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The propagation of nonlinear bulk strain waves in layered elastic waveguides has many

applications, particularly its potential use for non-destructive testing, where a small

defect in the bonding between the layers of a waveguide can lead to a catastrophic

failure of the structure. Experiments have shown that strain solitons can propagate for

significantly longer distances than the waves used in current methods, and therefore they

are of great interest.

This thesis considers two problems. Firstly, we consider the scattering of nonlinear bulk

strain waves in two types of waveguides: a perfectly bonded layered waveguide, and a

layered waveguide with a soft bond between the layers, when the materials in the layers

have similar properties. In each case we assume that there is a region where the bond

is absent - a delamination. This behaviour is described by a system of uncoupled or

coupled Boussinesq equations, with conditions on the interface between the sections of

the bar. This is a complicated system of equations, and we develop a direct numerical

method to solve these equations numerically.

A weakly nonlinear solution is then constructed for the system of equations, describing

the leading order reflected and transmitted strain waves. In the case of a layered elastic

bar with a perfect bond we obtain Korteweg-de Vries equations, and in the case of a soft

bond between the layers, where the properties of the layers are close, we obtain coupled

Ostrovsky equations describing the propagation of the reflected and transmitted waves

in each layer of the waveguide. In the delaminated regions of the bar, Korteweg-de Vries

equations are derived in every case and therefore we make use of the Inverse Scattering

Transform to provide theoretical predictions in this region.

The modelling in each case is extended to the case of a finite delamination in the waveg-

uide, and we study the effect of re-entering a bonded region on a strain wave. In each

case considered we develop a measure of the delamination length in terms of the change

in amplitude of the incident wave, and furthermore the structure of the wave provides
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further insight about the structure of the waveguide. Numerical simulations are de-

veloped using finite-difference techniques and pseudospectral methods, and these are

detailed in the appendices.

Finally, we consider the initial value problem for the Boussinesq equation with an Os-

trovsky term, on a periodic domain. The initial condition for this equation does not

necessary have zero mean on the interval. The mean value is subtracted from the func-

tion so that a weakly nonlinear solution to the problem can be constructed where all

functions in this expansion have zero mean. This is necessary as the derived Ostrovsky

equations have zero mean. The expansion is constructed in increasing powers of
√
ε up

to and including O (ε), where ε is a small amplitude parameter in the equation. We

compare the results for a wide range of values of γ (the coefficient of the Ostrovsky

term) and varying mean values for the initial condition, to confirm that the expansion

is valid. A comparison of the errors shows that the constructed expansion is correct

and the errors behave as predicted by the expansion. This was further confirmed for

non-unity coefficients in the equation.
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Chapter 1

Introduction

The study of nonlinear waves is an actively growing field in modern mathematics. Studies

of nonlinear waves and their effects have taken place in nonlinear optics, mathematical

biology, fluid and solid mechanics (see, for example, [1–8] and references therein). For

fluids and elastic solids we often consider the cases with weak nonlinearity and dispersion,

in particular if there is a balance between these two quantities then stable localised

solutions can exist, such as solitons and wave packet solutions of the Ostrovsky equation

[9], studied in [10–12]. In what follows we will refer to these solutions as Ostrovsky wave

packets, for brevity.

The first observation of solitons dates back to 1834, when John Scott Russell observed

“the great wave of translation” along the Edinburgh-Glasgow canal and followed the

wave on horseback for several miles, noting that the shape of the wave did not change.

He reported this observation to the British Association for the Advancement of Science

in 1844 [13]. It was not until several years later that the first mathematical models of

this phenomena were derived, initially by Boussinesq in 1872 [14] and 1877 [15], Lord

Rayleigh in 1876 [16] and the famous work of Korteweg & de Vries in 1895 [17].

Much work was completed using these equations in the context of fluids, but they ap-

peared once more in the context of the Fermi-Pasta-Ulam problem in the studies of

solids. In 1955 they considered a chain of identical equidistant particles connected by

weakly nonlinear springs, known as the Fermi-Pasta-Ulam (FPU) lattice model, and

showed that there was an absence of equipartition of energy among the modes of the

harmonic approximation [18]. This observation motivated Zabusky and Kruskal to con-

sider the long-wave approximation to the problem in their groundbreaking work in 1965

[19]. They showed that Boussinesq and Korteweg-de Vries (KdV) equations arise in this

new setting and numerical studies of solutions of the KdV equation followed [19]. These

1
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numerical studies showed that localised stable travelling waves of permanent form exist

in these equations; they were described as ‘solitons’.

The discovery of solitons as travelling waves of permanent form is intrinsically linked

with a second fundamental discovery – the Inverse Scattering Transform (IST) for the

KdV equation. The IST is a method for solving a large class of initial-value problems on

the infinite line, as found by Gardner, Greene, Kruskal and Miura [20]. A further work

by the same authors showed that solitons, when present, constitute the main part of the

long-time asymptotics of initial-value problems for localised initial data [21]. Solitons

have therefore proven to be of importance in physical settings, across all scales [22–

25]. Furthermore, it has been shown that the IST can be used to help develop efficient

numerical approaches to solving the KdV equation [26], as well as another equation that

is integrable by the IST – the Nonlinear Schrödinger (NLS) equation [27–29].

Recently, the IST has been used in studies of the scattering of long longitudinal bulk

strain solitons in a symmetric perfectly bonded layered bar with delamination [30]. Long

longitudinal bulk strain solitary waves were experimentally observed in various elastic

waveguides, including rods, bars, plates and shells, and modelled using Boussinesq-type

equations [25, 31–33]. The exceptional stability of bulk strain solitons [34, 35] makes

them an attractive candidate for the introscopy of layered structures, in addition to

existing methods [36, 37].

The modelling of longitudinal wave propagation can be extended to layered bars with

a soft bonding between the layers, instead of a perfect bond. The governing equation is

no longer a single Boussinesq equation; it is replaced by coupled regularised Boussinesq

(cRB) equations [38]. In this case, it has been shown that if the layers have similar

properties and the bonding is sufficiently soft, bulk strain solitons do not exist in this

case – instead they are replaced by radiating solitary waves, that is a solitary wave with

a co-propagating one-sided oscillatory tail [38]. Such waves have also been observed

experimentally [36]. If the layers have distinctly different properties, then the radiating

solitary wave is replaced by an Ostrovsky wave packet [39]. These nonlinear waves

originally arose in the context of oceanic waves, when the effect of background rotation

is taken into account [9] and many studies have taken place to describe their effects,

both in the context of the single Ostrovsky equation [10–12] and for the cRB equations

derived in the context of an inviscid, incompressible, density stratified fluid with oceanic

boundary conditions, with no background shear [40] and with background shear included

[41]. The description of the weakly nonlinear solution to such a scattering problem is

yet to be fully understood, but we will provide some results for an initial value problem.
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This thesis will discuss the modelling of longitudinal wave scattering in layered waveg-

uides and the development of an efficient semi-analytical numerical technique for solv-

ing the scattering problem using the derived KdV and Ostrovsky equations [42, 43]. In

Chapter 2 we overview the existing literature for models describing longitudinal wave

propagation in layered structures. Firstly we discuss the nonlinear elasticity model used

to describe the propagation of longitudinal waves in a layered elastic bar with a per-

fect bond [30]. This system is governed by Boussinesq equations in each section. We

introduce an FPU chain model and discuss how this can be extended to a system of

coupled FPU chains. This can be compared to the layered lattice model used in [38],

which describes the propagation of longitudinal waves in a layered waveguide with a

soft bond between the layers. Finally we review the existing results for scattering prob-

lems, including experimental results for layered bars [31, 33, 44]. We also discuss the

initial value problem for the Boussinesq, Boussinesq-type equation with an Ostrovsky

term, and coupled Boussinesq equations, with an overview of existing results for these

equations [39, 45, 46].

Next we discuss the modelling of long longitudinal bulk strain waves in a perfectly

bonded layered elastic waveguide in Chapter 3. This uses the nonlinear elasticity model

introduced in Chapter 2. We review a weakly nonlinear solution to the problem con-

structed in [30] and show that the derived equations for leading order transmitted and

reflected strain waves are governed by KdV equations, with reflection and transmission

coefficients defined by the conditions on the boundary between the sections of the bar.

This weakly nonlinear solution is used to develop a semi-analytical numerical technique,

which is compared to direct numerical modelling of the original problem formulation,

and to theoretical predictions based upon the weakly nonlinear solution. These numer-

ical simulations show that the semi-analytical method has a very good agreement with

the direct numerical simulations, and can be computed significantly faster [42]. We ex-

tend this to the case of finite delamination and show that, given the relevant parameters

of the problem, we can predict the length of the delamination from the resulting wave

in the second bonded section of the bar.

In Chapter 4 we consider the case of a layered bar with a soft bond between the layers,

using an extension of the coupled FPU chain model introduced in Chapter 2, derived

in [38]. We assume that the materials in the layers have similar elastic properties, so

that their characteristic speeds are close. The weakly nonlinear solution of the initial-

value problem has been constructed in [39, 47], however here we study the scattering

problem. The model in this case leads to cRB equations in the bonded sections of the

bar and uncoupled Boussinesq equations in the delaminated sections of the bar. As

with the previous work for a perfectly bonded bar, we seek a weakly nonlinear solution

to the problem and derive coupled Ostrovsky equations to describe the leading order
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strain waves in the bonded sections of the bar, and KdV equations in the delaminated

sections of the bar. We again compare the semi-analytical method to the direct numerical

simulations and show that the agreement between the regimes is very good. This is

extended to the case of finite delamination and we show that the shape and structure

of the resulting wave in the second bonded region can be used to determine the length

of the delamination region and an approximation of its position.

In Chapter 5 we consider a Boussinesq-type equation with the Ostrovsky term, an ex-

tension of the Boussinesq equation derived in Chapter 2. If we derive a weakly nonlinear

solution to this equation using the same technique as Chapter 3 or Chapter 4 we can

describe the leading order right- and left-propagating waves using the Ostrovsky equa-

tion. This model can arise naturally for long waves in shallow water when the Coriolis

effect is taken into account. It can be shown that the classical solutions of the Ostrovsky

equation have zero mean, therefore the initial condition for this equation must have zero

mean. This suggests we need to use a different approach. It can be shown that the

mean value of this equation oscillates in time [46, 48]. We therefore subtract this mean

value from the Boussinesq-type equation and construct a weakly nonlinear solution in

increasing powers of
√
ε, where ε is the small amplitude parameter, in contrast to the

Boussinesq equation where the solution was for increasing powers of ε. The solution

of the Boussinesq-type equation is compared to the weakly nonlinear solution with an

increasing number of terms included from the weakly nonlinear solution, in increasing

powers of
√
ε and we show that the error agrees with the next order of the expansion as

expected. Furthermore, we can estimate the value of ε required to ensure the solution

is sufficiently “weakly nonlinear” i.e. that the value of ε is small enough so that the

inclusion of more terms in the expansion results in a more accurate solution. This result

is tested for non-unity coefficients in the equation and we find that the same results

hold, with better adherence to the theoretical estimates than the previous case with

unity coefficients.

The final chapter is dedicated to a summary of the results of the previous chapters and

a discussion of future work that could be performed in this field.

In Appendices A - C we present the numerical techniques used to solve the direct numer-

ical problem in two sections, then three or more sections, and finally the semi-analytical

techniques using the SSPRK(5,4) scheme for KdV equations and pseudospectral tech-

niques for KdV and Ostrovsky equations, respectively.



Chapter 2

Modelling Wave Propagation in

Solids

In this chapter we present the models used for describing the propagation of longitudinal

bulk strain waves in layered waveguides, with either a perfect bond between the layers

or a sufficiently soft bond. We start from the viewpoint of the Fermi-Pasta-Ulam (FPU)

model and discuss how the Boussinesq equation can be derived from such a model. This

model is compared to the model derived using nonlinear elasticity theory, showing that

the equations derived in these methods are of the same type. This modelling is then

extended to a system of coupled FPU chains as an example of a system for a layered

waveguide, following [47]. A more complicated lattice model taking into account all

degrees of freedom of a realistic waveguide was derived in [38], and the coupled FPU

model is an idealisation of this complicated model.

2.1 Fermi-Pasta-Ulam Model

The first model we consider is the FPU chain model in its original formulation [18]. Let

us consider a chain of equidistant particles connected by weakly nonlinear springs to their

nearest neighbours, where the displacement of the n-th particle from the equilibrium is

denoted by un. Refer to the diagram in Figure 2.1 for a graphical representation of this

problem. We assume that both sides of the chain are clamped at equilibrium. If we

have a chain of N + 1 particles we have u0 = uN = 0. It is assumed that the equilibrium

distance between particles is a.

5
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un−1 un un+1

m - mass

a a

Figure 2.1: The FPU model for a series of equidistant particles connected by weakly
nonlinear springs.

Our aim is to describe the displacement of these particles from their rest state. The

kinetic energy of the chain, T , and the potential energy of the chain, U , are given by

T =
∑
n

mu̇n
2

2
, U =

∑
n

(
k

2
(un+1 − un)2 +

α

3
(un+1 − un)3

)
, (2.1)

respectively, where k is the linear spring constant and α can be thought of as a nonlinear

spring constant. As usual, the Lagrangian of the system is L = T − U , therefore the

equations of motion are given by the Euler-Lagrange equations

d

dt

(
∂L

∂u̇n

)
− ∂L

∂un
= 0, (2.2)

leading to the system

mün = (un+1 − 2un + un−1) [k + α (un+1 − un−1)] . (2.3)

This is a discrete system of equations describing the motion of the particles in the chain.

This model was extended by Zabusky and Kruskal to derive a continuous model for the

displacements, rather than a discrete model [19]. Following their work we consider the

continuum approximation, assuming that

un(t) = u(xn, t) = u(na, t), un±1 = u(xn ± a, t), (2.4)

where the displacement field u varies slowly. This justifies the use of the Taylor expan-

sion for the terms in (2.3) and therefore allows us to convert this discrete model to a

continuous model. If we use the Taylor expansion

un±1(t) = u(xn, t)± au′(xn, t) +
a2

2
u′′(xn, t)±

a3

6
u′′′(xn, t) +

a4

24
u′′′′(xn, t) + . . . , (2.5)
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and substitute (2.5) into (2.3), we obtain the following differential equation (truncating

the series to exclude higher-order terms)

mutt = ka2uxx + 2αa3uxuxx +
ka4

12
uxxxx. (2.6)

This is a Boussinesq equation and can be used to describe the propagation of long waves

in this chain model. We rescale the equation to the form

utt − c2uxx = εc2
(
uxuxx + δ2uxxxx

)
, (2.7)

where

c2 =
ka2

m
, ε =

2αa

k
, δ2 =

a2

12ε
.

We can regularise (2.7) using the asymptotic relation uttxx = c2uxxxx +O (ε) to obtain

utt − c2uxx = εc2

(
uxuxx +

δ2

c2
uttxx

)
. (2.8)

This form of the equation is easier to solve numerically and will be used in our later

work. An asymptotic multiple-scales expansion can be constructed to obtain the leading

order left- and right-propagating waves to the Boussinesq equation (2.8). Following the

work of Zabusky and Kruskal, we consider the right-propagating wave and construct an

asymptotic multiple-scales expansion of the form

u = f (ξ, T ) + εu(1) (ξ, η, T ) + . . . , (2.9)

where ξ = x− ct, η = x+ ct and T = εt is the slow time. Substituting (2.9) into (2.8),

we obtain

− 4c2u
(1)
ξη = 2cfξT + c2fξfξξ + c2δ2fξξξξ = F (ξ, T ) , (2.10)

where we note that F is a function of ξ and T only. Therefore u(1) will grow linearly in

η = x+ ct unless F ≡ 0, leading to the equation

2cfξT + c2fξfξξ + c2δ2fξξξξ = 0. (2.11)

We introduce g = fξ and the rescaling q̃ = αq, ξ̃ = βξ and T̃ = γT , so we have

γq̃T̃ +
c

2

β

α
q̃q̃ξ̃ +

cδ2

2
β3q̃ξ̃ξ̃ξ̃ = 0. (2.12)

To obtain the KdV equation in the form presented in [19] (replacing δ2 with λ2), we

must solve the system
cβ

2αγ
= 1,

cδ2β3

2γ
= λ2. (2.13)
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We equate the coefficients of (2.12) with those in [19] to obtain the solution for α, β

and γ, so we have

α =
c

2γ
, β = 1, γ =

cδ2

2λ2
. (2.14)

This corresponds to the scaling

q̃ =
c

2γ
q, ξ̃ = ξ, and T̃ =

cδ2

2λ2
T. (2.15)

In [19] Zabusky and Kruskal showed that solitons are generated from a cosine initial con-

dition, where a number of solitons are produced for a given value of δ2. The interaction

of the solitons was shown to be elastic i.e. there was no discernible change in amplitude

after interaction of two solitons, the only evidence of their interaction was a phase shift.

This led to the phenomenon they refer to as “recurrence”, where the solitons converge

at a common point and the initial condition is almost reconstructed. They showed that

at subsequent recurrence times the reconstruction is not as good as the first recurrence.

Explicitly they solved the equation

ut + uux + δ2uxxx = 0, (2.16)

where δ = 0.022. The initial condition was taken as u(x, 0) = cos(πx). Initially the

dispersive term is small and therefore the behaviour is governed by the nonlinear term.

Zabusky and Kruskal showed that this leads to the formation of a discontinuity at the

time t = tb = 1/π [19]. We reproduce the figure from [19] in Figure 2.2, which shows

the initial condition (dashed, black), the solution at the breaking time (dashed, red)

and the solution at t = 3.6tb (solid, blue), where we can clearly see eight solitons. The

small perturbations present at t = tb are due to the dispersive term becoming larger and

therefore balancing the nonlinearity. This solution was found using the pseudospectral

technique described in Appendix C.1.

It was later shown in the works of Gardner, Greene, Kruskal and Miura that the number

of solitons generated from a localised initial condition is determined by the parameters

of the equation and the amplitude of the initial pulse [20, 21]. For a periodic initial

condition, instead of a localised initial condition, some recent results have shown that

the number of solitons generated by the initial condition can be approximated using

the Wentzel-Kramers-Brillouin method [49] and these results have been compared to

physical experiments in shallow water with good agreement, as well as confirming the

results observed by Zabusky and Kruskal [50].
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0 0.5 1 1.5 2
x

-1

0

1

2

3

u

Figure 2.2: The solution to the KdV equation (2.16) where δ = 0.022, where we
have the initial condition (black, dashed), the solution at t = tb (red, dash-dot) and
the solution at t = 3.6tb (blue, solid). We clearly see eight solitons generated from this
initial condition.

Ω

σ

O

z

y

x

Figure 2.3: Model of an elastic bar with rectangular cross section.

2.2 Doubly Dispersive Equation Model

We now consider another model for describing the propagation of a long longitudinal

bulk wave in a symmetric elastic layered bar, using nonlinear elasticity theory [30]. We

briefly outline the method here. We introduce the coordinate frame and structure of the

bar in Figure 2.3.

We describe the model using nonlinear dynamic elasticity theory and, once the model is

derived, we compare the model to the FPU model to obtain lattice parameters in terms

of the material parameters.
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2.2.1 Derivation

Let us consider an isotropic elastic bar of rectangular cross section σ, where we have

σ = {−a ≤ y ≤ a;−b ≤ z ≤ b}. Let us assume that the bar is initially in an equilibrium

state. We introduce the Lagrangian coordinates (x, y, z), where Ox is directed along

the bar in the centre of the cross section. We consider the problem in the framework of

nonlinear dynamic elasticity with action functional

S =

∫ t1

t0

∫
Ω

L (U,Ut, Ux, . . . , x, t) dΩ dt, (2.17)

where L is the Lagrangian density per unit volume, t is time, Ω is the space domain

occupied by the waveguide and U = {u, v, w} is the displacement vector in coordinates

(x, y, z) [31]. The Lagrangian density in material variables is the difference of kinetic

energy density K and potential energy density Π, namely

L = K −Π =
ρ

2

(
∂U

∂t

)2

− ρΠ (Ik) , (2.18)

where ρ is the density and Ik = Ik (C) are the invariants of the Cauchy-Green deforma-

tion tensor

C =
[
∇U + (∇U)T +∇U · (∇U)T

]
. (2.19)

Explicitly the invariants are given by

I1 = trC, I2 =
1

2

[
(trC)2 − trC2

]
, I3 = detC. (2.20)

We use Murnaghan’s model for Π and take the energy expansion up to the 5-constant

approximation i.e.

Π = (λ+ 2µ)
I2

1

2
− 2µI2 + (l + 2m)

I3
1

3
− 2mI1I2 + nI3 + . . . , (2.21)

where λ and µ are Lame’s coefficients and l, m, n are Murnaghan’s moduli.

We want to simplify the problem to the case where the only nonlinear equation is for

the longitudinal displacements. We use the planar cross-section hypothesis and apply

approximate relations for transverse displacements in terms of the longitudinal strain

components as

u ≈ u(x, t), v ≈ −yνux, w ≈ −zνux, (2.22)

where

ν =
λ

2 (λ+ µ)
(2.23)
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is Poisson’s ratio [51, 52]. Similar relations exist in the case of a cylindrical bar of

circular cross section in [53–55].

Using relations (2.22) we obtain approximate expressions for the invariants, valid for

small amplitude long longitudinal elastic waves, and therefore we have simplified ex-

pressions for K and Π as

K =
1

2
ρ
(
u2
t + v2

t + w2
t

)
=
ρ

2

[
u2
t +

(
y2 + z2

)
ν2u2

xt

]
+ . . . , (2.24)

Π =
1

2

(
Eu2

x +
β

3
u3
x + µν2

(
y2 + z2

)
u2
xx

)
. (2.25)

Here the nonlinearity coefficient β depends on the Murnaghan’s moduli l, m, n, Young’s

modulus E = µ (3λ+ 2µ) / (λ+ µ) and Poisson’s ratio ν. This expression is given by

β = 3E + 2l (1− 2ν)3 + 4m (1 + ν)2 (1− 2ν) + 6nν2. (2.26)

With expressions (2.17) and (2.18), we can obtain the Euler-Lagrange equation

∂Lσ

∂u
−
(
∂

∂t

∂Lσ

∂ut
+

∂

∂x

∂Lσ

∂ux

)
+

∂2

∂x2

∂Lσ

∂uxx
+

∂2

∂x∂t

∂Lσ

∂uxt
+ · · · = 0, (2.27)

where Lσ =
∫
σ L dσ is the Lagrangian density per unit length. Substituting (2.24) and

(2.25) into (2.18) and then substituting this into (2.27), we obtain the so-called doubly

dispersive equation (DDE) for long nonlinear longitudinal displacement waves in a bar

of rectangular cross section

utt − c2uxx =
β

ρ
uxuxx +

Jν2

σ

(
utt − c2

1uxx
)
xx
. (2.28)

Here we have linear longitudinal wave velocity c =
√
E/ρ, linear shear wave velocity

c1 = c/
√

2(1 + ν), and the polar moment of inertia of the rectangular cross section σ,

J =

∫
σ

(
y2 + z2

)
dσ =

4ab
(
a2 + b2

)
3

.

Applying the change of variables

t̃ =
t

T
, x̃ =

x

X
, ũ =

u

U
, (2.29)

where

cT = X, U =
−12εEX

β
, X =

√
Jν2

2εσ

(
1− c2

1

c2

)
, (2.30)



Chapter 2 12

we can rewrite the equation as a regularised Boussinesq equation

utt − uxx = ε [−12uxuxx + uttxx] , (2.31)

where we have used the asymptotic relation uttxx = uxxxx +O (ε).

2.2.2 Comparison of Equations

We now compare equations (2.8) and (2.31) to show that there is a formal correspondence

between the derived equations. This allows for the lattice parameters to be expressed

in terms of the material parameters.

Therefore, we compare the coefficients to uniquely find the relations

a2 =
12Jν2

(
c2 − c2

1

)
σc2

, k =
c2

a2
, α =

β

2ρa3
. (2.32)

2.3 Coupled FPU Chains

We now consider an extension of the FPU model in Section 2.1 in the case where we

have two FPU chains that are weakly coupled, as discussed in [47]. This model can be

considered as a simplified version of the model for a layered waveguide, in contrast to

the single chain considered earlier. We present a representation of this in Figure 2.4.

un−1 un un+1

m - mass

a a

wn−1 wn wn+1

M - mass

Figure 2.4: The coupled FPU model for a series of equidistant particles connected
by weakly nonlinear springs.

The derivation can be followed in the same way as Section 2.1, that is we calculate the

kinetic energy and potential energy in the system. The expression for the kinetic energy

is the same as for the single chain, that is we add together the expressions for K in each

chain to obtain the expression for the system. The expression for Π is found in the same
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way, but with the addition of a coupling term. Explicitly we have

U =
∑
n

=

[
α

2
(un+1 − un)2 +

β

3
(un+1 − un)3

+
α̃

2
(wn+1 − wn)2 +

β̃

3
(wn+1 − wn)3 +

γ

2
(un − wn)2

]
, (2.33)

where α, α̃ can be thought of as spring constants in each chain and β, β̃ are nonlinearity

coefficients for each chain, while γ is a coupling coefficient. The Lagrangian is calculated

in the same way as before, that is L = T − U , and this Lagrangian is substituted into

the Euler-Lagrange relations

d

dt

(
∂L

∂u̇n

)
− ∂L

∂un
= 0,

d

dt

(
∂L

∂ẇn

)
− ∂L

∂wn
= 0, (2.34)

to obtain a system of difference-differential equations taking the form

mün = (un+1 − 2un + un−1) (α+ β (un+1 − un−1))− γ (un − wn) ,

Mẅn = (wn+1 − 2wn + wn−1)
(
α̃+ β̃ (wn+1 − wn−1)

)
+ γ (un − wn) . (2.35)

As before, we can use a Taylor expansion for the derived difference-differential equations

in each chain, about the equilibrium point, to obtain differential equations in terms of u

and w as continuous functions. Following [47], we take the Taylor expansion (2.5) and

a similar expansion for wn, and truncate the expansion so that we obtain the coupled

Boussinesq equations in the form

utt − c2
0uxx = E1uxuxx + E2uttxx − E3 (u− w) ,

wtt − c̃2
0wxx = Ẽ1wxwxx + Ẽ2wttxx + Ẽ3 (u− w) , (2.36)

where the coefficients are

c2
0 =

αa2

m
, E1 =

2βa3

m
, E2 =

a2

12
, E3 =

γ

m
,

c̃2
0 =

α̃a2

M
, Ẽ1 =

2β̃a3

M
, Ẽ2 =

a2

12
, Ẽ3 =

γ

M
. (2.37)

This is a simple model for the displacements in a coupled system of equations and can

be thought of as a toy model for wave propagation in a layered waveguide. In our

subsequent results, we use the more complex layered lattice model described in [38].
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2.4 Weakly Nonlinear Solution of Initial Value Problem

The initial value problem for the Boussinesq and Boussinesq-type equation has appeared

in many recent works. The validity of regularised models and proofs of local well-

posedness and existence, in the context of water waves, has been studied in many works,

for example [56–59] and references therein. Previous works showed the emergence of

two KdV equations as a leading order approximation to the solution of Boussinesq-type

equations, as well as some approximations for the higher-order corrections [6, 60–67].

In the following subsections we overview the initial value problem for the Boussinesq,

Boussinesq-type equation with an Ostrovsky term, and coupled Boussinesq equations

and discuss the results derived in the existing literature.

2.4.1 Initial Value Problem for Coupled Boussinesq Equations

Recent works relevant to the problems discussed in this thesis have been dedicated to

constructing a weakly nonlinear solution to the initial value problem for a system of

coupled Boussinesq equations on the infinite line [39], where it was assumed that the

initial data is localised or sufficiently rapidly decaying. Explicitly they considered the

problem

ftt − fxx = ε

[
1

2

(
f2
)
xx

+ fttxx − δ (f − g)

]
,

gtt − c2gxx = ε
[α

2

(
g2
)
xx

+ βgttxx + γ (f − g)
]
, (2.38)

with initial data

f |t=0 = F (x), g|t=0 = G(x),

ft|t=0 = V (x), gt|t=0 = W (x). (2.39)

This form of the system (2.38) (with a mixed 4th order derivative instead of a 4th order

spatial derivative) is preferable for numerical simulations as the short wave instability

is suppressed [56, 68]. A further point to note is that, for the Boussinesq equation (i.e.

setting δ = γ = 0), the form of the equation with the 4th order spatial derivative is

integrable by the IST but the form with a mixed 4th order derivative is not integrable

by the IST [1, 69]. There are two cases considered in [39], where the weakly nonlinear

solution takes a different form dependent upon the value of c.

In the first case, when c−1 = O (ε), it can be shown that the left- and right-propagating

waves at leading order are described by coupled Ostrovsky equations (see [40, 41] for
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their derivation in the context of water waves and [38] in the context of layered elastic

waveguides). Introducing the fast characteristic variables ξ = x− t and η = x + t, and

the slow time variable T = εt, the leading order right-propagating waves are described

by (
2f−T + f−f−ξ + f−ξξξ

)
ξ

= δ
(
f− − g−

)
,(

2g−T +
c2 − 1

ε
g−ξ + αg−g−ξ + βg−ξξξ

)
ξ

= γ
(
g− − f−

)
, (2.40)

where f− describes the right-propagating wave for the first equation and g− for the

second equation. Similarly, the leading order left-propagating waves are described by

(
−2f+

T + f+f+
η + f+

ηηη

)
η

= δ
(
f+ − g+

)
,(

−2g+
T +

c2 − 1

ε
g+
η + αg+g+

η + βg+
ηηη

)
η

= γ
(
g+ − f+

)
, (2.41)

where f+ describes the left-propagating wave for the first equation and g+ for the second

equation. As done in [39], higher-order corrections can be found in terms of the leading

order solution.

