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Abstract 

The aim of this research has been to study and develop the engineering principles 

associated with the impact of formulation and device parameters on the safe delivery 

of nano-sized biomaterials such as plasmid DNA. In the present investigation, Omron 

U22 and U03 mesh nebulisers operating at frequencies of ";'175 kHz and -65 kHz 

respectively were used. Since the U22 device is a recently introduced mesh nebuliser 

for respiratory drug delivery, detailed characterisation, experimentation, modelling and 

analysis was carried out for this device. 

Plasmids of size 5.7, 8.7, 13 and 20 kb were purified from Escherichia coli cells and 

used for nebulisation experiments. Experiments on the nebulisation of plasmid DNA 

using the U22 device in a bio-safety cabinet showed no damage to the sc structure of 

the 5.7 kb plasmid, but almost complete damage to the 20 kb plasmid in the condensed 

aerosols collected using a fabricated aerosol collection apparatus. The damage to the 

sc structure of plasmid DNA was analysed using gel eltictrophoresis, PicoGreen assay 

and atomic force microscope (AFM). Engineering analysis was performed using 

computational fluid dynamics (CFD) modeling to determine the shear and elongational 

strain rates in the mesh nozzle of nebuliser. The estimated maximum hydrodynamic 

force on plasmid DNA based on the Ryskin equation was calculated in picoNewton 

(PN) from the actual molecular size of the sc structure and predicted strain rates. 

Optimisation of the formulation and device parameters were carried out using Design 

of Experiments (DOE) to predict damage to the sc structure. Formulation of the 20 kb 

plasmid with polyethyleneimine (PEI) resulted in safe aerosol delivery using the mesh 

nebuliser. In vitro transfection studies in suspension-adapted Chinese Hamster Ovary 

(CHO-S) cells resulted in successful integration of Green Fluorescent Protein (GFP) 

from the 5.7 kb plasmid after nebulisation. 

The commercially available U22 mesh nebuliser promises to be a useful pulmonary 

device for the successful delivery of plasmid DNA for non-viral gene therapy. 

Realisation of this promise however will require both innovations in the design of 

experiments, formulation and methods of studying plasmid DNA damage as 

demonstrated in this thesis. 
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CHAPTER 1. INTRODUCTION 

1 Context ofthe Research 

The identification of the genes III the human genome project has opened up 

opportunities for the treatment of genetic and acquired human diseases. The advent 

. of recombinant DNA technology has seen the production of recombinant proteins 

from therapeutic genes using cell culture technology. The targeted delivery of 

therapeutic genes to diseased cells promises a better approach than such proteins. 

The disadvantages of direct admini~tration of proteins include bioavailability, 

systemic toxicity, in vivo stability, high hepatic and renal clearance rates, and the 

high cost of manufacturing [Han et aI., 2000]. The vectors reported in gene therapy 

clinical trials are predominantly viral, with a steady increase in the use of non-viral 

vectors. The disadvantages of viral vectors including insert-size limitation, safety 

(immunogenicity) and manufacture, have led to an increased focus on the use of non­

viral vectors for gene therapy. The main hurdle for the successful application of gene 

therapy is the safe delivery of the vector to the targeted cells to obtain efficient gene 

expression. 

Presently, plasmid DNA is the most common vector for non-viral gene therapy, 

although non-viral genetic techniques such as RNAi (RNA interference) and RNAa 

(RNA activation) have been recently· discovered. The challenge for delivery of 

plasmid DNA for non-viral gene therapy is the retention of the fragile supercoiled 

(sc) structure of the plasmid during formulation and delivery to the targeted site. In 

order to ensure regulatory compliance and maximum bioavailability to the cells, the 

sc structure of plasmid DNA needs to be preserved intact during delivery. Pulmonary 

delivery of plasmid DNA is a promising emerging non-invasive delivery route using 

respiratory devices such as nebulisers and dry powder inhalers. Nebulisers have the 

advantages of less challenging formulation requirements, large' dosage handling 

capability, ease of operation and continuous aerosol delivery. 

I 
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. Chapter I: Introduction 

This thesis reports the results of a close collaboration between Loughborough 

. University and University College London. Research has focussed on the use of a 

mesh nebuliser for safe delivery of the sc structure of different sized plasmids, 

determination of the sc structure of plasmids using AFM, CFD modelling to predict 

the hydrodynamic force on the sc structure, alternative formulations and bio-efficacy 

studies on transfection of aerosolised plasmid DNA in a mammalian cell line such as 

Chinese Hamster Ovary cells. This introductory chapter presents the basic aspects of 

gene delivery, a brief statement of the problem and the structure of the thesis. 

1.1 Delivery of non-viral gene therapeutic 

Vectors for gene transfer may be classified based on the mode of delivery as 'in vivo' 

and 'ex-vivo'. In vivo delivery is the trimsfer of genetic material either locally (eg. 

intra-muscular, intra-tuInoral injection, inhalation, local permeation) or systemically 

(intravenous injection) to the intact body. Ex vivo delivery occurs when the transfer of 

genetic material is performed on cells or tissues that are first explanted, cultured in the 

laboratory, and then re-implanted into the patient. In this thesis, an ultrasonic mesh 

nebuliser has been used for engineering studies on the aerosol delivery of plasmid 

DNA for in vivo gene delivery. 

Pulmonary delivery of therapeutics is a non-invasive approach for the treatment of 
i .. 

respiratory diseases. With the recent approval in the pulmonary delivery of insulin, this 

delivery route also offers promise for the treatment of systemic diseases. A number of 

challenges to the pulmonary delivery of plasmid DNA via conventional jet 

nebulisation include damage to the sc structure due to the shearing effects associated 

with nebulisation, the requirement· to produce aerosol droplet sizes appropriate' for 

optimal delivery to the peripheral lung and to maximise the dose of DNA delivered to 

lung surfaces. Non-viral polyplexes are emerging as suitable candidates for use in 

pulmonary inhalaiion gene therapy. PEI-based formulations .appear to be good 

candidates for aerosol delivery of genes for the treatment of a variety of genetic 

pulmonary disorders, including lung tumors. This thesis focusses on the study of both 

formulation for delivery and delivery of plasmid vectors via nebulisers and the 

engineering required to enable this delivery. 
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· Chapter I: Introduction' 

1.2 Statement of the problem 

Aerosolisation of plasmid DNA is a challenge using pulmonary devices due to the 

requirement to protect the fragile supercoiled structure against damage. The main 

objective of this' investigation was to study. and develop the engineering principles 
, 

associated with the impact of fonnulation and device parameters on the safe delivery 

of plasmid DNA. The motivation for the work resulted from the need for development 

of a supercoiled plasmid DNA-based fonnulation for safe aerosol delivery using a 

commercial drug delivery device with potential applications for the treatment of 

respiratory and systemic diseases. The main advantage of using a clinically proven 

nebuliser device is that it can be readily tested in pre-clinical trials for the safe and 

, efficient delivery of plasmid DNA and does not require regulatory approval as a 

device. 

1.3 Structure of the PhD thesis 

The structure of the PhD thesis is summarised here to provide a concise description of 

the chapters for the reader. Chapter 2 provides a detailed review of work on the basic 

aspects of gene therapy with an emphasis on aerosol non-viral gene delivery of 

plasmid DNA and current status of gene therapy clinical trials. A review' of the 

delivery systems reported in the literature shows the significance of pulmonary drug 

delivery. A description of the drug delivery devices used for the respiratory tract with 

emphasis on nebuliser devices and the scope for targeted pDNA delivery using 

magnetofection are summarised. The theories postulated for aerosol generation from 

an ultrasonic nebuliser are discussed. The chapter ends with a roadmap to non-viral. 

gene therapy starting With the fonnulation of plasmid DNA and ending with gene ' 

therapy clinical trials. 

Chapter 3 presents the materials and methodology adopted for the experiments. The 

principle of operation of the mesh nebulisers, MicroAir® (NE-U22) and Ul(NE-U03), 

designated as U22 and U03 mesh nebulisers respectively are discussed. The methods 

used for the purification, fonnulation, nebulisation and analysis of plasmid DNA are 

discussed. The protocol adopted for high-speed imaging of aerosol generation and 
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transfection of suspension adapted Chinese hamster ovary (CHO-S) cells with the 

formulated plasmid is described in detail. 

Chapter 4 discusses the purification and nebulisation of plasmid DNA. In this chapter, 

super-coiled plasmids of size 5.7, 8.7, 13 and 20 kb are purified from E. coli cells and 

the purity of sc structure assessed as per the specifications recommended for gene 

therapy. The characterisation of the mesh nebulisers in tenns of nozzle dimensions and 

nebulisation rate is detennined. The integrity of the sc structure upon nebulisation of 

. the plasmid fonnulations in the V22 and V03 mesh nebulisers is determined using 

agarose gel electrophoresis, and the PicoGreen assay. Analysis of the gel 

electrophoresis and the PicoGreen assay results suggested that the sc structure of the 

5.7 kb plasmid was intact while that of the 20 kb plasmid. was damaged after 

nebulisation. Atomic force microscopy (AFM) enabled visual examination of the sc 

structure of the 5.7 and 20 kb plasmids before and after nebulisation. 

Chapter 5 discusses an initial experimental and statistical modelling study to identify 

the effect of fonnulation and device parameters on damage to the sc structure upon 

nebulisation of a 20 kb plasmid using a response surface method (RSM) based on 

design of experiments (DOE). The RSM study enabled development of a response 

equation to predict the damage to the sc structure of the 20 kb plasmid upon 

nebulisation. Analysis of the model suggested the minimum predicted damage to ,the 

sc structure at different nozzle sizes and ionic concentrations. 

In chapter 6, engineering analysis of the nebulisation of plasmid DNA is reported. 

High-speed imaging of aerosol generation from the mesh nebuliser is examined to 

detennine the residence time and pressure amplitudes' in the nozzle of the nebuliser 

and consider the possible effect of cavitation on damage to the sc structure. The 

mechanism of supercoiled plasmid degradation and the time scales involved in the 

aerosolisation process are discussed. Estimation of the maximum hydrodynamic force 

on the sc structure from the mechanics of fluid flow through the nozzle of the mesh 

nebuliser using computational fluid dynamics and AFM imaging is reported. The 

extent of plasmid DNA degradation after nebulisation for different sized plasmids 

enables a linear extrapolation of the plasmid size for safe delivery of the sc structure. 
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Chapter 7 discusses the parameters influencing plasmid DNA damage .in the mesh 

nebuliser. DOE studies to detennine the influence of plasmid size and damage with 

respect to key device parameters such as nozzle size and frequency are discussed. 

Damage to the 20 kb plasmid was observed to be higher with the 3 J.lm nozzle than 

with the 5 J.lm nozzle. Nebulisation using the U03 mesh nebuliser operated at 65 kHz 
. . 

resulted in more damage to plasmids of size <13 kb than using the U22 mesh nebuliser 

at 175 kHz. The interaction between the parameters and damage to sc structure of the 

plasmid is reported. 

Chapter 8 discusses the fonnulation of the 20 kb plasmid to protect the sc structure 

during nebulisation in the mesh nebuliser. Fonnulation with an adjuvant and cationic 
) 

gene delivery agent such as DEAE-dextran resulted in retention of 15% of the sc 

structure on nebulisation. Fonnulation of the 20 kb plasmid with PEI resulted in 

protection of the sc structure as continned by PicoGreen assay. AFM imaging of the 

fonnulated plasmid nanoparticles enabled visualisation .of the extent of complexation 

of sc pDNA with the cationic substrate. 

In chapter 9, transfection studies on suspension-adapted Chinese Hamster Ovary 

(CHO-S) cells using fonnulated 5.7 kb plasmid bearing the Green fluorescent protein 

(GFP) gene before and after nebulisation are reported. Fonnulation of the 5.7 kb 

plasmid was attempted prior to transfection in order to transfect the cells efficiently in 

suspension culture medium. Lower GFP expression was observed with PEI fonnulated 

5.7 kb plasmid after nebulisation than with before nebulisation, possibly due to 

compaction of the nanoparticle during the nebulisation process. However, the 

nebulised 5.7 kb plasmid when fonnulated with PEI prior to tr~sfection resulted in 

. comparable transfection efficiency to the unnebulised plasmid. The plasmid DNA 

delivery efficiency in the transfected cells using the condensed aerosols detennined 

using a flow cytometer is reported to validate the earlier results that the sc structure of 

the 5.7 kb plasmid is not damaged upon aerosolisation. 

Chapter 10 discusses the conclusions of the research and the key parameters for 

aerosol delivery of supercoiled plasmid DNA in a mesh nebuliser. This chapter 

summarises the contribution of the research in the aerosol delivery of plasmid DNA 

for non~viral gene therapy. The opportunities for future research and the next steps for 

further work in this area are highlighted. 
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CHAPTER 2. REVIEW OF LITERATURE 

2.1 Introduction to the chapter 

This· chapter provides a review of gene therapy and focuses on plasmid DNA as a 

non-viral gene therapeutic. A brief overview of the therapeutic genes used in gene 

therapy, the production and processing of plasmid DNA, andthe quality of plasmid 

DNA are discussed. The present status of plasmid DNA in gene therapy clinical 

trials is analysed based on the data available in the clinical trials website 

(www.wiley.co.uklgenetherapy/clinical).Fromthisinformation.itis clear that there 

is scope for increasing use of plasmid DNA in future gene therapy clinical trials. The 

formulation of plasmid DNA for non-viral gene delivery, the sequence of processes 

leading to non-viral gene delivery into the cells and the barriers for gene delivery 

through the pulmonary route are discussed. The different routes for delivery of 

plasmid DNA are reported with typical therapeutic targets for each route. The 

devices used for pulmonary delivery such as pMDls, DPls and nebulisers are 

reviewed. The importance of mesh nebulisation technology in pulmonary delivery of 

macromolecules is highlighted. New aerosolisation devices in development such as 

those based on electro-mechanical and electro-hydrodynamic approaches and 

. physical methods of targeted gene delivery such as magnetofection are also 

discussed. The use of a commercial pulmonary delivery. device based on mesh 

technology to deliver the supercoiled structure of plasmid DNA is the central theme 

of this thesis. 

2.2 Gene therapy 

The advent of genetic engineering resulting in an unprecedented elucidation of genetic 

data from genomic sequencing and gene chip analysis, and developments in 

bioprocess engineering has helped identify and mass produce therapeutic genes, 

leading to the development of new gene-engineered therapies. Application of human 

gene therapy has been the hope for new therapeutic approaches [Rubanyi, 2001]. 
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Somatic gene therapy is gene transfer targeted at only the genetic material of tissues 

that do not contribute to hereditary transmission, for instance muscles, lung, brain, 

bones, kidney and heart. In contrast, 'genn line' gene therapy refers to gene transfer to 

germ cells for the modification" of the genome for transmission to subsequent 

generations. The term 'gene therapy' in this thesis refers to 'somatic gene therapy' 

unless indicated otherwise. The objective of somatic gene" therapy is to deliver 

functional groups of nucleic acids to target cells. The subsequent alteration in the 

production of a specific protein or changes in protein expression" results in a" 

therapeutic benefit. 

Over 4000 human diseases are essentially disorders of genes caused by inborn 

alterations in a single gene. While common therapeutic drugs often treat symptoms, 

gene therapy focuses on gene transfer for treating or eliminating the cause of a disease 

[Mountain, 2000]. Gene-based medical interventions will be of critical importance in 

creating vaccines and antiviral therapies for HIV, hepatitis, herpes and other viral 

illnesses, as well as for developing new strategies for the prevention and treatment of 

emerging diseases [Hellermann and Mohapatra, 2003; Liu and Uimer, 2005]. The field 

of gene therapy has constantly evolved since its inception, moving from ex vivo to 

direct in vivo gene-based medicine [Rolland, 2005]. Although newer delivery 

techniques are being developed, choosing the right approach for administration Of 

gene medicine to the targeted cells still remains an issue and poses a significant " 

constraint on the success of gene therapy. 

2.2.1 Vectors for gene therapy 

Gene therapy essentially involves treatment of a disease by delivering therapeutic 

genes packaged in viral or non-viral vectors to, target cells in order to replace 

malfunctioning or missing genes. The main "viral vectors used for gene "transfer are 

retrovirus, adenovirus and adeno-associated virus. Viral vectors have been more 

efficient in transfection (introduction of therapeutic DNA into cells) than non-viral 

vectors. Most gene therapy experiments and clinical trials use viral vectors for gene 

delivery. The first application of gene therapy occurred with the transfer of naked 

DNA leading to the expression of the transgene [Wolff et aI., 1991). Synthetic non-
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viral vectors can be formed by condensing the plasmid DNA containing the 

therapeutic nucleic acid with cationic lipids or polymers to form lipoplexes or 

polyplexes respectively, and with both to form lipopolyplexes [Montier et aI., 2004]. 

The disadvantages of viral vectors. concerning insert-size limitation, safety 

(immunogenicity) and manufacture have led to an increased focus on the use of non­

viral vectors for gene therapy [El-Aneed, 2004; Rots et aI., 2003]. A comparison of the 

factors considered when choosing between viral and non-viral vectors is shown in 

Table 2.1. Non-viral vectors have a more positive impact over viral vectors for the 

success and application of gene therapy. 

Table 2.1: Viral and non-viral vectors for gene therapy 

Factors Vector for gene therapy Reasons for positive impact 
Viral Non-viral 

Culture of cell +++ +++ Simple, robust, and high . 

lines (in vitro) efficiency of gene transfer 
Culture of +++ + High gene transfer efficiency due 
primary cells (in. to integration of viruses into host 
vitro) genome. 
Overall +++ + Viral vectors achieve higher gene 
transfection , transfer rates in vivo and in vitro 
efficiency than non-viral. 
Transgene + +++ Non-viral ability to transfect 
capacity larger DNA sequences (> 100 kb). 
General safety + +++ Non-viral systems generally non-

infectious. 
Cost + +++ Non-viral transfection reagents 

are inexpensive compared to viral. 
Time + +++ More time required to develop a 

viral vector compared to non-
viral. 

Gene delivery ~ + + Unclear - Major obstacle facing 
In vivo and Ex the development of gene therapy 
vivo 

The· disadvantage of viral vectors over non-viral for treatment of respiratory diseases 

such as cystic fibrosis is that repeated administration of the viral vectors is not possible 

due to recognition by the immune system. Therefore non-viral vectors being non­

immunogenic upon repeated administration have distinct advantage over viral vectors. 

8 
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2.2.2 Non-viral gene therapeutics 

Non-viral gene therapeutics have the potential to provide nucleic acid-based drugs that 

could be' more effective than traditional pharmaceuticals. They overcome the 

limitations assoCiated with the direct administration of therapeutic proteins, which 

include low bioavailability, systemic toxicity, in vivo instability, high hepatic and renal 

clearance rates, and the high cost of manufacturing [Han et al., 2000]. 

The simplest non-viral gene therapeutic system uses 'naked' plasmid DNA, which 

when injected directly into certain tissues, particularly muscles, produces significant 

levels of gene expression, though lower than those achieved with viral vectors. Sin7e 

plasmid DNA is susceptible to rapid degradation upon entry into the cell in the extra­

cellular milieu, protection from that degradation could be expected to lead to higher. 

levels of gene expression. Plasmid DNA, being anionic in nature, readily forms a 
. . 

complex with cationic substrates such as cationic lipids and cationic polymers. 

Another non-viral approach employs a peptide nucleic acid (PNA) clamp to directly 

and irreversibly modify plasmid DNA, without affecting either its conformation or its 

ability to be efficiently transcribed. This strategy helps to "functionalise" the gene by 

direct coupling ofligands (fluorophores, peptides, proteins, sugars or oligonucleotides) 

to plasmid DNA. The usefulness of this technique is that it provides versatile tools for 

specific targeting and efficient delivery, thereby overcoming the obstacles of synthetic 

non-viral gene delivery systems [Zelphati et aI., 2003]. 

A novel non-viral approach, RNA interference (RNAi) is gaining recognition as a 

powerful tool in g~ne therapy for post-transcripti~nal gene silencing [Agami, 2002; 

Genc et aI., 2004]. With RNAi, small sequence specific, double-stranded, short 

interfering RNA (siRNA) molecules bind to a complementary portion of mRNA and 

either prevent it from being translated or trigger its destruction. The specific gene­

targeting technology of RNAi to shut down the expression of a disease-causing gene 

has added to the benefits of gene therapy [Orive et aI., 2003]. 
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2.2.3 Plasmid DNA-based non-viral gene therapeutic 

The use of plasmid DNA as a non-viral vector for gene therapy has shown promise in 

the development of new therapeutics [Wolff, 2005]. Plasmids are extra-chromosomal 

DNA capable of being transmitted from cell to cell. They are super-coiled, circular 

covalently closed (ccc) strands of DNA ranging from 5 kb to 400 kb that replicate 
< • 

independently of the host DNA. The essential components of a non-viral plasmid 

DNA based gene therapeutic' approach include (i) a therapeutic gene encoding a 

specific protein; (ii) a gene expression plasmid controlling the ftmction of the 

therapeutic gene within the target cell; and (iii) a gene delivery system controlling the 

delivery of gene expression plasmid to specific locations within the body. 

2.2.3.1 Therapeutic gene 

Over 1300 different gene types have been transferred in gene therapy clinical trials 

worldwide. The diseases addressed by gene therapy clinical trials are reported in 

section 2.2.4. An example indicates the approach based on gene therapy for the cure of 

cystic fibrosis (CF) [Moraes and Downey, 2004; Klink et aI., 2004]. CF is a common 

genetic disease occurring due to a recessive genetic mutation that causes deficiencies 

in the transport of salt across the membranes of secretory cells. This abnormal 

metabolic transport causes the accumulation of thick, sticky mucus in the respiratory 

and digestive tracts, leading to recurrent lung infections, pulmonary damage and 

difficulties in food intake. Clinical trials in CF patients have been conducted using 

cationic liposomes carrying the genes for the Cystic, Fibrosis Transmembrane­

conductance Regulator (CFTR) [Rochat and Morris, 2002; Brown, 2002]. 

2.2.3.2 Gene expression plasmids 

Essentially, gene expression occurs in two steps: (i) transcription - a process of 

converting information encoded in DNA into a molecule of RNA, the messenger RNA 

(mRNA) and (ii) translation - a process of converting information encoded in the 

nucleotides of mRNA into a defined sequence of amino acids in a protein. A gene 
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expression plasmid is a plasmid DNA which is capable of expression of the 

therapeutic gene into the desired protein. 

2.2.3.2.1 Production and processing of plasmid DNA 

Preparation of plasmid DNA is a simpler manufacturing process thim the viral 

packaging and purification method [Spack and Sorgi, 2001]. Although non-viral 

vectors are less effective than viral forms, the' relative ~ase of plasmid DNA 

production poses no constraint to the quantity of plasmid DNA that could be used for 

gene therapy [Wahlung et ai., 2004]. Recent advances in the large-scale manufacturing 
. , 

process for production of pDNA as a DNA vaccine for an influenza pandemic have 

been reviewed to explore the potential of non-viral over viral gene therapy [Hoare et 

al., 2005]. The production of pharmaceutical grade ccc plasmid DNA [Prather et ai., 

2003] essentially involves the steps of: (i) cloning the therapeutic gene into a plasmid 

vector, (ii) transforming the plasmid into Escherichia coli, (iii) cultivating E. coli cells 

in bioreactors for mass plasinid production and (iv) cell lysis and purification of 

plasmid DNA. Extensive purification procedures are required to ensure that the gene 

product contains a high percentage of plasmids in super-coiled form. Interest in 

producing large quantities of super-coiled plasmid DNA has recently increased as a 

result of the rapid evolution of gene therapy and DNA vaccines [Ferreira et ai., 2000]. 

Plasmid DNA is a very fragile molecule and is highly susceptible to shear during the 

manufacturing process. Medium to high shear processes such as mixing, turbulent 

flow during transport, filtration, lyophilization, and spray-drying are commonly 

encountered in the operations of a plasmid manufacturing process. Since any breakage 

in the DNA strand affects the quality and performance of the gene product, especially 

if the damage is in the promoter or gene-coding region, it is necessary to address the . '. . 
potential of shear related damage that may occur during processing of the DNA 

[Lengsfeld and Anchordoquy, 2002]. A method for protection of plasmid DNA from 

high shear induced damage uses simple divalent cations and the Iyophilizable alcohol, 

tert-butanol, to selfcassemble DNA into condensed, shear-resistant forms [Knight and 

Adami, 2003]. As a result of their economic importance, the developme)1t of plasmid 

DNA production and purification strategies for gene-therapy vectors have been' 
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perfonned in phannaceutical . companies within a confidential environment. 

Consequently, detailed infonnationon large-scale plasmid purification is not available 

. to the scientific community. 

2.2.3.2.2 Quality of plasmid DNA for gene therapy 

The manufacturing of plasmids compliant to current Good Manufacturing Practice. 

(cGMP) as required by the Food and Drug Administration (FDA) and the European' 

Medicines Evaluation Agency (EMEA) is crucial to obtain a product that is consistent 

in purity, potency, identity, efficacy and safety [Prazeres and Ferreira, 2004]. Possible 

contaminants in a plasmid DNA preparation include genomic DNA, RNA, protein, 

lipids and microflora. The level of contaminants in plasmid DNA preparations can be 

checked by quality assurance tests (Table 2.2) to meet the specifications required for 

administration as a gene. therapeutic [Schleef and Schmidt, 2004]. Supercoiled 

multimeric plasmids are of interest for phannaceutical purpose because they contain 

multimeric copies of therapeutic gene and can therefore be more efficient vectors [VoP 

et al., 2003]. 

Table 2.2: Quality assurance tests of plasmid DNA preparation for gene therapy 

S.No. 
1 
2 
3 

4 
5 

6 

7 
8 
9 
10 

11 

Test 
DNA concentration 
General urity 
Homogeneity (ccc 
content) 
Purity (visible) 
Purity (genomic DNA) 

Purity (RNA) 

Purity (protein) 
Purity (LPS) 
Purity (microorganisms) 
Identity (vector structure) 

Anal tical Method 
UV-abso tion (260 nm) 
UV-scan 220-320 nm) 
CGE (capillary gel electrophoresis) 

Visual ins ection 
Agarose gel (visual); Southern blot; 

uantitative PCR ( 01 merase chain reaction) 
Agarose gel (visual); fluorescence 
assay; uantitative PCR 
BeA (Bicinchoninic acid) test 
LAL (Lymulus ameboc e lysate) test 
Bioburden test; sterility test 
Restriction fragment length confonns to 
reference in AGE 1-3 enz mes) 
Se uencing (double strand) 
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2.2.4 Gene therapy clinical trials 

The Journal of Gene Medicine clinical trials website 

(http://www.wiley.co.ukigenetherapvlclinicaID provides updated infonnation on the 

world-wide clinical trials in gene therapy. The vectors used and the diseases addressed 

in the gene therapy clinical trials are shown in Figure 2.1. Viral vectors have been the 

most frequently employed vectors in the clinical trials, with adenovirus and retrovirus 

. being the most widely used. Plasmid (naked) DNA and other non-viral vectors have 

been used in about one-quarter of the trials. Comparison of the plasmid DNA clinical 

trial infonnation over the past few years has shown a steady increase in the number of ' 

clinical trials [Forde, 2005]. Among the therapeutic targets addressed in gene therapy 

clinical trials (Figure 2.1 b), unmet medical needs such as cancer, cardiovascular, 

monogenic and infectious diseases have received major attention. Plasmid DNA and 

viral vector-based cancer vaccines have many inherent features that make them 

promising cancer vaccine candidates [Anderson and Schneider, in press]. 

Analysis of the status of gene therapy clinical trials for the four dominant vectors 

(Figure 2.2) shows that the percentage of open clinical trials with naked/plasmid DNA 

is higher than that for the adenoviral and retroviral vectors. From Table 2.3, plasmid 

DNA leads in the percentage of open trials for the clinical phases of testing and also 

has the least number of closed clinical trials suggesting that results in the early clinical 

phase are encouraging. Although gene therapy clinical trials have been carried out for 

more than a decade, the small number of clinical trials in phase III (Table 2.3) suggests 

that the commonly used gene delivery approach of intervention by injection could be 

one of the bottlenecks in gene therapy. The route toplasmid DNA delivery into cells is 

discussed in section 2.4.1. Currently, there are no clinical trials using pDNA for 

intervention by the pulmonary route [http://clinicaltrials.govl]. 
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Figure 2.1: Gene therapy clinical trials: (a) vectors used, (b) diseases addressed (Data 

taken from website http://www.wiley.co.uk/genetherapY/c1inica\/ as of July 2007). 
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Figure' 2.2: Comparison of the main vectors used in gene therapy clinical trials (Data 

taken from: http://www.wiley.co.ukigenetherapy/clinical/ dated as ofJuly 2007). 

Table 2.3: Main gene tI1erapy vectors in the clinical phase of the gene therapy trials 

Number of 0 en Clinical phase 
stage Plasmid DNA ofection Adenovirus Retrovirus 

Phase I 38.6 28.4 32.0 31.5 
Phase IIlI 12.1 7.8 8.2 12.8 
Phase II 11.2 6.9 8.5 3.6 

Phase IUIII 0.8 o 0.9 o 
Phase III 1.2 1.0 1.5 o 
Closed 36.1 55.9 48.9 52.1 

• - Source: http://www.wiley.co.ukigenetherapy/clinicail dated as of July 2007. 

2.3 Formulation for non-viral gene delivery 

The development of non-viral gene transfer methods requires' proper formulations that 

are both effective in vivo and non-toxic. The development of non-viral gene vectors for 

therapeutic delivery must take into account the stability of the vector when exposed to 

physiological conditions. Aqueous formulations of non-viral vectors at the high 
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concentrations necessary for clinical trials are very unstable when compared to frozen 

formulations [Anchordoquy et al., 2004b]. 

Cationic liposomes (Iipoplexes) and cationic polymers (polyplexes) are the most 

frequently used non-viral gene, transfer systems. Lipoplexes have been used as 

nonviral vectors in human clinical trials of gene therapy worldwide [Martin et al., 

2005; Ewert et al., 2005]. Electrostatic interactions between the positive charges of the 

cationic lipid headgroups and the phosphate DNA backbones are the main driving 

force for the lipoplex formation [Elouahabi and Ruysscharet, 2005]. Complexes 
I 

between cationic lipids and plasmid DNA are typically prepared by mixing preformed 

cationic liposomes and DNA in an aqueous solution [Hirko et al., 2003]. A scalable 

and extrusion-free method for efficient liposomal encapsulation of plasmid DNA for 

gene therapy has been reported [Jeffs et al., 2005]. Developing nonviral, 

pharmaceutical formulations of genes for human therapy is important in functional 

turnor targeting of gene therapeutics. Ligand-directed lipoplex targeting enables dual 

expression of ligands such as folate, transferrin or anti-transferrin-receptor antibody, 

and lipoplexes. Such targeting methods have been used for gene delivery and 

expression in human breast, prostate, head and neck cancers [Schmidt-Wolf and 

Schmidt-Wolf,2003]. 

The common cationic polymers used for complexing plasmid DNA include 

poly(ethylenimine) (PEI), poly(L-lysine) (PLL), Chitosan, Dendrimers and Poly(2-

dimethylamino) ethyl methacrylate or pDMAEMA. The cationic lipids include N[I­

(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride) (DOTMA), 3P[(N­

(n' ,N' -dimethylaminoethane )-carbamoyl]cholestero I (DC-Chol), 2,3-dioleyloxy-N-[2-

(sperminecarboxamido) ethyl]-N ,N-dimethyl-I-propanaminium trifluoroacetate 

(DOSPA) and a neutral phospholipid, such as dioleoylphosphatidylethanolamine 

(DOPE) [Mahato, 2005]. The DNA/cationic polyplexes are generally made in Iow salt 

solutions, because the complexes form micron-sized aggregates in either physiological, 

saline or in blood. Polyethylenimine (PEI) is the most efficient nonviral gene vector 

for transfer of plasmid DNA. Gene transfer efficiency and cytotoxicity with 

PEVpDNA complexes depend on the molecular weight of PEI [Demeneix and Behr, 

2005]. Smaller PEls of size < 25-kDa, although less efficient are non-cytotoxic. 

Increase in gene transfer efficiency with minimal cytotoxicity can be achieved by 
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cross-linking of small PEIs with potentially biodegradable linkages [Thomas et al., 

2005]. 

Among the biodegradable polymers, cyclodextrin and chitosan provide a suitable 

substrate for formulation. Cyclodextrins are useful templates for further modification 

to produce molecular constructs capable of enhanced gene delivery. Polycationic .. 

cyclodextrin utility in promoting DNA cellular-uptake is dependent on proteoglycan­

mediated binding to cells [Cryan et al., 2004]. PEGylation is a common and effective 

means of conferring salt stability to polyplexes. The most striking difference between 

cationic lipids and cationic polymers is the ability of the latter to more efficiently 

condense plasmid DNA [Agarwal et aI., 2005] . 

. Chitosan is a non-toxic biodegradable polysaccharide composed of two subunits, D­

glucosamine and N-acetyl-D-glucosamine, linked together by a P(1,4) glycosidic 

bond. Cationic---<:harged chitosan interacts with the negatively charged phosphate 

groups of DNA [Richardson et al., 1999]. Because chitosan is a mucoadbesive 

polymer, chitosanlDNA complexes are attractive candidates for transfecting 

gastrointestinal epithelia and/or immune cells in gut-associated lymphoid tissue after 

being carried across the mucosal boundaries. In one report cells transfected with 

lactosylated chitosan had a gene expression higher than PEI-mediated transfection 

[Erbacher et aI., 1998]. 

2.4 Non-viral gene delivery 

Recent developments in the formulation of plasmid DNA for production of non-viral 

gene therapeutics should pave the way for the preparation of gene therapies to treat a 

wide range of inherited and acquired human diseases. However, the design of an 

optimal gene delivery system for effective non-viral gene therapy is limiting 

progress. Gene delivery systems should serve to protect the plasmid DNA. from 

premature degradation in the extra-cellular milieu, mediate non-specific or cell­

. specific delivery to target cells and facilitate intracellular trafficking [Mabato et aI., 

1999]. The main hurdle to the success of plasmid DNA based gene therapy is the 

lack of efficient, spe~ific and safe DNA delivery systems that can permeate the 

physiological (extracellular) and biological (intracellular) barriers to gene transfer 

17 



c-----------------------------------c--

Chapter 2: Review of Literature 

. and expression [Luo, 2004; Davis, 2002; Pilewski, 2002]. The physiological barriers 

to gene delivery are mainly influenced by the methods of protection of DNA and the 

delivery route chosen for administration of the gene therapeutic. The biological 

barriers arise from intracellular events in the gene transfer route. which include cell 

membrane entry, endosomal release, nuclear localization and gene expression 

[Pouton, 1999]. The immunological barriers to non-viral DNA delivery result from 
. . , 

the activation of the innate immune system by the plasmid DNA [Hofland et al., 

.2004]. A schematic of physical processes involved in gene transfer of cationic -

plasmid formulation into targeted cells is shown in Figure 2.3. 

Polyethylenimine (PEI) is the compound with the highest charge density and a high 

intrinsic endosomolytic activity because of a strong buffer capacity at virtually any 

pH. PEI is only partially protonated at physiological pH. The positively-charged 

PEIIpDNA complex enters through the cell membrane by endocytosis resulting in 

the formation of endosomes.· Upon acidification within endosomes or 

endolysosomes, PEI is thought to act as a proton sponge, with the protonation 

presumably triggering passive chloride ion influx. Proton and chloride ion 

accumulation is followed by the influx of water, causing osmotic swelling with 

subsequent endosome rupture, thus allowing the escape of polyplexes into the 

cytosol [Kirchies et aI., 2001]. Endosomal release resulting in high transfection 

efficiency is reported for PEIs with molecular weights above approximately 10 kDa. 

Although the exact mechanism of entry of polyplexes into the nucleus· is not 

understood [Densmore, 2003], it has been reported that formulation aids in high 

transfection efficiency. 

2.4.1 Route for plasmid DNA delivery into cells -

Upon administration, non-viral vectors have to encounter extra-cellular barriers before 

- -. they reach the targeted cells for gene transfer. To reach target cells, non-viral vectors 

must pass through capillaries, avoid recognition by mononuclear phagocytes, emerge 

from the blood vessels to the interstitial sites, and bind to the surface of the target cells 

[Nishikawa et al., 2005]. Cationic vectors may attract serum proteins and blood cells· 

when entering into blood circulation; this attraction results in dynamic changes in their 

physicochemical properties. 
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Figure 2.3: A schematic showing the trafficking of a cationic lipid/plasmid DNA 

complex during the transfection process in targeted cells. 

Biological barriers compromise the delivery of plasmid DNA in the targeted cell to 

gene expression resulting in lower therapeutic efficacy. The sequence of events. 

leading to gene delivery upon entry into the cell include: (i) endocytosis, (ii) 

dissociation of plasmid DNA from its non-viral carrier, and (iii) pDNA uptake in . 

nucleus fortransgene expression [Poulton and Seymour, 2001]. 

2.4.1.1 Endocyt'osis 

After delivery to the targeted cell, virall non-viral vectors enter through endocytosis, , 

an internalisation process for the degradation of foreign! extracellular material. For 
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efficient gene transfer, the cytosolic release of plasmid DNA is a prerequisite for 

nuclear translocation. Since entrapment and degradation of plasmid DNA in endo­

lysosomes constitutes a major barrier to gene transfer, proper formulation is essential 

to encapsulate and protect the plasmid DNA. Formulation of lipoplex with a neutral 

lipid, DOPE has been shown to increase the efficiency of gene transfer. DOPE 
. . 

promotes the fusion of lipidlDNA particles with endosomal membranes, facilitating 

membrane disruption and increasing the amount of plasmid moleculesreleased into 

the cytoplasm. Formulated. non-viral vectors based on PEI and HVJ 

(Hemagglutinating Virus of Japan)-liposome has been characterized to escape 

endosomal degradation [Kaneda et aI., 2002]. 

2.4_1.2 Dissociation of plasmid DNA from non-viral carrier 

\ 

Following internalization of the DNA-polycation complex by endocytosis, a large 

fraction is targeted to the lysosomal compartment by default. Once the plasmid DNA 

is released in the cytoplasm and before entering the nucleus, it can be quickly 

degraded by Ca-sensitive cytosolic nucleases. Only a small fraction of internalized 

plasmid DNA penetrates the cytoplasm. Hence the plasmid DNA should be imported 

into the nucleus quickly to be transcribed and avoid nuclease attack. It is estimated that 

at least 10s plasmids per cell are required in the extracellular compartment to ensure 

that a few DNA molecules are taken up into the nucleus of non-mitotic cells 

[Lechardeur et aI., 2005]. 

2.4.1.3 . Plasmid DNA uptake in nucleus 

For cellular plasmid-based expression, nuclear import is a rate-limiting step, and 

intracellular trafficking of pDNA, either naked or complexed to synthetic vectors, is 

largely uncharacterized. After entry of plasmid DNA into the nucleus, a therapeutic 

gene has to be transcribed to generate an mRNA, with or without integration into the 

host's genome. This process would be expected to be common between viral and non­

viral vectors. Gene regulation is very much dependent on the transcription and proper 
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transcription control of a transgene is an important issue in gene therapy [Kamiya et 

al., 2001]. 

During non-viral gene transfer, entry of exogenous DNA into the nucleus occurs only 

in cells that are actively dividing, i.e., when the nuclear envelope breaks down. This is 

consistent with the observation that well-differentiated, nori-dividing airway epithelial 

cells show very low transfection efficiency. Hence delivery of therapeutic plasmid 

DNA to a non-proliferating cell nucleus is an inefficient process. Nuclear import of 

signal-mediated pDNA using nuclear localisation signal (NLS) has been attempted 

[Tachibana et aI., 2001; Munkonge et al., 2003]. One of the main obstacles to the 

development of gene therapy for the airways is the inability of current viral and non­

viral gene transfer vectors to direct sustained expression of a therapeutic transgene. 

This may be due to several causes including loss of the vector (especially if present in 

an episomal form), transcriptional silencing' of the transgene promoter, . loss of the 

transfected cell through cell turnover, or the generation of an immune response to the 

transgene product or the transfected cell itself [Ferrari et aI., 2002]. The nuclear import 

of exogenous genes using plasmid DNAlimportin-[beta] conjugates has been observed 

to' enhance the nuclear localization of exogenous' DNA in a non-viral gene delivery 

system [Nagaski et aI., 2005]. 

2.5 Delivery systems for administration 

The following section examines gene delivery via the' following routes for 

administration of plasmid DNA for gene therapy, namely: (i) parenteral, (ii) oral, (iii) 

nasal, (iv) transdermal, (v) ocular and (vi) pulmonary delivery. 

2.5.1 Parenteral delivery 

The three major types of parenteral routes for delivery are (i) subcutaneous, (ii) 

intravenous and (iii) intramuscular injection. Biodegradable polymeric micro spheres 

based on polylactic acid-co-glycolide and chitosan have been used for parenteral 
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delivery of drugs containing peptides such as luteinising releasing .hormone and 

growth hormone [Davis, 2006]. 

2.5.1.1 Subcutaneous injection 

Direct DNA injection into skin tissues results in low transfection efficiency compared 

to viral vector systems due to its rapid degradation by. endogenous nuclease activity 

within tissues. Hence, the coadministration of plasmid DNA and a competitive 

nuclease inhibitor, aurintricarboxylic acid (ATA) by direct intradermal injection is 

more effective than the administration of naked DNA [Glasspool-Malone et aI., 2000] .. 

Compared to naked DNA immunisation, entrapment of plasmid-based DNA vaccines 

into liposomes by the dehydration-rehydration vesicle (DRV) method has been shown 

to enhance both humoral and cell-mediated immune responses to encoded antigens 

administered by a variety of routes. Effectively entrapping plasmid DNA in DRV 

vesicles within a range of lipid and non-ionic based vesicle formulations may be a 

useful system for subcutaneous delivery of DNA vaccines [Perrie et al., 2004]. Some 

DNA vaccines administered parenterally induced strong systemic humoral and cell 

m~diated immune responses, while mucosal immune responses have generally not 

been observed [Shroff et aI., 1999]. 

2.5.1.2 Intravenous injection 

Hydrodynamics-based gene delivery essentially involves a large-volume, high-speed 

intravenous injection of naked plasmid DNA (PDNA), which yields a significantly 

high level of transgene expression in vivo [Kobayashi et aI., 2005; Fabre, 2005]. 

