between Fock states as introduced m (2 2) The constant 

m the exponent IS 

2rr 
f =-I Bolrly 

"o 
To obt,un the spectrum of the 1-l is eqmvaleut. to fimhug the elgem·alm•<> of the 

matnx H In a generahzatiou of the two g11·en g,mges the deteumndnt 

1-rt ... e ;t>"a' !,'1' 4 -,.\ e"'o Yl,:! () 
:!"TI .!-• e -$0r;1 1 -/\ e •l•o r.pzJ () 

,., 
e ~~> .. ~ ~P1,4 0 e-<t>o!p23 -,.\ 

e-~~'r.pt,l 0 e-;l>~'r.p3<~ -,.\ 

h,ts to he eni.luated :\fte1 domg this caknl.tt.1on the phase lact.ot'> only appe,tr 
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in the combinatiOn 

The ch,tractenstrc polynmm,tl is 

wrth the solutions 

.A=± 2± 2 + 2cos(2rr ,:J. {2.32) 

Hence, rt rs shown that for the example of a rect<~ngnhu wrth four srtes the 

ergermtlnes of the Hauultoman are really mdepeudent of the gauge 

The next step rs to prO\'e the mdependence m the general c,1Se of N srtes and 

an arbitrary gauge. That rs, to prove that the determuhtnt of a m,ttrix 

only depends on the product a1 • a2 • ••• ·aN 

The tnck IS to wnte the matux A a> ,t pro<ln< t of two trmngul,u· matnces 

LU, wlJO'ie detenmnant can easrly be cakul,tt.cd The first, a lower triangular 

matnx, has only 1 's at the drilgonal. The 'i<'Wnd l'i ,ur upper tnaugul,u matnx 

"·ith nontri,·ial cliitgonal elements The easrest \Yay to obt<1111 the result rs to stat t 

111 tlH' upper left corner of A and make their "·ay tluough tlw wws of tlus m.ttnx. 

The ralcnl,ttions are shown here up to N = 5, but rt rs easy to see how they 

h,n·e to continue For conwmenc<', symbols for the followmg dram fr,tctwns are 

mtroduc<•cl 

1 1 
AJ = ,\- -,--r = ,\- :.\' 

"'-x 2 



CH.4.PTER 2 RINGS OF FERMIONS AND BOSONS 40 

Then 1t ts 

u At Ut () 0 ..!.. 
"' A=LU = () A2 0 I I 

L .-1. 112 - tl(U5 At 
0 0 AJ flj I I 

a1C'2ll5 >.1.>.2 

0 0 () A4 114-0 

() 0 0 0 A5 -e 

1 0 0 0 0 A {I] 0 0 ..!.. 
tlj 

I I 1 0 0 () ..!.. A "2 () () UiXl "' 
() I 1 1 0 0 

ll2 >. 2 
() ..!.. ., A "l () 

() () I I 1 0 «3 ).3 
() 0 ..!.. 

"' 
A rq 

!!.2 - !!.l.Q5. ~ I I 1 0 0 ..!.. A 
"' >..,.>.1 .>.,>.2..\3 a4.A4-® a5 

"' 
\YherP 

1 1 a1a2a1a5 
0= 

a,a2rt3a5 A1A2A3 
0= 

AtA2AJA4 

1 1 1 1 a 1 a2a1a4a~J 1 
81 

= A] + AIA2 + AIA~A3 + AIA~AjA4 .X,.\2.\1.\t "'L n2a1rt,1a;.\ 1 .\2.\3.\,1 

The test of the argnmentatLOu i'i tnvml 

aud therefore the matux elements a1, • , a5 appedr m the characteristic polyno-

D 



CHAPTER 2. RINGS OF FERIIIIONS AND BOSONS 41 

2.2.3 Change of Total Energy 

Havmg obt,uned this result, it IS poss1ble to choose a convenient gauge for the 

calculation of the spectrum of the Heisenberg Hamiltonian. 

The only constraint g1ven is 

N 

I: ~'•.z+l = <r> 
t:;;; 1 

"·hich lends to the Simplest chmce for 

A bemg m such a way, that 

<I> 
<p,,,+1 = N' z = 1, .. N (2 33) 

or, in other words, the matnx of 1i has 

the shown form. 

0 

0 0 e'f 

e•f e-•/ 0 

whe1e 
2rr <I> 

f = N <I>o 

In tlw same "'•W as in the case of no nMgnct1c flux 111 chapter 2 1 1 1t IS ,tgam 

rC'«~onoble to assume that the coefficients are 13loch "'nve functwns 

1 ok J 
O!J = .j]i/ (2 34) 

2r1 <f> .hl"l •I> 

-t(e'''ocr2 + e -T·~>oaN) = -\at 
271"1 •I> !lr1 •I> 

-t (e -T ·•·o o:-1 + eN $Q n3) = ,\(1'2 
= 

2-• •I• :!1!'1 •I• 
-t(e-''''ocr1_1 + e \~ (l'J+d = /\(l'J 

0" mg to the constramt of smgle ,·alued wa\ e funcuons, the possible w,n·e-vectOJS 

,u c qunntized 

rn = 0, 1, ,N-1 

,md hentt', the eigenv,tlues ate detennmcd by the folloll'lug equ,tt1on 

-f e-T·I•o e•l..m(J-l)+e\•l>o •C1J..,.(;+L) 
( 

,_, $ "' ,,, ) 

-t e j' '"o + e ' ·•·o ( 
-'~'(m+..!!!.) '" (m+.Jc)) 

= \ ["I~ m) 'm 

These nnmhe1s /\m are the eigenvalues of the H,tnulton opct,ttor 1i and therefore 

the p0,5Ihl<> ene1gy states fm one p,ntide ou a 1111g with N Sites ,me! tr,1pped 
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magnetic flux <1> are. 

(2 35) 

H.wing obtamed this result, the next task is to find the tot.1l energy for .t 

system of 111 particles For these particles the quantum numbe1s m = 0, , N -1 

.ue possible For e\ery fixed m the1e IS a chawcteu'itic dependence of rh•· energy 

on the magnetic flux <1> trapped through the ung 

E 

F1gnre 2.5 The energy dependence on the fiu:r; <D for the dzfferent pos.1zble m
vnlves zs shown In thzs pzcture the number of sztes zs N = G 

Tins situatiOn is shown 111 figure 2.5, where only for .1 better VI'iu.1hzanon a 

rc!Mn·cly small number of Sites IS chosen One c.m see th,\t. the p1ctme rqwats 

twnodJc,tlly Obnously, It is only necessmy to m.tke c.tlculatJOns fo1 the case 

0 :S <I>/<I>o < 1, because for the rest of the possible \alue'i of the flux <1> the 

p1ctme, and the1efore the total energy, is the same. 

HencP, It is reason.tble to Ie'ituct an arbiti•llY ,·aiue of <I> '''I thin this mte1 val 

(\I Inch IS an ,malogue to the first Bullouiu zone) bv .t function hke m figure 2 6, 

r(.t.~ 
0- t 0

6,6.1•' 
05 10 15 •l•o 

Figme 2 6 Re9trzctwn of trapped 
fiur onto a sufficzent mtervrrl 

( <D) I'{> ['I> lll r <I>n = <l>o - <l>o + 2 

,,·heic [1.] stands for the lmgeot mtege1 wluch 1~ :S 1 

(2 3G) 
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Furthermore, It can be seen from figure 2 5 that for 0 ~ iJ!f<J!0 < ~ the Sites 

mll be occupied by feimJOns in the order m= 0, -1, 1, -2, 2,-3 Hence. for the 

cnlculation of the total energy the same kmcl of sums rlS m ch,Ipter 2 1 3 me uoed: 

I ill even 

Ee,en = -2t +~>os(~ (m+ :J) 
m=-2 

[
2rri q, l [ rri l M-I [2m l -texp -- exp --M "'"' exp -m + h c 
N <l?o N f;:0 N 

[
27ri q, J exP[-;l;flli]- exp[~w] 

= -texp --
. N <I>o 1- exp[~¥'] 

For these CdJcul,ttions the tugouometnc identitieS (2 12) \\'el<~ u<ed sewrc~l times 

Thr final result for the case of an even nnmbe1 o! !ermwm mth Hux 1' 

sin ( f; J\I) 
Ee,en = -2t . ( ) 

Sill f ( 
7r 27r ( ip ) ) cos -- -r -
.V N <J! 0 

(2 37) 
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The calculations for the other case are analogous· 

I M odd I 

Eodd = -2t +t' co~( 2"(m+~)) 
N <I>o 

m=- M;-1 

= -texp [
2;i !J exp[-~(M- 1rt>xp [2;im l + h c. 

[
2m <I> l exp[-N (M- 1)]- exp[N (.U + ll] 1 

= -texp -- ·-+he 
N <I>o 1 - ex!>[~~·] 1 

cos( 2~ ..2.-!!.. (M- 1))- cos( 2 rr ..2. +!!..(M+ 1)) 
N<~o /1; fv 11>o N = -t -, 1-c.o~(:J) 

- cos(7Jfo- ft (M+ 1l) + cos(7Jfo + ft (M- 1)) 

··· -t 1- cos(~) 

= -t 2cos(7Jfo) cos(ft (M- 1))- 2w~(7Jfo) ws(ft (M+ 1)) 

1- w'( 2r.) N 

eo~(;~.~·) sm{ftM) sm{f) 
= -?t 0 

- 2 ~m2 ( N) , 

44 

wluch giYes the fiiMliesnlt for tlus case of au odd nmnber of fellluons mth fiux 

sm(NM) (?" (<I>)) 
===} Eodd = -2t ( ) Ul'i ~'T 1' -

sm N h <I>u 
(2 38) 

It. i" necessa1y to &tres" .tgam that the"e <.:alutl.ltions m~Ie made for the case 

0 ::; <I> /<Do < ~ Only at the end the .1rgumentation abm e w.1s nsed to reduce all 

othet cas<>s to tlus one, usmg the function {2 3G) The tot .. tl energy is tht•refme a 

lWllo<hc fnnctwn m <I> 

2.3 The Parity Effect 

It IS worth compming the obtamed expiesswus tm the total ene1gy with tnclUtled 

flnx dependence (2.37) and {2 38) wtth founei tcsnlts 1'01 Sitn.ltious wtthout flux, 

{2 13) .1nd {2 14) Such a COlll]Mnson shows that m both c.1ses, fm an e\'en .tnd 

fm 1111 odd nnmbet of JMI tides, the flnx ch.mges the Mgnment of a tugonometric 
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functiOn in the numerator of the formula for the total energy 

even. 

odd. 

cos(N-) -t ws(N-- ~r (.:~)) 
cos(O) -t cos(o- ~r (:,)) 

45 

(2 39) 

Furthermore, it confirms that 1> = 0 gi,es the former results, that the t\\·o calcu

lations ate conststent. 

The actual dependence of the total energy of a nng of feruuons on the tr,tpped 

magnettc flux 1> can be drawn. Accorc!tng to fonnul,\ (2.31) .md (2 38) the shape 

of the gr.\ph should mamly depend on \\'hethet .ut even ot ,ut odd number of 

pat ttcles ts assumed 

<I> = 0 Ee .. en& 
<I> > 0 

-1 
Eodd 

-2 

-J 

-4 

-5 

M 
•I 

1 2 ,J 4 5 •Po 

Ftgme 2 7 The dependence of the total energy of n rmg until N = 8 ~ztes on 
the flux for t = 1 has the pwlzcted penodzczhJ (rzqht) On the left lumd 5rtle the 
rntzo -2t sm(N-M) /sm(N-) zs calculated for tlzffereut M-valnes, whrch qzves the 

energy for zero flux apart from the factor cos(N-) for an even partzcle number. 

Indeed, one c.an see m figure 2 7 that thete ts a pPnodtctty of the flux depen

dence of the total enetgy The shape of the petiOt!tctty depmds ou "het her the 

number of ]Mrttcles ts even 01 odd 

Tins dtftetence bet\wen an e'en and dn odtl tuunlwr of ]Mt tides. 'duch IS 

descnbed by the addttional term N in the wsme h,ts .the.tdy been mentioned 

briefly m sectton 2.1 3. After the effect of the flux has been e\·aln.\ted, a mme 

det,uled explanatiOn using statisttcal argument<; I'> possible It IS bast•d on a 

puhlic.ttion of Kusmat tsev [27] 
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One Fermion 

Startmg wrth one fernuon, the followmg srtuatwn has to be corlSldered. There rs 

a ung wrth N site~ The particle, winch might be located on a certain srte Jo at 

time fo IS free to move around the nng Hm1ewr, e1ery time It leaches the site Jo 

thP Situ.uion is the same as for the time t0 This obvious statement IS mcluded 

m tlu· m.tthematiCal descuptwn of the sitti<ttion hy f01ung peiiothc bound,uy 

conchtwns and smgle ,·ained wave fnnctwns 

The mm·ement of the partrcle rs connected wrth kmetic energy and a one

dnnensional wave vector k The dispersiOn relation between them rs of the form 

E(k) = -2t cos(k) (2 6). The possrble k-valne~ a1e quantrzcd m the form /,"' = 

~m (2 3) owmg to the mt10dnced penochc bound,uy condittons, ,md the gronnd 

~tilte energy refers to k = 0 as long as there is no magnettc flux 

Ftgmc 2.8 Dzsperszon. relnbon wdh M= 1 fermzon and <l> = 0 

If there rs ,\flux tr.tpped tlnough the nng then the chspe1sion rcl.ttwn ch,mges 

to E.,= -2tcm.(~; (m+,;:)) (2 3j) Tins menu~ tlt.tt the flux lt.t<; the eflect 

of .tddmg momentum to the partrcle 01, so to S<l). of moling It. along the gr,tph 

of the clr<;perswn relatiOn The choice of 111 which minnmzes the total energy 

Frgnre 2 9: Dzspersron. relatron. wzth M = 1 fenmon awl <l> > 0 

dt•pends now on the flux It rs m = 0 for :. < 4, bnt as soon as ,\n mcreasmg 

flnx JMS~t·s tins boundary the system wrll Jllmp to m = -1 for the ground st.tte. 

Tins 1\,ts the physrcal reason for the mtrodnced IPStnctwn-fnnctiou (2 3G). 
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Two Fermions 

The situatiOn becomes much more interestmg when a second particle IS added. If 

one of the two particles, called particle A, IS assumed to be fixed on a certam ~ite 

and the other one, B, moves awund the nng, then the Sit\I<ttion occms that B 

h<~s to pass .-\ Because of the fact th,tt the JMI ucles are supposed to be fermwns 

and hecmtse of their special anticommutatwn relations, this process of p,tssing 

unphes <1 mmus Sign m the waw function. In other words, the Journey of one 

p.trtH le ,uonnd the ring leads to an additional phase factor of e•. The boundary 

conditions <~re not any more peuodic, but ant.Jperiodic 

Something very similar occurs when ,tu external magnetic flux is taken into 

consideration The movement o! a particle once awund .t loop t1apped by a 

u~<tgnetic flux leads also to a phase factor, whkh has accmchng to tonnuLt (2 27) 
2m..!!!.. 

the form e ''o Tins analogy helps to understand the problem. Pa1 tide B 

E>xpeucnce the existence of pm·ticlc A in the form of anmtelllal flux of m.1gmtucle 

~, c,tlled statistical flux. 

An exte1nalmagnetic flux changes the argnmcnt of the cosme m the expresf>ion 

of the total energy by ~r (.~J- Snnilaily, the mentioned mteuJ,tlllux canses the 

tPJm fi m the cosme Heuce, the mtcJn<tl flnx h<~s also the efl<•ct of mO\ mg 

p,utidcs along the graph of the chspeiSIOll Iel,ttiou Tlm IS nnpmtant for the 

follomng Je,tson: Founally, the total energy for a two particle system Is nunnnized 

h,· choosmg for the \vave Y<'<.tm ~ k 4 = ~~ 1 and k B = ~~ (-D 

F1g111e 2 10: Dzsperszon relntzon wzthout panty effect 

Howe,·er, a quantum number which IS a half-odd mteger unphes that the 

n-f,u tm of the \\me functiOn IS antipetiochc 

1 hi!( +lv) 1 111' ~ .. !.!!J 
O;+N = .,(liie ·' ' 1 = /Ne e ·' ' = -n1 

.-\dchtJOu,tlly, the c-c:;clic H,umltonian USC'd !or the~e c,tlcul,ttions showo <111 an

tqwuocl!uty ,ts explamed Ill 1 3 Togethe1, the sitndtion IS peuodtc ut contrary 
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to the consideratwns ,tbove. 

To 111<tke th1s peuo<hcity ant1periouic one has to use mteger quantum numbers. 

Tins IS exactly what is done when all p.trticles are mowd along the gi,tph of the 

dispersion relation by an amount of fi. The statistic,tl flux en<>mes th,tt an 

antipenou1city exits ! It JUStifies the calculatwns that have been done \\'lth the 

result th,tt the total energy of two particles on the nng with external magnetic 

flux is (2 37) 

_ sm(fi2) ( rr 2rr. ( i[> )) 
Etot - - 2t sm ( N) · cos N - N 1 <Do . 

F1g111e 2.11: Dzsperszon relatzon wzth punt11 ejjeGt 

An Arbitrary Number of Fermions 

For an ,u\)ltrary number !.I of fermions each particle has to pass !.1 - 1 others 

in orcle1 to move once around the ring Hence, the pha.<>e factor connected 'Yith 

tins movement is e'<M-I) = (-1)M-I The general expression of the total energy 

might tlwrefore be wntten m the follmnng \\',\.)' 

sin c~· M) ( rr ?rr <I> ) 
Etot = -2t · cos -(M- 1)- :.__ 

<>m(fi) N - N <I>0 

HoweYer, this is in most cases not the ground state energy, but one of the 

exited ;t,ttes To obtam the former, 1t IS nccess,uy to find ont \\luch site; in 

monu•ntnm &pace should be occupied Then the tight cxprc'>'iiOil tor the ground 

st ,, te eneq1,y IS gtwn by 

sm(fiM) 
Eground = -2t . (") 

Slll N 
( 

rr 2rr ( <I> ) ) · cos - ((J/- 1) mod 2)- -r - . 
N N. <!>0 

(2 40) 

In this formula all possible effects cue mcluded. The a1gmnentatwn "luch le,tds 

to this result is called the "panty effect". 
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E~ N=8 ~ 

F1gme 2 12 Dzspersion relatwn w1th M= 4 ferrnzons and <I> > 0 

Bosons 

A.lte1 pie,eutmg these arguments the u·sult fo1 the c,tse that the p,u tid<'S under 

rou<;u[eidtiOn <tre bosous mste,ld of fe11nions C<~n be Jli<'lhCtPd Then coummt,ttion 

rel<ttwns as giYcn 111 (1 G) do not lead to a factor -1 "·hen oue p<trt.Id<' pn.,ses 

«nothei one In other words, the many-body waVP functiOn is symmetiic with 

n'<;pect to the exchange of two particles 

Tlm mc<tns that for hardcore bosons, th,lt IS for bosons with allmvcd occupa

tiOn numbe1s 0 and 1. the SituatiOn is a p1zon fo1 ew1y i1I the same clS that for 

«u odd number of fermwns Smcc, t.lw shift of f does not. clppe,n·, the p1cture 

for the flux dependence of the tot,ll ene1gy does not h.ne two chfleieut shapes 

The!<' l'i no JHnty effect m this c,1se 

The Jnenous calculatiOns for fenmons me 111 essence dlso vahd for bosons 

Hom'\·er, m the Cc1Se of <tn e\ en number of pm tides the1e IS of conrse a <hfference. 

It IS hclsed on the fact that here the previOusly nwntwnerl Situation appears that 

the giOnud stdte IS fo11ned by half-mteger qH,mttmt lllllnbei 'i Th<~t me,tns that 

wmp.ned to ctn e\·ennumbcr of fellmons nllJMitlcle'i ,ne mm·ed b' ~ (~~),what 

PXdLth· c\lllllilllatps till' *' in the cosine H<•ncl'. fill h.udCO!l' ])()<;()\" tliC giOund 

F1g111e 2 13· Dzspe1szon 1elatzon wzth 11! = -l bo:,ons a11d <[> = 0 

ot Me ene1gy h«s alwa~ s the form 

(
'Jr. ('[>)) 

· cos N r 'Po . (2 41) 
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2.4 Persistent Current 

After the expression for the total energy E of the electron ring has been derived, 

rt does not cause much more effort to obtain the value of the persistent cunent 

I It is not lung other than the delivative of the total energy \nth respect to the 

flux through the ring, 
oE 

I= -c- (2 42) 
O<I> 

There .ue <;eYeral pos-;ible expl,tnations ol this f<~ct The .tuthor would likP to 

present t\\·o of them, one whrch uses m,tcro~coprc quantities to descnbe the Situ

atiOn and another one which st.trts from a nucroscopic pomt of vrcw. 

Macroscopic Explanation 

The ung under consideration rs placed 

m a homogeneous magnetrc field B 

Consequently. there is a flux <I> = B · S 

thrc<ukd by the rmg. Here S rs a nor

mal wctor to the plane of the ling WJth 

a leugth p10portional to the mea en

closed by the circle. 

Tlw H nx gn·es nse to a cm rent I in

srde the rmg The dependence on the 

flux I = /(<I>) is a przorz unknown. 

\\'h<\teYei the current mrght be. rts ex

i:;tPIKe c.tn'ie'i a magnetiC moment m 

coun<'lted to the nng ,md p.tr.tllel to S 

Figme 2 14 Rmq unth 12 S!te; m 
a plane unth a nmmal vector S, 
threaded In; a rnagnet!C field B. 

I to \"dill<' IS lot the spcci.tlc,tse of ,1 ctrurl,u uutellt den:,It\· ca:;Ih· c.tknl.tted 

to I><• 

m=..!:_Jd 1Jrxj=..!:_r·27rr I u=~I S 
2c 2c c 

(2 43) 

Such a m.tgnetlc momPnt mstde a magnettc freld pos'ies .t certdm potential euetgy, 

which is nmumal tf the monwnt ts aligned parallel to the field hues. Thus, the 

p<tt t of the energy of the nng ,,-luch l'i connected to m<~gnettc ef!Pct~ ha'i the form 

1 1 
Emagn =-m B =--IS· B =--/<I> 

C L 
(2 44) 
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In a thermodynamic descriptiOn m and B ate independent variables The 

s,une IS thetefore true for the pair(/, <I>) and the persistent current becomes 

Microscopic Explanation 

/(<!>) = -G (8Emagn) 
o<D 

I 

0 

Usually in the literature [3, 7, 8] the current is calculated by looking at 1ts cause: 

the movement of electrons The euetgy dependence for the mth p,trt.Jcle, as 

gtYen m (2 35), can m the limit N » 1\l be aqsumed to be qu,tdrattc m the 

waYe wct01, Em = 2n'k'. The unknown effectiYe mass 11leff 1·amshes agam tf the 
trL('ff 

\"PiOCI tY V,n = ..!!..!:.. IS exp! essed dS 
"' m.,ff 

( -- ~wk ) u =? group 'eloctty (2 45) 

On the othe1 hand, the wm·e vector k IS dctellumed by the flux. The quantum 

number IS only 1mpottant lot a 1educt1on to the h1st I3llllouin zone accordmg 

to (2 36) and IS taken m to dCtonnt again 11 hen Sll"ltdung to the tot.,tl eue1gy. 

Ho11ever, one has to be careful wtth dimensionahtw'l The tnut of length ihtS m 

,tll p1enous calculations been the distance between two Sites on the ling, c,tl!ed 

a. In order to ha1·e a wave \"Cctor with the dunens!Otl<llity 1/length, tin> a has to 

he mcluded. 

(2 -!6) 

The actual cmrent IS the common effect of all pattlctpatmg pmt1cles It can 

lw calculated from 

I = -e #-- v, = -cL DE,. = -c DE 
L aN Dil> o<D' m==l • m 

IYherP E 1s now the total enPtgy of the many JMrttde systpm 0 
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Expressions for the Current 

For the derivat1ves 1t IS agam necessary to <hstmgmsh between an odd and an 

e1·en number of particles Stm tmg with the expre<;sions (2 31) and (2 38) for the 

total enetgy, we obtain after a short calculatiOn. 

I odd 

= 'f 2te sm(7(7111) . sm(2rr r (~) _ .!!...) 
Nfi sm (,::;) N <I>o N 

2te <;in ( 7(7 11!) 
- 'f 

Nf! sin (;:;) 

(2 47) 

(2 48) 

Appatently, the1e JS an osullat1on 111 the ctnrent-llux dependeuce Thb i~ in 

agreement w1th predictions by Buttinger, Imty and Landaue1 [2], with expenmen

t,tl rrsults [3, 4, 5] and numewus other publications [8, 11, 12, 27] Ne,·ertheless, 

it i<; 1101 th discussing these expre:;<;ions fm the petststent cm rent .t bit. mote. 

Ftrst of all, a remark on the sign is neces<;ary The two dlfferent posstbillt!es 

ate c.tu'>cd by the denvatlvt' of the function., (1:), wlmh rcstucts the flux onto a 

sufficient mterval It IS shown m figure 2 6 on page 42 th.tt. tin<; functron has,, s.t\Y

tooth shc~pe due to which the detiv.tti1e lr.t<; somctrmcs po<;rtl\e ,urd hOmetunes 

1wgatrve l'otlnes Instead of pntting this fact mto a <;op!n<;ticatcd mathenMtrcal 

ckscuptwn. 1t 1s more com·ement to show the figme 2 15. For l.trge 1·a!ues ol N 

the sm-function c.m well be approxmratecl by strc~iglrt hne<; 

(b) 

1 

13 -1 

F1gure 2.15 Dependence of the perszstent cunent on the t1opped jiu'L fo7 (n) an 
odd 711t1!lbe7 of partzcles and {b) an even nu111ber of pmtnle.- j "'the a1111Jlztude 
of the w11ent 
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The Amplitude 

In many papers the amplitude of the oscillatmg cm rent IS compared \Yith J = T• 
"·here Vp is the Fermi velocity and L = aN IS the Circumference of the nng For 

tins reason the results will now be transformed accordingly 

In the case of an odd number of particles the mdximum value for the current IS 

conm•cted to '!!f<J> 0 = t The 1esnltmg sm-fnnctwn at. the end of (2 48) theJeloie 

cancels mth sm (;:;) in the denommator The same c,uJ be done for .m even 

number of particles and '!! = 0 

The 1elocity Vp for a pa1t1cle at the Fermi edge (m= A}) eau be evaluated 

from Its energy with the help of a deiivat1ve as above 

j = 2te sin (7rlil) = evF 
Nn. N L 

Hence, the cmrent can also be expressed in the fol!owmg w<ty 

I even 
evp c1f ( '!! ) 1f) 1 

(2 49) ~ '~'£ sm N r <J>o - N sm(;V) 
I odd eVF . c1f ( '!! ) ) 1 

(2 50) ~ 'f-sm -r -
sm( ;V) L N <I>o 

Tins result for the order of magnitude of the peiSIStent cmrent mchcates that 

almo<.t only the upper-most paitide, the electron 1dn< h h.ts the ene1gy of the 

Fermi <>dge, contiibutes to the cnnent This smpu~mg f,tct h.ts Its ongin m 

chffeicnt signs of the currents f01 the several lower lymg p.1rtides, winch cflectn·e!y 

c,uiccl eadt other [2, 7, 35] 

Period Ha! ving 

On0 <.m dearly see in hgme 2 15 that the peuod o! th<• o'<< Ill.tt 1011 of the [Wrststent 

cmn•nt bone flux quantum <!>0 = l~c. Tins is ,t!so "h.tt. IS obt .• uncd Ill expeiiments, 

p101 Hied that measurements we1e petfouned on single mct.,llhc loop~ For mstance 

Ch,ui<lrasekhar et al [4] were ,\ble to confirm tlus re~ult by usmg a single, Isolated 

gold loop However, first expenmental results "'eie published by Levy et al [3]. 

They r(o'ported about ,m oscillation with a prriod IMlf the flux qti<tntum 
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The 1eason for the period halving IS the fact that these SCientists measured 

the effect of 107 copper nngs Simultaneously. The kmd of ,lveraging connected to 

such .t huge number of nngs IS discussed by \·anous auth01s [3, 8, 36, 37] 

.-\!ready in HJ87 Cheung et al. [8] p01nted out that one has to chstingmsh 

lJC't\\·cen a grand canonical and a canomcal ensemble m·erage. In the first case 

the chemlC,tl potential IS kept fixed for each ung and t.he numbe1 of electrons 

\,uief> w1th the flux Under such Circumstance~ the a1·erage ove1 chfteu;nt values 

for the chemical potential g1ves ze10 

In the second case of a canonical ensemble the number of particles IS m.tin

tained, no matter what the value of the flux through the ung IS 

Tins IS exactly the s1tuatwn we haw 

mvestigated so far. Here the m·erage 

has to be performed over different 

nnmbe1s of particles for the different 

ungs. 