In the second case, when c− 1 = O (1), the left- and right-propagating waves at leading

order are described by single Ostrovsky equations, which arise in the context of oceanic

waves when the Coriolis effect is taken into account [9]. In this case the solitary wave

solutions of the KdV equation cannot exist, and are instead replaced by a localised wave

packet [70–73]. In contrast to the previous case, we introduce two sets of characteristic

variables, one set for the first equation and another set for the second equation. Intro-

ducing ξ1 = x − t, ξ2 = x − ct, η1 = x + t, η2 = x + ct and T = εT , the equations take

the form [39](
2f−T + f−f−ξ1 + f−ξ1ξ1ξ1

)
ξ1

= δf−,
(

2cg−T + αg−g−ξ2 + βc2g−ξ2ξ2ξ2

)
ξ2

= γg−,

(
−2f+

T + f+f+
η1 + f+

η1η1η1

)
η1

= δf+,
(
−2cg+

T + αg+g+
η2 + βc2g+

η2η2η2

)
η2

= γg+, (2.42)

where the meaning of f± and g± is the same as the previous case. Following the

method outlined in [39], higher order corrections can again be found in terms of the

leading order. The weakly nonlinear expansion is substituted into the initial conditions

(2.39) to obtain initial conditions for the functions f± and g±, which take the form of

d’Alembert’s solution,

f±|T=0 =
1

2

(
F (x± t)±

∫ x±t

−∞
V (x) dx

)
,
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g±|T=0 =
1

2

(
G (x± ct)± 1

c

∫ x±ct

−∞
W (x) dx

)
. (2.43)

2.4.2 Initial Value Problem for the Boussinesq and Boussinesq-type

Equations

Referring to (2.39), we note that the initial condition does not explicitly contain terms

in O (1) and O (ε). The extension of this model, to accommodate explicit terms in the

initial condition at O (1) and O (ε), was considered in [45] by setting the coupling terms

to zero (γ = δ = 0) i.e. the Boussinesq equation

ftt − fxx = ε

[
1

2

(
f2
)
xx

+ fttxx

]
. (2.44)

The initial condition is written with explicit powers of ε, of the form

f |t=0 = F 0(x) + εF 1(x) +O
(
ε2
)
, ft|t=0 = V 0(x) + εV 1(x) +O

(
ε2
)
. (2.45)

In [45] a weakly nonlinear solution is constructed of the form

f = f− (ξ, T ) + f+ (η, T ) + εf1 (ξ, η, T ) +O
(
ε2
)
, (2.46)

where ξ = x− t, η = x+ t and T = εt. Substituting (2.46) into (2.44) and comparing at

O (ε) we obtain

−4f1
ξη =

(
2f−T + f−f−ξ + f−ξξξ

)
ξ

+
(
−2f+

T + f+f+
η + f+

ηηη

)
η

+ 2f−ξ f
+
η + f+f−ξξ + f−f+

ηη. (2.47)

Equations for f− and f+ can be derived by either integrating (2.47) and requiring that

f1 is non-secular i.e. [60], or by averaging with respect to t [39, 45, 65]. Averaging at

constant ξ or η leads to a KdV equation describing the leading order left- and right-

propagating waves, of the form

2f−T + f−f−ξ + f−ξξξ = 0, −2f+
T + f+f+

η + f+
ηηη = 0. (2.48)

Substituting (2.48) back into (2.47) and integrating with respect to the characteristic

variables yields [45]

f1 = −1

4

(
2f−f+ + f−ξ

∫
f+ dη + f+

η

∫
f− dξ

)
+ φ (ξ, T ) + ψ (η, T ) . (2.49)



Chapter 2 17

The initial conditions for each term in (2.46) are found by substituting (2.46) into (2.45)

and solving the derived system. As shown in [45], the initial conditions for the leading

order functions are

f±|T=0 =
1

2

(
F 0 (x± t)±

∫ x±t

−∞
V 0 (x) dx

)
, (2.50)

while at O (ε) the initial conditions for φ and ψ take the form

φ (ξ, T ) =
1

2

[
R1 (ξ, T ) +

∫ ξ

−∞
R2 (x, T ) dx

]
,

ψ (η, T ) =
1

2

[
R1 (η, T )−

∫ η

−∞
R2 (x, T ) dx

]
, (2.51)

where

R1 (x, T ) =
1

4

[
2f−f+ + f−ξ

∫
f+ dη + f+

η

∫
f− dξ

]
T=0

+ F 1 (x) ,

R2 (x, T ) =

[
f−T + f+

T +
1

4

(
f+f−ξ − f

−f+
η + f−ξξ

∫
f+ dη − f+

ηη

∫
f− dξ

)]
T=0

− V 1 (x) .

(2.52)

A further study of the Boussinesq equation and also the Boussinesq equation with the

addition of an Ostrovsky term is performed in [46]. The Boussinesq equation with an

Ostrovsky term was derived in the context of water waves in [74]. In [46] a systematic and

rigorous approach was developed, using Fourier series, for the derivation and justification

of the weakly nonlinear solution for the Boussinesq and Boussinesq-type equations, and

the effect of a non-zero mean initial condition was considered. This approach also

found expressions for the error terms and these estimates were confirmed in numerical

simulations.

The discussion of the mean value is important when we consider the Boussinesq equation

with an Ostrovsky term, as the equations derived when constructing the weakly nonlinear

solution are Ostrovsky equations, which necessarily require zero mean [9, 46]. Indeed,

for the typical Ostrovsky equation

(ft + ffx + fxxx)x = γf, (2.53)

where f is periodic on the domain [−L,L], we can clearly see the conservation law for

smooth functions of the form ∫ L

−L
f dx = 0. (2.54)

Therefore the initial condition for f should satisfy (2.54). As was shown in [46], this
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requirement of zero mean initial condition can be accommodated in Boussinesq-type

equations by considering the behaviour of the mean value of the equation in time. Let

us consider the Boussinesq-type equation on the domain x ∈ [−L,L], of the form

utt − uxx = ε

[
1

2

(
u2
)
xx

+ uttxx − γu
]
, (2.55)

where γ > 0. Integrating (2.55) in x over the period 2L, we obtain an evolution equation

for the mean value, which can be solved to find

〈u〉 :=
1

2L

∫ L

−L
u dx = F0 cos (

√
εγt) + V0

sin
(√
εγt
)

√
εγ

, (2.56)

where we have

F0 =
1

2L

∫ L

−L
u(x, 0) dx and V0 =

1

2L

∫ L

−L
ut(x, 0) dx. (2.57)

To accommodate this mean value we introduce ũ = u−〈u〉, where the initial condition for

ũ will now have zero mean. The construction of the weakly nonlinear solution is detailed

in [46] and we will discuss another type of derivation for the Boussinesq equation with

an Ostrovsky term in Chapter 5.

2.5 Weakly Nonlinear Solution of the Scattering Problem

An important theme of recent research in physics has been the study of longitudinal

bulk strain solitary waves in nonlinearly elastic waveguides (e.g. [31, 32] and references

therein). The earliest model derived for long waves in the context of the solid waveguides

was the KdV equation [75–77], however it was shown in [78] that the KdV model has

limitations and, indeed in this paper, the long longitudinal bulk strain solitary waves in

an elastic rod are shown to be governed by the DDE.

Previous studies have shown that nonlinear waves are sensitive to delamination regions,

and much of the recent work has been dedicated to constructing models to describe the

scattering of a longitudinal solitary wave in rods, plates and bars, and these were ob-

served in experiments [25, 30, 33, 38, 44, 79–83]. This modelling has important physical

implications, as it can potentially be used to detect delamination. Current methods of

non-destructive testing are based upon ultrasonic waves [84, 85] but recent experiments

have suggested that strain solitary waves can propagate for longer distances in solid

waveguides [34], making them an attractive candidate for introscopy.
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To model the scattering of longitudinal bulk strain solitary waves in elastic layered

waveguides, the approach outlined in [30] can be followed. As discussed in Section 2.2,

the longitudinal displacements in an elastic waveguide can be governed by the DDE with

different coefficients in each domain. This is completed with continuity conditions on

the interface between sections; continuity of longitudinal displacements and continuity

of normal stress. Assuming the displacement for x < 0 is denoted by u− and for x > 0 is

denoted by u+, with the delamination present for x > 0, the displacements are described

by two DDEs (in dimensionless form)

u±tt − c2
±u
±
xx =

β±c
2
±

E±
u±x u

±
xx +

J±ν
2

σ±

(
u±tt − c2

1±u
±
xx

)
xx
, (2.58)

where the values of the coefficients are as defined in [30] and repeated above in Section

2.2, where the minus indices are the coefficients for the bonded section of the waveguide

(which can be treated as a single thick bar), and the positive indices are for the delam-

inated section of the waveguide (which can be treated as a thin bar). The continuity

conditions are written as

u−|x=0 = u+|x=0, (2.59)

for continuity of longitudinal displacement, and

c2
−u
−
x +

[
β−c

2
−

2E−

(
u−x
)2

+
J−ν

2

σ−

(
u−tt − c2

1−u
−
xx

)
x

]∣∣∣∣
x=0

=

c2
+u

+
x +

[
β+c

2
+

2E+

(
u+
x

)2
+
J+ν

2

σ+

(
u+
tt − c2

1+u
+
xx

)
x

]∣∣∣∣
x=0

, (2.60)

for continuity of normal stress.

The question of constructing a weakly nonlinear solution to such a system was addressed

in [30] and we overview this in Chapter 3 when developing a semi-analytical method to

this problem. The modelling of longitudinal strain wave propagation in such a structure

is similar to calculating the reflected and transmitted waves when a surface or internal

soliton passes through an area of rapid depth variation [86–90]. A similar effect can also

be seen for internal waves [89–91].
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Modelling of Nonlinear Wave

Scattering in a Delaminated

Elastic Bar

3.1 Introduction

In this chapter, we consider the case of a perfectly bonded elastic bar with a delamination

area. The results have been partially published in [42]. The aim of our work is to

develop an efficient semi-analytical approach, based on the weakly nonlinear analysis of

the problem developed in [30], which could be used to model the scattering of nonlinear

waves across the delaminated sections of the bar. A semi-analytical approach involves

numerically solving the weakly nonlinear solution to the original problem rather than

solving the full problem numerically. Such an approach can be applied to more complex

structures, and in the final part of this chapter we will consider the case when the

delamination is finite or the case where the materials are different in each section of the

bar.

The structure of the chapter is as follows. Firstly, we will overview the problem formu-

lation for the scattering of an incident strain soliton in a symmetric layered bar with

delamination, assuming that the material in each section of the bar can be different. We

look for a weakly nonlinear solution of the problem to obtain equations that are simpler

to solve. The approach gives rise to three KdV equations describing the behaviour of

the leading order incident, transmitted and reflected waves, and terms for the higher

order corrections. We describe fission of the transmitted and reflected strain solitary

waves and establish predictions for the number of solitary waves present in each section

of the bar. Two numerical schemes are utilised, the first for the direct problem and the

21
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Figure 3.1: Two-layered symmetric bar with delamination at x > 0.

second for the equations derived via the weakly nonlinear approach. The results ob-

tained via these numerical schemes are compared against each other and the theoretical

predications, and the agreement is checked for various configurations of the delaminated

bar.

3.2 Problem Formulation

The graphical representation of the structure we are considering is shown in Figure 3.1.

We can see that there are two layers in the bar, with a ‘perfect’ bond between the

layers for x < 0 and delamination for x > 0. The material of the layers is assumed to

be the same (a symmetric bar), while the material to the left and to the right of the

x = 0 cross-section can be different. We assume that the height of the bonding region

is negligible compared to the layers of the structure, therefore we do not expect any

scattering in the bonding region to affect the longitudinal waves in the main structure.

Let us consider the propagation of a long longitudinal bulk wave in such a structure.

Assuming that the cross-section at x = 0 is a perfect interface as well, and that the

layers have width 2a and height b, we can apply the model described in Section 2.2

and describe the behaviour of long longitudinal waves in this medium. Assuming that

the longitudinal displacements for x < 0 are given by u− and similarly longitudinal

displacements for x > 0 are given by u+, we obtain the non-dimensional equations

u−tt − u−xx = ε
[
−12u−x u

−
xx + 2u−ttxx

]
, x < 0,

u+
tt − c2u+

xx = ε

[
−12αu+

x u
+
xx + 2

β

c2
u+
ttxx

]
, x > 0, (3.1)

with appropriate initial conditions

u±(x, 0) = F±(x), (3.2)



Chapter 3 23

and associated continuity conditions

u−|x=0 = u+|x=0, (3.3)

u−x + ε
[
−6
(
u−x
)2

+ 2u−ttx

]∣∣∣
x=0

= c2u+
x + ε

[
−6α

(
u+
x

)2
+ 2

β

c2
u+
ttx

]∣∣∣∣
x=0

, (3.4)

where c, α and β are constants defined by the geometrical and physical parameters of

the structure and ε is the small wave amplitude parameter. Condition (3.3) describes the

continuity of longitudinal displacement, while condition (3.4) describes the continuity of

normal stress.

To reduce the number of parameters in the numerical experiments, we will use the values

presented in [30], namely that α = 1 and

β =
n2 + k2

n2 (1 + k2)
, (3.5)

where n represents the number of layers in the structure and k is defined by the geometry

of the waveguide. These can be seen in Figure 3.1 as follows: the cross-section x = 0

has width 2a and the height of each layer is b. In terms of these values, k = b/a and, as

there are two layers in this example, n = 2.

3.3 Weakly Nonlinear Solution

The system (3.1) - (3.4) is complicated and therefore, in order to obtain a simpler

system that is asymptotically equivalent to the original system, we follow the approach

developed in [30] and consider a weakly nonlinear solution to (3.1) of the form

u− = I (ξ−, X) +R (η−, X) + εP (ξ−, η−, X) +O
(
ε2
)
,

u+ = T (ξ+, X) + εQ (ξ+, η+, X) +O
(
ε2
)
, (3.6)

where the characteristic variables are given by

ξ− = x− t, ξ+ = x− ct, η− = x+ t, η+ = x+ ct, X = εx.

The functions I, R, T describe the leading order incident, reflected and transmitted

waves respectively, while the functions P and Q describe the higher-order corrections.

Substituting (3.6) into (3.1) the system is satisfied at leading order, while at O (ε) we
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have

−2Pξ−η− =
(
IX − 3I2

ξ− + Iξ−ξ−ξ−

)
ξ−

+
(
RX − 3R2

η− +Rη−η−η−

)
η−

− 6
(
RIξ− + IRη−

)
ξ−η−

. (3.7)

To leading order the right-propagating incident wave,

I =

∫
Ĩ dξ−, (3.8)

is defined by the solution of the KdV equation

ĨX − 6Ĩ Ĩξ− + Ĩξ−ξ−ξ− = 0. (3.9)

Similarly the reflected wave

R =

∫
R̃ dη−, (3.10)

satisfies the KdV equation

R̃X − 6R̃R̃η− + R̃η−η−η− = 0. (3.11)

Substituting these conditions into (3.7) and integrating with respect to both character-

istic variables, we obtain an expression for higher-order terms satisfying

P = 3
(
RIξ− + IRη−

)
+ φ (ξ−, X) + ψ (η−, X) , (3.12)

where φ and ψ are arbitrary functions. The first radiation condition requires that

the solution to the problem should not change the incident wave (there should be no

corrections to the given incident wave in the disturbance caused by it) [30]. In our

problem the incident wave is the solitary wave solution of the KdV equation (3.9), with

corrections at O
(
ε2
)
. Therefore, the radiation condition implies that φ = 0. We find ψ

from conditions (3.3) and (3.4) later.

We can apply the same methodology to the second equation in (3.1) to obtain

− 2c2Qξ+η+ =
(
c2TX − 3T 2

ξ+ + βTξ+ξ+ξ+

)
ξ+
. (3.13)

Looking for the leading order transmitted wave satisfying

T =

∫
T̃ dξ+, (3.14)
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where

T̃X −
6

c2
T̃ T̃ξ+ +

β

c2
T̃ξ+ξ+ξ+ = 0, (3.15)

higher order corrections are given by

Q = q (ξ+, X) + r (η+, X) , (3.16)

where q and r are arbitrary functions. The second radiation condition states that if the

incident wave is right-propagating, then there should be no left-propagating waves in

the transmitted wave field [30]. Thus, r = 0.

We have derived equations describing the leading order incident, reflected and transmit-

ted waves. However, we still have to take account of the continuity conditions. We are

seeking ‘initial conditions’ for the strain waves and therefore we differentiate (3.3) with

respect to t to obtain

u−t |x=0 = u+
t |x=0.

Substituting the weakly nonlinear solution (3.6) into this expression, to leading order

we obtain

Iξ− |X=0 −Rη− |X=0 = cTξ+ |X=0, (3.17)

and at O (ε) we have

ψη− |X=0 + cqξ+ |X=0 = 3
(
Iξ−ξ−R− IRη−η−

)
|X=0 = f (t,X) |X=0. (3.18)

Following the same approach for condition (3.4), at leading order we obtain

Iξ− |X=0 +Rη− |X=0 = c2Tξ+ |X=0, (3.19)

and at O (ε) we have

ψη− |X=0 − c2qξ+ |X=0 =
[
−
(
IX − 6I2

ξ− + 2Iξ−ξ−ξ−

)
−
(
RX − 6R2

η− + 2Rη−η−η−

)
+ c2TX − 6T 2

ξ+ + 2βTξ+ξ+ξ+ − 3
(
IRη−η− + Iξ−ξ−R

)]
|X=0

= g (t,X) |X=0. (3.20)

The equations (3.17) and (3.19) allow us to express the leading order reflected and

transmitted waves in terms of the incident wave, at the boundary x = 0. Therefore, we

obtain ‘initial conditions’ for the previously derived KdV equations (3.11) and (3.15) of

the form

R̃|X=0 = CRĨ|X=0, T̃ |X=0 = CT Ĩ|X=0, (3.21)
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where we have the leading order reflection coefficient

CR =
c− 1

c+ 1
, (3.22)

and the leading order transmission coefficient

CT =
2

c (c+ 1)
. (3.23)

If we have the same material for x < 0 and x > 0 then c = 1 and, from (3.22) and (3.23),

we find that we have full transmission of the incident wave (to leading order) across the

interface between the regions and, to leading order, there is no reflected wave.

The expressions for f and g in (3.18) and (3.20) respectively can now be reduced using

the relations (3.21) and the KdV equations (3.9), (3.11) and (3.15). The simplified form

is as follows:

f (t,X) |X=0 =
[
3 (R+ CRI) Iξ−ξ−

]
|X=0, (3.24)

g (t,X) |X=0 =

[
3
(
1 + C2

R − C2
T

)
I2
ξ− −

(
1 + CR −

β

c2
CT

)
Iξ−ξ−ξ−

−3 (R− CRI) Iξ−ξ−
]
|X=0. (3.25)

Finally, we can solve (3.18) and (3.20) for ψη− and qξ+ . Restoring the dependence of f

and g on their respective characteristic variables, we obtain

ψ (η−, X) =
1

1 + c

∫
[cf (η−, X) + g (η−, X)] dη−, (3.26)

q (ξ+, X) =
1

c (1 + c)

∫ [
f

(
−ξ+

c
,X

)
− g

(
−ξ+

c
,X

)]
dξ+. (3.27)

In order to find the constants of integration in the leading order equations and (3.26)

- (3.27), additional physical conditions should be used, such as the known value of the

solution at the boundaries.

3.4 The Inverse Scattering Transform and Fission of

Solitons

It is well known that the KdV equation is integrable by the Inverse Scattering Transform

(IST) (see [20] for the original paper and [3] for a more detailed treatment). In particular

if the initial condition is taken in the form of V sech2 (x), where V is a constant, it has

been shown (e.g. [3]) that, in long time, the initial condition evolves into a number of
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solitons (defined by the value of V ) and dispersive radiation. Crucially, it is possible for

multiple solitons to be generated from a single initial pulse.

Let us recall the form of the transmitted wave equation, (3.15). We can rewrite this in

the canonical form

Uτ − 6UUχ + Uχχχ = 0, (3.28)

via the change of variables

U =
1

β
T̃ , τ =

β

c2
X, χ = ξ+. (3.29)

The IST can be used to determine the solution for the KdV equation. We make a

similar approximation to what was done in [88], for a soliton moving into a region with

different properties, neglecting some short waves as the soliton moves over the x = 0

cross-section. We can define the transmitted wave field by the spectrum of the linear

Schrödinger equation,

Ψχχ + [λ− U(χ)] Ψ = 0, (3.30)

where the potential is given by

U(χ) = −A sech2
(χ
l

)
, A =

v

βc (1 + c)
, l =

2c√
v
. (3.31)

Note that the expressions in (3.31) make use of the constants introduced in (3.29) and

also (3.23). Following the method of the IST, we see that the sign of A will determine

if any solitary waves are present in the transmitted wave field (see previous references

for details). If A < 0, the transmitted wave field will not contain any solitons and the

initial pulse will degenerate into a dispersive wave train. However when A > 0, there will

always be at least one discrete eigenvalue, corresponding to at least one solitary wave in

the transmitted wave field, and accompanying radiation determined by the continuous

spectrum.

In some cases more than one secondary soliton can be produced from the single initial

soliton, referred to as fission of a soliton [86–88]. The discrete eigenvalues of (3.30) are

given by (for example, [92])

λ = −κ2
n, where κn =

1

2l

[(
1 + 4Al2

)1/2 − (2n− 1)
]
, n = 1, 2, . . . , N. (3.32)

Furthermore the number of solitons in the delaminated area, N , is given by the largest

integer satisfying the inequality

N <
1

2

(√
1 +

4δ2

π2
+ 1

)
, (3.33)
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where

δ = π
√
A l = 2π

√
c

β (1 + c)
. (3.34)

The parameters β and c depend on the properties of the material and the geometry

of the waveguide, and so δ, and therefore N , depend on these properties. We can see

from (3.33) that, for small δ, there will always be one soliton while, as δ increases,

more solitons will emerge. As τ → +∞, the solution will evolve into a train of solitary

waves, ordered by their heights, propagating to the right and some dispersive radiation

propagating to the left (in the moving reference frame) i.e.

U ∼ −
N∑
n=1

2κ2
n sech2

(
κn
(
χ− 4κ2

nτ − χn
))

+ radiation, (3.35)

where χn is the phase shift.

The above results allow us to determine if an incident soliton fissions in the delaminated

section of the bar, and we can see from (3.33) and (3.34) that these are dependent upon

the parameters c and β. Therefore, following [30], we ask the following question: is

soliton fission possible if the waveguide is made of one and the same material? If the

material is the same in both sections then we have c = 1. However, the value of β

is determined by the number of layers in the bar and the geometry of the waveguide.

Recalling the expression (3.5), where n is the number of layers and k = b/a, the number

of solitary waves produced is the largest integer satisfying

N <
1

2

(√
1 + 8n2

1 + k2

n2 + k2
+ 1

)
.

Therefore, given the values of n and k, we can create a series of predictions for the

number of solitary waves present in the delaminated section of the bar, based upon the

value of β. We will check these predictions in Section 3.5.

A similar approach can be followed for the reflected wave field. We note that the KdV

equation describing reflected waves, (3.11), is already written in canonical form. We

make use of the “initial condition” and reflection coefficient as presented in (3.21) and

(3.22) respectively. The wave field is defined by the spectrum of the Schrödinger equation

(3.30), where the potential U is given by

U (χ) = −B sech2
( χ
m

)
, B =

v

2
CR =

v (c− 1)

2 (c+ 1)
, m =

2√
v
.

It is clear that the sign of B is dependent upon the sign of the reflection coefficient CR,

as v > 0 for all considerations. If c < 1, then B is negative and the reflected wave field

does not contain any solitary waves. The initial pulse will degenerate into a dispersive
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wave train. For c > 1, B is positive and there will be at least one solitary wave present

in the reflected wave field, accompanied by radiation. To describe these solitary waves,

one can use (3.32) and (3.33) by making the change A→ B, and l→ m. Explicitly, we

have

λ = −κ2
n, where κn =

1

2l

[(
1 + 4Bm2

)1/2 − (2n− 1)
]
, n = 1, 2, . . . , N, (3.36)

and the number of solitary waves produced in the bonded section, NR, is given by the

largest integer satisfying the inequality

NR <
1

2

(√
1 +

4µ2

π2
+ 1

)
, (3.37)

where

µ = π
√
B m = π

√
2
c− 1

c+ 1
. (3.38)

If c = 1 (the structure is of one and the same material) then CR = 0 and there is no

leading order reflected wave.

3.5 Results for a Two-Section Bar

In the previous sections of this chapter we have detailed a model for the scattering of

long longitudinal waves in a delaminated bar. We then used a weakly nonlinear approach

to derive a leading order model for the scattering of the incident wave in this structure.

In this section we will compare the derived weakly nonlinear solution to the solution of

the original model to determine if the weakly nonlinear solution is a good approximation

to the solution of the full problem. We will then consider different configurations of the

bar to determine if delamination can be detected within the structure.

The full problem as defined by (3.1) - (3.4) is solved using a finite-difference scheme,

as detailed in [42]. We discuss the scheme in Appendix A.2. For the semi-analytical

approach using the weakly nonlinear solution, we make use of an SSPRK(5,4) scheme

to solve the KdV equations, as we also did in [42]. This is detailed in Appendix B.

In what follows, let ε = 0.05, v = 0.4 and take a step size of ∆x = ∆t = 0.01 in the direct

numerical method and a step size of ∆ξ = 0.1, ∆X = 0.00025 in the semi-analytical

method. The value of ∆ξ and ∆X chosen for the SSPRK(5,4) scheme was chosen to be

similar to the step size taken for the hybrid Runge-Kutta scheme in [93]. The domain

size in the semi-analytical method is chosen so that, for the times and spatial positions of

interest, the value ξ = x− t exists. As shown in [39], the finite-difference method for the
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Boussinesq equation is linearly stable (using a von Neumann linear stability analysis)

for values of κ satisfying

κ < κc =

√
h2 + 4βc−2

c2 + f0
, (3.39)

where f0 is the constant used in the linearised scheme. In practice the stricter condition

of

κ <
1

2
κc (3.40)

is imposed, to help accommodate for nonlinear effects. The values of ∆x and ∆t chosen

above satisfy this relation.

In all of our calculations we are taking an incident strain solitary wave and we are

interested in the resulting strain waves in the transmitted (and reflected) wave field.

Therefore, we solve for the displacements in the direct numerical scheme and differentiate

the results with respect to x to obtain the strain wave. In the semi-analytical method,

the KdV equations that we solve are for strain waves, so these do not need to be modified.

Therefore we denote e− = u−x and e+ = u+
x in the results.

To determine the initial condition, we differentiate (3.1) and denote e±(x, t) = u±x (x, t).

The initial condition is then taken as the exact solitary wave solution of the equation for

e−(x, t), and therefore the exact “kink” solution for u−(x, t). If we choose the position

of this exact solitary wave solution to be sufficiently far from the interface at x = 0

then, as the solitary wave is rapidly decaying to zero, we can assume that e+(x, 0) = 0.

Explicitly we have the Boussinesq equation for e−(x, t) given as

e−tt − e−xx = 2ε
[
−3
(
e−

2
)
xx

+ e−ttxx

]
. (3.41)

Looking for a travelling wave solution of the form e−(x, t) = e−(x−v1t), where v1 is the

velocity of the wave, we obtain the exact solitary wave solution

e−(x, t) = Asech2

(
x− v1t

Λ

)
, (3.42)

where we have

A =
v2

1 − 1

4ε
and Λ =

2
√

2εv1√
v2

1 − 1
.

We evaluate (3.41) at t = 0 to find the initial condition. To obtain the initial condition

for u±(x, t) we integrate (3.42) with respect to x. We assumed e+(x, 0) = 0 and there-

fore u+(x, 0) = constant. We further assume that the strain wave propagates into an

unperturbed medium (this is consistent with the choice of position for the strain wave as

stated above) and therefore u+(x, 0) = 0. Similarly, the constant of integration present

in the expression for u−(x, 0) is chosen such that, for x close to 0, we have u−(x, 0) =
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0. Explicitly for u−(x, 0) we have

u (x, 0)± = −v1

√
v2

1 − 1√
2ε

[
tanh

(√
v2

1 − 1

2v1

√
2ε
x

)
− 1

]
. (3.43)

As we have a second order time derivative, we require two initial conditions for this

equation. We have taken the exact travelling wave solution of the equation and therefore

the second initial condition takes the form

ut(x, 0) = −v1ux(x, 0), (3.44)

where we have already calculated ux(x, 0) in (3.42). Taking a forward difference ap-

proximation in time allows us to formulate the solution at u(x,∆t), as required by the

numerical scheme outlined in Appendix A.2.

For the weakly nonlinear solution, we take the exact solitary wave solution of the KdV

equation governing the leading order incident wave (3.9). As this is the leading order

approximation of the Boussinesq equation, these initial conditions will be consistent at

leading order with corrections at O
(
ε2
)
. Therefore we have initial condition

I (ξ−, εxa) = −v
2

sech2

(√
v

2
ξ−

)
, (3.45)

where xa is the initial position of the soliton, v is the velocity of the soliton and, recalling

the speed of the solution (3.43) is v1, satisfies the approximate relation v1 = 1 + εv +

O
(
ε2
)
. Note that we do not require a second initial condition here, as we only have a first

order time derivative in the KdV equation (3.9). For the equations governing leading

order reflected and transmitted waves, we can use relation (3.21), with the reflection

and transmission coefficients (3.22) and (3.23) respectively to obtain initial conditions

for equations (3.11) and (3.15) in terms of the initial condition (3.45). Therefore we

have

T (ξ+, 0) = − v

c (c+ 1)
sech2

(√
v

2
ξ+

)
, (3.46)

for the transmitted waves and, for the reflected waves, we have

R (η−, 0) = −v (c− 1)

2 (c+ 1)
sech2

(√
v

2
η−

)
. (3.47)

We note here that, while we have explicitly stated the initial conditions for transmitted

and reflected waves here, if the initial condition was not taken as the exact solitary

wave solution of the leading order incident wave equation then the theory would still be

valid, however we would replace (3.46) and (3.47) with the solution of the leading order



Chapter 3 32

incident wave equation (3.9) at the boundary point x = 0 multiplied by the appropriate

transmission or reflection coefficient.

3.5.1 Test Cases

Firstly we consider the case where β = c = 1. In this case, we would be modelling

the bar without a delaminated region i.e. we have a perfect bond for x < 0 and x >

0. This makes an ideal test case for the numerical schemes, as we would expect full

transmission of the incident strain solitary wave across the interface at x = 0. The

initial condition for the system of Boussinesq equations (3.1) is given by (3.43) and the

initial condition for the leading order incident wave (and subsequently the leading order

reflected and transmitted wave equations) is given by (3.45). We solve system (3.1) for

the displacements u±(x, t) and plot the strains u±x (x, t), denoted e±(x, t).

Viewing the solution of the first scheme as exact, the solution of the second scheme

will be accurate to leading order, with a small correction to the wave at O
(
ε2
)

in this

case (in the general case the corrections would be at O (ε) but we are taking the exact

solitary wave solution here). The solution for e− at the initial time and for e+ at a

sufficiently large time should describe the same right-propagating solitary wave. The

result of the calculation for this case, for both numerical schemes, is presented in Figure

3.2. As c = 1, there is no leading order reflected wave because the reflection coefficient is

zero. Figure 3.2 shows a good agreement between the solutions, with a small phase shift

between the results in the transmitted wave field. This can be remedied by including

higher order terms in the semi-analytical scheme.

Another test case is for a value of c such that c < 1. Considering the expressions for CR

and CT , that is

CR =
c− 1

c+ 1
, CT =

2

c (1 + c)
,

and noting that c > 0 (a physical requirement), we observe that CT > 0 for all c, while

CR < 0 for c < 1 and CR > 0 for c > 1. Recalling our observations from Section 3.3 we

expect that, for a value of c < 1, a dispersive wave train will be present in the reflected

wave field. For c = 3/4, we have CR = −1/7 and CT = 32/21. The waves in each section

of the bar are presented in Figure 3.3. It can be seen that a dispersive wave train is

present in the first section of the bar, after the initial wave is incident on the boundary

between the two sections. This dispersive wave train is of a small amplitude, but it is

clear that the solution does not contain solitons, as predicted. The agreement between

the numerical schemes is very good in this case. It is worth noting that this solution

looks like the Airy function solution of the linearised KdV equation, which is the small
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amplitude limit of the similarity solution of the KdV equation related to the Painleve

II equation (see [1, 2] and references therein for more details).

In the second section of the bar, we see that the incident soliton fissions into two solitons

and dispersive radiation. The agreement between the solutions on the small amplitude

secondary soliton is very good, however there is a larger discrepancy for the larger

amplitude lead soliton. This can be understood from the transmission coefficient, as

this will amplify the wave and therefore the errors. This would again be improved by

the inclusion of higher order corrections, as the error amplification would be present at

O
(
ε2
)

rather than at O (ε). We could equally reduce the value of epsilon to reduce the

errors.

The next case to consider is for large values of c. Using the results of Section 3.3,

specifically (3.22) and (3.23), we would expect the leading order reflected wave to be

closer in amplitude to the initial wave and the transmitted wave to be of a much smaller

amplitude. An example is presented in Figure 3.4 for c = 2, where we have

CR =
1

3
, CT =

1

3
,

and we can see from the coefficients that we would expect the reflected and transmitted

waves to be of approximately equal amplitude. We can see in Figure 3.4 that the waves

are indeed of the same amplitude. In each section of the bar, the agreement is very good

between the two schemes and we see one soliton in each wave field, with some dispersive

radiation present in each case.

3.5.2 Predictions

Following the scheme outlined in Section 3.3, we define c = 1 and recall that

β = β(n, k) =
n2 + k2

n2 (1 + k2)
. (3.48)

We now consider the behaviour in our problem formulation using these parameters.

