
SYSTEM ON FABRICS UTILISING

DISTRIBUTED COMPUTING

by

Partheepan Kandaswamy

A Doctoral Thesis submitted in partial fulfilment of the

requirements for the award of Doctor of Philosophy of

Loughborough University

June 2018

© by Partheepan Kandaswamy

ii

To my parents

Shanthi and Kandaswamy

iii

ABSTRACT

The main vision of wearable computing is to make electronic systems an important part

of everyday clothing in the future which will serve as intelligent personal assistants.

Wearable devices have the potential to be wearable computers and not mere

input/output devices for the human body. The present thesis focuses on introducing a

new wearable computing paradigm, where the processing elements are closely coupled

with the sensors that are distributed using Instruction Systolic Array (ISA) architecture.

The thesis describes a novel, multiple sensor, multiple processor system architecture

prototype based on the Instruction Systolic Array paradigm for distributed computing

on fabrics. The thesis introduces new programming model to implement the distributed

computer on fabrics. The implementation of the concept has been validated using

parallel algorithms.

A real-time shape sensing and reconstruction application has been implemented on this

architecture and has demonstrated a physical design for a wearable system based on the

ISA concept constructed from off-the-shelf microcontrollers and sensors. Results

demonstrate that the real time application executes on the prototype ISA

implementation thus confirming the viability of the proposed architecture for fabric-

resident computing devices.

iv

ACKNOWLEDGEMENTS

I would like to thank my supervisors Dr. James Flint and Dr. Vassilios Chouliaras for

their continuous support, guidance, exceptional advice and shared knowledge

throughout my PhD. I would also thank Dr. David Mulvaney for his shared knowledge

during my PhD.

I would like to acknowledge Mr. Peter Godfrey from Wolfson School Electronic

workshop for his support in building the prototype board.

I would like to thank Mr. Ben Clark for his shared knowledge and support throughout

my research and also for his patience in reading my manuscript.

Finally, I would like to thank my parents for their encouragement, support and funding

me throughout my University education.

v

CONTENTS

LIST OF ABBREVIATIONS AND SYMBOLS ... viii

LIST OF FIGURES ... x

LIST OF TABLES ... xii

CHAPTER 1: INTRODUCTION .. 1

1.1 Area of Research .. 2

1.1.1 Distributed Computing ... 2

1.1.2 Distributed Sensor Networks .. 3

1.1.3 Wearable Electronics .. 4

1.1.4 Smart Fabrics .. 6

1.2 Research Aim ... 9

1.3 Objectives ... 9

1.4 Novel contribution of the thesis ... 10

1.5 Thesis Outline .. 10

References ... 12

CHAPTER 2: A NOVEL PARALLEL DISTRIBUTED ARCHITECTURE 14

2.1 Introduction to Multiple sensors, Multiple Processor Systems 14

2.1.1 Comparison between the concepts .. 17

2.2 Classifications of Parallel Computer Architectures ... 19

2.2.1 Flynn’s Taxonomy .. 19

2.2.2 Duncan’s classification ... 21

2.2.3 VLSI processor arrays .. 23

2.2.4 Conclusion .. 24

2.3 Systolic Array... 25

2.3.1 Features of systolic arrays ... 26

2.3.2 Types of systolic array structures ... 28

2.4 The Instruction Systolic Array ... 31

2.4.1 Principles of ISA ... 31

Contents vi

2.4.2 ISA Architecture ... 33

2.4.3 Programming and Execution of ISA ... 35

2.4.4 Applications of ISA .. 36

2.5 Adaptation to ISA .. 37

2.6 Systola 1024 ... 37

2.7 Conclusion.. 38

References ... 39

CHAPTER 3: IMPLEMENTATION OF INSTRUCTION SYSTOLIC ARRAY

FOR SMART FABRICS ... 41

3.1 A novel architecture for on-fabric parallel processing 41

3.2 Implementation of novel architecture .. 44

3.2.1 Candidates for bus systems ... 44

3.2.2 Serial bus protocols ... 46

3.3 Details of the Inter-Integrated Circuit (I2C) Bus .. 48

3.3.1 Bus Signals ... 50

3.4 Prototype Design .. 52

3.5 Selection of Microcontroller for the Processing Element 55

3.6 Power and programming interface for the array .. 57

3.7 Conclusion.. 60

References ... 61

CHAPTER 4: PROGRAMMING AND VALIDATION OF THE INSTRUCTION

SYSTOLIC ARRAY ... 62

4.1 Programming the Instruction Systolic Array ... 62

4.2 Merge Algorithm Validation .. 65

4.2.1 Algorithm .. 65

4.2.2 Program ... 66

4.2.3 Numerical example ... 67

4.2.4 Result from the processor array .. 71

4.3 Matrix Multiplication Validation ... 72

4.3.1 Algorithm .. 72

4.3.2 Program ... 76

4.3.3 Numerical example ... 77

4.3.4 Result from the processor array .. 81

Contents vii

4.4 Conclusion.. 81

References ... 83

CHAPTER 5: SHAPE RECONSTRUCTION USING INSTRUCTION SYSTOLIC

ARRAY 84

5.1 Introduction .. 84

5.2 Background .. 85

5.2.1 Shape Reconstruction algorithm ... 85

5.2.2 Shape Reconstruction from sensor orientation data 87

5.3 Experimental Setup .. 92

5.4 Programming the shape reconstruction algorithm using Instruction systolic

array 93

5.5 Experimental Results ... 101

5.6 Conclusion.. 105

References ... 106

CHAPTER 6: CONCLUSION AND FUTURE WORK ... 107

6.1 Contribution of this thesis .. 107

6.2 Suggestions for future research .. 108

6.2.1 Computational performance ... 108

6.2.2 Scalability ... 108

6.2.3 Programming techniques .. 108

6.2.4 Designing .. 109

6.2.5 Applications .. 109

6.3 Summary .. 109

References ... 111

LIST OF PUBLICATIONS .. A

APPENDIX .. 1

viii

LIST OF ABBREVIATIONS AND SYMBOLS

ABBREVIATIONS

Abbreviation Expansion

2D Two Dimension

3D Three Dimension

ACK Acknowledgement

ASIC Application Specific Integrated Circuit

C Control Unit

CAN Controller Area Network

Cm Centimeter

DIP Digital Image Processing

I Instruction

I2C Inter Integrated Circuit

ISA Instruction Systolic Array

MEMS Micro Electro Mechanical Systems

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

Ms Milliseconds

P Processing Element

PCB Printed Circuit Board

R/W Read/Write

S Sensor

SCL Serial Clock Line

SDA Serial Data Line

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SPI Serial Peripheral Interface

SQS Surface Quality Scanner

UART Universal Asynchronous Receiver/ Transmitter

USB Universal Serial Bus

VLSI Very Large Scale Integration

List of abbreviations and symbols ix

SYMBOLS

Symbol Denotes

Eg Earth gravity field vector

Em Earth magnetic field vector

Me Global Earth reference matrix

Ms Sensor measurement matrix

R Rotational matrix

RP Pull-up Resistance (Ω)

Sg Sensor gravity field vector

Sm Sensor magnetic field vector

Vdd Supply Voltage (V)

x

LIST OF FIGURES

Figure 1.1: Partitioning of a wearable system from a technological point of view 5

Figure 1.2: Circuit incorporated in a textile with wire grid [1.15] 6

Figure 1.3: Smart fabric in healthcare [1.15] .. 8

Figure 1.4: Muscle Activating Smart suit [1.15] .. 8

Figure 1.5: Networked Jacket [1.15] .. 9

Figure 2.1: Concept 1 showing Control unit C and Sensors Sn,m 15

Figure 2.2: Concept 2 where IN shows an interconnection such as bus 15

Figure 2.3: Concept 3 showing the inclusion of individual processing elements P 16

Figure 2.4: Concept 4 showing communication between neighbouring P's 17

Figure 2.5: Flynn’s taxonomy of computer architectures: a) SISD, b) SIMD, c) MISD,

and d) MIMD (C: Control unit, P: Processor, M: Memory, I N: Interconnection

Network (Bus)) ... 21

Figure 2.6: Duncan’s taxonomy of parallel computer architectures 22

Figure 2.7: General systolic organization ... 27

Figure 2.8: Linear systolic array ... 28

Figure 2.9: Orthogonal systolic array ... 29

Figure 2.10: Hexagonal systolic array .. 29

Figure 2.11: Triangular systolic array ... 30

Figure 2.12: Execution of an ISA instruction ... 32

Figure 2.13: Instruction cycle ... 33

Figure 2.14: Execution of an ISA diagonal (I - Instruction, S - Selector bit, + -

Execution). .. 34

Figure 2.15: Execution of ISA program ... 36

Figure 2.16: Systola 1024 from [2.21] .. 37

Figure 3.1: System concept ... 42

Figure 3.2: General concept of a sensor system with integrated processing elements for

human body applications .. 43

List of figures xi

Figure 3.3: Different methods for transfer of information .. 45

Figure 3.4: Typical I2C bus .. 49

Figure 3.5: Basic Mechanism in I2C from NXP Semiconductors adapted from [3.7] ... 51

Figure 3.6: Processor array showing grid arrangement .. 53

Figure 3.7: Detail of I2C bus connections .. 54

Figure 3.8: Microchip PIC16F1829 .. 55

Figure 3.9: 32-bit ARM Cortex-M0+ LPC824 microcontroller mounted on NXP

LPC824-MAX board .. 55

Figure 3.10: Processor Array with peripherals ... 56

Figure 3.11: I2C connection between two microcontrollers with sensor 57

Figure 3.12: Prototype board .. 57

Figure 3.13: Programming board (switching circuit) ... 58

Figure 3.14: Schematic for the switching circuit .. 59

Figure 3.15: Application for programming the microcontrollers 60

Figure 4.1: Working of the ISA program ... 64

Figure 4.2: ISA program for merge algorithm .. 66

Figure 4.3: Performance analysis for P(2,1) and P(3,3) ... 72

Figure 4.4: ISA Program for Matrix Multiplication ... 76

Figure 4.5: Performance analysis for P(2,1) and P(3,3) ... 81

Figure 5.1: Surface segment structure. Each segment consists of center C and four

direction vectors 𝑵, 𝑬, 𝑺 and 𝑾 [5.1] ... 88

Figure 5.2: Structure of control point connections. C[i; j] - reference point. (a) Single

reference row is obtained, then all other points are calculated with column method. (b)

Single reference column is obtained, then all other points are calculated with row

method adapted from [5.1] .. 89

Figure 5.3: Step wise implementation of Shape Reconstruction Application 91

Figure 5.4: LSM303DLHC mounted on Adafruit board .. 92

Figure 5.5: Sensors embedded with fabric. ... 93

Figure 5.6: ISA firmware for shape reconstruction application 95

Figure 5.7: Fabric wrapped on a cylindrical object .. 101

Figure 5.8: Reconstructed shape of the object .. 102

Figure 5.9: Fabric placed on the object ... 102

List of figures xi

Figure 5.10: : Reconstructed shape of the object ... 103

Figure 5.11: Fabric placed on the object ... 103

Figure 5.12: Reconstructed shape of the object .. 104

Figure 5.13: Performance analysis for P(2,1) and P(3,3) ... 105

xii

LIST OF TABLES

Table 2.1: Comparison between concepts .. 17

Table 3.1: Difference between serial and parallel communication 45

Table 3.2: Comparison of different bus system .. 46

Table 4.1: Instruction symbol definition ... 67

CHAPTER 1:

INTRODUCTION

N today’s technological era, wearable electronics has become a crucial part of day to

day activities. There has been a lot of development in the field of wearable

electronics due to continuous quest of innovation by industrial and academic

researchers. In earlier days, communication, electronics, and computing devices used

were mainly non-portable because of their large size and complexity. Next introduced

were smaller and lighter portable devices along with integration of some additional

functions. Due to continuous improvements, now we have multi-purpose micro devices

which can be embedded into wearables and are better in terms of many criteria such as

communication, weight, energy management, durability, comfort and size [1.1].

In application-oriented research, the concept of wearable computing is a fast-growing

area. Wearable technology can be used in various sectors like healthcare, military

applications, gaming, sports, music and emergency services [1.2]. Wearable electronics

can take the form of a discrete device such as a watch or arm band or it may be

integrated into clothing opening an entirely new field of applications. As wearable

devices increase in the level of complexity and become more integrated the

opportunities to integrate more sophisticated functionality also increase [1.3]. NASA

3D printed space [1.4] fabric could potentially be used for large antennas and other

deployable devices, because the material is foldable and its shape can change quickly.

The fabrics could also eventually be used to shield a spacecraft from meteorites, for

astronaut spacesuits, or for capturing objects on the surface of another planet. Currently,

this development is in the early stages but it is easy to see how electronics may need to

be incorporated.

The remarkable progress in miniaturization of microelectronics and progress in the

invention of new materials have made it possible to integrate the functionality into

clothing [1.5]. The main vision of wearable computing is to make electronic systems an

I

1. Introduction 2

important part of everyday clothing in the future which will serve as intelligent personal

assistants. Wearable devices have the potential to be wearable computers and not mere

input/output devices for the human body. The present thesis focuses on introducing a

new wearable computing paradigm which can improve the performance of a highly

human-integrated computer.

As a result of remarkable innovations in embedded systems over a period of last thirty

years, the value of microprocessors and communication technology have reduced

significantly in terms of cost in real terms. Due to this, distributed computer systems

have become a feasible substitute for uni-processor and centralised systems in various

application areas of embedded systems.

The research challenge is to address the problems of low bandwidth sensors in wearable

electronics. One of the solutions to high bandwidth sensor is the use of parallelism.

1.1 Area of Research

This thesis will focus on a distributed computing platform for wearable electronics. A

brief introduction to the mainly used technologies in the current thesis is discussed in

the following sub-sections.

1.1.1 Distributed Computing

A distributed computing system is a collection of processor-memory pairs connected by

a communications subnet and logically integrated into varying degrees by a distributed

operating system or distributed database system[1.6]. The communications subnet may

be a widely geographically dispersed collection of communication processors or a local

area network. The widespread use of distributed computer systems is due to the price-

performance revolution in microelectronics the development of cost effective and

efficient communication subnets (which is itself due to the merging of data

communications and computer communications), the development of resource sharing

software, and the increased user demands for communication, economical sharing of

resources, and productivity[1.5]. A distributed computing system potentially provides

significant advantages, including performance, reliability, resource sharing, and

extensibility[1.6].

1. Introduction 3

The study of distributed computing has grown to include a large range of

applications[1.7],[1.8]. However, at the core of all the efforts to exploit the potential

power of distributed computation are issues related to the management and allocation of

system resources relative to the computational load of the system. One measure of the

usefulness of a general-purpose distributed computing system is the system’s ability to

provide a level of performance corresponding with the degree of multiplicity of

resources present in the system. This is particularly true of attempts to construct large

general-purpose multiprocessors[1.7].

An interesting area for research which is increasingly getting noticed is decentralized

processing [1.9]. As compared with centralised processing approach, the main

advantage it provides is increased robustness. The entire system would never fail

resulting from the malfunctioning of processors or sensors or other components. Nodes

can be more flexible in distributed networks because nodes need not be reinitialized

when nodes are introduced, moved and removed from the network for new topology

[1.10].

There are also potentials of avoiding the fusion of a multitude of sensor data at once and

adding more units would have potential of cost saving because mostly same design only

needs to be duplicated. These are other benefits of processing the data in a distributed

manner [1.11].

1.1.2 Distributed Sensor Networks

In detection applications, distribution of a large amount of simple sensing devices is

increasingly getting more interest, mainly inspired from its perception in biological

systems [1.11]. Focus on fusion of sensor signals instead of strong analysis algorithms,

and a scheme to distribute sensors, results in new paradigm. Especially in wearable

computing, where sensor data continuously changes, and clothing provides an ideal

supporting structure for simple sensors [1.11].

The justification for using sensors in a wearable computing architecture ranges from use

in intelligence augmentation to automating tasks depending on particular features of the

environment. Regardless of whether these applications would be sought after by a large

1. Introduction 4

community, one trend that can be observed is that sensors are gradually becoming part

of mobile and wearable devices [1.11].

Wearable computers are no exception to this concept either, since large surfaces of

clothing are an ideal supporting platform for a multitude of sensors, provided they are

miniaturized so that they do not obstruct the wearer. This size constraint often means

that the quality of the sensor itself is compromised as well, which leads to the concept

of many simple sensors [1.11].

1.1.3 Wearable Electronics

Wearable Electronics is a new technological concept that integrates electronics with

clothing and opens up a whole array of well designed, multi efficient and wearable

electro textiles which can sense and monitor various functions of the body, can transfer

data, can offer individual environment control and are able to provide communication

facilities along with various other major applications[1.3]. The potential of wearable

electronics is widespread when looking at so many innovatory advancements that are

happening at an extraordinary rate in many fields of science and technology. These

developments have the capability to change the world and they will very rapidly

pervade into commercial products[1.12], [1.13]. Expert high-quality clothing will be

available to make it possible to observe the important life signs of new born babies,

clothing that can record the routine of an athlete’s muscles and technique efficient

clothing that can call even a rescue team for victims of accidents that occur due to bad

weather conditions and there are limited options for help[1.13].

As described by I.Loacher [1.3], system-on-textile is the equipped clothing that

combines electrical functions with apparel and at the same time maintains the wearing

comfort. Another name for this is Smart Fabrics. The main aim is not to mix large

electronic devices into clothing but rather small and committed electrical devices, for

e.g. sensors along with their signal conditioning components taking the comfort of

clothing into consideration. The sensors can be placed into positions where they can

accomplish their sensing task in best possible way by integrating them directly into

clothing such as accelerometers at joints. In contrast to this, chips that are having

hundreds of pads and relatively high power dissipation, for e.g. high-speed

microcontrollers are favourably placed into stiff enclosures such as belt buckles and

1. Introduction 5

accessories. By keeping them there, circuits take advantage of the properties of Printed

Circuit Board (PCB) technology like high-density wiring, multilayer and precisely

controlled impedances. Fig 1.1 shows the partitioning of a wearable system from a

technological point of view.

Figure 1.1: Partitioning of a wearable system from a technological point of view

The fabrics containing electronics as well as interconnections integrally woven into

them are called as Electronic Textiles or e-textiles [1.14]. Electronic textiles provide

physical flexibility and typical size which is hard to obtain from other existing

electronic manufacturing techniques. As the electronic components and

interconnections are woven into fabric, they are less visible and there are less chances of

getting tangled in objects nearby. One important feature of E-textiles is their easy

adaptation to any particular application requiring fast changes in computational and

sensing requirements making them attractive for power management and context

awareness. The vision of wearable computing is to make the electronic systems an

important part of everyday clothing in the future. Although, these electronic devices

should meet certain criteria to be wearable. The main feature of wearable systems will

be their capability to identify the activity and the behavioural status of the person using

them and the situations and environment around and then to further utilize this

information to adapt the functionality and systems configuration [1.14].

1. Introduction 6

There are different ways to produce electrically conductive fabrics. A technique is to

incorporate conductive yarns directly into a textile structure, for instance, through

weaving [1.14]. However, the incorporation of conductive yarns in a textile structure is

complex and rarely a uniform process as the electrically conductive fabric has to be soft

in touch or comfortable to wear rather than rigid and hard. Fig 1.2 shows an approach to

incorporate circuits in a textile with wire grid [1.15].

Figure 1.2: Circuit incorporated in a textile with wire grid [1.15]

1.1.4 Smart Fabrics

Electronics and Clothing were considered to be two different sectors of industries till

now but now they are working together to produce some integrated and new innovative

products[1.16], [1.17].

From Lymberis and Paradiso [1.18], since last 10-15 years, considerable advancements

in the terms of data processing, miniaturization, functionality, seamless integration,

comfort and communication have made Wearable Technology and integrated systems

as well established fields. The textile industry is also increasingly interested by the

potential for new value-added clothing products such as smart clothing and

functionalised apparel and this is also driving the development of wearable systems.

In [1.17] Smart Fabrics are considered as the integrated systems into textiles and

includes sensors, a power source, actuators and computing, forming a complete package

for an interactive communication network. This type of smart systems can only be

imagined by combining the innovative advances in fields like fibre and polymer

research, microelectronics, embedded systems, advanced material processing,

1. Introduction 7

telecommunication, signal processing and nanotechnologies. The most common

platform to integrate smart materials in the form of fibres is textile. In textiles, by

combining the chemical surfaces processes, the properties of the materials can be

improved efficiently and also the structure of fabrics permits to exercise redundant

sensor configurations.

One of the advantages of wearable application is that the smart fabrics provide a natural

interface with the body considering comfort clothing with the help of precise and

reproductive positioning of the sensors [1.18]. Bearing in mind comfort, the sensors are

covered within the layers of fabric such as fibre optic or sometimes the fabric itself is

used as a sensor or a distributed network of sensors.

Fabric computing includes designing a computing fabric which contains interconnected

nodes but when observed from some distance, it seems like a fabric [1.19]. The two key

components of fabrics are nodes and links. Nodes are processor(s), peripherals and

memory whereas links can be described as the functional interconnection between

nodes. Mainly it indicates towards a merged high-performance computing system that

contains parallel processing functions, storage and networking linked with each other

via high bandwidth interconnects.

Smart textiles or smart fabrics refer to clothing having integral electronics and

interconnections woven into the fabrics itself [1.15]. This arrangement provides

physical flexibility which is not attainable with other electronic manufacturing

techniques. The electronic components and interconnections have low visibility and are

less prone of getting tangled as they are embedded and woven with fabric [1.15]. The

vision is to make smart textiles a part of day to day clothing. The main features of smart

textiles include their ability to identify the activities around them as well as of their

owner automatically and then to use the collected information to adjust functionality

[1.15].

Medicine is a major area which has benefitted immensely in the applications developed

from the combination of smart textiles and wearable computers in the form of

Telemedicine. Fig 1.3 shows the overview of the use of smart fabrics and wearable

computers in healthcare [1.15].

1. Introduction 8

Figure 1.3: Smart fabric in healthcare [1.15]

In sports generally, important monitoring functions such as body temperature, heart

rate, breathing, and other physiological parameters such as number of steps taken and

total distance travelled can be achieved using smart devices embedded on sport

clothing. Smart textiles in sports also help in protection against injury of athletes. Fig

1.4 shows an athlete wearing muscle activation smart suit [1.15].

Figure 1.4: Muscle Activating Smart suit [1.15]

The jacket shown in Fig 1.5 helps in the tracking of the location of the wearer using a

GPS and project the map onto a flexible display screen on the sleeve of the jacket. It

also displays the moods of the wearer via colour changes and signs [1.15].

1. Introduction 9

Figure 1.5: Networked Jacket [1.15]

The Ohio State University researchers under the guidance of John Volakis have taken

the next step toward the design of functional textiles clothes that gather, store, or

transmit digital information [1.21]. This technology can result in lots of applications

with further developments like sports equipment that monitors athletes performance,

even a flexible fabric cap that senses activity in the brain, workout clothes that monitor

your fitness level, a bandage that tells your doctor how well the tissue beneath it is

healing, shirts that act as antennas for your smart phone or tablet [1.21].

1.2 Research Aim

The overall aim of this work is to advance the field of sensor networks by embedding

parallel processing concepts. The application that the thesis will address is in human

monitoring.

1.3 Objectives

The specific objectives of this thesis are:

• To propose a new sensor networking paradigm that exploits processor level

parallelism and introduces the concept of on-fabric computation.

• To validate the method and produce parallel program that can be used on the

sensor network array.

• To produce a physical demonstrator for a specific measurement scenario that has

relevance to human monitoring.

1. Introduction 10

1.4 Novel contribution of the thesis

• To propose a new concept for distributed on-fabric processing.

• To implement a parallel computing architecture optimised for fabric mounting.

• To apply the architecture to a physical demonstrator containing an array of

computing nodes.

• A present a set of measurements obtained from a physical demonstrator.

1.5 Thesis Outline

Chapter 2: A Novel Parallel Distributed Architecture

The purpose of the chapter is to consider the concepts for attaching sensors to

processing elements. This chapter will review the state of the art in parallel computer

architectures and will identify a suitable architecture for a wearable computer system.

The chapter also considers alternative architectures and how they interconnect with the

physical local sensors.

Chapter 3: Implementation of Instruction Systolic Array for Smart

Fabrics

An implementation of a prototype design of the novel architecture proposed in chapter 2

is given. The chapter also explains the challenges of implementing the design using

commercial off-the-shelf components. The prototype has been designed using the

concept of the Instruction Systolic Array. This chapter also discusses the bus systems

and an off-the-shelf microcontroller that has been used to implement the prototyped

concept.