If the same amplitude of the cuuent 

'' .J<,smued fm ewry particle umnber 

and 11 there ,ue as many nngs with 

,,n odd uumber of electrons as mth 

an even number of electrons, then 

the awrage can s1mply be found 

Tlu• hgme on the nght hand s1de 

shows the penod halvmg 

If] 

1 -

\ 1\ [\ 1\ 1\ iJ!fiJ!o 

...\ \ \ ~5 \ \5 

Figme 2.16 Pers1.stent current per 
rmg r~olullme} when avemqed ove'/ a 
CtiiW117cal ensemble of 'l'lnqs until an odd 
and an even number of pw t?cles re5pec
twelrJ {dotted l!ues) 

Fmthermore, one can see nicely m th1s fig me th,\t the a1·eragmg 1s ,\[so con-

nPcted wtth an amphtude halnng, wtth a decrease of the n1<1xinmm of the per-

Sl~tPnt cmrent 

Lo~~ ,md Goldb,trt [37] discus~ed tins awt.tgmg proces~ 111 ntme detail They 

a'"uued that the number of p,u ttcles of a C<'l t,uu ung ts P01sson chstnbuted 

awund .tmean \·alne .X. Then the probabthty for the nng to h,n-e JI conduction 

elPct!Ous ts e-~ ~~: The sm-functwns m (2 48) and (2 4 7) are hneansecl, which 
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allows to wnte them in the followmg form: 

I(M) ""X· M· { (!~) 
(!'!- 1) 

for M odd 

for M c\·en 

55 

\\·here X IS some constant wluch does not depend 011 <1> .tnd JU, ,md the flux is 

for simphcity supposed to be within the mtenal 0:::; ,:
0 

:::; ~· 

The1efore, the expectation value of the functiOn I(M) ts 

(I)pOI'>SOil = 

(2.51) 

In the !,1st hne the term e-z~ has been neglected bec<~Hsc the me.tn number of 

JMtttdes IS assumed to be latge The f,tct that the GOH~t.tnt X gop<; together Wlth 

.\ mean<; that the omphtucle of the m·er.tged current t<; th.tt "·Inch wne~ponds to 

a ring wtth the mean number of p.trttde~; or hettet to S<t~. tt. ts half of th,tt value 

as tlw fractiOn in front of the cunent mdi<.,ttes 

\\'hat is 1111p01tant about the utlculatwnts th,tt m the end <1>0 ts n•placed by 

<1! 0 /2. Tins confirms that \\'tthm the m term! 0 :::; ,;~. :::; ~ the gtaph of the cunent 

,.,,tsu' the flux 1~ steepet than before by a factot of 2 011e can also check for 

the othet intel\,tl' th,tt the 1esult of the P01,son .t\·et.tge 1' ex,tCtly the same as 

.tll!'ddy shown m hgme 21G (tf I/f ts undetstood to IH' (I)/f(.\)) Thus, tt is 

only ndtmal th,tt Levy et al thscovered ,t half f111x qu.tntmn penodiclly 
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Interacting Fermions 

3.1 Hartree-Fock Equations 

There are mamly t"·o possible ways for the derivation of the Hart1ee-Fock (HF) 

equatwns One IS '"ell explamed m the textbook of KJttel [38]1 Here the one

(JaitKle solntiom rp1 (x) of the Hamlitouiau ,He combined to field ope1ators 

J J 

and the Hanultoman IS expressed m these operatm ~ A study of the erpt,ttiou of 

motmn iliw = -[1£, w]_ leads then to the desired set of rqnatwns 

The other approach, which can f e be found m the books of l\lerzlMcher [22], 

i\oltmg [28] or Fulde [39], uses vanatwnal method~ The H,uJu!tonJ,tn 1l under 

cousideJatlouJs the sum of ,t smgle p,uticle kmet1e eiH'Igy fi,! ,tud ,\ t\\o-p,trttcle 

mtcraction i>-. The trial waw functwn fm the vmi<lt.ton i~ in tlm appio,tch chosen 

to be a symrnetrized product of fd smgle p;u ttde w,n e lnuctwu~ In second 

qnantizatwn tins symmetuzatwn happens antorn,\tiGally, m the contmuons case 

a SJ,uer-determi!Mnt form mn~t be user!: 

\\.1th tlus trial wme function an expet tdtion ,·,tim' of the H,multomau eau be 

1 In a Gteen's func.tton not.ttiOll 1t tan also be fonnd m tlu.• book of K.HI.moH c:Uld B.1y111 [40] 

5G 
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denwd. If all permutations are handled correctly, the result IS 

M 1/"FV 
(H F 17-ll H F) = L (<,:>~~ 11'!61

) I 'P~~) + ? L { ('Pl.1}'Pl;} ~~~·(!,2 ) I 'P~}'P~2}) 
p.=l - Jt,V 

-(ro(ll,o(2) n>(1,2) lr.o(2),o(ll>} 
YO:v Yo:1, 11 'f"'O;,_ Yet,, t 

"here H1\
1
l IS the pa1 t of H0 that acts on parttcle 1 and ~~·(I,2l descnlws the 

mteractwn of particles 1 and 2. In the mtet,u.twn the first teuuts c,tlled "dtrect" 

,HHI the second "exchange" teun 

13y mtroducing umttes at appropuate positions, It IS also possible to rl'write 

this expresswn m position representatiOn It the spm 1s scpat.tted !tom the quan

tum numbers o3 and the Ham1ltoman ts supposed to be spm mdependent, one 

obtams 

1 (Jtu);t(vu') 
(H F 17-ll H F) = L j d3r <p;,"(r)Ho(r)cp1,"(r) + ) L j j d3rdV * 

J.U1 - jl(T,tJ(T' 

* <p:,u ( r )'P:u' ( r') V ( r, r') ( <p1,u ( r )<,:>vu' ( r') - b'.,.,u• <pM' ( r')'Pv,- ( r)) 
ditect 

(J 1) 

The variation pllllCtple2 uses the fact that, no matter wh1ch kmd of trial 

functiOn ts used, the expectatiOn value of the Hamtltoman gl\ e~ always an upper 

boundaty of the ground state energy 

(HFI7-liHF) = E > E 
(HFIHF) - 0 (3 2) 

In order to come the ground state energy as close as posstble it IS 1easonable 

to mmitmze the left hand stde. 

0 = 0 ((HFIHIHF)) 
(HFIHF) 

= (HFIHF)-2 ((HFIHF) o(HFI1i IHF)- (HFIH IHF) r5(HFIHF)) 

= o(HFIH IHF)- E. o(HFIHF) 

= o(HFI1i- EIHF), 

"here a proper normahzatwn of I H F) has been assumed 

(3 3) 
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E1·entually, this procedure is eqmvalent to a mmumzatwn of (H F 11ll H F) 

together with normalizatiOn conditions mtroduced vm a Lagrange multiplier..\= 

E It IS also common to take the normalizatiOn of each single particle wave 

fnnctwn into account with the help of such multiphe1s 

(34} 

Applied to the expectation Yalue in integral notatiOn (3.1), the variatiOn pun

ciple giws the well-known Hartree-Fock equations: 

v#~' 

- 2: j d3r' cp:"(r')V(r, r')cp1,A1-')rpv"(r) (3 5) 
V 

When looking at this formula, it becomes clear "hy it is also called self

consistent field equation. On the right hand Side we have wave functions mth 

pmncd arguments and Without. Once the waYe fnnctwns ,ue known, It ts posstble 

to emlnate the mtegrals, wluch leave only nnpnmcd tcuns The l<tttet form a 

matux eqn,ttwn, which can be soh·ed (at le.tst mtlt nnmettc.tlmethod'i) The 

procl'clure should, therefore, be hke tlus: 

• Statt wtth an assumptiOn for the smgle-patttde ,,,n·e fnncttons. 

• Calculate the integrals with these functiOns 

• SolYe the rni\tnx equations ll'lth the mtcgtals as coeffioents 

• UsP the gamed wave functiOns agam for the mtegral evaln.tt.wu and contume 

:\Lcotdmg to this procedme ench particle m01·es mthm the field of the test of 

tit<• J><lttides The Jteti\tiOn stops when the tte\\' w,11e fnncttons ,up ••qn<~l to these 

11'!udt \\·ere used for the mtegtals In tins case one c.tn speak of sell-consistency 

It is cle,u that such an ltetat.ion can only lw Jwtfouned by .t computer Even 

:;o. a nnmet ical inYesttgation w,ts not plannl'd to be used for the pt e~ent work, 

H,uttPe-Fock hke calculatiOns ha1e been statted This h<~ppcned mamly to get 

,, dl'eJ>Pr mstght m to the structure of the pwblem ,ll!d not ut r he first. pi,\ Cl' to 

aduc1 e exact results. 
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Remark: One also finds in the literature [28] another equation wtth the name 

Hartree-Fock approximation It is a stmtlar mean-field approximation, but m this 

c~se for a product of two operators AB. Such .t pwduct can be rewiitten m the 

form 

The approxnnatwn is based on the assumption th,tt close to self-consistency fluc

tuations around the expectatiOn value can be neglected. Hence, 

(3 6) 

which teduces m an elegant way the operator product to a lnw,u problem Tlus 

approxnnatwn, whtch IS for the special c.ase of the Hubbard model and Its product 

of ocwp.ttiOn number operatots called Stoner model, ,tllows m ,, Similar way 

as aboYe to perform an IteratiOn. Although 1t ts not used m thts particular 

"·,ty \Yitlun this "·ork, we shall see stmtlar structures when nsmg the Hnbbard

Strat ,tnm·ic decompositiOn. 

3.2 The a-problem 

A~ o fit~t step mto an mvestigation of mtctactwns betW<•en chf!etcnt p<~rticles on 

the ung, ,\n ensemble of spinless fermions is considered. An appropnate Hanul

toman m thts context IS the above mentioned Het<;enberg operator (1.23) 

H.= -t 2:: ( clck+I + cl+tck) +V L i1knk+I· 
k k 

It is the ,tim to find the cmrespondmg etgenfunctions and ctgenvalnes The !,ttt.er, 

that meons the energies of the system, ,ue of p.uticnl,u mtewst be< ,UJse they 

en,tble ns to obtam statements on the petststent utuent 

Unfortunately, the Hattree-Fock cqtt<ttiOns (3 5) cannot be U'led chrcctly to 

win• tins t.tsk Tins is not only because they foun an lterattw ,tppto,tch to the 

pwbkm. The fact that they ha,·e so far only been formulated for the continuous 

c.a'e I'> ,m even btgger limitotwn Howevet, m the SituatiOn under con<;tdetation 

th<• spacP is a chscrete lattice m one dunenswn For tlus reason the v,m,ttion IS 

done ,tg,un by hand 'Vith the wave functiOn'> mttodnced m 3 2 l an expectatiOn 
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1·nlne of the Hamiltonian can be ob tamed (3 2 2), and the deuvative m 3 2 4leads 

to Hartree-Fock equations which can be solved (3.2 5). 

3.2.1 The Variational Wave Functions 

In the ptevwus chapter the case F = 0 has been investigated The many-body 

11·,n·e functiOn was formulated in second qn.tuttzatwn m a way that se1·eral (i\1) 

fetmwns 11·ere created .tt the same ttme ou dtffetent sttes Each of the possibilities 

1\,p; ll'etghtcd mth .t factor, which depended on .t set ot qtt.tntmn numbers All 

together, as for mstance in section 2 1 4, 11·e used the form 

"here N and i\I are the number of sttes and [Hrttcles, respecttvely 

Ho11e1·er, we got the result that Bloch w<tve functions ate solutwns and that 

the coeffictents C<tn, therefore, be wnttcn ,,s 

an' n\1 = N-M/2 CXll[
2

7rl (n 1 + 11 1 + li ZM .. N 1 '1 2 2 

Tlus knowledge allows to represent the 1\'aYe-functton as 

(3 7) 

~nth the sphtted coefficients 

1 [ )7rl l n;:· = .Jil!exp ~V 11, z, 

Such ,, tepresentatwn ts essentially .t rcduct1011 of the comphcM.e<lnMny par

ttclc pwblem to a problem of 11! se pat ate [Ml ttcles E.tth of them ts descnbed 

b1· the functional dependence of a~· on the stte number z., determmed by the 
N 

quantum number n, A nounahzatwn for the smgle p.u tide, 2: le"~' J2 = 1, as 
1s;; l 

1wll as for the complete "'aYe functiOn, (!,b I ·u:} = 1, ts gi 1 en 
n1 nM 111 nu 

The ansatz for the followmg calculatwns is th<tt the ,·,ut<lt.ionalw.we functiOn 

c.tn .tbo for the ca~e \ · f. 0 be handled m .t w.ty ,t, tf 11! ~ep.nated pat ttcles IYere 

mol'ing along the ung. That is, the 1·miattmul IV.tYe fnnu.wn has the f01 m (3 7) 

11 1 t h unknown co~ffictents n~· 3 

Jit IS common to tackle the many-particle ptoblcm \\ 1thm the Hub bard model in such a way 
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3.2.2 Expectation Value 

With the help of the variational wave functiOn an expectatiOn ,·alue for the 

Heiseuberg Hamiltonian can be evaluated. This has to be done ca!efnlly for 

both 111\'0lved parts. However, the steps are wry Similar to those m sectiOn 2 1.4. 

E~peually, sums over all possible permutations of /If part1cles appear again. 

Hopping Part 

k 1 1 1 M 
Jl }liJ 

M 

= L { (0 lcm · · c1,ckck+lcJ, · · c!"' I O)J<A,k+I 
A=! 

M 

= -t :L :L a;t 
A=l 11 'M 

JI JM 

M 

= -t :L :L :L (-lrgnpa:;·,·· 
A=! Jt JM pEP( M) 

Interaction Part 

,. 1 n).Pii' 11/>)n, nu 

= F"""' ""'"' 0 nt * ... a:n,tr* ant . a:n.u 
L- L- )I ]\I lJ 1\J 

/.. 'I '.U 
JI JM 

Fm m~tance Tosakt used m Ius revtew artrcles (43J fot exptessions hke LZ=l a~~c~. the mdex 

ftce notation ct(a<"·l) 
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AI 

= I: (Oic3M ···c3,c;, clckcJ,cl+lc~+lc;8 ·c!.~~ IO)ok,,Ao~+l.•a 
A B=l 
A,<B 

AI 

= I: (Oic3 u· ·c3,c;, ·cJ.~~ID)<Ik,q018 ,14 +t 
A B=l 
A,<B 

Normalization 

(·'·I·'·) - " " ( l}'gnpan•• nAI* np(I) np(AI) 
n1 nu If' If' n1 nu - L- L- - Jt aJM 0 Jt ·' aJM 

JI JAI pEP( A/) 

That is nothing other than a Slater cletetmmant 

3.2.3 Remark on Lagrange Multipliers 

62 

The next step wttlun a futz procedure ts to take denvattves with tespect to one 

of the par<unetets of the vauational WaYe function. HowcYcr, from expenence 

the anthor woulcl hke to intetpolnte a brief rematk One might feel tempted to 

snnphfy the expressiOn for the expectatiOn values .tbO\e by usmg nounahzatwn 
N 

conchttons hke I: ln~'l 2 = 1 
z=l 

For inst,tnce, for a two-pat tide Hub bard model mth the Hamtltout,m 

and a \Ya,·e function 

11/J) = I: a,,B3 c;,tcJ.t I 0} 
l,J 

one huds the expPctatwn value for the hopping, !Mt t. to be 

(1/J I Ho I V') = -t I: (a,+ A a: ,a; + o:,/31+1n; .B;) + h c , 
l,J 

"hete h c. has hcte the consequence that t+1ts tepl,tced by z-1 A nmmalization 

for the smg,le particle means that I: a,a; = 1 ,mcl for {3 tespectnely. Tins leads 
• 

to 

(1/J I Ho I I/!) = -t I: {a; ( a,+l + a,_ 1) + !3; (.B,+I + ,8,_ 1)} 

• 
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and together w1th the mteractwn part to 

(1/117-i liP)= -ti: {a; (a,+1 +a,_1) +/3,* (!3,+1 +/3,_1)} + UI: la,/3,12
• 

' ' 
A dern·ative \Ylth respect to one of the coefficients, s.ty a;, "1th a normal

Iz<\t,JOn conchtwn for the many particle w,\\·e functiOn mdnded VI.! a L.tgrange 

nmltipl!Cr >. leads to the followmg set of equatwns 4 

t (ak+l + a,_J) = [UI/3kl 2
- >.]a,, 

t (f3k+J + !3k-d - [Uiakl 2 
- >.] (3, 

(3 8) 

On the other hand, 1f the norm<Ihz<ttiOn conchtwn lot the smgle part1cle is 

not n'ed at the begmning, the equatwus after the dem .ttn e have a form winch 

coutams <111 NlditJOnal exch,mge term 

t ( ak+l + ak_1) - [UI/3kl2
- tL::, (!3,+1 + /3,_1) !3;- --'] ak, 

t (!3k+l + /3H) - [Uhl2- tL, (!3,+1 + /3,_1) !3;- --'] /3k 
(3 9) 

The second poss1b1hty 3 9 IS of conrse the more couect one In the wrswn 3 8 

a normalizatiOn was used wh1ch IS also mclucled m the GOJtotJ,unt vm Ltgrange 

mnltipheJs However, constramts coupled With the help ol Lagrange multipliers 

should not he used before the deuvatn·e IS clone 

3.2.4 Derivatives and Simplifications 

.-\Iter tins mterpolat10n 1t IS the nght moment to perlorm the dernatJves In the 

\,tuatiOJl<ll wm·e functiOn of the form (3 7) the hee JMt,uuetets are the coefficients 

o;';. They <Ippear m every term of the expect ,mon ,-,dne m tins wav as \Yell a~ m 

the complex conJugate form 

.-\t bJtJaJy, !or deuvat1ves the complex conjugate cocfhoent a~'' lm a certain 

Site r ancl connected wtth a certam quantum nnmhe1 ne has been chosen The 

quantum number, of course, has to be 111tlnn the set { n s} ~~~ ,,·Inch determmes 

the man0-part1cle waye functiOn 

4 An equalizatiOn of a~. and /31.. has the consequence of a. nonhnear Scluodmge1 eqnatwn of 

tlw fm m -ta~ +1 - to:~ -1 + u ar = A.a~ I \\ luch hns been stuclwd m tellS!\ clJ and \\ lth €'\:aCt 

solutwns bv Dlnllon dnd Kusmartse; [41] 
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Howe\·er, a vanatwnal method \Ylth !11 x N p-ttameters leads two 111 x N 

equations of the form 

(3 10) 

Furthermore, a derh•ative \Ylth respect to the Lagrange multipher reproduces the 

normalizatiOn condttion All these equatiOns have to be fulfilled at the same 

tune Tins nnphes that tf wtthin the general notation wtth an arbttrary :t and ne 

a result for >. can be found, then tins result must be mdependent of :t and ne. 

Another remark is connected to the sunphficatwns which ate according to the 

pte;iou~ sectiOn only possible after the detivative Encomagerl by the solutiOns 

for non-interactmg parttcles, winch were Bloch \\',\Ye funct10ns, we suppose not 

only a normality ,.. 
'an,an,• = 1 Vn<j, 
L.., J J 
J=l 

hut also ,m orthogonahty for dtffetent quantum numbets 

N 
" n, nt • 0 \-1 -1. L.., a 1 a1 = v ns r n, 
J=l 

(3 11) 

(3 12) 

The J,\tter conthtion does not necess,utly h,we to hold It 1s ,1he<~dy ,t 11gorous 

af>sumption that the many-parttcle p10blem can be sep,ll<~terlin dtfferent factors 

fm the &e\·eral p<trttcles To dem,\ncl also orthogonahty of these factors is even 

il'f>S justified NeYertheless, as long as solutions c,m be found winch obey them, 

con&tramts can be formulated 

Hopping Part 

p=1d,A;"C 

-t (n~~~ + a~~d 
p=ld,A=C 
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Interaction Part 

= 

= 

+ 

Normalization 

= L (-l)sgnp 

pEP(AI) 

= a~c 

65 

o.nM• a np(l) • , , 0. np(M) 
J/1.1 Jl )M 

If all these te1ms are put together 111 the \MI,\ttOn,\1 founnl,\ (3 10), a set 

of equations for the coefficients a~· IS obta111ecl The problem to find proper 

solutwns IS called 111 this \\'ork the a-problem 

,\/ 

+ F I: 
4=1 
·~c 

= An11 c 
T 

(3 13) 
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If this result is compared with the origm.tl self-consistent field equ,lt!On how 

1t was dem ed m (3.5) one finds the same structure Both equatwns consist of a 

chrect part and an exchange part. \Vhat "'as former an integral m·er space is in 

the chscrete \erswn a sum o,·er the lattice sttes The formet quantum numbers 

(11a) and (va) are now ne and nA, accordmgly 

3.2.5 Solutions 

ThP n-pwblem looks like a qmte comphc<ltc<l task. Ho"•c,·er, It turns out that 

the solntton is simple. Even so an interaction tS now included, Bloch wave 

functions sttll fulfil the gtwn set of eqnatwns In orcier to prow thts, a;:· IS set 

to lw 

n 1 [2r.t l a,: = m exp N lis 
0 

Zs ' 

an<l the whole equatwnts dt\'lded by a~' Hence, <Ill exptesstou lot A ts ohtaineci 

.-\s ahecldy mentioned abo,·e, the solutwnts correct tf tins cxpte,swn does neither 

depend on .L nor on ne This would show that no matter w1th re<;pect to which 

JMrametcr the dern·,tttve IS done, the equ,lttons ate always the same 

Proof: The independence of :t and ne can be shown lot e,tLh of the parts in 

(3 13) separately. In the hoppmg part the duect tenus 

<.m he totnbmed to one sum \Yludt tuns 0\'et dll m.ed qnantnm numbers· 

(3 14) 

The H'm.tining exchange term 1n the hopptng p.u t c<osenttall~ cont.uns ,, common 

f,lltOJ 

N N-1 1 1.!lnN 

I: ·-· ( J ,,., - e \ ('};- nc-1Lt J == 'e=x-nJ = _ _:_~- = 0 
L, 1 l!lln 

r=l ;==O - e i" 

\\'lth n =ne- n~ i= 0 (3 15) 

The beh;tnour of the pure kinet1c energy part IS not snrpnsmg because Bloch 

"·n·e functtons .ue solutwns for the free p,ut.iclc c<~se !11ndt nwtc smpnsmg is 

the m dependence of x and ne for the interatuon p.u t 
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HP re many of the t~rms vamsh because of a similar geometric row effect as used 

m (3 15). Two sums reduce to unimportant constants due to the characteristic 

of Bloch ml\e functwus that lo:~l 2 = 1/N The only three remammg terms are 

and 

\\·luch can be combml'd agam to a sum m·cr all quantum numbets 

(3 16) 

Tlus finishes the proof 0 

3.3 Energy in the Heisenberg Model 

.-\ftet h,\nng; shmn1 that Bloch w,we functions ate solutton'i of the Hat ttee-Fock 

f'quatwns, 1t is now posstble to use them for the calculatwn of the energv of the 

mtcractiug; S} stem Here 1t 1s unpot taut to uottce th,tt the follmling caknlation 

of the Pxpectation 1alue of the Hamtltoman will only gi1e an upper boundary of 

the g10und state Ho11 close it is to the real Yalne depends on the quahty of the 

dtOle<' of the Yariatwnal wave functiOn 

\\'e contmue the c,\lculatwn of the expect,ttwu 1·alue m sub'iectwn 3 2 2 

Hopping Part 

,, ,,)1/JIHoi.P)n, "M 

M 

= -fL L L (-l)'S"Pa;,'' 
4=lJI ]AI pEP(<\/) 

Tlus ts <'xdctly the formula (2 11) of the ptenous chaptcl 
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Interaction Part 

M 

= V ~ "" """ (-l)sgnpa:n'*···O:.nu*an~="(l) n~(Mlg 
~ L- L- )1 ]M )1 G]lll JB,JA+l 
<.B~l J1 JM pEP( M) 
#B 

1st Cdse: p = 1d 

M V 
= V L L JJsJ4+1 = NM(!If- 1) 

4,8=1 ]I )lll 
#B 

2ud case: p(..J.) = B, p(B) =A 

• Ill 1 z,., llfl 2'1n .hn 
= -I' L N2 L e-rrn• Je-rrns(J+l)eT"B Jetr"•(J+l) 

A,B=I J 
A ,OB 

68 

= _ ~ f= e'~'(n,-ns) = _ ~~ { f= e'·~'(nA-ns) + f= e'~'(ns-n•)} 
A B=I A,B=l 4 B=l 
A~B A#B 4#8 

F M (2 ) = NI: cos ;(nA-na) 
4,8=1 
A ,OB 

.-\11 other poss1ble pe1mutations lead to ze1o sums. 

Together 

(3 17) 

F10m tlus re~nlt one can see mcely the st1 ucture of the two contubut1ons to the 

energ,·. The hoppmg part IS a pnre one-pa1 t.icle effect The total kinetiC energy IS 

sJmply the sum of smgle particle energ1es, dctermmed by qnantnm numhe1s nA 

The mteraction on the other hand IS a two-particle effect. It IS a sum owr all 

p.urs of quantum numbers, '"h1ch is equn·alrnt to a sum m er all pans of particles 

E.tch smumand depends only on the dtfference of thl'se t\\·o numbe1s The exphc1t 

,.,,lm• of a smgle quantum number is of no nnportauc.e 

By theW<\)', the result IS of comse the s.nne as the ,-,due which wa~ e\,\lnated 

for,\ ,\bm·e The Lagr,mge multtphe!IS notlnug ebe th,lu the g10nud st,lte ene1gy 

of the many-particle system, because all eqn,\tJons cons1~t ouly of terms of same 

01 dcr m the p.lrmueteJs. 
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Evaluation of the Sums 

As already m section 2.1 3 and 2 2.3 1t is now the task to e\·aluate the sums for 

the gwund state. For this it is necessary to find out which qH,tntum numbers 

n 1o • • nu are chosen in order to minimize the total energy. 

The sJtuatwn IS sim1lar to that of non-interacting particles, which is the reason 

for presenting almost the same figure agam . 

• -\.s one can see from tlus figure 3.1 and as already discussed beloJe, the kmetic 

E 

k 

1 
m 
N 

£, = -2tcos(~m) 

F1gme 3 1· Ene7!J1J states due to the hoppzng {dot.~) a11fl the mtera.d!rllf (crosses) 
part of the Hezsenberg model for N = 16 and M = i The number of crosses 
above a certam. poznt m momentum space zndzcates the wezght of the cor-respondzng 
en erg''! m the znteractzon 

enercrv b. 

M (271' ) Ehopp = -2t L COS i\?11 4 
1=1 Jv 

lr<~clo to the effect that small 1,.-,·olucs <tre p!eleued. Tins 1s hec.tHsc the co'me 

h<~'> Jt<; nnnnnum !or k = 0 

The mteractwn part, 1f a constant energy sluft IS ignOJccl, has the structure 

Tins J'> the same functwnal dependence <~s before, ;cpat t hom the lac t th.tt mstead 

of the qu.mtummnnbers itself only difference' of cpt.tllfllllllllllllhct<, .tppe.tr m the 

.ugmncnt. 

Fot that reason the interactiOn tends to keep pat tides dose together m re

ctproral <;pace. As a distance of zero IS not allowed clne to P.lllh exclnswn, the 

be<;t posstbthty IS to occupy a block of adj,tcent Sites m momentum space. For 
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the c,1se of 7 particles all appearing differences a1e shown m figure 3.1 They 

a1e mdJc,\ted by crosses m the same picture as the hopping energy because they 

contnbnte to the total energy with the same cosme dependence It can be seen 

that 5uch a block IS the best possibility to concentrate crosses around k = 0. 

Since a mininuzatwn with respect to the kmet1c ene1gy al~o leads to the Jesuit 

that <1 block of adJacent sites in recqJrocal space 1s occnpicd, there IS no compe

titiOn bet\\·e{'n hopping and mteractwn. Theref01e, the Jesuits (2.13), (2 14) or 

(2.37), (2 38) fo1 the hoppmg part can be used without nlter,\twn 

For the interactiOn part the double sum has to be e\·aluated 

\f-1 

I u ourt I 

= c~:;' cos(~k) r + c~:;' sm(~k) r 
sin( N-11!) 

sm( NJ (see (2 14)), 

t ~in(~ k) = 0 (sm 1~ an odrl funct10n) 
~=-111;-t 

11! eYen I 

J~~ LO'c~(~-l)) = (J~~ cos(~h)r+(.~>11lc~k)r 
sm( {,M) ( rr) 

7r ·COS-
>n{;v) N 

(see (2 13)), 

su/({;-M) { 2 (") • 1 (")} _ sm
2

(N-M) 
2 ( ~ ) COS j\T + '111 j\T - • ~ ( ~ ) 

Sill N Slll N 

Fult hermore, a flux through the ung can ag,un be taken m to consideratiOn 

It ha, !wen explained that th1s causes a change m the momentum operator ,md 

mfluente~, theref01e, only the kmet1c energy 
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Hence, we have all together 

sin (-;\7 M) ( 7r 2rr ( <I> ) ) v { _sm
2
--'-'-;-( ;\7 ,\--,-!-[) } Ee,en = -2t ( ) · COS - - -r - + - M 2 

-
sin ;\7 N N <I>o N su12 

( fi) 
(3 18) 

aud 

_ sm(fJM) (2rr (<I>)) F { 2 sm
2 (flM)} 

Eodcl - -2t ( ) cos -N r " + N M - . ( ) 
sm fi · '-"o sm2 fi 

(3 19) 

The !mm of the solutiOn Implies the smpnsing result that the persistent wr

rPnt IS not influenced by the mteractiOn. .-\ppatently, m <t model of spmless 

fernuons the petststent current is only deteunined by the hoppmg p.trt of the 

H.uniltouiau 

3.4 Energy in the Hubbard Model 

In the Hnbbard model most of the calculatiOns are annlogo115 to the Hetsenberg 

model The mam difference come5 from the f,tct th<tt the [MI tides po%<'SS n spin. 

Tins has alteady an effect on the vatmtwnal wave functiOn. For t.lus reason St 

and S-1. .ue m trounced as the set of quantum n11mbers th,tt represent up-s pm .tnd 

down-spm fcnmous, respectively. The mnuber of elements 111 St (S-~.) IS called 11ft 

(1\l.j.) At the moment these numbets are s11pposed to be conserved, and their 

snm 11! = Aft + I1l.j. IS agam the total number of pat tides 

\\'ith the help of this notation It IS poss1ble to exptess an atl)Jtrary state ,l,S 

(3 20) 

It h<t' to be mentioned that another ,JssHmptiOn J<; mdnded m this not,Jtion 

To \\"lite dmn1 the coefficients witho11t an mdex for the spm nnphes that the 

5ntgk p,u ttcle w,n e f11nction f01 11p- and dmn1-spm [MI t.iclcs might be the same. 

