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ABSTRACT 

 

The main vision of wearable computing is to make electronic systems an important part 

of everyday clothing in the future which will serve as intelligent personal assistants. 

Wearable devices have the potential to be wearable computers and not mere 

input/output devices for the human body.  The present thesis focuses on introducing a 

new wearable computing paradigm, where the processing elements are closely coupled 

with the sensors that are distributed using Instruction Systolic Array (ISA) architecture. 

The thesis describes a novel, multiple sensor, multiple processor system architecture 

prototype based on the Instruction Systolic Array paradigm for distributed computing 

on fabrics. The thesis introduces new programming model to implement the distributed 

computer on fabrics. The implementation of the concept has been validated using 

parallel algorithms. 

A real-time shape sensing and reconstruction application has been implemented on this 

architecture and has demonstrated a physical design for a wearable system based on the 

ISA concept constructed from off-the-shelf microcontrollers and sensors. Results 

demonstrate that the real time application executes on the prototype ISA 

implementation thus confirming the viability of the proposed architecture for fabric-

resident computing devices. 
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CHAPTER 1:                       

INTRODUCTION 

 

 

N today’s technological era, wearable electronics has become a crucial part of day to 

day activities. There has been a lot of development in the field of wearable 

electronics due to continuous quest of innovation by industrial and academic 

researchers. In earlier days, communication, electronics, and computing devices used 

were mainly non-portable because of their large size and complexity. Next introduced 

were smaller and lighter portable devices along with integration of some additional 

functions. Due to continuous improvements, now we have multi-purpose micro devices 

which can be embedded into wearables and are better in terms of many criteria such as 

communication, weight, energy management, durability, comfort and size [1.1]. 

In application-oriented research, the concept of wearable computing is a fast-growing 

area. Wearable technology can be used in various sectors like healthcare, military 

applications, gaming, sports, music and emergency services [1.2]. Wearable electronics 

can take the form of a discrete device such as a watch or arm band or it may be 

integrated into clothing opening an entirely new field of applications. As wearable 

devices increase in the level of complexity and become more integrated the 

opportunities to integrate more sophisticated functionality also increase [1.3]. NASA 

3D printed space [1.4] fabric could potentially be used for large antennas and other 

deployable devices, because the material is foldable and its shape can change quickly. 

The fabrics could also eventually be used to shield a spacecraft from meteorites, for 

astronaut spacesuits, or for capturing objects on the surface of another planet. Currently, 

this development is in the early stages but it is easy to see how electronics may need to 

be incorporated.  

The remarkable progress in miniaturization of microelectronics and progress in the 

invention of new materials have made it possible to integrate the functionality into 

clothing [1.5]. The main vision of wearable computing is to make electronic systems an 

I 
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important part of everyday clothing in the future which will serve as intelligent personal 

assistants. Wearable devices have the potential to be wearable computers and not mere 

input/output devices for the human body.  The present thesis focuses on introducing a 

new wearable computing paradigm which can improve the performance of a highly 

human-integrated computer. 

As a result of remarkable innovations in embedded systems over a period of last thirty 

years, the value of microprocessors and communication technology have reduced 

significantly in terms of cost in real terms. Due to this, distributed computer systems 

have become a feasible substitute for uni-processor and centralised systems in various 

application areas of embedded systems.  

 

The research challenge is to address the problems of low bandwidth sensors in wearable 

electronics. One of the solutions to high bandwidth sensor is the use of parallelism. 

1.1 Area of Research 

This thesis will focus on a distributed computing platform for wearable electronics. A 

brief introduction to the mainly used technologies in the current thesis is discussed in 

the following sub-sections.  

1.1.1 Distributed Computing 

A distributed computing system is a collection of processor-memory pairs connected by 

a communications subnet and logically integrated into varying degrees by a distributed 

operating system or distributed database system[1.6]. The communications subnet may 

be a widely geographically dispersed collection of communication processors or a local 

area network. The widespread use of distributed computer systems is due to the price-

performance revolution in microelectronics the development of cost effective and 

efficient communication subnets (which is itself due to the merging of data 

communications and computer communications), the development of resource sharing 

software, and the increased user demands for communication, economical sharing of 

resources, and productivity[1.5]. A distributed computing system potentially provides 

significant advantages, including performance, reliability, resource sharing, and 

extensibility[1.6]. 
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The study of distributed computing has grown to include a large range of 

applications[1.7],[1.8]. However, at the core of all the efforts to exploit the potential 

power of distributed computation are issues related to the management and allocation of 

system resources relative to the computational load of the system. One measure of the 

usefulness of a general-purpose distributed computing system is the system’s ability to 

provide a level of performance corresponding with the degree of multiplicity of 

resources present in the system. This is particularly true of attempts to construct large 

general-purpose multiprocessors[1.7]. 

An interesting area for research which is increasingly getting noticed is decentralized 

processing [1.9]. As compared with centralised processing approach, the main 

advantage it provides is increased robustness. The entire system would never fail 

resulting from the malfunctioning of processors or sensors or other components. Nodes 

can be more flexible in distributed networks because nodes need not be reinitialized 

when nodes are introduced, moved and removed from the network for new topology 

[1.10]. 

There are also potentials of avoiding the fusion of a multitude of sensor data at once and 

adding more units would have potential of cost saving because mostly same design only 

needs to be duplicated. These are other benefits of processing the data in a distributed 

manner [1.11]. 

1.1.2 Distributed Sensor Networks 

In detection applications, distribution of a large amount of simple sensing devices is 

increasingly getting more interest, mainly inspired from its perception in biological 

systems [1.11]. Focus on fusion of sensor signals instead of strong analysis algorithms, 

and a scheme to distribute sensors, results in new paradigm. Especially in wearable 

computing, where sensor data continuously changes, and clothing provides an ideal 

supporting structure for simple sensors [1.11]. 

The justification for using sensors in a wearable computing architecture ranges from use 

in intelligence augmentation to automating tasks depending on particular features of the 

environment. Regardless of whether these applications would be sought after by a large 
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community, one trend that can be observed is that sensors are gradually becoming part 

of mobile and wearable devices [1.11].  

Wearable computers are no exception to this concept either, since large surfaces of 

clothing are an ideal supporting platform for a multitude of sensors, provided they are 

miniaturized so that they do not obstruct the wearer. This size constraint often means 

that the quality of the sensor itself is compromised as well, which leads to the concept 

of many simple sensors [1.11]. 

1.1.3 Wearable Electronics 

Wearable Electronics is a new technological concept that integrates electronics with 

clothing and opens up a whole array of well designed, multi efficient and wearable 

electro textiles which can sense and monitor various functions of the body, can transfer 

data, can offer individual environment control and are able to provide communication 

facilities along with various other major applications[1.3]. The potential of wearable 

electronics is widespread when looking at so many innovatory advancements that are 

happening at an extraordinary rate in many fields of science and technology. These 

developments have the capability to change the world and they will very rapidly 

pervade into commercial products[1.12], [1.13]. Expert high-quality clothing will be 

available to make it possible to observe the important life signs of new born babies, 

clothing that can record the routine of an athlete’s muscles and technique efficient 

clothing that can call even a rescue team for victims of accidents that occur due to bad 

weather conditions and there are limited options for help[1.13]. 

As described by I.Loacher [1.3], system-on-textile is the equipped clothing that 

combines electrical functions with apparel and at the same time maintains the wearing 

comfort. Another name for this is Smart Fabrics. The main aim is not to mix large 

electronic devices into clothing but rather small and committed electrical devices, for 

e.g. sensors along with their signal conditioning components taking the comfort of 

clothing into consideration. The sensors can be placed into positions where they can 

accomplish their sensing task in best possible way by integrating them directly into 

clothing such as accelerometers at joints. In contrast to this, chips that are having 

hundreds of pads and relatively high power dissipation, for e.g. high-speed 

microcontrollers are favourably placed into stiff enclosures such as belt buckles and 
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accessories. By keeping them there, circuits take advantage of the properties of Printed 

Circuit Board (PCB) technology like high-density wiring, multilayer and precisely 

controlled impedances. Fig 1.1 shows the partitioning of a wearable system from a 

technological point of view. 

 

Figure 1.1: Partitioning of a wearable system from a technological point of view 

 

The fabrics containing electronics as well as interconnections integrally woven into 

them are called as Electronic Textiles or e-textiles [1.14]. Electronic textiles provide 

physical flexibility and typical size which is hard to obtain from other existing 

electronic manufacturing techniques. As the electronic components and 

interconnections are woven into fabric, they are less visible and there are less chances of 

getting tangled in objects nearby. One important feature of E-textiles is their easy 

adaptation to any particular application requiring fast changes in computational and 

sensing requirements making them attractive for power management and context 

awareness. The vision of wearable computing is to make the electronic systems an 

important part of everyday clothing in the future. Although, these electronic devices 

should meet certain criteria to be wearable. The main feature of wearable systems will 

be their capability to identify the activity and the behavioural status of the person using 

them and the situations and environment around and then to further utilize this 

information to adapt the functionality and systems configuration [1.14].  
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There are different ways to produce electrically conductive fabrics. A technique is to 

incorporate conductive yarns directly into a textile structure, for instance, through 

weaving [1.14]. However, the incorporation of conductive yarns in a textile structure is 

complex and rarely a uniform process as the electrically conductive fabric has to be soft 

in touch or comfortable to wear rather than rigid and hard. Fig 1.2 shows an approach to 

incorporate circuits in a textile with wire grid [1.15]. 

 

Figure 1.2: Circuit incorporated in a textile with wire grid [1.15] 

1.1.4 Smart Fabrics 

Electronics and Clothing were considered to be two different sectors of industries till 

now but now they are working together to produce some integrated and new innovative 

products[1.16], [1.17].  

From Lymberis and Paradiso [1.18], since last 10-15 years, considerable advancements 

in the terms of data processing, miniaturization, functionality, seamless integration, 

comfort and communication have made Wearable Technology and integrated systems 

as well established fields. The textile industry is also increasingly interested by the 

potential for new value-added clothing products such as smart clothing and 

functionalised apparel and this is also driving the development of wearable systems. 

In [1.17] Smart Fabrics are considered as the integrated systems into textiles and 

includes sensors, a power source, actuators and computing, forming a complete package 

for an interactive communication network. This type of smart systems can only be 

imagined by combining the innovative advances in fields like fibre and polymer 

research, microelectronics, embedded systems, advanced material processing, 



1. Introduction 7 

 
 

telecommunication, signal processing and nanotechnologies. The most common 

platform to integrate smart materials in the form of fibres is textile. In textiles, by 

combining the chemical surfaces processes, the properties of the materials can be 

improved efficiently and also the structure of fabrics permits to exercise redundant 

sensor configurations. 

One of the advantages of wearable application is that the smart fabrics provide a natural 

interface with the body considering comfort clothing with the help of precise and 

reproductive positioning of the sensors [1.18]. Bearing in mind comfort, the sensors are 

covered within the layers of fabric such as fibre optic or sometimes the fabric itself is 

used as a sensor or a distributed network of sensors. 

Fabric computing includes designing a computing fabric which contains interconnected 

nodes but when observed from some distance, it seems like a fabric [1.19]. The two key 

components of fabrics are nodes and links. Nodes are processor(s), peripherals and 

memory whereas links can be described as the functional interconnection between 

nodes. Mainly it indicates towards a merged high-performance computing system that 

contains parallel processing functions, storage and networking linked with each other 

via high bandwidth interconnects. 

Smart textiles or smart fabrics refer to clothing having integral electronics and 

interconnections woven into the fabrics itself [1.15]. This arrangement provides 

physical flexibility which is not attainable with other electronic manufacturing 

techniques. The electronic components and interconnections have low visibility and are 

less prone of getting tangled as they are embedded and woven with fabric [1.15]. The 

vision is to make smart textiles a part of day to day clothing. The main features of smart 

textiles include their ability to identify the activities around them as well as of their 

owner automatically and then to use the collected information to adjust functionality 

[1.15]. 

Medicine is a major area which has benefitted immensely in the applications developed 

from the combination of smart textiles and wearable computers in the form of 

Telemedicine. Fig 1.3 shows the overview of the use of smart fabrics and wearable 

computers in healthcare [1.15]. 
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Figure 1.3: Smart fabric in healthcare [1.15] 

In sports generally, important monitoring functions such as body temperature, heart 

rate, breathing, and other physiological parameters such as number of steps taken and 

total distance travelled can be achieved using smart devices embedded on sport 

clothing. Smart textiles in sports also help in protection against injury of athletes. Fig 

1.4 shows an athlete wearing muscle activation smart suit [1.15]. 

 

Figure 1.4: Muscle Activating Smart suit [1.15] 

The jacket shown in Fig 1.5 helps in the tracking of the location of the wearer using a 

GPS and project the map onto a flexible display screen on the sleeve of the jacket. It 

also displays the moods of the wearer via colour changes and signs [1.15]. 
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Figure 1.5: Networked Jacket [1.15] 

The Ohio State University researchers under the guidance of John Volakis have taken 

the next step toward the design of functional textiles clothes that gather, store, or 

transmit digital information [1.21]. This technology can result in lots of applications 

with further developments like sports equipment that monitors athletes performance, 

even a flexible fabric cap that senses activity in the brain, workout clothes that monitor 

your fitness level, a bandage that tells your doctor how well the tissue beneath it is 

healing, shirts that act as antennas for your smart phone or tablet [1.21].   

1.2 Research Aim 

The overall aim of this work is to advance the field of sensor networks by embedding 

parallel processing concepts.  The application that the thesis will address is in human 

monitoring. 

1.3 Objectives 

The specific objectives of this thesis are: 

• To propose a new sensor networking paradigm that exploits processor level 

parallelism and introduces the concept of on-fabric computation. 

• To validate the method and produce parallel program that can be used on the 

sensor network array. 

• To produce a physical demonstrator for a specific measurement scenario that has 

relevance to human monitoring. 
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1.4 Novel contribution of the thesis 

• To propose a new concept for distributed on-fabric processing. 

• To implement a parallel computing architecture optimised for fabric mounting. 

• To apply the architecture to a physical demonstrator containing an array of 

computing nodes. 

• A present a set of measurements obtained from a physical demonstrator. 

1.5 Thesis Outline 

 

Chapter 2: A Novel Parallel Distributed Architecture 

The purpose of the chapter is to consider the concepts for attaching sensors to 

processing elements. This chapter will review the state of the art in parallel computer 

architectures and will identify a suitable architecture for a wearable computer system. 

The chapter also considers alternative architectures and how they interconnect with the 

physical local sensors. 

Chapter 3: Implementation of Instruction Systolic Array for Smart 

Fabrics 

An implementation of a prototype design of the novel architecture proposed in chapter 2 

is given. The chapter also explains the challenges of implementing the design using 

commercial off-the-shelf components. The prototype has been designed using the 

concept of the Instruction Systolic Array. This chapter also discusses the bus systems 

and an off-the-shelf microcontroller that has been used to implement the prototyped 

concept.   

Chapter 4: Programming and validation of Instruction Systolic Array 

This chapter of the thesis describes the programming of the instructing systolic array 

and implementing the instruction systolic array on an array of off-the-shelf 

microcontrollers. To illustrate some of the basic definitions of the previous chapter, 

parallel algorithm examples are presented.  

Chapter 5: Shape Reconstruction Application using Instruction 

Systolic Array 
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This chapter introduces a 2D mesh architecture prototype based on the Instruction 

systolic array paradigm for distributed computing on fabrics. A real-time shape sensing 

and reconstruction application executing on ISA architecture and demonstrates a 

physical design for a wearable system based on the ISA concept constructed from off-

the-shelf microcontrollers and sensors. 

Chapter 6: Conclusion 

This chapter summarizes the contributions of the thesis and discusses the future work 

that can be conducted. 
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CHAPTER 2:             

A NOVEL PARALLEL DISTRIBUTED 

ARCHITECTURE 
 

HE purpose of the chapter is to consider a series of possible concepts for attaching 

sensors to processing elements. This chapter will review the state of the art in 

parallel computer architectures and will identify a suitable architecture for a wearable 

computer system. The chapter also considers alternative architectures and how they 

interconnect with the physical local sensors. 

2.1 Introduction to Multiple sensors, Multiple Processor Systems 

The classification of parallel computer systems is usually based on their constituent 

hardware components. Once sensors are introduced into the parallel system there are a 

number of possible options for attaching them to the individual Processing elements. 

Suppose that we have a rectangular sensor matrix of N by M sensors, each capturing 

analogue data with an upper-frequency f and we wish to continuously process data, 

producing a result. The application area is assumed to require processing of data from 

multiple sensors. An example of this is contained in a later chapter. 

In Concept 1 shown in Fig 2.1 it can be seen that the single Control unit, C, which 

processes all the sensor data needs to process samples at a rate of 2.N.M.f. That 

processing may be assisted by specialist hardware on particular processors but 

ultimately the control unit must handle this and perform its calculations at an 

appropriate speed.  

T 
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Figure 2.1: Concept 1 showing Control unit C and Sensors Sn,m 

Concept 2 shown in Fig 2.2 is similar in terms of performance, however, although the 

wiring may well be more convenient it uses a shared bus system which may bring 

additional implementation cost and complexity. The interconnection IN shown in Fig 

2.2 could be a bus communication used for the purpose to transfer data. 

 

Figure 2.2: Concept 2 where IN shows an interconnection such as bus 
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Concept 3 shown in Fig 2.3 has a control unit and many processing elements. All the 

processing elements are connected to the control unit. The sensors are attached to the 

processing elements using their own individual buses. Here the processing elements are 

required to process samples at 2f samples/second and after preprocessing may be 

subsequently passed to the control unit. However, this offers a limited advantage if the 

purpose is to process data which involves fusing information from adjacent sensors. 

 

Figure 2.3: Concept 3 showing the inclusion of individual processing elements P 

 

Concept 4 shown in Fig 2.4 has many processing elements. Each processing element is 

physically connected to the neighbouring processing elements. Every processing 

element is attached to its own sensors using an individual bus. The processing can be 

carried out locally at each processing element. Alternatively, the whole network of 

processing elements and sensors can be thought of as a form a distributed computer 

unit. This concept has inherent advantages as it means that co-located sensor data can be 

processed locally and independently by the distributed processors. Selected pre-

processed data can also be communicated reducing bandwidth. It is worth emphasising 

that this is different to a conventional parallel concept because the processing elements 

are physically spaced out to coincide with their local sensors. Indeed, it may be possible 
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for the processing elements and sensors to be manufactured as one single integrated 

circuit. Each one of these integrated units would still be connected by physical bus 

wires which may be constructed using conductive thread or printed conductive wires on 

the fabric. 

