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Abstract 

The tetracyclic system (219) shares the same heterocyclic skeleton as a plethora of highly 

bioactive indole alkaloids, exemplified by ajrnalicine (161) and deplancheine (204). 

Me02C 

(219) (161) (204) 

Building on earlier work from our research group we recognised that a suitably 

substituted bicyclic lactam (266) could act as a precursor in an intramolecular 

N-acyliminium mediated cyclisation leading to targets such as (219). 

OH 

ii -
(219) (311) 

--
(208) (328) 

i) 2M HCI, EtOH, 20 h; ii) IBX, DMSO, 20 h; iii) Rh(COXPPh3nCI, mesitylene, A, 48 h 

Methodology has been developed to remove the chiraI auxiliary group. Manipulation of 

the template (219) has allowed us to achieve a novel total synthesis of deplancheine (208) 

and provided valuable insight for a future asymmetric synthesis of (204). 
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Chapter 1 

Introduction 



1.1 N-Acyliminium Ions in Synthesis 

The development of cyclisations that proceed via N-acyliminium species (1) are relatively 

recent, in contrast to those involving irninium cations (2) (Figure 1) such as the 

Mannich,I.3 Bischier-Napieraiski4,s and Pictet-Spengler6-11 reactions. 

R3 R3 

Oy~yR2 
R R1 

+ ~ R2 
R"'Y 

R1 

(1) (2) 

Figure 1 

The synthetic potential of N-acyliminium species (1) is well documentedl2.14 and such 

intermediates are widely used, due to them exhibiting a broad versatility, with a range of 

synthetic applications. 

The reaction between N-acylirninium ions and nucIeophiles (also described as 

arnidoaIkylation or Mannich-type condensations)13 has been extensively employed in the 

synthesis of aIkaloidaI and related systems. Through acid activation, the precursor (3) can 

be induced to form the corresponding N-acyliminium ion (1). Subsequent arnidoaikylation 

by nucleophilic addition yields the product (4) (Scheme 1 ).12.14 

(3) (1) (4) 

Scheme 1 
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1.2 Reactivity of N-Acyliminium Ions Relative to Iminium 

Ions 

Substitution with electron-withdrawing groups at nitrogen renders the iminium cation (2) 

considerably more reactive by enhancing cationic character. The N-acyl derivative (I) and 

the carbamate (5) have been widely exploited. Alternative substituents such as the amide 

(6) and N-tosyl (7) cations have also been investigated (Figure 2).13 

(2) R = H, Alkyl 
(I) R = Acyl 
(5)R=COOR 

Figure 2 

(6)R=CONR2 
(7) R=Ts 

The 13e NMR spectra of the iminium (8) and N-acyliminium (9) salts (Figure 3) 

demonstrate the increased electrophilicity of N-acyliminium ions.15•16 The presence of an 

N-acetyl rather than N-methyl group shifts the corresponding imino carbon signal 

downfield by approximately 5 ppm.12 

184.6 

M\ CPh 
iN~ 
H Ph 

SbCIe' 

(8) 

189.7 

Me-( CPh 
iN~ 

H Ph 
SbCls' 

(9) 

Figure 3 

Boekelheide17 illustrated the difference in reactivity between Mannich and 

N-acyliminium intermediates during olefin cyclisations. It was proposed that under acidic 
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conditions the keto amides (10) and (11) generated (12) and (13). Subsequent 

intramolecular cyclisation produced (14) and (15) (Scheme 2) . 

(IO)R=O,RI =H2 
(11) R= H2, RI =0 

• 

(I2)R=0,RI =H2 
(I3)R=H2,R

I =0 

Scheme 2 

• 

(I4)R=0,RI =H2 
(I5)R=H2,R

I =0 

In contrast, attempted ring closure of the species (16) to produce (17) was unsuccessful 

and resulted in unidentifiable products (Scheme 3). 

~ 
W 
)( . 

(16) (17) 

Scheme 3 

1.3 Experimental Evidence for N-Acyliminium Ions 

The observation of a transient N-acyliminium intermediate in dynamic NMR studies has 

only been reported twice.13 Yamamotol8 has shown that at -55°C in the presence oftriflic 

anhydride the compound (19) was generated from the precursor (18) (Scheme 4). 

Presumably, cleavage of CF3S020CD3 into CF3S0/ and -OCD3 under the reaction 

conditions would be difficult and the equilibrium is largely shifted to the right. 
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Me'1l1l;1 

~OCD3 
N 

Me/ 'COOMe 

(IS) 

• + CF3S020CD3 

(19) 

Scbeme4 

Heaney19 has observed the 13C NMR. spectrwn of the N-acyliminium ion (21) after 

treatment of (20) with BhOEt2 at ambient temperature (Scbeme 5). The intermediate 

(21) was gradually (I h) converted to the fluoro compound (22). 

(20) 

CDCl3 
25°C 

(21) 

Scbeme5 

1.4 Generation of N-Acyliminium Ions 

I h 
• 

(22) 

N-Acyliminium ions are almost always generated in situ, in view of their limited stability 

and high reactivity.12 Five methods for the generation of N-acyliminium ions are listed 

below and are subsequently discussed. 

• 

• 

• 
• 

• 

Introduction 

N-Protonation of N-acylimines 

Oxidation of amides 

N-Acylation of imines 

Heterolysis of amides 

Electrophilic addition to enamides 
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1.4.1 N-Protonation of N-Acylimines 

The protonation of N-acylimines is a route to N-acyliminium species. However, it is not a 

common method due to the instability of N-acylimines, which readily tautomerise to the 

corresponding enamide (unless there are no a-hydrogen atoms present).12 Treatment of 

the N-acylimine (23) with fluorosulfonic acid-antimony pentafluoride ("magic acid") 

generated the species (24) via N-protonation (Scheme 6).20 

• [~~l 
(23) (24) 

Scheme 6 

1.4.2 Oxidation of Amides 

The removal of a hydride from the a-carbon of an amide results in an N-acyliminium 

ion.12 This transformation can be effected using electrochemical techniques developed by 

Ross,21 Shono22 and Utley.23 The mechanism involves the consecutive removal of an 

electron from the lone pair on nitrogen of (25), followed by a proton and then a second 

electron. The intermediate (1) can be trapped with a nucleophile, typically methanol, to 

produce an a-methoxylated amide (26) (Scheme 7). 

R3 R3 R3 
I -2e- I MeOH I 

0yN'f:2 • 0yNyR2 • 0yN'f~~e -H'" 
R R1 R R1 R R1 

(25) (1) (26) 

Scheme 7 
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1.4.3 N-Acylation ofImines 

N-Acyliminiwn ions can be generated by the acylation of imines with reactive carboxylic 

derivatives. James and Judd24 reacted the imine (27) with benzoyl chloride (2S) and 

generated the crystalline product (29). The latter compound was readily hydrolysed via 

the intermediacy of the N-acyliminium species (30) and compound (31) (Scheme S). 

o 
~ ...... Ph+ )( Ph N 

P Cl 

(27) (2S) 

-

~ 
~N~Ph 

Ph~ " + 

o 

(29) 

SchemeS 

1.4.4 Heterolysis of Amides 

H cr Ph 

>=+1 
PIi =N';-Ph 

o 

--

-

Bronsted or Lewis acids are generally used to generate the corresponding N-acyliminiwn 

ions (33) from amides such as (32) ifR is an alkyl group or hydrogen. IfR is an acetyl or 

methanesulfonyl group no acidic catalyst is required (Scheme 9).12 

-OR R2 

0y~yR4 
RI R3 

Acid or Heat 

(32) (33) 

Scheme 9 
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1.4.5 Electrophilic Addition to Enamides 

Enamides such as (36) can be fonned by the acylation of an imine (34) with an acid 

chloride (35) followed by elimination. Protonation of (36) results in the intennediate (37) 

(Scheme 10)Y 

• 

(34) (35) 

l-HCI 
o R1 

R·Jl7)yR2 

R R3 

(37) (36) 

Scheme 10 

1.5 Chiral Non-Racemic Lactams in Synthesis 

Meyers has extensively employed chiral non-racemic bicyclic lactams for the synthesis of 

enantiopure carbocycles and nitrogen containing heterocycles.2s Two general methods 

have been developed for the construction of bicyclic lactams.26 

Cyelodehydration between an optically pure amino alcohol (38) and a keto acid (39) has 

been used to generate laetams such as (40) (Seheme 11).26 
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R 

~OH 0 

~" ~OH 6-
CA + • 

R n -H2O 
NH2 0 

0 

CA = Chiral Auxiliary n = 1,2 

(38) (39) (40) 

Scheme 11 

The second route is related to work by Speckamp l2,27 involving N-acyliminium species 

(Scheme 12). Condensation of an optically pure amino alcohol (41) with a cyclic 

anhydride (42) or dicarboxylic acid (43) afforded the imide (44). Addition of a hydride 

source in ethanol generated the ethoxylactam (45). Treatment of the latter with acid 

produced (47) via the intermediate (46).26,28 

9 
0 

or ;> 
OH '-- .~ 

R 0 0 

;t0H 
(42) (43) ~)--y NaBH4 

• 
A, -H2O EtOH 

H NH2 
0 0 

(41) (44) (45) 

Jw 
H OH -OEI 

b? • .~ 
0 

(47) (46) 

Scheme 12 
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1.6 Applications of Chiral Bicyclic Lactams in Synthesis 

ChiraI 5,5- or 5,6-bicyclic lactams (48) are extremely versatile building blocks for the 

preparation of enantiopure heterocyc1ic compounds and have been used to synthesise 

pyrrolidines such as (49) and (50), pyrrolidinones (51), piperidines (52) and 

tetrahydroisoquinolines (53) (Figure 4).26 

R~;" 
0 

n= 1,2 

(48) 

G"R3 
N 

Rl\"O 
N 

R1\"~O 
N 

H H H 

(49) (50) (51) 

~OMe 

HN~ 
: OMe 

R' 
(52) (53) 

Figure 4 

1.6.1 Synthesis of Pyrrolidines and Pyrrolidinones 

A method to prepare 3- or 3,3-substituted pyrrolidines (56) involves the mono or 

diaIkylation of lactams such as (54) followed by reduction and paIladium-cataIysed 

hydrogenolysis of (55) (Scheme 13).30 

Introduction 9 



H H 

~ 
i) LHMDS, RIX J:{<' i) LiAIH4 (XRl ~N ····R2 • • 5~N 0 ii)LHMDS,R2X ii) H2, Pd/C HN ""R2 

Ph 0 

(54) (55) (56) 

Scheme 13 

Meyers31 has developed an efficient asymmetric synthesis of 2-substituted pyrrolidines 

(58) and 5-substituted pyrrolidinones (59) from the lactam (57) (Scheme 14). 

R,. 8 R, 

HO/'yO LiAIH4 

~1{ 
TiCI4 HO~q • • 

AICI3 Et3SiH 
Ph pti 0 Ph 0 

(57) 

j~ ",NH, j 
H2 EtOH 

R\.· .. O 
N 

R\ ... ·~O 
N H H 

(58) (59) 

Scheme 14 

1.6.2 Synthesis of Piperidines 

The lactam (60) can be readily transformed to enantiomerically pure 2-substituted 

piperidines, exemplified by the simple alkaloid, (-)-pipecoline (62) (Scheme 15).31 
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Me MeN MeN 'Oy Red-AI AC20,DMAP 
• 

~Ph ~Ph TIIF, L\ CH2CI2 
0 

OH OAc 

(60) (61) 

~OHVCI MeOH 
3atm H2 

Me!) 
(62) 

Scheme 15 

It was postulated31 that following carbonyl reduction of (60) with sodium 

bis(2-methoxyethoxy)aluminium hydride (Red-AI), the oxygen of the oxazolidine ring 

coordinates with HAlR2 as shoVl1l in (63) (Figure 5). This process weakens the CoO bond 

and promotes iminium ion formation (64). Subsequent hydride delivery from the oxygen

aluminium hydride face generated the compound (61). 

Introduction 

"'H~-·"" 
(64) 

FigureS 
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1.6.3 Synthesis of Tetrahydroisoquinolines 

The tetrahydroisoquinoJine, (-)-saIsoJidine (68), has been synthesised from an 

appropriately functionalised 5,6-bicycIic lactam (65) (Scheme 16). The latter compound 

was subjected to a two step (Red-AI and LiAI~) reduction sequence. Reductive removal 

of the N-benzyl group from (67) gave compound (68).32 

o 
(65) 

OMe 

Red-AI 

85% 

OMe 

Scheme 16 

OMe 

LiAl~ 
• 

50% 

OMe 

N ""Me 

HO~Ph 
(67) 

PdlC, H21 
97% ~ 

OMe 

OMe 

OMe 

(68) 

In contrast to similar work by Meyers31 (Scheme 15) the lactam carbonyl of (66) was 

inert to Red-AI reduction although there was cleavage of the ring CoO bond. The reason 

for this discrepancy is not completely understood although it was suggested32 that a 

conformational change could alter the. steric and electronic behaviour of the amide 

moiety. 
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1. 7 Applications of Chiral Tricyclic Lactams in Synthesis 

Chiral tricyclic (or appropriately functionalised S,S-bicyclic) lactams based on the 

isoindolinone ring system (69) (Figure 6) have been reported by AIlin.33.36 

° ojN 
(69) 

Figure 6 

Condensation of the appropriate enantiomer of phenylglycinol (70) and (72) or 

phenylalaninol (71) and (73) with 2-carboxybenzaldehyde (74) produced the tricylic 

lactams (75) and (77) or (76) and (78) (Scheme 17, Table 1).33 

° 0)" ~~ ~ I ... Nj'R 
H2N .' H 

((02H H b 
(70) R= Ph ~I (75)R=Ph 
(71) R = CH2Ph HO (76) R = CH2Ph 

(74) 
or • or 

R H 
PhMe, l1. 

° H2:~H 
-H2O 

oQ~" (72) R=Ph H'~ oJ (73) R = CH2Ph 
(77) R=Ph 
(78) R = CH2Ph 

Scheme 17 
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Substrate R Yield (%) Diastereoselectivity 

(70) Ph 70 (75), exclusive 

(72) Ph 70 (77), exclusive 

(71) CH2Ph 72 (76), exclusive 

(73) 
. 

CH2Ph 71 (7S), exclusive 

Table 1 

A mechanism to explain the stereochemical outcome of the reaction outlined in Scheme 

17 was proposed by Allin33 (Scheme IS). Reversible cyclisation of the (S)-hydroxyimine 

(79) could produce either the Irans-(SO) or cis-(SI) oxazolidine (referring to the 

stereochemistry at C-2 and C-5). Tricyclic lactams such as (75) and (76) would be 

generated by ring closure of (SO). It was suggested that cyclisation of (SI) to generate (S2) 

was highly disfavoured due to the remote orientation of the reactive functional groups. 

OC
2H O::C0

2

H q; '" I ANY. Cyclisation I H ~I ~ • + • ~ '>V)-"H H 2 S R 
H""oJ

R 

HO 0 

(79) (SO) (SI) 

! -H2O f -H2O 

~" ~ I ... ,NtR 

H '0 

~" ~1, .. NtR 

H' 0 

(75) or (76) (82) 

Scheme 18 

In an analogous manner, the Irans tricyclic lactams (77) and (78) are the favoured 

products when the alternative (R)-hydroxyimine is considered. 
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AJlin34 investigated the synthetic potential of tricyclic lactams by subjecting (83) to an 

intermolecular amidoalkylation reaction (Scheme 19). 

(Q0 Ph 

~ 1 ,.' N-yH 

H' 0.J 

(83) 

i) Lewis Acid 
ii) Allyl-TMS 

• 

o 
JOH 

N~"H 
Ph 

(84) 

Scheme 19 

0=)0 JOH 
+ 1 N~"H 
~ ~ Ph 

:::J 
(85) 

The reaction proceeded in high yield (86%) although a 1:1 mixture of (84) and (85) was 

obtained when TiCI4 was used in conjunction with allyl trimethylsilane. Alternative Lewis 

acids (BF3.0Et2, SnC4 and TMSOTf) or nucleophiles (TMS-CN, indole and furan) with 

TiCI4 activation did not significantly improve the diastereoselectivity. Due to a poor level 

of product diastereoselectivity, an alternative approach to the synthesis of non-racemic 

3-substituted isoindolin-l-one derivatives was investigated that involved the hydride ring

opening of alkyl-substituted lactams.3S 

The tricyclic lactams (86) or (87) were individually activated with TiC4 or TMSOTf 

followed by the addition of triethylsilane. The products from the reaction were the 

diastereoisomers (88) and (89) (Scheme 20, Table 2). 

0)0 H 

~.I .. ,N-YPh 

R b.J 

(86)R=Ph 
(87)R=Me 

Introduction 

i) Lewis Acid ~O oQ0 
ii) Et3Si-H ~ JOH ~ rH 

• . 1 N~"Ph + 1 N--X"Ph 
CH2CI2 ~ .. H ~.. H 
-78°C' , K R ~ H 

(88) (89) 

Scheme 20 
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Substrate R LewisAcid Yield (%) 
Diastereoselectivity 

(88):(89) 

(86) Ph TiCl4 90 >98:2 

(86) Ph TMSOTf 80 4:1 

(87) Me TiC4 99 >98:2 

(87) Me TMSOTf 89 1.5:1 

Table 2 

In order to rationalise the stereochemical outcome of the Lewis acid cyclisation of the 

bicyclic lactams (86) and (87), the transition state models outlined in Figure 7 were 

invoked by Allin.35 

Lewis Acid 
• 

! 
o 

~ .. -<:H 
~H 

H~ R 

(88) 

Figure 7 

H-,,\ Ph 
R~O ---r-on(el). H B 

! 
~~OH 
V;< H 

rfH 
(89) 

The size of the angular substituent appears to be a significant factor contributing to the 

observed levels of diastereoselectivity. When R = Ph (86), the steric effect provided by 

this substituent is sufficient to favour transition state A and in turn produces (88). It is 
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......... -------------------------------------
evident that confonnation A places the Lewis acid-complexed oxymethyl substituent in a 

suitable orientation to allow chelation to occur with the amide oxygen atom. This 

chelation effect also appears to be significant as use of an activator incapable of multi

point coordination (TMSOTf), sees a significant decrease in diastereoselectivity (>98:2 to 

4:1). These postulates were reinforced by the results obtained for the methyl-substituted 

substrate (87). The angular methyl group produced a high diastereoselectivity (>98:2) 

with chelation control but only low stereoselection (1.5:1) was obtained when chelation 

could not be a contributing factor. 

The potential of the tricyclic lactam (90) to act as a precursor for an intramolecular 

N-acyliminium ion cycIisation was investigated by Allin36 during the synthesis of 

tetracyclic isoindolinone systems such as (91) and (92) (Scheme 21). 

0 

0;$ OH 

~' 
H I 

", 
LewisAcid .' 

~ I .. ,NjPh • + 
CH2CI2 H <-

H t> _10°C 

(90) (91) (92) 

Scheme 21 

A 2:1 mixture of the isoindolinone diastereoisomers (91) and (92) was obtained after 

activation of (90) with TiC4. Alternative activators were investigated (TMSOTf, 

BF3.0Et2 and SnC4) and the highest degree of diastereoselectivity was achieved with 

TMSOTf «91):(92) ~49:1). Activation by BF3.0Et2 produced the next highest ratio (3:1) 

in favour of (91). The stereochemical outcome of the reaction was rationalised by 

invoking the transition state models highlighted in Figure 8. 
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! 

(91) (92) 

FigureS 

In transition state A (leading to the favoured diastereoisomer (91», the carbonyl moiety 

would be eclipsed in a 1,3-fashion by the hydrogen atom at the chiral centre. In the 

alternative transition state B (leading to the disfavoured diastereoisomer (92», an 

unfavourable 1,3-interaction exists between the carbonyl moiety and the more bulky 

Lewis acid-complexed oxyrnethyl group. 

It may be expected that transition state B is more favourable as there is possibility of 

chelation between the amide oxygen atom and the alkoxy group with a metal counter-ion, 

to form a seven membered chelate. From consideration of the results, it is clear that if 

chelation is taking place it is resulting in a lower level of diastereoselection. The Lewis 

acids capable of multi-point coordination (TiC4, BF3.0Et2 and SnC4) lead to lower levels 

of product diastereoselectivity, probably due to an increased contribution of the chelated 

transition state similar in structure to B. 
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1.8 Amidoalkylations with Aromatic 1t-Nucleophiles 

N-Acyliminium ions have historicallyl2-14 occupied an important position as versatile 

intennediates in organic synthesis. Of particular importance are the reactions of cyclic 

N-acyliminium ions with 7t-nucleophiles in carbon-carbon bond fonning processes, with a 

great deal of attention given to cycIisations leading to alkaloids and other nitrogen

containing biologically active compounds. 

Due to the vast quantity of literature being ascribed to the subject of intramolecular 

amidoalkylations with aromatic 7t-nucIeophiles only a selected number of examples have 

been highlighted in this section. 

1.8.1 Benzene and Substituted Benzene as a 1t-Nucleophile 

Intramolecular reactions of N-acyliminium ions typically follow the route illustrated by 

(93). Less common are intramolecular reactions of the type (94) which result in the 

fonnation ofspiro structures (Figure 9).37,38 

OJ;~~:NU 
'-..J 

(93) 

~NU 
o +l 

(94) 

Figure 9 

Vemon38 has examined a,a-cyclisations (94) with an aromatic ring as the 7t-nucIeophile. 

The hydroxylactam (95) afforded the 5,5-spiro lactam (97) by dehydration in refluxing 

trifluoroacetic acid (Scheme 22). In an identical manner, the 5,6-spiro lactam (98) was 

obtained from the homologous hydroxylactam (96). 

Introduction 19 



O~O _P_h{_C_H.:.2).:.nM_g:..B_r_. O.J:)<°H _T_F_A_, /:,._.~ oJ0:0 
I I (CH2)nPh I (CH2)n 
~ ~ ~ 

(95)n=2 (97)n=2 
(96)n=3 (98)n=3 

Scheme 22 

A stereoselective approach to the synthesis of aromatic 5-7-6 fused systems related to the 

tumour-promoter phorbol (99) (Figure 10) was achieved by the cyclisation of (100) 

(Scheme 23).39 

Me 

(99) 

Figure 10 

OMe 

HO 

AcO'''.6: 
o 

(100) 

Scheme 23 
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Kim40 has developed an efficient synthesis to access pyrazinoisoquinolines such as 

Praziquantel (101) (Figure 11), a well known anthelmintic drug. 

(101) 

Figure 11 

It was detennined that structures such as Praziquantel (101) could be constructed by a 

one-pot procedure from an amido-acetal such as (102). This involved the consecutive 

intramolecular amidoaIkylation of an acetal with an amide, followed by cyclisation of the 

resultant N-acyliminium ion (103) with an aromatic 1t-nucieophile (Scheme 24). 

OJy m U(y IV ~ (NjO Meodl • • MeO N N N 
I I I 
R R R 

(102) (103) 

Scheme 24 

The compound (105) was used as both reagent and base to trap hydrochloride, when 

compound (104) was converted to the amido-acetal (106) (Scheme 25). Praziquantel 

(101) was obtained after acid catalysed cyclisation of (106) and acylation of (107). 
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(Y)y 
Cl 

(104) 

(105) 

PhMe, t.. 
2h,67% 

Scheme 25 

• 0))0 
MeOI'l 

MeO l..... 
N 
H .HCI 

(106) 

Lee41 has efficiently synthesised the enantiomers (108) and (109) (Figure 12). 

MeO 

MeO 

MeoXX) 

Me " ~75YI", N 0 

Figure 12 

o 0 

(109) 

The tetracyclic compounds (108) and (109) are potential intennediates for the chiral 

synthesis of Erythrina alkaloids such as (-)-3-demethoxyerythratidinone (11 0) 

(Figure 13) since they already possess a requisite quaternary carbon centre and AIBIC 

ring system. 
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MeO 

MeO 

(110) 

Figure 13 

The synthetic approach focused on the diastereoselective N-acyliminium ion cyclisation 

of chiral enamides (112) and (114) derived from L-malic (111) and L-tartaric acid (113) 

(Scheme 26). 

Meoxy) 
MeO 

H02C~ 

~~ W-, C02H - -- MeO 
OH 

(111) (112) (108) 

OH Meoxy) MeoXX) 

~* 
W- I 

H02c0 -
- ~O C02H - ----.. MeD '. 

OH 0 
OR 

(113) (114) (109) 

Scheme 26 

It was proposed by Lee41 that this approach allowed complete stereocontrol of the 

quaternary carbon centre in the cyclisation step by approach of the aromatic ring at the 

side opposite to the lactone substituent. 
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A route to (±)-neuvamine (118) was devised by VaIencia42 whereby compound (115) 

underwent acid catalysed cyclisation to (117) via the N-acyliminiurn intermediate (116). 

The cation (117) suffered facile decarboxylation to yield the isoindoloisoquinoline (118) 

(Scbeme 27). 

~ 0 
<0 ~ I ") r.N+ 

0 
if HOOC 0 

• 
OMe OMe 

OMe OMe 

(115) (116) 

! (0 

0 

Me 0 

OMe 
OMe 

(118) OMe 
(117) 

Scheme 27 

1.8.2 Indole as a n-Nucleophile 

In an asymmetric variation on the intramolecular amidoaIkylation reaction, Heaney43 has 

reported a route to the heterocycJic system (121) (Scbeme 28) utilising indole as an 

intramolecular 7t-nucJeophile. 
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oc;C02Me 

:::,... I OMe 

OMe 
Me 

(119) 

SC(OTt)3 j -MeOH 
5mol% 

SC(OTt)3 
5mol% 

• 

Sc(OTi)) 
5mol% 

-MeOH 

-If' 
• 

Scheme 28 

C02Et 

OMe HNBC0
2
Me 

Me _ 

~ g 

(121) 

Addition of2-(1,1-dimethoxyethyl)benzoate (119) to the ethyl ester of tryptamine (120) 

with catalytic scandium triflate resulted in the cascade reaction. The product (121) was 

isolated as a single diastereoisomer in an overall yield of 36%. 

Abelman44 has used N-acyliminium ions to access natural product-like heterocyclic 

systems. An aza_annulation4547 between the f3-enamino ester of tryptamine (122) and 
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acryloyl (123), crotonyl (124) or methallyl chloride (125) generated the intermediate 

(126) (Scheme 29). 

(122) (123) RI =H, R2 =H 
(124) RI = Me, R2 = H 
(125) RI = H, R2 = Me 

Scheme 29 

3h 
.. 

1 

(126) 

The intermediate (126) proceeded to cyclise and the tetracyclic system (127) was obtained 

(Scheme 30). 
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• 

(126) 

1 

• 

(127) 

Scheme 30 

N-[2-(3-Indolyl)ethyl]imides (130) have been employed by Lete48 in N-acyliminiurn ion 

studies. Acylation of tryptamine (128) with a cyclic anhydride (129) produced the imides 

(130a-c) (Scheme 31). 

O:J'NH
2 

N 
H 

(128) 

I °VO 
(130a) 81% (130b) 61% (130c) 51% 

Scheme 31 
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The imide (133) was synthesised by a Mitsunobu reaction49
-
s1 of (131) with phthalimide 

(132) (Scheme 32). 

Q)'OH 
~ 

,{:O 
o r:-rrN 0 

(132) V'--.. .. ':A.d.. 
----~~---. N 0 

PPh3, DEAD H ,p" I 
72% ~ 

(131) (133) 

Scheme 32 

Nucleophilic addition was observed when (130a-c) and (133) were subjected to MeLi or 

n-BuLi. The addition afforded the oxo-amide (134) or corresponding hydroxylactam 

(135). The N-acyliminium ion precursors (134) and (135) were treated with trifluoroacetic 

acid which promoted cyclisation and produced (136) (Scheme 33). 

(134) 

jl 

O:f:'~OH 

Introduction 

H 

R=Me,n-Bu 

(135) 

TFA 

Scheme 33 
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In order to achieve an asymmetric synthesis of a fused ~-carboline such as (138), the 

tandem organolithium addition-N-acyliminium ion cyclisation was applied to (137) 

(Scheme 34). 

(137) 

MeLi 

THF, -78°e 
64% 

(139) 

• 

Scheme 34 

OSiPhiBu 

(138) 

The intramolecular a-amidoaIkylation reaction was stereoselective and (138) was 

obtained as a single 5,11 b-trans diastereoisomer; the corresponding cis diastereoisomer 

was not detected. The stereochemical outcome is consistent with a chair-like transition 

state (139).48 

1.8.3 Thiophene as a n-Nucleophile 

A stereoselective approach to the diisoindolothieno[2,4]di~epine (142) from the 

hydroxylactam (140) has been reported by Decroix52 (Scheme 35). Treatment of (140) 

with trifluoroacetic acid effected cyclisation via the N-acyliminiurn ion (141). 
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# TFA W ~ OH • • H N 
N rt 

~ 0 H 0 

(140) (141) (142) 

Scheme 35 

1.8.4 Pyridine as a n-Nucleophile 

Padwa53 has reported the intramolecular cationic It-cyclisation of pyridines of type (143) 

with tethered N-acyliminium ions (Figure 14). 

o 

R 

R = Donor Group 

(143) 

Figure 14 

Attempts to cyclise the ethoxylactam (144) using a variety of Lewis acids such as 

BF3.0Et2, TiC4 and SnCI4 resulted in the recovery of starting material or decomposition 

products (Scheme 36). The synthesis of (145) was achieved by refluxing (144) in benzene 

with a catalytic amount of p-toluenesulfonic acid. 
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o OEI 

MeoA~~ r; ~ 
o _ 

p-TsOH 
• o 

(144) 

Scheme 36 

1.8.5 Furan as a n-Nucleophile 

Furan-terrninated N-acyliminium ion initiated cyclisations have been extensively 

investigated by Tanis.54 Spirocyc1ic and linearly-fused compounds such as (147) and 

(149) were generated from the relevant N-acyliminium ion precursor (146) or (148) 

(Figure 15). 

OH 

o 

(146) 

~( O~ 
(148) 

• 

o 
(147) 

• 

o 
(149) 

Figure 15 

In order to show the validity of this chemistry, the natural products 

perhydrohistrionicotoxin (150) and epilupinine (151) were synthesised (Figure 16). 
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. 

(150) (151) 

Figure 16 

The N-acyliminium ion precursor (152) used in the synthesis of perhydrohistrionicotoxin 

(150) was treated with formic acid, which facilitated cyclisation to yield the trisubstituted 

furan (153) (Scheme 37). Oxidative cleavage (m-CPBA) and catalytic hydrogenation 

afforded (154) which was subjected to selective thioketalisation. The target compound 

(150) was isolated after desulfurisation (Raney nickel) of (155). 

• 

(152) (153) 

(150) 

Scheme 37 

Introduction 

i .):....m_-C_P_B ..... A~ - • 0 
ii) H2, Pd/C 

• 

70% 

(154) 

TMSS(CH2hSTMS J 
TMSOTf 

67% 

Ra-Ni 

EtOH, /!. 
78% 

(155) 
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Epilupinine (151) was synthesised using the reaction sequence outlined in Scheme 38. 

Cyclisation of compound (156) yielded (157) and under kinetic ketalisation the ring ketal 

(158) was selectively formed. The latter compound was converted to the acetate (159) and 

subjected to a transketalisation. The target compound (151) was obtained from the 

thioketal (160) by a Raney nickellLiAI~ reduction sequence. 

1.8.6 Miscellaneous 7t-Nucleophiles 

Ajmalicine (161)ss.s9 (Figure 17) is a heteroyohimbine alkaloid isolated from the roots of 

Catharanthus roseusS5 and has a multitude of important pharmacological properties 

(Section 1.11). 
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Me02C 

(161) 

Figure 17 

The synthetic approach used by Ovennan55 to synthesise ajmalicine (161) incorporated a 

carboxylate-tenninated N-acyliminium bicyclisation, which assembled the D and E rings 

in a single step (Scheme 39). Treatment of the carboxylate (162) with parafonnaldehyde 

in trifluoroacetic acid-chloroform cleaved the 2,4-dimethoxybenzyl protecting group and 

effected bicyclisation to yield (163) via the intennediate (164). 

cd:! ~ h ~f O~02Li 
H 

Ar = 2,4-dimethoxyphenyJ 

(162) 

__ (_CH-,2;...O_)n __ ~NH om. : H re 
TFA-CHCJ3 (1:1) ~_) O~ 

rt, 85% Tt :: 
H 0 

(163) 

/ 

(164) 

Scheme 39 

The fmal steps in the synthesis involved a Bischler-Napieralski4
•
s cyclisation of (165) 

followed by the direct reduction of the pentacyclic iminium ion product. This produced 
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the target compound (161) in 11 steps (overall yield of 7%) (Scheme 40). 

~N 
H 

i) POCI3• C6H6 
N 0 • 
H ii) NaBH4• MeOH 

Me02C 
Me02 

(165) (161) 

Scheme 40 

Pyrrolizidine derivatives such as (169) have been generated by Chamberlin60 

(Scheme 41). The mesylate (166) underwent elimination to the N-acyliminium ion (167) 

followed by cationic cycJisation and proton loss from (168). 

A~ 

• fo(iO 
(166) (167) 

l~ 
s 

• 

(169) (168) 

Scheme 41 
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The natural product, (+)-heliotridine (170) was synthesised after acetate cleavage of(169) 

(Scheme 42). 

(169) 

MeOH 
64% 

s(') 
s 

o 

Scheme 42 

LDA-HMPT 

MeOH 
80% 

o 

i) HgCI2, CH3CN J 
H20, CaC03 64% 

ii) LiAIH4' lHF, l! 

Daich61 has examined the use of sulfur as an intramolecular nucleophile to access 

pyrrolo[I,3]benzothiazines (175) and isoindolo[I,3]benzothiazines (176) (Scheme 43). 

0 

N'f--X 
0 

cc.-z (C+)( OCr* TFA 
~I II • • 

.0 sAl ~ SH rt S x 
I I 
Bn Bn 

(171) X-X = CHr CH2 (173) (175)67% 
(172) X-X = Benzene (174) (176) 85% 

Scheme 43 

The compounds (171) or (172) were subjected to an acidic medium which promoted 

cycJisation via (173) or (174), followed by the loss of a stable benzylic carbocation from 
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the relevant sulfonium ion. The stability of the carbocation and the high nucIeophilicity of 

the sulfur atom would favour the cycIisation process. 

Park62 has investigated the N-acyliminium ion cyclisation of imidazole containing 

compounds bearing both carbon and nitrogen nucleophiles. The imidazole alkaloids 

(±)-glochidine (180) and (±)-g1ochidicine (181) became target compounds for the 

research. It was determined that by heating with or without an acid catalyst, the 

cycIisation pathway of (178) and (179) could be controlled (Scheme 44). 