Th<tt IS, that two particles nught have exactly the same behadour npatt from the 

fact th,tt their spin projectiOns pomt m chfterent cluectwns Th1s ,\SSlllllptiOn is 

r<',tsouable because 1t IS 111 acc01d mth the Pauh exclusiOn p1inoplc and because 

of thl' fdct t.hat no spin d1rectiou is prefetrecl 
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The Hamiltonian with included flux 

1i = -t L L ( cl.h+l,qe '~· :0 + cl+I,A,qe- ';· '~o) + u L nk,tnk,! (3 21) 
k q;t,! k 

shall <~gam be mwstigated m Its different parts 

Hopping Part 

- -t(I: L L (-l)sgnp,a;:l* .. 
4;I }I 1Ait pEP(Mt) 

a "'< 1> ••• a p(AleN•I'o +a p(A)e-N·I•o 
m ( m ,., <• m ,., ~ ) 

f-'Jl f..'J4.+1 ~-'JA-1 

*( L L (-l)sgnp,6~1* 
]I 1Mt pEP(Mt) 

t ,\ke the tleu\"ati\"e with an ne E St 

D{J~c * ( ~r.s/1? I Ho I t/I}St,SJ 

N ( ,., ,, "' ,, ) 
= - t L L ,a;• ,a; +I eN" ·•o + ,a;_ I e- 'N ·•·0 {J~c 

>~ESt J=l 
n#:nc 
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Interaction Part 

(· = U2::Ck.tck,tc!,.ck,~ 
k 

St,s,( if; If' I 'lj;)St,S; 
Aft 

- U "" "" "" ( -l)sgnp ,ant• . , , ,8n,\tt • ,a"e(t) .. , ,8ne(Mtl * 
L- L- L- 11 JM1 Jt Jut 
~=l Jt }Aft pEP(Mt) 

j'h *"" "" "" (-l)sgn<,8"''* ... ,am,\1;*,8"''(!) ... ,am<(AI;) 
L.., L- L.., tt lM.I. q llllt 
B=l tt tAt .I.. t;E'P(MJ.) 

take the derivative with an ne E St 

[),8~< • (st,s/'lj; IJf I 'lj;)St,SJ 

The ,8-problem 

summarizes the results for the deiivatne of the two parts For convemence It IS 

'"ntt.Pn here without the flux dependence. 

N 
1 "" "" an> (an + an ) anc _ 1 ( anc + (J"c ) L- L- ~-'J ~-'J+l f-'J-1 fJ"C 1-'r+l T-1 

nESt J=l 
n;i:nc 

N N 
+ t "" "" (3''* (fJnc + anc ) an _ t "" "' '3"'* (fJ"' + (3"' ) (J"C L- L__ J J+l f-'J-1 fJ-r; L.. L.., I J ;+1 ;-1 :L 

nESt J=l mESJ. ;=l 
n#nc 

N 

+ U L L L {!3;'!3;.8~c + !3;*!3;'c!3;} 1!3;"12 + U L fJ;ci.B;'I 2 

nESt mESJ. J=l mES.1. 
n#:>~c 

_ >.f3;c (3 22) 

The structure of this set ofeqn,ltions is sunil,tr to t!te o-ptoblt>m of t!te Heisen

berg H,umltoman The mteractron IS In an e,·cn moie stmple fmm because up

and down-spm fermrons are treated mdependently As above, the tttsk IS ttgam to 

find e\:pn•s<;tons for the coefficients (3 m such ,l way that e,tch equatronts fulfilled 

Tins ts the tase if>. does not depend on the den,·atn·c [Mt,uuetets 1: and ne That 
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Bloch Wave Functions are Solution 

{3~ = ~exp[~in·7n]· 
IS lH ief!y shown m the follomng 

Proof: 

t '" I '" -l:c!nJ ( ~n(J+l) 2"n(J-l)) - L.... NL..e j\ e.v +e~\ 
nESt J 
n#nc 

- -t ~ (e',:-'n + e-~~'n) 
nESrUS.a. 

D 

The Energy 

E = - 2t ~ cos (-2~r (11 - r ( ,: ) ) ) + U-M-'-t-:-::· ,--lif-'-t 
nes,us1 N I o N 

(3 23) 

consists of a logical kinetic and a surprising interaction part. The founer is logical 

because it descnbes the mdependent fillmg of the ene1gy levels acc.mdmg to the 

cos-depeudence with up- and down-spm pm t1cles Tins IS a generalizatiOn of the 

Situcttwn m the He1senberg model The later surpnses because the expressiOn 

does not depend at all on the chosen set of quantum numbe1s Only the up-spin 

and clowu-spin numbe1 of particles IS of mlpOI t.ance The l,\Ct that these umnbers 

a1e kept fixed m the calculatiOns IS probably the rc·ason for the constdut potential 

euerg,·. 

Thus, in order to achieYe a 1mmmal energy Yalue one only has to look at the 

kmet1c energy p.lrt. There are four possible sttu,ltions (!\ 1s ,m intege1). 
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sm(N- ~n ( 1r 21r (<I>)) M;· M~ - -4t · cos - - -r - + U -'c.,--"' 
siu(N-) N N <I>o N 

[
sm(N-M;t) (7r 21r (<I>)) = -?t cos - - -r - + 

- sm(N-) N N <I>o 

sm(N-Mi') (27r ('P))] .M; J1!~ . . + cos -r - + U -'----" 
sin(N-) N <I>o N 

sm(N-~n (27r (<I>)) lift. J1h - -4t · cos -r - + U ___..!._...!: 

sm("iti-) N <I>o N 

EM=4/{-[ [ sm(~Mi') (7r 21r (<I>)) - -2t cos - - -r - + 
sin(N-) N N <I>o 

sm(-!ti-¥) (21r (<I>))] Ilft ·Ill~ ... + ( ) cos -r - + U 
sm N N <I>o N 

Ftom these four energy exptessions tt ts posstble to ev,tludte the perststent 

tmreut by using I= -c ~!. The result mU be i\ combmatiou of the denvations 

fot the Hetsenberg model for .tu odd and an e'en numbet of p<~t tides m section 

2 -l Of ll<lt ttcnlar mterest ate the cases M= 4]{ + 1 <1nd M = 4[\.- 1 because 

ht•te J1f; ts e\ en <~nd M• is odd (or vtce \'en,>) Suuil,uly to the ptenons discuSiolOn 

<~bout an ensemble-<~wrage and the figure 2 16, the combin,>tton leMl'i m tl1ese 

c,1ses to a quasi half-flux peuodicity of the current 5 Ho\\'cn;r. Loss and GoldLart 

[37] pomted out that the a\erage owr all p,lrticle munbets IS 'it!ll the same as in 

the c,1se of spmless fenmons For large None obt.aius m the huc.1r appiOxim,>tlon6 

(J)POlsson = ~](,\) [ ;0'~2 - 1 + e->. sm A ( 1 + ~)] , (3 2-l) 

\\ heJC A IS hcie the mean \'alue of the Pms<oon <hStlllllltiOII .llld l'i ol'i'illlllcd tC• be 

l,nge Because the l.!st sumnMnd is ueghg1blc, th1'i IS C'G~etly the so~nw as (2 :i1) 

It should also be mentiOned that a hactwnnl1/:1I ot :1!;/M Ah,nonm·-13ohm 

effect .1s found by KusmaJtsev et al. [13, 14, 15] \\'lth the help of the Bethe 

an;atz. do<'' not .!pp<•at \\'lthm tlus context Esp<•ct,!lh· iu the lumt of stumg 

lntct,!Ctlon the obtnmed result is appa1ently not 111 good .!gteemcnt wrth these 

<1ud ot het pubhcattons 

··\YPlSZ d al [-!2J found thd.t the peuod 15 clgcun tl full Hit,-qllc\Iltllllllll the pte ... enu~ of dt ... mdet 

"The result dtffets shghtly from \\hat Loss and Goldbatt [31] h.t\l' uht<>m. 
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3.5 However, ... 

. . one should bear in mind that the Hartree-Fock method only gives an upper 

boundary for the ground state energy E,·en if all Hm tree-Fock equ,ttiOns are 

fulfilled, the cliscrepancy bet\\·een the gained energy and the real ,·alne for the 

ground state does not have to vamsh Tlus is only the case If the mnatwnal 

"·,ne functwn h,1s the stiucture of a proper eigenfunction of the H,umltonian 

Theiefme, one should not be too happy about ex,\ct solntwns of the Hartree

Fock equ,\tiOns found. On the contrary, it is well-known [--13] that m general Ho 
and l' cannot be <liagonahzed simultaneously 

The eigenfuntwns of the hopping Hamiltoman Ho ni e pl,me wn,·es - tlus is 

corr~tt. Howe,·er, as soon as two particles with chlferent spms me imolved Bloch 

wa,·e functiOns are not eigenfunctwns of the operator L:: nqi'tu. It can easily be 
k 

seen that in such a two-particle Situation, the double-sum IS reduced to a single 

sum 
N N N N 

:L nk,tih,.J, :L :L ,a;•.a;"c!.A.), 1 o} = :L .B£' iJi"c!.tcL . .), 1 o} (3 25) 
k=I •=I J=I k=l 

because the Hanultoman giws in most of the c.1ses zero 

The proper eig,enstates of the mteraction Hamlltoni,m ,ue of the form 

( IT c!.t) ( IT c;,.),) 1 o}, 
•E(I, ,N) JE{l, ,N) 

(3 26) 

and, 'm cc ]: lS not. lnwar, the same is not necessauly t1nc for lmear combinatwns. 

In cont1a~t to the w,wP-hke solutwns of the hoppmg H,unlltom,m, 'mh states me 

sometuues calls "particle-hke" or "loc,l11zed" solutwns .-\pJMicntly, there IS a 

compctltiOn m the Hubbard model between these two poss!i)lht!Cs In the Iumt 

t » U the first becomes more hkely, the hunt t « U f,woms the S<'cond one 

Such b~havwur IS the reason why 1t IS so interestmg to study this model Of 

com'>P, all these remaiks are equally ,·ahd f01 thP He1senbeig, model. 

The t..tsk for 1e~t of tins woik IS to apply a couple oft.<'< luuqn<'S to the Hubb,lrd 

modd m ouler to obtain a bett<'r ,lpproxun.HIOn fm the ~IOHIHI st,ttP eneigy .md 

to undetstancl the behaviOur of this system bette1. 



Chapter 4 

The Notion of Rotation 

In order to Improve ptevious re~ults, two techmques shall be used next On the 

one h.utd the mteractwn should be simplified by appl)·mg .1 so-c.lllecl Hubbarci

Stlatononc decomposition (sect 4 2} In 01der to do tlm It IS neces~.uy to rewrite 

the ptoblem m the exponential form of ,, p.1rtition function ('cct 4 1) On the 

other h.u1d 1t IS also useful to introduce rot,ltion~ of the spm-qu,1lltiz,ttion ,,xis 

of each site (sect 4 3} In a different context but ,,Jso f01 the Hubb,ud model a 

spm-sp,lce reference frame ha~ been mtrocluced by H J Schulz [4-l]. Therefore, 

it 1s <"Onwment to follow the first couple of ~teps in Ius paper Tins is done at 

thP lwgmnmg of sectwn 4 4 New 1deas .ue den~lopc'd soon HI 01 de1 to find a 

mole appropuate descriptiOn of our partKnl,u SituatiOn The p!.tnng \\'ith the 

rotatiolls ]pads m section 4 5 even to a change m the m dei ot the techniques 

p1 opo,ed 

4.1 The Partition Function 

.-\n otdm.u·y time e\'Olutwn operatm (TEO} ,md Its tl.tCe lt,\\e Ill the c.1se of a 

tnne-mcl<']l<'ndent Hannltoman the foun 

(-l 1} 

It IS p0'8Ible to P\'aluate such expressions 1\'lth the help of p.<th mtegrals. If 

the H.umltoman is expressed m fermiomc creatiOn and anmlnlntwn opetatms it 

is fm tins purpose necessary to mtrocluce Gr.tssmann nnmbms lJi nml lJi*. Its 

Ti 
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components 6.t• 6.~ .... , f.N.~ hme t\\'O mdtces: one for the stte posttwn and one 

for the spm prOJection. They satisfy the eigenvalue equatwns ck,u IIJi} = t;k,u IIJi} 

and (IJi lck,u = (IJi lf.Z,u and therefore antlcomrnute wtth one another. Then the 

trace of the time e,·olution oper,ttor, called tune generatmg functwn, can be 

\\Ttttt•n as 

zTEo = Jvw·vw exp[i I'' dt (w·ii!...P- ~'H(w*, w))] (-12) J,. at li. 

A thorough explanatwn of the forrnahsrn behind these rem,trks is gn·en in ap

pemhx D 

In thermodynamics of finite temperature all pwperttes of a system ate de

tenmned by the partitiOn function In the grand c,uwnic,tl case thts has the 

form 

(-I 3) 

where I' tS the chemical potentwl, N the p.ut1dc-numbe1 oper,nor .tnd k 11 IS 

Boltzmann's constant There IS a stukmg sumlanty between this expressiOn .tnd 

the form ofthe time gencratmg functwn in (41} If in t.he latte1 t-t. is replaced 

accou hng to 

r = t(t- t .. } ---+ 
/i, 

koT = li.{l (-1.4) 

one ends up \Ytth the part1t10n fnnctwn Such ,, ptue un,tp,lu,uy tune 1~ called 

?llatsubara time, and the proposed transforrnatwn unphes 1\'lthont ol<lchtiOllal 

effort ,, path integral form for Z. In analogy to ( 4 2) it ~~ 

Z = j 'DIJi*'DIJi exp[- fo"13 
dr ( IJi' (:T- f,) w + *'H('li', w))], (-15) 

N 
\\hen' products hke lji* · W are understood as no!ctor ptodncts I: I: f.Z,uC:k" 

l=lrr=U 
The conctete Hannltonian under consldel,ttion I'> the Huhbaul model \\'lth 

indude<l flux cont.nbutwn To wute 1t m tctms of Gl,t.,snt,utn unmhe1s 1t has 

to be btonght m a nOtmal on!etcd form (all ,uuululation opel<ltOts ,ue standmg 

to tll<' ught of all oe,ttwn operator5) AltenYauls one 1u~t h,tS to rep!.tce any 

fenmomc ope1ator by the conesponchng Grassmann numbct 

N 

'H(.P* w) = -t"" (~;· t; e 1·~·~~; +t;* t;. e-'.~·,;o) ' L- L- J..,tT l..+l,tT A+l,u "'·" 
k=lrr=U 
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N 

+ u 2:.: ~Z.t~Z.~~k.~~k.t· (4 6) 
k=l 

It ts somettmes convenient to mtroduce the term ·'actwn" for the exponent of 

the p<trtition function If the action S is the· sum of the two terms 

r"fJ N 
Smt = U Jo clr L ~k,t~k.~~k.~~k,t 

k=l 

then the p.trtttJOn functwn has the form 

Z = J VIJI'VIJ! e-(So+S,..)/F• (4.7) 

4.2 Hubbard-Stratonovic Decomposition 

Unfot tunately, the action for the mtetactwn Smt consists of products of lour 

Grassmann numbers, ~k.t~k.~~k.~~k,t· These uonhne,mt~es lead to dilficulttes 111 

tts treatment. The Hubbard-Stratononc decomposition ts .~ good posstbihty to 

reduce tlus term to a second-order expression. There ,He dtfterent ,,·,tys to do 

tlm 

"·e shall follow the advice of Schulz [44], because he and before lum aheady 

H.tm<tnn [45] daim that only thetr choice repwdnces tn a ~.tddle-pmnt ,lpptox

mmtmn the results of Hartree-Fock calcnl,ttions Thetelote, t11·o new opetatots 

!J,n·e to he inttodncecl 

(4 8) 

ill connts the number of parttcles on a certam sJte and theJC!me tepresents the 

chmgc degree of freedom sk gtws the total spm pto)ectwn on the z-<~XIS at the 

s<tmc site, hence, 1t ts related to the spin clegtec of heedom In the follmnng, the 

rcl.~ted Grassmann numbers are tepresented by the same symbols <ts the opera

tors, but the hat IS omttted Then the abo\'1~ mentioned ptodnlt of Grassm.um 

nnmbers becomes 

(4 9) 
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A(;cotdingly, the interaction part of the partition functwn ch,mges and one 

ohtaius 

Z = jDw*Dw exp[- S,!io - U {''!3 dr f. (nk- s%)] 
l -!tl fo "~ 1 

( 4.10) 

If one forgets for a moment about all integt<lt.ions ,Uld summattons in the 

p.utition fnnctwn, then the interaction ts essentially expressed by a qnadrattc 

form in the exponent. Expres~tons hke this can be modtfied wtth the help of the 

\H'l!-known Gausstan identity (a ts a parameter) 

+oo 
Jdxe-T>ja' = ,;;;;'i 

-oo 

+oo 
a1 ju2 1 j 1 A -{.0.'-2«~)/a' e = -- c~e . 

1M2 -oo 

{4 11) 
:r=a-.:l 

Stratonovtc first suggested this tnck .tnd Hubb,Jn! apphed tt to the partttton 

fnncttou, "'Inch tS the reason that tt carnes now the n.une of both. Hubbard

Stratonm tc decomposttwn [4G] 

Iu punciplc, tt is Just necess,u·y to find ,tn appwpnate chmce lot a2 fa2 m the 

c.1 ~e that the exponent has the form 

<utd aftetw<lrds one can apply the Gaussian identity. One posstbiht:y is to set 

l'P'>jWCtiw!y 

aud to obt,un 

(4 12) 

Tlus dwH e ts rom·ement because tt brmgs U m the denommator Otw ran east!y 

f,Pe th,lt tt lead~ to tntegratwu v.tu,tbles wluch h<l,·e the dtmen'>lOU.l!ity of an 

HmYe,·ct, thtngs ate slightly mote difficult mamly IJpc,tnsc oft he mtegtatwn 

owr :\latsnbara ttme To avoid any problems mth this, the mten·a! [0, lil)] is 

chnd('d tnto Nr segments of length .:.'.r = ';J., and at the end the !unit Nr -t oo 

ts t<1kcn. [39] 
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where 

( -114) 

is a duucnswnless mtegration symbol "·Inch I~ called tnuctwual chHeieuti.ll''. 

The ,trguments k and T mchcate the dependeuces of the mtegratiou \'<lii.tbles .C.c 

and ~s· Becanse of the name of this kiud of mtegials, the "hole procedure also 

!1<\S the name functwnal-mtegral method [3!J] 

From a physical pomt of view such kmd of clccompositious pi m icle possil)Ihties 

for an <tppiOxinMtiOn of the partitiOn functiou The iutci.H t1011 between fernuons 

chs,tppems, dud the )Mrt!cles mow mstead m the hctniou~ fields ~ •• md ~. 

Tho~P field'> nnght. depend on the po<;it.Ion m S]l<KP .md teli!J>PI.ttme Prondccl 

t h.tt they me cho~en propedy, they hm·e the s.unc eH err. ou the ]M I t.icles as an 

mteractwn \\Ould h,we Then the functional-mtegtalmethod is ex.1ct. The mme 

the fictitwus fields ate only approxnnattons the less couectly ate mte1actwns 

c!P'>Ctibecl. 

By the w.ty, the idea of 11101 mg p.trticles 111 ,\ me,m hdd IS cx.Ktly tl1e same 

'"Ill the H.ntice-Fock .tpptoxmJ.tt!On .me! h.ts espeu.tlh tl1e -;,uue <;t.JuctUH' a~ 

the StOJI!'r model (3 6) 

Remark: The chatge mteiactwn part 1nll cssentt.tlly le.td to t.etms hke t~cJ1I 

.tnd c.:tuses a problem of dealing 11-ith complex quantities In order to get the 

complete H.multoman hermit~au It is theietme m•ces'iaiy to cle.ll 1nth 1111aginaty 

me.\ll fields, which is not wty eo m em cut Iu .111 .1ttempt to am1cl such chtficult~es 
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one conic! try to alter the Hubbard-Stratonov1c decompos1t10n. In order to do 

tlus, the fictitious field .6.c has to be spht into one part and its complex conjugate 

at the beginmng of th1s transfounatwn. A treatment of the form 

exp [-~ n~] - 1r~U J dt.c exp [- dn .6.c.6.; + i.6.c~Z~, - !.6.;~; ~. J 

- 1r~U J d.6.cexp [- dn l.6.i + ~ ~i~kJ (4 15) 
.:l~ 

at le<1st prm·es that it IS also possible to calculate with 1e.tl teuns. Hm'e,·er, 

it tmnPd ont that tlus form of notation is even mme mcom·ement for further 

c.1lculations. 

4.3 Spin-rotation Invariance 

The mam point of the paper of Schulz [44]ls th.lt the exp!eS:'>!On fm the ,\Ct!On 

should be rotatwnal invanant. The reason is the a przon rot.ttwnal myauance 

of tlw Hnbbard model That means that if the spm qnantizatwn ax1s for the 

whole system IS rotated m a certain way, then the Hubbard H.umltom,m remains 

Hnc.h,mged 1 

Proof: The statement 1s obv wusly fulfilled for the hoppmg i"ll t, pron< led 

that Pvery &lte IS rotated by the same angle Then a wt.tt.Ion and a backward

wtatwn cancel each other. Otherw1se the kmet1c energy p.ut IS not Iotatwn,ll 

im·,u mnt and such st.1tements fm the whole Hanultom,m ore only t1nc m the 

lnni t ¥ » 1 

For the mterac.twn part one should note that a spm opcr<ltm for a c.ertam s1te 

can .1lso he rep1esented in the foun [31] 

- n t sk- 2ck,alTo flck f)l ( -1 16) 

whPll' er is the SPt of Pauh spin matnces dPfin<'d in (1 2) .md It J<; 'illmmed 

<1ntomat1cally on•r a,/3 E {t,t}. The proof 1s cqHn,\lent to the one fo1 the 

corrcf.pondmg coupled boson leJnesentatwn (1.8) .-\ strmght fo1 w.u-d c.llculatwn 

1 In recPnt p::tpers (4i] Zhang and others pomted out that the Huhh.ud model po<5se ... an 

. ."tpproxmtate S0(5) Sj mmetry Tlus feature can be used to umfj nnnfeuom.tgnetism .tud (l

\1hH e supetconductlvJty 
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leads with the help of the relation I: u(z)a,tJO"(z),,5 = 25a,50iJ,-y- Oa,iJrl-y,fi to the 
• 

surpnsmg result that the square of the operator Sk has the form 

(4 17) 

Summed 0\er all Sites, this can be used to express the intei<lctwn ot the Hubb<1rd 

model in the followmg way. 

( 4 18) 

which ;hm\ ~ the claimed SU(2) symmetry m01e explicit 0 

On the other hand the spm term fh 111 ( 4 9) shO\\ s no rotation un ,m,mce A 

spm proJeCtion does of course depend on the duection of the &pm-qu,mtization 

axis 1\e,·ettheles~, the Hubbard-Stratononc decompo'>ItiOll (4 13) c.tn still be 

ex,tct. be< au<;e the mv,mance is ensured for the sum of the ch,trge and the spm 

term This mthcates .t strong spm-cha1ge inteiactwn However, ,ts soon as ap

pwxunations are performed this mteractwn IS pt•Itnrlwd and the sp111-10tation 

im·,triauce de'itroyed [48]. In tins sense It might be mote apptopll.tte to use (4 17) 

nist.ead of (4 9). 

S< hulz [44] suggests another way by mtroducmg a spm-sp.tce Iefeience fr<1me 

th<~t ,·aues 111 tune and space He states that ''The fluctu,ttious of the ouentatwn 

of the reference f1ame then allow for a rath<'r natnr,tl mdu&ion of spm-Iotatwn 

nn·ariance " 

That nw<1ns that the spm quantizatiOn axis I'i .tllow<'d to dtffet fwm Site to 

Site Th<' axis on a certam site must of course he the s,uue lot both fernuons 

s1ttmg on tl11s Site. However, for the Hamiltoni,m It I'> uor. uece•.s.u~ that the 

spm duectwn~ of electrons on different Sites h,l\'e somet.hmg to do \\Jth one an

othet i'\P\ertheless, If arbitrary spm-quantiz,ttwn .txes ,ue .tllo\\'cd the pictonal 

expl,utation of the kmet1c energy term as et hoppmg of elect tons \\'Ill get lo~t. Fur

thenume, It IS not cle,\r any more why only c1,tck+I,t appCdiS Ill the H,umltouian 

and not !01 Instance cl,tck+I,.I-> because the <~xis ,ue now mdcpendent hom one 

another The only re,\Son for the fa,om of the fir&t kind of opctators could be 

th,tt tlw .mgle diffe1s hom one Site to a netghbouung Sitl' only slightly, .lnd the 

cll'ctwn c,ln o\·ercome tlus change 
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The umt vector in the directwn of the new spin quanttzatton ax1s on a certain 

site k iS descnbed by a pair of polar angles, f!k = f!,(fJ, () fJ is the ,mgle between 

the &pm axts and the z-ax1s; (IS the angle between the p!OJection of the spin axis 

on the 't?J-plane and the x-axts2 The rotatiOn itself IS performed by rl matnx of 

the form 

Rk(B, () = ( cos(~e) -e-•< smOe) ) 

e•< sinGe) cosOe) 
(4 19) 

It is ,1 umt.tly ttansfotmatwn (Rk ·fit = ll) wtth the de'>tred pwpcrty 

Example: If the spin quant1zatwn ax1s should be the bisector of the angle 

f01med by the x-axis and the y-axis, then B = ~ and ( = 'i· and one obtams 

as wanted. D 

A p1oper expl,lnatwn why the rotation can be wntteu m the fouu ,1bove is 

gn·en in .Ippendtx E. It IS based on the properties of Enler angles 

\Vtth the help of such matnces one can mtwduce ne1v spinot v.triables m the 

f01m 

Here it. IS nuphed that a Grassmann number mthont a spmmdex denotes a spmor 

wtth t11·o spm components Newrtheless, the Iotatwn fl.(B, ()IS,, unitary change 

of thP spm-qurlntizatwn ax1s and not in the fitst place a !Otat.wu of sptnots This 

ll'm,uk IS 1dated to the fact th,lt 

2It> ""'"llv denoted b) 1p, but m this p.tpet 1p IS tesen ed fot the flux 
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It IS "'01 th studymg the anttcommutatiou telatwus of the~e new Grdssm.mn 

nnmbets. They can be reduced quickly to those of the notutal (not tot<tted) 

Grassmaun numbers E,P1 and t.;.~ For instance ~k,u and ~!.',u' always .tnttcommute, 

lwcanse both are hnear combmations of numbets E. M wtthout the use of conJugate 

nnmbcts t:;,,, It is only slightly more difficult for combmatwns of conJugate and 

non-coujugnte nnmbets. \\'ith the help of Emstem's sttm conn:!ntwu one can 

"ute 

.-\t the end of tins calculation the fact that the rotatwn matrix Rk is unitary 

h.ts lwen n~cd Pto\lded tlMt tlns IS the c.tse, rotated Gt.ts~ntanu number& obey 

exactly the same .mticommutatwn relatwu~ ,\s <~ll othet Gt<t:'>~m.um numbers 

The .mu for the re<;t of tlns chapter ts to transform the action of ottr problem 

accorchugly and to dtaw concluswns Th.tt. mean'l th.tt e\ety contubntwn to 

the ac tiou has to be expressed m teuns of the totated Gtassmann mtmbets ~k,a 

in'lteacl of the "normal" Gra'>smann numbets /;J.,u· Only the pha'le factor for the 

magnettc flux is not effected by the change of the spin qnanttzatwn axis 

The ptohlem t'l that we haYe to apply now two tr,m~foun,ttton'l ,tt the smne 

time Oue of them is the Hubbard-Sttatononc dccompo'>tttOn, the otll!'r ts the 

mtroductton of a spm-space refetence fnune Winch of tltC'nt :;ltonld he appltecl 

fitst? \Yf' shall try both posstlnhttes and wtll S<'e th.tt, thl'y l<'ad to dttfctPnt rl''lttlts. 

To b<'gm with we follow the way of Schulz [-!-!] 
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4.4 Rotation First 

4.4.1 Derivation of the Action 

Rotation 

As ch-;cu:;-;ed abO\·e, alrectdy the sphttmg of the interaction tMrt into .t term for 

the cha1ge degree of freedom and one for the spin degree of lre<,dom leads to 

cxpiC'iSIOns ''"luch are not rotatwnal mYan.ult. Theref01c, a spm-space reference 

frame 1s mtroduced by ming the transform.ttion (-120). The effect on the ac

twn IS the «ppearance of rotated Grassmann numbers together w1th the rotatwn 

matuees 

Hmn~\-el, because of the spin-rotation invali,\nte of the llltcract.wntMit.lt does 

not matter whether ~Z.t~k.J.~k.J.~k.t IS expreosed m normal 01 rotated Gra~smann 

nnmhP!'i Pwvided that the splittmg m <1 charge .nul ,, sptn p.u t. 1~ done alter 

the wt.dtwn, there will not appear any rotatwn matuces m the interactiOn 

The <~ctwn becomes 

"·hcH' tlll' :;pmor notatwn 1s used and cha1ge and spm numbe1s .ue alt.e1cd self

Pxpl.ma tory 

Hubhard-Stratonovic Decomposition 

.-\ Hnbb,uci-St.ratonovlc decompositiOn, pcdouucd altct \\'<lidS, h.t'i exactly the 

s.une structme as for the non-10tated case (-113) Thu'i, the p.uttttou !unction 

h.ts the lorm 

z = [ D20(k,r) j v~·v~ jv2D.,,,(k,r) 

exp[-~ (so+ f~ E {~(D.?+ D.;) -1D."'i"- D..~.})], (4 23) 
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which includes an mtegration over all directions of the quant1zation ax1s The 

angles can ngain depend on the site and lvfatsubara time, as indicated by the 

,uguments 

Saddle-point Approximation 

The uext ~tep could he a s,tddle-pomt appwxmMtion [44] The notion of such 

an appwxinBtion 1s that only such parts of the mtegral over the aux!IJaJy fields 

cont.nlmtc for which the actwn has a 11lllllmum. Then anmtegral can be snnplified 

in the folloll"lllg way 

-oo -oo 

21T 
f"(xo)' 

(4 24) 

pro,Hkd th,tt. /'(eo)= 0 and f"(x0 ) > 0, that IS tlMt x0 1s a (local) m1mmnm of 

the fnnctwn f. 
;..;ew1 theless, 1t 1s not the a1m to perform a complete s,tddle pomt approxi

mation ln5t.e,td, a hnear transformatiOn onto t.he s,tddle pomt Will be done For 

the chmge ,mx1hary field .6.c the following mtegJ,tl ho~s to be consu!cJcd 

The fnll( non f has the deliYo~ti\·c'i 

) 

!~'(6J = ;n· 
.-\~'illllllng that ,t Situation close to half-hlli11g 1s coH5Icleiecl, the ocu!patJon 

number c ,m he approximated by iik :::::: 1 Thcu the numu1nm IS ,\t J.c 0 = 'f 
In tPliiiS of a new integration Yan,tble Oc = 6c - 6 0 ,0 , which descnhes the 

fluct.uat.ious o~round the saddle pomt, the integral c.tn be gn·en m the fOJm' 

(4 25) 
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Analogous, one obtains for the spin atlX!Ji,uy field 6.. with the a;,sumption 

ih ::::: -1 <~nd the fluctuation vanable 08 = 6., - 6. 8 ,o = 6.,, - (- ~) 

I, .- I d6..exp[-~ G6.~- 6..sk)] =I d6..exp[-J.(6.8 )] 

- I d8,exp[- {Is (- ~) +o,J; (- ~) + ~o;J;' (- ~) }] 
- ldo.exp[-~(~ +~-~k-8s(l+~k)+~il;)] (4.26) 

Aft\'r tins mm·ement to the saddle point the expressiOn lot the action looks 

hke tins 

It determmes the partttwn functiOn 

(4 28) 

whelP the fnnctwnal chfferenttalts now 

:u) (4 29) 

Apart ftom the fact that only fluctuatiOns of Oc, o. atound the saddle pomt 

up to secoU<l order are taken mto conSJderatwn, tins result is sttll exact It has 

to be emph.tstzed that m order to eutluate the p.trtttion functwn thcte are sttll 

four mtegrations to be done That is quite ,, chffknlt task 



CHAPTER 4. THE NOTION OF ROTATION 89 

4.4.2 Simplifications, Half Filling 

In order to get a feeling for the situation we will try now to nMke thmgs as sun pie 

a<; possible This includes the followmg fi\'e pomts. 