 

Figure 2.4: Concept 4 showing communication between neighbouring P's 

 

2.1.1 Comparison between the concepts 

The advantages and disadvantages of all four concepts are listed in the table below: 

Table 2.1: Comparison between concepts 

Concept Advantages Disadvantages 

1 • Simple architecture. 

• Independent bus 

connection and no 

requirement for 

complex bus protocol. 

• Single control unit 

handling all the data. 

• Physical wiring for all 

sensors which returns 

to the single control 
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unit. 

2 • Fewer physical 

connections. 

 

 

 

• The bus can only be 

occupied by a single 

sensor at any one time. 

• Bus protocol required 

and sensor addressing 

must be implemented. 

3 • Some pre-processing 

may be done at the 

processing elements. 

 

 

• More processing 

elements required. 

• Depending on the 

application, it may not 

be better than concept 

1 or 2, where the 

application requires 

less sampling. 

4 • May be able to exploit 

parallel processing 

paradigm to achieve 

improved 

performance. 

• Scalability may be 

achievable without 

reducing computing 

speed. 

• Buses are between 

adjacent processing 

elements and are not 

all routed back to the 

control unit.  

• Programmer’s model 

is very complex. 

• Requires selection of 

suitable parallel 

processing concept and 

strategy for the control 

unit.  

 

The Concept 4 looks promising as the architecture is distributed and has the potential to 

have the better performance compared to other concepts. It also has the benefit of 
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processing the data locally because it will resolve the high bandwidth problem and is 

not reported in the current literature. For example we can implement an FFT and then 

just export very small amount of data. This thesis takes the challenge of developing the 

concept and designing and implementing a wearable system based on this concept. The 

next section considers parallel architectures which may be suitable for such a system.  

2.2 Classifications of Parallel Computer Architectures 

Based on major methodologies that were created in the 1960s and 1970s, a wide range 

of computer architectures have been invented with huge development in VLSI 

technology over last 30 years. With expanding number of computer architectures, the 

classification of the architectures should be done efficiently. The classification should 

be done in such a way that it distinguishes the structures with considerable differences 

and meantime also discloses the similarities between noticeably divergent designs [2.1]. 

Various definitions have been proposed for a range of parallel architectures. Many 

authors have worked on the classification of computer architectures. The most widely 

accepted classifications among all are Flynn's taxonomy [2.2] which is based on 

instruction and data stream. One of the disadvantages of Flynn's classification is it does 

not clearly differentiate between various multiprocessor architectures. Some of these 

disadvantages from Flynn's classification have been resolved in Duncan's taxonomy 

[2.3]. These two taxonomies [2.2], [2.3] showing different points of view of parallel 

architectures have been briefly explained in the next sections. 

2.2.1 Flynn’s Taxonomy 

Flynn's taxonomy, which is one of the earliest classification systems for parallel 

computers, was developed by Michael J. Flynn in 1966. This classification has been 

used as a tool in designing modern processors and their functionalities. Flynn mainly 

used two criteria for the classification of programs and computers, first being whether 

they were working using a single set or multiple set of instructions and second was 

whether or not those instructions were using a single set or multiple sets of data [2.1]. 
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2.2.1.1 Flynn's classification 

Based on the presence of either single or multiple streams of instructions and data, four 

groups according to Flynn's taxonomy are SISD, SIMD, MISD and MIMD. Flynn's 

classification is briefly described below: 

• SISD (Single Instruction Single Data); which mainly describes serial computers. 

• SIMD (Single Instruction Multiple Data); which works with multiple processors 

executing the same instruction simultaneously on different data. 

• MISD (Multiple Instruction Single Data); which works with multiple processors 

executing different instructions to a single data stream. This is more uncommon 

architecture. 

• MIMD (Multiple Instruction Multiple Data); which works with multiple 

processors simultaneously executing multiple instructions on multiple data. 

These four categories along with their architectural differences are shown in Fig. 2.5. 

The major representatives of SISD category are single processor computers. The next 

one is SIMD category, which includes vector computers as well as array computers. It is 

also known as synchronous parallelism. MISD is an uncommon category which is even 

referred as non-existent by various authors. Bräunl [2.4] classified pipeline computers 

under this category. The last one is MIMD category which includes multi processor 

distributed computer systems. It is also known as asynchronous parallelism, which is 

opposite to SIMD. 

Flynn's taxonomy provides useful information for characterising computer architectures. 

Many structures have been found that do not clearly show any of these characteristics 

and hence do not fit in any of these four groups. So, Flynn's classification became 

inadequate when it comes to the classification of many modern computers like pipelined 

processors, systolic arrays, etc. [2.3]. 
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Figure 2.5: Flynn’s taxonomy of computer architectures: a) SISD, b) SIMD, c) MISD, 

and d) MIMD (C: Control unit, P: Processor, M: Memory, I N: Interconnection 

Network (Bus)) 

2.2.2 Duncan’s classification 

The latest architecture innovations were positioned in a broader framework of parallel 

architectures by Duncan's taxonomy. According to Duncan, the classification should 

satisfy the following important points [2.3]: 

• It should maintain the elements of Flynn's classification based on instruction and 

data streams; 

• It should exclude the architectures which incorporate just a low-level parallel 

mechanism which has become a general feature of modern computers; 
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• It should include pipelined vector processors and other architectures which 

intuitively looks as parallel architectures but hard to properly classify under 

Flynn's taxonomy. 

If the above conditions are satisfied, a parallel architecture can be described as a high 

level, the explicit framework used to develop parallel programming solutions with the 

help of multiple processors that work together through simultaneous execution to solve 

the problems. The processors can either be simple or complex. 

The classification of processor structures according to Duncan's classification is shown 

in Fig. 2.6. 

 

Figure 2.6: Duncan’s taxonomy of parallel computer architectures 
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2.2.3 VLSI processor arrays 

Most of the architectures are termed as Very-Large-Scale Integration (VLSI) processor 

arrays. The data is pipelined through the processors simultaneously with processing in 

systolic arrays and wavefront arrays. Wavefront arrays use data driven potential, 

whereas systolic arrays utilise local instructions synchronised globally. Both SIMD and 

MIMD utilise global data and control instead of using pipelined data. It permits 

broadcasting from a memory and a control unit. The main features of four computer 

structures are explained briefly in the segment below. 

2.2.3.1  SIMD architectures 

Normally, the SIMD architectures utilise a central control unit, multiple processors and 

an interconnection network, which establishes processor-to-processor or processor-to-

memory communications. The central control unit broadcasts a single instruction to all 

processors. The processors, in turn, execute the instruction on local data. The main 

function of the interconnection network is to communicate the instruction results 

calculated at one processor to another processor to be used as operands in a subsequent 

instruction. 

2.2.3.2  MIMD architectures 

MIMD architectures use multiple processors which execute independent instruction 

stream utilising local data. These kinds of architectures are capable of supporting 

parallel solutions, in which processors are required to function in a largely autonomous 

manner. MIMD architectures are asynchronous computers that are mainly characterised 

by decentralised hardware control. The software processes executed on MIMD 

architectures are typically synchronised by either passing messages via an 

interconnection network or by accessing data stored in shared memory. High-level 

parallelism is supported by MIMD computers at sub program and task level. 

2.2.3.3 Systolic architectures 

Kung and Leisserson [2.8] were the first to introduce systolic architectures in 1978. 

Systolic arrays are typically defined as high-performance, special-purpose VLSI 

computer systems. They are appropriate for specific application requirements which 
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require a balance of intensive computations along with demanding input/output 

bandwidths. Systolic architectures also called as systolic arrays are organised as 

networks that contain a large number of identical, locally connected Elementary 

processing elements. Data in systolic arrays is pulsed from memory through processing 

elements before returning to memory in a rhythmic fashion. The system is synchronised 

using a global clock and explicit timing delays. For a diverse range of special purpose 

systems, modular processors united by regular and local interconnections act as basic 

building blocks. The performance requirements of special-purpose systems are handled 

using systolic arrays by achieving considerable parallel computations and by avoiding 

input/output and memory bandwidth restrictions. 

2.2.3.4 Wavefront array architectures 

Systolic data pipelining and asynchronous data flow execution paradigm, both are 

combined in wavefront array processors. Wavefront array and systolic architectures, 

both are designated by modular processors and regular, local interconnection networks. 

However, in wavefront array architectures, the global clock and explicit time delays 

used for synchronising systolic data pipelining are replaced with asynchronous 

handshaking to be used as the mechanism for coordinating inter-processor data 

movements. So, when a processor is finished doing its computations and wants to pass 

the data to its successor processor, it sends the data when successor signals that it is 

ready. An acknowledgement is sent by successor after receiving the data. The 

computational wavefronts pass smoothly through the array without intersecting using 

the handshaking mechanism because the processors of the array behave as a wave 

propagating mechanism. In this way, the correct timing of systolic architectures is 

replaced by correct sequencing of computations. 

2.2.4 Conclusion 

After evaluating all the available parallel architectures, the systolic architecture has been 

chosen as being suitable implementing Concept 4 chosen from the previous section. The 

systolic mode of parallel processing has gained a tremendous interest due to the elegant 

exploitation of data parallelism inherent in computationally demanding algorithms from 

different fields of research. In order to explain a little more about how this can be 
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applied to a smart fabric system, the fundamental theory behind the systolic arrays will 

be presented. Research into systolic arrays has been dormant for some years however 

there is no prior work using these arrays in the physically distributed wearable system. 

The application that has been chosen to be implemented was human body monitoring 

thus we need a distributed architecture to implement such an application. There appears 

to be some potential merit in using systolic array design to implement Concept 4 where 

a sensor is closely coupled with the processing element.  

2.3 Systolic Array 

The term systolic array in the computer science was introduced in 1978 by Kung et al. 

[2.8]. Conventionally, a systolic array is made up of a large number of similar 

processing elements interconnected in an array. The interconnections are local, which 

means each processing element can communicate only with a limited number of 

neighbouring processing elements. There are two types of systolic arrays, data systolic 

array and instruction systolic array.  

In data systolic array, the data moves at a constant velocity passing from one processing 

element to the next processing element. Every processing element performs 

computations, in this way contributing to the overall processing that is required to be 

done by the array. Data systolic array is generally called as systolic array.  

In contrast to the data systolic array, an instruction systolic array (ISA) is a grid-

connected network of very simple computation units (processing elements), which is 

characterized by the instructions being pumped from a corner in a systolic manner. 

Systolic arrays are synchronous systems. The exchange of data between directly 

communicating processing elements is synchronised using a global clock. The data can 

only be exchanged at the tick of the global clock. In between two consecutive clock 

ticks, each processing element performs computation on the data which it has received 

upon the last tick and then generates the data which is to be sent to neighbouring 

processing elements at the next clock tick. The processing element is also capable of 

holding data stored in the local memory of the processing element. 
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2.3.1 Features of systolic arrays 

Different authors have given different definitions for systolic arrays. A well-known 

definition according to Kung and Leiserson [2.8] is:  

“A systolic system is a network of processors which rhythmically compute and pass 

data through the system.” 

A more reliable definition of systolic arrays is presented in terms of bullet points below. 

A systolic array can be defined as a computing system having the following 

characteristics [2.4]: 

• Network: It is a computing network having a number of processing 

elements or cells with interconnections.  

• Rhythm: The data is computed and passed throughout the network in a 

rhythmic and repetitive manner. 

• Regularity: The interconnections between the processing elements are 

consistent and regular. The numbers of interconnections for processing 

elements does not depend on the size of the problem because the numbers of 

interconnections between the processing elements are almost the same for 

any size of array. 

• Synchrony: The execution of instructions and the communication data is 

synchronised using a global clock. 

• Locality: The interconnections are local, which means that only 

neighbouring processing elements can communicate directly with each other. 

• Modularity: The network may contain one or more types of processing 

elements. The systolic array can typically be decomposed into different parts 

with one processor type, in case there is more than one type of processors. 

• Extensibility: The computing network has the feature of being extended 

indefinitely. 

• Pipelineability: All data is transferred using pipelining, which means that at 

least one delay element (register) is present between each two directly 

connected combinatorial processing elements. 
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• Boundary: Only processing elements in the network which are at the 

boundary can communicate with the outside world. 

To summarise the characteristics discussed above, it can be seen that a large number of 

processing elements operate in parallel on different parts of the computational problem. 

Data enters into the systolic array through the boundary. Once the data enters into the 

systolic array, it can be used many times before it is output to the outside world. 

Typically, various data streams flow through the array at constant velocities while 

interacting with each other in the course of this movement. Meanwhile, processing 

elements execute one and the same function in a repeated manner. The systolic array 

does not transfer the intermediate results to the control unit. The control unit and the 

systolic array carry out the exchange of only the initial data and the final results [2.1]. 

A systolic array is a form of parallel computing method in which the processors are 

interconnected to each other in the form of a matrix and typically called as cells [2.9]. 

Each processing element has a special feature that it is capable of storing and computing 

data independently of other processing elements and eventually processing the data. It 

can share the information swiftly with its neighbouring processing elements. The major 

advantage of systolic arrays is that the data can flow in multiple directions. Fig 2.7 

shows the general systolic array organisation. In systolic arrays, the input/output rate 

between the processing elements is generally very high, making them suitable for 

intensive parallel operations [2.10]. 

 

Figure 2.7: General systolic organization 



2. A novel parallel distributed architecture 28 

 
 

2.3.2 Types of systolic array structures 

This section of the chapter discusses the four different types of systolic arrays structures 

and their applications which are Linear systolic array, Orthogonal systolic array, 

Hexagonal systolic array and Triangular systolic array. 

2.3.2.1 Linear systolic array 

The processing elements are organised in one dimension in case of a linear systolic 

array as shown in Fig 2.8. The processing elements have interconnections only with 

their nearest neighbours. Linear systolic arrays distinguish themselves in terms of a 

number of data flows along with their relative velocities. One-dimensional convolution 

(FIR filtering) is one of the representatives of linear systolic arrays [2.1]. 

 

Figure 2.8: Linear systolic array 

 

2.3.2.2 Orthogonal systolic array  

The processing elements are organised in a two-dimensional grid in an orthogonal 

systolic array as shown in Fig 2.9. Each processing element, in this case, is 

interconnected to its nearest neighbours in all four directions to the north, east, south 

and west. The orthogonal systolic arrays differ relative to the number and direction of 

data flow as well as the number of delay elements organised in them. One of the 

possible mappings of the matrix multiplication algorithm is the most general 

representation of this array [2.1]. 
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Figure 2.9: Orthogonal systolic array 

 

2.3.2.3 Hexagonal systolic array  

The processing elements are organised in a two-dimensional grid in a hexagonal 

systolic array as shown in Fig 2.10. The processing elements are connected with their 

nearest neighbours on six sides where inter-connections have a hexagonal symmetry 

[2.1]. 

 

Figure 2.10: Hexagonal systolic array  
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2.3.2.4 Triangular systolic array  

The processing elements are organised in a triangular form in a triangular systolic array 

as shown in Fig 2.11. It is a two-dimensional systolic array. Mostly, this form is used in 

different algorithms from linear algebra. Particularly, it is more important in Gaussian 

elimination and other decomposition algorithms [2.1]. 

 

Figure 2.11: Triangular systolic array 

 

Among various types of systolic array structures, the orthogonal systolic array is 

assumed as its structure fits body-worn fabrics the best. The orthogonal systolic array 

has been chosen as the best for wearable applications because of evenly distributed 

processing elements in the rows and columns which benefits in the diagonal flow of 

instructions along the array and the array could have a simpler instruction set. Also, the 

underlying parallel computer model is instruction systolic array, an architectural 

concept suited for implementing a system with high bandwidth and with architectural 

benefits for wearable.  
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2.4 The Instruction Systolic Array 

Instruction Systolic Array (ISA) is broadly used in VLSI for execution purposes as an 

architectural concept [2.11], [2.12]. ISA can be viewed as more flexible and advanced 

from the properties below and are considered chiefly as special purpose architectures.  

The important properties of ISA are: 

• local communication for data and control flow, 

• modularity and scalability 

• local data handling 

• mapping is logical 

In ISA, rather than data, instructions are pumped in a systolic way through a processor 

array which makes it different from standard systolic arrays [2.11], [2.13]. This 

particular arrangement helps in executing different algorithms on the same processor 

array. Also, the instruction stream and the stream of selector bit both get combined. Due 

to this, subsets of processing elements can have a very flexible addressing. The 

fundamental model of a parallel computer can be seen as a mesh connected n x n-array 

identical processors. The processors are capable of executing instructions from a small 

instruction set. The processor array is synchronized by a global clock, and each 

instruction is supposed to take the same time for its execution.  

2.4.1 Principles of ISA 

The instructions for the ISA are inputted from the upper left corner of processor array as 

shown in Fig. 2.12, instruction flow in horizontal and vertical directions through the 

array step by step [2.12]. This process makes it sure that during each clock cycle, the 

same instruction is available for execution within every diagonal of the array. 
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       (3)        (4)           (5) 

   

        (6)         (7)          (8) 

Figure 2.12: Execution of an ISA instruction 

Each processor has some data registers that also includes a designated communication 

register C. Communication process between two processors, A and B take place in 

following way: 

In [2.12] the concept of data transfer between the processors is explained as for 

example, a data item is to be sent from processor A to B, first A writes the data item 

into its own communication register. In the next instruction, B reads the contents from 

the communication register of A. Each processor is allowed only to write data to its own 

communication register, but it is allowed to read data from the communication registers 

of its four direct neighbouring processors. Two or more processors can read the data 

from same communication register at the same time. To avoid confusion between 
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read/write processes, it is arranged so that reading from a register is carried on during 

the first half of the execution of instruction and writing on a register is carried on during 

the second half as shown in Fig 2.13. 

