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Abstract Document spanners are a formal framework for information extraction
that was introduced by Fagin, Kimelfeld, Reiss, and Vansummeren (PODS 2013,
JACM 2015). One of the central models in this framework are core spanners, which
formalize the query language AQL that is used in IBM’s SystemT. As shown by Frey-
denberger and Holldack (ICDT 2016, ToCS 2018), there is a connection between
core spanners and ECreg, the existential theory of concatenation with regular con-
straints. The present paper further develops this connection by defining SpLog, a
fragment of ECreg that has the same expressive power as core spanners. This equiva-
lence extends beyond equivalence of expressive power, as we show the existence of
polynomial time conversions between SpLog and core spanners. Consequences and
applications include an alternative way of defining relations for spanners, a pumping
lemma for core spanners, and insights into the relative succinctness of various classes
of spanner representations and their connection to graph querying languages. We also
briefly discuss the connection between SpLog with negation and core spanners with
a difference operator.
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1 Introduction

Fagin, Kimelfeld, Reiss, and Vansummeren [13] introduced document spanners as a
formal framework for information extraction in order to formalize the query language
AQL that is used in SystemT, the information extraction engine of IBM BigIn-
sights [34]. On an intuitive level, document spanners can be viewed as a generalized
form of searching in a text w: In its basic form, search can be understood as taking a
search term u (or a regular expression α) and a word w, and computing all intervals
of positions of w that contain u (or a word from L(α)). These intervals are called
spans. Spanners generalize searching by computing relations over spans of w.

In order to define spanners, [13] introduced regex formulas, which are regular
expressions with variables. Each variable x is connected to a subexpression α, and
when α matches a subword of w, the corresponding span is stored in x (this behaves
like the capture groups that are often used in real world implementation of search-
and-replace functionality). Core spanners combine these regex formulas with the
algebraic operators projection π , union ∪, join �� (on spans), and string equality
selection ζ=. Fagin et al. chose the term “core spanners” as these capture the core of
the query language AQL, and thereby the core functionality of SystemT.

For example, assume the terminal alphabet � contains the usual ASCII symbols,
�let contains the lowercase letters a to z, and that we use to represent the space
symbol. Now consider the following regex formula:

αmail[xlocal, xdomain] := �∗ xlocal{(�let)
+} @ xdomain{(�let)

+.(�let)
+} �∗

Then αmail is a regex formula that matches (simplified) email addresses in the text.
In every match, it stores the span of local part of the address (before the @) in the
variable xlocal and the span of the domain part (after the @) in the variable xdomain.
Assume that the input word w contains each of the following two subwords exactly
once:

u := petra@example.com v := petra@example.edu

Then the result of αmail on w is a table that contains an entry that assigns the
span of petra for the occurrence of u to xlocal and the span of the correspond-
ing example.com to xdomain. It also contains an element that assigns the spans
of petra for the occurrence of v to xlocal and the span for the corresponding
example.edu to xdomain. Each additional occurrence of these words would pro-
duce another entry in the result table (and so would other parts of w that match).
Using relational operators, core spanners can define more complicated queries, like
the following:

ρ := π∅ζ �=
xdomain,ydomainζ

=
xlocal,ylocal

(αmail[xlocal, xdomain] �� αmail[ylocal, ydomain])
Read from the inside out, ρ first builds two tables with spans for user and local parts
of email addresses, as described above. These tables are then joined with ��; and as
the tables use different variables, this join acts like a cross product. After this, the
string equality selection ζ=

xlocal,ylocal
ensures that in all remaining entries, the variables

xlocal and ylocal describe the same word (but not necessarily at the same positions).
Analogously, the string inequality selection ensures that the variables for the domain
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parts describe different words1. Finally, the projection turns ρ into a Boolean spanner
(which returns only the empty tuple for “true”, or the empty set for “false”). From
our discussion, we conclude that ρ returns true if and only if the input text contains
two email addresses that have the same local part, but different domains. So, if w

contained the two example words u and v from above, ρ would return “true”; but if
w consisted only of multiple occurrences of u, then ρ would return “false” (e.g., if
w = u99).

The main topic of this paper is a logic that captures core spanners. Freydenberger
and Holldack [16] connected core spanners to ECreg, the existential theory of con-
catenation with regular constraints. Described very informally, ECreg is a logic that
combines equations on words (like xaby = ybax) with positive logical connectives,
and regular languages that constrain variable replacement. In particular, [16] showed
that every core spanner can be transformed into an ECreg-formula, which can then
be used to decide satisfiability. Furthermore, while every ECreg-formula can be con-
verted into an equisatisfiable core spanner, the resulting spanner cannot be used to
evaluate the formula directly (as the encoding requires that the input word w of the
spanner encodes the formula).

This paper further develops the connection of core spanners and ECreg. As main
conceptual contribution, we introduce SpLog (short for spanner logic), a natural
fragment of ECreg that has the same expressive power as core spanners. In contrast
to the PSPACE-complete combined complexity of ECreg-evaluation, the combined
complexity of SpLog-evaluation is NP-complete, and its data complexity is in NL.
As main technical result, we prove polynomial time conversions between SpLog and
spanner representations (in both directions), even if the spanners are defined with
automata instead of regex formulas.

As a consequence, SpLog can augment (or even replace) the use of regex formu-
las, automata, or relational operators in the definition of core spanners. Moreover,
this shows that the PSPACE upper bounds from [16] for deciding satisfiability and
hierarchicality of regex formula based spanners apply to automata based spanners as
well. We also adapt a pumping lemma for word equations to SpLog (and, hence, to
core spanners). The main result also provides insights into the relative succinctness of
classes of automata based spanners: While there are exponential trade-offs between
various classes of automata, these differences disappear when adding the algebraic
operators.

In addition to these immediate uses and insights, the author also expects that
SpLog will simplify future work on core spanners; in particular as the semantics of
SpLog might be considered simpler than the semantics of core spanners and their
variants. While the present paper mostly deals with core spanners (which use string
equalities), we also introduce an alternative way of defining the semantics of the
underlying regex formulas and v-automata using so-called ref-words. We shall see
that this allows us to use various tools from automata theory with little or no extra
effort.

1As we shall see in Section 5.1, string inequality selections can be used despite the fact that the definition
of core spanners allows only equality selections.
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From a more general point of view, this paper can also be seen as an attempt to
connect spanners to the research on equations on words and on groups (cf. Diekert
[10, 11] for surveys), where ECreg has been studied as a natural extension of word
equations. We shall see that SpLog is a natural fragment of ECreg: On an informal
level, SpLog has to express relations on a word w without using additional work-
ing space (which explains the friendlier complexity of evaluation, in comparison to
ECreg).

This gives reason to hope that SpLog can be applied to other models, like graph
databases. In fact, we shall see that fragments of SpLog have natural counterparts in
graph querying formalisms, if the latter are restricted to paths. As a related example
of using ECreg for graph databases, Barceló and Muñoz [3] use a restricted class of
ECreg-formulas for which data complexity is also in NL.

The paper is structured as follows: Section 2 gives the definitions of ECreg and
of spanners. Section 3 examines the notion of functional automata that provides
additional context for the main result, as well as an efficient evaluation algorithm.
Section 4 introduces SpLog (the main topic) and provides polynomial time trans-
formations between SpLog-formulas and core spanners. We then examine properties
of SpLog: Section 5 discusses how SpLog can be used to express relations and
languages. In addition to offering an alternative way of defining relations for core
spanners, this section also introduces and applies a normal form for SpLog, and
gives an efficient conversion of a subclass of xregex (regular expressions with back-
references) to SpLog. Section 6 examines what is not possible in SpLog: We use an
EC-inexpressibility method to obtain the first general SpLog-inexpressibility method
that does not rely on unary alphabets. We also briefly discuss separating SpLog from
ECreg. Section 7 explores connections between fragments of SpLog and graph query-
ing languages, and uses this to obtain new restrictions on previous undecidability
and descriptional complexity results for core spanners. Section 8 extends SpLog with
negation, and connects the resulting logic SpLog¬ to core spanners with difference.
Section 9 concludes the paper.

2 Preliminaries

Let � be a fixed finite alphabet of (terminal) symbols. Except when stated otherwise,
we assume |�| ≥ 2. Let � be an infinite alphabet of variables that is disjoint from
�. We use ε to denote the empty word. For every word w and every letter a, let |w|
denote the length of w, and |w|a the number of occurrences of a in w. A word x is
a subword of a word y if there exist words u, v with y = uxv. We denote this by
x 	 y; and we write x �	 y if x 	 y does not hold. For words x, y, z with x = yz,
we say that y is a prefix of x, and z is a suffix of x. A prefix or suffix y of x is proper
if x �= y. For every k ≥ 0, a k-ary word relation (over �) is a subset of (�∗)k .
Given a nondeterministic finite automaton (NFA) A (or a regular expression α), we
use L(A) (or L(α)) to denote its language. In NFAs, we allow the use of ε-transitions
(this model is also called ε-NFA in literature).

The remainder of this section contains the models that this paper connects: word
equations ECreg in Section 2.1, and document spanners in Section 2.2.
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2.1 Word Equations and ECreg

A pattern is a word α ∈ (� ∪�)∗, and a word equation is a pair of patterns (ηL, ηR),
which can also be written as ηL = ηR . A pattern substitution (or just substitution) is
a morphism σ : (�∪�)∗ → �∗ with σ(a) = a for all a ∈ �. Recall that a morphism
from a free monoid A∗ to a free monoid B∗ is a function h : A∗ → B∗ such that
h(x · y) = h(x) · h(y) for all x, y ∈ A∗. Hence, in order to define h, it suffices to
define h(x) for all x ∈ A. Therefore, we can uniquely define a pattern substitution σ

by defining σ(x) for each x ∈ �.
A substitution σ is a solution of a word equation (ηL, ηR) if σ(ηL) = σ(ηR).

The set of all variables in a pattern α is denoted by var(α). We extend this to word
equations η = (ηL, ηR) by var(η) := var(ηL) ∪ var(ηR).

The existential theory of concatenation EC is obtained by combining word equa-
tions with ∧, ∨, and existential quantification over variables. Formally, every word
equation η is an EC-formula, and σ |= η if σ is a solution of η. If ϕ1 and ϕ2 are EC-
formulas, so are ϕ∧ := (ϕ1 ∧ ϕ2) and ϕ∨ := (ϕ1 ∨ ϕ2), with σ |= ϕ∧ if σ |= ϕ1
and σ |= ϕ2; and σ |= ϕ∨ if σ |= ϕ1 or σ |= ϕ2. Finally, for every EC-formula ϕ

and every x ∈ �, we have that ψ := (∃x : ϕ) is an EC-formula, and σ |= ψ if there
exists some w ∈ �∗ with σ[x→w] |= ϕ, where σ[x→w] is defined by σ[x→w](y) := w

if y = x, and σ[x→w](y) := σ(y) if y �= x.
We also consider ECreg, the existential theory of concatenation with regular con-

straints. In addition to word equations, ECreg-formulas can use constraints CA(x),
where x ∈ � is a variable, A is an NFA, and σ |= CA(x) if σ(x) ∈ L(A). As
every regular expression can be directly converted into an equivalent NFA, we also
allow constraints Cα(x) that use regular expressions instead of NFAs. We freely
omit parentheses, as long as the meaning of the formula remains unambiguous. Exis-
tential quantifiers may also range over multiple variables: In other words, we use
∃x1, x2, . . . , xk : ϕ as a shorthand for ∃x1 : ∃x2 : . . . ∃xk : ϕ.

The set free(ϕ) of free variables of an ECreg-formula ϕ is defined by free(η) =
var(η), free(ϕ1 ∧ ϕ2) := free(ϕ1 ∨ ϕ2) := free(ϕ1) ∪ free(ϕ2), and free(∃x : ϕ) :=
free(ϕ) − {x}. Finally, we define free(C) = ∅ for every constraint C. One could also
argue in favor of free(C(x)) = {x}; but for us, this question is moot, as our definitions
in Section 4 will exclude this fringe case2.

For all ϕ ∈ ECreg, let �ϕ� := {σ | σ |= ϕ}. For every C ⊆ ECreg, we define
�C� := {�ϕ� | ϕ ∈ C}. Two formulas ϕ1, ϕ2 ∈ ECreg are equivalent if free(ϕ1) =
free(ϕ2) and �ϕ1� = �ϕ2�. We write this as ϕ1 ≡ ϕ2. For increased readability, we
use ϕ(x1, . . . , xk) to denote free(ϕ) = {x1, . . . , xk}. Building on this, we also use
(w1, . . . , wk) |= ϕ(x1, . . . , xk) to denote σ |= ϕ for the substitution σ that is defined
by σ(xi) := wi for 1 ≤ i ≤ k.

2More specifically, the distinction between these two definitions is only meaningful when dealing with
constraints on variables that do not occur in word equations (like in formulas that consist only of constraint
symbols). From an ECreg point of view, this are possible (although not of particular importance); but for
spanners, these are not relevant.



Theory Comput Syst

Example 2.1 Consider the EC-formula ϕ1(x, y, z) := ∃x̂, ŷ : (x = zx̂ ∧ y = zŷ)

and the ECreg-formula ϕ2(x, y, z) := ∃x̂, ŷ : (x = zx̂ ∧ y = zŷ ∧ C�+(z)) . Then
σ |= ϕ1 if and only if σ(x) and σ(y) have σ(z) as common prefix. If, in addition to
this, σ(z) �= ε, then σ |= ϕ2.

Word equations and EC have the same expressive power (cf. Choffrut and Kar-
humäki [6] or Karhumäki, Mignosi, and Plandowski [30]). More formally, for every
EC-formula ϕ, one can construct a word equation η with var(η) ⊇ free(ϕ), such
that σ |= ϕ if and only if there is a σ ′ with σ ′ |= η and σ ′(x) = σ(x) for all
x ∈ free(ϕ). This can directly be extended to convert any ECreg-formula into a word
equation with constraints (cf. Diekert [10]). For conjunctions, the construction is eas-
ily explained: Choose distinct a, b ∈ �. Hmelevskii’s pattern pairing function is
defined by 〈α, β〉 := αaβαbβ. Then (αL = αR) ∧ (βL = βR) holds if and only if
〈αL, βL〉 = 〈αR, βR〉. This follows from a simple length argument, where the termi-
nals a and b act as “barriers” that prevent unintended equalities (see Section 5.3 of [6]
for details). The construction for disjunctions is similar, but it is also more involved
and introduces new variables. Furthermore, converting alternating disjunctions and
conjunctions may increase the size exponentially.

2.2 Document Spanners

2.2.1 Spanners and Primitive Spanner Representations

Let w := a1a2 · · · an be a word over �, with n ≥ 0 and a1, . . . , an ∈ �. A span of
w is an interval [i, j 〉 with 1 ≤ i ≤ j ≤ n + 1. For each span [i, j 〉 of w, we define
w[i,j〉 := ai · · · aj−1. That is, each span describes a subword of w by its bounding
indices.

Example 2.2 Let w := aabbcabaa. As |w| = 9, both [3, 3〉 and [5, 5〉 are spans of
w, but [10, 11〉 is not. As 3 �= 5, the two spans are not equal, even though w[3,3〉 =
w[5,5〉 = ε. The whole word w is described by the span [1, 10〉.

Let V ⊂ � be finite, and let w ∈ �∗. A (V , w)-tuple is a function μ that maps
each variable in V to a span of w. If V is clear, we write w-tuple instead of (V , w)-
tuple. A set of (V , w)-tuples is called a (V , w)-relation. A spanner is a function P

that maps every w ∈ �∗ to a (V , w)-relation P(w). Let V be denoted by SVars (P ).
Two spanners P1 and P2 are equivalent if SVars (P1) = SVars (P2), and P1(w) =
P2(w) for every w ∈ �∗.

Hence, a spanner can be understood as a function that maps a word w to a set of
functions, each of which assigns spans of w to the variables of the spanner. We now
examine a formalism that can be used to define spanners.

Definition 2.3 A regex formula is an extension of regular expressions to include
variables. The syntax is specified with the recursive rules

α := ∅ | ε | a | (α ∨ α) | (α · α) | (α)∗ | x{α}
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for a ∈ �, x ∈ �. We add and omit parentheses freely, as long as the meaning
remains clear; and we use α+ and� as shorthands for α·α∗ and

∨
a∈� a, respectively.

Both syntax and semantics of regex formulas can be seen as special case of so-
called xregex, a model that extends classical regular expressions with a repetition
operator (see Section 5.3 for a brief and [16] for a more detailed discussion). In par-
ticular, both models define their syntax with parse trees, which is rather inconvenient
for many of our proofs. Instead of using this definition, we present one that is based
on the ref-words (short for reference words) of Schmid [41]. A ref-word is a word
over the extended alphabet (� ∪ �), where � := {�x, �x | x ∈ �}. Intuitively,
the symbols �x and �x mark the beginning and the end of the span that belongs to
the variable x. In order to define the semantics of regex formulas, we treat them as
generators of ref-languages (i.e., languages of ref-words).

Definition 2.4 For every regex formula α, we define its ref-language R(α) by
R(∅) := ∅, R(a) := {a} for a ∈ � ∪ {ε}, R(α1 ∨ α2) := R(α1) ∪ R(α2),
R(α1 · α2) := R(α1) · R(α2), R(α∗

1) := R(α1)
∗, and R(x{α1}) := �xR(α1)�x .

Let SVars (α) be the set of all x ∈ � such that x{ } occurs in α. A ref-word
r ∈ R(α) is valid if, for every x ∈ SVars (α), we have |r|�x = 1.

Let Ref(α) := {r ∈ R(α) | r is valid}. We call α functional if Ref(α) = R(α),
and denote the set of all functional regex formulas by RGX.

In other words, R(α) treats α like a standard regular expression over the alphabet
(�∪�), where x{α1} is interpreted as �xα1�x . Furthermore, Ref(α) consists of those
words where each variable x is opened and closed exactly once.

Example 2.5 Define regex formulas α := (x{a}y{b}) ∨ (y{a}x{b}), β1 := x{a} ∨
y{a}, β2 := x{a}x{a}, and β3 := (x{a})∗. Then α is a functional, while β1 to β3 are
not.

Like [13, 16], we adopt the convention that a regex formula is functional, unless
we explicitly note otherwise3. Hence, without loss of generality, we assume that no
variable binding x{ } occurs under a Kleene star ∗, and that no variable binding x{}
occurs inside a binding for the same variable.

The definition of R(α) implies that every r ∈ Ref(α) has a unique factorization
r = r1�xr2�xr3 for every x ∈ SVars (α). This can be used to define μ(x) (i.e., the
span that is assigned to x). To this end, we define a morphism clr : (� ∪ �)∗ → �∗
by clr(a) := a for all a ∈ �, and clr(g) := ε for all g ∈ � (in other words, clr projects
ref-words to �). Then clr(r1) contains the part of w that precedes μ(x), and clr(r2)
contains wμ(x).

3To be precise, the present paper and [16] follow the naming conventions of the conference version of [13].
In contrast to this, [13] uses the term “regex formula” exclusively for what we call “functional regex
formula”, and “variable regex” for what we call a “regex formula”.
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For α ∈ RGX and w ∈ �∗, let Ref(α, w) := {r ∈ Ref(α) | clr(r) = w}. Then each
r ∈ Ref(α, w) encodes a w-tuple μr that is consistent with α:

Definition 2.6 Let α ∈ RGX, w ∈ �∗, and V := SVars (α). Every r ∈ Ref(α, w)

defines a (V , w)-tuple μr in the following way: For every x ∈ Vars (α), there exist
uniquely defined r1, r2, r3 with r = r1�xr2�xr3. Then μr(x) := [i, j〉, with i :=
|clr(r1)| + 1 and j := |clr(r1r2)| + 1. The function �α� from words w ∈ �∗ to
(V , w)-relations is defined by �α�(w) := {μr | r ∈ Ref(α, w)}.

Example 2.7 Assume that a,b ∈ �. We define the functional regex formula

α := �∗ · x
{
a · y{�∗} · (z{a} ∨ z{b})} · �∗.

Let w := baaba. Then �α�(w) consists of the tuples in the table to the left (we also
picture w and its positions to the right):

As one example of an r ∈ Ref(α, w), consider r = b�xa�ya�y�zb�z�xa, which
defines μr(x) = [2, 5〉, μr(y) = [3, 4〉, and μr(z) = [4, 5〉, and corresponds to the
following picture:

b �x a �y a �y�z b �z�x a

1 2 3 4 5

Although using ref-words is often convenient, it comes with a caveat. While
Ref(α1) = Ref(α2) implies �α1� = �α2�, the converse does not hold: For example,
consider α1 := x{y{a}} and α2 := y{x{a}}, and the ref-words r1 := �x�ya�y�x

and r2 := �y�xa�x�y with ri ∈ Ref(αi). Although r1 �= r2, both define the same
a-tuple μ (with μ(x) = μ(y) = [1, 2〉).

It is easily seen that the definition of �α� via ref-words is equivalent to the def-
inition from [13]. Defining the semantics by ref-words has two advantages: Firstly,
treating R(α) as a language over (� ∪ �) allows us to use standard techniques from
automata theory with little or no extra effort (see Section 3 in particular). Secondly,
it generalizes naturally to vset- and vstk-automata, two models for defining spanners
that we are going to discuss next. Both models were introduced in [13], using an
equivalent definition of behavior that is based on runs. We begin with the first model.
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Definition 2.8 Let V ⊂ � be a finite set of variables, and define �V := {�x, �x |
x ∈ V }. A variable set automaton (vset-automaton) over � with variables V is a
tuple A = (Q, q0, qf , δ), where Q is the set of states, q0, qf ∈ Q are the initial
and the final state, and δ : Q × (� ∪ {ε} ∪ �V ) → 2Q is the transition function.
Let SVars(A) denote the set of all x ∈ V such that �x or �x occurs on a transition
in δ.

We interpret A as a directed graph, where the nodes are the elements of Q, each
q ∈ δ(p, λ) is represented with an edge from p to q with label λ, where p ∈ Q and
λ ∈ (� ∪ {ε} ∪ �V ). We extend δ to δ∗ : Q × (� ∪ �V )∗ → 2Q such that for all
p, q ∈ Q and r ∈ (� ∪�V )∗, we have q ∈ δ∗(p, r) if and only if there is a path from
p to q that is labeled with r . We use this to define R(A) := {r ∈ (� ∪ �V )∗ | qf ∈
δ∗(q0, r)}.

An r ∈ R(A) is valid if, for every x ∈ V , |r|�x = |r|�x = 1, and �x occurs to the
left of �x . We define Ref(A), Ref(A, w), and �A� as for regex formulas.

Hence, a vset-automaton can be understood as an NFA over � that has additional
transitions that open and close variables. When using ref-words, it is interpreted as
NFA over the alphabet (�∪�), and defines the ref-languageR(A); and Ref(A) is the
subset ofR(A) where each variable in V is opened and closed exactly once (and the
two operations occur in the correct order). This also demonstrates why our definition
is equivalent to the definition from [13] (there, opening and closing every variable
exactly once is ensured by the definition of the successor relation for configurations).
In particular, every word inRef(A) encodes an accepting run ofA (as defined in [13]).

Fagin et al. [13] also introduced another model, the variable stack automaton
(vstk-automaton). Its definition is almost identical to then vset-automaton; the only
difference is that instead of using a distinct symbol �x for every variable x, vstk-
automata have only a single closing symbol �, which closes the variable that was
opened most recently (hence the “stack” in “variable stack automaton”). From now
on, we assume that � may include � instead of the symbols �x (which type of closing
symbol is used shall be clear from the context), and adapt clr by defining clr(�) := ε.

For every vstk-automaton A, we define R(A) and SVars (A) analogously to vset-
automata. Accordingly, Ref(A) is the set of all valid r ∈ R(A), where r is valid
if, for each x ∈ V , we have that �x occurs exactly once in w, and is closed by a
matching �. More formally, r is valid if |r|� = ∑

x∈SVars(A) |r|�x , and for every
x ∈ V , we have that |r|�x = 1 and r can be uniquely factorized into r = r1�xr2� r3,
with |r2|� = ∑

x∈V |r2|�x . This unique factorization allows us to obtain μr from
r ∈ Ref(A) analogously to vset-automata.

We use v-automaton as general term that encompasses vset- and vstk-automata.
Furthermore, we call a v-automaton trim if every state is reachable from its initial
state, and the final state can be reached from every state. Each v-automaton can
be turned straightforwardly into an equivalent trim v-automaton of the same type:
Given some v-automaton A, let Atrim denote the automaton that is obtained from A

by removing all states that are not reachable from the initial state, or from which the
final state cannot be reached. Then R(Atrim) = R(A), which implies �A� = �Atrim�.
Thus, if A has n states and m transitions, then Atrim can be constructed in time
O(m + n) using a standard reachability analysis (e.g. by breadth-first search, see
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Cormen et al. [8]). For our purposes, this complexity is negligible; thus, we assume
that every v-automaton is trim unless explicitly noted otherwise. We define the size
of a v-automaton as the number transitions (for trim automata, the number of transi-
tions dominates the number of states). Hence, assuming that � is fixed and keeping
in mind that we consider trim automata by convention, the upper bound for the size
of a v-automaton with n states and k variables is O(kn2).

Let VAset and VAstk be the classes of all trim vset-automata and all trim vstk-
automata (respectively), and define VA := VAset ∪ VAstk. Examples for vset- and
vstk-automata can be found in Fig. 1.

Finally, observe that we can straightforwardly convert each regex formula α into
a vset-automaton A with R(A) = R(α): First, we treat each x{· · · } as �x · · · �x ,
thus interpreting α as regular expression for R(α). Then, we transform this regular
expression into a finite automaton. Finally, we ensure that the resulting automaton
has exactly one final state (Definition 2.8 follows Fagin et al. [13] in requiring this).
This allows us to use any algorithm that transforms a regular expression into an NFA,
see Gruber and Holzer [26] for a survey that also considers complexity issues. An
analogous observation can be made for the transformation to vstk-automata.

2.2.2 Spanner Algebras

In order to capture the expressive power of AQL, Fagin et al. [13] also defined the
following spanner operators.

Definition 2.9 Let P,P1, and P2 be spanners. The algebraic operators union,
projection, natural join and selection are defined as follows for all w ∈ �∗.