1 A rot,ttion !1 of the spm-quantization axis mth only one degree of freedom 

IS considered The most convenient \\·,w to do this I'i to set. ( 1dentH a! zero 

Hence, 

2 At some pomts 1t IS helpful to dcternuue how (} depends on the s1te k. As 

explamed in sectiOn 4 3 the difference of the angles of adJacent Site<; should 

be <.m,tll Furthermore, a handy connection between the f>Ite ,md the angle, 

which does not fa1·om ,my of the Site,, IS w,tntcd. The Sittipk'it way to 

Implement these conditiOns IS .t IOtatwn awnnd the Uicnmference of the 

Im~ by equal steps (}, = z:Jk·w, \\·here w (''angle phase wmchng 

unmber") IS a small positive mteger 

3 Flnctnatwns around the saddle pomt are not t.tkcn mto consicler,ttiOn, &c = 

8, = 0 This IS a hard constramt. The saddle point'> \\'Cle clem·ed under 

ccrt,un assnmptwns, f10m 1Y!uch one ,,·,ts 1i1. "=' 1 To ncgl<xt Hnun,ttwns rs 

only JUStified If these assumptiOns a1e fnlhllecl In other ll'otcls, tht• folio" mg 

c,1lntl,1tions are only true for hall filhng (JI = N) or fm a sJt.n,ttwn which 

I'i Yery clooe to it 

-! The1e IS no dependence on the tempe1atur (unagmary tune) Dcpeuclencies 

Cdu ,1Iso be neglected in the lugh-temperature !unit, b<'< .tn;.e {3 -+ 0 as 

T-+ oo 

5. Fnrthcrmme, the chenHLal potentm!Jt IS -;et to be zcw. \\·Inch can be done 

hy .tu dppropriate Pneigy shift 
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What then remains of the action IS essentially an altered Hamiltonian of the 

s:stem Thus, it is denoted w1th the same symbol 

(4 30) 

In the second !me the fact was used that the combin,\twn of the two rot,ttions 

effectively 1s a rotatiOn over the difference of the angles, 

1 1 2rr rrw 
{) = 2 (IJk+l -IJk) = 2 N w = N' 

The ,tpplm:nuatwn IS such that co~ {) ~ 1 <~ne! sin{) ~ 19 for la1ge N 

If no mtegratwn is perfmmed 1t IS also not necessary to use Gr<~ssmann num

b<'IS InoteMl, we mtroduce wtated Cle,ttwn ,md ,uuulul,ttwu ope1ato1> 1·ia 

(-!31) 

and the Hamiltonian becomes 

1i = U L il,ik,t-t L { cl.tck+I,t + cLzk+t.t + 19 ( c:L i:k+l.t - ;:t_t;:k+l.t)} e '~· -~o 
k k 

-t L {<"knt<"k,t + c!+~.A.t + 19 (c:!nti:k,t- i:k+l,t<"k,t)} e-'.~· :o 
k 

(-! 32) 

A problem of calcnlatwns wtth such a Hanultolll<Ul IS th,tt the COHtmut <1t10n 

It'tttwns hPtiYeen rot.ated opetators and lHllm,tl op<'l<ltOI~. <1~ ust'cl 111 th<' states, 

ate not HCles•muly straight-fonY.trd anymme The easwst ll'<lY to ,1\-otd snch 

<II!ficnlttrs ts to 1eturn to the normal femuomc opetatm ~ m the H,umltoman 

A ptocednre hke tins means in essenre that the totatioll I' m,tintatnecl only 

dnring the Hubbard Stratononc decompositiOn. Only here 1t IS nece:;sary to 

rnsm<' rotation iman,mce. If one retmns ,tft.CI w,ucl~ to noun,tl oper,ttors, then 

the kmt'ttc energy part Will be testored in its old ,h,tpe Howe1·er, this IS not the 

case for t h<' mtetactwn part. 
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From (4 31} 1t follows for the several components of the 1otated oper,ltors 

(4 33} 

provided that the rot.ttJOn IS owr one angle only. Hcnte, 

which buls to the Hamiltonian 

1i = ~ £: { ( cl,tck,t + cL c1.,L) + co~ 11" ( cl,tck,t - cl,. ck,L) 
- k=l 

+ sinl1" ( c!,tc!,L + c!,L c!,t)} (4 34} 

The follmnng step~ \\'Ill be analogous to those 111 the pte\ tous ch,tpter We 

shall find the expectation ,·alue, take derimtn·es wtth re>pcct to one of the pa

rameters and try to solve the Hartree-Fock rquations If tlus IS posstble, the total 

energ~· and aftenmrds the persistent cnrrent can be calculated 

The expectatiOn value shall first of all bP eYalu,tted '' tth the s.nnc state' as 

ah eady usecl m 5ectwn 3 4, 

(4 35) 

Then tlH• c.tkul,tttons fot the hopping p,ut .ne ab,olntely the s,une as already 

done t hete The terms of the mteractwn p.n t <;hall be ex,umncd next 
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and accordingly for the oppostte spin dtrection Detimtn·e mth an neE Sf 

Aft 
- L {3~' • {J~c• f3;• 

4.=1 
<;OC 

p( 4)=C, p(C)= 4 

D/]~c• C·,,s/'if!icl,.J.ck,.J.i'if!)s,,s,) == s/t~'kLcq l'if!)s" · DiJ~c• (s,(tl'h'')s,) 
Afl 

- L lfJ~'B 12 
• {J~C 

B=l 

\Vhat remams are expressions of the form 

92 

If th~ operatots are undetstood to operate on the ket-state I t/;)
5 5 

, then the ket-
t• l 

'itate conststs afterwatds of one down-spin p,uw:Je less ,me! one up-&pm parttcle 

m01e than the bra-state Smce the numbet olup-spin ,1 down-'iput t'i cons~ned, 

tespectiwly, the product of these two states has to be zero· .-\11 snch expresswns 

sunply vani5h 

Thctefote, the followmg set of Hartree-Fock eqnatwns ,ue obtained (ne ESt): 

L f. /3~" {I (!3~~ 1 e '.~· : 0 + f3t_ 1 e- '.~· .:o) - ~ cos lhf3't} tJ;c 
mES-t.l..=l -

t(r3;S 1 e'~·:; +f3~.: 1 e-~~·.;;•) + ~ (Mt+,1h+<osll,)i3;'< 

- A,J~C (--136) 

Tlus set of equ,"tt!Ons ts in genet alnot solwd by Bloch w,l\ e lnnltton& anymore 

Howc,·cr, for the speci,<l case that no totatwnts apphed, Ilk ,;, 0 Vk, the mtcraction 
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part m these equations snnphfies to 

and the solutwn becomes apparently a Bloch-type solution It is wm th noting 

that m this case the equatwns do not reduce to those derived in sectwn 3.4. The 

interactiOn energy derived in these previous calculations was UM1,}
1
' \Vihlt we 

ohtam hc1e IS completely different. Even m the s¥ldle-point approximatiOn the 

Hnbhard-Stratononc decompositiOn apparently does not !eM! to H,u t1e~-Fock 

n•sults The reason might be an inappropnate chmce of the saddle pomt 

There are further inconvemences related to these equatiOns The method 

of rotatmg the feunionic operators backw<~rds after the Hnbbard- Stratonovic 

<kcompm.ItiOn led to the result, that the kmetic energy p<11t ag,Iin completely 

<kconples from the interactiOn p.1rt. Neither the couphng constant U nor the 

spm otructnre { t:lk} t~ 1 appe.us in the hopping pm t, and the mteractiOn pa1 t has 

nothmg to <io with the flux <I> 

It should be possible to solve the equations abow al~o fo1 the geuetal c,Ise, 

bccanse they stem from a lmear opera tot. Ho"ewr, for the mentioned ICasons this 

p.1rticular ,<ppwach shall not be investigated fnrther Inst<'ad, another po~s1bihty 

of lookmg at things will be tned no"· 

4.4.3 Rotated States 

First Idea 

The states which ate used for expectation valnes are aloo constructed With the 

help of et catiOn aud anmluJ,,tJOn operators Therefore, it 1~ possible to rotate the 

opcrat.ots at tlus po'3IIIon and to lea,·e the H.umltonJ,UJ nndi,mged That. means 

that 

(4 37) 

Such ,J state cdn afterwards be transfmmed agdm to iln exp1esswn with non

rot<ttcd opc1ators onl:y To see how tins works the case of two up-spm pa1ticles IS 

cnn>I<lercd first. Agam the transformation ( 4 33) IS used. 
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+ Slll e., cos e., c;,,L cJ,.t + cos 11,, 'illl fJ,, t-;,,tc;,,!} I 0) 

(~1~{,,,,2).0 = I: l.e~·n.e.~'r (cos2 rl,, +~m2 e,,) (ws2 o,, +sm2e,,) 
l1,l2 

2:: ,8~ 1 ,8~1 * ,8~' ,8~'* ( cos2 fi, 1 + sm2 0,1 ) ( cos2 0,1 + sm2 e,,) 
t1 ,l2 

= I: {l.e~·l 2 1.e~'l
2

- .e~·.e~··.e~'.e,~,.} (4 38) 
ll 1ll 

The last tesult ts the same as for the unrotated states Tlus st,ttement teminds 

us of'' fact aheacly explamed in connectton wtth formul,1 (4 21) The opetators 

cJ.t and c,,t obey the same antt-commutatton tel,ltlOll'i as L;,t ,md t-,,t T!Jerefore, 

one C<ln also calculate with rotated operatot., tu the fanuh,u "'"Y· 
A~ another unphcatwn one mtght argue that norn1<1hzation constramts hke 

{nd,i ~I 0>1,1},0 = 1 and {n,,n,J,i~ I ~){n,,n,),0 = 1 indtcilte that the ,B-factors in 

the states ate, smular to the I3loch-case, otthonmnBI waYe fnnctions 

Second Idea 

In pnnctple, thete ate two ways tmaginable to obtam the expt>ctation value of the 

hoppmg part 

1 One could try to express also the Hanultoman in rotclled operatms, assum

mg that an electron hops from one wt,ttecl stte to the next tot,ttecl stte 

Ho\\mer, to transform states and H,untltomans .tt tlte s.une tune cloPs not 

change the phystcs and all calculattons c,m be done as if there \\ete no ro

tatwn That ts what has essentially bePn done before 

Ewn tf addttional operators in the f01m of the 2nd and 4th term of the 

H.uml tonian 

H- _ ~ { -t - -1 - -1 - ,1 - 1 } 
hop- -t L ck,tck+l,t + ck,tck+l.L + c,,Lck+l.t + ck,Lck+l,L + 1 c. 

k=l ~~ 
1 2 I 4 
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are mtroduced with the argument that because of the rotation there is no 

justification for spm preservatiOn, notlung new appeats When taking the 

aYerage 5 5 (-if; IHhop l-if;)
5 5 

these terms vamsh. 
t• J. t• J. 

2. It ts mote reasonable to stat t wtth umot,tted hoppmg teuus, only concen

tratmg on the fact that the electron changes tts Site, but not chatacteuzing 

the structure of different Sites That brings us back to the ~1tuatwn on page 

00 w1th the transformed Ham1ltoman 

(4 39) 

"·here {) is the difference m the 19-angle of t\\"O ,\dj.tcent bites, .~,~umed to 

he fix In the average the mixed terms ch;appear agam ,mcl the dependence 

on the spm-space reference ftame expresses 1t~cllm a glolMl factor 

N 

s,,s/lf IH!top 1-if;>s,,sl = -t cos{) L (-if; I ( cl,1(\+l,t + c!,.~-ck+l,.l-) e ~~· :o + h c. I 'if;) 
4;1 

Both "·,ws show the problem that mtxed teuns lil,e c:k,1cl.+l,.l- ,dways l1m e to 

dtsappea1 The reason is the fixed number of up-spm and down-,piu JMI t1cles re

spectn·ely However, such a behav1out is not really unclersr.andable If for 1nstance 

t\\·o ilclJ<H ent Sites haw a mutual angle of 90° bet"·een the spin-cp!.tnttz.It!On axes 

It IS not cle,tr why the hoppmg cl,tck+l,t IS j)O~Sible but not cl.rCk+I,.J_· 

In geneJ,\1, for s1te~ with arbitrary totations spm-flip proces~cs ~honld be al

lom•cl In other words, it does not make sense any-moJC to chstmgmsh between 

a gronp of up-spm pal tides S1 .tnd a g10np of down-spm p.u tH leq S.~- Only the 

totalu1nubcr of part1des 'hould be an intc•gr.1l of the '."rem 

Thi' icle,t does not change the f,\ct th.tt .1 tett.un ~t.\te 1s char.tcteuzPcl by a set 

of qu,mtmu numbers {n,}~~~ which deteunine the wefficwuts m the field opcr<~tor 

repn•seutatwn. The only chfference ts that th1' ~pin dnc•ction i> not regulated .tny 

more Such conditwm, ate satisfied by 

N 

I·J),, = cl I::~~~ { z!,1 1 o) + z:! . .~-1 o)} 
t;;;;l 
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for the case of one particle. Here Ci is a nounahzatwn constant which has because 

of 

.. , l,J 

the value Ci = 1/ ../2, when for conwniente the 1-parameters are chosen in such 
N 2 

a "'ay that I: 11.1 = 1. 
t.=l 

Consequently, an arbitrary 1\1-partide state has the follm,·ing form 

- Cu L t:!, ·"' 1 o) ( 4 40) 

~.E{t.~} 

C* "' "' nt• - M L- L- /;1 ' 
]I, ,)Jo.l 7JI, tTIM 

That me,ms that the waYe functions, deterrnmed by the quantum numbers, are 

not. changed, but for each particle both po~~Ii)lhtics (up- and down-spin) are 

allow<'d Such a constwctwn makes it po;stble to cb1l with spm flips 

The noiuldlizatwn constant is east!y e\,lluatccl tf the on~rlnp of two states is 

expre~sed m terms of fully contractiOns I: 

({;I{;) = . ICul2 

"'• ,nu n,, ,nu 
1 1 'Ill 0"1• uu 
Jt• )!If 'll• ,r,,\1 

.. * 
1st possilnhty: 

2nd possibility 

,.,/lAf * 'Vtl 1 • 
1]/ll l~t 

Ho,Ye\·er, such "crossings" as m the second possibility lead to \"o1nislnng sums 

I: ,;:·•,;; mth n, # nr Therefore, only the first possii)lht.y, the Identical permu
! 
t<1twu, tem,uns, lcaclmg to 

"" ,n_,/{! I~-),,, ,nu= ICul2 L 1 = Cu = rill/l_ 
O't • ,fT \1 

Now the t«sk IS, to detetmine the expect.ttlOn ,-,tlues ol the hoppmg p.ut m 

the sPcond proposed form (-! 39). 

3Tim method IS explamed m appendix F 
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1 1 •'M "'1 11 M 
Jl ,JM '11 'lAf 

= 

= 

. ..\Iter !c'X,tctly the same cakulatwns m the other t !tree cases one obt ams 

= 

= 

Thl' f,tct that the result is m all fonr case' the ,,nue shm1'' tlt,tt the chosen 

stat0' ,ne not. senstt11·e to spm directions The '1l!JHI&Ing consequence 1s that 

e1 entnally spm-ftip pwccsses d1sappear ag,\m. Tlus IS because of the mm us s1gn 

m the 1 ot at1on matux of the Hamiltomau 

N { ( 
- -t cost? 

Ht10p = -t L ck , 
k= I Stn1? 
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leNiing to the effect that the t"·o mixed-spm terms cancel each other. 

The interaction also needs to be calculated again 

{) - N j -
--(u; I "c c 11/J\ 

1 AI N 1 
- 2 L L ~~A* {'YZ•I'~c- 1'~·/'~c} + 2/'~c D'Y~r* ~ k,t k,t 1nl, ,nfll 

A=l k=l 
<;OC 

1 AI 1 M 
_ 

2 
{; {1· 7;c _ 0. /'~c} + 27;c = 27;c 
A;OC 

All together the ')'-problem has the followmg structure 

(4 42) 

Uufottuuately, tht• situ<ttion IS not much bet.t<'I th,m m the Haitice-Fock 

cqudtiOnb (4 36) The mte1actwn and the hoppmg p.ut ,ue .-tgmn completely 

d<'coupled The mf!uence of the rot,ltJOn only changed from the forme1 to the 

J,Jttei HmYe\·er, if all Simphficatwns proposed m subsectiOn 4 -l 2 are used, then 

w:; {) =eo:; y "'" 1 for large N, and no rotation .-tt all remams 

The 1'-PI oblem has agam ,m exact solutwn Bloch w,\vl' functiOns ~a t1sfy all 

equations, <1S can easily be seen Thus, the energy of tllC system IS \\Itlun this 

nHHI<•I de:;cub,,cl by 

( 4 -13) 

Tins expression needs to be mnmmzed mth the help of the hee patdmcters It 

If> almtys possible to choose the set of quantum numbe1s {11.t}A{=1 such t.h<tt the 

cosuH• IS positive Therefore, the ground state IS di<tr.tct<'IIzcd hy ,9 = 0, which 
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means that all spin qnantization axes point 111 the same direction No matter 

"·hat the ,-alue of the flux IS. 1t does not lead to interesting spin structures witlun 

thts model 

4.5 Decomposition First 

A dtfferent approach is to sta1 t wtth the Hubbard-StratoHovtc decompositiOn 

and to apply the rotations afterwards. The notion of rotation m tlus sense 1s 

not in the first place the pre~ervation of rotatwn mvau,tnce dnu11g the p10cess 

of Hnbbard-Stratonovtc decomposttion This was the m.u11 auu of the last sec

tion By mtroducing a spin-space reference ftame befme the decompo'ittion ,md 

mtegratiug over all posstble angles aftenv,uds, we "·anted to rc;tme the rotatton 

tm·,ui,mce whtch gets lost dnnng Hubbmcl- Stratonov!C tran;fornMtion 

By altenng the order of transformation~, the emph,tsts is slightly changed The 

Hnbb,ud-Stratonovtc decomposttion remams a tool to simplify the mtcract10n 

p.nt. The spm-spare tefetencc frame d1splays degn•es of lrc~dom of the system, 

"Inch unphes possibiltt1es to descnbe the system much m01e detailed It 1s for 

example po%tble to use the angles () and ( to coustruct spm waves on the nng 

Thos<' spm waves are assumed to be a good descnptwn of (exctted) st,ttes 

In more general terms the >pm-space refetence frame <~!lows to have an SU(2) 

g,mge nnanance m the limit of strong inter,lction. Sometlung snmlar is for m

stomP done m superconcluctn•tty by introducmg otder JMtametets as cohetent 

,,-,\\"e fn11ctions for a mac10scopic body In tins system the g,mge mv,uJr~nce en

<~I>IPd Jm,ephson to predict toll"cctly how two snpetcoHdnctm <; behrl\"e when tltey 

,up !nought together For our system, a g,utge Jm•,ut,\Hce for c<~ch stte is also con

n<'ctPd mth the hope to descube it quaht,1tnely mote Ullrect.ly a11cl to discover 

cff0C'h w ludt keep In cl< !en ot herwtse 

4.5.1 Derivation of the Hamiltonian 

The tnt<'tdltton p.ut of the Hnbb,trcl mode!J> <;pm-wt.tttoll tm·,mr~nt Thus, for 

m,\lly oltts tran'>fotm,ltions 1t ts not Je,tlly t<'ievallt \\"hether 1t is pmfmmccl \dth 

wnm,tl or wtth rotate<! Grassman11 Humbets The s.u11c 'tcps ,\s ,tlte,ldy m the 
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prevtons sectiOn can be used 

Hubbard-Stratonovic Decomposition 

The 1esnlt (-!13) from the expl,m,ttwn of tlus decompo~tt.1ou 1s c.nned forward 

when• 

Z = j 'Dw''Dw e-s;r. 

Saddle-point Approximation 

The movement to the saddle point works in analogy to ( 4 27) 

P->/T• = jv2oc,s(/, r) exp [-~ (so+ {"
13 f. { ~ C:Z (ll1 +a z) t;,-

1! lo k= 1 _ 

0 ° 0- ioc (nk- 1)- 8, (sk + 1) + ~ (<5~ + o;)})] 
Simplifications 

\\

0

1th the s.une simphfications 1 - 5 as in the prenous ch.tpt.c1 the H.umltoruan 

Iwt otue~ 

U N N 
t { t b.!!.. t t _bi} 2 L c, (ll2 + a z) c, - t L ck,uck+loue ' o>oo + c,+ 1,,ck,,e '' o>oo , 

1.=1 k=1 
1i = 

\dH'r<' G1assn1<1nn numbe1s ,ue again repl<tced by .mmlu!.ttion and creatiOn oper-

Rotation 

To iutrodnce it 1otation at tlus point Ie.tds for the fi1st tune loo mod1hcations 

comp<ll'cd to the calculatwns m the previous sectwn 
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(4.44) 

N 

t :L {cos 11 ( cL,tck+J,t +cL ck+t.~ + h c.) + sm o ( ~L ~"+ 1,t - ,:l,r<'k+J ~ + h c.)} 
A=l 

This structure of the Hmmltoman is actually a mixtme of the two \Yays tits

cussed m the subsectiOns 4 4.2 and 4 4 3 In the former subsectiOn we e1aluated 

the Hauultoman with unrotated states The backward rotation of the Hamtlto

man had for the hoppmg part the consequence that ck,tck,t w.1s transformed to 

an exprc,swn wtth non-rotated operatms. That ts ex.1ctly the s,une what 11e are 

domg m thi~ sectiOn, apart from the fact that the t.r.wsfotm<~t!OH goc~ HOW m the 

other din•ctwn, from unrotated to rotated opetatots Thus, the .1ppcaung angles 

ate c~scnt.ially negattw The hoppmg part abm·e ts the same as the hoppmg part 

m tlw latter of the rnentwned subsections, were calculatiOns were pet formed wtth 

rotat<•d ~tates 

4.5.2 Search for Solutions 

B<•< ·HIS<' of the ahow meutwnccl suuilantte' to the p1e1 1011~ "'et ton, one only 

w·t·d~ to wmbme the tesults obtmned thete m order to obtam the H,uttee-Fock 

equ,\tlon~ It is reason,tble to use not only the tdea of rot.tted st<ltes hut to take 

al'o tlu• po,,tbthty of spm-f!tp into coustdetatiou After h.lnug douP tin~, the 

fonr J>C>"thle combmatwus of opera tots m the inter,\Lt.ion Jl<ll t h,we ,,g,un all 

th<' ,,uue expectatiOn 1·alue This mtssing spm sen~tt!VltJ Ic.Hls for mstance to 

the dt'·'JlJleatancc of the teuu propot twn,tl to cos lh 1 If ,lll ncce::.,,uy tet ms ate 

collected one obtmns 

'Ill nsmg the equaht; a,!c. (,b lcl,1c1 ~I ,b) = (c,,';c (.b I cl ~ c,,1 I ,b))" ,,ml pet!ounmg the 

d<>u,clte on the nght hand stde, 1t ts posstble to check thrs result m anothet \HIY Such an 

equ.thtY <ll..,o 1mphes that the exp€ttatwn values must be re<1l 
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+ 

(4 45) 

One can try to use Bloch wave functwns to solve tins set of eqnatwns Pro

vided that the angle-site dependence 1s used wh1ch was proposed as s1mphfication 

2 on page 8!J one obtams the followmg results for the potent1al ene1gy part. 

U M N U M N (?1r ) 
--::;LL/~ 4 *sm0k/~ 4 - ---l:l::sin =rl..·w =0 

- 4=1 k=l 2}\ A=1 k=i i\ 
4#C 4#C 

U M N /n 4 

"" "" "'n A • Sill e 'V ne _x-
2 L.., L.., 1k k lk ne -

A=l J.=l lx 
U #-- 1 ( :l!!!k w -b!!.k '") 1

" (>-k)(n -ne) -L--e.v -eN e.v A 

2N 4 =1 21 
<#C' <#C 

U M 1 •-, ( ) 
_ "" (' < ) ,"yx n4-nc 

2 L__ ? Utv,nA -ne - Uw,nc-nA e ' 
A=l -1 
#0 

u 1 ( ,., ,., ) u - -- e"Nx'"-e-71''"' =-snlli (446) 
2 2i 2 X 

Smw solntwns ;ne only obt,tined if the hn,\l ('Xptcsston do<'s not. depend on 

the p<tr,uneters x and ne, '"e lu\\'e found the followmg resnlt. 

If e\·cry quantum number n.-~ is occupwd by one particle (h,Ilf hlhng) then the 

condnwn m (4 46) is always fulfilled The ,1ppeanng sin-functwn cancels mth 

the snnil<ll' expression m the !,tst bnt one !me of (4 45) leadmg to the desired 

mdcpeudcnce of 1: and ne. Hence, Bloch \\',n·e function~ ~<tt.I~h· 111 t.lus case the 

rqndtwn~, no matter what the value of w ts For exactly h,\lf hlhug the kmetic 

euCigv ,,uushes and, hence, t.he1e extsts only the oue cnc1gy 1U!1I 

One uught tlunk of another sitn<1t10n w = 2 ,md e\·my second quantum 

nnmber IS occupied. Howewr, this IS too f,n <IW<IY from half filling to be described 

wtth our 'llliphfic,ttlOns Nevertheles~, 1f w IS a !,uge number and only every wth 

pos1tHll! 1nmomeutum space IS empty, then the equ,ttwns me also fnlfilled This 

iwhc<~tl'S that such spm strnct.mes mth Bloch w,n·e fnnctwm unght. exist .. 
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4.6 Zeemann effect 

One important phenomenon has not yet been taken into consideration. It was 

mentiOned m sectiOn 2.4 that a cuuent atound the cacumfetence of the 1 ing 

gi,·es rise to a magnettc moment, winch mtetacts wtth the external magnettc 

field Tlus effect has been consideted by iuclmhag the Hux m the hoppmg pat t 

of tlw Hanultoman. However, there ts also a rnagnettc moment of mdividual 

electtons "·Inch gtws rise to a total spm of the system The interaction of an 

elect! on spm mth a magnetic field ts called Zeema.nn effect. 

In many other papers tins effect ts not taken mto consideratiOn. One reason 

ts the <~S'iumption of .1 Aharonov-Bohrn &itu,lt!On, whete tl1e p.utuJe'i movl' in 

field-free 'iJMCe Another rea.son ts the SU(2} tmmtance of the Hubbdl'd model 

It h,,, the lOnscquence that the modulus 'if!U<lred .1nd .ut atbJt.t,uy component 

of th<' tor.al spm oper.ttor commute mth ~he Ho1mtltont.m [43] Hence, one can 

find a common set of etgenstates, and the Zcemann term has only the efff•ct of an 

energy shift However, if the SU(2) symmetry gets lost the Zeemann effect needs 

to he constdetPd Therefore, the followmg comments ate necess<try 

In our sttuatwn the magnettc field ts supposed to he stnctly petpendtcnlar 

to tlw pl.llle of the ring, thitt means the tn<~gnettc held ,·ect.ot B pomts m the 

.::-dn!'Ctton The maguetic moment of a 'imglc electton t> c,tlled Boltr's m.tgneton 

and 1' denoted hy JIB Combmed wtth the Laude factor 9 the exchange energy 

lwcome'i 
N 

Hzeem = -gltaBz L ih, (4 41) 
k=l 

smt'e I: >:1 tlll'•lSmes the z-component of the tot.tl spm of the systc•m 
I. 

In t lu' P·' per the flux dependence ts of P•ll t.Jcnlnr mtct est Thctefme. "ltcncver 

thP Zcemo1nn t.erm tS mclucled mto coustdct.ttJon tt is useful to express it in a 

fmm whc•tc' the flux ts more exphcit The flux ts detetnaned by t.lte product of 

tlH' utagnct.tc fi<'ld and the area A encJosccl by the tmg With the help of its 

cue tnnf<'trnrc L =aN one c,u1 wutc 

<I>= B. A= B. 
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Together mth all the other quantities one obtains· 

efi 471'<1> he gh2 <I> 
!J ita · B. = g -- . -- . -- _ ---.:~.,...,..,. 