Application of hydrodynamics-based procedures to therapeutic vectors for cytokine 

delivery and small interfering RNA (siRNA) or siRNA-expressing naked vectors in 

vivo have been reported [Tuschl and Borkhardt, 2002]. The delivery of interferon 

(IFN) genes, which play a crucial role in tumor suppression and rejection, holds 

considerable promise for in vivo cytokine gene therapy. The therapeutic effect of 

intravenous interferon gene delivery with naked plasmid DNA in murine metastasis. 

models was observed to be better than subcutaneous delivery [Kobayashi et aI., 2002] . 
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The potential of dendritic poly(l-lysine) of the 6th generation (KG6) as a nonviral gene 

. carrier in vivo of plasmid DNA after intravenous administration in turnor-bearing mice 

was found to be better than with DOTAP/Chol liposomes and PEI. KG6 carrier 

developed high transfection ability without significant cytotoxicity in vitro [Kawano et 

aI., 2004]. Intravenous RNAi-based gene therapy encapsulates plasmid DNA inside 

receptor-specific pegylated immunoliposomes (PILs). This RNAi approach achieved a 

90% knockdown of brain turnour-specific gene expression with a single intravenous 

injection in adult rats or mice with intracranial brain cancer [Pardridge, 2004]. 

2.5.1.3 Intramuscular injection 

Intramuscular gene delivery has been carried out using formulations of plasmid DNA 

with labile sphingosine-based liposomes and phosphatidylcholine. Upon intrainuscular 

injection, the lipoplex DNA was resistant to serum enzymatic digestion ~d induced an 

increased inhibition of gene ·expression as compared with naked DNA. The cationic 

lipoplexes used for in vivo gene transfer form a weakly compacted structure and are 

potentially labile in vivo [Baraldo et aI., 2002]. The delivery of plasmid DNA coding 

for intracellular or secreted beta-cell antigen, glutamic acid decarboxylase (GAD) 

resulted in less effective disease suppression with intramuscular (i.m.) delivery 

compared to an intradermal (i.d.) or oral route of administration [Li and Escher, 2003]. 

Although DNA vaccines are highly effective in inducing both cell-mediated and 

humoral immunity, the uptake of plasmid DNA in vivo has only been observed in the. 

cells of the bone marrow and lymph node B cells after intramuscular immunization 

[Coelho-Castelo et aI., 2003]. Further,. the administration of plasmid vectors 

engineered for gene delivery into mammalian muscle did not induce the production of 

anti-double stranded (ds) DNA and anti-nuclear autoantibodies. in normal mice 

[MacColl et al., 2001]. Peripheral intramuscular immunization in rats using plasmid 

DNA· complexed with PEI was studied to document gene transfer in neurons of the 

central nervous system (CNS). The results showed that the non-viral neuronal gene 

delivery method bypasses the blood-brain barrier and suggests a possible therapeutic 

strategy for noninvasive CNS gene transfer [Wang et aI., 2001]. 
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2.5.2 Oral delivery 

Oral delivery assumes importance due to the availability of a large mucosal surface 

housing the immune inductive gut-associated lymphoid tissues (GALT) in the gastro­

intestinal (GI) tract. The two main areas of application for oral gene delivery are 

corrective gene therapy (both local and systemic) and genetic mucosal immunization . 

via the Peyer's Patches, the immune sampling portals that occur in discrete patches in 

the small intestine [Page and Cudmore, 2001]. Delivery. of foreign genes to the 

. digestive tract mucosa by oral administration of non-replicating gene transfer vectors 

should be a useful method for vaccination and gene therapy. However, an inevitable 

. disadvantage of oral delivery of polyplexes is the disintegration of the complex in the 

GI tract due to mechanical, chemical and enzymatic barriers. A PLGA microparticle 
. '. 

carrier containing PEI polyplexes for the deposition of intact polyplexes in intestinal 

lymphoid tissue yielded transgene expression [Howard et al., 2004]. A DNA vaccine 

for treating gastrointestinal diseases comprising plasmid DNA was orally delivered to 

the intestines using N-acetylated chitosan as a carrier [Kai and Ochiya, 2004]. The 

delivery of plasmid DNA to the mucosa of the small intestine was confirmed by the 

results of immunohistochemical analyses using· an expression plasmid encoding 

Human Immunodeficiency Virus env (HIV env) gp120. After oral administration of 

virus-like particles (VLPs) loaded with HIV env cDNA, significant levels of specific 

IgG and IgA to HIV env in fecal extracts and sera was obtained [Takamura et aI., 

2004]. 

2.5.3 Nasal delivery 

In man, the target site for a nasally administered vaccine formulation is believed to be 

the nasal-associated lymphoid tissue (NALT) situated mainly in the pharynx as a ring 

of lymphoid tissue, Waldeyer's ring. Waldeyer's ring comprises the nasopharyngeal 

tonsil, attached to the roof of the pharynx, the paired tubal tonsils, by the Eustachian 

openings, the paired palatine tonsils at the oropharynx and the lingual tonsil [Sminia 
~ 

and Kraal, 1999]. From a pharmaceutical standpoint, different formulation strategies 

can be employed for nasal vaccine delivery. These can be split into two major types; 

particulate antigen delivery systems such as emulsions, liposomes, micro spheres, 
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where the antigenic material is entrapped or presented on the surface of a particle, and 

solution systems, where the antigen is dissolved or suspended within a simple solution 

vehicle [IlIum et aI., 2001]. With nasal inoculation of liposomelDNA complexes, 

liposomes are trapped within the lung epithelium and the cationic lipid to DNA ratio is , 
changed during transit through the lung epithelial cells' [Tanaka et al., 2004]. 

Administration by nasal instillation of PEI-PEGIDNA complexes in mice resulted in 

significant levels oftransgene expression [Kichler et aI., 2002]. 

2.5.4 Transdermal delivery 

The success of the transdennal approach has resulted in. delivery of low-molecular 

weight drugs available in the market [Langer, 2004]. Transdennal delivery of large 

macromolecules is restricted due to low skin penneability. Thus, a main goal for 

transdennal delivery· is increasing the penneability of the skin for transfer of 

therapeutic drugs into the body. Transdennal delivery can be achieved by using two 

different methods to render the skin penneable to drugs, namely physical and electrical 

forces. The three physical modes which have been adopted to enhance skin 

penneability for transdennal drug delivery include photoacoustic waves [Doukas and 

. Kollias, 2004], low-frequency sonophoresis' [Mitragotri and Kost,· 2004], and 

microneedles [Prausnitz, 2004]. The electrical means of delivering drugs transdennally 

include iontophoresis [Kalia et aI., 2004] and electroporation [Denet et aI., 2004]. With 

success in delivery of drugs transdennally, the use of delivery vectors such as 

liposomes, transferosomes and nano/microparticles [Kohli and Alpar, 2004] has the 

potential to be used as a less destructive approach for gene therapy. 

Currently, most pDNA delivery systems based on synthetic polymers are non­

biodegradable and toxic both in cell culture and in animals in vivo at concentrations 

high enough to yield therapeutic effects. This therapeutic index is unacceptable for 
, 

applications in humans, and hence alternative transdennal delivery options for none 

viral gene transfer hold promise. A hydrogel fonned by an aqueous based, 

thennosensitive, biodegradable and biocompatible triblock copolymer based on 

poly[ ethylene. glycol-b-(D,L-lactic acidco-glycol acid)-b-ethylene glycol] (PEG-
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PLGA-PEG) could be a promising platform for non-viral delivery of pDNA for gene 

therapy in wound healing [Valenta and Auner, 2004]. 

There is a potential application for ultrasound as an enhancer for topical gene therapy 

[Cao et aI., 2000]. Topical gene therapy requires penetration of the vector-gene 

complex to the target cells within the skin. With the identification of genes responsible 

for almost 100 diseases affecting the skin, the possible option of cutaneous gene 

therapy for treatment of diseases such as severe forms of particular genodermatoses 

(monogenic skin disorders), such as epidermolysis bullosa and ichthyosis is possible 

[Lavon and Kost, f004]. 

The application of an electric field for electroporation dramatically enhances plasmid 

gene transfer in vivo [Wells, 2004]. Electroporation for the gene therapy of skin has 

also been employed for in vivo delivery of lacZ DNA to hairless mice. Three days 

after treatment, the skin was removed and stained with X-gal (a colorigenic substrate 

for the LacZ enzyme). Extensive expression of the lacZ gene was observed in the 

. dermis, including the hair follicles confirming the use of ehictro oration for DNA 
, 

vaccination [Banga and Prausnitz, 1998]. However, electroporation is particularly 

useful for delivery to more superficial tissues such as skin and muscle. The major 

limitation of electroporation is the invasive nature of delivery which results in cell 

damage. 

Microneedle delivery of plasmid DNA encoding hepatitis B surface antigen induced 

stronger immune responses compared to hypodermic injection, requiring fewer 

immunizations for full seroconversion. Delivery of naked plasmid DNA into skin 

using coated microneedles [Gill and Prausnitz, 2007] was achieved by dipping arrays 

into a solution of DNA and scraping multiple times across the skin of mice in vivo to 

create microabrasions. The expression of a luciferase gene showed a 2800-fold 

increase using microneedlescompared to topical application [Mikszta et aI., 2002]. 

2.5.5 Ocular delivery 

Although the deferise mechanisms of the eye protect it against exogenous and 

endogenous pathogens, inflammatory and immune-mediated processes are still the 
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leading cause for blindness~ The eye is. easily accessible and occupies an "immune­

privileged" site, offering opportunities for successful development of gene therapy. An 

additional advantage of using the eye for gene therapy is the possibility of assessing 

the success of the treatment in a non-invasive manner by directly measuring visual 

function. [Borras 2003; Andrieu-Soler et al., 2006]. Gene therapy has the potential to 

interfere with the immune response· at different, steps modulating the 

microenvironment of the eye [pleyer and Ritter, 2003]. Naked DNA delivery to the 

cornea has the potential to alter the treatment of a wide variety of corneal and anterior 

segment diseases [Stechschulte et al., 2001]. Transfer of exogenous genes to the entire 

retina and other ocular structures is possible with a vascular route of gene delivery 

using a ,non-viral gene transfer method [Zhang et aI., 2003]. In vivo delivery of 

exogenous genes to the eye has the potential of treating ocular diseases. rfficien't and 

stable transfer of the functional gene was achieved with PEO-PPO-PEO polymeric 

micelles through topical delivery in mice and rabbits. These in vivo experiments 

indicate the possible potential use of block copolymers for DNA transfer [Liawet aI., 

2001]. Non-viral gene therapy strategies open real therapeutic potential for the 

treatment of ocular diseases [Bloquel et aI., 2006]. 

2.5.6 Pulmonary delivery 

The pulmonary epithelium has been an important delivery route for gene therapy in the 

last decade. The overall structure of the respiratory tract constitutes the upper airways 

(larynx) and the lower airways (consisting of trachea, bronchi and alveoli), and are 

shown in Figure 2.4. The delivery of aerosol therapeutics into the pulmonary system is 

dependent on the aerosol particle size and target region in the respiratory tract. Inhaled 

aerosols are effective therapeutic carriers capable of non-invasive systemic delivery of 

therapeutics [Dalby and Suman, 2003; Sullivan et aI., 2006]. The aerosol 

characteristics for targeted therapeutic delivery to the different regions of the lung 

during inhalation are shown in Table 2.4. Only delivery by breathing via the mouth is 

, considered for aerosol dosage fonus. 
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Figure 2.4: Human respiratory system showi ng anatomy of the lower airways 

compri sing trachea, bronchi and alveoli. 

Table 2.4: Targeting aerosols to the lun g via inhalation [Hanes et aI. , 2003) 

Target reg ion Particle Pri mary depos it Inha lati on Potential target 
d iameter mechanism method di seases fo r 

oene therapy 
Extrathoracic > 8 ~m Impaction High Cancer 

inspiratory flow 
velocity 

Trac heobronchial 4-8 ~m Impaction and S low C F, CO PD, 
sedimentation in piratory cancer 

fl ow rate 
Al veolar 2-5 ~m Sedimentati on Slow Vacc ines, 

and diffusion inspiratory cancer cytokine 
fl owrate therapy 

0.02-0.05 Diffusion 

~m 

Pulmonary gene therapy holds considerable prOllll se for the treatment of many 

previously incurab le lung diseases, such as cystic fibros is [Dav ies, 2006). DNA 

compacted with polycations has been used with good success in animal models, with 

minimal tox icity, and is currently being tested in human tria ls [Davis and Zaidy, 
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2003]. Cationic liposomes have been used successfully for DNA delivery to airway 

cells in vitro and are being tested in human clinical trials for !,heir efficacy in cystic 

fibrosis transmembrane conductance regulator (CFTR) gene delivery in cystic fibrosis 

patients. However, liposomes are not as effective for gene delivery to human airway 

cells in vivo when compared with transfection of airway cells in vitro. The, 

physiological barriers to gene delivery in cystic fibrosis lungs are the main reasons for 

the reduced expression levels [Baatz et aI., 2001]. 

The main physiological barriers to gene delivery in the lungs [Vadolas ·.et al., 2002] are 

mucus, pulmonary surfactant and alveolar macrophages. Mucus is the most frequently 

reported extracellular barrier to the delivery of genes to the cells of the upper 

respiratory tract. Respirat()rY mucus lines the luminal side of the tracheo-bronchial tree· 

from the entrance of the trachea to the terminal bronchioles, humidifYing inspired air . 

and trapping small particles or microorganisms until they can be transported out of the 

lungs. Pulmonary surfactant synthesized by type II alveolar cells and non-ciliated 

epithelial cells is a surface-active material that reduces the surface tension in the lungs. 

The main components of surfactants are phospholipids, neutral lipids, serum proteins, 

and surfactant proteins. Surfactant proteins may reduce the efficiency of gene delivery 

when the DNA vectors contain carbohydrate moieties. Gene therapy targeted to the 

alveolar regions of the lung' or to the systemic circulation via the alveoli may be 

limited by the actions of the alveolar macrophages [Hanes et aI., 2003]. 

2.6 Devices used for pulmonary delivery 

The three types of pulmonary delivery devices commonly used in the treatment of 

respiratory ailments such as astluna, COPD (chronic obstructive pulmonary disease) 

and cystic fibrosis, and delivery of anti~infectives include (i) pressurized metered dose 

inhalers (PMDI), (ii) dry powder inhalers (DPI) and (iii) nebulisers. The most 

important parameters that define the site of deposition of aerosol drugs within the 

respiratory tract are the particle characteristics of the aerosol. The nature of the aerosol , . 
droplets is dependent on its MMAD (mass median aerodynamic diameter), which is a 

function of particle size, shape and density. The aerodynamic size of aerosol particles 

generated by various inhalers is fundamental to lung delivery since only the fine 
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particle fraction (PPP) of approximately <5 Ilm diameter can potentially reach the 

target surface within the lung [Smith and Parry-Billings, 2003]. Pulmonary drug 

administration imposes stringent requirements on the delivery device, since particle 

size of the powder or droplet greatly influences the accessibility to the delivery site, 

. and ultimately the degree of drug absorption from the lungs [Agu et al., 2001]. 

2.6.1 Pressurised metered dose inhalers· 

Pressurised metered dose inhalers (PMDIs) are the most popular vehicle for drug 

delivery into the lungs, and some 500 million units are manufactured each year. MDIs 

utilize propellants (chlorofluorocarbons and increasingly, hydrofluoroalkanes) to 

atomize the drug solution,which results in a uniform spray. Macromolecules are not 

soluble in pMDI propellants and have to be formulated as dispersed systems i.e., solid 

particles dispersed in propellants. Dornase-a and salmon calcitonin have been 

formulated in pMDI systems, demonstrating good retention of primary and secondary 

structures [Oliver et aI., 2001]. However, such dispersed formulations have an affinity 

for aggregation and particle growth, resulting in some macromolecules with an 

intrinsic instability in the environment of the propellant formulations [Taylor kd 

Gurnbleton, 2004]. Research on the technology for producing drug nanoparticles for 

dispersion in HP A propellant for pulmonary gene therapy has been studied [Birchall,' 

2006]. 

2.6.2 Dry powder inhalers 

The development of macromolecular formulations for dry powder inhaler (DPI) 

devices has been prompted due to the potential for longer product shelf-life. In the 

1980s and 1990~, the passive systems were developed into Diskus (GSK, RTP, and 

NC) and Turbuhaler (Astra Zeneca) which are multi-dose, blister and reservoir 

systems, respectively. Recently, additional single dose devices such as the Aerolizer 

(Novartis, Basel, Switzerland) and the Haridihaler (Boehringer Ingelheim, Germany) 

and mutidose devices like Clickhaler (Innovata Biomed, SI. Albans, UK) have been 

approved [Dalby and Suman, 2003]. The Nektar Pulmonary Inhaler and Aspirair™ 
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(Vectura) device are examples of active devices that rely upon hand-assisted 

compressed air for aerosol generation. Whilst dry powder formulations for DPls have· 

considerable potential for gene therapy in the lung, the issue of formulation remains a 

major obstacle to their practical use [Davies et al., 2005]. An inhaler and powder 

formulation developed by Nektar, Exubera® (human insulin of rDNA origin) insulin 

inhalation powder is approved in the US and EU for adults With Type 1 and Type 2 

diabetes. 

2.6.3 N ebulisers 

An alternative to pMDIs and DPls for delivery o~ biopharmaceuticals is the nebuliser, 

which can generate respirable aerosols from the liquid with less formulation 

requirements and a .wider dose range. The types of nebulisers commonly used for 

respiratory drug delivery are Pneumatic or Jet nebulisers and Ultrasonic nebulisers 

[Barry, 2002; Le Brun et al., 2000]. ·The European Standard for Nebulising Systems 

[EN 13544-1:2001] specifies CEN (European Committee for Standardisation) 

methodology to measure aerosol output and aerosol particle size [Dennis and Pieron, 

2004]. 

2.6.3.1 Jet nebuliser 

The operation of a pneumatic nebuliser requires a pressurized gas supply as the driving 

force for liquid atomization [Hess, 2000]. Compressed gas is delivered through a jet, 

causing a region of negative pressure. The solution to be aerosolized is entrained into 

the gas stream and sheared into an unstable liquid film, which breaks into droplets 

because of surface tension forces. The aerosol is delivered into the inspiratory gas 

stream of the patient. 

2.6.3.2 Ultrasonic nebuliser 

The ultrasonic nebuliser uses a piezoelectric transducer to produce ultrasonic waves 

that pass through the solution and aerosolize it at the surface of the solution. The 
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frequency of the ultrasonic waves detennines the size of the particles, with an inverse 

relationship between frequency and particle size. The conversion of ultrasonic energy 

to mechanical energy by the transducer produces heat, which is absorbed by the 

solution near the transducer. Small-volume ultrasonic nebuliseis are commercially 

available for delivery of bronchodilators. Large-volume ultrasonic nebulisers are used 

to deliver inhaled antibiotics in patients with cystic fibrosis [Webb et al., 2004]; 

Ultrasonic nebulisers produce a large number of droplets per unit volume, which in the 

absence of air circulation through the nebuliser will tend to aggregate and settle in the 
. . 

case ofa low velocity aerosol [Taylorand McCallion, 1997]; 

2.6.3.2.1 Conventional type 

The conventional ultrasonic nebuliser with two tanks utilizes the cavitation effect of 

ultrasonic waves for nebulisation. The energy of ultrasonic vibration from an 

ultrasonic transducer is focused onto the surface of a solution through cooling water. 

The solution is nebulised by the effects of cavitation. The nebulisation volume can be 

adjusted by changing the amount of electric energy applied to the transducer. The 

nebulised medication is carried to a mouthpiece by airflow that is blown by a fan. 

Ultrasonic nebuliser resulted in inefficient delivery of liposomes compared to jet and 

mesh nebulisers [Elhissi and Taylor, 2005]. 

2.6.3.2.2 Mesh type 

The mesh-type of ultrasonic nebuliser is seen as the next-generation ofnebulisers. The 

liquid passes through a mesh with. an array of hundreds or thousands of micron-sized 

holes. Mesh type nebulisers may be classified into two types based on their mode of 

vibration as active or passive vibrating mesh. An active vibrating mesh indicates the 

mesh itself is vibrated directly by a piezoelectric crystal. For a passive vibrating mesh, 

the vibrations of an ultrasonic horn force liquid through the mesh, which vibrates in 

sympathy with the horn [Newman and Gee-Turner, 2005]. The key mesh nebulisers 

either in development or on the market following regulatory approval [Knoch and 

Keller, 2005] include: 
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• Active vibrating mesh: 

(i) e-Flow® (PARI, Germany), Touchspray® (Odem, UK) 

(ii) AeroNeb®/ Aerodose® (Aerogen, USA), 

.• Passive vibrating mesh: 

(i) MicroAir® (Omron, Japan) 

(ii) MicroflowlM (pfeiffer, Germany) 

The advantages of ultrasonic mesh nebulisers include little requirement for patient 

coordination necessary, small dead volume and quiet operation, aerosol 

accumulation during exhalation, .high dosage delivery, no chlorofluorocarbon release 

and fast drug delivery. It has the potential for· smaller volume fills, lower or no 

residual volumes of drug, higher lung deposition and shorter nebulisation times. The 

disadvantages which have limited their acceptance are that they are expensive, prone 

to electrical and mechanical breakdown, not recommended for all drug formulations 

available and requirement of drug preparation. Some ultrasonic nebulisers may be 

used with the solution to be nebulised placed directly over the transducer. The use of 

nebulisers to administer biopharmaceuhcal agentsnasmanyimportant limitations. 

Such drugs are often very unstable in aqueous solutions, and are easily hydrolyzed. 

In addition, the process of nebulisation exerts high shear stress on the labile 

compounds, which can lead to product denaturation or degradation. Other important 

characteristics of nebuliser performance include nebulisation time, cost, ease of use, 

and requirements for cleaning and sterilization. Technical profiles of the next­

generation mesh nebulisers for pulmonary delivery and their regulatory/market status 

are compared and shown in Table 2.6. 

2.6.4 Alternative aerosolisation methods 

The alternative aerosolisation methods based on electro-mechanical and electro­

hydodynamic principles shown in Table 2.5 are discussed in the next section. 
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Table 25: Technical specifications for next-generation mesh nebulisers 

. 

Aerosol . 

Nebuliser 
Trade Mass 

typel driving 
Name 

MMAD 
I . fraction Aerosol Technical 

Ref. 
forcel * (Ilm) Condition information 

Company 
(Status) . <511m .. 

(%) 

Vibrating 
Nebulized 

Adult % Dose 
medium-

mesh: Aeroneb 
0.083% 

deposited: 13; Aerogen 
OnQ Pro 3.1 83 

Albuterol 
Minimum vol. website 

technology (Market) 
(3mL); Freq. 

0.3 mL; [I] 
IAerogen 

128kHz 
(Autoclaveable) 

Nebulized Intact DNA 
Vibrating medium-Q)- following 

mesh: 
Touch- 4.39 Q) 62.3 Q); 

CC plasmid aerosolization: 
Smart et 

Ultrasonic 
spray (NA) 5.32 G) 43.4 G) 

DNA &G)- Q)CC-IO% 
aI., 2002 

IOdem linear plasmid; G)CC-50%;. 
Temp - 23°C; Minimum vol. 

. 

RH - 50%; 0.3 mL . 

Vibrating Single pass; no 
CF 

mesh: Pari eFlow GSD 
63 NA 

recirculation; 
website 

Ultrasonic I (Market) 1.5 Minimum vol 
[2] 

Pari 0.73 mL 
Vibrating Temp -10-

Lung deposition 
m'esh: 

MicroAir 40°C; RH-
(% vol fill): Omron 

Ultrasonic I S.O 80 18.1 (8.0); website 
Omron 

(Market) 30-85%; 
Minimum vol. [3] 

. 
Freq. 180 kHz 

0.5mL 
_EleJ:tl'o_-_ Nebulized Dia -lllm; Unit Deshpan 

r-xERx Mechanical 
2.95 NA 

-medium-Aq~ -dose:-Minimum._ de et al. 
Extrusion I (NA) Formul. vol. 0.045 mL 2002 
Aradigm 
Electro- Mystic Nebulized Minimum vol. Battelle 

Hydrody- Inhalation 
2.85 90-95 

medium- . 0.02 mL website 
namic device device NaCl in [4] 

I Battelle (NA) ethanol 
* MMAD - Mass Median Aerodynamic diameter; NA - Not available 
[1] - httQ://www.aerogen.comluQloads/File/Qdf/sciQres aaaai OS04.Qdf 
[2] - httQ://www.sourcecf-crd.com/ 
[3]- httQ:/ /www.omronheaIthcare.com/enTouchCMS/FileUQIF olderINE-U22V -BR-
3687·l2df 
[4] - httQ:/ /www.battelle.orglheaIthcare/Qdf/mystic.l2df 

2.6.4.1' . Electro-mechanical device 

An electro-mechanical extrusion device for aerosolisation of liquid is the AERx® 

delivery device (Aradigm, USA). This device is not yet approved and essentially 

consists of a single-use nozzle contained in each disposable AERx StripTM created as 

, 
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a laser-machined array. The" nozzle exit is approximately 1 /lm in diameter with a 

uniform shape which is expected to deliver consistent, fine-particle dosing from the 

blister/strip containing 50 ~l of medication. The aerosol is generated by extruding 

the formulation under pressure through an array of holes. Aerosolisation of 

unformulated plasmid DNA (pCMV-SEAP with an approx. size of7.5 kb)has shown 

it is degraded upon passage through the AERx nozzle system [Deshpande et aI., 

2002]. However, formulation of the plasmid DNA with cationic lipoplex has resulted 

in no damage to the sc structure on delivery. The AERx system has been used for the· 

pulmonary delivery of small molecules such as morphine and fentanyl and proteins 

such as insulin (6 kDa) and recombinant human deoxyribonuclease I (rhDNase - 37 

kDit) [Dennis 2004]. Aradigm's AERx insulin Diabetes Management System (iDMS) 

has been licensed to Novo Nordisk for Phase 3 testing of Type 1 and Type 2 

diabetes. 

2.6.4.2 Electro-hydrodynamic device 
( 

The electro-hydrodynamic (EHD) process applies an electric field over a flowing 

conductive liquid. The electric field is generated by transferring high voltage DC 

(direCt currerttr-througlrmrarray-of-electrodes, creating a· field of-discharge. ionsj.~ ___ _ 

front of a multi-spray site nozzle. These cations induce an accumulation of charge at 

the liquid's surface causing a Taylor cone to form at each spray site [Taylor, 1964]. 

As the surface charge overcomes the surface tension of the liquid, a fine mist of 

nearly mono-dispersed droplets is formed. As the droplets pass through the field of 

ions, their charge is subsequently neutralized, causing the cloud to disperse into 

uniformly sized droplets. A device presently in its development using the electro­

hydrodynamic technology (Ventaria, USA) has been' reported to efficiently 

reproduce aerosol droplets in the 1-5 /lm range [Williams, 2007]. Research on the 

aerosolisation of plasmid DNA using an EHD device is discussed in detail in 

Chapter 4. 
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2.6.5 Targeted gene delivery by magnetofection 

In addition to the physical modes of gene transfer used for transdermal delivery, 

another approach based on the application of a magnetic field promises targeted non­

invasive gene delivery. Magnetofection is the delivery of genes using magnetic 

forces and has been shown to enhance transfection efficiency of non-viral systems up 

to several-hundred-fold. Non-viral gene carriers, such as polyethylenimine (PEI), are 

associated with superpara-magnetic nanoparticles and complexed with plasmid 

DNA. Gene delivery is targeted by the application of a magnetic field leading to an 

. accelerated sedimentation of magnetofectins on the cell surface and increase in 

contact time. They do not directly affect the intracellular uptake mechanism and 

could lead to efficient targeting of gene expression into the desired organ and tissue 

in vivo [Huth et al., 2004]. Magnetofection may overcome the fundamental 

limitati~:ms of non-viral gene transfer to. the airways [Gersting et aI., 2004]. The 

greatest potential for using magnetic nanoparticles to treat paediatric respiratory 

illness lies in the nanoparticle~facilitated delivery of therapeutic genes for cystic 

fibrosis [Dobson, 2007]. TransMAGPE1 (Chemicell, Germany), a PEI-coated iron 

oxide particle, complexed to Genzyme Lipid 67 (GL67) mixed with luciferase . 

plasmid DNA was tested in mouse mammary epithelial cells. Although an increase 

-----in~ gene~ transfer~ in-vitro~was_observed~there_ was_no_increase_in_ th~ transfection ____ ~ 

efficiency in vivo [Xenariou et aI., 2004]. Biocompatible magnetic nanoparticles for 

gene delivery show much promise for in vitro and in vivo transfection studies 

[Dobson, 2006]. 

2.7 Theory of aerosol generation from an ultrasonic nebuliser 

In ultrasonic . devices, the energy' required to {atomise a liquid comes from a 

piezoelectric crystal which vibrates at a high frequency. The base of the crystal is held 

firm such that the vibrations are transmitted from its front surface to' the nebuliser 

fluid. During, ultrasonic nebulisation, waves are formed on the surface of the solution. 

When the ultrasonic vibrations are sufficiently intense, a fountain of liquid is formed at 

the surface of the liquid in the nebulization chamber. It is observed that large droplets 

are emitted from the apex and a fog of small droplets is emitted from the lower part 
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[Topp,' 1973]. Two theories have been developed which describe the' mechanism of 

liquid disintegration and aerosol production in ultrasonic devices, namely (i) capillary 
,f ..' , • 

theory and (ii) cavitation theory, 

2.7.1 Capillary theory 

, The capillary wave theory depicts droplet formation as resulting from the production ' 

of capillary waves on the surface of the excited liquid, When the amplitude of the 

applied energy is sufficiently high, the crests of the capillary waves break off and 

droplets are formed, The rate of generation of capillary waves is dependent on the 

intensity of the ultrasonic vibration and the physicochemical properties of the liquid 

being atomized [Flament et ai" 1999], 

2.7.2 Cavitation theory 

The cavitation theory postulates that liquid is atomized by hydraulic shocks produced 

by the implosion of cavitation bubbles near its surface (Niven et aI" 1995], The 

dependence of atomization on the cavitation phenomena was demonstrated for 

frequencies between 05 and 2 MHz, A combined approach of the above theory states 

that droplet formation results from capillary waves initiated and driven by cavitation 

bubbles, 

2,8 Aerosol gene delivery 

The field of aerosol gene delivery began to decline until it was discovered that 

polymers (PE!) resulted in far better transfection within the lungs than did lipids or 

naked DNA [Densmore, 2003], A number of potential obstacles to the intrapulmonary 

delivery of genes via conventional jet nebulisation include shearing effects associated 

with nebulisation and requirements to produce aerosol droplet sizes appropriate for 
" 

optimal delivery to the peripheral lung and to maximise the dose of DNA delivered to 

lung surfaces, Non-viral polyplexes are emerging as suitable candidates for use in 
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pulmonary inhalation gene therapy. PEI -based formulations appear to be good 

candidates for aerosol delivery of genes for the treatment of a variety of genetic 

pulmonary disorders, including lung tumors [Rudolph et aI., 2005]. Polyelectrolyte 

complexes between DNA and PEGIPEI subjected to aerosolization in an ultrasonic 

nebuliser was milder than jet nebulization [Kleemann et aI., 2004]. Aerosol-delivered' , 
PEI-based formulations are very effective in transfecting the lungs, but produce 

relatively low levels of transfection in the nasal passages of mice [Densmore, 2003]. 

. Although the results from gene therapy clinical trials are expected soon, developing an 

aerosol gene delivery mechanism which would be as safe and effective as intravenous 

delivery will be a challenge to the healthcare industry .. 

2.9 Roadmap to non-viral gene therapy 

The road map to non-viral gene therapy is shown in Figure 2.6. The essential steps 

required to deliver gene therapeutic grade plasmid DNA to the clinic includes (i) 

plasmid DNA formulation, (ii) delivery route and device, (iii) gene expression and (iv) 

clinical trials. As shown in the roadmap, different formulations have been attempted 

for the delivery of plasmid DNA, although each formulation has to be tested for a 

I-----particular delivery-route-anddevice.-The-expression-of the-transgene~o aJarge_~xtent,----___ _ 

influences the choice of formulation. The barriers to gene expression limiting 

transfection may be biological or physiological. The former is primarily due to 

extracellular! intracellular interactions with the transgene, while the latter due to the 

limitations in DNA delivery through the device or administration route. A number of 

gene therapy clinical trials' are in progress for the treatment of cystic fibrosis, cancer, 

influenza and cardiovascular diseases. 
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2.10 Conclusions 

Gene therapy is gaining credibility and is an emerging area in medicine today. 

Plasmid-based gene therapy has been proven to be well-tolerated and safe for' 

administration by a variety of routes (e.g., intramuscular, intratumoral, pulmonary, 

transdennal) but efficiency has often been limited with current technologies. A rational 

approach towards the design of synthetic gene delivery systems is necessary taking 

into account the route of administration and the targeted site at which gene expression 

is expected to take place. A major milestone in the efficiency of plasmid delivery for 

gene therapy will be the development of highly pure plasmid DNA fonnuIations 

capable' of safe passage through the delivery device and route. The use of a 

commercially available device for safe delivery of super-coiled structure of plasmid 

DNA provides a starting point that will ensure rapid adoption for the pre-clinical 

testing of genetic drugs. ~ mesh nebuliser promises to deliver respirable aerosols 

through the non-invasive route for the treatment of respiratory and systemic diseases. 
, 

The utilisation and development of state-of-the-art delivery devices is of considerable 

importance for the success of plasmid-based medicines and vaccines as innovative 

therapies for the future. The next chapter of the thesis discusses the materials and 

methods adopted in this thesis. 
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CHAPTER 3. MATERIALS AND METHODOLOGY 

3.1 Materials! Equipment 

This chapter discusses all the materials and equipment used for the experiments in this 

research thesis. 

3.1.1 Chemicals 

All the chemicals used in the experiments were purchased from Sigrna chemicals, 

UK, unless specified. Solutions were made from deionised, bacteria-free water (of 

resistivity> 18 MO.cm) from an Elgastat UHP (Elga Ltd., UK) system. 

3.1.2 Delivery device 

The delivery devices used for the aerosolisation of liquid solutions were, U22 

1-----(MircoAI~l'IE-U22) and U03 (UI NE-U03) (both from Omron Healthcare, Japan) 

mesh nebulisers operated at frequencies of 175 kHz and-6SkHras-shown-in-Figure"--___ _ 

3.1 and 3.2 respectively. Both the nebulisers are used for producing therapeutic 

aerosols of liquid solutions, while the U22 is a recently introduced nebuliser regarded 

as a promising device for the pulmonary delivery ofIiquid suspensions. The U03 mesh 

nebuliser and nebuliser mesh (496A) was provided by Ornron Healthcare, Japan. 

3.1.3 Plasmid DNA 

The plasmids gWIZ (5.7kb) and pQRl50 (20 kb) were obtained by purification from 

Escherichia coli DH5a (Gibco-Life Technologies, Gaithersburg, MD) cells harvested 
> 

from a fermentation batch and stored at -80°C. A plasmid purification kit (QIAgen) 

was used for the purification of the super-coiled plasmid DNA (PDNA). The quality of 

the supercoiled pDNA used for the aerosolisation experiments was checked to ensure 

it had an A260J A280 ratio of 1.8-1.9 (discussed in section 3.2.7.1). 
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Figure 3. 1: A U22 (MicroAlR® NE-U22) mesh nebuli ser. 

Figure 3.2: A U03 (U 1 NE-U03) mesh nebu liser 
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3.1.4 Eq u ipment used for t he expel'iments 

A summary of the eq uipment used for the research ex periments is shown in Tab le 3. 1. 

Table 3.1: Equipment/software used for ex periments 

Ex perim ent Objective of the Eq lIipment! Make! Facility 
experiment software 

Nebulisation of Aeroso li sation of Omron mesh Omron I-iea llhcare, 
plasmid DNA plasmid DNA nebuli ser Japan 
Aeroso l Particle size Laser diffraction Malvern Master 
characterisat ion determination sizer, UK 
Co ll ection of Condensation and Fabricated glass In-house 
aeroso ls collection of aeroso ls apparatus fab ricati on 
Dimensions of the Nozzle size SEM (Leo 440) Leo EM, UK 
mesh 

Nozzle shape Interferometer Zygo, USA 

Mesh thickness Opti ca l Uni versal Societe Genevo ise, 
measunng Swi tzerland 
machine 

Nozzle detail s Light microscope O lym pus. U K 
Analysis ofpDNA Ana lysis of pDNA GelDoc 2000 ge l Biorad, UK 
damagel documentation 
nanoparticl es A26rY Also ratio Biomate

j 
Genesys, UK 

Spectrophotometer 
PicoGreen assay Tecan Sati reL Tecan UK 

M icroplate reader 
Atomic force Dimension 3 100 Veeco 
ml croscopy SPM Instruments, USA 

Transf'ec ti on of Growt h ofCHO-S Ga laxy S CO2 Wol r Laborato ri es. 
c r-Io -s ce ll s with cell line Incubator UK 
plasmid DNA Ce ll Viabi li tyl ce ll Casy cell counter Scharfe System. 

count and anal yser Germany 
system 

Transfec ti on Flow cytometer Beckman Coulter 
e ffi ciency UK 
Fluorcscence Tecan Sa f'ire' Tecan UK 
determination M icrop late reader 

Aeroso lisation Frame speeds ( I Is) Kodak Ektapro Kodak Ektap ro 
from nebu li ser of 4500/9000. high-speed came ra 
Computationa l Generati on of grid Gambi t 2. 1 Fluen t. UK 
fluid dynamics fo r CFD domain 

CF D simulati ons of Fluent 6.2 Flucn t , UK 
fl ow through nozzle 

Design o f' Response surface Des ignExpert Stat-Ease Inc .. 
ex peri ments met hod (RS M) USA 

Factoria l des ign of Mi nitab Min itab, UK 
ex periments 
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3.2 Methodology 

The methodology adopted for the experimentation is detai led below. 

3.2. 1 Operation of a U22 mesh nebuliser 

The U22 mesh nebuliser is representative of the next-generation of pulmonary devices 

capable of delivering respirable aerosols with high throughput, high dosage handling 

capability, ponability and ease of operation. The 22 mesh nebuliser operated at a 

frequency of 175 kHz (determined using a laser vibrometer). A schematic of the 

medication container of the un mesh nebuliser is shown in Figure 3.3. 

/ut Inlet to make the 
pressure In the bottle 
equal 10 that of 
external pressure. 

The wetght of medication 
I setf helps medltallon 0 be 
SU led 10 the hom vlbralOf 
and me mesh. 

MedlCallon to be changed 
mlo fine JA"f!cles for 

nebutaauon 

Uebulisation 
chamber 

When only a smal amount of 
me(hcatlon is left surface lenstOn and 
vlbrouon energy helps n edlC-3uon 10 
be supplied to the mesh. 

Figure 3.3: Principle of operation of the U22 mesh nebuliser [Kishida et aI. , 20031 

showing the medication container and the mesh of the device; the vibrator horn is 

powered by a DC volt supply of 3V; plasmid D A sample from the ' nebuliser 

chamber' is taken to check integrity of sLlpercoiled (sc) structure. 
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3.2.2 Operation of a U03 mesh ncbuliscl' 

The U03 mesh nebuliser is a lower frequency device operating at 65 kllz compareci 

to thc U22 mesh nebuliser. The nozzle size of the U03 device was equal to that of the 

U22 device. A schematic of the nozzle and chamber of the U03 device is shown in 

Figure 3.4 (Yamamoto and Asai , 2004). The U03 mesh nebuliser operates with the 

same princi ple as the U22 device, except that liquid is drawn to the nozzle mcsh by 

the ann ular section of vibrator horn (Figure 3.4). 

(a) 

• 

. '3 

(b) 

cap 

Vibrator 
horn 

Annular 
section 

Nebuliser 
chamber 

Figurc 3.4: 03 me h nebuli sc r: a) skctch or the dcvice. b) schemati c or meciication 

containcr showi ng nozzle mcsh and ncbuli er chamber: liquid is drawn through thc 

annular scc tion and forced th rough the mesh rcsulting in gcneration of acrosols. 
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3.2.3 Characterisation of the mesh ncbulisc.· 

The mesh plate of the U22 mesh nebuli ser was studied for the con fi guration and 

ori entation of mesh holes using a Scanning Electron Microscope, a Zygo 

Interferomete r, an Optica l Comparator and a Light Microscope. A SEM was used for 

the determination of the nozzle dimensions and arrangement of nozzles on the mesh. A 

Zygo lnterferometer is a tlu·ee dimensional, surface structure anal yzer, which provides 

graphic images and high resolution numerical analysis to accurately characterize the 

surface struc ture. The New View uses scanning white li ght interferometry to image 

and measure the microstructure and topology of the surfaces in three dimensions. An 

optica l comparator (Type-2 14 B uni versal measuring machine) was used to measure 

the thickness of the mesh. The machine had accuracy in the ~lm range, suitable fo r the 

dimensions of the nebu li ser mesh. A section of the nebuli ser mesh was molded in 

epoxy resi n and po li shed to observe the secti on of the nozzle under a li ght microscope. 

3.2.4 Ae.·oso l collection apparatus 

A straight forward aeroso l co ll ection apparatus incl uding USP (United tates 

Phalm acopeia) throat geometry was fabricated in glass for co ll ecti on of aeroso ls from 

the mesh nebu li ser as shown in Figure 3.5. The aeroso l co ll ecti on strategy was 

designed based on a modifi cation of the apparatus used fo r co ll ecti on of nebu lised 

proteins by Cipolla and Gonda (1 994). The aeroso ls fi·om the nebuliser were allowed 

to pass through a fab rica ted glass US P tlu·oat [Zhang et a l. . 2004) and co llected in a 

steril e test tube placed in a vacuum nask containing ice. In order to fac il itate 

condensati on o r the aeroso ls sucti on was appl ied using a vacuu m pump at the outl et o f 

the vacuum nask. An opt imum sucti on 110w rate o f 15-20 Llmin resulted in max imum 

condensati on of the acroso ls in the test tube. Approx imately 15-20% (v/v) o r the 

ae roso ls with pDNA was recovered in the condensed lo rm in the co ll ecti on tcst tube 

a ft er 5 min o l· nebu li sati on. 
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Figu re 3.5: Aerosol co llection apparatus from a U22 mesh nebuliser, same apparatus 

was used for the U03 mesh nebuli ser. 

3.2.5 High speed imaging of aerosolisation 

High-speed imaging of aeroso li sation from the vibrator horn with and without mesh 

was carri ed out for the U22 mesh nebuliser. For hi gh speed imaging o f the 

aerosoli sarion process , a buffered solution of PBS (Phosphate-buffered saline) was 

placed on the vibrator horn (Figure 3.6a). Aeroso l formation was imaged using a high­

speed video system based m'ound a Kodak Ektapro motion analyser [Versteeg et aI. , 

2005] at 4500 and 9000 frames per second to visuali ze aerosolisation w ith and without 

mesh. A schematic of the high speed imaging set-up is shown in Figure 3.6b. To gain 

optical access to the vibrating horn a section of the fluid container was removed in the 

tests withou t mesh. Consequently, instead of utilizing the fluid container to hold the 

formulat ion, 0.5 II I of formula tion was pipetted directly onto the surface of the vibrator 

in both cases, to allow meaningfu l compari son of aeroso lisation with and without 

mesh. At the chosen fra me rate it is of course not possible to resolve flow events due 

to indi vidual osc illations, but overall features of the aeroso lisati on process were 

captured adequately. 
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Kodak Ektapro high-speed video set-up 

Kodak4540 
Motion Analyser Computer for 

Image Processing 

L Kodak COntroller I ~Video D 
(4500 frames/sec 

jA UC;~::::;=~ 
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Figure 3.6: (a) Vibrator horn (diameter at the top of the horn is 3.5 mm) of the U22 

mesh nebuliser, (b) schematic of a hi gh speed imaging set-up. 

