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The triangular-lattice Heisenberg antiferromagnet (HAF) is known to carry topological Z2 vortex excitations
which form a gas at finite temperatures. Here we show that the spin-orbit interaction, introduced via a Kitaev
term in the exchange Hamiltonian, condenses these vortices into a triangular Z2 vortex crystal at zero temper-
ature. The cores of the Z2 vortices show abrupt, soliton-like magnetization modulations and arise by a special
intertwining of three honeycomb superstructures of ferromagnetic domains, one for each of the three sublattices
of the 120◦ state of the pure HAF. This is a new example of a nucleation transition, analogous to the spontaneous
formation of magnetic domains, Abrikosov vortices in type-II syperconductors, blue phases in cholesteric liquid
crystals, and skyrmions in chiral helimagnets. As the mechanism relies on the interplay of geometric frustration
and spin-orbital anisotropies, such vortex mesophases can materialize as a ground-state property in spin-orbit
coupled correlated systems with nearly hexagonal topology, as in triangular or strongly frustrated honeycomb
iridates.

PACS numbers: 75.10.Hk,75.70.Tj,75.30.Kz

I. INTRODUCTION

Topological defects in an ordered state cannot be removed
by small modifications of the underlying system, making them
rather stable even if they cost energy. Due to this stability and
their localized character, they behave in many respects like
“particles” whose quantum-numbers and properties are deter-
mined by the host system. They are often quite exotic, as for
example defects in strongly frustrated “spin-ice” compounds,
which behave like magnetic monopoles1,2. Other topological
defects are domain walls with Yukawa-like interactions3 or
vortices in manganites4. A particular kind of defects, Z2 vor-
tices, are their own anti-particles: two Z2 vortices can annihi-
late each other. They can be thermally excited in host systems
with an SO(3) order parameter like the superfluid A-phase of
3He5–7, spinor Bose-Einstein condensates8, and the triangular-
lattice Heisenberg antiferromagnet (HAF)9.

Apart from defining topological excitations, particle-like
modulations can also condense into a lattice at thermody-
namic equilibrium10. Stable localized solutions to classical
field theories were first introduced by Skyrme11 in order to
explain how discrete particles can arise out of a continuum
field background. However, the classical theorem by Hobart12

and Derrick13 poses severe restrictions on the type of non-
linear classical field theories that stabilizes ‘particles’. A stan-
dard mechanism to evade these restrictions is operative in
condensed-matter systems with a fixed ‘handedness’, i.e., sys-
tems without inversion symmetry14. In the long-wavelength
limit, the handedness manifests in the form of Lifshitz invari-
ants (linear gradient terms)15 which favor a twisting of the
order parameter along more than one spatial direction, thus
allowing for localized modulations. This universal mecha-
nism underlies the condensed-matter examples of Abrikosov
vortices in type-II superconductors16, “double-twist tubes” in
blue phases of cholesteric liquid crystals17, and skyrmions in
non-centrosymmetric helimagnets18–25.

Here, we show that the basic ingredients for the creation
of extended phases composed of particle-like modulations –
the fixed ‘handedness’ and the presence of Lifshitz invari-
ants along several spatial directions – are generically present
in frustrated spin-orbit coupled Mott insulators with hexago-
nal symmetry and 90◦ bond angles, where the spin-orbit cou-
pling manifests in the form of anisotropic, spatially dependent
Ising-like interactions (termed ‘Kitaev’ interactions in the lit-
erature)26–28.

We will consider here in more detail the simplest case, the
triangular antiferromagnet (AF), whose ground state at the
isotropic Heisenberg point is the well-known three-sublattice
configuration of Fig. 1(c)29. Its order parameter is that of a
rigid rotator, i.e. SO(3). This state breaks the inversion sym-
metry spontaneously and so the fixed ‘handedness’ is guar-
anteed even in the presence of spin-orbit coupling, while the
crucial requirement of more than one Lifshitz invariants is ful-
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FIG. 1. (a) Triangular Heisenberg antiferromagnet with additional,
Ising-like “xx”, “yy” and “zz” interactions, along the three directions
of the lattice, c=−a−b, a=ax′, and b=−a(x′+

√
3y′)/2 (a is the lattice

constant), respectively, see Eq. (1). Here {x′, y′} define the plane of
the lattice and are fixed by the spin-orbit coupling, see Sec. II. (b)
The positions Q(γ) [γ= x (red), y (blue), z (green)] of the minima of
the three coupling functions λγ(k) of Eq. (7) inside the first Brillouin
zone (BZ), for small (positive or negative) anisotropy K. The K = 0
minima at the corners of the BZ are also shown for comparison. (c)
The 120◦ state of the pure Heisenberg model (K =0) in real space.
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filled by the special structure of the Kitaev interactions, as
shown by an explicit derivation of the long-distance action of
the problem. Our results show that this mechanism stabilizes
a triangular superlattice of Z2 vortices with a lattice constant
that goes to infinity as we approach the pure Heisenberg limit.

The main qualitative features of this Z2 vortex crystal
(Z2VC) are the following (see Sec. IV). First, the Z2VC state
preserves the threefold rotation symmetry of the model, with
spins at the vortex cores pointing along the 〈111〉 axes. As a
result, the three components of the spin structure factor have
equal weight, and the corresponding harmonics are related to
each other by threefold rotations.

Second, the cores of the Z2 vortices are defects of the 120◦

state of the pure Heisenberg limit, with a finite FM canting and
a reduced chirality, see Secs. IV C and IV D. Abrupt soliton-
like modulations of the magnetization, see Secs. IV F, suggest
that the Z2VC phase arises from the commensurate 120◦ state
through a new example of a nucleation transition.10

Third, the cores optimize, on the other hand, the energy
gain from the Kitaev anisotropy, see Sec. IV B. In con-
trast to thermally induced defects (Z2 vortices in the HAF
model9,30–32, or Z vortices driving Berezinsky-Kosterlitz-
Thouless transitions33), the Z2 vortices are here thus favored
by energy and not by entropy.

Fourth, the Z2VC phase survives in a large region of the
classical ground-state phase diagram, with the vortex density
increasing (possibly in an Devil’s staircase manner) with the
strength of the Kitaev anisotropy, see Sec. IV H. Maximum
density corresponds to commensurate vortex crystals with pe-
riods of one (two) lattice spacings for negative (positive) Ki-
taev anisotropy. These solutions are special members of the
infinitely degenerate classical ground state manifolds at the
two boundaries of the Z2VC phase. However, quantum and
thermal fluctuation working against non-colinear spin patterns
likely stabilize other phases rather than very dense Z2VCs near
the phase boundaries.

Fifth, the Z2 vortices can be identified by looking at the
three sublattices of the 120◦ state, as done in Sec. IV E: Spins
on each sublattice form honeycomb superstructures of FM do-
mains. The three superstructures are overlaid in such a way
that the center of a domain in one sublattice (say A) coincides
with vertices in the superstructures of the other two sublat-
tices (B and C). With three domains meeting at each vertex,
it follows that the spin plane formed by the spins in B and C
completes a 2π rotation as we go around the center of the A
domain. So the center of each sublattice FM domain is the
core of a Z2 vortex.

The remaining part of the article is organized as follows.
We begin in Sec. II with the definition of the model and its
symmetries. In Sec. III we give the global phase diagram
for all different values of the Heisenberg and the Kitaev cou-
pling parameters, as obtained from the standard Luttinger-
Tisza (LT) minimization method34 and our numerical simu-
lations. For the most part, the LT method delivers the cor-
rect classical or families of classical ground states, including
the so-called nematic states when the system is governed by
Kitaev anisotropies alone. In the remaining regions the LT
method does not work, but gives the first important insights as

to why the situation near the AF Heisenberg point is very spe-
cial. Sec. IV focuses entirely on this particular region, with a
detailed analysis of our numerical data. These include data
from Monte Carlo simulations as well as from an iterative
variational minimization scheme that delivers very low ener-
gies and accurate predictions for the vortex distance as a func-
tion of the Kitaev anisotropy. The physical mechanism for the
condensation of Z2 vortices is then discussed in Sec. V by
the analysis of the long-distance action of the problem, which
delivers the Lifshitz invariants as well as the role of a cross-
coupling between the SO(3) rotator and the FM canting degree
of freedom. Finally, we conclude with a more general discus-
sion on relevant materials and related models in Sec. VI.

II. MODEL

The model we consider here is described by the Kitaev-
Heisenberg Hamiltonian

H = J
∑
〈i j〉

Si ·S j + K
∑
ε=a,b,c

∑
〈i j〉‖ε

S γε
i S γε

j , (1)

where 〈i j〉 labels nearest neighbor (NN) classical spins of unit
length on the triangular lattice, and γa =y, γb =z and γc = x, see
Fig. 1(c). The first term ∝ J denotes the isotropic Heisenberg
exchange, as it arises in many correlated materials through
superexchange. The second part ∝K is the Ising-like ‘Kitaev’-
term which is the signature of the entangled, spin-orbital wave
function26–28.

