
Improving The Performance Of

Software Defined Networks

Using Dynamic Flow Installation

And Management Techniques

by

Philippos Isaia

Submitted in partial fulfilment

of the requirements for the award of

Doctor of Philosophy

of

Loughborough University

5th June 2018

Copyright 2018 Philippos Isaia

Abstract

As computer networks evolve, they become more complex, introducing several

challenges in the areas of performance and management. Such problems can lead

to stagnation in network innovation. Software Defined Networks (SDN) framework

could be one of the best candidates for improving and revolutionising networking

by giving the full control to the network administrators to implement new man-

agement and performance optimisation techniques.

This thesis examines performance issues faced in SDN due to the introduction

of the SDN Controller. These issues include the extra delay due to the round-trip

time between the switch and the controller as well as the fact that some packets

arrive at the destination out-of-order.

We propose a novel dynamic flow installation and management algorithm

(OFPE) using the SDN protocol OpenFlow, which preserves the controller to

a non-overloaded CPU state and allow it to dynamically add and adjust flow ta-

ble rules to reduce packet delay and out-of-order packets. In addition, we propose

OFPEX, an extension to OFPE algorithm that includes techniques for managing

multi-switch environments as well as methods that make use of the packets interar-

rival time in categorising and serving packet flows. Such techniques allow topology

awareness, helping the controller to install flow table rules in such a way to form

optimal routes for high priority flows thus increasing network performance. For

the performance evaluation of the proposed algorithms, both hardware testbed

as well as emulation experiments have been conducted. The performance results

indicate that OFPE algorithm achieves a significant enhancement in performance

in the form of reduced delay by up to 92.56% (depending on the scenario), reduced

packet loss by up to 55.32% and reduced out-of-order packets by up to 69.44%.

Furthermore, we propose a novel placement algorithm for distributed Mininet

implementations which uses weights in order to distribute the experiment com-

ponents to the appropriately distributed machines. The proposed algorithm uses

static code analysis in order to examine the experimental code as well as it mea-

sures the capabilities of physical components in order to create a weights table

which is then used to distribute the experiment components properly. The perfor-

mance results of the proposed algorithm evaluation indicated reductions in delay

and packet loss of up to 65.51% and 86.35% respectively, as well as a decrease in

the standard deviation of CPU usage by up to 88.63%. These results indicate that

the proposed algorithm distributes the experiment components evenly across the

available resources.

Finally, we propose a series of Benchmarking tests that can be used to rate all

the available SDN experimental platforms. These tests allow the selection of the

appropriate experimental platform according to the scenario needs as well as they

indicate the resources needed by each platform.

Keywords: Software Defined Networking, OpenFlow, Dynamic Flow Installation,

Mininet, POX

Acknowledgements

I would like to thank many individuals in the Computer Science Department

of Loughborough University because without their kind support, help and encour-

agement the successful completion of this report would not have been possible.

I would like to express my deepest appreciation to my research supervisor Dr

Lin Guan for her contribution in stimulating suggestions, constant encouragement,

and useful feedback that helped me a lot to coordinate my project work.

Special thanks go to Dr Peter Bull for his guidance and valuable feedback

throughout the execution of the experimental work and especially for his advice

in report writing.

Last but not least, many thanks go to Dr Iain Phillips for accepting to be my

annual reviewer throughout my PhD, as well as helping me to set up the virtual

environment for experimentation.

Publications

Philippos Isaia, Lin Guan. “Performance Benchmarking of SDN Experimental

Platforms”, 2016 IEEE NetSoft Conference and Workshops (NetSoft 2016), Seoul,

2016

Philippos Isaia, Lin Guan. “Distributed Mininet Placement Algorithm for Fat-

Tree Topologies”, 25th IEEE International Conference on Network Protocols 2017

(ICNP 2017), Workshop on Software Defined Networking and Network Function

Virtualization Performance (PVE-SDN), 2017

Contents

Page

List of Figures vii

List of Tables xi

List of Abbreviations xiv

1 Introduction 1

1.1 Motivation . 3

1.2 Aim and Objectives . 4

1.3 Original Contributions . 5

1.4 Thesis Outline . 6

2 An Overview Of Software Defined Networking 8

2.1 Introduction . 8

2.2 Programmable Networks . 9

2.2.1 Routing Control Platform and 4D Architecture 10

2.2.2 SANE, Ethane and Tesseract 11

2.2.3 NOX and Maestro . 13

2.2.4 HyperFlow, Onix and DIFANE 14

2.3 OpenFlow . 16

2.3.1 OpenFlow Specification . 19

2.3.2 Flow Table . 21

2.3.3 Secure Channel . 22

2.3.4 OpenFlow Versions Comparison 22

2.4 Software Defined Networking . 28

i

2.4.1 SDN Architecture . 29

2.4.2 SDN Implementations . 31

2.5 SDN Controllers . 32

2.5.1 Controller Behaviours . 33

2.5.2 Controller Examples . 34

2.5.2.1 Trema . 34

2.5.2.2 Beacon . 34

2.5.2.3 SNAC . 35

2.5.2.4 OpenDaylight . 35

2.6 Benchmarking Simulation and Emulation Environments 35

2.7 OpenFlow Related Projects . 37

2.7.1 Data Centre Related . 38

2.7.2 Flow Management Related 39

2.7.3 Wireless Related . 41

2.7.4 Security Related . 42

2.8 Summary and Discussions . 43

3 OpenFlow Performance Enhancement Algorithm Using Dynamic

Flow Installation And Management (OFPE) 46

3.1 Introduction . 46

3.2 Current State . 48

3.3 Proposed OpenFlow Performance Enhancement Algorithm 55

3.3.1 Algorithm Operations . 56

3.3.2 Operations Benefits . 57

3.4 Experiments and Analysis . 60

3.4.1 Experimental Equipment . 60

3.4.2 Scenario 1 - Incremental Increase of CPU Load 61

3.4.3 Scenario 2 - Incremental Increase of CPU Load with 4 Streams 63

3.4.4 Scenario 3 - Multi-Switch Environment 65

3.4.5 Scenario 4 - Multi-Switch Environment with 4 Streams . . . 65

3.5 Summary and Discussions . 68

ii

4 OpenFlow Performance Enhancement Algorithm Based on Packet

Interarrival Time (OFPEX) 70

4.1 Introduction . 70

4.2 Packet Interarrival Time in OpenFlow 71

4.3 Packet Interarrival Time Based Enhancement Algorithm (OFPEX) 74

4.3.1 Statistics Gathering . 74

4.3.2 Use of Gathered Statistics 78

4.4 Experiments and Analysis . 80

4.4.1 Scenario 1 - Static Interarrival Time 80

4.4.2 Scenario 2 - Dynamic Interarrival Time 82

4.5 Summary and Discussions . 84

5 Distributed Mininet Placement Algorithm for Fat-Tree Topolo-

gies 86

5.1 Introduction . 86

5.2 Distributed Mininet Analysis . 87

5.3 Proposed Placement Algorithm . 89

5.3.1 Requirements . 89

5.3.2 Overview . 89

5.3.2.1 Static Code Analysis 89

5.3.2.2 Link Capacity Measuring 90

5.3.2.3 Bin Creation . 91

5.4 Experimental Scenarios . 91

5.4.1 Scenario 1 - Weight Assignment 93

5.4.2 Scenario 2 - Component Assignment 94

5.4.3 Scenario 3 - Increasing Topology Size 95

5.5 Experimental Results Analysis . 96

5.6 Summary and Discussions . 104

6 OpenFlow Performance Enhancement Algorithm In Large Topolo-

gies Using Distributed Mininet 105

6.1 Introduction . 105

6.2 Experimental Scenarios . 106

iii

6.2.1 Scenario 1 - Restrictions in Physical Topology 106

6.2.2 Scenario 2 - Stressing The Controller 108

6.2.3 Scenario 3 - Stressing The Controller & The Workers 109

6.3 Experimental Results Analysis . 110

6.4 Summary and Discussions . 112

7 Performance Benchmarking of SDN Experimental Platforms 114

7.1 Introduction . 114

7.2 Proposed Performance Benchmarking Tests 116

7.3 Experiments and Analysis . 118

7.3.1 Default System Performance 119

7.3.2 Scenario 1 - Dumbbell-Shaped Topology 122

7.3.3 Scenario 2 - One-to-Many Topology 126

7.3.4 Scenario 3 - Linear with 2 Hosts Topology 129

7.3.5 Scenario 4 - Linear with N Hosts Topology 132

7.3.6 Scenario 5 - Host-Switch-Host Topology 135

7.4 Summary and Discussions . 138

8 OpenFlow Software & Hardware Performance Evaluation 139

8.1 Introduction . 139

8.2 HP Procurve, OpenWrt and Mininet Specifications 140

8.3 Performance Evaluation Scenarios 142

8.4 Experimental Results Analysis . 145

8.4.1 Mininet System Default Performance 145

8.4.2 Scenario 1.a - Bandwidth . 145

8.4.2.1 TP-Link OpenWrt 146

8.4.2.2 Mininet . 147

8.4.2.3 HP-Procurve . 148

8.4.3 Scenario 1.b - Bandwidth Stability 148

8.4.3.1 TP-Link OpenWrt 150

8.4.3.2 Mininet . 150

8.4.4 Scenario 2 - Multiple Streams 151

8.4.4.1 TP-Link OpenWrt 151

iv

8.4.4.2 Mininet . 152

8.4.4.3 HP-Procurve . 153

8.4.5 Scenario 3 - Bidirectional Traffic 153

8.4.5.1 TP-Link OpenWrt 154

8.4.5.2 Mininet . 154

8.4.5.3 HP-Procurve . 155

8.4.6 Scenario 4 - Rate Limiting 156

8.4.6.1 TP-Link OpenWrt 157

8.4.6.2 Mininet . 157

8.4.6.3 HP-Procurve . 159

8.4.7 Scenario 5 - TCP Bandwidth 159

8.4.7.1 TP-Link OpenWrt 159

8.4.7.2 Mininet . 160

8.4.7.3 HP-Procurve . 160

8.4.8 Scenario 6 - TCP and UDP Bandwidth 161

8.4.8.1 TP-Link OpenWrt 162

8.4.8.2 Mininet . 162

8.4.8.3 HP-Procurve . 163

8.5 Summary and Discussions . 165

9 Conclusions and Future Work 168

9.1 Conclusions . 168

9.2 Future Work . 171

References 173

Appendices 190

A OpenFlow Software & Hardware Performance Evaluation Figures191

A.1 Mininet System Default Performance 192

A.2 Scenario 1.a - Bandwidth . 193

A.2.1 TP-Link OpenWrt . 193

A.2.2 Mininet . 196

A.2.3 HP-Procurve . 199

v

A.3 Scenario 1.b - Bandwidth Stability 200

A.3.1 TP-Link OpenWrt . 200

A.3.2 Mininet . 201

A.4 Scenario 2 - Multiple Streams . 202

A.4.1 TP-Link OpenWrt . 202

A.4.2 Mininet . 203

A.4.3 HP-Procurve . 204

A.5 Scenario 3 - Bidirectional Traffic . 205

A.5.1 TP-Link OpenWrt . 205

A.5.2 Mininet . 206

A.5.3 HP-Procurve . 207

A.6 Scenario 4 - Rate Limiting . 208

A.6.1 TP-Link OpenWrt . 208

A.6.2 Mininet . 209

A.6.3 HP-Procurve . 211

A.7 Scenario 5 - TCp Bandwidth . 212

A.7.1 TP-Link OpenWrt . 212

A.7.2 Mininet . 213

A.7.3 HP-Procurve . 215

A.8 Scenario 6 - TCP and UDP Bandwidth 216

A.8.1 TP-Link OpenWrt . 216

A.8.2 Mininet . 217

A.8.3 HP-Procurve . 219

vi

List of Figures

1.1 Cisco Data Centre and Cloud Traffic Forecast (Sources: [1] and [2]) 3

2.1 Main components of an OpenFlow switch (Source [3]) 18

2.2 Packet flow in an OpenFlow switch 21

2.3 Changes to hardware due to SDN 29

2.4 Software-Defined Network Architecture (Source: [4]) 30

2.5 OpenRoads Architecture (Source: [5]) 41

3.1 Packets Out of Order Relation to Packets Rate of Arrival 49

3.2 Out Of Order Packets Explanation 50

3.3 Packet Arrival Rate Importance Experiment Topology 51

3.4 OpenFlow Vs Non-OpenFlow Switches 54

3.5 CPU Monitor Algorithm . 57

3.6 Flow Modification Algorithm . 57

3.7 Flow Table Statistics Algorithm . 57

3.8 Network Topology Awareness Algorithm 58

3.9 Route Formation Algorithm . 58

3.10 Scenarios 1 and 2 Topology . 61

3.11 Scenario 1 - Results Graphs . 62

3.12 Scenario 2 - Results Graphs . 64

3.13 Scenarios 3 and 4 Topology . 65

3.14 Scenario 3 - Results Graphs . 66

3.15 Scenario 4 - Results Graphs . 68

4.1 Number of Out-of-Order Packets, Rule Installations and Lost Pack-

ets Against Packet Interarrival Time 73

vii

4.2 Percentage of Out-of-Order Packets, Rule Installations and Packet

Loss Against Packet Interarrival Time 73

4.3 Delay Against Packet Interarrival Time 74

4.4 CPU Utilisation Threshold Experiment 75

4.5 Controller Decision Mechanism Diagram 78

4.6 Scenario 1 - Topology . 80

4.7 Scenario 1 - Interarrival Time vs Packets Out of Order Percentage . 80

4.8 Scenario 1 - Interarrival Time vs Packet Loss Percentage 81

4.9 Scenario 1 - Interarrival Time vs Delay 81

4.10 Scenario 1 - Interarrival Time vs Average Number of Flow Table

Rules . 81

4.11 Scenario 2 - Packets Out of Order Percentage 83

4.12 Scenario 2 - Packet Loss Percentage 83

4.13 Scenario 2 - Delay . 83

4.14 Scenario 2 - Flow Table Rules . 84

5.1 Proposed Placement Algorithm Operations 90

5.2 Experimental Topology . 92

5.3 Workers Topology . 92

5.4 Scenario 1 Readings . 101

5.5 Scenario 2 Readings . 102

5.6 Scenario 3 Readings . 103

6.1 Experimental Topology . 107

6.2 Workers Topology . 107

7.1 Default System Performance . 121

7.2 Scenario 1 - Dumbbell-Shaped Topology 123

7.3 Dumbbell-Shaped Topology Results 125

7.4 Scenario 2 - One-to-Many Topology 126

7.5 One-to-Many Topology Results . 128

7.6 Scenario 3 - Linear with 2 Hosts Topology 129

7.7 linear 2 Hosts Topology Results . 131

7.8 Scenario 4 - Linear with N Hosts Topology 132

viii

7.9 Linear N Hosts Topology Results 134

7.10 Scenario 5 - Host-Switch-Host Topology 135

7.11 HSH Topology Results . 137

8.1 Two Hosts Topology Used By Each Platform 144

8.2 Mininet Four Hosts Topology . 162

A.1 System Default Performance . 192

A.2 TP-Link Scenario 1.a - Bandwidth 193

A.3 TP-Link Scenario 1.a - Delay . 194

A.4 TP-Link Scenario 1.a - Performance 194

A.5 TP-Link Scenario 1.a - CPU Performance (% Active) 195

A.6 TP-Link Scenario 1.a - Comparisons 195

A.7 Mininet Scenario 1.a - Bandwidth 196

A.8 Mininet Scenario 1.a - Delay . 196

A.9 Mininet Scenario 1.a - CPU Performance 197

A.10 Mininet Scenario 1.a - Network I/O 197

A.11 Mininet Scenario 1.a - Performance 198

A.12 Mininet Scenario 1.a - Comparisons 198

A.13 HP Procurve Scenario 1 - Bandwidth 199

A.14 HP Procurve Scenario 1 - Delay & Latency 199

A.15 TP-Link Scenario 1.b - Bandwidth & Delay 200

A.16 TP-Link Scenario 1.b - Packet Loss 200

A.17 Mininet Scenario 1.b - Bandwidth & Delay 201

A.18 Mininet Scenario 1.b - Cores Performance 201

A.19 TP-Link Scenario 2 - Bandwidth 202

A.20 TP-Link Scenario 2 - Delay . 202

A.21 Mininet Scenario 2 - Bandwidth . 203

A.22 Mininet Scenario 2 - Delay . 203

A.23 HP Procurve Scenario 2 - Bandwidth 204

A.24 HP Procurve Scenario 2 - Delay . 204

A.25 TP-Link Scenario 3 - Bandwidth and Delay 205

A.26 TP-Link Scenario 3 - CPU Performance 205

ix

A.27 Mininet Scenario 3 - Bandwidth & Delay 206

A.28 HP Procurve Scenario 3 - Bandwidth 207

A.29 HP Procurve Scenario 3 - Delay . 207

A.30 TP-Link Scenario 4 - Bandwidth & Delay 208

A.31 Mininet Scenario 4 - Bandwidth & Delay 209

A.32 Mininet Scenario 4 - CPU Performance 209

A.33 Mininet Scenario 4 - Network I/O 210

A.34 HP Procurve Scenario 4 - Bandwidth 211

A.35 HP Procurve Scenario 4 - Delay . 211

A.36 TP-Link Scenario 5 - Bandwidth & CPU Performance 212

A.37 Mininet Scenario 5 - Bandwidth . 213

A.38 Mininet Scenario 5 - CPU Performance 213

A.39 Mininet Scenario 5 - Network I/O, RAM & Disk Busy Performance 214

A.40 HP Procurve Scenario 5 - Bandwidth 215

A.41 TP-Link Scenario 6 - Bandwidth 216

A.42 TP-Link Scenario 6 - Delay & CPU Performance 216

A.43 Mininet Scenario 6 - Bandwidth . 217

A.44 Mininet Scenario 6 - Delay . 217

A.45 Mininet Scenario 6 - CPU Performance 217

A.46 Mininet Scenario 6 - Network I/O, Ram & Disk Performance 218

A.47 HP Procurve Scenario 6 - Bandwidth 219

A.48 HP Procurve Scenario 6 - Delay . 219

x

List of Tables

2.1 OpenFlow Standards Release Dates 20

2.2 List of Header Fields . 23

2.3 List of Counters . 24

2.4 List of Actions . 25

2.5 List of Messages . 26

2.6 List of OpenFlow Controllers . 36

3.1 Virtual Machines Specifications . 52

3.2 Packets Out of Order Relation to Packets Arrival Rate Experiment

Summary . 53

3.3 OpenFlow Physical Switches Flow Table Size 55

3.4 Server Experimenting Machine . 61

3.5 Scenarios 1 Readings Summary . 63

3.6 Scenario 2 Readings Summary . 63

3.7 Scenario 3 Readings Summary . 67

3.8 Scenario 4 Readings Summary . 67

4.1 Scenario 1 - Readings Summary . 81

4.2 Scenario 1 - Readings Percentage Change 82

4.3 Scenario 2 Readings Summary . 83

5.1 Scenario 1 Characteristics . 93

5.2 Scenario 2 Characteristics . 95

5.3 Scenario 3 Characteristics . 96

5.4 Scenario 1 Experimental Results . 97

5.5 Scenario 2 Experimental Results . 98

5.6 Scenario 3 Experimental Results . 99

xi

6.1 Scenario 1 Characteristics . 108

6.2 Scenario 2 Characteristics . 109

6.3 Scenario 3 Characteristics . 110

6.4 Scenario 1 Experimental Results . 111

6.5 Scenario 2 Experimental Results . 111

6.6 Scenario 3 Experimental Results . 112

7.1 Mininet Experimental Machines Specifications 119

7.2 Default System Performance . 120

7.3 Dumbbell-Shaped Topology OVS Summary 124

7.4 One-to-Many Topology OVS Summary 127

7.5 Linear 2 Hosts Topology OVS Summary 130

7.6 Linear N Hosts Topology OVS Summary 133

7.7 HSH Topology OVS Summary . 136

8.1 HP Procurve Specifications . 141

8.2 TP-Link TL-WR1043ND Specifications 141

8.3 Mininet Experimenting Machine . 144

8.4 Default CPU Usage - Summary . 146

8.5 TP-Link Scenario 1.a - Summary 147

8.6 Mininet Scenario 1.a - Summary . 149

8.7 HP Procurve Scenario 1 - Summary 149

8.8 TP-Link Scenario 1.b - Summary 150

8.9 Mininet Scenario 1.b - Summary . 151

8.10 TP-Link Scenario 2 - Summary . 152

8.11 Mininet Scenario 2 - Summary . 153

8.12 HP Procurve Scenario 2 - Summary 154

8.13 TP-Link Scenario 3 - Summary . 155

8.14 Mininet Scenario 3 - Summary . 155

8.15 HP Procurve Scenario 3 - Summary 156

8.16 TP-Link Scenario 4 - Summary . 157

8.17 Mininet Scenario 4 - Summary . 158

8.18 TP-Link Scenario 5 - Summary . 160

xii

8.19 Mininet Scenario 5 - Summary . 161

8.20 TP-Link Scenario 6 - Summary . 163

8.21 Mininet Scenario 6 - Summary . 164

xiii

List of Abbreviations

APD Average Ping Delay

API Application Programming Interface

AQM Active Queue Management

ARED Adaptive Random Early Detection

AS Autonomous System

AVQ Adaptive Virtual Queue

BoS Bottom of Stack

CBT Class Based Thresholds

CPU Central Processing Unit

DOT Distributed OpenFlow Testbed

DDR Double Data Rate

DSCP Differentiated Services Code Point

DSRED Double Slope Random Early Detection

DT Drop Tail

EAVQ Stable Enhanced Adaptive Virtual Queue

eBGP external Border Gateway Protocol

ECN Explicit Congestion Notification

FABA Fair Adaptive Bandwidth Allocation

FIB Forwarding Information Base

FRED Flow Random Early Detection

GUI Graphical User Interface

HRED Hyperbola Random Early Detection

I-SID Backbone Service Instance Identifier

I/O Input / Output

iBGP internal Border Gateway Protocol

xiv

ICMP Internet Control Message Protocol

ICMP Internet Control Message Protocol

IP Internet Protocol

IT Information Technology

LRED Loss Ratio Based Random Early Detection

LTS Long Term Support

LUBA Link Utilization Based Approach

MAC Media Access Control

MPLS Multiprotocol Label Switching

MRED Modified Random Early Detection

NRFR No Response Failure Rate

NAT Network Address Translation

ND Neighbour Discovery

NetFPGA Networks Field-Programmable Gate Array

NIB Network Information Base

NIC Network Interface Controller

NV Network Virtualization

NFV Network Functions Virtualization

ONF Open Networking Foundation

PC Personal Computer

PCI Peripheral Component Interconnect

PCP Priority Code Point

PR Predicate Routing

QoS Quality of Service

QVARED Queue Variation Adaptive Random Early Detection

RAM Random Access Memory

RaQ Rate-based and Queue-based

RAQM Rate-based Active Queue Management

RARED Refined Adaptive Random Early Detection

RCP Routing Control Platform

REAQM Rate-based Exponential Active Queue Management

RED Random Early Detection

xv

REM Random Exponential Marking

RFC Request For Comments

RIB Routing Information Base

RPC Proportional Rate-based Control

RR Route Reflector

RTT Round Trip Time

SATA Serial Advanced Technology Attachment

SAVQ Stabilized Adaptive Virtual Queue

SCTP Stream Control Transmission Protocol

SDN Software-Defined Networking

SelfRED Self Configuring Random Early Detection

SFB Stochastic Fair Blue

SHRED Short Lived Flow Friendly Random Early Detection

SNAC Simple Network Access Control

SRED Stabilized Random Early Detection

StoRED Stochastic Random Early Detection

SVB Stabilized Virtual Buffer

TCP Transmission Control Protocol

TM Traffic Matrix

UDP User Datagram Protocol

VLAN Virtual Local Area Network

VM Virtual Machine

WAN Wide Area Network

xvi

Chapter 1

Introduction

Conventional enterprise network architectures typically consist of three tiers (core,

aggregation and edge) of Ethernet switches arranged in tree style topologies [6].

Such approaches can provide an excellent performance and efficiency level in a

client-server computing environment. Nowadays, dynamic computing and stor-

age needs, as well as more advanced data centre topologies, are forcing out the

domination of client-server computing. According to a research by the Enterprise

Strategy Group (ESG) [7], 63% of enterprises are moving towards more advanced

data centres to catch up with the emerging challenges and needs of today’s net-

working. These challenges can be summarised into four areas, (a) changing of

traffic patterns, (b) rise of cloud services, (c) IT consumerization and (d) band-

width exponential growth.

A forecast research taken by Cisco [1, 2, 8] clearly indicates the importance

and the extent of the aforementioned challenges. The east-west annual traffic (i.e.

traffic within the data centre) was 1.8 zettabytes (ZB) in 2011 and is expected to

reach 15.3ZB by 2020, thus increasing nine times in a period of nine years. On

the other hand, the annual north-south traffic (i.e. traffic crossing the Internet)

is about to reach 2.3ZB by 2020 from 0.37ZB it was in 2011. This not only

indicates the bandwidth exponential growth but also the difference between east-

west and north-south traffic which will become almost seven times greater by

2020. Furthermore, Cisco states that global cloud traffic will reach 14.1ZB by

2020, compared to 0.8ZB in 2011. These forecast clearly indicates the importance

of the challenges of today’s networking mentioned above. It is clear that traffic

1

Chapter 1. Introduction 2

patterns are changing, with more traffic moving within the data centre compared

to traffic outside the data centre. The exponential growth in traffic as well as the

differences between traffic types and directions indicate the rise of cloud services.

These changes, together with stagnation, are forcing networks into a less robust

and harder to handle state with limitations such as complexity, scalability and

vendor dependency.

Networking vendors have been working on a number of innovations in order to

overcome emerging problems but there are still several problems that they cannot

solve or they are reluctant to solve such as the unification of various methodolo-

gies and platforms. A research group at Stanford University while working on a

project to segment their production network in a way that both production and

research traffic can be transferred within the same network without one affecting

the other, came with the idea of OpenFlow [9]. Several big organisations began

investing in OpenFlow as one of the protocols that can help solving the emerg-

ing networking problems. OpenFlow is a Software Defined Networking (SDN) [4]

protocol, essentially allowing the implementation of the SDN model. Physical

or virtual networking equipment consists of a control and a data plane. What

the SDN model proposes is the decoupling of these two planes, and merging the

control plane of several networking devices into a central control entity. This al-

lows network centralization as well as replacement of hard-wired instructions to an

open software. OpenFlow is the communication protocol between the centralized

control entity and the data plane.

The SDN model has the potential to address several of the challenges cre-

ated by the evolution of networks. SDN can virtualize the networks using the

centralization of the control plane, the open API’s as well as the ability to pro-

gram the network using software. As a result, it has the ability to facilitate the

emerging requirements as well as control and extend the complex infrastructure

using virtual network segments. SDN’s biggest benefits are the secure network

segmentation, traffic engineering and network provisioning abilities, all resulting

from the effective centralisation as well as the open software handling the network

implementation.

Chapter 1. Introduction 3

2011 2012 2013 2014 2015 2016 2017 2018 2019
0

2

4

6

8

10

Year

T
ra

ffi
c

(Z
B

)

Cloud Data Centre

Figure 1.1: Cisco Data Centre and Cloud Traffic Forecast (Sources: [1] and [2])

1.1 Motivation

Currently, SDN is an emerging networking model with its own limitations. These

limitations are the direct impact of the key changes in the architecture of SDN. In

SDN, network devices (mainly switches) control planes are managed by controllers

through what is known as the controller-to-switch link. Controllers are servers

that run a process tree responsible for managing a network device. One of the

major drawbacks of such an approach is the fact that a controller runs on top of a

conventional Operating System (OS), meaning that it will have to share processing

resources with all the OS processes. A controller will create a number of processes,

which will wait for the OS scheduler to assign them some processing time. If the

OS scheduler does not assign the appropriate processing time, or assign it but

not in the correct priority then the network will face performance decrease. A

conventional OS will be unable to give higher priority to processes that come from

high priority flows, resulting in a decrease of Quality of Service (QoS) [10,11].

In addition, if the controller gets overloaded, the network will experience a de-

crease in performance in the form of delay and packet loss increase. An overloaded

controller can be very easily become unresponsive causing a disastrous situation.

The SDN architecture is highly depended on the controller, meaning that without

a controller it will be unable to have any dynamic control over traffic flows. The

switch may be pre-programmed to work with existing flows or in a stand-alone

Chapter 1. Introduction 4

mode, but all the flows without pre-existing rules or wildcards will be rejected or

handled incorrectly.

Furthermore, the way the switch handles flows can cause some serious lim-

itations. In an SDN implementation, using OpenFlow, the switch handles the

packets it sends to the controller using the First In First Out (FIFO) method. As

a result, when there is a queue of several packets from various flows waiting to

be send to the controller, there is no flow prioritisation as to which packet from

which flow reaches the controller first. Finally, the controller-to-switch link also

affects the overall performance of an SDN implementation and under the appro-

priate conditions it can become the bottleneck of the network. These limitations

can cause serious QoS drawbacks and in some extreme conditions they can cause

a disaster in the network.

Due to the nature of the SDN model and the OpenFlow protocol, altering

any parts of an SDN/OpenFlow implementation will result in losing the benefits

that it brings as a model to the networking area. Instead of changing the whole

model, what will benefit such an implementation is a mechanism that will keep

the individual components in a healthy state combined with an algorithm that will

be able to handle flows and provide better QoS in the form of less delay, packet

losses and out-of-order packets.

1.2 Aim and Objectives

The aim of this research is to improve the overall SDN performance through the de-

sign and implementation of performance enhancement algorithms. The proposed

OFPE algorithm will be implemented on the controller, and will provide better

performance, controller stability and prevent the controller from overloading. Fur-

thermore, using modules for topology awareness, it will increase the performance

in multi-switch environments. This will be achieved using flow installations for dy-

namically created routes. Moreover, the proposed algorithm will use techniques to

prevent situations such as a full flow table and controller-to-switch link bottleneck.

The objectives of this research are summarised as follows:

1. To identify the management techniques used by OpenFlow in heavy traffic

Chapter 1. Introduction 5

networks and produce possible scenarios in which these techniques lack in

performance.

2. To create a methodology that can improve the current performance of Open-

Flow during heavy traffic periods.

3. To implement an algorithm that can improve the performance of OpenFlow

networks during periods of heavy traffic.

4. To identify the individual events that can decrease the performance of the

algorithm and define ways to prevent them.

1.3 Original Contributions

The original contributions of this thesis are listed below:

A. Propose a novel OpenFlow Performance Enhancement Algorithm (OFPE)

implemented in the OpenFlow controller which uses Dynamic Flow Instal-

lation and Management. The proposed algorithm achievements are:

(a) Prevents controller-to-switch link failure due to overload.

(b) Prevents controller from failure due to overload.

(c) Keeps packet delay and loss at an acceptable level.

(d) Reduces the amount of out-of-order packets arriving at the destination.

B. Extend the proposed OFPE Algorithm by using packets Inter-Arrival time.

This allows the algorithm to be more independent due to the fact that sev-

eral parameters that needed to be manually added to the OFPE algorithm

are now calculated by the algorithm itself. The proposed OFPE extended

algorithm achievements are:

(a) Calculate the appropriate timeout times used in the flow table.

(b) Better prediction of traffic load during relevant time periods.

(c) Prevents failure due to overload of both the controller and the controller-

to-switch link.

Chapter 1. Introduction 6

(d) Reduces the amount of both delay and packet loss as well as it reduces

the number of out-of-order packets.

C. Propose a new placement algorithm for distributed Mininet implementations

which uses a weights table in order to place the experiment components based

on the available resources. The proposed placement algorithm achievements

are:

(a) Static code analysis of Mininet scenario code.

(b) Measures the physical link capacities and forms bins based on the avail-

able resources.

(c) Distributes the components (hosts and links) evenly across the available

workers (reduces CPU usage standard deviation).

(d) Reduces the amount of both packet loss and delay which is caused by

the limited resources.

D. Propose a series of Benchmarking tests that can be used to rate all the

available SDN Experimental Platforms. The proposed benchmarking tests

achievements are:

(a) Allows for selection of the appropriate experimental platform according

to the scenario needs.

(b) Gives the resources needed by each experimental platform (in the form

of CPU and RAM).

(c) Shows the multi-core capabilities and the efficient distribution of load

of each experimental platform.

Note: Up to this date of writing this thesis and to the best of the author’s

knowledge, the proposed algorithms and the novel work presented in this thesis is

not a published knowledge.

1.4 Thesis Outline

The rest of this thesis is organised as follows:

Chapter 1. Introduction 7

Chapter 2 provides an overview of SDN and OpenFlow. It gives details for

the SDN model as well as the the OpenFlow protocol. Several advances in the

area of SDN are discussed as well as a comprehensive analysis on the individual

parts of the SDN model.

Chapter 3 provides details about the proposed OpenFlow Performance En-

hancement Algorithm Using Dynamic Flow Installation And Management.

Chapter 4 Provides an extension to the proposed OpenFlow Performance

Enhancement Algorithm, with the use of packets interarrival time.

Chapter 5 Provides details about the proposed Placement Algorithm for Dis-

tributed Mininet implementation with optimisation in Fat-Tree Topologies.

Chapter 6 Uses the proposed placement algorithm in order to test the pro-

posed performance enhancement algorithm in a distributed Mininet implementa-

tion.

Chapter 7 Provides a series of Benchmarking tests that can be performed on

SDN Experimental Platforms in order to rate them. In addition, the proposed tests

are performed on Mininet Emulator and full analysis of the results is provided.

Chapter 8 Deals with the performance analysis and evaluation of OpenFlow-

enabled hardware and software which can be used for the creation of experimental

environments.

Chapter 9 Provides the conclusions as well as some future recommended work.

Chapter 2

An Overview Of Software Defined

Networking

2.1 Introduction

Traditional IP networks have served traffic for decades but as demand grows and

traffic patterns are changing, these networks are becoming more complex and

harder to manage [12]. Network engineers have to manage a constantly changing

state of networking traffic and adapt to changes fast and accurately. Automatic

adaptation is almost non-existent and together with the fact that control and data

planes are bundled inside the networking devices, manual low-level reconfiguration

of networking devices in constantly needed. These are some of the most important

reasons causing lack of networking infrastructure innovation and evolution.

SDN is an emerging networking model that has the potential in solving these

problems by transferring the control plane to a separate machine called the con-

troller. The SDN model, transforms the networking equipment (switches & routers)

into forwarding devices and achieves centralisation by placing the control plane of

several networking equipment into one unified controller. This chapter presents a

comprehensive literature review of the SDN model as well as several innovations

and use cases. In addition, it goes through the OpenFlow protocol with compar-

ison of several OpenFlow versions as well as several controllers. The sections of

this chapter can be summarised as follows:

• Section 2.2 (Programmable Networks): This section presents all the cen-

8

Chapter 2. An Overview Of Software Defined Networking 9

tralised network control systems existed prior to SDN. Through the analy-

sis, which follows a chronological order, the evolution of centralised network

control systems can be seen.

• Section 2.3 (OpenFlow): This section presents a literature review of the

first SDN protocol, OpenFlow. Several OpenFlow characteristics as well as

comparison of its three most stable versions are presented.

• Section 2.4 (Software Defined Networking): This section introduces the con-

cept of SDN.

• Section 2.5 (SDN Controllers): This section provides a brief overview of

OpenFlow controllers. It introduces some behaviours the controllers share

and also describes some of the most known controllers.

• Section 2.6 (Benchmarking Simulation and Emulation Environments): This

section provides some benchmarkings performed on a number of simulation

and emulation environments used for SDN experimentation.

• Section 2.7 (OpenFlow Related Projects): This section presents numer-

ous OpenFlow related projects as well as outlines their benefits and uses.

Through the OpenFlow related projects, one can see the effect SDN that has

on networks architectures as well as the benefits it can bring to networking.

• Section 2.8 (Summary and Discussions): This section gives a summary of the

overview of SDN, indicating some of our conclusions and important aspects

of the SDN model.

2.2 Programmable Networks

The idea of having an easily programmable network emerged as early as mid-

1990s. The Active Networks research group [13] explored several alternative ideas

in the area of networking, and one of their major visions was to create a program-

ming interface that can give access to network nodes resources such as queues

and processing. This allowed programmers to construct custom functionality and

Chapter 2. An Overview Of Software Defined Networking 10

policies directly on the networking equipment. At the time, researchers thought

that such direct programmability can solve problems and evolve networks. More

specifically, it can lower the barrier to innovation, provide network virtualisation

as well as provide a unified architecture for middlebox orchestration [14]. With

today’s terms, they have envisioned a Network API with functionality similar to

SDN. Unfortunately, active networking did not make an impact due to the fact

that it did not provide a practical performance and security level. Furthermore,

the network API targeted end-users who had to create Java code and transfer it

together with data packets in order to use the API.

Due to Internet’s flourish and the rapid growing of backbone networks in the

early 2000’s, ISPs were having network management and reliability issues. In

order to overcome their problems, they relied on two innovations. The first was

to create an open interface between the control and the data planes. This was

achieved in the Forwarding and Control Element Separation (ForCES) [15] project

as well as with the use of the Linux Netlink [16]. Secondly, they have created a

logically centralized network control method such as the Routing Control Platform

(RCP) [17] discussed in section 2.2.1.

2.2.1 Routing Control Platform and 4D Architecture

RCP, using the existing Border Gateway Protocol (BGP) [18], proposed a cen-

tralised approach to solve several of the networking management problems faced

at the time. RCP uses a central server which communicates with all the routers

that it is connected to in order to collect external BGP (eBGP) route updates and

to compute BGP routes on behalf of all the routers in the Autonomous System

(AS). This approach eliminates the need for full mesh connections, but only re-

quires each router to have one connection with the central server, thus providing

better scalability. Overall, RCP shows the advantages of centralisation in the area

of internal BGP (iBGP) [18] routes computation, and that it is practical to have

a centralised system build with reasonable scalability performance. On the other

hand RCP has some limitations: (a), the scalability of the central server and (b),

replicated servers and routers will achieve consistent decisions during steady state,

but not the same happens with transient state.

Chapter 2. An Overview Of Software Defined Networking 11

In 4D Architecture [19–21], researchers argue that the main reason for the

network being fragile and difficult to manage is the complexity of the control and

management planes of today’s network. It is because the control logics are coupled

with packet forwarding functions distributed among elements in the network. In

order to solve such problems, 4D proposed four planes, Decision, Dissemination,

Discovery and Data. 4D completely separates network’s decision logic from dis-

tributed protocols that handle basic packet forwarding. Network-wide objectives

are specified in the decision plane and then translated by specific algorithms into

actual direct control configurations for routers and switches, forming the data

plane. Data plane is responsible for basic data packet processing functions such

as packet forwarding, packet filtering, packet queuing or address translating. The

dissemination plane is a robust and efficient communication mechanism between

decision and data plane. The discovery plane is responsible for discovering the

physical components in the network and creates logical identifiers to represent

them as well as collects measurement data to construct the network-wide view

for the decision plane to achieve its objectives. Overall 4D was a pioneer work

which provided the idea that a centralised decision element controlling the whole

network is more flexible. This is due to the fact that new functionality can be

centrally programmed instead of having to create a new distributed algorithm.

The only drawback was the fact that the network will end up with one point of

failure. Adequate resilience could be achieved by applying standard replication

techniques to the central decision making element. These replication techniques

are completely decoupled from the network control algorithms, so they do not im-

pede application innovation. The goal of 4D was to control forwarding and thus

their network view only included the network infrastructure.

2.2.2 SANE, Ethane and Tesseract

SANE [22] inspired by 4D, argues that in the enterprise network environment,

security is critical, centralised control is normal and uniform consistent policies are

important. Network security usually involves actions on both routing and access

control. According to SANE this is problematic because these coupled actions need

to be coordinated. It proposes a clean-slate approach by separating control plane

Chapter 2. An Overview Of Software Defined Networking 12

from data plane. Moreover, it also centralises the routing and security policies

and uses a separate channel to carry control plane traffic between switches and

the central controller by spanning the tree rooted at the central controller. The

difference of SANE from 4D is that it does not allow communication between end

hosts; therefore the security policies are achieved by controlling whether or not the

capabilities should be issued, and not by packet filters or firewalls like 4D does.

SANE comes with three limitations:

1. Because all data plane traffic is routed by source route issued from the central

controller, end hosts need to be modified to at least have a proxy to translate

IP packets to packets using source route. This brings overhead in processing

each packet, increasing latency and also prevents plug-and-play ability.

2. The encryption/decryption computation for the secure source route requires

a large amount of computing power, increasing the queuing delay.

3. Although SANE central controller can handle tens of thousands of nodes, in

order to achieve that, there must not be frequent requests generated in the

network. Due to the nature of todays networks, the number of requests is

much more than SANE can handle.

Ethane [23] followed SANE in the same direction of thinking. The biggest

difference from SANE is that it takes a less ambitious approach. The end hosts

do not need to be changed because source route is no longer used, thus the proxy

to translate IP addresses to source routes is no longer needed. It also enables

incremental deployment since it is possible to couple Ethane flow-based switches

with Ethernet switches. Ethane also uses a central controller to enforce security

policies and compute routes for flows in the network. It also provides a policy

composition language called Pol-Eth, inspired from predicate routing (PR) [24] for

programming the security policies based on identity bindings. Even though Ethane

is almost the same as previous proposals, its real contribution was the fact that the

system was deployed in real life at Stanford’s Computer Science Department [25].

They build different type of Ethane switches, like wireless switches, hardware-

accelerated wired switches as well as pure software wired switches. With a sample

of around 22,000 they concluded that one central controller is enough to handle

Chapter 2. An Overview Of Software Defined Networking 13

all the requests. The drawbacks of Ethane are: (a), the central controller is a

monolithic control plane; therefore it can only support existing functionalities and

modify them. In case that the users want to add other features into the controller

plane, or even replace existing features with other implementations, it will not be

an easy job and they may face serious problems. (b), the central controller of

Ethane, as in the case of SANE, cannot scale up very well.

Tesseract [26], designs and implements all the planes proposed by 4D archi-

tecture. In contrast to SANE and Ethane, Tesseract works towards more classical

and more general ways of routing, that is, non-flow-based routing. In Tesseract,

the central controller pre-computes forwarding paths for all allowed traffic and

configures routers/switches whose responsibilities are forwarding packets, thus it

can work with both IP and Ethernet networks. Tesseract proved that it is practi-

cal to separate decision logics from classical packet-based routing network and to

centralise such decision logics with reasonable scalability and convergence perfor-

mance upon network failures. Furthermore, Tesseract contributed in the design

and implementation of secure dissemination service for the dissemination plane.

This is important because it is separated from the data plane, so circular depen-

dency between correct data plane behaviour and working control channel does not

exist as in the case that control channel relies on data plane. In relation to the

decision plane, Tesseract includes different control components such as incremen-

tal shortest path routing, traffic engineering, spanning tree algorithm and filter

placement algorithm. However, Tesseract’s decision plane is a monolithic system,

with all the components being more or less coupled with each other.