2m.c a2 N2 e<J?0 m.a2 N 2 <1>0 

~z <I> 
=: N2 <I>o, 
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(4 48) 

wheJC ~z = ~~,:1 is just an energy constant If the distance between two sites, 

a, JS f>Hpposed to be approximately 3 A then ~z JS of the order of magnitude 

1 x 10-18.] ~ 10eV Especially for systems \\'lth a low number of sites the Zeemann 

cne1gy IS therefore not neghg1ble 

Conseq11ently, the Zeemann term ( 4 47) would have the following st.mct.ure· 

The problem '''Jth this notatwn IS that one h,ls to be C<~teful "1th rotations The 

expre-,sion ,tbove is correct 1f and only if the spm qndntJzation ax1s is parallel 

t.o th<' m,tgnetJc field. If t.h1s IS changed then only the p!OJection of the spm on 

the z-ax1~ contnbutes Therefore, 1f calculations are perfouned with a rotated 

Hanultolll<111 then the Zeemann teun h,ts the followmg fmm 

( 4.49) 

In mOJP general terms, the Zeemann term br,tkes the rot.,ttioual symmetry of the 

s~ stem Smce the external magnet1c field has a fixed duection, the fact that the 

:;pin 1~ coupled w1th the field leads to a prefe!fed spm clnectJon 

Unfmt11nately, s11ch teuns ,·,uush w1t.hin our de<;cJJptwu of the SJtuatwn The 

u·a~ou is ,,g,lin the chosen stmcture of the st<tte<; It. Jntphes that the expectation 

\'alnc of cl,;c\,; C'({llolS the expectation \'dlUe of c!,j.ci.,j. The missmg Spill SCJJSJtiv

Jty 1s ~hown here most. dr,tstically To choose the same ptd,tctOJ -y;" for np-spin 

<tnd down-Spill particles negates a preferem e in a c Cl t.ain '>Pill dnectJon. 

Re111<1rk: A conclusion of the strategy of tlus chaptc1 might also be to handle 

the• Zt'PIII<Lilll tctlll as follo"s Tht> HamiltOJu,m to the oue gnen 111 (4 -19) tf it 

is e,·,lln,Hl'd wtth nnrotated states \\'hen nsmg Jot.ated st.atPd, t.he H,multoman 

:;honld fi1st. of all be expJes,ed m nmnMl opet<lt.OIS Ie.n ntg Jot .. nional eH'ects to 

the, st<lte'>. How('wr, the cosme fact.OJ has to temam smce t.he <;,nne angle bet.\Yeen 

the t\\'O fm ms of operators ex1st.s m both cases Snch an nn.>atz ledcls m the tn<.~l 
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to obt.am only one kmd of operators to 

-2 Sill~ C0'5 !4- ) _ 
' - - ck 

sm- ~ - LOS:? !!J.. 
1 l 

Then after calculating the expectatiOn Yalue only a teun proportional to <>in(20k) 

Slll\'iYes, lmcing the spmm the limit of a strong magnetic field B, to point m the 

direction of ()k = ~1r. Obvionsly, this does not descube the phyoks cotrectly D 



Chapter 5 

Trials of Improvement 

The coustdPratwns in the ptevwns chapte1 allow to gam <1 feeling for the notion 

of rotation. Ewn so some changes have alre<tdy been apphecl, thete are sttll 

lll<IJOl dtlfiwlttes connected to the present model In ,tckhtion to the nussmg spin 

seusttn ttv three othe1s are mentiOned m the sectious :; 1 aud 53 Pos,ibthtrcs 

how to uHplove the Sltuatwn, also by using fewer stmphficatwus, <~re suggested 

As ,t consequence new S) stems of equations h,1ve to be soh·ed This ts tried for 

5) stems of a hm1ted stze m the sections 5 2 imcl 5 4 

5.1 Away from Half Filling 

If one looks ,tt the results m the p1evious chapte1 1t stnkes that U al11a)S ,tpp<·ats 

m t lH• numerator HmYewr, U rs the couphng constant in the Hanultoni,m 

N N 
1i = -t L { cl,tck+l.te '.~· :, + cl,~ ck+1,~e- ~~· .;~, + h c.} + U L ft,,til q 

1.:1 1.:1 

,111<1 <l<'tetmmcs the mter,tctton between fernuons \nth dtfictent 'pms on t.lte same 

stte Fot l,nge U the H,umltouran tS obnouoly muunuzed if ,111 pat ttcles ate 

f>t.ron!!,ly loc.thzed and no site IS double occnptc•cl E'-etl m the hnut U --* oo thts 

kmd of lwh,tnour lead~ to a fimte energy, ptonded th,tt the IMnclls le~'> than half 

filkd In contrast to thts statement, the obtamecl result on the p1evwus pages 

chwrges '"~ U mcreases There IS no poss1bthty to get all coelfictents m front of 

U to utntsh. 

106 
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It would be much more reasonable to have U m the denommator. Tins IS 

what actnally happens when the Hubbard-Stratonov1c decompositiOn is applied 

af> can be seen in sectiOn 4.2 Only the mm·e to the saddle point as proposed 

by Schnlz [-l-1] and pe1 formed on page 87 f. changed th1s fact. It 1 esulted in the 

chwrgmg term ~11IU The rea<>on why the transfouuatwn to the s<1ddle pomt 

does not always lead to exact energy values hes 1n the !muted ',lh<hty of this 

transformatiOn. It was not poss1ble to perf01m 1t "·ithout a couple of assumptions 

One of them "·as nk ~ 1 whtch refers to half-filhng 

Therefore, it seems to be a good 1dea to perfoun the calculations Without 

the movement to the saddle pomt For tins purpose the vanous steps ,tre briefly 

II'[W<He<l I3y allowmg now rotatiOns With two deg1ees of fteedom we shall ,llso 

forget nhont the snnplificatwns in tins dmction 

The f>t,utmg pomt IS the form of the ,tct.ion aft.e1 the Hnhh,ud-Stratonm·ic 

dPcompo'>ition as hns been gn·en now already several times 

A'f>llllltng tll<lt thete tS no dependence of the physic,tl qunntttte'> on uuagmaty 

time ,md h,mdlmg the chemical potential as a constant which can set to be zero, 

oue oht,nn; the followmg exptesston fot the H,nmltonian 

now "·ithont any mo,·ement to the saddle pomt, but wtth the Z<•em,um term 

It :;honltl he pointed out agam th,tt m such exptef>SlOll'i Uf',ttton (,ntntlnl,ttion) 

opPr,ltm' wtthont a spm mdex denote the spino1s 

ck = (c!.t cL) 

Fot the three-dnnenston,tl rotatton evety tetm sh,tll he h,mdled f>eparately. 

Fnst, the hoppmg patt: 
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Rk,H = e-•(< sm ~cos\*' 

Rk,H = -e''' sm ~cos 8':{' + 
e-•(>+1 cos I!.!.. sin !!i±.!. 

2 2 

e''k+l eo~ ~sin Or.2+t 

cos ~ cos 
8':f' + e•((,-(,+1) 5m ~ sm o,f' 
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(5.2) 

In general, the matnx R,(eko (k;flk±lo (ktl) cannot be Simplified The previ

ously used argument of an additiOn of two rotatiOns (one forward, one bacln,·ard) 

does not hold in the three-chmenswnal case The reason IS that alieady the first 

wtatwn 1mphcs a change of the coordinate 5ystem, so that the angles of the 'ec

ond rot,ttwn are defined \\'Ith respect to thffei ent ,txes Only m special c.tses one 

can return to the old picture If for mstance the longitude angle IS the s.1me for 

ewry ~Ite, ( = (k = (k+J, then 

( 

cos 1? 

e'' sm {) 

-e-•( sin{) ) , 

COS!? 

\\helP 1? denotes ,tgam the difference Hektl - ek) and (,111 also depend on the 

site. l 

Nl',·ertheless, the matnx elements of Rk depend on each othe1 m a Simple, 

thmacteustic \\'ay: 

(3 3) 

"·helP the stms denote "complex conJugate" ',\lues Tins 1s even moJe helpful for 

calcul,uions than the fact that R~o as a prod net of umta1y nMtuces ,t!so h,ts to be 

1If fl rs defined as an adJunct matux fl+ then iJ = !(f:h -fh+t) and the signs m the matnx 

clwng<' 
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mutary, IVith the consequence that 

- 2 - 2 - 2 - 2 
IRk,ttl + IRk,HI = 1 = IRk,Ui + IRk,tJ.I 

Ri.,ttRk,t4- + Ri.,4-tRk,H = o = Ri.,t4-Rk,tt + Ri.,uRk.'-t· 
Only t.he first of these four equations does not follow from (5 3) 

Togethet the Hamtltonian (5.1) becomes 

H.= -

\nth the matnx elements Rk,uu' defined in (52) 

A y,mntwnal talculation ''"ith the rotated states 
u,E{U} 

I J,) = TM/2 ""' ""' '"Y
1
n
1
1 • • , n 11 ;:t 

11J, ,nM L._ L- • Y,,M lM,CT/I.J 
z1, lH CTJ, ,ff,\J 

--------
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(:> 4) 

(5.5) 
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Thi<; expressiOn shall be mod1fied next For the hopping the cha1acteristic 

dependence (5 3) of the matnx elements of R can be used to prove the followmg 

st ittements for any z E ([; 

{(n•.tt+Rk,u)z+hc} - (nk,tt+R•.u) {z+hc.} 

{(n;r•+flk.J.t)z+hc} - (nk,H+fl,,J.t) {z-hc.} 

Fnrt he1more, 

(5 6) 

{ ze '.~· ·•~ + h. c.} - {z + h c} cos(~ ,:J + 1 {z- h c} sin(~ :J 
zeN<~•o- h c. { ,., .. } 

- {z- h c} cos(
271' .!) + 1 {z + h c} sm(

271'?) 
N <I>o N ""o 

(57) 

HencP, in the hoppmg part of the H,trtree-Fotk ectnatwn the sum O\·e1 a and a' 

bt•t omes e<;sentwlly 

{ ( ?rr <I> ) ( - - ) ( ?n <I> ) ( - - ) } [ 
W'> ~IV <I>o Rk,tt + Rk,U +ism ~ <I>o Rk,H +Rut * .. + h c] 

{ ( 
7r. <I> ) ( - - ) ( 2n <I> ) ( - - ) } [ eo<; :v <I>o Rk,H + Rk,J.t + 1 sm N <I>o Rk,tt + R,,u * - h c.] 

(5 8) 

Alter a< ,uefnl handhng of the vanous tngonometric function'> one finally ends 

np mth the• follomng set of equatiOn'>. 
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It nnp,ltt be nccPss,lry to add a couple of remitrks on these eqn<ttwns As an 

rxpeetatwn 1·a!ue of" hermittan operat01 one expects the enetgy to lw a teal 

y,lln<'. H<·m P, 1t stnkes that the nnagmaty unit 1 appe,us t1nce tn the eqn,tt!On. 

Howp1·cr, tins IS not much of a ptoblem, smce the bt,tckets behmdtt constst of a 

complex number and 1ts complex conJugate (at Je,\st after a denswn by!'~") A 

httle lnt 11101e susptc10us is the fact that the fitst of the interactiOn teuns does not 

neces<;anly gn·e a real number. Tins can for mstance be seen in the case of Bloch 

wa1·cs below. H<•te the reason 1s that on the tight hand f>Ide of the Hat ttce-Fock 

PCJlldtion<; an expectation value IS not really cakulatPd An imp01 tant f.tct. 1~ that 

the snm m·e1 7: 1s nnssmg Only 11 the expresswns become mdcpendent ol :1 , tf 
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p10per solutrons are found, this constraint vanishes 

It shall be exammed next whether Bloch wave functions and these HartJee

Fock equatiOns go together. If the f01mer are mse1 tcd into the latter one obtams 

exprec;sious hke 

-~;><• (-r~'~ 1 --y~~~~~;) +he=~ {cos(~nA)-co'i(~ue+ ~;(ue-IIA)(h-o))} 
n<• ( n 4 nc'Y;o~) _ 2 { (27r( ) 'Yk 'Yk - 'Yk -y;c - N 1- cos N ne- 71A)(k- x) - ... 

• •• -I sin(~; (ne- n4)(k- x))} 

wh1ch combme to the energy E = 

M 1 [ ( ?rr ( <I> ) ) ( ?rr ( •D ) ) l - 2t ?;, N ~ cos ~ nA + <l>o -cos ~ ne+ <l>o +(ne -114)(k- 1-) • 

<~c 

(3 10) 

For the c.tse of an Mb1trary rotatrou tins expn•ss1on eau h,u-clly be sunphfied 

fmthl'r The [,Kt that x and ne appea1 se,·c1al tunc<> mchcates that I3loch waw 

functiOIIS ,ue .lppa!ently not propel solutiOn. One posc;Ibihty of continuation 

co11ld be to use them as an appro'i:imatJou c111d to miillllllZC with respect to the 

m Pan fwlcls ~c and 6, accordiugly Anothe1 pOS'>I bdn.y, an cl this one l1<1s been 

chosen, l'i to 1educe the s1ze of the system For these simple! configuratwns it 

sholllcl lw poss1ble to coustlllct the wave hmctwns by hc1ncl with the hope to be 

able to g!'llerahze the1r solutions to larger systems. 
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5.2 Limited System Size 

5.2.1 One Particle / One Site (M= 1, N = 1) 

M 
\\"hene,·er we have a s1tnatwn with only one pa!tJcle, sums of the f01m ~ m 

A=l 
A#C' 

the exprPssion for the energy (5.9) disappear because of the constramt A # C. 

Fm theuume, for the special case of N = 1 ir. is /'k+i = 'Yk-i = 'Yk = 'Y 1f we try 

to use again periodic boundary conditions2 • The same 1s true for the angles ()k 

and (k· Thus, the only renMining term of the hoppmg part is 

For the interaction part the symbols 

and E(M,N) 
F 

- l>, sin ()k co> (k 

- N (D. 2 + D. 2) - !D. M u c ' c 

shall he mtroduced to simplify wutmg 

TheJefme, the complicated energy equation reduce> in this c,tse to 

w1th the ~olutwus 

E - -2t CO~ ( 27r ,:J +D., Sill ()I cos (J - 1~, + ~ ( 6~ + t>~) 
'Y - e'X 

"·here x can be an ,trbJtrary phase 

(5 11) 

(5 12) 

(5 13) 

1The upper mdex for the quantum number IS omitted because only one number appears 
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oU 
2 

A saddle point approximatiOn in the charge mean fields is achie,·ed for Ll.c,o = 

Fot the spin mean field it depends on the angles The absolute mtmmum 

conesponds to fh = ~, ( 1 = 0 and .6.8 ,0 = -%. Tlus choice, which IS by the way 

Identtcal to former consideratiOn on page 81 (half-filling), has the effect that the 

t"·o contnbutwns cantel each other Only the term proportiOnal to t ll'mams for 

the enetgy Tlus ts the cotrect result becauoe for one particle thete should not be 

any mteractwn 

5.2.2 One Particle / Two Sites (M= 1, N = 2) 

E,·cn here it is 'Yx+l = 'Yx-l for x = 1, 2 because of the pm iodic boundary coudi

twns A doser look at the hoppmg terms 

1- = 1 { (
271' if!) (ft ll2 (2;r if!) . {)I ll2 -2t-y2 eo' --- cos-cos-+ tos -- sm-sm-ws((1 -(o)-
N <I>o 2 2 N <I>o 2 2 -

(
211' i[> ) 1:11 1:12 • (2;r i[> ) lh 112 } 

-Sill N if!o cos 2 Sill 2 Sill (2 + Sill N if!o Sill 2 cos 2 Sill ( 1 

X= 2 · { (
271' i[>) 1:12 1:11 (271' i[>) 1:12 1:11 -2t11 cos--- cos-cos-+ ws --- sm-sm-co~((2 -(I)-N <I>o 2 2 N <I>o 2 2 

-Sill --- COS - sin - Sill ( 1 + Sill =.._- sin - CO' - Sill ( > (
271' i[> ) l)z l:lt (?11' i[> ) lh 1:11 } 
N <I>o 2 2 N <I>o 2 2 -

:;hows th.tt vanabl~s w1 and w2 can be introdutccl sud1 that the terms c.m be 

wntten m the form 

:t=1 

x=2 

-2t12(w1 + wz) 

- 2lft ( Wt - IVz) 

wludt ts based on the fact that in (58) 

(5 14) 

Then for tlus pat ttcular caoe the fol!mYing syotem of equations 111 •1 h.ts to be 

>oln'd 

(E- a1- E~'2>) 'Yt + 
2t (w1- Wzlrt + ( E (l,l)) E- (L2- F /2 

(3 13) 
0 

.-\pat t ftom the tnnal solutiOn 'Yt = 12 = 0, wlud1 contradkts n01mahzation 

wuchtwns, the only possibility to obt,tin further solutiOns IS th.tt 

0 = 
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0 = 

=> E,,, = ~ ( 2£~'2) +at+ a2 ± J(2E~'2 ) +at+ a2)2- . 

... -4(£~'2) +aJ)(E~'2 ) +!L2) + 1Gt2 (wy -w~)) 

= ~ (2£~'2) +at+ a2 ± J(a2- aJ)2 + 1Gt2 (wy- wJ)) 

If one puts this result into the first or the second of the equations (5 15) one 

can obtain a relatwn between 'Yt and 12 winch together with the normalization 

condttion determmes the wave functwn 

=> 'Yt = 1I,D /2 
(at- a2) 'F J(at- a2J2 + 1Gt2 (wr- w~) 

(at- a2) ± J(at- "2)2 + 1Gt2 {wr- wD 
'Yt = 4t ( ) /2 = r,,, 1'2 

W2 -Wt 

(5 lG) 

Together with 1 = 'Yt'Y; + 1212 = ( 1 + r~,) -y21:i tlus leads to the follmnng 

solutwn: 

{5 1 i) 

Agam the wave functwns include an arbttrary phase X It ts not very helpful 

to gn·e an extended version (without auxili,uy Yatiables) fm the energy because 

the expression "·ould be too complicated. Ne,·erthcless, one c,m mention some 

mtere>tmg points which are connected to the sttucture of the solutiOn for the 

"·a,·e functwns 

1. The ratiO of 'Yt and 12 ts apparently of p.u ticul.u- mtet est for the w.tYe 

functiOn. Smce tt does not mclude the variable E~'2l, the wave functwns 

.1pparently does not depend on the me,m field as<;oct<lt,ecl wtth the cltdrge 

dcgtee of freedom. Tins is re,tsonable, because the totalmunber ol p,u ttdes 
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,1nd hence the the total charge is as~umed to be fixed witlun th<' model 

under consrderation 

2 Wh<~t IS less understandable is the fact that the qualitative difference be

t,veen the two possrble solutiOns I and I! is also mdependent of the mean 

field assocrated with the spin degree of freedom. In the pwcluct 

Wr + 1V2 _ /'[ l'f 
wr - w2 /'~ f'~ 

only quantrtres related to the hopping part appear. 

3 There exrst some specral srtuations for the solutiOns of the wave functiOn 
I 

two <'fJUal solut1ons !'' = !'' <==> 0 = (a2 - nr) 2 + 16t2 (wi- w~) 

'YI - 1~ I 
nurrored solutions: :;j-:;p- <==> 0 =w1 

ll'rl
2 = I'Y2I

2 
I 

equal distnbution· <==> (ar- a2) = ± 4tw2 

localized solutions: /'! = 0 = w1 = -w2 1\ E = a2 + £~'2) 
/'2 = 0 = E £(1,2) 

WJ = 1V2 1\ = a1 + F 

In the last srtuatwn the interactiOn energy rs that of the 1 par tide j 1 site 

problem Tlus is not the case for the kinetrc energy, bccau'e even rf not 

occupred the hoppmg "feels" the exrstence of adJacent srtes Only rf both 

srtes "·ere rdentical, !1 1 = !12 , then also the kmetrc energy \YOH!d ha,·e the 

,.,1luc of the pie\ 10us case. 

4 If the magnetrc flux IS close to half a flux quantum, the exprc~s10n under 

the square root 

can become negatn·e, since in tins regwn w2 nnght be greater than w 1 Not 

only does this lead to complex energy values, rt nught al~o h<l\ c the effect 

of chvergmg expresswns for the components of the w,tvc functiOn The most 

likely conclusion rs that certain3 configuratiOns are srmply forbidden 

1Tlus term "ce1 tam" ts dtfficult to spectfy, because aheady fm t\vo srtcs the equations are 

too comple'\. NeYet theless, one can say that fm ( 1 = (2 ~ 0 no difficulties appear 



CHA.PTER 5. TRIA.LS OF IMPRO\!EldENT 117 

Based on these statements one could try to investigate the dependence of the 

system on the external flux. There are two possrble app10aches One is to fix 

a certam spm configuration and to study how the wave functiOn alter~ if the 

magnetrc field is changed The flux dependence is mamly determined by the two 

Y<liiii.hles 

(5 18) 

Therefore, one can obsen·e that the prob,tlnhty of the JMlttde to be on ,1te 

1 or on site 2 changes periodically Dependmg on the parameter~, rt c<~n happen 

that the p.u ttcle can for some values of <I> only be fonnd on one srte vVtth 

mcteasing flux it then moYes to the other site nntil the flux 1s agam l.uge euongh 

fot a preference of the first srte. A contmuous mcrea~e of the flux, ther~lore, leads 

to an osctllatwn in the p.utrcle drstnbutron 

.-\ mme accurate approach does not a pnon fix a ccrt,un set ol angles On 

the wntrary, It IS supposed that the sprn structure rs deteunmed by the t'xtetnal 

nMgnetic field \Vhenewr a non-zero flux appe.1rs, fh and (k are chosen m snch a 

""•IY that the totnl enetgy becomes a mmrmum Thetefme, the angles nught be,, 

functwu of <I> A tri,\1 to obt,un nmininuzatwn wrth the help ol dern·,tt.I\'<'S le.tds 

to long, wmbersome equatwns Thus, a qnalitatn·e chscnssron ol the energy IS 

m•cessary 

Il one otat ts such ,\ dtscusswn with the case ( 1 = (2 = 0 and cos ( ~ .;~,) = 0 

then the mnnmal enetgy is deternunecl by 

1 I I (1,2) E, = 2 (a 1 + az- ar - a2 ) +Er ; 

Fm both of the posstbtlittrs a 1 < r11 and a 1 > a 1 only one angle remmu~ Heuce, 

tt l'> \\'tthont loss ol generahty sufficient to perloun ,, mtmmizatwn of a 1 "ith 

tc,pct t to flt, because then a1 < a1 ts .tutotuattc,\lly fulnllcd. The tesnlt of this 

mtmnnzatwn is 01 = 3I The next t\\'o 5tcp~ ,ue to drop fitst ol <11l the eoustmint 

cos(~ ,;~J = 0 and t\\'O allow later non-ZPto ,-,dues ( 1 = (1 = ( Lookmg at the 

enf•rgv 
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E, = ~6,(smlh +sin8z)cos( 

1 
6 2(sm81 -sm8z)2cos2(+1612cos2(

2
" .!.) cosz(

81 
-

112
) -. 

2 ' N <I>o 2 2 

-16t2sin2(
2

" .!.) sm2( 111 - 82 ) sin2( + E(l,2) . . . N <I>o 2 2 F ' 

one can see that the flux mmimizes the energy even farther and most of all if 

81 = fl2 On the othet hand, the ( .1ngle leads to an mcrease 111 the energy because 

I (os Cl ::; 1 and because of the minus stgn 111 f10nt of sm2 
( Tins is les~ apparent 

but also true for (t =f. (z. 

Hence, to choose flk and (k in such a way that the total enetgy becomes a 

minuuum means to have 

Tins tesult leads flux-mdependently to the energy 

E = -~,- 2tcos(~ :J- i~c + ~ (~~ + ~;). (5 19) 

Fnrthcunorc, the s,tddle po111t for the mean fields is ~c,o = '~/ and ~ .• ,o = 

~ It leads, stmtlatly to the previous case, to the non-intetaction energy E = 

-?t cos( 2rr .1..) 
- ' N •l•o 

5.2.3 Two Particles / Two Sites (M= 2, N = 2) 

The prenous two cases "·ere not ~ery mtere~tmg because the existence of only 

one p.trticlc does not allow any 111teractwn This ts different !01 the Situ,ttiOn 

"Inch 1~ now under consideration. Therefore, it IS also not possible to ( ombme 

the ~olutwns for one parttcle to a solutiOn for two particles By c<tlhng 

one obt,uns from (59) the follmnng genetal equ<1t10n 

t [2,8~ (,82lx - .Bx rz) (wl + Wz) + 2,3; (,Bilx - ,Bx ll) ( IVt - Wz) j 

t(rx+l + lx-I)(wl ± Wz) 

+ at.B~(.Btrx- .Bxrtl + a2,B;(.Bzrx- .8xr2l + axrx + E?'
2
llx 
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which leads to the set of equatwns 

'!: = 1: 0 - rt[-2tl3~13z(Wt + Wz) + 13213zaz + !!t + E?'2)- E] 

+ rz[+2t13~131 (wt +wz)- 2t(wt +wz)- 132131az] 

0 - 11 [+2t132132 (wt -wz)- 2t(wt -wz)- 13;132at] 

+ /2 [-2t13213t(Wt- wz) + 13~131 at + a2 + E~'21 - E] 

119 

(5 20) 

Pwnded that the two '"m·e functiOns /, 13 are distmct, the ex1stcnce of a non

tm·ial solutwn is equn·alent to the condition 

0 = [-2tl3~132 (wt + wz) + 132132az + a1 + E?'2)- E] * .. 
* [ -2t132131 (wt - wz) + 13~ 131at + az + E?'2) - E] 

[+2t132132 (Wt + Wz) + 132131 az] * [+2t13;131 ( Wt - Wz) + .0; 132ntJ, 

fot wluch also the normahzation conditiOn J.Od 2 + JI32J2 = 1 ts used t\\'tce If one 

multtphes these brackets 1t tmns out that many teuns cancel e.1ch othL't le,n mg 

the followmg equatiOn for d1scuss1on 

0 = 2tl3;132 (wt + wz)(at + az + E?'2)- E) 

2ti32131(Wt- wz)(al + a2 + E?'2)- E) 

+ I131 J
2at(at + E?'21

- E) + l132 l2az(az + EY'2)- E) 

(5 21) 

Just lookmg at the imagmary p.lrt of equatiOn (5 21), one h.1s to deal \\'ith 

0 = 2t !m (13;132 ) (w1 + wz) (at + a2 + E~'2) - E) 

2t!m (13;131) (w1- wz)(al + n2 + E?'2)- E) 

0= (5 22) 

The equ,thty is satisfied 1f one of the factm s 1s zew Th,tt le,wes the possi

bihties that the1e is no phase chfference between '-lt and 132 , th,tt ,t speual spm 

configuration is realized or that the energy has a cert.tm Yalue The st,ltement 

about the energy ts of particular mtetest, and used for (5 21): 
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one can see that E, = a 1 + a2 + £?•2
> is also a solutiOn for the whole equation. 

Tlus result makes it much easter to find also the second energy solutwn of the 

quadratic equation (5 21), written in the form 

0 = (E- £?·2>)2 + (E- £?·2>) [2t,6~,62 (wl + w2) + 2t,6~,61 (wl -w2) - . 

. . . -1.6d2at -l.62l2a2- (at+ a2J] + { ... } 

= 
[ .] = -(£1 - £~·2>)- (E,- £?·2>) = Eif'2)- (at+ a2)- E, 

Hence, the two solutwns for the energy are 

E + + £ (2,2) 
' - ai a2 F 

E, 2t,6~,62 (Wt + w2) + 2t,6~,61 (wl - w2) -l.61l2at -l,62l2a2 + £?·2
> 

(5 23) 

The next step IS to determine the wave functions belongmg to these energtes 

If the obtained energies are plugged into the equatwns (5 2 3) one ends up with 

two (per constructiOn dependent) equatiOns For E = E, 1t ts not dtfficult to see 

that they ate fulfilled for 

.Bt = ,62 = _1_ e'X• and 'Yt = -12 = ~- e'X' 
J2 V" 

(5.24) 

01 \·H..e \"E'rScl 

For E = E, the situation IS much more chfficult. Lookmg back at the dts

cusswn of equation (5 22) one can conclude that in tlus case there is no phase 

chfference between (31 and ,62, prov1cled that not a spectal spm configmatwn IS 

re,thzed such that 1c2 = 0 \Vithout [o<;S of gener,thty one can therefme assume 

that the components of (3 (and 1) are re,\1. Then the eqn<ttwns (52 3) c,ut be 

w11ttcn as 

11 [2t,61 (w1 - w2) + .62ad = 12 [2t,62(1Vt + w2) + ,61a2] and ,tccmchngly 

.61 [2f'Yt(Wt- w2) + 12at] - .62 [2tr2(1Vt + w2) + 11a2], (5 25) 

whete tt has been used that non of the components 1s zero Toget.het \nth the 

nmm.thz,ttwn cond1t10ns one now has four mclepenclent equ.ttwns whtdt c,tn be 
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combined in vanous ways. Eventually, all these possibilities lead to the same 

quadrat1c equatwns, which are· 

0 = z2 [16ew; + (a1 - a2)2]- z [16t2wt(Wt + w2) + (a1 - a2?] + 4t2(w1 + w 1 )
2 

0 = Z2 [16t2wf + (al- a2)2]- Z [16t2!Vt(Wt- !V2) + (al- (L2)2] + 4t2(7Vt -u,·1? 

Hcte, z represents !3? or 'Yi, and z stands for !31 or 1i. 
The solutions of these equations are 

Z± - .!_ { 1 + 16t
2
w1 w2 ± 1 

+ (16tlwiJ· (16t2wi) _ (16t2wi) + (1Gt2w~)} 
2 p p2 p 

Z± 
1 { 16t2WtlV2 1 

+ (16t2wf) (1Gt2w~) _ (1Gt2wf) + (16f2wJ)} 
- - 1- ± 

2 p p2 Jl 

(P - 1Gt2wr + (a 1 - a2)2) (5 2G) 

They IMve the wanted property z+ + z_ - 1 - z_ + z+ \Vh1ch allows the 

combmations 

(5.27) 

,utcl smularly for 1 However, clunng the ptocess of tran:,fmnung (5 25) to the 

qt~<tchattc form the whole equatwn has to be squared once Smcc tlus ~~ not an 

cqnivalent transformation, not all of the suggest solutions teally have to fulfil! 

(5 25) A thorough iuvest1gatwn mto tins questiOn has been done, hut. is not 

worth repe<ttmg because of even btgger problems mentwnecl in the next section. 