(177) 

• 

H 0Y\ 
{J:f-c6H13 

N 

(178) 
+ 

TIIF 

~~~r'H' 
PhMe;/ 

Scheme 44 

(179) 

J 
p-TsOH 
xylene, !1 

(181) 

Grignard addition of hexylmagnesium bromide to (177) generated a mixture of (178) and 

(179). Since cyclisation of these compounds would yield the same product, additional 

purification was not required. The crude mixture was refluxed in toluene and afforded 

(±)-glochidine (180). Alternatively, cyclisation of the same crude mixture with catalytic 

p-toluenesulfonic acid in refluxing xylene yielded (±)-glochidicine (181). 
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1.9 Intermolecular Amidoalkylations 

Intennolecular amidoalkylations are common in the literature and a few examples of this 

reaction type have been described in order to illustrate their existence. 

The N-acyliminium ion (183) can be generated from the electrochemically prepared21 .23 

a-methoxylated carbamate (182) (Scheme 45). It has been shown by Wistrand63 that the 

product (184) can be obtained by reaction of (183) with Me3SiCN. The stereoselectivity 

of (184) was controlled (cis:trans varying from 86:14 to 42:58) by altering the oxygen 

protecting group. 

R=Ac, TBDMS 

(182) 

Lewis 

Acid 
• 

(183) 

Scheme 45 

RC? 

NC):) 
I 
C02Me 

(184) 

-----.. or 
or Allyl-TMS 

RC? 

~ 
~ 
C02Me 

(185) 

Related work by Wistrand64 achieved the introduction of a carbon chain to (183) by using 

allyl trimethylsilane in place of Me3SiCN and compounds such as (185) were generated 

(Scheme 45). Stereoselective control was again achieved by altering the oxygen 

protecting group (Table 3). 
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Protecting Group (R) LewisAcid Temperature ("C) Ratio (cis:trans) 

Ac BF3.0Et2 20 20:80 

Ac BF3.OEt2 -78 21:79 

TBDMS TiCl4 20 22:78 

TBDMS BF3.0Et2 20 69:31 

TBDMS BF3.OEt2 -78 77:23 

Table 3 

Only small effects on the stereoselectivity were observed when the temperature and Lewis 

acid were altered. 

Koizumi65 has investigated the alkylation of the ethoxylactam (186) (Scheme 46). The 

(±}-allylated lactam (187) was obtained from treatment of (186) with TiCl4 in conjunction 

with allyl trimethylsilane. It was found that alternative Lewis acids such as BF3.0Et2 and 

SnC4 were less effective. 

TiCI4, Allyl-lMS 
• 

CH2CI,O°C 

EtO 
I h,96% 

(186) (187) 

Scheme 46 
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1.10 The Indole Moiety 

A large proportion of the current work in the Allin research group incorporates the indole 

moiety in intramolecular 1t-nuc1eophile amidoalkylations. This section provides an insight 

into specific aspects of indole. 

1.10.1 Electrophilic Substitution oflndole 

As an electron-rich heterocyc1e, indole readily undergoes electrophilic substitution and 

reacts preferentially at the C-3 position with almost all reagents. Halogenation, nitration, 

sulfonation, Friedel-Crafts acylation and alkylation all occur cleanly at this position.66
,67 

Electrophilic substitution at C-2 (Figure 18) results in disruption of the benzenoid ring as 

in (188). This is therefore a high-energy intermediate and the pathway is slower because 

the first step is rate determining. 

• OJ-N E 
H 

• ili-N E 
H+ 

-w 

(188) 

Figure 18 

In contrast, the C-3 selectivity shown in Figure 19 is in accordance with electrophilic 

substitution occurring at the site of highest electron density (189) and does not disturb the 

aromaticity of the benzene ring. In essence, indole tends to react like an enamine towards 

electrophiles with substitution occurring at the C-3 position, although substitution occurs 

at C-2 when C-3 is blocked.66 
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O:JJ+ E QjE QjH -H+ 

" • 
N ~+ N H H 

(189) 

Figure 19 

A mechanism for the formation of 2,3-disubstituted indoles such as (191) from (190) 

(Scheme 47) has been proposed whereby aromatic stability is not destroyed. A labelling 

study has added credibility to this hypothesis.66 

~ 
(190) 

Scheme 47 

• QD 
~ 

(191) 

If compound (190) is labelled with tritium next to the ring generating (192), the reaction 

shown in Scheme 48 produces (193) with an equal distribution of the label. 

50% 

BF3 r=\.---/\ 
--" ~ __ )L.I 

~ 50% 

(193) 

Scheme 48 

To give this result the reaction must have a symmetrical intermediate and the obvious 

candidate is (194) (Figure 20). 
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Figure 20 

The intennediate (194) has the five membered ring at right angles to the indole with either 

CH2 group having an equal opportunity to migrate. A feasible mechanism for the 

conversion of (190) to (191) is shovvn in Scheme 49. 

• • 

(190) 

O:D 
N 

• 
H 

(191) 

Scheme 49 

The migration is a pinacol-like rearrangement and it is now thought that most 

substitutions at C-2 go by this migration route although some go by direct attack with 

disruption of the benzene ring.66 

1.10.2 Indole Alkaloid Systems from a Spiro Intermediate 

Three major classes of indole alkaloids could arise from the spiro intennediate (195): 

(196) by hydration and oxidation, (197) by rearrangement and (198) by nucleophilic 

attack on C-2 of the indole system (Figure 21).68 
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,------

(196) 

--------------......... 

h
N+ 
H 

(195) 

(197) 

Figure 21 

(198) 

1.11 The Indolo[2,3-a]quinolizidine Ring System 

The indolo[2,3-a ]quinolizidine ring system (199) (Figure 22) is found in the carbon 

skeleton of a plethora of indole alkaloids and such compounds have emerged as viable 

targets during the development of novel methodology in our research group. 

(199) 

Figure 22 

Indole alkaloids that possess the indolo[2,3-a]quinolizidine ring system (199) include 

ajmalicine (161),55-59 geissoschizine (200),3.69-77 dihydrogambirtannine (201)/8-81 

demethoxycarbonyldihydrogambirtannine (202),81 tangutorine (203)82-86 and deplancheine 

(204)87-95 (Figure 23). 
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(161) (200) 

(203) 

Figure 23 

(201) R = C02Me 
(202)R=H 

(204) 

These natural products have been the subject of extensive chemical and synthetic 

investigations due to their important and interesting structural, physiological and 

biological properties. 

Ajmalicine (also called raubasine or 3-yohimbine) (161) belongs to the heteroyohimbine 

family of indole alkaloids. It is a potent peripheral and central vasodilating agent, reduces 

platelet aggregation in patients at risk due to complications of atherosclerosis, can 

increase muscle calibre for short periods and has been prescribed for the treatment of 

Raynaud's disease.55•58 

Due to the structural complexity and the scarce availability from natural sources of 

geissoschizine (200), there have been numerous syntheses of this natural product, The 

first total synthesis of (±)-geissoschizine was by van Tamelen69 and an enantioselective 

approach has been achieved by Overman/o Cook71 and Martin.72 

An important consideration in the total synthesis of geissoschizine (200) is the 

stereoselective introduction of the (E)-ethylidene unit,73 This matter has been successfully 
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achieved by metal catalysed cyclisations of geometrically defined alkenyl iodides (205)71 

and the stereoselective base-induced ~-elimination of ~-hydroxy carbonyls (206)72 or 

hydropyrans (207)74 (Scheme 50). 

(205) 

I Pd(OAch, PPh3 
DMFIH20, 9:1 

HC02Na, 62°C, 93% 

RI 

R~.~ H" 

1""<'::: 

C02Me 

(206) 

I NaOMe, MeOH 
rt,85% 

RI 
I 

:~" .. N 0 
" ""<'::: 

H" 

H02C 

Scheme 50 

(207) 

I NaNH2, THF 
It, 2.5 h, 96% 

OH 

Dihydrogambirtannine (201) is an alkaloid initially extracted from the leaves and stems of 

Rubiacea Uncaria gambier, a tree growing in Southeast Asia.78
•
81 The structura1ly related 

demethoxycarbonyldihydrogambirtannine (202) was isolated from the leaves of Ochrosia 

lifoana and Ochrosia miana and represents the major alkaloid of the fruits of Strychnos 

usambarensis, a plant found in Africa. Consumption of this fruit has been blamed for 

outbreaks of poisoning. 81 

The initial isolation of tangutorine (203) from the leaves of Nitraria tangutorum was 

reported by Che.82 To date, this compound is the only known natural product containing 

the benz[/]indolo[2,3-a]quinolizidine unit.84-86 
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1.12 Synthetic Target: (R)-(+)-Deplancheine 

The indole alkaloid, (R)-( + )-deplancheine (204) became the synthetic target during the 

course of the research. 

(R)-(+)-Deplancheine (204) was isolated from the New Caledonian plant Alstonia 

deplanchel-87 and initially assigned the S configuration (based on an analogy with the 

majority of indole alkaloids).88 After its structural elucidation a number oftotaI syntheses 

were reported.89.93 Its absolute configuration was never questioned as these synthetic 

approaches led to (±)-deplancheine (208) (Figure 24). 

(208) 

Figure 24 

During the asymmetric synthesis of (8)-(-)-deplancheine by Meyers,88 it was concluded 

that the original assignment was incorrect and that natural deplancheine possesses the 

R configuration. 

The most recent synthesis of (±)-deplancheine (208) (Figure 24) (overall yield of 11 %) 

was by Ohsawa.9S The compound (209) was converted to (210) and the resultant terminal 

hydroxyl group was subjected to a sequence of transformations (passing through the 

tosyloxy (211) and iodo (212» to produce the diethylphosphoryl compound (213). 

Starting material was recovered after direct attempts to transform (211) to (213) 

(Scheme 51). 
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i) BH3, THF, rt, 1.5 h 

(214) 

o 
11 
P(OEt)2 

j LDA, THF 
-78°C, I h 

61% 

(215) 

o 
11 
P(OEt)2 

• 

ii) NaOH, H20 2 
rt, 0.5 h, 78% 

• 

T Cl ·d· ( (210) RI = OH s ,pyn me 
CH2CI2, rt, 5 h, 81 % 

( 

(211) RI = OTs 
NaI, acetone, rt 

24 h, 95% 

i)KH, THF 
5 min 

ii) PhS02CI 
O°C, 30 min 

97% 

lBAF, THF 

80°C, 1.5 h 
89% 

• 

Scheme 51 

(212) RI = I 

j P(OEtn, xylene 
160°C, 4.5 h, 74% 

(213) 

(216) 

o 
11 
P(OEth 

ft 
P(OEth 

Attempts to synthesise (216) by ring closure of (213) with lithium diisopropylamide 

(LDA) were unsuccessful and starting material was recovered. It was proposed that the 

inertness was due to the free indole NH. The intermediate (213) was converted to (214) 

using potassium hydride and phenylsulfonyl chloride. Treatment of the latter compound 
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with LDA produced (215) which was deprotected using a method developed by Yasuhara 

and Sakamoto.96 

A two step literature procedure developed by Danieli91 was used to complete the synthesis 

of (±)-deplancheine (208). The compound (216) was converted to (217) and the final step 

was the selective reduction of the lactam carbonyl group (Scheme 52). 

(216) 

Introduction 

i)NaH,DME 
5 min, O°C 

ii) MeCHO, DME 
10 min, rt, 83% 

Scheme 52 

(217) 

LiAIH4 DME j 
-78°C io O°C 
30min, 65% 

(208) 
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~--------------------------------.......... 
2.1 Preliminary Investigations Using N-Acyliminium Ions 

It was proposed by Allin that a suitably substituted bicyclic or tricyciic lactam could act 

as a precursor in an asymmetric approach towards isoquinoline and indole alkaloid 

systems such as (218), (219) and (220) (Figure 25). 

(218) (219) . (220) 

Figure 25 

2.1.1 Retrosynthetic Analysis 

;. { 
x = Lewis Acid or H 

(221) (222) (223) 

II 

{~OH + )loMe 
)l ·~H2 ~ 

o 
;. {):>& 

Scheme 53 
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Isoquinoline and indole alkaloids share the common feature of a substituted piperidine 

unit with a chiral centre. In both instances, one of the substituents at the chiral centre is an 

aromatic nucleus such as benzene or indole. An approach to access the model system 

(221) is outlined in Scheme 53 and has become the prominent method used in this 

research. The key step is the asymmetric cyclisation of the aromatic nucleus via the 

N-acyliminium species (223). Conversion of (222) to (221) could be achieved by an 

oxidation and decarbonylation sequence to remove the hydroxymethyl substituent 

(auxiliary) followed by lactarn reduction. 

An alternative method to that shown in Scheme 53 has been used by Allin97
-99 to access 

similar systems to (222) using N-acyliminium species and relates to work by Speckamp27 

(Section 1.5, Scheme 12). An example of this approach is shown Section 2.1.3, 

Scheme 56. 

2.1.2 Generation of Amino Alcohols from Amino Acids 

There are a number of methods available for the reduction of amino acids to amino 

alcohols. Reagents used to effect this transformation include LiAl14,100.102 a mixture of 

NaB14 and H2S04103,104 or NaB14 and h.105,106 

GiannislO7 has developed an effectivereductive procedure for a range of amino acids 

using lithium borohydride and chlorotrimethylsilane in dry THF. Reduction of 

L-phenylalanine (224) using this approach generated (2S)-2-amino-3-phenylpropan-l-ol 

(71) (Scheme 54). It was evident from the IH NMR spectrum of the crude reaction 

mixture that clean conversion of (224) to (71) had occurred. 

The compound (71) was generated in near quantitative yield after purification by 

recrysta\lisation. Initial reactions were performed on 1 g of (224) and successfully scaled

up to 5 g without significant loss in yield. It was proposed 107 that a borane-THF complex 
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is produced in situ which acts as the reducing agent (Scheme 54). Care was necessary 

when conducting the reduction due to the rapid fonnation of the volatile silane, Me3SiH. 

~COOH o ~H2 
(224) 

THF,24h 
95% 

Scheme 54 

~OH 
V ~H2 

(71) 

An analogous reaction was used to synthesise the amino alcohol (226) from L-tryptophan 

(225) (Scheme 55). The product (2S)-2-amino-3-(lH-indol-3-yl)propan-l-ol (226) was 

obtained in high yields following purification. Initial reactions were perfonned on 1 g of 

(225) and successfully scaled-up to 5 g without significant loss in yield. It was evident 

from the 'H NMR spectrum of the crude reaction mixture that clean conversion of (225) 

to (226) had occurred. Care was required when the reduction was conducted due to the 

rapid fonnation of the volatile silane, Me3SiH. 

N 
H 

(225) 

LiBH4, Me3SiCI 

THF,24h 
77% 

Scheme 55 

• 

(226) 

In contrast to (71) the amino alcohol (226) was a foam which could not be induced to 

crystallise. Attempts to purify the latter by flash column chromatography on silica were 

successful when a polar solvent system was employed. 
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2.1.3 Intramolecular Cyclisation with Benzene as a x-Nucleophile 

A short reaction sequence (Scheme 56) conducted in tandem with a colleague98 was used 

to generate the cyc1ised product (231) and acted as an experimental introduction to the 

concept of N-acyliminium ion cyclisations. 

Condensation of the amino alcohol (71) and succinic anhydride (227) furnished (228) 

which on addition of a hydride source in ethanol produced the ethoxylactam (229). 

Treatment of (229) with TiCI4 generated the product (231) as a single diastereoisomer. 

Presumably, cyclisation to yield (231) proceeded via the N-acyliminium ion intermediate 

(230). 

(),(,OH 9 ~ NH2 

(71) Et3N,PhMe 
~ " + • HO .~, 

O~O 
Ll, 18 h, -H2O 

O~O 85% 

(227) (228) 

Yield (2 steps) = 79% 

(231) 

Scheme 56 
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• 

9 
HO/'(" 

EtO~O 

NaB~,EtOH 
• 

2MHCI,20h 

(229) 

TiCI4, CH2CI2 j 
_78°C to rt, 20 h 

9 
~ " 

HO I': 
(:;0 
(230) 
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An NOE study was undertaken to detennine the relative stereochemistry of the product 

(231). The absence of an NOE between the protons positioned at C-5 and C-IOb 

suggested that the relative stereochemistry is as shown in Scheme 56. The proposed 

stereochemistry can be criticised in respect that the absence of an NOE is inconclusive. A 

negative NOE is only valid if paired with a positive NOE in a comparative study. The 

first example of such a study is shown in Section 2.2. 

The stereochemical ambiguity could be overcome by epimerising the chiral centre of 

(231) at C-IOb (Figure 26). The epimerised product (232) could then be used in a 

comparative NOE study. This proposal is feasible as analogous compounds such as (219) 

can be readily epimerised at C-12b with retention of stereochemistry at C-6 (Section 2.7, 

Scheme 83). 

(231) (232) (219) 

Figure 26 

Based on work shown in Section 2.7, Scheme 84, the use ofD-phenylalaninol (73) as a 

starting material would generate (233) (Figure 27). An absence of an NOE between the 

protons positioned at C-5 and C-IOb would also be observed for (233) and not contribute 

to the stereochemical detennination of (231). 

(233) 

Figure 27 
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2.1.4 Intramolecular Cyclisation with Indole as a 1t-Nucleophile 

Similar cyclisations to those outlined in Scheme 56 have been successfully conducted by 

a colleague99 where the intramolecular nucleophile is indole rather than benzene. This 

approach has enabled the synthesis of indolizino[8,7-b]indole derivatives such as (234) 

(Figure 28). 

o 

NHCbz 

(234) (235) 

Figure 28 

Functionalised templates such as (235) display high binding affinity and selectivity for 

cholecystokinin - type 1 (CCK1) receptors. IOS
•
I09 

The CCK and gastrin families of peptides act as honnones and neuropeptides on central 

and peripheral CCK receptors to mediate secretion and motility in the gastrointestinal 

tract in the physiological response to a meal. CCK and its receptors are widely distributed 

in the central nervous system (CNS) and contribute to the regulation of satiety, anxiety, 

analgesia and dopamine-mediated behaviour. In humans, CCK occurs as COOH-terminal 

amidated 58- and 8-amino acid major fonns processed from a l1S-amino acid 

preprohonnone. lOs 

Although the wide distribution, myriad number of functions and reported 

phannacological heterogeneity of CCK receptors would suggest a large number of 
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receptor sub-types, the application of modem molecular biological techniques has 

identified two CCK receptors, CCK1 and CCK2 that mediate the actions of CCK and 

gastrin; gastrin receptors have been found to be identical to CCK2 receptors. CCKl 

receptors are predominantly found in the gastrointestinal system and select areas of the 

CNS whereas CCK2 receptors are found predominantly in the CNS and select areas of the 

gastrointestinal system. IOS
•
HO 

It was envisaged that the chemistry used to synthesise the cyclised products (231) and 

(234) could also be applied to the synthesis of the indolo[2,3-a ]quinolizidine derivative 

(219) (Scheme 57) prior to removal of the hydroxymethyl (auxiliary) and lactam 

reduction. 

Condensation of (2S)-2-amino-3-(lH-indol-3-yl)propan-l-ol (226) with glutaric 

anhydride (236) produced an extremely complex IH NMR spectrum of the crude reaction 

mixture. There was no evidence of the expected product (237) or starting material. 

OH 

~ 
~ ~ 

PhMe, Et3N ~ 0 

+ >( • 
18 h, &, -H2O 

CO 0 

(226) (236) (237) 

!! 

(219) 

Scheme 57 
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Meyers28 has reported similar findings for the condensation of (S)-valinol (239) with 

glutaric (236) or maleic anhydride (240) by two alternative methods (Scheme 58). The - . 

use of either anhydride gave a poor yield of the glutarimide (238) (21 %) or maleimide 

(241) (20%) and it was reported that both reactions were accompanied with extensive 

polymerisation. 

C 2l0°C,4h 
OHO -H20, 21% 

(238) (239) (241) 

Scheme 58 

Interestingly, Naitolll observed the formation of the carboxylic acid (243) when (242) 

was refluxed with (236). The desired chiral imide (244) was generated by refluxing (243) 

. with acetyl chloride (Scheme 59). This recently obtained literature could instigate further 

investigations for the synthetic approach outlined in Scheme 57. 

Q 
~ QMe QMe 0 

(236) AcCl Me • 

~ 
• -

PhMe,d PhMe,d °Do H2N 6h OH 5h 

0 
Yield (2 steps) = 93% 

(242) (243) (244) 

Scheme 59 
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2.2 Synthesis and Cyclisation of Tricyclic Lactams 

It has been shownll2 that the tricyclic lactam (246) can be readily synthesised from 

condensation of (2S)-2-amino-3-phenylpropan-l-ol (71) with 2-acetylbenzoic acid (245) 

(Scheme 60). Activation of the lactam (246) with TiCl4 generated the cyclised product as 

a single diastereoisomer (247). 

(71) 

(X
C02H 

+ I 
:::,... 

COMe 

(245) 

a 

PhMe,d. < ) \. }-() 
48 h, -H20 XNJ<::: 

H- La ""Me 

(246) 

J 
_78°C to rt 

20h 

(247) 

Scheme 60 

There are several methods in the literature I 13·122 for the synthesis of J3-carboline 

derivatives similar in structure to (121)43 (Figure 29). 
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(121) 

Figure 29 

A recent approach has been developed by Griggll3 which incorporated a sequential 

Pictet-Spengler6-11/palladium catalysed carbonylation sequence (Scheme 61). The 

cyclisation of imine (248) proceeded in a catalytic quantity of p-toluenesulfonic acid. The 

compound (249) was subjected to a palladium catalysed carbonylation and produced the 

I}-carboline derivative (250). 

(248) 

Results and Discussion 

p-TsOH 

PhMe 
!1,81% 

• 

(249) 

Pd(OAcn, PPh3, Et3. NI 
PhMe, co, 40-IIO·C 

93% 

(250) 

Scheme 61 
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In order to investigate the indole moiety as an intramolecular It-nucleophile, the tricyclic 

lactam (251) was prepared (Scheme 62). Equimolar quantities of the amino alcohol (226) 

and 2-acetylbenzoic acid (245) were heated at reflux for 48 h under Dean-Stark 

conditions. This generated the tricyclic lactam (251) as a single diastereoisomer in 68% 

yield. The reaction was routinely conducted on a 5 g scale after optimisation of the 

reaction. 

OH 

+ 0(1 C0
2
H 

~ OMe 

PhMe,t;. 

(226) (245) 

Scheme 62 

• 

o Me iro 
o 

(251) 

The relative stereochemistry of the diastereoisomer (251) was confirmed by single crystal 

X-ray analysis (Figure 30). 

el17l 

OM'} 
HI'} 

Figure 30 

The Lewis acids TiCLt, TMSOTf, BF3.OEh and SnCLt were individually used to promote 

the cyclisation of (251). The diastereoisomers (220) and (252) were generated in a 5:2 

ratio after treatment of the substrate (251) with TiCL. (Scheme 63). Following column 

chromatography on silica, the compounds (220) and (252) were isolated in yields of 62% 

and 24%. Separation of the diastereoisomers by flash column chromatography was 
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problematic as these compounds had extremely similar Rr values. This issue was 

overcome by use of a graduated elution. 

(220) 62% 

o Me ,fro 
o 

(251) 

+ 

(252)24% 

Scheme 63 

When TMSOTf, BF3.0Et2 and SnC4 were used it was evident from the IH and I3C NMR 

spectra of the crude reaction mixture that only one diastereoisomer (220) had formed 

(Table 4). 

Lewis Acid Activator 
Diastereoselectivity(a) 

(220):(252) 

TiC4 5:2 

TMSOTf (220), exclusive 

BF3.0Et2 (220), exclusive 

SnC4 (220), exclusive 

(a)determined by 250 MHz IH NMR spectroscopy 

Table 4 
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A comparative NOE study was undertaken to determine the relative stereochemistry of 

the major (220) and minor (252) diastereoisomers. In the case of the major 

diastereoisomer (220), an NOE was not observed between the proton and methyl group at 

C-3 and C-9b. An NOE was observed between the proton and methyl group at C-3 and 

C-9b for the minor diastereoisomer (252). These results support the proposed structures of 

(220) and (252) shown in Scheme 63. 

The relative stereochemistry of the minor diastereoisomer (252) was confirmed by single 

crystal X-ray analysis (Figure 31). 

Figure 31 

It was expected that on refluxing the amino alcohol (226) with 2-carboxybenzaIdehyde 

(74) in toluene for 48 h under Dean-Stark conditions, a tricyclic lactam would be isolated 

in an analogous manner to the formation of (251) (Scheme 62). The experimental result 

was the direct cyclisation to the major (253) and minor (254) pentacyclic diastereoisomers 

(Scheme 64). The IH NMR spectrum of the crude reaction mixture revealed the presence 

of the diastereoisomers (253) and (254) in a 4:1 ratio. Following column chromatography 

on silica, the compounds (253) and (254) were isolated in yields of 69% and 17%. 

Separation of the diastereoisomers by flash column chromatography was problematic as 
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these compounds had extremely similar Rr values. This issue was overcome by use of a 

graduated elution. 

OH 

~ 
(226) (74) 

PhMe, t1 J 48 h, -H
2
0 4:1 d.r. 

+ 

(253)69% (254) 17% 

Scheme 64 

A comparative NOE study was undertaken to determine the relative stereochemistry of 

the major (253) and minor (254) diastereoisomers. In the case of the major 

diastereoisomer (253), an NOE was observed between the protons at C-3 and C-9b. An 

NOE was not observed between the protons at C-3 and C-9b for the minor 

diastereoisomer (254). These results support the proposed structures of (253) and (254) 

shown in Scheme 64. 

The relative stereochemistry of the major diastereoisomer (253) was confirmed by single 

crystal X-ray analysis (Figure 32). 
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Figure 32 

It should be noted that there is an alternative mechanism to explain the fonnation of the 

diastereoisomers (253) and (254) that avoids the intennediacy of a tricyclic lactam such as 

(251). For example, condensation of the amino alcohol (226) with (74) as shown in 

Scheme 64 could result in compound (255) (Scheme 65), which can then undergo lactam 

fonnation to yield the products (253) and (254).123 

OH 

• + 

(255) (253) (254) 

Scheme 65 

However, to date, there have been no observed intennediates that would support this 

hypothesis. 
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2.3 Synthesis and Cyclisation of Bicyclic Lactams 

Chiral 5,5- or 5,6-bicyclic lactams have been widely utilised in asymmetric synthesis 

(Section 1.6). The application of a fused 5,6-system such as (256) (Figure 33) in an 

N-acyliminium mediated cyclisation reaction to yield ring systems such as (218) and 

(219) is a novel application of these chiral templates. 

R = Ph, Indole 
(256) (218) 

Figure 33 

(219) 

Methyl-5-oxopentanoate (259), a precursor required for the synthesis of bicyclic lactams 

such as (256) was prepared from o-valerolactone (257). The initial step was an acid

catalysed transesterification in methanol (Scheme 66). It has been reported by 

Huckstep124 that the product (258) is normally oxidised without purification in view of the 

ease with which it relactonises; distillation causes extensive relactonisation. The target 

compound (259) was isolated after a pyridinium chlorochromate oxidation of (258). 

0 0 0 

6 MeOH, I:i C: pcc, CH2Cl2 C: • • 
H2S04,5 h 3 h,31-42% 

98% ~o 

(257) (258) (259) 

Scheme 66 
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The PCC oxidation was originally performed following a procedure by Huckstep124 and 

this approach gave poor to adequate yields (31-42%) (Scheme 66). When the reaction 

was performed on a larger scale (>2 g of (258» the yields were further decreased, ranging 

from (14-19%). The Cr(VI) reagent produced a tar which was extracted with difficulty 

and the removal of the toxic and carcinogenic chromium species required time-consuming 

filtration. 

A literature search found a publication by Amat125 that incorporated Celite during a 

pyridinium chlorochromate oxidation of (258) (Scheme 67). The extraction was less 

problematic, time-consuming and more user-friendly as the chromium by-products were 

adsorbed onto the Celite. Extractions with diethyl ether were conducted on the Celite 

residue rather than a viscous tar. The reaction could be scaled-up and was routinely 

conducted on 109 of (258) without a significant decrease in yield. 

0 0 

PCC,CH2CI2 C' C: • 
Celite, 1.5 h 

OH 79% -""::0 

(258) (259) 

Scheme 67 

Conversion of (258) to (259) was also achieved by a Swem oxidation126 (38%) and the 

use ofTPAPINM0127 (44%). 

2.4 The Tetrahydroisoquinoline Ring System 

A suitably substituted 5,6-bicyclic lactam could act as a precursor in an asymmetric 

approach towards a tricyclic tetrahydroisoquinoline system that can be seen as a sub-unit 

(ABC rings) of the protoberbine alkaloids, exemplified by the naturally occurring 

xylopinine (260)128,129 (Figure 34). 
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MeO 

MeO 

(260) 

Figure 34 

Considerable efforts have been expended in the study of these molecules for both their 

synthetic and biological significance. The biological properties attributed to this class of 

alkaloids include anti-microbial, anti-leukaemic, anti-tumour and anti_inflammatory.130,131 

2.4.1 Synthesis of Phenyl Containing 5,6-Bicyclic Lactams 

Equimolar quantities of the amino alcohol (71) and methyl-5-oxopentanoate (259) were 

heated at reflux for 48 h under Dean-Stark conditions (Scheme 68). The IH NMR 

spectrum of the crude reaction mixture revealed the presence of the diastereoisomers 

(261) and (262) in a 4:1 ratio. Following column chromatography on silica, the 

compounds (261) and (262) were isolated in yields of 45% and 9%. Separation of the 

diastereoisomers by flash column chromatography was problematic as these compounds 

had extremely similar Rr values. This issue was overcome by use of a graduated elution. 
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6: 
(71) (259) 

PhMe,~ j 
48 h, -H20 4: 1 d.r. 

-MeOH 

<)H~·<)A2 
H2A ,::; 

"2B 

(261)45% (262) 9% 

Scheme 68 

The relative stereochemistry of the major diastereoisomer (261) was confirmed by an 

NOE experiment. Although no NOE was observed between the protons at C-3 and C-8a, 

the proton at C-3 showed enhancement to H2A but not to H2B. It follows that the 

relationship between the proton at C-3 and H2A must be .syn. An NOE was observed 

between H2A and the proton at C-8a. Thus the relationship between H2A and the proton at 

C-8a must also be syn. Due to an observed NOE between the protons at C-3 and C-8a 

with H2A and not H2B, it can be inferred that the relative stereochemistry for (261) is as 

shown in Scheme 68. 

An NOE experiment could not be performed on the minor diastereoisomer (262) due to 