2.2.3 NOX and Maestro

All the previously shown works have a monolithic central control plane in which

all the functionalities are more or less “hard-coded”. It is difficult for the users to

replace or rewrite specific control components to reach special control goals. There-

fore a modularised and flexibly programmable centralised control plane framework

will make it much easier for users to realise complicated and flexible management

goals. NOX [27] which is a follow up work of SANE and Ethane, billed as a

“network operating system”, concentrates on providing such a modularised and

Chapter 2. An Overview Of Software Defined Networking 14

flexible framework for users to write control components. Due to the fact that the

control plane is responsible for establishing every flow in the network, if it does not

have enough capacity in handling all the requests, it will become the bottleneck

of the network. The initial version of NOX lacked of such throughput scalabil-

ity because it can only utilise one CPU core. Although cooperative-threading is

used to reduce the overhead introduced by waiting for I/O operations, it is not

really multi-threaded to leverage multi-core processing. Furthermore, NOX pro-

cesses each request individually, thus there is huge amount of overhead introduced

by such separate processing. However, a multi-threaded version of NOX, NOX-

MT [28] was released showing that it can handle well these scalability problems.

Maestro [29,30] is another project billed as “network operating system” which

was developed in parallel to NOX. In general, network operating systems have

two basic purposes. First, to provide an application with a higher level of ab-

straction so they do not need to deal with low-level details and second, to control

the interactions between applications. NOX focuses on the first purpose whereas

Maestro focuses on the second. It is a flexible programming framework for com-

posing centralised network control functions for different types of networks. It

can be applied in a classical packet-based routing network, in a flow-based routing

network like OpenFlow [9], or even in a network to coordinate centralised con-

trols with distributed routing protocols. Maestro provides explicit direct control

over interactions among control components, and over network state synchronisa-

tion. It tries to solve the scalability problem of the centralisation but focuses on

a single machine solution by exploring parallelism provided by recent multi-core

technology. Its goal was to build the best performance single machine Open-

Flow controller. Finally, Maestro coordinates centralised and distributed network

controls to solve the responsiveness and robustness problems of pure centralised

solutions.

2.2.4 HyperFlow, Onix and DIFANE

Apart from maximising the performance of each physical controller machine, sev-

eral works have aimed at enabling a cluster of controller machines to work as a sin-

gle logical controller to further improve scalability. HyperFlow [31] extends NOX

Chapter 2. An Overview Of Software Defined Networking 15

into a distributed control plane. By synchronising network-wide state among dis-

tributed controller machines in the background through a distributed file system,

HyperFlow ensures that the processing of a particular flow request is localisable

to an individual controller machine, thus minimising the control plane response

time to data plane requests, and at the same time improving the whole system’s

throughput. However due to the fact that the control plane is again distributed,

and HyperFlow does not provide strong guarantee against network state inconsis-

tency, it still has the problems that distributed controls have.

Onix [32] provides a general framework for building distributed coordinating

network control plane, especially for the case of OpenFlow controllers. Onix pro-

vides a Network Information Base (NIB) roughly analogous to the RIB used by

IP routers, which gives, users, access to several state synchronisation frameworks

with different consistency and availability requirements.

Through DIFANE [33] a different approach is presented in order to improve

flow-based networks’ control plane performance. Instead of only verifying flows

and computing paths for them upon request, DIFANE proactively computes wild-

card matching rules for flows based on high level policies. Such rules are distributed

among authority switches in the network, in order to improve both scalability and

robustness, and at the same time reduce the length of the path that needs to be

taken by the first packet of a flow. That way, switches are not only responsible

for data plane functionality, but are responsible for control plane functionalities as

well. On the other hand the central controller is only responsible for partitioning

and distributing rule partition among these authority switches, and does not need

to be involved in matching packets against these rules as in OpenFlow. DIFANE

authors showed that it can achieve very good scalability in throughput of han-

dling flow requests, compared to centralised OpenFlow controller NOX. However,

NOX’s security model is strong, such that all flows are explicitly controlled and

managed by the central controller. In the case of DIFANE, since it implements

rule pre-computation and distribution, it can increase the chance that attackers

can direct their traffic through in the network. The way DIFANE is used, it can-

not dynamically control the security policies flexibly as OpenFlow does, therefore

comparing NOX with DIFANE is a bit unfair.

Chapter 2. An Overview Of Software Defined Networking 16

2.3 OpenFlow

Researchers face a huge problem in experimenting with new network protocols in

a sufficiently realistic environment. The reason behind this is because networks

have become a critical infrastructure for enterprises, homes and schools. Nobody

is willing to allow researchers to experiment with production traffic or any other

real life situation, due to the fact that any mistake may cause reductions in QoS,

security and privacy issues or even in the worst case, a network failure. The only

way researchers can test their ideas is by simulating or emulating environments

in the lab. However, this comes at a cost, no simulated or emulated environment

is close enough to real life situations. Therefore, even if a new idea succeeds in

the lab, it may end up to be a disaster if it is implemented in the outside world.

This forces the enterprises not to give a lot of chances to new products, therefore

networks have become more static and no real innovation is going on.

In order to enable large scale research an experimenting, projects such as Plan-

etLab [34] (a geographically distributed computer network for research purposes)

and Emulab [35] have been created. Both projects were successful, and a lot of

government funding has been assigned to them for networking research. Driven

by the success of the several research ideas tested in PlanetLab and Emulab, a re-

search group at Stanford University created the Clean Slate Program. The mission

of this program as stated was to eventually “reinvent the Internet” by overcoming

architectural limitations, incorporate new technologies, enable new class of appli-

cations and services and allow the Internet to be a platform for innovations. Due

to the fact that such ideas needed a large scale experimentation platform, they

have decided to create OpenFlow. At first, the idea behind OpenFlow was to

enable them to use the Stanford University campus network for experimentation

without affecting production traffic.

OpenFlow was the first implementation that brought a balance between full

programmability of networks and a real-world development. Even though at first

it relied on existing hardware that was not designed with OpenFlow in mind, it

was very fast deployed and gave the existing university network more functions

and flexibility. Essentially, OpenFlow was fulfilling the criteria for a very good

Chapter 2. An Overview Of Software Defined Networking 17

experimental platform:

1. Support of high-performance networks

2. Low-cost implementation

3. Be able to isolate experimental traffic from production traffic

4. Capable of supporting a broad range of research

5. Easily implemented in other laboratories for confirmation

6. Easily implemented on production hardware

7. Be consistent with vendor’s need for closed platforms

There are other solutions that can achieve some of the criteria. One solution

is the use of a PC equipped with a number of network interfaces. From one point

of view, this is a very good solution since there are many operating systems that

allow the implementation of packet routing protocols, therefore researchers can

build their own protocols and experiment. Unfortunately, there are two limita-

tions with this approach. The first limitation is the shortage of ports due to the

fact that a PC cannot support the number of ports a typical switch does, and

second limitation is the number of packets a PC can handle. Typical switches

can handle more than 100Gbits/s whereas for a typical PC is hard to even exceed

1Gbit/s. Another solution is the use of Networks Field-Programmable Gate Ar-

ray (NetFPGA) [36–39], which is a reasonably low-cost programmable Peripheral

Component Interconnect (PCI) card for processing packets. NetFPGA is capa-

ble of handling more data than a PC, it is fully customisable, but it is limited

to just four ports, which are insufficient for real life experimentation. In some

cases researchers used more than one card in order to achieve more ports, but this

increases the complexity as well as the cost.

The most promising solution and the one that meets almost all the crite-

ria stated earlier is OpenFlow. OpenFlow exploits the fact that most Ethernet

switches and routers contain flow-tables that run at line-rate to implement fire-

walls, Network Address Translation (NAT), QoS and to collect statistics, in order

to provide an open protocol allowing users (users can be humans or machines)

Chapter 2. An Overview Of Software Defined Networking 18

to program flow-tables. Having this ability, researchers are able to control their

own traffic by choosing the routes their packets follow and the processing they

receive. This enables them to try new routing protocols, security models, address-

ing schemes and even alternatives to IP, on the same network as the production

traffic without affecting the way production traffic is processed and routed.

Figure 2.1: Main components of an OpenFlow switch (Source [3])

The minimum requirements for an OpenFlow switch (as shown in Figure 2.1) are

the following:

1. A Flow Table, with an action associated with each flow entry, in order for

the switch to process the flow (discussed in section 2.3.2)

2. A Secure Channel that connects the switch to a remote control process,

allowing commands and packets to be sent between a controller and the

switch (discussed in section 2.3.3)

3. Support of the OpenFlow Protocol in order to connect to a controller

OpenFlow can be implemented in traditional hardware as well as hardware sup-

porting only OpenFlow. This creates two types of OpenFlow switches, OpenFlow-

Only and OpenFlow-Hybrid (also known as OpenFlow-Enabled). The difference

between them is that OpenFlow-Only switches support only OpenFlow operations.

In such a switch all packets are processed by the OpenFlow pipeline and cannot

Chapter 2. An Overview Of Software Defined Networking 19

be processed otherwise. The OpenFlow-Hybrid switches support both OpenFlow

operations as well as normal Ethernet switching operations. Such switches have to

provide a classification mechanism outside of OpenFlow that routes traffic to ei-

ther OpenFlow pipeline or normal pipeline. Such a mechanism could be the usage

of the port number or the VLAN tag in order to define which flows go to Open-

Flow pipeline and which go to normal pipeline. According to the specification

of the OpenFlow protocol, researchers can define Flow Table entries externally

without the need to program the switch. This makes OpenFlow the first standard

communication interface defined between the control and data layers of an SDN

architecture. OpenFlow became a key enabler of SDN and currently is the only

standardised SDN protocol that allows direct manipulation of the data plane of

network devices. Although it was initially applied to Ethernet-based networks,

OpenFlow extended its usage to a much broader area as discussed in Section 2.7.

OpenFlow standardisation is an ongoing process managed by the Open Net-

working Foundation (ONF). The first OpenFlow Switch Specification (version

0.2.0) was released in 2008 and until 2017 several newer versions have been re-

leased. Some of the versions have an experimental approach, and some of them

are under the stable category. All of the versions are listed in Table 2.1. Some of

the versions included in the table, were released just to correct code mistakes of

previous versions. These rapid developments in the OpenFlow protocol brought

many advantages as well as some disadvantages. Some of the advantages include

the fact that ONF seems to respond to researchers feedback by quickly fixing

problems as well as supporting new features, thus OpenFlow becomes even more

powerful. However, vendors cannot cope with that speed and it takes them a

lot of time to implement the latest OpenFlow protocol on their machines. Even

OpenFlow Controllers, which most of them have a great number of active devel-

opers working on them, are not implemented at those speeds. This results in both

compatibility as well as research issues.

2.3.1 OpenFlow Specification

The first complete OpenFlow Switch Specification (version 1.0.0) was released in

December, 2009 [3]. It requires an OpenFlow switch, consisting of a flow table,

Chapter 2. An Overview Of Software Defined Networking 20

OpenFlow Version Release Date

0.2.0 Mar. 28, 2008

0.8.0 May 5, 2008

0.8.2 Oct. 17, 2008

0.8.9 Dec. 2, 2008

0.9.0 Jul. 20, 2009

1.0.0 Dec. 31, 2009

1.1.0 Feb. 28, 2011

1.2.0 Dec. 5, 2011

1.3.0 Apr. 13, 2012

1.3.1 Sep. 6, 2012

1.3.2 Apr. 25, 2013

1.3.3 Sep. 27, 2013

1.3.4 Mar. 27, 2014

1.3.5 Mar. 26, 2015

1.4.0 Oct. 14, 2013

1.4.1 Mar. 26, 2015

1.5.0 Dec. 19, 2014

1.5.1 Mar. 26, 2015

1.6 Sep. 2016

Table 2.1: OpenFlow Standards Release Dates

which performs packet lookup and forwarding, and a secure channel that connects

the switch to an external controller. Using OpenFlow protocol the controller is

responsible to manage the flow table of the switch. The flow table consists of a

number of flow entries, activity counters and a set of zero or more actions. All

packets that are processed by the switch are compared to the flow table entries.

In the case of a matching entry, the switch proceeds with the actions specified. If

there is no match, then the switch will forward the packet to the controller over

the secure channel as shown in Figure 2.2. At that point the controller becomes

responsible for the future of the packet. The controller is also responsible to add

Chapter 2. An Overview Of Software Defined Networking 21

or remove flow entries.

Packet in

from network

Parse

header fields

Match

table 0?

Apply

actions

Match

table

N?

Send to

controller

via Secure

Channel

yes

no

no

yes

Figure 2.2: Packet flow in an OpenFlow switch

2.3.2 Flow Table

The flow table consists of three sections, the Header Fields, Counters and Actions.

Header Fields section, began as a 12-tuple in OpenFlow Version 1.0.0 and became a

39-tuple in OpenFlow Version 1.3.2 [40], and contains the fields listed in Table 2.2.

These fields are used in order for the switch to match all incoming packets. The

Counters section (listed in Table 2.3) keeps count of several numbers that can be

used to calculate several statistics that are useful in flow control and management.

These counters are updated by the switch upon packet matching. Finally, Actions

section contains the actions that the switch will perform on the matching packets.

Each flow can have zero or more actions, where the case of zero actions results in

a packet drop. Also the switch is able to reject a flow entry if it cannot process

the action list in the order specified. Some of the actions are required and some

are optional. The required actions appear in OpenFlow-Only switches whereas

optional actions may appear in OpenFlow-Hybrid switches. All the actions are

Chapter 2. An Overview Of Software Defined Networking 22

listed in Table 2.4

2.3.3 Secure Channel

As mentioned in OpenFlow minimum requirements in Section 2.3, the secure chan-

nel is the interface that connects the OpenFlow switch to a controller. Using this

interface, the controller configures and manages the switch, sends packets out to

the switch as well as it receives events from the switch. The secure channel sup-

ports three message types, controller-to-switch, asynchronous and symmetric, each

of them having multiple sub-types as shown in Table 2.5.

Controller-to-switch messages are created and sent by the controller in order

to directly manage or inspect the state of the switch. On the other hand, asyn-

chronous messages are created and sent by the switch with the purpose of updating

the controller on network events and changes to the switch state. Finally symmet-

ric messages are created and sent by either the switch or the controller and are

typical messages like requests, replies or connection startup.

2.3.4 OpenFlow Versions Comparison

This section presents a comparison between different versions of OpenFlow, in-

cluding the changes OpenFlow underwent through version development. Only

versions 1.0.0 [3], 1.2.0 [41], 1.3.0 [42] and 1.4.0 [43] are compared due to the fact

that they form the most complete OpenFlow versions. Even though OpenFlow

first release was version 0.2.0 as shown in Table 2.1, all the versions prior to 1.0.0

were either not complete or simply a set of ideas for creating a more solid version.

OpenFlow version 1.0.0, released in December 2009, came to introduce a variety

of features and to form the basis of the OpenFlow protocol. It clarified at a high

level of detail how OpenFlow protocol works and left many open doors for radical

improvements in future work. This can be considered as a satisfactory approach

since it presented the developers and system engineers with enough functionality to

work, and also allowed research to remain active, thus helping to expand OpenFlow

capabilities. In fact, the majority of OpenFlow version 1.0.0 functions are inherited

by later version releases as shown in Tables 2.2, 2.3, 2.4 and 2.5. One of its major

drawbacks was the fact that it supported only IPv4. Researchers can argue that

Chapter 2. An Overview Of Software Defined Networking 23

OpenFlow Version

Field 1.0.0 1.1.0 1.2.0 1.3.0 1.4.0 1.5.0

Ingress Port X X X X X X
Physical Ingress Port X X X X

Table Metadata X X X X X
Ethernet Source Address X X X X X X

Ethernet Destination Address X X X X X X
Ethernet Type X X X X X X

VLAN ID X X X X X X
VLAN Priority X X X X X

VLAN PCP X
IP DSCP X X X X
IP ECN X X X X

MPLS Label X X X X X
MPLS Traffic Class X X X X X

MPLS BoS bit X X X
Provider Backbone Bridges I-SID X X X

Logical Port Metadata X X X
IPv6 Extension Header X X X
IPv4 Source Address X X X X X X
IPv6 Source Address X X X X

IPv4 Destination Address X X X X X X
IPv6 Destination Address X X X X

IPv6 Flow Label X X X X
ICMPv6 Type X X X X
ICMPv6 Code X X X X

ND Target Address X X X X
ND Source link-layer X X X X
ND Target link-layer X X X X

IP Protocol X X X X X X
IPv4 ToS bits X X

TCP Source Port X X X X
TCP Destination Port X X X X

UDP Source Port X X X X
UDP Destination Port X X X X

SCTP Source Port X X X X
SCTP Destination Port X X X X

ICMP Type X X X X
ICMP Code X X X X

ARP Opcode X X X X
ARP Source IPv4 Address X X X X
ARP Target IPv4 Address X X X X

ARP Source Hardware Address X X X X
ARP Target Hardware Address X X X X

Transport Source Port / ICMP Type X X
Transport Destination Port / ICMP Code X X

Provider Back Bone UCA X
TCP Flags X

Action Metadata Output Port X
Packet Type Value X

Table 2.2: List of Header Fields

Chapter 2. An Overview Of Software Defined Networking 24

OpenFlow Version

Counter 1.0.0 1.1.0 1.2.0 1.3.0 1.4.0 1.5.0

Per Table

Reference Count (active entries) X X X X X X

Packet Lookups X X X X X X

Packet Matches X X X X X X

Per Flow

Received Packets X X X X X X

Received Bytes X X X X X X

Duration (seconds) X X X X X X

Duration (nanoseconds) X X X X X X

Per Port

Received Packets X X X X X X

Transmitted Packets X X X X X X

Received Bytes X X X X X X

Transmitted Bytes X X X X X X

Received Drops X X X X X X

Transmit Drops X X X X X X

Received Errors X X X X X X

Transmit Errors X X X X X X

Receive Frame Alignment Errors X X X X X X

Receive Overrun Errors X X X X X X

Receive CRC Errors X X X X X X

Collisions X X X X X X

Duration (seconds) X X X

Duration (nanoseconds) X X X

Per Queue

Transmit Packets X X X X X X

Transmit Bytes X X X X X X

Transmit Overrun Errors X X X X X X

Duration (seconds) X X X

Duration (nanoseconds) X X X

Per Group

Reference Count (flow entries) X X X X X

Packet Count X X X X X

Byte Count X X X X X

Duration (seconds) X X X

Duration (nanoseconds) X X X

Per Group Bucket

Packet Count X X X X X

Byte Count X X X X X

Per Meter

Flow Count X X X

Input Packet Count X X X

Input Byte Count X X X

Duration (seconds) X X X

Duration (nanoseconds) X X X

Per Meter Band

In Band Packet Count X X X

In Band Byte Count X X X

Table 2.3: List of Counters

Chapter 2. An Overview Of Software Defined Networking 25

OpenFlow Version

Action Process 1.0.0 1.1.0 1.2.0 1.3.0 1.4.0 1.5.0

F
o
rw

a
rd

ALL X X X X X
CONTROLLER X X X X X X

LOCAL X X X X X X
TABLE X X X X X X

IN PORT X X X X X X
NORMAL X X X X X X
FLOOD X X X X X X

ANY X X X X
Enqueue X

Drop X X X X X X
Set-Queue X X X X X

Group X X X X X
Output X X X X X

QoS X X X X

P
u
sh

/
P
o
p

Push VLAN header X X X X X
Pop VLAN header X X X X X
Push MPLS header X X X X X
Pop MPLS header X X X X X
Push PBB header X X X
Pop PBB header X X X

M
o
d
if
y
-F

ie
ld

VLAN ID X X X X X X
VLAN priority X X X X X X

Strip VLAN header X X X
Ethernet source MAC address X X X X X

Ethernet destination MAC address X X X X X
IPv4 source address X X

IPv4 destination address X X
IP source address X X

IP destination address X X
TCP/UDP source port X X

TCP/UDP destination port X X
IPv4 ToS bits X X

Transport source port X X
Transport destination port X X

MPLS label X X X
MPLS traffic class X X X

MPLS TTL X X X X X
IPv4 ECN bits X

IPv4 TTL X X
TTL outwards X X X X
TTL inwards X X X X

IP TTL X X X X
PBB I-SID X X X
PBB I-PCP X X X
PBB C-DA X X X
PBB C-SA X X X

Table 2.4: List of Actions

Chapter 2. An Overview Of Software Defined Networking 26

OpenFlow Version

Type Message 1.0.0 1.1.0 1.2.0 1.3.0 1.4.0 1.5.0

C
on
tr
ol
le
r-
to
-S
w
it
ch

Features X X X X X X

Configuration X X X X X X

Modify-State X X X X X X

Read-State X X X X X X

Send-Packet X

Barrier X X X X X X

Role-Request X X X

Asynchronous-Configuration X X X

Packet-out X X X X X

A
sy
nc
hr
on
ou
s Packet-in X X X X X X

Flow-Removed X X X X X X

Port-status X X X X X X

Error X X X X X X

Sy
m
m
et
ri
c Hello X X X X X X

Echo X X X X X X

Vendor X

Experimenter X X X X X

Table 2.5: List of Messages

it was not a drawback since at that time, OpenFlow was not advertised as being

one of the technological advantages of the future. Back in 2009, OpenFlow was

considered a new protocol for helping researchers to experiment on large scale

(university campus) networks. On the other hand, it was well known that IPv4

had a limited time left, therefore OpenFlow would have a limited lifetime if it

supported only IPv4.

The limited number of header fields available in version 1.0.0 can be consid-

ered as another limitation. With such limited variety of header fields, OpenFlow

could not be used in enterprise networks and perform to an accepted level. Sim-

ilarly, counters and actions were also limited, which it was a major drawback

for OpenFlow as an enterprise solution candidate. Unlike those three groups of

fields, the variety of the messages between the switch and the controller were very

satisfactory and enough to allow a broad range of communication capabilities.

The fact that version 1.0.0 supported multiple queues per output port, that

can provide minimum bandwidth guarantees can be considered as an advantage.

This function was called “slicing” due to the fact that it was able to provide a

slice of the available bandwidth to each queue. The final two limitations of version

Chapter 2. An Overview Of Software Defined Networking 27

1.0.0 are the absence of multiple tables and groups.

OpenFlow version 1.2.0 inherited all the capabilities of version 1.0.0 and ex-

tended them in order to overcome some of its major drawbacks. One of the major

improvements was the OpenFlow Extensible Match (OXM) which allowed the

user to include new fields that can be used for packet matching. As a result, users

were no longer dependent on the predefined OpenFlow matching fields. The sec-

ond major improvement was the implementation of IPv6 support and the third,

which was actually released in version 1.1.0 and improved in version 1.2.0, was the

support of multiple tables and groups.

Other minor improvements of version 1.2.0 include:

1. Introduction of “metadata” field in the “packet-in” message, which helps

the controller to figure out what happened to the packet inside the switch

before reaching the controller. Through this feature, the controller is able to

know which flow entries were matched or not matched against the packet’s

header.

2. Addition of a function that enables users to create custom error messages.

3. Implementation of controller role change mechanism. Such a mechanism

allows the switch to be connected to several controllers in parallel, thus

in case of a controller failure the switch can change to another controller.

Controllers on their own can set their role (i.e. equal, master or slave) in

order to help the switch choose the best controller in case of failure.

OpenFlow version 1.3.0 was released in June 2012 with a large number of

additions and corrections to previous versions bugs. Major improvements include:

1. Ability to match IPv6 extension headers such as hop-by-hop, router, frag-

mentation, authentication, encrypted security payload and destination op-

tions.

2. Support for per-flow meters that can be attached to flow entries and can

measure and control the rate of packets.

3. Per connection event filtering function, which allows controller to filter un-

desirable events coming from the switch.

Chapter 2. An Overview Of Software Defined Networking 28

4. Auxiliary connections for the controller-to-switch link. Controller-to-switch

link supported only TCP connection in previous versions. In version 1.3.0

this connection can be set as TCP,UDP or DTLS.

5. Flexible non-matching flows (table-miss) handling. In previous versions,

users were forced to use one of the three predefined behaviours for flows that

did not match the flow table entries. In version 1.3.0 those behaviours were

replaced by a separate table-miss flow entry. Through this approach, users

can specify their own behaviours.

Version 1.3.0 included some minor corrections such as matching of Multiproto-

col Label Switching Bottom of Stack bit (MPLS BoS), Provider Backbone Bridg-

ing (PBB) tagging, more flexible tag ordering, efficient classification of packet-in

messages using a new field called “Cookies”, on demand flow counters and the

addition of “Duration” field for most of the statistics.

ONF Extensibility Working Group which is responsible for developing exten-

sions for OpenFlow, released a report on April 2013 [44] stating that it is not

planning to further extend OpenFlow version 1.0.X. Furthermore, it stated that

OpenFlow version 1.3.X will become a long term support version and version 1.4.0

will have incremental improvements on previous versions.

OpenFlow version 1.4.0 was finally released in October 2013, with 4 months

delay since it was expected in June. The main advancement was the improvement

of extensibility first introduced in OpenFlow version 1.2. Except from extensibility,

some new more descriptive “reason” values were added such as table miss (i.e. no

matching flow in the flow table) and invalid TTL for packets with an invalid Time

to Live (TTL). In addition, version 1.4.0 added support for Optical ports, flow

removal due to meter deletion as well as some enhancements in flow monitoring.

2.4 Software Defined Networking

SDN is the latest centralised network control architecture that is promising to

redefine networking as we know it, altering the current architecture of networks

by splitting apart data plane and control plane as shown in Figure 2.3.

Chapter 2. An Overview Of Software Defined Networking 29

As shown in Section 2.2 the idea of Programmable Networks existed for years

before the arrival of OpenFlow. Therefore, the methodology and the principles

used to form the basis of SDN have matured after years of research. The only

problem that was faced by SDN was that none of the actual implementations of

SDN showed any real potential for real-world applications. That is why OpenFlow

is the most important SDN implementation. It was the first implementation that

achieved the SDN goals in such a simplistic but elegant way, allowing the SDN

architecture to be deployed in real-world enterprise networks. With the arrival

of OpenFlow, the SDN community began working again into finalising the SDN

architecture in order to achieve the appropriate goals.

(a) Traditional Switch (b) SDN Switch

Figure 2.3: Changes to hardware due to SDN

2.4.1 SDN Architecture

Data plane, also known as the forwarding plane is responsible to deal with packets

arriving on an inbound interface. Most of the times, the data plane will look in

a table or a number of tables that have specific rules on how to deal with the

packet. Routing Information Base (RIB) [45] is one of the tables that the data

plane will look at before taking an action on the packet. Such a table contains a

list of routes to particular networks destinations as well as metrics associated with

those routes [45]. In other words it is kind of a network map. The reason they are

helpful is because if the router cannot send a packet directly to the destination, it

can use an indirect way of sending the packet. This can be done by sending the

packet to a node that can reach the destination.

Chapter 2. An Overview Of Software Defined Networking 30

Another table that can be found in the data plane is called Forwarding In-

formation Base (FIB) [46]. It is roughly the same as RIB, but has a better next

hop management leading to less Central Processing Unit (CPU) usage thus avoid-

ing router meltdown. Apart from the fact that it can send the packet to the

destination, it can also discard the packet. According to Internet Protocol (IP)

specification [47], upon that decision it will reply back to the sender of the packet

with an Internet Control Message Protocol (ICMP) stating that the destination is

unreachable. In some cases this is not true due to the fact that by replying back,

a potential attacker becomes aware that the system is protected. Therefore, the

router drops the packet silently.

Figure 2.4: Software-Defined Network Architecture (Source: [4])

Control plane on the other hand, is responsible for finding the information

that builds up the routing tables as well as the network map [15]. The most

important role that the control plane plays, apart from the aforementioned, is

that it can decide the best route so it can install it as the most preferred route

in the routing tables. It gets its information by monitoring the hardware status,

from dynamic routing protocols or from a manually preconfigured route that a

network administrator has installed. Sometimes in comparing the information, it

may find that there are more than one equally good routes thus, it may end up

sharing the traffic across them in order to minimize the load.

Chapter 2. An Overview Of Software Defined Networking 31

This decoupling of the two planes achieved in the SDN architecture, brings

many advantages in the area of networks. From enterprises point of view, one of

the greatest advantages is that they are not dependent on existing protocols as

well as vendors anymore. Almost all control and data plane functions are devel-

oped and maintained by vendors, and enterprises cannot alter or improve them.

Traditionally, if an enterprise wants to develop a new function, it has to wait for

the vendors to accept it and develop it into a new released firmware or even a

new device. This usually takes a lot of time, ranging from months to even years.

In some cases the vendor may find it a waste of time and not even implement

it, thus resulting in an increase in cost because enterprises will need to purchase

new equipment capable of serving their needs. By splitting apart data and con-

trol plane, and by moving the control plane to a separate controller, SDN gives

the ability to network administrators and operators to programmatically create

and apply their own configurations and methodologies to all of their equipments

without having to configure each device separately. Furthermore, it allows them to

modify their networks in a matter of hours or days rather than depend on a vendor

that may take weeks or even months to create a new solution for their machines.

Last but not least, network equipment does not need to have its own private con-

troller, thus one controller may control any number of equipment. Furthermore,

several controllers may be controlled by a more powerful controller creating a tree

structure, which gives the ability to make global changes in a matter of seconds,

avoiding any security bridges or failures in the Quality of Service (QoS).

2.4.2 SDN Implementations

Except from OpenFlow (Section 2.3) which is the most widely accepted and de-

ployed open SDN implementation, there are several other implementations that

come with some important capabilities. Protocol-Oblivious Forwarding (POF) [48]

is one of the main OpenFlow competitors as it does not only implements SDN but

it also enhances it. The biggest advantage of POF is that it proposes a generic

flow instruction set (FIS) which essentially creates a protocol-oblivious forward-

ing plane. This is due to the fact that the forwarding devices act as white boxes,

therefore the packet parsing is done by the controller. This solves several Open-

Chapter 2. An Overview Of Software Defined Networking 32

Flow issues, including version compatibility. In OpenFlow, in order for a packet

to be examined, several header fields are used. With each new OpenFlow version,

new header fields are added, thus creating backwards compatibility issues. As a

result, the OpenFlow switches have to support the OpenFlow version used by the

controller. On the other hand, POF switches are protocol-agnostic since all the

processing and parsing is performed by the controller.

The Open vSwitch Database Management Protocol (OVSDB) [49] can be con-

sidered as an OpenFlow extension since it uses a lot of OpenFlow’s functionality,

but its purposes is to give more management flexibility to SDN. It allows users to

create vSwitch instances, control individual elements, configure tunnels, set QoS

policies as well as collect statistics and manage queues. Similarly to OVSDB,

both OpenState [50] and Revised OpenFlow Library (ROFL) [51] are extensions

of the OpenFlow protocol. OpenState introduces programming abstractions into

the forwarding plane in order to extend OpenFlow’s match and action abstrac-

tions. This allows the programmers to develop several tasks and procedures inside

the networking equipment instead of the controller. ROFL extends OpenFlow by

introducing an abstraction layer that alleviates OpenFlow versions. This results

in backwards compatibility and also it gives the developers a much clearer API to

work with.

OpFlex [52] is one of the newest SDN proposals which has the goal of distribut-

ing parts of its functionality back to the networking devices in order to improve

both their performance and the network scalability. Other than that, it shares the

same logical centralisation as OpenFlow, with mostly the same functionality.

2.5 SDN Controllers

In the SDN architecture, the controller is the device responsible for maintaining

and distributing all of the network rules as well as instructions. It determines

how the switch should handle the packets by adding, modifying as well as deleting

entries from the switch’s flow table. Apart from sending rules via the secure

channel, controllers can also request network and traffic related statistics from the

switch.

Chapter 2. An Overview Of Software Defined Networking 33

The controller usually runs on a network-attached server, and can manage all

the network’s devices, a group of them or a single device. Managing all of the

network’s devices results to a centralised configuration. This gives the advantage

to the controller to know the network state in every single device of the network,

allowing it to take precautions in case of failures. On the other hand this may

cause problems due to the fact that the network will end up with a single point

of failure. Furthermore, the processing power needed for such a controller will be

enormous; therefore, such an approach may add extra delay to the network.

On the other hand a controller can manage a group or a single switch, elimi-

nating the single point of failure as well as the enormous processing power needed.

Such an approach will not give the centralisation of the network given by the pre-

vious approach. A more powerful approach would be a combination of the two in

a tree structure. Such an approach would give reasonable centralisation as well as

minimising the possibility of one point of failure as well as the processing power

required.

Most importantly, the controller should act as a high-level programming API,

allowing the network administrators to develop their own policies and management

schemes. This can solve problems faced by device-specific low level management

instruction commands found in most networking operating system.

2.5.1 Controller Behaviours

Controllers can manage the network in different ways. Some of these ways are

listed below.

• Flow Routing: The controller adds a flow entry for every flow. This forces

the network device to search for an exact match before redirecting the flow.

This is reasonable to use in experimental networks or in campus networks

used by researchers.

• Aggregated: The controller adds a flow entry for a group of flows. For

example, instead of an exactly packet match, the network device can look

only at one packet’s feature. That kind of flow entry is called a wildcard.

Such an approach is preferred for use in network backbones since all the

Chapter 2. An Overview Of Software Defined Networking 34

packets arriving there would have been proven not malicious by previous

controllers/devices handling the network.

• Reactive: The controller adds a flow entry once it is triggered by a flow. In

this way, the delay experienced by flows will be increased (depending on the

number of flows arriving) since the network device would have to wait for

the controller to decide and install a flow entry before forwarding the flow.

• Proactive: As soon as the controller is connected to the network device, it

pre-installs several entries in the flow table. Using that approach will mini-

mize the overall delay experienced and the traffic will continue undisrupted.

2.5.2 Controller Examples

Apart from NOX and Maestro (discussed in Section 2.2.3), who began their jour-

ney as “Network Operating Systems” and they are now known as two of the best

OpenFlow controllers, there are several other controllers which through extensive

research as well as production usage, have been proven to be very competitive.

2.5.2.1 Trema

Trema [53], originally designed and developed by NEC research lab, is an open

source OpenFlow controller platform mainly for research. Has a multi-process

modular architecture that provides enough stability to be extended to a distributed

controller. It has integrated testing and debugging environment and is able to

provide support for manage, monitor and diagnosis on the entire system. After

the year 2011, apart from code written in C, Trema fully supports code written in

Ruby as well. The main Trema project goal was to allow researchers to develop

their own controllers on top of it.

2.5.2.2 Beacon

Beacon [54], is a Java cross-platform open source OpenFlow controller that sup-

ports both event-based and threaded operations. Furthermore, is a very stable

multithreaded controller that comes with an extensible UI framework. Due to

its multithreaded nature, researchers as well as network administrators can start,

Chapter 2. An Overview Of Software Defined Networking 35

stop, refresh, install or even delete code bundles during runtime, without inter-

rupting any other non-dependent running bundles.

2.5.2.3 SNAC

Simple Network Access Control (SNAC) [55], designed by Stanford Clean Slate

Program, Nicira and GENI/NSF, is an open source OpenFlow controller that

comes with a web-based policy manager Graphical User Interface (GUI). SNAC

is not a standalone controller, it is a module of NOX and therefore requires NOX

controller to work. Some of its features include increased visibility, captive portal

and flexible policy manager.

2.5.2.4 OpenDaylight

OpenDaylight [56] is a Linux Foundation collaborative project that has been highly

supported by Cisco, Big Switch, and several other networking companies. Like

Floodlight, OpenDaylight is written in Java and is a popular, well-supported SDN

controller. It also includes exposure with a REST API and a web based GUI.

The second release of OpenDaylight (Helium) includes support for SDN, Network

Virtualization (NV) and Network Functions Virtualization (NFV) and is intended

to be scaled to very large sizes. Like Floodlight it also has a number of pluggable

modules (interfaces, protocols, and applications) that can be used to alter it to the

needs of an organisation. OpenDaylight is a little different from other controllers

because it allows for other non-OpenFlow southbound protocols.

More OpenFlow controllers are listed in Table 2.6

2.6 Benchmarking Simulation and Emulation En-

vironments

In the area of benchmarking simulation and emulation environments for SDN,

there is not much done other than the work presented by the developers of each

environment. Therefore, in this section most of the benchmarks presented come

directly from those environments proposal papers, and cannot be used in a useful

Chapter 2. An Overview Of Software Defined Networking 36

Controller Prog. Language

POX Python

NOX-Classic C++, Python

NOX [27] C++

Trema [53] C, Ruby

Beacon [54] Java

Floodlight [57] Java

Maestro [29] Java

Ryu [58] Python

NodeFLow [59] JavaScript

Helios [60] C

BigSwitch [61] Java

SNAC [55] C++, Python

IRIS [62] Java

OpenDaylight [56] Java

DISCO [63] Java

HP VAN SDN [64] Java

HyperFlow [31] C++

Kandoo [65] C, C++, Python

Meridian [66] Java

MuL [67] C

OpenContrail [68] Python, C++, Java

ProgrammableFlow [69] C

SMaRtLight [70] Java

yanc [71] C++, Python

Fleet [72] Python

NVP Controller [73] C++

PANE [74] Java

Rosemary [75] Python, Java

MobileFlow [76] Custom Commands

UnifiedController [77] Custom Commands

Table 2.6: List of OpenFlow Controllers

comparison due to the fact that they do not share the same parameters, topologies

and methodologies.

In [78], several basic benchmarks are presented for EstiNet OpenFlow Simula-

tor and Emulator. It presents the main memory consumption using incremental

Chapter 2. An Overview Of Software Defined Networking 37

number of OpenFlow switches, the Average Ping Delay (APD) together with its

Standard Deviation as well as the No Response Failure Rate (NRFR). Further-

more, it suggests that EstiNet solves several problems that Mininet has, which

result from the fact that Mininet is highly depended on the Operating System

Scheduler. This is partially true due to the fact that EstiNet solves the problem

if and only if the simulation mode is used. In the emulation mode it still has the

same problems as Mininet has.

In [79], an OpenFlow Extension for OMNeT++ [80] using the INET Frame-

work [81] is presented. Unfortunately it is not as comprehensive as [78] (EstiNet

Benchmarks), even though it gives the mean Round-Trip Time (RTT) of different

spanning trees, which is one of the problems that solves. The reason that it cannot

be considered as comprehensive is because other than one area, it cannot be used

as a comparison to other existing platforms.

In [82], benchmarks for Mininet such as end-to-end bandwidth, setup time,

stop time and memory usage are presented. The benchmarks presented cannot

be considered as comprehensive due to the fact that each result comes from a

totally different topology. For example, it gives results from Linear topology with

100 switches and it compares them to Tree, Fat Tree and Mesh topologies. It

would have been more comprehensive to compare each topology against the same

topology and just change some parameters such as the number of switches or

nodes than compare each topology with a totally different topology. Furthermore,

all of the results come from a virtual machine running on an Apple MacBook

Pro, and there is no indication in the paper about any effects the laptop’s OS

has on the results. The most comprehensive Mininet benchmark comes from a

2012 technical report [83], which takes four typical topologies and tests them with

different number of switches, giving out metrics like throughput and fairness.

2.7 OpenFlow Related Projects

OpenFlow has already found many uses in academia research projects as well as

production networks. All these OpenFlow uses are helping OpenFlow as a pro-

tocol to become more mature due to the extensive testing as well as the active

Chapter 2. An Overview Of Software Defined Networking 38

team that maintains and extends the protocol. Below we present several Open-

Flow related projects which either contribute to OpenFlow enhancement or use

OpenFlow features to enhance existing networking.

2.7.1 Data Centre Related

PortLand [84], is a set of Ethernet compatible routing, forwarding and address

resolution protocols, which by using OpenFlow, creates a scalable fault-tolerant

data centre network fabric. It consists of a logically centralised fabric manager that

maintains soft state about network configuration information such as topology. It

is responsible for assisting with ARP resolution, fault tolerance and multicast. The

local switches that are connected to the rest of the devices, communicate with the

fabric manager through OpenFlow protocol. Using OpenFlow, fabric manager

resolves ARP requests and manages forwarding tables for multicast sessions. It

also monitors connectivity with each switch and reacts to the live information

by updating its fault matrix. Switches also send “keepalives” to their immediate

neighbours every 10ms in order to detect any link failure and update the fabric

manager.

Ripcord [85], is a modular platform for rapidly prototyping scale-out data cen-

tre networks. It enables researchers to build and evaluate any network features

and topologies, using only commercially available hardware and open-source soft-

ware. Its whole architecture is based on OpenFlow programmable switches and by

using NOX it passes the messages between modules and also modifies and views

switch state. All of the details such as flow entries and statistics are transferred

using the OpenFlow protocol.

NOX to Data centre [86], is a research which demonstrated the effectiveness

that NOX, in combination with OpenFlow, can provide to the data centre. It

states several advantages that NOX alone can provide and also demonstrates the

extra advantages a data centre can get once it uses both NOX and OpenFlow.

Even though NOX can use any similar to OpenFlow protocols for manipulating

switch forwarding entries, OpenFlow provides the capability to install a second

flow entry of lower priority, allowing NOX to have previously calculated and in-

stalled backup paths in case of failure in order to minimize latency. Furthermore,

Chapter 2. An Overview Of Software Defined Networking 39

both of them combined provide the basis for an integrated monitoring architecture

through the per flow and per port statistics maintained.

CloudNaaS [87], acts as a service platform that uses OpenFlow in order to

provide extended networking functionality to production networks running IaaS

clouds. Some of the supported functionality includes isolation, middlebox func-

tions, QoS as well as the use of existing address spaces which minimizes reconfigu-

rations. FlowComb [88], acts similarly to CloudNaaS but in the Big Data process-

ing applications domain. With the use of application domain knowledge, Flow-

Comb can detect network transfers between application components and proac-

tively or reactively change the network path in order to support those transfers.

2.7.2 Flow Management Related

FlowVisor [89, 90], slices a physical network into abstracted units of bandwidth,

topology, traffic and network device CPUs. It operates as a transparent proxy con-

troller between the physical switches of an OpenFlow network and other OpenFlow

controllers and enables multiple controllers to operate the same physical infras-

tructure, much like a server hypervisor (Virtual Machine Monitor VMM) allows

multiple operating systems to use the same x86-based hardware. Other standard

OpenFlow controllers then operate their own individual network slices through

the FlowVisor proxy. This arrangement allows multiple OpenFlow controllers to

run virtual networks on the same physical infrastructure. Although SDN research

community considers FlowVisor an experimental technology, Stanford University

which is a leading SDN research institution, has run FlowVisor in its production

network since 2009 [91]. FlowVisor lacks some of the basic network management

interfaces that would make it enterprise-grade. It currently has no command line

interface or Web-based administration console. Instead, users make changes to

the technology with configuration file updates.

Hedera [92], is a scalable, dynamic flow scheduling system that adaptively

schedules a multi-stage switching fabric to efficiently utilise aggregate network

resources. Hedera has a three step control loop. First, it detects large flows at the

edge switches, afterwards, it estimates the natural demand of large flows and uses

placement algorithms to compute good paths for them and finally, these paths are

Chapter 2. An Overview Of Software Defined Networking 40

installed on the switches. In order for Hedera to get all the information needed, all

the switches used have OpenFlow implemented. Getting flows information, allows

Hedera scheduler to redirect a flow entry that grows beyond a specified threshold

in a newly chosen path.