The initial condition remains the same and we change the value of n and k to obtain

different cases. Table 1 in [30] presents results for 9 different configurations and all of

these configurations have been checked and are presented in Figure 3.5. The expected

number of solitary waves in the transmitted wave field in these cases are summarised in

Table 3.1. In each of the following cases we note that, as we have taken c = 1, there is no

leading order reflected wave and therefore only the transmitted wave field is presented.

The figures are all presented at the same value of t = 1000 for comparison. We observe

that the number of predicted solitons is in agreement with the numerics in most of the
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k = 1 k = 2 k = 3

n 2 3 4 2 3 4 2 3 4

N 2 2 2 2 3 3 3 3 4

Table 3.1: Predictions on the number of solitons present in the transmitted wave
field in the delaminated section of the bar, for various choices of n and k.

cases, however in the case of n = 2 and k = 3, the predicted amplitude of the third

soliton is −6.079 × 10−5 and similarly in the case when n = 4 and k = 3 the predicted

amplitude of the fourth soliton is −3.954 × 10−4. Therefore, these solitons are buried

inside the radiation and numerical experiments up to t = 10, 000 show that they have

still not separated from the radiation.

3.5.3 Predicted Amplitude of Lead Soliton

A prediction for the amplitude of the lead soliton is provided in [30], namely that the

ratio of its amplitude to that of the incident soliton is

Ca =
β

4

(√
1 +

8

β
− 1

)2

. (3.49)

This estimate is found using the IST for an incident solitary wave and we calculate

the eigenvalues for the transmitted wave field. In the long-time asymptotics, these

eigenvalues correspond to solitary waves, ordered by their heights.

We consider the combination of values k = 1, 2, 3 and n = 2, 3, 4 and compare the

amplitude of the lead soliton calculated numerically to the theoretical prediction. Taking

step sizes of ∆x = ∆t = 0.01 in the direct numerical scheme and step sizes of ∆ξ = 0.1,

∆X = 0.00025 in the SSPRK(5,4) scheme we compare the errors in Table 3.2. We can

see from these results that the maximum error in the amplitude for the direct numerical

method is 4.911× 10−3 and for the semi-analytical method was 3.398× 10−4. Therefore

we see good agreement between the schemes and the theoretical predictions.

3.5.4 Comparison of Schemes

Reviewing the results presented here, it can be seen that the semi-analytical approach

produces results comparable to the direct numerical scheme for many cases, particularly

for long waves. As the model is a long-wave model, this is the desirable behaviour for

the schemes. Crucially, the semi-analytical approach requires the solving of, at most,

two equations in each section of a bar (reflected and transmitted) while the direct finite-

difference method requires the solution of multiple tridiagonal equations systems, and



Chapter 3 38

800
850

900
950

1000
x

-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05 0
0.05

e +

(a
)
n

=
2
,
k

=
1

800
850

900
950

1000
x

-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05 0
0.05

e +

(b
)
n

=
2
,
k

=
2

800
850

900
950

1000
x

-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05 0
0.05

e +

(c)
n

=
2
,
k

=
3

800
850

900
950

1000
x

-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05 0
0.05

e +

(d
)
n

=
3
,
k

=
1

800
850

900
950

1000
x

-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05 0
0.05

e +

(e)
n

=
3
,
k

=
2

800
850

900
950

1000
x

-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05 0
0.05

e +

(f)
n

=
3
,
k

=
3

800
850

900
950

1000
x

-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05 0
0.05

e +

(g
)
n

=
4
,
k

=
1

800
850

900
950

1000
x

-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05 0
0.05

e +

(h
)
n

=
4
,
k

=
2

800
850

900
950

1000
x

-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05 0
0.05

e +

(i)
n

=
4
,
k

=
3

F
ig
u
r
e
3
.5
:

T
h

e
w

aves
in

th
e

tra
n

sm
itted

w
ave

fi
eld

fo
r

va
rio

u
s

co
n

fi
g
u

ra
tio

n
s

o
f

th
e

b
a
r,

co
rresp

on
d

in
g

to
d

iff
eren

t
valu

es
of
n

an
d
k
.

E
ach

of
th

e
resu

lts
is

p
resen

ted
a
t

th
e

sam
e

tim
e

m
om

en
t,

fo
r

th
e

d
irect

n
u

m
erica

l
sch

em
e

(b
lu

e,
so

lid
)

an
d

sem
i-an

aly
tical

m
eth

o
d

(red
,

d
a
sh

ed
)

w
ith

ex
a
ct

in
itial

con
d

itio
n
s

an
d

in
itia

l
p

o
sition

x
=
−

5
0
.



Chapter 3 39

Number of
layers, n

Ratio of height
and half width,

k

Error for direct
numerical
method

Error for
semi-analytical

method

2 1 1.253× 10−3 2.280× 10−5

2 2 2.396× 10−3 9.697× 10−5

2 3 2.992× 10−3 1.216× 10−5

3 1 1.661× 10−3 3.398× 10−4

3 2 3.391× 10−3 4.497× 10−5

3 3 4.083× 10−3 2.375× 10−4

4 1 1.701× 10−3 3.473× 10−5

4 2 3.799× 10−3 1.407× 10−5

4 3 4.911× 10−3 2.351× 10−4

Table 3.2: Comparison of lead soliton amplitude as predicted from the IST with the
numerically calculated values from both numerical schemes, for various choices of n
and k.

the solution of the nonlinear equation derived for x = 0 has to be substituted into the

implicit solution at all other points. Therefore, the semi-analytical approach is more

desirable as additional sections are included in the bar. In addition, an analysis of

the time required to calculate a solution by each scheme shows that the semi-analytical

approach is faster. Indeed, both methods were programmed in C and compiled using the

Intel compiler. The spatial domain for the semi-analytical method used 75,000 points,

while the spatial domain for the direct numerical method used 400,000 points. When

run on a 2.66 GHz Intel Core i5 processor, the approximate CPU time for the direct

numerical scheme was 12 hours, compared to 4 hours for the semi-analytical method.

Further attempts to improve the calculation time, by reducing the domain size, showed

further improvement. Reducing the spatial domain for the direct numerical method to

150,000 points and 15,000 points for the spatial domain in the semi-analytical method

the calculation time was reduced to approximately 20 minutes for the direct numeri-

cal scheme and 15 minutes for the semi-analytical scheme. This was taken further by

increasing the step size and comparing the results for a larger step size to the current

results. For the direct numerical scheme we found that it is highly sensitive to increases

in step sizes, and therefore we cannot improve the speed of the calculation without al-

lowing significant numerical errors. For the semi-analytical scheme, we found it is not

sensitive to considerable increases in the step sizes, and therefore we can take step sizes

of h = 0.25 and κ = 0.01 without sacrificing significant accuracy. The same calculation

as before resulted in a calculation time of 34 seconds. Therefore the resulting calculation

in the semi-analytical scheme was 35 times faster than the finite-difference scheme.

The accuracy of the semi-analytical method can be improved further by including higher-

order terms [45, 46]. It must be noted that, in these papers, a semi-analytical numerical
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x < 0 0 < x < xa

O

z

y

x

x > xa

Figure 3.6: Two-layered symmetric bar with a finite delamination at 0 < x < xa.

approach to the solution of the initial value problem for Boussinesq-type equations was

derived, however the advantages of the semi-analytical method compared to the standard

methods were not obvious in this case, and the increase in computation time was not

significant. This improvement was identified in our work in [42] as the complexity of the

problem was increased.

3.6 Results for a Three-Section Bar

A further extension of this problem is to include another section in the bar, thereby

creating a delamination of finite length, in comparison to the semi-infinite delamination

that was studied numerically in Section 3.5. We graphically represent this scenario,

for two layers, in Figure 3.6. The previous example would be detectable in a physical

setting, as the delamination is semi-infinite and therefore would be visible at the end of

the structure. Extending this to a delamination of finite length is of more interest from a

physical standpoint, as this delamination would not be visible to an observer. To detect

such a defect, methods such as ultrasonic or x-rays would have to be used. Assuming

that strain solitary waves can be generated and detected in such a structure (as was

done for PMMA and PS in [25, 44, 82, 83]) then our aim is to infer the delamination

length and position from our studies.

3.6.1 Weakly Nonlinear Solution

We formulate the problem as an extension of our previous study. Let us reduce the

problem to the case when the material in all sections of the bar is one and the same, as

the extension to this case is trivial and does not introduce any new behaviour. Therefore
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we have the equation system

u
(1)
tt − u(1)

xx = ε
[
−12u(1)

x u(1)
xx + 2u

(1)
ttxx

]
, x < 0,

u
(2)
tt − u(2)

xx = ε
[
−12u(2)

x u(2)
xx + 2βu

(2)
ttxx

]
, 0 < x < xa,

u
(3)
tt − u(3)

xx = ε
[
−12u(3)

x u(3)
xx + 2u

(3)
ttxx

]
, x > xa, (3.50)

with the same initial condition as before and associated continuity conditions

u(1)|x=0 = u(2)|x=0,

u(2)|x=0 = u(3)|x=0, (3.51)

u(1)
x + ε

[
−6
(
u(1)
x

)2
+ 2u

(1)
ttx

]∣∣∣∣
x=0

= u(2)
x + ε

[
−6
(
u(2)
x

)2
+ 2βu

(2)
ttx

]∣∣∣∣
x=0

,

u(2)
x + ε

[
−6
(
u(2)
x

)2
+ 2βu

(2)
ttx

]∣∣∣∣
x=0

= u(3)
x + ε

[
−6
(
u(3)
x

)2
+ 2u

(3)
ttx

]∣∣∣∣
x=0

, (3.52)

where β is as defined in (3.5) in terms of the geometry of the waveguide and ε is the

small wave amplitude parameter.

We look for a weakly nonlinear solution, as we did in Section 3.3, of the form

u(1) = I (ξ,X) +R(1) (η,X) + εP (1) (ξ, η,X) +O
(
ε2
)
,

u(2) = T (2) (ξ,X) +R(2) (η,X) + εP (2) (ξ, η,X) +O
(
ε2
)
,

u(3) = T (3) (ξ,X) + εP (3) (ξ, η,X) +O
(
ε2
)
, (3.53)

where we have the same characteristic variables in each section, specifically ξ = x − t,
η = x + t and X = εx. As before, R(i) indicate reflected waves in section i and T (i)

represents transmitted waves in section i of the bar. As before, P (i) represents higher

order corrections in each section.

We can follow the same derivation as before. From (3.22) and (3.23), we can see that

if the material in each section is the same then the reflection coefficient is zero and the

transmission coefficient is one. Therefore the leading order reflected wave will be zero and

we do not need to derive the governing equation. In the following equations, variables

with a tilde have been differentiated with respect to their appropriate characteristic

variable. The incident wave is governed by

ĨX − 6Ĩ Ĩξ + Ĩξξξ = 0, (3.54)
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the transmitted waves in the second section of the bar satisfy the equation

T̃
(2)
X − 6T̃ (2)T̃

(2)
ξ + βT̃

(2)
ξξξ = 0, (3.55)

and finally the transmitted waves in the third section of the bar are governed by

T̃
(3)
X − 6T̃ (3)T̃

(3)
ξ + T̃

(3)
ξξξ = 0. (3.56)

3.6.2 Prediction of Lead Soliton Amplitude

As we are considering an incident soliton, we can use the IST to find the eigenvalues in

the delaminated section of the bar. If we then assume that the solitons are well separated

when they enter the third section of the bar, we can apply the same methodology on

each soliton and predict the amplitude of the solitons generated in the third section of

the bar.

As was seen in (3.49), we can find the ratio of the lead soliton to the incident soliton

in the delaminated region. If we assume an incident soliton of the form (3.45), then we

note that this soliton has amplitude A = −v/2. When this soliton enters the second

section of the bar, we use the IST to predict the amplitude of the lead soliton as

A = −v
2
κ2

1β, where κ1 =
1

2

(√
1 +

8

β
− 1

)
. (3.57)

If this soliton is well-separated from the trailing solitons, we can model (3.57) entering

the third section of the bar and, following the same steps in the IST, we obtain a

prediction for the amplitude of the lead soliton in the third section of the bar as

A = −v
2
κ2

1κ
2
2, where κ2 =

1

2

(√
1 + 8β − 1

)
, (3.58)

and κ2
1 is as defined in (3.57). The same methodology can be applied to all solitons

generated in the delaminated section, however we are only interested in the lead soliton

as this will be the easiest to detect in a physical setting.

If the solitons do not properly separate then the amplitude of the lead soliton will

be closer to the initial amplitude than that predicted in (3.58). If the length of the

delaminated region is sufficiently long, then the amplitude of the lead soliton in the

third section of the bar will be given by (3.58). As the length of the delaminated region

is reduced, the amplitude of the lead soliton in the third region will tend towards the

initial amplitude.
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We can use the above result to predict the length of the delaminated region. Let us

measure the delamination in terms of the Full Width at Half Magnitude (FWHM) of

the incident soliton. We introduce a measure of the amplitude of the lead soliton in the

third section of the bar in comparison to the incident soliton as

σ =
Numerical− Incident

Predicted− Incident
× 100. (3.59)

These results are discussed in the next section.

3.6.3 Numerical Results

We use the same parameters as before, so we have v = 0.4 and we take ε = 0.05 initially.

In order to solve the direct problem numerically using the method in Appendix A.2,

we have to compute the solution in two regions at a time. Referring to Figure 3.6,

we would compute the solution for the regions x < 0 and 0 < x < xa first, with two

constraints: that the wave has not yet reached the boundary x = xa, and that the waves

reflected from x = 0 have not yet reached the left-hand boundary and reflected back to

the x = 0 boundary again. The speed of the solitary wave is known (and is close to the

characteristic speed) and therefore we can choose an appropriate time interval for the

calculation. We then calculate for the regions 0 < x < xa and x > xa to obtain the final

solution.

However we can extend the method in Appendix A.2 to the case of a multi-section bar,

where the solution is computed in all sections simultaneously. This extension of the

method is described in Appendix A.3 and we use this method to solve the equations

described here.

For the semi-analytical method, we use the pseudospectral scheme outlined in Appendix

C.1 and we take ∆ξ = 0.3 and ∆X = 0.001. The domain size is chosen in the same way

as before, that is we choose a domain length such that, for all values of x and t that we

are interested in, the value ξ = x− t is contained within this domain.

Firstly we present the result for the case of two layers with a rectangular cross-section,

that is n = 2 and k = 2. The result is shown in Figure 3.7. We can see that the incident

soliton fissions into two solitons in the delaminated section, as predicted from the IST.

When these solitons enter a bonded section again, they change amplitude and become

wider. The lead soliton is close to the amplitude of the incident soliton, however its

amplitude is smaller.

We now model the three-section bar for different lengths of delamination, measured in

FWHM of the incident soliton. We use the measure defined in (3.59) to determine the
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change in the amplitude from the incident soliton to the lead soliton in the transmitted

region, in comparison to the theoretical prediction. We use the numerical results for the

semi-analytical method as the theoretical estimates are based upon the solutions to the

KdV equations and therefore they will be the most instructive results.

Let us model for different values of ε, as seen in Figure 3.8a. From this image we see

a reduction in ε by a factor of two, at a fixed value of σ, results in an increase of the

corresponding FWHM by a factor of two. This is expected as the value of X is linearly

dependent upon ε and therefore the calculation range for X in the delaminated region is

reduced by a factor of two. We perform a similar calculation for different values of n and

k, representing differing values of β. The results are presented in Figure 3.8b. We can see

that, as β decreases, for a fixed value of σ the corresponding value of FWHM increases.

This corresponds to the behaviour we observe for decreasing values of ε, however the

relation is not linear in this case.

3.7 Conclusions

In this chapter we considered two numerical schemes for solving two, or three, boundary-

value problems matched at the interface between the sections of the bar. This problem

represents the propagation of a strain wave in a bar with a perfect bonding between

the layers for the first boundary-value problem, and a bar with complete delamination

in the second boundary-value problem. We then extended this to a system where the

delamination is of finite length and we have another perfectly bonded section of the bar.

The problem was modelled within the scope of Boussinesq equations in each section of

the bar, with matching conditions across the interface between the sections, as was done

in [30]. This complicated problem was solved using a direct numerical scheme based

upon finite-difference approximations. However, such methods are expensive as they

require the solving of multiple Boussinesq equations and substitution into a nonlinear

equation at the interface between each section.

To simplify the numerical problem, we found a weakly nonlinear solution by taking

a multiple-scales expansion in terms of the appropriate set of fast and slow variables.

This produced KdV equations satisfying initial-value problems, describing the leading

order incident, reflected and transmitted waves. The initial values in these equations

are fully described in terms of the leading order incident wave, with reflection and

transmission coefficients being derived to describe these initial conditions. The KdV

equations were solved using a SSPRK(5,4) scheme, with the finite-differenced form of

the spatial derivatives used as the function in the scheme [94].
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Figure 3.8: Graphs of the change in amplitude of the transmitted soliton in
comparison to the incident soliton, as measured by σ. Graph (a) corresponds to
changing values of ε, while graph (b) corresponds to changing values of β (changing
the geometry of the waveguide).

We predicted the number of solitons in each section of the bar and the eigenvalues that

describe the solitons, using the results in [30]. We showed that the predictions can be

obtained in each section of the bar, even for a bar of three or possibly more sections.

This allowed us to predict the length of the delamination in terms of the FWHM of the

incident soliton, and this was shown for multiple configurations of the bar. In addition,

we showed that there is very good agreement between the two numerical schemes, with

a slight phase shift between the two solutions representing the O
(
ε2
)

difference between

their propagation speeds. They also agreed with theoretical predictions, however it is

worth noting that the semi-analytical scheme is significantly faster to compute, and this

improvement will become more dramatic as the complexity of the structures increases.
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The next extension of this problem would be for a softer bond between the layers, rather

than a perfect bond. This will be discussed in the next chapter.





Chapter 4

Modelling of Nonlinear Wave

Scattering In a Bi-Layer with a

Soft Bonding Layer

4.1 Introduction

In Chapter 3 we discussed the propagation of waves in a layered bar, from the perspective

of nonlinear elasticity theory. We assumed that the bond between the layers was a perfect

bond which, for example, is a good model for cyanoacrylate (commercially known as

superglue). We now consider the case when the bond is more of a rubber-type glue e.g.

polychloroprene (PCP). Such bi-layers have been modelled in [38], as discussed in the

Introduction. The results discussed in this chapter have been partially published in [43].

The introduction of a soft bonding layer influences the behaviour of the waves as they

propagate through the bar, introducing a new layer of complexity to the problem. If

the materials of the layers have similar properties and the bonding between the layers

is sufficiently soft (‘imperfect bonding’), then the bulk strain soliton that we observed

in Chapter 3 does not survive in its usual form, instead it evolves into a radiating

solitary wave, that is a solitary wave with a co-propagating oscillatory tail [38, 95]. The

radiating strain solitary wave has recently been observed in laboratory experiments [36].

Experimental studies of the excitation of resonant radiation by localised waves have

arose in many physical settings, such as nonlinear optics. The reviews [96, 97] and the

references therein provide an overview of these settings.

49
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Using the layered lattice model as described in [38], we see that the longitudinal strain

waves in a bi-layer with a sufficiently soft bonding layer are governed by coupled regu-

larised Boussinesq (cRB) equations (in non-dimensional and scaled form):

ftt − fxx =
1

2
(f2)xx + fttxx − δ(f − g) ,

gtt − c2gxx =
1

2
α(g2)xx + βgttxx + γ(f − g) . (4.1)

In this system f and g denote the longitudinal strains in the layers, while the coefficients

c, α, β, δ, γ are defined by the physical and geometrical parameters of the problem [38].

In the symmetric case (c = α = β = 1) system (4.1) can be simplified, via the reduction

g = f , where f satisfies the equation

ftt − fxx =
1

2
(f2)xx + fttxx . (4.2)

The Boussinesq equation (4.2) has particular solitary wave solutions

f = A sech2

(
x− vt

Λ

)
, A = 3(v2 − 1), Λ =

2v√
v2 − 1

,

where v is the speed of the wave. In system (4.1), when the characteristic speeds of

the linear waves in the layers are close, that is c is close to 1, these pure solitary wave

solutions are replaced with radiating solitary waves, that is solitary waves radiating a

co-propagating one-sided oscillatory tail [38, 39, 95] (see also [98–100] for studies of

radiating solitary waves in other equations). We show the evolution of this pure solitary

wave of system (4.1) with δ = γ = 0 (for a fixed value of v) into a radiating solitary wave

in Figure 4.1. Radiating solitary waves have been extensively studied in the context of

perturbed KdV equations, coupled KdV systems, perturbed NLS equations, and coupled

NLS systems [101–107]. Approximate analytical solutions for radiating solitary waves in

cRB equations have been constructed in [47, 95]. The relevant linear dispersion relation

for the system (4.1) has been analysed in [38]. It is assumed that the coefficients are

perturbed compared to the symmetric case, but remain positive. The dispersion relation

has the form

[k2(1− p2)− k4p2 + δ][k2(c2 − p2)− βk4p2 + γ] = γδ, (4.3)

where k is the wavenumber and p is the phase speed. A typical plot of (4.3) is shown

in Figure 4.2. A significant difference with the linear dispersion curve of the reduction

(4.2) is the appearance of the second branch, remaining above the first branch for all k,

going to infinity as k → 0, while approaching zero as k →∞.
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Figure 4.1: Typical generation of radiating solitary waves in system (4.1), from pure
solitary wave initial conditions, for f (solid line) and g (dashed line). Here c = 1.05,
α = β = 1.05. (a) Initial condition at t = 0: pure solitary wave solution with
δ = γ = 0 and v = 1.3. (b) Radiating solitary wave solution with δ = γ = 0.01 at
t = 400.

p = 1.3 and corresponding value k = 0.171

Figure 4.2: Two branches of the linear dispersion curve of system (4.1) for c = 1.05,
α = β = 1.05, δ = γ = 0.01 and a resonance for p = 1.3 (horizontal, dashed line).

The pure solitary waves of the single Boussinesq equation (4.2) arise as a bifurcation

from wavenumber k = 0 of the linear wave spectrum, when there is no possible resonance

between the speed v of the solitary wave and the phase speed p of some linear wave.

In contrast to this, radiating solitary waves arise in the case when there is a possible

resonance for some finite non-zero value of k. In Figure 4.2 we show a possible resonance

for v = p = 1.3.

In this chapter, we will consider the scattering of radiating solitary waves in delaminated

areas of imperfectly bonded layered structures (see Figure 4.3). As was done in Chapter

3, we develop a semi-analytical approach to the original model to simplify the equations

that need to be solved. We will show that, in the soft bonded regions of the structure,
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coupled Ostrovsky equations describe the behaviour of the transmitted and reflected

waves in a bi-layer, and uncoupled Korteweg-de Vries equations describe the behaviour

in the delaminated area. The Ostrovsky equation was originally derived to describe long

surface and internal waves in a rotating ocean [9, 108], but recently it transpired that the

equation, as well as the coupled Ostrovsky equations, can also describe nonlinear strain

waves in layered elastic waveguides with soft interfaces [39]. Once we have derived

the equations describing leading order transmitted and reflected waves, we develop a

pseudospectral method for solving KdV and Ostrovsky equations and therefore a semi-

analytical method for solving the original problem. These results are compared to the

direct numerical method for solving the original problem and theoretical predictions. As

in the previous chapter direct numerical simulations are expensive, therefore we then use

our semi-analytical method to study the scattering of radiating solitary waves in a wide

range of complex imperfectly bonded bi-layers with delamination, giving an elaborate

description of the possible dynamical effects.

4.2 Problem Formulation

We consider the generation and scattering of a long radiating solitary wave in a two-

layered imperfectly bonded bi-layer with delamination, shown in Figure 4.3. The addi-

tion of a homogeneous region on the left-hand side of the structure is inspired by the

experimental setup [36] to ensure that the same wave propagates in both layers at the

initial moment of time. These homogeneous layers are ‘glued’ to a two-layered structure

with soft bonding between its layers (in the middle), followed with a delaminated sec-

tion (on the right). The materials in the bi-layer are assumed to have close properties,

leading to the generation of a radiating solitary wave in the bonded section [38]. Our

aim is to understand the scattering of this wave by the subsequent delaminated region.

x < xa x > xbxa < x < xb

O

z

y

x

Figure 4.3: Bi-layer with two homogeneous layers for x < xa, a bonded two-layered
section for xa < x < xb and a delaminated section for x > xb.
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The mathematical problem formulation consists of scaled regularised non-dimensional

equations in the respective sections of the complex waveguide [30, 38, 42, 43]. We have

u
(1)
tt − u(1)

xx = ε
[
−12u(1)

x u(1)
xx + 2u

(1)
ttxx

]
,

w
(1)
tt − w(1)

xx = ε
[
−12w(1)

x w(1)
xx + 2w

(1)
ttxx

]
(4.4)

for x < xa,

u
(2)
tt − u(2)

xx = ε
[
−12u(2)

x u(2)
xx + 2u

(2)
ttxx − δ

(
u(2) − w(2)

)]
,

w
(2)
tt − c2w(2)

xx = ε
[
−12αw(2)

x w(2)
xx + 2βw

(2)
ttxx + γ

(
u(2) − w(2)

)]
(4.5)

for xa < x < xb and

u
(3)
tt − u(3)

xx = ε
[
−12u(3)

x u(3)
xx + 2u

(3)
ttxx

]
,

w
(3)
tt − c2w(3)

xx = ε
[
−12αw(3)

x w(3)
xx + 2βw

(3)
ttxx

]
(4.6)

for x > xb. The functions u(i)(x, t) and w(i)(x, t) describe longitudinal displacements

in the upper and lower layers of the three sections of the waveguide, respectively. The

values of the constants α, β and c depend on the physical and geometrical properties of

the waveguide, while δ and γ depend on the properties of the soft bonding layer, and ε

is a small amplitude parameter [38, 43].

These equations are complemented with continuity conditions at the interfaces between

the sections. We have continuity of longitudinal displacement

u(1)|x=xa = u(2)|x=xa , w(1)|x=xa = w(2)|x=xa ; (4.7)

u(2)|x=xb = u(3)|x=xb , w(2)|x=xb = w(3)|x=xb ; (4.8)

and continuity of normal stress

u(1)
x + ε

[
−6
(
u(1)
x

)2
+ 2u

(1)
ttx

]∣∣∣∣
x=xa

= u(2)
x + ε

[
−6
(
u(2)
x

)2
+ 2u

(2)
ttx

]∣∣∣∣
x=xa

,

w(1)
x + ε

[
−6
(
w(1)
x

)2
+ 2w

(1)
ttx

]∣∣∣∣
x=xa

= c2w(2)
x + ε

[
−6α

(
w(2)
x

)2
+ 2βw

(2)
ttx

]∣∣∣∣
x=xa

, (4.9)

and

u(2)
x + ε

[
−6
(
u(2)
x

)2
+ 2u

(2)
ttx

]∣∣∣∣
x=xb

= u(3)
x + ε

[
−6
(
u(3)
x

)2
+ 2u

(3)
ttx

]∣∣∣∣
x=xb

,
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c2w(2)
x + ε

[
−6α

(
w(2)
x

)2
+ 2βw

(2)
ttx

]∣∣∣∣
x=xb

= c2w(3)
x + ε

[
−6α

(
w(3)
x

)2
+ 2βw

(3)
ttx

]∣∣∣∣
x=xb

,

(4.10)

as well as some natural initial and boundary conditions.

4.3 Weakly Nonlinear Solution

Differentiating system (4.4) - (4.6) with respect to x and denoting f (i) = u
(i)
x and

g(i) = w
(i)
x , we obtain the equations ‘in strains’ as

f
(1)
tt − f (1)

xx = ε

[
−6
(
f (1)

)2
+ 2f

(1)
tt

]
xx

,

g
(1)
tt − g(1)

xx = ε

[
−6
(
g(1)
)2

+ 2g
(1)
tt

]
xx

(4.11)

for x < xa,

f
(2)
tt − f (2)

xx = ε

[
−6
(
f (2)

)2
+ 2f

(2)
tt

]
xx

− εδ
(
f (2) − g(2)

)
,

g
(2)
tt − c2g(2)

xx = ε

[
−6α

(
g(2)
)2

+ 2βg
(2)
tt

]
xx

+ εγ
(
f (2) − g(2)

)
(4.12)

for xa < x < xb, and

f
(3)
tt − f (3)

xx = ε

[
−6
(
f (3)

)2
+ 2f

(3)
tt

]
xx

,

g
(3)
tt − c2g(3)

xx = ε

[
−6α

(
g(3)
)2

+ 2βg
(3)
tt

]
xx

, (4.13)

for x > xb. We are considering localised waves and apply the continuity condition (4.7)

for displacements for the time interval when the waves have not yet reached the third

region i.e. the waves are contained in regions one and two, which yields, by differentiating

with respect to t, (4.14). Next, we consider the continuity condition for displacements

for the time interval when the waves are contained within regions two and three, and

similarly obtain the condition (4.15). Thus, the conditions take the form∫ xa

−∞
f

(1)
t dx = −

∫ xb

xa

f
(2)
t dx,

∫ xa

−∞
g

(1)
t dx = −

∫ xb

xa

g
(2)
t dx, (4.14)∫ xb

xa

f
(2)
t dx = −

∫ ∞
xb

f
(3)
t dx,

∫ xb

xa

g
(2)
t dx = −

∫ ∞
xb

g
(3)
t dx. (4.15)
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From continuity of normal stress we have

f (1) + ε

[
−6
(
f (1)

)2
+ 2f

(1)
tt

]∣∣∣∣
x=xa

= f (2) + ε

[
−6
(
f (2)

)2
+ 2f

(2)
tt

]∣∣∣∣
x=xa

,

g(1) + ε

[
−6
(
g(1)
)2

+ 2g
(1)
tt

]∣∣∣∣
x=xa

= c2g(2) + ε

[
−6α

(
g(2)
)2

+ 2βg
(2)
tt

]∣∣∣∣
x=xa

, (4.16)

and

f (2) + ε

[
−6
(
f (2)

)2
+ 2f

(2)
tt

]∣∣∣∣
x=xb

= f (3) + ε

[
−6
(
f (3)

)2
+ 2f

(3)
tt

]∣∣∣∣
x=xb

,

c2g(2) + ε

[
−6α

(
g(2)
)2

+ 2βg
(2)
tt

]∣∣∣∣
x=xb

= c2g(3) + ε

[
−6α

(
g(3)
)2

+ 2βg
(3)
tt

]∣∣∣∣
x=xb

.

(4.17)

To find the weakly nonlinear solution of the complicated scattering problem we consider

the equations (4.11) - (4.13). We use several asymptotic multiple-scale expansions, and

develop a space-averaging method instead of the time-averaging method used for the

homogeneous initial-value problem [39]. All functions present in our expansions and

their derivatives are assumed to be bounded and sufficiently rapidly decaying at infinity

(these assumptions agree with our numerical simulations). In the regions where the

behaviour is governed by uncoupled regularised Boussinesq equations, the derivations in

Chapter 3 show that to leading order the weakly nonlinear solution is described by KdV

equations. We will overview the derivation in this case, but the focus of this chapter

will be for the coupled regularised Boussinesq equations.

