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ABSTRACT 

Flow close to the boundaries of bodies is often difficult to measure using particle image velocimetry (PIV); factors 

such as glare, velocity gradients and the body itself all present challenges in obtaining good quality results. One 

common problem in conventional PIV algorithms is that they are based on square grids, which for most applications 

is not aligned with the shape of the body. This means the body will clip part of the window resulting in fewer 

particles and erroneously placed vectors. 

Being able to align the interrogation window shape to the body boundary would remove these sources of error. This 

study investigates the effect that applying non-square windows has, compared to conventional square windows for 

three test cases: a free-field, a circular body and an airfoil shape. For each of these a number of interrogation 

methods are tested. 

For the circular body, conventional and rotated square windows were tested along with a body fitted mesh. The 

image was also deformed into R-θ coordinates to enable conventional square window processing, before de-

warping the vector field. Square, rotated square and body fitted techniques were also tested on an airfoil shape. It 

was found that the body-fitted and warping methods both showed significant improvements in the boundary layer 

over the square meshes; although the warping process added computational expense. The meshing technique was 

found to have little impact on the free field as there was no body or velocity gradient. 

Utilising this interrogation method in conjunction with developed methods of automated edge detection and more 

mature processing algorithms will result in better measurements close to bodies than is possible with conventional 

square windows. An example application of this technique on flow around a sphere is also demonstrated. 

 

 

1 Introduction 

Achieving good quality PIV measurements close to boundaries is difficult to achieve, but is 

important as it often reveals important features of the flow. Ordinarily, in the presence of a 

curved or sloped boundary, there are issues such as local glare obscuring particles and smearing 

correlation peaks, or non-planar reflections illuminating out-of-plane particles (Theunissen, 

Scarano, & Riethmuller, 2008). This will influence the likelihood of detecting the correlation peak 

and its accuracy. 

One of the motives behind this work is to reliably identify the instantaneous separation point 

around a spherical body; this usually requires some intelligent extrapolation from the reliable 

vector field to the body boundary. 
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One way to avoid this requirement for extrapolation, is to distort or transform the image into 

more rectangular-friendly coordinates (Park, Im, Sung, & Park, 2015), but the issue here is that 

the image distortion is computationally expensive and the errors introduced can outweigh any 

gains in resolution close to boundaries (Masullo & Theunissen, 2017; T. D. Nguyen, Wells, & 

Nguyen, 2012). 

Areas of high velocity gradients can also introduce errors (Huang, Fiedler, & Wang, 1993a) and 

can be analysed using this method as the window shapes and sizes can be tailored to the flow 

field. This could be used in addition to local image deformation techniques such as those 

described by Huang, Fiedler, & Wang (1993b); Jambunathan, Ju, Dobbins, & Ashforth-Frost, 

(1999) and Nogueira & Lecuona, (2004). These authors deform the search particle image pattern 

(SPIP) to reduce the errors in correlation that these flow features introduce. This procedure is 

undertaken as a second pass after conventional PIV techniques are able to provide a first 

estimate of the velocity and velocity gradients. This will (possibly after multiple iterations) result 

in much more uniform particle shifts across the window, resulting in a stronger correlation. 

Translation of the SPIP is also used to reduce the magnitude of this particle shift (Scarano & 

Riethmuller, 1999; Wenguo, Fan, Liao, & Qin, 2001). These sources demonstrate that particle 

shifts closer to zero are more accurate. Whilst these methods are useful to reduce the errors 

which can be associated with velocity gradients, they still suffer from effects such as glare, 

window clipping and erroneously placed velocity vectors. 

It has been demonstrated that it is possible to reduce reflections in the experimental phase by 

using surface treatments (Paterna, Moonen, Dorer, & Carmeliet, 2013) and in image pre-

processing by using various techniques (Deen et al., 2010; Mendez et al., 2017). Whilst these 

methods have been shown to give some improvement to the raw images, it does not resolve the 

inherent problems of applying a Cartesian based windowing approach to curved surfaces. 

One approach to overcome this problem is to mask out the body, leaving only 'good' data to use 

in the cross-correlation or Fast Fourier Transform (FFT) procedure (Ronneberger, Raffel, & 

Kompenhans, 1998). This approach results in an arbitrarily shaped window, with no surface 

glare interfering with the results, which improves the correlations and hence results close to the 

boundary. However, there is little control over the resultant window size; which can mean that 

the window close to the boundary is not large enough to capture sufficient particles for an 

effective correlation; still not ensuring that the flow-field near the boundary can be effectively 

calculated. It will also place any calculated vector at the centre of the interrogation cell even 

though this may not be the centre of the valid flow area within the interrogation cell. 