Ident++ [93], is a simple protocol to request additional information from end-

hosts and networks on the path of a flow, thus making administrators less of a

bottleneck when policy needs to be modified and allows network administration

to follow organisation lines. Ident++ allows users and end-hosts to participate

in network security enforcement by providing information that the administrator

might not have or rules to be enforced on their behalf.

OpenQoS [94], uses OpenFlow centralised capabilities in order to create a dy-

namic QoS routing mechanism that provided end-to-end QoS in order to minimize

packet losses and latency. Similar to OpenQoS, PolicyCop [95] is a QoS policy

framework. It is autonomic and offers per flow control and dynamic flow aggrega-

tion as well as dynamic configuration of traffic classes with the use of a RESTful

based API. Its easy API guarantees ease of deployment as well as reduced opera-

tional overhead.

OpenTM [96], is a traffic matrix estimation system for OpenFlow networks

which uses built-in features provided in OpenFlow switches to directly and ac-

curately measure the traffic matrix with a low overhead. OpenTM is a C++

application designed for NOX OpenFlow controller. In addition, it uses the rout-

ing information gained from the OpenFlow controller to intelligently choose the

switches from which to obtain flow statistics, thus reducing the load on switch-

ing elements. Due to the critical information provided only through OpenFlow,

OpenTM is an OpenFlow-only application and cannot be used with any other

network. Testbed experimenting showed that OpenTM derives an accurate TM

(Traffic Matrix) within 10 switch querying intervals, which is extremely faster

than any other existing TM estimation techniques. That result is based solely on

information achieved through OpenFlow.

Chapter 2. An Overview Of Software Defined Networking 41

2.7.3 Wireless Related

OpenRoads [5,97–100], also known as OpenFlow Wireless, is a platform for innova-

tion and realistic deployment of services. Mobility services are heavily researched

but the verification is hard. Wireless channels are difficult to simulate and realistic

user traffic is crucial to solid validation of ideas. OpenRoads brings OpenFlow to

wireless networking in order to allow research to take place in production network.

OpenRoads has a multi-layer architecture (shown in Figure 2.5) consisting of a

physical layer, network virtualisation/slicing layer and controller layer.

Figure 2.5: OpenRoads Architecture (Source: [5])

AeroFlux [101, 102], proposes a wireless SDN architecture, scalable enough

that supports carrier level WiFi deployments. Due to its low-latency program-

matic control of transmission settings, it is suitable for better quality of experi-

ence in shared wireless medium. Similar to AeroFlux, Mobileflow [76] introduces

a software defined mobile network architecture in order to increase the innovation

potential in mobile networks. This is due to the use of OpenFlow to create an

open architecture that provides an API which developers can use to implement

new functionality as well as control the traffic.

Odin [103], presented three new additions in the area of mobile networking

that not only help innovation in the current state of wireless networks but it also

Chapter 2. An Overview Of Software Defined Networking 42

makes them future proof. Odin introduced Light Virtual Access Points (LVAP)

which is a programming abstraction used to address the complexity in the IEEE

802.11 protocol. This helps in a faster and more efficient design of software defined

WiFi networks that can be implemented on top of the current access points without

any modification to the underlying IEEE 802.11 protocol. Using Odin, researchers

proved its superiority over the current mobile networks state in areas such as load-

balancing, jammer detection, mobility management, automatic channel-selection

as well as energy management.

Open Radio Access Network (OpenRAN) [104,105] main goal is to create open,

controllable, flexible and evolvable radio access network (RAN). This is achieved

with a three layered architecture consisting of a wireless spectrum resource pool,

a cloud computing resource pool and an SDN controller. Similar to OpenRAN,

Software Radio Access Network (SoftRAN) [106] proposes a software defined con-

trol plane for RAN that abstract base stations in an area as a virtual big-base

station. This allows the deployment of management functionality that increases

load balancing, deals efficiently with interference and maximises throughput.

2.7.4 Security Related

Resonance [107], is a system for securing enterprise network, where the network

elements themselves enforce dynamic access control policies based on both flow-

level information and real-time alerts. Resonance allows switches to dynamically

re-map clients based on several inputs like alarms from distributed network moni-

toring systems. Alert systems control traffic by sending messages to the controller,

which in turn controls switch behaviour via the standard, OpenFlow-based switch

interface. This keeps on-path forwarding decisions simple, while still allowing

complex policies to be implemented through a standard control interface. It uses

flow tables that have rules for matching traffic flows to actions, which is the place

where OpenFlow becomes important. Switches can use these tables for any given

principal, where the table that the switch uses at any given time depends on the

security class and the current state of that principal.

OpenSafe [108], is a system that enables the arbitrary direction of traffic for

security monitoring applications at line rates. OpenSafe comes with ”A Lan-

Chapter 2. An Overview Of Software Defined Networking 43

guage for Arbitrary Route Management for Security” (ALARMS) which is a flow

specification language that greatly simplifies management of network monitoring

appliances. OpenFlow is a major part of ALARMS, but ALARMS was using

OpenFlow version 0.8.9 and almost all of the problems faced and proposed solu-

tions have been implemented in later versions of OpenFlow.

The Flow-based Network Access Control (FlowNAC) [109] proposes a mech-

anism that allows user rights for accessing a network depending on the service

requested, over the IEEE 802.1X standard. The major improvement brought by

FlowNAC is the fact that these access rights can be performed by several services

at once instead of the current solutions which allow just one. Furthermore, with

the use of SDN, it can decouple Port Access Controller (PAC) from the Authenti-

cation and Authorization (AA), with the one taking place at the data plane and

the other directly at the controller.

FortNOX [110] is an extension to the NOX controller used with OpenFlow and

with security policy enforcement kernel. The major strength of FortNOX is the live

rule conflict detection engine which is performed by a conflict analysis algorithm.

This gives an extra level of security to the OpenFlow controller as well as the

network operators. In addition, FortNOX supports role-based authentication for

OpenFlow application through the use of digital signatures. FRESCO [111] is an

OpenFlow application development framework for security modules. Due to its

click-inspired nature, it is very easy to rapid design, implement, share and perform

collaborative work on security detection and mitigation modules.

2.8 Summary and Discussions

Summarising everything, we have seen that networks centralised approach began

with iBGP which connects all routers to an AS. Then we move to RCP approach

which uses a central server to communicate which can communicate with all the

network routers. The most revolutionary idea came with 4D which sliced the net-

work into four planes, namely, decision, dissemination, discovery and data plane.

Following 4D, SANE and Ethane based their ideas on 4D’s approach of splicing

the network into planes. The first approach that actually implemented 4D’s idea

Chapter 2. An Overview Of Software Defined Networking 44

was Tesseract. NOX and Maestro used SANE and Ethane approach of a network

operating system and provided a more advanced network OS. HyperFlow came to

extend NOX into a distributed control plane. DIFANE on the other hand provided

a different approach to improve flow-based networks’ control plane performance,

through the proactive computation of wildcard matching rules based on high level

policies.

After a lot of research OpenFlow emerged as the first SDN protocol. The

main advantage of OpenFlow is that it is maintained by ONF which includes

large networking enterprises such as Level(3), Google, Juniper, Verizon, Oracle,

Microsoft, Cisco, HP and IBM. ONF takes OpenFlow seriously which is something

that one can spot at the rate of implementation of OpenFlow versions. On the

other hand this fast evolving nature of OpenFlow becomes one of its disadvan-

tages since software and hardware vendors cannot cope at such implementation

speeds. OpenFlow has found many uses such as PortLand which creates a scalable

fault-tolerant data centre network fabric. Ripcord provides a platform for rapidly

prototyping scale-out data centre networks. Using OpenFlow, FlowVisor slices a

physical network into abstracted units of bandwidth, topology, traffic and network

device CPUs. Hedera on the other hand used OpenFlow to provide a scalable,

dynamic flow scheduling system that adaptively schedules a multi-stage switching

fabric to efficiently utilise aggregate network resources.

Furthermore, OpenFlow found uses in wireless networks with OpenRoads,

which is a platform for innovation and realistic deployment of services. Resonance

and OpenSafe on the other hand used OpenFlow for network security purposes.

Finally OpenTM is a traffic matrix estimation system for OpenFlow networks.

It is obvious that network research is moving towards SDN approach. Sooner

or later enterprises will become confident about SDN and they will start imple-

menting it in their own networks and data centres. Google went a step further and

is the first enterprise company to adapt SDN in their current networks. According

to Google’s senior vice president of technical infrastructure Urs Hölzle [112], the

two large backbones of Google, namely Internet-facing backbone and Data centre

backbone, have adapt SDN architecture. Dr. Hölzle stated that, due to this move

Google benefited from up to 50 times better performance in several areas. And to

Chapter 2. An Overview Of Software Defined Networking 45

realise how big these two backbones are, according to ATLAS 2010 annual traffic

report, “If Google were an ISP, as of September 2010 it would rank as the second

largest carrier on the planet”. Unfortunately, Google does not provide any details

on how it is using it and what the performance is on several aspects. Therefore

enterprises that may not have the resources Google has, are not confident in mov-

ing to SDN just to see if the performance is better. Enterprises want to know that

the performance will be better before investing their resources on new equipment

and new structures.

Chapter 3

OpenFlow Performance

Enhancement Algorithm Using

Dynamic Flow Installation And

Management (OFPE)

3.1 Introduction

In the OpenFlow protocol (described in Section 2.3), the control plane of a net-

working device is moved to a separate hardware called the controller. One of the

disadvantages of such an approach is the fact that the network performance is

dependent on the individual performance of the switch, the controller and the link

that connects them.

More specifically, the controller as well as the link that connects it with the

switch are affecting the performance of the network every time a packet-in event

occurs. Packet-in is a message sent by the switch to the controller containing a

captured packet. This happens if the switch is programmed to do so or if the

packet arriving at the switch does not match any flow table rule. In both cases,

the switch will forward the packet to the controller which will take a decision. The

controller can either drop the packet or reply back to the switch with a rule to be

installed in the flow table. This rule indicates to the switch how to deal with the

rest of the packets that have identical headers to the initial packet, until the rule

46

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 47

expires.

This procedure will add an extra round-trip time (i.e. the time it takes for

a packet or packet header to travel from the switch to the controller and return

back) for each packet that takes the diverted route. Only one packet from each

flow takes the diverted route if we bear in mind the following three assumptions:

1. The packets arrive at a rate equal or lower than two parameters combined.

a) the rate the controller handles each packet and b) the time it takes for

each packet to travel to the controller and back to the switch

2. The hard timeout of each flow table rule installed is equal to or greater than

the duration of the flow (hard timeout is the time it takes for the rule to

expire)

3. The idle timeout of each flow table rule installed is equal to or greater than

the rate at which the packets of the flow arrive (idle timeout is the inactivity

time required for a rule to expire)

In any other case, more than one packets take the diverted route, resulting

in a decrease in performance that under some circumstances can cause serious

problems with the two most important being:

1. The increase in delay due to the extra round trip time between the switch

and the controller

2. The increase in the number of “out-of-order” packets

This chapter analyses these two problems and the effects they have on the per-

formance of OpenFlow networks through a series of experiments. It then proposes,

a novel flow installation and management algorithm OFPE, which improves the

performance of OpenFlow networks overcoming the limitations discussed in this

chapter.

The remainder of this chapter can be summarised as follows:

• Section 3.2 (Current State): This section presents the current state in Open-

Flow networks and their performance limitations.

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 48

• Section 3.3 (Proposed OpenFlow Performance Enhancement Algorithm):

This section presents the proposed OpenFlow performance enhancement al-

gorithm together with an explanation of every operation used in the algo-

rithm.

• Section 3.4 (Experiments and Analysis): This section presents a number

of experiments performed in order to examine the proposed algorithm per-

formance and compare it with scenarios that make no use of the proposed

algorithm.

• Section 3.5 (Summary and Discussions): This section gives a summary of

the proposed algorithm, indicating its strengths and the most significant

performance improvements achieved.

3.2 Current State

With the current data transfer speeds [1] the assumption stated in Section 3.1 (i.e.

packet arrival rate is lower or equal to the rate that the controller handles each

packet) is very unlikely to happen in enterprise networks. As a result, more than

one packet will have to travel to the controller for decision making thus increasing

the delay due to the extra round trip time. This added delay is not constant; it

depends on the controller’s performance as well as the number of packets in the

queue waiting to be examined by the controller. Thus as the interarrival time of

the packets decreases, delay increases as shown in Figure 3.1c.

Furthermore, another problem that appears due to multiple packets traveling

to the controller, has to do with the order the packets are reaching their desti-

nation. It is a problem that takes place mainly in UDP traffic, it happens in

TCP as well, but it needs some appropriate conditions in order to affect the TCP

traffic. Even though TCP dominates Internet traffic, some new applications tend

to favour UDP [113], which is why UDP traffic is also important. The reason

behind such a problem is the fact that, the OpenFlow switch has no queues for

the packets that are waiting for the controller to take a decision.

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 49

100 200
0

100

200

Bandwidth (Mbps)

P
a
c
k
e
t
s
O
u
t
o
f
O
r
d
e
r

(a) Number of Packets Out of

Order as Bandwidth Increases

100 200
0

100

200

Bandwidth (Mbps)

F
l
o
w
I
n
s
t
a
l
l
a
t
i
o
n
s

p
e
r
s
e
c
o
n
d

(b) Flow Installations per Second

as Bandwidth Increases

100 200
0

2

4

Bandwidth (Mbps)

D
e
l
a
y
(
m
s
)

(c) Delay as Bandwidth Increases

Figure 3.1: Packets Out of Order Relation to Packets Rate of Arrival

Instead of a queue, the switch has a buffer where it can save the packets and

forward their headers as well as part of the payload to the controller until it has

a rule that fulfils the packet’s parameters (Figures 3.2a and 3.2b). If the buffer is

full, then the whole packet is forwarded to the controller. The controller will then

examine the first packet’s headers and return it back to the switch together with its

decision (Figure 3.2c). Assuming that the decision is a flow table rule installation,

then it proceeds with the installation. Every subsequent packet arriving at the

switch will get forwarded to the destination. However, by that time, there are

still packets waiting at the controller and buffer whereas newly arrived packets of

the same flow get forwarded to the destination. As a result, several packets reach

the destination out-of-order (Figure 3.2d). The problem of the packets arriving at

the destination out-of-order was addressed at Open Networking Summit in 2012

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 50

during the presentation of Frenetic [114], a high-level programming language for

OpenFlow networks. To the best of our knowledge, no further work has been done

since then, for solving this problem.

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 3.2: Out Of Order Packets Explanation

In addition to the out-of-order packets problem, another problem will take

place which is the installation of duplicate flow table rules. The controller has

no knowledge of the rules installed in the flow table, therefore for every packet

received, it will create a new rule and send it to the switch. Thus in the case

shown in Figure 3.2, the controller will create several duplicate rules. Such a

situation happens if some packets are waiting for a decision by the controller and

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 51

the flow table rule for those packets has a timeout time greater than the time

needed by the controller to process each of the packet waiting. A solution to

this is instructing the controller to check for the flow table rules installed on the

switch every time it has to install a new flow table rule. However, this can also

decrease the performance of the network as stated by Curtis et al. [115], because

gathering information from the switch at such small time intervals will create too

much control plane load leading to an increase in delay.

An experiment was contacted to confirm the relation of packet arrival rate

with (a) the number of packets out-of-order, (b) the number of duplicate flow

installations and (c) the delay. The topology as shown in Figure 3.3 consisted of

two virtual machines (summarised in Table 3.1), one of them running Mininet [82]

emulator and the other running POX [116] as the controller. Mininet was used to

create a virtual network with two Virtual hosts and an OpenFlow switch (Open

vSwitch [117]).

Controller

Host 1 Host 2

Open vSwitch

Mininet
Virtual Machine

Figure 3.3: Packet Arrival Rate Importance Experiment Topology

A separate virtual machine was utilised for the controller to prevent Mininet

CPU consumption from affecting the controller’s performance. Also, in a real

world environment, the controller and the switch are two different and indepen-

dent entities that have to communicate between them using a dedicated link. In

the experiment, UDP traffic was travelling from Host 1 towards Host 2 at prede-

termined rates for a duration of 300 seconds. The timeout out time of each of the

flow table rules was set to 1-second hard timeout. For each of the predetermined

rates, the experiment was repeated 30 times to decrease experimental error.

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 52

OS Ubuntu 14.04.1 LTS

Kernel version 3.13.0-32

Architecture x86-64

Cores 2

CPU (GHz) 2.40

Cache (MB) 4

RAM (MB) 2048

Virtualisation VT-x

Hypervisor QEMU KVM

Table 3.1: Virtual Machines Specifications

The results shown in Figure 3.1 and summarised in Table 3.2, indicate that:

1. The number of out-of-order packets arriving at the destination is propor-

tional to the rate at which the packets arrive at the switch, thus increasing

the rate, increases the number of packets out-of-order.

2. The number of flow installations per second is proportional to the rate at

which the packets arrive at the switch. Theoretically, the number of flow

installations should always be 1 per second since the hard timeout used in

the experiment is 1 second, but as explained in Figure 3.2 this is not the

case.

3. The delay is proportional to the rate at which the packets arrive at the

switch.

The effects listed above, become more severe as the number of switches and

flows increases. Each packet-in event will take place “n” times, where “n” is

the number of OpenFlow switches that the packet has to travel through until it

reaches its destination. Furthermore, the more the number of switches, the higher

the overload caused to the controller, due to the increased number of packets

waiting for decision. This will increase the time it takes for the controller to take

a decision, therefore it will increase the overall delay. The main reason that both

delay and out-of-order packets increase as the controllers CPU load increases is

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 53

Bandwidth

(Mbps)

Packets Out

of Order (s-1)

Flow Installa-

tions (s-1)

Delay

(ms)

Packets

Sent (s-1)

19.97 22.26 21.73 1.00 1698.18

39.80 48.78 48.01 1.22 3388.20

59.50 75.63 73.99 1.43 5080.10

79.46 97.44 96.46 2.20 6770.30

99.70 126.27 124.97 2.84 8492.40

118.52 149.80 147.86 3.01 10110.30

137.88 166.21 164.07 3.39 11780.30

158.19 182.22 179.45 3.43 13519.30

177.06 190.09 186.58 3.90 15151.80

197.86 202.37 198.02 3.95 16950.60

216.54 211.58 206.40 4.10 18548.50

226.59 220.32 209.61 4.56 20350.20

242.75 225.69 213.10 4.84 20918.40

252.11 231.38 220.54 4.95 23340.50

272.02 242.97 225.26 5.10 23743.10

Table 3.2: Packets Out of Order Relation to Packets Arrival Rate Experiment

Summary

that currently the controller has an operating system which is not specifically

designed for OpenFlow. As a result, the scheduler of that operating system will

split the available CPU time evenly to all the processes that have to be executed

by the controller. The process priority (like “niceness” value in Linux) cannot

solve the problem due to the fact that in a centralised environment each controller

will control more than one switch. This means that there will be several packets

and subsequently processes that will be in the queue waiting for some processing

time. Giving higher priority to one of those processes will subsequently affect the

rest of the processes.

A performance comparison between OpenFlow and Non-OpenFlow switches,

conducted using Mininet, indicates this reasoning as shown in Figure 3.4.

Finally, OpenFlow switches have a limited number of entries in their flow table.

The number of flow table entries allowed in a physical OpenFlow switch varies from

vendor to vendor and also depends on the matching fields used by OpenFlow. For

the typical 12-tuple table matching fields used in OpenFlow v1.0 [3] (OpenFlow

v1.4.0 [43] has more than 40 matching fields), the number of flow table entries

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 54

2 4 6 8 10
0

100

200

300

Number of Switches

D
e
l
a
y
(
m
s
)

OF

Non-OF

(a) Delay

2 4 6 8 10
0

500

1,000

Number of Switches

P
a
c
k
e
t
s
O
u
t
o
f
O
r
d
e
r

OF

Non-OF

(b) Packets Out of Order

Figure 3.4: OpenFlow Vs Non-OpenFlow Switches

are in the range of just below a thousand [118] to about five thousand. If the

switch is required to match only the Layer-2 fields, then the number of flow table

entries is in the range of 32,000 to 160,000. Typically, vendors will only state

the Layer-2 flow table entries number without mentioning anything about the 12-

tuple number. Table 3.3 shows the flow table size for some OpenFlow Switches.

On one hand this limitation can be considered as an advantage because having a

big number of flow table rules, means that the response time of the switch will be

greater since it will have to scan through a big list of rules. On the other hand, it

can be considered as a disadvantage because it can easily get full and a flow table

that is full is worse than having no flow table at all because the controller will be

forced to perform further actions as listed below:

• Gather flow statistics directly from the switch to become aware of the rules

that have to be removed.

• Inform the switch of those rules that have to be removed.

These actions will result in additional delay and traffic in the link between the

controller and the switch.

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 55

Switch Number of Flow Table Entries Throughput

(Gbps)

Brocade MLX

24-Port 10 GbE

Up to 32,000 (Layer-2) [119] 200

Brocade MLX

20-Port 10 GbE

Up to 56,000 (Layer-2) [120] 400

NEC PF5240 Up to 64,000 (Layer-2) for Real Switch (RSI)

and up to 160,000 (Layer-2) for Virtual

Switch (VSI) [121]

176

NEC PF5820 750 (12-tuple) and 80,000 (Layer-2) [118] 1280

Arista 7050 Up to 128,000 (Layer-2) [122] 1280

Arista 7150 Up to 64,000 (Layer-2) [123] 480

Arista 7300 Up to 32,000 (Layer-2, per module) [124] 2560

Arista 7500 Up to 128,000 (Layer-2) [125] 15000

Table 3.3: OpenFlow Physical Switches Flow Table Size

3.3 Proposed OpenFlow Performance Enhance-

ment Algorithm

The purpose of the proposed algorithm is to efficiently increase the performance of

SDN by decreasing delay, packet loss as well as the number of packets out-of-order.

In order to achieve this in the best possible way, the controller will have to perform

a number of operations. These operations are divided into two categories: a)

Common Operations and b) Topology Specific Operations. The common operations

are the ones that are always used, whereas the topology specific operations are the

ones that may be used depending on the topology. In addition, it allows networks

administrators to list special flows either before the algorithm initialisation or on

an ad-hoc basis. These special flows are handled as higher priority ones and they

get higher performance than the rest of the flows when the network is under stress.

Listed in Section 3.3.1 are the operations performed by the controller whereas in

Section 3.3.2 the benefits of those operations are described.

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 56

3.3.1 Algorithm Operations

1. Common Operations

• CPU Monitor: Constant monitoring of controller’s CPU usage at a

frequency equal to the smallest timeout time set for a flow table rule.

If the available CPU percentage is less than a predefined value (i.e. the

controller is overloaded), it increases the hard timeout time of the high

priority flows as shown in Figure 3.5.

• Flow Modification: Removal or adjustment of flow table rules of

high priority flows. If a high priority flow gets removed from the high

priority list (held by the controller), the controller performs a flow table

rule removal or adjustment as shown in Figure 3.6.

• Flow Table Statistics: Gather statistics from the switch at prede-

fined time intervals as shown in Figure 3.7. The controller dynamically

adjusts the predefined time intervals. If the number of available flow

table rule spaces decreases, then the controller gathers statistics more

often to prevent flow table from getting full.

2. Topology Specific Operations

• Network Topology Awareness: Network administrator adds as a

parameter a list of all the hosts that are connected to the switches, as

well as the switch to switch connections. After the topology is known,

the controller examines those information and analyses the topology of

the network as shown in Figure 3.8.

• Route Formation: Upon receiving an “unknown” packet, the con-

troller will install flow table entries for all the switches that the packet

will travel through to reach its destination. Except for the initial switch,

the flow table entries that will be installed will have their timeout time

given as idle timeout. For the first switch, the timeout time will be

given as hard timeout. The route formation is performed as shown in

Figure 3.9.

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 57

Figure 3.5: CPU Monitor Algorithm

Figure 3.6: Flow Modification Algorithm

Figure 3.7: Flow Table Statistics Algorithm

3.3.2 Operations Benefits

In both single and multi-switch topologies, the controller constantly monitors its

CPU usage at a rate equal to the shortest timeout time set for a flow table rule.

In the case that the CPU usage rises to a point where it indicates overload, then

the controller increases the hard timeout times of the new incoming high priority

flows. As a result, the following two goals are achieved:

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 58

Figure 3.8: Network Topology Awareness Algorithm

Figure 3.9: Route Formation Algorithm

• It ensures that the high priority flows are still served and they will not face

increases in delay as well as out-of-order packets if the controller response

time increases (i.e. CPU is overloaded).

• It ensures a decrease in the controller’s CPU usage thus allowing the con-

troller to reach a more efficient state. This is achieved by serving less flow

table rule installations because increasing the timeout time means that flows

take longer to expire and revisit the controller.

Gathering flow statistics as well as removing high priority flows that cease to

be part of the high priority list, are both measures to prevent flow tables from

getting full. Statistics gathering is performed in a way to prevent overloading the

link between the switch and the controller. The controller gathers statistics in pre-

defined (long) time intervals. If the number of flow table entries closely approach

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 59

the maximum flow table entries allowed then the controller gathers statistics more

often until the flow table entries are decreased. This results in a proactive con-

troller, that knows an approximation of the number of flow table entries at any

given interval, without having to get live statistics. The network benefits in two

ways.

• No extra delay until the controller analyses the flow statistics received from

the switch.

• It does not cause significant traffic increase in the link between the controller

and the switch if it is not necessary. It only causes a significant traffic

increase if the readings indicate that it has to act to preserve network’s

quality of service.

Finally, in a multi-switch environment, the controller is aware of the network

topology with the use of the Network Topology Awareness operation. OpenFlow

Discovery Protocol (OFDP) might have been used for topology discovery, but is

not the best solution because it has some serious security and efficiency limita-

tions [126]. With the method used, when it comes to complexity, using the big O

notation, this operation will take O(n× c) time to complete. This is because the

algorithm will have to visit once each member of the inputted list of each of the

switches in the topology. If the number of members of the list is indicated by n and

the number of switches by m, then the time needed is O(n×c). After the topology

discovery, the algorithm proceeds with the Route Formation operation which is

using a breadth-first search algorithm that searches through connections to find

the best path to the destination. If we say that n is the number of nodes and c

is the number of connections of each node, then each node n will be enqueued or

dequeued at most once therefore using big O notation it takes O(n) time. Also for

each of those nodes, scanning through their connections takes O(c). As a result,

the whole algorithm takes O(n × c). Using these two operation together, allows

the controller to install flows in a more efficient way. When a packet arrives at

a switch and subsequently forwarded to the controller, the controller installs flow

table rules for all the switches the packet (and subsequently the flow) has to travel

to reach its destination. For the first switch it uses a hard timeout time, and for

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 60

the subsequent switches, it uses an idle timeout equal to the time used as a hard

timeout in the first switch. This methodology not only reduces delay (since the

packet travels to the controller just once until it reaches its destination), but it

also decreases the number of out-of-order packets drastically.

3.4 Experiments and Analysis

The experimental phase consisted of nine different scenarios; all of them have been

performed with and without the use of the proposed algorithm for comparison.

The initial four scenarios were used to tests and optimise the algorithm’s opera-

tions in an individual basis whereas the rest of the scenarios tested the algorithm

as a whole in more realistic topologies. Performance metrics such as overall band-

width, average delay, the number of packets out-of-order, the number of packets

lost and the total number of packets sent were recorded. All of the experiments

were repeated 30 times to and the average reading was calculated in order to

decrease the experimental error.

3.4.1 Experimental Equipment

Due to limited equipment resources, a testbed was only used for scenarios 1 and 2

whereas for the rest of the scenarios a server with multiple virtual machines was

used to emulate an experimenting network. The testbed environment consisted of

HP Procurve 3500-24 switch [127], and three physical machines (system informa-

tion in Table 3.4, two of them used as clients (a sender and a receiver) and one of

them as a POX controller.

In the emulation environment, for scenarios 3 and 4 two independent virtual

machines were used (details are summarised in Table 3.1), one running POX con-

troller and the other running Mininet. In each experiment, the controller’s CPU

usage was recorded, the same way the algorithm records the CPU usage, using

Linux command “mpstat”. For traffic generation, Iperf [128] was used, generating

UDP traffic.

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 61

Component Details

Processor 4 Cores at 2.4GHz

Microprocessor Cache 4MB Level 2 Cache

RAM 8GB DDR3 1066MHz

Hard Drive 32GB SATA 5400rpm

Operating System Ubuntu 14.04.1 LTS

Table 3.4: Server Experimenting Machine

3.4.2 Scenario 1 - Incremental Increase of CPU Load

In the control experiment in which no algorithm was used, Host H1 was sending

a 75Mbps UDP stream to host H2, and the hard timeout of each flow table entry

was set at 1 second. Every 50 seconds the CPU usage/load was increased by

20% until it reached 100%. The experiment was then repeated with the use of

the proposed algorithm. Once the CPU usage exceeded 75%, then the algorithm

started working by increasing the hard timeout as well as perform all the other

operations. The reasoning behind the 75% CPU usage is the fact that in all of the

single switch experiments, above 75% in POX controller CPU the performance of

the network becomes very unstable. This is, of course, a scenario specific value

and it can be changed according to the scenario needs.

Figure 3.10: Scenarios 1 and 2 Topology

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 62

0 50 100 150 200 250 300
0

50

100

Time (s)

C
P
U
U
s
e
d
(
%
) Control

OFPE

(a) CPU Usage

0 50 100 150 200 250 300

73

74

75

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
)

Control

OFPE

(b) Bandwidth

0 50 100 150 200 250 300
0

2

4

6

Time (s)

D
e
l
a
y
(
m
s
)

Control

OFPE

(c) Delay

0 50 100 150 200 250 300
40

60

80

100

Time (s)

P
a
c
k
e
t
s

Control

OFPE

(d) Packets Out-of-Order

Figure 3.11: Scenario 1 - Results Graphs

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 63

Control OFPE Change (%)

Bandwidth (Mbps) 73.65 73.65 0

Average Delay (ms) 1.07 0.77 28.04

Packets Out Of Order (%) 1.01 0.90 10.89

Packet Loss (%) 2.10 2.09 0.48

Average Number of Packets Sent s-1 (103) 6.71 6.71 0

Total Number of Packets Sent (106) 2.01 2.01 0

Table 3.5: Scenarios 1 Readings Summary

3.4.3 Scenario 2 - Incremental Increase of CPU Load with

4 Streams

This scenario shared most of the characteristics of scenario 1. The only difference

was the fact that four streams of UDP traffic was used in order to increase ev-

erything by a factor of four, causing more overload to the controller due to the

increased amount of traffic it had to handle. This also increased the amount of

traffic on the link between the switch and the controller.

Control OFPE Change (%)

Bandwidth (Mbps) 73.58 73.61 0.04

Average Delay (ms) 10.91 8.93 18.15

Packets Out Of Order (%) 1.42 1.37 3.52

Packet Loss (%) 2.32 2.25 3.02

Average Number of Packets Sent s-1 (103) 26.72 26.72 0

Total Number of Packets Sent (106) 8.02 8.02 0

Table 3.6: Scenario 2 Readings Summary

Using scenarios 1 and 2 the importance of altering the timeout time during

CPU overload was tested. As indicated in Section 3.2, the readings during over-

load periods (after the 200th second) became very unstable, as shown in scenario

1 results in Figures 3.11b, 3.11c, and 3.11d. This is because the controller takes

a longer time to reach its decision since the CPU is overloaded and the operat-

ing system scheduler has more processes waiting for processing time. Therefore,

the controller’s CPU scheduler splits the processing time evenly, and thus the

controller will take less portion of processing time than in a non-overloaded en-

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 64

0 50 100 150 200 250 300

73

74

75

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
)

Control

OFPE

(a) Bandwidth

0 50 100 150 200 250 300
0

5

10

15

Time (s)

D
e
l
a
y
(
m
s
)

Control

OFPE

(b) Delay

0 50 100 150 200 250 300
40

60

80

100

Time (s)

P
a
c
k
e
t
s

Control

OFPE

(c) Packets Out-of-Order

Figure 3.12: Scenario 2 - Results Graphs

vironment. The same happens in scenario 2, even though the number of streams

was increased to four. After the algorithm begun at the 200th second, packets out-

of-order began to decrease rapidly as shown in Figure 3.12c. The same happens

for delay as well as bandwidth as shown in Figures 3.12b and 3.12a.

Tables 3.5 and 3.6 show that there is an improvement in performance when

the proposed algorithm is used. The improvement in performance could be much

higher but due to the fact that the algorithm begun working after the 200th, the

increase is relatively small. Even though the proposed algorithm acted for only

one-third of the experiment’s duration; in scenario 1 it has managed to decrease

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 65

delay by 0.30ms which is 28.04% change. Also, it has decreased the number of

packets out-of-order by 10.89% and decreased the total number of packets lost by

0.48%. In scenario 2 delay was decreased by 18.15% and both out-of-order and

lost packets by 3.52% and 3.02% respectively.

3.4.4 Scenario 3 - Multi-Switch Environment

In the control experiment of scenario 3, five switches were connected sequentially

(in series one next to the other), and host H1 was sending a 75Mbps UDP stream

to host H2. The hard timeout time was set at 1 second, and every 50 seconds

the CPU usage/load was increased by 20% until it reached 100%. In the exper-

iment where the proposed algorithm was used, during initialisation the topology

awareness as well as the route formation operations are in action. Once the con-

troller received a packet for decision making from the first switch it automatically

installed a flow table entry of 1-second hard timeout for the first switch and 1-

second idle timeout for all the subsequent switches that the packet was going to

travel through to reach its destination.

Figure 3.13: Scenarios 3 and 4 Topology

3.4.5 Scenario 4 - Multi-Switch Environment with 4 Streams

This scenario shared most of the characteristics of scenario 3, with the only dif-

ference being that four UDP streams were used. This caused the same stress on

the controller and the link between the switch and the controller as scenario 2 but

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 66

0 50 100 150 200 250 300

70

75

80

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
)

Control

OFPE

(a) Bandwidth

0 50 100 150 200 250 300
0

20

40

Time (s)

D
e
l
a
y
(
m
s
)

Control

OFPE

(b) Delay

0 50 100 150 200 250 300
0

200

400

600

Time (s)

P
a
c
k
e
t
s

Control

OFPE

(c) Packets Out-of-Order

Figure 3.14: Scenario 3 - Results Graphs

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 67

Control OFPE Change (%)

Bandwidth (Mbps) 72.08 74.88 3.88

Average Delay (ms) 36.23 0.72 98.01

Packets Out Of Order (%) 9.21 2.36 74.38

Packet Loss (%) 6.74 2.11 68.69

Average Number of Packets Sent s-1 (103) 6.66 6.69 0.45

Total Number of Packets Sent (106) 2.00 2.01 0.50

Table 3.7: Scenario 3 Readings Summary

this time the effect was five time greater due to the fact that five switches were

present in the topology.

Control OFPE Change (%)

Bandwidth (Mbps) 71.10 73.60 3.52

Average Delay (ms) 125.63 9.35 92.56

Packets Out Of Order (%) 11.91 3.64 69.44

Packet Loss (%) 9.31 4.16 55.32

Average Number of Packets Sent s-1 (103) 26.51 26.70 0.72

Total Number of Packets Sent (106) 8.00 8.02 0.25

Table 3.8: Scenario 4 Readings Summary

The most significant performance improvement came in scenarios 3 and 4.

In those scenarios, the performance enhancement algorithm used the common

operations as well as the topology specific operations, namely the topology aware-

ness and route formation operations. As shown in Figures 3.14a, 3.14b, 3.14c

and 3.15a, 3.15b, 3.15c the improvement in performance, obtained is significant.

One can even compare this performance with a non-OpenFlow environment (shown

in Figures 3.4a and 3.4b) since the results are relatively close.

Looking at the scenario 3 as summarised in Table 3.7 using the proposed

algorithm a bandwidth increase of 2.8Mbps or 3.88% was achieved, 98% decrease

in delay, as well as a reduction in the number of out-of-order and lost packets by

74.38% and 68.69% respectively. The same effects were observed in scenario 4 as

summarised in Table 3.8. Delay was decreased by 92.56%, out-of-order packets by

69.44%, and packet loss by 55.32%.

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 68

0 50 100 150 200 250 300

68

70

72

74

76

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
)

Control

OFPE

(a) Bandwidth

0 50 100 150 200 250 300
0

50

100

150

200

Time (s)

D
e
l
a
y
(
m
s
)

Control

OFPE

(b) Delay

0 50 100 150 200 250 300
0

200

400

600

Time (s)

P
a
c
k
e
t
s

Control

OFPE

(c) Packets Out-of-Order

Figure 3.15: Scenario 4 - Results Graphs

3.5 Summary and Discussions

This chapter proposed a new OpenFlow Performance Enhancement Algorithm

which uses dynamic flow installation and management techniques. Its main goals

are to decrease the delay caused by the extra round trip time between the controller

and the switch introduced in OpenFlow networks as well as the number of packets

arriving out-of-order to the destination. In addition, the algorithm has to make

Chapter 3. Proposed OpenFlow Enhancement Algorithm OFPE 69

sure that there is no risk of losing some of the OpenFlow benefits such as the per

flow control throughout the network.

As shown in Section 3.4 the proposed OFPE Algorithm increased the perfor-

mance of OpenFlow networks (especially in the multi-switch topologies) without

losing the per flow control throughout the network. The improvement in per-

formance came in the form of bandwidth increase and decrease in delay, packet

loss and in the number of packets arriving out-of-order at the destination. In

some cases it has managed to increase bandwidth by 3.52% and decrease delay by

92.56%, packet loss by 55.32% as well as out-of-order packets by 69.44%.

Currently, some of the algorithm parameters are static. This means that the

network administrator has to provide the controller with several details, or fine

tune them in order for the algorithm to reach in optimal performance according

to the scenario needs. This poses some serious drawbacks such as the fact that

if the topology changes (i.e. a node is added or removed), then the network ad-

ministrator will have to update the controller’s information. A dynamic approach

will solve such problems since the controller will be able to actively determine the

topology and its characteristics and update the rules accordingly.

Chapter 4

OpenFlow Performance

Enhancement Algorithm Based

on Packet Interarrival Time

(OFPEX)

4.1 Introduction

In Chapter 3, we discussed the fact that (a) timeout time, (b) the way flows are

handled and (c) the controller performance; are affecting the overall performance

of SDN. It was confirmed that even an one second increase (the minimum change

allowed by OpenFlow) in the timeout time of a flow table rule can decrease both

the delay as well as the number of packets arriving at the destination out of order.

One of the limitations of the approach shown in Chapter 3 is that the algorithm

parameters have to be manually provided by a network administration mechanism

which can be a traffic management software or a network engineer. One of those

parameters is the timeout time, which is statically specified and might not be

enough in some scenarios for the algorithm to provide the optimal performance

increase.

A very important piece of information that can be used by the proposed al-

gorithm to overcome this limitation is the interarrival time between the packets

of a flow. Using the interarrival time, the algorithm can dynamically assign the

70

Chapter 4. Proposed Algorithm Based on Interarrival Time 71

appropriate timeout times as well as refine all the parameters for better QoS.

The sections of this chapter can be summarised as follows:

• Section 4.2 (Packet Interarrival Time in OpenFlow): Provides a thorough

analysis on packet interarrival time and how it can be used in an OpenFlow

network. In addition, some useful use cases of interarrival time in networking

are provided.

• Section 4.3 (Packet Interarrival Time Based Enhancement Algorithm (OF-

PEX)): Provides all the details about the proposed algorithm that takes

advantage of the packets interarrival time in order to achieve better perfor-

mance in OpenFlow networks.

• Section 4.4 (Experiments and Analysis): Provides details about all the ex-

periments performed in order to test the validity of the proposed algorithm

as well as a thorough analysis of the results gained.

• Section 4.5 (Summary and Discussions): Provides the conclusion, summaris-

ing every important aspect of the chapter.

4.2 Packet Interarrival Time in OpenFlow

The interarrival time of packets in networking is the time between two successful

packet arrivals at a destination. There are two ways to calculate the interarrival

time, (a) either from the start of each packet, which essentially includes the trans-

mission time or (b) start with the last bit of the preceding packet and end with the

first bit of the next packet. In most of the cases, the second way is preferred due to

the fact that it is unaffected by the transmission time. From the interarrival time

statistics one can conclude on many traffic characteristics. For example a close

mean, mode and median with low standard deviation indicates that the interar-

rival time is consistent and there is very low delay present. On the other hand if

there is a diverge between mean, mode and median and the standard deviation is

large then there is a lot of delay present.

When it comes to the performance of OpenFlow networks, an efficient way of

managing flows leads to better QoS and therefore better end-to-end performance.

Chapter 4. Proposed Algorithm Based on Interarrival Time 72

Therefore, except from packets interarrival time, a very important aspect is to

know how flows are acting within a network. Some very good works have been

published for data centres. In data centres, the interarrival time of flows depends

on the data centre type. According to [129], in University data centres, 80% of

the flows have interarrival times between 4ms and 40ms whereas in private data

centres 80% of the flows have an interarrival time under 1ms. Furthermore, [130]

suggests that 80% of the flows last for less than 10 seconds whereas less than 0.1%

of the flows last more than 200s. In addition, 50% of the bytes (data) are in flows

that last less than 25 seconds. Finally, the paper indicates that sometimes there

are periodic short-term burst of flows but on average one can expect around 105

flows per second.

Inspecting flows and packets is a very difficult task in OpenFlow due to the fact

that the information exchange between the switch and the controller is limited.

As stated in Chapter 2, this information includes (a) Event-based Messages, (b)

Packet-in Messages and (c) Flow Statistics with (b) and (c) being the most useful

ones. Flow Statistics is aggregated flow information over a period of time provided

upon controller request by the switch. This poses a limitation due to extra load

on both the switch and the controller for every such request [115]. Furthermore,

due to average flow durations [129, 130], most of the flows will have already ex-

pired by the time the statistics request is made and analysed by the controller.

In addition, [131] concludes that 60% of the links in a data centre are actively

used with significantly higher utilisation in the core links compared to edge links.

In [132], a new information channel is proposed for per-flow sampling in order to

overcome the flow statistics problem that is faced by OpenFlow.

In order to examine the importance of packet interarrival time in the perfor-

mance of OpenFlow networks an experiment was conducted. In the experiment,

the packet interarrival time started at 5ms and it was slowly decreased to 0.04ms.

At the same time, the number of flow table rule installations as well as the number

of packets arriving at the destination out-of-order was measured. Furthermore,

both delay and packet loss have also been measured. The experiment was re-

peated 30 times and the average readings were calculated in order to minimise

experimental error.