Union: If SVars (P1) = SVars (P2), we define (P1 ∪ P2), the union of P1 and P2,
by SVars (P1 ∪ P2) := SVars (P1) and (P1 ∪ P2)(w) := P1(w) ∪ P2(w).

Projection: Let Y ⊆ SVars (P ). Then πY P , the projection of P to Y , is defined by
SVars (πY P ) := Y and πY P (w) := P |Y (w), where P |Y (w) is the restriction of
all μ ∈ P(w) to Y .

Join: Let Vi := SVars (Pi) for i ∈ {1, 2}. Then (P1 �� P2), the natural join of P1
and P2, is defined by SVars (P1 �� P2) := SVars (P1) ∪ SVars (P2) and (P1 ��
P2)(w) is the set of all (V1 ∪ V2, w)-tuples μ for which there exist μ1 ∈ P1(w)

and μ2 ∈ P2(w) with μ|V1
(w) = μ1(w) and μ|V2

(w) = μ2(w).

Fig. 1 A vset-automatonAset (left) and a vstk-automatonAstk (right). Then Ref(Aset) consist of ref-words
ai1�xai2�yai3�z1a

i4�z2a
i5 , with i1, . . . , i5 ≥ 0, z1, z2 ∈ {x, y} and z1 �= z2. Similarly, the ref-words

from Ref(Astk) are of the form ai1�xai2�yai3�ai4�ai5 , with i1, . . . , i5 ≥ 0. The left � closes y, and the
right � closes x
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Selection: The k-ary string equality selection operator ζ= is parameterized by k

variables x1, . . . , xk ∈ SVars (P ), written as ζ=
x1,...,xk

. The selection ζ=
x1,...,xk

P is
defined by SVars

(
ζ=
x1,...,xk

P
) := SVars (P ) and ζ=

x1,...,xk
P (w) is the set of all

μ ∈ P(w) for which wμ(x1) = · · · = wμ(xk).

Take special note that join operates on spans, while selection compares the sub-
words of w that are described by the spans. Also observe that P1 �� P2 is equivalent
to the intersection P1 ∩ P2 if SVars (P1) = SVars (P2), and to the Cartesian product
P1 × P2 if SVars (P1) and SVars (P2) are disjoint. If applicable, we may write ∩ or
× instead of ��.

We refer to regex formulas and v-automata as primitive spanner representations.
A spanner algebra is a finite set of spanner operators. If O is a spanner algebra and C

is a class of primitive spanner representations, then CO denotes the set of all spanner
representations that can be constructed by (repeated) combination of the symbols
for the operators from O with primitive representations from C. For each spanner
representation of the form oρ (or ρ1 o ρ2), where o ∈ O, we define �oρ� = o�ρ� (and
�ρ1� o ρ2 = �ρ1� o �ρ2�). Furthermore, �CO� is the closure of �C� under the spanner
operators in O.

Fagin et al. [13] refer to �RGX{π,ζ=,∪,��}� as the class of core spanners, as these
capture the core of the functionality of SystemT. Following this, we define core :=
{π, ζ=, ∪, ��}. This allows us to use more compact notation, like RGXcore, VAcore

set ,
VAcore

stk , and VAcore.

3 On v-Automata

This section develops some basic insights on v-automata, which we use in Section 4
to provide further context for the main result: Section 3.1 introduces and exam-
ines functional v-automata, while Section 3.2 examines the relative succinctness of
different classes of v-automata.

3.1 Functionality and Evaluation of v-Automata

We begin with a short observation on the complexity of the evaluation of v-automata,
namely that even on the empty word, evaluation is hard.

Lemma 3.1 Given A ∈ VA, deciding whether �A�(ε) �= ∅ is NP-hard.

Proof We show NP-hardness by reduction from the directed Hamiltonian path prob-
lem (see e.g. Garey and Johnson [21]), which is defined as follows: Given a directed
graph G = (V , E), does G contain a Hamiltonian path? A Hamiltonian path is a
sequence (i1, . . . , in) with n = |V |, i1, . . . , in ∈ V , and (ij , ij+1) ∈ E for all
1 ≤ j < n, such that for each v ∈ V , there is exactly one j with ij = v.

We begin with the construction for vset-automata. Given a directed graph G =
(V , E), we construct A ∈ VAset such that �A�(ε) �= ∅ if and only if G contains a
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Hamiltonian path. Assume that V = {1, . . . , n} for some n ≥ 1. We shall define A

with SVars (A) = {x1, . . . , xn}. Let A := (Q, q0, qf , δ), where Q := {q0, qf }∪{qi |
1 ≤ i ≤ n}, and δ is defined as follows:

δ(q0, �xj
) := {qj } for all 0 ≤ i ≤ n,

δ(qi, �xj
) := {qj } for all (i, j) ∈ E,

δ(qi, �xj
) := {qf } for all 1 ≤ i ≤ n, 1 ≤ j ≤ n,

δ(qF , �xj
) := {qf } for all 1 ≤ j ≤ n.

The intuition behind the automaton A is as follows: Every state qj corresponds to
the node j of G, and it can only be entered by reading �xj

. Hence, the reduction
represents each edge (i, j) ∈ E as a transition from qi to qj that is labeled with
�xj

. Finally, at any point, A can change to the final state by reading any �xj
. It then

finishes by closing all remaining variables.
Thus, R(A) is the language of words r = �xi1

�xi2
· · · �xik

· c for some k ≥ 1,
where c ∈ {�xj

| 1 ≤ j ≤ n}∗, as well as i1, . . . , ik ∈ V and (ij , ij+1) ∈ E for all
1 ≤ j < k. This means that we can interpret each r ∈ R(A) as a path (i1, . . . , ik) in
G; and for every path, we can construct a corresponding ref-word.

Moreover, if r ∈ Ref(A), then each �xi
has to occur exactly once in r , which

means that the path (i1, . . . , ik) is a Hamiltonian path. Likewise, every Hamiltonian
path can be used to construct a word from Ref(A).

As no transition of A is labeled with a letter from �, Ref(A) = Ref(A, ε). Hence,
Ref(A, ε) �= ∅ if and only if G contains a Hamiltonian path. As the Hamiltonian
path problem is NP-complete, this means that deciding emptiness of Ref(A, ε) is NP-
hard. For vstk-automata, we can use the same construction and replace each �xi

with
�.

Furthermore, note that for every set of variables V , there exists only one possi-
ble (V , ε)-tuple μ (namely μ(x) = [1, 1〉 for all x ∈ V ). Hence, Lemma 3.1 also
establishes the following.

Corollary 3.2 Given A ∈ VA, w ∈ �∗, and a (V , w)-tuple μ, deciding whether
μ ∈ �A�(w) is NP-hard.

The proof of Lemma 3.1 uses that the semantics of v-automata ensure that every
variable is opened and closed exactly once (or, in ref-word terminology, it uses that
the semantics are defined only by valid ref-words, instead of the full ref-language).
This raises the question whether these problems become tractable if we restrict the
automata analogously.

Although [13] defines RGX as the set of functional regex formulas, no such notion
is introduced for v-automata. But there is a natural way of defining this: First, con-
sider that every match of a functional regex formula guarantees that every variable
is assigned exactly once (in contrast to non-functional regex formulas like x{a}x{a}
and x{a}∨y{a}, which assign variables twice or not at all). Using ref-word terminol-
ogy, this means that Ref(α, w) can be derived directly from R(α), as this language
contains only valid ref-words.
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We adapt this notion to v-automata, and callA ∈ VA functional if Ref(A) = R(A).
Figure 2 contains examples for (non-)functional vset-automata (similar observations
can be made for vstk-automata). This definition is also natural under the semantics as
defined in [13]: Translated to these semantics, a v-automaton A is functional if every
path from q0 to qf describes an accepting run.

At the end of Section 2.2.1, we discussed that transformations of regular expres-
sions into finite automata can be used to transform a regex formula α into a
vset-automaton A with R(A) = R(α). Hence, every functional regex formula can
be transformed into an R-equivalent functional vset-automaton. Again, analogous
observations can be made for vstk-automata.

While v-automata in general have to keep track of the used variables, functional
v-automata store this information implicitly in their states. We formalize this in the
following definition.

Definition 3.3 Let A ∈ VA be functional with A = (Q, q0, qf , δ). For every q ∈ Q,
we define

– a set Oq that contains the variables that have been opened when A is in state q,
and

– ifA is a vset-automaton, a setCq that contains the variables that have been closed
when A is in state q; or,

– if A is a vstk-automaton, a number Nq that is the number of variables that have
been closed when A is in state q.

More formally and using ref-words, we can define these as follows.

Oq := {x ∈ SVars (A) | q ∈ δ∗(q0, r) for some r ∈ (� ∪ �)∗ with |r|�x = 1},
Cq := {x ∈ SVars (A) | q ∈ δ∗(q0, r) for some r ∈ (� ∪ �)∗ with |r|�x = 1},
Nq := |r|�, for some r ∈ (� ∪ �)∗ with q ∈ δ∗(q0, r).

It is an important feature of functional v-automata that any ref-word that leads
from q0 to q can be used to define Oq and Cq (or Oq and Nq ).

Lemma 3.4 Let A ∈ VA be functional with A = (Q, q0, qf , δ) and let q ∈ Q. For
all ref-words r1, r2 ∈ (� ∪ �)∗ with q ∈ δ∗(q0, r1) ∩ δ∗(q0, r2), we have:

1. |r1|�x = |r2|�x for all x ∈ SVars (A), and,

Fig. 2 Two vset-automata AN and AF , which both define the universal spanner for the single variable x

(cf. [13]) over the alphabet {a}. As R(AN) contains ref-words like a�xa�x or a�xa�x , AN is not func-
tional. In contrast to this, AF is functional, as it uses its three states to ensure that its ref-words contain
each of �x and �x exactly once, and in the right order
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2. if A is a vset-automaton, |r1|�x = |r2|�x for all x ∈ SVars (A), or
3. if A is a vstk-automaton, |r1|� = |r2|�.

Proof We only prove the first claim, the others follow analogously. Assume there
exist ref-words r1, r2 ∈ (� ∪ �)∗ such that |r1|�x �= |r2|�x for some x ∈ SVars (A),
and there is a state q ∈ δ∗(q0, r1) ∩ δ∗(q0, r2).

Recall that A is trim by definition of VA. Hence, there exist s1, s2 ∈ (� ∪�)∗ with
qf ∈ δ∗(q, si). Thus, for all i, j ∈ {1, 2}, we have that (ri · sj ) ∈ R(A), which leads
to (ri · sj ) ∈ Ref(A), as A is functional.

Therefore, every ri · sj must be valid, which implies |ri · si |�x = 1. As a con-
sequence, |ri |�x ∈ {0, 1}. Combining this with our initial assumption of |r1|�x �=
|r2|�x , we conclude that one of the ref-words r1 and r2 contains exactly one occur-
rence of �x , while the other ref-word contains no occurrence of �x . Assume without
loss of generality that |r1|�x = 1 and |r2|�x = 0. As r2 · s2 is valid, the latter implies
|s2|�x = 1. Hence, |r1 · s2|�x = 2, which means that the ref-word r1 · s2 is invalid.
Contradiction.

Hence, Lemma 3.4 allows us to compute all Oq and all Cq (or Oq and Nq ) by
choosing any ref-word that takes A from q0 to q. This provides us with the follow-
ing functionality test that we shall also use as part of an evaluation algorithm for
functional v-automata.

Lemma 3.5 There is an algorithm that, given A ∈ VA with m transitions, and
k variables, decides whether A is functional in time O(km).

If A is functional, the algorithm also computes all Oq and all Cq (if A ∈ VAset) or
all Oq and all Nq (if A ∈ VAstk) as defined in Definition 3.3.

Proof Let A = (Q, q0, qf , δ) be a v-automaton. We first discuss the algorithm for
vset-automata, and then how it can be adapted to vstk-automata.

Algorithm for vset-automata: A pseudo-code representation of this algorithm can
be found in Algorithm 1. We know A is trim by definition of VAset. Hence, every
state can be reached from q0, and qf can be reached from every state.
The algorithm tries to find a state q that violates Lemma 3.4. To do so, it induc-

tively constructs all Oq and all Cq , while looking for a transition that causes these
sets to be inconsistent.
We start by defining Oq0 := Cq0 := ∅, and declaring all sets Oq and Cq with

q �= q0 as undefined. In the main loop, the algorithm picks a state p ∈ Q that has
not been picked before and for which Op and Cp are defined. It then iterates over
all transitions from p. For each such transition from p to some state q ∈ Q with
some label λ ∈ (� ∪ � ∪ {ε}), we know that a functional automaton must satisfy
the following conditions that depend on λ:

– if λ ∈ (� ∪ {ε}), then Oq = Op and Cq = Cp must hold,
– if λ = �x , then x /∈ Op, Oq = Op ∪ {x}, and Cq = Cp must hold,
– if λ = �x , then x ∈ Op, x /∈ Cp, Oq = Op, and Cq = Cp ∪ {x} must hold.
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In each case, the conditions describe that the sets for q are correct successors to
the sets for p after using this transition. For the variable transitions, the conditions
also ensure that each variable is opened or closed only once, and that a variable
can only be closed if it has been opened.

If the current transition is a variable transition (i.e., λ ∈ {�x, �x} for some
x ∈ SVars (A)), the algorithm first checks either whether x /∈ Op (if λ = �x),
or whether x ∈ Op and x /∈ Cp (if λ = �x). If this check fails, the algorithm
terminates and declares that A is not functional (as q contradicts Lemma 3.4).

If this check succeeds, or if the transition is not a variable transition, the
algorithm distinguishes two cases:

– If Oq and Cq are undefined, it defines them according to the respective
condition and continues.

– If Oq and Cq are defined, the algorithm checks whether the sets satisfy the
respective condition. If this check fails, the algorithm terminates and declares
that A is not functional (like above, we know that q contradicts Lemma 3.4).
Otherwise, it continues.

If A has not been declared as not functional, the algorithm then proceeds to the
next transition for p (or the next iteration of the main loop).

After the main loop has finished without declaringA as not functional, we know
that all transitions of A result in consistent sets Oq and Cq . Finally, the algorithm
declares A to be functional if and only if Cqf

= SVars (A). This is correct for the
following reason: If there is an x ∈ (SVars (A)−Cqf

), we know that |r|�x = 0 for all
r ∈ R(A). Hence,R contains invalid words, which means that A is not functional.
On the other hand, Cqf

= SVars (A) implies Oqf
= SVars (A), as the con-

ditions above ensure that Cq ⊆ Oq for all q ∈ Q. Furthermore, the conditions
also ensure that each variable is opened and closed exactly once. This allows us to
conclude that for all x ∈ SVars (A), every r ∈ R(A) contains each of �x and �x

exactly once, and in the right order. Hence, R(A) = Ref(A), which means that A
is functional, and we can output the sets Oq and Cq for all q ∈ Q.

All that remains is to verify the upper bound on the running time: The main
loop and the included iterations over the transitions touch each of the m transitions
exactly once. For each transition, we can perform the checks on the sets in time
O(k). This yields a total time of O(km).

Algorithm for vstk-automata: This requires only minor modifications: We define
Nq0 := 0, and Nq defaults to undefined for each q �= q0. The conditions for
transitions from p to q with label λ are as follows:

– if λ ∈ (� ∪ {ε}), then Oq = Op and Nq = Np must hold,
– if λ = �x , then x /∈ Op, Oq = Op ∪ {x}, and Nq = Np must hold,
– if λ = �, then |Np| < |Op|, Oq = Op, and Nq = Np + 1 must hold.

The only noteworthy change here is in the last condition: There, we can only process �
if the number of variables that has already been closed is smaller than the number
of variables that has been opened. Apart from that, the algorithm proceeds as for
vset-automata, with the final check whether |Nqf

| = |SVars (A)|. Analogously to
the vset-case, this holds only if Oqf

= SVars (A).
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Recall that we showed in Lemma 3.1 and Corollary 3.2 suggest that evaluation of
v-automata in general is NP-hard. But for functional v-automata, we can use the
information that is encoded in the Oq and Cq (or Oq and Nq ) for an efficient evalu-
ation algorithm. In other words, non-functionality is the only source of intractability
for v-automata evaluation.

Lemma 3.6 Given w ∈ �∗, a functional A ∈ VA, and a (SVars (A), w)-tuple μ, we
can decide in polynomial time whether μ ∈ �A�(w).

Proof We first show the vset-automata case; the construction for vstk-automata only
requires some minor modifications and is given at the end of the proof. Let A =
(Q, q0, qf , δ) be a functional vset-automaton. Now, we need to keep in mind that, for
everyw ∈ �∗, multiple ref-words r can define the same (SVars (A), w)-tupleμr . For
example, if μ(x) = μ(y), the corresponding ref-word can contain e.g. �x�y�x�y

or �y�y�x�x (or any other arrangement that opens and closes each variable in the
right order). To deal with this partial commutativity, we represent μ as a sequences
of words w0, . . . , wn ∈ �∗ and sequence of sets M1, . . . , Mn ⊆ � for some n ≥ 0
such that the following holds:

1. w = w0w1 · · · wn,
2. wi �= ε for 0 < i < n,
3. the sets M1, . . . , Mn are non-empty and pairwise disjoint,
4.

⋃n
i=1 Mi = {�x, �x | x ∈ SVars (A)},

5. μ(x) = [o, c〉 if and only if there exist 1 ≤ i ≤ j ≤ n with �x ∈ Mi , �x ∈ Mj ,
o = |w0 · · · wi−1| + 1, and c = |w0 · · · wj−1| + 1.

Intuitively, the combined sequence w0, M1, w1, . . . , Mn, wn describes how A has to
match μ tow, where successive variable transitions are considered commutative. The
words wi describe the how A consumes the input, and the sets Mi describe how A

acts on variables. Hence, the sequence captures how A alternates between both types
of behavior.

As a consequence, if r ∈ (�∪�)∗ with μr = μ, then for every Mi , the symbols in
Mi can be arranged into a word vi ∈ �+ such that r = w0(v1w1) · · · (vnwn). As we
require wi �= ε and Si �= ∅, every pair μ and w defines a unique pair of sequences
w0, . . . , wn and M1, . . . , M�.

We now simulate all possible r with μr = μ using a generalization of the
on-the-fly computation of the powerset construction (for the simulation of NFAs
with DFAs). More specifically, the algorithm shall construct a sequence of sets
S0, T1, S1, . . . , Tn, Sn ⊆ Q, where each Si describes the states that A can have
after processing w0, (M1, w1), . . . , (Mi, wi), while Ti describes the states that can
be reached by processing (w0, M1), . . . , (wi−1, Mi).

In order to ensure that the Ti are computed correctly, we also define

Oi :=
i⋃

j=1

{x | �x ∈ Mj }, Ci :=
i⋃

j=1

{x | �x ∈ Mj }
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for all 1 ≤ i ≤ �, as well as O0 := C0 := ∅. Intuitively, Oi and Ci shall represent the
sets Oq and Cq for any q that can be reached after processing w0(M1w1) · · · (Miwi).
This necessarily results in On = Cn = SVars (A).

We now define S0 := δ∗(q0, w0). The algorithm then iterates the following loop
for i from 1 to n:

1. Let Ti be the set of all states q ∈ Q such that

(a) Oq = Oi and Cq = Ci , and
(b) there exists a state p ∈ Si−1 such that q can be reached from p using only

ε-transitions and variable-transitions.

2. Let Si := ⋃
p∈Ti

δ∗(p, wi).

After computing Sn, we only need to check whether qf ∈ Sn. This holds if and only
if there is an r ∈ R(A) with μr = μ. Hence, we can decide μ ∈ �A�(w); and this is
clearly possible in polynomial time (recall that due to Lemma 3.5, we can precompute
the sets Oq and Cq for all q ∈ Q in polynomial time).

vstk-automata: For vstk-automata, instead of storing different �x in the sets Mi ,
and using these to compute Ci for every step i, we compute sets Ni that determine
how many variables have been closed.
We also have to refine the computation of the Ti to account for a special case

of opening variables: Due to the stack behavior, we can encounter cases where
two variables are opened in the same Mi , but closed at different times. Those
variables are not commutative within Mi . Hence, we define the partial order ≺μ

on SVars (A) such that x ≺μ y if μ(x) = [k, m〉 and μ(y) = [k, n〉 with m < n.
In addition to the criteria that hold for vset-automata, the reachability analysis that
computes Ti now may only use transitions from some state p′ to some state q ′
with label �y if x ∈ Op′ for all x ≺μ y.

Apart from that, we proceed analogously to the vset-construction by processing
the wi as in the simulation of an NFA, and the sets Mi with a reachability analysis,
where the sets Oi and Ni determine which states are viable destinations. Clearly,
≺μ can be computed in polynomial time from μ.

This approach was used by Freydenberger, Kimelfeld, and Peterfreund [17] to
develop a polynomial delay algorithm for regular spanners.

3.2 Relative Succinctness of v-Automata

Our next goal is to compare the succinctness of functional and general v-automata,
as well as that of vstk- and vset-automata. To this end, we introduce a lemma that
allows us to treat certain v-automata as NFAs that accept ref-words. Note that the
result applies regardless of whether the ref-words close variables by name with �x

or by stack with �. But as a convention, we shall only apply the following lemma to
two ref-words if either both of them close variables by name or both of them close
variables by stack.
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Lemma 3.7 For a finite V ⊂ �, consider any valid r ∈ (� ∪ �V )∗ that contains
no subword from �2

V . Then for every valid r̂ ∈ (� ∪ �V )∗ with clr(r̂) = clr(r) that
closes variables in the same way as r , we have that μr̂ = μr implies r̂ = r .

Proof Every valid r ∈ (� ∪ �V )∗ that contains no subword from �2
V has a unique

factorization r = w0(v1w1) · · · (v2kw2k) with vi ∈ �V , w0, w2k ∈ �∗, and
w1, . . . , w2k−1 ∈ �+. Hence, for all x ∈ V and [ix, jx〉 := μr(x), we have ix �= jx ;
and for all y ∈ (V − {x}) and [iy, jy〉 := μr(y), we know ix, jx, iy, jy are pairwise
distinct.

Now assume that there is a valid r̂ ∈ (� ∪ �V )∗ with clr(r̂) = clr(r) and μr̂ =
μr . We first observe that r̂ contains no factor from �2

V . Otherwise, we would have
μr̂ �= μr , as there would be some x ∈ V where ix̂ = jx̂ for [ix̂ , jx̂〉 := μr̂(x),
or there is some y ∈ (V − {x}) such that ix̂ , jx̂ , iŷ , jŷ are not pairwise distinct for
[iŷ , jŷ〉 := μr̂(y).

Thus, r̂ can be factorized into r̂ = ŵ0(v̂1ŵ1) · · · (v̂2kŵ2k), analogously to r . By
comparing the factorizations of r and r̂ from left to right, we observe that ŵi = wi

and v̂j = vj has to hold for all i and j . Otherwise, we would obtain a contradiction
to μr̂ = μr or clr(r̂) = clr(r). We conclude r̂ = r .

Lemma 3.7 provides us with a sufficient criterion for ref-words r that uniquely
define μr . This allows us to identify v-automata that can be treated as NFAs. In
particular, we shall use the following result by Birget [4] (although the proof in [4]
refers only to NFAs without ε-transitions, it directly generalizes to those with ε-
transitions).

Lemma 3.8 (Birget [4]) Let L be a regular language. Assume there exist pairs of
words (u1, v1), . . . , (un, vn) such that

1. uivi ∈ L for 1 ≤ i ≤ n, and
2. uivj /∈ L or ujvi /∈ L for all 1 ≤ i < j ≤ n.

Then any NFA accepting L must have at least n states.

Now we are ready to compare functional and general v-automaton. The author
considers it no surprise that standard automata techniques allow us to transform every
vset- or vstk-automaton into an equivalent functional v-automaton of the same type;
but this may result in an exponential number of states. While combining Lemma 3.1
with Lemma 3.6 already suggests that this conversion is not possible in polynomial
time (unless the number of variables is bounded, or P = NP), we also show matching
exponential size bounds.

Proposition 3.9 Let fset(k) := 3k , fstk(k) := (k + 2)2k−1, and s ∈ {set, stk}. For
every A ∈ VAs with n states and k variables, there exists an equivalent functional
Afun ∈ VAs with n · fs(k) states. For every k ≥ 1, there is an Ak ∈ VAs with one
state and k variables, such that every equivalent functional Afun ∈ VAs has at least
fs(k) states.
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Proof This proof is organized as follows: We first discuss vset-automata, then vstk-
automata. For each of these, we first discuss upper and then lower bounds.

Upper bound for vset-automata: Consider a vset-automaton A = (Q, q0, qf , δ)

with k ≥ 1 variables. Our goal is to construct a functional vset-automaton Afun

with 3k|Q| states and �Afun� = �A�. The main idea is to intersect A with a
functional vset-automaton that keeps track of the sets Oq and Cq for all q ∈
Q (Definition 3.3). Formally, we associate each state of Afun with a function
s : SVars(A) → {w,o,c}, where s(x) represents the following:

– w stands for “waiting”, meaning �x has not been read,
– o stands for “open”, meaning �x has been read, but not �x ,
– c stands for “closed”, meaning �x and �x have been read.

Let S be the set of all such functions. Observe that |S| = 3k . We now define
Afun := (Qfun, q

fun
0 , q fun

f , δfun) in the following way:

– Qfun := Q × S,
– q fun

0 := (q0, s0), where s0 is defined by s0(x) = w for all x ∈ SVars (A),
– q fun

f := (qf , sf ), where sf is defined by sf (x) = c for all x ∈ SVars (A),
– δfun((p, s), a) := {(q, s) | q ∈ δ(p, a)} for a ∈ (� ∪ {ε}) and (p, s) ∈ Qfun,
– for all (p, s) ∈ Qfun and all x ∈ SVars (A), let

δfun((p, s), �x) :=
{ ∅ if s(x) �= w,

{(q, to) | q ∈ δ(p, �x)} if s(x) = w,

δfun((p, s), �x) :=
{ ∅ if s(x) �= o,

{(q, tc) | q ∈ δ(p, �x)} if s(x) = o,

where to is defined by t (x) := o and to(y) := s(y) for all y �= x, and tc is
defined by tc(x) := c and tc(y) := s(y) for all y �= x.