 

Figure 2.13: Instruction cycle 

The main feature of ISA is that throughout the array, it provides a rhythmic flow of 

instructions [2.11]. The basic architecture of an ISA is a mesh-connected array of 

processing elements, and every processing element is capable of executing instructions 

from a fixed instruction set. The execution of a large variety of algorithms can take 

place on same ISA. In an ISA, along with the instruction stream, an orthogonal stream 

of control bits is also used. The execution step for any instruction in processing element 

takes place only when the selector bit at that processing element is 1. Due to the use of 

selector bits in execution, the array processor architecture tends to be very flexible. 

Instructions and selector bits are used for controlling processing elements. 

The processors are provided with instructions and selector bits from outside the array. 

Instructions are input one by one from the upper left processor, and then they move in 

diagonal wave fronts throughout the array [2.14]. 

2.4.2 ISA Architecture 

The flow of instructions is generally from top to bottom (north to south) of the array. On 

the other hand, the selector bit flows from left to right (west to east) of the array. To 

carry out the instructions at that particular processing element, the selector bits must be 

1. Fig 2.14 shows the execution of ISA diagonal. 
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     (2)                                             (3)   (4) 

                      

 (5)              (6)               (7)                (8) 

Figure 2.14: Execution of an ISA diagonal (I - Instruction, S - Selector bit, + - 

Execution). 

The ISA can be thought as more of a pipelined SIMD array. It is still possible to 

perform broadcast and ring shift operations with a minimum number of instructions 

even though there are no global wires or wrap-around connections [2.14]. 
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2.4.3 Programming and Execution of ISA 

Laisa is a Pascal-like programming language used for ISA programs. It supports control 

structures like conditional statements and loops as well as procedures [2.9]. Basic 

machine code for the ISA is implemented in LAISA using brackets: 

Elementary statements in Laisa are of the form 

<instruction; selector> 

Instructions can be register assignments of the form 

<set source-register, destination-register> 

or arithmetical or logical operations of the form 

<instructioncode source-register1, source-register2, destination-register> 

Registers can be any of the data registers or the communication register C, the 

communication registers of the western, northern, eastern or southern neighbour CW, 

CN, CE, CS, respectively [2.16]. 

Data is input or output to the processor array is finished via the open-ended processor 

links present at the boundary of the array [2.9]. The ISA is supposed to be embedded 

into an environment which is proficient enough to: 

•    supply ISA with instructions and selectors, 

•    supply ISA input data and to store its output data. 

The key concept is that there should be a communication in between the processors in 

the form of an array with short interconnections and without the use of any global wires. 

By using the concept of pipelined execution of instructions in the processor, increases 

efficiency of the array [2.15].  
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Figure 2.15: Execution of ISA program 

The controller receives its instruction queue and selector bits which are loaded before 

the execution of an application. The ISA block consists of individual processing 

elements. The ISA program is loaded into each processing elements on the Instruction 

systolic array direct from the host computer. The ISA gets its instructions from the ISA 

program memory. It is also loaded before the execution of the desired application 

programs. The execution of the programs is started by the flow of instruction and 

selector bit stream, as indicated in Fig. 2.15.  

2.4.4 Applications of ISA 

The main applications of Instruction Systolic Array are as follows [2.16]: 

•   Solving problems regarding linear equations in Digital Image Processing     
(DIP) 

•    Computer Graphics 

•    Cryptography  

To summarize, following properties sums up the advantages of ISA architecture [2.16]: 

•    Broad applicability 

•    Only local communications for control and data flow purposes 

•    Fast and parallel computations 
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• Scalability and modularity 

2.5 Adaptation to ISA 

Schmidt et al. [2.13] and Sim et al. [2.17] have adapted a different method from the 

conventional instruction systolic array. To improve the performance of their application 

they proposed modifying the way in which selector bits are sent from both top and left 

(north and west). The north will have both instruction and selector bit entering the array. 

In the present thesis, a similar approach has been taken into consideration. This has the 

advantages on the performance, simplification of instruction and data loading into the 

array. The details of this will be explained in chapter 4.   

2.6 Systola 1024 

The first commercial parallel computer based on the ISA architecture [2.18]-[2.20] is 

Systola 1024 which is shown in Fig. 2.16. The ISA has been integrated for standard 

personal computers on a low-cost add-on board. A strict co-processor concept has to be 

followed to operate using this board. By executing corresponding parallel programs on 

the Systola 1024, the sequential programs can be accelerated by replacing 

computationally intensive procedures. 

 

Figure 2.16: Systola 1024 from [2.21] 

One of the real time applications where ISA is used is in optical surface inspection of 

coated surfaces. Special measuring methods were needed for this application, which 

enables quick scanning of large surfaces and avoiding the direct contact to the surface at 

the same time. For such an application, optical methods combined with digital image 

processing provide a satisfactory solution. For applications mainly in the sector of 

machine vision and fast vision, systems provide the required computing power by 

utilising special image processing hardware or high-power workstations. The major 
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disadvantage of these systems is the involvement of large budget. The instant outcome 

is cutting the quality control out of economic reasons, which is the end quality control is 

generally carried out by human visual inspection.  

A low-cost alternative to large budget solutions is developed by ISATEC and is termed 

as the Surface Quality Scanner (SQS 1024) [2.22]. The combination of a standard 

personal computer, the Systola 1024 board and low-cost video data acquisition boards, 

offers to provide a solution for quality control at a competitive price and performance 

ratio. The Systola 1024 board is used as hardware base for the technology. 

2.7 Conclusion 

The chapter has reviewed a range of parallel architectures which are known. The 

application in question has specific requirements which are somewhat unusual because 

there is a desire to colocate the sensors and processing elements for the purpose of 

reducing wiring complexity. A significant theoretical advantage of the ISA is that data 

is local to the processor and as such a common limitation of the ISA, namely transfer of 

data onto the array is circumvented. There are clearly other mechanisms for improving 

performance, however other architectures do not have this inherent advantage. The 

following chapters will make the assumption that this architecture will be used and 

consider the implementation, programming and performance of such a computer. 
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CHAPTER 3:           

IMPLEMENTATION OF INSTRUCTION 

SYSTOLIC ARRAY FOR SMART FABRICS 
 

HIS chapter presents a more detailed explanation of the novel architecture 

proposed in the previous chapter. This chapter also explains and addresses the 

challenges of implementing the design using commercial off-the-shelf components. 

Taking the theory of the instruction systolic array, a prototype design is proposed. This 

chapter also discusses some candidate bus systems that can form the interconnects 

between processing elements and how off-the-shelf microcontrollers can be selected to 

produce a viable functional prototype.   

3.1 A novel architecture for on-fabric parallel processing 

In the subject of this thesis, a distributed wearable system is of interest. This can be 

mapped onto the ISA concept as shown in Fig. 3.1. The processing elements are 

connected to their neighbouring processing elements. Each processing element is 

closely coupled to different sensors. The northern boundary of the array is connected to 

the instruction stream flow controller which stores the array of instructions that needs to 

be passed to the processing elements. The western boundary of the array is connected to 

selector bit flow controller which stores the array of selector bits that needs to be passed 

to the processing elements. The processing elements and the sensors are closely 

coupled, which means both are co-located so that they can have local data flow and 

processing can be done locally. The processing elements and sensors are scalable where 

the array for the processing elements and the sensors connected to the processing 

elements can be increased or decreased.  
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Figure 3.1: System concept 
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     FRONT                BACK 

Figure 3.2: General concept of a sensor system with integrated processing elements for 

human body applications 
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As discussed earlier in Chapter 1, the ISA concept can be implemented for body sensing 

applications as shown in Fig 3.2. In the figure, the processing elements are distributed 

along the front and back side of the fabric worn on the human body. Each side is 

distributed with 8 processing elements and is closely coupled with their respective 

sensors. 

3.2 Implementation of novel architecture 

An important objective of this thesis is to test the concept proposed by implementing in 

a real application. The performance of such a system would be best optimised by 

custom Application Specific Integrated Circuit (ASIC) design. However, within the 

scope of the work, this is not realistic and as a consequence, certain compromises need 

to be made. It is assumed that off-the-shelf microcontrollers will be used as the 

processing elements which implement standard buses and protocols. It is expected that 

the system would prove the concept and reveal the properties of such a device. 

The purpose of the implementation is to explore the merits and pitfalls of such a system, 

however, there is no expectation that performance will be fully optimised at this stage. 

In order to make use of off-the-shelf components such as sensors, conventional bus 

architectures for communication between elements has been assumed. Here the 

candidates for the bus are considered.  

3.2.1 Candidates for bus systems 

A reliable distributed embedded system can be achieved through a fast and efficient 

communication. The exact interconnections between the processing elements, sensors, 

instruction flow and selector bit flow using the bus are explained using Fig. 3.3 [3.1]. 

The most usual method of transmitting data in between two computers or between a 

computer and a peripheral device is serial communication. Serial communication 

transmits data to a receiver sequentially, one bit at a time, over a single communication 

line. 
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This transfer of information can be in different ways: 

 

 

 

 

 

 

 

 

Figure 3.3: Different methods for transfer of information 

The main advantage of serial communication is its low pin counts. Serial 

communication can be carried out by using just one input/output pin, while for parallel 

communication eight or more pins are required. There are so many common embedded 

system peripherals that support serial interfaces, like Liquid Crystal Displays (LCDs), 

temperature sensors, analog-to-digital and digital-to-analog converters [3.2]. 

Table 3.1: Difference between serial and parallel communication 

SERIAL COMMUNICATION PARALLEL COMMUNICATION 

A serial port sends and receives data, one bit at 

a time over one wire. 

A parallel port sends and receives data eight 

bits at a time over eight separate wires or lines.  

Only a few wires are required for transmission 

and reception.  

The setup looks bulkier because of the number 

of individual wires. 

Serial communication is slower than parallel 

communication given the same signal 

frequency. 

A parallel communication device sends and 

receives the same amount of data 

simultaneously, thus making it faster. In 

parallel you are transferring many bits at the 

same time, whereas in serial sends doing one 

bit at a time. 

It is simpler and can be used over longer 

distances. 

Can be used for shorter distance. 

Communication 

Mode of 

transmission 

No. of bits 

transferred 
Usage of clock Direction of 

transmission 

Wireless 

Wired Serial 

Parallel 

Synchronous 

Asynchronous 

Uni-

directional 

Bi-directional 
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In comparison with parallel communication, serial communication has various 

advantages such as: 

• It needs fewer interconnecting cables and therefore requires less space. 

• Many peripheral devices and integrated circuits have serial interfaces. 

• Clock skew between different channels is not a problem. 

• There are fewer conductors as compared to that of parallel communication 

cables, therefore cross talk is not a big problem. 

• It is comparatively cheaper to implement. 

3.2.2 Serial bus protocols 

There are various different protocols, with each one of them having its own interface 

requirements. Bus interface encodes the commands or the state of an input/output to 

digital information which is then transferred through the cable. The most commonly 

used standards in communication can be listed as [3.3]: 

1) UART (Universal Asynchronous Receiver/Transmitter) 

2) I2C( Inter Integrated circuit) 

3) SPI( Serial Peripheral Interface) 

4) CAN (Controller Area Network) 

5) USB (Universal Serial Bus) 

The relative advantages of these bus protocols, when applied to the proposed system, 

are listed in table 3.3 as shown below [3.4]: 

Table 3.2: Comparison of different bus system 

Protocols Advantages Disadvantages 

UART • Asynchronous serial 

communication. 

• Full duplex communication. 

• It is used for communication 

between equipments as an 

external bus. 

• Only two devices can be 

connected to the bus. 

I2C • On PCB type bus between 

chips. 

• Can work only in half duplex 

mode. 
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• Master and slave share a 

common clock. 

• Flexible data transmission 

rates. 

• Size of the address used for 

the slaves 7-bit, 8-bit and 10-

bit support 127, 255, and 

1023 devices respectively. 

• Requires pull-up resistors which 

can limit clock speed. 

• Imposes protocol overhead that 

reduces throughput. 

SPI • On chip or on-PCB type bus. 

• Synchronous serial 

communication. 

• Can work in full duplex 

mode. 

• Requires more pins on an IC 

package than I2C. 

• Can be used only for short 

distance communication. 

CAN • CAN bus is a vehicle bus 

standard designed for 

communication within a 

vehicle without a host 

computer. 

• Highly secured and priority 

based protocol.  

• Half Duplex as data cannot be 

sent and received 

simultaneously.  

• It is used for communication 

between equipments in 

automotive. 

 

USB • Supports up to 127 devices. 

• Plug and play. 

• Higher speed up to 12Mbps. 

• Significant hardware overhead 

• It is used for communication 

between equipments. 

• Not designed for simple buses. 

 

There are clearly a number of bus protocols that could be used, and these can be 

commonly found on microcontrollers. Some of these come with on-chip hardware 

support and readily accessible from the software suite for the microcontroller. Of the 

ones available, both SPI and I2C are common, though of come there may be limits to the 

number of available buses on a single microcontroller. Owing to the large number of 

physical interconnections that are likely to be necessary to wire a suitable-sized sensor 

array a compromise has to be taken by selecting I2C bus and sharing these bus for both 
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the ISA inter element connections and sensors. Suitable sensors such as accelerometers 

are readily available with I2C.   

3.3 Details of the Inter-Integrated Circuit (I2C) Bus 

Typically, an embedded system contains one or more microcontrollers along with other 

peripheral devices such as, input/output expanders, sensors, memories, converters, 

matrix switches, LCD drivers [3.4]. The effort is to minimize the system complexity 

and the cost of connecting all those devices together. The main design requirement of 

the system is to make the slower devices capable of communicating with the system 

without slowing down the faster devices. A serial bus is required to satisfy these 

essentials. A bus meaning the detailed description for the formats, connections, 

addresses, procedures and protocols which mainly explains the rules on the bus. Serial 

data connections are preferred because they require just one or two signal wires as 

compared to a parallel bus, which needs at least eight data lines plus control signals. For 

any given communication channel, the best connection can be chosen based on the 

speed, number of hardware connections required and the distance between nodes. 

From the Microchip manual [3.5] the Inter-Integrated Circuit (I2C) bus is explained as it  

mainly designed for short-range communication between chips within the same system 

by utilizing a software addressing system. It functions like a simplified local area 

network and needs just two wires. A simple bi-directional 2-wire bus is developed by 

Philips Semiconductors (now known as NXP Semiconductors) for an efficient inter-

integrated circuit control. All the devices that are compatible with I2C bus integrate an 

on-chip interface which entitles them to communicate with each other through the I2C 

bus. Many interfacing problems faced while designing digital control circuits are solved 

by using this design concept. Typical I2C bus is shown in Fig 3.4. 

The basic bus terminology is explained from[3.6], 

• Transmitter The device that transmits data on to the bus. 

• Receiver The device that receives data from the bus. 

• Master The device from which the clock originates, starts communication, 

sending I2C commands and halting communication. 

• Slave The device that ‘listens’ to the bus and is addressed by the master. 

• Multi-master I2C can have more than one master and each can send commands. 
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• Arbitration The process that determines which master has control of the bus. 

• Synchronization Process whereby the clocks of two or more devices are 

synchronised. 

 

Figure 3.4: Typical I2C bus 

The working process of I2C is explained in the NXP Semiconductors specification [3.7]. 

I2C works on synchronous communication. It is a bi-directional protocol which permits 

a master device to initialise communication with a slave device. Both these devices 

exchange data with each other which is then implemented by an “Acknowledge” 

system. The Acknowledge (ACK) system is considered as one of the important 

characteristics of an I2C system. It permits the data to be sent in one direction from one 

device to another device through the I2C bus. That device will ACK to signal that the 

data was received. As a peripheral can acknowledge data, there is an uncertainty 

regarding whether the data reached the peripheral. The data must be timed very 

precisely, however, RS232 and other asynchronous protocols do not utilise a clock 

pulse. As I2C is having a clock signal, the clock can vary without interrupting the data. 

The changes in clock rate will simply change the data rate.  

 

The I2C is based on the principle of Master-Slave protocol, the master device controls 

the Serial Clock Line (SCL) and initialises the data transfers as well. This line orders 

the timing of all the transfers taking place through I2C bus. Slave devices are capable of 

manipulating this line but they can only make the line low, which means that item on 

the bus is not able to deal with more incoming data. When the line is forced to be low, 

more data is impossible to clock into any device. This situation is termed as “Clock 



3. Implementation of Instruction Systolic Array for smart fabrics 50 

 
 

Stretching”. As already mentioned, no data will be shifted unless the clock is 

manipulated. Same clock line SCL controls all the slaves. On I2C bus, the data can flow 

in either direction, but master device controls the data when it flows. There are a 

number of conditions of I2C bus. These conditions specify the events of starting, 

stopping, acknowledging a transfer among others [3.7]. 

 

Every device that is connected to the bus is software addressable by using a unique 

address. All the times, simple master/slave relationships are present, where masters can 

function like master-transmitters or master-receivers. It is true multi-master bus having 

features such as arbitration to prevent data corruption and collision detection, in case 

two or more masters initialize data transfer simultaneously. Bi-directional, 8-bit 

oriented, serial data transfers can be made at: 

• up to 100 kbps in the Standard-mode 

• up to 400 kbps in the Fast-mode 

• up to 1 Mbps in Fast-mode Plus 

• up to 3.4 Mbps in the High-speed mode 

 

3.3.1 Bus Signals 

I2C is a serial interface which utilises two signals to exchange data serially with other 

device. The signals used are [3.7]: 

• SDA: This signal is called as Serial Data.  Any data transferred from one device 

to another goes on this line.  

• SCL: This signal is called as Serial Clock Line signal. This signal is initiated by 

the master device, which controls when the data is sent and when it is read. This 

signal can be forced to low making the data impossible to clock.  

There are just two possibilities for electric states of I2C lines, which are drive low 

and float high. The concept of pull up resistor is really important in the functioning 

of I2C. I2C operates by having a pull-up resistor on the line and devices are only 

capable of pulling the line low to transmit the data. The line will be in state float 

high if none of the devices are pulling it. The line would be floating to an unknown 

state in case no pull up resistors are used. 
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Figure 3.5: Basic Mechanism in I2C from NXP Semiconductors adapted from [3.7] 

1. Data transfer is initiated with a start bit signalled by SDA being pulled low 

while SCL stays high. 

2. SCL is pulled low, and SDA sets the first data bit level while keeping SCL low. 

3. The data are received when SCL rises for the first bit. For a bit to be valid, SDA 

must not change between a rising edge of SCL and the subsequent falling edge. 