3.2.6 Purification of plasmid DNA from cells 

Escherichia coli (DH5 a) cells contai ning the plasmid (pQR I 50) of size 20 kb was 

grown in a pilot fennenter and harvested from the fermentation broth. The cell paste of 

the 5.7 kb plasmid prepared from an earlier fermentati on batch was used for plasmid 

purification and nebulisation. The QIAprep mini/maxi-prep kits were used for the 

purificat ion of plasmid D A [Qiagen, 2004] as detai led below. The general procedure 

consists of th ree basic steps: (i) preparation and clearing of bacterial lysate. (ii ) 

adsorpt ion of D A onto the QlAprep membrane and (iii ) washing and elu tion of 

plasmid D A. 

The procedure for mlnlprep plasmid D A purifi cation is described. Firstl y, the 

E.coli ce ll paste was made up to a uni form cel l suspension using 0.9% (w/v) Na I 

solution to achieve an optical density at 600 nm of 10- 12.5. One mL of the cell 
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suspension was then centrifuged at 4000 rpm for. 10 min. The pelleted bacterial cells 

were resuspended in 250 ~l of resuspension buffer (PI) and transferred to a micro 

centrifuge tube. Care was taken to avoid any visible cell clumps after resuspension of 

the pellet. To the micro centrifuge tube with cell suspension in PI buffer, 250 ~l 

lysis buffer (P2) was added and gently inverted 4-6 times to mix. However, the lysis 

reaction was not allowed to proceed for more than 5 min. To the lysate in the micro 

centrifuge tube, 350 ~l neutralisation buffer (N3) was added and inverted 

immediately but gently 4-6 times. The neutralized lysate was then centrifuged at 

13,000 rpm (-17,900 x g) in a table-top micro centrifuge for 10 min. A compact 

white pellet was formed. The supematants from step 4 were then transferred to the 

QIAprep spin column by decanting.Centrifugation was done at 13,000 rpm (-17,900 

x g) in a table-top micro centrifuge for 30-60 s. The flow-through was discarded. 

The QIAprep spin column was washed by adding 0.5 ml plasmid binding buffer 

(PB) and centrifuging at 13,000 rpm (-17,900 xg) in a table-top micro centrifuge for 
-

30-60 s.The flow-through was discarded. This step was necessary to remove any 

trace nuclease activity exhibited by the strains. The QIAprep spin column was 

washed by adding 0.75 ml plasmid elution buffer (PE) and centrifuging at 13,000 

rpm (-17,900 x g) in a table-top micro centrifuge for 30-60 s. The flow-through was 

discarded, and centrifuged again for an additional I min to remove any trace of 

residual wash buffer, in order to avoid the residual ethanol from PE buffer to inhibit 

subsequent enzymatic reactions. The QIAprep column was placed in a clean 1.5 ml 

micro centrifuge tube. To elute DNA, 50 ~l equalisation buffer (10 mM Tris'Cl, pH 

8.5) or TE buffer was added to the centre of each QIAprep spin column, let stand for 

I min, and centrifuged at 13,000 rpm (-17,900 x g) in a table-top micro centrifuge 

for I min. 

3.2.7 Analysis of plasmid DNA 

The analysis of plasmid, DNA in the samples after purification, formulation and 
. , 

nebulisation were carried out by absorbance measurements of DNA concentration and 

purity, agarose gel electrophoresis and a PicoGreen assay. 
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3.2.7.1.. DNA concentration and purity measurements 

The purified plasmid solution was quantified using UV spectroscopy. A sample of the 

plasmid solution was resuspended in IX TE buffer (the dilution was done to achieve 

an absorbance within the linear range of 0.1-1.0 AV). The Biomate3 UV-Visible 

Spectrophotometer is programmed· to measure the absorbance readings at A260 

(maximum absorbance for DNA), A280 (maximum absorbance for RNA) and A2601A28o 

ratio (plasmid DNA purity). A ratio of A2601A28o reveals information on the plasmid 

purity, with a DNA ratio of 1.8-1.95 required for plasmid DNA preparations used in 

gene therapy experiments. The spectrophotometric analysis of A2601 A280 ratio between 

1.8-1.95 served as a functional test to determine the purity of plasmid DNA for gene 

therapy applications [Schleef, 2005] . 

. 3.2.7.2 Agarose gel electrophoresis 

Electrophoresis refers to the movement of charged particles in a gel when subjected to 

an electric field. This method uses an electromotive force to pull charged molecules 

through a gel matrix to achieve separation based on mass-charge ratio. Nucleic acids 

are negatively charged due to their ionized phosphate groups. As the size of the 

nucleic acid increases, charge also increases so the mass-charge ratio remains constant. 

The electrophoretic separation of compounds is almost entirely based on size and is 

achieved by the sieving effect of the gel matrix. Ethidium bromide, an intercalating 

dye that binds to ds DNA, ssDNA and RNA is added. It is useful to visualise different . 
conformations of the plasmid (namely supercoiled, open-circular and nicked). 

Fragments of linear DNA migrate through agirose gels with a mobility that is. 

inversely proportional to the 10glO of their molecular weight. As a quality check, for a 

plot of migration distance of linear DNA fragments (Lambda HindllI' DNA marker) 

from the well against the 10glO of either their molecular weights or number of base 

pairs, an approximate straight line is obtained. 
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3.2.7.2.1 Preparation of buffers and agarose gel 

The recipe for preparation of TBE buffer (5X) is (i) Tris Base (Tris 

hydroxymethylmethyamine, Mr=121.13) - 54.43 g, (ii) Boric acid - 27.78 g, (iii) 

·EDTA - 1.85 g, which are dissolved in 800 mL of ultra pure water and volume adjusted 

to 11. In order to make O.5X TBE Buffer for the gel, the prepared 5X TBE buffer was 

diluted with ultrapure water. 

For agarose gel electrophoresis, 0.8% (w/v) agarose gel was· prepared using the 

standard procedure. The open edges of an electrophoresis tray were sealed with an 

autoclave tape to form a mould. In order to prepare 130 mL of 0.8% (w/v) agarose 

solution, 1.04 g ofpowderedagarose was taken in 130 mL of O.5X TBE Buffer in a 

clean Erlenmeyer flask. The flask containing buffer solution with agarose was heated 

in a microwave oven for time intervals of I min with constant swirling, till the agarose 

was completely dissolved and the solution was clear. The solution was then cooled to 

60°C. Using a 1 mL Gibson pipette, the edges of the electrophoresis tray were sealed 

to form a mould with a small quantity of agarose solution. The gel comb was 

positioned in the mould of the gel tray. The agarose solution was then transferred to an 

Erienmeyer labelled "ethidium bromide" in a fume chamber used for handling 

Ethidium bromide (EtBr). EtBr solution was then added from the stock solution to 

achieve a final concentration of 0.06 !lg/m1. The flask was swirled gently in order to 

mix the ethidium bromide. The warm agarose solution was then poured into· the 

mould. Any air bubbles formed during the transfer were pricked with a pipette tip. The 

agarose gel was then allowed to set at room temperature for 45 min and then the comb 

was carefully removed. The gel was wrapped in a cling-film and placed in a flat­

bottomed container in a refrigerator at 4°C until further use. 

3.2.7.2.2 Loading of DNA samples in the agarose gel 

The DNA samples required to be run on the gel were first prepared and the following 

procedure adopted for loading DNA samples in the gel. The loading buffer and the 

DNA sample were added in the ratio of I: 1. The number of eppendorfs required to 
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prepare the DNA samples and the marker were placed on the eppendorf rack. The 

DNA samples (5 to 15 ~l)and marker (5~1) were added to the labelled eppendorfs on . 

the rack. The loading buffer (5~1) was added to the eppendorf labelled as marker 

(Lambda HindIII) and 1O~1 to the remaining eppendorfs containing DNA samples. 

The eppendorfs were then spun in a bench micro centrifuge at 13000 rpm for 30 s. The 

eppendorfs were then placed in the rack. Prior to preparation of the DNA samples, the 

agarose gel was unwrapped and the sealed autoclave tape taken from the. edges of 

electrophoresis tray. The agarose gel with the electrophoresis tray was then placed in 

the central compartment of the electrophoresis box. The position of the well in the gel 

was checked to make sure that the DNA ran through the gel towards the anode. 0.5X 

TBE buffer was then poured into the gel box at both ends until the buffer just covered 

the top of the gel. The contents of each eppendorfwere then carefully pipetted intothe 

wells of the agarose gel, taking care not to spill the samples or push air into the wells. 

The top of the gel box is then replaced and the power pack controls set to 40-80 V for 

2-8 hours. The gel was then run till the required separation was achieved. 

3.2.7.2.3 Quantification of agarose gel 

For quantification of DNA in the agarose gel, the electrophoresed gel was removed 

from its container and slid carefully into the transilluminator. The hood of the 

transilluminator was closed and UV light switched on. The focus of the camera and 

lighting was adjusted. When the gel was out of the frame, the position of the gel was 

adjusted in order to capture the image of the gel and save it on a disk for future. 

reference. The UV light was turned off and hood opened. A piece of foil was slid 

under the gel and removed from the transilluminator. The gel was wrapped in a cling­

film and foil and placed in its container and stored at 4°C. The percentage damage to 

the plasmid DNA was calculated from an analysis of the band intensity observed in the 

agarose gel by densitometry using Geldoc QuantityOne ® (BioRad software) by . . 

comparing pre- and post-nebulisation samples. The density of the DNA band before , 
nebulisation was taken as the reference to determine the percentage damage during 

nebulisation. In order to account for the differential binding of ethidium bromide to the 

different plasmid structures, a correction factor of 1.36 was applied to thesc structure. 
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3.2.7.3 PicoGreen assay 

The PicoGreen assay uses the well-established principle of DNA denaturation in alkali 

for molecules with increased single stranded nicks. PicoGreen (Molecular Probes, 

Paisley, UK), a dsDNA binding fluorescent dye, binds selectively to double-stranded 

(ds) DNA. The microplate-based fluorescence assay was. based on the protocol 

reported by Rock et al. [2003] .. The DNA concentration used for the assay was 200- . 

300 ng/mL. Two aliquots of 50lll of plasmid DNA were combined with 50 III of 

PicoGreen (11200) and taken in the wells of a microplate (Sarstedt, Leicester, UK). 

The microplate was incubated for 5 minutes and the fluorescence signal was measured 

using a Safire2 
TM (Tecan, UK) Microplate reader. To one well, 0.075M NaOH was 

added and mixed well to increase the pH to 12.4. The decrease in fluorescence was 

monitored due to the release of the fluorescent dye denaturation of DNA by alkali. The 

relative fluorescence which is a ratio of the fluorescence signal at pH 12.4 to the 

fluorescence at pH 8 was computed. The damage to the supercoiled structure in the 

samples of the 5.7 kb plasmid and the PEIIDNA formulations of the 20 kb plasmid 

was analysed and the relative fluorescence computed. An XFluor™ software was used 

fordirect control from Excel and reporting the results of the assay. 

3.2.7.4 Atomic force microscopy 

AFM imaging for visualisation of pDNA was carried out in a Dimension 3100 

Scarming Probe Microscope (SPM) (Vecco Instruments, Santa Barbara, CA, USA). 

TappingMode™ etched silicon probes (TESP) cantilever tips used for AFM imaging 

in air were purchased fromVeeco Instruments (Veeco Instruments, Dourdan, France). 

AFM provides the two-dimensional conformation of the sc structure of the plasmid by 

immobilization of the DNA molecules on a flat mica surface. Being an atomically flat 

surface with negative charge, mica cannot bind .the negatively charged DNA 

molecules without cationic treatment to the surface.' A freshly cleaved mica disc 

(diameter - 20 mm) was coated with 100 III of 10 mM NiCh to render the mica surface 

cationic for the adsorption of anionic pDNA [Hansma and Laney, 1996]. The pDNA 

was frozen and stored in a deep freezer at AOC prior to imaging in AFM. 5 III of pDNA 
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. solution were diluted to. a concentration of· 1 Jlg/mL and pipetted onto the mica 

surface. After I min, the mica disc was washed with sterile, filtered water and dried 

prior to AFM imaging. For samples of formulated plasmid DNA with PEI, no surface 

treatment of the mica disc was necessary due to the positive charge of the formulating 

agent. The AFM imaging was carried out in TappingMode™ in air at. room 

. temperature with a TESP probe using a Dimension 3100 SPM (11 eeco Instruments, 

Santa Barbara, CA). TappingMode™ imaging allows high resolution topographic 

imaging of sample surfaces that are loosely held to their substrate, or otherwise 

difficult to image by other AFM techniques. The AFM images were flattened for 

better clarity using a Nanoscope IV controller. 

3.2.8 Formulation of plasmid DNA 

.. The purified plasmid DNA with an A26r!A28o ratio greater than 1.8 was formulated 

prior to nebulisation using the mesh nebuliser. Formulation of the plasmid DNA was 

carried out using ionic buffers and cationic substrates. The ionic buffers used were 

NaCI solution (I50-300.mM), PBS and HEPES. The cationic substrates used were 

liposomes, DEAE-dextran and PEI. 

3.2.8.1 Formulation using Iiposomes 

The formulation of liposomes was carried out according a protocol described in the 

Megafectin ™ Opti kit application manual (Qbiogene, USA). An initial DNA 

concentration of the 20 kb plasmid used for the preparation of the cationic liposomes 

was 67 Jlg/mL. A stock solution of the liposomes, DOTAP/DOPE and 

DOTAP/Cholesterol was prepared by suspension of the lyophilized lipids in 200 JlI of 

sterile 20 mM HEPES buffer. The final concentration of the cationic lipid is I mM. In 

order to make a formulation of cationic liposome.s with DNA to cationic lipid ratio of . 

0.5 (recommended), the plasmid DNA solution was mixed with liposomes and HEPES 

in the following ratio: liposomes:HEPES:Plasmid DNA = 2:3:5. The formulations 

prepared were incubated for 15 min at room temperature and protected from light. A 

final DNA concentration in the cationic liposome formulation was 33 Jlg/mL. An 
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unfonnulated control with a plasmid DNA concentration of 33 i ~glmL was also 

prepared. 

3.2.8.2 Formulation using DEAE-dextran 

DEAE-dextran (DD) is a cationic polyelectrolyte used for complexing plasmid DNA. 

A sample of DEAE-dextran was procured from PK Chemicals, Denmark. According 

to the manufacturer's product specifications, the nitrogen content in DEAE-dextran is 

3.2% (1.1 nmol nitrogen per ~g). DNA contains 3 nmol of phosphate per ~g. A stock 

solution of 0.1% (w/v) DD in O.OlM PBS was prepared and filter sterilized using a 0.2 

~m filter. Fonnulations of plasmid DNA with DD were prepared with nitrogen to 

phosphate ratios of 0.1, 0.2 and 0.4. The fonnulations were incubated at room 

temperature for 30 min and then stored at 4°C. 

3.2.8.3 Formulation using PEI 

A stock solution of PE I (0.9 mglml) was prepared in deionised water and the pH was 

adjusted to 7.2 with HCl followed by filter sterilization and then stored at room 

temperature (RT). Plasmid DNA (20 kb) was mixed with PEI to achieve a PEI 

nitrogen:DNA phosphorus ratio of 10: 1 [Densmore et ai, 2000]. The solution was 

allowed to incubate at RT for 15 min prior to use for aerosolisation studies. 
( 

3.2.9 Transfection studies 

Transfectio'n studies were carried out using suspension-adapted Chinese Hamster 

Ovary Cells and are described below in detail. 
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3.2.9.1 Chinese hamster ovary cells 

The cell line used in this study was CHO-S suspension-adapted cells 

(InvitrogenlGibco, La Jolla, USA). All cells were stored in liquid nitrogen in the 

groWth medium added with 10 % DMSO. Forexperime!ltal studies, cells were 

thawed rapidly and centrifuged at 150 g for 3 minutes. After removal of the 

supematant, the cells were re-suspended in 10 mL of growth mediUm and incubated 

in a Galaxy STM incubator (Wolf Laboratories, UK) set at standard conditions (37°C, 

5 % C02). 

3.2.9.2 Maintenance of CHO-S cells 

After recovery from cryopreservation, cultures were maintained in CHO-S Serum Free 

Medium n (CHO-SFM n, InvitrogenlGibco, La Jolla, USA), at viable cell densities 

between 2 x 105
:.. 3 x 106 viable cells per mL. Cells were cultured in 250 mL 

C6~ing® celf culture flasks (50 - 100 mL working volume) at 120 rpm (orbital shaker) 

in a Galaxy STM incubator (Wolf Laboratories, UK) set at standard conditions (37°C, 5 

% C02). Cells were maintained as described, and used for experiments up to 25 

passages. 

3.2.9.3 Preparation ofPEI-pDNA complexes using 5.7 kb plasmid 

A stock solution of 0.9 mg mL-1 polyethyleneimine (PEI 25 kDa; branched) was 

prepared in deionised water, neutralized to pH 7.0 with HCI and filter sterilised. Stock 

solutions were stored at room temperature. The DNA samples ofthe 5.7 kb plasmid at 

a concentrati"on of 20 Ilg'mL-1 were used for nebulisation experiments. In order to 

prepare formulated PEIIpDNA for nebulisation, the 5.7 kb plasmid was mixed with 
c 

PEI to achieve a PEI nitrogen:DNA phosphorus ratio of 10: 1. The formulated 

PEIIpDNA complex was nebulised in the U22 mesh nebuliser, and samples before and 

after nebulisation used for transfection studies. To prepare PEI-pDNA complexes with 

nebulisation samples of the 5.7 kb plasmid, the before and after nebulisation pDNA 

samples were mixed with PEI to achieve a PEI nitrogen:DNA phosphorus ratio of 

10:1. The solution was allowed to incubate at RT for 15 min prior to transfeciion. 
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. 3.2.9.4 PEI-pDNA transfection of CHO-S cells 

Transfection experiments were performed in Coming® ultra l()w-binding (ULB) 24-

well plates (Sigma, UK) to ensure that the cells remained in suspension according to a 

protocol described in Tait [2006]. CHO-S cells were grown in CHO-S SFM II 

. medium and used for transfection with the before and after nebulisation formulated 

samples. CHO-S cells were taken from mid-exponential growth phase culture (age 24 

hours) and centrifuged in a Beckman GS-6 centrifuge to pellet 6.3*106 cells.mL-1
• 

The cells were resuspended in 30 mL CHO-S SFM II medium to achieve a cell density 

of2.1 *105 cells.mL·1• 950 ~l of this cell suspension was aliquoted into the wells of the 

24-well plate. The wells were loaded with 50 ~l of the formulated· pDNA samples 

before and after nebulisation samples in triplicate, allowing duplication for sampling at 

24 and 48 hours after transfection. Control untransfected wells were loaded with 50 ~l 

of medium. The 24-well plate was covered with Breathe EasyTM membranes 

(Diversified Biotech, Boston, MA, U.S.A.) to ensure even gaseous exchange and 

evaporation from all wells. The plate was incubated in a Galaxy STM incubator (Wolf 

Laboratories, UK) set at standard conditions (37°C, 5% C02). The initial cell density 

used for transfection was determined. After 24 hours, the membrane was cut down the 

middle and the 24 hour transfected samples collected in sterile eppendorfs. The cell 

density was detemiined for each of the transfected samples. In order to measure 

fluorescence· of the transfected samples on a microplate reader, 500 ~l of the 

transfected and untransfected 24 hour sainpleswere spun in an Eppendo~ centrifuge 

(Model 5415 R) at 1000 rpm for 3 min. The pellet was resuspended in 1 00 ~l of PBS 

solution ~d the fluorescence measured in the dark using a Safire2™ microplate. 

reader. Similar analysis was performed for the 48 hour transfected and untransfected 

(control) samples. 

3.2.9.5 Determination of viable cell density and percentage viability 

Viable cell density and cell viability were determined by either haemocytometer cell 

counting (trypan blue exclusion) or the CASY® technology ~sing a cell counter and 

analyser model TIC (Scharfe System, Germany). The principle for the CASY 
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system is based on pulse area analysis by electric sensing zone method. Similar to 

trypan blue exclusion method where the trypan blue dye stains the dead cells by 

entering the ruptured cell membrane and not intact cells, the CASY technology 

detects the viable, dead and total cell count by pulse area analysis and can detect 

minuscule changes in membrane integrity. The cells suspended in Casyton® 

colourless isotonic saline solution and aspirated through a precision measuring pore 

of diameter 150 flm. The cells passing through the measuring pore are scanned at a 

frequency of 1 million measurements per second in a low voltage field. The resulting 

signal of every individual cell is analyzed in area, height and width, and time course. 

3.2.9.6 Flow cytometric analysis 

The transfection efficiency was determined by flow cytometry using a Coulter Epics 

XL MCL flow cytometer (Beckman Coulter UK Ltd, Bucks, UK) equipped with 

EXPO 32™ ADC software. CHO-S cells were transfected with eGFP gWizTM plasmid 

DNA as described in section 3.2.7.4. Cells were harvested by centrifugation (1000 

rpm, 3 min), washed once with 5 mL of PBS, fixed in 5 mL of 4% (v/v) 

paraformaldehyde (PFA) and incubated at -20°C for 15 min. Cells were then washed 

twice with PBS and stored in PBS at 4°C. Transfection efficiencies (defined as the 

percentage of eGFP positive cells i.e., the cells expressing the GFP protein resulting in 

fluorescence in a transfected population) were determined by excitation of eGFP with 

an Argon laser at 488 nm, with emission measured at 510-530 nm. The QC forthe 

fluorescence measurement was carried out using flow check fluorospheres, which are 

10 flm latex particles fluorescent on all wavelengths detected by XL. 

3.3 Summary 

This chapter highlighted the materials/equipment and methodology used to carry out 

the experiments·on the purification and nebulisation of plasmid DNA. The operation 

of the mesh nebulisers used in this research investigation, the techniques used for 

analysis of plasmid DNA damage and the transfection protocol are discussed. Chapter 

4 discusses on the purification of plasmid DNA from host Escherichia coli cells and its· 

nebulisation using a mesh nebuliser. 
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CHAPTER 4. PURIFICATION AND NEBULISATION 

OF PLASMID DNA· 

4.1 Introduction 

The objective of the work reported in this chapter was to produce pure supercoiled 

plasmid DNA in the form recommended for gene therapy and study the extent of 

damage to the fragile sc structure of different plasmid sizes upon aerosol delivery 

using a mesh nebuliser. Purification of plasmid DNA for non-viral gene therapy is a 

critical process in the production of plasmid DNA based therapeutics. During the 

purification of plasmid· DNA it is possible that the fragile sc structure may be 

disintegrated into the open-circular and linear forms of the plasmid. It is essential to 

produce purified plasmid DNA in the supercoiled form to the necessary quality 

standards required for gene therapy experiments. The plasmid specifications and test 

method guidelines [Schleef, 2005] for gene therapy trials stipulate a number of 

assays pertaining to the purity of plasmid DNA and DNA homogeneity. The 

recommendations for the purity and DNA homogeneity suggest an A26o/ A280 ratio of 

. 1.8-2.0 and >95% supercoiled form (using agarose gel electrophoresis) respectively. 

Nebulisers are the common respiratory devices for aerosol delivery of liquid 

formulations and have the advantages of large dosage handing capability, ease of 

operation and Iow formulation requirements. Aerosol delivery of plasmid DNA in 

the intact sc form using a nebuliser remains a challenge to be surmounted for the 

success of the non-invasive respiratory route as an approach for administration of 

gene therapeutics. 

This chapter is structured into three main sections, namely: (i) purification of 

plasmid DNA of sizes from 5.7 to 20 kb, (ii) characterisation ofU22 and U03 mesh 

nebulisers and (iii) nebulisation of plasmid DNA in a U22 and U03 mesh nebuliser. 
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4.2 Purification of plasmid DNA 

[n this research in vestigation, Escherichia coli cell paste harbouring plasmids of size 

5.7 kb and 20 kb, produced separately from UCL pilot plant tri als were purified using 

pIa mid purification protoco l [Qiagen Ltd , UKJ. A s ingle colony of E.coli ce ll s each 

containing plasmids of size 8.7 kb and 13 kb (received from Dr. John Ward , Molecular 

Bio logy Department of UCL) were cultured in shake- fl asks by fermentation to achieve 

the ce ll-density required for plasmid purification. The fermentation and puri fication of 

plasmid DNA and the protocols are descri bed in Chapter 3. 

4.2.1 5.7 kb and 20 kb plasmids 

The purity of gWli"" GFP (5 .7 kb) and pQRI50 (20 kb) pl as mid DNA in buffer 

purified using plasmid puri ficat ion protocol was assessed by determination of (i) 

Au,olA280 ratio (Table 4./) and (ii ) DNA homogeneity (Figure 4./). 

200 ,-----------~----------------------------------_, 
r se 20 kb 
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Figure 4.1: DNA homogeneity of puri fied supe rco iled 5.7 kb and 20 kb plasmids 

determined by densitometric scan of an agarose gel; sc 5.7 kb - 96.57%, se 20 kb -

96.6 / % (an ethidium bromide correction facto r of 1.36 was applied to the se structure) . 
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Table 4.1: Pl asmid DNA purity for 5.7 kb and 20 kb plasmids by A26CJA2S0 ratio (n=6) 

Plasmid ON A 
5.7 kb 
20 kb 

A260 
0.52 1± 0. 12 
0.496 ± 0. 14 

A2S0 
0.269 ± 0.06 
0.255 ± 0.08 

A260/A280 '-"""=-----1 1.93 ± 0.02 --::--=-=-----1 
1.95 ± 0.02 

--'--'--------' 

Figure 4. 1 shows the DNA homogeneity determined from the densitometric scan of an 

agarose gel from the peak values of the band intensity fo r the sc structure compared to 

the open-circular and linear forms of the plasmid. A correction factor of 1.36 was 

applied to the sc structure to account for the differential binding of ethidium bromide 

to the sc structure. D A homogeneity of;::: 95% for the sc structure indicated a high 

percentage of sc plasmid as per the requirements to r non-viral gene therapy. 

4.2.2 8.7 kb and 13 kb plasmids 

The production of Escherichia coli Top I ° and Escherichia coli JM I 07 cells from a 

single colony harbow'ing pQR-I92 (8.7 kb) and pQR /86 ( 13 kb) plasmids respectively, 

was carried out using shake-nask fermentation . The lelmentat ion process consisted of 

an inocu lum deve lopment stage and a ce ll mass production stage. The operating 

conditions 101' the shake- nask fermentation are presented in Chapter Ill. The cell mass 

from the le l111entation process was used as inpu t 101' plasmid purification using the 

QIAgen Maxi-prep purification kit. The purity of superco iled plasmid DNA as output 

was assessed by determinati on of (i) A2601A2so ratio (Tahle -1.2) and (i i) DNA 

homogeneity using a densilOmetric scan of an agarose ge l (Figure -1.2). From Table 

4.2. the purity o r 8.7 and 13 kb plasmids are assessed by A 260/ A2RO ratio between 1.8 

and 1.95. 

Table 4.2 : Pl asmid DNA purity for 8.7 kb and 13 kb plasmids by A 26U/ A 2S0 ratio 

~P~la~s~ln~i~d~O~N~A~~~A~_~'6~O~~77~~A~2~RO~~~~~A~2~60~I~A~2SI~I ~~~~ 
1-'8;:-;;. 7~k b=--___ I-'0"'". 6::.;8:-.;;6,-±-,0::..:;. -,-I 4~-;;0c..:;' 3c.;:677 _±c.;:0.:.,:' 0~8::-+-;-1 c.;:' 8:0-7 -:c:±....::.:0. 003 (11 =4 ) 
LI:..::3-'k:..::b ____ L 0:.:..3:.;5:...:8 __ ---'-'0..:..;. 1-=.9-=-6 _±-=0.:..:.0-=0=..2 -'.....:..1 :..::8=-24.:...±:.:...c0. 0 I (n=2) 
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Figure 4.2: DNA homogeneity of purified superco iled 8.7 kb and 13 kb plasmids 

determined by densitometric scan of agarose gel; se 8.7 kb - 96.34%, se 13 kb - 96.9% 

(an ethidium bromide correction factor of 1.36 was applied to the sc structure). 

4.3 Characterisa tion of a U22 mesh nebuliser 

The characteri sation of the nebuliser was carri ed out to determine the dimensions of 

the nebuliser mesh, the aerosol particle size distribution ancl the nebuli sation rate 

from the U22 mesh nebuliser. 

4.3.1 Dimensions of the nebuliser mesh 

The nebuliser mesh was observed in a SEM to determine the size of the nozzle and the 

distance between the nozzles. The magnification required to observe the nozzle size 

was 1O,OOOX, while that required to determine the distance between the nozzles was 

2,OOOX (Figure 4.3). The dimensions of the nozzle are reported in Table 4.3. 
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Figure 4.3: Scanning electron micrograph of the mesh of a U22 nebuliser showing (a) 

arrangemem of nozzles on the mesh, (b) single nozzle and (c) distance between 

nozzles. 
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A section of the nebu li ser mesh was molded in epoxy resin (section 3.2.3) and the 

images of the nozzle were captured using a light microscope to dete rmine the 

dimensions against a cali brated image of a scale bar. A cross-section of the nebuliser 

mesh is shown in Figure 4.4 below. 

Bottom surface of mesh 

Magnification 40 X 

Figure 4.4: Cross-section of a nebuli ser mesh of the U22 mesh nebul iser; A and B 

represent total mesh th ickness 

The di mensions of the U22 nebul iser mesh determined uSlllg Scanni ng Electron 

Microscope, Zygo Interferometer and Optical comparator are shown in Table 4.3 . 

Table 4.3: Dimensions of mesh of the U22 nebuliser mesh 

Dimension d etails Tool used for determination (!lm) (n=2) 
SEM ZI OC Computed 

Di ameter of the mesh nozzle 3.0 ± 0.0 1 3.0 ± 0.8 -

Distance between mesh nozzles 56 ± 0.2 
Mesh plate th ickness (A) - 12.2± 1.0 13.0 ±0.05 -
Mesh plate th ickness (B) - - 13.0 ±0.05 -
Mesh plate thickness (A+B) 26.0± 0.05 
Lnternal arc rad ius of the nozzle 15.6 
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4.3.2 ACI'osol particlc s ize dist ribution 

The aerosol particl e SIze was determined using a Malvern Mastersizer Z Laser 

Di ffTaction InstTument at a distance of 25 mm frolll the receiver lens and height of 20 

mill from nebu liser. Figure 4.5 shows tbe average particle size distribution of disti lled 

water aerosols from the mesh nebuliser sampled during the nebulisation process. The 

fine particle fraction (1-5I-1m) of the aerosols was observed to be 35-40%. 
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Figure 4.5: A verage pa rti cle size distrib uti on o f aerosols dur ing nebul isation ti'om U22 

mesh nebu li ser (n=3). 

4.3.3 Ncb ulisation ra te 

The nebuli sation rate of aeroso ls from the U22 mesh nebuliser is shown in li gures 4.6a 

& b. As shown in the fi gure, the nebuli sati on rate was found to be - 0.45 mL/min f'o r 

the U22 mesh nebu li ser. 
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Figure 4.6: Nebu lisation rate in the U22 mesh nebuli scr (a) di still ed water - 0.44 

mLlmin. (b) saline Solulion - 0.45 mLfmin (n=4). 

4.4 Ch:lI-ac teri slltio n of a U03 mesh ncbu liscr 

The characterisati on or a U03 mesh ncbuli ser was carried oul to de term ine the nozzle 

dimension o r the nebllli ser mesh and Ihe nebllli sation rale . Limited analysis and 
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ex perimentat ion was ca rri ed out due to the non-ava il abi lity of thi s mesh and dev ice 

in the market. The U03 mesh nebuliser used for the experiments had a mesh w ith a 

nozzle size of 3 flm , which was determined using a high-reso lution li ght microscope. 

The nebulisati on rate o f saline so lution in the U03 mesh nebuli ser was 0.2 ± 0.0 1 

mLlmin 

4.5 Aerosol deliver}' of plasmid DNA 

As has been already ind icated, aerosol delivery of plasmid DNA holds considerable 

prom ise for the treatment of many demanding resp iratory di seases, such as cysti c 

fibrosis, influenza or lung cancer. The deli very of plasmid constructs in the size range 

of 5 to 20 kb is parti cularl y challenging. The retention of the supercoil ed structure (sc) 

of the plasmid during aerosol delivery is essential for its use as a genet ic drug and to 

compl y with regulatory requirements on product quality. In order to ensure max imum 

retent ion of the supercoiled content in the aeroso ls, plasmid DNA in liquid fo rmulati on 

was used for aeroso li sation. Although . plasmid D A has been used in li quid 

aerosoli sation devices, damage to the sc structure has been reported and is summari sed 

below. 

Studies on li quid aeroso lisation devices have shown that aerosoli sation can result in 

damage to the sc structure of the pDNA in the aerosols due to shea r e ffects (Ta ble 4.3). 

In order to assess the leve l o f damage due to the aerosoli sat ion process. the integrity of 

the superco il ed structu re was compared in the chamber before aeroso lisation and in the 

aeroso ls a ft er aeroso lisat ion. As seen in Table 4.3 . j et nebulisat ion resulted in damage 

to a 5 kb and 9.8 kb plasmid. the loss of the sc content being possib ly due to 

hydrodynamic shear and shock waves [Lentz et a l. . 2005]. Damage to a small plasmid 

o f s ize 4.8 kb in the aerosols of a jet nebuli ser was reported by Kleemann et aL 12004 1 

due 10 the shearing effect s of aeroso lismion. Ultrasoni c nebuli sat ion of plasmid DNA 

resulted in no damage to a 5 kb plasmid in the nebuli ser chamber [Lentz et a l. . 2006a l. 

Aerosolisation based on electrohydrodynamic (E l-ID) deli very did not da mage 

supercoi led pD NA. Although there is no damage to the sc tructure o f the plasmid in 

the aerosols. the EII D device is yet to be commerc ial ized 101' pulmonary deli very in 
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the clinic [Davies et aI. , 2005]. A press release from Ventaria Pharmaceutica ls [dated 

March 2 1, 2006] stated the device based on EHD technology (Mysti c™) is in the 

manufacturing stage with Nypro Inc. , a medica l device manufacturing company 

[Ventaria website]. A commercial mesh-based nebuliser (e F low~ has also been 

reported to damage extensively plasmid DNA [Smart et a I. , 2002]. However, the 

aeroso l deli very of a naked gWizTM Luc plasmid has resulted in an intact supercoiled 

structure in the aerosols using a miniaturized nebulisati on catheter device [Koping­

Hoggard et a I. , 2005]. The results of the experiments on the nebuli sation of plasmid 

DNA in a mesh nebuliser is di scussed in the next section. 

Table 4.4: Damage to sc pDNA In the aeroso ls and nebuliser chamber of some 

reported aeroso li sation devices 

Aeroso lisa tion Plasmid Per'centage damage to sc DNA Reference 
device size (kb) Ae roso ls Nebuliscr chamber 
(clinical status) 
Jet nebuli ser 5.0 40% NA Len tz et 
(approved) 9.8 90% NA a l. , 2005 

4.8 > 75% NA Kleemann 
et a l .. 2004 

4.6 NA Afier -I lIlin: 50% Davies et 

7. 1 NA 90% a l.. 2005 

9.2 NA 100% 
Ultrasonic 5.0 NA Afier 9 lI'Iin: N il Lentz et 
nebuli ser 9.8 NA 50% a l. , 2006 
(approved) 4.6 Ni\ Ajier -I min: 70% Davies et 

7. 1 NA 80% al.. 2005 
9.2 NA 90% 

EH D device (in 4.6.9.2. No damage Dav ies et 
I rict/.I) 15.3 al.. 2005 
Mesh nebul iser 4.5 50% NA S mart et 
(approved) 11.0 90% NA al.. 2002 
Nebuli sation 6.7 No damage Koping-
catheter de vice Iloggard Cl 

(preclinical a I. , 2005 
trials) 

NA - Data not ava i lab le 
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4.6 Nebulisatioll of plasmid DNA ill a U22 mesh nebuliser 

The objecti ve of thi s ex periment was to investi gate the use ora commerciall y available 

mesh nebuli ser (MicroAIR@ NE-U22) fo r nebul isation of plasmids of size from 5.7 to 

20 kb. Aerosols of plasmid DNA fi'om nebulisation using the U22 mesh nebulise r in a 

Bio-safety cabinet were condensed and coll ected in a steril e aeroso l co ll ecti on 

apparatus (shown in Chapter 3) and assessed for damage to the sc structure. In order to 

determine the extent of damage to the plasmid DNA in the nebuliser chamber, the 

nebuli ser was switched off duri ng the middle of the nebulisation process and a sample 

taken from the nebuliser chamber as shown in fi gure 3.3 . 

In o rder to assess the ex tent of damage to the superco iled structure of plasmid DNA 

upon aerosolisati on in the mesh nebuliser, the plasmids were formulated in a suitable 

bio logical buffer including TE (Tri s-EDTA), phosphate-bu ffered saline ePBS) and N-

2-H yd roxyethylpiperazine-N ' -2-ethanesulfonic acid (HEPES). T he sc structure of the 

plasmid has been reported to be condensed in the presence of an ioni c sa lt solution 

[Levy et a I. , 1999) and thi s was adopted to reduce size of the sc structure and 

consequently damage during nebuli sati on. The ionic salt so lution used in thi s 

investi gati on was 150 mM and 300 mM NaC I. In the fo llowing ection, nebu lisation 

o f lhe plasmids in the U22 mesh nebuli ser are d iscussed and the resu lts are reported. 

4.6.1 Assessment of pDNA damage 

The assessment of damage to the sc structure during nebuli sa ti nn was determi ned by 

aga rose gel electrophoresis, atomic force microscopy and PicoGreen assay. and the 

methodo logy fo r these is descri bed in Chapter 3. 

4.6.1.1 Agarose gel electrophoresis 1'01' pDNA damage 

T he da mage to the plasmids of s ize {i'om 5.7 to 20 kb du ring nebuli sa tion in the U22 

mesh nebuli se r was quantifi ed us ing agarose ge l e lectrophores is. 
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4.6.1.1.1 5.7 kb plasmid 

ebulisation of the 5.7 kb plasmid formulated in buffers \~~ th and without ionic 

strength due to NaCI were carried out using the U22 mesh nebuli ser. In order to 

ascertai n the extent of damage to the sc structure during and after nebulisation, the 

commonl y used technique is an agarose gel electrophoresis (AGE). AGE is a 

qua litati ve too l to determine the ex tent o f plasmid DNA damage. However, a 

densitometric scan of the agarose ge l provides a quantitative estimate of the plasmid 

fo ml based on the band density. Figure 4 .7 shows agarose gel electrophoresis of the 

samples of 5.7 kb plasmid formulated in TE buffer taken during and a.fter the 

nebulisation process. A sample was taken from the nebuli ser chamber (NC) mid-way 

thro ugh the nebu lisation process. Aeroso ls of plasmid D A were condensed and 

collected after nebulisation (AN) us ing an aeroso l collection apparatus as di scussed in 

Chapter 3. 

Negati ve control samples of the buffer before and after nebuli sation (lanes 2 & 3) were 

can'ied out prior to nebulisation o f 5.7 kb plasmid. to ensure the absence of D A in 

the nebul iser from previous use. As observed in lanes 5 and 6 of Fig. 4.7a, sc structure 

of the plasmid was intact in the nebuliser chamber and in the aeroso ls, respect ively. 

meal'S of damaged DNA in lane 6 of Fig. 4.7a and lane 3 of Fig. 4 .7b are likely to be 

a result of fragmentation o f the open circular to linear fo rms. These resul ts suggest that 

the sc structure of the 5.7 kb plasm id is able to wi thstand the fo rces due to 

aeroso li sati on. while the larger and less compact open-circul ar fo rms are degraded 

duri ng nebulisati on. 

70 



EN AN BN N' AN 
DM 2 3 4 5 6 

0< ---
Damage- to 
oc fonns 

'------y-----J \.'-----y~-~) 

Neg.llve control Buffer 

BN - Before nebultsatlon, 
NC- Nebultser chamber, 
AN- After nebulls.bon 
DM - ADNAI HindIII DNA marker 

Chapter 4: Purificatioll & Nebulisatioll 

0< 

Lf 

~r 

BN NC' AN 
I 2 3 DM 

Damage- to 
oc form ~ 

y 
} 

i-' --
-

Buffer WIth 160 mM Nael 

b 

Figure 4.7: Agarose gel electrophoresis of nebulisation of 5.7 kb pia mid: a) TE 

buffer; lanes 2 and 3: B and AN samples in TE buffer; lanes 3, 4 and 5: BN, and 

A amples in TE buffer howing open-circu lar (oc). linear form (Lf) and supercoiled 

(sc) forms of the plasmid; b) TE buffer wi th 160 mM aCI; lanes 1,2 and 3: BN, C 

and AN samples in TE buffer with 160mM aCI showing oc, Lf and sc forms of the 

plasmid. 

The densitometer scans corresponding to the agarose gels in Figures 4.7a and 4.7b iU'e 

shown in Figures 4.7c and4.7d respectively. The bulk of the sc 5.7 kb plasmid is intact 

(>98%) after nebulisat ion, while a major pOl1ion of the oc (30-60%) is damaged. The 

plasmid formu lated in 160 mM NaCI also showed a similar degradation of the oc and 

linear isoforms of the sc plasmid (Figure 4.4d) in the aerosols afler nebuli ation. 
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and d) densitometer scans showing peaks of 01 en-circul ar (oc), linea r lo rm (If) and 

supercoi led ( c) or Figure 4,7 a) an I b) resl ectivc l) resulting in Icss than -% damage 

to the se fo rm in both cases, 
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Figure 4.8: Agarose gel electrophoresis of nebulisation of 5.7 kb plasmid: a) PBS 

buffer: BN and AN samples; b) HEPES buffer: BN and AN samples; c) TE with 

150mM NaCl: BN and AN samples; open-c ircu lar (oc) form of the 5.7 kb plasm id is 

damaged in the AN samples; DM - DNA marker. 

