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We show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi4Fe5O13F,
on one hand mediating the three-dimensional (3D) magnetic order and on the other driving spin-
reorientation transitions both within and between the planes. The corresponding sequence of mag-
netic orders unraveled by neutron diffraction and Mössbauer spectroscopy features two orthogonal
magnetic structures described by opposite local vector chiralities, and an intermediate, partly dis-
ordered phase with nearly collinear spins. A similar collinear phase has been predicted theoretically
to be stabilized by quantum fluctuations, but Bi4Fe5O13F is very far from the relevant parameter
regime. While the observed in-plane reorientation cannot be explained by any standard frustration
mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the in-
terlayer Fe3+ spins that turns out to be instrumental in controlling the local vector chirality and
the associated interlayer order.

I. INTRODUCTION

Frustrated magnets [1–3] host a plethora of remarkable
collective phenomena, ranging from topological spin liq-
uids, long-range entanglement and fractionalized excita-
tions [4–10], to emergent electrodynamics and magnetic
monopoles [11–13], and even to spin-induced ferroelec-
tricity [14–16]. While the majority of geometrically frus-
trated magnets are based on spin triangles (or tetrahe-
dra in 3D), pentagon-based magnets, which are far more
difficult to implement in real materials [17], are now at-
tracting increasing attention both in theory [18–27] and
experiment [28–34].

The main interest so far has been on the Cairo pen-
tagonal lattice, a periodic arrangement of irregular pen-
tagons with two types of sites, one with three-fold and
the other with four-fold connectivity (Fig. 1). Cairo-
based models host various phases of classical and quan-
tum nature [24], magnetization plateaux [22, 24, 26, 27],
and Kosterlitz-Thouless transitions [22]. By now, there
are two main realizations of this lattice, Bi2Fe4O9 [28–
31, 34] and Bi4Fe5O13F [32]. A similar pentagonal topol-
ogy can be also identified in the multiferroics RMn2O5 (R
= Bi, Y, or rare-earth) [35–42] that are renown for their
complex interplay of commensurate and incommensurate
magnetic orders with ferroelectricity.

The symmetric version of the Cairo Heisenberg model
has two exchange couplings, J33 and J43 (Fig. 1 a), and
hosts three phases in the classical, large-S limit [24]: a
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coplanar orthogonal phase (Fig. 1 b), a collinear ferrimag-
net, and a mixed phase in between. Quantum fluctua-
tions convert the latter to a non-magnetic and possibly
spin-nematic phase for S = 1/2. Additionally, they in-
troduce another collinear phase for small J43/J33 [24].
This phase features collinear antiferromagnetic order on
all four-fold sites and on half of the three-fold sites, with
the remaining half being disordered (Fig. 1 c).

Bi2Fe4O9 and Bi4Fe5O13F feature dumbbells of the 4-
fold-sites. Two Fe1 atoms that comprise a dumbbell lie
above and below the Fe2 plane, centered at a nodal point
of the pentagonal lattice. Additionally, there are two
inequivalent couplings between four-fold and three-fold
sites, denoted by J43 and J ′43 (Fig. 1), but the classi-
cal phase diagram of this extended model is qualitatively
the same (Fig. 7). Furthermore, the calculated interac-
tions (reported here and in [25]) place the two compounds
nearly on the same spot in the phase diagram, and deep
inside the orthogonal phase. Despite this remarkable
similarity, the two Cairo materials show qualitatively
different behavior. Bi2Fe4O9 orders in the anticipated
orthogonal state below 238 K, but Bi4Fe5O13F, where
Cairo planes are interleaved by an additional layer of Fe3
sites, shows three successive transitions at TN ' 178 K,
T2 ' 71 K, and T1 ' 62 K [32], with three distinct
magnetically ordered states that we refer to as phase
I (T < T1), phase II (T1 < T < T2), and phase III
(T2 < T < TN ). Phase I is orthogonal [32], whereas the
nature of phases II and III is unknown to date.

In the following, we unravel the nature of these phases,
and elucidate their origin. Our main findings are:

i) Phases I and III are both orthogonal and macro-
scopically non-chiral, but with opposite local vector chi-
ralities, as defined in Fig. 1 b. Since the two states are
degenerate at the level of the isotropic Heisenberg model,
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FIG. 1. (a) The symmetric Cairo lattice with two exchange couplings, J33 and J43. (b-c) Orthogonal and collinear phases.
Note the zero moment on half of the 3-fold sites in (c). The Fe1 sites 1-4 in (b) provide a measure of local vector chirality
as χ = 〈Γ〉/|〈Γ〉|, where Γ = S1×S2 +S2×S3 +S3×S4 +S4×S1. Note that χ is defined on the plaquette centered by the 4̄
rotoinversion axis (and vertical Fe21 dimers). The adjacent plaquettes have opposite chirality, but they are centered by the
42 screw axis (and horizontal Fe22 dimers) and thus distinguished by symmetry. The overall magnetic structure is non-chiral.
(d-f) Magnetic structures of Bi4Fe5O13F in phases I, II, and III, respectively. The two types of the J43 couplings are also
indicated. The crystal and magnetic structures are visualized using VESTA [43].

anisotropy must play a role.

ii) The intermediate phase II features nearly collinear
spins and drastically reduced moments on half of the Fe2
sites, reminiscent of the quantum collinear phase of [24].
This is unexpected given the large, ‘classical’ spin S=5/2
and the fact that we are far from the relevant corner of
the phase diagram (Fig. 7).

iii) The onset of phase II upon cooling coincides with
a significant growing of the magnetic moments on the
interlayer Fe3 sites, which sit between the Cairo planes
and normally act to mediate the 3D ordering between the
planes, as e.g. in Ref. [44].

iv) Spin reorientation within the planes is accompanied
by a change of the interlayer order from ferromagnetic
(phase I) to antiferromagnetic (phase III).

While these features cannot be explained by any stan-
dard frustration mechanism involving purely isotropic
(Heisenberg) interactions, our ab initio band-structure
calculations reveal sizable single-ion anisotropy on the in-
terlayer Fe3+ spins. The Fe3 spins are absent in Bi2Fe4O9

(where neighboring planes couple directly to each other),
so the emerging physical picture is that the interlayer
spins play a vital role for the order within the planes.
Specifically, the III→II→I transitions can be understood

as a reorientation of the nominally preferred orthogonal
state, from one orientation (phase III) that satisfies the
anisotropy on the in-plane spins to another orientation
(phase I) that satisfies the anisotropy on the interlayer
Fe3 spins, and in between the system must necessarily go
through the quasi-collinear phase II. This in-plane spin
re-orientation is accompanied by a change in the inter-
layer order that evolves from antiferromagnetic in phase
III to ferromagnetic in phase I.

II. MAGNETIC ORDER

All measurements were performed on single-phase
polycrystalline samples of Bi4Fe5O13F prepared previ-
ously [32]. Neutron diffraction data were collected at
the cold neutron powder diffractometer DMC (LNS PSI,
Villigen, Switzerland) with the wavelength of 4.5082 Å
in the T range of 1.5 − 200 K in a He-cryostat. The
magnetic structures were refined by the Rietveld method
using the JANA2006 program [45]. The symmetry analy-
sis of possible magnetic configurations was carried out in
ISODISTORT [46].

Phases I–III share the same propagation vector k =
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TABLE I. Fractional coordinates of the Fe atoms in the mag-
netic supercell.

x/a y/b z/c

Fe11
1
4

1
4

0.0783

Fe12
1
4

3
4

0.0783

Fe11 0.0057 0.8429 0

Fe22 0.3429 0.0057 0

Fe3 1
4

1
4

1
4

TABLE II. Irreducible representations of P42/mbc for k =
( 1
2
, 1
2
, 0), order parameter directions (OPD), magnetic space

groups (mSG), and allowed magnetic moment components
for the Fe positions (referred to the unit cell of the nuclear
structure).