Chapter 4. Proposed Algorithm Based on Interarrival Time 73

From the experiment results, the relation between the interarrival time and

the performance of OpenFlow networks can be observed. First of all, the number

of new flow table rule installations as well as the number of packets out of order is

exponentially related to the interarrival time. As the interarrival time decreases,

both of them as well as packets lost exponentially increase as shown in Figures 4.1

and 4.2. Exactly the same happens to delay as shown in Figure 4.3. This confirms

that the interarrival time of packets affects several of the performance areas that

the algorithm is trying to improve, but it also gives a very good indication that

it can be used in favour of the proposed algorithm. By knowing or estimating

the interarrival time of packets within a flow, the controller can act proactively in

order to increase the overall network performance.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1,000

1,500

Interarrival Time (ms)

C
o
u
n
t
(
s−

1
)

Out of Order

Packet Loss

Rule Installations

Figure 4.1: Number of Out-of-Order Packets, Rule Installations and Lost Packets

Against Packet Interarrival Time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

Interarrival Time (ms)

P
e
r
c
e
n
t
a
g
e
(
%
)

Out of Order

Packet Loss

Rule Installations

Figure 4.2: Percentage of Out-of-Order Packets, Rule Installations and Packet Loss

Against Packet Interarrival Time

Chapter 4. Proposed Algorithm Based on Interarrival Time 74

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

Interarrival Time (ms)

D
e
l
a
y
(
m
s
)

Figure 4.3: Delay Against Packet Interarrival Time

4.3 Packet Interarrival Time Based Enhancement

Algorithm (OFPEX)

In order for the algorithm to successfully enhance the performance in OpenFlow

networks it has to fulfil the following criteria:

1. Do not cause switch and controller overload

2. Collect and analyse valid flow statistics

3. Provide better QoS for priority flows in the form of decreased delay and

packet losses as well as reduction of out of order packets

4.3.1 Statistics Gathering

In order to avoid switch and controller overload, the controller continuously mon-

itors its own CPU usage and saves the data in order to be able to make statistical

predictions for high load hours. The data is then used when the proposed algo-

rithm collects statistics from the switch. It begins collecting statistics from the

switch at predefined short time intervals starting at 1 second. Upon detection

of increase in CPU utilisation (predefined threshold), the controller increases the

time interval by 1 second and re-inspects the condition of both the switch and the

controller. It then compares it with the previous reading and if it has an increasing

tendency, it continues to increase the time interval. The maximum interval time is

set to 25 seconds due to the fact that 50% of the data is in flows that last less than

Chapter 4. Proposed Algorithm Based on Interarrival Time 75

25 seconds [130]. As soon as the controller observes a decrease in CPU utilisation

it starts decreasing the time intervals by 1 second until it reaches the initial 1 sec-

ond. An experiment was conducted in order to detect when the CPU utilisation

causes decrease in network quality of service in the form of increased delay. From

the experiment (Figure 4.4), after the 70% CPU utilisation, the readings showed

a small increase in standard deviation. After 90% of CPU utilisation delay shows

a significant increase. Therefore it was decided to set the predefined threshold at

90% of CPU utilisation.

0 50 100 150 200 250 300

0

20

40

60

80

100

0

1

2

3

4

5

6

Time (s)

C
P
U

U
ti
li
sa
ti
on

(%
)

D
el
ay

(m
s)

CPU Usage

Delay

Threshold

Figure 4.4: CPU Utilisation Threshold Experiment

Collecting flow statistics in OpenFlow networks is not an easy task. Packets

arrive at the controller after a Packet-in Table-miss event and usually only the

first 128 bytes of the packet are forwarded to the controller. These headers do

not always contains useful information in order to help with flow analysis. If

for example there is a TCP flow, then the first packet will be TCP SYN (three-

way handshake), which contains no useful data in the payload to help with flow

categorisation. Furthermore, in the case of UDP, having the switch send the full

packet with its payload to the controller will impose significant load on the link

between the switch and the controller as well as the controller. This is due to the

fact that not only one packet from each flow reaches the controller as discussed in

Chapter 3. This essentially gives an advantage in finding the packet interarrival

Chapter 4. Proposed Algorithm Based on Interarrival Time 76

time without causing any extra load in the controller to switch link.

On the other hand, the statistics gathered by the switch namely Per Flow Entry

Counters, do not offer a lot of information and in addition they are removed as soon

as the flow expires. The most useful ones are the Per Port Counters which are not

removed after a flow table entry expires. Most of the counter fields by default are

optional in order to allow for less information collection and less network overload.

In the proposed algorithm, both the switch statistics as well as the Packet-in

event packet headers are used for the statistical analysis. The information added

to the database that the controller uses in order to manage the network includes:

1. Estimated flow duration

• The duration of a flow is estimated using the initial packet that arrives

from the Packet-in event and the timeout time x set for the flow table

rule entry.

• If after the expiration of the flow table rule no packets from the same

flow arrive, then the flow is considered to have lasted less than or equal

to the timeout time set (flow duration < x). If a Packet-in event occurs

then the new timeout time x is added to the initial.

2. Source and destination addresses and ports as well as the traffic type.

3. Timestamp

• Using estimated flow packet interarrival time and timestamp, the algo-

rithm can predict near future events such as switch or port overloading.

Except from near future predictions, through time and data analysis

from collected data, the controller can predict traffic patterns in ex-

tended periods of time. This allows the controller to act proactively

and preserve a working condition for the switch, itself and the network

by installing the appropriate rules.

4. Packet interarrival time

Chapter 4. Proposed Algorithm Based on Interarrival Time 77

• If more than one packet of the same flow arrive at the controller (Chap-

ter 3.2) then two subsequent packets are used to calculate the packet

interarrival time.

• If only one packet arrives at the controller, then the packet interar-

rival time is estimated using the estimated flow duration and the flow

statistics (“packet count” Number of received packets) taken from the

switch. This results in a rough estimate of the flow packet interarrival

time.

The controller continuously updates the database by removing old flows and

keeping newer flows in a “most common” order. This maintenance helps the con-

troller in (a) faster search results (b) keeping the database small and manageable.

All the calculated average data is kept in an independent database area and is up-

dated with recent calculated data. In order to avoid chronological data affecting

the controller judge during unpredicted events, the controller compares chronolog-

ical average values consistency. If the old values are not consistent with the new

values then the database entries for those values are updated in order to reflect

the new changes. In addition, it monitors the flow table and the flow statistics

in order to find rules that have exceeded the average flow duration. Upon finding

such rules, the controller performs a flow table rule removal action.

In a multi-switch environment, the controller inspects the routes followed by

the flows and compares them with the duration of the flow in order to find the

best possible routes to redirect or guide the traffic through. At the same time

using each switch condition it is able to find the cost for each route. Adding cost

to routes, helps the controller decide the best possible route using two criteria, (a)

Route Cost and (b) Flow Duration. Low duration flows are redirected to higher

cost routes, whereas high duration flows are redirected to lower cost routes. This in

a way acts in favour of the switch conditions because it helps overloaded switches

by giving them flows that do not last enough to cause extra overload.

Chapter 4. Proposed Algorithm Based on Interarrival Time 78

4.3.2 Use of Gathered Statistics

The proposed algorithm installs flow table rules by a decision mechanism (Fig-

ure 4.5) that uses gathered statistics. These decisions are grouped into the follow-

ing steps:

Packet-In

Inspect and
Compare

Check Flow
Statistics

Average
Timeout

Normal
Timeout

Check Port
Statistics

Known
Flow?

Flow
Duration

Port
Condition

Switch
Condition

1s
Timeout

Average
Timeout

Controller
Condition

Average
Timeout

Discard
Flow

Switch
Condition

Discard
Flow

Sleep

Flow
Duration

Remove
Rule

Figure 4.5: Controller Decision Mechanism Diagram

1. When a Packet-In message arrives at the controller, the controller checks its

own condition. If it is overloaded then it checks the switch condition. If the

switch is overloaded as well then the flow is discarded, if not then an average

timeout time is given to the flow and a flow table rule is installed.

2. The controller inspects the packet headers and compares them to the flows

database saved on the controller. If the flow already exists in the database

then it proceeds to Step 3. If it does not exist then it proceeds to Step 4.

Chapter 4. Proposed Algorithm Based on Interarrival Time 79

3. The controller goes through the flow statistics and compares its known du-

ration with the average duration of all the flows of the relevant port. If

the flow duration is above the average flow duration then it will create and

install a flow table rule with hard timeout time equal to the average flow

duration. If the flow duration is equal or less to the average flow duration

then it will create and install a flow table rule with idle timeout time equal

to the flow duration and proceed to Step 6.

4. The controller checks the switch condition, if the switch is overloaded then

the flow is discarded, if it is not overloaded it proceeds to Step 5.

5. The controller goes through the port statistics and finds the average flow

duration. It then inspects the port condition. If the port is close to its

capacity then it will install a flow table rule with a hard timeout time equal

to 1 second. If the port is not close to its capacity it will install a flow table

rule with a hard timeout time equal to the average flow duration

6. Regularly inspect the flows with idle timeout flow table rules. If the duration

of the flow exceeds the average flow duration then it will remove the flow

table rule.

Knowing that on average a switch has to expect about 105 flows and that the

number of flow table rule entries is limited as shown in Table 3.3 in Chapter 3, the

risk of having a full flow table which means an unresponsive switch is very high.

In order to overcome this problem, our proposed algorithm gives higher priority

to low duration flows and installs their flow table rules using idle timeout time.

This allows the controller to receive less Packet-in Messages, resulting in higher

response rate. On the other hand it installs lower priority flows using hard timeout

time in order to have more control on those longer time flows.

Chapter 4. Proposed Algorithm Based on Interarrival Time 80

4.4 Experiments and Analysis

4.4.1 Scenario 1 - Static Interarrival Time

Scenario 1 was performed in order to examine the algorithm performance with a

variety of different interarrival times. The topology (shown in Figure 4.6) consisted

of three physical machines, two acting as hosts (sender and receiver) and one of

them being a POX controller. An HP Procurve switch was used as the OpenFlow

switch. The experiment was performed with five different interarrival times, 30

repetitions for each interarrival time, with each repetition lasting for 300 seconds.

The increased amount of repetitions helped in the elimination of experimental

errors.

Figure 4.6: Scenario 1 - Topology

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

Interarrival Time (ms)

O
u
t
o
f
O
r
d
e
r
P
a
c
k
e
t
s
(
%
)

Control

OFPEX

Figure 4.7: Scenario 1 - Interarrival Time vs Packets Out of Order Percentage

The proposed algorithm showed some very good results in scenario 1 exper-

iments (summarised in Tables 4.1 and 4.2). More specifically, it has decreased

the number of out-of-order packets by up to 33.67% which is a very important

Chapter 4. Proposed Algorithm Based on Interarrival Time 81

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

Interarrival Time (ms)

P
a
c
k
e
t
L
o
s
s
(
%
)

Control

OFPEX

Figure 4.8: Scenario 1 - Interarrival Time vs Packet Loss Percentage

5 10 15 20 25 30 35 40 45 50
0

1

2

Interarrival Time (ms)

D
e
l
a
y
(
m
s
)

Control

OFPEX

Figure 4.9: Scenario 1 - Interarrival Time vs Delay

5 10 15 20 25 30 35 40 45 50
0

50,000

100,000

Interarrival Time (ms)

F
l
o
w
T
a
b
l
e
R
u
l
e
s

Control

OFPEX

Figure 4.10: Scenario 1 - Interarrival Time vs Average Number of Flow Table Rules

Control OFPEX

Interarrival Time (ms) 5 7 10 20 50 5 7 10 20 50

Out of Order Packets (%) 1.22 1.19 1.17 1.15 0.98 1.06 0.82 1.06 0.93 0.65

Packet Loss (%) 1.53 1.40 1.17 1.15 0.98 1.03 0.92 0.86 0.79 0.78

Delay (ms) 2.09 0.92 0.50 0.30 0.12 1.69 0.68 0.41 0.20 0.08

Flow Table Rules 92014 62757 44553 26359 7898 63132 35929 27202 12769 5923

Table 4.1: Scenario 1 - Readings Summary

Chapter 4. Proposed Algorithm Based on Interarrival Time 82

Diff. (%)

Interarrival Time (ms) 5 7 10 20 50

Out of Order Packets (%) 13.11 31.09 9.40 19.13 33.67

Packet Loss (%) 32.68 34.29 26.50 31.30 20.41

Delay (ms) 19.14 26.09 18.00 33.33 33.33

Flow Table Rules 31.39 42.75 38.94 51.56 25.01

Table 4.2: Scenario 1 - Readings Percentage Change

performance improvement. There seems to be a sweet spot at 7ms interarrival

time, at which point the algorithm performs really well (see Figure 4.7). This is

most probably due to the refresh rate of the algorithm matching the interarrival

time of packets, therefore is easier for the algorithm to have up to date statistics.

Packet loss has also been decreased, reaching up to 34.29% decrease. As shown

in Figure 4.8, the algorithm performed really well in this section, and the uncer-

tainty in the readings is also less than the control experiment without the use of

the algorithm.

Delay has also been decreased, with the decrease ranging from 18% up to

33.33% as shown in Figure 4.9. Finally, the number of flow table rules present at

the switch has been decreased by up to 51.56% as shown in Figure 4.10

4.4.2 Scenario 2 - Dynamic Interarrival Time

Scenario 2 was performed in order to examine the algorithm performance with a

variety of different interarrival times. The topology used (shown in Figure 4.6) was

the same as in Scenario 1. The traffic used had a variable number of flows at each

time instance, and each of those flows had variable interarrival times ranging from

0.5ms to 50ms. The experiment was repeated thirty times, with each repetition

lasting 300 seconds. For each repetition, the exact same traffic with the same

patterns was used.

Scenario 2 results were very impressive, due to the fact that the traffic used

in this scenario is more close to a real life unpredictable traffic, with variable

interarrival time as well as bursts of packets. The proposed algorithm results

indicate that the algorithm can perform really well in such a scenario as shown in

Table 4.3. As shown in Figure 4.11 it has decreased the number of out-of-order

Chapter 4. Proposed Algorithm Based on Interarrival Time 83

0 50 100 150 200 250 300
0

0.5

1

1.5

Time (s)O
u
t
o
f
O
r
d
e
r
P
a
c
k
e
t
s
(
%
) Control

OFPEX

Figure 4.11: Scenario 2 - Packets Out of Order Percentage

0 50 100 150 200 250 300
0

1

2

3

4

Time (s)

P
a
c
k
e
t
L
o
s
s
(
%
)

Control

OFPEX

Figure 4.12: Scenario 2 - Packet Loss Percentage

0 50 100 150 200 250 300
0

0.5

1

1.5

Time (s)

D
e
l
a
y
(
m
s
)

Control

OFPEX

Figure 4.13: Scenario 2 - Delay

Control OFPEX Diff. (%)

Out of Order Packets (%) 1.12 ± 0.32 0.89 ± 0.11 20.54

Packet Loss (%) 2.17 ± 0.55 1.79 ± 0.22 17.51

Delay (ms) 1.05 ± 0.27 0.88 ± 0.10 16.19

Flow Table Rules 70700 ± 17350 58808 ± 7090 16.82

Table 4.3: Scenario 2 Readings Summary

Chapter 4. Proposed Algorithm Based on Interarrival Time 84

0 50 100 150 200 250 300
0

50,000

100,000

Time (s)

F
l
o
w
T
a
b
l
e
R
u
l
e
s

Control

OFPEX

Figure 4.14: Scenario 2 - Flow Table Rules

packets by 20.54% as well as the standard deviation in the readings. In addition

the packets lost have been decreased by 17.51% with a significant decrease in the

standard deviation as well as shown in Figure 4.12. Finally, both delay as well as

the number of flow table rules have been decreased 16.19% and 16.82% respectively

as shown in Figures 4.13 and 4.14.

4.5 Summary and Discussions

In this chapter we introduced a performance enhancement algorithm for OpenFlow

networks (OFPEX) that makes good use of flow statistics as well as the interarrival

time of packets. The algorithm makes sure that it does not overload the controller

and the statistics collected and analysed are valid. A threshold of 90% CPU

utilisation was also set in place, to prevent the algorithm from affecting the network

performance by consuming CPU resources when needed the most.

The proposed algorithm stores information such as an estimated flow duration

which is calculated using the arrival time and the timeout time of the flow, source

and destination addresses and ports as well as a timestamp for each flow. Finally,

it stores the packet interarrival time which is calculated using two methods. Using

these statistics, the algorithm can efficiently calculate better timeout times for flow

table rules, as well as manage existing flow table rules.

Using experimental scenarios, we have found that the proposed algorithm per-

forms better, compared to the same scenario without the use of the proposed

algorithm. More specifically, in some cases in which the traffic used resembled

Chapter 4. Proposed Algorithm Based on Interarrival Time 85

real-life traffic, the proposed algorithm was able to decrease the number of out-of-

order packets by 20.54%, packet loss by 17.71%, delay by 16.19% and the num-

ber of flow tables rules present at the switch by 16.82%. The algorithm has also

achieved some higher performance improvements but those came in traffic patterns

that were controlled following the same interarrival time for the whole duration of

the experiment.

Chapter 5

Distributed Mininet Placement

Algorithm for Fat-Tree Topologies

5.1 Introduction

Distributed Mininet implementations have been extensively used in order to over-

come Mininet’s scalability issues. Even though they have achieved a high level of

success, they still have problems and can face bottlenecks due to the insufficient

placement techniques. This is mainly due to the fact that all of the distributed

Mininet implementations are using placement algorithms such as round-robin,

which have not been created with networking experimentation in mind. Such al-

gorithms can cause bottlenecks in an experimental scenario due to reasons such

as link capacity limitations, adding delays that should not be present or even

distributing resource hungry parts of the experiment into not powerful machines.

This chapter presents a new placement algorithm for distributed Mininet em-

ulations with optimisation for Fat-Tree topologies. The proposed algorithm over-

comes possible bottlenecks that can appear in emulations due to uneven distribu-

tion of computing resources or physical links. To distribute the emulation exper-

iment evenly, the proposed algorithm assigns weights to each available machine

as well as the communication links depending on their capabilities. In addition,

it performs a static code analysis in order to assign the appropriate weights to

the emulated topology. Finally, using the weights of the distributed machines as

well as the experimental topology, it places the experimental topology components

86

Chapter 5. Distributed Mininet Placement Algorithm 87

accordingly.

The remainder of this chapter is organised as follows:

Section 5.2 (Distributed Mininet Analysis): Introduces existing distributed

Mininet implementations and provides an analysis of the placement algorithms

used.

Section 5.3 (Proposed Placement Algorithm): Presents the proposed place-

ment algorithm by listing the requirements as well as discussing the algorithm

operations.

Section 5.4 (Experimental Scenarios): Describes the topologies as well as the

tests that have been carried out in each experimental scenario.

Section 5.5 (Experimental Results Analysis): Presents a thorough analysis of

the experimental results.

Section 5.6 (Summary and Discussions): Provides the conclusion, summarising

every important aspect of the chapter.

5.2 Distributed Mininet Analysis

Mininet, uses Linux network namespaces in order to create lightweight virtual

nodes allowing the users to execute real code as well as standard Linux network

applications on each of the virtual nodes created. This results in high resource

requirements, in the form of CPU and RAM, which causes scalability issues. To

extend Mininet’s scalability, several distributed solutions have been proposed and

implemented. DOT [133] introduced several features that solve some of Mininet’s

issues but is not actively maintained and it does not support the latest Mininet

implementations. The developers on Mininet have added Mininet Cluster [134]

prototype which it tackles some of the issues, but the development stayed in the

prototype phase, with no timeline for the final release. Mininet CE [135] acts as a

control layer that combines instances of Mininet forming a larger cluster that can

be used for large scale emulation. A slightly different approach has been taken

by SDN Cloud DC [136] which introduces a number of new modules that enhance

both Mininet as well as POX [116] in order to create an SDN based Data Centre

that can enable large scale experimentation. The best solution to several Mininet

Chapter 5. Distributed Mininet Placement Algorithm 88

problems came in the MaxiNet [137] project. MaxiNet is an actively maintained

project which introduces several new features missing from Mininet, such as the

resource monitoring, Docker container support, as well as time dilation [138]. With

time dilation, MaxiNet solves another resource related Mininet limitation.

The only drawback of MaxiNet is the fact that even though it can spread

the virtual nodes evenly across virtual or physical machines (workers), it has no

notion of the workers performance as well as the network performance. Therefore,

a resource hungry part of the network can end up in a not resourceful worker with

limited link capacity, thus becoming the bottleneck of the network. With the use

of METIS [139] graph partitioning library, MaxiNet splits the emulated network

into x equal weight partitions where x is the number of workers available. The

weight of each partition comes from two factors. The emulated link bandwidth,

as well as the number of links each emulated node has. To optimise the network,

it uses minimal edge cut and avoids limited physical links. MaxiNet allows users

to specify if they want a specific node to be placed on a specific worker but in a

very large automatically created topology is very hard for the user to manually

assign each node to a worker.

Mininet Cluster, on the other hand, comes with a variety placement algorithms

such as RandomPlacer which places nodes randomly or RoundRobinPlacer which

it just places nodes equally around all workers. Also, it has SwitchBinPlacer

which places switches into evenly-sized bins around each worker and HostSwitch-

BinPlacer which places switches and hosts into evenly-sized bins and places them

around to each worker.

All these placement algorithms used both in MaxiNet and Mininet Cluster have

not specifically designed to examine the network components and the resources

they need. Thus a lot of them end up having several cross-server links that force

physical links to become bottlenecks in an experimentation scenario. Also, they

do not examine the worker capabilities; thus they may place a high demanding bin

into a limited resource worker, causing inaccuracies in the final results. Today’s

data centre networks follow Fat-Tree topologies [6, 140, 141] which in the case of

the placement algorithms available in both MaxiNet and Mininet Cluster, a lot of

cross-server links will be created, and the risk of bottlenecks will be increased.

Chapter 5. Distributed Mininet Placement Algorithm 89

5.3 Proposed Placement Algorithm

5.3.1 Requirements

Designing a placement algorithm for distributed OpenFlow emulations has to fulfil

several requirements in order to avoid negative effects on the emulation results as

shown in Section 5.2. In the proposed algorithm, the following requirements were

taken into consideration:

• The proposed algorithm should be aware of workers and links capabilities

• Worker resources should be close to emulation resources if possible

• The number of cross-server links must be kept as low as possible

• Notify the user in case of insufficient resources or possible problems with

workers

• Fat-Tree topology optimisation

5.3.2 Overview

For the algorithm to achieve the requirements, a set of operations that perform in-

dividual tasks have been created. These operations consist of static code analysis,

link capacity measuring, and bin creation.

5.3.2.1 Static Code Analysis

The static code analysis operation (as shown in Figure 5.1a) examines the emula-

tion code written by the user to get a view of the experiment that is about to be

implemented as well as the needs of each component. It examines known Mininet

API “keywords” related to the topology components. Using the components found

as well as their characteristics it creates a weights table and assigns them with rel-

ative weights. The weights are proportional to the traffic that each component has

to handle, the number of nodes connected to each component (if the component

is a switch) as well as the number of links connected to the component. Finally, it

gives weight to each link using the maximum amount of traffic the link might face

Chapter 5. Distributed Mininet Placement Algorithm 90

Start

Line = 0

Line > n

Known
Keyword?

Store
component &
give weight

Give weight to
links found

End

Yes

Yes

No

No

(a) Module 1 - Static Code Analysis

Start

Find actual
links

Are links
unstable?

Are workers
unstable?

Notify the
User

End

Start iPerf

Yes

Examine
Worker

Resources

No

Yes

No

(b) Module 2 - Link Capacity

Figure 5.1: Proposed Placement Algorithm Operations

during the emulation. To find the volume of traffic, it searches for common traffic

generation tools code such as iPerf [128] and Ostinato [142]. If the emulation uses

traffic generation techniques that are not known to the module, then it uses the

link capacity specified in code by the user as a weight indicator. If none of the two

is provided, then using the number of nodes connected to the link it gives relative

weights.

5.3.2.2 Link Capacity Measuring

The link capacity measuring operation measures the capacity of the links connect-

ing the workers using iPerf, and assigns relative weights to each of those links.

If the link is unstable, which can be caused by traffic travelling through the link

prior to the experiment or if it faces a lot of packet drops during the iPerf test,

then the user is notified. Such small details can affect Mininet experiments, that

is why user has to get notified and either change the experimental platform or

Chapter 5. Distributed Mininet Placement Algorithm 91

agree to proceed with the existing one. In addition to link capacity, the operation

examines the resources available to each worker. These resources include CPU

power as well as RAM availability. In order for Mininet to run smoothly and not

cause any effects on the final results, the CPU usage has to be in a “calm” state

and the RAM has to be sufficient to accommodate Mininet’s memory needs. The

algorithm can spot possible limitations that the workers might have, and it will

notify the user. In such a case is again up to the user to make alterations or agree

to proceed.

5.3.2.3 Bin Creation

Bin creation operation creates bins of switches and hosts that match the individual

workers weight, with a limited number of cross-server links. Due to the fact that a

lot of production networks use the Fat-Tree or variations of the Fat-Tree topology,

this part of the algorithm creates bins that are optimised for use in such topologies.

Therefore, one of the goals that always tries to fulfil is to never split a pod apart if

possible. The resulting bins are not meant to be of equal weight, but they should

match the weight of each worker. If the algorithm suspects that the topology might

face problems due to limited resources, it will notify the user before running the

emulation. Having said that, the algorithm will work with any topology, but it

has been tested and specifically optimised to handle Fat-Tree topologies with extra

care when forming bins.

5.4 Experimental Scenarios

To examine the proposed algorithm, a Fat-Tree experimental topology (Figure 5.2)

was used with variable number of Core Open vSwitches as well as Pods accord-

ing to the scenario needs. All of the scenarios were repeated in three different

experimental environments, with three, four and five physical machines, in the

topology shown in Figure 5.3. In each of the scenarios, the resources available

by the workers or the amount of traffic present in the experimental topology was

changed. This allowed testing the functionality of some of the individual mod-

ules of the proposed placement algorithm. All of the scenarios were tested using

Chapter 5. Distributed Mininet Placement Algorithm 92

MaxiNet, first with MaxiNet’s default placement algorithm (SwitchBinPlacer) as

a control experiment and a basis to compare with, and then with the proposed

algorithm. In order to eliminate experimental error, all of the experiments were

repeated 30 times. Furthermore, throughout the duration of each experiment, the

workers performance was monitored for non-experiment related issues. This is due

to the fact that in emulations, non-experiment related processes can use resources

which can affect the experimental results. For all the scenarios, 5400RPM SATA

hard discs have been used.

OVS

OVS

Host Host Host Host

OVS

OVS

POX
Controller

OVS 1

OVS

OVS

Host Host Host Host

OVS

OVS OVS

OVS

Host Host Host Host

OVS

OVS OVS

OVS

Host Host Host Host

OVS

OVS

OVS 2 OVS 3 OVS N

Pod 1 Pod 2 Pod 3 Pod N

Core

Aggregation

Edge

Figure 5.2: Experimental Topology

Worker 1

Frontend

Worker 3 Worker N

Link 2 Link N

Worker 2

Link 1

Figure 5.3: Workers Topology

Chapter 5. Distributed Mininet Placement Algorithm 93

Scenario 1A Scenario 1B

Component Characteristics Component Characteristics

Emulated Topology

Pod 1 2Gbps intra-pod traffic Pod 1 2Gbps intra-pod traffic

Pod 2 500Mbps to Pod 3 Pod 2 500Mbps to Pod 3

Pod 3 500Mbps to Pod 2 Pod 3 500Mbps to Pod 2

Pod 4 250Mbps to Pods 2 & 3 Pod 4 250Mbps to Pods 2 & 3

Pod 5 500Mbps to Pod 3

Workers Topology

Link 1 1Gbps Capacity Link 1 1Gbps Capacity

Link 2 600Mbps Capacity Links 2, 3 600Mbps Capacity

Workers 1, 3 4 Cores at 2.4GHz, 8GB RAM, 32GB HDD Workers 1, 3, 4 4 Cores at 2.4GHz, 8GB RAM, 32GB HDD

Worker 2 8 Cores at 2.4GHz, 16GB RAM, 50GB HDD Worker 2 8 Cores at 2.4GHz, 16GB RAM, 50GB HDD

Scenario 1C

Component Characteristics

Emulated Topology

Pod 1 2Gbps intra-pod traffic

Pod 2 500Mbps to Pod 3

Pod 3 500Mbps to Pod 2

Pod 4 250Mbps to Pods 2 & 3

Pod 5 2Gbps intra-pod traffic

Pod 6 250Mbps to Pods 4 & 5

Workers Topology

Link 2 1Gbps Capacity

Links 1, 3, 4 600Mbps Capacity

Workers 1, 3, 4 4 Cores at 2.4GHz, 8GB RAM, 32GB HDD

Workers 2, 5 8 Cores at 2.4GHz, 16GB RAM, 50GB HDD

Table 5.1: Scenario 1 Characteristics

5.4.1 Scenario 1 - Weight Assignment

Scenario 1 purpose was to examine if the proposed algorithm gives the correct

weights to both components and links, and assigns them to the appropriate phys-

ical workers. In order to achieve that, a variety of traffic bandwidths was used

in the experimental topology as well as different resource capabilities in physical

workers and links (summarised in Table 5.1).

In “Scenario 1A” the Fat-Tree topology consisted of four pods and four Open

vSwitches. Pod 1 had 2Gbps of network traffic travelling within the Pod (intra-

pod). No traffic was travelling from Pod 1 to any other pod. The rest of the

pods had no intra-pod traffic, but Pod 2 was exchanging 500Mbps traffic with

Pod 3 and Pod 4 was sending 250Mbps traffic to Pod 2 and 250Mbps to Pod 3.

In the workers topology, physical Link 1 had a 1Gbps capacity and Link 2 only

Chapter 5. Distributed Mininet Placement Algorithm 94

600Mbps. Finally, Workers 1 and 3 had 8GB of RAM, 4 cores at 2.4GHz and

32GB of hard disk whereas Worker 2 had 16GB RAM, 8 cores at 2.4Ghz and

50Gb of hard disk.

“Scenario 1B” shared the same characteristics as scenario 1A, but this time

the number of pods was five, with Pod 5 sending 500Mbps of traffic to Pod 3. In

addition, four workers were used, with Worker 4 having 8GB of RAM, 4 cores at

2.4GHz and 32GB of hard disk and Link 3 that connected Worker 4 with Worker

1 having 600Mbps capacity.

Finally, “Scenario 1C” had six pods with Pod 5 having 2Gbps of intra-pod

traffic and Pod 6 sending 250Mbps of traffic to Pod 4 and Pod 5. The rest of

the pods shared the same characteristics as Scenario 1A. The workers topology

consisted of five workers and four links. Workers 1, 3 and 4 had 8GB of RAM, 4

cores at 2.4GHz and 32GB of hard disk whereas workers 2 and 5 had 16GB RAM,

8 cores at 2.4Ghz and 50Gb of hard disk. Link 2 had 1Gbps capacity whereas

links 1, 3 and 4 had 600Mbps capacity.

5.4.2 Scenario 2 - Component Assignment

Scenario 2 purpose was to examine if the proposed algorithm will assign the com-

ponents of the emulated scenario accordingly in order to avoid having the physical

links becoming the bottleneck of the experiment. That is why the characteristics

of both the emulated and physical components (summarised in Table 5.2) were

very closely chosen in order to cause a bottleneck if any component is misplaced.

In “Scenario 2A”, the experimental topology consisted of four pods. Pod 1 was

exchanging 2Gbps of traffic with Pod 2 whereas. Pod 3 was exchanging 1Gbps

of traffic with Pod 4. Both Pod 3 and Pod 4 had 1Gbps of intra-pod traffic.

Physical links Link 1 and Link 2 had a 1Gbps capacity. Finally, Worker 1 had

16GB RAM, 8 cores at 2.4Ghz and 50Gb of hard disk, whereas Workers 2 & 3

had 8GB of RAM, 4 cores at 2.4GHz and 32GB of hard disk.

In “Scenario 2B”, the experimental topology consisted of five pods. Pods 1-

4 shared the same characteristics as in Scenario 2A whereas Pod 5 was sending

500Mbps of traffic to Pod 1 and 500Mbps to Pod 2. Physical links Link 1 -Link 3

had a 1Gbps capacity. Finally, Worker 1 had 16GB RAM, 8 cores at 2.4Ghz and

Chapter 5. Distributed Mininet Placement Algorithm 95

Scenario 2A Scenario 2B

Component Characteristics Component Characteristics

Emulated Topology

Pod 1 2Gbps to Pod 2 Pod 1 2Gbps to Pod 2

Pod 2 2Gbps to Pod 1 Pod 2 2Gbps to Pod 1

Pod 3 1Gbps to Pod 4 & 1Gbps intra-pod traffic Pod 3 1Gbps to Pod 4 & 1Gbps intra-pod traffic

Pod 4 1Gbps to Pod 3 & 1Gbps intra-pod traffic Pod 4 1Gbps to Pod 3 & 1Gbps intra-pod traffic

Pod 5 500Mbps to Pod 1 & 500Mbps to Pod 2

Workers Topology

Links 1, 2 1Gbps Capacity Links 1, 2, 3 1Gbps Capacity

Worker 1 8 Cores at 2.4GHz, 16GB RAM, 50GB HDD Worker 1 8 Cores at 2.4GHz, 16GB RAM, 50GB HDD

Workers 2, 3 4 Cores at 2.4GHz, 8GB RAM, 32GB HDD Workers 2, 3, 4 4 Cores at 2.4GHz, 8GB RAM, 32GB HDD

Scenario 2C

Component Characteristics

Emulated Topology

Pod 1 2Gbps to Pod 2

Pod 2 2Gbps to Pod 1

Pod 3 1Gbps to Pod 4 & 1Gbps intra-pod traffic

Pod 4 1Gbps to Pod 3 & 1Gbps intra-pod traffic

Pod 5 500Mbps to Pod 1 & 500Mbps to Pod 2

Pod 6 500Mbps to Pod 1 & 500Mbps to Pod 2

Workers Topology

Links 1, 2, 3, 4 1Gbps Capacity

Worker 1 8 Cores at 2.4GHz, 16GB RAM, 50GB HDD

Workers 2, 3, 4, 5 4 Cores at 2.4GHz, 8GB RAM, 32GB HDD

Table 5.2: Scenario 2 Characteristics

50Gb of hard disk, whereas Workers 2-4 had 8GB of RAM, 4 cores at 2.4GHz and

32GB of hard disk.

Finally, In “Scenario 2C”, six pods have been used. Pods 1-4 shared the same

characteristics as in Scenario 2A whereas Pods 5-6 shared the same characteristics

as Pod 5 in Scenario 2A. Physical links Link 1 -Link 4 had a 1Gbps capacity.

Finally, Worker 1 had 16GB RAM, 8 cores at 2.4Ghz and 50Gb of hard disk,

whereas Workers 2-5 had 8GB of RAM, 4 cores at 2.4GHz and 32GB of hard disk.

5.4.3 Scenario 3 - Increasing Topology Size

Scenario 3 purpose was to push the proposed algorithm to its limits by keeping

a minimal physical workers topology and keep increasing the emulated Fat-Tree

topology size. Using this approach, the performance as well as the different reac-

tions of the algorithm can be observed (summarised in Table 5.3). In all of the

scenarios, the workers topology consisted of three workers. Worker 1 had 16GB

Chapter 5. Distributed Mininet Placement Algorithm 96

Scenario 3A Scenario 3B

Component Characteristics Component Characteristics

Emulated Topology

Pod 1 1Gbps to Pod 2 Pod 1 1Gbps to Pod 2

Pod 2 1Gbps to Pod 1 Pod 2 1Gbps to Pod 1

Pod 3 1Gbps to Pod 4 Pod 3 1Gbps to Pod 4

Pod 4 1Gbps to Pod 3 Pod 4 1Gbps to Pod 3

Pod 5 2Gbps intra-pod traffic

Scenario 3C All Scenarios

Component Characteristics Component Characteristics

Emulated Topology Workers Topology

Pod 1 1Gbps to Pod 2 Links 1, 2 1Gbps Capacity

Pod 2 1Gbps to Pod 1 Worker 1 8 Cores at 2.4GHz, 16GB

RAM, 50GB HDDPod 3 1Gbps to Pod 4

Pod 4 1Gbps to Pod 3 Workers 2, 3 4 Cores at 2.4GHz, 8GB

RAM, 32GB HDDPod 5 1Gbps to Pod 6

Pod 6 1Gbps to Pod 5

Table 5.3: Scenario 3 Characteristics

RAM, 8 cores at 2.4Ghz and 50Gb of hard disk, whereas Workers 2 & 3 had 8GB

of RAM, 4 cores at 2.4GHz and 32GB of hard disk. Both physical links Link 1

and Link 2 had a 1Gbps capacity. In “Scenario 3A” the experimental topology

consisted of four pods. Pod 1 was exchanging 1Gbps of traffic with Pod 2 and Pod

3 was exchanging 1Gbps of traffic with Pod 4. “Scenario 3B”, the experimental

topology consisted of five pods. Pods 1-4 shared the same characteristics as in

Scenario 3A whereas Pod 5 had 2Gbps of intra-pod traffic.

Finally, “Scenario 3C”, had a six pod emulated topology. Pods 1-4 shared the

same characteristics as in Scenario 3A whereas Pod 5 was exchanging 1Gbps of

traffic with Pod 6.

5.5 Experimental Results Analysis

The experimental scenarios yielded very important results which indicate the per-

formance of the proposed algorithm compared to the default MaxiNet placement

algorithm. The setup time in all the scenarios, when using the proposed algo-

Chapter 5. Distributed Mininet Placement Algorithm 97

rithm is increased. This is an expected result since the proposed algorithm does

not immediately start placing components around randomly. It goes through the

operations discussed in Section 5.3 in order to perform its weight calculations, then

find the most appropriate workers and links and then start placing the emulated

topology components to the relevant workers. Even though it performs the dis-

cussed calculations, the increase in the setup time is almost negligible compared

to the benefits it brings to the important emulated topology performance improve-

ments. The percentage increase in setup time ranges from 12.87% (Scenario 3A)

to 48.74% (Scenario 2A), with the average being 31.49% and a standard deviation

(σ) of 14.77.

Parameter MaxiNet Default Placement Algorithm

1A 1B 1C

Packet Loss (%) 31.61 33.17 29.58

Delay (ms) 13.74 14.81 13.51

Setup Time (s) 35.30 36.13 39.52

Teardown Time (s) 12.56 13.21 15.45

CPU Usage (%) 86.67 σ=23.09 78.10 σ=25.44 87.25 σ=24.55

RAM Usage (%) 68.11 σ=24.43 65.74 σ=29.47 68.24 σ=28.87

Parameter Proposed Placement Algorithm

1A 1B 1C

Packet Loss (%) 5.73 6.05 5.52

Delay (ms) 4.91 4.95 4.83

Setup Time (s) 47.42 50.09 51.84

Teardown Time (s) 13.42 13.90 15.84

CPU Usage (%) 88.33 σ=2.89 86.59 σ=3.06 86.18 σ=2.36

RAM Usage (%) 83.67 σ=7.51 83.28 σ=6.42 82.54 σ=7.11

Table 5.4: Scenario 1 Experimental Results

Similarly, the teardown time was increased as well. This is an unexpected

result since in the proposed algorithm experiments, the teardown technique used

is the MiniNet’s default. The most probable cause for this increase is the fact that

Chapter 5. Distributed Mininet Placement Algorithm 98

MaxiNet stops hosts and switches in order. Since the proposed algorithm does

not spread the topology in order, but by weight, that means, during teardown

MaxiNet has to go around the workers several times until all the components are

stopped. The percentage increase in teardown time ranges from 2.52% (Scenario

1C) to 19.39% (Scenario 2B), with the average being 12.60% and σ = 6.11.

Parameter MaxiNet Default Placement Algorithm

2A 2B 2C

Packet Loss (%) 53.12 50.22 54.76

Delay (ms) 19.54 18.47 19.81

Setup Time (s) 37.05 38.21 40.08

Teardown Time (s) 14.54 14.65 15.31

CPU Usage (%) 88.33 σ=11.55 87.41 σ=10.41 88.10 σ=9.81

RAM Usage (%) 81.53 σ=13.86 81.72 σ=11.25 82.47 σ=12.47

Parameter Proposed Placement Algorithm

2A 2B 2C

Packet Loss (%) 7.25 9.75 8.94

Delay (ms) 6.19 7.51 7.27

Setup Time (s) 55.11 56.32 57.11

Teardown Time (s) 17.34 17.49 18.23

CPU Usage (%) 91.42 σ=2.47 88.34 σ=3.17 89.37 σ=2.91

RAM Usage (%) 85.63 σ=1.53 84.26 σ=1.29 85.14 σ=2.57

Table 5.5: Scenario 2 Experimental Results

Except from setup and teardown times, the rest of the parameters favour the

proposed algorithm. In Scenario 1, the proposed algorithm decreased the packet

loss on average by 81.8% (σ = 0.23), whereas in Scenario 2 the average packet

loss decrease reached 83.54% (σ = 2.36). Finally in Scenario 3 the average packet

loss was 85.38% (σ = 0.38). Overall, the number of packets lost was decreased

by 83.87% (σ = 2.05) with scenario 2A having the most significant decrease by

86.35% and 2B having the least significant decrease by 80.59%. This is a very good

indication that the proposed algorithm has taken advantage of all the available

Chapter 5. Distributed Mininet Placement Algorithm 99

resources by allocating the emulated topology to the appropriate physical workers

in order to utilise efficiently both the workers as well as the available links.

Parameter MaxiNet Default Placement Algorithm

3A 3B 3C

Packet Loss (%) 48.35 50.17 65.06

Delay (ms) 17.14 18.61 21.56

Setup Time (s) 36.55 36.81 37.24

Teardown Time (s) 14.03 14.87 15.02

CPU Usage (%) 76.29 σ=10.27 82.34 σ=11.37 92.51 σ=12.68

RAM Usage (%) 74.58 σ=11.91 78.29 σ=14.85 84.63 σ=14.21

Parameter Proposed Placement Algorithm

3A 3B 3C

Packet Loss (%) 7.03 7.59 9.24

Delay (ms) 6.11 6.27 7.36

Setup Time (s) 41.26 41.58 42.26

Teardown Time (s) 16.30 16.51 16.94

CPU Usage (%) 78.17 σ=2.69 81.65 σ=3.41 89.39 σ=3.26

RAM Usage (%) 74.92 σ=2.37 79.45 σ=2.86 88.31 σ=2.97

Table 5.6: Scenario 3 Experimental Results

Delay was also decreased, on average by 64.76% (σ = 2.39) which is again a

very good indication of optimal utilisation of available resources. In Scenario 1

the delay was decreased by 65.03% (σ = 1.09), in Scenario 2 by 63.65% (σ = 3.68)

and in Scenario 3 by 65.51% (σ = 0.84).

The best indication of the work done by the proposed algorithm comes from

both the CPU as well as the RAM usage readings. Even though the average

value for CPU usage is very close for both algorithms, the standard deviation of

the reading indicates that the proposed algorithm has utilised all of the work-

ers CPUs almost equally. In Scenario 1B, MaxiNet’s default algorithm reached a

standard deviation of 25.44 in CPU usage which is very high compared to the 3.06

of the proposed algorithm. Since the CPU usage value consists of the CPUs of

Chapter 5. Distributed Mininet Placement Algorithm 100

all the workers’ CPUs present in the experiment, a high value of standard devia-

tion indicates that some of the CPUs are underutilised and some are overutilised.

Therefore, the emulated components are not assigned the best possible way. In

Scenario 1, the proposed algorithm increased the CPU usage average by 3.85%

but it has managed to decrease the standard deviation by 88.63% (from 24.36 to

2.77). In Scenario 2, the proposed algorithm increased CPU usage by 2.00% but

again it has decreased standard deviation by 73.09% (from 10.59 to 2.85). Finally

in Scenario 3, the proposed algorithm decreased CPU usage by 0.58% as well as

the standard deviation by 72.73% (from 11.44 to 3.12).

