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Abstract

We revisit the stability analysis for three classical configurations of multiple fluid layers proposed
by Goldstein [Proc. Roy. Soc. A. 132, 524 (1931)], Taylor [Proc. Roy. Soc. A 132, 499
(1931)] and Holmboe [Geophys. Publ. 24, 67 (1962)] as simple prototypes to understand stability
characteristics of stratified shear flows with sharp density transitions. When such flows are confined
in a finite domain, it is shown that a large shear across the layers that is often considered a source
of instability plays a stabilizing role. Presented are simple analytical criteria for stability of these
low Richardson number flows.

1 Introduction

Stability of stratified shear flows have been studied extensively and linear stability analysis has led a
number of remarkable results, including Miles-Howard’s theorem [1, 2], Howard’s semicircle theorem
[2], and Synge’s generalization of Rayleigh’s inflexion point theorem [3].

For given density and velocity profiles, their linear stability characteristics can be determined in
a straightforward manner by solving numerically an eigenvalue problem. Nevertheless, it is often
cumbersome to solve the eigenvalue problem repeatedly when a large number of physical parameters
are involved and, more importantly, it is sometimes difficult to identify the underlying instability
mechanisms. Therefore, relatively simple flow configurations for which stability analysis can be per-
formed analytically have sometimes been adopted and the analytic solutions have helped one better
understand numerical solutions of the eigenvalue problem for general stratified shear flows.

When the density variation is rather abrupt over a thin vertical distance, it is customary to model
the corresponding density profile as fluid layers of different densities. When it is combined with a
simple velocity profile such as a linear profile, its stability characteristics can be investigated more
conveniently from the analytic solution of the linear stability problem over a wide range of parameters.
Goldstein [4] and Taylor [5] indeed considered linear shear flows embedded in three fluid layers in an
unbounded domain and discovered that relatively short wavelength disturbances can be unstable even
though they are stable in a homogeneous fluid. This contradicts what is commonly believed for the
role of stratification since stratification is often assumed to ensure stability. As illustrated originally
by Taylor [5] using the simple flow configuration, stratification may lead to instability for a shear flow
for which only stationary waves are possible in the homogeneous case.
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Stratification can also alter qualitatively the character of instability of shear flows, as clearly put in
evidence by Holmboe [6] for a piecewise linear shear current as the three-layer configuration is modified
to the two-layer one. Unlike the homogeneous and three-layer cases, where unstable disturbances travel
approximately with the mean velocity (referred to as the Kelvin-Helmholtz instability), two unstable
waves excited by the Holmboe instability can travel in opposite directions in the two-layer case. Similar
observations were made later experimentally [7, 8] and numerically [9, 10] for continuously stratified
flows. Therefore, simple flow configurations, such as those considered by Goldstein [4], Taylor [5] and
Holmboe [6] could serve prototypes to explain the role of stratification in shear flows.

When a fluid domain is bounded by rigid boundaries, the thickness of the domain becomes another
important parameter, but its effects are sometimes neglected in stability analysis. From numerical
solutions of the linear stability problem in a finite domain, there seems to be a general agreement [9]
that, as the top and bottom boundaries are moved in from infinity, relatively short waves that are
unstable in an unbounded domain are stabilized although long waves could become unstable. As the
two boundaries are moved closer, it could happen that the long waves become stabilized again and
the flow could be stable to disturbances of arbitrary wavenumber.

In fact, it was previously shown in [11, figure 4] and [12, the bottom panels of figure 3] that such
scenario can happen at low Richardson numbers, defined by −gρ′/ρU ′2, where g is the gravitational
acceleration, ρ(z) is the density, U(z) is the mean horizontal velocity, and the prime represents differ-
entiation with respect to the vertical coordinate z. On the other hand, this does not always remain
true at intermediate values of the Richardson number. This seems to be counterintuitive. In general,
a continuously stratified shear flow at low Richardson number due to a large velocity gradient is ex-
pected to be unstable when the Richardson number is less than a quarter although this condition is a
necessary one for instability. This rather surprising stability feature of low Richardson number flows
in a finite fluid domain has not been fully explored yet and it is the topic of this paper.

Here we consider three elementary flows proposed by Goldstein [4], Taylor [5] and Holmboe [6] to
provide a better understanding of this peculiar stability feature of low Richardson number flows. With
recourse to the theory of plane algebraic curves, as used previously by Taylor [5], explicit criteria for
stability are obtained. In the case of small density variations for which the Boussinesq approximation
has been often adopted, it has been shown [13] that great care should be taken to ensure validity of
a simplified analysis based on such approximation. Therefore, the classical Boussinesq approximation
is also questioned in capturing the stability feature of low Richardson number flows.

2 Formulation

The stability of an inviscid, incompressible, stratified shear flow depends upon the vertical variation
of density ρ(z) and the mean horizontal velocity U(z). The behavior of a small two-dimensional,
monochromatic disturbance of wavenumber k and wave speed c is governed [14] by

φ′′ +
ρ′

ρ

(
φ′ − U ′

U − cφ
)

+

[
− g ρ′

ρ (U − c)2 −
U ′′

U − c − k
2

]
φ = 0, (1)

where the prime indicates differentiation with respect to z, g is the gravitational acceleration, and φ
is the complex amplitude of the stream function.