In order to see that Afun is correct and functional, note that it simulates A, while
the definition of δfun ensures that in each state (q, s), each variable x can only
be opened if s(x) = w, and only be closed if s(x) = o. The initial state (q0, s0)

and the final state (qf , sf ) ensure that every variable is opened and closed exactly
once. Finally, as Afun has exactly 3k|Q| states, this proves the upper bound for
vset-automata.

Lower bound for vset-automata: Let a ∈ �, k ≥ 1, and Xk := {x1, . . . , xk} ⊂ �.
We define the following vset-automaton Ak with variables Xk:

In the terminology of [13], Ak defines the universal spanner over {a} with
variables Xk .

Recall the set S of all functions s : Xk → {w,o,c}, which we already used for
the upper bound above. For every s ∈ S, we define ref-words us := us

1 · · · us
k



Theory Comput Syst

and vs := vs
1 · · · vs

k , where the words us
i and vs

i are defined as follows for every i,
1 ≤ i ≤ k:

us
i :=

⎧
⎨

⎩

ε if s(xi) = w,

�xi
a if s(xi) = o,

�xi
a�xi

a if s(xi) = c

vs
i :=

⎧
⎨

⎩

�xi
a�xi

a if s(xi) = w,

�xi
a if s(xi) = o,

ε if s(xi) = c

Now observe that us · vs ∈ Ref(Ak) for each s ∈ S. Furthermore, us · vs does not
contain any subword from �2. Hence, according to Lemma 3.7, usvs ∈ Ref(A)

must hold for every vset-automaton A with �A� = �Ak�.
Let A ∈ VAset be functional with �A� = �Ak�. As A is functional, Ref(A) =

R(A), which implies us · vs ∈ R(A) for all s ∈ S. Furthermore, for all s, t ∈ S

with s �= t , we have that us ·vt /∈ R(A) must hold, as us ·vt is not a valid ref-word.
In order to see this, consider an xi with s(xi) �= t (xi). As each �xi

and �xi
occurs

only in us
i and vt

i , the ref-word us · vt cannot contain both of �xi
and �xi

exactly
once.
This allows us to use Lemma 3.8: For each s ∈ S, we observe us · vs ∈ R(A)

and us · vt /∈ R(A) for all t ∈ S with t �= s. Hence, A has at least |S| = 3k states.
As A was chosen freely among functional vset-automata, this proves the claimed
lower bound.

Upper bound for vstk-automata: Assume A = (Q, q0, qf , δ) is a vstk-automaton
with k ≥ 1 variables. Our goal is to construct a functional vstk-automaton Afun

with (k +2)2k−1|Q| states and �Afun� = �A�. On a conceptual level, the construc-
tion is very similar to the vset-automata construction above. The only difference
is what information on the variables is stored in the states. For vstk-automata, we
store which variables have been opened (to ensure that every variable is opened
exactly once), and how many variables have been closed (to ensure that every vari-
able is closed at least once, and to prevent processing � when no variables can be
closed). We now define Afun := (Qfun, q

fun
0 , q fun

f , δfun) in the following way:

– Qfun := {(q, O, i) | q ∈ Q, O ⊆ SVars (A), 0 ≤ i ≤ |O|},
– q fun

0 := (q0, ∅, 0),
– q fun

f := (qf ,SVars (A), k),
– δfun((p, O, i), a) := {(q, O, i) | q ∈ δ(p, a)} for a ∈ (� ∪ {ε}) and

(p, O, i) ∈ Qfun,
– for all (p, O, i) ∈ Qfun and all x ∈ SVars (A), let

δfun((p, O, i), �x) :=
{ ∅ if x ∈ O,

{(q, O ∪ {x}, i) | q ∈ δ(p, �x)} if x /∈ O,

δfun((p, O, i), �) :=
{ ∅ if i ≥ |O|,

{(q, O, i + 1) | q ∈ δ(p, �)} if i < |O|
It is now easy to see that Afun simulates A. In addition to this, the definition of
δfun ensures that variables are only opened if they have not been opened before
(as �x can only be precessed if x /∈ O), and that variables can only be closed
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if there are sufficiently many open variables (as � can only be processed if i <

|O|). Furthermore, Afun accepts only if every variable has been opened, and if
k variables have been closed. Hence, Afun is functional and equivalent to A. All
that remains for this upper bound is to prove that |Qfun| = (k + 2)2k−1|Q|. First,
note that in the definition of Qfun, each state of Q is paired with an element of
the set M := {(O, i) | O ⊆ SVars (A), 0 ≤ i ≤ |O|}. We observe that |M| =∑k

j=0

(
k
j

)
(j + 1), as there are

(
k
j

)
possible sets O with |O| = j ; and for each

such set, we have (j + 1) choices for i. By simplifying this formula (e.g. using
ones favorite software), we obtain |M| = (k + 2)2k−1. As |Qfun| = |M||Q|, this
concludes the proof of the upper bound.

Lower bound for vstk-automata: Again, this proof is similar to the vstk-case. Let
a ∈ �, k ≥ 1, and Xk := {x1, . . . , xk} ⊂ �. We define the following vset-
automaton Ak with variables Xk:

In the terminology of [13], Ak defines the universal hierarchical spanner over
{a} with variables Xk . Again, we want to define a sequence of pairs of ref-words
that allows us to use Lemma 3.8. Recall the set M := {(O, i) | O ⊆ Xk, i ≤ |O|}
that we already used in the proof for the upper bound. For each (O, i) ∈ M , we
define ref-words uO,i := uO

1 · · · uO
k (�a)i and vO,i := vO

1 · · · vO
k (�a)k−i by

uO
j :=

{ �xj
a if xj ∈ O,

ε if xj /∈ O

vO
j :=

{
ε if xj ∈ O,

�xj
a if xj /∈ O

for all j with 1 ≤ j ≤ k. First, observe that uO,i · vO,i ∈ Ref(Ak) holds for all
(O, i) ∈ M . Assume that A is a functional vstk-automaton with �A� = �Ak�. As
Lemma 3.7 applies, we know that uO,i · vO,i ∈ R(A) holds for all (O, i) ∈ M .
Next, consider (O, i), (O ′, i′) ∈ M with (O, i) �= (O ′, i′) and let r := uO,i ·
vO ′,i′ . Then r /∈ R(A) must hold: If i �= i′, then r contains too many or too few
occurrences of �. If O �= O ′, then a variable x is opened more than once (if x ∈ O

and x /∈ O ′) or less than once (if x /∈ O and x ∈ O ′). In each of these cases, r

is not valid, which contradicts our assumption that A is functional. Hence, we can
apply Lemma 3.8, and conclude that A has at least |M| states. As we established
in the proof of the upper bound, |M| = (k + 2)2k−1.

We also briefly compare vset- and vstk-automata: It was shown in [13] that
�VAstk� ⊂ �VAset�. This inclusion is proper for the following reason: As vstk-
automata always close the variable that was opened most recently, they can only
express hierarchical spanners (a spanner is hierarchical if it contains only w-tuples
with non-overlapping spans; for a formal definition, see [13]). While this behav-
ior can be simulated with vset-automata, a slight modification of the proof of
Proposition 3.9 shows that this causes an exponential blowup.
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Proposition 3.10 For every k ≥ 1, there is a vstk-automaton Ak with one state and
k variables, such that every vset-automaton A with �A� = �Ak� has at least k! states.

Proof Let a ∈ �, k ≥ 1, and Xk := {x1, . . . , xk} ⊂ �. We use the same vstk-
automatonAk as in the proof of the lower bound for vstk-automata in Proposition 3.9.

We now focus on the following subset of Ref(Ak):

Rk :=
{
(�xp(1)a) · · · (�xp(k)

a)(�a)k | p ∈ Perm(k)
}

,

where Perm(k) is the set of all permutations of {1, . . . , k}. Translating these ref-
words to ref-words that use explicit closing commands, we obtain the language

R′
k := {

(�xp(1)a) · · · (�xp(k)
a)(�xp(k)

a) · · · (�xp(1)a) | p ∈ Perm(k)
}
.

As R′
k makes the closing of variables explicit, we can state that for every r ∈ Rk ,

there is an r ′ ∈ R′
k with μr = μr ′

, and vice versa. Hence, for every vset-automaton
A with �A� = �Ak�, Lemma 3.7 implies that R′

k ⊆ R(A). For every permutation
p ∈ Perm(k), we now define

up := (�xp(1)a) · · · (�xp(k)
a), vp := (�xp(k)

a) · · · (�xp(1)a).

Then upvp ∈ R′
k holds for every p ∈ Perm(k), which implies upvp ∈ R(A). Next,

consider any p, q ∈ Perm(k) with p �= q, and let r := upvq . Choose the largest i for
which p(i) �= q(i). As p(j) = q(j) for all j > i, the ref-words vp and vq have the
common prefix �xp(k)

a · · · �xp(i+1)a, and the leftmost letters where the two ref-words
disagree are �xp(i)

and �xq(i)
(in vp and in vq , respectively). In up, the variable xp(i)

is opened after xq(i) is opened – hence, it is closed in vp before xq(i) is closed. But in
vq , the variable xq(i) is closed before xp(i), which means that while upvq is a valid
ref-word, it defines an Xk-tuple that is not hierarchical, which means that it cannot
correspond to any ref-word that is defined by a vstk-automaton (in particular not by
Ak). Hence, as A and Ak are equivalent, upvq /∈ Ref(A) must hold. By Lemma 3.8,
A has at least |Perm(k)| = k! states.

To obtain an exponential upper bound, one can construct a vset-automaton that
stores a set of variables that have been opened, and a stack of variables that are
currently open.

While the proof of Proposition 3.10 uses non-functional vstk-automata, we can
observe a lower bound for functional vstk-automata that is not k!, but still exponential
in k.

Proposition 3.11 For every k ≥ 1, there is a functional vstk-automaton Ak with 5k
states and 2k variables, such that every vset-automaton A with �A� = �Ak� has at
least 2k states.

Proof Let a ∈ � and k ≥ 1. We define the functional vstk-automaton Ak with
variables {x1, y1 . . . , xk, yk} ⊂ � as follows:
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Observe that Ak has 5k + 1 states: the starting state, 3k states that handle opening
the variables, and 2k states that handle closing the variables. Intuitively, for each pair
xi and yi of variables, Ak chooses whether it opens first xi and then yi , or vice versa.
As there are k such pairs of variables, there are 2k different combinations of choices.

Building on this, the proof proceeds analogously to that of Proposition 3.10: We
can restrict our considerations to those ref-words where exactly one a is read after
each variable operation, which allows us to use Lemma 3.7. For each of the 2k com-
binations of choices, we can define a pair (ui, vj ) of ref-words for vstk-automata,
where ui corresponds to opening the variables and vi to closing them. We then invoke
Lemma 3.8 to conclude that every vset-automaton that is equivalent to Ak needs to
have at least 2k states.

In contrast to Proposition 3.10, these functional vstk-automata have more than a
single state. This is to be expected, as it is easily seen that a functional vstk-automaton
with k variables needs to have at least 2k +1 states (it needs at least 2k transitions for
the variable operations, each of which has to lead a new state in order to guarantee
functionality).

We conclude that although vstk-automata can express less than vset-automata,
they may offer an exponential succinctness advantage; and this advantage is orthog-
onal to the advantage of non-functional over functional automata. We revisit these
succinctness issues in Section 4.

4 SpLog: A Logic for Spanners

In this section, we introduce SpLog as a fragment of ECreg and connect it to core span-
ners. Section 4.1 discusses the definitions and the main result; Section 4.2 contains
the proof of the main result.

4.1 The Logic

As shown by Freydenberger and Holldack [16], every element of RGXcore can be
converted into an ECreg-formula, and every word equation with regular constraints
can be converted to RGXcore (and so can every ECreg-formula; see the comments after
Example 2.1). While conversion from word equations or ECreg results in a spanner
that is satisfiable if and only if the formula is satisfiable, the input word of the span-
ner needs to encode the whole word equation. Hence, the spanner can only simulate
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satisfiability, but not evaluation. Moreover, this construction can lead to an exponen-
tial blowup. To overcome these problems, we introduce SpLog (short for spanner
logic), a fragment of ECreg that directly corresponds to core spanners.

Definition 4.1 A formula ϕ ∈ EC is safe if the following conditions are met:

1. If (ϕ1 ∨ ϕ2) is a subformula of ϕ, then free(ϕ1) = free(ϕ2).
2. Every constraint CA(x) occurs only as part of a subformula (ψ ∧ CA(x)), with

x ∈ free(ψ).

Let W ∈ �. Then SpLog(W), the set of all SpLog-formulas with main variable W, is
the set of all safe ϕ ∈ ECreg such that

1. all word equations in ϕ are of the form W = ηR , with ηR ∈ ((� − {W}) ∪ �)∗,
2. for every subformula ψ of ϕ, W ∈ free(ψ).

We also define the set of all SpLog-formulas by SpLog := ⋃
W∈� SpLog(W), and

we use SpLogrx to denote the fragment of SpLog that exclusively defines constraints
with regular expressions instead of NFAs.

Less formally, for every ϕ ∈ SpLog(W), the main variable W appears on the left
side of every equation (and is never bound with a quantifier). The requirement that ϕ
is safe ensures that each variable corresponds to a subword ofW. When declaring the
free variables of a SpLog-formula, we slightly diverge from our convention for ECreg-
formulas, and write ϕ(W; x1, . . . , xk) to denote a formula with main variable W, and
free(ϕ) = {W, x1, . . . , xk}. To account for the special role of the main variable, we
also use �ϕ�(w) to denote the set of all σ ∈ �ϕ� that satisfy σ(W) = w.

Definition 4.1 can be seen as restricting the definition of ECreg. For some purposes,
in particular when extending SpLog as we shall do in Section 8, it is more convenient
to deal with a recursive definition. Hence, before we consider some example formu-
las, we introduce the following recursive definition of SpLog, which is equivalent to
Definition 4.1.

Definition 4.2 LetW ∈ �. Then SpLog(W), the set of all SpLog-formulas with main
variable W, is the subset of ECreg that is obtained from the following recursive rules.

B1. (W = ηR) ∈ SpLog(W) for every ηR ∈ ((� − {W}) ∪ �)∗.

R1. If ϕ1, ϕ2 ∈ SpLog(W), then (ϕ1 ∧ ϕ2) ∈ SpLog(W).
R2. If ϕ1, ϕ2 ∈ SpLog(W) and free(ϕ1) = free(ϕ2), then (ϕ1 ∨ ϕ2) ∈ SpLog(W).
R3. If ϕ ∈ SpLog(W) and x ∈ free(ϕ) − {W}, then (∃x : ϕ) ∈ SpLog(W).
R4. If ϕ ∈ SpLog(W) and x ∈ free(ϕ), then (ϕ ∧ CA(x)) ∈ SpLog(W) for every

NFA or regular expression A.

Example 4.3 Define ϕ1(W; x) := ∃y : W = xy ∧ C�+(x). Then ϕ1 is a SpLog(W)-
formula, and σ |= ϕ1 if and only if σ(x) as a non-empty prefix of σ(W).

In contrast to this, ϕ2(W; x, y) := (W = xx ∨ W = yyy) is not a SpLog-formula,
as it is not safe. Intuitively, if for example σ(W) = σ(x)2, then σ |= ϕ2, even if
σ(y) �	 σ(W).



Theory Comput Syst

Now define SpLog-formulas

ϕ3(W; x, y) := (∃x1, x2 : W = x1xx2) ∧ (∃y1, y2 : W = y1yy2) ,

ϕ4(W; x, y) := ∃z1, z2, z3 : (W = z1xz2yz3 ∨ W = z1yz2xz3) .

Then σ |= ϕ3 if and only if σ(W) contains an occurrence of σ(x) and one of σ(y);
and σ |= ϕ4 holds if and only if σ(W) contains an occurrence of σ(x) and one
of σ(y) that do not overlap. For example, if σ(W) = banana, σ(x) = ban, and
σ(y) = nana, then σ |= ϕ3, but not σ |= ϕ4. Next, we define the SpLog-formula

ϕ5(W; x, y) := ∃z1, z2, z3 :
(
W = z1xz2yz3 ∧ Cα≥5(z2)

) ∨ (
W = z1yz2xz3 ∧ Cα≤7(z2)

)
,

where α≥5 and α≤7 are regular expressions with L(α≥5) = {w ∈ �∗ | |w| ≥ 5} and
L(α≤7) = {w ∈ �∗ | |w| ≤ 7}. Then σ |= ϕ5 if and only if

1. σ(W) contains an occurrence of σ(x) to the left of an occurrence of σ(y) with at
least five terminals between them, or

2. σ(W) contains an occurrence of σ(y) to the left of an occurrence of σ(x) with at
most seven terminals between them.

For more examples, see Example 4.5 below and Section 5, which also contains
notational shorthands that simplify writing SpLog-formulas.

Before we examine conversions between SpLog and various representations of
core spanners, we introduce a result that provides us with a convenient shorthand
notation.

Lemma 4.4 Let ϕ ∈ SpLog(W), x ∈ free(ϕ) − {W}, and ψ ∈ SpLog(x) such that
W does not occur in ψ . We can compute in polynomial time χ ∈ SpLog(W) with
χ ≡ (ϕ ∧ ψ).

Proof Let x1, x2 be new variables and define

χ := ϕ ∧ ∃x1, x2 :
(
(W = x1 · x · x2) ∧ ψ̂

)
,

where ψ̂ is obtained fromψ by replacing every equation x = ηR withW = x1·ηR ·x2.
Given W = x1 · x · x2, these equations define the same relations as the x = ηR . Then
χ ≡ (ϕ ∧ ψ) holds.

This allows us to combine SpLog-formulas with different main variables.

Example 4.5 First, note that σ(x) |= ψ1 holds for the EC-formula ψ1(x, y) :=
∃u, v : (x = uv ∧ y = vu) if and only if σ(x) is a cyclic permutation of y (and
vice versa). For example, this holds if σ(x) = owl and σ(y) = low, or if
σ(x) = headgear and σ(y) = gearhead.
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Now assume that we want to extend the formula ϕ4(W; x, y) from Example 4.3
with the additional requirement that x is a cyclic permutation of y. We could do this
directly using the following formula:

ψ2(W; x, y) := ∃z1, z2, z3 : (W = z1xz2yz3 ∨ W = z1yz2xz3)

∧∃u, v : ((∃z4, z5 : W = z4xz5 ∧ W = z4uvz5)

∧ (∃z6, z7 : W = z6yz7 ∧ W = z6vuz7)) .

Using Lemma 4.4, we can express this using the following simplified notation:

ψ3(W; x, y) := ∃z1, z2, z3 :
(W = z1xz2yz3 ∨ W = z1yz2xz3) ∧ ∃u, v : (x = uv ∧ y = vu) ,

where we treat x and y as main variables of subformulas.

When comparing the expressive power of spanners and SpLog, we need to address
one important difference of the two models: While SpLog is defined on words, span-
ners are defined on spans of an input word. Apart from slight modifications to adapt
it to SpLog, the following definition for the conversion of spanners to formulas was
introduced in [16].

Definition 4.6 Let P be a spanner and let ϕ ∈ SpLog(W) with free(ϕ) = {W} ∪
{xP , xC | x ∈ SVars (P )}. We say that ϕ realizes P if, for all w ∈ �∗, we have σ ∈
�ϕ�(w) if and only if μ ∈ P(w) where, for each x ∈ SVars (P ) and [i, j 〉 := μ(x),
both σ(xP ) = w[1,i〉 and σ(xC) = w[i,j〉.

The intuition behind this definition is that every span [i, j 〉 of w is uniquely iden-
tified by its content w[i,j〉, and by w[1,i〉, the prefix of w that precedes the span.
Hence, we represent every variable x of the spanner with two variables xC and xP ,
which store the content and the prefix, respectively. Moreover, the main variable of
the SpLog-formula corresponds to the input word of the spanner. Next, we consider
conversions in the other direction.

Definition 4.7 Let ϕ ∈ SpLog(W). A spanner P with SVars (P ) = free(ϕ) − {W}
realizes ϕ if, for all w ∈ �∗, we have σ ∈ �ϕ�(w) if and only if there exists some
μ ∈ P(w) with wμ(x) = σ(x) for all x ∈ SVars (P ).

Again, the main variable of the SpLog-formula corresponds to the input word of
the spanner. Note that it is possible to define realizability in a stricter way: Instead of
requiring that μ ∈ P(w) holds for one μ with wμ(x) = σ(x) for all x ∈ SVars (P ),
we could require μ ∈ P(w) for all such μ. But such a spanner can directly be con-
structed from a spanner P that satisfies Definition 4.7, by joining P with a universal
spanner (cf. [13]), and using string equality selections (for our purposes, this does not
affect the complexity, as this paper only considers spanners that allow string equality
relations – see the proof of Lemma 8.3 for a use of this construction).

Let C1 be a class of spanner representations (or SpLog-formulas), and let C2 be a
class of SpLog-formulas (or spanner representations). A polynomial size conversion
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from C1 to C2 is an algorithm that, given some ρ1 ∈ C1, computes some ρ2 ∈ C2
such that ρ2 realizes ρ1, and the size of ρ2 is polynomial in the size of ρ1. If the
algorithm also works in polynomial time, we say that there is a polynomial time
conversion. First, we use Lemma 3.1 to obtain a negative result on conversions of
v-automata to SpLog.

Lemma 4.8 P = NP, if there is a polynomial time conversion from VAset or VAstk

to SpLog.

Proof We show this by reduction from the problem of checking whether �A�(ε) �=
∅, which is NP-hard according to Lemma 3.1. Let A ∈ VA, and assume that we
can construct in polynomial time a formula ϕ ∈ SpLog(W) that realizes A. Then
�A�(ε) �= ∅ holds if and only if there is a substitution σ ∈ �ϕ�(ε). As σ maps every
variable in ϕ to a subword of σ(W) = ε, we have σ(x) = ε for all x ∈ free(ϕ). The
same applies to all variables that are introduced with existential quantifiers. Hence,
σ |= ϕ if and only if σε |= ϕ, where the substitution σε is defined by σε(x) := ε for
all x ∈ �.

Whether this holds can be easily verified by rewriting ϕ into a Boolean expression
over 1 and 0: Every equation W = ηR is replaced with 1 if σε(ηR) = ε, and with 0
if σε(ηR) �= ε. Likewise, every constraint CAC

(x) is replaced with 1 if ε ∈ L(AC),
and 0 if ε /∈ L(AC) (as AC is an NFA, this can be checked in polynomial time).
Finally, all existential quantifiers are removed. This results in a Boolean expression
(consisting of 0, 1, ∧ and ∨), which we just need to evaluate. If the result is 1, we
know that �A�(ε) �= ∅; if it is 0, �A�(ε) = ∅ holds.

All this is possible in polynomial time. Hence, if a polynomial time conversion
from VAset or VAstk to SpLog exists, P = NP follows.

This result is less negative than it might appear at the first glance, as it relies on
very specific circumstances. More specifically, it requires a combination of the fact
that deciding �A�(ε) �= ∅ is NP-hard (Lemma 3.1) for non-functional v-automata
with the observation that SpLog-formulas can be evaluated trivially on input ε.

We can avoid these circumstances with a very minor relaxation of the definition
of polynomial time conversions: We say that a SpLog-formula ϕ realizes a spanner
P modulo ε if ϕ realizes a spanner P̂ with P(w) = P̂ (w) for all w ∈ �+. In
other words, ϕ realizes P on all inputs, except ε (where the behavior is undefined).
Likewise, a polynomial time conversion modulo ε computes formulas that realize the
spanners modulo ε. We now state the central result of this paper.

Theorem 4.9 There are polynomial time conversions

1. from RGXcore to SpLogrx, and from SpLogrx to RGXcore,
2. from SpLog to VAcore

set and to VAcore
stk ,

3. modulo ε from VAcore to SpLog.

Within the framework of spanners realizing SpLog-formulas (and vice versa), this
establishes that core spanners and SpLog have the same expressive power. As the
proof of this result is quite lengthy, we first discuss some of its implications. The
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actual proof can then be found in Section 4.2 (note that the conversion from RGXcore

to SpLog was basically proven in [16], only minor modifications are required).
Recall that SpLogrx is the fragment of SpLog that uses only regular expressions

to define constraints. The conversion from RGXcore to SpLogrx is almost identical
to the conversion from RGXcore to ECreg that was presented in [16]. The most tech-
nically challenging part is the conversion of non-functional v-automata to SpLog,
which requires a gadget that acts as a synchronization mechanism inside the formula.
It uses sets of variables that map to either ε or the first letter of W, which is the main
reason that the construction only works modulo ε. Generally, P(ε) can be considered
a pathological edge case: As P(w) can be understood as search in w, P(ε) corre-
sponds to a search in the empty word (arguably not a particularly interesting text to
search).

But even if we insist on this case, we are still able to observe conversions that
might not run in polynomial time, but produce a formula of polynomial size. Fur-
thermore, this is only an issue when dealing with non-functional v-automata; for
functional v-automate, we can handle this special case in polynomial time.

Corollary 4.10 There are polynomial size conversions from VAcore to SpLog. These
conversions run in polynomial time if all v-automata in the spanner representation
are functional.

Proof The polynomial time conversions modulo ε from Theorem 4.9 also imply a
polynomial upper bound on the size of the computed representations. For the con-
version of v-automata to SpLog-formulas, this size bound also holds if we omit the
modulo ε, as for every A ∈ VA, there are only two possible cases: Either �A�(ε) = ∅,
or �A�(ε) = μ, where μ(x) = [1, 1〉 for all x ∈ SVars (A). In the latter case, we add
this special case to the constructed formula.

If we consider only functional v-automata, Lemma 3.6 ensures that this ques-
tion be decided in polynomial time, which makes the conversion a polynomial time
conversion.

As discussed in Section 3, there are exponential blowups when moving from
general to functional v-automata, as well as from vstk- to vset-automata. Another
consequence of Theorem 4.9 is that these blowups disappear when we can also use
the core-algebra.

Corollary 4.11 Given ρ ∈ VAcore, we can compute an equivalent ρf ∈ VAcore
set or

ρf ∈ VAcore
stk , where

1. ρf is of polynomial size,
2. every v-automaton in ρf is functional,
3. every join �� in ρf is a cross product ×.