4.3.1 Region 1: Two Homogeneous Layers

In the first region the equation is identical in both homogeneous layers and therefore we

assume the same incident wave in both, and consider asymptotic multiple-scale expan-

sions of the type

f (1) = I (ξ,X) +R(1) (η,X) + εP (1) (ξ, η,X) +O
(
ε2
)
,

g(1) = I (ξ,X) +G(1) (η,X) + εQ(1) (ξ, η,X) +O
(
ε2
)
,

where the characteristic variables are given by ξ = x− t, η = x+ t, and the slow space

variable X = εx. The functions I and R(1), G(1) represent the leading order incident and

reflected waves respectively and P (1), Q(1) are the higher order corrections. Substituting

the asymptotic expansion into the first equation in (4.11) the system is satisfied at
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leading order, while at O (ε) we have

−2P
(1)
ξη = (IX − 6IIξ + Iξξξ)ξ +

(
R

(1)
X − 6R(1)R(1)

η +R(1)
ηηη

)
η

− 6
(

2IξR
(1)
η +R(1)

ηη I + IξξR
(1)
)
, (4.18)

and a similar equation can be obtained for the second layer. We average (4.18) with

respect to the fast space variable x using

lim
χ→−∞

1

xa − χ

∫ xa

χ
. . . dx, (4.19)

in the reference frame moving with the linear speed of right- and left-propagating waves

(that is, at constant ξ or η). Assuming that all functions and their derivatives remain

bounded (in order to avoid secular terms in asymptotic expansions) and decay sufficiently

rapidly at infinity we have, for example at constant ξ,

lim
χ→−∞

1

xa − χ

∫ xa

χ
P

(1)
ξη dx = lim

χ→−∞

1

2(xa − χ)

∫ 2xa−ξ

2χ−ξ
P

(1)
ξη dη

= lim
χ→−∞

1

2(xa − χ)

[
P

(1)
ξ

]2xa−ξ

2χ−ξ
= 0. (4.20)

Similarly averaging (4.18) with respect to x at constant η gives

lim
χ→−∞

1

xa − χ

∫ xa

χ
P

(1)
ξη dx = lim

χ→−∞

1

2(xa − χ)

∫ 2xa−η

2χ−η
P

(1)
ξη dξ = 0. (4.21)

Therefore we can average (4.18) at constant ξ to obtain

(IX − 6IIξ + Iξξξ)ξ = 0. (4.22)

Similarly, averaging (4.18) with respect to x at constant η gives(
R

(1)
X − 6R(1)R(1)

η +R(1)
ηηη

)
η

= 0. (4.23)

In each case, we can integrate with respect to the relevant characteristic variable and,

recalling that there are no waves at infinity, we obtain

IX − 6IIξ + Iξξξ = 0, (4.24)

and

R
(1)
X − 6R(1)R(1)

η +R(1)
ηηη = 0. (4.25)
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We can then simplify (4.18) using (4.24) and (4.25) and integrate with respect to the

characteristic variables to obtain

P (1) = 3

(
2IR(1) +R(1)

η

∫
I dξ + Iξ

∫
R(1) dη

)
+ φ

(1)
1 (ξ,X) + ψ

(1)
1 (η,X) , (4.26)

where φ
(1)
1 and ψ

(1)
1 are arbitrary functions. For the second layer, we have the same

equation for the incident wave, (4.24), and for G we have

G
(1)
X − 6G(1)G(1)

η +G(1)
ηηη = 0. (4.27)

The higher order corrections in this layer are given by

Q(1) = 3

(
2IG(1) +G(1)

η

∫
I dξ + Iξ

∫
G(1) dη

)
+ φ

(1)
2 (ξ,X) + ψ

(1)
2 (η,X) . (4.28)

The first radiation condition is the same as for the previous case in Chapter 3, that is

we require that the solution to the problem should not change the incident wave. For

the case of an incident solitary wave this implies that φ
(1)
1 = 0 and φ

(1)
2 = 0.

4.3.2 Region 2: Bi-Layer with Soft Bonding

We stated earlier that we assume the layers have close properties, so that c− 1 = O (ε).

In this case, the cRB equations admit solutions in the form of radiating solitary waves,

as discussed in the introduction to this chapter. Thus, we note that

c− 1 = O (ε) ⇒ c2 − 1

ε
= O (1) ,

and, following [39], we rearrange the equation for w in (4.12) as

g
(2)
tt − g(2)

xx = ε

[
−6α

(
g(2)
)2

+ 2βg
(2)
tt +

c2 − 1

ε
g(2)

]
xx

+ εγ
(
f (2) − g(2)

)
. (4.29)

Therefore, we can use one set of characteristic variables for f (2) and g(2) and this suggests

that the waves in each layer will move at the same speed. Let us assume that there is a

weakly nonlinear solution to (4.12) of the form

f (2) = T (2) (ξ,X) +R(2) (η,X) + εP (2) (ξ, η,X) +O
(
ε2
)
,

g(2) = S(2) (ξ,X) +G(2) (η,X) + εQ(2) (ξ, η,X) +O
(
ε2
)
.

The characteristic variables ξ, η and X are the same as before, T (2) and S(2) represent

the transmitted waves in the second section of the bar, where T is for the upper layer
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and S is for the lower layer. Similarly R(2) and G(2) are the reflected waves, and the

higher order corrections in this section are given by P (2) and Q(2), for the upper and

lower layers respectively.

The solution is considered from the time when the waves enter the region at x = xa,

until the waves reflected from the boundary x = xb, between the second and the third

region, reach the boundary x = xa, between the first and the second region. Moreover,

the boundary x = xb is assumed to be sufficiently far away from the boundary x = xa,

allowing us to use the averaging

lim
xb→∞

1

xb − xa

∫ xb

xa

. . . dx. (4.30)

Substituting the asymptotic expansion into the equation for f (2) in (4.12) the equation

is satisfied at leading order, while at O (ε) we have

−2P
(2)
ξη =

(
T

(2)
X − 6T (2)T

(2)
ξ + T

(2)
ξξξ

)
ξ
− 6

(
2T

(2)
ξ R(2)

η + T (2)R(2)
ηη + T

(2)
ξξ R

(2)
)

+
(
R

(2)
X − 6R(2)R(2)

η +R(2)
ηηη

)
η
− δ

2

(
T (2) − S(2) +R(2) −G(2)

)
. (4.31)

For the equation governing g(2) we have

2Q
(2)
ξη =

(
S

(2)
X +

c2 − 1

2ε
S

(2)
ξ − 6αS(2)S

(2)
ξ + βS

(2)
ξξξ

)
ξ

+
γ

2

(
T (2) − S(2) +R(2) −G(2)

)
+

(
G

(2)
X +

c2 − 1

2ε
G(2)
η − 6αG(2)G(2)

η + βG(2)
ηηη

)
η

− 6α
(

2S
(2)
ξ G(2)

η + S(2)G(2)
ηη + S

(2)
ξξ G

(2)
)
. (4.32)

We average equations (4.31) and (4.32) with respect to the fast space variable x as

defined in (4.30). In each case, we average at constant ξ or η. The same argument for

averaging P (1) and Q(1) used in the previous section, in (4.20) and (4.21), applies in this

case as P (2) and Q(2) are also assumed to be bounded and sufficiently rapidly decaying

at infinity. Therefore P (2) and Q(2) are both zero when averaged at either constant ξ or

constant η. Averaging (4.31) and (4.32) at constant ξ gives

(
T

(2)
X − 6T (2)T

(2)
ξ + T

(2)
ξξξ

)
ξ

=
δ

2

(
T (2) − S(2)

)
, (4.33)(

S
(2)
X +

c2 − 1

2ε
S

(2)
ξ − 6αS(2)S

(2)
ξ + βS

(2)
ξξξ

)
ξ

=
γ

2

(
S(2) − T (2)

)
. (4.34)

Equations (4.33) and (4.34) form a system of coupled Ostrovsky equations [39]. Coupled

Ostrovsky equations appear naturally in the description of nonlinear waves in layered
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waveguides, both solid and fluid [41, 43].

Similarly, averaging (4.31) and (4.32) at constant η gives

(
R

(2)
X − 6R(2)R(2)

η +R(2)
ηηη

)
η

=
δ

2

(
R(2) −G(2)

)
, (4.35)(

G
(2)
X +

c2 − 1

2ε
G(2)
η − 6αG(2)G(2)

η + βG(2)
ηηη

)
η

=
γ

2

(
G(2) −R(2)

)
, (4.36)

respectively. Therefore, to leading order, the transmitted and reflected waves are de-

scribed by two systems of coupled Ostrovsky equations. This result is consistent with

the time-averaged derivation [39].

Substituting (4.33) and (4.35) into (4.31) and integrating with respect to the character-

istic variables, we obtain

P (2) = 3

(
2T (2)R(2) +R(2)

η

∫
T (2) dξ + T

(2)
ξ

∫
R(2) dη

)
+ φ

(2)
1 (ξ,X) + ψ

(2)
1 (η,X) ,

(4.37)

where φ
(2)
1 , ψ

(2)
1 are arbitrary functions.

Similarly, substituting (4.34) and (4.36) into (4.32) and integrating with respect to the

characteristic variables, we obtain

Q(2) = 3α

(
2S(2)G(2) +G(2)

η

∫
S(2) dξ + S

(2)
ξ

∫
G(2) dη

)
+ φ

(2)
2 (ξ,X) + ψ

(2)
2 (η,X) ,

(4.38)

where φ
(2)
2 , ψ

(2)
2 are arbitrary functions.

4.3.3 Region 3: Delamination

We now consider the third region, where the same bi-layered waveguide does not have

a bonding layer, modelling delamination. The motion in this region is governed by two

uncoupled regularised Boussinesq equations, but with differing coefficients in each layer.

We look for a weakly nonlinear solution to (4.13) of the form

f (3) = T (3) (ξ,X) + εP (3) (ξ, η,X) +O
(
ε2
)
,

g(3) = S(3) (ν,X) + εQ(3) (ν, ζ,X) +O
(
ε2
)
,

where we have X = εx and we use two sets of characteristic variables: ξ = x−t, η = x+t;

and ν = x− ct, ζ = x+ ct. Substituting this into system (4.13) the equation is satisfied
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at leading order, while at O (ε) we have

−2P
(3)
ξη =

(
T

(3)
X − 6T (3)T

(3)
ξ + T

(3)
ξξξ

)
ξ
, (4.39)

−2c2Q
(3)
νζ =

(
S

(3)
X − 6

α

c2
S(3)S(3)

ν + βS(3)
ννν

)
ν
. (4.40)

We define the averaging in this region as

lim
χ→∞

1

χ− xb

∫ χ

xb

. . . dx. (4.41)

As before, the function P (3) averaged at constant ξ and η, or Q(3) averaged at constant

ν and ζ, will be zero. We note that averaging (4.39) at constant η, or averaging (4.40)

at constant ζ, will yield no new information as the equation averages to zero. Therefore,

averaging (4.39) with respect to constant ξ and (4.40) with respect to constant ν, and

integrating with respect to the appropriate characteristic variable, we obtain two KdV

equations of the form

T
(3)
X − 6T (3)T

(3)
ξ + T

(3)
ξξξ = 0, (4.42)

S
(3)
X − 6

α

c2
S(3)S(3)

ν + βS(3)
ννν = 0. (4.43)

Substituting the results for (4.42) into (4.39) and integrating with respect to the char-

acteristic variables, we obtain

P (3) = φ
(3)
1 (ξ,X) + ψ

(3)
1 (η,X) , (4.44)

where φ
(3)
1 , ψ

(3)
1 are arbitrary functions. The second radiation condition, as used in

Chapter 3, states that if the incident wave is right-propagating, then there should be no

left-propagating waves in the transmitted wave field. Thus ψ
(3)
1 = 0.

Similarly, substituting (4.43) into (4.40) and integrating with respect to the character-

istic variables, we obtain

Q(3) = φ
(3)
2 (ν,X) + ψ

(3)
2 (ζ,X) , (4.45)

where φ
(3)
2 , ψ

(3)
2 are arbitrary functions. By the second radiation condition, as used

above, we have ψ
(3)
2 = 0.

We note that the functions which remained undefined in the higher order corrections can

be found by considering higher order terms in the equations of motion and the continuity

conditions, similarly to the solution of the initial-value problems [39, 46]. However, this

is beyond the scope of our work.
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4.3.4 Matching at Boundaries: Continuity Conditions

In order to find ‘initial conditions’ for the equations derived in Sections 4.3.1 - 4.3.3, we

collect the expressions for the weakly nonlinear solutions and substitute them into the

continuity conditions (4.14) - (4.17).

We first consider the continuity conditions for displacements for the time interval when

the waves have not yet reached the third region. The displacement at negative infinity

is assumed to be constant. Differentiating the continuity conditions (4.14) with respect

to time at x = xa, and recalling that f (i) = u
(i)
x , g(i) = w

(i)
x , we obtain conditions in

terms of the strain rates. So we have∫ xa

−∞
f

(1)
t dx = −

∫ xb

xa

f
(2)
t dx, (4.46)∫ xa

−∞
g

(1)
t dx = −

∫ xb

xa

g
(2)
t dx. (4.47)

Substituting the weakly nonlinear solutions obtained in Section 4.3 into (4.46) and noting

that the reflected waves R(2) and G(2) in the second section are not yet present, we obtain

at leading order ∫ xa

−∞
(Iξ −R(1)

η ) dx = −
∫ xb

xa

T
(2)
ξ dx. (4.48)

We can integrate to obtain an expression at x = xa by noting that integration with

respect to x can be reduced to integration with respect to the characteristic variable, as

x appears linearly in the expressions for the characteristic variables. By the assumption

that the strain waves are localised in the first two regions, when evaluated at either

x = −∞ or x = xb the expression will be zero. Therefore, from (4.48) we obtain

I|X=εxa −R(1)|X=εxa = T (2)|X=εxa . (4.49)

Similarly, from (4.47) we obtain

I|X=εxa −G(1)|X=εxa = cS(2)|X=εxa . (4.50)

Next, we consider the continuity conditions for displacements for the time interval when

the localised strain waves are present in all three regions, but the waves reflected from

the boundary x = xb between the second and the third region have not yet reached

the boundary x = xa between the first and the second region. The displacement at

positive infinity is assumed to be equal to zero (the waves propagate into unperturbed

media). Differentiating the continuity conditions (4.15) with respect to time at x = xb,
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and recalling that f (i) = u
(i)
x , g(i) = w

(i)
x , we obtain the relations∫ xb

xa

f
(2)
t dx = −

∫ ∞
xb

f
(3)
t dx, (4.51)

∫ xb

xa

g
(2)
t dx = −

∫ ∞
xb

g
(3)
t dx. (4.52)

Then, in a similar way to the previous considerations, we obtain

T (2)|X=εxb −R
(2)|X=εxb = T (3)|X=εxb , (4.53)

cS(2)|X=εxb − cG
(2)|X=εxb = cS(3)|X=εxb . (4.54)

We now make use of the continuity conditions for normal stress and, substituting the

relevant weakly nonlinear solution into (4.16) we obtain to leading order

I|X=εxa +R(1)|X=εxa = T (2)|X=εxa , (4.55)

I|X=εxa +G(1)|X=εxa = c2S(2)|X=εxa . (4.56)

Similarly, substituting the relevant weakly nonlinear solutions into (4.17) we have, to

leading order,

T (2)|X=εxb +R(2)|X=εxb = T (3)|X=εxb , (4.57)

c2S(2)|X=εxb + c2G(2)|X=εxb = c2S(3)|X=εxb . (4.58)

We can now find ‘initial conditions’ for the systems describing transmitted and reflected

waves in each section of the bar, expressed in terms of the given incident wave. For the

upper layer we have

R(1)|X=εxa = C
(1)
R I|X=εxa , T (2)|X=εxa = C

(1)
T I|X=εxa , (4.59)

R(2)|X=εxb = C
(2)
R T (2)|X=εxb , T (3)|X=εxb = C

(2)
T T (2)|X=εxb , (4.60)

where C
(i)
R = 0 and C

(i)
T = 1 for all i.

Similarly for the lower layer we have

G(1)|X=εxa = D
(1)
R I|X=εxa , S(2)|X=εxa = D

(1)
T I|X=εxa , (4.61)

G(2)|X=εxb = D
(2)
R S(2)|X=εxb , S(3)|X=εxb = D

(2)
T S(2)|X=εxb , (4.62)
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where

D
(1)
R =

c− 1

c+ 1
, D

(1)
T =

2

c (1 + c)
,

D
(2)
R = 0, D

(2)
T = 1.

These coefficients agree with previous work for a perfectly bonded waveguide [30, 42]

and are intuitive as we would expect a wave to be, to leading order, wholly transmitted

when travelling along a layer of the same material. If the value of c varies between

sections of the bar i.e. the material in a single layer varies across the bar, then the

coefficients should be calculated using the respective values of c.

4.4 Numerical Modelling

In our first case study we compare the results of the semi-analytical numerical modelling,

based on the leading order terms of the weakly nonlinear solution of Section 4.3, with the

results of direct numerical simulations for the problem (4.4) - (4.10). We also compare

numerical results with theoretical predictions for the amplitude of the lead soliton in

the delaminated region, made using the IST. We solve the original Boussinesq equations

using the direct numerical method described in Appendix A.3, and the weakly nonlinear

solution derived in Section 4.3 using the pseudospectral method described in Appendix

C.

For the direct numerical method we use step sizes of ∆x = ∆t = 0.01 and, for the

pseudospectral method, we use ∆ξ = 0.3 (the same step size is used for all characteristic

variables) and ∆X = 0.001. In all cases, we assume α = 1.05, β = 1.05, c = 1 + ε/2 and

ε = 0.05.

We note that, in a similar way to the single Ostrovsky equation, the coupled Ostrovsky

equations (4.33) - (4.34) and (4.35) - (4.36) imply zero mean constraints∫ ∞
−∞

(T (2) − S(2)) dξ = 0 and

∫ ∞
−∞

(R(2) −G(2)) dη = 0.

Therefore we first use initial conditions for the incident strain solitary wave which include

a pedestal term [46], to guarantee zero mean, and then show that for this class of

problems, one can also work with initial conditions in the form of pure strain solitary

waves, without the pedestal terms. Indeed, in the latter case the zero mean constraints

are still approximately satisfied, by the nature of the solutions of the problem, which we

established in the direct numerical simulations using the finite-difference method. If the

domain is given by [−L,L], the average 1
2L

∫ L
−L(u−w) dξ is O

(
10−5

)
, showing that the
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zero mean constraint is approximately satisfied. A more accurate approach is required

for general initial conditions with non-zero mean value [46].

Thus we use the following initial condition for the displacement in (4.4) (corresponding

to localised initial condition for the strain in (4.11), integrated with respect to x):

u (x, 0) = A
[
tanh

(x
Λ

)
− 1
]
− Γ

[
tanh

(
x+ x0

ΛS

)
+ tanh

(
x− x0

ΛS

)
− 2

]
, (4.63)

where we have

A = −v1

√
v2

1 − 1√
2ε

, Λ =
2
√

2εv1√
v2

1 − 1
, Γ =

σA tanh
(
L
Λ

)
tanh

(
L+x0

ΛS

)
+ tanh

(
L−x0

ΛS

) ,
σ can be zero or one, 2L is the length of the domain, x0 is an arbitrary phase shift and

the corresponding strain has zero mean (for σ = 1). The constant of integration is chosen

so that the waves propagate into an unperturbed medium. As we have a second order

time derivative, we require two initial conditions for this equation. We have taken the

exact travelling wave solution of the equation and therefore the second initial condition

takes the form

ut(x, 0) = −v1ux(x, 0), (4.64)

where ux(x, 0) takes the form

ux(x, 0) =
A

Λ
sech2

(x
Λ

)
− Γ

ΛS

[
sech2

(
x+ x0

ΛS

)
+ sech2

(
x− x0

ΛS

)]
. (4.65)

Taking a forward difference approximation in time allows us to formulate the solution

at u(x,∆t), as required by the numerical scheme outlined in Appendix A.3.

The amplitude of the pedestal for the corresponding strains can be reduced by increasing

the value of S. In all cases discussed here, S = 10 and we set x0 = 0. For w(x, 0) and

w(x,∆t) we use the same expressions as we take the same initial condition in both layers.

If the initial condition was given by an explicit analytic function, then we could deduce

the second initial condition for the scheme directly. As with the previous case for a

perfectly bonded bar, simulations have shown that either case is sufficiently accurate.

For the semi-analytical method we take the exact solitary wave solution of (4.24) gov-

erning the incident wave, with the same pedestal term (differentiated with respect to x)

as used in (4.63),

I (ξ, 0) = Ã sech2

(
ξ

Λ̃

)
− Γ̃

S

[
sech2

(
ξ + x0

Λ̃S

)
+ sech2

(
ξ − x0

Λ̃S

)]
, (4.66)
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where

Ã = −v
2
, Λ̃ =

2√
v
, Γ̃ =

σÃ tanh
(
L
Λ̃

)
tanh

(
L+x0

Λ̃S

)
+ tanh

(
L−x0

Λ̃S

) ,
where v is related to v1 by the approximate relation v1 = 1 + εv+O

(
ε2
)
. For the initial

conditions in other sections of the bi-layer, we make use of the relations in Section 4.3.4

to obtain the initial conditions in terms of (4.66).

4.4.1 Solitons in the Delaminated Section

To obtain quantitative predictions for parameters of solitons in the delaminated section

we use the IST applied to the KdV equations (4.42) and (4.43) derived in Section 4.3.3.

Recall from the previous chapter that the solution of an initial-value problem for the

KdV equation

Uτ − 6UUχ + Uχχχ = 0, U |τ=0 = U0(χ), (4.67)

on the infinite line, for a sufficiently rapidly decaying initial condition U0(χ), is related

to the spectral problem for the Schrödinger equation

Ψχχ + [λ− U0 (χ)] Ψ = 0, (4.68)

where λ is the spectral parameter [20]. In particular, parameters of solitons are defined

by the discrete spectrum of the equation (4.68). In our previous studies of the scattering

of an incident solitary wave in the delaminated area of the perfectly bonded waveguide,

the discrete spectrum could be found analytically. However, in the present study, we

are dealing with the scattering of radiating solitary waves generated in a two-layered

bar with soft bonding, and scattered in the delaminated region of the bar. As we do

not have an analytical expression for the radiating solitary wave, we have to find the

spectrum of the Schrödinger equation numerically.

To achieve this we implement a shooting method [109]. We consider the potential U0(χ)

for the Schrödinger equation, which is the initial condition in the KdV problem (4.67).

It is well known that the discrete spectrum is bounded by the minimum of the initial

condition (negative value) and zero [92]. Since the potential U0(χ) is localised, the

eigenfunctions have the asymptotic behaviour

Ψ (χ) =

erχ, χ→ −∞,

e−rχ, χ→∞,
(4.69)
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where λ = −r2. We rewrite the Schrödinger equation (4.68) in the form

Ψχ = Φ, Φχ = [U0 (χ)− λ] Ψ, (4.70)

and solve this system from the boundary χ = a to χ = b. We normalise the solution by

setting Ψ(a) = 1 and Φ(a) = r. The system is then solved using the standard Runge-

Kutta 4th order method. The ratio of the values of these two functions is tested at the

right boundary against the relation Φ(b)/Ψ(b) = −r to determine if r is an eigenvalue.

We start with the least possible value for an eigenvalue (the minimum of the initial

condition) and iterate to zero in sufficiently small steps in order to determine the eigen-

values to the desired accuracy. In our present study we consider the cases when in each

layer there is only one soliton in the delaminated region. We use the method described

here to determine the parameters of this soliton (in each layer), and compare with the

solitons emerging in our modelling. In other settings, multiple solitons can be generated

by a single incident soliton, such as those seen in a bar with perfect bonding in our

previous study.

4.4.2 Delamination of Semi-Infinite Length

We first consider the bi-layer shown in Figure 4.3 and use the initial conditions (4.63)

and (4.66) with zero mean i.e. with σ = 1. The comparison between the two numerical

approaches in this case can be seen in Figure 4.4. A radiating solitary wave is formed

in the bonded section of the bar, shown at t = 600. When this radiating solitary wave

enters the delaminated section of the bar, the soliton separates from the tail and becomes

a classical soliton with dispersive radiation following behind.

The agreement between the semi-analytical method and the direct numerical method is

good for the solitons and reasonable for the tail, with a small phase shift introduced.

The agreement is improved by reducing ε, and this has been tested for a number of

values, but are omitted for brevity.

If we take the same initial conditions with non-zero mean, i.e. σ = 0, we obtain a similar

result to the previously discussed case, as can be seen in Figure 4.5. The radiating

solitary waves generated in the two layers are close to each other, and therefore the zero

mean constraints for the difference of the two solutions are approximately satisfied (see

discussion at start of Section 4.4).

We now apply the IST framework to the waves entering the delaminated section of

the bar, as the behaviour of the transmitted waves in the two layers in this section is

governed by two separate KdV equations. Since there is only one discrete eigenvalue for
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each layer of the waveguide, the long time asymptotic behaviour of the solution of the

appropriate KdV equation consists of one soliton and dispersive radiation, which in the

canonical form (4.67) is given by

U ∼ −2r2 sech2
[
r
(
χ− 4r2t− χ0

)]
+ radiation,

where r is defined by the eigenvalue λ = −r2, and χ0 is the phase shift.

We use the theoretical predictions to justify the numerical schemes used in this chapter.

In each layer, the height of the soliton found using these schemes has been compared

with the theoretical prediction using the IST, to confirm that the numerical schemes

resolve the behaviour of the system correctly. The theoretical (IST) predictions and the

numerical results for the height of the soliton are compared in Table 4.1.

Regime Layer Numerical Theoretical

σ = 1 1 -0.2545 -0.2473

σ = 1 2 -0.2301 -0.2192

σ = 0 1 -0.2979 -0.2979

σ = 0 2 -0.2680 -0.2680

Table 4.1: Comparison of numerically calculated soliton amplitudes in the
delaminated area for both layers with the predicted value using the IST, for zero
mean (σ = 1) and non-zero mean (σ = 0) initial conditions.

In the case with zero mean initial condition, the prediction of the heights using the IST

underestimates the numerical solution, as the solitons have not yet fully separated from

the negative pedestal. These solitons take a very long time to separate - the pedestal

still does not separate when the maximum time is increased by a factor of ten. In the

case with initial condition having non-zero mean, the agreement between the theoretical

predictions and the numerical results is excellent.

4.4.3 Delamination of Finite Length

We now consider the same question posed in Section 3.6: is it possible to determine if

there is a delamination in some part of the bar, between two bonded regions? In the

previous case we had a perfect bond between the layers and therefore the waves entering

the delaminated region were solitary waves. In our case, we have radiating solitary waves

entering the delaminated region. A graphical representation of this structure is shown

in Figure 4.6, and all considerations of Section 4.3 are extended to this situation. We

introduce a fourth region in our modelling, with identical coefficients and structure to

the second region of the bar. The weakly nonlinear solution in this fourth region is the
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same as the second region, and we have full transmission as we did between regions two

and three.

We know that transmitted waves will propagate in the delaminated area with speeds

close to the characteristic speeds of the linear waves, and therefore the time it will take

for the wave to travel through a delaminated region, of length l, can be estimated as

Ti ≈ l/ci, where i represents the layers in the bar. Indeed, when the radiating solitary

waves enter the delaminated region, as seen in Figure 4.7, the solitons propagate with

speeds close to their respective characteristic speeds. When these solitons enter the

second bonded region they again generate radiating solitary waves. If the separation

between the two solitons is reasonably large when they enter the second bonded region,

we see a distinctive double-humped wave of significantly reduced amplitude - a clear

sign of delamination. If this delaminated region is even larger, so that the waves in

both layers are distinctly separated, then we would obtain two well separated radiating

solitary waves of smaller amplitude.

x < xa 0 < x < xbxa < x < 0 x > xb

O

z

y

x

Figure 4.6: Bi-layer with two homogeneous layers for x < xa, a bonded two-layered
section for xa < x < 0, a delaminated section for 0 < x < xb and another bonded
two-layered section for x > xb.

However if the delamination area is shorter, then the solitons in the delaminated sec-

tion will not be fully separated. In this case, the radiating waves in the second bonded

region overlap and generate a new single-humped radiating solitary wave. Irrespective

of the separation, this process of creating a new radiating solitary wave is accompanied

by some additional radiation, and therefore the amplitude of the new radiating solitary

wave is reduced in both layers when compared to the radiating solitary wave propagat-

ing in a fully bonded waveguide, with no delamination. Indeed we can see this from the

conservation laws of the KdV equation and coupled Ostrovsky equations. Furthermore,

as the radiating solitary wave is not supported by the KdV equation, in the delami-

nated region the radiation separates from the soliton and the periodicity observed in

the tail disappears as the tail transforms into a wave packet. This feature gives another

indication that delamination is present.
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In order to investigate this behaviour more fully, we consider several cases with different

delamination lengths, as measured in Full Width at Half Magnitude (FWHM) of the

incident solitary wave in the same way as the previous section. In this case, the FWHM of

the incident soliton measures approximately 5 units. We present results for delamination

of length 10, 20, 40 and 60 FWHM, against the case where there is no delamination.

Note that Figure 4.7 is for a delamination length of approximately 60 FWHM.
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Figure 4.8: A comparison between the case without delamination (blue) and with
delamination (red) of differing lengths, measured in FWHM of the incident soliton.
The model is the same as that used in Figure 4.7 with the same parameters, and all
images are for t = 1200.

To obtain the results in Figure 4.8, we use the semi-analytical method instead of the

direct numerical method. We noted in Chapter 3 that the direct numerical method

presented in Appendix A.2 solves for two sections of the bar at a time and therefore

we must wait until the wave and its tail are fully contained in the region before moving

the calculation domain. However, for a shorter delamination i.e. 20 FWHM or less, the

leading wave front will reach the boundary of the calculation domain before the tail has

fully entered this region. Therefore, the wave will either reflect and interfere with our

solution, or we will lose part of the tail when we move the calculation domain. This is
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(b) Results for a range of ε

Figure 4.9: The percentage decrease in amplitude for various delamination lengths,
measured in FWHM, at (a) ε = 0.05, and (b) various values of ε.

a natural limitation for the use of the finite-difference method in the form presented in

Section A.2.

This could be remedied by solving for all sections of the bar simultaneously, and such

a method is demonstrated in Appendix A.3. Testing for this method showed the same

results as found with the semi-analytical method, however the theoretical estimates are

based upon the KdV equation in the delaminated section and therefore they will be the

most instructive. A comparison with the direct numerical method shows that the results

are consistent.

We see from Figure 4.8 that there are some key differences between the model without

delamination and the model with delamination. We only show the waves in the upper

layer as the waves in the lower layer are similar.

Firstly, as the length of delamination increases, the amplitude of the radiating solitary

wave created in the second bonded region is reduced. This can be explained by the fact

that the waves in the delaminated section of the bar travel at different speeds in each

layer and will be incident on the second bonded region at different times, so the energy

exchange between the layers results in the generation of a radiating solitary wave of

reduced amplitude. To measure this change, let us introduce the following measure:

ϑ =
|AFinal −ARSW|

ARSW
× 100. (4.71)

A graph of the amplitudes against the delamination length, in FWHM, is presented in

Figure 4.9(a). We can clearly see that after an initial growth period (up to 20 FWHM),

the dependence is close to linear.
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The presence of the double-humped solution, as seen in the image for 60 FWHM, clearly

identifies a delamination. Further numerical experiments have shown that this double-

humped structure emerges around 45-50 FWHM. The small hump behind the lead soliton

in the 40 FWHM image is the start of a double-humped solution, but the second ‘hump’

has a similar amplitude to the radiation and therefore is not distinct. The speed of the

waves in the delaminated region is different to the bonded region, and therefore when

the new radiating solitary wave is formed in the second bonded region, it will have a

phase shift with respect to the case of no delamination. Measuring from the minima of

the waves, we calculate a phase shift of 0.2, 0.8, 2.7 and 3.6 for 10, 20, 40 and 60 FWHM

respectively, growing with the delamination length as expected.

The radiating solitary wave is not a solution of the KdV equation and therefore, in the

delaminated region, the radiating tail forms a wave packet, breaking the regularity of

the tail region. This feature is again more pronounced for a larger delamination area,

however it can already be clearly identified for a short delamination, such as in the case

of 10 FWHM as seen in Figure 4.8. Further experiments have identified this behaviour

for 5 FWHM, however the amplitude is similar to the rest of the tail and therefore this

is difficult to identify visually.