4. This process repeats, SDA transitioning while SCL is low, and the data being 

read while SCL is high. 

5. A stop bit is signalled when SCL rises, followed by SDA rising. 

In order to avoid false marker detection, there is a minimum delay between the SCL 

falling edge and changing SDA, and between changing SDA and the SCL rising edge as 

shown in Fig 3.5. 

 

There might be a disagreement if one device is trying to drive the line high while the 

other device is trying to drive it low. This disagreement might result in damaging either 

or both devices operating on the line. To avoid this situation, the pull-up-drive low 

system is used that regulates which device has control of the bus. If other devices want 
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to use the bus at the same time, this system indicates that the bus is busy. This device 

will figure out that bus is already driven low and is used by other device currently. 

 

Thus, the working of the I2C bus and their signals and communication has been 

explained in this section. The next section will explain the I2C bus connection in the 

proposed architecture. 

3.4 Prototype Design 

The concept is based on the instruction systolic array which consists of an array of 

Processing elements connected with the different peripheral components preferably 

sensors. The data has to be shared by other processing elements and sensors through 

serial data communication. A suitable communication channel, which is I2C bus 

communication, has been selected for the hardware connections. 

The processing elements are connected in a mesh-like structure in Fig. 3.6 which is 

globally interfaced to all the other devices including sensors through the I2C bus. 

Separate processors are allocated for global input of instructions and selector bits apart 

from the array of processing elements. The whole model is designed in such a way that 

each processing element will have four I2C protocols i.e. two of them (west and north) 

acts as slave and other two (east and south) acts as master.  Each master will be 

connected to the adjacent slaves and makes sure that all the slave addresses are 

addressed by it. The sensor's data are communicated and transferred only by the masters 

as the clock and data initiation processes are controlled by the master. Each processing 

element is connected to its own sensors as shown in Fig. 3.7. Each processing element 

combined with its own sensors is termed as a unit cell.  
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Figure 3.6: Processor array showing grid arrangement 

According to the ISA concept, instructions and selector bits needs to be propagated 

through the chain of processors according to the clock. It is also understood that all the 

processors connected at the extreme left and top (west and north) are only meant for 

getting the inputs from the instruction and selector bit controllers. Different operations 

can be performed on the desired data where the operations are decided by the 

instructions which are propagating through processors in a systematic manner and 

specific data on which the instructions have to be performed are decided by the selector 

bits. The instruction flow will be from top to bottom (north to south) of the array. The 

selector bits flow from left to right (west to east) of the array row and the selector bits 

must be 1, so that particular instruction is carried out at that particular processing 

element. 
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Figure 3.7: Detail of I2C bus connections 

Each cycle is divided into three stages, they are fetch, execute and write. This 

mechanism is explained below, 

• All processors start in a default state listening on slave ports (or filled with 

NOPs, ideally). 

• 1-byte instruction is written to north boundary slaves at the same time 1-bit 

selector bit (as part of control bit) written to west boundary slaves. 

• Instruction written to north slaves and sensor values are read from the east port. 

• Then the communication takes place in the following order between North-

South, South-North, East-West and West-East. 

Then the execution of the instruction takes place in the processing element.  
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3.5 Selection of Microcontroller for the Processing Element 

The ISA is implemented by using commercially available microcontrollers. Number of 

I2C interface buses were taken into consideration while choosing the microcontrollers 

for implementing ISA. The initial choice to implement the ISA concept was on a 

Microchip PIC16F1829 microcontroller shown in Fig 3.8.  PIC16F1829 is a 20-pin 

microcontroller with two I2C bus interfaces. The idea was to implement the ISA concept 

using two available I2C bus interfaces and bit banging two more I2C interfaces. 

Challenges had been faced during the implementation of the ISA concept where there 

were timing issues with the software modified pins. 

 

Figure 3.8: Microchip PIC16F1829 

Due to the implementation challenges on PIC16F1829, research went to explore other 

microcontrollers with more I2C interfaces. Thus, the processing elements that have been 

chosen for implementing ISA concept are 32-bit ARM Cortex-M0+ LPC824 

microcontrollers. Fig 3.9 shows ARM Cortex-M0+ LPC824 microcontroller mounted 

on NXP LPC824-MAX board. The reason for choosing LPC824 microcontroller is it 

includes four I2C bus interfaces. One I2C supports Fast-mode Plus with 1 Mbit/s data 

rates on two true open-drain pins and listen mode. Three I2Cs support data rates up to 

400 kbps on standard digital pins [3.8]. 

 

Figure 3.9: 32-bit ARM Cortex-M0+ LPC824 microcontroller mounted on NXP 

LPC824-MAX board 
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The LPC824 microcontrollers are mounted on LPC824-MAX board which is developed 

by NXP to enable evaluation and prototyping with the LPC824 microcontrollers. The 

array of microcontrollers connected using ISA concept with a peripheral device (sensor) 

and their I2C connections are shown in Fig. 3.10. 

 

Figure 3.10: Processor Array with peripherals 

Fig. 3.11 shows the connections between two microcontrollers with four I2C buses 

connected between them. The sensors are attached to the east port of both the 

microcontrollers. The working of all four I2C buses available on the microcontroller has 

been verified by sending an instruction and receiving the data from the sensor through 

the serial port. I2C0, I2C1, I2C2, I2C3 represents all the four I2C bus connected between 

the two microcontrollers. 

INSTRUCTION 

STREAM 

CONTROLLER

SELECTOR BIT 

CONTROLLER

 NXP 

LPC824-MAX 

board

Sensor
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Figure 3.11: I2C connection between two microcontrollers with sensor 

3.6 Power and programming interface for the array 

The prototype board has been designed with 16 microcontrollers distributed in a 4 x 4 

array and 2 microcontrollers as instruction and selector bit flow controllers as shown in 

Fig.3.12. The wires between the microcontrollers are the I2C buses. The 

microcontrollers are powered by the USB cable running from the hubs. 

 

Figure 3.12: Prototype board 
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A secondary unit can be seen on top of the array of microcontrollers in Fig.3.12, which 

is developed for deploying the firmware to the array of microcontrollers without 

manually switching between them. The secondary circuit is also used for powering all 

the microcontrollers from the USB hub and also used as a serial interface with the host 

computer in case to extract the output data. The secondary unit consists of two 10 port 

USB hub, a NI USB 6009 DAQ, a programming board which acts as a switching 

circuit. The power for the microcontrollers is extracted from the USB hub. The 

programming board consists of two HCT164 8-Bit Parallel-Out Serial Shift Register, 16 

ZTX551 PNP Silicon Planar Medium Power Transistor, 16 1K Resistor and 18 wire to 

board connectors. All these are soldered according to the schematic shown in Fig. 3.14 

on a strip board as shown in Fig 3.13.  

 

Figure 3.13: Programming board (switching circuit) 
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Three digital lines are taken from the NI USB 6009 DAQ and connected to the shift 

registers as data, memory clear and clock. The power from the micro USB cable of each 

microcontroller is passed through the switching circuit before reaching the 

microcontroller directly from the USB hub so that the switching circuit turns on the 

power of each microcontroller in an order to program them one at a time.  

 

 

Figure 3.14: Schematic for the switching circuit 

An application as seen in Fig. 3.15 has been developed using LabVIEW to control the 

programming of the microcontrollers. Total number of microcontrollers that needs to be 

programmed can be set in the application. The digital lines can also be selected from the 

application. Once the number of microcontrollers and the digital lines are selected the 

location of the object file needs to be included in the command line so that the object 

file can be programmed on to the microcontrollers. If an error occurs while 

programming the controllers the processor failed light will turn on and the process will 
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be ended. The status of the microcontrollers can be viewed in the processor report 

section. 

 

Figure 3.15: Application for programming the microcontrollers 

3.7 Conclusion 

In this chapter, a prototype architecture based on the concept has been described, along 

with a method and circuit that allows programs to be developed. A few compromises 

have been made during the implementing of the concept such as opting a particular bus 

system, selecting a microcontroller for the processing element, and sharing one of the 

processing devices interconnects with the peripheral devices (sensors). It can be 

expected that these will have an impact on the performance. However, there is a lot to 

research in terms of programming and realising such a device that needs to be done 

prior to optimising in the form of custom ASICs.  As this has been previously stated, the 

purpose of the thesis is not to fully optimise but to explore the architecture and to study 

the programmer’s model.   
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CHAPTER 4:                

PROGRAMMING AND VALIDATION OF THE 

INSTRUCTION SYSTOLIC ARRAY 
 

HIS chapter of the thesis describes the programming of the instructing systolic 

array and implementing the instruction systolic array on an array of off-the-shelf 

microcontrollers. To illustrate some of the basic definitions of the previous chapter, 

simple parallel algorithms are validated in this chapter.  

4.1 Programming the Instruction Systolic Array 

In ISA, a sequence of instructions and selector bits are pumped through an array of 

processing elements which can efficiently execute instructions and selector bits. An ISA 

is capable of executing a large variety of parallel algorithms, even if every processing 

element can execute only a few different instructions (see section 4.2 and 4.3). To 

program the processing elements for executing parallel algorithms, the operations of 

instruction and selector bit cycles need to be efficient.  

The ISA application is programmed on to the chosen ARM Cortex-M0+ LPC824 

microcontrollers. The Instruction and Selector bit controller holds the sequence of 

instruction and selector bits that will be passed to the microcontroller array. All the 

microcontrollers in the implemented array itself share a common firmware which is 

deployed using the method described in the previous chapter. The sending of instruction 

and selector bits are disabled at the end boundary microcontrollers. It is challenging to 

represent a program designed for an ISA in a conventional way and so a special 

notational scheme is helpful to understand the operation [4.1].  

Instruction Controller: 

1. Initialise system clock & port pins as required. 

2. Initialise all 4 I2C port as master. 

3. Send Instructions every tick. 

T 
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4. Stop if all the instructions are completed. 

Selector bit Controller: 

1. Initialise system clock & port pins as required. 

2. Initialise all 4 I2C port as master. 

3. Send Selector bits every tick. 

4. Stop if all the selector bits are completed. 

Processing Element Controller: 

1. Initialise system clock & port pins as required. 

2. Initialise 2 I2C port as Slave (North & West). 

3. Initialise 2 I2C port as Master (South & East). 

4. The processor waits for frame bytes to be received from North and West Slave 

ports. 

5. The instruction byte and the selector bit are received through north and west 

ports separately. 

6. After receiving both the instruction and the selector bit they are decoded and 

executed by an interrupt service routine. 

7. Once the execution is complete the instruction and the selector bit is then 

forwarded to the neighbours through south and east port. 
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Figure 4.1: Working of the ISA program 

The instruction and selector bit microcontrollers are programmed with a sequence of 

instructions and selector bits. Once all the microcontrollers are flashed with the 

firmware, all the processing elements microcontrollers are initialised, all the processing 

element microcontrollers will be in their default mode which is listening. The 

instruction and selector bits are passed to the processing element; the latter is in the 

listening mode waiting for the frame bytes to be received from the north and west slave 

I2C ports. Once both the instruction and selector bit are received they are then decoded 
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and executed through an interrupt service routine. After the execution, the instruction 

and the selector bit are then forwarded to the neighbours through the south and east 

master I2C ports.  Once the frame has been received in the corresponding FIFO register, 

the frame is then decoded to find whether the frame contains instruction and selector bit 

or data. If the received frame is data, the data register is updated else if the received 

frame is instruction and selector bit, depending on the instruction and selector bit it will 

either execute the instruction or no operation will occur. After this process, the 

instruction followed by the selector bit will be sent in a sequence through the south and 

east master ports to the neighbouring microcontrollers. Fig 4.1 shows the working of 

ISA program. 

The next section of the thesis is to validate the concept of the implemented instruction 

systolic array using two simple parallel algorithms. Two well-known parallel 

algorithms: merge algorithm and matrix multiplication have been run to validate the 

instruction systolic array.  

4.2 Merge Algorithm Validation 

The Merge algorithm was first proposed by Kunde et al. [4.1]. The merge algorithm is 

comparatively simple sorting algorithm used in parallel computing. It was initially 

developed for use on parallel processors with local interconnections. It starts operating 

by comparing all indexed pairs of neighbouring elements in the array. If any pair is in 

wrong order, that is the first is larger than the second, the elements of the pair get 

switched. The above step is repeated continuously until all the elements in the array are 

sorted. In case of parallel processors, this process takes place simultaneously in all the 

processing elements depending on instruction on the particular processing element. 

4.2.1 Algorithm 

An instruction systolic array implementation of merge algorithm through parallel 

algorithm is illustrated below from [4.1], 

Step 1: Sort all columns of the 4 × 4 array by odd-even-transposition sort. 

Step 2: Sort all rows of the 4 × 4 array by odd-even-transposition sort. 
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The ISA program for the merge algorithm is presented in Fig. 4.2. The figure shows the 

set of instructions and selector bits that will flow through the array. In Fig. 4.2, the 

instruction and the selector bit part of the program are represented in parallelogram 

shape made up of their respective instruction and selector bits diagonals. Diagonals 1 to 

6 correspond to step 1 and diagonals 7 to 12 to step 2 of the merge algorithm. A set of 

no operation instructions is flushed through the array before and after the instruction 

and selector bit diagonal. The merge algorithm is scalable the number of instructions 

and selector bits will be increased according to the increase in the size of the array [4.2]. 

4.2.2 Program 

 

Figure 4.2: ISA program for merge algorithm 

The meaning of the instruction symbols on Fig. 4.1 are illustrated below in the table, 
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Table 4.1: Instruction symbol definition 

 

Symbol 

 

 

Op-Code 

 

Definition 

 

 
 

 

C : -min (C,Clower) 

 

If C >Clower then the content of 

C and Clower are exchanged. 

 

 
 

 

C : -max (C,Cupper) 

 

If C <Cupper then the content of 

C and Cupper are exchanged. 

 

 
 

 

C : -min (C,Cright) 

 

If C >Cright then the content of 

C and Cright are exchanged. 

 

 
 

 

C : -max (C,Cleft) 

 

If C <Cleft then the content of 

C and Cleft are exchanged. 

 

 
 

 

No Operation 

 

No operation will occur 

where C is the communication register 

4.2.3 Numerical example 

The example below shows the step by step executions of the instructions along the 

array. The instructions in green show the execution of the instruction on a particular 

microcontroller and the instruction in red represents no operation. The contents of the 

communication register C for each processing element is also shown along the 

execution of the instruction. The contents of C are shown after the instruction has been 

executed. Matrix X is the initial contents of the array before the execution of the 

instructions and Matrix Y is the contents of the array after the instructions are executed. 

𝑋 = [

16 15 14 13
12 11 10 9
8 7 6 5
4 3 2 1

]             𝑌 =  [

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

] 
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(1)                                                                              (2) 

 

(3)                                                                      (4) 

 

(5)                                                                           (6) 

 

C 
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(13)                                                                         (14) 

 

 

(15)                                                                    (16) 

 

 

(17)                                                                      (18) 
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(19)                                                                      (20) 

4.2.4 Result from the processor array 

The above numerical example program was run on the array of microcontrollers. Fig. 

4.3 shows the execution of the ISA program as the program runs. It indicates the time 

difference between the instruction received and the selector bit sent between the 

processing elements. Serial interface was used to individual controllers to interrogate 

the result. The processing element P(2,1) has more no operation instruction than the 

P(3,3) thus P(2,1) takes 29.95ms and P(3,3) takes 32.45ms to execute all the 

instructions. Results demonstrate that the application executes in 32.45ms on the 

prototype ISA implementation. This result is reasonably acceptable for some 

applications such as human movement measurement which tends to work at a low 

sampling rate. However it should be noted that there is a significant latency in this 

experimental setup which has not been optimised out. The processing element 

themselves are microcontrollers programmed in a high level language and a custom 

design would clearly be able to obtain very much better performance. Nevertheless, the 

merge algorithm application has been successfully implemented and validated on the 

prototype ISA using off-the-shelf microcontrollers. 
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Figure 4.3: Performance analysis for P(2,1) and P(3,3) 

4.3 Matrix Multiplication Validation 

In numerical algebra, matrix multiplication plays a vital role because the product is 

calculated in various stages of many technical problems and almost in all numerical 

algorithms. Matrix multiplication is very standard calculation and goes well with 

parallel implementation. Matrix multiplication is suitable for instruction systolic array 

concept because of its design and nearest neighbour communication. In matrix 

multiplication algorithm, a network of processing elements is used to calculate 

rhythmically and pass the data through the system using instruction systolic array. 

4.3.1 Algorithm 

The standard algorithm for matrix multiplication is as follows from [4.3], 

Step1: Each processing element accumulates one element of the product.  

Step 2: This product is summed with the next element of product and accumulated in 

the processing element.  
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Step 3: After all the row and column instructions and selector bits are executed we get a 

4  4 matrix result of Matrix A and Matrix B. 

The following program shows the first iteration of an ISA program for multiplication of 

two n n matrices. The first column of matrix A is input at the left border of the array, 

the first row of matrix B is input at the upper border. 

  

(1) (2) 

  

(3) (4) 
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(5) (6) 

 

 

 

 

 

 

  

(7) (8) 
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(9) (10) 

 

 

 

(11) 

  

The ISA program for matrix multiplication of two 4 × 4 matrices is presented in Fig. 

4.4. The program shows the set of instruction and selector bits that will flow through the 

array. In Fig. 4.4, the instruction and selector bit part of the program are represented in a 

parallelogram shape made up of their corresponding instruction and selector bit 
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diagonals. Matrix A and B are the input matrices. As discussed in the second chapter, in 

this experiment the input matrices (data) are loaded into the processing elements 

through both instruction and selector bit array to reduce the number of execution cycle. 

A set of no operation instructions is flushed through the array before and after the 

instruction and selector bit diagonal. The matrix multiplication is scalable the number of 

instructions and selector bits will be increased according to the increase in the size of 

the array [4.2]. 

 

4.3.2 Program 

 

Figure 4.4: ISA Program for Matrix Multiplication 
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The meaning of the instruction symbols on Fig. 4.2 are illustrated below, 

 : Load Matrix  

 : Sum with most recent value 

 : Multiply with most recent value 

 

4.3.3 Numerical example 

When the input Matrix A and Matrix B is multiplied the resultant output Matrix C is 

obtained.  