To simplify the analysis, piecewise linear velocity and piecewise constant density profiles are often
adopted. In the same spirit, we consider the following three flow configurations suggested by Goldstein
[4], Taylor [5], and Holmboe [6], who first examined their stability characteristics in an unbounded
domain. Here we investigate the effects caused by the presence, at finite distance, of two rigid walls
confining the fluid with a special emphasis on the case when a large shear across the layers is present.
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(i) Taylor-Goldstein’s configuration

U(z) =


u2 if h < z < H

u2−u1
2h z + u1+u2

2 if −h < z < h
u1 if −H < z < −h

, ρ(z) =


ρ2 if h < z < H
ρ3 if −h < z < h
ρ1 if −H < z < −h

, (2)

(ii) Taylor’s configuration

U(z) =
u2 − u1

2h
z +

u1 + u2
2

, −H < z < H, ρ(z) =


ρ2 if h < z < H
ρ3 if −h < z < h
ρ1 if −H < z < −h

, (3)

(iii) Holmboe’s configuration

U(z) =


u2 if h < z < H

u2−u1
2h z + u1+u2

2 if −h < z < h
u1 if −H < z < −h

, ρ(z) =

{
ρ2 if 0 < z < H
ρ1 if −H < z < 0

. (4)

Here we assume that the rigid boundaries are placed equidistantly from z = 0, but the results can be
extended to allow non-equidistant rigid walls.

For these configurations, in each subdomain, where ρ = constant and U ′′ = 0, equation (1) can be
solved explicitly as linear combinations of exp(±kz). Then, at each level z = z0, where ρ(z), or U ′(z)
is discontinuous, the continuity of pressure and normal velocity at this surface requires the following
jump conditions s

ρ

[
(U − c)φ′ −

(
U ′ +

g

U − c

)
φ

]{
= 0, JφK = 0, (5)

respectively. Here we have used J·K to denote a jump across the interface. By imposing these jump
conditions along with no flux conditions at the rigid boundaries, the dispersion relation between the
wave speed c and the wavenumber k is then obtained as a polynomial equation (of degree 4) for c.

In practice, however, the coefficients of the resulting polynomial equation are complex enough to
make rather difficult the task of fully describing the stability features of these flows. To avoid this
difficulty, following Taylor [5] and Ovsyannikov [15], we adopt a geometrical approach, where this
polynomial equation in a single variable c is interpreted as a plane algebraic curve, which is found
effective to study stability of these flows.

3 Taylor-Goldstein’s configuration

3.1 Stability analysis for a bounded domain

With introducing variables p and q defined by

p = (u1 − c)/
√

2gh, q = (u2 − c)/
√

2gh, (6)

the eigenvalue equation for c resulting from (5), together with the boundary conditions, can be written
as an algebraic curve of degree 4 on the (p, q)-plane:(

β1 p
2 + γ3 pq + γ3 − 1

) (
β2 q

2 + pq + γ2 − 1
)

= γ3 β3 p
2q2. (7)

The coefficients βi in the expression are defined by

β1 = α coth [α(r − 1)/2] + γ3 (α cothα− 1), (8)

β2 = γ2 α coth [α(r − 1)/2] + α cothα− 1, β3 = α2csch 2α, (9)
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Figure 1: Plots on the (p, q)-plane of the curve defined by equation (7) for r = 2, γ2 = 2/3, and
γ3 = 3/4. (a) α = 0.1, (b) α = 1.0.

where α = 2kh is the dimensionless wavenumber, r = H/h (> 1) is the depth ratio, and γ2 = ρ2/ρ3 (<
1) and γ3 = ρ3/ρ1 (< 1) are the density ratios. Hereafter, we assume that γ2, γ3 are strictly positive,
and r <∞, unless clearly stated otherwise, which will be referred to as “in general” when making an
assertion.

Then, as shown by Taylor [5], the stability problem is equivalent to finding the intersection between
the curve described by (7) and the line of equation given, from (6), by

q = p+ (u2 − u1)/
√

2gh. (10)

Notice that from definition (6), p is real if and only if the wave speed c is real. Therefore, the flow is
stable if the line (10) intersects the curve (7) at four points, and unstable otherwise1. We remark that
Taylor (1931) used an equation similar to (7) in the limit of r → ∞, i.e., for the unbounded domain
case.

To determine the number of intersections between the curve (7) and the line (10) as the relative
velocity increases, the behavior of an algebraic curve at infinity, described here by the asymptotes at
infinity, is important as the q-intercept is proportional to the magnitude of the relative velocity.