Proof First, note that the proof of Theorem 4.9 constructs spanner representations
that use × instead of ��, and that the constructed v-automata are functional. Hence,
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we can take a spanner representation ρ ∈ VAcore, and convert it into a SpLog-
formula ϕ, which is then converted into a spanner representation ρ̂ ∈ VAset or
ρ̂ ∈ VAstk. We need one additional step, as the conversion to ϕ doubles the number
of variables (as every x is turned into an xP and an xC). In order to obtain ρf , we
join ρ̂ with xP {�∗} · xC{�∗} · �∗ for every x, and then project away the xP . It is
also possible to solve this with × instead of ��: For every x, we define a spanner
xN {�∗} · x{�∗} · �∗ (where xN is a new variable), which we combine with ρ̂ by
use of ×. Before projecting the variables xN, xP , and xC away, we select ζ=

xN ,xP and
ζ=
x,xC .

Again, if non-functional automata are involved, Lemma 3.1 ensures that comput-
ing an equivalent representation ρf in polynomial time would imply P = NP; but
we can compute in polynomial time a representation ρf that is equivalent modulo ε.
On the other hand, if all automata in ρ are functional, we can compute an equivalent
representations in polynomial time without relaxing the requirements to modulo ε.

Corollary 4.11 also demonstrates that �� can be simulated by a combination of ×
and ζ=, in addition to showing that the algebra compensates the aforementioned
disadvantages in succinctness. While we leave open whether there are polynomial
size conversions from SpLog to RGXcore, or from VAcore to SpLogrx or RGXcore, we
observe that, due to Theorem 4.9, all these questions are equivalent to asking how
efficiently SpLogrx can simulate NFAs.

Another question that we leave open is whether �SpLog� = �ECreg� (see
Section 6.2). But we observe an important difference between the two logics:
While evaluation of ECreg-formulas is PSPACE-hard, this does not hold for SpLog
(assuming NP �= PSPACE).

Corollary 4.12 Given ϕ ∈ SpLog and a substitution σ , deciding σ |= ϕ is NP-
complete. For every fixed ϕ ∈ SpLog, given a substitution σ , deciding σ |= ϕ is in
NL.

Proof We begin with the combined complexity: NP-hardness follows from the NP-
hardness of evaluation of RGXcore, as shown in [16] (or, more elegantly, directly from
the membership problem for pattern languages, that is used in that proof). For the
upper bounds, we could refer to the corresponding upper bounds for RGXcore in [16]
and discuss the necessary modifications, but it is more convenient (and more elegant)
to discuss this directly for SpLog.

The NP upper bound is due to the fact that, given ϕ ∈ SpLog(W) and σ , it suffices
to guess a substitution for every variable that is existentially quantified in ϕ, and to
verify this guess. As every variable has to be a subword of σ(W), this is possible in
polynomial time.

A similar reasoning proves the NL upper bound for data complexity: If ϕ ∈
SpLog(W) is fixed, we can use two pointers to represent each variable of ϕ by mark-
ing its first and its last letter in σ(W). We can then guess a substitution for each
variable, and verify the correctness of this substitution with a constant amount of
additional pointers that track our way through ϕ.
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Theorem 4.9 also shows that the PSPACE upper bounds of deciding satisfiability
and hierarchicality for RGXcore that were observed in [16] also apply to VAcore

set and
VAcore

stk . The same holds for the upper bounds for combined and data complexity.
Finally, the undecidability results of for core spanners from [16] also carry over to

SpLog. This means universality, containment, and equivalence are undecidable; and
that adding negation turns SpLog into an undecidable theory. There are also effects
on the relative succinctness of SpLog-formulas (see Section 4.2 in [16]). We briefly
discuss aspects of this in Section 7.4.

4.2 Proof of Theorem 4.9

Due to its length, we split the proof of Theorem 4.9 into multiple sections. The
conversions from SpLog to spanner representations can be found in Section 4.2.1,
while the conversions from spanner representations to SpLog are distributed over
Section 4.2.2 to 4.2.5 as follows:

1. First, we consider the conversion of primitive spanner representations:

(a) For regex formulas, see Section 4.2.2.
(b) For vset-automata, see Section 4.2.3.
(c) For vstk-automata, see Section 4.2.4.

2. We then examine the conversion of spanner operators in Section 4.2.5.

Two parts of the conversion to SpLog were already shown in [16]: The conversion
of regex formulas to ECreg from [16] only requires a minimal modification that
ensures safety (see Section 4.2.2), and the construction for spanner operators can be
used directly (see Section 4.2.5). We repeat these constructions below in order to
present all parts of the conversion procedure in one place, and to show that these
constructions really result in SpLog-formulas.

4.2.1 From SpLog to Spanner Representations

As the proof is basically identical for all three types of primitive spanner representa-
tions (RGX, VAset, and VAstk), we consider all three at the same time.

Word Equations Consider the word equation η := (W, ηR) with ηR = η1 · · · ηn,
n ≥ 0, and ηi ∈ (� ∪ �) − {W} for 1 ≤ i ≤ n. Assume var(ηR) = {x1, . . . , xk} for
some k ≥ 0. If n = 0 (and ηR = ε), we output the functional regex formula ε (or an
equivalent functional automaton).

Otherwise, assume that we want to construct a regex formula (the case for each
of the automata representations proceeds analogously). We define the regex formula
α := α1 · · · αn as follows: If ηi ∈ �, then αi := ηi . Else, we have ηi = x with
x ∈ �. We distinguish two subcases: If i is the leftmost occurrence of x in ηR (in
other words, if |η1 · · · ηi−1|x = 0), we define αi := x{�∗}, and �x := i. Otherwise,
let αi := x(i){�∗}.

Next, define ρ := πY Sα, where Y := var(ηR), and S is a sequence of selections
ζ=
x,x(j) for each x ∈ var(ηR) and each j > �x with ηj = x.
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Clearly, ρ can be computed in polynomial time. Note that the regex formula α is
functional, as each occurrence of x ∈ var(ηR) is converted into a distinct variable x

or x(i). In addition to this, we can turn α into a functional vset- or vstk-automaton.
Furthermore, the projection πY ensures that SVars(ρ) = var(ηR) = free(η) − {W}.

In order to see that the construction is correct, first assume that there is a substi-
tution σ with σ |= η (i.e., σ(W) = σ(ηR)). Let w := σ(W), and wi := σ(xi) for
1 ≤ i ≤ k. We now want to construct μ ∈ �ρ�(w) with wμ(xi) = wi for 1 ≤ i ≤ k.
To this end, consider the ref-word r = r1 · · · rn, where each ri is defined as follows:
If ηi ∈ �, then ri := ηi . Else, we have ηi = x for some x ∈ �. Now, if i = lx ,
then ri := �xσ (x)�x . Otherwise, let ri := �x(i)σ (x)�x(i) . As σ(W) = σ(ηR) = w,
we know that clr(r) = w. Hence, and as r follows the same construction principle
as α, we observe r ∈ Ref(α, w). Furthermore, wμr(x) = wμr(x(i)) = σ(x) holds
for all x ∈ var(η) and all i > �x with ηi = x. Thus, μr ∈ �Sα�(w). This implies
μ ∈ �ρ�(w) for μ := μr |Y , which concludes this direction of the proof.

For the opposite direction, assume that μ ∈ �ρ�(w) for some w ∈ �∗. By defini-
tion, there exists an r ∈ Ref(α, w) with μ = μr |Y . The construction of α allows us
to factorize r into r = r1 · · · rn, where for each 1 ≤ i ≤ n, one of three cases holds:

1. ri ∈ � and ri = ηi ,
2. ri = �xui�x , with ui ∈ �∗, x ∈ �, and i = �x ,
3. ri = �x(i)ui�x , with ui ∈ �∗, x ∈ �, and i > �x .

Furthermore, as μ ∈ �Sα�(w), we observe u�x = ui for all x ∈ � and all i > �x

with ηi = x. Hence, if we define a substitution σ by σ(W) := w, and σ(x) := u�x

for all x ∈ var(ηR), we obtain σ(ηR) = w = σ(W), and conclude σ |= η.

Constraint Symbols Let ψ := (ϕ ∧ CA(x)). Recall that SpLog-formulas are safe;
hence, constraint symbols occur only as part of formulas ϕ∧CA(x), with x ∈ free(ϕ).
Let ρϕ be an appropriate spanner representation that realizes ϕ, and let xT be a new
variable. If A is a regular expression and our goal is to construct a regex formula,
let ρA := �∗ · xT {A} · �∗. Likewise, if A is an NFA, we can directly construct
a corresponding v-automaton ρA. Now, let ρ := πY ζ=

x,xT (ρϕ × ρA), where Y :=
free(ϕ) − {W}. In order to see that ρ realizes ψ , observe that for all w, we have that
μ ∈ �ρ�(w) holds if and only if both μ ∈ �ρϕ� and wμ(x) = wμ(xT ) ∈ R(A).

Disjunctions Let ψ := (ϕ1∨ϕ2), where ϕ1, ϕ2 ∈ SpLog(W) are realized by spanner
representations ρ1 and ρ2. As ψ is safe, free(ϕ1) = free(ϕ2) holds, which implies
SVars(ρ1) = SVars(ρ2). Hence, we can define ρ := (ρ1 ∪ ρ2). We conclude that ρ

realizes ψ directly from the definitions.

Conjunctions Let ψ := (ϕ1 ∧ ϕ2), where ϕ1, ϕ2 ∈ SpLog(W) are realized by span-
ner representations ρ1 and ρ2. Let Y := (SVars(ϕ1) ∩ SVars(ϕ2)) − {W}, and let ρ̂2
be the spanner representation that is obtained from ρ2 by renaming each x ∈ Y to a
new variable xT . Now define ρ := πY S(ρ1 × ρ̂2), where S is a sequence of selec-
tions ζ=

x,xT for each x ∈ Y . Note that this is indeed × (instead of a more general
��), as the renaming ensures that ρ1 and ρ̂2 have no common variables. Due to the
selections, we observe that μ ∈ �ρ�(w) holds if and only if, firstly, μ ∈ �ρ1�(w)
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and, secondly, there is some μ̂2 ∈ �ρ̂2�(w) such that wμ(x) = wμ̂2(x
T ) for all x ∈ Y .

Define μ2 by μ2(x) := μ̂2(x
T ) for each x ∈ Y . Then μ2 ∈ �ρ2�(w) holds if and

only if μ̂2 ∈ �ρ̂2�(w). Now it is easily seen that ρ realizes ψ .

Existential Quantifiers Let ψ := (∃x : ϕ), with ϕ ∈ SpLog(W), x ∈ free(ϕ)−{W},
and let ϕ be realized by some spanner representation ρϕ . Then we simply define
ρ := πY ρϕ , with Y := free(ϕ) − {W, x}. Again, we can conclude that ρ realizes ϕ

directly from the definitions.

4.2.2 Conversion of Functional Regex Formulas

As mentioned above, the construction in this section was already presented by
Freydenberger and Holldack in the proof of Theorem 3.12 in [16]. Although that
proof constructs some ECreg-formulas that are not SpLog-formulas in a strict sense,
Lemma 4.4 allows us to interpret these cases as SpLog-formulas (we shall mention
where this is relevant).

Consider a functional regex formula ρ ∈ RGX. Our goal is to construct a formula
ϕρ ∈ SpLogrx(W) that realizes ρ. As explained in [16], we can assume that ρ does
not contain ∅, by rewriting ρ in polynomial time if necessary4.

Throughout the construction, we use �x[i..j ] as shorthand notation for
xP
i , xC

i . . . , xP
j , xC

j (with �z[i..j ] defined analogously). We now distinguish the follow-
ing cases:
1. If ρ does not contain any variables, the ρ is a regular expression, and we define

ϕρ(W) := ∃x : (W = x ∧ Cρ(x)).
2. If ρ contains variables, we assume that SVars (ρ) = {x1, . . . , xk} with k ≥ 1.

As ρ is functional by definition of RGX, no variable of ρ may occur inside of a
Kleene star. Hence, we can distinguish three cases:

(a) ρ = ρ1 ∨ ρ2, where ρ1, ρ2 ∈ RGX with SVars (ρ1) = SVars (ρ2) =
SVars (ρ). We define

ϕρ(W; �x[1..k]) := (
ϕρ1(W; �x[1..k]) ∨ ϕρ1(W; �x[1..k])

)
.

(b) ρ = ρ1 ·ρ2, where ρ1, ρ2 ∈ RGX with SVars (ρ1)∪SVars (ρ2) = SVars (ρ)

and SVars (ρ1) ∩ SVars (ρ2) = ∅. Without loss of generality, we assume
SVars (ρ1) = {x1, . . . , xm} and SVars (ρ2) = {xm+1, . . . , xk}

with 0 ≤ m ≤ k. We define

ϕρ(W; �x[1..k]) := ∃y1, y2, �z[m+1..k] :
⎛

⎝(W = y1 · y2) ∧ ϕρ1(y1; �x[1..m]) ∧ ϕρ2(y2; �z[m+1..k])

∧
∧

m+1≤i≤n

(
(xP

i = y1 · zP
i ) ∧ (xC

i = zC
i )

)
⎞

⎠ .

4The rewriting rules for this are 1. ∅∗ → ε, 2. (α̂ ∨ ∅) → α̂ and (∅ ∨ α̂) → α̂, 3. (α̂ · ∅) → ∅ and
(∅ · α̂) → ∅, and 4. x{∅} → ∅.
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Note that Lemma 4.4 allows us to use SpLogrx-formulas with other main
variables in the definition of this formula, and that this does not cause
complexity issues (see the discussion after that lemma).

(c) ρ = x{ρ̂} for some x ∈ {x1, . . . , xk}, and ρ̂ is a functional regex formula
with SVars

(
ρ̂
) = SVars (ρ) − {x}. Without loss of generality, let x = x1.

We define

ϕρ(W; �x[1..k]) :=
(
(xP

1 = ε) ∧ (W = xC
1 ) ∧ ϕρ̂(W; �x[2..k])

)
.

This case also uses Lemma 4.4.

Clearly, the size of ϕρ is polynomial in the size of ρ. Furthermore, we construct ϕρ

by following the syntax of ρ without any expensive additional computations. There-
fore, we conclude that ϕρ can be computed in polynomial time. For the proof of
correctness and further explanations, see Theorem 3.12 in [16].

4.2.3 Conversion of vset-Automata

The construction for vset-automata is more involved than for regex formulas. The
main reason for this is that the latter are restricted to functional regex formulas, which
ensure syntactically that every variable is assigned exactly one value. In contrast to
this, vset-automata ensure this assignment in their behavior (in the original semantics
from [13], this is ensured in the definition of accepting runs; our ref-word definition
ensures this through Ref).

While one could encode all possible combinations of how variables overlap, this
would result in a formula with a size that is exponential in the number of vari-
ables. As our goal is to construct a formula in polynomial time (and, hence, also
polynomial size), we choose a more refined approach. Let A = (Q, q0, qf , δ) be a
vset-automaton, and let SVars(A) = {x1, . . . , xk}, k ≥ 0.

We now make some observations that form the fundament the construction: For
every w ∈ �∗, every r ∈ Ref(A, w) has a unique factorization

r = w0 · v1 · w1 · v2 · · · w2k−1 · v2k · w2k,

with wi ∈ �∗ and vi ∈ {�xj
, �xj

| 1 ≤ j ≤ k}. Then w = w0 · w1 · · · w2k , while
the vi describe the variable operations (opening or closing). Furthermore, there exist
states s0, . . . , s2k, t0, . . . , t2k ∈ Q such that the following holds:

1. s0 = q0,
2. ti ∈ δ(si, wi) for each 0 ≤ i ≤ 2k,
3. sj+1 ∈ δ(tj , vj+1) for each 0 ≤ j < 2k,
4. t2k = qf .

In other words, each si is the state between processing vi and wi , and ti is the state
between wi and vi+1. Also see Fig. 3.

The main idea is that special variables represent all states si and ti , and in which
vi variables are opened and closed. Two central limitations of SpLog are that each
variable has to be a subword ofW, and that it is a purely positive theory. Nonetheless,
we can work around this: For each piece of information that is represented (e.g., for
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Fig. 3 A graphical representation of the factorization of r ∈ Ref(A,w), which is used in the proof of
Theorem 4.9, Section 4.2.3. The si and ti denote the states before and after processing the wi , while the vi

denote variable operations

each state si), we define a group of variables that represents the possible choices (e.g.
variables s

q
i for all q ∈ Q), and ensure that for every satisfying σ , exactly one of

these variables is mapped to the first letter of W, while all others are mapped to ε.
Our goal is constructing a SpLog(W)-formula ϕ that realizes A on all w ∈ �+

(the case of w = ε is ignored, as the conversion works modulo ε). Assuming w �= ε

allows us to define the formula ϕâ := ∃ŵ : (W = â · ŵ), which stores the first letter
of w in â, the special variable that we shall use to synchronize various subformulas.

As mentioned above, the construction uses various sets of variables, where in each
set, exactly one shall be mapped to the first letter of w, while all others are mapped
to ε. This allows us to synchronize different parts of ϕ, and to store non-deterministic
decisions, like the assigned states. The sets are as follows:

1. For 0 ≤ i ≤ 2k, Si := {sq
i | q ∈ Q}, where s

q
i = â represents si = q,

2. For 0 ≤ i ≤ 2k, Ti := {tqi | q ∈ Q}, where t
q
i = â represents ti = q,

3. For 1 ≤ i ≤ k, Oi := {oj
i | 1 ≤ j ≤ 2k}, where o

j
i = â represents vj = �xi

,

4. For 1 ≤ i ≤ k, Ci := {cj
i | 1 ≤ j ≤ 2k}, where c

j
i = â represents vj = �xi

.

In order to manage these variables, we heavily rely on four types of auxiliary formu-
las. We begin with the formulas that handle the allocation of the states si and ti . For
0 ≤ i ≤ 2k, q ∈ Q, let

ϕ
q
s,i := (s

q
i = â) ∧

∧

p∈Q,
p �=q

(s
p
i = ε), ϕ

q
t,i := (t

q
i = â) ∧

∧

p∈Q,
p �=q

(t
p
i = ε).

On an intuitive level, ϕq
s,i represents that si = q (likewise, ϕq

t,i represents ti = q).

Note that free(ϕq
s,i) = Si ∪ {W, â} and free(ϕ

q
t,i) = Ti ∪ {W, â}, as we implicitly

assume the formulas to be SpLog(W)-formulas (see Lemma 4.4, and the discussion
thereafter). In fact, this definition of ϕ

q
s,i is to be understood as a notational shorthand

for the equivalent (but less readable) SpLog(w)-formula

ϕ
q
s,i = (∃ŵ : (

W = s
q
i ŵ

) ∧ (W = âŵ)
) ∧

∧

p∈Q,
p �=q

(∃ŵ : (
W = s

p
i ŵ

) ∧ (
W = ŵ

))
.

This equivalence only holds only if we assume that â refers to the first letter of W,
which shall be ensured by ϕâ . Further down, the fact that the set of free variables
of ϕ

q
s,i depends only on i, and not on q, shall allow us to use these formulas in

disjunctions.
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To handle the variable operations, for 1 ≤ i ≤ k and 1 ≤ j ≤ 2k, we define

ϕ
j
o,i := (o

j
i = â) ∧

∧

1≤l≤2k,
l �=j

(ol
i = ε), ϕ

j
c,i := (c

j
i = â) ∧

∧

1≤l≤2k,
l �=j

(cl
i = ε),

Like our formulas for the states si and ti , the formulas ϕ
j
o,i and ϕ

j
c,i represent

vj = �xi
and vj = �xi

, respectively. Again, we observe free(ϕ
j
o,i) = Oi ∪ {W, â},

and free(ϕ
j
c,i) = Ci ∪ {W, â}, which we shall also use to construct disjunctions.

While the formulas ϕ
j
o,i and ϕ

j
c,i allow us to check where a variable xi is opened or

closed, we also need formulas that express the opposite direction (i.e., which variable
xj is opened or closed in some operation vi). To this end, we define for 1 ≤ i ≤ 2k
and 1 ≤ j ≤ k the formulas

ϕ
�,j
v,i :=

(
(oi

j = â) ∧ (ci
j = ε)

)
∧

∧

1≤l≤k,
l �=j

(
(oi

l = ε) ∧ (ci
l = ε)

)
,

ϕ
�,j
v,i :=

(
(oi

j = ε) ∧ (ci
j = â)

)
∧

∧

1≤l≤k,
l �=j

(
(oi

l = ε) ∧ (ci
l = ε)

)
.

Like ϕi
o,j , the formula ϕ

�,j
v,i expresses that vi = �xj

, and ϕi
c,j and ϕ

�,j
v,i both express

vi = �xj
. But free(ϕ�,j

v,i ) = free(ϕ
�,j
v,i ) = {W, â} ∪ {oi

j , c
i
j | 1 ≤ j ≤ k}. Hence,

these new formulas can be used in disjunctions where the variable operation is fixed
(instead of the variable). We now define

ϕ := ∃�v : ϕâ ∧ ϕfact ∧ ϕinit ∧ ϕfinal ∧ ϕspan ∧ ϕt−trans ∧ ϕv−trans,

where the sequence of variables �v is an arbitrary ordering of the variable set

V := {a, w0, w1, . . . , w2k} ∪
2k⋃

i=0

Si ∪
2k⋃

i=0

Ti ∪
k⋃

i=1

Oi ∪
k⋃

i=1

Ci,

and the subformulas of ϕ are defined as follows:

– ϕfact := (W = w0 · w1 · · · w2k). This factorizes w into w = w0 · w1 · · · w2k .
– ϕinit := ϕ

q0
s,0. This ensures s0 = q0

– ϕfinal := ϕ
qf

t,2k . This expresses t2k = qf .
– ϕspan is defined as

k∧

i=1

2k−1∨

j=1

2k∨

l=j+1

(
ϕ

j
o,i ∧ ϕl

c,i ∧ ϕfact ∧
(
xP
i = w0 · · · wj−1

)
∧

(
xC
i = wj · · · wl−1

))

To every xi , this formula assigns a range between vj and vl , by setting vj = �xi

and vl = �xi
with l > j , as well as xP

i = w0 · · · wj−1, xC
i = wj · · · wl−1.

To see that ϕspan is safe, note that or each i, the formula consists of a
disjunction of formulas, each of which has the free variables

Oi ∪ Ci ∪ {W, â, w0, . . . , w2k, x
P
i , xC

i }.
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– ϕt−trans covers terminal transitions. It ensures that each wi corresponds to a path
from si to ti in A, where the transitions along the path have labels from � ∪ {ε}.
In order to define this, for each pair p, q ∈ Q, we define an NFA Ap,q :=
(Q, p, q, δp,q), where δp,q is the restriction of δ to Q × (� ∪ ε) → 2Q. In other
words, for all q̂ ∈ Q and all λ ∈ (� ∪ {ε} ∪ �),

δp,q(q̂, λ) :=
{

δ(q̂, λ) if λ ∈ � ∪ {ε},
∅ if λ ∈ �.

Hence, each Ap,q is the NFA over � that simulates A when starting in p,
accepting in q, and using no variable transitions. Then we define

ϕt−trans :=
2k∧

i=0

∨

p,q∈Q

(
ϕ

p
s,i ∧ ϕ

q
t,i ∧ (wi 	 W) ∧ CAp,q (wi)

)
,

where we use wi 	 W as shorthand for ∃ŵ1, ŵ2 : (W = ŵ1 · wi · ŵ2). (This has
to be included, otherwise, we could not use CAp,q (wi) inside the conjunction.)
Again, it is easily seen that the formula is safe, as for each i, the disjunction
ranges over subformulas that have the free variables {W, â, wi} ∪ Si ∪ Ti .

Now, ϕt−trans states that for each 0 ≤ i ≤ 2k, wi ∈ L(Asi ,ti ), which is
equivalent to ti ∈ δ(si, wi).

– ϕv−trans covers variable transitions. It ensures si ∈ δ(ti−1, vi) for each vi . We
define ϕv−trans as

2k∧

i=1

k∨

j=1

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

ϕ
�,j
v,i ∧

∨

p∈Q,
q∈δ(p,�xj

)

(ϕ
p

t,i−1 ∧ ϕ
q
s,i)

⎞

⎟
⎟
⎟
⎠

∨

⎛

⎜
⎜
⎜
⎝

ϕ
�,j
v,i ∧

∨

p∈Q,
q∈δ(p,�xj

)

(ϕ
p

t,i−1 ∧ ϕ
q
s,i)

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

Here, ϕv−trans considers each vi , finds the (unique) j with vi = {�xi
, �xi

},
and ensures si ∈ δ(ti−1, �xj

). To see that ϕv−trans is safe, first recall that for the
used auxiliary formulas, the set of free variables depends only on i (not on j , p,
or q). Also recall that free(ϕ�,j

v,i ) = free(ϕ
�,j
v,i ) holds by definition.

Correctness In order to see the correctness of this construction, recall the explana-
tions that are provided with each subformula. First, we examine why every σ ∈ �ϕ�
corresponds to an r ∈ Ref(A, σ (W)). By ϕfact, we have σ(W) = σ(w0) · · · σ(w2k).
Furthermore, ϕspan and ϕv−trans ensure that the vi are valid for a word from
Ref(A, σ (W)): Due to ϕv−trans, every vi with 1 ≤ i ≤ 2k is assigned exactly
one value from the set {�x1 , . . . , �xk

, �x1 , . . . , �xk
}; and due to ϕspan, for every

1 ≤ i ≤ k, there exist exactly one j and one l with 1 ≤ j < l ≤ k, such that vj = �xi

and vl = �xi
.

Next, we check that r corresponds to an accepting run of A: ϕinit and ϕfinal ensure
s0 = q0 and t2k = qf , respectively. For 0 ≤ i ≤ 2k, ϕt−trans guarantees ti ∈
δ(qi, σ (wi)), while ϕv−trans enforces si ∈ δ(ti−1, vi) for 1 ≤ i ≤ 2k. This allows us
to conclude that σ encodes an r ∈ Ref(A, σ (W)). Finally, ϕspan also ensures that all
span variables xP

i and xC
i have the correct contents.
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For the other direction, assume that r ∈ Ref(A, w). As explained above, r has a
unique factorization r = w0v1w1 · · · v2kw2k , from which we can directly derive a
substitution σ ∈ �ϕ�.