We summarise these observations as follows. For very short delamination areas i.e. 5

FWHM, these differences are negligible and suggests that the soliton does not take care

of delaminations shorter than a threshold value. For delamination areas that are greater

than 5 FWHM, we can use our observations above for the amplitude reduction, phase

shift and breaking the regularity of the tail to identify the presence of delamination.

Modifying the FWHM value of the incident soliton can help identify shorter delamina-

tions. A further example is presented in Figure 4.9(b) for various values of ε. We see

the same result that was observed for the perfectly bonded bar i.e. as the value of ε is

decreased, the FWHM value increases by the same factor, for a fixed value of amplitude

decrease. Therefore we see a similar level of consistency between the two models.

4.4.4 Further experiments

From a physical standpoint, we would like to test a given structure in as many ways

as possible to obtain all possible information. Let us assume that we have a structure

such as that in Figure 4.6 but with the two homogeneous layers removed. Given this

structure, there are four natural tests that we can conduct: with two homogeneous layers

of either the same material as the upper or lower layers, and attaching the homogeneous

layers to either the left-hand side or right-hand side of the structure, with the waves

propagating to the right or to the left, respectively. Examples using the same material
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as the top layer are shown in Figure 4.7 and Figure 4.10 for the homogeneous layers

being attached on the left-hand side and right-hand side respectively. We discuss all

results here but omit the other cases for brevity.

Firstly we note that the double-humped structure is present in the second bonded re-

gion in all cases, confirming that each test identifies the presence of a sufficiently long

delamination area, from our observations in Section 4.4.3. There is a small phase shift

between the results for the different materials in the homogeneous layers, arising from

the higher characteristic speed of the material of the lower layer.

We also note that, for the homogeneous layers being present on the right, the first

bonded region is longer and this leads to a longer radiating tail. This tail becomes a

wave packet in the delaminated region and we observe that the larger amplitude wave

packet is closer to the double-humped structure for the case where the tail is longer,

i.e. when the homogeneous section is on the right-hand side. Indeed, the length of

the bonded region after the delamination is shorter in this case and therefore we would

expect the wave packet to be closer to the leading wave. This gives us an indication

of where the delamination is present in the bi-layer, i.e. if the radiation wave packet is

closer to the leading wave when sending the waves from the right, then the delamination

is closer to the left-hand side of the structure, and vice versa.

It is worth noting that the generated wave is of a larger amplitude in the case when

the homogeneous layers are of the same material as the bottom layer (with a larger

characteristic speed), and therefore the FWHM measure is smaller. However, as the

difference in the characteristic speeds is O (ε), the difference in FWHM will be O (ε)

as well. Therefore, these images are omitted as they do not provide significantly new

information.

4.5 Concluding Remarks

Here we have discussed the scattering of a long radiating bulk strain solitary wave in

a delaminated bi-layer with a soft bonding between the layers. The modelling was

performed within the framework of the non-dimensional coupled regularised Boussinesq

equations (4.1), which were derived to describe long nonlinear longitudinal waves in a

two-layered waveguide with a soft bonding layer (‘imperfect interface’) from a layered

lattice model [38].

The developed direct numerical scheme and the semi-analytical scheme show good agree-

ment in all regions of the bi-layer, with a small difference in the amplitude and minor

phase shift between the results. This could be remedied by the inclusion of higher-order
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corrections in the weakly nonlinear scheme, similarly to initial-value problems [39, 46].

We also note that the direct numerical method is expensive in comparison to the weakly

nonlinear scheme.

Our study has revealed key features of the behaviour of radiating solitary waves in such

delaminated bi-layers, for different lengths of the delaminated area compared to the

wavelength (FWHM) of the incident soliton. If the delaminated area is sufficiently long

(≥ 25 FWHM), then there is a significant reduction in the amplitude of the transmitted

radiating solitary wave (≥ 10 %). In fact, the incident radiating solitary wave under-

goes a complicated process of shedding a tail and propagating with slightly different

speeds along the two layers in the delaminated region, followed by generation of a new

radiating wave in the second bonded region. For shorter delamination regions (< 25

FWHM), the key dynamical effect manifesting the presence of a delaminated region in

the structure is the appearance of a wave packet in the regular tail of the radiating

solitary wave. The waves are not sensitive to very short delamination regions, compara-

ble to the wavelength of the incident soliton. In practice, using an admissible incident

soliton with smaller wavelength (and higher amplitude), would increase the sensitivity

to shorter delamination regions. If the delaminated region is longer (≥ 45 FWHM) the

separation of solitons, propagating in two layers in the delaminated region, leads to the

emergence of a double-humped radiating wave in the second bonded region. We did

not show the cases with delamination areas greater than 60 FWHM. The dynamical

behaviour in these cases is simpler, leading to the emergence of two distinct radiating

solitary waves in each layer of the second bonded region - a very clear sign of delamina-

tion. However, such cases are likely to be uncommon in real-world applications because

of the dissipation processes which have not been accounted for in our modelling.

The generation of a radiating bulk strain solitary wave and subsequent disappear-

ance of the ‘ripples’ in the delaminated area of a two-layered PMMA bar with PCP

(polychloroprene-rubber-based) adhesive has been observed in experiments [36]. Our

numerical modelling motivates further laboratory experimentation with a wide range

of materials used in practical applications. It also paves the way for similar studies

in other physical settings supporting radiating solitary waves and radiating dispersive

shock waves, for example, in nonlinear optics [96, 97].





Chapter 5

Initial Value Problem for the

Boussinesq-Ostrovsky Equation

5.1 Introduction

In this chapter we consider the initial value problem for a Boussinesq-type equation

with the Ostrovsky term, which we will call the Boussinesq-Ostrovsky equation, for

brevity. This equation arises as an extension to the regularised Boussinesq equation,

as was derived in Chapter 2, for example in the case of a coupled FPU chain where

the mass of the particles in one layer of the chain is chosen to be significantly larger

than the other layer. In this case the displacement of particles in the chain with larger

mass are significantly less and therefore, in the limit, can be assumed to be zero. The

equation governing displacement in the other chain takes the form of the regularised

Boussinesq-Ostrovsky equation,

utt − c2uxx = ε
(α

2

(
u2
)
xx

+ βuttxx − γu
)
, (5.1)

where γ > 0, α and β are constant and ε is a small parameter. In [46], a systematic

approach to the construction of the weakly nonlinear solution of the initial value problem

and rigorous estimates for the error terms of the Boussinesq-Ostrovsky equation (5.1)

were found, and the convergence rates predicted by this derivation were confirmed by

numerical experimentation. These results were obtained for a periodic domain, where the

initial condition had non-zero mean value. However the formulae obtained were in terms

of Fourier series and the constructed solution did not show an easy way of improving

the accuracy of the leading order approximation (which was reduced compared to the

case when γ = 0).

79
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In order to obtain a solution in a more explicit form, we aim to construct a weakly

nonlinear solution of “d’Alambert’s type” in increasing powers of
√
ε, in contrast to the

previous works which used Fourier series and powers of ε [46]. This allows us to find

explicitly the terms at each order and the inclusion of terms at increasing orders will

result in a more accurate solution.

This chapter is structured as follows. We consider the regularised Boussinesq-Ostrovsky

equation with a non-zero mean initial condition. The mean value is subtracted from the

function and we construct a weakly nonlinear solution in increasing powers of
√
ε, up to

O (ε), using two slow-scale variables. The direct solution of the Boussinesq-Ostrovsky

equation is compared to the weakly nonlinear solution with an increasing number of

terms included from the weakly nonlinear solution, in increasing powers of
√
ε. Results

are plotted for specific values of γ and we also plot the error against ε, again with an

increasing number of terms from the weakly nonlinear expansion. These results are

repeated for a range of values of γ and several choices for the mean value of the initial

condition. A further case is considered where the value of c is varied. Finally we conclude

our results and make some further observations about the behaviour of the solution.

5.2 Weakly Nonlinear Solution

Let us consider the Boussinesq-Ostrovsky equation

utt − c2uxx = ε
[α

2

(
u2
)
xx

+ βuttxx − γu
]
, (5.2)

where α, β, γ and ε are constants and u(x, t) is the (2L)-periodic function to be found.

Let us consider the equation defined on the domain Ω = [−L,L] × [0, T ] and we take

initial data

u|t=0 = F (x), ut|t=0 = V (x), (5.3)

where F and V are assumed to be (2L)-periodic functions. Following [46] and integrating

(5.2) in x over the period 2L we obtain an evolution equation for the mean value of the

form
d2

dt2

∫ L

−L
u(x, t) dx = −εγ

∫ L

−L
u(x, t) dx. (5.4)

Solving this equation we have the mean value

〈u〉(t) :=
1

2L

∫ L

−L
u(x, t) dx = A cos (

√
εγt) +B sin (

√
εγt). (5.5)
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Taking the mean value of the initial conditions and comparing these with (5.5) we see

that

〈u〉(t) :=
1

2L

∫ L

−L
u(x, t) dx = F0 cos (

√
εγt) + V0

sin
(√
εγt
)

√
εγ

, (5.6)

where we have

F0 =
1

2L

∫ L

−L
F (x) dx and V0 =

1

2L

∫ L

−L
V (x) dx. (5.7)

To eliminate linear growth in the mean value 〈u〉 in t, we require that

V0 =
1

2L

∫ L

−L
V (x) dx = 0, (5.8)

as seen from the second term in (5.6). This condition appears naturally in many physical

applications and indeed, in all cases that we consider in this chapter, this condition is

satisfied.

The mean value is subtracted from the original solution to obtain an equation for a

function with zero mean value. We take ũ = u − c0 cos (ωt), where ω =
√
εγ and

c0 = F0, so we obtain (omitting tildes)

utt − c2uxx = ε
[
αc0 cos (ωt)uxx +

α

2

(
u2
)
xx

+ βuttxx − γu
]
. (5.9)

We look for a weakly nonlinear solution of the form

u (x, t) = f± (ξ±, τ, T ) +
√
εP (ξ−, ξ+, τ, T ) + εQ (ξ−, ξ+, τ, T ) + ε3/2R (ξ−, ξ+, τ, T )

+ ε2S (ξ−, ξ+, τ, T ) +O
(
ε5/2

)
, (5.10)

where we introduce the following fast and slow variables:

ξ± = x± ct, τ =
√
εt, T = εt.

Note that, unlike [46], we introduce two slow time scales. We now substitute (5.10) into

(5.9) and compare at various orders of
√
ε to find expressions for all functions in the

expansion. We noted earlier that the function u is 2L-periodic in x, therefore we require

that f− and f+ are also 2L-periodic in ξ− and ξ+, respectively. Moreover, it is natural

to assume that all terms in the asymptotic expansion for u are products of the functions

f−, f+, and their derivatives. This assumption then implies that all terms are periodic

in ξ−/ξ+, at fixed ξ+/ξ−. Furthermore, as the functions f− and f+ have zero mean i.e.∫ L

−L
f− dξ− = 0 and

∫ L

−L
f+ dξ+ = 0, (5.11)
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then all terms in (5.10) will have zero mean in ξ−/ξ+, at fixed ξ+/ξ−.

The solution is satisfied at leading order, therefore we move to the next order immedi-

ately. At each stage we will also satisfy the initial condition for the previous order, as

the functions at a given order are introduced by comparing terms at the previous order

of
√
ε.

5.2.1 Terms at O (
√
ε)

At this order the right-hand side of (5.9) does not contribute to the expansion, so we

have

− 4c2Pξ−ξ+ − 2cf−ξ−τ + 2cf+
ξ+τ

= 0. (5.12)

We average (5.12) at constant ξ− or ξ+ i.e. in the reference frame moving with the linear

speed of the right- or left-propagating waves, respectively. Therefore, at constant ξ− for

example, we have

1

2L

∫ L

−L
Pξ−ξ+ dx =

1

4L

∫ 2L−ξ−

−2L−ξ−
Pξ−ξ+ dξ+ =

1

4L

[
Pξ−

]2L−ξ−
−2L−ξ− = 0. (5.13)

A similar result can be obtained for ξ+ and we see that under the averaging Pξ−ξ+ = 0.

Averaging (5.12) at constant ξ− and ξ+ therefore gives

f−ξ−τ = 0 and f+
ξ+τ

= 0. (5.14)

Integrating with respect to the characteristic variables we obtain

f− = f̃− (ξ−, T ) +B− (τ, T ) and f+ = f̃+ (ξ+, T ) +B+ (τ, T ) . (5.15)

Noting that we have zero mean of all functions in the expansion, we require that B± =

0. We will apply this rule at all orders to eliminate any functions of only τ and T .

Substituting (5.15) into (5.12) gives

Pξ−ξ+ = 0 ⇒ P = g− (ξ−, τ, T ) + g+ (ξ+, τ, T ) . (5.16)

We rewrite our weakly nonlinear solution to accommodate these changes, so we have

(omitting tildes for f±)

u (x, t) = f± (ξ±, T ) +
√
εg± (ξ±, τ, T ) + εQ (ξ−, ξ+, τ, T ) + ε3/2R (ξ−, ξ+, τ, T )

+ ε2S (ξ−, ξ+, τ, T ) +O
(
ε5/2

)
. (5.17)
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Initial Condition

Substituting (5.17) into (5.3) and comparing terms at O (1) we obtain the initial condi-

tion for f± in the form of d’Alembert’s solution, where we have
f− + f+

∣∣
t=0

= F (x)

−cf−ξ− + cf+
ξ+

∣∣∣
t=0

= V (x)
⇒ f±|t=0 =

1

2c

(
cF (x± ct)±

∫ x±ct

−L
V (x) dx

)
.

(5.18)

5.2.2 Terms at O (ε)

We now consider the terms at O (ε), using the results from the previous order. Substi-

tuting (5.17) into (5.9) and keeping terms of O (ε) we obtain

−4c2Qξ−ξ+ = 2cg−ξ−τ − 2cg+
ξ+τ

+
(

2cf−T + αf−f−ξ− + βc2f−ξ−ξ−ξ−

)
ξ−
− γf−

+ c0α cos (ωt)
(
f−ξ−ξ− + f+

ξ+ξ+

)
+ α

[
f−ξ−ξ−f

+ + 2f−ξ−f
+
ξ+

+ f−f+
ξ+ξ+

]
+
(
−2cf+

T + αf+f+
ξ+

+ βc2f+
ξ+ξ+ξ+

)
ξ+
− γf+. (5.19)

Averaging (5.19) at constant ξ− or constant ξ+ yields(
∓2cf±T + αf±f±ξ± + βc2f±ξ±ξ±ξ±

)
ξ±

= γf± ± 2cg±ξ±τ − c0α cos (
√
γτ)f±ξ±ξ± . (5.20)

We rearrange this to obtain

∓ 2cg±ξ±τ = c0α cos (
√
γτ)f±ξ±ξ± +A (ξ±, T ) , (5.21)

and to avoid secular terms we require A = 0. Therefore we have equations for f± and

g± of the form (
∓2cf±T + αf±f±ξ± + βc2f±ξ±ξ±ξ±

)
ξ±

= γf±, (5.22)

and

g± = ± c0α

2c
√
γ

sin (
√
γτ)f±ξ± +G± (ξ±, T ) = ±θf±ξ± +G± (ξ±, T ) , (5.23)

where we have introduced the coefficient

θ =
αc0

2
√
γ

sin (
√
γτ), (5.24)
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and the function G± is to be found at the next order. Substituting (5.22) and (5.23)

into (5.19) and integrating with respect to the characteristic variables we obtain

Q (ξ−, ξ+, τ, T ) = h− (ξ−, τ, T ) + h+ (ξ+, τ, T ) + hc (ξ−, ξ+, T ) , (5.25)

where

hc = − α

4c2

(
f−ξ−

∫
f+ dξ+ + 2f−f+ + f+

ξ+

∫
f− dξ−

)
. (5.26)

We rewrite the weakly nonlinear solution to reflect the new results for Q, derived in

(5.25), so we have

u (x, t) = f± (ξ±, T ) +
√
ε
(
g± (ξ±, τ, T )

)
+ ε
(
h± (ξ±, τ, T ) + hc (ξ−, ξ+, T )

)
+ ε3/2R (ξ−, ξ+, τ, T ) + ε2S (ξ−, ξ+, τ, T ) +O

(
ε5/2

)
. (5.27)

Initial Condition

Substituting (5.27) into (5.3) and now comparing terms at O (
√
ε) we obtain

g− + g+
∣∣
t=0

= 0

−cg−ξ− + cg+
ξ+

∣∣∣
t=0

= 0
⇒


−θf−ξ− +G− + θf+

ξ+
+G+

∣∣∣
t=0

= 0,

−cθf−ξ−ξ− − cG
−
ξ−

+ cθf+
ξ+ξ+

+ cG+
ξ+

∣∣∣
t=0

= 0.

From (5.24) we see that, at t = 0, θ = 0 and therefore using the same method as (5.18)

we have 
G− +G+

∣∣
t=0

= 0

−cG−ξ− + cG+
ξ+

∣∣∣
t=0

= 0
⇒ G±|t=0 = 0. (5.28)

5.2.3 Terms at O
(
ε3/2
)

We follow the same steps as before, substituting (5.27) into (5.9) and keeping terms of

O
(
ε3/2

)
to obtain

−4c2Rξ−ξ+ = 2ch−ξ−τ − 2ch+
ξ+τ

+
(

2cg−T + α
(
f−g−

)
ξ−

+ βc2g−ξ−ξ−ξ−

)
ξ−
− γg−

− g−ττ − g+
ττ +

(
−2cg+

T + α
(
f+g+

)
ξ+

+ βc2g+
ξ+ξ+ξ+

)
ξ+
− γg+

+ α
[
f−ξ−ξ−g

+ + 2f−ξ−g
+
ξ+

+ f−g+
ξ+ξ+

+ g−ξ−ξ−f
+ + 2g−ξ−f

+
ξ+

+ g−f+
ξ+ξ+

]
+ c0α cos (ωt)

(
g−ξ−ξ− + g+

ξ+ξ+

)
. (5.29)
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Averaging (5.29) at constant ξ− or constant ξ+ yields

±2ch±ξ±τ = θ
(
∓2cf±T + αf±f±ξ± + βc2f±ξ±ξ±ξ±

)
ξ±ξ±

− θγf±ξ±(
∓2cG±T + α

(
f±G±

)
ξ±

+ βc2G±ξ±ξ±ξ±

)
ξ±
− γG±

± θγf±ξ± ± θc0α cos (
√
γτ)f±ξ±ξ±ξ± . (5.30)

Differentiating (5.22) with respect to the appropriate characteristic variable, we can

eliminate the first line from (5.30) and therefore we have an expression for h±ξ±τ of the

form

h±ξ±τ =
θγ

2c
f±ξ +

θc0α

2c
cos (
√
γτ)f±ξ±ξ±ξ± + G̃± (ξ±, T ) . (5.31)

To avoid secular terms we require that G̃± = 0. Therefore we have an equation for G±

of the form (
∓2cG±T + α

(
f±G±

)
ξ±

+ βc2G±ξ±ξ±ξ±

)
ξ±

= γG±. (5.32)

At this stage we note that the initial condition for G±, as derived in (5.28), is G± = 0

and G±t = 0, and therefore, taking note of the form (5.32), we see that G± = 0 for all

times. Integrating (5.31) we obtain

h± =
γ ∂−1

τ θ

2c
f± −

γ
(
∂−1
τ θ

)2
2

f±ξ±ξ± + φ± (ξ±, T ) . (5.33)

Substituting (5.33) into (5.29) and integrating with respect to the characteristic variables

we obtain

R (ξ−, ξ+, τ, T ) = ψ− (ξ−, τ, T ) + ψ+ (ξ+, τ, T ) + ψc (ξ−, ξ+, τ, T ) , (5.34)

where

ψc = − α

4c2

(
f−f+

ξ+
− f−ξ−f

+ + fξ+ξ+

∫
f− dξ− − f−ξ−ξ−

∫
f+ dξ+

)
. (5.35)

We rewrite the weakly nonlinear solution to reflect the new results derived here, so we

have

u (x, t) = f± (ξ±, T ) +
√
ε
(
g± (ξ±, τ, T )

)
+ ε
(
h± (ξ±, τ, T ) + hc (ξ−, ξ+, T )

)
+ ε3/2

(
ψ± (ξ±, τ, T ) + ψc (ξ−, ξ+, τ, T )

)
+ ε2S (ξ−, ξ+, τ, T ) +O

(
ε5/2

)
.

(5.36)
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Initial Condition

Substituting (5.36) into (5.3) and now comparing terms at O (ε) we obtain
h− + h+ + hc

∣∣
t=0

= 0

f−T + f+
T + g−τ + g+

τ − ch−ξ− + ch+
ξ+
− chc ξ− + chc ξ+

∣∣∣
t=0

= 0

⇒ φ± =
1

2c

(
cJ (ξ±, τ, T )∓

∫ x±t

−L
K (x, τ, T ) dx

)
,

where we define

J = −hc −
γ ∂−1

τ θ

2c
f− +

γ
(
∂−1
τ θ

)2
2

f−ξ−ξ− −
γ ∂−1

τ θ

2c
f+ +

γ
(
∂−1
τ θ

)2
2

f+
ξ+ξ+

,

K = f−T + f+
T +

γ ∂−1
τ θ

2c
f−ξ− −

γ ∂−1
τ θ

2c
f+
ξ+

+
γ
(
∂−1
τ θ

)2
2

f−ξ−ξ−ξ−

−
γ
(
∂−1
τ θ

)2
2

f+
ξ+ξ+ξ+

− hc ξ− + hc ξ+ . (5.37)

5.2.4 Terms at O (ε2)

We now use the new form of the weakly nonlinear solution, (5.36), and keep terms at

O
(
ε2
)

to obtain

−4c2Sξ−ξ+ = −2g−τT − 2g+
τT − f

−
TT − f

+
TT − h

−
ττ − h+

ττ + 2ch−ξ−τ − 2ch+
ξ+τ

+ 2ch−cξ−T

− 2ch+
cξ+T

+ 2cψ−ξ−τ − 2cψ+
ξ+τ

+ α
(
f−h−

)
ξ−ξ−

+ α
(
f+h+

)
ξ+ξ+

+
α

2

(
g−

2
)
ξ−ξ−

+
α

2

(
g+2
)
ξ+ξ+

+ βc2h−ξ−ξ−ξ−ξ− + h+
ξ+ξ+ξ+ξ+

− γh− − γh+

+ c0α cos (ωt)
(
h−ξ−ξ− + h+

ξ+ξ+

)
− 2cβg−ξ−ξ−ξ−τ + 2cβg+

ξ+ξ+ξ+τ

− 2cβf−ξ−ξ−ξ−T + 2cβf+
ξ+ξ+ξ+T

− 4c2µc, (5.38)

where µc contains all the coupling terms between f±, g± and h± and the coefficient

is chosen for convenience. When averaging (5.38) at constant ξ− or constant ξ+, the

coupling terms are averaged out and therefore the averaging yields

±2ψ±ξ±τ = H±1 (ξ±, τ, T ) +H±2 (ξ±, T ) , (5.39)

where the functions H±1 , H±2 are found from (5.38). Integrating (5.39) with respect

to the respective characteristic variables, we see that to avoid secular terms we require
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H±2 = 0. This allows us to derive an equation for φ± of the form(
∓2cφ±T + α

(
f±φ±

)
ξ±

+ βc2φ±ξ±ξ±ξ±

)
ξ±

= γφ± + f±TT ∓ 2cβf±ξ±ξ±ξ±T

+
γθ̃2

2
f±ξ±ξ± −

αθ̃2

2

(
f±

2

ξ±

)
ξ±ξ±

, (5.40)

where

θ̃ =
θ

sin
(√
γτ
) =

αc0

2
√
γ
. (5.41)

At this stage we have fully defined all functions at O (ε) and have therefore completed

our expansion. The weakly nonlinear expansion takes the form

u (x, t) = f± (ξ±, T ) +
√
ε
(
g± (ξ±, τ, T )

)
+ ε
(
h± (ξ±, τ, T ) + hc (ξ−, ξ+, T )

)
+O

(
ε3/2

)
.

(5.42)

5.3 Results

To solve the Boussinesq-Ostrovsky equation we use a pseudospectral method with a 4th

order Runge-Kutta method for time stepping, as was used in [46, 110]. This method is

described in Appendix C.3. For the Ostrovsky equations we again use a pseudospectral

method, based upon the method in [40, 43]. These are presented in Appendix C.2.1 and

C.2.2.

5.3.1 Error Analysis

We compare the weakly nonlinear solution (5.42) to the solution of the Boussinesq-

Ostrovsky equation (5.1), with an increasing number of terms included from the weakly

nonlinear solution. Let us denote the solution to (5.1) as unum, (5.42) with only the

leading order terms included as u1, with terms up to and including O (
√
ε) terms as u2

and with terms up to and including O (ε) as u3. We consider the maximum absolute

error over x, defined as

ei = max
−L≤x≤L

|unum (x, t)− ui (x, t)|, i = 1, 2, 3, (5.43)

and use a least-squares power fit to determine how the maximum absolute error varies

with the small parameter ε. Therefore we write the errors in the form

exp [ei] = Ciε
αi , (5.44)
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and take the logarithm of both sides to form the error plot (the exponential factor is

included so that we have ei as the plotting variable). The values of Ci and αi are found

using the Matlab function polyfit.

5.3.2 Results for Unity Coefficients

In this section we use a solitary wave as the initial condition, with a constant pedestal

term introduced to increase the mean value of the initial condition (and therefore the

value of c0). Explicitly we take

u(x, 0) = Asech2
(x

Λ

)
+ d, (5.45)

ut(x, 0) =
2cA

Λ
sech2

(x
Λ

)
tanh

(x
Λ

)
, (5.46)

where d is a constant and we take

A =
6ck2

α
, Λ =

√
2cβ

k
, k =

√
α

3c
. (5.47)

The mean value term c0 will therefore take the value

c0 = d+
AΛ

2L
(tanh (L)− tanh (−L)) ≈ d+

AΛ

L
for sufficiently large L. (5.48)

The initial condition for the higher order correction functions φ± are given in (5.37),

using the initial condition for the leading order terms as defined in (5.18). In all results

presented in this section we take c = α = β = 1.

We compute the results for various values of γ and c0. Here we plot a sample for small

and large γ, and for small and large values of c0. In Figure 5.1 we show that, for small γ,

an increase in c0 increases the error in the solution (the weakly nonlinear solution is less

accurate). The same behaviour occurs in Figure 5.2, and by comparison to Figure 5.1

we see that an increase in γ results in a corresponding increase in the error. To further

understand the behaviour of the errors, we plot the corresponding error curves for the

cases in Figures 5.1 and 5.2. These results are presented in Figure 5.3 and Figure 5.4

for γ = 0.1 and γ = 0.5 respectively. We see that the error curves in Figure 5.3 have

slope 0.5, 1 and 1.5, corresponding to errors at O (
√
ε), O (ε) and O

(
ε3/2

)
respectively.

This can be understood from (5.42), as the inclusion of terms at a given order of the

expansion will result in errors at the next order. An interesting observation is that, as γ

increases for a fixed value of c0, the value of e1 tends to e2 and similarly e3 tends to the

value expected with the inclusion of the next order of terms i.e. from 1.5 to 2. Analysing

the form of equation (5.23) shows that, as γ increases, the magnitude of these terms
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(a) The solution of the Boussinesq-Ostrovsky equation
and the weakly nonlinear solutions for γ = 0.1 and
d = 1.
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(b) The solution of the Boussinesq-Ostrovsky equation
and the weakly nonlinear solutions for γ = 0.1 and
d = 7.

Figure 5.1: A comparison of the original Boussinesq-Ostrovsky equation (5.1) (solid,
blue) at t = 1/ε, for the weakly nonlinear solution including leading order (dashed,
red), O (

√
ε) (dash-dot, black) and O (ε) (dotted, green) corrections, for (a) d = 1 and

(b) d = 7. Parameters are L = 40, N = 800, k = 1/
√

3, α = β = c = 1, γ = 0.1,
ε = 0.001, ∆t = 0.01 and ∆T = ε∆t. We see that the solution agrees well to leading
order and this agreement is improved with the addition of higher order corrections.
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(a) The solution of the Boussinesq-Ostrovsky equation
and the weakly nonlinear solutions for γ = 0.5 and
d = 1.
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(b) The solution of the Boussinesq-Ostrovsky equation
and the weakly nonlinear solutions for γ = 0.5 and
d = 7.

Figure 5.2: A comparison of the original Boussinesq-Ostrovsky equation (5.1) (solid,
blue) at t = 1/ε, for the weakly nonlinear solution including leading order (dashed,
red), O (

√
ε) (dash-dot, black) and O (ε) (dotted, green) corrections, for (a) d = 1 and

(b) d = 7. Parameters are L = 40, N = 800, k = 1/
√

3, α = β = c = 1, γ = 0.5,
ε = 0.001, ∆t = 0.01 and ∆T = ε∆t. We see that the solution agrees well to leading
order and this agreement is improved with the addition of higher order corrections.

decreases. However, from the initial condition for φ as given in (5.37), the magnitude

of φ will increase as γ increases. Therefore the gradient of the error curves will tend to

integer powers of epsilon, so the fractional powers will tend to the next largest integer

power.

A further observation is that the increase of c0 will result in an increase in the errors, as

we saw in Figure 5.1 and Figure 5.2. This can be seen by comparing the two images in
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(a) Error curves for γ = 0.1 and d = 1, for all values
of ei.
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(b) Error curves for γ = 0.1 and d = 7, for all values
of ei.

Figure 5.3: A comparison of error curves for varying values of ε, at t = 1/ε, for the
weakly nonlinear solution including leading order (upper, blue), O (

√
ε) (middle, red)

and O (ε) (lower, black) corrections, for (a) d = 1 and (b) d = 7. Parameters are
L = 40, N = 800, k = 1/

√
3, α = β = c = 1, γ = 0.1, ∆t = 0.01 and ∆T = ε∆t. We

see that the inclusion of more terms in the expansion increases the accuracy, and that
the errors increase for larger values of d.
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(a) Error curves for γ = 0.5 and d = 1, for all values
of ei.
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(b) Error curves for γ = 0.5 and d = 7, for all values
of ei.

Figure 5.4: A comparison of error curves for varying values of ε, at t = 1/ε, for the
weakly nonlinear solution including leading order (upper, blue), O (

√
ε) (middle, red)

and O (ε) (lower, black) corrections, for (a) d = 1 and (b) d = 7. Parameters are
L = 40, N = 800, k = 1/

√
3, α = β = c = 1, γ = 0.5, ∆t = 0.01 and ∆T = ε∆t. We

see that the inclusion of more terms in the expansion increases the accuracy, and that
the errors increase for larger values of d. The upper and lower curves are steeper for
smaller values of d, and tend to their theoretical values as d increases.

Figure 5.3 and again for Figure 5.4. Furthermore, the gradient of the error curves tends

towards the expected theoretical values as the value of c0 increases. This is expected as

the magnitude of the terms in (5.23) increase as c0 increases.

To identify this behaviour more clearly, we tabulate the values of ei for a range of values

of c0 and γ. These results are shown in Tables 5.1, 5.2 and 5.3 for the inclusion of

leading order terms, O (
√
ε) and O (ε) i.e. e1, e2 and e3. From these tables we clearly see
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Value of γ
d = 1 d = 4 d = 7

α1 C1 α1 C1 α1 C1

γ = 0.1 0.478 -0.471 0.468 0.742 0.466 1.274

γ = 0.3 0.559 -0.260 0.504 0.552 0.500 1.070

γ = 0.5 0.704 0.904 0.519 0.457 0.500 0.838

Table 5.1: Maximum absolute error scaling parameters for the leading order weakly
nonlinear solution for the initial condition in (5.46). The domain lengths and
parameters are α = β = c = 1, L = 40 and k = 1/

√
3.