In the following, we parametrize

J =cosψ, K =sinψ . (2)

We shall also use a primed coordinate frame {x′, y′, z′} to de-
scribe the geometry in real space, with x′ and y′ defining the
plane of the lattice. The spin-orbit coupling locks this frame
to the frame {x, y, z} used for the spin space in (1), in such a
way that each bond direction ε is perpendicular to the corre-
sponding γε-axis, and the plane of the lattice is one of the four
{111} planes in spin space. The (111) choice corresponds to

a=a
z − x
√

2
, b=a

x − y
√

2
, c=a

y − z
√

2
, (3)

where a is the lattice constant.
The combined spin-orbit symmetry of the Hamiltonian is

D3d (3̄m), as that of layered compounds of ABO2 type. With
the above choice of the lattice plane, the threefold axis [111]
of D3d maps the spin components and lattice directions as

(x, y, z) 7→ (y, z, x), (c, a,b) 7→ (a,b, c), (4)

while the C2 axes and the reflection planes of D3d are, respec-
tively, parallel and perpendicular to the lattice bonds.

In addition to the D3d symmetry, the model has also a D2h
symmetry in spin space alone, where the role of the inversion
generator is played by time reversal, and the three twofold
axes point along the cubic axes. These twofold axes map [111]
to the remaining three 〈111〉 axes, meaning that the model has
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FIG. 2. The classical T = 0 phase diagram of the model (1),
parametrized by the angle ψ (J =cosψ, K =sinψ). There are four ex-
tended phases [FM, F̃M, Z2VC, and Z̃2VC] plus four isolated phases:
the HAF at ψ=0, its dual H̃AF at ψ=π−arctan 2, and the two highly
degenerate Kitaev points at ψ=±π/2. The inset hexagons show the
positions of the minima of λγ(k) (colored markers or line segments at
ψ=±π/2) in the first BZ, while arrows indicate how they shift when
going around the circle in a counter-clockwise direction. The impact
of thermal and quantum fluctuations is discussed in the text.

essentially four threefold axes and not one. This is a key as-
pect for the correct enumeration of all inequivalent types of Z2
vortices, as we explain in Sec. IV G.

Finally, the model admits a duality transformation, denoted
by Hzyx in the following, similar to the well-known duality of
spin-orbital honeycomb lattice models35,36. This is a gauge-
like transformation that maps the spins of the four-sublattices
of Fig. 1 (a) to rotated spins S̃ as:

S1 = S̃1, S2 = (−S̃ x
2,−S̃ y

2, S̃
z
2),

S3 = (−S̃ x
3, S̃

y
3,−S̃ z

3), S4 = (S̃ x
4,−S̃ y

4,−S̃ z
4), (5)

which amounts to a product of π-rotations around z, y and
x for the sublattices 2, 3 and 4, respectively. This preserves
the form of the Hamiltonian (1), but changes J 7→ J′ = −J
and K 7→ K′ = 2J+K, mapping different regions of the phase
diagram onto each other, as discussed below. Of particular
interest are the two special points with K′ = 0 (or tanψ=−2)
where the transformed Hamiltonian is SO(3) symmetric: the
H̃AF point ψ= π−arctan 2, where J′ > 0, and the F̃M counter
point ψ=−arctan 2, where J′<0.

III. GLOBAL PHASE DIAGRAM

The classical T = 0 phase diagram of the model is shown
in Fig. 2 in the whole parameter region ψ ∈ [0, 2π). There
are four extended phases, FM, F̃M, Z2VC, and Z̃2VC, plus the

two isolated Kitaev points (ψ = ±π/2), and the two isolated
AF Heisenberg points, HAF (ψ = 0) and H̃AF (π−arctan 2).
Under Hzyx, F̃M is the dual phase of FM (with ψ=− arctan 2
mapping to ψ=π), Z̃2VC is the dual of Z2VC, H̃AF is the dual
of HAF, while the two Kitaev points are self-dual.

The four different regions of Fig. 2 coincide with the quali-
tatively different regimes extracted from the LT minimization
method34, so let us first discuss this method. Here one re-
places the strong spin-length constraints (S2

i = 1,∀i) of the
problem with a single, much weaker constraint,

∑
i S2

i = N,
where N is the number of spin sites. The associated linear
problem amounts to a straightforward minimization in mo-
mentum space with a single Lagrange multiplier. The result-
ing LT solutions correspond to exact classical minima if they
also happen to satisfy the strong constraints, which is not al-
ways true in our model as we discuss below.

With Sk =
∑

r eik·rSr, the total energy can be expressed in
terms of a 3×3 coupling matrix Λ(k) as

H/N =
∑

k

Sk · Λ(k) · S−k . (6)

Here Λ(k) is diagonal in the basis {x, y, z}, with eigenvalues

λγ(k)= K cos(k · εγ)+J
∑
ε′=a,b,c

cos(k · ε′), γ= x, y, z . (7)

where εx = c, εy = a and εz = b. Minimizing these coupling
functions over the first Brillouin zone (BZ) of the model gives
the four different regions of Fig. 2. The eigenmodes corre-
sponding to the minima λmin of the three coupling functions
(which are degenerate due to the threefold symmetry) satisfy
(or can be combined so that they satisfy) the spin length con-
straint at each site inside the regions FM and F̃M, and the
same is true for the isolated Kitaev points ψ = ±π/2, as well
as for HAF and H̃AF. In the remaining parts of the phases
Z2VC and Z̃2VC, on the other hand, the minima correspond
to three pairs of incommensurate wavevectors ±Q(γ) (see in-
set hexagons of Fig. 2), one for each spin component γ, and
the LT method fails to deliver a state that satisfies the length
constraint at each site. In this case, the momenta ±Q(γ) are
in rough, qualitative agreement with the first harmonics of the
actual spin structure factor, while λmin serves as a low bound
for the ground state energy.

Let us discuss the different regions in more detail, before
we move to the Z2VC phase, which is the main subject of our
study.

A. FM and F̃M phases

Inside the FM region, the minima of λγ(k) reside at the Γ
point (k = 0) of the first BZ. The corresponding solutions are
the fully polarized states along the three cubic axes x, y, and z.
However, since the three λmin are the same, any global direc-
tion in spin space gives the same energy. The resulting SO(2)
manifold of states reads

FM : SR =
(

fx, fy, fz
)
, (8)
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FIG. 3. Quantum order-by-disorder inside the FM and the F̃M regions of the phase diagram of Fig. 2. Here we show the quantum energy
correction δE(2) (divided by the spin S , per site) from non-interacting spin wave fluctuations around different ground states parametrized by
the polar and azimuthal angles, θ and φ, of the FM order parameter. The last column shows a comparison of the energy corrections for ordering
along the [111] and along the cubic [100] axis as a function of the coupling parameter ψ of the model.

where f 2
x + f 2

y + f 2
z =1. This degeneracy is accidental (except

for the SO(3) point ψ = π), and should therefore be lifted by
fluctuations, see below.

The physics is the same in the F̃M region, by virtue of the
duality transformation, however the structure of the ground
state manifold is much richer when drawn in the unrotated
frame. In particular, these states are generally non-coplanar,
AF, and have unit cells containing up to four spins, with spin
patterns depending on the direction S̃ of the spins in the ro-
tated frame. In this region, the minima reside at the three
M-points of the BZ [M(x) = 1

a (π, π√
3
), M(y) = 1

a(0,
2π
√

3
), M(z) =

1
a (−π, π√

3
)], while the accidental (except for ψ = − arctan 2)

SO(3) degeneracy present in the rotated frame, results by
combining these special points, which can be done without
compromising the spin length constraints37,38. More explic-
itly, the SO(2) manifold of degenerate states now reads

F̃M : SR =
(

fx eiM(x)·R, fy eiM(y)·R, fz eiM(z)·R
)
, (9)

where again f 2
x + f 2

y + f 2
z =1.