The same outcome happens with RAM where in some workers is underutilised

or in some cases overutilised reaching up to 100%. Reaching 100% of RAM or

CPU usage in emulation means that the workers do not have enough resources

to run smoothly the emulated scenario, which will increase the number of packet

losses or the delays in packet travel times. In some cases the operating system

will start using the “Swap” memory which is much slower that RAM, leading

in extra delays in the experimental results. This is true in all of the scenarios

since both delay and packet loss percentages are significantly higher in the default

MaxiNet placement algorithm compared to the proposed algorithm. Overall, in

Scenario 1, the proposed algorithm increased RAM usage by 23.49% but decreased

standard deviation by 74.59% (from 27.59 to 7.01), and in Scenario 2 it has in-

creased RAM by 3.79% but decreased standard deviation by 85.63% (from 12.53

to 1.80). In Scenario 3 it has once again increased RAM by 2.10% and decreased

standard deviation by 80% (from 13.66 to 2.73). All of the experimental results

are summarised in Tables 5.4, 5.5 and 5.6.

On close inspection of network traffic, MaxiNet’s default “SwitchBinPlacer”

algorithm placed all of the scenarios the exact same way, ignoring the differences

in traffic and link capacities. This is the reason why the emulated topologies

did not perform so well with the default placement algorithm. In order for the

default algorithm to reach the performance of the proposed algorithm, a lot more

physical resources would be needed and even if provided it is not guaranteed that

the emulated topology will get the resources needed since random placement can

cause bottlenecks.

Chapter 5. Distributed Mininet Placement Algorithm 101

1A 1B 1C

10

20

30

Scenario

P
ac
k
et

L
os
s
(%

)

(a) Packet Loss

1A 1B 1C
4

6

8

10

12

14

Scenario

D
el
ay

(m
s)

(b) Delay

1A 1B 1C

35

40

45

50

Scenario

S
et
u
p
T
im

e
(s
)

(c) Setup Time

1A 1B 1C

13

14

15

16

Scenario

T
ea
rd
ow

n
T
im

e
(s
)

Default

Proposed

(d) Teardown Time

1A 1B 1C

60

80

100

Scenario

C
P
U

U
sa
ge

(%
)

(e) CPU Usage

1A 1B 1C

40

60

80

100

Scenario

R
A
M

U
sa
ge

(%
)

(f) RAM Usage

Figure 5.4: Scenario 1 Readings

Chapter 5. Distributed Mininet Placement Algorithm 102

1A 1B 1C

10

20

30

40

50

Scenario

P
ac
k
et

L
os
s
(%

)

(a) Packet Loss

1A 1B 1C
5

10

15

20

Scenario

D
el
ay

(m
s)

(b) Delay

1A 1B 1C

40

45

50

55

Scenario

S
et
u
p
T
im

e
(s
)

(c) Setup Time

1A 1B 1C

15

16

17

18

Scenario

T
ea
rd
ow

n
T
im

e
(s
)

Default

Proposed

(d) Teardown Time

1A 1B 1C
75

80

85

90

95

100

Scenario

C
P
U

U
sa
ge

(%
)

(e) CPU Usage

1A 1B 1C

70

80

90

Scenario

R
A
M

U
sa
ge

(%
)

(f) RAM Usage

Figure 5.5: Scenario 2 Readings

Chapter 5. Distributed Mininet Placement Algorithm 103

1A 1B 1C

20

40

60

Scenario

P
ac
k
et

L
os
s
(%

)

(a) Packet Loss

1A 1B 1C
5

10

15

20

Scenario

D
el
ay

(m
s)

(b) Delay

1A 1B 1C
36

38

40

42

Scenario

S
et
u
p
T
im

e
(s
)

(c) Setup Time

1A 1B 1C

14

15

16

17

Scenario

T
ea
rd
ow

n
T
im

e
(s
)

Default

Proposed

(d) Teardown Time

1A 1B 1C

70

80

90

100

Scenario

C
P
U

U
sa
ge

(%
)

(e) CPU Usage

1A 1B 1C
60

70

80

90

100

Scenario

R
A
M

U
sa
ge

(%
)

(f) RAM Usage

Figure 5.6: Scenario 3 Readings

Chapter 5. Distributed Mininet Placement Algorithm 104

5.6 Summary and Discussions

In this chapter, we proposed a new placement algorithm for distributed Mininet

network emulators. The proposed algorithm assigns weights to various compo-

nents present in an emulated scenario such as hosts, switches, links as well as the

traffic that will be present in the emulation. It then assigns weights to the avail-

able workers depending on their resources (CPU, RAM) as well as the links that

connect them together. Finally, matching the emulated components weights with

workers and links weights, it assigns each emulated component to the most appro-

priate worker. The algorithm is optimised for Fat-Tree topologies, in such a way

that it does its best not to break apart pods especially if there is an indication

of increased intra-pod traffic. The proposed algorithm compared to MaxiNet’s

default placement algorithm manages to decrease packet losses by up to 86.35%

and delay by up to 65.51%. Also, it has managed to perform a better workers

utilisation, indicated by the CPU usage standard deviation which was decreased

by up to 88.63%.

Chapter 6

OpenFlow Performance

Enhancement Algorithm In Large

Topologies Using Distributed

Mininet

6.1 Introduction

As shown in Chapters 5 and 7, Mininet is highly depended on CPU capabilities

and it is very hard to create large topologies using just one typical High-End

server. In order to overcome this problem, distributed Mininet implementations

have been created by the networking community. There are several distributed

Mininet implementations, with the most advanced being MaxiNet.

In Chapter 5 we discussed the fact that even though distributed Mininet imple-

mentations bring a lot of performance and scalability improvements, there are still

problems with the way virtual components are allocated to the available infras-

tructure. Therefore we proposed a Placement Algorithm (Chapter 5) that is aware

of the infrastructure capabilities and allocates virtual components accordingly.

Is this chapter, MaxiNet with the proposed Placement Algorithm (shown in

Chapter 5) was used in order to examine the proposed OpenFlow performance

enhancement algorithm OFPE shown in Chapter 3.

The remainder of this Chapter is organised as follows:

105

Chapter 6. Performance Enhancement Algorithm In Large Topologies106

• Section 6.2 (Experimental Scenarios): Describes the setup, scenarios as well

as the topologies used for performing the experiments on MaxiNet.

• Section 6.3 (Experimental Results Analysis): Provides a thorough analysis

of the results obtained from the experimental scenarios.

• Section 6.4 (Summary and Discussions): Provides the conclusions together

with a summary of the most important results.

6.2 Experimental Scenarios

In order to examine the performance of the proposed OFPE Algorithm (Chapter

3), we used the topology as well as parts of the scenarios used in Chapter 5.

As shown in Figure 6.1, we used a Fat-Tree topology with variable number of

Core Open vSwitches as well as Pods according to the scenario needs. For each

scenario the appropriate experimental environment (Figure 6.2) was used, by using

more workers for scenarios that demanded more resources. Each scenario with

the exact characteristics was repeated with and without the use of the proposed

algorithm in order to compare our results. Finally, the experiments were repeated

30 times and the average value of readings was calculated in order to minimise

experimental error. In addition, throughout the duration of each experiment the

workers performance was monitored for abnormalities caused by non-experiment

related issues (Details of those issues are discussed in Chapter 7). As discussed in

Chapters 5 and 7, due to their nature, emulation environment might be affected

by processes that do not belong to the experiment but still use resources or cause

delays to the performance of the Operating System and therefore affecting both

MaxiNet and the controller.

6.2.1 Scenario 1 - Restrictions in Physical Topology

In the first scenario we have used the same characteristics as the ones used in

Chapter 5 Scenario 1. In this case the purpose of the experiment was to exam-

ine the performance algorithm in various aspects. First of all it had to create

Chapter 6. Performance Enhancement Algorithm In Large Topologies107

OVS

OVS

Host Host Host Host

OVS

OVS

POX
Controller

OVS 1

OVS

OVS

Host Host Host Host

OVS

OVS OVS

OVS

Host Host Host Host

OVS

OVS OVS

OVS

Host Host Host Host

OVS

OVS

OVS 2 OVS 3 OVS N

Pod 1 Pod 2 Pod 3 Pod N

Core

Aggregation

Edge

Figure 6.1: Experimental Topology

Worker 1

Frontend

Worker 3 Worker N

Link 2 Link N

Worker 2

Link 1

Figure 6.2: Workers Topology

the appropriate routes both inside pods as well as routes connecting the pods to-

gether. Then it had to handle various requests coming from all the switches and

try to install the flow tables in the correct way so it will not affect the network

performance.

As summarised in Table 6.1, the scenario had six pods with Pod 1 and Pod 5

having 2Gbps of network traffic travelling within the Pod (intra-pod) and no traffic

was travelling from Pod 1 and Pod 5 to any other pod. Pod 2 was exchanging

500Mbps traffic with Pod 3, and Pod 4 was sending 250Mbps traffic to Pod 2 and

250Mbps to Pod 3. Finally, Pod 6 was sending 250Mbps of traffic to Pod 4 and

Pod 5.

The workers topology consisted of five workers and four links. Workers 1, 3 and

Chapter 6. Performance Enhancement Algorithm In Large Topologies108

4 had 8GB of RAM, 4 cores at 2.4GHz and 32GB of hard disk whereas workers

2 and 5 had 16GB RAM, 8 cores at 2.4Ghz and 50Gb of hard disk. Link 2 had

1Gbps capacity whereas links 1, 3 and 4 had 600Mbps capacity.

Component Characteristics

Emulated Topology

Pod 1 2Gbps intra-pod traffic

Pod 2 500Mbps to Pod 3

Pod 3 500Mbps to Pod 2

Pod 4 250Mbps to Pods 2 & 3

Pod 5 2Gbps intra-pod traffic

Pod 6 250Mbps to Pods 4 & 5

Workers Topology

Link 2 1Gbps Capacity

Links 1, 3, 4 600Mbps Capacity

Workers 1, 3, 4 4 Cores at 2.4GHz, 8GB RAM, 32GB HDD

Workers 2, 5 8 Cores at 2.4GHz, 16GB RAM, 50GB HDD

Table 6.1: Scenario 1 Characteristics

6.2.2 Scenario 2 - Stressing The Controller

In the second scenario we have used the same characteristics as the ones used in

Chapter 5 Scenario 2. In this case the purpose of the experiment was to stress the

controller even more by increasing the amount of traffic. This will theoretically

lead to higher response times as well as a decrease in performance areas such as

delay and out-of-order packets.

As summarised in Table 6.2, the scenario had six pods with Pod 3 and Pod 4

having 1Gbps of network traffic travelling within the Pod (intra-pod). Pod 1 was

exchanging 2Gbps of traffic with Pod2, whereas Pod 3 was exchanging 1Gbps of

traffic with Pod 4. Finally, Pod 5 and Pod 6 were sending 500Mbps of traffic to

Pod 1 and 500Mbps of traffic to Pod 2

The workers topology consisted of five workers and four links, with all of the

links having the same capacity at 1Gbps. Worker 1 had 16GB RAM, 8 cores at

Chapter 6. Performance Enhancement Algorithm In Large Topologies109

2.4Ghz and 50Gb of hard disk, whereas workers 2-5 had 8GB of RAM, 4 cores at

2.4GHz and 32GB of hard disk.

Component Characteristics

Emulated Topology

Pod 1 2Gbps to Pod 2

Pod 2 2Gbps to Pod 1

Pod 3 1Gbps to Pod 4 & 1Gbps intra-pod traffic

Pod 4 1Gbps to Pod 3 & 1Gbps intra-pod traffic

Pod 5 500Mbps to Pod 1 & 500Mbps to Pod 2

Pod 6 500Mbps to Pod 1 & 500Mbps to Pod 2

Workers Topology

Links 1, 2, 3, 4 1Gbps Capacity

Worker 1 8 Cores at 2.4GHz, 16GB RAM, 50GB HDD

Workers 2, 3, 4, 5 4 Cores at 2.4GHz, 8GB RAM, 32GB HDD

Table 6.2: Scenario 2 Characteristics

6.2.3 Scenario 3 - Stressing The Controller & The Workers

In the third scenario we have used the same characteristics as the ones used in

Chapter 5 Scenario 3. The purpose of this experiment was to stress both the

controller as well as all the links and the workers present in the topology.

As summarised in Table 6.3, the scenario had six pods with Pod 1 exchanging

1Gbps of traffic with Pod2, Pod 3 exchanging 1Gbps of traffic with Pod 4 and

Pod 5 exchanging 1Gbps of traffic with Pod6.

The workers topology consisted of three workers and two links. The links had

a 1Gbps capacity each, and worker 1 had 16GB RAM, 8 cores at 2.4Ghz and 50Gb

of hard disk, whereas workers 2-3 had 8GB of RAM, 4 cores at 2.4GHz and 32GB

of hard disk.

Chapter 6. Performance Enhancement Algorithm In Large Topologies110

Component Characteristics

Emulated Topology

Pod 1 1Gbps to Pod 2

Pod 2 1Gbps to Pod 1

Pod 3 1Gbps to Pod 4

Pod 4 1Gbps to Pod 3

Pod 5 1Gbps to Pod 6

Pod 6 1Gbps to Pod 5

Workers Topology

Links 1, 2 1Gbps Capacity

Worker 1 8 Cores at 2.4GHz, 16GB RAM, 50GB HDD

Workers 2, 3 4 Cores at 2.4GHz, 8GB RAM, 32GB HDD

Table 6.3: Scenario 3 Characteristics

6.3 Experimental Results Analysis

The experimental scenarios yielded some very important results which indicate the

performance of the proposed algorithm compared to scenarios that make no use

of the algorithm. In the first scenario the highest improvement came in the form

of packet loss as shown in the results summarised in Table 6.4. In the control

experiment packet loss was at 5.52%, whereas with the use of the algorithm it

was lowered to 3.84%, yielding in a 30.43% change. Delay on the other hand

changed by 16.98% going from 4.83ms to 4.01ms. Finally, packets out-of-order

have been lowered by 26.22% from 2.67% to 1.97%. The decrease in both the

amount of packets lost as well as the amount of out-of-order packets, indicates

that the proposed algorithm allows the controller to act faster and serve more

traffic, without multiple packets having to visit the controller. As a result, the

controller is less busy and is able to handle the requests thus decrease the number

of out-of-order packets. In addition, by being able to serve the requests it means

that the switch’s buffer does not get full very often, that is why the packet loss

has been decreased.

Chapter 6. Performance Enhancement Algorithm In Large Topologies111

Parameter Control OFPE Change (%)

Packet Loss (%) 5.52 3.84 30.43

Delay (ms) 4.83 4.01 16.98

Packets Out-of-Order (%) 2.67 1.97 26.22

Total Packets Sent (108) 1.61 1.61

Table 6.4: Scenario 1 Experimental Results

In the second scenario, the results obtained have been identical to the first

scenario as summarised in Table 6.5. Packet loss has been decreased by 31.77%

from 8.94% to 6.1% whereas delay has been decreased by 27.37% from 7.27ms

to 5.28ms. Finally, the amount of out-of-order packets has been decreased by

35.92% from 4.51% to 2.89%. Having these indications is even more clear that

the proposed algorithm is able to alleviate the pressure from the controller. This

is due to the fact that this scenario had significantly more traffic than the first

scenario but once again the results obtained, especially in the packet loss and out-

of-order packets indicate that the controller is able to react and serve the traffic

more efficiently.

Parameter Control OFPE Change (%)

Packet Loss (%) 8.94 6.1 31.77

Delay (ms) 7.27 5.28 27.37

Packets Out of Order (%) 4.51 2.89 35.92

Total Packets Sent (108) 2.67 2.67

Table 6.5: Scenario 2 Experimental Results

Finally, in the third scenario the proposed algorithm performed as expected

by achieving higher performance that the control experiment as summarised in

Table 6.6. Packet loss was decreased by 28.79% from 9.24% to 6.58% and delay

by 30.30% from 7.36ms to 5.13ms. Finally, the amount of out-of-order packets

has been highly decreased by 44.99% from 5.89% to 3.24%. These results verify

the findings of both scenario 1 and scenario 2 and indicate that the algorithm can

Chapter 6. Performance Enhancement Algorithm In Large Topologies112

perform very well in any situation and under high pressure from increased amount

of traffic as well as in multi-switch environments.

Parameter Control OFPE Change (%)

Packet Loss (%) 9.24 6.58 28.79

Delay (ms) 7.36 5.13 30.30

Packets Out of Order (%) 5.89 3.24 44.99

Total Packets Sent (108) 1.60 1.6

Table 6.6: Scenario 3 Experimental Results

6.4 Summary and Discussions

In this Chapter, we have used the placement algorithm proposed in Chapter 5 to

prepare a MaxiNet experimental environment in order to test the OpenFlow per-

formance enhancement algorithm proposed in Chapter 3. With the use of MaxiNet

we have been able to test the OpenFlow performance enhancement algorithm in

a bigger and more realistic topology which yielded more realistic and useful data.

In order to measure its performance we have used various scenarios that put

pressure on both the proposed algorithm as well as the controller which carries

the operations of the proposed algorithm. The first scenario had a restricted

physical topology in order to examine the algorithm performance in creating the

appropriate routes. The second scenario put more stress on the controller in order

to examine its reaction time and performance under stress. Finally, in the third

scenario both the controller as well as the emulation environment were under stress

again in order to examine how it responds and how well it handles the traffic. The

third scenario examined the performance of both the performance enhancement

algorithm (Chapter 3) as well as the placement algorithm (Chapter 5).

In the experimental results, the proposed algorithm showed consistent per-

formance by achieving better network performance in all of the scenarios. That

performance increase came in the form of a decrease in packet loss, delay as well as

out-of-order packets. More specifically, in some of the scenarios it has managed to

Chapter 6. Performance Enhancement Algorithm In Large Topologies113

decrease packet loss by up to 31.77%, decrease delay by up to 30.30% and decrease

out-of-order packets by up to 44.99%.

Chapter 7

Performance Benchmarking of

SDN Experimental Platforms

7.1 Introduction

In order to validate SDN related work, simulation, emulation or actual testbeds

environments using the OpenFlow protocol are used. Some examples of simulators

include fs-sdn [143] which promises fast, accurate simulations as well as scalabil-

ity advantages over its competitors. Furthermore, there is NS-3 [144] which has

OpenFlow support but it is restricted due to the fact that it does not utilise the

“switch to controller” communication protocol; it creates an object that imple-

ments the controller behaviour. Finally, another well known simulator is EstiNet

9.0 [145], which except from a simulator it can act as an emulator. It is able to run

real-world controllers, and claims to solve problems (only when simulation mode

is used) faced due to system schedulers during experimentation.

The most popular and tested SDN experimental platform is Mininet [82] em-

ulator, which is a prototyping system that supports OpenFlow. The advantage

of emulators over simulators is the fact that an emulator is much closer to a real

world implementation. In an emulator a real world controller is used with a proper

“switch to controller” communication. Furthermore, usually what is tested in em-

ulators can be directly implemented in a production network using the exact same

programming code and parameters as in the emulation. That results in better

testing as well as bug proofing. On the other hand, emulators are dependent on

114

Chapter 7. Performance Benchmarking of SDN Exp. Platforms115

the system scheduler thus it is expected to face some issues when it comes to high

demand emulations, and therefore they are not as scalable as simulators. This is

one of the problems that Distributed OpenFlow Testbed (DOT) [133] solves by

distributing the emulated environment across several physical machines as shown

in Chapter 5.

When it comes to testbeds, the experimental platform used consists of Open-

Flow enabled switches and servers. There is a huge number of OpenFlow enabled

switches as well as NetFPGA [36], an open source hardware and software platform

for research and experimentation. There is also Pantou [146] project which uses

a custom router firmware called OpenWrt [147] in order to allow low-end home

routers to act as OpenFlow switches.

All these experimenting environments lack of a way of performance testing.

It is very important for each research idea to be tested in an environment that

is suitable to the experiment needs. This will provide results that can be as

close to real-life implementation as possible. For example if the experimental

scenario involves a huge topology then an emulator that lacks scalability cannot

be used as the experimenting platform. Therefore, the selection of the appropriate

experimental platform is very important and as a result a way of benchmarking

and rating all the available experimental environments is vital.

This Chapter presents and explains a number of performance tests that can

be performed on each of the available experimental platforms in order to evaluate

their performance in several areas. As a result, using these tests a ratings table can

be created in order to allow researchers to choose the one that suits their needs.

Furthermore, this Chapter goes a step ahead to perform, present and analyse all

the proposed tests on the Mininet platform.

The remainder of this Chapter is organised as follows:

• Section 7.2 (Proposed Performance Benchmarking Tests): Describes all of

the proposed performance benchmarking tests.

• Section 7.3 (Experiments and Analysis): Describes the setup for performing

the tests on Mininet, as well as each scenario individually. Finally, it provides

a thorough analysis of the results obtained.

Chapter 7. Performance Benchmarking of SDN Exp. Platforms116

• Section 7.4 (Summary and Discussions): Provides the conclusion as well as

a summary of the most important information of the chapter.

7.2 Proposed Performance Benchmarking Tests

In order to review, benchmark and rate the available experimental platforms, a

series of different experiments in specific areas have to be performed. First of

all, each of the topologies chosen have to isolate one or more bottlenecks of each

platform. In addition, each topology has to be compared to results coming from a

same shape topology with the only difference of being smaller or larger in number

of components present. It is unfair to compare for example a Tree with a Fat-Tree

topology.

In order to compare each topology and find the performance of each platform,

here is the list of all the metrics that have been taken into account:

1. Setup Time

2. Teardown Time

3. CPU Usage

4. Scalability

5. CPU Cores Load Balancing (CCLB)

6. RAM Usage

7. Initial Ping Delay (IPD)

8. Average Ping Delay (APD)

9. No Response Failure Rate (NRFR)

10. Fair Share of Resources

Setup as well as teardown times are an important measure of (a) the efficiency

of the platform in the use of the available resources and (b) the scalability. CPU

usage is important in order to evaluate the amount of system resources needed for

Chapter 7. Performance Benchmarking of SDN Exp. Platforms117

each topology with a specific number of nodes. As a result, it is a pretty good indi-

cation of the scalability of the platform under test. In addition, with CPU metrics

one can confirm if a higher profile system will result in more accurate experimental

results or the system specifications are negligible. Furthermore, it allows spotting

and eliminating inconsistent readings caused by a fully loaded CPU. Finally, the

CPU usage tests consist of two readings, one is the Initial CPU Usage (I-CPU),

which is the CPU usage by the platform after it has created the specified topol-

ogy but before it has begun with the specified tests. The second reading is the

CPU usage during the experiment (CPU-DE), meaning is the average CPU usage

during the time that the specified tests are executed.

CPU Cores Load Balancing (CCLB) is a measure of (a) the scalability and

(b) the ability of the platform under test to initialise all the available CPU cores

equally (i.e. takes advantage of a multi-core CPU). CCLB is measured by calcu-

lating the standard deviation of the readings of the average of each core, therefore

a value close to 0 indicates an excellent load balancing. Random-access Memory

(RAM) will indicate (a) how resource hungry the platform is, (b) if it will benefit

from systems with more RAM and (c) scalability.

Ping delay is an important indication on how close the platform is to real

life implementation. There are two important types of Ping delays, the Initial

Ping Delay (IPD) and the Average Ping Delay (APD). The IPD is highly affected

by the time it takes for the controller to add a flow table rule to the OpenFlow

switch. The APD is the average of all the ping delays excluding IPD. Using an

SDN experimental platform without initialising a controller (i.e. eliminating the

installation of rules in the network device flow table) is unrealistic and cannot

be compared to real-life. On the other hand adding the huge IPD into the APD

will result in a significant increase that will not reflect the entire test as well as

real-life implementation with pro-active controllers. Thus, splitting the Ping delay

into IPD and APD is the best solution.

No Response Failure Rate (NRFR) is the percentage of failed attempts for

communication during Ping Delay test. This appears regularly in emulations

due to the fact that each test has to be allocated some processing time by the

Operating System Scheduler. The OS Scheduler is not designed specifically for

Chapter 7. Performance Benchmarking of SDN Exp. Platforms118

the experimental platform and as a result it does not allocate processing time

efficiently from the platform’s point of view, and therefore it fails to perform as in

real world.

Finally, Fair Share of Resources (FSR) indicates platform’s performance in

resource allocation. In this Chapter FSR is represented by the Coefficient of

Variation (CV) of the delay when all the hosts in the topology perform Ping

command at the same time. CV is given by Cv = σ/µ ∗ 100, where σ is the

standard deviation of delay and µ is the average delay. In some topologies is

impossible to get FSR results, for example the linear 2 hosts topology will always

have only 2 hosts running ping therefore FSR results cannot be obtained.

7.3 Experiments and Analysis

Due to the fact that Mininet is widely used in SDN/OpenFlow experimentation,

all the tests described in this section have been performed using Mininet. Five

different topologies have been used with variable number of switches or nodes. The

number of switches and or nodes in each of the experiments is denoted by N, where

N had the values of 1, 100, 500 and 1000. Each experiment lasted for 300 seconds

and in order to minimise experimental error, each experiment was repeated 30

times. All of the experiments have been performed on two different systems (see

Table 7.1), in order to evaluate Mininet’s behaviour in limited resources at first

in the Low-End machine and then in a system that has more resources in the

High-End machine.

Mininet documentation suggests the use of pre-build virtual images of Mininet

for simplicity and in order to avoid the need to add libraries to the system. Such

an approach is not considered to be the best for benchmarking since the operating

system will allocate only a fraction of its resources to Mininet’s virtual environ-

ment. Therefore for these experiments, Mininet was installed from source into a

fully functional Ubuntu 14.04.1 LTS Linux operating system. Through the native

installation, Mininet is capable to use the full resources of the system.

In addition, due to the fact that Mininet supports several types of switches, all

of the experiments were repeated using Open vSwitch [117] (OVS), Indigo Virtual

Chapter 7. Performance Benchmarking of SDN Exp. Platforms119

Low-End Machine High-End Machine

OS Ubuntu 14.04.1 LTS

Kernel Version 3.13.0-32

CPU Vendor Intel

Architecture x86-64

Cores 4 8

CPU GHz per core 2.4

Cache (MB) 4

RAM (MB) 8192 16384

Hard Disk (GB) 32 50

Virtualisation VT-x

Hypervisor QEMU KVM

Table 7.1: Mininet Experimental Machines Specifications

Switch (IVS) [148] and Mininet’s Reference Switch. The reasoning behind the

use of different switches is to investigate the effect of the switches on the overall

performance and also inspect how well Mininet can handle real world switches like

OVS and IVS, instead of just the performance of the reference switch which is

specifically optimised for Mininet. Finally, in all of the results, the experimental

error is presented in the form of standard deviation.

After tests completion, an initial analysis clearly indicated (a) both Reference

and OVS switches results were identical and (b) IVS faced a lot of problems and

gave inconsistent results in topologies with high number of nodes. Due to the fact

that the difference between Reference and OVS was tiny enough to be considered

as experimental error and therefore negligible, and because IVS problems indicated

that Mininet might not be optimised for IVS yet, only OVS results are presented,

which is currently the leading industry and research virtual switch.

7.3.1 Default System Performance

Before running the actual experimental topologies, a default system benchmarking

was performed in order to evaluate the default performance of the system and be

able to find any problems and abnormalities in the experimental scenario readings.

Chapter 7. Performance Benchmarking of SDN Exp. Platforms120

The processes running by the system were chosen to be exactly the same as the

ones running in the rest of the scenarios. The only exceptions were Mininet pro-

cesses since we where not running Mininet. Both wired and wireless networking

was disabled to isolate the system, whereas throughout the experiments all the

processes were monitored in order to make sure that they remained unchanged.

In order to observe the behaviour of the system itself, we left the system run-

ning for 300 seconds and observed the CPU, RAM, Network and Disk usage. As

with all the other scenarios, the experiment was repeated 30 times to minimise

experimental error.

Parameter Low-End High-End

CPU Average Usage (%) 0.59 0.54

CPU Maximum Usage (%) 37.80 16.40

CPU Minimum Usage (%) 0 0

CPU Usage Standard Deviation 2.42 1.23

Network I/O Total Read (KB) 6.50 6.50

Network I/O Average Read (KB) 0.02 0.02

Network I/O Maximum Read (KB) 1.30 1.31

Network I/O Minimum Read (KB) 0 0

Network I/O Read Standard Deviation 0.17 0.17

Network I/O Total Write (KB) 6.50 6.51

Network I/O Average Write (KB) 0.02 0.02

Network I/O Maximum Write (KB) 1.30 1.29

Network I/O Minimum Write (KB) 0 0

Network I/O Write Standard Deviation 0.17 0.17

System Total RAM (MB) 8002.3 16104.8

Average Active RAM (MB) 180.60 180.13

Minimum Active RAM (MB) 170.22 170.57

Maximum Active RAM (MB) 190.04 191.01

Active RAM Standard Deviation 5.59 6.2

Average Disk Busy (%) 3.09 1.55

Maximum Disk Busy (%) 10.1 8.9

Minimum Disk Busy (%) 0 0

Disk Busy Standard Deviation 2.108 1.25

Table 7.2: Default System Performance

Chapter 7. Performance Benchmarking of SDN Exp. Platforms121

0 100 200 300
0

5

10

15

20

Time (s)

A
c
t
i
v
e
(
%
)

(a) Low-End CPU

0 100 200 300
0

5

10

15

20

Time (s)

A
c
t
i
v
e
(
%
)

(b) High-End CPU

0 100 200 300
0

2,000

4,000

6,000

8,000

Time (s)

R
A
M
(
M
B
)

Total

Active

(c) Low-End RAM

0 100 200 300
0

0.5

1

1.5

·104

Time (s)
R
A
M
(
M
B
)

Total

Active

(d) High-End RAM

0 100 200 300

−0.4

−0.2

0

0.2

0.4

Time (s)

K
B
/
s

Read

Write

(e) Low-End Network I/O

0 100 200 300

−0.4

−0.2

0

0.2

0.4

Time (s)

K
B
/
s

Read

Write

(f) High-End Network I/O

0 100 200 300
0

5

10

Time (s)

B
u
s
y
(
%
)

sda

sda7

(g) Low-End Disk Busy %

0 100 200 300
0

5

10

Time (s)

B
u
s
y
(
%
)

sda

sda7

(h) High-End Disk Busy %

Figure 7.1: Default System Performance

As shown in Figures 7.1a and 7.1b, throughout the experiment both Low-End

and High-End machines CPUs were using only a small fraction of their processing

Chapter 7. Performance Benchmarking of SDN Exp. Platforms122

power. These resources were used mainly by the operating system processes as

well as the software used to monitor the system. The summary Table 7.2 shows

that only 0.59% for the Low-End and 0.54% for the High-End of the processing

power was used. Network I/O performances shown in Figures 7.1e and 7.1f, con-

firms that by disabling wired and wireless networking it will prevent the system

from accessing the outside word and use processing power for purposes not related

to our experimentation. RAM usage (Figures 7.1c and 7.1d) is almost unchanged

for the duration of the experiment. Table 7.2 shows that the maximum active

RAM is at about 190MB whereas the minimum active is at about 170MB. Fi-

nally, Figures 7.1g and 7.1h show that the hard drive has some activity in both

reading and writing; but this can be taken to be a. the software that takes system

measurements since it outputs the measurements in a text document in real-time

and b. the swap memory used by Ubuntu Linux. Even though the disk busy

percentage has some peaks, these peaks are only for sda and sda7, therefore the

average disk busy percentages is only 3.09% for the Low-End and 1.55% for the

High-End Machine (Table 7.2).

7.3.2 Scenario 1 - Dumbbell-Shaped Topology

The first topology namely “Dumbbell-Shaped” topology as shown in Figure 7.2,

examines Mininet’s performance with a bottleneck link, the link between Switch 1

and Switch 2. For Ping and Bandwidth (using iPerf [128]) tests, Host1N was com-

municating with Host2N resulting in a one-to-one connection with the appropriate

switch for each host.

In Dumbbell-Shaped topology, setup and teardown times are not affected by

the system resources since both Low and High-End systems results are identical,

but both of them increase linearly as the number of hosts in the system increases.

Furthermore, in both cases the teardown time is always higher than the setup

time ranging from 3 up to 7 times higher as shown in Figure 7.3. I-CPU snows

an anomaly, at N=1 and N=100 is higher in High-End system even though it

should normally be higher in the Low-End system for any number of N. CPU-

DE is always higher in the High-End system even though there are more resources

available. In the Low-End system at N=1 CCLB is not very efficient, but once the

Chapter 7. Performance Benchmarking of SDN Exp. Platforms123

Figure 7.2: Scenario 1 - Dumbbell-Shaped Topology

number of hosts increases it becomes more efficient. In High-End server slightly

more RAM was used which in combination with CPU readings means that Mininet

took an advantage of the availability of resources. In addition, even though APD is

identical for both systems at any number of hosts N, when it comes to N=500 and

N=1000 the IPD is lower in the High-End system. Finally, NRFR shows failed

responses only at N=1000, with the Low-End system reaching 86.4% whereas

High-End system is at 42.9%. All of the results for the Dumbbell-Shaped topology

are summarised in Table 7.3.

Chapter 7. Performance Benchmarking of SDN Exp. Platforms124

Low-End System

Number of Hosts (N)

1 100 500 1000

Setup (s) 0.045 ± 0.002 1.21 ± 0.06 7.13 ± 0.36 19.79 ± 0.99

Teardown (s) 0.156 ± 0.008 7.37 ± 0.368 46.33 ± 2.32 110.53 ± 5.527

I-CPU (%) 2.74 ± 0.48 3.37 ± 0.699 10.39 ± 6.19 16.61 ± 6.06

CPU-DE (%) 3.35 ± 1.91 5.38 ± 0.19 24.27 ± 0.67 35.38 ± 3.28

CCLB 2.21 0.22 0.78 3.79

RAM (MB) 253 ± 4.39 478 ± 5.51 1394 ± 100.82 2549 ± 189.68

IPD (ms) 8.76 ± 0.49 12.6 ± 1.01 83.8 ± 8.02 93.1 ± 5.19

APD (ms) 0.06 ± 0.13 0.07 ± 0.14 0.09 ± 0.13 0.099 ± 0.17

NRFR (%) 0.0 0.0 0.0 86.35

FSR (%) 62.30 279.02 517.21 47.30

High-End System

Number of Hosts (N)

1 100 500 1000

Setup (s) 0.077 ± 0.004 1.309 ± 0.065 6.76 ± 0.34 18.93 ± 0.95

Teardown (s) 0.235 ± 0.0118 7.48 ± 0.374 45.83 ± 2.291 116.75 ± 5.84

I-CPU (%) 4.74 ± 0.41 5.43 ± 0.70 9.35 ± 2.25 11.97 ± 0.44

CPU-DE (%) 6.31 ± 0.26 8.62 ± 1.60 32.88 ± 3.39 40.48 ± 2.62

CCLB 0.28 1.71 3.62 2.80

RAM (MB) 316 ± 8.54 559 ± 50.90 1542 ± 141.6 2847 ± 167.9

IPD (ms) 5.55 ± 0.35 16 ± 1.36 57.8 ± 5.44 66.8 ± 3.88

APD (ms) 0.06 ± 0.17 0.07 ± 0.18 0.08 ± 0.12 0.08 ± 0.11

NRFR (%) 0.0 0.0 0.0 42.94

FSR (%) 124.00 328.05 513.85 530.07

Table 7.3: Dumbbell-Shaped Topology OVS Summary

Chapter 7. Performance Benchmarking of SDN Exp. Platforms125

0 200 400 600 800 1,000

0

50

100

Number of Hosts (N)

T
im

e
(s
)

Setup-HE

Setup-LE

Teardown-HE

Teardown-LE

(a) Setup & Teardown Times

0 200 400 600 800 1,000

0

10

20

30

40

Number of Hosts (N)

P
er
ce
n
ta
ge

U
sa
ge

(%
)

I-CPU-HE

I-CPU-LE

CPU-DE-HE

CPU-DE-LE

(b) I-CPU & CPU-DE Perc. Usage

0 200 400 600 800 1,000

0

20

40

60

80

100

Number of Hosts (N)

T
im

e
(m

s)

IPD-HE

IPD-LE

APD-HE

APD-LE

(c) IPD & APD Times

0 200 400 600 800 1,000
0

1

2

3

4

Number of Hosts (N)

CCLB-HE

CCLB-LE

(d) CCLB

0 200 400 600 800 1,000

0

200

400

Number of Hosts (N)

%

NRFR-HE

NRFR-LE

FSR-HE

FSR-LE

(e) NRFR & FSR

0 200 400 600 800 1,000
0

1,000

2,000

3,000

Number of Hosts (N)

M
B

RAM-HE

RAM-LE

(f) RAM

Figure 7.3: Dumbbell-Shaped Topology Results

Chapter 7. Performance Benchmarking of SDN Exp. Platforms126

7.3.3 Scenario 2 - One-to-Many Topology

The second topology namely “One-to-Many” topology as shown in Figure 7.4,

similar to the first topology it has a bottleneck link but this time it forms a one-

to-many connection in which Host1 pings a number of other nodes (i.e. from Host2

up to HostN).

Figure 7.4: Scenario 2 - One-to-Many Topology

In One-to-Many topology both the setup and teardown times were significantly

lower than Dumbbell-Shaped topology but once again the teardown time was

significantly higher than the setup time. I-CPU usage was low for both Low and

High end systems, but at N=500 and N=1000 the High-End system uses half the

CPU Low-End system uses as shown in Figure 7.5.

CCLB was identical to Dumbbell-Shaped topology, indicating that at high

number of hosts it becomes more efficient. RAM usage was less for One-to-Many

topology compared to Dumbbell-Shaped topology but again in the High-End sys-

tem more of the available RAM was used compared to the Low-End system. Fur-

thermore, even though the High-End system performed better in APD, in IPD

the Low-End system performed much better especially in scenarios with higher

number of switches (at 500 hosts Low-End IPD was 61% lower than High-End

Chapter 7. Performance Benchmarking of SDN Exp. Platforms127

and at 1000 hosts 51% lower). In addition, NRFR is identical for both systems

and it is also much lower than in Dumbbell-Shaped topology. Full summary of

the One-to-Many topology is provided in Table 7.4.

Comparing Dumbbell-Shaped with One-to-Many topologies it is clear that the

more nodes are present in the system the more time it takes for both setup and

teardown, therefore One-to-Many is faster than Dumbbell-Shaped. For the exact

same reason, One-to-Many uses less RAM than Dumbbell-Shaped. In addition

the IPD is much higher for Dumbbell-Shaped due to the fact that the controller

has to setup flow table rules for two switches, but APD is unaffected.

Low-End System

Number of Hosts (N)

1 100 500 1000

Setup (s) 0.059 ± 0.003 0.66 ± 0.033 1.23 ± 0.062 7.71 ± 0.39

Teardown (s) 0.098 ± 0.005 2.96 ± 0.15 7.39 ± 0.37 45.97 ± 2.29

I-CPU (%) 2.83 ± 0.25 3.30 ± 0.68 6.77 ± 1.29 12.20 ± 3.1

CPU-DE (%) 3.63 ± 0.1 5.71 ± 0.59 31.11 ± 0.49 74.12 ± 3.75

CCLB 0.12 0.68 2.84 4.33

RAM (MB) 227 ± 0.88 342 ± 34.39 464 ± 15.24 1411 ± 141.8

IPD (ms) 3.65 ± 0.25 5.5 ± 0.49 8.8 ± 0.58 23.8 ± 1.5

APD (ms) 0.07 ± 0.09 0.07 ± 0.06 0.08 ± 0.07 0.08 ± 0.06

NRFR (%) 0.0 0.0 0.0 30.91

FSR (%) 56.37 376.23 351.68 231.76

High-End System

Number of Hosts (N)

1 100 500 1000

Setup (s) 0.103 ± 0.005 0.652 ± 0.033 3.32 ± 0.166 7.06 ± 0.353

Teardown (s) 0.122 ± 0.006 3.697 ± 0.185 22.29 ± 1.115 44.41 ± 2.22

I-CPU (%) 2.09 ± 0.06 2.33 ± 0.33 3.3 ± 1.302 6.18 ± 0.329

CPU-DE (%) 0.15 ± 0.32 3.81 ± 0.83 26.38 ± 2.35 45.67 ± 1.31

CCLB 0.34 0.889 2.51 1.397

RAM (MB) 396 ± 9.17 438 ± 30.52 941 ± 19.49 1570 ± 155.77

IPD (ms) 3.19 ± 0.22 5.96 ± 0.56 22.7 ± 1.71 48.6 ± 2.91

APD (ms) 0.05 ± 0.08 0.04 ± 0.05 0.06 ± 0.07 0.06 ± 0.04

NRFR (%) 0.0 0.0 0.0 30.91

FSR (%) 75.01 387.75 274.27 221.74

Table 7.4: One-to-Many Topology OVS Summary

Chapter 7. Performance Benchmarking of SDN Exp. Platforms128

0 200 400 600 800 1,000

0

10

20

30

40

50

Number of Hosts (N)

T
im

e
(s
)

Setup-HE

Setup-LE

Teardown-HE

Teardown-LE

(a) Setup & Teardown Times

0 200 400 600 800 1,000

0

20

40

60

80

Number of Hosts (N)

P
er
ce
n
ta
ge

U
sa
ge

(%
)

I-CPU-HE

I-CPU-LE

CPU-DE-HE

CPU-DE-LE

(b) I-CPU & CPU-DE Perc. Usage

0 200 400 600 800 1,000

0

20

40

Number of Hosts (N)

T
im

e
(m

s)

IPD-HE

IPD-LE

APD-HE

APD-LE

(c) IPD & APD Times

0 200 400 600 800 1,000

0

1

2

3

4

Number of Hosts (N)

CCLB-HE

CCLB-LE

(d) CCLB

0 200 400 600 800 1,000

0

100

200

300

400

Number of Hosts (N)

%

NRFR-HE

NRFR-LE

FSR-HE

FSR-LE

(e) NRFR & FSR

0 200 400 600 800 1,000

500

1,000

1,500

Number of Hosts (N)

M
B

RAM-HE

RAM-LE

(f) RAM

Figure 7.5: One-to-Many Topology Results

Chapter 7. Performance Benchmarking of SDN Exp. Platforms129

7.3.4 Scenario 3 - Linear with 2 Hosts Topology

The third topology as shown in Figure 7.6 is a “Linear” arrangement meaning

one switch connected next to each other. This topology was used to examine the

effect of several switches on both the ping delay and resource sharing fairness. It

consists of only two hosts, one connected to Switch1 and one to SwitchN . Ping

and iPerf test were performed between hosts Host1 and Host2.

Figure 7.6: Scenario 3 - Linear with 2 Hosts Topology

Linear topology with 2 hosts confirmed the suspicion that it takes more time

to setup a switch than a host and much less time to teardown a switch than a

host. This topology provided two unexpected results, and the first one is the fact

that at N=500 and N=1000 switches the Low-End system performed better than

the High-End system in both setup and teardown times.