It is convenient to express the curve equation (7) as P (p, q) ≡∑4
k=0 Pk(p, q) = 0, where Pk(p, q) is

a homogeneous polynomial in p and q of degree k, since the factors of the highest degree polynomial
define the slopes of the asymptotes to the curve. In the three examples to be considered in this
paper, no odd degree polynomials show up in the curve equation. This leads to symmetry about
the origin, so that P (−p,−q) = P (p, q), and allows us to use the following results (Primrose [16],
Theorem 2, pp. 7–8): (i) any simple factor ap + bq of P4(p, q) will have associated an asymptote to
the curve, defined by the equation ap + bq = 0; (ii) if ap + bq is a repeated factor of P4(p, q), so that
P4(p, q) = (ap+ bq)2Q(p, q), then it will have associated at most two possible asymptotes ap+ bq = t0,
where t0 is a real root of Q(b,−a) t2 + P2(b,−a) = 0. In both cases, using homogeneous coordinates,
(b,−a, 0) is a point at infinity. However, only in (ii) the point (b,−a, 0) is a singular point (see
Appendix C). As a result, nonlinear branches at infinity do not exist and the behavior of the curve at
infinity is hence completely described by its asymptotes, as mentioned earlier.

For Taylor-Goldstein’s configuration, the highest degree polynomial P4(p, q) is given by

P4(p, q) ≡ pq
[
β1 p

2 + {β1β2 + γ3(1− β3)} pq + γ3β2 q
2
]
, (11)

1To be more precise, the flow is stable whenever the number of intersection points is equal to the degree of the
polynomial equation for the wave speed c. In general, as explained in §2, four points are to be expected. However, in
degenerate cases, this number could be reduced (see Appendix A).
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Figure 2: Stability diagrams on the (α, J)-plane for Taylor-Goldstein’s configuration with γ2 = 2/3
and γ3 = 3/4. The total depth ratios are r = ∞, 10, and 2 (from left to right). The dark shaded
region corresponds to a stable region with four real roots and the light shaded region corresponds to
the unstable region with two complex and two real roots. Hereafter, the same color scheme will be
adopted.

from which it is found that, regardless of parameters, the curve (7) has two asymptotes: p = 0
and q = 0. It can be further proven that the asymptote p = 0 for large negative values of q can
only be connected to the asymptote q = 0 for large negative values of p in the third quadrant. By
symmetry, such a real connected component should also exist in the first quadrant (cf. figure 1). As
a consequence, the intersection between the curve and the line can never be empty. Moreover, the
curve cuts the axes at four points close to the origin. These points belong to the contour represented
in figure 1 by an oval, which guarantees stability of the flow with a small relative velocity between the
layers (i.e. small |u2 − u1|/

√
2gh), as the line given by equation (10) with a small intercept will cut

the curve at four distinct points.
To examine if there are any additional asymptotes to the curve, we have to take into account the

terms in the bracket in (11), and consider the following quadratic equation for v ≡ p/q:

β1 v
2 + [β1β2 + γ3(1− β3)] v + γ3β2 = 0. (12)

The discriminant of this quadratic equation fully determines the number of real roots and, when
positive, two extra asymptotes to the curve exist. Since β1 > 0, β2 > 0, and 0 < β3 6 1, it follows
from Viète’s formulas that, if (12) has two distinct real roots, both of them are negative. This
means that the associated asymptotes have negative slopes, and lie therefore on the second and fourth
quadrants. Figure 1(b) supports such scenario and suggests that, in the presence of such asymptotes,
stability of a flow with a very large relative velocity is possible.

Figure 1 shows two of possible scenarios obtained for two different sets of parameters. To fully
describe the planar curve, a rather lengthy discussion is needed; thus, the details are left to the
Appendices, and it will be simply noted here that the two configurations presented in figure 1 are, in
general, the only possible scenarios.

This geometrical approach is of course equivalent to the standard analytical approach, where the
quartic equation for the phase velocity c is obtained by substituting (6) into (7). Then, using Fuller’s
root location criteria [17, 18, 19], the stability diagram on the (α, J)-plane can be drawn, as shown in
figure 2, where the Richardson number J is defined for this configuration by

J =

(
ρ1 − ρ2
ρ3

)
2gh

(u1 − u2)2
. (13)

As shown in figure 2, for any fixed Richardson number J , there is always a limited range of
wavenumbers for which a single unstable wave appears. This band of wavenumber for instability
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becomes narrower as J increases. As the depth ratio r decreases, the boundary effects can be perceived
by a destabilizing effect on the long waves as the upper branch of the stability boundary rises. On
the other hand, the shorter waves become more stable as the lower branch of the stability boundary
moves to the left. Such phenomenon was reported for continuously stratified flows in the numerical
work of Hazel [9].

From this observation, one can further imagine that, in a bounded domain with certain physical
parameters, the lower branch of the stability boundary could move further to the left so that it actually
starts to rise along the J-axis. For such parameters, the three-layer configuration would then become
stable for small values of J , or large values of |u1 − u2|/

√
2gh, while remaining unstable for large and

intermediate Richardson number. This observation has not been fully explored yet and the condition
under which it is valid has not been known2.

3.2 A condition for stability for arbitrarily low Richardson number flows

For Taylor-Goldstein’s configuration at low Richardson number to be stable, it is necessary and suffi-
cient that two extra asymptotes at infinity, governed by equation (12), exist for all α.