coincidence of the signals corresponding to the protons at C-3 and C-8a in the lH NMR 

spectrum, 

2.4.2 Synthesis of the Tetrahydroisoquinoline Ring System 

Treatment of the lactam (261) with TiCL! (Scheme 69) generated the cyclised product 
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(218) in 65% yield. It was evident from the IH and l3C NMR spectra of the crude reaction 

mixture that only one diastereoisomer (218) had formed. 

(261) 

-78°C to rt, 20 h 
65% 

Scheme 69 

(218) 

An NOE study was undertaken to determine the relative stereochemistry of the product 

(218). The absence of an NOE between the protons at C-6 and C-llb suggested that the 

relative stereochemistry is as shown in Scheme 69. The proposed stereochemistry can be 

criticised in respect that a negative NOE is inconclusive. A negative NOE is only valid if 

paired with a positive NOE in a comparative study. 

The stereochemical ambiguity could be overcome by epimerising the chiral centre of 

(218) at C-llb (Figure 35). The epimerised product (263) could then be used in a 

comparative NOE study. This proposal is feasible as analogous compounds such as (219) 

(Section 2.7, Scheme 83) can be readily epimerised at C-12b with retention of 

stereochemistry at C-6. 

(218) (263) (219) 

Figure 35 
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2.4.3 Rationale for the Stereochemical Outcome Following Lewis 

Acid Activation 

In order to rationalise the stereochemical outcome of the Lewis acid cyclisation of the 

bicyclic lactam (261), conformational (Felkin_Anh66
,132,133 like) models (Figure 36) have 

been invoked by Allin.97,98 

In conformation A leading to the favoured product (218), the carbonyl moiety is in close 

proximity with the small hydrogen atom at the J3-amino alcohol chira1 centre. The angular 

H-atom at the iminium carbon provides no significant steric bulk to interfere with the 

positioning of the benzyl or Lewis acid-complexed oxymethyl group. In this model, the 

Lewis acid-complexed oxymethyl group is viewed as the larger substituent. 

0 LAO 

~" 
11 

1 
0 

H 
+ O-LA _ hN1"/ = 

R A I H R 
H H 

(264)R= Ph 

! ! 

(218) (265) 

Figure 36 

The alternative conformation B which would result in the minor (unobserved) 

diastereoisomer (265), has the benzyl group positioned as the larger substituent. In this 
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scenario a more unfavourable 1,3-interaction appears to exist between the carbonyl group 

and the bulky Lewis acid-complexed oxymethyl group. 

It was found by a colleague134 that separate treatment of the diastereomeric bicyclic 

lactarns (261) and (262) with TiC4 resulted in the same product diastereoisomer (218). 

This result supports the proposed mechanism since both (261) and (262) would yield an 

identical N-acyliminium intermediate (264) on activation. 

2.5 The Indolo[2,3-a]quinoIizidine Ring System 

The indolo[2,3-a]quinolizidine ring system (199) is of great significance as it shares the 

same heterocyclic skeleton as a plethora of highly bioactive indole alkaloids, exemplified 

by tangutorine (203) and (R)-( + )-deplancheine (204) (Figure 37). 

(199) 

(203) (204) 

Figure 37 

2.5.1 Synthesis of Indole Containing 5,6-Bicyclic Lactams 

Equimolar quantities of the amino alcohol (226) and methyl-5-oxopentanoate (259) were 

heated at reflux for 48 h under Dean-Stark conditions (Scheme 70). The IH NMR 
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spectrum of the crude reaction mixture revealed the presence of the diastereoisomers 

(266) and (267) in a 5:1 ratio. Following column chromatography on silica, the 

compounds (266) and (267) were isolated in yields of 50% and 8%. Separation of the 

diastereoisomers by flash column chromatography was problematic as these compounds 

had extremely similar Rr values. This issue was overcome by use of a graduated elution. 

OH 0 .6.:: 
(259) 

PhMe, I!1j 
48 h, -H20 5:1 d.r. 

-MeOH 

Qf;&. 
N 
H 

(266) 50% 

Scheme 70 

(267) 8% 

A comparative NOE study was undertaken to determine the relative stereochemistry of 

the major (266) and minor (267) diastereoisomers. In the case of the major 

diastereoisomer (266), an NOE was observed between the protons at C-3 and C-8a. An 

NOE was not observed between the protons at C-3 and C-8a for the minor 

diastereoisomer (267). These results support the proposed structures of (266) and (267) 

shown in Scheme 70. 

The relative stereochemistry of the major diastereoisomer (266) was confinned by single 

crystal X-ray analysis (Figure 38). 
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Figure 38 

AmatI3S has conducted work which parallels the results obtained in Scheme 68 and 

Scheme 70. (R)-Phenylglycinol (72) or (S)-vaIinol (239) and methyl-5-oxopentanoate 

(259) were refluxed in toluene with azeotropic removal of water. A 9: 1 mixture of the 

lactams (268) and (269) were obtained, whereas (270) was formed as the sole product 

(Scheme 71). 

Ph"" 
0 

C: H2N OH 

(72) -":::0 

(259) 
or 

-Y; 
PhMe,A 

-H2O 
-MeOH 

H2N OH 

(239) 
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(268) 

• 

(270) 

Scheme 71 

II'H H 

(269) 

9:1 d.r. 
or 

Ph"'h 
°lJ~ 
(not observed) 
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Amatl35 explained the stereochemical outcome by considering lactams (269) and (271) as 

thennodynamically more stable than the corresponding lactams (268) and (270). This 

proposal was experimentally justified as treatment of pure (270) under acidic conditions 

resulted in a 86: 14 mixture of (271) and (270) (Scheme 72). In a similar manner, (269) 

was obtained from (268) after acidic treatment. 

TFA (10 eq) 

CH2CI2, 64 h, rt 
86:14 d.r. 

• 

Scheme 72 

2.5.2 Exception to Baldwin's Rules 

(271) 

During the synthesis of the tricyclic and bicyclic lactams such as (251) and (266) 

(Figure 39) an unfavourable 5-endo-trig cyclisation must take place in accordance with 

Baldwin's rules. 

o Me .tro 
o 

(251) 

Figure 39 

Qf~ 
~ 

(266) 

The fonnation ofa cyclic acetal from ethylene glycol and a carbonyl compound (cations 

frequently disobey Baldwin's rules) also incorporates this process. These rules are only 
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guidelines and when there is no alternative pathway and when a reaction is 

thermodynamically favourable (Baldwin's rules describe the kinetic favourability of a 

reaction), 5-endo-trig reactions can occur.66 

2.5.3 Synthesis of Indolo[2,3-a]quinolizidine Derivatives 

Based on the previously described work on the isoquinoline ring system, the lactams 

(266) and (267), following initial characterisation, were not separated before treatment 

with TiC4 to promote cyclisation (Scheme 73). 

On treatment of the lactam mixture (266) and (267) with TiC4, the IH NMR spectrum of 

the crude reaction mixture revealed the presence of the diastereoisomers (219) and (272) 

in a 5:2 ratio. Following column chromatography on silica, the compounds (219) and 

(272) were isolated in yields of 45% and 17%. Separation of the diastereoisomers by flash 

column chromatography was problematic as these compounds had extremely similar Rr 

values. This issue was overcome by use of a graduated elution. 

O:f~ 
N 

. H 
(266):(267) 5:1 d.r. 

Results and Discussion 

_78°e to rt, 20 h 
5:2 d.r . 

Scheme 73 

(219) 45% 

(272) 17% 
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A comparative NOE study was undertaken to determine the relative stereochemistry of 

the major (219) and minor (272) diastereoisomers. In the case of the major 

diastereoisomer (219), an NOE was not observed between the protons at C-6 and C-12b. 

An NOE was observed between the protons at C-6 and C-12b for the minor 

diastereoisomer (272). These results support the proposed structures of (219) and (272) 

shown in Scheme 73. 

2.5.4 Rationale for the Stereochemical Outcome Following 

Lewis Acid Activation 

The stereochemical outcome of the Lewis acid cyclisation of the bicyclic lactams (266) 

and (267) can be rationalised using the conformational (Felkin_Anh66.132.133 like) models 

shown in Figure 40. These models are based on published material by Allin97
•
98 

(Section 2.4.3) where the Tt-intramolecular nucleophile was benzene. 

In conformation A leading to the favoured product (219), the carbonyl moiety is in close 

proximity with the small hydrogen atom at the ~-amino alcohol chiral centre. The angular 

H-atom at the iminium carbon provides no significant steric bulk to interfere with the 

positioning of the indole or Lewis acid-complexed oxymethyl group. In this model, the 

Lewis acid-complexed oxymethyl group is viewed as the larger substituent. 
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(219) 

Figure 40 

LAO 

It, 
H~ 

I 
H 
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(272) 

If the indole substituent is viewed to be larger than the Lewis acid-complexed oxymethyl 

group then conformation C appears to be the most favourable. This conformation 

orientates indole perpendicular to the carbonyl group and like A will favour 

diastereoisomer (219). The difference between these two conformations is simply rotation 

about the CoN bond. Conformation C may need to assume conformation A in order to 

allow nucleophilic attack by the indole moiety at the iminium carbon. 

An alternative conformation B which would result in the minor diastereoisomer (272) also 

has the indole positioned as the larger substituent. In this scenario a more unfavourable 

1,3-interaction appears to exist between the carbonyl group and the bulky Lewis acid

complexed oxymethyl group. 

The most important feature of the conformations shown in Figure 40 is that the favoured 

product (219) arises when the carbonyl moiety is in close proximity with the small 
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hydrogen atom at the J3-amino alcohol centre rather than a large or medium sized 

substituent. 

In transition state B there is a possibility of chelation between the amide oxygen atom and 

the alkoxy group with a metal counter-ion, to form a seven membered chelate. The Lewis 

acid TiCI4 is capable of multi-point coordination and the level of product 

diastereoselectivity is probably due to an increased contribution of the chelated transition 

state similar in structure to B. 

The product diastereoselectivity (5:2) in favour of the cyclised product (219) was poor 

and therefore an alternative method was examined. An ethanolic 2M HCI solution was 

investigated as aprotic activation source. This ethanolic solution was readily available in 

the Allin group as it was used for procedures such as that shown in Scheme 56. By simply 

subjecting the mixture of bicyclic lactams (266) and (267) to 2M HCI in ethanol, it was 

evident from the IH and I3C NMR spectra of the crude reaction mixture that only one 

diastereoisorner (219) had formed (Scheme 74). 

(0)79 
N 
H 

(266):(267) 5:1 d.r. 

2MHCI,EtOH 

20 b, rt 
95% 

Scheme 74 

• 

(219) 

It was the intention that Lewis acids such as TMSOTf, BF3.0Et2 and SnCI4 would be used 

to activate the diastereomeric mixture of (266) and (267). However, due to the 

consistently high yields, ease of reaction and preference for only one diastereoisomer, 

alternative approaches were not investigated. 
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The purified product (219) was isolated in 95% yield and the relative stereochemistry of 

the single diastereoisomer was determined by single crystal X-ray analysis (Figure 41). 

Figure 41 

The single product diastereoisomer (219) was found to be identical to the major isomer 

favoured in the TiCl4 mediated cyclisation (5:2 ratio of product diastereoisomers (219) 

and (272». 

2.5.5 Rationale for the Stereochemical Outcome Following Acid 

Activation 

In order to rationalise the stereochemical outcome of the cyclisation of bicyclic lactams 

(266) and (267) with 2M HCl in ethanol, conformational (Felkin_Anh66
•
I32

•
133 like) models 

have been invoked (Figure 42). These models are based on published material by 

AJlin97
•
98 (Section 2.4.3) where the intramolecular n-nucJeophile was benzene. 

Conformation A appears to be the most favourable if indole is viewed to be larger than 

the hydroxymethyl group. This conformation orientates indole perpendicular to the 

carbonyl group and like C will favour diastereoisomer (219). The difference between 

these two conformations is simply rotation about the C-N bond. Conformation A may 
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need to assume conformation C in order to allow nucleophilic attack by the indole moiety 

at the iminium carbon. 

The absence of the minor diastereoisomer (272) reinforces the proposal of a chelation 

effect following activation of the bicyclic lactams (266) and (267) with the Lewis acid 

TiC4 (Scheme 73). 

In subsequent acid-catalysed epimerisation (Section 2.7, Scheme 83), the cyclised 

product (219) was completely converted to (272). This would indicate that (219) is the 

kinetic product and the (unobserved) diastereoisomer (272) is not initially formed and 

converted under the conditions shown in Scheme 74. Steric effects appear to be the 

predominant reason for the stereochemical outcome. 
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2.6 Amide Reduction of an Indolo[2,3-a]quinolizidine 

Derivative 

Lenz129 has used two alternative methods to reduce (273): reduction with LiAI~ in 

tetrahydrofuran or Red-AI in benzene. In general, amide reduction with Red-AI gave 

higher yields and cleaner products in comparison to LiAIH4• Reduction of (273) gave the 

naturally occurring xylopinine (260) in 85% yield (Scheme 75). 

MeO 

MeO MeO 
Red-AI 

• 

OMe 

OMe OMe 
(273) (260) 

Scheme 75 

The procedure developed by Lenz129 was used to examine the reduction of the indolo[2,3-

a]quinolizidine derivative (219), with the exception that benzene was replaced by toluene. 

Following optimisation of the reaction the reduced product (274) was readily formed from 

(219) (Scheme 76) in 84% yield. 

o Red-AI, PhMe 
• 

20h,84% 

(219) (274) 

Scheme 76 
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2.7 Epimerisation of Indolo[2,3-a]quinolizidine Derivatives 

Lounasmaal36 has produced an extensive review on the acid-catalysed epimerisation at 

C-3 of the indole alkaloid reserpine (275) to isoreserpine (276) (Scheme 77) and other 

closely related compounds containing the indolo[2,3-a]quinolizidine ring system (199) 

(Figure 43). 

MeO 

• -
OMe OMe 

TMB = 3,4,5-trimethoxybenzoyl 

(275) (276) 

Scheme 77 

(199) 

Figure 43 

Woodwardl37 proposed the epimerisation mechanism outlined in Scheme 78. Protonation 

initially occurs at the ~-position of indole followed by enarnine fonnation to furnish 

(277). The configuration change to generate (279) is achieved by protonation of the 

enarnine (277) and cleavage of a proton from (278). 
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(279) (278) 

Scheme 78 

Experimental evidence for the mechanism outlined in Scheme 78 has been reported by 

Rosentreter.138 It was shown that the vinylogous urethane (280) was epimerised at room 

temperature with trifluoroacetic acid to yield (281) (Scheme 79). When the reaction was 

repeated with deuterated trifluoroacetic acid, deuterium was incorporated at C-12b. 

Ph 

(280) 

C02Et 

TFA 

rt, 1.5 h 
70% 

• 

Scheme 79 

C02Et 

(281) 

Wenkert139 proposed an alternative mechanism (Scheme 80) which involves protonation 

of the non-indolic nitrogen (the most basic site) to produce (282). The C-3 nitrogen bond 

of (282) is cleaved with participation of the indole lone pair giving rise to the intermediate 
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(283). Inversion at C-3 is effected by ring closure of (283) assisted by the nitrogen lone 

pair. 

(283) 

11 

Scheme 80 

COOk140 has observed that when compound (285) was epimerised with deuterated 

trifluoroacetic acid, the corresponding epimer (284) was furnished in high yield but there 

was no incorporation of deuterium at C-l (Scheme 81). When the reaction was repeated 

with TFAlNaBH! the products were (284) and the reduced ring-cleaved intennediate 

(286) in approximately equal quantities. There was no evidence of any starting material 

(285) and a reduction experiment (TF AlNaBH! in CH2Ch) with (284) gave only starting 

material. 

Results and Discussion 83 



COOMe 

• 

(284) 

TFA-d 

(285) 

TFA, NaBH4j 
CH2CI2, rt 

COOMe 

+ 

(284) 

Scheme 81 

COOMe 

COOMe 

(286) 

The fact that there was no incorporation of deuterium dismisses the mechanism outlined 

in Scheme 78. The ring-cleaved intermediate (286) strongly supports the acid-catalysed 

epimerisation mechanism highlighted in Scheme 80. 

A final plausible mechanism involves formation of the intermediate (287) followed by' 

cleavage of the C-2IC-3 bond to yield the iminium species (288) (Scheme 82). Acid

induced recyclisation of the iminium species (288) produces the epimerised product 

(279).136 
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(287) (288) 

11 

Scheme 82 

Gaskell and Joulel41 conducted an experiment to obtain possible mechanistic 

intermediates during the C-3 epimerisation of reserpine (275) (Scheme 77). Reserpine 

(275) was treated with zinc in acetic acid and besides reserpine (275) and isoreserpine 

(276), the product 2,3-secoreserpine (289) (Figure 44) was isolated. 

Results and Discussion 

MeO 

(N1H 
~U Me02C : OTMB 

OMe 

TMB = 3,4,5-trimethoxybenzoyl 
(289) 

Figure 44 
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It was concluded by Gaskell and Joulel41 that the epimerisation reaction occurred via the 

mechanism shown in Scheme 82, the iminium species (290) being the main intermediate 

(Figure 45). 

MeO 

Ri
N

+ 

.~ .. \H 

,\~' 

Me02: : OlMB 

OMe 

TMB = 3,4,5-trimetboxybenzoyl 
(290) 

Figure 45 

From the review by Lounasmaal36 it was concluded that the choice of epimerisation route 

appears to depend on the strength of the acid medium. The behaviour of reserpine (275) 

(Scheme 77) and indolo[2,3-a]quinolizidines (199) (Figure 43) in strong acids, such as 

trifluoroacetic acid, requires additional investigations. It was evident that different 

structural features of the epimerlsed compounds have an effect on the epimerisation 

reaction. Vinylogous urethanes such as (280) (Scheme 79) epimerise relatively fast at 

room temperature, whereas indolo[2,3-a]quinolizidines (199) typically require more 

vigorous conditions. A possible reason for these discrepancies is that the operating 

mechanisms are different. Many questions about the acid-catalysed C-3 epimerisation 

remain unresolved. 

The tetracyclic system (219) was subjected to an acid-catalysed epimerisation and 

following optimisation, the product was isolated as a single diastereoisomer (272) in near 

quantitative yield (Scheme 83). Analysis of the IH NMR spectrum of the crude reaction 

mixture indicated clean conversion of (219) to the epimerised product (272). 
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(219) 

TFA,PhMe 

/).,18h 
97% 

Scheme 83 

• 

(272) 

It has been shown by a colleaguel42 that the cyclic product (292) can be accessed using 

the f3-amino alcohol derivative ofD~tryptophan (291) (Scheme 84). 

OH 0 r OH 

H 
+ 6: • • 

"'='0 

(291) (259) (292) 

Scheme 84 

Either of the approaches shown in Scheme 83 or Scheme 84 improves the longevity and 

potential of the chemistry outlined in this thesis. The stereochemistry at C-I 2b can be 

controlled and used to synthesise the template of a plethora of natural products such as 

ajmalicine (161), geissoschizine (200), dihydrogambirtannine (201) and demethoxy

carbonyldihydrogambirtannine (202) (Figure 46). 
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(161) (200) 

Figure 46 

(201) R = C02Me 
(202)R=H 

2.8 Modification of an Indolo[2,3-a]quinolizidine Derivative 

In these studies the hydroxyl and indole-nitrogen of (219) was protected with benzyl 

groups (Scheme 85) to prevent unwanted side reactions. It is common to find the free 

indole NH of compounds such as indolo[2,3-a]quinolizidines (219) to be protected during 

th . 95 syn etlc sequences. 

The tetracyclic system (219) was treated with NaH and BnBr to form the bis-protected 

compound (293) in 90% yield. 

(219) 

NaH,BnBr 

DMF, 1 h 
90% 

Scheme 85 

• 

Mono-deprotection of the hydroxyl group was achieved by catalytic hydrogenation of 

(293) and the product (294) (Scheme 86) was generated in 87% yield. 
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0 H2, Pd/C 
• 

EtOH,3 h 
87% 

(293) (294) 

Scheme 86 

2.8.1 Functionalisation using Enolate Chemistry 

An enolate alkylation of (293) (Figure 47) using methyl iodide as an electrophile was 

investigated to provide an insight into functionalisation at this position. 

(293) 

Figure 47 

Enolate 
- Alkylation 

To demonstrate the formation of an enolate, the bis-protected compound (293) was 

treated with LDA followed by methyl iodide (Scheme 87). The in situ generation of LDA 

was problematic at the beginning of this investigation but was eventually overcome with 

experience. Formation of the enolate was confirmed by a distinct colour change (the 

yellow solution of (293) in THF changed to dark brown). 

The I H NMR spectrum of the crude reaction mixture revealed the presence of the 

diastereoisomers (295) and (296) in a 3:2 ratio. Following column chromatography on 

silica, the compounds (295) and (296) were isolated in yields of 45% and 27%. Separation 
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of the diastereoisomers by flash column chromatography was problematic as these 

compounds had extremely similar Rr values. This issue was overcome by use of a 

graduated elution. 

(293) 

i) LDA (1.1 eq) j THF, -78°C to rt 
ii) MeI (1.1 eq) 3:2 d.r. 

+ 

(295)45% (296)27% 

Scheme 87 

A comparative NOE study was undertaken to determine the relative stereochemistry of 

the major (295) and minor (296) diastereoisomers. In the case of the major 

diastereoisomer (295), an NOE was observed between the protons at C-3 and C-12b. An 

NOE was not observed between the protons at C-3 and C-12b for the minor 

diastereoisomer (296). These results support the proposed structures of (295) and (296) 

shown in Scheme 87. 

2.8.2 Introduction of an (E)-Ethylidene Unit 

The compound (297) (Figure 48) which possesses an (E)-ethylidene unit as found in 

(R)-( + )-deplancheine (204) became a synthetic focus. 
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(297) (204) 

Figure 48 

During work conducted by Campi,143 piperidinone samples such as (301) were prepared 

from (298) and (299) or (300) by an aldol/dehydration sequence and N-Boc deprotection 

with trifluoroacetic acid (Scheme 88). 

of) 
I 
Boc 

(298) 
+ 

R-Q-CHO 
(299)R=CN 
(300)R=OMe 

(i)LDA 
(ii) MsCl 

(iii)DBN 
(iv) TFA 

Scheme 88 

R 

• 

As a result of the work shown in Scheme 88, the bis-protected compound (293) was 

subjected to the three step sequence shown in Scheme 89: lithium enolate generation and 

subsequent aldol reaction with acetaldehyde to form (302), mesylation of the alcohol 

(302) to produce (303) and elimination to introduce a,~-unsaturation. 
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(293) 

i) lOA (1.1 eq) 
ii) CH3CHO (1.1 eq) 

-78°C to rt 
THF 

• 

MsCl (1.5 eq) 
Et3N (3.0 eq) 
-40°C tort 

CH2Cl2 

(302)R=H 

C (303)R=Ms 

OR 

I DBN (2.0 eq) 
THF, rt, 2 h 

OBn 

Yield (3 steps) = 60% 

(297) 

Scheme 89 

The target compound (297) was isolated as a single diastereoisomer in an overall yield of 

60% from (293). The stereochemistry of the newly formed ethylidene unit was confirmed 

by single crystal X-ray analysis (Figure 49) and found to be as required for 

(R)-( + )-deplancheine (204). 
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Figure 49 

The modified procedure of Lenzl29 which had been used to reduce the indolo[2,3-

a]quinolizidine derivative (219) (Scheme 76) was applied to (297) (Scheme 90). 

Unfortunately, the reduction was unsuccessful and an extremely complex IH NMR 

spectrum of the crude reaction mixture was obtained. There was no evidence of the 

desired product (304) or starting material. An alternative reductive procedure by Meyers88 

was therefore used in subsequent investigations (Section 2.10). 

Red-AI 
)( . 

PhMe, 18 h 

(297) (304) 

Scheme 90 
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2.8.3 Removal of the Hydroxymethyl Substituent 

It is evident from the structure of (R)-( + )-deplancheine (204) that a procedure to remove 

the pendant hydroxymethyl substituent (auxiliary) from the cyclisation product (219) was 

required (Figure 50). 

(204) (219) 

Figure 50 

Krafftl44 has reported that in the presence of Raney nickel in refluxing toluene, primary 

alcohols generate deoxygenated compounds that contain one less carbon. For example, 

heating a toluene solution of (305) with Raney nickel gave rise to (306) in 73% yield 

(Scheme 91). 

o 

Meo~OH 
(305) 

Ra-Ni 

d,PhMe 
3.5 h, 73% 

Scheme 91 

• U Me 
Me~ 

(306) 

KrafftI44 proposed that the dehydroxymethylation procedure involves a reversible 

dehydrogenation (oxidation) of the alcohol to the aldehyde followed by an irreversible 

decarbonylation. 
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Martinl45 has used the methodology developed by KrafftI44 to remove a superfluous 

hydroxymethyl group during the fonnal asymmetric synthesis ofpumiliotoxin 52ID (307) 

(Figure 51). 

., 0 
n-Pr "Me 

(307) 

Figure 51 

Heating a mixture of (308) with Raney nickel (W2)146 in refluxing toluene produced (309) 

in 71 % yield (Scheme 92). 

OH 

_____ ~~~ Mcpe H~PNH Ra-Ni (W2) 
• 

A,PhMe 
4h,71% 

o 
(309) 

Scheme 92 

The quality of the Raney nickel was critical to the successful removal of the pendant 

hydroxymethyl group. The use of commercially available catalyst failed to promote the 

reaction to completion, even after prolonged heating. Alternatively, freshly prepared 

catalystl46 effected the conversion in four hours. 
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On subjecting the indolo[2,3-a]quinoIizidine derivative (219) to the reagents and reaction 

conditions described by Martin 145 only starting material was re-isolated (Scheme 93). 

Unfortunately, additional time and up to a two-fold excess of Raney nickel (W2) did not 

effect the desired transformation of (219) to (310). 

Ra-Ni (W2) 
)( • 

ll, PhMe 
4-72 h 

(219) (310) 

Scheme 93 

Due to the lack of success in removing the pendant hydroxymethyl substituent using 

Raney nickel (W2) an alternative approach was investigated. It was envisaged that (219) 

could be subjected to an oxidation and decarbonylation sequence to remove the 

hydroxymethyl substituent. 

2.8.4 Oxidation Study 

Initial attempts to oxidise the primary alcohol of (219) to the aldehyde (311) with 

commercially available Dess-Martin periodinanel47.148 were successful, although low 

yields were consistently obtained (29-38%) (Scheme 94). 

20h,29-38% 

(219) (311) 

Scheme 94 
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A literature search found publications by Frigerio,149,150 who has investigated 

2-iodoxybenzoic acid (IBX) (312) (Figure 52) in DMSO as a mild oxidant. 

(312) 

Figure 52 

It was reported149 that oxidisable heteroaromatic compounds such as furan, pyridine and 

indole were unaffected during such oxidations. Indoles, in particular those with an 

unsubstituted NH group, are known to be unstable in the presence of oxidising agents. 

Oxidation of indolyl alcohols with IBX does not require protection of the indole NH. The 

use ofIBX in DMSO to oxidise the primary alcohol of (219) was therefore investigated. 

IBX was readily prepared from the inexpensive, commercially available 2-iodobenzoic 

acid (313) and potassium bromate using a preparative procedure reported by Dess and 

Martin147 (Scheme 95). 

~I 

~OOH 
(313) 

-0 
\+/.OH 

KBr03• ~I~ 
H2S04 ~ 

(312) 

Scheme 95 

Oxidation of (219) using IBX generated the aldehyde (311) as a single diastereoisomer in 
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69% yield (Scheme 96). The oxidation was perfonned in an open flask without any 

particular precaution such as an inert atmosphere or dry solvent. The only significant 

problem with this chemistry was the large volume of water required to remove the DMSO 

during work-up. Ethyl acetate and dichloromethane were investigated as alternative 

solvents. However, the compound (219) had poor solubility in these solvents and starting 

material was recovered. 

IBX, DMSO 
• 

20h, 69% 

(219) (311) 

Scheme 96 

Frigerio149 has proposed a mechanism for the oxidation of alcohols such as (314) by IBX 

(312) to produce the aldehyde (315) (Scheme 97). 

-0 
\+/OH 

o;~ 
o 

(312) 
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2.8.5 Decarbonylation Study 

Ohno and Tsuji 151,152 and Walborsky1S3 have decarbonylated aldehydes such as (316) to 

produce (318) (Scheme 98) using tris(triphenylphoshine)rhodium(I) chloride 

(Wilkinson's catalyst)IS4 (317). 

RCHO + 

(316) 

PPh3 
I 

Ph3P-Rh-PPh3 

61 
(317) 

CO 

• RH +. Ph3P-Jh-PPh3 + 

61 
PPh3 

(318) (319) 

Scheme 98 

In addition to (317), bis(triphenylphosphine)rhodium(l) carbonyl chloride (319) is also an 

extremely useful complex for the decarbonylation of aldehydes under mild conditions.1S1 

The compound (319) can be readily prepared in solution by reaction of Wilkinson's 

catalyst (317) with carbon monoxide at room temperature and atmospheric pressure. 

The proposed mechanism1S2 for the decarbonylation of the aldehyde (316) with the 

rhodium complex (319) is shown in Scheme 99. The initial step is the oxidative addition 

of (319) to the aldehyde (316) to form (320). When heated in the absence of carbon 

monoxide, one mole of carbon monoxide is lost to produce (321). The complex (322) is 

generated from (321) and the final step is the regeneration of the catalyst (319) with 

formation of the decarbonylated product (318). 
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CO H H 
I RCO .... I .... PPh. -co I PPh 

RCHO + Ph.P-Rh-PPh3 Rh RCO-Rh/ • 
I DC .... I 'PPh CO I' 
Cl Cl • 

Cl PPh3 

(316) (319) (320) (321) 

11 
co co 

RH 
I R .... I .... PPh3 

+ Ph.P-Rh-PPh. • Rh 
I H"-I .... CI 
Cl PPh3 

(318) (319) (322) 

Scheme 99 

An important component of catalytic decarbonylations is the expulsion of coordinated 

carbon monoxide and regeneration of the active catalyst. Doughty and PignoletlSS have 