I-CPU had a significant increase from N=1 to N=500 switches in both Low and

High-End systems. In all the experiments the High-End system used less I-CPU

than the Low-End. CPU-DE was almost identical for both systems. CCLB value

indicated once again that load balancing becomes more efficient as the number

of switches increases. RAM followed the trend of the previous scenarios which

finds the High-End system always using more RAM than the Low-End system.

The second unexpected result and the most significant one is APD and IPD.

Except from 1 switch, in all the other number of switches the Low-End performed

Chapter 7. Performance Benchmarking of SDN Exp. Platforms130

much better than the High-End. Another noticeable number here is the standard

deviation of APD which is significantly higher than the average, meaning that the

readings have a huge difference between them and the delay is not smooth, in fact

is highly unstable. NRFR value is identical for both systems, before at N=100 is

zero and then tends to increase as N increases. All of the results are summarised

in Table 7.5.

Low-End System

Number of Switches (N)

1 100 500 1000

Setup (s) 0.109 ± 0.005 5.73 ± 0.287 67.85 ± 3.39 135.7 ± 6.79

Teardown (s) 0.112 ± 0.006 5.73 ± 0.309 41.87 ± 2.094 83.75 ± 4.187

I-CPU (%) 3.17 ± 0.875 25.34 ± 2.35 44.72 ± 14.35 49.46 ± 16.31

CPU-DE (%) 4.95 ± 1.30 16.96 ± 10.19 43.12 ± 10.34 70.41 ± 16.38

CCLB 1.51 11.77 15.02 15.42

RAM (MB) 231 ± 2.58 366 ± 22.05 866 ± 68.47 1642 ± 103.53

IPD (ms) 4.92 ± 0.27 789 ± 50.63 2300 ± 225.8 4740 ± 305.7

APD (ms) 0.07 ± 0.07 16.49 ± 120.26 51.72 ± 306.8 143.35 ± 683.07

NRFR (%) 0.0 0.0 64.79 88.35

High-End System

Number of Switches (N)

1 100 500 1000

Setup (s) 0.104 ± 0.005 5.47 ± 0.273 185.5 ± 9.276 230.95 ± 15.70

Teardown (s) 0.137 ± 0.007 7.205 ± 0.36 42.09 ± 2.104 94.65 ± 4.732

I-CPU (%) 1.89 ± 0.001 10.03 ± 0.54 20.88 ± 1.31 33.08 ± 3.46

CPU-DE (%) 2.03 ± 0.829 8.39 ± 8.35 25.695 ± 5.53 24.93 ± 3.769

CCLB 0.88 4.03 5.91 8.93

RAM (MB) 308 ± 12.17 433 ± 54.41 961 ± 51.43 1737 ± 158.41

IPD (ms) 1.93 ± 0.15 2183 ± 185.09 3653 ± 312.18 7304 ± 965.2

APD (ms) 0.06 ± 0.07 16.001 ± 119.35 103.4 ± 462.4 353.7 ± 748.2

NRFR (%) 0.0 0.0 64.08 85.48

Table 7.5: Linear 2 Hosts Topology OVS Summary

Chapter 7. Performance Benchmarking of SDN Exp. Platforms131

0 200 400 600 800 1,000

0

50

100

150

200

250

Number of Hosts (N)

T
im

e
(s
)

Setup-HE

Setup-LE

Teardown-HE

Teardown-LE

(a) Setup & Teardown Times

0 200 400 600 800 1,000

0

20

40

60

80

Number of Hosts (N)

P
er
ce
n
ta
g
e
U
sa
ge

(%
)

I-CPU-HE

I-CPU-LE

CPU-DE-HE

CPU-DE-LE

(b) I-CPU & CPU-DE Perc. Usage

0 200 400 600 800 1,000

0

2,000

4,000

6,000

8,000

Number of Hosts (N)

T
im

e
(m

s)

IPD-HE

IPD-LE

APD-HE

APD-LE

(c) IPD & APD Times

0 200 400 600 800 1,000
0

5

10

15

Number of Hosts (N)

CCLB-HE

CCLB-LE

(d) CCLB

0 200 400 600 800 1,000

0

20

40

60

80

Number of Hosts (N)

%

NRFR-HE

NRFR-LE

(e) NRFR

0 200 400 600 800 1,000

500

1,000

1,500

2,000

Number of Hosts (N)

M
B

RAM-HE

RAM-LE

(f) RAM

Figure 7.7: linear 2 Hosts Topology Results

Chapter 7. Performance Benchmarking of SDN Exp. Platforms132

7.3.5 Scenario 4 - Linear with N Hosts Topology

The fourth topology as shown in Figure 7.8 shares the same “Linear” characteris-

tics as the topology of scenario 3. The only difference is that in this topology each

switch is connected to one host and ping and iPerf tests were performed between

hosts Host1 and HostN . Even though the extra hosts (Host2 up to HostN−1) are

not actively participating in the experiment, they exist in order to examine if some

resources are still assigned to them.

Figure 7.8: Scenario 4 - Linear with N Hosts Topology

In Linear topology with N hosts once again after a certain number of switches

the setup time became higher than the teardown time. At 1000 switches the

difference is huge with the setup time being about 50 times higher than teardown

time. A noticeable result is the fact that the uncertainty in setup time is more

that twice as much as the actual teardown time. Compared to Linear 2 Hosts

topology, both Low and High-End systems performed roughly the same.

I-CPU had a less significant increase from 1 to 100 switches compared to Lin-

ear 2 Hosts topology. In all the experiments both Low and High-End systems

used about the same I-CPU. Following the pattern of all the previous topologies,

CCLB becomes more efficient as the number of switches increases. RAM didn’t

followed the trend of the previous scenarios. In this case both systems used about

the same RAM except at 1000 switches where the High-End system used 200MB

less than the Low-End system. Furthermore, in this topology the High-End sys-

Chapter 7. Performance Benchmarking of SDN Exp. Platforms133

tem performed much better in IPD at large number of switches whereas at low

number of switches the Low-End system performed better. In APD, the High-End

system performed better except at 100 switches where Low-End system performed

better. The number of NRFR showed that at high number of switches it increases

dramatically. All of the results are summarised in Table 7.6.

Low-End System

Number of Switches (N)

1 100 500 1000

Setup (s) 0.057 ± 0.003 8.24 ± 0.412 310.68 ± 15.53 10382.5 ± 519.13

Teardown (s) 0.106 ± 0.005 12.006 ± 0.6 87.91 ± 4.396 213.43 ± 10.67

I-CPU (%) 5.52 ± 0.377 12.27 ± 3.54 18.35 ± 4.71 19.97 ± 1.66

CPU-DE (%) 6.03 ± 1.77 17.03 ± 14.64 58.69 ± 1.88 70.33 ± 5.05

CCLB 2.04 2.10 2.14 3.61

RAM (MB) 327 ± 30.20 577 ± 14.03 1643 ± 230.16 3329 ± 47.31

IPD (ms) 2.4 ± 0.146 1141 ± 66.298 16946 ± 1002.77 130573 ± 3429.63

APD (ms) 0.06 ± 0.05 15.07 ± 115.76 2226.27 ± 4546.2 6042 ± 7134.65

NRFR (%) 0.0 0.0 33.34 95.1

FSR (%) 65.62 410.37 713.42 821.49

High-End System

Number of Switches (N)

1 100 500 1000

Setup (s) 0.089 ± 0.004 6.72 ± 0.336 299.23 ± 14.96 10397.95 ± 519.898

Teardown (s) 0.128 ± 0.006 13.54 ± 0.677 74.78 ± 3.739 214.29 ± 10.715

I-CPU (%) 5.02 ± 0.677 12.27 ± 1.299 18.35 ± 4.59 20.12 ± 1.85

CPU-DE (%) 2.20 ± 1.09 7.78 ± 3.5 27.65 ± 5.86 25.72 ± 3.93

CCLB 1.16 3.75 4.21 6.26

RAM (MB) 327 ± 25.58 585 ± 74.37 1678 ± 83.55 3129 ± 73.5

IPD (ms) 3.06 ± 0.249 2628 ± 188.76 16855 ± 1149.33 73093 ± 3553.72

APD (ms) 0.04 ± 0.05 24.63 ± 172.35 2045.34 ± 4353.71 4385 ± 5632.8

NRFR (%) 0.0 0.0 6.25 63.29

FSR (%) 79.32 386.64 564.80 728.24

Table 7.6: Linear N Hosts Topology OVS Summary

Chapter 7. Performance Benchmarking of SDN Exp. Platforms134

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

1.2
·104

Number of Hosts (N)

T
im

e
(s
)

Setup-HE

Setup-LE

Teardown-HE

Teardown-LE

(a) Setup & Teardown Times

0 200 400 600 800 1,000

0

20

40

60

80

Number of Hosts (N)

P
er
ce
n
ta
g
e
U
sa
ge

(%
)

I-CPU-HE

I-CPU-LE

CPU-DE-HE

CPU-DE-LE

(b) I-CPU & CPU-DE Perc. Usage

0 200 400 600 800 1,000

0

0.5

1

·105

Number of Hosts (N)

T
im

e
(m

s)

IPD-HE

IPD-LE

APD-HE

APD-LE

(c) IPD & APD Times

0 200 400 600 800 1,000

2

4

6

Number of Hosts (N)

CCLB-HE

CCLB-LE

(d) CCLB

0 200 400 600 800 1,000

0

200

400

600

800

Number of Hosts (N)

%

NRFR-HE

NRFR-LE

FSR-HE

FSR-LE

(e) NRFR & FSR

0 200 400 600 800 1,000
0

1,000

2,000

3,000

Number of Hosts (N)

M
B

RAM-HE

RAM-LE

(f) RAM

Figure 7.9: Linear N Hosts Topology Results

Chapter 7. Performance Benchmarking of SDN Exp. Platforms135

7.3.6 Scenario 5 - Host-Switch-Host Topology

The fifth topology as shown in Figure 7.10 is a Host-Switch-Host (HSH) topology

meaning each of the switches is connected to two separate hosts, and none of the

switches are connected together. Its scope is mainly scalability and sharing of

resources evaluation. Ping and iPerf tests were performed between hosts HostN−1

and HostN−2 and switch SwitchN had the request handling responsibility.

Figure 7.10: Scenario 5 - Host-Switch-Host Topology

In HSH topology, the setup time is much higher than the teardown time.

Compared to Dumbbell-Shaped and One-to-Many topologies (where teardown is

higher than setup), the main difference is the number of switches in the topology,

therefore it seems that switches take more time to setup and less time to teardown.

Furthermore, HSH has from 3 to 3000 hosts but the results indicate that it is not

the number of hosts that affects the result since both Dumbbell-Shaped and One-

to-Many have increasing number of hosts but teardown remains higher than setup

time.

In HSH I-CPU usage in Low-End system is significantly higher than in High-

End system whereas CPU-DE for both systems is almost identical. CCLB followed

the same pattern as in Dumbbell-Shaped and One-to-Many, becoming more ef-

Chapter 7. Performance Benchmarking of SDN Exp. Platforms136

ficient as the number of switches increases. Also RAM usage is almost identical

for both systems but in almost all the cases the High-End system uses slightly

more RAM. APD is about the same for both systems, as well as the IPD except

from the 1000 switches experiment where High-End performs slightly better. In

HSH topology, the value of NRFR remains at 0 which shows that all the ping

packets reached their destination, therefore they are not affected by the number

of switches in the network. All the experimental results for the HSH topology are

summarised in Table 7.7.

Low-End System

Number of Switches (N)

1 100 500 1000

Setup (s) 0.135 ± 0.007 5.274 ± 0.264 127.54 ± 6.34 514.4 ± 257.2

Teardown (s) 0.094 ± 0.005 9.228 ± 0.46 69.22 ± 3.46 153.5 ± 7.67

I-CPU (%) 3.65 ± 0.03 6.01 ± 1.29 28.79 ± 5.51 38.17 ± 7.69

CPU-DE (%) 5.62 ± 0.18 14.24 ± 0.73 36.39 ± 1.42 56.95 ± 3.28

CCLB 0.21 0.84 1.64 3.78

RAM (MB) 237 ± 18.08 569 ± 26.38 2123 ± 75.99 3735 ± 340.49

IPD (ms) 3.34 ± 0.32 13.4 ± 1.16 62.2 ± 5.34 150 ± 15.64

APD (ms) 0.07 ± 0.07 0.07 ± 0.05 0.08 ± 0.09 0.09 ± 0.11

NRFR (%) 0.0 0.0 0.0 0.0

FSR (%) 98.04 321.82 805.00 636.72

High-End System

Number of Switches (N)

1 100 500 1000

Setup (s) 0.125 ± 0.006 5.75 ± 0.288 99.31 ± 4.965 500.57 ± 25.03

Teardown (s) 0.124 ± 0.006 11.18 ± 0.559 73.71 ± 3.685 164.78 ± 8.239

I-CPU (%) 2.65 ± 0.03 3.35 ± 1.29 9.1 ± 2.51 11.84 ± 7.69

CPU-DE (%) 4.13 ± 0.19 9.84 ± 0.71 34.13 ± 3.46 52.12 ± 3.92

CCLB 0.20 0.75 3.69 4.19

RAM (MB) 310 ± 13.14 649 ± 27.12 2078 ± 12.49 3893 ± 288.58

IPD (ms) 3.4 ± 0.26 15.9 ± 0.88 59.8 ± 5.38 138 ± 9.68

APD (ms) 0.03 ± 0.03 0.09 ± 0.27 0.07 ± 0.07 0.08 ± 0.13

NRFR (%) 0.0 0.0 0.0 0.0

FSR (%) 79.11 323.72 491.38 838.85

Table 7.7: HSH Topology OVS Summary

Chapter 7. Performance Benchmarking of SDN Exp. Platforms137

0 200 400 600 800 1,000

0

200

400

600

800

Number of Hosts (N)

T
im

e
(s
)

Setup-HE

Setup-LE

Teardown-HE

Teardown-LE

(a) Setup & Teardown Times

0 200 400 600 800 1,000

0

20

40

60

Number of Hosts (N)

P
er
ce
n
ta
g
e
U
sa
ge

(%
)

I-CPU-HE

I-CPU-LE

CPU-DE-HE

CPU-DE-LE

(b) I-CPU & CPU-DE Perc. Usage

0 200 400 600 800 1,000

0

50

100

150

Number of Hosts (N)

T
im

e
(m

s)

IPD-HE

IPD-LE

APD-HE

APD-LE

(c) IPD & APD Times

0 200 400 600 800 1,000

0

1

2

3

4

Number of Hosts (N)

CCLB-HE

CCLB-LE

(d) CCLB

0 200 400 600 800 1,000

0

200

400

600

800

Number of Hosts (N)

%

NRFR-HE

NRFR-LE

FSR-HE

FSR-LE

(e) NRFR & FSR

0 200 400 600 800 1,000

0

1,000

2,000

3,000

4,000

Number of Hosts (N)

M
B

RAM-HE

RAM-LE

(f) RAM

Figure 7.11: HSH Topology Results

Chapter 7. Performance Benchmarking of SDN Exp. Platforms138

7.4 Summary and Discussions

In this Chapter a series of performance tests that can be used in order to examine

various SDN experimental platforms are presented. These performance tests in-

dicate the time needed for a platform to create and destroy a topology, the CPU

percentage used by each topology both at topology creation and during experi-

mentation as well as the RAM needed. Additionally, both Initial and Average

Ping Delays are measured as well as the number of ping packets that failed to

reach the destination. Finally, the fairness in sharing of resources by the platform

is measured.

Using five scenarios that had the purpose of exposing several bottlenecks and

critical performance areas, Mininet Emulator was tested using the proposed set of

performance metrics. From the results it is concluded that a) setup time is highly

affected by the number of switches, at low number of switches teardown time is

much higher than setup time whereas exactly the opposite happens in scenarios

with a high number of switches. b) Mininet uses more RAM for the same topology

if more RAM is available. c) The number of failed ping packets increases as the

number of links included in the packets path increases. d) Initial Ping Delay is

huge compared to Average Ping Delay. e) Load balancing between CPU cores

becomes more efficient as the number of nodes, in the topology, increases.

Chapter 8

OpenFlow Software & Hardware

Performance Evaluation

8.1 Introduction

The OpenFlow protocol has been implemented on several platforms including

simulators, emulators, physical switches, NetFPGA or even cheap home routers.

All these platforms might have a complete or partial implementation of OpenFlow

but the real question is how well do they perform. Through their performance one

can observe how feasible it is to implement the OpenFlow protocol on various

platforms.

This chapter presents a performance evaluation of OpenFlow implementation

on three different platforms. A high profile enterprise OpenFlow Switch (HP

Procurve 3500-24), a low profile home router with custom firmware (TP-Link

with OpenWrt) and a very common OpenFlow emulator (Mininet). All of the

detailed figures of this Chapter are presented in Appendix A.

The sections of this chapter can be summarised as follows:

• Section 8.2 (HP-Procurve, OpenWrt and Mininet Specifications): Introduces

the platforms that will be used for the feasibility study.

• Section 8.3 (Performance Evaluation Scenarios): Presents details of the ex-

periments performed as well as the purpose of each of the experiments.

139

Chapter 8. OF Software & Hardware Performance Evaluation140

• Section 8.4 (Experimental Results Analysis): Analyses the results of the

experiments.

• Section 8.5 (Summary and Discussions): Concludes the chapter, summaris-

ing all the important findings and pointing out some useful comparisons

resulted from experimentation and analysis.

8.2 HP Procurve, OpenWrt and Mininet Speci-

fications

HP Procurve 3500-24 switch is a 24-port OpenFlow-enabled switch. Due to the

fact that this switch’s firmware is managed by a vendor, OpenFlow versions tend

to be integrated in a very slow pace. Currently this switch supports OpenFlow up

to version 1.3, but one of the major drawbacks is that not all of the OpenFlow v1.3

functions are supported. On the other hand, it provides full support for OpenFlow

v1.0. According to the vendor, HP, this switch has very good specifications, some

of which are listed in Table 8.1. Due to the fact that it has VLAN ability, users

can create several OpenFlow VLAN switches as long as the number of physical

ports left can support them.

OpenWrt [147] is a highly extensible GNU/Linux distribution for embedded

devices. Unlike many other distributions for routers, OpenWrt is built from the

ground up to be a full-featured, and easily modifiable operating system. In prac-

tice, this means that users can have all the features their devices can support,

powered by a Linux kernel that’s more recent than most other distributions. This

eliminates the need for users to wait from vendors to implement new functions

and also provides them with the ability to create their own functions.

OpenWrt OpenFlow support was developed as part of the “Pantou” project [146],

and tested on several devices. It has been proven that it is capable to run on de-

vices having Broadcom [149] chipsets as well as TP-Link TL-WR1043ND [150]

router which runs on an Atheros [151] chipset. The main limitations of Open-

Wrt when it acts as an OpenFlow switch are two. A) It has a limited number of

ports since it is built on home routers. B) Home routers do not have the CPU

Chapter 8. OF Software & Hardware Performance Evaluation141

Component Details

CPU PowerPC 8540 at 666MHz

Flash Memory 4MB

Compact Flash 128MB

RAM 256MB DDR

Wired Ports 20 RJ-45 10/100

Dual-personality ports 4 RJ-45 10/100/1000 or Mini-GBIC

USB 1 USB v.2.0

100Mb Latency <3.4µs

1000Mb Latency <2.9µs

Throughput 8.9 million 64-byte pps

Switching Capacity 12Gbps

Routing table size 10000 entries

MAC address table size 64000 entries

Table 8.1: HP Procurve Specifications

capabilities that a switch has. For the purpose of the scenarios described in sec-

tion 8.3, TP-Link TL-WR1043ND router has been used. Hardware details about

this router are shown in Table 8.2.

Component Details

CPU 400MHz

Chipset Atheros AR9132

Wireless NIC Atheros 9100

Wireless Standard 11 b/g/n

Flash Memory 8MB

RAM 32MB

Wired Ports 5 gigE

USB 1 USB v.2.0

Table 8.2: TP-Link TL-WR1043ND Specifications

Mininet is highly dependent on the hardware capabilities due to the fact that

as an emulator it uses CPU power to create and run a virtual environment for

every device the user creates. Implementing network scenarios in Mininet can be

done through a simple Command Line Interface (CLI) or by using custom scenar-

Chapter 8. OF Software & Hardware Performance Evaluation142

ios implemented in Python programming language. CLI is preferred for simple

scenarios but if the user wants to implement complex scenarios then this has to

be done using Python. Using custom scripts the user can take full control of all

the devices created by Mininet (such as hosts, switches or links). In order to help

researchers to build their own custom networks, Mininet provides its own Applica-

tion Programming Interface (API) which comes with a very useful documentation.

One of the downsides of the documentation is that it was written for OpenFlow

version 1.0, whereas users can use up to OpenFlow version 1.3. However, most of

the structure as well as the commands remain almost the same therefore it does

not cause a lot of problems. It is an open source software and is maintained by

the community, which gives the advantage of fast response to problems or bugs

found during experimentation.

8.3 Performance Evaluation Scenarios

In order to perform the performance evaluation, it was decided to run a series of

tests on the three platforms and then analyse the results. Here is a list of the

scenarios used:

Scenario 1 - UDP Bandwidth

(a) Maximum UDP Bandwidth

(b) Maximum UDP Bandwidth Stability

Scenario 2 - Multiple Streams

Scenario 3 - Bidirectional Traffic

Scenario 4 - Rate Limiting

Scenario 5 - TCP Bandwidth

Scenario 6 - TCP and UDP Bandwidth

The first and fifth scenarios were set up to determine the maximum bandwidth

that can be achieved. This will indicate how powerful the platforms under test

Chapter 8. OF Software & Hardware Performance Evaluation143

are in the area of packet handling and how comparable Mininet and OpenWrt

router are against an enterprise level switch. Scenario 1.b was conducted due to

the fact that after running the scenario 1.a the results indicated that Mininet and

OpenWrt values were not very consistent (as shown in Section 8.4). Therefore, it

was decided to run an extra experiment for those two platforms only, in order to

find out the stability they can achieve at the maximum bandwidth.

The second scenario added some extra streams to the traffic in order to stress

the platforms under test more, and observe how they react when they have more

unknown packets and how well they handle them. Similarly, the third scenario

was all about the ability of the platforms to handle bidirectional traffic.

The fourth scenario checked one of the main features of OpenFlow which is

rate limiting. This allowed us to conclude how well some features of the OpenFlow

Protocol are designed on these three platforms. The sixth and final scenario

consisted of a mixture of TCP and UDP traffic at their maximum bandwidth.

All of the scenarios have been set up using a two hosts topology and a manual

controller as shown in Figure 8.1

For the purpose of HP Procurve switch testing, Spirent TestCenter [152] was

used to create traffic and record all the appropriate performance metrics whereas

for both Mininet and TP-Link OpenWrt iPerf was used as the traffic source.

For the purpose of Mininet experiments, the machine shown in Table 8.3 has

been used. Having in mind that Mininet (a) is highly depended on the hardware

and (b) is affected by background processes, except from network metrics such

as bandwidth, delay and packet loss, it is important to know the impact Mininet

has on the machine used to perform the experiment. Therefore, readings from the

system such as overall CPU usage, individual processor usage, Random Access

Memory (RAM) usage as well as network I/O activity were taken. To ensure a

fair comparison, system benchmarking (Section 8.4.1) before running Mininet was

taken in order to know the system’s default performance. In all of the Mininet

experiments, OpenFlow version 1.3 was used.

Chapter 8. OF Software & Hardware Performance Evaluation144

(a) HP Procurve (b) OpenWrt

(c) Mininet

Figure 8.1: Two Hosts Topology Used By Each Platform

Component Details

Processor 2.13GHz Intel Core 2 Duo P7450 (64-bit)

Microprocessor Cache Level 2 cache 3MB

RAM 4GB DDR2 800MHz

Hard Drive 250GB SATA 5400rpm

Operating System Ubuntu 12.04 LTS

Table 8.3: Mininet Experimenting Machine

Chapter 8. OF Software & Hardware Performance Evaluation145

8.4 Experimental Results Analysis

In this section, the experimental results as well as a thorough analysis of the six

scenarios is presented.

8.4.1 Mininet System Default Performance

In the system default performance, the processes running by the system were

chosen to be exactly the same as the ones running in all of the scenarios. The

exception was the fact that Mininet was not running. That allowed us to monitor

the system without Mininet running, in order to normalise our Mininet results af-

terwards. Both wired and wireless networking were disabled to isolate the system,

whereas throughout the experiment all the processes were monitored in order to

make sure that they remained unchanged.

Throughout the experiment both cores of the CPU were using only a small

fraction of their processing power. These resources were used mainly by operating

system processes as well as the software used to monitor the system. The summary

table (Table 8.4) shows that only around 0.50% of the processing power of each

CPU core was used. RAM on the other hand is almost unchanged for the duration

of the experiment. Table 8.4 shows that the maximum active RAM is at 276.6MB

whereas the minimum active is at 275.1MB. Finally, the hard drive has some

activity in both reading and writing; but this can be taken to be the software that

takes system measurements since it outputs the measurements in a text document

in real-time. Even though the disk busy percentage has some peaks, these peaks

are only for sda and sda7, therefore the average disk busy percentages is only

0.19% (Table 8.4 and Appendix A Figure A.1).

8.4.2 Scenario 1.a - Bandwidth

Scenario 1.a was set up in order to find the maximum throughput that can be

achieved by the three platforms. Furthermore, performance metrics such as delay,

packet loss, latency and CPU usage were recorded. All the flow table entries were

defined manually prior to the experiment in order to eliminate the controller’s

Chapter 8. OF Software & Hardware Performance Evaluation146

Parameter Value Parameter Value

Core 1 Average Usage (%) 0.59 System Total RAM (MB) 4002.30

Core 1 Maximum Usage (%) 37.80 Average Active RAM (MB) 276.02

Core 1 Minimum Usage (%) 0 Minimum Active RAM (MB) 275.10

Core 1 Usage Standard Deviation 2.42 Maximum Active RAM (MB) 276.60

Core 2 Average Usage (%) 0.54 Active RAM Standard Deviation 0.46

Core 2 Maximum Usage (%) 16.40 Total Disk Write (KB) 3627

Core 2 Minimum Usage (%) 0 Average Disk Write (KB) 1.73

Core 2 Usage Standard Deviation 1.23 Maximum Disk Write (KB) 115.70

Network I/O Total Read (KB) 6.50 Minimum Disk Write (KB) 0

Network I/O Average Read (KB) 0.02 Disk Write Standard Deviation 8.56

Network I/O Maximum Read (KB) 1.30 Total Disk Read (KB) 5359.40

Network I/O Minimum Read (KB) 0 Average Disk Read (KB) 2.55

Network I/O Read Standard Deviation 0.17 Maximum Disk Read (KB) 1322.30

Network I/O Total Write (KB) 6.50 Minimum Disk Read (KB) 0

Network I/O Average Write (KB) 0.02 Disk Read Standard Deviation 52.31

Network I/O Maximum Write (KB) 1.30 Average Disk Busy (%) 0.19

Network I/O Minimum Write (KB) 0 Maximum Disk Busy (%) 20

Network I/O Write Standard Deviation 0.17 Minimum Disk Busy (%) 0

Disk Busy Standard Deviation 0.98

Table 8.4: Default CPU Usage - Summary

performance from affecting the experiment. In this scenario host h1 was sending

UDP traffic at predefined bandwidths to host h2 via the OpenFlow Switch (HP-

Procurve, TP-Link OpenWrt, Mininet OpenVSwitch). In the case of the HP

Procurve switch, the experiment was repeated twice, one using the RJ-45 10/100

ports and one using the RJ-45 10/100/1000 ports.

8.4.2.1 TP-Link OpenWrt

The maximum bandwidth that was achieved did not exceed 40Mbps, whereas de-

lay increased significantly at lower sender (host h1) bandwidths and decreased

as the sender’s bandwidth was increased. At 1Mbps apart from the significantly

higher delay average, the standard deviation was also very high, which indicates

that the value was not stable (Table 8.5). Upon repeating the 1Mbps bandwidth

experiment, the same results were obtained which proves that it is not an initial-

Chapter 8. OF Software & Hardware Performance Evaluation147

isation problem. The average latency was around 0.75ms. Looking at the CPU

performance it is clear that it increases as the bandwidth increases. The same

happened to the packet loss percentage.

Having in mind that during the experiments, the CPU Usage measuring tool

was running and consuming some of the CPU’s processing power, it can be con-

cluded that the router can perform slightly better but the change will be almost

insignificant. Looking at the packet loss percentage, the delay as well as the CPU

usage it is concluded that the best bandwidth to perform the rest of the experi-

ments would be at 20Mbps. At 20Mbps the average CPU usage was 52.6% which

allows another 47.4% CPU resources to be used for custom functions that will be

implemented in the future. (Appendix A Figures A.2-A.6)

Sender Bandwidth (Mbps) 1 10 20 25 30 40 50

Average Achieved Band-

width (Mbps)

1 9.97 19.88 24.64 29.21 37.68 36.95

Bandwidth Standard Devia-

tion

0.01 0.28 0.26 0.40 0.55 1.86 0.96

Average Delay (ms) 0.76 0.14 0.10 0.15 0.14 0.20 0.17

Delay Standard Deviation 1.01 0.27 0.21 0.22 0.25 0.27 0.19

Packet Loss (%) 0 0.21 0.57 1.53 2.62 5.64 26.10

Average CPU Usage (%) 7.59 29.65 52.55 59.93 67.82 78.90 78.17

Maximum CPU Usage (%) 76 45 77 74 84 95 94

Minimum CPU Usage (%) 0 3 3 0 0 3 2

CPU Usage Standard Devi-

ation

4.86 8.50 17.10 17.29 19.53 23.02 22.56

Table 8.5: TP-Link Scenario 1.a - Summary

8.4.2.2 Mininet

Scenario 1.a performed in Mininet yielded some very interesting results (Table 8.6).

The highest bandwidth Mininet can reach is at 130Mbps for the machine shown

in Table 8.3. This is also confirmed by the percentage of packets lost at 130Mbps

which is 0%. Due to the fact that 130Mbps is the maximum, upon experiment-

ing, it would be better to use a lower bandwidth than 130Mbps in order to avoid

Chapter 8. OF Software & Hardware Performance Evaluation148

any problems that may arise due to pushing Mininet to its limits. Furthermore,

at 100Mbps, the average CPU usage on both cores has the lowest standard de-

viation. This means at that speed we have the lowest variability in the results,

therefore the CPU is at a smooth state where processes are equally shared and

processed. Delay on the other hand follows an unorthodox pattern. Delay is high

at lower bandwidths, then after 100Mbps it begins to drop until the bandwidth

reaches 130Mbps. Afterwards it increases rapidly and becomes four times bigger at

200Mbps. The most interesting result of this experiment is the CPU performance

of a sample of three different bandwidths. As shown, at both 1Mbps and 100Mbps

the processes are spread evenly to the two cores of the CPU. However, at very

high bandwidths, Mininet has the tendency to overload the first core and then use

the second core for the remaining processes. (Appendix A Figures A.7-A.12)

8.4.2.3 HP-Procurve

In contrast to the other OpenFlow platforms, there was no need to repeat the

experiment with a number of different bandwidths. HP Procurve switch was

able to reach the maximum bandwidth supported by the ports from the first run.

More specifically, RJ-45 10/100 ports run was able to reach an average of 100Mbps

bandwidth with excellent stability. Delay performance was more impressive than

bandwidth, with an average of 0.0004 microseconds (µs). Latency, with an average

of 15µs, was not as impressive as the rest of the results. Using RJ-45 10/100/1000

ports, the bandwidth again reached the maximum supported at an average of

1000Mbps. Delay was slightly increased with an average of 0.0048µs whereas

latency was reduced at an average of 4µs. All the results are summarised in

Table 8.7 and Appendix A Figures A.13-A.14.

8.4.3 Scenario 1.b - Bandwidth Stability

In scenario 1.b, using the bandwidth it was concluded to be the best for experi-

menting in scenario 1.a, the overall stability of Mininet and OpenWrt was tested.

Topology and controller settings were exactly the same as in scenario 1.a. During

the experiment, CPU Usage measuring tool was not used in order to get a more

isolated performance measurement.

Chapter 8. OF Software & Hardware Performance Evaluation149

Sender Bandwidth (Mbps) 1 50 100 110 200

Average Achieved Bandwidth (Mbps) 1 50.04 100.50 110.50 130.10

Bandwidth Standard Deviation 0.002 0.011 0.034 1.929 0.459

Average Delay (ms) 0.01 0.01 0.01 0.01 0.04

Delay Standard Deviation 0.008 0.007 0.006 0.006 0.008

Packet Loss (%) 0 0 0.01 0.38 35.85

Core 1 Average Usage (%) 2.20 34.48 53.51 59.09 96.02

Core 1 Maximum Usage (%) 57 61.40 62.90 100 100

Core 1 Minimum Usage (%) 0 9.90 8.80 44.20 10.80

Core 1 Usage Standard Deviation 3.35 11.75 4.50 9.46 17.07

Core 2 Average Usage (%) 2.04 32.01 52.07 56.06 20.20

Core 2 Maximum Usage (%) 26.30 58.60 61.70 100 100

Core 2 Minimum Usage (%) 0 5.70 7.60 16.90 10.50

Core 2 Usage Standard Deviation 1.79 11.27 4.68 10.30 16.88

Network I/O Total Read (KB) 37580 1881406 3777886 4171356 7622886

Network I/O Average Read (KB/s) 125.27 6271.40 12593 13905 25409.60

Network I/O Maximum Read (KB/s) 126.80 6286.80 12626 13936 25466.50

Network I/O Minimum Read (KB/s) 59 4365.50 8087.3 7073.90 18330.30

Network I/O Read Standard Deviation 4.29 142.11 307.01 395.70 579.16

Network I/O Total Write (KB) 37582 1881408 3777511 4155330 4890018

Network I/O Average Write (KB/s) 125.27 6271.36 12591.70 13851.10 16300.10

Network I/O Maximum Write (KB/s) 127.20 6293 12631.70 13965.10 16744.30

Network I/O Minimum Write (KB/s) 59 4365.50 8088.80 7001.90 11434.60

Network I/O Write Standard Deviation 4.29 142.11 307.70 463.90 383.69

Table 8.6: Mininet Scenario 1.a - Summary

10/100 Ports 10/100/1000 Ports

Sender Bandwidth (Mbps) 100 1000

Average Achieved Bandwidth (Mbps) 100 1000

Average Delay (µs) 0.0004 0.005

Packet Loss (%) 0 0

Average Latency (µs) 15.09 4.04

Table 8.7: HP Procurve Scenario 1 - Summary

Chapter 8. OF Software & Hardware Performance Evaluation150

8.4.3.1 TP-Link OpenWrt

The results of scenario 1.b proved that the router is stable enough to justify further

experimentation. The bandwidth is very stable with an average of 19.99Mbps

(Table 8.8). Delay can be considered very stable as well. Although delay had some

spikes that reached 0.45ms, the average was 0.07ms with a standard deviation of

0.07. Finally, packet loss percentage never exceeded 0.09% with the average being

0.021%. (Appendix A Figures A.15-A.16)

Average Bandwidth (Mbps) 19.99

Maximum Bandwidth (Mbps) 20.44

Minimum Bandwidth (Mbps) 12.41

Bandwidth Standard Deviation 0.17

Average Delay (ms) 0.07

Maximum Delay (ms) 2.22

Minimum Delay (ms) 0.02

Delay Standard Deviation 0.07

Average Packet Loss (%) 0.02

Maximum Packet Loss (%) 0.09

Minimum Packet Loss (%) 0.001

Packet Loss Standard Deviation 0.03

Table 8.8: TP-Link Scenario 1.b - Summary

8.4.3.2 Mininet

The results of scenario 1.b show that Mininet is stable at 100Mbps for the machine

shown in Table 8.3. The average bandwidth is measured to be 100.47Mbps with a

standard deviation of 0.33 (Table 8.9). Delay average value came to be 0.0092ms

with a standard deviation of 0.0064 whereas the maximum delay recorded was

only 0.133ms (Table 8.9). Packet loss on the other hand, was negligible due to

the fact that the average loss was 0.0177% with a standard deviation of 0.0004

(Table 8.9). Finally, the processes were evenly split to both CPU cores with an

average activity of 53.048% (Table 8.9, Appendix A Figures A.17-A.18).

Chapter 8. OF Software & Hardware Performance Evaluation151

Average Bandwidth (Mbps) 100.47

Maximum Bandwidth (Mbps) 101.25

Minimum Bandwidth (Mbps) 89.51

Bandwidth Standard Deviation 0.33

Average Delay (ms) 0.01

Maximum Delay (ms) 0.13

Minimum Delay (ms) 0.001

Delay Standard Deviation 0.01

Average Packet Loss (%) 0.02

Maximum Packet Loss (%) 0.11

Minimum Packet Loss (%) 0.0004

Packet Loss Standard Deviation 0.03

Average CPU Usage (%) 53.05

CPU Usage Standard Deviation 2.48

Table 8.9: Mininet Scenario 1.b - Summary

8.4.4 Scenario 2 - Multiple Streams

The second scenario was carried out to test the ability of the platforms to handle

more than one UDP data streams. For OpenWrt host h1 was sending four UDP

streams, 5Mbps each, to host h2. For HP Procurve, the experiment was repeated

twice; in the first run using RJ-45 10/100 ports and in the second run using RJ-45

10/100/1000 ports. Host h1 sent five UDP streams, 20Mbps each for the RJ-45

10/100 ports run and 200Mbps each for the RJ-45 10/100/1000 ports run, to host

h2 via HP Procurve switch. For Mininet the scenario has been repeated in two

different ways. In the first run, the topology included two hosts, a switch and a

controller. Host h1 sent five UDP streams, 20Mbps each, to host h2 via switch

s1. In the second run, the topology included six hosts, a switch and a controller.

Hosts h1, h2, h3, h4 and h5 sent one 20Mbps UDP stream each to host h6 via

switch s1.

8.4.4.1 TP-Link OpenWrt

Scenario 2 proved that TP-Link router with OpenWrt firmware performs well

during multiple streams. Bandwidth was very stable throughout the duration

Chapter 8. OF Software & Hardware Performance Evaluation152

of the experiment, with an average of 5Mbps and a standard deviation of 0.01

(Table 8.10). Delay had some spikes that reached 2ms but it performed well with

an average of 0.33ms and a standard deviation of 0.23. The average packet loss

percentage was very low at 0.0078% with a standard deviation of 0.004. Looking

at the three metrics analysed (bandwidth, delay and packet loss) it is concluded

that the performance of TP-Link is acceptable. (Appendix A, Figures A.19-A.20)

Average Bandwidth (Mbps) 4.99

Maximum Bandwidth (Mbps) 5.08

Minimum Bandwidth (Mbps) 4.85

Bandwidth Standard Deviation 0.015

Average Delay (ms) 0.33

Maximum Delay (ms) 2.01

Minimum Delay (ms) 0.09

Delay Standard Deviation 0.23

Average Packet Loss (%) 0.01

Maximum Packet Loss (%) 0.01

Minimum Packet Loss (%) 0.003

Packet Loss Standard Deviation 0.004

Table 8.10: TP-Link Scenario 2 - Summary

8.4.4.2 Mininet

The results of scenario 2 show two phenomena. (a) In both runs, the bandwidth

is very stable at about 20Mbps. There is a slight drop of the bandwidth in the

initial seconds of the second run but this is not enough to significantly affect the

average value. This could be due to an initialisation problem of Mininet, which

will be resolved with further experimentation. (b) With the use of two hosts the

average delay is around 0.07ms with slight variations, whereas upon using six hosts

the delay gets more significant variations but the average delay drops at 0.05ms

(Appendix A, Figures A.21-A.22 and Table 8.11).

Chapter 8. OF Software & Hardware Performance Evaluation153

Run 1 Run 2

Average Bandwidth (Mbps) 19.99 19.98

Maximum Bandwidth (Mbps) 20.02 20.31

Minimum Bandwidth (Mbps) 19.97 15.76

Bandwidth Standard Deviation 0.01 0.24

Average Delay (ms) 0.07 0.06

Maximum Delay (ms) 0.13 1.06

Minimum Delay (ms) 0.02 0.01

Delay Standard Deviation 0.02 0.06

Table 8.11: Mininet Scenario 2 - Summary

8.4.4.3 HP-Procurve

In both runs of the experiment, the bandwidth was handled very well by the

switch. The bandwidth in the first run was very stable at 20Mbps for all streams.

The same happened in the second run of the experiment where the bandwidth

was very stable at 200Mbps.

Delay on the other hand did not follow the same pattern as bandwidth. In

the first run, delay was the same for all streams with an average of 0.002µs, even

though they were some variations of 0.0015µs. In the second run the results were

slightly different. Firstly, the overall delay was about ten times smaller than the

first run. Secondly, not all streams shared the same average delay. All the results

of the experiment, including individual delay and bandwidth are summarised in

Table 8.12 and Appendix A, Figures A.23-A.24.

8.4.5 Scenario 3 - Bidirectional Traffic

The objective of Scenario 3 was to test the ability of the platforms in handling

bidirectional traffic. For OpenWrt both hosts were sending 10Mbps UDP traffic

to each other, whereas for Mininet 50Mbps of UDP traffic was used. Finally for

HP Procurve, the experiment was repeated twice, for RJ-45 10/100 ports the

bandwidth was set at 100Mbps and for RJ-45 10/100/1000 ports the bandwidth

was set at 1000Mbps.

Chapter 8. OF Software & Hardware Performance Evaluation154

10/100 Ports

Sender Bandwidth (Mbps) 20

Stream Number 1 2 3 4 5

Average Achieved Bandwidth (Mbps) 19.99 19.99 19.99 19.99 19.99

Average Delay (µs) 0.002 0.002 0.002 0.002 0.002

10/100/1000 Ports

Sender Bandwidth (Mbps) 200

Stream Number 1 2 3 4 5

Average Achieved Bandwidth (Mbps) 199.99 199.99 199.99 199.99 199.99

Average Delay (µs) 0.0002 0.0003 0.0002 0.0003 0.0003

Table 8.12: HP Procurve Scenario 2 - Summary

8.4.5.1 TP-Link OpenWrt

As shown in Figure A.25a bandwidth had some slight variations throughout the

experiment, but were not enough to affect the overall bandwidth performance

which resulted in 9.99Mbps for both flows. The standard deviation was 0.1 which

again proves that the variations were very small to affect the results (Table 8.13).

Delay on the other hand has more serious variations some of which reached 1.06ms

but on average it performed well with 0.10ms for the first flow (host h1 to host

h2) and 0.13ms for the second flow (host h2 to host h1) as shown in Table 8.13.

CPU usage can be considered very unstable due to the fact that the standard

deviation resulted in 9.55. The average CPU usage reached 46.6%. (Appendix A,

Figures A.25-A.26)

8.4.5.2 Mininet

Throughout the duration of the experiment, Mininet kept the bandwidth stable

at around 50Mbps for both flows. The average delay was at 0.024ms for the flow

from host h1 to host h2 whereas, the delay of the opposite flow was at 0.028ms.

Standard deviation of both bandwidth and delay for both flows was kept at very

low levels which indicated the stability of the experiment (Table 8.14, Appendix

A Figure A.27).