It is therefore desirable to introduce methods of more reliably generating vectors close to 

boundaries that are able to resolve high velocity gradients and cope with errors associated with 
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boundaries such as reflections and incomplete interrogation windows. To achieve this, a method 

has been developed to generate an initial mesh that can be body fitted or tailored to best suit the 

local velocity field and then undertake standard PIV procedures on these mesh cells. In general, 

this will require prior knowledge of the flow field to ensure that the mesh that is used is suitable 

for the flow. 

Significant work has been undertaken on automated boundary or edge detection, both in the 

broader sense (Canny, 1986) and directly applied to PIV (Dussol, Druault, Mallat, Delacroix, & 

Germain, 2016; Masullo & Theunissen, 2017a). Body fitted meshing algorithms are also well 

developed. These methods can be used to locate the boundary effectively and generate a high 

quality, body-fitted mesh. 

This procedure can be used in isolation across the whole image, or as a refinement method in 

regions where standard Cartesian windows are less effective due to boundaries or velocity 

gradients; prior knowledge of the flow field may be required to determine which is better suited 

to a particular application. 

 

2 Processing Procedure 

2.1 Mesh Generation 

The mesh can be generated by the user externally to the PIV algorithm; the cells can be of any 

shape dictated by a list of Cartesian coordinates enabling pseudo-curves and multi-sided 

polygons. These coordinates are stored with the cell centroid and connectivity information for 

use later in the algorithm. It would be expected that one edge of the body-fitted mesh would be 

aligned to the most conservative edge of any glare present in the image pair. 

To generate the body-fitted meshes used in the examples later in Sections ‎6 and ‎7, the profile of 

the body, ideal window height and width and overlap were passed to the mesh generation 

algorithm. This works along the profile until the width of the cell at its centroid is within an 

accepted tolerance of the desired width; this gives the bottom-most coordinates. The upper-most 

coordinates are placed at a distance equal to the desired height normal to the wall. The nearest 

profile point to the desired overlap is used as the starting point for the next cell and so on until 

the entire profile has been covered. The process is then repeated at the required height above the 

body to give the required overlap in the wall-normal direction. If multi-sided polygons are 

required (for example following curvature) points can be added to each cell as it is generated. 

Mesh sensitivity analyses have not been undertaken for these tests, the aim was to keep the cell 

dimensions consistent with the square meshes. More intelligent meshing methods are also well 

developed and can be used as long as the cell size can be adequately controlled. 
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2.2 Window Preparation 

For each cell of the mesh, the interrogation particle image pattern (IPIP) from the first image of 

the pair is constructed from the pixels that lie within the specified mesh cell boundaries. This is 

then padded with zero intensity values to form a rectangular window (see Figure 1). The SPIP is 

created from the same pixels as the padded IPIP from the second image of the pair (see Figure 2). 

The IPIP is padded with NaN values which do not bias the resulting correlation as zero padding 

(Adrian & Westerweel, 2011, pp. 372). 

The figures below use hollow and solid dots to resemble the A and B images from the pair 

respectively. The solid red line in Figure 1 is the edge of the mesh cell and the dashed line in 

Figure 2 is for reference only. The cell can be of any shape to match the curvature of the body. 

Whilst this padding is somewhat arbitrary (ideally just large enough to capture the motion of all 

the particles in the mesh cell), it is feasible to pad the window to the next 2n size, which will 

enable a FFT to be undertaken, rather than using a direct cross-correlation technique. This is a 

similar concept to that suggested by Gui & Merzkirch (1998). 

 

  

Figure 1: Masked IPIP Figure 2: Matched SPIP 

 

2.3 Cross-Correlation 

In this case, a direct cross-correlation has been undertaken between the two windows, that will 

result in the calculation of a correlation field with potentially a number of peaks. For the vector 

to be valid the highest peak must be ‘significantly’ larger than the second highest (Adrian & 

Westerweel, 2011, pp. 343) – this ‘significant’ ratio is a user-defined threshold. If the peak ratio is 

below this value, the vector is discarded. 
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The velocity vector returned here is the average X and Y shift of the mesh cell, so the vector 

should be placed at the mesh cell centroid coordinates. 

The cross-correlation routine will only return an integer pixel shift distance, which is not 

realistic. To estimate the shift to sub-pixel accuracy, a Gaussian fitted maximisation function is 

undertaken on the correlation field (Adrian & Westerweel, 2011, pp. 375). 

