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Abstract Seasonal streamflow forecasts facilitate water allocation, reservoir operation, flood risk
management, and crop forecasting. They are generally computed by forcing hydrological models with
outputs from general circulation models (GCMs) or using large-scale climate indices as predictors in statistical
models. In contrast, hybrid statistical-dynamical forecasts (combining statistical methods with dynamical
climate predictions) are still uncommon, and their skill is largely unknown. Here we conduct systematic
forecasting of seasonal streamflow using eight GCMs from the North American Multi-Model Ensemble,
0.5-9.5 months ahead, at 290 stream gauges in the U.S. Midwest. Probabilistic forecasts are developed for low
to high streamflow using predictors that reflect climatic and anthropogenic influences. Results indicate that
GCM forecasts of climate and antecedent climatic conditions enhance seasonal streamflow predictability;
while land cover and population density predictors decrease biases or enhance skill in certain catchments.
This paper paves the way for novel forecasting approaches using dynamical GCM predictions within
statistical frameworks.

Plain Language Summary Streamflow forecasts several months ahead of a season are important
for water management and the prevention of risks related to floods and hydrological droughts. However,
existing methods for producing seasonal streamflow forecasts are often complex and computationally
intensive. Here we provide a systematic evaluation of a statistical-dynamical approach to streamflow
forecasting in several hundred river catchments across the U.S. Midwest. We assess whether global climate
model forecasts can be used as predictors in statistical models to produce skillful forecasts of river flow, up
to 10 months ahead. Results indicate that forecasts of rainfall and temperature, antecedent climatic
conditions, as well as information on population density and land cover, can be used effectively to forecast
streamflow at seasonal time scales. By including information on the future antecedent climatic conditions,
streamflow forecasts can be enhanced months ahead. Information on human influences, in contrast, helps
reduce the biases in the streamflow forecasts. These results pave the way for statistical-dynamical
forecasting in catchments around the world and suggest that process-driven combinations of different
predictors can be used to produce skillful streamflow forecasts in different seasons, for both high flows
(i.e., floods) and low flows (i.e., representative of hydrological droughts).

1. Introduction

Streamflow forecasts established at subseasonal to seasonal time scales (i.e., weeks to months ahead) can be
beneficial in many sectors, including water resources allocation, reservoir operation and management, flood
risk planning, navigation, and agricultural crop forecasting. In Europe, for example, the estimated monetary
benefit of early flood warnings provided by the continental-scale European Flood Awareness System is 400
Euro for every 1 Euro invested (Pappenberger, Cloke et al., 2015). There are principally two types of
approaches: dynamical approaches (where weather/climate information is used to drive land surface
hydrological models) and statistical approaches (using large-scale climate information as predictors in
statistical models).

In dynamical or physically based forecasting, hydrological models are typically forced with outputs from
general circulation models (GCMs; e.g., Yuan, Wood, & Ma, 2015) or ensembles of numerical weather predic-
tions (e.g., Cloke & Pappenberger, 2009). Subseasonal to seasonal streamflow forecasts are now produced at
continental to global scales (e.g., Alfieri et al., 2013; Arnal et al., 2017; Emerton et al.,, 2016; Thielen et al., 2009;
Yuan, Roundy, et al,, 2015) and implemented operationally (e.g., Global Flood Awareness System; Emerton
et al, 2018). Alternatively, land surface hydrological models can also be initialized with initial hydrologic
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conditions and driven with historical meteorological data, as in the case of Ensemble Streamflow Prediction
(Day, 1985; Harrigan et al., 2018; Van Dijk et al., 2013; Werner et al., 2004; Wood & Schaake, 2008; Yuan et al.,
2016), when no dynamical seasonal forecasts are available.

In statistical or time series forecasting, the hydrological predictands are generally regressed on observational
precipitation/temperature records, large-scale climate indices, climatic teleconnection patterns, and/or infor-
mation on initial hydrologic conditions (e.g., Mendoza et al.,, 2017; Robertson et al., 2013). For example,
streamflow has been successfully forecast with large-scale ocean-atmospheric predictors such as sea surface
temperature, surface air temperature, geopotential height, meridional wind, or a range of climate modes of
variability like the ElI Niflo-Southern Oscillation (e.g., Regonda et al., 2006; Souza Filho & Lall, 2003).
However, these stationary statistical relationships are not always reliable, due to changing patterns of flow
seasonality, shifts in the relationship between streamflow and the climatic predictors (e.g., Cayan et al., 2001; Mote
et al., 2005), and temporal instabilities in some of the predictors (e.g., lonita et al,, 2008; Pagano et al., 2004).

