LLoughborough University

Pilkington Library

Author/Filing Title HICK.........

Vol. No.
Class Mark \qquad

Please note that fines are charged on ALL overdue items.
LOAN coly

Many-Body Effects in the Persistent-Current Problem

by

Tilmann Hickel
'A Master's Thesis
Submitted in partial fulfilment of the requirements for the cward of Master of Philosophy of Loughborough University

September 28, 1999
(c) T Hıckel, 1999

Many-Body Effects in the Persistent-Current Problem

by

Tilmann Hickel

A Master's Thesis
Submitted in partial fulfilment of the requirements for the award of Master of Philosophy of Loughborough University

September 28, 1999
(C) THıckel, 1999

Abstract

In this work some many-body properties of isolated mesoscopic angs ate mestigated Second quantization and tight-binding morlels for sistems of spmess fermons and fermions with spin are used to denive an expression for the peisistent curient The results obtaned for non-mbeacting syotems are in satisfactory agieement with both expermental measurements and other theotetical results. Then a Coulomb repulsion is considered for a system of interacting fermions and a ranational appioach is adopted We attempt to improve the description of the system by introducing rotations of the spmerfinatization axis on each site Then we go on to show how the emergent Hatree-Fock ecquations may be theated, what kind of effects hare to be considened and how the thal wave functions can be chosen accordingly

Contents

0 Introduction 4
01 The Hastory of the Persistent Current 4
01.1 Observation 4
012 Interpretation 7
0.2 This Paper on the Persistent Cunent 10
1 The Heisenbeıg Hamiltonian 12
11 The Heisenberg Spin-Hamiltoman 12
12 Transformation to Bosons 14
13 Transformation to Fermıons 17
14 Related Hamıltonians 21
2 Rings of Fermions and Bosons 23
21 Hersenberg Model with Spinless Particles 23
2.1.1 One Partıcle on the Ring 23
2.1.2 Two or More Particles 25
2 1.3 Total Energy 27
214 Distribution of the Particles 30
2.2 Magnetic Flux through the Ring 34
221 General Consequences 34
222 Gange Invanance in the Heisenberg Model 37
223 Change of Total Eneigy 41
23 The Panty Effect 44
24 Persistent Current 50
3 Interacting Fermions 56
31 Hartree-Fock Equations 56
32 The α-problem 59
321 The Variational Ware Functions 60
32.2 Expectation Value 61
323 Remakk on Lagiange Multıphers 62
3.24 Denvatives and Sumplifications 63
325 Solutions 66
33 Energy in the Heisenberg Mode! 67
$3+$ Energy in the Hubband Morlel 71
35 Howeveı, 76
4 The Notion of Rotation 77
41 The Partition Function 77
42 Hubbard-Stratonovic Decomposition 79
4.3 Spin-rotation Invariance 82
44 Rotation First 86
441 Deriration of the Action 86
$4 \neq 2$ Simplifications, Half Filling 89
+43 Rotated States 93
4.j Decomposition First 99
4.51 Derivation of the Hamiltoman 99
452 Seatcl for Solutions 101
46 Zeemann effect 103
5 Trials of Improvement 106
51 Away fiom Hall Filling 106
52 Limited System Size 113
521 One Particle / One Site ($M=1, . V=1$) 113
$\bar{j} 22$ One Particle / Two Sites ($M=1 N=2$) 114
j. 23 Two Particles / Two Sites ($M=2, N=2$) 118
53 More Appropriate States 121
531 The Problem of Orthogonality 121
532 Comparison with Bethe ansatz 126
54 Agan Limited System Size 130
541 One Particle / One Site ($M=1, N=1$) 131
5.42 One Patticle / Two Sites ($M=1, N=2$) 132
543 Two Particles / One Site ($M=2, N=1$) 133
544 Two Particles / Two Sites ($M=2, N=2$) 135
$j 45$ Two Paiticles / N Sites ($M=2, N$ abitidty) 137
Conclusions 144
A List of Symbols 146
B The p - A - comnection 150
C The Pauli Pıoblem 155
D Fermionic Path Integrals 157
E The Structure of Rotation 164
F The Usage of Contractions 168
Acknowledgements 174

List of Figures

21 Energy states for the Heisenberg model 27
22 Encrgy states for free fermions 28
23 Derivation of flux quantum 36
24 Four sites on a rectangular 38
25 Energy dependence on the flux 42
2.6 Restriction of the flux 42
27 Total energy dependence on flux 45
28 Dispersion relation with $M=1$ fermion and $\Phi=0$ 46
29 Dispersion relation with $M=1$ fermion and $\Phi>0$ 46
210 Dispersion relation without parity effect 47
211 Dispersion relation with parity effect 48
212 Dispersion relation with $M=4$ fermions and $\Phi>0$ 49
213 Dispersion relation with $M=4$ bosons and $\Phi=0$ 49
214 Ring in a magnetıc field 50
215 Peısistent current 52
216 Averaged persistent current 54
31 Energy states and interaction 69
E 1 Rotation over Euler angles 165

Introduction

Within the last few years a acapid development of technology has stimulated many minterestmg mvestigations in condensed matter physics The ability to manage temperatmes well below 1 Kelsm and to create systems of dmensionality of a few micrometers allows the observation of cuantum effects whinch were hidden before. Even in normal conducting metals it is now possible to obtan situations where the coherence length of the electron wave function becomes comparable to the system size; this is called mesoscopics

In this field the persistent-current problem has anonsed particular interest. It provides an excellent possibility to compare the results of complacated theoretical many-body descuptions of these matenals with real expenmental measurements A persistent current appears when suggle, isolated nomal-metal ings are threarled by a magnetıc flux The basic observation is that this current depends on the flux in a characteristic way a hmearly meneased magnetic field leads to an orsillation in the current The penorl of thas oscillation is the elementay Hux quantum $\Phi_{0}=\frac{h c}{\mu}$ Here h is the Planck constant, c is the speed of light and e is the clange of an election

The History of the Persistent Current

Observation

It is interesting that the hastoly of the persistent cunent had alteady stanted a long thme before the expenimental evidence was tound For matance, a work by Aharonov and Bohm from 1959 [1] is mentioned vely often when flux-dependent fluctuations of curents are investigated These athons actually thed to prove
the physical existence of the rector potential \mathbf{A} by suggesting an experiment in which an electron beam is split in two separate beams that enclose a solenoid and is tecombined afterwards. Although the electrons only move in field-tree space they still experience the vector potential comnected to the flux Φ through the solenoid Sumple considerations as well as exact solutions of the scattering pioblem led to the result that the current of the iecombmed beam depends on the phase difference $\Delta S / \hbar=\frac{e}{\hbar c} \Phi$. Thus, the current is periodic with respect to the flux in the middle of the two beams

The woik of Büttiker, Imry and Landaues [2] in 1983 is usudly quoted to be the first paper that predicted the existence of a pesistent current in small one-dimensional rings They poninted out that closmg a raudom potential to a ring results in a penorlic potential with the typical Bloch-like band sturcture in recipiocal space. An acceleratimg electrical field E forces the clarged paticles to move withn the first Brillouin zone As soon as the field is switclicd off the morement stops, and the curnent remans with a fixed momentum, which does not necessailv have to be zero. According to Buttiker, Inmy and Landanes this eflect leads to a persistent current withon the ing It is also mentioned in the paper that the existence of an accelenating field is efruivalent to the appearance of an extemal fux through the ring which morenses linealy in time Furthenmone, the fieculucicy of the movement through the band is the same as for superconducting rings with a Josephison junction, except that $2 e$ is replaced by e

In 1090 Lévy of al [3] were the first to provide cleat eridence for the existence of persistent cuncents with ther tesults of measumements on mesoscopic coppen nugs They used 10^{7} "rings" of coppen, whinh actually ladd a square shape and were located within an area of $7 \mathrm{mmm}^{2}$ The cucmuntence of each of the rings wis $L \approx 22 \mu \mathrm{~mm}$ The measured quantity was the mangetisation within a SQUID magnetometer Léry et al considered not only the value of the second and thud hamomes of the momentum, μ_{2}, for $T=0$, but also then tempenature dependence oren in interval of \bar{i} to 400 mK Theoretical assumptions pnedict an exponental deciease accordung to the law $\mu_{2,3}(T)=\mu_{2,3}(0)$ exp $\left[-\frac{k_{A} T}{L_{h}}\right]$ leasing only $\mu_{23}(0)$ as a fice parameter tor fits. (E_{c} is the conedation energy and can be entimated) The results in genead confirm the theny used Espectally, an
oscillatory behariour in the flux dependence of the magnetic moment was clearly observed. which indicates the existence of a persistent current The magnitude of the moment is cstmated to be $1.2 \cdot 10^{-15} \mathrm{Am}^{2}$, conesponding to an ensembleareraged cunent of $0 . \operatorname{tnA} \approx 3 \cdot 10^{-3} \frac{e v e}{L}$ per ring However. piobably because of the necessary averaging orer a whole system of aings the period of oscullation was found to be $\Phi_{0} / 2\left(\operatorname{not} \Phi_{0}\right)$.

Only one year later Chandrasekhar et al. [4] pubhshed the results of their experments on the magnetic response of a smgle, isolated gold loop Because of the alssence of an ensemble averaging they were successtul m furding a whole flux quantum oscallation. Thee different kinds of gold loops, tabucated on oxidized Si substrates using an electron-beam lithography pocess. wete user Thenr diameter was $2.4 \mu \mathrm{~m}, 40 \mu \mathrm{~m}$ (circle) and $14 \mu \mathrm{~m} \times 26 \mu \mathrm{~m}$ (rectangular), respectively In the temperature range around 10 mK an electron plase-coherence length of $12 \mu \mathrm{~m}$ and a thermal diffusion length of $87 \mu \mathrm{~m}$ allow the appearance of mesoscopic effects The andysis of the data of a dc-SQUID magnerometer was connected with a number of problems Finst of all background Huctuation of the same order of magnintude as pensistent cunent effects made it, difhenlt to extract signals Secondly, the temperature dependence was ambignous and dod not show exactly the expected exponential behaviour Thus, it was not possible to exthapolate the data to zero temperature. Nevertheless, all thee gold loops showed an oscillation in the magnetic iesponse with the penod $\frac{b c}{e}$ This was the case fon the fundamental as well as for the first hamome signals Howeren the amplitude of this oscollatory component corresponds to a peisistent (urrent of (03-20) $\frac{e v_{F}}{L}$ This is moie than one order of magnitude hagen than predicted be smiple theoretical considenations for the diffusion

Later, in 1993 D. Mailly, C. Chapelier and A. Benoit [5] reported about persistent curents in semiconductor sungle loops Their Gratl.As/GaAs ing had an mrenal dameter of $2 \mu \mathrm{~m}$ and an extemal hametor of $34 \mu \mathrm{~m}$ In the tempoatme range aomal 15 mK the elastic mean hee path was $11 \mu \mathrm{~m}$. Which conerponds to a very weak disonden. The chamel mumber, dismg due to the thee-dmensional geometny of the 1ung, was with appoamately + channels extremely small, too A modulation of the extemal magnetic field and a Fomes
thanstomation lead to power spectrums which clearly show the Ahdionov-Bohm oscllation with the period $\frac{h c}{e}$. The high senstivity of the SQUID magnetometer allowed a clear distinction between norse and signals. An average over several measurements led to a typical current amplitude of 4 ± 2 n.t It is important to note that in these measuments the value for the persistent current was in good agreement with the theoretical prediction of $\frac{e v F}{L}=5$ nt (using expermental paraneters)

Interpretation

The goorl agreement of the last measurement with theonetical assumptions is merpreted to be due to the fact that the system was in the ballistic regime [0] This regime is defined by the condition that the elastic mean free path for an electron is langer than the circumference of the ring, which means that there is onlv weak disorder in the system

In the former two measurements the effect of disobler was much strongen A sithation m which the concumference of the ing is dheady langer than the elastic mean free path, but still smaller than the localization length is called ditfusive (ot metallic) regime. Scientists tried in mumerons publications to explain why the persistent current can have such large values in this regme The reseath manly concentiates on the effect of elastic and inelastic scatterens and the election-dectron-minteraction, and a feew examples of diffencont derelopments shall be mentioned next.

Aheady Landauer and Büttiker [7] extended then considenatıons by an investigation into the effects of inelastic scatterng They undeıstood melastic scattening as a jump between the two upper-most energy levels of the pievonsly mentioned Bloch system This effect of a small but finte temperature is of umportance when the flux is incieased lmearly in time. It usults in a non-vansling thme areage According to Landauer and Butmager tha behanom cau be explaned br the change in the wadth of the energy gap between the two mper-most lerels when tharelling though the Bullomm zone and a finite relaxation time

Most of the preceding publications considened situations where the flux is fixed A detaled discussion of the effect of scatterems m the different acgimes can
for mstance be found in the papers of Cheung et al. [8]. They mamly found that all forms of disorder reduce the amplitude of the persistent curient.

Ambegaokar, Eckern and Schmidt [9] stressed the importance of taking a Coulomb electron interaction into consideration They started their considerations with Hartree-Fock appioximations and handled the intenaction portubatively, using a dragrammatic techmque The authous concluded that such interactions can be used to explain the high values of the persistent cunent in the expenment However, the results strongly depend on the choice of diagrams that are moluded mito a calculation [10]

Müller-Groeling et al [11] have also investıgated the effect of Coulomb mitcraction on the persistent current of one-dimensional, contmuous angs at zero temperature They used symmetry arguments and mitioduced a change of varıables to many-paticle valucs. Their discussion and qualitative description led to the iesult that the Coulomb meraction enhances the persistent current in the presence of impurity scattering

In another paper Cohen, Richter and Berkovits [12] repoit about their experience with Hartiee-Fock equations for the same situation However, they simplified these equations to oidinay Schoolinger equations and tried to solve them In this way they were able to obtan the result that as soon as a sugle scatterer is meluded in the ring, the decay of the Finedel ocillations is suppressed Knowing this, it was possible to mroke an apprommate self-consistency and to gan statements regarding the peisistent cunent Cohen et al teported that in a ing with a weak delta-scatteres the interaction will not destroy the persistent cuncit If even more scatterens are introduced into the ring, then interaction enlances the average sample persistent cuncot (arther than suppessung it) and introduces a preferred damagnetic curient direction

Numencal investigations with much fewer asmimptions were for motance performed by Kato and Yoshioka First [6], they managed to use the Hatree-Fock approxmation for a one-dimensional system of 100 sifes and 40 electrons and concluded that the Coulomb interaction between electrons causes a reduction of the persistent current also in the diffusive iegime Howerer, one year later the same anthons found out that if the other two dmensions ate taken into consid-
eidtion (a system of $20 \times 6 \times 6$ and 300 electrons was used) then the persistent current is enhanced
F. V. Kusmartsev published a series of papers and letters with investigations in the peisistent curient problem He used in has considerations tight bunding models, mainly the Hubbatd model The on-site Coulomb repulsion of spm fermons is described by an energy U In most of Kusmatser's papers this mteraction is treated with the help of the Bethe ansatz This method leads to a chatacteristic set of equations for the coefficients in the chosen wave function, which also melude the flux phase In the limut $U \rightarrow \infty$ Kusmantsev was able to solve these equations exactly and to give interestmg explanations of his iesults

In one of his early works [13] Kusmartsev gave exphessions for the giound state total energy of a fixed number of paticles, M, on a ing in the prevously mentioned limit of strong interaction They show a penodic dependence as well on the Hux theaded by the ring as on the number of up-spm partiches Thuking of a stuation where all spins are down at the begming and the flux is increased tiom zero, one finds that there exists a ceitam flux value (and in equidistant steps more allues) when it is more favourable for the system that two of the fermons change then spm direction This leads to a hactional Ahamon-Bolm effect, where the cmient as a function of the flux has a period $1 / M$.

In a later paper [14] Kusmartsev et al mrestigated the hactional AhanonorBohm effect further. It is shown analytically for the case of two paticles, numencally for three particles and peitubatively for $M I$ particles that this effect can exist for any finite value of U The condition is that $\alpha=t M / U N$ is a small number. whene N is the number of sites and t the hopping mestal Fuithermore, there is a scaling behaviou of the gromad state entigy; depending onlv on o A thonongh analysis of the first order conecrions of the Bethe efurations in the parameter a reveals that there is even more fine stnucture in the flux dependence of the energy Kusmartsev [15] discussed that within certan patameter ianges the conventional Ahatonov-Bolm effect can coexist not onlv wath an oscillation with penod $1 / M$ but also with an M_{\downarrow} / M osullatony behavion Hene, M_{\downarrow} is the mumber of down-spm particles

This Paper on the Persistent Current

The given list of publications is of course far from complete. Especially after the first experimental iesults were 1 eported in 1990 the number of papers about the persistent-current problem has mereased lapidly This shown that thene was and still exists a gieat interest in this topic The examples mentioned show furthermole that some questions are the subject of controverstal discussion. Although a lot of progress in understanding this phenomenon has been made, some questions remain to be answered It is therefone ieasomable and useful to deal with the peisistent-current pioblem within this master thesis

The intention of this paper goes in two duections Fustly, the anthor makes it ponsible to gam a deeper msight into the cansen of persistent current and its derivation For this purpose a formalism is developed and the successive steps are explamed in some detanl. Vanous exact 1 esults have been gained and are discussed Most of these results were obtamed molependently of any other publication, but have been compared with other wonks alten wads

The above mentioned formalism uses thght-buding models Thoughont the whole paper second quantization and a wational apporoch is used to evaluate the appearing Hamiltomans. The man task is an andusis of the appearing Hatiee-Fock equations Based on both, tight-bunding models and HartreeFock appiownation, many meterestmg lesults ate published in the hterature [6. 8. 9, 10 11, 12, 13] However, then combmation, a discicte Hatice-Fock pretme in used very seldom $[6]$

Sconclly, it was the intention to improve the fist results by performung more complicated decompositions The idea was to allow difterent, spin-sturtures for the gromed state, wheh depend on the flux For this ieason totations of the spmquantization axis for each of the sites were montioduced. It tumed out that this task is quite complicated. and especially an appophate choice of the wave function was not asy to find This paper documents the different thals, the concluded results and the reasons for modifications It doen not cud with a pioper iesult, but with a suggestion for what is, in the opmon of the authon, the best was to manage the proposed spin-stincture

The stmacture of thas thesis is chosen necondmgly It stats with some basic
remarks on the tight-binding models in chapter 1 In chapter 2 the physical background is explaned and an expression for the persistent current is derived step ly step. However, the morlel is stall sumple because no interaction is taken me consıderation This happens in chapter 3, in which it is also explained in detail how the Hartree-Fock calculation is done. The fist part ends with expressions for the energy in the Heisenberg model and the standard Hubbard nodel.

In the second part the notion of rotation is introduced In chapter 4 some concepts are explained and it is tested in which way the rotation should be mcluded The last chapter is entitled "Tials of Improvennent" and offers solutions for the various problems which appeared in the preceding chapter. The paper fimshes with some conclusions

Dumg the time of research it was necessary to make use of some nathenatical techmques. In oider not to interiupt the argumentation ton often longer explatiations of such techmines are occasionally mored to the appendices B to F This makes it also easier for readers who are fambar with this field, to omit those pats since the man body of the paper is fommulated mependently of the appendices. Appendix A mıght be especially helpful. It contans a list of almost all symbols used in this paper

Chapter 1

The Heisenberg Hamiltonian and its Transformations

1.1 The Heisenberg Spin-Hamiltonian

The Heisenberg Hamiltonian has its geatest monotance m the thal to find an explanation of magnetism $[16,17]$ In this atea a mean- or moleculat-field theory is apprantly not sufficient to describe all existmg effects Therefore, Hersenberg monoduced alocal monent theory He (and modependently Dirac) fist of all suggested a quantum mechanical exchange interaction to explain the singlet-triplet splitting in the helium spectrum. Two yeas later, in 1928, he applied this idea to magnetism

Hund's rules allon the possibility to associate with each site of a lattice a certan spin According to these rules, every atom trics to have parallel spme in its outcr shell Hence, electrons with a ceitan spin direction are iepelled, others are not This leads, even of theie is a consudenable election fluctuation. to a fived spin of a particular site

The adea to melude this electron spin in the wave tume tion has its backgonand in the Paule exclusion primciple Since thene is an orerlap of the war functions of neighbourng sites, the exclusion principle mphes a correlation between spms of two electrons This can be expiessed by a so-called Hesenberg eneigy whinch
is proportional to the dot product of the spins

$$
\begin{equation*}
\mathcal{H}_{\mathrm{Hels}}=-J \sum_{\langle 2, j\rangle} \mathrm{S}_{i} \cdot \mathrm{~S}_{j}, \tag{array}
\end{equation*}
$$

where $\langle\imath, \jmath\rangle$ mdicates that the sum goes orer nearest neighbous only
J is called the exchange integial. which has no chassical analogue because it is based on the Pauli exclusion pinciple It is supposed to be identical for all nearest neighbour pans, which is of course a smplification The value of J can be calculated from specific heat measurements and spm-wave considerations For instance Hofmann et al [18] found for aron and nickel $J \approx 001-002 \mathrm{eV}$ and for gadolmum $J \approx 00002 \mathrm{eV}$ Howerer, theoretical estimations [19] lead to different values, which shows the weakness of the model.

The origin of mstakes is manly the assumption of localized magnetic momonts, attached to the atomic cores in the matenal Especially, for elements with high atomic numbers the elections of the outer sliells are unlikely to be localized Here from a physical pont of view itmerant clectron theones seem to be more farourable, even so, they are much more difficult to handle For 3d thansition metals both, the localized and the itmenant theory, have therr justification The former explans for mstance spm wave phenomend and the temperature dependence of the specific lieat, the latter magnetic moments with non-mtegtal numbers of Bohr maguetons per atom

Nevertheless, only the Heisenberg idea of localized magnetic moments and ther interaction is used in this woik Fist of all, it is necressary to descibe spin operators for spm one-half paticles mathematically This can be done with the help of Pauli spminatuces m the fom $\mathrm{S}_{2}=\frac{1}{2}$ th σ for site number \imath The components of these spin matinces ate

$$
\sigma_{r} \equiv \sigma(1)=\left(\begin{array}{ll}
0 & 1 \tag{1.2}\\
1 & 0
\end{array}\right), \sigma_{y} \equiv \sigma(2)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \text { and } \sigma_{z} \equiv \sigma(3)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

It, furthermore, the laddel operators

$$
S_{\imath}^{ \pm}=S_{\imath}^{2} \pm 1 S_{2}^{\prime \prime}
$$

ate introduced, eventually the following set of spin operators

$$
S_{2}^{+}=\hbar\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), S_{2}^{-}=\hbar\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) \quad \text { and } \quad S_{2}^{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

can be obtamed
It is easy to show that

$$
S_{\imath}^{-} S_{\jmath}^{+}+S_{\imath}^{+} S_{j}^{-}=2 S_{\imath}^{x} S_{\jmath}^{x}+2 S_{\imath}^{y} S_{\jmath}^{y},
$$

which has two consequences. Firstly, it allows the rewriting of the common pioduct of two spin operators

$$
\begin{equation*}
\mathrm{S}_{1} \mathrm{~S}_{\mathbf{j}}=S_{\imath}^{\tau} S_{\jmath}^{x}+S_{\imath}^{y} S_{\jmath}^{y}+S_{\imath}^{z} S_{\jmath}^{z}=\frac{1}{2}\left(S_{\imath}^{+} S_{\jmath}^{-}+S_{\imath}^{-} S_{\jmath}^{+}\right)+S_{\imath}^{z} S_{\jmath}^{z} \tag{13}
\end{equation*}
$$

Secondly, it shows that the anticommutator of spin operators on the same site is propostional to adentity

$$
\begin{equation*}
\left[S_{\imath}^{+}, S_{\imath}^{-}\right]_{+}=\hbar^{2} \|_{2} \tag{14}
\end{equation*}
$$

1.2 Transformation to Bosons

For angular momentuin operators in general, especially if the spin cuantum numbels are laige, a treatment with matrices might be cumbersome It is often more comment to wook in second quantization. One possibility to replace spin operators is the coupled-boson representation It shall be descibed heie in bievity berause it fits moto the context. However, it is of little unportance for the man bodly of this paper.

Coupled Boson Representation

The coupled-boson representation was first proposed by Schwinger [20] ${ }^{1}$ He introduced spmos openators

$$
\begin{equation*}
\mathrm{b}^{\dagger}=\left(b_{1}^{\dagger} b_{2}^{\dagger}\right) \quad \text { and } \quad \mathrm{b}=\binom{b_{1}}{b_{2}} \tag{15}
\end{equation*}
$$

[^0]which consist of two Bose creation and ammhlation operators, respectively The latter fulfil the usual commutation relations for bosons
\[

$$
\begin{equation*}
\left[b_{2}, b_{j}\right]_{-}=\left[b_{\imath}^{\dagger}, l_{j}^{\dagger}\right]_{-}=0, \quad\left[b_{l}, b_{j}^{\dagger}\right]_{-}=\delta_{r y} \tag{1.6}
\end{equation*}
$$

\]

and are well defined if a racuum state $|0\rangle$ is introduced together with the constrame

$$
\begin{equation*}
b_{\imath}|0\rangle=0 \quad \text { or } \quad\langle 0| b_{\imath}^{\dagger}=0 \quad \forall \imath \tag{1.7}
\end{equation*}
$$

Uisng the Pauli spm matrices (1.2) the repiesentation for a geneial angular momentum operator (not necessanly half-spin) has the followng form

$$
\begin{equation*}
\mathrm{S}=\frac{\hbar}{2} \mathrm{~b}^{\dagger} \cdot \sigma \cdot \mathrm{b} \tag{18}
\end{equation*}
$$

Proof: It has to be shown that the typical commutation relations for the components of angular momentum operators ae fulfilled by S In ordel to wite thes in a compact form (S^{x}, S^{y}, S^{z}) is replaced by $\left(S^{1} . S^{2}, S^{3}\right)$ and Emstem's sum convention is used

$$
\begin{aligned}
& S^{\prime} S^{\jmath}-S^{\jmath} S^{\prime}=\frac{\hbar^{2}}{4}\left(b_{\alpha}^{\dagger} \sigma(1)_{\alpha \beta} b_{\beta} b_{\gamma}^{\dagger} \sigma(\jmath)_{\gamma \phi} b_{j}-b_{\gamma}^{\dagger} \sigma(\jmath)_{\gamma \delta} b_{\delta} b_{h}^{\dagger} \sigma()_{\alpha \beta} b_{\beta}\right) \\
& =\frac{\hbar^{2}}{4}\left(b_{\pi}^{\dagger} \sigma(1)_{\alpha \beta} \delta_{\beta \gamma} \sigma(\jmath)_{\gamma \delta} b_{\delta}+b_{a}^{\dagger} \sigma(1)_{\alpha \beta} b_{\gamma}^{\dagger} b_{\beta} \sigma(\jmath)_{\gamma \delta} b_{\delta}\right. \\
& \left.-b_{\gamma}^{\dagger} \sigma(\jmath)_{\gamma \delta} \delta_{\delta \alpha} \sigma(\imath)_{\alpha \beta} b_{\beta}-b_{\gamma}^{\dagger} \sigma(\jmath)_{\gamma \delta} b_{\alpha}^{\dagger} b_{\delta} \sigma(\imath)_{\alpha \beta} b_{\beta \beta}\right) \\
& =\frac{\hbar^{2}}{4}\left(b_{\alpha}^{\dagger}(\sigma(\imath) \cdot \sigma(\jmath))_{\alpha \delta \delta} b_{j}-b_{\gamma}^{\dagger}(\sigma(\jmath) \sigma(\imath))_{\gamma \beta} b_{\beta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\varepsilon_{i j k} i \hbar S^{h}
\end{aligned}
$$

Having defined the angular momentum in this way, it is also possible to give an expression for the cigenstates in terms of cheation operatots The result

$$
\begin{equation*}
|s m\rangle=\frac{\left(b_{1}^{\dagger}\right)^{s+m}\left(b_{2}^{\dagger}\right)^{s-m}}{\sqrt{(s+m)^{1}(s-m)^{\dagger}}}|0\rangle \tag{19}
\end{equation*}
$$

denotes a state with the eigenvalues $\hbar^{2} s(s+1)$ and $\hbar m$ of S^{2} and S_{z}, renpectively $|0\rangle=|00\rangle$ is agam the vacuum state

Proof: It has to be shown that the ladder operatons $S^{+}=S^{x}+1 S^{y}$ and $S^{-}=S^{x}-1 S^{y}$ rise and lower the m-value conrectly and that S^{2} gives the coriect eigenvalue of $\hbar^{2} s(s+1)$ The former is clear after finding that

$$
\begin{equation*}
S^{+}=\hbar b_{1}^{\dagger} b_{2}, \quad S^{-}=\hbar b_{2}^{\dagger} b_{1} \quad \text { and } \quad S^{z}=\frac{\hbar}{2}\left(b_{1}^{\dagger} b_{1}-b_{2}^{\dagger} b_{2}\right) \tag{110}
\end{equation*}
$$

the latter is obvious by showing that

$$
\mathrm{S}^{2}=\frac{1}{2}\left(S^{+} S^{-}+S^{-} S^{+}\right)+S_{z}^{2}=\pi^{2} \mathrm{~s}(\mathrm{~s}+1)
$$

where

$$
\mathrm{s}=\frac{1}{2} \mathbf{b}^{\dagger} \cdot \mathbf{b}=\frac{1}{2}\left(b_{1}^{\dagger} b_{1}+b_{2}^{\dagger} b_{2}\right)=\cdot \frac{1}{2} \hat{n}_{1}+\frac{1}{2} \hat{n}_{2}
$$

Therefore, an interaction of spin operators in the form

$$
\begin{equation*}
\mathcal{H}=-J \sum_{\langle\imath, j\rangle} \mathrm{S}_{1} \mathrm{~S}_{3}+\eta \mu_{B} \sum_{j} \mathrm{~B} \mathrm{~S}_{3} \tag{111}
\end{equation*}
$$

also macluding an interaction with an external magnetic field B (g and μ_{B} are constants) can be transformed with the help of (18) to an expiession with bosonic cication and ammhilation operators Expectation values can be calculated in sccond quantization, using the eigenstates proposed in (19).

Variations

There exist varous rarrations of the above mentroned tepresentation Most of them have the aim to replace one of the bosonk, openatons With the help of qulasi-classical arguments it is tried to work with one kind of bosons only One finds for mstance in Merzbacher [22] why a feliomagnetic approximation leads to

$$
\begin{equation*}
\mathrm{S}_{2} \mathrm{~S}_{3}=\frac{\hbar^{2}}{2}\left\{2 s l_{2}^{\dagger} b_{j}+2 s b_{2} b_{j}^{\dagger}-2, l_{1}^{\dagger} b_{2}-2 s b_{j}^{\dagger} b_{2}+2 s^{2}\right\} \tag{112}
\end{equation*}
$$

Another possiblilty is the Holstein-Pimmakft transtomation [23], which results in the following representation:

$$
\begin{gather*}
S_{j}^{+}=\hbar b_{j}^{\dagger} \sqrt{2 s} \sqrt{1-\frac{1}{2 s} b_{j}^{\dagger} b_{j}}, \quad S_{j}^{-}=\hbar \sqrt{2 s} \sqrt{1-\frac{1}{2 s} b_{j}^{\dagger} b_{j} b_{j}}, \tag{113}\\
S_{j}^{z}=\hbar\left(b_{j}^{\dagger} b_{\jmath}-s\right) .
\end{gather*}
$$

1.3 Transformation to Fermions

For the special case of spin one-half operators it is sometımes more helpful to work wath a fermionic representation. One mught think of a conpled fermion representation since (1.8) is also valid for femmons. Howevel, there are also ways to manage withont a second creation operator This section introduces the most widely accepted possinhlity to make a tiansfoumation in this dnection, the

Jordan-Wigner Transformation

Fermions are characterized by the following anticommutation relations of aumhilation operators c_{2} and creation operators c_{i}^{\dagger} :

$$
\begin{equation*}
\left[c_{2}, c_{j}\right]_{+}=\left[c_{2}^{\dagger}, c_{j}^{\dagger}\right]_{+}=0, \quad\left[c_{2}, c_{j}^{\dagger}\right]_{+}=\delta_{\imath j} \tag{1.14}
\end{equation*}
$$

They are well defined with the help of a vacumm state $|0\rangle$, tor wheh holds

$$
\begin{equation*}
c_{2}|0\rangle=0 \quad \text { or } \quad\langle 0| c_{2}^{\dagger}=0 \quad \forall_{2} \tag{115}
\end{equation*}
$$

The taansformation proposed by Joidan and Wigneı un 1928 [24] ${ }^{2}$ makes use of smulat properties of spin operators and temmons. It lads already been ponted ont (14) that the anticommutator of spin openators on the same site is

$$
\left[S_{2}^{+}, S_{2}^{-}\right]_{+}=\hbar^{2} \mathbb{1}_{2}
$$

Hence, an identification of spin operatos with fermome operators in the form

$$
S_{2}^{+} \equiv \hbar c_{2}^{\dagger}, S_{2}^{-} \equiv \hbar c_{2} \quad \text { and } \quad S_{2}^{z} \equiv \hbar\left(c_{\imath}^{\dagger} c_{2}-\frac{1}{2}\right)
$$

seems to be natural Unfortmately, it is not that casy Spmoperators for different sites or particles commute with one another

$$
\begin{equation*}
\left[S_{2}^{+}, S_{j}^{-}\right]_{-}=0 \quad \text { fol } \quad \imath \neq \jmath \tag{array}
\end{equation*}
$$

whereas fermionic operators anticommute. For this reason a phase factor U_{2} for ach site 2 is necessary to change anticommuting to commuting U_{i} should bea untary operator (as every phase factor), which only conturbites a sign to the

[^1]expressions for the spin operators It is convenient to use the fermonic operators c_{2} for this purpose. Jordan and Wigner proposed to do that in the following way:
\[

$$
\begin{align*}
U_{\imath} & =\exp \left[\mathrm{i} \pi \sum_{k<\imath} c_{h}^{\dagger} c_{k}\right] \tag{117}\\
& =\prod_{h<\imath} \exp \left[1 \pi c_{k}^{\dagger} c_{k}\right]=\prod_{k<\imath}\left(1-2 c_{k}^{\dagger} c_{k}\right)
\end{align*}
$$
\]

which hokls for one dimension Hence, the spin operators have the form

$$
\begin{align*}
S_{\imath}^{+} & \equiv \hbar c_{\imath}^{\dagger} U_{\imath}=\hbar c_{\imath}^{\dagger} \exp \left[\mathrm{i} \pi \sum_{k<\imath} c_{k}^{\dagger} c_{k}\right] \\
S_{\imath}^{-} & \equiv \hbar U_{2}^{*} c_{\imath}=\hbar \exp \left[-\mathrm{i} \pi \sum_{k<\imath} c_{k}^{\dagger} c_{k}\right] c_{2} \tag{array}\\
S_{\imath}^{z} & \equiv \hbar\left(c_{\imath}^{\dagger} U_{\imath} U_{2}^{*} c_{\imath}-\frac{1}{2}\right)=\hbar\left(c_{\imath}^{\dagger} c_{\imath}-\frac{1}{2}\right)
\end{align*}
$$

In order to check that this phase factor has the desired properties, it is sufficrent to notice that the operator product $c_{k}^{\dagger} c_{k}$ is an occupation number operator \hat{n}_{h} An ordering of the sites $\imath=1, ., N$ is introduced, and therefore the sum In (117) comnts the number of occupied sitos coming befote the site? If this number is even, then $U_{2}=1$, otherwise it is -1 In the commutator

$$
\left[S_{2}^{+}, S_{j}^{-}\right]_{-}=\hbar^{2}\left(c_{2}^{\dagger} U_{\imath} U_{j}^{*} c_{\jmath}-U_{j}^{*} c_{\jmath} c_{2}^{\dagger} U_{\imath}\right)
$$

assmmmig $\rho<\imath$, only the sites k with $\jmath \leq k<\imath$ are mportant (the rest is counted twice) Owing to the fact that U_{i} appears in the first summand left to c_{j} and in the second summand right to c_{j}, the sum $\sum_{k=j}^{2-1} \hat{n}_{k}$ differe by 1 in these two cases This gives the tequmed additiond phase factor -1 which changes anticommuting to commuting The argumentation for $\jmath>i$ is smmar.

Br using (13), (116) and (118), the kmetic energy tenm in the Hensenberg Hamiltoman becomes in one dimension

$$
\begin{align*}
\mathcal{H} & =J \sum_{\langle 2 \jmath\rangle} \mathrm{S}_{\imath} \mathrm{S}_{\jmath}=J \sum_{\jmath}\left\{\frac{1}{2}\left(S_{\jmath}^{+} S_{\jmath+1}^{-}+S_{\jmath}^{-} S_{\jmath+1}^{+}\right)+S_{\jmath}^{z} S_{\jmath+1}^{z}\right\} \\
& =\hbar^{2} J \sum_{\jmath}\left\{c_{\jmath}^{\dagger} c_{\jmath+1}+c_{\jmath+1}^{\dagger} c_{\jmath}+\left(c_{\jmath}^{\dagger} c_{\jmath}-\frac{1}{2}\right)\left(c_{\jmath+1}^{\dagger} c_{\jmath+1}-\frac{1}{2}\right)\right\} \tag{119}
\end{align*}
$$

It is clear that in (119) the phase factor U_{j} dors not, appeat any mone This is due to the fact that for the sum orer the occupation mumbers in U_{j} only the
sites k with $\jmath \leq k<\jmath+1$ are important (the rest is counted twice). However, for $\jmath=k$ ether the occupation number operator \hat{n}_{h} or the femmonic operator c_{j}^{\dagger} gives zero owing to the Paula exclusion principle

Variations

Variations appear if the one-dimensional chain of operators is closed to a ring. This happens when the index $N+1$ is identified with the index number 1 . That means physically that periodic bounday conditions de mplemented and mathematically that all site indices are understoon to be taken (mod N).

In such a situation one has to check the behamour of the teim $S_{1}^{+} S_{2+1}^{-}$. It does not cause any problems as long as $\imath \neq N$ However, for $\imath=N$ the thansformation formulas (118) lead to

$$
\begin{aligned}
\frac{1}{\hbar^{2}} S_{N}^{+} S_{1}^{-} & =c_{N}^{\dagger} \exp \left[1 \pi \sum_{h<N} c_{k}^{\dagger} c_{h}\right] \exp \left[-1 \pi \sum_{h<1} c_{h}^{\dagger} c_{k}\right] c_{1} \\
& =c_{N}^{\dagger} \exp [1 \pi(M-1)] c_{1} \\
\frac{1}{\hbar^{2}} S_{1}^{+} S_{N}^{-} & =c_{1}^{\dagger} \exp \left[1 \pi \sum_{h<1} c_{h}^{\dagger} c_{h}\right] \exp \left[-1 \pi \sum_{h<N} c_{L}^{\dagger} c_{h}\right] c_{N^{\prime}} \\
& =c_{1}^{\dagger} \exp [-\mathrm{i} \pi(M-1)] c_{N}
\end{aligned}
$$

Here M is the expectation value of $\sum_{k=1}^{N} c_{k}^{\dagger} c_{k}$ It is ccuuvalent to the number of paticles of the system, which is supposed to be fixed

The phase factor $\mathrm{e}^{1 \pi(\Lambda I-1)}$ is equal to unitv for the case of an old number of particles Howerer, it gives a mmus sign it the mumber of paticles is even I To br precise, one therefore has to white mstead of (119)

$$
\begin{gather*}
\mathcal{H}=\hbar^{2} J \sum_{j=1}^{N}\left\{c_{j}^{\dagger} c_{j+1}+c_{j+1}^{\dagger} c_{j}+\left(c_{j}^{\dagger} c_{j}-\frac{1}{2}\right)\left(c_{j+1}^{\dagger} c_{j+1}-\frac{1}{2}\right)\right\} \\
+\left\{c_{j}^{\dagger} c_{j+1}+c_{j+1}^{\dagger} c_{j}\right\}\left(r^{\prime \pi(A 1-1)}-1\right) \tag{array}
\end{gather*}
$$

In such a form the character of the Hersenberg Hamitoman is peserved and a chan of spme is described The situation is usually called the "u-cyclic" problem $[26,27]^{3}$

[^2]On the other hand the additional teim proportional to $\left(e^{1 \pi(A /-1)}-1\right)$ is in the lunit of a large number of sites, N, negligible To omit it also means to describe a cyclic problem of teal fermions The Hamiltoman

$$
\begin{equation*}
\mathcal{H}=\hbar^{2} J \sum_{\jmath=1}^{N}\left\{c_{\jmath}^{\dagger} c_{\jmath+1}+c_{\jmath+1}^{\dagger} c_{\jmath}+\left(c_{\jmath}^{\dagger} c_{\jmath}-\frac{1}{\underline{2}}\right)\left(c_{\jmath+1}^{\dagger} c_{\jmath+1}-\frac{1}{2}\right)\right\} \tag{121}
\end{equation*}
$$

is called " c-cyche" and is well to distingursh from the previons one.
The man differences are the imphed boundarv conditions [2̄] The a-cyclic pioblem has by construction always penodic hounday conditions In the c-cyclic problem this is only the case for an odd number of particles if the number of paticles is even, then the boundary conditions are antipeniodic, how it should be for real fermions.

The reason is that theie are the following rules how fenmon annmination and cleation operators act on Fock states in second quantization [28]:

$$
\begin{array}{ll}
c_{\alpha_{r}}^{\dagger} \mid M, \quad, n_{\alpha_{r}}, & \rangle=(-1)^{M t_{r}} \delta_{n_{\alpha_{r}, 0}}\left|M+1, \quad, n_{r_{r}}+1,\right\rangle \\
c_{\alpha_{r}} \mid M, \ldots, n_{\kappa_{r}}, & \rangle=(-1)^{M I_{r}} \delta_{n_{a_{r}, l}}\left|M-1, ., n_{\alpha_{r}}-1, \ldots\right\rangle
\end{array}
$$

where

$$
M_{r}=\sum_{i=0}^{r-1} n_{\kappa_{t}}
$$

Hence, it is

$$
c_{1}^{\dagger} c_{N}|M, 0, \quad ., 1\rangle=(-1)^{M-1}|. M, 1, \quad, 0\rangle
$$

and rice versa

1.4 Related Hamiltonians

The result of the Jordan-Vigner transformation of the Hubbard Hamıltonian is

$$
\left.\left.\begin{array}{rl}
\mathcal{H} & =\hbar^{2} J \sum_{j}\left\{c_{j}^{\dagger} c_{j+1}+c_{j+1}^{\dagger} c_{j}\right.
\end{array}\right)\left(c_{j}^{\dagger} c_{j}-\frac{1}{2}\right)\left(c_{j+1}^{\dagger} c_{j+1}-\frac{1}{2}\right)\right\}, \underbrace{\hbar^{2} J \sum_{j}\{\underbrace{c_{j} c_{j+1}+c_{j+1}^{\dagger} c_{j}}_{\hat{j}}+\underbrace{c_{j}^{\dagger} c_{j} c_{j+1}^{\dagger} c_{j+1}}-c_{j}^{\dagger} c_{j}\}}_{\hat{H}_{0}}
$$

It cousists mamly of two parts \hat{H}_{0} describes the quautum mechamical hopping of electrons; \hat{V} can be understood as an interaction of different elections The remaining term is a particle self energy. It is worth noting that the product $c_{j}^{\dagger} c_{j}=\hat{n}_{j}$ is the occupation number operator in second quantization Summed over all sites J, the total mumber of particles of the system is obtamed In the calculations of this paper this number is supposed to be constant, whech allows us to ignone the last term as an unimportant enengy sluft

In a more general form it is possible [28] to wite the Hamiltoman for a combination of the one-particle kmetic energy and a two-particle inteiaction in second quantization as

$$
\begin{equation*}
\mathcal{H}=\sum_{p, q} c_{p}^{\dagger}\langle p| \hat{H}_{1}|q\rangle c_{q}+\sum_{p, q, i, s} c_{p}^{\dagger} c_{q}^{\dagger}\left\langle p q_{l}\right| \hat{H}_{2}|r s\rangle c_{1} c_{\varsigma} \tag{122}
\end{equation*}
$$

lgnormg many-paticle interactions, whach are seldom
The equation wheh follows foom the Jomlan-Wignen transtomation is just a spenal case of thes repesentation A hopping is only allowed from one site to an adjacent site, which essentially leads to a Kionecker-delta instead of the expectation value of \hat{H}_{1} Furthemore, the meraction operatom \hat{H}_{2} gives the value I' for nealest neighbours only. All other expectation values of \hat{H}_{2} ramble

The Heisenberg Model

A Hamltoman of the form

$$
\begin{equation*}
\mathcal{H}=-t \sum_{h}\left(c_{k}^{\dagger} c_{k+1}+\mathrm{hc}\right)+\mathrm{I}^{\cdot} \sum_{h} \hat{n}_{k} \hat{n}_{k+1} \tag{1.23}
\end{equation*}
$$

is called in this paper the Heisenberg model In this expeenson the constant in front of the first sum has been renamed to $-t=\hbar^{2} . J$ and is called "hopping integral", I ' is a repulsive Coulomb potental, 'hc"stands fol 'hermitian
conjugate". The Hersenberg model works with spinless fermons and includes a hopping and an interaction between nearest neighbours in one dimension.

The Hubbard Model

A further step is not to calculate with spmless fermions but to melude the spin of paticles into consideration. In this case the meteraction is usudlly simplified even more. Not even the effects of nearest neighbours on a fermon on a certan site are considered The calculations are reduced to the Conlomb repulsion of two particles which are located on the same site, but have different spin In the case of spinless fermions this term did not appear because of the Pauli exclusion punciple; the spin degeneracy allows such contributions. The Hamiltonian has the form

$$
\begin{equation*}
\mathcal{H}=-t \sum_{k} \sum_{\sigma=\uparrow, \downarrow}\left(c_{k, \sigma}^{\dagger} c_{k+1, \sigma}+c_{h+1, \sigma}^{\dagger} c_{k, \sigma}\right)+U \sum_{k} \hat{n}_{k, \uparrow} \hat{n}_{k, \downarrow} \tag{124}
\end{equation*}
$$

Here $c_{k, \sigma}^{\dagger}$ dud $c_{k, \sigma}$ are the creation and anmlulation operators of a fermon with apin σ on the site h, iespectis ely, $\hat{n}_{k, \sigma}$ is the conesponding occupation number opelator

In either form, (1.23) and (124), the Hamitoman is only an appoommation Nereitheless, such approximations can alleady lead to interesting and nontrivial woults Unfortunately, even sumphfications like this camot always be solved analytically Numerical methods or apprommations ate necessaty

Chapter 2

Rings of Fermions and Bosons

2.1 Heisenberg Model with Spinless Particles

As a first simple example of electronic interactions of chaiged particles it is possille to use the Heisenbeng model It is the purpose of this section to show how within the Hesenberg model the total eneigy for a set of paticles on a ing can be obtained This happens fist of all msubsection 211 lor only one paticle An expiession for the energy of more particles is denved 1 ln 212 , and the necessary considerations to mummze this expression are findly explamed in 2.13 Subsection 214 adds some remarks on the distribution of the paticles

2.1.1 One Particle on the Ring

Wie legen our considerations with looking onls at the hoppmg pat of the Hensenbeig model That means the Hamiltoman has the following stumeture

$$
\begin{align*}
\mathcal{H} & =\hbar^{2} J \sum_{j=1}^{N}\left\{c_{\jmath}^{\dagger} c_{\jmath+1}+c_{j+1}^{\dagger} c_{\jmath}\right\}=-t \sum_{j=1}^{N}\left\{c_{\jmath}^{\dagger} c_{\jmath+1}+\mathrm{hc}\right\} \tag{2.1}\\
& =-t\left\{c_{1}^{\dagger} c_{2}+c_{2}^{\dagger} c_{1}+c_{2}^{\dagger} c_{3}+c_{3}^{\dagger} c_{2}+.+c_{N}^{\dagger} c_{N-1}+c_{N}^{\dagger} c_{1}+c_{1}^{\dagger} c_{N}\right\}
\end{align*}
$$

The ramble N gives the number of sites withm the system Becanse only one dimension is taken into consideration, the system forms a lime of adjacent sites, scparated be a distance a. Thus, the length of the lme is $L=a N$ One can see fiom the sign in fiont of the last two terms that we use the c-ceclic problem, the description with real fermions.

It is also possible to use the expression (2.1) for the case that the operators obey the commutation rules of bosons More specifically; such a model would describe hard-core bosons These are particles whech behave according to Bose statistics, but only $n_{j}=0$ and 1 are allowed as occupation numbers.

However, for a system with only one particle, as examined next, thete are no differences between these two descriptions becanse no commutators appear. In both cases (fermions and bosons) the Heisenberg Hamultoman anmlnlates the particle on a certan site and cieates a new one on both possible adjacent sites The sites N and 1 are undenstood to be adjacent

The description of the Hamiltonian in terms of amihilation and cieation opelatois imphes the usage of second quantization. For this reason, a Fock- or ocupation-number representation for the eigenstates is used•

$$
\begin{equation*}
|\psi\rangle=\alpha_{1}|0 . \quad 001\rangle+\alpha_{2}|0.010\rangle+\quad+\alpha_{N}|10 \ldots 00\rangle \tag{2.2}
\end{equation*}
$$

Then the Hamiltonaan \mathcal{H} in (2.1) can also be written in matrix repiesentatron. Independent of the number of particles the matrix has fom shown nght.
The set of eigenvalues of \mathcal{H} is identical with the spectrum of the shown matrix The latter could be evaluated

$$
-t\left(\begin{array}{cccccc}
0 & 1 & & & & 1 \tag{24}\\
1 & 0 & 1 & & & \\
& 1 & 0 & & 0 & \\
& & & & & \\
& 0 & & & 1 & \\
& & & & 0 & 1 \\
1 & & & & 1 & 0
\end{array}\right)
$$ numerically: Howeve, this seems not to be necessary since the given set of epliations for the eigenvalue λ can be sohed exactly by assummeng that the corfficients ate Bloch wave functions,

$$
\begin{equation*}
\alpha_{j}=\frac{1}{\sqrt{N}} \mathrm{e}^{\ell_{j}} \tag{23}
\end{equation*}
$$

Because the periodic boundaty condition $a_{N+3}=\alpha_{3}$ must be satisfied for
every \jmath, it turns out that only certain values for k are allowed•

$$
\begin{equation*}
k_{n}=\frac{2 \pi}{N} n, \quad n=0,1, \ldots, N-1^{1} \tag{2.5}
\end{equation*}
$$

Hence, the ergenvalues are determined by the following equation

$$
\begin{aligned}
-t\left(\mathrm{e}^{1 k_{n}(\jmath-1)}+\mathrm{e}^{1 k_{n}(\jmath+1)}\right) & =\lambda_{n} \mathrm{e}^{1 k_{n} \jmath} \\
-t\left(\mathrm{e}^{-1 h_{n}}+\mathrm{e}^{1 k_{n}}\right) & =\lambda_{n} .
\end{aligned}
$$

These numbers λ_{n} are the eigenvalues of the Hamulton operator \mathcal{H}, and therefore the possible energy states for one particle on a ing with N sites are

$$
\begin{equation*}
E_{n}=-2 t \cos k_{n}=-2 t \cos \left(\frac{2 \pi}{N} n\right) \tag{26}
\end{equation*}
$$

2.1.2 Two or More Particles

The case of two particles on the img must be handled separately toi feimons and for bosons The following calculations concentiate on the former ones We shall come back to bosons in section 23

The eigenstates of the Hamiltoman \mathcal{H} given in the form (2.1) can be described br two quantum numbers n, m with $n \neq m$ In second quantization the form

$$
\begin{equation*}
|\psi\rangle_{n, m}=\sum_{\imath \jmath} \alpha_{\imath, j}^{n, m} c_{\imath}^{\dagger} c_{\jmath}^{\dagger}|0\rangle \tag{27}
\end{equation*}
$$

is appropiate The properties of the coefficients $a_{1, j}^{n, m}$ dre discussed in subsection 214 At the moment they are just functions of the sites 2 and \jmath which also drpend on the quantum numbers n and m

The Schrodinger equation $\mathcal{H}|\psi\rangle_{n, m}=E_{n, m}|\psi\rangle_{n, n}$ for this problem can be handleel in different ways One of them is a stranglit forwad usage of the commutation relations

$$
\begin{align*}
-\frac{1}{t} \mathcal{H}|\psi\rangle_{n, m} & =\sum_{\imath \jmath k} \alpha_{2, \jmath}^{n, m}\left(c_{k}^{\dagger} c_{k+1}+c_{h+1}^{\dagger} c_{k}\right) c_{\imath}^{\dagger} c_{\jmath}^{\dagger}|0\rangle \\
& =\sum_{\imath \jmath k} \alpha_{\imath, j}^{n, m}\left(c_{k}^{\dagger} c_{k+1} c_{\imath}^{\dagger} c_{\jmath}^{\dagger}\left(\delta_{k+1, \imath}+\delta_{k+1, \jmath}\right)+c_{k+1}^{\dagger} c_{h} c_{\imath}^{\dagger} c_{\jmath}^{\dagger}\left(\delta_{k, \imath}+\delta_{k, \jmath}\right)\right) \\
& =\sum_{\imath \jmath} \alpha_{\imath, j}^{n, m}\left(c_{\imath-1}^{\dagger} c_{\imath} c_{\imath}^{\dagger} c_{\jmath}^{\dagger}+c_{\jmath-1}^{\dagger} c_{\jmath} c_{\imath}^{\dagger} c_{\jmath}^{\dagger}+c_{\imath+1}^{\dagger} c_{\imath} c_{2}^{\dagger} c_{\jmath}^{\dagger}+c_{\jmath+1}^{\dagger} c_{\imath} c_{\imath}^{\dagger} c_{\jmath}^{\dagger}\right)|0\rangle
\end{align*}
$$

[^3]\[

$$
\begin{aligned}
& =\sum_{\imath \jmath} \alpha_{\imath, j}^{n, m}\left(c_{\imath-1}^{\dagger} c_{\jmath}^{\dagger}-c_{\jmath-1}^{\dagger} c_{2}^{\dagger}+c_{\imath+1}^{\dagger} c_{\jmath}^{\dagger}-c_{\jmath+1}^{\dagger} c_{2}^{\dagger}\right)|0\rangle \\
& =\sum_{\imath \jmath} \alpha_{2, j}^{n, m}\left(c_{\imath-1}^{\dagger} c_{\jmath}^{\dagger}+c_{\imath}^{\dagger} c_{\jmath-1}^{\dagger}+c_{\imath+1}^{\dagger} c_{\jmath}^{\dagger}+c_{\imath}^{\dagger} c_{\jmath+1}^{\dagger}\right)|0\rangle \\
& =\sum_{\imath j}\left(\alpha_{2-1, j}^{n, m}+\alpha_{2, j+1}^{n, m}+\alpha_{2+1, j}^{n, m}+c_{\imath, j-1}^{n, m}\right) c_{\imath}^{\dagger} c_{\jmath}^{\dagger}|0\rangle
\end{aligned}
$$
\]

In the fourth line of this calculation the fact that all teims with $\tau=J$ disappear due to the Pauli exclusion promple for fermons has been mochuded. In the last lone there is a shift of the summation index

A comprason with the right hand side of the Schodinger equation shows that for all pains $\{1, j\}$ the equation
has to be fulfilled
It is not difficult to see that again Bloch wave functions satisfy this set of equations Actually, the factor $\alpha_{t, j}^{n, m}$, which stands for the wave function of two fermons on the ring, can be factorized, which means that the two fermons can be haudled as non-interactugg particles-

$$
\begin{equation*}
\alpha_{\imath}^{n} \cdot \alpha_{\jmath}^{m} \equiv \alpha_{\imath, j}^{n, m}=\frac{1}{N} \exp \left[\frac{2 \pi 1}{N}(n \imath+m \eta)\right]=\frac{1}{\sqrt{N}} \mathrm{e}^{\frac{z-1}{N} m_{2}} \frac{1}{\sqrt{N}} \mathrm{e}^{\frac{2-1}{\mathrm{c}} m_{j}} \tag{2.9}
\end{equation*}
$$

In this repesentation the case $n=m$ is not allowed The reason is that $n=m$ leads to parameters which are symmetric in the site mdex, $\alpha_{2, j}^{n, m}=\alpha_{j, 2}^{n, m}$, and hence

$$
\begin{aligned}
|\psi\rangle_{n, m}=\sum_{\imath j} \alpha_{\imath, j}^{n, m} c_{2}^{\dagger} c_{j}^{\dagger}|0\rangle & =\frac{1}{2}\left(\sum_{\imath j} a_{2, j}^{n, m} c_{2}^{\dagger} c_{j}^{\dagger}+\sum_{\jmath \imath} a_{j, 2}^{n, m} c_{j}^{\dagger} c_{2}^{\dagger}\right)|0\rangle \\
& =\frac{1}{2}\left(\sum_{\imath j} a_{2, \mu}^{n, m} c_{2}^{\dagger} c_{1}^{\dagger}-\sum_{\imath j} n_{1, j}^{n, m} c_{1}^{\dagger} c_{j}^{\dagger}\right)|0\rangle=0 .
\end{aligned}
$$

That implies that the wave finction $|\psi\rangle_{n, n}$ would disappear everywhere
By using Bloch wave functions in the form (29) one obtams the following expiession for the energy

$$
\begin{equation*}
E_{n, m}=-2 t\left(\cos \left(\frac{2 \pi}{N} n\right)+\cos \left(\frac{2 \pi}{N} m\right)\right) \tag{array}
\end{equation*}
$$

It should not be a great problem to accept the generalization of this expression to the case of M particles on the ring:

$$
\begin{equation*}
E_{n_{1},, n_{M}}=-2 t \sum_{A=1}^{M} \cos \left(\frac{2 \pi}{N} n_{A}\right) \tag{2.11}
\end{equation*}
$$

2.1.3 Total Energy

The calculated energy in (211) still depends on the set of cuantum numbers $\left\{n_{2}\right\}_{2=1}^{M I}$ In order to obtain the ground state of the system at temperatue $T=0$ this set must be chosen in such a way that the total energy is a minimum The situation is visualized in figure 2.1.

Figure 21. Energy states due to the hoppiny part of the Hersenberg model The case of a ring with $N=10$ sizes and $M=7$ particles is shown The small ticks on the x-aris indicate the different possible m values.

In the case of spinless fermions each of the mincated pomits in tecipiocal space can be occupred by not mone than one paticle The reason for this is the Pauli exclusion pumerple. For $M=N$, which is iefened to half filling in the literature, there is only one possibulity, which gives a total energy

$$
E=-t\left(\sum_{n=0}^{N-1} e^{\frac{2-1}{N} n}+\sum_{n=0}^{N-1} e^{-\frac{2 \pi_{1}}{N} n}\right)=-t \frac{1-e^{\frac{2 \pi 1}{A} N}}{1-e^{\frac{2-1}{N}}}-t \frac{1-e^{-\frac{2 \pi \pi_{1} N}{N}}}{1-e^{-\frac{i T_{1}}{1}}}=0
$$

Fon a number of particle $M<N$ the lownest enengy levels ane those which are close to $h=0(\bmod N)$. Hence, the distribution occins in a way smilan to the situation shown in figure 2.1. where dots iepiesent sugle paticles

For a large number of sizes and a small number of particles, or more precisely for $\frac{M I}{N} \ll 1$, the situation is similar to that of free paticicles. For small x the cos-function can be approximated as being

$$
\cos x \approx 1-\frac{1}{2} x^{2},
$$

which gres the picture to free fermions on the right hand side

Figure 22 Energy stafes for a large number of stes $(N=50)$ and a small number of free fermions ($M=7$)

In order to calculate the total energy of the system, it is necessary to distinguish between an odd and an even number of particles M.

M even

$$
\begin{aligned}
E_{\text {even }} & =-2 t \sum_{m=-\frac{M I}{2}}^{+\frac{M I}{2}-1} \cos \left(\frac{2 \pi}{N} m\right)=-t \sum_{m=0}^{M-1}\left\{\operatorname{cxp}\left[\frac{2 \pi 1}{N}\left(m-\frac{M}{2}\right)\right]+\mathrm{hc}\right\} \\
& =-t \exp \left[-\frac{\pi \mathrm{i}}{N} M\right] \frac{1-\exp \left[\frac{2 \pi 1}{N} M\right]}{1-\exp \left[\frac{2 \pi 1}{N}\right]}+\mathrm{hc} \mathrm{c} \\
& =-t \frac{\exp \left[-\frac{\pi_{1}}{N} M\right]-\exp \left[\frac{\pi 1}{N} M\right]}{1-\exp \left[\frac{2 \pi 1}{N}\right]} \cdot \frac{1-\exp \left[-\frac{\pi_{1}}{N} 2\right]}{1-\exp \left[-\frac{2 \pi \pi_{1}}{N}\right]}+1 \mathrm{c} \mathrm{c} \\
& =-t \frac{\cos \left(\frac{\pi}{N}(M-2)\right)-\cos \left(\frac{\pi}{N}(M+2)\right)}{1-\cos \left(\frac{2 \pi}{N}\right)}
\end{aligned}
$$

This expiession can still be smplified by using some important tigonometric rdentıties

$$
\begin{align*}
\cos (x+y) & =\cos x \cos y-\sin x \sin y \\
\cos (x-y) & =\cos 2 \cos y+\sin x \sin y \tag{array}\\
\sin 2 x & =2 \sin 2 \cos x \\
2 \sin ^{2} x & =1-\cos 2 x
\end{align*}
$$

Hence,

$$
E_{\text {eren }}=-t \frac{2 \sin \left(\frac{\pi}{N} 2\right) \sin \left(\frac{\pi}{N} M\right)}{1-\cos \left(\frac{2 \pi}{N}\right)}=-2 t \frac{2 \sin \left(\frac{\pi}{N}\right) \cos \left(\frac{\pi}{N}\right)}{2 \sin ^{2}\left(\frac{\pi}{N}\right)} \sin \left(\frac{\pi}{N} M\right)
$$

which gares the final result for the case of an even number of fermons

$$
\begin{equation*}
\Longrightarrow E_{\text {exen }}=-2 t \cot \left(\frac{\pi}{N}\right) \sin \left(\frac{\pi}{N} M\right) \tag{2.13}
\end{equation*}
$$

The calculations for the other case are analogous

M odd

$$
\begin{aligned}
E_{\text {odd }} & =-2 t \sum_{m=-\frac{14-1}{2}}^{+\frac{M 1-1}{2}} \cos \left(\frac{2 \pi}{N} m\right)=-t \sum_{m=0}^{M-1}\left\{\exp \left[\frac{2 \pi 1}{N}\left(m-\frac{M-1}{2}\right)\right]+\mathrm{hc}\right\} \\
& =-t \exp \left[-\frac{\pi 1}{N}(M-1)\right] \frac{1-\exp \left[\frac{2 \pi 1}{N} M\right]}{1-\exp \left[\frac{2 \pi 1}{N}\right]}+\mathrm{hc.} \\
& =-t \frac{\exp \left[-\frac{\pi_{1}}{N}(M-1)\right]-\exp \left[\frac{\pi 1}{N}(M+1)\right]}{1-\exp \left[\frac{2 \pi 1}{N}\right]} \frac{1-\exp \left[-\frac{\pi 1}{N} 2\right]}{1-\operatorname{cxp}\left[-\frac{2 \pi \pi_{1}}{N}\right]}+\mathrm{l} \mathrm{c} \\
& =-t \frac{2 \cos \left(\frac{\pi}{N}(M-1)\right)-2 \cos \left(\frac{\pi}{N}(M+1)\right)}{1-\cos \left(\frac{2 \pi}{N}\right)} \\
& =-2 t \frac{2 \sin \left(\frac{\pi}{N}\right) \sin \left(\frac{\pi}{N} M\right)}{2 \sin ^{2}\left(\frac{\pi}{N}\right)}
\end{aligned}
$$

which gives the final result for the case of an odd number of fermions

$$
\begin{equation*}
\Longrightarrow \quad E_{\text {ordd }}=-2 t \frac{1}{\sin \left(\frac{\pi}{N}\right)} \sin \left(\frac{\pi}{N} M\right) \tag{214}
\end{equation*}
$$

A comparison of these two results (213) and (214) shows that they only differ by a factor of $\cos \left(\frac{\pi}{N}\right)$ This factor appeas in the case of an even number of paticles due to the fact that one particle is not located symmetrically For an odd number of particles, all eneigy levels apat from $m=0$ are occuphed twice 1 m the gromind state, becanse $E_{m}=E_{-m}$ This 15 not possible for an even number of femmons, where one paticle is left ore Howera, the mpontance of this factor $\cos \left(\frac{\pi}{N}\right)$ decreases with a 1 ising number of sites N on the rung This is mulerstandable with the same agmonentation This panty pioblem is chiscussed agam in chapter 23 after the notion of magnetic flux has been mitioduced.