 

2.4 Vector Validation 

Once velocity vectors have been calculated for each mesh cell, it is important to remove any 

spurious, or false, vectors that can arise from erroneous correlation peaks. This is checked by 

comparing the vector in question to its immediate neighbours. The local median test described 

by Westerweel (1994) is used in this algorithm. The vector must be close to the median value of 

its immediate neighbours, within a tolerance based on the neighbours’ standard deviation. 

For a structured mesh, such as a rectangular or polar mesh, finding the neighbours is trivial, but 

less so for an unstructured or irregular mesh; to determine this, either the mesh connectivity is 

required or the nearest cells can be used. 

 

2.5 Multi-Pass 

A multi-pass algorithm is used in line with the WIDIM (WIndow Displacement Iterative 

Multigrid) method proposed by Scarano & Riethmuller (1999). 

In this method, the SPIP is created from the pixels one shift away from the IPIP, such that the 

post-shift particles should lie on top of each other, aside from velocity gradients and vorticity. 

This shift value is taken from the median of the neighbours as described in the previous section.  

This reduces the impact of errors introduced by larger pixel displacements, as demonstrated in 

the same paper. A second cross-correlation is then performed. Extra confidence can be taken in a 

correlation peak around zero, which can be used to validate vectors which would have failed the 

initial peak ratio test. 

To account for inhomogeneous particle shifts within a mesh cell, deformation techniques as 

described earlier in the paper can be used (although are not utilised in this algorithm). This will 

improve the strength of the correlation peak as all particles in the cell should now move with a 

more consistent velocity vector. 

The spurious detection and multi-pass algorithms can be run several times to maximise the 

number and improve the accuracy of valid vectors. 
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2.6 Interpolation 

It is likely that there will still be cells where it is not possible to detect a valid velocity vector, 

perhaps due to an inability to detect a valid correlation peak or for it to be marked as erroneous, 

even after multiple passes. 2D linear interpolations were undertaken to fill the gaps in the data. 

For the free field images (see Section ‎3), approximately 1% of vectors were populated in this 

way. 

 

2.7 Limitations 

It is well understood that this algorithm is not as well refined or complex as current best 

practices. It should be borne in mind that this paper aims to isolate the impact of manipulating 

the shapes and sizes of the interrogation windows; rather than absolute maturity and accuracy of 

the PIV algorithm itself. 

 

3 Image Generation 

All of the image pairs used in these tests are synthetic, which will enable the true velocity field to 

be known - enabling direct comparisons between the various PIV measured outputs and the true 

value. The first synthetic image of each pair is generated by randomly scattering particles across 

the image and the second by translating the particles by a known velocity field. 

Three sets of synthetic images were generated: A free flow with constant velocity; a circular 

body with boundary layer and an airfoil shape with a boundary layer. The boundary layers are 

predicted using a power law (Munson, Okiishi, Huebsch, & Rothmayer, 2013) and are blended 

into the free stream. The airfoil is based on a NACA0012 shape (NASA & Rumsey, 2018) with a 

rounded trailing edge to enable effective meshing. Sample inverted images of each are shown in 

Figure 3 to Figure 5. The red and blue lines indicate the body and boundary layer edges 

respectively. 

 

   

Figure 3: Free field Figure 4: Circular body Figure 5: Airfoil body 

 Body boundary  Boundary layer edge 
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4 Error Calculations 

The error for each cell was calculated using equation (1) 

 

𝐸 =  
√(𝑋 − 𝑋𝑡)2 +  (𝑌 − 𝑌𝑡)2

√(𝑋𝑡)2 +  (𝑌𝑡)2
 ∗ 100% (1) 

 

where: X and Y are the average measured pixel shifts in each cell and Xt and Yt are the true shifts 

at the window centroid known from the synthetic image generation. In the results sections, the 

mean and 95th percentile confidence interval error values (as specified by Equation 2) are 

presented 

 

𝐶𝐼95 = 1.96 ∗
𝜎

√𝑁
 (2) 

where: σ is the standard deviation of the sample and N is the number of samples. 

To demonstrate the general accuracy of the PIV processing algorithm described above, the 

algorithm was tested on a set of 'free field' images. This used processing parameters of: 32x32 

pixel windows, 50% overlap, two additional passes and linear interpolation, as described in 

section ‎2. The resulting error across the image was 0.67±0.01%. 

 

5 Free-flow images 

For the free flow images, a variety of square, rectangular and rotated rectangular windows are 

used to test if aligning the window with the direction of flow reduces the error. The square 

windows are 32x32 pixels, the rectangular windows are 45x22 pixels in width and length 

respectively and the rotated windows are the same size, but aligned with the flow vector at 12.5° 

from horizontal. The quantitative error values for each of these methods can be found in Table 1. 