Complexity In oder to prove that ϕ can be computed in polynomial time, it suffices
to show that the size of ϕ is polynomial in the size of A (as ϕ is directly derived from
the structure of A). Let n := |Q|, and recall that k = |SVars(A)|. By examining the
subformulas, we can determine that ϕ is of size O(k4 +k2n3 +kn4), which is clearly
polynomial in the size of A. Hence, ϕ can be constructed in polynomial time.

4.2.4 Conversion of vstk-Automata

The construction for vstk-automata is very similar to the construction for vset-
automata (see Section 4.2.3). But as vstk-automata do not close variables explicitly,
we need to extend the constructed formula. Let A = (Q, q0, qf , δ) be a vstk-
automaton with SVars(A) = {x1, . . . , xk}, k ≥ 0.

For every w ∈ �∗, every r̂ ∈ Ref(A, w) can be rewritten into an r ∈ (� ∪ �)∗,
such that μr = μr̂ , by replacing each � with an appropriate �xi

. Then r has the same
unique factorization r = w0 · v1 · w1 · v2 · · · w2k−1 · v2k · w2k, as in Section 4.2.3.
This allows us to reuse the construction from the vset-automata case, if we also add
a formula ϕstack that ensures that variables are closed in the stack order. We define

ϕ := ∃�v : ϕâ ∧ ϕfact ∧ ϕinit ∧ ϕfinal ∧ ϕspan ∧ ϕt−trans ∧ ϕ̂v−trans ∧ ϕstack,

where all formulas are defined as in Section 4.2.3, in addition to the following two
new formulas:

– ϕ̂v−trans is ϕv−trans, adapted to use � instead of �xi
. We define ϕ̂v−trans as

2k∧

i=1

k∨

j=1

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎝

ϕ
�,j
v,i ∧

∨

p∈Q,
q∈δ(p,�xj

)

(ϕ
p

t,i−1 ∧ ϕ
q
s,i)

⎞

⎟
⎟
⎟
⎠

∨

⎛

⎜
⎜
⎝ϕ

�,j
v,i ∧

∨

p∈Q,
q∈δ(p,�)

(ϕ
p

t,i−1 ∧ ϕ
q
s,i)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

Hence, ϕ̂v−transcan interpret each � as any �xi
. This does not ensure that

variables are closed in the correct order (this is done by ϕstack).
– ϕstack states that each closing operator closes the most recent open variable. To

this end, we define ϕstack as
∧

1≤i<k

∧

i<j≤k

∨

1≤l1<l2,
l2<l3<l4≤2k

((
ϕ

l1
o,i ∧ ϕ

l2
o,j ∧ ϕ

l3
c,j ∧ ϕ

l4
c,i

)
∨

(
ϕ

l1
o,i ∧ ϕ

l2
c,i ∧ ϕ

l3
o,j ∧ ϕ

l4
c,j

)

∨
(
ϕ

l1
o,j ∧ ϕ

l2
o,i ∧ ϕ

l3
c,i ∧ ϕ

l4
c,j

)
∨

(
ϕ

l1
o,j ∧ ϕ

l2
c,j ∧ ϕ

l3
o,i ∧ ϕ

l4
c,i

))
.

In order to understand this formula, let oi, ci ∈ {1, . . . , 2k} such that voi
= �xi

,
and vci

= �xi
, and define oj , cj analogously for xj . The four parts of the inner

disjunction describe each possible combination how xi and xj can be opened and
closed according to the rules of a vset-automaton: The first expresses oi < oj <
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cj < ci , the second oi < ci < oj < cj , and remaining two express the same
for switched roles of xi and xj . Hence, for any pair i, j , this ensures that if xj is
opened while xi is open, xj has to be closed before xi can be closed (and vice
versa). As ϕstack expresses this for all pairs of variables in SVars (A), this ensures
that all variables are closed correctly. The formula is safe, as for all fixed i, j , the
disjunctions range over formulas with free variables {W} ∪ Oi ∪ Oj ∪ Ci ∪ Cj .

The correctness of the construction follows immediately from our remarks on ϕstack,
and from correctness of the construction from Section 4.2.3. Regarding the complex-
ity, we observe that ϕstack is of size O(k7): There are O(k2) different combinations
of i and j . Each of these leads to O(k4) choices for l1 to l4, each of which requires
a formula of size O(k). This leads to a total size of O(k7 + k2n3 + kn4), which is
larger than for vset-automata, but still polynomial in the size of A.

4.2.5 Putting The Parts Together (Converting Operators)

Here, we can directly use the construction from the proof of Theorem 3.12 in [16]. We
use the same shorthand notation �x[i..j ] as in Section 4.2.2. In contrast to Section 4.2.2,
we shall use Lemma 4.4 only once.

Consider a representation ρ ∈ RGXcore or ρ ∈ VAcore. To construct a SpLog(W)-
formula ϕρ that realizes ρ, we distinguish the following cases:

1. If ρ is a regex formula or a vset-automaton, we construct ϕρ as described in the
appropriate previous section.

2. ρ = πY ρ̂, with Y = SVars (ρ) and SVars
(
ρ̂
) ⊇ SVars (ρ). Assume w. l. o. g.

Y = {x1, . . . , xn} and SVars(ρ̂) = {x1, . . . , xn+m} with m, n ≥ 0. We define

ϕρ(W; �x[1..n]) := ∃�x[n+1..n+m] : ϕρ̂

(
W; �x[1..n+m]

)
.

3. ρ = ζ=
�x ρ̂, with SVars (ρ) = {x1, . . . , xk} where k ≥ 2, as well as �x ∈

(SVars (ρ))m with 2 ≤ m ≤ k, and SVars(ρ̂) = SVars(ρ). Assume w. l. o. g. that
�x = x1, . . . , xk . We define

ϕρ(W; �x[1..k]) :=
⎛

⎝ϕρ̂(W; �x[1..k]) ∧
∧

2≤i≤k

(xC
1 = xC

i )

⎞

⎠ .

In this case, we use Lemma 4.4 to interpret this as a SpLog(W)-formula.
4. ρ = (ρ1 ∪ ρ2), with SVars (ρ1) = SVars (ρ2) = SVars (ρ) = {x1, . . . , xk}. Let

ϕρ(W; �x[1..k]) := (
ϕρ1

(
W; �x[1..k]

) ∨ ϕρ2(W; �x[1..k])
)
.

5. ρ = (ρ1 �� ρ2) with SVars (ρ) = SVars (ρ1) ∪ SVars (ρ2). We assume without
loss of generality that SVars(ρ1) = {x1, . . . , xl} and SVarsρ2 = {xm, . . . , xn}
with 0 ≤ l ≤ n and 1 ≤ m ≤ n + 1. We define

ϕρ(W; �x[1..n]) := (
ϕρ1(W; �x[1..l]) ∧ ϕρ2(W; �x[m..n])

)
.

Explanations and a correctness proof can be found in the proof of Theorem 3.12
in [16]. As ϕρ can be constructed in polynomial time, this concludes the proof.



Theory Comput Syst

5 Expressing Languages and Relations in SpLog

This section examines expressing relations and languages in SpLog: Section 5.1 lays
the formal groundwork by introducing selectability of relations in SpLog. Section 5.2
defines a normal form with an example application. Section 5.3 provides an efficient
conversion of a subclass of xregex to SpLog.

5.1 Selectable Relations

One of the topics of Fagin et al. [13] is which relations can be used for selections in
core spanners, without increasing the expressive power. This translates to the ques-
tion which relations can be used in the definition of SpLog-formulas. For ECreg, this
question is simple: If, for any k-ary relation R, there is an ECreg-formula ϕR such that
�w |= ϕR holds if and only if �w ∈ R, we know that we can use ϕR in the construction
of ECreg-formulas. In contrast to this, the special role of the main variable makes the
situation a little bit more complicated for SpLog. Fortunately, [13] already introduced
an appropriate concept for core spanners, that we can directly translate to SpLog:
A k-ary word relation R is selectable by core spanners if, for every ρ ∈ RGXcore

and every sequence �x = (x1, . . . , xk) of variables with x1, . . . , xk ∈ SVars (ρ), the
spanner �ζR

�x ρ� is expressible in RGXcore, where ζR is the generalization of ζ= to
R. More specifically, �ζR

�x ρ�(w) is defined as the set of all μ ∈ �ρ�(w) for which
(
wμ(x1), . . . , wμ(xk)

) ∈ R.
Analogously, we say that R is SpLog-selectable if for every ϕ ∈ SpLog(W) and

every sequence �x = (x1, . . . , xk) of variables with x1, . . . , xk ∈ free(ϕ)−{W}, there
is a SpLog-formula ϕR

�x with free(ϕ) = free(ϕR
�x ), and σ |= ϕR

�x if and only if σ |= ϕ

and (σ (x1), . . . , σ (xk)) ∈ R. Before we consider some examples, we prove that these
two definitions are equivalent not only to each other, but also to a more convenient
third definition.

Lemma 5.1 For every relation R ⊆ (�∗)k , k ≥ 1, the following conditions are
equivalent:

1. R is selectable by core spanners,
2. R is SpLog-selectable,
3. there is ϕ(W ; x1, . . . , xk) ∈ SpLog such that for all σ that satisfy σ(xi) 	 σ(W)

for all xi , σ |= ϕ if and only if (σ (x1), . . . , σ (xk)) ∈ R.

Proof Choose R ⊆ (�∗)k , k ≥ 1.

Equivalence of conditions 1 and 2: We first prove thatR is selectable by core span-
ners if and only if it is SpLog-selectable. We only examine the “only if ”-direction
(the “if”-direction proceeds analogously). Assume that R is selectable by core
spanners. Let ϕ ∈ SpLog(W), choose x1, . . . , xk ∈ free(ϕ) − {W}, and define
�x = (x1, . . . , xk). Our goal is constructing a formula ϕR such that σ |= ϕR if
and only if σ |= ϕ and (σ (x1), . . . , σ (xk)) ∈ R. According to Theorem 4.9, there



Theory Comput Syst

exists a representation ρ ∈ RGXcore that realizes ϕ. More explicitly, this means
that SVars (ρ) = free(ϕ)−{W}, and for every w ∈ �∗, we have σ ∈ �ϕ�(w) if and
only if there exists some μ ∈ �ρ�(w) with wμ(x) = σ(x) for all x ∈ SVars (ρ).

As R is selectable by core spanners, there also exists a representation ρR ∈
RGXcore with �ρR� = �ζR

�x ρ�. Then SVars
(
ρR

) = SVars (ρ), and for all w ∈ �∗,
μ ∈ �ρR�(w) holds if and only if μ ∈ �ρ�(w) and (wμ(x1), . . . , wμ(xk)) ∈ R.

Hence, for all w ∈ �∗, we have that σ ∈ �ϕ�(w) and (σ (x1), . . . , σ (xk)) ∈ R

holds if and only if there exists some μ ∈ �ρR�(w) with wμ(x) = σ(x) for all
x ∈ SVars

(
ρR

)
.

Again by Theorem 4.9, there exists a formula ϕ̂R ∈ SpLog that realizes ρR .
Note that free(ϕ̂R) = {W} ∪ {xP , xC | x ∈ free(ϕ) − {W}}. In order to clean this
up, let ϕ̃R be obtained from ϕ̂R by renaming each xC to x. Then define �p as any
ordering of the set {xP | x ∈ free(ϕ̃R)}, and let ϕR := ∃ �p : ϕ̃R . Then for every
w ∈ �∗, we have σ ∈ �ϕR�(w) if and only if there exists some μ ∈ �ρR�(w) with
wμ(x) = σ(x) for all x ∈ SVars (ρR). As we established before, this holds if and
only if σ |= ϕ and (σ (x1), . . . , σ (xk)) ∈ R. This concludes the “only if”-direction
of the proof of the equivalence of selectability by core spanners and by SpLog. As
mentioned above, the proof of the “if”-direction proceeds analogously, by using
Theorem 4.9 twice.

Equivalence of conditions 2 and 3: For the “if”-direction, let ϕ(W; x1, . . . , xk) ∈
SpLog(W) such that σ |= ϕ if and only if (σ (x1), . . . , σ (xk)) ∈ R and σ(xi) 	
σ(W) holds for all xi . Now, for ψ ∈ SpLog(W) and �x := (x1, . . . , xk) ∈
(free(ψ))k , define ψR

�x := (ψ ∧ ϕ). Then σ |= ψR
�x if and only if σ |= ψ

and (σ (x1), . . . , σ (xk)) ∈ R. As ψR
�x is a SpLog-formula,we observe that R is

SpLog-selectable.

For the “only if”-direction, assume R is SpLog-selectable. We define a SpLog(W)-
formula ψ := ∧

1≤i≤k ∃yi, zi : (W = yi · xi · zi). Clearly, σ |= ψ if and only if
σ(xi) 	 σ(W) for all 1 ≤ i ≤ k. As R is SpLog-selectable, there exists ϕ ∈ SpLog
such that σ |= ϕ if and only if σ |= ψ and (σ (x1), . . . σ (xk)) ∈ R. Hence, σ |=ϕ if
and only if(σ (x1), . . . , σ (xk))∈R and σ(xi) 	σ(W) holds for all xi .

The equivalence of the two notions of selectability is one of the features of SpLog:
When defining core spanners, one can use SpLog to define relations that are used
in selections. As the proof is constructive and uses Theorem 4.9, this does not even
affect efficiency.

Before we discuss how the equivalent third condition in Lemma 5.1 can be used
to simplify this even further, we consider a short example. As shown by Fagin et
al. [13], the relation 	 is selectable by core spanners. We reprove this by showing
that it is SpLog-selectable.

Example 5.2 The subword relation R	 := {(x, y) | x 	 y} is selected by the SpLog-
formula

ϕ	(W; x, y) := ∃z1, z2, y1, y2 : ((W = z1y1xy2z2) ∧ (W = z1yz2)).
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If this is not immediately clear, note that the formula implies z1y1xy2z2 = z1yz2,
which can be reduced to y1xy2 = y.

This allows us to use x 	 y as a shorthand in SpLog-formulas. We also use
	 to address two inconveniences that arise when strictly observing the syntax of
SpLog-formulas: Firstly, the need to introduce additional variables that might affect
readability (like z1 and z2 in Example 5.2), and, secondly, the basic form that equa-
tions have the main variable W on the left side. Together with Lemma 4.4 and the
third condition of Lemma 5.1, the selectability of 	 allows us more compact defini-
tions of SpLog-selectable relations: Instead of dealing with a single main variable, we
can combine multiple SpLog-functions with different main variables. Hence, when
using SpLog to define a relation over a set of variables V , we may assume that the
formula is of the form (

∧
x∈V x 	 W) ∧ ϕ, and specify only ϕ.

Example 5.3 Using the aforementioned simplifications, we can write the formula
from Example 5.2 as ϕ	(W; x, y) := ∃y1, y2 : (y = y1 · x · y2). Similarly, we can
select the prefix relation with the formula ϕpref(W; x, y) := ∃z : y = xz. Both are
shorthands for SpLog(W)-formulas.

As mentioned above, this allows us to use x 	 y as syntactic sugar. Other exten-
sions are x �= ε and x �= y: For x �= ε, we can choose

ϕ�=ε(W; x) := (x 	 W) ∧ (C�+(x)).

The more general x �= y is expressed as follows:

ϕ �=(W; x, y) := ((∃x2 : (x = yx2) ∧ (x2 �= ε)) ∨ (∃y2 : (y = xy2) ∧ (y2 �= ε)))

∨
(

∨

a∈�

(∃z, x2, y2, b : (x = zax2) ∧ (y = zby2) ∧ C�−{a}(b)
)
)

The core spanner selectability of �= was already shown in [13], Proposition 5.2.
Depending on personal preferences, ϕ�= might be considered more readable than the
spanner in that proof. A similar construction was also used in [30] to show EC-
expressibility of �=, as �+ and � − {a} can be expressed without using constrains;
for example by defining ϕ �=ε(W; x) := ∨

a∈�(∃y : x = ay).

Example 5.4 In this example, we show that SpLog-formulas can be used to express
relations of words that are approximately identical. In literature, this is commonly
defined by the notion of an edit distance between two words. Following Navarro [37],
we consider edit distances that are based on three operations: For words u, v ∈ �∗,
we say that v can be obtained from u with

1. an insertion, if u = u1 · u2 and v = u1 · a · u2,
2. a deletion, if u = u1 · a · u2 and v = u1 · u2,
3. a replacement, if u = u1 · a · u2 and v = u1 · b · u2,

where u1, u2 ∈ �∗ and a, b ∈ �. For every choice of permitted operations, a dis-
tance d(u, v) is then defined as the minimal number of operations that is required to
obtain v from u. One common example is the Levenshtein-distance dL (also called
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edit distance), which uses insertion, deletion, and replacement. The following SpLog-
formula demonstrates that, for each k ≥ 1, the relation of all (u, v) with dL(u, v) ≤ k

is SpLog-selectable:

ϕL(k)(W; x, y) := ∃x1, . . . , xk, y1, . . . , yk, z0, . . . , zk :

(x = z0 · x1 · z1 · x2 · z2 · · · · xk · zk) ∧
k∧

i=1

Cα(xi)

∧(y = z0 · y1 · z1 · y2 · z2 · · · · yk · zk) ∧
k∧

i=1

Cβ(yi)

where α := β := (� ∨ ε). An insertion is expressed by assigning xi = ε and yi ∈ �,
a deletion by xi ∈ � and yi = ε, and a replacement by xi, yi ∈ �. This case and
xi = yi = ε also handle if less than k operations are used.

Hence, by changing the constraints, this formula can also be used for theHamming
distance (only replacements), and the episode distance (only insertions), by defining
α := β := �, or α := ε and β := (� ∨ ε), respectively.

With some additional effort, we can also express the relation for the longest
common subsequence distance, which uses only insertions and deletions. Instead of
changing α or β, we need to ensure that for every i, xi = ε or yi = ε holds. We
cannot directly write ((xi = ε) ∨ (yi = ε)), as this is not a safe formula. Instead, we
extend the conjunction inside ϕL(k) with

k∧

i=1

(((xi = ε) ∧ (yi 	 W)) ∨ ((yi = ε) ∧ (xi 	 W))) ,

which is safe and equivalent to
∧k

i=1((xi = ε) ∨ (yi = ε)). In other words, we use
	 to guard the xi and yi .

5.2 A Normal Form for SpLog

Another advantage of using a logic is the existence of normal forms5, although this
should not be misunderstood as a claim that core spanners do not have normal forms.
The core-simplification lemma (Lemma 4.16 in Fagin et al. [13]) states that every
core spanner can be expressed as πV SA, where A ∈ VAset, V ⊆ SVars (A), and S

is a sequence of selections ζ=
x,y for x, y ∈ SVars (A). But as the construction from

the proof of Theorem 4.9 converts vset-automata into rather complicated formulas,
this does not directly translate into a compact normal form for SpLog. Instead, we
consider the following normal form, which allows us to study a closure property of
the class of SpLog-definable languages (Lemma 5.7 below). We shall also use this
normal form in Section 7.3 to establish connections between SpLog and certain types
of graph queries.

5“Normal form” in the sense that every formula can be rewritten into an equivalent formula that uses a
restricted syntax.
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Definition 5.5 A ϕ ∈ SpLog is a prenex conjunction if it is of the form ϕ =
∃x1, . . . , xk : (

∧m
i=1 ηi ∧ ∧n

j=1 Cj ), with k, n ≥ 0, m ≥ 1, where the ηi are word
equations, and theCj are constraints. A SpLog-formula is inDPC-normal form if it is
a disjunction of prenex conjunctions. Let DPC and PC denote the class of all SpLog-
formulas in DPC-normal form and the class of all prenex conjunctions, respectively.
We use DPCrx and PCrx for the subclasses of SpLogrx.

Lemma 5.6 Given ϕ ∈ SpLog, we can compute ψ ∈ DPC with ϕ ≡ ψ .

Proof First, we ensure that for every subformula of ϕ that has the form ∃x : ψ , x

does not appear in ϕ outside of ψ . In particular, this means that quantifiers do not
rebind variables, and no two quantifiers range over the same variable. This is easily
achieved by renaming variables. The DPC-normal form can then be computed by
applying the following rewriting rules:

((ϕ1 ∨ ϕ2) ∧ ϕC) → ((ϕ1 ∧ ϕC) ∨ (ϕ2 ∧ ϕC)) , (R1)

((∃x : ϕ1) ∧ ϕC)) → (∃x : (ϕ1 ∧ ϕC)) , (R2)

(∃x : (ϕ1 ∨ ϕ2)) → ((∃x : ϕ1) ∨ (∃x : ϕ2)) , (R3)

where x ∈ �, ϕ1, ϕ2 ∈ SpLog, and ϕC is a SpLog-formula or a constraint. These
rules are also applied modulo commutation of∧ and∨; in other words, ϕC ∧(ϕ1∨ϕ2)

is rewritten to (ϕ1 ∧ ϕC) ∨ (ϕ2 ∧ ϕC).
Intuitively, the rules can be understood as follows: If one views the syntax tree of

the formula, R1 moves ∨ over ∧, R2 moves ∃ over ∧, and R3 moves ∨ over ∃. Hence,
when no more rules can be applied, the resulting formula has ∨ over ∃, and ∃ over ∧,
which is exactly the order that is required by DPC-normal form.

Furthermore, note that the rules preserve the syntactic requirements of SpLog-
formulas. In particular, as the equations are not rewritten and no new existential
quantifiers are introduced, it suffices to check that the resulting formulas are safe.
For example, consider R1. For every ϕ ∈ SpLog with ϕ = ((ϕ1 ∨ ϕ2) ∧ ϕC),
free(ϕ1) = free(ϕ2) must hold. This has two consequences. Firstly, free(ϕ1 ∧ ϕC) =
free(ϕ2 ∧ ϕC), which means that the disjunction that results from R1 is safe. Sec-
ondly, if ϕC is some constraint CA(x), then x ∈ free(ϕ1 ∨ ϕ2) must hold. Hence,
as free(ϕ1) = free(ϕ2) = free(ϕ1 ∨ ϕ2), the resulting subformulas (ϕ1 ∧ ϕC) and
(ϕ2 ∧ ϕC) are safe.

The construction from the proof of Lemma 5.6 might result in an exponential
blowup; the author conjectures that this blowup cannot be avoided.

We use DPC-normal form to illustrate some differences between SpLog and ECreg.
First, we define the notion of the language of a formula (in Section 6.1, we shall
see that this has applications beyond the language theoretic point of view). Every
ECreg-formula ϕ defines a language Lx(ϕ) := {σ(x) | σ |= ϕ} for every variable
x ∈ free(ϕ). If ϕ has exactly one free variable (say x), we define L(ϕ) := Lx(ϕ).
For C ⊆ ECreg, a language L ⊆ �∗ is a C-language if there is a formula ϕ ∈ C with
L(ϕ) = L. We denote this by L ∈ L(C). Hence, SpLog-languages are always defined
by the main variable.
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For L ⊆ �∗ and a ∈ �, we define L/a, the right quotient of L by a, as the
language of all w with wa ∈ L. The class of ECreg-languages is closed under this
operation, as we have L(ϕ/a) = L(ϕ)/a for ϕ/a(w) := ∃u : ((u = wa) ∧ ϕ(u)). But
as SpLog-variables can only contain subwords of the main variable, writing u = Wa

is not possible in SpLog(W). Hence, our proof for the SpLog-case is more involved
and relies on Lemma 5.6.

Lemma 5.7 L/a ∈ L(SpLog) for all L ∈ L(SpLog) and all a ∈ �.

Proof Let ϕ(W) ∈ SpLog(W), and let a ∈ �. It suffices to prove the claim for ϕ ∈
PC: Assume that ϕ is not a prenex conjunction. According to Lemma 5.6, ϕ ≡ ∨

ϕi

for some ϕi ∈ PC. Hence, L(ϕ)/a = ⋃
(L(ϕi)/a).

Thus, assume without loss of generality that ϕ is a prenex conjunction

ϕ := ∃x1, . . . , xk : (

m∧

i=1

ηi ∧
n∧

j=1

Cj )

with k, n ≥ 0 and m ≥ 1, and ηi = (W, αi) with αi ∈ (X ∪ �)∗, where X :=
{x1, . . . , xk}.

Our goal is to bring the αi into a form where we can easily split off a at the right
side. Hence, we consider all possibilities which variables or terminals generate the
rightmost letter in a word w ∈ L(ϕ). As some variables might be erased,this is not
always the rightmost variable of an ηi . To this end, for each set N ⊆ X, we define a
morphism πN : (X ∪ �)∗ → (N ∪ �)∗ by πN(c) := c for all c ∈ �, πN(x) := x for
x ∈ N , and πN(x) := ε for x ∈ (X − N). In other words, πN erases the variables
from X−N , and leaves variables from N and terminals unchanged. For each of these
N , we now define a formula

ϕN := ∃�xN :
⎛

⎝
m∧

i=1

(W = πN(αi)) ∧
n∧

j=1

Cj ∧
∧

x∈N

(x �= ε) ∧
∧

x∈(X−N)

(x = ε)

⎞

⎠ ,

where �xN contains exactly the variables from N . Some (or all) of these formulas
might not be satisfiable (e.g., when x = ε is forbidden by a constraint on x), but this
is not a problem. We observe that ϕ ≡ ∨

∅⊆N⊆X ϕN .
The end goal of the construction is finding formulas ψN with L(ψN) = L(ϕN)/a

for each set N . As intermediate step, we shall construct formulas χN with L(χN) =
L(ϕN) ∩ (�∗ · a).

As all remaining variables have to be substituted with non-empty words, we know
that some ϕN can only generate a word that ends on a if every variable that is the
rightmost symbol of some πN(αi) is substituted with a word that ends on a. In order
to simulate this, we first define the set of these variables as

RN := {x ∈ N | some πN(αi) ends on x}.
We use this to define a morphism sN : (N ∪ �)∗ → (N ∪ �∗) by sN(c) := c for all
c ∈ �, sN(x) := x for all x ∈ (N − RN), and sN(x) := x · a for all x ∈ RN . We
use this to define βN,i := sN(πN(αi)) for 1 ≤ i ≤ m. But we also need adapt the



Theory Comput Syst

constraints that refer to variables from RN : For each 1 ≤ j ≤ n, there exist an NFA
A and a variable x ∈ X such that Cj = CA(x). If x /∈ RN , we define C

/a
j := Cj .