In contrast with both of these long-standing approaches, the coupling of climate predictions with statistical
models, hereafter referred to as statistical-dynamical forecasting, is new (here we use the term dynamical to
refer to dynamical climate predictions, rather than to dynamic hydrological models). Hybrid statistical-
dynamical models have different strengths: they are computationally efficient, can integrate and learn from
a broad selection of nonstationary input data (e.g., dynamical GCM forecasts, Earth Observation time series,
and teleconnections), and can benefit from recent statistical progress (e.g., multimodel blending and post-
processing). The implementation of multimodel systems such as the Copernicus Climate Change Service or
the North American Multi-Model Ensemble (NMME) has facilitated the development of such approaches. In
the NMME project, participating North American modeling centers (Table S1 in the supporting information)
now provide publicly accessible global climate hindcasts and forecasts at 1° latitude by 1° longitude resolu-
tion, with lead times ranging from 0.5 to 11.5 months (Kirtman et al., 2014). Yet the few papers that have
investigated the use of the NMME for streamflow forecasting have mostly used hydrological models such
as the variable infiltration capacity (VIC) model (e.g., Mo & Lettenmaier, 2014; Yuan, Roundy, et al., 2015;
Yuan, Wood, & Ma, 2015) or other land surface models (e.g., Thober et al., 2015).

Thus, one of the current challenges in seasonal streamflow forecasting is to assess the predictability of
streamflow using a statistical-dynamical methodology in different catchments around the globe, in compar-
ison with the existing operational forecasting approaches. Until now, the predictability arising from the inclu-
sion of temperature or land cover in statistical-dynamical models has only been evaluated in a handful of
carefully selected, snowmelt-dominated (Lehner et al., 2017) or agricultural (Slater, Villarini, Bradley, Vecchi,
2018) river catchments.

Here we develop a statistical-dynamical framework to forecast seasonal streamflow between 0.5 and
9.5 months ahead, using NMME outputs from 94 GCM members, in 290 river catchments with widely varying
physical, climatic, and land cover characteristics. We investigate (1) the predictability of streamflow across the
Midwestern USA, using just dynamical NMME precipitation forecasts; (2) to what extent this predictability can
be enhanced by including other climatic and anthropogenic predictors; and (3) how the predictability varies
across different catchments, seasons, and streamflow quantiles.

2. Data and Methods

2.1. Data Sets of Observed Streamflow, Precipitation, Temperature, Agriculture, and
Population Density

We develop our forecasting framework in the Midwest because the drivers of streamflow variability are rela-
tively well understood in the region (e.g., Slater & Villarini, 2017). The climate exhibits average annual tem-
peratures ranging from less than 3 °C in northern Minnesota to over 15 °C in southeastern Missouri and
average annual precipitation from ~500 mm to ~1200 mm in the same areas (Andresen et al., 2012). The
Midwest has also witnessed a notable increase in precipitation (Alter et al., 2018) and flooding (Mallakpour
& Villarini, 2015) in recent decades.

Daily streamflow data are obtained from the U.S. Geological Survey’'s (USGS) National Water Information
System for all stream gauges in the 12 U.S. Midwestern states with a continuous record of at least 50 years
before 2015 (Figure 1). The size of the 290 catchments varies from 20 km? to 153,327 km?2. We retain
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Figure 1. Location of the 290 catchments across the Midwest. Stream gauges are indicated as blue circles, and catchments
are indicated as black outlines. The agricultural extent in 2014 within each county is indicated in shades of green, and urban
areas are indicated in pink.

catchments where the peak flows are not notably affected by regulation or diversion (absence of flags 5 or 6
in the USGS peak flows database). We also retain catchments that have witnessed urban development, to test
the influence of population density as a predictor. The catchments are the same as those used in Slater and
Villarini (2017) to assess the ability of our model across sites with variable physical, climatic, and streamflow
characteristics. Observed streamflow (Q) quantiles are computed from daily records at every site and for
every season, ranging from Qg (minimum flow) to Q; (maximum flow). For example, if our predictand is
summer Q,, then we compute the maximum of the daily streamflow distribution for the 3 months ranging
from June until August and repeat this for every year from 1983 to 2015.