Value of γ
d = 1 d = 4 d = 7

α2 C2 α2 C2 α2 C2

γ = 0.1 0.993 0.795 0.962 1.848 0.952 2.707

γ = 0.3 0.988 1.819 0.989 1.947 0.991 2.268

γ = 0.5 0.979 2.529 0.980 2.565 0.982 2.645

Table 5.2: Maximum absolute error scaling parameters for the weakly nonlinear
solution up to O (

√
ε) for the initial condition in (5.46). The domain lengths and

parameters are α = β = c = 1, L = 40 and k = 1/
√

3.

Value of γ
d = 1 d = 4 d = 7

α3 C3 α3 C3 α3 C3

γ = 0.1 1.519 0.835 1.455 2.505 1.443 3.776

γ = 0.3 1.920 4.755 1.643 3.290 1.528 3.310

γ = 0.5 1.969 6.418 1.913 6.071 1.805 5.434

Table 5.3: Maximum absolute error scaling parameters for the weakly nonlinear
solution up to O (ε) for the initial condition in (5.46). The domain lengths and
parameters are α = β = c = 1, L = 40 and k = 1/

√
3.

that the error values are close to the theoretical values for γ = 0.1 and for large values

of c0 with γ = 0.5. We also confirm that, as γ increases, the values of e1 and e3 tend

to the next largest integer value. It is also clear from the values at γ = 0.5 that, as c0

increases, the values of ei tend towards their theoretical values.

A further interesting point arises from Figures 5.3 and 5.4. There will be a value of ε

where the error curves intercept, suggesting that the inclusion of higher order terms only

improves the solution when ε is below a theoretical limit, as expected for an asymptotic

series. We introduce the following notation:

ε1 = Intercept of e1 and e2 curves, ε2 = Intercept of e2 and e3 curves. (5.49)

More precisely, ε1 is the intercept of the leading order and O (
√
ε) curves, and ε2 is the

intercept of the O (
√
ε) and O (ε) curves. We can calculate this using the values from

Tables 5.1 - 5.3 and the results are shown in Table 5.4. We can see that, in general,

an increase in γ results in a smaller value of ε1 or ε2 i.e. as γ increases we require a
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Value of γ
Intercept of O (1) and O (

√
ε) Intercept of O (

√
ε) and O (ε)

d = 1 d = 4 d = 7 d = 1 d = 4 d = 7

γ = 0.1 0.0856 0.1066 0.0524 0.9268 0.2638 0.1134

γ = 0.3 0.0079 0.0563 0.0872 0.0428 0.1283 0.1436

γ = 0.5 0.0027 0.0103 0.0235 0.0197 0.0233 0.0337

Table 5.4: Intercept point of error curves, in terms of ε, representing the maximum
value of ε at which the inclusion of O (

√
ε) or O (ε) terms will decrease the error.

smaller value of ε to improve the accuracy of the solution with the inclusion of higher

order terms.

Another observation is that, for γ > 0.1, as d increases we see a corresponding increase

in ε1 or ε2. This suggests that for large γ, when a small value of ε1 and ε2 is required

for the inclusion of multiple terms from the weakly nonlinear expansion, the threshold

is increased with an increase in d. More importantly, in all cases here we have ε1 < ε2

and therefore, if the inclusion of O (
√
ε) terms improves the accuracy of the solution for

the choice of ε, then the inclusion of O (ε) terms will also improve the accuracy of the

solution, without further restriction on ε.

5.3.3 Results for Non-Unity Coefficients

We now consider the system with a higher characteristic speed, namely c = 2 and we

also vary the values of α and β, so we take α = β = 2. As was done in Section 5.3.2,

we compare the solution to the Boussinesq-Ostrovsky equation to the weakly nonlinear

solution with an increasing number of terms included in the expansion. We plot the

results for γ = 0.1 and γ = 0.5, with a pedestal term of d = 1 and d = 7, for direct

comparison with the results for c = 1, in Figures 5.5 and 5.6. We can see that there

is a larger phase shift in these cases; comparing directly between the cases for γ = 0.5

when c = 1 and c = 2, we see that the phase shift of the leading order solution (red

line) is distinctly larger in the latter case than the former. Furthermore, the difference

between the cases including terms up to O (
√
ε) and terms up to O (ε) are more clearly

highlighted in this case than the previous results for c = 1, as can again be seen clearly

from Figure 5.5 and 5.6 for the enhanced inserts in each image.

As before we plot the corresponding error curves for the cases in Figures 5.5 and 5.6.

These results are presented in Figure 5.7 and Figure 5.8 for γ = 0.1 and γ = 0.5

respectively. We again see that the error curves in Figure 5.7 have slope 0.5, 1 and 1.5

as expected. It is worth noting that the errors are similar to their previous cases by

visual inspection of Figures 5.7 and 5.8 for c = 1. However, we see that as γ increases,

while the curves for the leading order and the inclusion of O (
√
ε) terms do tend towards
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(a) The solution of the Boussinesq-Ostrovsky equation
and the weakly nonlinear solutions for γ = 0.1 and
d = 1.
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(b) The solution of the Boussinesq-Ostrovsky equation
and the weakly nonlinear solutions for γ = 0.1 and
d = 7.

Figure 5.5: A comparison of the original Boussinesq-Ostrovsky equation (5.1) (solid,
blue) at t = 1/ε, for the weakly nonlinear solution including leading order (dashed,
red), O (

√
ε) (dash-dot, black) and O (ε) (dotted, green) corrections, for (a) d = 1 and

(b) d = 7. Parameters are L = 40, N = 800, k = 1/
√

3, α = β = c = 2, γ = 0.1,
ε = 0.001, ∆t = 0.01 and ∆T = ε∆t. We see that the solution agrees well to leading
order and this agreement is improved with the addition of higher order corrections.
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(a) The solution of the Boussinesq-Ostrovsky equation
and the weakly nonlinear solutions for γ = 0.5 and
d = 1.
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(b) The solution of the Boussinesq-Ostrovsky equation
and the weakly nonlinear solutions for γ = 0.5 and
d = 7.

Figure 5.6: A comparison of the original Boussinesq-Ostrovsky equation (5.1) (solid,
blue) at t = 1/ε, for the weakly nonlinear solution including leading order (dashed,
red), O (

√
ε) (dash-dot, black) and O (ε) (dotted, green) corrections, for (a) d = 1 and

(b) d = 7. Parameters are L = 40, N = 800, k = 1/
√

3, α = β = c = 2, γ = 0.5,
ε = 0.001, ∆t = 0.01 and ∆T = ε∆t. We see that the solution agrees well to leading
order and this agreement is improved with the addition of higher order corrections.

each other as in the case for c = 1, the rate at which this occurs is slower to the previous

case when c = 1. To inspect this behaviour further, we again tabulate the errors in

Tables 5.5, 5.6 and 5.7 for the inclusion of leading order terms, O (
√
ε) and O (ε) i.e. e1,

e2 and e3. The errors are close to the theoretical values as before, however we can see

from these tables that the theoretical slope values are obtained for a wider range of γ

and c0 values in contrast to the previous case for c = 1. If we analyse the form of the
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(a) Error curves for γ = 0.1 and d = 1, for all values
of ei.
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(b) Error curves for γ = 0.1 and d = 7, for all values
of ei.

Figure 5.7: A comparison of error curves for varying values of ε, at t = 1/ε, for the
weakly nonlinear solution including leading order (upper, blue), O (

√
ε) (middle, red)

and O (ε) (lower, black) corrections, for (a) d = 1 and (b) d = 7. Parameters are
L = 40, N = 800, k = 1/

√
3, α = β = c = 2, γ = 0.1, ∆t = 0.01 and ∆T = ε∆t. We

see that the inclusion of more terms in the expansion increases the accuracy, and that
the errors increase for larger values of d.
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(a) Error curves for γ = 0.5 and d = 1, for all values
of ei.
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(b) Error curves for γ = 0.5 and d = 7, for all values
of ei.

Figure 5.8: A comparison of error curves for varying values of ε, at t = 1/ε, for the
weakly nonlinear solution including leading order (upper, blue), O (

√
ε) (middle, red)

and O (ε) (lower, black) corrections, for (a) d = 1 and (b) d = 7. Parameters are
L = 40, N = 800, k = 1/

√
3, α = β = c = 2, γ = 0.5, ∆t = 0.01 and ∆T = ε∆t. We

see that the inclusion of more terms in the expansion increases the accuracy, and that
the errors increase for larger values of d. The upper and lower curves are steeper for
smaller values of d, and tend to their theoretical values as d increases.

expressions in (5.42) we can see that, for O (
√
ε), the term is identical to the previous

case if c = α, as we have here. However, for O (ε) (as can be seen from (5.33)) the first

term in this expression is smaller due to the divisor of 2c. This is further reflected in

the initial condition for φ, as the terms from (5.33) are present here as well. Therefore,

the values present at O (ε) are likely to be smaller and therefore more distinct from the

previous value at O (
√
ε), resulting in the estimates being obtained more distinctly for
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Value of γ
d = 1 d = 4 d = 7

α1 C1 α1 C1 α1 C1

γ = 0.1 0.477 -1.061 0.469 0.091 0.467 0.615

γ = 0.3 0.522 -1.154 0.498 -0.136 0.497 0.389

γ = 0.5 0.581 -0.828 0.501 -0.314 0.496 0.178

Table 5.5: Maximum absolute error scaling parameters for the leading order weakly
nonlinear solution for the initial condition in (5.46). The domain lengths and
parameters are α = β = c = 2, L = 40 and k = 1/

√
3.

Value of γ
d = 1 d = 4 d = 7

α2 C2 α2 C2 α2 C2

γ = 0.1 0.996 0.007 0.974 0.825 0.961 1.540

γ = 0.3 0.996 0.893 0.996 1.063 0.996 1.348

γ = 0.5 0.995 1.514 0.995 1.576 0.996 1.679

Table 5.6: Maximum absolute error scaling parameters for the weakly nonlinear
solution up to O (

√
ε) for the initial condition in (5.46). The domain lengths and

parameters are α = β = c = 2, L = 40 and k = 1/
√

3.

Value of γ
d = 1 d = 4 d = 7

α3 C3 α3 C3 α3 C3

γ = 0.1 1.440 -1.197 1.449 0.978 1.444 3.433

γ = 0.3 1.684 0.723 1.515 0.808 1.498 2.003

γ = 0.5 1.899 1.907 1.646 1.507 1.538 1.738

Table 5.7: Maximum absolute error scaling parameters for the weakly nonlinear
solution up to O (ε) for the initial condition in (5.46). The domain lengths and
parameters are α = β = c = 2, L = 40 and k = 1/

√
3.

the same set of ε values as before. This behaviour is replicated for several values of γ and

c0, and indeed while for large γ we see the slope values differing from their theoretical

estimates, the magnitude of the divergence is less than the previous case.

As was seen in the case for c = 1, from Figures 5.7 and 5.8 we notice that there will

be a value of ε where the error curves intercept, suggesting that the inclusion of higher

order terms only improves the solution when ε is below a theoretical limit, as expected

for an asymptotic series. We again calculate this limit using the values from Tables 5.5

- 5.7 for each of the cases considered in Figures 5.7 and 5.8. The results are shown in

Table 5.8.

Let us analyse the conclusions we drew for the previous case, referring to the notation

in (5.49). As γ increases, we see that ε1 decreases for all values of d whereas for ε2, in

contrast to the previous case, as d increases this behaviour is reversed i.e. for d = 1

we have that ε2 decreases as γ increases, but for d = 7 we have that ε2 increases as

γ increases. This suggests that the behaviour observed before is dependent upon the

coefficients in the equation.
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Value of γ
Intercept value ε1 Intercept value ε2

d = 1 d = 4 d = 7 d = 1 d = 4 d = 7

γ = 0.1 0.1277 0.2338 0.1537 15.0550 0.7246 0.0199

γ = 0.3 0.0133 0.0900 0.1463 1.2803 1.6345 0.2712

γ = 0.5 0.0035 0.0218 0.0497 0.6474 1.1118 0.8969

Table 5.8: Intercept point of error curves in Figures 5.7 and 5.8, in terms of ε,
representing the maximum value of ε at which the inclusion of O (

√
ε) or O (ε) terms

will decrease the error.

The behaviour observed for increasing d is also different to before. For γ > 0.1 we see

that ε1 increases as d increases, but for ε2 there is no clear relation. This behaviour

would need to be investigated further. As with the previous scenario, in almost all cases

we see that ε1 < ε2 and therefore, if the inclusion of O (
√
ε) terms improves the accuracy

of the solution for the choice of ε, then the inclusion of O (ε) terms will also improve the

accuracy of the solution, without further restriction on ε.

There is one further conclusion that can be drawn by comparing the values obtained

when we have unity coefficients. In almost every case (the only exception being γ = 0.1

and d = 7) we have that εi is smaller for the unity coefficient case than for the case

when c = α = β = 2. This suggests that the threshold value of ε increases when the

coefficients increase and therefore a weakly nonlinear solution can be formed for larger

values of ε.

5.4 Conclusions

The discussion in this chapter has been dedicated to the initial-value problem for the

Boussinesq-Ostrovsky equation where the initial condition has non-zero mean. We cal-

culated the mean value of the solution and subtracted this from the function to obtain

a modified Boussinesq-Ostrovsky equation where the solution has zero mean value. A

weakly nonlinear solution was constructed in terms of the leading order left- and right-

propagating waves in powers of
√
ε so that all functions up to and including O (ε) were

fully defined. This weakly nonlinear solution was then substituted back into the initial

condition to obtain initial conditions for the derived functions in the weakly nonlinear

expansion.

We then compared the constructed weakly nonlinear solution to the numerically cal-

culated solution to the Boussinesq-Ostrovsky equation, with an increasing number of

terms included from the expansion. This showed that the accuracy improved as more

terms from the weakly nonlinear expansion were included, with the O (
√
ε) correction

compensating for a phase shift while the O (ε) correction adjusted the amplitude of the
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solution and captured higher-order left-propagating waves not captured by the leading

order solution. The errors were plotted against ε and we showed that the absolute error

scales with the order of the next term in the weakly nonlinear expansion. We also showed

that, as γ increases, the terms at non-integer powers of ε become small and therefore

the absolute error scales with the next integer power. Increasing the mean value of the

initial condition reduced this effect as the terms at non-integer powers of ε increase with

the mean value, and this behaviour was seen in the tabulated values for the error curves.

A final study was performed for the case when the linear speed of waves was increased

i.e. for c = 2. In this case we showed that the same conclusions can be drawn from

the error curves as the previous case, and indeed the errors increase for larger values

of the mean value as before. Furthermore, we again see that as γ increases the size of

the terms in the weakly nonlinear expansion at fractional powers of ε tend to the next

largest integer value of ε as before, but at a slower rate to before. This confirms that

the estimates hold for non-unity values of the coefficients.

The work in this chapter lays the groundwork for an extension of the scattering problem

considered in Chapter 4, as we could consider a layered bar with significantly different

properties between the layers. Indeed, if the lower layer has a sufficiently large char-

acteristic speed then the model gives a Boussinesq-Ostrovsky equation in the bonded

section and a Boussinesq equation in the delaminated and homogeneous regions. These

equations would have to be considered as having zero mean value and therefore the

model is significantly more complicated than the previous case. We discuss this further

in the conclusions of the thesis.
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Conclusions and Future Work

In this thesis, we have considered the scattering of longitudinal bulk strain waves of

various types in layered waveguides with different types of bonds between the layers. In

each case, we aimed to describe the behaviour of such waves in the delaminated region

of the waveguide and, if possible, when they re-enter a bonded section of the bar. We

developed numerical techniques in each case to aid our understanding of the problem.

In the first case we considered a perfectly bonded elastic bar with multiple layers, such

as the one considered in [30]. Our numerical modelling has confirmed that, in this

case, an incident solitary wave scatters in the delaminated region of the bar, generating

multiple solitons and dispersive radiation. The number of solitons generated is dependent

upon the number of layers and the geometry of the waveguide. We developed a semi-

analytical technique (see [42]) based upon the weakly nonlinear solution to the problem

(see [30]), which reduced the problem from the solution of multiple Boussinesq equations

with matching at the boundaries (describing the longitudinal displacements in the bar)

to the solving of at most two KdV equations in each section, describing reflected and

transmitted strain waves. This method was shown to be highly efficient and can compute

the solution to the problem many times faster than the direct method.

We continued this modelling to consider the case when the delamination region is finite,

so the solitons generated in the delaminated region of the bar must re-enter a bonded

section. In this case, we showed that the amplitudes of the generated solitons changed

as they became solitary waves in the bonded section, rather than the delaminated sec-

tion. Using the IST, we predicted the amplitudes of the lead soliton in this region (and

indeed other solitons, but this was not relevant to the study) and compared this to the

numerically calculated solution. As the length of the delamination region was increased,

the value of the amplitude tended from the incident wave’s amplitude to the theoretical
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value. This allowed us to predict the length of the delamination region using the param-

eters of the equation and therefore provides a method for using this work in a physical

setting for introscopy.

The next section of the work was dedicated to the case when we have a soft bond be-

tween the layers rather than a perfect bond. In this case, the material in the layers

can be different. The propagation of longitudinal displacements is described by coupled

Boussinesq equations [38], in contrast to the uncoupled equations we saw in the pre-

vious case. Following [39], there are two cases: one when the materials in the layers

have sufficiently close properties, and the second when the materials in the layers are

significantly different. We considered the first case in this thesis, when the difference is

such that the characteristic speeds differ by approximately O (ε), and we observed the

generation of radiating solitary waves in the bonded region of the bar, that is a soli-

tary wave with a one–sided co–propagating oscillatory tail. When these waves entered

a delaminated region, we observed that the solitary wave separated from its tail, while

the tail evolves into a wave packet [111]. When this solitary wave re-entered a bonded

region, the solitary wave formed another radiating solitary wave in this region, but due

to an energy exchange between the layers, the new radiating solitary wave has a smaller

amplitude. If the delamination region is of a shorter length, then the formed wave packet

is not a single radiating solitary wave but rather a double-humped structure. However,

due to the energy exchange, the change in amplitude is still consistent. Therefore, we

have shown that the change in amplitude can be used as a measure of the delamination

length. In addition, a phase shift between the case without delamination and the case

with delamination also gives a measure of the length of the delamination. The length

of the radiating solitary wave’s tail and the position of the radiating tail behind the

double-humped structure in the second bonded region provided another measure for the

position of the delaminated region.

Finally we considered the so-called Boussinesq-Ostrovsky equation on the periodic do-

main, with the aim of constructing a weakly nonlinear solution to the initial value

problem for the equation, extending the work in [45, 46]. In contrast to the previous

cases where we considered the Boussinesq equation, the equations derived in the weakly

nonlinear expansion necessarily require zero mean, while the initial condition may not

necessarily have zero mean. In [46] it was shown that the mean value of the Boussinesq-

Ostrovsky equation oscillated in time with period proportional to
√
ε; this mean value

was subtracted from the original solution to obtain an equation for a function with zero

mean value and therefore an expansion in zero mean functions. However the solution

was obtained in terms of Fourier series, and was difficult to use. As instructed by this

mean value term, we developed a new asymptotic expansion in terms of
√
ε rather than

ε, and using two slow scales, in contrast to the case of a Boussinesq equation. Numerical
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studies showed that the weakly nonlinear solution agrees reasonably well at leading order

and the solution is improved with the addition of more terms from the expansion. In

each case, the error scaled at the rate of the next term in the expansion and we showed

that these estimates hold for non-unity coefficients in the equation. Furthermore, we

found that there is a calculable value of ε above which the inclusion of extra terms in

the expansion does not improve the solution and would actually give a larger error. This

point can be found for any order in the expansion and gives a measure to how “weakly

nonlinear” the solution is, and indeed suggests that we require a certain value of ε for

improvements in the accuracy.

The work in the final chapter of the thesis for the Boussinesq-Ostrovsky equation is

of critical importance to the scattering problem discussed in the earlier chapters of the

thesis, as the derived solution for the coupled Boussinesq equations also has a restriction

on the mean value of the solution. In the aforementioned case the mean value was small

and therefore any errors introduced would be small. An extension of the work in this

thesis would be to consider the case described in Chapter 4 for a two-layered bar with

a soft bond between the layers. However, we allow the lower layer to have significantly

different properties to the upper layer. For example, if we consider the lower layer to

be a much higher density material, then if we take the limit we can assume that the

displacements from the equilibrium position in this layer are negligible; in this case, we

would find that the displacements in the upper layer would be described by a Boussinesq-

Ostrovsky equation. This case could then be considered using the expansion developed

in Chapter 5 for a non-zero mean initial condition and a weakly nonlinear solution to

the scattering problem could be derived, taking account of the mean value of the initial

condition. This would lead to an improvement in the solution and the methodology could

be extended to the coupled Boussinesq equations, such as those described in Chapter 4,

either for materials with close properties or indeed significantly different properties i.e.

c− 1 = O (1).





Appendix A

Finite-difference Techniques for

the Boussinesq and

Boussinesq-type Equations

Finite-difference techniques are commonly used to solve simple ODEs and PDEs and

can also be extended to more complicated systems. The simplest case involves replac-

ing the continuous equation by a discrete equation i.e. discretising the domain and

replacing all derivatives by a discretised form. Many books have been written on these

techniques and their applications to various equations [112, 113]. These methods can

easily be extended to more complicated equations, such as the KdV equation [3, 93],

one-dimensional Burgers equation [114], the Kadomtsev-Petviashvili equation [115], to

name a few.

In our case, we will consider the application of finite-difference techniques to a Boussinesq

equation. This method is generalised to the case of coupled regularised Boussinesq (cRB)

equations and we show that the system can be solved using the same technique. We

extend these methods to the system described in Chapter 3, where we have several

Boussinesq equations with different coefficients, combined with continuity conditions

on the interface. Finally, we show that these methods can be applied to the case in

Chapter 4, where we have cRB equations with continuity conditions on the interface

between sections.
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A.1 Finite-Difference Method for the Boussinesq

Equation

Let us consider the initial value problem for the Boussinesq equation on the infinite line,

taking the form

ftt − c2fxx = ε
(α

2

(
f2
)
xx

+ βfttxx

)
, (A.1)

f |t=0 = F (x, 0), (A.2)

ft|t=0 = G(x, 0). (A.3)

We solve this method using a finite-difference method, as was done in [116]. As we are

solving these equations numerically, we restrict ourselves to a finite domain x ∈ [−L,L]

and discretise the (x, t) domain into a grid with spacings h = ∆x and κ = ∆t. The

analytical solution f(x, t) is approximated by the exact solution of the difference scheme

f(ih, jκ). To simplify the notation, we will write this as f(ih, jκ) = fi,j , where we have

i = 0, 1, . . . , N and j = 0, 1, . . . . We approximate the derivatives in (A.1) using central

difference approximations (derived from the Taylor series) of the form

fxx =
fi+1,j − 2fi,j + fi−1,j

h2
, ftt =

fi,j+1 − 2fi,j + fi,j−1

κ2
. (A.4)

For the fourth-order derivative in (A.1) we apply the operators in (A.4) to each other

to obtain

fttxx =
fi+1,j+1 − 2fi+1,j + fi+1,j−1 − 2fi,j+1 + 4fi,j − 2fi,j−1 + fi−1,j+1 − 2fi−1,j + fi−1,j−1

κ2h2
.

(A.5)

The approximations in (A.4) and (A.5) are applied to (A.1) to obtain a discretised

equation. We introduce the notation

Dxx (fi,j) = fi+1,j − 2fi,j + fi−1,j ,

and therefore we have

− εβfi+1,j+1 +
(
2εβ + h2

)
fi,j+1 − εβfi−1,j+1 =

(
κ2c2 − 2εβ

)
Dxx (fi,j) + 2h2fi,j

− εακ2

2

[
(fi+1,j)

2 − 2 (fi,j)
2 + (fi−1,j)

2
]

+ εβfi+1,j−1 −
(
2εβ + h2

)
fi,j−1 + εβfi−1,j−1.

(A.6)

We can see from this that we require two initial conditions (as we have three time levels in

the scheme) and boundary conditions. We impose zero first derivative on the boundaries

i.e. fx = 0 at x = −L and x = L, and applying a central difference approximation we



Appendix A 105

obtain

f−1,j = f1,j and fN−1,j = fN+1,j , ∀j. (A.7)

For a given analytical initial condition, we can take the initial condition for the difference

equations of the form

fi,0 = F (ih, 0) and fi,1 = F (ih, κ), ∀i. (A.8)

If the initial condition is not given analytically then we can use a forward-difference

approximation to obtain the second initial condition for the scheme i.e

fi,0 = F (ih, 0), and fi,1 = F (ih, 0) + κG(ih, 0), ∀i. (A.9)

It can be seen that this system has tridiagonal form and therefore is amenable to solution

via optimised algorithms such as the Thomas algorithm (e.g. [117]). This can be seen

clearly by writing the system in matrix form for i = 0, 1, . . . , N , where it takes the form

2εβ + h2 −2εβ

−εβ 2εβ + h2 −εβ
. . .

. . .

−εβ 2εβ + h2 −εβ

−2εβ 2εβ + h2





f0,j+1

f1,j+1

...

fN−1,j+1

fN,j+1


=



f̃0

f̃1

...

f̃N−1

f̃N


, (A.10)

where f̃i represents the right-hand side of (A.6) at index i. The Thomas algorithm is an

optimised form of Gaussian elimination that makes use of the tridiagonal structure of

the matrix to simplify the method of solution. A condition for stability of the algorithm

is that the matrix (A.10) is diagonally dominant; we can clearly see that this condition

is satisfied for (A.10).

The stability of this scheme can be shown via a von Neumann linear stability analysis

[118]. In the subsequent sections, where we have a system of Boussinesq equations, each

Boussinesq equation should be stable via the same analysis, and the modification at the

interface between the equations should not have an adverse effect on this stability. The

step sizes chosen in each case adhere to the restriction imposed by this stability analysis.
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A.2 Direct Numerical Method for a System of Two

Boussinesq-type Equations

A.2.1 Derivation for Boussinesq Equation

Let us recall equation system (3.1) from Chapter 3. Denoting the coefficients for x < 0

with a subscript of 1 and for x > 0 with subscript 2, we can express the system for x < 0

and x > 0 as

u−tt − c2
1u
−
xx = 2ε

[
−6α1u

−
x u
−
xx + β1u

−
ttxx

]
, x < 0,

u+
tt − c2

2u
+
xx = 2ε

[
−6α2u

+
x u

+
xx + β2u

+
ttxx

]
, x > 0, (A.11)

with appropriate initial conditions

u±(x, 0) = F±(x), (A.12)

and associated continuity conditions

u−|x=0 = u+|x=0, (A.13)

c2
1u
−
x + 2ε

[
−3α1

(
u−x
)2

+ β1u
−
ttx

]∣∣∣
x=0

= c2
2u

+
x + 2ε

[
−3α2

(
u+
x

)2
+ β2u

+
ttx

]∣∣∣
x=0

. (A.14)

We aim to solve this system by extending the method described in Section A.1. An

overview of the method is as follows. We discretise the Boussinesq equation in each

section, introducing “ghost points” at the interface between the boundary. The Thomas

algorithm is applied to solve the Boussinesq equation implicitly in terms of these “ghost

points” and the continuity conditions are then discretised to obtain a system of equations

relating the “ghost points” at the boundary. This system is solved to obtain values for

the “ghost points” and this can then be substituted into the implicit solution for the

Boussinesq equation to obtain an explicit solution at a given time step.

This method is described in [42], however the time derivative term in the second con-

tinuity condition is calculated incorrectly therefore the statement that the scheme is

second order made in this paper is invalid. We have recalculated the derivative term to

obtain a scheme that is second order, and this is applied in all subsequent work including

[43, 111].

To simplify the notation, we assume that the interface between the two methods is

located at x = 0. Therefore, we can discretise the domain ([−L1, 0] ∪ [0, L2]) × [0, T ]

into a grid with equal spacings h = ∆x and κ = ∆t. Denoting the solution for x < 0
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as u− and for x > 0 as u+, the analytical solution u± (x, t) is approximated by the

exact solution of the finite-difference scheme u± (ih, jκ), denoted u±i,j , where we have

i = 0, 1, . . . , N1 for x < 0 and i = 0, 1, . . . , N2 for x > 0. The discretised form of the

Boussinesq equation is shown in (A.15) and (A.16) for generic coefficients. To simplify

the obtained expressions, we introduce the notation

Dxx

(
u−i,j

)
= u−i+1,j − 2u−i,j + u−i−1,j .

Substituting these approximations into system (A.11) gives a tridiagonal system of equa-

tions, of the form

− 2εβ1u
−
i+1,j+1 +

(
4εβ1 + h2

)
u−i,j+1 − 2εβ1u

−
i−1,j+1 =

(
c2

1κ
2 − 4εβ1

)
Dxx

(
u−i,j

)
+ 2h2u−i,j −

6εα1κ
2

h

[(
u−i+1,j

)2
−
(
u−i−1,j

)2
− 2u−i+1,ju

−
i,j + 2u−i,ju

−
i−1,j

]
+ 2εβ1u

−
i+1,j−1 −

(
4εβ1 + h2

)
u−i,j−1 + 2εβ1u

−
i−1,j−1, (A.15)

and

− 2εβ2u
+
i+1,j+1 +

(
4εβ2 + h2

)
u+
i,j+1 − 2εβ2u

+
i−1,j+1 =

(
c2

2κ
2 − 4εβ2

)
Dxx

(
u+
i,j

)
+ 2h2u+

i,j −
6εα2κ

2

h

[(
u+
i+1,j

)2
−
(
u+
i−1,j

)2
− 2u+

i+1,ju
+
i,j + 2u+

i,ju
+
i−1,j

]
+ 2εβ2u

+
i+1,j−1 −

(
4εβ2 + h2

)
u+
i,j−1 + 2εβ2u

+
i−1,j−1. (A.16)

Discretising the first continuity condition, (A.13), we obtain

u−N1,j+1 = u+
0,j+1. (A.17)

In the continuity condition (A.14) we make use of central difference approximations and

introduce the aforementioned “ghost points” of the form u−N1+1,j+1 and u+
−1,j+1. Making

these substitutions (A.14) becomes

hκ2c2
1

(
u−N1+1,j+1 − u

−
N1−1,j+1

)
− 3κ2εα1

[(
u−N1+1,j+1

)2
+
(
u−N1−1,j+1

)2

− 2u−N1+1,j+1u
−
N1−1,j+1

]
+ 2hεβ1

(
2u−N1+1,j+1 − 2u−N1−1,j+1 − 5u−N1+1,j + 5u−N1−1,j

+ 4u−N1+1,j−1 − 4u−N1−1,j−1 − u
−
N1+1,j−2 + u−N1−1,j−2

)
= hκ2c2

2

(
u+

1,j+1 − u
+
−1,j+1

)
+ 2hεβ2

(
2u+

1,j+1 − 2u+
−1,j+1 − 5u+

1,j + 5u+
−1,j + 4u+

1,j−1 − 4u+
−1,j−1 − u

+
1,j−2 + u+

−1,j−2

)
− 3κ2εα2

[(
u+

1,j+1

)2
+
(
u+
−1,j+1

)2
− 2u+

1,j+1u
+
−1,j+1

]
. (A.18)
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As we are considering localised initial data for strains, if we take L large enough then

we can enforce zero boundary conditions for the strain i.e. ux = 0. Therefore, applying

a central difference approximation to this condition, we have

u−1,j+1 − u
−
−1,j+1

2h
= 0 ⇒ u−1,j+1 = u−−1,j+1 and similarly u+

N1+1,j+1 = u+
N1−1,j+1.