examined the decarbonylation of benzaldehyde and heptanaJ with cationic complexes of 

chelating diphosphine ligands. The complexes [Rh(dppe)2]CI (dppe = 1,2-bis(diphenyl

phosphino)ethane) and [Rh(dppp)2JCI (dppp = 1,3-bis(diphenylphosphino)propane) were 

prepared by reaction of (319) with excess diphosphine ligand in toluene. It was proposed 

that such complexes should bind carbon monoxide significantly less than (319) due to a 

decrease in Rh-CO 1t back-bonding. It became apparent that the catalytic activity was 

enhanced for the rhodium complexes with chelated diphosphine ligands, compared to 

those obtained for Wilkinson's catalyst (317). 

In an extension of the work by Doughty and Pignolet,lSS Meyer and KruselS6 found that 

the active catalyst [Rh(dppp)2]Cl could be generated in situ. A near quantitative yield was 

obtained for the conversion of the aldehydes (323) and (324) to (325) and (326) 

(Scheme 100). Reactions of this type were typically complete in 8-16 h and 1-5 mol% of 

(319) was used. 
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N 
H 

CHQ 

(323)R=H 
(324)R=OMe 

Rh(CO)(PPh3)2CI 
(319) 

(1-5 mol%) 

dppp (2.2-11 mol%) 
xylene, A, 8-16 h 

Scheme 100 

N 
H 

(325) R = H (97%) 
(326) R = OMe (96%) 

Use of the catalyst (319) in conjunction with 1,3-bis(diphenylphosphino)propane 

appeared to be a sensible choice to effect the decarbonylation of (311). Initial 

investigations were conducted using 5 mol% of (319) and 11 mol% of 1,3-

bis(diphenylphosphino)propane in p-xylene (Scheme 101). The reaction was monitored 

by TLC and was complete after 96 hours. The lH NMR spectrum of the crude reaction 

mixture suggested complete conversion of (311) to the decarbonylated product (310). 

Q 
H Rh(COXPPh3hCI 

(319) 
(5 mol%) 

• 
dppp (11 mol%) 

p-xylene, A 
96 h, 72% 

(311) (310) 

+ impurity 

Scheme 101 

Attempts were made to purity the product (310) by flash column chromatography and 

preparative TLC. However, the suspected product (310) consistently co-eluted with an 

impurity located between 7.10-7.68 ppm by lH NMR spectroscopy, presumably a 

phosphorous by-product. Varying combinations of mobile phase were investigated but all 

approaches were unsuccessful. 
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During the course of the previously described decarbonylation of (311), a colleaguel57 

was simultaneously investigating and optimising the decarbonylation of the closely 

related indolizino[8, 7 -b ]indole derivative (327) (Figure 53). Variables such as time, 

solvent, quantity of catalyst (319) and the relative proportion of diphosphine ligand were 

investigated. 

(327) 

Figure 53 

As a result of the success attained decarbonylating (327), an alternative procedure to that 

indicated in Scheme 101 was investigated. The solvent p-xylene (137-138°C) was 

replaced with the higher boiling mesitylene (163-165°C) and 10 mol% of the catalyst 

(319) was used without 1,3-bis(diphenylphosphino)propane. The procedure was applied 

to (311) (Scheme 102) and after an unoptimised time of 48 h, the decarbonylated product 

(328) was isolated in 65% yield. Following purification there was no evidence of an 

impurity in the IH NMR spectrum. However, on overcoming the purification issue an 

additional problem was discovered. 

(311) 

Results and Discussion 

Rh(COXPPh3hCl 
(319) 

(10 mol%) 

mesitylene, II 
48 h, 65% 

Scheme 102 

(328) 
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· A single crystal X-ray analysis (Figure 54) was obtained and suggested that during 

decarbonylation the remaining chiral centre had racemised. 

Figure 54 

A racemic mixture will typically crystallise as a homogenous solid containing 

equimolecular amounts of both enantiomeric molecules. The crystal obtained from a 

racemic mixture usually has a centrosymmetric space group with the two enantiomers 

related by a symmetry centre. The symmetry of a unit cell is described by its space group 

which is represented by a cryptic symbol (like P212121), in which a capital letter indicates 

the lattice type and the other symbols represent symmetry operations that can be carried 

out on the unit cell without changing its appearance. There are 230 possible space groups 

and these can be readily observed in crystallographic literature.158 The single crystal 

X-ray analysis of (328) revealed that the space group was Pbca which is centrosymmetric. 

This result provoked concern with regards to the stereochemistry of the decarbonylated 

product. 

A single crystal X-ray analysis is not representative of bulk purity, therefore chiral HPLC 

(ChiralCel OD-H, 85:15 hexane/propan-2-ol, 0.4 mL min'1) was performed on the sample 

used to prepare the crystal. The enantiomers were observed at 43.1 and 46.5 minutes. 
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Epimerisations of compounds such as reserpine (275) at C-3 (Figure 55) typically require 

an acidic source such as trifluoroacetic acid.136 It would appear that refluxing in 

mesitylene is sufficient to effect inversion at the remaining chiral centre. An acidic source 

may be present which is either generated during the decarbonylation procedure or has 

been carried through from a previous process. 

MeO 

OMe 

TMB = 3,4,5-trimethoxybenzoyl 

(275) 

Figure 55 

Monitoring of the reaction by IH NMR spectroscopy and TLC indicated clean 

decarbonylation of the aldehyde (311) after 18 h (previous unoptimised time for the 

racemised product (328) was 48 h). The major product (310) was proposed to be as shown 

in Scheme 103 for reasons that are subsequently discussed. 

(311) 

Results and Discussion 

Rh(COXPPh3hC1 
(319) 

(IOmol%) 

mesitylene, l!.. 
18 h, 59% 

Scheme 103 

• 

(310) 

104 



The enantiomeric purity was detennined by chiral HPLC (ChiralCel OD-H, 85:15 

hexane/propan-2-01, 0.4 mL min-I)_ The enantiomers were obtained at 42.2 and 46.4 

minutes which compared favourably with the racemic sample (43.1 and 46.5 minutes) and 

the e.e. was calculated to be 94%. During the course of the asymmetric synthesis of 

(S)-( -)-deplancheine by Meyers,88 the indoloquinolizidine (330) was synthesised 

(Scheme 104). The precursor of (330) was the (S)-(-)-enantiomer (329) of (310) . 

(329) 

• 
11 (3 b), rt (12 b) 

94% 

Scheme 104 

(330) 

The optical rotation of(310) [af3D = +241.5 (c = 1.0, CHCI3) was in accordance with that 

reported for its enantiomer (330) [a]2oD = -232_0 (c = 1.0, CHCb).88 This would suggest 

that the major decarbonylated product is the enantiomer (310) shown in Scheme 103. 

A colleaguel42 continued decarbonylation investigations of (311) and determined that the 

success of the procedure outlined in Scheme 103 varied. The decarbonylation of (311) is 

always achieved within 18 hours but the e.e. values are inconsistent. This procedure is 

currently being subjected to additional investigation. 

2.9 Modification of the Racemic Indolo[2,3-a]quinolizidine 

Template 

Due to development of the asymmetric decarbonylation of (311) and time restraints it was 

decided that a synthesis of (±)-deplancheine (208) (Figure 56) would be attempted. The 

synthesis of (208) would provide insight into the feasibility of applying the chemistry in a 

future asymmetric synthesis of (R)-(+)-deplancheine (204). 
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(208) 

Figure 56 

During the formal synthesis of (±)-deplancheine (208) by Ohsawa95 (Scheme 51) a ring 

closure of (213) to produce (216) was attempted (Scheme 105). 

PO(OEt12 

(213) 

LDA 
)( 

Scheme 105 

PO(OEth 

(216) 

The reaction was unsuccessful and it was proposed that the inertness was due to the free 

indole NH. Successful cyclisation was achieved after protection of (213) using potassium 

hydride in conjunction with phenylsulfonyl chloride. Protection of the indole NH of (328) 

was therefore investigated to prevent any complications or unwanted side-reactions. 

The indole of (328) was protected using sodium hydride and phenylsulfonyl chloride and 

the target compound (331) was obtained in 89% yield (Scheme 106). 
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(328) 

NaH, PhS02CI 

THF,5 h 
89% 

Scheme 106 

• 
~ H 

PhD2S 

(331) 

The protected compound (331) was subjected to the three step sequence shown in 

Scheme 107: lithium enolate generation and subsequent aldol reaction with acetaldehyde 

to form (332), mesylation of the alcohol (332) to produce (333) and elimination to 

introduce the (E)-ethylidene unit. The target compound (334) Was isolated in an overall 

yield of 56% from (331). 

(331) 

Results and Discussion 

i) LDA (J.l eq) 
ii) CH3CHO (1.1 eq) 

-78°C tort 
THF 

• 

MsCl (1.5 eq) 
Et3N (3.0 eq) 
-40°C tort 

CH2CI2 

(332) R=H 

C (333)R=Ms 

j DBN (2.0 eq) 
THF, rt, 2 h 

N H 
PhD2! 
Yield (3 steps) = 56% 

(334) 

Scheme 107 
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Yashura and Sakamoto96 have developed a mild and neutral method to deprotect 

N-phenylsulfonyl and N-methylsulfonyl protected indoles. A typical desulfonylation 

procedure involved refluxing the N-sulfonylindole (335) in tetra-n-butylammonium 

fluoride (TBAF) and THF to produce (336) (Scheme 108). Some representative examples 

are shown in Table 5. 

R 

H 

CHO 

COMe 

COOMe 

Od-
N 

R2O,! 

Ph 

H 

H 

Ph 

(335) 

R' 

Ph 

Me 

Me 

Me 

TBAF Od-• 
THF,d R' N 

H 

(336) 

Scheme 108 

Time (h) TBAF (eq) Yield (%) 

1.5 I 100 

1 1 100 

2 1 91 

0.5 1 77 

TableS 

The desulfonylation procedure was successfully applied to (334) and the desired product 

(337) was isolated in 78% yield (Scheme 109). 

(334) 

Results and Discussion 

TBAF 

THF,d,2h 
78% 

Scheme 109 

• 

(337) 
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2.10 Selective Reduction and Generation of (±)-Deplancheine 

The selective reduction of (337) to (208) (Scheme 110) was achieved using methodology 

developed by Meyers.88 

(337) 

DlBAL,DME 

O°C to 11, 1 h 
18% 

Scheme 110 

(208) 

+ impurity 

The compound (208) and an impurity after flash column chromatography were obtained 

in a combined yield of 18%. It appeared form TLC that the desired compound had been 

isolated as a single spot. However, it was evident from the IH NMR spectrum after 

purification that the impurity was significant and present in approximately 50%. It was 

also possible to observe peaks that compared favourably to those published in the 

literature88 for (£)-(S)-( -)-deplancheine (338) (Figure 57). 

(338) 

Figure 57 

Additional purification of (208) by re-columning and preparative TLC were unsuccessful 

and inferior IH NMR spectra were progressively obtained. A possible reason for the 

impurity is that the work-up and purification attempts did not destroy all or any of the 
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DIBAL complexes associated with (337). The impurity by IH NMR may be due to 

diisobutyl groups or components of DIBAL. Due to the quantity of material and time 

restraints we were unable to purifY this material any further. 
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2.11 Conclusion 

In conclusion we have developed methodology for the asymmetric synthesis of 

isoquinoline and indole alkaloid systems exemplified by (218), (219) and (220) 

(Figure 58). 

(218) (219) (220) 

Figure 58 

The most significant component of this thesis is the total synthesis of (±)-deplancheine 

(208) outlined in Scheme 111 and Scheme 112 (11 steps with an overall yield of 1.3% 

from (257». 

COOH 

0 

6 MeOH, !!1 

H2S04, 5 h 
98% 

(257) 

Results and Discussion 

• 

TIIF, 24 h 
77% 

0 

c' OH 

(258) 

Scheme 111 

OH 

0 

PCC,CH2CI2 
I ~. Celite, 1.5 h 

79% -';;:'0 

(259) 
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(226) 
PhMe, 8, 48 h 

+ • 
(259) -H2O 

-MeOH 
58% 

~ ~-h"t6 
2MHCI 

EtOH 

20 h, rt 
95% 

H 

(266):(267) 5:1 d.r. 

• 
mesitylene, L\, 48 h 

65% 

(328) 

/ 
N H 

Ph02! 
(332) 

(208) 

+ impurity 
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NaH, PhS02CI 
TIlF,89% 

i) LDA, CH3CHO 
_78°C to rt, THF 
ii) MsCI, Et3N 

-40°C to rt, CH2CI2 

iii) DBN, TIlF 
56% 

DIBAL,DME 
• 

O°C to rt, 1 h 
18% 

Scheme 112 

• 

• 

(219) 

IBX,DMSO 1 
20h,69% 

(311) 

N 
H 

Ph02! 
(334) 

lBAF 1 TIlF, L\, 2 h 
78% 

(337) 
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It is hoped that the preliminary research outlined in this thesis can be expanded on and 

provide an alternative, highly stereoselective route to (R)-( + )-deplancheine (204) 

(Figure 59) and a variety of indole alkaloids. 

(204) 

Figure 59 

2.12 Future Work 

2.12.1 Decarboxylation and Synthesis of (R)-(+)-Deplancheine 

Alternative methods to remove the hydroxyrnethyl substituent (auxiliary) of (219) to that 

reported in Section 2.8.3 and Section 2.S.5 could be investigated. A different approach 

would be to oxidise the aldehyde (311) to the carboxylic acid (339) (Scheme 113) and 

decarboxylate the latter. The oxidative transformation could be possibly achieved by a 

Jones oxidation or potassium permanganate in acid or basic solution. An alternative 

method is silver(I) oxide which is a fairly specific oxidising agent for aldehydes.66 

Oxidation 
• 

(311) (339) 

Scheme 113 
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It is feasible that a radical pathway devised by Martin72 could be used to decarboxylate 

(339). The product (310) could then be used to synthesise (R)-(+)-deplancheine (204) 

(Scheme 114) utilising methodology reported in this thesis. 

(339) 

J 
TBAF 
THF, t,. 

Results and Discussion 

i) i-BuOCOCI 
PhSeNa 

ii) BU3SnH, 
AIBN, f). 

o i) LOA, CH3CHO 
-78°C to It, THF 

ii) MsCI, Et3N 
-40°C to rt 

CH2CI2 
iii)DBN,THF 

DIBAL,DME 
• 

Scheme 114 

(310) 

N'";;:''''' J 

(204) 
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2.12.2 Derivatisation of the Indolo[2,3-a]quinolizidine Ring System 

The presence of a carbonyl group on ring D of the decarbonylated product (310) 

(Figure 60) could allow future derivatisation through exploitation of the carbonyl group 

reactivity. 

_ Enolate Alkylation 

"-t a,J3-Unsaturation 
Conjugate 
Addition 

(310) 

Figure 60 

Amatl59 has developed a procedure that introduces a,J3-unsaturation (Scheme 115) to 

systems such as (340). 

i) KH, PhS~Me 
TIIF, rt 

ii) PhMe,~, IS h 
76% 

Scheme 115 

• 

The chemistry outlined in Scheme 115 could be applied to the tetracyclic system (310) to 

produce a,J3-unsaturation and enable conjugate addition. It has been demonstrated in this 
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thesis (Scheme 89 and Scheme 107) that a three step sequence can be used to introduce 

an (E)-ethylidene unit. Both of these methods could be sequentially used during the 

synthesis of indole alkaloids such as geissoschizine (200) and geissoschizol (341)71 

(Figure 61). 

OH 

(200) (341) 

Figure 61 
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Chapter 3 

Experimental 



3.1 General Procedures 

3.1.1 Solvents and Reagents 

Where necessary solvents were dried, distilled and used immediately or stored over 4A 

molecular sieves prior to use. 

Absolute Ethanol (>99.8%) 

Acetonitrile (99.8%) 

Diethyl Ether (>99%) 

Dichloromethane 

I,2-Dimethoxyethane (>99%) 

N,N-Dimethylformamide (>99.8%) 

Dimethylsulfoxide (>99.9%) 

Ethyl Acetate 

Hexane 

Hexane (HPLC grade) 

Isopropyl Alcohol (HPLC grade) 

Light Petroleum Ether (40-60·C) 

Mesitylene (98%) 

Methanol 

Tetrahydrofuran 

Toluene 

p-Xylene (>99%) 

Used as purchased from Fisher Scientific, UK. 

Used as purchased from Aldrich Chemical Co. Ltd. 

Used as purchased from Fisher Scientific, UK. 

Distilled from phosphorus pentoxide. 

Used as purchased from Lancaster Synthesis Ltd. 

Used as purchased from Aldrich Chemical Co. Ltd. 

Used as purchased from Aldrich Chemical Co. Ltd. 

Distilled from calcium chloride. 

Used as purchased from Fisher Scientific, UK. 

Used as purchased from Fisher Scientific, UK. 

Used as purchased from Fisher Scientific, UK. 

Distilled from calcium chloride. 

Used as purchased from Aldrich Chemical Co. Ltd. 

Used as purchased from Fisher Scientific, UK. 

Distilled from sodium and benzophenone. 

Distilled from sodium. 

Used as purchased from Aldrich Chemical Co. Ltd. 

Other chemicals used in this work were purchased from Acros (Fisher) Chemicals Ltd., 

Aldrich Chemical Co. Ltd., Lancaster Synthesis Ltd. and Merck Chemicals Ltd. 
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, 
3.1.2 Chromatographic Procedures 

Thin layer chromatography (TLC) was carried out using aluminium backed plates coated 

with silica gel (Merck Kiesegel 60 F254). Plates were visualised under UV light (254 urn) 

or by staining with potassium permanganate, phosphomolybdic acid or 2,4-dinitro

phenylhydrazine. 

Flash colunm chromatography was conducted using silica gel (Merck Kiesegel 60 H). 

Pressure was applied to the colunm by hand bellows and samples were applied as 

saturated solutions in an appropriate solvent or adsorbed onto the minimum quantity of 

silica. 

Chiral HPLC was performed using a Thermoseparations modular machine (V100 UV 

detector, P200 pump and TSP chromatographic integrator) with a ChiralCel OD-H 

column (250 x 4.6 mm) purchased from Merck Chemicals Ltd. 

3.1.3 Infrared and Nuclear Magnetic Resonance Spectroscopy 

Infrared spectra were recorded on a Paragon 1000 Perkin Elmer FT-IR Spectrophotometer 

(with internal calibration) in the range 4000-600 cm-I. Samples were either dissolved in 

an appropriate solvent and run as a thin film on sodium chloride plates or as a potassium 

bromide disc. 

IH and l3C Nuclear Magnetic Resonance (NMR) spectra were acquired using either a 

Bruker AC 250 or Bruker DPX 400 Spectrometer. All NMR samples were prepared in 

deuterated solvents with tetramethylsilane (TMS) as the internal standard. Multiplicities 

were recorded as broad peaks (br), singlets (s), doublets (d), triplets (t), quartets (q) and 

multiplets (m). Coupling constants (Jvalues) are reported in Hertz (Hz). Diastereomeric 

ratios were calculated from the integration of suitable peaks in the IH NMR spectrum. 
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3.1.4 Mass Spectrometry 

Mass spectra were recorded on a Jeol SXI02 mass spectrometer using electron impact 

(El) or fast atom bombardment (FAB) ionisation teclmiques. 

3.1.5 Melting Points, Elemental Analysis and Optical Rotations 

Melting points were determined on an Electrothermal 9100 melting point apparatus and 

are uncorrected. 

Elemental analyses were determined on a Perkin Elmer 2400 CHN Elemental Analyser in 

conjunction with a Perkin Elmer AD-4 Autobalance. 

Optical rotations were measured using an Optical Activity AA-2001 Automatic 

Polarimeter using a 0.25 dm cell. 

3.1.6 X-Ray CrystaUograpby 

Data sets were collected on a Bruker SMART 1000 CCD diffiactometer with graphite 

monochromated Mo-Ka radiation operating at low temperature (150K). The software 

used for data collection was SMART (Bruker, 2001) and cell refinement/data reduction 

was achieved using the program SAINT (Bruker, 2001). The structures were solved by 

direct methods and refined by full-matrix least-squares on F2 using the software 

SHELXTL (Sheldrick, O. M. (2001). Version 6.12, Bruker-AXS Inc., Madison, 

Wisconsin, USA). 
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(2S)-2-Amino-3-phenylpropan-l-01
107 

~H 
(71) 

A solution of chlorotrimethylsilane (15.4 mL, 121.1 mmol) was added to LiBHt (1.32 g, 

60.5 mmol) in dry THF (50 mL) under a nitrogen atmosphere. L-Phenylalanine (224) 

(5.0 g, 30.3 mmol) was added over a 5 min period and the mixture was stirred for 24 h at 

room temperature. MeOH (30 mL) was cautiously added to the reaction vessel and 

volatiles were removed under reduced pressure. A 20% KOH solution (25 mL) was added 

to the residue and the aqueous phase was extracted with CH2Ch (3 x 30 mL). The organic 

extracts were combined, dried over anhydrous MgS04, filtered and solvent was removed 

under reduced pressure. The target compound (71) was isolated as a yellow solid which 

was recrystallised from CH2Chlhexane to yield colourless crystals (4.35 g, 95%). Mp 91-

93°C (lit. IOS 90-92°C); vmax/cm·t (film) 3354, 3296, 2920, 2853,1583,1495,1453,1058, 

743, 700; IiH (CDCl), 400 MHz) 1.78 (IH, br, s, Oil), 2.53 (!H, dd, J 13.5, 8.6, 

CH(H)CHNH2), 2.80 (IH, dd, J 13.5, 5.2, CH(H)CHNH2), 3.09-3.16 (!H, m, CHNH2), 

3.39 (!H, dd, J 10.6, 7.2, CH(H)OH), 3.64 (!H, dd, J 10.6, 3.9, CH(H)OH), 7.19-7.33 

(5H, m, Arll); lie (CDCl), 100 MHz) 41.1 (CH2), 54.2 (CH), 66.5 (CH2), 126.4 (CH), 

128.6 (2 x CH), 129.2 (2 x CH), 138.7 (C). 
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(2S)-2-Amino-3-(lH-indol-3-yl)propan-l-oII07 

N 
H 

(226) 

OH 

A solution of chlorotrimethylsilane (12.4 mL, 97.9 mmol) was added to LiB~ (1.07 g, 

49.0 mmol) in dry THF (60 mL) under a nitrogen atmosphere. L-Tryptophan (225) (5.0 g, 

24.5 mmol) was added over a 5 min period and the mixture was stirred for 24 h at room 

temperature. MeOH (30 mL) was cautiously added to the reaction vessel and volatiles 

were removed under reduced pressure. A 20% KOH solution (25 mL) was added to the 

residue and the aqueous phase was extracted with EtOAc (3 x 30 mL). The organic 

extracts were combined, dried over anhydrous MgS04, filtered and solvent was removed 

under reduced pressure to yield a viscous orange oil. The oil was adsorbed onto silica and 

purified by flash column chromatography (9:1 EtOAc:MeOH). The target compound 

(226) was isolated as a yellow foam (3.59 g, 77%) which could not be induced to 

crystallise. [a]23D = -21.5 (c = 1.0, MeOH)(lit.16o [a]D = -19.0 (c = 1.0, MeOH); vmax/cm·1 

(KBr) 3404, 2902, 1592, 1455, 1059,958,747,493; OH (DMSO, 400 MHz) 2.57 (\H, dd, 

J 14.1,7.2, CH(H)CHNH2), 2.79 (\H, dd, J 14.1, 5.9, CH(H)CHNH2), 2.95-3.01 (\H, m, 

CHNH2), 3.23 (\H, dd, J 10.4, 6.7, CH(H)OH), 3.36 (\H, dd, J 10.3, 4.7, CH(H)OH), 

6.94 (\H, t, J7.4, ArH), 7.05 (\H, t, J 6.8, ArH), 7.14 (\H, s, NHCH), 7.34 (\H, d, J 8.0, 

ArH), 7.54 (\H, d, J 8.0, ArH), 10.85 (\H, br, s, NH), OH not visible; Oc (DMSO, 100 

MHz) 29.6 (CH2), 53.5 (CH), 66.0 (CH2), 111.2 (CH), 111.6 (C), 118.0 (CH), 118.4 

(CH), 120.7 (CH), 123.2 (CH), 127.5 (C), 136.1 (C); mlz (El) 190 (M+, 3%),130 (100%). 

Accurate mass: found 190.1102, ClIHI4N20 requires 190.1106. 
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1-[ (1S)-2-Hydroxy-l-(phenyJmethyJ)ethyJJtetrahydro-lH-pyrroJe-2,5-dione 

0;,(., ~ 
H 0 

(228) 

(2S)-2-Amino-3-phenylpropan- I -01 (71) (3.0 g, 19.8 mmol) and succinic anhydride (227) 

(1.99 g, 19.8 mmol) were dissolved in toluene (150 mL) with stirring. Triethylamine (5 

mL) was added and the solution was refluxed for 18 h. The reaction vessel was allowed to 

cool to room temperature and solvent was removed under reduced pressure. The resultant 

yellow solid was adsorbed onto silica and purified by flash column chromatography (3:1 

EtOAc:hexane). The target compound (228) was isolated as a white solid (3.93 g, 85%), a 

portion of which was recrystailised from CH2ClV!lexane to yield colourless needles. Mp 

I30-132°C; [a]22o = -92.8 (c = 1.0, CHCb); vmax/cm-1 (film) 3417, 1689, 1402, 1375, 

II68, 705; ~ (CDCb, 400 MHz) 2.50-2.67 (4H, m, 2 x CH2CO), 3.07-3.17 (2H, m, 

CCH2CH), 3.84 (IH, dd, J 12.0, 3.2, CH(H)OH), 4.00 (IH, dd, J 12.0, 7.1, CH(H)OH), 

4.48-4.55 (!H, m, NCH), 7.16-7.30 (5H, m, ArH), OH not visible; lie (CDCb, 100 MHz) 

28.0 (2 x CH2), 33.8 (CH2), 55.8 (CH), 62.4 (CH2), 126.8 (CH), 128.5 (2 x CH), 129.1 (2 

x CH), 137.2 (c), 178.1 (2 x C); mlz (El) 233 (M\ 14%), 134 (100%). Accurate mass: 

found 233.1 054, C13HlSN03 requires 233.1 052. 
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(SS,lObR)-5-(Hydroxymethyl)-1,2,3,5,6,lOb-hexahydropyrrolo(2,l-a)isoquinolin-3-

one 

(231) 

1-[(IS)-2-Hydroxy-l-(phenylmethyl)etbyl]tetrahydro-lH-pyrrole-2,5-dione (228) (3.0 g, 

12.9 mmol) was dissolved in absolute EtOH (50 mL), cooled to O°C and NaB~ (0.97 g, 

25.7 mmol) was added with stirring. The solution was acidified to pH 1 by addition of2M 

HCl in absolute EtOH and the resultant white suspension was stirred for an additional 20 

h at room temperature. The mixture was quenched by careful addition of saturated 

aqueous sodium bicarbonate solution (40 mL) and the aqueous phase was extracted with 

CH2Ch (3 x 25 mL). The combined organic extracts were dried over anhydrous MgS04, 

filtered and solvent was removed under reduced pressure to yield a colourless oil which 

was dissolved in dry CH2Ch (30 mL) under a nitrogen atmosphere. The mixture was 

cooled to -78°C and TiC4 (2.12 mL, 19.3 mmol) was added dropwise. After stirring for 

10 min, the mixture was allowed to warm to room temperature and stirred for an 

additional 20 h. The reaction mixture was quenched with saturated aqueous ~CI 

solution (30 mL), extracted with CH2Ch (3 x 30 mL), dried over anhydrous MgS04 and 

filtered. Solvent was removed under reduced pressure to yield a green oil which was 

adsorbed onto silica and purified by flash column chromatography (100% EtOAc). The 

target compound (231) was isolated as a pale green solid (2.21 g, 79%), a portion of 

which was recrystallised from CH2Chlhexane to yield colourless needles. Mp 110-111 °C; 

[(l]220 = +97.4 (c = 1.0, CHCh); vrnax/cm'! (film) 3354, 1662, 1419, 1062,732; (CDCh, 

400 MHz) 1.93-2.03 (IH, m, CH(H)CH2CO), 2.42-2.48 (lH, m, CH(H)CO), 2.62-2.70 

(2H, ID, CH(H)CO & CH(H)CH2CO), 2.73 (lH, dd, J 16.5,3.8, CCH(H)CH), 3.04 (lH, 

dd, J16.3, 6.5, CCH(H)CH), 3.62 (lH, dd, J 11.4,8.7, CH(H)OH), 3.71 (IH, dd, J11.5, 
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5.2, CH(H)OH), 4.09 (lH, br, s, OH), 4.43-4.49 (lH, m, CHCH20H), 4.84 (lH, t, J 7.7, 

CCH), 7.11-7.27 (4H, m, Arll); Oc (CnCl), 100 MHz) 26.6 (CH2), 29.7 (CH2), 31.7 

(CH2), 49.7 (CH), 54.5 (CH), 63.0 (CH2), 124.3 (CH), 126.8 (CH), 127.2 (CH), 129.1 

(CH), 132.4 (C), 136.8 (C), 175.2 (C); mlz (El) 217 (M+, 51%), 130 (100%). Accurat~ 

mass: found 217.1103, CI3HISN02 requires 217.1103. 
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1-[ (1S)-2-Hydroxy-l-(lH-indol-3-ylmethyl)ethyl)hexahydropyridine-2,6-dione 

Co 
(237) 

(2S)-2-Amino-3-(IH-indol-3-yl)propan-l-ol (226) (2.65 g, 13.9 mmol), glutaric 

anhydride (236) (1.59 g. 13.9 mmol) and triethylamine (5 mL) were refluxed in toluene 

(ISO mL) for 18 h with stirring. The solution was allowed to cool to room temperature 

before solvent was removed under reduced pressure to yield a viscous yellow oil. An 

extremely complex IH NMR spectrum of the crude reaction mixture was obtained and 

there was no evidence of the expected product (237). 
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(3S,9bR)-3-(IH-Indol-3-ylmethyl)-9b-methyl-2,3,5,9b-tetrahydro[I,3)oxazolo[2,3-a)

isoindol-5-one 

(251) 

(2S)-2-Amino-3-(IH-indol-3-yl)propan-l-01 (226) (4.55 g, 23.9 mmol) and 2-

acetylbenzoic acid (245) (3.93 g, 23.9 mmol) were refluxed in toluene (150 mL) for 48 h 

under Dean-Stark conditions. The mixture was allowed to cool to room temperature 

before solvent was removed under reduced pressure. The resultant brown viscous oil was 

adsorbed onto silica and purified by flash column chromatography (3:2 EtOAc:hexane). 

The target compound (251) was isolated as a white solid (5.18 g, 68%), a portion of 

which was recrystallised from CH2Chlhexane to yield colourless needles. Mp 184-185°C; 

[a)2JD = -109.9 (c = 1.1, CHCb); vrnax/cm·1 (film) 3341, 1700, 1355, 1010, 909, 

739; (Found: C, 75.31; H, 5.65; N, 8.64. C2oH18N2~ requires C, 75.45; H, 5.70; N, 

8.80%); OH (CDCb, 400 MHz) 1.70 (3H, s, CHJ), 3.17 (!H, dd, J 14.8, 8.6, CCH(H)CH), 

3.42 (!H, dd,J 14.8,5.7, CCH(H)CH), 4.18 (!H, dd, J8.9, 6.4, CH(H)O), 4.31 (!H, dd,J 

8.9,7.4, CH(H)O), 4.56-4.63 (!H, m, NCH), 7.13-7.23 (2H, m, ArH), 7.24-7.25 (!H, m, 

NHCH), 7.37 (IH, dt, J 8.0, 1.0, ArH), 7.49-7.53 (2H, m, ArH), 7.58-7.61 (!H, m, ArH), 

7.72-7.74 (IH, m, ArH), 7.76-7.78 (lH, m, ArH), 8.17 (!H, br, s, NH); Oc (CDCb, 100 

MHz) 23.1 (CHJ), 30.7 (CH2), 56.1 (CH), 74.8 (CH2), 99.0 (C), 111.2 (CH), 111.7 (C), 

118.8 (CH), 119.5 (CH), 122.1 (2 x CH), 122.5 (CH), 124.3 (CH), 127.7 (C), 130.1 (CH), 

131.7 (C), 133.2 (CH), 136.2 (C), 147.4 (C), 174.4 (C); mlz (El) 318 (M., 43%), 130 

(100%). Accurate mass: found 318.1368, C2oH18N202 requires 318.1368. 
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(3S,9bR) and (3S,9bS)-3-(Hydroxymethyl)-9b-methyl-3,4,9,9b-tetrahydro-IH-iso

indolo[l,2-a]f3-carbolin-l-one 

(220) (252) 

(3S,9bR)-3-(lH-Indol-3-ylmethyl)-9b-methyl-2,3,5,9b-tetrahydro[1,3]oxazolo[2,3-a]iso

indol-5-one (251) (0.85 g, 2.67 mmol) was dissolved in dry CH2Ch (15 mL) under a 

nitrogen atmosphere, cooled to -78°C and TiC4 (0.44 mL, 4.01 mmol) was added 

dropwise. After stirring for 10 min, the reaction mixture was allowed to warm to room 

temperature and stirred for an additional 20 h. The mixture was quenched with saturated 

aqueous N~Cl solution (15 mL), extracted with EtOAc (3 x 15 mL), dried over 

anhydrous MgS04 and filtered. Solvent was removed under reduced pressure to yield a 

brown oil which was shown to be a mixture of diastereoisomers (5:2) by lH NMR 

spectroscopy. The oil was adsorbed onto silica and purified by flash column 

chromatography (2:3 to 3:2 EtOAc!hexane). 

Major isomer (220) (0.53 g, 62%). Isolated as colourless blocks. Mp 286-288°C 

(EtOAc!hexane); [a]22D = +172.2 (c = 1.0, DMSO); (Found: C, 75.26; H, 5.59; N, 8.80. 

C2oH1SN202 requires C, 75.45; H, 5.70; N, 8.80%); vrnax/cm-1 (KBr) 3196, 1655, 1404, 

1329, 1248, 1032, 741; 5H (DMSO, 400 MHz) 1.86 (3H, s, CH3), 2.73 (IH, dd, J 15.6, 

6.8, CCH(H)CHN), 2.98 (lH, d, J 16.0, CCH(H)CHN), 3.62-3.72 (2H, m, CH20H), 4.95-

5.01 (lH, m, NCH), 5.08 (lH, t, J5.4, OH), 7.00 (JH, t, J7.6, ArH), 7.12 (lH, t,J7.6, 

ArH), 7.40-7.43 (2H, m, ArH), 7.53 (lH, t, J 7.4, ArH), 7.71-7.75 (2H, m, ArH), 8.28 

(lH, d, J 7.6, ArH), 11.44 (lH, s, NH); 5c (DMSO, 100 MHz) 21.7 (CH2), 28.2 (CH3), 

50.3 (CH), 61.4 (CH2), 61.7 (C), 104.2 (C), 11 1.0 (CH), 118.1 (CH), 118.6 (CH), 121.4 
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(CH), 122.3 (CH), 123.0 (CH), 126.3 (c), 128.3 (CH), 129.5 (C), 132.2 (CH), 133.5 (C), 

136.4 (C), 149.7 (c), 168.4 (C); m/z (El) 318 (M+, 37%), 303 (100%). Accurate mass: 

found 318.1371, C2oHIsN202 requires 318.1368. 

Minor isomer (252) (0.20 g, 24%). Isolated as colourless blocks. Mp 294-295°C 

(EtOAclhexane); [af3D = -178.2 (c = 1.1 , DMSO); (Found: C, 75.15; H, 5.63; N, 8.70. 

C2oHIsN202 requires C, 75.45; H, 5.70; N, 8.80%); vmaxlcm-I (KBr) 3273, 1653, 1457, 

1419, 1092, 724; OH (DMSO, 400 MHz) 1.88 (3H, s, CH3), 2.78 (lH, dd, J 15.3, 11.4, 