Observed monthly precipitation (millimeter) and temperature (degrees Celsius) data at approximately 4-km
resolution are obtained from the PRISM climate group (Daly et al,, 2002) and used to compute monthly
catchment-averaged values. Agricultural land cover data are obtained from the U.S. Department of
Agriculture’s National Agricultural Statistics Services quickstats database. Time series of harvested corn and
soybean acreage (as a proportion of total land cover within each catchment) are computed by aggregating
county-level data (see, e.g., Villarini & Strong, 2014) and vary from near 0% to 92%. Population density statis-
tics are from the U.S. Census Bureau’s Population Estimates Program. Time series are computed to reflect the
average population density in each catchment, which varies from 0.6 pers/km? to 1339 pers/km? (see Slater &
Villarini, 2017). Predictions of agricultural land cover and population density are computed on an annual basis
using the last available year’s estimate (persistence forecast; Figure S1), which proved to be more skillful than
forecasts based on other simple methods.

2.2. Seasonal Precipitation and Temperature NMME Forecasts

Monthly NMME forecasts of precipitation and temperature are available every month and for lead times of
between 0.5 and 11.5 months. We use eight NMME GCMs with a total of 94 model members (CanCM3,

SLATER AND VILLARINI

6506



100 Geophysical Research Letters 10.1029/2018GL077945
Table 1

Formulation of the Six Statistical Models

CanCM4, CCSM3, CCSM4, CFSv2, GFDL2.1, FLORbO01, and GEOS5; see Table

Model acronym

S1 for details). Catchment-averaged time series of precipitation and

Model formulation temperature outputs are computed for every site, month, and lead time,

P

P+T

P + AntP

P + AntT

P+ Ag

P + Pop

for each of the 94 NMME members (Kirtman et al,, 2014). We compute
the catchment ensemble forecast as the mean of the available members
(for every site, month, and lead time) because the multimodel mean
forecast tends to outperform any single model (Becker et al, 2014;
Krakauer, 2017; Slater, Villarini, & Bradley, 2018). The seasonal precipitation
H3) = 03 + B3Xp + 3Xap and temperature forecasts are computed by aggregating monthly fore-
3 casts for every initialization time (e.g., the spring forecast issued in March
is the sum of the 0.5-lead forecast for March, the 1.5-lead forecast for
April, and the 2.5-lead forecast for May; Figure S1).

09(0'4 = K4

log(us) = a5 + BsXp + 75 Xag Ant(e'ce'der\t precipitation and tempe‘rature are comput?d as‘the total

log(os) = xs precipitation and mean temperature in the 3-month period prior to the

| streamflow forecast (e.g., the winter precipitation is the antecedent
{ I°g§”6 = 6 +PeXp + V6 Xpop precipitation for a spring streamflow forecast). Whether the antecedent

09(0s) = Ke

precipitation is computed using observations or forecast precipitation

Note. The o parameter does not depend on predictors.

depends on the initialization month. For example, for a spring forecast
issued in March, the observations of December, January, and February pre-
cipitation would already be available, so the antecedent precipitation is effectively the observed winter
rainfall. For a spring forecast issued in February, however (1.5 months ahead), we would not yet have the
observed precipitation for February and thus would need to use the 0.5-lead forecast for February.

2.3. Forecasting Approach

Because of the limited length of available GCM data we compute the seasonal streamflow forecasts using a
leave-one-out cross-validation approach, where each year is dropped and the model is trained using the rest
of the forecasts (e.g., Grantz et al., 2005). For example, to forecast spring streamflow in 2015, we would use
the spring GCM forecasts for 1983-2014 to train the model. Our forecasting approach is probabilistic, to
better convey forecast uncertainties (e.g., Ramos et al.,, 2013). We use a gamma distribution with two
parameters, # and o, that depend linearly on the predictors via a logarithmic link function; the o parameter
is kept constant (i.e., does not depend on predictors) because previous work indicates that it does not
enhance model fits (Villarini & Strong, 2014). We implement the Generalized Additive Models for Location,
Scale and Shape (GAMLSS) using the gamlss package in R (Rigby & Stasinopoulos, 2005). Our baseline model
uses only precipitation (x,) as predictor (model P in Table 1). However, previous work has shown that the
inclusion of additional predictors, such as antecedent climatic conditions and land cover, enhances the
model fit to seasonal streamflow data (Slater & Villarini, 2017). Therefore, we develop five additional models
that all include precipitation and one other predictor: temperature (x;), antecedent precipitation (x,), ante-
cedent temperature (x,), agricultural land cover (x,4), or population density (x,op). These five models serve
to assess whether the inclusion of additional climatic and land cover predictors can enhance the seasonal
predictability of streamflow. For brevity, we will refer to these models as P, P + T, P + AntP, P + AntT,
P+ Ag, and P + Pop (see Table 1 for model formulations). We consider each predictor separately to evaluate
whether it increases the forecast skill for different initialization months.