As a first step, we consider the long wave limit of equation (12), which can be reduced, as α→ 0,
to

v2 +

(
2γ2
r − 1

)
v + γ2γ3 = 0, (14)

where v = p/q. Distinct real roots for this equation ensure the existence of such additional asymptotes.
Multiple roots could, in principle, also provide the asymptotes, but it can be shown that this scenario
does not apply here. This implies that in order for this stability feature to hold, it is necessary that

γ3/γ2 < 1/(r − 1)2. (15)

Although the condition given by (15) is valid as α → 0, a further inspection of the stability diagram
seems to indicate that it should suffice for any values of α, relying on the monotonic behavior of
stability boundaries as functions of the wavenumber α. In fact, it can be shown that the discriminant
of equation (12) under the same condition as (15) becomes positive and has two distinct real roots
for any values of α by observing β1 > 2/(r − 1) and β2 > 2γ2/(r − 1) for fixed parameters r, γ2, and
γ3. This proves that the condition (12) is not only necessary, but also sufficient for four asymptotes
to exist and, therefore, stability.

This is the main result of the section: the three-layer system is stable for small values of J , i.e.,
0 6 J 6 Js, when inequality (15), or, equivalently, in dimensional form, ρ3

2/(ρ1ρ2) < h2/(H − h)2 is
satisfied. Such examples are shown in figures 3 and 4.

It should be mentioned that, if the the top and bottom boundaries are placed at arbitrary levels
z = H2 and z = −H1, then the stability criterion (15) should be replaced by γ3/γ2 < [(r1−1)(r2−1)]−1,
with each depth ratio ri defined by ri = Hi/h.

3.3 Boussinesq approximation

It is of interest to examine if a similar stability condition as (15) can be obtained with the Boussinesq
approximation, which has been widely adopted in stability analysis for stratified shear flows. Following
Goldstein [4], when we assume ρ1,2 = ρ0(1 ± ε), with 0 < ε < 1, and ρ3 = ρ0, the stability criterion
(15) reads

ε2 < 1− (r − 1)2. (16)

2Notice that such stability feature would yield, in the non-dispersive limit (α → 0), two disconnected regions of
stability, characterized respectively by a small/large shear across the layers. This peculiar scenario has been found
earlier in hyperbolic models for multilayer flows [15, 19, 20], but only in the absence of linear shear.
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Figure 3: Stability diagrams on the (α, J)-plane for Taylor-Goldstein’s configuration for different
parameters. (a) r = 2, γ2 = 0.998, and γ3 = 0.8. (b) r = 4, γ2 = 0.99, and γ3 = 0.1. Dark shaded:
stable region; Light shaded: unstable region.
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Figure 4: Phase speeds (top panel) and growth rates (bottom panel) for three different Richardson
numbers for Taylor-Goldstein’s configuration. The physical parameters considered here are the same
as in figure 3(a): r = 2, γ2 = 0.998, and γ3 = 0.8.
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This shows that Taylor-Goldstein’s configuration at low Richardson number is stable only if r < 2 for
this particular stratification.

The classical Boussinesq limit can be obtained by taking the limit of ε→ 0 in such a way that the
Richardson number J , defined by J = 4 εgh/(u1 − u2)2, remains finite, or, equivalently, the Froude
number defined by F = |u1 − u2|/(2gh)1/2 is small such that F = O(ε1/2). The requirement on the
magnitude of the shear across the layers indicates that the classical Boussinesq limit to (16) should
be taken with care.

From γ2 = 1− ε, γ3 = 1− ε+O(ε2), β1 = β +O(ε), and β2 = β +O(ε), where β is defined in (8)
with γ3 = 1, the Boussinesq approximation yields the algebraic curve given by(

β p2 + pq − ε
) (
β q2 + pq − ε

)
= β3 p

2q2 , (17)

where we have assumed p = O(q) = O(ε1/2) from the fact that F = O(ε1/2). Since the highest degree
polynomial P4(p, q) of (17) is identical to (11) with γ2 = γ3 = 1 and is independent of ε, it is identical
to that for the homogeneous fluid case for which the configuration is known to be stable for any depth
ratio r that lies in 1 < r < 2 (Rayleigh [21], vol. II, p. 388). Therefore, the flow in Taylor-Goldstein’s
configuration under the Boussinesq approximation is stable for large shear if and only if 1 < r < 2.

Although this result is consistent with (16) for small ε, we should remark that (17), valid for small
p and q, should not be used to draw a conclusion on the curve behavior for large p and q. This shows
that care must be taken to interpret the stability characteristics of low Richardson number flows from
any analysis based on the Boussinesq approximation.

On a final note, we would like to point out that extra symmetries are obtained under the Boussinesq
approximation. The curve (17) is not only symmetric about the origin, as the original curve (7), but
is also symmetric with respect to the lines q = p and q = −p. As a consequence, the curve can be
expressed simply in terms of p2 + q2 and pq, which leads to a biquadratic form on the wave speed
relative to the mean flow (see Appendix D).

4 Results for other configurations

4.1 Taylor’s configuration

For Taylor’s configuration, the algebraic curve in the (p, q)-plane is given by[
(β1 + 1) p2 + (γ3 − 1) pq + γ3 − 1

] [
(β2 + γ2) q

2 − (γ2 − 1) pq + γ2 − 1
]

= γ3 β3 p
2q2, (18)

with β1 through β3 given in (8)–(9). Once again, by examining the highest degree polynomial, we find
that p = 0 and q = 0 are the asymptotes to the curve (18). The existence of additional asymptotes
depend on the number of real roots of the quadratic equation for v ≡ p/q:

(1− γ2)(β1 + 1) v2 + [(β1 + 1)(β2 + γ2)− (γ2 − 1)(γ3 − 1)− γ3β3] v + (γ3 − 1)(β2 + γ2) = 0. (19)

Notice that, if real roots exist for this equation, they must have opposite signs. Any line with slope
1 will then intersect the curve at least three times3. Therefore, this configuration is stable at large
shear if and only if such asymptotes exist.