Matrix A                  Matrix B     Matrix C 

[

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

] × [

16 15 14 13
12 11 10 9
8 7 6 5
4 3 2 1

]=[

80 70 60 50
240 214 188 162
400 358 316 274
560 502 444 386

] 

The example below shows the step by step executions of the instructions along the 

array. The contents of Matrix C are shown after the instruction has been executed. 

  

(1) (2) 

Matrix C 
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(3) (4) 

  

(5) (6) 

  

(7) (8) 

Matrix C 
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4.3.4 Result from the processor array 

Fig. 4.5 shows the execution of the ISA program as the program runs. It indicates the 

time difference between the instruction received and the selector bit sent between the 

processing elements. The processing elements P(2,1) and P(3,3) has the same number of 

no operation instruction and thus they have completed the execution of all the 

instruction in the same time. Results demonstrate that the application executes in 

30.95ms on our prototype ISA implementation. The processing element themselves are 

microcontrollers programmed in a high level language and a custom design would 

clearly be able to obtain very much better performance. Nevertheless, the matrix 

multiplication has been successfully implemented and validated on the prototype ISA 

using off-the-shelf microcontrollers.  

 

 

Figure 4.5: Performance analysis for P(2,1) and P(3,3) 

4.4 Conclusion 

The instruction systolic array has been successfully implemented on an array of off-the-

shelf microcontrollers. Simple parallel algorithms have been validated using instruction 
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systolic array. The next chapter will use the same conventional method of programming 

to implement the instruction systolic array on a fabric and using a representative 

example of an application. 
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CHAPTER 5:               

SHAPE RECONSTRUCTION USING 

INSTRUCTION SYSTOLIC ARRAY 

 

HIS chapter introduces a 2D mesh architecture prototype based on the Instruction 

systolic array paradigm for distributed computing on fabrics. A real-time shape 

sensing and reconstruction application executing on ISA architecture and demonstrates 

a physical design for a wearable system based on the ISA concept constructed from off-

the-shelf microcontrollers and sensors. 

5.1 Introduction 

In the literature, few studies have been made to measure 3D shapes of an object using 

sensors wrapped around or mounted on the object itself [5.1]. One of the potential 

applications of shape sensing and reconstruction is the human posture sensing. Other 

application also includes 3D modelling of an object and wearable motion capture [5.2]. 

This data can be valuable in shape sensing applications such as real-time human posture 

and movement monitoring as well as shape feedback of flexible devices. A method is 

designed for applications in new emerging fields, such as smart textile and flexible 

electronics, where it can be used to obtain wearers posture or shape of the device [5.2]. 

The shape of an object can be determined by acquiring an object's 3D geometric 

properties. Real time measurements of the object provide continuous deformations of 

the shape of the object. Therefore, shape sensing applications use such data to 

reconstruct the shape of an object. The fabric conforms reasonably well to the human 

body, particularly in sports where fitted garments are common. This measurement of the 

fabric can give a fairly accurate idea of the shape of the human body that it is worn on.    

Low-cost miniature sensors using MEMS (Micro Electro Mechanical Systems) 

technologies have become increasingly common in recent years. These sensors are 

integrated into fabrics to obtain the local data which helps in getting global shape 

characteristics. In order to generate a 3D model of an object, two reference directions 

T 
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are required. One of them is gravity measured using the accelerometer and other one is 

earth's magnetic field measured using magnetic sensor. Three-axis accelerometer and 

magnet sensor grid is used to generate shape reconstruction of the object [5.1]. 

The accelerometer and magnetic sensors provide only two vector observations, which 

are the minimum for full orientation determination, no minimization problem can be 

defined [5.1]. Therefore, Hermanis et al. [5.1] proposes a triad based shape 

reconstruction algorithm three axis accelerometer and magnetic sensor grid.  

5.2 Background 

Based on Hermanis et al. in the shape reconstruction algorithm, the sensor nodes are 

embedded into the fabric to measure local orientation data. The shape reconstruction 

algorithm from Hermanis et al. along with the instruction systolic array for global shape 

reconstruction from local orientation measurements ensures fast computations for shape 

reconstruction utilizing data from a number of sensors. To implement the shape 

reconstruction algorithm with ISA concept, the peripheral devices acceleration and 

magnetic sensors are arranged in a regular grid along the fabric and each sensor is 

connected to their respective microcontrollers. The following subsections explain the 

method and equations proposed by Hermanis et al. which are used to estimate the 

orientation shape of the object. The same method will then be used later in this thesis 

with ISA to reconstruct the shape of the object. 

5.2.1 Shape Reconstruction algorithm 

To calculate the orientation of an object, various algorithms are proposed. Any problem 

related to calculating the orientation is normally termed as Wahba’s problem [5.3]. To 

get a solution, consider Rotational matrix (R) by minimization of following expression 

[5.4]: 

∑‖𝑣𝑘
∗ − 𝑅𝑣𝑘‖

2

𝐾

𝑘=1

 

 

 

(5.1) 

where {𝑣1, 𝑣2, . . . , 𝑣𝑘  } and {𝑣1
∗

, 𝑣2
∗

, . . . , 𝑣𝑘
∗

} are sets of K vector observations 

respectively in object frame and general reference frame. Thus to calculate orientation 

estimation of an object two triads are formed from the unit vectors, one of the triad is 
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formed from general reference frame and the other triad is formed from the sensor 

reference frame through the sensor measurements. The triads of the earth reference 

frame and the sensor reference frame are constructed from the earth gravity field vector 

Eg, magnetic field vector Em, sensor measurement of gravity field vector Sg and sensor 

measurement of magnetic field vector Sm. 

 

𝑒1 = 𝐸𝑔 

 

 

(5.2) 

𝑒2 =
𝐸𝑔  × 𝐸𝑚

|𝐸𝑔  × 𝐸𝑚|
 

 
 

(5.3) 

𝑒3 = 𝑒1 × 𝑒2 
 

(5.4) 

 

 

𝑠1 = 𝑆𝑔 

 

(5.5) 

 

𝑠2 =
𝑆𝑔  × 𝑆𝑚

|𝑆𝑔  × 𝑆𝑚|
 

 

(5.6) 

  

𝑠3 = 𝑠1 × 𝑠2 (5.7) 

 

These triads are then used to form a matrix for global Earth reference, represented as Me 

𝑀𝑒 = [𝑒1𝑒2𝑒3] 
 
 

(5.8) 

and matrix for sensor measurements, represented as Ms 

𝑀𝑠 = [𝑠1𝑠2𝑠3] 
 
 

(5.9) 

The rotation matrix R is then calculated by sensor orientation relative to the global 

reference frame and is calculated using the formula, 

𝑅 = 𝑀𝑒𝑀𝑠
𝑇 (5.10) 
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Now, surface segment orientation relative to initial position can be calculated using the 

rotation matrix R.  

5.2.2 Shape Reconstruction from sensor orientation data 

As shown in Fig. 5.1, acceleration and magnetic sensor nodes are arranged along the 

surface in form of a regular grid. The model of the surface is divided into n rigid 

segments, where n is the total number of sensors used and is represented as  

𝑛 =  𝑖 . 𝑗 
 

 

i and j denote row and column of sensor location in the grid. The segment structure 

corresponds to sensor grid structure. Each segment is defined by segment center point 

C[i, j] and four direction vectors, represented as�⃗⃗� [𝑖, 𝑗], �⃗� [𝑖, 𝑗], 𝑆 [𝑖, 𝑗] and �⃗⃗⃗� [𝑖, 𝑗]. The 

surface geometry is described using the segment center points, which are surface control 

points. In the beginning, all segments are aligned with global reference system by 

assigning some base direction vector values like: 

�⃗⃗� 𝑏 = [0; 0;
𝐿1

2
] 

 

 

�⃗� 𝑏 = [
𝐿2

2
; 0; 0] 

 

(5.11) 

 
 

𝑆 𝑏 = [0; 0; −
𝐿1

2
] = −�⃗⃗� 𝑏 

 

 

�⃗⃗⃗� 
𝑏 = [−

𝐿2

2
; 0; 0] = −�⃗� 𝑏 (5.12) 

 

where L1 and L2 is the distance between sensors across in the array. The structure of 

surface model is shown in Fig. 5.2. The base direction vectors of each segment are 

calculated by including segment direction vectors. The segment orientation is calculated 

using the following expression: 

�⃗⃗� [𝑖, 𝑗] = 𝑅𝑖𝑗�⃗⃗� 𝑏 
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�⃗� [𝑖, 𝑗] = 𝑅𝑖𝑗�⃗� 𝑏 (5.13) 

 

All other direction vectors can be calculated using formulas opposite to equation (5.13): 

𝑆 [𝑖, 𝑗] = −�⃗⃗� [𝑖, 𝑗] 

 
 

�⃗⃗⃗� [𝑖, 𝑗] = −�⃗� [𝑖, 𝑗] (5.14) 

 

 

 

Figure 5.1: Surface segment structure. Each segment consists of center C and four 

direction vectors �⃗⃗� , �⃗⃗� , �⃗⃗�   and �⃗⃗⃗⃗�  [5.1] 

 

If a single control point location is known, then all other control point on the same 

segment row or column can be calculated by adding and subtracting the corresponding 

segment direction vectors as can be seen in the Fig. 5.1. Any arbitrary sensor in iref row 

C[i;j+1]C[i;j]

C[i+1;j]
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C[i-1;j]

z

y

x
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and jref column can be assumed as reference by assigning some constant value to C[iref; 

jref ] 

Control points on the reference column can be calculated from the following 

expression: 

𝐶[𝑖; 𝑗𝑟𝑒𝑓] = 𝐶[𝑖𝑟𝑒𝑓; 𝑗𝑟𝑒𝑓] + ∑ (−�⃗⃗� [𝑘, 𝑗𝑟𝑒𝑓] + 𝑆 [𝑘 + 1, 𝑗𝑟𝑒𝑓])

𝑖𝑟𝑒𝑓−1

𝑘=𝑖

 

if(𝑖 < 𝑖𝑟𝑒𝑓)  (5.15) 

Similarly control points on the reference row (i = iref) can be calculated as: 

𝐶[𝑖𝑟𝑒𝑓; 𝑗] = 𝐶[𝑖𝑟𝑒𝑓; 𝑗𝑟𝑒𝑓] + ∑ (�⃗� [𝑖𝑟𝑒𝑓, 𝑘] − �⃗⃗⃗� [𝑖𝑟𝑒𝑓 , 𝑘 + 1])

𝑗−1

𝑘=𝑗𝑟𝑒𝑓

 

if(𝑗 > 𝑗𝑟𝑒𝑓)   (5.16) 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Structure of control point connections. C[i; j] - reference point. (a) Single 

reference row is obtained, then all other points are calculated with column method. (b) 

Single reference column is obtained, then all other points are calculated with row 

method adapted from [5.1] 
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Once the first row and column are calculated, one control point from each row and 

column will be known in the grid. Using this known control point as a reference in 

either row or column the unknown control points can be calculated. As per theory, both 

the ways should give the same result but there are chances for the results to change 

because of the chosen connection path for the calculation of the control points. The 

control point recovery uses the bilateral process as explained below to avoid this 

problem [5.1].  

First of all, as shown in Fig. 5.2(a), each segment centre coordinate is calculated from 

the reference by finding one reference row with equations (5.18) and (5.19) and then 

connecting other segment direction vectors long ways using (5.16) and (5.17). In the 

same way, all control points are obtained again by obtaining one reference column with 

equations (5.16) and (5.17) and then connecting segments across using (5.18) and (5.19) 

as per structure is shown in Fig. 5.2(b). Finally, results from both cases are averaged 

and the control points are calculated. 

The Step wise implementation of Shape Reconstruction Application is explained in the 

flowchart below.  
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Figure 5.3: Step wise implementation of Shape Reconstruction Application 
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5.3 Experimental Setup 

The concept prototype was designed to demonstrate and to confirm the viability of the 

proposed architecture for fabric-resident computing devices. 

To implement the surface reconstruction application using ISA, a sensor network with 

16 sensors was stitched into a 35cm × 35cm fabric swatch. Both inter-node 

communication and sensor connection in the prototype was achieved via I2C buses 

provided by the microcontroller. The sensors were of type LSM303DLHC 

acceleration/magnetic sensor [5.5]as shown in Fig.5.4. The LSM303DLHC is used for 

orientation estimation. The microcontroller serves as the interface between the sensor 

node and the host computer as all the computations take place locally in the 

microcontrollers. Each microcontroller is assigned a unique ID to identify its position in 

the grid and calculate the control points. Once the microcontroller receives the ID, it 

starts to receive the orientation data from the sensor. The orientation data is then 

averaged and stored for calculation of directional vectors. These directional vectors are 

shared between neighbouring microcontrollers for the calculation of control points. 

Once these control points are calculated for each sensor, they are sent to the host 

computer via serial port for 3D visualisation of the sensed object. The process of ISA 

computing the control points and the host drawing the visualisation continues 

indefinitely. 

 

 

Figure 5.4: LSM303DLHC mounted on Adafruit board 
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A network of 16 sensor nodes was experimentally tested. Sensors were arranged in 4 × 

4 grid formation and sewed on the layer of fabric with mutual distances 8.5 cm between 

each other as shown in Fig. 5.5. 

 

     

Figure 5.5: Sensors embedded with fabric. 

 

5.4 Programming the shape reconstruction algorithm using 

Instruction systolic array 

The ISA firmware for shape reconstruction application is explained in Fig. 5.5. The 

instruction and selector bits are passed to the processing element; the latter is in the 

listening mode waiting for the frame bytes to be received from the north and west slave 

I2C ports. Once both the instruction and selector bit are received they are then decoded 

and executed through an interrupt service routine. After the execution, the instruction 

and the selector bit are then forwarded to the neighbours through the south and east 

master I2C ports. 
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The steps below explain ISA firmware, 

Step 1:  The control points are calculated from the shape reconstruction algorithm which 

will define the surface geometry.  

Step 2: From the segment structure it can be deduced that if a single control point 

location is known, then any other control point on the same segment row or column can 

be calculated by adding or subtracting the corresponding segment direction vectors.  

Step 3: The calculated control points are then sent to the host computer for visualisation 

in 3D defining the shape of the sensed object. 

The instruction and selector bit of the ISA firmware for shape reconstruction application 

(Fig. 5.7) can be seen as parallelogram shaped consisting of instructions and selector 

bits respectively.  This diagonal of instruction and their corresponding selector bit is 

used for implementing the shape reconstruction application. A set of no operation 

instructions is flushed through the array before and after the instruction and selector bit 

diagonal. 

The Directional vector D⃗⃗  as shown in the instruction set is used to calculate the 

directional vector from the equation 5.13 and 5.14. Once the directional vector is 

calculated the directional vector of each processing elements is shared with their 

neighbours to calculate the control points. The sharing of the directional vector is done 

by using swapping instructions as shown on merge algorithm in the previous chapter. 

Once all the directional vectors are shared with their neighbours the control points are 

then calculated by the instruction∑    . The instruction ∑    implements the equation 5.15 

and 5.16 and calculates the control points. Once the control points are calculated they 

are then sent to the host computer using the Tx instruction.  
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Figure 5.6: ISA firmware for shape reconstruction application 
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The meaning of the instruction symbols on Fig. 5.6 are illustrated as follows, 

 

The execution of the ISA program for the Shape Reconstruction application using ISA 

is as follows. The execution shows only the ISA program diagonal of instructions and 

selector bits, it does not include the no operation that flows before and after the ISA 

program diagonal. 

  

(1) (2) 
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(3) (4) 

  

(5) (6) 

  

(7) (8) 
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(11) (12) 

  

(13) (14) 
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The program was run on the array continuously run on the array. The last instruction is 

to send the control points to the host computer through serial port. Each processing 

element sends their calculated control points to the host computer. The received control 

points are then visualised as a 3D surface in the host computer.  

5.5 Experimental Results 

To evaluate the accuracy of proposed shape sensing method, a number of experiments 

were conducted by wrapping the fabric onto different objects. The first experiment 

involved wrapping the fabric around a cylindrical object with a diameter 15cm and 

height 35cm, which was resting on one of its end faces on a horizontal table and then 

reconstructing its shape. The fabric swatch wrapped around the object is shown in 

Fig.5.7. 

 

Figure 5.7: Fabric wrapped on a cylindrical object 

 

The reconstructed image of the cylindrical object is shown in Fig.5.8. The X, Y and Z 

axis represents the calculated distance between the sensors in cm. 
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Figure 5.8: Reconstructed shape of the object 

 

The second experiment involved placing the fabric on a ball with a diameter 65cm and 

then reconstructing the shape. The fabric swatch placed on the object is shown in 

Fig.5.9 and the reconstructed shape of is shown in Fig.5.10.  

 

Figure 5.9: Fabric placed on the object 
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Figure 5.10:  Reconstructed shape of the object 

 

The third experiment involved placing the fabric on a perpendicular file with a length 

24cm and width 32cm and then reconstructing the shape. The fabric swatch placed on 

the object is shown in Fig.5.11 and the reconstructed shape of is shown in Fig.5.12. 

 

 

Figure 5.11: Fabric placed on the object 
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Figure 5.12: Reconstructed shape of the object 

 

The reconstructed shape represents minor deviation from the sensor location mainly on 

the boundary sensors. The variation is about 0.2-0.4 cm. The variation could have been 

caused due to sensor noise and sensor mechanical mounting errors. The sensor noise 

introduces errors in Earth gravity and magnetic field vector component measurement. 

Sensor mechanical mounting errors include orientation errors, which introduce 

misalignment of sensor reference frame and placement errors, which introduces 

differences in inter sensor distances leading to orientation measurement in incorrect 

place on the curve.    

Fig. 5.13 represents the execution milestone of the program as the program runs. It 

indicates the time difference between the instruction received and the selector bit sent 

between the processing elements. 
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Figure 5.13: Performance analysis for P(2,1) and P(3,3) 

A few instructions take longer to execute because of their implementation complexity. 

For example the seventh instruction on P(2,1) and the tenth instruction on P(3,3) which 

is a sensor read and takes an average of 1.55 millisecond to carry out,  average and store 

in the register for further computation. In the current implementation, shared buses are 

being used through polling. Therefore delays occur through the communication. In a 

custom design, sensors could be more closely coupled to the processing element and the 

implementation can be carried out concurrently with the ISA processing function. 