Chapter 4: Programming and validation of Instruction Systolic Array

This chapter of the thesis describes the programming of the instructing systolic array

and implementing the instruction systolic array on an array of off-the-shelf

microcontrollers. To illustrate some of the basic definitions of the previous chapter,

parallel algorithm examples are presented.

Chapter 5: Shape Reconstruction Application using Instruction

Systolic Array

1. Introduction 11

This chapter introduces a 2D mesh architecture prototype based on the Instruction

systolic array paradigm for distributed computing on fabrics. A real-time shape sensing

and reconstruction application executing on ISA architecture and demonstrates a

physical design for a wearable system based on the ISA concept constructed from off-

the-shelf microcontrollers and sensors.

Chapter 6: Conclusion

This chapter summarizes the contributions of the thesis and discusses the future work

that can be conducted.

1. Introduction 12

References

[1.1] S. Lam Po Tang, “Recent developments in flexible wearable electronics for

monitoring applications,” Transactions of the Institute of Measurement and

Control, vol. 29, no. 3-4, pp. 283-300, July 2016

[1.2] Wearable Devices [Online]. [Accessed: 12August 2017]. Available from:

http://www.wearabledevices.com/what-is-a-wearable-device

[1.3] J. McCann and D. Bryson, “Smart cloths and wearable technology”, First

Edition, pp.1, Woodhead Publishing Limited, 2009

[1.4] NASA [Online]. [Accessed: 22 August 2017]. Available from:

https://www.nasa.gov/feature/jpl/space-fabric-links-fashion-and-engineering

[1.5] I. Locher, “Technologies for system-on-textile integration,” Doctoral Thesis

(PhD), Swiss Federal Institute of Technology, 2006

[1.6] J. A. Stankovic, “A Perspective on Distributed Computer Systems,” IEEE

Transactions on Computers, vol. C-33, no. 12, pp. 1102-1115, December

1984

[1.7] T. L. Casavant and J. G. Kuhl, “A Taxonomy of Scheduling in General-

Purpose Distributed Computing Systems,” IEEE Transactions on Software

Engineering, vol. 14, no. 2, pp. 141-154, February 1988

[1.8] A. Burns and A. Wellings, “Concurrency of Ada”, Second Edition, pp. 1,

Cambridge University press,1999

[1.9] A. Cerpa and D. Estrin, “Ascent: Adaptive Self-Configuring Sensor Network

Topologies”, UCLA Computer Science Department Technical Report

UCLA/CSD-TR-01-0009, May 2001

[1.10] A. Lim, "Distributed Services for Information Dissemination in Self-

Organizing Sensor Networks", Special Issue on Distributed Sensor Networks

for Real-Time Systems with Adaptive Reconfiguration, Journal of Franklin

Institute, Elsevier Science Publisher, Vol. 338, pp. 707-727, 2001

[1.11] K. Van Laerhoven, A. Schmidt, H. Gellersen, "Multi-sensor context aware

clothing", Proc. 6th Int. Symp. Wearable Computers, pp. 49-56, 2002

[1.12] D. Trossen and D. Pavel, “Sensor networks, wearable computing, and

healthcare applications,” Pervasive Computing, IEEE, vol. 6, no. 2, pp. 58–

61, 2007

1. Introduction 13

[1.13] B. Burchard, S. Jung, A. Ullsperger, and W. D. Hartmann, “Devices,

software, their applications and requirements for wearable electronics,”

ICCE, pp. 224–225, 2001

[1.14] M. Stoppa and A. Chiolerio, "Wearable Electronics and Smart Textiles: A

Critical Review", Sensors 2014, Vol. 14, 11957-11992, 2014

[1.15] Yinka-Banjo Chika, and Salau Abiola Adekunle, “Smart Fabrics Wearable

Technology”, International Journal of Engineering Technologies and

Management Research, Vol. 4, pp. 78-98, 2017

[1.16] S. I. Woolley, J. W. Cross, S. Ro, R. Foster, G. Reynolds, C. Baber, H.

Bristow, and A. Schwirtz, “Forms of wearable computer,” in IEE

Eurowearable, IET, pp. 47-52, 2003

[1.17] K. V. Laerhoven, A. Schmidt, and H-W. Gellersen, “Multi-Sensor Context

Aware Clothing,” in ISWC, IEEE Computer Society, pp.49-56, 2002

[1.18] C. L. Cathey, J. D. Bakos, and D. A. Buell, “A reconfigurable distributed

computing fabric exploiting multilevel parallelism,”in FCCM, IEEE

Computer Society, pp. 121–130, 2006

[1.19] A. Lymberis and R. Paradiso, “Smart Fabrics and Interactive Textile

Enabling Wearable Personal Applications: R&D State of the Art and Future

Challenges,” in 30th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, pp. 5270–5273, 2008

[1.20] Y. Yu, C-L. Hui, T-M. Choi, and R. Au, “Intelligent Fabric Hand Prediction

System with Fuzzy Neural Network,” IEEE Transactions on Systems, vol.

40, no. 6, pp. 619–629, 2010

[1.21] Computers in your cloths a milestone for wearable electronics [Online].

[Accessed: 20 February 2018]. Available from:

https://news.osu.edu/news/2016/04/13/computers-in-your-clothes-a-

milestone-for-wearable-electronics

CHAPTER 2:

A NOVEL PARALLEL DISTRIBUTED

ARCHITECTURE

HE purpose of the chapter is to consider a series of possible concepts for attaching

sensors to processing elements. This chapter will review the state of the art in

parallel computer architectures and will identify a suitable architecture for a wearable

computer system. The chapter also considers alternative architectures and how they

interconnect with the physical local sensors.

2.1 Introduction to Multiple sensors, Multiple Processor Systems

The classification of parallel computer systems is usually based on their constituent

hardware components. Once sensors are introduced into the parallel system there are a

number of possible options for attaching them to the individual Processing elements.

Suppose that we have a rectangular sensor matrix of N by M sensors, each capturing

analogue data with an upper-frequency f and we wish to continuously process data,

producing a result. The application area is assumed to require processing of data from

multiple sensors. An example of this is contained in a later chapter.

In Concept 1 shown in Fig 2.1 it can be seen that the single Control unit, C, which

processes all the sensor data needs to process samples at a rate of 2.N.M.f. That

processing may be assisted by specialist hardware on particular processors but

ultimately the control unit must handle this and perform its calculations at an

appropriate speed.

T

2. A novel parallel distributed architecture 15

Figure 2.1: Concept 1 showing Control unit C and Sensors Sn,m

Concept 2 shown in Fig 2.2 is similar in terms of performance, however, although the

wiring may well be more convenient it uses a shared bus system which may bring

additional implementation cost and complexity. The interconnection IN shown in Fig

2.2 could be a bus communication used for the purpose to transfer data.

Figure 2.2: Concept 2 where IN shows an interconnection such as bus

2. A novel parallel distributed architecture 16

Concept 3 shown in Fig 2.3 has a control unit and many processing elements. All the

processing elements are connected to the control unit. The sensors are attached to the

processing elements using their own individual buses. Here the processing elements are

required to process samples at 2f samples/second and after preprocessing may be

subsequently passed to the control unit. However, this offers a limited advantage if the

purpose is to process data which involves fusing information from adjacent sensors.

Figure 2.3: Concept 3 showing the inclusion of individual processing elements P

Concept 4 shown in Fig 2.4 has many processing elements. Each processing element is

physically connected to the neighbouring processing elements. Every processing

element is attached to its own sensors using an individual bus. The processing can be

carried out locally at each processing element. Alternatively, the whole network of

processing elements and sensors can be thought of as a form a distributed computer

unit. This concept has inherent advantages as it means that co-located sensor data can be

processed locally and independently by the distributed processors. Selected pre-

processed data can also be communicated reducing bandwidth. It is worth emphasising

that this is different to a conventional parallel concept because the processing elements

are physically spaced out to coincide with their local sensors. Indeed, it may be possible

2. A novel parallel distributed architecture 17

for the processing elements and sensors to be manufactured as one single integrated

circuit. Each one of these integrated units would still be connected by physical bus

wires which may be constructed using conductive thread or printed conductive wires on

the fabric.

Figure 2.4: Concept 4 showing communication between neighbouring P's

2.1.1 Comparison between the concepts

The advantages and disadvantages of all four concepts are listed in the table below:

Table 2.1: Comparison between concepts

Concept Advantages Disadvantages

1 • Simple architecture.

• Independent bus

connection and no

requirement for

complex bus protocol.

• Single control unit

handling all the data.

• Physical wiring for all

sensors which returns

to the single control

2. A novel parallel distributed architecture 18

unit.

2 • Fewer physical

connections.

• The bus can only be

occupied by a single

sensor at any one time.

• Bus protocol required

and sensor addressing

must be implemented.

3 • Some pre-processing

may be done at the

processing elements.

• More processing

elements required.

• Depending on the

application, it may not

be better than concept

1 or 2, where the

application requires

less sampling.

4 • May be able to exploit

parallel processing

paradigm to achieve

improved

performance.

• Scalability may be

achievable without

reducing computing

speed.

• Buses are between

adjacent processing

elements and are not

all routed back to the

control unit.

• Programmer’s model

is very complex.

• Requires selection of

suitable parallel

processing concept and

strategy for the control

unit.

The Concept 4 looks promising as the architecture is distributed and has the potential to

have the better performance compared to other concepts. It also has the benefit of

2. A novel parallel distributed architecture 19

processing the data locally because it will resolve the high bandwidth problem and is

not reported in the current literature. For example we can implement an FFT and then

just export very small amount of data. This thesis takes the challenge of developing the

concept and designing and implementing a wearable system based on this concept. The

next section considers parallel architectures which may be suitable for such a system.

2.2 Classifications of Parallel Computer Architectures

Based on major methodologies that were created in the 1960s and 1970s, a wide range

of computer architectures have been invented with huge development in VLSI

technology over last 30 years. With expanding number of computer architectures, the

classification of the architectures should be done efficiently. The classification should

be done in such a way that it distinguishes the structures with considerable differences

and meantime also discloses the similarities between noticeably divergent designs [2.1].

Various definitions have been proposed for a range of parallel architectures. Many

authors have worked on the classification of computer architectures. The most widely

accepted classifications among all are Flynn's taxonomy [2.2] which is based on

instruction and data stream. One of the disadvantages of Flynn's classification is it does

not clearly differentiate between various multiprocessor architectures. Some of these

disadvantages from Flynn's classification have been resolved in Duncan's taxonomy

[2.3]. These two taxonomies [2.2], [2.3] showing different points of view of parallel

architectures have been briefly explained in the next sections.

2.2.1 Flynn’s Taxonomy

Flynn's taxonomy, which is one of the earliest classification systems for parallel

computers, was developed by Michael J. Flynn in 1966. This classification has been

used as a tool in designing modern processors and their functionalities. Flynn mainly

used two criteria for the classification of programs and computers, first being whether

they were working using a single set or multiple set of instructions and second was

whether or not those instructions were using a single set or multiple sets of data [2.1].

2. A novel parallel distributed architecture 20

2.2.1.1 Flynn's classification

Based on the presence of either single or multiple streams of instructions and data, four

groups according to Flynn's taxonomy are SISD, SIMD, MISD and MIMD. Flynn's

classification is briefly described below:

• SISD (Single Instruction Single Data); which mainly describes serial computers.

• SIMD (Single Instruction Multiple Data); which works with multiple processors

executing the same instruction simultaneously on different data.

• MISD (Multiple Instruction Single Data); which works with multiple processors

executing different instructions to a single data stream. This is more uncommon

architecture.

• MIMD (Multiple Instruction Multiple Data); which works with multiple

processors simultaneously executing multiple instructions on multiple data.

These four categories along with their architectural differences are shown in Fig. 2.5.

The major representatives of SISD category are single processor computers. The next

one is SIMD category, which includes vector computers as well as array computers. It is

also known as synchronous parallelism. MISD is an uncommon category which is even

referred as non-existent by various authors. Bräunl [2.4] classified pipeline computers

under this category. The last one is MIMD category which includes multi processor

distributed computer systems. It is also known as asynchronous parallelism, which is

opposite to SIMD.

Flynn's taxonomy provides useful information for characterising computer architectures.

Many structures have been found that do not clearly show any of these characteristics

and hence do not fit in any of these four groups. So, Flynn's classification became

inadequate when it comes to the classification of many modern computers like pipelined

processors, systolic arrays, etc. [2.3].

2. A novel parallel distributed architecture 21

Figure 2.5: Flynn’s taxonomy of computer architectures: a) SISD, b) SIMD, c) MISD,

and d) MIMD (C: Control unit, P: Processor, M: Memory, I N: Interconnection

Network (Bus))

2.2.2 Duncan’s classification

The latest architecture innovations were positioned in a broader framework of parallel

architectures by Duncan's taxonomy. According to Duncan, the classification should

satisfy the following important points [2.3]:

• It should maintain the elements of Flynn's classification based on instruction and

data streams;

• It should exclude the architectures which incorporate just a low-level parallel

mechanism which has become a general feature of modern computers;

P MC

P

P

P

P

P

P

P

P

P

C

C

C

C

C

C

C

M

M

M

M

M

M

M

IN

IN

a)

b)

c)

d)

Instruction Stream Data Stream} }

2. A novel parallel distributed architecture 22

• It should include pipelined vector processors and other architectures which

intuitively looks as parallel architectures but hard to properly classify under

Flynn's taxonomy.

If the above conditions are satisfied, a parallel architecture can be described as a high

level, the explicit framework used to develop parallel programming solutions with the

help of multiple processors that work together through simultaneous execution to solve

the problems. The processors can either be simple or complex.

The classification of processor structures according to Duncan's classification is shown

in Fig. 2.6.

Figure 2.6: Duncan’s taxonomy of parallel computer architectures

MIMD paradigm

MIMD

Synchronous

Vector

SIMD

Systolic

Distributed

memory

Shared memory

Dataflow

Reduction

Wavefront

MIMD/SIMD

Processor Array

Associative

memory

2. A novel parallel distributed architecture 23

2.2.3 VLSI processor arrays

Most of the architectures are termed as Very-Large-Scale Integration (VLSI) processor

arrays. The data is pipelined through the processors simultaneously with processing in

systolic arrays and wavefront arrays. Wavefront arrays use data driven potential,

whereas systolic arrays utilise local instructions synchronised globally. Both SIMD and

MIMD utilise global data and control instead of using pipelined data. It permits

broadcasting from a memory and a control unit. The main features of four computer

structures are explained briefly in the segment below.

2.2.3.1 SIMD architectures

Normally, the SIMD architectures utilise a central control unit, multiple processors and

an interconnection network, which establishes processor-to-processor or processor-to-

memory communications. The central control unit broadcasts a single instruction to all

processors. The processors, in turn, execute the instruction on local data. The main

function of the interconnection network is to communicate the instruction results

calculated at one processor to another processor to be used as operands in a subsequent

instruction.

2.2.3.2 MIMD architectures

MIMD architectures use multiple processors which execute independent instruction

stream utilising local data. These kinds of architectures are capable of supporting

parallel solutions, in which processors are required to function in a largely autonomous

manner. MIMD architectures are asynchronous computers that are mainly characterised

by decentralised hardware control. The software processes executed on MIMD

architectures are typically synchronised by either passing messages via an

interconnection network or by accessing data stored in shared memory. High-level

parallelism is supported by MIMD computers at sub program and task level.

2.2.3.3 Systolic architectures

Kung and Leisserson [2.8] were the first to introduce systolic architectures in 1978.

Systolic arrays are typically defined as high-performance, special-purpose VLSI

computer systems. They are appropriate for specific application requirements which

2. A novel parallel distributed architecture 24

require a balance of intensive computations along with demanding input/output

bandwidths. Systolic architectures also called as systolic arrays are organised as

networks that contain a large number of identical, locally connected Elementary

processing elements. Data in systolic arrays is pulsed from memory through processing

elements before returning to memory in a rhythmic fashion. The system is synchronised

using a global clock and explicit timing delays. For a diverse range of special purpose

systems, modular processors united by regular and local interconnections act as basic

building blocks. The performance requirements of special-purpose systems are handled

using systolic arrays by achieving considerable parallel computations and by avoiding

input/output and memory bandwidth restrictions.

2.2.3.4 Wavefront array architectures

Systolic data pipelining and asynchronous data flow execution paradigm, both are

combined in wavefront array processors. Wavefront array and systolic architectures,

both are designated by modular processors and regular, local interconnection networks.

However, in wavefront array architectures, the global clock and explicit time delays

used for synchronising systolic data pipelining are replaced with asynchronous

handshaking to be used as the mechanism for coordinating inter-processor data

movements. So, when a processor is finished doing its computations and wants to pass

the data to its successor processor, it sends the data when successor signals that it is

ready. An acknowledgement is sent by successor after receiving the data. The

computational wavefronts pass smoothly through the array without intersecting using

the handshaking mechanism because the processors of the array behave as a wave

propagating mechanism. In this way, the correct timing of systolic architectures is

replaced by correct sequencing of computations.

2.2.4 Conclusion

After evaluating all the available parallel architectures, the systolic architecture has been

chosen as being suitable implementing Concept 4 chosen from the previous section. The

systolic mode of parallel processing has gained a tremendous interest due to the elegant

exploitation of data parallelism inherent in computationally demanding algorithms from

different fields of research. In order to explain a little more about how this can be

2. A novel parallel distributed architecture 25

applied to a smart fabric system, the fundamental theory behind the systolic arrays will

be presented. Research into systolic arrays has been dormant for some years however

there is no prior work using these arrays in the physically distributed wearable system.

The application that has been chosen to be implemented was human body monitoring

thus we need a distributed architecture to implement such an application. There appears

to be some potential merit in using systolic array design to implement Concept 4 where

a sensor is closely coupled with the processing element.

2.3 Systolic Array

The term systolic array in the computer science was introduced in 1978 by Kung et al.

[2.8]. Conventionally, a systolic array is made up of a large number of similar

processing elements interconnected in an array. The interconnections are local, which

means each processing element can communicate only with a limited number of

neighbouring processing elements. There are two types of systolic arrays, data systolic

array and instruction systolic array.

In data systolic array, the data moves at a constant velocity passing from one processing

element to the next processing element. Every processing element performs

computations, in this way contributing to the overall processing that is required to be

done by the array. Data systolic array is generally called as systolic array.

In contrast to the data systolic array, an instruction systolic array (ISA) is a grid-

connected network of very simple computation units (processing elements), which is

characterized by the instructions being pumped from a corner in a systolic manner.

Systolic arrays are synchronous systems. The exchange of data between directly

communicating processing elements is synchronised using a global clock. The data can

only be exchanged at the tick of the global clock. In between two consecutive clock

ticks, each processing element performs computation on the data which it has received

upon the last tick and then generates the data which is to be sent to neighbouring

processing elements at the next clock tick. The processing element is also capable of

holding data stored in the local memory of the processing element.

2. A novel parallel distributed architecture 26

2.3.1 Features of systolic arrays

Different authors have given different definitions for systolic arrays. A well-known

definition according to Kung and Leiserson [2.8] is:

“A systolic system is a network of processors which rhythmically compute and pass

data through the system.”

A more reliable definition of systolic arrays is presented in terms of bullet points below.

A systolic array can be defined as a computing system having the following

characteristics [2.4]:

• Network: It is a computing network having a number of processing

elements or cells with interconnections.

• Rhythm: The data is computed and passed throughout the network in a

rhythmic and repetitive manner.

• Regularity: The interconnections between the processing elements are

consistent and regular. The numbers of interconnections for processing

elements does not depend on the size of the problem because the numbers of

interconnections between the processing elements are almost the same for

any size of array.

• Synchrony: The execution of instructions and the communication data is

synchronised using a global clock.

• Locality: The interconnections are local, which means that only

neighbouring processing elements can communicate directly with each other.

• Modularity: The network may contain one or more types of processing

elements. The systolic array can typically be decomposed into different parts

with one processor type, in case there is more than one type of processors.

• Extensibility: The computing network has the feature of being extended

indefinitely.

• Pipelineability: All data is transferred using pipelining, which means that at

least one delay element (register) is present between each two directly

connected combinatorial processing elements.

2. A novel parallel distributed architecture 27

• Boundary: Only processing elements in the network which are at the

boundary can communicate with the outside world.

To summarise the characteristics discussed above, it can be seen that a large number of

processing elements operate in parallel on different parts of the computational problem.

Data enters into the systolic array through the boundary. Once the data enters into the

systolic array, it can be used many times before it is output to the outside world.

Typically, various data streams flow through the array at constant velocities while

interacting with each other in the course of this movement. Meanwhile, processing

elements execute one and the same function in a repeated manner. The systolic array

does not transfer the intermediate results to the control unit. The control unit and the

systolic array carry out the exchange of only the initial data and the final results [2.1].

A systolic array is a form of parallel computing method in which the processors are

interconnected to each other in the form of a matrix and typically called as cells [2.9].

Each processing element has a special feature that it is capable of storing and computing

data independently of other processing elements and eventually processing the data. It

can share the information swiftly with its neighbouring processing elements. The major

advantage of systolic arrays is that the data can flow in multiple directions. Fig 2.7

shows the general systolic array organisation. In systolic arrays, the input/output rate

between the processing elements is generally very high, making them suitable for

intensive parallel operations [2.10].

Figure 2.7: General systolic organization

2. A novel parallel distributed architecture 28

2.3.2 Types of systolic array structures

This section of the chapter discusses the four different types of systolic arrays structures

and their applications which are Linear systolic array, Orthogonal systolic array,

Hexagonal systolic array and Triangular systolic array.

2.3.2.1 Linear systolic array

The processing elements are organised in one dimension in case of a linear systolic

array as shown in Fig 2.8. The processing elements have interconnections only with

their nearest neighbours. Linear systolic arrays distinguish themselves in terms of a

number of data flows along with their relative velocities. One-dimensional convolution

(FIR filtering) is one of the representatives of linear systolic arrays [2.1].

Figure 2.8: Linear systolic array

2.3.2.2 Orthogonal systolic array

The processing elements are organised in a two-dimensional grid in an orthogonal

systolic array as shown in Fig 2.9. Each processing element, in this case, is

interconnected to its nearest neighbours in all four directions to the north, east, south

and west. The orthogonal systolic arrays differ relative to the number and direction of

data flow as well as the number of delay elements organised in them. One of the

possible mappings of the matrix multiplication algorithm is the most general

representation of this array [2.1].

2. A novel parallel distributed architecture 29

Figure 2.9: Orthogonal systolic array

2.3.2.3 Hexagonal systolic array

The processing elements are organised in a two-dimensional grid in a hexagonal

systolic array as shown in Fig 2.10. The processing elements are connected with their

nearest neighbours on six sides where inter-connections have a hexagonal symmetry

[2.1].

Figure 2.10: Hexagonal systolic array

P P P

P P P P

P P P P P

P P P P

P P P

2. A novel parallel distributed architecture 30

2.3.2.4 Triangular systolic array

The processing elements are organised in a triangular form in a triangular systolic array

as shown in Fig 2.11. It is a two-dimensional systolic array. Mostly, this form is used in

different algorithms from linear algebra. Particularly, it is more important in Gaussian

elimination and other decomposition algorithms [2.1].

Figure 2.11: Triangular systolic array

Among various types of systolic array structures, the orthogonal systolic array is

assumed as its structure fits body-worn fabrics the best. The orthogonal systolic array

has been chosen as the best for wearable applications because of evenly distributed

processing elements in the rows and columns which benefits in the diagonal flow of

instructions along the array and the array could have a simpler instruction set. Also, the

underlying parallel computer model is instruction systolic array, an architectural

concept suited for implementing a system with high bandwidth and with architectural

benefits for wearable.

2. A novel parallel distributed architecture 31

2.4 The Instruction Systolic Array

Instruction Systolic Array (ISA) is broadly used in VLSI for execution purposes as an

architectural concept [2.11], [2.12]. ISA can be viewed as more flexible and advanced

from the properties below and are considered chiefly as special purpose architectures.

The important properties of ISA are:

• local communication for data and control flow,

• modularity and scalability

• local data handling

• mapping is logical

In ISA, rather than data, instructions are pumped in a systolic way through a processor

array which makes it different from standard systolic arrays [2.11], [2.13]. This

particular arrangement helps in executing different algorithms on the same processor

array. Also, the instruction stream and the stream of selector bit both get combined. Due

to this, subsets of processing elements can have a very flexible addressing. The

fundamental model of a parallel computer can be seen as a mesh connected n x n-array

identical processors. The processors are capable of executing instructions from a small

instruction set. The processor array is synchronized by a global clock, and each

instruction is supposed to take the same time for its execution.

2.4.1 Principles of ISA

The instructions for the ISA are inputted from the upper left corner of processor array as

shown in Fig. 2.12, instruction flow in horizontal and vertical directions through the

array step by step [2.12]. This process makes it sure that during each clock cycle, the

same instruction is available for execution within every diagonal of the array.