Agarose gel electrophoresis of the nebulised 5.7 kb plasmid formulated in common 

biological buffers such as phosphate-buffered saline (PBS) and -2-

Hydroxyethylpiperazine-N' -2-ethanesul fonic acid (HEPES) resulted in no damage to 

the sc structure (Figure 4.8). However, a smear of linear DNA fragments in the after 

nebulisation samples suggested panial fragmentation of the open circular forms of the 

plasmid. Densitometric scans of the agarose gel revealed damage of < 2% to sc 

structure of the 5.7 kb plasmid formu lated in the above buffers. In order to investigate 

the influence of plasmid size on damage to superco iled structure upon nebulisation in 

the mesh nebuliser, plasmids of size 8.7, 13 and 20 kb were used for the experiments. 
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4.6.1.1.2 8.7 kb plasmid 

Nebulisation of 8.7 kb plasmid formu lated in TE buffer resulted in damage to the sc 

structure of the plasmid was observed in an agarose gel. In order to reduce the size of 

the sc structure, the plasmid was formul ated in TE buffer with 150mM NaCI. 

However, the sc structure was less damaged when observed in an agarose gel. 

Densi tometric scans provide a better representation of the damage to sc structure 

compared to an agarose gel (please refer Appendix) and are sho wn in Figure 4.9. 
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Figure 4.9 : Densitometric scans o f aga rose ge l from nebul isati on of 8.7 kb plasmid 

[a nnulated in : a) TE buffer. b) TE buffe r with 150 mM NaC I: % damage to se 

structure in a) 45% and b) 6.5%; BN - before ncbulisation. A - after nebuli sati on. 
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Fro m Figures 4 .9a and 4.9b, densitome tric scans of the agarose gel indicate that 

nebuli sation resulted in parti al damage (47.64 ± 6.05%) and slight damage (6 .5%) to 

the sc structu re of the 8.7 kb plasmid formulated in TE buffer. and TE buffe r wi th 

150 mM NaCI respecti ve ly. Fo rmulati on of the 8.7 kb plasmid in bu ffe r with ionic 

strength (150 mM NaCI) enabled condensati on of the sc structure to a small er s ize, 

thereby resulting in less damage. The scans also revea led complete damage to the oc 

structure resulting in a smear of linear DNA fragments. In order to examine the 

in:l1uence of plasmid size on damage to its sc structure when nebu li sed in the mesh 

nebuli ser, a 20 kb plasmid was used for the experiments and the results are presented 

in the fo llowing section . 

4.6.1.1.3 20 kb plasmid 

Nebuli sation of20 kb plasmid formulated in TE buffer with and without ioni c strength 

due to NaCI was carried out using the U22 mesh nebu liser. Ionic strength using 150 

mM or 300 mM NaCI was used to condense the large sc structure in order to avoid 

damage. Figure 4.10 shows ge l electrophores is of the samples of 20 kb plasmid 

fonllLllated in TE buffer (lanes 2 to 4) and in TE buffer wi th 160mM aCI (lanes 5 to 

7). As observed in Fig. 4 .10. the se structure o f the 20 kb plasmid rema ined intact in 

the nebuli ser cham ber (lane 3). while the se structure was completely degraded in the 

aerosols (lane 4). The smear o f DNA in lanes 4 and 7 indicate that after aerosolisation 

the pDNA was completely degraded into small er fragments. Formul ation of the 20 kb 

plasmid in TE buffer with 160 or 300 mM NaCI did not stab ili ze the sc structu re 

during aerosoli sati on. Lanes 3 and 6 sampled from the nebuli sation cham ber showed. 

however. that no damage to the 20 kb plasmid occurs in the chamber. T hi s suggests 

that DNA damage primari ly occurs during the passage o f the so lution through the 

mesh or when the aerosol is formed just above the mesh. T he size di stri bution of the 

shea red li·agmcnts aft er ncbu li sa tion shown in Figure 4. 11 was obtained by 

densitometric analysis o f' Fig.4. 1 O. The 20 kb plasmid was di sintegrated into smaller 

fragment s ranging from about 5 kb to less th an 0.5 kb . A major proportion (- 90%) o f 

the fi·agments were in the size range of 0.5-2 kb and 2-4.3 kb. quant i ried based o n the 

molec ul ar we ight of the marker DNA. 
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Figure 4.1 I: Distribution of sheared DNA fragments after nebulisat ion of the 20 kb 

plasmid generated fi 'om the densitometri c scans of agarose gel (n=2); ' x' is the DNA 

molecular size in kb determined from DNA marker as a reference. 

4.6.1.2 Atomic force microscopy for plasmid DNA imaging 

In order to visuall y examine the damage to sc structure of' the plasmid. AJeM imaging 

in air was carri ed out using a Scanning Probe Microscope. The methodology adopted 

for preparation of the samples for AFM imaging is detailed in Chapter 3. 

4.6. 1.2.1 5.7 lib plasm id 

In order to visualise the ex tent of' damage to the isofonns of 5.7 kb plasmid, nano-scale 

charactcri sation of' the plasmid was ca rried out using an atomi c fo rce microscope 

(A FM). AFM imaging of the 5.7 kb plasmid belo re nebuli satiol1 (Fi gure 4.12a) 

indicated a molecular size of' approx imately 330 nm f'or a single sc structu re. Imag ing 

an after nebulisati on sample (Figure 4. 12b) showed the sc structure with the presence 

of a small num ber oi' D A fi'agments lI'om the open circular iso lo rms. This 

observa tion was in agreement with the results from agarose ge l electrophoresis 

reported in ea rli er. To identify the plasmid iso lo rm which resulted in generati on of 
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D A fragments upon nebu lisation. an assay based on PicoGreen dsD A binding dye 

was performed and is repOlted in the next section. 

Figure 4.12: Structural analysis of sc structure of 5.7 kb plasmid D A by AFM 

imagi ng in air: a) before nebulisation. scan size of 0.75 x 0.75 ~m . scale bar - 250 

nm; b) after nebuli sat ion showing sc struc ture and sheared fragments of 5.7 kb. scan 

s ize of 2.5 x 2.5 ~m. scale bar - 500 nll1. 
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4.6.1.2.2 20 kb plasmid 

The size of the sc structure of the 20 kb plasmid in TE buffer (Figure 4. 13a) was 

observed to be approximately 1250 nm, about four times the size of a 5.7 kb 

plasmid. pon nebu l isation, the 20 kb plasmid was completely disintegrated into 

spaghelli- l ike fragments (Figure 4.1 3b). The disintegration of the sc structure into 

such fragments of molecular size less than one-fi fth of the original size is probably 

caused by shear experienced by the plasmid upon pas 'ing through the nozzles of the 

nebu I iser mesh. 

Figure 4.13: Structural analysis of sc SLrUClUre of 20 kb plasmid 0 A by AFM 

imaging in air: a) before nebuli sm ion; b) after nebulisation showing sheared 

fragments of 5.7 kb, scan size of 2.5 x 2.5 ).lm, sca le bar - 500 nm for bo th images. 
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Figure 4.1 4: Structural analys is of sc structure of condensed 20 kb plasmid D A; 

scan size of 7.S x 7.5 !.tm, scale bar - 2500 nm. 

From figu re 4. 14, a condensed 20 kb plasmid in ionic bufFer exhibited a large 

molecular configuration possibly due to the agglomeration of [WO or more plasmids. 

Although the presence of ionic buFfer resulted in a tightl y twisted geometry, damage 

to the sc structure was observed to be the same as that without an ionic buffer as 

shown in Figure 4.10. A PicoGreen assay was performed to identify the damage to 

the . c structure of the plasmid and is discu sed in the next section. 

4.6. 1.3 PicoGreen assay for analys is of DNA damage 

PicoGreen is a fluorescent dye that selectively binds only to double-stranded DNA. 

Damage to the linear, oc or sc plasmid DNA after nebulisation is shown by a change in 

fluorescence due to differential dsD A bi nding of the PicoGreen dye. The relative 

nuorescence of the sample is directly propol1ional to the concentration of double­

stranded DNA (X) available to the PicoGreen dye [Georgiou and Papapostolou, 2oo6J 

and is given by equation 4.1, where k is the D A binding constant. 

RFU = k * x ... .. ..... .... ...... .. ..... ...... ... . Equation 4. 1 

80 



Chapter 4: Purification & Nebulisation 

The DNA binding constant (k) is detennined from the slope of the RFU vs plasmid 

DNA concentration plots for before and after nebulisation or degradation. The DNA 

binding constant ratio (kralio) is detennined from the ratio of kBN or kBD before 

nebulisation or degradation to kAN or kAD that after nebulisation or degradation and 

provides an insight into the extent of damage to the plasmid fonns. If k rotio = 1, there 

should be no degradation to the plasmid DNA sample. If k ratio > 1, a decrease in the 

fluorescence after nebulisationldegradation suggests dissociation of linear double 

stranded (ds) DNA to single stranded (ss) DNA. If k rotio <1, an increase in the 

fluorescence after nebulisationldegradation suggests dissociation of oc/sc DNA to 

linear dsDNA. 

Assessment of DNA damage to the plasmid fonns. is crucial for the ultimately 

. successful aerosol delivery using the mesh nebuliser. It is essential to detennine 

whether the shear to the plasmid fonns observed using the agarose gel is a result of 

damage to the sc structure or other fonns of the plasmid. Although densitometric scans. 

from agarose gel provide valuable infonnation on damage to the se structure, they 

depend to a large extent on the migration of the different plasmid fonns on the agarose 

gel. Besides, the differential binding of the Ethidium Bromide dye to the se structure . 

also suggests that the results from agarose gel can provide complimentary infonnation 

on damage to the plasmid fonns. However, the PicoGreen assay provides a highly 

sensitive approach for selective binding of the dye to dsDNA at DNA concentrations 

in the picogram range. 

4.6.1.3.1 5.7 kb plasmid 

A standard graph of fluorescence against DNA concentration for the 5.7 kb plasmid 

·exposed to PicoGreen dye for high and low concentration range is shown in Figure 

4.15. A linear relationship was observed between relative fluorescence units (RFU) 

and plasmid DNA concentration. 

In order to understand the extent of degradation to the isofonns of 5.7 kb plasmid, the 

plasmid was exposed to alkaline denaturation at pH 12 and the dsDNA quantified 

using PicoGreen assay. As shown in Figure 4.16, a decrease in the fluorescence on 

exposure to alkaline pH suggested possible disintegration of the linear dsDNA plasmid 
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form due to alkaline denaturation. As observed from the figure, the RFU vs DNA 

concentration graph was observed to be linear. The ratio of the slopes of trend lines of 

the .fluorescence vs DNA concentration plot at pH 8 tei pH 12 (kratio) was found to be 

1.43. A kraiio value >1 suggested damage to the linear forms of the ds plasmid DNA to 

ssDNA. 
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Figure 4.15: A standard DNA fluorescence graph using PicoGreen assay for 5.7 kb 

plasmid at a) high concentration (0-800 ng/mL), b) low concentration (0-3 ng/mL) 
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Figure 4.16: PicoGreen assay for 5.7 kb plasmid exposed to alkaline denaturation at 

pH12; k8D = 0.0154, kAD = 0.0108, kratio = 1.43 (n=3). 
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Figure 4.17: PicoGreen assay for 5.7 kb plasmid exposed to chemical degradation at 

60°C for 24 hours; kBD = 0.0032, kAD = 0.0017, kralio = 1.88 (n=3). 

In order to assess the extent of damage to sc structure of the 5.7 kb plasmid due to 

chemical degradation, a PicoGreen assay was carried out. The 5.7 kb plasmid was 

. exposed to chemical degradation by incubating at 60°C for 24 hours. As shown in 

Figure 4.17, the fluorescence of the plasmid exposed to chemiCal degradation was 

lower than the undegraded plasmid, suggesting a possible degradation of the linear 

dsDNA to ssDNA. Consequently, kralio was found to be higher at 1.88. 

Incubation of the 5.7 kb plasmid at 60°C for an additional 24 hours, led to an increased 

fluorescence of the degraded sample (Figure 4.18) for DNA concentrations >500 

nglmL. This increase in fluorescence of the degraded plasmid sample is a result of 

increased degradation to the oc and sc forms of the plasmid into linear dsDNA. The 

formation of linear dsDNA led to an increased binding of the fluorescent dye resulting 

in higher fluorescence and· consequently lower kralio• The lower value of R2 for the 

degraded plasmid DNA suggested that the relationship between RFU and DNA 

conc.entration was non-linear for concentrations >500 nglmr:. 
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Figure 4.18: PicoGreen assay for 5.7 kb plasmid exposed to chemical degradation at 

60°C for 48 hours; kBD = 0.008, kAD = 0.0127, k rallo = 0.63 (n=2). 
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. Figure 4.19: PicoGreen assay for 5.7 kb plasmid exposed to nebulisation; kBN = 

0.0036, kAN = 0.004, kralio = 0.9 (n=3). 

The fluorescence of 5.7 kb plasmid after nebulisation was observed to be slightly 
" 

higher than before nebuIisation (Figure 4.19). This is due to the increased binding of 
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PicoGreen dye to linear dsDNA which was formed by degradation of either the oc or 

sc structure of the plasmid. The binding constant ratio, kra1i; = 0.9, closer to unity, 

suggested that the linear dsDNAgenerated after nebulisation resulted primarily from' 

the oc structure of the plasmid. The densitometric scans of agarose gel as shown in 

Figure 4.7 c confirmed the above findings that the smear of linear DNA fragments did 

originate from the damage to the oc structure of the plasmid. A summary of the results , 

from the PicoGreen assay on the nebulisationl degradation of the sc structure of the 5.7 

kb plasmid are shown in Table 4.5. 

Table 4.5: Summary ofPicoGreen results on damage to 5.7 kb'plasmid 

PG assay for 5.7 kb plasmid in RFU=k*X' kratio = Inference to pDNA 
the ran!!e (X in o!!lmL) kB/vlkAN damage 
5.7 kb olasmid 
o to 800 ng/mL y= O.OO72*X pDNA standard 
o to 3000 pg/mL y= O.0222*X (Figure 4.15) 
pDNAatpH8 Damage to linear 
o to 100 ng/mL y= O.0154*X pDNA (Figure 4.16) 
pDNA denaturation at pH 12 
o to 100 ng/mL y= O.OlO8*X 1.43 
pDNA (before del!radatioll) --c Damage to linear 
o to 300 ng/mL y= O.OO32*X pDNA (Figure 4.17) 
nDNA de!!radation (24 hours) . . 

o to 300 ng/mL y= O.OO17*X 1.88 
nDNA (befQre de!!radation) Damage to sc/oc 
o to 800 ng/mL y= 0.008*X pDNA (Figure 4.18) 
nDNA de!!radation (48 hours) 
o to 800 ng/mL y= 0.0127*X 0.63 
pDNA (before nebulisation) y= 0.0036*X Damage to oc pDNA 
pDNA (after nebulisatioll) y= 0.004*X· 0.90 (Figure 4.19) 

The above results suggest that the PG assay could serve as a rapid technique to 

detect damage to the isoforms of the 5.7 kb plasmid during formulation and delivery 

as a non-viral gene therapeutic. The high sensitivity of detection with the PicoGreen 

dye promises efficient quantification of dsDNA in the plasmid isoforms. In the next 

section, nebulisat10n of the 8.7 kb plasmid is discussed and the results are presented. 
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4.6.1.3.2 20 kb plasmid 

A standard graph of fluorescence versus plasmid DNA concentration for 20 kb 

. plasmid using PicoGreen reagent was plotted as shown in Figure 4.20. A PicoGreen 

assay was carried out for nebulisation samples of 20 kb plasmid exposed to alkaline 

denaturation at pH 12 (Figure 4.21). Ari increase in fluorescence of the after 

nebulisation sample. at pH 8, suggested an increase in dsDNA due to the almost 

complete degradation of the large sc structure. An increase in DNA concentration in 

the after nebulisation sample based on A260 measurement (Table 4.6) was confirmed 

with the increase in DNA concentration due to increased fluorescence. Incubation in 

alkaline pH of the before nebulisation and nebuliser chamber sample resulted in no 

significant change in fluorescence due to the non-degradation of the compact sc 

structure. However, incubation of the after nebulisation sample in alkaline pH resulted 

in decreased fluorescence due to the degradation of the linear dsDNA into ssDNA. 

Agarose gel electrophoresis also confirmed the almost complete degradation of the sc 

structure of the 20 kb plasmid on nebulisation. 
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Figure 4.20: A standard graph using PG assay fora 20 kb plasmid (n=3). 

86 



Chapter 4: Purification & Nebulisatfon 

450 

400 

350 

300 
HllpHB 

DpH12 
~ 250 
u. 
It: 200 

. 150 

100 

50 

0 

Before Nebulisatlon Nebuliser chamber After Nebulisation . 

Figure 4.21: PicoGreen assilY of nebulisation samples of 20 kb plasmid exposed to 

alkaline denaturation (n=3). 

Table 4.6: Absorbance measurements ofnebulisationsamples of20 kb plasmid (n=2) 

20 kb plasmid A260 A280 A260/A280 DNA cone 
samDle (/lwmL) 
Before 0.367 ± 0.01 0.194 ± 0.002 1.895 ± 0.082 16.13 ± 0.77 
Nebulisation (BN) 
Nebuliser 0.34 ± 0.029 0.165 ± 0.03 2.077±0.19 15.44 ± 0.79 
chamber (Ne) . 

After Nebulisation 0.599 ± 0.18 0.324 ± 0.09 1.843 ± 0.053 26.04± 8.22 
(AN) 

. 4.6.2 Summary of pDNA nebulisation in a U22 mesh nebuliser 

Plasmids of size 5.7, 8.7,13 and 20 kb were us~d for nebulisation studies in the U22 

. mesh nebuliser. From Table 4.7, a 5.7 kb plasmid formulated in a buffer with ionic 

strength due to NaCl can be nebulised with no significant damage to the sc structure. 

However, the sc structures ofplasmids of size 8.7,13 and 20 kb were observed to be 

damaged on nebulisation. The extent of damage to the sc structure for plasmids of 

size >5.7 kb was observed to be higher with increasing plasmid size for the 

experimental parameters studied here upon aerosolisation in the U22 mesh nebuliser. 
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Table 4.7: Surrunaryofplasmid DNA nebulisation in a v22 mesh nebuliser 

Plasmid DNA concentration/ buffer % damage to sc Tools to detect 
size conditions plasmid DNA pDNAdamage 

(n=2 minimum) 
5.7kb DNA - 20Ilg/mL, TE buffer 5.52 Agarose gel 

electrophoresis 
DNA - 2OIlg/mL, 0.55 (AGE), 
TE buffer + 150mM NaCl PicoGreen assay, 
DNA - 2OIlg/mL, 0.41 Concentration 
TE buffer + 300mM NaCl based on A26o, 
DNA - 20Ilg/mL, PBS buffer 0.54 Atomic force 
DNA - 20Ilg/mL, HEPES buffer 1.27. microscopy 

, (AFM) . 
8.7kb DNA - 20Ilg/mL, TE buffer 47.64 Agarose gel 

DNA - 2OIlg/mL, 6.45 electrophoresis 
TE buffer + 150mM NaCl 

13 kb DNA - 201lg/mL, TE buffer 70.68 
20kb DNA - 20Ilg/mL, TE buffer 96.15 AGE, PicoGreen 

DNA - 2OIlg/mL, 92.27 assay, 
TE buffer + 150mM NaCl Concentration 
DNA - 2OIlg/mL, 96.45 based on A26o, 
TE buffer + 300mM NaCl AFM 

4.7 Nebulisation of plasmid DNA in a V03 mesh nebuliser 

Nebulisation of 5.7, 8.7 and 20 kb plasmids were carried out in a v03 mesh 

nebuliser to determine the extent of damage to the sc structure. Densitometric scans 

of agarose gel for nebulisation samples of 5.7,8.7 and 20 kb plasmids are shown in 

Figure 4.22. 
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Figure 4.22: Densitometric scans of agarose gel electrophoresis of nebulisation of 

plasmids in U03 nebuliser: a) 5.7 kb, b) 8.7 kb, c) 20 kb (20 Ilg/mL), d) 20 kb (30 

llg/mL); % damage to sc structure after nebulisation in a) 24.3%, b) 55.9%, c) 

92.5%, d) 90.7%. 

The.sc structure of all the plasmids was observed to be damaged after nebulisation. 

This contrasts with the higher frequency U22 device which was able to safely deliver 

the 5.7 kb plasmid. The damage to the 5.7 kb plasmid in the U03 device may be due 

to the increased residence time of the plasmid in the nebuliser chamber. 
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4.8 Discussion 

Studies on the quality of purified plasmid DNA shown in Figures 4.1 and 4.2and 

Tables 4.1 and 4.2, suggest plasmid formulations were suitable for non-viral gene 

therapy. In addition to DNA homogeneity from Figures 4.1 & 4.2, the agarose gel also 

confirmed the absence of chromosomal DNA and RNA [SchJeef, 2005]. Research in 

the aerosol delivery of pDNA is being pursued in many existing pulmonary devices. 

The emerging generation of mesh nebulisers are claimed to have greater aerosolisation 

efficiency, precision and consistency of drug delivery to the lungs than conventional 

jet or ultrasonic nebulisers [Dhand, 2003]. 

The characterisation ofthe U22 and U03 mesh nebulisers enabled determination of the 

nozzle size, nebulisatioIi rate and aerosol particle size distribution. The nozzle size of 3 

Jlm was same for the two nebulisers studied. However, the nebulisation rate for the 

U03 nebuliser was less than half of the U22 mesh nebuliser. This was due to the low 

frequency of the U03 device compared to the U22 device. Since the U22 device is 

available in the market, while the U03 device is an earlier version of the U22 and is 

not currently available, majority of the plasmid DNA nebulisation experiments were 

carried out using the U22 mesh nebuliser. 

In order to evaluate a device for the aerosol delivery of pDNA, it is of utmost 

importance to check the integrity of the sc structure of the plasmid in the aerosols. 

Nebulisation of 5.7 kb plasmid was carried out to study the effect of aerosolisationon 

the integrity of sc structure of the plasmid. The 5.7 kb plasmid after nebulisation 

showed a smear of the open-circular structure in the aerosols, suggesting disintegration 

into linear fragments. The plasmid formulated in 160 mM NaCI also showed a similar 

degradation of the oc and linear isoforms of the sc plasmid (Figure 4.7b) in the 

aerosols after nebulisation. The densitometer scans corresponding to the gel (Figure 

4.7d) showed that the bulk of the sc plasmid remains intact (>98%), while a major 

portion of the oc (30-60%) is damaged. The formulation of 5.7 kb plasmid in suitable 

ionic strength buffers such as PBS, HEPES was carried out to check the effect of 

. buffer on nebulisation. As shown in Figure 4.8 and confirmed with densitometric 

scans of the agarose gel (data not shown), the sc structure of the plasmid was intact 

( <1.5% damage) after nebulisation. 
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. The isoforms of a plasmid (linear and open-circular) are more susceptible to damage 

than the sc form due to their length when exposed to large hydrodynamic forces 

[Lengsfeld and Anchordoquy, 2002]. For instance, the multimeric forms of a 5.2 kb 

plasmid were observed to be degraded on plasmid purification [Chowdhury and 

Akaike, 2005]. Past work has also shown that the damage potential to the sc structure 

was observed to be greater with larger sized plasmids when using different 

aerosolisation devices as illustrated by Table 4.4. Attempts by Smart et al. [2002] to 

deliver a 4.6 kb and 11 kb plasmid using a mesh nebuliser with a vibrating membrane 

resulted in 50% and 90% degradation respectively to closed circular structures, and a 3 

kb and 11 kb linear DNA subjected to 50% degradation upon nebulisation. It, was 

suggested by the authors that torsional stress could be responsible for the damage to 

the closed circular plasmid. 

AFM imaging has been reported to assess the damage to pDNA as a result of 
, 

irradiation [Murakami et al., 2000]. Visualisation of the pDNA using AFM is a 

valuable tool to quantify the size of the plasmid and evaluate the extent of damage 

upon nebulisation. AFM imaging by tapping mode in air had been reported for 

plasmids of siza 1.2 kb and 9.7 kb in order to measure the contour length [Podesta et 

aI., 2004]. Although the exact hydrodynamic conformation of the pDNA in solution is 

not known, a. two dimensional conformation is likely to provide a reasonable 

assessment of the size of such large shear sensitive sc structures. The absence of 

damage to sc 5.7 kb plasmid after nebulisation suggested that at· a size of 330 nm 

(Figure 4.l2b), it can easily pass through the 3 J.IIl1 diameter nozzle of the mesh 

nebuliser with little adverse effect on the supercoiled structure. The presence of almost 

intact sc structure in the aerosols of the. 5.7 kb plasmid indicated that the mesh 

nebuliser could be used for the aerosol delivery of such plasmids. Unsuccessful 

delivery using some nebulisers could be attributed to the different operating conditions 

of the device, namely vibration frequency, mesh nozzle size, etc. 

Nebulisation of 8.7 kb plasmid in TE buffer and TE buffer with ISO mM NaCI using 

U22 mesh nebuliser resulted in damage to the sc structure. As shown in Figure 4.6, sc 

structure of the plasmid in TE buffer was partially damaged ( 45% damage), while in 

TE buffer with 150 mM NaCI damage was marginal (6.5% damage). Condensation of 

the sc structure of 8.7 kb plasmid in buffer with ionic strength protected the fragile 
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structure from significant damage. Aerosolisation of a larger plasmid of size 20 kb 

using the same nebuliser resulted in fragmentation of the sc structure (>90%) of the 

naked 20 kb plasmid in the aerosols after nebulisation (Table 4.7). However, absence 

of damage to the sc structure in the nebuliser chamber and damage in the aerosols 

suggested shear experienced during aerpsol formation from the mesh nebuliser as the 

,cause of the fragmentation. The size distribution of the DNA fragments in the aerosols 

ranging from about 5 to 0.5 kb (Figure 4.11) was possibly dueto the effects of high 

hydrodyriamic forces, similar to that experienced when DNA was subjected to 

hydrodynamic shear using a Point-sink Shearer device [Tl1orstenson et al., 1998]. This 

device uses a syringe pump to create hydrodynamic shear forces by pushing a DNA 

sample through a small abrupt contraction, to generate short linear fragments for DNA 

sequencing. The DNA fragments generated were in a tight size range with the size of 

the largest fragments to be twice as that of the smallest. The size distribution of the 

fragments observed after nebulisation of the 20 kb plasmid in the aerosols also resulted 

in a similar distribution. Although sc plasmid DNA in higher ionic strength buffers has 

'been reported to have a tightly twisted geometry [Levy et aI., 1999], it was ineffective 

in withstanding the shearing effects of aerosolisation as observed in the results. 

Naked supercoiled 20 kb plasmid in a two-dimensional conformation was found by 

AFM imaging to have a molecular length of 1250 nm, which is almost half the nozzle 

size for the devices under study. This suggested that the plasmid would be highly 

susceptible to the forces associated with its passage through the nozzles of the 

nebuliser mesh. Ionic strength due to NaCI resulted in a more condensed structure to 

the plasmid [Lyubchenko and Shylakhtenko, 1997]. AFM imaging of the condensed sc 

plasmid in NaCI showed evidence of a larger molecular size (Figure 4.14) possibly 

resulting from the agglomeration of two or more sc structures. Hence, nebulisation 

produced destruction of the sc structure'into spaghetti-like fragments shown in Figure 

, 4.13b. This may have been accompanied by the size of the plasmid molecule and 

release of torsional strain from the sc structure of the plasmid. 

To assess the extent of degradation to the isoforms of 5.7 kb plasmid, a fluorescence 

based assay was performed using PicoGreen reagent for double-stranded DNA 

quantification. Levy et al. [2000] have reported the quantification of sc content in 

plasmid DNA solutions using a fluorescence-based method. The linear concentration 
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range for DNA quantification extends over four orders of mag~itude - 25 pg/mL to 1, 

llg/mL, with a single dye concentration [Singer et aI., 1997]. A linear standard graph 

of relative fluorescence units versus DNA concentration was obtained for high and 

low concentration ranges of 5.7 'kb plasmid (Figure 4.15). In order to understand the 

damage to the plasmid isoforms, the 5.7 kb plasmid was exposed to (i) alkaline 

denaturation (PH 12) and (ii) chemical degradation (60°C for 24 and 48 hours), and the 

double-stranded DNA quantified using PG assay. From Figure:4.16, the decrease in 

fluorescence at alkaline pHis due to degradation of the isoforms of linear dsDNA into 

ssDNA. The binding constant (k) is dependent on the dsDNA concentration available 

for the PicoGreen dye. Based on the ratio of the binding constant (krntio) before and 

after alkaJine denaturation, it is possible to infer whether damage to the isoforms of 

plasmid is due to linear or oc/sc isoforms. Alkaline denaturation of the 5.7 kb plasmid 

with a k,atio of 1.43, suggested damage is predominantly due to linear isoforms. Under 

controlled alkaline conditions, the degree of denaturation of dsDNA molecules is 

known to increase with increasing number of breaks and alkaline labile sites (Le.' 

depurinated sites) [Rock et aI., 2003]. Chemical degradation (24 hours incubation) of 

the 5.7 kb plasmid resulted in a similar damage with a krntio of 1.88 (Figure 4.17). 

However, chemical degradation for 48 hours resulted in an increased fluorescence and 

low krntio (0.63) as shown in Figure 4.18, possibly due to the predominant diunage of 

oc/sc dsDNA into linear dsDNA. A slight increase in fluorescence and a kratio close to 

1 (0.9) for the after nebulisation sample of 5.7 kb plasmid (Figure 4.19), suggested 

possible damage to the oc dsDNA, as confirmed by agarose gel electrophoresis (Figure 

4.7). 

A linear standard graph of fluorescence versus DNA concentration based on 

'PicoGreen assay for 20 kb plasmid is shown in Figure 4.20. A PicoGreen assay of 

alkaline denaturation of the nebulisation samples of 20 kb plasmid (Figure 4.21) 

showed no increase in fluorescence confirming no damage to the sc structure in the 

nebuliser chamber as also evident from agarose gel electrophoresis. However, an 

increase in fluorescence of the after nebulisation sample suggested damage to the sc 

structure due to the formation of linear dsDNA. Alkaline denaturation of the after 

nebulisation sample resulted in decreased fluorescence possibly due to the damage of 

linear dsDNA leading to ssDNA. This shows that the PicoGreen assay could serve as a 

useful technique for quick assessment of damage to plasmid DNA during nebulisation. 
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Absorbance measurements at 260 nm as shown in Table 4.6 revealed a higher DNA 

concentration in after nebulisation sample, resulting. from degradation of the sc 

structure into linear DNA fragments. 

The U03 mesh nebuliser operating at a lower frequency was chosen to investigate the 

extent of damage to the sc structure of plasmid DNA due to the driving force for 

aerosolisation. Nebulisation of plasmids of size 5.7, 8.7 and 20 kb using the U03 

nebuliser showed significant damage to the sc structure (Figure 4.22). The damage to 

the sc structure of the 5.7 kb plasmid using the U03 device may be due to the increased 

residence time iJi the device. The aerosol droplet size generated during ultrasonic 

atomization is reported to be inversely proportional to the device frequency [Yule and 

Al-Suleimani, 1999]. The larger droplet size due to the lower frequency of the U03 

device may have resulted' in the generation of high shear forces near the nozzle·exit 

also leading to damage of the sc structure of the 5.7 kb plasmid. 

4.9 Conclusion 

Purification of plasmid DNA in its supercoiled form from recombinant Escherichia 

coli cells as per the specifications for gene therapeutics is crucial for its application in 

non-viral gene therapy clinical trials. Aerosol delivery of plasmid DNA has potential 

'applications for the treatment of acute respiratory diseases such as cystic fibrosis, 

influenza and SARs. Here typical plasmids of size from 5.7 to 20 kb were purified in 

the supercoiled form and the formulations· of plasmid DNA aerosolised using a 

commercially available, clinically approved U22 mesh nebuliser. In order to facilitate 

quick adoption of a potential plasmid DNA based genetic drug, the U22' mesh 

nebuliser was chosen for this research investigation. Nebulisation of the 5.7 kb 

plasmid resulted in safe aerosol delivery of the sc structure. However, damage to the 

oc structure of the 5.7 kb plasmid and sc structure of8.7, 13 and 20 kb plasmids were 

detected using gel electrophoresis, atomic force microscopy and the PicoGreen assay 

using the U22 mesh nebuliser. Safe delivery of sc structure of the 5.7 kb plasmid using 
, . 

the U22 mesh nebuliser suggested that damage is dependent on the size of the 

. molecular sc structure. Further experiments based on a DOE to predict the influence of 

nozzle size, ionic and DNA concentrations on damage to the sc structure of the 20 kb 
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plasmid were attempted to provide valuable information for formulation of the 20 kb 

plasmid. The experimental design adopted for the DOE and the results are reported in 

the next chapter. 
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CHAPTER 5. NEBULISATION OF PLASMID DNA: 

DESIGN OF EXPERIMENTS 

5.1 Introduction to Design of Experiments (DOE) 

The aim of the design of experiments (DOE) was to study the influence of fonnulation 

and device factors' on damage to tl).e sc structure of 20 kb plasmid upon nebulisation 

and predict a relationship between the response and variables. A design of experiments . 

based on the response surface method (RSM) was adopted to investigate the 

significant variables affecting delivery of20 kb plasmid using the U22 mesh nebuliser .. 

The RSM is used when only a few significant factors are involved in the optimisation 

[Ragonese et aI., 2002]. RSM is a collection of statistical and mathematical techniques 

useful for developing, improving, and optimizing processes, based on a graphical 

perspective of the problem environment [Myers & Montgomery, 2002]. 

A response surface is the geometric representation obtained when a response variable 

is plotted as a function of one or more quantitative factors, while a contour plot is a 

series of lines or curves that identify values of the factors for which the response is 

constant [Mason et aI., 2003]. The experimental design. adopted for the RSM 

optimization was Box-Behnken design. A Box-Behnken design is an independent, 

rotatable or nearly rotatable quadratic design, in which the experimental combinations 

are at the midpoints of the edges of the process space and at the centre [Box' and 

Behnken, 1960; Zidan et aI., 2007; Ferreira et al.; 2007]. Box-Behnken design can be 

used when perfonning non-sequential experiments and allow efficient estimation of 

the first- and second-order coefficients. In addition, Box-Behnken designs have fewer 

design points than central composite designs for the same number of factors and 

ensure all factors are never set at their high levels simultaneously [Design-Expert 

Manual, Stat-Ease Inc., USA]. 
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5.2 N ebulisation of 20 kb plasmid - Response surface method 

As observed in Chapter 4, the size of the 20 kb plasmid is of the order of a nozzle size, 

and significant damage to plasmids of increasing size, suggested nozzle size as an 

important variable for further experimentation. Since the size of the plasmid DNA can 

be condensed in the presence of ionic salts such as NaCl, DNA and NaCl 

concentrations were chosen as the other two variables to study the effect of interaction 

. on damage to plasmid DNA. The main objective of this chapter is to discuss the effect 

of chosen variables such as nozzle size, DNA concentration and NaCl concentration , 
on damage to the sc structure of 20 kb plasmid upon nebulisation based on a three­

dimensional optimization using the DoE approach. 

Nebulisation of20 kb plasmid in the U22 mesh nebuliser was carried out based on the 

experimental design involving chosen variables and levels as discussed in section 5.1.1 

below. The response identified was percentage damage to the sc structure of the 

plasmid after nebulisation, quantified using densitometric scans of the agarose gel. The 

densitometric scan measurements were obtained from two or more agarose gels, and 

the average value used as an actual response to determine the response function using 

Design-Expert@ software. 

5.2.1 Choice of variables and levels 

Nebulisation experiments in Chapter 4 enabled identification of the key variables 

influencing damage to the sc structure of the plasmid. Nebulisation of different sized 

plasmids showed maximuin damage to the sc structure of the 20 kb plasmid with the 

standard 3 !!m nozzle ofU22 mesh nebuliser. The safe delivery of the 5.7.kb plasmid 

using the same device and nozzle size suggested damage could be dependent on the 

relative size of the plasmid compared with the mesh nozzle. Hence, nebulisation of 20 

kb plasmid at mesh nozzle sizes of 4 and 5 !!m (provided by Omron Healthcare, Japan) 

was attempted to study the effect of nozzle size on damage to the sc structure. The 

plasmid DNA concentration reported to be used for transfection studies [Tachibana et 

aI., 2Q02] was 20 !!glmL. DNA concentrations of 10, 20 and 30 !!glmL were therefore . 

chosen for the .study, in order to investigate their influence on damage to the sc 

structure after nebulisation. In order to understand the effect of ionic concentration on 
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pDNA fonnulations in ionic buffer and its impact on pDNA damage, the concentration 

levels used for the experimental design wer~ 0, 150 and 300 mM NaCI. The variables 

and levels chosen for the experiinental design are summarised in Table 5.1. 

Table 5.1: Variables and levels chosen for experimental design 

Variables Levels 

o :i" 

Nozzle size (Ilm) 3.0 4.0 5.0 

DNA concentration (llglmL) 10 20 30 

NaCl concentration (mM) o 150 300 

5.2.2 Experimental design 

. The experimental design chosen for the response surface method was a Box-Behnken 

design. Box-Behnken design has the advantage of perfonning limited experimental 

runs (12 + 3 centre points) compared to a full factorial design (33 = 27) for a three 

variable experimental design with three evenly spaced levels. The experimental design 

with the levels of the variables and response of % damage to the sc structure from 

average values of densitometric scans of agarose gels is shown in Table 5.2. 

The statistical analysis, diagnostic plots, contour plots and response surface plots were 

used for choosing the model, checking the adequacy and interpreting the response. 
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Table 5.2: Box-Behnken experimental design and experimental response 

Run' Nozzle size DNAconc NaCI conc Experimental Response* 
Xnozz/e ,CDNA eNaCI ' , (% damage to sc 
(/lm) (/lglmL) (mM) structure) 

, 

1 4 20 150 28.00 

2 4 10 0 45.94 
. 

3 4 10 300 18.16 

4 5 10 150 30.11 

5 3 10 150 95.96 
I. 

,6 4 20 150 21.74 
I 

7 5, 30 150 23.28 

8 5 20 300 22.95 

9 3 20 0 96.36 

10 4 30 0 35.75 

11 3 20 300 93.57 

12 4 20 150 28.67 

13 4 30 300 29.91 

14 
, 

3 30 150 98.18 

15 5 20 0 30.38 

* - (n=3) Average measurements from denSitometer scans oftnphcate gels. 

5.2.3 Statistical analysis of Box-Behnken design 

The results of the Box'-Behnken design using Design-Expert@ 7.2 (Stat-Ease, Inc., 

Minneapolis, USA) software are reported. The statistical analysis of the model is 

shown in Tables 5.3, 5.4 and 5.5. Statistical analysis based on 'Sequential Model Sum 

of Squares' (SMSS) as shown in Table 5.3 compares the three models: linear, 2FI 

(Two factor interaction) and quadratic. The table suggests that the linear and quadratic 
, , 

models are significant, since the p-value is <0.05. However,the lack of fit tests shown 
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in Table 5.4 suggests that the quadratic model fits well compar~d to the linear model, 

as evident from the insignificance ofIack of fit tests. The insignificance ofIack of fit is 

good since the objective of the model is to fit the response . 

. Table 5.3: Statistical analysis of Box-Behnken design based on SMSS 

Source Sum of Degrees of Mean Fvalue p-value Significance 
squares . freedom square (Prob 

(dt) >F) 

Linear 9856.78 3 3285.59 8.95 0.0018 

2FI 146.20 3 48.73 0.11 0.9551 
. 

Quadratic 4521.27 J. 1507.09 100.31 <0.0001 Significant 

Table 5.4: Lack of Fit Tests for Box-Behnken design 

Source Sum of df Mean Fvalue· p-value Significance 
squaJ:es square 

Linear 4742.82 9 526.98 70.69 0.0005 , 
2FI 4596.62 6 766.10 102.77 0.0002 

Quadratic 75.36 J. 25.12 3.37 0.1356 Insignificant 

Table 5.5: Model summary statistics for Box-Behnken design 

Source Standard R". Adjusted Predicted PRESS Suggestions 
deviation R2 R2 

Linear 19.16 0.6738 0.5985 0.4256 8402.48 
. 

2FI . 21.51 0.6838 0.4940 -0.1736 17168.70 

Quadratic 3.88 0.9928 0.9836 0.9144 1252.29 Significant 

PRESS - Predicted ReSidual Sum of Squares 
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Table 5.5 provides the overall summary of the model statistics and indicates that the 

coefficient of determirtion R2 and adjusted R2 values for the quadratic model agree 

well, suggesting good predictability (Predicted R2) of the response function. 

The ANOVA for the response surface quadratic model is given in Table 5.6. 

Table 5.6: Analysis of Variance (ANOVA) 

Source Sum of df Mean Fvalue p-value Suggestions 
squares square· 

Model 14524.25 2 1613.81 107.41 <0.0001 Shmificant 
. 

Xnozzle - Nozzle size 9615.38 1 9615.38 639.96 <0.0001 Significant 

CDNA - DNA conc 1.16 1 1.16 0.077 0.7889 

CNaCI- NaCl conc 240.24 1 240.24 15.99 0.0052 Significant 
. 

Xnozzle * C DNA 20.48 1 20.48 1.36 0.2813 

Xnozzle * C NaCI 5.38 1 5.38 0.36 0.5683 

C DNA* C NaCI 120.34 1 120.34 8.01 0.0254 Significant 

Xnozzle * Xnozzle 4314.21 1 4314.21 287.14 <0.0001 Significant 

CDNA* CONA 55.63 1 55.63 3.70 0.0957 

C NaC! * C NaCl .27.75 1 27.75 1.85 0.2163 

Residual 105.17 7 15.02 

Lack of Fit 75.36 J 25.12 3.37 0.1356 Insignificant 

Pure Error 29.82 4 7.45 
. 

. 

I 
Cor Total 14629.42 16 

Table 5.6 implies that the Model F-value of 107.41 is significant, with only 0.01% 

. chance that a "Model F-value" this large could occur due to noise. The significant 

variables of the model were nozzle size (X nozzle), NaCl concentration (CNaCI) and the 

interaction between DNA and NaCI concentration (CONA*CNaCI). The model equation 

used to predict the damage to sc structure of the 20 kb plasmid is given by the 
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quadratic polynomial equation shown below,· with the nozzle size in Jlm, DNA 

concentration in Jlg/mL and NaCI concentration in mM. 

Damagesc = +688.647 - (285.062* Xnozzle) - (1.135* CDNAJ- (0.113* eNacV - . 

(0.226* X.ozzle * CDNAJ - (7. 733E-3* Xnozzle * CNacV + (3.656E-3* CDNA * CNoCU + 

(32.009* X nozzl/) + (0.036* CDNA 2) + (1. 141E-4 * CNoc/) ................ Equation (5.1) 

The next section will analyse the diagnostic plots to check the adequacy of the 

model. 