Of particular interest are the states in (9) with | fx| = | fy| =
| fz| = 1

√
3
, where all spins point along the 〈111〉-axes. As we

discuss in Sec. IV, this particular states can be thought of as
carrying the smallest Z2 vortices for K < 0, and are thus se-
lected as soon as we cross the boundary from F̃M to Z2VC.
The analogous role of the states in (8) with | fx|= | fy|= | fz|= 1

√
3
,

at the boundary between FM and Z̃2VC, follows by duality.
These states have the special property that each elementary
triangle carries a very large chirality |κ| = 8/9 [see definition
(13) below], and in this sense are the closest to the chiral 120◦

state of the HAF point, where |κ| = 1. Note that the coupling

of itinerant charge carriers to such a spin pattern gives rise to
topologically non-trivial Chern bands.39

1. Effect of thermal and quantum fluctuations

Except for the special SO(3) points ψ=π and ψ=−arctan 2,
the degeneracy associated with the SO(2) manifold of ground
states inside the regions FM and F̃M is accidental and there-
fore should be lifted by thermal or quantum fluctuations. As
shown in Fig. 3, the zero-point energy from harmonic spin
waves selects the cubic axes in both the FM and F̃M regions,
similarly to what happens in several anisotropic spin-orbital,
compass-like models40–43.
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FIG. 4. The trimerized lattice structure of the 120◦ state, with the
letters A, B and C denoting the three spin sublattices. The corre-
sponding vector fields A(r), B(r − b) and C(r + a) parametrize the
SO(3) order parameter in the long-wavelength expansion of Sec. V.
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FIG. 5. Nematic ordering at the AF Kitaev point ψ=π/2, as found by
classical Monte Carlo simulations of a 48×48 cluster. The data show
the three spin structure factorsSγ(k)≡|S γ

k|
2 at inverse temperature (a)

β = 8, where signals in all three components are visible, (b) β= 10,
(c) β = 100, and (d) β = 1000, where decoupled chains along one
direction dominate. Momenta k are rescaled by a factor of 4a/3.

As mentioned above and discussed in more detail below,
a F̃M state pointing along the 〈111〉-axes is the same as the
Z2VC state with smallest periodicity, allowing a natural con-
nection of the two phases at ψ = − arctan 1/2. As quantum
fluctuations suppress this orientation on the F̃M side of the
phase boundary and favor orientation along cubic axes (and
hence a collinear two-site unit cell) they might likewise su-
press the Z̃2VC state in the vicinity of ψ = − arctan 1/2. As
usual, analogous arguments hold for the FM-Z̃2VC boundary.

B. HAF and H̃AF points

At the HAF point, ψ = 0, the minima of λγ(k) reside at
the corners of the BZ, ±X = ± 1

a ( 2π
3 ,

2π
√

3
), see Fig. 1(b). In

real space, the wavevectors can be combined to give the well-
known three-sublattice, coplanar 120◦ state of Fig. 1(c)29,
which is known to be stable against quantum fluctuations at
zero temperature44. Again, the physics is the same at the H̃AF
point, ψ = π − arctan 2, by virtue of the duality Hzyx, but the
structure of the GS manifold is much richer when drawn in
the unrotated frame. Here, the three sublattices of the 120◦

state together with the four-sublattice structure of the duality
transformation give a twelve-site unit cell with generally non-
coplanar spins in the unrotated frame45. This state has also
been discussed in Refs. [35, 46, and 47].

The physics becomes much more interesting as soon as we
depart from these points, whereby the minima of λγ(k) shift
to incommensurate wave-vectors, see Sec. IV.

C. Kitaev points

The physics at the pure Kitaev points, ψ = ± π2 , is very
similar to the physics of anisotropic, compass-like mod-
els41–43,48,49. First, the minima of λγ(k) form whole lines in
the BZ (see Fig. 2), suggesting a ground state manifold with
a sub-extensive degeneracy. Indeed, it is easy to show that at
ψ = π

2 (− π2 ), the lower energy bound E0 = −|K| is saturated
by forming AF (FM) Ising chains along one of the three lat-
tice directions, with spins pointing along the corresponding
cubic axis, x, y, or z. Flipping one spin component of all
spins along a single chain with the corresponding Ising cou-
pling, does not change the energy, because neighboring chains
couple only via the remaining two components. These sliding
operations43,50–52 lead to 3 × 2L states, where L is the linear
system size, hence the subextensive structure of the ground
state manifold.

More specifically, for ψ = π
2 (the situation at ψ = − π2 is

similar) the three families of states can be written as

S(x)
r = xn−m(−1)mx, S(y)

r =ym(−1)ny, S(z)
r =zn(−1)mz, (10)

where the lattice points r = na + mb and the sets {xm}, {ym}

and {zm} are random choices of ±1. We emphasize that the
superscripts (x), (y), and (z) do not denote the components of
the spins, but index three different families of states. Each
state of a given family (γ) can be formed by combining the
different modes along the respective lines of minima of λγ(k).

The above states are actually connected by other, contin-
uous valleys of states which are generated by combining all
three lines of minima, leading to a SO(2) manifold of ground
states. These states are of the form

AF Kitaev: Sr =
(

fxxn−m(−1)m, fyym(−1)n, fzzn(−1)m
)
, (11)

where f 2
x + f 2

y + f 2
z = 1. Clearly, this degenerate manifold

contains not only collinear but also coplanar and non-coplanar
states.

Again, of particular interest are the states with | fx| = | fy| =
| fz|= 1

√
3
, with all spins pointing along the 〈111〉 axes. These

arise by combining the centers of each line of minima, Q(x) =
1
a ( π2 ,−

√
3π
2 ), Q(y) = 1

a (−π,0), and Q(z) = 1
a ( π2 ,

√
3π
2 ), which are

commensurate with the lattice. As we discuss in Sec. IV, these
states carry the smallest Z2 vortices for K > 0. As for K <
0, however, fluctuations have to be taken into account when
discussing states chosen from a degenerate manifold.

1. Effect of thermal fluctuations

Classically the degeneracy associated to the above SO(2)
manifold of states is accidental and as such it can be lifted by
thermal fluctuations (quantum fluctuations will be discussed
separately below). Our Monte-Carlo (MC) data of Fig. 5 show
clearly that this accidental degeneracy is lifted by thermal
fluctuations, leading to a finite-T nematic phase where spins
select spontaneously one of the three directions of the lattice
and fluctuate in the corresponding cubic axis direction in spin
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space. At finite temperatures T , this phase cannot have long-
range magnetic order due to the generalized Elitzur’s theorem
of Batista and Nussinov50 which, for the present situation, as-
serts that the sliding symmetries cannot break spontaneously
at any finite T 53. Such partial nematic order into decoupled
chains is known to emerge in the low-energy limit of more
complex models54 and is again analogous to the situation in
the square-lattice ‘compass’ model41,49.

Importantly, the fact that thermal fluctuations select the cu-
bic axes and not the 〈111〉 axes suggests that, at finite T , the
nematic phase at the AF Kitaev point can survive in a fi-
nite window around ψ = π/2, provided that thermal fluctua-
tions inside the neighboring Z2VC and Z̃2VC phases are weak
enough. This is indeed what we find in our MC simulations
for tanψ = 4, 10 and 20 (not shown), which reveal that the
partial order into decoupled AF chains found at ψ= π

2 (Fig. 5)
persists over wide intermediate temperature ranges.

The situation around the FM Kitaev point is different. Un-
like the AF Kitaev point where 2D order is strongly frustrated,
here even a weak J , 0 couples the FM chains with an en-
ergy ∝ JL. So the finite-T nematic physics is only present at
ψ=−π/2, and as soon as we depart from this point the system
enters the FM or F̃M phase.

2. Effect of quantum fluctuations

The effect of quantum fluctuations is qualitatively different
from the thermal case, but also from the corresponding quan-
tum case in the square lattice compass model. The reason
is that here the sliding symmetries do not exist for quantum
spins, because flipping one component of the spin requires
the use of the time-reversal operation, which cannot be made
to act locally, on a single chain. In the square lattice, this ob-
stacle is avoided because the Hamiltonian contains only two
types of Ising couplings, and the sliding operations can be ef-
fected by π-rotations. This fundamentally different symme-
try structure of the classical and quantum Hamiltonians on
the triangular lattice has very striking ramifications for quan-
tum spins: The system can develop long-range magnetic or-
der even at finite T . Essentially, this means that neighboring
chains couple to each other by virtual quantum-mechanical
processes. This has been nicely shown analytically by Jackeli
and Avella55 (a similar analysis is carried out in a related hon-
eycomb lattice model56), and numerically by Becker et al57.

Similar to the thermal case discussed above, the energy
gain associated with this quantum order by disorder mecha-
nism can stabilize the magnetic LRO phase in a finite win-
dow around the AF Kitaev point, provided the quantum fluc-
tuations of the neighboring phases Z2VC and Z̃2VC are weak
enough. This scenario is confirmed by the numerical results
of Becker et al57.

