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Abstract— The growing share of power electronic/converter 

interfaced generation is decreasing the total system rotational 

inertia. The reduced rotational inertia in the power system has 

important impact on the electro-mechanical processes, the power 

angle and frequency evolution time are quicker resulting in faster 

transient processes. Rapid response of the protection systems 

shall be applied, in order to clear the faults in the power systems. 

This paper aims to identify the roots/mechanism of critical 

clearing time reduction/deterioration by determining/analyzing 

the trajectories of the critical clearing time (CCT) in low 

rotational inertia power systems. In this paper, the equal area 

criterion (EAC) is used for analysis purposes. Theoretical and 

practical findings demonstrate the increase of the rotational 

inertia increases the CCT. 

Keywords— Angle stability, critical clearing time, low inertia, 

protection, stability. 

I.  INTRODUCTION 

Power system dynamic processes are very complex and 
system stability is one of the most; they depend on a very large 
number of factors, including the type of disturbance, pre-
disturbance operating state, network strength, settings and non-
linear response of components[1]. Due to a large number of 
components involved, each system modelled by some set 
differential-algebraic equations (DAE), software-based 
simulation of power systems constitutes a complex 
computational task. The complexity is mainly caused by the 
intrinsic non-linearities related to the power system 
components and their interactions and scale of the 
mathematical problem (number of components).  

Power system stability has been an important research 
subject for years; there is significant number of research studies 
dealing with the classical power angle stability [2]–[4]. The 
transient stability assessment (TSA) is dedicated to analysing 
the ability of a power system to maintain synchronism when 
subjected to severe transient disturbance. A traditional transient 
stability metric for short-circuiting faults on a classical power 
system is the well-known critical clearing time (CCT).  

The CCT has been used as a key metric in the TSA in order 
to ensure the secure power system operation. The IEEE std 100 
[5] defines the clearing time as the time elapsing from the 
beginning of an overcurrent to the final circuit interruption. 
The CCT can be easily defined as the maximum time (tc) 

during which a disturbance can be applied to the power system 
without losing the synchronism of the synchronous machines. 
The growing share of power converter-based technologies, 
especially those applied in renewable generation systems like 
wind power and solar photovoltaic (PV) power plants is 
decreasing the total system rotational inertia. The reduced 
rotational inertia has an important impact on the 
electromechanical processes in the power system: the power 
angle and frequency evolution time are shorter (in the result of 
the faster transient processes) with low rotational inertia, 
making the power system control and operation more 
challenging. Rapid response of the protection systems shall be 
applied, in order to clear the faults in the power systems.  

This paper presents an assessment of the critical clearing 
time in low rotational inertia power systems. Section II uses a 
single-machine infinite bus (SMIB) power system to introduce 
the theoretical background behind the TSA and CCT 
calculation. Section III presents simulation results of a SMIB 
and multimachine system to demonstrate the effect of low 
rotational inertia in the CCT. Section IV concludes and 
presents the scope of future research. 

II. ROTATIONAL INERTIA AND SYSTEM RESPONSE 

Consider the simple case of an (equivalent) two-machine 
which consists of a classical synchronous generator (G) 

directly connected to a hypothetical infinitive bus (H = ), see 
Fig 1a. Under loss-less steady-state conditions the mechanical 
rotational speed is equal to the synchronous electrical speed, 

(t) = syn = elec (lossless system), and the phase angle is 

equal to 0. Assuming that the generator is operating in steady-
state, there is an equilibrium between the input mechanical 
torque applied to the shaft of the generator (Tmec) by the prime-
mover and the electro-magnetic torque (Telec) output of the 
generator.  

A sudden disturbance, change on the electrical or 

mechanical torque, breaks the torque balance (Tnet  0), as a 
consequence, the generator is exposed to the algebraic 
difference of the accelerating shaft torque and the retarding 
electromagnetic torque: 

 
net mec elecT T T= −   (1) 

The laws of rotation apply to the motion of a synchronous 
generator, and it states that the net torque (Tnet) is equal to the 
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product of angular acceleration () and the total moment of 

inertia of the rotor mass (I, typical units includes kgm2 or Js2):  

 ( )
( ) ( )2

2net

d t d t
T I t I I

dt dt

 
= = =   (2) 

It is relevant measure the angular position () of the rotor 

with respect to a stationary axis and angular velocity () with 
respect to a synchronously rotating reference axis (rotating at 

syn) than with respect to a stationary axis (reference, see Fig. 
1b).  
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(a)Single-line diagram of a Single-Machine Infinite-Bus(SMIB) Power System. 
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(b)  Electromechanical references shown in the spinning rotor. 