2. A novel parallel distributed architecture 32

 (1) (2)

 (3) (4) (5)

 (6) (7) (8)

Figure 2.12: Execution of an ISA instruction

Each processor has some data registers that also includes a designated communication

register C. Communication process between two processors, A and B take place in

following way:

In [2.12] the concept of data transfer between the processors is explained as for

example, a data item is to be sent from processor A to B, first A writes the data item

into its own communication register. In the next instruction, B reads the contents from

the communication register of A. Each processor is allowed only to write data to its own

communication register, but it is allowed to read data from the communication registers

of its four direct neighbouring processors. Two or more processors can read the data

from same communication register at the same time. To avoid confusion between

2. A novel parallel distributed architecture 33

read/write processes, it is arranged so that reading from a register is carried on during

the first half of the execution of instruction and writing on a register is carried on during

the second half as shown in Fig 2.13.

Figure 2.13: Instruction cycle

The main feature of ISA is that throughout the array, it provides a rhythmic flow of

instructions [2.11]. The basic architecture of an ISA is a mesh-connected array of

processing elements, and every processing element is capable of executing instructions

from a fixed instruction set. The execution of a large variety of algorithms can take

place on same ISA. In an ISA, along with the instruction stream, an orthogonal stream

of control bits is also used. The execution step for any instruction in processing element

takes place only when the selector bit at that processing element is 1. Due to the use of

selector bits in execution, the array processor architecture tends to be very flexible.

Instructions and selector bits are used for controlling processing elements.

The processors are provided with instructions and selector bits from outside the array.

Instructions are input one by one from the upper left processor, and then they move in

diagonal wave fronts throughout the array [2.14].

2.4.2 ISA Architecture

The flow of instructions is generally from top to bottom (north to south) of the array. On

the other hand, the selector bit flows from left to right (west to east) of the array. To

carry out the instructions at that particular processing element, the selector bits must be

1. Fig 2.14 shows the execution of ISA diagonal.

2. A novel parallel distributed architecture 34

 (1)

 (2) (3) (4)

 (5) (6) (7) (8)

Figure 2.14: Execution of an ISA diagonal (I - Instruction, S - Selector bit, + -

Execution).

The ISA can be thought as more of a pipelined SIMD array. It is still possible to

perform broadcast and ring shift operations with a minimum number of instructions

even though there are no global wires or wrap-around connections [2.14].

I

I

I

I

S

S

S

S
SELECTOR

BIT

INSTRUCTIONS

N

EW

S

2. A novel parallel distributed architecture 35

2.4.3 Programming and Execution of ISA

Laisa is a Pascal-like programming language used for ISA programs. It supports control

structures like conditional statements and loops as well as procedures [2.9]. Basic

machine code for the ISA is implemented in LAISA using brackets:

Elementary statements in Laisa are of the form

<instruction; selector>

Instructions can be register assignments of the form

<set source-register, destination-register>

or arithmetical or logical operations of the form

<instructioncode source-register1, source-register2, destination-register>

Registers can be any of the data registers or the communication register C, the

communication registers of the western, northern, eastern or southern neighbour CW,

CN, CE, CS, respectively [2.16].

Data is input or output to the processor array is finished via the open-ended processor

links present at the boundary of the array [2.9]. The ISA is supposed to be embedded

into an environment which is proficient enough to:

• supply ISA with instructions and selectors,

• supply ISA input data and to store its output data.

The key concept is that there should be a communication in between the processors in

the form of an array with short interconnections and without the use of any global wires.

By using the concept of pipelined execution of instructions in the processor, increases

efficiency of the array [2.15].

2. A novel parallel distributed architecture 36

Figure 2.15: Execution of ISA program

The controller receives its instruction queue and selector bits which are loaded before

the execution of an application. The ISA block consists of individual processing

elements. The ISA program is loaded into each processing elements on the Instruction

systolic array direct from the host computer. The ISA gets its instructions from the ISA

program memory. It is also loaded before the execution of the desired application

programs. The execution of the programs is started by the flow of instruction and

selector bit stream, as indicated in Fig. 2.15.

2.4.4 Applications of ISA

The main applications of Instruction Systolic Array are as follows [2.16]:

• Solving problems regarding linear equations in Digital Image Processing
(DIP)

• Computer Graphics

• Cryptography

To summarize, following properties sums up the advantages of ISA architecture [2.16]:

• Broad applicability

• Only local communications for control and data flow purposes

• Fast and parallel computations

User Program

(Host Computer)

Instruction

Stream

Queue

Selector

Bit Stream

Queue

Instruction Systolic Array

2. A novel parallel distributed architecture 37

• Scalability and modularity

2.5 Adaptation to ISA

Schmidt et al. [2.13] and Sim et al. [2.17] have adapted a different method from the

conventional instruction systolic array. To improve the performance of their application

they proposed modifying the way in which selector bits are sent from both top and left

(north and west). The north will have both instruction and selector bit entering the array.

In the present thesis, a similar approach has been taken into consideration. This has the

advantages on the performance, simplification of instruction and data loading into the

array. The details of this will be explained in chapter 4.

2.6 Systola 1024

The first commercial parallel computer based on the ISA architecture [2.18]-[2.20] is

Systola 1024 which is shown in Fig. 2.16. The ISA has been integrated for standard

personal computers on a low-cost add-on board. A strict co-processor concept has to be

followed to operate using this board. By executing corresponding parallel programs on

the Systola 1024, the sequential programs can be accelerated by replacing

computationally intensive procedures.

Figure 2.16: Systola 1024 from [2.21]

One of the real time applications where ISA is used is in optical surface inspection of

coated surfaces. Special measuring methods were needed for this application, which

enables quick scanning of large surfaces and avoiding the direct contact to the surface at

the same time. For such an application, optical methods combined with digital image

processing provide a satisfactory solution. For applications mainly in the sector of

machine vision and fast vision, systems provide the required computing power by

utilising special image processing hardware or high-power workstations. The major

2. A novel parallel distributed architecture 38

disadvantage of these systems is the involvement of large budget. The instant outcome

is cutting the quality control out of economic reasons, which is the end quality control is

generally carried out by human visual inspection.

A low-cost alternative to large budget solutions is developed by ISATEC and is termed

as the Surface Quality Scanner (SQS 1024) [2.22]. The combination of a standard

personal computer, the Systola 1024 board and low-cost video data acquisition boards,

offers to provide a solution for quality control at a competitive price and performance

ratio. The Systola 1024 board is used as hardware base for the technology.

2.7 Conclusion

The chapter has reviewed a range of parallel architectures which are known. The

application in question has specific requirements which are somewhat unusual because

there is a desire to colocate the sensors and processing elements for the purpose of

reducing wiring complexity. A significant theoretical advantage of the ISA is that data

is local to the processor and as such a common limitation of the ISA, namely transfer of

data onto the array is circumvented. There are clearly other mechanisms for improving

performance, however other architectures do not have this inherent advantage. The

following chapters will make the assumption that this architecture will be used and

consider the implementation, programming and performance of such a computer.

2. A novel parallel distributed architecture 39

References

[2.1] M. Zajc, “Systolic Parallel Processing,” Algorithms and architectures of

multimedia systems, Lecture Notes, University of Ljubljana [Online].

[Accessed: 15 October 2016]. Available from:http://ldos.fe.uni-lj.si

[2.2] M. J. Flynn, “Very High Speed Computing Systems,” Proc. of the IEEE, vol.

54, no. 12, pp. 1901-1909, December 1966

[2.3] R. Duncan, “A Survey of Parallel Computer Architectures”, IEEE Computer,

pp. 5-16, February 1990

[2.4] T. Bräunl,“Parallel Programming: an Introduction,” Prentice Hall,1993

[2.5] N. Petkov, “Systolic Parallel Processing,” North-Holland, 1993

[2.6] S. Y. Kung, “VLSI Array Processors,” Prentice Hall, 1988

[2.7] E. V. Krishnamurthy, “Parallel Processing: Principles and Practise,” Addison-

Wesley, 1989

[2.8] H. T. Kung, C. E. Leiserson “Systolic Arrays for (VLSI),” Technical Report

CMU-CS- 79-103, Carnegie Mellon University, 1978

[2.9] Hans Werner Lang "Instruction Systolic Array" [Online]. [Accessed: 15 October

2016]. Available from: http://www.inf.fh- lensburg.de/lang/papers/isa/isa1.htm

[2.10] T. J. Fountain, “The Design of Highly-Parallel Image Processing Systems Using

Nanoelectronic Devices,” IEEE, pp. 210-219, 1997

[2.11] M. Kunde, H.-W. Lang, M. Schimmler, H. Schmeck, and H. Schröder, “The

instruction systolic array and its relation to other models of parallel computers,”

Elsevier Parallel Computing, vol. 7, no. 1, pp. 25–39, 1988

[2.12] H. W. Lang, “The instruction systolic array - a parallel architecture for VLSI,”

Integration, vol. 4, pp. 65–74, 1986, doi:10.1016/0167-9260(86)90038-6

[2.13] B. Schmidt, M. Schimmler and H. Schroder, “Morphological Hough Transform

on the Instruction Systolic Array,” In Practice, 1997

[2.14] R. Hughey and D. P. Lopresti, “Architecture of a Programmable Systolic

Array,” pp. 41-49, 1988, doi:10.1109/ARRAYS.1988.18043

[2.15] K. T. Johnson, A. R. Hurson, and B. Shirazi, “General-Purpose Systolic

Arrays,” Computer, vol. 26, no. 11, pp. 20–31, 1993

[2.16] B.Schmidt, “Techniques for Algorithm the Instruction Design on Systolic

Array,”Doctoral Thesis (PhD), Loughborough University, 1999

2. A novel parallel distributed architecture 40

[2.17] L. C. Sim, G. Leedham and H. Schroder, “Performance Evaluation of

Instruction Systolic Array Processors,” Seventh International Conference on

Control, Automation, Robotics and Vision, pp.910-913, 2002

[2.18] ISATEC Software and Hardware GrnbH,“The ISATEC Parallel Computer

Systola 1024,” Users Guide version 3.0, 1998

[2.19] H-W. Lang, R. MaaB and M. Schimmler, “Implementation of a 1024-Processor

Array Computer as an Add-On Boardfor Personal Computers,” In Proceedingsof

HPCN, LNCS 797, Springer, pp. 487-488, 1994

[2.20] M. Schimmler, “Instruction Systolic Arrays - Experiences with a First

Implementation,” In Proceedings of ISCA, 1992

[2.21] Development of a low-cost hybrid massively parallel computing system

[Online]. [Accessed : 24 July 2017]. Available from:

http://goanna.cs.rmit.edu.au/~heiko/Projects/Hybrid%20computing.htm

[2.22] W. Kolbe, “ISATEC Surface Quality Scannern SQS,” Joumal of

Oberfldchentechnologie, vol. 3, 1997

CHAPTER 3:

IMPLEMENTATION OF INSTRUCTION

SYSTOLIC ARRAY FOR SMART FABRICS

HIS chapter presents a more detailed explanation of the novel architecture

proposed in the previous chapter. This chapter also explains and addresses the

challenges of implementing the design using commercial off-the-shelf components.

Taking the theory of the instruction systolic array, a prototype design is proposed. This

chapter also discusses some candidate bus systems that can form the interconnects

between processing elements and how off-the-shelf microcontrollers can be selected to

produce a viable functional prototype.

3.1 A novel architecture for on-fabric parallel processing

In the subject of this thesis, a distributed wearable system is of interest. This can be

mapped onto the ISA concept as shown in Fig. 3.1. The processing elements are

connected to their neighbouring processing elements. Each processing element is

closely coupled to different sensors. The northern boundary of the array is connected to

the instruction stream flow controller which stores the array of instructions that needs to

be passed to the processing elements. The western boundary of the array is connected to

selector bit flow controller which stores the array of selector bits that needs to be passed

to the processing elements. The processing elements and the sensors are closely

coupled, which means both are co-located so that they can have local data flow and

processing can be done locally. The processing elements and sensors are scalable where

the array for the processing elements and the sensors connected to the processing

elements can be increased or decreased.

T

3. Implementation of Instruction Systolic Array for smart fabrics 42

Figure 3.1: System concept

3. Implementation of Instruction Systolic Array for smart fabrics 43

 FRONT BACK

Figure 3.2: General concept of a sensor system with integrated processing elements for

human body applications

3. Implementation of Instruction Systolic Array for smart fabrics 44

As discussed earlier in Chapter 1, the ISA concept can be implemented for body sensing

applications as shown in Fig 3.2. In the figure, the processing elements are distributed

along the front and back side of the fabric worn on the human body. Each side is

distributed with 8 processing elements and is closely coupled with their respective

sensors.

3.2 Implementation of novel architecture

An important objective of this thesis is to test the concept proposed by implementing in

a real application. The performance of such a system would be best optimised by

custom Application Specific Integrated Circuit (ASIC) design. However, within the

scope of the work, this is not realistic and as a consequence, certain compromises need

to be made. It is assumed that off-the-shelf microcontrollers will be used as the

processing elements which implement standard buses and protocols. It is expected that

the system would prove the concept and reveal the properties of such a device.

The purpose of the implementation is to explore the merits and pitfalls of such a system,

however, there is no expectation that performance will be fully optimised at this stage.

In order to make use of off-the-shelf components such as sensors, conventional bus

architectures for communication between elements has been assumed. Here the

candidates for the bus are considered.

3.2.1 Candidates for bus systems

A reliable distributed embedded system can be achieved through a fast and efficient

communication. The exact interconnections between the processing elements, sensors,

instruction flow and selector bit flow using the bus are explained using Fig. 3.3 [3.1].

The most usual method of transmitting data in between two computers or between a

computer and a peripheral device is serial communication. Serial communication

transmits data to a receiver sequentially, one bit at a time, over a single communication

line.

3. Implementation of Instruction Systolic Array for smart fabrics 45

This transfer of information can be in different ways:

Figure 3.3: Different methods for transfer of information

The main advantage of serial communication is its low pin counts. Serial

communication can be carried out by using just one input/output pin, while for parallel

communication eight or more pins are required. There are so many common embedded

system peripherals that support serial interfaces, like Liquid Crystal Displays (LCDs),

temperature sensors, analog-to-digital and digital-to-analog converters [3.2].

Table 3.1: Difference between serial and parallel communication

SERIAL COMMUNICATION PARALLEL COMMUNICATION

A serial port sends and receives data, one bit at

a time over one wire.

A parallel port sends and receives data eight

bits at a time over eight separate wires or lines.

Only a few wires are required for transmission

and reception.

The setup looks bulkier because of the number

of individual wires.

Serial communication is slower than parallel

communication given the same signal

frequency.

A parallel communication device sends and

receives the same amount of data

simultaneously, thus making it faster. In

parallel you are transferring many bits at the

same time, whereas in serial sends doing one

bit at a time.

It is simpler and can be used over longer

distances.

Can be used for shorter distance.

Communication

Mode of

transmission

No. of bits

transferred
Usage of clock Direction of

transmission

Wireless

Wired Serial

Parallel

Synchronous

Asynchronous

Uni-

directional

Bi-directional

3. Implementation of Instruction Systolic Array for smart fabrics 46

In comparison with parallel communication, serial communication has various

advantages such as:

• It needs fewer interconnecting cables and therefore requires less space.

• Many peripheral devices and integrated circuits have serial interfaces.

• Clock skew between different channels is not a problem.

• There are fewer conductors as compared to that of parallel communication

cables, therefore cross talk is not a big problem.

• It is comparatively cheaper to implement.

3.2.2 Serial bus protocols

There are various different protocols, with each one of them having its own interface

requirements. Bus interface encodes the commands or the state of an input/output to

digital information which is then transferred through the cable. The most commonly

used standards in communication can be listed as [3.3]:

1) UART (Universal Asynchronous Receiver/Transmitter)

2) I2C(Inter Integrated circuit)

3) SPI(Serial Peripheral Interface)

4) CAN (Controller Area Network)

5) USB (Universal Serial Bus)

The relative advantages of these bus protocols, when applied to the proposed system,

are listed in table 3.3 as shown below [3.4]:

Table 3.2: Comparison of different bus system

Protocols Advantages Disadvantages

UART • Asynchronous serial

communication.

• Full duplex communication.

• It is used for communication

between equipments as an

external bus.

• Only two devices can be

connected to the bus.

I2C • On PCB type bus between

chips.

• Can work only in half duplex

mode.

3. Implementation of Instruction Systolic Array for smart fabrics 47

• Master and slave share a

common clock.

• Flexible data transmission

rates.

• Size of the address used for

the slaves 7-bit, 8-bit and 10-

bit support 127, 255, and

1023 devices respectively.

• Requires pull-up resistors which

can limit clock speed.

• Imposes protocol overhead that

reduces throughput.

SPI • On chip or on-PCB type bus.

• Synchronous serial

communication.

• Can work in full duplex

mode.

• Requires more pins on an IC

package than I2C.

• Can be used only for short

distance communication.

CAN • CAN bus is a vehicle bus

standard designed for

communication within a

vehicle without a host

computer.

• Highly secured and priority

based protocol.

• Half Duplex as data cannot be

sent and received

simultaneously.

• It is used for communication

between equipments in

automotive.

USB • Supports up to 127 devices.

• Plug and play.

• Higher speed up to 12Mbps.

• Significant hardware overhead

• It is used for communication

between equipments.

• Not designed for simple buses.

There are clearly a number of bus protocols that could be used, and these can be

commonly found on microcontrollers. Some of these come with on-chip hardware

support and readily accessible from the software suite for the microcontroller. Of the

ones available, both SPI and I2C are common, though of come there may be limits to the

number of available buses on a single microcontroller. Owing to the large number of

physical interconnections that are likely to be necessary to wire a suitable-sized sensor

array a compromise has to be taken by selecting I2C bus and sharing these bus for both

3. Implementation of Instruction Systolic Array for smart fabrics 48

the ISA inter element connections and sensors. Suitable sensors such as accelerometers

are readily available with I2C.

3.3 Details of the Inter-Integrated Circuit (I2C) Bus

Typically, an embedded system contains one or more microcontrollers along with other

peripheral devices such as, input/output expanders, sensors, memories, converters,

matrix switches, LCD drivers [3.4]. The effort is to minimize the system complexity

and the cost of connecting all those devices together. The main design requirement of

the system is to make the slower devices capable of communicating with the system

without slowing down the faster devices. A serial bus is required to satisfy these

essentials. A bus meaning the detailed description for the formats, connections,

addresses, procedures and protocols which mainly explains the rules on the bus. Serial

data connections are preferred because they require just one or two signal wires as

compared to a parallel bus, which needs at least eight data lines plus control signals. For

any given communication channel, the best connection can be chosen based on the

speed, number of hardware connections required and the distance between nodes.

From the Microchip manual [3.5] the Inter-Integrated Circuit (I2C) bus is explained as it

mainly designed for short-range communication between chips within the same system

by utilizing a software addressing system. It functions like a simplified local area

network and needs just two wires. A simple bi-directional 2-wire bus is developed by

Philips Semiconductors (now known as NXP Semiconductors) for an efficient inter-

integrated circuit control. All the devices that are compatible with I2C bus integrate an

on-chip interface which entitles them to communicate with each other through the I2C

bus. Many interfacing problems faced while designing digital control circuits are solved

by using this design concept. Typical I2C bus is shown in Fig 3.4.

The basic bus terminology is explained from[3.6],

• Transmitter The device that transmits data on to the bus.

• Receiver The device that receives data from the bus.

• Master The device from which the clock originates, starts communication,

sending I2C commands and halting communication.

• Slave The device that ‘listens’ to the bus and is addressed by the master.

• Multi-master I2C can have more than one master and each can send commands.

3. Implementation of Instruction Systolic Array for smart fabrics 49

• Arbitration The process that determines which master has control of the bus.

• Synchronization Process whereby the clocks of two or more devices are

synchronised.

Figure 3.4: Typical I2C bus

The working process of I2C is explained in the NXP Semiconductors specification [3.7].

I2C works on synchronous communication. It is a bi-directional protocol which permits

a master device to initialise communication with a slave device. Both these devices

exchange data with each other which is then implemented by an “Acknowledge”

system. The Acknowledge (ACK) system is considered as one of the important

characteristics of an I2C system. It permits the data to be sent in one direction from one

device to another device through the I2C bus. That device will ACK to signal that the

data was received. As a peripheral can acknowledge data, there is an uncertainty

regarding whether the data reached the peripheral. The data must be timed very

precisely, however, RS232 and other asynchronous protocols do not utilise a clock

pulse. As I2C is having a clock signal, the clock can vary without interrupting the data.

The changes in clock rate will simply change the data rate.

The I2C is based on the principle of Master-Slave protocol, the master device controls

the Serial Clock Line (SCL) and initialises the data transfers as well. This line orders

the timing of all the transfers taking place through I2C bus. Slave devices are capable of

manipulating this line but they can only make the line low, which means that item on

the bus is not able to deal with more incoming data. When the line is forced to be low,

more data is impossible to clock into any device. This situation is termed as “Clock

3. Implementation of Instruction Systolic Array for smart fabrics 50

Stretching”. As already mentioned, no data will be shifted unless the clock is

manipulated. Same clock line SCL controls all the slaves. On I2C bus, the data can flow

in either direction, but master device controls the data when it flows. There are a

number of conditions of I2C bus. These conditions specify the events of starting,

stopping, acknowledging a transfer among others [3.7].

Every device that is connected to the bus is software addressable by using a unique

address. All the times, simple master/slave relationships are present, where masters can

function like master-transmitters or master-receivers. It is true multi-master bus having

features such as arbitration to prevent data corruption and collision detection, in case

two or more masters initialize data transfer simultaneously. Bi-directional, 8-bit

oriented, serial data transfers can be made at:

• up to 100 kbps in the Standard-mode

• up to 400 kbps in the Fast-mode

• up to 1 Mbps in Fast-mode Plus

• up to 3.4 Mbps in the High-speed mode

3.3.1 Bus Signals

I2C is a serial interface which utilises two signals to exchange data serially with other

device. The signals used are [3.7]:

• SDA: This signal is called as Serial Data. Any data transferred from one device

to another goes on this line.

• SCL: This signal is called as Serial Clock Line signal. This signal is initiated by

the master device, which controls when the data is sent and when it is read. This

signal can be forced to low making the data impossible to clock.

There are just two possibilities for electric states of I2C lines, which are drive low

and float high. The concept of pull up resistor is really important in the functioning

of I2C. I2C operates by having a pull-up resistor on the line and devices are only

capable of pulling the line low to transmit the data. The line will be in state float

high if none of the devices are pulling it. The line would be floating to an unknown

state in case no pull up resistors are used.

3. Implementation of Instruction Systolic Array for smart fabrics 51

Figure 3.5: Basic Mechanism in I2C from NXP Semiconductors adapted from [3.7]

1. Data transfer is initiated with a start bit signalled by SDA being pulled low

while SCL stays high.

2. SCL is pulled low, and SDA sets the first data bit level while keeping SCL low.

3. The data are received when SCL rises for the first bit. For a bit to be valid, SDA

must not change between a rising edge of SCL and the subsequent falling edge.

4. This process repeats, SDA transitioning while SCL is low, and the data being

read while SCL is high.

5. A stop bit is signalled when SCL rises, followed by SDA rising.

In order to avoid false marker detection, there is a minimum delay between the SCL

falling edge and changing SDA, and between changing SDA and the SCL rising edge as

shown in Fig 3.5.

There might be a disagreement if one device is trying to drive the line high while the

other device is trying to drive it low. This disagreement might result in damaging either

or both devices operating on the line. To avoid this situation, the pull-up-drive low

system is used that regulates which device has control of the bus. If other devices want

3. Implementation of Instruction Systolic Array for smart fabrics 52

to use the bus at the same time, this system indicates that the bus is busy. This device

will figure out that bus is already driven low and is used by other device currently.

Thus, the working of the I2C bus and their signals and communication has been

explained in this section. The next section will explain the I2C bus connection in the

proposed architecture.

3.4 Prototype Design

The concept is based on the instruction systolic array which consists of an array of

Processing elements connected with the different peripheral components preferably

sensors. The data has to be shared by other processing elements and sensors through

serial data communication. A suitable communication channel, which is I2C bus

communication, has been selected for the hardware connections.

The processing elements are connected in a mesh-like structure in Fig. 3.6 which is

globally interfaced to all the other devices including sensors through the I2C bus.