5.6 Conclusion 

The wearable shape reconstruction application has been successfully implemented using 

our proposed concept of ISA architecture constructed out of off-the-shelf 

microcontrollers and sensors. Results demonstrate the application executes in 39.55ms 

on the prototype ISA implementation thus confirming the viability of the proposed 

architecture for fabric-resident computing devices.  
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CHAPTER 6:          

CONCLUSION AND FUTURE WORK 
 

HE aim of this thesis was to propose and implement a novel distributed computer 

which could be used for wearables. This chapter summarizes the contributions of 

the thesis and discusses the future work that can be conducted. 

6.1 Contribution of this thesis 

The aim of the research was to harness parallel processing across a large number of 

simple cores with the objective of improving the performance when compared to a 

serial system. 

The main contributions of the thesis are: 

• A new sensor networking paradigm that exploits processor level parallelism has 

been implemented and also has introduced the concept of on-fabric computation. 

• Validated the method and produced parallel program that is used on the sensor 

network array. 

• Produced a physical demonstrator for a specific measurement scenario that has 

relevance to human monitoring application. 

• The architecture has been applied to a physical demonstrator containing an array 

of computing nodes. 

• Set of measurements obtained from a physical demonstrator has been presented. 

The thesis has proposed a completely new concept of an on-fabric Instruction Systolic 

Array. Different parallel architectures have been reviewed and the Instruction Systolic 

Array is a relatively under researched architecture that has meant in this particular 

application. 

A number of compromises have been made during the implementation of the concept 

such as opting a particular bus system, selecting a microcontroller for the processing 

element, using same bus connecting for peripheral devices. It can be expected that these 

T 
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will have a substantial impact on the performance. But still some advantages in 

implementing such as to test the functionality of the device and to prove the concept and 

experiment with the programmer’s model which is significantly different to any known 

computer. 

The wearable shape reconstruction application has been successfully implemented using 

the proposed concept of ISA architecture constructed out of off-the-shelf 

microcontrollers and sensors. Results confirm the viability of the proposed architecture 

for fabric-resident computing devices.  

6.2 Suggestions for future research 

The thesis suggests a number of possibilities for future research.  

6.2.1 Computational performance 

The next step in the research would be implementing the whole prototype system on an 

ASIC. While implementing the concept on ASIC the processors will be closely coupled 

with the sensors. When the sensors are closely coupled to the processing elements there 

will not be a need for the shared bus system and thus will result in better performance. 

Thus there will also not be a need of the umbilical as shown in Fig.5.4. 

6.2.2 Scalability 

One of the advantages of ISA is that it is scalable. The processing elements and sensors 

are scalable where the array for the processing elements and the sensors connected to 

the processing elements can be increased or decreased.  The future research can build on 

into scalability because final integration of the concept is to have very large arrays that 

can self-process. 

6.2.3 Programming techniques 

This research has shown a conventional way of programming the ISA. More research 

can be conducted in future in the development of a full programmer’s model and a full 

featured instruction set. Future research can also concentrate on efficient development 

environment and high-level programming language for the ISA which is inherently 

difficult to program. 
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6.2.4 Designing 

A prototype is typically a working model of a design that demonstrates a devices 

appearance and functionality which has been implemented. The next stage is to have a 

custom design which would clearly be able to obtain a much better performance. Once 

the custom design is built the manufacturing could be done big volumes. Manufacturing 

the product in large scale could be outsourced. Handing off prototyping to an 

outsourced firm can save precious time and money in the development process, as 

design and knowledge transfers can be streamlined. 

6.2.5 Applications 

There are several wearable applications that can be explored using the concept of 

Instruction Systolic Array. Human body sensing and human posture sensing 

applications are more commonly used applications in wearables.   

• Medicine: Vital signs monitoring, body chemistry monitoring, stroke 

rehabilitation, blood pressure measurement. 

• Military: Vital signs monitoring, performance monitoring, physical condition, 

position and orientation monitoring, radiation monitoring, monitoring of harmful 

gasses, wearable communications devices, camouflage, smart clothing with 

response to the environment. Active Camouflage is the concept of including 

actuators and optical devices closely coupled to Processing elements which can 

be used in Military applications. 

• Sports: Performance monitoring and vital signs monitoring of the athletes and 

players during the sporting events helps in monitoring their health and improve 

their performance. 

6.3 Summary 

The thesis has discussed the rationale, design, implementation and benchmarking of a 

new concept for on-fabric sensor networks, prototyped with off-the-shelf 

microcontrollers. A physical prototype device has been demonstrated containing 16 

computing nodes. The concept has been validated using several programming examples. 

The parallel architecture has been demonstrated using on-fabric application.  
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It is envisaged that such a system would be implemented using VLSI technology and 

custom ASICs which would substantially improve the performance. The future work 

can address the scalability of the architecture in line with the thesis vision to extend to 

large arrays and new applications. Several wearable applications in the field of 

medicine, military and sports can also be explored using the concepts and 

methodologies developed during this research. There can also be focus on extending the 

supported instructions, optimizing the communication medium and allowing for more 

concurrency, at node level, between computation and communication. 
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A.1 

 

APPENDIX 

 

The computational model code for the shape reconstruction algorithm is as follows. 

This is a common code and can be configured for different roles. The file global defines 

which has been included is used to configure the code type. 

/*********************************************************************

******** 

 * Include header files 

 

**********************************************************************

******/ 

#include "board.h" 

#include "global_defines.h" // this file sets the code configuration  

      type 

#include "chip.h"     

#include "patterns.h" 

#include "fifo.h" 

#include "string.h" 

#include "algo.h" 

 

/*********************************************************************

******** 

 * Private types/enumerations/variables 

 

**********************************************************************

******/ 

#define M_TX_BUFF_SIZE   750 

#define M_RX_BUFF_SIZE   750 

#define NO_OF_SENSOR_READ  4 

/*********************************************************************

******** 

 * Public types/enumerations/variables 

 

**********************************************************************

******/ 

typedefstruct 

{ 

 uint8_t frame_type; 

 union 

 { 

  uint8_t data; 

  uint8_t instruction; 

  uint8_t selector_bit; 

 } data; 

 float C[3][1]; //control register 

 float N[3][1]; //North communication register  

 float E[3][1]; //East communication register 

 float W[3][1]; //West communication register 
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 float S[3][1]; //South communication register 

} FRAME; 

static I2CM_XFER_T i2cm0Xfer; 

static I2CM_XFER_T i2cm1Xfer; 

#if(CONTROLLER != CONTROLLER_PROCESS_ELEMENTS) 

static I2CM_XFER_T i2cm2Xfer; 

static I2CM_XFER_T i2cm3Xfer; 

#else 

#ifndef LAST_SOUTH_CONTROLLER 

FRAME north_prev; 

#endif 

#ifndef LAST_EAST_CONTROLLER 

FRAME west_prev; 

#endif 

floatnorth_C[3] = {0, 0, 0}; 

floatnorth_N[3] = {0, 0, 0}; 

floatnorth_E[3] = {0, 0, 0}; 

floatnorth_W[3] = {0, 0, 0}; 

floatnorth_S[3] = {0, 0, 0}; 

floatwest_C[3] = {0, 0, 0}; 

floatwest_N[3] = {0, 0, 0}; 

floatwest_E[3] = {0, 0, 0}; 

floatwest_W[3] = {0, 0, 0}; 

floatwest_S[3] = {0, 0, 0}; 

static uint8_t tx_buff[M_TX_BUFF_SIZE]; 

static uint8_t rx_buff[M_TX_BUFF_SIZE]; 

#endif 

 

static uint8_t slave1_no_of_bytes_received; 

static uint8_t slave2_no_of_bytes_received; 

static volatile bool delay_completed = false; 

static volatile uint32_t delay_counter = 0; 

static FIFO<uint8_t, 750>fifo_north; 

static FIFO<uint8_t, 750>fifo_west; 

static uint32_t time_in_10ms = 0; 

/*********************************************************************

******** 

 * Private functions 

 

**********************************************************************

******/ 

static void processSlave1TransferStart(uint8_t addr); 

static uint8_t processSlave1TransferSend(uint8_t *data); 

static uint8_t processSlave1TransferRecv(uint8_t data); 

static void processSlave1TransferDone(void); 

 

static void processSlave2TransferStart(uint8_t addr); 

static uint8_t processSlave2TransferSend(uint8_t *data); 

static uint8_t processSlave2TransferRecv(uint8_t data); 

static void processSlave2TransferDone(void); 

 

const static I2CS_XFER_T i2cs1CallBacks = 

{ 

 &processSlave1TransferStart, 

 &processSlave1TransferSend, 

 &processSlave1TransferRecv, 

 &processSlave1TransferDone 

}; 

const static I2CS_XFER_T i2cs2CallBacks = 
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{ 

 &processSlave2TransferStart, 

 &processSlave2TransferSend, 

 &processSlave2TransferRecv, 

 &processSlave2TransferDone 

}; 

 

/*********************************************************************

******** 

 * Public functions 

 

**********************************************************************

******/ 

extern "C" void IOCON_Init(); 

extern "C" void InputMux_Init(); 

extern "C" void SwitchMatrix_Init(); 

 

/* Handler for slave start callback */ 

static void processSlave1TransferStart(uint8_t addr) 

{ 

 slave1_no_of_bytes_received = 0; 

} 

/* Handler for slave send callback */ 

static uint8_t processSlave1TransferSend(uint8_t *data) 

{ 

 return 1;  // return a non zero to indicate there is data 

} 

 

/* Handler for slave receive callback */ 

static uint8_t processSlave1TransferRecv(uint8_t data) 

{ 

 fifo_north = data; 

 return 0; 

} 

 

/* Handler for slave transfer complete callback */ 

static void processSlave1TransferDone(void) 

{ 

 /* Nothing needs to be done here */ 

} 

 

/* Handler for slave start callback */ 

static void processSlave2TransferStart(uint8_t addr) 

{ 

 slave2_no_of_bytes_received = 0; 

} 

/* Handler for slave send callback */ 

static uint8_t processSlave2TransferSend(uint8_t *data) 

{ 

 return 1; 

} 

 

/* Handler for slave receive callback */ 

static uint8_t processSlave2TransferRecv(uint8_t data) 

{ 

 fifo_west = data; 

 return 0; 

} 
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/* Handler for slave transfer complete callback */ 

static void processSlave2TransferDone(void) 

{ 

 /* Nothing needs to be done here */ 

} 

 

/* Function to wait for I2CM transfer completion */ 

static void WaitForI2cXferComplete(I2CM_XFER_T *xferRecPtr) 

{ 

 /* Test for still transferring data */ 

 while (xferRecPtr->status == I2CM_STATUS_BUSY) 

 { 

  /* Sleep until next interrupt */ 

  __WFI(); 

 } 

} 

 

/* Function to setup and execute I2C transfer request */ 

static void SetupXferRecAndExecute(LPC_I2C_T * i2c_unit, 

uint8_tdevAddr, uint8_t *txBuffPtr, uint16_ttxSize, uint8_t 

*rxBuffPtr, uint16_trxSize) 

{ 

 I2CM_XFER_T* xfer = 0; 

#if(CONTROLLER == CONTROLLER_INSTRUCTION) 

 if(i2c_unit == I2C_COL1_MASTER) 

 { 

  xfer = &i2cm0Xfer; 

 } 

 else if(i2c_unit == I2C_COL2_MASTER) 

 { 

  xfer = &i2cm1Xfer; 

 } 

 else if(i2c_unit == I2C_COL3_MASTER) 

 { 

  xfer = &i2cm2Xfer; 

 } 

 else if(i2c_unit == I2C_COL4_MASTER) 

 { 

  xfer = &i2cm3Xfer; 

 } 

#elif(CONTROLLER == CONTROLLER_SELECTOR_BIT) 

 if(i2c_unit == I2C_ROW1_MASTER) 

 { 

  xfer = &i2cm0Xfer; 

 } 

 else if(i2c_unit == I2C_ROW2_MASTER) 

 { 

  xfer = &i2cm1Xfer; 

 } 

 else if(i2c_unit == I2C_ROW3_MASTER) 

 { 

  xfer = &i2cm2Xfer; 

 } 

 else if(i2c_unit == I2C_ROW4_MASTER) 

 { 

  xfer = &i2cm3Xfer; 

 } 

#elif(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS) 

 if(i2c_unit == I2C_SOUTH_MASTER) 
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 { 

  xfer = &i2cm0Xfer; 

 } 

 else if(i2c_unit == I2C_EAST_MASTER) 

 { 

  xfer = &i2cm1Xfer; 

 } 

#endif 

 

 if(xfer != 0) 

 { 

  /* Setup I2C transfer record */ 

  xfer->slaveAddr = devAddr; 

  xfer->status = 0; 

  xfer->txSz = txSize; 

  xfer->rxSz = rxSize; 

  xfer->txBuff = txBuffPtr; 

  xfer->rxBuff = rxBuffPtr; 

 

  Chip_I2CM_Xfer(i2c_unit, xfer); 

  /* Enable Master Interrupts */ 

  Chip_I2C_EnableInt(i2c_unit, I2C_INTENSET_MSTPENDING | 

I2C_INTENSET_MSTRARBLOSS | I2C_INTENSET_MSTSTSTPERR); 

  /* Wait for transfer completion */ 

  WaitForI2cXferComplete(xfer); 

  /* Clear all Interrupts */ 

  Chip_I2C_ClearInt(i2c_unit, I2C_INTENSET_MSTPENDING | 

I2C_INTENSET_MSTRARBLOSS | I2C_INTENSET_MSTSTSTPERR); 

 } 

} 

 

void i2c_master_init(LPC_I2C_T * i2c_unit) 

{ 

 /* Enable I2C clock and reset I2C peripheral */ 

 Chip_I2C_Init(i2c_unit); 

 

 /* Setup clock rate for I2C */ 

 Chip_I2C_SetClockDiv(i2c_unit, SystemCoreClock / I2C_SPEED); 

 

 /* Setup I2CM transfer rate */ 

 Chip_I2CM_SetBusSpeed(i2c_unit, I2C_SPEED); 

 

 /* Enable Master Mode */ 

 Chip_I2CM_Enable(i2c_unit); 

} 

 

#if(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS) 

/* Setup I2C */ 

static void i2c_slave_init(LPC_I2C_T * i2c_unit) 

{ 

 /* Enable I2C clock and reset I2C peripheral */ 

 Chip_I2C_Init(i2c_unit); 

 

 /* Setup clock rate for I2C */ 

 Chip_I2C_SetClockDiv(i2c_unit, SystemCoreClock / I2C_SPEED); 

 

 /* Setup I2CM transfer rate */ 

 Chip_I2CM_SetBusSpeed(i2c_unit, I2C_SPEED); 
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 /* Enable I2C master interface */ 

 Chip_I2CM_Enable(i2c_unit); 

 

 /* Some common I2C init was performed in setupI2CMaster(), so it 

doesn't need to be done again for the slave setup. */ 

 

 /* Emulated EEPROM 0 is on slave index 0 */ 

 Chip_I2CS_SetSlaveAddr(i2c_unit, 0, I2C_SLAVE_ADDR); 

 /* Disable Qualifier for Slave Address 0 */ 

 Chip_I2CS_SetSlaveQual0(i2c_unit, false, 0); 

 /* Enable Slave Address 0 */ 

 Chip_I2CS_EnableSlaveAddr(i2c_unit, 0); 

 

 /* Clear interrupt status and enable slave interrupts */ 

 Chip_I2CS_ClearStatus(i2c_unit, I2C_STAT_SLVDESEL); 

 Chip_I2C_EnableInt(i2c_unit, I2C_INTENSET_SLVPENDING | 

I2C_INTENSET_SLVDESEL); 

 

 /* Enable I2C slave interface */ 

 Chip_I2CS_Enable(i2c_unit); 

} 

 

extern "C" void I2C_NORTH_SLAVE_IRQHandler(void) 

{ 

 uint32_t state = Chip_I2C_GetPendingInt(I2C_NORTH_SLAVE); 

 

 /* Error handling */ 

 if (state & (I2C_INTSTAT_MSTRARBLOSS | I2C_INTSTAT_MSTSTSTPERR)) 

 { 

  Chip_I2CM_ClearStatus(I2C_NORTH_SLAVE, 

         I2C_STAT_MSTRARBLOSS | 

I2C_STAT_MSTSTSTPERR); 

 } 

 

 /* I2C slave related interrupt */ 

 while (state & (I2C_INTENSET_SLVPENDING | 

I2C_INTENSET_SLVDESEL)) 

 { 

  Chip_I2CS_XferHandler(I2C_NORTH_SLAVE, &i2cs1CallBacks); 

 

  /* Update state */ 

  state = Chip_I2C_GetPendingInt(I2C_NORTH_SLAVE); 

 } 

} 

 

extern "C" void I2C_WEST_SLAVE_IRQHandler(void) 

{ 

 uint32_t state = Chip_I2C_GetPendingInt(I2C_WEST_SLAVE); 

 

 /* Error handling */ 

 if (state & (I2C_INTSTAT_MSTRARBLOSS | I2C_INTSTAT_MSTSTSTPERR)) 

 { 

  Chip_I2CM_ClearStatus(I2C_WEST_SLAVE, 

         I2C_STAT_MSTRARBLOSS | 

I2C_STAT_MSTSTSTPERR); 

 } 

 

 /* I2C slave related interrupt */ 
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 while (state & (I2C_INTENSET_SLVPENDING | 

I2C_INTENSET_SLVDESEL)) 

 { 

  Chip_I2CS_XferHandler(I2C_WEST_SLAVE, &i2cs2CallBacks); 

 

  /* Update state */ 

  state = Chip_I2C_GetPendingInt(I2C_WEST_SLAVE); 

 } 

} 

 

extern "C" void I2C_SOUTH_MASTER_IRQHandler(void) 

{ 

 /* Call I2CM ISR function with the I2C device and transfer rec 

*/ 

 Chip_I2CM_XferHandler(I2C_SOUTH_MASTER, &i2cm0Xfer); 

} 

 

extern "C" void I2C_EAST_MASTER_IRQHandler(void) 