Contrary to Taylor-Goldstein’s configuration, the discriminant here is always greater or equal
to zero. Therefore, stability is, in general, expected for Taylor’s configuration with a large shear.
Caution should be taken on identifying whether multiple roots can, or not, provide the aforementioned

3In general, there will be four intersection points. However, as shown in figure 5(c), it could be the case that one
of the asymptotes has slope 1, and only three intersection points are obtained. In this case, the quartic equation for c
degenerates into a cubic, and corresponds thus to a stable scenario (see Appendix B).
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Figure 5: Comparison of stability diagrams for r =∞, γ2 = 0.95, and γ3 = 0.92. Dark shaded: stable
region; Light shaded: unstable region for Taylor’s configuration. (a) with Boussinesq approximation;
(b) without Boussinesq approximation; (c) planar curve in the long wave limit α → 0 supporting the
stability result displayed in (b).

asymptotes. However, it is found that discriminant vanishes only for a degenerate case of a two-
layer flow (γ2 = 1 or γ3 = 1) with a linear shear current, known to be stable. Hence, in Taylor’s
configuration, the flow with a large shear is stable for all physical parameters.

We notice that the finite-depth effect is not essential to stabilize this flow with a large shear.
This is in great contrast with Taylor-Goldstein’s configuration, where, for infinite depth, the upper
branch of the stability curve passes through the origin regardless of physical parameters involved (see
figure 2(a)).

We investigate now if the Boussinesq approximation is able to capture such stability feature.
Similarly to what was discussed for Taylor-Goldstein’s configuration, the Boussinesq limit is described
by the curve [

(β + 1)p2 − ε
] [

(β + 1)q2 − ε
]

= β3 p
2q2. (20)

In this case, the highest degree polynomial P4(p, q) is proportional to p2q2 and does not have simple
factors. By applying Theorem 2(ii) (Primrose [16], pp. 7–8) described in §3.1, we conclude the
existence of parallel vertical (and horizontal) lines of equation p = t± (and q = t±), where t± are
distinct real roots of [(β + 1)2 − β3]t2 = ε(β + 1). An anomaly is produced when r = ∞ and α → 0,
for which the higher-order coefficient vanishes and the curve degenerates into a circle of equation
p2 + q2 = ε. This implies that the Boussinesq approximation fails to capture stability of the flow with
a large shear when r =∞ (compare figure 5(a) and (b)) while it predicts stability for finite r.

From this analysis, another limitation of Boussinesq approximation can be perceived. Notice
that when r is large enough, β + 1 ≈ α(1 + cothα), and hence the roots t± = ±

√
ε/2α become

good approximations for the asymptotes p = t± (and q = t±) to the curve. Unless α = O(1), the
assumptions p = O(q) = O(ε1/2) for F = O(ε1/2) can be easily violated. As a result, for large
r and small α, while the ‘internal’ modes can be well described quantitatively by the Boussinesq
approximation, discrepancies are expected to be found for the ‘external’ modes (see figure 6).

4.2 Holmboe’s configuration

Assuming the same background velocity profile as in Talyor-Goldstein’s configuration, Holmboe [6] has
illustrated how stratification can change qualitatively the character of instability when the thickness of
density transition layer vanishes, leading to a two-layer configuration. Along with the classical Kelvin-
Helmholtz instability, a second mode of instability, characterized by two unstable counter propagating
waves, should be present.
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r = 200, α = 10−3, γ2 = 1 − ε, and γ3 = 1/(1 + ε). The dotted line represents the line of equation
q = p+1/10. Notice that the inner components of the two curves are almost indistinguishable, yielding
an excellent agreement for two of the roots (‘internal’ modes) of the dispersion relation. In contrast,
the outer components differ substantially, and thus the discrepancies for the ‘external’ modes.

Here, we will show that a flow at low Richardson number can also be stable for this physical
configuration, and a necessary, and possibly sufficient, condition for this to happen shall be presented.

The eigenvalue equation for this configuration can be expressed by the following curve

(λ1p+ q)
[
(p+λ1q) {λ2(p+ q)2 + 2(ρ− 1)

(
2 + q2 − p2

)
}− ρλ3q(p+ q)2

]
= λ3 p(p+λ1q)(p+ q)2, (21)

where ρ = ρ2/ρ1 (< 1) is the density ratio and the new coefficients are defined as follows:

λ1 = α
[
coth [α(r − 1)/2] + coth (α/2)

]
− 1, (22)

λ2 = α(ρ+ 1) coth (α/2), λ3 = α2csch 2(α/2). (23)

As in previous sections, we will describe here what happens in general, leaving thus the degenerate
cases left to the Appendix C. This said, let 0 < ρ < 1 and r <∞.