Chapter 8. OF Software & Hardware Performance Evaluation155

Host 1 to Host 2 Host 2 to Host 1

Average Bandwidth (Mbps) 9.99 9.99

Maximum Bandwidth (Mbps) 10.69 10.83

Minimum Bandwidth (Mbps) 8.80 8.66

Bandwidth Standard Deviation 0.10 0.11

Average Delay (ms) 0.10 0.13

Maximum Delay (ms) 0.94 1.06

Minimum Delay (ms) 0.02 0.03

Delay Standard Deviation 0.14 0.17

Packet Loss (%) 0.02 0.02

Average CPU Usage (%) 46.63

Maximum CPU Usage (%) 74

Minimum CPU Usage (%) 23

CPU Usage Standard Deviation 9.55

Table 8.13: TP-Link Scenario 3 - Summary

h1 to h2 h2 to h1

Average Bandwidth (Mbps) 50.04 50.04

Maximum Bandwidth (Mbps) 50.15 50.12

Minimum Bandwidth (Mbps) 49.59 49.97

Bandwidth Standard Deviation 0.03 0.01

Average Delay (ms) 0.02 0.03

Maximum Delay (ms) 0.11 0.10

Minimum Delay (ms) 0.001 0.004

Delay Standard Deviation 0.02 0.02

Table 8.14: Mininet Scenario 3 - Summary

8.4.5.3 HP-Procurve

The results of scenario 3 for HP-Procurve were found to be very interesting. In

the RJ-45 10/100 ports run, the bandwidth for both flows was 100Mbps which is

the maximum that the RJ-45 10/100 ports can support. Delay was showing some

slight variations, at an average of 0.0004µs. In the RJ-45 10/100/1000 ports run,

the bandwidth reached 860Mbps for both ports, whereas delay increased as well

at an average of 0.0025µs for the first stream namely, h1 to h2, and 0.003µs for

Chapter 8. OF Software & Hardware Performance Evaluation156

the second stream namely, h2 to h1. As shown in Table 8.15, even though RJ-45

10/100/1000 ports can handle up to 1000Mbps, using bidirectional traffic, HP

Procurve switch could only handle 870Mbps. (Appendix A, Figures A.28-A.29)

10/100 Ports 10/100/1000 Ports

h1 to h2 h2 to h1 h1 to h2 h2 to h1

Sender Bandwidth (Mbps) 100 100 870 870

Average Achieved Bandwidth (Mbps) 100 100 870 870

Average Delay (µs) 0.0004 0.0004 0.003 0.003

Table 8.15: HP Procurve Scenario 3 - Summary

8.4.6 Scenario 4 - Rate Limiting

Scenario 4 objective was to test the rate limiting function present in the platforms.

Mininet and TP-Link router rate limiting was part of OpenFlow version 1.3. In

HP Procurve switch there is no such OpenFlow function due to the fact that

it supports OpenFlow version 1.0. HP has implemented its own rate limiting

function which is part of the Procurve switch firmware. For TP-Link, host h1 was

sending 20Mbps UDP stream to host h2, and the experiment was repeated three

times, each of them having different rate limit value. Namely, the rate limit values

used were 1Kbps, 5Mbps and 10Mbps. The exact same process was performed in

Mininet as well, with the only difference that the traffic stream used was 100Mbps

and the rate limits were 1Kbps, 25Mbps and 50Mbps. For HP-Procurve topology

included two hosts (host h1 and host h2), with h1, sending 100Mbps stream for

the RJ-45 10/100 ports and 1000Mbps stream for the RJ-45 10/100/1000 ports,

to h2 via HP procure switch. On the switch a rate limit value was defined. The

experiment was repeated two times for each type of ports, each time using a

different rate limit. Namely, the rate limits were 1Kbps and 50Mbps for the RJ-

45 10/100 ports test and 1Kbps and 500Mbps for the RJ-45 10/100/1000 ports

test.

Chapter 8. OF Software & Hardware Performance Evaluation157

8.4.6.1 TP-Link OpenWrt

The rate limiting function performed satisfactory for all the limiting values. The

average bandwidth was kept at the rates specified. More specifically, it was kept

at 0.001Mbps for the 1Kbps limit, 5.36Mbps for the 5Mbps limit and 10.7Mbps for

the 10Mbps rate limit (Table 8.16, Appendix A Figure A.30). The delay of 1Kbps

rate limit was much higher than the delay of the rest of the limiting rates. At

some points the delay exceeded 5ms, but on average it reached 1.56ms for 1Kbps

rate limit. Delay for the rest of the rate limits was 0.06ms.

1Kbps 5Mbps 10Mbps

Average Bandwidth (Mbps) 0.001 5.36 10.70

Maximum Bandwidth (Mbps) 0.002 10.67 13.84

Minimum Bandwidth (Mbps) 0.001 5.34 9.85

Bandwidth Standard Deviation 0.0001 0.31 0.20

Average Delay (ms) 1.56 0.06 0.06

Maximum Delay (ms) 5.32 0.79 0.60

Minimum Delay (ms) 0 0.02 0.02

Delay Standard Deviation 0.97 0.06 0.06

Average Packet Loss (%) 99.99 73.11 46.47

Maximum Packet Loss (%) 99.99 73.47 46.94

Minimum Packet Loss (%) 99.99 17.24 30.76

Packet Loss Standard Deviation 0.0001 3.24 0.98

Table 8.16: TP-Link Scenario 4 - Summary

8.4.6.2 Mininet

The overall performance of OpenFlow rate limiting function as well as Mininet

was very stable although at higher bandwidths the limit was not precise. Apart

from a pick at the initial second of the experiments which is caused by rate limit

initialisation, the rest of the experiment was stable. At 1Kbps rate limit run, the

average bandwidth achieved was exactly 1Kbps. The standard deviation proves

this as well (Table 8.17). Delay was about 0.82ms (Table 8.17) whereas the load

on the CPU cores was not evenly arranged. The network I/O was very stable

although it has a drop at the 65th second. From the network I/O it was clear that

Chapter 8. OF Software & Hardware Performance Evaluation158

the amount of read data was much more than the write which confirms that the

incoming traffic is more than the traffic resulting after the 1Kbps rate limit was

used.

On the other hand the results are not so stable when it comes to 25Mbps and

50Mbps rate limits. At 25Mbps the average bandwidth achieved was 26.81Mbps

with a standard deviation of 1.54 whereas at 50Mbps the bandwidth achieved

was 53.59Mbps with a standard deviation of 2.35 (Table 8.17). This shows that

at higher bandwidths the rate limiting was not accurate enough, although it can

actually limit the rate, it did not produce the precision provided at 1Kbps. This

cannot be caused by the CPU since at higher limits, the processes are spread to

the two cores evenly. Finally, Network I/O was once again very stable for both

read and write. (Appendix A, Figures A.31-A.33)

1Kbps 25Mbps 50Mbps

Average Bandwidth (Mbps) 0.001 26.81 53.59

Maximum Bandwidth (Mbps) 0.001 53.43 94.13

Minimum Bandwidth (Mbps) 0.001 26.72 52.18

Bandwidth Standard Deviation 6.52 × 10−19 1.54 2.35

Average Delay (ms) 0.82 0.01 0.01

Maximum Delay (ms) 2.09 0.03 0.04

Minimum Delay (ms) 0 0.002 0.001

Delay Standard Deviation 0.34 0.004 0.01

Average Core 1 Usage (%) 48.77 52.20 54.39

Maximum Core 1 Usage (%) 100 62.10 100

Minimum Core 1 Usage (%) 19 18.60 15.40

Core 1 Usage Standard Deviation 31.81 4.43 9.89

Average Core 2 Usage (%) 79.22 52.72 54.67

Maximum Core 2 Usage (%) 100 64.90 100

Minimum Core 2 Usage (%) 10.20 20.60 14.20

Core 2 Usage Standard Deviation 32.10 4.22 9.79

Table 8.17: Mininet Scenario 4 - Summary

Chapter 8. OF Software & Hardware Performance Evaluation159

8.4.6.3 HP-Procurve

For HP-Procurve, scenario 4 provided some very interesting results. It was evident

from the results obtained that when the rate limit is at 1Kbps, the average band-

width achieved is 100Kbps in both RJ-45 10/100 and RJ-45 10/100/1000 ports.

It is suspected that this is not a switch problem but it is the packet length that is

affecting the limit. Although further experimentation using smaller packet lengths

will clear this out, it is not recommended to go beyond the standard packet length

for testing because in a real life situation, all of the hosts will most probably be

sending standard packet length packets. On the other hand for both 50Mbps and

500Mbps experiment, the bandwidth was very stable at the rate limit specified.

Looking at the delay for 1Kbps limit, the results were not identical for both

port types. For RJ-45 10/100 ports, the delay starts at 0.005µs and ends up

at 0.0015µs. For RJ-45 10/100/1000 ports the delay was stable throughout the

experiment at 0.05µs. Delay for 50Mbps limit on 10/100 ports was stable at

0.06µs whereas at 500Mbps limit for RJ-45 10/100/1000 ports it drops slightly at

0.048µs. (Appendix A, Figures A.34-A.35)

8.4.7 Scenario 5 - TCP Bandwidth

Scenario 5 tested the ability of the platforms to handle TCP traffic. Furthermore,

it detected the maximum performance they can achieve with TCP traffic.

8.4.7.1 TP-Link OpenWrt

The findings of scenario 5 proved that TCP bandwidth was unstable. The band-

width was changing throughout the experiment within the range of 13 to 26Mbps.

The average bandwidth for both the client and the server was 19.9Mbps with a

standard deviation of 3.9 as shown in Table 8.18. CPU usage was also unsta-

ble with an average of 58.6% and a standard deviation of 7.6. (Appendix A,

Figure A.36)

Chapter 8. OF Software & Hardware Performance Evaluation160

Client Server

Average Bandwidth (Mbps) 19.90 19.89

Maximum Bandwidth (Mbps) 26.45 26.21

Minimum Bandwidth (Mbps) 13.63 14.36

Bandwidth Standard Deviation 3.88 3.90

Average CPU Usage (%) 58.59

Maximum CPU Usage (%) 83

Minimum CPU Usage (%) 25

CPU Usage Standard Deviation 7.58

Table 8.18: TP-Link Scenario 5 - Summary

8.4.7.2 Mininet

As expected, with TCP traffic the bandwidth was not as stable as with UDP

traffic. The bandwidth reached 93Mbps with a standard deviation of 0.37 for the

server and 0.59 for the client (Table 8.19), while CPU cores had the same effect

as in scenario 1. The first CPU core was overloaded and the remaining processes

were transferred to core 2. Both read and write network I/O as well as the active

RAM remained stable throughout the duration of the experiment. Hard disk

was slightly busy, presumably due to the software used to monitor the system.

The overall performance of TCP traffic can be considered as good, even though

Mininet was not able to arrange the processes equally to the two CPU cores. It

is suspected that if Mininet was able to arrange the processes equally to the two

cores, then higher bandwidth would have been achieved and the overall stability

of the experiment would be better. (Appendix A, Figures A.37-A.39)

8.4.7.3 HP-Procurve

Scenario 5 results were at an acceptable level if they are compared with Mininet

and TP-Link results. Bandwidth for RJ-45 10/100 ports reached 87Mbps, which

was 13Mbps less than with UDP traffic. The same happened with the RJ-45

10/100/1000 ports experiment, were the bandwidth reached 870Mbps. (Appendix

A, Figure A.40)

Chapter 8. OF Software & Hardware Performance Evaluation161

Server Client

Average Bandwidth (Mbps) 93.15 93.16

Maximum Bandwidth (Mbps) 94.24 94.37

Minimum Bandwidth (Mbps) 89.72 89.13

Bandwidth Standard Deviation 0.37 0.59

CPU 1 CPU 2

Average Usage (%) 95.52 9.56

Maximum Usage (%) 100 100

Minimum Usage (%) 3 2

Usage Standard Deviation 18.72 16.39

Read Write

Network I/O Total (KB) 3626085 36254834

Network I/O Average (KB) 12086.95 12084.90

Network I/O Maximum (KB) 12272 12280.80

Network I/O Minimum (KB) 0 0

Network I/O Standard Deviation 865.56 861.51

Table 8.19: Mininet Scenario 5 - Summary

8.4.8 Scenario 6 - TCP and UDP Bandwidth

The objective of scenario 6 was to find out if the platforms can handle both TCP

and UDP traffic simultaneously. For HP-Procurve, Host h1 was sending both TCP

and UDP traffic to host h2. The experiment was repeated twice, the first time

using RJ-45 10/100 ports and the second time using RJ-45 10/100/1000 ports.

For TP-Link, the UDP traffic was predefined at 20Mbps, whereas for Mininet

the topology was slightly modified. As shown in Figure 8.2 the topology in this

experiment included four hosts a switch and a controller. The reason for the

inclusion of four hosts was to enable the use of two of them for UDP and two for

TCP. Host h1 was sending TCP traffic to host h2 via switch s1 whereas host h3

was sending 100Mbps UDP traffic to host h4 via switch s1.

Chapter 8. OF Software & Hardware Performance Evaluation162

Figure 8.2: Mininet Four Hosts Topology

8.4.8.1 TP-Link OpenWrt

Scenario 6 proved that TCP traffic bandwidth is much more unstable than UDP

traffic. On average, TCP bandwidth reached 18Mbps with a standard deviation

of 0.6 for the client and 0.4 for the server. On the other hand, UDP bandwidth

reached 20Mbps with a standard deviation of 0.006 for the client and 0.12 for the

server. Delay for UDP traffic reached 0.3ms with a packet loss of 0.44%. CPU

usage on the however, was very high with an average of 84.5% and a standard

deviation of 4.22. (Table 8.20, Appendix A Figures A.41-A.42)

8.4.8.2 Mininet

Scenario 6 proved that the maximum traffic Mininet can handle is of the order

of 110Mbps due to the fact that while the UDP client was sending 100Mbps,

the receiver was receiving just 55Mbps. The remaining 55Mbps were used by

the TCP traffic (Table 8.21). After 200 seconds the experimental results became

slightly unstable. The bandwidth became slightly unstable until it had a big UDP

bandwidth drop at around 260 seconds. Both CPU cores were working at 100%

for 15 seconds at that point, and the network I/O became unstable as well. Active

Chapter 8. OF Software & Hardware Performance Evaluation163

TCP UDP

Client Server Client Server

Average Bandwidth (Mbps) 18.17 18.17 20 19.91

Maximum Bandwidth (Mbps) 20.97 20.61 20.00 20.24

Minimum Bandwidth (Mbps) 14.68 14.99 19.99 19.49

Bandwidth Standard Deviation 0.60 0.42 0.01 0.12

Average Delay (ms) 0.30

Maximum Delay (ms) 0.73

Minimum Delay (ms) 0.17

Delay Standard Deviation 0.10

Packet Loss (%) 0.440

Average CPU Usage (%) 84.54

Maximum CPU Usage (%) 96

Minimum CPU Usage (%) 68

CPU Usage Standard Deviation 4.22

Table 8.20: TP-Link Scenario 6 - Summary

RAM and hard disk show again an increase, especially in the case of hard disk

which reached 100% activity. Delay on the other hand remained unaffected. This

increase was presumably caused by the operating system and not by Mininet. This

proves that Mininet is highly dependent on the operating system. A good practise

would be to repeat these experiments using a real-time Linux kernel. (Appendix

A, Figures A.43-A.46)

8.4.8.3 HP-Procurve

The overall bandwidth decreased, with all the flows achieving an average of 47Mbps.

UDP delay can be considered very unstable if it is compared with the first sce-

nario results. The average delay was at 0.0008µs with variations that reached

0.0015µs. The average bandwidth of the second run was at 470Mbps, whereas

delay again showed some variations with an average of 0.0027µs. (Appendix A,

Figures A.47-A.48)

Chapter 8. OF Software & Hardware Performance Evaluation164

TCP Server TCP Client

Average Bandwidth (Mbps) 55.24 55.25

Maximum Bandwidth (Mbps) 74.14 74.45

Minimum Bandwidth (Mbps) 49.99 50.33

Bandwidth Standard Deviation 1.97 2.05

UDP Server UDP Client

Average Bandwidth (Mbps) 55.80 100.51

Maximum Bandwidth (Mbps) 74.36 100.54

Minimum Bandwidth (Mbps) 8.26 100.36

Bandwidth Standard Deviation 3.22 0.01

CPU 1 CPU 2

Average Usage (%) 96.07 25.62

Maximum Usage (%) 100 100

Minimum Usage (%) 17.20 10.30

Usage Standard Deviation 16.75 24.71

Read Write

Network I/O Total (KB) 5923036 4254140

Network I/O Average (KB) 19743.45 14180.50

Network I/O Maximum (KB) 19950.20 14448.30

Network I/O Minimum (KB) 10649.30 8711.30

Network I/O Standard Deviation 664.72 457.94

Delay

Average Delay (ms) 0.04

Maximum Delay (ms) 0.10

Minimum Delay (ms) 0.03

Delay Standard Deviation 0.01

Table 8.21: Mininet Scenario 6 - Summary

Chapter 8. OF Software & Hardware Performance Evaluation165

8.5 Summary and Discussions

Overall, the experimentation with the three different platforms gave some very

useful results which can be used in future experimentation with OpenFlow plat-

forms. In the case of TP-Link router with OpenWrt firmware it proved that a

router could not perform at the level of a switch even if it uses a custom firmware.

In the case of Mininet it proved that the platform is highly depended on the CPU

and OS performance and might not be a suitable platform for every situation.

When it comes to the HP-Procurve switch it has proved that it is a solid candi-

date for OpenFlow experimentation as well as implementation, due to the very

solid results it has given to all of the experiments.

More specifically, the following conclusions can be given:

1. The TP-Link OpenWrt router cannot be used to run performance metrics,

but it can be used as prototyping hardware since its firmware allows full

customisation as well as addition of new functionality. The best bandwidth

to run prototyping experiments is at 20 Mbps as shown in the metrics of

scenarios 1.a and 1.b.

Mininet on the other hand can be used for both prototyping and performance

metrics, with 100Mbps being the best bandwidth to experiment with as

concluded from scenarios 1.a and 1.b.

HP-Procurve is the best candidate for performance metrics since it is able to

reach the maximum performance supported by the hardware. RJ-45 10/100

ports reached the maximum supported bandwidth of 100Mbps with an al-

most negligible delay of 0.0004µs. RJ-45 10/100/1000 also reached the max-

imum supported bandwidth of 1000Mbps (1Gbps) with a delay of 0.0048µs

which can be considered as excellent. On the other hand it is the worst

candidate for prototyping since the firmware is not open and it cannot be

edited.

2. The TP-Link OpenWrt router is capable of handling more than one UDP

flows coming from the same source. The only drawback is that since one of

the ports is used by the controller, only three ports remain for experimenta-

Chapter 8. OF Software & Hardware Performance Evaluation166

tion. The TP-Link OpenWrt also handles bidirectional traffic although its

bandwidth faces some minor stability issues.

HP-Procurve switch achieved the same stability for any number of streams.

All of the streams shared the maximum possible bandwidth equally. Delay

showed some variations but those variations are minimal. The number of

ports is not as limited as the TP-Link OpenWrt router but is not unlimited

either.

Mininet on the other hand might not have the bandwidth capabilities HP-

Procurve has but is not restricted by the number of ports since any number

of ports can be created.

3. OpenFlow’s rate limiting function, implemented in OpenFlow version 1.3,

is functioning at a very efficient level in the TP-Link OpenWrt if the low

CPU processing power of the router is considered. Delay was also increased

at low rate limits, which indicates the level of activity of the CPU.

Mininet showed the same efficiency and the same increase in delay as the TP-

Link OpenWrt. Even though at low rate limits CPU cores had the tendency

to be fully active, the resulting bandwidth was not affected.

HP-Procurve has its own rate limit implementation outside OpenFlow. Its

rate limit it perfectly smooth, even though the limit rate of 1Kbps resulted

in 100Kbps, this is suspected to be a problem caused by the “packet length”

and not by the switch.

4. The TP-Link OpenWrt is unstable with TCP traffic as shown by the band-

width instabilities whereas the CPU usage was only around 60%.

Mininet proved that it can be used to emulate data centre environments,

even though it gave some unexpected results in delay performance. This is

due to the fact that “global” flow performed better than “local” flows.

HP-Procurve switch can handle TCP traffic at an acceptable level. Even

though it does not reach the maximum bandwidth supported, the value

reached is the one expected for TCP traffic.

Chapter 8. OF Software & Hardware Performance Evaluation167

5. In the mixture of both TCP and UDP, the TP-Link OpenWrt is not af-

fected. TCP traffic showed the same instabilities whereas, UDP traffic was

unaffected and reached an average of 20Mbps with negligible standard devi-

ation.

Mininet showed the same consistency as the TP-Link OpenWrt. HP-Procurve

was also unaffected by the different types of traffic.

6. HP-Procurve switch achieved the highest bandwidth with the highest pos-

sible stability and performance. It also has the lowest delay. In all of the

experiments, HP-Procurve switch was the only one that showed no packet

losses. Which means that even the actual capacity of the switch was not

reached.

7. Comparing delay with CPU performance for the TP-Link OpenWrt & Mininet,

it is concluded that delay is highly depended on CPU performance. This

leads to the conclusion that HP-Procurve can achieve a very high CPU per-

formance and efficiency due to the fact that delay is not affected even at

very high loads.

8. Mininet did not emulate HP-Procurve switch results, even if a high-end

server was used. Mininet’s and TP-Link router’s results are almost identical.

The only difference is that Mininet has a better CPU availability and can

achieve slightly better results.

9. At higher bandwidths (above 130Mbps), Mininet cannot distribute the CPU

load equally to all the system processors.

Chapter 9

Conclusions and Future Work

This thesis focuses on the research of SDN performance and the proposal of (a)

a performance enhancement algorithm OFPE that uses dynamic flow installation

and management techniques, (b) an extension to the proposed OFPE algorithm,

(c) the proposal of a novel placement algorithm for distributed Mininet imple-

mentations and (d) the proposal of a series of experiments for evaluation of SDN

experimental platforms. In this chapter, a summary of the work completed is

given in Section 9.1, whereas in Section 9.2 potential improvements as well as

future applications is presented.

9.1 Conclusions

SDN is an emerging field in the area of computer networks which promises to tackle

some of the most challenging trends of modern networking. These challenges can

be summarised into four areas (a) changing of traffic patterns, (b) rise of cloud

services, (c) IT consumerization and (d) bandwidth exponential growth. Being an

emerging field, SDN faces a lot of challenges due to the fact that it changes the

traditional way of networking. Up to now, most of the problems that SDN faces

are in the area of performance. This is due to the fact that, in order for some of

the well-used networking techniques to have the full benefits of using an SDN, they

have to be re-implemented with SDN paradigms in mind. This re-implementation

of previously used methods results in a long process which leads to performance

issues.

168

Chapter 9. Conclusions and Future Work 169

These performance issues include:

(a) The increase of delay due to the extra round trip time between the switch

and the controller, as well as the processing time needed by the controller.

(b) The packet losses caused by the switch buffer getting full due to controller

processing delay, as well as the capacity of the link between the switch and

the controller.

(c) The out-of-order packets problem which arises from the fact that not only

the initial packet of a flow visits the controller.

On the other hand, all of the issues arise from the introduction of a controller in

the system. This can cause several problems, such as a single point of failure if the

controller or the link between the switch and the controller fails as well as huge

delays or packet losses if the controller’s state is not healthy (i.e. overloaded).

This thesis proposes a new performance enhancement algorithm OFPE that

improves the overall SDN performance by decreasing delay, packet loss and out-

of-order packets, and keeping the controller in a non-overloaded state through the

use of dynamic flow installation and management techniques.

In Chapter 2 we provide a comprehensive review of SDN, starting from schemes

that existed prior to SDN which helped in better understanding some of the net-

working problems as well as the solutions that needed to be developed. Then we

go through the changes SDN model brought to traditional networking paradigms,

as well as present the individual components needed in order for an SDN model

to be implemented. We present OpenFlow, the most widely used SDN protocol

showing how it has evolved over the years in order to accommodate networking

needs. Finally, we present some real use cases of SDN which indicate that the

model has been maturing over the years and that several applications in the real

world have benefited from its use.

In Chapter 3 we introduce the proposed OpenFlow Performance Enhancement

Algorithm OFPE which uses dynamic flow installation and management tech-

niques. OFPE is implemented on the SDN controller and provides better perfor-

mance by reducing the packet loss and delay as well as the number of out-of-order

Chapter 9. Conclusions and Future Work 170

packets. In addition, it preserves controller stability as well as it prevents the

controller from overloading. Finally, it has topology awareness and route creation

functions that allow it to be more robust and able to handle a variety of topolo-

gies. We analyse each aspect of OFPE, giving information about each individual

module that is used in order for the algorithm to work. In addition, we perform

several experimental scenarios in order to test the performance as well as the ben-

efits OFPE can bring to the SDN model. With the use of Mininet, in some of our

experiments, the proposed OFPE algorithm has managed to decrease delay by up

to 92.56%, packet loss by up to 55.32% and the number of out-of-order packets

by up to 69.44%. In Chapter 4 we present an extension of our OFPE algorithm,

namely OFPEX, which uses the packets inter-arrival time in order to calculate

and predict traffic patterns and manage them accordingly. Due to limitations of

statistics in the SDN model which we discuss in Chapter 4, in some calculations

OFPEX performs an estimation of the result. In order to tests its performance,

a series of experiments have been performed, with the results indicating that it

can increase the performance of SDN. Some of the most noticeable results are the

decrease of packet loss by 17.71%, delay by 16.19% and the number of out-of-order

packets by 20.54%. In addition, it has managed to decrease the number of flow

table rules by up to 16.82% which is very important due to the flow table size

limitations SDN faces as we discussed in Chapter 4.

In Chapter 5 we discussed the limitations that distributed Mininet implemen-

tations face and especially the way they spread out the experimental topology.

We proposed a new placement algorithm that assigns weights to both the experi-

mental topology components as well as the physical machines that are used to run

the experiment on. With the use of weights, and by making as less cross-server

links as possible, the proposed algorithm was able to spread the load evenly, and

utilise each physical machine equally. With the use of MaxiNet, we have tested

the proposed placement algorithm which was able to decrease packet losses by

86% as well as delay by 68%.

In Chapter 6 we used both of our proposed algorithm, namely the OpenFlow

Performance Enhancement Algorithm and the Distributed Mininet Placement Al-

gorithm in order to examine the create a large topology and test the performance

Chapter 9. Conclusions and Future Work 171

of both. We designed some scenarios that were creating bottlenecks in the network

as well as stressing some individual components of the topology. The performance

tests indicated decrease in packet loss by up to 31.77%, delay by up to 30.30%

and the number of out-of-order packets by up to 44.99%

In Chapters 7 and 8 we presented and performed a series of performance ex-

periments on several experimental pieces of equipment. This included Mininet

emulator as well as two testbed switches, the high-end HP-Procurve switch as

well as the low-end TP-Link router with the OpenWrt custom firmware. Initially,

in Chapter 7 we presented a series of experiments that can be performed on SDN

experimental equipment in order to find out their strengths and weaknesses. We

tested Mininet and concluded that Mininet favours more RAM if it is available,

the number of packet losses increase as the number of links included in the packet’s

path increase and finally, that load balancing between CPU cores becomes more

efficient as the number of nodes in the topology increases. Finally, in Chapter 8

we performed a series of experiments on Mininet, HP-Procurve and the TP-Link

router, which indicated their strengths and weaknesses in different aspects. The

results indicated that the TP-Link router lacks in performance whereas Mininet

is highly depended on the machine that is used to run it. HP-Procurve switch

indicated high stability and robustness, but it has no room for prototyping since

it is a closed-source system.

9.2 Future Work

There is plenty of room for improvement both for the proposed work in this thesis

as well as (a) the SDN model in general, (b) the way switches interact with

controllers in the SDN model. In addition, the proposed work can also be applied

as a concept to several other areas. In this Section, a list of potential extensions

and recommendations for future work is presented.

(a) The current implementation of the proposed performance enhancement al-

gorithm OFPE works only when one controller is present in the system. The

algorithm can be improved in order to work with distributed implementa-

tions of SDN controllers. This will remove some workload from the controller

Chapter 9. Conclusions and Future Work 172

and make the whole algorithm more efficient.

(b) With the current state of the SDN model, the statistics gathered by the

controller are limited and cause extra load on the controller-to-switch link.

An improvement in the area of statistics (i.e. extra link with more statistics

capabilities) will not only help the controller into more accurate and faster

predictions, but it will also help alleviate the extra traffic in the controller-

to-switch link caused by the statistics traffic.

(c) As proposed in some other SDN related works, giving back to the switch some

functions of the control plane may benefit SDN. The proposed performance

enhancement algorithm OFPE will be benefited with such an approach since

the calculations would be able to take place in the switch. Therefore, the

controller-to-switch link will carry only the calculation results and not all

the information needed. This will result in less load both on the controller-

to-switch link as well as the controller, resulting in better stability of the

whole system.

(d) Mininet will be hugely benefited from an in-house traffic generation mecha-

nism. This will not only allow researchers to create their traffic directly in

Mininet, it will also alleviate the need for external traffic generation tools

which will decrease the number of resources needed by external tools.

(e) Using the proposed future work of point (d), the algorithm proposed in

Chapter 5 will be hugely benefited since it will be easier to calculate the

amount of traffic present in different components of the topology, therefore

it will be easier to distribute the components in the correct worker.

References

[1] Cisco Visual Networking. Cisco global cloud index: Forecast and methodol-

ogy, 2011-2016. White Paper, 2012.

[2] Cisco Visual Networking. Cisco global cloud index: Forecast and methodol-

ogy, 2013-2018. White Paper, 2014.

[3] OpenFlow Consortium. OpenFlow Switch Specification Version 1.0.0

(Wire Protocol 0x01). https://www.opennetworking.org/images/

stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-spec-v1.0.0.pdf, December 2009. Accessed: 07-10-2015.

[4] O. M. E. Committee. Software-defined Networking: The New Norm for

Networks. Open Networking Foundation, 2012.

[5] K. Yap, M. Kobayashi, R. Sherwood, T. Huang, M. Chan, N. Handigol,

and N. McKeown. Openroads: empowering research in mobile networks.

SIGCOMM Comput. Commun. Rev., 40(1):125–126, January 2010.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data

center network architecture. In ACM SIGCOMM Computer Communication

Review, volume 38, pages 63–74. ACM, 2008.

[7] ESG Brief. IBM and NEC Bring SDN/OpenFlow to Enterprise Data Center

Networks, 2012.

[8] Cisco Visual Networking. Cisco global cloud index: Forecast and methodol-

ogy, 2015-2020. White Paper, 2016.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling innovation in

173

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf

References 174

campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March

2008.

[10] X. Xipeng and L.M. Ni. Internet QoS: a big picture. Network, IEEE,

13(2):8–18, 1999.

[11] ITU-T. Terms and definitions related to quality of service and network

performance including dependability. Recommendation E.800, International

Telecommunication Union, Geneva, 2009.

[12] T. Benson, A. Akella, and D. Maltz. Unraveling the complexity of network

management. In Proceedings of the 6th USENIX Symposium on Networked

Systems Design and Implementation, NSDI’09, pages 335–348, Berkeley, CA,

USA, 2009.

[13] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and

G. J. Minden. A survey of active network research. IEEE communications

Magazine, 35(1):80–86, 1997.

[14] K. L. Calvert, S. Bhattacharjee, E. Zegura, and J. Sterbenz. Directions in

active networks. IEEE Communications Magazine, 36(10):72–78, 1998.

[15] L. Yang, R. Dantu, T. Anderson, and Gopal R. Forwarding and Control

Element Separation (ForCES) Framework. RFC 3746 (Informational), April

2004.

[16] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov. Linux netlink as an ip

services protocol. RFC 3549 (Informational), July 2003.

[17] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der

Merwe. Design and implementation of a routing control platform. In Pro-

ceedings of the 2nd conference on Symposium on Networked Systems Design

& Implementation - Volume 2, NSDI’05, pages 15–28, Berkeley, CA, USA,

2005. USENIX Association.

[18] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).

RFC 4271 (Draft Standard), January 2006. Updated by RFCs 6286, 6608,

6793.

References 175

[19] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der

Merwe. Design and implementation of a routing control platform. In Pro-

ceedings of the 2nd conference on Symposium on Networked Systems Design

& Implementation - Volume 2, NSDI’05, pages 15–28, Berkeley, CA, USA,

2005. USENIX Association.

[20] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,

H. Yan, J. Zhan, and H. Zhang. A clean slate 4d approach to network

control and management. SIGCOMM Comput. Commun. Rev., 35(5):41–

54, October 2005.

[21] J. Rexford, A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, G. Xie,

J. Zhan, and H. Zhang. Network-wide decision making: Toward a wafer-thin

control plane. In HotNets III, 2004.

[22] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh, N. McKe-

own, and S. Shenker. Sane: a protection architecture for enterprise networks.

In Proceedings of the 15th conference on USENIX Security Symposium - Vol-

ume 15, USENIX-SS’06, Berkeley, CA, USA, 2006. USENIX Association.

[23] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker.

Ethane: taking control of the enterprise. SIGCOMM Comput. Commun.

Rev., 37(4):1–12, August 2007.

[24] T. Roscoe, S. Hand, R. Isaacs, R. Mortier, and P. Jardetzky. Predicate

routing: enabling controlled networking. SIGCOMM Comput. Commun.

Rev., 33(1):65–70, January 2003.

[25] J. Luo, J. Pettit, M. Casado, J. Lockwood, and N. McKeown. Prototyping

fast, simple, secure switches for ethane. In Proceedings of the 15th Annual

IEEE Symposium on High-Performance Interconnects, HOTI ’07, pages 73–

82, Washington, DC, USA, 2007. IEEE Computer Society.

[26] H. Yan, D. A. Maltz, T.S. Eugene Ng, H. Gogineni, H. Zhang, and Z. Cai.

Tesseract: a 4d network control plane. In Proceedings of the 4th USENIX

conference on Networked systems design & implementation, NSDI’07, pages

27–27, Berkeley, CA, USA, 2007. USENIX Association.

References 176

[27] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker. Nox: towards an operating system for networks. SIGCOMM

Comput. Commun. Rev., 38(3):105–110, July 2008.

[28] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood. On

controller performance in software-defined networks. In Proceedings of the

2nd USENIX conference on Hot Topics in Management of Internet, Cloud,

and Enterprise Networks and Services, Hot-ICE’12, pages 10–10, Berkeley,

CA, USA, 2012. USENIX Association.

[29] Z. Cai, F. Dinu, J. Zheng, A. L. Cox, and T. S. Eugene Ng. Maestro: A

clean-slate system for orchestrating network control components, 2008.

[30] Z. Cai, F. Dinu, J. Zheng, A. L. Cox, and T. S. Eugene Ng. The preliminary

design and implementation of the maestro network control platform, 2008.

[31] A. Tootoonchian and Y. Ganjali. Hyperflow: a distributed control plane

for openflow. In Proceedings of the 2010 internet network management con-

ference on Research on enterprise networking, INM/WREN’10, pages 3–3,

Berkeley, CA, USA, 2010. USENIX Association.

[32] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-

manathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix: a distributed

control platform for large-scale production networks. In Proceedings of the

9th USENIX conference on Operating systems design and implementation,

OSDI’10, pages 1–6, Berkeley, CA, USA, 2010. USENIX Association.

[33] M. Yu, J. Rexford, M.J. Freedman, and J. Wang. Scalable flow-based net-

working with difane. SIGCOMM Comput. Commun. Rev., 41(4):–, August

2010.

[34] A. C. Bavier, M. Bowman, B. N. Chun, D. E. Culler, S. Karlin, S. Muir,

L. L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak. Operating

systems support for planetary-scale network services. In NSDI, volume 4,

pages 19–19, 2004.

References 177

[35] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,

M. Hibler, C. Barb, and A. Joglekar. An integrated experimental envi-

ronment for distributed systems and networks. ACM SIGOPS Operating

Systems Review, 36(SI):255–270, 2002.

[36] NetFPGA: Programmable Networking Hardware. http://netfpga.org,

2012. Accessed: 07-10-2015.

[37] J.W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,

R. Raghuraman, and L. Jianying. Netfpga–an open platform for gigabit-rate

network switching and routing. In Microelectronic Systems Education, 2007.

MSE ’07. IEEE International Conference on, pages 160–161, 2007.

[38] G. Watson, N. McKeown, and M. Casado. Netfpga: A tool for network

research and education. In 2nd workshop on Architectural Research using

FPGA Platforms. WARFP, 2006.

[39] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McKeown.

Implementing an OpenFlow switch on the NetFPGA platform. In Proceed-

ings of the 4th ACM/IEEE Symposium on Architectures for Networking and

Communications Systems, ANCS ’08, pages 1–9, New York, NY, USA, 2008.

ACM.

[40] OpenFlow Consortium. OpenFlow Switch Specification Version 1.3.2

(Wire Protocol 0x04). https://www.opennetworking.org/images/

stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-spec-v1.3.2.pdf, April 2013. Accessed: 07-10-2015.

[41] OpenFlow Consortium. OpenFlow Switch Specification Version 1.2

(Wire Protocol 0x03). https://www.opennetworking.org/images/

stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-spec-v1.2.pdf, December 2011. Accessed: 07-10-2015.

[42] OpenFlow Consortium. OpenFlow Switch Specification Version 1.3.0

(Wire Protocol 0x04). https://www.opennetworking.org/images/

stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-spec-v1.3.0.pdf, June 2012. Accessed: 07-10-2015.

http://netfpga.org
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf

References 178

[43] OpenFlow Consortium. OpenFlow Switch Specification Version 1.4.0

(Wire Protocol 0x05). https://www.opennetworking.org/images/

stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-spec-v1.4.0.pdf, October 2013. Accessed: 07-10-2015.

[44] Open Networking Foundation Extensibility Working Group.

https://www.opennetworking.org/images/stories/downloads/

working-groups/charter-extensibility.pdf. Accessed: 07-10-2015.

[45] H. Berkowitz, E. Davies, S. Hares, P. Krishnaswamy, and M. Lepp. Termi-

nology for Benchmarking BGP Device Convergence in the Control Plane.

RFC 4098 (Informational), June 2005.

[46] G. Trotter. Terminology for Forwarding Information Base (FIB) based

Router Performance. RFC 3222 (Informational), December 2001.

[47] J. Postel. Internet Protocol. RFC 791 (INTERNET STANDARD), Septem-

ber 1981. Updated by RFCs 1349, 2474, 6864.

[48] H. Song. Protocol-oblivious forwarding: Unleash the power of sdn through

a future-proof forwarding plane. In Proceedings of the second ACM SIG-

COMM workshop on Hot topics in software defined networking, pages 127–

132. ACM, 2013.

[49] B. Pfaff and B. Davie. The open vswitch database management protocol.

RFC 7047, RFC Editor, December 2013. http://www.rfc-editor.org/

rfc/rfc7047.txt.

[50] G. Bianchi, M. Bonola, A. Capone, and C. Cascone. Openstate: program-

ming platform-independent stateful openflow applications inside the switch.

ACM SIGCOMM Computer Communication Review, 44(2):44–51, 2014.

[51] M. Suñé, V. Alvarez, T. Jungel, U. Toseef, and K. Pentikousis. An open-

flow implementation for network processors. In Software Defined Networks

(EWSDN), 2014 Third European Workshop on, pages 123–124. IEEE, 2014.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/working-groups/charter-extensibility.pdf
https://www.opennetworking.org/images/stories/downloads/working-groups/charter-extensibility.pdf
http://www.rfc-editor.org/rfc/rfc7047.txt
http://www.rfc-editor.org/rfc/rfc7047.txt

References 179

[52] M. Smith, M. Dvorkin, Y. Laribi, V. Pandey, P. Garg, and N. Weidenbacher.

Opflex control protocol. RFC 7047, Internet Draft, April 2014. http://

tools.ietf.org/html/draft-smith-opflex-00.

[53] Trema. http://trema.github.com/trema. Accessed: 07-10-2015.

[54] Beacon. https://openflow.stanford.edu/display/Beacon/Home. Ac-

cessed: 07-10-2015.

[55] SNAC. http://openflow.org/wp/snac. Accessed: 07-10-2015.

[56] J. Medved, R. Varga, A. Tkacik, and K. Gray. Opendaylight: Towards a

model-driven sdn controller architecture. In 2014 IEEE 15th International

Symposium on, pages 1–6. IEEE, 2014.

[57] Floodlight OpenFlow Controller. http://www.projectfloodlight.org,

2015. Accessed: 07-10-2015.

[58] Ryu. https://osrg.github.io/ryu. Accessed: 07-10-2015.

[59] Nodeflow controller. https://github.com/gaberger/NodeFLow, 2015. Ac-

cessed: 07-10-2015.

[60] H. Shimonishi, S. Ishii, Y. Chiba, T. Koide, M. Takahashi, Y. Takamiya,

and L. Sun. Helios: Fully distributed openflow controller platform. In

Proceedings of the 9th GENI engineering conference (GEC9) Demo, 2010.

[61] BigSwitch OpenFlow Controller. http://www.bigswitch.com/products/

SDN-Controller, 2015. Accessed: 07-10-2015.

[62] B. Lee, S. Park, J. Shin, and S. Yang. Iris: the openflow-based recursive sdn

controller. In Advanced Communication Technology (ICACT), 2014 16th

International Conference on, pages 1227–1231. IEEE, 2014.

[63] K. Phemius, M. Bouet, and J. Leguay. DISCO: Distributed Multi-domain

SDN Controllers. ArXiv e-prints, August 2013.

[64] HP. Hp SDN controller architecture. Technical report, Hewlett-Packard

Development Company, L.P., September 2013.

http://tools.ietf.org/html/draft-smith-opflex-00
http://tools.ietf.org/html/draft-smith-opflex-00
http://trema.github.com/trema
https://openflow.stanford.edu/display/Beacon/Home
http://openflow.org/wp/snac
http://www.projectfloodlight.org
https://osrg.github.io/ryu
https://github.com/gaberger/NodeFLow
http://www.bigswitch.com/products/SDN-Controller
http://www.bigswitch.com/products/SDN-Controller

References 180

[65] S. Hassas Yeganeh and Y. Ganjali. Kandoo: A framework for efficient and

scalable offloading of control applications. In Proceedings of the First Work-

shop on Hot Topics in Software Defined Networks, HotSDN ’12, pages 19–24,

New York, NY, USA, 2012. ACM.

[66] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and W. Guohui. Merid-

ian: an SDN platform for cloud network services. Communications Maga-

zine, IEEE, 51(2):120–127, 2013.

[67] S. Dipjyoti. MuL OpenFlow controller. http://sourceforge.net/

projects/mul/, 2013. Accessed: 07-10-2015.

[68] Juniper Networks. Opencontrail. http://opencontrail.org/, 2013. Ac-

cessed: 07-10-2015.

[69] NEC. Award-winning Software-defined Networking NEC Pro-

grammableFlow Networking Suite. http://www.necam.com/docs/?id=

67c33426-0a2b-4b87-9a7a-d3cecc14d26a, September 2013. Accessed:

07-10-2015.

[70] F. Botelho, A. Bessani, F. Ramos, and P. Ferreira. On the design of practical

fault-tolerant SDN controllers. In Third European Workshop on Software

Defined Networks, pages –, 2014.