5.3 More Appropriate States 

5.3.1 The Problem of Orthogonality 

Lookmg back at the pwblem of 1 parttcle /2 sttes, we had 1n (5 17) t\VO cl1fferent 

solntwns 1' and 1' for the wa,·e functiOn These two mne functwns are not 

nccessauly orthogonal On the contrary, 

1 , 1 , 1 + r 1 r, 1 
ltlt+l212= ~ ~- ~ 

V 1 + r~ V 1 + r~ J 1 + r~ V 1 + ri 
(5 28) 
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and orthogonality is only satisfied If w2 = 0 In this specml case, which is for 

instance fulfilled if ( 1 = (2 = 0, the solutiOns arc identical with those of the 2 

Jl<li tides I 2 Sites problem because 

2 _ 1Gt2w? Jl6t2w? +(a I- a2)2 ± (ai - 112) Z± 
r, o - (-;:::.~~====~--:---~~2 = = -

( Jwt2w? + (a1 - a2)2 'F (a1 - a2)) J16t2w? +(a I - a2)2 'F (a I - az} z'f. 

For all other angle configuratiOns our Hartree-Fock calculations for the 1 par

tide problem do not lead to two orthogonal solutiOns Hence, ,tttempts to obtain 

<t solutiOn for the 2 p.trticle problem wluch consist of a combiiMtiOn of t\\O 01-

t hogonal w.tYe functions are also wry hkely to f,u[ 

Theiefore, we hilve to reconsider the stiategy for the choice of the st.ttes In 

the piecedmg calculatiOns the more geueral two-body state 

h.ts, in ,J kmd of separation ansatz, been split in tlie fotm 

If tlw, step together wrth the normahzatwn condit.ion L: b;'J2 = 1 am! the OI-
' thogonahty constramt L:'Y;''Y;' = 0 for ni =/- n 2 I~ performed, OIH' has two 

• 
mdependently behavrng particles in mmcl Howe' er, tins IS not a u~eful concept 

m the case that there is an mteractwn between particles. Due to the mtcractwn 

there nught ,1ppear new energy [e,·eis winch are not sunple combinatwn~ of the 

eneigie; of smgle particles The waw function need'i to be tre.tted «S .1many-body 

pwblPm 

The solutions for the 2 particles I 2 sites problem on p.tgc 121 cannot be used 

lwcau'e they arc in general not orthogonal and, thus, contr.tdKt an assumption 

"Inch i'i appaiently \\Tong. It IS ncce'iSary to forget about the orthogonality 

eou,ttmnt ,md to pet form the c«lculatwns ag,un That means that the evaluation 

of the H.trrnltoman (5 5) has to be alteted, aud consequently, ,J mote general 

expre,sion for the Hartree-Fock equation {5 !J) ha, to be found. 

For the expectation value of a typical opetator without usmg otthogonaltty 

,J compilct notatton shall be used It anses naturally when such operatot chains 
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ate fully contracted and makes use of an auxthary qnantum number no for which 

the w.we function is ')'~0 = o,,k. Then 

,,, ,n)'I/J Jcl,tck+l,~ I 'I/J)n 1, ,nM 
1 p(O);'O 

_ "' "' ( -1)sgnp+l')'n1• 'Yn,u • ')' "ol1) 2 L.., L.., ]I • • • J U ]I 

J1, ,JM pEP( M+!) 

0,~c• (,., ,n)'I/JJ f. cl,tck+t,~ 1'1/J)n,, ,nu) 
lT k=l 

1 N Jc=< p{O);'O - , 

_ ? 2:: 2:: 2:: ( -1 )sgnp+l/';~1• . • 'Y;'; 

~ k=lJ!. ,J,u pEP{Al+l} 

- ~ f J~X 2:: ( -l)sgnp'Y;,'* • 

4=1 J!. ,JM pEP{ AI} 

and the sum over all permutations cannot be reduced fm ther 

Hc>nce the ')'-problem has a much more c.omphcated structure than (5 9) 4 • 

Jc~T 

E 2:: 2:: ( -1 )'g""'Y;,''. 

11, ,)M pEP( M) 

1\ Jc = 1 p(O);'O 

_ t 2:: 2:: 2:: ( -l)sgnp+l/'~1* -· ne 
. ~'x· . 

k=lJ1, ,;,u pEP{Al+l} 

{ (2" <I> ) ek ek+l (2" <I> ) • ek e,.+l • cos -- co~-cos--+ cos -- sm-sm--co,((t.-(k+t)-
N <I>o 2 2 N <I>o 2 2 

(2" <I> ) ek ek+l . (2" <I> ) ek e,.+l . } - 'Ill N - cos -2 Sill -- Slll (k+l + Sill -- ~Ill - cos -- '111 (k 
<I>o 2 N <I>o 2 2 

/\' Jc=< p(O);'O 

- If L 2:: 2:: ( -1 )sgn.,+ 1')'~1 * . -y;'g • 

!=lJ1, ,J.If pEP{Al+l) 

{ . (2" <I>) ek ek+l (2" <I>) o,. . o"+l • sm N <I>o cos 2 cos 2 + sm N <I>o Sill 2 sm 2 ws((k- (t.+t)-

(2" <I>) ek ek+l (2" <I>) • ok 11,.+1 . } +cos N <I>o cos 2 sm - 2- sm (k+t - cos N <I>o sm 
2 

cos 2 Sill (k 

N Jc=< p(O);'O 

+ ~s 2:: 2:: 2:: (-1)sgnp-y~1' " (M) n (0) 
"' " "' " sill e cos ( . 'J.u '" . f.. 1.. 

!=lJ1, ,J.If pEP(AI+l) 

N Jc = t p(O);'O _, 

- ~~. 2:: 2:: 2:: ( -ll'gnp+l-r~1 • · -r;;: 
!=1 11. ,JM "EP(Al+l) 

+ ~ ( .:.l~ + ~n J~· I: (-l)'g""-y~1. 
]1! I] M pE'P(M) 

(5 29) 

'
11£ m the follmHng sums p(C)::::::: 0 then 8,c,J.. appears, "hi<h togethe1 \\Ith 6,c x leads vta 

t1.r 1. to the effect thclt the sum m er k vamshes and thctt all angles hm·e the m<lex x 
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For the special case of 2 particles these rather chfficult equations c<~n be re

duced to the less cumbersome expresswn (C = 2). 

N 

E I: r;1t• { 1;:~r~c _ ,~c1;1} = 
Jt=l 

no nt ne ne no ne nt nt ~ -( ) ( ) } { ( 
?rr <I> ) 

• • - "1;1 'Yx 'Yk+I + 'Yk-1 + "1;1 'Yx 'Yk+1 + 'Yk-l cos N <I>o . } 
N N 

t '""' " n1 * { n1 no ( ne ne ) ne no ( nt nt ) l L., L., 'Y;1 "1;1 'Yx 'Yk+I - 'Yk-1 - 'Y]l 'Yx 'Yk+I- 'Yk-1 - · 
k:::;;lJt=l 

no n1 ( ne ne ) + no ne ( n1 n1 ) } { (27r <I>) } · · ·- "131 'Yx 'Yk+I- 'Yk-1 'Y;, 'Y, 'Yk+I- 'Yk-1 sm N <I>o • • • 

N N 
+ ~ "'"' ovn1• {-,nloynoovne -ovneov"Oovnl _oynooynloynG +ovnoovneovnl}'llliJk COS(k 

S L..., L.._, 'Jt IJt IX Ik IJt IX lk 1]1 IX lk IJI IX lk 

k=1]1=1 
N N 

t.6. '""' """"' ...... n,• {"'Vnt.....,no""Vnc _ ....,nc....,no...,nt _ "'no'"Vnt'Vnc + .....,no.....,nc"'Vnt} 
CL..., L._, 'Jl IJt IX ik l]t IX ik 1]1 11: lk 'Jt IX lk 

k=1Jl=1 

For the sub-c<~se of 2 sites one obtains by 

• talhng agatn ...,,;c =: 'Yx and r; 1 = {3 1, 

• keepmg in mind that "(~+ 1 = 'Y~- 1 and 

• neglectmg normalizatiOn condit1011S for the smgle pnrticle5 

the followmg set of equatiOns 

Eh,. (i3j/31 + !3ii3z)- /3, (i3i'Y1 + /32-yz)} = 

2t {/3j (i3z'Yx - i3x -12) ( W1 + Wz) + /3~ (/31 'Y, - i3x 'Ytl ( Wt - w2)} 

2t{'Y,+I (/3j/31 +i3~/3z) -!3x+I (i3i'Yt +/3~'Yz)} (w1- (-1)'1Lz) 

+ a1i1i (i30x- i1x'Yrl + az/3~ (i3l'Yx- /3,72) 

+ a, hx (J3j/31 + i3ii3z)- i1x (i3i'Y1 + i32'Yz)} 

2i~c hx (/3j/31 + !3i/3z)- i1x (i3i'Yt + i32'Yz)} 

+ ~ ( ~~ + t.;) b, (/3ii3t + f3~{3z)- f3x (f3i'Yt + f32'Yz)} 

'jE,en tf they wete used, the tesult "ould be the same 

(5 30) 
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x=l 

0 = l't [- 2t/3;!32(w, + wz) + 2t/3;!32(w, + w2) + az/32/32 + a,/32/32 -

-21_j.cf32/3-z + ~ (A~+ A;) /32/32- E/3i/32] 

'L = 2: 

+ 1'2 [2t/3;!3z(w, + wz)- 2t/3j/31(w1 + w2)- a2/32/31- rq/32/31 + 

+2t_j.cf32/3, - ~ (A~+ A;) /3j_/3, + E/3j_/31] 

0 = l't [2t/3j_/32 (w,- wz)- 2t/32/32(w,- wz)- cq/3;!32- az/3;!32 + 

+2t_j.cf3;/32- ~(A~+ A;) 13;132 + E/3i!3z] 

+ 1'2 [- 2t/32/31(w,- w2) + 2t/32/31 (w,- w2} + a.,/3;/31 + a2/3j,61-

-2l~c/3;/3, +~(~~+A;) /3j/3,- E/3j/31] 

Snrpusmgly, these two equatiOns can be sunphfied a lot, le<~Jmg to 

0 - (a,+ Oz + E?'
2
)- E)/)~ (!'1132- 1'2,61) 

0 - (a,+ az + E?'2)- E) /J; (!'1/)2 - 'Y2/l1) 

125 

(5 31) 

The result offets two po'istbthties One is that the energy of the system has 

the value 

') 

E = .c., (sin a, cos (J +Sill l}z cos (z) - 2t.C.c + ; (.c.~+ .c.;) ' (5 32) 

The sadJle pomt appwxunnt10n leads wtth a, = a2 = 'f and ( 1 = (1 = 0 to an 

enetgv E = 0 Tlus IS exactly the value which IS obtamed for nonmteracting 

Jl<trttdes <it the begimung of tins paper m (2.31) 

Tlus solutwn is fm thermore the same as the first of the solntwns m the case 

\Yhen an orthogonahty 1s useJ (Since the conespondmg 11'<1W hmctwns 11ere 

m thogonal any11·ay, tlus 1s rea'ionable) Howe,·er, in dtfference to the calcnlatwns 

there, 1t does not giw any constraints what so e,·er for the chotce of the w.we 

functiOn Apparently, the given energy value IS highly degenerated 

The second posstbility, 'Y = /), seems to imply tl1<1.t any energy v.tlne IS al

lowPd becnnse the nght hand &ides of the eqn,ttwns .tbove ate zero mdcpendently 
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of the value for the energy. However, this possibihty contradicts normalization 

conditiOns and is therefore not allowed. 

5.3.2 Comparison with Bethe ansatz 

In the papet of Kusmartsev et al. [14] the same system has been soh eel \\'lth the 

help of the Bethe ansatz Here for the wave function the expressiOn 

(5.33) 

IS used, wluch gi\·cs together With the Bethe equations the followmg set of equa

tiOn~· 

M ( ) 
<I> 1 tsmk - >. 

Nk1 = 2rrl1 + 2rr<D- 2 L arctan 4 ~ (J 
0 (J=I 

-2 f: me tan (4 t sm k1 - A(J) = 2rr J(J + 2 i: <~rctan (2-"(J ; >.,.) 
J=l U n=I 

The qu<tntum numbers !1 and J(J obey the equatwns 

J 
_M- !'.ft+ 1 

(J-
2 

(mod 1) 

and have to be adJusted ~uch that the energy IS nnninuzed 

For one particle (!1! = 1) It IS. 

Nk - ?~..2. 
- -11<1>Q 

} 
27r <I> 

<:===> '- = N <I>o 

Theiefore, the solutiOnis that of a ftee paiticle \lith flux Tins IS cle<tr because 

fm ,, Mngle pat ticle there IS no mteraction 

is 

Fot two particles (M= 2, Mt = 1) and a sufficiently small flux (I.;~~ I < ~) tt 

1 <I> ( tsmk - >.) .Vk1 = 2rr- + 2rr- - 2 cUCtan 4 J ; 
2 <I>o 

<I> 
27r

ci>o 

~ ( tsm!.1 - >.) -2 L- ,uct,tu 4 U = 0 
J=l 

( 
t;iuk2- >.) ( tsm!.1- >.) 

= atct.au 4 U - atctau 4 U 
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= 2 a1ctan = 2 ,uctan (
4t (smk2- sink1)) (4t sin( k,2b) cos (k'2k')) 

2U U 

= 2<ttctan( 
0 

) 
· sm(¥) 

with u 
c = (1 •!• ) 

4tco~ ";• 

If the number of sttes is N = 2 then the Situation ts eqmvalent to th,lt we 

h<t1·e just stuched. Kusmm tsev et al found out tl1<1t it is for tlus case poss1ble to 

ohtam an exact solutwn. Smce 

one obtams the following expression for the wave vector 

( 
e .~ <I> 

k1,2 = ± arccos - 2 + y "4 + 1} + 7r <I>o 

and for the ground state energy 

Eg10und = -2t (-~ + · ~ 
2 V4'') I sm-ternt'l c.ancel 

tU ( 4( 4t )2 cos2 ( 7r :· ) 
-1+\ 1+ 0 

4t cos Hro) U2 
cos ('/[.!.) 

<I>o 
= 

= ~ (u- \ (u) 2 
+ 1Gt2cos2(

2
'/[ .!.)) 

2 2 2 N <I>o 
(5 34) 

The expression for the energy obtamcd mth the help of the Bethe ansatz has 

much more m common With our result for 1 ]Ml ttcle / 2 sites than with the re,ult 

for 2 particles For mstance, for the c.hoic.e 

N=2, J1I = 2, 
u 

6., = 2' 

the g10nnd state energy (5 17) has the foun 

E = ~ (u - \ (u)2 
+ 1Gt2 coo;2 (

2
'/[ .!.) ~ 

2 2 2 .V <!>0 2 
I 

u 
+-

2 
(5 35) 

This mchcates another ptoblem of the states uo;ed so f,\r The 1vm·e fnnctwn 

fm what 11·as called so far "one part1de' has the !ollowmg strnctme 
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The companson with the Bethe ansatz calculations m essence shows that these 

kmd of states mclude already a pa1r of particles, a mixture of a up-spin <tnd a 

clown-spm part. The problem could be that both parts ha,·e exactly the same 

we1ght 'Yx, for each s1te For this reason, derivati,·es are sens1tiw to both parts 

at the same time Therefore, the up-spm pm t influences, or one 1mght even say 

mteracts w1th, 1ts 0\Yn clown-spin part. 

The pair cha1acter becomes even clearer 1f one )liSt looks nt the noJmdhzatwn 

of a two-particle state 

tJ ,tz 

for N = 1 

fm N = 2 

..\.situation of 2 p,u t1cles I 1 site 1s quantummechaJnc,tlly allowed, but leads m ou1 

cl<•scnptwn to a vamshmg wm·e functwn In the 2 s1tes sit nation the wa' e fnnctwn 

vamshes if 'Y = {3 Agam, tlus happens "Ithout the nece~s1ty accmclmg to the 

Pauh pm!ciple Furthermore, the 2 pm ticles I 2 sites calculdt!Ons m snbscction 

j 3 1 led to only one eneigy, which ,tlso indJc,ltc> thctt actually ,1 tom-particle 

p10bl<•m has been tieatecl 

\\'<> sh,tll show next that all these t10ubks c<~n be solwd If we forget ,tbout 

the assumption that up- and down-spm pa!tJcles can be handled mth the same 

"'eight. Instead, both spm dnectwns should h,\\'e mdependent "·,we functions and 

a no1mahzatwn shoul<l be applied only fm their wmbmatwn Not Ie,tst thank> 

to the Zeemann effect such a step seem~ to be Jea'>Oil<lble 

Tins most gem•ral \\'d)' of expressmg the w,\\·e fnnctwn h,ts ford single particle 

the following form. 

N N N 

l7jJ) = L'ljJt(z)c!.tiO) + L'ljJt(z)c!.tiO) = L L 'ljJu(z)c!,uiO) 
t=l t=l t=l n-=j,.J. 

It 5hould be stressed agam that 'ljJt and 'ljJt ,ue now t\\·o (almost) mdependent 

fnnct.wns This ,tlso mcluclcs the case thdt the pa1 tide has ,t fixed spm with no 
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possibility to change it, if for instance 1h = 0 is chosen. HO\Yever, the notmahza

twn condttion 

(1/JI'I/J) = I:;I:;'I/J;(J)'I/J"(z)(Oic1,~cJ,u !O) = 2:: {11/Jr(zW + 11/J~(zW} = 1 
"·1 lT,1J 

imphes that the two functwns still haw something to do with one ,1nother 

A straight fot ward generalization to !If particles has the following lot m 

(5 36) 

These kmd of states offer vanous posstbthties. One posttJYe consequence is that 

most of the mentioned problems do not anse any more For instance the abo,·e 

studied case of 2 particles becomes no"· 

1 

cg I:: I:: {lt/J;;(zt)n'I/J;;(z2)1
2

- [1/J;;(z2)]*[1/J;:(,J)j''I/J~;(tJ}t/J;;(z2)} 
lt,tz O't,crz 

There are the positive contnbutwns (tt!tt), (HI-\..1.), (t-1-IH), (HI-l-t) ,tncl the 

ncgatm contnbutwns (ttl-\..1.), (Hitt), (t-!.IH), (HIH) to the owdap, allCl there 

is, in general, no need for them to cancel each other E,·en for only 1 stte 

I:: {11/!:;1
2

11/!;;1
2

- [1/J;;]*[t/J;:]''I/J;;'I/J~;} 
0"1 ,0"2 

has a non-zero value for almost eve1y configuratiOn If the fw,t pat t1cle lws a 

ccrt a in tat to of the up-~pin and the down-spin "·eights, 1/J~: / !/-~;, ,,n ,ulntr<lry 1 ,ttJO 

1/J~t N·~ff for the second parllcle is posstble As mentioned bcfme, tln' llldudes 

a combni<ltton of ,1 pure up-spill and a pme down-spill palt.tclc HoweYcr, 1t IS 

enough tf one p,uttcle "shows the up-spill character mme .. than the other one 

Only tf the ratiO IS for both part1cles the same, the \Yave functiOn vamshes ag,tin 

.-\ httle bit problemattc 1s the question of normahzatwn The 1emmks of the 

prcvwu<> subsectiOn have led to the conclusion that wm·e fnncttous of dtffetent 
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p,trticles 1ntlun the same state cannot necessanly be assumed to be or thogonal. 

Thus, the negatrve contnbutwn to the 2-partrcle overlap above are not zero Nor 

do the vauous terms of the sl,\ter determmant m the many-partrcle case 1·am~h 

Unfortunately, this freedom of the system also effects the normahz,ttion of the 

single particrpatmg fermwn If condrtions hke 

L {11/J;.''(zAW + 11/!~'(zAW} = 1 
•• 

"·ere maintamed, the identrcal peunutation m the sl,tter deternunant would al

re<tely be equal to unity, whrch implies the orthogonahty for the remaimng terms 

which should be m·orded 

5.4 Again: Limited System Size 

The dern·atron of the Hartree-Fock equatwns rs agam very simrlar to the denva

tron m SC'Ctron 5 1 Apart from the greater freedom of the w,n·e ftmctton, the 

main drffcrence rs the fact that all denvatrves are noli' taken wrth re,pect to a 

p<trameter [1/J~C(x)]' whrch also has a spm mdex v Howe1er, this spm mdex 

can be treated very srmrlar to the srte mdex x and does not make calcnlatwns 

qtmhtatrvely more drfficult 

For the expect,lttOn value of a typical operator the same compact notation as 

aht'ady mtroduced m the prenous subsectron shall be used. The wave function 

wrth the quantum number n0 rs now a product of t\\·o Kronecker delt,ts, one for 

the srte and one for the spu1. If for instance the operator product cl.tc~+l,.l- r~ 

considered then 1/!~0 (z) = 8,,,8u,t Hence, 

= (5 37) 
,nAf 

p(O);'O 

c~~ 2:: 2:: 2:: (-llsgnp+l ['tP;:(Jrl]' ... [1/J;::(Jul]* * 
Jt, ,J/If u1. ,a,,r pE'P(llf+l) 
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o[1,&::(x)]' c" ,n)1,&lcl.tck+l,~ l1,&)n,,.,nJ = (5 38) 

Jc=x uc=v p(O);<O 

ex~ :L :L :L (-1J•gnp+l[1,&;:(Jd]*. 
)1 1 ,)/LJ 0'1, ,UJU pE'P(M+l) 

me the kmd of expresswns which now appear in the Hartree-Fock equatwns The 

H,umltoman is still the one given in (55). It shall be evaluated now for particular 

cases 

5.4.1 One Particle / One Site (M= 1, N = 1) 

For one particle one h,ts to deal WJth the followmg denvatives: 

a 
a[1,&:c(1:)]* (,.c(1,&11/I),J - 1,&~c(1:) 

o[1,&~:(x)j* (,.c(1,& ick,A+J,u' 11/;),_J = ox,,ov,u1,&;P(k + 1) 

o[1,&::(1:)]' (nc(t/JI]~:<:k,A+i,a' l1,&)nc) Ov,,1,&;f(1: + 1) 

which gives the followmg H,u tree-Fock equations:6 

E1,&v(1:) = - t "\' {il "'' , (1: + 1)e ~~· ·~o + R* ·1• , (·t - l)e- ~~· .;~o} 'L- x,vu' 'Pa -r-l,t;u' !.f/a ,, 
(I N) ( ~z <I> ) -+ Ep' 1,bv(x) - ~s + JVZ <I>o <OSBx (ov,dt('l.)- Ov,t 7/~( t)) 

+ ~-Sill ex { 6v,t 1,&~(x)e-•<· + Ov,.j.1,&t(:L )e'<·} (5 39) 

For only one Site this simplifies to the two equ.<tions (for 11 =t and v =.J. respec

tm•ly)· 

0 = '1/•t [-2tcos(2;ri,:J + E~·i)- ( ~. + ~z ,:J coslh- El +.,P.1. [~,Mnll1e-•<•] 

0 = 7/t [~. smiiie•<•] + ,P~ [ -2t cos ( 2;ri :J + E~' 1 ) + ( ~. + ~z :J cos (i[ - E] 

6The mdex for the quantum number 1s om1tted 
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If this system of equations should have non-tnvial solutwns then a quadratic 

equation in the enetgy has to be fulfilled The two solutwns are 

(5 40) 

mth the ground state enetgy 

( 
• <1> ) gh2 <I> 

E = -2tcos 27n- - ---. 
<I>o mea2 <I>o 

(5.41) 

It will become clear soon that It IS reasonable to rewnte the same system in 

a matnx form. For brevity the following two terms shall be defined 

(N) ._ .6.z <I> • 
1\,,z - .6., + N2 <I>o' 

(N) _ ( 2711 <l> ) 
/\hopp - -2t cos N <I>o 

Hence, 

(5 42) 

\\'lth 

H(t,t) = 
( 

A( I) R- A (1) R- ) ( A( I) B I' B -l(l "hopp I,tt "hopp I,H + - "s,Z COS x '-"s Sill 1 e 
(!) - (!) - 1 • ->(! (I) 

/\hoppR1,!t AhoppRI,H .6., Sill (ixe .\,,z COS (}x 
) (5.-!3) 

5.4.2 One Particle / Two Sites (M= 1, N = 2) 

For 2 sites the equatiOn (5 3!J) IS still Yahd. Unfo1tnnately, the argument~ which 

lPd to w1 and w2 in section 5.2 2 are not apphcablc, since it i~ not 5ummed 

a.nymore over all four matnx elements of R. However, the properties of R for an 

a.tbttrary number of sites Rk.tt = Rk,H and Rk,H = -Rk,!f and p,lrttcularly for 

t"o sites. R1.tt = Rut• R1.tt = R2,tt• R1,t< = -R2,tt, Rt,tt = -R2,H ~tdl a.llo"' 

wnphficatwns. The most com enient one is that fo1 any spm combmatwn 

R:J..uu' = R t,uu' anc.l Ri uu' = R 1 (1(1' (5 44) 

holds As a consequence the exponenttal fnnctwns m the flnx can be expres'5ed 

in form of a cosme 

Another problem is that the '"aw functton 1/J possesses no\\· 2 x 2 = 4 compo

nents Ittstc,ld of solvmg an equation of fourth order chrectly, the eqn,ltions shall 
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now be wntten as an e1gem·a!ue problem. All equations are expressed with the 

he! p of the followmg matrix 

H(i,2l = 

-i\~~1 cosB1 

.6., smB1e1<1 

(2) -
AhorrR2,tt 

(2) -
AhoppR2,H 

.6., sin 81 e-1<1 

A,,zi'l cos 81 
(2) -

AhoppR2,H 
(2) -

.\hoppR2,H 

Ahorr">RJ,tt 
(2) -

AhorrRut 

-l\,,z cos {}z 

.6., sm B2e1<' 

(2) -
AhorrRI.tt 

(2) -
AhoppRl,U 

.6., sin (i2e-1<1 

1\~~1 cos (}2 

wh1ch determmes the follO\nng matnx equatiOn 

5.4.3 

IPt(l} 

~Pt(l) 

1Pt(2} 

1Pt(2} 

= H(l,2l 

~Pt(l) 

~Pt(l) 

1Pt(2} 

1Pt(2} 

Two Particles j One Site (M= 2, N = 1) 

( 5 -!5} 

(5.46} 

For two particles the denvat1ws (5 38} a1e at least tw1ce as complicated as for one 

JHl t1cle The second particle, the one which does not have the quantum number 

ne shall ,lg.tm be denoted by ,8, allowmg to omit the mdcx f01 the quantum 

numbers Then the follo\\'lng kmd of exptesswns haYe to be dealt Wlth 

D[~Pv~ 'L) r Ct.n,(IP IIP)ni,nJ = C1 { 1/1,( 1:) ~ ~ jJ3,1(J) 1
2 

- J),( 1') ~ ~ J3;(J )t/J~(J)} 

D[Ib;;~(T}j' C1,n}1Pic;Lck+V IIP)n1,J 

er~= L J)~(J) { Ox,kOv,ufi,I(J )1/tn• (k + 1} - J, ,kOv,niP,I(J )J) •• (k + 1}-. 
J ij p(l20)=102 p(l20)=201 

. - 01,f.AuJ3v(:t}I/Ju•(/, + 1} +t51,kO~,u1Pv(x}J)u•(k + 1}} 
p(l20)=012 ,(120)=021 

D[l/!:;~(x}j' (n 1 ,n,(IPI~cLck+l,n' IIP)n 1m) 
- ci{ov,uiPu• (x + 1} L L IJ3~(J )j 2 

- o,,.J) •• ( 1: + 1} L L J3;(J )1/t~(J) - .. 
J ~ J ~ 

- J3,(x) I: J3;(k)~P •• (k + 1} + 1/J,('L} I: J3;(!.,)J3 •• (k + 1}} 
k k 
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This leads to the following Hartree-Fock equatwns· 

E{'I/Jv (x) I: I: 1,8~1 (J) 1
2 

- .Bv(x) I: I: .B;(J )1/J~(J)} = 
J ~ J ~ 

- t I: {nx,vu''I/Ju•(x + 1) I: I: I.B~(J )12 
e '.~· ·~o + .. 

u' J ~ } 

+ n;_!,vu•'I/Ju· ex- 1) I: I: l,a~cJ ll2 
e- '~· .:::, 

J ~ 

134 

+ t I: {nx,vu•.Bu.Cr + 1) I: I: ,a;(J)'I/J~(J)e ',:-' :, + .. 
u' J ~ } 

... + n;_!,vu•.Bu• (x- 1) I: I: ,a;(J )1/J'l(J )e- ~~· :, 
J 1J 

t'I/Jv(x) I: I: {Rk,uu•.B;(k),B,,(k + 1)e ',~' .:;, + RZ-!,uu',B~(J,),B,,(k- 1)e-',~' .:, } 
k u,u' 

+ f .Bv(x) I: I: {Rk,uu' .B;(k )1/J,, (k + 1 )e ',~' :, + Ri.-J,au' ,B~(k )1/Ju• ( k - 1 )e- ';;' .:, } 
k U,<T1 

+ ~ ( ~~ + ~n {1/Jvt-z:J I: I: IP~CJ ll 2

- .BvCx) I: I: ,a;cJ l'I/J,,CJ l} 
J ,, J 'T1 

2I~c{ r,!Jv(.'X) I: I: IP~(J) 12 
- ,8Jr) I: I: ,a; (J )1/J,/J)} 

J 1} J lJ 

(~' + ;~:) {(ov,t- Ov,4.)1Pv(x) cosl1x I: I: 1.811 (1)1
2

-
0 J 1] 

- (c5v,t- Ov,4.),8v(x) cosl1, I: I: .B;(J)1/111 (J)} 
J 1J 

( ~, + ;~ :J { 1/Jv(x) ~ co~!1k (,a;(k),Bt(k)- .Bi(k),B•(k)) - .. 