2.1.4 Distribution of the Particles

After looking at the behaviour of the energy and therefore the ergenvalues of the Hamiltoman under consideration, it might also be interesting to examme the behaviour of the corresponding wave functions In particular, we are interested in the expectation values of the occupation number operator, which tells us something about the distribution of particles over the possible sites of the ring. Simular to the energy evaluation the calculations were done in several steps.

One particle

In this case the wave function has the form (2 2) which can also be written as

$$
\begin{equation*}
|\psi\rangle_{n}=\sum_{i=1}^{N} \alpha_{\imath}^{n} c_{\imath}^{\dagger}|0\rangle ; \quad{ }_{n}\langle\psi|=\langle 0| \sum_{j=1}^{N^{N}}\left(\kappa_{j}^{n}\right)^{*} c_{\gamma} \tag{215}
\end{equation*}
$$

and the desired expectation value is

$$
\begin{align*}
{ }_{n}\langle\psi| \hat{n}_{k}|\psi\rangle_{n} & =\sum_{\imath, j}\left(\alpha_{j}^{n}\right)^{*} \alpha_{\imath}^{n}\langle 0| c_{\jmath} c_{k}^{\dagger} c_{k} c_{\imath}^{\dagger}|0\rangle \\
& =\sum_{\imath, j}\left(\alpha_{\jmath}^{n}\right)^{*} a_{\imath}^{n}\langle 0 \mid 0\rangle \delta_{t, k} \delta_{k, l}=\underline{\left|\alpha_{k}^{n}\right|^{2}} \\
& =\left|\frac{1}{\sqrt{N}} e^{\frac{2 \pi n}{N} n k}\right|^{2}=\frac{1}{\underline{N}} \tag{216}
\end{align*}
$$

Hence, in the case of one particle $\left|\alpha_{k}^{n}\right|^{2}$ gives the probalility that the particle is located on site k This probability is $1 / N$ it Bloch wave functions are used.

Two particles

The wave function for this case, as already proposed in (2 7)

$$
\begin{equation*}
|\psi\rangle_{n, m}=\sum_{\jmath} \alpha_{\imath, j}^{n, m} c_{\imath}^{\dagger} c_{j}^{\dagger}|0\rangle ; \quad{ }_{n, m}\langle\psi|=\langle 0| \sum_{s l}\left(\alpha_{, l}^{n,, n}\right)^{*} c_{l} c_{s} \tag{217}
\end{equation*}
$$

mphes the following result

$$
\begin{align*}
& { }_{n, m}\langle\psi| \hat{n}_{k}|\psi\rangle_{n, m}=\sum_{\imath, j, s, t} \alpha_{\imath, j}^{n, m}\left(\alpha_{s, t}^{n, m}\right)^{*}\langle 0| c_{t} c_{s} c_{k}^{\dagger} c_{k} c_{\imath}^{\dagger} c_{\jmath}^{\dagger}|0\rangle\left(\delta_{k \imath}+\delta_{k, \jmath}\right) \\
& =\sum_{j, s, t}\left(\alpha_{c, t}^{n, m}\right)^{*}\langle 0| c_{1} c_{s} c_{h}^{\dagger} c_{j}^{\dagger}|0\rangle\left(a_{h, l}^{n, m}-\kappa_{j, h}^{n, m}\right)\left(\delta_{,, h} \delta_{l, j}+\delta_{,, j} \delta_{t, k}\right) \\
& =\sum_{j}\left(\left(\alpha_{k, j}^{n, m}\right)^{*}-\left(\alpha_{j, k}^{n, m}\right)^{*}\right)\left(\alpha_{k, j}^{n, m}-\alpha_{,, h}^{n, m}\right) \\
& =\sum_{j}\left|\alpha_{k, j}^{n, m}-\alpha_{j, k}^{n, m}\right|^{2} \tag{2.18}\\
& =\sum_{\jmath}\left\{\left|\alpha_{k, j}^{n, m}\right|^{2}+\left|\alpha_{j, k}^{n, m}\right|^{2}-2 \operatorname{Re}\left(\left(\alpha_{j, k}^{n, m}\right)^{*} \alpha_{k, j}^{n, m}\right)\right\} \\
& =\sum_{3}\left\{\frac{1}{N^{2}}+\frac{1}{N^{2}}-0\right\}=\frac{2}{N^{\prime}}, \tag{2}
\end{align*}
$$

where the last line is again the result for Bloch wave functions in the form (2.9). Howerer, without this assumption the result (218) looks differently than expected

This is even more the case when one mrestigates the expectation value of the operator product $\hat{n}_{k} \hat{n}_{l}$ One would expect to obtam $2 / N^{2}$ m the case of Bloch ware functions, because it is the probability ${ }^{2}$ of hang one particle on sate k and the other on site l at the same time Instedd, calculations leal to

$$
\begin{align*}
& { }_{n, m}\langle\psi| \hat{n}_{h} \hat{n}_{l}|\psi\rangle_{n, m}=\sum_{i, j, s, t} \alpha_{r j}^{n, m}\left(\alpha_{s, t}^{n, m}\right)^{*}\langle 0| c_{t} c_{\imath} c_{k}^{\dagger} c_{h} c_{l}^{\dagger} c_{l} c_{\imath}^{\dagger} c_{j}^{\dagger}|0\rangle\left(\delta_{l, \imath}+\delta_{l, j}\right) \\
& =\sum_{\jmath, \varsigma, t}\left(\alpha_{s, l}^{n, m}\right)^{*}\langle 0| c_{t} c_{s} c_{k}^{\dagger} c_{k} c_{l}^{\dagger} c_{j}^{\dagger}|0\rangle\left(\alpha_{t, l}^{n, m}-\alpha_{j, l}^{n, m}\right)\left(\delta_{k l}+\delta_{k, l}\right) \\
& =\delta_{k, l} \sum_{j}\left(\left(\alpha_{k, j}^{n, m}\right)^{*}-\left(\alpha_{j, k}^{n, m}\right)^{*}\right)\left(\alpha_{l, j}^{n, m}-\alpha_{j, l}^{n, m}\right) \\
& -\left(\left(\alpha_{k, l}^{n, m}\right)^{*}-\left(\alpha_{l, h}^{n, m}\right)^{*}\right)\left(\alpha_{l, h}^{n, m}-\alpha_{h, l}^{n, m}\right) \\
& =\underline{\delta_{k, l} \sum_{j}\left|\alpha_{k, j}^{n, m}-\alpha_{j, h}^{n, m}\right|^{2}+\left|\alpha_{h, l}^{n, m}-\alpha_{l, k}^{n, m}\right|^{2}} \tag{220}
\end{align*}
$$

The iesult is consistent with the previous one (2 18), which is just $k=l$ Furthermone, the behaviour for $k \rightarrow l$ and for $n=m$ is reasonable Howerer, it is not consistent with the cxpected value The term

$$
2 \operatorname{Re}\left(\left(\alpha_{k, l}^{n, m}\right)^{*} \alpha_{l, k}^{n, m}\right)=\frac{2}{N^{2}} \cos \left(\frac{2 \pi}{N}(n-m)(k-l)\right)
$$

[^4]also gives a non-trivial contribution for Bloch ware functions.
Characternstics like this lead to the conclusion that even in a representation like (29) the two particles do not live independently of each other The existence of one of them influences the probability distribution of the other one.

Remark: It might well be that such a behaviour is associated with Friedel oscollations in sold state physics In the appendix of his atticle on 'The Distribuation of Electrons Round Impunties in Monovalent Metals" [29] Friedel suggested that a spherically symmetrical potential gives ise to an oscillation of the wave function in a smusordal form In one dimension tar enongh away from a sufficiently fast decreasing potential the electron density behares like [30]

$$
n(x) \propto \frac{\cos \left(2 k_{F}|x|+\delta\right)}{|x|}
$$

where x is a spatial coordmate, h_{F} the Fermi momentum and δ is a constant dependent on the structure of the potential Cohen et al [12] also showed in a contmuons Hartree-Fock calculation the existence of such density oscillations for one-dmensonal rings However, it needs furthe mostrgations to find connections to this effect.

Nevertheless, there is appaiently no straight forward interpretation of the plyysical meaning of values lhke $\left|\alpha_{2, j}^{n, m}\right|^{2}$

M particles

The structure of the ware function for the $M-$ paticle case is a canomeal genesalization of the prevous case

$$
\begin{equation*}
|\psi\rangle_{n_{1} n_{M}}=\sum_{i_{1},, 2_{M}} \alpha_{i_{1}}^{n_{1}} n_{n_{M}}^{n_{M}} c_{i_{1}}^{\dagger} c_{i_{2}}^{\dagger} \quad . c_{i_{M}}^{\dagger}|0\rangle \tag{221}
\end{equation*}
$$

Phoviled that the coefficients ate wase functions of the Bloch type, they hase the form

$$
\alpha_{\imath_{1}}^{n_{1} n_{A}} n_{1}=\frac{1}{\sqrt{N^{M}}} \exp \left[\frac{2 \pi 1}{L}\left(n_{1} \imath_{1}+n_{2} \imath_{2}+n_{M} \imath_{M I}\right)\right]
$$

whene N and M are the number of sites and paticles, 1 espectively; and $n_{2} \neq n_{\text {, }}$ for $\imath \neq \jmath$ are the quantum numbers

$$
\begin{aligned}
& { }_{n_{1} \quad n_{M S}}\langle\psi| \hat{n}_{k}|\psi\rangle_{n_{1}} n_{M} \\
& =\sum_{\imath_{1}} \sum_{\imath_{M}} \sum_{\jmath_{1}} a_{\jmath_{M}}^{n_{1}} \begin{array}{ll}
n_{M A} \\
n_{M}
\end{array}\left(\begin{array}{cc}
a_{\jmath_{1}}^{n_{1}} & n_{M M}
\end{array}\right)^{*}\langle 0| c_{\jmath_{M}} \cdots c_{\jmath_{1}} c_{k}^{\dagger} c_{K} c_{2_{1}}^{\dagger} \cdots c_{\imath_{M}}^{\dagger}|0\rangle
\end{aligned}
$$

In the last line the prime at one of the sums indicates that the sumination indices should be distınct: $i_{k} \neq \imath_{l}$ foı $k \neq l$ However, it is shown in Appendix C that this constiant is not important and can be forgotten
$\mathcal{P}(M)$ is the set of all permutations of the set of numbers $\{1,, M\}$ If Bloch ware functions are agam considered, only one of them gres a non-vamshing contribution For $\wp=1 d$ the sums above reduce to

$$
\sum_{A=1}^{M} \sum_{\imath_{1}}\left|\begin{array}{cc}
i_{M I} & \alpha_{\imath_{1}}^{n_{1}} n_{i_{M}}
\end{array}\right|^{2} \delta_{k, 2_{4}}=\sum_{A=1}^{M} \frac{1}{N^{M}} \cdot N^{(M-1)}=\frac{M}{N}
$$

For all other permutations exists at least one $x \neq h$ with $\wp^{-1}(\imath) \neq x$ and in all sums appears the factor

$$
\sum_{i_{x}=0}^{N-1} \exp \left[\frac{2 \pi \mathrm{i}}{N}\left(n_{\imath}-n_{p^{-1}(x)}\right) \iota_{r}\right]=0
$$

Hence, for M-particle Bloch wave functions the probability to find a paiticle on a certan cite is

$$
\begin{equation*}
{ }_{n_{1} n_{M}}\langle\psi| \hat{n}_{h}|\psi\rangle_{n_{1} n_{M}}=\frac{M}{N} \tag{223}
\end{equation*}
$$

It is worth noting that this result does not depend on the site h, nor does it depend on the set of quantum numbers $\left\{n_{1}, \quad, n_{M}\right\}$

2.2 Magnetic Flux through the Ring

Of special interest is the situation when a ring of fermons is placed inside a magnetic field $\mathbf{B}(\mathbf{r}, t)$ Compared to the calculations of the previons chapter a few alterations have to be done in order to descube this situation conectly However, brfore a new expression for the total energy can be densed in subsection 223 some explanations have to be given Subsection 221 provides in bievity some geneial consequences of the existence of a magnetic field Most of the statements are poren and explained in more detal in appendix B In 222 it is shown that it is possible to handle the flux within the Hubbad model in a convement way.

2.2.1 General Consequences

In general, the vector potential $\mathrm{A}(\mathrm{r}, t)$, defined by $\mathrm{B}=\nabla \times \mathrm{A}$, is much more relevant for derivations than the magnctic field itself For unstance, a non-zero vector potential can be taken into consilenation by substituting the expression for the momentum in the form

$$
\begin{array}{ll}
\hat{\mathbf{p}} \longrightarrow \hat{\mathrm{p}}-e \mathrm{~A} & \text { SI unts, } \tag{224}\\
\hat{\mathrm{p}} \longrightarrow \hat{\mathrm{p}}-\frac{e}{c} \mathrm{~A} & \text { Grussicm unts },
\end{array}
$$

where e is the elementary charge or the change of an clection and c is the velocity of light ${ }^{3}$

Howeret, in electromagnetism only the fields $\mathrm{E}(\mathrm{r}, t)$ and $\mathrm{B}(\mathrm{r}, t)$ are measurable cuantitics. The scalar potential $\phi(\mathrm{r} . t)$ and the vector potental $\mathrm{A}(\mathrm{r}, t)$ are anxiliary fiedds, whel are not umpucly detemmed A gange tiansformation, that is an alteration of the phase of the fields ly function $\chi(0)$ without altenng the measurable physical quantities, is possible It has the following fom

$$
\begin{array}{r}
\phi \tag{225}\\
\mathbf{A}
\end{array} \quad \phi^{\prime}=\phi-\frac{1}{1} \frac{\partial}{t} \chi(\mathbf{r}, t), \mathbf{A}^{\prime}=\mathrm{A}+\nabla \chi(\mathbf{r}, t),
$$

With the help of such gauge transfomations one can pore the followng: If a vector potential is intioduced, then the free-paticle Hamiltoman in first

[^5]quantization transforms together with the momentum to
\[

$$
\begin{equation*}
\mathcal{H}=\frac{\left(\mathrm{p}-\frac{e}{c} \mathrm{~A}\right)^{2}}{2 m} \tag{226}
\end{equation*}
$$

\]

In order to keep the Schrodinger efuation invarıant a smultaneous thansformation of the wave function of the form

$$
\begin{equation*}
\Psi(\mathbf{r}, t)=\psi(\mathbf{r}, t) \exp \left[-\frac{1 e}{\hbar c} \int^{\mathrm{r}} \mathrm{~A}(\mathrm{~s}) \mathrm{cls}\right] \tag{2}
\end{equation*}
$$

is necessary [32]. That means, if $\psi(\mathbf{r}, t)$ fulfils the Schochuget equation for a tree electron with charge e then $\Psi(\mathbf{r}, t)$ does the same for the Hamitoman (2 20)

The question is how to modify the Heisenberg Hamitoman, witten in the form

$$
\mathcal{H}=-t \sum_{\left\langle\mathrm{r}, \mathrm{r}^{\prime}\right\rangle}\left\{c^{\dagger}(\mathrm{r}) c\left(\mathrm{r}^{\prime}\right)+\mathrm{h} \mathrm{c} .\right\},
$$

accordingly: For the special case that A is not clepenclent on the coordmates $\mathbf{A}(\mathbf{r}, t)=\mathbf{A}(t)$ this is possible with the help of a double Fonier transfomation That means that the given Hamilonian is thansfomed to momentum repesentation, then a change of the momentum accondmg to (2 24) is clone there, and afterwards the Fomien transfomation is appled agan This pocerlure gives for each fermonic operator an additional phase factor which give together

$$
\mathcal{H}=-t \sum_{\left\langle\mathbf{r}, \mathbf{r}^{\prime}\right\rangle}\left\{c^{\dagger}(\mathbf{r}) \mathrm{e}^{\frac{i e}{\bar{c}} \mathbf{A}\left(\mathbf{r}^{\prime}-\mathbf{r}\right)} c\left(\mathbf{r}^{\prime}\right)+\mathrm{h} \mathbf{c} .\right\}
$$

For the more general case that $\mathbf{A}(\mathbf{r}, t)$ is also a function of the coondmates, the thansfomation tums out to be a little bit mone difficult and the trantr. ${ }^{4}$. Kown an Pereils substitution [33], is given log

$$
\begin{equation*}
\mathcal{H}=-t \sum_{\left\langle\mathbf{r}, \mathbf{r}^{\prime}\right\rangle}\left\{c^{\dagger}(\mathbf{r}) \mathrm{e}^{\left.\frac{\mathbf{l}^{\frac{1}{c}}}{\int_{\mathbf{r}}^{r_{\mathbf{A} d \mathbf{r}}^{\prime}}} c\left(\mathbf{1}^{\prime}\right)+\mathrm{l} \mathbf{l} c\right\}}\right. \tag{228}
\end{equation*}
$$

Even so a hgorous prove is not given, the subatitution seems to be very reasomable when looking at the previous comments The hopping pat teptesents the kinetic energy of the particles, $c^{\dagger}(\mathbf{r}) c\left(\mathbf{r}^{\prime}\right)$ descubes a morement of a fermon fiom site r^{\prime} to site \mathbf{r}. Equations (2.26) and (2 2 $\overline{7}$) show the conserpuces of a non-zeno

[^6]rector potential on the kinetic energy and the wave function in first quantization The Peierls substitution has exactly the same structure, with the only difference that the phase-factor is put into Hamiltoman and not into the wave function

It is furthermore reasonable to state that m interaction terms withn the Hersenberg model, which consist of occupation number operators of the form $c^{\dagger}(\mathbf{r}) r(\mathbf{r})$, such a phase factor does not appear Here, no movement is described As a next step the case where the particle moves along a closed path around all area which is threaded by a magnotic field B is considered. Everywhere along the path $\mathrm{B}=0$, which is called a Aharonov-Bohm situation

For such a situation the integral in the exponent of (2.27) has to be taken along a closed path. According to Stoke's theorem it can be tiansformed

Figue 23 Closed path around an area of nonzero flux in the following way

$$
\begin{equation*}
\oint \mathrm{A}(\mathrm{~s}) \mathrm{d} \mathrm{~s}=\oint \operatorname{curl} \mathrm{A} \cdot \mathrm{~d}^{2} \mathrm{~S}=\oint \mathrm{B} \cdot \mathrm{~d}^{2} \mathrm{~S}=\Phi \tag{229}
\end{equation*}
$$

where Φ is the flux of B though the loop.
Howeven, the sesult is only correct for a simply comected path If the path goes sereral tumes along the loop, then one accordingly gets $2 \Phi, 3 \Phi$ and so on Fiom a physical point of view it should be cleas that the ware function $\Psi(r, t)$ must be smgle valued, its value must not depend on how often one goes along the loop This can only be fulfilled if the atgument of the exponental function in

$$
\Psi(\mathrm{r}, t)=\psi(\mathbf{r}, t) \exp \left[-\frac{1 e}{\hbar c} \Phi\right]
$$

has the fom -2π in with n an integer
Therefore, the constiant of a single valued wave function mplies a quantization of the flux through the loop of the fom

$$
\begin{equation*}
\Phi=n \Phi_{0} \quad \text { with } \quad \Phi_{0}=\frac{2 \pi \hbar c}{e}=\frac{h c}{e} \tag{230}
\end{equation*}
$$

Φ_{0} is called "elementary flux quantum".

2.2.2 Gauge Invariance in the Heisenberg Model

It stall remains the task to obtain the spectrum of eigentalues of the Heisenberg Hamiltoman However, this operator has after including the flux via Pererls substitution (2 28) the form

$$
\begin{align*}
\mathcal{H}= & -t \sum_{\left\langle\mathbf{r}, \mathbf{r}^{\prime}\right\rangle}\left\{c^{\dagger}(\mathbf{r}) \mathrm{e}^{\frac{2 \pi 1}{\varphi_{0}} \int_{\mathrm{r}}^{\prime} \mathrm{A} d \mathrm{r}} c\left(\mathbf{r}^{\prime}\right)+\mathrm{h} c\right\} \\
= & -t\left\{\mathrm{e}^{\frac{2-1}{\varphi_{0}} \varphi_{1,2}} c_{1}^{\dagger} c_{2}+\mathrm{e}^{-\frac{2 \pi 1}{\varphi_{0}} \varphi_{12}} c_{2}^{\dagger} c_{1}+\mathrm{e}^{\frac{2-1}{\varphi_{0}} \varphi_{2} 3} c_{2}^{\dagger} c_{3}+\right. \tag{231}\\
& \left.\quad+\mathrm{e}^{-\frac{2 \pi 1}{\varphi_{0}} \varphi_{N-1, N}} c_{N}^{\dagger} c_{N-1}+\mathrm{e}^{\frac{2 \pi}{\varphi_{0}} \varphi_{N 1}} c_{N}^{\dagger} c_{1}+\mathrm{e}^{-\frac{2-1}{\varphi_{0}} \varphi_{N} 1} c_{1}^{\dagger} c_{N}\right\}
\end{align*}
$$

where $\varphi_{\imath, j}=\int_{\text {site }}^{\text {site } J} \mathrm{~A} d r$ is the necessary gauge field
Accordung to different grages the phases $\varphi_{l, j}$ can have a different stiucture. Only the total flux

$$
\Phi=\oint \mathrm{A}(\mathrm{~s}) \mathrm{ds}=\oint \operatorname{curl} \mathrm{A} \cdot \mathrm{~d}^{2} \mathrm{~S}=\oint \mathrm{B} \mathrm{~d}^{2} \mathrm{~S}
$$

is mdependent of the gauge A gauge transformation of the form

$$
\mathbf{A}^{\prime}=\mathbf{A}+\nabla \chi
$$

leads to the result

$$
\varphi_{2, j}^{\prime}=\int_{\mathbf{r}=\text { site } 2}^{\mathbf{r}^{\prime}=\text { site } J} \mathrm{~A}^{\prime} \mathrm{d} \mathbf{r}=\varphi_{\imath, \jmath}+\chi\left(\mathbf{r}^{\prime}\right)-\chi(\mathbf{r})
$$

The invanance of the Hamitoman can be explaned (as for instance in Fradkin [31]) as a $U(1)$ symmetry with the local clange of phase given by

$$
\theta(\mathrm{r}) \equiv-\frac{e}{\hbar c} \chi(\mathrm{r})
$$

However, the author wants to give his own proot of the fact that the spectrum of the Hamiltoman under consideration does not depend on the grange

As a first step in this direction consıder
the case of four sites arranged in a rectangular shape in the $x y$-plane. In the z-direction there is a magnetic field

$$
\mathrm{B}=B_{0} \mathbf{e}_{\mathbf{z}} .
$$

For this case two important gauges are possible.

$$
\begin{aligned}
& \text { 1st gauge (symmetric gange) } \\
& \text { 2nd gange (Lorentz gauge) } \\
& \mathrm{A}=\mathrm{B} \times \mathbf{e}_{\mathbf{x}}=\left(\begin{array}{c}
0 \\
B_{0} x \\
0
\end{array}\right) \quad \mathrm{A}=\frac{1}{2} \mathrm{~B} \times \mathbf{r}=\frac{1}{2}\left(\begin{array}{c}
-B_{0} y \\
B_{0}, \\
0
\end{array}\right) \\
& \varphi_{2,3}=B_{0} l_{x} l_{y} \\
& \varphi_{1,2}=\varphi_{3,4}=\varphi_{41}=0 \\
& -\frac{1}{l} H=\left(\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & \mathrm{e}^{1 /} & 0 \\
0 & \mathrm{e}^{-1 f} & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right) \\
& \varphi_{1,2}=\varphi_{t, 1}=0 \\
& \varphi_{2,3}=\varphi_{3,4}=\frac{1}{2} B_{0} l_{\tau} l_{y} \\
& -\frac{1}{t} H=\left(\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & \mathrm{e}^{\mathrm{i} f / 2} & 0 \\
0 & \mathrm{e}^{-\mathrm{I} f / 2} & 0 & \mathrm{e}^{\mathrm{i} f / 2} \\
1 & 0 & \mathrm{e}^{-1 / / 2} & 0
\end{array}\right)
\end{aligned}
$$

Figure 24 Foun sates on a rectangular

Here H is the matrix of the Hamiltonian \mathcal{H} for each of the ganges respectively It descubes the mapping between Fock states as introduced in (2 2) The constant in the exponent is

$$
f=\frac{2 \pi}{\Phi_{0}} B_{0} l_{r} l_{y}
$$

To olstan the spectrum of the \mathcal{H} is equavalent to findng the engenvalne's of the matrix $H \quad$ In a generalization of the two green gruges the determmant
has to be evaluated After domg this calculation the phase factors only appear
in the combination

$$
\mathrm{e}^{\frac{2 \pi}{T_{0}} \varphi_{1,2}} \mathrm{e}^{\frac{2 \pi}{T_{0}} \varphi_{2,3}} \mathrm{e}^{\frac{2 \pi}{T_{0}} \varphi_{3,4}} \mathrm{e}^{\frac{2 \pi 1}{T_{0}} \varphi_{4}}=\mathrm{e}^{2 \pi \frac{1}{\varphi_{0}}} .
$$

The characteristic polynomal is

$$
0=\lambda^{4}-4 \lambda^{2}+2-e^{2 \pi \frac{t}{\varphi_{0}}}-e^{-2 \pi \cdot \frac{\varphi}{p_{0}}}
$$

with the solutions

$$
\begin{equation*}
\lambda= \pm \sqrt{2 \pm \sqrt{2+2 \cos \left(2 \pi \frac{\Phi}{\Phi_{0}}\right)}} . \tag{2.32}
\end{equation*}
$$

Hence, it is shown that for the example of a rectangular with four sites the eigenralues of the Hamltoman are really mdependent of the gange

The next step is to prove the mdependence in the general case of N sites and an arbitrary gauge. That is, to prove that the determmant of a matrix

$$
A=\left(\begin{array}{ccccccc}
\lambda & a_{1} & 0 & 0 & \cdot & 0 & \frac{1}{a_{N}} \\
\frac{1}{a_{1}} & \lambda & a_{2} & 0 & & 0 & 0 \\
0 & \frac{1}{a_{2}} & \lambda & \ddots & & & : \\
0 & 0 & & \ddots & & & \\
. & & & \cdot & . & . & 0 \\
0 & 0 & & & \cdot & \lambda & a_{N-1} \\
a_{N} & 0 & \cdots & \cdots & 0 & \frac{1}{a_{N-1}} & \lambda
\end{array}\right)
$$

only depends on the product $a_{1} \cdot a_{2} \cdot \ldots \cdot a_{N}$
The trick is to write the matux A as a product of two thangular matrices $L U$, whose determmant can easily be calculated The finst, a lower triangular matrix, has only 1's at the didgonal. The second is an upper triangulan matrix with nontrivial diagonal elements The easiest way to obtam the result is to stant in the upper left corner of A and make thein way though the nows of this matrix. The calculations are shown here up to $N=5$, but it is easy to see how they hare to continue For convemence, symbols for the following chan fiactions are mtrocluced

$$
\lambda_{1}=\lambda, \quad \lambda_{2}=\lambda-\frac{1}{\lambda}=\lambda-\frac{1}{\lambda_{1}}, \quad \lambda_{3}=\lambda-\frac{1}{\lambda-\frac{1}{\lambda}}=\lambda-\frac{1}{\lambda_{2}},
$$

Then it is

$$
\begin{gathered}
A=L U
\end{gathered} \Longleftrightarrow \begin{array}{ccc}
U \\
L & A
\end{array}
$$

where

$$
\begin{gathered}
\odot=\frac{1}{a_{1} a_{2} a_{3} a_{5}} \frac{1}{\lambda_{1} \lambda_{2} \lambda_{3}} \quad \otimes=\frac{a_{1} a_{2} a_{3} a_{5}}{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}} \\
\oplus=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{1}^{2} \lambda_{2}}+\frac{1}{\lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}}+\frac{1}{\lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}^{2} \lambda_{4}}-\frac{a_{1} a_{2} a_{3} a_{4} a_{5}}{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{1}}-\frac{1}{a_{1} a_{2} a_{3} a_{4} a_{5} \lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}}
\end{gathered}
$$

The rest of the argumentation is trival

$$
\operatorname{det} A=\operatorname{det} L \cdot \operatorname{det} U=\lambda_{1} \cdot \lambda_{2} \quad \lambda_{3} \quad \lambda_{4} \quad\left(\lambda_{3}-\oplus\right)
$$

and therefore the matnix elements $a_{1}, ., a_{5}$ appear in the characteristic polynomad only in the form $a_{1} a_{2} a_{3} a_{4} a_{5}$ That is what we wanted to prove.

2.2.3 Change of Total Energy

Having obtamed this result, it is possible to choose a convenient gauge for the calculation of the spectrum of the Heisenberg Hamiltonian.

The only constraint given is

$$
\begin{aligned}
& \sum_{i=1}^{N} \varphi_{2, \imath+1}=\Phi \\
& \text { to the smplest chorce for } \\
& \text { such a way, that } \\
& \frac{\Phi}{N}, \quad \imath=1, \ldots N \quad(233)
\end{aligned} \quad\left(\begin{array}{cccccc}
0 & \mathrm{e}^{i f} & & & & \mathrm{e}^{-1 f} \\
\mathrm{e}^{-i f} & 0 & \mathrm{e}^{\mathrm{i} f} & & 0 & \\
& & \ddots & & \\
& & & \ddots & & \\
& 0 & & & 0 & \mathrm{e}^{\mathrm{f} f} \\
\mathrm{e}^{i f} & & & \mathrm{e}^{-1 f} & 0
\end{array}\right)
$$

or, in other words, the matrix of \mathcal{H} has the shown form.

$$
\text { where } \quad f=\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}
$$

In the same way as in the case of no magnetic flux m chapter 211 it is agam reasonable to assume that the coefficients are Bloch ware functions

$$
\begin{align*}
& \alpha_{j}=\frac{1}{\sqrt{N}} \mathrm{e}^{i k_{j}} \tag{234}
\end{align*}
$$

Owing to the constrant of smgle valued wase functions, the possible ware-rectors auc quantized

$$
k_{m}=\frac{2 \pi}{N} m \quad m=0,1, \quad, N-1
$$

and hence, the eigenvalues are determmed by the followng equation

$$
\begin{aligned}
& -t\left(\mathrm{e}^{-\frac{2 m_{1}}{N}\left(m+\frac{p}{\omega_{0}}\right)}+\mathrm{e}^{\frac{\underline{2}+1}{\frac{1}{1}}\left(m+\frac{p}{\omega_{0}}\right)}\right)=\lambda_{m}
\end{aligned}
$$

These numbers λ_{m} are the eigenvalues of the Hamlton opetator \mathcal{H} and therefore the possible energy states fon one paticle on a ning with N sites and trapped
magnetic flux Φ are.

$$
\begin{equation*}
E_{m}=-2 t \cos \left(\frac{2 \pi}{N}\left(m+\frac{\Phi}{\Phi_{0}}\right)\right) \tag{235}
\end{equation*}
$$

Hating obtaned this result, the next task is to find the total energy for a system of M particles For these particles the quantum numbers $m=0, \quad, N-1$ ate possible For every fixed m theie is a chatactenstic dependence of the energy on the magnetic flux Φ trapped through the ing

Figure 2.5 The energy dependence on the flux Φ for the dufferent possible m values us shown In this picture the number of sites is $N=6$

This situation is shown in figure 2.5, where only for a better visualization a relatively small number of sites is chosen One can see that the picture repeats periodically Obriously, it is only necessany to make calculations for the case $0 \leq \Phi / \Phi_{0}<\frac{1}{2}$, because for the rest of the possible valucs of the flux Φ the picture, and therefore the total energy, is the same.

Hence, it is reasonable to restuct an arbitady value of Φ within this interval (which is an analogue to the first Bullouin zone) bv a finction like in figure 26 ,

$$
\begin{equation*}
r\left(\frac{\Phi}{\Phi_{0}}\right)=\left|\frac{\Phi}{\Phi_{0}}-\left[\frac{\Phi}{\Phi_{0}}+\frac{1}{2}\right]\right| \tag{236}
\end{equation*}
$$

Figule 26 Restriction of trapped flur onto a sufficzent interval
where [2] stands for the langest minger which is \leq ?

Furthermore, it can be seen from figure 25 that for $0 \leq \Phi / \Phi_{0}<\frac{1}{2}$ the sites will be occupied by fermons in the order $m=0,-1,1,-2,2,-3$ Hence, for the calculation of the total energy the same knd of sums as m chapter 213 are used:

M even

$$
\begin{aligned}
& E_{\text {eren }}=-2 t \sum_{m=-\frac{M}{2}}^{+\frac{M}{2}-1} \cos \left(\frac{2 \pi}{N}\left(m+\frac{\Phi}{\Phi_{0}}\right)\right) \\
& =-t \exp \left[\frac{2 \pi \mathrm{i}}{N} \frac{\Phi}{\Phi_{0}}\right] \exp \left[-\frac{\pi \mathrm{i}}{N} M\right] \sum_{m=0}^{M-1} \exp \left[\frac{2 \pi \mathrm{l}}{N} m\right]+\mathrm{hc} \\
& =-t \exp \left[\frac{2 \pi \mathrm{i}}{N} \frac{\Phi}{\Phi_{0}}\right] \frac{\exp \left[-\frac{\pi_{1}}{N} M\right]-\exp \left[\frac{\pi_{1}}{N} M\right]}{1-\exp \left[\frac{2 \pi_{1}}{N}\right]} \frac{1-\exp \left[-\frac{\pi_{1}}{N} 2\right]}{1-\exp \left[-\frac{2 \pi_{1}}{N}\right]}+\mathrm{hc} \\
& =-t \frac{\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}-\frac{\pi}{N} M\right)-\cos \left(\frac{2 \pi}{N} \frac{\mathrm{p}}{\phi_{0}}+\frac{\pi}{N} M\right)}{1-\cos \left(\frac{2 \pi}{N}\right)}- \\
& -t \frac{-\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}-\frac{\pi}{N}(M+2)\right)+\cos \left(\frac{2 \pi}{N} \frac{\phi}{\phi_{0}}+\frac{\pi}{N}(M-2)\right)}{1-\cos \left(\frac{2 \pi}{N}\right)} \\
& =-t \frac{2 \sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \left(\frac{\pi}{N} M\right)-2 \sin \left(\frac{2 \pi}{N} \frac{\phi}{\phi_{0}}-\frac{2 \pi}{N}\right) \sin \left(\frac{\pi}{N} M I\right)}{1-\cos \left(\frac{2 \pi}{N}\right)} \\
& =-2 t \frac{\sin \left(\frac{2 \pi}{N} \frac{\phi}{\varphi_{0}}\right)\left[1-\cos \left(\frac{2 \pi}{N}\right)\right]+\cos \left(\frac{2 \pi}{N} \frac{\phi}{\phi_{0}}\right) \sin \left(\frac{2 \pi}{N}\right)}{2 \sin ^{2}\left(\frac{\pi}{N}\right)} \sin \left(\frac{\pi}{N} M\right) \\
& =-2 t \frac{\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin ^{2}\left(\frac{\pi}{N}\right)+\cos \left(\frac{2 \pi}{N} \frac{\phi}{\phi_{0}}\right) \sin \left(\frac{\pi}{N}\right) \cos \left(\frac{\pi}{N}\right)}{\sin ^{2}\left(\frac{\pi}{N}\right)} \sin \left(\frac{\pi}{N} M\right) \\
& =-2 t \frac{\cos \left(\frac{\pi}{N}-\frac{2 \pi}{N} \frac{\phi}{\Phi_{0}}\right)}{\sin \left(\frac{\pi}{N}\right)} \sin \left(\frac{\pi}{N} M\right) \\
& =-2 t\left[\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right)+\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cot \left(\frac{\pi}{N}\right)\right] \sin \left(\frac{\pi}{N} M\right)
\end{aligned}
$$

For these calculations the thigonometric identithes (212) wete used several times The final result for the case of an even number of fermons with flux is

$$
\begin{equation*}
\Longrightarrow E_{\text {even }}=-2 t \frac{\sin \left(\frac{\pi}{N} M\right)}{\sin \left(\frac{\pi}{N}\right)} \cos \left(\frac{\pi}{V}-\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right) \tag{237}
\end{equation*}
$$

The calculations for the other case are analogous.

M odd

$$
\begin{aligned}
E_{\text {odd }}= & -2 t \sum_{m=-\frac{M i-1}{2}}^{+\frac{M-1}{2}} \cos \left(\frac{2 \pi}{N}\left(m+\frac{\Phi}{\Phi_{0}}\right)\right) \\
= & -t \exp \left[\frac{2 \pi \mathrm{i}}{N} \frac{\Phi}{\Phi_{0}}\right] \exp \left[-\frac{\pi 1}{N}(M-1)\right] \sum_{m=0}^{N /-1} \exp \left[\frac{2 \pi \mathrm{i}}{N} m\right]+1 \mathrm{c} . \\
= & -t \exp \left[\frac{2 \pi 1}{N} \frac{\Phi}{\Phi_{0}}\right] \frac{\exp \left[-\frac{\pi 1}{N}(M-1)\right]-\exp \left[\frac{\pi 1}{N}(M+1)\right]}{1-\exp \left[\frac{2 \pi}{N}\right]} \cdot \frac{1}{1}+1 \mathrm{c} \\
= & -t \frac{\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}-\frac{\pi}{N}(M I-1)\right)-\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\phi_{0}}+\frac{\pi}{N}(M+1)\right)}{1-\cos \left(\frac{2 \pi}{N}\right)}- \\
& \cdots-t \frac{-\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\phi_{0}}-\frac{\pi}{N}(M+1)\right)+\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\phi_{0}}+\frac{\pi}{N}(M-1)\right)}{1-\cos \left(\frac{2 \pi}{N}\right)} \\
= & -t \frac{2 \cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \left(\frac{\pi}{N}(M-1)\right)-2 \cos \left(\frac{2 \pi}{N} \frac{\Phi}{\phi_{0}}\right) \cos \left(\frac{\pi}{N}(M I+1)\right)}{1-\cos \left(\frac{2 \pi}{N}\right)} \\
= & -2 t \frac{\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\phi_{0}}\right) \sin \left(\frac{\pi}{N} M\right) \sin \left(\frac{\pi}{N}\right)}{2 \sin \left(\frac{\pi}{N}\right)},
\end{aligned}
$$

which gives the find tesult for this case of an odd number of temmons with flux

$$
\begin{equation*}
\Longrightarrow E_{\text {otd }}=-2 t \frac{\sin \left(\frac{\pi}{N} M\right)}{\sin \left(\frac{\pi}{N}\right)} \cos \left(\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right) \tag{238}
\end{equation*}
$$

It is necessaty to stress agam that these calculations weme made for the case $0 \leq \Phi / \Phi_{0}<\frac{1}{2}$ Only at the end the argumentation above was used to reduce all other cases to this one, using the function (236) The total energy is therefore a periodic function in Φ

2.3 The Parity Effect

It is worth companing the obtamed expressions tor the total energy with included flux dependence (2.37) and (238) with fomer iesults for situations without flux, (213) and (2 14) Such a comparison shows that moth cases, for an even and for an odd number of paticles, the flux changes the argument of a thgonometric
function in the numerator of the formula for the total energy

$$
\begin{array}{lrll}
\text { even. } & \cos \left(\frac{\pi}{N}\right) & \longrightarrow \cos \left(\frac{\pi}{N}-\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right) \tag{239}\\
\text { odd. } & \cos (0) & \longrightarrow \cos \left(0-\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right)
\end{array}
$$

Furthermore, it confirms that $\Phi=0$ gives the former results, that the two calculations are consistent.

The actual dependence of the total energy of a ring of fermions on the trapped magnetic flux Φ can be drawn. According to formula (2.37) and (2 38) the shape of the graph should manly depend on whethen an even ot an orld number of patticles is assumed

Figure 27 The dependence of the total energy of a ring wath $N=8$ sites on the flux for $t=1$ has the paedhcted perioducuty (rught) On the left hand sule the ratio $-2 t \sin \left(\frac{\pi}{N} M\right) / \sin \left(\frac{\pi}{N}\right)$ is calculated for different M-values, whoch gives the energy for zero flux apart from the factor $\cos \left(\frac{\pi}{N}\right)$ for an even particle number.

Indeed, one can see m figure 27 that thene is a periodicity of the flux dependence of the total enengy The shape of the penodicity depends on whether the number of particles is even or odd

This difference between an even and an ord number of paticles. whinch is described by the addational term $\frac{\pi}{N}$ in the cosme has alteady been mentioned bricfly in section 2.13 . After the effect of the flux has been evaluated, a more detaled explanation using statistical arguments is possible It is based on a publication of Kusmartsev [27]

One Fermion

Starting with one fermion, the following situation has to be considered. There is a 1 ing with N sites The particle, which might be located on a ceitain site \jmath_{0} at time t_{0} is free to move around the ring However, every time it reaches the site \jmath_{0} the situation is the same as for the time t_{0} This obvious statement is meluded m the mathematical descinption of the situtation by foicmg periodic bomeday conditions and single valued wave functions

The morement of the particle is connected with kinetic energy and a onedimensional wave vector k The dispersion relation between them is of the form $E(k)=-2 t \cos (k)(26)$. The possible k-values are quantized in the form $h_{m}=$ $\frac{2 \pi}{N} m(2 J)$ owing to the mintuced periodic bounday conditions, and the giound state energy refers to $k=0$ as long as there is no magnetic flux

Figure 2.8 Dispersion, relution with $M=1$ fermion and $\Phi=0$

If theie is a flux trapped though the ring then the dispersion relation changes to $E_{m}=-2 t \cos \left(\frac{2 \pi}{N}\left(m+\frac{\phi}{\phi_{0}}\right)\right)(23 \mathrm{~J})$ Thus means that the flux las the effect of adding momentum to the particle on, so to say, of mosing it along the graph of the dispersion relation The choice of m whech minmmzes the total energy

Figire 2 9: Dispersion relation with $M=1$ fermion and $\Phi>0$
depends now on the flux It is $m=0$ for $\frac{\phi}{\Phi_{0}}<\frac{1}{2}$, but as soon as an increasing Hux passes this boundary the system wall jump to $m=-1$ for the ground state. This was the physical reason for the introdiced iestriction-function (2 36).

Two Fermions

The situation becomes much more interesting when a second particle is added. If one of the two particles, called particle A, is assumed to be fixed on a certan site and the other one, B , moves alound the ring, then the situation occurs that B has to pass A Because of the fact that the paticles are supposed to be fermons and because of their special anticommutation relations, this process of passing imphes a munus sign in the wave function. In other words, the journey of one particle aound the ring leads to an additional phase factor of $e^{\pi!}$. The boundary conditions are not any more periodic, but antuperiodic

Something very sinilar occurs when an external magnetic flux is taken into consideration The movement of a particle once around a loop tiapped by a magnetic flux leads also to a phase factor, which has accordng to tormula (2 27) the form $e^{2 \pi \frac{\phi}{\phi_{0}}}$ This analogy helps to understand the problem. Particle B expencnce the existence of particle A in the form of an mtemal flux of magnitude $\frac{\Phi_{0}}{2}$, called statistical flux.

An exten nal magnetic flux clanges the argiment of the cosine in the expression of the total energy by $\frac{2 \pi}{N} r\left(\frac{\Phi}{T_{0}}\right)$. Similaty, the mentioned mtennal flux causes the tram $\frac{\pi}{N}$ in the cosine Hence, the mincinal flux has also the effect of moning paticles along the graph of the dispeision telation This is mpontant for the following reason: Fomally, the total energy for a two particle system is minnized br choosing for the wave vectors $k_{4}=\frac{2 \pi}{N} \quad \frac{1}{2}$ and $k_{B}=\frac{2 \pi}{N} \quad\left(-\frac{1}{2}\right)$

Figure 2 10: Dispersion relation without parvty effect
However, a quantum number which is a half-orld meger mphes that the o-factor of the ware function is antiperiodic

$$
\alpha_{\jmath+N}=\frac{1}{\sqrt{N}} \mathrm{e}^{\frac{2 \pi}{N} \frac{1}{2}(J+N)}=\frac{1}{\sqrt{N}} \mathrm{e}^{1 \pi} \mathrm{e}^{\frac{2 \pi n 1}{\lambda} \frac{1}{2} \jmath}=-\alpha_{J}
$$

Additionally; the c-cyclic Hamitonian used tor there calculations shows an antipenodicity as explamed in 13 Together, the situation is penodic in contrary
to the considerations above.
To make this penodicity antiperiodic one has to use integer quantum numbers. This is exactly what is done when all particles are moved along the graph of the dispersion relation by an amount of $\frac{\pi}{N}$. The statistical flux ensures that an antiperıodicity exıts! It justıfies the calculatıons that have been done with the result that the total energy of two particles on the ring with external magnetic flux is (237)

$$
E_{\mathrm{tot}}=-2 t \frac{\sin \left(\frac{\pi}{N} 2\right)}{\sin \left(\frac{\pi}{N}\right)} \cdot \cos \left(\frac{\pi}{N}-\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right) .
$$

Figure 2.11: Dispersion relation with parity effect

An Arbitrary Number of Fermions

For an abitrary number M of fermions each partıcle has to pass $M-1$ others in order to move once around the ring Hence, the phase factor connected with this movement is $\mathrm{e}^{\pi(M-1)}=(-1)^{M-1}$ The general expression of the total energy mught therefore be written in the following way

$$
E_{\mathrm{tot}}=-2 t \frac{\sin \left(\frac{\pi}{N} M\right)}{\sin \left(\frac{\pi}{N}\right)} \cdot \cos \left(\frac{\pi}{N}\left(M_{-}-1\right)-\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right)
$$

However, this is in most cases not the ground state energy, but one of the exited states To obtain the former, it is necessay to find out which sites in momentum space should be occupied Then the nght expression tor the ground state energy is given by

$$
\begin{equation*}
E_{\text {ground }}=-2 t \frac{\sin \left(\frac{\pi}{N} M\right)}{\sin \left(\frac{\pi}{N}\right)} \cdot \cos \left(\frac{\pi}{N}((M-1) \bmod 2)-\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right) \tag{240}
\end{equation*}
$$

In this formula all possible effects are mcluded. The aıgiunentation which leads to this result is called the "partty effect".

Figure 212 Dispersion relation with $M=4$ fermions and $\Phi>0$

Bosons

After presenting these arguments the result for the case that the paricles under consuletation are bosons instead of temions can be predicterl Then commutation relations as given 111 (16) do not lead to a factor -1 when one particle passes another onc In other words, the many-body wave function is symmetic with respect to the exchange of two particles

This means that for hardcore bosons, that is for bosons with allowed occupaton numbers 0 and 1 . the situation is a proor for every M the same as that for an orld number of fermions Since, the slift of $\frac{\pi}{A}$ does not appear, the picture for the flux dependence of the total energy does not hate two difterent shapes There is no parity effect in this case

The perious calculations for fermons are in cssence also valid for bosons Howerer, in the case of an even number of paiticles thene is of course a chfference. It is based on the fact that here the prevously mentioned situation appears that the gromd state is formed by half-mineger quantum numbers That means that compared to an even number of fermons all praticles are mored b) $\frac{1}{2}\left(\frac{2 \pi}{N}\right)$, what exactle ammatates the $\frac{\pi}{N}$ in the cosine Hence. for liatcone bosons the ground

Figue 2 13. Dispersion relation with $M=\frac{\downarrow}{4}$ bosons and $\Phi=0$ state energy has always the form

$$
\begin{equation*}
E_{\mathrm{b} \text { oson }}=-2 t \frac{\sin \left(\frac{\pi}{N} M\right)}{\sin \left(\frac{\pi}{N}\right)} \cdot \cos \left(\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right) \tag{241}
\end{equation*}
$$

2.4 Persistent Current

After the expression for the total energy E of the electron ring has been derived, it does not cause much more effort to obtain the value of the persistent current I It is nothing other than the derivative of the total energy with respect to the flux through the ring,

$$
\begin{equation*}
I=-c \frac{\partial E}{\partial \Phi} \tag{242}
\end{equation*}
$$

Theie are several possible explanations of this fact The authot would like to present two of them, one which uses macroscopic quantities to describe the situation and another one which starts from a microscopic pomt of view.

Macroscopic Explanation

The ang uncler consideration is placed in a homogeneous magnetic field B Consequently: there is a flux $\Phi=B \cdot \mathrm{~S}$ threaded by the ring. Here S is a normal vector to the plane of the ring with a length proportional to the ared enclosed ly the circle.
The flux gives rise to a current I insude the ing The dependence on the flux $I=I(\Phi)$ is a priorz unknown. Whaterei the current might be. its ex-

Figue 214 Ring with 12 sites in a plane with a normal vector S , threaded by a magnetzc field B . istence canses a magnetic moment m connected to the ring and parallel to S

Its value is for the special case of a carculan cuntent density easilv calculated to be

$$
\begin{equation*}
\mathrm{m}=\frac{1}{2 c} \int \mathrm{~d}^{3} / \mathbf{r} \times \mathrm{j}=\frac{1}{2 c} r \cdot 2 \pi r \quad I \quad \mathrm{n}=\frac{1}{c} I \mathrm{~S} \tag{243}
\end{equation*}
$$

Such a magnetic moment inside a magnetic field posses a certan potential eneigy, which is mmmal if the moment is aligned parallel to the field lines. Thus, the pat of the energy of the ring which is connected to magnetic effects has the form

$$
\begin{equation*}
E_{\mathrm{tnagn}}=-\mathrm{m} \quad \mathrm{~B}=-\frac{1}{c} I \mathrm{~S} \cdot \mathrm{~B}=-\frac{1}{c} I \Phi \tag{244}
\end{equation*}
$$

In a thermodynamic description m and B are independent variables The same is theiefore true for the pair (I, Φ) and the persistent current becomes

$$
I(\Phi)=-c\left(\frac{\partial E_{\mathrm{magn}}}{\partial \Phi}\right)_{t}
$$

Microscopic Explanation

Usually in the hterature $[3,7,8]$ the current is calculated by looking at its canse: the movement of electrons The energy dependence for the m th particle, as given in (235), can in the limit $N \gg M$ be assumed to be quadratic in the wave vector, $E_{m}=\frac{\hbar^{2} k^{2}}{2 m_{\mathrm{eff}}}$. The unknown effective mass $m_{\text {eff }}$ vannshes agam if the volocity $v_{m}=\frac{\hbar k}{m_{\text {eff }}}$ is expressed ds

$$
\begin{equation*}
v_{m}=\frac{1}{\hbar} \frac{\partial E_{m}}{\partial k} \quad\left(=\frac{\partial \omega}{\partial k} \Rightarrow \text { group velocity }\right) \tag{245}
\end{equation*}
$$

On the other hand, the wave vector k is detemmed by the flux. The quantum mumber is only important for a reduction to the fist Bullouin zone according to (236) and is taken into account again when switching to the total energy. However, one has to be careful with dimensionahities The umt of length has in all previous calculations been the distance between two sites on the ang, called a. In order to have a wave vector with the dimensionality $1 /$ length, tlus a has to be inclurled.

$$
\begin{align*}
v_{m} & =\frac{1}{\hbar} \frac{\partial E_{m}}{\partial \Phi} \frac{\partial \Phi}{\partial k}=\frac{1}{\hbar} \frac{\partial E_{m}}{\partial \Phi} \frac{1}{\frac{\partial \hbar}{\partial \phi}} \\
& =\frac{1}{\hbar} \frac{\partial E_{m}}{\partial \Phi} \frac{1}{\frac{2 \pi}{a N} \frac{1}{\Phi_{0}}}=\frac{1}{\hbar} \frac{\partial E_{m}}{\partial \Phi} \frac{a N h c}{2 \pi} \frac{h c}{e}=a N \frac{c}{e} \frac{\partial E_{m}}{\partial \Phi} \tag{246}
\end{align*}
$$

The actual current is the common effect of all paticipating paiticles It can be calculated from

$$
I=-e \sum_{m=1}^{M} \frac{v_{m}}{a N}=-c \sum_{m} \frac{\partial E_{m}}{\partial \Phi}=-c \frac{\partial E}{\partial \Phi}
$$

where E is now the total enengy of the many particle system

Expressions for the Current

For the derivatives it is agan necessary to distmgush between an odd and an even number of particles Staiting with the expressions (237) and (238) for the total eneıgy, we obtain after a short calculation.

$$
\begin{align*}
I_{\text {elen }} & =\mp \frac{2 t e}{N \hbar} \frac{\sin \left(\frac{\pi}{N} M\right)}{\sin \left(\frac{\pi}{N}\right)} \cdot \sin \left(\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)-\frac{\pi}{N}\right) \tag{247}\\
I_{\text {odd }} & =\mp \frac{2 t e}{N \hbar} \frac{\sin \left(\frac{\pi}{N} M\right)}{\sin \left(\frac{\pi}{N}\right)} \sin \left(\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right) \tag{248}
\end{align*}
$$

Apparently, theie is an oscillation in the curent-Hux dependence This is in agreement with predictions by Buttinger, Imıy and Landaueı [2], with experimental results $[3,4,5]$ and numesous other publications $[8,11,12,27]$ Nerertheless, it is worth discussing these expressions for the persistent current a bit more.

First of all, a remark on the sign is necessary The two different possibilities are cansed by the derivative of the function $7(x)$, wheh restncts the flux onto a sufficient interval It is shown in figure 26 on page 42 that this function has a s.uwtooth shape due to which the denivative has sometmes positise and sometmes negative values Instead of putting this fact moto a sophsticated mathematical desciption. it is more convement to show the figure 215 . For large values of N the sm-function can well be approxmated by straight lines

Figure 2.15 Dependence of the persustent curtent on the toupped fiuz fon (a) an odd mumber of particles and (b) an even number of purtacles \hat{I} as the amplatude of the cuitent

The Amplitude

In many papers the amplitude of the oscillating current is compared with $\hat{I}=\frac{e v_{F}}{L}$, where v_{F} is the Fermi velocity and $L=a N$ is the crrcumference of the ring For this reason the results will now be transformed accordingly

In the case of an odd number of particles the maximum value for the current is connected to $\Phi / \Phi_{0}=\frac{1}{2}$ The resulting sm-function at the end of (248) thetelore cancels with $\sin \left(\frac{\pi}{N}\right)$ in the denommator The same can be done for an even number of particles and $\Phi=0$

The velocity v_{F} for a particle at the Ferm edge ($m=\frac{\Lambda I}{2}$) can be evaluated from its energy with the help of a derivative as above

$$
v_{F}=-\frac{1}{\hbar} \frac{\partial}{\partial k} 2 t \cos \left(\frac{\pi M I}{N}\right)=\frac{2 t a}{\hbar} \sin \left(\frac{\pi M I}{N}\right) \Longrightarrow \hat{I}=\frac{2 t e}{N \hbar} \sin \left(\frac{\pi M I}{N}\right)=\frac{e v_{F}}{L}
$$

Hence, the curent can also be expressed in the followng way

$$
\begin{align*}
& I_{\text {even }} \approx \mp \frac{e v_{F}}{L} \sin \left(\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)-\frac{\pi}{N}\right) \frac{1}{\sin \left(\frac{\pi}{N}\right)} \tag{249}\\
& I_{\mathrm{odd}} \approx \mp \frac{e v_{F}}{L} \sin \left(\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right) \frac{1}{\sin \left(\frac{\pi}{N}\right)} \tag{250}
\end{align*}
$$

This result for the order of magmotude of the persistent current mdicates that almost only the upper-most paticle, the electron which has the eneigy of the Fermi edge, contributes to the current This suphismg tact has ats ongin in different signs of the currents for the several lower lying particles, which effectively cancel each other [2, 7, 35]

Period Halving

Onc a an clearly see in figme 215 that the penod of the oscullation of the persistent current is one flux quantum $\Phi_{0}=\frac{h c}{e}$. This is also what is olstamed in expenments, proviled that measurements were per formed on single metallic loops For mstance Chandrasekhar et al [4] were able to confirm this result by using a single, isolated gold loop However, first experımental results were published by Lévy et al [3]. Ther reported about an oscillation with a period half the flux quantum

The reason for the period halving is the fact that these scientists measured the effect of 10^{7} copper rings simultaneously. The kind of averaging connected to such a lange number of rings is discussed by various authors $[3,8,36,37]$

Already in 1987 Cheung et al. [8] pomted out that one has to distingush botween a grand canonical and a canomical ensemble arerage. In the first case the chemical potential is kept fixed for each ning and the number of electrons Inies with the flux Under such circumstances the average over different values for the chemical potential gives zeio

In the second case of a canonical ensemble the number of partıcles is maintained, no matter what the value of the flux through the ing is

This is exactly the situation we have mvestigated so far. Here the average has to be performed over different numbers of particles for the diffcrent lings.

If the same amplitude of the cunrent is assumed for every particle number and if there are as many rings with an orld number of electrons as with an even number of electrons, then the average can simply be found The figue on the right hand side

Figue 2.16 Persustent current per rong (solid lane) when averaged oven a canonacal ensemble of ninus with an odd and an even number of paitzcles respectively (dotted lanes) shows the period halving

Furthermore, one can see nicely in this figure that the averaging is also connocted with an amplitude halving, with a decrease of the maximum of the persistent current

Loss and Goldbart [37] discussed this areanging process m mone detal They assimmed that the number of paticles of a catrining is Poisson distributed aoound a mean value λ. Then the probability for the ring to lave M conduction elections is $\mathrm{e}^{-\lambda \frac{\lambda^{3 I}}{M T^{T}}}$ The sm-functions in (248) and (247) are hnearised, which
allows to write them in the following form:

$$
I(M) \approx X \cdot M \cdot \begin{cases}\left(\frac{2 \Phi}{\Phi_{0}}\right) & \text { for } M \text { odd } \\ \left(\frac{2 \Phi}{\Phi_{0}}-1\right) & \text { for } M \text { cven }\end{cases}
$$

where X is some constant which does not depend on Φ and M, and the flux is for simplicity supposed to be within the interval $0 \leq \frac{\varphi}{\phi_{0}} \leq \frac{1}{2}$.

Therefore, the expectation value of the function $I(M)$ is

$$
\begin{align*}
\langle I\rangle_{\text {Polson }}= & X \mathrm{e}^{-\lambda}\left(1 \frac{\lambda^{1}}{1^{\prime}}+3 \frac{\lambda^{3}}{3^{\prime}}+.+(2 k+1) \frac{\lambda^{(2 k+1)}}{(2 k+1)^{\prime}}+\right)\left(\frac{2 \Phi}{\Phi_{0}}\right) \\
& +\mathrm{Ye}^{-\lambda}\left(0 \frac{\lambda^{0}}{0^{\prime}}+2 \frac{\lambda^{2}}{2^{\prime}}+\ldots+(2 h) \frac{\lambda^{(2 k)}}{(2 k)^{\prime}}+\right)\left(\frac{2 \Phi}{\Phi_{0}}-1\right) \\
= & \mathrm{Xe}^{-\lambda}\left[\frac{\lambda}{2}\left(\mathrm{e}^{\lambda}+\mathrm{e}^{-\lambda}\right)\left(\frac{2 \Phi}{\Phi_{0}}\right)+\frac{\lambda}{2}\left(\mathrm{e}^{\lambda}-\mathrm{e}^{-\lambda}\right)\left(\frac{2 \Phi}{\Phi_{0}}-1\right)\right] \\
= & \frac{1}{2} X \lambda\left[2\left(\frac{2 \Phi}{\Phi_{0}}\right)-1+\mathrm{e}^{-2 \lambda}\right] \\
\approx & \frac{1}{2} \hat{I}(\lambda)\left(\frac{2 \Phi}{\Phi_{0} / 2}-1\right) \tag{2.51}
\end{align*}
$$

In the last line the term $\mathrm{e}^{-2 \lambda}$ has been neglected becanse the mean number of paticles is assumed to be lage The fact that the constant V goes together with λ means that the amplitude of the averaged current is that, wheli conesponds to a ring with the mean number of particles; or better to sall. it is halt of that value as the fraction in front of the curient indicates

What is mportant about the calculation is that in the end Φ_{0} is replaced by $\Phi_{0} / 2$. This confirms that withm the interval $0 \leq \frac{\phi}{\phi_{0}} \leq \frac{1}{2}$ the giaph of the current wesus the flux is steepen than before by a factor of 2 One can also check for the other interval, that the result of the Porson areage is exactly the same as already shown in fague 216 (it I / \hat{I} is inderstood to be $\langle I\rangle / \hat{I}(\lambda)$) Thins, it is only natural that Lévy et al discovered a half flux quantum periorlicity

Chapter 3

Interacting Fermions

3.1 Hartree-Fock Equations

There are manly two possible ways for the derivation of the Hartree-Fock (HF) equations One is well explamed in the textbook of Kittel [38] Here the onepaticle solutions $\varphi_{3}(x)$ of the Hamiltonian are combined to field opeators

$$
\Psi(\mathrm{x})=\sum_{j} c_{\jmath} \varphi_{\jmath}(\mathrm{x}) \text { and } \Psi^{+}(\mathrm{x})=\sum_{j} c_{\jmath}^{\dagger} \varphi_{j}^{*}(\mathrm{x})
$$

and the Hamiltonan is expressed in these operators A study of the equation of motion $i \hbar \Psi=-[\mathcal{H}, \Psi]-$ leads then to the desired set of equations

The other approach, which can fe be found in the books of Merzbacher [22], Nolting [28] or Fulde [39], uses variational methods The Hamitoman \mathcal{H} under consideration is the sum of a sungle paticle kmetce energy \hat{H}_{0} and a two-particle interaction \hat{V}. The trial wave function for the variation is in thes apporach chosen to be a symmetrized product of M single paticle wase functions In second quantization this symmetuzation happens aintomatically, in the contmuous case a Slater-determinant form must be used:

$$
|H F\rangle=\frac{1}{\sqrt{M /}} \sum_{\rho \in P(A)}(-1)^{\operatorname{Ggn\varphi }}\left(\left|\psi_{\alpha_{1}}^{\omega(1)}\right\rangle\left|\varphi_{O_{2}}^{\varphi(2)}\right\rangle \quad\left|\psi_{\alpha_{1}}^{\omega(M)}\right\rangle\right) .
$$

With this trial wave function an expectation valne of the Hamultoman can be

[^7]derived. If all permutations are handled correctly, the result is
\[

$$
\begin{aligned}
\langle H F| \mathcal{H}|H F\rangle=\sum_{\mu=1}^{M}\left\langle\varphi_{\alpha_{\mu}}^{(1)}\right| \hat{H}_{0}^{(1)}\left|\varphi_{\alpha_{\mu}}^{(1)}\right\rangle+\frac{1}{2} \sum_{\mu, \nu}^{\mu \neq \nu} & \left\{\left\langle\varphi_{\alpha_{\nu}}^{(1)} \varphi_{\alpha_{\mu}}^{(2)}\right| \hat{\cdot}(1,2)\right. \\
& \left.-\left\langle\varphi_{\alpha_{\nu}}^{(1)} \varphi_{\alpha_{\mu}}^{(1)} \varphi_{\alpha_{\mu}}^{(2)}\right\rangle \hat{V}^{(1,2)}\left|\varphi_{\alpha_{\nu}}^{(2)} \varphi_{\alpha_{\mu}}^{(1)}\right\rangle\right\},
\end{aligned}
$$
\]

where $\hat{H}_{0}^{(1)}$ is the part of \hat{H}_{0} that acts on particle 1 and $\hat{V}^{(1,2)}$ describes the miteraction of particles 1 and 2 . In the mitelaction the first temm is called "direct" and the second "exchange" teim

By introducing unities at appropiate positions, it is also possible to rewrite this expression in position representation It the spin is scpalated from the quantum numbers α_{j} and the Hamiltonian is supposed to be spin independent, one obtans

$$
\begin{gather*}
\langle H F| \mathcal{H}|H F\rangle=\sum_{\mu \sigma} \int \mathrm{d}^{3} r \varphi_{\mu \sigma}^{*}(\mathbf{r}) H_{0}(\mathbf{r}) \varphi_{\mu \sigma}(\mathbf{r})+\frac{1}{2} \sum_{\mu \sigma, \nu \sigma^{\prime}}^{(\mu \sigma) \neq\left(\nu \sigma^{\prime}\right)} \iint \mathrm{c}^{3} r \mathrm{l}^{3} r^{\prime} * \\
* \varphi_{\mu \sigma}^{*}(\mathrm{r}) \varphi_{\nu \sigma^{\prime}}^{*}\left(\mathrm{r}^{\prime}\right) V\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \underbrace{\left(\varphi_{\mu \sigma}(\mathbf{r}) \varphi_{\nu \sigma^{\prime}}\left(\mathrm{r}^{\prime}\right)\right.}_{\text {dinect }}-\underbrace{\left.\delta_{\sigma, \sigma^{\prime}} \varphi_{\mu \sigma^{\prime}}\left(\mathbf{r}^{\prime}\right) \varphi_{\nu \sigma}(\mathrm{r})\right)}_{\text {exchdinge }} \tag{31}
\end{gather*}
$$

The variation pinciple ${ }^{2}$ uses the fact that, no matter which kind of trial function is used, the expectation value of the Hamiltoman gives always an upper boundaly of the ground state energy

$$
\begin{equation*}
\frac{\langle H F| \mathcal{H}|H F\rangle}{\langle H F \mid H F\rangle}=E \geq E_{0} \tag{32}
\end{equation*}
$$

In order to come the ground state energy as close as possible it is reasonable to mmimize the left hand side.

$$
\begin{align*}
0 & \stackrel{!}{=} \delta\left(\frac{\langle H F| \mathcal{H}|H F\rangle}{\langle H F \mid H F\rangle}\right) \\
& =\langle H F \mid H F\rangle^{-2}(\langle H F \mid H F\rangle \delta\langle H F| \mathcal{H}|H F\rangle-\langle H F| \mathcal{H}|H F\rangle \delta\langle H F \mid H F\rangle) \\
& =\delta\langle H F| \mathcal{H}|H F\rangle-E \cdot \delta\langle H F \mid H F\rangle \\
& =\delta\langle H F| \mathcal{H}-E|H F\rangle \tag{3}
\end{align*}
$$

where a proper normallazation of $|H F\rangle$ has been assumed

[^8]Erentually, this procedure is equivalent to a minmmzation of $\langle H F| \mathcal{H}|H F\rangle$ together with normalization conditions introduced via a Lagrange multiplier $\lambda=$ E It is also common to take the normalization of each single particle wave function into account with the help of such multipliess

$$
\begin{equation*}
\delta\left(\langle H F| \mathcal{H}|H F\rangle-\sum_{\mu=1}^{M} \lambda_{\mu \sigma}\left\langle\psi_{\alpha_{\mu}}^{(\mu)} \mid \psi_{\alpha_{\mu}}^{(\mu)}\right\rangle\right)^{\prime}=0 \tag{34}
\end{equation*}
$$

Applicd to the expectation value in integral notation (3.1), the variation pinnclple gives the well-known Hartree-Fock equations:

$$
\begin{gather*}
\lambda_{\mu \sigma} \varphi_{\mu \sigma}(\mathrm{r})=\left(H_{0}(\mathrm{r})+\sum_{\nu \sigma^{\prime}}^{(\mu \sigma) \neq\left(\nu \sigma^{\prime}\right)} \int \mathrm{d}^{3} \gamma^{\prime} \varphi_{\nu \sigma^{\prime}}^{*}\left(\mathrm{r}^{\prime}\right) V^{\prime}\left(\mathrm{r}, \mathrm{r}^{\prime}\right) \varphi_{\nu \sigma^{\prime}}\left(\mathrm{r}^{\prime}\right)\right) \varphi_{\mu \sigma}(\mathrm{r}) \\
-\sum_{\nu}^{\nu \neq \mu} \int \mathrm{d}^{3} r^{\prime} \varphi_{\nu \sigma}^{*}\left(\mathrm{r}^{\prime}\right) V\left(\mathrm{r}, \mathrm{r}^{\prime}\right) \varphi_{\mu \sigma^{\prime}}\left(\mathrm{r}^{\prime}\right) \varphi_{\nu \sigma}(\mathrm{r}) \tag{35}
\end{gather*}
$$

When looking at this formula, it becomes clear why it is also called selfconsistent field equation. On the right hand side we have wave functions with primed arguments and without. Once the wave functions are known, it is possible to evaluate the integrals, which leave only mprimed tems The latter form a matix equation, which can be solved (at least with mumencal methods) The procedure should, therefore, be like this:

- Stait with an assumption for the smgle-paticle ware functions.
- Calculate the integrals with these functions
- Solve the matrix equations with the integials as coefficients
- Use the ganed wave functions again for the integral evaluatiou and continue

Acconding to this procedure each particle moves withm the field of the rest of the praticles The iteration stops when the new wate functions are rfual to these which were used for the integials In thin case one can speak of self-consistency

It is clear that such an ateration can only be performed by a computer Even so. a numerical investrgation was not planned to be used for the present work, Hatiee-Fock like calculations have been stated This happened manly to get a deeper msight into the structure of the poblem and not in the first place to achere exact results.

Remark: One also finds in the literature [28] another equation with the name Hartree-Fock approximation It is a simılar mean-field approximation, but in this case for a product of two operators $\hat{A} \hat{B}$. Such a pioduct can be rewitten in the form

$$
\hat{A} \hat{B}=(\hat{A}-\langle\hat{A}\rangle)(\hat{B}-\langle\hat{B}\rangle)+\hat{A}\langle\hat{B}\rangle+\hat{B}\langle\hat{A}\rangle-\langle\hat{A}\rangle\langle\hat{B}\rangle
$$

The approxmmation is based on the assumption that close to self-consistency fluctuations around the expectation value can be neglected. Hence,

$$
\begin{equation*}
\hat{A} \hat{B} \approx \hat{A}\langle\hat{B}\rangle+\hat{B}\langle\hat{A}\rangle-\langle\hat{A}\rangle\langle\hat{B}\rangle \tag{36}
\end{equation*}
$$

which educes in an elegant way the operator product to a linear problem This approxmation, which is for the special case of the Hulbbard nodel and its product of occupation number operatois called Stoner model, allows in a smilar way as aloove to perform an iteration. Although it is not used in this particular way withın this work, we shall see sımılar structures when usıng the HubbardStratanovic decomposition.

3.2 The α-problem

As a first step into an investigation of meractions between chfferent particles on the 1 mg , an ensemble of spinless fermions is considered. An approprate Hamltoman in this context is the above mentioned Hessenberg operator (1.23)

$$
\mathcal{H}=-t \sum_{k}\left(c_{k}^{\dagger} c_{k+1}+c_{k+1}^{\dagger} c_{k}\right)+V \sum_{k} \hat{n}_{k} \hat{n}_{k+1} .
$$

It is the aim to find the corresponding elgenfunctions and elgenvalues The latter, that means the energies of the system, ae of particula menest betanse they enable us to obtam statements on the persistent cument

Unfortumately, the Hatree-Fock equations (35) camot be used directly to solve this task This is not only bocause they form an iterative appioach to the problem. The fact that they have so far only been formulated for the continuous case is an even bigger limitation However, in the situation under consideation the space is a discrete lattice in one dimension For this reason the variation is done agam by hand With the wave functions melioluced in 321 an expectation
value of the Hamiltonian can be obtamed (322), and the denvative in 324 leads to Hartree-Fock equations which can be solved (3.2 5).

3.2.1 The Variational Wave Functions

In the prevous chapter the case $V \equiv 0$ has been investigated The many-body ware function was formulated in second quatization in a way that several (M) fenmons were created at the same time on different sites Each of the possibilities was weighted with a factor, which depended on a set of quantum numbers All together, as for instance in section 214 , we used the form

$$
|\psi\rangle_{n_{1} n_{M}}=\sum_{i_{1},, \imath_{M}} \alpha_{i_{1}}^{n_{1}} n_{i_{M}}^{n_{M}} c_{i_{1}}^{\dagger} c_{i_{2}}^{\dagger} \quad c_{i_{M}}^{\dagger}|0\rangle,
$$

where N and M are the number of sites and particles, respectively-
Howerer, we got the result that Bloch wave functions ane solutions and that the coefficients can, thercfore, be written as

$$
\alpha_{2_{1} 2_{M}}^{n_{1}} n_{M}=N^{-M / 2} \exp \left[\frac{2 \pi_{1}}{N}\left(n_{1} \imath_{1}+n_{2} \imath_{2}+\quad n_{M} l_{M}\right)\right]
$$

This knowledge allows to represent the ware-function as

$$
\begin{equation*}
|\psi\rangle_{n_{1} n_{M}}=\prod_{s=1}^{M}\left(\sum_{z,=1}^{N} \alpha_{z_{s}}^{n_{s}} c_{z_{s}}^{\dagger}\right)|0\rangle \tag{37}
\end{equation*}
$$

with the splitted coefficients

$$
\alpha_{\imath_{s}}^{n_{s}}=\frac{1}{\sqrt{N}} \exp \left[\begin{array}{ll}
\frac{2 \pi 1}{N} n_{s} & u_{s}
\end{array}\right]
$$

Such a representation is essentially a reduction of the complicated many particle problem to a problem of M separate paticles Each of them is described br the functional dependence of $\alpha_{i_{s}}^{n_{s}}$ on the site number \imath_{s}, determined by the (Iuantum number n_{s}, A nommalization for the single paticle, $\sum_{z_{s}=1}^{N}\left|\alpha_{t_{s}}^{n_{s}}\right|^{2}=1$, as well as for the complete ware function, ${ }_{n_{1}} n_{n_{M}}\langle\psi \mid v\rangle_{n_{1}} n_{V}=1$, is given

The ansatz for the following calculations is that the vanditional wave function can also for the case $I \neq 0$ be handled in a way as it M separated panticles were moring along the ning. That is, the variational wave function has the form (3 7) with unknown coefficients $\alpha_{t_{s}}^{n_{s}}{ }^{3}$

[^9]
3.2.2 Expectation Value

With the help of the variational wave function an expectation value for the Heisenberg Hamiltonian can be evaluated. This has to be done carefully for both involved parts. However, the steps are very similar to those in section 2 1.4. Especially, sums over all possıble permutations of M partıcles appear again.

Hopping Part

$$
\begin{aligned}
& n_{n_{1} n_{M}}\langle\psi| \hat{H}_{0}|\psi\rangle_{n_{1} \quad n_{M}} \\
& =-t \sum_{k} \sum_{\substack{i_{1} \\
j_{1} \\
i_{M} \\
j_{M}}} \alpha_{\jmath_{1}}^{n_{1}{ }^{*}} \cdots \alpha_{\jmath_{M}}^{n_{M{ }^{*}}} \alpha_{2_{1}}^{n_{1}} \quad \cdot \alpha_{2_{M}}^{n_{M I}} \cdots \\
& \text { - }\langle 0| c_{\jmath_{M}} \cdot c_{\jmath_{1}}\left(c_{h}^{\dagger} c_{k+1}+c_{k+1}^{\dagger} c_{h}\right) c_{i_{1}}^{\dagger} \cdots c_{i_{\mathrm{M}}}^{\dagger}|0\rangle \\
& =\cdot \sum_{A=1}^{M}\left\{\langle 0| c_{J_{M}} \cdot c_{\jmath_{1}} c_{k}^{\dagger} c_{k+1} c_{\imath_{1}}^{\dagger} \cdot c_{i_{M}}^{\dagger}|0\rangle \delta_{l_{A}, k+1}\right. \\
& \left.+\langle 0| c_{J_{M}} \quad c_{\jmath_{1}} c_{h}^{\dagger} c_{h-1} c_{2_{1}}^{\dagger} \quad c_{2_{A I}}^{\dagger}|0\rangle \delta_{\imath_{1} h-1}\right\} \\
& =. \cdot \sum_{A=1}^{M}\left\{\langle 0| c_{j_{M}} \cdot c_{J_{1}} c_{i_{1}}^{\dagger} \cdots c_{i_{4}-1}^{\dagger} c_{2_{A}}^{\dagger} \cdot c_{i_{M}}^{\dagger}|0\rangle \delta_{i_{4}-1, k}\right. \\
& \left.+\langle 0| c_{j_{M}} \cdot c_{J_{1}} c_{2_{1}}^{\dagger} \cdot \cdot c_{2_{A}}^{\dagger} c_{2_{A}+1}^{\dagger} \cdots c_{2_{A}}^{\dagger}|0\rangle \delta_{2_{4}+1, k}\right\} \\
& =-t \sum_{A=1}^{M} \sum_{\substack{\lambda_{1} \\
j_{1}}} \alpha_{j_{M}}^{n_{1} *} \quad \alpha_{J_{M}}^{n_{M} *} \alpha_{i_{1}}^{n_{1}} \cdot\left(\alpha_{i_{A}+1}^{n_{A}}+\alpha_{i_{4}-1}^{n_{A}}\right) \cdot \alpha_{i_{A l}}^{n_{X I}}\langle 0| c_{J_{M}} \cdot c_{j_{1}} c_{i_{1}}^{\dagger} \cdots c_{i_{A S}}^{\dagger}|0\rangle
\end{aligned}
$$

Interaction Part

$$
\begin{aligned}
& n_{n_{1} \quad n_{M}}\langle\psi| \hat{Y}|\psi\rangle_{n_{1}} n_{M} \\
& =V \sum_{h} \sum_{\substack{d_{1} \\
j_{1} \\
j_{M}}} \alpha_{j_{1}}^{n_{1} *} \cdots \alpha_{j_{M}}^{n_{M} I^{*}} \alpha_{\imath_{1}}^{n_{1}} \quad \cdot \alpha_{M}^{n_{M}} \\
& \cdot\langle 0| c_{3_{M}} \cdot \quad c_{J_{1}} c_{k}^{\dagger} c_{k} c_{k+1}^{\dagger} c_{k+1} c_{i_{1}}^{\dagger} \quad c_{i_{M}}^{\dagger}|0\rangle
\end{aligned}
$$

For mastance Tasaki used in his review articles [43] for expiessions like $\sum_{t_{s}=1}^{N} \alpha_{\imath_{9}}^{n s} c_{i}^{\dagger}$, the index fice notation $C^{\dagger}\left(\alpha^{\left(n_{j}\right)}\right)$

$$
\begin{aligned}
& =\cdot \sum_{\substack{A_{B=1} A \neq B}}^{M}\langle 0| c_{J_{M}} \cdots c_{\jmath_{1}} c_{i_{1}}^{\dagger} \cdot c_{k}^{\dagger} c_{k} c_{\imath_{4}}^{\dagger} c_{k+1}^{\dagger} c_{h+1} c_{\imath_{B}}^{\dagger} \cdot c_{i_{1}}^{\dagger}|0\rangle \delta_{k, 2_{A}} \delta_{h+1, \imath_{B}} \\
& =\cdot \sum_{\substack{\lambda_{1} B=1 \\
A \neq B}}^{M}\langle 0| c_{J_{M}} \cdot c_{j_{1}} c_{\imath_{1}}^{\dagger} \cdot c_{i_{M}}^{\dagger}|0\rangle \delta_{k, 2_{4}} \delta_{\imath_{B}, \imath_{4}+1}
\end{aligned}
$$

Normalization

$$
n_{n_{1}} n_{M I}\langle\psi \mid \psi\rangle_{n_{1}} n_{M A}=\sum_{\jmath_{1}} \sum_{j_{M}}(-1)^{\mathrm{sg} g_{p}} \alpha_{\jmath_{1}(M)}^{n_{1} *} \quad \alpha_{\jmath_{M}}^{n_{M} *} \alpha_{\jmath_{1}}^{n_{p(1)}} \cdots \alpha_{\jmath_{M}}^{n_{p(M)}}
$$

That is nothing other than a Slater determmant

3.2.3 Remark on Lagrange Multipliers

The next step withon a Ritz procedure is to take derivatives with respect to one of the parameters of the vasational wave function. However, from expersence the author would like to interpolate a brief remak One might feel tempted to simplify the expression for the expectation values abore by using nomalization conditions hike $\sum_{i=1}^{N}\left|\alpha_{i}^{n_{s}}\right|^{2}=1$

For instance, for a two-panticle Hubbard model with the Hamiltoman

$$
\mathcal{H}=-t \sum_{k} \sum_{\sigma=\uparrow, \downarrow}\left(c_{k, \sigma}^{\dagger} c_{k+1, \sigma}+c_{k+1, \sigma}^{\dagger} c_{k, \sigma}\right)+U \sum_{k} \hat{n}_{k, \uparrow} \hat{n}_{k, \downarrow}
$$

and a wave function

$$
|\psi\rangle=\sum_{\imath, j} \alpha_{\imath} \beta_{j} c_{\imath, \uparrow}^{\dagger} c_{j, \downarrow}^{\dagger}|0\rangle
$$

one funds the expectation value for the hopping pat to be

$$
\langle\psi| \hat{H}_{0}|\psi\rangle=-t \sum_{\imath, j}\left(\alpha_{\imath+1} \beta_{\jmath} \alpha_{2}^{*} \beta_{j}^{*}+\alpha_{\imath} \beta_{j+1} \alpha_{2}^{*} \beta_{j}^{*}\right)+\text { h } c,
$$

where h c. has here the consequence that $\imath+1$ is ieplaced by $\imath-1$ A nomalization for the single particle means that $\sum_{i} \alpha_{i} \alpha_{i}^{*}=1$ and for β iespectively. This leads to

$$
\langle\psi| \hat{H}_{0}|\psi\rangle=-t \sum_{\imath}\left\{\alpha_{\imath}^{*}\left(\alpha_{\imath+1}+\alpha_{\imath-1}\right)+\beta_{\imath}^{*}\left(\beta_{\imath+1}+\beta_{\imath-1}\right)\right\}
$$

and together with the interaction part to

$$
\langle\psi| \mathcal{H}|\psi\rangle=-t \sum_{\imath}\left\{\alpha_{\imath}^{*}\left(\alpha_{\imath+1}+\alpha_{\imath-1}\right)+\beta_{\imath}^{*}\left(\beta_{\imath+1}+\beta_{\imath-1}\right)\right\}+U \sum_{i}\left|\alpha_{\imath} \beta_{\imath}\right|^{2}
$$

A derivative with respect to one of the coefficients, saly α_{h}^{*}, with a normalization condition for the many particle wave function meluded var a Lagrange multiplier λ leads to the followng set of equations ${ }^{\ddagger}$

$$
\begin{align*}
t\left(\alpha_{k+1}+\alpha_{k-1}\right) & =\left[U\left|\beta_{k}\right|^{2}-\lambda\right] \alpha_{k}, \tag{38}\\
t\left(\beta_{k+1}+\beta_{k-1}\right) & =\left[U\left|\alpha_{k}\right|^{2}-\lambda\right] \beta_{h}
\end{align*}
$$

On the other hand, if the normalization condition for the single particle is not used at the beginning, the equations after the derivative have a form which contans au additional exchange term

$$
\begin{align*}
t\left(\alpha_{k+1}+\alpha_{k-1}\right) & =\left[U\left|\beta_{k}\right|^{2}-t \sum_{\imath}\left(\beta_{\imath+1}+\beta_{\imath-1}\right) \beta_{\imath}^{*}-\lambda\right] \alpha_{k}, \tag{39}\\
t\left(\beta_{k+1}+\beta_{k-1}\right) & =\left[U\left|\alpha_{k}\right|^{2}-t \sum_{\imath}\left(\beta_{\imath+1}+\beta_{\imath-1}\right) \beta_{\imath}^{*}-\lambda\right] \beta_{k}
\end{align*}
$$

The second possibility 39 is of course the more conect one In the version 38 a normalization was used which is also included in the consticunt via Lagrange multiphers However, constrants coupled with the help of Lagrange multiphers should not be used before the denvative is done

3.2.4 Derivatives and Simplifications

After this minterpolation it is the right moment to perform the derivatives In the rallationd wave function of the form (37) the hee parameters are the coefficients $o_{1_{*}^{\prime \prime}}^{\prime \prime}$. They appear in every term of the expectation value in this wav as well as in the complex conjugate form

Aıbitiany, for denvatives the complex conjugate coefficient $\alpha_{x}^{n_{c} *}$ for a cortain site r and connected with a certain quantum number n_{c} has been chosen The quantum number, of course, has to be withun the set $\left\{n_{s}\right\}_{s=1}^{N /}$ which cletermmes the many-particle ware function

[^10]However, a variational method with $M \times N$ patameters leads two $M \times N$ ecuations of the form

$$
\begin{equation*}
0 \stackrel{!}{=} \frac{\partial}{\partial \alpha_{x}^{n_{c}{ }^{*}}}\left({ }_{n_{1}} n_{M}\langle\psi| \mathcal{H}|\psi\rangle_{n_{1}} n_{n_{M}}-\lambda_{n_{1}} n_{U}\langle\psi \mid \psi\rangle_{n_{1}} n_{U}\right) \tag{310}
\end{equation*}
$$

Furthermore, a derivative with respect to the Lagrange multipher reproduces the normalization condition All these equations have to be fulfilled at the same time This imphes that if within the general notation with an arbitrary a and n_{c} a result for λ can be found, then this result must be independent of 2 and n_{c}.

Another remark is connected to the simplifications which are according to the previous section only possible after the derivative Encouraged by the solutions for non-interacting particles, which were Bloch wave functions, we suppose not only a normality

$$
\begin{equation*}
\sum_{j=1}^{N} \alpha_{j}^{n_{s}} \alpha_{j}^{n_{s} *}=1 \quad \forall n_{\varsigma} \tag{311}
\end{equation*}
$$

but also du orthogonality for different quantum numbers

$$
\begin{equation*}
\sum_{j=1}^{N} a_{j}^{n_{s}} \alpha_{j}^{n_{t} *}=0 \quad \forall n_{s} \neq n_{t} \tag{array}
\end{equation*}
$$

The latter condition does not necessanly have to hold It is alleady a agorous assumption that the many-particle problem can be separted 11 different factors for the several particles To demand also orthogonality of these factors is even less justified Nerertheless, as long as solutions can be found which obey them, constrants can be formulated

Hopping Part

$$
\begin{aligned}
& \frac{\partial}{\partial \Pi_{r}^{n_{C}}}\left(\begin{array}{lll}
n_{1} & n_{M}
\end{array}\langle\psi| \hat{H}_{0}|\psi\rangle_{n_{1}} n_{M}\right)
\end{aligned}
$$

$$
\begin{aligned}
& p=\text { ad, } A \neq C \\
& p(1)=C, p(C)=1, \nmid \neq C \\
& \underbrace{-t\left(n_{\tau+1}^{n_{C}}+\alpha_{x-1}^{n_{C}}\right)}_{\rho=\mathrm{d}, \mathrm{~A}=C}
\end{aligned}
$$

Interaction Part

$$
\begin{aligned}
& \frac{\partial}{\partial \mathrm{a}_{\mathrm{c}}^{n_{c}{ }^{*}}}\left(\begin{array}{lll}
{ }_{n_{1}} & n_{M}
\end{array}\langle\psi| \hat{V}|\psi\rangle_{n_{1}} n_{n_{A}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =V \cdot \sum_{4 \neq B}^{\substack{4 \neq C \\
B \neq C}} \sum_{j_{4}, \jmath_{B}=\jmath_{4}+1} \alpha_{\jmath_{A}}^{n_{4} *} \alpha_{\jmath_{B}}^{n_{B}{ }^{*}}\left\{\alpha_{J_{A}}^{n_{A}} \alpha_{\jmath_{B}}^{n_{B}} \alpha_{x}^{n_{C} C}-\alpha_{\jmath_{A}}^{n_{4}} \alpha_{\jmath_{B} C}^{n_{B}} \alpha_{2}^{n_{B}}-\alpha_{\jmath_{1}}^{n_{B}} \alpha_{\jmath_{B}}^{n_{4}} \alpha_{2}^{n_{C}}\right. \\
& \left.+\alpha_{j_{4}}^{n_{B}} \alpha_{j_{B}}^{n_{B}} \alpha_{x}^{n_{4}}+\alpha_{j_{4}}^{n_{C}} \alpha_{j_{B}}^{n_{A}} \alpha_{x}^{n_{B}}-\alpha_{j_{4}}^{n_{C}} \alpha_{j_{B}}^{n_{B}} \alpha_{v}^{n_{4}}\right\}
\end{aligned}
$$

Normalization

$$
\begin{aligned}
& \frac{\partial}{\partial \alpha_{c}^{n_{c}{ }^{*}}}\left({ }_{n_{1}} n_{M}\langle\psi \mid \psi\rangle_{n_{1}} n_{M M}\right) \\
& \quad=\sum_{\emptyset \in \mathcal{P}(M)}(-1)^{\mathrm{sgn} \wp} \sum_{\jmath_{1}}^{j_{c}=x} \alpha_{\jmath_{M}}^{n_{1} *} \cdots \widehat{\alpha_{\jmath_{c}}^{n_{c} *}} \cdots \alpha_{\jmath_{M}}^{n_{M} *} \alpha_{\jmath_{1}}^{n_{\rho(1)}} \alpha_{\jmath_{M}}^{n_{\rho(M)}} \\
& \quad=\alpha_{x}^{n_{c}}
\end{aligned}
$$

If all these teims are put together in the variational formula (310), a set of equations for the coefficients $\alpha_{\imath_{s}}^{n_{s}}$ is obtaned The problem to find proper solutions is called in this work the α-problem

$$
\begin{aligned}
& -t \sum_{\substack{A=1 \\
A \neq \subset}}^{M} \sum_{j} \alpha_{j}^{n_{4} *}\left(\alpha_{j+1}^{n_{A}}+\alpha_{j-1}^{n_{4}}\right) \alpha_{x}^{n_{C}}+t \sum_{\substack{4=1 \\
4 \neq C}}^{M} \sum_{j} \alpha_{j}^{n_{4} *}\left(\alpha_{j+1}^{n_{C}}+\alpha_{j-1}^{n_{C}}\right) \alpha_{x}^{n_{A}} \\
& -t\left(\alpha_{x+1}^{n C}+\alpha_{\tau-1}^{n C}\right) \\
& +1-\sum_{1 \neq B}^{\substack{4 \neq C \\
B \neq C}} \sum_{j} \alpha_{j}^{n_{4} *} \alpha_{j+1}^{n_{B} *}\left\{\left(\alpha_{j}^{n_{A}} \alpha_{j+1}^{n_{B}}-\alpha_{j}^{n_{B}}\left(r_{j+1}^{n_{4}}\right) a_{r}^{n_{C}}\right.\right. \\
& +\left(\alpha_{j}^{n C} \alpha_{j+1}^{n_{A}}-\alpha_{j}^{n_{A}} \alpha_{j+1}^{n_{C}}\right) n_{r}^{n_{B}}+\left(\alpha_{j}^{n_{B}} a_{j+1}^{n_{C}}-\alpha_{j}^{n_{C}}\left(r_{j+1}^{n_{B}}\right) \alpha_{x}^{n_{A}}\right\}
\end{aligned}
$$

$$
\begin{align*}
& =\lambda \alpha_{r}^{n c} \tag{313}
\end{align*}
$$

If this result is compared with the original self-consistent field equation liow it was demed in (3.5) one finds the same structure Both equations consist of a direct part and an exchange part. What was former an integral over space is in the discrete version a sum over the lattice sites The former quantum numbers ($\mu \sigma)$ and $(\nu \sigma)$ are now n_{C} and n_{A}, accordingly

3.2.5 Solutions

The α-pioblem looks like a quite complicated task. Howerer, it turns out that the solution is simple. Even so an interaction is now included, Bloch wave functions still fulfil the given set of equations In order to prove this, $\alpha_{2_{s}}^{n_{s}}$ is set to be

$$
\alpha_{\imath_{s}}^{n_{s}}=\frac{1}{\sqrt{N}} \exp \left[\frac{2 \pi 1}{N} n_{s} \cdot \imath_{s}\right]
$$

and the whole equation is divided by $\alpha_{x}^{n_{c}}$ Hence, an expiession toi λ is obtained As aheady mentioned above, the solution is correct if this expiension does neither depend on 2 nor on n_{c} This would show that no matter with respect to which parameter the derivative is done, the equations are always the same

Proof: The independence of x and n_{c} can be shown for edch of the parts in (313) separately. In the hopping part the chect terms
(an be combmed to one sum which runs over all insed quantum numbers

$$
\begin{equation*}
=-t \sum_{t=1}^{M}\left(e^{\frac{2 \pi n_{4}}{\Lambda} n_{4}}+e^{-\frac{2 \pi 1_{1}}{i} n_{1}}\right) \tag{314}
\end{equation*}
$$

The iemaining exchange term in the hoppmg part essentally contams a common factor

The behaviour of the pure kinetic energy part is not surprising because Bloch ware functions are solutions for the free paticle case Mruch mone surprising is the independence of x and n_{C} for the interaction pait

Here many of the terms vanısh because of a similar geometric row effect as used in (315). Two sums reduce to unimportant constants due to the characteristic of Bloch wave functions that $\left|\alpha_{j}^{n}\right|^{2}=1 / N$ The only three remanning terms are
which can be combined agan to a sum over all quantum numbers

$$
\begin{equation*}
=-\frac{V}{N} \sum_{A \neq B} e^{-\frac{3 r_{1}\left(n_{4}-n_{B}\right)}{N}} \tag{316}
\end{equation*}
$$

This finishes the proof

3.3 Energy in the Heisenberg Model

After having shown that Bloch wave functions are solutions of the Hartree-Fock equations, it is now possible to use them for the calculation of the energv of the metracting system Here it is mpoltant to notice that the following calculation of the expectation value of the Hamitoman will only give an upper boundary of the ground state How close it is to the real value depends on the quality of the choice of the variational wave function

We continue the calculation of the expectation value in subsection 322

Hopping Part

$$
\begin{aligned}
& { }_{n 1} n_{n_{M}}\langle\psi| \hat{H}_{0}|\psi\rangle_{n_{1}} n_{n_{M}}
\end{aligned}
$$

$$
\begin{aligned}
& =-2 t \sum_{\lambda=1}^{\Lambda} \cos \left(\frac{2 \pi}{N} n_{t}\right)
\end{aligned}
$$

This is exactly the formula (2 11) of the previous chapter

Interaction Part

$$
\begin{aligned}
n_{1} \quad n_{M} & \langle\psi| \hat{V}|\psi\rangle_{n_{1}, n_{A I}} \\
& =V \sum_{\substack{A_{A}, \beta=1 \\
A \neq B}}^{M} \sum_{\jmath_{1}} \sum_{\jmath_{M}} \sum_{\wp \in \mathcal{P}(M)}(-1)^{\operatorname{sgn} n_{\rho}} \alpha_{\jmath_{1}}^{n_{1} *} \cdots \alpha_{\jmath_{M}}^{n_{M} *} \alpha_{\jmath_{1}}^{n_{\rho(1)}} \quad \alpha_{\jmath_{M}}^{n_{\rho(A)}} \delta_{j_{B, J_{A}+1}}
\end{aligned}
$$

1st case: $\wp=1 d$

$$
=V \sum_{\substack{4, B=1 \\ A \neq B}}^{M} \sum_{j_{1}}^{M} \delta_{J_{M}} \delta_{j_{B}, j_{4}+1}=\frac{V}{N} M(M-1)
$$

2nd case: $\wp(A)=B, \wp(B)=A$

$$
\begin{aligned}
& =-V \sum_{\substack{A, B=1 \\
A \neq B}}^{N t} \frac{1}{N^{2}} \sum_{j} e^{-\frac{2 \pi 1}{N} n_{4} J_{j}} e^{-\frac{2 \pi}{N} n_{B}(j+1)} e^{\frac{2 \pi n_{1}}{1} n_{B}} e^{\frac{2 \pi 1_{1}}{N} n_{4}(j+1)} \\
& =-\frac{V}{N} \sum_{\substack{A B=1 \\
A \neq B}}^{M I} e^{\frac{2 \pi}{N}\left(n_{4}-n_{B}\right)}=-\frac{V}{N} \frac{1}{2}\left\{\sum_{\substack{A B=1 \\
A \neq B}}^{M} e^{\frac{2 \pi_{1}\left(n_{A}-n_{B}\right)}{N}}+\sum_{\substack{A B=1 \\
A \neq B}}^{M} e^{\frac{2 \pi \pi_{1}}{N}\left(n_{B}-n_{A}\right)}\right\} \\
& =-\frac{V}{N} \sum_{\substack{4, B=1 \\
A \neq B}}^{A I} \cos \left(\frac{2 \pi}{N}\left(n_{A}-n_{B}\right)\right)
\end{aligned}
$$

All other possible permutations lead to zeıo sums.

Together

$$
n_{1} n_{M}\langle\psi| \mathcal{H}|\psi\rangle_{n_{1} \quad n_{M}}=-2 t \sum_{A=1}^{M I} \cos \left(\frac{2 \pi}{N} n_{A}\right)+\frac{V}{N} \sum_{A, B=1}^{M I}\left[1-\cos \left(\frac{2 \pi}{N}\left(n_{A}-n_{B}\right)\right)\right]
$$

Fiom this result one can see meely the stuucture of the two contubutions to the energv. The hopping part is a pure one-paticle effect The total kinetic energy is sumply the sum of single particle energies, determined by quantum numbers n_{A} The interaction on the other hand is a two-particle effect. It is a sum orer all pars of quantum numbers, which is equivalent to a sum orer all paus of particles Each summand depends only on the difference of these two numbers The exphat value of a single quantum number is of no mportance

By the way, the result is of comse the same as the value which was eraluated for λ above The Lagrange multiphen is nothing else than the giound state energy of the many-particle system, because all equations consist only of terms of same order in the parameters.

Evaluation of the Sums

As already in section 2.13 and 22.3 it is now the task to evaluate the sums for the ground state. For this it is necessary to find out which quantum numbers $n_{1}, . . n_{M I}$ are chosen in order to minimize the total energy.

The situation is simular to that of non-interacting partıcles, which is the reason for presenting almost the same figure again.

As one can see from this figure 3.1 and as already discussed before, the kinetic

Figure 3 1- Enengy states due to the hoppang (dots) and the interacting (crosses) part of the Heasenbery model for $N=16$ and $M=7$ The numben of crosses above a certain point in momentum space indicates the weight of the corresponding energy in the interaction
energy

$$
E_{\mathrm{lopp}}=-2 t \sum_{\mathrm{l}=1}^{M} \cos \left(\frac{2 \pi}{N} n_{4}\right)
$$

leads to the effect that small h-valucs are prefened. This is because the come has its mummm for $k=0$

The interaction part, if a constant energy shift is ignoted, has the structure

$$
E_{\mathrm{mtt}}=-\frac{\mathrm{V}}{N} \sum_{A, B=1}^{M} \cos \left(\frac{2 \pi}{N}\left(n_{A}-n_{B}\right)\right)
$$

This is the same functional dependence as before, apat from the fact that mstead of the quantum numbers itself only differences of quanmin mumbers appear in the algument.

For that reason the interaction tends to keep paticles close together in reciprocal space. As a distance of zero is not allowed due to Pabli exclusion, the best possibility is to occupy a block of adjacent sites in momentum space. For
the case of 7 particles all appearing differences are shown in figure 3.1 They are mocated by crosses in the same picture as the hopping energy because they contribute to the total energy with the same cosine dependence It can be seen that such a block is the best possibility to concentrate crosses around $k=0$.

Since a minimization with respect to the kinetic energy also leads to the result that a block of adjacent sites in reciprocal space is occupicd, there is no competition between hopping and interaction. Therefore, the iesults (2.13), (214) or (2.37), (238) for the hopping part can be used withont alteration

For the interaction part the double sum has to be evaluated

$$
\begin{aligned}
& \text { M odd } \\
& \sum_{k, l=-\frac{M-1}{2}}^{\frac{M f-1}{2}} \cos \left(\frac{2 \pi}{N}(k-l)\right)=\left(\sum_{k=-\frac{M I-1}{2}}^{\frac{M-1}{2}} \cos \left(\frac{2 \pi}{N} k\right)\right)^{2}+\left(\sum_{k=-\frac{M-1}{2}}^{\frac{M f-1}{2}} \sin \left(\frac{2 \pi}{N} k\right)\right)^{2} \\
& \text { and } \sum_{k=-\frac{M l-1}{2}}^{\frac{M I-1}{2}} \cos \left(\frac{2 \pi}{N} k\right)=\frac{\sin \left(\frac{\pi}{N} M\right)}{\sin \left(\frac{\pi}{N}\right)}(\text { sce (2 14)), } \\
& \sum_{h=-\frac{N-1}{2}}^{\frac{N-1}{2}} \sin \left(\frac{2 \pi}{N} k\right)=0 \text { (sin is an odd function) } \\
& M \text { even } \\
& \sum_{h=-\frac{y}{2}}^{\frac{y}{2}-1} \cos \left(\frac{2 \pi}{N}(h-l)\right)=\left(\sum_{h=-\frac{y}{2}}^{\frac{\pi y}{2}-1} \cos \left(\frac{2 \pi}{N} h\right)\right)^{2}+\left(\sum_{h=-\frac{1 y}{2}}^{\frac{y y}{2}-1} \operatorname{smn}\left(\frac{2 \pi}{N} k\right)\right)^{2} \\
& \text { and } \sum_{h=-\frac{v}{2}}^{\frac{V}{2}-1} \cos \left(\frac{2 \pi}{N} k\right)=\frac{\sin \left(\frac{\pi}{V} M\right)}{\sin \left(\frac{\pi}{N}\right)} \cdot \cos \left(\frac{\pi}{N}\right) \quad(\operatorname{see}(213)) \text {, } \\
& \sum_{k=-\frac{u}{2}}^{\frac{\pi}{2}-1} \sin \left(\frac{2 \pi}{N} k\right)=-\sin \left(\frac{\pi}{N} M\right) \quad \text { (smin is an odd function) } \\
& \Rightarrow \sum_{k l=-\frac{11}{2}}^{\frac{y}{2}-1} \cos \left(\frac{2 \pi}{N}(k-l)\right)=\frac{\sin ^{2}\left(\frac{\pi}{V} M\right)}{\sin ^{2}\left(\frac{\pi}{N}\right)}\left\{\cos ^{2}\left(\frac{\pi}{N}\right)+\sin ^{2}\left(\frac{\pi}{N}\right)\right\}=\frac{\sin ^{2}\left(\frac{\pi}{N} M\right)}{\sin ^{2}\left(\frac{\pi}{N}\right)}
\end{aligned}
$$

Futhermore, a flux through the ing can agan be taken into consideration It has heen explained that this causes a change in the momentum operator and mffuences, therefore, only the kinetic energy

Hence, we have all together

$$
E_{\text {even }}=-2 t \frac{\sin \left(\frac{\pi}{N} M\right)}{\sin \left(\frac{\pi}{N}\right)} \cdot \cos \left(\frac{\pi}{N}-\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right)+\frac{V}{N}\left\{M^{2}-\frac{\sin ^{2}\left(\frac{\pi}{N} M\right)}{\sin ^{2}\left(\frac{\pi}{N}\right)}\right\}
$$

and

$$
E_{\text {odd }}=-2 t \frac{\sin \left(\frac{\pi}{N} M\right)}{\sin \left(\frac{\pi}{N}\right)} \cos \left(\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right)+\frac{V}{N}\left\{M^{2}-\frac{\sin ^{2}\left(\frac{\pi}{N} M\right)}{\sin ^{2}\left(\frac{\pi}{N}\right)}\right\}
$$

The form of the solution mplies the suprising result that the persistent current is not influenced by the interaction. Apparcntly, in a model of spmess fermons the peasistent current is only deteamined by the hopping part of the Hamiltonian

3.4 Energy in the Hubbard Model

In the Hubbard model most of the calculations are analogous to the Hersenberg model The mam difference comes from the fact that the particles possess a spin. This has already an effect on the vanational wave function. For this reason S_{\uparrow} and S_{\downarrow} are introduced as the set of quantum numbers that represent up-spin and down-spin fermions, respectively. The number of elements in $S_{\uparrow}\left(S_{\downarrow}\right)$ is called M_{\uparrow} $\left(M_{\downarrow}\right)$ At the moment these numbers are supposed to be conserved, and their $\operatorname{sum} M=M_{\uparrow}+M_{\downarrow}$ is agan the total number of paticles

With the help of this notation it is possible to expess an albitrary state as

$$
\begin{equation*}
|\psi\rangle_{S_{\uparrow}, S_{\downarrow}}=\prod_{n \in S_{\uparrow}}\left(\sum_{\imath_{n}=1}^{N} \beta_{\imath_{n}}^{n} c_{i_{n}, \uparrow}^{\dagger}\right) \prod_{m \in S_{\downarrow}}\left(\sum_{\imath_{m}=1}^{N} \beta_{l_{m}}^{m} c_{\imath_{m}, \downarrow}^{\dagger}\right)|0\rangle \tag{320}
\end{equation*}
$$

It has to be mentioned that another assumption 15 mbladed in this notation To wnte down the coefficients withont an mdex for the spm mples that the sungle particle wase function for up- and down-spm paticles might be the same. That is, that two particles mught have exactly the same behaviour apart from the fact that their spin projections point in different duections This assumption is reasonable because it is in accold with the Pauli exclusion pinciple and because of the fact that no spin drection is prefered

The Hamiltonian with included flux

$$
\begin{equation*}
\mathcal{H}=-t \sum_{k} \sum_{\sigma=\uparrow, \downarrow}\left(c_{k, \sigma}^{\dagger} c_{k+1, \sigma} e^{\frac{2 T 1}{V} \frac{\Phi}{\Phi_{0}}}+c_{k+1, \sigma}^{\dagger} c_{k, \sigma} e^{-\frac{2 \pi 1}{N} \frac{\phi}{\phi_{0}}}\right)+U \sum_{k} \hat{n}_{k, \uparrow} \hat{n}_{k, \downarrow} \tag{321}
\end{equation*}
$$

shall again be investigated in its different parts

Hopping Part

$$
\begin{aligned}
& \hat{H}_{0}=-t \sum_{k}\left(c_{k, \uparrow}^{\dagger} c_{k+1, \uparrow} e^{\frac{2-1}{\lambda} \frac{\phi}{\phi_{0}}}+c_{k, \downarrow}^{\dagger} c_{k+1, \downarrow} e^{\frac{2 \pi 1}{N} \frac{\phi}{\phi_{0}}}+\mathrm{hc}\right) \\
& S_{S_{\mathrm{T}}, S_{\downarrow}}\langle\psi| \hat{H}_{0}|\psi\rangle_{S_{\mathrm{T}}, S_{\downarrow}} \\
& =-t\left(\sum_{\uparrow=1}^{\Lambda_{\mathrm{T}}} \sum_{j_{1}} \sum_{\jmath_{\Lambda_{\uparrow}}} \sum_{p \in \mathcal{P}\left(\Lambda_{\mathrm{T}}\right)}(-1)^{\mathrm{sgn} \wp} \beta_{\jmath_{1}}^{n_{1} *} \cdots \beta_{J_{\Lambda_{\mathrm{T}}}}^{n_{\Lambda_{\mathrm{T}}}{ }^{*}} .\right.
\end{aligned}
$$

$$
\begin{aligned}
& -t\left(\sum_{\neq 1}^{M_{\downarrow}} \sum_{j_{1}} \sum_{J_{M_{\downarrow}}}(-1)^{\mathrm{sgn}\left(M_{\downarrow}\right)} \beta_{\jmath_{1}}^{m_{1} *} \cdots \beta_{J_{M_{\downarrow}}}^{m_{M_{\Lambda_{4}} *}} .\right.
\end{aligned}
$$

$$
\begin{aligned}
& *\left(\sum_{\jmath_{1}} \sum_{J_{M_{\uparrow}}}(-1)^{\mathrm{sgn}} \mathrm{sg}_{\rho} \beta_{\jmath_{1}\left(M_{\uparrow}\right)}^{n_{1} *} \quad \beta_{J_{M_{\uparrow}}}^{n_{M_{\Lambda^{*}}}} \beta_{\jmath_{1}}^{n_{\varphi(1)}} \cdots \beta_{\jmath_{M_{\uparrow}}}^{n_{\rho\left(1_{\uparrow}\right)}}\right)
\end{aligned}
$$

take the denvative with an $n_{C} \in S_{\uparrow}$

$$
\begin{aligned}
& \frac{\partial}{\partial \beta_{r}^{n c c^{*}}}\left({ }_{S_{\mathrm{t}}, S_{\downarrow}}\langle\psi| \hat{H}_{0}|\psi\rangle_{S_{\mathrm{t}}, S_{\downarrow}}\right) \\
& =-t \sum_{\substack{n \in S_{\dagger} \\
n \neq n_{c}}} \sum_{j=1}^{N} \beta_{j}^{n *}\left(\beta_{j+1}^{n} e^{\frac{2 \pi 1}{N} \frac{\phi}{\phi_{0}}}+\beta_{j-1}^{n} e^{-\frac{2 \pi-1}{N} \frac{\phi}{\phi_{0}}}\right) \beta_{r}^{n c} \\
& -t\left(\beta_{x+1}^{n c} e^{\frac{2 \pi m}{N} \frac{\phi}{\phi_{0}}}+\beta_{x-1}^{n C} e^{-\frac{2 \pi x}{N} \frac{\Phi}{\phi_{0}}}\right) \\
& +t \sum_{\substack{n \in \mathcal{S}_{\uparrow} \\
n \neq n_{c}}} \sum_{j=1}^{N} \beta_{j}^{n *}\left(\beta_{j+1}^{n c} e^{\frac{2 \pi 1}{\Lambda} \frac{\phi}{\phi_{0}}}+\beta_{j-1}^{n_{c}} e^{-\frac{2-1}{1} \frac{+}{\omega_{11}}}\right) \beta_{x}^{n} \\
& -t \sum_{m \in S_{\downarrow}} \sum_{j=1}^{N} \beta_{j}^{m *}\left(\beta_{j+1}^{m} e^{\frac{2 \pi 1}{N} \frac{\downarrow}{\Phi_{0}}}+\beta_{j-1}^{n} e^{-\frac{2 \pi 1}{\Lambda} \frac{\stackrel{\rightharpoonup}{\Phi_{0}}}{\Phi_{0}}}\right) \beta_{1}^{n c}
\end{aligned}
$$

Interaction Part

$$
\begin{aligned}
& \hat{\mathrm{r}}^{\dot{-}}=U \sum_{k} c_{k, \uparrow}^{\dagger} c_{k, \uparrow} c_{k, \downarrow}^{\dagger} c_{k, \downarrow} \\
& S_{S_{\uparrow}, S_{\downarrow}}\langle\psi| \hat{\mathrm{T}}^{\hat{-}}|\psi\rangle_{S_{\uparrow}, S_{\downarrow}}
\end{aligned}
$$

take the derivative with an $n_{C} \in S_{\uparrow}$

$$
\begin{aligned}
& \frac{\partial}{\partial \beta_{x}^{n c^{*}}}\left({ }_{s_{\uparrow}, S_{\downarrow}}\langle\psi| \hat{V}|\psi\rangle_{S_{\uparrow}, S_{\downarrow}}\right) \\
& =U \sum_{\substack{4=1 \\
4 \neq C}}^{M_{\uparrow}} \sum_{B=1}^{M_{\perp}} \sum_{j=1}^{N}\{\underbrace{\beta_{j}^{n_{A}{ }^{*}} \beta_{j}^{n_{A}} \beta_{x}^{n_{C}}}_{\wp=\text { Id, }, 4 \neq C}+\underbrace{\beta_{j}^{n_{A^{*}}} \beta_{j}^{n_{C}} \beta_{x}^{n_{A}}}_{\wp(A)=C, \wp(C)=A}\}\left|\beta_{j}^{m_{B}}\right|^{2}+U \sum_{B=1}^{M_{\perp}} \underbrace{\beta_{x}^{n_{C}}\left|\beta_{x}^{n_{B}}\right|^{2}}_{\wp=1 \mathrm{~d}, \mathrm{t}=C}
\end{aligned}
$$

The β-problem

summarizes the results for the derivative of the two parts For convemence it is written here without the flux dependence.

$$
\begin{align*}
& -t \sum_{\substack{n \in \mathcal{S}_{\dagger} \\
n \neq n_{c}}} \sum_{j=1}^{N} \beta_{j}^{n *}\left(\beta_{\jmath+1}^{n}+\beta_{\jmath-1}^{n}\right) \beta_{r}^{n c}-t\left(\beta_{r+1}^{n c}+\beta_{r-1}^{n c}\right) \\
& +t \sum_{\substack{n \in \mathcal{S}_{\uparrow} \\
n \neq n_{c}}} \sum_{j=1}^{N} \beta_{j}^{n *}\left(\beta_{j+1}^{n_{C}}+\beta_{j-1}^{n_{C}}\right) \beta_{r}^{n}-t \sum_{m \in S_{\downarrow}} \sum_{j=1}^{N} \beta_{j}^{m *}\left(\beta_{j+1}^{m}+\beta_{j-1}^{m}\right) \beta_{3}^{n C} \\
& +U \sum_{\substack{n \in S_{\dagger} \\
n \neq n c}} \sum_{m \in S_{\downarrow}} \sum_{j=1}^{N}\left\{\beta_{\jmath}^{n *} \beta_{\jmath}^{n} \beta_{x}^{n_{C}}+\beta_{\jmath}^{n *} \beta_{j}^{n C} \beta_{x}^{n}\right\}\left|\beta_{j}^{m}\right|^{2}+U \sum_{m \in S_{\downarrow}} \beta_{x}^{n C}\left|\beta_{x}^{m}\right|^{2} \\
& =\lambda \beta_{x}^{n c} \tag{322}
\end{align*}
$$

The structure of this set of equations is smmar to the a-poblem of the Hersenberg Hannltoman The interaction is in an even mose smple form because upand down-spm fermions are treated mdependently As above, the task is agam to find expressions for the coefficients β in such a way that each equation is fulfilled This is the case if λ does not depend on the dermative parameters x and n_{c} That

Bloch Wave Functions are Solution

$$
\beta_{\imath_{n}}^{n}=\frac{1}{\sqrt{N}} \exp \left[\frac{2 \pi \mathrm{i}}{N} n \cdot \imath_{n}\right] .
$$

is biefly shown in the followng

Proof:

$$
\begin{aligned}
& -t \sum_{\substack{n \in S_{T} \\
n \neq n_{c}}} \frac{1}{N} \sum_{J} e^{-\frac{2 \pi 1}{\Lambda} n \jmath}\left(e^{\frac{2 \pi 1}{N} n(j+1)}+e^{\frac{2 \pi 1}{N} n(\jmath-1)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +t \sum_{\substack{n \in S_{\dagger} \\
n \neq n_{c}}} \frac{1}{N} \sum_{j} e^{\frac{2 \pi 1}{N}\left(n_{C}-n\right)(j-x)}\left(e^{\frac{2 \pi 1}{N} n_{C}}+e^{-\frac{2 \pi 1}{\Lambda} n_{C}}\right)=0 \\
& U \sum_{\substack{n \in S_{\uparrow} \\
n \neq n_{c}}} \sum_{m \in S_{\downarrow}} \sum_{j=1}^{N} \frac{1}{N^{2}}+U \sum_{m \in S_{\downarrow}} \frac{1}{N}=U \sum_{n \in S_{\uparrow}} \sum_{m \in S_{\downarrow}} \frac{1}{N}=U \frac{M_{\uparrow} \cdot M_{\downarrow}}{N} \\
& U \sum_{\substack{n \in S_{\uparrow} \\
n \neq n_{c}}} \sum_{m \in S_{\downarrow}} \sum_{j=1}^{N} \frac{1}{N^{2}} e^{\frac{2 \pi}{N}(\jmath-x)\left(n_{C}-n\right)}=0
\end{aligned}
$$

The Energy

$$
\begin{equation*}
E=-2 t \sum_{n \in S_{\uparrow} \cup S_{\downarrow}} \cos \left(\frac{2 \pi}{N}\left(n-r\left(\frac{\Phi}{\Phi_{0}}\right)\right)\right)+U \frac{M_{\uparrow} \cdot M_{\downarrow}}{N} \tag{323}
\end{equation*}
$$

consists of a logical kinetıc and a surprising interaction part. The foumer is logical because it describes the independent filling of the energy levels according to the cos-dependence with up- and down-spm particles This is a generalization of the situation in the Heisenberg model The later surprises because the expression does not depend at all on the chosen set of quantum numbers Only the up-spin and down-spin number of particles is of importance The fact that these numbers are kept fixed in the calculations is probably the reason for the constant potental energv.

Thus, in order to achieve a minmal energy value one only has to look at the knetic energy part. There are four possible situations (K is an integet).

$$
\begin{aligned}
& E_{M=4 K}=-4 t \frac{\sin \left(\frac{\pi}{N} \frac{M I}{2}\right)}{\sin \left(\frac{\pi}{N}\right)} \cdot \cos \left(\frac{\pi}{N}-\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right)+U \frac{M_{\uparrow} \cdot M_{\downarrow}}{N} \\
& E_{M=4 K+1}=-2 t\left[\frac{\sin \left(\frac{\pi}{N} \frac{A I-1}{2}\right)}{\sin \left(\frac{\pi}{N}\right)} \cos \left(\frac{\pi}{N}-\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right)+\cdot\right. \\
&\left.\ldots+\frac{\sin \left(\frac{\pi}{N} \frac{M+1}{2}\right)}{\sin \left(\frac{\pi}{N}\right)} \cos \left(\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right)\right]+U \frac{M \Lambda_{\uparrow} M_{\downarrow}}{N} \\
& E_{\Lambda I=4 K+2}=-4 t \frac{\sin \left(\frac{\pi}{N} \frac{A I}{2}\right)}{\sin \left(\frac{\pi}{N}\right)} \cdot \cos \left(\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right)+U \frac{M_{\uparrow} \cdot I_{\downarrow}}{N} \\
& E_{\Lambda I=4 K-1}=-2 t\left[\frac{\sin \left(\frac{\pi}{N} \frac{M I+1}{2}\right)}{\sin \left(\frac{\pi}{N}\right)} \cos \left(\frac{\pi}{N}-\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right)+\right. \\
&\left.\quad \ldots+\frac{\sin \left(\frac{\pi}{N} \frac{M I-1}{2}\right)}{\sin \left(\frac{\pi}{N}\right)} \cos \left(\frac{2 \pi}{N} r\left(\frac{\Phi}{\Phi_{0}}\right)\right)\right]+U \frac{M I_{\uparrow} \cdot M_{\downarrow}}{N}
\end{aligned}
$$

Fiom these four energy expiessions it is possible to evaluate the persistent current by using $I=-c \frac{\partial E}{\partial \Phi}$. The result will be a combination of the derivations for the Hessenberg model for an odd and an even number of paticles in section 24 Of particular interest are the cases $M=4 K^{\circ}+1$ and $M=4 K^{\circ}-1$ because here M_{\uparrow} is even and M_{\downarrow} is odd (or vice versa) Smilaly to the permous discussion about an ensemble-average and the figure 216 , the combination learls in these cases to a quasi half-flux penodicity of the current ${ }^{5}$ Howerer. Loss and Goldbart [37] pointed out that the average over all particle mumbers is still the same as in the case of spmless fermons For large N one obtains in the hear apploximation ${ }^{6}$

$$
\begin{equation*}
\langle I\rangle_{\text {Poisson }}=\frac{1}{2} \hat{I}(\lambda)\left[\frac{2 \Phi}{\Phi_{0} / 2}-1+\mathrm{e}^{-\lambda} \sin \lambda\left(1+\frac{1}{\lambda}\right)\right], \tag{3}
\end{equation*}
$$

where λ is here the mean value of the Porsson distibution and is assumed to be lange Because the last summand is neghgible, this is caactly the same as (2 31)

It should also be mentioned that a fiactional $1 / M$ or M_{\uparrow} / M Ahamor-Bohm effect as found by Kusmatsev et al. [13, 14, 15] with the help of the Bethe ansatz. dom not appedi within this context Espectally in the limit of stiong miteraction the obtamed result is apparently not ingood agicement with these and other publications

[^11]
3.5 However, ...

.. one should bear in mind that the Hartree-Fock method only gives an upper boundary for the ground state energy Eren if all Hatree-Fock equations are fulfilled, the discrepancy between the gained energy and the real value for the ground state does not have to vanish This is only the case of the rariational wase function has the stiucture of a proper eigenfunction of the Hamiltonian

Therefore, one should not be too happy about exact solutions of the HartreeFock equations found. On the contrary; it is well-known [43] that in general \hat{H}_{0} and \hat{V} cannot be diagonalized simultaneously

The eigenfuntions of the hopping Hamiltoman \hat{H}_{0} are plane waves - this is correct. However, as soon as two particles with different spms anc involved Bloch ware functions are not eigenfunctions of the operator $\sum_{k} \hat{n}_{k, \uparrow} \hat{n}_{k, \downarrow}$. It can easily be seen that in such a two-particle situation, the double-sum is reduced to a single sum

$$
\begin{equation*}
\sum_{k=1}^{N} \hat{n}_{k, \uparrow} \hat{n}_{k, \downarrow} \sum_{i=1}^{N} \sum_{j=1}^{N} \beta_{\imath}^{n} \beta_{j}^{m} c_{i, \uparrow}^{\dagger} c_{j, \downarrow}^{\dagger}|0\rangle=\sum_{k=1}^{N} \beta_{h}^{n} \beta_{h}^{m} c_{k, \uparrow}^{\dagger} c_{k, \downarrow}^{\dagger}|0\rangle \tag{325}
\end{equation*}
$$

because the Hamiltonian gives in most of the cases zero
The proper eigenstates of the interaction Hamitonian ale of the form

$$
\begin{equation*}
\left(\prod_{\imath \in\{1,, N\}} c_{2, \uparrow}^{\dagger}\right)\left(\prod_{\jmath \in\{1,, N\}} c_{\jmath, \downarrow}^{\dagger}\right)|0\rangle \tag{326}
\end{equation*}
$$

and, ance $\hat{V^{\prime}}$ is not lmear, the same is not necessanly tine tor linear conbinations. In contiast to the ware-like solutions of the hoppmg Hamltoman, unch states are sometmes calls "particle-like" or "localized" solutions Appaiently, there is a competition in the Hubbard model between these two possibilitics In the limit $t \gg U$ the first becomes more likely, the limit $t \ll U$ favours the sccond one Such behaviour is the reason why it is so interesting to study this model Of conrse, all these remarks are equally valud ton the Hesenberg model.

The task for rest of this wook is to apply a comple of ter huques to the Hubbard model in order to oltain a better apprommation for the goomd state eneigy and to understand the behavour of this system better.

Chapter 4

The Notion of Rotation

In order to mprove pievious results, two techmques shall be used next On the one hand the interaction should be simplified by applying a so-called HubbardStiatonoric decomposition (sect 42) In order to do this at is necessay to rewrite the problem in the exponential form of a partition function (nect 41) On the other hand it is also useful to introduce rotations of the spmequantization axis of each site (sect 43) In a different context but also for the Hubbad inodel a spm-space reference frame has been introduced by H J Schulz [44]. Therefore, it is convement to follow the first couple of steps in his paper This is done at the begmong of section 44 New deas are developed soon in order to find a more appropiate description of our particulan situation The plating with the rotations leads in section 45 even to a change in the order of the techniques proposed

4.1 The Partition Function

An ondmary time evolution operato (TEO) and its thace have in the case of a time-molependent Hamiltonan the fom

$$
U\left(t_{b}, t_{a}\right)=\exp \left[-\frac{1}{\hbar}\left(t_{b}-t_{a}\right) \mathcal{H}\right] \quad Z_{\mathrm{TCO}}=\mathrm{T}_{1}\left(\exp \left[-\frac{1}{\hbar}\left(t_{b}-t_{a}\right) \mathcal{H}\right]\right)
$$

It is possible to evaluate such expressions with the help of path integrals. If the Hamitoman is expressed in fermiome creation and ammhlation operators it is for this purpose necessary to introduce Grassmam numbers Ψ and Ψ^{*}. Its
components $\xi_{1, \uparrow}, \xi_{1, \downarrow}, \ldots, \xi_{N, \downarrow}$ have two indices: one for the site position and one for the spin projection. They satisfy the eigenvalue equatıons $c_{k, \sigma}|\Psi\rangle=\xi_{k, \sigma}|\Psi\rangle$ and $\langle\Psi| c_{k, \sigma}^{\dagger}=\langle\Psi| \xi_{k, \sigma}^{*}$ and therefore anticommute with one another. Then the trace of the time evolution operator, called time generating function, can be written as

$$
\begin{equation*}
Z_{\text {TEO }}=\int \mathcal{D} \Psi^{*} \mathcal{D} \Psi \exp \left[\mathrm{i} \int_{t_{a}}^{t_{b}} \mathrm{~d} t\left(\Psi^{*} \mathrm{i} \frac{\partial}{\partial t} \Psi-\frac{1}{\hbar} \mathcal{H}\left(\Psi^{*}, \Psi\right)\right)\right] \tag{+2}
\end{equation*}
$$

A thorough explanation of the formalism behind these remarks is giren in appendix D

In thermodynamics of finite temperature all properties of a system are determined by the partition function In the grand canonical case this has the form

$$
\begin{equation*}
Z=\mathrm{T}_{1}\left(\exp \left[-\frac{1}{k_{B} T}(\mathcal{H}-\mu \mathcal{N})\right]\right) \tag{+3}
\end{equation*}
$$

where μ is the chemical potential, \mathcal{N} the paticle-number operator and $k_{B 3}$ is Boltzinann's constant There is a stnking smmlarity between this expression and the form of the time gencrating function in (41) If in the latter $t-t_{a}$ is replaced according to

$$
\begin{equation*}
\tau=1\left(t-t_{a}\right) \xrightarrow[t \rightarrow t_{b}]{ } \frac{\hbar}{k_{B} T}=\hbar \beta \tag{4.4}
\end{equation*}
$$

one ends up with the partition function Such a pure unagmany time is called Matsubara time, and the proposed transformation mphes withont additional effort a path integral form for Z. In analogy to (42) it is

$$
\begin{equation*}
Z=\int \mathcal{D} \Psi^{*} \mathcal{D} \Psi \exp \left[-\int_{0}^{\hbar \beta} \mathrm{d} \tau\left(\Psi^{*}\left(\frac{\partial}{\partial \tau}-\frac{\mu}{\hbar}\right) \Psi+\frac{1}{\hbar} \mathcal{H}\left(\Psi^{*}, \Psi\right)\right)\right] \tag{+5}
\end{equation*}
$$

where products like $\Psi^{*} \cdot \Psi$ are understood as vector products $\sum_{k=1}^{N^{*}} \sum_{\sigma=\uparrow, \downarrow} \xi_{k, \sigma}^{*} \xi_{k \sigma}$
The concrete Hamultonian under considenation is the Hubbad model with included flux contribution To white it in temen Glassuman numbers it has to be brought in a normal ordered form (all ammination operators are standing to the inght of all cieation operators) Aftenwads one just has to replace any fermionc operator by the coriesponding Grassmann number

$$
\mathcal{H}\left(\Psi^{*}, \Psi\right)=-t \sum_{k=1}^{N} \sum_{\sigma=\uparrow, \downarrow}\left(\xi_{k, \sigma}^{*} \xi_{h+1, \sigma} \mathrm{e}^{\frac{3 \pi \pi^{1} \frac{\psi}{4}}{\omega_{0}}}+\xi_{k+1, \sigma}^{*} \xi_{h, \sigma^{2}} \mathrm{e}^{-\frac{2-1}{N} \frac{\varphi}{\Psi_{0}}}\right)
$$

$$
\begin{equation*}
+U \sum_{k=1}^{N} \xi_{k, \uparrow}^{*} \xi_{k, \downarrow}^{*} \xi_{k, \downarrow} \xi_{k, \uparrow} \tag{46}
\end{equation*}
$$

It is sometimes convenient to introduce the term "action" for the exponent of the partition function If the action S is the sum of the two terms

$$
\begin{array}{ll}
S_{0}=\int_{0}^{\hbar \beta} \mathrm{d} \tau \sum_{k=1}^{N} \sum_{\sigma=\uparrow, \downarrow}\left\{\xi_{k, \sigma}^{*}\left(\hbar \partial_{\tau}-\mu\right) \xi_{k, \sigma}-t\left(\xi_{k, \sigma}^{*} \xi_{k+1, \sigma} \mathrm{e}^{\frac{2 \pi,}{k} \frac{\phi}{\phi_{0}}}+\right.\right. \\
& \left.\left.+\xi_{k+1, \sigma}^{*} \xi_{k, \sigma} \mathrm{e}^{-\frac{2 \pi,}{\kappa} \frac{\hbar}{\phi_{0}}}\right)\right\}
\end{array}
$$

then the partition function has the form

$$
\begin{equation*}
Z=\int \mathcal{D} \Psi^{*} \mathcal{D} \Psi \mathrm{e}^{-\left(S_{0}+S_{\mathrm{mt}}\right) / \hbar} \tag{4.7}
\end{equation*}
$$

4.2 Hubbard-Stratonovic Decomposition

Unfortunately, the action for the interaction $S_{\text {int }}$ consists of products of four Grassmann numbers, $\xi_{k, \uparrow}^{*} \xi_{k, \downarrow}^{*} \xi_{k, \downarrow} \xi_{k, \uparrow}$. These nonlmearities lead to difficulties in its treatment. The Hubbard-Stratonovic decomposition is a good possibility to reduce this term to a second-order expression. There ate different ways to do this

We shall follow the advice of Schulz [44], because he and before him already Hamann [15] claim that only their choice reproduces in a saddle-ponnt approxmation the results of Hartree-Fock calculations Therchere, two new operators have to be intioduced

$$
\begin{equation*}
\hat{n}_{k}=c_{k, \uparrow}^{\dagger} c_{k, \uparrow}+c_{k, \downarrow}^{\dagger} c_{k, \downarrow} \quad \text { and } \quad \hat{s}_{h}=c_{h \uparrow}^{\dagger} c_{k, \uparrow}-c_{h, \downarrow}^{\dagger} c_{h \downarrow} \tag{48}
\end{equation*}
$$

\hat{n}_{h} comints the number of particles on a certan site and theicfore represents the chaige degree of freedom \hat{s}_{k} gives the total spm projection on the z-axis at the same site, hence, it is related to the spin degree of treedom In the following, the related Grassmann numbers are represented by the same symbols as the operators, but the hat is omitted Then the above mentioned product of Grassmun numbers becomes

$$
\begin{equation*}
\xi_{k, \uparrow}^{*} \xi_{k, \downarrow}^{*} \xi_{k, \downarrow} \xi_{k, \uparrow}=\frac{1}{4}\left(n_{k}^{2}-s_{h}^{2}\right) \tag{49}
\end{equation*}
$$

Accoldingly, the interaction part of the partition function changes and one obtains

$$
\begin{equation*}
Z=\int \mathcal{D} \Psi^{*} \mathcal{D} \Psi \exp \left[-\frac{S_{0}}{\hbar}-\frac{U}{4 \hbar} \int_{0}^{\hbar \beta} \mathrm{d} \tau \sum_{k=1}^{N}\left(n_{k}^{2}-s_{k}^{2}\right)\right] \tag{4.10}
\end{equation*}
$$

If one forgets for a moment about all integlations and summations in the partition function, then the interaction is essentially expressed by a quadratic form in the exponent. Expressions like this can be modified with the help of the well-known Gaussian identity (σ is a parameter)

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \mathrm{d} x \mathrm{e}^{-\tau^{2} / \sigma^{2}}=\sqrt{\pi \sigma^{2}} \Longleftrightarrow \underset{r=a-\Delta}{\Longleftrightarrow} \mathrm{e}^{a^{2} / \sigma^{2}}=\frac{1}{\sqrt{\pi \sigma^{2}}} \int_{-\infty}^{+\infty} \mathrm{d} \Delta \mathrm{c}^{-\left(د^{2}-2 u, \Delta\right) / \sigma^{2}} \tag{411}
\end{equation*}
$$

Stratonovic first suggested this trich and Hubbard apphed it to the partition function, which is the reason that it carries now the name of both. HibbardStratonovic decomposition [46]

In pinciple, it is just necessary to find an appiopriate choice to a^{2} / σ^{2} in the case that the exponent has the form

$$
E=\exp \left[-\frac{U}{4 \pi}\left(n_{k}^{2}-s_{k}^{2}\right)\right]
$$

and afterwards one can apply the Gaussian identity. One possıbility is to set respectively

$$
\left(n_{c}, \sigma_{c}^{2}\right)=\left(\frac{\mathrm{i}}{2} U n_{k}, \hbar U\right) \quad \text { and } \quad\left(a_{s}, \sigma_{s}^{2}\right)=\left(\frac{1}{2} U s_{h}, \hbar U\right)
$$

and to obtan

$$
E=\frac{1}{\pi \hbar U} \iint \mathrm{~d} \Delta_{c} \mathrm{~d} \Delta_{s} \exp \left[-\frac{1}{U \hbar}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right)+\frac{1}{\hbar} \Delta_{c} \eta_{k}+\frac{1}{\hbar} \Delta_{s} s_{k}\right]
$$

This choice is convenient because it brings U in the denommator One can easily see that it leads to integration vanables which have the chmensionality of an eneigr

Howeren, things are slightly more difficult mamly because of the megiation over Matsubara time To avoid any problems with this, the interval $[0, \hbar \beta]$ is divided into N_{τ} segments of length $\Delta_{\tau}=\frac{\hbar \beta}{N_{\tau}}$, and at the end the limit $N_{\tau} \rightarrow \infty$ is taken. [39]

$$
\begin{align*}
\mathrm{e}^{-S / \hbar}= & \lim _{N_{r} \rightarrow \infty} \exp \left[-\frac{S_{0}}{\hbar}-\frac{1}{\hbar} \sum_{k=1}^{N} \sum_{j=1}^{N_{\tau}} \Delta_{\tau} \frac{U}{4}\left(n_{k}^{2}-s_{k}^{2}\right)\right] \\
= & \lim _{N_{\tau} \rightarrow \infty} \int\left(\prod_{k=1}^{N} \prod_{j=1}^{N_{\tau}} \frac{1}{\pi \hbar U} \Delta_{\tau} \mathrm{d} \Delta_{c}\left(k, \tau_{j}\right) \mathrm{d} \Delta_{s}\left(k, \tau_{j}\right)\right) * \\
& \quad * \exp \left[-\frac{S_{0}}{\hbar}+\frac{1}{\hbar} \sum_{k=1}^{N} \sum_{j=1}^{N_{\tau}} \Delta_{\tau}\left\{-\frac{1}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right)+\mathrm{i} \Delta_{c} n_{k}+\Delta_{s} s_{k}\right\}\right] \\
= & \int \mathcal{D}^{2} \Delta_{c, s}(k, \tau) \exp \left[-\frac{1}{\hbar}\left(S_{0}+\int_{0}^{\hbar \beta} \sum_{k=1}^{N}\left\{\frac{1}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right)-1 \Delta_{c} n_{k}-\Delta_{s} s_{k}\right\}\right)\right] \tag{413}
\end{align*}
$$

where

$$
\mathcal{D}^{2} \Delta_{c, s}(k, \tau)=\prod_{k=1}^{N} \lim _{N_{\tau} \rightarrow \infty} \prod_{j=1}^{N_{\tau}}\left(\frac{\mathrm{d} \Delta_{c}\left(k, \tau_{J}=\frac{\hbar \beta}{N_{\tau}} \jmath\right) \mathrm{d} \Delta_{\bullet}\left(h, \tau_{j}\right)}{N_{\tau}} \frac{\beta}{\pi U}\right)
$$

is a dimensionless integration symbol which is called tumctional chifterential". The arguments k and τ indicate the dependences of the integration valiables Δ_{c} and Δ_{s}. Becanse of the name of this kind of integials, the whole procedure also has the name functional-mintegral method [39]

From a plysical point of view such kind of decompositions provide possibilities for an appoximation of the partition function The intelaction between fermions disappears, and the particles more instead in the fictutions fields $\Delta_{\text {, and }} \Delta_{s}$ Those fields might depend on the position m space and rempenatme Provided that they are chosen propenly, they have the same effect on the particles as an interaction would have Then the functional-megral method is exact. The more the fictitious fields are only approxmations the less concetly are miteactions described.

By the way, the idea of mormg particles in a mean fold is exactly the same as in the Hatice-Fock appioxmation and has espectalls the same stancture as the Stoner model (36)

Remark: The charge interaction part will essentally lead to teims hake $1 \Delta_{c} M$ and causes a problem of dealing with complex quantities In order to get the complete Hamultoman hermitian it is therefore necessay to deal with maginary mean fields, which is not very convement In an attempt, to aroud such difficulties
one could try to alter the Hubbard-Stratonovic decomposition. In order to do this, the fictitious field Δ_{c} has to be split into one part and its complex conjugate at the beginning of this transformation. A treatment of the form

$$
\begin{align*}
\exp \left[-\frac{U}{4 \hbar} n_{k}^{2}\right] & =\frac{1}{\pi \hbar U} \int \mathrm{~d} \Delta_{c} \exp \left[-\frac{1}{U \hbar} \Delta_{c} \Delta_{c}^{*}+\mathrm{i} \Delta_{c} \xi_{k}^{*} \xi_{h}-1 \Delta_{c}^{*} \xi_{h}^{*} \xi_{h}\right] \\
& =\frac{1}{\pi \hbar U} \int \mathrm{~d} \Delta_{c} \exp [-\frac{1}{U \hbar}\left|\Delta_{c}\right|^{2}+\underbrace{2 \operatorname{Re}\left(1 \Delta_{c}\right)}_{\Delta_{c}^{\prime}} \xi_{k}^{*} \xi_{k}] \tag{415}
\end{align*}
$$

at least proves that it is also possible to calculate with ieal tems. Howerer, it tunned out that this form of notation is even more mconvement for further calculations.

4.3 Spin-rotation Invariance

The mam point of the paper of Schulz [44] is that the expression for the action should be rotational invariant. The reason is the a priori rotational mranance of the Hubbard model That means that if the spm quantization axis for the whole system is rotated in a certain way, then the Hubbard Hamiltoman remains much ${ }^{\text {nnged }}{ }^{1}$

Proof: The statement is obviously fulfilled for the hopping part, provided that cerery site is rotated by the same angle Then a 10 ation and a backwardiotation cancel each other. Otherwise the kinetic energy pat is not iotational invanant and such statements for the whole Hamitoman are only tue m the limit $\frac{U}{I} \gg 1$

For the interaction part one should note that a spm operator for a certam site can also be represented in the form [31]

$$
\mathrm{S}_{k}=\frac{\hbar}{2} c_{h, \alpha}^{\dagger} \sigma_{\alpha ; \beta} c_{h \beta}
$$

whene σ is the set of Pauli spin matrices defined in (12) dud it is summed automatically over $\alpha, \beta \in\{\uparrow, \downarrow\}$. The proof is equiralent to the one for the corresponding coupled boson representation (1.8) A straght for ward calculation

[^12]leads with the help of the relation $\sum_{\imath} \sigma(\imath)_{\alpha, \beta} \sigma(\imath)_{\gamma, \delta}=2 \delta_{\alpha, \delta} \delta_{\beta, \gamma}-\delta_{\alpha, \beta} \delta_{\gamma, \delta}$ to the surprising result that the square of the operator S_{k} las the form
\[

$$
\begin{equation*}
\mathrm{S}_{k}^{2}=\frac{3}{4} \hbar^{2}\left(\hat{n}_{k, \uparrow}+\hat{n}_{k, \downarrow}\right)^{2}-3 \hbar^{2} \hat{n}_{k, \uparrow} \hat{n}_{k, \downarrow} \tag{array}
\end{equation*}
$$

\]

Summed orer all sites, this can be used to express the interaction of the Hubbard model in the following way.

$$
\begin{equation*}
\hat{V}=U \sum_{k=1}^{N} \hat{n}_{k, \uparrow} \hat{n}_{k, \downarrow}=\frac{M^{2} U}{4}-\frac{U}{3 \hbar^{2}} \sum_{h=1}^{N} S_{k}^{2} \tag{418}
\end{equation*}
$$

which shons the claimed $\operatorname{SU}(2)$ symmetry mone explicit
On the other hand the spin term $\hat{s}_{k} \mathrm{~m}(49)$ shows no rotation marrance A spm projection does of course depend on the dinection of the spm-cןuntization axis Neveitheless, the Hubbard-Stratonovic decompontion (413) can still be exact beramse the meariance is ensured for the sum of the charge and the spm term This mdicates a strong spin-change interaction However, as soon as appioximations are performed this meraction is perturbed and the spin-iotation invariance destroyed [48]. In this sense it mght be more appiopirate to use (417) mstead of (49).

Schulz [44] suggests another way by introducing a spmespace ieference trame that rancs in tume and space He states that "The flucturtious of the onentation of the reference fiame then allow for a rather natural melusion of spm-iotation mrariance "

That means that the spin quantization axis is allowed to differ fiom site to site The axis on a certan site must of course be the same for both termons sitting on thas site. However, for the Hamiltonian it is not necessang that the spme dnections of electrons on different sites have something to do with one anothen Norertheless, if arbitrary spin-quantization axes ae allowed the pictorial explanation of the kinetic energy term as a hoppmeng of elections will get lost. Furthermose, it is not clear any more why only $c_{h, \uparrow}^{\dagger} c_{h+1, \uparrow}$ appeas in the Hamultonian and not for mstance $c_{k, \uparrow}^{\dagger} c_{k+1, \downarrow}$, because the axis ale now molependent foom one another The only reason for the farour of the first kind of openators could be that the angle differs from one site to a neghboumg site only shighty; and the election can overcome this change

The unt vector in the direction of the new spin quantization axis on a certain site k is clescribed by a pair of polar angles, $\Omega_{k}=\Omega_{h}(\theta, \zeta) \theta$ is the angle between the spin axis and the z-axis; ζ is the angle between the projection of the spin axis on the $x y$-plane and the x-axis ${ }^{2}$ The rotation itself is performed by a matrix of the form

$$
\hat{R}_{k}(\theta, \zeta)=\left(\begin{array}{cc}
\cos \left(\frac{1}{2} \theta\right) & -\mathrm{e}^{-1 \zeta} \sin \left(\frac{1}{2} \theta\right) \tag{419}\\
\mathrm{e}^{1 \zeta} \sin \left(\frac{1}{2} \theta\right) & \cos \left(\frac{1}{2} \theta\right)
\end{array}\right)
$$

It is a umitay tiansformation $\left(\hat{R}_{k} \cdot \hat{R}_{k}^{+}=11\right)$ with the desired pioperty

$$
\hat{R}_{k}(\theta, \zeta) \sigma_{z} \hat{R}_{k}^{+}(\theta, \zeta)=\Omega_{k} \quad \sigma
$$

Example: If the spin quantization axis should be the bisector of the angle formed by the x-axis and the y-axis, then $\theta=\frac{\pi}{2}$ and $\zeta=\frac{\pi}{4}$, and one obtans

$$
\begin{gathered}
\left(\frac{1}{\sqrt{2}}\right)^{2}\left(\begin{array}{cc}
1 & -\frac{1}{\sqrt{2}}(1-1) \\
\frac{1}{\sqrt{2}}(1+\mathrm{i}) & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & \frac{1}{\sqrt{2}}(1-1) \\
-\frac{1}{\sqrt{2}}(1+1) & 1
\end{array}\right) \\
=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
0 & 1-1 \\
1+1 & 0
\end{array}\right)=\frac{1}{\sqrt{2}} \sigma_{2}+\frac{1}{\sqrt{2}} \sigma_{1}
\end{gathered}
$$

as wanted.
A proper explanation why the rotation can be written in the form above is given in appendix E. It is based on the properties of Euler angles

With the help of such matrices one can mtioduce new spino variables in the form

$$
\begin{equation*}
\tilde{\xi}_{k} \equiv\binom{\tilde{\xi}_{k, \uparrow}}{\tilde{\xi}_{k, \downarrow}}=\hat{R}_{k}^{+}(\theta, \zeta)\binom{\xi_{k, \uparrow}}{\xi_{k, \downarrow}} \Longleftrightarrow \hat{R}_{h}(\theta, \zeta)\binom{\tilde{\xi}_{h, \uparrow}}{\tilde{\xi}_{k, \downarrow}}=\binom{\xi_{k, \uparrow}}{\xi_{k, \downarrow}} \tag{420}
\end{equation*}
$$

Here it is mphed that a Grassmann number without a spin midex denotes a spinor with two spm components Nevertheless, the otation $\hat{R}_{k}(\theta, \zeta)$ is a unitary change of the spm-quantization axis and not in the first place a 10 tation of spmors This remak is iclated to the fact that

$$
\hat{R}_{h}^{+}(2 \pi, \zeta)\binom{1}{0}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\binom{1}{0}=\binom{-1}{0} \neq\binom{ 1}{0}
$$

[^13]It is wot th studying the anticommutation relations of these new Grassminn numbers. They can be reduced quickly to those of the nomal (not notated) Grassmann numbers $\xi_{\jmath, \eta}$ and $\xi_{j, \eta}^{*}$ For instance $\tilde{\xi}_{k, \sigma}$ and $\tilde{\xi}_{h^{\prime}, \sigma^{\prime}}$ always anticommute, because both are linear combmations of numbers $\xi_{j, \eta}$ without the use of conjugate numbers $\xi_{j, \eta}^{*}$ It is only slightly more difficult for combinations of conjugate and non-conjugate numbers. With the help of Emstem's sum convention one can wate

$$
\begin{align*}
{\left[\tilde{\xi}_{h, \sigma}, \tilde{\xi}_{k^{\prime}, \sigma^{\prime}}^{*}\right]_{+} } & =\left[\left(\hat{R}_{k}^{+}\right)_{\sigma, \eta} \xi_{k, \eta}, \xi_{k^{\prime}, \eta^{\prime}}^{*}\left(\hat{R}_{k^{\prime}}\right)_{\eta^{\prime}, \sigma^{\prime}}\right]_{+}=\left(\hat{R}_{h}^{+}\right)_{\sigma, \eta}\left(\hat{R}_{h^{\prime}}\right)_{\eta^{\prime}, \sigma^{\prime}} \delta_{k k^{\prime}} \delta_{\eta, \eta^{\prime}} \\
& =\delta_{k, k^{\prime}}\left(\hat{R}_{k}^{+}\right)_{\sigma, \eta}\left(\hat{R}_{k}\right)_{\eta, \sigma^{\prime}}=\delta_{h, k^{\prime}} \delta_{\sigma, \sigma^{\prime}}, \tag{421}
\end{align*}
$$

At the cud of the calculation the fact that the rotation matrix \hat{R}_{k} is unitary has been used Piovided that this is the case, rotated Giassmann numbers obey exactly the same anticommutation relations as all other Giassmann numbers

The amm for the rest of this chapter is to transtorm the action of our problem accordingly and to diaw conclusions That means that evely contubution to the action has to be expressed in teims of the rotated Grassmamn numbers $\tilde{\xi}_{k, \sigma}$ instead of the "normal" Grassmann numbers $\xi_{h, \sigma}$. Only the phase factor for the magnetic flux is not effected by the change of the spin furmitization axis

The problem is that we have to apply now two transfomations at the same time One of them is the Hubbard-Statonovic decomposition, the other is the introduction of a spin-space reference frame Which of them should be applied finst? We shall try both possibilities and will see that, they lead to difterent results. To begm with we follow the way of Schulz [4t]

4.4 Rotation First

4.4.1 Derivation of the Action

Rotation

As discussed above, already the splitting of the interaction part into a term for the change degree of freedom and one for the spin degree of treedom leads to expiessions which are not rotational invariant. Therefore, a spin-space reference frame is introduced by using the transformation (420). The effect on the action is the appearance of rotated Grassmann numbers together with the rotation matnices

However, because of the spin-rotation invaniance of the interaction pat. at does not matter whether $\xi_{k, \uparrow}^{*} \xi_{k, \downarrow}^{*} \xi_{k, \downarrow} \xi_{k, \uparrow}$ is expressed in normal ol rotated Grassmann mumbers Provided that the splitting in a charge and a spmpat is done atter the iotalion, there will not appear any rotation matuces in the interaction

The action becomes

$$
\begin{aligned}
& S_{0}=\int_{0}^{\hbar \beta} \mathrm{d} \tau \sum_{k=1}^{N}\left\{\tilde{\xi}_{k}^{*}\left(\hbar \partial_{\tau}-\mu+\hat{R}_{k}^{+}\left(\partial_{\tau} \hat{R}_{k}\right)\right) \tilde{\xi}_{k}\right. \\
& \left.\quad-t\left(\tilde{\xi}_{k}^{*} \hat{R}_{h}^{+} \hat{R}_{k+1} \tilde{\xi}_{h+1} \mathrm{e}^{\frac{2 \pi}{4} \frac{p}{4_{0}}}+\tilde{\xi}_{h+1}^{*} \hat{R}_{h+1}^{+} \hat{R}_{h} \tilde{\xi}_{k} \mathrm{e}^{-\frac{2-1}{4} \frac{p}{\phi_{0}}}\right)\right\} \\
& S_{\mathrm{utI}}= \\
& \frac{U}{4} \int_{0}^{\hbar \beta} \mathrm{d} \tau \sum_{k=1}^{N}\left\{\left(\tilde{\xi}_{k}^{*} \tilde{\xi}_{k}\right)^{2}-\left(\tilde{\xi}_{k}^{*} \sigma_{z} \tilde{\xi}_{h}\right)^{2}\right\}=\frac{U}{4} \int_{0}^{\hbar \beta} \mathrm{d} \tau \sum_{h=1}^{N}\left\{\tilde{n}_{h}^{2}-\tilde{s}_{h}^{2}\right\},(422)
\end{aligned}
$$

where the spmor notation is used and chatge and spm numbers die altered selfexplanatory

Hublard-Stratonovic Decomposition

A Hublati-Stratonovic decomposition, peifomed alterwads, has exactly the same structure as for the non-1otated case (± 13) Thus, the patition function has the form

$$
\begin{align*}
& Z=\int \mathcal{D}^{2} \Omega(k, \tau) \int \mathcal{D} \tilde{\Psi}^{*} \mathcal{D} \tilde{\Psi} \int \mathcal{D}^{2} \Delta_{c, s}(k, \tau) \\
& \exp \left[-\frac{1}{\hbar}\left(S_{0}+\int_{0}^{\hbar \beta} \sum_{k=1}^{N}\left\{\frac{1}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right)-1 \Delta_{c} \tilde{n}_{h}-\Delta_{s} \tilde{s}_{k}\right\}\right)\right] \tag{423}
\end{align*}
$$

which includes an integration over all dırections of the quantization axıs The angles can again depend on the site and Matsubara time, as indicated by the alguments

Saddle-point Approximation

The next step could be a saddle-point appioximation [44] The notion of such an appioximation is that only such parts of the integral over the auxiliany fields contribute for which the action has a mmmum. Then an mtegral can be sumplified in the following way

$$
\begin{align*}
\int_{-\infty}^{\infty} \mathrm{e}^{-f(\imath)} \mathrm{d} x & =\int_{-\infty}^{\infty} \exp \left[-\left\{f\left(x_{0}\right)+\left(\imath-\imath_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{1}{2}\left(\imath-x_{0}\right)^{2} f^{\prime \prime}\left(\tau_{0}\right)+\cdot\right\}\right] \\
& \approx \mathrm{e}^{-f\left(x_{0}\right)} \cdot \sqrt{\frac{2 \pi}{f^{\prime \prime}\left(x_{0}\right)}}, \tag{424}
\end{align*}
$$

provided that $f^{\prime}\left(\tau_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$, that is that x_{0} is a (local) mmmmum of the function f.

Nevertheless, it is not the am to perform a complete saddle point approximation Instead, a linear transformation onto the saddle point will be done For the chaige duxhlary field Δ_{c} the following integial has to be considened

$$
I_{c}=\int \mathrm{d} \Delta_{c} \exp \left[-\frac{1}{\hbar}\left(\frac{1}{U} \Delta_{c}^{2}-1 \Delta_{c} \tilde{n}_{k}\right)\right]=\int \mathrm{d} \Delta_{c} \exp \left[-f_{c}\left(\Delta_{c}\right)\right]
$$

The function f has the denvatives

$$
f_{c}\left(\Delta_{c}\right)=\frac{1}{U \hbar} \Delta_{c}^{2}-\frac{1}{\hbar} \Delta_{c} \tilde{n}_{h}, \quad f_{c}^{\prime}\left(\Delta_{c}\right)=\frac{2}{U \hbar} \Delta_{c}-\frac{1}{\hbar} \tilde{n}_{h}, \quad f_{c}^{\prime \prime}\left(\Delta_{c}\right)=\frac{2}{U \hbar} .
$$

Assummg that a situation close to half-filling is considered, the occupation number can be approximated by $\tilde{n}_{k} \approx 1$ Then the mummun is at $\Delta_{c 0}=\frac{1 U}{2}$ In tems of a new integration variable $\delta_{c}=\Delta_{c}-\Delta_{c, 0}$, which describes the fluctuations around the saddle point, the integral can be given in the form-

$$
\begin{align*}
I_{c} & =\int \mathrm{d} \delta_{c} \exp \left[-\left\{f_{c}\left(\frac{\mathrm{i} U}{2}\right)+\delta_{c} I_{c}^{\prime}\left(\frac{1 U}{2}\right)+\frac{1}{2} \delta_{c}^{2} f_{c}^{\prime \prime}\left(\frac{1 U}{2}\right)\right\}\right] \\
& =\int \mathrm{d} \delta_{c} \exp \left[-\frac{1}{\hbar}\left(-\frac{U}{4}+\frac{U}{2} \tilde{n}_{h}+\mathrm{i} \delta_{c}\left(1-\tilde{n}_{k}\right)+\frac{1}{U} \delta_{c}^{2}\right)\right] \tag{425}
\end{align*}
$$

Analogous, one obtains for the spin auxliary field Δ_{s} with the assumption $\tilde{s}_{h} \approx-1$ and the fluctuation variable $\delta_{s}=\Delta_{s}-\Delta_{s, 0}=\Delta_{s}-\left(-\frac{U}{2}\right)$

$$
\begin{align*}
I_{s} & :=\int \mathrm{d} \Delta_{s} \exp \left[-\frac{1}{\hbar}\left(\frac{1}{U} \Delta_{s}^{2}-\Delta_{s} \tilde{s}_{k}\right)\right]=\int \mathrm{d} \Delta_{s} \exp \left[-f_{s}\left(\Delta_{s}\right)\right] \\
& =\int \mathrm{d} \delta_{s} \exp \left[-\left\{f_{s}\left(-\frac{U}{2}\right)+\delta_{s} f_{s}^{\prime}\left(-\frac{U}{2}\right)+\frac{1}{2} \delta_{s}^{2} f_{s}^{\prime \prime}\left(-\frac{U}{2}\right)\right\}\right] \\
& =\int \mathrm{d} \delta_{s} \exp \left[-\frac{1}{\hbar}\left(\frac{U}{4}+\frac{U}{2} \tilde{s}_{k}-\delta_{s}\left(1+\tilde{s}_{k}\right)+\frac{1}{U} \delta_{s}^{2}\right)\right] \tag{4.26}
\end{align*}
$$

After this morement to the saddle point the expression tor the action looks lake this

$$
\begin{align*}
S & =\int_{0}^{\hbar \beta} \mathrm{d} \tau \sum_{k=1}^{N}\left\{\tilde{\xi}_{k}^{*}\left(\hbar \partial_{\tau}-\mu+\frac{U}{2}\left(\mathbb{1}_{2}+\sigma_{z}\right)\right) \tilde{\xi}_{k}\right\} \\
& +\int_{0}^{\hbar \beta} \mathrm{d} \tau \sum_{k=1}^{N}\left\{\tilde{\xi}_{k}^{*} \hat{R}_{k}^{+}\left(\partial_{\tau} \hat{R}_{k}\right) \tilde{\xi}_{k}\right\} \\
& +\int_{0}^{\hbar \beta} \mathrm{d} \tau \sum_{k=1}^{N}\left\{-t\left(\tilde{\xi}_{k}^{*} \hat{R}_{k}^{+} \hat{R}_{k+1} \tilde{\xi}_{k+1} \mathrm{e}^{\frac{2-1}{\kappa} \frac{\phi}{\phi_{0}}}+\tilde{\xi}_{k+1}^{*} \hat{R}_{k+1}^{+} \hat{R}_{h} \tilde{\xi}_{k} \mathrm{e}^{-\frac{2 \tau 1}{\alpha} \frac{\Phi}{\phi_{0}}}\right)\right\} \\
& +\int_{0}^{\hbar \beta} \mathrm{d} \tau \sum_{k=1}^{N}\left\{-\mathrm{i} \delta_{c}\left(\tilde{n}_{k}-1\right)-\delta_{s}\left(\tilde{\xi}_{k}+1\right)+\frac{1}{U}\left(\tilde{\delta}_{c}^{2}+\delta_{c}^{2}\right)\right\}
\end{align*}
$$

It determines the partition function

$$
\begin{equation*}
Z=\int \mathcal{D}^{2} \Omega(k, \tau) \int \mathcal{D} \tilde{\Psi}^{*} \mathcal{D} \tilde{\Psi} \int \mathcal{D}^{2} \delta_{c, s}(k, \tau) \exp [-S / \hbar] \tag{428}
\end{equation*}
$$

where the functional differential is now

$$
\begin{equation*}
\mathcal{D}^{2} \delta_{c, s}(k, \tau)=\prod_{k=1}^{N} \lim _{N_{\tau} \rightarrow \infty} \prod_{\jmath=1}^{N_{\tau}}\left(\frac{\mathrm{d} \delta_{c}\left(k, \tau_{\jmath}=\frac{\hbar \beta}{N_{\tau}} \jmath\right) \mathrm{c} \delta_{s}\left(k, \tau_{\jmath}\right)}{N_{\tau}} \frac{\beta}{\pi U}\right) \tag{429}
\end{equation*}
$$

Apart fiom the fact that only fluctuations of δ_{c}, δ_{s} around the saddle point up to second order are taken into consideration, this result is still exact It has to be emphasized that in order to evaluate the partition function theie are still four integrations to be done That is quite a difficult task

4.4.2 Simplifications, Half Filling

In order to get a feeling for the situation we will try now to make things as sumple as possible This includes the following five points.

1 A rotation Ω of the spm-quantization axis with only one degree of freedom is considered The most convenient way to do this is to set, ζ identical zero Hence,

$$
\hat{R}_{k}(\theta, \zeta \equiv 0)=\hat{R}_{k}(\theta)=\left(\begin{array}{cc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right)
$$

2 At some points it is helpful to determme how θ depends on the site k. As explamed in section 43 the difference of the angles of adjacent sites should be small Furthermore, a handy connection between the site and the angle, whech does not farour any of the sites, is wanted. The sumplest way to mplement these conditions is a rotation arome the cucumference of the ing by equal steps $\quad \theta_{h}=\frac{2 \pi}{N} k \cdot w$, where w ('angle phase winding numbes") is a small positive integer

3 Fluctuations around the saddle point ane not taken into consideration, $\delta_{c}=$ $\delta_{\mathrm{s}}=0$ This is a hard constramt. The saddle ponts were denved under certan assumptions, fiom which one was $\tilde{n}_{h} \approx 1$ To neglect Huctuations is only justified if these assumptions ate fulfilled In other woids, the following calculations are only true for halt filling $(M=N)$ or for a situation which 15 rery close to it

4 There is no dependence on the temperatur (nagamary time) Dependencies can also be neglected in the high-temperature hmit, because $\beta \rightarrow 0$ as $T \rightarrow \infty$
5. Furthermone, the chemical potential μ is set to be zeio. which can be done by an appropriate eneigy shitt

What then remains of the action is essentially an altered Hamiltonian of the system Thus, it is denoted with the same symbol

$$
\begin{align*}
\mathcal{H} & =\frac{U}{2} \sum_{k=1}^{N} \tilde{\xi}_{k}^{*}\left(\mathbb{1}_{2}+\sigma_{z}\right) \tilde{\xi}_{k}-t \sum_{k=1}^{N}\left\{\tilde{\xi}_{k}^{*} \hat{R}_{k}^{+} \hat{R}_{k+1} \tilde{\xi}_{k+1} \mathrm{e}^{\frac{2 \pi+\frac{p}{N}}{\phi_{0}}}+\tilde{\xi}_{k+1}^{*} \hat{R}_{k+1}^{+} \hat{R}_{k} \tilde{\xi}_{k} \mathrm{e}^{-\frac{2 \pi+1}{V} \frac{\phi}{p_{0}}}\right\} \\
& \approx U \sum_{k=1}^{N} \tilde{\xi}_{k}^{*}\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right) \tilde{\xi}_{k}-t \sum_{k=1}^{N}\left\{\tilde{\xi}_{k}^{*}\left(\begin{array}{cc}
1 & -\vartheta \\
v & 1
\end{array}\right) \tilde{\xi}_{k+1} e^{\frac{2 \pi+1}{1} \frac{+}{\phi_{0}}}+1 \mathrm{c}\right\} \tag{430}
\end{align*}
$$

In the second line the fact was used that the combination of the two rotations effectively is a rotation over the difference of the angles,

$$
\vartheta=\frac{1}{2}\left(\theta_{k+1}-\theta_{k}\right)=\frac{1}{2} \frac{2 \pi}{N} w=\frac{\pi w}{N} .
$$

The apporimation is such that $\cos \vartheta \approx 1$ and $\sin \theta \approx \vartheta$ for latge N
If no integration is performed it is also not necessary to use Grassmann numbers Instead, we introduce rotated creation and amminlation operators ria
$\tilde{c}_{k} \equiv\binom{\tilde{c}_{k, \uparrow}}{c_{k, \downarrow}}=\hat{R}_{k}^{+}(\theta, \zeta)\binom{c_{k, \uparrow}}{c_{k, \downarrow}} \Longleftrightarrow \tilde{c}_{k}^{\dagger} \equiv\left(\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k, \downarrow}^{\dagger}\right)=\left(c_{k, \uparrow}^{\dagger} c_{k, \downarrow}^{\dagger}\right) R_{k}(\theta, \zeta)$,
and the Hamiltonian becomes

$$
\begin{align*}
& \mathcal{H}=U \sum_{k} \tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k, \uparrow}-t \sum_{k}\left\{\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \uparrow}+\tilde{c}_{k, \downarrow}^{\dagger} \tilde{c}_{k+1, \downarrow}+\vartheta\left(\tilde{c}_{k, \downarrow}^{\dagger} \tilde{\iota}_{k+1, \uparrow}-\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \downarrow}\right)\right\} \mathrm{e}^{\frac{2 \pi}{1} \frac{\Phi}{\phi_{0}}} \\
&-t \sum_{k}\left\{\tilde{c}_{k+1, \uparrow}^{\dagger} \tilde{c}_{k, \uparrow}+\tilde{c}_{k+1, \downarrow}^{\dagger} \tilde{c}_{k, \downarrow}+\vartheta\left(\tilde{c}_{k+1, \uparrow}^{\dagger} \tilde{c}_{k, \downarrow}-\tilde{c}_{k+1, \downarrow}^{\dagger} \tilde{c}_{k, \uparrow}\right)\right\} \mathrm{e}^{-\frac{2-1}{\Lambda} \frac{\Phi}{\phi_{0}}} \tag{432}
\end{align*}
$$

A problem of calculations with such a Hamiltoman is that the commutation ielations between rotated operators and nomal operatoms. as used in the states, are not necessanly straight-forward anymore The easiest way to aroid such difficulties is to return to the normal fermome operators in the Hamiltoman

A procedure like this means in essence that the rotation is maintaned only during the Hubbard Stratonovic decomposition. Only here it is necessary to ensume rotation intarance. If one retmens aftel wads to nomal operators, then the kinctic energy part will be acstored in its old shape However, this is not the case for the interaction part

From (431) it follows for the several components of the 10 tated operators

$$
\begin{array}{ll}
\tilde{c}_{k, \uparrow}=\cos \frac{\theta_{h}}{2} c_{k, \uparrow}+\sin \frac{\theta_{h}}{2} c_{k, \downarrow} & \tilde{c}_{k, \uparrow}^{\dagger}=\cos \frac{\theta_{\hbar}}{2} c_{k, \uparrow}^{\dagger}+\sin \frac{\theta_{h}}{2} c_{k, \downarrow}^{\dagger} \tag{433}\\
\tilde{c}_{k, \downarrow}=-\sin \frac{\theta_{h}}{2} c_{k, \uparrow}+\cos \frac{\theta_{h}}{2} c_{k, \downarrow} & \tilde{c}_{k, \downarrow}^{\dagger}=-\sin \frac{\theta_{h}}{2} c_{k, \uparrow}^{\dagger}+\cos \frac{\theta_{h}}{2} c_{k, \downarrow}^{\dagger}
\end{array}
$$

provided that the rotation is orer one angle only. Hence,

$$
\begin{aligned}
\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k, \uparrow}= & \left(\cos \frac{\theta_{k}}{2} c_{k, \uparrow}^{\dagger}+\sin \frac{\theta_{k}}{2} c_{k, \downarrow}^{\dagger}\right)\left(\cos \frac{\theta_{k}}{2} c_{k, \uparrow}+\sin \frac{\theta_{k}}{2} c_{k, \downarrow}\right) \\
= & \cos ^{2} \frac{\theta_{k}}{2} c_{k, \uparrow}^{\dagger} c_{k, \uparrow}+\sin ^{2} \frac{\theta_{k}}{2} c_{k, \downarrow}^{\dagger} c_{k, \downarrow}+\sin \frac{\theta_{k}}{2} \cos \frac{\theta_{k}}{2}\left(c_{k \uparrow}^{\dagger} c_{k, \downarrow}+c_{k, \downarrow}^{\dagger} c_{k, \uparrow}\right) \\
= & \frac{1}{2}\left\{\left(1+\cos \theta_{k}\right) c_{k, \uparrow}^{\dagger} c_{k, \uparrow}+\left(1-\cos \theta_{k}\right) c_{k, \downarrow}^{\dagger} c_{k, \downarrow}\right. \\
& \left.\quad+\sin \theta_{k}\left(c_{k, \uparrow}^{\dagger} c_{k, \downarrow}+c_{h \downarrow \downarrow}^{\dagger} c_{k, \uparrow}\right)\right\},
\end{aligned}
$$

which leads to the Hamiltonian

$$
\begin{align*}
& \mathcal{H}= \frac{U}{2} \sum_{k=1}^{N}\left\{\left(c_{k, \uparrow}^{\dagger} c_{k, \uparrow}+c_{k, \downarrow}^{\dagger} c_{k, \downarrow}\right)\right. \\
&+\cos \theta_{h}\left(c_{k, \uparrow}^{\dagger} c_{k, \uparrow}-c_{k, \downarrow}^{\dagger} c_{k, \downarrow}\right) \tag{434}\\
&\left.+\sin \theta_{h}\left(c_{k, \uparrow}^{\dagger} c_{k, \downarrow}+c_{k, \downarrow}^{\dagger} c_{k, \uparrow}\right)\right\} \\
&- t \sum_{k=1}^{N}\left\{\left(c_{k, \uparrow}^{\dagger} c_{k+1, \uparrow}+c_{k, \downarrow}^{\dagger} c_{k+1, \downarrow}\right) \mathrm{e}^{\left.\frac{\underline{2} 1}{\frac{\downarrow}{\phi_{0}}}+\left(c_{k+1, \uparrow}^{\dagger} c_{k, \uparrow}+c_{h+1, \downarrow}^{\dagger} c_{k \downarrow}\right) \mathrm{e}^{-\frac{2 \uparrow \uparrow}{V} \frac{\downarrow}{\phi_{0}}}\right\} .}\right.
\end{align*}
$$

The following steps will be analogous to those in the pievous chapter We shall find the expectation value, take derivatives with respect to one of the parameters and try to solve the Hartree-Fock equations If this is possible, the total encrgy and afterwards the persistent current can be calculated

The expectation value shall first of all be evaluated with the same states as alieady used in section 34 ,

$$
\begin{equation*}
|\psi\rangle_{S_{\uparrow} S_{\downarrow}}=\underbrace{\prod_{n \in S_{\uparrow}}\left(\sum_{\iota_{n}=1}^{N} \beta_{\imath_{n}}^{n} c_{2_{n}, \uparrow}^{\dagger}\right)}_{\sim|0\rangle=|\psi\rangle_{S_{\uparrow}}} \underbrace{\prod_{n \in S_{\downarrow}}\left(\sum_{\imath_{m}=1}^{N} \beta_{\imath_{m}}^{m n} c_{\imath_{m}, \downarrow}^{\dagger}\right)}_{\sim|0\rangle=|\psi\rangle_{S_{\downarrow}}}|0\rangle \tag{435}
\end{equation*}
$$

Then the calculations for the hopping pat are absolutely the same as already done these The terms of the interaction part shall be exammed next
and accordingly for the opposite spin direction Derivative with an $n_{C} \in S_{\dagger}$.

$$
\begin{aligned}
& \frac{\partial}{\partial \beta_{r}^{n} c^{*}}\left({ }_{s_{\uparrow}}\langle\psi| c_{k, \uparrow}^{\dagger} c_{k, \uparrow}|\psi\rangle_{S_{\uparrow}}\right)=\underbrace{\beta_{k}^{n c} \delta_{k, \tau}}_{\wp=\mathrm{d}), A=C}+\underbrace{\sum_{\substack{1=1 \\
A \neq C}}^{M I_{\uparrow}}\left|\beta_{h}^{n_{4}}\right|^{2} \beta_{r}^{n c}}_{\wp=\mathrm{dd}, \downarrow \neq C} \\
& -\underbrace{\sum_{\substack{4=1 \\
A \neq C}}^{M_{1}} \beta_{k}^{n_{4}{ }^{*}} \beta_{k}^{n_{C} C^{*}} \beta_{x}^{n_{4}}}_{\wp(t)=C ; p(C)=t} \\
& \frac{\partial}{\partial \beta_{r}^{n} c^{*}}\left({ }_{S_{\uparrow}, S_{\downarrow}}\langle\psi| c_{k, \downarrow}^{\dagger} c_{k, \downarrow}|\psi\rangle_{S_{\uparrow}, S_{\downarrow}}\right)={ }_{S_{\downarrow}}\langle\psi| c_{k, \downarrow}^{\dagger} c_{h \downarrow}|\psi\rangle_{S_{\downarrow}} \cdot \frac{\partial}{\partial \beta_{x}^{n c^{*}}}\left({ }_{S_{\uparrow}}\langle\psi \mid \psi\rangle_{S_{\uparrow}}\right) \\
& =\sum_{B=1}^{M_{\perp}}\left|\beta_{k}^{n_{B}}\right|^{2} \cdot \beta_{r}^{n_{C}}
\end{aligned}
$$

What remams are expressions of the form

$$
{s_{\uparrow}, S_{\downarrow}}^{\langle\psi| c_{k, \uparrow}^{\dagger} c_{k, \downarrow}|\psi\rangle_{S_{\uparrow}, S_{\downarrow}} .}
$$

If the operators are understood to operate on the ket-state $|\psi\rangle_{S_{\uparrow}, S_{\iota}}$, then the ketstate consists afterwards of one down-spin paticle less and one up-spin particle more than the bra-state Since the number of up-spin a down-spmis conserved, reapectively, the product of these two states has to be zero *All such expressions smply vanish

Therfore, the following set of Hartree-Fock equations ae oltained ($n_{C} \in S_{\uparrow}$):

$$
\begin{align*}
& -\sum_{\substack{n \in \mathcal{S}_{+} \\
n \neq n_{C}}} \sum_{k=1}^{N} \beta_{k}^{n *}\left\{t\left(\beta_{h+1}^{\prime \prime} \mathrm{e}^{\frac{2 \pi n}{N} \frac{\phi}{\phi_{0}}}+\beta_{h-1}^{n} \mathrm{e}^{-\frac{2 T 1}{1} \frac{+}{\omega_{0}}}\right)-\frac{\dot{U}}{2} \cos \theta_{h} \beta_{h}^{n}\right\} \beta_{1}^{n c} \\
& +\sum_{\substack{n \in \mathcal{S}_{\dagger} \\
n \neq n_{C}}} \sum_{k=1}^{N} \beta_{k}^{n *}\left\{t\left(\beta_{k+1}^{n C} \mathrm{e}^{\frac{2 \pi \pi_{1}}{N} \frac{+}{\phi_{0}}}+\beta_{k-1}^{n c} \mathrm{e}^{-\frac{2-1}{1} \frac{巾_{1}}{\phi_{0}}}\right)-\frac{U^{I}}{2} \cos \theta_{k} \beta_{k}^{n c}\right\} \beta_{x}^{n} \\
& -\sum_{m \in S_{\downarrow}} \sum_{h=1}^{N} \beta_{k}^{m *}\left\{t\left(\beta_{k+1}^{m} \mathrm{e}^{\frac{2 \pi 1}{N} \frac{\Phi}{\phi_{0}}}+\beta_{k-1}^{m} \mathrm{e}^{-\frac{2 \pi t}{N} \frac{\uparrow}{\phi_{0}}}\right)-\frac{U}{2} \cos \theta_{k} \beta_{k}^{m}\right\} \beta_{x}^{n C} \\
& -t\left(\beta_{r+1}^{n} \mathrm{e}^{\frac{2 \pi 1}{1} \frac{\downarrow}{\phi_{0}}}+\beta_{\tau-1}^{n C} \mathrm{e}^{-\frac{2 \pi 1}{N} \frac{\uparrow}{\phi_{0}}}\right)+\frac{U}{2}\left(M_{\uparrow}+M_{\downarrow}+\cos \theta_{2}\right) \beta_{1}^{n_{C}} \\
& =\lambda \beta_{r}^{n c} \tag{436}
\end{align*}
$$

This set of equations is in general not solved by Bloch wase functions anymore However, for the special case that no rotation is apphed, $\theta_{k} \doteq 0 \forall k$, the interaction
part in these equations smplifies to

$$
\frac{U}{2}\left(M_{\uparrow}+M_{\downarrow}+1+M M_{\uparrow}-1-M M_{\downarrow}\right) \beta_{x}^{n_{C}}=U M_{\uparrow} \beta_{x}^{n c}
$$

and the solution becomes apparently a Bloch-type solution It is woth noting that in this case the equations do not reduce to those derived in section 3.4. The interaction energy derived in these previous calculations was $U \frac{M_{\uparrow} M_{1}}{N}$ What we obtan here is completely different. Even in the saddle-point approximation the Hubbard-Stratonowic decomposition apparently does not lead to Hatiee-Fock results The reason might be an inappropriate choice of the saddle point

There are further inconveniences related to these equations The method of rotating the femionic operators backwards after the Hulbard- Stratonovic decomposition led to the result, that the kinetic energy pait again completely decomples from the interaction part. Nether the couphing constant U nor the spm structure $\left\{\theta_{k}\right\}_{h=1}^{N}$ appeas in the hopping part, and the mteractıon part has nothing to do with the flux Φ

It should be possible to solve the equations above also tor the general case, because they stem from a linear operator. However, for the mentioned reasons this particular appioach shall not be investigated further Instead, another possibility of looking at things will be tried now

4.4.3 Rotated States

First Idea

The states which ane used for expectation values are also constructed with the help of cication and anminlation operators Therefore, it is possible to rotate the operators at this position and to leare the Hamltoman muchanged That means that

$$
\begin{equation*}
|\tilde{\psi}\rangle_{S_{\uparrow}, S_{\downarrow}}=\prod_{n \in S_{\uparrow}}\left(\sum_{\imath_{n}=1}^{N} \beta_{\imath_{n}}^{n} \tilde{c}_{\imath_{n}, \uparrow}^{\dagger}\right) \prod_{m \in S_{\downarrow}}\left(\sum_{\imath_{m}=1}^{N} \beta_{\imath_{m}}^{m} c_{\imath_{m}}^{\dagger} \downarrow\right)|0\rangle \tag{437}
\end{equation*}
$$

Such a state can afterwards be transformed agam to an expiession with nonrotated operators only To see how this works the case of two up-spm particles is considered first. Agam the transformation (433) is used.

$$
\begin{align*}
& |\tilde{\psi}\rangle_{\left\{n_{1}, n_{2}\right\}, \theta}=\sum_{i_{1}, 2_{2}} \beta_{\imath_{1}}^{n_{1}} \beta_{\imath_{2}}^{n_{2}} \bar{c}_{i_{2}, \uparrow} \tilde{c}_{i_{1}, \uparrow}^{\dagger}|0\rangle \\
& =\sum_{i_{1}, v_{2}} \beta_{\imath_{1}}^{n_{1}} \beta_{\imath_{2}}^{n_{2}}\left\{\cos \theta_{\imath_{2}} \cos \theta_{\imath_{1}} c_{\imath_{2}, \uparrow}^{\dagger} c_{\imath_{1}, \uparrow}^{\dagger}+\sin \theta_{\imath_{2}} \sin \theta_{\imath_{1}} c_{2_{2}, \downarrow}^{\dagger} \iota_{\imath_{1}, \downarrow}^{\dagger}\right. \\
& \left.+\sin \theta_{i_{2}} \cos \theta_{2_{1}} c_{i_{2}, \downarrow}^{\dagger} c_{i_{1}, \uparrow}^{\dagger}+\cos \theta_{i_{2}} \sin \theta_{i_{1}} c_{2_{2}, ~}^{\dagger} c_{i_{1}, \downarrow}^{\dagger}\right\}|0\rangle \\
& \langle\tilde{\psi} \mid \tilde{\psi}\rangle_{\left.n_{1}, n_{2}\right\}, \theta}=\sum_{i_{1}, 2_{2}}\left|\beta_{\imath_{1}}^{n_{1}}\right|^{2}\left|\beta_{2_{2}}^{n_{2}}\right|^{2}\left(\cos ^{2} \theta_{\imath_{1}}+\sin ^{2} \theta_{l_{1}}\right)\left(\cos ^{2} \theta_{\imath_{2}}+\sin ^{2} \theta_{l_{2}}\right) \\
& -\sum_{\imath_{1}, 2_{2}} \beta_{\imath_{1}}^{n_{1}} \beta_{\imath_{2}}^{n_{1} *} \beta_{\imath_{2}}^{n_{2}} \beta_{\imath_{1}}^{n_{2} *}\left(\cos ^{2} \theta_{\imath_{1}}+\sin ^{2} \theta_{\imath_{1}}\right)\left(\cos ^{2} \theta_{\imath_{2}}+\sin ^{2} \theta_{\imath_{2}}\right) \\
& =\sum_{i_{1}, \imath_{2}}\left\{\left|\beta_{\imath_{1}}^{n_{1}}\right|^{2}\left|\beta_{2_{2}}^{n_{2}}\right|^{2}-\beta_{\imath_{1}}^{n_{1}} \beta_{2_{2}}^{n_{1} *} \beta_{i_{2}}^{n_{2}} \beta_{l_{1}}^{n_{2} *}\right\} \tag{438}
\end{align*}
$$

The last iesult is the same as for the unrotated states This statement reminds us of a fact alieady explaned in comection with formula (421) The operators $\tilde{c}_{2, \uparrow}^{\dagger}$ and $\tilde{c}_{2, \uparrow}$ obey the same anti-commutation relations as $c_{2, \uparrow}^{\dagger}$ and $c_{2, \uparrow}$ Therefore, one can also calculate with rotated operators in the famminal way.

As another implication one might argue that normalization constrants like ${\left\{n_{1}\right\}, 0}\langle\tilde{\psi} \mid \tilde{\psi}\rangle_{\left\{n_{1}\right\}, 0}=1$ and ${\left\{n_{1}, n_{2}\right\}, \theta}\langle\tilde{\psi} \mid \tilde{\psi}\rangle_{\left\{n_{1}, n_{2}\right\}, \emptyset}=1$ inclicate that the β-factors in the states are, simular to the Bloch-case, onthonoumal ware functions

$$
\sum_{i}\left|\beta_{\imath}^{n_{1}}\right|^{2}=1 \quad \text { and } \quad \sum_{i} \beta_{\imath}^{n_{1}} \beta_{\imath}^{n_{2} *}=0
$$

Second Idea

In prmciple, there are two ways maginable to obtan the expectation value of the hopping part

1 One could try to express also the Hamultoman in rotated operatoss, assuming that an electron hops from one iotated site to the next rotated site Howerer, to transform states and Hamiltomans at the same time does not change the physics and all calculations can be done as if there wete no rotation That is what has essentially been done before
Eren if additional operators in the form of the 2nd and 4th term of the Hamiltonian

$$
\hat{H}_{\mathrm{hop}}=-t \sum_{k=1}^{N}\{\underbrace{\tilde{c}_{k, t}^{\dagger} \tilde{c}_{k+1, \uparrow}}_{1}+\underbrace{\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \downarrow}}_{2}+\underbrace{\tilde{c}_{k, \downarrow}^{\dagger} \tilde{c}_{k+1, t}}_{3}+\underbrace{\tilde{c}_{k, \downarrow}^{\dagger} \tilde{c}_{k+1, \downarrow}}_{4}+\mathrm{hcc}\}
$$

are introduced with the argument that because of the rotation there is no justification for spin preservation, nothng new appears When taking the average ${ }_{S_{\mathrm{t}}, S_{\downarrow}}\langle\tilde{\psi}| \hat{H}_{\text {hop }}|\tilde{\psi}\rangle_{S_{\mathrm{f}}, s_{\downarrow}}$ these terms vanish.
2. It is more reasonable to stait with motated hopping teims, only concentrating on the fact that the electron changes its site, but not chatacterizing the structure of different sites That brings us back to the situation on page 90 with the transformed Hamiltoman

$$
\hat{H}_{\text {lop }}=-t \sum_{k=1}^{N}\left\{\tilde{c}_{k}^{\dagger}\left(\begin{array}{cc}
\cos \vartheta & -\sin \vartheta \tag{439}\\
\sin \vartheta & \cos \vartheta
\end{array}\right) \tilde{c}_{h+1} \mathrm{e}^{\frac{3 \pi_{1}}{\Lambda} \frac{\phi}{p_{0}}}+\text { lh } c .\right\},
$$

where ϑ is the difference 1 n the θ-angle of two adjacent sites, assumed to be fix In the average the mixed terms disappear agan and the dependence on the spm-space reference fiame expresses itself in a global factor

$$
S_{\uparrow}, S_{\downarrow}\langle\tilde{\psi}| \hat{H}_{\mathrm{lop}}|\tilde{\psi}\rangle_{S_{\uparrow}, s_{\downarrow}}=-t \cos \vartheta \sum_{k=1}^{N}\langle\tilde{\psi}|\left(\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \uparrow}+\tilde{c}_{k, \downarrow}^{\dagger} \tilde{c}_{k+1, \downarrow}\right) \mathrm{e}^{\frac{2 \pi r_{1}}{N} \Phi_{\phi_{0}}}+\mathrm{hc} \cdot|\tilde{\psi}\rangle
$$

Both wavs show the problem that moxed terms like $\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \downarrow}$ dlways have to disappeat The reason is the fixed number of up-spm and down-apin paticles respectively However, such a behavout is not really understandable if for instance two adjacent sites have a mutual angle of 90° between the spin-cquantization axes it is not (lear why the hopping $\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \uparrow}$ is possible but not $\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \downarrow}$.

In genelal, for sites with arbitrary 10 ations spm-flip processes shonld be allowed In other words, it does not make sense any-more to distmgursh between a group of up-spm paiticles S_{\uparrow} and a group of down-spmpatiles S_{\downarrow} Only the total number of particles should be an integral of the sistem

This idea does not change the fact that a ceitam state is charactenzed by a set of quantum numbers $\left\{n_{2}\right\}_{i=1}^{M I}$ which detemmine the coefficients in the field operator representation. The only difference is that the spin duection is not regulated any more Such conditions are satisfied by

$$
|\tilde{\psi}\rangle_{n_{1}}=C_{1} \sum_{i=1}^{N} \gamma_{2}^{n_{1}}\left\{\tilde{c}_{\imath, \uparrow}^{\dagger}|0\rangle+\tilde{c}_{t, \downarrow}^{\dagger}|0\rangle\right\}
$$

for the case of one particle. Here C_{1} is a nomalization constant which has because of

$$
{ }_{n_{1}}\langle\tilde{\psi} \mid \tilde{\psi}\rangle_{n_{1}}=C_{1}^{2} \sum_{\imath, \jmath} \gamma_{\jmath}^{n_{1} *} \gamma_{2}^{n_{1}}\langle 0|\left(\tilde{c}_{\jmath, \uparrow}+\tilde{c}_{\jmath, \downarrow}\right)\left(\tilde{c}_{2, \uparrow}^{\dagger}+\tilde{c}_{\imath, \downarrow}^{\dagger}\right)|0\rangle=C_{1}^{2} \sum_{\imath, \jmath} \gamma_{\jmath}^{n_{1} *} \gamma_{\imath}^{n_{1}} 2 \delta_{\imath \jmath}
$$

the value $C_{1}=1 / \sqrt{2}$, when for convenience the γ-parameters are chosen in such a way that $\sum_{i=1}^{N}\left|\gamma_{i}\right|^{2}=1$.

Consequently, an arbitrary M-particle state has the following form

$$
\begin{align*}
& |\tilde{\psi}\rangle_{n_{1}, n_{M}}=C_{M} \sum_{\imath_{1},,,_{M}} \sum_{\sigma_{1},,_{M}}^{\sigma_{1} \in\{\uparrow, \downarrow\}} \gamma_{2_{1}}^{n_{1}} . \quad \gamma_{\iota_{M}}^{n_{M}} \tilde{c}_{2_{M}, \sigma_{M}}^{\dagger} \quad \tilde{c}_{n_{1}, \sigma_{1}}^{\dagger}|0\rangle \tag{440}\\
& { }_{n_{1}, n_{N}}\langle\tilde{\psi}|=C_{M}^{*} \sum_{j_{1},, j_{M}} \sum_{\eta_{1},, \eta_{M}}^{\eta_{1} \in\{\uparrow, \downarrow\}} \gamma_{j_{1}}^{n_{1}{ }^{*}} \cdot \ldots \cdot \gamma_{J_{M}}^{n_{M 1} *}\left\langle(0) \tilde{c}_{j_{1}, \eta_{1}} \cdot \ldots \cdot \tilde{c}_{J_{M}, \eta_{M}}(\right. \tag{441}
\end{align*}
$$

That means that the wave functions, determmed by the quantum numbers, are not changed, but for each particle both possibulhtics (up- and down-spin) are allowed Such a constıuction makes it possible to deal with spun flips

The nomalization constant is easily eraluated if the overlap of two states is expressed in terms of fully contractions ${ }^{3}$:

$$
\left.\begin{array}{rl}
n_{1, ~}, n_{M I} \\
& \\
\psi
\end{array}\right)
$$

However, such "crossings" as in the second possiblity lead to ranishing sums $\sum_{h} \gamma_{k}^{n_{1} *} \gamma_{k}^{n_{j}}$ with $n_{2} \neq n_{j}$. Therefore, only the first possibihty, the identical permutation, lemans, leadmg to

$$
{ }_{n_{1}, n_{M}}\langle\tilde{\psi} \mid \tilde{\psi}\rangle_{n_{1},, n_{M}}=\left|C_{M}\right|^{2} \sum_{\sigma_{1},, \sigma_{U}} 1 \Rightarrow C_{M I}=2^{-M / 2}
$$

Now the task is, to detemme the expectation values of the hopping part in the second proposed form (439).

[^14]\[

$$
\begin{aligned}
& \frac{\partial}{\partial \gamma_{x}^{n c *} n_{1},, n_{N}}\langle\tilde{\psi}| \tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \uparrow}|\tilde{\psi}\rangle_{n_{1}, ., n_{M S}}
\end{aligned}
$$
\]

$$
\begin{aligned}
& *\langle 0| \tilde{c}_{\jmath_{1}, \eta_{1}} \cdot \tilde{c}_{\jmath_{M}, \eta_{M}} \tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \uparrow} \tilde{c}_{i_{A}, \sigma_{M}}^{\dagger} \cdot \tilde{c}_{\imath_{1}, \sigma_{1}}^{\dagger}|0\rangle
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{2^{\Lambda-1}}{2^{M}} \sum_{z_{C}, j_{c}} \sum_{\sigma_{C}, \eta_{C}} \gamma_{v_{C}}^{n_{C}}\langle 0| \ldots \quad \tilde{c}_{J_{C}, \eta_{C}} \ldots \tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \uparrow} \quad \tilde{c}_{2_{C}, \sigma_{C}} \quad|0\rangle
\end{aligned}
$$

After exactly the same calculations in the other three cases one obtams

$$
\begin{aligned}
& \frac{\partial}{\partial_{\gamma}^{-n_{C}}}\langle\tilde{\psi}| \sum_{k=1}^{N} \tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \uparrow}|\tilde{\psi}\rangle=\frac{1}{2} \sum_{\substack{A=1 \\
A \neq C}}^{M I} \sum_{k=1}^{N} \gamma_{h}^{n_{4}^{*}}\left\{\gamma_{k+1}^{n_{4}} \gamma_{x}^{n_{C}}-\gamma_{c}^{n_{4}} \gamma_{k+1}^{n_{C}}\right\}+\frac{1}{2} \gamma_{x+1}^{n_{C}} \\
& \frac{\partial}{\partial \gamma_{i}^{n c}}\langle\tilde{\psi}| \sum_{k=1}^{N} \tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \uparrow}|\tilde{\psi}\rangle=\frac{1}{2} \sum_{\substack{A=1 \\
A \neq C}}^{M} \sum_{h=1}^{N} \gamma_{k}^{n_{4} *}\left\{\gamma_{k+1}^{n_{4}} \gamma_{2}^{n_{c} c}-\gamma_{r}^{n_{4}} \gamma_{k+1}^{n C}\right\}+\frac{1}{2} \gamma_{x+1}^{n C} \\
& \frac{\partial}{\partial \gamma_{i x}^{n C^{*}}}\langle\tilde{\psi}| \sum_{k=1}^{N} \tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \uparrow}|\tilde{\psi}\rangle=\frac{1}{2} \sum_{\substack{A=1 \\
A \neq C}}^{M} \sum_{k=1}^{N} \gamma_{k}^{n_{4} *}\left\{\gamma_{k+1}^{n_{4}} \gamma_{2}^{n_{2} C}-\gamma_{2}^{n_{4}} \gamma_{k+1}^{n_{C}}\right\}+\frac{1}{2} \gamma_{x+1}^{n C} \\
& \frac{\partial}{\partial \sigma_{i}^{n c}}\langle\tilde{\psi}| \sum_{k=1}^{N} \tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \uparrow}|\tilde{\psi}\rangle=\frac{1}{2} \sum_{\substack{A=1 \\
A \neq C}}^{M} \sum_{k=1}^{N} \gamma_{h}^{n_{4}{ }^{*}}\left\{\gamma_{h+1}^{n_{4}} \gamma_{2}^{n_{C}}-\gamma_{x}^{n_{4}} \gamma_{k+1}^{n_{C}}\right\}+\frac{1}{2} \gamma_{\tau+1}^{n_{C}}
\end{aligned}
$$

The fact that the result is mall four cases the same shows that the chosen states are not sensitive to spm directions The bupusmg conseguence is that eventually spin-flip processes disappear agran. This is because of the mmus sign in the cotation matix of the Hamiltoman

$$
\hat{H}_{\mathrm{hop}}=-t \sum_{k=1}^{N}\left\{\tilde{c}_{k}^{\dagger}\left(\begin{array}{cc}
\cos \vartheta & -\sin \vartheta \\
\sin \vartheta & \cos \vartheta
\end{array}\right) \tilde{c}_{k+1} e^{\frac{3 \sin }{N} \frac{\uparrow}{N_{0}}}+\mathrm{hc}\right\},
$$

leading to the effect that the two mixed-spin terms cancel each other.
The interaction also needs to be calculated again

$$
\begin{aligned}
& \hat{V}=U \sum_{k=1}^{N} \tilde{c}_{k}^{\dagger}\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right) \tilde{c}_{k}=U \sum_{k=1}^{N} \tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k, \uparrow} \\
& \frac{\partial}{\partial \gamma_{x}^{n c^{*}}}\langle\tilde{\psi}| \sum_{k=1}^{N} \tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k, \uparrow}|\tilde{\psi}\rangle_{n_{1}, n_{M}}=\frac{1}{2} \sum_{\substack{A=1 \\
4 \neq C}}^{M} \sum_{k=1}^{N} \gamma_{k}^{n_{A} *}\left\{\gamma_{h}^{n_{4}} \gamma_{r}^{n_{C}}-\gamma_{\tau}^{n_{4}} \gamma_{k}^{n_{C}}\right\}+\frac{1}{2} \gamma_{x}^{n C} \\
&=\frac{1}{2} \sum_{\substack{A=1 \\
A \neq C}}^{M I}\left\{1 \cdot \gamma_{x}^{n_{C}}-0 \cdot \gamma_{k}^{n_{C}}\right\}+\frac{1}{2} \gamma_{x}^{n_{C}}=\frac{M I}{2} \gamma_{x}^{n_{C} C}
\end{aligned}
$$

All together the γ-problem has the following structure

$$
\begin{align*}
& -t \cos \vartheta \sum_{\substack{4=1 \\
4 \neq C}}^{M I} \sum_{k=1}^{N} \gamma_{k}^{n_{4} *}\left(\gamma_{k+1}^{n_{A}} \mathrm{e}^{\frac{2 \pi 1}{A} \frac{\phi}{\phi_{0}}}+\gamma_{k-1}^{n_{A}} \mathrm{e}^{-\frac{2 r_{1}}{N} \frac{\phi}{\phi_{0}}}\right) \gamma_{2}^{n_{C}} \\
& +t \cos \vartheta \sum_{\substack{A=1 \\
4 \neq C}}^{M} \sum_{k=1}^{N} \gamma_{k}^{n_{4} *}\left(\gamma_{k+1}^{n C} \mathrm{e}^{\frac{2 \pi_{1}, \frac{\phi}{N}}{\phi_{0}}}+\gamma_{k-1}^{n_{C}} \mathrm{e}^{-\frac{2 r_{1}, ~}{\Lambda} \phi_{0}}\right) \gamma_{x}^{n_{A}} \\
& -t \cos \vartheta\left(\gamma_{x+1}^{n} \mathrm{e}^{\frac{2 \pi x_{1}}{V} \frac{\phi}{\Phi_{0}}}+\gamma_{x-1}^{n C} \mathrm{e}^{-\frac{2 x_{x}}{N} \frac{\Phi}{\Phi_{0}}}\right)+U \frac{M I}{2} \gamma_{x}^{n_{C}} \\
& =\lambda \gamma_{x}^{n c} \tag{442}
\end{align*}
$$

Unfortmately, the situation is not much better than in the Hatice-Fock equations (436) The interaction and the hopping pat ae agan completely decompled The mfluence of the rotation only changed from the formen to the lattei However, if all simplifications proposed in subsection 4 ± 2 are used, then $\cos \vartheta=\cos \frac{\pi}{N} \approx 1$ for large N, and no rotation at all remans

The γ-poblem has agan an exact solution Bloch wave functions satisfy all efuations, as can easily be seen Thus, the energy of the system is withm this model descubed by

$$
\begin{equation*}
E=\frac{1}{2} M U-2 t \cos \vartheta \sum_{A=1}^{M} \cos \left(\frac{2 \pi}{N}\left(n_{+}+\frac{\Phi}{\Phi_{0}}\right)\right) \tag{443}
\end{equation*}
$$

This expression needs to be mimmized with the help of the free parancters It is always possible to choose the set of quantum numbers $\left\{n_{-1}\right\}_{i=1}^{A I}$ such that the cosme is positive Therefore, the ground state is charatemed by $\vartheta=0$, which
means that all spin quantization axes point in the same direction No matter what the value of the flux is. it does not lead to interesting spin structures within this model

4.5 Decomposition First

A different approach is to stait with the Hubbard-Stratonovic decomposition and to apply the rotations afterwards. The notion of rotation 11 this sense is not in the first place the preservation of rotation mvanance dumg the process of Hubbard-Stratonovic decomposition This was the man am of the last section By introducing a spin-space reference fame before the decomposition and integrating over all possible angles afterwads, we wanted to restore the rotation mrainace which gets lost during Hubband- Stratonovic transformation

By altering the order of transformations, the emphasis is slightly changed The Hubbaid-Stratonovic decomposition remams a tool to simplify the interaction prit. The spm-space reference frame displays degrees of freedom of the system, which mphes possibilities to describe the system much more detailed It is for example possible to use the angles θ and ζ to construct spm waves on the ring Those spin waves are assumed to be a good description of (excited) states

In more general terms the spm-space reference frame allows to have an $\operatorname{SU}(2)$ gange mariance in the limit of strong interaction. Something smimar is for instance done in superconductivity by introducing order patameters as coherent wave functions for a macioscopic body In thas system the gange monance enalbed Josephson to predict correctly how two superconductors belade when they ale brought together For our system, a gauge mvanance for each ste is also connected with the hope to descube it qualitatively mone correctly and to discover effects which keep hidden otherwise

4.5.1 Derivation of the Hamiltonian

The matemation pat of the Hubbard model is spm-totation miamant Thus, for many of ats transfomations it is not really celevant whether it is peifomed with nomal or with rotated Grassmann numbers The same steps as aheady in the
previous section can be used

Hubbard-Stratonovic Decomposition

The tesult $(\$ 13)$ from the explanation of this decomposition is carred forward

$$
\mathrm{e}^{-S / \hbar}=\int \mathcal{D}^{2} \Delta_{c, s}(h, \tau) \exp \left[-\frac{1}{\hbar}\left(S_{0}+\int_{0}^{\hbar, \beta} \mathrm{d} \tau \sum_{h=1}^{N}\left\{\frac{1}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right)-\right.\right.\right.
$$

where

$$
\left.\left.\left.-\mathrm{i} \Delta_{c} n_{L}-\Delta_{s} s_{k}\right\}\right)\right]
$$

and

$$
Z=\int \mathcal{D} \Psi^{*} \mathcal{D} \Psi \mathrm{e}^{-S / \hbar}
$$

Saddle-point Approximation

The movement to the saddle point works in analogy to (427)

$$
\begin{aligned}
\mathrm{e}^{-S / \hbar}=\int \mathcal{D}^{2} \delta_{c, s}(h \tau) \exp [& -\frac{1}{\hbar}\left(S_{0}+\int_{0}^{\hbar \beta} \sum_{k=1}^{N}\left\{\frac{U}{2} \xi_{k}^{*}\left(1_{2}+\sigma_{z}\right) \xi_{h}-\right.\right. \\
& \left.\left.\left.\ldots-\mathrm{i} \delta_{c}\left(n_{k}-1\right)-\delta_{s}\left(s_{k}+1\right)+\frac{1}{U}\left(\delta_{c}^{2}+\delta_{s}^{2}\right)\right\}\right)\right]
\end{aligned}
$$

Simplifications

With the same simplifications 1-5 as in the prevous chapter the Hamiltonan beromes

$$
\mathcal{H}=\frac{U}{2} \sum_{k=1}^{N} c_{k}^{\dagger}\left(\mathbb{1}_{2}+\sigma_{z}\right) c_{k}-t \sum_{k=1}^{N}\left\{c_{k, \sigma}^{\dagger} c_{k+1, \sigma} \mathrm{e}^{\frac{z-1}{\top} \stackrel{\phi}{\omega_{0}}}+c_{h+1, \sigma}^{\dagger} c_{k, \sigma}^{\dagger} \mathrm{e}^{-\frac{2-1}{\Lambda} \frac{\phi}{\omega_{0}}}\right\}
$$

where Gassmann numbers ane again replaced by ammblation and creation operators

Rotation

To introduce a rotation at this point leads for the first time to modifcations compared to the calculations in the previous section
$\mathcal{H}=\frac{U}{2} \sum_{k=1}^{N} \tilde{c}_{k}^{\dagger} \hat{R}_{k}^{+}\left(\mathbb{1}_{2}+\sigma_{z}\right) \hat{R}_{k} \tilde{c}_{k}-t \sum_{k=1}^{N}\left\{\tilde{c}_{k}^{\dagger} \hat{R}_{k}^{+} \hat{R}_{k+1} \tilde{c}_{k+1} \mathrm{e}^{\frac{3 \pi 1}{k} \frac{+}{\phi_{0}}}+\mathrm{hc}.\right\}$

$$
\begin{aligned}
& S_{0}=\int_{0}^{\hbar \beta} \mathrm{d} \tau \sum_{k=1}^{N} \sum_{\sigma=\uparrow, \downarrow}\left\{\xi_{h, \sigma}^{*}\left(\hbar \partial_{\tau}-\mu\right) \xi_{k, \sigma}-t\left(\xi_{k, \sigma}^{*} \xi_{h+1, \sigma} \mathrm{e}^{\frac{2--}{V} \frac{\phi}{\omega_{0}}}+\ldots\right.\right. \\
& \left.\left..+\xi_{k+1, \sigma}^{*} \xi_{k, \sigma} \mathrm{e}^{-\frac{\frac{2 \pi}{N}}{N} \frac{巾}{\phi_{0}}}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& =U \sum_{k=1}^{N} \hat{c}_{k}^{\dagger}\left(\begin{array}{cc}
\cos ^{2} \frac{\theta_{k}}{2} & -\sin \frac{\theta_{k}}{2} \cos \frac{\theta_{k}}{2} \\
-\sin \frac{\theta_{k}}{2} \cos \frac{\theta_{3}}{2} & \sin ^{2} \frac{\theta_{5}}{2}
\end{array}\right) \tilde{c}_{k} \\
& -t \sum_{k=1}^{N}\left\{\tilde{c}_{k}^{\dagger}\left(\begin{array}{cc}
\cos \vartheta & -\sin \vartheta \\
\sin \vartheta & \cos \vartheta
\end{array}\right) \tilde{c}_{k+1} \mathrm{e}^{\frac{2 \pi}{N} \frac{\phi}{\omega_{0}}}+\mathrm{h} \mathrm{c}\right\} \\
& =\frac{U}{2} \sum_{k=1}^{N}\left\{\left(\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k, \uparrow}+\tilde{c}_{k, \downarrow}^{\dagger} \tilde{c}_{k, \downarrow}\right)+\cos \theta_{k}\left(\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k, \uparrow}-\tilde{c}_{k, \downarrow}^{\dagger} \tilde{c}_{k, \downarrow}\right)-\ldots\right. \tag{4.44}\\
& \left.-\sin \theta_{k}\left(\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{h, \downarrow}+\tilde{c}_{h, \downarrow}^{\dagger} \tilde{c}_{k, \uparrow}\right)\right\} \\
& -t \sum_{k=1}^{N}\left\{\cos \vartheta\left(\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \uparrow}+\tilde{c}_{k, \downarrow}^{\dagger} \tilde{c}_{k+1, \downarrow}+\text { h c. }\right)+\sin \vartheta\left(\tilde{c}_{k, \downarrow}^{\dagger} \tilde{c}_{k+1, \uparrow}-i_{h, \uparrow}^{\dagger} \tilde{c}_{h+1 \downarrow}+\mathrm{hc} .\right)\right\}
\end{align*}
$$

This structure of the Hamıltoman is actually a mixtme of the two ways discussed in the subsections 44.2 and 443 In the former subsection we eraluated the Hamltoman with unrotated states The backward rotation of the Hamiltoman had for the hopping part the consequence that $\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{h, \uparrow}$ was transformed to an expression with non-rotated operators. That is exactly the same what we are domg in this section, apart from the fact that the transfonmation goes now in the other direction, from unrotated to rotated opeiators Thus, the appeang angles ate essentially negative The hopping part above is the same as the hopping part in the latter of the mentioned subsections, were calculations were performed with rotatel states

4.5.2 Search for Solutions

Bratuse of the above mentioned smilarities to the perions section, one only needs to combine the results obtamed theie in order to obtan the Hatiee-Fock efurtions It is reasonable to use not only the adea of notated states but to take also the possibilty of spm-flip into considenation After haring done thes, the fonr possible combmations of operators in the interaction pat have agam all the same expectation value This missing spm sensitivity leads for unstance to the disappeatance of the tem proportional to $\cos \theta_{h}{ }^{\prime}$ It all necessay teims are collected one obtams

[^15]\[

$$
\begin{align*}
& -\sum_{\substack{4=1 \\
A \neq C}}^{M I} \sum_{k=1}^{N} \gamma_{k}^{n_{A} *}\left\{t \cos \vartheta\left(\gamma_{k+1}^{n_{A}} \mathrm{e}^{\frac{2 \pi_{1} \frac{\phi}{N}}{\Phi_{0}}}+\gamma_{k-1}^{n_{A}} \mathrm{e}^{-\frac{2 \pi_{1}}{N} \frac{\Phi}{\varphi_{0}}}\right)+\frac{U}{2} \sin \theta_{k} \gamma_{k}^{n_{A}}\right\} \gamma_{x}^{n_{C}} \\
& +\sum_{\substack{A=1 \\
A \neq C}}^{M I} \sum_{k=1}^{N} \gamma_{k}^{n_{A} *}\left\{t \cos \vartheta\left(\gamma_{k+1}^{n_{C}} \mathrm{e}^{\frac{2 \pi \pi_{1}}{N} \frac{\Phi}{\Phi_{0}}}+\gamma_{k-1}^{n_{C}} \mathrm{e}^{-\frac{2 \pi 1}{N} \frac{\phi}{\Phi_{0}}}\right)+\frac{U}{\underline{2}} \sin \theta_{k} \gamma_{k}^{n_{C}}\right\} \gamma_{x}^{n_{A}} \\
& -t \cos \vartheta\left(\gamma_{x+1}^{n C} \mathrm{e}^{\frac{2 \tau 1}{\lambda} \frac{\phi}{\phi_{0}}}+\gamma_{\tau-1}^{n} \mathrm{e}^{-\frac{2 \tau 1}{M} \frac{\phi}{\phi_{0}}}\right)+\frac{U}{2}\left(M-\sin \theta_{\tau}\right) \gamma_{x}^{n C} \\
& =\lambda \gamma_{x}^{n_{C}} \tag{445}
\end{align*}
$$
\]

One can try to use Bloch wave functions to solve this set of efilations Provided that the angle-site dependence is used which was proposed as sumplification 2 on page 89 one obtans the following results for the potental energy part.

$$
\begin{align*}
& -\frac{U}{2} \sum_{\substack{4=1 \\
1 \neq C}}^{M} \sum_{k=1}^{N} \gamma_{k}^{n_{4} *} \sin \theta_{k} \gamma_{k}^{n_{4}}=-\frac{U}{2 N^{N}} \sum_{\substack{A=1 \\
A \neq C}}^{M} \sum_{k=1}^{N} \sin \left(\frac{2 \pi}{N} h \cdot w\right)=0 \\
& \frac{U}{2} \sum_{\substack{A=1 \\
A \neq C}}^{M} \sum_{k=1}^{N} \gamma_{k}^{n_{A} *} \sin \theta_{k} \gamma_{k}^{n_{C}} \frac{\gamma_{x}^{n_{A}}}{\gamma_{x}^{n_{C}}}=\frac{U}{2 N} \sum_{\substack{4=1 \\
4 \neq C}}^{M} \frac{1}{21}\left(\mathrm{e}^{\frac{2 \pi 1}{N} k w}-\mathrm{e}^{-\frac{2 \pi w^{\prime}}{N} k w}\right) \mathrm{e}^{\frac{2 \pi_{1}(1-k)\left(n_{A}-n_{C}\right)}{N}} \\
& =\frac{U}{2} \sum_{\substack{A=1 \\
A \neq C}}^{M} \frac{1}{21}\left(\delta_{w, n_{A}-n_{C}}-\delta_{w, n_{C}-n_{A}}\right) \mathrm{e}^{\frac{\frac{2-1}{N} x\left(n_{4}-n_{C}\right)}{}} \\
& \text { if } \delta_{w^{\prime} n_{4}-n_{C}}=1=\delta_{w, n_{C}-n_{A^{\prime}}}=\frac{U}{2} \frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\frac{2 \pi i}{N} x w}-\mathrm{e}^{-\frac{2 \pi \pi^{\prime}}{N} x w}\right)=\frac{U}{2} \sin \theta_{x} \tag{446}
\end{align*}
$$

Sunce solutions are only obtained if the find explession does not depend on the parameters x and n_{C}, we have found the following result

It every quantum number n_{A} is occupied by one particle (half filling) then the condition in (446) is always fulfilled The appearing sin-function cancels with the similar expression in the last but one lime of (445) leading to the desired independence of x and n_{C}. Hence, Bloch ware functions satistr in this case the efuations, no matter what the value of w is For exactly hall filling the kinetic encigr amshes and, hence, thene exists only the one cnengy $\frac{1}{2} U M$

One might thank of another situation $w=2$ and evely second quantum number is occupied. However, this is too fal away from ladf filling to be described with our smplifications Nevertheless, if w is a lage number and only every w th position in momentum space is empty, then the equations are also fulfilled This inclicates that such spin structures with Bloch ware functions might exist.

4.6 Zeemann effect

One important phenomenon has not yet been taken into consideration. It was mentroned in section 2.4 that a curient around the cucrmerence of the ing gives rise to a magnetic moment, which interacts with the external magnetic field This effect has been considered by includng the flux in the hopping pant of the Hamltoman. However, there is also a magnetic moment of individual elections whech gives rise to a total spin of the system The interaction of an election spm with a magnetic field is called Zeemann effect.

In many other papers this effect is not taken into consideration. One reason is the assumption of a Aharonov-Bohm situation, where the paticles move in fiekl-tree space Another reason is the $S U(2)$ mbariance of the Hubbard model It has the consequence that the modulus squared and an abbitiay component of the total spm operator commute with the Hamiltoman [43] Hence, one can find a common set of elgenstates, and the Zcemann term has only the effect of an encrgy shift However, if the $\operatorname{SU}(2)$ symmetry gets lost the Zeemann effect needs to be considered Therefore, the following comments are necessary

In our situation the magnetic field is supposed to be strictly perpendicular to the plane of the ring, that means the magnetic field rector B points in the z-dincetion The magnetic moment of a single election is called Bolir's magneton and in denoted by μ_{B} Combined with the Lande factor g the exchange energy becomes

$$
\begin{equation*}
\hat{H}_{\text {Zeem }}=-g \mu_{B} B_{z} \sum_{k=1}^{N} \hat{s}_{h}, \tag{447}
\end{equation*}
$$

suce $\sum_{h} \hat{b}_{h}$ mersumes the z-component of the total spm of the system
In this paper the flux dependence is of paticular menest Theiefore, whenever the Zcemam term is included mono consideration it is useful to express it in a form where the flux is more exphcit The Hux is detemmed by the product of the magnetic field and the area A enclosed by the nug With the lelp of its cucumference $L=a N$ one can wite

$$
\Phi=B_{z} \quad A=B_{z} \quad \frac{L^{2}}{4 \pi}=B_{z} \cdot \frac{a^{2} N^{2}}{4 \pi}
$$

Together with all the other quantities one obtains*

$$
\begin{equation*}
g \mu_{B} \cdot B_{z}=g \frac{e \hbar}{2 m_{e} c} \cdot \frac{4 \pi \Phi}{a^{2} N^{2}} \cdot \frac{h c}{e \Phi_{0}}=\frac{g h^{2}}{m_{e} a^{2} N^{2}} \frac{\Phi}{\Phi_{0}}=: \frac{\Delta_{Z}}{N^{2}} \frac{\Phi}{\Phi_{0}}, \tag{448}
\end{equation*}
$$

where $\Delta_{Z}=\frac{g h^{2}}{m_{e} t^{2}}$ is just an energy constant If the distance between two sites, a, is supposed to be approxmately $3 \AA$ then Δ_{Z} is of the order of magnitude $1 \times 10^{-18} J \approx 10 \mathrm{eV}$ Especially for systems with a low number of sites the Zeemann cneigy is therefore not negligible

Consequently, the Zeemann term (447) would have the following structure•

$$
\hat{H}_{\mathrm{Zeem}}=-\frac{\Delta_{z}}{N^{2}} \frac{\Phi}{\Phi_{0}} \sum_{k=1}^{N}\left\{c_{k, \uparrow}^{\dagger} c_{k, \uparrow}-c_{k, \downarrow}^{\dagger} c_{k, \downarrow}\right\}
$$

The problem with this notation is that one has to be catelul with rotations The expression above is correct if and only it the spm quantization axis is parallel to the magnetic field. If this is changed then only the projection of the spm on the z-axis contributes Therefore, if calculations are performed with a rotated Hamultoman then the Zeemam tem has the followng fonm

$$
\begin{equation*}
\hat{H}_{\text {Zeen } 1}=-\frac{\Delta z}{N^{2}} \frac{\Phi}{\Phi_{0}} \sum_{k=1}^{N} \cos \theta_{k}\left\{\tilde{c}_{h, \uparrow}^{\dagger} \tilde{c}_{h, \uparrow}-\tilde{c}_{h, \downarrow}^{\dagger} \tilde{c}_{h \downarrow}\right\} \tag{4.49}
\end{equation*}
$$

In mole general terms, the Zeemann term brakes the rotational symmetry of the system Since the external magnetic field has a fixed dnection, the fact that the spin is coupled with the ficld leads to a preferred spm dnection

Unfortmately, such teams vamsh within our desciption of the stuation The neason is again the chosen structure of the states It muples that the expectation value of $\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{h, \uparrow}$ equals the expectation value of $\tilde{c}_{h, \downarrow}^{\dagger} \tilde{c}_{h, \downarrow}$ The missung spm sensitivity is shown here most drastically To choose the same prefactor γ_{h}^{n+} for up-spin and down-spin particles negates a preference in a certain spm direction.

Remark: A conclusion of the strategy of this chapter might also be to handle the Ziemann tem as follows The Hamiltoman is the one given in (449) it it is evaluated with unrotated states When using iotated stated, the Hamiltonan should first of all be expessed in nomal opetators learing iotational effects to the states. However, the cosme factor has to reman smee the arme angle between the two fonms of operators exists in both cases Such an ansatz leads in the trial
to obtan only one kind of operators to

$$
\begin{aligned}
& \hat{H}_{\text {Zeem }} \\
& \quad=-\frac{\Delta z}{N^{2}} \frac{\Phi}{\Phi_{0}} \sum_{k=1}^{N} \cos \theta_{k}\left\{c_{k, \uparrow}^{\dagger} c_{k, \uparrow}-c_{k, \downarrow}^{\dagger} c_{k, \downarrow}\right\} \\
& \quad=-\frac{\Delta z}{N^{2}} \frac{\Phi}{\Phi_{0}} \sum_{k=1}^{N} \cos \theta_{k} \tilde{c}_{k}^{\dagger} \hat{R}_{k}^{+} \sigma_{z} \hat{R}_{k} \tilde{c}_{k} \\
& =-\frac{\Delta z}{N^{2}} \frac{\Phi}{\Phi_{0}} \sum_{k=1}^{N} \cos \theta_{k} \tilde{c}_{k}^{\dagger}\left(\begin{array}{cc}
\cos ^{2} \frac{\theta_{k}}{2}-\sin ^{2} \frac{\theta_{k}}{2} & -2 \sin \frac{\theta_{h}}{2} \cos \frac{\theta_{k}}{2} \\
-2 \sin \frac{\theta_{k}}{2} \cos \frac{\theta_{1}}{2} & \sin ^{2} \frac{\frac{k_{k}}{2}}{2}-\cos ^{2} \frac{\theta_{1}}{2}
\end{array}\right) \tilde{c}_{k} \\
& =-\frac{\Delta_{Z}}{N^{2}} \frac{\Phi}{\Phi_{0}} \sum_{k=1}^{N} \cos \theta_{k}\left\{\cos \theta_{k}\left(\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k, \uparrow}-\tilde{c}_{k, \downarrow}^{\dagger} \tilde{c}_{k, \downarrow}\right)-\sin \theta_{k}\left(\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k, \downarrow}+\tilde{c}_{k, \downarrow}^{\dagger} \tilde{c}_{k, \uparrow}\right)\right\} \\
& \\
& =-\frac{\Delta z}{N^{2}} \frac{\Phi}{\Phi_{0}} \sum_{k=1}^{N}\left\{\cos ^{2} \theta_{k}\left(\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k, \uparrow}-\tilde{c}_{k, \downarrow}^{\dagger} \tilde{c}_{k, \downarrow}\right)-\frac{1}{2} \sin \left(2 \theta_{k}\right)\left(\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k, \downarrow}+\tilde{c}_{k, \downarrow}^{\dagger} \tilde{c}_{k, \uparrow}\right)\right\}
\end{aligned}
$$

Then after calculating the expectation value only a term proportional to $\sin \left(2 \theta_{k}\right)$ survives, forcing the spin in the limit of a strong magnetic field B_{z} to point in the direction of $\theta_{k}=\frac{3}{4} \pi$. Obviously, this does not descube the pliysics conrectly

Chapter 5

Trials of Improvement

The cousiderations in the previous chapter allow to gam a feeling for the notion of rotation. Eren so some changes have already been apphed, theie are still major difficultres connected to the present model In addition to the mussmg spin sensitnity three others are mentioned in the sections $j 1$ and 53 Possibilitics how to mpiove the situation, also by using fewer simplifications, are suggested As a consequence new systems of equations have to be solved This is tried for systems of a limited size in the sections 52 and 54

5.1 Away from Half Filling

It one looks at the results in the previous chapter it strikes that U alwas apprans in the numerator However, U is the coupling constant in the Hamltonian

$$
\mathcal{H}=-t \sum_{h=1}^{N}\left\{c_{k, \uparrow}^{\dagger} c_{k+1, \mathrm{t}^{2}} \frac{\frac{2 \pi 1}{\lambda} \frac{\dagger}{\Phi_{0}}}{}+c_{k, \downarrow}^{\dagger} c_{k+1, \downarrow} \mathrm{e}^{-\frac{2 \pi+1}{\lambda} \frac{\dagger}{\phi_{0}}}+\mathrm{h} c .\right\}+U \sum_{k=1}^{N} \hat{n}_{k, \uparrow} \hat{n}_{k, \downarrow}
$$

and detemmes the interaction between fermons with different s.pmen on the same site For lage U the Hamitonian is obvonsly mmmized it all paticles are strongly localized and no site is double occupned Even in the hamt $U \rightarrow \infty$ this kind of brhavour leads to a fimte energy, phovided that the band is less than half filled In contrast to this statement, the obtaned result on the pievious pages diverges as U mereases There is no possibility to get all coefficients in front of U to vanısh.

It would be much more reasonable to have U in the denominator. This is what actually happens when the Hubbard-Stratonovic decomposition is applied as can be seen in section 4.2 Only the move to the saddle point as proposed by Schulz [4t] and performed on page $87 f$. changed this fact. It resulted in the diverging term $\frac{1}{2} M U$ The reason why the transfommation to the saddle point does not always lead to exact energy values hes in the limited validity of this transformation. It was not possible to perform it without a couple of assumptions Onc of them was $\hat{n}_{k} \approx 1$ which refers to half-fillng

Therefore, it seems to be a good idea to perform the calculations without the movement to the saddle point For this purpose the varıous steps are briefly repeated By allowing now rotations with two degrees of freedom we shall also forget about the smplifications in this direction

The stating point is the form of the action aftel the Hubbadd-Stratonovic decomposition as has been given now already several times

$$
\mathrm{e}^{-\zeta / \hbar}=\int \mathcal{D}^{2} \Delta_{c, s}(k, \tau) \exp \left[-\frac{1}{\hbar}\left(S_{0}+\int_{0}^{\hbar \beta} \sum_{h=1}^{N}\left\{\frac{1}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right)-\mathrm{i} \Delta_{c} n_{k}-\Delta_{s} s_{h}\right\}\right)\right] .
$$

Assmmug that there is no dependence of the physical quantities on magmay time and handling the chemical potential as a constant which can set to be zero, one obtams the followng expession for the Hamiltonian

$$
\begin{align*}
\mathcal{H} & =-t \sum_{k=1}^{N}\left(c_{k}^{\dagger} c_{k+1} \mathrm{e}^{\frac{3 \pi}{N} \frac{\dagger}{\phi_{0}}}+c_{k+1}^{\dagger} c_{k} \mathrm{e}^{-\frac{2 \pi+1}{\lambda} \frac{\oplus}{\phi_{0}}}\right) \tag{51}\\
& +\frac{N}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right)-1 \Delta_{c} \sum_{k=1}^{N} c_{k}^{\dagger} 1_{2} c_{k}-\Delta_{s} \sum_{k=1}^{N} c_{k}^{\dagger} \sigma_{z} c_{k}-\frac{\Delta_{Z}}{N^{2}} \frac{\Phi}{\Phi_{0}} \sum_{k=1}^{N} c_{k}^{\dagger} \sigma_{z} c_{k}
\end{align*}
$$

now without any morement to the sarldle point, but with the Zeemann term It shonld be pointed out agan that in such expessions cieation (ammblation) operatons without a spm medex denote the spinons

$$
c_{k}^{\dagger}=\left(c_{h, \uparrow}^{\dagger} c_{k, \downarrow}^{\dagger}\right) \quad \text { and } \quad c_{k}=\binom{c_{k, \uparrow}}{c_{h, \downarrow}}
$$

For the three-dimensional rotation every tem shall be handled separately: Fust, the loopping part:

$$
\begin{align*}
& c_{k}^{\dagger} c_{k+1}=\tilde{c}_{k}^{\dagger} \hat{R}^{+}\left(\theta_{h}, \zeta_{k}\right) \hat{R}\left(\theta_{k+1}, \zeta_{k+1}\right) \tilde{c}_{k+1} \\
& =\tilde{c}_{k}^{\dagger}\left(\begin{array}{cc}
\cos \frac{\theta_{h}}{2} & \mathrm{e}^{-1 \zeta_{h}} \sin \frac{\theta_{h}}{2} \\
-\mathrm{e}^{1 \zeta_{L}} \sin \frac{\theta_{h}}{2} & \cos \frac{\theta_{h}}{2}
\end{array}\right)\left(\begin{array}{cc}
\cos \frac{\theta_{k+1}}{2} & -\mathrm{e}^{-1 \zeta_{k+1}} \sin \frac{\theta_{k+1}}{2} \\
\mathrm{e}^{1 \zeta_{h+1}} \sin \frac{\theta_{k+1}}{2} & \cos \frac{\theta_{k+1}}{2}
\end{array}\right) \tilde{c}_{k+1} \\
& =\tilde{c}_{k}^{\dagger} \bar{R}_{k}\left(\theta_{k}, \zeta_{k}, \theta_{h+1}, \zeta_{k+1}\right) \tilde{c}_{k+1} \quad \text { with } \\
& \bar{R}_{k, \uparrow \uparrow}=\quad \cos \frac{\theta_{k}}{2} \cos \frac{\theta_{k+1}}{2}+\mathrm{e}^{1\left(-\zeta_{k}+\zeta_{k+1}\right)} \sin \frac{\theta_{k}}{2} \sin \frac{0_{k+1}}{2} \\
& \bar{R}_{k, \uparrow \downarrow}=\mathrm{e}^{-1 \zeta_{h}} \sin \frac{\theta_{h}}{2} \cos \frac{\theta_{k+1}}{2}-\quad \mathrm{e}^{-1 \zeta_{k+1}} \cos \frac{\theta_{h}}{2} \sin \frac{\theta_{k+1}}{2} \tag{5.2}\\
& \bar{R}_{k, \downarrow \uparrow}=-\mathrm{e}^{1 \zeta_{k}} \sin \frac{\theta_{k}}{2} \cos \frac{\theta_{k+1}}{2}+\quad \mathrm{e}^{1 \zeta_{k+1}} \cos \frac{\theta_{h}}{2} \sin \frac{\theta_{k+1}}{2} \\
& \bar{R}_{k, \downarrow \downarrow}=\quad \cos \frac{\theta_{k}}{2} \cos \frac{\theta_{k+1}}{2}+\mathrm{e}^{1\left(\zeta_{k}-\zeta_{k+1}\right)} \sin \frac{\theta_{k}}{2} \sin \frac{\theta_{k+1}}{2} \\
& =\bar{R}_{k, \uparrow \uparrow} \tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \uparrow}+\bar{R}_{k, \uparrow \downarrow} \tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \downarrow}+\bar{R}_{k, \downarrow \uparrow} \tilde{c}_{k, \downarrow}^{\dagger} \tilde{c}_{k+1, \uparrow}+\bar{R}_{\kappa, \downarrow \downarrow} \tilde{c}_{k, \downarrow}^{\dagger} \tilde{c}_{k+1 \downarrow}
\end{align*}
$$

In general, the matrix $\bar{R}_{k}\left(\theta_{k}, \zeta_{k} ; \theta_{k+1}, \zeta_{k+1}\right)$ cannot be simplified The previously used argument of an addition of two rotations (one forward, one backward) does not hold in the three-chmensional case The reason is that aliearly the first rotation imphes a change of the coordinate system, so that the angles of the second rotation are defined with respect to different axes Only in special cases one can return to the old picture If for instance the longitude angle is the same for every site, $\zeta \equiv \zeta_{k}=\zeta_{k+1}$, then

$$
\bar{R}_{k}\left(\theta_{k}, \zeta, \theta_{h+1}, \zeta\right)=\left(\begin{array}{cc}
\cos \vartheta & -\mathrm{e}^{-1 \zeta} \sin \vartheta \\
\mathrm{e}^{1 \zeta} \sin \vartheta & \cos \vartheta
\end{array}\right)
$$

where ϑ denotes agam the difference $\frac{1}{2}\left(\theta_{h+1}-\theta_{k}\right)$ and can also depend on the site. ${ }^{1}$

Nevertheless, the matrix elements of \bar{R}_{k} depend on each othei in a simple, chanactenstic way:

$$
\begin{equation*}
\bar{R}_{k, \uparrow \uparrow}^{*}=\bar{R}_{k, \downarrow \downarrow} \quad \text { and } \quad \bar{R}_{k, \uparrow \downarrow}^{*}=-\bar{R}_{k, \downarrow \uparrow} \tag{53}
\end{equation*}
$$

where the stans denote "complex conjugate" values This is even mone helpful for calculations than the fact that \bar{R}_{k} as a product of umtany matuces also lics to be

[^16]mintary, with the consequence that
\[

$$
\begin{align*}
&\left|\bar{R}_{k, \uparrow \uparrow}\right|^{2}+\left|\bar{R}_{k, \downarrow \mid}\right|^{2}=1=\left|\bar{R}_{k, \downarrow \downarrow}\right|^{2}+\left|\bar{R}_{k, \uparrow \downarrow}\right|^{2} \\
& \bar{R}_{k, \uparrow \uparrow}^{*} \bar{R}_{k, \uparrow \downarrow}+\bar{R}_{k, \downarrow \uparrow}^{*} \bar{R}_{k, \downarrow \downarrow}=0=\bar{R}_{k, \uparrow \downarrow}^{*} \bar{R}_{k, \uparrow \uparrow}+\bar{R}_{k, \downarrow \downarrow}^{*} \bar{R}_{k, \downarrow \uparrow} .
\end{align*}
$$
\]

Only the first of these four equations does not follow from (53)
For the interaction and Zeemann part the rotation has the following effect:

$$
\begin{aligned}
& c_{k}^{\dagger} 1_{2} c_{h}=\tilde{c}_{k}^{\dagger} \hat{R}^{+}\left(\theta_{k}, \zeta_{k}\right) 1_{2} \hat{R}\left(\theta_{k}, \zeta_{k}\right) \tilde{c}_{k}=\tilde{c}_{k}^{\dagger}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \tilde{c}_{k} \\
& c_{k}^{\dagger} \sigma_{z} c_{k}=\tilde{c}_{k}^{\dagger} \hat{R}^{+}\left(\theta_{k}, \zeta_{k}\right) \sigma_{z} \hat{R}\left(\theta_{k}, \zeta_{k}\right) \tilde{c}_{k}=\tilde{c}_{k}^{\dagger}\left(\begin{array}{cc}
\cos \theta_{k} & -\mathrm{e}^{-1 \zeta_{k}} \sin \theta_{k} \\
-\mathrm{e}^{1 \zeta_{k}} \sin \theta_{k} & -\cos \theta_{k}
\end{array}\right) \tilde{c}_{k}
\end{aligned}
$$

Together the Hamiltonian (5.1) becomes

$$
\begin{align*}
\mathcal{H}= & -t \sum_{k=1}^{N} \sum_{\sigma, \sigma^{\prime}}\left\{\bar{R}_{k, \sigma \sigma^{\prime}} \tilde{c}_{k, \sigma}^{\dagger} \tilde{c}_{k+1, \sigma^{\prime}} \mathrm{e}^{\frac{2 \pi+1}{N} \frac{+1}{\phi_{0}}}+\bar{R}_{h, \sigma \sigma^{\prime}}^{*} \tilde{c}_{h+1, \sigma}^{\dagger} \tilde{c}_{k, \sigma^{\prime}} \mathrm{e}^{-\frac{2 \pi 1}{N} \frac{\oplus}{\phi_{0}}}\right\} \\
& +\frac{N}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right)-\mathrm{i} \Delta_{c} \sum_{k=1}^{N} \tilde{c}_{k}^{\dagger} \tilde{c}_{k}-\frac{\Delta Z}{N^{2}} \frac{\Phi}{\Phi_{0}} \sum_{k=1}^{N} \cos \theta_{k} \tilde{c}_{h}^{\dagger} \sigma_{z} \tilde{c}_{h} \\
& -\Delta_{s} \sum_{k=1}^{N} \cos \theta_{k} \tilde{c}_{k}^{\dagger} \sigma_{z} \tilde{c}_{k}+\Delta_{s} \sum_{h=1}^{N} \sin \theta_{k}\left\{\tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k, \downarrow} \mathrm{e}^{-\mathrm{k} c_{k}}+\mathrm{h} \mathrm{c}\right\} \tag{5.5}
\end{align*}
$$

with the matrix elements $\tilde{R}_{k, \sigma \sigma^{\prime}}$ defined in (52)
A rarrational calculation with the rotated states

$$
|\dot{\langle }\rangle_{n_{1},, n_{M}}=2^{-M / 2} \sum_{i_{1},} \sum_{i_{M}}^{\sigma_{1} \in\left\{\uparrow, \sigma_{1}, \sigma_{M}\right.} \gamma_{i_{1}}^{n_{1}} \cdot . \cdot \gamma_{i_{M}}^{n_{1},} \tilde{c}_{i_{M}, \sigma_{M}}^{\dagger} \cdot \tilde{i}_{i_{1}, \sigma_{1}}^{\dagger}|0\rangle
$$

works along the same lines as before One obtains the Hatiee-Fock equations

$$
\begin{aligned}
& -t \sum_{k=1}^{N} \sum_{\sigma \sigma^{\prime}}\left\{\bar{R}_{k, \sigma \sigma^{\prime}}\left[\frac{1}{2} \sum_{\substack{4=1 \\
4 \neq c}}^{M} \gamma_{k}^{n_{4}{ }^{*}}\left(\gamma_{k+1}^{n_{4}} \gamma_{t}^{n C}-\gamma_{2}^{n_{4}} \gamma_{k+1}^{n_{C}}\right)+\frac{1}{2} \gamma_{k+1}^{n_{C}} \delta_{r, k}\right] \mathrm{e}^{\frac{3 \pi+}{A} \frac{\phi}{p_{0}}}+\text { "h } c "\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\Delta z}{N^{2}} \frac{\Phi}{\Phi_{0}} \sum_{k=1}^{N} \cos \theta_{k} 0-\Delta_{s} \sum_{k=1}^{N} \cos \theta_{k} \cdot 0 \\
& +\Delta_{\bullet} \sum_{k=1}^{N} \sin \theta_{k}\left[\frac{1}{2} \sum_{\substack{4=1 \\
A \neq C}}^{M I} \gamma_{k}^{n_{4} *}\left(\gamma_{k}^{n_{4}} \gamma_{x}^{n C}-\gamma_{\tau}^{n_{A}} \gamma_{k}^{n_{C}}\right)+\frac{1}{2} \gamma_{k}^{n C} \delta_{x, k}\right]\left(\mathrm{e}^{-1 \zeta_{k}}+\mathrm{e}^{1 \zeta_{k}}\right)=\lambda \gamma_{x}^{n C}
\end{aligned}
$$

This expression shall be modified next For the hopping the chatacteristic dependence (53) of the matrix elements of \bar{R} can be used to prove the following statements for any $z \in \mathbb{C}$

$$
\begin{align*}
& \left\{\left(\bar{R}_{h, \uparrow \uparrow}+\bar{R}_{k, \downarrow \downarrow}\right) z+\mathrm{hc}\right\}=\left(\bar{R}_{k, \uparrow \uparrow}+\bar{R}_{k, \downarrow \downarrow}\right)\{z+\mathrm{hc} .\} \\
& \left\{\left(\bar{R}_{k \uparrow \downarrow}+\bar{R}_{k, \downarrow \uparrow}\right) z+\mathrm{hc}\right\}=\left(\bar{R}_{k, \uparrow \downarrow}+\bar{R}_{k, \downarrow \uparrow}\right)\{z-\mathrm{hc} .\} \tag{56}
\end{align*}
$$

Furtheimore,

$$
\begin{align*}
& \left\{z \mathrm{e}^{\frac{2 \pi \mathrm{r}}{N} \frac{\oplus}{\Phi_{0}}}+\text { h.c. }\right\}=\{z+\mathrm{hc}\} \cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right)+1\{z-\mathrm{hc}\} \sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \\
& \left\{z \mathrm{e}^{\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}}-\mathrm{hc} .\right\}=\{z-\mathrm{hc}\} \cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right)+1\{z+\mathrm{hc}\} \sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \tag{57}
\end{align*}
$$

Hence, in the hopping part of the Hartree-Fock equation the sum ores σ and σ^{\prime} becomes essentially

$$
\begin{align*}
& \left\{\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right)\left(\bar{R}_{h, \uparrow \uparrow}+\bar{R}_{k, \downarrow \downarrow}\right)+\mathrm{i} \sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right)\left(\bar{R}_{k, \uparrow \downarrow}+\bar{R}_{h, \downarrow \uparrow}\right)\right\} *[\ldots+\mathrm{h} \mathrm{c}] \\
& \left\{\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right)\left(\bar{R}_{k, \uparrow \downarrow}+\bar{R}_{k, \downarrow \uparrow}\right)+1 \sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right)\left(\bar{R}_{k, \uparrow \uparrow}+\bar{R}_{h, \downarrow \downarrow}\right)\right\} *[-\mathrm{hc} \mathrm{c} .] \tag{58}
\end{align*}
$$

After a car ful handling of the various trigonometric finctions one finally ends iu) with the following set of equations.

$$
\begin{align*}
& \lambda \gamma_{x}^{n C}= \\
& -t \sum_{k=1}^{N} \sum_{\substack{x=1 \\
4 \neq C}}^{M}\left\{\gamma_{k}^{n_{4} *}\left(\gamma_{k+1}^{n_{A}} \gamma_{x}^{n_{C}}-\gamma_{x}^{n_{A}} \gamma_{k+1}^{n_{C}}\right)+\gamma_{k}^{n_{4} *}\left(\gamma_{k-1}^{n_{4}} \gamma_{x}^{n_{C}}-\gamma_{x}^{n_{A}} \gamma_{k-1}^{n_{C}}\right)\right\} * \\
& \ldots * \cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{k}}{2} \cos \frac{\theta_{k+1}}{2}+\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{k}}{2} \sin \frac{\theta_{k+1}}{2} \cos \left(\zeta_{k}-\zeta_{k+1}\right) \\
& \left.-\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{k}}{2} \sin \frac{\theta_{k+1}}{2} \sin \zeta_{k+1}+\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{k}}{2} \cos \frac{\theta_{h+1}}{2} \sin \zeta_{k}\right\} \\
& -t \sum_{k=1}^{N} \sum_{\substack{i=1 \\
1 \neq C}}^{M} \mathrm{i}\left\{\gamma_{k}^{n_{4}{ }^{*}}\left(\gamma_{k+1}^{n_{4}} \gamma_{x}^{n_{c} C}-\gamma_{x}^{n_{4}} \gamma_{k+1}^{n_{C}}\right)-\gamma_{k}^{n_{4}{ }^{*}}\left(\gamma_{k-1}^{n_{4}} \gamma_{x}^{n_{C}}-\gamma_{x}^{n_{A}} \gamma_{k-1}^{n_{C-1}}\right)\right\} * . . \\
& *\left\{\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{h}}{2} \cos \frac{\theta_{k+1}}{2}+\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{h}}{2} \sin \frac{\theta_{k+1}}{2} \cos \left(\zeta_{k}-\zeta_{k+1}\right)\right. \\
& \left.+\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{k}}{2} \sin \frac{\theta_{k+1}}{2} \sin \zeta_{k+1}-\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cup \operatorname{Hin} \frac{\theta_{k}}{2} \cos \frac{\theta_{k+1}}{2} \sin \zeta_{k}\right\} \\
& -\quad t\left(\gamma_{\tau+1}^{n c}+\gamma_{x-1}^{n C}\right) * \text {. } \\
& \ldots *\left\{\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{x}}{2} \cos \frac{\theta_{x+1}}{2}+\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{x}}{2} \sin \frac{\theta_{\imath+1}}{2} \cos \left(\zeta_{x}-\zeta_{x+1}\right)\right. \\
& \left.-\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{x}}{2} \sin \frac{\theta_{x+1}}{2} \sin \zeta_{x+1}+\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{x}}{2} \cos \frac{\theta_{x+1}}{2} \sin \zeta_{x}\right\} \\
& -\quad t \mathrm{i}\left(\gamma_{\tau+1}^{n C}-\gamma_{x-1}^{n C}\right) * \ldots \\
& . *\left\{\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{x}}{2} \cos \frac{\theta_{x+1}}{2}+\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{x}}{2} \sin \frac{\theta_{x+1}}{2} \cos \left(\zeta_{x}-\zeta_{x+1}\right)\right. \\
& \left.+\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{x}}{2} \sin \frac{\theta_{x+1}}{2} \sin \zeta_{r+1}-\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{\tau}}{2} \cos \frac{\theta_{2+1}}{2} \sin \zeta_{x}\right\} \\
& +\lambda_{\mathrm{y}} \sum_{\substack{k=1}}^{N} \sum_{\substack{A=1 \\
A \neq C}}^{M} \sin \theta_{k} \gamma_{k}^{n_{4}{ }^{*}}\left(\gamma_{k}^{n_{4}} \gamma_{x}^{n_{C}}-\gamma_{x}^{n_{4}} \gamma_{k}^{n_{C}}\right) \cos \zeta_{h}+\Delta_{v} \sin \theta_{2} \gamma_{2}^{n^{C}} \cos \zeta_{r} \\
& +\frac{N}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right) \gamma_{x}^{n_{C}}-1_{c} M \gamma_{x}^{n c} \tag{59}
\end{align*}
$$

It mught be necessary to add a couple of remarks on these equations As an expectation walue of a hermitian operator one expects the energy to be a real walue. Hence, it strikes that the magmay umit 1 appeas twice in the efuation. However, this is not much of a problem, smee the backets behnd it consist of a complex number and its complex conjugate (at least after a derision by $\gamma_{x}^{n c}$) A little bit more suspicious is the fact that the first of the interaction teims does not necessarnly give a real number. This can for instance be seen in the case of Bloch wares below. Here the reason is that on the ight hand stele of the Hastice-Fock ecpuations an expectation value is not really calculated An important fact is that the sum orel τ is mussing Only it the expressions become independent of a, if
proper solutions are found, this constraint vanishes
It shall be examined next whether Bloch wave functions and these HartıeeFock equations go together. If the former are mseited into the latter one obtans expressions like

$$
\begin{aligned}
& \gamma_{h}^{n_{4} *}\left(\gamma_{h+1}^{n_{4}}-\gamma_{k+1}^{n_{C}} \frac{\gamma_{x}^{n_{4}}}{\gamma_{x}^{n_{C}}}\right)+\mathrm{hc}= \frac{2}{N}\left\{\cos \left(\frac{2 \pi}{N} n_{A A}\right)-\cos \left(\frac{2 \pi}{N} n_{C}+\frac{2 \pi}{N}\left(n_{C}-n_{A}\right)(h-x)\right)\right\} \\
& \gamma_{k}^{n_{4} *}\left(\gamma_{k}^{n_{4}}-\gamma_{k}^{n_{C}} \frac{\gamma_{x}^{n_{4}}}{\gamma_{x}^{n_{C}}}\right)=\frac{2}{N}\left\{1-\cos \left(\frac{2 \pi}{N}\left(n_{C}-n_{A}\right)(k-x)\right)-\ldots\right. \\
&\left.\ldots-1 \sin \left(\frac{2 \pi}{N}\left(n_{C}-n_{4}\right)(k-x)\right)\right\}
\end{aligned}
$$

which combine to the energy $E=$

$$
\begin{align*}
& -2 t \sum_{\substack{4=1 \\
4 \neq C}}^{M} \frac{1}{N} \sum_{k}\left[\cos \left(\frac{2 \pi}{N}\left(n_{A}+\frac{\Phi}{\Phi_{0}}\right)\right)-\cos \left(\frac{2 \pi}{N}\left(n_{C}+\frac{\Phi}{\Phi_{0}}+\left(n_{C}-n_{4}\right)(k-\imath)\right)\right)\right] * \\
& \text {. } *\left\{\cos \frac{\theta_{k}}{2} \cos \frac{\theta_{k+1}}{2}+\sin \frac{\theta_{k}}{2} \sin \frac{\theta_{k+1}}{2} \cos \left(\zeta_{k}-\zeta_{k+1}\right)\right\} \\
& -2 t \cos \left(\frac{2 \pi}{N} n_{C}\right)\left\{\cos \frac{\theta_{x}}{2} \cos \frac{\theta_{x+1}}{2}+\sin \frac{\theta_{x}}{2} \sin \frac{\theta_{x+1}}{2} \cos \left(\zeta_{x}-\zeta_{x+1}\right)\right\} \\
& +2 t \sum_{\substack{A=1 \\
A \neq C}}^{M} \frac{1}{N} \sum_{k}\left[\sin \left(\frac{2 \pi}{N}\left(n_{A}+\frac{\Phi}{\Phi_{0}}\right)\right)-\sin \left(\frac{2 \pi}{N}\left(n_{C}+\frac{\Phi}{\Phi_{0}}+\left(n_{C}-n_{A}\right)(k-x)\right)\right)\right] * \\
& \left.\ldots * \cos \frac{\theta_{k}}{2} \sin \frac{\theta_{k+1}}{2} \sin \zeta_{k+1}-\sin \frac{\theta_{h}}{2} \cos \frac{\theta_{h+1}}{2} \sin \zeta_{\kappa}\right\} \\
& +2 t \sin \left(\frac{2 \pi}{N} n_{C}\right)\left\{\cos \frac{\theta_{x}}{2} \sin \frac{\theta_{x+1}}{2} \sin \zeta_{x+1}-\sin \frac{\theta_{\imath}}{2} \cos \frac{\theta_{x+1}}{2} \sin \zeta_{r}\right\} \\
& -\Delta_{\substack{ \\
\begin{subarray}{c}{\lambda=1 \\
\downarrow \neq C} }}\end{subarray}} \sum_{k} \sin \theta_{k}\left\{\cos \left(\frac{2 \pi}{N}\left(n_{C}-n_{A}\right)(k-\imath)\right)+\mathrm{i} \sin \left(\frac{2 \pi}{N}\left(n_{C}-n_{A}\right)(k-\tau)\right)\right\} \cos \zeta_{k} \\
& +\Delta_{4} \frac{M-1}{N} \sum_{k} \sin \theta_{k} \cos \zeta_{k}+\Delta_{s} \sin \theta_{x} \cos \zeta_{r} \\
& -1 \Delta_{c} M+\frac{N}{U}\left(\Delta_{\iota}^{2}+\Delta_{c}^{2}\right) \tag{510}
\end{align*}
$$

For the case of an arbitrary rotation this expression can hardly be smplified futher The fact that x and n_{C} appear several times indicates that Bloch wave functions ate apparently not proper solution. One possibility of continuation could be to use them as an approximation and to mimmze with respect to the mean ficlds Δ_{c} and Δ_{s} accordingly Anotheı possibultty, and this one has been chosen, is to reduce the size of the system For these smpler configurations it should be possible to construct the wave functions by hand with the hope to be able to generalize their solutions to larger systems.

5.2 Limited System Size

5.2.1 One Particle / One Site ($M=1, N=1$)

Whenever we have a situation with only one particle, sums of the form $\sum_{\substack{A=1 \\ A \neq C}}^{M}$ in the expression for the energy (5.9) disappear because of the constrant $A \neq C$. Furthermone, for the special case of $N=1$ it is $\gamma_{k+1}=\gamma_{k-1}=\gamma_{k}=\gamma$ if we try to use again periodic boundary conditions ${ }^{2}$. The same is true for the angles θ_{k} and ζ_{k}. Thus, the only remaining term of the hoppong part is

$$
\begin{aligned}
-t & \left(\gamma_{x+1}^{n C}+\gamma_{x-1}^{n}\right) * \ldots \\
& * \\
\quad & \cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{x}}{2} \cos \frac{\theta_{x+1}}{2}+\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{x}}{2} \sin \frac{\theta_{x+1}}{2} \cos \left(\zeta_{x}-\zeta_{x+1}\right)- \\
& \left.-\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{x}}{2} \sin \frac{\theta_{x+1}}{2} \sin \zeta_{x+1}+\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{x}}{2} \cos \frac{\theta_{x+1}}{2} \sin \zeta_{x}\right\} \\
=- & -2 t \gamma \cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right)
\end{aligned}
$$

For the interaction part the symbols

$$
\begin{align*}
a_{h} & =\Delta_{s} \sin \theta_{k} \cos \zeta_{k} \\
\text { and } \quad E_{F}^{(\Lambda I, N)} & =\frac{N}{U}\left(\Delta_{c}^{2}+\Delta_{c}^{2}\right)-1 \Delta_{c} M \tag{511}
\end{align*}
$$

shall be introduced to simplify witing
Therefore, the comphicated energy equation reduces in this case to

$$
\begin{equation*}
E \gamma=-2 t \cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \gamma+a_{1} \gamma+E_{\Gamma}^{(1,1)} \gamma \tag{512}
\end{equation*}
$$

with the solutions

$$
\begin{align*}
E & =-2 t \cos \left(2 \pi \frac{\Phi}{\Phi_{0}}\right)+\Delta_{\mathrm{s}} \sin \theta_{1} \cos \zeta_{1}-1 \Delta_{\mathrm{c}}+\frac{1}{U}\left(\Delta_{c}^{2}+\Delta_{\mathrm{c}}^{2}\right) \tag{513}\\
\gamma & =\mathrm{e}^{\mathrm{i} \chi}
\end{align*}
$$

where χ can be an arbitrary phase

[^17]A saddle point approximation in the charge mean fields is achieved for $\Delta_{c, 0}=$ $\frac{1 U}{2}$ For the spin mean field it depends on the angles The absolute minımum corlesponds to $\theta_{1}=\frac{\pi}{2}, \zeta_{1}=0$ and $\Delta_{s, 0}=-\frac{U}{2}$. This choice, which is by the way rdentical to former consideration on page 87 (half-filling), has the effect that the two contributions cancel each other Only the term proportional to t 1emans for the energy This is the correct result because for one particle theie should not be any interaction

5.2.2 One Particle / Two Sites ($M=1, N=2$)

Eren here it is $\gamma_{x+1}=\gamma_{x-1}$ for $x=1,2$ because of the peniodic boundary condıtions A closer look at the hopping terms

$$
\begin{aligned}
\imath=1 \quad-2 t \gamma_{2} & \left\{\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{1}}{2} \cos \frac{\theta_{2}}{2}+\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{1}}{2} \sin \frac{\theta_{2}}{2} \cos \left(\zeta_{1}-\zeta_{2}\right)-\right. \\
& \left.-\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{1}}{2} \sin \frac{\theta_{2}}{2} \sin \zeta_{2}+\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{1}}{2} \cos \frac{\theta_{2}}{2} \sin \zeta_{1}\right\} \\
x=2 \cdot \quad-2 t \gamma_{1} & \left\{\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{2}}{2} \cos \frac{\theta_{1}}{2}+\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{2}}{2} \sin \frac{\theta_{1}}{2} \cos \left(\zeta_{2}-\zeta_{1}\right)-\right. \\
& \left.-\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{2}}{2} \sin \frac{\theta_{1}}{2} \sin \zeta_{1}+\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{2}}{2} \cos \frac{\theta_{1}}{2} \sin \zeta_{2}\right\}
\end{aligned}
$$

shows that variables w_{1} and w_{2} can be introduced such that the terms can be whitten in the form

$$
\begin{array}{lll}
x=1 & -2 t \gamma_{2}\left(w_{1}+w_{2}\right) \\
x=2 & & -2 t \gamma_{1}\left(w_{1}-w_{2}\right) \tag{514}
\end{array}
$$

which is based on the fact that in (5 8)

$$
\bar{R}_{1, \uparrow \uparrow}=\bar{R}_{2, \downarrow \downarrow}, \quad \bar{R}_{1, \downarrow \downarrow}=\vec{R}_{2, \uparrow \uparrow}, \quad \bar{R}_{1, \uparrow \downarrow}=-\bar{R}_{2, \downarrow \uparrow}, \quad \bar{R}_{1, \downarrow \uparrow}=-\bar{R}_{2, \uparrow \downarrow}
$$

Then for this paticular case the following system of equations in γ has to be solved

$$
\begin{array}{r}
\left(E-a_{1}-E_{F}^{(1,2)}\right) \gamma_{1}+\quad 2 t\left(w_{1}+w_{2}\right) \gamma_{2}=0 \tag{5}\\
2 t\left(w_{1}-w_{2}\right) \gamma_{1}+\left(E-a_{2}-E_{F}^{(2,1)}\right) \gamma_{2}=0
\end{array}
$$

Apart fiom the trivial solution $\gamma_{1}=\gamma_{2}=0$, which contradicts nomalization conditions, the only possibulity to obtain further solutions is that

$$
0 \stackrel{1}{=} \operatorname{det}\left(\begin{array}{cc}
E-a_{1}-E_{F}^{(1,2)} & 2 t\left(w_{1}+w_{2}\right) \\
2 t\left(w_{1}-w_{2}\right) & E-a_{2}-E_{F}^{(1,2)}
\end{array}\right)
$$

$$
\begin{aligned}
\Longleftrightarrow 0 & \begin{array}{c}
\prime \\
= \\
E^{2}-E\left(2 E_{F}^{(1,2)}+a_{1}+a_{2}\right)+\left(E_{F}^{(1,2)}+a_{1}\right)\left(E_{F}^{(1,2)}+a_{2}\right)-4 t^{2}\left(w_{1}^{2}-w_{2}^{2}\right) \\
\Longrightarrow E_{1, \mathrm{I}}= \\
= \\
\frac{1}{2}\left(2 E_{F}^{(1,2)}+a_{1}+\right. \\
\\
\\
\ldots-4\left(E_{F} \pm \sqrt{\left(2 E_{F}^{(1,2)}+a_{1}+a_{2}\right)^{2}-\cdots}\right. \\
= \\
\frac{1}{2}\left(2 E_{F}^{(1,2)}+a_{1}+a_{2} \pm \sqrt{\left(a_{2}-a_{1}\right)^{2}+16 t^{2}\left(w_{1}^{2}-w_{2}^{2}\right)}\right)
\end{array}
\end{aligned}
$$

If one puts this result into the first or the second of the equations (515) one can obtain a relation between γ_{1} and γ_{2} which together with the normalization condition determines the wave function

$$
\begin{align*}
& \Longrightarrow \quad \gamma_{1}=\frac{4 t\left(w_{1}+w_{2}\right) \gamma_{2}}{\left(a_{1}-a_{2}\right) \mp \sqrt{\left(a_{1}-a_{2}\right)^{2}+16 t^{2}\left(w_{1}^{2}-w_{2}^{2}\right)}}=\imath_{\mathrm{t}, \mathrm{n}} \gamma_{2} \\
& \Longleftrightarrow \quad \gamma_{1}=\frac{\left(a_{1}-a_{2}\right) \pm \sqrt{\left(a_{1}-a_{2}\right)^{2}+16 t^{2}\left(w_{1}^{2}-w_{2}^{2}\right)}}{4 t\left(w_{2}-w_{1}\right)} \gamma_{2}=r_{\mathrm{l}, \mathrm{n}} \gamma_{2} \tag{516}
\end{align*}
$$

Together with $1=\gamma_{1} \gamma_{1}^{*}+\gamma_{2} \gamma_{2}^{*}=\left(1+r_{1, \mathrm{I}}^{2}\right) \gamma_{2} \gamma_{2}^{*}$ this leads to the following solution:

$$
\begin{align*}
& E_{\mathrm{l}, \mathrm{u}}=\frac{1}{2}\left(a_{1}+a_{2} \pm \sqrt{\left(a_{1}-a_{2}\right)^{2}+16 t^{2}\left(w_{1}^{2}-w_{2}^{2}\right)}\right)-\mathrm{i} \Delta_{c}+\frac{2}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right) \\
& \gamma_{1}^{\ell, \mathbb{\pi}}=\frac{r_{1, \mathbb{I}}}{\sqrt{1+r_{1, \mathbb{I}}^{2}}} e^{i \chi^{1, \mathbb{I}}}, \quad \gamma_{2}^{1, \mathbb{\pi}}=\frac{1}{\sqrt{1+r_{1, \mathrm{n}}^{2}}} \mathrm{e}^{1 \mathrm{x}^{1 \mathbb{\pi}}} \tag{517}
\end{align*}
$$

Agam the wave functions include an arbitrary plase χ It is not very hel ${ }_{l}$ ful to gre an extended version (without auxiliay valiables) for the energy because the expression would be too complicated. Neverthcless, one can mention some mteresting points which are connected to the stiucture of the solution for the wave functions

1. The ratio of γ_{1} and γ_{2} is apparently of particular interest for the wave function. Since it does not include the variable $E_{F}^{(1,2)}$, the wave functions apparently does not depend on the mean field assochated with the charge degree of freedom. This is reasonable, because the total number of partules
and hence the the total charge is assumed to be fixed withn the model under consideration

2 What is less understandable is the fact that the qualitative difference between the two possible solutions I and II is also independent of the mean field associated with the spin degree of freedom. In the product

$$
r_{1} \cdot r_{\Pi}=-\frac{w_{1}+w_{2}}{w_{1}-w_{2}}=\frac{\gamma_{1}^{\mathrm{I}}}{\gamma_{2}^{\mathrm{I}}} \frac{\gamma_{1}^{\Pi}}{\gamma_{2}^{\Pi}}
$$

only quantities related to the hopping part appear.

3 There exist some spectal situations for the solutions of the wave function

$$
\begin{array}{lrl}
\text { two ecpual solutions } & \gamma^{1} \equiv \gamma^{\mathrm{a}} & \Longleftrightarrow 0 \stackrel{1}{=}\left(a_{2}-a_{1}\right)^{2}+16 t^{2}\left(w_{1}^{2}-w_{2}^{2}\right) \\
& \\
\text { murrored solutions: } & \frac{\gamma_{1}^{1}}{\gamma_{2}}=\frac{\gamma_{1}^{\mathrm{I}}}{\gamma_{1}^{\mathrm{D}}} & \Longleftrightarrow 0 \stackrel{1}{=} w_{1} \\
& \\
\text { equal distrıbution } & \left|\gamma_{1}\right|^{2}=\left|\gamma_{2}\right|^{2} & \Longleftrightarrow\left(a_{1}-a_{2}\right) \stackrel{1}{=} \pm 4 t w_{2} \\
\text { localızed solutions: } & \gamma_{1}=0 & \Longleftrightarrow w_{1}=-w_{2} \wedge E=a_{2}+E_{F}^{(1,2)} \\
& \gamma_{2}=0 & \Longrightarrow w_{1}=w_{2} \wedge E=a_{1}+E_{F}^{(1,2)}
\end{array}
$$

In the last situation the interaction energy is that of the 1 paticle / 1 site problem This is not the case for the kinetic energy, because even of not occupied the hopping "feels" the existence of adjacent sites Only if both sites were identical, $\Omega_{1}=\Omega_{2}$, then also the kinetic energy would have the value of the previous case.

4 If the magnetic flux is close to half a flux quantum, the expression under the square root

$$
\sqrt{\left(a_{1}-a_{2}\right)^{2}+16 t^{2}\left(w_{1}^{2}-w_{2}^{2}\right)}
$$

can become negative, since in this region w_{2} nught be greater than w_{1} Not, only does this lead to complex energy values, it might also have the effect of diverging expiessions for the components of the ware function The most likely conclusion is that certain ${ }^{3}$ configurations are simply forbidden

[^18]Based on these statements one could try to investigate the dependence of the system on the external flux. There are two possible appioaches One is to fix a certan spm configuration and to study how the wave function alters if the magnetic field is changed The flux dependence is manly determined by the two rauables

$$
\begin{align*}
& w_{1}=\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right)\left\{\cos \frac{\theta_{1}}{2} \cos \frac{\theta_{2}}{2}+\sin \frac{\theta_{1}}{2} \sin \frac{\theta_{2}}{2} \cos \left(\zeta_{1}-\zeta_{2}\right)\right\} \\
& w_{2}=\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right)\left\{\sin \frac{\theta_{1}}{2} \cos \frac{\theta_{2}}{2} \sin \zeta_{1}-\cos \frac{\theta_{1}}{2} \sin \frac{\theta_{2}}{2} \sin \zeta_{2}\right\} . \tag{518}
\end{align*}
$$

Therefore, one can observe that the probablity of the paticle to be on site 1 or on site 2 changes periodically Depending on the parameters, it can happen that the particle can for some values of Φ only be found on one site With ncreasing flux it then moves to the other site until the flux is agam lange enough for a preference of the first site. A contmuous increase of the flux, therefore, leads to an oscillation in the particle distribution

A mole accurate approach does not a prionz fix a cortan set of angles On the contrary, it is supposed that the spin stiucture is determmed by the external magnetic field Whenever a non-zero flux appears, θ_{k} and ζ_{h} dee chosen m such a way that the total energy becomes a minmum Therefore, the angles might be a function of Φ A trial to obtam a minimization with the help of dentatives leads to long, cumbersome equations Thus, a qualitative cliscussion of the energy is necessary

It one stats such a discussion with the case $\zeta_{1}=\zeta_{2}=0$ and $\cos \left(\frac{2 \pi}{N} \frac{p}{\phi_{0}}\right)=0$ then the mminal energy is determned by

$$
E_{\Perp}=\frac{1}{2}\left(a_{1}+a_{2}-\left|a_{1}-a_{2}\right|\right)+E_{\Gamma}^{(1,2)} ; \quad a_{k}=\Delta_{\mathrm{s}} \sin \theta_{h}
$$

For both of the possibilities $a_{1}<a_{2}$ and $a_{1}>a_{2}$ only one angle iemams Hence, it is withont loss of generality sufficient to perform a mmmization of a_{1} with repect to θ_{1}, because then $a_{1}<a_{2}$ is dutomatically fulfilled. The result of this nummization is $\theta_{1}=\frac{3 \pi}{2}$ The next two steps ase to drop fist of all the constraint $\cos \left(\frac{2 \tau}{N} \frac{p}{\omega_{0}}\right)=0$ and two allow later non-zeno values $\zeta_{1}=\zeta_{2}=\zeta$ Looking at the energy

$$
\begin{aligned}
E_{\mathrm{I}}= & \frac{1}{2} \Delta_{s}\left(\sin \theta_{1}+\sin \theta_{2}\right) \cos \zeta \\
& \quad-\frac{1}{2} \sqrt{\Delta_{s}^{2}\left(\sin \theta_{1}-\sin \theta_{2}\right)^{2} \cos ^{2} \zeta+16 t^{2} \cos ^{2}\left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos ^{2}\left(\frac{\theta_{1}}{2}-\frac{\theta_{2}}{2}\right)-\ldots} \\
& \frac{\ldots-16 t^{2} \sin ^{2}\left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin ^{2}\left(\frac{\theta_{1}}{2}-\frac{\theta_{2}}{2}\right) \sin ^{2} \zeta}{}+E_{F}^{(1,2)},
\end{aligned}
$$

one can see that the flux mmimizes the energy even further and most of all if $\theta_{1}=\theta_{2}$ On the other hand, the ζ angle leads to an increase in the energy because $|\cos \zeta| \leq 1$ and because of the minus sign m fiont of $\sin ^{2} \zeta$ This is less apparent but also true for $\zeta_{1} \neq \zeta_{2}$.

Hence, to choose θ_{k} and ζ_{k} in such a way that the total energy becomes a minmum means to have

$$
\theta_{1}=\theta_{2}=\frac{3 \pi}{2} ; \quad \zeta_{1}=\zeta_{2}=0 \quad \Longleftrightarrow \quad \theta_{1}=\theta_{2}=\frac{\pi}{2} ; \quad \zeta_{1}=\zeta_{2}=\pi
$$

This iesult leads flux-independently to the energy

$$
\begin{equation*}
E=-\Delta_{s}-2 t \cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right)-\mathrm{i} \Delta_{c}+\frac{2}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right) \tag{519}
\end{equation*}
$$

Furthemore, the saddle point for the mean fields is $\Delta_{c, 0}=\frac{U}{t}$ and $\Delta_{s, 0}=$ $\frac{b}{4}$ It leads, similaily to the previous case, to the non-interaction energy $E=$ $-2 t \cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right)$

5.2.3 Two Particles / Two Sites ($M=2, N=2$)

The prevous two cases were not very mteresting becanse the existence of only one particle does not allow any interaction This is different for the situation which is now under consideration. Therefore, it is also not possible to combine the solutions for one particle to a solution for two particles By calling

$$
\gamma_{x}^{n_{C}}=: \gamma_{x} \quad \text { and } \quad \gamma_{x}^{n_{4}}=\beta_{x}
$$

onc obtans from (59) the following geneid equation

$$
\begin{aligned}
E \gamma_{x}= & -t\left[2 \beta_{1}^{*}\left(\beta_{2} \gamma_{x}-\beta_{x} \gamma_{2}\right)\left(w_{1}+w_{2}\right)+2 \beta_{2}^{*}\left(\beta_{1} \gamma_{x}-\beta_{x} \gamma_{1}\right)\left(w_{1}-w_{2}\right)\right] \\
& -t\left(\gamma_{x+1}+\gamma_{x-1}\right)\left(w_{1} \pm w_{2}\right) \\
& +a_{1} \beta_{1}^{*}\left(\beta_{1} \gamma_{x}-\beta_{x} \gamma_{1}\right)+a_{2} \beta_{2}^{*}\left(\beta_{2} \gamma_{x}-\beta_{x} \gamma_{2}\right)+a_{x} \gamma_{x}+E_{F}^{(2,2)} \gamma_{x}
\end{aligned}
$$

which leads to the set of equations

$$
\begin{align*}
x=1: \quad 0 & =\gamma_{1}\left[-2 t \beta_{1}^{*} \beta_{2}\left(w_{1}+w_{2}\right)+\beta_{2}^{*} \beta_{2} a_{2}+a_{1}+E_{F}^{(2,2)}-E\right] \\
& +\gamma_{2}\left[+2 t \beta_{1}^{*} \beta_{1}\left(w_{1}+w_{2}\right)-2 t\left(w_{1}+w_{2}\right)-\beta_{2}^{*} \beta_{1} a_{2}\right] \tag{520}\\
x=2: \quad 0 & =\gamma_{1}\left[+2 t \beta_{2}^{*} \beta_{2}\left(w_{1}-w_{2}\right)-2 t\left(w_{1}-w_{2}\right)-\beta_{1}^{*} \beta_{2} a_{1}\right] \\
& +\gamma_{2}\left[-2 t \beta_{2}^{*} \beta_{1}\left(w_{1}-w_{2}\right)+\beta_{1}^{*} \beta_{1} a_{1}+a_{2}+E_{F}^{(2,2)}-E\right]
\end{align*}
$$

Piovided that the two wave functions γ, β are distmet, the existence of a nontrivial solution is equavalent to the condition

$$
\begin{aligned}
0= & {\left[-2 t \beta_{1}^{*} \beta_{2}\left(w_{1}+w_{2}\right)+\beta_{2}^{*} \beta_{2} a_{2}+a_{1}+E_{\Gamma}^{(2,2)}-E\right] * . . } \\
& *\left[-2 t \beta_{2}^{*} \beta_{1}\left(w_{1}-w_{2}\right)+\beta_{1}^{*} \beta_{1} a_{1}+a_{2}+E_{F}^{(2,2)}-E\right] \\
- & {\left[+2 t \beta_{2}^{*} \beta_{2}\left(w_{1}+w_{2}\right)+\beta_{2}^{*} \beta_{1} a_{2}\right] *\left[+2 t \beta_{1}^{*} \beta_{1}\left(w_{1}-w_{2}\right)+\beta_{1}^{*} \beta_{2} a_{1}\right] }
\end{aligned}
$$

for which also the normalization condition $\left|\beta_{1}\right|^{2}+\left|\beta_{2}\right|^{2}=1$ is used twice If one multiphes these brackets it tums out that many teims cancel each other learing the following equation for discussion

$$
\begin{align*}
0= & -2 t \beta_{1}^{*} \beta_{2}\left(w_{1}+w_{2}\right)\left(a_{1}+a_{2}+E_{F}^{(2,2)}-E\right) \\
& -2 t \beta_{2}^{*} \beta_{1}\left(w_{1}-w_{2}\right)\left(a_{1}+a_{2}+E_{F}^{(2,2)}-E\right) \\
& +\left|\beta_{1}\right|^{2} a_{1}\left(a_{1}+E_{F}^{(2,2)}-E\right)+\left|\beta_{2}\right|^{2} a_{2}\left(a_{2}+E_{\Gamma}^{(2,2)}-E\right) \\
& +\left(a_{1}+E_{F}^{(2,2)}-E\right)\left(a_{2}+E_{\Gamma}^{(22)}-E\right) \tag{5}
\end{align*}
$$

Just looking at the imaginary part of equation (521), one has to deal with

$$
\begin{align*}
0= & -2 t \operatorname{Im}\left(\beta_{1}^{*} \beta_{2}\right)\left(w_{1}+w_{2}\right)\left(a_{1}+a_{2}+E_{F}^{(2,2)}-E\right) \\
& -2 t \operatorname{Im}\left(\beta_{2}^{*} \beta_{1}\right)\left(w_{1}-w_{2}\right)\left(a_{1}+a_{2}+E_{\Gamma}^{(2,2)}-E\right) \\
\Longleftrightarrow \quad 0= & 2 t \operatorname{Im}\left(\beta_{1}^{*} \beta_{2}\right) w_{2}\left(a_{1}+a_{2}+E_{F}^{(2,2)}-E\right) \tag{522}
\end{align*}
$$

The equality is satisfied if one of the factors is zeio That leares the possibilities that there is no phase difference between β_{1} and β_{2}, that a special spm configuration is realized or that the energy has a certan value The statement about the energy is of particular interest, and used for (5 21):

$$
0=\left|\beta_{1}\right|^{2} a_{1}\left(-a_{2}\right)+\left|\beta_{2}\right|^{2} a_{2}\left(-a_{2}\right)+\left(-a_{1}\right)\left(-a_{2}\right)
$$

one can see that $E_{\mathrm{I}}=a_{1}+a_{2}+E_{F}^{(2,2)}$ is also a solution for the whole equation.
This result makes it much easier to find also the second energy solution of the quadratic equation (521), written in the form

$$
\begin{gathered}
0=\left(E-E_{F}^{(2,2)}\right)^{2}+\left(E-E_{F}^{(2,2)}\right)\left[2 t \beta_{1}^{*} \beta_{2}\left(w_{1}+w_{2}\right)+2 t \beta_{2}^{*} \beta_{1}\left(w_{1}-w_{2}\right)-.\right. \\
\left.\ldots-\left|\beta_{1}\right|^{2} a_{1}-\left|\beta_{2}\right|^{2} a_{2}-\left(a_{1}+a_{2}\right)\right]+\{\cdots\} \\
\Longrightarrow \\
{\left[\begin{array}{r}
\Rightarrow
\end{array}\right]-\left(E_{1}-E_{F}^{(2,2)}\right)-\left(E_{\mathrm{I}}-E_{\Gamma}^{(2,2)}\right)=E_{F}^{(2,2)}-\left(a_{1}+a_{2}\right)-E_{\|}}
\end{gathered}
$$

Hence, the two solutions for the energy are

$$
\begin{align*}
& E_{\mathrm{I}}=a_{1}+a_{2}+E_{F}^{(2,2)} \\
& E_{\mathrm{I}}=2 t \beta_{1}^{*} \beta_{2}\left(w_{1}+w_{2}\right)+2 t \beta_{2}^{*} \beta_{1}\left(w_{1}-w_{2}\right)-\left|\beta_{1}\right|^{2} a_{1}-\left|\beta_{2}\right|^{2} a_{2}+E_{\Gamma}^{(2,2)} \tag{5}
\end{align*}
$$

The next step is to determine the wave functions belonging to these energies If the obtained energies are plugged into the equations (523) one ends up with two (per coustruction dependent) equations For $E=E_{\mathrm{I}}$ it is not difficult to see that they are fulfilled for

$$
\begin{equation*}
\beta_{1}=\beta_{2}=\frac{1}{\sqrt{2}} \mathrm{e}^{\mathrm{I}_{1}} \quad \text { and } \quad \gamma_{1}=-\gamma_{2}=\frac{1}{\sqrt{2}} \mathrm{e}^{1 \chi_{2}} \tag{5.24}
\end{equation*}
$$

ol vice rersa
For $E=E_{\square}$ the situation is much more difficult. Looking back at the discussion of equation (522) one can conclude that in this case there is no phase clifference between β_{1} and β_{2}, provided that not a special spin configuiation is realized such that $w_{2}=0$ Without loss of generality one can therefore assume that the components of β (and γ) are real. Then the equations (5 2 3) can be witten as

$$
\begin{align*}
& \gamma_{1}\left[2 t \beta_{1}\left(w_{1}-w_{2}\right)+\beta_{2} a_{1}\right]=\gamma_{2}\left[2 t \beta_{2}\left(w_{1}+w_{2}\right)+\beta_{1} a_{2}\right] \quad \text { and accordmely } \\
& \beta_{1}\left[2 t \gamma_{1}\left(w_{1}-w_{2}\right)+\gamma_{2} a_{1}\right]=\beta_{2}\left[2 t \gamma_{2}\left(w_{1}+w_{2}\right)+\gamma_{1} a_{2}\right], \tag{525}
\end{align*}
$$

where it has been used that non of the components is zero Together with the nommalization conditions one now has four mdependent equations which can be
combined in varıous ways. Eventually, all these possibllities lead to the same quadratic equatıons, which are-

$$
\begin{aligned}
& 0=z^{2}\left[16 t^{2} w_{1}^{2}+\left(a_{1}-a_{2}\right)^{2}\right]-z\left[16 t^{2} w_{1}\left(w_{1}+w_{2}\right)+\left(a_{1}-a_{2}\right)^{2}\right]+4 t^{2}\left(w_{1}+w_{2}\right)^{2} \\
& 0=\tilde{z}^{2}\left[16 t^{2} w_{1}^{2}+\left(a_{1}-a_{2}\right)^{2}\right]-\tilde{z}\left[16 t^{2} w_{1}\left(w_{1}-w_{2}\right)+\left(a_{1}-a_{2}\right)^{2}\right]+4 t^{2}\left(w_{1}-w_{2}\right)^{2}
\end{aligned}
$$

Here, z represents β_{1}^{2} or γ_{1}^{2}, and \tilde{z} stands for β_{2}^{2} or γ_{2}^{2}.
The solutions of these equations are

$$
\begin{align*}
& z_{ \pm}=\frac{1}{2}\left\{1+\frac{16 t^{2} w_{1} w_{2}}{p} \pm \sqrt{1+\frac{\left(16 t^{2} w_{1}^{2}\right) \cdot\left(16 t^{2} w_{2}^{2}\right)}{p^{2}}-\frac{\left(16 t^{2} w_{1}^{2}\right)+\left(16 t^{2} w_{2}^{2}\right)}{p}}\right\} \\
& z_{ \pm}=\frac{1}{2}\left\{1-\frac{16 t^{2} w_{1} w_{2}}{p} \pm \sqrt{1+\frac{\left(16 t^{2} w_{1}^{2}\right)\left(16 t^{2} w_{2}^{2}\right)}{p^{2}}-\frac{\left(16 t^{2} w_{1}^{2}\right)+\left(16 t^{2} w_{2}^{2}\right)}{p}}\right\} \\
& \left(p=16 t^{2} w_{1}^{2}+\left(a_{1}-a_{2}\right)^{2}\right) \tag{526}
\end{align*}
$$

They have the wanted property $z_{+}+\tilde{z}_{-}=1=z_{-}+\tilde{z}_{+}$Which allows the combinations

$$
\begin{equation*}
\left[\beta_{1}=\sqrt{z_{+}} \wedge \beta_{2}=\sqrt{\tilde{z}_{-}}\right] \quad \text { or } \quad\left[\beta_{1}=\sqrt{z_{-}} \wedge \beta_{2}=\sqrt{\tilde{z}_{+}}\right] \tag{5.27}
\end{equation*}
$$

and similarly for γ However, during the process of transforming (525) to the quadiatic form the whole equation has to be squared once Since this is not an equivalent transformation, not all of the suggest solutions really have to fulfill (5 25) A thorough investigation into this question has been clone, but is not worth repeating because of even bigger problems mentioned in the next section.

5.3 More Appropriate States

5.3.1 The Problem of Orthogonality

Looking back at the pioblem of 1 particle / 2 sites, we had in (5 17) two different solutions γ^{I} and γ^{I} for the ware function These two wave functions are not necessanly orthogonal On the contrary;

$$
\begin{equation*}
\gamma_{1}^{\mathrm{1}} \gamma_{1}^{\mathrm{I}}+\gamma_{2}^{\mathrm{1}} \gamma_{2}^{\mathrm{I}}=\frac{1+r_{1} r_{\llbracket}}{\sqrt{1+r_{1}^{2}} \sqrt{1+r_{\llbracket}^{2}}}=\frac{1}{\sqrt{1+r_{1}^{2}} \sqrt{1+r_{\mathrm{u}}^{2}}} \frac{2 w_{2}}{w_{2}-w_{1}} \tag{528}
\end{equation*}
$$

and orthogonality is only satisfied if $w_{2}=0$ In this special case, which is for instance fulfilled if $\zeta_{1}=\zeta_{2}=0$, the solutions arc identical with those of the 2 palticles / 2 sites problem because

$$
r_{\mathrm{I} \mathrm{I}}^{2}=\frac{16 t^{2} w_{1}^{2}}{\left(\sqrt{16 t^{2} w_{1}^{2}+\left(a_{1}-a_{2}\right)^{2}} \mp\left(a_{1}-a_{2}\right)\right)^{2}}=\frac{\sqrt{16 t^{2} w_{1}^{2}+\left(a_{1}-a_{2}\right)^{2}} \pm\left(a_{1}-a_{2}\right)}{\sqrt{16 t^{2} w_{1}^{2}+\left(a_{1}-a_{2}\right)^{2}} \mp\left(a_{1}-a_{2}\right)}=\frac{z_{ \pm}}{\tilde{z}_{\mp}} .
$$

Foi all other angle configurations our Hartree-Fock calculations for the 1 partrcle problem do not lead to two orthogonal solutions Hence, attempts to obtain a solution for the 2 particle problem which consist of a combination of two orthogonal wave functions are also very likely to tall

Therefore, we have to reconsider the stiategy for the chore of the states In the precerling calculations the more general two-body state

$$
|\psi\rangle_{n_{1}, n_{2}}=\frac{1}{2} \sum_{2_{1}, \imath_{2}} \sum_{c_{1}, \sigma_{2}} \gamma_{1_{1}, r_{2}}^{n_{1}, n_{2}} c_{2_{1}, \sigma_{1}}^{\dagger} c_{2_{2}, \sigma_{2}}^{\dagger}|0\rangle
$$

has, in a knd of separation ansatz, been split in the form

$$
|\psi\rangle_{n_{1}, n_{2}}=\frac{1}{2} \sum_{2_{1}, 2_{2}} \sum_{\sigma_{1}, \sigma_{2}} \gamma_{2_{1}}^{n_{1}} \gamma_{2_{2}}^{n_{2}} c_{\imath_{1}, \sigma_{1}}^{\dagger} c_{1_{2}, \sigma_{2}}^{\dagger}|0\rangle
$$

If this step together with the normalization condition $\sum_{2}\left|\gamma_{2}^{\prime \prime}\right|^{2}=1$ and the onthogonality constraint $\sum_{2} \gamma_{2}^{n_{1}} \gamma_{2}^{n_{2}}=0$ for $n_{1} \neq n_{2}$ is performed, one has two mdependently behaving particles in mind Howerer, this is not a useful concept in the case that there is an interaction between particles. Due to the mteraction there might appear new energy levels which aie not smple combinations of the energies of single particles The ware function needs to be treated as a many-body problem

The solutions for the 2 particles / 2 sitcs problem on page 121 cannot be used because they are in general not orthogonal and, thus, contradict an assumption which is appanently wrong. It is necessay to forget about the orthogonality constrame and to peiform the calculations agam That means that the evaluation of the Hamultoman (55) has to be altered, and consequently, a mote general exprension for the Hartree-Fock equation (59) has to be found.

For the expectation value of a typical operator withont using orthogonality a compact notation shall be used It arises naturally when such operato chains
are fully contracted and makes use of an auxiliary quantum number n_{0} for which the wave function is $\gamma_{i}^{n_{0}}=\delta_{2, k}$. Then

$$
\begin{aligned}
& n_{1,,_{M}}\langle\psi| \tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \downarrow}|\psi\rangle_{n_{1}, n_{M}} \\
& =\frac{1}{2} \sum_{j_{1},, J_{M}} \sum_{p \in \mathcal{P}(A+1)}^{\wp(0) \neq 0}(-1)^{\mathrm{sgn} \varphi+1} \gamma_{j_{1}}^{n_{1} *} \ldots \gamma_{j_{M}}^{n_{M} *} \gamma_{j_{1}}^{n_{\rho(1)}} \cdot \gamma_{J_{M}}^{n_{\varphi(1)}} \gamma_{h+1}^{n_{\varphi(0)}} \\
& \frac{\partial}{\partial \gamma_{\tau}^{n} c^{*}}\left({ }_{n_{1}, n_{M}}\langle\psi| \sum_{k=1}^{N} \tilde{c}_{k, \uparrow}^{\dagger} \tilde{c}_{k+1, \downarrow}|\psi\rangle_{n_{1},, n_{M}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \sum_{4=1}^{M} \sum_{j_{1}, J_{M}}^{J C=x} \sum_{\rho \in \mathcal{P}(M)}(-1)^{\operatorname{sgn} \rho_{\rho}} \gamma_{j_{1}}^{n_{1} *} \cdot{\widehat{\gamma_{3 C} C^{*}}}^{*} . . \gamma_{J_{M}}^{n_{M} *} \gamma_{j_{1}}^{n_{\rho(1)}} \cdot \gamma_{j_{4}+1}^{n_{\rho(4)}} \cdot \gamma_{j_{M}}^{n_{\rho(M)}}
\end{aligned}
$$

and the sum over all permutations cannot be reduced further
Hence the γ-problem has a much more complicated structure than (59) ${ }^{4}$.

$$
\begin{aligned}
& E \sum_{j_{1},,_{M}}^{J_{M}=\tau} \sum_{\rho \in \mathcal{F}(M)}(-1)^{\text {ソnn }} \gamma_{j_{1}}^{n_{1} *} \cdot \widehat{\gamma_{j C}^{n_{C}}}{ }^{*} \quad \gamma_{J_{M}}^{n_{M}{ }^{*}} \gamma_{j_{1}}^{n_{\rho(1)}} \cdot \gamma_{J_{M}}^{n_{\rho(M)}}=
\end{aligned}
$$

$$
\begin{aligned}
& *\left\{\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{k}}{2} \cos \frac{\theta_{k+1}}{2}+\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{k}}{2} \sin \frac{\theta_{k+1}}{2} \cos \left(\zeta_{\kappa}-\zeta_{k+1}\right)-\right. \\
& \left.-\min \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{k}}{2} \sin \frac{\theta_{k+1}}{2} \sin \zeta_{k+1}+\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{k}}{2} \cos \frac{\theta_{k+1}}{2} \operatorname{in} \zeta_{k}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { * }\left\{\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{k}}{2} \cos \frac{\theta_{k+1}}{2}+\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{k}}{2} \sin \frac{\theta_{k+1}}{2} \cos \left(\zeta_{k}-\zeta_{k+1}\right)-\right. \\
& \left.+\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cos \frac{\theta_{k}}{2} \sin \frac{\theta_{k+1}}{2} \sin \zeta_{k+1}-\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \sin \frac{\theta_{k}}{2} \cos \frac{\theta_{h+1}}{2} \sin \zeta_{k}\right\}
\end{aligned}
$$

[^19]For the special case of 2 particles these rather difficult equations can be reduced to the less cumbersome expression $(C=2)$.

$$
\begin{align*}
& E \sum_{j_{1}=1}^{N} \gamma_{\jmath_{1}}^{n_{1} *}\left\{\gamma_{\jmath_{1}}^{n_{1}} \gamma_{\tau}^{n_{C}}-\gamma_{j_{1}}^{n_{l}} \gamma_{x}^{n_{1}}\right\}= \\
& -t \sum_{k=1}^{N} \sum_{j_{1}=1}^{N} \gamma_{j_{1}}^{n_{1} *}\left\{\gamma_{j_{1}}^{n_{1}} \gamma_{x}^{n_{0}}\left(\gamma_{k+1}^{n_{C}}+\gamma_{k-1}^{n_{C}}\right)-\gamma_{\jmath_{1}}^{n_{C}} \gamma_{x}^{n_{0}}\left(\gamma_{k+1}^{n_{1}}+\gamma_{k-1}^{n_{1}}\right)-\ldots\right. \\
& \left.. .-\gamma_{j_{1}}^{n_{0}} \gamma_{x}^{n_{1}}\left(\gamma_{k+1}^{n_{C}}+\gamma_{k-1}^{n_{C}}\right)+\gamma_{j_{1}}^{n_{0}} \gamma_{x}^{n_{C}}\left(\gamma_{k+1}^{n_{1}}+\gamma_{k-1}^{n_{1}}\right)\right\}\left\{\cos \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cdot\right\} \\
& -{ }_{1} t \sum_{k=1}^{N} \sum_{j_{1}=1}^{N} \gamma_{j_{1}}^{n_{1} *}\left\{\gamma_{\jmath_{1}}^{n_{1}} \gamma_{x}^{n_{0}}\left(\gamma_{k+1}^{n_{C}}-\gamma_{k-1}^{n}\right)-\gamma_{j_{1}}^{n_{C}} \gamma_{x}^{n_{0}}\left(\gamma_{k+1}^{n_{1}}-\gamma_{k-1}^{n_{1}}\right)-.\right. \\
& \left.\ldots-\gamma_{j_{1}}^{n_{0}} \gamma_{x}^{n_{1}}\left(\gamma_{k+1}^{n_{C}}-\gamma_{k-1}^{n_{C}}\right)+\gamma_{j_{1}}^{n_{0}} \gamma_{x}^{n_{C}}\left(\gamma_{k+1}^{n_{1}}-\gamma_{k-1}^{n_{1}}\right)\right\}\left\{\sin \left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right) \cdots\right\} \\
& +\Delta_{s} \sum_{k=1}^{N} \sum_{j_{1}=1}^{N} \gamma_{j_{1}}^{n_{1} *}\left\{\gamma_{j_{1}}^{n_{1}} \gamma_{x}^{n_{0}} \gamma_{k}^{n_{C}}-\gamma_{j_{1}}^{n_{C}} \gamma_{x}^{n_{0}} \gamma_{k}^{n_{1}}-\gamma_{j_{1}}^{n_{0}} \gamma_{x}^{n_{1}} \gamma_{k}^{n c}+\gamma_{j_{1}}^{n_{0}} \gamma_{x}^{n_{C}} \gamma_{k}^{n_{1}}\right\} \cup \mathrm{m} \theta_{k} \cos \zeta_{k} \\
& -{ }_{1} \Delta_{c} \sum_{k=1}^{N} \sum_{j_{1}=1}^{N} \gamma_{j_{1}}^{n_{1} *}\left\{\gamma_{j_{1}}^{n_{1}} \gamma_{x}^{n_{0}} \gamma_{k}^{n_{C}}-\gamma_{j_{1}}^{n_{C}} \gamma_{x}^{n_{0}} \gamma_{k}^{n_{1}}-\gamma_{j_{1}}^{n_{0}} \gamma_{x}^{n_{1}} \gamma_{k}^{n_{C}}+\gamma_{j_{1}}^{n_{0}} \gamma_{x}^{n c} \gamma_{k}^{n_{1}}\right\} \\
& +\frac{N}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right) \sum_{j_{1}=1}^{N} \gamma_{j_{1}}^{n_{1} *}\left\{\gamma_{j_{1}}^{n_{1}} \gamma_{x}^{n_{C}}-\gamma_{J_{1}}^{n_{C}} \gamma_{x}^{n_{1}}\right\} \tag{530}
\end{align*}
$$

For the sub-case of 2 sites one obtains by

- calling agam $\gamma_{x}^{n_{C}}=: \gamma_{x}$ and $\gamma_{x}^{n_{1}}=\beta_{\imath}$,
- keepmg in mind that $\gamma_{x+1}^{n}=\gamma_{x-1}^{n}$ and
- neglecting normalization conditions for the smgle particle ${ }^{5}$
the following set of equations

$$
\begin{aligned}
E\left\{\gamma_{x}\right. & \left.\left(\beta_{1}^{*} \beta_{1}+\beta_{2}^{*} \beta_{2}\right)-\beta_{x}\left(\beta_{1}^{*} \gamma_{1}+\beta_{2}^{*} \gamma_{2}\right)\right\}= \\
& -2 t\left\{\beta_{1}^{*}\left(\beta_{2} \gamma_{x}-\beta_{x} \gamma_{2}\right)\left(w_{1}+w_{2}\right)+\beta_{2}^{*}\left(\beta_{1} \gamma_{x}-\beta_{x} \gamma_{1}\right)\left(w_{1}-w_{2}\right)\right\} \\
& -2 t\left\{\gamma_{x+1}\left(\beta_{1}^{*} \beta_{1}+\beta_{2}^{*} \beta_{2}\right)-\beta_{x+1}\left(\beta_{1}^{*} \gamma_{1}+\beta_{2}^{*} \gamma_{2}\right)\right\}\left(w_{1}-(-1)^{\iota} u_{2}\right) \\
& +a_{1} \beta_{1}^{*}\left(\beta_{1} \gamma_{x}-\beta_{x} \gamma_{1}\right)+a_{2} \beta_{2}^{*}\left(\beta_{2} \gamma_{x}-\beta_{x} \gamma_{2}\right) \\
& +a_{x}\left\{\gamma_{x}\left(\beta_{1}^{*} \beta_{1}+\beta_{2}^{*} \beta_{2}\right)-\beta_{x}\left(\beta_{1}^{*} \gamma_{1}+\beta_{2}^{*} \gamma_{2}\right)\right\} \\
& -2 \mathrm{i} \Delta_{c}\left\{\gamma_{x}\left(\beta_{1}^{*} \beta_{1}+\beta_{2}^{*} \beta_{2}\right)-\beta_{x}\left(\beta_{1}^{*} \gamma_{1}+\beta_{2}^{*} \gamma_{2}\right)\right\} \\
& +\frac{2}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right)\left\{\gamma_{\tau}\left(\beta_{1}^{*} \beta_{1}+\beta_{2}^{*} \beta_{2}\right)-\beta_{x}\left(\beta_{1}^{*} \gamma_{1}+\beta_{2}^{*} \gamma_{2}\right)\right\}
\end{aligned}
$$

[^20]\[

$$
\begin{aligned}
& x=1 \\
& \begin{aligned}
0= & \\
& \\
& \\
& -2{ }_{1}\left[-2 t \Delta_{c} \beta_{2}^{*} \beta_{2}\left(w_{1}+\frac{2}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right) \beta_{2}^{*} \beta_{2}-E \beta_{2}^{*} \beta_{2}\right]\right. \\
& +\quad \gamma_{2}\left[2 t \beta_{1}^{*} \beta_{2}\left(w_{1}+w_{2}\right)-2 t \beta_{1}^{*} \beta_{1}\left(w_{1}+w_{2}\right)-a_{2} \beta_{2}^{*} \beta_{1}-a_{1} \beta_{2}^{*} \beta_{1}+\right. \\
& \left.+2{ }_{1} \Delta_{c} \beta_{2}^{*} \beta_{1}-\frac{2}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right) \beta_{2}^{*} \beta_{1}+E \beta_{2}^{*} \beta_{1}\right]
\end{aligned} \\
& \begin{array}{ll}
2=2
\end{array}
\end{aligned}
$$
\]

$$
\begin{aligned}
0= & \gamma_{1}\left[2 t \beta_{2}^{*} \beta_{2}\left(w_{1}-w_{2}\right)-2 t \beta_{2}^{*} \beta_{2}\left(w_{1}-w_{2}\right)-a_{1} \beta_{1}^{*} \beta_{2}-a_{2} \beta_{1}^{*} \beta_{2}+\right. \\
& \left.+22_{1} \Delta_{c} \beta_{1}^{*} \beta_{2}-\frac{2}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right) \beta_{1}^{*} \beta_{2}+E \beta_{1}^{*} \beta_{2}\right] \\
+ & \gamma_{2}\left[-2 t \beta_{2}^{*} \beta_{1}\left(w_{1}-w_{2}\right)+2 t \beta_{2}^{*} \beta_{1}\left(w_{1}-w_{2}\right)+a_{1} \beta_{1}^{*} \beta_{1}+a_{2} \beta_{1}^{*} \beta_{1}-\right. \\
& \left.-2{ }_{1} \Delta_{c} \beta_{1}^{*} \beta_{1}+\frac{2}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right) \beta_{1}^{*} \beta_{1}-E \beta_{1}^{*} \beta_{1}\right]
\end{aligned}
$$

Surpusingly, these two equations can be simplified a lot, leading to

$$
\begin{align*}
& 0=\left(a_{1}+a_{2}+E_{F}^{(2,2)}-E\right) \beta_{2}^{*}\left(\gamma_{1} \beta_{2}-\gamma_{2} \beta_{1}\right) \tag{531}\\
& 0=\left(a_{1}+a_{2}+E_{F}^{(2,2)}-E\right) \beta_{1}^{*}\left(\gamma_{1} \beta_{2}-\gamma_{2} \beta_{1}\right)
\end{align*}
$$

The result offers two possibilities One is that the energy of the system has the value

$$
\begin{equation*}
E=\Delta_{s}\left(\sin \theta_{1} \cos \zeta_{1}+\sin \theta_{2} \cos \zeta_{2}\right)-2_{1} \Delta_{c}+\frac{2}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right) \tag{532}
\end{equation*}
$$

The saddle point appioximation leads with $\theta_{1}=\theta_{2}=\frac{\pi}{2}$ and $\zeta_{1}=\zeta_{2}=0$ to an energv $E=0$ This is exactly the value which is obtamed for nomnteracting particles at the beginnmg of this paper in (2.37)

This solution is furthermore the same as the first of the solutions in the case when an orthogonality is used (Since the coriesponding wave functions were oithogonal anyway, this is reasonable) However, in difference to the calculations there, it does not give any constraints what so erer for the choice of the wave function Apparently, the given energy value is highly degenerated

The second possibulity, $\gamma \equiv \beta$, scems to imply that any energy value is allowed because the right hand sides of the equations above ate zero independently
of the value for the energy. However, this possibility contradicts normalization conditions and is therefore not allowed.

5.3.2 Comparison with Bethe ansatz

In the paper of Kusmartsev et al. [14] the same system has been solved with the help of the Bethe ansatz Here for the wave function the expression

$$
\begin{equation*}
\psi\left(x_{1}, \ldots, x_{N}\right)=\sum_{p \in \mathcal{P}(M)} A(\wp) \exp \left[\mathrm{i} \sum_{j=1}^{M} k_{\wp(\jmath)} \imath_{\jmath}\right] \tag{5.33}
\end{equation*}
$$

is used, which gives together with the Bethe equations the following set of equa-tions-

$$
\begin{gathered}
N k_{j}=2 \pi I_{j}+2 \pi \frac{\Phi}{\Phi_{0}}-2 \sum_{\beta=1}^{M_{\uparrow}} \arctan \left(4 \frac{t \sin k_{j}-\lambda_{\beta}}{U}\right) \\
-2 \sum_{j=1}^{M I} \arctan \left(4 \frac{t \sin k_{j}-\lambda_{\beta}}{U}\right)=2 \pi J_{\beta}+2 \sum_{\kappa=1}^{M_{\uparrow}} \arctan \left(2 \frac{\lambda_{\beta}-\lambda_{\alpha}}{U}\right)
\end{gathered}
$$

The quantum numbers I_{j} and J_{β} obey the equations

$$
I_{3} \frac{M_{\uparrow}}{2} \quad(\bmod 1), \quad J_{\beta}=\frac{M-M_{\uparrow}+1}{2} \quad(\bmod 1)
$$

and have to be adjusted such that the energy is minimized
For one particle $(M=1)$ it is.

$$
\left.\begin{array}{l}
M_{\uparrow}=0 \Longrightarrow N k=2 \pi \frac{\Phi}{\Phi_{0}} \\
M_{\uparrow}=1 \Longrightarrow N k=2 \pi \frac{\frac{1}{2}+2 \pi \frac{\Phi}{\Phi_{0}}+2 \pi \frac{1}{2}=2 \pi \frac{\Phi}{\Phi_{0}}}{\Phi_{0}}
\end{array}\right\} \Longleftrightarrow h=\frac{2 \pi \frac{\Phi}{N} \frac{\Phi}{\Phi_{0}}}{}
$$

Therefore, the solution is that of a fiee particle with flux This is clear because for a single paticle there is no interaction

For two particles ($M=2, M_{\uparrow}=1$) and a sufficiently small flux $\left(\left|\frac{1}{T_{0}}\right|<\frac{1}{2}\right)$ it is

$$
\begin{aligned}
& . N k_{3}=2 \pi \frac{1}{2}+2 \pi \frac{\Phi}{\Phi_{0}}-2 a \arctan \left(4 \frac{t \sin k_{j}-\lambda}{U}\right) ;-2 \sum_{j=1}^{2} \operatorname{alctan}\left(4 \frac{t \sin h_{j}-\lambda}{U}\right)=0 \\
& N \frac{h_{1}+h_{2}}{2}=2 \pi \frac{\Phi}{\Phi_{0}} \\
& N \frac{h_{1}-k_{2}}{2}=\arctan \left(4 \frac{t \sin k_{2}-\lambda}{U}\right)-\arctan \left(4 \frac{t \sin h_{1}-\lambda}{U}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2 \operatorname{aıctan}\left(\frac{4 t\left(\sin k_{2}-\sin k_{1}\right)}{2 U}\right)=2 \arctan \left(\frac{4 t \sin \left(\frac{k_{1}-k_{2}}{2}\right) \cos \left(\frac{k_{1}-k_{2}}{2}\right)}{U}\right) \\
& =2 \arctan \left(\frac{\varepsilon}{\sin \left(\frac{k_{1}-k_{2}}{2}\right)}\right) \quad \text { with } \varepsilon=\frac{U}{4 t \cos \left(\frac{2 \pi \frac{4}{\phi_{0}}}{N}\right)}
\end{aligned}
$$

If the number of sites is $N=2$ then the situation is equivalent to that we have just studied. Kusmartsev et al found out that it is for this case possible to obtam an exact solution. Smce

$$
\tan \left(\frac{h_{1}-k_{2}}{2}\right) \sin \left(\frac{k_{1}-k_{2}}{2}\right)=\varepsilon \quad \Longleftrightarrow \quad 1-\cos ^{2}\left(\frac{k_{1}-h_{2}}{2}\right)=\varepsilon \cos \left(\frac{h_{1}-k_{2}}{2}\right)
$$

one obtains the following expression for the wave vector

$$
k_{1,2}= \pm \arccos \left(-\frac{\varepsilon}{2}+\sqrt{\frac{\varepsilon^{2}}{4}+1}\right)+\pi \frac{\Phi}{\Phi_{0}}
$$

and for the ground state energy

$$
\begin{align*}
E_{\text {goound }} & \left.=-2 t\left(-\frac{\varepsilon}{2}+\sqrt{\frac{\varepsilon^{2}}{4}+1}\right) \cos \left(\pi \frac{\Phi}{\Phi_{0}}\right) \quad \right\rvert\, \text { sin-terms cancel } \\
& =-\frac{t U}{4 t \cos \left(\pi \frac{\Phi}{\Phi_{0}}\right)}\left(-1+\sqrt{\left.1+\frac{4(4 t)^{2} \cos ^{2}\left(\pi \frac{\Phi}{\Phi_{0}}\right)}{U^{2}}\right)} \cos \left(\pi \frac{\Phi}{\Phi_{0}}\right)\right. \\
& =\frac{1}{2}\left(\frac{U}{2}-\sqrt{\left(\frac{U}{2}\right)^{2}+16 t^{2} \cos ^{2}\left(\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}}\right)}\right) \tag{534}
\end{align*}
$$

The expression for the encrgy obtaned with the help of the Bethe ansatz has much more in common with our result for 1 paticle / 2 sites than with the result for 2 particles For instance, for the choice

$$
N=2, \quad M=2, \quad \zeta_{1}=\zeta_{2}=0, \quad \theta_{1}=\frac{\pi}{2}, \quad \theta_{2}=0, \quad \Delta_{s}=\frac{U}{2}, \quad \Delta_{c}=0
$$

the glound state energy (517) has the form

$$
\begin{equation*}
E=\frac{1}{2}\left(\frac{U}{2}-\sqrt{\left(\frac{U}{2}\right)^{2}+16 t^{2} \cos ^{2}\left(\frac{2 \pi}{V} \frac{\Phi}{\Phi_{0}}\right) \frac{1}{2}}\right)+\frac{U}{2} \tag{535}
\end{equation*}
$$

This mdicates another pioblem of the states used so far The wave function for what was called so far "one particle' has the following structure

$$
|\psi\rangle_{n_{1}}=\frac{1}{\sqrt{2}} \sum_{i_{1}} \sum_{\sigma_{1}=\uparrow, \downarrow} \gamma_{i_{1}}^{n_{1}} \tilde{c}_{2_{1}, \sigma_{1}}^{\dagger}|0\rangle=\frac{1}{\sqrt{2}} \sum_{i} \gamma_{2}^{n_{1}}\left\{\tilde{c}_{2, \uparrow}^{\dagger}|0\rangle+\tilde{c}_{2, \downarrow}^{\dagger}|0\rangle\right\}
$$

The comparison with the Bethe ansatz calculations in essence shows that these kind of states include already a par of particles, a mixture of a up-spin and a down-spin part. The problem could be that both parts have exactly the same welght $\gamma_{x_{1}}$ for each site For this reason, derivatives are sensitive to both parts at the same time Therefore, the up-spin patt influences, or one might even say mteracts with, its own down-spin part.

The pair character becomes even clearer if one just looks at the nommalization of a two-particle state

$$
\begin{aligned}
& \langle\psi \mid \psi\rangle=\frac{1}{4} \sum_{\substack{1_{1}, 12 \\
1,2}} \sum_{\sigma_{1}, \sigma_{2}} \gamma_{\eta_{1}, \eta_{2}}^{*} \beta_{j_{2}}^{*} \gamma_{2_{1}} \beta_{2_{2}}\langle 0| \tilde{c}_{j_{2}, \eta_{2}} \tilde{c}_{j_{1}, \eta_{1}} \tilde{c}_{2_{1}, \sigma_{1}}^{\dagger} \tilde{c}_{2_{2}, \sigma_{2}}^{\dagger}|0\rangle \\
& =\sum_{i_{1}, v_{2}}\left\{\gamma_{1_{1}}^{*} \beta_{z_{2}}^{*} \gamma_{z_{1}} \beta_{2_{2}}-\gamma_{z_{2}}^{*} \beta_{\imath_{1}}^{*} \gamma_{\nu_{1}} \beta_{z_{2}}\right\} \\
& = \begin{cases}0 & \text { for } N=1 \\
\gamma_{1}^{*} \beta_{2}^{*}\left(\gamma_{1} \beta_{2}-\gamma_{2} \beta_{1}\right)+\gamma_{2}^{*} \beta_{1}^{*}\left(\gamma_{2} \beta_{1}-\gamma_{1} \beta_{2}\right) & \text { for } N=2\end{cases}
\end{aligned}
$$

A situation of 2 particles / 1 site is quantum mechancally allowed, but leads in our description to a vamshing ware function In the 2 sites situation the ware function vanushes if $\gamma \equiv \beta$ Agan, this happens whout the necessity according to the Paulı prmciple Furthermore, the 2 paticles / 2 sites calculations in subsection j 31 led to only one energy, which also indicates that actually a four-particle problem has been treated

We shall show next that, all these thombles can be solved if we forget about the assumption that up- and down-spm paticles can be handled with the same weight. Instead, both spin dnections should have mopendent wave functions and a nommalization should be applied only for their combination Not least thanks to the Zeemann effect such a step seems to be reasonable

This most gencral way of expressing the wave function has for a single particle the following form.

$$
|\psi\rangle=\sum_{i=1}^{N} \psi_{\uparrow}(\imath) \tilde{c}_{i, \uparrow}^{\dagger}|0\rangle+\sum_{\imath=1}^{N} \psi_{\downarrow}(2) \tilde{c}_{\imath, \downarrow}^{\dagger}|0\rangle=\sum_{\imath=1}^{N} \sum_{\sigma=\uparrow, \downarrow} \psi_{\sigma}(\imath) \tilde{c}_{i, \sigma}^{\dagger}|0\rangle
$$

It should be stressed again that ψ_{\uparrow} and ψ_{\downarrow} are now two (almost) mdependent functions This also meludes the case that the paticle has a fixed spm with no
possibility to change it, if for instance $\psi_{\downarrow} \equiv 0$ is chosen. However, the normalizatıon condition

$$
\langle\psi \mid \psi\rangle=\sum_{\imath, \jmath} \sum_{\sigma, \eta} \psi_{\eta}^{*}(\jmath) \psi_{\sigma}(\imath)\langle 0| \tilde{c}_{\jmath, \eta} \tilde{c}_{\jmath, \sigma}^{\dagger}|0\rangle=\sum_{\imath}\left\{\left|\psi_{\uparrow}(\imath)\right|^{2}+\left|\psi_{\downarrow}(\imath)\right|^{2}\right\} \stackrel{!}{=} 1
$$

imphes that the two functions still have something to do with one another A straight fonward generalization to M particles has the following fon

$$
\begin{equation*}
|\psi\rangle_{n_{1}, n_{M}}=C_{M} \sum_{\imath_{1},, 2_{M}} \sum_{\sigma_{1},, \sigma_{M}} \psi_{\sigma_{1}}^{n_{1}}\left(\imath_{1}\right) \cdot \cdot \cdot \psi_{\sigma_{M}}^{n_{M}}\left(\imath_{M}\right) \tilde{c}_{\imath_{1}, \sigma_{1}}^{\dagger} \cdot \cdot \tilde{c}_{\imath_{M}, \sigma_{M}}^{\dagger}|0\rangle \tag{36}
\end{equation*}
$$

These kind of states offer various possibilities. One positive consequence is that most of the mentioned problems do not arise any more For instance the above studied case of 2 particles becomes now

$$
\begin{aligned}
& 1 \\
& 1={ }_{n_{1}, n_{2}}\langle\psi \mid \psi\rangle_{n_{1}, n_{2}} \\
& =C_{2}^{2} \sum_{\substack{j_{1}, 1_{2} \\
j_{1}, \nu_{2} \eta_{1}, \eta_{2}}} \sum_{\eta_{1}, \eta_{2}}\left[\psi_{\eta_{1}}^{n_{1}}\left(j_{1}\right)\right]^{*}\left[\psi_{\eta_{2}}^{n_{2}}\left(\jmath_{2}\right)\right]^{*} \psi_{\sigma_{1}}^{n_{1}}\left(\eta_{1}\right) \psi_{\sigma_{2}}^{n_{2}}\left(z_{2}\right)\langle 0| \tilde{c}_{j_{2}, \eta_{2}} \tilde{c}_{j_{1}, \eta_{1}} \tilde{c}_{c_{1}, \sigma_{1}}^{\dagger} \tilde{c}_{2_{2}, \sigma_{2}}^{\dagger}|0\rangle \\
& =C_{2}^{2} \sum_{\boldsymbol{u}_{1}, 2_{2}} \sum_{\sigma_{1}, \sigma_{2}}\left\{\left|\psi_{\sigma_{1}}^{n_{1}}\left(\imath_{1}\right)\right|^{2}\left|\psi_{\sigma_{2}}^{n_{2}}\left(\imath_{2}\right)\right|^{2}-\left[\psi_{\sigma_{2}}^{n_{1}}\left(l_{2}\right)\right]^{*}\left[\psi_{\sigma_{1}}^{n_{2}}\left(\iota_{1}\right)\right]^{*} \psi_{\sigma_{1}}^{n_{1}}\left(\iota_{1}\right) \psi_{\sigma_{2}}^{n_{2}}\left(\imath_{2}\right)\right\}
\end{aligned}
$$

There are the positive contributions $\langle\uparrow \uparrow \mid \uparrow \uparrow\rangle,\langle\downarrow \downarrow \mid \downarrow \downarrow\rangle,\langle\uparrow \downarrow \mid \uparrow \downarrow\rangle,\langle\downarrow \uparrow \mid \downarrow \uparrow\rangle$ and the negative contributions $\langle\uparrow \uparrow \mid \downarrow \downarrow\rangle,\langle\downarrow \downarrow \mid \uparrow \uparrow\rangle,\langle\uparrow \downarrow \mid \downarrow \uparrow\rangle,\langle\downarrow \uparrow \mid \uparrow \downarrow\rangle$ to the overlap, and there is, in general, no need for them to cancel each other Even for only 1 site

$$
\sum_{\sigma_{1}, \sigma_{2}}\left\{\left|\psi_{\sigma_{1}}^{n_{1}}\right|^{2}\left|\psi_{\sigma_{2}}^{n_{2}}\right|^{2}-\left[\psi_{\sigma_{2}}^{n_{1}}\right]^{*}\left[\psi_{\sigma_{1}}^{n_{2}}\right]^{*} \psi_{\sigma_{1}}^{n_{1}} \psi_{\sigma_{2}}^{n_{2}}\right\}
$$

has a non-zero value for almost every configuration It the fist paticle has a certain tatio of the up-spin and the down-spin weights, $\psi_{\sigma_{1}}^{n_{1}} / \psi_{\sigma_{2}}^{n_{1}}$, an alytrary atio $\psi_{\sigma_{1}}^{n_{2}} / \psi_{\sigma_{2}}^{, n_{2}}$ for the second particle is possible As mentioned before, this meludes a combination of a pure up-spin and a pure clown-spin patacle Howerer, it is cnough if one particle "shows the up-spm character mone" than the other one Ouly if the ratio is for both particles the same, the wave function vamshes again

A hittle bit problematic is the question of normalization The remalks of the previous subsection have led to the conclusion that wase functions of different
particles withn the same state cannot necessarily be assumed to be orthogonal. Thus, the negative contribution to the 2-particle overlap above are not zero Nor do the vaious terms of the slater determmant in the many-particle case vamsh

Unfortunately, this freedom of the system also effects the normalization of the single particıpatıng feımın If conditions like

$$
\sum_{\imath_{4}}\left\{\left|\psi_{\uparrow}^{n_{4}}\left(z_{A}\right)\right|^{2}+\left|\psi_{\downarrow}^{n_{4}}\left(l_{A}\right)\right|^{2}\right\}^{\prime}=1
$$

were maintamed, the identical permutation in the slater determinant would already be equal to unity, which implies the orthogonality for the remainng terms which should be avorded

5.4 Again: Limited System Size

The derivation of the Hartree-Fock equations is again very similar to the derivation in section 51 Apart from the greater freedom of the ware function, the main difference is the fact that all derivatives are now taken with respect to a parameter $\left[\psi_{\nu}^{n_{C}}(x)\right]^{*}$ which also has a spin mdex ν Howerer, this spin index can be tieated very similar to the site index x and does not make calculations qualitatıvely more difficult

For the expectation value of a typical operator the same compact notation as aheady introduced in the pievious subsection shall be used. The wave function with the quantum number n_{0} is now a product of two Kronecker deltas, one for the site and one for the spm. If for instance the opelator product $\tilde{c}_{h, \uparrow}^{\dagger} \tilde{c}_{h+1, \downarrow}$ is consideı ed then $\psi_{\sigma}^{n_{0}}(\imath)=\delta_{2, \ell} \delta_{\sigma, \uparrow}$ Hence,

$$
\begin{align*}
& { }_{n_{1}, n_{M}}\langle\psi| \tilde{c}_{k, \uparrow}^{\dagger} \tilde{\tau}_{k+1, \downarrow}|\psi\rangle_{n_{1}, n_{M}}=\quad . \tag{53i}\\
& C_{M I}^{2} \sum_{\jmath_{1}, \jmath_{M}} \sum_{\sigma_{1}, \sigma_{M M}} \sum_{\rho \in \mathcal{P}(\Lambda+1)}^{\mathfrak{p}(0) \neq 0}(-1)^{\mathrm{sgn} \rho+1}\left[\psi_{\sigma_{1}}^{n_{1}}\left(\jmath_{1}\right)\right]^{*} \ldots\left[\psi_{\sigma_{M}}^{n_{M}}\left(J_{M}\right)\right]^{*} * \\
& * \psi_{\sigma_{1}}^{n_{\rho(1)}}\left(\jmath_{1}\right) \ldots \psi_{\sigma_{M}}^{n_{\rho(A)}}\left(\jmath_{M I}\right) \psi_{\downarrow}^{n_{\varphi(0)}}(k+1)
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial}{\partial\left[\psi_{\nu}^{n_{C}}(x)\right]^{*}}\left({ }_{n_{1}, n_{M}}\langle\psi| \tilde{c}_{k, \uparrow}^{\dagger} \tilde{\uparrow}_{k+1, \downarrow}|\psi\rangle_{n_{1},, n_{M}}\right)= \tag{538}\\
& C_{M}^{2} \sum_{\jmath_{1}, \jmath_{M}}^{\jmath C=x} \sum_{\sigma_{1}, \sigma_{M}}^{\sigma_{C}=\nu} \sum_{p \in \mathcal{P}(M+1)}^{p(0) \neq 0}(-1)^{\mathrm{sgn} \rho+1}\left[\psi_{\sigma_{1}}^{n_{1}}\left(\jmath_{1}\right)\right]^{*} .\left[\widehat{\left.\psi_{\sigma_{C}}^{n_{C}(} \jmath_{C}\right)}\right]^{*} \ldots\left[\psi_{\sigma_{M}}^{n_{M}}\left(\jmath_{M}\right)\right]^{*} \\
& * \psi_{\sigma_{1}}^{n_{p(1)}}\left(\jmath_{l}\right) . \psi_{\sigma_{M I}}^{n_{p(A)}}\left(\jmath_{M I}\right) \psi_{\downarrow}^{n_{p(0)}}(k+1)
\end{align*}
$$

are the kind of expressions which now appear in the Hartree-Fock equations The Hamiltonian is stall the one given in (55). It shall be evaluated now for partıcular cases

5.4.1 One Particle / One Site ($M=1, N=1$)

For one particle one has to deal with the following derivatives:

$$
\begin{aligned}
\frac{\partial}{\partial\left[\psi_{\nu}^{n_{C}}(x)\right]^{*}}\left({ }_{n_{C}}\langle\psi \mid \psi\rangle_{n_{C}}\right) & =\psi_{\nu}^{n_{C}}(x) \\
\frac{\partial}{\partial\left[\psi_{\nu}^{n C}(x)\right]^{*}}\left({ }_{n_{C}}\langle\psi| \tilde{c}_{k, \sigma}^{\dagger} \tilde{c}_{k+1, \sigma^{\prime}}|\psi\rangle_{n_{C}}\right) & =\delta_{x, k} \delta_{\nu, \sigma} \psi_{\sigma^{\prime}}^{n_{C}}(k+1) \\
\frac{\partial}{\partial\left[\psi_{\nu}^{n_{C}}(x)\right]^{*}}\left({ }_{n_{C}}\langle\psi| \sum_{k} \tilde{c}_{k, \sigma}^{\dagger} \tilde{c}_{k+1, \sigma^{\prime}}|\psi\rangle_{n_{C}}\right) & =\delta_{\nu, \sigma} \psi_{\sigma^{\prime}}^{n_{C}}(v+1)
\end{aligned}
$$

which gives the following Hatree-Fock equations: ${ }^{6}$

$$
\begin{align*}
E \psi_{\nu}(x)= & -t \sum_{\sigma^{\prime}}\left\{\bar{R}_{x, \nu \sigma^{\prime}} \psi_{\sigma^{\prime}}(x+1) \mathrm{e}^{\frac{2 \pi 1}{\top} \frac{\hbar}{\Phi_{0}}}+\bar{R}_{x-1, \nu \sigma^{\prime}}^{*} \psi_{\sigma^{\prime}}(\imath-1) \mathrm{e}^{-\frac{2-1}{N} \frac{\phi}{\phi_{0}}}\right\} \\
& +E_{F}^{\left(1, N^{\prime}\right)} \psi_{\nu}(x)-\left(\Delta_{s}+\frac{\Delta_{Z}}{N^{2}} \frac{\Phi}{\Phi_{0}}\right) \cos \theta_{x}\left(\delta_{\nu, \uparrow} \psi_{\uparrow}(\imath)-\delta_{\nu, \downarrow} \psi_{\downarrow}(\iota)\right) \\
& +\Delta_{\varsigma} \sin \theta_{x}\left\{\delta_{\nu, \uparrow} \psi_{\downarrow}(x) \mathrm{e}^{-1 \zeta_{x}}+\delta_{\nu, \downarrow} \psi_{\uparrow}(x) \mathrm{e}^{1 \zeta_{x}}\right\} \tag{539}
\end{align*}
$$

For only one site this smphlifics to the two equations (for $\nu=\uparrow$ and $\nu=\downarrow$ respectirely).
$0=\psi_{\uparrow}\left[-2 t \cos \left(2 \pi \mathrm{i} \frac{\Phi}{\Phi_{0}}\right)+E_{F}^{(1,1)}-\left(\Delta_{s}+\Delta_{z} \frac{\Phi}{\Phi_{0}}\right) \cos \theta_{1}-E\right]+\psi_{\downarrow}\left[\Delta_{s} \sin \theta_{1} \mathrm{e}^{-\zeta_{1}}\right]$
$0=\psi_{\uparrow}\left[\Delta_{s} \sin \theta_{1} \mathrm{e}^{\varsigma_{1}}\right]+\psi_{\downarrow}\left[-2 t \cos \left(2 \pi \mathrm{i} \frac{\Phi}{\Phi_{0}}\right)+E_{F}^{(1,1)}+\left(\Delta_{s}+\Delta_{Z} \frac{\Phi}{\Phi_{0}}\right) \cos \theta_{1}-E\right]$

[^21]If this system of equations should have non-trivial solutions then a quadratic equation in the energy has to be fulfilled The two solutions are

$$
\begin{equation*}
E_{1, \mathrm{I}}=-2 t \cos \left(2 \pi 1 \frac{\Phi}{\Phi_{0}}\right)-1 \Delta_{c}+\frac{1}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right) \pm\left(\Delta_{s}+\Delta_{Z} \frac{\Phi}{\Phi_{0}}\right) \tag{540}
\end{equation*}
$$

with the ground state eneigy

$$
\begin{equation*}
E=-2 t \cos \left(2 \pi \mathrm{i} \frac{\Phi}{\Phi_{0}}\right)-\frac{g h^{2}}{m_{e} a^{2}} \frac{\Phi}{\Phi_{0}} . \tag{5.41}
\end{equation*}
$$

It will become clear soon that it is reasonable to rewrite the same system in a matrix form. For brevity the following two terms shall be defined

$$
\Lambda_{s, Z}^{(N)}=\Delta_{s}+\frac{\Delta_{Z}}{N^{2}} \frac{\Phi}{\Phi_{0}} ; \quad \Lambda_{\mathrm{hopp}}^{(N)}=-2 t \cos \left(\frac{2 \pi 1}{N} \frac{\Phi}{\Phi_{0}}\right)
$$

Hence,

$$
\begin{equation*}
\left(E-E_{F}^{(1,1)}\right)\binom{\psi_{\uparrow}(1)}{\psi_{\downarrow}(1)}=H^{(1,1)}\binom{\psi_{\uparrow}(1)}{\psi_{\downarrow}(1)} \tag{542}
\end{equation*}
$$

with

$$
H^{(1,1)}=\left(\begin{array}{cc}
\Lambda_{\text {hopp }}^{(1)} \bar{R}_{1, \uparrow \uparrow} & \Lambda_{\text {hopp }}^{(1)} \bar{R}_{1, \uparrow \downarrow} \tag{5.43}\\
\Lambda_{\text {hopp }}^{(1)} \bar{R}_{1, \downarrow \uparrow} & \Lambda_{\text {hopp }}^{(1)} \bar{R}_{1, \downarrow \downarrow}
\end{array}\right)+\left(\begin{array}{cl}
-\Lambda_{s, Z}^{(1)} \cos \theta_{x} & \Delta_{s} \sin \theta_{1} \mathrm{e}^{-1 \varsigma_{1}} \\
\Delta_{s} \sin \theta_{x} \mathrm{e}^{-1 \zeta_{1}} & \Lambda_{\mathrm{s}, \mathrm{Z}}^{(1)} \cos \theta_{x}
\end{array}\right)
$$

5.4.2 One Particle / Two Sites ($M=1, N=2$)

For 2 sites the equation (539) is still valid. Unfortunately; the arguments which led to w_{1} and w_{2} in section 5.22 are not applicable, since it is not summed anymore over all four matrix elements of \bar{R}. However, the properties of \bar{R} for an albitrary number of sites $\bar{R}_{k, \uparrow \uparrow}^{*}=\bar{R}_{k, \downarrow \downarrow}$ and $\bar{R}_{k, \uparrow \downarrow}^{*}=-\bar{R}_{k, \downarrow \uparrow}$ and particularly for two sites. $\bar{R}_{1, \uparrow \uparrow}=\bar{R}_{2, \downarrow \downarrow}, \bar{R}_{1, \downarrow \downarrow}=\bar{R}_{2, \uparrow \uparrow}, \bar{R}_{1, \downarrow \downarrow}=-\bar{R}_{2, \downarrow \uparrow}, \bar{R}_{1, \downarrow \uparrow}=-\bar{R}_{2, \uparrow \downarrow}$ st.1ll allow smplifications. The most convenient one is that for any spm combmation

$$
\begin{equation*}
\bar{R}_{2, \sigma \sigma^{\prime}}^{*}=\bar{R}_{1, \sigma \sigma^{\prime}} \quad \text { and } \quad \bar{R}_{1 \sigma \sigma^{\prime}}^{*}=\bar{R}_{2 \sigma \sigma^{\prime}} \tag{54t}
\end{equation*}
$$

holds As a consequence the exponential functions in the flux can be expressed in form of a cosme

Another problem is that the wave function ψ possesses now $2 \times 2=4$ components Instead of solving an equation of fourth order directly, the equations shall
now be written as an eigenralue problem. All equations are expressed with the help of the following matrix

$$
H^{(1,2)}=\left(\begin{array}{llll}
-\Lambda_{s, Z}^{(2)} \cos \theta_{1} & \Delta_{s} \sin \theta_{1} \mathrm{e}^{-1 \zeta_{1}} & \Lambda_{\text {hopp }}^{(2)} \bar{R}_{1, \uparrow \uparrow} & \Lambda_{\text {hopp }}^{(2)} \bar{R}_{1, \uparrow \downarrow} \tag{545}\\
\Delta_{\varsigma} \sin \theta_{1} \mathrm{e}^{1 \zeta_{1}} & \Lambda_{s, Z^{(2)}} \cos \theta_{1} & \Lambda_{\text {hopp }}^{(2)} \bar{R}_{1, \downarrow \uparrow} & \Lambda_{\text {hopp }}^{(2)} \bar{R}_{1, \downarrow \downarrow} \\
\Lambda_{\text {hopp }}^{(2)} \bar{R}_{2, \uparrow \uparrow} & \Lambda_{\text {hopp }}^{(2)} \bar{R}_{2, \uparrow \downarrow} & -\Lambda_{s, Z} \cos \theta_{2} & \Delta_{s} \sin \theta_{2} \mathrm{e}^{-1 \zeta_{2}} \\
\Lambda_{\text {lopp }}^{(2)} \bar{R}_{2, \downarrow \uparrow} & \Lambda_{\text {hopp }}^{(2)} \bar{R}_{2, \downarrow \downarrow} & \Delta_{\varsigma} \sin \theta_{2} \mathrm{e}^{\mathrm{L}_{2}} & \Lambda_{s, Z}^{(2)} \cos \theta_{2}
\end{array}\right)
$$

which determmes the following matrix equation

$$
\left(E-E_{F}^{(1,2)}\right)\left(\begin{array}{c}
\psi_{\uparrow}(1) \tag{5.46}\\
\psi_{\downarrow}(1) \\
\psi_{\uparrow}(2) \\
\psi_{\downarrow}(2)
\end{array}\right)=H^{(1,2)}\left(\begin{array}{c}
\psi_{\uparrow}(1) \\
\psi_{\downarrow}(1) \\
\psi_{\uparrow}(2) \\
\psi_{\downarrow}(2)
\end{array}\right)
$$

5.4.3 Two Particles / One Site $(M=2, N=1)$

For two particles the derivatives (538) ate at least twice as complicated as for one paticle The second particle, the one which does not have the quantum number n_{C} shall agan be denoted by β, allowing to omit the index for the quantum numbers Then the following kind of expiessions have to be dealt with

$$
\begin{aligned}
& \frac{\partial}{\partial\left[\psi_{\nu}(\imath)\right]^{*}}\left(n_{n_{1}, n_{2}}\langle\psi \mid \psi\rangle_{n_{1}, n_{2}}\right)=C_{2}^{2}\left\{\psi_{\nu}(x) \sum_{j} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2}-\beta_{\nu}(\imath) \sum_{\jmath} \sum_{\eta} \beta_{\eta}^{*}(\jmath) \psi_{\eta}(\jmath)\right\} \\
& \frac{\partial}{\partial\left[U_{\nu}^{n} c^{\cdot} \cdot(x)\right]^{*}}\left({ }_{n_{1}, n_{2}}\langle\psi| \tilde{c}_{k, \sigma}^{\dagger} \tilde{c}_{k+1, \sigma^{\prime}}|\psi\rangle_{n_{1}, n_{2}}\right) \\
& =C_{2}^{2} \sum_{\jmath} \sum_{\eta} \beta_{\eta}^{*}(\jmath)\{\underbrace{\delta_{x, k} \delta_{\nu, \sigma} \beta_{\eta}(\jmath) \psi_{\sigma^{\prime}}(k+1)}_{\wp(120)=102}-\underbrace{\delta_{1, k} \delta_{\nu, \sigma} \psi_{\eta}(\jmath) \beta_{\sigma^{\prime}}(k+1)}_{\wp(120)=201}-. \\
& -\underbrace{\delta_{j, h} \delta_{\eta, \sigma} \beta_{\nu}(2) \psi_{\sigma^{\prime}}(h+1)}_{\wp(120)=012}+\underbrace{\delta_{3, k} \delta_{\eta, \sigma} \psi_{\nu}(x) \beta_{\sigma^{\prime}}(k+1)}_{\wp(120)=021}\} \\
& \frac{\partial}{\partial\left[\dot{\psi}_{\nu}^{n} c(x)\right]^{*}}\left(n_{n_{1}, n_{2}}\langle\psi| \sum_{k} \tilde{c}_{k, \sigma}^{\dagger} \tilde{c}_{k+1, \sigma^{\prime}}|\psi\rangle_{n_{1}, n_{2}}\right) \\
& =C_{2}^{2}\left\{\delta_{\nu, \sigma} \psi_{\sigma^{\prime}}(x+1) \sum_{\jmath} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2}-\delta_{\nu, \sigma} \beta_{\sigma^{\prime}}(x+1) \sum_{\jmath} \sum_{\eta} \beta_{\eta}^{*}(\jmath) \psi_{\eta}(\jmath)-. .\right. \\
& \left.-\beta_{\nu}(x) \sum_{k} \beta_{\sigma}^{*}(k) \psi_{\sigma^{\prime}}(k+1)+\psi_{\nu}(\tau) \sum_{k} \beta_{\sigma}^{*}(h) \beta_{\sigma^{\prime}}(k+1)\right\}
\end{aligned}
$$

This leads to the following Hartree-Fock equations.

$$
-t \psi_{\nu}(x) \sum_{k} \sum_{\sigma, \sigma^{\prime}}\left\{\bar{R}_{k, \sigma \sigma^{\prime}} \beta_{\sigma}^{*}(k) \beta_{\sigma^{\prime}}(k+1) \mathrm{e}^{\frac{2 m_{1}}{N} \frac{\phi}{p_{0}}}+\bar{R}_{k-1, \sigma \sigma^{\prime}}^{*} \beta_{\sigma}^{*}(h) \beta_{\sigma^{\prime}}(k-1) \mathrm{e}^{-\frac{2 \pi 1}{N} \frac{\Phi}{\varphi_{0}}}\right\}
$$

$$
+t \beta_{\nu}(x) \sum_{k} \sum_{\sigma, \sigma^{\prime}}\left\{\bar{R}_{k, \sigma \sigma^{\prime}} \beta_{\sigma}^{*}(k) \psi_{\sigma^{\prime}}(k+1) \mathrm{e}^{\frac{2 \pi_{1}}{N} \frac{\phi}{\Phi_{0}}}+\bar{R}_{k-1, \sigma \sigma^{\prime}}^{*} \beta_{\sigma}^{*}(k) \psi_{\sigma^{\prime}}(k-1) \mathrm{e}^{-\frac{2 \pi 1}{N} \frac{\phi}{\phi_{0}}}\right\}
$$

$$
+\frac{N}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right)\left\{\psi_{\nu}(x) \sum_{\jmath} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2}-\beta_{\nu}(x) \sum_{\jmath} \sum_{\eta} \beta_{\eta}^{*}(\jmath) \psi_{\eta}(\jmath)\right\}
$$

$$
-21_{\Delta_{c}}\left\{\psi_{\nu}(x) \sum_{j} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2}-\beta_{\nu}(x) \sum_{j} \sum_{\eta} \beta_{\eta}^{*}(\jmath) \psi_{\eta}(\jmath)\right\}
$$

$$
-\left(\Delta,+\frac{\Delta_{Z}}{N^{2}} \frac{\Phi}{\Phi_{0}}\right)\left\{\left(\delta_{\nu, \uparrow}-\delta_{\nu, \downarrow}\right) \psi_{\nu}(x) \cos \theta_{x} \sum_{j} \sum_{\eta}\left|\beta_{\eta}(\eta)\right|^{2}-\right.
$$

$$
\left.-\left(\delta_{\nu, \uparrow}-\delta_{\nu, \downarrow}\right) \beta_{\nu}(x) \cos \theta_{x} \sum_{\jmath} \sum_{\eta} \beta_{\eta}^{*}(\jmath) \psi_{\eta}(\jmath)\right\}
$$

$$
-\left(\Delta_{\uparrow}+\frac{\Delta_{Z}}{N^{2}} \frac{\Phi}{\Phi_{0}}\right)\left\{\psi_{\nu}(x) \sum_{k} \cos \theta_{k}\left(\beta_{\uparrow}^{*}(k) \beta_{\uparrow}(k)-\beta_{\downarrow}^{*}(k) \beta_{\downarrow}(k)\right)-\ldots\right.
$$

$$
\left.\ldots-\beta_{\nu}(x) \sum_{k} \cos \theta_{k}\left(\beta_{\uparrow}^{*}(k) \psi_{\uparrow}(k)-\beta_{\downarrow}^{*}(h) \psi_{\downarrow}(h)\right)\right\}
$$

$$
+\Delta_{s}\left\{\left(\delta_{\nu, \uparrow} \psi_{\downarrow}(x) \mathrm{e}^{-1 \zeta_{x}}+\delta_{\nu, \downarrow} \psi_{\uparrow}(x) \mathrm{e}^{1 \zeta_{x}}\right) \sin \theta_{x} \sum_{j} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2}-\right.
$$

$$
\left.\ldots-\left(\delta_{\nu, \uparrow} \beta_{\downarrow}(\imath) \mathrm{e}^{-1 \zeta_{x}}+\delta_{\nu, \downarrow} \beta_{\uparrow}(x) \mathrm{e}^{1 \zeta_{x}}\right) \sin \theta_{\tau} \sum_{\jmath} \sum_{\eta} \beta_{\eta}^{*}(\jmath) \psi_{\eta}(\jmath)\right\}
$$

$$
+\Delta_{s}\left\{\psi_{\nu}(\kappa) \sum_{h} \sin \theta_{k}\left(\beta_{\uparrow}^{*}(h) \beta_{\downarrow}(k) \mathrm{e}^{-1 \mathcal{C}_{h}}+\beta_{\downarrow}^{*}(h) \beta_{\uparrow}(k) \mathrm{e}^{1_{h}}\right)-\right.
$$

$$
\begin{equation*}
\left..-\beta_{\nu}(\lambda) \sum_{k} \sin \theta_{k}\left(\beta_{\uparrow}^{*}(h) \psi_{\downarrow}(k) \mathrm{e}^{-1 \zeta_{h}}+\beta_{\downarrow}^{*}(k) \psi_{\uparrow}(k) \mathrm{e}^{\prime G_{k}}\right)\right\} \tag{5+7}
\end{equation*}
$$

$$
\begin{aligned}
& E\left\{\psi_{\nu}(x) \sum_{j} \sum_{\eta}\left|\beta_{\eta} 1(\jmath)\right|^{2}-\beta_{\nu}(x) \sum_{\jmath} \sum_{\eta} \beta_{\eta}^{*}(\jmath) \psi_{\eta}(\jmath)\right\}= \\
& -t \sum_{\sigma^{\prime}}\left\{\bar{R}_{x, \nu \sigma^{\prime}} \psi_{\sigma^{\prime}}(x+1) \sum_{j} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2} \mathrm{e}^{\frac{2 \pi}{N} \frac{\phi}{T_{0}}}+\ldots\right. \\
& \begin{array}{l}
\eta \\
\left.+\bar{R}_{x-1, \nu \sigma^{\prime}}^{*} \psi_{\sigma^{\prime}}(x-1) \sum_{j} \sum_{\eta}\left|\beta_{\eta}(J)\right|^{2} \mathrm{e}^{-\frac{2-1}{1} \frac{\eta}{\phi_{i 1}}}\right\}, ~
\end{array} \\
& +t \sum_{\sigma^{\prime}}\left\{\bar{R}_{x, \nu \sigma^{\prime}} \beta_{\sigma^{\prime}}(x+1) \sum_{j} \sum_{\eta} \beta_{\eta}^{*}(\jmath) \psi_{\eta}(\jmath) \mathrm{e}^{\frac{2 \pi 1}{N} \frac{\Phi}{\Phi_{0}}}+. .\right. \\
& \left.{ }^{\jmath}{ }^{\eta}+\bar{R}_{x-1, \nu \sigma^{\prime}}^{*} \beta_{\sigma^{\prime}}(x-1) \sum_{j} \sum_{\eta} \beta_{\eta}^{*}(\jmath) \psi_{\eta}(\jmath) \mathrm{e}^{-\frac{2 \pi}{\Lambda} \frac{\Phi}{\phi_{0}}}\right\}
\end{aligned}
$$

For only one site these equations simplify again drastically. All terms which go with Δ_{s} disappear, and because $\bar{R}_{\uparrow \uparrow}=\bar{R}_{\downarrow \downarrow}=1, \bar{R}_{\uparrow \downarrow}=\bar{R}_{\downarrow \uparrow}=0$ it is

$$
\begin{aligned}
& \left(E-E_{F}^{(2,1)}\right) \beta_{\downarrow}^{*}\left\{\psi_{\uparrow} \beta_{\downarrow}-\psi_{\downarrow} \beta_{\uparrow}\right\}=-4 t \cos \left(2 \pi \frac{\Phi}{\Phi_{0}}\right) \beta_{\downarrow}^{*}\left\{\psi_{\uparrow} \beta_{\downarrow}-\psi_{\downarrow} \beta_{\uparrow}\right\} \\
& \left(E-E_{F}^{(2,1)}\right) \beta_{\uparrow}^{*}\left\{\psi_{\downarrow} \beta_{\uparrow}-\psi_{\uparrow} \beta_{\downarrow}\right\}=-4 t \cos \left(2 \pi \frac{\Phi}{\Phi_{0}}\right) \beta_{\uparrow}^{*}\left\{\psi_{\downarrow} \beta_{\uparrow}-\psi_{\uparrow} \beta_{\downarrow}\right\}
\end{aligned}
$$

The result for the energy is therefore

$$
\begin{equation*}
E=-4 t \cos \left(2 \pi \frac{\Phi}{\Phi_{0}}\right)-2{ }_{1} \Delta_{c}+\frac{1}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right) \tag{5+8}
\end{equation*}
$$

which is almost the sum of the two possible energy solutions (540) in the case that only one particle is sitting on the site Only the term in front of the mean field does not have the factor 2 , which indicates that the mean fields have higher values in the two-particle case.

The saddle point in this case is obtained by setting $\Delta_{c, 0}={ }_{1} U$ and $\Delta_{s, 0}=0$ It is related to the energy

$$
\begin{equation*}
E=-4 t \cos \left(2 \pi \frac{\Phi}{\Phi_{0}}\right)+U \tag{549}
\end{equation*}
$$

This expression describes the physical situation correctly. Both particles have the same quantum number $n=0$ and are sitting on the same site The former mphes the term for the kinetic energy given, the latter leads to the offect that the potential energy is equivalent to the full Coulomb repulsion cneigy That this has been obtained shows that we are on the inght track

5.4.4 Two Particles / Two Sites ($M=2, N=2$)

The situation of two particles on two sites is the one which is of praticular interest foi us because it allows an interaction as well a non-trivial distril)ution The three cases before can be understood to be only a preparation for thas task One can use now the same Har tree-Fock equation as in the proceeding subsection and the same properties (5.44) of the matiix elements of \bar{R} as in the subsection before The four possible combinations of $\nu=\uparrow, \downarrow$ and $a=1,2$ lead to the following four
equations:

$$
\begin{aligned}
& \left(E-E_{F}^{(2,2)}\right) \psi_{\nu}(x)\left[\sum_{j} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2}-\beta_{\nu}^{*}(h) \beta_{\nu}(k)\right] \\
& =\psi_{\uparrow}(1) \Lambda_{\text {hopp }}^{(2)}\left[-\beta_{\uparrow}^{*}(1) \bar{R}_{x, \nu \uparrow} \beta_{\uparrow}(x+1)-\beta_{\uparrow}^{*}(1) \bar{R}_{x, \nu \downarrow} \beta_{\downarrow}(x+1)-.\right. \\
& \text {. } \left.-\beta_{\uparrow}^{*}(2) \bar{R}_{2, \uparrow \uparrow} \beta_{\nu}(x)-\beta_{\downarrow}^{*}(2) \bar{R}_{2, \downarrow \uparrow} \beta_{\nu}(x) \quad+\delta_{x, 2} \bar{R}_{\tau, \nu \uparrow} \sum_{j} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2}\right] \\
& +\psi_{\downarrow}(1) \Lambda_{\text {hopp }}^{(2)}\left[-\beta_{\downarrow}^{*}(1) \bar{R}_{x, \nu \uparrow} \beta_{\uparrow}(x+1)-\beta_{\downarrow}^{*}(1) \bar{R}_{x, \nu \downarrow} \beta_{\downarrow}(x+1)-\right. \\
& \left.-\beta_{\uparrow}^{*}(2) \bar{R}_{2, \uparrow \downarrow} \beta_{\nu}(x)-\beta_{\downarrow}^{*}(2) \bar{R}_{2, \downarrow \downarrow} \beta_{\nu}(x) \quad+\delta_{x, 2} \bar{R}_{x, \nu \downarrow} \sum_{j} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2}\right] \\
& +\psi_{\uparrow}(2) \Lambda_{\text {hopp }}^{(2)}\left[-\beta_{\uparrow}^{*}(2) \bar{R}_{x, \nu \uparrow} \beta_{\uparrow}(x+1)-\beta_{\uparrow}^{*}(2) \bar{R}_{x, \nu \downarrow} \beta_{\downarrow}(x+1)-\right. \\
& \left.-\beta_{\uparrow}^{*}(1) \bar{R}_{2, \uparrow \uparrow} \beta_{\nu}(x)-\beta_{\downarrow}^{*}(1) \bar{R}_{2, \downarrow} \beta_{\nu}(x)+\delta_{x, 1} \bar{R}_{x, \nu \uparrow} \sum_{j} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2}\right] \\
& +\psi_{\downarrow}(2) \Lambda_{\text {hopp }}^{(2)}\left[-\beta_{\downarrow}^{*}(2) \bar{R}_{x, \nu \uparrow} \beta_{\uparrow}(x+1)-\beta_{\downarrow}^{*}(2) \bar{R}_{x, \nu \downarrow} \beta_{\downarrow}(x+1)-.\right. \\
& \left.-\beta_{\uparrow}^{*}(1) \bar{R}_{2, \uparrow \downarrow} \beta_{\nu}(x)-\beta_{\downarrow}^{*}(1) \bar{R}_{2, \downarrow \downarrow} \beta_{\nu}(x) \quad+\delta_{\tau, 1} \bar{R}_{x, \nu \downarrow} \sum_{j} \sum_{\eta}\left|\beta_{\eta}(j)\right|^{2}\right] \\
& +\psi_{\uparrow}(1) \delta_{\nu, \uparrow}\left[\Lambda_{s, Z}^{(2)}\left(\cos \theta_{1}+\cos \theta_{x}\right) \beta_{\uparrow}^{*}(1) \beta_{\uparrow}(x)-\right. \\
& -\Delta_{s} \sin \theta_{x} \mathrm{e}^{-1 \zeta_{x}} \beta_{\uparrow}^{*}(1) \beta_{\downarrow}(x)- \\
& \left.-\Delta_{s} \sin \theta_{1} \mathrm{e}^{1 \zeta_{1}} \beta_{\downarrow}^{*}(1) \beta_{\uparrow}(x)\right] \\
& +\psi_{\uparrow}(1) \delta_{\nu, \downarrow}\left[\Lambda_{s, Z}^{(2)}\left(\cos \theta_{1}-\cos \theta_{x}\right) \beta_{\uparrow}^{*}(1) \beta_{\downarrow}(x)-. .\right. \\
& -\Delta_{s} \sin \theta_{x} \mathrm{e}^{1 \zeta_{x}} \beta_{\uparrow}^{*}(1) \beta_{\uparrow}(x)-. \\
& \left.-\Delta_{s} \sin \theta_{1} \mathrm{e}^{\mathrm{r}^{\zeta_{1}}} \beta_{\downarrow}^{*}(1) \beta_{\downarrow}(x) \quad+\delta_{x, 1} \Delta_{s} \sin \theta_{x} \mathrm{e}^{\mathrm{K}_{s}} \sum_{j} \sum_{\eta}\left|\beta_{\eta}(j)\right|^{2}\right] \\
& +\psi_{\downarrow}(1) \delta_{\nu, \uparrow}\left[\Lambda_{s, Z}^{(2)}\left(\cos \theta_{x}-\cos \theta_{1}\right) \beta_{\downarrow}^{*}(1) \beta_{\uparrow}(\imath)-.\right. \\
& -\Delta_{s} \sin \theta_{x} e^{-1 \zeta_{x}} \beta_{\downarrow}^{*}(1) \beta_{\downarrow}(x)-. \\
& \left..-\Delta_{s} \sin \theta_{1} \mathrm{e}^{-1 \zeta_{1}} \beta_{\uparrow}^{*}(1) \beta_{\uparrow}(x) \quad+\delta_{x, 1} \Delta_{s} \sin \theta_{v} \mathrm{e}^{-1 \zeta_{x}} \sum_{j} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2}\right] \\
& +\psi_{\downarrow}(1) \delta_{\nu, \downarrow}\left[-\Lambda_{s, Z}^{(2)}\left(\cos \theta_{x}+\cos \theta_{1}\right) \beta_{\downarrow}^{*}(1) \beta_{\downarrow}(x)-\right. \\
& -\Delta_{s} \sin \theta_{x} \mathrm{e}^{\mathrm{e} \zeta_{x}} \beta_{\downarrow}^{*}(1) \beta_{\uparrow}(x)-. . \\
& \left.-\Delta_{\mathrm{s}} \sin \theta_{1} \mathrm{e}^{-1 \varsigma_{1}} \beta_{\uparrow}^{*}(1) \beta_{\downarrow}(x)\right] \\
& +\psi_{\uparrow}(2) \delta_{\nu, \uparrow}\left[\Lambda_{s, Z}^{(2)}\left(\cos \theta_{x}+\cos \theta_{2}\right) \beta_{\uparrow}^{*}(2) \beta_{\uparrow}(x)-\right. \\
& -\Delta_{s} \sin \theta_{x} \mathrm{e}^{-1 \varsigma_{x}} \beta_{\uparrow}^{*}(2) \beta_{\downarrow}(x)- \\
& \left.-\Delta_{s} \sin \theta_{2} \mathrm{e}^{\mathrm{I} \mathrm{~S}_{2}} \beta_{\downarrow}^{*}(2) \beta_{\uparrow}(x)\right] \\
& +\psi_{\uparrow}(2) \delta_{\nu, \downarrow}\left[\Lambda_{s, Z}^{(2)}\left(\cos \theta_{2}-\cos \theta_{x}\right) \beta_{\uparrow}^{*}(2) \beta_{\downarrow}(v)-\right. \\
& -\Delta_{s} \sin \theta_{x} \mathrm{e}^{1 \zeta_{x}} \beta_{\uparrow}^{*}(2) \beta_{\uparrow}(x)-. \\
& \begin{array}{l}
-\Delta_{s} \sin \theta_{2} \mathrm{e}^{1 \zeta_{2}} \beta_{\downarrow}^{*}(2) \beta_{\downarrow}(2) \\
{\left[\Lambda^{(2)}\left(\cos \theta_{x}-\cos \theta_{2}\right) \beta_{\downarrow}^{*}(2) \Delta_{s} \sin \theta_{\tau} \mathrm{e}^{\mathrm{L}_{s}} \sum_{j} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2}\right]}
\end{array} \\
& +\psi_{\downarrow}(2) \delta_{\nu, \uparrow}\left[\Lambda_{s, Z}^{(2)}\left(\cos \theta_{x}-\cos \theta_{2}\right) \beta_{\downarrow}^{*}(2) \beta_{\uparrow}(x)-.\right.
\end{aligned}
$$

$$
\begin{align*}
& -\Delta_{s} \sin \theta_{x} \mathrm{e}^{-1 \zeta_{x}} \beta_{\downarrow}^{*}(2) \beta_{\downarrow}(x)-\ldots \\
& \left.\cdots-\Delta_{s} \sin \theta_{2} \mathrm{e}^{-1 \zeta_{2}} \beta_{\uparrow}^{*}(2) \beta_{\uparrow}(x) \quad+\delta_{x, 2} \Delta_{s} \sin \theta_{\lambda} \mathrm{e}^{-1 \zeta_{s}} \sum_{j} \sum_{\eta}\left|\beta_{\eta}(j)\right|^{2}\right] \\
& +\psi_{\downarrow}(2) \delta_{\nu, \downarrow}\left[-\Lambda_{s, Z}^{(2)}\left(\cos \theta_{x}+\cos \theta_{2}\right) \beta_{\downarrow}^{*}(2) \beta_{\downarrow}(x)-. .\right. \\
& . .-\Delta_{s} \sin \theta_{x} \mathrm{e}^{1 \zeta_{x}} \beta_{\downarrow}^{*}(2) \beta_{\uparrow}(x)-. \\
& \left.\cdots \Delta_{s} \sin \theta_{2} \mathrm{e}^{-1 \zeta_{2}} \beta_{\uparrow}^{*}(2) \beta_{\downarrow}(x)\right] \\
& +\psi_{\nu}(x)\left[\Lambda_{\text {hopp }}^{(2)} \sum_{k} \sum_{\sigma, \sigma^{\prime}} \beta_{\sigma}^{*}(k) \bar{R}_{k, \sigma \sigma^{\prime}} \beta_{\sigma^{\prime}}(k+1)-\ldots\right. \\
& . .-\left(\delta_{\nu, \uparrow}-\delta_{\nu, \downarrow}\right) \Lambda_{s, Z}^{(2)} \cos \theta_{x} \sum_{j} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2}-. \\
& -\Lambda_{\stackrel{\varepsilon}{(2)}}^{(2)} \sum_{k} \cos \theta_{k}\left(\beta_{\uparrow}^{*}(k) \beta_{\uparrow}(k)-\beta_{\downarrow}^{*}(k) \beta_{\downarrow}(k)\right)+. . \\
& \left..+\Delta_{s} \sum_{k} \sin \theta_{k}\left(\beta_{\uparrow}^{*}(k) \beta_{\downarrow}(h) \mathrm{e}^{-1 \mathcal{C}_{h}}+\beta_{\downarrow}^{*}(k) \beta_{\uparrow}(k) \mathrm{e}^{1 C_{k}}\right)\right] \tag{550}
\end{align*}
$$

If these equations are studned carefully onc can find some stuluctue in them. Especially, it is possible to rewrite the expression in a compact matrix form, sumlar to the cases before Trying various orders, we were able to find a specific structure We shall present it already in the mose gencral case of N sites since in the two-sites systenı some features get lost

5.4.5 Two Particles / N Sites ($M=2, N$ arbitrary)

Looking back at the Hartree-Fock equation on page 134, one can quackly see that the hopping part can be expressed in a more convenient fom The first part, gren in the form

$$
\begin{aligned}
&-t \sum_{\sigma^{\prime}}\left\{\tilde{R}_{x, \nu \sigma^{\prime}} \psi_{\sigma^{\prime}}(x+1) \sum_{j} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2} \mathrm{e}^{\frac{2 \pi_{1}}{\lambda} \frac{\phi}{\phi_{0}}}+\right. \\
&\left.+\bar{R}_{x-1, \nu \pi^{\prime}}^{*} \psi_{\sigma^{\prime}}(x-1) \sum_{j} \sum_{\eta}\left|\beta_{\eta}(\eta)\right|^{2} \mathrm{e}^{-\frac{2-1}{\lambda} \frac{\phi}{\phi_{0}}}\right\}
\end{aligned}
$$

does not mix contributions of the ψ-particle with those of the β-partacle Keeping the clefintion of the elements of \bar{R} in (52) or better in the form

$$
\bar{R}_{h, \sigma \sigma^{\prime}}=\sum_{\eta} \hat{R}_{k, \sigma \eta}^{+} \hat{R}_{h+1 \eta \sigma^{\prime}} \quad \text { with } \quad \hat{R}_{k}=\left(\begin{array}{cc}
\cos \left(\frac{1}{2} \theta_{k}\right) & -\mathrm{e}^{-i \zeta_{h}} \sin \left(\frac{1}{2} \theta_{k}\right) \\
\mathrm{e}^{1 \zeta_{k}} \sin \left(\frac{1}{2} \theta_{k}\right) & \cos \left(\frac{1}{2} \theta_{k}\right)
\end{array}\right)
$$

m mind, this part of the hopping can be expressed with the help of the matrix ${ }^{7}$

$$
F_{I I}=-t\left(\begin{array}{cccccc}
0 & \mathrm{e}^{i f} \hat{R}_{1}^{+} \hat{R}_{2} & 0 & \cdots & 0 & \mathrm{e}^{-1 f} \hat{R}_{1}^{+} \hat{R}_{N} \tag{551}\\
\mathrm{e}^{-1 f} \hat{R}_{2}^{+} \hat{R}_{1} & 0 & \mathrm{e}^{i f} \hat{R}_{2}^{+} \hat{R}_{3} & & 0 \\
0 & \mathrm{e}^{-i f} \hat{R}_{3}^{+} \hat{R}_{2} & 0 & & & \\
\cdot & & & . & & \\
0 & & & & 0 & \mathrm{e}^{i f} \hat{R}_{N-1}^{+} \hat{R}_{N} \\
\mathrm{e}^{i f} \hat{R}_{N}^{+} \hat{R}_{1} & 0 & \cdots & 0 \mathrm{e}^{-1 f} \hat{R}_{N}^{+} \hat{R}_{N-1} & 0
\end{array}\right)
$$

in the following form

$$
\begin{equation*}
\left(\sum_{j} \sum_{\eta}\left(F_{H}\right)_{\eta j}^{\nu x} \psi_{\eta}(\jmath)\right) *\left(\sum_{\jmath} \sum_{\eta}\left|\beta_{\eta}(J)\right|^{2}\right) \tag{5j2}
\end{equation*}
$$

where the superscripts at F_{H} denote the row and the subscripts denote the column of this matrix. It is worth noting that the structure of F_{H} is very similar to the matrix for the hopping part of unrotated tight-binding models as for instance on page 41 Nevertheless, the existence of the otation matuces mplies a qualitative difference. It might even be interesting to investrgate its effect mdependently of the interaction part

The rest of the hopping pait consists of many small matices withm a big matrix The contribution

$$
-t \psi_{\nu}(x) \sum_{k} \sum_{\sigma, \sigma^{\prime}}\left\{\bar{R}_{h, \sigma \sigma^{\prime}} \beta_{\sigma}^{*}(h) \beta_{\sigma^{\prime}}(k+1) \mathrm{e}^{\frac{3 \pi 1}{\lambda} \frac{\phi}{\phi_{0}}}+\bar{R}_{h-1, \sigma \sigma^{\prime}}^{*} \beta_{\sigma}^{*}(h) \beta_{\sigma^{\prime}}(k-1) \mathrm{e}^{-\frac{2 \pi n}{\lambda} \frac{\phi}{\phi_{0}}}\right\}
$$

has the same $F_{I I}$-matrix character For the other two teims

$$
\begin{aligned}
& +t \sum_{\sigma^{\prime}}\left\{\bar{R}_{x, \nu \sigma^{\prime}} \beta_{\sigma^{\prime}}(x+1) \sum_{j} \sum_{\eta} \beta_{\eta}^{*}(j) \psi_{\eta}(\jmath) \mathrm{e}^{\frac{3 \pi n}{4} \frac{\phi}{\Phi_{0}}}+\right.
\end{aligned}
$$

$$
\begin{aligned}
& +t \beta_{\nu}(x) \sum_{k} \sum_{\sigma, \sigma^{\prime}}\left\{\bar{R}_{k, \sigma \sigma^{\prime}} \beta_{\sigma}^{*}(k) \psi_{\sigma^{\prime}}(k+1) \mathrm{e}^{\frac{27+}{\frac{2}{4} \Phi_{0}}}+\bar{R}_{k-1, \sigma \sigma^{\prime}}^{*} \beta_{\sigma}^{*}(k) \psi_{\sigma^{\prime}}(k-1) \mathrm{e}^{-\frac{2 \tau}{N} \frac{\Phi}{\Phi_{0}}}\right\}
\end{aligned}
$$

the matrices, which are denoted with the symbol $P_{\eta_{j}}^{\nu x}$, have the following form.

$$
{ }^{7} f=\frac{2 \pi}{N} \frac{\phi}{\phi_{0}}
$$

$$
\begin{aligned}
& f=\frac{2 \pi}{N} \frac{\Phi}{\Phi_{0}} \quad \uparrow, x-1 \quad \downarrow, x-1 \quad \uparrow, x \quad \downarrow, x \quad \uparrow, x+1 \quad \downarrow, x+1
\end{aligned}
$$

Together with such matrices it is useful to introduce a vector notation for the ware functions. Therr components shall be ordered in the following way

$$
\begin{aligned}
\psi & :=\left(\psi_{\uparrow}(1) \psi_{\downarrow}(1) \psi_{\uparrow}(2) \psi_{\downarrow}(2) \quad . \psi_{\uparrow}(N-1) \psi_{\downarrow}(N-1) \psi_{\uparrow}(N) \psi_{\downarrow}(N)\right)^{T} \\
\psi^{*} & =\left(\psi_{\uparrow}^{*}(1) \psi_{\downarrow}^{*}(1) \psi_{\uparrow}^{*}(2) \psi_{\downarrow}(2)^{*} \cdot \psi_{\uparrow}^{*}(N-1) \psi_{\downarrow}^{*}(N-1) \psi_{\uparrow}^{*}(N) \psi_{\downarrow}^{*}(N)\right)
\end{aligned}
$$

and β is defined accordingly The superscript T denotes the transposition; ψ is actually a column As one can see, the asterisk stands for complex conjugation as well as transposition.

Then the matrix character of the two last mentioned hopping terms is as follows

$$
P(\beta)=\left(\begin{array}{cccccc}
\beta^{*} P_{\uparrow 1}^{\uparrow 1} \beta & \beta^{*} P_{\downarrow 1}^{\dagger 1} \beta & \beta^{*} P_{\uparrow 2}^{\uparrow 1} \beta & \beta^{*} P_{\downarrow 2}^{\uparrow 1} \beta & \ldots . & \beta^{*} P_{\downarrow N}^{\uparrow 1} \beta \tag{554}\\
\beta^{*} P_{\uparrow 1}^{\downarrow 1} \beta & \beta^{*} P_{\downarrow 1}^{\downarrow 1} \beta & \beta^{*} P_{\uparrow 2}^{\downarrow 1} \beta & \beta^{*} P_{\downarrow 2}^{\downarrow 1} \beta & \ldots & \\
\beta^{*} P_{\uparrow 1}^{\dagger 2} \beta & & \ddots & & & \\
& & & & & \\
\vdots & & & & \ddots & \beta^{*} P_{\downarrow N}^{\uparrow N} \beta \\
\beta^{*} P_{\uparrow 1}^{\downarrow N} \beta & \ldots \ldots & \ldots & \ldots \ldots & \beta^{*} P_{\uparrow N}^{\downarrow N} \beta & \beta^{*} P_{\downarrow N}^{\downarrow N} \beta
\end{array}\right)
$$

Such a notation allows to expiess the whole system of Hartree-Fock equations in a compact fom What has been mestigated so far is the hopping part of the Hamitonian which has the following structure

$$
E \psi\left\langle\beta^{*} \cdot \beta\right\rangle=F_{I I} \psi\left\langle\beta^{*} \cdot \beta\right\rangle+\left(\beta^{*} F_{H} \beta\right) \psi+P(\beta) \psi
$$

The fact that the matrix of the non-mixed contribution, F_{H}, appeas again together with β is more than reasonable If one looks at the β-paticle as being independent of the ψ-particle then $F_{H} \beta=E_{\beta} \boldsymbol{\beta}$ is the eigenvalue equation for this paticle Hence, $\boldsymbol{\beta}^{*} F_{H} \beta=E_{\beta}\left(\boldsymbol{\beta}^{*} \cdot \beta\right)$ That means that in the case that the β-particle and the ψ-particle can be handled molependently one obtans the equation

$$
E \psi\left\langle\beta^{*} \beta\right\rangle=F_{H} \psi\left\langle\beta^{*} \beta\right\rangle+E_{\beta}\left\langle\beta^{*} \cdot \beta\right\rangle \psi=\left(E_{\psi} \psi+E_{\beta} \psi\right)\left\langle\beta^{*} \beta\right\rangle
$$

which means that the total energy E is just the sum $E_{\psi}+E_{\beta}$ of the energies of the two paticles In this situation of melepenclent paticles it also does not matter what hund of normalizations ane applied.

In this context the condition for independence is that the mfluence of the matrices $P_{\eta_{j}}^{\nu x}$ has to vanish The terms which are responsible for these matrices are given. The first of them contains with

$$
\sum_{\jmath} \sum_{\eta} \beta_{\eta}^{*}(\jmath) \psi_{\eta}(\jmath)=\left\langle\beta^{*} \cdot \psi\right\rangle
$$

the vector product of the wave vectors which are comected with the two separated particles. If onthogonality of the wave functions were assumed this product would give zeio The sane sum goes together with the energy E, which is the reason for the appeazance of this term in the P matrix as well In the second mentioned term the sums

$$
\sum_{k} \sum_{\sigma, \sigma^{\prime}} \bar{R}_{k, \sigma \sigma^{\prime}} \beta_{\sigma}^{*}(k) \psi_{\sigma^{\prime}}(k+1)
$$

are more difficult to handle. One can at least say that in the case of no rotations, when Bloch wave functions are solutions, this term also vamshes. The argument $(h+1)$ of ψ can for Bloch ware functions be avoided by splitting off a simple exponential function So, the non-orthogonality is apparently closely related to an exchange energy already within the hopping part

What remains are the terms for the interaction. The terms which are proportional to Δ_{c} and $\frac{N}{U}\left(\Delta_{c}^{2}+\Delta_{s}^{2}\right)$ can be taken into considelation by writing $E-E_{F}^{(2, N)}$ mstead of E. The vanous terms whinch go with $\Delta_{\text {s }}$ can be spht into those which mix the ψ-expression and β-expression and those which do not mix them

Teims moluding $\left|\beta_{\eta}(J)\right|^{2}$, these are the terms

$$
\begin{aligned}
& -\underbrace{\left(\Delta_{s}+\frac{\Delta_{Z}}{N^{2}} \frac{\Phi}{\Phi_{0}}\right)}_{=\Lambda_{s} z}\left(\delta_{\nu, \uparrow}-\delta_{\nu, \downarrow}\right) \psi_{\nu}(x) \cos \theta_{x} \sum_{j} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2} \quad \text { and } \\
& +\Delta_{s}\left(\delta_{\nu, \uparrow} \psi_{\downarrow}(x) \mathrm{e}^{-1 \zeta_{x}}+\delta_{\nu, \downarrow} \psi_{\uparrow}(x) \mathrm{e}^{1 \zeta_{x}}\right) \sin \theta_{2} \sum_{j} \sum_{\eta}\left|\beta_{\eta}(\jmath)\right|^{2}
\end{aligned}
$$

show no muxture They can be added to the F_{H} matux, which means that a
matrix

$$
F_{I}=\left(\begin{array}{crccc}
-\Lambda_{s, Z} \cos \theta_{1} & \Delta_{s} \mathrm{e}^{-1 \varsigma_{1}} \sin \theta_{1} & & & 0 \\
\Delta_{s} \mathrm{e}^{1 \zeta_{1}} \sin \theta_{1} & \Lambda_{s, Z} \cos \theta_{1} & & & \\
& & \ddots & & \\
& & & -\Lambda_{s, Z} \cos \theta_{N} & \Delta_{s} \mathrm{e}^{-1 \zeta_{s, ~} \sin \theta_{N}} \\
0 & & & \Delta_{s} \mathrm{e}^{2 \zeta_{N}} \sin \theta_{N} & \Lambda_{s, Z} \cos \theta_{N}
\end{array}\right)
$$

has to be defined, which always appears together with F_{H}. Thus notation is 1easonable, because also a term $\beta^{*} F_{I} \beta$ exists in the same way as for the hopping part The two terms in the mteraction part which are propotional to $\psi_{\nu}(x)$,

$$
\begin{aligned}
& -\left(\Delta_{s}+\frac{\Delta_{Z}}{N^{2}} \frac{\Phi}{\Phi_{0}}\right) \psi_{\nu}(x) \sum_{k} \cos \theta_{k}\left(\beta_{\uparrow}^{*}(k) \beta_{\uparrow}(k)-\beta_{\downarrow}^{*}(k) \beta_{\downarrow}(k)\right) \quad \text { and } \\
& +\Delta_{s} \psi_{\nu}(x) \sum_{k} \sin \theta_{k}\left(\beta_{\uparrow}^{*}(k) \beta_{\downarrow}(k) \mathrm{e}^{-1 \zeta_{k}}+\beta_{\downarrow}^{*}(k) \beta_{\uparrow}(k) \mathrm{e}^{1 \zeta_{k}}\right)
\end{aligned}
$$

are responsible for this
All the other terms appeat in small matnices $Q_{\eta j}^{\nu \tau}$, which can be combined to a big matrix $Q(\beta)$ smilarly to the treatment for the $P_{\eta j}^{\nu x}$ matrices The structure of these new matrices is as follows

$$
\begin{align*}
& \uparrow, x \quad \downarrow, a \\
& Q_{\uparrow j}^{\uparrow 2}=\left(\begin{array}{rr}
-E_{F}^{(2, N)}+\cos \theta_{x}+\cos \theta_{j} & -\mathrm{e}^{-1 \zeta_{x} \sin \theta_{x}} \\
-\mathrm{e}^{1 \zeta_{,} \sin \theta_{j}} & 0
\end{array}\right) \downarrow, \jmath, \begin{array}{l}
\uparrow, J
\end{array} \\
& Q_{\uparrow j}^{L_{j}}=\left(\begin{array}{rr}
-E_{\Gamma}^{(2 N)}-\mathrm{e}^{r_{x} \sin \theta_{x}} & -\cos \theta_{x}+\cos \theta_{j} \\
0 & -\mathrm{e}^{\kappa_{j}} \sin \theta_{j}
\end{array}\right) \\
& Q_{\downarrow j}^{\dagger r}=\left(\begin{array}{cc}
-E_{\Gamma}^{(2, N)}-\mathrm{e}^{-i \zeta_{j} \sin \theta_{j}} & 0 \\
\cos \theta_{x}-\cos \theta_{J} & -\mathrm{e}^{-\varsigma_{x} \sin \theta_{x}}
\end{array}\right) \\
& Q_{\downarrow_{j}}^{L_{j}}=\left(\begin{array}{rr}
-E_{F}^{(2, N)} & -\mathrm{e}^{-1 \varsigma_{,} \sin \theta_{j}} \\
-\mathrm{e}^{1 \zeta_{x} \sin \theta_{x}} & -\cos \theta_{x}-\cos \theta_{j}
\end{array}\right) \tag{556}
\end{align*}
$$

Now the equation (5.55) can be generalızed to an expression which includes the interaction. We have found out that the system of Hartree-Fock equations has the following structure.

$$
\left(E-E_{\Gamma}^{(2, N)}\right) \psi\left\langle\boldsymbol{\beta}^{*} \boldsymbol{\beta}\right\rangle=\left(F_{H}+F_{I}\right) \psi\left\langle\boldsymbol{\beta}^{*} \beta\right\rangle+\left(\boldsymbol{\beta}^{*}\left(F_{H}+F_{I}\right) \beta\right) \psi+P(\beta) \psi+Q(\beta) \psi
$$

Single equations on the other hand, that means the whole expression on page 134, can be given in the form.

$$
\begin{aligned}
\left\langle\beta^{*} \beta\right\rangle\left(E-E_{F}^{(2, N)}\right) \psi_{\nu}(x) & =\left\langle\beta^{*} \cdot \beta\right\rangle \sum_{j} \sum_{\eta}\left(F_{H}+F_{I}\right)_{\eta \jmath}^{\nu x} \psi_{\eta}(\jmath) \\
& +\left(\beta^{*}\left(F_{H}+F_{I}\right) \beta\right) \psi_{\nu}(x) \\
& +\sum_{j} \sum_{\eta}\left(\beta^{*} P_{\eta \jmath}^{\nu x} \beta\right) \psi+\sum_{j} \sum_{\eta}\left(\beta^{*} Q_{\eta \jmath}^{\nu x} \beta\right) \psi
\end{aligned}
$$

To write the equations in such a compact way scems to be the only possiblity to recognize the structure within the Hartrec-Fock equations. After a thooongh study of the matrices the finding of solutions for the energy as well as the generalzation to M particles should be possible This statement offers the opportunity for further investigations.

One possibility is to peiform a simular iteration as suggested on page 58 Starting with an assumption for the β-particle, the formula (545) provides equations for the ware function of the other particle, ψ On the other hand ($\overline{4} 5$) is of course also true of the role of β and ψ is exchanged Therefore, ψ can be inserted into the formula, and a condition for β can be obtamed. The procedure has to be repeated untrl self-consistency is reached

Conclusions

In the present thesis we have studied many-body effects in the persistent current problem Starting with basic considerations we were able to derıve convincing expressions for the current in normal-metal mesoscopic rings threaded by a magnetic flux These results show the single-flux periodicity which was observed in expenments They also correspond well to other authors' findings

Additionally, some interesting observations which are connected with the deliration were mentioned. This includes an mhomogeneons charge distribution, which is presumably related to Friedel oscillation; it includes the panty effect, which relates Fermi statistics to flux phenomena; and it includes the period halving due to averaging processes

When taking interaction into consideration, it tumed out that the persistent curent within our model is not influenced by the Conlomb repulsion It is neither enhanced nor suppressed. This contradicts the results of many other scientists and cannot be true Since this statement was even obtained by an exact solution of the Hartree-Fock equations, it demonstrates the weakness of the Hartrce-Fock approximation and implies that it is insufficient to use sumple trial wate functions.

Realizing this, some new ideas were implemented in the model We mainly tined to improve the results by using Hubbard-Stiatonovic decomposition and introducing rotated spin-quantization axes for every site. There are valous possibilities to do this. Most of them led to results whech are not icasonable Eventually. we found out that the physical situation is probably descubed best if the following steps are performed: First of all, the usual Hubladd Hamultonian is transformed to a path-integral description Afterwards the Hubbard-Stratonovic decomposition is applied in order to simplify the interaction term. The resulting Hamiltonan is evaluated with the help of rotated states Using rotated cieation
operators $\tilde{c}_{i, \sigma}^{\dagger}$, these states should be in the form.

$$
|\psi\rangle_{n_{1}, n_{M}}=C_{M} \sum_{i_{1},,,_{M}} \sum_{\sigma_{1},, \sigma_{M}} \psi_{\sigma_{1}}^{n_{1}}\left(i_{1}\right) \cdot \ldots \cdot \psi_{\sigma_{M}}^{n_{M}}\left(\imath_{M}\right) \tilde{c}_{i_{1}, \sigma_{1}}^{\dagger} \cdots \tilde{c}_{i_{M}, \sigma_{M}}^{\dagger}|0\rangle
$$

and no orthogonality or normalization conditions for the suglc-particle wave functions should be used After the Hartree-Fock erfuations are solved self-consistently one can try to minmize the obtamed expression for the energy with icspect to the mean fields and the angles of rotation, leading to a saddle-point appioximation of the integrals

This procedure is connected with the hope that certam spm configurations allow us to obtain lower energy values than with ordmary Bloch wave functions as used in the first part of the paper. These spin structmes would of course depend on the flux through the ing Therefore, non-tinval expicssions for the persistent current would be obtamed.

Unfortumately, it was not possible within this master thesis to gan such results. It tuined out that the suggested procedure leads to long and cumbersome equations which have no sımple analytical solutions. Even for small systems, lake two particles on two sites, no solution was found On the other hand we came to the conclusion that every tual to simplify the equations by introducing further constiants leads to results whin do not describe the siturtion properly

The author is also aware of the fact that in prmaple fom mecgrations are still missing These are the integrals over Matsubara time, orer the mean ficlds, over the rotation angles and over the Grassmann numbers The first integral could be neglected if no temperature clependence is assumed The second and the third integral can be treated in a saddle-pont approximation Howeven. for the last mintegral sophisticated methods, usually leading to determinants, ate necessary

Nereitheless, it is the opmon of the authon that the present paper is a good basis for futher mestigations It does not only provide the possibility to gan a deeper insight into the causes of persistent current and the problems with manybody effects The matrix representation of the Hartree-Fock equations at the end of the last chapter can also be used to stant inmediately with numerical calculations per iteration It is assumed that the given case of 2 paticles and N sites can easily be generalized to M pasticles

Appendix A

List of Symbols

Physical Constants

Common Plysical Quantities

v_{r}. Fermi velocity of electrons on the ring
μ. chemincal potential of statistical system (43)
T.. temperature
β inverse temperatuie $\beta=1 / h_{B} T$
σ. Prulı spin matrices (12)
$\mathrm{B}, B_{z} \quad$ external magnetic field and its z-component
A ... rector potential $B=\nabla \times A$
\mathcal{H}. . . any Hamiltonian
t. ... hopping mitegral in Hubbard and Heisenberg model (1 23), (1 24)
$I^{*} \ldots$. repulsive Coulomb potential for adjacent sites in (123) Hesenberg inodel
$U \quad$. on-site Coulomb repulsion in Hubbard model
$\Phi \quad$. magnetic flux through the ing
τ. . maginay (Matsubara) time $\tau=1 t$
Z. partition function in path-integral fomulation .. . (45)
S. action of the sy stem (exponent of Z) (4 $\overline{\mathrm{i}}$)

Paper-Specific Physical Quantities

Paper-Specific Physical Quantities (Continuation)

λ.. Lagrange multipher
$x \nu$. site and spin index of the parameter with respect to which dernatives are taken
$n_{C} \ldots$ quantum number of this parameter
f. . sometimes used for the flux phase $f=\frac{2 \pi}{N} \frac{\phi}{\Phi_{0}}$
$N_{t} \quad$ number of time-discretisation steps in a pathintegral appioach
$|\Psi\rangle \quad$ coherent state, eigenstate of ammhlation op- $c_{k, \sigma}|\Psi\rangle=\xi_{k, \sigma}|\Psi\rangle$ elator
$\xi_{h, \sigma} \ldots$ Grassmann number, elgenvalue of amminlation operator
$\tilde{\xi}_{h, \sigma} \quad$ rotated Grassmann number
$\Psi, \tilde{\Psi}$. vector of Grassmann numbers with components $\xi_{k, \sigma}, \tilde{\xi}_{k, \sigma}$
$w \quad . \quad$ angle phase winding number $=$ number of p 89 spin-rotations around the penmeter when gomg ones along the ring
Δ_{c}, Δ_{s} (fictitious) mean fields over whech is integlated in the Hubbard-Stratonovic decomposition, belonging to the charge and spin degiee of freedom respectively
$\Delta_{c}^{\prime} \quad$.. modification of Δ_{c} to arond complex values . $\Delta_{c}^{\prime}=2 \operatorname{Re}\left(1 \Delta_{c}\right)$
Δ_{Z}... energy constant in Zeemam effect, not a $\Delta_{Z}=\frac{g h^{2}}{m_{e} a^{2}}$ mean field (1)
$\Lambda_{s, Z}^{(N)}$.. auxiliary rauable for matrix equations $\quad \Lambda_{s, Z}^{(N)}=\Delta_{s}+\frac{\partial_{z}}{N^{2}} \frac{\Phi}{p_{0}}$
$\Lambda_{\text {hopp }}^{(N)}$. anxuliary variable for matnx equations .. . $\Lambda_{\text {hopp }}^{(N)}=-2 t \cos \left(\frac{2 \pi i}{N} \frac{\phi}{\Phi_{1}}\right)$
a_{h}. duxiliary valuables (5 11)
$E_{F}^{(M, N)}$. fixed (angle independent) energ! contul)n- (5 11) tion of the fields
w_{1}, w_{2}. auxiliary vanables
χ.. . phase of a ware function
$r_{1 \mathrm{I}}$. . Iatio between the components of the wave $r_{\mathrm{I}, \mathrm{a}}=\gamma_{1}^{1, \mathrm{a}} / \gamma_{2}^{1, \mathrm{II}}$ function for the solutions I and II in the twosite pioblem
$F_{I I}, F_{I}$ mataices for a description of 2 particles (non- sect $5+5$ mived)
$P, Q \ldots$ matrices for a descuption of 2 partıcles sect. 545 (mused)

Common Abbreviations

i $\ldots . . \ldots$.... maginary unit $1^{2}=-1$
\mathbb{C}... . . . set of complex numbers
$\operatorname{Re}(z) / \operatorname{Im}(z) \quad$ real $/$ ımaginary part of a complex number z
$\mathcal{P}(M) \quad .$. set of all permutations of M integers
$(-1)^{\text {sgn }} \ldots$. panty of the permutation $\wp . . \quad . \quad .=\left\{\begin{array}{c}1 \text { if } \wp \text { eren } \\ -1 \text { if } \wp \text { odd }\end{array}\right.$
id identical permutation
h c. hermitian conjugate
$\begin{array}{lll}\delta_{2, j} & . & \text { Kronecker delta of } \imath \text { and } \jmath \ldots \\ \varepsilon_{\imath j k} \ldots & . & \text { totally antisymmetric tensor }\end{array} . . . \delta_{2, \jmath}=\left\{\begin{array}{l}1 \text { if } \imath=\jmath \\ 0 \text { if } \imath \neq \jmath\end{array}\right.$
11 .. . unitary operator
\wedge. logical operator AND
$\forall x \quad$ the statement before this symbol is valid for all 2
$[\cdot, \cdot]_{-}$commutator of two operators $\quad[\hat{A}, \hat{B}]_{-}=\hat{A} \hat{B}-\hat{B} \hat{A}$
$[\cdot, \cdot]_{+} \quad \ldots$ anticommutator of two operators $[\hat{A}, \hat{B}]_{+}=\hat{A} \hat{B}+\hat{B} \hat{A}$
\square.. . marks the end of a proof or example
$\alpha_{1} \cdot \widehat{\alpha_{C}} \cdot \alpha_{M}$ product of all α 's with omission of $\alpha_{C} \quad . \quad=\alpha_{1} \quad \alpha_{C-1} \alpha_{C+1} \cdot \alpha_{M}$

Appendix B

The $p-A$ - connection

The am of this appendix is to show which effect the existence of a vector potential $\mathbf{A}(\mathbf{r}, t)$ has on the Hamiltonian and the wave function of a system in first quantization. For both expressions the changes compared to the free-electron situation are derived.

Change of the Hamiltonian

It is possible to put the effect of a magnetic field on an electric charge into the Hamiltonian of the system by substituting the expiession for the momentum in the following way

$$
\begin{array}{ll}
\hat{\mathrm{p}} \longrightarrow \hat{\mathrm{p}}-e \mathrm{~A} & \text { SI units, } \tag{B1}\\
\hat{\mathrm{p}} \longrightarrow \hat{\mathrm{p}}-\frac{e}{c} \mathrm{~A} & \text { Gcussian unts, },
\end{array}
$$

where e as the elementary charge or the chage of an election and c is the velocity of light

Proof: An explanation of the substitution goes back to analytical mechancs: ${ }^{1}$ The Hamltonian prmciple states that all processes in nature develop in such a way that the action

$$
S=\int_{t_{1}}^{t_{2}} L \mathrm{~d} t
$$

[^22]becomes an extremum. Here L is the Lagrangıan of the system. Acconding to calculus of varıation, this condition is equivalent to the Euler-Lagrange equations
$$
\frac{\partial L}{\partial q_{2}}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial q_{2}}\right)=0
$$
where q_{z} is a (generalized) coordınate
These equations are fulfilled for conservative systems with holonom constrants In this case, a potential V exists with $m \ddot{q}_{2}=-\frac{\partial V}{\partial q_{1}}$ (Newton's law) and L can be witten as
\[

L=T-V \quad with \quad $$
\begin{aligned}
T & =\sum \frac{1}{2} m q_{2}^{2} \quad \text { kinetic energy } \\
& V=V\left(q_{2}\right) \quad \ldots \text { potential energy }
\end{aligned}
$$
\]

However, there is no change in the results, if instead of the potential V only a generalized potential U is available. Such a generalized potential is defined by the constıant that (generalized) forces can be obtained in the following way

$$
F_{3}=-\frac{\partial U}{\partial q_{3}}+\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial U}{\partial q_{3}}\right)
$$

Then the Lagrangian can, simılar to the pıevious case, be defined as $L=T-U$, and the Euler-Lagrange equations are still fulfilled

For a (Lorentz) force acting on a partıcle with a charge q in an electromagnetic field such a generalized potential exists, because

$$
\begin{array}{rlrl}
\mathbf{F} & =q[\mathrm{E}+\mathbf{v} \times \mathrm{B}] & & \text { SI units } \\
\mathbf{F} & =q\left[\mathrm{E}+\frac{1}{c}(\mathrm{v} \times \mathrm{B})\right] & & \text { Gaussıın units } \\
\mathbf{E} & =-\nabla \phi-\frac{1}{c} \frac{\partial \mathrm{~A}}{\partial t} & & \downarrow \\
\mathbf{B} & =\nabla \times \mathbf{A} & & \\
\Longrightarrow \mathbf{F} & =q\left[-\nabla \phi-\frac{1}{c}\left\{\frac{\partial \mathrm{~A}}{\partial t}-\mathrm{v} \times(\nabla \times \mathrm{A})\right\}\right] & & \frac{\mathrm{dA}}{d t}=\frac{\partial \mathrm{A}}{\partial t}+(\mathrm{v} \tau) \mathrm{A} \\
& & \\
& & \\
\hline U\left[-\nabla\left(\phi-\frac{1}{c} \mathrm{vA}\right)-\frac{1}{c} \frac{\mathrm{dA}}{\mathrm{~d} t}\right] & & \\
\Longrightarrow U & \equiv q\left(\phi-\frac{1}{c} \mathrm{vA}\right) & &
\end{array}
$$

Themefore, it is

$$
L=T-q \phi+\frac{q}{c} \mathrm{v} \cdot \mathbf{A}
$$

With the help of the Lagrangıan, a generalized momentum can be obtained

$$
p_{\imath}=\frac{\partial L}{\partial \dot{q}_{\imath}}=\frac{\partial T}{\partial \dot{q}_{\imath}}+\frac{q}{c} A_{\imath}
$$

The Hamiltonian is the Legendre transformation of the Lagrangıan, and hence:

$$
\mathcal{H}=\sum_{i} p_{\imath} q_{t}-L
$$

If only sklenonom holonom constraints are taken mito consideration, that is if $\mathbf{r}_{2}\left(q_{1}, \ldots, q_{s}, t\right)=\mathbf{r}_{\imath}\left(q_{1} \quad ., q_{s}\right)$, then

$$
T=\sum_{\imath \jmath} \alpha_{\imath \jmath} q_{\imath} q_{j} \quad \Longrightarrow \quad \sum_{i} \frac{\partial T}{\partial \dot{q}_{2}} q_{2}=2 T
$$

This leads to

$$
\mathcal{H}=\sum_{i}\left(\frac{\partial T}{\partial q_{2}}+\frac{q}{c} A_{2}\right) q_{2}-\left(T-q \phi+\frac{q}{c} \mathbf{v} \cdot \mathbf{A}\right)=T+q \phi
$$

Therefore, for the movement of a paticle withm an electromagnetic potential ($\mathrm{A}, \frac{1}{c} \phi$) the following two results have been obtamed

1. The canonical momentum is

$$
\begin{align*}
\mathbf{p} & =m \mathbf{v}+\frac{q}{c} \mathbf{A} \tag{B2}\\
\mathcal{H} & =\frac{\left(\mathrm{p}-\frac{q}{c} \mathrm{~A}\right)^{2}}{2 m}+q \phi \tag{B3}
\end{align*}
$$

The calculation has been done in Gaussian umts because this system of unts is common in mesoscopics Furthermore, it is much easier to go fiom Gaussian unts to the SI-system than the other way around. The only thing to do m this context is to omit $\frac{1}{c}$ everywhere.

Change of the Wave Function

The modified structue of the Hamiltoman \mathcal{H} compared to the case with no rector potential. influences of course also the expression for the wave function [51$]$ Given that $\psi($ r. $t)$ is the solution for the Schrodinger equation of a free electron with charge e. the clam is that

$$
\begin{equation*}
\Psi(\mathbf{r}, t)=\psi(\mathbf{r}, t) \exp \left[-\frac{1 e}{\hbar c} \int^{\mathbf{r}} \mathrm{A}(\mathbf{s}) \mathrm{ds}\right] \tag{B.4}
\end{equation*}
$$

solves the Schrödinger equation for the Hamiltoman derıved above
Proof 1: It has to be shown that

$$
\mathcal{H} \Psi(\mathbf{r}, t)=\mathrm{i} \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)
$$

with \mathcal{H} given in (B 3) This can be done directly by rewriting the Hamiltonian in the following way.

$$
\begin{align*}
\mathcal{H} & =\frac{\mathrm{p}^{2}}{2 m}+\frac{e}{2 m c}(\mathrm{p} \cdot \mathrm{~A}+\mathrm{A} \cdot \mathrm{p})+\frac{e^{2}}{2 m c^{2}} \mathrm{~A}^{2}-e \phi \\
& =-\frac{\hbar^{2}}{2 m} \nabla^{2}+\frac{e}{2 m c}(2 \mathrm{~A} \cdot(-\mathrm{i} \hbar \nabla)-1 \hbar \nabla \cdot \mathrm{~A})+\frac{e^{2}}{2 m c^{2}} \mathrm{~A}^{2}-e \phi \\
& =-\frac{\hbar^{2}}{2 m} \nabla^{2}+\frac{e}{2 m c} 2 \mathrm{~A} \cdot(-\mathrm{i} \hbar \nabla)+\frac{e^{2}}{2 m c^{2}} \mathrm{~A}^{2}-e \phi \tag{B5}
\end{align*}
$$

Two remarks explain this calculation. First, $\mathrm{p} \cdot \mathbf{A}=\mathbf{A} \cdot \mathrm{p}-1 \hbar \nabla \cdot \mathbf{A}$ because

$$
\begin{aligned}
{\left[p_{\imath}, A_{2}(\mathrm{r})\right] \Psi(\mathrm{r}, t) } & =-\mathrm{i} \hbar \frac{\partial}{\partial x_{2}} A_{2}(\mathrm{r}) \Psi(\mathrm{r}, t)+\mathrm{i} \hbar A_{2}(\mathrm{r}) \frac{\partial}{\partial x_{2}} \Psi(\mathrm{r}, t) \\
& =-\mathrm{i} \hbar\left(\frac{\partial A_{2}(\mathrm{r})}{\partial x_{2}}\right) \Psi(\mathrm{r}, t)=-1 \hbar(\nabla \cdot \mathrm{~A}) \Psi(\mathrm{r}, t)
\end{aligned}
$$

Scondly, the Couloml) gauge $\nabla \cdot \mathrm{A}=0$ was used Futhemmere, a pure radation fickl, that is $\phi=0$, is assumed. By noting that the derivatives of the wave function (B4) are of the form

$$
\begin{aligned}
\nabla \Psi(\mathbf{r}, t)= & \exp \left[-\frac{1 e}{\hbar c} \int^{\mathrm{r}} \mathrm{~A}(\mathrm{~s}) \mathrm{ds}\right]\left(\nabla \psi-\frac{1 e}{\hbar c} \mathrm{~A} \psi\right) \\
\nabla^{2} \Psi(\mathbf{r}, t)= & \exp \left[-\frac{1 e}{\hbar c} \int^{\mathrm{r}} \mathrm{~A}(\mathrm{~s}) \mathrm{ds}\right]\left(\nabla^{2} \psi-\frac{2 e}{\hbar c} \mathrm{~A} \cdot(\nabla \psi)-\right. \\
& \left.-\frac{e^{2}}{\hbar^{2} c} \psi \mathrm{~A}^{2}-\frac{\mathrm{ie}}{\hbar c} \psi \nabla \mathrm{~A}\right) \\
\frac{\partial}{\partial t} \Psi(\mathbf{r}, t)= & \exp \left[-\frac{1 e}{\hbar c} \int^{\mathrm{r}} \mathrm{~A}(\mathrm{~s}) \mathrm{ds}\right] \frac{\partial \psi}{\partial t}
\end{aligned}
$$

and using this expression for the calculation of \mathcal{H} in (B $\overline{3}$) operating on $\Psi(\mathbf{r}, t)$ one can easily sea that the Schrodinger equation is fulfilled.

Thete is another proof possible for the case that the magnetic field $\mathrm{B}=0$ along a path of consideration We use the theory of gauge transtormations in electiomagnetism

$$
\begin{aligned}
& \phi \longrightarrow \phi^{\prime}=\phi-\frac{1}{c} \frac{\partial}{\partial t} \lambda(\mathbf{r}, t) \\
& \mathrm{A} \longrightarrow \mathrm{~A}^{\prime}=\mathrm{A}+\nabla \chi(\mathbf{r}, t)
\end{aligned}
$$

and claım: If a wave function $\Psi(\mathrm{r}, t)$ is a solution of the Schrodinger equation $\mathcal{H} \Psi(\mathbf{r}, t)=E \Psi(\mathbf{r}, t)$ and a gauge transformation of the proposed form is applied then simultaneously a transformation of the wave function Ψ of the form

$$
\Psi(\mathbf{r}, t) \longrightarrow \Psi^{\prime}(\mathbf{r}, t)=\Psi(\mathbf{r}, t) \exp \left[-\frac{\mathrm{i} e}{\hbar c} \chi\right]
$$

is necessaty for the invariance of the Schıödinger equation [32,52]

$$
\text { Proof 2: } \begin{aligned}
\mathcal{H}^{\prime} \Psi^{\prime} & =\frac{1}{2 m}\left(-\mathrm{i} \hbar \nabla+\frac{e}{c} \mathrm{~A}^{\prime}\right)^{2} \Psi^{\prime}(\mathbf{r}, t) \\
& =\frac{1}{2 m}\left(-\mathrm{i} \hbar \nabla+\frac{e}{c} \mathrm{~A}+\frac{e}{c} \nabla \chi\right)^{2} \Psi(\mathbf{r}, t) \exp \left[-\frac{1 e}{\hbar c} \chi\right] \\
& =\frac{1}{2 m} \exp \left[-\frac{1 e}{\hbar c} \chi\right]\left(-1 \hbar \nabla+\frac{e}{c} \mathrm{~A}\right)^{2} \Psi(\mathbf{r}, t) \\
& =\exp \left[-\frac{1 e}{\hbar c} \chi\right] \mathcal{H} \Psi(\mathbf{r}, t)=\exp \left[-\frac{1 e}{\hbar c} \chi\right] E \Psi(\mathbf{r}, t) \\
& =E \Psi^{\prime}(\mathbf{r}, t)
\end{aligned}
$$

That means that the eigenfunctions of a ganged Hamitoman are the rigenfunctions of the Hamiltonian without gange times $\exp \left[-\frac{1 e}{h i c} \chi\right]$ The elgenvaluc E is not affected by the gange transformation.

In regions with no magnetic field $\mathrm{A}(\mathrm{r}, t)$ can be witten as a giadrent of a scalar field, which automatically gives zero for $\mathrm{B}=\nabla \times \mathrm{A}$ On the other hand, if $\mathbf{A}(\mathbf{r}, t)=\nabla \chi(\mathbf{r}, t)$ then A can be understood as a galuge transformation fiom the state of no vector potential $\mathbf{A}(\mathbf{r}, t) \equiv 0$ Thercfore,

$$
\begin{aligned}
\Psi(\mathbf{r}, t) & =\psi(\mathbf{r}, t) \exp \left[-\frac{\mathrm{i} e}{\hbar c} \chi(\mathbf{r}, t)\right]=\psi(\mathbf{r}, t) \exp \left[-\frac{\mathrm{e}}{\hbar c} \int^{\mathbf{r}} \nabla \chi(\mathrm{s}, t) \mathrm{ds}\right] \\
& =\psi(\mathbf{r}, t) \exp \left[-\frac{1 e}{\hbar c} \int^{\mathbf{r}} \mathrm{A}(\mathrm{~s}, t) \mathrm{ds}\right]
\end{aligned}
$$

which proves again (B 4)

Appendix C

The Pauli Problem

In many calculations, as for instance in chapter 2 1.4, appear expressions like

$$
\sum_{A=1}^{M} \sum_{\substack{i_{1} \\ j_{1} \\ i_{M A} t}} \alpha_{\imath_{1}} \imath_{M} \alpha_{\jmath_{1}}^{*}{ }_{J_{M}}\langle 0| c_{\jmath_{M}} \cdots c_{\jmath_{1}} c_{\imath_{1}}^{\dagger} \cdots c_{\imath_{M}}^{\dagger}|0\rangle
$$

Due to the Pauli exclusion principle two femmons with the same set of quantum numbers are not allowed to occupy the same site. This piopeity is cutomatically included in the second quantized representation As soon as \imath_{k} 's aue equal, the operator product $c_{\imath_{1}}^{\dagger} \cdot c_{i_{M S}}^{\dagger}|0\rangle$ vanishes The coefficients in front of this product are ummportant because they are multıplied by zero

However, it might be questionable what there contribution is as soon as all operators are abolished Perhaps one should reduce the expression above
where the prome indicates that the summation molles should be distmet: $\imath_{h} \neq \imath_{l}$ for $h \neq l$. As a result sums would not go over the whole 1ange of possible sites any more, what might influence their value This pioblem is discussed here

Normalization of many-particle states

We know that the one-particle state $|\psi\rangle_{1}=\sum_{k=1}^{N} \phi_{k} c_{k}^{\dagger}|0\rangle$ is nommalized. The manyparticle state is constructed by a superposition of one-partıcle states

$$
|\psi\rangle_{M}=\prod_{\jmath=1}^{M}\left(\sum_{k=1}^{N} \phi_{k}^{(\jmath)} c_{k}^{\dagger}\right)|0\rangle
$$

Because in the primed version of products with adjoint states sums do not run ore the whole range of sites any more, it could be questionable whether $|\psi\rangle_{M}$ is still nomalized. A calculation of the example of two particles gives

$$
\begin{aligned}
{ }_{2}\langle\psi \mid \psi\rangle_{2} & =\langle 0|\left(\sum_{\imath} \phi_{\imath}^{*} c_{\imath}\right)\left(\sum_{j} \psi_{\jmath}^{*} c_{3}\right)\left(\sum_{k} \psi_{k} c_{k}^{\dagger}\right)\left(\sum_{l} \phi_{l} c_{l}^{\dagger}\right)|0\rangle \\
& =\sum_{\imath \jmath, k l} \phi_{\imath}^{*} \psi_{j}^{*} \psi_{k} \phi_{l}\langle 0| c_{\imath} c_{\jmath} c_{k}^{\dagger} c_{l}^{\dagger}|0\rangle\left(\delta_{2, l} \delta_{\jmath, k}+\delta_{\imath, k} \delta_{\jmath, l}\right) \\
& =\sum_{\imath 3}^{\prime} \phi_{\imath}^{*} \psi_{j}^{*} \psi_{\jmath} \phi_{\imath}-\sum_{\imath \jmath}^{\prime} \phi_{\imath}^{*} \psi_{j}^{*} \psi_{\imath} \phi_{J}+\phi_{\imath}^{*} \psi_{\imath}^{*} \psi_{\imath} \phi_{\imath}-\phi_{\imath}^{*} \psi_{\imath}^{*} \psi_{\imath} \phi_{2} \\
& =\sum_{\imath \jmath} \phi_{\imath}^{*} \psi_{j}^{*} \psi_{\jmath} \phi_{\imath}-\sum_{\imath \jmath} \phi_{\imath}^{*} \psi_{\jmath}^{*} \psi_{\imath} \phi_{\jmath}
\end{aligned}
$$

what shows the ummportance of the prime
The same procedure is possible for an albitary number of paticles One can fill the sums step by step, because there are always two permutations which differ only in one transposition and have the opposite sign. Therefore, it is possible to add in both sums a term with the same index for the transposed factors.

Expectation Values

$$
\begin{aligned}
{ }_{2}\langle\psi| \hat{n}_{x}|\psi\rangle_{2}= & \sum_{\imath \jmath k l} \phi_{\imath}^{*} \psi_{\jmath}^{*} \psi_{h} \phi_{l}\langle 0| c_{\imath} c_{\jmath} c_{x} c_{x}^{\dagger} c_{k}^{\dagger} c_{l}^{\dagger}|0\rangle \\
& \left(\delta_{x, h} \delta_{\jmath, x} \delta_{2, l}-\delta_{x, k} \delta_{\imath, \tau} \delta_{\jmath, l}-\delta_{x, l} \delta_{\jmath, \tau} \delta_{\imath, x}+\delta_{r, l} \delta_{\imath, \tau} \delta_{\jmath, k}\right) \\
= & \sum_{\imath / \jmath \neq x}^{\prime}\left(\phi_{\imath}^{*} \psi_{x}^{*} \psi_{x} \phi_{2}-\phi_{x}^{*} \psi_{\jmath}^{*} \psi_{x} \phi_{\jmath}-\phi_{\imath}^{*} \psi_{x}^{*} \psi_{\imath} \phi_{x}+\phi_{x}^{*} \psi_{\jmath}^{*} \psi_{\jmath} \phi_{\imath}\right) \\
& \pm 2 \phi_{x}^{*} \psi_{x}^{*} \psi_{\tau} \phi_{\tau} \\
= & \sum_{\imath, j}\left(\phi_{2}^{*} \psi_{x}^{*} \psi_{x} \phi_{\imath}-\phi_{x}^{*} \psi_{\jmath}^{*} \psi_{x} \phi_{\jmath}-\phi_{\imath}^{*} \psi_{x}^{*} \psi_{\imath} \phi_{x}+\phi_{\tau}^{*} \psi_{\jmath}^{*} \psi_{\jmath} \phi_{x}\right)
\end{aligned}
$$

In the same way as before we get that the missing summand in each sum can always be added, because it cancels in two sums

Hence, the answer to the Pauli problem is that in sums like

$$
\left.\sum_{\imath_{1}}^{\prime} \sum_{\imath_{M} M \in \mathcal{P}(M)}(-1)^{\operatorname{sgn} \varphi} \alpha_{\imath_{1}} \imath_{M} \alpha_{p\left(\imath_{1}\right.} \quad \imath_{M}\right)
$$

the prime, that is the constraint $\imath_{k} \neq l_{l}$ for $k \neq l$ is of no mportance and the sum can be handled as if the prome / this constrant were not theie.

Appendix D

Fermionic Path Integrals

The Feynman Kernel

' In classical mechamcs every process seems to behave in such a way that the wellknown principle of least action is obeyed. It states that the classical path $\bar{q}(t)$ is that for which S is an extremum. Here, S is the action and is given by

$$
\begin{equation*}
S[q]=\int_{t_{a}}^{t_{b}} \mathrm{~d} t L(q, q, t) \tag{D1}
\end{equation*}
$$

with $L=p q-\mathcal{H}(p, q)$ being the Lagrangıan.
In quantum mechancs this principle is replaced by a path integral [54, 55]. That means that all paths contribute to the total amplitude, but contribute at different phases

$$
\begin{equation*}
\mathcal{K}(b, a)=\text { const } \cdot \sum_{\substack{\text { orer all pathe } \\ \text { from a tob }}} \exp \left[\frac{S[q(t)]}{\hbar}\right]=\cdot \int \mathcal{D}[q] e^{\frac{1}{\hbar} S[q]} \tag{D2}
\end{equation*}
$$

Since the action is measured in units of \hbar, the classical limit leads, smilat to above, only to the contribution of the path with cxtremal action Feymman called the expression $\mathcal{K}(b, a)$ a kernel. ${ }^{1}$ Its modulus squared, $|\mathcal{K}(b, a)|^{2}$, gives the prol)ability for a particle to go fiom a point $a=\left(q_{a}, t_{a}\right)$ to a point $b=\left(q_{b}, t_{b}\right)$

Proof: That this is the case can be shown by looking at the time evolution operator $U\left(t_{b}, t_{a}\right)$, which describes how a state changes in time It is connected

[^23]to the kernel via
\[

\left.$$
\begin{array}{rl}
\left|\psi_{t_{b}}\right\rangle & =U\left(t_{b}, t_{a}\right)\left|\psi_{t_{a}}\right\rangle \\
\psi_{t_{b}}\left(q_{b}\right) & =\int \mathrm{d} \iota_{a} \mathcal{K}(b, a) \psi_{t_{a}}\left(q_{a}\right)
\end{array}
$$\right\} \Rightarrow \mathcal{K}\left(q_{b} t_{b}, q_{a} t_{a}\right)=\left\langle q_{b}\right| U\left(t_{b}, t_{a}\right)\left|q_{a}\right\rangle
\]

On the other hand, the properties of the time evolution operators allow the following approximation [57]

$$
\begin{equation*}
U\left(t, t_{a}\right)=\lim _{N_{t} \rightarrow \infty}\left(\mathbb{1}-\frac{1}{\hbar} \Delta t \mathcal{H}\left(t_{N_{t}}\right)\right) \cdots\left(\mathbb{1}-\frac{1}{\hbar} \Delta t \mathcal{H}\left(t_{2}\right)\right)\left(\mathbb{1}-\frac{\mathrm{i}}{\hbar} \Delta t \mathcal{H}\left(t_{1}\right)\right) \tag{D.3}
\end{equation*}
$$

by discretising the time mintervals of $\Delta t=\frac{t-t_{0}}{N_{t}}$ The limit can be evaluated with the help of the tume order operator \hat{T}, leading to

$$
\begin{equation*}
U\left(t, t_{a}\right)=\hat{T} \exp \left[\frac{1}{\hbar} \int_{t_{a}}^{t} \mathcal{H}\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right] . \tag{D4}
\end{equation*}
$$

If the Hamiltonian \mathcal{H} is independent of time, both expressions sımplify to

$$
\begin{equation*}
U\left(t, t_{a}\right)=\lim _{N_{t} \rightarrow \infty}\left(11-\frac{\frac{1}{\hbar}\left(t-t_{a}\right) \mathcal{H}}{N_{t}}\right)^{N_{t}}=\operatorname{cxp}\left[-\frac{\mathrm{i}}{\hbar}\left(t-t_{a}\right) \mathcal{H}\right] \tag{D.5}
\end{equation*}
$$

Traditionally, the Hamiltonian is a function of the momentum operator P and the coordinate operator Q Therr eigenvectors satisfy the equations

$$
\begin{align*}
& P|p\rangle=p|p\rangle \text { and } \quad Q|q\rangle=q|q\rangle \\
&\langle q \mid p\rangle=\frac{1}{2 \pi \hbar} \mathrm{e}^{1 p q / \hbar} \quad \text { and }\langle p \mid q\rangle=\frac{1}{2 \pi \hbar} \mathrm{e}^{-1 p q / \hbar} \tag{D6}
\end{align*}
$$

as well as a resolution of umity

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{d} q|q\rangle\langle q|=\mathbb{1} \text { and } \int_{-\infty}^{\infty} \mathrm{d} p|p\rangle\langle p|=\mathbb{1} \tag{D.7}
\end{equation*}
$$

what allows two important modifications of the expression for the time evolution operator

First of all, umites might be included for each time step in (D 3) what leads to

$$
\begin{equation*}
U\left(t, t_{a}\right)=\lim _{N_{t} \rightarrow \infty}\left(\prod_{j=0}^{N_{t}} \int_{-\infty}^{\infty} \mathrm{d} q_{\jmath}\right)\left|q_{N_{t}}\right\rangle\left(\prod_{j=1}^{N_{t}}\left\langle q_{j}\right| 11-\frac{1}{\hbar} \Delta t \mathcal{H}\left|q_{j-1}\right\rangle\right)\left\langle q_{0}\right| \tag{D8}
\end{equation*}
$$

Secondly, the elgenvalues of the momentum and the coordmate operator can replace the operators itsclf. How this happens depends usually on the order of
the operators Q and P. However, for the common case $\mathcal{H}(P, Q)=\frac{1}{2 m} P^{2}+V(Q)$ one does not have to care about this. By using the resolution of unity for the momentum operators $\left|p_{j}\right\rangle$ and with (D 6) one obtams therefore

$$
\begin{aligned}
& U\left(t, t_{a}\right)=\lim _{N_{t} \rightarrow \infty}\left(\prod_{j=0}^{N_{t}} \int_{-\infty}^{\infty} \mathrm{d} q_{j}\right)\left|q_{N_{t}}\right\rangle\left(\prod_{j=1}^{N_{t}} \int \frac{\mathrm{~d} p_{J}}{2 \pi \hbar} \mathrm{e}^{\mid p_{j}\left(q_{J}-q_{j-1}\right) / \hbar} * \ldots\right. \\
& \cdot * \underbrace{\left(1-\frac{1}{\hbar} \Delta t \mathcal{H}\left(p_{j}, q_{j}\right)\right)}_{\approx \mathrm{e}^{-\frac{\hbar}{\hbar} \Delta t \mathcal{H}\left(p_{j} q_{j}\right)}})\left\langle q_{0}\right| \\
& \mathcal{K}(b, a)=\left.\int \mathcal{D}[p] \mathcal{D}[q] \exp \left[\left.\frac{1}{\hbar} \int_{t_{a}}^{t_{b}}(p \cdot \dot{q}-\mathcal{H}(p, q, t)) \mathrm{d} \right\rvert\, t\right]\right|_{q_{a}} ^{t_{l_{b}}}
\end{aligned}
$$

Here the boundaries mdicated that only such ways are allowed whel start in q_{a} and end in q_{b} The result is the same as (D 2) with the only difference that the integiation is done in phase space with a Hamitoman which depends on p and q and not with a Lagrangian which depends on q and q

Grassmann Numbers

The description in the pievious section was giren morder to inake it easier to understand the differences in the case of fermionc path mtegrals. The man alteration has its reason in the fact that the Hamiltonian in second quantization does not consist of P and Q, but of creation and ammhlation operators. c_{j}^{\dagger} and c_{3}. Thercfore, the resolution of unty (D.7) has to be expicssed now in terms of elgenfunctions of the new operators

States $|\Psi\rangle$ which are eigenfunctions of all anmhlation operators are (alled coherent states If they satisfy the equations

$$
\begin{equation*}
c_{j}|\Psi\rangle=\xi_{j}|\Psi\rangle \quad \text { and } \quad\langle\Psi| c_{j}^{\dagger}=\langle\Psi| \xi_{j}^{*} \tag{D9}
\end{equation*}
$$

then the anticommutation relation of Fermo operators mphen that then eigenvalues can not behave like ordmary numbers but must also anticommute-

$$
\xi_{2} \xi_{j}+\xi_{\jmath} \xi_{2}=0
$$

The algebra of such numbers is called Grassmann algebra [31,56]

The rather strange behavour of so-called Grassmann numbers has a lot of consequences. The most obrious one is the mipotence of these numbers,

$$
\xi_{\imath}^{2} \equiv 0 \quad \forall \imath
$$

Every Grassmann number ξ_{j} exists together with its conjugate ξ_{j}^{*} The most important properties for conjugation are

$$
\begin{gathered}
\left(\xi_{j}^{*}\right)^{*}=\xi_{j}, \quad\left(\lambda \xi_{j}\right)^{*}=\lambda^{*} \xi_{j}^{*} \quad \forall \lambda \in \mathbb{C} \\
\left(\xi_{j_{1}} \xi_{j_{2}} \quad \cdot \xi_{j_{n}}\right)^{*}=\xi_{j_{n}}^{*} \cdots \xi_{j_{2}}^{*} \xi_{j_{1}}^{*}
\end{gathered}
$$

The differentiation with respect to Grassmann numbers is defined similar to the complex case, except that in order for the derivative openator $\frac{\partial}{\partial \xi_{j}}$ to act on $\xi_{,}$, the variable ξ_{j} has to be anticommuted through until it is adjacent to $\frac{\partial}{\partial \xi_{j}}$ The same anticommutation rule applies for integration. The latter is well-defined by the conditions that the integral of an exact differential form vanishes and that the integial of a Grassinann number is normalized

$$
\begin{equation*}
\int \mathrm{d} \xi 1=0, \quad \int \mathrm{~d} \xi \xi=1 \tag{D10}
\end{equation*}
$$

Example: If one supposes that the Grassmann algebla is generated by only two Grassmann numbers ξ and ξ^{*} then an operator has the general form

$$
A\left(\xi^{*}, \xi\right)=a_{0}+a_{1} \xi+a_{2} \xi^{*}+a_{3} \xi^{*} \xi \quad \text { with } a_{0}, . ., a_{3} \in \mathbb{C}
$$

$$
\begin{gathered}
\frac{\partial}{\partial \xi} A\left(\xi^{*}, \xi\right)=a_{1}-a_{3} \xi^{*}, \quad \frac{\partial}{\partial \xi^{*}} A\left(\xi^{*}, \xi\right)=a_{2}+a_{3} \xi \\
\frac{\partial}{\partial \xi^{*}} \frac{\partial}{\partial \xi} A\left(\xi^{*}, \xi\right)=-a_{3}=-\frac{\partial}{\partial \xi} \frac{\partial}{\partial \xi^{*}} A\left(\xi^{*}, \xi\right) \\
\int \mathrm{d} \xi A\left(\xi^{*}, \xi\right)=a_{1}-a_{3} \xi^{*}, \quad \int \mathrm{~d} \xi^{*} A\left(\xi^{*}, \xi\right)=a_{2}+a_{3} \xi \\
\int \mathrm{~d} \xi^{*} \mathrm{~d} \xi A\left(\xi^{*}, \xi\right)=-a_{3}=\int \mathrm{d} \xi \mathrm{~d} \xi^{*} \cdot A\left(\xi^{*}, \xi\right)
\end{gathered}
$$

It is worth noting that differentiation and integiation die identical and that the differential operators $\frac{\partial}{\partial \xi}$ and $\frac{\partial}{\partial \xi^{-}}$anticommute

Furthermore, it is natural to demand that the Giassmann numbers do not only anticommute with one another, but obey also an anticommutation telation
with fermiome operators, $\mathrm{fe} \xi_{2} c_{j}+c_{\jmath} \xi_{2}=0$. Additionally, the conjugation of mixed products is handled in the way $\left(\xi_{2} c_{j}\right)^{\dagger}=c_{\jmath}^{\dagger} \xi_{\imath}^{*}$.

With the help of all these conditions it is possible to write down an expression for the fermion coherent state ${ }^{2}$

$$
\begin{equation*}
|\Psi\rangle=\exp \left[-\sum_{j=1}^{N} \xi_{j} c_{j}^{\dagger}\right]|0\rangle=\prod_{j=1}^{N}\left(1-\xi_{j} c_{j}^{\dagger}\right)|0\rangle \tag{D11}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
c_{k}|\Psi\rangle & =c_{k} \prod_{\jmath}\left(1-\xi_{\jmath} c_{\jmath}^{\dagger}\right)|0\rangle=\prod_{\jmath \neq k}\left(1-\xi_{\jmath} c_{\jmath}^{\dagger}\right) c_{k}\left(1-\xi_{k} c_{k}^{\dagger}\right)|0\rangle \\
& =\prod_{\jmath \neq k}\left(1-\xi_{\jmath} c_{j}^{\dagger}\right) \xi_{k}|0\rangle=\prod_{\jmath \neq k}\left(1-\xi_{\jmath} c_{\jmath}^{\dagger}\right) \xi_{k}\left(1-\xi_{k} c_{k}^{\dagger}\right)|0\rangle \\
& =\xi_{k} \prod_{\jmath}\left(1-\xi_{\jmath} c_{\jmath}^{\dagger}\right)|0\rangle=\xi_{k}|\Psi\rangle
\end{aligned}
$$

Finally, these coherent states allow to give the desired expression for the resolution of unity

$$
\begin{equation*}
\int\left(\prod_{j} \mathrm{~d} \xi_{j}^{*} \mathrm{~d} \xi_{j}\right) \mathrm{e}^{-\sum_{j} \xi_{j} \xi_{j}}|\Psi\rangle\langle\Psi|=\mathbb{1}_{f} \tag{D12}
\end{equation*}
$$

Proof: An arbitrary many-particle state in second quantization has in this paper the form

$$
\begin{aligned}
& |\psi\rangle_{n_{1},, n_{M}}=\sum_{i_{1},,_{M_{M}}} \alpha_{i_{1}}^{n_{1}} \cdot \alpha_{i_{M}}^{n_{M}} c_{i_{1}}^{\dagger} \quad \cdot c_{i_{M}}^{\dagger}{ }^{\prime}|0\rangle \\
& n_{n_{1}, ~, n_{M^{\prime}}^{\prime}}^{\prime}\langle\psi|=\langle 0| \sum_{\jmath_{1}, \jmath_{M^{\prime}}} \alpha_{\jmath_{1}}^{n_{1}^{\prime *}} \quad \alpha_{\jmath_{M^{\prime}}}^{n_{M^{\prime}}^{\prime} *} c_{\jmath_{1}} \cdots c_{\jmath_{M^{\prime}}},
\end{aligned}
$$

and the overlap of such states has already been calculated several times

The result should remain unchanged when the unty is included By using (D.12) and (D 9) one obtains

[^24]\[

$$
\begin{aligned}
& {n_{1}^{\prime},,_{M^{\prime}}^{\prime}}\langle\psi| \mathbb{1}_{f}|\psi\rangle_{n_{1}, n_{M}} \\
& =\sum_{i_{1}, \imath_{M}} \sum_{\jmath_{1}, \jmath_{M^{\prime}}} \alpha_{2_{1}}^{n_{1}} \cdots \alpha_{\imath_{M}}^{n_{M}} \alpha_{\jmath_{1}}^{n_{1}^{\prime *}} \cdot \alpha_{\jmath_{M^{\prime}}}^{n_{M}^{\prime}} \cdot \cdots \\
& \int\left(\prod_{\jmath} \mathrm{d} \xi_{\jmath}^{*} \mathrm{~d} \xi_{j}\right) \prod_{\jmath}\left(1-\xi_{\jmath}^{*} \xi_{\jmath}\right) c_{\jmath_{1}} \cdots c_{\jmath_{M^{\prime}}}|\Psi\rangle\langle\Psi| c_{i_{1}}^{\dagger} \cdots c_{i_{M}}^{\dagger} \\
& =\quad \cdot \int\left(\prod_{\jmath} \mathrm{d} \xi_{j}^{*} \mathrm{~d} \xi_{j}\right) \prod_{j}\left(1-\xi_{j}^{*} \xi_{j}\right) \xi_{\jmath_{1}} \cdots \xi_{\jmath_{M},} \xi_{2_{1}}^{*} \cdots \xi_{2_{A I}}^{*}
\end{aligned}
$$
\]

The mlpotence of Grassmann numbers and the rules for integration (D 10) mply that for a certam?

$$
\int \mathrm{d} \xi_{j}^{*} \mathrm{~d} \xi_{j}\left(1-\xi_{j}^{*} \xi_{j}\right)\left\{\begin{array}{c}
\xi_{j} \xi_{j}^{*} \\
\xi_{j} \\
\xi_{j}^{*} \\
1
\end{array}\right\}=\left\{\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right.
$$

Hence, the integral over all N Grassmann numbers is non-ramshing only of the (unordered) sets $\left\{\imath_{1}, \ldots, \imath_{M}\right\}$ and $\left\{\jmath_{1}, . ., \jmath_{M^{\prime}}\right\}$ are identical In this case the integration gires one Permutations ane allowed and lead to the same sign as in the orerlap of the two states above Thus, it is shown that the opetaton 1_{f} really does not alter a state multiplied to the nght

Other important properties are the ovenlap of two coherent states

$$
\begin{equation*}
\left\langle\Psi \mid \Psi^{\prime}\right\rangle=\langle 0| \prod_{j=1}^{N}\left(1-c_{j} \xi_{j}^{*}\right)\left(1-\xi_{j}^{\prime} c_{j}^{\dagger}\right)|0\rangle=\prod_{j=1}^{N}\left(1+\xi_{j}^{*} \xi_{j}^{\prime}\right)=\mathrm{e}^{\sum_{j} \xi_{j} \xi_{j}^{\prime}} \tag{D13}
\end{equation*}
$$

and the action of a cleation opetator on a coherent state

$$
\begin{equation*}
c_{k}^{\dagger}|\Psi\rangle=c_{h}^{\dagger} \prod_{\jmath \neq k}\left(1-\xi_{\jmath} c_{j}^{\dagger}\right)|0\rangle=-\frac{\partial}{\partial \xi_{j}}\left(1-\xi_{h} c_{h}^{\dagger}\right) \prod_{\jmath \neq h}\left(1-\xi_{\jmath} c_{j}^{\dagger}\right)|0\rangle=-\frac{\partial}{\partial \xi_{j}}|\Psi\rangle \tag{D14}
\end{equation*}
$$

The Time Generating Function for the Fermi Case

With the experience of the previous section it is possible to wite down an expression of the time ordeing operator for a second quantized Hamiltonian For the sake of simplicity, we modity the expression for the unitr (D 12) slightly by mtroducing Ψ as a vector of the Grassmann numbers $\xi_{1}, ., \xi_{N}$ When writing

$$
\begin{equation*}
\int \mathrm{d} \Psi^{*} \mathrm{~d} \Psi \mathrm{e}^{-\Psi^{-} \Psi}|\Psi\rangle\langle\Psi|=\mathbb{1}_{f} \tag{D15}
\end{equation*}
$$

the integration is understood to go over all components $\xi_{\text {g }}$ similarly to (D.12).
Combined with (D 3) the time ordering operator becomes

$$
\begin{aligned}
U\left(t, t_{a}\right)= & \lim _{N_{t} \rightarrow \infty}\left(\prod_{j=0}^{N_{t}} \int \mathrm{~d} \Psi^{*}\left(t_{\jmath}\right) \mathrm{d} \Psi\left(t_{j}\right)\right)\left|\Psi\left(t_{N_{t}}\right)\right\rangle * \ldots \\
& \ldots *\left(\prod_{j=1}^{N_{t}} \mathrm{e}^{-\Psi^{*}\left(t_{\jmath}\right) \Psi\left(t_{j}\right)}\left\langle\Psi\left(t_{\jmath}\right)\right| \mathbb{1}-\frac{1}{\hbar} \Delta t \mathcal{H}\left|\Psi\left(t_{\jmath-1}\right)\right\rangle\right)\left\langle\Psi\left(t_{0}\right)\right|
\end{aligned}
$$

The trace of this operator is important in zero temperature condensed matter theory It is called time generating function [57] or vacuum persistence amplitude [31] and has the form

$$
Z=\lim _{N_{t} \rightarrow \infty}\left(\prod_{j=1}^{N_{t}} \int \mathrm{~d} \Psi^{*}\left(t_{j}\right) \mathrm{d} \Psi\left(t_{j}\right)\right) \prod_{j=1}^{N_{t}} \mathrm{e}^{-\Psi^{*}\left(t_{\jmath}\right) \Psi\left(t_{\jmath}\right)}\left\langle\Psi\left(t_{j}\right)\right| \mathrm{e}^{-\frac{1}{\hbar} \Delta t \mathcal{H}}\left|\Psi\left(t_{\jmath-1}\right)\right\rangle
$$

sunce it does not make much difference if the trace is calculated in Fock space or in the space generated by coherent states.

In ouder to simplify this expiession further one has to think briefly about the question how $\langle\Psi| A\left|\Psi^{\prime}\right\rangle$ looks like foi an operator $A=A\left(c_{k}^{\dagger}, c_{k}\right)$ in second quantized form However, as long as this operator is nommal ordered (all aumblulation operators are standing to the right of all creation operators) it is easy to give the answer with the help of (D 9) and (D 13):

$$
\langle\Psi| A\left(c_{k}^{\dagger}, c_{k}\right)\left|\Psi^{\prime}\right\rangle=\mathrm{c}^{\Psi^{-} \Psi^{\prime}} A\left(\xi_{k}^{*}, \xi_{k}^{\prime}\right)
$$

Hence, we have for the time geneiating function in the Feimon case

$$
\begin{equation*}
Z=\int \mathcal{D} \Psi^{*} \mathcal{D} \Psi \exp \left[\mathrm{i} \int \mathrm{~d} t\left(\Psi^{*} \mathrm{i} \frac{\partial}{\partial t} \Psi-\frac{1}{\hbar} \mathcal{H}\left(\Psi^{*}, \Psi\right)\right)\right] \tag{D.16}
\end{equation*}
$$

where it has been taken into considenation that the limit

$$
\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t}\left(-\Psi^{*}\left(t_{\jmath}\right) \Psi\left(t_{\jmath}\right)+\Psi^{*}\left(t_{\jmath}\right) \Psi\left(t_{\jmath-1}\right)\right)
$$

can be understood as a denvative of Grassmam numbers

$$
=-\Psi^{*}\left(t_{j}\right) \cdot \lim _{\Delta t \rightarrow 0} \frac{\Psi\left(t_{j}\right)-\Psi\left(t_{j}-\Delta t\right)}{\Delta t}=\mathrm{i}^{2} \Psi^{*}\left(t_{j}\right) \frac{\partial}{\partial t} \Psi\left(t_{j}\right)
$$

Appendix E

The Structure of Rotation

The aim of this section is to find an operator representation which describes a rotation from one system of coordinates $\mathbf{x}, \mathbf{y}, \mathbf{z}$ to a new system $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}} \quad \mathbf{1}$

It is possible to look at such a rotation as a transformation

$$
\mathbf{r} \longrightarrow \mathbf{r}^{\prime}=\hat{\jmath} \mathbf{r}
$$

of the coorchnates of a fixed body when there is a change of the coordinate ams
Having got this equation the task is to determme the effect on the wave function ψ of this body. Hence, one has to find the operator \hat{R}_{g} which changes the wave function accordingly

For this the following constraint is mportant A new wave function ψ^{\prime} with respect to a new coordmate r^{\prime} must be the same as the ongmal wave function ψ at the point with the unrotated coordinates \mathbf{r}.

$$
\psi^{\prime}\left(\mathbf{r}^{\prime}\right)=\psi(\mathbf{r})=\psi\left(\hat{g}^{-1} \mathbf{r}^{\prime}\right)
$$

Combined with the relation

$$
\psi^{\prime}\left(\mathbf{r}^{\prime}\right)=\hat{R}_{g} \psi\left(\mathbf{r}^{\prime}\right)
$$

this leads to

$$
\begin{equation*}
\hat{R}_{g} \psi\left(\mathbf{r}^{\prime}\right)=\psi\left(\hat{g}^{-1} \mathbf{r}^{\prime}\right)=\psi(\mathbf{r}) \tag{E.1}
\end{equation*}
$$

[^25]It is known or can easily be shown by infinitesimal rotations that such kind of changes in the wave functions caused by a rotation of the coordinate axis over an angle ϕ around \mathbf{n} is realized by the operator

$$
\begin{equation*}
\hat{R}_{g}(\phi)=\mathrm{e}^{\mathrm{I}(\mathrm{~J} \mathrm{n}) \phi / \hbar} \tag{E2}
\end{equation*}
$$

where J is the angular momentum operator.
A shghtly different point of view is, that a rotation of the coordmate system is in uniquely determined by three Euler angles α, β, γ. These different angles miduce the following successive procedure of rotations

1 rotation over an angle α around the z-axis

$$
\hat{R}^{z}(a) \quad \mathrm{x}, \mathrm{y}, \mathrm{z} \longrightarrow \mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}=\mathrm{z}
$$

2. rotation over an angle β around the y_{1}-axis

$$
\hat{R}^{\mathrm{y}_{1}}(\beta) \cdot \mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1} \longrightarrow \mathrm{x}_{2}, \mathrm{y}_{2}=\mathrm{y}_{1}, \mathrm{z}_{2}
$$

3. rotation over an angle γ around the z_{2}-axis

$$
\hat{R}^{z_{2}}(\gamma) \quad \mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2} \longrightarrow \hat{\mathrm{x}}, \hat{\mathrm{y}}, \hat{\mathrm{z}}=\mathrm{z}_{2}
$$

Figure E.1: The effect of the successive procedure of rotations mentioned above is shown. Each diagram includes one rotation over an Euler angle more than the previous one.

In the language of rotation operators this piocedure can be written in the following form.

$$
\hat{R}_{g}=\hat{R}(\alpha, \beta, \gamma)=\hat{R}^{z_{2}}(\gamma) \hat{R}^{y_{1}}(\beta) \hat{R}^{z}(\alpha)
$$

For this procedure the second rotation is auound an axis which follows from the first one, and the axis of the third rotation is based on the two rotations before. For practical purposes it is often more convenient to look at a fixed reference frame for these rotations. This fixed reference fiame may be the coordmate system $\mathbf{x}, \mathbf{y}, \mathbf{z}$ at the begmmng. This is possible because of the following relations-

$$
\begin{align*}
\hat{R}^{y_{1}}(\beta) & =\hat{R}^{z}(\alpha) \hat{R}^{y}(\beta) \hat{R}^{z^{\prime}}(-\alpha) \\
\hat{R}^{z_{2}}(\gamma) & =\hat{R}^{\mathrm{y}_{1}}(\beta) \hat{R}^{z_{1}}(\gamma) \hat{R}^{\mathrm{y}_{1}}(-\beta) \\
& =\hat{R}^{z}(\alpha) \hat{R}^{\mathrm{y}}(\beta) \hat{R}^{z^{\prime}}(\gamma) \hat{R}^{\mathrm{y}}(-\beta) \hat{R}^{z}(-\alpha) \\
\Longrightarrow \quad \hat{R}^{z_{2}}(\gamma) \hat{R}^{\mathrm{y}_{1}}(\beta) \hat{R}^{z}(\alpha) & =\hat{R}^{z}(\alpha) \hat{R}^{\mathrm{y}}(\beta) \hat{R}^{z}(\alpha) . \tag{E.3}
\end{align*}
$$

With the help of this and equation (E.2) one can wite

$$
\begin{equation*}
\hat{R}(\alpha, \beta, \gamma)=\mathrm{e}^{i \hat{J}_{\Sigma} \alpha / \hbar} \mathrm{e}^{\mathrm{i} \hat{J}_{y} \beta / \hbar} \mathrm{e}^{\mathrm{i} \hat{J}_{=} \gamma / \hbar} \tag{E4}
\end{equation*}
$$

The eigenfunctions belonging to \mathbf{J} may be called as usual $|\jmath m\rangle$ Because of the rotational invariance of J^{2} the engenvalues $\left.\hbar^{2} \jmath \jmath \jmath+1\right)$ are not changed when $\hat{R}(\alpha, \beta, \gamma)$ is applied Hence, the following representation is possible

$$
\begin{equation*}
\hat{R}(\kappa x, \beta, \gamma)|\jmath m\rangle=\sum_{k}|\jmath k\rangle\langle\jmath k| \hat{R}(\alpha, \beta, \gamma)|\jmath m n\rangle=\sum_{k} D_{m k}^{\jmath}(\alpha, \beta, \gamma)|\jmath k\rangle \tag{E.5}
\end{equation*}
$$

where the matrix elements are called Wigner functions, or generalized spherical functions or D-functions

The function $|\jmath m\rangle$ could for instance be represented in spherical coordinates r, ϑ, φ and therefore with the help of the notation $\psi(\mathbf{r})=\left\langle\vartheta \varphi \mid{ }_{j} m\right\rangle$ the equation (E 1) can be written in the form

$$
\begin{equation*}
\langle\vartheta \varphi \mid \jmath m\rangle=\hat{R}(\alpha, \beta, \gamma)\left\langle\vartheta^{\prime} \varphi^{\prime} \mid \jmath m\right\rangle=\sum_{k} D_{m h}^{\jmath}(\alpha, \beta, \gamma)\left\langle\vartheta^{\prime} \varphi^{\prime} \mid \jmath k\right\rangle \tag{E6}
\end{equation*}
$$

Commg back to the definition (E.5) tor the matrix elements $D_{m h}^{j}$ it is possible to calculate these terms explicitly For this thesis only the case $\jmath=\frac{1}{2}$ is of merest ${ }^{2}$ In this special case it is

$$
\begin{aligned}
D_{m k}^{\frac{1}{2}} & =\left\langle\frac{1}{2} k\right| \hat{R}(\alpha, \beta, \gamma)\left|\frac{1}{2} m\right\rangle \\
& =\left\langle\frac{1}{2} k\right| \mathrm{e}^{i I_{\Sigma} \alpha / \hbar} \mathrm{e}^{1 j_{y}, \beta / \hbar} \mathrm{e}^{1 j_{\Sigma} \gamma / \hbar}\left|\frac{1}{2} m\right\rangle \\
& =\mathrm{e}^{\mathrm{i} k \alpha}\left\langle\frac{1}{2} k\right| \mathrm{c}^{\left(j_{y} \beta / \hbar\right.}\left|\frac{1}{2} m\right\rangle \mathrm{e}^{\mathrm{e} m \gamma},
\end{aligned}
$$

[^26]where k and m can be $\frac{1}{2}$ or $-\frac{1}{2}$.
As already mentioned in chapter 1.1 there is for the case $j=\frac{1}{2}$ a simple relationship between the spin angular momentum and the Pauli spin matrices of the form $\mathbf{J}=\frac{1}{2} \hbar \sigma$ Hence, it is
$$
\left\langle\frac{1}{2} k\right| \mathrm{e}^{1 \hat{J}_{y} \beta / \hbar}\left|\frac{1}{2} m\right\rangle=\left\langle\frac{1}{2} k\right| \exp \left[\frac{1}{2} \beta \sigma_{y}\right]\left|\frac{1}{2} m\right\rangle
$$

A Taylor expansion and the knowledge of the relation $\sigma_{y}^{2}=\mathbb{1}$ gives

$$
\begin{aligned}
\exp \left[\frac{1}{2} \beta \sigma_{y}\right] & =\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{\mathrm{i}}{2} \beta \sigma_{y}\right)^{n} \\
& =\mathbb{1}\left[1-\frac{1}{2}\left(\frac{1}{2} \beta\right)+\ldots\right]+1 \sigma_{y}\left[\frac{1}{2} \beta-\frac{1}{3^{\prime}}\left(\frac{1}{2} \beta\right)^{3}+.\right] \\
& =\mathbb{1} \cdot \cos \left(\frac{1}{2} \beta\right)+1 \sigma_{y} \cdot \sin \left(\frac{1}{2} \beta\right) \\
& =\left(\begin{array}{cc}
\cos \left(\frac{1}{2} \beta\right) & \sin \left(\frac{1}{2} \beta\right) \\
-\sin \left(\frac{1}{2} \beta\right) & \cos \left(\frac{1}{2} \beta\right)
\end{array}\right) \quad \text { because } \sigma_{y}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Putting all these results together leads to the result that $D_{m k}^{j}(\alpha \beta \gamma)$ consists of the following matrix elements:

$$
\left(\begin{array}{cc}
\mathrm{e}^{\frac{1}{2}(\alpha+\gamma)} \cos \left(\frac{1}{2} \beta\right) & \mathrm{e}^{-\frac{1}{2}(\alpha-\gamma)} \sin \left(\frac{1}{2} \beta\right) \tag{E.7}\\
-\mathrm{e}^{\frac{1}{2}(\alpha-\gamma)} \sin \left(\frac{1}{2} \beta\right) & \mathrm{e}^{-\frac{1}{2}(\alpha+\gamma)} \cos \left(\frac{1}{2} \beta\right)
\end{array}\right)
$$

The origmal problem was to rotate the spin quantization axis to a rector with the polar coordinates θ, ζ The question is how this can be expressed by Euler angles The easiest way to see this is to take the possibility with the fixed reference fiame. The am is to bring the z-axis in the direction of the vector The z-axis is in step two rotated along the y-axis Therefore, the coordınate system must in the first step be rotated in such a way, that the vector becomes perpendicular to the y-axis The second step is then the actual iotation of the z-axas And the thud step must be a turn back of the first step That means $\alpha=\zeta, \beta=-\theta$ and $\gamma=-\zeta$ Hence, the rotation matrix has the following structure -

$$
\hat{R}(\theta, \zeta)=\left(\begin{array}{cc}
\cos \left(\frac{1}{2} \theta\right) & -\mathrm{e}^{-1 \zeta} \sin \left(\frac{1}{2} \theta\right) \tag{E8}\\
\mathrm{e}^{1 \zeta} \sin \left(\frac{1}{2} \theta\right) & \cos \left(\frac{1}{2} \theta\right)
\end{array}\right)
$$

Appendix F

The Usage of Contractions

A useful tool for dealng with long chams of creation and ammhlation operators is Wick's theorem It gives a simple method how a product of time-ordered operators can be expressed in the form of operator prodlucts which are normal ondered The formula is

$$
\begin{aligned}
& T\left(\hat{U} \hat{Y} \hat{V}^{\prime} \quad . \hat{X} \hat{Y} \hat{Z}\right)=N\left(\hat{U} \hat{V} \hat{W}^{W} \cdot \hat{X} \hat{Y}^{-} \hat{Z}\right)+N\left(\hat{U} \hat{L}^{\prime} \hat{V} \cdot \hat{X} \hat{Y} \hat{Z}\right) \\
& +N(\hat{U} \hat{V} \hat{U} \ldots \hat{X} \hat{Y} \hat{Z})+\ldots+N(\underbrace{\hat{U} \hat{V} \hat{V} \hat{V} \hat{Y} \hat{Z}}) \\
& =N\left(\hat{U} \hat{V} \hat{V^{\prime}} \cdot \hat{X} \hat{Y} \hat{Z}\right) \\
& +N(\text { sum over all possible pars of (ontiactions) }
\end{aligned}
$$

Here the following notation is used
$T \quad \ldots \quad$ time-ordening operator $T\left(\hat{X}\left(t_{x}\right) \hat{Y}^{-}\left(t_{y}\right)\right)=\left\{\begin{aligned} \hat{X} \hat{Y}, & t_{z}<t_{y} \\ -\hat{Y} \hat{X}, & t_{y}<t_{\tau}\end{aligned}\right.$
$N \ldots$ normal-ordermg operator all amihulation operators are placed to the ught of all the creation operators
ـ indicates contractions $\quad \hat{\mathrm{Y}} \hat{Y}=T(\hat{\mathrm{Y}} \hat{\mathrm{Y}})-N(\hat{\mathrm{Y}} \hat{\mathrm{Y}})$
Firthermore, there exists the sign convention that two contracted factors must be brought together by rearranging the ouder of the opecators within the nomal product, always keeping the standard sign convention for interchange of termions ${ }^{1}$

If for the calculations of this paper the time ordering is assumed to be in the

[^27]way $c_{k, \sigma} c_{k^{\prime}, \sigma^{\prime}}^{\dagger}$ then a contraction, which is a c-number in the occupation-number Hilbert space, has the value
$$
c_{k, c^{\prime}}^{\dagger} k_{k^{\prime}, \sigma^{\prime}}=c_{k, \sigma} c_{k^{\prime}, \sigma^{\prime}}^{\dagger}-\left(-c_{k^{\prime}, \sigma^{\prime}}^{\dagger} c_{k, \sigma}\right)=\left[c_{k, \sigma}, c_{k^{\prime}, \sigma^{\prime}}^{\dagger}\right]_{+}=\delta_{k, k^{\prime}} \delta_{\sigma, \sigma^{\prime}}
$$

If, on the other hand, the timer ordering is assumed to be in the way $c_{k, \sigma}^{\dagger} c_{h^{\prime}, \sigma^{\prime}}$ then $\underbrace{\dagger}_{\underbrace{k, \sigma} c_{k^{\prime}, \sigma^{\prime}}^{\dagger}}=0$ Addtionally, $\underbrace{}_{k, \sigma} c_{k^{\prime}, \sigma^{\prime}}=0$ and $\underbrace{\dagger}_{h_{, \sigma}} c_{k^{\prime}, \sigma^{\prime}}^{\dagger}=0$, because in these three cases the time ordered product is automatically normal ordered

The trick is to define an artificial "time ordering" as the order of the operators that is given at the beginming of a calculation. Then it is very convenient to use Wick's theorem for transformations

Example: An usual problem of this paper is to evaluate an expiession like

$$
\langle 0| c_{j_{2}} c_{j_{1}} c_{k+1}^{\dagger} c_{k} c_{\imath_{1}}^{\dagger} c_{2_{2}}^{\dagger}|0\rangle
$$

This order of operator is defined to be time ordered and afteiwards Wick's theorem is appleed.

$$
\begin{aligned}
& 1 \\
& =\langle 0| T\left(c_{\jmath_{2}} c_{\jmath_{1}} c_{k+1}^{\dagger} c_{k} c_{2_{1}}^{\dagger} c_{2_{2}}^{\dagger}\right)|0\rangle \\
& =\langle 0| N\left(c_{3_{2}} c_{\jmath_{1}} c_{k+1}^{\dagger} c_{k} c_{2_{1}}^{\dagger} c_{2_{2}}^{\dagger}\right)|0\rangle+\langle 0| N\left(c_{\jmath_{2}} c_{3_{1}} c_{k+1}^{\dagger} c_{k} c_{t_{1}}^{\dagger} c_{2_{2}}^{\dagger}\right)|0\rangle+ \\
& +\langle 0| N\left(c_{3_{2}} c_{3_{1}} c_{k+1}^{\dagger} c_{c_{k}} c_{2_{1}}^{\dagger} c_{2_{2}}^{\dagger}\right)|0\rangle+\langle 0| N\left(c_{3_{2}} c_{3_{12}} c_{\lambda+1}^{\dagger} c_{k} c_{21}^{\dagger} c_{2_{2}}^{\dagger}\right)|0\rangle
\end{aligned}
$$

In this sim all not fully contracted terms disappear, because normal ordeing bungs anmilulation operators to the right, and the iesult is zeio if they operate on $|0\rangle$. Furthermore, only those of the fully contancted temms remain toi whech each par of contraction consists of an ammhilation opetator on the left and a creation operator on the right. These four contributions lave the value

$$
=\delta_{j_{2}, 2_{2}} \delta_{j_{1}, k+1} \delta_{k, 2_{1}}-\delta_{j_{2}, 1_{1}} \delta_{j_{1}, h+1} \delta_{k, 2_{2}}-\delta_{32, k+1} \delta_{j_{1}, 2_{2}} \delta_{k, 2_{1}}+\delta_{j 2, h+1} \delta_{j_{1,1_{1}}} \delta_{k, v_{2}}
$$

Bibliography

[1] I'. Ahaonov and D. Bohm, Phys. Rev 115, 485 (1959)
[2] M. Buttıker, Y. Imry and R. Landauer, Plys Lett A 96, 365 (1983)
[3] L P Lévy; G. Dolan, J Dunsmuir and H Bouchat, Plyss Rev. Lett. 64, 2074 (1990).
[t] V. Chandrasekhdar, R A Welbb, M.J Bıady, M.B Ketchen, W J Gallagher and A. Klensasser, Phys Rev Lett 67, 3578 (1991).
[5] D. Mally, C. Chapeher and A Benort, Phys. Rev Lett 70, 2020 (1993)
[6] H. Kato and D. Yoshıoka, Phys. Rer. B 50, 4943 (1094) D Yoshioka and H. Kato, Physica B 212, 251 (1995)
[7] R. Landauer and M Buttiker, Plys Rev Lett. 54, 2049 (1985)
[8] H.F Cheung, Y. Gefen, E K Riedel and W H Shilh, Phys Rev B 37, 6050 (1988)
[9] V' Ambegaokaı and U Eckern, Phys Rev. Lett 65, 381 (1990); A Schmid, Phys Rev. Lett. 66, 80 (1991); U. Eckem and A Schmud, Europhys Lett. 18, 457 (1992). G. Montambaux, J Phys (Pais) 6, 1 (1996)
[10] R A Smith and V Ambegrokar, Europhys Lett 20, 161 (1992)
[11] A Mialler-Gtoeling, H.A Weidenmuller and C H Lewenhopt, Europlys Lett 22, 193 (1903).
[12] A. Cohen, K. Richter and R Beıkovits, Phys Rev B 57, 6223 (1998)
[13] F.V. Kusmartsev, J. Phys Condens Mattcı 3, 3109 (1091)
[1t] F.V Kiusmartsev, J F Weısz, R Kı́shoıe and M Takahashn, Phỵa Rev B 49, 16234 (1994).
[15] F V. Kusmartsev, Phys. Rev. B 52, 14445 (1905).
[16] David Jlles, Introductıon to Maynetısm and Maynetic Materaals (Chapnaan © Hall, London, , 1998, 2nd ed)
[17] Chaıles P. Enz, A Course on Many-Body Theory Applued to Solud-State Physucs (World Scientific, Singapore, New Jersey, London, Hong Kong, 1992).
[18] J Hofmann, A Paskin, K J Tauer and R J Weiss, J. Phys. Chen Sol 1, 45 (1956)
[19] E.P. Wohlfarth, Nature 163, 578 (1949). R. Stuart and W. Marshall, Phys. Rev 120, 353 (1960). R E. Watson, A J. Freeman, Pliys. Rev 123, 2027 (1961).
[20] J. Schwinger, Quantum Theory of Angular Momentum (Academic, Now York, 1965)
[21] Daniel C. Mattıs, The Theory of Magnetism I. Statistics and Dynamıcs (Springer Series in Solid-State Scıence 17, Sprınger-Verlag, Berlm, . , 1988, 2nd ed)
[22] Eugen Merzbacher, Quantum Mechanıcs (.John Wiley \& Sons, Inc, New York, $\quad, 1970,2 n d$ ed $)$
[23] T. Holstein and H. Primakoff, Physical Review 58, 1048 (1940)
[24] P. Joıdan and E. Wıgner, Zeitschrift fuı Physik 47, 631 (1928)
[2j] Alexei M Tsrehk, Quantum Field Theory in. Condensed Matter Phyizcs (Cambrıdge Unversity Press, Cambridge, 1995)
[26] E. Lieb, T. Schultz and D Mattıs, Ann Plys. (NY) 16, 407 (1961). also in Elliott H. Lieb and Daniel C. Mattıs, Mathematzcal Physıcs on One Dimension Exactly Soluble Models of Interacting Purtıcles (Academic Press, New York, London, 1966).
[27] F V Kusmartsev, Phys Lett. A 161, 433 (1902)
[28] Wolfgang Noltng, Grumdhurs Theoretısche Phys\% 5 Quantenmechanhh, Tenl 2 Methoden und Anwendunyen, (Vellag Zımmermann-Neufang, Ulmen, 1994).
[29] J Fiedel, Phil Mag 43, 153 (1952)
[30] T. Ando, Y. Aıakawa, K Funuya, S Komyana and H Nakashma (Eds.), Mesoscopnc Physics and Electromiss (Spinger, Beilin. . , 1998)
[31] Eduardo Fradkin Field theories in condensed matter systems (Fiontiers in Physics i. 82, Acldison-Wesley Publ. Company, Redwood-City, Californa, 1991)
[32] N. Byers and C N. Yang, Phys Rev. Lett 7, 46 (1061), F. Bloch, Phys Rev B 2, 109 (1970)
[33] R. E Peierls, Zeıtschıft für Physik 80, 763 (1933).
[34] E. Fradkın, Physical Review Letteıs 63, 322 (1989).
[35] F.V. Kusmartsev. Phys. Lett. A 232, 135 (1997).
[36] B L Altshuler, Y. Gefen and Y. Imry, Phys. Rev. Lett 66, 88 (1991)
[3i] D Loss and P. Goldbatt, Phys. Rev B 43, 13762 (1991)
[38] Chales Kittel, Quantum Theory of Soluds (John Whley \& Sons, Inc, New loik, . ., 1966)
[39] Peter Fulde, Electron Correlations in Molecules and Solids (Spinger Verlag, Berlin, 1993, 2nd ed).
[40] Leo P Kadanoff and Gordon Baym, Quantum Statnstıcal Mechanıcs Green's function Methods in Equilbbrium and Nonequilibrium Problems (Frontiers in Physics v (8), W.A. Benjamın, Inc, New York, 1962)
[41] Harımder S Dhıllon, Regular and Chaotic Wavefunctions on a lattice (Undergraduate Project Report, Loughborough Univeisity, 1997) and F V Kusmartsev and H S. Dhillon, Phys Rev B (to be published)
[42] J F Weisz, R. Kıshore and F.V Kusmartser, Phys Rev B 49, 8126 (1994).
[43] Hal Tasaki, From Nagaoka's Ferromagnetism to Flat-Band Ferromagnetısm and Beyond An introduction to Ferromagnetısm in the Hubbard Model in: Progress of Theoretical Plysics 99, 489 (1998) and
Hal Tasaki, The Hubbard model - an introductoon and selected rigotous. results in J Phys Condens Matter 10, 4353 (1998)
[44] H J. Srhulz (unpublished) and H J Schulz, Plıys Rev Lett 65, 2462 (1900)
[45] D R. Hamam, Plys Rev. B 2, 1373 (1970)
[46] R L Stratonovich, Dokl Akad. Nauk SSSR 115, 1907 (1957) [Engl. trans! Sov Phys-Dokl. 2416 (1958)]; J Hubbard, Phys. Rev Lett. 3, 77 (1959)
[47] S C. Zhang, Scıence 275, 1089 (1997)
based on C N Yang, Ply's Rev Lett 63, 2144 (1989) - η-panrinı,
E Demler and S C. Zhing, Pliys. Rer Lett 75, 4126 (1995) - π operutors numencal evid S Menner, W. Hanke, E Demler and S C Zlang, Plys Rev. Lett 79, 4902 (1997); R Eolen, IV Hanke and S C. Zhang, condmat/9707233
[48] A.A. Gomes and P. Lederer, J. Phys (Paris) 38, 231 (1977).
[40] Robert H Dicke and James P.Wittke, Introduction to Quantum Mechanıcs (Ardison-Wesley Publishmg Company, Inc , Redıng, Massachusetts, U S A.; London, England 1960)
[50] Wolfgang Nolting, Grundkurs: Theoretzsche Physık. 2. Analytzsche Mecha$n \imath k$, (Veılag Zimmermanı-Neufang, Ulmen, 1993).
[כ1] Fayyazuddin and Riazuddin, Quantum Mechanics, (Woıld Scientıfic, Singapore, New Jersey, London, Hong Kong, 1990)
[52] Henchik F. Hamcka, Quantum Mechanıcs (John Wiley \& Sons, New York, ., 1981).
[33] J R. Schneffer, Theory of Superconductivnty (New York, 1964)
[J4] R.P. Feynman and A R Hibbs, Quantum Mechanzcs and Path Integrals (McGraw-Hıll book company, New York, 1965).
[JJ] Michael B Mensky, Contınuous Quantum Measurements and Patlı Integrals (Instıtute of Physics Publishong, Bistol, Phlaclelphia, 1993)
[56] John W. Negele and Henı Orland, Quantum Many-Partzcle Systems (Frontieis in Physics v 68, Addıson-Wesley Publ Company, Redwood-City, Calıfoınıa, 1988)
[5̄] T. Kashıwa, Y Ohnukı and M. Suzuki, Path Integral Methods (Clarendon Press, Oxford, 1997).
[58] A.R Edmonds, Angular Momentum in Quantum Mechanics (Inrestigations in Plysics v 4, Pıncton Univeısity Press, Puncton, New Jersey; 1960).
[50] A.S. Davydow, Quantum Mechanucs (Peıgamon Press, Oxford, London, Edmburgh, . , 1965).
[60] Alexander L. Fetter and John D Walecki, Quantum Field Theory of ManyParticle Systems (Mc Graw-Hill book company, New York, 1971)

Acknowledgements

First of all I wish to thank my supervisor Professor F V. Kusmartsev for his gudance, encouragement and patience in the past year during the period of my research. I very much appreciate that Professor Kusmartsev was always avaulable to answei my questions, even in the busiest of times

This one year of research was done mostly at Loughborough University. During this tume I also spent two months at the University of Cologne. I thank both institutions and their staff for the hospitality I have expenenced I am especially gratcful for the advice and suppoit of Dr K U. Neumann of Loughborough Ciniversity and Dr J Roseler of the Humboldt University in Bellin without whom this work would not exist My thanks also go to Pıof A S Alexandiov, Mrs M. Mclicnzie, Prof M. Ristig and Prof K R.A Ziebeck

It is my pleasure to thank Harjinder Sungh Dhillon for fruttul discussions about my screntific work and other topics Specidl thanks to Sebastian Dießler for all his encouragement and help durng our tune together at Loughborough and after my departure. I also enjoyed sharing an office with Thomas Lindenau whilst at the Unıversity of Cologne

Furthermore, I would like to thank Stella Bumnag for her valuable English langurge classes. She, Mr L Helge and Mi D Bowskill helped me a lot by proot-reading parts of this paper.

Last but not least I want to acknowledge that my studies in England were supported by the Studienstiftung des deutschen Volkes

[^0]: ${ }^{1}$ see also Mattis [21] chap 38 or Meızbacher [22] chap 21.2

[^1]: ${ }^{2}$ adesciption can for mstance be found m Mattis [21] chap 312 and m Tsvelik [25] chap 18

[^2]: ${ }^{3}$ The letter a has its ongin in the fact that Lieb et al denoted in their paper the operators S_{1}^{+}and S_{1}^{-}with the symbols a_{i}^{\dagger} and a_{i}, respectively

[^3]: 'see also discussion in section 23

[^4]: "Note that in this context "piobability" is not nomalized to 1 but to M

[^5]: ${ }^{3}$ Most of the formulas are given in Gaussian unts To get the expiessions in the SI-system one manly has to onnt c everywhere

[^6]: ${ }^{1}$ see for mstance Fiadhim [31], chap 222

[^7]: ${ }^{1}$ In a Gieen's function notation it can also be found in the book of Liadanoth and Bayn [40]

[^8]: 2also called Ritz method

[^9]: ${ }^{3}$ It is common to tackle the many-particle problem within the Hubbard model in such a way

[^10]: ${ }^{4}$ An equalization of α_{h} and β_{k} has the consequence of a nonhnear Schodmger equation of the form $-t \alpha_{h+1}-t \alpha_{k-1}+U \alpha_{h}^{3}=\lambda \alpha_{h}$, which has been studied mitensisels and with evact solutions by Dhillon and Kusmartsev [41]

[^11]: 'Wersz et al [42$]$ found that the penod is agan a full flix-quantime m the prevence of dronder
 ${ }^{6}$ The result differs shghttly from what Loss and Goldbatt [37] have obtam.

[^12]: ${ }^{1}$ In recent papers [47] Zhang and others pointed out that the Hublond model possen an approvmate $S O(5)$ symmetry This feature can be used to umfy antifenomagnetism and dwase superconductivity

[^13]: ${ }^{2}$ Its usuallv denoted by φ, but in this paper φ is iesen ed for the flux

[^14]: ${ }^{3}$ This method is explamed in appendix F

[^15]: dentate on the right hand side, it is possible to check the result m another way Such an equality alvo imphes that the expectation values must be real

[^16]: ${ }^{\text {I }}$ If \bar{R} is defined as an adjunct matıix \bar{R}^{+}then $v=\frac{1}{2}\left(\theta_{h}-\theta_{h+1}\right)$ and the signs in the matrix change

[^17]: ${ }^{2}$ The upper index for the quantum number is omitted because only one number appears

[^18]: ${ }^{3}$ This term "ceitam" 15 difficult to specify, because alieady for two stces the equations are too comple\ Nevertheless, one can say that for $\zeta_{1}=\zeta_{2} \approx 0$ no difficulties appear

[^19]: ${ }^{4}$ If in the following sums $\wp(C)=0$ then $\delta_{i c, h}$ appears, which together with $\delta_{1 C} x$ leads via δ_{x} to the effect that the sum orer k vanishes and thatt all angles have the midex x

[^20]: ${ }^{\text {'J }}$ Even of they were used, the result nould be the same

[^21]: ${ }^{6}$ The index for the quantum number is omitted

[^22]: ${ }^{1}$ the following explanation is based on Dicke et al [49] chap 5 and Nolting [50]

[^23]: ${ }^{1}$ Sometimes it is also called "propagatot"

[^24]: ${ }^{2}$ The motivation for such an expression, as for manv other of the given defimtions, comes fiom the treatment of boson coherent states Howeret, a prove shows its corlectness

[^25]: ${ }^{1}$ The following denvation follows up to a certan extend the descriptions in Elmonds [58] and Davydov [59]

[^26]: ${ }^{2}$ A result for an arbitrary value of \jmath can for instance be found in Edmonds [58] on page 57.

[^27]: 'Wick's theorem is formulated in this way and proven in the book of A L Fetter and ID Walecka [60]