Separate processors are allocated for global input of instructions and selector bits apart

from the array of processing elements. The whole model is designed in such a way that

each processing element will have four I2C protocols i.e. two of them (west and north)

acts as slave and other two (east and south) acts as master. Each master will be

connected to the adjacent slaves and makes sure that all the slave addresses are

addressed by it. The sensor's data are communicated and transferred only by the masters

as the clock and data initiation processes are controlled by the master. Each processing

element is connected to its own sensors as shown in Fig. 3.7. Each processing element

combined with its own sensors is termed as a unit cell.

3. Implementation of Instruction Systolic Array for smart fabrics 53

Figure 3.6: Processor array showing grid arrangement

According to the ISA concept, instructions and selector bits needs to be propagated

through the chain of processors according to the clock. It is also understood that all the

processors connected at the extreme left and top (west and north) are only meant for

getting the inputs from the instruction and selector bit controllers. Different operations

can be performed on the desired data where the operations are decided by the

instructions which are propagating through processors in a systematic manner and

specific data on which the instructions have to be performed are decided by the selector

bits. The instruction flow will be from top to bottom (north to south) of the array. The

selector bits flow from left to right (west to east) of the array row and the selector bits

must be 1, so that particular instruction is carried out at that particular processing

element.

3. Implementation of Instruction Systolic Array for smart fabrics 54

Figure 3.7: Detail of I2C bus connections

Each cycle is divided into three stages, they are fetch, execute and write. This

mechanism is explained below,

• All processors start in a default state listening on slave ports (or filled with

NOPs, ideally).

• 1-byte instruction is written to north boundary slaves at the same time 1-bit

selector bit (as part of control bit) written to west boundary slaves.

• Instruction written to north slaves and sensor values are read from the east port.

• Then the communication takes place in the following order between North-

South, South-North, East-West and West-East.

Then the execution of the instruction takes place in the processing element.

3. Implementation of Instruction Systolic Array for smart fabrics 55

3.5 Selection of Microcontroller for the Processing Element

The ISA is implemented by using commercially available microcontrollers. Number of

I2C interface buses were taken into consideration while choosing the microcontrollers

for implementing ISA. The initial choice to implement the ISA concept was on a

Microchip PIC16F1829 microcontroller shown in Fig 3.8. PIC16F1829 is a 20-pin

microcontroller with two I2C bus interfaces. The idea was to implement the ISA concept

using two available I2C bus interfaces and bit banging two more I2C interfaces.

Challenges had been faced during the implementation of the ISA concept where there

were timing issues with the software modified pins.

Figure 3.8: Microchip PIC16F1829

Due to the implementation challenges on PIC16F1829, research went to explore other

microcontrollers with more I2C interfaces. Thus, the processing elements that have been

chosen for implementing ISA concept are 32-bit ARM Cortex-M0+ LPC824

microcontrollers. Fig 3.9 shows ARM Cortex-M0+ LPC824 microcontroller mounted

on NXP LPC824-MAX board. The reason for choosing LPC824 microcontroller is it

includes four I2C bus interfaces. One I2C supports Fast-mode Plus with 1 Mbit/s data

rates on two true open-drain pins and listen mode. Three I2Cs support data rates up to

400 kbps on standard digital pins [3.8].

Figure 3.9: 32-bit ARM Cortex-M0+ LPC824 microcontroller mounted on NXP

LPC824-MAX board

3. Implementation of Instruction Systolic Array for smart fabrics 56

The LPC824 microcontrollers are mounted on LPC824-MAX board which is developed

by NXP to enable evaluation and prototyping with the LPC824 microcontrollers. The

array of microcontrollers connected using ISA concept with a peripheral device (sensor)

and their I2C connections are shown in Fig. 3.10.

Figure 3.10: Processor Array with peripherals

Fig. 3.11 shows the connections between two microcontrollers with four I2C buses

connected between them. The sensors are attached to the east port of both the

microcontrollers. The working of all four I2C buses available on the microcontroller has

been verified by sending an instruction and receiving the data from the sensor through

the serial port. I2C0, I2C1, I2C2, I2C3 represents all the four I2C bus connected between

the two microcontrollers.

INSTRUCTION

STREAM

CONTROLLER

SELECTOR BIT

CONTROLLER

 NXP

LPC824-MAX

board

Sensor

3. Implementation of Instruction Systolic Array for smart fabrics 57

Figure 3.11: I2C connection between two microcontrollers with sensor

3.6 Power and programming interface for the array

The prototype board has been designed with 16 microcontrollers distributed in a 4 x 4

array and 2 microcontrollers as instruction and selector bit flow controllers as shown in

Fig.3.12. The wires between the microcontrollers are the I2C buses. The

microcontrollers are powered by the USB cable running from the hubs.

Figure 3.12: Prototype board

LPC 824 Microcontroller

board

Programming board

USB 6009 DAQ

USB HUB
USB HUB

3. Implementation of Instruction Systolic Array for smart fabrics 58

A secondary unit can be seen on top of the array of microcontrollers in Fig.3.12, which

is developed for deploying the firmware to the array of microcontrollers without

manually switching between them. The secondary circuit is also used for powering all

the microcontrollers from the USB hub and also used as a serial interface with the host

computer in case to extract the output data. The secondary unit consists of two 10 port

USB hub, a NI USB 6009 DAQ, a programming board which acts as a switching

circuit. The power for the microcontrollers is extracted from the USB hub. The

programming board consists of two HCT164 8-Bit Parallel-Out Serial Shift Register, 16

ZTX551 PNP Silicon Planar Medium Power Transistor, 16 1K Resistor and 18 wire to

board connectors. All these are soldered according to the schematic shown in Fig. 3.14

on a strip board as shown in Fig 3.13.

Figure 3.13: Programming board (switching circuit)

Wire to Board

Connector
ZTX 551

Transistor

1K Resistor

Strip Board
HCT164 8-Bit

Shift Register

3. Implementation of Instruction Systolic Array for smart fabrics 59

Three digital lines are taken from the NI USB 6009 DAQ and connected to the shift

registers as data, memory clear and clock. The power from the micro USB cable of each

microcontroller is passed through the switching circuit before reaching the

microcontroller directly from the USB hub so that the switching circuit turns on the

power of each microcontroller in an order to program them one at a time.

Figure 3.14: Schematic for the switching circuit

An application as seen in Fig. 3.15 has been developed using LabVIEW to control the

programming of the microcontrollers. Total number of microcontrollers that needs to be

programmed can be set in the application. The digital lines can also be selected from the

application. Once the number of microcontrollers and the digital lines are selected the

location of the object file needs to be included in the command line so that the object

file can be programmed on to the microcontrollers. If an error occurs while

programming the controllers the processor failed light will turn on and the process will

USB HUBUSB HUB

To Microcontrollers To Microcontrollers

Micro usb cable

(Vcc) from hub

to programming

board

Micro usb cable

(Vcc) from

programming

board to

individual

microcontrollers

USB 6009 DAQ

HCT164 SHIFT

REGISTER

HCT164 SHIFT

REGISTER

ZTX 551

ZTX 551

ZTX 551

ZTX 551

ZTX 551

ZTX 551

ZTX 551

ZTX 551 ZTX 551

ZTX 551

ZTX 551

ZTX 551

ZTX 551

ZTX 551

ZTX 551

1
K

1
K

1
K

1
K

1
K

1
K 1
K

1
K

1
K

1
K

1
K

1
K

1
K

1
K

1
K

1
K

Wire to Board

Connector

Wire to Board

Connector

Micro usb cable

(Vcc) from hub

to programming

board

Micro usb cable

(Vcc) from

programming

board to

individual

microcontrollers

ZTX 551

3. Implementation of Instruction Systolic Array for smart fabrics 60

be ended. The status of the microcontrollers can be viewed in the processor report

section.

Figure 3.15: Application for programming the microcontrollers

3.7 Conclusion

In this chapter, a prototype architecture based on the concept has been described, along

with a method and circuit that allows programs to be developed. A few compromises

have been made during the implementing of the concept such as opting a particular bus

system, selecting a microcontroller for the processing element, and sharing one of the

processing devices interconnects with the peripheral devices (sensors). It can be

expected that these will have an impact on the performance. However, there is a lot to

research in terms of programming and realising such a device that needs to be done

prior to optimising in the form of custom ASICs. As this has been previously stated, the

purpose of the thesis is not to fully optimise but to explore the architecture and to study

the programmer’s model.

3. Implementation of Instruction Systolic Array for smart fabrics 61

References

[3.1] C. Patil, “Development of a Simple Serial Communication Protocol for

Microcontrollers (SSCPM),” International Journal of Scientific and Research

Publiations, vol. 1, no. 1, pp. 1–6, 2011

[3.2] L. K. John, “Bus Architectures,” In: Z.Navabi, D. R. Kaeli ed. Computer Science

and Engineering, Eolss Publishers Co. Ltd., pp. 109-130, 2009

[3.3] A. Kumar, A. Kumar and D. Jha, “Serial communication for Embedded

Systems,” Technical Report [Online]. [Accessed : 25 October 2016]. Available

from: http://www.embedded.com/

[3.4] S. C. Sankhyan, “Design & Implementation of I2C Master Controller Interfaced

With RAM Using VHDL,” International Journal of Engineering Research and

Applications,” vol. 4, no. 7, pp. 67–70, 2014

[3.5] Microchip, “dsPIC33 / PIC24 Family Reference Manual,” [Online]. [Accessed :

24 July 2017]. Available from:

http://ww1.microchip.com/downloads/en/DeviceDoc/70000600d.pdf

[3.6] I2C Info – I2C Bus, Interface and Protocol, “I2C Bus Specification,” [Online].

[Accessed : 02 March 2018]. Available from http://i2c.info/i2c-bus-specification

[3.7] N.X P.Semiconductors, “UM10204 I2C-bus specification and user manual,”

[Online]. [Accessed : 24 July 2017]. Available

from:https://www.nxp.com/docs/en/user-guide/UM10204.pdf

[3.8] N.X P.Semiconductors, “LPC82x Product data sheet,” [Online]. [Accessed : 24

July 2017]. Available from: http://www.nxp.com/docs/en/data-

sheet/LPC82X.pdf

http://ww1.microchip.com/downloads/en/DeviceDoc/70000600d.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
http://www.nxp.com/docs/en/data-sheet/LPC82X.pdf
http://www.nxp.com/docs/en/data-sheet/LPC82X.pdf

CHAPTER 4:

PROGRAMMING AND VALIDATION OF THE

INSTRUCTION SYSTOLIC ARRAY

HIS chapter of the thesis describes the programming of the instructing systolic

array and implementing the instruction systolic array on an array of off-the-shelf

microcontrollers. To illustrate some of the basic definitions of the previous chapter,

simple parallel algorithms are validated in this chapter.

4.1 Programming the Instruction Systolic Array

In ISA, a sequence of instructions and selector bits are pumped through an array of

processing elements which can efficiently execute instructions and selector bits. An ISA

is capable of executing a large variety of parallel algorithms, even if every processing

element can execute only a few different instructions (see section 4.2 and 4.3). To

program the processing elements for executing parallel algorithms, the operations of

instruction and selector bit cycles need to be efficient.

The ISA application is programmed on to the chosen ARM Cortex-M0+ LPC824

microcontrollers. The Instruction and Selector bit controller holds the sequence of

instruction and selector bits that will be passed to the microcontroller array. All the

microcontrollers in the implemented array itself share a common firmware which is

deployed using the method described in the previous chapter. The sending of instruction

and selector bits are disabled at the end boundary microcontrollers. It is challenging to

represent a program designed for an ISA in a conventional way and so a special

notational scheme is helpful to understand the operation [4.1].

Instruction Controller:

1. Initialise system clock & port pins as required.

2. Initialise all 4 I2C port as master.

3. Send Instructions every tick.

T

4. Programming and validation of the Instruction Systolic Array 63

4. Stop if all the instructions are completed.

Selector bit Controller:

1. Initialise system clock & port pins as required.

2. Initialise all 4 I2C port as master.

3. Send Selector bits every tick.

4. Stop if all the selector bits are completed.

Processing Element Controller:

1. Initialise system clock & port pins as required.

2. Initialise 2 I2C port as Slave (North & West).

3. Initialise 2 I2C port as Master (South & East).

4. The processor waits for frame bytes to be received from North and West Slave

ports.

5. The instruction byte and the selector bit are received through north and west

ports separately.

6. After receiving both the instruction and the selector bit they are decoded and

executed by an interrupt service routine.

7. Once the execution is complete the instruction and the selector bit is then

forwarded to the neighbours through south and east port.

4. Programming and validation of the Instruction Systolic Array 64

Figure 4.1: Working of the ISA program

The instruction and selector bit microcontrollers are programmed with a sequence of

instructions and selector bits. Once all the microcontrollers are flashed with the

firmware, all the processing elements microcontrollers are initialised, all the processing

element microcontrollers will be in their default mode which is listening. The

instruction and selector bits are passed to the processing element; the latter is in the

listening mode waiting for the frame bytes to be received from the north and west slave

I2C ports. Once both the instruction and selector bit are received they are then decoded

START

READ PORTS

IS FRAME
RECEIVED IN
NORTH FIFO

IS RECEIVED
BYTE DATA

IS RECEIVED
BYTE DATA

UPDATE DATA
REGISTER

IS FRAME
RECEIVED IN
WEST FIFO

UPDATE DATA
REGISTER

EXECUTION / NO
OPERATION

SEND INSRUCTION /
DATA TO SOUTH

PORT

SEND SELECTOR
BIT / DATA TO EAST

PORT

NO

YES

YES

NO

YESYES

NO NO

4. Programming and validation of the Instruction Systolic Array 65

and executed through an interrupt service routine. After the execution, the instruction

and the selector bit are then forwarded to the neighbours through the south and east

master I2C ports. Once the frame has been received in the corresponding FIFO register,

the frame is then decoded to find whether the frame contains instruction and selector bit

or data. If the received frame is data, the data register is updated else if the received

frame is instruction and selector bit, depending on the instruction and selector bit it will

either execute the instruction or no operation will occur. After this process, the

instruction followed by the selector bit will be sent in a sequence through the south and

east master ports to the neighbouring microcontrollers. Fig 4.1 shows the working of

ISA program.

The next section of the thesis is to validate the concept of the implemented instruction

systolic array using two simple parallel algorithms. Two well-known parallel

algorithms: merge algorithm and matrix multiplication have been run to validate the

instruction systolic array.

4.2 Merge Algorithm Validation

The Merge algorithm was first proposed by Kunde et al. [4.1]. The merge algorithm is

comparatively simple sorting algorithm used in parallel computing. It was initially

developed for use on parallel processors with local interconnections. It starts operating

by comparing all indexed pairs of neighbouring elements in the array. If any pair is in

wrong order, that is the first is larger than the second, the elements of the pair get

switched. The above step is repeated continuously until all the elements in the array are

sorted. In case of parallel processors, this process takes place simultaneously in all the

processing elements depending on instruction on the particular processing element.

4.2.1 Algorithm

An instruction systolic array implementation of merge algorithm through parallel

algorithm is illustrated below from [4.1],

Step 1: Sort all columns of the 4 × 4 array by odd-even-transposition sort.

Step 2: Sort all rows of the 4 × 4 array by odd-even-transposition sort.

4. Programming and validation of the Instruction Systolic Array 66

The ISA program for the merge algorithm is presented in Fig. 4.2. The figure shows the

set of instructions and selector bits that will flow through the array. In Fig. 4.2, the

instruction and the selector bit part of the program are represented in parallelogram

shape made up of their respective instruction and selector bits diagonals. Diagonals 1 to

6 correspond to step 1 and diagonals 7 to 12 to step 2 of the merge algorithm. A set of

no operation instructions is flushed through the array before and after the instruction

and selector bit diagonal. The merge algorithm is scalable the number of instructions

and selector bits will be increased according to the increase in the size of the array [4.2].

4.2.2 Program

Figure 4.2: ISA program for merge algorithm

The meaning of the instruction symbols on Fig. 4.1 are illustrated below in the table,

◌

17

16

15

14

13

12

11

10

|

9

|

8

7

|

|

6

|

|

5

|

|

4

|

3

2

1

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1

IN
S

T
R

U
C

T
IO

N

SELECTOR BIT

◌

◌

◌

◌

◌

◌

◌

◌

◌

◌

◌

◌

◌ ◌

◌

◌

◌

◌

◌

◌

◌

◌

◌◌ ◌

◌ ◌ ◌

◌ ◌ ◌

↓

|

↓

↓

↓
 ↓

 ↓

↓

↓

↓

↓
 ↓

↓

|

|

 ─

 ─ ─

 ─

 ─ ─

→

→ →

→

→ →

4. Programming and validation of the Instruction Systolic Array 67

Table 4.1: Instruction symbol definition

Symbol

Op-Code

Definition

C : -min (C,Clower)

If C >Clower then the content of

C and Clower are exchanged.

C : -max (C,Cupper)

If C <Cupper then the content of

C and Cupper are exchanged.

C : -min (C,Cright)

If C >Cright then the content of

C and Cright are exchanged.

C : -max (C,Cleft)

If C <Cleft then the content of

C and Cleft are exchanged.

No Operation

No operation will occur

where C is the communication register

4.2.3 Numerical example

The example below shows the step by step executions of the instructions along the

array. The instructions in green show the execution of the instruction on a particular

microcontroller and the instruction in red represents no operation. The contents of the

communication register C for each processing element is also shown along the

execution of the instruction. The contents of C are shown after the instruction has been

executed. Matrix X is the initial contents of the array before the execution of the

instructions and Matrix Y is the contents of the array after the instructions are executed.

𝑋 = [

16 15 14 13
12 11 10 9
8 7 6 5
4 3 2 1

] 𝑌 = [

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

]

4. Programming and validation of the Instruction Systolic Array 68

(1) (2)

(3) (4)

(5) (6)

C

4. Programming and validation of the Instruction Systolic Array 69

(7) (8)

(9) (10)

(11) (12)

4. Programming and validation of the Instruction Systolic Array 70

(13) (14)

(15) (16)

(17) (18)

4. Programming and validation of the Instruction Systolic Array 71

(19) (20)

4.2.4 Result from the processor array

The above numerical example program was run on the array of microcontrollers. Fig.

4.3 shows the execution of the ISA program as the program runs. It indicates the time

difference between the instruction received and the selector bit sent between the

processing elements. Serial interface was used to individual controllers to interrogate

the result. The processing element P(2,1) has more no operation instruction than the

P(3,3) thus P(2,1) takes 29.95ms and P(3,3) takes 32.45ms to execute all the

instructions. Results demonstrate that the application executes in 32.45ms on the

prototype ISA implementation. This result is reasonably acceptable for some

applications such as human movement measurement which tends to work at a low

sampling rate. However it should be noted that there is a significant latency in this

experimental setup which has not been optimised out. The processing element

themselves are microcontrollers programmed in a high level language and a custom

design would clearly be able to obtain very much better performance. Nevertheless, the

merge algorithm application has been successfully implemented and validated on the

prototype ISA using off-the-shelf microcontrollers.

4. Programming and validation of the Instruction Systolic Array 72

Figure 4.3: Performance analysis for P(2,1) and P(3,3)

4.3 Matrix Multiplication Validation

In numerical algebra, matrix multiplication plays a vital role because the product is

calculated in various stages of many technical problems and almost in all numerical

algorithms. Matrix multiplication is very standard calculation and goes well with

parallel implementation. Matrix multiplication is suitable for instruction systolic array

concept because of its design and nearest neighbour communication. In matrix

multiplication algorithm, a network of processing elements is used to calculate

rhythmically and pass the data through the system using instruction systolic array.

4.3.1 Algorithm

The standard algorithm for matrix multiplication is as follows from [4.3],

Step1: Each processing element accumulates one element of the product.

Step 2: This product is summed with the next element of product and accumulated in

the processing element.

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

Instruction/Selector Bit Cycle

T
im

e
 (

m
s
)

Instruction Received (P2,1)

Select Bit Sent (P2,1)

Instruction Received (P3,3)

Select Bit Sent (P3,3)

4. Programming and validation of the Instruction Systolic Array 73

Step 3: After all the row and column instructions and selector bits are executed we get a

4 4 matrix result of Matrix A and Matrix B.

The following program shows the first iteration of an ISA program for multiplication of

two n n matrices. The first column of matrix A is input at the left border of the array,

the first row of matrix B is input at the upper border.

(1) (2)

(3) (4)

a2,4 a2,3 a2,2 a2,1

a1,4 a1,3 a1,2 a1,1

a3,4 a3,3 a3,2 a3,1

a4,4 a4,3 a4,2 a4,1

b4,1

b3,1

b2,1

b1,1

b4,2

b3,2

b2,2

b1,2

b4,3

b3,3

b2,3

b1,3

b4,4

b3,4

b2,4

b1,4

Rows of A

C
o
lu

m
n
s

o
f

B

a1,1*b1,1

a2,4 a2,3 a2,2 a2,1

a1,4 a1,3 a1,2

a3,4 a3,3 a3,2 a3,1

a4,4 a4,3 a4,2 a4,1

b4,1

b3,1

b2,1

b4,2

b3,2

b2,2

b1,2

b4,3

b3,3

b2,3

b1,3

b4,4

b3,4

b2,4

b1,4

a1,1

b1,1

a1,1*b1,1+

a1,2*b2,1
a1,1*b1,2

a2,1*b1,1a2,4 a2,3 a2,2

a1,4 a1,3

a3,4 a3,3 a3,2 a3,1

a4,4 a4,3 a4,2 a4,1

b4,1

b3,1

b4,2

b3,2

b2,2

b4,3

b3,3

b2,3

b1,3

b4,4

b3,4

b2,4

b1,4

a1,1

b1,1

a2,1

b1,2

a1,2

b2,1
a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1

a1,1*b1,2+

a1,2*b2,2
a1,1*b1,3

a2,1*b1,1+

a2,2*b2,1
a2,1*b1,2

a3,1*b1,1

a2,4 a2,3

a1,4

a3,4 a3,3 a3,2

a4,4 a4,3 a4,2 a4,1

b4,1

b4,2

b3,2

b4,3

b3,3

b2,3

b4,4

b3,4

b2,4

b1,4

a1,1

b1,1

a2,1

b2,2

a1,2

b2,1

b3,1

a1,3

a2,2

b1,2

b1,3

a3,1

4. Programming and validation of the Instruction Systolic Array 74

(5) (6)

(7) (8)

a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1+

a1,4*b4,1

a1,1*b1,2+

a1,2*b2,2+

a1,3*b3,2

a1,1*b1,3+

a1,2*b2,3
a1,1*b1,4

a2,1*b1,1+

a2,2*b2,1+

a2,3*b3,1

a2,1*b1,2+

a2,2*b2,2
a2,1*b1,3

a3,1*b1,1+

a3,2*b2,1
a3,1*b1,2

a4,1*b1,1

a2,4

a3,4 a3,3

a4,4 a4,3 a4,2

b4,2

b4,3

b3,3

b4,4

b3,4

b2,4

a1,1

b1,1

a2,1

b2,2

a1,2

b2,1

b3,1

a1,3

a2,2

b1,2

b1,3

a3,1

a1,4

a2,3

a3,2

a4,1

b4,1 b3,2 b2,3 b1,4

a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1+

a1,4*b4,1

a1,1*b1,2+

a1,2*b2,2+

a1,3*b3,2+

a1,4*b4,2

a1,1*b1,3+

a1,2*b2,3+

a1,3*b3,3

a1,1*b1,4+

a1,2*b2,4

a2,1*b1,1+

a2,2*b2,1+

a2,3*b3,1+

a2,4*b4,1

a2,1*b1,2+

a2,2*b2,2+

a2,3*b3,2

a2,1*b1,3+

a2,2*b2,3
a2,1*b1,4

a3,1*b1,1+

a3,2*b2,1+

a3,3*b3,1

a3,1*b1,2+

a3,2*b2,2
a3,1*b1,3

a4,1*b1,1+

a4,2*b2,1
a4,1*b1,2

a3,4

a4,4 a4,3

b4,3

b4,4

b3,4

a2,1

b2,2

a1,2

b2,1

b3,1

a1,3

a2,2

b1,2

b1,3

a3,1

a1,4

a2,3

a3,2

a4,1

b4,1 b3,2 b2,3 b1,4

a2,4

a3,3

a4,2

b4,2 b3,3 b2,4

a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1+

a1,4*b4,1

a1,1*b1,2+

a1,2*b2,2+

a1,3*b3,2+

a1,4*b4,2

a1,1*b1,3+

a1,2*b2,3+

a1,3*b3,3+

a1,4*b4,3

a1,1*b1,4+

a1,2*b2,4+

a1,3*b3,4

a2,1*b1,1+

a2,2*b2,1+

a2,3*b3,1+

a2,4*b4,1

a2,1*b1,2+

a2,2*b2,2+

a2,3*b3,2+

a2,4*b4,2

a2,1*b1,3+

a2,2*b2,3+

a2,3*b3,3

a2,1*b1,4+

a2,2*b2,4

a3,1*b1,1+

a3,2*b2,1+

a3,3*b3,1+

a3,4*b4,1

a3,1*b1,2+

a3,2*b2,2+

a3,3*b3,2

a3,1*b1,3+

a3,2*b2,3
a3,1*b1,4

a4,1*b1,1+

a4,2*b2,1+

a4,3*b3,1

a4,1*b1,2+

a4,2*b2,2
a4,1*b1,3a4,4

b4,4

b2,2b3,1

a1,3

a2,2

b1,3

a3,1

a1,4

a2,3

a3,2

a4,1

b4,1 b3,2 b2,3 b1,4

a2,4

a3,3

a4,2

b4,2 b3,3 b2,4

a3,4

b4,3

a4,3

b3,4

a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1+

a1,4*b4,1

a1,1*b1,2+

a1,2*b2,2+

a1,3*b3,2+

a1,4*b4,2

a1,1*b1,3+

a1,2*b2,3+

a1,3*b3,3+

a1,4*b4,3

a1,1*b1,4+

a1,2*b2,4+

a1,3*b3,4+

a1,4*b4,4

a2,1*b1,1+

a2,2*b2,1+

a2,3*b3,1+

a2,4*b4,1

a2,1*b1,2+

a2,2*b2,2+

a2,3*b3,2+

a2,4*b4,2

a2,1*b1,3+

a2,2*b2,3+

a2,3*b3,3+

a2,4*b4,3

a2,1*b1,4+

a2,2*b2,4+

a2,3*b3,4

a3,1*b1,1+

a3,2*b2,1+

a3,3*b3,1+

a3,4*b4,1

a3,1*b1,2+

a3,2*b2,2+

a3,3*b3,2+

a3,4*b4,2

a3,1*b1,3+

a3,2*b2,3+

a3,3*b3,3

a3,1*b1,4+

a3,2*b2,4

a4,1*b1,1+

a4,2*b2,1+

a4,3*b3,1+

a4,4*b4,1

a4,1*b1,2+

a4,2*b2,2+

a4,3*b3,2

a4,1*b1,3+

a4,2*b2,3
a4,1*b1,4

a1,4

a2,3

a3,2

a4,1

b4,1 b3,2 b2,3 b1,4

a2,4

a3,3

a4,2

b4,2 b3,3 b2,4

a3,4

b4,3

a4,3

b3,4

b4,4

a4,4

4. Programming and validation of the Instruction Systolic Array 75

(9) (10)

(11)

The ISA program for matrix multiplication of two 4 × 4 matrices is presented in Fig.