For Holmboe waves to exist, four complex values of c should be obtained as solutions of the
eigenvalue problem. This could never happen in the three-layer configurations considered previously.
Hence, a rather different qualitative behavior of the curve is expected.

In figure 7, two plots of the curve equation (21) reveal the existence of an eight-shaped curve
around the origin, yielding stability of the flow with a small relative velocity between the layers. On
the other hand, for intermediate values of p and q, there is the possibility of an empty intersection
between the curve and the line (10), implying the appearance of two unstable Holmboe waves. We
point out that this scenario persists only up to a certain Richardson number (cf. figure 8), and,
therefore, Holmboe waves can only be observed for a limited range of values of the Richardson number
J , defined by J = 4(1− ρ)gh/(u1 − u2)2. For larger values of J , only one-sided instability should be
expected [22, 23, 13].

As before, in order for the flow with a small value of J to be stable to arbitrary disturbances, it
is necessary for the curve to have four asymptotes in the long wave limit (α → 0), where the highest
degree polynomial P4(p, q) of equation (21) is found to be

(v + 1)(v3 +Rv2 + ρR v + ρ) = 0, (24)
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Figure 7: Plots on the (p, q)-plane of the curve defined by equation (21) for r = 2 and ρ = 0.9. (a)
α = 0.1, (b) α = 3.0.
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Figure 8: Stability diagrams on the (α, J)-plane for Holmboe’s configuration with ρ = 0.7. (a) r = 1.5,
(b) r = 1.4. The dark shaded region corresponds to a stable region, the light shaded region corresponds
to the unstable region with two complex and two real roots, and the white region corresponds to the
unstable region with four complex roots.
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Figure 9: Region on the (ρ, r)-plane where condition (25) holds and Holmboe’s configuration is possibly
stable at low Richardson number.

with v = p/q, and R defined by R = (r+ 1)/(r− 1). It is shown in Appendix C that v = −1 is in fact
a simple root of (24), from which it follows p + q = 0 is an asymptote to the curve in the long wave
limit, which remains true for any other values of α, as shown in figure 7.

On the other hand, if multiple roots are considered, the cubic factor in (24) can be written as (v−
v1)

2(v−v2), where v1 and v2 (both different from −1) can be found explicitly. Then, by Theorem 2(ii)
(Primrose [16], pp. 7–8), we find that the curve (21) (in the limit α→ 0) possesses only two asymptotes:
q = −p and q = p/v2. This implies instability at large shear. Hence, long waves with small J are
stable if and only if the roots of (24) are all real and distinct, or, equivalently:

−4R3ρ2 + (R4 + 18R2 − 27)ρ− 4R3 > 0. (25)

The inequality (25) becomes a necessary condition for stability of low Richardson number flows
in Holmboe’s configuration (see figure 9). Based on the monotonic behaviour of the outer stability
boundaries as functions of α in figure 8, the strict inequality in (25) seems to be a sufficient condition
for stability, but its proof is nontrivial so that no conclusion on the sufficiency is drawn here.

5 Concluding remarks

We have proved that the basic flows proposed by Taylor [5], Goldstein [4], and Holmboe [6] can all be
stable at low Richardson number, provided that certain criteria are met. These findings are relevant
for two reasons: first, this observation has not been fully explored yet; second, the recourse to the
theory of plane algebraic curves allows us to derive simple explicit criteria for this feature to hold.

Our theoretical results may seem at first not consistent with the literature, view that these physical
configurations were originally proposed as prototypes to a better understanding of unstable processes
in stratified shear flows (see the recent review by Carpenter et al. [24]). However, in the literature
the stability analysis often discards the confinement of the flow by two rigid walls and relies almost
exclusively on the Boussinesq approximation. These two missing ingredients may have important
consequences on the stability characteristics of the flow, especially when dealing with regimes char-
acterized by a large shear across the layers, as shown in this paper. A simplified analysis under the
typical assumptions should thus be taken with caution. Further supporting evidences of this claim
can be found in Barros & Choi [13], where the wavelengths and phase speeds of Holmboe waves have
been examined extensively with and without the Boussinesq approximation.
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In the limit of zero Richardson number with zero density jumps, the stability results of homoge-
neous shear flows are always recovered from our analysis. On the other hand, when there is stratifica-
tion, we should remark that the zero-Richardson number limit due to large shear is different from the
homogeneous case, as shown e.g., in figure 2(c). Nonetheless, we stress that the Boussinesq approxi-
mation always yields the homogeneous results in the the zero-Richardson number limit, but may fail
to describe the stability characteristics of the flow at this regime.

We also point out that the stability feature found in this work is not aligned with what was
presented by Hazel [9], when studying the effect of boundaries on “tanh” profiles for both the density
and the mean horizontal velocity. In Hazel’s case, as the boundaries are brought closer and closer
together, we should recover Howard’s stability result on the homogeneous hyperbolic tangent shear
layer [25], for which no signs of instability are expected to be found for r < 1.1997 (see figure 3 in
[9]). In contrast with this situation, our flow remains mainly unstable, and stability can only be
found at low Richardson number. This discrepancy seems to arise since the vertical length scale for
density variation was fixed in Hazel’s case as the the thickness of the fluid domain was reduced. If
the thickness of the density transition layer was reduced as well in Hazel’s study, our result should
have been recovered although more numerical studies for continuously stratified shear flows should be
performed to confirm this argument.