IV. THE Z2VC PHASE

We now move to the central topic of our study which is
the Z2VC phase. This section is divided into several parts,
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FIG. 6. (a) Non-coplanar configuration obtained by MC for K/J =

−0.25 and 72×72 sites. Shading refers to the out-of plane component
from −1 (dark) to 1 (light yellow). (b) Corresponding spin structure
factorsSγ(k) in the first BZ. Only peaks with a weight ≥ 1 are shown.
(c) Local energy eri = J

∑
δ Sri·Sri+δ+K

∑
γ,δ‖εγS γ

riS
γ

ri+δ
, where δ denotes

NN bonds. (d) Fourier transform of |eri − ē|, where ē is the average
energy per site. Only peaks with a weight ≥ 0.1 are shown. Momenta
k are rescaled by a factor of 4a/3 in (b) and (d).

each one focusing on a different qualitative aspect of this
phase. We shall begin by analyzing numerical results from
MC simulations (Secs. IV A-IV C), which were the first to re-
veal the structure of the Z2 vortices. Building on this knowl-
edge we shall then (Secs. IV E-IV I) construct numerically (as
described in Sec. IV H) and analyze ‘optimal’ Z2VC states in
order to get much better ground state energies and much more
accurate predictions for the vortex distance as a function of
K/J. We shall focus entirely on the Z2VC phase, since the
physics of the Z̃2VC phase follows by duality.

A. Incommensurate and non-coplanar nature

As mentioned briefly above, as soon as we depart from the
AF point ψ = 0, the minima of λγ(k) shift away from the
corners of the BZ, to incommensurate momenta. The cru-
cial point is that due to the anisotropy in the Kitaev terms, the
shift differs for the three spin components, i.e., their couplings
(7) are optimized by three different ordering momenta Q(γ), as
illustrated in Fig. 1(b). This is in contrast to incommensurabil-
ity induced by spin-isotropic frustration, e.g. via longer-range
Heisenberg couplings58, where the same ordering momenta
would optimize all three λγ(k). A coplanar spiral with one of
the optimal momenta would then be a classical ground state.
Here, however, no Q(γ) can minimize simultaneously all three
(or even two) coupling functions λγ(k) and the ground state is
thus not automatically given by a single ordering momentum.

To find the ground-state ordering, we proceed by classical
Monte-Carlo simulations. At K = 0, we find the expected
120◦ pattern where the spin structure factor Sγ(k) ≡ |S γ

k|
2 is
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FIG. 7. The Z2 nature of the cores. (a) A single Z2 vortex on the triangular lattice, obtained in a Monte-Carlo simulation for K =−0.25J < 0
and 72×72 sites. Black, green and blue arrows on the lattice sites (residing clockwise around each shaded triangle) indicate spins in the
three sublattices of the 120◦ state. The remaining arrows, that reside on the upward pointing triangles and are shown with a varied color
scheme (according to their direction), represent the vector chirality κ(r), i.e., they are perpendicular to the plane of the local 120◦ pattern of
the plaquette. These vectors form a vortex and almost exactly lie in one plane; In terms of the spins, here the plane formed by two sublattices
(blue and green) rotates by 2π around the third (black), which is roughly constant in this region. For visibility, a global rotation was applied
to the spins to make the κ plane coincide with the lattice plane, the κ plane is actually perp. to [1̄11̄]. (b) Vorticity of the vector chirality κ(r),
indicating where the plane of the local 120◦ order rotates by 2π.

peaked at the corners of the BZ, ±X, for all γ. At small finite
|K|/J, spins remain locally close to the 120◦ pattern, but this
is distorted at larger distances, resulting in an incommensurate
non-coplanar configuration, see the MC data for K/J =−0.25
and 72×72 sites shown in Fig. 6(a). The non-coplanarity is
also revealed by the “spin-inertia” tensor �, whose elements
are defined as59:

�
αβ=

∑
i

S α
i S β

i /N . (12)

For a collinear (resp. coplanar) pattern, two (resp. one) of the
eigenvalues of � must vanish, but all three are here equal to
1/3 (with small deviations due to numerical fluctuations and
finite-size effects). This is the first indication that the state
preserves the threefold symmetry of the problem.

The equivalent role of all three spin components and the in-
commensurate order also reveal themselves in the spin struc-
ture factor data shown in Fig. 6(b). The dominant peaks of
Sγ(k) indeed each move slightly away from ±X, but all three
are present, both in expectation values averaged over the MC
run and in single snapshots. These peaks roughly track the
positions of the minima of λγ(k), with each spin component
modulating at a different wavevector. As for the spin length
constraints, these are eventually satisfied by the presence of
higher harmonics, see App. VII A.

B. Particle-like modulations

Fig. 6(a) gives in addition the first hint for the presence of
localized, particle-like modulations. The local energy profiles
shown in Fig. 6(c) clearly reveal the cores of these modula-
tions, which are arranged in an approximate triangular su-
perlattice. The cores can also be seen in the vorticity of the
vector chirality and in the FM canting out of the local 120◦

structure, see below. The superlattice becomes apparent by a

Fourier transform of the deviation of the energy from its av-
erage value, which is seen in Fig. 6(d). Such superlattices are
also found at other values of K/J, both positive and negative,
with larger K inducing larger deviations from the 120◦ pattern
and denser packing of cores.

Plotting the profiles of the Heisenberg and Kitaev energy
contributions separately (not shown) reveals that the former
is overall positive around the cores while the latter is neg-
ative. So the cores are energetically favored by the Kitaev
anisotropy.

C. Topological Z2 vortex nature

We are now going to show that the particle-like modulations
correspond to topological Z2 vortices. Such vortices are well
known9,30–32 to be thermally induced above the 120◦ state (or
similar AF states60), since the order parameter has an SO(3)
space with the first homotopy group7 π1(SO(3)) = Z2. Here,
the spin patterns are locally close to the 120◦ state for |K|� J,
and so the presence of such vortices in the ground state would
suggest that the Kitaev anisotropy plays a non-trivial role.

In a Z2 vortex, the plane containing the locally coplanar
120◦ order rotates by 2π, naturally inducing a globally non-
coplanar pattern9. The orientation of the plane is captured by
the vector chirality

κ(r)=
2

3
√

3
(Sr × Sr+a + Sr+a × Sr−b + Sr−b × Sr), (13)

obtained from the three spins around upwards pointing trian-
gles. The prefactor in (13) sets |κ(r)| = 1 in the 120◦ state.
Fig. 7(a) shows the behavior of the spins in the vicinity of a
single core of Fig. 6(c). In this region, the spins in one of
the three sublattices (black arrows) remain roughly parallel to
each other, while the spins in the other two sublattices (blue
and green arrows) rotate around the former, in such a way that
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FIG. 8. Data from the optimal Z2VC for K/J = −0.25 and 96×96 sites (for which d = 16, see Table I). (a-c) Largest projection among the
ones along the symmetry axes [111] (red), [11̄1̄] (green), [1̄11̄] (blue), and [1̄1̄1] (magenta), for each of the three sublattices separately. (d-f)
As above, but now we include in the set of projections the ones along the cubic axes [100] (black), [010] (cyan), and [001] (orange). Filled
(empty) symbols correspond to positive (negative) values. (g) Projection of all spins in a common SO(2) space.

the vector chirality κ(r) (represented by an arrow on every
upward pointing triangle) completes a 2π rotation around the
core, which in turn proves its topological Z2 nature. The same
is true for every core of Fig. 6(c), as can be shown by calculat-
ing the vorticity of κ(r) throughout the system, see Fig. 7(b).

D. Defected SO(3) nature of the cores

The cores of the Z2 vortices are defects of the local 120◦

structure. Indeed, the spins in the immediate surrounding of
a core show a finite FM canting. Such a canting is in fact
the most natural way to sustain the Z2 vortices in the present
lattice model, and can be seen in two different ways. First, the
length of the chirality vector κ becomes smaller than one at
the cores. Our results give |κ| ' 0.87 at the cores (and |κ| ' 1
away from them), and this amount of reduction remains robust
everywhere inside the Z2VC region, see Table I below.

The second way to see the canting is by looking at the total
moment on upward triangles:

M(r) = Sr + Sr+a + Sr−b . (14)

Our results confirm that the lengths of these vectors become
finite at the cores of the Z2 vortices, with the largest values
at the center of the cores being of the order of |M| ∼ 1. This
number also remains robust everywhere inside the Z2VC re-
gion, see Table I below.

Now, the moment M(r) is not entirely parallel to the chiral-
ity vector κ(r), meaning that not only the out-of-plane but also
the in-plane canting is finite. As we show in Sec. V, the pres-
ence of a finite in-plane canting can be actually predicted by
the form of the long-distance action, which contains a linear
derivative cross-coupling term between the in-plane canting
and the twisting of the SO(3) order parameter, see Sec. V D.

E. Sublattice FM domain picture: The special role of the 〈111〉
and the 〈100〉 axes

In the vortex shown in Fig. 7(a) the chirality κ(r) lies al-
most exactly in the plane perpendicular to [1̄11̄], which is one
of the four 〈111〉 symmetry axes of the model, as we dis-
cussed in Sec. II. It turns out that every single Z2 vortex of
the ground state is associated with one of these special axes.
This is demonstrated in Figs. 8 (a-c), which show the maxi-
mum among the projections of the spins along [111], [11̄1̄],
[1̄11̄], and [1̄1̄1], for each of the three sublattices separately.