4.4. The program shows the set of instruction and selector bits that will flow through the

array. In Fig. 4.4, the instruction and selector bit part of the program are represented in a

parallelogram shape made up of their corresponding instruction and selector bit

a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1+

a1,4*b4,1

a1,1*b1,2+

a1,2*b2,2+

a1,3*b3,2+

a1,4*b4,2

a1,1*b1,3+

a1,2*b2,3+

a1,3*b3,3+

a1,4*b4,3

a1,1*b1,4+

a1,2*b2,4+

a1,3*b3,4+

a1,4*b4,4

a2,1*b1,1+

a2,2*b2,1+

a2,3*b3,1+

a2,4*b4,1

a2,1*b1,2+

a2,2*b2,2+

a2,3*b3,2+

a2,4*b4,2

a2,1*b1,3+

a2,2*b2,3+

a2,3*b3,3+

a2,4*b4,3

a2,1*b1,4+

a2,2*b2,4+

a2,3*b3,4+

a2,4*b4,4

a3,1*b1,1+

a3,2*b2,1+

a3,3*b3,1+

a3,4*b4,1

a3,1*b1,2+

a3,2*b2,2+

a3,3*b3,2+

a3,4*b4,2

a3,1*b1,3+

a3,2*b2,3+

a3,3*b3,3+

a3,4*b4,3

a3,1*b1,4+

a3,2*b2,4+

a3,3*b3,4

a4,1*b1,1+

a4,2*b2,1+

a4,3*b3,1+

a4,4*b4,1

a4,1*b1,2+

a4,2*b2,2+

a4,3*b3,2+

a4,4*b4,2

a4,1*b1,3+

a4,2*b2,3+

a4,3*b3,3

a4,1*b1,4+

a4,2*b2,4

a2,4

a3,3

a4,2

b4,2 b3,3 b2,4

a3,4

b4,3

a4,3

b3,4

b4,4

a4,4

a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1+

a1,4*b4,1

a1,1*b1,2+

a1,2*b2,2+

a1,3*b3,2+

a1,4*b4,2

a1,1*b1,3+

a1,2*b2,3+

a1,3*b3,3+

a1,4*b4,3

a1,1*b1,4+

a1,2*b2,4+

a1,3*b3,4+

a1,4*b4,4

a2,1*b1,1+

a2,2*b2,1+

a2,3*b3,1+

a2,4*b4,1

a2,1*b1,2+

a2,2*b2,2+

a2,3*b3,2+

a2,4*b4,2

a2,1*b1,3+

a2,2*b2,3+

a2,3*b3,3+

a2,4*b4,3

a2,1*b1,4+

a2,2*b2,4+

a2,3*b3,4+

a2,4*b4,4

a3,1*b1,1+

a3,2*b2,1+

a3,3*b3,1+

a3,4*b4,1

a3,1*b1,2+

a3,2*b2,2+

a3,3*b3,2+

a3,4*b4,2

a3,1*b1,3+

a3,2*b2,3+

a3,3*b3,3+

a3,4*b4,3

a3,1*b1,4+

a3,2*b2,4+

a3,3*b3,4+

a3,4*b4,4

a4,1*b1,1+

a4,2*b2,1+

a4,3*b3,1+

a4,4*b4,1

a4,1*b1,2+

a4,2*b2,2+

a4,3*b3,2+

a4,4*b4,2

a4,1*b1,3+

a4,2*b2,3+

a4,3*b3,3+

a4,4*b4,3

a4,1*b1,4+

a4,2*b2,4+

a4,3*b3,4

a3,4

b4,3

a4,3

b3,4

b4,4

a4,4

a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1+

a1,4*b4,1

a1,1*b1,2+

a1,2*b2,2+

a1,3*b3,2+

a1,4*b4,2

a1,1*b1,3+

a1,2*b2,3+

a1,3*b3,3+

a1,4*b4,3

a1,1*b1,4+

a1,2*b2,4+

a1,3*b3,4+

a1,4*b4,4

a2,1*b1,1+

a2,2*b2,1+

a2,3*b3,1+

a2,4*b4,1

a2,1*b1,2+

a2,2*b2,2+

a2,3*b3,2+

a2,4*b4,2

a2,1*b1,3+

a2,2*b2,3+

a2,3*b3,3+

a2,4*b4,3

a2,1*b1,4+

a2,2*b2,4+

a2,3*b3,4+

a2,4*b4,4

a3,1*b1,1+

a3,2*b2,1+

a3,3*b3,1+

a3,4*b4,1

a3,1*b1,2+

a3,2*b2,2+

a3,3*b3,2+

a3,4*b4,2

a3,1*b1,3+

a3,2*b2,3+

a3,3*b3,3+

a3,4*b4,3

a3,1*b1,4+

a3,2*b2,4+

a3,3*b3,4+

a3,4*b4,4

a4,1*b1,1+

a4,2*b2,1+

a4,3*b3,1+

a4,4*b4,1

a4,1*b1,2+

a4,2*b2,2+

a4,3*b3,2+

a4,4*b4,2

a4,1*b1,3+

a4,2*b2,3+

a4,3*b3,3+

a4,4*b4,3

a4,1*b1,4+

a4,2*b2,4+

a4,3*b3,4+

a4,4*b4,4

b4,4

a4,4

4. Programming and validation of the Instruction Systolic Array 76

diagonals. Matrix A and B are the input matrices. As discussed in the second chapter, in

this experiment the input matrices (data) are loaded into the processing elements

through both instruction and selector bit array to reduce the number of execution cycle.

A set of no operation instructions is flushed through the array before and after the

instruction and selector bit diagonal. The matrix multiplication is scalable the number of

instructions and selector bits will be increased according to the increase in the size of

the array [4.2].

4.3.2 Program

Figure 4.4: ISA Program for Matrix Multiplication

16

15 +

14 + *
13 + *
12 + * +

11 * + *
10 + *
9 + * +
8

* + *
7 + *
6 + * *
5 * *
4 *
3 *
2

1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

◌ ◌ ◌◌

◌ ◌◌

◌

◌◌

◌◌◌◌

◌◌◌

◌◌

◌

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓↓↓↓

↓↓↓↓

↓↓↓↓

↓↓↓↓

IN
S

T
R

U
C

T
IO

N

SELECTOR BITMATRIX A

M
A

T
R

IX
 B

4. Programming and validation of the Instruction Systolic Array 77

The meaning of the instruction symbols on Fig. 4.2 are illustrated below,

 : Load Matrix

 : Sum with most recent value

 : Multiply with most recent value

4.3.3 Numerical example

When the input Matrix A and Matrix B is multiplied the resultant output Matrix C is

obtained.

Matrix A Matrix B Matrix C

[

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

] × [

16 15 14 13
12 11 10 9
8 7 6 5
4 3 2 1

]=[

80 70 60 50
240 214 188 162
400 358 316 274
560 502 444 386

]

The example below shows the step by step executions of the instructions along the

array. The contents of Matrix C are shown after the instruction has been executed.

(1) (2)

Matrix C

4. Programming and validation of the Instruction Systolic Array 78

(3) (4)

(5) (6)

(7) (8)

Matrix C

4. Programming and validation of the Instruction Systolic Array 79

(9) (10)

(11) (12)

(13) (14)

4. Programming and validation of the Instruction Systolic Array 80

(15) (16)

(17) (18)

(19)

4. Programming and validation of the Instruction Systolic Array 81

4.3.4 Result from the processor array

Fig. 4.5 shows the execution of the ISA program as the program runs. It indicates the

time difference between the instruction received and the selector bit sent between the

processing elements. The processing elements P(2,1) and P(3,3) has the same number of

no operation instruction and thus they have completed the execution of all the

instruction in the same time. Results demonstrate that the application executes in

30.95ms on our prototype ISA implementation. The processing element themselves are

microcontrollers programmed in a high level language and a custom design would

clearly be able to obtain very much better performance. Nevertheless, the matrix

multiplication has been successfully implemented and validated on the prototype ISA

using off-the-shelf microcontrollers.

Figure 4.5: Performance analysis for P(2,1) and P(3,3)

4.4 Conclusion

The instruction systolic array has been successfully implemented on an array of off-the-

shelf microcontrollers. Simple parallel algorithms have been validated using instruction

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

Instruction/Selector Bit Cycle

T
im

e
 (

m
s
)

Instruction Received (P2,1)

Select Bit Sent (P2,1)

Instruction Received (P3,3)

Select Bit Sent (P3,3)

4. Programming and validation of the Instruction Systolic Array 82

systolic array. The next chapter will use the same conventional method of programming

to implement the instruction systolic array on a fabric and using a representative

example of an application.

4. Programming and validation of the Instruction Systolic Array 83

References

[4.1] M. Kunde, H.-W. Lang, M. Schimmler, H. Schmeck, and H. Schröder, “The

instruction systolic array and its relation to other models of parallel computers,”

Elsevier Parallel Computing, vol. 7, no. 1, pp. 25–39, 1988

[4.2] H. W. Lang, “The instruction systolic array - a parallel architecture for VLSI,”

 Integration, vol. 4, pp. 65–74, 1986, doi:10.1016/0167-9260(86)90038-6

[4.3] B. Schmidt, “Techniques for Algorithm the Instruction Design on Systolic

Array,” Doctoral Thesis (PhD), Loughborough University, 1999

[4.4] M. Kunde, H.-W. Lang, M. Schimmler, H. Schmeck, and H. Schröder, “The

instruction systolic array and its relation to other models of parallel computers,”

Elsevier Parallel Computing, vol. 7, no. 1, pp. 25–39, 1988

[4.5] B. Schmidt, M. Schimmler and H. Schroder, “Morphological Hough Transform

on the Instruction Systolic Array,” In Practice, 1997

[4.6] R. Hughey and D. P. Lopresti, “Architecture of a Programmable Systolic Array,”

pp. 41-49, 1988, doi:10.1109/ARRAYS.1988.18043

CHAPTER 5:

SHAPE RECONSTRUCTION USING

INSTRUCTION SYSTOLIC ARRAY

HIS chapter introduces a 2D mesh architecture prototype based on the Instruction

systolic array paradigm for distributed computing on fabrics. A real-time shape

sensing and reconstruction application executing on ISA architecture and demonstrates

a physical design for a wearable system based on the ISA concept constructed from off-

the-shelf microcontrollers and sensors.

5.1 Introduction

In the literature, few studies have been made to measure 3D shapes of an object using

sensors wrapped around or mounted on the object itself [5.1]. One of the potential

applications of shape sensing and reconstruction is the human posture sensing. Other

application also includes 3D modelling of an object and wearable motion capture [5.2].

This data can be valuable in shape sensing applications such as real-time human posture

and movement monitoring as well as shape feedback of flexible devices. A method is

designed for applications in new emerging fields, such as smart textile and flexible

electronics, where it can be used to obtain wearers posture or shape of the device [5.2].

The shape of an object can be determined by acquiring an object's 3D geometric

properties. Real time measurements of the object provide continuous deformations of

the shape of the object. Therefore, shape sensing applications use such data to

reconstruct the shape of an object. The fabric conforms reasonably well to the human

body, particularly in sports where fitted garments are common. This measurement of the

fabric can give a fairly accurate idea of the shape of the human body that it is worn on.

Low-cost miniature sensors using MEMS (Micro Electro Mechanical Systems)

technologies have become increasingly common in recent years. These sensors are

integrated into fabrics to obtain the local data which helps in getting global shape

characteristics. In order to generate a 3D model of an object, two reference directions

T

5. Shape reconstruction using Instruction Systolic Array 85

are required. One of them is gravity measured using the accelerometer and other one is

earth's magnetic field measured using magnetic sensor. Three-axis accelerometer and

magnet sensor grid is used to generate shape reconstruction of the object [5.1].

The accelerometer and magnetic sensors provide only two vector observations, which

are the minimum for full orientation determination, no minimization problem can be

defined [5.1]. Therefore, Hermanis et al. [5.1] proposes a triad based shape

reconstruction algorithm three axis accelerometer and magnetic sensor grid.

5.2 Background

Based on Hermanis et al. in the shape reconstruction algorithm, the sensor nodes are

embedded into the fabric to measure local orientation data. The shape reconstruction

algorithm from Hermanis et al. along with the instruction systolic array for global shape

reconstruction from local orientation measurements ensures fast computations for shape

reconstruction utilizing data from a number of sensors. To implement the shape

reconstruction algorithm with ISA concept, the peripheral devices acceleration and

magnetic sensors are arranged in a regular grid along the fabric and each sensor is

connected to their respective microcontrollers. The following subsections explain the

method and equations proposed by Hermanis et al. which are used to estimate the

orientation shape of the object. The same method will then be used later in this thesis

with ISA to reconstruct the shape of the object.

5.2.1 Shape Reconstruction algorithm

To calculate the orientation of an object, various algorithms are proposed. Any problem

related to calculating the orientation is normally termed as Wahba’s problem [5.3]. To

get a solution, consider Rotational matrix (R) by minimization of following expression

[5.4]:

∑‖𝑣𝑘
∗ − 𝑅𝑣𝑘‖

2

𝐾

𝑘=1

(5.1)

where {𝑣1, 𝑣2, . . . , 𝑣𝑘 } and {𝑣1
∗

, 𝑣2
∗

, . . . , 𝑣𝑘
∗

} are sets of K vector observations

respectively in object frame and general reference frame. Thus to calculate orientation

estimation of an object two triads are formed from the unit vectors, one of the triad is

5. Shape reconstruction using Instruction Systolic Array 86

formed from general reference frame and the other triad is formed from the sensor

reference frame through the sensor measurements. The triads of the earth reference

frame and the sensor reference frame are constructed from the earth gravity field vector

Eg, magnetic field vector Em, sensor measurement of gravity field vector Sg and sensor

measurement of magnetic field vector Sm.

𝑒1 = 𝐸𝑔

(5.2)

𝑒2 =
𝐸𝑔 × 𝐸𝑚

|𝐸𝑔 × 𝐸𝑚|

(5.3)

𝑒3 = 𝑒1 × 𝑒2

(5.4)

𝑠1 = 𝑆𝑔

(5.5)

𝑠2 =
𝑆𝑔 × 𝑆𝑚

|𝑆𝑔 × 𝑆𝑚|

(5.6)

𝑠3 = 𝑠1 × 𝑠2 (5.7)

These triads are then used to form a matrix for global Earth reference, represented as Me

𝑀𝑒 = [𝑒1𝑒2𝑒3]

(5.8)

and matrix for sensor measurements, represented as Ms

𝑀𝑠 = [𝑠1𝑠2𝑠3]

(5.9)

The rotation matrix R is then calculated by sensor orientation relative to the global

reference frame and is calculated using the formula,

𝑅 = 𝑀𝑒𝑀𝑠
𝑇 (5.10)

5. Shape reconstruction using Instruction Systolic Array 87

Now, surface segment orientation relative to initial position can be calculated using the

rotation matrix R.

5.2.2 Shape Reconstruction from sensor orientation data

As shown in Fig. 5.1, acceleration and magnetic sensor nodes are arranged along the

surface in form of a regular grid. The model of the surface is divided into n rigid

segments, where n is the total number of sensors used and is represented as

𝑛 = 𝑖 . 𝑗

i and j denote row and column of sensor location in the grid. The segment structure

corresponds to sensor grid structure. Each segment is defined by segment center point

C[i, j] and four direction vectors, represented as�⃗⃗� [𝑖, 𝑗], �⃗� [𝑖, 𝑗], 𝑆 [𝑖, 𝑗] and �⃗⃗⃗� [𝑖, 𝑗]. The

surface geometry is described using the segment center points, which are surface control

points. In the beginning, all segments are aligned with global reference system by

assigning some base direction vector values like:

�⃗⃗� 𝑏 = [0; 0;
𝐿1

2
]

�⃗� 𝑏 = [
𝐿2

2
; 0; 0]

(5.11)

𝑆 𝑏 = [0; 0; −
𝐿1

2
] = −�⃗⃗� 𝑏

�⃗⃗⃗�
𝑏 = [−

𝐿2

2
; 0; 0] = −�⃗� 𝑏 (5.12)

where L1 and L2 is the distance between sensors across in the array. The structure of

surface model is shown in Fig. 5.2. The base direction vectors of each segment are

calculated by including segment direction vectors. The segment orientation is calculated

using the following expression:

�⃗⃗� [𝑖, 𝑗] = 𝑅𝑖𝑗�⃗⃗� 𝑏

5. Shape reconstruction using Instruction Systolic Array 88

�⃗� [𝑖, 𝑗] = 𝑅𝑖𝑗�⃗� 𝑏 (5.13)

All other direction vectors can be calculated using formulas opposite to equation (5.13):

𝑆 [𝑖, 𝑗] = −�⃗⃗� [𝑖, 𝑗]

�⃗⃗⃗� [𝑖, 𝑗] = −�⃗� [𝑖, 𝑗] (5.14)

Figure 5.1: Surface segment structure. Each segment consists of center C and four

direction vectors �⃗⃗� , �⃗⃗� , �⃗⃗� and �⃗⃗⃗⃗� [5.1]

If a single control point location is known, then all other control point on the same

segment row or column can be calculated by adding and subtracting the corresponding

segment direction vectors as can be seen in the Fig. 5.1. Any arbitrary sensor in iref row

C[i;j+1]C[i;j]

C[i+1;j]

C[i;j-1]

C[i-1;j]

z

y

x

5. Shape reconstruction using Instruction Systolic Array 89

and jref column can be assumed as reference by assigning some constant value to C[iref;

jref]

Control points on the reference column can be calculated from the following

expression:

𝐶[𝑖; 𝑗𝑟𝑒𝑓] = 𝐶[𝑖𝑟𝑒𝑓; 𝑗𝑟𝑒𝑓] + ∑ (−�⃗⃗� [𝑘, 𝑗𝑟𝑒𝑓] + 𝑆 [𝑘 + 1, 𝑗𝑟𝑒𝑓])

𝑖𝑟𝑒𝑓−1

𝑘=𝑖

if(𝑖 < 𝑖𝑟𝑒𝑓) (5.15)

Similarly control points on the reference row (i = iref) can be calculated as:

𝐶[𝑖𝑟𝑒𝑓; 𝑗] = 𝐶[𝑖𝑟𝑒𝑓; 𝑗𝑟𝑒𝑓] + ∑ (�⃗� [𝑖𝑟𝑒𝑓, 𝑘] − �⃗⃗⃗� [𝑖𝑟𝑒𝑓 , 𝑘 + 1])

𝑗−1

𝑘=𝑗𝑟𝑒𝑓

if(𝑗 > 𝑗𝑟𝑒𝑓) (5.16)

Figure 5.2: Structure of control point connections. C[i; j] - reference point. (a) Single

reference row is obtained, then all other points are calculated with column method. (b)

Single reference column is obtained, then all other points are calculated with row

method adapted from [5.1]

5. Shape reconstruction using Instruction Systolic Array 90

Once the first row and column are calculated, one control point from each row and

column will be known in the grid. Using this known control point as a reference in

either row or column the unknown control points can be calculated. As per theory, both

the ways should give the same result but there are chances for the results to change

because of the chosen connection path for the calculation of the control points. The

control point recovery uses the bilateral process as explained below to avoid this

problem [5.1].

First of all, as shown in Fig. 5.2(a), each segment centre coordinate is calculated from

the reference by finding one reference row with equations (5.18) and (5.19) and then

connecting other segment direction vectors long ways using (5.16) and (5.17). In the

same way, all control points are obtained again by obtaining one reference column with

equations (5.16) and (5.17) and then connecting segments across using (5.18) and (5.19)

as per structure is shown in Fig. 5.2(b). Finally, results from both cases are averaged

and the control points are calculated.

The Step wise implementation of Shape Reconstruction Application is explained in the

flowchart below.

5. Shape reconstruction using Instruction Systolic Array 91

Figure 5.3: Step wise implementation of Shape Reconstruction Application

START

RECORD SENSOR
MEASURMENTS

CALCULATE THE
TRIADS

CALCULATE
ROTATIONAL

MATRIX

CALCULATE
DIRECTIONAL

VECTORS

CALCULATE THE
CONTROL POINTS

PLOT THE CONTROL
POINTS

STOP

5. Shape reconstruction using Instruction Systolic Array 92

5.3 Experimental Setup

The concept prototype was designed to demonstrate and to confirm the viability of the

proposed architecture for fabric-resident computing devices.

To implement the surface reconstruction application using ISA, a sensor network with

16 sensors was stitched into a 35cm × 35cm fabric swatch. Both inter-node

communication and sensor connection in the prototype was achieved via I2C buses

provided by the microcontroller. The sensors were of type LSM303DLHC

acceleration/magnetic sensor [5.5]as shown in Fig.5.4. The LSM303DLHC is used for

orientation estimation. The microcontroller serves as the interface between the sensor

node and the host computer as all the computations take place locally in the

microcontrollers. Each microcontroller is assigned a unique ID to identify its position in

the grid and calculate the control points. Once the microcontroller receives the ID, it

starts to receive the orientation data from the sensor. The orientation data is then

averaged and stored for calculation of directional vectors. These directional vectors are

shared between neighbouring microcontrollers for the calculation of control points.

Once these control points are calculated for each sensor, they are sent to the host

computer via serial port for 3D visualisation of the sensed object. The process of ISA

computing the control points and the host drawing the visualisation continues

indefinitely.

Figure 5.4: LSM303DLHC mounted on Adafruit board

5. Shape reconstruction using Instruction Systolic Array 93

A network of 16 sensor nodes was experimentally tested. Sensors were arranged in 4 ×

4 grid formation and sewed on the layer of fabric with mutual distances 8.5 cm between

each other as shown in Fig. 5.5.

Figure 5.5: Sensors embedded with fabric.

5.4 Programming the shape reconstruction algorithm using

Instruction systolic array

The ISA firmware for shape reconstruction application is explained in Fig. 5.5. The

instruction and selector bits are passed to the processing element; the latter is in the

listening mode waiting for the frame bytes to be received from the north and west slave

I2C ports. Once both the instruction and selector bit are received they are then decoded

and executed through an interrupt service routine. After the execution, the instruction

and the selector bit are then forwarded to the neighbours through the south and east

master I2C ports.