Finally, since there are evidences of linearly stable gravity waves in new regimes, a new long internal
wave phenomenon in a stratified flow with a large shear might as well be possible, which would be
interesting to explore.
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Appendix A. Degenerate cases for the Taylor-Goldstein configuration

The form in which we have presented the curve equation (7) suggests some limit cases to be considered:
γ2 → 1, γ3 → 1, γ3 → 0, and β3 → 0. An algebraic curve is said to be degenerate if it can split up into
two or more curves. We will see below that this is precisely what happens in each one of the cases
just mentioned.

Case γ3 → 0. The curve (7) reduces in this limit to(
α coth (α(r − 1)/2) p2 − 1

) (
β2 q

2 + pq + γ2 − 1
)

= 0.

The geometrical locus of the equation is the union of two vertical lines and an hyperbola with asymp-
totes q = 0 and β2 q+ p = 0. When intersected by any line with slope 1 four points are obtained, thus
the flow is always stable. This is not surprising since the limit corresponds precisely to the case when
ρ3 = ρ2 = 0, i.e., to the regime of surface gravity waves with constant current.

Case γ3 → 1. In this case, the curve (7) can be factorized as

p
(
β1 p

2q + (β1β2 + 1− β3) pq2 + β2q
3 + (γ2 − 1)β1 p+ (γ2 − 1) q

)
= 0.
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We have the union between a vertical line p = 0 and a cubic curve. The cubic has the asymptote
q = 0 and, depending on the parameters, two additional asymptotes could exist. For this to happen,
the condition

(β1β2 + 1− β3)2 − 4β1β2 > 0,

must be met. Notice that the cubic curve equation is homogeneous, and so the curve crosses the
origin regardless of the physical parameters considered. Moreover, stability at low Richardson num-
ber holds if γ2 > (r−1)2, which on the other hand implies that such feature can only occur when r < 2.

Case γ2 → 1. This case is very similar to the one that we have just described (γ3 → 1). The curve
is given by

q
(
β1 p

3 + (β1β2 + γ3(1− β3) p2q + γ3β2 pq
2 + (γ3 − 1) p+ (γ3 − 1)β2 q

)
= 0.

and splits up into an horizontal line q = 0 and a cubic curve. The cubic has the asymptote p = 0
and, depending on the parameters, two additional asymptotes can exist. Stability at low Richardson
number holds if γ3 < 1/(r − 1)2, and hence it can be observed for any finite value of r.

Case β3 → 0. This limit corresponds to letting α go to infinity. For this reason, it is convenient first
to rewrite (7) as

1

α

(
β1 p

2 + γ3 pq + γ3 − 1
) 1

α

(
β2 q

2 + pq + γ2 − 1
)

= γ3 csch 2α p2q2.

Then, in the limit when α→∞, we get
p2 q2 = 0,

whose intersection with any line with slope 1 is composed by four points corresponding to two distinct
real roots, each with multiplicity two. This confirms that the instability band in the diagrams of Fig. 2
is further reduced as both J and α increase.

There is a less obvious limit that consists on letting β1, or β2, go to zero. This can only happen
if r = ∞ and α = 0, in which case the curve degenerates into an algebraic curve of degree 2. More
precisely, the highest degree polynomial P4(p, q) vanishes and the curve reduces to the hyperbola

(γ2γ3 − 1) pq + (γ2 − 1)(γ3 − 1) = 0.

When intersected by any line with slope 1 two points are obtained, thus the flow is always stable,
regardless the shear across the layers (cf. figure 2(a)).

Appendix B. Remark on the Taylor configuration

We give here attention to the case when one of the asymptotes to the curve (18) has slope 1, and thus
only three intersection points between the curve and the line q = p + F can be found. We will see
that this can only happen if r =∞ and α→ 0. Indeed, if we replace v = 1 in (19), one obtains (after
some simplifications):

(1 + β2)(γ3 + β1)− γ3β3 = 0.

Notice, however, that the left-hand side of the equation is greater or equal to (1 + β2)(γ3 + β1)− γ3,
which in turn is equal to β1(1 + β2) + γ3β2. Then, unless β1 = β2 = 0, the term is strictly positive.
This shows that an asymptote with slope 1 can only exist if r =∞ and α→ 0, which is precisely the
scenario described in figure 5(c).

The curve (18) is defined in this case by[
p2 + (γ3 − 1)pq + γ3 − 1

] [
γ2q

2 − (γ2 − 1)pq + γ2 − 1
]

= γ3 p
2q2,
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and the highest degree polynomial P4(p, q) simplifies to

P4(p, q) = pq
[
(1− γ2) p2 + {γ2 − (γ2 − 1)(γ3 − 1)− γ3} pq + γ2(γ3 − 1) q2

]
. (B.1)

If we consider the term in the brackets in (B.1) and plug in the linear relationship (10) between p
and q, we see that the coefficient of p2 simply vanishes. As a consequence of this, the corresponding
eigenvalue equation, when written as a polynomial equation for the wave speed c, degenerates into a
cubic equation, which explains why stability holds.