These projections reveal that each sublattice of the 120◦

state (A, B and C, defined as in Fig. 4) forms a hexagonal
superlattice of FM domains with spins pointing roughly (see
below) along one of the four 〈111〉 axes. The key aspect that
gives the Z2 vortices is that the A-, B- and C-superlattices are
mutually shifted in such a way that the centers of the hexag-
onal plaquettes, say in A, coincide with vertices in B and C.
And since each vertex is the merging point of three hexagonal
plaquettes (or domains), it follows that B and C pass sequen-
tially through the other three symmetry axes [11̄1̄], [1̄11̄], and
[1̄1̄1] as we go around the center of the ‘A-[111]’ domain. So
the plane formed by B and C completes a 2π rotation around
[111], meaning that the core of each hexagonal domain is as-
sociated with a Z2 vortex.

Now, the role of the cubic axes comes into light when we
examine more closely the rotation of the spins from one sym-
metry axis to another in the boundary regions between the pla-
quettes. This is demonstrated in Figs. 8 (d-f), that show the
maximum among seven projections, the four along 〈111〉 and
the three along the 〈100〉 axes. In short: i) Spins that reside
at the cores of a given sublattice plaquette point exactly along
one of the 〈111〉 axes. ii) Spins that reside on the edges of
the plaquettes point exactly along one of the three cubic axes
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〈100〉. iii) Spins away from the cores and the edges follow
special paths in SO(2) space, that pass closely to both 〈100〉
and 〈111〉 axes. This is demonstrated in Fig. 8 (g), which
shows the directions of all spins in a common SO(2) space.

F. Solitonic nature of the cores

Fig. 9 shows the behavior of the y-component of the spins,
S y, along the a direction of the lattice, through two different
horizontal cuts of the lattice, one (a) crossing the cores (i.e.
going though the edges of the honeycomb superlattice) and
another (b) crossing half-way between the cores. The data
correspond to the optimal Z2VC obtained for K/J =−0.13 and
276×276 sites, for which the distance between vortex cores is
d =46 (see Table I).

The most remarkable feature of Fig. 9 is that S y shows
clear features of abrupt, soliton-like modulations as we cross
through the cores (a), while the modulations in (b) are al-
most harmonic. A similar behavior is shown by the x- and
z-components of the spins along c and b, respectively. This
demonstrates the intrinsic non-linear nature of the vortex
cores, and is precisely why the LT method cannot describe the
ground state by a simple, ‘3Q’ linear superposition of three
harmonic waves, one for each cartesian component. Instead,
the abrupt behavior can only be recovered by including a very
large number of higher harmonics, despite the fact that the am-
plitudes of higher harmonics in the spin structure factor drop
fast, see App. VII A.

Incidentally, Fig. 9 also shows that the sum of S y over the
three sublattices is almost everywhere equal to zero (consis-
tent with the local 120◦ structure), except at the immediate
vicinity of the cores where the sum is finite. Including the
corresponding contributions from S x and S z leads to a finite
FM canting out of the 120◦ state at the immediate vicinity of
the cores, as discussed above. This observation is also the key
for understanding the energy competition between Heisenberg
and Kitaev exchange. The former is satisfied almost every-
where except near the cores where the total moment is finite.
By contrast, the ‘yy’ portion of the Kitaev anisotropy is sat-
isfied only on one-third of the horizontal bonds away from
the cores, while near the cores there is a large Kitaev energy
gain from all horizontal bonds (similarly for the other types of
bonds). So the Kitaev anisotropy is responsible for the spon-
taneous formation of cores and acts to increase their density,
against the Heisenberg exchange.

G. Inequivalent types of Z2 vortices & their spatial pattern

There are 24 types of inequivalent Z2 vortices: The three
sublattices and four special axes give 12 vortices, and we can
get 12 more by time reversal. Each magnetic unit cell encloses
all of the 12 former vortices. Their time-reversed versions do
not appear in the patterns of Fig. 8, because spins do not pass
through any of the reverse directions, [1̄1̄1̄], [1̄11], [11̄1], and
[111̄], see also Fig. 8 (g).
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FIG. 9. Data from the optimal Z2VC for K/J =−0.13 and 276×276
sites (for which d = 46, see Table I). Behavior of S y along the a
direction, through a cut of the lattice that passes through the cores
(a) and half-way between the cores (b). The three curves correspond
to the three sublattices of Fig. 4. In (a), the positions of the cores can
be identified by one of the three sublattices having S y = 1

√
3
, where

spins point exactly along one of the four 〈111〉 axes.

1. Spatial pattern for K<0

The alternation between inequivalent vortices along differ-
ent lattice directions follows a very characteristic pattern, ac-
cording to Figs. 8 and 9. This pattern can be understood by
realizing that the Kitaev anisotropy is effective in the regions
between vortex domains: Then the pattern follows from the
sign of K (negative in Figs. 8 and 9) and the three-sublattice
partition of Fig. 4. Indeed, the data show that e.g. a ‘A-[111]’
vortex gives way to a ‘C-[1̄11̄]’ vortex or a ‘B-[1̄11̄]’ vortex
along ±a, thus preserving the y-component of the domains.
Similarly, the x- and z-components are not altered along ±c
and ±b for K<0.

2. Spatial pattern for K>0

The situation for positive K is analogous, but there are two
qualitative differences, both of which can be understood by
the form of the long-distance action of the problem around
the AF Heisenberg point, see Sec. V. First, the direction of
the chirality vector is flipped (and so is the sign of its vortic-
ity), which is equivalent with interchanging e.g. sublattices
B and C. So, an ‘A-[111]’ vortex is now followed by a ‘B-
[1̄11̄]’ vortex (and a Cy<0 region) or a ‘C-[1̄11̄]’ vortex (and
a By<0 region) along ±a. Given the three-sublattice partition
of Fig. 4, this alternation corresponds to an AF arrangement
of the y-component of the domains along ±a.

The second difference between the Z2VC’s at K and −K is
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that the characteristic period of modulation, and thus the dis-
tance between vortices, is not the same, see Sec. IV H below.

3. Threefold symmetry of the Z2VC state

From Fig. 8 we can deduce that the Z2VC state preserves
the threefold symmetry axes that pass through the cores of
the vortices. Indeed, take for example the center of a type
‘A-[111]’ vortex. In real space, the threefold symmetry maps
sublattices A to A, and sublattices B to C, while in spin space,
it maps the spin components as shown in Eq. (4). So three
successive combined rotations map A-[1̄1̄1] 7→A-[1̄11̄] 7→A-
[11̄1̄], and similarly, B-[1̄1̄1] 7→ C-[1̄11̄] 7→ B-[11̄1̄], which is
fully consistent with the patterns of Fig. 8.

This symmetry is also reflected in the fact that the three
eigenvalues of the spin-inertia tensor � discussed above are
equal to each other, and the fact that the three spin struc-
ture factors have equal magnitudes in all harmonics, see
App. VII A.

4. Superlattice vectors

There are several more things that we learn from Fig. 8.
First, the vortex superlattice (v), the magnetic superlattice of
a given sublattice (s), and the magnetic superlattice of a the
full structure (m), are given, respectively, by the translations

Tv
1 = d a, Tv

2 = d b,
Ts

1 = 2d (a−b), Ts
2 = 2d (c−b),

Tm
1 = 2d a, Tm

2 = 2d b,
(15)

where d is the distance between vortices (in units of a), see
below. Each vortex occupies d2 sites, each sublattice FM do-
main occupies d2 sites (from the given sublattice type), each
sublattice unit cell occupies 12d2 sites (4d2 from each sub-
lattice type), and each magnetic unit cell of the full structure
occupies 4d2 sites. Accordingly, the total number of these
three types of unit cells are

Nv =
N
d2 , Ns =

N
12d2 , Nm =

N
4d2 . (16)

Next, the reciprocal vectors corresponding to Tv
1 and Tv

2 are

Gv
1 =

1
a

(
2π
d
,
−2π
√

3d
), Gv

2 =
1
a

(0,
−4π
√

3d
), (17)

which are along the directions of the M points, consistent with
the dominant wavevector peaks of Fig. 6(d). Similarly, the
reciprocal vectors corresponding to Ts

1 and Ts
2 are

Gs
1 =

1
a

(
2π
3d
, 0), Gs

2 =
1
a

(−
π

3d
,
π
√

3d
), (18)

which are along the corners of the BZ. Including the local
120◦ modulation from all three sublattices shifts these points
to X + Gs

1 and X + Gs
2 (where X = 1

a ( 2π
3 ,

2π
√

3
) is a corner of

the BZ), in agreement with the dominant wavevector peaks of

Fig. 6. The higher harmonics present in the structure factor
(see App. VII A) are multiples of the fundamental harmonics
X+Gs

1,2. In total, for integer d, there are at most 4d2 harmonics,
equal to the number of sites in the magnetic unit cell.