CCH(H)CHN), 2.94 (lH, dd, J 15.3,3.6, CCH(H)CHN), 3.81-3.88 (lH, m, NCH), 4.27-

4.38 (2H, m, CH20H), 5.17 (lH, t, J 6.2, OH), 6.98 (IH, t, J7.1, ArH), 7.09 (lH, t, J7.6, 

ArH), 7.36 (lH, d, J 8.0, ArH), 7.41 (lH, d, J 7.8, ArH), 7.53 (lH, t, J 7.4, ArH), 7.67 

(lH, d, J7.2, ArH), 7.73 (IH, td, J7.5, 1.2, ArH), 8.30 (lH, d, J7.7, ArH), 11.31 (IH, s, 

NH); Oc (DMSO, 100 MHz) 24.7 (CH2), 24.8 (CH3), 55.3 (CH), 61.7 (CH2), 64.3 (C), 

107.2 (C), 111.1 (CH), 118.2 (CH), 118.8 (CH), 121.5 (CH), 122.6 (CH), 123.0 (CH), 

125.8 (C), 128.6 (CH), 130.5 (C), 132.3 (CH), 135.6 (C), 136.2 (C), 149.0 (C), 168.2 (C); 

m/z (El) 318 (M+' 35%), 303 (100%). Accurate mass: found 318.1371, C2oHIsN202 

requires 318.1368. 
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(3S,9bS) and (3S,9bR)-3-(Hydroxymetbyl)-3,4,9,9b-tetrabydro-1H-isoindol0[1;2-0]13-

carbolin-l-one 

(253) (254) 

(2S)-2-Amino-3-(IH-indol-3-yl)propan-l-01 (226) (3.0 g, 15.8 mmol) and 2-carboxy

benzaldehyde (74) (2.37 g, 15.8 mmol) were refluxed in toluene (150 mL) for 48 h under 

Dean-Stark conditions. The mixture was allowed to cool to room temperature before 

solvent was removed under reduced pressure. This yielded a brown viscous oil which was 

shown to be a mixture of diastereoisomers (4:1) by IH NMR spectroscopy. The oil was 

adsorbed onto silica and purified by flash column chromatography (2:3 to 3:2 

EtOAc:hexane ). 

Major isomer (253) (3.31 g, 69%). Isolated as colourless crystals. Mp 233-235°C 

(EtOH); [a]23D = -101.9 (c = 1.3, DMSO); (Found: C, 74.79; H, 5.52; N, 9.13. 

Cl9Hl6N202 requires C, 74.98; H, 5.30; N, 9.20%); vrnax!cm-1 (KBr) 3420, 1653, 1457, 

1419, 1092,724; SH (DMSO, 400 MHz) 2.80-2.85 (lH, m, CCH(H)CH), 2.95 (lH, dd, J 

15.3,3.6, CCH(H)CH), 3.85-3.89 (lH, m, CHCH20H), 4.29-4.32 (2H, m, CH20H), 5.18 

(lH, t, J 5.7, OH), 6.12 (lH, s, NHCCH), 6.99 (lH, 1, J 7.0, ArH), 7.09 (lH, 1, J 7.1, 

ArH), 7.38 (IH, d, J 8.1, ArH), 7.43 (lH, d, J 7.8, ArH), 7.55 (IH, 1, J 7.5, ArH), 7.70-

7.75 (2H, m, ArH), 8.28 (lH, d, J 7.6, ArH), 11.29 (lH, s, NH); Se (DMSO, lOO MHz) 

24.7 (CH2), 58.3 (CH), 59.2 (CH), 61.3 (CH2), 108.0 (C), 111.2 (CH), 118.0 (CH), 118.8 

(CH), 121.4 (CH), 123.0 (CH), 123.5 (CH), 126.0 (C), 128.6 (CH), 131.3 (C), 131.9 

(CH), 132.1 (C), 136.5 (C), 143.3 (C), 167.7 (C); mlz (El) 304 (M+, 63%), 273 (100%). 

Accurate mass: found 304.1217, C19Hl~202 requires 304.1212. 

Experimental 129 



Minor isomer (254) (0.81 g, 17%). Isolated as a pale yellow oil. [a]22D = +89.3 (c = 1.0, 

DMSO); vmax!cm-I (KBr) 3423, 1653, 1404, 1329, 1030, 741; OH (DMSO, 250 MHz) 

2.74-2.82 (lH, m, CCH(H)CH), 2.90 (lH, d, J 16.0, CCH(H)CH), 3.56-3.61 (2H, m, 

CH20H), 4.80-4.89 (lH, m, CHCH20H), 4.96 (lH, t, J 5.7, OH), 5.96 (lH, s, NHCCH), 

6.98 (lH, t, J 7.3, ArH), 7.09 (lH, t, J 7.4, ArH), 7.37-7.42 (2H, m, ArH), 7.56 (IH, t, J 

7.3, ArH), 7.70-7.77 (2H, m, ArH), 8.32 (lH, d, J 7.6, ArH), 11.30 (lH, s, NH); Oc 

(DMSO, lOO MHz) 31.7 (CH2), 48.7 (CH), 53.8 (CH), 60.9 (CH2), 105.4 (C), 111.2 (CH), 

118.0 (CH), 118.7 (CH), 121.4 (CH), 123.0 (CH), 123.7 (CH), 126.4 (C), 128.6 (CH), 

129.6 (C), 131.7 (CH), 131.8 (C), 136.5 (C), 143.4 (C), 167.2 (C); m/z (El) 304 (M+, 

72%),273 (100%). Accurate mass: found 304.1209, C19HI~202 requires 304.1212. 
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Methyl_5_hydroxypentanoateI24 

~OMe 
~OH 

(258) 

To a stirred solution of ll-valerolactone (257) (20.0 g, 200 mmol) in MeOH (200 mL) was 

added 20 drops of concentrated H2S04. The mixture was refluxed for 5 h and then the 

reaction vessel was cooled in an ice/salt bath. NaHC03 (5 g) was added, the mixture 

stirred for 10 min, filtered and solvent was removed under reduced pressure. This yielded 

the target compound (258) as a colourless oil (25.9 g, 98%) which was used without 

additional purification. vmax/cm-1 (film)3418, 2950, 2872,1738,1438,1202,1169,1060; 

IlH (CDCl), 400 MHz) 1.56-1.63 (2H, m, CH2CH20H), 1.69-1.79 (2H, m, 

CH2CH2CH20H), 2.37 (2H, t, J 7.2, CH2COOCH3), 3.47 (lH, br, s, OH), 3.64-3.65 (2H, 

m, CH20H), 3.68 (3H, s, CH3); lie (CDCI3, 100 MHz) 21.1 (CH2), 32.0 (CH2)' 33.7 

(CH2), 51.6 (CH3), 62.2 (CH2), 174.4 (C). 
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Methyl-5-oxopentanoate 

~ 
(259) 

Pyridinium chlorochromate oxidation12S 

Methyl-5-hydroxypentanoate (258) (12.0 g, 90.8 mmol) was slowly added to a suspension 

ofPCC (29.4 g, 136 mmol) and Celite (29.4 g) in dry CH2Ch (185 mL). The mixture was 

stirred for 2 h at room temperature, the solution decanted and the solids were washed with 

Et20 (3 x 100 mL). The combined organic fractions were filtered through an alumina 

column and solvent was removed under reduced pressure. The resultant brown residue 

was adsorbed onto silica and purified by flash column chromatography (4:1 

EtOAc:hexane). The target compound (259) was isolated as a colourless oil (9.34 g, 

79%). vmax/cm·1 (film) 2952, 1733, 1436, 1249, 1198, 1168; ()H (CDCh, 400 MHz) 1.92-

2.00 (2H, In, CH2CH2CHO), 2.39 (2H, t, J 7.4, CH2COOCH3), 2.54 (2H, td, J 7.2, 1.2, 

CH2CHO), 3.68 (3H, s, CH3), 9.78 (IH, t, J 1.2, CHD); I>c (CDCh, 100 MHz) 17.4 (CH2), 

32.6 (CH2), 42.9 (CH2), 51.6 (CH3), 173.4 (C), 201.4 (CH); mlz (El) 130 (M", 6%), 115 

(100%). Accurate mass: found 130.0628, CJIlOD3 requires 130.0630. 

Swem oxidation 

The Swern reagent was prepared from DMSD (1.18 mL, 16.7 mmol) and oxalyl chloride 

(0.73 mL, 8.32 mmol) in CH2Ch (30 mL) at -78°C. The mixture was stirred at -60°C for 2 

min and then a solution of methyl-5-hydroxypentanoate (258) (1.0 g, 7.57 mmol) in 

CH2Ch (10 mL) was added. After 20 min triethylamine (5.27 mL, 37.8 mmol) was added 

and the reaction mixture stirred for 5 min at -60°C and then at room temperature for 30 
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mm. Water (50 mL) was added to the mixture and the aqueous layer extracted with 

additional CH2Cb (50 mL). The combined organic layers were washed with brine (100 

mL) and dried over anhydrous MgS04. The combined organic fractions were filtered and 

solvent was removed under reduced pressure. The resultant yellow oil was adsorbed onto 

silica and purified by flash column chromatography (4:1 EtOAc:hexane). The target 

compound (259) was isolated as a colourless oil (0.37 g, 38%). Spectroscopic data were 

identical with those previously reported for (259). 

TPAPINMO oxidation 

Tetra-n-propylammonium perruthenate (0.13 g, 0.38 mmol) was added to methyl-5-

hydroxypentanoate (258) (1.0 g, 7.57 mmol), N-methylmorpholine-N-oxide (1.33 g, 11.4 

mmol) and powdered 4A molecular sieves (4 g) in CH2Cb (20 mL) at room temperature 

under a nitrogen atmosphere. The mixture was stirred for 20 h and then filtered through a 

short pad of silica, eluting with CH2Ch. The filtrate was evaporated under reduced 

pressure and yielded a yellow oil which was adsorbed onto silica and purified by flash 

column chromatography (4:1 EtOAc:hexane). The target compound (259) was isolated as 

a colourless oil (0.43 g, 44%). Spectroscopic data were identical with those previously 

reported for (259). 
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(3S,8aS) and (3S,8aR)-3-(Phenylmethyl)perhydropyrido[2,I-b) [1,3)oxazo I-S-one 

(261) (262) 

(2S)-2-Amino-3-phenylpropan-l-01 (71) (4.25 g, 28.1 mmol) and methyl-5-oxopentanoate 

(2S9) (3.66 g, 28.1 mmol) were refluxed in toluene (150 rnL) for 48 h under Dean-Stark 

conditions. The mixture was allowed to cool to room temperature before solvent was 

removed under reduced pressure. This yielded a brown viscous oil which was shown to be 

a mixture of diastereoisomers (4:1) by IH NMR spectroscopy. The oil was adsorbed onto 

silica and purified by flash column chromatography (2:3 to 1: I EtOAc:hexane). 

Major isomer (261) (2.93 g, 45%). Isolated as colourless needles. Mp 91-92°C 

(CHChlhexane); [af4D = +52.3 (c = 1.1, CHCb); vmax!cm-I (film) 3484,1602,1476,986, 

705; OH (CDCh, 400 MHz) 1.36-1.45 (!H, rn, CH(H)CHO), 1.63-1.73 (!H, rn, 

CH(H)CH2CO), 1.93-2.01 (!H, rn, CH(H)CH2CO), 2.18-2.24 (!H, rn, CH(H)CHO), 2.33-

2.46 (2H, rn, CH2CO), 2.60 (IH, dd, J 13.4, 9.8, CH(H)CC), 3.56 (!H, dd, J 13.4, 2.2, 

CH(H)CC), 3.67-3.73 (!H, rn, CH(H)O), 4.00 (!H, d, J9.6, CH(H)O), 4.19-4.24 (!H, rn, 

NCHCH20), 4.66 (!H, dd, J 10.0,3.2, NCHO), 7.20-7.32 (5H, rn, ArH); oe (CDCh, 100 

MHz) 17.5 (CH2), 28.3 (CH2), 31.1 (CH2), 36.9 (CH2), 56.7 (CH), 69.2 (CH2), 89.0 (CH), 

126.5 (CH), 128.5 (2 x CH), 129.6 (2 x CH), 138.1 (C), 168.1 (C); mlz (El) 231 (M., 

17%),140 (100%). Accurate mass: found 231.1262, CI4H17N02 requires 231.1259. 

Minor isomer (262) (0.59 g, 9%). Isolated as a colourless oil. [a]230 = +34.5 (c =1.0, 

CHCh); vmaxlcm-I (film) 1647, 1465, 1452, 999, 704; OH (CDCh, 400 MHz) 1.36-1.45 

(IH, ID, CH(H)CHO), 1.60-1.66 (lH, rn, CH(H)CH2CO), 1.87-1.93 (!H, rn, 

CH(H)CH2CO), 2.19-2.24 (!H, rn, CH(H)CHO), 2.26-2.35 (!H, rn, CH(H)CO), 2.51 (!H, 
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dd, J 18.0, 6.0, CH(H)CO), 2.80 (lH, dd, J 13.4, 9.2, CH(H)CC), 3.28 (lH, dd, J 13.4, 

3.6, CH(H)CC), 3.62 (lH, dd, J 9.0, 7.6, CH(H)O), 4.02 (lH, dd, J 9.0, 7.6, CH(H)O), 

4.45-4.54 (2H, rn, NCHCH20 & NCHO), 7.19-7.32 (5H, rn, ArH); lie (CDCh, 100 MHz) 

16.1 (CH2), 27.2 (CH2), 30.3 (CH2), 36.7 (CH2), 54.0 (CH), 68.2 (CH2), 86.3 (CH), 125.7 

(CH), 127.5 (2 x CH), 128.5 (2 x CH), 135.8 (C), 167.7 (C); m/z (El) 231 (M+, 25%),140 

(100%). Accurate mass: found 231.1257, C14H17N02 requires 231.1259. 
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(6S,II bR)-6-(Hydroxymethyl)-I,3,4,6, 7,11 b-hexahydro-2H-pyrido [2, I-aJisoquinolin-

4-one 

(218) 

(3S,8aS)-3-(Phenylmethyl)perhydropyrido[2,I-b][l,3]oxazol-5-0ne (261) (3.2 g, 13.8 

mmol) was dissolved in dry CH2Ch (30 mL) under a nitrogen atmosphere, cooled to 

-78°C and TiCI4 (2.28 mL, 20.8 mmol) was added dropwise. After stirring for 10 min, the 

reaction mixture was allowed to warm to room temperature and stirred for an additional 

20 h. The mixture was quenched with saturated aqueous N~CI solution (20 mL), 

extracted with CH2Ch (3 x 25 mL), dried over anhydrous MgS04 and filtered. Solvent 

was removed under reduced pressure to yield a brown oil which was adsorbed onto silica 

and purified by flash column chromatography (9:1 CH2Ch:MeOH). The target compound 

(218) was isolated as a pale yellow solid (2.09 g, 65%), a portion of which was 

recrystallised from CHCl)lhexane to yield colourless crystals. Mp 109-111°C; [a]23D = 

+87.2 (c = 1.0, CHCl); vrnax!cm-1 (film) 3385, 2948, 2874,1614,1459,1437,1412,1053, 

728; OH (CnCh, 400 MHz) 1.87-1.96 (3H, m, CCHCH(H) & CH2CH2CO), 2.37-2.46 

(2H, m, CH(H)CO & CCHCH(H», 2.52-2.66 (lH, m, CH(H)CO), 2.73 (lH, dd, J 16.2, 

4.2, CCH(H)CH), 3.05 (lH, dd, J 16.2, 6.2, CCH(H)CH), 3.55-3.68 (2H, m, CH20H), 

4.61-4.64 (lH, m, CCH), 5.08-5.14 (lH, m, CHCH20H), 7.13-7.25 (4H, m, ArH), OHnot 

visible; Oc (CnCl), 100 MHz) 18.9 (CH2), 29.5 (CH2), 29.7 (CH2), 32.3 (CH2), 49.7 (CH), 

53.2 (CH), 63.1 (CH2), 124.4 (CH), 126.5 (CH), 127.1 (CH), 129.1 (CH), 133.0 (C), 

136.4 (C), 171.8 (C); mlz (El) 231 (M'", 33%), 140 (100%). Accurate mass: found 

231.1257, C14H17N02 requires 231.1259. 
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(3S,8aS) and (3S,8aR)-3-(lH-Indol-3-ylmethyl)perhydropyrido(2,1-h) (1,3) oxazol-5-

one 

co~ 
~ 

(266) 

(2S)-2-Amino-3-(lH-indol-3-yl)propan-l-ol (226) (4.55 g, 23.9 mmol) and methyl-5-

oxopentanoate (259) (3.11 g, 23.9 mmol) were refluxed in toluene (150 mL) for 48 h 

under Dean-Stark conditions. The mixture was allowed to cool to room temperature 

before solvent was removed under reduced pressure. This yielded a brown viscous oil 

which was shown to be a mixture of diastereoisomers (5:1) by IH NMR spectroscopy. 

The oil was adsorbed onto silica and purified by flash column chromatography (3:7 to 3:2 

EtOAc:hexane ). 

Major isomer (266) (3.23 g, 50%). Isolated as colourless needles. Mp 158-160°C 

(CH2Chlhexane); [a]23D = -59.2 (c = 1.0, CHCh); (Found: C, 70.85; H, 6.69; N, 10.48. 

Cl6Hl8N202 requires C, 71.09; H, 6.71; N, 10.36%); vrnax!cm-1 (film) 3406, 3270, 2951, 

2874, 1627, 1472, 1456, 745; OH (CDCh, 400 MHz) 1.44-1.54 (lH, m, CH(H)CHO), 

1.64-1.76 (lH, m, CH(H)CH2CO), 1.94-2.02 (lH, m, CH(H)CH2CO), 2.22-2.28 (lH, m, 

CH(H)CHO), 2.41-2.45 (2H, m, CH(H)CO), 2.67 (lH, dd, J 14.0, 10.4, CH(H)CC), 3.67 

(lH, ddd, J 9.2, 6.4, 1.6, CH(H)O), 3.72-3.76 (lH, m, CH(H)CC), 4.02 (lH, d, J 9.2, 

CH(H)O), 4.27-4.32 (IH, m, NCHCH20), 4.67 (lH, dd, J 10.0,3.2, NCHO), 7.01 (lH, d, 

J2.0, NHCH), 7.13 (lH, t, J7.6, ArH), 7.19 (lH, t,J7.6, ArH), 7.35 (lH, d, J8.0, ArH), 

7.82 (lH, d, J 8.0, ArH), 8.36 (IH, br, s, NH); oe (CDCh, 100 MHz) 17.5 (CH2), 27.0 

(CH2), 28.4 (CH2), 31.0 (CH2), 56.1 (CH), 69.9 (CH2), 89.0 (CH), 111.1 (CH), 112.5 (C), 

119.3 (CH), 119.5 (CH), 122.1 (CH), 122.4 (CH), 127.7 (C), 136.2 (C), 168.1 (C); mlz 
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(El) 270 (M+, 33%), 130 (100%). Accurate mass: found 270.1369, CJ6HJsN202 requires 

270.1368. 

Minor isomer (267) (0.52 g, 8%). Isolated as a yellow oil. [aj23D = -6.1 (c = 1.3, CHCI3); 

(Found: C, 70.80; H, 6.70; N, 10.15. CJ~J8N202 requires C, 71.09; H, 6.71; N, 10.36%); 

vmax/cm-J (film) 3406, 3280, 1731, 1626, 1470, 1458,744; (lH (CDCh, 400 MHz) 1.33-

1.38 (lH, m, CH(H)CHO), 1.49-1.60 (!H, m, CH(H)CH2CO), 1.83-1.87 (lH, m, 

CH(H)CH2CO), 2.15-2.19 (IH, m, CH(H)CHO), 2.27-2.36 (lH, m, CH(H)CO), 2.53 (!H, 

dd, J 18.0, 6.0, CH(H)CO), 3.05 (lH, dd, J 14.4, 8.8, CH(H)CC), 3.32 (lH, ddd, J 14.2, 

3.2, 0.8, CH(H)CC), 3.69 (!H, dd, J 8.8, 7.2, CH(H)O), 4.07 (!H, dd, J 9.0, 7.8, 

CH(H)O), 4.46 (!H, dd, J9.2, 4.4, NCHO), 4_60-4.67 (lH, m, NCHCH20), 7.03 (!H, d, J 

2.4, NHCH), 7.12 (lH, t, J 7.4, AIH), 7.20 (lH, t, J 7.4, AIH), 7.36 (!H, d, J 7.4, AIH), 

7.70 (!H, d, J 8.0, AIH), 8.16 (!H, br, s, NH); (le (CDCh, 100 MHz) 17.1 (CH2),27.5 

(CH2), 28.2 (CH2), 31.4 (CH2), 54.4 (CH), 69.7 (CH2), 87.3 (CH), 111.1 (CH), 111.3 (C), 

119.2 (CH), 119.6 (CH), 122.2 (CH), 122.5 (CH), 128.3 (C), 136.2 (C), 168.8 (C); mlz 

(El) 270 (M\ 31%), 130 (100%). Accurate mass: found 270.1372, CJ6HJ8N202 requires 

270.1368. 
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(6S,12bR) and (6S,12bS)-6-(Hydroxymetbyl)-1,2,3,4,6, 7,12,12b-octabydropyrido(2,1-

aJf3-carbolin-4-one 

(219) (272) 

Using TiC~ as activator 

A mixture of (38,8aS') and (38,8aR)-3-(IH-indol-3-ylmethyl)perhydropyrido[2,1-

b)[I,3]oxazol-5-one (266) and (267) (1.14 g, 4.22 mmol) were dissolved in dry CH2Ch 

(30 mL) under a nitrogen atmosphere, cooled to -78°C and TiC~ (0.69 mL, 6.33 mmol) 

was added dropwise. After stirring for 10 min, the reaction mixture was allowed to wann 

to room temperature and stirred for an additional 20 h. The mixture was quenched with 

saturated aqueous N~CI solution (20 mL), extracted with EtOAc (3 x 20 mL), dried over 

anhydrous MgS04 and filtered. Solvent was removed under reduced pressure to yield a 

brown oil which was shown to be a mixture of diastereoisomers (5:2) by IH NMR 

spectroscopy. The oil was adsorbed onto silica and purified by flash column 

chromatography (1:1 to 4:1 EtOAc:hexane). 

Major isomer (219) (0.51 g, 45%). Isolated as colourless needles. Mp 273-275°C 

(EtOH); [a]22D = +139.4 (c = 1.0, DMSO); (Found: C, 70.81; H, 6.66; N, 10.28. 

CI~18N202 requires C, 71.09; H, 6.71; N, 10.36%); vmax!cm,1 (KBr) 3183, 2945, 1616, 

1439, 1408, 1326, 1305, 1060, 742; OH (DMSO, 400 MHz) 1.53-1.63 (lH, m, 

CCHCH(H», 1.73-1.83 (2H, m, CH2CH2CO), 2.26-2.42 (2H, ID, CH2CO), 2.59-2.62 (lH, 

m, CCHCH(H», 2.67 (lH, ddd, J 15.6, 6.2, 2.2, CCH(H)CH), 2.80 (lH, d, J 15.6, 

CCH(H)CH), 3.33-3.42 (2H, m, CH20H), 4.64-4.66 (lH, m, NHCCH), 4.80 (lH, t, J 5.8, 

OH), 5.21-5.26 (IH, m, CHCH20H), 6.97 (lH, t, J 7.4, ArH), 7.06 (lH, t, J 7.6, ArH), 

Experimental 139 



------------------------------.......... . 
7.32 (!H, d, J 8.0, ArH), 7.40 (!H, d, J 7.6, ArH), 10.90 (!H, s, NH); oe (DMSO, 100 

MHz) 18.9 (CH2), 20.6 (CH2)' 28.5 (CH2), 32.2 (CH2), 47.8 (CH), 50.1 (CH), 59.7 (CH2), 

104.6 (c), 111.0 (CH), 117.7 (CH), 118.4 (CH), 120.8 (CH), 126.7 (c), 133.2 (c), 136.2 

(C), 168.4 (C); mlz (El) 270 (W, 78%),239 (100%). Accurate mass: found 270.1369, 

C.Ji.sN202 requires 270.1368. 

Minor isomer (272) (0.19 g, 17%). Isolated as colourless blocks. Mp 246-248°C (EtOH); 

[a]22o = -38.9 (c = 1.1, DMSO); (Found: C, 71.07; H, 6.75; N, 10.50. C.Ji.sN202 

requires C, 71.09; H, 6.71; N, 10.36%); vmax/cm·· (KBr) 3168, 2954, 1623, 1419, 1324, 

1076, 1053, 744; OH (DMSO, 400 MHz) 1.59-1.72 (2H, m, CH(H)CH2CO & 

CCHCH(H», 1.85-1.91 (!H, m, CH(H)CH2CO), 2.17-2.23 (!H, m, CH(H)CO), 2.42-2.58 

(2H, m, CCHCH(H) & CH(H)CO), 2.68 (!H, dd, J 15.4,5.0, CCH(H)CH), 3.12 (!H, dd, 

J 15.4, 4.2, CCH(H)CH), 3.30-3.41 (2H, m, CH20H), 4.26-4.32 (!H, m, CHCH20H), 

4.80-4.82 (!H, m, NHCCH), 4.92 (IH, t, J 5.8, OH), 6.98 (!H, t, J 7.4, ArH), 7.06 (!H, t, 

J 8.0, ArH), 7.33 (!H, d, J 8.0, ArH), 7.43 (!H, d, J 7.6, ArH), 10.97 (!H, s, NH); lie 

(DMSO, 100 MHz) 17.4 (CH2), 20.6 (CH2)' 27.3 (CH2), 31.9 (CH2), 52.2 (CH), 54.6 

(CH), 61.2 (CH2), 106.0 (C), 111.1 (CH), 117.7 (CH), 118.4 (CH), 120.8 (CH), 126.6 (C), 

133.2 (C), 136.2 (C), 171.7 (C); mlz (El) 270 (W, 75%), 239 (100%). Accurate mass: 

found 270.1363, C.Ji.sN202 requires 270.1368. 

Using HCI as activator 

A mixture (3S,8aS') and (3S,8aR)-3-(IH-indol-3-ylmethyl)perhydropyrido[2,I-b][1,3]ox

azol-5-one (266) and (267) (3.87 g, 14.3 mmol) were dissolved in absolute EtOH (60 mL) 

at room temperature. The solution was acidified to pH 1 by addition of 2M HCl in 

absolute EtOH. After stirring for 20 h, the reaction was quenched with saturated aqueous 

NaHCOJ solution and extracted with EtOAc (3 X 30 mL). The combined organic fractions 

were dried over anhydrous MgS04 and filtered. Solvent was removed under reduced 

pressure to yield a brown solid which was adsorbed onto silica and purified by flash 

column chromatography (100% EtOAc). The target compound (219) was isolated as a 
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pale yellow solid (3.68 g, 95%), a portion of which was recrystaIlised from absolute 

EtOH to yield colourless blocks. Spectroscopic data were identical with those previously 

reported for (219). 

Epimerisation using TFA 

Trifluoroacetic acid (7.32 mL, 95.1 mmol) was added to (6S,12bR)-6-(hydroxymethyl)-

1,2,3,4,6,7,12,12b-octahydropyrido[2,I-al~-carbolin-4-one (219) (2.57 g, 9.51 mmol) in 

toluene (35 mL) and was heated at reflux for 18 h. The reaction was allowed to cool to 

room temperature, quenched with saturated aqueous NaHC03 solution (20 mL) and 

extracted with EtOAc (3 x 20 mL). The combined organic fractions were dried over 

anhydrous MgS04, filtered and solvent was removed under reduced pressure. This 

yielded a brown solid which was adsorbed onto silica and purified by flash column 

chromatography (100% EtOAc). The target compound (272) was isolated as a pale yellow 

solid (2.49 g, 97%), a portion of which was recrystalJised from absolute EtOH to yield 

colourless blocks. Spectroscopic data were identical with those previously reported for 

(272). 
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----------------....... 
(6S,12bR)-I,2,3,4,6, 7 ,12,12b-Octabydropyrido(2,I-a) ~-carbolin-6-ylmetbanol 

(274) 

(68, 12bR)-6-(Hydroxyrnethyl)-1 ,2,3,4,6,7,12, 12b-octabydropyrido[2, I-a] ~-carbolin-4-

one (219) (0.4 g, 1.48 mmol) in dry toluene (20 mL) was stirred at room temperature for 

16 h under a nitrogen atmosphere with sodium bis(2-rnethoxyethoxy)aluminium hydride 

(Red-AI) (65+ wt% in toluene, ·1.38 mL). The reaction mixture was quenched with 

saturated potassium sodium tartrate (Rochelle salt) solution (25 mL) and the aqueous 

phase was extracted with EtOAc (3 x 20 mL). The combined organic extracts were dried 

over anhydrous Na2S04, filtered and solvent was removed under reduced pressure. The 

resultant yellow oil was adsorbed onto silica and purified by flash column 

chromatography (9:1 EtOAc:MeOH). The target compound (274) was isolated as a pale 

yellow oil (0.32 g, 84%). [a]23D = +68.8 (c = 1.1, EtOH); vrnax/cm·1 (KBr) 3280, 2923, 

1453, 1044, 739; OH (DMSO, 400 MHz) 1.23-1.35 (lH, m, CCHCH(H», 1.38-1.42 (lH, 

m, CH(H)CH2CH2N), 1.46-1.53 (lH, m, CH(H)CH2N), 1.58-1.62 (lH, m, CH(H)CH2N), 

1.71-1.75 (lH, m, CH(H)CH2CH2N), 2.19-2.22 (lH, m, CCHCH(H), 2.67-2.77 (2H, m, 

CCH2CH), 2.81-2.90 (2H, rn, NCH2), 3.01-3.05 (lH, m, CHCH20H), 3.21-3.27 (lH, m, 

CH(H)OH), 3.56 (lH, d, J 8.6, NHCCH), 3.69-3.74 (lH, m, CH(H)OH), 4.45 (lH, t, J 

5.1, OH), 6.92 (lH, t, J 7.0, ArH), 7.00 (lH, t, J 7.5, ArH), 7.26 (lH, d, J 8.0, ArH), 7.36 

(IH, d, J 4.8, ArH), 10.65 (lH, s, NH); Dc (DMSO, lOO MHz) 22.3 (CH2), 23.9 (CH2), 

26.0 (CH2), 30.7 (CH2), 52.0 (CH2), 53.3 (CH), 56.4 (CH2), 60.5 (CH), 104.4 (c), 110.7 

(CH), 117.3 (CH), 117.9 (CH), 120.1 (CH), 127.2 (C), 135.2 (C), 136.0 (C); mlz (El) 256 

(M", 7%), 225 (100%). Accurate mass: found 256.1573, C16H20N20 requires 256.1576. 
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(6S,12bR)-12-(Phenylmethyl)-6-{ [(phenylmethyl)oxy I methyl}-1 ,2,3,4,6,7,12,12 b

octahydropyrido[2,I-a 113-carbolin-4-one 

to 
o 

(293) 

Sodium hydride (60% dispersion in mineral oil) (0.21 g, 5.18 nunol) was added to a dry 

round bottomed flask. Dry light petroleum ether (40-60°C) (10 mL) was added to the solid 

under a stream of nitrogen and the suspension was stirred for 1 min and then allowed to 

settle. The supematant liquid was carefully removed via syringe and the washing 

procedure was repeated. The sodium hydride was re-suspended in dry DMF (10 mL) and 

the flask was cooled to O°C in an ice bath. A solution of (6S,12bR)-6-(hydroxymethyl)-

1,2,3,4,6,7,12,12b-octahydropyrido[2,I-a]l3-carbolin-4-one (219) (0.7 g, 2.59 nunol) in 

dry DMF (5 mL) was added and the mixture was stirred for IS min at O°C. Benzyl 

bromide (0.68 mL, 5.70 nunol) was added and the mixture was stirred for an additional 

I h at room temperature. The reaction was quenched with water (5 mL) and the aqueous 

phase was extracted with CH2Ch (3 x 15 mL). The combined organic extracts were dried 

over anhydrous MgS04, filtered and solvent was removed under reduced pressure. The 

resultant yellow oil was adsorbed onto silica and purified by flash column 

chromatography (1:1 EtOAc:hexane). The target compound (293) was isolated as a 

yellow solid (1.05 g, 90%), a portion of which was recrystaIlised from CHChlhexane to 

yield yellow blocks. Mp 121-122°C; [a]22o = +68.1 (c = 1.0, CHCh); vmaxfcmo1 (film) 

2856,1636,1399,1101,736,698; OH (CDCh, 400 MHz) 1.51-1.62 (lH, m, CCHCH(H», 
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1.64-1.76 (lH, m, CH(H)CH2CO), 1.79-1.87 (lH, m, CH(H)CH2CO), 2.30-2.34 (lH, m, 

CCHCH(H», 2.40-2.49 (!H, m, CH(H)CO), 2.53-2.60 (!H, m, CH(H)CO), 2.92 (!H, d, J 

15.6, CCH(H)CH), 3.00 (!H, ddd, J 15.6, 5.6, 2.0, CCH(H)CH), 3.31-3.39 (2H, m, 

CHCH20), 4.35-4.53 (3H, m, NCCH & CCH20), 5.19 (!H, d, J 17.2, NCH(H», 5.31 

(!H, d, J 17.6, NCH(H», 5.66-5.72 (!H, m, CHCH20), 6.87-6.89 (2H, m, AIH), 7.12-

7.25 (1!H, m, AIH), 7.55-7.58 (!H, m, AIH); /le (CDC!), 100 MHz) 19.3 (CH2), 22.0 

(CH2), 30.4 (CH2), 32.0 (CH2)' 45.9 (CH), 47.7 (CH2)' 51.3 (CH), 68.3 (CH2), 72.5 

(CH2), 107.8 (C), 109.7 (CH), 118.5 (CH), 119.8 (CH), 122.2 (CH), 125.7 (2 x CH), 

127.0 (C), 127.4 (CH), 127.5 (2 x CH), 127.6 (CH), 128.3 (2 x CH), 128.9 (2 x CH), 

133.4 (C), 137.2 (C), 138.2 (c), 138.3 (c), 170.4 (C); mlz (El) 450 (M., 29%), 91 

(100%). Accurate mass: found 450.2316, C30H30N202 requires 450.2307. 
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(6S,12bR)-6-(Hydroxyrnethyl)-12-(phenylrn ethyl)-1 ,2,3,4,6,7,12,12 b-octahydro

pyrido [2,I-a I J3-carbolin-4-one 

(294) 

To a solution of (6S,12bR)-12-(phenylmethyl)-6-{[(phenylmethyl)oxYlmethyl}-

1,2,3,4,6,7,12,12b-octahydropyrido[2,I-alJ3-carbolin-4-one (293) (1.12 g, 2.49 mmol) in 

absolute EtOH was added a catalytic amount of palladium, 10 wt% on activated carbon. 

The reaction vessel was purged with nitrogen and then with hydrogen. A hydrogen filled 

balloon was fitted to the system and the mixture was stirred for 3 h. The contents of the 

reaction vessel were filtered through a Celite pad with additional CH2Ch (3 x 20 mL). 

The organic fractions were combined, dried over anhydrous MgS04, filtered and solvent 

was removed under reduced pressure. The resultant yellow oil was adsorbed onto silica 

and purified by flash column chromatography (100% EtOAc). The target compound (294) 

was isolated as a pale yellow powder (0.78 g, 87%), a portion of which was recrystallised 

from CHChlhexane to yield colourless blocks. Mp 232-233°C; [!llnD = +140.8 (c = 1.2, 

CHCh); vmax!cm-1 (film) 3382, 1616, 1405, 1044, 735; ~ (CDCh, 400 MHz) 1.60-1.70 

(IH, m, CCHCH(H), 1.83-1.90 (2H, rn, CH2CH2CO), 2.36-2.40 (lH, m, CCHCH(H), 

2.50-2.55 (!H, m, CH(H)CO), 2.58-2.64 OH, m, CH(H)CO), 2.89 (IH, d, J 15.6, 

CCH(H)CH), 3.05 (!H, ddd, J 16.0, 6.0, 2.0, CCH(H)CH), 3.48-3.53 (!H, m, 

CHCH(H)OH), 3.64 (!H, dd, J 11.0, 5.8, CHCH(H)OH), 4.62-4.65 (!H, m, NCCH), 5.29 

(IH, d, J 17.2, NCH(H», 5.40 (lH, d, J 17.2, NCH(H», 5.49-5.54 (lH, m, CHCH20H), 

6.97-7.00 (2H, m, ArH), 7.14-7.21 (3H, rn, ArH), 7.26-7.34 (3H, m, ArH), 7.56-7.58 (lH, 

m, ArH), OH not visible; Cc (CDCh, 100 MHz) 19.3 (CH2), 21.8 (CH2), 30.5 (CH2), 31.9 

Experimental 145 



(CH2),47.7 (CH2), 49.0 (CH), 51.1 (CH), 63.1 (CH2), 107.4 (C), 109.9 (CH), 118.4 (CH), 

119.9 (CH), 122.3 (CH), 125.7 (2 x CH), 126.8 (C), 127.6 (CH), 129.0 (2 x CH), 133.0 

(C), 137.1 (c), 138.2 (c), 172.3 (C); mlz (El) 360 (M., 83%), 91 (100%). Accurate mass: 

found 360.1840, C23H24N202 requires 360.1838. 
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(3R,6S,12bR) and (3S,6S,12bR)-3-Methyl-12-(phenylmethyl)-6-{[ (phenylmethyl)oxy) 

methyl}-l ,2,3,4,6,7 ,12,12b-octahydropyrido[2,1-a) fJ-carbolin-4-one 

to o 
to o 

Me 

(295) (296) 

To a stirred solution of diisopropylamine (0.21 mL, 1.51 mmol) in dry THF (4 mL) was 

added n-BuLi in hexanes, 2.5M (0.61 mL, 1.51 mmol) dropwise at O·C under a nitrogen 

atmosphere. The reaction mixture was stirred for 15 min, cooled to -78·C whereupon 

addition of (6S,12bR)-12-(phenylmethyl)-6-{[(phenylmethyl)oxy]methyl}-1,2,3,4,6,7,12, 

12b-octahy-dropyrido[2,I-a]fJ-carbolin-4-one (293) (0.62 g, 1.38mmol) in dry THF (4 

mL) was achieved via cannula. The solution was stirred at -78·C for 30 min, MeI (0.09 

mL, 1.51 mmol) was added and the reaction vessel was allowed to warm to room 

temperature. The reaction was quenched with saturated aqueous ~Cl solution (10 mL) 

and the aqueous phase was extracted with CH2Ch (3 x 15 mL). The combined organic 

fractions were dried over anhydrous MgS04, filtered and solvent was removed under 

reduced pressure to yield a yellow oil which was shown to be a mixture of 

diastereoisomers (3:2) by lH NMR spectroscopy. The oil was adsorbed onto silica and 

purified by flash column chromatography (7:3 to 1:1 hexane:EtOAc). 

Major isomer (295) (0.29 g, 45%). Isolated as a viscous yellow oil. [a]22D = +23.1 (c = 

0.8, CHCb); vmax/cm-1 (film) 2930,1702, 1453, 1268, 738; OH (CDCb, 400 MHz) 1.22 

(3H, d, J 7.2, CH3), 1.45-1.53 (lH, m, CH(H)CHCH3), 1.60-1.71 (lH, m, CCHCH(H), 
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1.90-1.97 (!H, m, CH(H)CHCH3), 2.15-2.21 (!H, m, CCHCH(H», 2.48-2.54 (!H, m, 

CHCO), 2.96 (!H, ddd, J 15.6,5.6, 1.6, CCH(H)CH), 3.07 (!H, d, J 14.4, CCH(H)CH), 

3.26-3.35 (2H, m, CHCH20), 4.41-4.42 (!H, m, NCCH), 4.44 (2H, s, CCH20), 5.19 (!H, 

d, J 17.2, NCH(H), 5.34 (!H, d, J 17.2, NCH(H», 5.51-5.56 (IH, m, CHCH20), 6.83-

6.86 (2H, m, ArH), 7.13-7.23 (l1H, m, ArH), 7.58-7.60 (lH, m, ArH); oe (CDCb, 100 

MHz) 17.4 (CHi), 21.6 (CH2), 26.4 (CH2)' 28.8 (CH2), 35.0 (CH), 46.5 (CH), 47.3 (CH2), 

49.8 (CH), 68.5 (CH2), 72.5 (CH2), 107.3 (C), 109.8 (CH), 118.5 (CH), 119.8 (CH), 122. I 

(CH), 125.7 (2 x CH), 127.1 (c), 127.4 (3 x CH), 127.5 (CH), 128.2 (2 x CH), 128.9 (2 x 

CH), 133.6 (C), 137.3 (C), 138.1 (c), 138.3 (C), 174.6 (C); mlz (El) 464 (M+, 20%), 91 

(100%). Accurate mass: found 464.2472, C31H32N202 requires 464.2464. 

Minor isomer (296) (0.17 g, 27%). Isolated as a viscous yellow oil. [a]22o = +16.4 (c = 

1.3, CHCb); vmax/cm·1 (film) 2928, 1699, 1453, 1270, 739; OH (CDCb, 400 MHz) 1.27 

(3H, d, J 7.2, CH3), 1.41-1.48 (!H, m, CH(H)CHCH3), 1.56-1.66 (!H, m, CCHCH(H», 

1.90-1.97 (IH, m, CH(H)CHCH3), 2.30-2.35 (IH, m, CCHCH(H», 2.40-2.47 (!H, m, 

CH CO), 2.86 (!H, d, J 16.0, CCH(H)CH), 3.01 (IH, ddd, J 15.8, 5.8, 2.2, CCH(H)CH), 

3.34-3.42 (2H, m, CHCH20), 4.35-4.40 (2H, m, CCH20 & NCCIl), 4.50 (!H, d, J 12.0, 

CCH20), 5.20 (!H, d, J 17.6, NCH(H), 5.30 (!H, d, J 17.2, NCH(H», 5.73-5.78 (!H, m, 

CHCH20), 6.89-6.91 (2H, m, Arll), 7.11-7.31 (l1H, m, ArH), 7.53-7.57 (!H, m, Arll); 

oe (CDCb, lOO MHz) 18.6 (CH3), 22.1 (CH2), 28.7 (CH2), 30.2 (CH2), 37.3 (CH), 45.8 

(CH), 47.8 (CH2), 52.1 (CH), 68.4 (CH2), 72.5 (CH2), 108.0 (C), 109.8 (CH), 118.5 (CH), 

119.8 (CH), 122.2 (CH), 125.8 (2 x CH), 127.0 (C), 127.4 (CH), 127.6 (3 x CH), 128.2 (2 

x CH), 128.9 (2 x CH), 133.7 (C), 137.3 (C), 138.3 (C), 138.4 (C), 173.3 (C); mlz (El) 

464 (M+, 23%), 105 (100%). Accurate mass: found 464.2461, C31H32N202 requires 

464.2464. 
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(6S,12bR)-3-[ (E)EthyJidene]-12-(phenylmethyl)-6-{[ (phenylmethyl)oxy] methyl}-l ,2, 

3,4,6,7,12,12b-octahydropyrido[2,1-a]p-carbolin-4-one 

to o 

(297) 

To a stirred solution of diisopropylamine (0.47 mL, 3.35 mmol) in dry THF (10 mL) was 

added n-BuLi in hexanes, 2.5M (1.34 mL, 3.35 mmol) dropwise at O·C under a nitrogen 

atmosphere. The reaction mixture was stirred for 15 min, cooled to -78·C whereupon 

addition of (6S,12bR)-12-(phenylmethyl)-6-{[(phenylmethyl)oxyJmethyl}-1,2,3,4,6,7,12, 

12b-octahydropyrido[2,l-aJI3-carbolin-4-one (293) (1.37 g, 3.04 mmol) in dry THF (10 

mL) was achieved via cannula. The solution was stirred at -78·C for 30 min, acetaldehyde 

(0.19 mL, 3.35 mmol) was added and the reaction vessel was allowed to warm to room 

temperature. The reaction was quenched with saturated aqueous N&CI solution (10 mL) 

and the aqueous phase was extracted with CH2Ch (3 x 15 mL). The combined organic 

fractions were dried over anhydrous MgS04, filtered and solvent was removed under 

reduced pressure. This yielded a yellow oil which was dissolved in dry CH2Ch (10 mL) 

containing triethylamine (1.27 mL, 9.12 mmol) and the mixture was cooled to -40·C. 

Methanesulfonyl chloride (0.35 mL, 4.56 mmol) was added dropwise and the mixture was 

stirred at -40·C for 20 min. The reaction vessel was allowed to warm to room temperature 