Overlapping and

stitched on the

edges

Sensor stitched to

fabric

LSM303DLHC

sensor mounted on

a adafruit board

Patches to cover

wiring

35cm

8.5cm

8
.5

c
m

3
5
c
m

Umbilical

ARM Cortex-M0+

LPC824

microcontrollers

5. Shape reconstruction using Instruction Systolic Array 94

The steps below explain ISA firmware,

Step 1: The control points are calculated from the shape reconstruction algorithm which

will define the surface geometry.

Step 2: From the segment structure it can be deduced that if a single control point

location is known, then any other control point on the same segment row or column can

be calculated by adding or subtracting the corresponding segment direction vectors.

Step 3: The calculated control points are then sent to the host computer for visualisation

in 3D defining the shape of the sensed object.

The instruction and selector bit of the ISA firmware for shape reconstruction application

(Fig. 5.7) can be seen as parallelogram shaped consisting of instructions and selector

bits respectively. This diagonal of instruction and their corresponding selector bit is

used for implementing the shape reconstruction application. A set of no operation

instructions is flushed through the array before and after the instruction and selector bit

diagonal.

The Directional vector D⃗⃗ as shown in the instruction set is used to calculate the

directional vector from the equation 5.13 and 5.14. Once the directional vector is

calculated the directional vector of each processing elements is shared with their

neighbours to calculate the control points. The sharing of the directional vector is done

by using swapping instructions as shown on merge algorithm in the previous chapter.

Once all the directional vectors are shared with their neighbours the control points are

then calculated by the instruction∑ . The instruction ∑ implements the equation 5.15

and 5.16 and calculates the control points. Once the control points are calculated they

are then sent to the host computer using the Tx instruction.

5. Shape reconstruction using Instruction Systolic Array 95

Figure 5.6: ISA firmware for shape reconstruction application

23 ◌ ◌ ◌ ◌

22 ◌ ◌ ◌ Tx

21 ◌ ◌ Tx

20 ◌ Tx ↓

19 Tx ↓ ◌

18 ◌ ↓ →

17 ◌ → ◌

16 → ◌ ◌

15
↓ ◌ ◌ ◌

14 ◌ ←→ ◌

13 ←→ ←→

12 ◌ ◌ ◌ ↑

11 ◌ ◌

↑
↓

10 ◌

↑
↓

9

↑
↓ Rx

8
↓ Rx ID

7 Rx ID ID

6 Rx ID ID ID

5 ID ID ID ID

4 ID ID ID ◌

3 ID ID ◌ ◌

2 ID ◌ ◌ ◌

1
◌ ◌ ◌ ◌

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1

Selector Bits

In
st

ru
ct

io
n
s

∑

∑

∑

∑

∑

∑

D

D

D

D

5. Shape reconstruction using Instruction Systolic Array 96

The meaning of the instruction symbols on Fig. 5.6 are illustrated as follows,

The execution of the ISA program for the Shape Reconstruction application using ISA

is as follows. The execution shows only the ISA program diagonal of instructions and

selector bits, it does not include the no operation that flows before and after the ISA

program diagonal.

(1) (2)

5. Shape reconstruction using Instruction Systolic Array 97

(3) (4)

(5) (6)

(7) (8)

5. Shape reconstruction using Instruction Systolic Array 98

(9) (10)

(11) (12)

(13) (14)

5. Shape reconstruction using Instruction Systolic Array 99

(15) (16)

(17) (18)

(19) (20)

5. Shape reconstruction using Instruction Systolic Array 100

(21) (22)

(23) (24)

(25) (26)

5. Shape reconstruction using Instruction Systolic Array 101

The program was run on the array continuously run on the array. The last instruction is

to send the control points to the host computer through serial port. Each processing

element sends their calculated control points to the host computer. The received control

points are then visualised as a 3D surface in the host computer.

5.5 Experimental Results

To evaluate the accuracy of proposed shape sensing method, a number of experiments

were conducted by wrapping the fabric onto different objects. The first experiment

involved wrapping the fabric around a cylindrical object with a diameter 15cm and

height 35cm, which was resting on one of its end faces on a horizontal table and then

reconstructing its shape. The fabric swatch wrapped around the object is shown in

Fig.5.7.

Figure 5.7: Fabric wrapped on a cylindrical object

The reconstructed image of the cylindrical object is shown in Fig.5.8. The X, Y and Z

axis represents the calculated distance between the sensors in cm.

5. Shape reconstruction using Instruction Systolic Array 102

Figure 5.8: Reconstructed shape of the object

The second experiment involved placing the fabric on a ball with a diameter 65cm and

then reconstructing the shape. The fabric swatch placed on the object is shown in

Fig.5.9 and the reconstructed shape of is shown in Fig.5.10.

Figure 5.9: Fabric placed on the object

5. Shape reconstruction using Instruction Systolic Array 103

Figure 5.10: Reconstructed shape of the object

The third experiment involved placing the fabric on a perpendicular file with a length

24cm and width 32cm and then reconstructing the shape. The fabric swatch placed on

the object is shown in Fig.5.11 and the reconstructed shape of is shown in Fig.5.12.

Figure 5.11: Fabric placed on the object

5. Shape reconstruction using Instruction Systolic Array 104

Figure 5.12: Reconstructed shape of the object

The reconstructed shape represents minor deviation from the sensor location mainly on

the boundary sensors. The variation is about 0.2-0.4 cm. The variation could have been

caused due to sensor noise and sensor mechanical mounting errors. The sensor noise

introduces errors in Earth gravity and magnetic field vector component measurement.

Sensor mechanical mounting errors include orientation errors, which introduce

misalignment of sensor reference frame and placement errors, which introduces

differences in inter sensor distances leading to orientation measurement in incorrect

place on the curve.

Fig. 5.13 represents the execution milestone of the program as the program runs. It

indicates the time difference between the instruction received and the selector bit sent

between the processing elements.

5. Shape reconstruction using Instruction Systolic Array 105

Figure 5.13: Performance analysis for P(2,1) and P(3,3)

A few instructions take longer to execute because of their implementation complexity.

For example the seventh instruction on P(2,1) and the tenth instruction on P(3,3) which

is a sensor read and takes an average of 1.55 millisecond to carry out, average and store

in the register for further computation. In the current implementation, shared buses are

being used through polling. Therefore delays occur through the communication. In a

custom design, sensors could be more closely coupled to the processing element and the

implementation can be carried out concurrently with the ISA processing function.

5.6 Conclusion

The wearable shape reconstruction application has been successfully implemented using

our proposed concept of ISA architecture constructed out of off-the-shelf

microcontrollers and sensors. Results demonstrate the application executes in 39.55ms

on the prototype ISA implementation thus confirming the viability of the proposed

architecture for fabric-resident computing devices.

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

5

10

15

20

25

30

35

40

Instruction/Selector Bit Cycle

T
im

e
 (

m
s
)

Instruction Received (P2,1)

Select Bit Sent (P2,1)

Instruction Received (P3,3)

Select Bit Sent (P3,3)

5. Shape reconstruction using Instruction Systolic Array 106

References

[5.1] A. Hermanis, R. Cacurs, M. Greitans, “Acceleration and magnetic sensor

network for shape sensing,” IEEE Sensors, vol. 16, no. 5, pp. 1271–1280, March

2016.

[5.2] T. Hoshi and H. Shinoda, “3D Shape capture sheet on gravity and geomagnetic

sensing,” In Proc. 24th sensor symposium, pp. 423-427, 2007

[5.3] G. Wahba, “A least squares estimate of satellite attitude,” SIAM Rev., vol. 7,

no. 3, pp. 409, 1965

[5.4] M. D. Shuster and S. D. Oh, “Three-axis attitude determination from vector

observations,” J. Guid. Control, Dyn., vol. 4, no. 1, pp. 70–77, 1981

[5.5] Afdafruit, “LSM303 Accelerometer + Compass Breakout,” [Online]. [Accessed :

24 July 2017]. Available from: https://learn.adafruit.com/lsm303-accelerometer-

slash-compass-breakout/overview

[5.6] A. Hermanis and K. Nesenbergs, “Grid shaped accelerometer network for

surface shape recognition,” in Proc. 13th Biennial Baltic Electron. Conf. (BEC),

pp. 203–206, 2012

[5.7] T. Hoshi, S. Ozaki, and H. Shinoda, “Three-dimensional shape capture sheet

using distributed triaxial accelerometers,” in Proc. 4th Int. Conf. Netw. Sens.

Syst. (INSS), pp. 207–212, 2007

[5.8] P. Mittendorfer and G. Cheng, “3D surface reconstruction for robotic body parts

with artificial skins,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),

pp. 4505–4510, 2012

[5.9] M. Huard, N. Sprynski, N. Szafran, and L. Biard, “Reconstruction of quasi

developable surfaces from ribbon curves,” Numer. Algorithms, vol. 63, no. 3, pp.

483–506, 2013

https://learn.adafruit.com/lsm303-accelerometer-slash-compass-breakout/overview
https://learn.adafruit.com/lsm303-accelerometer-slash-compass-breakout/overview

CHAPTER 6:

CONCLUSION AND FUTURE WORK

HE aim of this thesis was to propose and implement a novel distributed computer

which could be used for wearables. This chapter summarizes the contributions of

the thesis and discusses the future work that can be conducted.

6.1 Contribution of this thesis

The aim of the research was to harness parallel processing across a large number of

simple cores with the objective of improving the performance when compared to a

serial system.

The main contributions of the thesis are:

• A new sensor networking paradigm that exploits processor level parallelism has

been implemented and also has introduced the concept of on-fabric computation.

• Validated the method and produced parallel program that is used on the sensor

network array.

• Produced a physical demonstrator for a specific measurement scenario that has

relevance to human monitoring application.

• The architecture has been applied to a physical demonstrator containing an array

of computing nodes.

• Set of measurements obtained from a physical demonstrator has been presented.

The thesis has proposed a completely new concept of an on-fabric Instruction Systolic

Array. Different parallel architectures have been reviewed and the Instruction Systolic

Array is a relatively under researched architecture that has meant in this particular

application.

A number of compromises have been made during the implementation of the concept

such as opting a particular bus system, selecting a microcontroller for the processing

element, using same bus connecting for peripheral devices. It can be expected that these

T

6. Conclusion and future work 108

will have a substantial impact on the performance. But still some advantages in

implementing such as to test the functionality of the device and to prove the concept and

experiment with the programmer’s model which is significantly different to any known

computer.

The wearable shape reconstruction application has been successfully implemented using

the proposed concept of ISA architecture constructed out of off-the-shelf

microcontrollers and sensors. Results confirm the viability of the proposed architecture

for fabric-resident computing devices.

6.2 Suggestions for future research

The thesis suggests a number of possibilities for future research.

6.2.1 Computational performance

The next step in the research would be implementing the whole prototype system on an

ASIC. While implementing the concept on ASIC the processors will be closely coupled

with the sensors. When the sensors are closely coupled to the processing elements there

will not be a need for the shared bus system and thus will result in better performance.

Thus there will also not be a need of the umbilical as shown in Fig.5.4.

6.2.2 Scalability

One of the advantages of ISA is that it is scalable. The processing elements and sensors

are scalable where the array for the processing elements and the sensors connected to

the processing elements can be increased or decreased. The future research can build on

into scalability because final integration of the concept is to have very large arrays that

can self-process.

6.2.3 Programming techniques

This research has shown a conventional way of programming the ISA. More research

can be conducted in future in the development of a full programmer’s model and a full

featured instruction set. Future research can also concentrate on efficient development

environment and high-level programming language for the ISA which is inherently

difficult to program.

6. Conclusion and future work 109

6.2.4 Designing

A prototype is typically a working model of a design that demonstrates a devices

appearance and functionality which has been implemented. The next stage is to have a

custom design which would clearly be able to obtain a much better performance. Once

the custom design is built the manufacturing could be done big volumes. Manufacturing

the product in large scale could be outsourced. Handing off prototyping to an

outsourced firm can save precious time and money in the development process, as

design and knowledge transfers can be streamlined.

6.2.5 Applications

There are several wearable applications that can be explored using the concept of

Instruction Systolic Array. Human body sensing and human posture sensing

applications are more commonly used applications in wearables.

• Medicine: Vital signs monitoring, body chemistry monitoring, stroke

rehabilitation, blood pressure measurement.

• Military: Vital signs monitoring, performance monitoring, physical condition,

position and orientation monitoring, radiation monitoring, monitoring of harmful

gasses, wearable communications devices, camouflage, smart clothing with

response to the environment. Active Camouflage is the concept of including

actuators and optical devices closely coupled to Processing elements which can

be used in Military applications.

• Sports: Performance monitoring and vital signs monitoring of the athletes and

players during the sporting events helps in monitoring their health and improve

their performance.

6.3 Summary

The thesis has discussed the rationale, design, implementation and benchmarking of a

new concept for on-fabric sensor networks, prototyped with off-the-shelf

microcontrollers. A physical prototype device has been demonstrated containing 16

computing nodes. The concept has been validated using several programming examples.

The parallel architecture has been demonstrated using on-fabric application.

6. Conclusion and future work 110

It is envisaged that such a system would be implemented using VLSI technology and

custom ASICs which would substantially improve the performance. The future work

can address the scalability of the architecture in line with the thesis vision to extend to

large arrays and new applications. Several wearable applications in the field of

medicine, military and sports can also be explored using the concepts and

methodologies developed during this research. There can also be focus on extending the

supported instructions, optimizing the communication medium and allowing for more

concurrency, at node level, between computation and communication.

6. Conclusion and future work 111

References

[6.1] B. Burchard, S. Jung, A. Ullsperger, and W. D. Hartmann, “Devices, software,

their applications and requirements for wearable electronics,” ICCE, pp. 224–

225, 2001

[6.2] S. I. Woolley, J. W. Cross, S. Ro, R. Foster, G. Reynolds, C. Baber, H. Bristow,

and A. Schwirtz, “Forms of wearable computer,” in IEE Eurowearable, IET, pp.

47-52, 2003

[6.3] K. V. Laerhoven, A. Schmidt, and H-W. Gellersen, “Multi-Sensor Context

Aware Clothing,” in ISWC, IEEE Computer Society, pp.49-56, 2002

[6.4] C. L. Cathey, J. D. Bakos, and D. A. Buell, “A reconfigurable distributed

computing fabric exploiting multilevel parallelism,”inFCCM, IEEE Computer

Society, pp. 121–130, 2006

A

LIST OF PUBLICATIONS

1. P. Kandaswamy, J. Flint, V. Chouliaras, “Shape Reconstruction using

Instruction Systolic Array,” IEEE Sensors 2017, pp. 364-366, 2017.

2. P. Kandaswamy, J. Flint, V. Chouliaras, “System on Fabrics Architecture using

Distributed Computing,” IEEE Sensors Journal, Peer-reviewed and Accepted,

Preprint (Early Access Available Online), May 2018.

A.1

APPENDIX

The computational model code for the shape reconstruction algorithm is as follows.

This is a common code and can be configured for different roles. The file global defines

which has been included is used to configure the code type.

/***

 * Include header files

**

******/

#include "board.h"

#include "global_defines.h" // this file sets the code configuration

 type

#include "chip.h"

#include "patterns.h"

#include "fifo.h"

#include "string.h"

#include "algo.h"

/***

 * Private types/enumerations/variables

**

******/

#define M_TX_BUFF_SIZE 750

#define M_RX_BUFF_SIZE 750

#define NO_OF_SENSOR_READ 4

/***

 * Public types/enumerations/variables

**

******/

typedefstruct

{

 uint8_t frame_type;

 union

 {

 uint8_t data;

 uint8_t instruction;

 uint8_t selector_bit;

 } data;

 float C[3][1]; //control register

 float N[3][1]; //North communication register

 float E[3][1]; //East communication register

 float W[3][1]; //West communication register

Appendix A.2

 float S[3][1]; //South communication register

} FRAME;

static I2CM_XFER_T i2cm0Xfer;

static I2CM_XFER_T i2cm1Xfer;

#if(CONTROLLER != CONTROLLER_PROCESS_ELEMENTS)

static I2CM_XFER_T i2cm2Xfer;

static I2CM_XFER_T i2cm3Xfer;

#else

#ifndef LAST_SOUTH_CONTROLLER

FRAME north_prev;

#endif

#ifndef LAST_EAST_CONTROLLER

FRAME west_prev;

#endif

floatnorth_C[3] = {0, 0, 0};

floatnorth_N[3] = {0, 0, 0};

floatnorth_E[3] = {0, 0, 0};

floatnorth_W[3] = {0, 0, 0};

floatnorth_S[3] = {0, 0, 0};

floatwest_C[3] = {0, 0, 0};

floatwest_N[3] = {0, 0, 0};

floatwest_E[3] = {0, 0, 0};

floatwest_W[3] = {0, 0, 0};

floatwest_S[3] = {0, 0, 0};

static uint8_t tx_buff[M_TX_BUFF_SIZE];

static uint8_t rx_buff[M_TX_BUFF_SIZE];

#endif

static uint8_t slave1_no_of_bytes_received;

static uint8_t slave2_no_of_bytes_received;

static volatile bool delay_completed = false;

static volatile uint32_t delay_counter = 0;

static FIFO<uint8_t, 750>fifo_north;

static FIFO<uint8_t, 750>fifo_west;

static uint32_t time_in_10ms = 0;

/***

 * Private functions

**

******/

static void processSlave1TransferStart(uint8_t addr);

static uint8_t processSlave1TransferSend(uint8_t *data);

static uint8_t processSlave1TransferRecv(uint8_t data);

static void processSlave1TransferDone(void);

static void processSlave2TransferStart(uint8_t addr);

static uint8_t processSlave2TransferSend(uint8_t *data);

static uint8_t processSlave2TransferRecv(uint8_t data);

static void processSlave2TransferDone(void);

const static I2CS_XFER_T i2cs1CallBacks =

{

 &processSlave1TransferStart,

 &processSlave1TransferSend,

 &processSlave1TransferRecv,

 &processSlave1TransferDone

};

const static I2CS_XFER_T i2cs2CallBacks =

Appendix A.3

{

 &processSlave2TransferStart,

 &processSlave2TransferSend,

 &processSlave2TransferRecv,

 &processSlave2TransferDone

};

/***

 * Public functions

**

******/

extern "C" void IOCON_Init();

extern "C" void InputMux_Init();

extern "C" void SwitchMatrix_Init();

/* Handler for slave start callback */

static void processSlave1TransferStart(uint8_t addr)

{

 slave1_no_of_bytes_received = 0;

}

/* Handler for slave send callback */

static uint8_t processSlave1TransferSend(uint8_t *data)

{

 return 1; // return a non zero to indicate there is data

}

/* Handler for slave receive callback */

static uint8_t processSlave1TransferRecv(uint8_t data)

{

 fifo_north = data;

 return 0;

}

/* Handler for slave transfer complete callback */

static void processSlave1TransferDone(void)

{

 /* Nothing needs to be done here */

}

/* Handler for slave start callback */

static void processSlave2TransferStart(uint8_t addr)

{

 slave2_no_of_bytes_received = 0;

}

/* Handler for slave send callback */

static uint8_t processSlave2TransferSend(uint8_t *data)

{

 return 1;

}

/* Handler for slave receive callback */

static uint8_t processSlave2TransferRecv(uint8_t data)

{

 fifo_west = data;

 return 0;

}

Appendix A.4

/* Handler for slave transfer complete callback */

static void processSlave2TransferDone(void)

{

 /* Nothing needs to be done here */

}

/* Function to wait for I2CM transfer completion */

static void WaitForI2cXferComplete(I2CM_XFER_T *xferRecPtr)

{

 /* Test for still transferring data */

 while (xferRecPtr->status == I2CM_STATUS_BUSY)

 {

 /* Sleep until next interrupt */

 __WFI();

 }

}

/* Function to setup and execute I2C transfer request */

static void SetupXferRecAndExecute(LPC_I2C_T * i2c_unit,

uint8_tdevAddr, uint8_t *txBuffPtr, uint16_ttxSize, uint8_t

*rxBuffPtr, uint16_trxSize)

{

 I2CM_XFER_T* xfer = 0;

#if(CONTROLLER == CONTROLLER_INSTRUCTION)

 if(i2c_unit == I2C_COL1_MASTER)

 {

 xfer = &i2cm0Xfer;

 }

 else if(i2c_unit == I2C_COL2_MASTER)

 {

 xfer = &i2cm1Xfer;

 }

 else if(i2c_unit == I2C_COL3_MASTER)

 {

 xfer = &i2cm2Xfer;

 }

 else if(i2c_unit == I2C_COL4_MASTER)

 {

 xfer = &i2cm3Xfer;

 }

#elif(CONTROLLER == CONTROLLER_SELECTOR_BIT)

 if(i2c_unit == I2C_ROW1_MASTER)

 {

 xfer = &i2cm0Xfer;

 }

 else if(i2c_unit == I2C_ROW2_MASTER)

 {

 xfer = &i2cm1Xfer;

 }

 else if(i2c_unit == I2C_ROW3_MASTER)

 {

 xfer = &i2cm2Xfer;

 }

 else if(i2c_unit == I2C_ROW4_MASTER)

 {

 xfer = &i2cm3Xfer;

 }

#elif(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS)

 if(i2c_unit == I2C_SOUTH_MASTER)

Appendix A.5

 {

 xfer = &i2cm0Xfer;

 }

 else if(i2c_unit == I2C_EAST_MASTER)

 {

 xfer = &i2cm1Xfer;

 }

#endif

 if(xfer != 0)

 {

 /* Setup I2C transfer record */

 xfer->slaveAddr = devAddr;

 xfer->status = 0;

 xfer->txSz = txSize;

 xfer->rxSz = rxSize;

 xfer->txBuff = txBuffPtr;

 xfer->rxBuff = rxBuffPtr;

 Chip_I2CM_Xfer(i2c_unit, xfer);

 /* Enable Master Interrupts */

 Chip_I2C_EnableInt(i2c_unit, I2C_INTENSET_MSTPENDING |

I2C_INTENSET_MSTRARBLOSS | I2C_INTENSET_MSTSTSTPERR);

 /* Wait for transfer completion */

 WaitForI2cXferComplete(xfer);

 /* Clear all Interrupts */

 Chip_I2C_ClearInt(i2c_unit, I2C_INTENSET_MSTPENDING |

I2C_INTENSET_MSTRARBLOSS | I2C_INTENSET_MSTSTSTPERR);

 }

}

void i2c_master_init(LPC_I2C_T * i2c_unit)

{

 /* Enable I2C clock and reset I2C peripheral */

 Chip_I2C_Init(i2c_unit);

 /* Setup clock rate for I2C */

 Chip_I2C_SetClockDiv(i2c_unit, SystemCoreClock / I2C_SPEED);

 /* Setup I2CM transfer rate */

 Chip_I2CM_SetBusSpeed(i2c_unit, I2C_SPEED);

 /* Enable Master Mode */

 Chip_I2CM_Enable(i2c_unit);

}

#if(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS)

/* Setup I2C */

static void i2c_slave_init(LPC_I2C_T * i2c_unit)

{

 /* Enable I2C clock and reset I2C peripheral */

 Chip_I2C_Init(i2c_unit);

 /* Setup clock rate for I2C */

 Chip_I2C_SetClockDiv(i2c_unit, SystemCoreClock / I2C_SPEED);

 /* Setup I2CM transfer rate */

 Chip_I2CM_SetBusSpeed(i2c_unit, I2C_SPEED);

Appendix A.6

 /* Enable I2C master interface */

 Chip_I2CM_Enable(i2c_unit);

 /* Some common I2C init was performed in setupI2CMaster(), so it

doesn't need to be done again for the slave setup. */

 /* Emulated EEPROM 0 is on slave index 0 */

 Chip_I2CS_SetSlaveAddr(i2c_unit, 0, I2C_SLAVE_ADDR);

 /* Disable Qualifier for Slave Address 0 */

 Chip_I2CS_SetSlaveQual0(i2c_unit, false, 0);

 /* Enable Slave Address 0 */

 Chip_I2CS_EnableSlaveAddr(i2c_unit, 0);

 /* Clear interrupt status and enable slave interrupts */

 Chip_I2CS_ClearStatus(i2c_unit, I2C_STAT_SLVDESEL);

 Chip_I2C_EnableInt(i2c_unit, I2C_INTENSET_SLVPENDING |

I2C_INTENSET_SLVDESEL);

 /* Enable I2C slave interface */

 Chip_I2CS_Enable(i2c_unit);

}

extern "C" void I2C_NORTH_SLAVE_IRQHandler(void)

{

 uint32_t state = Chip_I2C_GetPendingInt(I2C_NORTH_SLAVE);

 /* Error handling */

 if (state & (I2C_INTSTAT_MSTRARBLOSS | I2C_INTSTAT_MSTSTSTPERR))