. . - .Bv(-r) ~cosBk (.B;(k)l/lt(k)- Pi(i,)I/I•(J,))} 

+ ~' { ( Ov,t'I/J> ( 'r )e-''· + Ov,4.1/Jt(x )e''•) sin (ix I: I: I.B,1(J) 1
2 

-

J 'I 

.. · - ( liv,tPt ( 'L )e-''• + Ov,t.Bt(·r)e'<•) sin (i, I: I: ,a; (J )1/I~(J)} 
J '1 

+ ~' { Wv( L) :t sm Bk (,a;(!. ),84- (k )e-•<• + Pi(/, );3t(k )e'<•) -

.- ,Bu{:t) ~smek (.B;(J,)'!jJ•(k)e-•<• + .Bi(k)lbt(k)e'<•)} 

(5 -17) 
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For only one stte these equations simphfy agam drastically. All tetms which 

go with .6., disappear, and because Rtr =RH= 1, Ru =RH= 0 tt is 

( E - E~'1 l) .Bi { 7/>1 .6~ - 7/>~.61 } - -4t cos ( 27r :J .Bi { 7/>1.6~ -7/>~.61 } 
(E- E~'1l) .e; {11>~.61 -7/>1.6~} - -4tcos(27r :J .e; {wA -7/>1.6~} 

The result for the energy ts therefore 

(5 48) 

wluch is almost the sum of the two posstble energy solutwns (5 40) m the case 

tll<lt only one parttcle IS sitting on the site Only the term m front of the mean 

field does not have the factor 2, wluch mdtcates that the mean fields have lngher 

values in the t\\'O-parttcle case. 

The saddle point in this case ts obtained by setting .6-c,o = tU and .6.,,0 = 0 

It IS related to the energy 

( 
<I>) E = -4t cos 21r <I>o + U. (5 49) 

Tlus ('Xptesswn dcscnbes the physical sitnatwn correctly· Both particles have 

the s,une quantum number n = 0 and are stttmg on the same ~ttc The former 

nuplH'S the term for tlte kinetic enetgy gn·en, the l,ttter leads to the l'ffect that 

the potl'ntial energy ts eqmvalent to the full Coulomb rcpnlswn <'nctgy That thts 

has been obtained shows that \\"e are on the ught track 

5.4.4 Two Particles / Two Sites (M= 2, N = 2) 

The st tnatwn of t\\"O parttcles on two sttes ts the one which ts of JMl ttcul,tr mtet est 

fm ns bec.1use tt allows anmteractwn as \Yell .tuon-tnvt,tl dt~tnbnttou The three 

ca~es before can be understood to be only a JHep,u,ttwn for thts t.tsk One can 

m.e now the same Hat t.ree-Fock equat1011 as m the pwceedmg snbsectton ,md the 

~a me ptopet ttes {5.44) of the mattix elements of R as in the snbsectwn before 

The four possible combmations of v =t, .j. ,md :1 = 1, 2 lead to the followmg four 
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equatwns: 

(E- E~'2l) 1/Jv(x) [ ~ ~ li3q(J)I
2

- !3~(q{3v(k)] 
(2) [ - -= 1/J;(1)Ahopp -.Bt(1)Rx,vti3;(x + 1)- !3t(1)R,,vt.Bt(X + 1)- . 

· - i3t(2)R2,tti3Jt)- .B1(2)R2,H.Bv(x) + Ox,2R<,vj L L li3q(J)1
2
] 

J q 
(2) [ • - • -+ 1/Jt(l)Ahopp -,B.(1)Rx,v;.B;(x + 1)- i3t (1)Rx,vt.B-~,("' + 1)-

- .Bt(2)R2,tti3Ax)- !3i(2)R2,H.Bv(x) + r1,,2R,,vt L L li3q(J)1
2

] 

J q 
(2) [ - -+ 1/J;(2)Ahopp -.Bt(2)Rx,vt.B;(X + 1)- .Bt(2)R,,v-i,.B-J,('l: + 1)-

- .Bt(l)R2,tt.Bv(x)- .Bi(l)R2,H,Bv(x) + Ox,!Rx,vt L L li3q(J)1
2

] 

J q 
(2) [ - -

+ 1/Jt(2)Ahopp -/3J(2)Rx,vti3;(X + 1)- /3i(2)Rx,vt.B-J,('l: + 1)- . 

- i3-i(1)R2,H.Bv(x)- .BJ(1)R2,H.Bv(x) + o,,iii<,v-1- L L li3,1(J)1
2

] 

J '1 

+ 1/J;(1)r1v,t [A~~1(cos0J+cos0xl.Bt(l)i3;('1:)-

- ~. smOxe-•<· .Bt(1).Bt(x)-

- ~. smO!e'''.Bi(ll/3;("') l 
+ 1/J;(1)8v,-i, [A~~1 (cos 01 -cos Ox) .Bt (1).8-~, (x) - .. 

- ~s sin0xe'('.Bt(1)i3;('1:)- . 

- ~s smO!e'''.BJ(l)i3t(x) + Ox,l~s smOxe'<• L L I.Bq(J) 1
2
] 

[
' (2) • J q + .Pt(1)8v,t .\8 ,z (cos Ox- cosOJ)i3t(1)/3;('t)- . 

- ~,smo,e-•<·.B!(ll.Bt("')- . 

. - ~.Sill 01 e-•(• i3t (1).8; (x) + Ox,l~s smo,e-•(. L L lrJq(J) 1
2
] 

+ .Pt(l)ov,t [-A~~1(cos0x+cos8J).B!(1)i3t(x)- 1 
q 

- ~,smOxe'<•,BJ(l)/3;('1:)- ·· 

- ~,sm81e-•<•!3;(1J.B-~,("')] 

+ 1/J;(2)ov,t [A~~1 (cos 0, +cos 02) .Bt(2)/3;("')-

• - ~8 sm8xe-•<·,e;(2),Bt(x)

- ~.sm82e'''i3J(2)i3;("'l] 

+ 1/J;(2)ov,t [A~~1 (cos lh -cos Ox) .Bt (2li3t ("') -

- ~8 sm0xe'''i3t(2)/3;(x)- . 

. - ~s Sill 02e''' !31 (2li3t ( 'L) + Ox,2~s Sill O,e•<· L L I.Bq(J) 1
2
] 

[ 
(2) • ( ( ) J q 

+ "'• (2)rlv,t As,Z (cos 0, -cos 02) .e. 2)!3; X - • 
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- 6,sm9xe-•<•f3!(2)/3>(x)- ... 

. . - 6, sm92e-'''!3r(2l/3t(x) + 8x,268 sine,e-•<· 2:2: j/3q(J)j
2
] 

[ 
(2) • J q + ,P1-(2)<1'v,J. -,\,z (cos Ox+ cos02) /31-(2)/31-(x)- .. 

. - 6,sm9xe'<•f3!(2)/3t(7:)-

.- 6,sin92e-'''!3r(2),B•(?:)] 

+ .Pv(?:) [A~~rrLL,B;(k)Rk,uu',Bu•(k+ 1) - .. 
k u,u' 

· ·- (ov,t- <~'v,j.)A~~1 coslix L L j,Bq(JJj
2
-. 

J q 

- A\~12: coslh (,Br(k),Bt(k)- ,B!(k),B.(k)) + .. 
k 

. + 6, ~Sill ek (,B; (k),B. (I. )e-•<• + ,BI (k),Bt(A )e''')] 

(5 50) 

If these equations ,lre studwd carefully one can find some stt uctme in them. 

Espectally, Jt is posstble to rewrite the expresston m ,l comp,lct matnx f01m, 

smular to the cases before Trying various orders, we were able to find a speofic 

structme \:Ve shall present it already in the mOte general case of N sttes smce 

m the two-sttes system some features get lost 

5.4.5 Two Particles / N Sites (M = 2, N arbitrary) 

Looking back at the Hartree-Fock equation on page 134, one c,ut qmddy see that 

the hopping part can be expressed m a more conwnieut foun The first p.trt, 

gn en m the form 

does not mix contnbutions of the ,P-p,trttcle "tth those of the /)-pm ttcle Keeping 

the dPfinttion of the elements of R in (52) ot better m the form 
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m nnnd, tlus part of the hoppmg can be ~xpressed With the help of the matrix7 

0 e'1Rt~ 0 0 e-•/ Hi RN 

e-•IfltR1 0 e'1RtR3 0 

Flf = -t 
0 e-•!flj~ 0 

(5 51) 

0 0 e•lfi+ R N-1 N 
e'IRtR1 0 0 e-•!fi+ R N N-1 0 

in the followmg form 

(5 52) 

IYhere the superscnpts at FH denote the row and the subscnpts denote the column 

of tlus matnx. It is worth noting that the structure of Fu is very s1milar to the 

matnx for the hoppmg part of unrotated tight-binding models as for mstance on 

p<~ge 41 Nevertheless, the ex1stence of the Jot,ttJOnmatuces nnplie~ a qualitat.Jve 

d1ffercnce. It might even be interesting to mYestJgate 1ts effect mclependently of 

the mteractwn part 

The rest of the hoppmg pm t cons1sts of many small matuces w1t Inn a b1g 

m.tt.nx The contnbution 

h,\s till' same Fu-matrix ch,tracter Fo1 the othe1 t1m tellns 

+ t'L{Rx,vu•f3u•(-c+1)LLf3~(J)..P~(J)e'·~·.:, + 
a' J " } 

. + n;_1.vu•f3a• (x- 1l 'L 'L fJ~(Jl.P,,(J Je -';· .;~. 
J " 

+ t(J,( T) L L {nk,uu' fJ;(A )1/Ju• (k + 1)e '.~· :, + R'k-l,uu' f3;(k)1/Ja• (k - 1 )e- ',~' .:, } 
k (J,(T' 

the matnces, wluch are denoted with the symbol p~x, haw the followmg foun. 
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f 1• <(> = N•l>o 

P tx _ 
tJ -

P~'tJ -

Ptx
~} -

P~·~} -

t,x -1 .t.,x -1 t,x 

te•l R1-t.tt 

te•l R1-t,H 

E 

te-•1 R1,H 

-te-•IR,,H 

E 

te•l R1-t,H 

te•l R1-t.H 

-te-•1 .R,.H 
te-•1 R1 tt 

-l.,x 

le'l R1-t,tt 

te•l R1-t,H 

te-•1 R1,H 

-te-•1 R1.H 

E 

le'l R1-t,H 

le'l R1-t.H 

E 

-te-•1 R,.H 
te-•1 R1 tt 
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t,x + 1 .t.,x+ 1 

t,J - 1 

.t.,J -1 

te•l Rx,tf le'l R,,H t,J 
-I..J 
t,J + 1 

-I.,J + 1 

te•l Rx,H le'f Rx,H 

le'f Rx,H 

(5 53) 
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Together with such matrices it is useful to mtroduce a vector notatwn for the 

wtwe functwns. Their components shall be ordered in the following \Yay 

1/J .- ( 1/Jt(1) 1/!>(1) 1/Jt(2) 1/!>(2) . 1/Jt(N- 1) 1/J•(N- 1) 1/Jt(N) 1/!•(N) t 
1/J' - ( 1/J.t(1) ljli(1) 1/J.t(2) 1/!>(2)* . 1/!.t(N- 1) 1/Ji(N- 1) 1/J.t(N) 1/!i(N)) 

dud {3 is defined accordmgly The superscnpt T denotes the transposition; 'ljJ is 

actually a column As one can see, the astensk stands for complex con)ngatwn 

as well dS transpos1 twn. 

Then the matnx character of the two i<~st mentiOned hopping terms is as 

follows· 

{3* PRf3 {3* Pfif3 {3*PJif3 {3* PZJ {3 {3* P}~f3 

{3* PNf3 {3* Pfif3 {3* Pfif3 {3* Pfif3 

P({3) = 
{3'P{;f3 

(5 54) 

{3*P}tf3 

{3* Pf(' {3 . . . . . . . . . •••• 0 • {3* Pftf3 f3*Pftf3 

Such .1 notatiOn allows to exp1ess the whole system of Hartree-Fock equatiOns m 

.t comp.Kt fmm What has been nn est1gated so f.1r is the hoppmg JMrt of the 

H.umltoman which has the following st1 uctme 

E'ljJ ({3'· {3) = Fu1/J ({3'· {3) + ({3' F,ff3) 1/J + P(/3)7/J. (5 55) 

The fact that the matnx of the non-mixed contnbntwn, Flf, .tppt>ms again 

together with {3 IS more than reasonable If one looks at the /3-p.u ticle .ts bemg 

mdependent of the 1/J-particle then F uf3 = E/!{3 IS the eigem·<~luc equatiOn for 

tins p.uticle Hence, {3*Fuf3 = E!l(f3'· {3) Thdt me.1ns th.1t in the case that 

the /3-p.utide and the 1/J-particle can bt> haiHlicd mrlcpendcntly oue ol>t.uus the 

E'ljJ ({3' {3) = Fu1/J ({3' f3) + Ep (!3'· {3)1/J = (£.,7/J + EiJ'IjJ) ({3' {3) 

wluch means th,tt the total energy E is JUSt the sum E., + E/! of the energies 

of tht> t" o JMI tkles In this situation of mdependent p.u ttdes tt .tl~o does not 

nt.tt.tr•t what !dm! of normaliz,\t!Ons dte applied. 
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In this context the condition for independence IS that the mfiuence of the 

matrices P;/ has to vo.nish The terms which are responsible for these matrices 

a1 e given. The first of them contains with 

:L:L.a;(J)1/!~(J) = ({3"·1/J) 
} ~ 

the wctor prod net of the wa1·e wctors which are connected with the two separated 

p,1rticlcs. If 01 thogonality of the waye functwns were assumed this product would 

give ze10 The same sum goes together With the energy E, which is the 1eason 

for the oppemance of tlus term m the P m,ltnx as IWII In the second mentiOned 

term the sums 

:L :L Rk,uu'.O;(k)1/Ju,(k + 1) 
k <11u 1 

are more difncult to handle. One can o.t least ~ay that in the case ol no rotations, 

"hen Bloch w,we functions are solution~, thi~ term also vamshes. The ,ugument 

(~ + 1) of 1/J can for Bloch waYe functions be avoiclccl by splitting of! a Simple 

exponential function So, the non-01 thogonality is appa1ently closely related to 

an exchange energy already w1 thin the hopping part 

\\'hat remams are the terms for the mte1actwn. The terms whiCh are pro

portiOn,\! to j.c and fj (2>~ + 21;) can be taken into conside1atwn by wnting 

E- E~,N) mstead of E. The 1·auous term~ winch go 1nth j., eau be spht into 

tho~e which mix the 1/J-expresswn and {3-expression and those 1duch do not mix 

them 

Teuns mcluchng J.8,1(J)J
2

, these me the terms 

and 

+ j., (o,,t1/J.I.(x)e-''· +6,,.1.1/'t(:r)e'C·) smll, :L:L J.8,1(7)J
2

• 

} 1} 

sho\\· no nuxtnre They eau be added to the Fu matux, "·luch means that a 
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matnx 

0 

A,,z cos IJ1 

0 

h,1s to be defined, which always appears together with Ffl. Tlus notation 1s 

1casonable, because al'io a term {3' FEf3 exists m the same way as for the hopping 

part The two terms in the mteu1ct10n part winch <11e prop01tional to t/!v(1:), 

( ~. + ~~ :J 1flv(:t) ~cos ed!1; (~)f)t(~) - .Bi(k),B. (k)) .md 

+ ~s1flv(x) 2:= sin ek (.B;(k),B.(k)e-l(k + .Bi(k).Bt(k)el(k) 1 

k 

,ue re'iponsible for tlus 
All the other terms appe.u m sm.1ll mat !ices Q~J, wluth can he combmecl to 

a big matrix Q({3) similarly to the treatment for the P~" matrices The structure 

of these new matuccs IS as follows 

Qt'-IJ -

Q
lr _ 
IJ -

Qt'
IJ -

Qj.r
l.J -

t,x .1.,2 

-Ei·N) + cosB, + cosB1 -e-•<z 15lllB:r 

-e•<, sm B 1 0 

-E~Nl_e•<.,smB.r -cosB ... +cosB1 

0 -e•<, sm e) 

-EI!'N)- e-•(, Sin e) 0 

cosB:r -cosB1 -e-•< ... smBx 

E(2,N) 
- F 

-e~~~-.. smB.r 

-e-•<, sm 8
1 

- cosB:c- cosB1 

t,J 
.!.,; 

(5 56) 
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Now the equatiOn (5.55) can be generalized to an expression wh1ch includes 

the interaction. We have found out that the system of Hartree-Fock equations 

h<~s the followmg structure. 

( E- E?·N)) 1/J ({3~{3) = (Fu+Fr )1/J ({3~{3)+({3*(FH + Fr ){3) 'l/J+P({3)'1/J+Q({3)'1/J 

(5 57) 

Smgle equatwns on the other hand, that means the whole exprcsswn on page 

134, c,m be given m the form. 

] ry 

+ ({3*(Fu + Fr ){3) '1/Jv(x) 

+ L L (!3* P:;t {3) 1/J + L L (!3* Q~~ {3) 1/J 
J T/ J 11 

To \\TJte the equatiOns m such a comp.tct w.ty seems to be the only possJblity 

to recogmze the structure within the Hartret•-Fock equatiOns .. -\fte1 ,, thowugh 

study of the mat rice~ the findmg of solutions for the energy as well as the general

Jz,ltion to i1I pa1 t1cles should be possible This st.ttement offe1s the opportunity 

for further im·estigatwns. 

One possibJhty IS to pelform a similar iteratwn as suggested on p.tge 58 Start

mg \\'Ith an assumption for the ,6-pai tJcle, the fowml.t (3 4 5) ptO\ tdes equatwns 

for the ""'·c functwn of the other p.trttcle, 1/J On the other h,md (3 4 5) IS of 

conrsP also trne 1f the role of {3 and 1/J 1s exchanged TheJCfOLe, 1/J c.tn be msertecl 

into the fonnula, and a concht1on for {3 can be obtamed. The procedure has to 

be tepeatecl unttl self-consistency is reached 



Conclusions 

In the present thests we ha'e studied many-body effects m the petststent current 

problem Starting with basic considerations we were able to denve convmcmg 

expre~~ions for the current m normal-metal meso~copic rmgs threaded by a mag

netic flux These results show the single-flux penochctty winch was obserYed m 

expeuments They <tlso conespond well to other authors' findings 

Addttwnally, some intetestmg observatiOns wluch are connected with the 

d<:>u,,\tion were mentiOned. This includes an mhomogeneons charge chstnbution, 

which IS presumably related to Friedel oscillation; it includes the pauty effect, 

"hich relates Fermi statisttcs to flux phenomena; and it mcludes the penod halv

mg due to m er aging processes 

When taking interactiOn mto consideration, rt tmned out that the petststent 

cm rent within our moclelts not mfluenced by the Coulomb tepulsmn It ts neither 

enhancc·d nor suppressed. This contradtcts the u·sults of m,my othet sdenttsts 

and c,mnot be true Smce tins statement was e\·en obtained by an ex<~ct solutiOn 

of the Hartree-Fock equations, It demonstrate~ the wc,1kness of the Hat tree-Fock 

approxunatwn and implies that it is insufficient to use stmple tnal Wd\e functiOns. 

R ealizmg tins, some new tdeas were Implemented m the model \\'e mainly 

turd to improYe the results by usmg HubbaHI-Sttatononc decomposttwn <tnd 

iutwduciug rotated spm-quantizatwn axes lot ewty site. Thete ate ,,uwus pos

stlnhttes to do tins. l\lost of them led to results "·Inch ,ue not tc<ts<mable E,·en

tnally. we found out that the phystcal sttuatwu ts pwbably de,cubed be,t d the 

follmYing steps are performed: First of all, the usual Hubbatd H<~mtltonian ts 

transformed to a path-integral descnptwn After\\·ards the Hubbmd-Stratonovic 

cl<•composition is applied in order to simpltfy the mteractwn term. The rcsultmg 

Hanultoman is evaluated \vith the help of rotated states Usmg rotated ueatwn 

144 
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operators c! '" these states should be in the form. 

and no orthogonahty or normalization conchtions for the smglc-particle wave func

tions &hould be used Aftet the Hat tree-Foe!' equations ate soh·cd self-consistently 

one can try to mmimtze the ob tamed expre;swn for the energy wtth ICspec t to the 

mean fields and the angles of rotatwn, leadmg to a saddle-pomt apptoximatwn 

of the integrals 

Tins procedure ts connected with the hope that certam spm configuratiOns 

allow us to obtam lower energy values than with 01dmary Bloch "·,we functions 

as u&ed m the first pMt of the paper. These spin structme~ "·onld of course 

depend on the flux through the ung Thetef01e, non-tuvml expic,swns for the 

persistent current would be ohtamed. 

U nf01 tunately, It. was not, possible Witlun this mast.ei thesis to gam such re

sults. It tmned out that the suggested procedure leads to long and cumbersome 

('quatwn~ which h,l\'e no Simple analytical solutions. Even for small systems, hke 

t\\'O p.uticles on two sites, no solutwn was fonnd On the othl'I h,uicl \\e came to 

the conclnswn tlt<tt ewry tual to simphfy the equatwns by introducing further 

constuunts leads to results \dudt do not. describe the sitn,lt.IOII piopetly 

The author ts aho ,m·are of the fact that m pnnuple fom mtegrations are still 

nussmg These are the integr,t!s over i.'vlittsubara time, over the mean ftclds, over 

the rotatwn angles and over the Grassmannnumbets The fiist integral could be 

neglected tf no tempetature dependence is a~sumed The second and the third 

mt<'gral tan be treated m a saddle-pomt approxim,ttiou Howevet. for the last 

mtegral sophisticated methods, usually leading to det.enuiuants, me n<'cessary 

N('\·ettheless, It IS the opn11on of the aut.hm that the picseut Jl•liJei IS a g,ootl 

IMSIS for fm ther mYestigations It does not only pronde the possibility to gam a 

<kepet in~ight into the causes of perstst<'nt cunent and the pwhlcms \\'Ith many

body effects The matnx representatiOn of the Hartree-Fock equatiOns at the 

end of the last chapt<'r can also be used to stalt immediately mth numencal 

calcul,ttwns per IteratiOn It ts as~umed th.tt the giYcu c.tse of 2 p.u ticle; and N 

sites <an ea~Ily be generalized to M pat ttdes 
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Appendix A 

List of Symbols 

Physical Constants 

/,/3 Boltzmann's constant ... 
c speed of hght in vacuum .... 
e elcctncal charge of an electron ..... 
h Planck wnstant .. . . . . . . 
h Plnnck <'Ono;tant, reduced .. . . . 
tta Bohr's magneton 
g. Lancle factor for electron ....... . . . . 0 •• 0 

m. mass of an electron 
<I>o elementary flux quantum (Gauss1an muts) 

Common Physical Quantities 

vr . 
11 
T 
(3 

Fcuni ,·eloCJty of electrons on the nng 
<.henu<.al potentml of statistical system 
tcmpewtmc 
111\'CJSe t.emper,ttme 
P,wh spin matrices 
external mag,netic field and its z-compouent 
\'Pctor potential . . . . . . . . . . . 
,my Hamiltonian 

. . 

k/3 = 1 381 X 1()23 k 
c = 3 X 108 !!! 

s 
e = 1 602 X 10-19C 
h = 6 626 x 10-34 Js 
h = h/2r. 
/! /3 = 9 2-!7 X 10-24 ~ 
g :::::::::2 

m. = 9 1oa x w-31 kg 
<I>o =he 

e 

(4 3) 

(3=1//,nT 
(1 2) 

B=V'xA 

hoppmg mtegralm Hubbard and Heisenberg model 
repnlS!Ye Coulomb potentml for adjacent sites in 
He1senbcrg model 

(1 23), (1 2-!) 
(1 23) 

u 
<I> 
T. 

z 
s .. 

on-site Coulomb repulswn in Hubb,trd model 
magnetic flux through the ling 
unaginaty (1\'iatsubara) time . 
JMrtJtJOu function m path-integral !ounnl,ttwn 
,tction of tht> s~ stem (exponent of Z) 
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(1 2-!) 

T = 1t 

(-! 5) 
(-! I) 
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Paper-Specific Physical Quantities 

bl, b .. 
I c ,c 0 

c' k 

I 
c~" 
-t' 
c~,.,u 

a, T/ 
ri, 

s~ 
N 
M ..... . 
Mt, M• .. 
a ...... . 
L .. 
E .. 
I 
r(x) 

Ho 
(• ..... . 

f3;l ...... . 

1fJ~(z) ... 

Cu 
n,(ll,(,) 
R~ 
(} 

(, 
v 
n 

Bose creation and anmlulation operatots 
Fermi cre,ttion and anmhilatwn operators 
creation of a spmless fermwn (ttll chap. 3) or 
a spmor (from chap 4 onwards) at stte k 
creatiOn of a spin fermion at site k 
wtated fermwnic operators . . . . 
indicates the spin of a particle 
occupation number operator . 
spin projPctw on the z-axts ... 
numbet of sttes on the nag 
total number of particles on the ring 
number of spm-up and spm-down pm ttcles 
chstance between two sttes on the nng 
Circumference of the ring . 
en et gy of the system 
persistent current m the nng . . . . . 

func.tton 1duch testucts the ttapped flux onto 
a sufftctent interval, see figure 2 6 
hoppmg pm t of the Hamtltonian 
interactiOn part of the Hamtltoman 
p<lrametet for the ,·ariational wa\ e function 
m the Hetsenberg model 
parametet for the Yariatwnal wm·e function 
m thP Hubbard model (sometimes also used 
for 2nd ]Hrttc!e) 
p,trametei for the Yariational wave functiOn 
in the Hubb,ud model with totatcd states 
p,trantetei for the nmatwnal wm·e functiOn 
in the Hubb,ud model wtth spm-senstttYe 
states 
state m Fock space, determmed hy the quan
tum numbers ni> .. , nu 
noun,thzation constant of,, J1l-pMttcle state 
rotatton matrix for the spitH[U,uittz,ttton axts 
combmation of t"·o rotatwns m (52) 
splwnc,ll coordnutte· col,ttttnde 
sphenc,ll coordmate: longitude 

(1.6) 
(1.14) 

( 4 31) 
a,ryE{t,.J.} 
· I I 
nk = ck,tck,t + ck,• ck,J. 

~k = cl,tck,t - ck,J. ck,J. 

L=aN 

I- -caE 

r(~)=f:-("+t)l 

(2.1) 

(3 20) 

(4 40) 

(5 36) 

diff<'tence of acl),tcent col,ttttudcs 
umt \·ector in the dnectwn 
quanttzatwn axts 

i? = t(llk+l-IJ.) 
of spm- . n = f!(IJ, (,) 
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Paper-Specific Physical Quantities (Continuation) 

<: 11 

ne 
f. 
N, 

1<¥) 

Lagrange multiplier 
SIte and spm m cl ex of the parameter \Yith re
spect to whtch clenYati,·es are taken 
quantum number of this parameter 
sometimes used for the flux phase ... 
number of tune-discretisation steps in a path
mtegral app10ach 
coherent state, eigenstate of anmlulat10n op-
eta tor 

>, Grassrnann number, etgenvalue of anmlula-.,.,u 

w 

\
(N) 

. ~.z 

twn operator 
rot atecl G rassmann number ... 
vector of Qrassmann numbers with compo
nents ~k,u• 6 ,u 

augle phase wmchng number = nnmber of 
spm-rotatwns around the peumcter" hen go
mg ones along the nng 
(fictitious) mean fields over "·luch IS inte
gtated in the Hubbdrd-Stratononc decompo-
SitiOn, belongmg to the charge and spm cle
gtee of freedom respectively 
mochfication of _j., to m·md complex v<1lucs . 

energy constant m Zeemann efl'cct, not a 
mean held (I) 

!=2~..2. 
N <l>o 

(4 20) 

p 89 

_j.~ = 2Ile(I_j.c) 
_j. - .JJ.!L 

Z - meal 

'\. (N) - _j. + ~ <I> 
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(N) 
Ahopp 

anxihary ,·auable for m,ltnx eqn.ttions 

auxiliary valiable for matux cqu,tttons 

anx11Iary ,·auable& . . . . . . . . . 

· s,Z - s Nl •Po 

\ (N) _ _ •)t (2~• ..2.) 
i hopp - - COS N <Po 

a!. . 

E (M,N) 
F •• 

x .. 

fixed (angle independent) enetg~ contulm
twn of the fields 
auxiliary ,·auables .... 
phase of ,1 waw fnnct10n 
Iat!O between the components of the wave 
functiOn for the solutiOns I .tnclll m the t\\·o
Site ptoblcm 
m.ttucef. for ,, clcscnpt10n of 2 p,u tide<> (non
llll\:ecl) 

(3 11) 
(5 11) 

(5 14) 

'·'j '·' r,,o = ""h "'h 

sect 5 -1 5 

P, Q .. matrices fm <1 clescuption of 2 particles sect. 5-1 5 
(uuxecl) 
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Common Abbreviations 

tmaginary unit . . . . . . . . . . . . . . . . . . . . 12 = -1 
I[; . . . . 

Re(z)/Im(z) 
P(M) 

set of complex numbers 
real/tmagmary part of a complex number z 
set of all permutatiOns of M integers 

( -1 )<gnp • • • • pauty of the permutatiOn p = { 1 tf peYen 
-1tf podd 

id .. 
h c. 
o,,, 
c,1k • 

ll .. 
1\ 

't:h; 

[·, ·]
[·, ·l+ 
0 

O'J "Oc' Cl M 

identtcal permutation 
henmtian conjugate 

Kronecker delta of 1 and J 
totally anttsymmetric tensor 

...... o,,, = { 
1 ih = J 
0 If! "f J 

umtary operator 
logtc,tl operator AND 
the statement before tlus symbol ts ,.,,lid 
for nll 'L 

commutator of two operatots 
anticommutator of two operators 
marks the end of a proof or example 
product of all a's wtth omission of ac 

[A,.B]_ = A.B- BA 
[A,.B]+ = A.B +BA 



Appendix B 

The p - A - connection 

The mm of tins appendix iS to show which effect the existence of a ,·ector po

tential A(r, t) has on the Hamiltonian and the wave functwn of a systcm 111 first 

qnantizatwn. F01 both expresswns the changes compared to the free-electron 

situatwn are cleiived. 