5.2.4 Model Diagnostic plots 

The normal probability plot shown in Figure 5.la indicated that the residuals 

followed a normal distribution, which indicated that the model satisfied the 

assumptions of the analysis of variance. The predicted versus actual response values 

shown in Figure 5.1 b showed good correlation as confirmed by the predicted R2 = 

0.9144 (Table 5.5). 

5.2.5 Model predictions: Contour and Response surface plots 

The model predictions for all three levels of the three variables were studied in order 

to check the relevance of the model predictions and derive useful information from 

the contour and response surface plots generated using Design-Expert 7.2. 

102 



Chapter 5: Nebulisatiorl oJ plaslllid DNA: DOE 
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5.2.5. 1 Effect of Nozzle size 

5.2.5.1. 1 Nozzle size 3 fUll 

As shown in Figure 5.2, the sc structure of the 20 kb plasmid is pred icted to be 

dam aged (> 85%) on nebulisation with 3 fll11 nozzle of the mesh nebulise r. 

Max imum damage (>95%) to the sc structure was observed up to DNA and NaCI 

concentrations of 15 fl g/mL and 100 mM respectively. Condensation o f the sc 

structure with NaCI, resulted in 85-90% damage at NaCI and DNA concentrations 

>200 mM and <20 flg/mL respective ly. However, at DNA concentrations >25 

fl g/m L damage to the sc structure was more pronounced due to inefficient 

condensation in limiting concentrations of the ionic buffe r. 

5.2.5. 1.2 Nozzle size 4 flll1 

D amage to sc structure of the 20 kb plas mid was s igni fi cant ly lower than that in the 

3 fUll nozzle (Figure 5.3), possibly due to increased nozzle size . Damage leve ls of 

30-40% were pred icted wi th an ionic concentration less than 150 mM and DNA 

concentrat io ns less than 20 flg/mL. However, at > 150 mM NaCI and 20-25 fl g/mL 

DNA concentrati ons. damage was predicted to be min imum, possibly due to the 

e ffec ti ve condensati on o r sc structure at hi gh ionic strength . At DNA concent ra tion 

30 flg/mL, damage was marg ina ll y highe r due to ine ffi cient condensati on o f the sc 

structure. 

5.2.5. 1.3 Nozzle size 5 fUll 

Damage to sc structure of the 20 kb plasmid (Figure 5.4) was sim ilar to the 4 fUll 

nozzle. As observed in Figure 5.4. damage levels o r around 25-40 % were o bserved 

with ionic concentrati on <200 mM NaC I and DNA concentrati on up to 30 fl g/mL. 

These pred icted damagc leve ls compared to the 4 flm nozzle are probably lower due 

to the increased nozzle di ameter. Howeve r. at NaC I concentrati ons >200 m M. 

damage to sc structu re was predicted to be <25% . This is probably due to the 

effecti ve condensa ti on o f sc structure to a molecular size lead ing to less damage 

when passing through the 5 flm nozzle . 
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5.2.5.2 Effect of DNA conccntnltion 

The effect of D A concentration on the damage to the sc structure was stud ied in the 

predicted contour and response surface plots as shown below. 

5.2.5.2.1 DNA concentration 10 ~lg/m L 

Damage to the sc structw'e of the pia mid at 10 llg/mL DNA concentration was 

predicted to be high at lower nozzle size as shown in Figure 5.5. At a nozzle size oD 

Ilm, sc structural damage was observed to be higher at ionic concentration < 150 mM , 

possib ly due to the inefficient condensation of the sc molecules at low ionic stTength. 

Structural damage (80-85%) to the sc plasmid was predicted for the 3 ~1I11 nozzle at 

aCI concentrations > 150 mM . With an increase in nozzle size up to 4 ~lIn , less 

damage to the sc structure was observed with increasing ionic concentration. For 

nozzles of size between 4 Ilm and 5 11 Ill . the ex tent of damage to the sc structure 

indicated by the model was similar wi th lower damage at high ionic strength . The 

model predicted a region or minimal damage to the sc structure at a NaCI 

concentration > 150 mM . 

5.2.5.2.2 Dt A conccntration 20 )lg/mL 

For a D A concentration 01'20 ~L g/mL, the damage to the sc structure orthe plasmid 

was I rcdictcd 10 be >80% for the 3 Ilm nozzle (F igure 5.6). There was no decrease in 

damage to the sc structure due to the presence of ionic stTength with the 3 ~Lm nozzle. 

suggest ing that the size of the condensed supercoi led molecule may be of the order 

of the nozzle size. However, i"o r nozzle sizes from 3 ~LLll to 4 ~Lm , the model 

pred icted a low damage to the se structu re at ae l concentration > 150 mM. sim ilar 

to that predicted at 10 ~L g/mL DNA concentration. For the 4 ~lm nozzle, the damage 

level was pred icted to be the same at di i"ferent ionic concentrati ons. suggesting no 

effect of condensation of the se structure with increase in ionic concentrat ion. For a 

nozzle size be tll een 4 ~Lm and 5 ~LLll . the model predic ted a region oi" minimal 

damage to the sc structure at Na I concentration ~ I OO mM. suggesting that a 

minimum I ae l concentration or 100- 150 mM is required to condense the sc 

moleculc at 20 Ilg/mL DNA concentrati on. 
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5.2.5.2.3 DNA conccntr·ation 30 ftg/m L 

As shown in Figure 5.7, damage to the sc structure of the plasmid was predicted to 

be > 95% for the 3 ,Im nozzle. For nozz le sizes between 3 ,Im and 4 flm , damage to 

the sc structure was predicted to be independent of NaCI concentrati on. This could 

be due to the inefficient condensation of the sc structure with NaCI at high DNA 

concentration. For a 4 flm nozzle, damage leve l was similar to that observed at 20 

flg/mL DNA concentrat ion, suggesting no effect of condensation of the sc structure 

willl increase in nozzle size. For a nozzle size between 4 flm and 5 ,Im, the mode l 

predicted minimal damage to the sc structure. 

5.2.5.3 Effec t of NaCI concentration 

Theoret ically, the sc structure of the plasmid is susceptible to maximum damage 

when formulated in buffer with no ionic concentrat ion. The pred icted respo nse for 

the tlu'ee ion ic concentrations is di cussed be low. 

5.2.5.3.1 o mM NaCI 

The model pred icted the sc structure to be more dam aged in the 3 ,Im nozzle than in 

4 flm and 5 ,Ull nozzles (Figure 5.8). suggesting size as a s ignilicant parameter fo r 

damage to the sc structure. Maximum damage (>80%) was pred icted at the 3 ,1nl 

nozzle fo r a ll DNA concentrations. Damage leve ls rrom 40-80% were predicted for 

nozzle sizes between 3 ,un and 4 ,un . The model pred icted that at a nozz le s ize >4 

,un . the damage was less than that at smaller nozzle s ize. Low leve ls of da mage (20-

40%) we re predicted between 4 ,Im and 5 ,un nozzle sizes suggesting that the 

uncondensed sc structure experi enced less degradat ion fo rces at increas ing nozzle 

sIze. 

5.2.5.3.2 150 m M NaCI 

ebuli sation of the 20 kb plasmid in 150 mM NaCI resulted in a compact sc 

structu re or small er molecular s ize, as evident by the somewhat lower damage to the 
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sc structure, when compared to that witho ut ioni c concentrati on at the 3 flm nozzle 

(Figure 5.9). Damage to the sc structure was also pred icted to be less for nozzles o f 

size fro m 3 - 4 flm . A region of minima l damage to the sc structure was predi cted 

between 4 fllll and 5 flll l nozzle sizes, suggesting that the reduced size of the sc 

structure was primaril y due to condensation in the presence of ionic concentrati on. 

The extent of damage to the sc structure in the presence of 150 mM NaCI was 

predicted to be lower than that without NaCI concentration. The significance ofNaCI 

concentrati on (p<0.05) in the model suggested damage to the sc structure during 

nebulisation can be protected by ionic concentrati on. 

5.2.5.3.3 300 mM NaCI 

The increase in ioni c concentrat ion to 300 mM NaCI has perhaps resulted in effic ient 

condensation of the sc structure lead ing to lower damage as predi cted in Figure 5. 10 

than wi th an ionic strength of 150 mM NaC I. At the 3 flll l nozzle, fo r DNA 

concentration <20 fl g/mL less damage to the sc structu re was predi cted. T hi s is 

like ly to be due to a reduction in molec ul ar size. However, for hi gher DNA 

concentration the damage leve ls were s imilar to those observed at 150 mM NaC I. 

Damage was a lso predicted to be similar at 150 mM NaCI between 3 fl m and 4 fllll 

nozzle sizes. For nozzle sizes between 4 fll1l and 5 f lll l , predi cti on of mi nimal 

damage regime widened perhaps due to beller condensati on of the sc structure to a 

sma ll er molecular size at DNA concentrati ons <25 fl g/m L. However, at 30 p g/m L 

DNA concentrat ion, damage was pred icted to be s lightly higher due to the inefficient 

condensation o f sc struc ture in high DNA concentrations. resulting in larger 

mo lecul ar size. 

From the response surface and contour pl ots. it is clear that the model is capturing 

the effect of the va ri ab les in a sta ti sti ca l way a llowing pred icti on at in termediate 

levels of the va riab les. As predicted by the model sta ti stics. the variab les o f nozzle 

size and aCI concen trat ion and interaction between variab les of DNA and NaC I 

concentrati ons had a signifi cant effect o n da mage to the sc structure of the 20 kb 

plasmid. 
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5.2.5.4 Response fJ"Om model pred ictions 

From the model equation 5. 1, the pred icted response showing the erfect ofNael and 

DNA concentration on minimum damage to the sc structure for different nozzle sizes 

are shown in Figure 5.1 I. As reported in the contour and response surface plots, 

damage to the sc structure of the 20 kb plasmid at the 3 ~m nozzle was observed to 

be the max imum without NaCI concentration. However, a decrease in damage was 

observed with NaCI concentration. For nozzles of s ize 4 pm and 5 ~m, damage was 

lower than that at the 3 ~lm nozzle. This study showed that nozzle size is a significant 

parameter in the damage to the sc structure of the 20 kb plasmid. In order to relate 

nozzle size with aerosol particle size, aeroso l characteri sati on fro m the nozzles was 

carried out and is reported in the following section. 

5.3 Aeroso l characterisa tion from the U22 mesh nebnlisCl" 

The characteri sation of aeroso ls from the mesh nebuli se r with 3 ~lm and 4 ~lln 

nozzles is shown in Table 5.7. The aerosol parti cle s ize was determined us ing a laser 

diffract ion inst rument (Malvern Maste r Sizer®. Malvern Instruments, UK). The 

diameter of the aeroso ls using the 3 ~1I11 mesh was observed to be 4 to 5 times higher 

than that with a 4 ~lm mesh. Large liquid droplets were generated us ing the 5 ~m 

mesh and hence the aeroso l pa rticl e size was not characteri sed. 

Tab le 5.7: Characteri sati on ordistill ed water aeroso ls fro l11 the un nebul iser with 3 

~ll11 and 4 ~lIn nozzle sizes 

Nozzle size DIu) (,..111 ) 0 (3.2) ().un ) 0 1,. \I.,) ().lm) 
(,.,.111 ) 

, 
9.29±0. 17 5.40 ± 0.39 7.54 ± 0.06 J 

CV 1.79% 7. 18% 0.82% 

4 45.06 ± 3.60 2 1.73± 1. 50 36.02 ± 2.55 

CV 7.98% 6.90% 7.08% 

5 Droplet size not determ ined 
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5.4 Discuss ion 

The micron-s ized nozzle o f the mesh nebuli ser permits generati on o f uni fo rm 

aeroso ls. The size of the aeroso ls generated is dependent on the nozzle s ize. The 3 

Ilm nozzle o f the commerciaJl y ava ilab le U22 mesh nebuliser results in the 

generation o f respirable ae rosols. In order to investi gate the damage to the sc 

structure at varying nozzle s ize, a 4 flm and 5 flm nozzle mesh we re used for the 

experiments. Aerosol characteri sation From the 4 Ilm nozzle mesh using laser 

diffraction resulted in aeroso ls of size up to 4 times higher than the 3 Ilm nozzle. 

Only a spray of liquid droplets was generated from the 5 Ilm nozzle mesh. However, 

the effect o f nozzle size is an important vari able; nozzles o f size 3, 4 a nd 5 pm in the 

experimental design provide an in iglu into the influence of nozzle s ize on damage 

to the sc structure o f the 20 kb plasmid . 

Earlier experiments (Chapter 4) on the nebulisati on o f plasmid DNA had shown that 

damage to the sc structure vari ed with the concentration o f plasmi d D A used . The 

main purpose o f the experimental des ign here was to further examine the influence 

of fac tors responsible fo r damage to the sc structure of plasmid DNA. Based on the 

creen ing ex periments. the concentra ti ons of plasmid DNA at 10. 20 and 30 flg/mL 

was employed as a sccond variable to assess its effect on damage to the sc structu re. 

Persistence le ngth is the length in whic h D A can bend fo r half a turn at e nergy of I 

kaT. where klJ is the Bol tzma nn constan t. T ithe temperat ure. Persiste nce length (lp) 

o f DNA that indicates the stiffness of a po lymer in good so lvent and is characteri sti c 

of a semi-rig id po lymer. DNA has been repo rted to have a shorter pers istence length 

(- 50 nm) in ioni c concent ra ti ons I Las ic 2000J. The positi ve effect o f aCI 

concent ra ti on on damage to the sc structure o f the plasmid has been observed fo r the 

5.7 kb plasmid (Chapter 4) . In order to under tand the effec t o f NaCI concentration 

on largc s ized plasmids. it was chosen as the third variable for the experimenta l 

design at concentrations o f O. 150 and 300 mM. The concentrat ion of 0 m I ae l 

se rved as a contro l to enhance the model of damage in the presence of 150 and 300 

mM NaC I. 

The stati sti ca l analys is of Box -Behnken ex perime nta l des ign sugges ted the q uadrati c 

and linea r mode l as signifi cant (Ta ble 5.3). However, the lack o f fit tests showed 

(Table 5.4) insignificance for the quad rat ic mode l. suggesting the model filled we ll. 
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This result from the lack of fit test was confirmed from the model summary statistics 

shown in Table 5.5. A predicted R2 value of 0.914 agreed reasonably with the 

adjusted R2 value of 0.983. 

The model F value of 107.41 determined from ANOV A (Table 5.6) implied that the 

model was significant. The p-value < 0.05 for nozzle size, NaCl concentration and 

interaction between NaCl. and DNA concentration, suggested these terms as 

significant for the model. The model diagnostic plots of normal probability plot and 
. , 

actualversus predicted response shown in Figure 5.1 suggested adequacy of the 

model. 

The predicted damage to sc structure for the significant variables of the model i.e. 

Nozzle size and NaCl concentration is summarised in Figure 5.11. As shown in 

Figure 5.1 la, at 3 Jlm nozzle size, significant damage to the sc structure of 20 kb. 

plasmid was predicted without NaCl concentration. However, at 150 and 300 mM 

NaCl concentrations damage was predicted to be lower. In comparison at the 4 Jlm 

and 5 Jlm nozzle, damage was predicted to be somewhat similar, at lower levels of 

dan'lage than with the 3 Jlm nozzle. A reduction in damage level was predicted for all 

the three nozzle sizes with increasing NaCl concentration, suggesting a positive 

influence of the significant interaction between NaCl and DNA concentrations 

(Table 5.6) towards damage to the sc structure. However, DNA concentration was 

not found to significantly influence damage to the sc structure. 

To summarise;the results of DoE on nebulisation of20 kb plasmid confirm "size" as 

an important parameter influencing aerosol delivery of plasmid DNA. In order to 

understand the relationship between the variables of nozzle size and plasmid size, a 

22 factorial experiment was performed as discussed in chapter 7. 

5.5 Conclusions 

A design of experiments based on a Box-Behnken design identified the significant 

variables affecting the sc structure on nebulisation using the U22 mesh nebuliser. 

The model predicted the actual response well and enabled better understanding of the 
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damage to the sc structure upon nebulisation. Low damage to sc structure of 20 kb 

plasmid was predicted at nozzle sizes >3 Ilm. However, the requirement to use a 

nozzle size> 3 Ilm to render inhalable aerosols for respiratory delivery suggests that 
, 

20 kb plasmid needs to be further condensed by formulation in order to circumvent 

damage. From the model predictions and analysis, it is concluded that the size of 20 
~\ 

. kb plasmid remains the main bottleneck for aerosol delivery of the sc structure. 

Engineering studies on the mechanism of fluid flow through the nozzle of the mesh 

nebuliser using high-speed imaging and computational fluid dynamics iti the next 

chapter are discussed to provide a detaile~ understanding of the phenomenon of 

aerosolisation and the hydrodynamic force responsible for damage of the sc 

structure. 
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CHAPTER 6. ENGINEERING ANALYSIS ON 

NEBULISA TION OF PLASMID DNA 

6.1 Introduction 

Earlier results on the nebulisation of plasmid DNA and the influence of design 

variables on nebulisation in Chapters 4 and 5 respectively suggested the nozzle size 

of the mesh nebuliser as a bottleneck for safe aerosol delivery of large plasmids. In 

this chapter engineering analysis of the nebulisation of plasmid DNA was carried out 

to study more closely the factors which damage the sc structure upon aerosolisation 

and predict the forces responsible for causing damage to the sc structure. In order to 

provide an understanding of the droplet generation from the vibrator horn, the factors 

responsible for droplet size and strain rates are discussed. High speed imaging of 

aerosol generation was perfonned to detennine the influence of the mesh on aerosol 

generation and subsequent dam~ge to sc structure ?f 20 kb plasmid. Modelling of 

fluid flow through the nozzle of the mesh nebuliser using computational fluid 

dynamics predicted the hydrodynamic forces responsible for damage to the sc 

structure. Estimation of plasmid DNA size for safe delivery of the supercoiled 

structure in the mesh nebuliser was attempted from the plasmid DNA degradation 

kinetics based .on molecular size. In order to perfonn engineering analysis of the 

nebulisation of plasmid DNA, it was essential to understand the mechanism of 

degradation of sc structure, and evaluate the molecular relaxation time and 

timescales associated with fluid! particle flow through the device. 

• 
6.2 Droplet formation from capillary waves 

The purpose of this analysis is to examine, using capillary theory, the, importance of 

various physical effects on droplet generation in the mesh nebuliser chosen for the 

research:, . The mean droplet size generated from thin layers is proportional to the , 
capillary wavelength on the liquid surface [Topp, 1973]. The droplet diameter (D) can 
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be expressed in terms of capillary wavelength (A) with a dimensionless empirical 

factor by the following equation: 

D = 0.34A .......................................... Equation 6.1 

The capillary wavelength can be represented. by the Kelvin equation [Yule and Al­

Suleimani, 2000] as given below: 

( )

"3 ' 

A = ~ ...................... : .............. Equation 6.2 

where ris the surface tension in N/m, pis the density in kg/m3 andfis the frequency in 

cycles/so The droplet diameter can be determined by substitution of the result of the 

above equation into Equation 6.2. 

The threshold amplitude for generation of capillary waves is given by [Taylor and 

McCallion, 1997]: 

.... : ................................ Equation 6.3 

where a,h is the threshold amplitude, v is the kinematic viscosity of the liquid,! is the 

acoustic frequency and A is the capillary wavelength. 

The typic~l amplitude a in nebulisers can be determined from the threshold 

amplitude and is given by: 

a = 4 a,h ....................................... Equation 6.4 

Assuming the vibrator horn transducer vibrates III a sinusoidal motion, the 

displacement of transducer is given by: 

yet) = a sin(m!) ................... ; ............. Equation 6.5 

where m = 21ff.= angular frequency (rad.s· I
). 

Differentiation of equation 6.5, yields the velocity of the transducer which is 

represented by: 
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Vet) = dy/ dt = a{J) cos({J)t) •.•..•..•......•... Equation 6.6 

The root mean square (RMS) velocity is given by: 

a{J) . . Vrms = .fi ........................................ EquatIOn 6.7 

The strain rate (r) is represented as a ratio of the root mean square velocity and the 

droplet diameter and is given by: 

. o(Vrm') E '·68 r = D·.................. .... ........... .... quatlOn . . 

In order to understand the influence. of device parameters such as frequency and 

physical properties such as viscosity, surface tension, density on droplet diameter and 

strain rate, equations 2.2 to 2.9 were used for the computation and are tabulated in 

Table 2.7. Assuming the physical properties of fluid (water) are surface tension = 
0.073 Nm·l, density = 1000 kgm·3, and viscosity = 0.001 kgm·lsec·l. 

As shown in Table 6.1, aerosolisation at a higher frequency results in the generation of 

smaller droplets and higher strain rates than at the operating condition of the device at 

175 kHz. No effect on droplet size was observed with a change in viscosity, but the 

strain rate is found to vary linearly with viscosity. An increase in droplet size was 

observed at higher surface tensionthan at 0.073 kg.s·2, but a decrease in strain rate was' 

observed. At higher density the droplet size and strain rate decreased when compared 

. with that at 1000 kg.m·3. Theoretical models of the effect of frequency and fluid 

physical properties on droplet diameter and strain rate provided useful information 

prior to high-speed imaging of aerosol generation from the mesh nebuliser. 
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Table 6.1: Theoretical predictions of the effect of frequency and physical properties on 

. droplet size and strain rate in a mesh nebuliser 

Effect of parameter - Operating + Increase in 
condition .. parameter 

. Effect of Frequency 
Frequency (kHz) 75 175 1750 
Droplet size (IJm) 17.1 9.8 2.1 Decreases 

Strain rate (s·') > O.6xlO' > 1.8x1O' > 40xlO' Increases 
Effect of Viscosity 
Viscosity (kg.m·'s·') 0.0001 0.001 0.01 
Droplet size (IJm) 9.9 9.9 9.9 No effect 

Strain rate (s·') > O.18xlO' > 1.8xlO' > 18x1O' Increases 
Effect of Surface tension 

Surface tension (kg.s·") 0.0073 0.073 0.73 
Droplet size (IJm) 4.6 9.9 21.4 Increases 

Strain rate (s·') > 8.3xIO' > 1.8x1O' > O.4xlO' Decreases 
Effect of Density . 

lJensity(k~.m~) 500 1000 1500 
Droplet size (~m) 12.5 9.9 8.7 . Decreases 

Strain rate (s·') > 2.3xIO' > 1.8x1O' > 1.6x1O' Decreases 

6.3' High-speed imaging of aerosolisation 

6.3.1 Introduction 

High.speed imaging studies of aerosol generation from the mesh nebulisers provide an 

improved understanding of the underlying phenomena and the timescales involved in 

aerosolisation. A high speed video was used to capture aerosol generation from a U22 

mesh nebuliser to visualise events at small timescales and help identify mechanisms 

with the potential to damage plasmid DNA during nebulisation. 

6.3.2 Aerosolisation using the U22 mesh nebuliser 

The vibrator, horn represents the heart of the nebulisation device. High speed 

imaging of aerosolisation of the liquid from the vibrator horn without mesh provides 
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an insight into time and velocity profiles occurring at millisecond time intervals. The· 

liquid chosen for the aerosolisation studies was phosphate-buffered saline (PBS) . 

. The experimentaJ set-up for the high speed imaging has been discussed in detail in 

section 3.2.5 of Chapter 3. In order to mimic the presence of a liquid film on the 

surface of the vibrator horn between the horn and the mesh, aerosol generation from 

the vibrator horn was studied for a 0.5111 liquid droplet. Aerosol generation for an . 

initial 5111 droplet was studied in order to understand the size of the droplet 

generation with reducing liquid. film on the surface of the vibrator horn without 

mesh. 

6.3.2.1 Aerosolisation from 5 ,.d droplet without mesh 

High speed imaging of the aerosoIisation events from the vibrator horn of a 5111 droplet 

without the mesh was carried out. The vibrator horn vibrates at a frequency of 175 

kHz. The mesh of the nebuIiser with micron-sized nozzles is passive with respect to 

the vibrating horn. To understand the vibration-induced atomisation without the mesh, 

high speed imaging of droplets generated from 5 III PBS pipetted onto the surface of 

the vibrator was perfonned. Frame sequences· at the early-, mid- and hite­

aerosolisation phases in Fig.6.l, show fine particle aerosols in the late phase, possibly 

due to shorter surface wavelengths (A) [Yule and Al-Suleimani, 2000] from the 

reducing thickness ofliquid film. 
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Figure 6. 1: Imaging of aerosols from 51-11 droplet on vibrator without mesh. 

6.3.2.2 Aerosolisation of 0.5 ~ll liquid mm without and with mesh 

The position of the mesh and vibrator in the device during nebulisation is likely to 

result in the formation of a thin liquid fi lm. To mimic the presence of a liquid film 

without a mesh. a 0.51-11 initial vo lume of solution was used. Visualisations of transient 

nebuli sation of 0.51-11 of PBS solution without the mesh and with the mesh are shown 

in Figures 6.2a and 6.2b respectively. Aeroso lisat ion without mesh resulted in an 

aerosol cloud with maximum density after 4.5 ms. whereupon liquid depletion causes 

a reduction of the density of the cloud and gives it a more focused appearance along 

the ax is of the transducer. Aerosol formation with the mesh resulted in a continuous 

stream of very fi ne droplets (average size reported as 4.4 I-Im [Kishida et al .• 2003]). 

wi th decrease in cloud density due to depletion of liqu id after about 30 ms. The aerosol 

production ceases after 60 ms. while it takes 80 ms for complete aerosol isat ion with 

mesh. Analysis of the images of aeroso l isation without mesh yielded droplet size 

estimates of around I 0 ~lm . 
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End of 
nebulisation 

End of 
nebulisation 

Figure 6.2: High speed imagi ng of PBS so lution aerosols generated by the mesh 

nebuliser (a) w ithout mesh and (b) with mesh in place. 

6.3.2.3 Nebulisation of p lasmid D A withou t a nd wit h mesh 

Agarose ge l electrophoresis analysis of recovered aeroso ls (Figure 6.3) from 

nebulisation of a 20 kb plasmid with the U22 mesh nebuli ser with the mesh in place 

showed no damage to the super-coi led (sc) DNA in the nebuli ser chamber (lane 2), 

but almost complete damage (95. 1 % damage) in the aeroso ls (lane 3). Nebu lisation 

of 20 kb plasmid DNA without the mesh in place showed partial damage to the sc 

DNA in the nebuli sation chamber (lane 6) and in the recovered aeroso ls ( lane 7). 

DensiLO metric scans o f the agarose gel revealed parti al damage in the nebuliser 

chamber and recovered aeroso ls of 46. 1 and 48.0% res pecti vely. Since the 20 kb 

flu id does no t pass through the mesh ho les, another damage mechani sm must 

therefore occur. [n the fol lowing section further anal ysis was carried ou t to 

determine the influence of cavitation on damage to the sc structure in the nebuli ser 

chamber. 
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Figure 6.3: Nebulisation of 20 kb plasmid with and withou t mesh. Lanes 1,5 - before 

nebulisation (BN), lanes 2,6 - nebuliser chamber (NC), lanes 3,7 - after nebuli ation 

( ), DM - Al-lindm DNA marker. 

6.3.2.4 Analysis of high-speed imaging 

Analys is of high speed images on aerosolisation from the vibrator horn with and 

without mesh suggested a slightly longer aerosol isation time w ith the mesh . For 

aerosol isatioll from the vibrator horn without mesh, the acceleration amplitude of the 

horn can be determined by the following equation [Bassett and Bright, 1976'1. 

Acceleration amplitude a = 2{Jm .... ... ..... ..... ..... .. ... Equation 6.9 
pc 
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In equation 6.9. f3 is the pressure amplitude (in Pal, {() is the angular frequency (in 

rad/ cc) given by 27if, with I' as the frequency of the vibrator horn (i n Hz). p is the 

density of the liquid (in kg/mJ
) and c is the ve locity of sound (in m/sec). 

In order to determine the pressure amp li tude, the acce leration ampl itude (a) was first 

computed. The ve loci ty V of the vibra tor horn is subjected to sinusoida l osci ll ations 

due to ultrasonic vibrations from the transducer and is given by the fo llowing 

equation: 

V = VSin{()/ ....... .. ... .. .. . ........ .. Equat ion 6.1 0 

Differentiating equation 6. 10 to obtain the acceleration, the above equat ion IS 

mod ified to 

Cl = aCos{()/ ... . .. .. . ..... .... ........ . Equation 6. 1 I 

In equation 6. 11 , (Cl) is the acce leration amplitude and can be represented by the 

constant of differentiation. V{() . The va lue of V = 0.6 mlsec was determined from 

la er vibromctry measurement s. The angu lar frequency ({() for a frequency of 175 

kl lz = 1.09x 106 rad . . 1. From the valucs of V and ((). an acceleration amplitude (~) 

of 6x I 0' m/52 was obtained . ubstituting the va lue of accelerat ion osci llation 

amplitude in eq uation 6.9. the prcssure amplitude (fJ) generated without the mesh 

was 2.3 bar. 

For aeroso li sation wi th mesh. a 10 fo ld increase in acceleration amplitude was 

observed. resul ting in pressurc amplitude of - 40 bar. At pressure amplitudes >2 bar 

for a bubble radius of O(flm). transient acoustic cavi tation is reported at a frequcncy 

01'20 kil L I Young. 19991. From this study. it could be interpreted that. at a frequency 

of 175 kil L. partial damage to the sc structure on aeroso li sation without mc h is a 

re ult of't rans icnt acousti c cavitation. 
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6.3.3 Discussion 

The formati on of sprays from a liquid film on a vibrating surface is genera lly 

expla ined by the formation of droplets fro m the apexes of an o rderly pattern of 

standi ng capillary waves, with a wave length that can be re lated to vibration 

frequency by stab ility analysis. However, thi s assumption is challenged by the fact 

that, after droplet formation commences, the orderliness of the standing-wave pattern 

is lost due to one or more secondary instability phenomena. These phenomena, 

which lead to diso rderliness were investi gated by using high-speed imaging 

techniques and a low-frequency vibrating film to model the high- frequency case, 

because of the difficulty of penetrating clouds of small droplets in the latter case. 

The droplet-format ion processes from a fi lm on a vi brating wa ll have been exami ned 

at freq uencies less than I kHz [Yule and AI-Suleiman i, 2000]. Although, droplets are 

fo rmed fro m capillary waves, the organi zed, genera ll y orthogonal, standing-wave 

pattern found befo re atomization incepti on becomes di so rganized during 

ato mization. Vari ab ility o f the droplet-formation process is observed, whi ch leads to 

the range of dro plet sizes typica ll y found for ultrasonic atom izatio n. Th is variab ility 

can include mul ti ple droplet formation from sing le ligaments; va ri ation in li gament 

ori entat ion, le ngth and di ameter; and emergence of a full y formed droplet from the 

crater fo rmed at the lower limit o f the vi brati on of a wave, the so-ca ll ed volcano 

mode. Initi al drop let angles of night and ve locities ex hi bit wide ranges o f va lues. 

and ind ividua l wave cell s eject drop lets intermittent ly, wi th a variable number o f 

cyc les betwee n ejections. Reasons for th is diso rder may inc lude irregularity caused 

by the rapid back Il ow of wave crests fro m which drop lets have form ed; asymmetry 

of inll ow into wave ce ll s during ligament formation when surround ing waves have 

formed dropl cts in a previo us cyc le: and recovery ti'om depletion o f li quid li'om 

wave cell s due to drop let formation. 

In ordcr to physica lly sca le-up the atomization process, it is neccssary to maintai n 

similar va lues of important dimensionless pa ramcters fo r the small -sca le. high­

frequency and the large-sca le. Iow-frequency cases. The parameters frolll the poi nt 

o f view o f instabili ty (in the orde r of decreased importance) are 
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Re = PI.Uh . 
q 

U2 

Fr=­
gCl 

h 
PI. . ............ Eq uation 6. 12 

a Pg 

where We is the Weber number, U is the veloc ity scale given by f Cl, which was 

reported to be I ms- I [Barrero and LosceJtaJes, 2007). The values of the units 

considered were a- is the surface tension in Nm-I , 1) is the dynamic viscosity in kg m-I 

S- I, P is the density in kg m-3 ..lis the frequency in kJ-lz, h is the fi lm thickness in m, a 

is the amplitude in m. 

The droplet size estimate of 10 f-Im for aeroso li sation without the mesh corresponds 

with Yule and AI-Suleimani's theoretical estimate for droplet size from a vibrating 

liquid surface [Yule and AI-Suleimani , 2000] using the operat ing parameters of the 

nebuli ser. Using Bassett and Bright's theory and laser vibrometry measurements of 

the horn acceleration, typical pressure amplitudes of 2-40 bar in the liquid were 

computed. Cavitation is likely under such pressure amp li tude conditions and is 

known to initiate drop formation from vibrating liquid sur faces [Topp, 1973]. The 

above high speed imaging study strongly suggests cavitation as a candidate damage 

mechanism. Damage to the sc structure of a 9.8 kb plasmid was also observed in the 

nebuli ser chamber of a conve ntional ultrasonic nebuliser and attributed 10 cavitation 

[Lentz et aI. , 2005]. The occurrence or partia l damage to the plasmid DNA in the 

nebul iser chamber without the mesh and no damage with the mesh suggests that in 

the latter case, the effects of cavitation may be ex perienced onl y by the liquid fi lm 

between the horn and the mesh during the short residence time just prior to 

aeroso li sa ti on. 

6.4 Background to cngincc"ing analys is 

Ex periments on nebu lisation of plasmid DNA have shown the sc structure or the 20 

kb plasmi d to be almost completely degraded into linear rragments or size va rying 

ri'om 4 to 0.5 kb. In order to understand the mechanism of damage to the se structure_ 

chcmical degradat ion or the se structure or a 5.7 kb plasmid has been attempted. 

Levy et al. 12000b] compared damage to the sc structure based on chemical 

degradation with that due to hi gh shear rates. Further reversible transition or the 

plasmid iso ronns (sc. oc and linear rorms) during exposure to strai n rates during 
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now has been reported [Meacle et a I. , 2006]. It is crucial to understand the 

timescales assoc iated with the transition of the plasmid isofonns. In thi s work, 

knowledge of the re laxation times and time sca les invo lved in the aeroso lisatio n has 

been determined to prov ide in ights into the duration of ex posure to strain rates 

capable of causing damage to the sc structure. 

6.4.1 Mechanism of degradation of supcr-coi lcd plasmid DNA 

In order to understand the mechanism of degradati on of a supercoi led plasmid DNA, 

the sc structure of a 5.7 kb plasmid was nebulised and then subjected to chem ica l 

degradati on. Figure 6.4 shows a comparison of results of agarose gel e lectrophoresis 

of nebulised onl y, and nebulised and subsequentl y chem icall y degraded S.7 kb 

plasmid DNA. As shown in the aga rose ge l (F igure 6.4), nebulisati on of S.7 kb 

plasmid in TE buffer and TE buffer with ISO mM NaCI resulted in damage to the 

open·circular (oc) forms of the plasmid , showing a smear of fragmented DNA below 

the sc structure. T he reasoning for damage to the oc structure and no damage to the 

sc structure is due to exposure of loose oc structure to shea r forces during the 

aerosoli sation process. In order to induce chemical degradatio n, the nebu li sat ion 

samples were exposed to high temperature. As shown in Figure 6.4, the sc structure 

of plasmid in TE buffer (lanes 6, 7) was completely degrade Ito oc and linear forms. 

Due to e Ff"icient condensation of sc structure in ionic strength buffer. che mica l 

degrada tion resulted in less damage to sc structure (lanes 8. 9). 

The densitometric scans of the agarose ge l (F igure 6.4) are shown in Figure 6.S. The 

sc structure of plasmid in TE buffer upon chemical degradati on at high temperature 

(95°C for 10 min) is a lmost completely damaged as shown in Figu re 6.5a. However, 

condensatio n of the sc structure in ioni c strength has resulted in rctcntion of a se 

struct ure (Figure 6.Sb). The results o f thi s study suggest th at chemica l degradation to 

sc plasmid DN A fo llows an irreve rsibl e transition frolll sc oc fo rlll with the 

form ati on of a nick or brcakage in D A strands, and then further breakage of oc -7 

li near 1'0 rill S. The linear doub le-stranded (ds) DNA fragments are suscepti ble to 

degradatio n to yield single-stranded (ss) DNA fragments. as repo rted in Chapter 4. 

I ience, the mechanism of sc plasmid DNA degradation can be represented as: sc -7 
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oc ---7 linear dsDNA ---7 ssDNA. However, depending on the size of the sc molecule 

and nature of forces , degradation of the sc SU'ucture to linear dsDNA is possible as 

observed for a 20 kb plasmid in Chapter 4. A notable aspect of the above study i s the 

encouraging information on the stability of sc structure of plasmid in ionic strength 

even at high temperature. This is important for stabili sation of the sc structure in 

ionic buffers at high temperature. The next section deals w ith the timescaJes 

involved in damage to the sc structure during nebulisation. 

1 2 3 4 5 6 7 8 9 

, 

DM RN AN RN AN RN AN RN AN 
"-----y-' "-----y-' "-----y-' "-----y-' 

TE TE with TE TE with 
IS0mM NaCI IS0mM NaC ,,------ ~----) ,,------ ~----) V V 

Nebulised only Nebulised + heated 
(chemically degraded) 

_open­
circular 
(oc) 

_linea.' 
form (If) 

_super­
coiled (se) 

Figure 6.4: Agarose gel electrophoresis of nebulisation of 5.7 kb plasmid in TE 

buffer (lanes 2,3) and TE buffer w ith 150 mM NaCI (lanes 4,5); Chemical 

degradation of nebulisati on samples (lanes 6 to 9); DM - DNA marker, BN - before 

nebulisation, A I - after nebulisation. 
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Figure 6.5: Densitometric scans of agarose gel (shown in Figure 6.4) of chemiCal 

~ __ ~_= __ ~gradati~~of ne~lll~sation samples (lanes 6 to 9). 

6.4.2 Time scales involved in process 

Understanding of the time scales involved III the aerosolisation· process could 

provide useful information on damage to the DNA sc structure. DNA being a 

. flexible biopolymer, the time scales im;olved in the nebulisation provide clues 

. whether relaxation of the DNA strands could lead to structural transition between the 

plasmid isoforms. In homogenous extensional flow, theory predicts that a coil­

stretch transition occurs when the Deborah.number (De), the product of the longest 
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relaxation time and the strain rate of the flow exceeds a critical value [Larson and 

Magda, 1989]. While the relaxation time provides a time scale for the time required 

for a stretched polymer to recoil back to natural equilibrium, the strain rate is a time 

scale for the speed of the fluid that is deforming the molecules. The ratio between 

these two time scales provides a critical value in determining the stretching of the 

molecule [Wong et aI., 2003]. Meachem et al. [2005] reported the timescales for 

droplet formation and ejection processes by accounting for key fluid mechanical 

features of the phenomena from a basic understanding of the governing physics 

gained through careful visualization and scaling. Relaxation times are significant 

parameters in polymer solution dynamics and indicate the time required for the 

stretched polymer to regain its equilibrium position. They take into account the size 

of the molecule and hydrodynamic properties of the solution and are discussed below 

6.4.2.1 DNA relaxation time scales 

Relaxation of the plasmid DNA could occur in the regions close to the nozzle mesh 

experiencing a combination of elongational and shear flow. For the behaviour of 

buffered DNA in solution as a flexible coil, the relaxation time can be calculated 

from the Rouse model.' The Rouse model predicts the distribution of polymer 

relaxation times based on freely draining theory [Larson, 1999]. This theory assumes 

the solvent drag on each part of the polymer molecule is the same as it would be if 

the other part of the polymer was not present, neglecting the effect of hydrodynamic . 

interactions. The Rouse relaxation time for the flow of DNA in microfluidic devices 

are represented as a fUliction 'of intrinsic viscosity [17], solvent' viscosity (17..), 

molecular weight of the DNA (M), the gas constant (R) and temperature (1) 

. [Shrewsbury et aI., 2001] by the following equation. 

R I . . () [17n,M' E' 613 e axatlOn hme T, ... .. ; ........ ...... .... .... quahon ; 
, RT 

For a flexible polymer in a solvent with dominant hydrodynamic interactions, the 

intrinsic viscosity can be determined from universal hydrodynamic constant [Larson, 

1999] using the following equation: 
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[7]] = KoMI/2 ........................... Equation 6.14 

In equation 6.14, the hydrodynamic coefficientl.Ko = <l>[(R2)/ M]3/2 and depends on 

the chemical make-up of the polymer and can be calculated from the elementary 

structural properties of the polymer, R,m, >= (R2)1I2 is the root mean square 

separation of the ends of the molecule and <P is the universal hydrodynamic constant 

> = 2.5* 102t dl cm·3> mort. 

For a 5.7 kb plasmid, assuming R,m, = 330*10.9 m (the diameter determined from 

AFM imaging) = 330*10-7 cm, M= 3.55*106 gm/mole (I base pair - 623 gmlmole), 

Ko coefficient = 0.013. dl g-t (g/molrt12 = 1.3 cm3 g-t (g/molrtl2, the intrinsic 

viscosity [7]] = 2449 cm3/g, the relaxation time (T,) fora 5.7 kb plasmid is3 ms. 

Similarly, for a 20 kb plasmid of molecular weight M = 12.46* I 06 gm/mole, the 

relaxation time (T,) is 23 ms. 

Hydrodynamic interactions are disturbances in the solvent velocity field created by 

the motion of one part of a polymer chain that then affect the drag exerted by the 

solvent on other parts of the same chain [Larson, 1999; p132]. Hydrodynamic 

interactions influence both linear and nonlinear rheological properties of dilute 

solutions. The linear properties of dilute chains affected by hydrodynamic 

interactions are intrinsic viscosity, relaxation time and diffusivity. 

The Rouse model is regarded as inappropriate in dilute solutions and hence the 

dynamics of a flexible polymer in dilute solution with hydrodynamic interaction is 

represented by the Zimm model [Doi and Edwards, 1986]. The chain relaxation time 

according to the Zimm model is given by the following equation: 

0.61bh,M ........................... Equation 6.15 
RT > 

where [7]] is the intrinsic viscosity, 7], is the solvent viscosity, M is the molecular 

weight of plasmid. The computed chain relaxation times based on the Zimm model 

for the 5.7 kb and 20 kb plasmids are 1.83 ms and 14.83 ms respectively. 
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Experimental studies on the nebulisation of pl~smid DNA using a mesh nebuliser 

discussed in Chapter 4, showed the sc structure of a 5.7 kb plasmid is not degraded, 

. while that of a 20 kb plasmid is degraded. With the lack of data in literature on DNA 

damage and relaxation time scales of DNA using such devices, comparison of the 

relaxation time with the timescales based on the particlelfluid flow through the 

device may provide information on damage to large sized plasmids. Timescales 

based on parameters such as particle size, frequency, inertia, capillary and viscous 

properties are discussed below. 