Figure 1. Realistic SMIB power system and the electro-mechanical reference 

system at the rotor of the synchronous generator. 
The angular position (t) might be defined as: 

  ( ) synt t  = −   (3) 

where syn is the rated normal synchronous speed. The first and 
second derivatives of (2) results: 

   
( )

0

d t d

dt dt

 
= −   (4) 

   
( )2 2

2 2

d t d

dt dt

 
=   (5) 

Substituting (5) into (2): 

 
( )2

2 net

d t
I T

dt


=   (6) 

which is unchanged in form. Now, (1) is introduced into (6): 

 
( )2

2 net mec elec

d t
I T T T

dt


= = −   (7) 

If the above equation is multiplied by the rotational speed 

: 

 
( ) ( )2

2 2 net mec elec

d t d t
I I T T T

dt dt

 
    = = = −   (8) 

The swing equation is obtained from (8): 

 
( )2

2 net mec elec

d t
M P P P

dt


= = −   (9) 

where the angular momentum of the rotor (M) is calculated as: 

 M I=   (10) 

Pmec = Tmec represents the shaft power input, corrected for 

rotational losses, Pelec = (2/P)Telec is the electrical power 
output, , corrected for electrical losses, P is the poles of the 
machine and Pnet represents the accelerating power. 

Considering the synchronous generator working at nominal 

condition with a speed ωsyn, the term d/dt in (9) can be 
expressed through Taylor’s expansion evaluated at the nominal 

condition (syn) as: 

2

syn

syn

dd d

dt dtdt

 
  

  
= +  +   

  
 

2 syn

d d d

dt dtdt

  
  

 
= +   

The term d/dt contains the product of two small 

deviations ( 0 and d/dt 0) as consequence the term can 
be easily neglected without significant error. 

2 syn

d d

dtdt

 
 


  

 
2 syn

d d

dtdt

 
 =   (11) 

The angular momentum M is directly proportional to the 
rotational speed, as shown in (10), it is evident M is not 

essentially constant because the speed  varies to some extent 
during the machine swings which follow a disturbance. 
Considering normal operation of a typical power systems (no 
affected by low inertia), the changes in the rotor rotational 

speed   is very small when compared to the rated normal 
synchronous speed and the error introduced by the assumption 
of angular moment constant is minimum. As a consequence, it 
has been a tradition, regard the angular momentum as a 
numerical constant value when solving the swing equation, and 

equal to M = synI, sometimes called the angular momentum at 

normal synchronous speed. The coefficient I in (8) is called 
the angular momentum of the rotor (rotational version of the 
linear momentum), when the angular momentum is normalized 
to the synchronous speed ωsyn, is the inertia constant of the 

machine (M = synI).  

In massive integration of power converter based renewable 
generation sources, like solar PV and some wind power 
technologies, is negatively affecting the rotational inertia, it is 
because the power sources has limited to none possibility of 
providing real rotational inertia, as a consequence there is a real 
displacement of traditional thermal generation is leading to a 
significant reduction in the total rotational system inertia [6]. 
As a consequence, the power system being less stiff, less 
resilient to the system frequency disturbances, but also the 
reduced values of inertia are impacting the whole spectrum of 
dynamic processes in power systems operation and control [7], 
[8]. Low inertia scenarios makes the power system dynamic 
becoming more a more faster as the rotational inertia is reduced 
[9], [10], as a consequence, the angular momentum more and 
more variable making a very negative assumption constant 
value to represent M, however, that discussion is beyond the 
scope of this paper. M is normally expressed in watts per radian 
per second per second, or joule-seconds per radian.  

0 



The inertia constant H is a constant which has proved very 
useful, it is defined as the kinetic energy (KE) at rated speed 

(syn) divided by the rated apparent power of the machine (G, 
MVA). There are few interpretations of H, but if the units are 
appropriately selected, H represented the time in seconds a 
generator can provide rated power solely using the kinetic 
energy stored in the rotating mass. 

 
( )

( )

stored energy in Joules

rating in volt-amperes

KE
H

G
=   (12) 

 The relationship between the inertia constant H the 
moment of inertia M, is: 

 
360

2
=

f
GH M   (13) 

Finally, the swing equations is expressed in terms of the 

inertia constant. 