Table 1: Quantitative error values for the free field images 

Mesh type No. vectors Average error (%) CPU time per vector (ms) 

Square (32x32) 8372 0.67±0.01 4.37 
Rotated Square 8371 0.69±0.01 4.29 

Rectangle (45x22) 5366 0.72±0.01 3.97 
Rotated Rectangle 5080 0.72±0.01 4.98 

 

Changing the size and orientation of the cells had little effect on the results. This was expected as 

the flow is uniform and there are sufficient particles in each window such that gaining or losing 
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particles from the windows is not significantly affecting the correlation procedure. If there were 

velocity gradients in the flow or sparse particles, then being able to manipulate the window 

shape and size can be used to reduce their impact. As an example, Meinhart, Wereley, & 

Santiago (1999) reduced the errors due to a velocity gradient by using high aspect ratio 

rectangular cells with the short edge parallel to the gradient. 

 

6 Circular body 

A set of images using the 'circular body' as described in Section ‎3 has been analysed using the 

square (Figure 6) and rotated square (Figure 7) windowing methods defined in section ‎5. A body 

fitted mesh (Figure 8) has also been tested. It has been demonstrated that warping the image for 

flow around bodies with simple or constant curvature produces effective results in reducing 

effects of surfaces (C. V. Nguyen, Nguyen, Wells, & Nakayama, 2010); although it incurs 

computational expense to perform the image warping and de-warping processes. This has also 

been tested here using the processing algorithm described, to compare result accuracy and 

computational expense. This result can be found in Figure 9. 

Table 2 compares the errors and processing times for the various methods described in this 

section. The 'boundary layer error' value is the average error within the boundary layer specified 

in section ‎3 and shown using a blue line. 

Table 2: Quantitative error values for tests on the circualr body 

Mesh type No. vectors Average error (%) 

Average 

boundary layer 

error (%) 

CPU time per 

vector (ms) 

Square 8372 1.03±0.04 4.82±0.12 3.50 

Rotated Square 8371 0.91±0.02 4.21±0.06 3.03 

Body fitted 5366 0.82±0.01 2.05±0.03 4.24 

Warped Image 5080 1.08±0.01 2.64±0.03 9.31 

 

It can be seen from the results in Table 2 that the average error across the image for each of the 

windowing methods remains largely similar, although there are some differences. The error 

within the boundary layer, however, decreases by over 50% by using the body fitted compared 

to the square windowing methods. The average error for the warped image is also lower, but 

takes significantly more time due to the image warping and de-warping processes.  
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Figure 6: Circular body, square windows Figure 7: Circular body, rotated square 

windows 

  

Figure 8: Circular body, body fitted windows Figure 9: Circular body, warped image 

  

Figure 10: Circular body, square windows - 

magnified 

Figure 11: Circular body, body fitted 

windows - magnified 
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Figure 10 and Figure 11 show magnified sections of the error maps using the square and body-

fitted methods respectively. These images show that the highest errors appear in the cells where 

there is greatest overlap with the body. 

One cause of error is that clipping the window reduces 

the number of particles in the window; which will in 

turn reduce the likelihood of gaining an effective 

correlation peak. Another cause is that the velocity 

vector of a clipped cell will be calculated from the 

valid region only, but the vector itself will be placed at 

the centroid of the entire cell. This is shown in Figure 

12; the blue arrow is the more accurate velocity at the 

centroid of the valid region, the black is at the cell 

centroid. This error will not occur for the body fitted 

methods as there are no clipped cells. 

 

Figure 12: Errors due to incorrectly 

placed velocity vectors 

Another potential source of improvement the body fitted windows provide is that the centroids 

of the cells are a constant perpendicular distance from the body boundary. This can assist with 

detecting separation and recirculation points in the wall-parallel velocity, as the wall-parallel 

velocity value is not contaminated by the wall-normal boundary layer gradient.  

 

7 Airfoil shape 

This technique is not limited to a simple circular body; any window cell shape can be used to 

improve measurements close to a body boundary. To demonstrate this, a NACA0012 wing shape 

has been selected (NASA & Rumsey, 2018) and the trailing edge rounded. The curvature is non-

constant and, in particular at the leading and trailing edges, is quite sharp. 

Square, rotated square and body fitted meshes were tested on the airfoil body; the results are 

reported in Figure 13 to Figure 15. Quantitative error values can be found in Table 3. 