(A.19)

Here we note that, as we have used central difference approximations everywhere, we

have a second-order scheme. The systems (A.15) and (A.16) are tridiagonal for the

values i = 0, . . . , N1 and i = 0, . . . , N2. We denote the right-hand side of (A.15) as fi

and the right-hand side of (A.16) as gi, for the appropriate values of i. At the central

boundary we can rearrange to obtain

f̃N1 = fN1 + 2εβ1u
−
N1+1,j+1, g̃0 = g0 + 2εβ2u

+
−1,j+1. (A.20)

Therefore we can write (A.15) for i = 0, . . . , N1 in matrix form as

4εβ1 + h2 −4εβ1

−2εβ1 4εβ1 + h2 −2εβ1

. . .
. . .

−2εβ1 4εβ1 + h2 −2εβ1

−2εβ1 4εβ1 + h2





u−0,j+1

u−1,j+1

...

u−N1−1,j+1

u−N1,j+1


=



f0

f1

...

fN1−1

f̃N1


. (A.21)

Similarly we can write (A.16) in matrix form, for i = 0, . . . , N2, as

4εβ2 + h2 −2εβ2

−2εβ2 4εβ2 + h2 −2εβ2

. . .
. . .

−2εβ2 4εβ2 + h2 −2εβ2

−4εβ2 4εβ2 + h2





u+
0,j+1

u+
1,j+1

...

u+
N2−1,j+1

u+
N2,j+1


=



g̃0

g1

...

gN2−1

gN2


. (A.22)

As both (A.21) and (A.22) are tridiagonal we can use the Thomas algorithm (e.g. [117])

to solve these systems implicitly, in terms of u−N1+1,j+1 and u+
−1,j+1 respectively. This

intermediary solution is then substituted into (A.18) to obtain a nonlinear equation in

terms of these ghost points. Noting that the Boussinesq solution is solved implicitly, we

can express each point in the domain as an explicit component and a multiplier of the

ghost point. Therefore we write each point in (A.18) in terms of an implicit and explicit

component, so we have

u−N1,j+1 = φ−1 + ψ−1 u
−
N1+1,j+1, u+

0,j+1 = φ+
1 + ψ+

1 u
+
−1,j+1,
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u−N1−1,j+1 = φ−2 + ψ−2 u
−
N1+1,j+1, u+

1,j+1 = φ+
2 + ψ+

2 u
+
−1,j+1, (A.23)

where we calculate the coefficients φ±1 , ψ±1 , φ±2 , ψ±2 from (A.21) and (A.22). The resulting

equation will be a single equation in terms of both ghost points. Therefore we use (A.17)

to express u+
−1,j+1 in terms of u−N1+1,j+1, and also use (A.23) to express u+

N1−1,j+1 and

u+
1,j+1 in terms of the ghost points. Denoting u = u−N1+1,j+1 for brevity, we make use of

(A.17) and (A.23) to obtain

u+
−1,j+1 =

φ−1 − φ
+
1 + ψ−1 u

ψ+
1

and u+
1,j+1 = φ+

2 +
ψ+

2

ψ+
1

(
φ−1 − φ

+
1 + ψ−1 u

)
. (A.24)

Substituting (A.23) and (A.24) into (A.18) we can find a quadratic equation for u of the

form

h0u
2 + h1u+ h2 = 0, (A.25)

where we have

h0 = −3κ2εα1

(
ψ−2 − 1

)2
+ 3κ2εα2

(
ψ−1
ψ+

1

)2 (
ψ+

2 − 1
)2
,

h1 =
(
1− ψ−2

) (
hκ2c2

1 + 2hεβ1 + 6κ2εα1φ
−
2

)
+ 6κ2εα2

ψ−1
(
φ−1 − φ

+
1

)(
ψ+

1

)2 [(
ψ+

2

)2 − 2ψ+
2 + 1

]

+
(
1− ψ+

2

)(ψ−1
ψ+

1

)(
hκ2c2

2 + 2hεβ2 − 6κ2εα2φ
+
2

)
,

h2 = −φ−2
(
hκ2c2

1 + 2hεβ1

)
− 3κ2εα1

(
φ−2
)2

+ 2hεβ1

(
−5u−N1+1,j + 5u−N1−1,j

+ 4u−N1+1,j−1 − 4u−N1−1,j−1 − u
−
N1+1,j−2 + u−N1−1,j−2

)
+ 3κ2εα2

[(
φ+

2

)2
+

(
φ−1 − φ

+
1

ψ+
1

)2 (
ψ+

2 − 1
)2

+ 2
(
ψ+

2 − 1
)(φ+

2

(
φ−1 − φ

+
1

)
ψ+

1

)]

−
(
hκ2c2

2 + 2hεβ2

) [
φ+

2 +
φ−1 − φ

+
1

ψ+
1

(
ψ+

2 − 1
)]

− 2hεβ2

(
−5u+

1,j + 5u+
−1,j + 4u+

1,j−1 − 4u+
−1,j−1 − u

+
1,j−2 + u+

−1,j−2

)
. (A.26)

In order to simplify equations (A.26), we consider the intermediary steps in the Thomas

algorithm. We can deduce that, for N1, N2 large enough, we can set ψ−1 = ψ+
1 and

ψ−2 = ψ+
2 (this has been confirmed by numerical calculation, and is covered in more

detail in Section A.3 for the expanded scheme) and therefore h0 ≡ 0 if α1 = α2. In

all cases where this scheme is implemented this condition is satisfied. This leads to the

result

u = −h2

h1
, (A.27)
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and therefore we can determine u−N1,j+1, u+
0,j+1 and similarly u−N1−1,j+1 and u+

1,j+1. These

values are then substituted into the implicit solution of the tridiagonal system to de-

termine the solution at each time step. If we did not have α1 = α2 then the quadratic

equation (A.25) would have to be solved and the appropriate solution chosen based upon

the physical setting of the problem.

A.2.2 Extension to Coupled Regularised Boussinesq Equations

The method outlined in Section A.2.1 is derived for the standard Boussinesq equation,

however the work in Chapter 4 is for the coupled regularised Boussinesq (cRB) equations.

We note that the continuity conditions are identical to those for the Boussinesq equation.

Therefore the previous method can be extended to the case of the cRB equations by

computing the implicit solution to the cRB equations using a similar method to those

for the regular Boussinesq equation. This implicit solution takes the same form and

therefore we can apply the rest of the method in the same way as before.

Let us consider a system of two cRB equations, one for x < 0 and one for x > 0,

where the variable for the upper layer is u(x, t) and w(x, t) for the lower layer. We

denote coefficients for the upper layer by a subscript of 1, and for the lower layer with

a subscript of 2. Similarly, for the equation system at x < 0 we denote the coefficients

with a superscript of (1) and for x > 0 we denote coefficients with a superscript of (2).

A similar notation is used for the variables in each section, so in the first section for the

upper layer we have u(1), in the second section u(2), and similarly for w. Therefore we

have the equation system

u
(1)
tt −

(
c

(1)
1

)2
u(1)
xx = 2ε

[
−6α

(1)
1 u(1)

x u(1)
xx + β

(1)
1 u

(1)
ttxx − δ

(1)
1

(
u(1) − w(1)

)]
,

w
(1)
tt −

(
c

(1)
2

)2
w(1)
xx = 2ε

[
−6α

(1)
2 w(1)

x w(1)
xx + β

(1)
2 w

(1)
ttxx + δ

(1)
2

(
u(1) − w(1)

)]
, (A.28)

for x < 0, and for x > 0 we have the same system but with upper indices of (2). We

take appropriate initial conditions

u(1,2)(x, 0) = F (1,2)(x), w(1,2)(x, 0) = G(1,2)(x), (A.29)

and associated continuity conditions

u(1)|x=0 = u(2)|x=0, (A.30)
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(
c

(1)
1

)2
u(1)
x + 2ε

[
−3α

(1)
1

(
u(1)
x

)2
+ β

(1)
1 u

(1)
ttx

]∣∣∣∣
x=0

=

(
c

(2)
1

)2
u(2)
x + 2ε

[
−3α

(2)
1

(
u(2)
x

)2
+ β

(2)
1 u

(2)
ttx

]∣∣∣∣
x=0

. (A.31)

We can write the same system for w by replacing u with w and replacing subscript 1

coefficients with subscript 2 coefficients.

We can discretise the domain ([−L1, 0] ∪ [0, L2])× [0, T ] into a grid with equal spacings

h = ∆x and κ = ∆t as we did before. Denoting the solution for x < 0 as u(1) and w(1),

and for x > 0 as u(2) and w(2), the analytical solution u(1,2) (x, t) is approximated by

the exact solution of the finite-difference scheme u(1,2) (ih, jκ), denoted u
(1,2)
i,j , where we

have i = 0, 1, . . . , N1 for x < 0 and i = 0, 1, . . . , N2 for x > 0. The same notation is

used for w. Following the same idea as before we use central difference approximations

to obtain a discretised form of (A.28). As before, to simplify the obtained expressions,

we introduce the notation

Dxx

(
u

(1)
i,j

)
= u

(1)
i+1,j − 2u

(1)
i,j + u

(1)
i−1,j .

For x < 0 we have

− 2εβ
(1)
1 u

(1)
i+1,j+1 +

(
4εβ

(1)
1 + h2

)
u

(1)
i,j+1 − 2εβ

(1)
1 u

(1)
i−1,j+1 =

(
c2

1κ
2 − 4εβ

(1)
1

)
Dxx

(
u

(1)
i,j

)
+ 2h2u

(1)
i,j −

6εα
(1)
1 κ2

h

[(
u

(1)
i+1,j

)2
−
(
u

(1)
i−1,j

)2
− 2u

(1)
i+1,ju

(1)
i,j + 2u

(1)
i,j u

(1)
i−1,j

]
+ 2εβ

(1)
1 u

(1)
i+1,j−1 −

(
4εβ

(1)
1 + h2

)
u

(1)
i,j−1 + 2εβ

(1)
1 u

(1)
i−1,j−1 − 2εδ

(1)
1

(
u

(1)
i,j − w

(1)
i,j

)
,

(A.32)

and

− 2εβ
(1)
2 w

(1)
i+1,j+1 +

(
4εβ

(1)
2 + h2

)
w

(1)
i,j+1 − 2εβ

(1)
2 w

(1)
i−1,j+1 =

(
c2

2κ
2 − 4εβ

(1)
2

)
Dxx

(
w

(1)
i,j

)
+ 2h2w

(1)
i,j −

6εα
(1)
2 κ2

h

[(
w

(1)
i+1,j

)2
−
(
w

(1)
i−1,j

)2
− 2w

(1)
i+1,jw

(1)
i,j + 2w

(1)
i,j w

(1)
i−1,j

]
+ 2εβ

(1)
2 w

(1)
i+1,j−1 −

(
4εβ

(1)
2 + h2

)
w

(1)
i,j−1 + 2εβ

(1)
2 w

(1)
i−1,j−1 + 2εδ

(1)
2

(
u

(1)
i,j − w

(1)
i,j

)
.

(A.33)

We can derive the same for the second section by replacing the upper index of (1) with

(2). The continuity conditions can be found in the same way as before, and are omitted

here for brevity as they take the same form but with different indices.

As before we note that the systems (A.32), (A.33) and their equivalents for x > 0, are
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tridiagonal for the values i = 0, . . . , N1 and i = 0, . . . , N2. Following the same idea as for

Section A.2.1, we denote the right-hand side of (A.32) as fi and the right-hand side of

(A.33) as gi, for the appropriate values of i. At the central boundary we can rearrange

to obtain

f̃N1 = fN1 + 2εβ
(1)
1 u

(1)
N1+1,j+1, g̃N1 = gN1 + 2εβ

(1)
2 w

(1)
N1+1,j+1. (A.34)

The same rearrangement can be made for the system describing x > 0, at the boundary

x = 0. We can write (A.32) for i = 0, . . . , N1 in matrix form as

4εβ
(1)
1 + h2 −4εβ

(1)
1

−2εβ
(1)
1 4εβ

(1)
1 + h2 −2εβ

(1)
1

. . .
. . .

−2εβ
(1)
1 4εβ

(1)
1 + h2 −2εβ

(1)
1

−2εβ
(1)
1 4εβ

(1)
1 + h2





u
(1)
0,j+1

u
(1)
1,j+1

...

u
(1)
N1−1,j+1

u
(1)
N1,j+1


=



f0

f1

...

fN1−1

f̃N1


.

(A.35)

Similarly we can write (A.33) in matrix form, for i = 0, . . . , N2, as

4εβ
(1)
2 + h2 −2εβ

(1)
2

−2εβ
(1)
2 4εβ

(1)
2 + h2 −2εβ

(1)
2

. . .
. . .

−2εβ
(1)
2 4εβ

(1)
2 + h2 −2εβ

(1)
2

−4εβ
(1)
2 4εβ

(1)
2 + h2





w
(1)
0,j+1

w
(1)
1,j+1

...

w
(1)
N1−1,j+1

w
(1)
N1,j+1


=



g0

g1

...

gN1−1

g̃N1


.

(A.36)

Similar matrices can be derived for the system describing x > 0. At this stage we note

that we can express the solution to the discretised cRB equations in the same way as was

done for the single Boussinesq equation: we can write each point in the domain as the

sum of an explicit part and an implicit part multiplied by a coefficient. Therefore, when

substituting into the discretised form of the continuity conditions (A.30) and (A.31), we

obtain a similar quadratic equation for the “ghost points” as was obtained in (A.25),

with the coefficients taking a similar form to those defined in (A.26). As before we omit

these expressions for brevity, however they can be easily obtained following the same

approach as before or indeed by modifying (A.26) and replacing u− with u(1), u+ with

u(2), and replacing the indices on the coefficients so that α1 become α
(1)
1 and α2 becomes

α
(2)
1 . Similarly, we can derive the system for w by replacing all instances of u with w

and changing the subscript on coefficients from 1 to 2.

Once the solution for the “ghost points” is obtained at the boundary for both u and w,

this solution can be substituted into the implicit solution that was found for the cRB
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equations to obtain an explicit solution to this system at a given time step. As we have

used central difference approximations to the derivatives at each stage, this scheme is

also second order.

A.3 Direct Numerical Method for a System of M

Boussinesq Equations

The scheme derived in Section A.2.1 and A.2.2 is applicable to two sections of a layered

structure. However we can use this scheme to find the solution for a bar of 3 or more

sections, with some conditions. We illustrate this with an example. Let us consider a bar

with three sections, such as the one in Figure 3.6, where the domains are Ω1 = [−L1, 0],

Ω2 = [0, xa] and Ω3 = [xa, L2]. We initially compute the solution in Ω1 and Ω2 with two

constraints: that the generated solitary wave has not reached the boundary between the

second and third sections at xa, and that the waves reflected at x = 0 have not reflected

back from L1 and entered the second domain at x = 0. The speed of the incident

solitary wave and the generated solitary waves in the subsequent regions will be close

to the characteristic speed in each section of the bar, and therefore both constraints

can be satisfied by choosing an appropriate time interval for the calculation. A similar

approach is then followed for the solution in Ω2 and Ω3, where we choose an appropriate

time so that the waves in Ω2 have not reflected from the boundary x = xa and back

again from the boundary x = 0.

The outlined method has a clear problem; if the solution is not localised, then we

cannot compute the solution for all three sections without losing some information from

the solution. Furthermore if one of the sections is of limited length, for example a short

finite delamination, the solution is unlikely to be fully contained in this section at any

time and therefore some information will be lost when the calculation window is moved.

Therefore, we extend the method described in Section A.2.1 and A.2.2 to a structure

with M sections. Let us consider the system of cRB equations defined in Chapter 4. In

this case we have either coupled Boussinesq equations (cRB) or uncoupled Boussinesq

equations in each section. In what follows, we will assume that we have cRB equations

in each section, and the coefficient of the coupling term can be set to zero as necessary.

We note that the matching at the interfaces is the same in either case and therefore

this generalisation is valid. This allows us to write the equations in each section in the
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following convenient form:

u
(l)
tt − u(l)

xx = 2ε
[
−6u(l)

x u
(l)
xx + u

(l)
ttxx − δl

(
u(l) − w(l)

)]
,

w
(l)
tt − c2

lw
(l)
xx = 2ε

[
−6αlw

(l)
x w

(l)
xx + βlw

(l)
ttxx + γl

(
u(l) − w(l)

)]
, xl−1 < x < xl, (A.37)

where xl is the position of the interface between the equations, and we have l = 1, . . . ,M

sections. Here we have assumed that the only unknown constant in the upper layer is the

coupling term δl, which can be achieved through a rescaling of parameters. The scheme

could be written for general coefficients in each layer however this would result in a more

complicated notation being required for the coefficients, similar to the one applied in

Section A.2.2. Therefore we introduce the subscript notation for coefficients represent-

ing the section in which the coefficient is applied. We have continuity of longitudinal

displacement and continuity of normal stress at the interface between the equations,

described by

u(l)|x=xl = u(l+1)|x=xl , w(l)|x=xl = w(l+1)|x=xl , l = 1, . . . ,M − 1, (A.38)

and

u(l)
x + 2ε

[
−3
(
u(l)
x

)2
+ u

(l)
ttx

]∣∣∣∣
x=xl

= u(l+1)
x + 2ε

[
−3
(
u(l+1)
x

)2
+ u

(l+1)
ttx

]∣∣∣∣
x=xl

,

c2
lw

(l)
x + 2ε

[
−3αl

(
w(l)
x

)2
+ βlw

(l)
ttx

]∣∣∣∣
x=xl

=

c2
l+1w

(l+1)
x + 2ε

[
−3αl+1

(
w(l+1)
x

)2
+ βl+1w

(l+1)
ttx

]∣∣∣∣
x=xl

, (A.39)

respectively, for l = 1, . . . ,M − 1.

To solve the equation system (A.37) - (A.39), we again make use of central difference

approximations. Let us first discretise each domain [xl−1, xl]×[0, T ] into a grid with equal

spacings hl = ∆x and κ = ∆t. Then the analytical solution u(l) (x, t) is approximated

by the exact solution of the finite-difference scheme u(l) (ihl, jκ), denoted u
(l)
i,j . Note here

that we have assumed the discretisation in x can be different in each section, allowing for

a complex wave in one section to be computed with a finer mesh and a sparse mesh can

be used when the solution is simple, which will improve the speed of the computation.

The condition on ∆t will be calculated from the smallest value of the discretisation in

x i.e. hmin = minl=1,...,M hl.

We make use of first order and second order central difference approximations in the

main equations, as was done in Section A.2. To simplify the obtained expressions, we
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introduce the notation

Dxx

(
u

(l)
i,j

)
= u

(l)
i+1,j − 2u

(l)
i,j + u

(l)
i−1,j .

Substituting these approximations into system (A.37) gives a coupled system of tridiag-

onal equations, of the form

− 2εu
(l)
i+1,j+1 +

(
4ε+ h2

l

)
u

(l)
i,j+1 − 2εu

(l)
i−1,j+1 =

(
κ2 − 4ε

)
Dxx

(
u

(l)
i,j

)
+ 2h2

l u
(l)
i,j −

6εκ2

hl

[(
u

(l)
i+1,j

)2
−
(
u

(l)
i−1,j

)2
− 2u

(l)
i+1,ju

(l)
i,j + 2u

(l)
i,ju

(l)
i−1,j

]
+ 2εu

(l)
i+1,j−1 −

(
4ε+ h2

l

)
u

(l)
i,j−1 + 2εu

(l)
i−1,j−1

− 2εδlh
2
l κ

2
(
u

(l)
i,j − w

(l)
i,j

)
, l = 1, . . . ,M, (A.40)

and

− 2εβlw
(l)
i+1,j+1 +

(
4εβl + h2

l

)
w

(l)
i,j+1 − 2εβlw

(l)
i−1,j+1 =

(
κ2c2

l − 4εβl
)
Dxx

(
w

(l)
i,j

)
+ 2h2

lw
(l)
i,j −

6εαlκ
2

hl

[(
w

(l)
i+1,j

)2
−
(
w

(l)
i−1,j

)2
− 2w

(l)
i+1,jw

(l)
i,j + 2w

(l)
i,jw

(l)
i−1,j

]
+ 2εβlw

(l)
i+1,j−1 −

(
4εβl + h2

l

)
w

(l)
i,j−1 + 2εβlw

(l)
i−1,j−1

+ 2εγlh
2
l κ

2
(
u

(l)
i,j − w

(l)
i,j

)
, l = 1, . . . ,M. (A.41)

Assuming the domain can be discretised, we calculate the number of points in the domain

as Nl = (xl − xl−1) /hl and we have i = 0, 1, . . . , Nl in each section. Therefore continuity

condition (A.38) becomes

u
(l)
Nl,j+1 = u

(l+1)
0,j+1, l = 1, . . . ,M − 1, (A.42)

and

w
(l)
Nl,j+1 = w

(l+1)
0,j+1, l = 1, . . . ,M − 1. (A.43)

In the continuity condition (A.39) we make use of the central difference approximations

and introduce “ghost points” of the form u
(l)
Nl+1,j+1, u

(l+1)
−1,j+1, w

(l)
Nl+1,j+1 and w

(l+1)
−1,j+1.

Therefore, (A.39) becomes

hlκ
2
(
u

(l)
Nl+1,j+1 − u

(l)
Nl−1,j+1

)
+ 2hlε

(
2u

(l)
Nl+1,j+1 − 2u

(l)
Nl−1,j+1

− 5u
(l)
Nl+1,j + 5u

(l)
Nl−1,j + 4u

(l)
Nl+1,j−1 − 4u

(l)
Nl−1,j−1 − u

(l)
Nl+1,j−2 + u

(l)
Nl−1,j−2

)
− 3κ2ε

[(
u

(l)
Nl+1,j+1

)2
+
(
u

(l)
Nl−1,j+1

)2
− 2u

(l)
Nl+1,j+1u

(l)
Nl−1,j+1

]
=
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h2
l

hl+1
κ2
(
u

(l+1)
1,j+1 − u

(l+1)
−1,j+1

)
+ 2

h2
l

hl+1
ε
(

2u
(l+1)
1,j+1 − 2u

(l+1)
−1,j+1

− 5u
(l+1)
1,j + 5u

(l+1)
−1,j + 4u

(l+1)
1,j−1 − 4u

(l+1)
−1,j−1 − u

(l+1)
1,j−2 + u

(l+1)
−1,j−2

)
− 3

h2
l

h2
l+1

κ2ε

[(
u

(l+1)
1,j+1

)2
+
(
u

(l+1)
−1,j+1

)2
− 2u

(l+1)
1,j+1u

(l+1)
−1,j+1

]
, (A.44)

for l = 1, . . . ,M − 1, and

hlκ
2c2
l

(
w

(l)
Nl+1,j+1 − w

(l)
Nl−1,j+1

)
+ 2hlεβl

(
2w

(l)
Nl+1,j+1 − 2w

(l)
Nl−1,j+1

− 5w
(l)
Nl+1,j + 5w

(l)
Nl−1,j + 4w

(l)
Nl+1,j−1 − 4w

(l)
Nl−1,j−1 − w

(l)
Nl+1,j−2 + w

(l)
Nl−1,j−2

)
− 3κ2εαl

[(
w

(l)
Nl+1,j+1

)2
+
(
w

(l)
Nl−1,j+1

)2
− 2w

(l)
Nl+1,j+1w

(l)
Nl−1,j+1

]
=

h2
l

hl+1
κ2c2

l+1

(
w

(l+1)
1,j+1 − w

(l+1)
−1,j+1

)
+ 2

h2
l

hl+1
εβl+1

(
2w

(l+1)
1,j+1 − 2w

(l+1)
−1,j+1

− 5w
(l+1)
1,j + 5w

(l+1)
−1,j + 4w

(l+1)
1,j−1 − 4w

(l+1)
−1,j−1 − w

(l+1)
1,j−2 + w

(l+1)
−1,j−2

)
− 3

h2
l

h2
l+1

κ2εαl+1

[(
w

(l+1)
1,j+1

)2
+
(
w

(l+1)
−1,j+1

)2
− 2w

(l+1)
1,j+1w

(l+1)
−1,j+1

]
, (A.45)

for u and w respectively. As we are again considering localised initial data for strains,

if we take L large enough then we can enforce zero boundary conditions for the strain

i.e. ux = 0. Therefore, applying a central difference approximation to this condition, we

have

u
(1)
1,j+1 = u

(1)
−1,j+1 and similarly u

(M)
NM+1,j+1 = u

(M)
NM−1,j+1, (A.46)

and equivalent relations for w. Therefore, as we have used central difference approxima-

tions everywhere, we have a second-order scheme (which is consistent with the approach

used before). The systems (A.40) and (A.41) are tridiagonal for the values i = 0, . . . , Nl.

As before, we denote the right-hand side of (A.40) as f
(l)
i and the right-hand side of

(A.41) as g
(l)
i , for the appropriate values of i.

At this point we diverge from the method presented in Section A.2. In each domain,

defined by l, we have two ghost points – one at the left–hand side boundary and one at

the right–hand side boundary. The exceptions are the first and M–th domain, where we

do not have a ghost point on the left–hand side of the first domain and the right–hand

side of the M–th domain. We apply the relations defined in (A.46) in these special

domains to obtain a tridiagonal system. Before we write these matrices for each section,

we make a rearrangement at the boundaries to accommodate these ghost points. We
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have

f̃
(l)
0 = f

(l)
0 + 2εu

(l)
−1,j+1, f̃

(l)
Nl

= f
(l)
Nl

+ 2εu
(l)
Nl+1,j+1,

g̃
(l)
0 = g

(l)
0 + 2εβlw

(l)
−1,j+1, g̃

(l)
Nl

= g
(l)
Nl

+ 2εβlw
(l)
Nl+1,j+1. (A.47)

We can write (A.40) in matrix form for each l, with two exceptional cases at the bound-

ary. A similar system can be formed for (A.41) but we omit this expression for brevity,

as it takes the same form. Therefore, in the first section, we have for i = 0, . . . , N1,

4ε+ h2 −4ε

−2ε 4ε+ h2 −2ε

. . .
. . .

−2ε 4ε+ h2 −2ε

−2ε 4ε+ h2





u
(1)
0,j+1

u
(1)
1,j+1

...

u
(1)
N1−1,j+1

u
(1)
N1,j+1


=



f
(1)
0

f
(1)
1

...

f
(1)
N1−1

f̃
(1)
N1


. (A.48)

Similarly for the final section we have

4ε+ h2 −2ε

−2ε 4ε+ h2 −2ε

. . .
. . .

−2ε 4ε+ h2 −2ε

−4ε 4ε+ h2





u
(M)
0,j+1

u
(M)
1,j+1

...

u
(M)
NM−1,j+1

u
(M)
NM ,j+1


=



f̃
(M)
0

f
(M)
1

...

f
(M)
NM−1

f
(M)
NM


. (A.49)

Finally we have the generic matrix for all other regions, for 1 < l < M , which takes the

form 

4ε+ h2 −2ε

−2ε 4ε+ h2 −2ε

. . .
. . .

−2ε 4ε+ h2 −2ε

−2ε 4ε+ h2





u
(l)
0,j+1

u
(l)
1,j+1

...

u
(l)
Nl−1,j+1

u
(l)
Nl,j+1


=



f̃
(l)
0

f
(l)
1

...

f
(l)
Nl−1

f̃
(l)
Nl


. (A.50)

We have now formed tridiagonal systems for the functions u and w and this system can

be solved using the Thomas algorithm (e.g. [117]) to solve these systems implicitly, in

terms of the ghost points on the left-hand boundary and right-hand boundary. Therefore

we can express the solution at each point in terms of the explicit solution (if no ghost
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points exist) and a multiplicative factor of the ghost points. We denote this as

u
(l)
i,j+1 = φ

(l)
i + ψ

(l)
i u

(l)
−1,j+1 + ω

(l)
i u

(l)
Nl+1,j+1, (A.51)

and we have a similar relationship for w. We note that ψ
(1)
i = 0 and ω

(M)
i = 0 as

there are no ghost points on these far boundaries. This implicit solution (A.51) is then

substituted into (A.42) and (A.44) to obtain a nonlinear system of equations. This is a

complicated system and therefore we aim to simplify the expressions if possible.

Analysing the form of the matrices (A.48) - (A.50) we can estimate the values of the

coefficients ψ and ω. Following the steps of the Thomas algorithm, we find that the

coefficients are dependent upon hl in a complicated way, leading to a continued fraction

in terms of hl. As hl is the step size, we are taking it to be reasonably small and therefore

we can make an estimate of these coefficients by assuming hl = 0. In this case we find

that, for i = 0, . . . , Nl, we have

ψ
(l)
i =

Nl + 1− i
Nl + 2

, ω
(l)
i =

1 + i

Nl + 2
. (A.52)

Here Nl is the number of points in a given domain and therefore, for a sufficiently

large domain (or a sufficiently small value of hl to increase the number of points to the

necessary level) we have that the coefficient of the left ghost point in a given domain is

approximately zero at the right-hand boundary, and vice versa for the right ghost point

at the left-hand boundary. These have been calculated numerically for N = 50000 and

the value at the boundary was essentially zero (O
(
10−300

)
). Furthermore, it was found

that the value falls below machine precision (O
(
10−16

)
) when N = 500. This suggests

that a value of h and the corresponding value of N can be found for most domain

sizes. This allows us to simplify the problem so that we only require the solution of two

equations at each interface, in terms of two ghost points.

In order to obtain this nonlinear equation, we use (A.42) to express u
(l+1)
−1,j+1 in terms of

u
(l)
Nl+1,j+1, making use of (A.52) to express u

(l)
Nl−1,j+1 and u

(l+1)
1,j+1 in terms of the ghost

points. Substituting (A.52) into (A.42) gives

φ
(l)
Nl

+ ω
(l)
Nl
u

(l)
Nl+1,j+1 = φ

(l+1)
0 + ψ

(l+1)
0 u

(l+1)
−1,j+1, (A.53)

and therefore we have

u
(l+1)
−1,j+1 =

φ
(l)
Nl
− φ(l+1)

0 + ω
(l)
Nl
u

(l)
Nl+1,j+1

ψ
(l+1)
0

,

u
(l+1)
1,j+1 = φ

(l+1)
1 +

ψ
(l+1)
1

ψ
(l+1)
0

(
φ

(l)
Nl
− φ(l+1)

0 + ω
(l)
Nl
u

(l)
Nl+1,j+1

)
, (A.54)
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and a similar equation for w. Substituting (A.52) and (A.54) into (A.44) we obtain a

quadratic equation in u
(l)
Nl+1,j+1 and therefore we need to solve a quadratic equation for

each boundary. Explicitly we have

h0

(
u

(l)
Nl+1,j+1

)2
+ h1u

(l)
Nl+1,j+1 + h2 = 0, (A.55)

where we have

h0 = −3κ2ε
(
ω

(l)
Nl−1 − 1

)2
+ 3

h2
l

h2
l+1

κ2ε

(
ω

(l)
Nl

ψ
(l+1)
0

)2 (
ψ

(l+1)
1 − 1

)2
,

h1 =
(

1− ω(l)
Nl−1

)(
hlκ

2 + 4hlε+ 6κ2εφ
(l)
Nl−1

)
+
(

1− ψ(l+1)
1

)( ω
(l)
Nl

ψ
(l+1)
0

)(
h2
l

hl+1
κ2 + 4

h2
l

hl+1
ε− 6

h2
l

h2
l+1

κ2εφ
(l+1)
1

)

+ 6
h2
l

h2
l+1

κ2ε
ω

(l)
Nl

(
φ

(l)
Nl
− φ(l+1)

0

)
(
ψ

(l+1)
0

)2

[(
ψ

(l+1)
1

)2
− 2ψ

(l+1)
1 + 1

]
,

h2 = −φ(l)
Nl−1

(
hlκ

2 + 4hlε
)
− 3κ2ε

(
φ

(l)
Nl−1

)2
+ 2hlε

(
−5u

(l)
Nl+1,j + 5u

(l)
Nl−1,j

+ 4u
(l)
Nl+1,j−1 − 4u

(l)
Nl−1,j−1 − u

(l)
Nl+1,j−2 + u

(l)
Nl−1,j−2

)

+ 3
h2
l

h2
l+1

κ2ε

(φ(l+1)
1

)2
+

(
φ

(l)
Nl
− φ(l+1)

0

ψ
(l+1)
0

(
ψ

(l+1)
1 − 1

))2

+ 2
(
ψ

(l+1)
1 − 1

)φ(l+1)
1

(
φ

(l)
Nl
− φ(l+1)

0

)
ψ

(l+1)
0


−
(
h2
l

hl+1
κ2 + 4

h2
l

hl+1
ε

)[
φ

(l+1)
1 +

φ
(l)
Nl
− φ(l+1)

0

ψ
(l+1)
0

(
ψ

(l+1)
1 − 1

)]

− 2
h2
l

hl+1
ε
(
−5u

(l+1)
1,j + 5u

(l+1)
−1,j + 4u

(l+1)
1,j−1 − 4u

(l+1)
−1,j−1 − u

(l+1)
1,j−2 + u

(l+1)
−1,j−2

)
. (A.56)

In the special case that h0 ≡ 0 then we can solve a linear equation on the boundary (in

the same way as when α2 = α1 in Section A.2) and numerical experiments have shown

that, if the nonlinearity coefficient is the same in both sections of the bar, this condition is

again satisfied. However, in the general case when the nonlinearity coefficient can change

between section, we must choose the appropriate sign in the quadratic expression, and

this is chosen to be consistent with the solution in the surrounding region.