Change of the Hamiltonian 

It is posoible to put the effect of a magnetic field on an electric ch,trge mto the 

Ha111iltoman of the system by substitut111g the expicsswn for the momentum 111 

the follomng "·ay 

p --+ p-eA 

P --+ P- ~A c 

SI umts, 

G,mssi,\11 nmt~, 
(B 1) 

where e iS the elcment<~ry ch,uge or the ch,uge of an electwn diHl c iS the velocity 

of hght 

Proof: An explanatwn of the substitution goes back to analytical mcchamcs:i 

The Hamiltonian pnnciple states that all ptocesscs in natme de,·elop m such a 

w,ty that the action 

1
,, 

S = Ldt, ,, 
1tlw follm>mg explanatiOn Is based on D1cke et rd [49] chap 5 and l\oltmg [50] 
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becomes an extremum. Here L is the Lagrangmn of the system. Acc01 ding to 

calculus of vanatwn, tlus condition is eqmvalent to the Eulet-Lagrange equations 

8L _ ~ (DL) _0 Dq, dt Dq, - ' 

11·here q, ts ,t (generalized) coordmate 

These eqnattons are fulfilled for conserv<ttn·e systems with holonom con,tramts 

In thts case, a potential V extsts with mij, = -iJ~w (Newton's law) allCl L can be q, 

\Yuttcn as 

kinetiC enero\' 
L =T-V Wtth 

T - I: ~rnq; 
V - V(q,) 

"" 
... potential enetgy 

Howewr, there is no change in the results, tf instead of the potential V only 

<1 generahzed potenttal U is avatlable. Such a generahzed potenttal is defined by 

the consttamt that (g~neralized) forces can be obt.amed m the followmg way 

Then the Lagrangian can, simtlar to the ptevions case, be defined ,1s L =T-U, 

and the Euler-Lagrange equatwns are sttll fulfilled 

For a (Lorentz) force acting on a parttcle with a charge q in an electromagnetic 

field 'inch a generalizecl potential exists, because 

F = q[E+v x Bj SI nmts 

F - q[E+~(vxB)] Gansst.\11 units 

E - -\lcp- !iJA 
c at 

B - \lxA 

= F - !J[-\lcp- H~~ -vx(\lxAJ}] ~li"=~~+(v'JA 

Therefore, it is 

- d-\1 ( c/!- ~V A) - ~ •:~] vx('VxA)='(vA)-(v';-)A 

q 
L = T - qcp + -v · A. 

c 
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With the help of the Lagrang1an, a generalized momentum can be obtained 

8L 8T q 
p, = 8q, = otj, +~A, 

The Hamiltonian is the Legend re transformation of the Lagrang1an, and hence: 

1-l = I:p,q,- L. 

If only sklewnom holonom constraints a1e taken mto consideration, that is if 

r,(qJ. ... ,qs,t) = r,(qJ .,q,), then 

oT 
==> I: -

8
. q, = 2T 

s q~. 

Tins lead~ to 

1i = ~ ( ~~ + ~A,) q, - ( T - qif; + ~v · A) = T + qif;. 

Therefore, for the movement of a pm t1cle w1thm .1n electrmnagnetJc potential 

(A, ~if;) the following two rc~ults have been ob tamed 

1. The canomcal momentum 1s (B 2) 

2. The Ham1l tonian is 1-l = (B 3) 

The calculation has been done 111 Gausswn umts lwcausc tins syst~m of nmt~ IS 

commonmmesoscop!ls Fm thermore, it IS much eas1er to go hom GanssJ,m muts 

to the SI-system than the other way aronnd. The only thing to do m tlus context 

1s to mmt ~ ewrywhe1e. 0 

Change of the Wave Function 

ThP mochfied strnctme of the Hamiltoman 1-l comp.1rcd to the c.lSc with no 

wctm potential. mftuences of course also the explCSSJOn !m the waw fnnction 

[31] Gn·en that 1/>(r. t) is the solution for the Schnidmger eqnat1on of a free 

electron mth charge e. the cla1m IS that 

I!J(r, t) = 1/>(r, t) exp [- ~!: {A(s) ds J (8.4) 
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solves the Schrodinger equatiOn for the Ham1ltoman denved above 

Proof 1: It has to be shown that 

1-/.III(r, t) = ili :t III(r, t) 
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mth 1-1. gn·en in (B 3) This can be done dmctly by rewntmg the Hamiltonian 

m the followmg way. 

p2 e e2 
1-1. = -+- (p ·A +A· p) + --A2 - e<P 

2m 2mc 2mc2 
1i2 2 

= - 2~t V'2 + 2:c (2A. (-i/iV') -tliV'. A)+ 27:c2A2- e<P 

li 2 2 
! 2 e . e 2 

= -2m V' +2mc2A·(-tliV')+2mc2A -e<P (85) 

Two 1emarks explain tins calculatiOn. Fust, p ·A= A· p- tf!V' ·A because 

[p" ..J.,(r)] III(r, t) = -itt
0
° A,(r)IJI(r, t) + tfu-l.,(r)

0
° IJI(r, t) 

x, -r, 

= -if! ( 
0~~:r)) IJI(r, t) = -tli (V'· A) \l!(r, t) 

Secondly, the Coulomb g,mge V'· A = 0 wa~ used Fm thcunme, a pure rachation 

fil'ld, that ts <P = 0, ts ,1ssumed. By notmg that the den,·attvc~ of the wave 

functiOn (B 4) ate of the form 

and using tlus expressiOn for the calculatiOn o! 1-1. m (B 5) ope1atmg on W(r, t) 

one can eastly sea that. the Schrochnger equatiOn IS fulfilled. 0 

Thete 1~ another proof posstble for the case that the magnetic field B = 0 

,1long a pclth of consideriltion \Ve use the theory of gauge transformations 111 

electt omagnetism 

, 1 a ( ) 
<P ---+ <P = </J- ~DtA r, t 

A ---+ A'=A+V'x(r,t) 
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and clmm: If a wave function 'l'(r, t) 1s a solutwn of the Schrodmger equation 

H'lt(r, t) = E'l'(r, t) and a gauge transformatiOn of the proposed form is applied 

then simultaneously a transformation of the waw function 'It of the form 

'l'(r,t) -t 'l''(r,t) = .P(r,t)exp[- ~'>] 

IS necessa1y for the inmnance of the Scluo<lmger equatwn [32, 52] 

Proof 2: H'.P' = _!.._ (-itl\7 + :_A')
2 

w'(r,t) 
2m e 

= _!.._ (-ifl\7 +:_A+ :_V'x) 2 

'P(r,l)exp[-
1
e x] 

2m e e lie 

= -
1
- exp [-.::._x] (-If~ V'+ :_A)

2 
.P(r, t) 

2m lie e 

- exp [- ;
1
: x ]H >I< ( r, t) = exp [-~:X] Ew ( r, t) 

- Ew'(r, t) 

That means that the eigenfunctions of a gauged Hannltoman a1e the <'Jgenfunc

tions of the Ham1ltoman w1thout gauge t1mes exp [- ;,:x] ThP e1gem·aluc E 1s 

not affected by the gauge transfmmation. 

In regiOns With no magnetiC field A(r, t) can be wutten a~ ,1 gJ,Hll<'nt of a 

sc.1lar field, which automatically g1ves zero for B = \7 x A On the other hand, 

1f A(r, t) = \7 x(r, t) then A can be un<le1stood as a gauge transformation fwm 

the st.tte of no wctor potential A(r, t) = 0 Thert'fore, 

w(r,t) - 1/l(r,t)exp[-:,:x(r,t)] = l].(r,l)exp[-~: r\i'x(s,t)ds] 

- ,P(r,t)exp[-~:FA(s,t)ds], 

w lurh prove~ again ( B 4) 0 



Appendix C 

The Pauli Problem 

In many calculatwns, as for instance m chapter 2 1.4, appear expresswns like 

M 

L L a,, '"a;, JM (0 I cm··· c1, c;, · · · c;AI I 0) 
A::;;;l ll 'M 

Jl JM 

Due to the Pauh exclusion prmctple two feumons wtth the s,une set of quantum 

numbers are not allowed to occupy the oame slte. Tlus ptopctty 1s ,mtomattc.tlly 

included m the second quanttzed representatiOn As soon as zk's ;ue equal, the 

operator product c;, · · c;" I 0) Yanishes The coeffictents in front of thts product 

are unnnportant because they are multiplied by zero 

HoweYer, 1t mtght be questwnable what there contnbution 1s as soon as all 

operators are abolished Perhaps one should reduce the expresswn abo,·c 

not to 2::: 2::: (-ll'g""o,, 
'' 'AI pEP( M) 

but to 2:::' L (-l)'gnpa,, 
., IAf pEP(M) 

whe1e the pnme inchc,ttes that the summatiOn mdiLe'i should be chstmct: Zt.. f. tz 

for!. f. l. As a result sums would not go 0\el the \\hole 1<1nge of pos<>tble sttes 

any more, what tmght mfluence theil v,tlue Tlns ptoblcm ts chscmsed lwre 

Normalization of many-particle states 

N 
We know that the one-particle state 11/1)1 = I: d>kcll 0) is nounalized. The many-

k=l 
particle state ts constructed by a superpositwn of one-parttcle states 
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lw)u=,U(E~?1ct) 1o) 

Because in the pnmed versiOn of products with ad)omt states sums do not run 

oYet the "·hole range of sttes any more, 1t could be questwnable whether lw)M ts 

sttlluotmahzed. A calcul,ttwn of the example of two particles gn·e~ 

lifJI1f)2 = (OI (~~;c,) (~w;c,) (~wkct) (~~~cl) ID) 

= 2: ~;w;wk~l (O lc,c,clcl I O) ( o,,1o,,k + o,,kr5,,l) 
J],kl 

= 2:' ~:w;w,1. - 2:' ~:w;w.~, + ~:ww.~. - ~:w:w.~ . 

!J . , 
wl1<1t shows the ummport,\nce of the prune 

The same procedure is possible for an mbtttary mnuber of pattlcles One can 

fill the smns step by step, because there are ahv,tys t\\·o peunutatwns \Yhich dtffet 

only m one transposition and have the oppoo1te s1gn. Therefme, 1t 1s po&sible to 

add m both sums a term with the same mdex for the transposed factors. 

Expectation Values 

iJ,!:Ihxi1P)2 = l:~:w;v\~I(Oic,c,cxGtclc]IO) 
!J kl 

2:'~~~~-~~~~-~~~~+~~~~) 
•lr# 

±2~~1f;w.~. 

- 2: (~:w;wx~.- ~;1P;wA- ~:w;w,~x + ~~w;uy/J,) 
'·' 

In the same way as befme ,,.e get that the missmg ~lnnm.uHlm each stnn can 

always lJ<' added, because it cancels m t\YO sums 

HPnce, the answer to tlw Pauli p10blem 1s th,tt m sums hke 

2:' 2: ( -1 )sgnpa,, ,,a~(•• '") 
'' '"pEP( M) 

the pume, that is the constr.tint zk # z1 fork # l is of no unportance and the sum 

c,m be h,mdled as 1f the pmne / this constramt were not thete. 



Appendix D 

Fermionic Path Integrals 

The Feynman Kernel 

'In classical mechamcs every process seems to behave in such ,, way that. the "ell

known prmciple of least action is obeyed. It states that the classJc<tl p,tth ij(t) 1s 

that for wh1ch S IS an extremum. Here, S 1s the actwn and is gi,·en by 

l
t, 

S[q] = d t L(q, q, t), 
t. 

(D 1) 

w1 t h L = pq - 1-l (p, q) bemg the Lagrang1an. 

In quantum rnechanKs tlus pnnciple IS repl,lce<l by a path integral [54, 55]. 

That me.1ns that all paths contnbnte to the total ,tmphtmle, but contnbute at 

chffe1ent ph,<ses 

K(b, a) = const .: .. ~ .. ~;xp [~ S[r~t)]] =· J V[q] ekS[q] (D 2) 

fromatob 

Smce the action IS measured m umts of tl, the classic,\[ liuut [e,Hls, 'unilm to 

ahme, on!} to the contnbutwn of the p,tth with cxtrenMl actwn Feynman 

calll'd the exp!esswn/C(b,a) a kerneL' Its modulus SC[ll<liCd, IIC(b,a)IZ, g1vcs the 

pwhab1hty for a pa1ticle to go fwm a point a= (qa, fa) to,\ point b = (q,, fb) 

Proof: That this IS the case can be shown by looking at the time e' olution 

operdtor U(tb, fa), \\'hich describes how a state changes m tunc It IS connected 

1 Sometunes It ts also Ccllled "propagatm" 
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to the kernel vm 

On the other hand, the properties of the time evolution operators allow the 

follomng approximation [57] 

U(t, ta) = hm (11- !_~t1i(tN,)) · · · (11- !._~t1i(t2 )) (n- 2.~t1i(td) (D.3) 
Nt -+oo /i /i h 

by di~cret.ising the tune 111 mtervals of 6.t = '!v:" The !unit can be evaluated 

mth the help of the tune order operator T, leachng to 

(D 4) 

If the Hamiltoni.tu 11. is independent of time, both expressions Simplify to 

(D.5) 

Tiilrhtwnally, the Hanultonianis a fnnctwn of the momentum opeiator P .md 

the comdmate operator Q Their eigenvectms satisfy the equ<\t.wns 

Pip) =PIP) and Qlq) = qlq) 
1 1 (qlp) = -e•pqfn and (p IIJ) = -e-•pqfto 

2rrh 2rrh 
(D 6) 

as \Yell as a re~olution of muty 

00 00 1 dq lq)(ql = 11 aud I dp IP)(pl = 11, (D.7) 
-oo -eo 

"·hat allows t"o impmtant modificatiOns of the exptesswn for the tune e,oJutwn 

operator 

Fust of all, umttes might be mcluded for each time st<'p m (D 3) what le.tds 

to 

(D 8) 

Secondly, the eigenvalues of the momentum and the comdm.tte operator can 

rPp!ace the operators ttsclf. How this happens depends nsn.tlly on the order of 
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the operators Q and P. Howewr, for the common case 1i(P, Q) = 2~ P2 + F( Q) 

one does not have to care about this. By usmg the resolution of umty for the 

momentnm operators I p1) and with (D 6) one obt;uns therefore 

U(t, fa) = lim IT I clqJ 
( 

N, oo ) 

Nt-TOO 0 
J== -oo 

~e-f.~t1t.(pJ qJ) 

IC(b.a) = jv[p]'D[q] exp[*f (p·q-1i(p,tJ,t))cltJ[ 

Here the boundaries mclicatecl that only such wa.) s me allowed which start m qa 

and end m 'lb The result is the same as (D 2) with the only difference that the 

mtegtatwn is clone in phase space with a Hamiltoman wluch depends on p and q 

and not with a Lagrangian winch depends on q and q 0 

Grassmann Numbers 

The de,cnptwn m the pienons sectiOn "·as giwu m order to make It easier to 

uncleistancl the differences m the case of fernuomc path mtegrals. The m am 

.tltcratwn has its reason m the fact that the Hmmltonian m second quantizatwn 

does not consist of P and Q, but of creation and. anmlul<ttiOn opeiatois. ~:} <~ncl 

c1 • Thetcfme, the resolutiOn of umty (0.7) ha~ to be exptcssecl now in teim'i of 

eigenfunctions of the new ope1atms 

St ,\tc~ Ill~) "'Inch are eigenfunctions of all anmlul<lt.Ion oper,ltois ,tre ( alled 

coherent states If they satisfy the equations 

(D 9) 

then the anticommutation relatiOn of Fermi operators uuphe' that rheu elgem·al

ues c,m not behave like ordmary numbers but mu~t also clllttcommute· 

The ctlgehra of sndt numbe1s IS called Grassmann algebra [31, 56] 
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The rather strange behavwur of so-called Grassmann numbers has ,\ lot of 

consequences. The most obYious one is the mlpotence of these numbers, 

E,·ery Grassmann number (,
1 

exists together With 1ts conjugate t.; The most 

important properties for conjugation are 

The chfferentmtion with respect to Grassmann numbers IS defined Similar to 

the complex case, except that m orde1 for the dem·atn·e opeldtor 11~, to act on (.1 , 

the ,·ariable (.1 has to be ant1commutcd through unt1l1t 1~ ,ul)dcent to D~, The 

same anticommutatwn rule applies for mtegration. The latter is well-defined by 

the conchtwns that the mtegral of an exact dJfleJ entml form ,·,ml'>hes and that 

the mteg1al of a Grassmann number JS nonnahzcd 

J d(.l = 0, J cl(.(. = 1. (D 10) 

Example: If one supposes that the Grassmann algellla 1~ generatl'd by only 

hm Grassmann numbers (. and (.* then an ope1ator has the general !mm 

%(4((.*,(.) = a1- a£, 0~,.-l(t,*,t,) = n2 +a,(, 

D~* :t.A(C,t,) =-"a=-:(. D~·.-1((.*,(.) 
(cl(..-!((.*,(.) = a 1 - a,t,•, Id(.*.-\((.*,(.) = "2 +a,(, 

I d(.*d(. .-!((.*, (.) = -a1 = j d(,d(.* .-1((.', l;) 

It IS worth noting that dJffeJentJatwn and mtegJatJon ,ue identical and that the 

differential operators J{ and 8~. ant1commutc 0 

Furthermore, it is natural to demand tli<lt the GJ,lssmann numbe1s do not 

only ,mtKommute w1th one another, but obey abo ,uJ ,mticommnt,ttwn 1elatJon 
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with fermwmc operators, f e t;,c1 + c1t;, = 0. Additionally, the conjugation of 

mixed products is handled in the way (t;,c
1

) 
1 

= cJt;;. 
\V1th the help of all these conditwns it is po~s1ble to wnte clown an expressiOn 

for the fe~mion coherent state 2 

(D 11) 

Proof: 

ck I'll) = ckii (1-e,c}) IO) =IT (1-e,cjh (1-ekcl) IO) 
J r# 

= II ( 1 - v}) ek I 0) = IT ( 1 - e,c}) ek ( 1 - eke!) I 0) 
n<k r# 

= ek II ( 1- e,c}) IO) = ek 1 w) 
] 

0 

Fmally, these colwrent states allow to gn e the clesJrecl expression for the 

resolution of umty 

(D 12) 

Proof: An arbitrary many-particle state m second quant1zatwn h,ts m tlus paper 

the form 

= ,nu 

n'
1

, n' (,PI 
'M' 

= (OI I: 
n'* 

a' 
]I 

Jt, ,Ju' 

n' * a u c · c 
h.r' Jl · J.H'' 

and the overlap of such states has alre,tdy been c,tlcul.lt.ed several t1mes 

The result should remam unchanged when the umty JS mcludecl By usmg (0.12) 

and (D 9) one obtains 

1The motivatiOn fm such an exptesswn, as fm m.mv othet of the gtven defimtwns, comes 

ftom the treatment of boson coherent states Ho,,e,et, a ptme shm"s Its conectne.ss 
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= I: 

j ( g d~;d~1) g (1- ~;~1 ) C1, •• ·C1M' lt¥)(t¥1ct, ···c1u 

· j ( g d~;d~1) g (1- ~;~J ~1 1 • • ~Ju•C, · · ·Cu 

The mlpotence of Grassmannnumbe1s ,me! the rules for integratiOn (D 10) Imply 
that for ,t cert,un 1 

Hence, the mtegral m·er all N Grassmann numbc1s is non-Yamslung only 1f the 

(nnordered) sets {z1, ... ,zM} and {J~o· .,JM•} me !dcntic,tl In tlus case the 

mtcgratwn gn·es one Permutations .ue allowed and lead to the same sign as in 

the o\·erlap of the t\\·o states abow Thns, it is shown th<1t the ope!,ttm ll f re.tlly 

does not alter a state multiplied to the ught 0 

Other Important properties are the oYe!lap of two cohewnt states 

N N 
(t¥ It¥') = (0 I IT ( 1 -cl;) ( 1 - ~;c1) I 0) = IT ( 1 H;~;) = eL1 {;{; (D 13) 

pi J=l 

and the actwn of a cH•,ttwn ope1ator on,\ wherent state 

The Time Generating Function for the Fermi Case 

\\'1th the expenencc of the prenous ;ectwn 1t i~ poss1blP to wute down an ex

p!esswn of the tune mdeung operator !01 .t sewnd qnant1zcd H.umltonian For 

the sake of simplicity, we modify the exprcs~10n fm the unitY (D 12) slightly by 

mtroducing W as a' ector of the Gras~maun numhe1; 6, . , ~N vVhen \\Tlting 

(D 15) 
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the integratwn IS nnderstood to go over all components E,1 Similarly to (0.12). 

Combmed with (0 3) the tnne ordermg operator becomes 

U(t, t.) = 

The trace of this operator is Impoi tant m zero temperature condensed matter 

theory It IS called time generating function [5 I] 01 vacuum persistence 

amplitude [31] and has the form 

smce 1t does not nMke much difference 1f the trace IS c,lkulat.ecl m Fock sp.1ce or 

in the space generated by coherent states. 

In Older to sm1phfy tlus ~xp1esswn lurther one h.\s to t.lunk bnefly .tbout the 

f!110St.l0n how (w lA I ID') looks hke fo1 an operator A= A(cl, ck) 111 second qnan

t.izccl f01m Howe,er, .1s long as this operator IS nounal ordered (all aumlulatwn 

operators are standmg to the nght of all creation operators) 1t is easy to gh·e the 

an~wer mth the help of (0 9) and (0 13): 

H('nce, we haw !or the time genei,ttmg functwn 111 the Fe1nuon c,t,e 

(0.16) 

"hme 1t has been taken into conside1atwn th<it. the lim1t 

Cdll be 11nderstoocl dS ,\ deuv,ttne of Grassmann umube1s 
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The Structure of Rotation 

The aim of tins sectwn IS to find an operator representation wh1ch clescnbes a 

rotatwn from one system of coorclmates x, y, z to a new system x, y, z 
It is possible to look at such a rotatiOn as a transfonnatwn 

I • r-+ r = gr 

I 

of the coordmatcs of a fixed body when tlll're IS a change of the coordinate ax1s 

Havmg got t Ius equation the ta~k is to detemune the effect on the wave 

fnnctwn 1/J of this body. Hence, one has to find the oper,ttor fl9 wh1ch changes 

the w,tw fnnttwn accordmgly 

For tlus the followmg constramt IS important A new w,we functwn 1/J' w1th 

rPspctt to a new coordmate r' must be the ~ame ,\s the ongmal "',n·e fnnct10n 1/J 

at the point w1th the nnrotated coordinate' r. 

1/J'(r') = 1/J(r) = 1/J(f;-1r'). 

Combmed \nth the relatwn 

., 
(E.l) 

1The follo"·mg dem·at10n follows up to a cettmn extend the descnptions m Etlmonds [58] 

and n,,vydov (50] 
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It is known or can easily be shown by infimtesimal rotatwns that such kmd 

of changes in the wave functwns caused by a rotation of the coordmate axis over 

an angle r/J around n is realized by the operator 

(E 2) 

where J IS the angular momentum operator. 

A slightly different point of view is, that ,, rotatiOn of the comclmate system 

IS m uniquely determmed by three Euler angles a, (3, I· These different angles 

md nee the following successn·e procedure of rotatwns 

1 rotation 0\ er an angle a around the z-ax1s 

2. rotatiOn over an angle (3 around the y 1-axrs 

3. rotation over an angle 1 around the z2-ax1s 

2 

} 

X 
, .. 

X2-

'. 

Figure E.1: The effect of the successzve procedure of rotatwns rnentwned above zs 
shown. Each dzagram mcludes one rotatwn over an Euler angle more than the 
pr evwus one. 

In the language of rotatiOn operators tlus procedure can be written in the 

following form. 
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For this procedure the second rotatwn is mound an ax1s which follows from the 

first one, and the axis of the third rotation is based on the two rotations before. 

For practical purposes 1t is often more con\'ement to look at a fixed reference frame 

for these rotations. This fixed reference f1ame may be the coordmate system 

x, y, z at the begmnmg. This is possible because of the followmg rel.1tio11s' 

fiYt ({3) - flz( a )RY ({J)Rz( -a) 

RZ2b) - RY' (!3) flz, b) R.Y' (- /3) 

- flz(a)RY(fJ)Rz("'f)flY ( -f3)flz( -n) 

==> flz, ("f)fiYt ({J)Rz(a) - flz( a )flY ({J)Rz( a). (E.3) 

With the help of tins and equatwn (E.2) one c,uJ wute 

R(a,/3,"'() = e'j''"i"e'i,!ii"e'j'1 /" (E 4) 

The eigenfunctions belongmg to J may be called as usual I Jm) Because of 

the rotational mvanance of J 2 the eJgenvalues t/ J (J + 1) are not changed when 

R(tv, {J, "'f) IS applied Hence, the followmg 1epresentatwn 1s possible 

R(n,/3,"'() JJ1n) = L JJk)(JkJR(a:,fJ,"'f) JJ1n) = l:D!,k(tt,/3,')') JJk), (E.5) 
k k 

where the matnx elements are called Wigner functions, or genet alized sphencal 

functions or D-functwns 

The functiOn JJm) could for instance be represented in sphencal coordinates 

r, t?, cp and therefore w1th the help of the not,<tion ?,b(r) = (iJcp JJm) the equatiOn 

(E 1) can be wntten in the form 

(iJcpJJm) = R(a,f3,~t)(iJ'cp'JJm) = L n;n,(a,f3,~t)(iJ'cp'JJk) (E 6) 
k 

Commg back to the definition (E.5) for the llldtiiX elements n;,, It I'i pO'iS!ble 

to c,<kulate these terms exphcitly For tins thC'iiS only the case J = ~ 15 of 

mtl'H''>t 2 In this special case it IS 

1 

D?nk - (~kJR(a,{J,-flJ1m) 

_ (~k Je'i,nfT•e•j,;JfT•e•i,1/T• 11rn) 

- e'A.n(~klc'j11 ~/li I ~1n)e'm1 , 

2,.\ 1esult for an mb1tr.try value of J can for mstance be found m Edmonds [58] on p.tge 57. 
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where k and m can be ~ or -~. 

As already mentioned in chapter 1.1 there is for the c<tse j = ~ a stmple 

relationship between the spm angular momentum and the Pauh spm mar.nces of 

the form J = ~liu Hence, It is 

.-\ Taylor expansion and the kn~wledge of the relation u; = n gtves 

( 
0 -i) because u y = 
1 0 

Putting all these results together leads to the result that D;,k(af3't) consists 

of the followmg matnx elements: 

{E.7) 

The ongmal problem \vas to rotate the spin qu.mttzatwn axis to a wctor "ith 

the pol<lf co01dinates e, ( The questiOn IS how tins can be expressed by Euler 

.mglcs The easiest "·ay to see this IS to take the po&sibtlity wtth the fixed reference 

ft.une. The atm IS to bnng the z-axis m the dtrectton of r.he ,·ector The z-axts 

IS Ill step two rotated along the y-ax1s Therefore, the coordmate sy~tem must 

m the first ~tep be rot.tted m such a way, that the wctor becomes perpendicular 

to the y-axts The second step is then the .tctnaltotatwn of the z-.txJs And the 

thnd step must be a turn back of the fitst <;t<'p That me.ms a = (, {3 = -0 .uul 

1 = -( Hence, the totatwn matJix has the follmnng st1 uctme· 

(E 8) 



Appendix F 

The Usage of Contractions 

A useful tool for deahng w1th long chams of creatwn and amululatwn operators 

is Wick's theorem It g1ves a simple method how a prodnct of tune-ordered 

opcr,ltors can be exp1essed m the form of operator prod nets which are normal 

mdered The formula is 

T (0\'-'li' ."\:1'.2) - N (017Ti1 . "\:1".2) + N(Q_fli' .• "X"f·.Z) 
+ N(UVlir .. "Yf·.Z) + .. + N(Ol>Tv .. .. Yf·.Z) 

'----' I I L-...J I I 
- N (CT1>Ti' . "\:1".2) 
+ N ( snm 0\ er ,,n poss1 blc p<~u s ol l ontt ,\Ctlons) 

Here the following notation IS used 

T time-orcleung operator T (.\:(tx)1"(ty)) = { 
.\:1\ 

-1·.-x-, 
N normal-o1denng operator all ,tnnilulatwn opcrato1s ,ue pldcl'd to the 

ught of all the creatiOn opetatots 

indicates rontractwns -rJ' = T (.\"1") - N (.\'1") 
Fnrthermote, there ex1sts the sign conYent1on th.tt t"o conttacted fdcto1s must 

lw brought together by rearrangmg the otder of the opct.ttOl~ \Hthm the nounal 

product, always keeping the standard sign cmn-entwn for interchange of fcnmons 1 

If for the calculations of this paper the time otdering 1s assumed to be in the 

1\Vtck's the01em IS f01mulated m tins way and ptoven m the book of A L Fetter .tnd l D 

\\·,,letka [60] 
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way ck uck' u' then a contraction, which is a e-n umber 111 the occupation-number 
' ' 

Hrlbert space, has the value 

If, on the other hand, the timer ordering 1~ as<>mncd to be in the way ck,.,.c!.',u' 

then ck,.,.ck',u' = 0 Addrtionally, ck,uck',u' = 0 and c!,.,.c!',u' = 0, because m these 
L.....J L.....J L.....J 

three cases the time 01dered product is automatiCally nounal 01dered 

The trick rs to define an artificral "time ordermg·' ,1s the order of the operators 

that is gn·en at the begmnmg of a calculatwn. Then rt rs \·ery convement to use 

\Vrck's theorem for transformations 

Example: An usual problem of tins p<tpcr rs to evalu,tte an expres>wn like 

Tlus order of operator is defined to be trme ordered and aftenYarrls \Vrck's theo

n·m is apphl•d· 

= (0 IN ( c1,c1, ck+1 eke!, c!,) I 0) + (DIN ( ene1 , ck+J ekcL e!,) I 0) + 
t:.......J 

(OIN(c1,c1,cl+rckc!,c!,) ID)+ (DIN(c1h,c1+rckc!,c!,) ID) 
lt:.......J L.JI lt:.......J Y-' 

+ 

(DIN(c1,c1A+lckc!,c!,) ID)+ (DIN(c11 c1,ck+rckc!,c!,) IO) +. 
t:....+-.J L.J I ~ 

+ 

In tins sum all not fully contracted terms drsappear, because normal ordeling 

bungs anmlnlatwn operators to the nght, and the result rs ze10 rf they otwratc on 

I 0). Furthermore, only those of the fully contracted term~ rem.lin for "hrch e.tch 

p.ur of contraction consists of an anmlulatron operator on the left <1nd ,, ue,ltron 

operator on the nght These four contnbutwns h,n-e the \·alue 

0 
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