 {

 Chip_I2CM_ClearStatus(I2C_NORTH_SLAVE,

 I2C_STAT_MSTRARBLOSS |

I2C_STAT_MSTSTSTPERR);

 }

 /* I2C slave related interrupt */

 while (state & (I2C_INTENSET_SLVPENDING |

I2C_INTENSET_SLVDESEL))

 {

 Chip_I2CS_XferHandler(I2C_NORTH_SLAVE, &i2cs1CallBacks);

 /* Update state */

 state = Chip_I2C_GetPendingInt(I2C_NORTH_SLAVE);

 }

}

extern "C" void I2C_WEST_SLAVE_IRQHandler(void)

{

 uint32_t state = Chip_I2C_GetPendingInt(I2C_WEST_SLAVE);

 /* Error handling */

 if (state & (I2C_INTSTAT_MSTRARBLOSS | I2C_INTSTAT_MSTSTSTPERR))

 {

 Chip_I2CM_ClearStatus(I2C_WEST_SLAVE,

 I2C_STAT_MSTRARBLOSS |

I2C_STAT_MSTSTSTPERR);

 }

 /* I2C slave related interrupt */

Appendix A.7

 while (state & (I2C_INTENSET_SLVPENDING |

I2C_INTENSET_SLVDESEL))

 {

 Chip_I2CS_XferHandler(I2C_WEST_SLAVE, &i2cs2CallBacks);

 /* Update state */

 state = Chip_I2C_GetPendingInt(I2C_WEST_SLAVE);

 }

}

extern "C" void I2C_SOUTH_MASTER_IRQHandler(void)

{

 /* Call I2CM ISR function with the I2C device and transfer rec

*/

 Chip_I2CM_XferHandler(I2C_SOUTH_MASTER, &i2cm0Xfer);

}

extern "C" void I2C_EAST_MASTER_IRQHandler(void)

{

 /* Call I2CM ISR function with the I2C device and transfer rec

*/

 Chip_I2CM_XferHandler(I2C_EAST_MASTER, &i2cm1Xfer);

}

#endif

/**

 * Handle I2C interrupt by calling I2CM interrupt transfer handler

 * @return Nothing

 */

#if(CONTROLLER == CONTROLLER_INSTRUCTION)

extern "C" void I2C_COL1_MASTER_IRQHandler(void)

{

 /* Call I2CM ISR function with the I2C device and transfer rec

*/

 Chip_I2CM_XferHandler(I2C_COL1_MASTER, &i2cm0Xfer);

}

extern "C" void I2C_COL2_MASTER_IRQHandler(void)

{

 /* Call I2CM ISR function with the I2C device and transfer rec

*/

 Chip_I2CM_XferHandler(I2C_COL2_MASTER, &i2cm1Xfer);

}

extern "C" void I2C_COL3_MASTER_IRQHandler(void)

{

 /* Call I2CM ISR function with the I2C device and transfer rec

*/

 Chip_I2CM_XferHandler(I2C_COL3_MASTER, &i2cm2Xfer);

}

extern "C" void I2C_COL4_MASTER_IRQHandler(void)

{

 /* Call I2CM ISR function with the I2C device and transfer rec

*/

 Chip_I2CM_XferHandler(I2C_COL4_MASTER, &i2cm3Xfer);

}

#endif

Appendix A.8

#if(CONTROLLER == CONTROLLER_SELECTOR_BIT)

extern "C" void I2C_ROW1_MASTER_IRQHandler(void)

{

 /* Call I2CM ISR function with the I2C device and transfer rec

*/

 Chip_I2CM_XferHandler(I2C_ROW1_MASTER, &i2cm0Xfer);

}

extern "C" void I2C_ROW2_MASTER_IRQHandler(void)

{

 /* Call I2CM ISR function with the I2C device and transfer rec

*/

 Chip_I2CM_XferHandler(I2C_ROW2_MASTER, &i2cm1Xfer);

}

extern "C" void I2C_ROW3_MASTER_IRQHandler(void)

{

 /* Call I2CM ISR function with the I2C device and transfer rec

*/

 Chip_I2CM_XferHandler(I2C_ROW3_MASTER, &i2cm2Xfer);

}

extern "C" void I2C_ROW4_MASTER_IRQHandler(void)

{

 /* Call I2CM ISR function with the I2C device and transfer rec

*/

 Chip_I2CM_XferHandler(I2C_ROW4_MASTER, &i2cm3Xfer);

}

#endif

/**

 * Handle interrupt from SysTick timer

 * return Nothing

 */

extern "C" void SysTick_Handler(void)

{

 time_in_10ms++;

 if(delay_counter> 0)

 {

 delay_counter--;

 if(delay_counter == 0)

 delay_completed = true;

 }

}

void delay(uint32_t delay_in_10ms)

{

 if(delay_in_10ms != 0)

 {

 delay_completed = false;

 delay_counter = delay_in_10ms;

 while(delay_completed == false);

 }

}

#if(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS)

uint8_t lsm303dlhc_read_reg(uint8_t dev_address, uint8_t reg_address)

Appendix A.9

{

 tx_buff[0] = reg_address;

 SetupXferRecAndExecute(I2C_SOUTH_MASTER, dev_address, tx_buff,

1, rx_buff, 1);

 returnrx_buff[0];

}

void lsm303dlhc_write_reg(uint8_t dev_address, uint8_t reg_address,

uint8_t data)

{

 tx_buff[0] = reg_address;

 tx_buff[1] = data;

 SetupXferRecAndExecute(I2C_SOUTH_MASTER, dev_address, tx_buff,

2, 0, 0);

}

void lsm303dlhc_accel_read_xyz(int16_t& x, int16_t& y, int16_t& z)

{

 tx_buff[0] = LSM303DLHC_ACCEL_OUT_X_L_A | 0x80; //

continuous read

 SetupXferRecAndExecute(I2C_SOUTH_MASTER,

LSM303DLHC_ACCEL_SLAVE_ADDR, tx_buff, 1, rx_buff, 6);

 x = (rx_buff[0] | (rx_buff[1] << 8));

 y = (rx_buff[2] | (rx_buff[3] << 8));

 z = (rx_buff[4] | (rx_buff[5] << 8));

}

void lsm303dlhc_gyro_read_xyz(int16_t& x, int16_t& y, int16_t& z)

{

 tx_buff[0] = LSM303DLHC_GYRO_OUT_X_L_M | 0x80; //

continuous read

 SetupXferRecAndExecute(I2C_SOUTH_MASTER,

LSM303DLHC_GYRO_SLAVE_ADDR, tx_buff, 1, rx_buff, 6);

 x = (rx_buff[0] | (rx_buff[1] << 8));

 y = (rx_buff[2] | (rx_buff[3] << 8));

 z = (rx_buff[4] | (rx_buff[5] << 8));

}

voidcalculate_control_point(uint8_t id)

{

 float two[3] = {2, 2, 2};

 switch(id)

 {

 case 1:

 C[0] = 0;

 C[1] = 0;

 C[2] = 0;

 break;

 case 2:

 case 3:

 case 4:

 algo_matrix_add_3x1_and_3x1(west_C, west_E, C);

 algo_matrix_sub_3x1_and_3x1(C, W, C);

 break;

 case 5:

 case 9:

 case 13:

Appendix A.10

 algo_matrix_add_3x1_and_3x1(N, north_S, C);

 algo_matrix_sub_3x1_and_3x1(north_C, C, C);

 break;

 case 6:

 case 7:

 case 8:

 case 10:

 case 11:

 case 12:

 case 14:

 case 15:

 case 16:

 algo_matrix_add_3x1_and_3x1(west_C, west_E, C);

 algo_matrix_add_3x1_and_3x1(C, north_C, C);

 algo_matrix_add_3x1_and_3x1(C, north_S, C);

 algo_matrix_sub_3x1_and_3x1(C, W, C);

 algo_matrix_sub_3x1_and_3x1(C, N, C);

 algo_matrix_sub_3x1_and_3x1(C, two, C);

 break;

 }

}

#endif

/**

 * main routine

 * return Function should not exit.

 */

int main(void)

{

 volatile uint32_t *vt;

 uint32_t cpu_id;

#if(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS)

 uint8_t controller_id = 0;

 FRAME north_curr;

 FRAME west_curr;

 int16_t x, y, z;

 int16_t sum_x, sum_y, sum_z;

#else

 FRAME tx_frame;

#endif

 SystemCoreClockUpdate();

 Board_Init();

 IOCON_Init();

 InputMux_Init();

 SwitchMatrix_Init();

 // Set 10ms tick

 SysTick_Config(Chip_Clock_GetSystemClockRate() / 100);

 /* Display system information */

 __disable_irq();

#if(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS)

#ifdef LAST_SOUTH_CONTROLLER

#ifdef LAST_EAST_CONTROLLER

 printf("Process Element Controller LSE\n");

#else

Appendix A.11

 printf("Process Element Controller LS\n");

#endif

#else

#ifdef LAST_EAST_CONTROLLER

 printf("Process Element Controller LE\n");

#else

 printf("Process Element Controller\n");

#endif

#endif

 fflush(stdout);

#elif(CONTROLLER == CONTROLLER_INSTRUCTION)

 printf("Instruction Controller\n");

 fflush(stdout);

#elif(CONTROLLER == CONTROLLER_SELECTOR_BIT)

 printf("Selector Bit Controller\n");

 fflush(stdout);

#endif

 printf("System Clock: %luMHz\n", SystemCoreClock / 1000000);

 fflush(stdout);

 printf("Device ID: 0x%04lX\n", Chip_SYSCTL_GetDeviceID());

 fflush(stdout);

 vt = &(SCB->VTOR);

 cpu_id = SCB->CPUID;

 printf("VTOR Address: 0x%08lX\n", (uint32_t) vt);

 fflush(stdout);

 printf("CPU ID: 0x%08lX\n", (uint32_t) cpu_id);

 fflush(stdout);

 printf(VERSION_STRING);

 __enable_irq();

 printf("time in 10ms tick = %u", (unsigned int)time_in_10ms);

 // Enable pullups for all

 // I2C 0

 // Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO11,

PIN_MODE_PULLUP); // SDA // there is no pullup available in

PIO11 & 10

 // Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO10,

PIN_MODE_PULLUP); // SCL

 Chip_IOCON_PinSetI2CMode(LPC_IOCON, IOCON_PIO11,

PIN_I2CMODE_STDFAST);

 Chip_IOCON_PinSetI2CMode(LPC_IOCON, IOCON_PIO10,

PIN_I2CMODE_STDFAST);

 // I2C 3

 Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO19, PIN_MODE_PULLUP);

 // SDA

 Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO12, PIN_MODE_PULLUP);

 // SCL

 Chip_IOCON_PinSetOpenDrainMode(LPC_IOCON, IOCON_PIO19, true);

 Chip_IOCON_PinSetOpenDrainMode(LPC_IOCON, IOCON_PIO12, true);

 // I2C 1

 Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO18, PIN_MODE_PULLUP);

 // SDA

 Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO28, PIN_MODE_PULLUP);

 // SCL

 Chip_IOCON_PinSetOpenDrainMode(LPC_IOCON, IOCON_PIO18, true);

 Chip_IOCON_PinSetOpenDrainMode(LPC_IOCON, IOCON_PIO28, true);

Appendix A.12

 // I2C 2

 Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO0, PIN_MODE_PULLUP);

 // SDA

 Chip_IOCON_PinSetMode(LPC_IOCON, IOCON_PIO4, PIN_MODE_PULLUP);

 // SCL

 Chip_IOCON_PinSetOpenDrainMode(LPC_IOCON, IOCON_PIO0, true);

 Chip_IOCON_PinSetOpenDrainMode(LPC_IOCON, IOCON_PIO4, true);

#if(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS)

 // Init I2C Masters

 i2c_master_init(I2C_SOUTH_MASTER);

 i2c_master_init(I2C_EAST_MASTER);

 // Init I2C Slave

 i2c_slave_init(I2C_NORTH_SLAVE);

 i2c_slave_init(I2C_WEST_SLAVE);

#else

 i2c_master_init(LPC_I2C0);

 i2c_master_init(LPC_I2C1);

 i2c_master_init(LPC_I2C2);

 i2c_master_init(LPC_I2C3);

#endif

 /* Enable the interrupt for the I2C */

 NVIC_SetPriority(I2C0_IRQn, 31);

 NVIC_SetPriority(I2C1_IRQn, 31);

 NVIC_SetPriority(I2C2_IRQn, 31);

 NVIC_SetPriority(I2C3_IRQn, 31);

 NVIC_EnableIRQ(I2C0_IRQn);

 NVIC_EnableIRQ(I2C1_IRQn);

 NVIC_EnableIRQ(I2C2_IRQn);

 NVIC_EnableIRQ(I2C3_IRQn);

 // LED init

 GREEN_LED_OFF();

 BLUE_LED_OFF();

#if(CONTROLLER == CONTROLLER_INSTRUCTION)

 memset((void*)&tx_frame, 0, sizeof(tx_frame));

 for(uint8_t i = 0; i<rows_of_array(vertical_pattern); i++)

 {

 GREEN_LED_ON();

 tx_frame.frame_type = vertical_pattern_type[i][0];

 tx_frame.data.data = vertical_pattern[i][0];

 SetupXferRecAndExecute(I2C_COL1_MASTER, I2C_SLAVE_ADDR,

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0);

 printf("Instruction %u ", i + 1);

 fflush(stdout);

 printf("sent to COL1\n");

 fflush(stdout);

 tx_frame.frame_type = vertical_pattern_type[i][1];

 tx_frame.data.data = vertical_pattern[i][1];

 SetupXferRecAndExecute(I2C_COL2_MASTER, I2C_SLAVE_ADDR,

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0);

 printf("Instruction %u ", i + 1);

 fflush(stdout);

 printf("sent to COL2\n");

 fflush(stdout);

Appendix A.13

 tx_frame.frame_type = vertical_pattern_type[i][2];

 tx_frame.data.data = vertical_pattern[i][2];

 SetupXferRecAndExecute(I2C_COL3_MASTER, I2C_SLAVE_ADDR,

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0);

 printf("Instruction %u ", i + 1);

 fflush(stdout);

 printf("sent to COL3\n");

 fflush(stdout);

 tx_frame.frame_type = vertical_pattern_type[i][3];

 tx_frame.data.data = vertical_pattern[i][3];

 SetupXferRecAndExecute(I2C_COL4_MASTER, I2C_SLAVE_ADDR,

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0);

 printf("Instruction %u ", i + 1);

 fflush(stdout);

 printf("sent to COL4\n");

 fflush(stdout);

 GREEN_LED_OFF();

 delay(PATTERN_DELAY_IN_10ms);

 }

 GREEN_LED_OFF();

 while(1);

#elif(CONTROLLER == CONTROLLER_SELECTOR_BIT)

 memset((void*)&tx_frame, 0, sizeof(tx_frame));

 for(uint8_t i = 0; i<rows_of_array(horizontal_pattern); i++)

 {

 BLUE_LED_ON();

 tx_frame.frame_type = horizontal_pattern_type[i][0];

 tx_frame.data.data = horizontal_pattern[i][0];

 SetupXferRecAndExecute(I2C_ROW1_MASTER, I2C_SLAVE_ADDR,

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0);

 printf("Selector Bit %u %u sent to ROW1\n", i + 1,

tx_frame.data);

 fflush(stdout);

 tx_frame.frame_type = horizontal_pattern_type[i][1];

 tx_frame.data.data = horizontal_pattern[i][1];

 SetupXferRecAndExecute(I2C_ROW2_MASTER, I2C_SLAVE_ADDR,

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0);

 printf("Selector Bit %u %u sent to ROW2\n", i + 1,

tx_frame.data);

 fflush(stdout);

 tx_frame.frame_type = horizontal_pattern_type[i][2];

 tx_frame.data.data = horizontal_pattern[i][2];

 SetupXferRecAndExecute(I2C_ROW3_MASTER, I2C_SLAVE_ADDR,

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0);

 printf("Selector Bit %u %u sent to ROW3\n", i + 1,

tx_frame.data);

 fflush(stdout);

 tx_frame.frame_type = horizontal_pattern_type[i][3];

 tx_frame.data.data = horizontal_pattern[i][3];

 SetupXferRecAndExecute(I2C_ROW4_MASTER, I2C_SLAVE_ADDR,

(uint8_t*)&tx_frame, sizeof(tx_frame), 0, 0);

 printf("Selector Bit %u %u sent to ROW4\n", i + 1,

tx_frame.data);

 fflush(stdout);

Appendix A.14

 BLUE_LED_OFF();

 delay(PATTERN_DELAY_IN_10ms);

 }

 BLUE_LED_OFF();

 while(1);

#elif(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS)

 // configure lsm303dlhc accel

 lsm303dlhc_write_reg(LSM303DLHC_ACCEL_SLAVE_ADDR,

LSM303DLHC_ACCEL_CTRL_REG1_A, 0x27); // Data rate 10Hz

 // Normal mode (not low power)

 // X, Y, Z enabled

 // configure lsm303dlhc gyro

 lsm303dlhc_write_reg(LSM303DLHC_GYRO_SLAVE_ADDR,

LSM303DLHC_GYRO_CRA_REG_M, 0x08); // Data rate 3Hz,

Temperature sensor disabled.

 lsm303dlhc_write_reg(LSM303DLHC_GYRO_SLAVE_ADDR,

LSM303DLHC_GYRO_MR_REG_M, 0x00); // Continuous conversion mode

 // read identification

 printf("\nID1 should be 0x48, actual = 0x%x",

lsm303dlhc_read_reg(LSM303DLHC_GYRO_SLAVE_ADDR,

LSM303DLHC_GYRO_IRA_REG_M));

 printf("\nID2 should be 0x34, actual = 0x%x",

lsm303dlhc_read_reg(LSM303DLHC_GYRO_SLAVE_ADDR,

LSM303DLHC_GYRO_IRB_REG_M));

 printf("\nID3 should be 0x33, actual = 0x%x",

lsm303dlhc_read_reg(LSM303DLHC_GYRO_SLAVE_ADDR,

LSM303DLHC_GYRO_IRC_REG_M));

#ifndef LAST_SOUTH_CONTROLLER

 memset((void*)&north_prev, 0, sizeof(north_prev));

#endif

#ifndef LAST_EAST_CONTROLLER

 memset((void*)&west_prev, 0, sizeof(west_prev));

#endif

 while(1)

 {

 uint8_t selector_bit = 0;

 uint8_t instruction = 0;

 printf("wait I... \n");

 fflush(stdout);

 while(fifo_north.get_no_of_data_in_fifo() <sizeof(FRAME));

 // wait till at least the complete frame is received

 printf("wait s... \n");

 fflush(stdout);

 while(fifo_west.get_no_of_data_in_fifo() <sizeof(FRAME));

 // wait till at least the complete frame is received

 // copy bytes

 for(uint8_t i = 0; i<sizeof(FRAME); i++)

 {

 ((uint8_t*)&north_curr)[i] = fifo_north;

 ((uint8_t*)&west_curr)[i] = fifo_west;

 }

 // process north

Appendix A.15

 printf("n.frame_type = %d ", north_curr.frame_type);

 fflush(stdout);

 printf("n.data = %d ", north_curr.data.data);

 fflush(stdout);

 switch(north_curr.frame_type)

 {

 case FRAME_TYPE_DATA:

 controller_id = north_curr.data.data;

 // 2nd byte is data

 instruction = INST_NO_OPERATION;

 printf("controller_id = %u ", controller_id);

 fflush(stdout);

 break;

 case FRAME_TYPE_INSTRUCTION:

 instruction = north_curr.data.instruction;

 // 2nd byte is instruction

 memcpy(north_C, north_curr.C, sizeof(C));

 memcpy(north_N, north_curr.N, sizeof(N));

 memcpy(north_E, north_curr.E, sizeof(E));

 memcpy(north_W, north_curr.W, sizeof(W));

 memcpy(north_S, north_curr.S, sizeof(S));

 break;

 default:

 instruction = 0;

 break;

 }

 // process west

 printf("w.frame_type = %d ", west_curr.frame_type);

 fflush(stdout);

 printf("w.data = %d ", west_curr.data.selector_bit);

 fflush(stdout);

 switch(west_curr.frame_type)

 {

 case FRAME_TYPE_SELECTOR_BIT:

 selector_bit = west_curr.data.selector_bit;

 // 2nd byte is selector bit

 memcpy(west_C, west_curr.C, sizeof(C));

 memcpy(west_N, west_curr.N, sizeof(N));

 memcpy(west_E, west_curr.E, sizeof(E));

 memcpy(west_W, west_curr.W, sizeof(W));

 memcpy(west_S, west_curr.S, sizeof(S));

 break;

 default:

 selector_bit = 0;

 break;

 }

 if(selector_bit> 0)

 {

 switch (instruction)

 {

 case INST_SENSOR_READ:

 sum_x = sum_y = sum_z = 0;

 for(uint8_t i = 0; i< NO_OF_SENSOR_READ;

i++)

 {

 lsm303dlhc_accel_read_xyz(x, y,

z);

Appendix A.16

 sum_x += x;

 sum_y += y;

 sum_z += z;

 }

 sum_x /= NO_OF_SENSOR_READ;

 sum_y /= NO_OF_SENSOR_READ;

 sum_z /= NO_OF_SENSOR_READ;

 sg[0] = sum_x;

 sg[1] = sum_y;

 sg[2] = sum_z;

 printf("ac_x = %d, ac_y = %d ac_z = %d

", sum_x, sum_y, sum_z);

 sum_x = sum_y = sum_z = 0;

 for(uint8_t i = 0; i< NO_OF_SENSOR_READ;

i++)

 {

 lsm303dlhc_gyro_read_xyz(x, y, z);

 sum_x += x;

 sum_y += y;

 sum_z += z;

 }

 sum_x /= NO_OF_SENSOR_READ;

 sum_y /= NO_OF_SENSOR_READ;

 sum_z /= NO_OF_SENSOR_READ;

 sm[0] = sum_x;

 sm[1] = sum_y;

 sm[2] = sum_z;

 printf("\ngy_x = %d, gy_y = %d gy_z = %d

", sum_x, sum_y, sum_z);

 fflush(stdout);

 break;

 case INST_CALC_DIRECTIONAL_VECTOR:

 // calculate eg norm

 eg_norm[0] = eg[controller_id][0];

 eg_norm[1] = eg[controller_id][1];

 eg_norm[2] = eg[controller_id][2];

 algo_norm_3x1(eg_norm);

 // calculate em norm

 em_norm[0] = em[controller_id][0];

 em_norm[1] = em[controller_id][1];

 em_norm[2] = em[controller_id][2];

 algo_norm_3x1(em_norm);

 // calculate eg x em

 algo_cross_3x1(eg_norm, em_norm,

eg_x_em_norm);

 // calculate norm(eg x em)

 algo_norm_3x1(eg_x_em_norm);

 // calculate e1

 e1[0] = eg[controller_id][0];

 e1[1] = eg[controller_id][1];

 e1[2] = eg[controller_id][2];

 // calculate e2

 e2[0] = eg_x_em_norm[0];

 e2[1] = eg_x_em_norm[1];

Appendix A.17

 e2[2] = eg_x_em_norm[2];

 // calculate e3

 algo_cross_3x1(e1, e2, e3);

 // Copy to Me

 Me[0][0] = e1[0];

 Me[0][1] = e1[2];

 Me[0][2] = e1[3];

 Me[1][0] = e2[0];

 Me[1][1] = e2[2];

 Me[1][2] = e2[3];

 Me[2][0] = e3[0];

 Me[2][1] = e3[2];

 Me[2][2] = e3[3];

 // Calculate C

 algo_norm_3x1(sg);

 algo_norm_3x1(sm);

 algo_cross_3x1(sg, sm, sg_x_sm);

 algo_norm_3x1(sg_x_sm);

 // s1=Sg; already satisfied

 // s2 = sg_x_sm; already satisfied

 //algo_cross_3x1(s1, s2, s3);

 memcpy(s1, sg, sizeof(s1));

 memcpy(s2, sg_x_sm, sizeof(s2));

 algo_cross_3x1(s1, s2, s3);

 //this is already done...