Let us now discuss the distance d between the cores. A
first approximation to this number can be obtained from the
LT method. Namely, from the distance q = |Gm

1 |=
2π

3ad of the
minima Q(γ) of λγ(k) from the corners of the BZ:

dLT =
2π

3aqLT
, aqLT = |2 arccos

1
2( K

J +1)
−

2π
3
|, (19)

where the subscript ‘LT’ indicates that this is the prediction
from the LT method. Note that in the vicinity of the AF
Heisenberg point, the distance dLT behaves as

dLT'
π
√

3

|J + 7
6 K|

|K|
, (20)

suggesting an extra contribution to the effective stiffness com-
ing from the Kitaev anisotropy, that depends on the sign of K.
We shall come back to this point below.

H. ‘Optimal’ Z2VC’s

We now describe how one can use the knowledge of the de-
tailed structure of the vortex crystals in order to obtain a much
more accurate description of d(K). First of all, a finite cluster
can accommodate a Z2VC if both the distance between vor-
tices, d, and the number of magnetic unit cells per sublattice,
Ns = N

12d2 , are integer numbers. With this in mind, we first
fix the value of K/J and then we construct states that look as
in Fig. 8 (a-c), but with the difference that all spins in each
domain point strictly along the 〈111〉 axes. These states can
then be used as initial states for a numerical iterative mini-
mization scheme, where we sequentially rotate spins in the
direction of their local mean fields, in a random fashion. In
most cases, these iterations do not disturb the positions of the
vortex cores, nor do they deform the relative domain shapes
and sizes, which is important for staying close to very low
variational energies. We can repeat this procedure with initial
states that have different integer values of d, without changing
the value of K/J, and then choose the crystal with the mini-
mum energy.

The optimal crystals obtained in this way are listed in Ta-
ble I, and it is clear that their energies are very close to the
low-energy bound given by λmin, much closer than the ener-
gies obtained from unconstrained MC simulations. The opti-
mal crystal solutions are also shown by data points in Fig. 10
(red diamonds), and their positions give our numerical esti-
mate of d(K) (red curve). For comparison we also show the
behavior of dLT(K) (blue curve).

There is a number of things we learn from this figure. First,
the LT method generally underestimates the vortex distance
and is a very crude approximation especially near the AF
Heisenberg point, where d/dLT ' 4 for |K|/J ' 0.1 (see Ta-
ble I), and is possibly larger at smaller values of |K|/J. This
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FIG. 10. Optimal distance d between Z2 vortices as a function of
ψ ∈ [− arctan 1

2 ,
π
2 ], obtained as described in the text. The most im-

portant data associated with these crystals are provided in Table I.
For comparison we also show the approximate prediction dLT from
the LT method, Eq. (19).

TABLE I. Most important data associated with the optimal Z2VC’s
found numerically (and shown by red diamond symbols in Fig. 10) in
periodic clusters with spanning vectors La and Lb. Here E0/N gives
the energy per site, λ∞min is the low bound given by the LT method
(for L =∞), and κmin and Mmax are the magnitudes of the chirality
and magnetization vectors at the cores of the Z2 vortices. The latter
two values are not given for K/J = 1.88 because the corresponding
crystal could not be fully optimized.

K/J L dLT d
√

Nv E0/N λ∞min |κ|min |M|max

-0.13 276 12 46 6 -1.42466 -1.43266 0.873 0.841
-0.14 258 11 43 6 -1.41817 -1.42747 0.878 0.830
-0.15 234 10 39 6 -1.41159 -1.42232 0.877 0.832
-0.16 210 9 35 6 -1.40493 -1.41721 0.871 0.843
-0.18 168 8 28 6 -1.39143 -1.40714 0.877 0.829
-0.2 144 7 24 6 -1.37773 -1.39733 0.873 0.835

-0.22 114 6 19 6 -1.36390 -1.38784 0.877 0.826
-0.25 96 5 16 6 -1.34304 -1.37437 0.876 0.824
-0.29 60 4 10 6 -1.31564 -1.35826 0.876 0.822
-0.31 54 3.46 9 6 -1.30220 -1.35080 0.849 0.868

-0.35 12 3 2 6 -1.27916 -1.33955
{

0.633
0.887

{
0.934
0.785

-0.36 48 2.81 1 48 -1.27961 -1.33724 8/9 1
-0.37 48 2.66 1 48 -1.28487 -1.33519 8/9 1
-0.42 48 2 1 48 -1.30921 -1.32956 8/9 1
-0.5 L 1 1 L -1.34164 -1.34164 8/9 1
0.20 222 11 37 6 -1.57226 -1.58527 0.846 0.847
0.23 186 10 31 6 -1.57843 -1.59486 0.855 0.825
0.26 162 9 27 6 -1.58345 -1.60351 0.847 0.833
0.31 126 8 21 6 -1.58938 -1.61582 0.834 0.847
0.37 102 7 17 6 -1.59279 -1.62716 0.822 0.858
0.46 78 6 13 6 -1.59134 -1.63752 0.820 0.834
0.62 54 5 9 6 -1.57403 -1.63916 0.783 0.880
0.93 30 4 5 6 -1.51589 -1.60299 0.683 0.975
1.88 24 3 4 6 -1.36213 -1.43402 – –

∞ L 2 2 L/2 -1 -1
{√

2/3 8/9
8/9 1

large difference demonstrates once again the strong impact

of non-linearities, which are completely missed by the LT
method.

Second, the vortex distance is not the same for K and −K.
This dependence on the sign of K, which is also reflected in
the leading behavior of Eq. (20), originates in an effective ex-
change anisotropy driven by K, see Sec. V.

Third, the LT method gives the right answer at the two
boundaries of the Z2VC phase, namely when ψ→

(
π
2

)−
and

ψ→
(
− arctan 1

2

)+
, where, d = 2 and d = 1, respectively. This

happens because at these boundaries the minima of λγ(k) cor-
respond to commensurate momenta, and as such they deliver
states that satisfy the spin length constraints, see Sec. IV I.

I. The ‘smallest’ vortex crystals

The above commensurate states were discussed briefly in
Secs. III C and III A, and are shown in Fig. 11. They have all
the characteristic features of the vortex crystal states that we
found numerically deep inside the Z2VC phase, and as such
they can be thought of as the Z2VC states with the smallest
possible sublattice FM domains.

Specifically, at K/J = −1/2 [Fig. 11(a)], each spin points
along one of the four 〈111〉 axes, and can be considered as
the core of a ‘discrete’ Z2 vortex. The corresponding sub-
lattice FM domain consists of this single spin only. The six
spins surrounding the core rotate in such a way that a total
vorticity of 2π is recovered in discrete steps. The symmetry
and spatial pattern of the vortices is exactly the same with the
states found numerically away from this point. Furthermore,
the magnitudes of the chirality vector and the total moment
are, respectively, |κ|= 8

9 and |M|= 1, the same for all elemen-
tary triangles. These values are very close to the correspond-
ing numerical values (minimum chirality |κ|min and maximum
local moment |M|max, appearing at the cores), in all crystal
states found in the entire stability region of the Z2VC phase,
see Table I.

For K/J = ∞ [Fig. 11(b)] we have d = 2 and each sub-
lattice FM domain consists of four sites (of the given sublat-
tice). Take for example the central shaded (red) hexagon of
Fig. 11(b), which corresponds to an ‘A-[111]’ domain. The
three A-sites in the interior of this domain point along [111]
(denoted by ‘r’). The fourth spin is shared with the neighbor-
ing domains, with directions along [111̄] (‘-m’), [11̄1] (‘-b’),
and [1̄11] (‘-g’), but gives a total moment along [111] as well.
So each sublattice domain has a large moment along one of
the 〈111〉 axes, and the Z2 vortices can be seen by looking at
the rotation of the directions of the B- and C-sublattice do-
mains. In terms of elementary triangles, this structure has two
inequivalent types. Both of them have |M| = 1, but |κ| = 8

9

in 1/3 of the triangles and |κ| =
√

2
√

3
8
9 in the remaining 2/3 of

the triangles. A similar structure with tho types of elemen-
tary triangles is shared by the d =2 state found numerically at
K/J =−0.35, see Table I.

Finally, Fig. 11 provides an intuitive picture as to what
happens as we depart from the boundaries toward the HAF
limit ψ = 0. The AF Heisenberg interaction tends to align
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FIG. 11. The two ‘smallest vortex crystals’ corresponding to the commensurate LT solutions at ψ=− arctan 1/2 (a) and π/2 (b), see text. The
colors show the ‘smallest vortex domains’ in the A-sublattice, which enclose one (a) or three sites (b).

all the spins of a given sublattice into one giant FM domain,
and the way this happens is by successively eliminating more
and more neighboring cores and enclosing the corresponding
spins into the domain, until there is only one domain that can
be accommodated by the system, which would correspond to
the coplanar 120◦ state at ψ=0.