{ 

 /* Call I2CM ISR function with the I2C device and transfer rec 

*/ 

 Chip_I2CM_XferHandler(I2C_EAST_MASTER, &i2cm1Xfer); 

} 

 

#endif 

 

/** 

 * Handle I2C interrupt by calling I2CM interrupt transfer handler 

 * @return Nothing 

 */ 

#if(CONTROLLER == CONTROLLER_INSTRUCTION) 

extern "C" void I2C_COL1_MASTER_IRQHandler(void) 

{ 

 /* Call I2CM ISR function with the I2C device and transfer rec 

*/ 

 Chip_I2CM_XferHandler(I2C_COL1_MASTER, &i2cm0Xfer); 

} 

 

extern "C" void I2C_COL2_MASTER_IRQHandler(void) 

{ 

 /* Call I2CM ISR function with the I2C device and transfer rec 

*/ 

 Chip_I2CM_XferHandler(I2C_COL2_MASTER, &i2cm1Xfer); 

} 

 

extern "C" void I2C_COL3_MASTER_IRQHandler(void) 

{ 

 /* Call I2CM ISR function with the I2C device and transfer rec 

*/ 

 Chip_I2CM_XferHandler(I2C_COL3_MASTER, &i2cm2Xfer); 

} 

 

extern "C" void I2C_COL4_MASTER_IRQHandler(void) 

{ 

 /* Call I2CM ISR function with the I2C device and transfer rec 

*/ 

 Chip_I2CM_XferHandler(I2C_COL4_MASTER, &i2cm3Xfer); 

} 

#endif 
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#if(CONTROLLER == CONTROLLER_SELECTOR_BIT) 

extern "C" void I2C_ROW1_MASTER_IRQHandler(void) 

{ 

 /* Call I2CM ISR function with the I2C device and transfer rec 

*/ 

 Chip_I2CM_XferHandler(I2C_ROW1_MASTER, &i2cm0Xfer); 

} 

 

extern "C" void I2C_ROW2_MASTER_IRQHandler(void) 

{ 

 /* Call I2CM ISR function with the I2C device and transfer rec 

*/ 

 Chip_I2CM_XferHandler(I2C_ROW2_MASTER, &i2cm1Xfer); 

} 

 

extern "C" void I2C_ROW3_MASTER_IRQHandler(void) 

{ 

 /* Call I2CM ISR function with the I2C device and transfer rec 

*/ 

 Chip_I2CM_XferHandler(I2C_ROW3_MASTER, &i2cm2Xfer); 

} 

 

extern "C" void I2C_ROW4_MASTER_IRQHandler(void) 

{ 

 /* Call I2CM ISR function with the I2C device and transfer rec 

*/ 

 Chip_I2CM_XferHandler(I2C_ROW4_MASTER, &i2cm3Xfer); 

} 

#endif 

 

 

/** 

 * Handle interrupt from SysTick timer 

 * return Nothing 

 */ 

extern "C" void SysTick_Handler(void) 

{ 

 time_in_10ms++; 

 if(delay_counter> 0) 

 { 

  delay_counter--; 

  if(delay_counter == 0) 

   delay_completed = true; 

 } 

} 

 

void delay(uint32_t delay_in_10ms) 

{ 

 if(delay_in_10ms != 0) 

 { 

  delay_completed = false; 

  delay_counter = delay_in_10ms; 

  while(delay_completed == false); 

 } 

} 

 

#if(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS) 

uint8_t lsm303dlhc_read_reg(uint8_t dev_address, uint8_t reg_address) 
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{ 

 tx_buff[0] = reg_address; 

 SetupXferRecAndExecute(I2C_SOUTH_MASTER, dev_address, tx_buff, 

1, rx_buff, 1); 

 returnrx_buff[0]; 

} 

 

void lsm303dlhc_write_reg(uint8_t dev_address, uint8_t reg_address, 

uint8_t data) 

{ 

 tx_buff[0] = reg_address; 

 tx_buff[1] = data; 

 SetupXferRecAndExecute(I2C_SOUTH_MASTER, dev_address, tx_buff, 

2, 0, 0); 

} 

 

void lsm303dlhc_accel_read_xyz(int16_t& x, int16_t& y, int16_t& z) 

{ 

 tx_buff[0] = LSM303DLHC_ACCEL_OUT_X_L_A | 0x80;  // 

continuous read 

 SetupXferRecAndExecute(I2C_SOUTH_MASTER, 

LSM303DLHC_ACCEL_SLAVE_ADDR, tx_buff, 1, rx_buff, 6); 

 x = (rx_buff[0] | (rx_buff[1] << 8)); 

 y = (rx_buff[2] | (rx_buff[3] << 8)); 

 z = (rx_buff[4] | (rx_buff[5] << 8)); 

} 

 

void lsm303dlhc_gyro_read_xyz(int16_t& x, int16_t& y, int16_t& z) 

{ 

 tx_buff[0] = LSM303DLHC_GYRO_OUT_X_L_M | 0x80;  // 

continuous read 

 SetupXferRecAndExecute(I2C_SOUTH_MASTER, 

LSM303DLHC_GYRO_SLAVE_ADDR, tx_buff, 1, rx_buff, 6); 

 x = (rx_buff[0] | (rx_buff[1] << 8)); 

 y = (rx_buff[2] | (rx_buff[3] << 8)); 

 z = (rx_buff[4] | (rx_buff[5] << 8)); 

} 

 

voidcalculate_control_point(uint8_t id) 

{ 

 float two[3] = {2, 2, 2}; 

 switch(id) 

 { 

  case 1: 

   C[0] = 0; 

   C[1] = 0; 

   C[2] = 0; 

   break; 

  case 2: 

  case 3: 

  case 4: 

  

   algo_matrix_add_3x1_and_3x1(west_C, west_E, C); 

   algo_matrix_sub_3x1_and_3x1(C, W, C); 

   break; 

  case 5: 

  case 9: 

  case 13: 
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   algo_matrix_add_3x1_and_3x1(N, north_S, C); 

   algo_matrix_sub_3x1_and_3x1(north_C, C, C); 

   break; 

  case 6: 

  case 7: 

  case 8: 

  case 10: 

  case 11: 

  case 12: 

  case 14: 

  case 15: 

  case 16: 

  

   algo_matrix_add_3x1_and_3x1(west_C, west_E, C); 

   algo_matrix_add_3x1_and_3x1(C, north_C, C); 

   algo_matrix_add_3x1_and_3x1(C, north_S, C); 

   algo_matrix_sub_3x1_and_3x1(C, W, C); 

   algo_matrix_sub_3x1_and_3x1(C, N, C); 

   algo_matrix_sub_3x1_and_3x1(C, two, C); 

   break; 

 } 

} 

#endif 

 

/** 

 * main routine  

 *  return Function should not exit. 

 */ 

int main(void) 

{ 

 volatile uint32_t *vt; 

 uint32_t cpu_id; 

#if(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS) 

 uint8_t controller_id = 0; 

 FRAME north_curr; 

 FRAME west_curr; 

 int16_t x, y, z; 

 int16_t sum_x, sum_y, sum_z; 

#else 

 FRAME tx_frame; 

#endif 

 

 SystemCoreClockUpdate(); 

 Board_Init(); 

 

 IOCON_Init(); 

 InputMux_Init(); 

 SwitchMatrix_Init(); 

 

 // Set 10ms tick 

 SysTick_Config(Chip_Clock_GetSystemClockRate() / 100); 

 

 /* Display system information */ 

 __disable_irq(); 

#if(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS) 

#ifdef LAST_SOUTH_CONTROLLER 

#ifdef LAST_EAST_CONTROLLER 

 printf("Process Element Controller LSE\n"); 

#else 
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 printf("Process Element Controller LS\n"); 

#endif 

#else 

#ifdef LAST_EAST_CONTROLLER 

 printf("Process Element Controller LE\n"); 

#else 

 printf("Process Element Controller\n"); 

#endif 

#endif 

 fflush(stdout); 

#elif(CONTROLLER == CONTROLLER_INSTRUCTION) 

 printf("Instruction Controller\n"); 

 fflush(stdout); 

#elif(CONTROLLER == CONTROLLER_SELECTOR_BIT) 

 printf("Selector Bit Controller\n"); 

 fflush(stdout); 

#endif 

 printf("System Clock: %luMHz\n", SystemCoreClock / 1000000); 

 fflush(stdout); 

 printf("Device ID: 0x%04lX\n", Chip_SYSCTL_GetDeviceID()); 

 fflush(stdout); 

 vt = &(SCB->VTOR); 

 cpu_id = SCB->CPUID; 

 printf("VTOR Address: 0x%08lX\n", (uint32_t ) vt); 

 fflush(stdout); 

 printf("CPU ID: 0x%08lX\n", (uint32_t ) cpu_id); 

 fflush(stdout); 

 printf(VERSION_STRING); 

 __enable_irq(); 

 printf("time in 10ms tick = %u", (unsigned int)time_in_10ms); 

 

 // Enable pullups for all 

 // I2C 0 

 // Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO11, 

PIN_MODE_PULLUP); // SDA  // there is no pullup available in 

PIO11 & 10 

 // Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO10, 

PIN_MODE_PULLUP); // SCL 

 Chip_IOCON_PinSetI2CMode(LPC_IOCON, IOCON_PIO11, 

PIN_I2CMODE_STDFAST); 

 Chip_IOCON_PinSetI2CMode(LPC_IOCON, IOCON_PIO10, 

PIN_I2CMODE_STDFAST); 

 

 // I2C 3 

 Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO19, PIN_MODE_PULLUP);

 // SDA 

 Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO12, PIN_MODE_PULLUP);

 // SCL 

 Chip_IOCON_PinSetOpenDrainMode(LPC_IOCON, IOCON_PIO19, true); 

 Chip_IOCON_PinSetOpenDrainMode(LPC_IOCON, IOCON_PIO12, true); 

 

 // I2C 1 

 Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO18, PIN_MODE_PULLUP);

 // SDA 

 Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO28, PIN_MODE_PULLUP);

 // SCL 

 Chip_IOCON_PinSetOpenDrainMode(LPC_IOCON, IOCON_PIO18, true); 

 Chip_IOCON_PinSetOpenDrainMode(LPC_IOCON, IOCON_PIO28, true); 
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 // I2C 2 

 Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO0, PIN_MODE_PULLUP);

 // SDA 

 Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO4, PIN_MODE_PULLUP);

 // SCL 

 Chip_IOCON_PinSetOpenDrainMode(LPC_IOCON, IOCON_PIO0, true); 

 Chip_IOCON_PinSetOpenDrainMode(LPC_IOCON, IOCON_PIO4, true); 

 

#if(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS) 

 // Init I2C Masters 

 i2c_master_init(I2C_SOUTH_MASTER); 

 i2c_master_init(I2C_EAST_MASTER); 

 // Init I2C Slave 

 i2c_slave_init(I2C_NORTH_SLAVE); 

 i2c_slave_init(I2C_WEST_SLAVE); 

#else 

 i2c_master_init(LPC_I2C0); 

 i2c_master_init(LPC_I2C1); 

 i2c_master_init(LPC_I2C2); 

 i2c_master_init(LPC_I2C3); 

#endif 

 

 /* Enable the interrupt for the I2C */ 

 NVIC_SetPriority(I2C0_IRQn, 31); 

 NVIC_SetPriority(I2C1_IRQn, 31); 

 NVIC_SetPriority(I2C2_IRQn, 31); 

 NVIC_SetPriority(I2C3_IRQn, 31); 

 NVIC_EnableIRQ(I2C0_IRQn); 

 NVIC_EnableIRQ(I2C1_IRQn); 

 NVIC_EnableIRQ(I2C2_IRQn); 

 NVIC_EnableIRQ(I2C3_IRQn); 

 

 // LED init 

 GREEN_LED_OFF(); 

 BLUE_LED_OFF(); 

 

#if(CONTROLLER == CONTROLLER_INSTRUCTION) 

 memset((void*)&tx_frame, 0, sizeof(tx_frame)); 

 for(uint8_t i = 0; i<rows_of_array(vertical_pattern); i++) 

 { 

  GREEN_LED_ON(); 

  tx_frame.frame_type = vertical_pattern_type[i][0]; 

  tx_frame.data.data = vertical_pattern[i][0]; 

  SetupXferRecAndExecute(I2C_COL1_MASTER, I2C_SLAVE_ADDR, 

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0); 

  printf("Instruction %u ", i + 1); 

  fflush(stdout); 

  printf("sent to COL1\n"); 

  fflush(stdout); 

 

  tx_frame.frame_type = vertical_pattern_type[i][1]; 

  tx_frame.data.data = vertical_pattern[i][1]; 

  SetupXferRecAndExecute(I2C_COL2_MASTER, I2C_SLAVE_ADDR, 

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0); 

  printf("Instruction %u ", i + 1); 

  fflush(stdout); 

  printf("sent to COL2\n"); 

  fflush(stdout); 
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  tx_frame.frame_type = vertical_pattern_type[i][2]; 

  tx_frame.data.data = vertical_pattern[i][2]; 

  SetupXferRecAndExecute(I2C_COL3_MASTER, I2C_SLAVE_ADDR, 

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0); 

  printf("Instruction %u ", i + 1); 

  fflush(stdout); 

  printf("sent to COL3\n"); 

  fflush(stdout); 

 

  tx_frame.frame_type = vertical_pattern_type[i][3]; 

  tx_frame.data.data = vertical_pattern[i][3]; 

  SetupXferRecAndExecute(I2C_COL4_MASTER, I2C_SLAVE_ADDR, 

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0); 

  printf("Instruction %u ", i + 1); 

  fflush(stdout); 

  printf("sent to COL4\n"); 

  fflush(stdout); 

 

  GREEN_LED_OFF(); 

  delay(PATTERN_DELAY_IN_10ms); 

 } 

 GREEN_LED_OFF(); 

 while(1); 

#elif(CONTROLLER == CONTROLLER_SELECTOR_BIT) 

 memset((void*)&tx_frame, 0, sizeof(tx_frame)); 

 for(uint8_t i = 0; i<rows_of_array(horizontal_pattern); i++) 

 { 

  BLUE_LED_ON(); 

  tx_frame.frame_type = horizontal_pattern_type[i][0]; 

  tx_frame.data.data = horizontal_pattern[i][0]; 

  SetupXferRecAndExecute(I2C_ROW1_MASTER, I2C_SLAVE_ADDR, 

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0); 

  printf("Selector Bit %u %u sent to ROW1\n", i + 1, 

tx_frame.data); 

  fflush(stdout); 

 

  tx_frame.frame_type = horizontal_pattern_type[i][1]; 

  tx_frame.data.data = horizontal_pattern[i][1]; 

  SetupXferRecAndExecute(I2C_ROW2_MASTER, I2C_SLAVE_ADDR, 

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0); 

  printf("Selector Bit %u %u sent to ROW2\n", i + 1, 

tx_frame.data); 

  fflush(stdout); 

 

  tx_frame.frame_type = horizontal_pattern_type[i][2]; 

  tx_frame.data.data = horizontal_pattern[i][2]; 

  SetupXferRecAndExecute(I2C_ROW3_MASTER, I2C_SLAVE_ADDR, 

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0); 

  printf("Selector Bit %u %u sent to ROW3\n", i + 1, 

tx_frame.data); 

  fflush(stdout); 

 

  tx_frame.frame_type = horizontal_pattern_type[i][3]; 

  tx_frame.data.data = horizontal_pattern[i][3]; 

  SetupXferRecAndExecute(I2C_ROW4_MASTER, I2C_SLAVE_ADDR, 

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0); 

  printf("Selector Bit %u %u sent to ROW4\n", i + 1, 

tx_frame.data); 

  fflush(stdout); 
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  BLUE_LED_OFF(); 

  delay(PATTERN_DELAY_IN_10ms); 

 } 

 BLUE_LED_OFF(); 

 while(1); 

#elif(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS) 

 

 // configure lsm303dlhc accel 

 lsm303dlhc_write_reg(LSM303DLHC_ACCEL_SLAVE_ADDR, 

LSM303DLHC_ACCEL_CTRL_REG1_A, 0x27);  // Data rate 10Hz 

 // Normal mode (not low power) 

 // X, Y, Z enabled 

 

 // configure lsm303dlhc gyro 

 lsm303dlhc_write_reg(LSM303DLHC_GYRO_SLAVE_ADDR, 

LSM303DLHC_GYRO_CRA_REG_M, 0x08);  // Data rate 3Hz, 

Temperature sensor disabled. 

 lsm303dlhc_write_reg(LSM303DLHC_GYRO_SLAVE_ADDR, 

LSM303DLHC_GYRO_MR_REG_M, 0x00); // Continuous conversion mode 

 

 // read identification 

 printf("\nID1 should be 0x48, actual = 0x%x", 

lsm303dlhc_read_reg(LSM303DLHC_GYRO_SLAVE_ADDR, 

LSM303DLHC_GYRO_IRA_REG_M)); 

 printf("\nID2 should be 0x34, actual = 0x%x", 

lsm303dlhc_read_reg(LSM303DLHC_GYRO_SLAVE_ADDR, 

LSM303DLHC_GYRO_IRB_REG_M)); 

 printf("\nID3 should be 0x33, actual = 0x%x", 

lsm303dlhc_read_reg(LSM303DLHC_GYRO_SLAVE_ADDR, 

LSM303DLHC_GYRO_IRC_REG_M)); 

 

#ifndef LAST_SOUTH_CONTROLLER 

 memset((void*)&north_prev, 0, sizeof(north_prev)); 

#endif 

#ifndef LAST_EAST_CONTROLLER 

 memset((void*)&west_prev, 0, sizeof(west_prev)); 

#endif 

 while(1) 

 { 

  uint8_t selector_bit = 0; 

  uint8_t instruction = 0; 

  printf("wait I... \n"); 

  fflush(stdout); 

  while(fifo_north.get_no_of_data_in_fifo() <sizeof(FRAME));

   // wait till at least the complete frame is received 

  printf("wait s... \n"); 

  fflush(stdout); 

  while(fifo_west.get_no_of_data_in_fifo() <sizeof(FRAME));

   // wait till at least the complete frame is received 

 

  // copy bytes 

  for(uint8_t i = 0; i<sizeof(FRAME); i++) 

  { 

   ((uint8_t*)&north_curr)[i] = fifo_north; 