The results in Chapter 4 computed via this method, in contrast to the previous method

where the calculation was performed for two sections at a time (as was done in [43]),
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showed little change when the domain sizes were sufficiently large. This is the expected

behaviour in this case, as the large domain sizes allow the wave to be fully captured

within a section before the calculation window is moved. However, this method allowed

for the reflected waves to be traced throughout the calculation, whereas they would be

lost after the calculation window is moved via the first method. The study of these

reflected waves was beyond the scope of this thesis, however their presence shows that

this method could be used to study their behaviour. Furthermore, this method can be

used to compute the solution for short domain lengths, such as a finite delamination of

length 5 Full Width at Half Magnitude (FWHM) of the incident soliton. In Chapter 4

this analysis was performed using the weakly nonlinear solution but this could now be

performed in more detail with the direct numerical method. This is again an extension

that goes beyond the work in this thesis.
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SSPRK(5,4) Scheme for KdV

Equations

In Chapter 3 we sought a weakly nonlinear solution to the system of equations. This

derivation produced a series of KdV equations. There are several methods for solving

such an equation: a finite-difference approach as developed by Zabusky and Kruskal [3,

19], a numerical Inverse Scattering Transform method for solving the KdV or mKdV [26],

a pseudospectral method [119, 120] (which is discussed in more detail in Appendix C), a

hybrid Runge-Kutta method using finite-difference operators for the spacial derivatives

[93], for example.

We develop a numerical technique based upon the Strong Stability Preserving Runge-

Kutta (SSPRK(5,4)) scheme as described in [94] (see [121] for an example of this

method). This time-stepping method captures the nonlinear effects of a governing equa-

tion better than the standard Runge-Kutta method, and therefore increases the overall

accuracy of a numerical scheme implementing this form of time-stepping. We compared

these results to a hybrid Runge-Kutta scheme (e.g. [93]) and found the SSPRK(5,4)

scheme had a higher accuracy, due to its stability preserving properties, and the com-

putational time was similar for both schemes.

We implement the scheme for a KdV equation, where we assume generic coefficients.

This is to simplify the presentation of the scheme, as it will be applied for multiple KdV

equations with different characteristic variables and there will be a significant amount

of redundancy. Therefore, we will assume a KdV equation of the form

uX + αuuξ + βuξξξ = 0, (B.1)

121
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where α and β are constants, X = εx and ξ = x− t. This scheme can easily be adapted

for the characteristic variable η = x − t via a quick transform from ξ to η. We will

proceed with this form of the equation, with generic coefficients.

The scheme is as follows. We discretise the domain [−L,L] × [xa, xb] into a grid with

equal spacings h = ∆ξ, κ = ∆X, and the analytical solution u (ξ,X) is approximated

by the exact solution of the numerical scheme, u (ih, jκ) (denoted ui,j). Here we have

N = 2L/h and therefore i = 0, . . . , N . Given that the solution at time Xj = xa + jκ is

given by

ui,j = u (ih, jκ) , i = 0, . . . , N, (B.2)

then the solution at Xj+1 = xa + (j + 1)κ is given by

u(1) = ui,j + 0.391752226571890κF (ui,j) ,

u(2) = 0.444370493651235ui,j + 0.555629506348765u(1) + 0.368410593050371κF
(
u(1)

)
,

u(3) = 0.620101851488403ui,j + 0.379898148511597u(2) + 0.251891774271694κF
(
u(2)

)
,

u(4) = 0.178079954393132ui,j + 0.821920045606868u(3) + 0.544974750228521κF
(
u(3)

)
,

ui,j+1 = 0.517231671970585u(2) + 0.096059710526147u(3) + 0.063692468666290κF
(
u(3)

)
+ 0.386708617503269u(4) + 0.226007483236906κF

(
u(4)

)
, (B.3)

where the function F is the finite-differenced form of all the terms in the KdV equation

involving spatial derivatives. Note that the coefficients here are chosen in such a way to

optimise the time step at each point and, due to the complexity of each coefficient, are

presented to 15 decimal places. The formulae for the coefficients can be found in [94].

To obtain the discretised form of the spatial derivatives, and hence the function F ,

central difference approximations are applied for the first and third derivatives and an

average is taken for the nonlinear term (as was performed by Zabusky and Kruskal, see

[3, 19]). We also assume boundary conditions of the form

u(±L, t) = 0, ux(±L, t) = 0 ⇒ u0,j = u1,j = uN−1,j = uN,j = 0, (B.4)

which is justified for a localised initial condition and is equivalent to the derivatives at

the boundary being equal to zero. Using this scheme for equation (B.1) we obtain

F (ui,j) =
1

6h
(ui+1,j + ui,j + ui−1,j) (ui+1,j − ui−1,j)

− 1

2h3
(ui+2,j − 2ui+1,j + 2ui−1,j − ui−2,j) . (B.5)
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If we wanted to improve the accuracy of the scheme, the discretisation of the spatial

derivatives could be replaced with compact finite-difference operators. These implicit

finite-difference schemes provide higher spatial resolution than the well-known explicit

schemes (almost spectral-like resolution) [121, 122].





Appendix C

Pseudospectral Methods

As described in Appendices A and B, finite-difference techniques can be used to solve

PDEs with a simple approach, and this approach can be extended to more complicated

systems. There are many other techniques that can be applied to the solution of PDEs.

Another method that can be used is finite element techniques (e.g. [123]) and these have

been applied to many problems, such as interfacial dynamics of non-Newtonian fluids

[124], for the KdV equation [125] and the Boussinesq equation [126], amongst others.

Another approach that has come to the forefront in recent years is spectral methods

[127]. In the case where we have smooth data on a periodic domain, spectral methods will

usually offer the best accuracy and computational efficiency. The principle of spectral

methods is to write the solution to a given differential equation in terms of a sum of

basis functions, then by implementing the Fast Fourier Transform (FFT) algorithm, one

can determine the coefficients of the sum to yield the best approximation of the solution

to the differential equation. The FFT is an algorithm developed in 1965 by Cooley and

Tukey [128]. This algorithm is an efficient method for computing the discrete Fourier

transform (DFT), and similarly the inverse fast Fourier transform (IFFT) is used for

calculating the inverse discrete Fourier transform (IDFT). In essence, the FFT and IFFT

are analogous to the Fourier and inverse Fourier transforms for continuous functions.

Here we define the Fourier and inverse Fourier transforms, before defining their discrete

equivalents. Let us consider a function u(x, t) defined on the infinite line i.e. x ∈ R. We

denote the Fourier transform of the function u(x, t) by F {u(x, t)} = û(k, t), as

û(k, t) =

∫ ∞
−∞

e−ikxu(x, t) dx, (C.1)

where k ∈ R is known as the transform variable. We can also consider this as a discre-

tised and scaled wave number. For the inverse Fourier transform, we use the notation

125
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F−1 {û(k, t)} = u(x, t) and define the transform as

u(x, t) =
1

2π

∫ ∞
−∞

eikxû(k, t) dk. (C.2)

When we consider the application to KdV and Ostrovsky equations, we need to calculate

the Fourier transform of derivatives with respect to x. Differentiating (C.1) with respect

to x we obtain

F

{
∂u

∂x

}
=

∫ ∞
−∞

e−ikx
∂u

∂x
dx. (C.3)

Integrating this expression by parts and assuming that u(x, t) → 0 as |x| → ∞ (in our

later work, we only require that the derivative is periodic in x which yields the same

result) we obtain

F

{
∂u

∂x

}
=
[
e−ikxu

]∞
−∞

+ ik

∫ ∞
−∞

e−ikxu(x, t) dx = ikû(k, t). (C.4)

This can be extended for higher derivatives and therefore, if the function u is n times

differentiable and all derivatives tend to zero at infinities, then we have

F

{
∂nu

∂xn

}
= (ik)n û(k, t). (C.5)

Therefore we have described the method to be applied for a function on an infinite

domain. However, in the numerical methods applied, we only consider finite domains

as the discretised techniques can only be applied to a finite interval. This is where the

FFT and IFFT come into play. Let us consider a function u(x, t) on a finite domain

x ∈ [−L,L] and we discretise the domain into N equally spaced points, so we have

the spacing ∆x = 2L/N . In all calculations we consider in this appendix, we scale the

domain from x ∈ [−L,L] to x̃ ∈ [0, 2π], which can be achieved by applying the transform

x̃ = sx + π, where s = π/L. Denoting xj = −L + j∆x for j = 0, . . . , N , we define the

DFT for the function u(x, t) as

û (k, t) =
1√
N

N∑
j=1

u (xj , t) e
−ikxj , −N

2
≤ k ≤ N

2
− 1, (C.6)

and similarly the IDFT is defined as

u (x, t) =
1√
N

N/2−1∑
k=−N/2

û (k, t) eikxj , j = 1, 2, . . . , N, (C.7)

where the discretised and scaled wavenumber is now k ∈ Z.

To perform these transforms we implement the FFTW3 algorithm in C [129]. This
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is the same algorithm used in Matlab when invoking the in-built functions fft and ifft

for Fourier transforms. In our work we have used even values of N however any value

of N can be chosen. The FFT algorithm optimises the computation of the DFT; the

number of steps required to compute the DFT is normally O
(
N2
)
, while with the FFT

algorithm this can be reduced to O (N logN). In order to achieve the best reduction in

computational time, N must be highly composite and therefore the most common form

used is N = 2m for some integer m.

In the remainder of this appendix we will apply the transforms described above and

apply them to the KdV, Ostrovsky and Boussinesq-type equations. The domain will

be transformed from x ∈ [−L,L] to x ∈ [0, 2π] and therefore derivatives in x will

be transformed as ux → sux̃. This will be shown in each subsection for the relevant

equation.

We implement a pseudospectral method for solving the relevant equation and use the

4th-order Runge-Kutta method for time stepping in the Fourier space. The nonlinear

terms are calculated in the real domain and transformed back to the Fourier space for

use in the calculation, rather than calculating the convolution of two functions. This

appears to be the standard approach used in modern calculations, however in an earlier

paper [130] the derivatives were calculated in the Fourier space and the time evolution

was performed in the real space. We have tested both methods and found that there is

no discernible difference between them, with the benefits arising from the structure of

the equation. If an equation has few nonlinear terms and high order derivatives, it is

faster to compute the nonlinear terms in the real space and evolve time in the Fourier

space. Similarly, if an equation has only low order derivatives and many nonlinear terms,

then it is faster to compute the derivatives in the Fourier space and evolve time in the

real space. In our case, the difference in time is negligible.

To remove aliasing effects, we use the truncation 2/3-rule by Orszag in Boyd [120]. This

effect is due to the pollution of the numerically calculated Fourier transform by higher

frequencies due to the series being truncated. Other methods have been proposed for

removing aliasing effects, such as those by Hou and Li in [131]. In our work we saw

no discernible difference between the two methods and used the 2/3 rule due to its

simplicity. In a more complicated equation the method by Hou and Li may result in

more accurate results.
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C.1 Pseudospectral Scheme for the KdV Equation

We previously (in Appendix B) presented a finite-difference method for solving the

KdV equation, using the SSPRK(5,4) scheme with finite-difference operators applied

for the spatial derivatives. To improve the accuracy at which the spatial derivatives

are calculated, we compute the derivatives using the DFT as outlined above. In theory

we could implement the SSPRK(5,4) method for time-stepping to further improve the

accuracy, however we found that the results computed with a standard 4th-order Runge-

Kutta method for time stepping provide sufficient accuracy for our purposes. If the

results do not provide the required accuracy, the SSPRK(5,4) algorithm could be used

to further improve the results.

Let us consider the KdV equation

ut + αuux + βuxxx = 0, (C.8)

where α and β are constants, defined on the intervals t ∈ [0, T ] and x ∈ [−L,L]. Firstly

we transform the spatial domain [−L,L] to [0, 2π] via the transform x̃ = sx+ π, where

s = π/L. Applying this transform and omitting tildes we obtain

ut + sαuux + s3βuxxx = 0. (C.9)

The nonlinear term is calculated in the real domain, then transformed to the Fourier

space. We can rewrite the nonlinear term by introducing the notation

uux = zx, z =
u2

2
.

As outlined in the introduction to this appendix, we discretise the spatial domain using

N equidistant points with the spacing ∆x = 2π/N , where N is chosen to be highly com-

posite and we denote the discretised variable xj = −L+ j∆x. As we have a discretised

equation, we can apply the DFT and IDFT as outlined in (C.6) and (C.7) above. The

discrete Fourier transform of equation (C.9) with respect to x gives

ût + iksαẑ − ik3s3βû = 0. (C.10)

This is an ODE in û and k that can be solved numerically using the 4th-order Runge-

Kutta method for time evolution. Assume that the solution at t is given by ûj = u(k, jκ),

where κ = ∆t. Then the solution at t = (j + 1)∆t is given by

ûk,(j+1)κ = ûk,jκ +
1

6
(a+ 2b+ 2c+ d) , (C.11)



Appendix C 129

where a, b, c, d are functions of k at a given moment in time, t, and are defined as

a = κF (ûj) , b = κF
(
ûj +

a

2

)
,

c = κF

(
ûj +

b

2

)
, d = κF (ûj + c) .

The function F is found as a rearrangement of (C.10) to contain all non-time derivatives.

Explicitly we have

F (ûj) = −iksαẑ + ik3s3βûj . (C.12)

To remove aliasing effects, we use the truncation 2/3-rule by Orszag in Boyd [120] as

outlined in the introduction to this appendix.

C.2 Pseudospectral Scheme for the Ostrovsky and

Coupled Ostrovsky Equations

In previous studies, the uncoupled Ostrovsky equation [132] and coupled Ostrovsky

equations [40] have been solved using finite-difference and pseudospectral techniques

respectively. We previously (in Appendix B) presented a finite-difference method for

solving the KdV equation, using the SSPRK(5,4) scheme. However this scheme be-

comes more difficult to implement for the Ostrovsky equations, as the equation has to

be rearranged to obtain all non-time derivatives, and this leads to the introduction of

an integral operator [121]. While this has been shown to provide accurate results (and

indeed we have tested this method and found that the results are consistent with the

method presented in this appendix) it is more difficult to implement due to the integral

operator. Therefore, we consider a pseudospectral scheme for the KdV and (coupled/un-

coupled) Ostrovsky equations and will present the method for each equation separately.

We will consider three cases. Firstly we implement a pseudospectral method for a single

Ostrovsky equation. The same method is applied for a linearised Ostrovsky equation

on a non-zero background, where we apply a more efficient form of the Runge-Kutta

algorithm. Finally we solve a system of coupled Ostrovsky equations using an extension

of the method for the single Ostrovsky equation.

C.2.1 Ostrovsky Equation

Let us consider a single Ostrovsky equation

(ut + αuux + βuxxx)x = δu, (C.13)
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where α, β, δ are constants, and we consider the equation on domains t ∈ [0, T ] and

x ∈ [−L,L] as we did for the case in Section C.1. We again transform the interval from

[−L,L] to [0, 2π] via the transform x̃ = sx+ π and s = π/L to obtain (omitting tildes)

(
ut + sαuux + s3βuxxx

)
x

=
δ

s
u. (C.14)

As was done for the KdV equation, the nonlinear term is calculated in the real domain

then transformed to the Fourier space. We can rewrite the nonlinear term by introducing

the notation

uux = zx, z =
u2

2
.

The spatial domain is discretised by N equidistant points with spacing ∆x = 2π/N ,

where as before N is highly composite. We use the Discrete Fourier Transform as

defined in (C.6) and the inverse transform is as defined in (C.7), and make use of the

Fast Fourier Transform (FFT) algorithm to implement these transforms efficiently. The

discrete Fourier transform of equation (C.14) with respect to x gives

ût + iksαẑ − ik3s3βû = − iδ
ks
û. (C.15)

This system is solved numerically using the 4th-order Runge-Kutta method for time

stepping, as was done for the KdV equation. Assuming that the solution at t is given

by ûj = u(k, jκ), where κ = ∆t, the method as defined in (C.11) can be applied to our

equations, where we modify the function F to be a rearrangement of the terms in (C.15)

rather than (C.10). So we have the function given as

F (ûj) = −iksαẑ + ik3s3βûj −
iδ

ks
ûj . (C.16)

If the initial condition has zero mean value then we can exclude the zero mode from the

calculation of function F , as this cannot be evaluated due to the final term in (C.16). We

note that, if k = 0, then (C.15) is satisfied if both sides are multiplied by k. However,

if the initial condition does not have zero mean value then the zero mode will be non-

zero. In this case, we can calculate the initial value for the zero mode and then assume

that it does not evolve during the calculation. For a sufficiently small value of the zero

mode, this will result in (C.15) being approximately satisfied and therefore the error

introduced by this method should be small. The alternative method would be to modify

the equation to solve for a solution that has zero mean value and then convert back to

the original solution, as was done in [46]. A discussion of this approach is contained in

Chapter 5 for the Boussinesq-Ostrovsky equation.

For some of the cases considered we find that the radiating waves generated by the

equation can re-enter the periodic domain and therefore we need to introduce a linear
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damping region (‘sponge layer’) and add this at each end of the domain to prevent

radiated waves re-entering the region of interest and interfering with the main wave

structure [40]. The sponge layer is defined as

r(x) =
ν

2

[
2 + tanhK

(
x− 3L

4

)
− tanhK

(
x+

3L

4

)]
, (C.17)

for some constants ν,K. We choose K so that KL = 12 and ν is chosen so that damping

occurs quickly. This sponge layer is incorporated into (C.13) as

(ut + αuux + βuxxx + r(x)u)x = δu. (C.18)

We treat the sponge layer term in the same way as the nonlinear term i.e. we calculate

the product r(x)u in the real domain and then transform it to the Fourier space for use

in the 4th-order Runge-Kutta method.

C.2.2 Linearised Ostrovsky Equation on Non-Zero Background

We now present a method for the linearised Ostrovsky equation on non-zero background,

with the potential for a non-zero forcing term. This is the type of equation that appears

in Chapter 5 and in [46]. We write it in the most general form here, but it can easily be

adjusted to suit the form presented in Chapter 5.

We take the equation for u, on a background of f , of the form

(ut + α (fu)x + βuxxx)x = γu+H (f, x, t) , (C.19)

where α, β and γ are constants and H can take any form. In Chapter 5 H was given in

the form

H = ftt + 2fxxxt + afxx + b
(
f2
x

)
xx
, (C.20)

where a and b are known. For the purposes of presenting the method here, we will solve

the equation in terms of a generic H and then separately consider how to calculate the

terms in (C.20). We note that the background f is the solution of a single Ostrovsky

equation, for example replacing u with f in (C.13).

As before we consider the equation on the domain t ∈ [0, T ] and x ∈ [−L,L]. We again

transform the interval from [−L,L] to [0, 2π] via the transform x̃ = sx+ π and s = π/L

to obtain (omitting tildes)

(
sut + αs2 (fu)x + βs4uxxx

)
x

= γu+H (f, x, t) . (C.21)
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The nonlinear terms are calculated in the real domain then transformed to the Fourier

space. In many cases the terms contained in H may also be nonlinear and therefore

require the same treatment. The spatial domain is discretised by N equidistant points

with spacing ∆x = 2π/N , and we apply the DFT and IDFT as defined in (C.6) and

(C.7) respectively. The discrete Fourier transform of equation (C.14) with respect to x

gives

ut = i
(
s3k3β − γ

sk

)
û− iskαf̂u− i

sk
Ĥ. (C.22)

At this stage we would normally apply the 4th-order Runge-Kutta method. Before this

is applied, we consider using the approach presented in [133] to remove the stiff term

from this equation. This modified method allows for a larger time discretisation step to

be used without loss of accuracy. Therefore we multiply through by the multiplicative

factor M and introduce a new function U , where M and U take the form

M = e−i(s
3k3β− γ

sk )t, Û = e−i(s
3k3β− γ

sk )tû, (C.23)

which yields an ODE for U of the form

Ût = −iksαMF

{
fF−1

[
Û

M

]}
− i

sk
MĤ. (C.24)

This yields an optimised 4th-order Runge-Kutta algorithm. Discretising the time domain

as ti = i∆t and discretising the functions Ûi = Û (k, ti), ûi = û (k, ti) and f̂i = f̂ (k, ti),

we introduce the function

E = e
i
2(s3k3β− γ

sk )∆T , (C.25)

and therefore we can use the optimised Runge-Kutta algorithm (written in the original

variable u)

ûi+1 = E2ûi +
1

6

[
E2k1 + 2E (k2 + k3) + k4

]
,

where k1 = −iks∆tF
{
f̂iF

−1 [ûi]
}
− i∆t

sk
Ĥ,

k2 = −isk∆tF

{
f̂iF

−1

[
E

(
ûi +

k1

2

)]}
− i∆t

sk
Ĥ,

k3 = −isk∆tF

{
f̂iF

−1

[
Eûi +

k2

2

]}
− i∆t

sk
Ĥ,

k4 = −isk∆tF
{
f̂iF

−1
[
E2ûi + Ek3

]}
− i∆t

sk
Ĥ. (C.26)

We can apply this algorithm to the case of a homogeneous Ostrovsky equation by setting

Ĥ = 0 and replacing the term fu with u2/2.
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In the case of H as presented in (C.20), the Fourier transform of the term afxx can

be calculated directly. For the term b
(
f2
x

)
xx

, we calculate fx in the Fourier space by

multiplying f by isk. We can then calculate the remainder of the term by taking

̂b (f2
x)xx = −bs2k2F

{
F−1

{
iskf̂

}2
}
. (C.27)

For the terms ftt and fxxxt, we make use of (C.15) (replacing u with f) and calculate

ft. Therefore we have

f̂xxxt = −is3k3f̂t =
(
s6k6β − s2k2γ

)
f̂ +

s4k4α

2
f̂2. (C.28)

For ftt we differentiate (C.15) with respect to t and we obtain

f̂tt = i
(
s3k3β − γ

sk

)
f̂t − iskαf̂ft. (C.29)

If other terms were present in H they could be calculated in a similar way.

C.2.3 Pseudospectral Scheme for the Coupled Ostrovsky Equations

Previously we have considered only a single equation in each case. Pseudospectral

methods can be extended to a system of equations, as was done in [40] for a system

of coupled Ostrovsky equations. We present a pseudospectral method here based upon

that method, a direct extension of the method used for a single Ostrovsky equation in

Section C.2.1. Let us consider the system of coupled Ostrovsky equations defined as

(ut + α1uux + β1uxxx)x = δ (u− w) ,

(wt + ωwx + α2wwx + β2wxxx)x = γ (w − u) , (C.30)

where α1, α2, β1, β2, ω, δ and γ are constants, and we consider the equation on domains

t ∈ [0, t] and x ∈ [−L,L] as we did for the cases in Section C.1 and C.2.1. As with the

previous two sections, we transform the solution interval from [−L,L] to [0, 2π] via the

transform x̃ = sx+ π and s = π/L to obtain (omitting tildes)

(
ut + sα1uux + s3β1uxxx

)
x

=
δ

s
(u− w) ,(

wt + sωwx + sα2wwx + s3β2wxxx
)
x

=
γ

s
(w − u) . (C.31)
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As before, the nonlinear terms are calculated in the real domain then transformed to

the Fourier space. We can rewrite the nonlinear terms by introducing the notation

uux = zax, za =
u2

2
, wwx = zbx, zb =

w2

2
.

The spatial domain is discretised by N equidistant points with spacing ∆x = 2π/N ,

and we have the DFT and IDFT as defined in (C.6) and (C.7) respectively, with an

appropriately similar transform for w. The discrete Fourier transform of equations

(C.31) with respect to x gives

ût + iksα1ẑa − ik3s3β1û = − iδ
ks

(û− ŵ) ,

ŵt + iksωŵ + iksα2ẑb − ik3s3β2ŵ = − iγ
ks

(ŵ − û) . (C.32)

This system is solved numerically using the 4th-order Runge-Kutta method for time

stepping. In this case we have a coupled system of equations and therefore, while we

use the same algorithm as in Section C.1, we reproduce the equations here as they are

modified for a coupled system. Assume that the solution at t is given by ûj = û(k, jκ)

and ŵj = ŵ(k, jκ), where κ = ∆t. Then the solution at t = (j + 1)∆t is given by

ûk,(j+1)κ = ûk,jκ +
1

6
(a1 + 2b1 + 2c1 + d1) ,

ŵk,(j+1)κ = ŵk,jκ +
1

6
(a2 + 2b2 + 2c2 + d2) , (C.33)

where ai, bi, ci, di are functions of k at a given moment in time, t, and are defined as

ai = κFi(ûj , ŵj), bi = κFi(ûj +
a1

2
, ŵj +

a2

2
),

ci = κFi(ûj +
b1
2
, ŵj +

b2
2

), di = κFi(ûj + c1, ŵj + c2),

for i = 1, 2. The functions Fi are found as a rearrangement of (C.32) to contain all

non-time derivatives. Explicitly we have

F1 (ûj , ŵj) =− iksα1ẑa + ik3s3β1ûj −
iδ

ks
(ûj − ŵj) ,

F2 (ûj , ŵj) =− iks (α2ẑb + ωŵj) + ik3s3β2ŵj −
iγ

ks
(ŵj − ûj) .

To obtain a solution at the next step, the functions ai, bi, ci, di, for i = 1, 2, must be

calculated in pairs, that is we calculate a1 followed by a2, then b1 followed by b2, and so

on.

In what follows we first exclude the zero mode, i.e. we let k 6= 0, assuming zero mean
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value initial conditions for u and w. In some of the cases considered in Chapter 4

the initial condition does not satisfy the zero mean value constraint of the coupled

Ostrovsky equation. In this case, we calculate the zero mode in the usual way (the

integral of the function across the spatial domain in the real space) and obtain a small

constant, approximately O
(
10−2

)
. The maximum of the zero mode of u−w is O

(
10−3

)
for the cases considered, and therefore this approximation introduces only a small error,

approximately satisfying the equations (C.32) (multiplied by k) for zero modes. In the

real space, the average 1
2L

∫ L
−L(u−w) dx is O

(
10−5

)
, showing that the zero mean value

constraint is approximately satisfied.

A different approach is required for a general initial conditions with non-zero mean value

[46]. The initial value problem for the Boussinesq-Ostrovsky equation is considered in

Chapter 5 for non-zero mean initial condition. This approach could be extended to the

scattering problem discussed in Chapter 4, however this extension is non-trivial. There

are some comments about this method in the conclusions of this thesis but the extension

is future work to be completed.

As was mentioned in Section C.2.1, for some of the cases considered in Chapter 4 Sec-

tion 4.4.3, where the waves re-enter a coupled region after a delamination, we need to

introduce a linear damping region (‘sponge layer’) and add this at each end of the do-

main to prevent radiated waves re-entering the region of interest and interfering with

the main wave structure [40]. The sponge layer is defined in the same way as Section

C.2.1 (namely in (C.17)) and incorporated into (C.30) as

(ut + α1uux + β1uxxx + r(x)u)x = δ (u− w) ,

(wt + ωwx + α2wwx + β2wxxx + r(x)w)x = γ (w − u) . (C.34)

We treat the sponge layer term in the same way as the nonlinear term i.e. we calculate

the product r(x)u or r(x)w in the real domain and then transform it to the Fourier

space for use in the 4th-order Runge-Kutta method.

C.3 Pseudospectral Scheme for the Boussinesq-Ostrovsky

Equation

In Chapters 3 and 4 we considered the solution to the Boussinesq equation using finite-

difference techniques. Another possible technique for solving the Boussinesq equation

is to apply a pseudospectral method. This method is an extension to the approach
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outlined in [110] which solves the regularised Boussinesq equation in the context of

microstructured solids.

Let us consider the Boussinesq-Ostrovsky equation defined as

utt − c2uxx = ε
(α

2

(
u2
)
xx

+ βuttxx − γu
)
,

u|t=0 = F (x),

ut|t=0 = V (x), (C.35)

on the periodic domain −L ≤ x ≤ L. We introduce the change of variable

w = u− εβuxx, (C.36)

so that we have

wtt = c2uxx + ε
(α

2

(
u2
)
xx
− γu

)
. (C.37)

Taking the Fourier transform of (C.36) we obtain

ŵ =
(
1 + εβk2

)
û ⇒ û =

ŵ

1 + εβk2
. (C.38)

We take the Fourier transform of (C.37) and substitute (C.38) into this expression to

obtain an ODE in ŵ, taking the form

ŵtt = −εγ + c2k2

1 + εβk2
ŵ − εαk2

2
F

{
F−1

[
ŵ

1 + εβk2

]2
}

= Ŝ (ŵ) . (C.39)

We solve this ODE using a 4th-order Runge-Kutta method for time stepping, such as

the one used in [40, 43]. Let us define the following:

ŵt = Ĝ, Ĝt = Ŝ (ŵ) , (C.40)

where we defined Ŝ as the right-hand side of (C.39). We discretise the time domain

and functions as t = tn, ŵ(k, tn) = ŵn, Ĝ(k, tn) = Ĝn for n = 0, 1, 2, . . . , where tn =

n∆t. Here k discretises the Fourier space. Taking the Fourier transform of the initial

conditions as defined in (C.35) and making use of (C.38) we obtain initial conditions ŵ0

and Ĝ0 of the form

ŵ0 =
(
1 + εβk2

)
F {F (x)} ,

Ĝ0 =
(
1 + εβk2

)
F {V (x)} . (C.41)
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Now we have initial conditions, we implement the following 4th-order Runge-Kutta

method:

ŵn+1 = ŵn +
1

6
[k1 + 2k2 + 2k3 + k4] , Ĝn+1 = Ĝn +

1

6
[l1 + 2l2 + 2l3 + l4] ,

where

k1 = ∆tĜn, l1 = ∆tŜ(Ŵn),

k2 = ∆t

(
Ĝn +

l1
2

)
, l2 = ∆tŜ

(
Ŵn +

k1

2

)
,

k3 = ∆t

(
Ĝn +

l2
2

)
, l3 = ∆tŜ

(
Ŵn +

k2

2

)
,

k4 = ∆t
(
Ĝn + l3

)
, l4 = ∆tŜ

(
Ŵn + k3

)
. (C.42)

As was done for the scheme in Section C.2.3, the system has to be solved in pairs i.e.

we calculate k1, then l1, followed by k2 and l2, and so on. To obtain the solution in the

real domain, we transform ŵ back to u through relation (C.38). Explicitly we have

u(x, t) = F−1

{
ŵ

1 + εβk2

}
. (C.43)
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