Irrep OPD mSG Fe1 Fe2 Fe3

mM+
1 M

+
4 (a, b) PCccn {00z} {xy0} {00z}

mM+
2 M

+
3 (a, b) PCnnn {00z} {xy0} none

mM+
5 (a, 0) PC42/m {xy0} {00z} {xy0}

(a, a) PAmna {xy0} {00z} {xx0}
(a, b) Pa2/m {xy0} {00z} {xy0}

mM−1 M
−
4 (a, b) PCnnm {00z} {00z} {00z}

mM−2 M
−
3 (a, b) PCccm {00z} {00z} none

mM−5 (a, 0) PC42/n {xy0} {xy0} {xy0}
(a, a) PAnna {xy0} {xy0} {xx0}
(a, b) Pc2/c {xy0} {xy0} {xy0}

( 1
2 ,

1
2 , 0). The analysis of irreducible representations (ir-

reps) for the P42/mbc nuclear structure with this propa-
gation vector yields six irreps. Their corresponding mag-
netic space groups and allowed magnetic moment com-
ponents for different positions of the Fe atoms are listed
in Table II. All these symmetries were tested in the re-
finement of the T = 1.5 K magnetic structure. The mag-
netic moments were found to be strictly confined to the
ab plane.

The solution was only possible with the mM−5 irrep
and tetragonal magnetic space group PC42/n. This mag-
netic structure can be described within the am = a− b,
bm = a+b, cm = c magnetic supercell with five positions
(Table I) for the magnetic Fe atoms shown in Fig. 1. We
use polar angles ϕ to define orientations of magnetic mo-
ments within the plane, ma = µ cosϕ and mb = µ sinϕ
along the am and bm directions, respectively.

A. Phase I

At T = 1.5 K, two magnetic structures, A and B, are
possible, showing very similar arrangement of the mag-
netic moments in the pentagonal layers (Fig. 2). These
structures can be transformed into each other by rotating
all magnetic moments for about 90◦. The main difference

FIG. 2. Distinct magnetic structures A and B at 1.5 K. The
Cairo planes at z = 1/2 are shown.

between these structures is the orientation of a given Fe11
moment approximately along am or bm directions of the
magnetic supercell. Although a and b (and, thus, am and
bm) are equivalent in the tetragonal structure, individual
Cairo planes lack the tetragonal symmetry. Therefore,
anisotropy renders a and b distinguishable locally.

With our earlier HRPT data [32], models A and B pro-
duced virtually the same refinement residuals. Model A
was reported as the magnetic structure in phase I [32],
whereas model B was regrettably overlooked in that
study. With the DMC data at hand, we can take ad-
vantage of the better resolution and sensitivity, and se-
lect model B based on the lower refinement residuals,
compare Rnucl = 0.023, Rmag = 0.027, and RP = 0.055
for the model A and Rnucl = 0.021, Rmag = 0.020,
RP = 0.050 for the model B. The choice of model B is fur-
ther corroborated by the analysis of magnetic anisotropy
in Sec. III B.

Phase I (Fig. 1d) is an orthogonal state, with spins on
the Fe11 and Fe12 sites as well as on the Fe21 and Fe22
sites being mutually orthogonal. The interlayer ordering
is ferromagnetic, because Fe1 moments of the neighbor-
ing Cairo planes interact via Fe3. The antiferromagnetic
alignment of Fe1 and Fe3 gives rise to the ferromagnetic
arrangement of the Fe1 moments in the adjacent layers.
At 1.5 K, the moments are about 4.0µB on the octahe-
drally coordinated Fe1 and Fe3 sites and 3.3µB on the
tetrahedrally coordinated Fe2 sites. This difference is due
to the stronger Fe–O hybridization for the tetrahedrally
coordinated Fe atoms.

B. Phase II

The propagation vector k = ( 1
2 ,

1
2 , 0) is retained in

the entire T = 1.5 − 180 K temperature range. The re-
finements were performed assuming that the magnetic
structures follow the same irrep and also maintain the or-
der parameter direction and magnetic space group, which
would be consistent with weak first-order nature of the
transitions at T1 and T2 [32]. Satisfactory solutions were
found at all temperatures indeed.
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FIG. 3. Left: temperature dependence of the ordered magnetic moments in Bi4Fe5O13F. Right: temperature dependence of
the polar angle ϕ showing abrupt rotations of the moments upon the first-order spin-reorientation transitions at T1 and T2.
The lines are guide-for-the-eye only.

As T increases toward T1, the Fe1 and Fe2 moments
remain roughly unchanged, whereas the moment on Fe3
decreases significantly and drops below 2µB at 55 K
(Fig. 3, left). Upon further heating, the magnetic struc-
ture changes abruptly entering phase II. All Fe1 sites
preserve large moments of 3.2− 3.8µB , whereas the Fe2
sites split into two groups. The Fe22 moments increase
to 3.8µB , whereas the Fe21 moments decrease to about
1.2µB , only one third of their 1.5 K value.

Magnetic moments directions change as well. The in-
plane magnetic structure of phase II resembles the quan-
tum collinear phase described in Ref. 24. Deviations from
collinearity are due to the fact that J43 6= J ′43. In this
case, local fields on the Fe21 site do not cancel, lead-
ing to the non-zero ordered moment on Fe21 and, conse-
quently, to the slight departure of the Fe11 and Fe12 mo-
ments from the direction of the Fe22 moment. Therefore,
our phase II can be regarded an instance of the collinear
phase of the Cairo model for the imperfect realization of
this model in Bi4Fe5O13F [47]. The reasons behind the
formation of this phase are rather unusual, though, and
will be discussed in Sec. III B.

The second notable change upon the I→II transition
is the evolution of the interlayer order from ferromag-
netic to orthogonal, namely, the adjacent Fe1 moments
of the two neighboring Cairo planes, which were parallel
in phase I, become orthogonal in phase II. This is accom-
panied by the drastic reduction in the ordered moment
on Fe3 (Fig. 3).

C. Phase III

The narrow region of phase II is followed by a broader
region of phase III, where in-plane order again be-
comes orthogonal, whereas the interlayer order returns
to collinear, but the overall magnetic structure is quite
different from that in phase I. First, the interlayer or-
der is now antiferromagnetic, i.e., adjacent Fe1 moments
in the neighboring Cairo planes are antiparallel to each
other. Concurrently, the Fe3 moment vanishes. At 100 K
it refined to 0.29(25)µB , which is insignificant given the
experimental error bar. Therefore, we fixed the Fe3 mo-
ment to zero throughout the temperature range of phase
III.

The differences between the in-plane order of phases
I and III can be captured by introducing the local vec-
tor chirality χ, which we define for the plaquette of four
Fe1 spins as explained in the caption of Fig. 1. The
magnetic unit cell contains four such plaquettes. Two of
them are centered by the 4̄ rotoinversion axis, whereas
the other two are centered by the 42 screw axis. The
overall PC42/n symmetry requires that adjacent plaque-
ttes have opposite vector chiralities, thus rendering the
overall magnetic structure non-chiral. However, each pla-
quette changes its local vector chirality upon going from
phase I to phase III. We find χ = +c in phase I and
χ = −c in phase III for the plaquettes centered by the 4̄
rotoinversion axis (‘vertical Fe22 dimers’), and the other
way around for the plaquettes centered by the 42 axis
(‘horizontal Fe22 dimers’).
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FIG. 4. Mössbauer spectra of Bi4Fe5O13F and their fits, as
described in the text. For fit parameters, see Table III.

D. Mössbauer spectroscopy

Magnetic structure analysis was supported by
Mössbauer spectroscopy measurements. The 57Fe
Mössbauer spectra (Fig. 4) were recorded in the tem-
perature range 55 − 300 K in a transmission mode with
a 57Co/Rh γ-ray source using a constant acceleration
spectrometer MS1104. At room temperature, the spec-
trum can be decomposed into 3 doublets with the nearly
40:40:20 ratio of the intensities corresponding to the Fe1,
Fe2, and Fe3 positions, respectively (Table III).

Upon cooling below TN , the spectra reveal an addi-
tional splitting indicative of the magnetic ordering. How-
ever, the spectrum at 100 K, in phase III, could not be
accounted for by a combination of regular sextets. We
find that about 20% of the spectral intensity corresponds
to an unresolved sextet with a very weak hyperfine split-
ting. This signal arises from Fe3 sites that, according
to the neutron data, feature negligible ordered moment
above T2. Below T2, the Fe3 moments increase and a
well-resolved sextet develops.

Below T2, the spectrum is decomposed into 5 sextets
(Table III). The reduced ordered moment on Fe21 man-
ifests itself in the largely broadened signal. At 55 K, in
phase I, the sextets of Fe21 and Fe3 become more narrow
suggesting the formation of large magnetic moments on
all Fe sites, which is again in agreement with the mag-
netic structures shown in Fig. 1.