and stirred for an additional 3 h. A saturated aqueous N~CI solution was added (10 mL) , 

and the product was extracted with CH2Ch (3 x 15 mL). The combined organic fractions 

were dried over anhydrous MgS04, filtered and solvent was removed under reduced 
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pressure to yield a yellow oil. 1,5-DiazabicycIo[4.3.0]non-5-ene (0.75 mL, 6.08 mmol) 

was added to a solution of the mesylate in dry THF (10 mL) and the mixture was stirred 

for 2 h at room temperature. A saturated aqueous NRtCI solution was added (10 mL) and 

the product was extracted with CH2Ch (3 x 15 mL). The combined organic fractions were 

dried over anhydrous MgS04, filtered and solvent was removed under reduced pressure. 

The resultant yellow oil was adsorbed onto silica and purified by flash column 

chromatography (4:1 hexane:EtOAc). The target compound (297) was isolated as a pale 

yellow solid (0.87 g, 60%), a portion of which was recrystaIlised from CH2Chllight 

petroleum ether (40-60°C) to yield yellow needles. Mp 182-184°C; [af3o = +86.4 (c = 

1.1, CHC!); vmax/cm·· (film) 1660, 1608, 1393, 1107,737; OH (CDCI), 400 MHz) 1.58-

1.70 (!H, m, CCHCH(H», 1.74 (3H, d, J 7.0, CH3), 2.24-2.34 (2H, m, CH(H)CCO & 

CCHCH(H), 2.60-2.64 (IH, rn, CH(H)CCO), 2.97-3.08 (2H, m, CCH2CH), 3.29-3.36 

(2H, rn, CHCH20), 4.37 (!H, d, J 11.2, NCCH), 4.43 (2H, s, CCH20), 5.18 (!H, d, J 

17.2, NCH(H), 5.32 (!H, d, J 17.2, NCH(H», 5.68-5.73 (!H, m, CHCH20), 6.84-6.87 

(2H, rn, ArH), 7.02 (!H, q, J7.2, CHCH3), 7.12-7.25 (1!H, m, ArH), 7.58-7.60 (!H, m, 

ArH); oc (CDCI), 100 MHz) 13.8 (CH3), 21.8 (CH2), 23.6 (CH2), 30.5 (CH2), 46.5 (CH), 

47.3 (CH2), 50.9 (CH), 68.5 (CH2), 72.5 (CH2), 107.7 (c), 109.8 (CH), 118.6 (CH), 119.8 

(CH), 122.1 (CH), 125.7 (2 x CH), 127.0 (C), 127.3 (CH), 127.5 (3 x CH), 128.2 (2 x 

CH), 128.9 (2 x CH), 129.0 (C), 133.1 (C), 135.1 (CH), 137.2 (C), 138.2 (C), 138.3 (C), 

165.6 (C); m/z (El) 476 (~, 100%). Accurate mass: found 476.2460, C32H32N202 

requires 476.2464. 
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(6S,12bR)-3-[(E)EtbyJidine]-12-(pbenylmetbyl)-6-{[(pbenylmetbyl)oxy]metbyl}-l,2,3, 

4,6,7 ,12,12b-octabydropyrido[2,1-a] p-carboline 

to o 

(304) 

(6S,12bR)-3-[(E)EthyJidene]-12-(phenylmethyl)-6-{[(phenylmethyl)oxy]methyl}-1,2,3,4, 

6,7,12,12b-octahydropyrido[2,I-a]p-carbolin-4-one (297) (0.15 g, 0.32 mmol) in dry 

toluene (10 mL) was stirred at room temperature for 16 h under a nitrogen atmosphere 

with sodium bis(2-methoxyethoxy)aluminium hydride (Red-AI) (65+ wt% in toluene, 

0.29 mL). The reaction mixture was quenched with saturated potassium sodium tartrate 

(Rochelle salt) solution (10 mL) and the aqueous phase was extracted with EtOAc (3 x 15 

mL). The combined organic extracts were dried over anhydrous Na2S04, filtered and 

solvent was removed under reduced pressure. An extremely complex IH NMR spectrum 

of the crude reaction mixture was obtained and there was no evidence of the expected 

product (304). 
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(6S,12 bR)-4-0xo-l ,2,3,4,6,7 ,12,12b-octahydropyrido (2,t-a) ~-carbolin-6-carb

aldehyde 

(311) 

Dess-Martin periodinane oxidation 

To a stirred solution of Dess-Martin periodinane (1.61 g, 3.78 mmol) in CH2Ch (15 mL) 

was added (6S, 12bR)-6-(hydroxymethyl)-1 ,2,3,4,6,7,12, 12b-octahydropyrldo[2, I-a]~

carbolin-4-one (219) (0.93 g, 3.44 mmol). After 20 h solvent was removed under reduced 

pressure and the resultant yellow oil was adsorbed directly onto silica. Purification by 

flash column chromatography (100% EtOAc) yielded the target compound (311) as a 

yellow foam (0.35 g, 38%). [a]23D = +197.8 (c = 1.3, CH2Ch); vrnaxfcm-I (film) 3384, 

3287, 1724, 1615, 1440, 1404, 1326, 739; (iH (CDCb, 400 MHz) 1.68-1.79 (!H, m, 

CCHCH(H», 1.97-2.05 (2H, m, CH2CH2CO), 2.41-2.55 (2H, m, CCHCH(H) & 

CH(H)CO), 2.70-2.76 (lH, m, CH(H)CO), 3.10 (IH, dd, J 15.6,6.0, CCH(H)CH), 3.44 

(!H, d, J 16.0, CCH(H)CH), 4.93 (!H, d, J 11.6, NHCCH), 5.99 (!H, d, J 6.4, CHCHO), 

7.15 (!H, t,J7.4,ArH), 7.21 (!H, t,J7.6, ArH), 7.32 (!H, d,J8.4,ArH), 7.55 (lH, d,J 

7.6, ArH), 7.85 (!H, s, NH), 9.51 (!H, s, CHO); (ic (CDCb, 100 MHz) 19.5 (CH2), 20.0 

(CH2), 29.7 (CH2), 32.0 (CH2), 52.1 (CH), 56.7 (CH), 106.5 (C), 111.0 (CH), 118.4 (CH), 

120.1 (CH), 122.6 (CH), 126.5 (C), 132.6 (C), 136.4 (C), 170.2 (C), 199.3 (CH); mlz (El) 

268 ~, 91%), 239 (100%). Accurate mass: found 268.1212, CI6HI~202 requires 

268.1212. 
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IBX oxidation 

(6S, 12bR)-6-(Hydroxymethyl)-1 ,2,3,4,6,7,12, 12b-octahydropyrido[2, I-a] fl-carbolin-4-

one (219) (2.45 g, 9.06 mmol) was dissolved in DMSO (15 mL) under a nitrogen 

atmosphere at room temperature. 2-Iodoxybenzoic acid (2.79 g, 9.97 mmol) was added 

and the mixture was stirred for 20 h. Solvent was removed under reduced pressure and 

EtOAc (30 mL) was added to the residue. The organic fraction was washed with H20 (3 x 

100 mL), dried over anhydrous MgS04, filtered and solvent was removed under reduced 

pressure. The resultant brown foam was adsorbed onto silica and purified by flash column 

chromatography (100% EtOAc). This yielded the target compound (311) as a pale yeIlow 

foam (1.68 g, 69%). Spectroscopic data were identical with those previously reported for 

(311). 
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1,2,3,4,6,7,12,12b-Octahydropyrido[2,I-all3-carbolin-4-one 

(328) 

(68, 12bR)-4-0xo-1 ,2,3,4,6,7,12, 12b-octahydropyrido[2, I-a] l3-carbolin-6-carbaldehyde 

(311) (0.45 g, 1.68 mmol) was added to bis(triphenylphosphine)rhodium(l) carbonyl 

chloride (319) (0.12 g, 0.17 mmol) in mesitylene (20 mL) under a nitrogen atmosphere. 

After stirring for 48 h at reflux, the mixture was allowed to cool to room temperature 

before solvent was removed under reduced pressure. The resultant brown oil was 

adsorbed onto silica and purified by flash column chromatography (1:1 EtOAc:hexane). 

The target compound (328) was isolated as a pale yellow solid (0.26 g, 65%), a portion of 

which was recrysta1lised from CH2Chlhexane to yield yellow blocks. Mp 248-249°C; 

vrnax!cm·1 (film) 3447, 1653, 1457, 724; OH (CDCI), 400 MHz) 1.73-1.89 (2H, m, 

NCHCH(H) & NCHCH2CH(H), 1.95-2.00 (1H, m, NCHCH2CH(H», 2.36-2.49 (2H, m, 

CH(H)CO & NCHCH(H», 2.56-2.63 (IH, m, CH(H)CO), 2.71-2.92 (3H, m, NCH2CH2 

& NCH(H», 4.77-4.80 (lH, m, NCH), 5.14-5.22 (lH, m, NCH(H», 7.10-7.14 (lH, m, 

ArH), 7.16-7.20 (lH, m, ArH), 7.34 (lH, d, J7.9, ArH), 7.51 (JH, d, J7.7, ArH), 8.07 

(lH, br, s, NH); 15H (CDCI), 100 MHz) 19.5 (CH2), 21.0 (CH2), 29.2 (CH2), 32.5 (CH2), 

40.1 (CH2), 54.4 (CH), 109.9 (C), 110.9 (CH), 118.5 (CH), 120.0 (CH), 122.3 (CH), 

127.0 (C), 133.3 (C), 136.2 (C), 169.2 (C); mlz (El) 240 (M" 100%). Accurate mass: 

found 240.0166, C15HI~20 requires 240.0167. 

ChiraI HPLC (ChiralCel OD-H, 85:15 hexane/propan-2-01, 0.4 mL min-I) on the purified 

sample indicated that the remaining chiral centre had racemised. The enantiomers were 

observed at 43.1 and 46.5 minutes. 

Experimental 154 



(12 bR)-1 ,2,3,4,6,7,12, 12b-Octahydropyrido[2,I-a I J3-carbolin-4-one 

(310) 

Using Raney nickel (W2) 

Raney nickel (W2) (1.02 g) was washed with H20 (8 x 3 mL), i-PrOH (2 x 3 mL) and 

toluene (I x 3 mL). To the Raney nickel was added (6S,12bR)-4-0xo-l,2,3,4,6,7,12,12b

octahydropyrido[2,I-a]J3-carboline-6-carbaldehyde (219) (0.17 g, 0.63 mmol) and toluene 

(5 mL). The mixture was refluxed for 4 h, allowed to cool to room temperature and the 

solids were removed by filtration through Celite. The retained solids were washed with 

boiling MeOH (2 x 5 mL) and the combined filtrates were concentrated under reduced 

pressure. A IH NMR spectrum of the crude reaction mixture was obtained and there was 

no evidence of the expected product (310), only starting material (219) was present. 

Additional time (72 h) and up to a two-fold excess of Raney nickel (W2) did not effect 

the desired transfonnation of (219) to (310). 

Using bis(triphenylphosphine)rhodium(l) carbonyl chloride and dppp 

Bis(triphenylphosphine)rhodium(I) carbonyl chloride (319) (44 mg, 0.06 mmol) was 

added to p-xylene (8 mL) under a nitrogen atmosphere and the mixture was warmed to 

80°C with stirring until the rhodium catalyst dissolved. 1,3-Bis(diphenyl

phosphino)propane (58 mg, 0.14 mmol) was added and the solution was stirred at 80°C 

(ca. 15 min) until a fine yellow precipitate fonned (6S,12bR)-4-0xo-l,2,3,4,6,7,12,12b

octahydropyrido[2,I-a]J3-carbolin-6-carbaldehyde (311) (0.34 g, 1.27 mmol) was added, 

the mixture was heated at reflux for 96 h, allowed to cool to room temperature and 

solvent was removed under reduced pressure. The resultant yellow oil was adsorbed onto 
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silica and purified by flash column chromatography (1:1 EtOAc:hexane). This yielded the 

target compound (310) and an inseparable impurity as a pale yellow solid (0.22 g, 72%). 

The purified IH NMR spectrum was identical with that previously reported for (328), 

except for the impurity located between 7.10-7.68 ppm. 

Using bis(triphenylphosphine)rhodium(1) carbonyl chloride 

(6S, 12bR)-4-0xo-l ,2,3,4,6,7,12, 12b-octahydropyrido[2, I-a 113-carbolin-6-carbaldehyde 

(311) (0.57 g, 2.12 mmol) was added to bis(triphenylphospbine)rhodium(J) carbonyl 

chloride (319) (0.15 g, 0.21 mmol) in mesitylene (8 mL) under a nitrogen atmosphere. 

After stirring for 18 h at reflux, the mixture was allowed to cool to room temperature 

before solvent was removed under reduced pressure. The resultant brown oil was 

adsorbed onto silica and purified by flash colunm chromatography (1:1 EtOAc:hexane). 

This yielded the target compound (310) as a pale yellow solid (0.30 g, 59%), a portion of 

which was recrystallised from CH2Chlhexane to yield yellow blocks. Spectroscopic data 

were identical with those previously reported for (328). Mp 248-249°C; [a.]230 = +241.5 

(c = 1.0, CHCh). 

ChiraI HPLC (ChiraICel OD-H, 85:15 hexane/propan-2-01, 0.4 mL min'l) on the purified 

sample indicated a 94% e.e. in favour of (310). The enantiomers were observed at 42.2 

and 46.4 minutes. 
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12-(Phenylsulfonyl)-I,2,3,4,6,7,12,12b-octahydropyrido(2,1-aJp-carbolin-4-one 

(331) 

Sodium hydride (60% dispersion in mineral oil) (68 mg, 1.71 mmol) was added to a dry 

round bottomed flask. Dry light petroleum ether (40-60°C) (10 mL) was added to the solid 

under a stream of nitrogen and the suspension was stirred for 1 min and then allowed to 

settle. The supematant liquid was carefully removed via syringe and the washing 

procedure was repeated. The sodium hydride was re-suspended in dry THF (10 mL) and 

the flask was cooled to O°C in an ice bath. A solution of 1,2,3,4,6,7,12,12b

octahydropyrido[2,I-aJP-carbolin-4-one (328) (0.41 g, 1.71 mmol) in dry THF (5 mL) 

was added and the mixture was stirred for 15 min at O°C. Benzenesulfonyl chloride (0.24 

mL, 1.88 mmol) was added and the mixture was stirred for an additional 5 h at room 

temperature. The reaction was quenched with water (10 mL) and the aqueous phase was 

extracted with CH2Ch (3 x 15 mL). The combined organic fractions were dried over 

anhydrous MgS04, filtered and solvent was removed under reduced pressure. A brown 

solid was obtained which was adsorbed onto silica and purified by flash column 

chromatography (1:1 EtOAc:hexane). The target compound (331) was isolated as a 

yellow solid (0.58 g, 89%), a portion of which was recrystallised from EtOH to yield 

white crystals. Mp 263-26SoC; Vrnax/cm-I (film) 1640,1446,1432,1366,1172,981,690; 

OH (CDCI3, 400 MHz) 1.50-1.55 (lH, m, NCHCH(H», 1.94-1.99 (2H, m, CH2CH2CO), 

2.39-2.45 (lH, m, CH(H)CO), 2.52-2.56 (IH, m, NCH2CH(H), 2.60-2.67 (3H, m, 

CH(H)CO, NCH2CH(H) & NCH(H), 3.09-3.13 (lH, m, NCHCH(H), 5.04-5.15 (2H, m, 

NCH & NCH(H», 7.22-7.34 (SH, m, ArH), 7.45 (IH, t, J 7.5, ArH), 7.54-7.56 (2H, m, 
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ArEl), 8.10 (lH, d, J 8.2, ArEl); Oc (CDCh, 100 MHz) 19.7 (CH2), 22.0 (CH2), 32.0 

(CH2), 32.2 (CH2), 38.8 (CH2), 56.5 (CH), 116.6 (CH), 118.7 (CH), 124.3 (C), 124.8 

(CH), 125.4 (CH), 126.5 (2 x CH), 128.7 (2 x CH), 130.6 (C), 133.8 (CH), 135.9 (C), 

136.2 (C), 138.5 (C), 169.8 (C); m/z (El) 380 (W, 4%), 239 (100%). Accurate mass: 

found 380.1190, C21H2oN203S requires 380.1195. 
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3-(E)Ethylidene)-12-(phenylsulfonyl)-I,2,3,4,6,7,12,12b-octahydropyrido(2,I-a)J3-

carbolin-4-one 

(334) 

To a stirred solution of diisopropylamine (0.11 mL, 0.75 mmol) in dry THF (5 mL) was 

added n-BuLi in hexanes, 2.5M (0.3 mL, 0.75 mmol) dropwise at O°C under a nitrogen 

atmosphere. The reaction mixture was stirred for IS min, cooled to -7SoC whereupon 

addition of 12-(phenylsulfonyl)-I,2,3,4,6,7, 12, 12b-octahydropyrido[2,I-a ]J3-carbolin-4-

one (331) (0.26 g, 0.6S mmol) in dry THF (5 mL) was achieved via cannula. The solution 

was stirred at -7SoC for 30 min, acetaldehyde (0.04 mL, 0.75 mmol) was added and the 

reaction vessel was allowed to warm to room temperature. The reaction was quenched 

with saturated aqueous N14CI solution (5 mL) and the aqueous phase was extracted with 

CH2Ch (3 x 10 mL). The combined organic fractions were dried over anhydrous MgS04, 

filtered and solvent was removed under reduced pressure. This yielded a yellow oil which 

was dissolved in dry CH2Ch (S mL) containing triethylamine (0.29 mL, 2.05 mmol) and 

the mixture was cooled to -40°C. Methanesulfonyl chloride (O.OS mL, 1.03 mmol) was 

added dropwise and the mixture was stirred at -40°C for 20 min. The reaction vessel was 

allowed to warm to room temperature and stirred for an additional 3 h. A saturated 

aqueous N14CI solution was added (5 mL) and the product was extracted with CH2Ch 

(3 x 10 mL). The combined organic fractions were dried over anhydrous MgS04, filtered 

and solvent was removed under reduced pressure to yield a yellow oil. 

1,5-Diazabicyclo[4.3.0]non-5-ene (0.17 mL, 1.37 mmol) was added to a solution of the 

mesylate in dry THF (S mL) and the mixture was stirred for 2 h at room temperature. A 
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saturated aqueous N~CI solution was added (5 mL) and the product was extracted with 

CH2Ch (3 x 10 mL). The combined organic fractions were dried over anhydrous MgS04, 

filtered and solvent was removed under reduced pressure. The resultant yellow oil was 

adsorbed onto silica and purified by flash column chromatography (1:1 EtOAc:hexane). 

The target compound (334) was isolated as white blocks (0.16 g, 56%), a portion of which 

was recrystallised from CH2CI~exane to colourless blocks. Mp 246-247·C; vmax!cm-I 

(film) 2922, 1662, 1609, 1447, 14\1, 1369, \174, 725; OH (CDCh, 400 MHz) 1.51-1.62 

(IH, m, CCHCH(H), 1.80 (3H, d, J7.2, CH3), 2.50-2.78 (5H, m, CH2CCO, NCH2CH2 & 

NCH(H), 3.04-3.09 (!H, m, CCHCH(H», 5.08-5.11 (!H, m, NCH), 5.15-5.21 (!H, m, 

NCH(H», 7.03 (!H, q, J 7.3, CHCH3), 7.23-7.27 (!H, m, ArH), 7.30-7.35 (4H, m, ArH), 

7.44-7.48 (!H, m, ArH), 7.58-7.61 (2H, m, ArH), 8.13 (IH, d, J 8.0, ArH); Bc (CDCI), 

100 MHz) 13.8 (CH3), 21.8 (CH2), 23.5 (CH2), 32.0 (CH2), 38.9 (CH2), 55.3 (CH), 116.3 

(CH), 118.8 (CH), 123.8 (c), 124.7 (CH), 125.3 (CH), 126.4 (2 x CH), 128.8 (2 x CH), 

129.3 (C), 130.3 (C), 133.9 (CH), 134.8 (CH), 135.6 (C), 136.2 (c), 138.2 (c), 165.1 (c); 

mlz (FAB) 407 «M+l)+, 41%), 154 (100%). Accurate mass: found 407.1463, 

C23H23N203S requires 407.1460. 
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3-( (E)Etbylidene ]-1,2,3,4,6,7 ,12,12b-octabydropyrido(2,1-a] p-carbolin-4-one 

(337) 

Tetra-n-butylammonium fluoride (1.0M solution in tetrahydrofuran, 0.4 mL) was added 

to a stirred solution of 3-[(E)ethylidene]-12-(phenylsulfonyl)-1,2,3,4,6,7,12,12b

octahydro-pyrido[2,I-a]p-carbolin-4-one (334) (82 mg, 0.2 mmol) in THF (5 mL). The 

mixture was refluxed for 2 h, allowed to cool to room temperature, H20 (5 mL) was 

added and the aqueous phase was extracted with CH2Ch (3 x 10 mL). The combined 

organic fractions were dried over anhydrous MgS04 and filtered. Solvent was removed 

under reduced pressure to yield a brown oil which was adsorbed onto silica and purified 

by flash column chromatography (3:2 hexane:EtOAc). The target compound (337) was 

isolated as a pale yellow oil (42 mg, 78%). vrnaxi'cm-1 (film) 3254, 1658, 1594, 1424,724; 

OH (CDCI3, 400 MHz) 1.78 (3H, d, J7.2, 1.7, CH3), 1.74-1.84 (IH, m, CCHCH(H), 2.33-

2.39 (lH, m, CH(H)CCO), 2.45-2.51 (lH, m, CCHCH(H), 2.75-2.90 (3H, m, NCH2CH2 

& CH(H)CCO), 2.94 (lH, dd, J 11.1, 4.2, NCH(H», 4.81-4.85 (lH, m, NHCCH), 5.18-

5.26 (lH, m, NCH(H», 7.03 (lH, q, J7.3, CHCH3), 7.13 (lH, t, J7.6, ArH), 7.19 (lH, t, 

J 7.6, ArH), 7.34 (lH, d, J 8.0, ArH), 7.52 (lH, d, J 7.8, ArH), 7.93 (lH, br, s, NH); Oc 

(Cncl), 100 MHz) 13.7 (CH3), 21.0 (CH2), 22.7 (CH2), 29.1 (CH2), 40.5 (CH2), 53.8 

(CH), 109.9 (C), 110.9 (CH), 118.5 (CH), 119.8 (CH), 122.2 (CH), 126.9 (C), 129.1 (C), 

133.2 (C), 134.0 (CH), 136.3 (C), 164.6 (C); m/z (El) 266 ~, 100%). Accurate mass: 

found 266.1419, C17HlSN20 requires 266.1419. 
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3-( (E)Ethylidene 1-1,2,3,4,6,7 ,12,12b-octahydropyrido(2,I-all3-carboline88 

(208) 

Diisobutylaluminium hydride (1.0M solution in toluene, 0.34 mL) was added dropwise at 

O°C to 3-[(E)ethylidene 1-1,2,3,4,6,7,12, 12b-octahydropyrido[2, I-a II3-carbolin-4-one (337) 

(30 mg, 0.11 mmo1) in dry 1,2-dimethoxyethane (5 mL) under a nitrogen atmosphere. The 

solution was warmed to room temperature and stirred for 1 h. The reaction was quenched 

with MeOH (5 mL) and H20 (1 mL) and extracted with CH2Ch (3 x 10 mL). The 

combined organic fractions were dried over anhydrous MgS04 and filtered. Solvent was 

removed under reduced pressure to yield an orange oil which was adsorbed onto silica 

and purified by flash column chromatography (98:2 EtOAc:Et3N). The target compound 

(208) (with traces of an inseparable impurity) was isolated as a yellow oil (5 mg, 18%). 

Literature 'D NMR signals88 for (338): 

OH (CDCl), 270 MHz) 7.75 (br, s, lH), 7.48-7.08 (m,4H), 5.42 (q, J= 6.8 Hz, lH), 3.42-

3.31 (m, 2H), 3.10-2.98 (m, 3H), 2.83-2.63 (m, 3H), 2.19-2.13 (m, IH), 1.98 (br, t, lH), 

1.62 (d, J = 6.8 Hz, 3H), 1.65-1.53 (m, lH). 

Observed 'D NMR signals for (208): 

OH (CDCl), 400 MHz) 7.82 (br, s, IH), 7.47 (d, J = 7.6 Hz, IH), 7.32 (d, J= 7.8 Hz, lH), 

7.16-7.06 (m, 2H), 5.43 (q, J= 6.9 Hz, lH), 3.45 (d, J= 10.4 Hz, IH), 3.35 (d, J= 11.9 

Hz, lR), 3.13-2.98 (m, 3R), 2.82-2.64 (m, 3H), 2.21-2.15 (m, lH), 2.05-1.84 (signal 

masked by impurity), 1.63 (d, J= 6.7 Hz, 3H), 1.67-1.55 (m, IH). 
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Appendix 



Single Crystal X-Ray with Accompanying Data 

(3S,9bR)-3-(lH-Indol-3-ylmethyl)-9b-methyl-2,3,5,9b-tetrahydro(1,3Joxazolo(2,3-

aJisoindol-5-one 

o Me 

.ffu 
o 

(251) 
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Crystal Data and Structure Refinement 

Identification code 

Chemical fonnula 

Formula weight 

Temperature 

Radiation, wavelength 

Crystal system, space group 

Unit cell parameters 

Cell volume 

Z 

Calculated density 

Absorption coefficient !l 

F(OOO) 

Crystal colour and size 

Reflections for cell refinement 

Data collection method 

9 range for data collection 

Index ranges 

Completeness to 9 = 26.000 

Intensity decay 

Reflections collected 

Independent reflections 

Reflections with F~2cr 

Absorption correction 

Min. and max. transmission 

Structure solution 

Appendix 

(251) 

C2oH1SN202 

318.36 

150(2) K 

MoKa, 0.71073 A 

orthorhombic, P212121 

a = 7.2249(7) A 

b = 9.0792(8) A 

c = 24.776(2) A 

1625.2(3) A3 

4 

1.301 g/cm3 

0.085 mm-I 

672 

a=90° 

'Y = 900 

colourless, 0.71 x 0.50 x 0.04 mm3 

11068 (9 range 2.389 to 28.961 0
) 

Broker SMART 1000 CCD diffractometer 

Cl) rotation with narrow frames 

1.64 to 28.960 

h-9t09,k-11 to 11,1-33 to 32 

99.9% 

0% 

14364 

3946 (Rint = 0.0144) 

3753 

semi-empirical from equivalents 

0.942 and 0.997 

direct methods 

A 



Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0542, 0.2220 

Data I restraints 1 parameters 3946/0/219 

Final R indices [F2:>2cr] RI = 0.0310, wR2 = 0.0836 

R indices (all data) RI = 0.0330, wR2 = 0.0858 

Goodness-of-fit on F2 1.037 

Absolute structure parameter -0.1(9) 

Extinction coefficient 0.0044(15) 

Largest and mean shiftlsu 0.001 and 0.000 

Largest diff. peak and hole 0.228 and -0.181 e A-3 

Atomic Coordinates and Equivalent Isotropic Displacement Parameters (A2
). 

U.q is Defined as One Third of the Trace of the Orthogonalised Uij Tensor 

x y z Ueq 

0(1) 0.34770(15) 0.80205(12) 0.84586(3) 0.0401(2) 
N(I) 0.09480(13) 0.65835(10) 0.82304(4) 0.02298(19) 
C(1) 0.26150(16) 0.72668(13) 0.81351(4) 0.0257(2) 
0(2) 0.06921(13) 0.41289(9) 0.80688(3) 0.03013(19) 
N(2) -0.19184(15) 0.59250(12) 1.04601(4) 0.0316(2) 
C(2) 0.31535(15) 0.68861 (13) 0.75734(4) 0.0245(2) 
C(3) 0.45910(17) 0.74379(15) 0.72598(5) 0.0317(3) 
C(4) 0.48084(19) 0.68426(17) 0.67447(5) 0.0382(3) 
C(5) 0.3629(2) 0.57505(17) 0.65551(5) 0.0399(3) 
C(6) 0.2182(2) 0.52189(15) 0.68712(5) 0.0347(3) 
C(7) 0.19774(15) 0.57996(13) 0.73857(4) 0.0250(2) 
C(8) 0.04901(16) 0.55172(12) 0.78025(4) 0.0241(2) 
C(9) -0.14482(17) 0.57421(15) 0.75774(5) 0.0329(3) 
C(lO) -0.00423(18) 0.43497(13) 0.86047(5) 0.0312(3) 
C(11) 0.04227(16) 0.59702(12) 0.87586(4) 0.0248(2) 
C(12) -0.11919(17) 0.68149(12) 0.90162(4) 0.0259(2) 
C(13) -0.17691(15) 0.62289(12) 0.95575(4) 0.0243(2) 
C(14) -0.10169(18) 0.66269(14) 1.00446(5) 0.0312(2) 
C(15) -0.33058(16) 0.50722(12) 1.02489(4) 0.0244(2) 
C(16) -0.46356(18) 0.42093(13) 1.05111(5) 0.0305(2) 
C(17) -0.59172(19) 0.34816(15) 1.01945(6) 0.0378(3) 

Appendix A 



C(18) -0.58858(18) 0.36164(16) 0.96282(6) 0.0383(3) 
C(19) -0.45862(16) 0.44794(14) 0.93690(5) 0.0292(2) 
C(20) -0.32555(15) 0.52248(12) 0.96787(4) 0.0225(2) 

Bond Lengths [A) and Angles [0) 

O(I)-C(I) 
N(l)-C(II) 
C(1)-C(2) 
O(2)-C(10) 
N(2)-C(14) 
C(2)-C(3) 
C(4)-C(5) 
C(6)-C(7) 
C(8)-C(9) 
C(11)-C(12) 
C(13)-C(14) 
C(15)-C(16) 
C(16)-C(17) 
C(18)-C(19) 

C(1)-N(I)-C(II) 
C(11)-N(I)-C(8) 
O(I)-C(I)-C(2) 
C(8)-O(2)-C(10) 
C(7)-C(2)-C(3) 
C(3)-C(2)-C(1 ) 
C(5)-C( 4)-C(3) 
C(7)-C(6)-C(5) 
C(2)-C(7)-C(8) 
O(2)-C(8)-N(I) 
N(I)-C(8)-C(7) 
N(I)-C(8)-C(9) 
O(2)-C(10)-C(II) 
N(I)-C(11)-C(10) 
C(13)-C(12)-C(11) 
C(14)-C(13)-C(12) 
C(13)-C(14)-N(2) 
N(2)-C(15)-C(20) 
C(I7)-C(16)-C(15) 
C(19)-C(18)-C(17) 
C(19)-C(20)-C(15) 
C(15)-C(20)-C(13) 

, 

Appendix 

1.2241(14) 
1.4721(13) 
1.4858(15) 
1.4438(14) 
1.3749(15) 
1.3906(16) 
1.389(2) 
1.3873(15) 
1.5212(16) 
1.5349(16) 
1.3718(16) 
1.3997(16) 
1.3818(19) 
1.3813(18) 

123.30(9) 
109.46(8) 
127.60(11) 
105.32(8) 
121.88(10) 
129.44(11) 
121.12(12) 
117.70(13) 
109.15(9) 
102.97(8) 
102.73(9) 
112.48(10) 
106.10(9) 
101.26(8) 
113.90(9) 
125.60(11) 
110.42(10) 
107.82(10) 
117.65(11) 
121.56(12) 
118.63(10) 
106.75(10) 

N(I)-C(1) 
N(I)-C(8) 
O(2)-C(8) 
N(2)-C(15) 
C(2)-C(7) 
C(3)-C(4) 
C(5)-C(6) 
C(7)-C(8) 
C(1O)-C(11) 
C(12)-C(13) 
C(13)-C(20) 
C(15)-C(20) 
C(17)-C(18) 
C(19)-C(20) 

C(1)-N(I)-C(8) 
O(I)-C(I)-N(I) 
N(I)-C(I)-C(2) 
C(15)-N(2)-C(14) 
C(7)-C(2)-C(1) 
C(2)-C(3)-C(4) 
C(4)-C(5)-C(6) 
C(2)-C(7)-C( 6) 
C(6)-C(7)-C(8) 
O(2)-C(8)-C(7) 
O(2)-C(8)-C(9) 
C(7)-C(8)-C(9) 
N(I)-C(11)-C(12) 
C(12)-C(11)-C(10) 
C(14)-C(13)-C(20) 
C(20)-C(13)-C(12) 
N(2)-C(15)-C(16) 
C(16)-C(15)-C(20) 
C(16)-C(17)-C(18) 
C(18)-C(19)-C(20) 

. C(19)-C(20)-C(13) 

1.3752(15) 
1.4732(13) 
1.4301(13) 
1.3705(15) 
1.3825(16) 
1.3947(18) 
1.393(2) 
1.5122(15) 
1.5566(16) 
1.5020(14) 
1.4403(15) 
1.4199(14) 
1.4084(19) 
1.4039(16) 

111.69(9) 
125.83(10) 
106.57(9) 
108.81(9) 
108.67(10) 
117.12(13) 
121.18(11) 
120.98(11) 
129.69(11) 
113.07(9) 
112.41(10) 
112.40(9) 
112.12(9) 
114.22(10) 
106.19(10) 
128.12(10) 
129.87(10) 
122.28(11) 
120.87(12) 
119.01(11) 
134.57(10) 
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Anisotropic Displacement Parameters (A2
). The Anisotropic Displacement Factor 

Exponent Takes the Form: _2n2(h2a*2Ull + ... + 2hka*b*UI2) 

0(1) 0.0474(5) 0.0497(6) 0.0233(4) -0.0069(4) 0.0037(4) -0.0225(5) 
N(1) 0.0268(4) 0.0228(4) 0.0194(4) -0.0009(3) 0.0028(3) -0.0010(4) 
C(1) 0.0283(5) 0.0282(5) 0.0206(5) 0.0002(4) 0.0020(4) -0.0032(4) 
0(2) 0.0416(5) 0.0202(4) 0.0287(4) 0.0005(3) 0.0027(4) 0.0030(3) 
N(2) 0.0387(5) 0.0352(5) 0.0208(4) -0.0030(4) 0.0017(4) -0.0072(4) 
C(2) 0.0244(5) 0.0299(6) 0.0191(4) 0.0012(4) 0.0004(4) 0.0039(4) 
C(3) 0.0249(5) 0.0434(7) 0.0267(5) 0.0074(5) 0.0023(4) 0.0028(5) 
C(4) 0.0330(6) 0.0546(8) 0.0271(6) 0.0106(6) 0.0084(5) 0.0161(6) 
C(5) 0.0503(8) 0.0494(8) 0.0201(5) -0.0012(5) 0.0038(5) 0.0214(7) 
C(6) 0.0460(7) 0.0339(6) 0.0241(5) -0.0047(5) -0.0032(5) 0.0086(5) 
C(7) 0.0281(5) 0.0263(5) 0.0206(5) 0.0007(4) -0.0010(4) 0.0061(4) 
C(8) 0.0293(5) 0.0202(5) 0.0229(5) -0.0017(4) -0.0008(4) 0.0006(4) 
C(9) 0.0301(5) 0.0326(6) 0.0361(6) 0.0027(5) -0.0070(5) -0.0053(5) 
C(10) 0.0396(6) 0.0235(5) 0.0305(6) 0.0032(4) 0.0058(5) 0.0005(5) 
C(11) 0.0288(5) 0.0255(5) 0.0201(5) 0.0024(4) 0.0040(4) -0.0017(4) 
C(12) 0.0302(5) 0.0233(5) 0.0241(5) 0.0016(4) 0.0068(4) -0.0011(4) 
C(13) 0.0274(5) 0.0217(5) 0.0237(5) -0.0009(4) 0.0044(4) -0.0024(4) 
C(14) 0.0356(6) 0.0311(6) 0.0268(5) -0.0046(4) 0.0042(5) -0.0095(5) 
C(15) 0.0284(5) 0.0216(5) 0.0233(5) -0.0006(4) 0.0044(4) 0.0023(4) 
C(16) 0.0372(6) 0.0262(5) 0.0281(5) 0.0049(5) 0.0111(5) 0.0024(5) 
C(17) 0.0337(6) 0.0347(6) 0.0450(7) 0.0041(5) 0.0126(5) -0.0073(5) 
C(18) 0.0298(6) 0.0406(7) 0.0444(7) -0.0029(6) 0.0011 (5) -0.0109(5) 
C(19) 0.0277(5) 0.0316(6) 0.0285(5) -0.0020(4) -0.0005(4) -0.0015(5) 
C(20) 0.0246(5) 0.0193(5) 0.0235(5) 0.0001(4) 0.0042(4) 0.0018(4) 

Hydrogen Coordinates and Isotropic Displacement Parameters (A2) 

x y z U 

H(2) -0.1649 0.6010 1.0805 0.038 
H(3) 0.5390 0.8188 0.7391 0.038 
H(4) 0.5779 0.7190 0.6520 0.046 
H(5) 0.3813 0.5359 0.6204 0.048 
H(6) 0.1363 0.4484 0.6739 0.042 
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H(9A) -0.1682 0.5019 0.7292 0.049 
H(9B) -0.1553 0.6738 0.7428 0.049 
H(9C) -0.2358 0.5614 0.7867 0.049 
H(10A) 0.0538 0.3657 0.8863 0.047 
H(10B) -0.1398 0.4189 0.8608 0.047 
H(ll) 0.1515 0.5988 0.9006 0.037 
H(12A) -0.0831 0.7861 0.9057 0.039 
H(12B) -0.2268 0.6776 0.8769 0.039 
H(14) -0.0015 0.7293 1.0088 0.037 
H(16) -0.4656 0.4127 1.0893 0.037 
H(17) -0.6832 0.2882 1.0361 0.045 
H(18) -0.6780 0.3102 0.9420 0.046 
H(19) -0.4593 0.4567 0.8987 0.035 

Hydrogen Bonds [A and 0] 

D-H ... A d(D-H) d(H ... A) d(D ... A) «DRA) 

N(2}-H(2) ... O(IA) 0.88 2.03 2.8591(13) 157.2 

Symmetry Operations for Equivalent Atoms 

A x-1I2,-y+3/2,-z+2 
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Single Crystal X-Ray with Accompanying Data 

(3S,9bS)-3-(Hydroxymethyl)-9b-methyl-3,4,9,9b-tetrahydro-lH-isoindolo(l;2-alll

carbolin-l-one 

(252) 
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Crystal Data and Strncture Refinement 

Identification code 

Chemical formula 

Formula weight 

Temperature 

Radiation, wavelength 

Crystal system, space group 

Unit cell parameters 

Cell volume 

Z 

Calculated density 

Absorption coefficient I.l 

F(OOO) 

Crystal colour and size 

Reflections for cell refinement 

Data collection method 

9 range for data collection 

Index ranges 

Completeness to 9 = 26.00° 

Intensity decay 

Reflections collected 

Independent reflections 

Reflections with F~2cr 

Absorption correction 

Min. and max. transmission 

Structure solution 

Appendix 

(252) 

C2oH18N202 

318.36 

150(2) K 

MoKa., 0.71073 A 
orthorhombic, P2(2(2( 

a = 8.7222(7) A a. = 90° 

b = 10.4742(8) A J3 = 90° 

c = 17.4454(14) A y = 90° 

1593.8(2) A3 

4 

1.327 g/cm3 

0.087mm-( 

672 

colourless, 2.35 x 0.08 x 0.04 mm3 

5004 (9 range 2.27 to 28.37°) 

Bruker SMART 1000 CCD diffractometer 

Cl) rotation with narrow frames 

2.27 to 28.97° 

h -11 to 11, k -13 to 14,1-22 to 22 

100.0% 

0% 

14124 

3847 (Riot'" 0.0345) 

3073 

semi-empirical from equivalents 

0.822 and 0.997 

direct methods 
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Refinement method 

Weighting parameters a, b 

Data / restraints / parameters 

Final R indices [F2>2cr] 

R indices (all data) 

Goodness-of-fit on F2 

Absolute structure parameter 

Extinction coefficient 

Largest and mean shift/su 

Largest diff. peak and hole 

Full-matrix least-squares on F2 

0.0344, 0.3943 

3847/0/225 

RI = 0.0373, wR2 = 0.0769 

RI = 0.0583, wR2 = 0.0873 

1.020 

-0.1(13) 

0.0022(8) 

0.000 and 0.000 

0.233 and -0.197 e A-J 

Atomic Coordinates and Equivalent Isotropic Displacement Parameters (A1
). 

Ucq is Defmed as One Third of the Trace of the Orthogonalised UIJ Tensor 

x y Z Ueq 

N(I) 0.69084(15) -0.00543(13) 0.22688(7) 0.0216(3) 
C(1) 0.6567(2) 0.09394(15) 0.17928(9) 0.0227(4) 
0(1) 0.52987(14) 0.14407( 11) 0.16933(7) 0.0302(3) 
C(2) 0.8015(2) 0.13133( 16) 0.14117(9) 0.0242(4) 
C(3) 0.8255(2) 0.22207(17) 0.08457(10) 0.0293(4) 
C(4) 0.9737(2) 0.23774(18) 0.05678(10) 0.0334(4) 
C(5) 1.0923(2) 0.16313(19) 0.08515(10) 0.0336(4) 
C(6) 1.0676(2) 0.07273(18) 0.14221(9) 0.0284(4) 
C(7) 0.91977(19) 0.05928(16) 0.17074(9) 0.0222(3) 

C(8) 0.85894(18) -0.02945(15) 0.23183(9) 0.0215(3) 
C(9) 0.8990(2) -0.16910(16) 0.21432(10) 0.0278(4) 
C(10) 0.90332(19) 0.00940(15) 0.31239(9) 0.0216(3) 
N(2) 1.05240(16) 0.02644(14) 0.33680(8) 0.0236(3) 
C(l1) 1.04882(19) 0.06392(15) 0.41247(10) 0.0237(4) 
C(12) 1.1685(2) 0.09669(17) 0.46169(10) 0.0299(4) 
C(13) 1.1300(2) 0.13428(18) 0.53529(10) 0.0347(4) 
C(14) 0.9773(2) 0.13847(18) 0.55967(11) 0.0336(4) 
C(15) 0.8589(2) 0.10401(17) 0.51166(10) 0.0295(4) 
C(16) 0.8939(2) 0.0671O( 15) 0.43623(9) 0.0238(4) 
C(17) 0.80352(19) 0.03149(16) 0.37115(9) 0.0232(4) 
C(18) 0.63291 (19) 0.01645(18) 0.36404(9) 0.0265(4) 
C(19) 0.59597(19) -0.05669(16) 0.29021(9) 0.0244(4) 
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C(20) 0.42572(19) -0.06441(18) 0.27338(11) 0.0297(4) 
0(2) 0.34750(14) 0.05460(13) 0.27499(8) 0.0350(3) 

Bond Lengths [A) and Angles [0) 

N(I}-C(I) 
N(I}-C(8) 
C(1}-C(2) 
C(2}-C(3) 
C(4}-C(5) 
C(6}-C(7) 
C(8}-C(1O) 
C(10}-C(17) 
N(2}-C(11) 
C(11}-C(16) 

. C(13}-C(14) 
C( 15}-C( 16) 
C(17}-C(18) 
C(19}-C(20) 

C(1)-N(I}-C(19) 
C(19)-N(I}-C(8) 
0(1}-C(1}-C(2) 
C(7}-C(2}-C(3) 
C(3}-C(2}-C(1 ) 
C(5}-C( 4}-C(3) 
C(7}-C(6}-C(5) 
C(2}-C(7}-C(8) 
N(I}-C(8}-C(7) 
C(7}-C(8}-C(10) 
C(7}-C(8}-C(9) 
C(17}-C(10)-N(2) 
N(2}-C(10}-C(8) 
N(2}-C(I1}-C(12) 
C(12}-C(11}-C(16) 
C(12}-C(13}-C(14) 
C( 14}-C( 15}-C( 16) 
C(I5}-C(16}-C(17) 
C(1O}-C(17}-C(16) 
C(16}-C(17}-C(18) 
N(I }-C(19}-C(20) 
C(20}-C(19}-C(18) 
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1.364(2) 
1.490(2) 
1.480(2) 
1.386(2) 