2.4. Skill Evaluation

We evaluate the forecast skill of our six models using both deterministic and probabilistic evaluation metrics.
The deterministic model forecast skill is computed using only the 50th percentile of the probabilistic
streamflow forecast, for every season and initialization time. We use four metrics that compose the
deterministic mean square error skill score (MSESS): Pearson’s correlation coefficient (R), the potential skill
(PS), and two components that reflect the model biases, the standardized mean error (SME) and the slope
reliability (SREL). Please see Murphy and Winkler (1992) for the formulation of these standard model
evaluation metrics.

For probabilistic evaluation, we also implement the continuous ranked probability (CRPS) skill score (CRPSS)
using the easyVerification package (Weigel & Mason, 2011) in R. The CRPS compares the forecast distribution
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with the observed distribution and is widely recommended for probabilistic forecast evaluation
(Pappenberger, Ramos et al., 2015). The CRPSS provides a comprehensive evaluation of flow predictability
across the entire probability distribution, penalizing forecasts with large biases or low sharpness; it is
increasingly used for benchmarking ensemble forecast skill relative to a baseline forecast (e.g., Arnal et al.,
2017; Harrigan et al., 2018). Here we compute the CRPSS of the forecast distribution relative to the observed
streamflow value, for every site, season, and streamflow quantile.

3. Results

To what extent can forecasts of climate and anthropogenic influences be used to enhance the seasonal
predictability of streamflow using a statistical-dynamical forecasting approach? A systematic comparison
of model performance across all seasons and initialization times provides insight into the predictability
arising from precipitation and temperature (section 2.1), antecedent climate (section 2.2), and anthropogenic
influences (section 2.3).

3.1. Basic Predictability Arising From NMME Precipitation and Temperature Forecasts

We begin by considering how the NMME climate forecast skill translates into the statistical streamflow
forecasts across 290 catchments with widely varying physical and climate characteristics (section 2.1). On
average, at the shortest initialization time and when all forecast/observation pairs are pooled across all sites,
the NMME precipitation forecasts are better in winter/fall (precipitation R = 0.79/0.58, MSESS = 0.21/0.11,
respectively) than in spring/summer (R = 0.57/0.27, MSESS = —0.13/—0.54). The NMME temperature forecasts
tend to be better in the fall/spring (R = 0.87/0.84; MSESS = 0.67/0.66, respectively) than in the summer/winter
(R=0.77/0.81; MSESS = —0.90/0.61, respectively). One possible explanation for the poor skill (and tendency to
overpredict) of NMME summer forecasts (Figure S1) may be their inability to capture recent decreases in sum-
mer surface air temperature in the central United States due to agricultural intensification (alongside
increased surface humidity and rainfall; Alter et al., 2018). Spatially, however, the skill of NMME precipitation
forecasts is extremely variable when considering individual catchments: the regions with high precipitation
forecast skill tend to match those where a statistically significant relationship exists between heavy precipita-
tion and certain climate modes of variability (Figure S2), such as the Pacific Decadal Oscillation in eastern
Midwest in the winter or the North Atlantic Oscillation in the northwestern Midwest in the summer
(Mallakpour & Villarini, 2016). Spatially, the temperature forecasts are considerably more skillful than precipi-
tation across most seasons (R > 0.5) except in the southern part of the domain in winter/summer (Figure S3).

When only NMME precipitation is used as a predictor (model P), the skill of the streamflow forecasts varies
considerably across sites, for low to high flows (Figures 2, 3, and S4). When all sites are pooled together,
the predictability of Qg s in terms of R and PS is consistently the highest in the spring/winter, and spatially,
in the central Midwest around lowa. Streamflow forecast skill does not decrease monotonically with longer
initialization times, because the skill of NMME precipitation and temperature predictions is inconsistent for
different lead times (see also Slater, Villarini, Bradley, Vecchi, 2018). When sites are pooled together we find
that conditional biases (SREL) are the dominant source of bias (Figure 2), reflecting the inaccuracy of forecast
variability (standard deviation). When considering sites separately, the unconditional biases (SME) tend to be
the dominant source of bias (not shown here), likely due to overprediction/underprediction in the NMME
precipitation forecasts (see Slater, Villarini, & Bradley, 2018).