   ((uint8_t*)&west_curr)[i] = fifo_west; 

  } 

 

  // process north 
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  printf("n.frame_type = %d ", north_curr.frame_type); 

  fflush(stdout); 

  printf("n.data = %d ", north_curr.data.data); 

  fflush(stdout); 

  switch(north_curr.frame_type) 

  { 

   case FRAME_TYPE_DATA: 

    controller_id = north_curr.data.data; 

     // 2nd byte is data 

    instruction = INST_NO_OPERATION; 

    printf("controller_id = %u ", controller_id); 

    fflush(stdout); 

    break; 

   case FRAME_TYPE_INSTRUCTION: 

    instruction = north_curr.data.instruction;

      // 2nd byte is instruction 

    memcpy(north_C, north_curr.C, sizeof(C)); 

    memcpy(north_N, north_curr.N, sizeof(N)); 

    memcpy(north_E, north_curr.E, sizeof(E)); 

    memcpy(north_W, north_curr.W, sizeof(W)); 

    memcpy(north_S, north_curr.S, sizeof(S)); 

    break; 

   default: 

    instruction = 0; 

    break; 

  } 

 

  // process west 

  printf("w.frame_type = %d ", west_curr.frame_type); 

  fflush(stdout); 

  printf("w.data = %d ", west_curr.data.selector_bit); 

  fflush(stdout); 

  switch(west_curr.frame_type) 

  { 

   case FRAME_TYPE_SELECTOR_BIT: 

    selector_bit = west_curr.data.selector_bit;

      // 2nd byte is selector bit 

    memcpy(west_C, west_curr.C, sizeof(C)); 

    memcpy(west_N, west_curr.N, sizeof(N)); 

    memcpy(west_E, west_curr.E, sizeof(E)); 

    memcpy(west_W, west_curr.W, sizeof(W)); 

    memcpy(west_S, west_curr.S, sizeof(S)); 

    break; 

   default: 

    selector_bit = 0; 

    break; 

  } 

 

  if(selector_bit> 0) 

  { 

   switch (instruction) 

   { 

    case INST_SENSOR_READ: 

     sum_x = sum_y = sum_z = 0; 

     for(uint8_t i = 0; i< NO_OF_SENSOR_READ; 

i++) 

     { 

      lsm303dlhc_accel_read_xyz(x, y, 

z); 
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      sum_x += x; 

      sum_y += y; 

      sum_z += z; 

     } 

     sum_x /= NO_OF_SENSOR_READ; 

     sum_y /= NO_OF_SENSOR_READ; 

     sum_z /= NO_OF_SENSOR_READ; 

     sg[0] = sum_x; 

     sg[1] = sum_y; 

     sg[2] = sum_z; 

     printf("ac_x = %d, ac_y = %d ac_z = %d 

", sum_x, sum_y, sum_z); 

     sum_x = sum_y = sum_z = 0; 

     for(uint8_t i = 0; i< NO_OF_SENSOR_READ; 

i++) 

     { 

      lsm303dlhc_gyro_read_xyz(x, y, z); 

      sum_x += x; 

      sum_y += y; 

      sum_z += z; 

     } 

     sum_x /= NO_OF_SENSOR_READ; 

     sum_y /= NO_OF_SENSOR_READ; 

     sum_z /= NO_OF_SENSOR_READ; 

     sm[0] = sum_x; 

     sm[1] = sum_y; 

     sm[2] = sum_z; 

     printf("\ngy_x = %d, gy_y = %d gy_z = %d 

", sum_x, sum_y, sum_z); 

     fflush(stdout); 

     break; 

    case INST_CALC_DIRECTIONAL_VECTOR: 

     // calculate eg norm 

     eg_norm[0] = eg[controller_id][0]; 

     eg_norm[1] = eg[controller_id][1]; 

     eg_norm[2] = eg[controller_id][2]; 

     algo_norm_3x1(eg_norm); 

 

     // calculate em norm 

     em_norm[0] = em[controller_id][0]; 

     em_norm[1] = em[controller_id][1]; 

     em_norm[2] = em[controller_id][2]; 

     algo_norm_3x1(em_norm); 

 

     // calculate eg x em 

     algo_cross_3x1(eg_norm, em_norm, 

eg_x_em_norm); 

 

     // calculate norm(eg x em) 

     algo_norm_3x1(eg_x_em_norm); 

 

     // calculate e1 

     e1[0] = eg[controller_id][0]; 

     e1[1] = eg[controller_id][1]; 

     e1[2] = eg[controller_id][2]; 

 

     // calculate e2 

     e2[0] = eg_x_em_norm[0]; 

     e2[1] = eg_x_em_norm[1]; 
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     e2[2] = eg_x_em_norm[2]; 

 

     // calculate e3 

     algo_cross_3x1(e1, e2, e3); 

 

     // Copy to Me 

     Me[0][0] = e1[0]; 

     Me[0][1] = e1[2]; 

     Me[0][2] = e1[3]; 

     Me[1][0] = e2[0]; 

     Me[1][1] = e2[2]; 

     Me[1][2] = e2[3]; 

     Me[2][0] = e3[0]; 

     Me[2][1] = e3[2]; 

     Me[2][2] = e3[3]; 

 

     // Calculate C 

     algo_norm_3x1(sg); 

     algo_norm_3x1(sm); 

     algo_cross_3x1(sg, sm, sg_x_sm); 

     algo_norm_3x1(sg_x_sm); 

     // s1=Sg; already satisfied 

     // s2 = sg_x_sm; already satisfied 

     //algo_cross_3x1(s1, s2, s3); 

     memcpy(s1, sg, sizeof(s1)); 

     memcpy(s2, sg_x_sm, sizeof(s2)); 

     algo_cross_3x1(s1, s2, s3); 

 

     //this is already done... 

     //Me=[e1 e2 e3];    // 

will be  3x3 matrix 

 

     //Ms=[s1 s2 s3];    // 

will be  3x3 matrix 

     Ms[0][0] = s1[0]; 

     Ms[0][1] = s1[2]; 

     Ms[0][2] = s1[3]; 

     Ms[1][0] = s2[0]; 

     Ms[1][1] = s2[2]; 

     Ms[1][2] = s2[3]; 

     Ms[2][0] = s3[0]; 

     Ms[2][1] = s3[2]; 

     Ms[2][2] = s3[3]; 

     algo_transpose_3x3(Ms); 

     algo_matrix_mul_3x3_and_3x3(Me, Ms, R); 

 

     // calculate directional vectors 

     algo_matrix_mul_3x3_and_3x1(R, Nb, N); 

     algo_matrix_mul_3x3_and_3x1(R, Eb, E); 

     algo_matrix_mul_3x3_and_3x1(R, Sb, S); 

     algo_matrix_mul_3x3_and_3x1(R, Wb, W); 

     printf("directional vector calculation 

done"); 

     fflush(stdout); 

     break; 

    case INST_DOWN_TAIL: 

     printf("INST_DOWN_TAIL"); 

     break; 

    case INST_DOWN_HEAD: 
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     printf("INST_DOWN_HEAD"); 

     break; 

    case INST_RIGHT_TAIL: 

     printf("INST_RIGHT_TAIL"); 

     break; 

    case INST_RIGHT_HEAD: 

     printf("INST_RIGHT_HEAD"); 

     break; 

    case INST_CALC_CONTROL_POINT: 

     calculate_control_point(controller_id); 

     printf("INST_CALC_CONTROL_POINT"); 

     break; 

    case INST_TRANSFER: 

     printf("C[0]*100 = %d, C[1]*100 = %d 

C[2]*100 = %d ", (int)(C[0] * 100), (int)(C[1] * 100), (int)(C[2] * 

100)); 

     break; 

   } 

  } 

#ifndef LAST_SOUTH_CONTROLLER 

  // send the prev data register & instruction through south 

master 

  SetupXferRecAndExecute(I2C_SOUTH_MASTER, I2C_SLAVE_ADDR, 

(uint8_t*)&north_prev, sizeof(north_prev), 0, 0); 

  memcpy(north_curr.C, C, sizeof(C)); 

  memcpy(north_curr.N, N, sizeof(N)); 

  memcpy(north_curr.E, E, sizeof(E)); 

  memcpy(north_curr.W, W, sizeof(W)); 

  memcpy(north_curr.S, S, sizeof(S)); 

  memcpy((void*)&north_prev, (void*)&north_curr, 

sizeof(north_curr)); 

#endif 

 

#ifndef LAST_EAST_CONTROLLER 

  // send the prev data register & selector bit through east 

master 

  SetupXferRecAndExecute(I2C_EAST_MASTER, I2C_SLAVE_ADDR, 

(uint8_t*)&west_prev, sizeof(west_prev), 0, 0); 

  memcpy(west_curr.C, C, sizeof(C)); 

  memcpy(west_curr.N, N, sizeof(N)); 

  memcpy(west_curr.E, E, sizeof(E)); 

  memcpy(west_curr.W, W, sizeof(W)); 

  memcpy(west_curr.S, S, sizeof(S)); 

  memcpy((void*)&west_prev, (void*)&west_curr, 

sizeof(west_curr)); 

#endif 

  printf("\n"); 

 } 

#endif 

 return 0 ; 

} 
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/*********************************************************************

******** 

 * global defines header file 

 

**********************************************************************

******/ 

 

 

#include "chip.h" 

 

#define VERSION_STRING       

 "ShapeRecon Version - 1.13\n" 

 

#define CONTROLLER_INSTRUCTION      1 

#define CONTROLLER_SELECTOR_BIT      2 

#define CONTROLLER_PROCESS_ELEMENTS      3 

 

// Configure this controller  

//#define CONTROLLER        

 CONTROLLER_INSTRUCTION 

//#define CONTROLLER        

 CONTROLLER_SELECTOR_BIT 

#define CONTROLLER         

 CONTROLLER_PROCESS_ELEMENTS 

 

#define DEBUG_UART         

 LPC_USART1 

 

#if(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS) 

//#define LAST_SOUTH_CONTROLLER      1

    // comment any one of these if its last 

controller 

//#define LAST_EAST_CONTROLLER      1 

 

#define I2C_SOUTH_MASTER      

 LPC_I2C0   

#define I2C_EAST_MASTER       

 LPC_I2C3 

#define I2C_NORTH_SLAVE       

 LPC_I2C2 

#define I2C_WEST_SLAVE       

 LPC_I2C1 

 

#define I2C_SOUTH_MASTER_IRQHandler    

 I2C0_IRQHandler 

#define I2C_EAST_MASTER_IRQHandler    

 I2C3_IRQHandler 

#define I2C_NORTH_SLAVE_IRQHandler    

 I2C2_IRQHandler 

#define I2C_WEST_SLAVE_IRQHandler    

 I2C1_IRQHandler 

#elif(CONTROLLER == CONTROLLER_INSTRUCTION) 

#define I2C_COL1_MASTER       

 LPC_I2C2   

#define I2C_COL2_MASTER       

 LPC_I2C3 

#define I2C_COL3_MASTER       

 LPC_I2C0 
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#define I2C_COL4_MASTER       

 LPC_I2C1 

 

#define I2C_COL1_MASTER_IRQHandler    

 I2C2_IRQHandler 

#define I2C_COL2_MASTER_IRQHandler    

 I2C3_IRQHandler 

#define I2C_COL3_MASTER_IRQHandler    

 I2C0_IRQHandler 

#define I2C_COL4_MASTER_IRQHandler    

 I2C1_IRQHandler 

#elif(CONTROLLER == CONTROLLER_SELECTOR_BIT) 

#define I2C_ROW1_MASTER       

 LPC_I2C2   

#define I2C_ROW2_MASTER       

 LPC_I2C3 

#define I2C_ROW3_MASTER       

 LPC_I2C0 

#define I2C_ROW4_MASTER       

 LPC_I2C1 

 

#define I2C_ROW1_MASTER_IRQHandler    

 I2C2_IRQHandler 

#define I2C_ROW2_MASTER_IRQHandler    

 I2C3_IRQHandler 

#define I2C_ROW3_MASTER_IRQHandler    

 I2C0_IRQHandler 

#define I2C_ROW4_MASTER_IRQHandler    

 I2C1_IRQHandler 

#endif 

 

#define I2C_SLAVE_ADDR        0x55 

#define LSM303DLHC_ACCEL_SLAVE_ADDR     0b0011001 

#define LSM303DLHC_GYRO_SLAVE_ADDR     0b0011110 

 

#define SPEED_100KHZ               100000 

#define SPEED_400KHZ               400000 

 

#define I2C_SPEED        

 SPEED_400KHZ 

 

#define MAIN_OSC_CRYSTAL      

 12000000 

#define RTC_OSC_CRYSTAL       

 32768 

 

#define PIN_GREEN_LED        16 

#define PIN_BLUE_LED        27 

//#define PIN_RED_LED        

 12 

 

//#define RED_LED_OFF()       

 Chip_GPIO_SetPinOutHigh(LPC_GPIO_PORT, 0, PIN_RED_LED) 

//#define RED_LED_ON()       

 Chip_GPIO_SetPinOutLow(LPC_GPIO_PORT, 0, PIN_RED_LED) 

//#define RED_LED_TOGGLE()      

 Chip_GPIO_SetPinToggle(LPC_GPIO_PORT, 0, PIN_RED_LED) 

#define GREEN_LED_OFF()       

 Chip_GPIO_SetPinOutHigh(LPC_GPIO_PORT, 0, PIN_GREEN_LED) 
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#define GREEN_LED_ON()       

 Chip_GPIO_SetPinOutLow(LPC_GPIO_PORT, 0, PIN_GREEN_LED) 

#define GREEN_LED_TOGGLE()      

 Chip_GPIO_SetPinToggle(LPC_GPIO_PORT, 0, PIN_GREEN_LED) 

#define BLUE_LED_OFF()       

 Chip_GPIO_SetPinOutHigh(LPC_GPIO_PORT, 0, PIN_BLUE_LED) 

#define BLUE_LED_ON()       

 Chip_GPIO_SetPinOutLow(LPC_GPIO_PORT, 0, PIN_BLUE_LED) 

#define BLUE_LED_TOGGLE()      

 Chip_GPIO_SetPinToggle(LPC_GPIO_PORT, 0, PIN_BLUE_LED) 

 

 

//LSM303DLHC registers 

#define LSM303DLHC_ACCEL_CTRL_REG1_A            0x20 

#define LSM303DLHC_ACCEL_CTRL_REG2_A            0x21 

#define LSM303DLHC_ACCEL_CTRL_REG3_A            0x22 

#define LSM303DLHC_ACCEL_CTRL_REG4_A            0x23 

#define LSM303DLHC_ACCEL_CTRL_REG5_A            0x24 

#define LSM303DLHC_ACCEL_CTRL_REG6_A            0x25 

#define LSM303DLHC_ACCEL_REFERENCE_A            0x26 

#define LSM303DLHC_ACCEL_STATUS_REG_A           0x27 

#define LSM303DLHC_ACCEL_OUT_X_L_A              0x28 

#define LSM303DLHC_ACCEL_OUT_X_H_A              0x29 

#define LSM303DLHC_ACCEL_OUT_Y_L_A              0x2A 

#define LSM303DLHC_ACCEL_OUT_Y_H_A              0x2B 

#define LSM303DLHC_ACCEL_OUT_Z_L_A              0x2C 

#define LSM303DLHC_ACCEL_OUT_Z_H_A              0x2D 

#define LSM303DLHC_ACCEL_FIFO_CTRL_REG_A        0x2E 

#define LSM303DLHC_ACCEL_FIFO_SRC_REG_A         0x2F 

#define LSM303DLHC_ACCEL_INT1_CFG_A             0x30 

#define LSM303DLHC_ACCEL_INT1_SRC_A             0x31 

#define LSM303DLHC_ACCEL_INT1_THS_A             0x32 

#define LSM303DLHC_ACCEL_INT1_DURATION_A        0x33 

#define LSM303DLHC_ACCEL_INT2_CFG_A             0x34 

#define LSM303DLHC_ACCEL_INT2_SRC_A             0x35 

#define LSM303DLHC_ACCEL_INT2_THS_A             0x36 

#define LSM303DLHC_ACCEL_INT2_DURATION_A        0x37 

#define LSM303DLHC_ACCEL_CLICK_CFG_A            0x38 

#define LSM303DLHC_ACCEL_CLICK_SRC_A            0x39 

#define LSM303DLHC_ACCEL_CLICK_THS_A            0x3A 

 

#define LSM303DLHC_GYRO_CRA_REG_M               0x00 

#define LSM303DLHC_GYRO_CRB_REG_M               0x01 

#define LSM303DLHC_GYRO_MR_REG_M                0x02 

#define LSM303DLHC_GYRO_OUT_X_H_M               0x03 

#define LSM303DLHC_GYRO_OUT_X_L_M               0x04 

#define LSM303DLHC_GYRO_OUT_Z_H_M               0x05 

#define LSM303DLHC_GYRO_OUT_Z_L_M               0x06 

#define LSM303DLHC_GYRO_OUT_Y_H_M               0x07 

#define LSM303DLHC_GYRO_OUT_Y_L_M               0x08 

#define LSM303DLHC_GYRO_SR_REG_M                0x09 

#define LSM303DLHC_GYRO_IRA_REG_M               0x0A 

#define LSM303DLHC_GYRO_IRB_REG_M               0x0B 

#define LSM303DLHC_GYRO_IRC_REG_M               0x0C 

#define LSM303DLHC_GYRO_TEMP_OUT_H_M            0x31 

#define LSM303DLHC_GYRO_TEMP_OUT_L_M            0x32 

 

 

#define rows_of_array(name)       \ 
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    (sizeof(name   ) / sizeof(name[0][0]) / columns_of_array(name)) 

#define columns_of_array(name)    \ 

    (sizeof(name[0]) / sizeof(name[0][0])) 

 

 

#ifdef GLOBALS 

#define EXT 

#else 

#define EXT extern 

#endif 

 

EXT const uint32_t OscRateIn 

#ifdef GLOBALS 

= MAIN_OSC_CRYSTAL 

#endif 

; 

EXT const uint32_t RTCOscRateIn 

#ifdef GLOBALS 

= RTC_OSC_CRYSTAL 

#endif 

; 
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Implementation of Merge Algorithm 
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Matrix Multiplication Algorithm 
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