 //Me=[e1 e2 e3]; //

will be 3x3 matrix

 //Ms=[s1 s2 s3]; //

will be 3x3 matrix

 Ms[0][0] = s1[0];

 Ms[0][1] = s1[2];

 Ms[0][2] = s1[3];

 Ms[1][0] = s2[0];

 Ms[1][1] = s2[2];

 Ms[1][2] = s2[3];

 Ms[2][0] = s3[0];

 Ms[2][1] = s3[2];

 Ms[2][2] = s3[3];

 algo_transpose_3x3(Ms);

 algo_matrix_mul_3x3_and_3x3(Me, Ms, R);

 // calculate directional vectors

 algo_matrix_mul_3x3_and_3x1(R, Nb, N);

 algo_matrix_mul_3x3_and_3x1(R, Eb, E);

 algo_matrix_mul_3x3_and_3x1(R, Sb, S);

 algo_matrix_mul_3x3_and_3x1(R, Wb, W);

 printf("directional vector calculation

done");

 fflush(stdout);

 break;

 case INST_DOWN_TAIL:

 printf("INST_DOWN_TAIL");

 break;

 case INST_DOWN_HEAD:

Appendix A.18

 printf("INST_DOWN_HEAD");

 break;

 case INST_RIGHT_TAIL:

 printf("INST_RIGHT_TAIL");

 break;

 case INST_RIGHT_HEAD:

 printf("INST_RIGHT_HEAD");

 break;

 case INST_CALC_CONTROL_POINT:

 calculate_control_point(controller_id);

 printf("INST_CALC_CONTROL_POINT");

 break;

 case INST_TRANSFER:

 printf("C[0]*100 = %d, C[1]*100 = %d

C[2]*100 = %d ", (int)(C[0] * 100), (int)(C[1] * 100), (int)(C[2] *

100));

 break;

 }

 }

#ifndef LAST_SOUTH_CONTROLLER

 // send the prev data register & instruction through south

master

 SetupXferRecAndExecute(I2C_SOUTH_MASTER, I2C_SLAVE_ADDR,

(uint8_t*)&north_prev, sizeof(north_prev), 0, 0);

 memcpy(north_curr.C, C, sizeof(C));

 memcpy(north_curr.N, N, sizeof(N));

 memcpy(north_curr.E, E, sizeof(E));

 memcpy(north_curr.W, W, sizeof(W));

 memcpy(north_curr.S, S, sizeof(S));

 memcpy((void*)&north_prev, (void*)&north_curr,

sizeof(north_curr));

#endif

#ifndef LAST_EAST_CONTROLLER

 // send the prev data register & selector bit through east

master

 SetupXferRecAndExecute(I2C_EAST_MASTER, I2C_SLAVE_ADDR,

(uint8_t*)&west_prev, sizeof(west_prev), 0, 0);

 memcpy(west_curr.C, C, sizeof(C));

 memcpy(west_curr.N, N, sizeof(N));

 memcpy(west_curr.E, E, sizeof(E));

 memcpy(west_curr.W, W, sizeof(W));

 memcpy(west_curr.S, S, sizeof(S));

 memcpy((void*)&west_prev, (void*)&west_curr,

sizeof(west_curr));

#endif

 printf("\n");

 }

#endif

 return 0 ;

}

Appendix A.19

/***

 * global defines header file

**

******/

#include "chip.h"

#define VERSION_STRING

 "ShapeRecon Version - 1.13\n"

#define CONTROLLER_INSTRUCTION 1

#define CONTROLLER_SELECTOR_BIT 2

#define CONTROLLER_PROCESS_ELEMENTS 3

// Configure this controller

//#define CONTROLLER

 CONTROLLER_INSTRUCTION

//#define CONTROLLER

 CONTROLLER_SELECTOR_BIT

#define CONTROLLER

 CONTROLLER_PROCESS_ELEMENTS

#define DEBUG_UART

 LPC_USART1

#if(CONTROLLER == CONTROLLER_PROCESS_ELEMENTS)

//#define LAST_SOUTH_CONTROLLER 1

 // comment any one of these if its last

controller

//#define LAST_EAST_CONTROLLER 1

#define I2C_SOUTH_MASTER

 LPC_I2C0

#define I2C_EAST_MASTER

 LPC_I2C3

#define I2C_NORTH_SLAVE

 LPC_I2C2

#define I2C_WEST_SLAVE

 LPC_I2C1

#define I2C_SOUTH_MASTER_IRQHandler

 I2C0_IRQHandler

#define I2C_EAST_MASTER_IRQHandler

 I2C3_IRQHandler

#define I2C_NORTH_SLAVE_IRQHandler

 I2C2_IRQHandler

#define I2C_WEST_SLAVE_IRQHandler

 I2C1_IRQHandler

#elif(CONTROLLER == CONTROLLER_INSTRUCTION)

#define I2C_COL1_MASTER

 LPC_I2C2

#define I2C_COL2_MASTER

 LPC_I2C3

#define I2C_COL3_MASTER

 LPC_I2C0

Appendix A.20

#define I2C_COL4_MASTER

 LPC_I2C1

#define I2C_COL1_MASTER_IRQHandler

 I2C2_IRQHandler

#define I2C_COL2_MASTER_IRQHandler

 I2C3_IRQHandler

#define I2C_COL3_MASTER_IRQHandler

 I2C0_IRQHandler

#define I2C_COL4_MASTER_IRQHandler

 I2C1_IRQHandler

#elif(CONTROLLER == CONTROLLER_SELECTOR_BIT)

#define I2C_ROW1_MASTER

 LPC_I2C2

#define I2C_ROW2_MASTER

 LPC_I2C3

#define I2C_ROW3_MASTER

 LPC_I2C0

#define I2C_ROW4_MASTER

 LPC_I2C1

#define I2C_ROW1_MASTER_IRQHandler

 I2C2_IRQHandler

#define I2C_ROW2_MASTER_IRQHandler

 I2C3_IRQHandler

#define I2C_ROW3_MASTER_IRQHandler

 I2C0_IRQHandler

#define I2C_ROW4_MASTER_IRQHandler

 I2C1_IRQHandler

#endif

#define I2C_SLAVE_ADDR 0x55

#define LSM303DLHC_ACCEL_SLAVE_ADDR 0b0011001

#define LSM303DLHC_GYRO_SLAVE_ADDR 0b0011110

#define SPEED_100KHZ 100000

#define SPEED_400KHZ 400000

#define I2C_SPEED

 SPEED_400KHZ

#define MAIN_OSC_CRYSTAL

 12000000

#define RTC_OSC_CRYSTAL

 32768

#define PIN_GREEN_LED 16

#define PIN_BLUE_LED 27

//#define PIN_RED_LED

 12

//#define RED_LED_OFF()

 Chip_GPIO_SetPinOutHigh(LPC_GPIO_PORT, 0, PIN_RED_LED)

//#define RED_LED_ON()

 Chip_GPIO_SetPinOutLow(LPC_GPIO_PORT, 0, PIN_RED_LED)

//#define RED_LED_TOGGLE()

 Chip_GPIO_SetPinToggle(LPC_GPIO_PORT, 0, PIN_RED_LED)

#define GREEN_LED_OFF()

 Chip_GPIO_SetPinOutHigh(LPC_GPIO_PORT, 0, PIN_GREEN_LED)

Appendix A.21

#define GREEN_LED_ON()

 Chip_GPIO_SetPinOutLow(LPC_GPIO_PORT, 0, PIN_GREEN_LED)

#define GREEN_LED_TOGGLE()

 Chip_GPIO_SetPinToggle(LPC_GPIO_PORT, 0, PIN_GREEN_LED)

#define BLUE_LED_OFF()

 Chip_GPIO_SetPinOutHigh(LPC_GPIO_PORT, 0, PIN_BLUE_LED)

#define BLUE_LED_ON()

 Chip_GPIO_SetPinOutLow(LPC_GPIO_PORT, 0, PIN_BLUE_LED)

#define BLUE_LED_TOGGLE()

 Chip_GPIO_SetPinToggle(LPC_GPIO_PORT, 0, PIN_BLUE_LED)

//LSM303DLHC registers

#define LSM303DLHC_ACCEL_CTRL_REG1_A 0x20

#define LSM303DLHC_ACCEL_CTRL_REG2_A 0x21

#define LSM303DLHC_ACCEL_CTRL_REG3_A 0x22

#define LSM303DLHC_ACCEL_CTRL_REG4_A 0x23

#define LSM303DLHC_ACCEL_CTRL_REG5_A 0x24

#define LSM303DLHC_ACCEL_CTRL_REG6_A 0x25

#define LSM303DLHC_ACCEL_REFERENCE_A 0x26

#define LSM303DLHC_ACCEL_STATUS_REG_A 0x27

#define LSM303DLHC_ACCEL_OUT_X_L_A 0x28

#define LSM303DLHC_ACCEL_OUT_X_H_A 0x29

#define LSM303DLHC_ACCEL_OUT_Y_L_A 0x2A

#define LSM303DLHC_ACCEL_OUT_Y_H_A 0x2B

#define LSM303DLHC_ACCEL_OUT_Z_L_A 0x2C

#define LSM303DLHC_ACCEL_OUT_Z_H_A 0x2D

#define LSM303DLHC_ACCEL_FIFO_CTRL_REG_A 0x2E

#define LSM303DLHC_ACCEL_FIFO_SRC_REG_A 0x2F

#define LSM303DLHC_ACCEL_INT1_CFG_A 0x30

#define LSM303DLHC_ACCEL_INT1_SRC_A 0x31

#define LSM303DLHC_ACCEL_INT1_THS_A 0x32

#define LSM303DLHC_ACCEL_INT1_DURATION_A 0x33

#define LSM303DLHC_ACCEL_INT2_CFG_A 0x34

#define LSM303DLHC_ACCEL_INT2_SRC_A 0x35

#define LSM303DLHC_ACCEL_INT2_THS_A 0x36

#define LSM303DLHC_ACCEL_INT2_DURATION_A 0x37

#define LSM303DLHC_ACCEL_CLICK_CFG_A 0x38

#define LSM303DLHC_ACCEL_CLICK_SRC_A 0x39

#define LSM303DLHC_ACCEL_CLICK_THS_A 0x3A

#define LSM303DLHC_GYRO_CRA_REG_M 0x00

#define LSM303DLHC_GYRO_CRB_REG_M 0x01

#define LSM303DLHC_GYRO_MR_REG_M 0x02

#define LSM303DLHC_GYRO_OUT_X_H_M 0x03

#define LSM303DLHC_GYRO_OUT_X_L_M 0x04

#define LSM303DLHC_GYRO_OUT_Z_H_M 0x05

#define LSM303DLHC_GYRO_OUT_Z_L_M 0x06

#define LSM303DLHC_GYRO_OUT_Y_H_M 0x07

#define LSM303DLHC_GYRO_OUT_Y_L_M 0x08

#define LSM303DLHC_GYRO_SR_REG_M 0x09

#define LSM303DLHC_GYRO_IRA_REG_M 0x0A

#define LSM303DLHC_GYRO_IRB_REG_M 0x0B

#define LSM303DLHC_GYRO_IRC_REG_M 0x0C

#define LSM303DLHC_GYRO_TEMP_OUT_H_M 0x31

#define LSM303DLHC_GYRO_TEMP_OUT_L_M 0x32

#define rows_of_array(name) \

Appendix A.22

 (sizeof(name) / sizeof(name[0][0]) / columns_of_array(name))

#define columns_of_array(name) \

 (sizeof(name[0]) / sizeof(name[0][0]))

#ifdef GLOBALS

#define EXT

#else

#define EXT extern

#endif

EXT const uint32_t OscRateIn

#ifdef GLOBALS

= MAIN_OSC_CRYSTAL

#endif

;

EXT const uint32_t RTCOscRateIn

#ifdef GLOBALS

= RTC_OSC_CRYSTAL

#endif

;

Appendix A.23

Implementation of Merge Algorithm

(1)

(2)

C

Appendix A.24

(3)

(4)

Appendix A.25

(5)

(6)

Appendix A.26

(7)

(8)

Appendix A.27

(9)

(10)

Appendix A.28

(11)

(12)

Appendix A.29

(13)

(14)

Appendix A.30

(15)

(16)

Appendix A.31

(17)

(18)

Appendix A.32

(19)

(20)

Appendix A.33

Matrix Multiplication Algorithm

(1)

(2)

a2,4 a2,3 a2,2 a2,1

a1,4 a1,3 a1,2 a1,1

a3,4 a3,3 a3,2 a3,1

a4,4 a4,3 a4,2 a4,1

b4,1

b3,1

b2,1

b1,1

b4,2

b3,2

b2,2

b1,2

b4,3

b3,3

b2,3

b1,3

b4,4

b3,4

b2,4

b1,4

Rows of A

C
o
lu

m
n
s

o
f

B

a1,1*b1,1

a2,4 a2,3 a2,2 a2,1

a1,4 a1,3 a1,2

a3,4 a3,3 a3,2 a3,1

a4,4 a4,3 a4,2 a4,1

b4,1

b3,1

b2,1

b4,2

b3,2

b2,2

b1,2

b4,3

b3,3

b2,3

b1,3

b4,4

b3,4

b2,4

b1,4

a1,1

b1,1

Appendix A.34

(3)

(4)

a1,1*b1,1+

a1,2*b2,1
a1,1*b1,2

a2,1*b1,1a2,4 a2,3 a2,2

a1,4 a1,3

a3,4 a3,3 a3,2 a3,1

a4,4 a4,3 a4,2 a4,1

b4,1

b3,1

b4,2

b3,2

b2,2

b4,3

b3,3

b2,3

b1,3

b4,4

b3,4

b2,4

b1,4

a1,1

b1,1

a2,1

b1,2

a1,2

b2,1

a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1

a1,1*b1,2+

a1,2*b2,2
a1,1*b1,3

a2,1*b1,1+

a2,2*b2,1
a2,1*b1,2

a3,1*b1,1

a2,4 a2,3

a1,4

a3,4 a3,3 a3,2

a4,4 a4,3 a4,2 a4,1

b4,1

b4,2

b3,2

b4,3

b3,3

b2,3

b4,4

b3,4

b2,4

b1,4

a1,1

b1,1

a2,1

b2,2

a1,2

b2,1

b3,1

a1,3

a2,2

b1,2

b1,3

a3,1

Appendix A.35

(5)

(6)

a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1+

a1,4*b4,1

a1,1*b1,2+

a1,2*b2,2+

a1,3*b3,2

a1,1*b1,3+

a1,2*b2,3
a1,1*b1,4

a2,1*b1,1+

a2,2*b2,1+

a2,3*b3,1

a2,1*b1,2+

a2,2*b2,2
a2,1*b1,3

a3,1*b1,1+

a3,2*b2,1
a3,1*b1,2

a4,1*b1,1

a2,4

a3,4 a3,3

a4,4 a4,3 a4,2

b4,2

b4,3

b3,3

b4,4

b3,4

b2,4

a1,1

b1,1

a2,1

b2,2

a1,2

b2,1

b3,1

a1,3

a2,2

b1,2

b1,3

a3,1

a1,4

a2,3

a3,2

a4,1

b4,1 b3,2 b2,3 b1,4

a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1+

a1,4*b4,1

a1,1*b1,2+

a1,2*b2,2+

a1,3*b3,2+

a1,4*b4,2

a1,1*b1,3+

a1,2*b2,3+

a1,3*b3,3

a1,1*b1,4+

a1,2*b2,4

a2,1*b1,1+

a2,2*b2,1+

a2,3*b3,1+

a2,4*b4,1

a2,1*b1,2+

a2,2*b2,2+

a2,3*b3,2

a2,1*b1,3+

a2,2*b2,3
a2,1*b1,4

a3,1*b1,1+

a3,2*b2,1+

a3,3*b3,1

a3,1*b1,2+

a3,2*b2,2
a3,1*b1,3

a4,1*b1,1+

a4,2*b2,1
a4,1*b1,2

a3,4

a4,4 a4,3

b4,3

b4,4

b3,4

a2,1

b2,2

a1,2

b2,1

b3,1

a1,3

a2,2

b1,2

b1,3

a3,1

a1,4

a2,3

a3,2

a4,1

b4,1 b3,2 b2,3 b1,4

a2,4

a3,3

a4,2

b4,2 b3,3 b2,4

Appendix A.36

(7)

(8)

a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1+

a1,4*b4,1

a1,1*b1,2+

a1,2*b2,2+

a1,3*b3,2+

a1,4*b4,2

a1,1*b1,3+

a1,2*b2,3+

a1,3*b3,3+

a1,4*b4,3

a1,1*b1,4+

a1,2*b2,4+

a1,3*b3,4

a2,1*b1,1+

a2,2*b2,1+

a2,3*b3,1+

a2,4*b4,1

a2,1*b1,2+

a2,2*b2,2+

a2,3*b3,2+

a2,4*b4,2

a2,1*b1,3+

a2,2*b2,3+

a2,3*b3,3

a2,1*b1,4+

a2,2*b2,4

a3,1*b1,1+

a3,2*b2,1+

a3,3*b3,1+

a3,4*b4,1

a3,1*b1,2+

a3,2*b2,2+

a3,3*b3,2

a3,1*b1,3+

a3,2*b2,3
a3,1*b1,4

a4,1*b1,1+

a4,2*b2,1+

a4,3*b3,1

a4,1*b1,2+

a4,2*b2,2
a4,1*b1,3a4,4

b4,4

b2,2b3,1

a1,3

a2,2

b1,3

a3,1

a1,4

a2,3

a3,2

a4,1

b4,1 b3,2 b2,3 b1,4

a2,4

a3,3

a4,2

b4,2 b3,3 b2,4

a3,4

b4,3

a4,3

b3,4

a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1+

a1,4*b4,1

a1,1*b1,2+

a1,2*b2,2+

a1,3*b3,2+

a1,4*b4,2

a1,1*b1,3+

a1,2*b2,3+

a1,3*b3,3+

a1,4*b4,3

a1,1*b1,4+

a1,2*b2,4+

a1,3*b3,4+

a1,4*b4,4

a2,1*b1,1+

a2,2*b2,1+

a2,3*b3,1+

a2,4*b4,1

a2,1*b1,2+

a2,2*b2,2+

a2,3*b3,2+

a2,4*b4,2

a2,1*b1,3+

a2,2*b2,3+

a2,3*b3,3+

a2,4*b4,3

a2,1*b1,4+

a2,2*b2,4+

a2,3*b3,4

a3,1*b1,1+

a3,2*b2,1+

a3,3*b3,1+

a3,4*b4,1

a3,1*b1,2+

a3,2*b2,2+

a3,3*b3,2+

a3,4*b4,2

a3,1*b1,3+

a3,2*b2,3+

a3,3*b3,3

a3,1*b1,4+

a3,2*b2,4

a4,1*b1,1+

a4,2*b2,1+

a4,3*b3,1+

a4,4*b4,1

a4,1*b1,2+

a4,2*b2,2+

a4,3*b3,2

a4,1*b1,3+

a4,2*b2,3
a4,1*b1,4

a1,4

a2,3

a3,2

a4,1

b4,1 b3,2 b2,3 b1,4

a2,4

a3,3

a4,2

b4,2 b3,3 b2,4

a3,4

b4,3

a4,3

b3,4

b4,4

a4,4

Appendix A.37

(9)

(10)

a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1+

a1,4*b4,1

a1,1*b1,2+

a1,2*b2,2+

a1,3*b3,2+

a1,4*b4,2

a1,1*b1,3+

a1,2*b2,3+

a1,3*b3,3+

a1,4*b4,3

a1,1*b1,4+

a1,2*b2,4+

a1,3*b3,4+

a1,4*b4,4

a2,1*b1,1+

a2,2*b2,1+

a2,3*b3,1+

a2,4*b4,1

a2,1*b1,2+

a2,2*b2,2+

a2,3*b3,2+

a2,4*b4,2

a2,1*b1,3+

a2,2*b2,3+

a2,3*b3,3+

a2,4*b4,3

a2,1*b1,4+

a2,2*b2,4+

a2,3*b3,4+

a2,4*b4,4

a3,1*b1,1+

a3,2*b2,1+

a3,3*b3,1+

a3,4*b4,1

a3,1*b1,2+

a3,2*b2,2+

a3,3*b3,2+

a3,4*b4,2

a3,1*b1,3+

a3,2*b2,3+

a3,3*b3,3+

a3,4*b4,3

a3,1*b1,4+

a3,2*b2,4+

a3,3*b3,4

a4,1*b1,1+

a4,2*b2,1+

a4,3*b3,1+

a4,4*b4,1

a4,1*b1,2+

a4,2*b2,2+

a4,3*b3,2+

a4,4*b4,2

a4,1*b1,3+

a4,2*b2,3+

a4,3*b3,3

a4,1*b1,4+

a4,2*b2,4

a2,4

a3,3

a4,2

b4,2 b3,3 b2,4

a3,4

b4,3

a4,3

b3,4

b4,4

a4,4

a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1+

a1,4*b4,1

a1,1*b1,2+

a1,2*b2,2+

a1,3*b3,2+

a1,4*b4,2

a1,1*b1,3+

a1,2*b2,3+

a1,3*b3,3+

a1,4*b4,3

a1,1*b1,4+

a1,2*b2,4+

a1,3*b3,4+

a1,4*b4,4

a2,1*b1,1+

a2,2*b2,1+

a2,3*b3,1+

a2,4*b4,1

a2,1*b1,2+

a2,2*b2,2+

a2,3*b3,2+

a2,4*b4,2

a2,1*b1,3+

a2,2*b2,3+

a2,3*b3,3+

a2,4*b4,3

a2,1*b1,4+

a2,2*b2,4+

a2,3*b3,4+

a2,4*b4,4

a3,1*b1,1+

a3,2*b2,1+

a3,3*b3,1+

a3,4*b4,1

a3,1*b1,2+

a3,2*b2,2+

a3,3*b3,2+

a3,4*b4,2

a3,1*b1,3+

a3,2*b2,3+

a3,3*b3,3+

a3,4*b4,3

a3,1*b1,4+

a3,2*b2,4+

a3,3*b3,4+

a3,4*b4,4

a4,1*b1,1+

a4,2*b2,1+

a4,3*b3,1+

a4,4*b4,1

a4,1*b1,2+

a4,2*b2,2+

a4,3*b3,2+

a4,4*b4,2

a4,1*b1,3+

a4,2*b2,3+

a4,3*b3,3+

a4,4*b4,3

a4,1*b1,4+

a4,2*b2,4+

a4,3*b3,4

a3,4

b4,3

a4,3

b3,4

b4,4

a4,4

Appendix A.38

(11)

a1,1*b1,1+

a1,2*b2,1+

a1,3*b3,1+

a1,4*b4,1

a1,1*b1,2+

a1,2*b2,2+

a1,3*b3,2+

a1,4*b4,2

a1,1*b1,3+

a1,2*b2,3+

a1,3*b3,3+

a1,4*b4,3

a1,1*b1,4+

a1,2*b2,4+

a1,3*b3,4+

a1,4*b4,4

a2,1*b1,1+

a2,2*b2,1+

a2,3*b3,1+

a2,4*b4,1

a2,1*b1,2+

a2,2*b2,2+

a2,3*b3,2+

a2,4*b4,2

a2,1*b1,3+

a2,2*b2,3+

a2,3*b3,3+

a2,4*b4,3

a2,1*b1,4+

a2,2*b2,4+

a2,3*b3,4+

a2,4*b4,4

a3,1*b1,1+

a3,2*b2,1+

a3,3*b3,1+

a3,4*b4,1

a3,1*b1,2+

a3,2*b2,2+

a3,3*b3,2+

a3,4*b4,2

a3,1*b1,3+

a3,2*b2,3+

a3,3*b3,3+

a3,4*b4,3

a3,1*b1,4+

a3,2*b2,4+

a3,3*b3,4+

a3,4*b4,4

a4,1*b1,1+

a4,2*b2,1+

a4,3*b3,1+

a4,4*b4,1

a4,1*b1,2+

a4,2*b2,2+

a4,3*b3,2+

a4,4*b4,2

a4,1*b1,3+

a4,2*b2,3+

a4,3*b3,3+

a4,4*b4,3

a4,1*b1,4+

a4,2*b2,4+

a4,3*b3,4+

a4,4*b4,4

b4,4

a4,4

Appendix A.39

Matrix Multiplication Implementation

(1)

(2)

Appendix A.40

 (3)

 (4)

Appendix A.41

(5)

(6)

Appendix A.42

(7)

(8)

Appendix A.43

(9)

(10)

Appendix A.44

(11)

(12)

Appendix A.45

(13)

(14)

Appendix A.46

(15)

(16)

Appendix A.47

(17)

(18)

Appendix A.48

(19)

Appendix A.49

Shape Reconstruction Algorithm Implementation

(1)

(2)

Appendix A.50

(3)

(4)

Appendix A.51

(5)

(6)

Appendix A.52

(7)

(8)

Appendix A.53

(9)

(10)

Appendix A.54

(11)

(12)

Appendix A.55

(13)

(14)

Appendix A.56

(15)

(16)

Appendix A.57

(17)

(18)

Appendix A.58

(19)

(20)

Appendix A.59

(21)

(22)

Appendix A.60

(23)

(24)

Appendix A.61

(25)

(26)