1.387(3) 
1.389(2) 
1.513(2) 
1.365(2) 
1.378(2) 
1.414(2) 
1.399(3) 
1.405(2) 
1.502(2) 
1.516(2) 

127.49(14) 
116.44(12) 
126.01(15) 
121.92(16) 
129.07(16) 
120.13(17) 
117.98(17) 
109.76(14) 
101.59(12) 
113.57(13) 
111.47(13) 
110.33(14) 
124.22(14) 
130.03(16) 
121.94(16) 
121.46(17) 
118.59(17) 
133.99(16) 
106.77(14) 
129.70(15) 
114.97(14) 
113.29(14) 

N(I}-C(19) 
C(I)-O(I) 
C(2}-C(7) 
C(3}-C(4) 
C(5}-C(6) 
C(7}-C(8) 
C(8}-C(9) 
C(10)-N(2) 
C(11}-C(12) 
C(12}-C(13) 
C(14}-C(15) 
C(16}-C(17) 
C(18}-C(19) 
C(20)-O(2) 

C:(I)-N(I}-C(8) 
O(I}-C(I)-N(I) 
N(I}-C(I}-C(2) 
C(7}-C(2}-C(1) 
C(2}-C(3}-C( 4) 
C(4}-C(5}-C(6) 
C(2}-C(7}-C(6) 
C(6}-C(7}-C(8) 
N(I}-C(8}-C(10) 
N(I}-C(8}-C(9) 
C(10}-C(8}-C(9) 
C(17}-C(1O}-C(8) 
C(ll )-N(2}-C(IO) 
N(2}-C(11}-C(16) 
C(13}-C(12}-C(11) 
C(15}-C(14}-C(13) 
C:(15}-C(16}-C(11) 
C(1l}-C(16}-C(17) 
C(1O}-C(l7}-C(18) 
C:(17}-C(18}-C(19) 
N(I}-C(19}-C(18) 
0(2}-C(20}-C(19) 

1.481(2) 
1.237(2) 
1.378(2) 
1.390(3) 
1.391(2) . 
1.510(2) 
1.535(2) 
1.380(2) 
1.395(2) 
1.384(3) 
1.378(3) 
1.432(2) 
1.533(2) 
1.421(2) 

112.26(13) 
127.19(15) 
106.80(14) 
109.00(14) 
118.03(17) 
121.58(18) 
120.33(16) 
129.89(16) 
105.07(12) 
111.94(13) 
112.51(13) 
125.45(15) 
108.13(14) 
108.03(14) 
117.35(17) 
121.37(17) 
119.27(16) 
106.72(14) 
123.52(15) 
109.28(14) 
109.15(13) 
114.81(14) 
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Anisotropic Displacement Parameters (A2). The Anisotropic Displacement Factor 

Exponent Takes the Form: _2lt2[h2a*2UIl + ... + 2hka*b*UJ2) 

0(1) 0.0226(7) 0.0294(6) 0.0387(7) 0.0048(6) -0.0006(5) 0.0059(5) 

N(I) 0.0194(7) 0.0221(7) 0.0231(7) 0.0005(6) 0.0003(6) -0.0007(6) 
C(1) 0.0247(9) 0.0209(8) 0.0226(8) -0.0031(6) 0.0003(7) 0.0003(7) 
0(2) 0.0203(6) 0.0427(7) 0.0421(7) 0.0063(6) 0.0048(6) 0.0041(6) 
N(2) 0.0190(8) 0.0278(8) 0.0239(7) 0.0019(6) 0.0010(6) -0.0003(6) 

C(2) 0.0261(9) 0.0234(8) 0.0232(8) -0.0037(7) 0.0003(7) -0.0022(7) 
C(3) 0.0348(11) 0.0273(9) 0.0258(9) 0.0027(7) 0.0016(8) 0.0006(8) 

C(4) 0.0438(12) 0.0313(10) 0.0250(9) 0.0029(8) 0.0067(8) -0.0059(9) 
C(5) 0.0307(10) 0.0433(11) 0.0268(9) -0.0020(8) 0.0076(8) -0.0082(9) 
C(6) 0.0252(9) 0.0366(11) 0.0234(8) -0.0025(8) 0.0010(7) 0.0004(8) 
C(7) 0.0231(9) 0.0230(8) 0.0205(7) -0.0033(7) 0.0009(6) -0.0019(7) 
C(8) 0.0185(8) 0.0235(8) 0.0224(8) 0.0011(6) 0.0016(6) 0.0022(7) 
C(9) 0.0294(10) 0.0241(9) 0.0298(9) -0.0016(7) 0.0016(8) 0.0039(7) 

C(IO) 0.0191(8) 0.0205(8) 0.0251(8) 0.0027(6) -0.0015(7) 0.0013(7) 
C(l1) 0.0258(9) 0.0205(8) 0.0248(8) 0.0042(7) -0.0003(7) 0.0000(7) 
C(12) 0.0248(9) 0.0315(9) 0.0333(10) 0.0057(7) -0.0053(8) -0.0037(8) 
C(13) 0.0373(11) 0.0364(10) 0.0304(10) 0.0038(8) -0.0121(8) -0.0071(9) 

C(14) 0.0418(11) 0.0351(10) 0.0239(9) 0.0024(8) -0.0010(8) -0.0039(9) 
C(15) 0.0316(10) 0.0314(9) 0.0255(9) 0.0039(7) 0.0029(7) -0.0007(8) 
C(16) 0.0241(9) 0.0230(8) 0.0243(8) 0.0035(7) 0.0003(7) -0.0002(7) 
C(17) 0.0228(9) 0.0241(9) 0.0229(8) 0.0012(7) 0.0003(7) -0.0004(7) 
C(18) 0.0198(9) 0.0345(9) 0.0252(8) 0.0012(7) 0.0014(7) -0.0008(7) 
C(19) 0.0214(8) 0.0230(8) 0.0289(9) 0.0024(7) 0.0028(7) -0.0009(7) 
C(20) 0.0216(9) 0.0339(10) 0.0334(9) -0.0005(8) 0.0024(8) -0.0043(8) 

Hydrogen Coordinates and Isotropic Displacement Parameters (A2) 

x y z U 

H(2) 0.398(3) 0.100(2) 0.2371(13) 0.053 
H(2A) 1.140(2) 0.0291(17) 0.3083(10) 0.028 
H(3) 0.7432 0.2721 0.0654 0.035 
H(4) 0.9938 0.2996 0.0183 0.040 
H(5) 1.1927 0.1741 0.0651 0.040 
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H(6) 1.1493 0.0217 0.1611 0.034 
H(9A) 0.8504 -0.2247 0.2524 0.042 
H(9B) 1.0105 -0.1803 0.2163 0.042 
H(9C) 0.8618 -0.1914 0.1630 0.042 
H(12) 1.2723 0.0934 0.4454 0.036 
H(13) 1.2090 0.1578 0.5700 0.042 
H(14) 0.9547 0.1656 0.6104 0.040 
H(15) 0.7558 0.1052 0.5292 0.035 
H(18A) 0.5835 0.1015 0.3627 0.032 
H(18B) 0.5926 -0.0308 0.4089 0.032 
H(l9) 0.6312 -0.1464 0.2987 0.029 
H(20A) 0.4116 -0.1032 0.2221 0.036 
H(20B) 0.3776 -0.1221 0.3114 0.036 

Hydrogen Bonds lA and 0J 

D-H ... A d(D-H) d(H ... A) d(O ... A) <(OHA) 

O(2)-H(2) ... O(I) 0.93(2) 1.71(2) 2.6088(17) 162(2) 

Symmetry operations for equivalent atoms 

A x,y-l,z 
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Single Crystal X-Ray with Accompanying Data 

(3S,9bS)-3-(Hydroxymethyl)-3,4,9,9b-tetrahydro-lH-isoindolo [1;1.-a )IJ-carbolin-l

one 

(253) 
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Crystal Data and Structure Refinement 

Identification code 

Chemical fonnula 

Fonnula weight 

Temperature 

Radiation, wavelength 

Crystal system, space group 

Unit cell parameters 

Cell volume 

Z 

Calculated density 

Absorption coefficient 11 

F(OOO) 

Crystal colour and size 

Reflections for cell refinement 

Data collection method 

9 range for data collection 

Index ranges 

Completeness to 9 = 25.00° 

Intensity decay 

Reflections collected 

Independent reflections 

Reflections with F2>2cr 

Absorption correction 

Min. and max. transmission 

Structure solution 
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CI9HI6N 202 

304.34 

150(2) K 

MoKa, 0.71073 A 

orthorhombic, P212121 

a = 8.4483(15) A 

b = 8.7128(15) A 

c = 24.267(4) A 

1786.3(5) A3 

4 

1.447 g!cm3 

0.381 mm-I 

808 

a = 90° 

y= 90° 

colourless, 0.40 x 0.13 x 0.10 mm
3 

3446 (9 range 2.48 to 26.42°) 

Bruker SMART 1000 CCD diffractometer 

(j) rotation with narrow frames 

1.68 to 25.00° 

h -10 to 10, k -10 to 10,1-25 to 28 

99.6% 

0% 

10192 

3138 (Ri"t = 0.0523) 

2652 

semi-empirical from equivalents 

0.863 and 0.963 

direct methods 

c 



Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0954, 5.4989 

Data 1 restraints 1 parameters 3138/0/241 

Final R indices [F2;. 201 RI = 0.0832, wR2 = 0.2200 

R indices (all data) RI = 0.0969, wR2 = 0.2283 

Goodness-of-fit on F2 1.185 

Absolute structure parameter 0.00 

Extinction coefficient 0.014(3) 

Largest and mean shiftlsu 0.000 and 0.000 

Largest diff. peak and hole 0.417 and -0.487 e A -3 

Atomic Coordinates and Equivalent Isotropic Displacement Parameters (A2
). 

Ueq is Defined as One Third ofthe Trace ofthe Orthogonalised U ij Tensor 

x y Z Ueq 

0(1) 0.3675(7) 0.5324(5) 1.0640(2) 0.0366(13) 
N(I) 0.5060(7) 0.3694(6) 1.0066(2) 0.0247(13) 
C(1) 0.4172(9) 0.4031(8) 1.0520(3) 0.0263(15) 
0(2) 0.4126(7) 0.7106(5) 0.9799(2) 0.0363(13) 
N(2) 0.3901(7) 0.0079(6) 0.9375(2) 0.0257(13) 
C(2) 0.3974(8) 0.2588(8) 1.0842(3) 0.0255(16) 
C(3) 0.3241(10) 0.2381(9) 1.1349(3) 0.0327(17) 
C(4) 0.3214(10) 0.0909(10) 1.1550(3) 0.0391(19) 

C(5) 0.3951(9) -0.0289(9) 1.1276(3) 0.0340(18) 

C(6) 0.4642(9) -0.0064(8) 1.0758(3) 0.0276(16) 
C(7) 0.4628(8) 0.1405(8) 1.0548(3) 0.0253(15) 
C(8) 0.5274(8) 0.2027(7) 1.0000(3) 0.0221(14) 
C(9) 0.4315(8) 0.1573(8) 0.9491(3) 0.0268(15) 
C(10) 0.3005(9) O.oI 19(7) 0.8896(3) 0.0261(15) 
C(ll) 0.2251(10) -0.1073(9) 0.8617(3) 0.0365(19) 

C(12) 0.1407(10) -0.0691(9) 0.8150(3) 0.0399(19) 
C(13) 0.1265(10) 0.0804(9) 0.7963(3) 0.0372(18) 
C(14) 0.2025(8) 0.1984(8) 0.8239(3) 0.0291(16) 
C(15) 0.2912(8) 0.1661(8) 0.8712(3) 0.0236(15) 
C(16) 0.3788(9) 0.2550(7) 0.9112(3) 0.0272(16) 
C(17) 0.4071(9) 0.4259(7) 0.9131(3) 0.0253(15) 
C(18) 0.5362(8) 0.4611(7) 0.9566(3) 0.0255(15) 
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C(19) 0.5565(9) 0.6321(8) 0.9673(3) 0.0320(17) 

Bond Lengths (A) and Angles (0) 

O(I}-C(I) 1.238(8) N(I}-C(I) 1.365(9) 
N(I}-C(8) 1.472(8) N(I}-C(18) 1.475(9) 
C(1}-C(2) 1.490(10) O(2}-C(19) 1.428(9) 
N(2}-C(9) 1.377(9) N(2}-C(IO) 1.388(10) 
C(2}-C(7) 1.370(10) C(2}-C(3) 1.389(10) 
C(3}-C(4) 1.373(11) C(4}-C(5) 1.385(12) 
C(5}-C(6) 1.400(11) C(6}-C(7) 1.378(10) 
C(7}-C(8) 1.535(10) C(8}-C(9) 1.529(10) 
C(9}-C(16) 1.329(10) C(IO}-C(II) 1.394(10) 
C(10}-C(15) 1.418(9) C(l1 }-C(12) 1.378(12) 
C(12}-C(13) 1.384(12) C(13}-C(14) 1.386(11) 
C(14}-C(15) . 1.399(10) C(15}-C(16) 1.446(10) 
C(i6}-C(17) 1.509(9) C(17}-C(18) 1.547(10) 
C(18}-C(19) 1.522(9) 

C(I)-N(I}-C(8) 111.5(5) C(1)-N(I}-C(18) 130.0(6) 
C(8)-N(1 }-C(18) 115.1(5) O(I}-C(I)-N(I) 125.0(6) 
O(I}-C(I}-C(2) 127.3(7) N(I}-C(I}-C(2) 107.7(6) 
C(9)-N(2}-C(10) 106.7(6) C(7}-C(2}-C(3) 122.9(7) 
C(7}-C(2}-C(1 ) 108.4(6) C(3}-C(2}-C(1 ) 128.6(7) 
C(4}-C(3}-C(2) 116.4(7) C(3}-C( 4}-C(5) 121.7(7) 
C(4}-C(5}-C(6) 120.9(7) C(7}-C( 6}-C(5) 117.4(7) 
C(2}-C(7}-C(6) 120.6(7) C(2}-C(7}-C(8) 109.2(6) 
C(6}-C(7}-C(8) 130.2(6) N(I}-C(8}-C(9) 106.1(5) 
N(I}-C(8}-C(7) 102.2(5) C(9}-C(8}-C(7) 114.8(6) 
C(16}-C(9)-N(2) 112.2(7) C(16}-C(9}-C(8) 124.8(7) 
N(2}-C(9}-C(8) 123.0(6) N(2}-C(10}-C(11) 129.7(7) 
N(2}-C(10}-C(15) 108.5(6) C(11}-C(1O}-C(15) 121.8(7) 
C(12}-C(II}-C(10) 117.1(7) C(II}-C(12}-C(13) 122.8(7) 
C(12}-C(13}-C(14) 119.9(7) C(13}-C(14}-C(15) 119.7(7) 
C(14}-C(15}-C(10) 118.6(6) C(14}-C(15}-C(16) 135.8(6) 
C(10}-C(15}-C(16) 105.5(6) C(9}-C(16}-C(15) 107.1(6) 
C(9}-C(16}-C(17) 123.9(7) C(15}-C(16}-C(17) 129.0(6) 
C(16}-C(17}-C(18) 109.1(6) N(I}-C(18}-C(19) 114.1(6) 
N(I}-C(18}-C(17) 109.4(5) C(19}-C(18}-C(17) 113.0(6) 
O(2}-C(19}-C(18) 114.2(6) 
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Anisotropic Displacement Parameters (A1
). The Anisotropic Displacement Factor 

Exponent Takes the Form: _2ltl[h1a*lUll + ... + 2hka*b*Ulll 

0(1) 0.050(3) 0.015(2) 0.045(3) -0.005(2) 0.007(3) 0.004(2) 
N(I) 0.031(3) 0.0Il(3) 0.032(3) -0.001(2) 0.002(3) -0.006(2) 
C(I) 0.034(4) 0.016(3) 0.028(4) -0.002(3) -0.006(3) 0.000(3) 
0(2) 0.045(3) 0.014(2) 0.049(3) 0.002(2) 0.001(3) 0.008(2) 
N(2) 0.033(3) 0.014(3) 0.030(3) 0.001(2) 0.006(3) 0.002(2) 
C(2) 0.026(4) 0.024(3) 0.027(4) -0.001(3) 0.000(3) -0.002(3) 
C(3) 0.033(4) 0.033(4) 0.033(4) -0.002(3) -0.006(4) -0.005(3) 
C(4) 0.041(4) 0.050(5) 0.027(4) 0.010(3) 0.004(3) -0.021(4) 
C(5) 0.034(4) 0.026(4) 0.042(4) 0.013(3) -0.002(3) -0.009(3) 
C(6) 0.033(4) 0.017(3) 0.033(4) 0.001(3) -0.004(3) -0.003(3) 
C(7) 0.021(3) 0.024(3) 0.030(4) -0.003(3) -0.0 II (3) 0.000(3) 
C(8) 0.021(4) 0.019(3) 0.026(3) -0.005(3) -0.003(3) 0.000(3) 
C(9) 0.022(3) 0.023(3) 0.035(4) -0.002(3) 0.001(3) 0.000(3) 
C(10) 0.029(4) 0.018(3) 0.031(4) 0.002(3) 0.004(3) 0.000(3) 
C(ll) 0.048(5) 0.026(4) 0.035(4) -0.010(3) 0.011(4) -0.006(4) 
C(12) 0.039(4) 0.032(4) 0.050(5) -0.014(3) -0.003(4) -0.004(4) 
C(13) 0.038(4) 0.037(4) 0.037(4) -0.006(3) -0.006(4) 0.011(4) 
C(14) 0.027(4) 0.026(3) 0.034(4) -0.001(3) 0.002(3) -0.005(3) 
C(15) 0.022(4) 0.018(3) 0.030(4) -0.002(3) 0.007(3) 0.002(3) 
C(16) 0.028(4) 0.015(3) 0.039(4) -0.002(3) 0.009(3) . 0.004(3) 
C(17) 0.033(4) 0.013(3) 0.030(4) 0.000(3) 0.002(3) -0.002(3) 
C(18) 0.022(4) 0.017(3) 0.038(4) -0.001(3) 0.009(3) -0.004(3) 
C(19) 0.037(4) 0.015(3) 0.044(4) 0.003(3) 0.004(3) -0.003(3) 

Hydrogen Coordinates and Isotropic Displacement Parameters (Al) 

x y z U 

H(2) 0.3897 0.6966 1.0133 0.054 
H(2A) 0.4156 -0.0741 0.9567 0.031 
H(3) 0.2784 0.3213 1.1545 0.039 
H(4) 0.2677 0.0707 1.1886 0.047 
H(5) 0.3987 -0.1276 1.1442 0.041 
H(6) 0.5103 -0.0891 1.0560 0.033 
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H(8) 0.6417 0.1760 0.9953 0.03(2) 
H(l1) 0.2317 -0.2104 0.8742 0.044 
H(12) 0.0901 -0.1487 0.7949 0.048 
H(13) 0.0647 0.1019 0.7645 0.045 
H(14) 0.1944 0.3009 0.8108 0.035 
H(17A) 0.3078 0.4797 0.9229 0.030 
H(17B) 0.4418 0.4627 0.8764 0.030 
H(18) 0.6386 0.4238 0.9409 0.007(14) 
H(19A) 0.6311 0.6459 0.9984 0.038 
H(19B) 0.6045 0.6801 0.9343 0.038 

Hydrogen Bonds lA and 0) 

D-H ... A d(D-H) d(H ... A) d(D ... A) «DHA) 

O(2)-H(2) ... O(1 ) 0.84 1.90 2.592(7) 139.2 
N(2)-H(2A) ... O(2A) 0.88 1.96 2.794(7) 157.9 

Symmetry operations for equivalent atoms 

A x,y-l,z 
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Single Crystal X-Ray with Accompanying Data 

(3S,8aS)-3-(lH-Indol-3-ylmethyl)perhydropyrido(2,1-h) (1,3 )oxazol-5-one 

Appendix 

co;&: 
N 
H 

(266) 

D 



Crystal Data and Structure Refinement 

Identification code 

Chemical fonnula 

Fonnula weight 

Temperature 

Radiation, wavelength 

Crystal system, space group 

Unit cell parameters 

Cell volume 

Z 

Calculated density 

Absorption coefficient J! 

F(OOO) 

Crystal colour and size 

Reflections for cell refmement 

Data collection method 

9 range for data collection 

Index ranges 

Completeness to e = 26.00° 

Intensity decay 

Reflections collected 

Independent reflections 

Reflections with F~2cr 

Absorption correction 

Min. and max. transmission 

Structure solution 

Appendix 

(266) 

Cl6HlSN202 

270.32 

150(2) K 

MoKa, 0.71073 A 

monoclinic, 12 

a= 13.1781(14) A 

b = 6.5138(7) A 

c = 16.3036(18) A 

1385.3(3) A3 

4 

1.296 g/cm3 

0.086 mm-I 

576 

a=90° 

13 = 98.163(2)° 

"y = 90° 

colourless, 2.40 x 0.26 x 0.18 mm3 

3141 (9 range 2.52 to 28.92°) 

Bruker SMART 1000 CCD diifractometer 

co rotation with narrow frames 

1.86 to 28.92° 

h-17 to 10, k -8 to 8, 1-22 to 20 

99.9% 

0% 

5817 

3100 (Riot = 0.0389) 

2937 

semi-empirical from equivalents 

0.819 and 0.985 

direct methods 

D 



Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.1396,0.2705 

Data 1 restraints 1 parameters 3100/1/184 

Final R indices [F2> 2cr] RI = 0.0716, wR2 = 0.1874 

R indices (all data) RI = 0.0733, wR2 = 0.1900 

Goodness-of-fit on F2 1.113 

Absolute structure parameter 1.3(17) 

Largest and mean shiftlsu 0.001 and 0.000 

Largest 4iff. peak and hole 0.189 and -0.298 e A-3 

Atomic Coordinates and Equivalent Isotropic Displacement Parameters (A2
). 

U.q is Defined as One Third of the Trace ofthe Orthogonalised uij Tensor 

x y z Ueq 

N(I) 0.22110(14) 0.7559(3) 0.98171(11) 0.0236(4) 
0(1) 0.30542(15) 1.0538(3) 1.01505(10) 0.0344(4) 
C(1) 0.26493(17) 0.9324(4) 0.96201(13) 0.0245(5) 
C(2) 0.2551(2) 0.9872(4) 0.87043(13) 0.0303(5) 
C(3) 0.22486(19) 0.8129(4) 0.80907(14) 0.0315(5) 
C(4) 0.14412(18) 0.6734(5) 0.83945(14) 0.0316(5) 
C(5) 0.18637(17) 0.5913(4) 0.92295(14) 0.0260(5) 
0(2) 0.11207(14) 0.4881(3) 0.96168(11) 0.0322(4) 
C(6) 0.1541(2) 0.4840(4) 1.04850(15) 0.0319(5) 
C(7) 0.20352(16) 0.6978(3) 1.06568(13) 0.0240(5) 
C(8) 0.13207(16) 0.8497(4) 1.1 0092(12) 0.0250(5) 
C(9) 0.12596(15) 0.8133(4) 1.19159(13) 0.0229(4) 
C(10) 0.16199(17) 0.6480(4) 1.23950(13) 0.0271(5) 
N(2) 0.13997(16) 0.6728(4) 1.31930(12) 0.0291(4) 
C(11) 0.08889(17) 0.8546(4) 1.32438(14) 0.0253(5) 
C(12) 0.05164(17) 0.9445(4) 1.39198(14) 0.0301(5) 
C(13) 0.00618(18) 1.1353(5) 1.37985(14) 0.0337(6) 

C(14) -0.00212(18) 1.2349(4) 1.30233(15) 0.0317(5) 
C(15) 0.03310(17) 1.1434(4) 1.23485(14) 0.0273(5) 
C(16) 0.07977(15) 0.9493(4) 1.24504(13) 0.0225(5) 
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Bond Lengths [A) and Angles [0) 

N(I)-C(I) 1.346(3) N(I)-C(5) 1.467(3) 
N(I)-C(7) 1.470(3) O(I)-C(I) 1.236(3) 
C(1)-C(2) 1.523(3) C(2)-C(3) 1.528(3) 
C(3)-C(4) 1.534(4) C(4)-C(5) 1.494(3) 
C(5)-O(2) 1.409(3) 0(2)-C(6) 1.445(3) 
C(6)-C(7) 1.546(3) C(7)-C(8) 1.532(3) 
C(8)-C(9) 1.511(3) C(9)-C(IO) 1.375(3) 
C(9)-C(16) 1.437(3) C(1O)-N(2) 1.382(3) 
N(2)-C(Il) 1.370(3) C(11)-C(l2) 1.397(3) 
C(11)-C(16) 1.423(3) C(12)-C(13) 1.382(4) 
C(13)-C(14) 1.4 II (3) C(14)-C(15) 1.388(3) 
C(I5)-C(16) 1.406(3) 

C:(I)-N(I)-C(5) 124.96(18) C:(I)-N(I)-C(7) 124.88(18) 
C(5)-N(I)-C(7) 110.14(18) O(I)-C(I)-N(I) 122.5(2) 
0(1)-C(1)-C(2) 120.3(2) N(I)-C(I)-C(2) 117.04(19) 
C(1)-C(2)-C(3) 116.5(2) C(2)-C(3)-C(4) 1l0.92(19) 
C(5)-C(4)-C(3) 108.67(19) 0(2)-C(5)-N(I) 103.20(17) 
0(2)-C(5)-C(4) 112.71(18) . N(I)-C(5)-c:(4) 112.0(2) 
C(5)-O(2)-c:(6) 104.68(18) 0(2)-C(6)-c:(7) 104.71(19) 
N(I)-C(7)-c:(8) 111.69(18) N(I)-C(7)-c:(6) 100.43(17) 
C(8)-C(7)-C(6) 112.58(19) C(9)-C(8)-c:(7) 112.75(1S) 
C(10)-C(9)-c:(16) 106.28(19) C(10)-C(9)-c:(8) 128.1(2) 
C(16)-C(9)-C(S) 125.6(2) C(9)-C(10)-N(2) 109.9(2) 
C(ll )-N(2)-c:(l 0) 109.2(2) N(2)-C(ll)-c:(12) 129.8(2) 
N(2)-C(II)-c:(16) 107.4(2) C(12)-C(II)-c:(16) 122.8(2) 
C(13)-C(12)-c:(11) 117.2(2) C(12)-C(13)-c:(14) 121.2(2) 
C(15)-c:(14)-c:(13) 121.4(2) C(14)-C(15)-c:(16) 118.9(2) 
C(15)-C(16)-c:(11) 118.5(2) C:(15)-C(16)-c:(9) 134.3(2) 
C(ll )-c:(16)-c:(9) 107.2(2) 

Anisotropic Displacement Parameters· (A 2). The Anisotropic Displacement Factor 

Exponent Takes the Form: _21t2[h2a*2Ull + ... + 2hka*b*U12
) 

N(I) 
0(1) 
C(I) 

Appendix 

VII 

0.0284(9) 
0.0477(10) 
0.0301(10) 

V22 

0.0240(9) 
0.0334(10) 
0.0255(1l) 

U33 U23 

0.01 79(S) -0.0023(7) 
0.0230(S) -0.0062(7) 
0.0183(10) -0.0034(S) 

VI3 

0.0020(7) 
0.00SI(7) 
0.0051(8) 

UI2 

-0.0015(7) 
-0.0126(8) 
-0.0022(9) 
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C(2) 0.0431(12) 0.0306(12) 0.0181(9) -0.0028(9) 0.0074(9) -0.0031(10) 
C(3) 0.0374(11) 0.0385(14) 0.0187(9) -0.0077(9) 0.0046(9) -0.0034(10) 
C(4) 0.0287(10) 0.0445(14) 0.0207(9) -0.0052(10) -0.0001(8) -0.0048(10) 
C(5) 0.0266(10) 0.0266(12) 0.0245(11) -0.0061 (9) 0.0020(8) -0.0018(9) 
0(2) 0.0346(8) 0.0338(9) 0.0275(8) -0.0020(7) 0.0021(7) -0.0109(7) 
C(6) 0.0379(12) 0.0281(12) 0.0288(11) 0.0031(10) 0.0020(9) -0.0051 (10) 
C(7) 0.0273(9) 0.0259(11) 0.0190(9) 0.0032(8) 0.0035(8) 0.0004(8) 
C(8) 0.0284(10) 0.0285(11) 0.0184(9) 0.0020(8) 0.0039(8) 0.0023(8) 
C(9) 0.0227(9) 0.0255(11) 0.0197(9) 0.0012(8) 0.0005(8) -0.0028(8) 
C(10) 0.0300(10) 0.0295(12) 0.0210(10) 0.0015(9) 0.0014(8) 0.0017(9) 
N(2) 0.0367(10) 0.0310(10) 0.0190(8) . 0.0065(8) 0.0018(7) 0.0028(8) 
C(11) 0.0235(9) 0.0326(12) 0.0190(9) 0.0038(8) 0.0006(8) -0.0026(9) 
C(12) 0.0282(10) 0.0418(14) 0.0204(10) 0.0040(9) 0.0041(8) 0.0000(10) 
C(13) 0.0293(11) 0.0481(15) 0.0243(11) -0.0002(10) 0.0055(9) 0.0056(11) 
C(14) 0.0289(10) 0.0365(13) 0.0296(11) 0.0013(10) 0.0036(9) 0.0070(9) 
C(l5) 0.0278(10) 0.0325(12) 0.0213(9) 0.0042(9) 0.0021(8) 0.0007(9) 
C(16) 0.0204(9) 0.0287(11) 0.0179(9) 0.0030(8) 0.0006(7) -0.0038(8) 

Hydrogen Coordinates and Isotropic Displacement Parameters (Al) 

x y z U 

H(2A) 0.3216 1.0436 0.8593 0.036 
H(2B) 0.2035 1.0978 0.8592 0.036 
H(3A) 0.2863 0.7309 0.8022 0.038 
H(3B) 0.1971 0.8712 0.7544 0.038 
H(4A) 0.0807 0.7523 0.8430 0.038 
H(4B) 0.1271 0.5586 0.8001 0.038 
H(5) 0.2447 0.4964 0.9177 0.031 
H(6A) 0.2061 0.3741 1.0598 0.038 
H(6B) 0.0994 0.4609 1.0833 0.038 
H(7) . 0.2701 0.6860 1.l034 0.029 
H(8A) 0.1568 0.9912 1.0937 0.030 
H(8B) 0.0625 0.8379 1.0691 0.030 
H(1O) 0.1969 0.5335 1.2205 0.032 
H(2) 0.156(2) 0.602(6) 1.362(2) 0.035 
H(12) 0.0573 0.8772 . 1.4441 0.036 
H(13) -0.0200 1.2007 1.4245 0.040 
H(l4) -0.0325 1.3673 1.2962 0.038 
H(l5) 0.0258 1.2109 1.1827 0.033 
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Single Crystal X-Ray with Accompanying Data 

(6S,12bR)-6-(Hydroxymethyl)-I,2,3,4,6,7,12,12b-octahydropyrido(2,I-a]J3-carbolin-

4-one 

(219) 
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Crystal Data and Structure Refinement 

Identification code 

Chemical fonnula 

Fonnula weight 

Temperature 

Radiation, wavelength 

Crystal system, space group 

Unit cell parameters 

Cell volume 

Z 

Calculated density 

Absorption coefficient f1 

F(OOO) 

Crystal colour and size 

Reflections for cell refinement 

Data collection method 

9 range for data collection 

Index ranges 

Completeness to 9 = 26.00° 

Intensity decay 

Reflections collected 

Independent reflections 

Reflections with F~2cr 

Absorption correction 

Min. and max. transmission 

Structure solution 

Appendix 

(219) 

CI6H IsN20 2 

270.32 

150(2) K 

MoKa, 0.71073 A 

monoclinic, P2 I 

a = 8.0611(7) A 

b = 9.2410(7) A 

c = 9.9786(8) A 

698.45(10) A3 

2 

1.285 g!cm3 

0.086 mm-I 

288 

13 = JI 0.0 12(2)° 

y=90° 

colourless, 0.51 x 0.30 x 0.18 mm3 

4666 (9 range 2.20 to 28.74°) 

Broker SMART 1000 CCD diffiactometer 

(J) rotation with narrow frames 

2.17 to 28.92° 

h -10 to 10, k -12 to 12, l-J3 to J3 

99.9% 

0% 

6217 

3182 (Riot = 0.0126) 

3027 

semi-empirical from equivalents 

0.958 and 0.985 

direct methods 

E 



Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0490, 0.0836 

Data 1 restraints 1 parameters 3182/1/187 

Final R indices [F~20"] RI = 0.0311, wR2 = 0.0805 

R indices (all data) RI = 0.0328, wR2 = 0.0821 

Goodness-of-fit on F2 1.049 

Absolute structure parameter 0.2(8) 

Largest and mean shiftlsu 0.000 and 0.000 

Largest diff. peak and hole 0.193 and -0.177 e A-3 

Atomic Coordinates and Equivalent Isotropic Displacement Parameters (A2
). 

Ucq is Defined as One Third of the Trace of the Orthogonalised UiJ Tensor 

x y z Ucq 

0(1) 0.10742(14) 0.91692(11) 0.03505(9) 0.0344(2) 
N(1) 0.14219(13) 0.87195(11 ) 0.26536(11 ) 0.0224(2) 
C(1) 0.13665(16) 0.96358(13) 0.15779(13) 0.0251(2) 
0(2) -0.12589(14) 0.53509( 11) 0.20000(11) 0.0353(2) 
N(2) 0.24514(15) 0.82373(11) 0.65713(11) 0.0267(2) 
C(2) 0.17702(17) 1.12221(13) 0.18935(13) 0.0284(3) 
C(3) 0.17330(19) 1.17743(14) 0.33152(15) 0.0327(3) 
C(4) 0.24960(17) 1.06408(13) 0.44720(14) 0.0276(3) 
C(5) 0.14437(16) 0.92399(13) 0.40683(12) 0.0236(2) 
C(6) 0.21833(16) 0.80663(14) 0.51348(12) 0.0242(2) 
C(7) 0.30700(16) 0.69448(14) 0.72459(13) 0.0263(3) 
C(8) 0.34764(18) 0.65661(17) 0.86785(13) 0.0338(3) 
C(9) 0.40839(19) 0.51725( 18) 0.90768(15) 0.0383(3) 
C(10) 0.42661(17) 0.41787( 17) 0.80758(15) 0.0336(3) 
C(11) 0.38318(16) 0.45416(14) 0.66519(14) 0.0277(3) 
C(12) 0.32206(15) 0.59491(13) 0.62148(12) 0.0240(2) 
C(13) 0.26497(15) 0.66996(13) 0.48744(12) 0.0241(2) 
C(14) 0.24475(17) 0.62180(13) 0.33956(12) 0.0270(3) 
C(15) 0.10726(17) 0.71621(12) 0.23062(13) 0.0231(2) 
C(16) -0.08343(17) 0.68404(13) 0.21987(13) 0.0268(3) 
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Bond Lengths [A) and Angles [0) 

O(I)--C(I) 
N(I)--C(5) 
C(I)--C(2) 
N(2)--C(6) 
C(2)--C(3) 
C(4)--C(5) 
C(6)--C(13) 
C(7)--C(12) 
C(9)--C(10) 
C(II)--C(12) 
C(13)--C(14) 
C( 15)--C( 16) 

C(1}--N(I)--C(5) 
C( 15}--N (1)--C( 5) 
0(I)--C(I)--C(2) 
C(7}--N(2)--C(6) 
C(2)--C(3)--C(4) 
N(I)--C(5)--C(6) 
C(6)--C(5)--C(4) 
C(13)--C(6}--N(2) 
N(2)--C(7)--C(12) 
C(8)--C(7)--C( 12) 
C(8)--C(9)--C(10) 
C(10)--C(II)--C(12) 
C(11 )--C(12}--C(7) 
C( 6)--C(13 }--C(12) 
C(12)--C(13}--C(14) 
N(I)--C(15}--C(14) 
C(14)--C(15}--C(16) 

1.2426(16) 
1.4857(15) 
1.5112(17) 
1.3837(15) 
1.5175(19) 
1.5244(17) 
1.3678(17) 
1.4161(17) 
1.401(2) 
1.4063(18) 
1.4959(16) 
1.5330(17) 

122.45(10) 
118.38(9) 
119.78(11) 
108.02(10) 
110.18(10) 
108.30(10) 
112.21(10) 
110.28(11) 
108.36(10) 
122.15(12) 
121.15(13) 
118.78(13) 
118.93(11) 
106.89(10) 
131.87(11) 
110.68(10) 
113.82(10) 

N(I)--C(I) 
N(I)--C(15) 
0(2)--C(16) 
N(2)--C(7) 
C(3)--C(4) 
C(5)--C(6) 
C(7)--C(8) 
C(8)--C(9) 
C(10}--C(11) 
C(12)-C(13) 
C(14}--C(15) 

C(1}--N(I}--C(15) 
O(I)--C(I}--N(I) 
N(I)--C(I}--C(2) 
C(1}--C(2}--C(3) 
C(3}--C(4}--C(5) 
N(I)--C(5}--C(4) 
N(2)--C(6}--C(5) 
C(13)-C(6}--C(5) 
N(2)--C(7}--C(8) 
C(9)--C(8}--C(7) 
C(II)--C(10}--C(9) 
C(7)--C(12)--C( 13) 
C(II)--C(12}--C(13) 
C(6)--C(13)--C(14) 
C(13)-C(14}--C(15) 
N(1 )--C(15}--C(16) 
0(2)--C(16}--C(15) 

1.3558(15) 
1.4845(15) 
1.4159(15) 
1.3779(16) 
1.5239(18) 
1.4933(17) 
1.3974(17) 
1.387(2) 
1.3833(18) 
1.4354(15) 
1.5319(17) 

117.93(10) 
120.49(11) 
119.63(11) 
116.70(11) 
109.86(10) 
110.52(10) 
122.55(11) 
127.15(11) 
129.48(12) 
117.51(13) 
121.46(13) 
106.45(10) 
134.62(11) 
121.19(11) 
109.80(10) 
108.05(9) 
112.76(10) 

Anisotropic Displacement Parameters (A 1). The Anisotropic Displacement Factor 

Exponent Takes the Form: _27t1[h1a*lUIl + ... + 2hka*b*UI1) 

0(1) 
N(I) 
C(1) 
0(2) 
N(2) 
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0.0521(6) 
0.0276(5) 
0.0256(5) 
0.0560(6) 
0.0327(5) 

0.0275(5) 
. 0.0188(5) 

0.0222(5) 
0.0271(5) 
0.0264(6) 

0.0218(4) 
0.0211(5) 
0.0261(6) 
0.0292(5) 
0.0217(5) 

0.0039(4) 
-0.0013(4) 

0.0029(5) 
-0.0074(4) 
-0.0018(4) 

0.0106(4) -0.0045(4)· 
0.0087(4) -0.0004(4) 
0.0069(4) 0.0005(5) 
0.0231(5) -0.0162(4) 
0.0100(4) 0.0020(4) 
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C(2) 
C(3) 
C(4) 
C(5) 
C(6) 
C(7) 
C(8) 
C(9) 
C(10) 
C(11) 
C(12) 
C(13) 
C(14) 
C(15) 
C(16) 

0.0327(6) 
0.0412(7) 
0.0336(6) 
0.0276(5) 
0.0272(6) 
0.0257(5) 
0.0359(6) 
0.0386(7) 
0.0300(6) 
0.0262(6) 
0.0231(5) 
0.0284(5) 
0.0378(6) 
0.0328(6) 
0.0342(6) 

0.0207(5) 
0.0187(6) 
0.0220(6) 
0.0214(5) 
0.0248(6) 
0.0294(6) 
0.0436(8) 
0.0484(9) 
0.0324(7) 
0.0258(6) 
0.0265(6) 
0.0224(5) 
0.0223(6) 
0.0165(5) 
0.0220(6) 

0.0289(6) 
0.0376(7) 
0.0277(6) 
0.0223(5) 
0.0210(5) 
0.0229(6) 
0.0209(6) 
0.0251(7) 
0.0339(7) 
0.0284(6) 
0.0216(5) 
0.0213(5) 
0.0215(5) 
0.0210(5) 
0.0260(6) 

0.0049(5) 
-0.0005(5) 
-0.0044(5) 
-0.0014(4) 
-0.0024(5) 

0.0000(5) 
-0.0003(5) 

0.0103(6) 
0.0104(6) 
0.0024(5) 
0.0013(5) 
0.0022(5) 

-0.0010(4) 
. -0.0020(4) 
-0.0038(5) 

0.0067(5) -0.0007(5) 
0.0129(6) 0.0010(5) 
0.0111(5) -0.0022(5) 
0.0091(4) 0.0011(5) 
0.0088(4) -0.0002(5) 
0.0073(4) -0.0005(5) 
0.0084(5) -0.0016(6) 
0.0072(6) -0.0029(6) 
0.0050(5) -0.0003(6) 
0.0058(5) -0.0013(5) 
0.0068(4) -0.0004(5) 
0.0083(4) 0.0020(5) 
0.0106(5) 0.0051(5) 
0.0106(5) -0.0009(4) 
0.0126(5) -0.0036(5) 

Hydrogen Coordinates and Isotropic Displacement Parameters (A2) 

H(2) 
H(2A) 
H(2B) 
H(2C) 
H(3A) 
H(3B) 
H(4A) 
H(4B) 
H(5) 
H(8) 
H(9) 
H(10) 
H(I1) 
H(14A) 
H(14B) 
H(15) 
H(16A) 
H(16B) 
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x 

0.208(2) 
0.0910 
0.2956 

-0.126(3) 
0.0502 
0.2431 
0.2449 
0.3747 
0.0201 
0.3342 
0.4382 
0.4697 
0.3944 
0.2069 
0.3595 
0.1174 

-0.1015 
-0.1648 

y 

0.8999(19) 
1.1792 
1.1419 
0.508(2) 
1.1996 
1.2677 
1.1002 
1.0456 
0.9434 
0.7238 
0.4887 
0.3235 
0.3853 
0.5193 
0.6296 
0.6986 
0.7175 
0.7393 

z 

0.6973(17) 
0.1127 
0.1846 
0.122(2) 
0.3237 
0.3574 
0.5392 
0.4587 
0.4012 
0.9354 
1.0045 
0.8382 
0.5982 
0.3267 
0.3244 
0.1348 
0.3081 
0.1390 

u 

0.032 
0.034 
0.034 
0.053 
0.039 
0.039 
0.033 
0.033 
0.028 
0.041 
0.046 
0.040 
0.033 
0.032 
0.032 
0.028 
0.032 
0.032 
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Hydrogen Bonds lA and 0) 

D-H ... A d(D-H) d(H ... A) d(D ... A) «DHA) 

N(2}-H(2) ... O(2') 0.912(17) 1.872(17) 2.7765(14) 171.0(15) 
O(2}-H(2C) ... O(l ") 0.82(2) 1.83(2) 2.6372(13) 169(2) 

Symmetry operations for equivalent atoms 
'-x,y+1I2,-z+1 "-x,y-1I2,-z 
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Single Crystal X-Ray with Accompanying Data 

(6S,12bR)-3-(E)Ethylidene)-12-(phenylmethyl)-6-{(phenylmethyl)oxy)methyl)-

1,2,3,4,6,7,12,12b-octahydropyrido(2,1-a)f3-carbolin-4-one 

(297) 

Appendix F 



Crystal Data and Structure Refinement 

Identification code 

Chemical fonnula 

Fonnula weight 

Temperature 

Radiation, wavelength 

Crystal system, space group 

Unit cell parameters 

Cell volume 

Z 

Calculated density 

Absorption coefficient ~ 

F(OOO) 

Crystal colour and size 

Reflections for cell refinement 

Data collection method 

e range for data collection 

Index ranges 

Completeness to e = 26.00° 

Intensity decay 

Reflections collected 

Independent reflections 

Reflections with F2>2cr 

Absorption correction 

Min. and max. transmission 

Structure solution 

Appendix 

(297) 

C32H32N20 2 

476.60 

150(2) K 

MoKa, 0.71073 A 

orthorhombic, P2.2.2. 

a = 5.7452(3) A a = 90° 

b = 20.2369(12) A 

c = 21.5207(13) A 

2502.1 (2) A3 

4 

1.265 g/cm3 

0.079mm-· 

1016 

yellow, 1.43 x 0.20 x 0.18 mm3 

13619 (9 range 2.22 to 28.80°) 

Bruker SMART 1000 CCD diffractometer 

ro rotation with narrow frames 

1.89 to 28.96° 

h -7 to 7, k -27 to 26, I -29 to 28 

100.0% 

0% 

22222 

6059 (Rint = 0.0236) 

5616 

semi-empirical from equivalents 

0.896 and 0.986 

direct methods 
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Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0514, 0.5100 

Data / restraints / parameters 6059/0/326 

Final R indices [F2:>2cr] RI = 0.0369, wR2 = 0.0945 

R indices (all data) RI = 0.0412, wR2 = 0.0981 

Goodness-of-fit on F2 1.021 

Absolute structure parameter -0.6(10) 

Largest and mean shiftlsu 0.001 and 0.000 

Largest diff. peak and hole 0.213 and -0.166 e A-3 

Atomic Coordinates and Equivalent Isotropic Displacement Parameters (A2
). 

Ueq is Defined as One Third of the Trace of the Orthogonalised UiJ Tensor 

x y Z Ueq 

0(1) -0.2106(2) 0.43893(6) 0.22658(5) 0.0450(3) 
N(I) 0.1077(2) 0.49095(5) 0.18913(5) 0.0314(2) 

C(I) -0.0417(3) 0.47537(6) 0.23607(6) 0.0317(3) 
0(2) 0.2018(2) 0.38483(6) 0.05339(5) 0.0417(3) 
N(2) 0.5200(2) 0.61511(5) 0.12154(5) 0.0281(2) 
C(2) 0.0029(3) 0.50313(7) 0.29963(7) 0.0349(3) 
C(3) -0.1475(3) 0.48698(8) 0.34470(8) 0.0449(4) 
C(4) -0.1383(4) 0.50807(9) 0.41118(8) 0.0554(5) 
C(5) 0.2117(3) 0.54563(9) 0.30878(7) 0.0449(4) 
C(6) 0.2639(3) 0.58414(7) 0.24961(6) 0.0362(3) 
C(7) 0.3069(3) 0.53705(6) 0.19564(6) 0.0298(3) 
C(8) 0.3368(2) 0.57259(6) 0.13448(6) 0.0258(2) 
C(9) 0.6995(2) 0.63984(6) 0.16274(6) 0.0296(3) 
C(10) 0.6594(2) 0.71059(6) 0.18480(6) 0.0259(2) 
C(ll) 0.8352(2) 0.74314(7) 0.21720(6) 0.0298(3) 
C(12) 0.8072(3) 0.80837(7) 0.23619(6) 0.0314(3) 
C(13) 0.6028(3) 0.84166(7) 0.22342(6) 0.0323(3) 
C(14) 0.4272(2) 0.80965(7) 0.19124(6) 0.0329(3) 
C(15) 0.4555(2) 0.74433(7) 0.17216(6) 0.0298(3) 
C(16) 0.4983(3) 0.63548(6) 0.06012(6) 0.0301(3) 
C(17) 0.6413(3) 0.67724(7) 0.02597(7) 0.0387(3) 
C(18) 0.5816(3) 0.68796(8) -0.03551(8) 0.0462(4) 
C(19) 0.3836(4) 0.65885(8) -0.06177(7) 0.0465(4) 
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C(20) 
C(21) 
C(22) 
C(23) 
C(24) 
C(25) 
C(26) 
C(27) 
C(28) 
C(29) 
C(30) 
C(31) 
C(32) 

0.2414(3) 
0.2997(2) 
0.2016(2) 
0.0133(3) 
0.0667(3) 
0.2718(3) 
0.3805(3) 
0.2894(3) 
0.0785(3) 
0.0004(3) 
0.1331(4) 
0.3393(5) 
0.4188(3) 

0.61763(7) -0.02759(6) 
0.60485(6) 0.03477(6) 
0.56459(6) 0.08284(6) 
0.51372(7) 0.07961(6) 
0.46022(7) 0.12779(6) 
0.41705(7) 0.1 0908(6) 
0.34999(8) 0.02347(7) 
0.32235(7) -0.03702(6) 
0.34192(8) -0.06197(7) 
0.31602(9) -0.11813(8) 
0.26986(9) -0.14924(7) 
0.24932(10) -0.12435(8) 
0.27560(9) -0.06853(7) 

Bond Lengths (A) and Angles (0) 

0(1)-(:(1) 
N(I)-(:(24) 
C(1)-(:(2) 
0(2)-(:(25) 
N(2)-(:(16) 
C(2)-(:(3) 
C(3)-(:(4) 
C(6)-(:(7) 
C(8)-(:(22) 
C(10)-(:(15) 
C(11)-(:(12) 
C(13)-(:(14) 
C(16)-(:(17) 
C(17)-(:(18) 
C(19)-(:(20) 
C(21 )-(:(22) 
C(23)-(:(24) 
C(26)-(:(27) 
C(27)-(:(28) 
C(29)-(:(30) 
C(31 )-(:(32) 

C(1 }-N(1 )-(:(24) 
C(24}-N(I}-C(7) 
0(1)-(:(1}-C(2) 
C(26}-O(2}-C(25) 
C(8}-N(2}-C(9) 
C(3)-(:(2}-C(5) 
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1.2358(18) 
1.4781(16) 
1.501(2) 
1.4223(16) 
1.3902(17) 
1.339(2) 
1.494(2) 
1.5225(19) 
1.3653(18) 
1.3826(18) 
1.3912(19) 
1.385(2) 
1.389(2) 
1.384(2) 
1.380(2) 
1.4321(19) 
1.530(2) 
1.511(2) 
1.383(2) 
1.379(3) 
1.391(3) 

117.65(11) 
118.17(11) 
120.53(13) 
114.24(12) 
129.14(11) 
124.40(14) 

N(I}-C(I) 
N(1}-C(7) 
0(2)-(:(26) 
N(2}-C(8) 
N(2}-C(9) 
C(2}-C(5) 
C(5)-(:(6) 
C(7}-C(8) 
C(9}-C(10) 
C(10)-(:(11) 
C(12)-(:(13) 
C(14)-(:(15) 
C(16)-(:(21 ) 
C(18)-(:(19) 
C(20}-C(21) 
C(22)-(:(23) 
C(24)-(:(25) 
C(27)-(:(32) 
C(28)-(:(29) 
C(30)-(:(31 ) 

C(1 }-N(1 }-C(7) 
O(I)-(:(I}-N(I) 
N(I}-C(I}-C(2) 
C(8}-N(2}-C(16) 
C(16}-N(2}-C(9) 
C(3}-C(2}-C(1 ) 

0.0382(3) 
0.0294(3) 
0.0278(3) 
0.0317(3) 
0.0323(3) 
0.0353(3) 
0.0380(3) 
0.0333(3) 
0.0414(3) 
0.0493(4) 
0.0543(5) 
0.0612(6) 
0.0486(4) 

1.3628(18) 
1.4830(17) 
1.4021(19) 
1.3879(16) 
1.4491(17) 
1.489(2) 
1.523(2) 
1.5096(17) 
1.5260(17) 
1.3928(18) 
1.382(2) 
1.3938(19) 