TABLE III. Parameters of the Mössbauer spectra for
Bi4Fe5O13F. I stands for the fraction of the spectral intensity,
δ is the isomer shift, ∆EQ is the quadrupolar splitting, Γ is
the linewidth, and H is the hyperfine field.

I δ ∆EQ Γ H

(%) (mm/s) (mm/s) (mm/s) (T)

T = 300 K

Fe1 35 0.37 0.31 0.27 –

Fe2 38 0.23 0.78 0.26 –

Fe3 27 0.33 0.36 0.40 –

T = 100 K

Fe11 23 0.45 0.06 0.32 42.4

Fe12 17 0.46 0.21 0.52 40.2

Fe2 38 0.28 0.11 0.45 39.9

Fe3 22 0.41 0.18 0.60 22

T = 63 K

Fe11 24 0.46 0.04 0.31 46.4

Fe12 16 0.46 0.03 0.67 44.6

Fe21 18 0.29 0.00 0.87 41.0

Fe22 22 0.29 −0.04 0.35 43.2

Fe3 21 0.47 −0.05 0.93 24.1

T = 55 K

Fe11 27 0.50 0.05 0.30 47.6

Fe12 15 0.52 −0.03 0.73 45.8

Fe21 17 0.34 −0.23 0.31 44.6

Fe22 20 0.34 −0.26 0.34 43.4

Fe3 21 0.48 0.13 0.58 28.3

III. MAGNETIC MODEL

A. Isotropic exchange couplings

The isotropic exchange couplings in Bi4Fe5O13F were
previously reported in Ref. [32]. However, using these
values in numerical simulations of the magnetic suscep-
tibility, we arrived at the too high TN =250 K compared
to the experimental value of 178 K. Therefore, we revised
the microscopic magnetic model using extensive density-
functional (DFT) band-structure calculations [48] per-
formed in the FPLO [49] and VASP [50, 51] codes. Total en-
ergies of collinear spin configurations were mapped onto
the spin Hamiltonian, and exchange couplings were deter-
mined [52]. The accuracy of this approach was improved
by choosing different values of the on-site Coulomb repul-
sion for the octahedrally coordinated Fe1 and Fe3 sites
and for the tetrahedrally coordinated Fe2 sites, follow-
ing different oxygen coordination and, therefore, different
screening [53].

DFT-based exchange couplings were refined by Monte-
Carlo simulation of the magnetic susceptibility. The op-
timized set of exchange parameters was obtained, with
J33 = 116 K, J43 = 38 K, J ′43 = 57 K, and the Fe1–Fe3
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FIG. 5. Fit of the magnetic susceptibility of Bi4Fe5O13F [32]
using revised exchange parameters reported in this work.

inter-plane interaction J⊥ = 8 K (Fig. 1). Additionally,
a weak second-neighbor interlayer Fe1–Fe1 interaction
J⊥2 = 2 K is present. This set of parameters reproduces
the susceptibility down to 120 K (Fig. 5) and predicts
TN ' 180 K in perfect agreement with the experiment.

B. Magnetic anisotropy

Several anisotropic terms may occur in Bi4Fe5O13F.
Their calculation follows the same procedure [52] with
the only exception that orthogonal spin configurations
are used [53]. Symmetric exchange anisotropy corre-
sponds to energies well below 0.1 K per Fe atom and is
thus negligible. The antisymmetric exchange anisotropy,
Dzyaloshinsky-Moriya (DM) interactions allowed on the
J43, J ′43, and J⊥ bonds, are stronger, up to about 5 K
per Fe atom, but their effect on the magnetic structure
largely cancels out, because in the orthogonal structures
of phases I and III the adjacent J43 (J ′43) bonds feature
same directions of the DM vectors, yet opposite spin ro-
tations.

Single-ion anisotropy terms are believed to be small in
Fe3+ compounds due to the d5 nature of the magnetic
ion. Unexpectedly, we find that these terms are in fact
non-negligible and central to the physics of Bi4Fe5O13F.
Single-ion anisotropy is obtained by fixing spins along
a given direction and rotating the reference spin in the
plane perpendicular to this direction [53]. Angular de-
pendence of the energy, E(ϕ), directly measures the
single-ion anisotropy of the reference spin.

Fig. 6 shows single-ion anisotropies for different Fe
sites. The single-ion anisotropy of Fe3 is much stronger
than those of Fe1 and Fe2. This can be attributed to a
large distortion of the Fe3O6 octahedra [32]. The posi-
tions of the energy minima are compatible with the sym-
metry of the crystal structure, where mirror planes re-
quire that the E(ϕ) curves are symmetric with respect
to ϕ = 45◦ and 135◦.

An immediate effect of the single-ion anisotropy terms
is the selection between states A and B that can form
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FIG. 6. In-plane single-ion anisotropy energies for the Fe1,
Fe2, and Fe3 sites. The arrows denote preferred spin direc-
tions. Only the Fe3 sites are compatible with the orthogonal
structure, because their preferred directions are at 90◦ to each
other. For the Fe1 and Fe2 sites, the angle between preferred
directions of the neighboring sites is largely different from 90◦.
Note that we use Fe31 and Fe32 for those Fe3 sites that are
coupled to Fe11 and Fe12, respectively. The angle ϕ is mea-
sured between the magnetic moment and the am-axis, and all
curves are periodic, E(ϕ+ 180◦) = E(ϕ).

in phase I. Here, the predominant single-ion anisotropy
of Fe3 favors either am or bm direction of a given Fe3
atom. The Fe1 spins choose same directions because
of the isotropic coupling J⊥. Therefore, the Fe11 spins
should point along the bm axis, whereas the Fe12 spins
should point along the am axis, as seen in the state B
that is pinpointed by our neutron data.

The single-ion anisotropy also plays central role for
the selection of both in-plane and interlayer order in
Bi4Fe5O13F, as we explain below.

C. In-plane order

The classical phase diagram of the J43−J ′43−J33 model
that describes the in-plane isotropic interactions is shown
in Fig. 7. This model takes into account the two in-
equivalent Fe1–Fe2 couplings, J43 and J ′43, and the fact
that there are two Fe1 spins on each four-fold site of
the lattice. The phase diagram has been obtained using
Lyons and Kaplan’s [54] generalization of the Luttinger-
Tisza method [55], see Ref. [53] for technical details. The
phase diagram contains three main phases, the coplanar
orthogonal phase, the collinear ferrimagnetic phase, and
a mixed phase in between, which is non-coplanar. In
the latter phase, the projections of the spins along an
axis yields the ferrimagnetic configuration while the pro-
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the filled red dot (based on the parameters given above).

jections in the plane orthogonal to that axis yields the
orthogonal configuration, see also Ref. 24. The relative
projections interpolate between zero and one as we go
across the two boundaries of this phase.

The special lines J ′43 =0 and J43 =0 correspond to de-
coupled chains. Along these lines, the orthogonal phase
becomes degenerate with infinite other ground states, in-
cluding the so-called collinear phases A and B discussed
in [53]. The partially disordered collinear phase of [24],
reminiscent of phase II of Fig. 1 (e), is stabilized by quan-
tum fluctuations in the corner around J43 =J ′43 =0. The
line J43 = J ′43 maps to the model of [24] by rescaling
J43→J43/2 and J ′43→J ′43/2.

Based on the above ab initio values, Bi4Fe5O13F sits
deep inside the orthogonal phase (filled red dot in Fig. 7),
and far away from the corner J43 =J ′43 =0. Interestingly,
the second Cairo magnet, Bi2Fe4O9, sits almost on the
same spot of the phase diagram (filled blue triangle in
Fig. 7), according to the ab initio parameters of [25].

The interlayer Fe1–Fe3 coupling is much weaker than
the couplings within the plane. Therefore, one expects
that the Fe3 spins are more sensitive to thermal fluctua-
tions and decrease much faster than the spins on Fe1 and
Fe2 [53], in agreement with Fig. 3. On the other hand,
the formation of phase II can not be anticipated, because
the system is far away from any collinear phase at zero
temperature (Fig. 7). There is a large energy barrier
against any thermally-driven stabilization of collinearity
at the level of the isotropic model. The scenario of quan-
tum fluctuations driving the collinear phase is unlikely as
well. The onset of the collinear phase is roughly taking
place when the spin length correction δS from quadratic
spin waves approaches the full value S=5/2. According
to Fig. 4 of Ref. [24], the collinear phase for S = 5/2 (if
any) onsets way below J43/J33 = 0.1, and this number
should be further divided by two, because here we have
two Fe1 sites at each four-fold site. So the formation of

phase II requires the presence of anisotropy.
The anisotropy of Fe3 is more than 5 times stronger

than that of Fe1 and Fe2. Therefore, at low temper-
atures, in phase I, Fe3 with its preferred directions at
ϕ = 0◦ and 90◦ puts the Fe1 moments along am and bm.
It does not choose the flavor of vector chiral order per se,
but the anisotropy of Fe2 selects χ = +c in phase I, as
confirmed by a direct energy minimization.

Above T2, in phase III, the preferred direction of Fe3
plays no role, and the Fe1 and Fe2 moments are left to
form an orthogonal configuration, even though their pre-
ferred directions are not compatible with such a struc-
ture. For example, the preferred directions of Fe11 and
Fe12 differ by 48.2◦ only, whereas Fe21 and Fe22 moments
prefer to be nearly collinear. However, deviations from
the orthogonal structure cost a lot of exchange energy,
because the exchange couplings are at least two orders
of magnitude stronger than the anisotropy. A clear fin-
gerprint of this competition between the orthogonal state
and individual single-ion anisotropies is the large and un-
expected difference in the magnetic moments of Fe11 and
Fe12 in phase III. Indeed, the Fe11 moment is larger, be-
cause it is close to the preferred direction (the departure
from the preferred direction is ∆ϕ = 5◦ at 100 K). On
the other hand, the moment on Fe12 is far away from its
preferred direction (∆ϕ = 47◦) and thus 30 % smaller.

A side effect of these energy considerations is that
vector chiral order changes from χ = +c in phase I to
χ = −c in phase III. The continuous transformation
between these two phases necessitates the intermediate
quasi-collinear phase II that exists in a narrow tempera-
ture range only.

D. Interlayer order

Let us now turn to the interlayer order that can be de-
scribed by an effective 1D model of the –Fe11–Fe3–Fe12–
Fe12–Fe3–Fe11– chain. It is essentially a ferrimagnetic
chain, where S′1 = 5 stands for the Fe1 dumbbell and
S3 = 5

2 stands for the Fe3 atom. The nearest-neighbor
Fe1–Fe3 coupling J⊥ is augmented by the next-nearest-
neighbor Fe1–Fe1 coupling J⊥2 resulting in a sawtooth-
chain geometry (Fig. 8). Classical energy minimization
for such a model gives rise to a non-collinear state with
the angle ψ between the neighboring spins given by

cosψ = − J⊥ S3

2J⊥2 S′1
. (1)

Two ψ rotations may be followed by another two ψ ro-
tations or by two −ψ rotations. Therefore, there is infi-
nite classical degeneracy in the J⊥− J⊥2 sawtooth-chain
model, because any sequence of pairwise ψ and −ψ rota-
tions can occur. This situation is remarkably similar to
kagome francisites [56], where same physics is observed
on a 2D lattice, and the ground state is chosen (already
on the classical level) by anisotropic terms in the spin
Hamiltonian.
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FIG. 8. Left panel: sawtooth-chain model with the couplings J⊥ and J⊥2 and two ordered states, incommensurate and
commensurate, which are degenerate on the classical level. Right panel: the interlayer order in Bi4Fe5O13F.

In the case of Bi4Fe5O13F, J⊥/J⊥2 ' 4 and S3/S
′
1 ' 1

2
produce ferrimagnetic order along the c direction at low
temperatures (phase I, Fig. 8). At higher temperatures,
S3 decreases, and the S3/S

′
1 ratio decreases as well.

Therefore, 2ψ departs from 360◦ and eventually reaches
180◦ in phase III, where S3 = 0, and the interlayer order
is antiferromagnetic (Fig. 8). Phase II is in the interme-
diate regime with 2ψ = 270◦ (Fig. 8), i.e., the interlayer
order is orthogonal with the 90◦ configuration between
the Fe1 moments in the adjacent planes.

Ground state selection requires anisotropic terms in
the spin Hamiltonian. The J⊥ − J⊥2 sawtooth-chain
model makes no difference between the commensurate
(“canted”) state, where two ψ rotations are followed
by two −ψ rotations, and the incommensurate (helical)
state, where only ψ rotations occur (Fig. 8, left). This
degeneracy is lifted by anisotropy terms.

In Bi4Fe5O13F, single-ion anisotropy of Fe1 and Fe3 is
at play. This anisotropy favors same spin directions on all
Fe3 atoms and, respectively, on all Fe1 atoms from every
second Cairo plane. Therefore, the commensurate order
along the c direction is stabilized. It is worth noting that
the DM coupling on the J⊥ bonds would have an opposite
effect and favor the incommensurate helical order, but
such a coupling is smaller than the single-ion anisotropy
terms providing the energy of 0.4 K per Fe atom only [57].
Therefore, the single-ion anisotropy is crucial not only for
the in-plane order, but also for the commensurate nature
of the order between the Cairo planes.

IV. DISCUSSION AND CONCLUSIONS

The main picture emerging from the experimental
data presented here is that the interlayer Fe3 spins in
Bi4Fe5O13F play a dual role, on one hand mediating the
3D ordering and on the other driving a reorientation of
the order both within and between the planes. While
details of this transition require further dedicated theo-
retical work, on the experimental side the effect of the Fe3
spins is crucial for the design of new Cairo-lattice mag-

nets, because interlayer magnetic sites, which are often
introduced for the sake of stabilizing the crystal struc-
ture [58], are not innocent and in fact play decisive role
for the magnetic order.

The sequence of transitions in Bi4Fe5O13F is reminis-
cent of the consecutive spin re-orientations in RMn2O5,
where an intermediate collinear phase separates two non-
collinear states. However, this collinear phase [37] is dif-
ferent from our phase II, because it does not show the
characteristic reduction in the ordered moment on half of
the Fe2 sites. Instead, it may be related to the collinear
phases A and B of Fig. 7.

More generally, we show that magnetic order in the
pentagonal geometry is largely influenced by even weak
anisotropy terms. Despite structural similarities, differ-
ent systems may eventually show very different types of
magnetic order depending on the transition-metal ion.
In the case of RMn2O5, the d4 Mn3+ ion is known to
be more anisotropic than the d5 Fe3+ [59], and no direct
analogies between Fe-based Cairo magnets and multifer-
roic RMn2O5 manganites may occur.

Phase II of Bi4Fe5O13F is quite unusual on its own.
On one hand, it strongly resembles quantum collinear
phase of the Cairo model [56]. As explained in Sec. II B,
deviations from the collinearity in this phase are due to
the imperfect nature of the Cairo lattice (J43 6= J ′43).
On the other hand, phase II in Bi4Fe5O13F is not stabi-
lized by quantum fluctuations and originates from com-
peting single-ion anisotropies. Despite this different ori-
gin, phase II involves significant amount of fluctuations
reflected in the low ordered moment on Fe21. It would be
interesting to explore whether properties of phase II and
especially its magnetic excitations are similar to those
of the quantum collinear phase established in Ref. 56.
Moreover, variable magnetic structures of Bi4Fe5O13F
may have effect on its hitherto unknown dielectric be-
havior.
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“Spin structure and magnetic frustration in multiferroic
RMn2O5 (R = Tb, Ho, Dy),” Phys. Rev. B 71, 214402
(2005).

[38] C. Vecchini, L. C. Chapon, P. J. Brown, T. Chatterji,
S. Park, S-W. Cheong, and P. G. Radaelli, “Commen-
surate magnetic structures of RMn2O5 (R = Y, Ho, Bi)
determined by single-crystal neutron diffraction,” Phys.
Rev. B 77, 134434 (2008).

[39] A. B. Harris, A. Aharony, and O. Entin-Wohlman,
“Order parameters and phase diagram of multiferroic
RMn2O5,” Phys. Rev. Lett. 100, 217202 (2008).

[40] A. B. Sushkov, M. Mostovoy, R. Valdés Aguilar, S.-W.
Cheong, and H. D. Drew, “Electromagnons in multifer-
roic RMn2O5 compounds and their microscopic origin,”
J. Phys.: Condens. Matter 20, 434210 (2008).

[41] J. W. Kim, S. Y. Haam, Y. S. Oh, S. Park, S.-W. Cheong,
P. A. Sharma, M. Jaime, N. Harrison, Jung Hoon Han,
G.-S. Jeon, P. Coleman, and K. H. Kim, “Observation
of a multiferroic critical end point,” PNAS 106, 15573–
15576 (2009).

[42] K. Cao, G.-C. Guo, D. Vanderbilt, and L. He, “First-
principles modeling of multiferroic RMn2O5,” Phys. Rev.
Lett. 103, 257201 (2009).

[43] K. Momma and F. Izumi, “VESTA 3 for three-
dimensional visualization of crystal, volumetric and mor-
phology data,” J. Appl. Crystallogr. 44, 1272–1276
(2011).

[44] R. Nath, K. M. Ranjith, J. Sichelschmidt, M. Baenitz,
Y. Skourski, F. Alet, I. Rousochatzakis, and A. A. Tsir-
lin, “Hindered magnetic order from mixed dimensionali-
ties in CuP2O6,” Phys. Rev. B 89, 014407 (2014).

[45] V. Petr̆́ıc̆ek, M. Dus̆ek, and L. Palatinus, “Crystal-
lographic computing system JANA2006: General fea-
tures,” Z. Krist. 229, 345–352 (2014).

[46] B. J. Campbell, H. T. Stokes, D. E. Tanner, and D. M.
Hatch, “ISODISPLACE: a web-based tool for explor-
ing structural distortions,” J. Appl. Cryst. 39, 607–614
(2006).

[47] We have also tested a different magnetic structure solu-
tion that would impose largely non-collinear spins in the
spirit of phase I. To this end, the space group PAnna was
used (PCcnn maintaining the crystal axes of PC42/n).
This solution, however, demonstrated an inferior fit of
the magnetic reflections (Rmag = 0.030 at T = 65 K) be-
cause spin directions for the Fe3 atoms were constrained
by symmetry. A better fit might be achievable with the
Pc2/c magnetic space group, but it contains 10 indepen-
dent crystallographic positions for the Fe atoms that ren-
ders the solution intractable.

[48] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized
gradient approximation made simple,” Phys. Rev. Lett.
77, 3865–3868 (1996).

[49] K. Koepernik and H. Eschrig, “Full-potential nonorthog-
onal local-orbital minimum-basis band-structure
scheme,” Phys. Rev. B 59, 1743–1757 (1999).

[50] G. Kresse and J. Furthmüller, “Efficiency of ab-initio
total energy calculations for metals and semiconductors
using a plane-wave basis set,” Computational Materials
Science 6, 15 – 50 (1996).

[51] G. Kresse and J. Furthmüller, “Efficient iterative schemes
for ab initio total-energy calculations using a plane-wave
basis set,” Phys. Rev. B 54, 11169–11186 (1996).

[52] H. Xiang, C. Lee, H.-J. Koo, X. Gong, and M.-
H. Whangbo, “Magnetic properties and energy-mapping
analysis,” Dalton Trans. 42, 823–853 (2013).

[53] See Supplemental Material at [. . . ] for: i) neutron diffrac-
tion patterns and their refinements; ii) details of elec-
tronic structure calculations; iii) details on the derivation
of the phase diagram presented in Fig. 7; iv) theoretical
evidence for the qualitatively different T -dependence of
the Fe3 and Fe1/Fe2 moments. The Supplemental Mate-
rial includes Refs. 60–65.

[54] D. H. Lyons and T. A. Kaplan, “Method for determin-
ing ground-state spin configurations,” Phys. Rev. 120,
1580–1585 (1960); T. A. Kaplan and N. Menyuk, “Spin
ordering in three-dimensional crystals with strong com-
peting exchange interactions,” Phil. Mag. 87, 3711–2785
(2007).

[55] J. M. Luttinger and L. Tisza, “Theory of dipole interac-
tion in crystals,” Phys. Rev. 70, 954–964 (1946).

[56] I. Rousochatzakis, J. Richter, R. Zinke, and A. A. Tsir-
lin, “Frustration and Dzyaloshinsky-Moriya anisotropy in
the kagome francisites Cu3Bi(SeO3)2O2X (X = Br, Cl),”
Phys. Rev. B 91, 024416 (2015).

[57] For the sake of comparison with Fig. 6, we provide the
overall coupling energy that is not normalized to S = 5

2
.

[58] J. Cumby, R. D. Bayliss, F. J. Berry, and C. Greaves,
“Synthetic analogues of Fe(II)–Fe(III) minerals contain-
ing a pentagonal ’Cairo’ magnetic lattice,” Dalton Trans.
45, 11801–11806 (2016).

[59] The typical single-ion anisotropy term for octahedrally
coordinated Mn3+ is 2− 3 K [66, 67] yielding the energy
difference on the order of 10 K upon spin rotation, the
energy scale similar to that of Fe3 in Fig. 6.

[60] S. Todo and K. Kato, “Cluster algorithms for general-
S quantum spin systems,” Phys. Rev. Lett. 87, 047203
(2001).

[61] A.F. Albuquerque, F. Alet, P. Corboz, P. Dayal,
A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Gürtler,
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Supplemental Material

FIG. S1. Refined neutron diffraction patterns at 1.5 K, 65 K, and 100 K.

FIG. S2. Temperature evolution of the magnetic order in the Cairo plane. The Cairo planes at z = 0 are shown.
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TABLE S1. Refined magnetic moments at different temperatures. The vectors of magnetic moments are represented using
spherical coordinates (µ, θ, ϕ), where µ is the magnetic moment value and θ and ϕ are the azimuthal and polar angles,
respectively. The magnetic moment components are then expressed as follows: ma = µ sin θ cosϕ, mb = µ sin θ sinϕ, and
mc = µ cos θ. The angle θ is fixed to 90◦ (all spins are in the ab plane), whereas ϕ is measured with respect to the am direction.

T µ(Fe11) ϕ(Fe11) µ(Fe12) ϕ(Fe12) µ(Fe21) ϕ(Fe21) µ(Fe22) ϕ(Fe22) µ(Fe3) ϕ(Fe3) Rmag

1.5 3.92(2) 86.1(5) µ(Fe11) 90◦+ϕ(Fe11) 3.33(3) 52.4(9) µ(Fe21) −90◦+ϕ(Fe21) µ(Fe11) −180◦+ϕ(Fe11) 0.020

30 3.82(4) 83.2(7) µ(Fe11) 90◦+ϕ(Fe11) 3.33(4) 52(1) µ(Fe21) −90◦+ϕ(Fe21) 3.02(3) −180◦+ϕ(Fe11) 0.025

50 3.63(4) 80.2(8) µ(Fe11) 90◦+ϕ(Fe11) 3.19(4) 48(1) µ(Fe21) −90◦+ϕ(Fe21) 2.10(3) −180◦+ϕ(Fe11) 0.026

55 3.49(3) 78.8(6) µ(Fe11) 90◦+ϕ(Fe11) 3.14(3) 48(1) µ(Fe21) −90◦+ϕ(Fe21) 1.91(2) −180◦+ϕ(Fe11) 0.025

60 3.44(5) 94.0(9) 3.56(5) 155.3(9) 2.31(7) 48(1) µ(Fe11) −48(2) 1.69(2) −102(2) 0.022

62.5 3.73(4) 108(1) 3.21(8) 129(1) 1.1(1) 76(4) µ(Fe11) −69(2) 1.32(3) −124(4) 0.028

65 3.70(3) 112(1) 3.07(6) 120(1) 1.1(1) 98(2) µ(Fe11) −75(2) 1.15(3) −128(4) 0.028

67.5 3.77(4) 114(1) 3.14(7) 116(1) 1.1(1) 105(2) µ(Fe11) −77(2) 1.09(5) −140(6) 0.030

70 3.64(3) 119(1) 3.10(6) 116(1) 1.0(1) 119(3) µ(Fe11) −77(2) 1.01(4) −136(5) 0.028

75 3.88(6) 111(1) 1.89(7) −90◦+ϕ(Fe11) 2.42(5) 139(3) µ(Fe21) −116(3) 0.4(2) −179(9) 0.035

80 3.84(5) 116(1) 2.21(5) −90◦+ϕ(Fe11) 2.60(3) 147(2) µ(Fe21) −270◦+ϕ(Fe21) 0 – 0.038

90 3.83(6) 117(1) 2.32(7) −90◦+ϕ(Fe11) 2.66(4) 149(2) µ(Fe21) −270◦+ϕ(Fe21) 0 – 0.031

100 3.73(6) 116(1) 2.34(7) −90◦+ϕ(Fe11) 2.66(4) 147(2) µ(Fe21) −270◦+ϕ(Fe21) 0 – 0.029

110 3.58(9) 119(1) 2.52(9) −90◦+ϕ(Fe11) 2.71(4) 149(2) µ(Fe21) −270◦+ϕ(Fe21) 0 – 0.030

120 3.57(6) 120(1) 2.44(6) −90◦+ϕ(Fe11) 2.68(3) 149(1) µ(Fe21) −270◦+ϕ(Fe21) 0 – 0.029

140 3.22(6) 119(1) 2.11(6) −90◦+ϕ(Fe11) 2.44(3) 148(1) µ(Fe21) −270◦+ϕ(Fe21) 0 – 0.033

160 2.71(6) 116(1) 1.80(6) −90◦+ϕ(Fe11) 1.98(3) 149(2) µ(Fe21) −270◦+ϕ(Fe21) 0 – 0.035
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S1. ISOTROPIC EXCHANGE COUPLINGS

Isotropic exchange couplings were obtained from to-
tal energies of collinear and orthogonal spin configura-
tions using the mapping procedure [52]. We chose the
Perdew-Burke-Ernzerhof (PBE) flavor of the exchange-
correlation potential [48], and included correlations on
the mean-field DFT+U level. Different values of the on-
site Coulomb repulsion parameter Ud were applied for
the octahedrally and tetrahedrally coordinated Fe sites.
The choice of Ud was justified by calculating magnetic
exchange couplings in reference compounds LaFeO3 (oc-
tahedrally coordinated Fe3+ ions) and BaSrFe4O8 (tetra-
hedrally coordinated Fe3+ ions). For both compounds,
we obtained exchange couplings using different values
of Ud, and estimated Néel temperatures by simulating
magnetic susceptibility with the loop algorithm [60] of
ALPS [61]. Note that the value of Ud is also dependent
on the band-structure code, given the different basis sets
for 3d-orbitals. The results of FPLO calculations can be
well reproduced in VASP by increasing Ud for 1 eV, which
is similar to our earlier experience [62].

In LaFeO3, the FPLO calculations with Ud = 6 eV (or,
respectively, the VASP calculations with Ud = 7 eV) yield
Jab = 61 K and Jc = 54 K for the couplings in the ab
plane and along the c direction, respectively, resulting in
the Néel temperature TN = 729 K. This value is in per-
fect agreement with the experimental TN ' 730 K [63].
Our computed exchange couplings also reproduce the av-
eraged exchange coupling J̄ = 56.8 K obtained from in-
elastic neutron scattering [64].

In BaSrFe4O8, honeycomb bilayers of the Fe3+ ions are
formed. Using Ud = 8 eV in FPLO or Ud = 9 eV in VASP,
we obtained the in-plane coupling Jab = 103 K, the cou-
pling J⊥ = 175 K between the two layers of the bilayer,
and the coupling Jc = 0.7 K between the bilayers. This
set of exchange couplings yields TN = 700 K in excellent
agreement with the experimental value of 690 K [65]. If,
on the other hand, Ud = 6 eV is used (FPLO), TN increases
well above 800 K implying that higher values of Ud are
required for a proper description of the tetrahedrally co-
ordinated Fe3+ sites.

Using such optimized values of Ud, we calculated ex-
change couplings in Bi4Fe5O13F. In Table S2, they are
compared with the values obtained in Ref. [32], where
same value of Ud was applied to all Fe sites. While no
qualitative changes are observed, the coupling J33 be-
tween the two tetrahedrally coordinated Fe atoms is re-
duced substantially, because a higher value of Ud is ap-
plied. This reduction has an immediate effect on the Néel
temperature that equals to 250 K for the parameter set
from Ref. [32] and 150 K for our new parameter set. An
even better agreement with the experimental TN = 180 K
can be achieved by adjusting the weakest coupling J⊥.
We found that J⊥ = 8 K leads to the best agreement
not only with the experimental TN , but also with the
magnetic susceptibility curve in general. We have also
identified the second-neighbor coupling J⊥2 along the c

TABLE S2. Exchange couplings in Bi4Fe5O13F: the Fe–Fe
distances d (in Å), the Fe–O–Fe angles ψ (in deg), and ex-
change couplings Ji (in K) obtained from FPLO calculations.
The values from Ref. [32] were obtained using Ud = 7 eV and
Jd = 1 eV. The values in the current work are based on the
optimized choice of Ud, 6 eV for the octahedrally coordinated
Fe sites and 8 eV for the tetrahedrally coordinated Fe sites.

dFe−Fe ψFe−O−Fe Ji

Ref. [32] this work

J43 3.39 119.2 45 38

J ′43 3.53 130.9 74 57

J33 3.64 180 191 116

J44 2.91 94.2 34 9

J⊥ 3.06 97.4 10 3

J⊥2 6.11 – – 2

TABLE S3. Single-ion anisotropy of Fe3+ ions parametrized
using Eq. (2). The pre-factor A is in K, and the phase shift
ϕ0 is in degrees, showing the position of the energy minimum
(preferred spin direction) for a given atom.

A ϕ0 A ϕ0

Fe11 0.75 110.9 Fe21 0.69 47.5

Fe12 0.75 159.1 Fe22 0.69 42.5

Fe3 4.07 90

axis. It is responsible for the AFM interlayer order in
phase III.

S2. MAGNETIC ANISOTROPY

For calculating single-ion anisotropy, we used the same
mapping approach [52] but exploited orthogonal spin
configurations, where the spin of interest probes differ-
ent directions in the ab plane, whereas all other spins are
along the c direction, so that all interactions with other
spins are canceled, and the effect of single-ion anisotropy
is probed exclusively. While spin configurations of our
choice eliminate all intersite interactions for Fe1 and Fe3,
the calculations for Fe2 required two antiparallel spins
on one J33 bond to be used simultaneously, in order
to eliminate contributions of Dzyaloshinsky-Moriya cou-
plings on the bonds J43 and J ′43. All calculations were
performed on the DFT+U+SO level in VASP, hence we
chose Ud = 7 eV for the octahedrally coordinated Fe and
Ud = 9 eV for the tetrahedrally coordinated Fe.

Total energies as a function of the polar angle ϕ (Fig. 6
of the manuscript) were parametrized as follows,

E = A (1− cos[ 2 (ϕ− ϕ0) ]), (2)

where A is the magnitude of the single-ion anisotropy,
and ϕ0 defines preferred spin direction in the ab plane.
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FIG. S3. The unit cell of Bi4Fe5O13F, along with the notation of the different sites and the connectivity of the isotropic
exchange couplings. There is a pair of Fe1 sites, {1,2} or {3,4}, sitting on each of the four-fold sites of the Cairo lattice, one
above and the other below the plane. Each of the spins of the pair couples with J43 or J ′43, respectively, to the Fe2 sites with
{5,6,7,8}. The Fe3 sites {9,10} sit right below and above the Fe1 sites, connecting neighboring planes to each other via J⊥.
The coupling J44 (not shown) connects 1 with 2, and 3 with 4.

Absolute values of the anisotropy are relatively small,
given the d5 nature of the Fe3+ ions. The much larger
value of A for Fe3 compared to Fe1 can be related to
the strongly distorted nature of the Fe3O6 octahedra.
Remarkably, the calculated single-ion anisotropy with
ϕ0 = 90◦ for Fe3 favors model B and disfavors model
A for the magnetic structure of phase I, in agreement
with the experiment.

For the sake of completeness, we also compared single-
ion energies for in-plane and out-of-plane spin directions
and obtained 2.7 K for Fe1, −0.55 K for Fe2, and −2.9 K
for Fe3, where positive sign implies easy-plane anisotropy
(ab plane) and negative sign implies easy-axis anisotropy
(c direction). Although the easy-axis anisotropy of Fe3 is
slightly stronger than the easy-plane anisotropy of Fe1,
the easy-plane nature of Fe1 spins prevails, because the
Fe1 atoms are twice more abundant compared to Fe3.

S3. CLASSICAL PHASE DIAGRAM OF THE MODEL

Figure S3 shows the topology of the Heisenberg interactions within one unit cell of Bi4Fe5O13F. The system has
a square Bravais lattice, defined by the primitive translations t1 and t2 (the ones spanning the shaded region of the
figure). There are ten sites per unit cell labeled by the numbers 1-10. Among these, {1, 2, 3, 4} are Fe1 sites, {5, 6,
7, 8} are Fe2 sites, and {9,10} are Fe3 sites. Sites 1, 2 and 9 sit on top of each other, and the same is true for sites
3,4, and 10, see figure. In the following we shall denote the spins by Sr,ν , with r labeling the primitive position of the
unit cell and ν = 1-10. The isotropic Heisenberg Hamiltonian reads:

H =
∑
r

{
J44 (Sr,1 · Sr,2 + Sr,3 · Sr,4) + J⊥ (Sr,1 · Sr+c,9 + Sr,2 · Sr,9 + Sr,3 · Sr+c,10 + Sr,4 · Sr,10)

+ J43 [(Sr,1 + Sr,2) · (Sr,5 + Sr,7) + (Sr,3 + Sr,4) · (Sr,6 + Sr−t1+t2,8)]

+ J ′43 [(Sr,1 + Sr,2) · (Sr,6 + Sr,8) + (Sr,3 + Sr,4) · (Sr−t1,5 + Sr+t2,7)]

+ J33 (Sr,5 · Sr+t2,7 + Sr,6 · Sr−t1,8)
}
,

where all couplings are antiferromagnetic (positive).

Before we establish the classical ground state phase diagram of the model we list a number of states that are of
main interest.
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FIG. S4. Five of the classical phases discussed here. Only Fe1 and Fe2 sites are shown. (a-b) The two orthogonal configurations
with opposite chiralities. (c) The ferrimagnetic state. (d) One of the two ‘collinear A’ states appearing for J ′43 = 0. (e) One
of the two ‘collinear B’ states appearing for J43 = 0. Note that for J ′43 = 0 or J43 = 0 the degeneracy is actually much larger,
since in these limits we get decoupled chains, and each chain can have a Néel order along an independent direction. The two
collinear states A and B (as well as the orthogonal A and B) are special members of this highly degenerate manifold.

A. Orthogonal states

We begin with the two choices of orthogonal states with ordering wavevector Q = (π, π, 0). We write:

Sr,1 = Sr,2 = −Sr,9 = (−1)n+mS(1, 0)

Sr,3 = Sr,4 = −Sr,10 = (−1)n+mS(cosφ3, sinφ3)

Sr,5 = Sr,7 = (−1)n+mS(cosφ5, sinφ5),

Sr,6 = Sr,8 = (−1)n+mS(cosφ6, sinφ6),

Sr,9 = Sr,4 = (−1)n+mS(cosφ3, sinφ3),

(3)

with

φ6 = φ5 + φ3, φ3 = χ
π

2
, cosφ5 =

−1√
1 + x2

, sinφ5 = χ
x√

1 + x2
, x ≡ J ′43

J43
, χ = ±1 . (4)

The two choices of χ = ±1 correspond to the two chiralities, defined by χ = χc = Sr,1 × Sr,3/S
2, see Fig. S4 (a-b)

where the two states are denoted by ‘orthogonal A’ and ‘orthogonal B’. The strengths of the local exchange fields
exerted at the mean-field level at each site are given by:

h1 = h2 = h3 = h4 = (J44 − J⊥ − 2|cosφ5|J43 − 2|sinφ5|J ′43)S

h5 = h6 = h7 = h8 = (−J33 − 2|cosφ5|J43 − 2|sinφ5|J ′43)S

h9 = h10 = −2J⊥S

(5)

and the energy of the two orthogonal solutions is given by

Eortho

NucS2
= 2J44 − 4J⊥ − 2J33 − 8| cosφ5|J43 − 8| sinφ5|J ′43 , (6)

where Nuc is the number of unit cells.

B. Ferrimagnetic state

Next we examine the ferrimagnetic state, which has ordering wavevector Q = 0. In this state, the Fe1 spins point
in one direction and the Fe2 and Fe3 spins point in the opposite direction, see Fig. S4 (c). Here, the local fields are
given by:

h1 = h2 = h3 = h4 = (J44 − J⊥ − 2J43 − 2J ′43)S

h5 = h6 = h7 = h8 = (J33 − 2J43 − 2J ′43)S

h9 = h10 = −2J⊥S ,

(7)

and the energy is

Eferri

NucS2
= 2J44 − 4J⊥ + 2J33 − 8(J43 + J ′43) . (8)
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C. Mixed state

Let us also examine the mixed state of Ref. [24], which has ordering wavevector Q = (π, π, 0). This state combines
the orthogonal state in the plane and the ferrimagnetic state perpendicular to the plane. Specifically, this state can
be obtained by starting from the orthogonal state, say in the xy plane, and then tilting the spins out of the plane as
follows: the spins 1, 2, 3, 4 tilt above the xy plane by an angle θ, the spins 9, 10 tilt below the plane by the same angle
θ, and finally the spins 5, 6, 7, 8 tilt below the plane by an angle θ′. The total energy can be found by combining the
energies from the orthogonal and the ferrimagnetic state:

Etot

NucS2
= 2J44 − 4J⊥ − 2J33 cos(2θ′)− 8J43

√
1 + x2 cos θ cos θ′ − 8(J43 + J ′43) sin θ sin θ′ . (9)

Minimizing with respect to θ and θ′ gives:

tan θ′ =

√
1 + x2

1 + x
tan θ, cos θ′ =

2J43J
′
43

J12J33
cos θ , (10)

and combining the two equations gives

sin θ′ =
2J43J

′
43

(J43 + J ′43)J33
sin θ, sin2 θ =

(J43 + J ′43)2[(2J43J
′
43)2 − J2

33(J2
43 + J ′243)]

(2J43J ′43)3
. (11)

Note that the corresponding relations for the angles θ and θ′ given in Ref. [24] for the special case of J43 = J ′43 can be
recovered from the above relations by setting J43 = J ′43 and J43 → J43/2. The extra factor of two must be inserted
to take into account that in the present model we have two Fe1 sites sitting at each four-fold site of the Cairo lattice,
and not one spin as in Ref. [24].

Finally, let us rewrite the energy of the mixed phase using the solutions for the angles θ and θ′:

Emixed

NucS2
= 2J44 − 4J⊥ − 8

J43J
′
43

J33
− 2J33 − 2

J43J33
J ′43

− 2
J ′43J33
J43

. (12)

D. Collinear phases A

Next we discuss the collinear state A that is mentioned in Fig. 7 of the main text. This state has ordering wavevector
Q = (π, π, 0) and is written as in Eq. (3) but with:

φ5 = π, φ3 = φ6 + π, φ6 = {0, π} . (13)

In this state all J43 are satisfied, and only half of J ′43 are satisfied, and the two choices of φ6 fix which of the two
halves are satisfied. The choice with φ6 =0 is shown in Fig. S4 (d). The energy corresponding to this solution is

EA
NucS2

= 2J44 − 4J⊥ − 2J33 − 8J43 . (14)

Finally, the expressions for the local fields are:

h1 = h2 = (J44 − 2J43 ± 2J ′43 − J⊥)S,

h3 = h4 = (J44 − 2J43 ∓ 2J ′43 − J⊥)S,

h5 = h7 = (−2J43 ∓ 2J ′43 − J33)S,

h6 = h8 = (−2J43 ± 2J ′43 − J33)S,

h9 = h10 = −2J⊥S ,

(15)

where ± corresponds to φ6 = 0 or π. So here we have two types of Fe1 and two types of Fe2 spins.

E. Collinear phases B

Let us also discuss the collinear state B that is mentioned in Fig. 7 of the main text. This state has again ordering
wavevector Q = (π, π, 0) and is written as in Eq. (3) but with:

φ6 = π, φ3 = φ5 = {0, π} . (16)
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In this states all J ′43 are satisfied, and only half of J43 are satisfied, and the choice of φ5 = {0, π} gives which of the
two halves are satisfied. The choice with φ5 =0 is shown in Fig. S4 (e). The energy corresponding to this solution is

EB
NucS2

= 2J44 − 4J⊥ − 2J33 − 8J ′43 . (17)

Finally, the expressions for the local fields are now:

h1 = h2 = (J44 ± 2J43 − 2J ′43 − J⊥)S,

h3 = h4 = J44 ∓ 2J43 − 2J ′43 − J⊥)S,

h5 = h7 = 2J43 − 2J ′43 − J33)S,

h6 = h8 = ∓2J43 − 2J ′43 − J33)S,

h9 = h10 = −2J⊥S ,

(18)

where ± corresponds to φ5 = 0 or π. So we again have two types of Fe1 and two types of Fe2 sites.

F. Boundaries between different phases

Let us now establish the boundaries between the five phases discussed above. First of all, the orthogonal state is
degenerate with the collinear phase A (B) when J ′43 = 0 (J43 = 0). In these limits the classical degeneracy is actually
much larger since we have decoupled chains, and each chain forms a Néel order along an independent spin direction.
The collinear states A and B (as well as the orthogonal states A and B) are just two special members of this manifold.
They are discussed here because they are the only collinear states in the phase diagram, together with the partly
disordered, collinear phase that is stabilized by quantum fluctuations in the corner J43 = J ′43 = 0 [24].

Next, the boundary between the orthogonal and the mixed phase is determined by the line

x2 =
x1√

4x21 − 1
(19)

where x1 ≡ J43/J33 and x2 ≡ J ′43/J33. This is the brown line in Fig. 7 of the main text. Next, the boundary between
the mixed and the ferrimagnetic phase is determined by the line

x2 =
x1

2x1 − 1
(20)

which is where the two canting angles θ = θ′ = π/2. This is the blue line in Fig. 7 of the main text.

G. Generalized Luttinger-Tisza method of Lyons and Kaplan

So far, we have only compared the energies of five possible configurations, but we have not proved which ones are the
global ground states and where in the phase diagram. To this end, we will use Lyons and Kaplan’s generalization [54]
of the Luttinger-Tisza method [55]. We first rewrite the energy in momentum space

H =
∑
k

10∑
ν,µ=1

Λνµ(k)Sk,ν · S−k,µ (21)

where Sk,ν = 1√
Nuc

∑
k e
−ik·rSr,ν , and the 10×10 interaction matrix Λ is given by:

Λ(k) =
1

2



0 J44 0 0 J43 J ′43 J43 J ′43 J⊥e
−ik·c 0

J44 0 0 0 J43 J ′43 J43 J ′43 J⊥ 0

0 0 0 J44 J ′43e
ik·t1 J43 J ′43e

−ik·t2 J43e
ik·(t1−t2) 0 J⊥e

−ik·c

0 0 J44 0 J ′43e
ik·t1 J43 J ′43e

−ik·t2 J43e
ik·(t1−t2) 0 J⊥

J43 J43 J ′43e
−ik·t1 J ′43e

−ik·t1 0 0 J33e
−ik·t2 0 0 0

J ′43 J ′43 J43 J43 0 0 0 J33e
ik·t1 0 0

J43 J43 J ′43e
ik·t2 J ′43e

ik·t2 J33e
ik·t2 0 0 0 0 0

J ′43 J ′43 J43e
−ik·(t1−t2) J43e

−ik·(t1−t2) 0 J33e
−ik·t1 0 0 0 0

J⊥e
ik·c J⊥ 0 0 0 0 0 0 0 0

0 0 J⊥e
ik·c J⊥ 0 0 0 0 0 0



.
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Next we replace the strong constraints S2
r,ν = S2, with the ‘generalized weak constraint’ of Lyons and Kaplan [54],∑

r,ν

ανS
2
r,ν = S2Nuc

∑
ν

αν , (22)

where the set {αν} is a fixed set of numbers. Minimizing the associated Langrange multiplier problem leads to the
equations: ∑

ν

Λµν(−q)Sq,ν = λαµSq,µ ⇒
∑
ν

Λ̃µν(−q)S̃q,ν = λS̃q,µ , (23)

where λ is the Langrange multiplier,

Λ̃µν =
Λµν√
αµαν

, S̃k,µ=
√
αµ Sr,µ . (24)

The total ground state energy can be expressed as

E = NucS
2λ

10∑
ν=1

αν , (25)

and since the set of {αµ} is fixed, the minimum energy of this ‘generalized soft constraint problem’ is obtained by

minimizing λ, i.e. by choosing the minimum eigenvalue of the matrix Λ̃ over the whole Brilouin zone. Now the
key point is the following [54]: All solutions of the original ‘hard constraint problem’ satisfy the ‘generalized soft
constraint’. So all solutions of the former problem are enclosed within the domain of solutions of the latter problem.
So if we find the minimum solution over the latter domain, then this must be the minimum solution of the ‘hard
constraint problem’ as well.

The main problem then reduces to ‘guessing’ the right set {αµ}. To this end we go back and identify

λαµ → hµ/(2S), (26)

where hµ is the strength of the local mean field at site µ. And for the latter we can just try out the local fields from
some of the above five configurations. Accordingly, we have checked numerically the eigenspectrum of the matrices

Λ̃ortho and Λ̃ferri, obtained from Eq. (24) with the local fields associated with the orthogonal and the ferrimagnetic
state, respectively. We find the following numerically:

1. Within the ‘orthogonal’ region of Fig. 7 of the main text, the minimum eigenvalue of the matrix Λ̃ortho, sits at
the wavevector Q = (π, π, 0), it is two-fold degenerate, and the associated eigenvectors can be combined to give
precisely the two orthogonal states. This proves that the two orthogonal states are the absolute minima of the
energy in this region of the phase diagram.

2. Within the ‘ferrimagnetic’ region of Fig. 7 of the main text, the minimum eigenvalue of the matrix Λ̃ferri, sits at
the wavevector Q = (0, 0, 0), it is not degenerate, and the associated eigenvector gives precisely the ferrimagnetic
state. This proves that the ferrimagnetic state is the absolute minimum of the energy in this region of the phase
diagram.

3. Within the ‘mixed’ region of Fig. 7 of the main text, the minimum eigenvalue of the matrix Λ̃ferri, sits at the
wavevector Q = (π, π, 0), and it is two-fold degenerate, and the two solutions correspond to the orthogonal

states. Likewise the minimum eigenvalue of the matrix Λ̃ortho, sits at the wavevector Q = (0, 0, 0), it is not
degenerate and corresponds to the ferrimagnetic solution. This proves that neither the ferrimagnetic nor the
orthogonal states are the absolute minima in this region of the phase diagram, and reveals that the absolute
minimum should be searched in the form of a linear combination of the two states instead.

Altogether, we have proved that the phases shown in Fig. 7 of the main text correspond to the absolute minima
configurations.

S4. QUALITATIVE BEHAVIOR OF THE LOCAL SPIN LENGTHS IN THE ISOTROPIC SPIN MODEL

Here we would like to briefly show the qualitative difference between the T -dependence of the interlayer Fe3 spins
with that of the Fe1 and Fe2 sites. Figure S5 shows the T -dependence of the local spin lengths as obtained from a



20

Fe21

Fe22

Fe11

Fe12

Fe3

1 2 3 4
T�J33

0.5

1.0

1.5

2.0

2.5
spin lengths

Fe21

Fe22

Fe11

Fe12

Fe3

1 2 3 4 5
T�J33

0.5

1.0

1.5

2.0

2.5
spin lengths

FIG. S5. T -dependence of the local moments as obtained from a hybrid self-consistent quantum mean-field theory (left) and
a single-site quantum mean-field theory (right). The exchange parameters used are the ones reported in the main text.

hybrid, quantum-mechanical mean-field approach. In this approach, the Fe1 and Fe3 sites are treated within single-
site quantum mean-field theory, while the Fe2 spins are treated in pairs, by solving the problem of spin-5/2 dimers
in some external self-consistent mean field. In this calculation we have used the exchange parameters reported in the
main text.

As expected, the results overestimate the ordering temperature (which is in fact also determined by J⊥, see e.g.
Ref. [44]), but the qualitative behavior for the spin lengths is already captured by this mean-field approach. Specifically,
we see that the Fe3 moments grow far more slowly with decreasing T below the ordering temperature. This is a key
aspect for the reorientation transition discussed in the main text.

Another noteworthy feature is the value of the Fe2 moments at zero temperature, which unlike the Fe1 spins, does
not go to the maximum possible value of 5/2, but is slightly reduced. This reduction is related to the fact that the
ground state wavefunction of the dimer mean-field problem has a finite singlet component due to the finite J33 coupling.
Specifically, the local exchange field exerted on the two sites of the Fe2 dimer has a large staggered component (it has
no uniform component at all when J43 = J ′43, see Ref. [24]). As a result, the ground state wavefunction of the dimer
mean-field problem is a combination of the singlet (as in the absence of exchange field), the triplet, etc (up to S = 5).
This admixture is responsible for the finite staggered polarization on the dimer.

For comparison we also show the results from a quantum, single-site mean-field theory on all sites, where all spin
lengths go to 5/2 at zero temperature.