6.4.2.2. Process time scale 

The periodicity of the aerosols generated from the vibrator horn is dependent mainly 

on the oscillation frequency. The inverse of driving frequency can be used as a 

parameter to define the characteristic time scale for the aerosolisation process. The 

process time scale ('Ij) for a mesh nebuliser operating with a frequency (j) of 175 kHz 

can be determined by 

1 . 
T f = j ........................... EquatlOn6.16 

The process time scale is therefore of the order of 5 microseconds. 

6.4.2.3 Inertial time scale 

The inertial time scale (Tu) characterizes the impetus for fluid motion and is defined 

as the ratio of the characteristic length scale (ro) and the ejection velocity (U) of the 

droplets. The minimum velocity (Umin) of ejected droplets was computed from a 

product o(radius of the orifice (ro) and device frequency (j). Umin was observed to 

be one-fourth of the droplet ejection velocity (U) of 1 m/s, determined from 

frequency and volumetric flow rate measurements. 

Inertial time scale Tu = ro ........................... Equation 6.17 
. . U .. 
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- - -

For an inertial time scale of 1.5 IlS, the validity of the ejection law [Meachem et aI., 
- , 

2005] holds since " <, f and ejection takes place. 

6.4.2.4 Particle relaxation time scale 

The particle relaxation time based on Stokes nwnber [Finlay, 2001] is given by 

P d2 - -
p - • 

'SI =--........................... EquatlOn6.18 
1877 

In the above equation, d is the diameter of the plasmid particle, {Jp is the particle 

density (asswning 500 kg.m-3
) and 77 is the viscosity of the buffer with plasmid 

DNA. Incorporating in equation 6.9, for a 5.7 kb plasmid, when d = 330 nm, 'SI = 

2.82 nano second and for 20 kb plasmid, when d = 1250 nm, 'SI = 0.04 micro second. 

These two timescales indicate that the plasmid DNA particle motion adjusts itself 

easily to the imposed process and inertial timescales, so the particle motion is 

effectively quasi-steady. 

6.4.2.5 Capillary time scale 

The capillary time scale is the time scale at which the surface tension acts at the 

interface. This gives a measure of the time constant that defines the dynamics of the 

interface deformation. Capillary time scale is a function of the surface tension (n, 

the characteristic length scale (r 0), and the fluid density (P) and is represented by the 

following expression: 

- W Capillary time scale 'a = pro ........................... Equation6J9 
y' 

Usingp = 103 kg.m-3,y= 0.072 N.m-I and ro = 1.5x10-6 m, this yields the capillary 

timescale 'a = 2,1 5 x 10-7 
S = 0.21 IlS. The validity of the ejection law [Meachem 

et aI., 2005] holds since, a <, i and droplet ejection takes place. 
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6.4.2.6 Viscous time scale 

The viscous time scale characterizes fluid relaxation via viscous forces induced by 

the fluid motion and is defined as the square of the characteristic length scale , 
. I 

divided by the viscous diffusivity (1'// p) and . is represented by the following 

expression: 

2 . 
. V' . I . pro E . 6 20 ISCOUS tIme sca e T)I = --............. ........ ...... quatlOn , 

~ . . 

The viscous time scale (2,25 Jls) was observed to be comparable to other time 

. scales. 

6.4.2.7 Summary of time scales 

The values of time scales discussed above for 5.7 and 20 kb plasmids related to DNA 

dynamics, relaxation, and aerosolisation process are summarised in Table 6.2. The 

relaxation timescales for the plasmids were observed to be slower than all the flow 

timescales, This observation suggests that the flow changes so fast that the DNA 

configuration is effectively frozen. However, the Stokes relaxation timescales for the 

plasmids are observed to be faster than all other flow timescales. In such a situation, 

the motion of the plasmid DNA particle as a whole is quasi-steady; i.e. the particle 

effectively immediately adjusts itself to local flow. The next section deals with the· 

mechanics of fluid flow through the nozzle of the mesh nebuliser and predicts the 

hydrodynamic force responsible for damage to the DNA sc structure, 

Table 6.2: Computed time scales studied for aerosolisation of 5,7 and 20 kb plasmids 

Timescales studied Time 5.7 kb plasmid 20 kb plasmid 
DNA! polymer models Relaxation time 1,83 ms 14.83 ms 

DNA particle size Stokes relaxation time 2.82 ns 0.04 Jls 
Fluid flow though Process time 5 JlS 

device . Inertial time 1.5 JlS 
Capillary time . 0,21 JlS 
Viscous time 2,25 JlS 
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6.5 Mechanics of fluid flow through nebuliser . 

. A computational fluid dynamics study was carried out to assess the flow of fluid 
. . 

. through the nozzles of an ultrasorucally driven mesh nebuliser in order to examine if it 

is possible to predict the potential degradation of a genetic drug within the device. 

Typical strain/deformation rates through the nozzle of' the mesh during' the 

nebulisation process were determined to understand the deformation/degradation of 

the therapeutic. A knowledge of the strain rates and size of the sc structure determined 

using atomic force microscopy enabled prediction of the hydrodynamic force 

responsible for damage to the sc structure. 

6.5.1 . CFD methodology 

The CFD approach was aimed at modelling the flow of fluid through a nozzle of the 

mesh nebuliser to estimate the level of strain rates prevalent in the flow conditions. 

Literature on the dynamics of flow through the micro-scale domain provides no 

information on the level of strain rates responsible for the damage of shear-sensitive 

materials in mesh type nebulisers. The assumptions within the model include: 

1. The fluid has the physical properties of water and the flow is laminar, 

2. The motion of the fluid relative to the mesh nozzle was examined in a frame 

of reference that was attached to the moving mesh wall, 

3. The relative fluid motion was simulated by means of a linear (steady-state) . 

and sinusoidal (unsteady-state) velocity inlet, 

4. Axisymmetric flow and friction between fluid and air is neglected. 

6.5.1.1 Model geometry and boundary conditions 

A cross-section of the nebuliser mesh of the U22 device and an axi-symmetric domain 

chosen for the flow of fluid through a single nozzle with boundary conditions is shown 

in Figure 6.6: 

141 



(b) 

Velocity inlet 
boundary condtron 

17.1 pm 

Chapter 6: Engineering analysis on nebulisation 

Liqni(l Film 

I I 

15pm : 
'f .' Sflp boundary 
condition 

Nozzle 

I 
I 51Rl1 I ;. ,; 
I 
I 
I 

.-------------------_ .... _--'--

I 

I 
I 
I 
I 
I 
I • 

SVmme!ly Axis boundary condlbon 
25.6 pm 

Upon 

I 
Sip bOundary 
condition 

I 
I 
I 
I 
I 
I 
I • 

Pr ... ur. OU1:et 1.5 .1-
boundary COndition pm -f"'" 

Figure 6.6: a) Section of a nozzle of the mesh used in the U22 mesh nebuliser; 

diameter of the nozzle - 3!tm; frequency of the vibrator horn - 175 kHz. b) 

Dimensions and boundary conditions for the axi-symmetric domain of a nozzle of the 

nebuliser mesh; boundary conditions - velocity inlet at the vibrator horn, pressure 

outlet at the nozzle exit; wall at the nozzle wall; slip adjacent to the nozzle wall; 

symmetry axis at the axis of the nozzle. 

The nozzles in the mesh have a diameter of 3 !tm and a radius of 15.6 !tm at the inlet. 

The dimensions of the mesh for a single nozzle are also shown in Figure 6.6. The 
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dimensions and boundary conditions for the domain are discussed in Chapter 3. A slip 

boundary condition was· introduced beyond the nozzle exit in order to simulate the 

formation of a liquid jet surrounded by air in the region near the nozzle exit. A fine 

grid of 78,983 triangular cells created in Gambit was used to generate the results 

. presented here. Steady-state and transient flow simulations were carried out using the· 

commercial CFD code, Fluent 6.2. In the latter case, a sinusoidal velocity component, 

which fluctuated at a frequency of175 kHz and with assumed amplitude ofl0% of the 

inlet velocity, was added to the inlet velocity. Flow through the nozzle is laminar 

(Reynolds number - 3) for the domain and the solution algorithm adopted was 

SIMPLE pressure-velocity coupling [Versteeg and Malalasekera, 1995] along with 

second-order discretisation. for pressure and third-order MUSCL (Monotone 

Upstream-Centred Schemes for Conservation Laws) momentum discretisation. The . 

strain rates baSed on elongational and shear strain determined from CFD were used to 

calculate the maximum hydrodynamic force from the elongational and shear-induced 

elongational strain rate components respectively .. Grid dependency studies using 

triangular and quadrilateral meshes (discussed in section 6.3.1.3) with parameters of 

pressure drop and average strain rate at the nozzle exit were carried out to establish if a 

mesh was refined in sufficient detail to reveal the veloCity gradients. 

6.5.1.2 CFD siniulation for fluid flow though nozzle 

hl order to determine the dominant strain effects and the magnitude of the strain rates 

in the fluid flow, a CFD model was developed of the flow through a single axi­

symmetric nozzle as shown in Figure 6.6b. The flow of fluid through the mesh nozzle 

of the nebuliser possibly results in the following strains on the fluid near the nozzle: (i) 

shear strain due to friction between the nozzle wall and the fluid, (ii) elongational 

strain due to reduction in area as the fluid passes through the n~zzle and (iii) 

. compressional strain as the fluid leaves the nozzle due to the change from solid/liquid \. 

to gaslliquid boundary conditions· and the associated rapid redistribution of the 

velocity profile. A contour plot of streamlines for steady-state simulation is shown in 

Figure 6.7. The streamlines exhibited by the fluid flow through the nozzle suggested 

that the computational grid has been refined well to characterize the effect of strain 

fields for the domain. The steady state simulations revealed the general trends of the 
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shear strai n rate and compressional! elongational strai n rate profi le calculated by 

Fluent in the vicinity of the nozzle ex it. 

Transient simulations yielded similar levels of strain rates near the nozzle. The highest 

strain rate occurred near the nozzle exi t and due to the constricti on at the nozzle of the 

nebuliser mesh. Theoreti call y, the maxi mum strain rates at the nozz le exit determined 

by 'v/d' ratio (defi ned by ratio of veloc ity of flui d at nozzle to the diameter of the 

nozzle) are in the order of 106 
S· I. Plasmid DNA is susceptible to e longation and shear 

clue to its fragile mo lecu lar structure and hence elongational and shear strain rates were 

used to predict the maximum hydrodynamic force. The resu lting elongati ona! ancl 

shear strain rates computed from the flow field are shown in Figure 6.7. 

Velocity I 
inlet 

- -- -
Symmetr'yaxis 

Nozzle exit 

I 
~--

Figure 6.7: Contours of veloc ity stream lines fo r steady state simulati on of the flow of 

fluid through the nozzle of the mesh nebuliser. 
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Figure 6.8: CFD simulations of strain rates (in . 1) used to determine the max imum 

hydrodynamic force near the nozz le of the mesh nebuliser (a) e longati onal strain rate 

and (b) shear strain rate; Inset shows the strain rates in the nozzle exit. 

6.5.1.3 Grid dependency studies 

In order to check the accuracy of the strain rate predictions from the CFD 

simulations, grid dependency studies were carri ed out. Grid refinement was ca rried 

out us ing triangular and quadrilateral meshes . Table 6.3 compares the results o f the 

CFD s imulation for different mesh sizes using triangular and quadri lateral meshes. 
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Table 6.3: Grid dependency studies with triangular and quadrilateral meshes. 

. · . 

ResuItswith triangular mesh 
. . .. . . 

Mesh cells Average Pressure drop Average strain % Error between 
velocity at between inlet rate at nozzle triangular & 
nozzle (Jllis) and nozzle (x106 lis) quadrilateral mesh 

(kPa) . . (strain rate) 
. 

15,840 1.319 19.75 1.84 
.. . .. . 

20,771 1.319 
· 

19.82 1.85 

42,121 1.318 19.97 1.87 1.60 
· . 

78,983 1.316 20.04 , 1.95 0.10 

Results with quadrilateral mesh i 
. . . 

Mesh cells Average Pressure drop Average strain % Error between 
velocity at between inlet rate at nozzle triangular & 
nozzle (Jllis) and. nozzle (x106 11s) . quadrilateral mesh 

, (kPa) . (press drop) 
. 

2,570 1.322 19.80 1.90 

10,280 1.318 19.9.8 1.9.5 0.05 
.. 

41,200 1.317 20.01 1.95 0.15 
. 

From Figures 6.9. (a) & (b), it is seen that the average strain rates, pressure drop and 

average velocity are sufficiently resolved· for the domain. The results with the 

boundary layer mesh showed similar levels of strain rates. The strain rates have been 

reported for the CFD domain based on 78,9.83 cells corresponding to unit mesh 

length of37.5nm .. 
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Figure 6.9: Grid dependency studies for triangular and quadrilateral meshes (a) 

average strain rate at nozzle, (b) Average velocity at nozzle and average pressure 

drop between inlet and nozzle for triangular and quadrilateral meshes. 
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6.5.1.4 Estimated hydrodynamic force on pDNA from strain rates 

The strain rates experienced by. the fluid in the nebuliser domain are fixed by the 

operating conditions of the device and can be used to estimate the hydrodynamic force 

on the fragile plasmid particles in the fluid. Lengsfeld and Anchordoquy [2002] 

reported the DNA molecule to assume a completely extended configuration resulting 

in maximum L, when the applied forces are greatest and most likely to break covalent 

bonds. Lentz et al. [2005] shows that the hydrodynamic force (F) on the sc structure of 

a plasmid is proportional to the length (L) of DNA molecule squared and the strain rate 

. (f)· 

The magnitude of the hydrodynamic force can be estimated using Ryskin [1987] who 

showed that the magnitude of the stretching force at the midpoint of the chain is given 

by, 

Fmax = k17fL' .•••.•.•..••.•••••••••••.•••.......•. Equation 6.21 

where F max is the maximum hydrodynamic force, k is a dimensionless constant. (given . . 

by equation 6.l0), 17 is the viscosity, f is the elongational strain rate and L is the 

length scale. 

k = .!. 71" 1 ........................... Equation 6.22 
2 In(571" / 2c[ 17]) . 

where c is the concentration in g/cm3 and [17J is the intrinsic viscosity in cm3/gm. For a 

DNA concentration of'20xI0·6 g/cm3 and an intrinsic viscosity of -:-2450 cm3/gm, the 

. dimensionless constant k value was determined to be 0.3. 

As shown in section 6.3.2.4, the small size of a pDNA molecule can be expected to 

move with the local flow velocity. The hydrodynamic force' experienced by the 

molecule is caused by local velocity gradients.' To first order in linear dimensions the 

velocity gradient tensor for an incompressible fluid can be regarded as a superposition 

of a pUre straining motion and a rigid body rotation [Batchelor, 1967]. The latter 

cannot cause structural damage. A pDNA particle will experience variable stretching 

forces, which can lead to structural damage, The stretching strain rates are as follows 

if u is the axial flow velocity: 
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(i) ou/oz is the elongational strain rate experienced when a molecule is aligned with 

local streamlines, arid, 

(ii) 0.50u/or is the elongational strain rate experienced by molecules in a pure shear 

flow that are oriented !It 45° to the streamlines, where,· ou/ or is the shear strain rate. 

The rotation of the molecule will cause the orientation to vary during its travel through 

the nebuliser mesh holes, so the elongational strain rate i' in Equation (6.21) must be 

computed as the maximum along each streamline of the flow field of the elongational 

. strain rates due to the superposed strain and shear fields: 

i' = max(: ,0.5: ) ........................... Equation 6.23 

The evaluation of the hydrodynamic force (equation 6.21) requires a great deal of care 

since the force experienced by a pDNA molecule depends on its unknown 

configuration. Naked plasmid DNA behaves like a random coil, making it difficult to 

measure the supercoiled length. Moreover, the length scale changes as the particle 

distorts due to the flow forces. In order to define a realistic length scale for estimation 

of hydrodynamic force, the pDNA length scale was assumed as LAFM (determined from 

AFM); where the DNA molecule forms a geometric projection from 3D to 2D [Valle . 

et al., 2005] of its free, unstretched state. Furthermore, it theoretical estimate of the 

maximum plasmid size based on the molecular weight (M in kb) is given by the 

following equation [Kong et aI., 2006]. , 

L<e =O.4x 0.34M ........................... Equation 6.24 

In equation 6.24, the estimated supercoiled length (Lse) is 40% of the contour length. 

For a 5:7 and 20 kb plasmid, the estimated Lse is 775 nm and 2720 nm respectively. 

The average molecular dimensions determined using AFM (LA FM) for the 5.7 and 20 

kb plasmids were 330 nm and 1250 nm respectively. Hydrodynamic. force estimates 

based on both these length scales, Lse and LAFM will be computed for unformulated 

plasmid. For a formulated plasmid, the estimate is based on LAFM only, since Lse for a 

compacted formulated plasmid cannot be determined. 
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Plasmid DNA molecules were assumed to be uniformly distributed throughout the 

fluid at the inlet plane and to have random orientation on entry to the nozzle .. It is 

possible that each particle executes at least a 90 degree rotation upon its passage 

through the nozzle. Equation (6.21) was evaluated at several axial locations along all 

the streamlines that pass through the mesh points in the nozzle exit plane to yield 

. estimates of the maximum hydrodynamic force experienced by pDNA particles: The 

amount of flow; and hence the number ofpDNA m.olecules, associated with any given 

mesh point is proportional to the radius of its location. These estimates were 

subsequently sorted in order of size of the hydrodynamic force for the purposes of 

reporting in Figure 6.1 0 as a cumulative percentage of pDNA particles experiencing a 

hydrodynamic force equal to or smaller than a certain magnitude. Assuming the 

pDNA to be uniformly distributed throughout the flow, this can be interpreted as a 

fraction of the pDNA particles that experience a given force level at some instant in 

time during its passage through the nozzle. 

In order to gauge the levels of maximum hydrodynamic force comparable to the bond 

strength it is necessary to estimate the force required to stretch and damage the 

plasmid DNA molecule. Double-stranded DNA breakages have been studied 

extensively theoretically' and experimentally over the last 10 years by means of . 

stretching loads. Table 6.4 summarizes the forces acting and the structural response of 

DNA. The stretching forces (30-300 pN) have a reversible elastic behaviour, while at 

higher forces (300-600 pN) strand separation and nick formation occur resulting in an 

irreversible transition, even before the limiting forces to break a covalent bond (1600 -

5000 pN) are reached. This wo~k compares computational estimates of the stretching 

forces experienced by pDNA molecules during flow through the nebuliser mesh with 

the above estimates of maximum stretching loads. 

150 



.. 

. Chapter 6: Engineering analysis on nebulisation 

T~ble 6.4: Summ~ of forces reported for stretching/damaging DNA 

Force Effect offorce on DNA Reference Force 
level defining 

region 
.10 - 30 Tensional forces for Bustamante et DNA 
pN (i) Positively supercoiled DNA transition. al.,2003 stretching 

from plateau to extension state region , 
<65 (ii) Nicked DNA transition from plateau to (Reversible 
pN extension state transition) 
65 - (iii) Positively supercoiled DNA in the 
llOpN extension state 
165pN Breakage of intermolecular structure Lavery et al., 

based on non-covalent bonding . 2002 . 

220pN Rotation of base pairs relative to Konradand 
phosphodiester backbone Bolonick, 

1996 
300pN Shearing of bulk DNA in flowing buffer Bustamante et DNA 

. .. al.,2000 structural 
480pN The breaking of double strands reported to Bensimon et deformation 

occur aI., 1995 region 
500pN Breakage of double stranded DNA based Lebrunand (Irreversible 

on retreating meniscus . 
, Lavery, 1996 transition) 

600pN Mechanical separation of DNA strands Konradand 
Bolonick; 
1996 

1600 Force required to break a covalent bond Lavery et aI., 
pN 2002 
5000 Force needed to cause bond scission in Bustamante et 
pN DNA according to Bond potential theory al.,2000 

The basis for the calculation of magnitude of the hydrodynamic force acting on the 

plasmid DNA is as per formulae given by equations 6.21 & 6.22, which primarily 

depends on the strain rate and molecular length. Figure 6.1 0 provides information 

relating to the flow environment experienced by a typical pDNA molecule expressed 

as the percentage of the nozzle exit cross section area that is subject to a particular 

value of computed hydrodynamic force. Figures 6.1 Oa-c shows estimates of the 

hydrodynamic stretching forces experienced by pDNA particles upon passage through 

the nebuliser mesh nozzle. The results are displayed as' a cumulative distribution, 

where the vertical axis indicates the percentage of particles that experience a value less 

than or equal to a particular stretching force .. These values are compiled by assuming a 

uniform distribution of the particles in the nebuliser fluid and displayed in the form of 

a histogram for any given cross-sectional plane in the vicinity of the nozzle exit. 
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Figure 6.10: Percentage of plasmid DNA exposed to computed hydrodynamic shear 

force upon passage through nozzle exit of mesh nebuliser (a) 5.7 kb plasmid, (b) 20 kb 

plasmid, (c) fonnulated 20 kb plasmid; Arrows indicate the forces defining the DNA 

stretching and defonnation region as given in Table 6.4. 
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6.5.2 Discussion 
) 

In order to detennine the flow patterns experienced by biological macromolecules 

through micro-devices, a flow oflambda DNA through a microchannel is examined. 

A microflow composed of biological macromolecules constitutes a multifaceted 

problem, with a combination of elongationall compressional flow and shear flow 

[Shrewsbury et aI., 2001]. The relaxation time scales through such a microchannel 

for A. DNA in a buffered solvent at a viscosity of 0.904 cP is 0.041 second. 

Relaxation times are reported as the key parameters for polymer solution dynamics 

since they directly correlate different modes of molecule motion. and the 

hydrodynamic properties of the solution [Wong et aI., 2003]. Wong efl!!. studied the 

dynamics of single DNA molecules (T2 DNA with a size of 164 kb) under 

extensional flow through a microchannel for hydrodynamic focussing and observed a 

relaxation time of 0.63 second. The measured longest relaxation time for T7 DNA 

(size -40 kb) was reported to be 50 ms [Resse and Zimm, 1990]. DNA intrinsic time 

scale is an upper bound estimate. It is likely that there will be shorter time scales 

associated with short ranging structural re-arrangements. 

Scaling analysis of ejection physics enabled characterisation of droplet. fonnation 

process based on timescales [Meachem et aI., 2005]. The generation of aerosols from 

thenozzle of the ultrasonically driven mesh nebuliser is analogous to the ejection of 

droplets from an ultrasonic droplet ejector driven by a piezoelectric transducer. 'As a 

first step, for any ejection to occur, the comparison between inertial· time scale and 

process time scale i.e, 'u < 'f provides a quick estimate. This condition is satisfied for 

the nebuliser device. Secondly, the specific mode of ejection is detennined by the 

relationship between pro~ess time scale and capillary time scale. Due to the 

oscillatory motion of the ultrasonic transducer, a positive and negative pressure 

gradient within the chamber results in a "push-pull" phenomenon of the flow. When 

'<1 < 'f, surface tension reacts more quickly than the positive pressure gradient, 

resulting in a disruption of the unstable neck of wavy jet near the orifice. This leads 

to the fonnation and ejection of an individual droplet. This condition is also satisfied 

for the nebuliser device and confonns to the release of aerosols during nebulisation.' 

153 



Chapter 6: Engineering analysis on nebulisation 

Analysis based on time scales provides an insight into the physics of the process. It 

provides information on the nature of the relative fluid flow motion, namely: (i) 

relaxation times are slow, so the particle has a frozen orientation in the changing flow, 

(ii) the particle translates by following the mean flow and (iii) DNA particles 

experience flow forces or moments due to local strains. The residence time of the . 

particle in the nozzle is too short for the slow upper bound relaxation time for DNA. 

The time scale for damage of a 20 kb plasmid based on steady shear rate experiment 

is reported to be 2 !is at a shear rate of 4.8x105 
S·l [Levy et aI., 1999]. Time. scales 

associated with the device parameters and physical properties of fluid other than 

relaxation timescales are of the order of microseconds, suggesting damage is more 

likely forthe 20 kb plasmid. However with lack of information on time scale for a 

5.7 kb plasmid, it is observed that the upper time scale limit is slow compared with 

the other time scales. In the event of shorter internal time scales compared to 

relaxation time scales, it can be assumed that the DNA behaves just as an ordinary 

particle. Stokes relaxation time and capillary time scale are an order-of·magnitude 

shorter than the time scales associated with flow motions. This implies that the 

DNA particles are likely to follow the streamlines of flow, as discussed in the later 

section on computational fluid dynamics. 

CFD simulations of fluid flow through the nozzle of mesh predicted strain rates in the 

vicinity of the nozzle exit. During the passage of plasmid DNA through the nozzle, the 

sc structure is exposed to elongational strain rates along the axis of the nozzle and then 

further exposed to shear strain rates just before the nozzle exit. As shown in Figure 

6.4, shear and elongational strain rates were estimated to be greater than 105 
S·l. A 

maximum shear strain rate (Y,hear) of 6 xl06 
S·l and elongation strain rate (Yelong) of 1 . 

xl06 
S·l was localized to a very small regio~ of the nozzle exit. Levy et al. [I999a] 

reported 90% damage to naked sc structure of the 20 kb plasmid on exposure to a 

shear rate of 1.2 xl06 
S·l for a period of 5-10 secs. The susceptibility of plasmid DNA 

to hydrodynamic shear has been reported in a homogeniser, centrifuge and atomizers 

at strain rates in the range of 104 .106 
S·I [Lengsfeld and Anchordoquy, 1999]. 

Estimates of the hydrodynamic force on the unformulated 5.7 and 20 kbplasmids 

based on both the lower and upper limits of molecular length are shoWn as two 

distributions labeled Length (AFM) and Length (sc contour) in Figures 6.1 Oa and . 
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6.10b. Comparison showed that both cumulative distributions for L(AFM)and L(sc 

contour) were within the region of reversible stretching for 5.7 kb pDNA (Fig 

6.10a). Equation (6.21) shows that the hydrodynamic forces will scale as the square of 

the particle size. Thus, naked 20 kb pDNA with a particle size of around four times 

that of a 5.7 kb pDNA is estimated to experience stretching forces that will be larger 

. by a factor of 16., Figure 6.10b indicated that forces on the 20 kb plasmid would be 

within the range where irreversible structural deformation was expected for 

approximately 90% of the particles exposed to forces >300 pN. Formulation of the 20 

kb plasmid in PEI produced a compact molecule of size roughly the same as that of an 

unformulated 5.7 kb, with forces in the reversible stretching region (Figure 6.10c). 

The hydrodynamic force on the pJasmid varies with the flow and molecular 

parameters. The flow parameter characterised by the strain rate (t) is the same for 

any particular device, where as the molecular parameter characterised by the 

molecular length of the plasmid varies with the molecular weight of the plasmid. 

Lengsfeld and Anchordoquy [2002] reported the DNA molecule to assume a 

completely extended configuration resulting in maximum L, when the applied forces 

are greatest and most likely to cause damage. This length scale configuration 

changes as the particle distorts due to the flow forces. AFM enables determination of 

the molecular length of the sc structure, enabling prediction of realistic 

hydrodynamic force. Lentz et aI. [2006a] and Kong et aI. [2006] reported the 

theoretical supercoiIed length of the plasmid as proportional to the molecular weight 

of the plasmid. The length determined by AFM was found to be half of the 

theoretiCal supercoiled length and can be used as a lower and upper limit for the 

determination of the hydrodynamic force acting on plasmid DNA. 

From figure 6.10a, the sc 5.7 kb plasmid is in the DNA extension! stretching region, 

such levels of hydrodynamic force «300 pN) on the compact sc structure of 5.7 kb 

plasmid are not likely to result in damage. The absence of damage to the 5.7 kb 

plasmid after nebulisation suggested that at a size of 330 nm, it can easily pass through 

the 3 ~m diameter nozzle of the mesh nebuliser without much adverse effect on the 

supercoiled structure. However, -95% of the 20 kb plasmid was exposed to forces 

greater than the 300 pN (Figure 6.1 Ob) resulting in irreversible damage to the sc 

structure as confirmed by gel electrophoresis of the nebulised plasmid. The naked 
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supercoiled 20 kb plasmid had a molecular length of 1250 nm, almost one-third of the , 

nozzle size. Although the ionic strength due to NaCl resulted in a more condensed 

structUre [see also Lyubchenko and Shylakhtenko, 1997], nebulisation produced 

destruction of the sc structure into linear fragments. The damage to the sc structure 

resulted in the release of torsional strain from the molecule, as evident from the 

spaghetti-like fragments observed in the AFM 

CFD results suggest damage to the sc structure of 20 kb plasmid is likely to be due to 
. .. 

high hydrodynamic forces experienced by a large fraction of the pDNA particles upon . 

their passage through the nozzle of the nebuliser mesh. Shear rates of the order> 106 
S-1 

have previously been found to cause damage· to 20 and 29 kb plasmids during· 

processing [Levy et al., 1999]. The fragmentation of DNA in a hydrodynamic shear 

testing device [Thorstenson et al., 1998] suggested that the velocity gradient at the 

orifice resulted in stretching of the DNA beyond its breaking point. It is suggested that 

the mechanism of sc pDNA degradation during aerosolisation proceeds via the 

formation of first an open-circular form (extension and breakage at the mid-point of a 

chain) followed by subsequent disintegration of the nicked plasmid to linear fragments· 

(exposed to hydrodynamic forces> 300 pN). 

The Ryskin equation used for the determination of magnitude of the hydrodynamic 

force as given by equation 6.21 suggested that. breakage initiated at the mid-point of 

. the polymer chain or DNA molecule. Figure 6.11 shows the distribution of the DNA 

fragments based on molecular size after nebulisation of the 20 kb plasmid as observed 

in an agarose gel electrophoresis. The peak of the DNA fragments after nebulisation 
. . 

was observed to be around 2.5 kb. The maximum amplitude of the peak of degradation 

products after nebulisation was observed to be almost half of the peak of undegraded 

supercoiled 20 kb plasmid (band density of224.4 corrected with a sc factor of 1.36 for 

. Ethidium bromide binding to sc DNA). This result based on amplitude of the band 

intensity coupled with the distribution of the fragmented molecules confirmed the 

assumption used for determination of hydrodynamic force that breakage to the plasmid 

sc structure occurred at the midpoint of the molecule. 
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- - - After nebulisation 
~ .. 
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--Before ilebulisation 
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Figure 6.11: Distribution of DNA fragments of 20 kb plasmid based on molecular size 

after nebulisation as observed in agarose gel electrophoresis. 

Zimm and Resse [1990] studied the flow-induced degradation ofT7 DNA through an 

orifice and showed that the extensional flow leads to a broad distribution of DNA 

scission products. A schematic for the degradation of sc structure of a 20 kb plasmid is 

shownin Figure 6.12. If damage of the se structure of the 20 kb plasmid were to occur 

at the mid-point of the polymer chain, a minimum of eight scissions on the molecule 

are required to generate DNA fragments of size 2.5 kb. In order to generate fragments. 

of size from 0.5 to 5.5 kb, the number of scissions is higher for smaller fragments and 

four for fragments of size -5 kb. The unifonn distribution of DNA fragments of size 

from 0.5 to 5.5 kb is possibly due to exposure to hydrodynamic forces based on 

extensional strain rates along the axis of the nozzle, followed by forces due to shear_ 

strain rates near the nozzle exit. The shear to the open-circular fonns of the 5.7 kb 

plasmid also indicates the susceptibility of more damage to the large open~circular 

fonns present in the initial preparation. Hence, hydrodyn~ic forces present a realistic 

estimate of the chances of safe delivery of large sized plasmids and infonn fonnulation , 
for reduction of size of the sc structure. 
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20 kb plasmid molecule 

One scission -

'* linear plasmid 
of size 20 kb 

~ One scission -

'*' two fragments 

~ 
of size 10 kb 

Two scissions -

'*' I I '*' four fragments 
of size 5 kb 

~ 
'*' 1*1 1*1 I 1*1 

Four scissions -
eight fragments 
of size 2.5 kb 

Figure 6.12: A schematic for generation of DNA fragments from degradation of 20 

kb plasmid; a total of eight scissions are required to generate fragments of size 2.5 kb 

with the star symbol representing a scission. 

Although engineering analysis has provided information on the hydrodynamic forces 

responsible for damage and attributed the limited influence of transient cavitation on 

plasmid DNA damage, it is essential to predict the limiting size of the plasmid for 
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safe delivery in the nebuliser. In the next section, plasmid DNA degradation in the 

mesh nebuliser is studied to determine the plasmid size for safe passage of the sc . 

structure on aerosolisation. 

6.6 Prediction of plasmid DNA size for safe delivery 

In order to predict the size of plasmid DNA· for safe aerosol delivery in a mesh 

nebuliser, the relative damage to the sc structure of the plasmids was studied. 

Experiments on the nebulisation of different sized plasmids using the U22 and U03 

nebuliser devices are reported in. Chapter 4. From these results, the ratio of intact sc 

plasmid DNA before nebulisation (Co) to the intact sc plasmid DNA after nebulisation 

. (C) was determined for different sized plasmids. A natural logarithm of (CjC) was 

plotted against the plasmid DNA molecular size to extrapolate the limiting size for 

safe delivery of sc structure of plasmid through the mesh nebuliser. 

6.6.1 Degradation of plasmid DNA in a U22 mesh nebuliser 

Figure 6.13 shows the plot for the degradation profile of plasmid DNA in a U22 

. mesh nebuliser. Extrapolation of the data from the plot, estimated that a plasmid size 

<6.7 kb can be safely delivered in the U22 mesh nebuliser operating at a device 

frequency of 175 kHz. 

6.6.2 Degradation of plasmid DNA in a U03 mesh nebuliser 

Figure 6.14 shows the plot for the degradation profile of plasmid DNA in. a U03 

mesh nebuliser. Extrapolation of the data from the plot, estimated a plasmid size < 

3.8 kb can be safely delivered in the U03 mesh nebuliser operating at a device 

frequency of 65 kHz. The influence of device parameters like frequency of the 

vibrator horn on damage to the sc structure of the plasmid is discussed in the next 

chapter. 
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Figure 6.13: Limiting size for safe aerosol delivery of supercoiled plasmid DNA in the 

V22 mesh nebuliser (% damage data taken from Table 4.7). 

3.5 

3 

2.5 

0' 2 
..." 
0 
:E 1.5 

1 

0.5 

0 
0 

Plasmid size for safe 
delivery < 3.8 kb 

I 

2.5 5 7.5 10 12.5 15 

Plasmid DNA size (kb) 

y = 0.1603x • 0.6093 
R' = 0.9994· 

17.5 20 22.5 

Figure 6.14: Limiting size for safe aerosol delivery of supercoiled plasmid DNA in the 

. V03 mesh nebuliser (% damage data taken from Figure 4.22). 
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6.6.3 Discussion 

Plasmid DNA degradation in a mesh nebuliser was observed to follow a linear profile 

based on the molecular size of the plasmid. Meacle et al. [2006] have shown the sc 

plasmid DNA degradation within a capillary device to be a first order process. Odell et 

al. [1988] have modelled flow-induced fracture as a rate process in which the energy 

barrier for, bond breakage is lowered by mechanical forces exerted on the polymer by 
, , 

the flow. Lentz et al. [2005] studied the degradation of plasmid DNA in ajet nebuliser 

and suggested a minimum shear force must be exceeded before the hydrodynamic 

degradation rate constant becomes non-zero and therefore a molecular length scale 

exists below which degradation does not occur. No improvement in degradation rate is 

realised regardless of how far below this size one compacts DNA. However, Lentz et 

al did not provide any relationship to predict the size for safe delivery of plasmid DNA 

using a nebuliser device. 

From figures 6.13 and 6.14, the limiting size of plasmid DNA for safe delivery upon 

nebulisation is estimated by extrapolation of the relationship between ratio of the sc 

plasmid before nebulisation to the intact sc structure after nebulisation and the plasmid 

size. Nebulisation in the V22 and V03 mesh nebulisers enables safe passage to 

plasmids of size less than 6.7 kb and 3.8 kb respectively. Damage to plasmids of 

smaller size using the V03 device at low frequency was perhaps due to effects of 

cavitation, as a result of increased residence time (Iow nebulisation rate) 'in the device. 

These figures are helpful in a practical sense to detennine the limiting size for the safe 

delivery of the sc structure. 

6.7 Conclusions 

Engineering analysis of the nebulisation of plasmid DNA has provided data on the' 

hydrodynamic force required for damage to the supercoiled structure of plasmid 

DNA. Damage to sc of the 20 kb plasmid and safe delivery of 5.7 kb plasmid is 

explained on the basis of estimated hydrodynamic force computed from the strain 

rates predicted using CFD modelling and sizing of sc structure using AFM imaging. 

Detennination of hydrodynamic force levels to damage DNA in micro-scale flow 

environments has not yet been reported in the literature. This technique for 
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estimation of hydrodynamic force promises to provide information on the 

degradation of shear-sensitive therapeutics in· such drug-delivery device 

combinations. 

In addition to hydrodynamic force levels, high~speed imaging provided an insight on 

damage to the sc structure as a result of the motion of the ultrasonic vibrator horn. 

Partial damage to the sc structure without the mesh, suggested the influence of 

cavitation due to the oscillatory motion of the horn. Aerosolisation without mesh is a 

result of multiple vibrations of the vibrator horn. The out-of-phase vibrations of the 
-, 

horn and mesh result in a single-pass droplet generation through the mesh nozzle. A 

linear plot of plasmid DNA degradation against molecular size enabled estimation of 

the limiting size for safe passage of the sc structure upon aerosolisation in the mesh 
. . . , 

nebuliser. An unfonnulated plasmid of size less than 6.7 kb and 3.8 kb was estimated 

for safe delivery of the sc structure using the U22 and U03 mesh nebulisers 

respectively. 

The influence of hydrodynamic forceon damage to sc structure was observed to be a 

significant parameter affecting delivery and reduction of the size of sc structure 

ensured lower levels of hydrodynamic force and consequently safe aerosol delivery. 

The method of estimating limiting plasmid DNA size for safe delivery in. a mesh 

nebuliser provides data for the design of plasmid DNA based gene therapeutics. 

From the engineering analysis on the nebulisation of plasmid DNA, it is observed 

that the device parameters such as nozzle size and frequency are crucial for the safe 

aerosol delivery of· the sc structure of plasmids. The influence of these two 

parameters on plasmid DNA damage for different plasmid sizes is discussed in the 

next chapter. 
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CHAPTER 7. DEVICE PARAMETERS INFLUENCING 

PLASMID DNA DAMAGE 

7.1 Introduction 

Engineering studies on the nebulisation of plasmid DNA in a mesh nebuliser have 

shown damage to be dependent on the size of the sc structure of plasmid: Results 

from the univariate analysis in chapter 4 suggest that in addition to plasmid size and 

nozzle size, device frequency may' also influence damage' to sc structure of the 

plasmid. Device frequency imparts the driving force responsible for aerosolisation 'of 

the liquid and hence experiments on the effect of driving frequency and plasmid size 

are expected to provide information on damage to the sc structure. Factorial designs 

of experiments were carried out to investigate the influence of size and frequency on 

damage to the sc structure of plasmids upon nebulisation. Two multivariate two-level 

full factorial designs were performed with the following variables: (i) plasmid size 

and nozzle size, and (ii) plasmid size and device frequency. The 22 factorial design 

was used to check the significance, main effects and interactions of the variables 

involved. 

7.2 Influence of size on damage: DOE using factorial design 

As discussed in the earlier chapter, nozzle size of the mesh nebuliser is a crucial 

factor limiting the plasmid size for safe aerosol delivery of the sc structure. DoE 

using factorial design was carried out to understand the influence of nozzle size on 

damage to the sc structure of different plasmid sizes. 

7.2.1 Choice of variables and levels 

The variables for the 22 factorial design chosen were plasmid DNA size and nozzle 

size and the response was damage to the sc structure of the plasmid after nebulisation. 

To study the response and its interactions across a range of plasmid and nozzle sizes, a 
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plasmid size at the lower limit (8.7 kb) and higher limit (20 kb) was chosen for the 

study. Similarly, nozzle sizes at the lower (3 Ilm) and higher (5 Ilm) limit were 

employed. The variables and levels chosen for the experimental design are shown in 

. Table 7.1.. 

Table 7.1: Variables and levels chosen for factorial design of experiments 

Variables Levels· 

- + 

Plasmid size (kb) 8.7 . 20 

. Nozzle size (Ilm) 3.0 5.0 

7.2.2 Experimental design 

The experimental design chosen was a full factorial design (22 = 4) for a two variable 

experimental design with two levels. The experimental design consisting of 4 runs 

with the levels of the variables is shown in Table 7.2. 

Table 7.2: A 22 factorial experimental design for plasmid and nozzle sizes as variables 

Run Plasmid size (kb) Nozzle size (/lm) 
(Coded units) (Coded units) 

1 8.7 (-) 5 (+) 

2 20 (+) . 3 (-) . 
.' 

3 20 (+) 5 (+) 

4 8.7 (-) 3 (-) 

The response of % damage to the sc structure was determined from average values of 

triplicate measurements from the densitometric scans of separate agarose gels. 

164 



Chapter 7: Device parameters influencing damage 

7.2.3 Analysis offactorial experimental design 

The an!uysis of 22 factorial design was done using Minitab® 15.1 (Stat-Ease, Inc., 

. Minneapolis, USA), and the results from the statistical analysis, model diagnostic 

plots, contour plots and response surface plots are reported. 

The results of the factorial fit for % damage to sc structure versus plasmid size and 

nozzle size are given in Tables 7.3 & 7.4. The estimated effects and coefficients for % 

. -damage are shown in Table 7.3. This table indicates the coefficient of determination 

R2 and adjusted R2 values for this model are good with a predictable response. 

Table 7.3: Estimated effects and coefficients for % damage in coded units 

. .. 

Term Effect Coefficient SE T P 
Coefficient 

Constant 44.46 1.021 43.53 0.000 

Plasmid size (kb) 35.60 17.80 1.021 17.43 0.000 
. 

Nozzle size (/lm) -52.60 -26.30 1.021 -25.75 0.000 
'. 

Plasmid size (kb) * -17.38 -8.69· 1.021 -8.51 0.001 
Nozzle size (/lm) 

S (Standard deviation) = 2.88897 

PRESS (Predicted Residual Sum of Squares) = 133.538 

RZ (Coefficient of determination) = 99.62% j' 

RZ (Predicted) = 98.47% 
. 

RZ (Adjusted) = 99.33% 

Table 7.4 shows the results of analysis of variance (ANOVA) for % damage to the sc 

structure. Significant interactions for the main effects and two way interactions are 

predicted. 
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Table 7.4: Analysis of variance (ANOVA) 

Source Degrees Sequential Adjusted Adjusted Fvalue p-value 
. of Sum of Sum of Mean (Prob>F) 

freedom Squares Squares Sum ,of 
(dt) Squares 

Main effects 2 8068.24 8068.24 -,- 4034.12 483.35 0.000 

2-Way I 604.13 604.13 604.13 72.38 . 0.001 
interactions 

. 