While we can call this a degenerate case, it is important to emphasize that the curve itself is not
degenerate.

Appendix C. Singular points

In finding double points (also known as singular points), it is helpful to bear in mind the result that a
non-degenerate curve of degree n cannot have more than (n−1)(n−2)/2 double points [16, 26]. We will
focus on the case when P (p, q) = 0 is an algebraic curve of degree 4 and symmetric about the origin,
as in all the three cases examined in this paper. Then, P (p, q) can be expressed as

∑4
k=0 Pk(p, q),

where Pk(p, q) is a homogeneous polynomial in p and q of degree k, with P1 and P3 identically zero.
Thus, we may write in homogeneous coordinates

P4(p, q) + z2P2(p, q) + z4P0 = 0,

whose double points (finite, or at infinity) are the solutions of Pp = 0, Pq = 0, Pz = 0, i.e., they satisfy

P4,p + z2 P2,p = 0,

P4,q + z2 P2,q = 0,

z(P2 + 2z2 P0) = 0.

Double points at infinity satisfy z = 0, Pp = 0, Pq = 0, which implies that P4 has a repeated factor. In
particular, we conclude that such curves do not possess nonlinear branches at infinity, since any time
a line at infinity meets the curve in two coincident points, it does so at a double point. The behavior
of these curves at infinity are then described simply by the asymptotes at infinity.

Finite double points (with z 6= 0), on the other hand, are governed by the system of equations

P4,p + z2 P2,p = 0, (C.1)

P4,q + z2 P2,q = 0, (C.2)

P2 + 2z2 P0 = 0. (C.3)

We will treat separately two different cases:

Case when P0 6= 0. We can rewrite the system (C.1)–(C.3) by multiplying the first two equations
by 2P0. Then, by using (C.3), it follows that (p, q) is a solution of

2P0 P4,p − P2 P2,p = 0, (C.4)

2P0 P4,q − P2 P2,q = 0, (C.5)

which is a system of two homogeneous polynomials of degree 3 in the variables p and q. We can now
define v ≡ p/q to write a system of two cubic polynomials in v. The cubics have a common root if the
resultant vanishes. The result can then be used to find the candidate double points.
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(i) Taylor-Goldstein’s configuration

We consider the curve on the (p, q)-plane defined by Eq. (7). One can compute the resultant of
the cubic polynomials obtained from (C.4)–(C.5) and find that the candidate finite double points of
the curve are solutions of:

64β1
2β2

2β3
2 (γ2 − 1)4(γ3 − 1)4γ3

2 F (α, r, γ2, γ3) = 0,

where F is defined by

F = 8β2β2(γ2 − 1)(γ3 − 1)A1(β1, β2, β3, γ2, γ3) +B1
2(β3, γ2, γ3),

with

A1 = 1 + 2β1β2(γ2 − 1)(γ3 − 1) + γ3
[
(γ2 − 2)(2 + (γ2 − 2)γ3)− 4β3(γ2 − 1)(γ3 − 1)

]
,

B1 = 1 +
[
2(γ2 − 2) + 4β3(1− γ2)

]
γ3 +

[
(γ2 − 2)2 + 4β3(γ2 − 1)

]
γ3

2.

We rely on extensive numerical tests to claim that F is strictly positive. Hence, unless the curve
is degenerate (see Appendix A), double points cannot exist. This corroborates that, in general, the
curve with Eq. 7 has only two possible configurations (cf. left and right panels of Fig. 1) regardless of
the physical parameters. More importantly, the transition between the two scenarios is made through
the existence of a double point at infinity, as the value of α is increased.

(ii) Taylor’s configuration

The candidate finite double points of the curve on the (p, q)-plane defined by Eq. (18) are solutions
of:

16 (β1 + 1)2(β2 + γ2)
2β3

2(γ2 − 1)6(γ3 − 1)6γ3
2G(α, r, γ2, γ3) = 0,

where G is defined by

G = (1 + β2 + β1β2 + γ2β1)
2 − 2γ3A2(β1, β2, β3, γ2, γ3) +B2

2(β3, γ2, γ3),

with

A2 = (β1 + 1)β2(1− γ2 + β3) + (1− γ2)(1 + γ2β1) + β3
[
(β1 + 2)γ2 − 1

]
, B2 = (γ2 − 1 + β3)γ3.

We rely on extensive numerical tests to claim that G is strictly positive. Similarly to what has
been done in Appendix A for the Taylor-Goldstein configuration, it can be easily recognized that the
limits β3 → 0, γ2 → 1, γ3 → 1, and γ3 → 0 all correspond to degenerate cases for Taylor’s con-
figuration. Bearing in mind that no singular points at infinity exist for this configuration, since we
have shown in §4.1 that P4(p, q) has no repeated factors, we can state that, in general, no singular
points (finite, or at infinity) exist. As a conclusion, one single configuration can exist for the curve (18).

Case when P0 = 0. Without loss of generality, we can assume z = 1 and solve

P4,p + P2,p = 0,

P4,q + P2,q = 0,

P2 = 0.

In case P2 is given as a product of linear factors, insert these linear relationship between p and q
into the first two equations to get polynomial equations in one single variable. