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Abstract

In this work some many-body properties of isolated mesoscopic 11ngs are mves-
tigated  Second quantization and tight-binding mocels for systems of spinless
feriions and fermions with spin are used to derive an expression for the peisis-
tent curient  The results obtained for non-mreracting systems are m satisfactory
agreement with both expernnental measuiements and other theoretical results.
Then a Coulomb repulsion is considered for a system of mteracting fermions and
a vallational appioach is adopted We attempt to improve the description of
the system by introducing rotations of the spim-quantization axis on cach site
Then we go ont to show how the emergent Haurtree-Fock equations niay be ticated,
what kind of effects have to be considered and how the ti1al wave tunctions can

be chosen accordingly
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Introduction

Within the last few years a 1apid development of technology has stunulated many
mtetesting mvestigations 1 condensed matter physics The ability to manage
temperatiies well below 1 Kelvin and to create systems of dimensionality of a
few nucrometers allows the observation of ¢quantun efteets which were hidden
before. Even in normal conducting metals 1t is now possible to obtain situations
where the coherence length of the electron wave function becomes comparable to
the system size; this 1s called mesoscopics

In this field the persistent-current problem has atoused particulat inteiest.
It provides an excellent possibility to compaie the results of compheated theoiet-
ical many-body desciiptions of thesc matenals with 1eal experimental measure-
ments A peisistent current appears when sigle, 1solated notmal-metal 11ngs aie
thieaded by a magnetic flux The basic observation is that this enrrent depends
ou the flux i a charactenstic way* a hnearly mcieased magnetic field feads to
an oscillation in the current The pertod ot tlus oscillation is the elementary Hux
quantum ¢, = ":—" Heie £ 15 the Planck constant, ¢ 1s the speed of Light and e 1s

the chaige of an election

The History of the Persistent Current

Observation

It 15 mteresting that the history of the persistent cuient had alicads started a
long nme before the expetimental evidence was found  For mstance, a wotk by
Aharonov and Bohm from 1959 [1] 1s mentioned veiry oiren when Anx-dependent

finctnations of cuurents are investigated These anthors actually tied ro prove

e




INTRODUCTION 5

the physical existence of the vector potential A by suggesting an experiment in
wlich an electron beam 1s split in two separate beams that enclose a solenoid
and 15 1ecombined afterwards. Although the electrons only move m feld-tree
space they still experience the vector potential connected to the flix ® throngh
the solenoid Simple considerations as well as exact solutions of the scatrering
problem led to the result that the cutrent of the 1ccombined beam depends on
the phase difference AS/h = £®. Thus, the curtent is penodic with 1espect to
the flux in the middle of the two beams

The wotk of Biittiker, Imry and Landauer {2] 1 1983 1s usunally quoted
to be the fitst paper that predicted the existence ot a peisistent enrrent m small
one-dunensional rings  They pomted out that closmg a random potential to a
ring resuits in a perodic potential with the typical Bloch-like band stinetiure m
1eciprocal space. An accelerating electrical ficld E foices the chaiged pariticles
to move within the fust Brillouin zone As soon as the field 1s switched off the
mozvement stops, and the curient rtemans with a fixed momentum, which does not
necessaily have to be zero. According to Buttiker, Inny and Landaner this eflect
leads to a peisistent current within the 1ing It 15 also mensioned in the paper
that the existence of an accelerating ficld 1s equivalent to the appearance of an
external fux through the ring which mcreases lincaily in time Funtheimore, the
fiequency of the movement through the band 15 the same as for superconducting
rings with a Josephson junction, except that 2e is 1eplaced by e

In 1990 Lévy et al {3} were the first to provide cleat evidence for the existence
of pesistent eurrents with their results ol measurements on mesoscopic coppel
nngs They used 107 “rings” ot copper, which actually had a square shape and

2 The cucumlbercnce ot each ot the rings

were located within an area of 7mm
was L & 2 2um The measured guantity was the magnetisation withim a SQUID
magnetometer  Lévy et al  considered not only the value of the second and
thind harmonies of the momentum, i3 3, for 7 = 0, but also then temperature
dependence over an interval of 7 to 400 mIX Theoretical assmmptions precict an
exponcutial decrease according to the law pro3(T) = pa3{0) exp [—ifi] leaving

only y1;5(0) as a fice paramerer for fits. (E, 1s the cotielation energy and can

be estunated ) The results m general confirm the theoty used  Especially, an
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oscillatory beltaviour in the flux dependence of the magnetic moment was clearly
observed. which indicates the existence of a peisistent curient The magnitude
of the moment is estinated to be 1.2 - 1075 Am?, cortesponding to an ensemble-
averaged cuitent of 0.4nA = 3 - 10‘3% per ring Howeuver. probably hecause of
the necessary averaging over a whole system of 1ings the period of oscillation was
found to be ®y/2 (not $o).

Ouly one year later Chandrasekhar et al. [4] published the 1esults of their
experinients on the magunetic response of a single, 1solated gold loop  Because
of the absence of an ensemble averaging they were snccesstul m indig a whole
flux quantum osallation. Thiee different kinds of gold loops, labuicated on oxi-
dized S1 substrates using an electron-beam lithograpliv process. weite nsed Their
diameter was 2.4 um, 40 pm (cucle) and 14 jn x 26 pin (rectangular), re-
spectively In the temperature range around 10 mIX an electron phase-coherence
length of 12 pm and « thermal diffusion length of 8 7yt allow the appearance
of mesoscopie effects  The analysis of the data of 4 de-SQUID magnerometer
was connected with a number of problems Fiist of all background Huctuarion
of the saine oider ot magmtude as persistent cunrent eftects made 16 difheulr to
extract signals Seccondly, the temperature dependence was ambiguous and did
not show exactly the expected exponential behaviour Thus, 1t was not possible
to extiapolate the data to zero temperature. Nevertheless, all tlnee gold loops
showed an oscillation in the magnetic 1esponse with the period f’f This was the
case tor the fundamental as well as for the fust hanmonie signals However  the
amplitude of this oscillatory component cotresponds to a peisistent curenr of
(03 =20)2£ Tlus 15 more than one order of magmtude lager than predicted
by snnple theotetical considerations for the chffusion

Later, mn 1993 D. Mailly, C. Chapelier and A. Benoit [3] teported about
peisistent cirents m semiconductor sigle loops Their GaAlAs/GaAs 1ing had
at mretnal diameter of 2 pm and an exteinal dhameter of 34 jan In the tem-
peratuie range around 15 mK the elastie mean hee path was 11 gan. which
corresponds to a very weak cdisoider. The channel number, ansimg due to the
thice-dimensional geometiy of the 1ug, was with approsimately 4 chamnels ex-

tremely small, too A modualation of the external maguetie field and a Founer
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transtorniation lead to power spectrums which clearly show the Ahaionov-Bohm
oscillation with the period '—f The high sensitivity of the SQUID magnetomoter
allowed a clear distinction between noise and signals. An averape over several
measurements led to a typical current amplitude of 4 £ 2 nA It is important to
note that i these measwmements the value for the persistent current was m good
agreement with the theoietical prediction of £ = 5 nA (using expeinmental

Paranieters)

Interpretation

The good agreement of the last measurement with theoietical assumptions is
mterpreted to be due to the fact that the system was m the ballistic regune [G}
Tlus regime 1s defined by the condition that the elastic mean free path for an
electron 1s latger than the circumference of the ring, which means that there 1s
onlv weak disorder 1n the system

In the former two measurements the effect of disorder was much stronger
A sitnation n which the cucumference of the iing is alieady laiger than the
elastic mean free path, but still smaller than the localization length 1s called duf-
fusive (o1 metallic) regime. Scientists tried 1 numerons publications to explain
why rhe persistent current can have such large values m this regune The re-
seatch mainly concenttates on the effect of elastic and inelastic scatterers and the
clection-clectron-mtetaction, and a few examples of diferent developrients shall
be mentioned next.

Aleady Landauer and Biittiker [7] extended then considerations by an
investigation into the effects of inelastic scattermmg They nndeistood nclastic
scatteing as a juinp between the two upper-most energy levels of the previously
meutioned Bloch system  This effect of a small but fintte temperate 15 of un-
pottance when the flux is increased hinearly in tune. It wesnlts i a non-vamislung
time average  According to Landauer aud Butunger this hehaviour can be ex-
plamed by the change in the width of the eneigy gap beeween the two upper-niost
levels when travelling thiough the Buillown zone and a huite elaxation tune

Most of the preceding publications considered situations where the flux is

fixed A derailed discussion of the eftect ot scatterers wn the different 1egimes can
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for mstance be found in the papers of Cheung et al. [8]. They mamly fonnd
that all forms of disorder reduce the amplitude of the persistent curient.

Ambegaokar, Eckern and Schmidt [9] stressed the importance of taking
a Coulomb electron mnteraction into consideration They started their consider-
ations with Hartree-Fock appiroximations and handled the nteraction pertba-
tively, using a dragrammatic techmgue The anthots concluded that such mter-
actions can be nsed to explain the high values of the peisistent current n the
experinent However, the results strongly depend on the choice of diagrams that
are mcluded mto o calculation {10]

Miiller-Groeling et al [11] have also investigated the effect of Coulomb
mteraction on the persistent current of one-dimenstonal, continnous 11ngs at zero
temperature  They used symmetry arguments and mtioduced a change of van-
ables to many-paiticle values. Their discussion and qualitative description led to
the 1esule that the Coulomb mteraction enhances the peisistent current n the
presence of impurity scattering

In another paper Cohen, Richter and Berkovits [12] 1epoit about thewr
experience with Hartiee-Fock equations for the same situation However, they
sumplified these equations to ordinary Schiodinger equations and tried ro solve
them In tlus way they were able to obtamn the result that as soon as a smgle
scatterer 1s mcluded 1n the ring, the decay of the Fuiedel osallations 1s suppressed
Knowmg this, 1t was possible to wvoke an approximate sell-consistency and to
gain statements regarding the peisistent curtent Colien ef al teported that in
a g with a weak delta-scatterer the imteraction will not destroy the permétent
cuntent  If even more scattereis atre introduced into the ring, then mteraction
culances the average sample persistent cuirent {1ather than suppressing 1t) and
mtroduces a prefeired diamagnetic curient direction

Numnterieal investigations with much fewer assumptions were tor mstance pei-
tormed by Kato and Yoshioka First [6], they managed to use the Haitiee-Fock
approxunation for a one-dunensional system of 100 sites and 40 electrons and
concluded that the Coulomb interaction between electrons canses a reduction of
the persistent current also i the diffusive 1cgime  However, one vear later the

same anthors found ont that 1if the other two dintensions are taken mnto consid-
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eration (a system of 20 x 6 x 6 and 300 electrons was nsed) then the persistent
current is enhanced

F. V. Kusmartsev published a series of papers and letteis with investi-
gations 1 the peisistent curient problem He wsed m lus conswlerations tight
binding modlels, mainly the Hubbatd model The on-site Coulomb 1epulsion of
spin termions is described by an energy U In most of Kusmattsev’s papers this
mteraction is trcated with the help ot the Bethe ansetz This incthod leads to
a chatactenistic set of equations for the coefficients m the chosen wave function,
wiich also mclude the flux phase In the Iinnt U — co Kusmaitsev was able to
solve these equations exactly and to give interesting explanatious of hus 1esults

In one of lus early works [13] Kusmartsev gave expiessions for the gionnd
state total energy of a fixed number of paiticles, Af, on a 1ing m the previously
mentioned lumt of strong mteraction They show a periodie dependence as well
on the ux threaded by the ring as on the number of up-spw particles Tlunking
of a situation where all spins are down at the beginning and the flnx is increased
trom 7e10, one finds that there exists a certam flux value (and n eqrudistant steps
mole values) when 1t 1s more favourable for the system that two of the fermions
chauge then spin direction  Tlus leads to a hactional Ahatonoy-Bolim cffect,
wherce the cmient as a function of the flux has a petiod 1/A .

In a later paper [14] Kusmartsev ef al mvestigated the hactional Aharonov-
Bohm cftect further. It 18 shown analytically for the case ot two particles, nu-
metically for three particles and peitmbatively for A7 particles that this effect
can exist for any finite value of ' The condition 1s that ¢ = tA[/UN 15 a small
numbet. whete /V 1s the number of sites and  the hopping mtegtal Furthermore,
thete 15 a scahing behaviour of the ground state energy, depending onlv on o
A thorough analysis of the fitst order cotrections of the Bethe equations mn the
patameter a 1eveals that there 1s even more fine stincte m the flux dependence
ot the encigy Kusmartsev [15] ciscussed that within certamn patameter 1a1ges
the conventional Ahatonov-Bohm effect can coexist not onlv with an oscillation
with petiod 1/Af but also with an M, /A osallatory behaviom Hee, A} is the

numbet of down-spin particles
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This Paper on the Persistent Current

The given list of publications is of course far from complete. Especially after the
first experimental results were 1eported 1n 1990 the munber of papers about the
pesistent-ciurrent problem has increased 1apidly  Tlus shows that there was and
still exists a great interest in this topic The examples mentioned show furtlier-
moie that some questions aie the subject of controveisial discussion, Although o
lot of progress in understanding tlus phenomenon has been made, some questions
1cmain to be answered It 1s thetetore 1easonable aud useful to deal with the
peisistent-current problem within this master thesis

The intention of this paper goes in two ducctions Fustly, the anthor makes
1t possible to gain a deeper msight into the cauwses ol petsistent euirent and
its dervation  For this purpose a formalism 1s developed and the successive
steps are explained in some detail. Vallous exact 1esults have been gained and
ate chscussed  Most of these results were obtamed mdependently of any other
publication, but have been compared with other works atterwards

The above mentioned formalism uses tight-binding models Thioughont the
whole paper second quantization and a varational approach 15 used to evalu-
ate the appearing Hamiltomans., The maim task 18 an analvais ot the appear-
mg Haitiee-Fock equations Based on botlh, tight-binding models and Hartree-
Fock approxumation, many mteresting tesults are published 1 the literature
[6. 8.9, 10 11, 12, 13] However, then combmation, a discicte Haitiee-Fock
preture 15 used very seldon [6]

Sccondly, 1t was the intentron to improve the fist results by peifornung more
complicated decompositions The idea was to allow different spin-stinctures for
the ground state, which depend on the flux For this 1ecason 1otations of the spin-
quantization axis for each of the sites were mtioduced. It turned out that this task
15 quite complicated. and especially an appropriate choice of the wave function
was not casy to find  Tlis paper documents the different tnals, the concluded
results andd the reasons for modihcations It does not end with a proper result,
but with a suggestion for what 1s, i the opion of rhe authot, the best wav to
manage the proposed spin-stinctuie

The structure of this thesis is chosen accordingly [t starts with some basic
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rematks on the tight-binding models m chapter 1 In chapter 2 the physical
background is explaned and an expression for the persistent current is derived
step by step. However, the model 1s still simple becanse no interaction 1s taken
mto consideration Tlus happens in chapter 3, in wlich it 15 also explained
mn detail how the Hartree-Fock calculation is done. The first part ends with
expressions for the energy in the Heisenberg model and the standard Hubbard
niodel.

In the second part the notion of rotation 1s introduced In chapter 4 some
concepts are explained and 1t 1s tested in which way the rotation should be -
clnded The last chapter 1s entitled “Tiials of Iimproy cinent” and offers solutions
tor the various problems which appeaied m the preceding chapter. The paper
finishes with some conclusions

Dunng the time of research 1t was necessary to make use ot some mathemat-
ical techmques. In oider not to mteriupt the argumentation too otren longer
explanations of such techmques are occasionally moved to the appendices B to
F Tlus males it also easier fo1 readers who are tanuhar with this field, to omit
those paits since the main body of the papet is formulated mdependently of the
appendices. Appendix A might be especially helpful, It contains a st of almost

all symbols used 1n this paper




Chapter 1

The Heisenberg Hamiltonian and

1ts Transformations

1.1 The Heisenberg Spin-Hamiltonian

The Heisenberg Hamiltonian has 1ts gieatest unpottance 1w the tnal to find an
explanation of magnetism [16, 17] In tlis aiea a mean- or moleculai-field theory
15 apparently not sufficient to desciibe all existing effects Theirefore, Heisenberg
mtioduced a local moment theory He (and mdependently Dirac) hist of all sug-
gested a quantum mechanical exchange interaction to explain the singlet-triplet
sphtting i the helium spectrum. Two yeais later, m 1928, he apphed this idea
to nagnetisin

Hund’s rules allow the possibility to associate with each site ot a lattice a
certain spin - According to these rules, every atom tries to have paiallel spins 1n
1ts outer shell Hence, electrons with a certain spin direction are 1epelled, others
ate not Tlis leads, even if there 15 a consideiable electiron Auctuation. to a fived
spm of a particular site

The 1dea to melude thus electron spin m the wave tunction has 1rs hackgronnd
m the Panly exclusion principle Since theic s an overlap ol the wave functions
of neighbourmg sites, the exclusion principle unplies a correlation between spins

of two electrons This can be expiessed by a so-called Hewsenberg eneigv which
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15 proportional to the dot product of the spins

HHQIS =-J Z SI'S]J (1 1)
(.2}

where (2, 7) indicates that the sum goes over neaiest neighbonts only

J 15 called the exchange mtegial. which Las uo classical analogue hecause 1t
15 based on the Pauli exclusion principle It 1s supposed to be identical for all
nearest neighbour paus, whicl is of course a simphfication The value of 7 can
be caleulated trom specific heat measurements and spin-wave consulerations For
mstance Hofmann et a! [18] found for iron and nickel J = 0 01 — 0 02eV and for
gadolimium J = 0 0002el” However, theoretical estimations [19] lead to different
values, which shows the weakness of the model.

The origin of mistakes 15 mainly the assumption of localized magnetic mo-
ments, attached to the atomnic cores 1n the matenial  Especially, for elements
with high atomic numbers the elections of the outer shells are unlikely to be
localized Heie from a physical pomt of view itinerant clectron theories scem
to be moie favourable, even so, they aie much moie difficult to handle For 3d
transition metals both, the localized and the itinerant theory, have their justifica-
tion The former explains for instance spin wave phenoniena and the temperature
dependence of the speaific heat, the larter magneric moments with non-ntregial
numbers of Bohr magnetons per atom

Nevertheless, only the Heisenbetg 1dea of localized magnetic moments and
ther interaction 1s used n tlns work  Fust of all, 1t is necessaiy to descube
spin operators for spin one-lLall paiticles mathematically Tlus can be done with
the help of Pauli spin matiwes m the foom 8, = gha tor site number ¢ The
components of these spin matiices are

01 0 -1 1 0

c.=0(l)= , oy =0(2) = ande, = o(3) =
' 10/’ L0 0 -1

(1.2)

I, turthermore, the ladder operators

St =S 418
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ate mtroduced, eventually the following set of spin operators

01 0 0
St=n ST =h and S7 =

0 0 10

1 0

noy S

can be ohtamed

It 1s easy to show that
SfSJ‘" + S,'"SJ_ = 25787 +25/S],

which has two consequences. Furstly, 1t allows the rewniting of the common

product of two spin operators
TOT 4 1 + o — - : oz
5.8; =578} +S/S) + 518 =5 (SrS; +878}) + 5352 (13)

Scecondly, 1t shows that the anticommutator of spin operatois on the same site is

propaottional to wlentity
(5F,57)s = %1, (14)

1.2 Transformation to Bosons

Fol angular momentuin operators in general, especially if the spin quantum num-
beis are laige, a treatment with matrices might be cumbersomne It is often more
conventent to work in second quantization. One possibility to replace spin oper-
arors is the coupled-boson 1epresentation It shall he described heie in bievity
becanse 1t fits mto the context. However, it is of hittle unportance for the main

hody of this paper.

Coupled Boson Representation

The coupled-boson representation was fitst proposed by Schwinger [20]!  He

introduced spinor opeiators

l
bt = (bI b;) ad b= (L5)

[)2

!see also Mattis [21] chap 3 8 ot Merzbacher [22] chap 21.2
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which consist of two Bose creation and anmhilation operatots, respectively The

latter fulfil the usual commutation relations for bosons

b b)) = B0 =0, [b,0]_ =4, (1.6)

LR L2

and are well defined if a vacuum state |0) 1s mtroduced together with the con-
straint

b[0)=0 or (=0 W (1.7)

Using the Paull spin matnices (1.2) the representation for a general angular mo-

mentum operator (not necessauly half-spiu) has the tollowing torm

h

S=§

bt .o b (18)

Proof: It has to be shown that the typical commutation relations for the com-
ponents of angular momentum operators aie fulfilled by S In order to wiite
this in a compact form (57, S%, 5?) is replaced by (S'. 52, 8%) and Emstem’s sum

convention 1s nsed

n?
S5 — §I§ = T(bfta(?)agbﬁb;or('}),y,,bﬁ—b:‘rn'(]).,ﬁn’)dbflo(;)nghg)
e t t
= 7 (b,,CT(?)a,GJgTU(J)1«555 + bno(r),,,@b?hﬂ(r(_y).,,;hﬁ
- bfra(_g).,,;ﬁ,saa(f)ngbﬁ - b..';,(}'(j)Tﬁbftbdd('n‘,)aﬁhﬂ)
n!
= 7 (ko0 - ol)ushs =1 (00) @), 5b,)
n oy I o 1t
=+ (e, o)) = T 2 thena(h)anb,
= g 1h S* O

Having defined the angular momentuin 1 this way, it 15 also posaible to give

an expression for the cigenstates m terms of cieation operators The result

1 s+ Fye—m
() 0 " (19)
\/(s +m) (s — )t

|sm) =

denotes a state with the eigenvalues h23(3+ 1) and fimn ot 8% and S, respectively

|0) = |00} 18 agamn the vacuum state
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Proof: It has to be shown that the ladder operatois S* = $% +15¥ and
S7 = 57 —~15Y nse and lower the m-1alne correctly and that S? gives the cortect

eigenvalue of % s(s +1) The formet is clear after finding that
Iy
St=nhblly, ST=Rbh ad 5T=2(lb-8lh),  (110)
the latter 1s obvious by showing that

§? = % (ST +575*) + ST =12 s(s +1),

where .
1 1 1 1
— — i, - e o
s=zbl-b = 2(bb1+h2b2) Lot 5
d
Therefore, an interaction of spin operarors m the form
H——]ZSS +q;thB S,. (111)

(n.0)
also mcluding an interaction with an external magnetic feld B (¢ and pp are
constants) can be transformed with the lLelp of (1 8) to an expiession with hosonic
cication and anmhilation operators Expectation values can be calculated in

sccond quantization, using the eigenstates proposed m (1 9).

Variations

There exist varrous vanations of the above mentroned 1epresentation  Most of

them lave the aim to replace one of the bosoniw. opetators  With the help of
quasi-classical arguments it 1s tried to wotk with one kind of bosons only One
finds tor mstance in Merzbachet [22] why a feriomaguetic approximation leads to
5,5, = fouth, 12 bbb = 2s0lh, —2stlh +252) T (112

29y = -\ 28hby + 2sb by — 250 b, — 2sbh, + 25 (112)

Another possibility 1s the Holstein-Piunakoft transtormation [23], which re-

sults m the followmg 1epresentation:
S; = hblv2s /1 - —b}bj, T =hvV2s4/1 - —b;beJ, (113)

S:=h (b;bJ -s).

7
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1.3 Transformation to Fermions

For the special case of spin one-half operators it 1s sometimes more helpful to
work with a fermiome representation. One might think of a conpled fermion
Lepresentation since (1.8) is also valid for feimions. However, there are also ways
to manage without a second creation operator This section mtroduces the most

widely accepted possibility to make a transtounation m tlis diection, tlhe

Jordan-Wigner Transformation

Fermions a1e characterized by the following anticommutation relatious of anmhi-

lation operators ¢, and creation operators ¢
e 6} = [CIvC;]+ =0, [cl,cj]+ =4, (1.14)
They aie well defined with the help of a vacumm state [0}, tor wlhich holds
¢,|00=0 or {0]cf=0 W (115)

The tianstormation proposed by Joidan and Wigner m 1928 [24] makes use
ot simmlar properties of spmn operators and termions. It Las already been pomnted

out (14) that the anticommutator of spin operatois on the same site 15
+ o] _ 4?2
[Sz ’Sz ]+ = 1"l
Hence, an 1dentification of spin operatois with fermionic operators in the form

1
St=hd, ST=he, and S*=n (cfc, - 3)

seems to be natural Unfortunately, 1t is not that casy Spm operators for different

sites o1 particles cornmute with one another
[S7,5;]-=0 forz#y, (116)

wheieas fermionic operators anticomimute. For tlis 1eason a phase factor U, for
cach site 2 15 necessary to change anticommuting to commuting U, should be-

a unitary operator (as every phase factoi), which only contiibutes a sign to the

“a descrption can for mstance be found m Matus [21] chap 3 12 and m Tsvelik [25) chap 18
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expresstons for the spin operators It is convenient to use the fermionic operators

¢, for this purpose. Jordan and Wigner proposed to do that m the following way:

U = explir) cle, (117)
k<t
= H exp[mc};ck] = H (1 - QCLCk)
A< k<t

wlnch Lolds for one dimension Hence, the spin operators have the form

1 =

St = ndU, =hedexp|in Y cle, |,

k<
S; = hUrc, =hexp|-in Y cle.l e, (118}
k<t

1 1
Z = i eoe — ] = fo — 2
S = h (CIU,U; ¢, 2) ) (ctct 9)

Lt order to check that this phase factor has the desired properties, 1t is suffi-
cient to notice that the operator product (,Lc,c is an occupation number operator
7t An oudering of the sites 1 = 1, ., N 15 introduced, and therefore the sum
in (117) connts the number of occupied sites coming before the site 1 It this

number 1s even, then U, = 1, otherwise 1t is —1 In the commutatol
+ o- 2
S+, 57)- = 1? (U.U; e, — Upe,clUL)

assummg 7 < 2, only the sites & with 3 < & <1 are unpoitant (the rest 1s counted
twice) Owing to the fact that U, appears i the fiist stunmand lett to ¢, and 1n
the sccond summand night to ¢,, the sum :il fip cdiffers by 1 1 these two cases
Tlus gives the 1equued additional phase fdcr.ai? —1 which changes anticommuting
to commmiting The argumentation for 3 > ¢ 1s smular.

By using (1 3), (1 16) and (1 18), the kinetic energy terny 1 the Hewsenberg
Hamiltoman becomes in one dimension

1 - - zqz
TY 88, = {5 (SHS5+5750) + S5

(r7) 2

1 1
= hlJ’Z {C;(J_l_l + C;--!-ICJ + (C;CJ - 5) ((’I"‘l(’_}‘*‘l - ;)} (]. 19)
7 “-

H

It 1s clear that in (1 19) the phase tactor U, does not appear any mote This

18 due to the fact that for the sum over the occupation mnbers i U, only the
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sites £ with 7 < k < 7+ 1 are important (the 1est is counted twice). However,
for 3 = k exther the occupation number operator 7, or the tevmionic operator c;

gives zero owing to the Paul exclusion principle

Variations

Variations appear 1If the one-dimensional chain of operators is closed to a ring,
This happens when the index N + 1 is wdentified with the index number 1. That
means physically that periodic boundary conditions are unplemented and math-
ematically that all site ndices are understood to be taken  (mod N).

In snch a situation one has to check the behaviour of the teim S5 ,. It does
not cause any problems as long as 1 # N However, tor 7 = N the tiansformation

formmnlas (1 18) lead to

2.S' S; = chexplir ¥ cle | exp -y eley| ¢
h A<N k<l

= chexpm(A = 1)]¢, aud

—=S{ Sy = et exp i 3 e, | expl—m > de | e
h A<l Iy

= clexp[~in(M - 1) ey

Here A 1s the expectation value of Z c,‘c,. It 1s ecpuvalent to the number of
paiticles of the system, which is s11pp0<:e(l to be fixed

The phase factor e™*=1 15 equal to unitv for the case of an odd number of
particles However, 1t gives o nunus sign 1l the number of paiticles 15 even ' To
be precse, one therefore has to wiite wstead ot (1 19)

o 1\ /4 1
Z{ G +CJ+IC + ( 66 3) (LJ+IC +H Ty }

+{cleypn + clyre, J (0= - 1) (1 20)

In such a form the character of the Hesenberg Hanultonian 1s preserved and a
chain of spins 15 deseribed  The sitnation is usuallv called the “a-cyclic” problem
[26, 27] 3

*The letter a has 1ts ongin 1n the fact that Lieb et ol denoted mn therr paper the operators

St and ST with the symbols af and a,, respectively




o
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On the other hand the additional term proportional to (e‘”(‘” -0 1) 1s in the
lunit of a large number of sites, N, negligible To omit 1t also means to desciibe

a cychic problem of teal fermions The Hamiltonian

N
1 1

H=1JY {c}cﬁl +ce+ (c;‘cj - 3) (c;,,_chH - -5)} (121)
7=1 - -

1s called “e-cyche’ and s well to distingwish from the previons one.

The mam differences are the unphed boundary couditions [27] The a-cyclic
problem has by construction always periodic boundary conditions In the c-cyelic
pioblem this 15 only the case for an odd number of particles If the number of
patticles 1s even, then the boundary conditious are antiperiodic, how 1t shonld be
for real fermions.

The reason 1s that theie are the following rules how ternmon anmhilation and

creation operators act on Fock states in second quantization [28];

CIY, |A-[, oy Ny ) — (_1)1\!,.(5

Tap,

M, ona, ) = (=1,

olju‘ + 1, y Her, + J.r )
M =1, o n,, —1,..),

Co,

oy

whete
r—1
M, = z Na,
=()

Henee, 1t 18
cley 3,0, 1) = (=1)M"11a1, 0

and vice velsa
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1.4 Related Hamiltonians

The result of the Jordan-\WVigner transformation of the Hubbard Hamiltonian 1s

1 1
H = 52-]2 {C;CJ+1 +C +1c + ( J _; 3) (Cj-i-lc +1 ;))}
P Z

— t 1
= h JZ{ 1 + cJ_Hc +c 366 +16 41 cjcj}
Flu "

It cousists mainly of two parts Hp describes the quantnm imechanical hopping
of electrons; ¥ can be understood as an interaction of different elections The
remaining term 1s a particle self energy. It 1s worth noting that the product
cj;cJ = i, 1s the occupation number opetatot in second quantization Summed
over all sites 7, the total munber of particles ot the sysrem is obtamed In the
calculations of this paper this number is supposed to be constant, wlich allows
us to ignole the last term as an unimportant encigy sluft
In a more general form it 1s possible [28] to wiite the Hamiltonan for a
combination of the one-particle kinetic energy and a two-particle interaction in
second quantization as
H=> W gyeg + > clel{py | Ha | rs)eres, (122)

.9 PaggatsS

1gnoting many-patticle mteractions, which are seldom

The cquation which follows from the Toudan-Wigner tianstormation 15 just
a speaal case of thus representation A hopping 15 only allowed from one site
to an adjacent site, which essentially leads to a Kronecker-delta instead of the
expoectation value ot I;’l Futtheimore, the mteraction operator HZ a1ves the value

17 for neatest neighbours only. All other expectation values of H, vanish

The Heisenberg Model
A Hamultoman of the form
H=—tY (degs+he)+ U Y fpin (1.23)
i %

i5 called m this paper the Heisenberg model In this expression the constant
i hont of the first sum has been 1enamed to —f = h%J and 1s called “hop-

prg mtegral”, 17 1s a tepulsive Coulomib potential, *h ¢ ” stands tor " hermitian
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]
]

conjugate”, The Heisenberg model woirks with spinless fermions and includes a

hopping and an mteraction between nearest neighbours in one dimension.

The Hubbard Model

A turther step 1s not to calculate with spinless termuons but to melude the spin
ot patticles into consideration. In this case the mteraction 1s nsually simplhfied
even more. Not even the effects of nearest neighbours on a fermion on a certain
site aie consideted The calculations are 1educed to the Conlomb repulsion of
two particles which aie located on the same site, but have different spin In the
case of spinless fermions tlus term did not appear becanse of the Paul exclusion
punciple; the spin degeneracy allows such contributions. The Hamiltonian has

the form

H=—t Z Z (CL,UCk+1,‘, + CI_l_I,,,Ck‘ﬂ) +U Z ﬁk,'rﬁk.l (1 24)
k o=11 k

Here c,tw, and ¢ , are the creation and anmlulation operators of 4 ferimon with
spir ¢ on the site A, 1espectinely, 7, 18 the cottesponding occupation mumber
operator

In either form, (1.23) and (1 24), the Hamultonian 1s only an approximation
Nevertheless, such approximations can alieady lead to interesting and nontrivial

1esults  Unfortunately, even simplifications like this cannot always be solved

analytically Numerical methods or approximations aie necessary




Chapter 2

Rings of Fermions and Bosons

2.1 Heisenberg Model with Spinless Particles

As a first sunple example of electronic mnteractions of chaiged particles 1t 15 pos-
sible to use the Heisenberg model It 1s the purpose of this section to show how
within the Heisenberg model the total eneigy for a set of paiticles on a 1ing can
be obtained This happens fiist of all m subscction 211 lor only one paiticle
An expiession for the energy ol more particles 1s denived 1 2 12, and the nec-
essary considerations to minunize this expression are finally explamned m 2.1 3

Subscction 2 1 4 adds some 1emaiks on the distribution of the paiticles

2.1.1 One Particle on the Ring

We begin onr considerations with looking onlv at the hoppmg part of the Hewsen-

berg model That means the Hanultoman has the following stiucture

H = h]Z{ J+1+CJ+1C} tZ{ J_|_l+hc} (2.1)
= -t {c1c2 + czcl + cgcd + C:I_;;CQ +. + chN_l + c;rvcl + c{c,\,} .

The vaniable NV gives the number of sites wirlun the system  Becanse only one
dimension 1s taken nto consideration, the system forms a line of adjacent sites,
sepatated by a distance ¢. Thus, the length of the lime1s L =« N Oune can see
fiom the sign i font of the last two terms that we use the e-cvelic problem, the

description with real fermions.
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It is also possible to use the expression (2.1) for the case that the operators
obey the commutation rules of bosons Moie specifically, such a model would
describe hard-core bosons These are particles which behave accoiding to Bose
statistics, hut only n, = 0 and I are allowed as occupation numbers.

However, for a system with only one particle, as examined next, theie are
no differences between these two descriptions becanse no commutators appear.
In both cases (fermions and bosons) the Heisenberg Hanultontan anmlulates the
particle on a certain site and cieates a new oue on both possible adjacent sites
The sites NV and 1 are undeistood to be adjacent

The description of the Hamiltonian m terms of annihilation and cication op-
etatois imphes the usage of second quantization. For this reason, a Fock- or

occupation-number representation for the eigenstates 1s used-
[¥) = [0. 001)+ o]0 . 010)+  +an|10 ..00) (2.2)

Then the Hamiltonian H wm (2.1) can

also he written in matrix repiesenta-

01 1

tion. Independent of the number of 101
particles the matrix has foom shown 10 0
1ight. ~t (24)
The et of eigenvalues of H 1s iden- 0 1
tical with the spectrum of the shown 01
maftix The latter could be evaluated \ 1 b
numerwally. However, this scems not
to be necessary since the given set of ( “tlor + an) = Ay
equations for the eigenvalue A can be “Hor 4 a3) = A
solved exactly by assmining that the co- ==
ctherents are Bloch wave functions, |ty + au) = A

oy = ! et (23)

VN

Becanse the periodic boundary condition ayy, = v, must be satisfied for
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every 7, 1t turns out that only certain values for & are allowed-

2T
kn—_—ﬁn’ n=20,1,. .,.N-1} (2.9)

Hence, the eigenvalues are determined by the following equation
—t (enk,. {7—-1) + g'n (]+l)) - )\,Le"‘" 1
—t (et etn) = A,

These numbers A, are the eigenvalues of the Hamilton operator H, and therefore

the possible energy states for one particle on a ring with N sites aie

2m
E, = —2tcosk, = -2t cos(-j\—n) (2 6)

2.1.2 Two or More Particles

The case of two particles on the 1ing must be handled separately for fermons and
for bosons The following calculations concentiate on the former ones Ve shall
come back to bosons in section 2 3

The eigenstates of the Hanultoman H given in the foun (2.1) can be deseribed

by two gquautum numbeis n,m with n # m In secoud quantization the form

Zanrr:fTI()) (27)

H, m

15 approptiate The properties of the coefficicuts a,7" are discussed m subsection
214 At the moment they arc just functions of the sites 2 and 7 which also
depend on the quantum numbers n and m

The Schrodinger equation H f'd:)n,m = Eym ¥} lot this problem can be han-
dled 1n different ways One of them 1s a straight torwaid nsage of the conumutation
relations
~2HY),,, = N CONEL IAREID:

= Yo" (clepaicle] (Guane + eary) +chicicled (e, +61,)) 10)
13k

- Z o ( el_,c, c“c;r + c}_[cjcfc" + c,+lctczc§ +cleele ) |0}

'see also discussion 1 section 2 3
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- 1 t b ot

= Za ( 16 — 616+ G €y — J+1C) |0}

— ot (N

= Za ( o+l +cl el +c,cj+1) |0)

- n,m nsm M 724 tt 0

- z az 13+at,_1+1 +a1+l +('z.J—I ct(’_yl )

Y

In the fourth hine of this calculation the tact that all terms with 2 = j disappear
due to the Pault exclusion principle for termions has been included. In the last
hine there 1s a shitt of the summation index

A cotipatison with the right hand side of the Schiodinger equation shows that

for all paiis {7, 7} the equation

n,m ,m n,n —_ ’?l m
_t (a‘,_,_lj + Cl!]-l-l + Cyi-l']. N + ]fj_f-) - Erl er‘-r‘; (2 8)

has to be fulfilled

It 15 not difficult to see that again Bloch wave functions satisfy this set of

equations  Actually, the factor o™

vy » which stands for the wave function of two

feimions on the ring, can be tactorized, which means that the two feimtons can

be handled as non-interacting particles

]. 2= 1 it |
(2 + my)] e T e (2.9)

VN N

In this 1epresentation the case n = m 1s not allowed The 1cason 15 that

2m1
N

1
n mo_ tnmo_
a o) ey, == e\p[

J ] N

n = leads to parameters wlich are symmetric w the site mdex, ;)" = a3,

and hence

Z an,m 1' 1’ IU —
u m

Zntmff_;_znnmtr |0)

] o

— Z ﬂ” mc _ Z “n St -«j 1‘ I0> =

That implies that the wave function [), , would disappear everywhere
By using Bloch wave functions in the form (2 9) one obtaws the following

expiession for the energy

Qi 27
— - 3 —— 9
Eym 2t (COS(N ) + (,OH(N m)) (2 10)
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It should not be a great problem to accept the generalization of this exXpression

to the case of Af particles on the ring:

M or
Eny gy =2t COS(‘F”*‘) (2.11)
A=l

2.1.3 Total Energy

The calculated energy n (2 11) still depends on the set of quantum numbers
{n,}A, In order to obtain the ground state of the systeml at tempelatiie T = 0
this st must be chosen in such a way that the total eneigy 1s a munimum The

situation 15 visualized 1n fignre 2.1.

E,
" Eyn=-2t cos(%’rm)

i
1 ~

Figure 2 1. Energy states due to the hoppiny part of the Heiwsenberg model The
case of a ring with N = 16 swzes and M = T particles 15 shoum The small ticks
on the v—ans imdicate the different possible m values.

In the case of spinless fermrons each of the mdicated ponts i 1eciprocal space
can be occupied by not moie than one particdle The 1eason for this 1s the Paull
exclusion principle. For Af = N, which 1s 1efenied to half filling m the literature,

tliere 1s only one possibility, which gives a total energy

N-1 Nl ERiNYs ~ 2y
2= ~2m l—e% I—e™%
E——t(z et > eT W =t = = —— =0
n=0 n=0 1 —-e7 1 —e""v

For a number of particle Af < ¥V the lowest encigy levels are those which are
close to A =0 (mod N). Hence, the distribution occms m a way smulat to the

situation shown m figure 2.1, wheie dots 1epresent single particles
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For a large number of sizes and a E
m

small number of particles, or more

2
- _ 2 2
precisely for %,1 & 1, the situation Ep = =2t 14 t(N ) m

1s simila1 to that of free paiticles. BARRRSRREETozss s s SRS
N2 o N

For small 2 the cos-function can he

approximated as being

1
cosa =1~ ;x2,

Figure 22 Energy states for a large

which gives the pictuie tor free number of sites (N = 350) and a small

. . number of free fermions (Ml =7
fermions on the nght hand side ffree | ( /

In order to calculate the total energy of the system, 1t 1s necessary to distin-

guish between an odd and an even number of particles Af.

< (2T = M
Even = -2t Z cos(N ) —tmz-:o {e\p[ (m — ?)] +he }
1- exp[@f\f]
1- e\p[z’”]
1- e\p["’”] 1- L\l)[ sl
cos( % (M —2)) — cos(Z (Al +2))
1- cos(N)

This expiession can still be simplified by using some mmportant trigonometric

= —{ exp[—%]\[] +hc

= —t

rdentities
cos(z+y) = cosTcosy— SISy
cos{z —y) = cos2COSY-+SmMTSiny
(212)
sn2z = 2smcona
2simfz = 1—cos
Hence,

. QSin(%‘Z) sin(iﬂf) _ o 251“(%) cos(%) Sm(l_’\"?ﬂ[) ,

Feen = — =-2
o 1- 005(2”) 951112(1\,)




CHAPTER 2 RINGS OF FERMIONS AND BOSONS 29

which gives the final result for the case of an even number of fermions

T\ . /T
= Ee‘en=—2tcot(ﬁ) 5111(1—\}—]\[) (2.13)

The calculations for the other case are analogous

Eod(l

+AI-—-I

-2t f— cos(j—v—m) = -t Mz:l { exp[ (m - M; 1)] +h c}

m=—2=1 m=0 <
1~- e.\'p[?’“ ’1[]
1- exp[%]

-—-te\p[—— (M -1 )] + hc.

| ep[-R - 1) - exp[B (M +1)] 1~ exp[-22] e
1- (,\1)[2"'] 1— cxp [—7’\’—]
2cos(% (A — 1)) — 2cos(% (M +1))
1- cos(l\,)
2s1n sin{ TAf
# g) (ﬁ()N )

which gives the final result for the case of an odd numbe: of fermions

= Eoqqa = '-"'215—"'—]:'—“"'" Slll( ﬂ[) (2 14)
qm(l)

A comparison of these two results (2 13) and (2 14) shows that they only
differ bv a factor of cos(%) This factor appeais 1 the case of an even munber
of particles due to the fact that one particle 15 not located symmetrically For
an odd number of particles, all encigy levels apait from m = (0 ate ocenpred
twice m the ground state, becanse E,, = E_,, This 1s not possible for an even
number of termions, where one particle 1s left over  However, the importance of
this factor cos(%) decreases with a 11sing nunber of sites N on the nng This 1s

understandable with the same aigumentation This panty problem 1s chscussed

again m chapter 2 3 after the notion of magnetic flux has been mtroduced.
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2.1.4 Distribution of the Particles

Atter looking at the behaviour of the energy and therefore the eigenvalues of the
Hamltonian under consideration, 1t nught also be interesting to examine the be-
haviour of the corresponding wave functions In particular, we are nterested n
the expectation values of the oceupation number opeiator, which tells us some-
thing about the distribution ot patticles over the possible sites of the ring. Sumtilar

to the energy evaluation the calculations were done 1n several steps.

One particle

In this case the wave tunction has the form (2 2) wlich can also be written as
N ’r N N
—_— n . _ 5] -
=3 aped]oy (=01 (of) e, (215)
i=1 1=1
and the desired expectation value 18

{lwy, = Y (o) o(0le,cle,cl|0)

z!J

= Y () al(0]0), k., = Jop
t.}
m

=n k,

e

Hence, 1 the case of one particle |a?|® gives the probabihty that the particle 1s

located on site & This probahlity is 1/N 1f Bloch wave functions are uscd.

Two particles

The wave function for tlus case, as already proposed m (2 7)

Z 11!, mn i‘ 1’ nlm('lub] — (UIZ (a’:),tm)* ¢,Cs (2 IT)
st

unplies the following 1esult
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Ol l8), = 3 el (a0F) (Olescsclereled |0) (B, + 6i,)

1,7,5,¢
= 3 (a2") Oleicnclcd 10) (af7 — ") (S, adry + 8uyii)
J’sit

_ n.n n,m\* n,m n,m
= X ((a“ ) (aJ,k ) )(ak;r eIy )

7
= Yot -agp| (2.18)
3
= 3 {Jorf*+ e - 2ne (o) k7))
)
1 1 9
— Z{ﬁ_i_ﬁ—o}:ﬁ’ (219)

where the last line is again the result for Bloch wave functions in the form (2.9).
However, without this assumption the result (2 18) looks differently than ex-
pected

This 15 event moie the case when one mvestigates the expectation value of the
operator product 7;7; One would expect to obtain ‘2/1\"2 i the case of Bloch
wave functions, because 1t is the probability? of having one particle on site & and
the othet on site [ at the same time Instead, calculations lead to

(Wl = > (a’;,:m) (0le,evchecleclet |0) (6, + 61,)

nm
1,7.8,¢

Z (a‘;',;u)* (0 |C’CsCI CkCIcI IO) (0(:11”" n. m) (5’“1 + ()k )

2,9,

. Tn,m nym * T, T,
= JHZ ((u,w ) (aj,,_ ) (cv“ — )
n,m\* nan\* n,in n,Mm
- ((O’k.! ) - (Q!,k ) ) (”’t,x -0y )

2
n,m n,m
= iy Z |ak, -0
3

1

(2 20)

The 1esult 15 consistent with the previous one (2 18), wlich 1s just &k = Fur-
thermote, the behaviour for k — [ and for 7 = 18 1casonable  However, 1t 15

not consistent with the expected value The term

QRe((akf") a;’,f") = Nz cos() (n—m)(k — Z)) |

“Note that 1 tlus context “probability” 1s not normabzed to 1 but o Af
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also gives a non-trivial contribution for Bloch wave functions.

Charactenstics like this lead to the couclusion that even 1n a representation
like (2 9} the two particles do not live independently of each other The existence
of one of them influences the probability distribution of the other one.

Remark: It might well be that such a behaviour 1s associated with Friedel
oscillations in solid state physics In the appendix of hus article on ¢ The Distnibu-
ation of Electrons Round Impunties in Monovalent Metals” [29] Friedel suggested
that a spherically symmetrical potential gives 1ise to an oscillation of the wave
tunction m a simusoidal torm  In one dimension tar enongh away from a suffi-
ciently fast decreasing potential the electron density behaves like [30]

cos(2kr|z| + 8)
|2

n(z) o

)

whele ¢ 15 a spatial coordinate, Ap the Fermi momentuin and § is a constant
dependent on the structure of the potential Colien ef al [12] also showed 1n a
continuons Haitree-Fock calculation the existence ot such density oscllations for
one-dimensional rings However, 1t needs further mvestigations to find connec-
tions to thus cffect.

Nevertheless, there 1s appaiently no straight forward wterprctation of the

nm|2

physical meaning of values hke |a,;

44

Af particles

The structure ot the wave function for the Af-paiticle case 15 a canonieal genet-

alization of the previous case

%)

ni

oy = e, ey 10) (221)

1y SIAF
Provided that the coefficients are wave functions of the Bloch type, they have the

form

,111 mnay

1
1w =——7‘7ex1)[—(11111+:72:2+ Martar)|

VN L

whetre N and Af are the number of sites and paiticles, 1espectively, and n, #n
3 7

for ¢+ # 7 are the quantum numnbers
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(% |fr, | )

1 RAf

= Z Z a:il tl:}u (a?xl JTf”) (Ol G Ckckct CIM |0)

LANY.Y ) G V)

ny Mar

= Z Z * )A 16’”4 <0| JM ' chch o CI-\ o 'CIM IO)
=11 1 d
ECREY =(—1}4- |({}| Sy '1 ¢t CIAI I[))
M , .
n T n T
= X XX et v (e, ") raa (-1 (222)

A=l1 17 peP(M)
In the last line the prime at one of the sums indicates that the summation indices
should be distinct: i, # ¢ for & # [ However, it is shown i Appendix C that
this constiaint 1s not important and can be forgotten

P(Al) 15 the set of all permutations of the set of munbeis {1, A} If
Bloch wave functions are again considered, only one ol thetn gries a non-vamshing
contribution For p = 1d the suins above reduce to

> ¥

A=1 ¥t IAf

iy nyy
1ty

2 M -y M
6}:‘14 = Z W N( ) ]\r

For all other permutations exists at least one z # A with p~ (1) # z and in all

sums appeals the factor

N-1 Ve
Z exp [_Wm (n.,, - np-n(r)) 11,] =)
=0

Hence, for A/-particle Bloch wave functions the probability to find a paiticle on

a certain cite 18

A

Wl lv),, ., =5 (2 23)

It 1s worth noting that tlus 1esult does not depend on the site A, nor does 1t

np Ry

depend on the set of quantum numbets {ny, 1}




CHAPTER 2. RINGS OF FERMIONS AND BOSONS

2.2 Magnetic Flux through the Ring

Of special mterest is the situation when a ring of fermions is placed inside a
nragnetic field B(r,t) Compared to the calculations of the pievious chapter a few
alterationus have to be done m order to descuibe tlus situation corectly However,
befote a new expiession for the total energy can be denved 1n subsection 2 2 3
some explanations have to be ginen  Subsection 22 1 provides in bievity some
geneiral consequences of the existence of a magnetic field Most of the statements
are proven and explained 1 more detail in appendix B In 2 2 2 it 15 shown that

1t 15 possible to handle the flux within the Hubbaid model 11 a convement way.

2.2.1 General Consequences

In general, the vector potential A(r,t), defined by B = V x A, 15 much more
relevant for denvations than the magnetic field itself For mstance, a non-zero
vector potential can be taken into consideration by substituting the expression

for the momentum in the form

-

P — p-—-eA ST units, (224)
p — p-£ Gaussian units,
wnliere e 1s the elementary chaige o1 the chaige of an electron and ¢ 1s the velouty
of light 3
However, in electromagnetism only the fields E(r, t) and B(r,t) aie measur-
able ¢quantrties. The scalar potential ¢(r.#) and the vector potential A(r,¢) are
auxiliary fields, which are not nmquely determnmed A gange nnansfoimation, that

15 an alteration of the phase of the fields by a fauction x(r #) wirthout altering

the measurable physical quantinies, is possible It has the tollowing toin

¢ — qb’ = (,’5'- %%X(rst)

(2 25)
A — A'=A+Vy(r,t)

With the help of such gauge transtoimations one can prove the following:

It a vector potential 1s introduced, then the free-particle Hamnmiltonian in first

}Most of the formulas are gnen m Gaussian units  To get the expressions i the Sl-system

oue manly has to onut ¢ everywhere
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quantization transforms together with the momentum to

=21/ (2 26)

I order to keep the Schrodinger equation invariant a suultaneous tianstoimation

of the wave function of the form

U(r,t) = 9(r,t) exp {_.’l‘r_ec /rA(s) cls] (2 27)

15 necessary [32]. That means, if ¢(r, t) fulfils the Schiodinger equation for a free
electron with charge e then ¥(r, ) does the same for the Humltoman (2 26)
The question 15 how to modify the Heisenberg Hanulronian, wittten 1n the

forn

H=—tY {(,T(r)c(r') +h c.} ,

{rsr’)
accordmgly. For the special case that A 1s not dependent on the coordinates
A(r,t) = A(t) tlus 1s possible with the help of a donble Foutier transformation
That means that the given Hamiltonian is t1anstormed to momentum represen-
tation, then a change of the momentwin accordmg to (2 24) 1s done there, and
afterwards the Fonter transtormation 1s apphied agam  Tlus procedure gives tot

cach fermionic operator an additional phase factor wlich give together

H=—t> {cf(r) ere A Ne(r) + 1y c.}

{r.r')
For the moie general case that A(r, ) 1s also a tunction of the coodmates, the
transfourmation tutns out to be a little bit more difficnlt aud the tesult?. known

as Pereils substitution [33], 1s given by

H=-t) {cf(r)e% [r"h(;..c(l,) +he } (2 28)

{r.r)
Even so a rigorous prove 1s not given, the substitution seews to be very rea-
sonable when looking at the previous comments The hopping patt tepiesents the
kinetic eneigy of the particles, ¢f(r)e(r’) descithes a movement of a fermion fiom

site 1’ to site . Equations (2.26) and (2 27) show the consequences of a non-zero

leee for mstance Fradkin [31), chap 222
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vector potential on the kinetic energy and the wave function 1n fiist quantization
The Peierls substitution has exactly the same structure, with the only difference
that the phase-factor 1s put into Hamiltoman and not into the wave function
It is turthermore 1easonable to state that m mteraction terms within the
Heisenberg model, which consist of occupation number operators of the form
c!(r)e(r), such a phase factor does not appear Here, no movement 1s described
As a next step the case where the par-

ticle mnoves along a closed path around

an arca whicl 1s threaded by a mag-

netic ficld B 1s constdered. Everywhere

along the path B = 0, which is called a

Aharonov-Bohm situation

For such a situation the integral in

the exponent of (2.27) has to be taken
Figuie 23 Closed puth around an

along a closed path. Accoiding to
AI00E € P & area of nonzero fluz

Stoke’s theorem 1t can be tianstormed

in the followmng way

jf Als)ds = ;( curlA - 428 = f( B.dS = &, (2 29)

where © s the flux of B thiough the loop.

However, this 1esult 1s only correct for a simply connected path It the path
goes several tunes along the loop, then one accordingly gets 2@, 3% and so on
Flom a physical pomt of view it should be clear that the wave tunction W(r, )
must be sigle valued, 1ts value must not depend on how often one goes along the

loop This can only be fulfilled if the aigument of the exponential function in
U(r,t) = B(r, 1) m[ ‘6@]
r,t) =(r,t) exp| -+

has the form —2xin with n an mteger
Therefore, the constramnt of a single valued wave tunction miples a qnantiza-
tion of the flux through the loop of the foun

orh
b=nd, with &= ”ew - ”e—"' (2 30)

g 18 called “elementary flux quantum”.

-
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2.2.2 Gauge Invariance in the Heisenberg Model

It still remains the task to obtamn the spectrum of eigenvalues of the Heisenberg
Hamiltoman However, this operator has after including the flux via Pelerls

substitution (2 28) the form

H = —tZ{ oo ) Adrc(r’)+hc}

(v
= —t{ w2cle, +e —Gen che +e‘*'0"”c3c3+ (2 31)

21ﬂ
+e %ol —!—e‘o“"“‘ct he, te “’o””‘ctcN}

site 7
whete ¢, , = fAdr s the necessary gauge field

sitel
Accordiug to different gauges the phases @, ; can have a different stiuctire.

Ouly the total flux
b= j{A(s) ds = § curlA - 4% = j£B d4’s

1s 1ndependent of the gauge A gauge transformation of the form

A'=A+Vy
leads to the result
r'=site
99:,3 = / Aldr = Py T X(l") - X(l‘)
r=sitel

The invauiance of the Hamiltoman can be explamed (as tor mnstance m Fradkin

[31]) as a U(1) syminetry with the local change of phase given by

0

f(r) = "y

Howezer, the anthor wants to give his own proof of the fact that the spectrum

of thie Hamiltoman under consideration does not depend on the gauge
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As a first step in this direction consider

the case of four sites arranged 1n a rect- 4
4 3
angular shape in the zy-plane. In the
z-direction there is a magnetic field 0 ) 5
I I
B= Bgez. 0 Iz *

Figure 24 Fowr sites on a rectan-

For this case two important gauges are qular
possible.
1st gauge (symmetric gauge) 2nd gauge (Lorentz gauge)
0 —~Byy
A =Bxe.=| Byt A=3iBxr=3| Bn
0 0
w23 = Bolzly Y12 = ©31 =10
P2 = P34 = w41 = 0 Wa3 = P34 = %Bolzly
0 1 01 0 1 () 1
1 0 ef o 1 0 ef7 0
—1H = —iH =
0 e"f 0 1 0 e—'f/2 0 e‘f/2
1 0 10 1 0 eM2 0

Here H 1s the matrix of the Hamiltonian H for each of the gauges respectively It
desctibes the mapping between Fock states as introduced 1 (2 2} The constant

m the exponent 1s
2T
f = a B()l'r" Y

To obtan the spectrum of the H is equivalent to finding the eigenvalnes of the

matnix H In a generahization of the two given gauges the detenimnant

_,\ efp—-rn‘ﬂr’l.'.’ () eﬁi‘wl.«l
2 =1
e R S AR |
_2m 2m
0 e o P23 —A a %o Y14
2 _2m
e- To 2L 0 e %o Y34 _/\

has to be evaluated After doing this calculation the phiase factors only appear
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in the combination

< 2
f—;ﬁm.z I s 220 2migt

e e (po e 0 e 4|10 — e :|’0 .

The characteristic polynomial is
>

0=X — 4\ 42— 2™ — g~ 255

with the solutions

A==34|2£ \/2 + ?.cos(?wg). (2.32)
(I)O

Hence, 1t 15 shown that for the example of a rectangular with four sites the
ergenvalues of the Haimniltoman are really independent of the gauge
The next step 1s to prove the independence n the general case of N sites and

an arbitrary gauge. That 1s, to prove that the determinant of a matrix

[ A o 00 - 0 L)

aN
1
o A a0 0 0
0o L x - :
w2
A=) 0 0
. .. 0
{} 0 . A =
\aN 0 - - oﬁ A }

only depends on the product a, -ag- ... an

The trick 1s to wnte the matiix A as a product of two tniangular matrices
LU, whose detertmnant can easily be calculated The fitst, a lower triangular
matrix, has only 1’s at the diagonal. The second 15 an upper triangular matrix
withy nontrivial diagonal elements The easiest way to obtain the result 1s to stait
in the upper left corner of 4 and make their way thiough the 10ws of this matnix.
The calculations are shown liere up to N = 5, but it 1s easy to see how they
have to continue For convemence, symbols for the following chain fiactions are

mtrocuced

1 1 1 1
Al“A) AQ_’\—X_A“X;, /\}—-/\""/\—_*_— ---/-\-;,
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Then 1t 18

40

( )\l a 0 é \
A=LU = 11
0 A 0 —man T
L 1
0 3 apizas AlAz
Ay 4y — @
\ 0 0 As—6 )
(1 o 0 0 (A 0 %\
11 1
AL 1 0 0 m A O 0
L1 1
0 EE 1 [] 0 a_g iy 0
11
0 () E/\_S 0 0 0 )\ flty
1y 1
M ThAs Akehs ~-® 1) \a O e N
where
® = ayad iy
T aynai3ag AjAg s T M Ay
1 1 (L (Hoilydlytls, 1
@ == 4 20 ptiqtln _

and therefore the matiix elements ay,

N A DD, T EBIIN T Aoah

The 10st of the argumentation is trivial

N,[H,zuﬂtdﬂa)\l/\gx\g/\q

detA=detL-detU=2A-A; A A (A5— @)

., a5 appear m the characteristic polyno-

nual only in the foim ajasaqa,es That 1s what we wanted to prove. a
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2.2.3 Change of Total Energy

Having obtaned this result, it 15 possible to choose a couvenient gauge for the
calculation of the spectrum ot the Heisenberg Hamiltonian.

The only constraint given is

N 0 elf e—'f\
Z Grap1 = O
1=1 eV 0 e 0
which leads to the sunplest choice for
A bemg m such a way, that
0 0 ef
®
Prast = 3, 1= L,.. N (233 \ ¢/ el 0
or, in other words, the matrix of A has whete f = e
N @,

the shown form.

In the same way as in the case of no magnetic fiux 1 chapter 211 1518 again

reasonable to assume that the coefficients are Bloch wave functions

— (2 34)
\/_
20 & —2m
[ —t(eT % + eV Way) = Aay
2y b FLAR N
—tle M Py + e¥ s az) = Am

2= b

{ —t(e 5 4,00[1_1 + e

™
-2

(IJ+1) = /\LI'J
Owing to the constramnt of single valued wave tunctions, the possible wave-vectols

are gquantized

2T
kn=-—m m=0,1, ,N-1
N
and hence, the eigenvalues are deterinined by the followig equation
_2m b _ 2m b
_f ( A by em-m (.7 1) + e Vog o, c""'" (J+l)) = ,\ntel"’" 7

2n ] 2o b
-5 n:-}-‘—) = (m+ T‘)
—t(e “( o/ fe’ "o ) = A,

These numbels A, are the eigenvalues of the Hanulton opetator H and therefore

the possible energy states for one paticle on a nng with N sites and trapped
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magnetic flux ¢ are.

2T b
En = =2tcos (—1\7 (m + E)) (2 35)

Having obtained this result, the next task is to find the total encrgy for a
svstem ot Af particles For these particles the quantum numberism =0, ,N-1
ate possible For every fixed m theie 1s a chaiactenstic dependence of the energy

on the magnetic flux ¢ trapped through the 1ng

E A m =2 m=1 m=0 m=-1 m=-2 m=-3

I | | 1 I 1
0 1 2 3 4 5 6

Figure 2.5 The energy dependence on the flut © for the different possible m-
values 1s shown In this picture the number of sites 1s N = G

This situation is shown 1n figure 2.5, where ouly for a better visualizanon a
relatively sinall number of sites 18 chiosen  One can see that the pictwe repeats
periodically  Obviously, 1t is only necessaiy to make calculations for the case
0 < b/Py < %, because for the rest of the possible values of the flux & the
picture, and therefore the total energy, is the same.

Hence, 1t is reasonable to 1estiict an arbitrary value of ¢ within thus interval
(which 1s an analogue to the first Bullouin zone) bv a function like 1 figure 2 6,

®
()

05

P
T 1 T T r{—) =
05 10 15 Bo (cI)“)
Figme 26 Restriction of trapped

flur onto a suffictent mterval

D P 1
5 la el eo

By

wheie [2] stands for the largest mteger whih 1s <1
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Furthermore, 1t can be seen from figure 2 5 that for 0 < ®/®¢ < § the sites
will be occupied by fetmions in the order m =0, -1,1,-2,2, -3 H(.nce for the

calculation of the total energy the same kind of suins as i chapter 2 1 3 aie used:

B 2 D
R CI )
even m—_.z—:%f i N m (I)o
: A-1
= -texp[%a} e\p[ % ] Z e\p[—m] +hec
o tex [@E L\p{ %ﬂ[] e\p[ ﬂI] - uxp[—%?] he
= XPp N &y 1— e\p[zm] 1— exp [_g_‘?
- cos(f—”% - %J\I) - cos(%}:% + %f\[)
1~ cos(%’“)
_f—COS(QWWq,E' N(ﬂf+9))+ cos(zﬁ%+ﬁ(f\f—2))

(
o sm(%’g—o) sm?( %)+ cos(

B sin? (%)
2r b
cos( L — 22 .
= -2 (7~ %) sin(lnf)
sin(F) N

= - . -
Sm(N 10) 4+ cos N Io O N m N

For these calculations the tiigonometric identities (2 12) were nsed several times

The final result for the case of an even number of fermons with Aux s

sin(ZA/) T 2 (D
_ 7 S5 — 237
] Ee\.en 't Sin(%) (,0‘?( \f .[\'r ((I)())> ( 3r)
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The calculations for the other case are analogous'

(A7 0dd ]

ey 2 1
T O
Eoqqg = =2 Z LO‘-:( - (m+ -—-))
m=— =1 N Do
271 @ m Al 27
= —texp|——| exp|—— (A — xp| = ,
ep[N(I) ]e\p[ N(ﬂf 1)] mz=0 E\p[Nm}+hc
o2 2] SRR -] - ep[g AT+ 0] 1
= —~texp|——— L= 1
P N ‘I’D 1-— L\[)[?m] 1 ¢
_ cos(FE - F(M-1)) ~ cos(E L+ F (M +1))
1- (.os(zx’,r)
. -—COS(N I‘[’ (A + 1)) + r‘os(%’r,—g’; & (M — 1))
1- cos(f—\’,”-)

QCOS(%"%) cos{F (M — 1)) —2(09(%’%) cos( L (M + 1))
I- Los(f\"[)

o cos(%’([‘,‘—;) sm(FAL) sm(F)

- 2sm?(Z) !

= -t

which gives the final tesult for this case of an odd number of ternmions with flux

sin{ =Af Qo
= | Eota = —Qt———(N ) tm( (i)) (2 38)
sm(%) N Dy

It is necessary to stress again that these calenlations weie made for the case

0<$/Dy < % Only at the end the argumentation above was used to reduce all
otlier cases to this one, using the function (2 36) The total energy is thereloie a

petiodic function in @

2.3 The Parity Effect

It 1s worth compating the obtamed expiessions tor the total cnergy with included
finx dependence (2.37) and (2 38) with tormer 1esules for sitnations without flux,
(2 13) and (2 14) Such a comparison shows that i both cases, for an even and

for an odd number of particles, the flux changes the argument of a tingonometric
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function in the numerator of the formula for the total energy

even. cos(f{,—) — (»05(‘%"% (tg—o)) (2 39)
odd. cos(0) — cos(0 - 3r (1))

Furthermore, it confirms that ® = 0 gives the former results, that the two calcu-
lations are consistent.

The actual dependence of the total energy of a ring of fermions on the trapped
magnetic flux ® can be drawn. Ac¢cording to lormula (2.37) and (2 38) the shape
of the graph should mainly depend on whether an even o1 an odd numnhber of

particles 1s assumed

&>0

M
T 635133517 O

1 2 3 4 5 bg

Fipwue 27  The dependence of the total energy of a mng with N = 8 sites on
the flur for t = 1 has the predicted periodicaty (right) On the left hand sule the
ratio =21 sm(%ﬂ[ ) / sm(%) 15 calculated for different M -values, which qives the

energy for zero flux apart from the fuctor cos(%) for an even particle number.

Indeed, one can see i figure 2 7 that theie 1s a periocicity of the flux depen-
dence of the total eneigy The shape of the petodicity depends on whether the
nnmber of particles 1s even ot odd

This difference between an even and an odd number ot pairticles. wlich 1s
described by the additional term % in the cosme has alieady been mentioned
bricfly 1n section 2.1 3. After the effect of the flux has been evaluated, a moie

detailed explanation using statistical arguments 1s possible It 13 based on a

publication of Kusmaitsev [27]
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One Fermion

a 1ng with N sites The particle, which might be located on a cettain site 3, at
time 75 15 free to move aronnd the ring However, every time 1t 1eaches the site g
the situation is the same as for the time f; This obvious statement 1s mcluded
m the mathematical desciiption of the situation by forang petiodic boundary
conditions and single valued wave functions

The movement of the particle 1s connected with kinetic eneigy and a one-
dimensional wave vector & The dispersion relation between them 1s of the form
E(k) = —2tcos(k} (26). The possible k-values are quantized 1 the form h,, =
2%

<m (2 5) owing to the mtrodnced periodic boundary conditions, and the gronnd

state energy refers to k = 0 as long as there is no magnetic Hux

E

Starting with one fermuon, the following sitnation has to be considered, There 1s

Figuie 2.8 Dispersion relution wnth M =1 fermzon and ® =0

It there 15 a flux trapped thiough the ring then the dispersion relation changes
to E,, = —2¢ co.s(% (m+ ﬁ-)) (233) Tlus means that the Hux has the efiect

of adding momentum to the particle o1, so to say, of moving 1t along the graph

of the dispersion relation The choiwce of m which minumizes the total energy

E N =8

Figure 2 9: Duspersion relatron with A = 1 fermon and & > 0

depends now on the flux It s m =0 for g’; < %, but as soon as an mcreasing

flux passes tlus boundary the system will jump to m = —1 for the ground state.

Tlus was the physical reason for the mtroduced restriction-function (2 36).
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Two Fermions

The situation becomes much more interesting when a second particle 15 added. If
one of the two particles, called particle A, 1s assumed to be fixed on a cerrain site
and the other one, B, moves aiound the ning, then the situation occurs that B
las to pass A Because of the tact that the particles are supposed to be fermions
and because of their special anticommutation relations, this process of passing
umphies a munus sign 1n the wave function. In other words, the journeyv of one
particle aound the ring leads to an additional phase factor ot ™. The boundary
conditions are not any more perodic, but antiperiodic

Something very similar occurs when an external magnetic flux is taken into
consideration  The movement of a particle once aiound a loop trapped by a
magnetic flux leads also to a phase factor, which has according to formula (2 27)
the form ¢% This analogy helps to understand the problem. Paiticle B
expericnce the existence of particle A in the form of an mternal Aux of magmtude
%ﬂ, called statistical Aux.

An exteinal magnetic flux changes the argnunient of the cosine 1 the expression
of the total energy by 2 T (‘l, ) Similaily, the mentioned mteinal flux canses the
teum 1o the cosme Hence, the mteinal flux has also the effect of moving
paiticles along the graph of the dispeision relatiou Tlis 1s unpoitant for the
following 1eason: Foumally, the total energy for a two particle system 1s minunized

v choosing for the wave vectors by = 23 and kg = 2Tr (—'%)

E

’ \_/ ka Qr :
N
Figure 2 10: Dwspersion relotion unthout parity effect

However, a quantum number which 1s a half-odd integer imphes that the

n-factor of the wave function 1s antiperiodic

L imiom o _Lgeeiy

QN =
* vV N

Additionally, the e-cyclic Huniltonian used for these calculations shows an an-

tipentocdhaty as explamed 1 13 Together, the situation 1s peniodic m contrary
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to the considerations above.

To make this pertodicity antiperiodic one has to nse integer quantum nnmbers.
Tlus 15 exactly what is done when all particles are moved along the graph of the
cispersion relation by an amount of £. The statistical flux ensutes that an
antiperiodicity exits ! It justifies the calculations that have been done with the
result that the total energy of two particles on the ring with external niagnetic
flux is (2 37)

Sln(lr-Q) T 92n s D
Etot = —QtE(I%T)" - COS(‘{V - F'I’ (*('I;U-)) .

T f{i)l IQTWI w g

Figuie 2.11: Duspersion relation unth parrty effect

An Arbitrary Number of Fermions

For an aibitrary number Af of fermions each particle has to pass A4 — 1 others
in orcler to move once around the ring Hence, the phase factor connected with
this movement is 6™ -1 = (=1)M-1 The general expression of the total energy

might therefore be written m the following way

Sill(ﬁ‘flf) T 20 O
N 27
Eyy = —2t———+~ . cos(-— (M -1)- ——)
qm(i) N N @
N

However, this is in most cases not the ground state energy, but one of the
extted states  To obtain the former, 1t 15 necessaty to find out wlich sites in
momentum space should be occupred Then the 1ght expression tor the ground

state eneigy 1s given by

sm(%M) - v /D
=2 <2 (L))
Eround 2t siu({;) COS(N ((A - 1) moc N.I o ( )

In tlus formula all possible effects are mcluded. The aigumentation which leads

to this result is called the “panty effect”.
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E N=8

Figuie 212 Dispersion relation werth M = 4 fermions and & > 0

Bosons

Alter presenting these argumnents the 1esult for the case that the particles under
consuleration are bosous instead of fetmions can be prechcted Then commutation
relations as given m (1 6) do not lead to a factor -1 when oue particle passes
another onc In other words, the many-body wave function is symmetiic with
respect to the exchange of two particles

Tlis means that for hardcore bosons, that 1s for bosons with allowed occupa-
tion numbels 0 and 1. the situation is @ prior for every A the samne as that for
an odd number of fermions Swee, the sluft of £+ does not appear, the picture
for the fux dependence of the total eneigy does not have two difterent shapes
There 15 no panty effect m this case

The previous calenlations for fermions aie mm essence also valid tor bosons
However, 1 the case of an even number of paiticles there 1s of course a difference.
It 18 based on the fact that here the previously mentioned situation appears that
the ground state 1s foimed by half-integer quantnm numbers That means that

compared to an even number of feimions all particles are moved b 3 (%\’,i), what

exactlv anmlilates the & in the cosine Hence. tor hardeote hosons the gronnd
E -
N=38 /—\
™ N — T !
2T 9 A
0 ‘N =7

Figuwe 2 13- Duspersion relation with M = 4 bosons and & =0

state encigy lias always the forn

sm({=Al 2
Evowon = ——QtM . cos(-—'r ( (I) )) . (2 41)

I
Slll(N)

N
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2.4 Persistent Current

After the expression for the total energy E of the electron ring Las been derived,
1t does not cause much more effort to obtain the value of the petsistent curient
I Tt is notlung other than the deiivative of the total energy with respect to the
flux through the ring,

oF

I=—C-é:1; (2 42)

Theie are several possible explanations of this fact The author would like to
present two of them, one which uses macroscopic quantities to describe the situ-

ation and another one wluch starts from a microscopic pomnt of view.

Macroscopic Explanation

The 1ng under consideration 1s placed

m a lhomogeneous magnetic field B

Conscquently. there is aflux®=B-S l J l l l
threaded by the ring. Here S 1s a nor- B

mal vector to the plane of the 1ing with
a length proportional to the aiea en-
closed by the circle.

The Hlux gives rise to a cuirent I in-

side the 1ing The dependence on the

Hux I = I(®) is a priort unknown. Figute 2 14 Ring unth 12 sites in
- | Lt b a plane wrth a normal vector S,
1atevel the current nught be. 1ts ex- thieaded by a magnetic field B.
istence canses a maguetic moment m
counccted to the ring and parallel to S
Its value 1s tor the special case of a circular cuttent denstty easily caleulated

to he

1
111=—[(l3:1°xj=l1'-2ﬁr I uzlf S (2 43)
2c 2¢ c

Such a magnetic moment insicde a magnetic field posses a certain potential enel gy,

which is minimal 1f the moment 1s aligned parallel to the field hnes. Thus, the

part of the cuergy of the ring which 1s connected to magnetic effects has the torm

1
¢

i
Enagn=—m B=--IS.B =-ZI(I> (2 44)
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In a thermodynamic description m and B are independent variables The

same 1s theiefore true for the pair (7, P) and the persistent current becomes

&Y — 6E;magn
1= (552),

Microscopic Explanation

Usnally in the hterature {3, 7, 8] the current is calculated by looking at 1ts canse:
the movement of electrons The eneigy dependence for the mth particle, as
given 1 (2 35), can 1n the limit N > Al Dbe assumed to be quadratic m the
wave vectol, B, = 2m . The unknown effective mass g vamshes agam if the

velocity v, = 7% 15 expiessed as

v 1 aEm aw
m= R ok \T ok

= group \(.Iocmy) (2 45)
On the other hand, the wave vector & 1s determmed by the fux. The quantum
number 15 only impoitant for a reduction to the fust Bullouin zone according
to (2 36) and 1s taken mto acconnt again when switcling to the total eneigy.
However, one has to be careful with dimensionahitics The umt of length has
Al previous calculations been the distance between two sites on the 1ng, called
a. In order to have a wave vector with the dimensionality 1/length, tlus a has to
be imcluded.
1 0E, 8% 10E, 1

iob ok h 0 ;
10F, 1 1 aE,,, N he cOF,,

—— = ] —_
a3

) 2—-1,1- hoP 21 e e 0P

(2 16)

The actnal cuirent 1s the common effect of all participating patticles It can
be calculated from

Moo - ¢ OF
== LS55
= aN — 0(I> Jb

where E 15 now the total eneigy of the many particle system a
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Expressions for the Current

For the derivatives 1t 1s again necessary to distingwsh between an odd and an

even number of particles Staiting with the expressions (2 37) and (2 38) for the

total eneigy, we obtain after a short calculation.

52

Ie\en

IO([d

ngﬁ—sm(%M) s EET‘ ((I—)) 7{)
Nh Sm(%) . N\

L2 sin(% M) sm(z”r ( o ))
J'V.rl. Sill('}%) j\f (I)U

(2 47)

(2 48)

Appatently, there 1s an osullation m the curent-Hux dependence This is in

agreement with predictions by Buttinger, Imty and Landauei {2], with experimen-

tal results [3, 4, 5] and numerous other publications [8, 11, 12, 27] Nevertheless,

it is worth discussing these expressions for the petsistent cuirent a bit more.
Furst of all, a remark on the sign is necessary The two different possibnlities
are cansed by the derivative of the function + (), which resniets the Hux onto a
sufficient interval It 1s shown in figure 2 6 on page 42 that this tunction has a saw-
tooth shape due fo which the deiivative lias sometnnes positive and sometunes
negative values Instead of putting this fact into a soplisticated mathematical

descuption. 1t 1s more conventent to show the fignie 2 15. For large values ot NV

the sim-function can well be approxumated by straight lines

(a)

I/

(b) a1/
1 -

Figure 2.15 Dependence of the persistent current on the trapped fiva for (a) an
odd mumnber of particles and (b) an even number of purtrcles I s the amplitude

of the current
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The Amplitude

In many papers the amplitude of the oscillating current 1s compared with I = =E,

where vp is the Fermi velocity and L = aV 1s the circumference of the nng For
thus reason the results will now be transformed accordingly
In the case of an odd number of particles the maxiinum value for the current 1s

connected to ®/Pg = 3 The 1esulting sin-tunction at the end of (2 48) therelore

cancels with sm(%) in the denommator The same can be done for an even
number of particles and ¢ =0
The selocity ve for a particle at the Fermu edge (m = 4l) can be evaluated

from 1ts energy with the help of a derivative as above

vp = la?ﬁcos(ﬂ)—gE 1 (WM)2> f—gﬁqin(ﬁ—ﬂi)—ew
= ok N/ MW “NETNN )T L

Hence, the cuirent can also be expressed in the following way

CVp 2 (O 7r 1
Ie\ren o] :F_ SlIl (—"T' (_) - _) —_— 2 49
L N \Py N/ gm (%) ( )
evp . (21 (D 1
I ~ —sxn(—r (—)) —_— 250
odd T L N (I)O Slll(%) ( )

Tlus result for the order of magmtude of the persistent currens indicates that
almost only the upper-most patticle, the electron which has the eneigy of the
Fermi edge, contiibutes to the curient This suiprising fact las 1ts origin 1n
differcnt signs of the currents foi the several lower lyving particles, which cffectively

cancel each other [2, 7, 35]

Period Halving

One can dearly see in hguie 2 15 that the penod of the osallation of rhe persistent
current is one flux quantum ¢y = h?c Tlus is also what 1s obtamed 1in expenments,
proviled that measurements weie pettormed on single inctallic loops  For mstance
Chandrasekhar et al [4] were able to confinm this result by using a single, 1solated

gold loop However, first experimental results wete published by Lévy et of [3].

They reported about an oscillation with a period half the flux quantum
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The 1eason for the period halving 1s the fact that these scientists measured
the effect of 107 copper rings simultaneously. The kind of averaging connected to
such a laige number of rings 1s discussed by various authois [3, 8, 36, 37]

Already in 1987 Cheung et al. 8] pomted out that one has to distinguish
between a grand canonical and a canomecal ensemble average. In the first case
the chemical potential 1s kept fixed for each 11mg and the numbet of electrons
vaties with the flux Under such circumstances the average over different values
for the chemical potential gives zero

In the second case of a canonical ensemble the number of particles 1s main-

tained, no matter what the value of the flux through the 11ng 1s

This 15 exactly the situation we have

mvestigated so far. Here the average 1/i

has to be performed over chfferent ] -
numbeis ot particles for the different

11ngs. \ l\ \ [\ ’\ T/ 2o
If the same amplitude of the curient _]1 \' \ \{]5 \1 \ki;;

15 assumed for every particle munber

and 1t there aie as many rings with

an odd number of electrons as with ~ Figme 2.16  Persistent current per
ring (solrd Line) when averaged over «

canonical ensemble of rings wieth an odd
the average can simply be found and an even number of paitrcles respec-
twely (dotted lines)

an even number of electrons, then

The hguie on the right hand side
shows the period halving

Furthermore, one can see nicely 1n this figure that the averaging 1s also con-
nected with an amphtude halving, with a decrease of the maximum of the per-
sistent current

Loss and Goldbart [37] discussed tlus averagmg process i mote detal They
assumed that the number of paiticles of a certam 1ng 15 Poisson cistributed
atound a mean value A. Then the probability for the ring to have M conduction

M .
elections 15 e™*3  The sin-functions 1n (2 48) and (2 47) are hnearised, which
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allows to wnte them in the following form:

(%’E—) for Al odd

I(M)~ X - M- ,
(% - 1) for Af cven

wlhere .X' 1s some constant which does not depend on ® and Af, and the flux is
for siiplicity supposed to be within the interval 0 < Tp% < %

Therefore, the expectation value of the function I{A/) 1s

AL A3 A2k+1) 2%
= Xe?* 1% +3% 2 —_— —
(I} porson Ye (1 T +3 T +. +(_»’c+1)(%+1)I + ) (%)

A0 22 \(26) 2D

=) -

+\Xe (00—'4‘2?4' +(2A)—(2k)'+ ) (:I;;‘-'l)
A
2

_— _ 2P A _ 20
= ‘\EA[ ((:‘,'\ e,\)((_I;(;.)-FE(eI\_G A)(-(I;[-)-‘—'l)]

2
o=
gy
——
Do
S
ty
K
|
—
N

(2.51)

In the last line the term e~% lhas been neglected because the mean number of
particles 1s assumed to be latge The tact that the constant X goes together with
A means that the amplitude of the averaged current 1s that which corresponds to
a ring with the mean number ot particles; or better to say. 1t 1s halt ot that value
as the fraction in front of the curient indicates

What is impottant about the calculation ts that m the end Py 1s replaced by
®y/2. Tlus confirms that within the mterval 0 < TE' < % the graph of the curient
versus the flux 1s steeper than before by a factor of 2 One can also check for
the other intervals that the 1esult of the Powsson average 1s exactly the sane as

alieady shown m figwe 2 16 (if I/ 15 nndeistood to be (£Y/F(A) ) Thus, 1t is

only natural that Lévy et al discovered a halt Hux quantim pertodicity
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Interacting Fermions

3.1 Hartree-Fock Equations

There are manly two possible ways for the derivation of the Hartiee-Fock (HF)

equations One 15 well explamed m the textbook of [ittel [38)' Here the one-

paiticle solutions ¢, (x} of the Hamiltonian aie combined to field operators ‘
U(x) =3 cp,(x) and TH(x) =3 cli(x), |
3 J

and the Hammltoman 1s expressed 1n these operators A study of the equation of
motion ii¥ = —[H, U]_ leads then to the desired set of equations

The other approach, which can fe be fonnd i the books of Merzbacher [22],
Nolting [28] or Fulde [39], uses vanational methods The Hamiltonian A under
consideration 1s the sum of a simgle particle kinetic energy Hy and a two-particle
mteraction 7. The trial wave function for the variation is in this approach chosen
to be a symmetrized product of M smple paiticle wave functions In second
quantization this symmetiization happens antomatically, in the continuons case

a Slater-determinant form must be used:

|HF) = Z (—1) “5“"’( (owlE)y |{;{t‘1(2)) |{pu(n{)))

\/— oy ryy
PEP(AL)

With this trial wave function an expecration value ol the Hamiltoman can be

'In a Green’s function notation 1t can also be fonnd m the hook ot Kadanoft and Bayn {40]
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dertved. If all permutations are handled correctly, the result 1s

A
(HFIRIHF) =3 (A o) + 5 LS eI )

Yy
=1 "' PN

_<9,(1) g) |p (1,2) |9,(2)%”))}

where A" 1s the part of Hy that acts on particle 1 and V(12 describes the
interaction of particles 1 and 2. In the mteraction the first teim 1s called “direct”
and the second “exchange” teim

By itroducing unities at appropiiate positions, it 15 also possible to rewrite
this expression 1n position representation If the spin s sepailated fiom the quan-

tnm numbers ¢, and the Hamiltonian 1s supposed to be spin independent, one

obtams
tta)#(vr?)
(HF[H|HF) = [ o @B, 0+5 3 [[ e
2 o,

* G50 (2 W () (20 ()00 () = Do P ()20 (1))

- [

direct exchange

(31)

The variation punciple? nses the fact that, no matter which kind of trial
function 1s nsed, the expectation value of the Hamiltoman gives always an upper

boundaiy of the ground state energy

(HF|H|HF)

HFHE), ~F2b (32)

In order to come the ground state energy as close as possible it 1s 1easonable

to minimze the left hand side.

Cariy)

= (HF|HFY ((HF|HF) §(HF|M|HF)— (HF|H|HF) §{(HF|HF))
= S§(HF|H|HF)—E.§(HF|HF)
= 6(HF|M—E|HF), (33)

where a proper normalization of | HF) has been assume

Zalso called Ritz method
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Eventually, this procedure is equivalent to a minimization of (HF|H |HF)
together with normalization conditions introduced via a Lagrange multiplier A =
E Tt 1s also common to take the normalization of each single particle wave

function into account with the help of such multiplieis

'

J ((HFIH |HF) - Z A 99(”) ﬂ))) =0 (34)
p=1

Applied to the expectation value in integral notation (3.1), the variation p1in-

ciple gives the well-known Hartree-Fock equations:

{1o)#(va')

Motat) = (Ho@)+ 3 [ g ) r,r')ap,,{,:(r')) 0o (r)

ve'
v

=3 [ Ve e (5)

When looking at this formula, it becomes clear why it is also called self-
consistent field equation. On the right hand side we have wave functions with
primed arguments and without. Once the wave functions are known, 1t 1s possible
to evaluate the mtegrals, which leave only unprumed tetms The latter form a
matix equation, which can be solved {at least with numenical methods) The

procedure should, therefore, be hike this:

¢ Start with an assumption for the simgle-paiticle wave tunctions.
o Calculate the integrals with these functions
¢ Solve the matnx equations with the mtegrals as coefficients

o Use the gained wave functions again for the mtegral evalnatiou and continue

According to this procedure each particle mnoves within the field of the 1est of
the particles The 1tetation stops when the uew wase hunctious are equal to these
which were used for the integials In this case one can speak of self-consistency

It is clear that such an iteration can only be perfoimed by a computer Even
s0. a numetical investigation was not planncd to be used for the present work,
Haitiee-Fock hke calculations have been started This happened mawmly to get
a deeper msight mto the structure of the probletn and not i the first place to

aclneve exact results.
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Remark: One also finds in the literature [28] another equation with the name
Hartree-Fock approximation It is a similar mean-field approximation, but 1n this
case tor a product of two operators AB. Such a product can be rewtitten 1n the
form

AB = (A~ (D) (B-(B)) + A(B) + B(A) - (A)(B)
The approxumation is based on the assumption that close to self-consistency fluc-

tuations around the expectation value can be neglected. Hence,
AB =~ A(BY + B(A) - (‘:1)(3), (3 6)

which 1educes 1n an elegant way the operator product to a linear problem This
approxmnation, which 1s for the special case of the Hubbard niodel and 1ts product
of occupation number operators called Stoner model, allows 1n a sunilar way
as above to perform an iteration. Although 1t 1s not used m tlus particular
way within this work, we shall see similar structires when nsing the Hubbard-

Stratanovic decomposition.

3.2 The a-problem

As a fiist step 1nto an mvestigation of interactions between different particles on
the 1mng, an ensemble of spinless fermions is considered. An appropriate Hamil-

tontan 1n this context 1s the above mentioned Heisenberg operator (1.23)
H=—tY (clepr + chace) + V'Y e,
k k

It is the aim to find the corresponding eigenfunctions and cigenvalues The latter,
tliat means the energies of the system, aie of particula interest because they
enable us to obtain statements on the petsistent curient

Uunfortunately, the Haitree-Fock equations (3 5) cannot be used directly to
solve this task Thus is not only because they foim an iterative approach to the
problem. The fact that they have so far only been formulated for the continuous
case 18 au even bigger limitation However, m the situation under consideration
the space is a discrete lattice in one dunension  For tlis reason the variation 1s

done agam by hand With the wave functions mtiodnced 1n 3 2 1 an expectation
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e

value of the Hamiltonian can be obtamed (3 2 2), and the denivative 1n 3 2 4 leads

to Hartree-Fock equations which can be solved (3.2 5).

3.2.1 The Variational Wave Functions

In the previous chapter the case V' = 0 has been investigated The many-body
wave function was formulated in second guantization 1n a way that several (M)
fermrons were created at the same time on different sites Each of the possibilities
was weighted with a factor, which depended on a set of quantun numbers  All
together, as for instance in scetion 2 14, we used the form
I’lf))m ﬂM Z G’ﬂ1 l,r"!.:\l ch) CIM |0>,
1, SEAS

wlhere NV and Af are the number of sites and particles, respectively

However, we got the result that Bloch wave functions aie solutions and that

the coefficients can, therefore, be written as

2m
nLona o ag—AMf2 )
Qg = N~M/ e«\l)[—N (7217-1 + a1 + nmm)}

Tlis knowledge allows to represent the wave-function as

), M—H Za":cl, |0) (37)

s=1 \z2.=1
with the splitted coefhcients

1
e = exp

o, = \/I\—r

Such a tepresentation 1s essentially a reduction of the complicated many par-

N

2m
— 1, 1

ticle problem to a problemn ot Al separate pairticles Each of them 1s described
bv the functional dependence of &f'* on the site number 2, (letermmed by the

quantum number n, A novmalization for the single paiticle, Z lal|* = 1, as

tg=1
well as for the complete wave function, n (Ul ,)"l - =1, 15 given

The ansatz for the following calculanom is that the vailational wave function
can also for the case 17 # 0 be handled 1n a way as 1t Af separated patticles were

moving along the nng. That is, the variational wave tunction has the form (3 7)

with unknown coefficients a'::’ 3

’It 15 common to tackle the many-particle problem within the Hubbard model in such a way




CHAPTER 3 INTERACTING FERMIONS 61

3.2.2 Expectation Value

With the help of the variational wave function an expectation value for the
Heisenberg Hamuiltonian can be evaluated. This has to be done caietully for
both mvolved parts. However, the steps are very sumilar to those 1 section 2 1.4.

Especially, sums over all possible permutations of Af particles appear again.

Hopping Part

n ,W(lbl 0180,
- — ﬂl‘ ﬂM* n R
- fz Z @, Qe Yy i
1AL
ES Y]

f i t
Oleyy - o, (Ckck+1 + ck+1ck) €y Gy 10)
. t f t
=. 2 {(OICJM' "€y CkChp1Cay t tCoyy | 000ug kg1
A=1
+{0ley,, Cglc}:ck-ﬂle CIM 10)6., L—l}

A ——
= ¥ \ f 1
- Z { Ciar ™ CnGy " Cy-1G, 0 Gy |0} 6y -1

Tt t
+<01€Ju' chcI; ’ 'CIAC:,.H’”CW |0) 5:4+1,k}

- nl‘ mapx ony o ng 4 . oM ) L S |
- tz Z @, Y G (a1A+l + 0’14—-1) Moar <Oi Conr €ty Copr IO)
A=l s
oI
- _ sbnp rnt e Mol Ho(a) Por oAl
- fz Z Z &, Yu n Q) e1 F O Y3

A=l 2ar peP(Af)

Interaction Part

PR (1 L ) N
= I'Z z a""---a;‘;‘!’*a:'ll cal

1oty

fe ol t
€ ChCkCh+1Ck41C Gy |0

. N
For stance Tasak: used 1n hus review articles [43] for expiessions hke 3, _, o} c’f the index

fice notation Ct(al™?)
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That is nothing other than a Slater determinant

3.2.3 Remark on Lagrange Multipliers

The next step within a Ritz procedure 1s to take derivatives with 1espect to one
of the parameters of the vanational wave function. However, from experience
the anthor would like to inteipolate a briet remark One might feel tempted to
simplify the exi)ressmn for the expectation values aboie by using normalization
conditions like % o2 =1

=]

For instance, for a two-paiticle Hubbard model with the Hamltonian
H= _tz Z (Ck oCk+1,0 + Ck+1 Ck rr) +U Z Nk T”k 1
ko=t

and a wave function

Id)) = Z asﬁjczt;rc;,.[, |0)

12
one finds the expectation value for the hopping pait to be

WHo |9y ==t Y (018,008 + 08,016, ) + h e,
uL7

wheie b e. has here the consequence that ¢+1 15 1eplaced by :—1 A noimalization
for the single particle means that 3~ o,0f = 1 and for g respectively. This leads
1

to

(Wi |w) = =t Y {0} (e + ey) + 8! (Bopr + Bi1) }
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and together with the interaction part to
WIH1P) = =t 3 {a] (s +et) + B (Bar + Bt} + U T [

A denvative with respect to one of the coefficients, say o}, with a normal-
1ization condition for the many particle wave function mclnded via a Lagrange

multiplier A leads to the following set of equations *

t{aks + 1) = [UlGf = My,

(38)
t(Brs1 + Oe-1) = [Ulow|> — Al Ba

On the other hand, if the normalization condition for the single particle is
not need at the beginning, the equations after the derivatine have a form which

coutains an additional exchange term

¢ (ak+1 + ak——l) = [UlﬁkP —-t2, (ﬁz-}-l + ﬁ;_l) B — /\] Qs

39
t(/ﬁk-!-l + ﬁk—l) = [U|a'k]2 —t%, (ﬁz+1 + [3-—1) B - )\] B 9

The second possibihity 3 9 1s of course the more coriect one In the version 3 8
a normalization was used which 18 also mncluded m the constiant via Lagrange
multiphers However, constraints coupled with the help ot Lagrange multiphers

should not be used before the detvative 1s done

3.2.4 Derivatives and Simplifications

After tlus mterpolation 1t 15 the right moment to perform the dernatives In the

varational wave function of the form (3 7) the hee patanietets are the coefficients

Ny
te *

a,*. They appear m every term of the expectarion value m tlus wav as well as
thie complex conjugate form

Arhitiaiy, for denvatives the complex conjugate cocthaient afl<* tor a certain
site v and connected with a certamn quantum number n, has been chosen The
gnantum number, of course, lias to be within the set {ns}f;l which determines

the many-particle wave function

*An equalization of e, and B las the consequence of a nonlinear Scluodimger equation of
the form —ter, || ~ta,_, + Ua} = Aq,, which has been studied mrensively and with exact

solutions by Dhullon and Kusmartsev [41]
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However, a vanational method with A x N parameters leads two Af x N

equations of the form

1
S,
0= Dope" (m AL S N A TN n”) (3 10)

Furthermore, a derivative with respect to the Lagrange multiplier reproduces the
normalization condition All these equations have to be fulfilled at the same
time This imphes that if within the general notation with an arbitrary 2 and n,
a result for A can be found, then this result must be mdependent of 2 and n,.
Another remark is connected to the sumplifications which aie according to the
previous section only possible after the derivative Eucomwaged by the solutions
for non-interacting particles, which were Bloch wave functions, we suppose not

only a normality

.
Sarart =1 va, 1)
=1

but also an orthogonalty for different quantum numbers

N
Za;’a;"" =0 Vn, #n (312)
=1
The latter condition does not necessanly have to hold It s alieady a rigorous
assumption that the many-particle pioblem can be separated m different factors
for the several particles To demand also orthogonality of these factors is even
less justified Nevertheless, as long as solutions can be found which obey them,

~

constraints can be formulated

Hopping Part

J
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Interaction Part
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of equations for the coefficients o}

N IM

1s obtained

solntions 1s called n this work the a-problem

65

It all these teims are put together mn the variational fornmla (3 10), a set

The problem to find proper

A#f
ne
t(ng$) +azfy)
A%C
BRC
* ng *

"y Za;” o

7+l
%8 g

A

UDIRC

ng *

AgC
ne
Aoy
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na
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n

Y o€ — (e

A
L
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If this result is compared with the original self-consistent field equation how
1t was derned 1n (3.5) one finds the same structure Both equations consist of a
direct part and an exchange part. What was former an integral over space is in
the discrete version a sum over the lattice sites The former quantumn numbers

(y10) and (vo) are now ng and n,4, accordingly

3.2.5 Solutions

The c-poblem looks like a qute complicated task. However, 1t turns out that

the solution is simple. Even so an interaction 1s now included, Bloch wave

Ny

functions still fulfil the given set of equations In order to prove tlus, o' 1s set
to be
n 1 2m }
,° = —=exXp|-—Hs 1
1s \/N P N 5" tgl s

and the whole equation 1s divided by e Hence, an expiession tor A 1s obtained
As already mentioned above, the solution 1s correct if this expiression does neither
depend on & nor on n, This would show that no matter with respect to which
parameter the derivative 1s done, the equations aie always the same

Proof: The independence of z and n, can be shown tor each of the parts in

(3 13) separately. In the hopping part the duect teris

2m 2

A 2r
-t 5 !_tr_ze—'rn-tj (e',\,—n4(.1+1) +e—\'"4(3-l)) anel
A=l 7
AEC
(e 4 o)

can he combied to one sum which 1uns over all used quantum numbers:

M
2 P s
=ty (eFm e T (3 14)
i=1
The 1emaining exchange term i the hopping pait essentially contains a common
factor
N 3oy N-1 - 1-— e%n N
Yool = N eI~ =0 withn=nc—n,#0 (315)
1=1 7=0 l—ewn™

The behaviour of the pure kinetic energy part 1s not surprising hecause Bloch
wave functions are solutions for the free particle case Much moie sutprising is

the mdependence of z and ne for the interaction pait
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Here many of the terms vanish because of a similar geometric row effect as used
mn {3 15). Two sums reduce to unimportant constants due to the characteristic

of Bloch wave functions that |a}]* = 1/N The only three remaining terms are

r A2
B2C
-V L Y e RnasgRnsl+) g fine 1o 5n 04D,
7
AL 2m 2
T %e'—""("‘ Defnele-1p (na—nels 4
4=1
1£C
_‘, i .j%e__n4(;1:+1)6‘2"'11(*('t+1)69m(ﬂ4-nf')1:
A=t
§ 140

which can be combined again to a sum over all quantum numbers
=y T e 319
N izs

This finishes the proof [}

3.3 Energy in the Heisenberg Model

After havig shown that Bloch wave functions aie solutions of the Haitiee-Fock
equations, 1t is now possible to use them for the calculation of the energv of the
mteracting system  Here 1t 15 unpoitant to notice that the tollowing calculation
of the expectation value of the Hamiltoman will only give an upper boundary of
the ground state How close it is to the real value depends on the quality of the
choice of the variational wave function

We continue the calculation of the expectation value i subsection 3 2 2

Hopping Part

n, uu( ]H()]T.L’)nl nar
- 1)%8ne nn L AR To(l) Mp(4) "pm) (Al
- "Z Z Z @, S W ( Gy i41 + a1 Y

=13 Jar w€P(M ~r
(a0 Mol ) LA 1y - oy
=l (e eV ge™ W "ol

27

= - Z 1.0'-.(———1:.1)

Thus 18 exactly the formula (2 11) of the pievious chapter
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Interaction Part

N 1 L") -

M
- _1ysBnp . ni* o AarE Pell) To(Af)
Z Z Z (-1) X % S Xar PSR '

4,8=1
igg 71 M pEP(AL)

Ist case:p=1d

AT

= V z z JJB»'M'H- = l\I(.AI - 1)

4,B= 1
P noJar

2ud case: p(.—l) =B, p(B)=A4

= Z 223—-’7’5411416—%113(%1 BN 2,3 nar+1)
N

A, B=1
A#B
roM 7 At %
= _L e%(ﬂq—na)__‘_l Z ez-:Tl(nA_nB)-l- Z 82—5"-(153—114)
N A B=1 A, B=1 4 B=1
A#B A#B 1EB
S, cos(?ﬂ'( ))
= —= ~(ni—-np
N 4,8=1 N
A#B

All other possible petmutations lead to zero sums.

Together

M o v oM o
N n\.v(?'f)IH l "b)nl Iy = =2 Z cos (Wn-l) + 'ﬁ Z [1 - CO‘?(N (T&_‘ - nB))]

A,B=1

(317)
From this result one can see nicely the stiucture of the two coutiibutions to the
energv. The hopping part 1s a pure one-paiticle eftect The total kinetic energy 18
snuply the sum of single particle energies, determined by quantnm numbers 7,4
The mteraction on the other hand 15 a two-particle effect. It 15 a sum over all
pairs of quantum numbers, which is equivalent to a s over all pans of particles
Each sununand depends only on the difference of these two numbers The expheit
-alue of a single quantum number is of no unportance
By the way, the result 1s of course the same as the value which was exalnated
for A above The Lagrange multiplier 1s notlung else than the ground state eneigy
of the many-particle system, because all equations consist ouly of terms of same

orcler mn the parameters.
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Evaluation of the Sums

As already 1n section 2.1 3 and 2 2.3 1t is now the task to evaluate the sums for
the giound state. For this it is necessary to find out which quantum numbers
ny,. .nar are chosen in order to minimize the total energy.

The situation 1s similar to that of non-interacting particles, which is the reason
for presenting almost the same figure again.

As one can see from this figure 3.1 and as already discussed betoie, the kinetic

E A
(L) = —Ecosk
% §§§ % x k
T TA T T 11 i %

E,=-2t cos(z—’,[m)

Figuie 3 1+ Energy states due to the hopping (dots) and the interacting (crosses)
part of the Hewsenbery model for N = 16 and M =7 The number of crosses
above a certan pownt in momentum space indicates the weight of the corresponding
enerqy mn the interaction

energy

M 9
E]lO])p = -2t Z COS(;—\?‘N 4)

=1
leads to the effect that small A-values are preferred. This 1s becanse the cosine

lias 1ts mummum for k=0

The wmteraction part, if a constant energy sluft 1s ignoted, has the structure

M 2T
B=-= Y LOS(—(?I,; - 113))
N B4 N

Tlus 15 the same functional dependence as before, apait tiom the tact that mstead
of the quantum numbers itself only differences of quantunm munbers appear w the
algumuent.

For that reason the interaction tends to keep paiticles close together in re-

ciprocal space. As a distance of zero 1s not allowed dune to Pauli exclusion, the

best possibility 1s to occupy a block of adjacent sites in momentum space. For
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the case of 7 particles all appearing differences aie shown in figure 3.1 They
aie indicated by crosses in the same picture as the hopping energy because they
contribitte to the total energy with the same cosine dependence It can be seen
that such a block 1s the best possibility to concentrate crosses around k = 0.
Since a minimization with respect to the kinetic energy also leacls to the 1esult
that a block of adjacent sites in reciprocal space 1s occupicd, there 15 no compe-
tition between hopping and interaction. Therefore, the 1esults (2.13), (2 14) or

(2.37), (2 38) for the hopping part can be used without alteration

For the interaction part the double sum has to be evaluated

7 2 2
> cos (2—70; - l)) = > cos(—wk) + > sm(—?rk)
PYEYIS N - A=l N =MoL N
"= 3 - 2 2
M= .
2 2 in{ LA
and Z cos(—ﬂk) = LN,T) (sce (2 14)),
iy 21 N sm( %)
a1

Z sin(zjgk) = 0 (sm1san odd function)

My A ? ¥-1 ?
% 27 o 27
Z (,ox('—-(k - = cos(2—7rl.) Z sm(—k)
== ! h=—\ N == :
=2 -2 -2
ELe (ZA1)
3 T s -5 0
‘ _ = — see (213
wnd Z r cos(Nk (%) cos(N) {see (2 13)),

i 27 . (7
sm( k) = -—sin N!\I (sm 15 an odd function)
\

s N

e n m sur? (Z AL
S\ (\,M) {Cosz(_) _I_Sm_,(_)} _ swi{FM)

») N sin’ ()

Fuithermore, a flux through the 1mmg can agam be taken mto consideration

It lras Deen explained that tlus canses a change m the momentum operator and

mflucnces, theretore, only the kinetic energy
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Hence, we have all together

Eewn = =2t E}M . CG’S(-E - 2_7!' (:(—Il)) + j—\; {l‘fz - —_Slll 2()% )) }

sin( %) NN \%

and

sm{ TS s sin?( ZAS
Eodd =—9tLCOS(QT ((D )) +]—{ﬁ[2"‘L} (3 19)

B sm(j-’\',-) Py N sin® (11\',-)

The foim of the solution 1mplies the suiprising result that the persistent cur-

rent 15 not influenced by the mteraction. Appaiently, m a model of spinless
fermions the persistent current is only deteimined by the Liopping part of the

Hamiltoniau

3.4 Energy in the Hubbard Model

In the Hubbard model most of the calculations are analogous to the Hesenberg
model The mam difference comes from the fact that the particles possess a spin.
Tlus has alteady an effect on the vanational wave tunction. For this reason Sy
and Sy are introduced as the set of quantuin numbers that represent up-spin and
down-spin fermions, respectively. The number of elements in Sy (Sy) 1s called M4
(M) At the moment these numbers are supposed to be conserved, and their
sun Al = Ay + A 15 agam the total number of patticles

With the help of this notation it 1s possible to expiess an aibitrary state as

N
), s, = 11 (Z I:.cI,,.T) 11 (Z e I,,,,i) |0) (3 20)

nESt \ta=1 meSs,

rﬂ—l

It has to be mentioned that another assumption 1s mcluded n this notation
To wute down the coefficients without an mndex tor the spin unphes that the
single particle wave function for up- and down-spin particles might be the same.
That 1s, that two particles mught have exactly the same hehaviour apatt from the
fact that their spin projections point 1n different dnections This asstunption is

reasonable because 1t 18 1 accord with the Pauli exclusion princple and because

of the fact that no spin direction is prefeired
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The Hamiltonian with included flux

27 B _iu b
H=—t) > (ckock+lor v o +Clt+1crckcr b %o )+Uznk1nu (321)

k o=t

shall again be investigated 1n 1ts different parts

Hopping Part
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Interaction Part

U = U clyerchice,
k
Ay

=U2 2 X

1=ln garp pEP(AG)
ﬂfl
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(_1)Sgnp ;;ll

;‘.IT TIP“) np(x\l.r)
'BJMT P ) 'ﬁJMT *

LY meg ), Tie(Al) )
* Z Z Z 1yt - ﬁlull B, Do ﬂwT Y G

B=lu ) c€P(M))

take the derivative with an ng € S

a nr

gz’ (ST’SL(WL' ld))st:st)

My M, N ALy
2
= U Z Z Z n_a*ﬁn,qﬁnc ﬁ;u*ﬁ?cﬁ;A ]ﬁ;nal +U2ﬁ:c|ﬁ;ngl2

4=l B=}j= N ~- 4 Bl
azc 07T p=1d, 4#C p(A)=C, p(C)=A ! p=id, A=C

The (-problem

sumninarizes the results for the detivatiie of the two parts For convenience 1t 15

written here without the flux dependence.

-t Zﬁm( e+ B 1)511c —t(Br$1 + B7Ly)

n€Sy 3=1

ngEneg

S

nEST J=l
ngng

HB) Bt T S (B + ) e

meS) j=1

N
+ UY ¥ YA{srarsme + 888 B P+U Y, Bl

n€St mes 3=1
ngEng

= ABC

me.S';

(3 22)

The structure of this set of equations is simlar to the a-problemn of rhie Hersen-

berg Hanultoman The interaction 15 1w an even moie sunple torm because up-

and down-sprn fermions are treated mdependently As above, the task 1s again to

find expressions for the coefficients 8 1n such a way that each equation 1s tulfilled

Tlus 15 the case if A does not depend on the derivative patameters = and n, That
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Bloch Wave Functions are Solution

ot —Le\' [%in 1]
:n_\/ﬁ-pN |

15 hiiefly shown m the followmng

Proof:
"651-
n#ng - .
—t (e%nc +e-?‘;_l"c) = =ty (eT"+ ”.'\'."")
2y 2m: W‘ESTUSI
-t ¥ Te Fm(efmir) 4 Fmi-)
mes, j J
+t eFHne—mo=2) (Htne 4 o~Fnc) -
g (¢ )
r;;énc
1 1 My M,
9> ZZ——+U 5 = UL ¥ p=u—1
nisf mES;J" S 4 neST VUGSL
U Z Z 2_1_2 27:‘;' “I)(T!C‘“ﬂ) — 0
"E"’T mESLJ 1
nEng
0
The Energy
2 P My AS
E=-2t %" cos(—?r ('n—r(—))) + (3 23)
nesjus, MY Do N

\
|
\
|
|
t z e Ting ( Fai+1) 4 o Bn(- 1)) )
\
|
\
|
\
|
\
\
|
: e . |
consists of a logical kinetic and a surprising interaction part. The foimer is logical |
because it describes the independent filling of the cueigy levels according to the ‘
cos-dependence with up- and down-spin patticles This 1s a generalization of the ‘
situation 1 the Hewsenberg model The later surprises because the expression |
does not depend at all on the chosen set of quantum numbeis Only the up-spin |
and down-spin number of particles 1s of impottance The tact that these numbers
are kept fixed 1n the calculations 1s probably the reason for the constant potential
energy.
Thus, in order to achieve a mimmal energy value one only has to look at the

kinetic energy part. There are four possible sitnations (K 1s an integet).
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Sm(%%{) * 9 [ M- M
E =4 = 4 — =/ (__..___ (____)) U_L___.L
Af=d4] sin(%) cos N NT 5 + 5
5111(-]’\’-,—”2‘1) T o1 /@
E =1/ = "'Qt —_— _—— (—-—-))
M=1K+1 { sm(% COS(N Nr T +
m M+l
SIn| ———%5— o
4 (%25 )COS(-_T (j)_)) LM A
sin(%) N \Py N
x A
sl == 2 )] AL - A
Ep=ariy = —4t M . cos(-—Tr-r (—)) ) S
sm(%) { Py N
mn(%-—-——“;l) r 9% /®
E!\I=4l\'-l = -2t [T(%-j_—- COoS N - —rT (;']3-(')-)) +

A+ ——-——Sm(%_g—) cos(gjﬁr (q—))) Ly i
sm(%) N\ N

From these four energy expiessions it 1s possible to evaluate the persistent
crent by using I = —c%. The result wiil be a combmation of the derivations
for the Heisenberg model for an odd and an even number of paiticles m scction
24 Of particular interest aie the cases A/ = 4K + 1 and Al = 4 — 1 because
here Afs1seven and Afy is odd (or vice versa) Sunilatly to the previous discussion
about an ensemble-average aud the figure 2 16, the combination leacds in these
cases to a quasi halt-flux penodicity of the current ® However, Loss and Goldbart
[37] pomnted out that the average over all particle numbers 1s still the saine as in

the case of spinless fermions  For large N one obtains in the hnear approximation®

1 [ 20 . 1
(Dposan = 510) |75 = 1+ smA (1+ T)] , (3 24)

s

whete A 1s heare the mean value of the Poisson distiibution and 15 assumed to be
laige DBecause the last summand is negligible, this 1s exactly the same as (2 51)

It should also be mentioned that a fiactional 1/Af ot Afy/AM Ahaionov-Bohm
effect as found by Kusmartsev et ol [13, 14, 13] with the Lelp of the Bethe
ansatz. does not appear within this context  Espeaally in the lunit of stiong
mteraction the obtamed result is appaiently not 1 good agicement witl these

and other publications

"Wesz et of [42] found that the petiod s agam a full Hux-qrantum i the presence of disorder

®The result differs shghtly from what Loss and Goldbart [37] have obtam.
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3.5 However, ...

-.one should bear in mind that the Hartree-Fock method only gives an upper
boundary for the ground state energy Even if all Hatree-Fock equations are
fulfilled, the discrepancy between the gained energy and the real value for the
ground state does not have to vanish Tls is only the case 1f the vanational
wave function has the stiucture of a proper eigenfunction of the Hanultonian

Theiefore, one should not be too happy about exact solutions of the Hartree-
Fock equations tound. On the contrary, it is well-known [43] that n general H,
and V" cannot be diagonalized simultaneonsly

The eigenfuntions of the hopping Hamiltoman Hy are plane waves - thus is
correct. However, as soon as two particles with different spins airc involved Bloch
wave functions are not eigenfunctions of the operator 371 47i,,. It can easily be
seen that in such a two-particle situation, the double—s’scum 15 rednced to a single

sum

N N N N
Z Rk t7os, Z Z ﬁl‘ﬁf‘Cf,TCI,L |0) = Z B .ZHCI,TCL,i [0} (3 25)
k=1 k=1

=1 g=1
because the Hamiltonian gives in most of the cases zero

The proper eigenstates of the interaction Hamiltonian are of the form

I i)t I )i, (3 26)

€{1, N} E{L, N}

and, since V7 1s not lmear, the same is not necessaiily tine tor linear combinations.
It contrast to the wave-like solutions of the hopping Hauultoman, such states aie
sometimes calls “particle-hke” or “localized” solutions Appaiently, there 1s a
competition i the Hubbard model between these two possibilities In the himit
t > U the first becomes more likely, the hmit ¢ & U favours the second one
Such behaviour 1s the reason why 1t 1s so interesting to study this model Of
course, all these rematks are equally vahid for the Heisenberg model.

The task for rest of this wotlt 1s to apply a couple of techniques to the Hubbard
model 11 owder to obtain a better approximation for the ground state eneigy and

to understand the beliaviour of this system Dbetter.



Chapter 4

The Notion of Rotation

Inn order to mmprove previous results, two techniques shall be used next On the
one hand the interaction should be simplified by applying a so-called Hubbard-
Stiatonovic decomposition (sect 4 2} In oidler to do this 1t 18 necessary to rewrite
the problem m the exponential form of a partition function (sect 4 1) On the
other hand 1t 15 also useful to introduce rotations of the spin-quantization axis
of each site (sect 43) In a different context but also tor the Hubbaid model a
spin-space reference frame has been introduced by HJ Schulz [44]. Therefore,
it 15 convenment to follow the first couple of steps in lus paper Tlus is done at
the beginning of section 44 New 1deas ate developed soon i oider to find a
moie appropuiate description of our particular situation The plaving with the
rotations leads 1 section 4 5 even to a change in the owder ot rhe technigues

proposed

’

4.1 The Partition Function

An ordmary time evolution operator (TEQ) and 1its trace have m the case of a

tune-independent Hamiltoman the foim
Uty ta) = exp [—%(tb - ta)'H] Zrco =T (e.\p [——%(f;, - f,,)'HD H1)

It 15 possible to evaluate such expressions with the help of path mtegrals. If
the Hamiltoman is expressed in fermionic ereation and annilulation opeiators it

is for tlus purpose necessary to introduce Grassmann numbers ¥ and ¥*. Its

I
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components & 1,&1,4,.-.,8n, have two indices: one for the site position and one
for the spin projection. They satisfy the eigenvalue equations ¢, , |¥) =&, | ¥)
and (¥|c}, = (T |z, and therefore anticommute with one another. Then the
trace of the time evolution operator, called tune generating function, can be
written as

. b x* a 1 *
Z'TEO = /D\I’*Dq’ exp [l./t dt (\IJ |a\II - E?—[(\I! s lﬂ))] (-l 2)

A thorough explanation of the formalism behind these remarks is given in ap-
pendix D

In thermodynamics of finite temperature all pioperties of a system ate de-
termined by the partition function In the grand canonical case this has the

form

Z=T (exp[—-éz—,(?{—;u\f)]) , (43)

where ;¢ 1s the chemical potential, A the paiticle-number operator and kj 1s
Boltzmann’s constant There 15 a stidang sinlarity between this expression and
the form of the time gencrating function in (4 1) If in the latter ¢t —¢, is replaced
according to
h
T =1t —ty) —— —== I (4.4)
kT

Lty
one ends up with the partition function Such a pute unaginary time 1s called
Matsubara time, and the proposed transtormation umphes withont additional

effort a path integral form for Z. In analogy to (4 2) it 15

* ne * a ‘“’ ]' *
4= /D‘I’ DY exp[—/(; dr (lI’ ('5; - E) v+ ']T?H(‘I" ;“Ij)>] ¥ ('l 5)

r

where products like ¥* - ¥ are understood as vector products kZl Y $rolia
=la=t,

The conciete Hanultonian under consideration 1s the Hubbaid model with
included flux contribution To wiite 1t 1 terms of Grassimann numbers 16 has
to be biought 1in a normal ordered form {(all anmlnlation operators are standing
to the tight of all creation operators) Afterwauds one just has to replace any
ferinionic operator by the cortesponding Grassmann numbet

Iy

Y im . 2o b
H, ) = =ty ), (f.t.afkﬂ,ne R SY SO “"‘)

k=la=1,1
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N
+U kz: ST ININIINS (4 6)
=1

It 15 sometimes convenient to introduce the term “action” for the exponent of
the partition function If the action S is the'sumn of the two terms

%] N s
So = fo (17'2 Z {f;,a (hd; — ) §io— 1 (fz,ﬂ'ék-'-l,(re:\'—“o'}_

k=lo=t14

+ Ek-l-l,o'gk,a'e 0

g N .
S =U [ A7 >~ &k 1k eiCh
0 k=1

then the partition function has the forin

7 — / DYDY ¢~ (Sot+Simd/h (4.7)

4.2 Hubbard-Stratonovic Decomposition

Unfortunately, the action for the interaction S, cousists of products of tour
Grassmann numbers, & &5 & &4 These nonhneanties lead to difficulties m
its treatment. The Hubbard-Stratonovic decomposition 1s a good possibility to
reduce this term to a second-order expression. There aie different ways to do
thus

We shall follow the advice of Schulz [44}, because he and before him alieady
Hamann [45] claim that only their choice repioduces 1m a saddle-point approx-
mation the results of Hartree-Fock calculations Theiclore, two new opelators

have to be inttoduced
ﬁ,k = CI |Tck,T + CLJ_C,CPL all(l x§k - CI TCIHT - CI,.LCA I (4: 8)

71, counts the number of particles on a certam site and theictore 1epresents the
chaige degree of freedom §; gives the total spin projection on the z-axis at the
same site, hence, 1t 1s related to the spin degiee of fieedom In the following, the
related Grassmann numbers are 1epresented by the same symbols as the opera-
tors, but the hat 158 onutted Then the above mentioned product of Grassmann

numbers hecomes
* ]' 2 2
ITINMINI T 1 (nk - SI) (49)
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Accordingly, the interaction part of the partition function changes and one

obtaius
N

. So_U 2
Z = /D\Il Dy exp[—ﬁ T /0 dry” (nf. - Sk)] (4.10)

k=1
If one forgets for a moment about all integiations and summations in the
partition function, then the interaction 1s essentially expressed by a quadratic
form in the exponent. Expressions like this can be modified with the help of the

well-known Gaussian identity (o 1s a parameter)

+oo 1 +oo
/(l.’E eV = Vi e et = N /(IA o (¥5-208) 0% (411)
— 00 r=a—A 7'(0'-—00

Stratonovic first suggested this trich and Hubbard applied 1t to the partition
function, which 1s the reason that 1t carries now the name ot both. Hubbard-
Stratonovic decomposition [46]

In prnciple, 1t is just necessary to find an approprnate chowce to1 a®/o? 1n the

case that the exponent has the form

E = exp[—% (nﬁ - 52)}

and afterwards one can apply the Gaussian identity. One possibility is to set

respectively
(g, 02) = lUHk,TLU and  (u,,0%) = —I—UsL,TLU
¢ 2 y 2

and to obtain

L 1 2 2 1 1 ]
AT - —Acne + T Ags 412
nhl f/dAchS e\:p[ Uh (Ac + As) + ﬁ—\ e + 5 sSL ( )

This choice 1s convenlent because 1t brings U 1n the denomimator One can easily
see that 1t leads to integration vanables which have the dimensionality of an
eneigy
However, things aie slightly moie difficult mainly becanse of the integration
over Matsubara time To avoid any problems with this, the taival [0, 48] is
8

divided mto N, segments of length A, = Vo and at the end the himit N, — oo

15 taken. [39]
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N N,
=Sk = opl =22 2 Z_@ -
e un  exp oy Sk
Nr=s00 b= ( )
N N,
= Tlxm H H—A dA(k, 7y)dA(k, 7)) | *
TS \k=17=1 7
N N,
* exp ——+ ZZ_\ {—— (_\.2+_\.3)+1_\,,nk+_\ss,.}
L 13=1
2 L 2 2
= [D Ac,.s‘("‘:alr)e‘\:p[ (Sﬂ +[ Z {E Az+A ) —1 Aoy — A\sk})]
{1 13)
where
N Ne (dA (k7 = B2 AN (K, )
2 Alclk, Ty Arr_f sihy iy __@_
P esthr) = IT Pﬁ;}}l( A WU) i

is a dimensionless mtegration svinbol wlich 1s calledd  tnnctional differential”.
The argnments £ and 7 inchcate the dependences of the mtegration vaiiables A,
and A, Becanse of the name of this kind of ntegrals, the whole procedure also
has the name functional-mtegral method [39)]

From a physical point of view sucli kind of decompositions provide possibilities
for an approximation of the partition function The interaction between fermions
disappeais, and the particles move mstead i the Actitions fields A, and A,
Those fields nught depend on the position 1 space and temperatine  Provided
that they ae chosen propetly, they have the same effect on the patticles as an
mteraction would have Then the functional-integral method is exact. The moie
the fictitious fields ate only approximations the less conectly ale mteractions
desciibed.

By the way, the idea of moving particles i a mean held 1s exactly the same
as 1 the Haitree-Fock approximation and has especialls the sane stiuctuie as
the Stoner model (3 G)

Remark: The chaige interaction part will essentially lead to termns hike 1A.Af
and canses a problem of dealing with complex guantities In order to get the
complete Hanultoman hermitian it is thetefore necessary to deal wath unaginary

mean fields, which is not very comenient It an attempt ro avoud such difficultres



CHAPTER 4 THE NOTION OF ROTATION 82

one conld try to alter the Hubbard-Stratonovic decomposition. In order to do
thus, the fictitious field A; has to be split into one part and its complex conjugate

at. the beginning of this transformation. A treatment of the form

U 1 1 * M * Py
P [_Eni] T TRU [dAc eXp [‘ﬁ}ii\cﬁc + 14808 — 1Ac§kf&]
1 1 )
= A ex _ 9Re(1/ .
th,/ ‘uce‘p[ a7 1A + Rt(lAc)ﬁ«SA] (415)

&,
at least proves that it 1s also possible to calculate with 1eal teims. However,
it tmined ont that this form of notation is even nioie inconvenient for further

calculations.

4.3 Spin-rotation Invariance

Tle mai point of the paper of Schulz [44] 15 that the expiession tor the action
should be rotational invariant. The reason is the a priom rotational mmvailance
of the Hubbard model That means that if the spin quantization axis for the
whole systein 1s rotated 1n a certain way, then the Hubbard Hamiltonian remains
unchanged !

Proof: The statement 1s obviously fulfilled for the hopping pait, provided
that cvery site 15 rotated by the same angle Then a 1otation and a backward-
1otation cancel each other. Otherwise the kinetic energy pait 1s not torational
invanant and such statements for the whole Hamiltonian are only tine m the
limit % > 1

For the mteraction part one should note that a spin operator for a certaim site

can also be repiesented in the form [31] .

h
Sy = ;cLoau o (4 16)

where o is the set of Panli spin matrices defined in {1 2) and 1t 1s siunmed
automatically over o, § € {1,1}. The proof 15 equuialent to the one for the

corresponding coupled boson representation (1.8) A straight forward calcularion

Tn recent papers [47) Zhang and others pomnted out that the Hubbaid model posses an
approximate SO{5) symmetry Tlus feature can be nsed to umfy annferiomagnensm and d-

war e superconductivity
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leads with the help of the relation ¥ (2)a,80(1)ys = 280,505y — Sapdys to the

3
surprising result that the square of the operator Sg has the form

3 N
Si = ZhQ (ﬁ'k,T + ?3!;:,.],)2 - 3h2ﬁknﬂk¢ (4 17)

Summed over all sites, this can be used to express the interaction ot the Hubbard

model in the following way.

N 2 N
R .. MU U
V= UZﬂank,L= - —EZSE, (4 18)
k=1 ’ 4 37:' h=1
which shows the claimed SU(2) symmetry moie explicit a

On the other hand the spin term 3, 1n (4 9) shons no rotation wvariance A
spin projection does of course depend on the duection of the spin-quantization
axis Neveitheless, the Hubbard-Stratonovic decomposition (4 13) can still be
exact because the mvanance is ensured for the sum of the charge and the spin
term  This indicates a strong spin-chaige inteiaction However, as soon as ap-
proximations are performed tlis mteraction 1s perturbed and the spin-1otation
invariance destroyed [48]. In this sense 1t nught be note appropnate to use (4 17)
wmstead of (4 9).

Schulz {44] suggests another way by introducing a spin-space 1eference frame
that vaiies in time and space He states that “The fluctnations of the orentation
of the reference fiame then allow for a rather natural mclusion ot spm-1otation
mvariance ”

That means that the spin quantization axis 15 allowed to differ hom site to
site. The axis on a certain site must of course be the same tor both fermions
sitting on tlis site, ‘However, for the Hamiltonian 1t 15 not necessary that the
spin diections of electrons on different sites have something to do with one an-
other Nevertheless, 1f arbitrary spin-quantization axes are allowed the pictoral
explanation ot the kinetic energy term as a hoppmg of elections will get lost. Fur-
thermote, 1t 18 not clear any more why only cj,t,,rc,w_l,T appeats m the Hamiltonian
and not tor mstance cLTck +1,» because the axis aie now mdependent fiom one
another The only reason for the favour of the first kind of opciators could be

that the angle diffeis fiom oue site to a neighbounng site only slightly, and the

clection can overcome this change
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The umt vector in the direction of the new spin quantization axis on a certain
site k 1s described by a pair of polar angles, Q, = £,(7,¢) @ is the angle between
the spin axis and the z-axis; ¢ 1s the angle between the piojection of the spin axis

2

on the zy-plane and the z-axis> The rotation itself 15 performed by a matrx of

the form
cos(%ﬂ) —e~X¢ Sm(%(‘))
e sin(%ﬂ) cos(%ﬁ)

It is a umtaly transformation (&, - Y = 1) with the desired property

Re(6,¢) = (419)
R, Q). (6,0) = Q% o

Example: If the spin quantization axis should be the biscctor ot the angle

formed by the z-axis and the y-axis, then 8 = 5 and ¢ = I, and one obtans

(L)"’ 1 -5(1-1) 1 0 1 L (1-1)
V2 H(1+1) 1 0 -1 —=(1+1) 1
1 0 1-1 1 + 1
i = =0, —a,
V2i1+: 0 v2iioovet

as wanted. a
A proper explanation why the rotation can be written w the form above is
given in appendix E. It 15 based on the properties of Euler angles
With the help of such matrices one can itioduce new spinor variables in the

form

=l % =m0 ] = mool S ]|

€l I &l €,y
(4 20)

Here it 15 imphed that a Grassmann number without a spin mulex denotes a spinor
with two spin components Nevertheless, the 1otation 1, (#, ¢) 1s a unitary change
of the spm-quantization axis and not in the fitst place a totation of spinots This

remark 1s 1elated to the fact that

- 1 -1 0 1 -1
RI(QK:C) = = %
0 0 -1 0 0

*Its usually denoted by ¢, but i this paper 2 1s 1csetved for the flux
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It 15 worth studving the anticommutation relations of these new Grassmann
numbers. They can be reduced quickly to those of the noumal (nor 1otated)
Grassmann numbers §,nand &, For instance fk‘,, and Ey,ar always anticommute,
because hotl are linear combinations of numbeis £ 4 Without the use of conjugate
numbeis £, It is only slightly more difficult for combinations of conjugate and
non-conjugate numbers, With the help ot Emstemn’s sum convention one can

wliite

-~

[E.L,m EI',JJL = [(ﬁf)m Sk S (}?"')11'.6’]4. = (f"f)m (Rnr)”,p, St kO,
- 5k,k’ (R:) o (ék)n,a‘ - 15;, ‘yfso-,,,r, (4 21)

At the end of tlus calculation the fact that the rotation matrix 12, is unitary
has been nsed  Piovided that tlus is the case, rotated Grassmann numbers obey
exactly the same anticommutation relations as all othet Grassmatn numbers

The aim for the rest of this chapter 1s to transform the action of our problem
accordingly and to diaw conclusions That means that every contubution to
the action has to be expressed 1n teims of the 1otated Grassmann munbers Ek,a
instead of the “normal” Grassmann numbets & ,. Ouly the phase factor for the
magnetic flux is not effected by the change of the spin quantization axis

The problem 15 that we have to apply now two transtoimations at the same
time One of them is the Hubbard-Stiatouovic decomposition, the other 1s the
introduction of a spin-space reference frame \Which of them should he apphed

first? We shall try both possibilities and will see that, thev lead to different results.

To begin with we follow the way of Schulz [44]
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4.4 Rotation First

4.4.1 Derivation of the Action
Rotation

As discussed above, already the splhitting of the interaction part into a term for
the chaige degree of freedom and one for the spin degree of freedom leads to
expiessions which are not rotational invariant. Therefoie, a spin-space reference
frame 15 mtroduced by using the transformation (420). The effect on the ac-
tion 1s the appearance of rofated Grassmann numbers together with the rotation
matiices

However, hecause of the spin-rotation invairiance of the mteraction part it does
not matter whether 1€k 18k1€k 4 15 expressed 1 normal o1 rotated Grassmann
numbers  Piovided that the splitting 11 a charge and a spm part 1s done atter
the 10tation, there will not appear any rotation niatiices i the interaction

The action becomes

na N . N . -
Soo= [ ar 3 {& (n0 - p+ BE@FD)E,

A=)

13

eal s s 2mb 2o
=t (fzﬁf}?kﬂful‘ v o +£L+IRL+IPL£L(' ~ "”)}
hy

Sw o= = [ ary {(fkfk) (ét0.8) }:_/m {3 -5}, (422)

where the spmor notation 1s used and charge and spin nunbers ate altered self-

explanatory

Hubbard-Stratonovic Decomposition

A Hubbatd-Stratonovie decomposition, pertornied atterwards, has exactly the
same structie as for the non-1otated case (4 13) Thus, the pattition tunction

has the form
[ Dk, 7) f DYDY f DA, (k,7)

ng N
exp [—- (50 [ {-Llr— (A2 4+ A2) —1ai - A5§k})] (423)
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which includes an integration over all directions of the quantization axis The
angles can again depend on the site and Matsubara time, as indicated by the

argumernts

Saddle-point Approximation

The uext step could he a saddle-point approximation [44] The notion of such
an approximation 1s that only such parts of the integral over the auxiliaiy fields
contribute for which the action has a mmimum. Then an itegral can be sunplified
in the following way

o0 o

_/ e /e = [ exp[— {f(xo) + (v = 20}f'(20) + %(1 —20)* (o) + . }]
o fl=o0), 2n 2
¢ f(x0)’ (424)

provided that f'(19) = 0 and f"(x) > 0, that 1s that x5 15 a (local) mimmum of
the function f.

Nevertheless, 1t 1s not the aim to perform a complete saddle pomt approxi-
mation Instead, a hinear transformation onto the saddle point will be done For

thie chaige anxihary field A, the following integial has to be consudered

I, .= [(IAcexp [—% (%Aﬁ —1Acﬁk)] = f(l’_\cexp[—fc(ﬂc)]

The fnucnion f has the detivatives

.\ “Ady, A = = A r”'” f(A) ==

folX) = F8e = 3 Uh Un’

Assunung that a situation close to half-hlling 1s considered, the occnpation
number can be approximated by fiz & 1 Then the numnnnn 1s at A g = '—é’-
In teams of a new integration variable §; = A, — A g, which describes the

Auctuations around the saddle point, the integral can be grven n the torm:

I, = fdcic exp[— {fc (IU) +ele (1(_’{) t3 sz” (g) }]

1y U U. .. .
= /d5 exp| -y (_:l- + 7 + 16, (1 ~ 1) + aﬁf)] (4 25)




CHAPTER 4 THE NOTION OF ROTATION 88

Analogous, one obtains for the spin awxliary field A, with the assumption

§i = —1 and the fluctuation variable 6, = A, — A = A, — (—-%)

I, = [ d.’.\sexp[—% (lag—f_\.sgk)] = f dA, exp[—fo(A)]

U
= /dds exp[— {fs (-—%) + 8, f, ("‘%) +%5§f: (_%)}]
= /dés exl)[—% (% + %5:: =0, (14 5)+ “[1}"532)] (4.26)

After this movement to the saddle point the expression for the action looks

hike tlus

kB No(-, U .
S = '[0 drg{k(h(‘),—p+§(]lg+dz))§k}
3 N o -
+ [Tar Y (&R 0.RE)
0 k=1
hB N ceAL A o= 2o Ao~ _2m b
+ ]0 dTZ{_t(ER?:RkakHe N+ G B '"0)}
k=1
L AT . 1w o -
+ [ drkgl{—ldc(nk—l)—53(S;L+1)+a-(f)c+§s)} (427)

It determines the partition function
Z= [ D2k, 7) / DI DI [ D25, ,(k, 7) exp[—S/H], (4 28)

where the functional differential 1s now

N Ne (dOe(k, 7, = 323)déu(k,7y) B
D, (k,7) = lim AU 7 AANLEE LA i
O, ( ) kl._—_Ile—moJl;[l ( N.,. TFU

(4 29)

Apart fiom the fact that only fluctuations of &, &, around the saddle point
up to second order are taken into consideration, this result is still exact It has
to be emphasized that in order to evaluate the partition tunction theie are still

four mtegrations to be done That is quite a difficult task
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4.4.2 Simplifications, Half Filling

In order to get a feeling for the situation we will try now to make things as sumple

as possible This includes the following five ponts.

A rotation € of the spin-quantization axis with only one degree of freedom

1s considered The most convenient way to do this 1s to set ¢ 1dentical zero

Hence,
d il
- N CoOs 3 —Sln=
Re(0,( =0) = R(8) = ; 03
sin 3 Ccos 3

At some points 1t 1s helpful to deternune how @ depends on the site k. As
explained in section 4 3 the difference of the angles of adjacent sites should
be small Furthermore, a handy connection between the site and the angle,
which does not favour any of the sites, 15 wanted. The sinplest way to
mplement these conditions 15 a 10tation atound the cucnmference of the
tng by equal steps 6 = %”k <1, where w {“angle phase winding

number”) 1s a small positive integer

Fluctnations around the saddle pomt are not taken into consideration, &, =
ds = 0 Tls 1s a hard constraint. The saddle pomnts were «errved under
certan assumptions, fiom which one was fig = 1 To neglect, thnetiations 1s
ouly justified if these asswmptions aie fulhilled i other woids, the following
calculations aie only true for halt filling (1 = N) or for a sitnation which

15 very close to it

Thete 1s no dependence on the temperatur (nnaginary tune) Dependencies
can also be neglected in the high-temperature lunit, because § — 0 as

T —= oo

Furthermoie, the chenncal potential ¢ 15 set to be zero, winch can be done

by an appropriate enetgy shift
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What then remains of the action 1s essentially an altered Hamultonian of the

system Thus, it is denoted with the same symbol

Ux . - e O
H = ;; :.(]12+0'z)fk—tZ{ﬁkRZRkHEkHe VR0 4 & R REe™ %}
T A=1 k=1
N N
{1 0} W f 1 -2}~ e
~ UY g &=ty (& &t Fot+hc (4 30)
k=1L 00 k=1 1

In the sccond hine the fact was used that the combination of the two rotations

effectively 15 a rotation over the difference of the angles,

1 127 T
J = 5 (6k+1 - Qk) = -Q——Nr-w = W

The appioximation 1s such that cos?d = 1 and sind = 9 tor latge N
If no mtegration is perfoimed 1t 1s also not necessary to use Grassmann num-

beis Instead, we introduce totated creation and anmlulation opetators via

= _ | &1 - Crt I O T
Ch=1 _ = R (0,¢) — CI: = (C}‘m Ch) = (CL,T cl,l) R (0,¢),
Ch Ck,y
(4 31)

and the Hamiltonian becomes

H=U &&=t {EL,T&k-{-l,T + &4y + 0 (61,l6k+1,‘r - EL,TEL+1,J,) } et o
k k
" _me
-ty {Cifc+1,1~ck,f + 811Gy + 0 ((‘L+l,1(’k,-l, - LL-!—I,le,T)} e * %o
k
(4 32)

A problem of calculations with such a Hamultouan 1s that the commutation
1clations hetween rotated operators and noimal operators, as used 1 the srates,
are not necessarily straight-forward anymote The easiest way to avowd snuch
difficulties 1s to return to the normal fermome operators in the Hanultonman

A procedure like this means in essence that the rotation 1s maintaied only
during the Hubbard Stratonovie decomposition. Ounly here 1t 15 necessary to
ensmuie rotation invariance. If one retwins atterwards to noimal operators, then
the kinetie energy part will be 1estored in its old shape However, tlus 1s not the

case tor the interaction part.
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From (4 31) 1t follows for the several components of the totated operators

Crp = C€OS —Lc“ + sin % 5 C, . EL,T = ¢0s %LCL,T + sin %ﬁ-ch (433)
Ekvl = —Sll’l CA-T + COS{J Cki EI,,L = — 311 %-CLvT 4+ ¢cos %Czli
provided that the rotation 1s over one angle only. Hence,
o = g . B ) f
cft,‘rck,r = (cos ?kcfm =+ siln -QE-CL‘ ¢) (cos ?kck'T + sin ?kck, I
f 8 8 )
— 2% 1 2 Y% t i Tk k {1
= CO0S Eck,'rck.T + sin ?ck'$ck'l =+ sin 5 COS 5 (c,\ +C, T+ c}:, lck,T)
- i 0r) c! 1 8e) c]
= 3 {( +¢080k) ¢ 40 4 + (1 — cosbe) cp yep
+ sty (CLTCH + J’k,'r)} .
which leads to the Hamiltonian
— t i
— -_ z {(Ck TCkT + Ck lC". ) + cOoS 9,{ (Ck:TCknT - ck,LCk,l)
+ sinfy (cL?cM + C}:,J,Cm)} (4 34)

-t Z {(Ck $Ckr1t F ChChan ¢) T (CI+1 1kt F Char O 1) _2%'—2} -
The following steps will be analogous to those m: the pievious chapter We
shall find the expectation value, take derivatives with respect to one of the pa-
rameters and try to solve the Hartree-Fock equations If this 1s possible, the total
encrgy and afterwards the persistent current can be calculated
The expectation value shall first of all be evaluated with the same states as

alieady nsed m section 3 4,

N
e (£ 1 ()0

nES; \in=l meS; \im=l

~10)= ), ~10)=19)

Then the calculations for the hopping pait ate absolutely the same as already

done theie The terms of the iteraction pait shall be examined next

My

* LT n, (Al )
ST<¢|CIT,TC.‘£,T]¢)ST = Z Z Z (—1)Sgnu .;lll T ﬁ]\[: ﬁ “) ﬁ]\pIT ! 6]4!',‘:

A=l Iy peP(AL)
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and accordingly for the opposite spin direction Derivative with an ng € Sy

6 ALy )
5 (sf¥lehaealO)) = B0 + 3 1071 o2

=
p=td, A=C AR

p=1d, 1#C
My
_ Z ﬁn4* nc*ﬁ"—i
Pis
K3 ,
w( 4)=C':rp(C)= A
T (sl 19 5) = olbiecs 1), - 2 (0l
dPnc” \Sn.Sy kLRI s8] T s kAh L% /g, agnc
Al
= S Igrer-ge
B=1

What remains are expressions of the form

STsSl(w |ciI;,Tck,.L | w)ST,SL

It the operatots are undeistood to operate on the ket-state | i) then the ket-

51,51
state consists afterwaids of one down-spin paiticle less and one up-spm particle
more than the bra-state Since the number of up-spin a down-spin 15 conserted,
1espectively, the product of these two states has to be zero ~All such expressions
stmply vanish

Thercfore, the following set of Hartree-Fock equations are obtained (ng € Sp):

T S S S P
- t o + G e Y -5 cosé 3 ¢ G
nebT !r 1 <

( 1€
nEN
2m b —m tr
+ { Beie™ Fo + B e "") — —cosfy ,3""} By
nEST k 1 2
n#dne
N m o _maN U ,
- Z Zﬁ;n*{ ( zfl-le N 4+ e "’0) - ;coef)kﬁ?}ﬁgc
meS) A=1 F4
ELIN —2m b U
- f([if.’fr'le V¥ 4 B N "’n) + 5 (My + My +cos0,) BY<
= A3 (4 36}

Tlus sct of equations 1s in general not solved by Bloch wave tunctions auymore

However, tfor the special case that no 1otation 1s applied, 8, = 0Vk, the mteraction
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part in these equations stmplifies to
U p ng ne
5(1‘[T+ﬂ[l+l+ﬂ{T—l—ﬁ[i)ﬁz = UM, 3]

and the solution becomes apparently a Bloch-type solution It is woith noting
that 1 tlus case the equations do not reduce to those derived in section 3.4. The
interaction energy derived in these previous calculations was U H-TNﬂL What we
obtain hete 1s completely different. Even in the saddle-point approximation the
Hubbard-Stratonovic decomposition apparently does not lead to Hartice-Fock
results The reason might be an inappropriate choice of the saddle pomt

There are further inconvemences related to these equations The method
of rotating the feimionic operators backwards after the Hubbard- Stratonovic
decomposition led to the result, that the kinetic energy pait again completely
decouples from the interaction part. Nerther the coupling constant U nor the
spin structure {9;:},':;1 appeais in the hopping pait, and the mteraction part has
nothing to do with the flux ¢

It should he possible to solve the equations ahove also for the geneial case,
because they stem from a linear operator. However, for the mentioned 1casons this
particular approach shall not be investigated further Instead, another possibility

of looking at things will be tned now

4.4.3 Rotated States
First Idea

The states which aie used for expectation values are also constructed with the

help of creation and anmlation operators Therefore, it 1s possible to rotate the

operators at this posttion and to leave the Hanultontan nuchanged That means
that

. N X N .
—_ n -~ HE = L
|1,b)8“5,i - H Z tn Cta,? H Z Lin Com L |0) (437)
nESy \ta=1 mESy \tm=l
Such a state can afterwards be transformed agam to an expiession with non-

rotated operators only To see how this works the case of two up-spin patticles 1s

considered first. Agamn the transformation (4 33} 1s used.
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Iw){nj,‘n.)},@ = Z ;l ;26123TTE:|,Tl0>
11,22
n1 on

= Z BB, {cos f,, cos 9=1f32,70:r1,r+51ﬂ f,, s1n t‘),lcf:,lcfhl

11,12

+sin é,, cos ﬁ“cf_,,lcfl 4 Fcosly,sind, LL,TCL .l} 10)

- 2 2
! — ] na . 4 2 2 2
(wlwlmm}‘@ = > |l |6 (cos 6, +sm 9,1) ((,05 t,, +sin 9,,_,)
11,22
9
— X BB R (cos?d,, + sin? 6,,) (cos?,, + sm? 6,,)
t1,22
2 2
—_ 131 2 Ty ATLL* QN2 AN *
— Z{ 1 I 12 —'ﬁu 13 ﬁu 3 } (4 38)
11,22

The last 1esult 15 the same as for the unrotated states This statement 1eminds
us of a fact aheady explamned in connection with formula (4 21) The operators
EI‘T and ¢, ; obey the same anti-commutation 1elations as (.I,T and ¢, Therefore,
one can also calculate with rotated operatois wu the familar way.

As another implication one might argue that normalization constraints like
{m},w('/;ll/;){n.},@ = 1 and {n;,ng},(ﬂ(’&,'d;) = 1 inchcate that the S-factors in

{nhnl}om -
the states are, similar to the Bloch-case, oithonoimal wave tunctions

DB =1 and F A =0

Second Idea

In prmeiple, there are two ways imaginable to obtam the expectation value of the

hopping part

1 One could try to express also the Hanultoman in rotated operatois, assum-
ing that an electron hops from one 10tated site to the next rotated site
Howeter, to transform states and Hanultomans at the same time does not
change the physics and all calculations can he done as it there weie no ro-
tation That 1s what has essentially been done before
Even if additional operators in the foim of the 2nd and 4th term of the
Hamiltonian '

N
: _ - -t - -t o« At o~
Huop = =t ) S BaChry s+ Chalerry + 8 1 8hgrg + CraCryry the
k=] | —— ———— ———— ————

2 3 4
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are mntroduced with the argument that because of the rotation there is no
justification for spin preservation, nothung new appeais When taking the

average Sl(w,l;|Hh°p W)Sn 5, these terms vanish.

wo

It 15 moie reasonable to start with nnrotated hopping terms, only concen-
tratig on the fact that the electron changes 1ts site, but not chaiactenzing
the structure of different sites That brings us back to the situation on page

90 with the transformed Hamiltonian

£

cos? —smd! - 2m
Cprpre

o

N
Hup=—tY (& s +heo, (4 39)
k=1

smd  cosd

where 9 1s the difference 1 the f-angle of two adjacent sites, assumed to
he fix In the average the mixed terms disappear again and the dependence

on the spin-space reference fiame expresses itself i a global factor

2m

. a - N 2mi b -
St’sl(w |Hlmp |¢)ST:SJ. = —tcosd Z (’“ (CL,Tck+1,T + Cl’t,lck+1;-|-) eV % +he W)
A=1

Both wavs show the problem that mixed teims like EL‘TEA +1,) dways have to
dhisappear  The reason is the fixed number of up-spin and down-spin paiticles re-
spectively  However, such a behaviour is not really understandable 1f for instance
two adjacent sites have a mutual angle of 90° between the spin-quantization axes
1t 18 not ¢lear why the hopping EL,'rék +1,1 18 possible but not 6L.Tc"'k L

In general, for sites with arbitrary 1otations spin-flip processes shonld be al-
lowed In other words, it does not make sense auy-moie to distinguish between
a group of up-spin patticles Sy and a group of down-spm particles Sy Only the
total munber of particles should he an integral of the system

This idea does not change the fact that a certan state 1s charactenzed by a set
of quantum numbers {n,}*, which deteimine the coefficients m the field operator
representation. The only difference 1s that the spin duection is not regulated any

more Such conditions aie satisfied by

-~ Ar
19), =Ci v {el 10y + el 10y}
=1
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for the case of one particle. Here C| is a noninahization constant which has because
of

('ﬂllb Z (EJ,T+6J,J.) ( 1T+Cz l) |0) = C?Z ny* Ry

the value Cy =1/ V2, when for convenience the y-parameters are chosen in such
N
away that 3 %> = 1.
=1
Consequently, an arbitrary A-particle state has the following form

. afE{Tal}
|¢) = Cum Z Z 7?11' 'YM‘}] IMy"’M l1 71 ’0) (4 40)

Ly SN
21y BIAF T)s WTAS
. et}
* AL ¥
(¥| = Ck Z z M Yaar 01 - Gy (441)

nr, WJNAF
’ I1s oJAr T TN

That means that the wave functions, determined by the quantum numbers, are
not changed, but for each particle both possibihitics (up- and down-spin) are
allowed Sucli a constiuction makes it possible to deal with spuu flips

The novnalization constant is easily evalnated it the overlap of two states is
expressed m terms of fully contractions’:
ol 20D DD DI PR v AR AV

11 ouf 91 A
$1+ Fpg M1 AL

W19,

R, TAD nAs

5t
- ¥ <0l Jl m '. l. CJMJM!c:x\haﬂl T 1I|Ul IO)

1st possibility:

T—— 1|

2nd possibility

However, such “crossings” as in the second possibility lead to vanishing sums
Tty with o, # n,. Therefore, only the first possibihity, the rdentical permu-
k

tation, 1emains, leading to

= |CA[|2 Z 1 - C_,\[ = 2'_1”/2.

Tl g

W 19)

ni, ARy ny1, Smar

Now the task 1s, to deteimine the expectation values ol the hopping pait n

the second proposed form (4 39).

3This method ts explamed 1n appendix F
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d T S -
E)”fs’;c *ny, ,n u(l’b IcksTCk'i'lnT | 'l‘b)ﬂl, Y
Iy e =x
—_ 9~ ny* L nar¥. mny | AL g
= DD T e i i AR

[T YA W V)
IR TV B T
s P =<t .
*(0]é Crm " " Coarnmr CACkAL Gy o %1,01 10)
oM=-2 M

= M Z Z Z 7;4“*7::47:1005an1*

A=l 14,4 474
A£C ag 3¢ TOIC

. ; 4 t A
- X (Ol CJA,’H C CNC Clec t+1.1 I 7.-1 flURY - lO)
+ i I |
e I e R R T—
o rn— T w—
t)M 1 " 4
Z Z 'T (Ol N ) CJC:’TC ..Ck;Tck-!-l’T CIC:"C’ IU)
tey}e OCNC I | , . , |

TaF_Te My *

A
1 . 1
= 3 2 Z {7::4 T = WA - Z'Y“ Vo5 Yetr Ok 1:} + ;7?5,15&,;:
” 2

=0

After exdctly the same calculations in the other three cases one obtains

. 1
ENE (@ ch TCL+1,T|¢) = 3 Z Z'YM {7k+1’7:rr:tc —7:"’7251} + '5’7231
k=1 :#Cgk 1 -
1 . 1
8 e ¢| Z Cp Tck+1,1~ |¢) = 3 Z Z 'an { If.:ﬂ;'c ’Y?“ffi.} + 37:46:1
k=1 = A=l g=1) <
A#C
N 1 N 1
n(-* Z LAl |9) = > Z > W {7k+l7;m 'Y;H“”?il} 3%
k=1 A=l k=]
A;EC
- —_ z g% | _Tng _nc 7y 1 ne
uc*w Z Tck+1T|¢) = 3 Z Z {fk+171 — Tz 71.+|} + 5741
k= A=l =] =
AgC

The fact that the result is in all four cases the same shows that the chosen
states are not sensitive to spin directions  The suipuising consequence 1s that
eventnally spin-flip processes disappear agam. This 1s because of the minus sign

in the 1otation matix of the Hamiltoman

-

=

¥ .+ | cosd —smndd ) 2=
Hyop =t &l €™ P +hc o,
v {7
=l sintd  cosdd
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leading to the effect that the two mixed-spin terms cancel each other.

The interaction also needs to be calculated again

Moo N
= U Z Ck Ek = U Z E};.!Ték,-r
k=1 00 k=1

d 1 M N 1
O’y”("(t IZCk TCLT |w)n . = 5 z a4 {,YTM ne 7r ,ch} + = 'Ync
i k=
1 Af 1 A
= 5 {1.720 0 ;},kC'} + ﬂ.c = 2 ',Yﬂc
Aze

All together the -problem has the following structure

2m b _2m 4
= teosd 3 3 ope (e T 4 pne ) e

4=l =1
a%C
A 2r1 @ 2rr b
+ tcos? Z Z e VeSe ™ +7£E1e_7“:%) Yzt
i =i
EPr'S _me M
- tcosﬂ('r!ﬁl V¥ + S “’o) +U5n°
= A€ (4 42)

Unfortunately, the situation 1s not much better than m the Haitice-Fock
cquations (4 36)  The mteraction and the hopping pait are again complerely
decoupled  The mfluence of the rotation only changed trom the former to the
latter However, if all ssmplifications proposed 1n subsection 4 4 2 are used, then
cos? = cos ¥ = 1 for large N, and no rotation at all remains

The y-problem has again an exact solution Bloch wave tunctions satisfy all
equations, as can easily be seen Thus, the energy of the system 1s within this

model described by

&y

1 M 27 d
E=§MU—2tcosﬁAZ=:1 COS(]\T (m+-—)) (4 43)

This expression needs to be minimzed with the help of the fhiee parameters It
15 always possible to choose the sct of quantum nnmbers {14 }AL, such that the

cosie 15 positive  Therefore, the ground state 1s charactenzed hy # = 0, which
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means that all spin quantization axes point 1n the same direction No matter
what the value of the flux 1s. 1t does not lead to interesting spin structures within

this model

4.5 Decomposition First

A different approach is to start with the Hubbard-Stratonovic decomposition
and to apply the rotations afterwards. The notion of rotation m this sense 1s
not in the first place the preservation of rotation mvartance dutmg the process
of Hubbard-Stratonovic decomposition This was the mamm aim ot the last sec-
tion DBy introducing a spin-space reference fiame before the decomposition and
integrating over all possible angles afterwaids, we wanted to restore the rotation
mvatiance wliuch gets lost during Hubbaid- Stratonovic transformation

By altering the order of transformations, the emphasis is slightly changed The
Hubbaid-Stratenovic decomposition remams a tool to simplify the interaction
patt. The spin-space reference frame displays degrees of freedom of the system,
wluch mmplies possibilities to describe the system much moie detailed It 1s for
example possible to use the angles # and ¢ to coustruct spin waves on the ring
Those spin waves are assumed to be a good description of (excited) states

In more general terms the spin-space reterence frane allows to have an SU(2)
gange unariance 1n the limit of strong interaction. Something sinmlar is for n-
stance done 1 superconductivity by introducing order parameters as coherent
wave functions for a macioscopic body In tlus systemn the gange mvaitance en-
abled Josephson to predict cotrectly how two superconductots behave when they
ate brought together For our system, a gange mvanance for cach site is also con-
nected with the hope to desctibe it qualitatnely mote correctly and to discover

cffeets which keep Indden otherwise

4.5.1 Derivation of the Hamiltonian

The mrteraction part of the Hubbard model 1s spin-1otation mvartant  Thus, for
many of 1ts transformations it 1s not 1eally 1elevant whetler tt is performed with

notmal or with rotated Grassmann numbets The same steps as alieady 1 the
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previous section can be used

Hubbard-Stratonovic Decomposition

The tesnlt (4 13) from the explanation of this decomposition 1s carried forward

1 e N o1
= S/h =[p25 L - f {_1’2 A2Y —
¢ e,s(k, T)EXP ; So + A (l'rkZ::1 i (Ac + As)
— 1Ay — Agsy ,
wlere

2=

h3 N
SU B '/0 dT Z Z {5:,0 (ha.,- - ,U:) gk,rr -t (§I,U§L+l,neT'

k=le=7.1

:0_*_..-

—_im @
o))

and

A

/ DI DI =S/t

Saddle-point Approximation

The movement to the saddle point works in analogy to (4 27)

1 X U
~S/h 2 St b —
e = /'D e,s(A ‘r)e.\p[ > (Sg-i-]o kgl{oﬁ,, (I +0.)&

D) () )]

Simplifications

With the same simphfications 1 - 5 as in the previons chapter the Hamiltonian
becomes
U N 2w 19
_ 1 1 Ml t | Bt e
H = 3 Yoa(l+o)e -ty {Ck,ack+1,a‘~ VPO 6 Gt N } ,
=1 k=1
where Grassmann numbeis aie again replaced by anmhilation and creation oper-

ators

Rotation

To introduce a 10tation at this point leads for the fist tune to modihcations

compared to the calculations m the previous section

N o . N oo s
H o= %Z R (lp+ o) g -ty {a,[ngpkﬂ%e TR C'}
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U‘iﬁét cos® & —-sm%’»cos%’L .
= . C
S\ —sn%ocosl sin® & k
N
N cosd —simd ) _ 2m b
—t Z cl Cppqe ™ o+ e
k=1 smd  cosd
U 1 t t t
= -2- Z {(ckchk)T + ck,lck,l) + COS 9]; (Ck,TCk.T - ck,-l»ck,l) T e (4.44)
k=1
= s (e, + & (Ey) }
‘J\f
-t -t . S -t =
- ¢ Z {cos v (Ck.TCkH,T + & Gy, T+ h c.) +smd ("k,L‘HI,T =l b+ Ih c)}
h=1

This structure of the Hamiltonian is actually a mixture of the two ways dis-
cussed m the subsections 4 4.2 and 4 4 3 In the former subsection we evaluated
the Hannmltonian with unrotated states The backward rotation of the Hamlto-
nian had for the hopping part the consequence that 51.@&,1 was transformed to
an expression with non-rotated operatots. That 1s exactly the same what we are
domg 1 this section, apart from the fact that the transtormarion goes now in the
other direction, from unrotated to rotated operators Thus, the appearing angles
a1e cssentially negative The hopping part above 1s the same as the hopping part
in the latter of the mentioned subsections, were calculations were peiformed with

rotateed states

4.5.2 Search for Solutions

Because of the above mentioned sunilarities ro the previous section, one only
needs to combine the tesults obtamed theie 1 order to obtamn the Haitiee-Fock
equations [t is reasonable to use not only the idea of 10tated states hut to take

also the possibility of spin-flip into consideration  After having done tlus, the

four possible combinatious ot operatois 1 the interaction paitt have agan all
the same expectation value This mussing spin sensitivity leads tor mstance to
the disappearance of the term propoitional to cosf; ' It all necessary terms are

collected one obtans

By nsmg the equality R%(’MEI,TE& 1 1) = (-{;T—‘z.?(rfvlél 1t |JJ)) and performmg the

dernate on the right hand side, 1t 1s possible to check tlus result m another way Such an

equality also implies that the expectation values must be real
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—_ Z z nax )4 9 na %f— —2—’\,’-1‘1 U na ne
Tk cosd [ 1efhe ™ ®o +ypde ° )+ 5 sm Oyt 3 "
=1 k=1
A#C'
* im & —2m b U \

+ Z Z ,},n.a {tCOS'ﬁ (Tgfle N %g 4 ,},nc N Io) + > sin gk'Y:c } ,Y;;,‘

1=1 =1 2

AFEC

n in n —2m b U .
“'t 00‘3'19 ('ngl & g + ’Y fle N ‘I'D) + '6' (ﬂ[ — sin 97) 'Y:C

= AC (4 45)

One can try to use Bloch wave functions to solve this set of equations Pro-
vided that the angle-site dependence 1s used which was proposed as simplification
2 on page 89 one obtains the following results for the potential enetgy part.

U A N
—3 2 L hsmbent = —o~ Z Zsm( h- 'u,)z()

;4=1k=1 A=l k=]

4#C 4#C
AN M
g_ "A*sin g, o ¥e? - u _}_ Whw _ ~Fhw ’”'(1-L)(n,4—r1.c}
5 Yo * sin By, v w = oW I~ e
4 A=l =] Tz = 2
1£C 120
A
E) 5, Vwna—nc w e —-n4
azy #1
A%C
) Ul m _im U
it (Su. ny—ne = 1= 510,7’0—1141 = 2 91 ( rTw _ e N a’ "’) = —_)— Sitl Hz (4 46)

Since solutions are only obtained it the final expiession does not depend on
the parameters z and ne, we have found the following result

It every quantum number n4 is occupred by one particle (half Alling) then the
conclition 1n (4 46) is always fulfilled The appearing sin-function cancels with
the similar expression 1n the last but one line of (4 45) leading to the desired
mdependence of ¢ and ne. Hence, Bloch wave tunctions satistv i this case the
cquations, no matter what the value of w1s  For exactly halt ilhug the kinetic
encigv vamshes and, hence, there exists only the one cucigy %UJ\I

One nught think of another situation w = 2 and every second gnantum
number 1s occupled. However, thisis too far away from half filling to be described
with onr sunplifications Nevertheless, 1f w 1s a laige number and only every wth
position 1 momentum space 1s empty, then the equations aire also fulfilled This

indicates that such spin structures with Bloch wave functions nnght exist.
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4.6 Zeemann effect

One important phenomenon has not yet been taken into consideration. It was
mentioned m section 2.4 that a cuntent around the cucumierence ot the iing
gives rise to a magnetic moment, which mteracts with the external magnetic
ficld Thus effect has been considered by iucluding the flux mn the hopping part
of the Hanultoman. However, there 1s also a magnetic moment of ndividual
clections wlich gives rise to a total spin of the system The interaction of an
election spin with a magnetic field 1s called Zeemann effect.

In many other papers tlns effect 1s not taken into consideration. One reason
15 the assumption of a Aharonov-Bohn situation, wlheie the particles move in
field-free space  Another reason is the SU(2) invariance of the Hubbard model
It has the consequence that the modulus squared and an atbitiary conponent
of the total spin operator commute with the Hamltoman [43] Hence, one can
find a common set of eigenstates, and the Zcemann terin has only the effect ot an
encrgy shift However, if the SU(2) symmetry gets lost the Zeemann effect needs
to he considered Therefore, the following comments are necessary

In our sitnation the magnetic field 1s supposed to be strictly perpendicnlar
to the plane of the ring, that means the magnetic field vector B pomts n the
z-duection The magnetic moment ot a single election 1s called Bolir’s magneton
and 15 denoted by pg Combined with the Landé factor g the exchange energy
hecolnes

N
HZeem = _yﬂ'BBz Z gka (4 47)
k=1

stiee Y 5 ncaswmes the z-component of the total spin of the system

In ?lu‘a paper the flux dependence 1s of particular interest Thetetore, whenever
the Zeemann term 1s included mto consideration 1t is useful to express it in a
forin whete the flux 1s more explieit The Hux 1s deternnned by the product of
the magnetie ficld and the area A enclosed by the tng  With the help of its

cucumference L = aN one can wiite

2 2Vz
d=B, A=B, %:Bz-“_l;




CHAPTER 4 THE NOTION OF ROTATION 104

Together with all the other quantities one obtains:

el dxd he  gh? & A, ®
2mec alN? edy m.a2N2dy,  N2O,’

g up-B. =g (448)

wheie Ay = Fal,&:f is just an energy constant If the distance between two sites,
a, 15 supposed to be approximately 3 & then Az 1s of the order of magnitude
1x107!8.J 2 10eV Especially for systems with a low number of sites the Zeemann
cneirgy 1s therefore not neghgible

Consecuently, the Zeemann term (4 47) would have the following structure:

N Ay o XN
- A2 LS el
Hzeem N2 (I)o :él CeaCht — CryCr,y
The problem with this notation 1s that one has to be cateful with rotations The
expression above is correct 1f and only if the spin quantization axis is parallel
to the magnetic field. If this is changed then only the projection of the spm on
the z-axis contributes Therefore, if calculations are perfoimed with a rotated
Hamultoman then the Zeemamn term has the followig form
- g N
Hoen = =S DCINCRNSL AN (4.49)

In moie general terms, the Zeemann term hrakes the rotational symmetry of the
system Simnce the external magnetic field has a fixed duection, the fact that the
spin 15 conpled with the ficld leads to a prefeired spin direction

Unfortunately, such terms vamsh within our desciiption ot the situation The
1eason is again the chosen structure of the states It implies that the expectation
value of EL,TE,L,T equals the expectation value of &I,lc",hjl Tlhe niissig spin sensitiv-
1ty 15 shown here most drastically To choose the same prefactor 4°* tor up-spin
and down-spin particles negates a preference in a certain spin duzection.

Remark: A conclusion of the strategy of this chapter mnight also be to handle
the Zeemann teum as follows The Hamiltoman s the one given in (4 49) 1t it
is evaluared with unrotated states VWhen using rotatec stated, the Hamtltonian
should fi1st of all be expiessed i1 noimal operators leaving 10tational effects to

the states. However, the cosine factor has to 1emain since the same angle between

the two forns of operators exists it both cases Snuch an ansatz leads m the trial
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to obtamn ouly one kind of operators to

HZeem
2z 0 < t t
—~—=—— % c0SO{Ci4CLr — C}(C

N2 (I)g .l; k { kTVE k,l k,J.}
Az d I . .

= ——= SN cosbyélR} o, R,
N2 ®, g kCptly Oz 140
Bz & & A cos & ~smn?% ~2smBoeos )

= ——— > cosb & 2 SRS A
N2 d, =1 —2sm %k oS 9-25- sin® & — cos? %
Az P N ' ;

= TNI®. & G — 6L 6 ) — si =t = -

S NI kgl cos e {08 B (48t = Skt ) = sin b (s + 2 atisr)
Az @ il 2 t ; 1

= TR ¢ e .-l 0 __‘9.-1’- -t =
N2 By & {COS O (C’C-TC"*T Ck'lck-l) 5 sin(26y) (Ck.TCk.l + Ck,lck,T)}

Then after calculating the expectation value only a teum proportional to sin(26y)
survives, forcing the spin 1n the limit of a strong magunetic field B, to poiut in the

direction of 8, = %‘fr. Obviously, this does not desciibe the physics correctly O




Chapter 5
Trials of Improvement

The considerations in the pievious chapter allow to gain a feeling tor the notion
of rotation. Even so soine changes have already been applied, theie are still
major difficulties connected to the present model In addition to the mussing spin
sensitinity three others are mentioned 1n the sections 51 and 33  Possibilities
liow to unpiove the situation, also by using fewer sunplifications, are suggested
As a consequence new systems of equations have to be solved This 1s tried for

systems of a imited size 1n the sections 52 and 5 4

5.1 Away from Half Filling

It one looks at the results m the previous clhiapter 1t strikes that U always appeats

i the numerator However, U 1s the coupling constant in the Hanmultonian

N ye, 4 N
H=—t> {c}mckH,Te%‘% + cLickH'J,e_;rﬁ +h c.} + U fugiey

A=1 k=1
and deternunes the mteraction hetween fernions with different spius on the same
site For large U the Hanultonian is obviously muunnzed it all particles aie
strongly localized and no site 1s double occupied Even m the it U — oo this
kind of behaviour leads to a finite energy, provided that the band 1s less than half
filled In contrast to this statement, the obtained result on the pievious pages

diverges as U increases There 1s no possibility to get all coefficients 1n front of

U to vawsh.

106
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It would be much more reasonable to have U m the denominator. This 1s
what actnally happens when the Hubbard-Stratonovie decomposition is applied
as can be seen in section 4.2 Only the move to the saddle point as proposed
by Schulz [44] and peiformed on page 87 f. changed tlus fact. It resulted in the
diverging term i-M U The reason why the transfoimation to the saddle point
does not alwayvs lead to exact energy values hies 1w the hinmuted vahidity of thus
transformation. It was not possible to perform 1t without a couple of assumptions
One of them was 7 =~ 1 which refers to half-filling

Therefore, it seems to be a good wdea to perfoim the calculations without
the movement to the saddle point For this purpose the various steps are briefly
repeated By allowing now rotations with two degiees of fieedom we shall also
forget about the sunplifications in tlhis direction

The starting pomnt 1s the form of the action after the Hubbaid-Stratonovic

decomposition as has been given now already several timnes

, "g N 1
e~ 5t — [DQACS(L T) exp [—— (So +/ {5 (Aﬁ + AE) — Ay — Assk})l .

Assunung that theie 1s no dependence of the plysical quantities on imagmary
titne and handlhing the chemical potential as a constant which can set to be zero,

one obtams the following expiession for the Hamltonian

N L] 2xy B
H = —t) (c,tc,cHeT“’o el e “’0) (51)
h=1
N y Az ®
+ 7 (AE + AE) - IACI;CL lyc, — A, I;cko'zck N, Z CLO:C;

now without any movement to the saddle pomnt, but with the Zeemann term
It shonld he pointed out agamn that in such expiessious ciearion (annthilation)
operatois without a spin mndex cdenote the spinois

Gkt

CL = (CI,T cz‘i) and ¢ =
€l

Foi the three-dimensional rotation every teim shall be handled separately.

Fust, the hoppuig part:




CHAPTER 5. TRIALS OF IMPROVEMENT 108

~

chepy = 8 RY Ok, G)R(Oker, Cirr) Gy

— 8 -
t coS %"- e™'% sin %L cos AL —eTG4igy ﬂfzﬂ .
= G Wy oin @ ¢ i, 141 Orgs Chr1
—e'*sin 3 cosF eShEt g == cos =5+
_ = p =
= Gt Ry (Ok, Chy O, Ghtr) Eyy With
R r = 9, cog Bt (=Gt Cur) gipy B gipy Test
I (o cosFcos =5+ + e sin 2 sin =5
Rev = o=t gn % cos Bl _ ~1Ck41 oo O gip ZetL
Riqy = 7' sin 4 cos = e cos = sin =5 (5.2)
2 1 = —e' gin 2 cog Bt Cert (o5 & gip 2t h
Ryyp = —e s 3 cos =5+ + e'%+1 (05 - sin =
= 8 - g
Riy = cos & cos AL 4 e{G—G)gun g Zant

_ Pt = 5ot s At s A st
= Re1C3Chvrg + Ry €aCopr,y + BearCh Coprg + G 1640y

In general, the matrix ﬁ’h((?k,(k;ﬁk“,(kﬂ) cannot be sunplified The previ-
ously used argument of an addition of two rotations (one forward, one backward)
does not hold in the three-dimensional case The reason 1s that alieady the first
1otation implies a change of the coordinate systeni, so that the angles of the <ec-
ond rotation are defined with respect to different axes Ouly n special cases one
can return to the old prcture If for instance the longitude angle 1s the same for

every site, ( = (x = (x4, then

- cos? —esind
Rk(6k1c79/»+b<) = H
e¢ s cos )

where 9 denotes agamn the difference £(fi41 — 8¢) and can also depend on the
site. !
Nevertheless, the matrnx elements of R depend on each other n a simple,

characteristic way:
B =R and Riy=-Rp, (33)

whete the stais denote “complex conjugate” values Tlus s even moie helpful for

calculations than the fact that R as a product of umitar v mattices also has to be

'If 12 1s defined as an adjunct matrix B* then ¥ = (6 —#f;41) and the signs m the matrix

change
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wtary, with the consequence that

Rl + Rl = 1 =R+ [Rel® 6 1)
_ L L o 3
Bimfteg + Rpplen = 0 = Ry Bigy + 185 e
Only the first of these four equations does not follow from (5 3)

For the interaction and Zeemann part the rotation has the following effect:

At 7 - . [ 10) .
et lye, =&t RY (04, G) 12 R (B, G1) &, = €L 01 Cr
4 \ L cosf, —eSsmb )
co.c, = el R (0r, C) oo R(:, ) & = & _ &
—e%sinfly  ~cosby
Together the Hamiltonian (5.1} becomes
X 2 =1 = e T | - —am b
H= - tz Z {Rk,aa"ck,ack+1,a"e Mo + Rk,aa’f’k+1,ack,a‘e A ‘I’O}
k=1a,0
N - Az &
+ T (Ai +A§) - 1A, Z ide, —- —Z— Z cos bl e,
AF
— A Y costido.d, + A, Z sinf {ef ;7 6% +he}  (5.5)
k=1 A=1

with the matnx elements Ry .o+ defined in (5 2)

A vanational caleulation with the rotated states

> M2 7t 7 ny gt
|U.))H[, JUAT = 2 / Z z 7111 ) f";\:! AT AS ’ 71-‘71 |(])

11, My Ol AL

works along the same lines as before One obtains the Haitiee-Fock cquations

N
= - 1 2m b . "
— fz Z Rk,m:r’ Z 'Yr“ (7;.:17: 7;,l47k+1) + 97k+1‘$1:k ed M 4 *“he

A=leoa
4;&1:'
j\f
4+ = (A +_§2) ,Ync- _ ?_\ Zt) l Z __yn,q ru /uc- /n,;,:{nc') +17n(6 .
U t 2 T & 5 Tk %
k=1 Aaéc
A7 D
- cosf 0 — A, ) cosé
N2 @, Z k 2;1 b
AT
1 -
T AL B I P F N [
L=l

A#C
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This expression shall be modified next For the hopping the chaiacteristic
dependence (5 3) of the matrix elements of & can be used to prove the following

statements for any z € €

{(ft’k.ﬁ + Rk}u) z+hec } = (Rk,ﬂ- + Rk?u) {Z +h C.}

_ . _ _ (56)
{(Rg u-}-Rk,”)Z-l-hC} = (Rk,Tl+Rk.l-T) {Z—llC.}
Furtheimore,

27 O 2 @

zeN lo+hc} = {z+he¢ cos(—— )+1 z—=hece sm( )
{ (z+hc}eos( g ) +1{z—he}sin(Fg
T ']

{ o - } = {z—hc} COS(?J,VT)—) +1{z+hc}sm(%v1£-§—0)

(57)

Hence, in the hopping part of the Hartree-Fock eqnation the sum over o and of

becomes essentially
D P = ~ . 2 ¢ = =
{cos(?\—r;i)—o-) (Rk,TT + Rk,u) + lsm(wzﬂ) (Rk,u + Rk.n)} * [ +h c]

2n O . 2 O _ _
{COQ(N, I ) (Rkﬂ, + Rk“) +ISIH(VI_]) (Rk,TT‘{”RL,u)} * [ —h C.]

(58)

Alter a careful handhng of the various trigonometric functions one finally ends

up with the following set of equations.
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Ay =

i .
S 35> [ (gRe = A2Aia) + 980 (2080 = A2 iey) ) +

e
27 © B 0 2r @ f f :
. ® {cos _‘I’_o) cos -:—;cos kgl + cos (; Io) qiu?ksm L:;H cos(Cr — (1) ‘
2= P ) % g +1 ( T P ) Ay B a1 !
—sm| ——) cos —sin sing41 + sm 11— COS —— S1i1 L}
( /D 272 * No/ 5 Smé |
N A
- * d *
= 3 S (RS RSy -t (R - )}
k=1 A=t
L f2n O O Bks1 P A O
* bm(ﬁﬁ) cos 7 €08 -5 + si (N ‘Iu) sm —5111—2——cos(g‘k — Ce+1)
2 P 6 0 2z O f f
+L0<;(FT(I’0) cos ?k sin —k—;w'l sy — (1\: Iu) L1 -25 CoS %smck}

e

-t +n) =
27 4 0, Bril 2r @ g, B 41
cel ¥ {COS(_E) €05 - €05 =5 + cos(N Io) sin -;s:n 5 cos{Cy — Ca+1)

Slll(Qﬂ- (I)
N 3
— (5 —1R8))

(2% @ 8 0 21 O 7 a
.ok {sm(——) cos - cos 22¥1 + sm ——)—) s —= 51 =L cos(Cy — Cz41)
{

N

o, ;. 2o O A,
cos 7 sm—é-—!-sm Cos1 + sm(ATrr Io) sih 5 cos 9"'"_;'1 si1 Cx}

N & 2 2 N &y 2 2
27 O 2] ) . 20 O { )
+(‘09(Wﬂ) 08 ;xsm +1 sin€z41 — cm(r;;l—)‘-]) St 7'"(:0% 1;'1 smcx}
N M
+ .l.,z Z sin@e v 2t (ve 195 =P wsG + Aysmb, v wos(,
b=l 22
N AZ AQ Ao N [AtC e
+ E( e+ s)x — 1AMy, (59)

It mglt be necessary to add a couple of remarks on these equations As an

expectation value of a hermitian operator one expects the eneigy to be a teal i
value. Hence, 1t strikes that the nnaginaiy unit 1 appeats twice 1 the equation. ;
However, this 1s not much of a problem, since the biackets behind it consist of a
complex number and 1ts complex conjugate (at least after a devision by y7¢) A ‘
little Iiut moie suspicious is the fact that the first of the interaction teims does not
necessarily give a real number. Tlus can for instance be seen in the case of Bloch
waves below. Here the reason 1s that on the 1ight hand side of the Haitice-Fock !

equations an expectation value 1s not really calculated An important face 1s that

the sum over  1s nussing Ouly 1t the expressions become mdependent ot a, 1f




CHAPTER 5 TRIALS OF IMPROVEMENT 112

proper solutions are found, this constraint vanishes
It shall be exammed next whether Bloch wave functions and these Hartiee-
Fock equations go together. If the former are mseited into the latter one obtains

expressions like
e 2 2T 2
ny* n n 7
T 4 (nj_l 'Ykil,ync) +he = {COS(WTI,‘) — ‘0‘*(}\—,"0 +

* c Yz
e (71? - Y ,ync:)"‘

z| ¥

(7'c—HA)(f~—’E))}

'le =

{1 — cos (-—-(nc —nal{k—-x)

)--
—13111(3::(710—114 &k — a:))}

which combine to the energy E =

— 9 Z Z [cos( (n_,;+ ;I))) - cos(%r (vrc+%+ (ne “?H)(k“"')))] *
-l;éC‘

Ok Okl O it
{cos 5 €08 —— + sin 13 s =5 ms((k - Ck+1)}

27 A
-2 (,os(ﬁnc) {cos % cos 9”;1 +sm %z— s '”2+1 cos((z — Cr+1)}

A
! o 2 111]
+ 2t Az=:1 ﬁz [qm(N (n,; + I’o)) - Sm( N (nc+ By + (ne —-n.[)(ir—:c)))] *
Az

O B O
* {cos;sm ;' S Crqy — S - COS ; qmg} .

. 27 Bz Hri1 . d, Bat1
+ 2t 5111(7\—775-) {co 5 5 —sin—-cos =5 smgr}
‘)
— A, Z Zsmﬂ;~ {cos(—(nc na)(k— 'L)) + isiu(:j{;(nc —-na)(k— r))}cos(k
o
J\I
+ A — quﬁk(osg + Agsmbrcosl,
— 1AM+ g- (A2 4 A2) (5 10)

For the case ot an arbitrary rotation tluis expression can hardly be sumphfied
further The fact that z and ne appear several times indicates that Bloch wave
functions are appairently not proper solution. One possibility of continuation
could be to nsge them as an approximation and to minnmze with respect to the
mean felds A, and A, accordingly Another possibihity, and this one has been
chosen, 15 to 1educe the size of the system For these simplel configurations it
should be possible to construct the wave functions by hand with the hope to be

able to generalize their solutions to larger systems.
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5.2 Limited System Size

5.2.1 One Particle / One Site (M =1,N=1)

A
Whenever we have a situation with only one patticle, sums of the foom 5. m

A=l

AFC
the expression for the energy (5.9) disappear because of the constramt A # C.
Furtheimoie, for the special case of N = 1 it is yx4) = 74—y = e = 7 1f we try
to use again periodic boundary conditions®. The same 1s true for the angles 8,

and (. Thus, the only remaining term of the hopping part is

=t (i1 + %250 * -
27 @ g B 27 ¢ g 8
* {LOS(—W—) cos == cos =L 4 cos( P ) sin -25 s :BQH cos(z — Cot1) —

N @ 2 2 N &g
27 @ 0: b 2 BN , B, 01
—-sm(F(I)—O) cos -;2——sm > sinze + sm(ﬁa) sm?cos 5 smCI}
= -2 cos(Q—'TE)
- THTONN T,

For the interaction part the symbols

o, = Agsinficos
and E}M’N) =T (Ag + Af) —~ 1AM
shall be mtroduced to simphfy winting
Theirefore, the complicated energy equation reduces in this case to
27 & (1,1)
Ev-—?tcos(ﬁa)'y+a1/+E,~ 7y (512)
with the solutions
E = —=2tcos ‘>:nr3 + Assinfycos() — 1A, + L (A2 + ,_\2)
- = =7 By s LEER51 T pg\Te s (5 13)

7 o= e

where y can be an arbitrary phase

2The upper ndex for the quantum number 1s omttted because only one number appears
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A saddle point approximation in the charge mean fields is achieved for A, o =

1é4
2

cortesponds to 6y = Z,(; =0 and A,y = -%. Thus choice, which 1s by the way

Foi the spin mean field it depends on the angles The absolute minimum

wlentical to former consideration on page 87 (half-filling), has the effect that the
two contributtons cancel each other Only the terin proportional to ¢ 1emains for
the eneigy This 1s the coirect result because for one particle theie should not be

any mteraction

5.2.2 One Particle / Two Sites (M =1, N =2)

Even here it is yz41 = 771 for £ = 1,2 because of the periodic boundary condi-

tions A closer look at the hopping terms

=1 -2ty {LOS'(N g)u) cosg—lcos‘[;—2 + o3 (9\: g;) smg—sm%{wb(ﬁ (2) —
—5111(2'r o ) cos — 2 smg—smCz + sm(——-i) smﬁcos ﬁsul Cl}
N &y 2 2 N &y 2 2
=2 -2ty {cos(‘:: I?o) (208922 cos % + cos (3\7; g;) sl — %2 mni—lcos(g‘z —-{) -
——Sm(27T P ) cos 0— sme—smql + sm( U ) qmﬂ—z cos 6‘—<5111C }
N &y 2 2 N &y 2 2

shows that variables w; and w, can be introduced such that the terms can be
wiitten 1 the form
2 =1 —2tys (w) + wq) _
72 (5 14)
r=2 . =2ty (w; — w,)

wlich 1s based on the fact that in (5 8)
RLTT = RQ,N? RI.H = R?,TT’ ‘ﬁl,ﬂ, = _RQJT! Rly’LT = —'R?-TJ-

Then for this paiticular case the following system of equations in 4 has to be
solved
(E —a; — E(l 2)) Y+ 2t ('lUl + ?l)z) Y= 0 . e
1) (013)
+ (E—(LQ—EFT')")Q =0

Apart fiom the trivial solution v; = ¥ = 0, which contradicts noimalization

2t (’LU; - ”iU‘z) Y1

conclitions, the only possibility to obtain further solutions 1s that

0 =

' det E—~a - Eﬁ,l’z) 2t (wy +1w07)
e
2t (wy —w)) E—ay— El(pl’z)
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= 0 = E'-EQEp™ +ar+a)+(BL? +a)(EY? +ap) - 42 (w? - )
1 (1,2) (12) 2
= El,ll = § 2EF +ay+art \/(QEF +a; + az) - .

e — 4(E}1’2) + (51)(E‘i—1’2) + a2) + 16¢2 (w? — ug))

% (2E§,~1’2) +ar+art \/(ag —a1)? + 1612 (w? - w%))

[f one puts this result into the first or the second of the equations (5 15) one
can obtain a relation between 7y, and <9 wluch together with the normalization

condition determines the wave function

4t (wr +w
— - (w1 + w2} ¥o =
(a; —a2) F \/(al — ag)? + 1682 (wf — w3)
(a1 —a2) £ \/(al — a9)? + 16%2 {w? — w3)

4t (we — wn)

(5 16)

== T

Y2 = i 2

Together with 1 = 1,9] + 1y = (1 +ri,,) v,¥s this leads to the following

solution:

‘ 2
Egy= (a1 +a; \/(al -~ az)? + 1612 (w} — w%)) Sl AV (’_\g + A?)

U

N} s

7 LI 1 n
[#] LI v 1,0
e elX elx

n iy " J1+12,

(517)

Again the wave functions include an arbitrary phase x [t 1s not very helpful

to give an extended version (without auxilialy vaiiables) foi the energy because
the expression would be too complicated. Neverthcless, one can mention some
mteresting points which are connected to the stiucture ot the solution for the

wave functions

1. The ratio of ; and - 18 apparently of paiticular inteirest for the wave
function. Since 1t does not mnclude the variable Ef;,}’?), the wave functions
apparently does not depend on the mean field associated with the charge

degiee of freedom. This is reasonable, because the total nunber of particles
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S

and hence the the total charge is assumed to be fixed witlun the model

under consideration

What 1s less understandable is the fact that the qualitative difference be-
tween the two possible solutions I and I is also independent of the mean

field associated with the spin degree of freedom. In the product

r I 3
it Mo

Tt = = Al u
w—wWe Yy Yo

only quantities related to the hopping part appear.

There exist some special situations for the solutions of the wave function

1
two equal solutions Y =9" <= 0=(a—a;}® + 162 (w? —w?)
. Mn_.m !
murrored solutions: p=op = 0=w
2 1

r
equal distribution®  |m]2 = |y? < (a1 —a) = £ 4tw,

localized solutions: m=0 = w=—wAE=a+ E}}f-’)

B=0 = wl:ngE=a1+Eg‘2)

In the last situation the interaction energy 1s that of the 1 patticle / 1 site
problem This is not the case for the kinetic cnergy, because even 1if not
occupled the hopping “feels” the existence of adjacent sites Ouly 1if both
sites wele 1dentical, Q) = €5, then also the lanetic energy would have the

value of the previous case,

It the magnetic flux 1s close to half a flux quantum, the expression under

the square root

\/(al — ay)? + 1682 (w§ — w3)

can become negative, since in this region we nught be greater than w; Not
only does this lead to complex energy values, 1t might also have the effect
of diveiging expressions for the components of the wave function The most

hikely conclusion 15 that certain® configurations are sumply forbidden

3This term “certam” 1s difficult to specify, because alieady for two sites the equations are

too complex Nevertheless, one can say that for §; = > =~ 0 no difficulties appear
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Based on these statements one could try to investigate the dependence of the
syvstem on the external flux. There are two possible approaches One is to fix
a certain spm configuration and to study how the wave function alters if the

magnetic field is changed The flux dependence is mainly determined by the two

varlables
_ 2= @ 8, 8, B . B2
wy = (,O‘S(FI)—) {COS 5 cos 2 +Slll-§-Slll?C0b(<1 —Cz)} and 18
_ (2,~I>){ 81 s 2 e A 9—28‘4} (518)
wy = sm| == SIn == cos = sin; cos - sin - singa o .

Therefore, one can obsetve that the probability of the paiticle to be on -ite
1 or on site 2 changes periodically Depending on the parameters, 1t can happen
that the particle can for some values of ¢ only be fonnd on one site  With
incteasing flux it then moves to the other site until the flux 1s again laige enough
for a preference of the first site. A continuous increase of the Hux, theretore, leads
to an oscillation in the particle distribution

A moie accurate approach does not ¢ prior: fix a certain set of angles On
the contrary, 1t 18 supposed that the spin structure 15 deternuned by the external
magnetic field Whenever a non-zero flux appears, 6 and ¢, are chosen 1 such a
way that the total enetgy becomes a muumum Theiefore, the angles mght be a
function ot & A trial to obtamn a minitnization with the help of dernvatives leads
to long, cumbersome equations Thus, a qualitative cdiscussion ot the energy 1s
necessary

1t one staits such a discussion with the case {; = § = 0 and cos( ugd ) ={

||1

then the munumal eneirgy is detetmined by

Ey==(ay+a; -] —rt2|)+15(l 2, = Agsmé,

i\:.‘vlu—l

For both of the possibilitics a; < a; and ¢ > @, only one angle 1emains Heuce,
it 15 without loss of generality sufficient to perform a minimization of «¢; with

respect to #), because then ) < a; 18 automatically fulfilled. The result of this

nununzation is #; = %’5 The next two steps are to drop fitst of all the constraint

COQ()—T“—’) = 0 and two allow later non-zeio values {; = (> = ¢ Looking at the

Ty

energy
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E, = %A3(51n91+sin92)cosg

1 27 ®
—ﬂ/f_\';f(sm & — s f)? cos? ¢ + 1642 cos? (WE) Los? (%‘ - %%) -.

€
. — 162 sin? (%T %) 51112(%1- - -(-?)E) sin?¢ + E}.}’Q)a

one can see that the flux minimizes the energy even further and most of all if
#; = 2 On the other hand, the { angle leads to an increase 1n the energy because
| cos¢| < 1 and because of the minus sign m fiont of s;n?¢ This is less apparent
but also true for §; # (.

Hence, to choose #; and (; in such a way that the total eneigy becomes a

minimum means to have

37 T
91=92=?; C1=C2=0 — 91=92=§; C1=C2=7T.

This 1esult leads flux-independently to the energy

_ 2r P . 2 (a2 A2
E——_\.S—thos(ﬁ(—}:}) ~1A6+‘Uh('lc+-ls)‘ (5 19)
Furthermore, the saddle pownt for the mean fields is A,y = ‘—({: and Agp =

%’ It leads, similaily to the previous case, to the non-interaction energy E =

—QtCOS(%VI%)

5.2.3 Two Particles / Two Sites (M =2,N =2)

The previous two cases were not very mteresting becanse the existence of only
oue particle does not allow any mteraction This 1s different for the situation
which 1 now under consideration. Therefore, it 15 also not possible to (ombine

the solutions for one particle to a solution for two particles By calling

1R =ty and pt= G,

one ohtains from {5 9) the following general equation

E"h- = - t[Qﬁ:(JB?’Ya: - ﬁa:’h)('wl + w?) + QﬁS(ﬁl’Ya: - ﬁ:c’?l)(wl - '102)]

- t(7$+1 + ’Y:r:—-l)(wl + w2)

* * 2.2
+ a8 (817, — Bemi) + @285 Bty — Bo¥e) + a2, + Eﬁ; )'Yx




CHAPTER 5. TRIALS OF IMPROVEMENT 119

which leads to the set of equations

3]
I

—

=

= M [—2tﬂfﬁ2(w1 +wp) + B3 Bpaz + ay + EG® — E]
+ 7o (201 B, (wr 4 wg) — 2t(wy +w2) — P8,a0]
T=2: 0 = 7 [+2t6;58,(wy — wa) — 2t(wy ~ wa) — By Byt
+ 7 [-2:&55[31(101 — wy) + BB ar +az + B - E]

(5 20)

Piovided that the two wave functions v, § are distinet, the existence of a non-

trivial solution is equivalent to the condition

0 = [—Qtﬁfﬁz(wl +w) + B2 Byay + ay + EXF — E] ..
* [-2t838,(wr — wn) + BiBon + wa + EF — E]
—  [+2t63 8wy + wa) + 858 az] * [+2t8; B, (wy — wa) + B Boeu]

for which also the normalization condition |5;]2 + |3)? = 1 15 used twice If one
multiplies these brackets it turns out that many terms caucel each other leaving

the following equation for discusston
0= — 28! 8,(w +wa)(ay + 03 + ES? — E)
— 2638, (w1 — wo)(ar + as + ES? — E)
+ 18, ar(as + EEY - E) + |Baalaz + B - E)

+ (a1 +E®® - E)(ay + EF? — E) (5 21)

Just looking at the imaginary part of equation (5 21), oue has to deal with

0= - 2tIm (ﬁrﬂ2) (wl + ws)(a; + ay + E}(;?‘?) - E)
~ 2tIm (B36y) (w1 — wo)(a + a2 + EF — E)
= 0= 2t I (B ;) wa (ay + o + Eg,z) - F) (5 22)

The equality is satisfied if one of the factors 15 zeto That leaves the possi-
bilities that thete is no phase difference between 3 and s, that a speaal spin
configuration is realized or that the energy has a certain value The statement

about the energy 1s of particular interest, and used for (5 21):

0 = |B*a1(—a2) + |8 a2(—a2) + (—a1)(—02)
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one can see that E, =a; +az + E,(;-Z'Q) is also a solution for the whole equation.

Tius result makes it much easier to find also the second energy solution of the

quadratic equation (5 21), written in the form

0 = (E-EPY) + (B — Ef™)[216; 8, (w1 +wa) + 2838, (w1 — w2) — .
o= 1B = |ByPar — (0 +a2)] +{ ...}
—_—

[ ] = —(E — E}(f’ﬂ) —(Ey — EI(—?’Q)) = EJ(:?'Q) — (a1 + ag) — Ey

Hence, the two solutions for the energy are

E, = a+a+ E‘(.;-Q’Q)
Ex = 2Bt By(wy +wy) + 2656, (wy — wy) — 16,21 — |G, a2 + EE?

{5 23)

The next step 15 to determine the wave functions belonging to these energles

If the obtained energies are plugged into the equations (5 2 3) one ends up with
two (per construction dependent) equations For E = F, 1t 1s not difficult to see

that they aie fulfilled for

1 1
h=p0=—e* and y=-m=—7e" (5.24)

V2 V2
Ol vice versa
For E = E; the situation 1s much more difficult. Looking back at the dis-
cussion of equation (5 22) one can conclude that in this case there is no phase
difterence between 3; and B3, provided that not a spectal spin configuiation 1s
realized such that wy = 0 Without loss of generality one can therefote assume
that the components of g (and ) are real. Then the equations (52 3) can be

wiitten as

T [2t61 (w1 — we) + Baci] = 72 [2tF2(wy + wa) + Brag]  and accordingly

B2ty (wy — wa) + a1] = B2 [2tye(w) +1w02) + mas], (5 25)

where 1t has been used that non of the components 1s zero Together with the

notmalization conditions one now has four mdependent equations which can be
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combined in various ways. Eventually, all these possibilities lead to the same

quadratic equations, which are:

0= [16t2w2 +(a;, — 02)2] -z [16t2w1(w1 +ws) + (a; — 0,2)2] + 482 (wy + w,)?
0 =3 [16::2101 (ay — a2)2] -z [16t"’w1(w1 —wy) + {a, — (1.2)2] + 482 (w) - u;)?

Heie, 2 represents 37 or 47, and Z stands for 52 or v2.

The solutions of these equations are

o = L]y 1ofwws | (62 - (1620) (16t2w2 T (162%03)

2 p \ P
o= 21— Wetwwy | |, (162u]) (16t%03) (10t°w| 16?‘%2

2 P \ P’
(p = 16t%w] + (a1 - 02)2) 5 26)
They have the wanted property z, + - = 1 = z_ + Z; Wlich allows the
combinations

[131=\/Z A }32:\/5_—] or [ﬁ1=\/'zf A ﬁ2=\[:2:] (5.27)

and simlarly for v However, during the process of transformung (5 25) to the
quadiatic form the whole equation has to be squared once Since this 1s not an
cquivalent transformation, not all of the suggest solutions teally have to fulfill
(523) A thorough investigation into this question has been done, but is not

worth repeating because of even bigger problems mentioned in the next section.

5.3 More Appropriate States

5.3.1 The Problem of Orthogonality

Looking back at the pioblem of 1 particle / 2 sites, we had in (5 17) two different
solutions 7' and +* for the wave function These two ware functions are not

necessarily orthogonal On the contrary,

'TI'YH+’)’I’YH_ L+r 7y _ 1 2w9
P \ﬁ+rf\/l+r§ \/1+r$\/1+r‘§ Wy = W
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and orthogonality is only satisfied if wo = 0 In this special case, which is for
instance fulfilled if {; = (o = 0, the solutions arc identical with those of the 2
paiticles / 2 sites problem because

1662w? B \/thwa + (ay —ap)? £ (a1 ~ o) zs
7= =<
(\/16f2w% + (a1 —a2)2 F (o) - (12)) \/lﬁtzwf + {0 —@)? Flag ~ap) *F

2 __
LR

Fo1 all other angle configurations our Hartree-Fock calculations for the 1 par-
ticle problem do not lead to two otthogonal solutions Hence, attempts to obtain
a solution for the 2 particle problem which consist of a combination of two o1-
thogonal wave functions are also very likely to fail

Thetetore, we have to reconsider the stiategy for the choice of the states In
the preceding calculations the more general two-body state

711.712 =3 Z Z %nll,t’?) 11,01 12,02 IO)
?,1 12 T1,02
lias, in a kind of separation ensatz, been split in the foim

— iy n>
nl n2 Z Z ’Yll ’YEZ lltal "2"72 IO)

"' 21,12 T1.72

It this step together with the normalization condition ¥ |+ |2 = 1 and the o1-
thogonality constraint Z'yf"y:"’ 0 for ny # ng 18 I;exformod, one has two
mdependently behaving particles in mind However, this 1s not a usehul concept
1 the case that there is an interaction between particles. Due to the teraction
there mght appear new energy levels which aie not sumple combinations of the
energies of single particles The wave function needs to be treated as a many-body
problem

The solutions for the 2 particles / 2 sites problem on page 121 cannot be used
hecause they are in general not orthogonal and, thus, contradict an assumption
which is appaiently wrong. It 1s necessaiy to forget about the orthogonality
constiaint and to perform the calculations again That means that the evaluation
of the Hamiltonian {5 5) has to be altered, and consequently, a mote gencral
expression for the Hartree-Fock equation (5 9) has to be found.

For the expectation value of a typical operator without using orthogonality

a compact notation shall be used It arises naturally when such operato1 chains
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ae fully contracted and makes use of an auxiliary quantum number ng tor which
the wave function is 4}° = §, . Then

..T -
nMW’ |k 4kt | 1/’)"1 g

p{0)#0 . "y

sgnp+l, n* narx . Po(l) Npary ()

Z Z )( 1) Tn Yo T - Ty ant
Jl- JM pE'P(M+1

0
(nl» mut'blzc’““fck“'llw) L =’1M)

1,

i~ %
dvyne =1
1 N JeE p(());éo mn n T
= = —1ysEnp+l, nax uet ﬂu* e(1} ptalal) T (0)
- ‘)Z Z Z ( 1) Tnoo e - N T T A+l
"'k=l.?1. JAr pEP(A+1)
je=x
TAL* Rol4) No(ar)

— sgng,, 71 * gt w(1)
Y Z Z Z ( 1) p'y v Yie - -V 7.?1 N FE U (Y
1=11, .Jar pEP(AL)

and the sum over all permutations cannot be reduced further

Henee the y-problem has a much more comphcated structure than (5 9)4.

Je=T —
L 1)eER, L ne AL ¥, n’P(l) ,‘”‘V(A” —
£ Z Z ( 1) 711 ' ’7Jc 71;1 131 © T
Juy s1n pEP(AN)
=1 p(0}£0 1 . . "oy .
—_ —1)5gnp+l. ni* e nar*_ ey (AL} “ p{0
tZ Z Z (-1) T e o T Yoo N (7L+l T )
A=171, 2Ja1 pEP(M+1)
2 ® 8 9k+1 27 & ) 8 9k+1
¥4 COS| —— | COS — COS —— + C sm—sm-—-—<m -
{ (N ‘I’o) > 5 N 5 (Ch — Cra1) —
I A 2O\ B B
_.-,m(N(IT cOS ?ksm k’2+1 sin (41 + sm N I slnT‘”cos ’”‘;H sin g
0 4
N 0= p(0)ED — n " n
__1ysEne+1,_ np* e g *, p(l) w(Ml( 51(0) P(O))
le DI DI €2 Vi A AV A S ~ %2
A=171, aJqu'P(M+l)
v O g 2 27 O . Oy
sin 27 cos—’icos-f-ﬂ+ Sin sIm —Sill-'—LOb k— CLel) —
N I’o 2 2 N (I) 2
2r O g a 27 P # il .
+¢‘o~.(N 3 cos -255111 k2+1 S Cky) — COS N sm-—’iws ";’ sindy
0 0 2 2
N go=t  p(0)#0 " » ;
sgnp,. n1* "c napx, e} w{A) _ "p(0)
+ s Z Z Z S ) i A VI SV gar W sy cosGy
A=l11, oJar pEP(AL+1)
N c=1 p0)#0 . " .
—1)yenp+l, ni+* et Amap Ml el Maln)
13, Z Z Z (~1) T “Te - Ty T Tru A
=11, 3ar wEP{1\1+1)
J\‘r 2 2 5 * T* NITE L H -
R grng ., 1y A~ A p(l) w{Al) ¢
T (Ac + Aaf) Z Z n Tye v Tn T (529)
Jre Ja PE'P(A[)

1If 1n the following sums p(C) = 0 then J,. 1 appears, which together with 6, ; leads via

8, 1 to the effect that the sum over k& vamshes and that all angles have the index z
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For the special case of 2 particles these rather difficult equations can be re-

duced to the less cumbersome expression (C = 2).

N
EY it {apiape —peqm ) =
n=1
N N
-t Y e (7;?51 + %) = e (Y ) =
k=1 n=l1

L= (28 + ) + eaie (vt + ) ) {(%”I,i) -}

N N
= 1t 3 At i (R = ) = e (v - L) -

k=1n=1
2r @
Ro. 1 ne e 0Tt ? o 5
R (’Tk+1 - 'Yk—l) + Y P2 (7’541'1 - Fyki‘)} { Sm('ﬁﬁ) o }
N N
A TR = AR — VRS + 0o e cos G
k=111=1
N N
= AT 3 A TR = VAR — O+
k=131=1
N 9 2 z
ny* n 9
+ U (-’-\c + -'ls) Z 7_111 {7_;1117:0 - 7_1107-:1} 530

n=1
For the sub-case of 2 sites one obtains by

e callmg agam 472¢ =17y, and ~2'= g,
e keepmg in mind that v2, , =+2_, and

¢ neglecting normalization conditions for the single particle®

the following set of equations

E {7 (BiB1 + B2By) — B, (Bim + Bava)} =
= 20{B (B — Beva) (w1 + w2) + B3 (By¥e — Bemr) (wy — w2)}
= 2t {%e41 (8161 + B3 By) = Bryr (Bin + B3 )} (w1 — (=1)"wo)
a8 (Bive — Ben) + @283 (8272 — Beva)
az {7z (B151 + B382) — B (Bi + B372)}
— A2, (816 + 8382} — B (Bim + Bava) }

9
= (_\.3 + f_\.g) {7 (8181 + B363) — B, (Bim + B3 v2) }

SEren if they were used, the result would be the same

+ +

+
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0 = 7| —2810(w1 +w2) + 2161 Bo(wr + w2) + 02838, + a1836, —
; 2
=20836; + 57 (a2+42) g6, - Eﬂ:ﬁzJ

+ 2|26y Ba(wr + wa) = 2661 B, (wy + wa) — a2B38, — a1 538, +
) * 2 * *
20556, — - (24 A2) g3, + E636]

0 = 7 '21‘[3;;6’2 (w1~ w2) = 2863 By (w1 — wa) — 187 By — 2Bt B, +
R T % (a2 +A2) g8, + EBif,
+ T - 2635 8y (w1 — wa) + 2¢63 8, (101 — wo) + a1 By B, + 421 6) —

;QJAcﬁfﬁl + % (AE + Ag) BBy - Eﬁfﬁl-

Surpuisingly, these two equations can be sumplified a lot, leading to

0 = (a1 +ag+ EJ(:?’:’) - E) B3 (1By — 28,)

(5 31)
0 = (a1+a+EP? — E) B (16, - 128)

The result offers two possibilities One is that the energy of the systemn has

the value

)
E =2, (sinfycos Gy +smbycos(z) = AA. + & (a2+42). (5 32)

The saddle pont appioximation leads with 6, =8, = Z and {, =, =0 to an
eneigv E = 0 Tlus 1s exactly the value which 1s obtamed for nommnteracting
particles at the beginning of tlus paper m (2.37)

Tlus solution is furthermore the same as the first of the solutious m the case
when an orthogonahity 1s used (Since the coriesponding wave functions were
orthogonal anyway, this 1s reasonable ) However, in difference to the calculations
there, 1t does not give any constraints what so ever for the choice of the wave
function Apparently, the given energy value 1s highly degenerated

Tlhe second possibility, ¥ = §, scems to imply that any energy value 15 al-

lowed because the right hand sides of the equations above are zero independently
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of the value for the energy. However, this possibility contradicts normalization

conditions and is therefore not allowed.

5.3.2 Comparison with Bethe ansatz

In the paper of Kusmartsev ef al. [14] the same system las been solved with the

lelp of the Bethe ansatz Here for the wave function the expression

Yz, on) = D Alp) e*cp[ st,(,)mj} (5.33)

pE'P(M)

1s used, which gives together with the Bethe equations the following set of equa-

tions:

My .
d o)
Nk; = 2nl; + Qﬂi -2 arctan 4““1—32
Qo U

M YA
¢ - Aa— A
~2 3 aictan (4——-——-51“ ké_ ) =2rJy+2 ) arctan (2 g B a)

1=1 =1
The quantum numbers I, and Jg obey the equations

AL M-M4+1
IJTT (mod 1), Jg= —QTi- (mod 1)
and have to be adjusted such that the energy 1s mininuzed

For one particle (Af = 1) 1t 1s.

My=0 = Nk =2r o &

My=1 = Nk §+2w—+2n-=2 2 N @y

'6'

II

Theietore, the solution 1s that of a fiee particle with flux This 1s clear because
tor a single patticle there 1s no mteraction

1|

For two particles (Af = 2, A} = 1) and a sufficiently small flux (l"’ ’ < 3

is

*
-
b
LY
I
[
i
[

o tsink, — A tsinh; — A
+ QW;E — 2a1ctan (4%—) -2 Z dlCtdn( S 7 ) =0

—k sinks — i —A
N—-——Al k2 = alct.au(-l—tmll; A)—a:ctau(-l————-—-tsml )

U
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4t (sin kg — sink;) 4t Sin(ﬁ-zdl) Cos (&[E_kz)
= 2Zactan T = 2actan 7

£ . U
= 2aictan — with = —
- hdl 1 3¢ ] T —
Sm(-l"z_') 4t cos(—ﬂ-‘,\}” )

If the number of sites is N = 2 then the situation 1s equivalent to that we
have just studied. Kusmartsev et al found out that it is for tlus case possible to

ohtan an exact solution. Since

hi—ks ky—ka\ _ 2fRi—=ho\ _ b — k)
tan( 5 )san( 3 )—s = 1 (,0.'5( 3 )—ECOS‘( 5 ),

one obtains the following expression for the wave vector

£ /62 ) o
1,2 arccos( 2 + 1 + +7 B

and for the ground state energy

F = -2t £ e 1 ® t el
gound = —<2l | — 2+ I+ COS(WE) |sm- Erns cance
1t \J 4(4t)2cos?(wit) P
= —— | =141+ £ COS(?T—)
4t cos (‘n‘ ;%) U? By
1{U U\? 2r O
—_— I . 2 20 = _ /
_ 1 \}(2) + 10 COS(NIO)) 539

The expression for the encrgy obtained with the Lelp of the Bethe ansatz has
much more m common with our result for 1 paticle / 2 sites than with the result

for 2 particles For instance, for the choice

N=2 M=2 (=G=0 91=g, 9, =0, /.\.F%, A, =0
the ground state energy (5 17} has the formn
1 U U\? 2r ¢ U
L A 2ong2f 28 ) 2 = 5
E—2 5 \1(2) +16tcs(\rlo) )+2 {5 35)

This mdicates another problemn of the states used so far The wave function

for what was called so far “one particle’ has the following structure

1!1 \/:Z Z ’Ynlhjl,ﬂl \/_ny { |0 +czi[0)}

1 =14
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The comparison with the Bethe ansatz calculations i essence shows that these
kind of states include already a pair of particles, a mixture of a up-spin and a
down-spin part. The problem could be that both parts have exactly the same
weight «y,, for each site For this reason, derivatives are sensitive to both parts
at the same time Therefore, the up-spin patt influences, or one might even say
mteracts with, 1ts own down-spin part.

The pair chaiacter becomes even clearer if one just looks at the notinalization

of a two-particle state

('lpl'l,b) = = Z Z 7_71 3271. 1)_(0| Jz.n;n,m _11,01512,0210)
i ‘
L..J:!———'
= Z {7:1ﬂ:2’yuﬁ12 - 7‘:2 :Ify'llﬁzi'}
1tz
0 forN =1

B3 (1 By = 1By) + 1B (18, — By tor N =2

A situation of 2 particles / 1 site 1s quantuin mechanically allowed, but leads 1n ow
description to a vanishing wave function In the 2 sites situation the wave tunction
van:lshes if y = Apgam, this happens without the necessity accoiding to the
Pauli principle Furthermore, the 2 particles / 2 sites calculations m snbscction
5331 led to only one energy, whicl also indicates that actually a tour-particle
problem has been tireated

We shiall show next that all these tioubles can be solved 1f we torget about
the assumption that up- and down-spi paiticles can be haundled with the same
weight. Instead, both spin duections should have independent wave functions and
a notmalization should be apphed ouly for their combiration Not least thanks
to the Zeemann effect such a step seems to be 1easonable

This most gencral way of expressing the wave function has for a single particle
the following form.

N

N N
=Z¢T(’L)EI,TIO)+ZT!)!,( ~z_],|0 Z Z 'llba ~zo‘|0
=1 =1

=leo=T

It should be stressed agamn that iy and ¥, ate now two {almost) independent

functions This also mcludes the case that the paiticle has a fixed spin with no
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possibility to change it, if for instance ¢, = 0 is chosen. However, the noimaliza-

tion condition

1

@19) = 3 2 (0% ({018,810} = 3 {les0)I? + [ ()P} =1

.7 o,n 1

implies that the two functions still have something to do with one another

A straight forward generalization to A/ particles has the following forin

=Cu > 3 (). M (a)E g, E ., 10 (536)

1, 2AM 0Ly TN

%)

1y, SNAf

These kind of states offer various possibilities. One positive consequence is that
most of the mentioned problems do not arise any more For instance the above

studied case of 2 particles becomes now

1l = n1 nz(wll(’b)m R2
= d) w .72 :l“ ) :2(32)({)'04 3 é: 0 z o |0)
uzl:: ":Z"g [ ] [ n2 ] \l 2 W12 Jl:’?l 1,01%12,02
210y R ! !

= cizz{| )| o) = [we )] (0] 2 () 3;(22)}

11,22 01,072

There are the positive contributions (M{11), (34|44}, (FLHTL), (4141 and the
negative contributions (M1|44), (LU, (FLIL1), (L)) to the ovedlap, and there

is, in general, no need for them to cancel each other Even for only 1 site

> { - fe][vm] ez

ay1,02
has a non-zero value for almost every configuration If the fust particle has a

ny 2 7122
7l Tz

certain ratio of the up-spin and the down-spin weights, 17! /¢ 2, an atbitrary 1atio

w2 /472 for the second particle is possible As mentioned before, this mcludes
a combmatmn of a pure up-spin and a puie down-spin paiticle However, 1t 1s
cnough 1f one particle “shows the up-spin character moie™ than the other one
Ouly (f the ratio 1s for both particles the same, the wave function vamshes again

A hittle bit problematic 1s the question of normahzation The 1emaiks of the

previous subsection have led to the conclusion that wave functions of different
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particles within the same state cannot necessarily be assumed to be otthogonal.

Thus, the negative contribution to the 2-particle overlap above are not zero Nor

do the vaious terms of the slater determinant 1n the many-particle case vanish
Unfortunately, this freedom of the system also effects the normalization of the

single participating feimion If conditions like

!
2 2
S {F @)+ [¥p P} =1
14
wele maintamed, the identical petmntation i the slater determinant would al-
ready be equal to unity, wlich implies the orthogonality for the remaining teims

which should be avoided

5.4 Again: Limited System Size

The derivation of the Hartree-Fock equations 1s again very similar to the dernva-
tion 1t section 51  Apart from the greater freedom of the wave tunction, the
main difference 1s the fact that all derivatives are now taken with respect to a
parameter [’ ne( )]* which also has a spin mdex » However, this spin mdex
can be tieated very sumilar to the site index = and does not make calculations
quahtatively more difficult

For the expectation value of a typical operator the same compact notation as
alieady introduced 1n the pievious subsection shall be used. The wave function
with the quantum number ng 1s now a product of two Kronecker deltas, one for

the site and oune for the spm. If for instance the operator product éI.T5L+1,¢ 15

considered then ¢29(:) = 4,0, Hence,
L, ,,,,,,("/"'EL,TEHLHWM‘ o . (537)
p(0)#0

Ch Y Y (et umnG)] - O]

Jts a3 Tl TAL pep M+l)

£ Vet (1) - - bas ™ Gan)L O (ke + 1)
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)
-t . % ’t,b Ef ¢ = 538
3[1b,’}0(x)] (nu JTM( | k.t k‘*'lbll?‘b)nl,.,n”) ( )
Je=x  gc=v  p(0)£0

¢y Yy (v [wieto)] - [en i)

31y JIMTLs $OAL peEP(A+1) n n
* Pt (g1) . aﬂm(Jn[)%p(o)(k-f'l)

are the kind of expressions which now appear in the Hartree-Fock equations The
Hamiltoman is still the one given in (5 5). It shall be evaluated now tor particular

cases

5.4.1 One Particle / One Site (M =1,N =1)

For one particle one has to deal with the following derivatives:

5}

——= | (Y = h(z
a[wl,}c(r)] ('nc( I )nc) ()
)
———— (W 1 [9), ) = Galot (b +1
o) (o 18 B |9), ) ‘ (k+1)
d 4 ) n
—_— €L Crrror |V = St {v+1
Tt (oW S bt 9, (v +1)
whicli gives the following Haitree-Fock equations:®
Bb(t) = = 15 Rt (e + 0¥ 8 4 Lt (- 1) 5
A, ¢
+ EgMy,(z) - (-—‘w*‘ﬁi‘@)fogg (Bur1(2) — duy ¢y (2))
+ A,smf, { vt Y1z )e'(’+5‘,,l1,/)7(:1.)e‘c’} (5 39)

For only one site this simplifics to the two equations (for » =1 and v =] respec-
tively):
il (L1 _ o -
0 = o4 [-‘Ztcos (QTIT'—) + Ep Ag+ _\Z-I—) cost — B+ [.’.\,bmﬁle Cx]
Po i
i
0 = 24 [As sm(ile":‘] + 1 [—% €os (’hnpi) + E(L g (As + Az%) cos @y — E]
0 0

6The index for the quantum number 1s omitted
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If this system of equations should have non-trivial solutions then a quadratic

equation in the eneigy has to be fulfilled The two solutions are

i
Ea=-2 605(271'1(—) 1A+ = (.\2 +A2) (_3 + Azg) (5 40)
(I)O I—"o

with the ground state energy

2
P) _ght @ (5.41)

FE = <2tcos (2ma — E

It will become clear soon that 1t 1s reasonable to rewrite the same system in

a matnx form. For brevity the following two terms shall be defined

(N) AZ @ (N) _ ‘)'IT]. (I}
MY =2t i A, = ztcoe,( e
Hence,
1 1
(E_Eg,l)) ¥(1) ) _ gD ¥1(1) (5 42)
(1) (1)
with
o -
LD — A](:;))DPRI,TT AhoppRl,N 4 —~Aj 7z cosd, A(I)SID Gre~¢t (5._13)
Apopp R0t AhoppRlM Agsin e AL cosd,

5.4.2 One Particle / Two Sites (M =1,N = 2)

For 2 sites the equation (5 39) 1s still valid. Unfortunately, the arguments wlich
led to wy; and w. in section 5.2 2 are not applicable, since it is not sumined
anymore over all four matrix elements of R. However, the properties of R for an
arbitrary number of sites I-?’,’c'ﬁ =R, and R}, = —ﬁk,u and particularly for
two sites. Rigr = Ry, Ragy = Rajppy Ragqy = —Rayp, figr = —Raygy still allow

sumplifications. The most contenient one is that for any spin combmation
" -, - _
'R2 oo! = 1 oo’ and Rl oot = RZ aa (0 '1'1)

holds As a consequence the exponential functions 1 the flux can be expressed
in form of a cosine
Another problem is that the wave function ¥ possesses now 2 x 2 = 4 compo-

nents Instead of solving an equation of fourth order directly, the equations shall
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now be written as an eigenvalue problem. All equations are expressed with the

help of the following matrix

f - A 2 =
A cos8 A, sinfe A.mpmel n A2 Ry
A smbiet A g cosfy hoppR1,n AhoppRl,u,

HL2 = o = (5 45)
AhoppRZTT AlloppR2.Tl —As,z cosfy  A,sin 92(-3—'@
AlloppRZ,l-T ‘\flf))ppﬁlli A.‘ Sin 928'9 \( 2 cOs 92
which determines the following matrix equation
¥r(1) (1)
$1(2) ( )
%3(2) %(2)

5.4.3 Two Particles / One Site (M =2,N =1)

For two particles the derivatives (5 38) aie at least twice as complicated as for one
particle The second particle, the one which does not have the quantum number
ne shall again be denoted by 3, allowing to omit the index for the quantum

numbers Then the following kind of expressions have to be dealt with

._..__...._.._8 2
* =C3{ n A " U
0[1,/),,(1,)] (ng('lr)lw)m,n;) {w ('L') ZJ:Z’}:]ﬁ (J)l g ( );Z}ﬁ (j)lp (J)}

d 4
m (om P oBiinor 19, )
= sz Z Z J‘J(J){fsz,k(su,aﬁu( )tba U" + 1) - O, k(su,awﬂ( )ﬂcr’(k + 1) -
i ©(120)=102 9(190) 201
[ \J,Lén,aﬁu( )wa’ (‘l" + ]-) +‘)J,A(Sn a";bu( )ﬁa'(‘l" + 1) }
p(120)-—012 p(l)O} 021

a - .
—_ % (nl m(%b I Z c.l'fc,rrck+1,ff' H’b)m 1’12)
(@] "% |

= Cg{(su,a'wa’(x"f'I)ZZLB:?(J)'?"' X2 ar' ’E+1 ZZﬁ J)Tﬂ' e
7 " P

—ﬁ(vaﬁ 5k + 1) +1,(1) 3 85 (A8, ( th+1)}
k
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This leads to the following Hartree-Fock equations:

E{w.,(x)zzw,,l ~AETTAY w(;}

- tZ{ .o a" $+1 ZZ!ﬁ J)l 2TT¢-
iy (z—l)ZZ]a Ol "”T""}

v {ﬁm'yafﬁ"'(’r +1) Z‘/:ﬁn DUAG) e%‘_
’ J ! 2m +
BB =1) 205 (J)%(J)e_TEE}

2 )

c?lr‘r

+ .

vl_;,

) “”"("”)ZZ{R"’°°'ﬁ3(k)ﬁo'(’“+1) B Ry B (1B (k — Ve —“}

k o0

<[§'

BTy {Rk,wfﬁ By (k + 1)e

k o0

T;L Rk 1,00’ rr( )11!) (k_l) ‘ﬁ"]"?‘}

N

+ ) (b TS Bol -4 ZZﬁ;(s)%U)}
- zlac{gb,,(:c)zﬂﬁ,,(;)l? ZZﬁ Yy J)}

3 "

- (A, + %%) {(5,,,T =80, 05t T T 8,n[ -
(= B @) ost T T A6, (J)}
_ (A\ + jr—fi) {1,!},,(:5) S cosb; (Br(k)B, (k) — B;(K)B,(K)) — .
B,(t) ZCOSgk (ﬁf(’u)% ﬁ; (A )¢l ‘l")) }
+ Aq{ (5"!T¢-L( )e™ + 6, 9 (z) ‘C‘) sinf; Z Z

- (&,Tﬂ;( Je~ +5ulﬁT( 1C‘—') sin 6, Zzﬁn(nw j)}

7 "

B.(1) | -

+ { z‘;ln B ( (R)B, (k)e™ + Br(R)3,(K)e ]Ck) -

Zsm ek( M, (K)e™% + G (k) (A)e-ck) }

(5 47)
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For only one site these equations simphfy again drastically. All tetms which

go with A, disappear, and because B4y = Ry =1, Ry = Ry = 01t is
¢
(E - EEV) B; {48, — 0,8,} = —4tcos(2w~) B; {8, — 1,8,
(E - Eg‘z’l)) ﬁ; {'ﬂ%ﬁf - 1()1461} = -4 005(27*' ) ,31. {@L’lﬁr leﬁJ_}

The result for the energy 1s therefore

E = —4tcos (‘?w—?—) —2A. + = (_5.2 + Az) (5 18)

By U

which is almost the sum of the two possible energy solutions (5 40) in the case
that only one particle 1s sitting on the site Only the term in front of the mean
field does not have the factor 2, which indicates that the mean fields have ligher
values in the two-particle case.

The saddle point in this case 1s obtained by sctting A.q =1U and Agg =0

It 1s related to the energy

E = —4tcos (QTF(I—)) + U. (5 49)

Dy

Tlus expression descrnibes the physical situation correctly: Both particles have
the same quantum number n = 0 and are sitting on the same site The former
mnplies the termn for the kinetic eneigy given, the latter leads to the cffect that
the potential encrgy 1s equivalent to the full Coulomb repulsion eneigy That this

has been obtained shows that we are on the nght track

5.4.4 'Two Particles / Two Sites (M =2,N =2)

The situation of two particles on two sites s the one which 1s of paiticular interest
for us because 1t allows an interaction as well a non-trivial distribution The three
cases before can be understood to be only a preparation tor tlis task One can
use now the same Haitree-Fock equation as m the proceeding subseetion and the

same propeities (5.44) of the matiix elements of R as in the subsection before

The four possible combinations of v =1, and 2 = 1,2 lead to the following four
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equations:
(B~ EE?) n2) | Z X |60 - BR800
"

= BrVAL, [~BH 1) BeutBy(z +1) — B (1) Rey By (x +1) —
= B1(2) Roy B, (%) — B{(2) R2,118, () +5m2RruTZZ[B |

+ (A [-B1 (D) RaprBy(z +1) = (1) Raun By (z +1) -
— B (2)Ra gy B,(2) — B{(Ra,yB(x)  +dealenyd D |8,()
2 n

+ @Ay B ReutBy(5 +1) = B2 R B (5 +1) -
— B () Ro18,(2) — Bi(DR2118, () +EaaBasr 3 3 |B,0)]
] n

+ @A [~ Q) RantBy(z +1) = B (D Reun B (v +1) -
- - 2

- BT(I)R2,T1,18;;($) - 6I(1)R2,u.ﬁy($) + 61:,1RT,VJ, Z Z Bq(])'
7" i

+ p(1)0p [ALY (cos b1 + cos b) B1(1)By(v) -

— AssimBe”'¢ BN(1)B, (=) -

— Agsnbpe g (1)67('5)]
+ (1) [A% (cos by ~ cosbr) 6(1)8, () -

— A, sinfe" 51 (1)8; (7) —

~ Aysm 819 81 (1)3, (z) +5ﬂ_\ssmexe'<:zz|ﬁ | ]
+ (13,1 [A%) (cos 0, — cos 01) B(1)8,(n) -

—~ Ay smfe™ By (1)5, (x) -

= AgsmBeTOBH1B () +IzaAgsmbe '<=zz|a () 1}
+ (1), -2 (cos 8, + cos 0y) B](1)B, (2) —

~ Ay sm e 5 (1)6; () -

— Aysmre™% (18, (¢)]
+ (28t [AL (cos 0, + cos B2) B7(2)By(x) -

. = Aysmfe™ 8 (2) 8, () —

— 3, sm 8¢ 5 (2) (7))
+ ()0 [AL (cos 6 — cosbe) B1(2)8,(x) -

— A s 66" 57 (2)8, () —

C= A, sm0e BB (1) a2l SmBze’q‘ZZWn(J i
+ (2801 [AL) (cos B — cos 8) B (2)By(z) —
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- Ay sm e 5] (2)B, (=) -
= AysnfeTRBH(2)B(2) 608,50, "‘ZZlﬁnU)l
+ 928,y [~A7) (cos bz + cosby) ()8, (z) —
. .— Agsmbge C”ﬁl(2 By(z) —
.~ Aysin 92e-'C25;(2)5¢(m)]

+ bev f\l(j))pp Z z ﬁa Rk,aa’ﬁa' (k + 1) -
. 6, cos0: 33 [, -
3 "
- =A%) Y cos i (85 (k)8 (k) - B (R)B,(K)) +
k

A, 3 smbi (B R)B(Me% + B (k) )e"*)]
k

(3 50)

If these equations are studied carefully one can find some stiuctne in them.
Especially, 1t is possible to rewrite the expression i a compact matrix form,
sunilar to the cases before Trying various orders, we were able to find a speafic

structire  We shall present it already in the moie genecral case ot NV sites since

in the two-sites system some features get lost

5.4.5 Two Particles / N Sites (M =2, N arbitrary)

Looking back at the Hartree-Fock equation on page 134, one can quuckly see that
the hopping part can be expressed 1n a more convenient form The first part,

given 1 the form

—tZ{R“(,m/;,, m+1)§:z
+R::'—luar"d)o' 'E—l)ZZL@U 7)| _TTU}’

2m b
e J\ 40 +

. J)

does not mix contributions of the -particle with those of the G-paiticle IKeeping

the definition of the elements of R in (52) o better in the form

oS (%9,;) —e Mk sm(%ﬁ;ﬁ)

— d + M . » —
b hoa' = z Rk,m;Rk+1ﬂﬂ' with - Ry = I, 1 1
n ek 8111(§9k) cos(gﬁk)
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mn mund, this part of the hopping can be expressed with the help of the matrix”

[ 0 eRfR, 0 ... 0  eVR{R,)

eVRfR, 0 e/RIR, 0
0 e MRIA 0
Fy=—t s (5 51)
0 0 GIIRE—IRN
\eVREBR, 0 co 0eYRLRy 0 /

in the following torm
(?;(FH)Z}"%U)) * (};;M(J)r), (5 52)

where the superscripts at Fiy denote the row and the subscripts denote the column
of this matrix. It is worth noting that the structure of Fy is very similar to the
matrix for the hopping part of unrotated tight-binding models as for instance on
page 41 Nevertheless, the existence of the 10tation matiices implies a qualitative
difference. It might even be interesting to investigate 1ts effect independently of
the interaction part

The rest of the hopping part consists of many small mnatiices within a big

matrix The contribution

‘“P"u(””)zz{fh.awﬁé(&)ﬁaw(k+l)e%"’i’ Ry Bs(h )g,,,(k_l)e-%%}
k ag'

has the same Fy-matrix character Foi the other two teims

2m

+ fZ{ Ry po By (T + 1) ZZ@;(J)T«W T-’?-'i'
'1: lua’ﬁa" l‘—l)ZZﬁn(J)ﬂbn(J

>|'_5‘

b
g

+ fﬁ»('ﬂ)ZZ{Rk,aafﬁ;(k)w,:(ml)eh—" Ryt 0o B (k) (b — e ——}

k o0

b

the matrices, which are denoted with the symbol P, have the followng foim.

el

3
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f= L
N o Tz -1 Lz-1 1z Lr  tz+1  Lz+l
te'fl-?,_lm th1-1
te’fR,_l,” L1-1
pie = te“ff_?,,._l,u,-te“fo_l.N E te'fR,,TT fe‘er_N 1.7
" b
te™ Ry T+l
—te—lfR_,‘lT -l—aJ +1
\ /
et Ry 4y
tef Ry 141
pit -—te"“er_l,u tem R 1,1t E te’fo,n fe'f}_?,,'u
T
te"fl?_,,u
—te"'fl_?_,,“
te'fRJ_],,n
te/ R,y
plF = _ _ _
“ te“fR,,..l u—te“fo-; 10 E te'fR;,ﬁ te'fl?m‘t
—te_'f}_?b-u
te™/ R, 4
fe‘ff?,_l‘u
te'fI_?J_Lu
Pl = _ _ _
. —fe"‘ffﬂ._l,” te"fR,,_L'TT E te‘fl?,,“ fe"rl?x'u
—te™/ Ry
te™ /Ry 1t
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Together with such matrices it is useful to introduce a vector notation for the

wave functions. Their components shall be ordered in the following way

¥ o= ()R B @ (V= )PV 1) (W) (V)
Y= ()M G@)T . HNV = D) N — 1) $1(N) g (V)

and 3 is defined accordingly The superscript T denotes the transposition; 1 is
actually a column As one can see, the astensk stands for complex conjugation
as well as transposition.

Then the matnx character of the two last mentioned hopping terms is as

follows*
[ B'Plis B'PliB B'PEB B'PLA ... B'PinB
B'PiB B'PLB B'PLB B'PY
* 512 ..
P(B) = kil ' : (554)
: B'PlvB
\ B°P'B e, B'PNB BPLNB |

Such a notation allows to expiess the whole system of Hartree-Fock ecuations in
a compact toom  What has been mvestigated so far is the hopping part of the

Hamiltonian whiclh has the follewing stiuctute

Ey (8" B8) = Fuv (8- 8) + (B'FuB)¥ + P(B)Y. (5 39)

The fact that the matrnx of the non-mixed contribution, Fy, appeais again
together with B 1s more than reasonable If one locks at the G-paiticle as being
independent of the y-particle then Fy8 = EgB3 1s the eigenvalue eqnation for
this paticle Hence, 8*Fy8 = Eg(8™ 8) That means that in the case that
the B-particle and the ¥-particle can be handled independently one obtaius the

equation
Ep(B" B) = Fuyp(B* B) + Es(B™ B} = (Exp+ Egyp) (B° B)

wluch means that the total energy E is just the sum Ey + Eg of the enerpies
of the two particles In this situation of mdependent particles 1t also does not

matter what kind of normalizations ate applied.
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In this context the condition for independence 1s that the mmfluence of the
matrices P, has to vanish The terms which are responsible for these matrices

ate given. The first of them contains with
2D Br(v,(0) = (B )
K]

the vector product of the wave vectors which are connected with the two separated
particles. If o1thogonality of the wave functions were assumed this product would
give zeto The saine sum goes together with the energy E, which is the 1eason
for the appearance of this term m the P matrix as well In the second mentioned

term the sums

22 Reoo B (R) g (k +1)

k a0

are more difficult to handle. One can at least say that in the case ol no rotations,
when Bloch wave functions are solutions, this term also vamshes. The aigument
(A + 1) of ¢ can for Bloch wave functions be avoided by splitting oft a simple
expouential function So, the non-o1thogonality is appaiently closely related to
an exchange energy already within the hopping part

What remains are the terms for the interaction. The terms which are pro-
portional to A, and % (A2 + A?) can be taken into consideration by writing
E - E;,-?’N} instead of E. The vaious terins wlich go with A, cau be spht into
those which mix the -expression and F-expression and those which do not mix
them

2
Terms mcluding |ﬁ,,( j)| , these ate the terms

A O 2
= (A+ )G = b @) st T X |00 and
N2 P, /. 7 7

-

=As z

+ AS (é-r!,Tw,[,(x)e_tCE + 6;/,,]_1})1‘('7:)8‘(2) s H? Z Z 1ﬁq(7)|u .
7 "

show no muxture They can be added to the Fyy matux, which means that a
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matrix

( —Aszcos8, Ase™Csind, 0 \
Ae¢r s, Ag zcosty

F] =
—AgzcosOy A sinby

\ 0 AN sinfy Aszcosfy |

has to be defined, which always appears together with Fy. Tlis notation 1s
1casonable, because also a term B F;3 exists i the same way as for the hopping

part The two terms in the mteiaction part which ate propoitional to ,(r),

(A 22 2) 0 0) Teosh (0BG - BRIEH)  nd
k

8 Wi”(i;;

+ A, (z) D sinby (ﬂ;(k)ﬂi(k)e'-lgk + ﬁI(k)ﬁT(k)ele) :
k

are responsible for this

All the other terms appeat 1n small matiices @7, which can be combined to

a big matrix Q(8) similarly to the treatment for the FF matrices The structure

of these new matiices 15 as follows

e 12
of = —E‘(,;”N) + cos 8, + cosh, ~e % s 4, 1,7
T —e'G s é, 0 1.
0+ ——Eff N _ i, —cosf, + cos 8,
t 0 -e'é s,
ot —EE:)’N) —e*b sing, 0
v cosf, — cosb, —e %= s b,
o S —e~'% sm b,
wr —e'%=sinf, —cosf, —cosd, (5 56)
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Now the equation (5.55) can be generalized to an expression which includes
the interaction. We have found out that the system of Hartree-Fock equations

has the following structure.

(E - EE™M) ¢ (8'8) = (Fu+F1)% (8'8)+(B" (Fy + F1)B) ¥+ P(B)p+Q(8)y

(5 57)

Single equations on the other hand, that means the whole expression on page

134, can be given 1n the form.

B B)(E-ER")u(z) = (B"B) XY (Fu+ F1)iiwb,(2)
F )

+ (B*(Fy +F)B3) v, (2)
+ 3 (BPeB)v + XX (B'Qr8) v
3 n F

To write the equations in such a compact way scems to be the only possiblity
to recoguize the structure within the Hartree-Fock equations. After a thorough
study of the matrices the finding of solutions for the energy as well as the general-
1zation to Af paiticles should be possible This statement offers the opportunity
for further investigations.

One possibility 1s to perform a similar iteration as suggested on page 538 Start-
g with an assumption for the S-paiticle, the formula (3 4 5) provides equations
for the wave function of the other particle, ¢ On the other hand (54 5) 15 of
course also true if the role of 8 and 1 1s exchanged Thercfote, ¥ can be inserted
into the foimula, and a condition for 8 can be obtamed. The procedure has to

be repeated until self-consistency is reached



Conclusions

In the present thesis we have studied many-body effects in the peisistent current
problem Starting with basic considerations we were able to denive convincing
expressions for the current in normal-metal mesoscopic rings threaded by a mag-
netic flux These results show the single-flux peniodicity which was observed 1n
experiments They also cortespond well to other authors’ findings

Additionally, some interesting observations which are connected with the
dernvation were menttoned. This includes an inhomogeneous charge distribution,
which 1s presumably related to Friedel oscillation; it includes the pauty effect,
whiich relates Fermi statistics to flux phenomena; and it includes the period halv-
g due to averaging processes

When taking interaction into conswderation, 1t turned out that the persistent
current within our model 1s not ifluenced by the Coulomb repulsion It 1s neither
enhanced nor suppressed. This contradicts the results of many other scientists
and cannot be true Since this statement was even obtained by an exact solution
of the Hartree-Fock equations, 1t demonstrates the weakness of the Haitree-Fock
approximation and implies that it is insufficient to use sunple trial wave functions.

Realizing this, some new 1deas were implemented 1n the model We mainly
tued to improve the results by using Hubbard-Stiatonovie deconmposition and
intioducing rotatred spin-quantization axes fo1 evety site. Thele are vaiious pos-
sthilities to do tlus. Most of them led to results which aie not tcasonable Even-
tually. we found out that the physical situation 1s probably described best 1f the
following steps are performed: First of all, the usual Hubbaid Hamiltonian 1s
transformed to a path-integral description Afterwards the Hubbaid-Stratonovic
decomposition is applied in order to simplify the mteraction term. The resulting

Hanultoman is evaluated with the help of rotated states Using rotated citeation

144
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operators éf‘,, these states should be in the form.

Iw)ru, o Cum Z Z ;111 (@) ... :ﬁ (ZA[)EII.UI o &IM;U'M |0},

Tk, SIALF Oy TAF

and no orthogonality or normalhzation conditions for the single-particle wave func-
tions should be used After the Hartree-Fock equations are solved self-consistently
one can try to mmmimize the obtained expresston for the energy with 1espect to the
mean fields and the angles of rotation, leading to a saddle-point approximation
of the integrals

This procedure 1s connected with the hope that certamn spin configurations
allow us to obtain lower energy values than with ordinary Bloch wave functions
as used n the first part of the paper. These spin structures wonld ot course
depend on the flux throngh the 1ing Theielore, non-tivial expiessions for the
persistent current would be ohtained.

Unfoitunately, it was not possible withun this master thesis to gain such re-
sults. It tuined out that the suggested procedure leads to long and cumbersome
ecquations which have no simple analytical solutions. Even for sinall systems, like
two paiticles on two sites, no solution was tound On the other hand we came to
the conclusion that every ttial to sitnplify the equations by introducing further
constiaunts leads to results wlnch do not describe the situation properly

The author 1s also aware of the fact that 1 princple fom integrations are stall
missing These are the integrals over Matsubara time, over the mean helds, over

the rotation angles and over the Grassmann numbers The fiist integral could be

neglected 1f no temperature dependence is assumed The sccond and the third
mtegral can be treated 1 a saddle-pomt approximation However, for the last
mtegral sophisticated methods, usually leading to determinants, aie necessary
Nevertheless, 1t 1s the opmiton of the anthor that the present paper 1s a good
hasis for further mvestigations It does not only provide the possibility to gamn a
deepel insight into the causes of persistent curient and the problems with many-
body effects The matrix representation of the Hartree-Fock equations at the ‘
end of the last chapter can also be used to start iimmediately with numerical
calculations per iteration It 1s assumed that the given case of 2 paiticles and N

sites can easily be generalized to A/ patticles




Appendix A

} List of Symbols

Physical Constants

hi Boltzmann’s constant ... Ce e ky =1381x 1084
¢ ... speed of light in vacuum .... . .. . .. c =3x 1()’313E

e . electrical charge of an electron ..... .. e =1602x10°1C
h . . Planck constant . . ... .. ...... oo h =6626x107%Js
h . . Planck constant, reduced . .. ... - . h =hf27

7P Bolr’s magneton . .. .. . .. .. pp =927 x 1074
¢ . . . Landé factor for electron ....... .... . .... . .. ¢ =2

m, . . mass of an electron e . me = 9109 x 1073 kg
®y .. elementary flux quantum (Gaussian uuits) . $y = ;C-

Common Physical Quantities

v Fermi velocity of electrons on the ring
chemncal potential of statistical system .. .. . (4 3)
tempelatuie
mvelse temperatuie e . B=1/kp
Pauli spin matrices . .... (12)

external magnetic field and lts z-conlpouult

vector potential e e e e e ... B=VxA
. any Hamiltonian
. hopping mtegral in Hubbard and Heisenberg model (1 23), (1 24)
..... repulsive Coulomb potential for adjacent sites in (1 23)
Hewsenberg model

TR P WA RNT
Tl

U . on-site Coulomb repulsion in Hubbard model . (124
o magnetic flux through the 1ing

T . unaginary (Matsubara) time . .. ...... . T=1t
Z partition function in path-integral tormulation .. . (4 3)
S . action of the system (exponent of Z) (4 7)
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Paper-Specific Physical Quantities

btob ..
et e

.....

.......

| &)

ny, LMAr

QAI .
Ij’k(E)rC) *
Ry

A

. Bose creation and annihilation operators . .
. Fermi creation and annihilation operators

. creation of a spinless fermion (till chap. 3) or

a spinor (from chap 4 onwards) at site &

. creation of a spin fermion at site &

rotated fermionic operators .. .
indicates the spin of a particle
occupation number operator .
spin projectio on the z-axis ...
number of sites on the ring
total number of particles on the ring
number of spin-up and spin-down patticles
distance between two sites on the ring
circuinference of the ring .

--------

............

. eneigy of the system

persistent current i the ring .
function which 1estiicts the trapped flux onto
a sufficient interval, see figure 2 G
hopping patt of the Hamiltonian

. interaction part of the Hammltonian

parameter for the variational waie function .
in the Heisenberg model

parametel for the variational wave function
1n the Hubbard model (sometimes also used
for 2nd particle)

parameter for the variational wave function .
in the Hubbard model with 1otated states
parametet for the variational wave function .
in the Hubbard model with spin-sensitive
states

state m Fock space, determined by the quan-
tum numbers ny, ..,ny

noimalization constant of a Af-particle state
rotation matrix for the spin-quantization axis
combination of two rotations i (5 2)
spherical coordinate colatitude
spherical coordiate: longitude
difftrence of adjacent colatitwdes .
unit  vector in the duection
quantization axis

of spm- .

. (431)

ik = Gyt Oy
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(1.6) |
(1.14) |

o,n€{ti}

% = CepCot T ChaChL

L=aN

I= ——c%

() = [’C - (1:+ %)I
(2.7)

(3 20)

(4 40)

(5 36)

(+19), (E8)

By = ;—Rk-{-l

= 3{(Bks1—Fr)
Q=0(0,Q)
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Paper-Specific Physical Quantities (Continuation)

TV

RY

&g oot

gk o
o,

w ..

AVSEAWS

!
AL

Az .

\f
‘\(ef.z)
AW

Lagrange multipher

site and spin 1ndex of the parameter with re-
spect to which denvatives are taken
quantum number of this parameter
sometimes used for the flux phase ... .. ..
number of time-discretisation steps in a path-
integral appiroach

colierent state, eigenstate of annihilation op-
erator

Grassmann number, eigenvalue of annihila-
tion operator

rotated Grassmann number . .
vector of Grassmann numbers with compo-
nents Ek,m fk N

angle phase winding number = munber of
spin-rotations around the perimeter when go-
mg ones along the ning

(fctitious) mean fields over which 15 inte-
grated in the Hubbard-Stratonovic decompo-
sition, belongmg to the charge and spin de-
gree of freedom respectively

modification of A, to avoid complex values .

. energy constant i Zeemann effect, not a

hopp **

ay,

Egu,N)’ ‘

Wy, W .

X .-

Trin

FI[’FI

PQ

.

mean field (')

auxiliary vaiiable for matrix equations
auxiliary variable for matnx equations .. .
aunxiliary vanables .

fixed (angle independent) eneigy contubu-
tion of the fields

auxiliary vanables . ... .. .. . ..
phase of a wave function

1at10 between the components of the wave
function for the solutions I and I m the two-
site problem

matiices for a description of 2 paiticles (non-
mixed)

matrices for a descuiption of 2 particles
(mixed)

148
2 D
f=%%
Ck.o | lIl) = fk.a | \IJ)
(4 20)
p &9
Al = 2B(§(1&c)
Az =
(N) Az B
Apopp = —2t cos(%qf’))
(511)
(511)
(5 14)
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APPENDIX A. LIST OF SYMBOLS

Common Abbreviations

C.... .
Re(z)/Im(2)
P(AD)

[]- ...
[.,.]_'_
a ..
a1 GG

. totally antisymmetric tensor

------------------

unaginary unit . .

. set of complex numbers

real/imaginary part of a complex number z

. set of all permutations of A integers

(~1)E% .

party of the permutation p . .

. identical permutation
. hermitian conjugate

Kronecker delta of : and 3

unitary operator

logical operator AND

the statement before tlus symbol 15 valid
for all v

commutator of two operators

. anticommutator of two operators

marks the end of a proof or example
product of all o's with omission of e

6u={
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11f peven
—lif podd

.

1ife=7
01f 2 #7

(3B = iB-BA
[4,B], =AB+BA

=1 Xo—10Cce1t O




Appendix B
The p - A - connection

The aim of this appendix 1s to show which effect the existence ol a vector po-
tential A(r,t) has on the Hamiltonian and the wave function of a system 1n first
quantization. Foir both expressions the changes compared to the free-electron

situation are deiived.

Change of the Hamiltonian

It is possible to put the effect of a magnetic field on an electric charge into the
Hamiltonian of the system by substituting the expiession for the momentum 1n

the following way

T

— p—eA  Slumts
p ) (B 1)
— p—2A  Gaussian units,

ot

where e 15 the elementary charge or the chaige of an election and ¢ 1s the velocity
of Light

Proof: An explanation of the substitution goes back to analytical mechanies:!
The Hamltonian principle states that all processes in natute develop 1 such a

way that the action
tz
S = L,

Ithe following explanation 1s based on Dicke et el [49] chap 5 and Noltng [50]

150
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becomes an extremum. Here L is the Lagrangian of the system. Accoiding to

calculus of varnation, this condition is equivalent to the Eulei-Lagrange equations

oL _a (oL) _
0q dt\dq /)

where ¢, 15 a (generalized) coordinate

These equations are fulfilled for conservative systems with holonom constraints

av

o0 (Newton’s law) and L can be

In this case, a potential V' exists with m¢, = —

wiitten as

V' with ;T tqf kinetic energy
‘f ‘f(Q‘1) “ e p()tellti&l ellel ()y

However, there is no change in the results, if instead of the potential V' only
a generalized potential U is available. Such a generalized potential is defined by
the constiaint that (generalized) forces can be obtained i the following way

F-—_a_U+i a_U
T 9y, T dt \0q

Then the Lagrangian can, similar to the previous case, be defined as L =T -U,
and the Euler-Lagrange equations are still {ulfilled
For a (Lorentz) force acting on a particle with a charge ¢ in an electromagnetic

field such a generalized potential exists, because

F = ¢[E+vxB] SI umts

F = ¢ [E + v x B)] Gaussian units
B = Vo 12 ¢

B = VxA

= F = q[—Vqﬂv—l{a—A—vx(VxA)}] dA_fA,(vT)A
1

dte
VA) _ 1dA vx{VxA)=T(vA)-(vT)A

1}
—
&
|

I
!
T
S

= U

Therefore, it is
(
L=T—qu+-i—v-A.




APPENDIX B. THE P - A - CONNECTION 152

With the help of the Lagrangian, a generalized momentum can be obtained

oL aT ¢

=Z=c—ti4
p1 aq-i aq-l + ¢ 1

The Hamiltonian is the Legendre transformation of the Lagrangian, and hence:
H=> npg—L.
1

If only skleionom holonom constraints are taken mto consideration, that is if

rl(qh' ey qsst) = I';((h .,q,,-), then
oT
T= Z Qg = z — ¢ = 2T
17 . 89’:
This leads to
BT q q )
=S (& + 24, g - (T-gp+Iv-a) = .
H X;(aqz—kc )q ( q¢+cv A)=T+gqd

Therefore, for the movement of a paiticle within an electromagnetic potential

(A, ﬁqﬁ) the following two results have been obtained

1. The canonical momentum 1s p = mv+ %A (B 2)
o (p—1a)’
2. The Hamiltonian is H = _"__5__.:__ + q¢ (B 3)
Zm

The calculation has been done 1 Gaussian units because this system of units 1s
common n mesoscopics Furthermore, it 1s much easier to go hom Gaussian units
to the SI-system than the other way around. The only thing to do i this context

15 to omut 1 everywhete. O

Change of the Wave Function

The modified structme of the Hamiltoman H compared to the case with no
vector potential., influences of course also the expiession for the wave lunction
[31] Given that +¥(r.t) is the solution for the Schrocinger equation of a free

electron with charge e. the claim 1s that

U(r,t) = ¢¥(r,t) exp [——;& [rA(s) cls] (B.4)
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solves the Schrodinger equation for the Hamiltonman derived above
Proof 1: It has to be shown that
HU(r,t) = ihi‘I’(r, 1)
ot
with H gven in (B3) This can be done directly by rewnting the Hamiltonian

1in the following way.

P € (pAtA v
o= ot gme P ATA P+ oGAT e
h?_, e?
= —— _ hY - 2 .
2mv +2 (2A - (<ihV) = 1AV - A) + = A% —€¢
= —’lv2+—2A (-ikV) + e A% —ep (B 5)
T 2m 2m 2mc?

Two 1emarks explain this calculation. Fust, p- A = A -p — 1AV - A because

[0y A (x)] F(r,8) = —ih%.&lt(r)ﬁ!(r, t)+1h_4,(r)aa T(r, t)

Sccondly, the CoulomD gauge V- A =0 was used Fuithetmoie, a pure radiation
ficld, that 15 ¢ = 0, 1s assumed. DBy noting that the derivatives of the wave

function (B 4) are of the form

VU(r,t) = exp[—l?- f Als) ds] (vw— EM)

V20(r,f) = exp[-f "Als )ds] (v%,f;— ?A (Vi) —

d
a\l’(r t) = e\]){——fA s)ds| — 5

and using ths expression for the calculation of H n (B 3) operating on ¥(r,t)

one can easily sea that the Schrodinger equation 1s fulfilled. O

There 15 another proof possible for the case that the magnetic field B = 0
along a path of consideration We use the theory of gauge transtormations in

electiomagnetisin

10

¢ — ¢'= =0 =<5\ A (r, 1)

A — A'=A+Vyx(rt)
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and claim: If a wave function ¥(r,t) 1s a solution of the Schrodinger equation
H¥(r,t) = E¥(r,t) and a gauge transformation of the proposed form is appled

then simultaneously a transformation of the wave function ¥ of the form

ie
O(r,t) — ¥'(r,t) = ¥(r,t)exp [—?Lx]

ic

1s necessaty for the invariance of the Schiédinger equation [32, 52]

1T, 1 . € . 2 '
Proof 2: HVY¥ = — (-mv + —A) U'(r, t)
2m c

1 e e 2 1e
= — | ~if -A+ -V Hexp|——
5 ( WV + p + - X) I(r, )6\1)[ ﬁcx]

1 1€ e \?
= —eX — —_ - R4
5 exp[ X ( VAVEES CA) I{r,t)

= exp[—%x] HE(r,t) = exp [—;—ecx] EV(r,t)
= E¥'(r,1)

That means that the eigenfunctions of a gauged Hanultoman aie the cigenfunc-
tions of the Hamiltonian without gauge times exp [—;lix] The eigenvalue F 1s
not affected by the gange transformation.

In regious with no maguetic field A(r,t) can be witten as a gradient of a
scalar field, which antomatically gives zero for B = V x A On the other hand,
it A(r,t) = Vx(r,t) then A can be undeistood as a gange transformation from

the state of no vector potential A(r,#) =0 Therctore,

U(r,t) = ¢lr,1) exp{—-];—zx(r,t)] = i (r,t) exp —%}% /rVX(s, t) (ls]

e (T
= 1 | ——
¥(r,t) e.\p[ ﬁc/ A(s,t) (ls],

which proves again (B 4) a




Appendix C

The Pauli Problem

In many calculations, as for instance 1n chapter 2 1.4, appear expressions like

I
Y S o, oar Q) Ji‘f(Olcﬂ‘[---chcjl---ch|0)

A=1% ar
I

Due to the Pauli exclusion principle two fernions with the same set of quantum
numbers are not allowed to occupy the same site. This propeity 1s automatically

included m the second quantized representation As soon as 2’s ae equal, the
T

1, |0) vanishes The coefficients in front of this product

operator product cIl ST
are ununportant because they are multiplied by zero
However, 1t might be questionable what there contribution 1s as soon as all

operators are abolished Perhaps one should reduce the expression above

_1ysene *
not to Z Z (—=1)%"a,, 1upy )
11 1 pEP(AT)

! sgng *
but to Z Z (_1) & Oy ?Map(u 1Ar)?
11t pEP(AN)

wheie the prime indicates that the summation indices should be distinet: 2 3 2
for A # . As a result sums would not go over the whole 1ange ol possible sites

any more, what might influence their value Tlus problem 1s discussed here

Normalization of many-particle states

N
We know that the one-particle state [¢) = 3 éxch|0) is noumalized. The many-
k=1

particle state 1s constructed by a superposition of one-particle states

155 .
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11 (2 ) 10

1=1
Because in the primed version of products with adjomnt states sums do not run

over the whole range of sites any more, 1t could be questionable whether [¢), 15

still noimalized. A calculation of the example of two particles gives
01 (S dta ) (z w;cj) (Swct) (e 10
1 2 {
= 3 U vdi(0lecchel [0) (6,405 + 814850)
17,kl

= THU6, ~ X6, + SN, — Ui,
] 17
LY 2

Ael9),

what shows the ummportance of the prune

The same procedure is possible for an atbitiary number ot paiticles One can
fill the sums step by step, because there are always two petmutations which differ
only 11 one transposition and have the opposite sign. Therefoie, 1t 1s possible to

acdel 1 both sums a term with the same 1ndex for the transposed tactors.

Expectation Values

¥l |¥), Z 81059 41 (0 le,c,cackele] 10)
((S.‘t,.‘uéj, 61,! - 5:£,k61,1'5].l - (s.t,t(sj,'l‘(si,ﬂ.' + 51:.161.7 Cst;uk)
= Y (Gr0ieb, — GLUU,6, ~ SUNGS, + LU0, )

ta#e LR
L2690, 9.8,

*x * * * * * * *
= 3 (O1U0.6, — 6103 0,6, ~ BULNG, + G165 0,0,)
13
In the same way as before we get that the missing summand 1 each sum can
always be added, because it cancels 1 two suins
Hence, the answer to the Pauli problem 1s that in suns hike
! sgngp *
> DL (S, s Xpfay 2ay)
u urpeP(M)
the piime, that is the constraint 1, # 3 for £ # [ is of no importance and the sum

can be handled as if the prune / this constramt were not there.




Appendix D

Fermionic Path Integrals

The Feynman Kernel

"In classical mechanics every process seems to behave in such a way that the weli-
known principle of least action is obeyed. It states that the classical path G(¢) 1s

that for which S 1s an extremum. Here, S 1s the action and is given by

S[q]:ftjbdtL(q,q,t), , (D 1)

with L = pg — H{p, ¢) bemng the Lagrangian.

In gquantum mechanics this principle 1s replaced by a path integral [54, 55].
That means that all paths contribute to the total amplitnde, but contribute at
dafferent phases

K(b,a) = const - > exp [IS_[(%(T_)]] = /D[Q] en U] (D2)

averall paths
fromatob

Sice the action 18 measured mn umts of £, the classical limit leads, sunilar to
above, ouly to the contribution of the path with extremal action Feynman
called the expiession K(b,a) a kernel.! [ts modulus squared, |K(b, )|?, gives the
probability for a particle to go fiom a point a = (g,,%,) to a point b = (¢, ;)
Proof: That this 1s the case can be shown by looking at the time evolution

operator U(#,,t,), which describes how a state changes in tune It 1s connected

1Sometimes 1t 15 also called “propagator”
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to the kernel via

lﬂbtb) = U(tfn tu) I"fbto)
wtb ((]h) = fd"lalc(br a)’l’:., (Qa)

On the other hand, the properties of the time evolution operators allow the

= K:(q;,tb, qﬂta) = ((ﬂ; |U(tb! ta) |qu)

following approximation [57]

Ult,ta) = Jum (n - %At?{(tm)) (11 - %At?—[(tg)) (11 - %z_\m(n)) (D.3)

f—}OO

by discretising the tune m intervals of At = —ﬁ- The lunit can be evaluated

with the help of the tume order operator T', leading to

Ult,t,) = Texp{% /: H(t’)dt’] . (D 4)

If the Hamiltonian H is independent of time, botlt expressions simplify to

Ult,t,) = lim (]l - -L;V’tﬂ) = oxp [—%(t - t,,)’H] (D.5)

Ny—=oo

Trachtionally, the Hamiltonian is a function of the momentum operator P and

the coordinate operator ¢ Their ergenvectors satisty the equations

Plp)=plp) and Qlg) =¢lg)

1
— _— alPafh — _— _a—lpgfh
{alp) = 5e and (plg) = 5—e (D 6)
as well as a resolution of unmty
00 o0 b
[ aalaxal =1 and [ aplp)pl =1, (D.7)
-0 -2

what allows two impoitant modifications of the expiession for the time eivolution
operator

Fust of all, unities mght be included for each tine step i (D 3) what leads
to

.Nt o0

Ult, t,) = lm1 (H .[dqj) | an, ) (H (qj|ll——AtH|![J l)) {20 (D 8)

Secondly, the eigenvalues of the momentum and the cooirdinate operator can

replace the operators itself. How this happens depends usually ou the order of

~
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the operators @ and P. However, for the common case H(P, Q) = 5= P2+ 17(Q)
one does not have to care about this. By using the resolution of umty for the

momentum operators |p,) and with (D 6) one obtans therefore

Ne ©©
U(f!fa) = lim (H /dqj) an. (H ;lp;l ‘pJ(‘TJ—G’J—-I)/ﬂ*

Ni=oo
(1 - —At?{(p,, s ) )((10]

—

e FRH(P; 9))
o

K(ba) = [Pl Dl exp; [ (-~ Mo ) ]

tla

Here the boundaries indicated that only such ways aie allowed whicl start m g,
and end 1n ¢, The result is the same as (D 2) with the only difference that the
integration is done in phase space with a Hamiltonian which depends on p and ¢

and not with a Lagrangian wliuch depends on ¢ and ¢ 0

Grassmann Numbers

The description it the pirevious section was giveu 1 order to make 1t easter to
undeistand the differences in the case of fermiomic path mtegrals. The main
alteration has its reason m the fact that the Hamiltonian 1in second quantization

does not consist of P and @, but of creation and anmhilation opetatols. c}

and
c,. Theicfore, the resolution of umty (D.7) has to be expressed now in terms of
eigentunctions of the new operatois

States |0 wlich are eigenfunctions of all anmliulation operatois are called

coherent states If they satisfv the equations
W) =¢1T) and (¥|c) = (T]¢ (D 9)

then the anticommutation relation of Fermu operators implhes that then eigenval-

ues can not behave like ordinary numbers but must also anticommute:

&53 + {16: =0

The algebra of such numbeis 1s called Grassmann algebra [31, 56]
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The rather strange behaviour of so-called Grassmann numbers has a lot of

consequences. The most obvious one is the mlpotence of these numbers,
E=0 W

Every Grassmann number £, exists together with 1ts conjugate £ The most

important properties for conjugation are
(&) =6 () =xrg vieq

(631532 '53,,)* = 6;.. o 6;26;1
The differentiation with respect to Grassmann numbers 1s defined sunilar to
the complex case, except that in order for the derivative operator % to act on &,
the variable £, has to be anticommuted through until 1t 15 adjacent to % The
sanie anticommutation rule applies for integration. The latter is well-defined by
the conditions that the mtegral of an exact differential form vanishes and that

the integial of a Grassmann nmumnber 1s normalized

dé1=0, [dee=1. (D 10)
/ /

Example: If one supposes that the Grassmann algebia 1s generated by only

two Grassmann numbers £ and £* then an opeiator has tle general toim

A E) =ap+ )l + ™ + a6 withag,. .,03€ €

= 2, ad
0—€A(§*,f) = ay ~ a3§", 0_5*‘4(5*’5) =y 4+ ayé
00 v ey, 99 ..
OE* ‘5§_A(£ 15) - —”3 - OE DE* ‘_l(E !f)

/df;l(rf*,f) =y — tyE", fdf’ A€, 6) =ty + 1€
[ dedg A€ 8) = —ar = [ deag A€

It 1s worth noting that differentiation and ntegiation aie iwdentical and that the

differential operators 5’—5 and ;3% anticommute a

Furthermore, it is natural to demand that the Giasstnann numbers do not

only anticommute with one another, but obey also an anticomnmutation relation
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with fermionic operators, fe ¢, + ¢,§, = 0. Additionally, the conjugation of
. . ¥
mixed products is handled in the way (E,CJ) = c;rf;‘.
1With the help of all these conditions it is possible to write down an expression

for the fetmion coherent state 2

| TY = e\p{ ZEJ J} |0) = H (I—EJCD |0) (D 11)

7=1
Proof:
&l ® = oI (1-¢¢) 10) = T (1-¢&,ef) e (1 - &) 10)
2 #Ek
= [T (1-ge)aloy =TT (1-gel) & (1~ k) 10y
I#k 17k
= &I (1-¢¢)) 10y =¢ o)
7

O
Finally, these coherent states allow to give the desired expression for the

resolution of unity

/ (H dé;df;) e L,5% |uy(u| = 1 (0 12)
3
Proof: An arbitrary many-particle state in second quantization has in this paper
the form
= np,onmar bt b
lll'b)nh ma Z &) Car Cu "Gy [0)
i, A
= ny* T
nll ,TJ-J”, I - (OI Z a-“ aJM" C-l“ . CJ.\I"
Uy dapr

and the overlap of such states has already been calculated several times
q np,. 7 7 {1) (M)
nh, ,n';.;f<w|1’b)m, AL = darar Z Z & p“ ‘ ) ‘(J\‘!’ aJ:J ot
Ny I pEP(AS)

The result should remain unchanged when the unity 15 included By using (D.12)

and (D 9) one obtains

2The motivation for such an expression, as for manv other of the given defimtions, comes

fiom the treatment of boson coherent states Howeier, a prove shows 1ts corectness
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w o SO,

R
— L ¥ L RS TR
= Z Z Q) a, o ol ..

11y SIAF 21 Jppt

/ (H dé-;dfj) H (1 - 6;53) e TR | T) (T [CII T CIM
2

J
- ] f (H df;de) H (1 - 6;61) S EJ”:E:I " 'f:“
7 b}

The mlpotence of Grassmann numbets and the rules for integration (D 10) imply
that for a certan 7

& 1

* (0

f d¢;dg, (1 —§ 53) E} Yo
1 1

Hence, the mntegral over all N Grassmann numbers is non-vamshing only 1if the
(unordered) sets {z1,...,2a7} and {31,. .,7ar} ate wdentical In this case the
integration gives one Permutations aie allowed and lead to the same sign as in
the overlap of the two states above Thus, it is shown that the operator 1y really
does not alter a state multiplied to the 11ght O

Other important properties are the oveilap of two coherent states
N N
@) =0T (1-¢&) (1-&d) 10)= [ (1 +&&) =55 (D 13)
J=1 1=1
and the action of a ¢cieation operator on a coherent state

0y = I] (1-&c) [0y = _a% (1-ad) 1 (1-&c) 10y = —a%m:)

1#k FELS
(D ].4)

The Time Generating Function for the Fermi Case

With the experience of the previous section 1t is possible to wiite down an ex-
pression of the time oidening operator for a second guantized Hanultonian For
the sake of simplicity, we modity the expression for the unitv (D 12) slightly by

troducing ¥ as a vector of the Grassmann numbers &, .,&x When wniting

/d\I!*d\Ife“I" YIe)Ne) =1, (D 15)
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the integration 1s understood to go over all components &, similarly to (D.12).

Combined with (D 3) the time ordering operator becomes

Ni—=oo

Ni
U{t,t,) = lm (H/d\lr*(t,)dlp(tj)) [ C(tn,)) * ..
7=0

*(ﬁe““”mwwmnn-gAﬂuwaknﬂ<@mn

3=1
The trace of this operator is impoitant mn zero temperature condensed matter
theory It 1s called time generating function [57] o1 vacuum persistence
amplitude [31] and has the form

Z = lim (1‘[ / d¥*(¢,)d¥(t )He-“‘ RN Q1) [~ FAH | T(t,_1))

Ni—roo 121

since 1t does not make much difference 1if the trace 1s calculated in Fock space or
in the space generated by coherent states.

In oider to stmphfy tlus expiession turther one has to tlunk briefly about the
question how (¥ |A | ¥) looks like for an operator A = A(ck, ¢,) 1 second quan-
tized foom However, as long as this operator 1s noimal ordered (all anmlulation
operators are standing to the right of all creation operators) 1t is easy to give the
answer with the help of (D 9) and (D 13):

T no_ e x
(U]A(cp, ) [P) = ¢ A, &)
Hence, we have tor the tine generatmg function w the Fermon case
) g 8

Z= [DE[’*’D‘I! exp [ijclt (\I' 12%\11 - —’H(I* ‘I’))] (D.16)

wheire 1t has been taken into consideration that the lHmit

1 * *
_\I‘{I_I}G'_"\'E( ()0 (t)) + () (t-1))

cant be nnderstood as a denvatine of Grassmann numbers

W(t,) — ¥(t, — At)

= —\P*(¢,) - 11m Y.

= iQ\P*(tJ)gE\I'(tJ)




Appendix E

The Structure of Rotation

The aim of this section 1s to find an operator representation which describes a
rotation from one system of coordinates x,y,z to a new system X,y,%z !

It is possible to look at such a rotation as a transformation
r—r =gr

of the coordinates of a fixed body when there 15 a change of the coordinate axis
Having got this equation the task is to determune the effect on the wave
function ¥ of this body. Hence, one has to find the operator f?g which changes
the wave function accordingly
For this the tollowing constrant 1s important A new wave function ¥ with
respect to a new coordinate rf must be the same as the onginal wave function

at the point with the unrotated coordinates r.
P (1) = ¢(r) = ¢$(57"'r).
Combined with the relation
¥(c') = Ryd(r')
tlus leads to

-

Ryp(r') = w(57'r') = ¥(r) (E-1)

IThe following derivation follows up to a ceitain extend the descriptions m Edmonds [58]

-

and Davydov [39)

164
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It is known or can easily be shown by infinitesimal rotations that such kind
of changes in the wave functions caused by a rotation of the coordinate axis over

an angle ¢ around n is realized by the operator

Ry(g) = eV ™o/, (E2)

where J 1s the angular momentum operator.
A shightly different point of view is, that a rotation of the cooidinate system
1s 1 uniquely determined by three Euler angles «, 3,v. These different angles

mduce the following successive procedure of rotations

1 rotation over an angle a around the z-axis

Rz(a) XY,z *X1,¥1,21 = Z

2. 1otation over an angle 8 around the y;-axis

Ry‘(ﬁ) *X1,¥1,21 —> X2,¥2 = Y1:22

3. rotation over an angle v around the z.-axis

R*2(v) X2,¥2,22 — X,¥,2 = 2Z2

Figure E.1: The effect of the successive procedure of rotations mentioned above 15
shown. FEach diagram wncludes one rotation over un Euler angle more then the
PIEVIOUS ONe.

In the language of rotation operators this procedure can be written in the

following forin.

Ry = R(a, B,7) = R™(7) ¥ (B) R*(a).
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For this procedure the second rotation is a1ound an axis which follows from the
first one, and the axis of the third rotation is based on the two rotations before.
For practical purposes 1t is often more convenient to look at a fixed reference frame
for these rotations. This fixed reference fiame may be the coordinate system

X,¥,z at the beginning. This is possible because of the following relations
B B) = [F(e)RY(B)R*(~a)
R2(y) = R™M(BR*(R(-B)
= o) (B) R (7)Y (- B) R (~e)

=  R2(FOR(0) = R (o)l (B)F(a). (E.3)
With the help of tlus and equation (E.2) one can wiite
R(Cﬂ, ﬁ, 7) — elj;a/hel fyﬁ/hel.i:'y/h (E 4)

The eigenfunctions belonging to J may be called as usual |ym) Because of
the rotational mvariance of JZ the eigenvalues 1%3(7 + 1) are not changed when

I:?(c‘v, f3,7) 1s applied Hence, the following 1epresentation s possible
B(cv, B,7)|gm) = Z | 1RYOk | R, B,7) | ) = ZDmk (e, 8,7} 3k}, (E.5)

where the matrix elements are called Wigner functions, or genetalized spherical
functions or D-functions

The function |ym) could for instance be represented in spherical coordinates
1, , ¢ and therefore with the help of the notation ¥ (r) = (Jp|ym) the equation

(E 1) can be written in the form
(0| 3m) = (e, B, )0 | 3m) = Z Dl (e, B,7){9'¢' | 1k) (E6)

Coming back to the definition (E.3) for the matiix elements D7 | 1t 1s possible
to calculate these terms expheitly For tlus thesis only the case 3 = 1 15 of
mtetest 2 In this special case it 1s

1 -
me = (3k|B(a, B,7) | m)

e flpgar o d 3 iy 1
= {3 Ihludfhg | 5mm)

— elk{t(%klel.}yﬁ/ﬁ |%?n)emw’

A result for an aibatrary value of 3 can for instance be found in Edmonds [58] on page 57.
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where k and m can be § or —%.

As already mentioned in chapter 1.1 there is for the case 7 = % a sumple
relationship between the spin angular momentum and the Pauli spin matrices of

the form J = lho Hence, 1t is
; 1
(%k[e”yﬁfﬂém) = (1k|exp [gﬁay] | 3m)

A Taylor expansion and the knowledge of the relation r.rj = 1l gives

colggn] = 4 ()

n!
= n!

1/1 1 1/13°
= 1fi-5(38) + |+ [aﬂ‘ﬁ(aﬁ) t ]
1 cos(lﬁ)+ si (1ﬁ)
= . — la . —
P yr 3
L 1 0 —i
COS(Qﬁ) 51n(2ﬁ) because oy = 1
—sin(%ﬂ) cos(%ﬁ) 1 0
Putting all these results together leads to the result that DJ ,(«afv) consists

of the following matrix elements:

(o) cos (%ﬁ’) e~ 3= sin (%ﬁ)

—e:{a=7) sin(%ﬁ) e~ le+m) cos(%ﬁ) (E1)

The original problem was to rotate the spin quantization axis to a vector with
the polar coordinates #,{ The question 1s how this can be expressed by Euler
angles The easiest way to see thisis to take the possibility with the fixed reference
fiame. The amm 1s to bring the z-axis i the direction of the vector The z-axis
15 m step two rotated along the y-axis Therefore, the coordinate system must
m the first step be rotated m such a way, that the vector becomes perpendicular

to the y-axis The second step is then the actual 1otation ot the z-axis And the

¥ = —(C Hence, the 1otation matrix has the following stiucture

cos(%ﬂ) —e %5 %9)

R(8,¢) = o sm(%ﬁ’) coS(%"))

?
third step must be a turn back of the first step That means a = ¢, § = —0 and |
(E 8)




Appendix F

The Usage of Contractions

A useful tool for dealing with long chams of creation and anmhilation operators
is Wick’s theorem It gives a simple method Lhow a product of tiune-ordered
operators can be expiessed in the form of operator products which are normal

ordered The formula is

T (07w . XV2) = N(0VW . X72) + NG X72)
+ N(OVIV . XYZ)+.. +N(OVIV.. XT2)
= N(m‘/ﬁf i ‘{'3"2)

=+ N(sum over all possible paits ol (Olltl:lCthllS)

Here the following notation 1s used
S XU, to<t
T .... time-ordenng operator T (X(tz)l (ty)) = L e
-Y'X, iy <tz
N ... normal-oidening operator all annihilation operatois are placed to the
tight of all the creation operators
indicates contractions .E’ =T (.\'1’) - N (.YY)
Furthermore, there exists the sign convention that two contiacted tactors must
be brought together by rearranging the owder ot the opeiators within the noimal

product, always keeping the standard sign convention for interchange of fermions !

If for the calculations of this paper the time ordering 1s assumed to be in the

"WWick's theorem 15 formulated in thns way and proven in the bock of AL Fetter and 1D
Walecka [G0]
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way c,wcL,,, then a contraction, which is a e-number 1n the occupation-number

Hilbert space, has the value

1 _ () t
Ck.arck’,a’ — Ck,ack',o" - (_Clc’,o"ck,a-) [Ck o Ck' at ]+ 6k k’(sa o’

If, on the other hand, the timer ordering 15 assumed to be in the way cfc,ack, o
then cllack,‘ﬂ, =0 Additionally, ¢ ¢, » = 0 and c;[’acL,’(,f = 0, because 1n these
[— | I Lt
three cases the time oidered product is automatically normal ordered
The trick 15 to define an artificial “time ordering” as the order of the operators
that is given at the beginming of a calculation. Then 1t 15 very convenient to use

Wick’s theorem for transformations

Example: An usual problem of tlus paper 1s to evaluate an expiession like

(O|chcjlck+1ckc ,10)

This order of operator is defined to be time ordered and afterwards Wick’s theo-

rem is applied:

!

= (0|T( J2chc‘,c+1c,€ ) |0}

= 0|N( Jz J]_Ck-l-lckczg 2) [ 0|N( _;)_ jlck-i-lckctl 1,2) |0> +
i

+ (0[N (e, c&cﬂlckc, ct,) 10y +(0|N (e, chchkc,l ch}10)

+ (OIN( c,, chlﬂc,‘c“cw) |0Y + OIN( ¢, chLHck ch) [0} +.
— Y | =

In this sum all not fully contracted terms disappear, because normal ordeiing
bumgs annilulation operators to the right, and the 1esult 15 zero if they operate on
|0). Furthermore, only those of the tully contiacted terms remain for which each
pair of contraction consists of an anmhilation operator on the lett and a creation

operator on the right These four contributions have the value

= 6]3.12631,k+16k,11 - on,u(SJt’k+l(sk,t2 - ‘)quk-l-lajhu‘sk,u + ()JZJ\-+1(SJ1JI()’MQ
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