The inclusion of the NMME temperature forecast as a predictor (model P + T) increases predictability mainly in
spring and fall for most initialization times, and to some extent in the winter (Figure 2). In spring, this suggests
that the temperature is an important predictor during the warming season in snowmelt-dominated
catchments (see also Lehner et al. 2017). In the fall, the enhanced skill occurs possibly because temperature
is a good proxy for evapotranspiration. In summer, however, temperature does not improve model skill,
which may reflect inaccuracies in summer temperature forecasts as discussed above.

3.2. Enhancing Predictability by Including Antecedent Climate

The inclusion of antecedent precipitation as a predictor (model P + AntP) increases forecast skill considerably
for the shortest initialization times (i.e., 0.5 to 2.5 months ahead of every season) across most seasons and
streamflow quantiles (Figures 2, 3, and 54-59). This enhancement is to be expected because x,, includes
observed precipitation and therefore provides a proxy for soil moisture conditions (section 2.2). When
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Figure 2. Verification for Qg 5 leave-one-out cross-validated forecasts, computed by pooling forecasts and observation pairs for all 290 sites over the period
1983-2015. The verification is shown for all six models (colored lines; Table 1), for every season (columns), initialization month (x axis), and five evaluation metrics
(rows; described in section 2.4). On the x axis, forecasts initialized in the previous year are indicated by the subscript —7 and lead times used to compute the
precipitation/temperature forecasts are indicated in parentheses. Computing the verification metrics this way augments model skill but helps discriminate
between different model formulations at the regional level when forecasts are computed over such a short period. When verification is completed on a site-by-site
basis, we find a range of high to low skill (see Figure 3 and the supporting information for all sites, seasons, and lead times). CRPSS = continuous ranked probability
skill score; PS = potential skill; R = Pearson’s correlation coefficient; SREL = slope reliability; SME = standardized mean error.

pooling across 290 catchments, the increased skill arising from the inclusion of antecedent precipitation is
negligible in the fall but ranges from 0.02 to 0.03 for the other seasons (with much higher enhancements
for specific sites). However, at initialization times exceeding 2.5 months ahead of any given season, x,p, is
strictly composed of forecast x,, values, and so including antecedent precipitation only enhances the
forecasts in the fall, between 3.5 and 5.5 months ahead; elsewhere, the forecast quality is deteriorated
(although the biases are reduced compared to model P).

At individual sites, we find considerable improvements in streamflow forecast skill using model P + AntP. The
correlation coefficient increases by >0.5 at 34% of sites at the shortest initialization time and at 23% of sites
3 months ahead (Figure S8). At the shortest initialization time, the greatest increase in model skill occurs in
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Figure 3. Spring streamflow forecast skill for model P + AntP at individual stream gauges, initialized at the start of the
spring, with rows indicating streamflow quantiles (Qg o5, Qo 5, Q1). (@) Maps indicate forecast skill at all 290 stream
gauges; columns indicate correlation and CRPSS, with the same color scheme, ranging from blue (positive skill) to white (no
skill) to red (negative skill). For other seasons and flow quantiles, see Figures S4-S7. (b) The time series illustrates the
probabilistic model forecast at site 06359500 (Moreau River near Faith, SD). Time series for all other sites/seasons are shown
in Figure S10. CRPSS = continuous ranked probability skill score.

winter (0.67) and the smallest in summer (0.12). In fall, the skill of model P + AntP remains largely negative
except in the central Midwest around the state of lowa. In the spring/summer, the median flows tend to
be more predictable (R for Qps = 0.18/0.20, respectively) than the extremes (R for Qpos = 0.06/0.18;
Q; = 0.04/0.09). However, in fall/winter, the low flows tend to be more predictable (R = 0.25/0.35; see
Figures 3 and S5). Note also that the correlation values provided here are computed using the Pearson
method, and therefore, poor skill may reflect the influence of outliers.

The time series of fits and forecasts for model P + AntP are also verified visually for every site, season, and flow
quantile (Figure S10). For most sites, the probabilistic forecasts reproduce the variability in the period
1983-2015 relatively well. There may nonetheless be some biases arising from real-world processes, as the
USGS water year reports for some catchments indicate flow abstraction for irrigation or streamflow
augmentation by effluent or return water from sewage treatment plants. Thus, climate and anthropogenic
influences may also decrease model skill in the absence of site-specific calibration.