 
( )2

2




= = −net mec elec

d tH
P P P

f dt
  (14) 

III. TRANSIENT STABILITY ASSESSMENT AND CRITICAL 

CLEARING TIME 

The dynamic processes, interactions and its correspondent 
control actions in synchronous-machines-dominated power 
systems are characterized by a wide spectrum of time 
constants, where the rotational synchronous inertia defines the 
main slower electromagnetic phenomena, time scale in order of 
seconds. However, the dynamic of a low rotational inertia 
system plays a major role apart of the much slower dynamics, 
the electro-mechanical variables are volatile in almost every 
single sense and they are influenced to a much greater extent 
by the applied control actions. 

In this paper, the main interest is the power angle stability 
that is mainly generator driven, it is related to the electro-
mechanical oscillations between synchronous generators. The 
power angle instability is encountered in the form of undamped 
oscillations or a monotonic acceleration of the rotor leading to 
the loss of synchronism and it tends to have a very fast 
dynamic, especially in low inertia systems. Transient stability 
analysis is performed by the use of (i) time domain approach or 
(ii) direct (Lyapunov-like) methods. In this paper, the equal 
area criterion (EAC) is used for analysis. The EAC is a  
powerful graphical application of the Lyapunov’s direct 
method [10].  The EAC is applied to the test system shown in 
Fig. 1.a. the accelerating (A1) and accelerating (A2) areas are 
shown in Fig. 2.  

The equilibrium energy of the electro-mechanical process is 

defined by the following integral equation (where max =  - 0): 

 ( )
max

0

0 0

max sin
c

c
mec mecP d P P d

 

 
  = −    (15) 

The analytical solution of (15) provides a non-linear 

equation where the angle c is the variable of interest. The 
boundary of the stability limit is defined by the critical 

clearing angle (CCA), c calculated from the following non-
linear equations: 

( ) ( ) ( )0 0

0 0 max 0cos cos      − = + − + +mec c mec c cP P P  

 ( ) ( )0 0

max 0 max 0cos cos 2 0m c mP P P P   − − − =   (16) 

Extracting the CCA c from (16): 
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Figure 2. Power-angle diagram for analysing transient disturbances due to 

faults with subsequent fault cleared. 
From (17) is clear the CCA is not depending on the 

rotational inertia, Fig. 3 shows how the CCA changes as the 

initial operational state, 0 = sin-1(P0
mec/Pmax) is changed by the 

initial mechanical power (P0
mec). 

 
Figure 3. Effect of the initial mechanical power (P0

mec) in the initial angle (0) 

and the CCA (c). 
Now, assuming there is not intervention of the governor 

controller, the critical clearing time (tc) can be obtained by the 
integration of (14) during the acceleration period: 

( )2

0

2




= mec

d tH
P

f dt
    →      

( )2

0

2

 
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d t f
P

Hdt
  

( ) 0 0

0
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=
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t

mec mec
t

d t f f
P dt P t

dt H H
 

Finally, tc is calculated as: 
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t

fP
 (18) 

 The CCT (18) and CCA (17) are typically used as 
indicators to measure the power angle transient stability of a 
power system. Now, from (18) is clear that rotational inertia 
(H) has effect on the CCT of the synchronous generator of the 



the SMIB. Figure 4 shows the effect of the rotational inertia 
(H) in the CCT. As predicted by (18) the increase of the 
rotational inertia increases the CCT. 

 

Figure 4. Effect of the rotational inertia (H) and the initial mechanical power 

on the CCT (tc). 
Finally, a real single machine equivalent system (see Fig. 5) 

is used to demonstrate the effect of reducing the system inertia 
on the transient stability. Two illustrative examples of stable 
and unstable trajectories, considering high and low inertia, are 
shown in Fig. 6. 

 

Figure 5. Real SMIB power system implemented in DIgSILENT 

PowerFactory. 

IV. CONCLUSIONS 

Rotational inertia is decreasing in the modern power 
system, and it is expected to be significantly decreased in the 
future. Reduced rotational inertia makes the power system 
electromechanical dynamic of more volatile. This paper 
presents results of the assessment of the critical clearing time in 
low rotational inertia power systems. Initially, the assessment 
has been performed using analytical equations over a SMIB 
model; then the concepts are demonstrated in multi-machine 
systems using time-domain simulations. The proposed 
approach can be applied for the analysis of the power system 
stability in respect of protection system response time. The 
application of Phasor Measurement Units (PMUs) can help 
recognize zones of the power grid in non-stable operational 
state and respectively initiate tripping of faulty grid branches. 
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Figure 6. Illustrative trajectories of high and low inertia systems. P-  and -

. Clearing time = 100 ms. 
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