Residual 4 33.38 33.38 8.35 
error 

. 

The significant variables of the model are plasmid size, nozzle size, and interaction 

between plasmid and nozzle size. The response equation for % damage to sc 

structure in terms of estimated coefficients (determined using data in uncoded units) 

and variables is given in equation 7.1. 

Damage", = 16.1719 + (9.3026 * Xpl"m;d)- (4.2289 * X"cul,) - (1.5380 * Xpl"m;d * X"CUI') 

............... Equation 7.1. 

The next section will analyse the contour and response surface plots, and check the 

significance of the variables predicted in the model. 

7.2.4 Model adequacy plots 

The adequacy of the model and significance of the variables are discussed in Figures. 

7.1 and 7.2. Figure 7.1 shows the normal plot of the standardized effects in the 

model. In confirmation of the results in the earlier section, the main variables and 
'. . 

interactions were predicted to have a significant effect on the model. As shown in the 

figure, plasmid size was predicted to have a positive effect resulting in increased 

. damage to the sc structure. However, nozzle size was predicted to have a reverse 

effect with decreased damage to sc structure. As observed in the figure,' the 

interaction between the two variables had a significant effect on the response. 
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The Pm'eto chart of standardized effects shown in Figure 7.2 also showed similar 

results as in Figure 7.1. However, nozzle size was predicted to have a greater 

in fluence on damage when compared to plasmid size. Although the effect of 

interaction between the variables was less than the main effects, it was still predicted 

to be significant. 
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Figure 7.1: Normal plot of standardised effects for plasmid and nozzle sizes 
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Pare to Cha rt of the Standardized Effects 
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Figure 7.2: P areto chart of standardi sed effects for plasmid and nozzle sizes. 

7.2.5 Mod el predictions: Main effects and inte raction plots 

The main er fects and interaction plots fo r damage to sc structure of plasmids IS 

Igures 7.3 and 7.4 respecti vely. The main effects plot shows the 

f the effects of each variab le. As confirmed in Figures 7.1 and 7.2, the 

shown in F 

magnitude 0 

main effec ts plot shows the significance of the nozzle size. Interact ion plots are 

dging the presence of interactions. As shown in Figure 7.4, non-parall el 

interaction plots suggest the presence of interaction between the 

usefu l fo r ju 

lines In the 

variab les. 
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Main Effects Plot for % damage to se structure 
Data Means 
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Figure 7.3: Main effects plot of plasmi I and nozz le s izes for % damage to se 

stru cture. 
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Figure 7.4: [nteractions plot of plasmid and nozzle sizes fo r % damage to se 

structure. 
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7.2.6 Model prcdictions: Contour and sUI'fac c plots 

The contour plots and sur face plots predicted % damage to sc structure of plasm ids 

fro m 8.7 kb to 20 kb for nozzle sizes from 3 ~L1n to 5 ~tm as shown in Figure 7.5. The 

% damage to sc structure of a plasmid of intermediate size such as 13 kb fo r an 

intermediate nozzle size of 4 fl m was predicted to be 40·60%. The experimental 

value o f % damage was observed to be 62. 1 %. Although, the contour pred ictions did 

not exactly match the actual va lue, it does provide useful informa tion on the levels of 

damage. 

7.2.7 Discuss ion 

Box·Belmken based DO E experiments on nebulisation of 20 kb plasmid uSll1g 

di fferen t nozzle sizes predicted damage to sc structure was more pronounced for a 3 

~lm nozzle than fo r 4 flm or 5 ,Im nozzles. Results !i'om the statisti ca l ana lys is, shown 

in Table 7.3 revealed plasmid size, nozzle s ize and the ir interaction to have a 

signifi cant e ffect on the damage to sc structure of the plasmid. Simi lar results are 

shown by the normal plot of standardized effects (F igure 7. 1) and Pareto chart o f 

standard ized effects (Figure 7.2). 

The contou r plot shown in I' igure 7.5 predicted the damage levels to the sc structure of 

plasmids o r size 8.7 kb to 20 kb for nozzles of size from 3 pm to 5 pm . For the 3 pm 

nozzle, predicted damage leve ls were about 40·60% fo r the 8.7 kb plasmid and >95% 

fo r the 20 kb plasmid. The actua l damage at the 3 ,Im nozzle matched the pred icted 

va lues wel l. With increase in nozzle size. the predicted damage leve ls decreased. At a 

nozzle size of 4 pm, pred icted damage leve ls were 20-40% for the 8.7 kb plasmid and 

40·60% fo r the 20 kb plasmid. Actual damage to the sc structure of 8.7 kb and 20 kb 

plasmid fo r the 4 ,Im nozzle were 15.5% and 35.8% respecti ve ly. For the 5 ,Im nozzle. 

predi cted damage leve l ' f I' the 8.7 kb and 20 kb plasmids we re <20% and 20-40% 

respective ly. which co incided wit h the actual va lues. The predictions fo r % damage to 

the se structu re from the con tour plot were within the range o r experimenta l va lues. 
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Contour Plot of % damage vs Nozzle size (IJm), Plasmid size (kb) 
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Figure 7.5: Model predictions from fac tori al design of plasmid and nozz le sizes: a) 

contour and b) surFace plots of damage to sc structure of the plasmid 
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7.2.8 ulllmary 

The contour plot for the percentage damage to sc structure o fplasmids o f size from 8.7 

kb to 20 kb using different sized nozzles in the U22 mesh nebuliser provides an insight 

into the potential fo r dam age to the c structure. T hi s approach is useful for asses ing 

the damage to plasmids of d ifferent sizes aeroso li sed using diffe rent nozzle sizes and 

provides information for formulation of plasmid DNA and device design. 

7.3 Innucnce of frequency on da mage: I)O E using facto ria l des ign 

The frequency o f the vibrator horn is at the core o f the funct ion o f the nebu li ser 

device. It ge nerates the d ri ving force require I fo r aerosoli sation o f the li qu id. 

Engineering studies in the ea rlier chapter (section 6.2) have shown the aeroso l 

d roplet ize to be dependent on thc device frequency. Hence, the influence o f device 

frequency an d plasmid s ize on damage to e structure o f plasmid DNA using 

factori al design o f ex periments is ex pected to pro ide use ful informa ti on for device 

design an d plasmid D A fo rmulation. 

7.3.1 C hoice of va riab les a nd levels 

The variables fo r 22 facto ri al design choscn werc plasmid DNA SIze and dev ice 

I"requcney and the response wa ' damage to the sc structure o f the plasm id a ne r 

nebul isation. To study the response and its interactions ac ro s a range o f pia mid sizes 

and possible device lrequencies. a plasmid SiLC at the lower limi t (5.7 kb) and hi gher 

lim it (20 kb) was chosen lo r the study. imilarl ). a nebuliser device operat ing at a 

lower frequency (U03 nebuliser) of 65 kll z and a higher frequency (U22 nebuliser) of 

175 kll z I\'as employed. The lreq uencic of the t\\O devices were constrai ned by 

device design. A nozzle size of3 ~lm was used lo r the U03 and U22 nebuli ser de ices. 

The vari ab les and levels chosen fo r the ex perimenta l design are ShO \'\~l in Table 7.5. 
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Tablc 7,5: Variables and levels chosen for factori al design of experiments 

Va riablcs Levcls 

- + 

Plasmid size (kb) 5.7 20 

Frequency (kHz) 65 175 

7.3.2 Experimental des ign 

The experimemal design chosen was a full facto ri al design (22 = 4) for a two variable 

experimental design with two levels. The experimental design consisting of 4 runs 

with the levels of the vari ab les are shown in Table 7.6. 

Table 7.6: A 22 factorial experimental design for plasmid size and frequency as 

variable 

Run Plasmid size (kb) Freq ucncy (kl-lz) 
( odcd units) (Coded unit s) 

I 5.7(-) 175 (+) 

2 20 (+) 175 (+) 

3 20 (+) 65 (-) 

4 5.7 (-) 65 (-) 

The rcsponsc of % damage 10 thc se structure \\as dctcrmined rrom a eragc valucs or 

triplicatc measurcmems from the dcn 'itomctric scans or eparme agarose gels. 
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7.3.3 Analys is of factor'ial experimental design 

The analysis of 22 factoria l design was done using Min itab® 15. 1 (Stat- Ease, Lnc., 

MilUleapolis, USA), and the results from the statistical analysis, model adequacy plots, 

contour plots and response surface plots are reported. 

The results of the facto ri al fit for % damage to sc structme versus plasmid size and 

nozzle size are given in Tables 7.3 & 7.4. The estimated effects and coefficients for % 

damage are shown in Table 7.3. This table indicated the coefficient of determination 

R2 and adjusted R2 va lues For thi s model are good with pred ictable response. 

Tab le 7.8 shows the results of a nalysis of variance (AN OVA) fo r % damage to the sc 

structure. Significant interacti ons For the main efFects and two way interactions are 

pred icted. 

Tab le 7.7: Estimated effects and coeffi cients for % damage in coded units 

Term Effect Coefficient SE Coeffi cient T P 

Constant 55 .769 0.7037 79.25 0.000 

Plasmid size (kb) 78.502 39.25 1 0.7037 55.78 0.000 

Frequency (kl-Iz) -7.41 3 -3.706 0.7037 -5.27 0.006 

Plasmid size (kb) * 11 .882 5.941 0.7037 8.44 0.00 1 
Frequency (k Hz) 

S (Standard deviation) = 1.99046 

PRESS (Predi cted Rcsidual Sum o f Squares) = 63.39 1 

R' (Coeffi cient of determinati on) = 99.88% 

It' (Predi cted) = 99.5% 

RT (Adjusted) = 99.78% 
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Table 7.8: Analysis of variance (ANOVA) 

Source Degrees Sequential Adjusted Adjusted F value p-va luc 
of Sum of Sum of Mcan (Prob 
fl"ccdom Squares Squares Sum of > F) 
(df) Squares 

Main effects 2 12435 .2 12435.2 62 17.59 1569.33 0.000 

2-Way I 282.4 282.4 282.39 7 1.28 0.001 
interactions 

Residual error 4 15.8 15.8 3.96 

The significant variables o f the model are plasmid size, nozzle size, and interaction 

between plasmid and nozzle size. The response equation for % damage to sc 

structure in te rms o f estimated coefficients (dete rmined using data in uncoded units) 

and variables is given in equation 7.2. 

Damage" = 16.6093 + (3.6767 * X p'''""d) - (0.26 15 • f) + (0.0 151 * X p',,,,,,d * f) ........ . 

...... Equati on 7.2 

The next secti on will ana lyse the model adequacy plots. contour plots and response 

plots. and eheck the signifi cance o f"the vari ables predicted in the model. 

7.3.4 Model adequacy p lots 

The adequacy o r the model and the signiJleance or the vari ables are di scussed III 

Figures 7.6 and 7.7. Figure 7.6 shows the normal plot of the standardi zed e ffects in 

the model. In conlirmation of the resu lts in the ea rlier secti on. the main variables and 

interaction we re predicted to have a sign ifi cant e rfect on the model. 
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Normal Plot of the Standardized Effects 
(resp:ll1Se is % damage, Alpha = .05) 

Effect Type 

• Not sq-.ifk~nt 

• Signifkant 

Factor Nat1"Ie 
A pl.umid size 

• A B F~QUency 

. AB 
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St andardized Effect 

Figure 7.6: Normal plOI of standardised effects for plasmid size and device 

frequency 
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Pareto Chart of the Standard ized Effects 
(response is % damage, Alpha = .05) 
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Figure 7.7 : PaI'eto chart of standardised effects for plasmid size and device 

frequency. 
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As shown in the fi gure 7.6, plasmid size was pred icted to have a positi ve effect 

resulting in increased damage to the sc structure. However. frequency was predicted 

to have a slight negati ve effect with decreased damage to sc structure. As observed 

in the fi gure, the interaction between the two variab les had a signifi cant e ffect on the 

response. 

The Pat'eto chart of standardized effects shown In Figure 7.7 also showed similar 

results as in Figure 7.6. Plasmid size was predicted to have a greater influence on 

damage compared to frequency. However, as observed in Table 7.7 , the combined 

effect of inte racti on between the variables was predicted to be more s ignificant than 

frequency of the device. 

7.3.5 Model predictions: Main effects and interaction plots 

The main effects and interaction plots for damage to sc structure o f plasmids are 

shown in Figures 7.8 and 7.9 respectively. The main effects plot (F igure 7.8) showed 

the 5.7 kb plasmid to be subjected to minimum damage compared to the 20 kb 

plasmid . This plot also showed that damage using the nebuli ser device at 65 kHz was 

s li ghtl y more than that at 175 kH z. Th is was due to the increased aerosolisati on time 

wi th the 65 kl-l z device perhaps exposing the fragile sc structure of the plasmid to 

hydrodynamic fo rces and cav itati on. The non-parallel lines o f plasmid s ize and 

nozzle freq uency in the interacti on plots (F igure 7.9) suggested interaction between 

the vari ab les. 
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Main Effects Plot for % damage 
Data Means 

Plasmid size Frequency 

~ --
20,0 65 175 

Figure 7.8: Main effects plot of plasmid size and device frequency for % damage to 

sc structure. 

Interaction Plot for % damage 
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Figure 7.9: In teractions plot of plasmid size and device frequency for % damage to 

sc structure. 
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7.3.6 Model predictions: Contour and surface plots 

The contour plot of % damage versus frequency and plasmid SIze In fi gure 7. 10, 

provides information on sc structural damage for plasmid sizes fro m 5.7 kb to 20 kb 

and frequencies from 65 kJ-l z to 175 kHz. 

At 65 kHz, damage was predicted to increase with increasing sIze of plasmid. 

Damage was predicted to be independent of device freq uency for plasmid DNA sizes 

> 16 kb due to the greater influence of nozzle size on DNA damage. For a device 

frequency > I 00 kH z, damage to the sc structure of 5.7 kb plasmid was predicted to 

be minimum. Damage levels of 40-60% were predicted for an intermediate plasmid 

of size 13 kb. At 175 kHz, sc structura l damage was predicted to be less than at 65 

kH z for plasmid size < 16 kb. 

7.3.7 Predicted damage at intermediate freq uencies 

The model pred icti ons from the contour and surface plots provided data on damage 

to the sc structure at intermed iate frequenc ies. Figure 7. 11 shows the predicted 

damage to the sc structure o f 5.7 and 20 kb plasmids between 65 and 175 kH z 

respecti vely. The droplet size computed from equations 6. 1 and 6.2 is observed to be 

li nearly dependent on the frequency of the device. Aeroso l particle size from the 

vibrator horn is a parameter whic h in fluences da mage to the sc structu re for a fi xed 

nozz le si ze of 3 ~Im at different device freque ncies. Hence. fi gure 7. 11 is expected to 

prov ide a reasonable predicti on of dil mage to the sc structure for 5.7 and 20 kb 

plasmids at intermed iate li'cq uencies fo r a fi xed nozzle size. 
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Contour Plot of % damage vs Fr equency, Plasmid s ize 
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Figure 7. 10: Model predictions from factorial des ign of plasmid size and device 

frequency: a) contour and b) surface plots of damage to sc structure of the plasmid. 
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Figure 7.11: Prediction of damage to the sc structure of 5.7 kb and 20 kb plasmid at 

intermediate frequencies at a nozzle size of 3 !!m. 

7.3.8 Discussion 

The factorial design of experiments using plasmid DNA size and device frequency as 

the variables provide information on the potential damage to the sc structure at 

intermediate plasmid sizes and frequencies. Statistical analysis of results has shown 

the size of plasmid DNA to have a more signifkant impact than device frequency. 

Predictions from the contour plot at low frequency (65 kHz) have shown damage to 

. be dependent on plasmid DNA size. 

Figure 7.11 shows the damage to the sc structure of the plasmid 'at device frequencies 

from 65 kHz to 175 kHz. Lower damage to sc structure of the 5.7 kb plasmid was 

predicted at high frequency (175 kHz) than at low frequency (65 kHz). Higher damage 

to sc structure of the 20 kb plasmid was predicted at low frequencies, However, 

Engineering studies in chapter 6 have shown maximum damage to the sc structure of 

the 20 kb plasmid due to exposure to hydrodynamic forces on passage through the 

mesh nozzles of the nebuliser device operated at high frequency. However, partial 
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damage was also observed to the sc structure of the plasmid due to cavitation on 

aerosolisation without mesh. As shown in Figure 7.8, damage to the 'sc structure of the 
, 

20 kb plasmid at low frequency vyas less than at high frequency, possibly due to lower 

hydrodynamic forces as a result of a lower nebulisation rate: However, higher damage, 

to plasmids of smaller size (5.7 kb) at low frequency was perhaps due to effects of 

, cavitation, as a result of increased residence time (low nebulisation rate) in the device. 

7.3.9' Summary 

The contour plot for damage to sc structure of plasmids of size from 5.7 kb to 20 kb at 

device frequencies from 65 kHz to 175 kHz provides useful information for device 

design and formulation for the delivery of plasmid DNA: This approach of factorial 

design of experiments promises to provide additional· information by capturing the 

interaction between the variables which would· not have been possible from a 

univariate analysis [Martendal et al., 2007]. Interaction between the variables, plasmid 

and nozzle sizes, and plasmid size and device frequency indicated a mutual influence 

on the percentage damage to the sc, structure. 

7.4 Conclusions 

Nebulisation of plasmid DNA results in damage to the sc structure of large plasmids. 

Damage to the sc structure of plasmid DNA depends on device parameters such as 

nozzle size and frequency, in addition to formulation. This chapter has employed a 22 

factorial design of experiments to investigate the main effects of the variables such as 

plasmid size, nozzle size and device frequency and the interactions between them. 

Damage to sc structure of plasmid DNA was more pronounced at 3 Ilm nozzle size 

than at 5 Ilm. Nebulisation at 65 kHz device frequency resulted in more damage to 

plasmids of size <13 kb than at 175 kHz. The main advantage of the results from such 

experiments is the information on the interaction between the variables for the limits 

chosen in the experimental design. This will assist device design and formulation for 

the delivery of plasmid DNA as a non-viral gene therapeutic. 
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CHAPTER 8. FORMULATION OF 20 KB PLASMID 

DNA FOR NEBULISATION 

8.1 Introduction 

Formulation of large size plasmid DNA is essential to protect the super-coiled (sc) 

structure against damage during the aerosolisation process. Intensive research is 

being pursued to develop suitable non~viral formulations for delivery of plasmid 

DNA [Anchordoquy et aI., 2004]. Currently formulation substrates such as cationic 

. liposomes [Lasic, 2000] and polymers [Munier et aI., 2005] are being employed for 

condensing the plasmid from a very loose molecular structure to a compact, small 

biomolecule. Cationic liposomes have been used for the ultrasonic nebulisation of a 

small plasmid (size unknown) for airway administration [Pillai et aI., 1998]. 

Although cationic liposomes are being evaluated in clinical trials, it is reported that 

pulmonary surfactants may inhibit cationic liposome-mediated gene delivery to 

respiratory epithelial cells [De Smedt et al., 2000]. Cationic polymers (CPs) used for 

gene delivery can be a homo-polymer with a linear backbone such as DEAE-dextran 

(Diethylaminoethyl-dextran), pLL (poly(L-lysine), pVP (poly(N-ethyl-4-

vinylpyridinium bromide», linear pEI (poly(ethyleneimine», Chitosan, or a 

branched backbone such as branched pEI, or a co-polymer such as pEG-pLL 

(poly(ethylene glycol)-poly(L-lysine» [Schmieder et aI., 2007; Lee and Kim, 2005]. 

DEAE-dextran has been reported to enhance uptake of protein and nucleic acid, by 

cells [Rigby, 1969]. Although, DEAE-dextran as a DNA condensing agent is 

reported to he simple, effective and still widely used for in vitro transfection, it has 
. 

been observed to be cytotoxic and unsuitable for in vivo systems [Luo & Saltzman, 

2000]. However, DEAE-dextran DNA transfection of adherent primary cultured 

human macrophages·resulted in superior transfection compared to cationic liposome 

and calcium phosphate precipitation methods [Mack et aI., 1998). It is shown 

recently that adenovirus complexed with DEAE-dextran can enhance gene transfer to 

the sodium caprate treated airways upon intra-nasal administration in mice, and is 

envisaged in the clinical setting to enhance the gene therapy efficiency for cystic 
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fibrosis vii airway delivery [Gregory et aI., 2003). Gene therapy is an attractive 

target for unmet clinical diseases like cystic fibrosis and is a perfect example as a 

target for pulmonary delivery of gene therapeutic containing' cystic fibrosis 

transmembrane conductance regulator (CFTR) gene. Complexes ofCFTR gene in an 

adenovirus with DEAE-dextran have been reported for gene therapy [Welsh and 

Fasbender, 1999]. In vivo studies in large animal models such as sheep have been 

used for optimising aerosol gene delivery of plasmid DNAlPEI complexes aimed at 

developing cystic . fibrosis gene therapy protocols [McLachlan et aI., 2007]. 

McLachlan et al report the use of Pari LC plus jet nebulisers with a delivery rate of 

0.25 mLlmin for their study .. The partial resistance of pDNAlPEI complexes to 

DNase degradation can improve' the efficiency of gene delivery, due to the 

administration of rhDNase (Pulmozyme) to clear the thick mucus in CF patients. It 

has been reported that gene expression levels of 5% to the target cells is sufficient to 

restore the malfunctioning of the CFTR protein in cystic fibrosis diseased patients. 

Studies on the aerosol delivery of plasmid DNA using conventional jet nebulisation 

[Lentz et aI., 2005] and ultrasonic nebulisation [Smart et aI., 2002] showed damage 

to sc structure of plasmids. An alternative electro-hydrodynamic technique [Davies 

et aI., 2005] for pulmonary aerosol delivery is promising [Zimlich et aI., 2002]. The 

aerosol delivery of plasmid DNA in the intact supercoiled (sc) form is crucial to 

meet the stringent drug quality requirements [Levy et aI., 2000a]. Since the size of a 

complete CFTR gene is approximately 10 kb [Lee et aI., 2005], it is expected that a 

typical plasmid vector with a therapeutic gene insert would be of the order of IS kb. 

Plasmids of size> 13 kb are damaged in rotating shear devices at shear/strain rates 

. >5xlOs S·I [Levy et aI., 1999]. 

Earlier studies in chapter 4 have shown sc structure of a naked 5.7 kb plasmid to be 

safely delivered using a mesh nebuliser, while that of an unformulated 20 kb plasmid 

was completely degraded [Arulmuthu et aI., 2007]. In addition to plasmid size, CFD 

(computational fluid dynamics) study and high speed imaging of aerosol generation 

predicted a 300 pN hydrodynamic force on large plasmids that would damage the 

DNA strands in sc structure. Hence, formulation of plasmid DNA is essential to 

ensure protection of the shear-sensitive super-coiled structure during aerosolisation. 
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The aerosol delivery of non-viral plasmid formulation with cationic liposomes 

complexed to plasmid DNA using a clinical nebuliser was the first to be demonstrated 

and resulted in transgene expression restricted to the lungs [Stribling et aI., 1992]. 

However, in spite of the impressive initial results, a low DNA delivery efficiency. 

(0.083%) was obtained using this approach. 

In chapter 6, experimental and theoretical studies on damage to a naked sc plasmid 

. upon nebulisation showed the size of sc structure of a 20 kb plasmid to be of the order 

of the nozzle size of the deviCe studied. Earlier studies in chapter 7 showed this nozzle 

size of 3 Ilm was crucial for the generation of fine respirable aerosols using the mesh 

nebuliser. In this chapter, formulation of a 20 kb plasmid is reported to reduce the size 

of the plasmid to ensure safe delivery of the sc structure upon passage through the 

micron-sized nozzles of the mesh nebuliser. 

8.2 Formulation of 20 kb plasmid 

Nebulisation of naked 20 kb plasmid in TE buffer resulted in substantial damage to the 

sc structure of the plasmid. Condensation of the sc structure in ionic strength buffer 

(150-300mM NaCl) also resulted in damage to the plasmid (Chapter 4). Nebulisation 

of the unformulated 20 kb plasmid at different DNA concentrations was performed in 

order understand levels of damage at low DNA concentrations. The study discussed in 

the following section was intended to provide information on whether damage to the 

sc structure of the 20 kb plasmid upon nebulisation was concentration-dependent. 

Formulation of plasmid DNA using cationic substrates has been reported to reduce 

hydrodynamic diameter based on charged attraction between the negatively charged 

DNA phosphate backbone and cationic substrate [Lentz et aI., 2005], therefore 

formulation of 20 kb plasmid with cationic liposomes and polymers has been 

attempted and the results are discussed below. 
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8.2.1 Nebulisation of un formulated 20 kb plasmid 

Earlier studies reported in Chapter 4, showed nebulisation of 20 kb plasmid to 

substantially damage the sc structure. In order to gain information and improve 

. understanding of the extent of damage to sc structure at plasmid DNA (PDNA) 

concentrations used for formulation, nebulisation of naked 20 kb plasmid at 150 mM 

NaCI in distilled water was carried out. Naked plasmid formulations at 15,7.5 and 5 

llg/mL DNA concentrations were subjected to nebulisation in the mesh nebuliser. 

The damage to the sc structure was assessed by agarose gel electrophoresis and DNA 

concentration ·at UV absorbance of 260 nm. 

8.2.1.1 Analysis of DNA damage 

As shown in the densitometric scans in figure 8.1, the band intensity corresponding 

to the sc peak was assessed after nebulisation to determine the percentage damage to 

the sc structure. Agarose gel electrophoresis of 20 kb plasmid after nebulisation 

indicated substantial damage to the sc structure at all pDNA concentrations (Figure 

8.1). As is evident from Table 8.1, the purity of plasmid DNA in the before and after 

nebulisation sample was observed to be acceptable for gene therapy with a DNA 

ratio (A2601A28o) of 1.8-1.95. An increase in DNA concentration in the after 

nebulisation sample was due to increased absorbance (A26o) of the DNA fragments 
, 

resulting from the degradation of the supercoiled structure. Determination of the 

percentage damage to the sc structure of the 20 kb plasmid after nebulisation from 

the densitometric scans of the agarose gel (Figure 8.1) revealed that damage is 

independent of plasmid DNA concentration. 

Table 8.1: Nebulisation of un formulated 20 kb plasmid (n=2) 

Plasmid DNA Nebulisation DNA ratio ~NA conc in Ilg/mL Yo damage to 
sample (llg/mL) stage (A2601 A28o) (UV-abs at 260 nm) sc structure 
15 Before 1.891 15.92 

After 1.796 38.10 92.18 . 

7.5 Before 1.899 8.261 

. After 1.825 14.42 93.19 

5 Before 1.925 ft·508 . 

After 1.823 8.889 91.56 
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Figure 8.1: Densitometric scans of agarose gel" from nebulisation of 20 kb pDNA at 

DNA concentrations of: a) 15, b) 7.5, c) 5 llg/mL. 
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8.2.2 Nebulisation of pDNA formulation with Iiposomes 

Formulation of 20 ,kb plasmid was· performed using cationic liposomes, 

DOTAPIDOPE and DOTAP-Cholesterol as described in Chapter 3. A plasmid DNA 

concentration of about 30Ilg/mL was used for formulation with cationic liposomes as 

per the. prescribed protocol [Megafectin™ catalogue]. Nebulisation ofunformulated 

20 kb was carried out at 30 llg/mL concentration. Nebulisation of the formulated 20 

kb plasmid with DOTAPIDOPE and DOTAP-Cholestersol resulted in no aerosol 

generation, perhaps due to increased viscosity of the formulation at the same DNA 

concentration. Agarose gel electrophoresis of complexed DNA from the nebuliser 

chamber showed no damage to the se structure (Figure 8.2), similar to that observed 

. with a naked 20 kb plasmid. 

·8.2.3 Nebulisation of pDNA formulations with DEAE-dextran 

DEAE-dextran is a polycationic derivative of Dextr~ and the very first chemical 

reagent to be used for DNA delivery [Liu et aI., 2004]. Aerodynamically light high 

molecular weight water-soluble particles of DEAE-dextran are reported for 

pulmonary drug delivery [Edwards et aI., 2002]. In this study, DEAE-dextran has 

been used as a substrate to form an aggregate/ complex with a 20 kb plasmid to 

develop a non-viral formulation. Due to its wide applications in gene therapy 

[Kaplan et aI., 1998], protein and nucleic acid uptake by the cells [Fox et aI., 1977], 

adjuvant in vaccine production [Joo and Emod, 1988] and stabilisation of proteins 

[Gibson et aI., 1992], DEAE-dextran was used as substrate for development of non­

viral DNA formulations. Plasmid DNA forms a complex with polycationic DEAE­

dextran (DD) due to electrostatic forces. In these experiments, it was attempted to 

preserve the sc structure of plasmid DNA during aerosolisation by forming a 

complex with DD. DDIDNA formulations with varying DD Nitrogen to· DNA· 

Phosphate (N/P) ratios as reported in Chapter 3 were subjected to nebulisation. 
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Figure 8.2: Agarose gel electrophoresis of nebulisation samples of (i) naked 20 kb 

plasmid, (ii) 20 kb plasmid complexed with DOTAPIDOPE and (iii) 20 kb plasmid 

complexed with DOTAP/Cholesterol; damage to the sc structure of naked plasmid 

observed, DM - DNA marker, BN - before nebulisation, NC - Nebuliser chamber 

and AN - after nebulisation. Note: AN samples of complexed plasmid were not 

loaded due to an absence of aerosol generation from the non-viral cationic 

lipidlDNA formulations. 

8.2.3.1 Analysis of pDNA damage 

The DDIDNA formulations with NIP ratios of 0.1,0.2 and 0.4 resulted in complete 

aerosolisation and the percentage damage to the sc structure was analysed using an 

agarose gel electrophoresis. From the densitometric scans of the agarose gel shown 

in Figure 8.3, the sc structure of the plasmid and linear DNA fragments decreased at 

increasing NIP ratios. However, damage to the positively-charged DDIDNA 

complex was observed to be similar as shown in Table 8.2. The decrease in sc 
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structure at higher DD concentrations was perhaps due to the complexation of the 

pDNA sc structure with DD. The decrease in DNA concentration at higher NIP ratios 

was due to protection of the sc structure in the DD/sc complex. Nebulisation of 

, formulated 20 kb plasmid with DD at NIP ratio of 0.45 was attempted, but resulted 

in inefficient aerosolisation. The damage to the sc structure in this case was observed 

to be around 20%. 

Table 8.2: Analysis of DNA damage to pDNA formulations ofDEAE-dextran (n=2) 
. 

DD/pDNA Nebulisation A26o/A28o DNA % damage to 
formulation stage (llg/mL) sc sclDD complex 
NIP = 0.1· Before 1.819 25.18 

After 1.868 22.91 91.08 74.57 
NIP=O.2 Before 1.671 23.99 

. After 1.715 26.03 87.45 75.94 
NIP=O.4 Before 1.528 27.89 

After 1.642 12.58 83.16 74.15 
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, Figure 8.3: Densitometric scans of agarose gel from nebulisation of 20 kb pDNA 

complexed with DEAE-dextran at NIP ratios of: a) 0.1, b) 0.2 and c) 0.4. 
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8.2.3.2 Atomic force microscopy 

Atomic force microscopy of the nano-particulate formulations were carri ed out to 

examine the ex tent of complexat ion of sc DNA with DD and the relati ve size of the 

nano-s ized particles . 

8.2.3.2.1 Visualisation of pDNAlDD formulations 

AFM images of the nanoparticles show a visual re presentation of the effec t of 

different DD concenU'ations on complexati on of sc structure. They prov ided 

additi onal information on the structure of DD/pDNA formu lations. 

Figure 8.4: AFM image of sc structure and DD/sc pDNA complex (N/P rati o 0. 1) 

be fore nebuli sati on. lnset shows DD/sc pD A complex with protruding strands of 

pD A after nebulisation (scale bar for inset - 250 nm, he ight - 5 nl11). 
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Figure 8.4 shows an AFM image o f a pDNA/DD fo rmulati on with a N/P rati o of 0. 1. 

The AFM image shows the presence of a major porti on o f the sc structure in the 

formulati on is uncomplexed with DD. A few nanopanicles of DDlsc pDNA complex 

are also observed. The inset shows a plasm id D A nanoparticie at NIP rat io o f 0.1 

after nebuli sati on in the form of an elli pso id/sphero id complex with a compact centre 

and a " nu ffy" periphery wi th plasmid DNA protrusions due to incomplete 

condensation . This suggested that fo r a DD/pDNA formu lation with NIP ratio of 0. 1, 

the concentration o f DD was limiting to ensure effi cient condensation. The results 

agree with the densitometric scans of the agarose gel shown in Figure 8.3a, which 

suggested that a s ignificant percentage of the sc sh'ucture remained uncomplexed. 

The loose sc structure o f plasmid DNA before nebulisat ion in fi gure 8.4 suggests in­

effici ent condensation of sc structure at NIP ratio of 0.1 and the forma tion of less 

dense nanopa rtici es. 

Plasmid DNA/DD fo rmu lations prepa red with higher DD concentration at NIP ratio 

of 0.2 resulted in condensation with plasmid DNA to form loose nanoparticies as 

seen in Figures 8.5(a) & 8.5(b). The protrusions o f plasmid D A strands fro m the 

complex DD/sc complex suggest incomplete condensation. However, due to the 

higher DD concentrati on at N/P ratio of 0.2 , the DDlsc complex was more 

compacted when compared with that at a NIP ra ti o of 0. 1. Figures 8.S(c) & 8.5(d) 

show compacti on o f the DDl plasmid DNA complex a ft er nebul isati on illlo dense 

nanoparti cles and aggregates. This agrees with parall e l literature [Kleemann et al. . 

2004] which suggests that ultrasonic nebu li sati on results in compact condensation o r 

linea r pEI-pl asmid DNA complexes to form dense parti cles or aggregates. 

As observed in the densitometric scan of Figu re 8.3b, a higher proportion or 

nanopanicies are form ed due to the increase in DD concentrati on when compared to 

that at a NIP ra ti o o r 0. 1. Howeve r. the se structure was still observed to be 

uncomplexed with the poss ibil ity o r a few loose ly complexed DD/sc DNA nano­

panicles as o bse rved in Figure 8.6. In thi fi gure. un windi ng o r D A strands rrom 

the nanopartici e complex was obse rved as a result o f inadequa te con lensation o r DD 

with plasmid DNA at N/P rati o of 0.2 befo re neb ul isati on. Si milar images o r D A 

trands protruding outside uncondensed plasmi ds were observed by Dun lap e t a l. 

11 997]. 
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Figure 8.5: AFM images of DD/p lasmid DNA complex ( /P ratio 0.2) before 

nebulisation (height - 5 nm), (c) & (d) after nebulisation (height - 10 nm); scale bar 

- 250 nm for all the images. 

Figure 8.6: AFM images of unwinding of DNA strand from DD/se pDNA complex 

at /1' ratio of 0.2 before nebuli sation (height - 5 nm); scale bar - 250 nm. 
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At pDNA/DD formulat ions with NIP ratio of 0 .4 the formati on of compact 

nanoparticles before nebulisation was observed as shown in Figures 8.8 (a) & (b). 

Nebll lisati on of these fo rmulated nanopanicles resulted in the formation of more 

compact nanoparticles as shown in Figure 8.9. S imil ar observations have been 

re ported by Kleemann e t al. [2004]. This may be due to the hydrodynamic conditions 

induced on the fluid by the ultrasonic vibrations of the horn, resu lting in the 

formation of aggregatesl dense nanoparticl es. 

Figure 8.7 : AFM images of DDlplasmid DNA co mplex at NI P ratio of 0.4 before 

nebllli sation (a) nanoparticles (scale bm' - 600 nm, height - 5 nm), (b) aggregates 

(sca le bar - 250 nm, height - 10 nm). 

Figure 8.8: AFM images of DD/plasmid DNA complex at NI P ratio of 0.4 aft er 

nebul isation (scale bar - 250 nm, he ight - 20 nm). 
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8.2.3.2.2 S ize of pDNA/DD formulations 

The sizes of non-vira l DD form ulations of 20 kb plasmid were obtained by ana lysis 

of AFM images using the Dimens ion 300 software and are summarised in Table 8.3. 

With increasing DD concentration, the s ize of the single nanoparticie and aggregated 

complex inc reased fo r samples before nebulisation. The s ize of the single 

nanopatticles and aggregated particie complex at NIP rati o of 0. 1 atier nebuli sation 

was higher than before nebul isation possibly due to inefficient condensation. 

However, the size of si ngle nanoparticles in the recovered aerosols after nebuli sation 

was small er fo r formulations with NIP ratios of 0.2 and 0.4 when compared to the 

size before nebulisati on. This may due to better compaction of the DD/plasmid DNA 

complexes upon nebuli sation, as reported in a study of ultrasonic nebuli sati on of 

pDNA form ulations [Kleemann et aI. , 2004]. 

Table 8.3: Size of 001 plasmid DNA nanoparticles determined by AFM 

Plasmidl DD Neb ulisation Single particl e gg.·egated particle 
formu lation tage complex (nm) * co mplex (nm)* 

NIP ratio = 0.1 Before 39.06 ± 3.90 104.27 ± 18.34 

After 11 5.27 ± 17.62 274.87 ± 11 4 .7 1 

NIP ratio = 0.2 Before 103.56± 13.72 16 1.27 ± 36.27 

After 82.03 ± 11.72 16 1.69 ± 28.88 

NIP ratio = 0.4 Before 123.90±30. IS 199.95 ± 88.62 

After 94.50 ± 27. 12 343.85 ± 109.47 

* Partic le size data are mean with SD from n- 3 to 7 measurements fo}" each sample. 

8.2.4 Nc bulisation of pD NA formulations w ith PEI 

Polyethy leneimine (PEI) has been shown to be an effective agent for DNA deli very 

both in vi/l'o and in vivo [Kichler 2004]. Complex formatio n between ca ti onic PEI 

and anioni c plasmid DNA occurs by counter-condensat ion of opposite ly charged 

polymers. PEI-based pD A formulations have proven stable during nebu li satio n and 

resulted in effic ien t transfection through the airways [Densmore, 2003]. However, 
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the size of the plasmid DNA used for PEI formul ati on and nebulisation to date have 

been less than 5 kb [Kleemalln et a I. , 2004). It is envisaged that the size of the 

plasmids used for future gene therapy tria ls may be larger in order to harbour 

therapeutic genes of size >5 kb and even up to 50 kb [Levy et a I. , 2000]. 

As discussed in the fo llowing section, a 20 kb plasmid has been form ul ated with 

branched P EI (molecular weight 25 kDa) at an NIP rati o of 10. Nebulisation o f 

PEIIpDN A formulat ions in the mesh nebuli ser resulted in complete nebu li sation. [n 

order to qua ntify the damage to plasmid DNA in PEl/pDNA formulat ion, a 

PicoGreen assay was carried out. AFM imaging enabled visuali sation of the 

formu lated nanopartic les and detennination of the molecu lar size and structure . 

Agarose gel electrophoresis was not performed since it required decomplexation of 

the PE] from the pDNA and would result in the di ssociati on of the formulated 

nanoparticle. 

8.2.4.1 A nalys is of pD NA damage 

The PicoGreen assay enables quantification of dsD A by binding with the fluorescent 

PicoGreen dye with sensitivity up to picogram DNA concentrations. Figure 8.9 shows 

the relative nuorescence in a PicoGreen assay of a 20kb plasmid formu lated in T E 

buffer and a PEl/plasmid complex formulated in PBS. There is a significant increase 

in nuorescence from the plasmid formulated in TE buffer after nebu lisati on due to the 

increased binding o r PicoGreen dye to the dsDNA fragments gene rated lI'om the 

degradati on o r the sc structure (as observed in Figure 8. 1). The red uction 111 

tluorescence o f PEI complexed 20 kb plasmid before nebu li sat io n compared to 

un formulated 20 kb is due to the condensati on o f the sc structure or the plasmid with 

PE!. resulting in binding of PicoG reen dye to fewer ex posed dsDNA li'agment s. The 

PEI plasmid complex shows no increase in fluorescence after nebu li sation. suggesting 

that the DNA sc structure was not degraded during the aeroso li sa ti on process. The 

reducti on in the rel at ive nuorescence o f the PE I formulati on after de live ry is likely to 

be due to compacti on of the formulated PEI particles during aeroso li sati on, result ing in 

less ex posure o r the DNA to the fluorescent dye. 
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Figure 8.9: Formulation studies of 20kb plasmid DNA: PicoGreen assay results 

showing relative fluorescence lmit (RFU) of plasmid formul ated in TE buffe r and 

PEII20 kb plasmid DNA before (BN) and after nebu lisation (AN) (n=3). 

8.2.4.2 Atomic fO"ce microscopy 

AFM imaging or the 20 kb plasmid formul ated with PEI was perrormed to determine 

the size and structure of formulated plasmid before and af"ier nebu li sat ion. Figure 8.10 

shows AFM image of the nanoparticles of PEI/p lasmid complex formulated in PBS 

indicating a redu ed size of --400 nm before nebulisation. The size of PEI/plasmid 

formulated nanoparticles was higher than DDlplasmid formulated nanoparticles. 

perhaps due to a hi gher NIP ratio. The appearance of protruding plasmid DNA strands 

rrom the complex indicated a less compact PEI/plasmid nanoparti cle. The release of 

D A strands rrom the uncompacted PEl/plasmid complex may be due to sample 

preparation for AFM imaging. This confi rmed the presence o r the sc structure or the 

plasmid in the rormulated nanoparti cie. However. no unwinding or the DNA from the 

nanoparticles was observed a f"ier nebulisation suggesting fo rmati on of dense, compact 

nanopanicies during the aerosoli sation process (Figure 8. 10). 
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Figure 8. 10: Formulation studies of 20kb plas mid DNA: Structural analysis by AFM 

imaging in air o f PElI20 kb plas mid formulated in PBS after washing the sam ples 

wi th de-ioni sed water; a) before nebuli sation ; scan size of 4.35 x 4 .35 I-Im, scale bar 

- 500 nm ; b) after nebuli sation, scan size of 0.8 x 0.8 I-Im, sca le bar - 200 nm ; height 

5 nm fo r both images . 
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8.3 . Discussion 

The safe delivery of -15% of the sc structure of20 kb plasmid using DEAE-dextran 

promises to deliver the therapeutic effect required in important diseases such as 

cystic fibrosis. DD being a linear polymer exhibits a loose condensation with 

. plasmid DNA, similar to a scheme predicted for linear PEI [Kleemann eta!., 2004]. 

AFM imaging of the formulated 20 kb plasmid showed the formation of compact 

nanoparticles after nebulisation, resulting in no DNA damage based on fluorescence. 