Antecedent temperature enhances the seasonal flow forecast skill (model P + AntT) at longer initialization
times compared to other models (Figure 2). In terms of R and PS, model P + AntT outperforms model P for
most lead times in the spring. In terms of CRPSS, model P + AntT shows a better performance in winter
and fall for long initialization times. The improved skill at longer lead times is especially true when consider-
ing individual sites (not shown). Biases are also decreased across all four seasons by the inclusion of x;.
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3.3. Secondary Predictability Arising From Anthropogenic Influences

Alongside climate predictors, we also consider ancillary influences that could broadly be described as
anthropogenic, that is, agriculture and population density. Previous work has shown that the use of corn
and soybean catchment extent as a predictor improves seasonal streamflow model fits in the summer and
fall, alongside antecedent precipitation (Slater & Villarini, 2017). Here we find that x,4 enhances the skill of
streamflow forecasts considerably at certain sites (e.g., in fall and winter in lowa; not shown). Yet when
pooling the data across sites, we only find negligible improvements in R/PS for some lead times (Figure 2).
Model biases (SME and SREL) are reduced by the inclusion of x,q mainly in the summer, with some
improvement in conditional biases (SREL) across all seasons.

Last, population density also increases streamflow forecast skill notably at certain sites, but not everywhere.
When observation/forecast pairs are pooled from all sites, the improvement is most visible in the fall. The
CRPSS does not increase notably, as the model biases are also enhanced (Figure 2). In spring and summer,
the conditional biases (SREL) are reduced, and the unconditional biases (SME) are reduced only in summer.
In earlier work, we found that population density enhanced seasonal flow model fits in urban catchments
specifically (Slater & Villarini, 2017). Here the average increase in correlation with predictor Xy, in the 20
catchments with more than 500 persons per square kilometer is +0.43 in the fall (versus +0.13 in catchments
with <500 pers/km?). Therefore, the inclusion of population density as a predictor does seem to enhance
forecast skill, perhaps by better reflecting water consumption patterns or, over longer time scales, the
changes in runoff properties due to the increasing extent of impervious areas.

4, Conclusions

This work reveals that a simple statistical streamflow forecasting approach, using only the dynamical
precipitation forecast as input, can be enhanced with a range of climatic and land cover predictors in differ-
ent seasons and initialization months. Results vary notably depending on the chosen forecasting and valida-
tion approaches, but they suggest that considerable improvements in forecast skill may be obtained by
choosing the predictors that are most appropriate for specific catchments, streamflow quantiles, seasons,
or initialization months (e.g., using both antecedent precipitation and antecedent temperature in winter).

In future work, statistical-dynamical seasonal flow forecasting systems can be further enhanced by improving
the quality of model inputs, outputs, and the model formulation. Model inputs can be improved by using the
entire GCM forecast ensemble instead of simply the mean value and applying forecast ensembling
approaches such as Bayesian updating (Bradley et al.,, 2015), optimal weights (Wanders & Wood, 2016),
Bayesian joint probability (Schepen et al., 2018), or forecast monetary value (Cloke et al., 2017). The types
of model inputs can also be expanded to include information about the initial land surface conditions or
large-scale climate precursors such as the North Atlantic Oscillation or El Nifio-Southern Oscillation
(Emerton et al., 2017; Yuan, Wood, & Ma, 2015). Model formulation may be enhanced by using objective
selection of model predictors (e.g., Robertson & Wang, 2012), interaction terms (e.g., between precipitation
and antecedent climatic conditions), or conditioning approaches that subsample/weight the historical
streamflow time series (Crochemore et al.,, 2017). Last, adjustments can be made to account for human
interferences in the water cycle (e.g., reservoirs and flow abstraction; see Pagano et al., 2014) or catchment
differences, via model calibration or statistical postprocessing methods such as Bayesian model averaging
(Zsotér et al,, 2016) to reduce forecast biases and spread.

This work represents a first step in the systematic testing of NMME-based statistical-dynamical streamflow
forecasts at seasonal time scales. Further research will seek to evaluate a broad range of statistical-dynamical
approaches at global scales, with predictors representing both climatic and anthropogenic influences, and
with the aim of making these forecasts available to users and decision makers.
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