On the other hand, if x ∈ RN , let C
/a
j := CA/a (x), where A/a is an NFA with

L(A/a) = L(A)/a. As the class of regular languages is closed under /a (proving this
is a standard exercise), such an A/a always exists (and although L(A/a) = ∅ might
hold, this simply results in a formula that is not satisfiable). We combine this to

χN := ∃�xN :
⎛

⎝
m∧

i=1

(W = βN,i) ∧
n∧

j=1

C
/a
j ∧

∧

x∈(N−RN)

(x �= ε)

⎞

⎠ .

As we replaced each x ∈ Rn with x · a, we exclude these variables from the conjunc-
tion that requires x �= ε. Due to our definitions of the βN,i and C

/a
j , we know that

L(χN) = L(ϕN) ∩ (�∗ · a) holds.
Now we are ready for the final step, splitting off the a. Our goal is to define

formulas ψN with L(ψN) = L(ϕN)/a. We distinguish two cases: Firstly, if, for
some N , any of the βN,i is ε or ends on some terminal from � − {a}, we know that
L(ϕN) ∩ (�∗ · a) = ∅, which is equivalent to L(ϕN)/a = ∅. Hence, we can discard
this choice of N . To simplify the presentation, we then assume that ψN is formula
that is not satisfiable, like (W = a) ∧ (W = aa).

Otherwise, we know that for this N , each βN,i has to end on a. Thus, for each
1 ≤ i ≤ m, there exists a well-defined γN,i with γN,i = βN,i · a. We define

ψN := ∃�xN :
⎛

⎝
m∧

i=1

(W = γN,i) ∧
n∧

j=1

C
/a
j ∧

∧

x∈(N−RN)

(x �= ε)

⎞

⎠ .

and observe that L(ψN) = L(χN)/a = L(ϕN)/a. All that remains is to combine
the formulas into a single formula ψ := ∨

∅⊂N⊆X ψN . As free(ψN) = {W} for
each N , this is indeed a SpLog-formula. By our previous observations, we can state
L(ψ) = ⋃

L(ψN) = ⋃
L(ϕN)/a = (⋃

L(ϕN)
)
/a = L(ϕ)/a. Hence, the class of

SpLog-languages is closed under /a.

The same can be observed for the analogously defined left quotient by a. We use
Lemma 5.7 twice in Section 6.2.

5.3 Efficient Conversion of vsf-xregex to SpLog

Most modern implementations of regular expressions use a backreference opera-
tor that allows the definition of non-regular languages (see e.g. Freydenberger and
Schmid [18] for more details). This is formalized in xregex (a. k. a. extended regular
expressions, regex, or regular expressions with backreferences), which extend regex
formulas with variable references &x for every x ∈ �. Intuitively, the semantics of
&x can be understood as repeating the last value that was assigned to x{ }, assum-
ing that the xregex is parsed left to right. We examine two short examples of xregex
languages; more can be found in [5, 14, 18, 41].
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Example 5.8 Let α := x{�∗} · &x · &x and β := x{aa+}(&x)+. Then L(α) is the
language of all www with w ∈ �∗, while L(β) is the language of all words an, such
that n ≥ 4 is not a prime number6.

We give a ref-words based definition of xregex semantics in the following section.
Readers who are satisfied with the informal semantics are invited to skip to the
discussion of the actual result in Section 5.3.2

5.3.1 Xregex Semantics

We define the semantics of xregex using the ref-word approach by Schmid [41] (for
a definition with parse trees, cf. Freydenberger and Holldack [16]).

Recall that the syntax of xregex extends that of regex formulas, by adding the case
&x for all x ∈ � to the recursive definition. We exclude all cases of variable bindings
x{α} where α contains &x or some x{β}.

Likewise, the notion of the ref-languageL(α) of an xregex α is obtained by adding
the ruleR(&x) = x for all x ∈ � to the definition for regex formulas.

Intuitively, each subword �xw �x , where w does not contain �x or �x , represents
that the value w is bound to the variable x. Every variable in r that occurs to the
right of this subword is now assigned the value w, unless another binding changes the
value of x. More formally, if ux is a prefix of some ref-word r , this occurrence of x in
r is undefined if u does not contain a subword �xv�x . Otherwise, if u1�xu2�xu3x is
a prefix of r , this occurrence of x refers to �xu2�x if u3 does not contain �x (hence,
it also does not contain �x).

The dereference D(r) of a ref-word r is obtained by first deleting all undefined
occurrences of variables (in other words, these default to ε). Then, we choose any
prefix u1�xu2�x of r for which u2 ∈ �∗. We then replace all variables x that refer
to this prefix with u2, and rewrite u1�xu2�x to u1u2. This process is repeated until
we obtain a word from �∗ (cf. [18, 41] for more information). Finally, we define
L(α) := {D(r) | r ∈ R(α)}.

5.3.2 Converting vsf-xregex

As shown by Fagin et al. [13], core spanners cannot define all xregex languages
(e.g., they cannot express L(β) from Example 5.8, see [16]). But Freydenberger and
Holldack [16] identified a core spanner definable subclass of xregex, the variable-
star-free xregex (short: vsf-xregex). A vsf-xregex is an xregex that does not use x{ }
or &x inside a Kleene star *. Every vsf-regex can be converted effectively into a
core spanner; but the conversion from [16] can lead to an exponential blowup. The
question whether a more efficient conversion is possible was left open in [16]. Using
SpLog, we answer this positively.

6Originally invented by Abigail [1] as a PERL regular expression.
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Theorem 5.9 Given a vsf-xregex α, we can compute in polynomial time ϕ ∈ SpLog
with L(ϕ) = L(α).

Before we give the actual proof in Section 5.3.3, we discuss some of the con-
sequences of this result. Using Theorem 5.9, it is possible to extend the syntax
of SpLogrx, SpLog, and ECreg by defining constraints with vsf-xregex instead of
classical regular expressions, without affecting the complexity of evaluation or sat-
isfiability. Naturally, this also allows core spanner representations to use vsf-xregex
(e.g. in the definition of relations).

Theorem 5.9 also shows that, given vsf-xregex α1, . . . , αn, one can decide in
PSPACE whether

⋂
L(αi) = ∅ (by converting each αi into a formula ϕi , and decid-

ing the satisfiability of
∧

ϕi). This is an interesting contrast to the full class of xregex,
where even the intersection emptiness problem for two languages is undecidable (cf.
Carle and Narendran [5]). An application of this consequence of Theorem 5.9 can be
found in Freydenberger and Schmid [18].

5.3.3 Proof of Theorem 5.9

Let α be a vsf-xregex. We first briefly recall a part of the construction that was
used in [16] to prove that every language that is generated by a vsf-xregex is also
a core spanner language (and, hence, a SpLog-language). There, it is first shown
that every vsf-xregex can be expressed as a finite disjunction of xregex paths, where
an xregex path is a vsf-xregex that is also variable-disjunction free. In other words,
an xregex path is a vsf-xregex α such that for each subexpression (α1 ∨ α2) of α,
neither α1 nor α2 contains any variable bindings or references. This is proven by a
straightforward rewriting, where for a subexpression (α1 ∨ α2) that contains vari-
able bindings or references is replaced with α1 and α2, yielding two vsf-xregex. This
process is repeated until each resulting vsf-xregex is also an xregex path. For exam-
ple, (x{a} ∨ x{b})(y{c} ∨ y{d}) is converted into the four xregex paths x{a}y{c},
x{a}y{d}, x{b}y{c}, and x{b}y{d}. We also refer to this replacement process as
expanding the variable-disjunctions.

Naturally, this can result in an exponential number of xregex paths. As we shall
see, SpLog can be used to simulate all these xregex paths without explicitly encoding
them one by one.

The main problem that the construction has to overcome is handling variables
that can be bound multiple times, or not at all. For example, consider the vsf-xregex
(x{a} ∨ y{b}) · (x{c} ∨ y{d}) · &x · &y. There, it is possible to bind each variable
once, or one twice and the other not at all, resulting in the words acc, adad, bccb,
and bdd (recall that unbound variables default to ε).

To overcome this, we shall represent each variable x in α with variables x0 to xn(x)

in the formula, where n(x) is the highest number of times that x can be bound to a
value (hence, in the most recent example, n(x) = n(y) = 2). For vsf-xregex, this is
always bounded by the total number of bindings for x in α. To handle these different
variables xi , we construct a directed acyclic graph G(α) from α that allows us to see
how often the value of each variable x can be assigned, and which xi is accessed by
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an occurrence of a variable reference &x (further down, we discuss this idea in more
details).

We represent α as a tree T (α), where each node v has a label λ(v). If v is a leave,
λ(v) is a regular expressions or a variable references. If v is an inner node, λ(v) is ∨,
◦, or x{} for some x ∈ �. More specifically, if α is a regular expression or an x ∈ �,
T (α) consists of one node with label α. If α = (α1 · α2), the root of T (α) is labeled
with ◦, and it has T (α1) and T (α2) as left and right subtree, respectively. Likewise,
if α = (α1 ∨ α2), the root of T (α) is labeled with ∨, and T (α1) and T (α2) are left
and right subtree, respectively. Finally, if α = x{β}, the root of T (α) is labeled with
x{}, and its only subtree is T (β).

We now use T (α) to construct a directed acyclic graph G(α). In order to do so,
for every node v of T (α), we recursively define the directed acyclic graph G(v) with
and a function snk(v) as follows:

– If lab(v) is a regular expression or a variable reference, let G(v) := (V , E) with
V := {v} and E := ∅, and define snk(v) := v.

– If lab(v) = x{}, let u denote the only child of v, and let (Vu, Eu) := G(u). Let
v̂ be an unlabeled new node, and define snk(v) = v̂. Then G(v) := (V , E), with
V := {v, v̂} ∪ Vu and E := Eu ∪ {(v, u), (snk(u), v̂)}.

– If lab(v) ∈ {◦, ∨}, let ul and ur denote the left and right child of v, respectively.
Let (Vl, El) := G(ul) and (Vr , Er) := G(ur), and ensure that (Vl ∩Vr) = ∅. Let
v̂ be an unlabeled new node, and define snk(v) = v̂ and V := {v, v̂} ∪ Vl ∪ VR .
Furthermore:

– If lab(v) = ◦, E := El ∪ Er ∪ {(v, ul), (snk(ul), ur ), (snk(ur), v̂)}.
– If lab(v) = ∨, E := El ∪ Er ∪ {(v, u), (snk(u), v̂) | u ∈ {ul, ur }}.

We use G(α) to denote G(rt), where rt is the root of T (α).
Now each path in G(α) from rt to snk(rt) corresponds to an xregex path that can be

derived from α when expanding the variable-disjunctions. This is due to the follow-
ing reasoning: The process of expanding can be understood as processing T (α) top
down. If one encounters a disjunction that contains variable bindings or references,
one chooses a side of the disjunction, and discards the other. The obtained xregex
path corresponds exactly to the path through G(α) that passes from the nodes of the
chosen sides to their snk-nodes (over and all other appropriate nodes in between).

An example for T (α) and the construction of G(α) can be found in Fig. 4.
For every node v of G(α) and every x ∈ �, we now define mb(x, v) as the

maximal number of nodes with label x{} that can appear on a path from rt to v

(not including the label of v). Intuitively, mb(x, v) determines the maximal num-
ber of times that a new value can be assigned to x along the path to v. Moreover,
if lab(v) = x{}, and mb(x, snk(v)) = i, we know x has been bound at most i − 1
times before this binding, which is why we can represent this binding of x with the
variable xi in the formula. We also know that there is a path in G(α), and hence a
corresponding xregex path, where this is exactly the i-th binding of x. Recall that by
definition, for each subexpression x{β}, we have that β contains neither x{} nor &x.
For an example, see Fig. 5.
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Fig. 4 In black: The tree T (α) for the example α := ((x{a} ∨ y{b}) · (x{c} ∨ y{d})) · (&x ·&y) from the
proof of Theorem 5.9. In red: The edges and the snk-nodes of G(α). Recall that each node of T (α) is also
a node of G(α). There are four different paths from the root to its sink. Each of these paths corresponds
to one of the xregex paths x{a}x{c}&x&y, x{a}y{d}&x&y, y{b}x{c}&x&y, and y{b}y{d}&x&y that
result from expanding the variable-disjunctions in α

Furthermore, for each node, mb can be computed in polynomial time. One way of
doing this is using a longest path algorithm (where the edges to nodes with label x{}
have weight 1, and all others have weigth 0), which can be solved in time O(|V | +
|E|), cf. Sedgewick and Wayne [42].

Fig. 5 The graph G(α) for the example from Fig. 4. The numbers indicate the value mb(x, v), where v is
the respective node. In order to use this example for the values for mb(y, v), the numbers that are marked
in red have to be changed: From left to right, 1, 0, 2, 1 are replaced with 0, 1, 1, 2, respectively. For all
other nodes, mb(x, v) = mb(y, v) holds
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The main idea of the construction is that every occurrence of &x (in some node
v) is represented by a variable xi with i = mb(x, v). To make this work, the formula
“fills up” missing variable bindings. More formally, assume that for some x ∈ X, a
disjunction has children u and v with i := mb(u, x) and j := mb(v, x), such that
i > j . The formula then extends the subformula for v with assignments xj+1 = xj ,
xj+2 = xj up to xi = xj .

For every node v of T (α), we define a SpLog-formula ϕv . Each of these ϕv has
a characteristic free variable yv that represents the part of W that is created by the
sub-xregex that is represented by v. We now define the formulas:

– If lab(v) is a regular expression, we define ϕv := (yv 	 W) ∧ Clab(v)(yv). This
expresses that yv has to be mapped to a word in L(lab(v)), and needs no further
explanation.

– If lab(v) = &x, let ϕv := (yv = xmb(x,v)). This expresses that yv has to be
mapped to the same value as xi , which is supposed to contain the most recent
binding of x (this shall be ensured by the formulas for conjunctions further
down).

– If lab(v) = x{}, let u denote the child of v in T (α), and define

ϕv := ∃yu : (yv = yu) ∧ (xmb(x,snk(v)) = yu).

As explained above, if i := mb(x, snk(v)), then x was bound at most i − 1 times
before the most recent binding. Hence, we store the most current value of x in xi .
The task of generating the word that is represented by yv is then delegated to yu.

– If lab(v) = ◦, let ul and ur to denote the left and the right child of v in T (α). We
define

ϕv := ∃yul
, yur : (

(yv = yul
· yur ) ∧ ϕul

∧ ϕur

)
.

This is also straightforward: yv is a concatenation of yul
and yur , and these words

are handled by the respective subformulas.
– If lab(v) = ∨, use u1 and u2 to denote the children of v in T (α), without any

particular regard to which is left or right. We define

X := {xi | x ∈ var(α), 0 ≤ i ≤ mb(x, snk(rt))},
and also mx

l := mb(x, snk(ul)) for l ∈ {1, 2}, and use this for the following
formula:

ϕv :=

⎛

⎜
⎜
⎜
⎝

∃yu1 : (yv = yu1) ∧ ϕu1 ∧
∧

xi∈X

(xi 	 W) ∧
∧

x∈var(α),
mx
1<i≤mx

2

(xi = xmx
1
)

⎞

⎟
⎟
⎟
⎠

∨

⎛

⎜
⎜
⎜
⎝

∃yu2 : (yv = yu2) ∧ ϕu2 ∧
∧

xi∈X

(xi 	 W) ∧
∧

x∈var(α),
mx
2<i≤mx

1

(xi = xmx
2
)

⎞

⎟
⎟
⎟
⎠

This formula consists of two almost identical subformulas, which we now exam-
ine from left to right: First, the subformula states that yv is determined by yul
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with l ∈ {1, 2}, and delegates the task of determining yul
to ϕul

. Next, the con-
junction

∧
xi∈X(xi 	 W) ensures that the formula is safe. Finally, the last part

of the formula realizes the aforementioned “filling up”. Assume that l = 1 and
i < j , where i := mx

1 and j := mx
2 for some x. Then ϕu1 defines xi+1 = xi ,

xi+2 = xi up to xj = xi .

The last step of the construction is extending ϕrt to the formula

ϕ := ∃yrt, �x :
⎛

⎝(W = yrt) ∧ ϕrt ∧
∧

x∈var(α)

(x0 = ε)

⎞

⎠ ,

where �x is any ordering of {x0 | x ∈ var(α)}. As mentioned above, mb can be
computed in time that is polynomial in the size of α; hence, ϕ can be constructed in
polynomial time. All that remains is proving L(ϕ) = L(α).

For both directions of this claim, we observe the following invariant: If v is a node
of T (α) with lab(v) = ∨, and i := mb(x, v) and j := mb(x, snk(v)), then ϕv assigns
exactly the variables xl with i < l ≤ j . Each of these assignments can happen either
through an equation xl = yu (due to a variable binding x{}), or due to some xl = x

l̂

with i ≤ l̂ < l (from the disjunction at v, or from a disjunction in a subexpression of
that disjunction).

Now, for each w ∈ L(α), there is an xregex path α̂ that is obtained from α by
expanding the variable-disjunctions, and w ∈ L(α̂). As mentioned above, α̂ cor-
responds to a path in G(α) from rt to snk(rt), which is equivalent to a choice of
disjunctions in ϕ. For every variable reference &x in α̂, the corresponding formula
uses a variable xi , where xi = xj holds, and j is the number of the most recent bind-
ing for x (in particular, if x has never been bound, it defaults to x0 = ε). Hence,
w ∈ L(ϕ) holds. Likewise, if w ∈ L(ϕ), we can follow the corresponding σ |= ϕ

with σ(W) = w along the structure of ϕ, updating the substitution whenever we
encounter an existential quantifier. Whenever we encounter a disjunction, there is at
least one side where the current substitution is satisfied. That side corresponds to
a node in T (α), and we can use this to construct the respective path in G(α). This
concludes the proof of Theorem 5.9.

6 Limitations of SpLog

While Section 5 discusses various aspects of expressing languages and relations in
SpLog, the present section focuses on what SpLog cannot express. Its main part is
Section 6.1, where we adapt an inexpressibility result for EC to SpLog. In addition to
this, Section 6.2 discusses separating �SpLog� and �ECreg�.

6.1 From EC-Inexpressibility to Non-Selectability for SpLog

In Section 5.1, we defined the notion of SpLog-selectable relations, and examined
various relations that are selectable. Our next topic is the opposite: Showing that a
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relation cannot be selected with SpLog. For this, we shall frequently use the SpLog-
inexpressibility of appropriate languages (we defined the notion of SpLog-languages
in Section 5.2 – recall in particular that these are defined via the main variable of the
formulas). Hence, general tools for language inexpressibility (like a pumping lemma)
would be very convenient. Up to now, the only (somewhat) general technique for
core spanner inexpressibility was given in [16], where it was observed that on unary
alphabets, core spanners can only define semi-linear (and, hence, regular) languages.
Due to the limited applicability of this result, this left a need for further inexpress-
ibility techniques. As SpLog is a fragment of ECreg, it is natural to ask whether this
connection can be used to obtain inexpressibility results.

Karhumäki, Mignosi, and Plandowski [30] developed multiple inexpressibility
techniques for EC. Sadly, EC-inexpressibility does not imply SpLog-inexpressibility:
For example, if � ⊇ {a,b,c}, one can use the techniques from [30] to show
that even the regular language {a,b}∗ is not EC-expressible, although it is obvi-
ously SpLog-expressible (like every regular language). On the other hand, while
ECreg-inexpressibility results would be useful, to the author’s knowledge, the only
result that can be used for this is from Ciobanu, Diekert, and Elder [7], namely
that every ECreg-language is an EDT0L-language. In principle, this allows us to use
EDT0L-inexpressibility results (of which there are only few; e.g. Ehrenfeucht and
Rozenberg [12]), but the comparatively large expressive power of EDT0L limits the
usefulness of this approach7.

But as we shall see, developing a sufficient criterion for EC-expressible SpLog-
languages allows us to use one of the techniques from [30] for SpLog. We begin with
a definition: A language L ⊆ �∗ is bounded if there exist words w1, w2, . . . , wn ∈
�+, n ≥ 1, such that L ⊆ w∗

1w
∗
2 · · · w∗

n. Combining a characterization of the class
of bounded regular languages (Ginsburg and Spanier [23]) with observations on EC
from [30] yields the following.

Lemma 6.1 Every bounded regular language is an EC-language.

Proof We base our proof on Theorem 1.1 from [23], which states that the class
of bounded regular languages is exactly the smallest class that contains all finite
languages, all languages w∗ with w ∈ �∗, and is closed under finite union and
concatenation.

As the class of EC-languages is closed under finite union by definition, every finite
language is an EC-language. Closure under concatenation is also straightforward.
Finally, as shown in Theorem 5 in [30], for every w ∈ �∗, w∗ is an EC-language.
Hence, every bounded regular languages is an EC-language.

7A short language theoretic digression that provides a little more context: Every EDT0L-language is
an ET0L-language, hence an indexed language (cf. Kari, Rozenberg, and Salomaa [33]), and thereby a
context-sensitive language (cf. Mateescu and Salomaa [36]). Although these larger classes haven been
studied more intensively than EDT0L, their even larger expressive power makes their inexpressiblity results
even less useful for our purposes.
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Theorem 6.2 Every bounded SpLog-language is an EC-language.

Proof Let ϕ ∈ SpLog(W) such that L(ϕ) is bounded. Hence, L(ϕ) ⊆ B for some
B := w∗

1 · · · w∗
k , with k ≥ 1 and w1, . . . , wk ∈ �∗.

Our goal is to show that each constraint CA(x) in ϕ can be replaced with bounded
regular language L	. Then, Lemma 6.1 states there exists an EC-formula ϕA with
L(ϕA) = L	; which means that we can replace each CA(x) with ϕA(x) without
changing the language (these replacements are non-constructive, as we only state the
existence of B).

To this end, consider any constraint CA(x) in ϕ, together with a substitution σ

that is obtained from a substitution σ̂ |= ϕ. As ϕ may contain existential quanti-
fiers, we do not consider σ̂ directly, but we observe that σ(W) = σ̂ (W) must hold.
Furthermore, we have σ(W) ∈ B, as L(ϕ) ⊆ B.

As ϕ is a SpLog(W)-formula, σ(x) 	 σ(W), which implies σ(x) ∈ B	, where
B	 := {u | u 	 v for some v ∈ B}. Hence, σ(x) ∈ L	, where we define L	 :=
L(A	) ∩ B	. Less formally, we observe that the constraint CA does not actually use
all of L(A), but just the words from L	. All that remains to be shown is that this
language is bounded regular, as then Lemma 6.1 applies.

Observe thatB is a regular language; and as the class of regular languages is closed
under taking the set of all subwords (a common exercise), this means that B	 is
regular as well. The class of regular languages is also closed under intersection; thus,
L	 is regular. It is also bounded, as every set of subwords of a bounded language is
bounded (Lemma 5.1.1 in Ginsburg [22]).

The intuition behind this is very simple: In SpLog, every variable is a subword of
the main variable. Hence, if the formula defines a bounded language, the constraints
of the variables also have to “fit into” the bounded language, which means that they
can be replaced with a bounded regular language, which is an EC-language (due
to Lemma 6.1). This reasoning does not generalize to ECreg, as that logic does not
restrict variables to subwords (hence, the variables do not inherit the boundedness of
the language).

The EC-inexpressibility technique from [30] that we are going to use is based on
the following definition by Karhumäki, Plandowski, and Rytter [31].

Definition 6.3 A word w ∈ �+ is imprimitive if there exist a word u ∈ �+ and
n ≥ 2 with w = un. Otherwise, w is primitive. For a primitive word Q, the FQ-
factorization of w ∈ �∗ is the factorization w = w0 · Qx1 · w1 · · · Qxk · wk that
satisfies the following conditions:

1. Q2 �	 wi for all 0 ≤ i ≤ k,
2. Q is a proper suffix of w0, or w0 = ε,
3. Q is a proper prefix of wk , or wk = ε,
4. Q is a proper prefix and a proper suffix of wi for all 0 < i < k.

Finally, we define expQ(w) := max(TQ(w) ∪ {0}), where
TQ(w) := {x | Qx occurs in the FQ-factorization of w}.
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For every primitive word Q, the FQ-factorization of every word w and expQ(w)

are uniquely defined (cf. [30, 31]). We use this definition in the following pumping
result for EC.

Theorem 6.4 (Karhumäki et al. [30]) For every EC-languageL and every primitive
word Q, there exists k ≥ 0 such that, for each w ∈ L with expQ(w) > k, there
is a word u ∈ L with expQ(u) ≤ k which is obtained from w by removing some
occurrences of Q.

Combining this with Theorem 6.2, we immediately obtain the following pumping
result for SpLog (and, hence, core spanners).

Theorem 6.5 For every bounded SpLog-language L and every primitive word Q,
there exists k ≥ 0 such that, for eachw ∈ L with expQ(w) > k, there is a word u ∈ L

with expQ(u) ≤ k which is obtained from w by removing some occurrences of Q.

Example 6.6 As shown by Fagin et al. [13] (Theorem 4.21), Lel := {aibi | i ≥ 0}
is not expressible with core spanners. The length of this proof is roughly one page in
the style of Journal of the ACM.

Contrast this to the following: Assume that Lel is a SpLog-language. Choose the
primitive word Q := a. Then there exists k ≥ 0 that satisfies Theorem 6.5. Choose
w := ak+2bk+2, and observe that expQ(w) = k + 1 > k, which is due to the
factorization w = ε · ak+1 · abk+2. Hence there exists a word u = ak+2−jbk+2,
j > 0, with u ∈ Lel. As k + 2 − j < k + 2, this is a contradiction.

From the inexpressibility of Lel, Fagin et al. then conclude that the equal length
relation Rel = {(u, v) | |u| = |v|} is not selectable with core spanners. Expressed
with SpLog instead of spanners, the argument is that otherwise, L(ϕ) = Lel for
ϕ(W) := ∃x, y : (W = xy ∧ Ca∗(x) ∧ Cb∗(y) ∧ Rel(x, y)).

Note that Karhumäki et al. [30] and Ilie [28] use the same approach (show the
non-selectability of a relation by proving that a suitable language is not expressible)
to show that Rel and various other relations are not selectable with EC (in particular,
they also use Lel and Theorem 6.4 for Rel). Before we use this technique to prove that
some other relations are not SpLog-selectable, we introduce a few more definitions:
For every word w ∈ �∗, its reversal wR is the word that is obtained by reading
w from right to left. For x, y ∈ �∗, we say that x is a scattered subword of y if
there exist k ≥ 1 and words x1, . . . , xk, y0, . . . yk ∈ �∗ such that x = x1 · · · xk and
y = y0(x1y1) · · · (xkyk).

Proposition 6.7 Consider the following binary relations over �∗:

Rscatt := {(u, v) | u is a scattered subword of v},
Rnum(a) := {(u, v) | |u|a = |v|a} for a ∈ �,

Rpermut := {(u, v) | |u|a = |v|a for all a ∈ �},
Rrev := {(u, v) | v = uR},
R< := {(u, v) | |u| < |v|}.
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None of these relations is SpLog-selectable.

Proof The proof follows the same outline as Example 6.6: We first define three
languages L1 to L3, each of which is shown not to be a SpLog-language. For
each relation, we then show that SpLog-selectability of this relation implies Li ∈
L(SpLog) for some i. We choose distinct a,b, ∈ �, and define

L1 := {aibj | 0 ≤ i ≤ j},
L2 := {ai (ba)j | 0 ≤ i ≤ j},
L3 := {(abaabb)i(bbaaba)i | i ≥ 0}.

Each of these three languages is bounded. Hence, we can use Theorem 6.5 to show
that they are not SpLog-languages.

ad L1: This proof is almost identical to the example: Assume that L1 is a
SpLog-language, and choose Q1 := b. Then there exists some k1 that satisfies
Theorem 6.5. Let w1 := ak1+2bk1+2, and observe the FQ1 -factorization w1 =
ak+2b · bk+1 · ε. Hence, expQ1

(w1) = k + 1 > k, and there exists an u =
ak1+2bk1+2−j with j > 0 and u ∈ L1. As k1 + 2 > k1 + 2 − j , we observe the
contradiction u1 /∈ L1. Therefore, L1 /∈ L(SpLog).

ad L2: The proof proceeds as for L1, by choosing Q2 := ba, w2 = ak+2(ba)k+2,
and observing the FQ2 -factorization w2 = ak+2ba · (ba)k+1 · ε.

ad L3: Assume that L3 is a SpLog-language, and choose Q3 := abaabb.
Let k3 be the constant from Theorem 6.5, and choose w3 := (abaabb)k3+2

(bbaaba)k3+2. The FQ3 -factorization is w3 = ε · (abaabb)k3+1 · abaabb
(bbaaba)k3+2; hence, expQ3

(w3) = k3+1. By Theorem 6.5, there is some j > 0
such that u3 ∈ L3 for u3 := (abaabb)k3+2−j (bbaaba)k3+2. Contradiction.
Thus, L3 /∈ L(SpLog).

Using the languages: Assume some relationR out ofRscatt, Rnum(a), Rpermut, Rrev,

and R< is selected by ϕR(W; x, y) ∈ SpLog. We then define:

ϕ1(W) := ∃x, y : (W = x · y)∧Ca∗(x) ∧ C(ba)∗(y) ∧ ϕRscatt(W; x, y),

ϕ2(W) := ∃x, y : (W=x · y)∧C(abaabb)∗(x)∧C(bbaaba)∗(y)∧ϕRnum(a)
(W; x, y),

ϕ3(W) := ∃x, y : (W=x · y)∧C(abaabb)∗(x)∧C(bbaaba)∗(y)∧ϕRpermut(W; x, y),

ϕ4(W) := ∃x, y : (W = x · y)∧C(abaabb)∗(x)∧C(bbaaba)∗(y) ∧ ϕRrev(W; x, y),

ϕ5(W) := ∃x, y : (W = x · y)∧Ca∗(x) ∧ Cb∗(y) ∧ ϕR<(W; x, y).

Now observe that L(ϕ1) = L2, L(ϕ2) = L(ϕ3) = L(ϕ4) = L3, and L(ϕ5) = L1.
Hence, if one of these relations is SpLog-selectable, the corresponding language
is a SpLog-language, which contradicts our previous observations.
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To our inconvenience, the restriction to bounded languages limits the applicability
of this approach. For example, Ilie [28] shows that over a two letter alphabet, the
language of square-free words (i.e., words that contain no subword xx with x �= ε)
is not an EC-language. Although one might conjecture that it is also not a SpLog-
language, one can easily see that every bounded subset of this language has to be
finite, which means that our technique fails.

Furthermore, consider the relation Rpow := {(x, xn) | x ∈ �∗, n ≥ 1}. It was
already conjectured in [16] that Rpow is not SpLog-selectable; but there is no suitable
bounded language that could be used to prove this.

Another example where this approach fails is the uniform-0-chunk language Luzc :=
L(αuzc), which is defined through the xregex (see Section 5.3) αuzc :=
1+x{0∗}(1+&x)∗1+. Intuitively, in every word of Luzc, all 0-chunks (maximal sub-
words from 0∗) have the same length. This language was used in [13] to prove that
the relation �	 is not selectable with core spanners. Clearly, Luzc is not bounded, and
intersecting it with a bounded languages limits us to a bounded number of 0-chunks
in every word, or to 0-chunks of a bounded length (thus obtaining a regular language).
Hence, this approach fails for Luzc.

6.2 Comparing the Power of SpLog and ECreg

A question that remains open in this paper is whether �ECreg� = �SpLog�. We briefly
address some aspects of an open subproblem, namely whether L(ECreg) = L(SpLog).
While one might conjecture that ECreg is more powerful, our proof that the class of
SpLog-languages is closed under right quotient /a (Lemma 5.7) serves as an example
of where SpLog replicates behavior of ECreg; although with significant extra effort.

The right quotient /a can be seen as a variant of the prefix operator, but closure
under the latter is more complicated than for the former. In fact, the question whether
L(SpLog) is closed under the prefix operator is inherently related to the question
whether SpLog and ECreg can define the same languages.

Proposition 6.8 L(ECreg) = L(SpLog) if and only if L(SpLog) is closed under the
prefix operator.

Proof For the “only if”-direction, assume L(ECreg) = L(SpLog), and choose any
L(ϕ) ∈ L(SpLog). We then define ψ(x) := ∃y, z : ((y = xz)∧ϕ(y)). Then L(ψ) =
{x | x is prefix of some y ∈ L(ϕ)}. This shows that the language of all prefixes of
words from L(ϕ) is an ECreg-language. As we assumed L(ECreg) = L(SpLog), it is
also a SpLog-language.

For the “if”-direction, assume that L(SpLog) is closed under the prefix operator,
and choose any L(ϕ) ∈ L(ECreg). Assume that free(ϕ) = {x}. As explained by
Diekert [10] (also see the remark at the end of Section 2.1), ϕ can be converted into
an equivalent ECreg-formula χ = ∃�y : (η ∧ C) where �y is a sequence of variables,
and C is a conjunction of constraints.
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Now, let $ be a new terminal letter, let W be a new variable that does not occur in
χ , and define ψ := ∃�y : ((W = x$ηL) ∧ (W = x$ηR) ∧ C). Then ψ is a SpLog(W)-
formula, and L(ψ) = {σ(x)$σ(ηL) | σ |= ϕ}. Now, let

L1 := {u | there is a word v ∈ (� ∪ {$})∗ with uv ∈ L(ψ)},
L2 := L1 ∩ (�∗ · $),
L3 := L2/$.

Now, L1 is the result of applying the prefix operator to the SpLog-language L(ψ);
which means that L1 is a SpLog-language due to our initial assumption. As SpLog-
languages are closed under intersection with regular languages (by simply adding
the corresponding regular constraint), L2 is a SpLog-language; and so is L3 (due
to Lemma 5.7). We conclude L3 = {σ(x) | σ |= χ} = L(χ) = L(ϕ). Hence,
L(ϕ) ∈ L(SpLog).

To avoid potential confusion, recall that although we showed in Example 5.3 that
the prefix relation is SpLog-selectable, this does not mean that we can use this to turn
a SpLog-formula for some language L into a formula for the language of all prefixes
of L.

In principle, Proposition 6.8 could offer an elegant way of (dis-)proving
L(SpLog) = L(ECreg) by (dis-)proving that the former class is closed under the pre-
fix operator. In practice, this seems to be more of indicator that (dis-)proving closure
under the prefix operator is hard.

The question whether L(SpLog) = L(ECreg) seems to be surprisingly compli-
cated; even when only considering only word equations without constraints: We only
discuss this briefly, as a deeper examination would require considerable additional
notation. In contrast to EC and ECreg, SpLog can only use variables that are sub-
words of the main variable. Hence, one might expect that it is easy to construct an
EC-formula where other variables are necessary. But as it turns out, many word equa-
tions can be rewritten to reduce the number of variables. In particular, there is a
notion of word equations where the solution set can be parameterized (i.e., expressed
with a finite number of so-called parametric words – for more details, see e.g. Czei-
zler [9], Karhumäki and Saarela [32]). In all cases that the author considered, it
turned out that one could use these parametrizations to construct SpLog-formulas.
Similarly, the solution sets of non-parametrizable equations that the author exam-
ined, like xaby = ybax, are self-similar in a way that allows the construction of
SpLog-formulas (cf. Czeizler [9], Ilie and Plandowski [29]). On the other hand, these
constructions do not appear to generalize straightforwardly to an equivalence proof.

We conclude this section with a consequence that L(ECreg) �= L(SpLog)
would have. To prove this, we combine Lemma 5.7 with the following result that
is commonly known as Greibach’s Theorem (originally from Greibach [24], this
formulation is Theorem 8.14 in Hopcroft and Ullman [27]).

Greibach’s Theorem Let C be a class of languages that is effectively closed under
concatenation with regular sets and union, and for which “= �∗” is undecidable for
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any sufficiently large fixed�. Let P be any non-trivial property that is true for all reg-
ular languages and that is preserved under /a, where a ∈ �. Then P is undecidable
for C.

Proposition 6.9 Assume L(ECreg) �= L(SpLog). Given ϕ ∈ ECreg, it is undecidable
whether L(ϕ) ∈ L(SpLog) .

Proof Assume that L(ECreg) �= L(SpLog). To use Greibach’s Theorem, we choose
the class of ECreg-languages for C, the property “L is a SpLog-language” for P .
We discuss the conditions of Greibach’s Theorem step by step: The class of SpLog-
languages is effectively closed under concatenation and union: Given ϕ1, ϕ2 ∈
ECreg, we have L(ϕ1 ∨ ϕ2) = L(ϕ1) ∪ L(ϕ2) and L(ϕc) = L(ϕ1) · L(ϕ2) for
ϕc := ∃u, v : (mv = u · v) ∧ ϕ1(u) ∧ ϕ2(v). Recall that ECreg includes all reg-
ular languages, which gives us effective closure under concatenation with regular
languages.

If |�| ≥ 2, then L(ϕ) = �∗ is undecidable when given ϕ ∈ ECreg as input:
This follows (even for ϕ ∈ SpLog) for example from Theorem 5.9 and the undecid-
ability of this problem for vsf-xregex (see [14]). An alternative proof is discussed in
Section 7.4.

Next, P is a non-trivial property: The class of SpLog-languages is not empty,
and L(SpLog) �= L(SpLog) holds by our assumption. Every regular language is
also a SpLog-language, and L(SpLog) is closed under /a according to Lemma 5.7.
Hence, if L(ECreg) �= L(SpLog), Greibach’s Theorem applies; which means that
L(ϕ) ∈ L(SpLog) is undecidable for ϕ ∈ SpLog.

7 Conjunctive Path Queries on Marked Paths

In this section, we examine the connection between SpLog and a querying lan-
guage for graphs, namely unions of conjunctive regular path queries (UCRPQs) that
are extended with string equalities. In the conference version [15] of this paper,
this section was a short paragraph that mostly consisted of the following claim:
“Using our methods, it is easy to show that there are polynomial time transfor-
mations between CRPQ= and SpLog prenex conjunctions, and between UCRPQ=
and DPCNF.” (Recall that we defined prenex conjunctions and DPC-normal form in
Section 5.2.)

But this claim was overly optimistic. In fact, if taken literally, it is wrong; although
we shall see that it holds for a rich and natural class of restricted queries. But explain-
ing this adequately requires further definitions, and the author apologizes to the
reader for burdening them with even more notation.

This section is structured as follows: First, we introduce UCRPQs in Section 7.1.
We then discuss the notion of marked paths, and how graph queries on marked
paths connect to SpLog in Section 7.2. Finally, Section 7.3 states the transformations
between these queries and SpLog, and Section 7.4 briefly discusses how this can be
used to extend previous undecidability results.
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7.1 Conjunctive Regular Path Queries with Equality

We begin with the definition of the data model. Let � be a terminal alphabet. A �-
labeled db-graph is a directed graph G = (V , E), where V is a finite set of nodes,
and E ⊆ V × � × V is a finite set of edges with labels from �. A path p between
two nodes v0, vn ∈ G with n ≥ 1 is a sequence

p = (v0, a1, v1)(v1, a2, v2) · · · (vn−1, an, vn)

of edges (vi−1, ai, vi) ∈ E, and we define its label lab(p) := a1a2 · · · an as the word
that is formed by the labels along the edges of p. We also define the empty path
(v, ε, v) for every v ∈ V , with lab(v, ε, v) = ε.

A regular path query (RPQ) is a query of the form ϕ(x, y) = (x, L, y), where the
variables x and y range over nodes, and L is a regular language; and �ϕ�(G) con-
tains exactly those pairs of nodes (x, y) for which there is a path p from x to y in
G such that lab(p) ∈ L. By considering conjunctions of RPQs, one obtains conjunc-
tive regular path queries (CRPQs). Barceló, Libkin, Lin, and Wood [2] introduced
extended regular path queries (ECRPQs), which extend CRPQs by allowing com-
parisons of path labels via regular relations, like string equality and the equal lengths
relation. In this paper, we follow Fagin et al. [13], by considering a class of queries
between CRPQ and ECRPQ, namely conjunctive regular queries with string equality
predicates.

The following definition of these queries is based on the definition of ECRPQs by
Barceló et al. [2].

Definition 7.1 A conjunctive regular path query with string equalities (equality
CRPQ) over the alphabet � is a formula

ϕ(�zf ) = ∃�zb :
∧

1≤i≤m

(xi, πi : Li, yi) ∧
∧

1≤j≤n

(ξL
j = ξR

j )

such that m ≥ 1, n ≥ 0, and

1. all x1, . . . , xm and y1, . . . , ym are node variables (and not necessarily distinct);
the set of these variables is denoted by NVars (ϕ),

2. π1, . . . , πm are pairwise distinct path variables, the set of these is denoted by
PVars (ϕ),

3. the Li are regular languages over � that are defined by NFAs or regular
expressions, and we call Li the range of πi ,

4. the ξL
j and ξR

j are path variables from PVars (ϕ),
5. �zf is a tuple of variables from NVars (ϕ); these are the free variables of ϕ, and

their set is denoted by free(ϕ),
6. �zb is a tuple that contains exactly the variables of NVars (ϕ) − free(ϕ).

We use CRPQ= to denote the class of all equality CRPQs, and CRPQerx to denote
the subclass of that defines all Lj only by using regular expressions.
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For every �-labeled db-graph G = (V , E) and every mapping τ : free(ϕ) → V ,
we define that (τ, G) |= ϕ if there exist a mapping τ ′ from NVars (ϕ) to V and a
mapping μ from PVars (ϕ) to paths in G such that:

1. τ ′(x) = τ(x) for all x ∈ free(ϕ),
2. μ(πi) is a path from τ ′(xi) to τ ′(yi) for all 1 ≤ i ≤ m,
3. lab(μ(πi)) ∈ Li for all 1 ≤ i ≤ m,
4. lab(μ(ξL

j )) = lab(μ(ξR
j )) for all 1 ≤ j ≤ n.

Based on this, we define �ϕ�(G) as the set of all τ with (τ, G) |= ϕ.

Intuitively, all variables are quantified existentially, and the words formed by
the labels along the paths have to belong to the respective languages or satisfy the
respective string equalities.

An important difference between Definition 7.1 and the definition of ECRPQs
from Barceló et al. [2] is that we assume that all path variables are bound. We shall
only consider path queries on very restricted graphs, where all paths are uniquely
identified by their first and last node. This allows us to streamline the definition. We
also use the shorthand notation (x, L, y) instead of (x, π : L, y), if π is not used in
any equality check.

Example 7.2 Consider the following equality CRPQ:

ϕ(x, y) := ∃z1, z2 :
(x, π1 : (aa)+, z1) ∧ (z1,b, z2) ∧ (z2, π3 : (aaa)+, y) ∧ (π1 = π3).

Then for every db-grap G, we have that �ϕ�(G) contains exactly those pairs of nodes
(x, y) of G for which there exists a path π from x to y such that lab(π) is from the
language a6iba6i , i ≥ 1. Nodes and edges may occur multiple times along π .

Another model that was examined by Fagin et al. [13] are unions of equality
CRPQs (short: equality UCRPQs). An equality UCRPQ is a formula ϕ = ∨k

i=1 ϕi ,
where ϕi ∈ CRPQ= for all 1 ≤ i ≤ k, and all ϕi have the same free variables. Con-
sequently, we define �ϕ�(G) := ⋃k

i=1�ϕi�(G); and we use UCRPQ= to denote the
class of all equality UCRPQs, and UCRPQ=rx for the subclass that defines ranges
only with regular expressions.

7.2 Marked Paths

Obviously, any attempt to compare SpLog (or spanners) with path queries must over-
come the basic problem that the former query strings, while the latter query graphs.
As a solution, Fagin et al. [13] proposed that the input of the path queries is restricted
to marked paths. The marked path for a word w = a1 · · · an with n ≥ 0 is the db-
graph Gw

mp over the extended alphabet � := � ∪ {�, �} that consists of the nodes 1
to n + 1, and an edges with label ai from i to i + 1 for each 1 ≤ i ≤ n. Furthermore,
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there is a loop with the special symbol � on the node 1, and a loop with the special
symbol � on the node n + 1. This is depicted in the following illustration:

Fagin et al. [13] point out that the markings can be used to identify the first and
last node of the marked path using the RPQs (x, �, x) and (x, �, x), respectively.

As shown in [13], every core spanner on input w can be expressed by an equality
UCRPQ on the marked path Gw

mp, by using two node variables x� and x� for every
span variable x. These variables represent the start and the end of the span, and every
node assignment τ translates into the span [τ(x�), τ (x�)〉.

Likewise, [13] showed that every equality UCRPQ that expresses a span in this
way can also be transformed into an equivalent core spanner representation. The
transformations were not considered with respect to their complexity, but as we shall
prove, some are impossible in polynomial time (unless P = NP).

But first, note that using SpLog as a framework allows us to define a more con-
venient notion of “simulating a path query”, as we can represent each node i on a
marked path Gw

mp in SpLog as the prefix of w that has length i. This is used in the
following definition.

Definition 7.3 Let ϕ ∈ UCRPQ= andψ ∈ SpLog(W)with free(ϕ) = free(ψ)−{W}.
We say that ψ realizes ϕ (on marked paths) if for all w ∈ �∗, we have σ ∈ �ψ�(w)

if and only if τ ∈ �ϕ�(Gw
mp) with w[1,τ (x)〉 = σ(x) for all x ∈ free(ϕ).

Building on this definition, we can compare arbitrary equality UCRPQs on marked
paths to SpLog, instead of being restricted to those that simulate spanners (this notion
also extends to any type of query that maps db-graphs to sets of node assignments,
but this is outside the scope of the present paper).

For the other direction, we combine Definition 4.7 with the encoding of spanners
in path queries from [13] that was mentioned above.

Definition 7.4 Let ϕ ∈ SpLog(W) and ψ ∈ UCRPQ= with

free(ψ) = {x�, x� | x ∈ (free(ϕ) − {W})}.

Then ψ realizes ϕ if, for all w ∈ �∗ and all substitutions σ , we have τ ∈ �ψ�(Gw
mp)

if and only if σ ∈ �ϕ�(w) with σ(x) = w[τ(x�),τ (x�)〉 for all x ∈ free(ψ).

With these definitions, we can directly adapt the notion of polynomial time
conversions (recall Section 4.1) to queries on marked paths.

Our next step is proving that equality UCRPQs on marked paths are too powerful
to allow polynomial time transformations to SpLog. But as we shall see in the other
results of this section, this is arguably due to side effects of the encoding, and not an
inherent succinctness advantage of CRPQ= over SpLog.
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More specifically, we can prove that the existence of a polynomial time transfor-
mation from CRPQ= to SpLog implies P = NP. To show this, we shall abuse the loop
with the start marker � to encode the NP-hard non-emptiness problem for regular
expressions over unary alphabets8.

Lemma 7.5 (Neven and Martens [35]) Given regular expressions α1, . . . αk over
the alphabet {a}, deciding whether ∅ �= ⋂k

i=1 L(αi) is NP-hard.

Lemma 7.5 directly allows us to state the following lower bound result on the
evaluation of equality CRPQs. Note that it holds for any fixed marked path, even the
marked path Gε

mp.

Lemma 7.6 Fix w ∈ �∗. Given ϕ ∈ CRPQ=
rx, deciding �ϕ�(Gw

mp) �= ∅ is NP-hard.

Proof We prove this via reduction from the non-emptiness problem for regu-
lar expressions over unary alphabets, see Lemma 7.5. Given regular expressions
α1, . . . , αk over the unary terminal alphabet {�}, we define the equality CRPQ

ϕ(x) :=:
k∧

i=1

(x, πi : αi, x) ∧
k∧

j=2

(π1 = πj ).

Then for every marked path Gw
mp, we have �ϕ�(Gw

mp) �= ∅ if and only if there is an

n ≥ 0 with �n ∈ ⋂k
i=1 L(αi).

As SpLog-formulas can be evaluated in polynomial time on the input ε (see the
proof of Lemma 4.8), Lemma 7.6 immediately leads us to the following.

Proposition 7.7 P = NP, if there is a polynomial time conversion from CRPQ=
rx on

marked paths to SpLog.

The proof of Lemma 7.6 shows that the encoding of words in marked paths causes
problems for the transformation, as we have to account for arbitrarily long blocks of
the marker symbols � and �.

One way of dealing with this problem is to prevent the use of equality checks on
path variables that can contain these marker symbols (which was proposed by Fagin
et al. [13]). In fact, this is the approach that we shall choose; but before we do that in
Section 7.3, we briefly discuss an alternative way of encoding words in paths, which
we call straight marked paths. Instead of using loops on the first and last nodes (like

8Finding a citation for this turned out to be surprisingly hard: It is a well-known consequence of Stock-
meyer and Meyer [43] that the intersection emptiness problem for an unbounded number of DFAs is
PSPACE-complete. It seems to be less well-known that as a consequence of Galil [20], the problem is
NP-complete over unary terminal alphabets (but locating the proof in that paper without already know-
ing the main idea can be rather difficult). Luckily, Lemma 27 in Neven and Martens [35] provides an
explicit and accessible proof (and although it covers only the automata case, it directly translates to regular
expressions).



Theory Comput Syst

the marked paths do), straight marked paths and an additional initial and final node.
Hence, the straight marked path Gw

smp of a word w = a1 · · · an is this graph:

In particular, the graphGε
smp that encodes the empty word as a straight marked path

consists of the path (0, �, 1), (1, �, 2). In contrast to marked paths, straight marked
paths do not allow queries to assign paths of arbitrary length. But as the proof of the
next result demonstrates, this encoding causes new problems.

Proposition 7.8 Given ϕ ∈ CRPQ=
rx, deciding if �ϕ�(Gε

smp) �= ∅ is NP-hard.

Proof We show this via a reduction from the problem one-in-three satisfiability,
which is defined as follows: Given a set M and non-empty subsets S1, . . . , Sk ⊆ M

such that |Si | ≤ 3 for all i, is there a subset T ⊆ M with |Si ∩ T | = 1 for all i? As
shown by Schaefer [40], this problem is NP-complete.

Assume that each Si consists of si,1 . . . , si,|Si |. The main idea is to represent each
si,j with a path variable πi,j that is mapped to the path (0, �, 1) if si,j ∈ T , and to an
empty path on 0 or 1 otherwise. Equality tests are used to ensure that all si,j and si′,j ′
with si,j = si′,j ′ have consistent assignments. Following this intuition, we define

ϕ(x0, x1, y1, . . . , yk, z1, . . . , zk) := (x0, �, x1)

∧
k∧

i1

(
(x0, πi,j : Li,1, yi) ∧ (yi, πi,j : Li,2, zi) ∧ (zi, πi,j : Li,2, x1)

)

∧
k∧

i=1

|Si |∧

j=1

∧

si′,j ′=si,j

(πi,j = πi′,j ′),

where Li,j := {ε} if j > |Si |, and Li,j := {ε, �} if j ≤ |Si |. Clearly, ϕ can be
constructed in polynomial time. To see that it is correct, note that on Gε

smp, the node
variables x0 and x1 have to map to the nodes 0 and 1, respectively. Then the conjunc-
tions in the middle row of the definition of ϕ ensure that for each Si , exactly one πi,j

is set to the path from 0 to 1. Take particular note that if j > |Si |, then πi,j must map
to the empty path (on the node 0 or 1).

Hence, there is a one-to-one correspondence between node assignments τ ∈
�ϕ�(Gε

smp), and sets T that are solutions of the one-in-three satisfiability problem;
which means that �ϕ�(Gε

smp) �= ∅ if and only if such a set T exists.

Hence, Proposition 7.7 also holds for CRPQ=
rx on straight marked paths (if we

extend Definition 7.4 appropriately). The author considers this a sign that changing
the encoding of the string does not overcome the encoding issues (at least not when
using obvious encodings). Instead, the next section follows the example of Fagin et
al. [13] and restricts the queries.
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7.3 Conversions Between UCRPQ= and SpLog

We saw in the previous section that the special symbols � and � can be problematic
when they occur in the languages of path variables that are compared with equalities.
This was already observed by Fagin et al. [13] (although not from a complexity point
of view). To overcome technical difficulties in the transformation of path queries to
spanners, Fagin et al. proposed the notion of �-restriced equality UCRPQs, which
can only compare paths that do not have the special markers as labels.

Definition 7.9 A path variable in an equality CRPQ ϕ is �-restricted if its range
is a subset of �∗ (i.e., no word in the range contains � or �). An equality (π = ρ)

in ϕ is �-restricted if π and ρ are �-restricted. Finally, ϕ is �-restricted if all of
its equalities are �-restricted; and an equality UCRPQ is �-restricted if all of its
underlying equality CRPQs are �-restricted.

Clearly, one can check in polynomial time whether an equality UCRPQ is �-
restricted. Moreover, as shown in [13], every equality UCRPQ can be converted into
a �-restricted equality URCPQ that is equivalent on marked paths. But we can con-
clude from Lemma 7.6 that this transformation is not possible in polynomial time
(under the assumption that P �= NP).

Lemma 7.10 Assume that there is an algorithm that, given ϕ ∈ CRPQ=
rx, computes

in polynomial time a �-restricted ψ ∈ UCRPQ= with �ψ�(Gw
mp) = �ϕ�(Gw

mp) for all
w ∈ �∗. Then P = NP.

Proof This follows directly from Lemma 7.6, and the fact that for �-restricted ψ ∈
UCRPQ=, one can decide in polynomial time whether �ψ�(Gε

mp) �= ∅. The latter
holds as Gε

mp contains only a single node, and no edges with labels from �. Hence,
path variables that occur in string equalities can only be mapped to the empty path,
which has label ε. Thus, once can consider each ψi from ψ = ∨k

i=1 ψi by itself, and
observe that �ψi�(Gε

mp) �= ∅ holds if and only if for each range Lj (πj ) of ψi , the
following holds:

– if πj occurs in an equality check of ψi , then ε ∈ Lj ,
– if πj does not occur in an equality check of ψi , then Lj ∩ {�, �}∗ �= ∅.
Clearly, this can be checked in polynomial time.

But even in �-restricted queries, the ranges for variables that do not occur in
equality checks can still contain a combination of letters from � and the special
marker symbols. This is technically cumbersome; and to simplify our reasoning, we
first consider queries that further restrict the use of � and �.

Definition 7.11 We say that ϕ ∈ UCRPQ= over the alphabet � := � ∪ {�, �} is
explicitly marked (or just explicit) if for every range Lj in ϕ, one of Lj = {�},
Lj = {�}, or Lj ⊆ �∗ holds.
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In other word, explicit queries use the special symbols only to explicitly desig-
nate nodes as first or last node of a marked path. In this way, they could also be
understood as queries that can use constants for the first and last node of the marked
path. Although a query that is explicit is not necessarily �-restricted by definition, it
is easy to see that it can be straightforwardly made �-restricted (as equality checks
over � and � can be replaced). Thus, we can view explicit queries as a subclass of
�-restricted queries.

We are now ready to observe the following connection between equality UCRPQs
and SpLog (recall that we defined PC and PCrx in Definition 5.5 back in Section 5.2).

Theorem 7.12 There are polynomial time conversions in both directions

1. between PC and explicit CRPQ=,
2. between PCrx and explicit CRPQ=

rx.

Proof We prove both claims at once: The second is a special case of the first, which
we handle by avoiding the use of automata instead of regular expressions (wemention
this in the constructions when it is necessary). Although both directions are compar-
atively straightforward, the transformation to CRPQ= requires a little more technical
attention. We begin with the other direction.

From CRPQ= to SpLog: Consider an explicit ϕ ∈ CRPQ=. As described in the
comment after Definition 7.11, we can also assume that ϕ is �-restricted. Let

ϕ(�zf ) = ∃�zb :
∧

1≤i≤m

(xi, πi : Li, yi) ∧
∧

1≤j≤n

(ξL
j = ξR

j ),

and let X := NVars (ϕ). The main idea in the construction of the SpLog(W)-
formula ψ is that each path variable πi in ϕ is represented by a SpLog-variable pi

in ψ . In particular, this translates an RPQ (x, πi : Li, y) with Li ⊆ �∗ into the
quantified conjunction ∃z : (W = xpiz) ∧ (W = yz) ∧ CLi

(pi), and the equality
tests πi = πj are directly transformed into word equations pi = pj .
Following this idea, we construct an intermediate formula χ that realizes ϕ, but

is not yet a prenex conjunction. By applying a straightforward rewriting, we shall
then obtain ψ from χ . We now define

χ := ∃�zb, p1, . . . , pm :
m∧

i=1

χi ∧
n∧

j=1

ηj ,

where each equality check (πl = πr) in ϕ defines a word equation ηj := (pl, pr);
and for each RPQ (xi, πi : Li, yi) in ϕ, we define χi as follows:

– if Li = {�}, then χi := (xi = ε) ∧ (yi = ε) ∧ (pi = ε),

– if Li = {�}, then χi := (W = xi) ∧ (W = yi) ∧ (pi = ε),

– if Li ⊆ �∗, then χi := ∃z : (W = xi · pi · z) ∧ (W = yi · z) ∧ CLi
(pi).

If ϕ ∈ CRPQ=
rx, we can define the constraint CLi

with a regular expression, which
ensures that ψ ∈ SpLogrx.
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Now, χ is only “almost” a prenex conjunction, as it contains some existential
quantifiers inside the conjunctions. We now obtain ψ from χ by renaming all
variables that are quantified in this way, and moving the quantifiers outside (as
in the proof of Lemma 5.6; and observe that this is compatible with Lemma 4.4).
Clearly, all this is possible in polynomial time.

From SpLog to CRPQ=: Assume we are given a SpLog(W) prenex conjunction

ϕ = ∃�x : (

m∧

i=1

ηi ∧
n∧

j=1

Cj ).

Let X := (⋃
var(ηi)

)−{W}. To simplify our definition, we assume the following:

– All right sides of the word equations ηi are of the same length � (this is not
essential, but streamlines the notation). More formally, we assume that each
ηi is of the form ηi = (W = ηi,1 · · · ηi,�), with ηi,j ∈ (X ∪ �).

– For every variable x ∈ X, there is exactly one constraint Cx in ϕ.

The second assumption can be ensured by rewriting ϕ in polynomial time: If there
is an x ∈ X with no constraint, we add the constraint C�∗(x). If x has multiple
constraints C1, . . . , Ck with k ≥ 2, we cannot simply combine these into a single
constraint for the intersection, as we would face a blowup that is exponential in k.
Instead, we proceed as follows: First, we introduce new existentially quantified
variables x̂2, . . . , x̂k, y, z. We then add the conjunction (W = yxz)∧∧

2≤i≤k(W =
yx̂iz), which ensures that every solution maps x and all x̂i to the same values.
Finally, in each Ci with i ≥ 2, we replace x with x̂i .
Now, let �xf be a tuple that contains exactly the variables from {x�, x� | x ∈

(X ∩ free(ϕ))}, and let �xb be a tuple of the variables of X that do not occur in �xf .
We then define the explicit and �-restricted ψ ∈ CRPQ= as follows:

ψ(�xf ) := ∃�xb, y1,0, . . . , ym,� :
∧

x∈X

(x�, πx : �∗, x�) ∧
∧

x∈X,
ηi,j =x

(πx = ηi,j )

∧
m∧

i=1

⎛

⎝(yi,0, �, yi,0) ∧ (yi,�, �, yi,�) ∧
�∧

j=1

(
(yi,j−1, ρi,j : Li,j , yi,j )

)
⎞

⎠

where the languages Li,j are defined as follows:

– if ηi,j ∈ �, then Li,j := {ηi,j },
– if ηi,j ∈ X with ηi,j = x, let Li,j be the language of the constraint Cx (recall

that we ensured above that this is uniquely defined).

In the second case, if ϕ ∈ SpLogrx, then we can also ensure that Li,j is defined
with a regular expression (if our goal is a SpLogrx-formula).
In order to understand this construction, first note that for each x ∈ X, the

RPQ (x�, πx : �∗, x�) defines a path πx from x� to x�. This models all possible
substitutions for x in the input word of ϕ.
The second part of ψ , in the lower row, expresses each word equation ηi as a

path from yi,0 to yi,l , using the markers � and � to ensure that the whole word is
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matched. Each position ηi,j of ηi is represented by a path variable ρi,j , and the
choice of the range ensures that the constraints are respected. Furthermore, the
equalities πx = ηi,j guarantee that all occurrences of a variable x are replaced
in the same way. Like for the other direction, it is clear that the transformation is
possible in polynomial time.

As UCRPQs are disjunctions of CRPQs, and as DPC consists of disjunctions of
PC-formulas (again, recall Definition 5.5), we can directly conclude the following.

Corollary 7.13 There are polynomial time conversions in both directions

1. between DPC and explicit UCRPQ=,
2. between DPCrx and explicit UCRPQ=

rx .

We discuss a significant consequence of Theorem 7.12 in Section 7.4. Before that,
we consider the transformation of queries that are not explicitly marked.

Theorem 7.14 There are polynomial time conversions

1. from �-restricted UCRPQ= to SpLog,
2. from �-restricted UCRPQ=

rx to SpLogrx.

Proof Following the same reasoning as for Corollary 7.13, it suffices to give a con-
struction for conjunctive queries. As in the proof of Theorem 7.12, we treat CRPQ=

rx
as a special case that is mentioned only when necessary.

The main idea of this construction is that we rewrite those underlying RPQs where
the range contains words with � or �. For each of these queries, we distinguish
whether the special symbol is actually used or not. To simplify our construction,
we abuse the notation, and allow alternations between conjunctions and disjunctions
inside the rewritten queries. This is not a problem, as we can extend the proof of The-
orem 7.12 to directly translate these disjunctions into SpLog-disjunctions. In order
to define the rewriting, we use the following operations on languages L ⊆ �∗ with
a ∈ {�, �}:
– the a-elimination, elima(L) := L ∩ (� − {a})∗,
– the left quotient by a+, lqa+(L) := {v | uv ∈ L for some u ∈ {a}+},
– the right quotient by a+, rqa+(L) := {u | uv ∈ L for some v ∈ {a}+}
We shall discuss further down how these operations can be implemented efficiently
on NFAs and regular expressions. Before that, we discuss the rewriting.

Consider any RPQ (x, π : L, y) that is part of the input �-restricted equality
CRPQ. Assume that L contains a word in which � occurs. We now rewrite this RPQ
into the following disjunction of equality CRPQs:

(x, π : elim�(L), y) ∨ ((x, �, x) ∧ (x, π : elim�(lq�+(L)), y))

In the left part of the disjunction, we handle the case that � is not used. The resulting
language might be empty, but this is not a problem. In the right part, we first express
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that � is read at least once. This is done by using (x, �, x), and allows us to restrict
the path π to lq�+(L). But as we can consume arbitrarily many � this way, we can
also restrict π to use only letters from �−{�}. As our input query is �-restricted, we
know that π does not occur in equality checks. Hence, this rewriting does not change
the behaviour on marked paths.

After this rewriting, we can assume that all ranges consist of subsets of (�∪{�})∗.
We now consider all underlying RPQs (x, π : L, y) where L contains words with �.
These are rewritten into

(x, π : elim�(L), y) ∧ ((y, �, y) ∧ (x, π : elim�(rq�+(L)), y))

The reasoning is exactly the same as in the case for �. These rewriting steps results
in ranges that are {�}, {�}, or a subset of �∗. Hence, if we “multiplied out” the
constructed query, we would obtain an explicit �-restricted equality UCRPQ that,
on marked paths, is equivalent to the input query. Obviously, this might result in
a query of exponential size. But if we instead allow the transformation from the
proof of Theorem 7.12 to convert the path query disjunctions directly into SpLog-
disjunctions, we obtain a polynomial time transformation to SpLog, assuming that
we can guarantee (as promised above) that the language operations can be computed
in polynomial time.

If a range is defined using an NFA A, this can be shown by combining some
standard constructions (which can be found in e.g. Hoproft and Ullman [27]): For
a-eliminiation, we construct an NFA for elima(L(A)) by removing all transitions
with the label a from the NFA A. This is clearly possible in polynomial time. For
left quotient by a+, we first convert A into an NFA with multiple initial states A′,
where the initial states of A′ are those states of A that can be reached by using only
transitions with label a. We then convert A′ into an equivalent NFA. Again, each of
these steps is possible in polynomial time. Finally, we observe that the right quotient
by a+ can be computed in polynomial time by using the left quotient by a+ and the
reversal operation.

If the range is defined with a regular expression α, we first observe that a regular
expression for the a-elimination can be computed by replacing all occurrences of a

in α with ∅. The only complicated case is the left quotient by a+. Luckily, the main
result of Gruber and Holzer [25] states that there exists a regular expression α′ for
this language, and that α′ is of polynomial size. Moreover, the proof in [25] also
implies that α′ can be computed in polynomial time. Finally, the reversal of a regular
expression can be computed by reversing the expression, which allows us to reduce
the right quotient by a+ to the left quotient, as we did in the automata case.

The author considers it unlikely that the other conversion direction is possible in
polynomial time: The SpLog-formulas that are derived from the construction in the
proof of Theorem 7.14 use disjunctions in a very restricted way (as both parts of the
disjunction look “rather similar”), and alternate a bounded number of times between
disjunctions and conjunctions. A polynomial time transformation in the opposite
direction would need to handle disjunctions of arbitrary formulas, and arbitrary
numbers of alternations.
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7.4 Adapting Undecidability Results for ECPRQs to Spanners

We conclude our comparison of equality UCRPQs and SpLog with a brief discussion
on how Theorem 7.12 can be used to refine some results of Freydenberger and Holl-
dack [16]. As shown in Theorem 4.6 of [16], it is undecidable whether a core spanner
representation defines a regular spanner (in other words, whether string equality
selections ζ= are necessary to define the spanner). This holds even for spanners from
the fragment RGX{π,ζ=,∪} (i.e., RGXcore without ��).

More importantly, this also affects the relative succinctness of core and regular
spanner representations, and the complementation of core spanners: In both cases,
the transformation can lead to blowups that are not bounded by any recursive func-
tion (see Theorems 4.9 to 4.11 of [16]). By Theorem 4.9, these results also apply to
SpLog-formulas. In particular, the trade-off from SpLog to regular languages (regard-
less of whether they are defined by regular expressions or by NFAs) is not bounded
by any recursive function.

Similar results were obtained for ECRPQs by Freydenberger and Schweikardt
in [19] (see in particular Theorem 4.6 in that paper). Notably, the proofs of most
results in [19] do not require the full power of ECRPQs, but use equality CRPQs
instead. Moreover, most of the proofs are restricted to arguing on graphs that are
paths, and can directly be used for CRPQ= on marked paths (see in particular the def-
inition of FL in Section 4 of [19]). The proof of Theorem 4.6 in [19] fits the second
of these criteria, and we can directly transform its query into an explicit �-restricted
query; the only (minor) problem is that it also uses not just string equalities, but also
the special k-ary relation Rxor := {(w1, . . . , wk) | there is exactly one i with wi �=
ε}.

Luckily, the constructed query applies Rxor only to variables c
�
1,1, . . . , c

�
k,1, each

having the range {ε,�}. Thus, we can express this specific use of Rxor as

(W = x · c
�
1,1 · · · c�k,1 · y) ∧ (W = x · � · y) ∧

k∧

i=1

C(ε∨�)(c
�
i,1),

or, alternatively, its CRPQ=-equivalent. Hence, we can combine these observations,
the proof of Theorem 4.6 in [19], and our Theorem 7.12 to conclude that the afore-
mentioned undecidabilities and non-recursive blowups still hold if we do not consider
all of SpLog, but only prenex conjunctions. Finally, note that the transformation of
SpLog to spanner representations from the proof of Theorem 4.9 (see Section 4.2.1)
transforms PCrx to core spanner representations from the fragment RGX{π,ζ=,×}; and
the analogous result holds for PC and VA{π,ζ=,×}. Thus, while [16] showed that these
results hold for core spanners without join, we can also conclude that they hold for
core spanners that do not use union, and only use join as cross product.

8 Negation for SpLog and Difference for Spanners

Fagin et al. [13] also examined core spanners that are extended with a difference
operator. Let P1 and P2 be spanners with SVars (P1) = SVars (P2). Then their
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difference P1−P2 is defined by SVars (P1 − P2) := SVars (P1) and (P1−P2)(w) =
P1(w) − P2(w) for all w ∈ �∗. As shown in [13], �RGXcore∪{−}� ⊃ �RGXcore�. In
other words, allowing the difference operator increases the expressive power of core
spanners.

As one of the reviewers pointed out, this raises the question whether the strong
connection between SpLog and core spanners also exists between SpLog with nega-
tion and core spanners with a difference operator. First, note that Quine [38] observed
already as far back as 1942 that extending EC with negation results in an undecidable
theory9. More specifically, satisfiability and evaluation both become undecidable. In
order to define negation for SpLog, we basically have two choices: One is starting
with a definition of ECreg that is extended with negation, and then restricting the syn-
tax to SpLog with negation. The other is directly defining syntax and semantics of
SpLog that is extended with negation (while ignoring negation for ECreg). In order
to keep the formulas cleaner, we shall choose the second approach; but this does not
affect the results that we obtain.

We now define SpLog with negation, or SpLog¬ for short.

Definition 8.1 Let W ∈ �. Then SpLog¬(W), the set of all SpLog¬-formulas with
main variableW, is defined by extending the recursive definition of SpLog from Def-
inition 4.2 with the additional rule that if ϕ ∈ SpLog¬(W), then (¬ϕ) ∈ SpLog¬(W),
with free(¬ϕ) = free(ϕ). We define SpLog¬

rx analogously to SpLogrx.
The semantics of SpLog¬ extend the semantics of SpLog by defining that σ |= ¬ϕ

if we have

1. σ(x) 	 σ(W) for all x ∈ free(ϕ), and
2. σ |= ϕ does not hold.

We apply all notational conventions for ECreg and SpLog to SpLog¬ as well.
Regarding the definition of the semantics of negation, note that the first condition
(“all free variables need to map to subwords of the main variable”) is used to ensure
that SpLog¬ behaves like SpLog in the sense that it guarantees that all variables are
safe. We could achieve the same behavior syntactically if we dropped that condition
in the semantics, and required that negation is only used in formulas that are guarded,
in a manner like ¬ϕ ∧ ∧

x∈free(ϕ)−{W} x 	 W. This would shift the effort of ensur-
ing safety from the semantics to the syntax, and result in less readable formulas. As
stated above, this would not affect the results in this section.

The notions of formulas that realize spanners, and vice versa, that are given in
Definitions 4.6 and 4.7 (respectively) directly generalize from SpLog to SpLog¬.
Building on these, we observe the following.

Lemma 8.2 Let ϕ1, ϕ2 ∈ SpLog¬(W) be formulas that realizes spanners P1 and P2,
respectively. Then ϕ1 ∧ ¬ϕ2 realizes P1 − P2.

9This description of Quine [38] is based on the notations that are used in the current paper. The actual
order of events was that first Quine examined the theory of concatenation; and EC was later introduced as
its existential positive fragment.
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Proof This follows directly from Definition 4.6, extended to SpLog¬.

The other direction requires more technical effort. This is due to a peculiar aspect
of Definition 4.7 (also recall the discussion after it), which is explained in more detail
in the proof of the following rather technical result.

Lemma 8.3 Let ϕ ∈ SpLog¬(W), and let P be a spanner that realizes ϕ. Let X :=
SVars (P ) and define ϒX :=��x∈X ��∗x{�∗}�∗�. We use P̂ to denote the spanner
that is obtained from P by renaming each variable x ∈ X into a new variable x̂,

and define P¬ := ϒX − πXS
(
ϒX × P̂

)
, where S is a sequence of string equality

selections that contains exactly the selections ζ=
x,x̂

with x ∈ X. Then P¬ realizes ¬ϕ.

Proof First, note that ϒX is the universal spanner for X. See [13] for details; for our
purposes, it suffices to know that for all w ∈ �∗, we have that ϒX(w) contains all
possible (X, w)-tuples.

Next, recall that according to Definition 4.7 we have σ ∈ �ϕ�(w) if and only if
there exists some μ ∈ P(w) with wμ(x) = σ(x) for all x ∈ SVars (P ). But this is
not enough implement negation through the difference operator. For this, we need to
describe all such (X, w)-tuples. This issue was already mentioned in the discussion

after Definition 4.7, and P ′ := πXS
(
ϒX �� P̂

)
is the result of the construction

that is described there. By definition, μ ∈ P ′(w) holds if and only if there is some
μ̂ ∈ P̂ (w) with wμ(x) = wμ̂(x̂) for all x ∈ X. As P̂ is just a renamed version of
P , and as P realizes ϕ, we conclude μ ∈ P ′(w) if and only if σμ |= ϕ, where the
substitution σμ is defined by σμ(W) := w and σμ(x) := wμ(x) for all x ∈ X.

Finally, observe that for every w ∈ �∗, we have μ ∈ P¬(w) if and only if μ is
an (X, w)-tuple and μ /∈ P ′(w), which (according to the previous paragraph) holds
if and only if μ is an (X, w)-tuple but we do not have σμ |= ϕ. In other words, P¬
realizes ¬ϕ.

By adding Lemma 8.2 and 8.3 to the proof of Theorem 4.9, we can directly extend
the latter to cover SpLog¬. The same applies to Corollary 4.10. We summarize this
as follows.

Theorem 8.4 There are polynomial time conversions

1. from RGXcore∪{−} to SpLog¬
rx, and from SpLog¬

rx to RGXcore∪{−},
2. from SpLog¬ to VAcore∪{−}

set and to VAcore∪{−}
stk ,

3. modulo ε from VAcore∪{−} to SpLog¬.

There are polynomial size conversions from VAcore∪{−} to SpLog¬. These conversions
run in polynomial time if all v-automata in the spanner representation are functional.

In other words, the relation between SpLog and core spanners is the same as the
one between SpLog¬ and core spanners with difference. Likewise, SpLog¬ can be
used to define relations for core spanners with difference. Hence, SpLog¬ and core
spanners with difference can be used as interchangeably as SpLog and core spanners.
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A thorough study of the the properties of SpLog¬ (and, thereby, core spanners with
difference) is outside the scope of the current paper, and left to future publication.

We only note that some properties of SpLog¬ follow immediately from previously
known properties of core spanners or the theory of concatenation. For example, we
can directly conclude from the undecidability of core spanner universality (see [16])
that satisfiability is undecidable for SpLog¬ (this also follows, although with a little
more effort, from the fact that the theory of concatenation is undecidable, see [38]).
Another direct consequence of [16] is that the blowup from SpLog¬ to SpLog is not
bounded by any recursive function. Of course, like one of the reviewers pointed out,
the restriction that each variable is mapped to a subword of the main variable ensures
that evaluation of SpLog¬ is satisfiable; and it is easily seen that for inputs ϕ ∈
SpLog¬ and σ , one can decide in PSPACEwhether σ |= ϕ, by reasoning analogously
to the NP upper bound in Corollary 4.12.

In contrast to these easy pickings, there is no general inexpressibility result for
SpLog¬ (like Theorem 6.5 for SpLog). The author is not aware of a result for ECwith
negation that corresponds to Theorem 6.4. While some pumping result for SpLog¬
(and, hence, core spanners with difference) would be very interesting, it seems safe
to assume that finding such a result is even more challenging than finding new
inexpressibility results for SpLog. But at the very least, SpLog¬ provides us with
an alternative approach to examining the expressive power of core spanners with
difference.

9 Conclusions and Further Directions

As we have seen, SpLog has the same expressive power as the three classes of rep-
resentations for core spanners that were introduced by Fagin et al. [13], and it is
possible to convert between these models in polynomial time (and the analogous
result holds for SpLog¬ and core spanners with difference). As a result of this, core
spanner representations can be converted to SpLog to decide satisfiability and hier-
archicality, and SpLog provides a convenient way of defining core spanners, and in
particular relations that are selectable by core spanners (see e.g. the formula ϕ�= in
Example 5.3). Of course, whether one considers SpLog or one of the spanner rep-
resentations more convenient depends on personal preferences and the task at hand.
Independent of one’s opinion regarding the practical applications of SpLog, it can be
used as a versatile tool for examining core spanners: For example, we used SpLog as
intermediary to obtain polynomial time conversions between various subclasses of
VAcore.

In addition to this, we defined a pumping lemma for core spanners by connect-
ing SpLog to EC. A promising next step could be extending this to more general
inexpressibility techniques that go beyond bounded SpLog-languages. While the con-
nection to word equations suggests that this line of research is difficult, one might
also expect that at least some of the existing techniques for word equations can be
used or extended in a suitable way.

Another set of question where the comparatively simple syntax and semantics
of SpLog might prove useful is the relative succinctness of various models. For
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example, in order to examine the blowup from VAcore to RGXcore, it suffices to exam-
ine the blowup from NFAs to SpLogrx. The author conjectures that this blowup is
exponential.

As another topic, note that the conversion of SpLog-formulas to spanner repre-
sentations preserves many structural properties. Hence, when looking for subclasses
of spanners that have certain properties (e.g., more efficient combined complexity of
evaluation), the search can start with examining certain fragments of SpLog that cor-
respond to interesting classes of spanners. One direction that seems to be promising
as well as challenging is developing a notion of acyclic core spanners, which would
need to account for the interplay of join and string equality (as seen in Corollary 4.11,
every spanner representation can be rewritten into a representation that simulates ��
with× and ζ=). This direction might be helped by first defining acyclicity for SpLog-
formulas, which in turn could be inspired by the restrictions that are discussed in
Reidenbach and Schmid [39].

A more fundamental question is whether �ECreg� = �SpLog�. In addition to our
discussion in Section 5.2, a potential approach to this is examining whether every
bounded ECreg-language is an EC-language (as the reasoning from Theorem 6.2
does not carry over from SpLog to ECreg). As a related question, the expressive
power of SpLog¬ remains open (aside of �SpLog� ⊂ �SpLog¬�, which follows from
[13]).

Another aspect of SpLog that makes it interesting beyond its connection to core
spanners is that it can be understood as the fragment of ECreg describes properties
of words without using any additional space, as every variable and equation has to
be a subword of the main variable (hence, the name “SpLog” can also be interpreted
as “subword property logic”). One effect of this is that evaluation of SpLog has
a friendlier upper bound than evaluation of ECreg (NP and PSPACE, respectively).
While we have only defined SpLog with a single main variable, a natural generaliza-
tion would be allowing multiple main variables (the definition generalizes naturally
to “every variable is a subword of one of the main variables”, and the upper bound
for evaluation remains). A potential application of SpLog with two multiple variables
is describing relations for path labels in graph databases.
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30. Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and relations by word

equations. J. ACM 47(3), 483–505 (2000)



Theory Comput Syst
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