V. PHYSICAL MECHANISM: LONG-DISTANCE THEORY
AROUND THE AF HEISENBERG POINT

A. Derivation

Let us now establish the physical “double-twisting” mech-
anism that stabilizes the vortex phase. The model itself has
inversion symmetry, which at first sight would point against
the presence of Lifshitz invariants in the low-energy action of
the problem. However, inversion symmetry is spontaneously
broken in the 120◦ state. It is this spontaneous handedness
that allows the spin-orbit coupling to generate chiral interac-
tions in the form of Lifshitz invariants. To show this, we fol-
low Ref. [61 and 62] and derive the classical action for the
long wavelength limit of Eq. (1) in the vicinity of the Heisen-
berg point K = 0. This is a coarse-grained description which
builds on the fact that for very small K each elementary trian-
gle retains a very rigid 120◦ structure, and thus a local order
parameter – in this case an SO(3) rotation matrix �(r) – has
a well defined meaning. A finite FM canting M(r) out of the
120◦ structure can also be included in terms of a vector L(r),
see below. The derivation of the continuum action then in-
volves rewriting the individual lattice spin degrees of freedom
in terms of �(r) and L(r), followed by a Taylor expansion of
the energy in the lattice constant a.

We begin by fixing the reference 120◦ state of the pure
Heisenberg limit (K = 0), around which we wish to expand.
To this end we define a fixed reference frame of orthonor-
mal vectors e1, e2 and e3 = e1× e2, and write the directions

of the three sublattices of the state, labeled by the letters A,
B and C (see Fig. 4), as nA = e1, nB = (−e1 +

√
3e2)/2, and

nC = (−e1−
√

3e2)/2. We then introduce three vector fields
A(r), B(r) and C(r), that encode the long distance behavior of
the spins in the three sublattices A, B and C (see Fig. 4), in
terms of the spatially dependent �(r) and L(r):

A(r)=�(r)·(nA+aL(r))/
(
1+2anA ·L+a2L2

)1/2
,

B(r)=�(r)·(nB+aL(r))/
(
1+2anB ·L+a2L2

)1/2
, (21)

C(r)=�(r)·(nC +aL(r))/
(
1+2anC ·L+a2L2

)1/2
.

The rotation matrix can be parametrized in terms of three mu-
tually orthonormal vector fields as

�(r) = (µ(r), ν(r),π(r)) , (22)

where the column vectors µ(r) = �(r) · e1, ν(r) = �(r) · e2,
and π(r) = �(r) · e3 = µ(r)×ν(r). The vector L can in turn
be parametrized as Li = L ·ei, and the total moment M(r) '
A(r)+B(r)+C(r), is then given by

M(r) = 3a
(

1
2

L1µ +
1
2

L2ν + L3π

)
+ O(a2) . (23)

Next, we perform a Taylor expansion of the fields in a (or,
more precisely, in qa, where q is the characteristic modula-
tion wavevector) keeping terms up to order a2. Apart from
an overall constant, the total energy density ε(r), defined as
E =

∫
d2r
a2 ε(r), reads:

ε(r)=−pLif

∑
ε

(µγε∂ενγε−νγε∂εµγε ) (24)

−
1
2

pLif

∑
ε

{
2L1∂ε(µγενγε )+L2∂ε[(µγε )2−(νγε )2]

}
(25)

+ pel-K

∑
ε

(
(∂εµγε )2 + (∂ενγε )2

)
(26)
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+ pel-J

(
(∂x′µ)2+(∂y′µ)2+(∂x′ν)2+(∂y′ν)2

)
(27)

+ pL

(1
2

L2
1 +

1
2

L2
2 + L2

3

)
, (28)

where the coupling constants

pLif = Ka
2 , pel-J =

√
3Ja2

8 , pel-K = Ka2

4
√

3
pL =

√
3(3J+K)a2 .

(29)

The linear derivative terms in (24) are the Lifshitz invariants
that are responsible for the ‘double twisting’ of �(r) and the
spontaneous formation of the solitonic cores. The terms in
(27) and (26) are the elastic energy contributions from the
Heisenberg and the Kitaev terms respectively. The term in
(28) gives the energy cost associated with a finite FM cant-
ing M(r), while the term in (25) describes a cross-coupling
between M(r) and the twisting of �(r).

The solutions corresponding to the above long-distance
action can be investigated following the standard Euler-
Lagrange method, with appropriate Lagrange multipliers that
ensure the orthogonality of �. Alternatively, an Euler-angle
parametrization of � may be more appropriate for studying
localized vortex solutions. Leaving this non-trivial task for a
separate work, we shall focus here on the general qualitative
aspects that derive from the form of the action.

B. Analogy with other systems

To highlight the analogy to other well-known condensed
matter systems with particle-like modulations, let us disre-
gard for the moment the FM canting and the terms ∝ pel-K
(which can be incorporated into the exchange energy portion
by an appropriate redefinition of the metric), and rewrite the
remaining terms (24) and (27) in a ‘covariant derivative’ form

(24)+(27)→
∫

d2r
∑
ε,i j

[
ρ j∂εRi j(r)+

K
J

∑
km

Γεi j,kmRkm(r)
]2
, (30)

where {i, j, k,m} run over {e1, e2, e3}, ρ1,2 = 1, ρ3 = 0, and the
antisymmetric fourth-rank tensors Γε are given by

Γεi j,km = −

√
3

a
eγεi eγεk εm j = −Γεkm,i j , (31)

where εm j = δm,1δ j,2 − δm,2δ j,1. The form (30) is analogous
to the energy of chiral helimagnets15, where the role of the
anisotropy is played by the Dzyaloshinskii-Moriya interaction
and the role of Z2 vortices is played by skyrmions. The only
difference is that the order parameter is there a vector (the
magnetization) instead of an SO(3) matrix. Similar quadratic
expressions are also known for the other cases mentioned in
the introduction, e.g. in cholesteric liquid crystals17.

Based on the experience with such systems, there are
two general classes of potential solutions. The first are
helicoidal one-dimensional modulations15, the second are
‘double-twisted’ states which modulate along all possible spa-
tial directions and thus may achieve lower energy. The Z2VC’s
belong to the second type of solutions.

C. The role of the sign of K

The form of the Lifshitz invariants explains why a sign
change of K reverses the sense of rotation of the chirality vec-
tor κ(r) around the core of a Z2 vortex. This happens because
in the Lifshitz terms, the sign change of K can be gauged away
by changing ν 7→−ν, which amounts to interchanging the sub-
lattices B and C.

Unlike the Lifshitz terms, the sign change of K cannot be
gauged away in the exchange anisotropy term (26) generated
by K. This means that the two opposite signs of K do not give
the same distance d between vortices. In particular, a posi-
tive (negative) K effectively increases (decreases) the stiffness
of the 120◦ state, leading to d(|K|) > d(−|K|), which is also
obeyed by the LT approximation dLT, see (20) and Fig. 10.

D. In-plane FM canting

The cross-coupling term in (25) shows that we should ex-
pect a finite FM canting that follows adiabatically the twisting
of �(r). This is consistent with our numerical results pre-
sented above, which showed a finite canting at the cores of
the Z2 vortices. We also know that the smallest Z2VC states
discussed in Sec. IV I have a finite canting everywhere. Of
course, the long-distance action written above needs to be sup-
plemented with higher order processes as we go further away
from the pure HAF model, but the leading cross-coupling term
in (25) already explains that the canting does not arise from a
competing instability mechanism, but it is merely a secondary
effect that is dragged along by the spontaneous formation of
cores.

To analyze this further we integrate out L1 and L2 to obtain

L1 =2ξ
∑
ε

∂ε(µγενγε ), L2 =ξ
∑
ε

∂ε
(
(µγε )2−(νγε )2

)
, (32)

where ξ=
pLif
pL

. Looking back at Fig. 9, for example, and writ-

ing, to leading order in a, ν'A(r) and µ'−(A(r)+2B(r)]/
√

3,
we see that the largest contribution to the right hand sides of
(32) arise precisely at the solitonic cores of the Z2 vortices,
consistent with what we found numerically.

However (32) accounts only for the in-plane component of
the canting. The out-of-plane component does not couple to
the twisting of �(r), and costs a finite amount of energy. Still,
as we found numerically, a finite out-of-plane component is
also present at the cores of the Z2 vortices, showing that this
component is important for sustaining the vortices.