 Table 3: Quantitative error values for tests on the airfoil body 

Mesh type No. vectors Average error (%) 

Average 

boundary layer 

error (%) 

CPU time per 

vector (ms) 

Square 8093 0.96±0.02 4.79±0.07 4.55 

Rotated Square 8097 1.02±0.02 5.44±0.08 4.89 

Body fitted 8594 0.96±0.01 3.86±0.04 5.26 
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As for the circular body, the average errors across the image are reasonably consistent; but the 

boundary layer error for the body fitted image has decreased. The error maps show that in all 

cases the largest errors are around the regions of highest curvature, which will also be the 

location of largest velocity gradient. 

A warped airfoil image has not been tested in this study, but Masullo & Theunissen (2017) found 

that the image warping procedures were ineffective in regions of greater curvature, such as the 

leading and trailing edges of the wing. This is due to excessive stretching or compressing of the 

pixels, introducing additional errors. They also found that the results were sensitive to the 

generated mesh; this has not been studied in depth here. 

 

  

Figure 13: Airoil, square windows Figure 14: Airfoil, rotated square windows 

 

 

Figure 15: Airfoil, body fitted windows 

 

8 Example Application - Flow around a sphere 

The motivation behind this work is to obtain better results in the boundary layer around non-

square objects, in particular the flow around spheres. One of the key factors behind the flow field 

around a sphere is the separation location of the boundary layer, which can be estimated by 
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examining the wall-tangential velocity. With conventional PIV windowing techniques, this 

would require a method of removing the wall-normal gradient due to the boundary layer. With 

the body fitted windowing methods described here, the distance from the wall of the nearest 

vector is constant, removing the wall-normal gradient; as well as the improvement in accuracy as 

demonstrated previously in this article. 

Figure 16 and Figure 17 show the resulting vector field from analysing real PIV images of flow 

around a sphere using square and body fitted windows respectively; Figure 18 and Figure 19 

show the dashed green areas magnified. There is a shadow cast by the sphere, which prevents 

effective PIV measurement behind it. The red line indicates the body and edge of shadow. 

10 image pairs were processed using the methods described in Section ‎2, but do not use 

interpolation to replace poor quality vectors (see Section ‎2.6). It can be seen from these images 

that the body-fitted windowing methods allows for the calculation of vectors much closer to the 

wall than using square windows, allowing more accurate estimation of the separation location.  

 

  

 

Figure 16: Square windows - real 

image 

Figure 17: Body fitted windows - real 

image 

  

Figure 18: Square windows - real 

image - magnified 

Figure 19: Body fitted windows - real 

image - magnified 
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9 Conclusions 

Methods of using non-square windows for PIV analysis have been examined. Four windowing 

methods were considered for use on three synthetically generated test cases: a free velocity field; 

a circular body and an airfoil shape. Conventional square windows, rotated square windows, 

body fitted windows and warped images were tested to determine if utilising more intelligent 

windowing techniques can reduce the errors associated with the body boundary. 

Using cells that are fitted to a body resulted in reduced errors close to the body boundary 

compared to the conventional and rotated square windows. This reduction will be useful to 

enable much more effective near wall flow resolution, which is often problematic in PIV analysis. 

It is thought that these improvements arise for three reasons, firstly that not clipping the window 

will result in more particles being present in the interrogation region, thereby improving the 

likelihood of obtaining an accurate correlation peak; secondly the vector will be placed at the 

centroid of the window, not necessarily the centroid of the area the vector is computed from. 

Warping the image into wall-parallel and wall-perpendicular coordinates, then undertaking 

conventional square window PIV also showed an improvement in accuracy near the wall; but at 

significant additional computational expense. Previous studies have also indicated that this 

methodology is less effective in regions of high curvature, which were not explicitly tested. 

This investigation has shown an improvement on a small number of test cases, with high quality 

synthetic images and a relatively undeveloped PIV processing algorithm when compared to 

current best practices. It has also been used in an example application to locate the separation 

location on flow around a sphere. The next stage of work is to test this meshing methodology 

more thoroughly on more complex geometries with features such as glare and non-uniform 

particle distribution. If these benefits can still be seen on larger scale tests, this will enable much 

more effective measurements of near wall flow, particularly around objects with curvature. 

Nomenclature 

Abbreviation In full Abbr. In full 

DCC Direct Cross-Correlation E Error 

FFT Fast Fourier Transform N Number of samples 

IPIP Interrogation Particle Image Pattern X Average pixel shift in X 

NaN Not a Number Xt True pixel shift in X 

PIV Particle Image Velocimetry Y Average pixel shift in Y 

SPIP Search Particle Image Pattern Yt True pixel shift in Y 

WIDIM WIndow Displacement Iterative Multigrid σ Standard deviation 
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