[71] M. Monaco, O. Michel, and E. Keller. Applying Operating System Principles

to SDN Controller Design. In Twelfth ACM Workshop on Hot Topics in

Networks (HotNets-XII), College Park, MD, November 2013.

[72] S. Matsumoto, S. Hitz, and A. Perrig. Fleet: Defending SDNs from malicious

administrators. In Proceedings of the Third Workshop on Hot Topics in

Software Defined Networking, HotSDN ’14, pages 103–108, New York, NY,

USA, 2014. ACM.

[73] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,

I. Ganichev, J. Gross, P. Ingram, E. Jackson, A. Lambeth, R. Lenglet, S. Li,

A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan, S. Shenker, A. Shieh,

J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang. Network

http://sourceforge.net/projects/mul/
http://sourceforge.net/projects/mul/
http://opencontrail.org/
http://www.necam.com/docs/?id=67c33426-0a2b-4b87-9a7a-d3cecc14d26a
http://www.necam.com/docs/?id=67c33426-0a2b-4b87-9a7a-d3cecc14d26a

References 181

virtualization in multi-tenant datacenters. In 11th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 14), pages 203–216,

Seattle, WA, April 2014.

[74] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi. Par-

ticipatory networking: an API for application control of SDNs. In Proceed-

ings of the ACM SIGCOMM 2013 conference on SIGCOMM, SIGCOMM

’13, pages 327–338, New York, NY, USA, 2013. ACM.

[75] S. Seungwon, S. Yongjoo, L. Taekyung, L. Sangho, C. Jaewoong, P. Phillip,

Y. Vinod, N. Jisung, and B. K. Brent. Rosemary: A robust, secure, and

high-performance network operating system. In Proceedings of the 21st ACM

Conference on Computer and Communications Security (CCS), Nov. 2014.

To appear.

[76] K. Pentikousis, Y. Wang, and W. Hu. Mobileflow: Toward software-defined

mobile networks. IEEE Communications magazine, 51(7):44–53, 2013.

[77] S. Racherla, D. Cain, S. Irwin, P. Ljungstrom, P. Patil, and A. Tarenzio. Im-

plementing IBM Software Defined Network for Virtual Environments. IBM

RedBooks, May 2014.

[78] S. Wang, C. Chou, and C. Yang. EstiNet OpenFlow network simulator and

emulator. Communications Magazine, IEEE, 51(9):110–117, 2013.

[79] D. Klein and M. Jarschel. An OpenFlow extension for the OMNeT++ INET

framework. In Proceedings of the 6th International ICST Conference on Sim-

ulation Tools and Techniques, pages 322–329. ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering), 2013.

[80] A. Varga and R. Hornig. An overview of the OMNeT++ simulation envi-

ronment. In Proceedings of the 1st international conference on Simulation

tools and techniques for communications, networks and systems & work-

shops, page 60. ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering), 2008.

References 182

[81] A. Varga, R. Hornig, B. Seregi, L. Meszaros, and Z. Bojthe. INET Frame-

work. https://inet.omnetpp.org. Accessed: 07-10-2015.

[82] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid proto-

typing for software-defined networks. In Proceedings of the 9th ACM SIG-

COMM Workshop on Hot Topics in Networks, Hotnets-IX, pages 19:1–19:6,

New York, NY, USA, 2010. ACM.

[83] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown.

Mininet Performance Fidelity Benchmarks. http://hci.stanford.edu/

cstr/reports/2012-02.pdf. Accessed: 07-10-2015.

[84] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-

hakrishnan, V. Subramanya, and A. Vahdat. Portland: a scalable fault-

tolerant layer 2 data center network fabric. SIGCOMM Comput. Commun.

Rev., 39(4):39–50, August 2009.

[85] B. Heller, D. Erickson, N. McKeown, R. Griffith, I. Ganichev, S. Whyte,

K. Zarifis, D. Moon, S. Shenker, and S. Stuart. Ripcord: a modular platform

for data center networking. SIGCOMM Comput. Commun. Rev., 40(4):457–

458, August 2010.

[86] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Applying nox to

the datacenter. In In 8th ACM Workshop on Hot Topics in Networking

(Hotnets), New York City, NY, USA, October 2009.

[87] T. Benson, A. Akella, A. Shaikh, and S. Sahu. Cloudnaas: a cloud network-

ing platform for enterprise applications. In Proceedings of the 2nd ACM

Symposium on Cloud Computing, page 8. ACM, 2011.

[88] A. Das, C. Lumezanu, Y. Zhang, V. K. Singh, G. Jiang, and C. Yu. Trans-

parent and flexible network management for big data processing in the cloud.

In HotCloud, 2013.

[89] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Handigol,

T. Huang, P. Kazemian, M. Kobayashi, J. Naous, S. Seetharaman, D. Un-

derhill, T. Yabe, K. Yap, Y. Yiakoumis, H. Zeng, G. Appenzeller, R. Jo-

https://inet.omnetpp.org
http://hci.stanford.edu/cstr/reports/2012-02.pdf
http://hci.stanford.edu/cstr/reports/2012-02.pdf

References 183

hari, N. McKeown, and G. Parulkar. Carving research slices out of your

production networks with openflow. SIGCOMM Comput. Commun. Rev.,

40(1):129–130, January 2010.

[90] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. McKeown,

and G. Parulkar. Flowvisor: A network virtualization layer. Technical Report

Openflow-tr-2009-1, 2009.

[91] N. Bastin and A. Al-Shabibi. Flowvisor. http://https://openflow.

stanford.edu/display/DOCS/Flowvisor, December 2012. Accessed: 07-

10-2015.

[92] A. Mohammad, R. Sivasankar, R. Barath, H. Nelson, and V. Amin. Hedera:

Dynamic flow scheduling for data center networks. In In Proc. of Networked

Systems Design and Implementation (NSDI) Symposium, 2010.

[93] J. Naous, R. Stutsman, D. Mazieres, N. McKeown, and N. Zeldovich. Del-

egating network security with more information. In Proceedings of the

1st ACM workshop on Research on enterprise networking, WREN ’09,

Barcelona, Spain, August 2009. ACM Press.

[94] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp. Openqos: An

openflow controller design for multimedia delivery with end-to-end quality of

service over software-defined networks. In Signal & Information Processing

Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-

Pacific, pages 1–8. IEEE, 2012.

[95] M. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. Policycop: An

autonomic qos policy enforcement framework for software defined networks.

In Future Networks and Services (SDN4FNS), 2013 IEEE SDN For, pages

1–7. IEEE, 2013.

[96] A. Tootoonchian, M. Ghobadi, and Y. Ganjali. Opentm: traffic matrix

estimator for openflow networks. In Proceedings of the 11th international

conference on Passive and active measurement, PAM’10, pages 201–210,

Berlin, Heidelberg, 2010. Springer-Verlag.

http://https://openflow.stanford.edu/display/DOCS/Flowvisor
http://https://openflow.stanford.edu/display/DOCS/Flowvisor

References 184

[97] K. Yap, M. Kobayashi, D. Underhill, S. Seetharaman, P. Kazemian, and

N. McKeown. The stanford openroads deployment. In Proceedings of the

4th ACM international workshop on Experimental evaluation and character-

ization, WINTECH ’09, pages 59–66, New York, NY, USA, 2009. ACM.

[98] K. Yap, T. Huang, M. Kobayashi, M. Chan, R. Sherwood, G. Parulkar,

and N. McKeown. Lossless handover with n-casting between wifi-wimax on

openroads. In Proceedings of the 4th ACM international workshop on Ex-

perimental evaluation and characterization, MobiCom 2009, Beijing, China,

September 2009. ACM, Sigmobile.

[99] L. Haizhuo, S. Lujing, F. Yuntao, and G. Suiming. Apply embedded open-

flow mpls technology on wireless openflow, openroads. In Consumer Elec-

tronics, Communications and Networks (CECNet), 2012 2nd International

Conference on, pages 916–919, 2012.

[100] K. Yap, R. Sherwood, M. Kobayashi, T. Huang, M. Chan, N. Handigol,

N. McKeown, and G. Parulkar. Blueprint for introducing innovation into

wireless mobile networks. In Proceedings of the second ACM SIGCOMM

workshop on Virtualized infrastructure systems and architectures, VISA ’10,

pages 25–32, New York, NY, USA, 2010. ACM.

[101] J. Schulz-Zander, N. Sarrar, and S. Schmid. Aeroflux: A near-sighted con-

troller architecture for software-defined wireless networks. In ONS, 2014.

[102] J. Schulz-Zander, N. Sarrar, and S. Schmid. Towards a scalable and near-

sighted control plane architecture for wifi sdns. In HotSDN, pages 217–218,

2014.

[103] J. Schulz-Zander, P. L. Suresh, N. Sarrar, A. Feldmann, T. Hühn, and

R. Merz. Programmatic orchestration of wifi networks. In USENIX An-

nual Technical Conference, pages 347–358, 2014.

[104] M. Yang, Y. Li, D. Jin, L. Su, S. Ma, and L. Zeng. Openran: a software-

defined ran architecture via virtualization. ACM SIGCOMM computer com-

munication review, 43(4):549–550, 2013.

References 185

[105] J. Kempf and P. Yegani. Openran: A new architecture for mobile wireless

internet radio access networks. IEEE Communications Magazine, 40(5):118–

123, 2002.

[106] A. Gudipati, D. Perry, L. E. Li, and S. Katti. Softran: Software defined radio

access network. In Proceedings of the second ACM SIGCOMM workshop on

Hot topics in software defined networking, pages 25–30. ACM, 2013.

[107] A.K. Nayak, A. Reimers, N. Feamster, and R. Clark. Resonance: dynamic

access control for enterprise networks. In Proceedings of the 1st ACM work-

shop on Research on enterprise networking, WREN ’09, pages 11–18, New

York, NY, USA, 2009. ACM.

[108] J. R. Ballard, I. Rae, and A. Akella. Extensible and scalable network mon-

itoring using opensafe. In Proceedings of the 2010 internet network man-

agement conference on Research on enterprise networking, INM/WREN’10,

pages 8–8, Berkeley, CA, USA, 2010. USENIX Association.

[109] J. Matias, J. Garay, A. Mendiola, N. Toledo, and E. Jacob. Flownac: Flow-

based network access control. In Software Defined Networks (EWSDN), 2014

Third European Workshop on, pages 79–84. IEEE, 2014.

[110] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. A

security enforcement kernel for openflow networks. In Proceedings of the

first workshop on Hot topics in software defined networks, pages 121–126.

ACM, 2012.

[111] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson. Fresco:

Modular composable security services for software-defined networks. In

NDSS, 2013.

[112] U. Hoelzle. Keynote speech: Openflow @ Google. In Open Networking

Summit Conference 2012, April 2012.

[113] Z. Min, M. Dusi, W. John, and C. Changjia. Analysis of udp traffic usage

on internet backbone links. In Applications and the Internet, 2009. SAINT

’09. Ninth Annual International Symposium on, pages 280–281, July 2009.

References 186

[114] N. Foster, M. J. Freedman, R. Harrison, J. Rexford, M. L. Meola, and

D. Walker. Frenetic: A high-level language for openflow networks. In Pro-

ceedings of the Workshop on Programmable Routers for Extensible Services

of Tomorrow, PRESTO ’10, pages 6:1–6:6, New York, NY, USA, 2010. ACM.

[115] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and

S. Banerjee. Devoflow: Scaling flow management for high-performance net-

works. ACM SIGCOMM Computer Communication Review, 41(4):254–265,

2011.

[116] POX Controller. http://www.noxrepo.org/pox/about-pox/. Accessed:

13-10-2014.

[117] Open VSwitch. http://www.openvswitch.org. Accessed: 07-10-2015.

[118] NEC ProgrammableFlow UNIVERGE PF5820. http://www.necam.com/

Docs/?id=ba0dadc4-f253-4a8a-b27a-a791378f9acf, 2014. Accessed: 07-

10-2015.

[119] Brocade MLX 24-Port 10 GBE Switch. http://www.brocade.com/en/

backend-content/pdf-page.html?/content/dam/common/documents/

content-types/datasheet/brocade-mlx-24x10gbe-ds.pdf, 2014. Ac-

cessed: 07-10-2015.

[120] Brocade MLX 20-Port 10 GBE Switch. http://www.brocade.com/en/

backend-content/pdf-page.html?/content/dam/common/documents/

content-types/datasheet/brocade-mlx-20x10gbe-ds.pdf, 2014. Ac-

cessed: 07-10-2015.

[121] NEC ProgrammableFlow PF5240 Switch. http://www.necam.com/sdn/

doc.cfm?t=PFlowPF5240Switch, 2014. Accessed: 07-10-2015.

[122] Arista 7050 Series Switch. http://www.arista.com/en/products/

7050-series, 2014. Accessed: 07-10-2015.

[123] Arista 7150 Series Switch. http://www.arista.com/en/products/

7150-series, 2014. Accessed: 07-10-2015.

http://www.noxrepo.org/pox/about-pox/
http://www.openvswitch.org
http://www.necam.com/Docs/?id=ba0dadc4-f253-4a8a-b27a-a791378f9acf
http://www.necam.com/Docs/?id=ba0dadc4-f253-4a8a-b27a-a791378f9acf
http://www.brocade.com/en/backend-content/pdf-page.html?/content/dam/common/documents/content-types/datasheet/brocade-mlx-24x10gbe-ds.pdf
http://www.brocade.com/en/backend-content/pdf-page.html?/content/dam/common/documents/content-types/datasheet/brocade-mlx-24x10gbe-ds.pdf
http://www.brocade.com/en/backend-content/pdf-page.html?/content/dam/common/documents/content-types/datasheet/brocade-mlx-24x10gbe-ds.pdf
http://www.brocade.com/en/backend-content/pdf-page.html?/content/dam/common/documents/content-types/datasheet/brocade-mlx-20x10gbe-ds.pdf
http://www.brocade.com/en/backend-content/pdf-page.html?/content/dam/common/documents/content-types/datasheet/brocade-mlx-20x10gbe-ds.pdf
http://www.brocade.com/en/backend-content/pdf-page.html?/content/dam/common/documents/content-types/datasheet/brocade-mlx-20x10gbe-ds.pdf
http://www.necam.com/sdn/doc.cfm?t=PFlowPF5240Switch
http://www.necam.com/sdn/doc.cfm?t=PFlowPF5240Switch
http://www.arista.com/en/products/7050-series
http://www.arista.com/en/products/7050-series
http://www.arista.com/en/products/7150-series
http://www.arista.com/en/products/7150-series

References 187

[124] Arista 7300 Series Switch. http://www.arista.com/en/products/

7300-series, 2014. Accessed: 07-10-2015.

[125] Arista 7500 Series Switch. http://www.arista.com/en/products/

7500-series, 2014. Accessed: 07-10-2015.

[126] A. Azzouni, N. Trang, R. Boutaba, and G. Pujolle. Limitations of openflow

topology discovery protocol. arXiv preprint arXiv:1705.00706, 2017.

[127] HP Procurve 3500 Switch. https://h20195.www2.hpe.com/v2/getpdf.

aspx/c04123356.pdf?ver=5. Accessed: 07-10-2015.

[128] NLANR/DAST : Iperf - the TCP/UDP bandwidth measurement tool. http:

//sourceforge.net/projects/iperf. Accessed: 07-10-2015.

[129] T. Benson, A. Akella, and D. A Maltz. Network traffic characteristics of data

centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference

on Internet measurement, pages 267–280. ACM, 2010.

[130] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The

nature of data center traffic: measurements & analysis. In Proceedings of

the 9th ACM SIGCOMM conference on Internet measurement conference,

pages 202–208. ACM, 2009.

[131] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data center

traffic characteristics. ACM SIGCOMM Computer Communication Review,

40(1):92–99, 2010.

[132] S. Shirali-Shahreza and Y. Ganjali. Empowering software defined network

controller with packet-level information. In Communications Workshops

(ICC), 2013 IEEE International Conference on, pages 1335–1339. IEEE,

2013.

[133] A. Roy, M. F. Bari, M. F. Zhani, R. Ahmed, and R. Boutaba. DOT: dis-

tributed OpenFlow testbed. In Proceedings of the 2014 ACM conference on

SIGCOMM, pages 367–368. ACM, 2014.

http://www.arista.com/en/products/7300-series
http://www.arista.com/en/products/7300-series
http://www.arista.com/en/products/7500-series
http://www.arista.com/en/products/7500-series
https://h20195.www2.hpe.com/v2/getpdf.aspx/c04123356.pdf?ver=5
https://h20195.www2.hpe.com/v2/getpdf.aspx/c04123356.pdf?ver=5
http://sourceforge.net/projects/iperf
http://sourceforge.net/projects/iperf

References 188

[134] B. Lantz and B. O’Connor. A mininet-based virtual testbed for distributed

sdn development. In ACM SIGCOMM Computer Communication Review,

volume 45, pages 365–366. ACM, 2015.

[135] V. Antonenko and R. Smelyanskiy. Global network modelling based on

mininet approach. In Proceedings of the second ACM SIGCOMM workshop

on Hot topics in software defined networking, pages 145–146. ACM, 2013.

[136] J. Teixeira, G. Antichi, D. Adami, A. Del Chiaro, S. Giordano, and A. San-

tos. Datacenter in a box: Test your sdn cloud-datacenter controller at home.

In Software Defined Networks (EWSDN), 2013 Second European Workshop

on, pages 99–104. IEEE, 2013.

[137] P. Wette, M. Dräxler, and A. Schwabe. Maxinet: Distributed emulation

of software-defined networks. In Networking Conference, 2014 IFIP, pages

1–9. IEEE, 2014.

[138] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat, and G. M.

Voelker. To infinity and beyond: time warped network emulation. In Pro-

ceedings of the twentieth ACM symposium on Operating systems principles,

pages 1–2. ACM, 2005.

[139] G. Karypis and V. Kumar. A fast and high quality multilevel scheme

for partitioning irregular graphs. SIAM Journal on scientific Computing,

20(1):359–392, 1998.

[140] K. C. Webb, A. C. Snoeren, and K. Yocum. Topology switching for data

center networks. Hot-ICE, 11, 2011.

[141] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.

Maltz, P. Patel, and S. Sengupta. Vl2: a scalable and flexible data center

network. In ACM SIGCOMM computer communication review, volume 39,

pages 51–62. ACM, 2009.

[142] Ostinato network traffic generator and analyzer. http://ostinato.org.

Accessed: 26-06-2017.

http://ostinato.org

References 189

[143] M. Gupta, J. Sommers, and P. Barford. Fast, accurate simulation for SDN

prototyping. In Proceedings of the second ACM SIGCOMM workshop on

Hot topics in software defined networking, pages 31–36. ACM, 2013.

[144] T. Henderson, M. Lacage, G. Riley, M. Watrous, G. Carneiro, T. Pecorella,

and others. Network Simulator 3. https://www.nsnam.org. Accessed: 07-

10-2015.

[145] EstiNet Technologies Inc. EstiNet. http://www.estinet.com. Accessed:

07-10-2015.

[146] Pantou. http://www.openflow.org/wk/index.php/Pantou. Accessed: 07-

10-2015.

[147] OpenWrt. http://openwrt.org. Accessed: 07-10-2015.

[148] Indigo Virtual Switch IVS. https://github.com/floodlight/ivs. Ac-

cessed: 07-10-2015.

[149] Broadcom. http://www.broadcom.com. Accessed: 07-10-2015.

[150] TP-LINK TL-WR1043ND. http://uk.tp-link.com/products/details/

TL-WR1043ND.html. Accessed: 07-10-2015.

[151] Atheros. http://www.atheros.com. Accessed: 07-10-2015.

[152] Spirent TestCenter. https://www.spirent.com/Products/TestCenter.

Accessed: 07-10-2015.

https://www.nsnam.org
http://www.estinet.com
http://www.openflow.org/wk/index.php/Pantou
http://openwrt.org
https://github.com/floodlight/ivs
http://www.broadcom.com
http://uk.tp-link.com/products/details/TL-WR1043ND.html
http://uk.tp-link.com/products/details/TL-WR1043ND.html
http://www.atheros.com
https://www.spirent.com/Products/TestCenter

Appendices

190

Appendix A

OpenFlow Software & Hardware

Performance Evaluation Figures

191

Appendix A. OF Performance Evaluation Figures 192

A.1 Mininet System Default Performance

0 100 200 300
0

5

10

15

20

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e
(
%
)

CPU 1

CPU 2

(a) CPU Default Performance

0 100 200 300

−0.4

−0.2

0

0.2

0.4

Time (s)

K
B
/
s

Read

Write

(b) Network I/O

0 100 200 300
0

1,000

2,000

3,000

4,000

Time (s)

R
A
M
(
M
B
)

Total

Active

(c) RAM

0 100 200 300
0

500

1,000

1,500

Time (s)

R
e
a
d
(
K
B
)

sda

sda7

(d) Disk Read

0 100 200 300
0

50

100

Time (s)

W
r
i
t
e
(
K
B
)

sda

sda7

(e) Disk Write

0 100 200 300
0

5

10

Time (s)

B
u
s
y
(
%
)

sda

sda7

(f) Disk Busy Percentage

Figure A.1: System Default Performance

Appendix A. OF Performance Evaluation Figures 193

A.2 Scenario 1.a - Bandwidth

A.2.1 TP-Link OpenWrt

0 50 100 150 200 250 300
0

10

20

30

40

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
)

1 Mbps

10 Mbps

20 Mbps

25 Mbps

30 Mbps

40 Mbps

50 Mbps

Figure A.2: TP-Link Scenario 1.a - Bandwidth

Appendix A. OF Performance Evaluation Figures 194

0 50 100 150 200 250 300
0

2

4

Time (s)

D
e
l
a
y
(
m
s
)

1 Mbps

10 Mbps

(a) 1Mbps and 10Mbps

0 50 100 150 200 250 300
0

1

2

Time (s)

D
e
l
a
y
(
m
s
)

20 Mbps

25 Mbps

30 Mbps

(b) 20Mbps, 25Mbps and 30Mbps

0 50 100 150 200 250 300
0

0.5

1

1.5

2

Time (s)

D
e
l
a
y
(
m
s
)

40 Mbps

50 Mbps

(c) 40Mbps and 50Mbps

Figure A.3: TP-Link Scenario 1.a - Delay

0 20 40
0

10

20

30

Bandwidth (Mbps)

P
e
r
c
e
n
t
a
g
e
L
o
s
s

(a) Packet Loss %

0 100 200 300

0.5

1

1.5

Time (s)

R
T
T
(
m
s
)

h1 to h2

h2 to h1

(b) Latency-RTT

0 100 200 300
0

5

10

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

(c) CPU

Figure A.4: TP-Link Scenario 1.a - Performance

Appendix A. OF Performance Evaluation Figures 195

0 100 200 300
0

20

40

60

80

100

Time (s)

C
P
U
u
t
i
l
i
z
a
t
i
o
n
(
%
)

(a) 1Mbps CPU

0 100 200 300
0

20

40

60

80

100

Time (s)

C
P
U
u
t
i
l
i
z
a
t
i
o
n
(
%
)

(b) 10Mbps CPU

0 100 200 300
0

20

40

60

80

100

Time (s)

C
P
U
u
t
i
l
i
z
a
t
i
o
n
(
%
)

(c) 20Mbps CPU

0 100 200 300
0

20

40

60

80

100

Time (s)

C
P
U
u
t
i
l
i
z
a
t
i
o
n
(
%
)

(d) 25Mbps CPU

0 100 200 300
0

20

40

60

80

100

Time (s)

C
P
U
u
t
i
l
i
z
a
t
i
o
n
(
%
)

(e) 30Mbps CPU

0 100 200 300
0

20

40

60

80

100

Time (s)
C
P
U
u
t
i
l
i
z
a
t
i
o
n
(
%
)

(f) 40Mbps CPU

Figure A.5: TP-Link Scenario 1.a - CPU Performance (% Active)

0 20 40

0

1

Bandwidth (mbps)

D
el
ay

(m
s)

(a) Bandwidth Vs Delay

0 20 40
0

50

100

Bandwidth (Mbps)

P
er
ce
n
ta
g
e
A
ct
iv
e

(b) Bandwidth Vs CPU

Figure A.6: TP-Link Scenario 1.a - Comparisons

Appendix A. OF Performance Evaluation Figures 196

A.2.2 Mininet

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
)

1 Mbps

50 Mbps

100 Mbps

110 Mbps

200 Mbps

Figure A.7: Mininet Scenario 1.a - Bandwidth

0 50 100 150 200 250 300
0

1

2

3

4

5
·10−2

Time (s)

D
e
l
a
y
(
m
s
)

1 Mbps

50 Mbps

100 Mbps

110 Mbps

200 Mbps

Figure A.8: Mininet Scenario 1.a - Delay

Appendix A. OF Performance Evaluation Figures 197

0 100 200 300
0

20

40

60

80

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

(a) 1Mbps First CPU

Core

0 100 200 300
0

20

40

60

80

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

(b) 1Mbps Second CPU

Core

0 100 200 300
0

20

40

60

80

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

(c) 100Mbps First CPU

Core

0 100 200 300
0

20

40

60

80

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

(d) 100Mbps Second

CPU Core

0 100 200 300
0

20

40

60

80

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

(e) 200Mbps First CPU

Core

0 100 200 300
0

20

40

60

80

100

Time (s)
P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

(f) 200Mbps Second

CPU Core

Figure A.9: Mininet Scenario 1.a - CPU Performance

0 100 200 300

−100

0

100

Time (s)

k
b
/
s

(a) 1Mbps

0 100 200 300

−1

0

1

·104

Time (s)

k
b
/
s

(b) 100Mbps

0 100 200 300

−2

0

2

·104

Time (s)

k
b
/
s Read

Write

(c) 200Mbps

Figure A.10: Mininet Scenario 1.a - Network I/O

Appendix A. OF Performance Evaluation Figures 198

0 50 100 150 200
0

10

20

30

40

Bandwidth (Mbps)

P
e
r
c
e
n
t
a
g
e
L
o
s
s

(a) Packet Loss Percentage

0 100 200 300
0

0.2

0.4

0.6

0.8

Trials

R
T
T
(
m
s
)

h1 to h2

h2 to h1

(b) Latency-RTT

Figure A.11: Mininet Scenario 1.a - Performance

0 50 100 150 200
0

50

100

Bandwidth (Mbps)

P
er
ce
n
ta
ge

A
ct
iv
e

(a) Bandwidth Vs Core 1

0 50 100 150 200
0

20

40

60

80

100

Bandwidth (Mbps)

P
er
ce
n
ta
ge

A
ct
iv
e

(b) Bandwidth Vs Core 2

0 100 200

0

0.02

0.04

Bandwidth (mbps)

D
el
ay

(m
s)

(c) Bandwidth Vs Delay

Figure A.12: Mininet Scenario 1.a - Comparisons

Appendix A. OF Performance Evaluation Figures 199

A.2.3 HP-Procurve

(a) 10/100 Ports Bandwidth (b) 10/100/1000 Ports Bandwidth

Figure A.13: HP Procurve Scenario 1 - Bandwidth

(a) 10/100 Ports Delay (b) 10/100/1000 Ports Delay

(c) 10/100 Ports Latency (d) 10/100/1000 Ports Latency

Figure A.14: HP Procurve Scenario 1 - Delay & Latency

Appendix A. OF Performance Evaluation Figures 200

A.3 Scenario 1.b - Bandwidth Stability

A.3.1 TP-Link OpenWrt

0 100 200 300
18

19

20

Time (s)

B
an

d
w
id
th

(M
b
p
s)

(a) Bandwidth

0 100 200 300

0

0.2

Time (s)

D
el
ay

(m
s)

(b) Delay

Figure A.15: TP-Link Scenario 1.b - Bandwidth & Delay

A
ve
ra
ge

M
in
im
um

M
ax
im
um

0

0.05

0.1

0.15

L
os
t
P
er
ce
n
ta
ge

Figure A.16: TP-Link Scenario 1.b - Packet Loss

Appendix A. OF Performance Evaluation Figures 201

A.3.2 Mininet

0 100 200 300

96

98

100

102

104

Time (s)

B
an

d
w
id
th

(M
b
p
s)

(a) Bandwidth

0 100 200 300

0

0.05

0.1

Time (s)

D
el
ay

(m
s)

(b) Delay

Figure A.17: Mininet Scenario 1.b - Bandwidth & Delay

0 100 200 300
0

20

40

60

80

100

Time (s)

P
er
ce
n
ta
ge

A
ct
iv
e
(%

)

(a) Core 1

0 100 200 300
0

20

40

60

80

100

Time (s)

P
er
ce
n
ta
ge

A
ct
iv
e
(%

)

(b) Core 2

Figure A.18: Mininet Scenario 1.b - Cores Performance

Appendix A. OF Performance Evaluation Figures 202

A.4 Scenario 2 - Multiple Streams

A.4.1 TP-Link OpenWrt

0 50 100 150 200 250 300
4.8

4.9

5

5.1

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
)

Stream 1

Stream 2

Stream 3

Stream 4

Figure A.19: TP-Link Scenario 2 - Bandwidth

0 50 100 150 200 250 300
0

0.5

1

1.5

Time (s)

D
e
l
a
y
(
m
s
)

Stream 1

Stream 2

Stream 3

Stream 4

Figure A.20: TP-Link Scenario 2 - Delay

Appendix A. OF Performance Evaluation Figures 203

A.4.2 Mininet

0 100 200 300
18

19

20

21

22

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
)

(a) 2 Hosts

0 100 200 300

16

18

20

22

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
)

Stream 1

Stream 2

Stream 3

Stream 4

Stream 5

(b) 6 Hosts

Figure A.21: Mininet Scenario 2 - Bandwidth

0 100 200 300
0

0.05

0.1

0.15

Time (s)

D
e
l
a
y
(
m
s
)

(a) 2 Hosts

0 100 200 300
0

0.1

0.2

0.3

Time (s)

D
e
l
a
y
(
m
s
)

Stream 1

Stream 2

Stream 3

Stream 4

Stream 5

(b) 6 Hosts

Figure A.22: Mininet Scenario 2 - Delay

Appendix A. OF Performance Evaluation Figures 204

A.4.3 HP-Procurve

(a) 100Mbps Bandwidth (b) 1000Mbps Bandwidth

Figure A.23: HP Procurve Scenario 2 - Bandwidth

(a) 100Mbps Delay (b) 1000Mbps Delay

Figure A.24: HP Procurve Scenario 2 - Delay

Appendix A. OF Performance Evaluation Figures 205

A.5 Scenario 3 - Bidirectional Traffic

A.5.1 TP-Link OpenWrt

0 100 200 300
9

9.5

10

10.5

11

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
)

(a) Bandwidth

0 100 200 300
0

0.5

1

Time (s)

D
e
l
a
y
(
m
s
)

h1 to h2

h2 to h1

(b) Delay

Figure A.25: TP-Link Scenario 3 - Bandwidth and Delay

0 50 100 150 200 250 300
20

40

60

80

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

Figure A.26: TP-Link Scenario 3 - CPU Performance

Appendix A. OF Performance Evaluation Figures 206

A.5.2 Mininet

0 100 200 300

49.6

49.8

50

50.2

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
)

(a) Bandwidth

0 100 200 300
0

0.02

0.04

0.06

0.08

Time (s)

D
e
l
a
y
(
m
s
)

h1 to h2

h2 to h1

(b) Delay

Figure A.27: Mininet Scenario 3 - Bandwidth & Delay

Appendix A. OF Performance Evaluation Figures 207

A.5.3 HP-Procurve

(a) 100Mbps Bandwidth (b) 1000Mbps Bandwidth

Figure A.28: HP Procurve Scenario 3 - Bandwidth

(a) 100Mbps Delay (b) 1000Mbps Delay

Figure A.29: HP Procurve Scenario 3 - Delay

Appendix A. OF Performance Evaluation Figures 208

A.6 Scenario 4 - Rate Limiting

A.6.1 TP-Link OpenWrt

0 100 200 300

0

5

10

15

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
)

(a) Bandwidth

0 100 200 300
0

2

4

6

Time (s)

D
e
l
a
y
(
m
s
)

1Kbps

5Mbps

10Mbps

(b) Delay

Figure A.30: TP-Link Scenario 4 - Bandwidth & Delay

Appendix A. OF Performance Evaluation Figures 209

A.6.2 Mininet

0 100 200 300
0

20

40

60

80

100

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
)

(a) Bandwidth

0 100 200 300
0

0.5

1

1.5

2

Time (s)

D
e
l
a
y
(
m
s
)

1Kbps

25Mbps

50Mbps

(b) Delay

Figure A.31: Mininet Scenario 4 - Bandwidth & Delay

0 100 200 300
0

20

40

60

80

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

(a) 1Kbps First CPU

Core

0 100 200 300
0

20

40

60

80

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

(b) 1Kbps Second CPU

Core

0 100 200 300
0

20

40

60

80

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

(c) 25Mbps First CPU

Core

0 100 200 300
0

20

40

60

80

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

(d) 25Mbps Second CPU

Core

0 100 200 300
0

20

40

60

80

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

(e) 50Mbps First CPU

Core

0 100 200 300
0

20

40

60

80

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

(f) 50Mbps Second CPU

Core

Figure A.32: Mininet Scenario 4 - CPU Performance

Appendix A. OF Performance Evaluation Figures 210

0 100 200 300
0

0.5

1

1.5
·104

Time (s)

k
b
/
s

(a) 1Kbps

0 100 200 300

−1

0

1

·104

Time (s)

k
b
/
s

Read

Write

(b) 25Mbps

0 100 200 300

−2

0

2

·104

Time (s)

k
b
/
s

(c) 50Mbps

Figure A.33: Mininet Scenario 4 - Network I/O

Appendix A. OF Performance Evaluation Figures 211

A.6.3 HP-Procurve

(a) 10/100 Ports 1Kbps Limit (b) 10/100 Ports 50Mbps Limit

(c) 10/100/1000 Ports 1Kbps Limit (d) 10/100/1000 Ports 500Mbps Limit

Figure A.34: HP Procurve Scenario 4 - Bandwidth

(a) 10/100 Ports 1Kbps Limit (b) 10/100 Ports 50Mbps Limit

(c) 10/100/100 Ports 1Kbps Limit (d) 10/100/100 Ports 500Mbps Limit

Figure A.35: HP Procurve Scenario 4 - Delay

Appendix A. OF Performance Evaluation Figures 212

A.7 Scenario 5 - TCp Bandwidth

A.7.1 TP-Link OpenWrt

0 100 200 300

15

20

25

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
)

Sender

Receiver

(a) Bandwidth

0 100 200 300
20

40

60

80

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

(b) CPU Performance

Figure A.36: TP-Link Scenario 5 - Bandwidth & CPU Performance

Appendix A. OF Performance Evaluation Figures 213

A.7.2 Mininet

0 50 100 150 200 250 300
90

92

94

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
) Sender

Receiver

Figure A.37: Mininet Scenario 5 - Bandwidth

0 100 200 300
0

20

40

60

80

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e
(
%
)

(a) First CPU Core

0 100 200 300
0

20

40

60

80

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e
(
%
)

(b) Second CPU Core

Figure A.38: Mininet Scenario 5 - CPU Performance

Appendix A. OF Performance Evaluation Figures 214

0 100 200 300

−1

0

1

·104

Time (s)

K
B
/
s

Read

Write

(a) Network I/O

0 100 200 300
0

1,000

2,000

3,000

4,000

Time (s)

R
A
M
(
M
B
)

Total

Active

(b) RAM

0 100 200 300
0

5

10

Time (s)

B
u
s
y
(
%
)

sda

sda7

(c) Disk Busy Percentage

Figure A.39: Mininet Scenario 5 - Network I/O, RAM & Disk Busy Performance

Appendix A. OF Performance Evaluation Figures 215

A.7.3 HP-Procurve

(a) 100Mbps (b) 1000Mbps

Figure A.40: HP Procurve Scenario 5 - Bandwidth

Appendix A. OF Performance Evaluation Figures 216

A.8 Scenario 6 - TCP and UDP Bandwidth

A.8.1 TP-Link OpenWrt

0 50 100 150 200 250 300
14

16

18

20

22

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
) TCP Sender

TCP Receiver

UDP Sender

UDP Receiver

Figure A.41: TP-Link Scenario 6 - Bandwidth

0 100 200 300

0.2

0.4

0.6

0.8

Time (s)

D
e
l
a
y
(
m
s
)

(a) Delay

0 100 200 300
60

70

80

90

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e

(b) CPU Performance

Figure A.42: TP-Link Scenario 6 - Delay & CPU Performance

Appendix A. OF Performance Evaluation Figures 217

A.8.2 Mininet

0 50 100 150 200 250 300
0

50

100

Time (s)

B
a
n
d
w
i
d
t
h
(
M
b
p
s
) TCP Sender

TCP Receiver

UDP Sender

UDP Receiver

Figure A.43: Mininet Scenario 6 - Bandwidth

0 50 100 150 200 250 300

4

6

8
·10−2

Time (s)

D
e
l
a
y
(
m
s
)

Figure A.44: Mininet Scenario 6 - Delay

0 100 200 300
0

20

40

60

80

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e
(
%
)

(a) First CPU Core

0 100 200 300
0

20

40

60

80

100

Time (s)

P
e
r
c
e
n
t
a
g
e
A
c
t
i
v
e
(
%
)

(b) Second CPU Core

Figure A.45: Mininet Scenario 6 - CPU Performance

Appendix A. OF Performance Evaluation Figures 218

0 100 200 300

−1

0

1

2
·104

Time (s)

K
B
/
s Read

Write

(a) Network I/O

0 100 200 300
0

1,000

2,000

3,000

4,000

Time (s)

R
A
M
(
M
B
) Total

Active

(b) RAM

0 100 200 300
0

20

40

60

80

100

Time (s)

B
u
s
y
(
%
)

sda

sda7

(c) Disk Busy Percentage

Figure A.46: Mininet Scenario 6 - Network I/O, Ram & Disk Performance

Appendix A. OF Performance Evaluation Figures 219

A.8.3 HP-Procurve

(a) 100Mbps Bandwidth (b) 1000Mbps Bandwidth

Figure A.47: HP Procurve Scenario 6 - Bandwidth

(a) 100Mbps Delay (b) 1000Mbps Delay

Figure A.48: HP Procurve Scenario 6 - Delay

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Aim and Objectives
	Original Contributions
	Thesis Outline

	An Overview Of Software Defined Networking
	Introduction
	Programmable Networks
	Routing Control Platform and 4D Architecture
	SANE, Ethane and Tesseract
	NOX and Maestro
	HyperFlow, Onix and DIFANE

	OpenFlow
	OpenFlow Specification
	Flow Table
	Secure Channel
	OpenFlow Versions Comparison

	Software Defined Networking
	SDN Architecture
	SDN Implementations

	SDN Controllers
	Controller Behaviours
	Controller Examples
	Trema
	Beacon
	SNAC
	OpenDaylight

	Benchmarking Simulation and Emulation Environments
	OpenFlow Related Projects
	Data Centre Related
	Flow Management Related
	Wireless Related
	Security Related

	Summary and Discussions

	OpenFlow Performance Enhancement Algorithm Using Dynamic Flow Installation And Management (OFPE)
	Introduction
	Current State
	Proposed OpenFlow Performance Enhancement Algorithm
	Algorithm Operations
	Operations Benefits

	Experiments and Analysis
	Experimental Equipment
	Scenario 1 - Incremental Increase of CPU Load
	Scenario 2 - Incremental Increase of CPU Load with 4 Streams
	Scenario 3 - Multi-Switch Environment
	Scenario 4 - Multi-Switch Environment with 4 Streams

	Summary and Discussions

	OpenFlow Performance Enhancement Algorithm Based on Packet Interarrival Time (OFPEX)
	Introduction
	Packet Interarrival Time in OpenFlow
	Packet Interarrival Time Based Enhancement Algorithm (OFPEX)
	Statistics Gathering
	Use of Gathered Statistics

	Experiments and Analysis
	Scenario 1 - Static Interarrival Time
	Scenario 2 - Dynamic Interarrival Time

	Summary and Discussions

	Distributed Mininet Placement Algorithm for Fat-Tree Topologies
	Introduction
	Distributed Mininet Analysis
	Proposed Placement Algorithm
	Requirements
	Overview
	Static Code Analysis
	Link Capacity Measuring
	Bin Creation

	Experimental Scenarios
	Scenario 1 - Weight Assignment
	Scenario 2 - Component Assignment
	Scenario 3 - Increasing Topology Size

	Experimental Results Analysis
	Summary and Discussions

	OpenFlow Performance Enhancement Algorithm In Large Topologies Using Distributed Mininet
	Introduction
	Experimental Scenarios
	Scenario 1 - Restrictions in Physical Topology
	Scenario 2 - Stressing The Controller
	Scenario 3 - Stressing The Controller & The Workers

	Experimental Results Analysis
	Summary and Discussions

	Performance Benchmarking of SDN Experimental Platforms
	Introduction
	Proposed Performance Benchmarking Tests
	Experiments and Analysis
	Default System Performance
	Scenario 1 - Dumbbell-Shaped Topology
	Scenario 2 - One-to-Many Topology
	Scenario 3 - Linear with 2 Hosts Topology
	Scenario 4 - Linear with N Hosts Topology
	Scenario 5 - Host-Switch-Host Topology

	Summary and Discussions

	OpenFlow Software & Hardware Performance Evaluation
	Introduction
	HP Procurve, OpenWrt and Mininet Specifications
	Performance Evaluation Scenarios
	Experimental Results Analysis
	Mininet System Default Performance
	Scenario 1.a - Bandwidth
	TP-Link OpenWrt
	Mininet
	HP-Procurve

	Scenario 1.b - Bandwidth Stability
	TP-Link OpenWrt
	Mininet

	Scenario 2 - Multiple Streams
	TP-Link OpenWrt
	Mininet
	HP-Procurve

	Scenario 3 - Bidirectional Traffic
	TP-Link OpenWrt
	Mininet
	HP-Procurve

	Scenario 4 - Rate Limiting
	TP-Link OpenWrt
	Mininet
	HP-Procurve

	Scenario 5 - TCP Bandwidth
	TP-Link OpenWrt
	Mininet
	HP-Procurve

	Scenario 6 - TCP and UDP Bandwidth
	TP-Link OpenWrt
	Mininet
	HP-Procurve

	Summary and Discussions

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Appendices
	OpenFlow Software & Hardware Performance Evaluation Figures
	Mininet System Default Performance
	Scenario 1.a - Bandwidth
	TP-Link OpenWrt
	Mininet
	HP-Procurve

	Scenario 1.b - Bandwidth Stability
	TP-Link OpenWrt
	Mininet

	Scenario 2 - Multiple Streams
	TP-Link OpenWrt
	Mininet
	HP-Procurve

	Scenario 3 - Bidirectional Traffic
	TP-Link OpenWrt
	Mininet
	HP-Procurve

	Scenario 4 - Rate Limiting
	TP-Link OpenWrt
	Mininet
	HP-Procurve

	Scenario 5 - TCp Bandwidth
	TP-Link OpenWrt
	Mininet
	HP-Procurve

	Scenario 6 - TCP and UDP Bandwidth
	TP-Link OpenWrt
	Mininet
	HP-Procurve