Finally, we can also look at the feedback effect of the cant-
ing on the twisting of �(r). Replacing (32) to the action leads
to a renormalized energy density ε′(r) in terms of �(r) and
L3(r) only:

ε′(r)=−pLif

∑
ε

(µγε∂ενγε−νγε∂εµγε ) (33)

−
p2

Lif

pL

∑
ε

{
(∂ε(µγενγε ))2

+
1
4

(
∂ε[(µγε )2−(νγε )2]

)2 }
(34)
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+ pel-K

∑
ε

(
(∂εµγε )2 + (∂ενγε )2

)
(35)

+ pel-J

(
(∂x′µ)2+(∂y′µ)2+(∂x′ν)2+(∂y′ν)2

)
(36)

+ pLL2
3. (37)

The new quadratic derivative term that appears in (34) gives an
extra contribution to the effective exchange anisotropy, which
is now quartic in the elements of �.

VI. DISCUSSION

The fact that the cores of the Z2 vortices are pinned at
the lattice sites by the Kitaev anisotropy suggests that the
whole stability region of the Z2VC phase may consist of a
cascade of transitions between commensurate vortex crystals,
where the vortex distance is an integer multiple of the lattice
spacing. This may be true especially in the regions close to
the commensurate boundaries of the phase (where the Kitaev
anisotropy is large enough), which in turn would correspond
to an (incomplete) Devil’s staircase scenario.

Next, we discuss the stability region of the Z2VC phase.
The region shown in Fig. 2 concerns the situation at zero tem-
perature and for classical spins only. The effect of thermal
or quantum fluctuations can be gauged by examining the ef-
fect of fluctuations in the neighboring phases, which was cov-
ered already in Secs. III C 1, III C 2, and III A 1. According to
that discussion, thermal and quantum fluctuations favor spins
pointing along the cubic axes and not along the 〈111〉 axes, so
the two smallest Z2VC’s at the two boundaries of the Z2VC
region are penalized. This means that the stability region of
the Z2VC phase should shrink by fluctuations, provided the
corresponding effect of fluctuations of the Z2VC phases them-
selves is weak enough (close to the boundaries). This scenario
is confirmed by the numerical results of Becker et al57, for the
boundary with the AF Kitaev phase and for S = 1/2 spins.

Let us now turn to possible realizations. Naturally, the
Z2 vortex phase can be observed on triangular systems with
AF J > 0 and small |K| � J. By virtue of the local four-
sublattice rotation of Sec. II, this regime can be rigorously
mapped into the FM regime J′=−J<0 and K′= K + 2J≈2J,
thus extending the applicability of the present findings to
FM coupled systems as well. One particular family of com-
pounds closely related to this case is the undoped triangu-
lar cobaltates CoO2, which feature ∼ 90◦ O-Co-O bond an-
gles35. The more recently discovered triangular-lattice iridate
Ba3IrTi2O9

63 seems to fall into the first, AF category, as it
features a strong AF J and small anisotropy |K|� J, see also
discussion by Becker et al.57 However, this compound has an
acentric crystal structure by itself, and therefore any conven-
tional AF order would be already twisted by Dzyaloshinskii-
Moriya interactions, provided further anisotropies do not sup-
press this possibility. Hence, in this material one has to dis-
tinguish between such a more conventional AF Dzyaloshin-
skii spiral state and the present mechanism of the Heisenberg-
Kitaev model, which exists also in any centrosymmetric trian-
gular lattice compound.

Another family of correlated spin-orbital compounds with
the required hexagonal symmetry of the Kitaev anisotropy are
the honeycomb systems with nearly 90◦ bond angles, such as
the iridates Na2IrO3 and Li2IrO3, for which the Kitaev Hamil-
tonian was originally discussed26–28. While these prototyp-
ical honeycomb compounds do not manifest such physics64,
an extensive body of results, both from experiment65–69 and
first-principles ab initio calculations70,71, has consistently re-
vealed that such honeycomb systems are inherently frustrated,
due to the presence of second (and possibly third) neighbor
exchange interactions J2 (J3). This opens the possibility for
realizing particle-like modulations provided the frustration is
strong enough to suppress the more conventional collinear
phases of honeycomb magnets72 and spontaneously break the
inversion symmetry. In the light of our results for the trian-
gular lattice, this scenario becomes particularly evident in the
limit J2 � J where the honeycomb lattice decomposes into
two nearly decoupled triangular sublattices, each one show-
ing a nearly 120◦ order. The spin-orbit interactions will then
again generate Lifshitz invariants along several spatial direc-
tions leading to particle-like modulated phases. Preliminary
MC simulations indicate that the defect lattice indeed survives
coupling of the sublattices by moderate J.

Summarizing, we have presented a generic mechanism for
the condensation of particle-like magnetization modulations
in correlated spin-orbital coupled hexagonal systems, like the
triangular and frustrated honeycomb iridates. In analogy to
the experiments on chiral ferromagnetic helimagnets, mag-
netic small-angle neutron20 or X-ray73 scattering methods can
be used to study such extended mesophases20, as diffraction is
also able to detect the chiral long-period modulation of a pri-
marily AF order74. Direct microscopic observation of AF tex-
tures by magnetic imaging is presently very difficult, similarly
to the imaging of AF domain states. However, the Z2-vortex
lattice is a defect-ordered state which implies a strong inho-
mogeneity of the magnetic moments near the singular defect
cores. Measurements of static internal hyperfine field distri-
butions, e.g., by NMR, µSR or Mössbauer methods, should be
able to discern a Z2-vortex lattice ground state from other un-
conventional magnetic orders like spin-liquids, helimagnetic
or skyrmionic ground states that are essentially homogeneous
and free of defects.
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VII. APPENDIX

A. Harmonic amplitudes

Figure 12 shows the amplitudes Sγ(k) of the spin structure
factor of the optimal Z2VC ground state for 96×96 sites and
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FIG. 12. Logarithm of the amplitudes Sγ(k) of the spin structure
factor for all higher harmonics of Qγ, that appear in the optimal Z2VC
ground state for 96×96 sites and K/J =−0.25, for which d =16. Only
the first 200 momenta are shown for which Sγ(k) & 10−15.

K/J = −0.25, in terms of a sorting index. Only the first 200
momenta are shown, for which Sγ(k) & 10−15. The differ-
ent spin components γ give essentially identical results down
to this precision. The maximum amplitudes correspond to
the first harmonics ±Q(γ) (which coincide with the momenta
X+Gs

1 and X+Gs
2 of Sec. IV G 4) and are equal to Sγ(±Q(γ))'

0.149. The second largest amplitudes correspond to four
points in the BZ, which are related to the second harmonics
±2Q(γ) by reciprocal vectors, with Sγ(±2Q(γ))' 0.0059. The
next amplitudes are Sγ(±3Q(γ)) ' 0.00136, etc. So the am-
plitudes drop very quickly as we go to higher and higher har-
monics. Note that, in total, there are at most 4d2 harmonics,
equal to the number of sites in the magnetic unit cell.

The above numbers can also give an idea about the role of
the higher harmonics in satisfying the spin length constraints.
The latter correspond to the equations:∑

k

Sk · Sq−k = S 2δq,0 , (38)

where here S 2 = 1. To see the role of the harmonics in the
spin length, it suffices to take q = 0 above and then calculate

the contribution to the left hand side over restricted sums of
momenta k that include up to a certain number of harmonics.
For instance, if we include only the first harmonics we get∑

k∈{±Q(γ)}

Sk · S−k =6Sx(Q(x))=0.894. (39)

This means that including higher harmonics should give the
remaining 11% of the spin length. Including the second har-
monics gives:∑

k∈{±Q(γ),±2Q(γ)}

Sk ·S−k =6Sx(Q(x))+12Sx(2Q(x))=0.9648, (40)

and so on. The full spin length is recovered asymptotically by
including all of the 4d2 harmonics.

The higher harmonics are also important for the soliton-like
modulations of the spins in the close vicinity of the cores of
the Z2 vortices (Fig. 9 (a)).

B. Monte-Carlo Simulations and finding the vortices

The classical Monte-Carlo data presented in Figs. 5, 6 and
7 were obtained using simulated annealing down to low tem-
peratures and lattices of up to 96×96 sites. We complemented
the Monte-Carlo simulations by numeric optimization starting
from a low-temperature configuration. The data shown here
were obtained by simulated annealing down to βJ = 100, fol-
lowed by optimization, for 72 × 72 sites. Low-temperature
snapshots give similar results.

The orientation of the plane containing the local 120◦ or-
der is given by the vector chirality κ(r) defined in Eq. (13)
from the three spins around upwards pointing triangles. In the
120◦ states, |κ(r)| = 1 and it points out of the plane of the
spins. The rotation of κ(r) is calculated along closed loops on
the dual lattice given by every third upward pointing triangle.
The results shown here were obtained by rhombus-loops con-
necting four triangles at r, r+3a , r+a−b and r+a−c, results
with other rhombus loops and with triangular loops connect-
ing only three triangles are equivalent. If all rotations along a
loop were around the same axis, the vorticity would be quan-
tized to 0 or 1 on each individual plaquette. As the rotation
axes can vary, this does not have to hold. In some places, it
adds to one on two neighboring plaquettes.
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