1.408(2) 
1.400(3) . 
1.4072(19) 
1.4950(19) 
1.521(2) 
1.381(2) 
1.392(2) 
1.365(3) 

124.17(11) 
120.69(13) 
118.78(12) 
107.83(11) 
122.91(11) 
117.29(15) 

F 



C(S)-C(2)-C(I) 118.30(13) C(2)-C(3)-C(4) 126.94(17) 
C(2)-C(S)-C(6) 110.12(13) C(7)-C( 6)-C(S) 110.47(12) 
~(1)-C(7)-C(8) 107.77(10) ~(1)-C(7)-C(6) 109.92(11) 
C(8)-C(7)-C(6) 112.67(11) C(22)-C(8)-~(2) 109.97(11) 
C(22)-C(8)-C(7) 126.0S(12) ~(2)-C(8)-C(7) 123.82(11) 
~(2)-C(9)-C(1 0) 114.00(11) C(IS)-C(10)-C(11) 118.63(12) 
C(15)-C(10)-C(9) 122.02(12) C(11 )-C(1 0)-C(9) 119.33(12) 
C(12)-C(11)-C(10) 120.80(13) C(13)-C(12)-C(11) 120.1S(13) 
C(12)-C(13)-C(14) 119.40(12) C(13)-C(14)-C(IS) 120.38(13) 
C(10)-C(IS)-C(14) 120.63(13) C(17)-C(16)-~(2) 129.07(14) 
C(17)-C(16)-C(21) 122.82(13) ~(2)-C(16)-C(21) 108.10(12) 
C(18)-C(17)-C(16) ll7.04(16) C(17)-C(18)-C(19) 121.42(IS) 
C(20)-C(19)-C(18) 121.3S(1S) C(19)-C(20)-C(21) 118.S8(15) 
C(20)-C(21)-C( 16) 118.78(13) C(20)-C(21 )-C(22) 134.41(14) 
C(16)-C(21 )-C(22) 106.81(11) C(8)-C(22)-C(21 ) 107.27(12) 
C(8)-C(22)-C(23) 122.07(12) C(21 )-C(22)-C(23) 130.00(12) 
C(22)-C(23)-C(24) 108.11(11) ~(I)-C(24)-C(2S) 110.76(12) 
~(1 )-C(24)-C(23) 109.84(11) C(2S)-C(24)-C(23) 112.46(11) 
0(2)-C(25)-C(24) 10S.51(12) 0(2)-C(26)-C(27) 109.16(13) 
C(32)-C(27)-C(28) 118.49(14) C(32)-C(27)-C(26) 119.3S(14) 
C(28)-C(27)-C(26) 122.1S(13) C(27)-C(28)-C(29) 120.77(16) 
C(30)-C(29)-C(28) 119.90(18) C(31 )-C(30)-C(29) 119.71(16) 
C(30)-C(31 )-C(32) 120.48(17) C(27)-C(32)-C(31 ) 120.62(18) 

Anisotropic Displacement Parameters (A2
). The Anisotropic Displacement Factor 

Exponent Takes the Form: _2,c[h2a*2Ull + ... + 2hka*b*UI2) 

VII V22 V
33 

V
23 V\3 V12 

0(1) 0.04S6(6) 0.0431(6) 0.0463(6) -O.0031(S) 0.0083(S) -O.0141(S) 

~(1) 0.0377(6) 0.0286(S) 0.0279(5) -0.0031(4) O.OOIO(S) -O.0063(S) 
C(1) 0.0349(7) 0.02S 1 (6) 0.03S1(7) 0.0022(S) 0.0022(6) O.OOIO(S) 

0(2) 0.0429(6) 0.0444(6) 0.0379(S) -0.0 16S(4) -0.0003(S) -0.0024(S) 

~(2) 0.030S(S) 0.0270(S) 0.0270(S) -0.0011(4) -0.0007(4) -0.0026(4) 
C(2) 0.04S7(8) 0.0282(6) 0.0308(7) 0.0024(S) 0.0028(6) 0.0047(6) 

C(3) 0.OS68(10) 0.0348(7) 0.0430(8) -0.0008(6) 0.0128(8) 0.0019(7) 
C(4) 0.0809(14) 0.04S9(9) 0.0393(8) 0.0008(7) 0.019S(9) 0.0080(9) 

C(S) 0.OS39(1O) 0.OS41 (9) 0.0267(6) -0.0006(6) -0.0010(7) -0.0107(8) 

C(6) 0.0464(8) 0.03S3(7) 0.0269(6) -O.0041(S) -0.0009(6) -0.0096(6) 

C(7) 0.0348(7) 0.0277(6) 0.0268(6) O.OOOI(S) -0.0028(S) -0.0047(S) 

C(8) 0.0281(6) 0.0224(S) 0.0268(6) -0.0018(4) -O.0007(S) -O.0006(S) 

C(9) 0.0270(6) 0.0268(6) 0.03S0(6) -0.0021(S) -O.0033(S) -O.0008(S) 
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C(1O) 0.0278(6) 0.0261(6) 0.0239(5) 0.0019(4) 0.0016(5) -0.0012(5) 

C(11) 0.0282(6) 0.0303(6) 0.0310(6) 0.0011(5) -0.0029(5) 0.0017(5) 
C(12) 0.0344(7) 0.0312(6) 0.0287(6) -0.0026(5) -0.0021(5) -0.0043(6) 

C(13) 0.0409(8) 0.0270(6) 0.0289(6) -0.0013(5) 0.0037(6) 0.0016(6) 
C(14) 0.0313(7) 0.0334(7) 0.0341(7) 0.0020(6) 0.0013(6) 0.0048(5) 

C(15) 0.0276(6) 0.0323(6) 0.0295(6) -0.0010(5) -0.0022(5) -0.0014(5) 

C(16) 0.0350(7) 0.0263(6) 0.0289(6) -0.0005(5) 0.0030(5) 0.0041(5) 

C(17) 0.0418(8) 0.0338(7) 0.0404(7) 0.0018(6) 0.0081(7) -0.0019(6) 
C(18) 0.0611(10) 0.0386(8) 0.0389(8) 0.0104(7) 0.0159(8) 0.0040(8) 

C(19) 0.0669(11) 0.0441(8) 0.0286(7) 0.0055(6) 0.0022(7) 0.0119(8) 

C(20) 0.0480(8) 0.0375(7) 0.0290(6) -0.0006(5) -0.0038(6) 0.0097(7) 

C(21) 0.0343(7) 0.0262(6) 0.0276(6) -0.0020(5) -0.0010(5) 0.0066(5) 

C(22) 0.0299(6) 0.0263(6) 0.0272(6) -0.0022(5) -0.0017(5) 0.0024(5) 

C(23) 0.0314(7) 0.0323(7) 0.0316(6) -0.0062(5) -0.0051(5) -0.0024(6) 

C(24) 0.0383(7) 0.0291(6) 0.0297(6) -0.0051(5) -0.0006(6) -0.0084(6) 

C(25) 0.0492(9) 0.0272(6) 0.0294(6) -0.0027(5) -0.0039(6) -0.0026(6) 

C(26) 0.0451(8) 0.0365(7) 0.0325(7) -0.0011(6) -0.0036(6) 0.0064(6) 
C(27) 0.0436(8) 0.0297(6) 0.0266(6) 0.0027(5) 0.0030(6) 0.0006(6) 

C(28) 0.0464(9) 0.0442(8) 0.0337(7) -0.0016(6) -0.0012(7) 0.0056(7) 

C(29) 0.0526(9) 0.0602(10) 0.0349(7) 0.0080(7) -0.0073(7) -0.0094(9) 

C(30) 0.0867(14) 0.0498(9) 0.0264(7) -0.0014(6) 0.0017(8) -0.0202(10) 

C(31) 0.0939(16) 0.0518(10) 0.0380(8) -0.0096(8) 0.0167(10) 0.0129(11) 
C(32) 0.0569(10) 0.0522(9) 0.0366(7) 0.0020(7) 0.0072(7) 0.0163(8) 

Hydrogen Coordinates and Isotropic Displacement Parameters (Al) 

x y z U 

H(3) -0.2734 0.4591 0.3332 0.054 
~ 

H(4A) -0.0080 0.5387 0.4172 0.083 
H(4B) -0.1166 0.4692 0.4377 0.083 
H(4C) -0.2843 0.5302 0.4223 0.083 
H(5A) 0.3472 0.5178 0.3198 0.067 
H(5B) 0.1835 0.5768 0.3434 0.067 
H(6A) 0.1310 0.6134 0.2397 0.054 
H(6B) 0.4031 0.6122 0.2561 0.054 
H(7) 0.4508 0.5109 0.2044 0.045 
H(9A) 0.8511 0.6377 0.1410 0.044 
H(9B) 0.7091 0.6106 0.1995 0.044 
H(l1) 0.9759 0.7205 0.2264 0.036 
H(12) 0.9290 0.8301 0.2580 0.038 
H(13) 0.5828 0.8861 0.2366 0.039 
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H(14) 0.2865 0.8323 0.1821 0.039 
H(15) 0.3337 0.7228 0.1503 0.036 
H(17) 0.7742 0.6975 0.0440 0.046 

H(18) 0.6770 0.7157 -0.0604 0.055 

H(19) 0.3464 0.6676 -{).1040 0.056 

H(20) 0.1069 0.5983 -0.0458 0.046 
H(23A) 0.0075 0.4941 0.0375 0.048 

H(23B) -0.1394 0.5343 0.0885 0.048 

H(24) -0.0735 0.4312 0.1314 0.048 

H(25A) 0.4121 0.4444 0.1018 0.053 
H(25B) 0.3067 0.3843 0.1420 0.053 
H(26A) 0.4355 0.3135 0.0504 0.057 
H(26B) 0.5134 0.3799 0.0153 0.057 

H(28) -{).0141 0.3734 -0.0405 0.050 

H(29) -0.1441 0.3301 -{).1350 0.059 

H(30) 0.0812 0.2524 -0.1878 0.065 

H(31) 0.4292 0.2168 -0.1453 0.073 

H(32) 0.5634 0.2613 -0.0519 0.058 
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Single Crystal X-Ray with Accompanying Data 

1,2,3,4,6,7,12,12b-Odahydropyrido[2,1-a]p-carbolin-4-one 

(328) 
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Crystal Data and Structure Refinement 

Identification code 

Chemical fonnula 

Fonnula weight 

Temperature 

Radiation, wavelength 

Crystal system, space group 

Unit cell parameters 

Cell volume 

Z 

Calculated density 

Absorption coefficient J.t 

F(OOO) 

Crystal colour and size 

Reflections for cell refmement 

Data collection method 

8 range for data collection 

Index ranges 

Completeness to 8 = 26.00° 

Intensity decay 

Reflections collected 

Independent reflections 

Reflections with F~2(J 

Absorption correction 

Min. and max. transmission 

Structure solution 

Appendix 

(328) 

C IsHI6N20 

240.30 

150(2) K 

MoKa., 0.71073 A 

orthorhombic, Pbca 

a = 12.2720(9) A 

b = 13.2782(10) A 

c = 15.0736(11) A 

2456.2(3)N 

8 

1.300 g/cm3 

0.083 mm-I 

1024 

yellow, 0.65 x 0.30 x 0.16 mm3 

5622 (8 range 2.63 to 27.6°) 

Bruker SMART 1000 CCD diifractometer 

0> rotation with narrow frames 

2.63 to 29.08° 

h-16to 16,k-18to 17,1-19to 19 

100.0% 

0% 

20279 

3061 (Rint = 0.0334) 

2196 

semi-empirical from equivalents 

0.948 and 0.987 

direct methods 

G 



Refinement method 

Weighting parameters a, b 

Data I restraints I parameters 

Final R indices [F2> 2cr] 

R indices (all data) 

Goodness-of-fit on F2 

Largest and mean shift/su 

Largest diff. peak and hole 

Full-matrix least-squares on F2 

0.0545,0.9661 

3061101166 

RI = 0.0426, wR2 = 0.1049 

RI = 0.0703, wR2 = 0.1235 

1.021 

0.000 and 0.000 

0.295 and -0.190 e A-3 

Atomic Coordinates and Equivalent Isotropic Displacement Parameters (A2
). 

U.q is Defined as One Third of the Trace ofthe Orthogonalised uij Tensor 

x y z Ueq 

0(1) 0.36169(9) 0.10064(8) 0.67567(8) 0.0403(3) 
N(I) 0.23541(10) 0.22393(9) 0.68233(8) 0.0291(3) 
C(1) 0.33678(12) 0.19024(11) 0.66388(10) 0.0296(3) 

N(2) 0.03119(10) 0.42282(9) 0.63249(8) 0.0289(3) 
C(2) 0.41964(12) 0.26184(12) 0.62661(10) 0.0332(3) 
C(3) 0.39381(12) 0.37268(12) 0.63563(11) 0.0334(3) 
C(4) 0.27449(11) 0.39001(11) 0.61445(10) 0.0299(3) 
C(5) 0.20320(11) 0.33132(10) 0.67770(10) 0.0282(3) 
C(6) 0.08475(12) 0.33424(10) 0.65186(9) 0.0269(3) 

C(7) -0.07495(11) 0.39999(11) 0.61089(9) 0.0280(3) 

C(8) -0.16015(12) 0.46286(12) 0.58523(10) 0.0343(4) 

C(9) -0.25968(13) 0.41869(13) 0.56617(11 ) 0.0385(4) 

C(10) -0.27393(13) 0.31422(14) 0.57269(10) 0.0381(4) 

C(11) -0.18995(12) 0.25194(12) 0.59859(10) 0.0333(3) 

C(12) -0.08774(12) 0.29399(11) 0.61744(9) 0.0274(3) 
C(13) 0.01624(12) 0.25431 (1 0) 0.64325(9) 0.0277(3) 
C(14) 0.05333(13) 0.14841 (1 0) 0.66177(11) 0.0334(3) 
C(15) 0.15463(12) 0.15429(11 ) 0.71999(11) 0.0334(4) 

Bond Lengths [A) and Angles [0) 

O(1)-C(1) 1.2412(18) N(I)-C(I) 1.3509(19) 
N(I)-C(5) 1.4814(18) N(I)-C(15) 1.4696(18) 
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C(1}-C(2) 1.501(2) N(2}-C(6) 1.3786(18) 
N(2}-C(7) 1.3764(18) C(2}-C(3) 1.512(2) 
C(3}-C(4) 1.516(2) C(4}-C(5) 1.511(2) 
C(5}-C(6) 1.505(2) C(6}-C(13) 1.360(2) 
C(7}-C(8) 1.393(2) C(7}-C(12) 1.420(2) 
C(8}-C(9) 1.385(2) C(9}-C(10) 1.402(2) 
C(1 0}-C(11) 1.378(2) C(11}-C(12) 1.402(2) 
C(12}-C(13) 1.434(2) C(13}-C(14) 1.5040(19) 
C(14}-C(15) 1.524(2) 

C(1)-N(I}-C(5) 123.70(12) (;(I)-N(I}-C(15) 119.49(12) 
C(15)-N(I}-C(5) 116.35(11) ()(I}-C(I)-N(I) 120.99(14) 
()(1}-C(1}-C(2) 119.59(13) N(I}-C(I}-C(2) 119.41(13) 
q7)-N(2}-C(6) 108.26(12) ql}-C(2}-C(3) 116.16(12) 
C(2}-C(3}-C(4) 109.35(12) q5}-C(4}-C(3) 110.37(12) 
(;(6}-C(5}-C(4) 112.50(12) N(I}-C(5}-C(4) 111.82(12) 
N(I}-C(5}-C(6) 107.13(11) N(2}-C(6}-C(5) 122.49(12) 
q13}-C(6)-N(2) 110.54(13) C(13}-C(6}-C(5) 126.97(13) 
N(2}-C(7}-C(8) 130.10(14) N(2}-C(7}-C(12) 107.85(13) 
q8}-C(7}-C(12) 122.05(13) C(9}-C(8}-C(7) 117.76(14) 
q8}-C(9}-C(10) 120.97(15) (;(11}-C(10}-C(9) 121.36(14) 
(;(10}-C(11}-C(12) 119.18(15) q11}-C(12}-C(7) 118.66(14) 
C(7}-C(12}-C(13) 106.55(12) C(11}-C(12}-C(13) 134.79(14) 
q6}-C(13}-C(12) 106.80(12) (;(6}-C(13}-C(14) 121.65(13) 
<:(12}-C(l3}-C(14) 131.53(13) <:(13}-C(14}-C(15) 107.81(12) 
N(I}-C(15}-C(14) 111.11(12) 

Anisotropic Displacement Parameters (A1
). The Anisotropic Displacement Factor 

Exponent Takes the Form: _21tl[h1a*lUIl + ... + 2hka*b*UuJ 

Ull U22 U33 U23 UI3 U12 

()(1) 0.0367(6) 0.0282(6) 0.0561(7) -0.0048(5) -0.0034(5) 0.0096(5) 

N(1) 0.0299(6) 0.0243(6) 0.0332(6) 0.0017(5) 0.0031(5) 0.0035(5) 

<:(1) 0.0298(7) 0.0300(8) 0.0291(7) -0.0049(6) -0.0043(6) 0.0051(6) 

N(2) 0.0269(6) 0.0225(6) 0.0373(7) 0.0001(5) -0.0037(5) -0.0005(5) 

q2) 0.0259(7) 0.0398(9) 0.0338(8) -0.0005(6) -0.0015(6) 0.0055(6) 

C(3) 0.0278(7) 0.0353(8) 0.0372(8) 0.0011(6) 0.0005(6) -0.0020(6) 
C(4) 0.0281(7) 0.0273(7) 0.0343(8) 0.0006(6) 0.0009(6) 0.0010(6) 

q5) 0.0278(7) 0.0234(7) 0.0335(8) 0.0007(6) 0.0006(6) 0.0030(6) 

<:(6) 0.0300(7) 0.0226(7) 0.0282(7) -0.0003(5) 0.0020(6) 0.0016(5) 

q7) 0.0280(7) 0.0296(7) 0.0263(7) -0.0007(6) -0.0008(6) -0.0023(6) 
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C(8) 
C(9) 
C(IO) 
C{ll) 
C(12) 
C(13) 
C(14) 
C(l5) 

0.0322(8) 
0.0286(8) 
0.0285(8) 
0.0352(8) 
0.0316(7) 
0.0300(7) 
0.0374(8) 
0.0362(8) 

0.0340(8) 
0.0511(10) 
0.0551(10) 
0.0354(8) 
0.0282(7) 
0.0251(7) 
0.0226(7) 
0.0237(7) 

0.0368(8) 
0.0357(8) 
0.0306(8) 
0.0292(8) 
0.0225(7) 
0.0279(7) 
0.0403(9) 
0.0404(9) 

0.0050(6) 
0.0065(7) 

-0.0007(7) 
-0.0034(6) 
-0.0032(5) 
-0.0027(5) 
-0.0025(6) 

0.0051(6) 

-0.0035(6) 0.0021(6) 
-0.0045(7) 0.0013(7) 
-0.0008(6) -0.0095(7) 

0.0033(6) -0.0090(7) 
0.0027(6) -0.0025(6) 
0.0038(6) -0.0005(6) 
0.0081(7) -0.0017(6) 
0.0072(7) 0.0039(6) 

Hydrogen Coordinates and Isotropic Displacement Parameters ('\.2) 

H(2) 
H(2A) 
H(28) 
H(3A) 
H(38) 
H(4A) 
H(48) 
H(5) 
H(8) 
H(9) 
H(IO) 
H(l1) 
H(14A) 
H(148) 
H(15A) 
H(158) 

x 

0.0575(13) 
0.4292 
0.4902 
0.4399 
0.4096 
0.2576 
0.2594 
0.2108 

-0.1503 
-0.3192 
-0.3429 
-0.2012 

0.0705 
-0.0049 

0.1338 
0.1873 

Hydrogen Bonds lA and 0] 

D-H ... A 

N(2)-H(2) ... O(IA) 

y 

0.4859(13) 
0.2465 
0.2488 
0.4121 
0.3953 
0.4627 
0.3685 
0.3614 
0.5337 
0.4598 
0.2858 
0.1814 
0.1134 
0.1105 
0.1774 
0.0864 

z 

0.6387(11) 
0.5628 
0.6563 
0.5944 
0.6969 
0.6193 
0.5528 
0.7382 
0.5809 
0.5484 
0.5590 
0.6036 
0.6055 
0.6926 
0.7801 
0.7255 

u 

0.035 
0.050 
0.050 
0.050 
0.050 
0.045 
0.045 
0.042 
0.041 
0.046 
0.046 
0.040 
0.050 
0.050 
0.050 
0.050 

d(D-H) d(H ... A) d(D ... A) <(DHA) 

0.902(17) 1.901(17) 2.7797(16) 163.9(15) 

Symmetry Operations for Equivalent Atoms 

A x-1I2,-y+3/2,-z+2 
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Determination of Enantiomeric Excess 

Column: ChiralCelOD-H 

Conditions: 85:15 hexane/propan-2-ol, 0.4 mL min- l 
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IH and 13C NMR Spectra 

Compound: (219) 
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IH and 13C NMR Spectra 

Compound: (251) 
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IH and 13C NMR Spectra 

Compound: (337) 
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Abstract-We report a novel, facile and stereoselective approach to a tricyclic tetrahydroisoquinoline ring system from readily 
available, non-raCl:nUc. bicyclic lactam substrates. © 2002 Elsevier Science Ltd. All rights reserved. 

Derivatives of the isoquinoline ring system are found as 
major structural motifs in a wide range of natural 
products and biologically active compounds and there
fore new synthetic roules to these targets are of general 
interest. l Based on our novel stereo selective approach 
to the isoindoloisoquinolin~ and pyrroloisoquinoline3 

ring systems, we recognized that a suitably substituted 
bicyclic lactam could act as a precursor in a stereoselec
tive approach towards a tricyclic tetrahydroisoquinoline 
ring, which can be seen as a sub-unit (BeD rings) of the 
pro to berberine alkaloids exemplified by xylopinine 1 
and its derivatives· Our approach allows the introduc
tion of asymmetry during the key ring-forming step: the 

& o 

Scheme 1 • 

• Corresponding author. E·mail: s.m.allin@lboro.ac.uk 

stereoselective cyclization of a bicyclic lactam substrate 
via an N-acyliminium intermediate. 
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ring systems (2, 11= 1, Amat and Bosch)6 have been 
widely utilized in asymmetric synthesis, to the best of 
our knowledge the present application of the corre
sponding fused 5,6-system (n= 1) as a precursor in an 
N-acyliminium mediated cyclization reaction leading to 
tetrahydroisoquinoline targets represents a novel appli
cation of this chiral template. 

Our synthesis of the required bicyclic lactam substrate 3 
from commercially available (S)-phenylalaninol fol
lowed the general method previously described by 
Amat.' Heating (S)-phenylalaninol with methyl 5-
oxopentanoate in toluene at reflux under Dean-Stark 
conditions gave a 4:1 mixture of separable diastereoiso
mers, 3. and 3b, respectively, in 50% overall yield 
(Scheme I). 1be structure of the major diastereoisomer 
cis-3a was confirmed by NOE studies,7 and is consis
tent with the results reported by Amat for the corre
sponding phenylglycinol-derived lactam diastereo
isomers.6 

With 3. in hand we turned OUr attention to the pro
posed N-acyliminium cyclization reaction. On treating 
lactam 3. with TiCI., as Lewis acid activator at -IO'C 
in dichloromethane ror 20 h, we were pleased to isolate 
the cyclized product in 65% yield (Scheme I). 'H NMR 
analysis of the crude product mixture revealed the 
formation of only one diastereoisomer, 4. An NOE 
study indicated that the relative stereochemistry of the 
single product diastereoisomer 4 was as indicated in 
Scheme I, with the protons at the 6 and lOb positions 
having a lrans-relationship.s 

All other Lewis acids that were employed as activators 
failed to induce cyclization (BF,'OEt" TMSOTf, 
SnCl.), leading only to complete equilibration from 
ds-3a to IraJls-lactam 3b. This result is in accordance 
with the report or Amat. in which TFA was used to 
effect the same equilibration reaction.6 

On treating IraJls-diastereoisomer 3b with Ti04 as 
described above we were able to isolate 34% of the 
desired cyclization product 4. Interestingly both 3. and 
3b lead to the S{tT/1e diastereoisomer of the cyclization 
product 4. 111is result supports the mechanism previ
ously proposed by us for this type of c'Yclization.' since 
both 3. and 3b would yield the same N -acyliminium 
ion intermediate on activation. 

Higher yields of both the corresponding bicyclic lactam 
precursor and the cyc1ization product were obtained 
with a methoxy-substituted substrate (Scheme 2). In 
this case the bicyclic lactam 5 was isolated in 94% yield 
as a 6: 1 mixture of diastereoisomers. Based on the 
results described above for cyclization of separated 
diastereoisomers 3a and 3b. we chose not to separate 
the diastereoisomers of 5 prior to cyclization. Treating 
5 with TiCI., under our usual conditions gave a 68% 
yield of the tetrahydroisoquinoline 6 as a single 
diastereoisomer. 

TIle stereochemical outcome of these cyc1izations are in 
accord with our previously proposed models.) 

We were able to obtain further confirmation of the 
stereochemical outcome of these cyclizations by X-ray 
crystallography on compound 6.0 As shown in Fig. I 
this product, formed as a single diastereoisomer, has 
protons at positions CS and C15 in a Irans relationship. 
as had been indicated by the NOE on the simpler 
compound 4. 

In summary, we report a facile and highly stereoselec
tive approach to the tricyclic tetrahydroisoquinoline 
ring system representing the BeD sub-unit of the pro
toberberine alkaloids, from readily available non
racemic bicyclic lactam substrates. Previous work from 
our group in the pyrroloisoquinoline series' has demon
strated the removal of the hydroxymethyl auxiliary 
group from similar products of cyclization through a 
three-step procedure. Current work is focused on 
extending this methodology to protoberberine targets, 
and our progress will be reported in due course. 

H 5 

Scheme 2. 

FigID" I. 
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Abstract-We report a novel. facile and stereoselective approach to the indolizino(8.7.b]indole ring system from a readily 
avaiJable. non·racemic dural template. (') 2003 Elsevier Science Ltd. All rights reserved. 

Indolizino[8,7-b]indoles of general structure I are of 
interest to the pharmaceutical industry having been 
used as intermediates in the preparation of diuretic 
compounds.1 and are also known to exhibit analgesic 
and anti-inllamma tory activity in their own right. 2 

Other, more functionalised, templates such as 2 have 
been shown to act as ~-turn mimics and display high 
binding affinity and selectivity for CCK, receptors' 
111e lactam homologue 3 is perhaps of greater signifi
cance in natural product chemistry, sharing the same 
heterocyclic skeleton with a plethora of highly bioactive 
indole alkaloids. including tacamine;~ geissoschizine,5 
and ajrnalicine 4.6 

1 

Over recent years. we have reported a new approach to 
a range of non-racemic heterocyc1es involving stereose
lective cyclisation onto N-acyliminium intermediates as 
the key ring-forming step. Based on our novel and 
stereoselective approach to both the isoindoloisoquino
line and pyrroloisoquinoline ring systems/ we recog
nised that a suitably substituted bicyclic lactam could 
act as a precursor for a stereoselective approach to the 
indolizino[8,7-b]indole ring system. 

Our approach to the synthesis of the required bicyclic 
lactam substrate 5 followed the general method previ-

'Corresponding author. E-nmil: s.m.:l.lIin(g!lboro.ac.uk 

ously used in our group.' The f3-amino alcohol deriva
tive of (S)-tryptophan was reacted under Dean-Stark 
conditions with the appropriate keto-acid for 48 h 
(Scheme I). Under these reaction conditions we were 
able to isolate the expected bicyclic lactam 5 in only 3% 
yield. The major product of the reaction, isolated in 
55% yield, was found to be the target indolizino[8,7-
b]indole derivative 6.' 

Examination of the crude reaction mixture by 250 MHz 
'H NMR spectroscopy revealed the formation of 6 as a 
single diastereoisomer. 

The relative stereochemistry of product 6 was deter
mined by single crystal X-ray analysis (Fig. I), and was 
found to be as expected based on our experience of 
cyclisation reactions involving similar N -acyliminium 
precursors. Effectively, retention of configuration at the 
methyl-bearing chiral centre is observed if one considers 
bicyclic lactam 5 to be an intermediate.7b,c; 

Interestingly, compound 6 was observed to form two 
crystallographically unique hydrogen bonds: one 
intramolecular O(2)-H(2A),,·O(I) {O(l) .. ·O(2)= 
2.597(2) A, O(2)-H(2A)"'0(1)=I54'} and one inter
molecular N(2)-H(2)"'O(2A) {N(2)"'O(2A) =2.788(3) 
A, N(2)-H(2)"'O(2A)= 168'} forming chains along the 
crystallographic c-direction" 

OO.tO-W39j03fS . sec front m3tt~r ("J 2003 Elsevil!r Sci<!nre Ud. All rigbts reserved. 
doj: 1 0.10 16/SOO40-4039(03)OO2 50·8 
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Scheme 1. 
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toluene. A 
48 h .. 

Figure 1. Crystal structure of 6, omitting most H atoms and 
the solvent molecule of crystallisation. The intra- and inter
molecular H-bonds are highlighted and the numbering 
scheme is defined. 

Of course, one could envisage an alternative mechanism 
to explain the formation of 6 that avoids the intermedi
acy of bicyclic lactam 5: a stereoselective Pictet-Spen
gIer reaction in which condensation of the ~amino 
alcohol and keto-acid substrate results in fonnation of 
.a tetrahydro-i>-carboline derivative which then under
goes lactam formation to yield 6 in the final step.!O To 
date, no intermediates have been observed by us that 
would support this hypothesis with our substrates. 

An alternative approach to the indolizino[8,7-b]indole 
ring system was also investigated through formation 
and subsequent borohydride reduction of the imide 
intennediate 7, accessed in 54% yield from the required 
i>-amino alcohol and succinic anhydride.' In this 
approach. summarised in Scheme 2. the intermediate 
ethoxy-lactam derivative 8 was not isolated since, under 
the reaction conditions, direct cyclisation via an N
acyliminium intermediate was observed to yield the 
target heterocycle 9 in 45% yield and as a 9: 1 mixture of 
diastereoisomers. The major diastereoisomer was iso
lated by crystallisation and the relative stereochemistry 

s 8 

of this product was determined to be as shown in 
Scheme 2 by NOE studies." Again. the relative stereo
chemistry observed on cyclisation of the attacking aro
matic nucleus was as expected based on previous results 
from our group.7(; 

As noted above, access to the six-membered lactam 
homologue through application of this methodology 
would be highly attractive as it would allow aocess to a 
wide range of desirable indole targets. With this in 
mind we successfully prepared the bicyclic lactam sub
strate 10 as a 5:1 mixture of diastereoisomers in 58% 
overall yield. The relative stereochemistry of the major 
isomer, represented in Scheme 3, was determined by 
NOE studies." Based on our previous work in a related 
area,13 these substrate diastereoisomers were not sepa· 
rated, but were treated with TiCl4 to promote the 
stereoselective cyclisation reaction (Scheme 3). 

We were pleased to isolate the cyclised product, 11, in 
54% yield and 'H NMR analysis of the crude reaction 
mixture revealed the formation of this product as a 5:2 
mixture of diastereoisomers. A comparative NOE study 
was undertaken on the isolated diastereoisomers to 
confinn that the relative stereochemistry of the major 
diastereoisomer is as shown in Scheme 3.14 

To demonstrate the potential synthetic utility of this 
new methodology we followed a method previously 
used by us to remove the hydroxymethyl auxiliary 
group (Scheme 4).'b. Oxidation of 6 to the correspond
ing aldehyde was achieved in 90% yield using IBX 
(o-iodoxyben20ic acid) in DMSO;" subsequent decar
bonylation gave a mixture of enamide 12 and target 
lactam 13. This product mixture was subjected to cata
lytic hydrogenation to convert the unwanted enamide 
through to lactam 13. Finally, lactam reduction gener
ated the tertiary amine derivative 14 in 27% overall 
yield from the aldehyde. . 

In summary, we report a facile and highly stereoselee
tive approach to a range of indole-containing heterocy
cles from readily available non-racemic substrates. 
Current work is focused on extending this methodology 
to specific indole alkaloid targets, and our progress will 
be reported in due course. 
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Abstract-We report a noveL facile and highly stereoseLective approach to the indolo[2,3-a]quinolizine ring system from a readily 
available, nOIl-racemic chiral template. We demonstrate the potential for application of this methodology to natural product syn
thesis through conversion of the template to a simple indole alkaloid with high enantiomeric purity. 
© 2004 Elsevier Ltd. All rights reserved. 

The indolo[2,3-a)quinolizine ring system 1 is of great 
interest and significance since this heterocyclic template 
is found within a plethora of highly bioactive indole 
alkaloids, including geissoschizine 2.' vellosimine 32 

and ajmalicine 4. 3 The presence of the lactam carbonyl 
in templates such as 1 would allow for possible further 
functionalisation en route to the natural product targets. 
Recent approaches to the construction of this hetero
cyclic target system by other groups have included 
the diastereoselective vinylogous Mannich reaction,4 

• Corresponding author. Te!': +44-(0)-1509-222559; fax: +44-(0)-1509-
223925; e-mail: s.m.allin@lboro.ac.uk 

0040-4039/$ - see front matter © 2004 Elsevier Ltd. All rights reserved. 
doi: 10. IOI6Ij.tetlet.2004.07.12 L 

Bischler-Napieralski reaction,' Fischer indole synthesis· 
and the asymmetric Pictet-Spengler reaction.7 

We have recently developed a new and general approach 
for the stereo selective synthesis of a range of non-race
mic heterocycles that involves the cyclisation of pendent 
aromatic substituents onto N-acrliminium intermediates 
as the key ring-forming step. Based on our novel 
approach to the indolizino[8,7-b)indole ring system,'a 
we recognised that a suitably substituted bicyclic lactam 
could act as a precursor in a stereoselective approach to 
the indolo[2,3-a)quinolizine ring system. 

Our approach to the synthesis of the required bicyclic 
lactam substrate 5 followed the general method previ
ously used in our group.' The p-amino alcohol deriva
tive of (Sj-tryptophan was reacted under Dean-Stark 
conditions in toluene with an appropriate functionalised 
substrate for 48 h (Scheme 1). Under these reaction con
ditions, we were able to isolate the expected bicyclic !ac
tam in 69"10 yield as a 5:1 mixture of separable 
diastereoisomers, 5a and 5b. 

The relative stereochemistry of the major diastereo
isomer Sa was determined by single crystal X-ray analy
sis (Fig. 1).9 This indole-containing bicyclic lactam is a 
novel example of the fused 5,6-ring system favoured 
by Amat et al.,10 and the relative stereochemistry 
observed for the major isomer Sa is consistent with 
results obtained both by these researchers and in our 
own previous work in other areas.Bb 
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Schemt 1. 

Figure I. Crystal structure of 5a. 

In a previous communication, we noted briefly that 
treatment of the initial mixture of diastereoisomers of 
substrate 5 with TiCI4 gave the desired indolo[2,3-a]qui
nolizine target 6 in 54% yield, but with only a poor level 
of product diastereoselectivity (5:2).8. We have now dis
covered that simply treating the mixture of bicyclic lac
tarn substrate diastereoisomers, Sa and Sb, with 2M Het 
in ethanol at room temperature for 20 h gives an excel· 
lent yield of 95% for the cyclisation reaction, and leads 
to the formation of the desired indolo[2,3-a]quinolizine 
product as a single diastereoisomer (Scheme 2). 

The relative stereochemistry of the single diastereo
isomer 6 was determined by single crystal X-ray analysis 
(Fig. 2)9 and was found to be as favoured in the TiCI4 
mediated cyclisation reaction that had previously given 
only a 5:2 ratio of product diastereoisomers. 

To highlight the potential synthetic utility of our new 
methodology in the target synthesis of complex indole 
alkaloids and their synthetic analogues, we undertook 
the synthesis of a simple indole alkaloid, (S)-( -)-
1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizine, 11, 
the main constituent of Dracontomelum mangiferum 
BI." In order to access the natural (S)-enantiomer of 
the target we were required to work with the opposite 
stereochemical series of the template. Hence compound 
7 was prepared as a single diastereoisomer from (RJ-tryp
tophan by analogous chemistry to that described above, 

qNJ 
Sa,b 

Scheme 2. 

2M He!. EtOH 

RT, 20 h 

,..-A I .; 0 %
OH 

H' H : 

6 

5. 5b 

Figure 2. Crystal structure of 6. 

an X-ray crystal structure of 7 was also obtained. Our 
synthetic route to the natural product 11 from 7 is 
highlighted in Scheme 3. 

Our previous method to remove the hydroxymethyl 
'auxiliary' group from templates such as 7 has involved 
a rhodium·induced decarbonylation sequence.sa Due 
to the rather long reaction times generally needed for 
our substrates in this protocol we have now applied an 
easier approach that relies upon a decarboxylation strat
egy. Compound 7 was oxidised to the carboxylic acid 
derivative 8 through the corresponding aldehyde; from 
8 we generated the acyl selenide derivative and subse
quently performed a tin-mediated deacylation to yield 
the indolo[2,3-a]quinolizine ring system 9. Deprotection 
of the indole nitrogen gave known compound 10 in 
>95% ee by comparison of optical rotation data. 12• 

Reductive removal of the lactam carbonyl group com
pleted the synthesis of the natural product. Target 
(S)-( - )-11 was found to have an ee of 95% and the 
same absolute configuration as the natural product by 
comparison of optical rotation data. J2b 

In summary, we report a facile and highly stereoselective 
approach to the important indolo[2,3-a]quinolizine tem
plate from readily available non-racemic substrates, and 
have demonstrated the structural modification of the 
template to deliver a simple indole alkaloid with high 
enantiomeric purity. Current work is focused on extend· 
ing the methodology described in this paper to other, 
more complex indole alkaloid targets. Our progress will 
be reported in due course. 
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(i), (ii), (iii) (iv), (v) 

(vii) 

[a]o20:·79.6 (c=1,MeOH) 

Scheme 3. Reugents and conditions: (i) IBX. DMSO, ri, 24h (65%); (ii) Et3N, (BochO, DMAP, THP, rt, 4h (54%); (iii) NaCI02, NaH2PO.h 

l-methyl-I-cyc1ohexane, CH]CN, I-BuOH, H~O, o"e to rt. 19b (70%); (iv) {PbSeh, PBu:h CH2Ch. Obe to rt. ISh (66%); (v) n-BuJSnH. AIBN, 
toluene, 80°e, 2h (98%): (vi) TBAF, THF. A, 3b then rt, 9h (63%); (vii) LiAIH4• THF, A. 9h (96%). 
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