The formatiori of dense aggregates of 100 nm has been observed for a 4.3 kb plasmid 

complexed with PEI after ultrasonic nebulisation [K1eemann· et aI .. , 2004]. The 

formation of nanoparticles of size 400 .nm for the PEI-complexes 20 kb plasmid 

suggests a similar size ratio. With an increase in plasmid size, the hydrodynamic 

forces on the plasmid are larger resulting in damage to the sc structure. Hence the 

molecular dimensions of the sc structure of large plasmids must be reduced by 

adequate formulation to ensure undamaged passage of the particles through the mesh . 

nozzle holes during aerosol delivery using a mesh nebuliser of this configuration. 

8.4 Conclusions 

Formulation is a prerequisite for safe delivery of sc structure of large-sized plasmids. 

The main objective of formulation is to reduce the size of the sc structure to that of a 

5.7 kb plasmid (about 400 nm) to ensure protection against the hydrodynamic forces 

prevalent during aerosolisation. Formulation of 20 kb plasmid in ionic strength 

buffer did not result in efficient condensation of sc structure. Formulation with a 

cationic gene delivery agent and adjuvant such as DEAE-dextran resulted in 

protection of sc structure by about 15%. However, formulation of 20 kb plasmid 

with more cationic PEI resulted in total protection of the sc structure as evident from 

the PicoGreen fluorescence assay. Although research on formulation is widely 

reported, testing the efficacy of the bio-therapeutic following deliveryvia a device is 

. an important step towards achieving the fruits of gene therapy. In the next chapter, 

transfection studies on Chinese Hamster Ovary cells using aerosolised plasmid DNA 

are presented that check the transfection efficiency and· hence integrity of the 

aerosolised sc structure. 
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. HAMSTER OVARY CELLS USING PLASMID DNA 

9.1 Introduction· 

Earlier results have shown the supercoiled structure of a 5.7 kb plasmid to be intact 

after nebulisation using the U22 mesh nebuliser using analytical tools such as a UV 

spectrophotometer (for absorbance measurements), a microplate reader (for 

fluorescence measurements based on PicoGreen assay), agarose gel electrophoresis 

and an atomic force microscope. However, it is crucial to validate the performance 

of nebulised plasmid DNA for gene delivery into cells. The main objective of the 

work reported in this chapter was to check the integrity of the sc structure of the 5.7 

kb plasmid bearing a Green Fluorescent Protein (GFP) marker gene after 

nebulisation, by carrying out in vitro transfection studies to quantify GFP gene 

expression into the cells. 

An ideal cell line for studying the transfection of aerosolised plasmid DNA would 

have been a human epithelial cell line [Forbes and Ehrhardt, 2005]. However, due to 

the constraints in the handling of such a cell. line, a common mammalian cell line, 

suspension-adapted Chinese Hamster Ovary (CHO-S) cells, was used for 

transfection studies as reported in .this chapter. Since the suspension culture 

environment resulted in inefficient transient transfection of the naked plasmid [Tait, 

2006], it was necessary to formulate the plasmid prior to transfection in order to 

achieve integration of the GFP gene in the cells.Hence the plasmid to be tested for 

transfection was formulated with a cationic formulation substrate, in order to protect 

the plasmid DNA and achieve DNA integration into the cells .. 

The structure of this chapter starts with a presentation of the reasons for the choice of 

the formulation substrate and concentration levels used for transfection. The twin 

strategy adopted for transient transfection of CHO-S. cells with formulated 5.7 kb . 

plasmid DNA includes: 



r---------------------------------------
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(i) Fonnulation of the 5.7 kb plasmid, with a cationic substrate -7 

nebulisation -7 transfection -7 GFP gene expression and 

(ii) Nebulisation' of the 5.7kb plasmid in a biological buffer -7 fonnulation 

with a cationic substrate -7 transfection -7 GFP gene expression. , ' 

, The order of the fonnulation and nebulisation operations was primarily carried out to 

(i) quantify the expression ofthe GFP gene from the 5.7 kb plasmid into the CHO-S 

cells and (ii) examine the influence of fonnulation on transient gene expression. The , 

GFP gene expression in the CHO-S cells was quantified using a fluorometer and ' 

flow cytometer. Cell density and viability measurements were carried out to study 

the influence offonnulation and transfection on the CHO-S cells. 

9.2 Choice offormulation substrate and concentration 

Polyethylenimine (PEI) has been widely employed as a cationic substrate to complex 

plasmid DNA for aerosol gene delivery [Gautam et aI., 2001, Densmore et aI., 2000]. 

Branched PEI (25 kDa) has been reported to have higher reporter gene expression 

compared to linear PEI for gene delivery to the lungs [Rudolphet aI., 2005]. The 

final DNA concentration of PEI/pDNA fonnulation used for in vitro serum-free 

transfection was 1 llg/mL [Tait, 2006], and in vivo transfection using aerosol ' 

delivery was 50 Ilg/mL [Densmore et aI., 2000]. Hence, a pDNA concentration of I 

llg/mL was employed for in vitro transfection studies. A PEIIDNA ratio of 10: I was 

the commonly used composition for preparation of pDNA fonnulations for aerosol 

gene delivery [Gautam et aI., 2001]. 

9.3, Transfection of CHO-S cells 

Transient transfection of suspension-adapted Chinese hamster ovary cells with 

uncomplexed plasmid DNA has been reported to result in insignificant transfection 

[Tait et aI., 2004). Hence, transfection studies were carried out using the 5.7 kb 

plasmid DNA fonnulated with PEI according to a protocol described by Tait [2006]. 
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The formulation of 20 kb plasmid with PEI resulted in protection of the sc structure 

as reported in Chapter 8. 

In this chapter, transfection of CHO-S cells was carried out using two formulations· 

of sc 5.7 kb plasmid, namely: (i) PEI complexed with J 5.7 ~b plasmid and 

subsequently. nebulised, and (ii) 5.7 kb plasmid nebulised and subsequently 

complexed with PEI. The 5.7 kb plasmid used for formulation adhered to the quality 

specifications for non-viral gene therapy in terms of purity and sc plasmid DNA 

homogeneity. The CHO-S cells were maintained up to passage, 24 as per the protocol 

described in Chapter 3. The CHO-S cells used for transfection were taken from the. 

mid-exponential phase of growth and resuspended in CHO-S SFM (Serum free 

medium) to achieve an initial viable cell density of about 2.1xlOs cells mL-1
• The 

pDNA concentration used for transfection in the ultra low binding 24 well plate was 

1 llg/mL and each condition was carried out in triplicate. The cell density and GFP 

expression in the CHO-S cells transfected with samples of the complexed plasmid 

taken before and after nebulisation were quantified after an incubation time of 24 to 

48 hours. The results are discussed. below. 

9.3.1 PEI complexed 5.7 kb plasmid 

The 5.7 kb plasmid was complexed with 25 kDa branched PEIat a PEI Nitrogen to 

DNA Phosphate (NIP) ratio .of 10 to 1 (corresponding to PEI:DNA weight ratio of 

1.3: I) and incubated for 15 min prior to nebulisation. Nebulisation· of formulated and 

unformulated 5.7 kb plasmid was carried out using the U22 mesh nebuliser. The 

aerosols of plasmid DNA from nebulisation were condensed and collected using an 

in-house fabricated aerosol collection apparatus described in Chapter 3. The 

transfection of CHO-S cells was carried out using the "before nebulisation" and 

,"after nebulisation" samples of the formulated plasmid. The viable cell density of 

CHO-S cells and fluorescence measurements for GFP expression in untransfected 

and transfected cells are compared. 
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9.3.1.1 'Cell density measurements. 

As shown in Figure 9.1, the viable cell density of untransfected CHO-S cells was 

observed to be higher than the fonnulated plasmid samples after an incubation time 

of 48 hours. However, viable cell density of cells transfected with un-nebulised . 

fonnulated plasmid was observed to be lower than that after nebulisation. The 

compaction of PEI in the fonnulated 5.7 kb plasmid after nebulisation is likely to . , 
have 'occurred due to the oscillatory motion of the vibrator horn prior to aerosol 

fonnation during the nebulisation process. A higher viable cell density was observed 
, 

for cells transfected with pDNA after nebulisation at the end oftransfection. 
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Figure 9.1: Viable cell density of Chinese hamster ovary cells transfected with 

before and after nebulisation samples of PEI fonnulated 5.7 kb plasmid. Control 

refers to untransfected CHO-S cells (n=2). 

9.3.1.2 Fluorescence measurements 

Figure 9.2 shows the cell.specific RFU for transfected CHO cells before and after 

nebulisation of 5.7 kb plasmid fonnulated with PEI. From Figure 9.2, GFP 

quantification in terms of cell specific RFU showed a significant (p = 0.001) increase 

in transfection for the PEI fonnulated plasmid before nebulisation. However, there 

was a less significant increase (p = 0.047) in fluorescence in the cells transfected 
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with formulated plasmid after" nebulisation than the untransfected cells. The 

fluorescence of the tintransfected cells is due to auto-fluorescence exhibited by the 

cells. The variation in the cell-specific RFU of PEIIpDNA complex: before 

nebulisation was perhaps due to the variation in the formation of less compacted 

nanoparticies. The cell-specific fluorescence in the" cells transfected with formulated 

plasmid before nebulisation samples was higher than the formulated plasmid after 
" '" nebulisation due to perhaps two reasons, namely: (i) release of PEIIpDNA complex 

from uncompacted PEI formulated plasmid and (ii) increased burden on the cells for 

transient gene expression. The PEIIpDNA complex after nebulisation resulted in the 

formation of compact nanoparticies (as reported in section 8.3). A higher viable cell 

density of the cells transfected with pDNA after nebulisation (Figure 9.1) was due to 

lower transient gene expression of the compact PEIIpDNA complex. The low cell­

specific RFU after nebulisation was due to the inability ofthe"pDNA to transfect the 

cells, resulting in less integration of the plasmid DNA and consequently lower GFP 

expression (Figure 9.2). 
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Figure 9.2: Cell specific relative fluorescence units for untransfected and transfected 

CHO-S cells based on fluorescence measurements using a microplate reader at 

excitation wavelength of 483nm and emission wavelength of 530nm for GFP 

quantification after 24 and 48 hours of incubation (n=3). 
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The transfection of CHO-S cells with formulated plasmid subjected to nebulisation . 

clearly showed that there was an in:verse relationship between viable . cell density and 

fluorescence due to GFP expression' by the transfected cells. The formulated PEI 
, 

plasmid upon nebulisation was perhaps compacted during the nebulisation process 

resulting in no transfection of the pDNA into, CHO cells. Since the RFU of the 

transfected samples were low, the transfection efficiency was' determined using a 

flow cytometer. 

9.3.2 Nebulised 5.7 kb plasmid complexed with PEI 

Transfection studies with PEI formulated plasmid before nebulisation showed a 

· significant increase in transfection compared to that formulated after nebulisation. 

The main objective of the transfection studies was to investigate the effect of 

plasmid DNA nebulisation on DNA delivery into the cells. Hence, it was essential to 

first nebulise the 5.7 kb plasmid DNA, and then formulate the un-nebulised and 

nebulised samples with PEI, prior to transfection. Using this approach, the 

compaction of PEIIpDNA . complex during the nebulisation process can also be 

avoided. Although, this approach is not practically relevant to studying the aerosol 

delivery of plasmid DNA in pre-clinical trials, it was carried out mainly to check the 

integrity of the sc structUre of plasmid after nebulisation by determination of the 

transfection efficiency in the transfected CHO cells. 

9.3.2.1 Plasmid in TE buffer 

In order to investigate the influence of formulation on GFP expression in CHO-S 

· cells, the' 5.7 kb plasmid in TE. buffer (at 20 llg/mL DNA concentration) was 

nebulised and then formulated with PEI for' transient transfection studies. An 

umlebulised plasmid sample was also formulated with PEI to study the effect of 

· nebulisation on the transfection of the 5.7 kb plasmid. 
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9.3.2.1.1 Cell density measurements 

The viability of untransfected and transfected CHO-S cells after an incubation time 

of 48 hours for all the plasmid DNA samples was observed to be -95%. As shown in 

, Figure 9.3, there was no significant difference (p = 0.17) between the cell densities 
I 

determined in terms of viable and total cell count for the unnebulised and nebulised 

pDNA complexed with PE!. 
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Figure 9.3: Cell density of CHO-S cells transfected with unebulised and nebulised 

samples of 5.7 kb plasmid complexed with PEI after an incubation time of 48 hours . 

. Control refers to untransfected CHO-S cells (n=3). 

In chapter 4, it has been shown that the 5.7 kb plasmid on nebulisation resulted in 

generation oflinear dsDNA fragments from the degradation of the open-circular (oc) 

structure. A large variability for the cell density of the nebulised sample may be due 

to the cytotoxic effect from the complexation of linear dsDNA fragments with PE!. 

A cell viability of 95% for both the transfected samples suggested that there was no 

influence of formulation and nebulisation on them. However, there was a significant 

,difference (p ;, 0.007) in the cell densities between the untransfected cells and cell 

transfected with unnebulised plasmid DNA formulations. ' 
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9.3.2.1.2 Flow cytometry analysis 

A flow cytometric analysis was carried out to determine the transfection efficiency 

of the CHO-S cells and the protocol is described in detail in Chapter 3. The 

transfection efficiency is defined as the percentage of eGFP positive cells in a 

. transfected cell population. 

In Figure 9.4, GFP intensity in CHO-S cells for un-nebulised and nebulised 5.7 kb 
, 

pDNA samples complexed with PEI is shown. The percentage values indicate the 

percent of cells expressing GFP as determined by the ADC software (as discussed in 
. . 

3.2.9.6). The GFP intensity in the untransfected cells (Fig. 9.4a) was used to 

determine background fluorescence, and therefore the transfection efficiency of other 

samples. Although the transfection efficiency in the CHO-S cells transfected With 

un-nebulised (Fig. 9.4b) and nebuJised (Fig. 9.4c) 5.7 kb plasmid at 20 Jlg/mL DNA 

concentration was the same, more expressing cells (GFP intensity up to 100) were 

observed for un-nebulised plasmid. The insignificant difference in cell densities and 

transfection efficiencies between un-nebulised and nebulised 5.7 kb plasmid 

suggested no effect on pDNA delivery in the transfected CHO-S cells due to the 

nebulisation process .. 

In order to examine the influence of plasmid DNA concentration on transfection of 

CHO-S cells, the 5.7 kb plasmid at 30 Jlg/mL DNA concentration was nebulised and 

formulated with PEI, prior to transfection. As observed in Fig. 9.4d, a corresponding 

increase in transfection efficiency proportional to the plasmid DNA concentration 

was obtained. This result showed that the low transfection efficiency achieved using 

a DNA concentration of 20 f!g/mL can be increased by increasing the plasmid DNA 

concentration used for nebulisation. 

Earlier results in Chapter 4 showed nebulisation of 5.7 kb plasmid DNA in TE buffer 

resulted in a slight damage (about 5%) to the sc structure. The sc structure of the 5.7 . 

kb plasmid in an ionic buffer such as phosphate buffered saline (PBS), HEPES 

buffered sal ine (HBS) resulted in better protection to the sc structure upon' 

nebulisation. The next section investigates the impact of formulation and 

nebulisation of 5.7 kb plasmid in ionic buffer on transfection. 
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Figure 9.4: Effect of nebuli sation and DNA concentration on transien t transfecti on: 

GFP intensity measured using a Flow cytometer for a) untransfected C HO-S cells, b) 

unnebulised a nd c) nebulised pDNA at 20 J.lg/mL DNA concentration, d) nebuli sed 

pDNA at 30 ~l glmL DNA concentration in TE complexed with PE I, after incubation 

time of 48 hours; % val ues indicate the transfectio n efficiency in terms o f the percent 

of eGFP positive cell s in a transfected ce ll popul at ion. 
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9.3.2.2 Plas mid ill H SS buffe r 

Thi s ex periment was conducted to investi gate the influence oran ionic buffer such as 

I-I EPES buffered sa line (HBS) on trans fecti on of 5.7 kb plasmid DNA. HBS has 

been used as a common bio logical buffer for the preparati on of biological samples. 

Unnebulised and nebuli sed 5.7 kb plasmid in I-IBS (20 >I g/mL DNA concentrat ion) 

was complexed wi th PEI and transfected in CI-lO-S cell s to study the effect of 

plasmid DNA condensed in ionic buffer on DNA deli very into the cell s. 

9.3.2.2.1 Flow cytometry a na lys is 

Flow cytomet~y analysis was carried out on the nebuli sed and unnebulised 

transfected CI-10-S ce lls to determine the transfection effi ciency from the OFP 

ex pression in the ce ll s. As shown in Figure 9.5a, the untrans fected ce ll s ex hibited 

background fluorescence due to auto-fluorescence of the cel ls and not OFI' 

expressIOn. The trans fection effi c iency of the cell s transfected with unnebu li sed 

plasmid D A was highe r with a signifi cant diFference (p = 0.02) compared to the 

cell s trans fected with neb uli sed plasmid DNA. T he dec rease in transfection 

effi ciency of the nebuli sed sample (Table 9 .1 ) was possibly due to compact ion o f 

condensed sc structure of the 5.7 kb plasmid in ion ic bu ffe r du ring nebu lisati on. 

I lowever, the e ffect of thi s compacti on may be lower than that observed with the PEI 

formu lated 5.7 kb plasmid . discussed in secti on 9.2. 1.2. 

Ta ble 9. 1: Average cell densi ty and trans fection e ffi ciency (n=3) fo r 5.7 kb plasmid . 

Sa mple Avcrage ce ll density T ra nsfcc tion effi cicncy 

(x 106 ce lls p CI' m L) (%) mea n ± SO 

Contro l (U ntrans fec[ecl ) 2.80 

Unnebu lised 5.7 kb in I-IBS 2.30 17. 18 ± O.57 

Ne bulised 5.7 kb in I-IBS 1.74 12.96 ± 2. 11 

pD NA deli very e fll ciency o f nebuli secl over unne bu lised pDNA - 75.43% 

2 10 



----------------------............ ...... 

(J) -c 
~ 

W 

(J) -c 
Q) 

> 
W 

Cl 

N 
on 

(J) -c 
Q) 

> 
W 

V 
1 

1 

1 

Chapter 9: Trall.\jection oJ CHO cells usillg pDNA 

(a) 

0.38% 

10 100 1000 1 
GFP Intensity 

(b) 

17.12% 

10 100 1000 1 
GFP Intensity 

(C) 

12.24% 

10 100 1000 1 

GFP Intensity 

Figure 9.5: Effect of nebulisation and formulation on transient transfection: GFP 

intens ity measured using a Flow cytometer for a) unlransfected CHO-S cells, b) 

unnebu li sed and c) nebulised pDNA at 20 J.lglmL concentration, in HBS complexed 

with PEI , after incubation time of 48 hours; % va lues indicate the percent of eGFP 

positi ve cell s in a transfected cell popu lati on (n=3). 
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The plasmid DNA del ivery efficiency (Table 9. 1) using a U22 mesh nebuli ser was 

determined from a ratio of the transfecti on efficiency of the cell s trans fected with 

nebul ised over unnebuli sed plasmid DNA. A pDNA delivery effic iency of - 75% 

was observed us ing plasmid DNA Formulated in ionic buffer. The resul ts show that 

plasmid DNA after nebulisation can be trans fected in suspension-adapted C HO cell s 

and high pDNA deli very efficiencies can be obtai ned depend ing on the buffer used 

for plasmid D A formulation. 

9.3.2.2.2 Microscopy 

The transfected and untransfected cell s were visua l ised in a microscope uSlllg 

iluorescent light. As shown in Figure 9.6, strong fluorescence was observed in the 

trans fected ce ll s due to the incorporati on of plasmid DNA contain ing the GFP 

marker gene. ince the pDNA concentration used for transfecti on was I ~lglmL . the 

number of cell s showing fluorescence was low. However, earlie r studies in section 

9.2.2. 1.2 showed that the transFecti on efficiency and hence fluorescence of the 

transfected ce ll s was dependent on the plasmid DNA concentratio n used for 

transfecti on. 

9.4 Discuss ion 

Direct ill \'iro gene transfer with naked DNA was Cirst demonstrated when erCic ient 

trans lcc tion of myofibers was observed following injection of pDNA into skeletal 

musc le rWolIT et a l. . 1990]. Deli very o r nakcd DNA to cell s elicits minimal immune 

response when compared to D /\ encapsulated in lip ids or cati oni c po lymers. T hc 

lack o r immunogeni city of naked DNA makes it a good prospect for gene therapy. 

Ilowever. the susceptibility or naked DNA to degradation from nucleases and the 

need /0 1' DNA to have target specilicity has resulted in the deve lopment o r phy ical 

methods a imed at ta rgeting DNA to ti ssues. The phys ica l delivery methods lo r naked 

DNA reported in literat ure are (i) hi gh pressure de livery, (i i) electroporati on. (iii ) 
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laser beam gene transducti on, (iv) ultrasound , (v i) photochemical internali sati on 

[Conwell and Huang, 200S] and (v) magnetofectio n [Dobson, 2006]. Sys temic 

delivery o f naked plasmid DNA for gene transfer into the li ver holds promise for the 

treatment of metabolic di seases [Liu and Tyagi, 200S]. 

Figure 9.6: Microscopic image of a) untransfected and b) transfected C HO-S cell s. 

2 13 



Chapter 9: Transjection ojCHO cells usingpDNA 

After the cloning of the cystic fibrosis gene, inhalation gene therapy was predicted to 

be an ideal non-invasive mode of gene delivery to the airway epithelial and other 
, 

lung surfaces [Densmore, 2003]. However, the delivery of the CFTR (Cystic fibrosis 

transmembrane-conductance regulator) gene into the airways using existing 

respiratory devices such as jet nebulisers was limited due to the damage to DNA 

during the aerosolisation process and the difficulty in getting through the mucous. 

Nebulisation has a long history in the delivery of non gene-based drugs -'to the 

airways. In view of the damage to plasmid DNA during nebulisation, intensive 

research was pursued to protect plasmid DNA by fonnulation using cationic 

substrates such as PE! [Rudolph et aI., 2005]. However, newer technologies 

employing nebulisation by single pass through a porous membrane offer promise as 

an ideal delivery system [Davies and Alton, 2005], without the need for fonnulation 

of naked plasmid DNA prior to delivery . 

. Inthe earlier chapters, safe aerosol delivery of sc structure of a naked 5.7 kb plasmid 

DNA has been experimentally and analytically detennined. However, it is crucial to 

. validate the perfonnance of the aerosolised plasmid to confinn the integrity of the sc 

structure for its intended application in non-viral gene therapy. Transfection of 

adherent cells in culture has been reported to be straightforward because the 

complexes can reach the cell easily, cells are metabolically active and in a mitotic 

state [Demeneix and Behr, 2005]. In this chapter, transient transfection of plasmid. 

DNA was carried out using suspension-adapted CHO cells. These cells have 

potential applications for the production of recombinant therapeutic proteins [Tait, 

2006]. 

Transfection of PEI formulated 5.7 kb plasmid after nebulisation was observed to 

result in higher cell viability (Figure 9.1) and lower GFP fluorescence (Figure 9.2) 

than the before nebulisation sample. This was possibly due the cytotoxic effect of 

PEI from the less compact fonnulated plasmid DNA in the before nebulisation 

sample. Nebulisation in the mesh nebuliser resulted in the fonnation of condensed 

nanoparticles and it is possible that PEI/pDNA complexes after nebulisation may 

have been compacted. Earlier results reported in chapter 8 (section 8.3) supports this 

hypothesis. This probably resulted in limited dissociation of the PEIIpDNA complex 

leading to lower transfection. 
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Nebulisation of 5.7 kb plasmid in buffers with ionic strength has resulted in 

protection to the sc structure of the plasmid after nebulisation. In order to study the 

influence of plasmid DNA formulated in ionic buffer on transfection, nebulisation of . 

plasmid DNA in buffer with and without ionic strength was carried out in addition to 

PEI formulation prior to transfection. As observed in figures 9.3 and 9.4, 

insignificant differences in cell densities and transfectionefficiency in CHO-Scells 

transfected with un-nebulised and nebulised plasmid in TE buffer were obtained. 

However, a significant difference in transfection efficiency was observed for the 

plasmid formulated in ionic buffer. Nebulisation of plasmid formulated in ionic 

. buffer resulted in a lower transfection efficiency than the un-nebulised plasmid. The 

formulation of plasmid with PEI in ionic buffer resulted perhaps in the formation of 

large cationic PEIIpDNA complexes formed by aggregation when Van der Waals 

attraction becomes stronger than Coulombic repulsion, since the latter is weakened 

by shielding with salt [Demeneix and Behr, 2005]. However, a plasmid DNA 

delivery efficiency of over 75% after nebulisation compared to before nebulisation, 

confirmed the earlier results on retention of the sc structure of the 5.7 kb plasmid 

upon aerosolisation. 

The safe aerosol delivery of the sc structure of 5.7 kb plasmid DNA using a U22 

mesh nebuliser has been validated for the non-viral aerosol gene delivery by the 

successful in vitro transfection studies in suspension-adapted Chinese hamster ovary 

cells. Hence, aerosol delivery of plasmid DNA using a mesh nebuliser promises to 

be useful respiratory drug delivery device for non-viral aerosol gene delivery. 

9.5 Conclusions 

Nebulisation of 5.7 kb plasmid subsequently complexed with PEI resulted in higher 

OFP expression compared to the plasmid formulated with PEI prior to nebulisation. 

The low fluorescence of the formulated 5.7 kb plasmid after nebulisation could be 

possibly due to efficient complexation of the. PEI with the sc structure resulting in 

low OFP expression in the cells. However, the sc structure was not damaged after 

nebulisation and when complexed with PEI just before transfection· resulted in 
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. release of plasmid DNA from the PEI complex into CHO cells leading to higher . 

GFP expression than that with the formulated plasmid. The results demonstrate that 

the nebulisation process . does not affect the expression from pDNA during 

transfection by retention of the supercoiled structure, which confirms the results 

presented in previous chapters. However, the data presented on the transfection of 

. CHO-S cells with PEIIpDNA c.omplex after nebulisation does show that nebulisation· 

can affect expression by altering the nature of the PEI-pDNA complex in some way. 

This could be due to compaction of the PEIIpDNA complex during the nebulisation 

process. Nebulised ·plasmid DNA formulated in buffers with and without ionic 

strength resulted in appreciable transfection of the CHO cells. 

This research has led to (i) proof-of-principle of safe aerosol delivery of sc plasmid 

DNA using· a mesh nebuliser and (ii) transfection of aerosolised plasmid DNA, 

which offers immense potential for the application of mesh nebulisation technology 

for the aerosol delivery of shear-sensitive therapeutics such as plasmid DNA, 

siRNA, etc into the airways for the treatment of respiratory diseases such as cystic 

fibrosis, influenza and lung cancer. 
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CHAPTER 10. CONCLUSIONS 

10.1 Introduction 

Aerosol delivery of plasmid DNA has potential for applications in the treatment of 

acute respiratory diseases such as cystic fibrosis, lung cancer, influenza and SARs. 

This thesis has indicated the growing importance of plasmid DNA as a future gene 

therapeutic vector as shown by activity in gene therapy clinical trials. With the recent 

approval of insulin delivery through· the respiratory route, pulmonary delivery 

promises to be an attractive non-invasive route for the treatment of chronic tespiratory 

and systemic di~eases. With the recent success in large-scale production of sc plasmid 

DNA, delivery remains a key outstanding issue. 

The main results in the thesis that enable such delivery are summarised below: 

• Nebulisation of plasmid DNA of sizes from 5.7 to 20 kb using a state-of-the-art 

mesh nebuliser for safe aerosol delivery of the supercoiled (sc) structure 

• The development of method for the analysis of damage to the plasmid DNA sc 

structure using gel electrophoresis, the PicoGreen assay and AFM 

• Engineering analysis to estimate. the maximum hydrodynamic force and limiting 

size for safe delivery of the sc structure using the mesh nebuliser ' 

• DOE studies to enable prediction of the damage due to different nozzle sizes and 

frequencies 

• Formulation of plasmid DNA for safe aerosol delivery of the sc structure using 

ionic buffers, DEAE-dextran and PEI 

• In vitro transfection studies in CHO-S cells to determine the transfection 

efficiency and validate tlie safe aerosolisation ofthe sc structure. 
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10.2 Conclusions 

Purification and delivery of plasmid DNA in its supercoiled (sc) form is crucial for its 

application in non-viral gene therapy clinical trials andsubsequentiy in therapies. 

Damage to the sc structure has been reported in bioprocessing operations involved in 

. the purification of plasmid DNA on a large~scale. In this investigat~n, typical 

plasmids of size from' 5.7 to 20 kb were purified in the supercoiled form and 

formulations of plasmid DNA aerosolised using a commercially available and· 

clinically approved mesh nebuliser. In order to facilitate quick adoption of a potential 

plasmid DNA based genetic drug, the Omron U22 mesh nebuliser was selected for the· 

studies rather than unproven and unapproved device that would require both drug and 

device approval. While nebulisation of the naked 5.7kb plasmid formulated in ionic 

buffer resulted in safe aerosol delivery of the sc structure, damage to the open-circular 

. (oc) structure of the 5.7 kb plasmid andsc structure of8.7, 13 and 20 kb plasmids was 

detected using gel electrophoresis, atomic force microscopy and the PicoGreen assay. 

Safe delivery of the sc structure of the 5.7 kb plasmid using the U22 mesh nebuliser 

suggested that damage is dependent on the size of the molecular sc structure and mesh 

nozzle, and device frequency. 

A Box-Behnken design of experiments using nozzle size, DNA and NaCI 

concentrations as variables was used to create a three-dimensional response sUrface· 

methodology (RSM) model to predict the damage to the sc structure of the 20 kb 

plasmid in the U22 mesh nebuliser. The lIlodel enables better understanding of the 

damage to tlie sc structure upon neb~lisation at intermediate levels of the variables. 

Lower damage to the sc structure of 20 kb plasmid was predicted at nozzle sizes> 3 

Ilm. However, the requirement to use a nozzle size ~ 3 Ilm to provide inhalable 

aerosols for respiratory delivery suggests that a 20 kb plasmid needs to be further 

condensed by f?rmulation in order to circumvent damage. From the model predictions 

and analysis, it is concluded that the physical size of 20 kb plasmid remains the main 

bottleneck for aerosol delivery of the sc structure. 

Engineering analysis of the aerosolisation of liquid from the nebuliser provided an 

insight into the process with the help of high-speed imaging. High-speed imaging of 

aerosolisation from the vibrator horn with and without a mesh provided data on the 

velocity and pressure amplitudes due to the ultrasonic motion of the vibrator horn. 
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Partial damage to the sc structure without the mesh, suggested the influence of 

cavitation due to the oscillatory motion of the horn. Aerosolisation without mesh 

, resulted in the generation of non-uniform large droplets due to the effect of vibrations 

of the horn on the fluid. For a mesh nebuliser, the out-of-phase vibrations of the horn 

and mesh result in a single-pass droplet generation through the mesh nozzle. Damage 

to sc of the 20 kb plasmid and safe delivery of 5.7 kb plasmid is explained by 

estimations of the maximum hydrodynamic force computed from the strain rates 

predicted using CFD modelling and sizing of the sc structure using AFM imaging. 

Such a determination of hydrodynamic force levels for damage to DNA in micro­

scale flow environments has not yet been reported in the literature and allows the 

degradation of such shear-sensitive therapeutics in drug-delivery device combinations 

to be explored. In addition to hydrodynamic force levels, a semi-log plot of plasmid 

DNA degradation against molecular size enabled a linear extrapolation of the limiting 

size for safe passage of the sc structure on aerosolisation in the mesh nebuliser. It was 

estimated that the sc structure of an unformulated plasmid of size less than 6.7 kb and 

3.8 kb could be safely delivered using the V22 and V03 mesh neoulisers respectively. 

The influence of hydrodynamic force on damage to the sc structure was observed to 

be a significant parameter affecting delivery. A reduction in the size of the sc structure 

'ensures lower levels of hydrodynamic force and consequently safe aerosol delivery. 

This method of estimating plasmid DNA size for safe delivery in a mesh nebuliser 

will assist in the design of plasmid DNA based gene therapeutics. 

Damage to the sc structure of plasmid DNA depends on device parameters such as 

nozzle size' and frequency, in addition to formulation. A factorial design of 

experiments investigated the main effects of the variables induding plasmid size, 

nozzle size and device frequency and the interactions between them. Damage to the sc , 

structure of plasmid DNA was more pronounced at 3 fim nozzle size than at 5 fim. 

Nebulisation at 65 kHz device frequency resulted in more damage to plasmids of 

smaller size than nebulisation at 175 kHz. The DOE showed positive interaction 

between the DNA plasmid and the nozzle size and frequency. The main advantage of 

the results from such experiments is that the potential for damage to the sc structure 

can be inferred with respect to the interactions between the variables chosen for the 

experimentation. This approach also will help in determining the design parameters of 

a device for safe aerosol 'delivery of plasmid DNA as a non-viral gene therapeutic. 
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The work above has shown that formulation is a prerequisite for safe delivery of the 

sc structure of large plasmids. Here, the main objective of formulation is to reduce the. 

size of the sc structure to that of a 5.7 kb plasmid (about 400 nm) to ensure protection 

against the hydrodynamic forces during aerosolisation. Formulation of 20 kb plasmid 

with cationic PEI resulted in protection of the sc structure as shown by the PicoGreen 

. fluorescence assay and AFM imaging. Transient transfection studies using a PEI 

formulated 5.7 kb plasmid bearing a Green Fluorescent Protein (GFP) marker gene in 

suspension-adapted Chinese Hamster Ovary (CHO-S) cells showed DNA delivery 

efficiency of >75% using aerosolised plasmid DNA compared to before nebulisation. 

This confirmed the earlier results on retention of the sc structure of the 5.7 kb plasmid 

upon aerosolisation .. 

10.3 Key parameters for delivery of supercoiled plasmid 

The significant parameters for safe. delivery of supercoiled structure of a plasmid using 

a mesh nebuliser are determined using design of experiments can be characterised into 

(i) device and (ii) formulation parameters and are summarised in Table 10.1. 

10.4 Scope for future work 

This research has demonstrated the potential of delivering intact supercoiled plasmid 
. . 

DNA using a mesh nebuliser. Scope exists for futitre research in the following areas: 

• Engineering studies on multiphase fluid flow modelling through the device 

with modification of the key device parameters of the mesh nebuliser, nozzle 

size and frequency, to generate very fine aerosols for high efficiency of drug 

delivery to the lungs. 

• The next steps of testing of the mesh nebuliser in pre-clinical and clinical gene 

therapy trials for non-invasive delivery of gene therapeutics. Use of a mesh 
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nebuliser for targeted delivery of nanoparticles including plasmid DNA 

delivery for cystic fibrosis holds considerable promise for the future. 

Table 10.1: Summary of the key parameters for delivery of supercoiled plasmid 

Key Operating Damage to sc Effect on Recommended 
parameter conditions structure (%) - delivery future work' 
Nozzle size 3f.11ll 5.7 kb: Nil - Safe delivery In vivo study 

20 kb: 93-98% Not suitable pDNA formulation 

4 J.lm 20 kb: 18-36% Not suitable Nozzle size 
I unsuitable -

5f.11ll 20 kb: 22-30% Not suitable - Nozzle size 
unsuitable 

Formulation Formulated 20 Safe delivery In vivo study 
kb: Nil-

0 mM 20 kb: 96% (3 Not suitable Change - nozzle 
NaCI - f.IIll) frequency 
300 mM 20 kb: 93% (3 Not suitable Change nozzle 
NaCI /.tm) frequency 

Nozzle 175kHz 5.7kb:Nil Safe delivery In vivo study 
frequency Formulated 20 Safe delivery- In vivo study 

kb: Nil 
20kb: >95% Not suitable' Change nozzle size 
Limiting Safe delivery 
plasmid size: < 
6.7kb 

65kHz Limiting Sate delivery 
plasmid size: < 

. 3.8 kb 

. ~ 

10.4.1 Studies on multiphase modelling and device parameters 

Engineering studies on multi phase modelling of flow through the device would be 

expected to provide additional information for device design. The influence of 

cavitation and dynamics of droplet formation on damage to the sc structure of the 

plasmid can be studied by their incorporation in a multi phase model. A freely jointed 

chain model that assumes the shape of the sc structure can be incorporated in the 
, 

multiphase model to understand the vulnerable regions of the sc structure more likely 
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to be damaged during the aerosolisation process. A multiphase model With the 

plasmid nanoparticle, the solvent used for formulation and air as the three phases 

could predict the strain rates during the fluid flow through the nozzle. An evaluation 

of the strain rates encountered during the fluid flow could perhaps provide 

information' on the nozzle' frequency and nozzle size to be adopted to ensure safe 

delivery of the fragile sc structure of the plasmid. 

Engineering studies reported in this thesis have shown that nozzle size and' device' 

frequency are the two main device parameters which influence the aerosolisation 

process resulting in the, generation of fine respirable aerosols. Since this research has 

focussed on the use of an existing mesh nebuliser to deliver plasmid DNA, the next 

steps for the progress of this work could be focussed towards device development. 

Although the development of newer devices requires regulatory approval of the 

device, there are opportunities for the development of newer mesh nebulisers. Further 

device development should be focussed on increasing the frequency of the device and 

'the nozzle size. An increase in frequency results in the generation of finer respirable 

aerosols. Although 'an increase in frequency can lead to higher strain rates,. a 

corresponding increase in nozzle size would reduce its effects potentially leading to 

safe delivery of the sc structure of plasmids. Optimisation of the nozzle frequency and 

nozzle size promises to deliver devices with better performance in the aerosol delivery 

of shear-sensitive sc structure of plasmid DNA. The result reported in this thesis has 

shown that more damage td the sc structure is observed using a Iow frequency device . . 

, than a high frequency device with the same nozzle size. Improved knowledge of the 

, operating conditions of the device will provide the necessary background for further 

formulation development for the efficient delivery of the fragile gene therapeutic. 

10.4.2 Nebulisation for cystic fibrosis gene therapy 

:Gene therapy holds considerable promise for the treatment of genetic and highly 

infectious, respiratory diseases.' With gene therapy stilI in clinical trials, the recent 

report by UK Gene Therapy Advisory Committee (GTAC) 

[http://www.advisorybodies.doh.gov.ukigenetics/gtac/flagging.html on the lack of vector 

integration and recombination using plasmid DNA suggests delivery is stilI an issue 
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for the successful application of non-viral gene therapy. Cystic fibrosis is a common 

lethal hereditary disease causing chronic lung inflammation. An ideal vector for gene 

therapy should have an adequate gene handling capability and delivery efficiency, and 

lowimmunogenicity. Plasmid DNA has a large transgene handling capability and low 

immunogenicity. However, aerosol delivery of large sized plasmids to the lungs has 

been a bottleneck for gene delivery. In order to improve the efficacy of CFTR gene 

delivery using plasmid DNA for cystic fibrosis patients, it is essential that the 

integrity of the fragile gene therapeutic is not damaged during the aerosolisation 

process and delivered as inhalable· aerosols to reach the epithelial cells. An approved 

mesh nebuliser for the aerosol delivery of plasmid DNA studied in this research has 

shown that this device can be used for in-vitro and in-vivo assessment of cystic 

fibrosis gene therapy clinical trials. Further, the key steps required to take cystic 

fibrosis forward are the development of specific formulations to carry the plasmid 

containing the CFTR gene (-10 kb) and experiments to confirm its safe delivery in an 

ultrasonic mesh nebuliser. PEI formulations are an excellent starting point for the safe 

delivery of CFTR gene in the clinical trials. Magnetofection-assisted plasmid DNA 

delivery promises to deliver plasmid DNA bound to magnetic nanoparticles using an 

aerosolisation device such as the mesh nebuliser to the targeted cells resulting in 

improved efficacy ofthe gene therapeutic. 

To summarise, testing the efficacy of a plasmid DNA-based gene therapeutic at the 

pre-clinical/clinical stage is crucial towards achieving the promise of gene therapy. 

This research has led to (i) demonstrated proof-of-principle of safe aerosol delivery of 

sc plasmid DNA using a mesh nebuliser and (ii) transfection of aerosolised plasmid 

DNA in a mammalian cell line such as CHO-S cells. The application of this mesh· 

nebulisation technology for the aerosol delivery of shear1sensitive therapeutics such 

as plasmid DNA and si RNA into and via the airways offers immense potential for the 

treatment of un met medical needs such as influenza, SARs, lung cancer. 
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Appendix 

APPENDIX 

Repeatability of gel electrophoresis experiments on the nebulisation of 5.7 kb 

plasmid 
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Figure A.1: Agarose gel electrophoresis of nebulisation of 5.7 kb plasmid in buffers 

showing the supercoiled (sc) and open-circular (oc) forms of the plasmid: lanes 1 and 

2: BN and AN samples in PBS buffer; lanes 3 and 4: BN and AN samples in HEPES 

buffer; lanes 5 and 6: BN and AN samples in TE buffer with 150 mM NaCl; lanes 7 -

DNA marker. 
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Figure A.2: Agarose gel electrophoresis of nebulisation of 5.7 kb plasmid in buffers 

showing the supercoiled (sc) and open-circular (oc) forms of the plasmid: a) PBS 

buffer; lanes 1 and 2: BN and AN samples in PBS buffer; lanes 3 and 4: BN and AN 

samples in TE buffer; lanes 5 and 6: BN and AN samples in TE buffer with 150 mM 

NaCI; lanes 7 and 8: BN and AN samples in TE buffer with 300 mM NaCI. 
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Repeatability of gel electrophoresis experiments on the nebulisation of 8.7 kb 

plasmid 
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Figure A.3: Agarose gel electrophoresis of nebulisation of 5.7 kb plasmid in TE 

buffer showing the supercoiled (sc) and open-circular (oc) forms of the plasmid: lanes 

1 - DNA Marker; lanes 2 and 3: BN and AN samples with 20 ILglmL DNA 

concentration; lanes 4 and 5: BN and AN samples with 10 ILglmL DNA 

concentration; lanes 6 and 7: BN and AN samples with 5 ILglmL ILglmL DNA 

concentration. 
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Figure AA: Agarose gel electrophoresis of nebulisation of 8.7 kb plasmid in TB 

buffer showing the supereoiled (se) and open-circular (oc) forms of the plasmid: lanes 

1 - BN; 2 - NC; 3 - AN samples; 4 - Lamba HindIII DNA marker. 
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Figure A5: Agarose gel electrophoresis of nebulisation of 8.7 kb plasmid in TE 

buffer showing the supercoiled (sc) and open-circular (oc) forms of the plasmid: lanes 

1 - BN; 2 - NC; 3 - AN samples; 4 - Lamba HindIII DNA marker. 
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Appendix 

Figure A.6: Agarose gel electrophoresis of nebulisation of 8.7 kb plasmid in buffers 

showing the supercoiled (sc) and open-circular (oc) forms of the plasmid: TE Buffer­

control; TB Buffer with 150mM NaCl, lanes 2 and 3 -BN and AN; TE Buffer, lanes 4 

and 5 -BN and AN. 
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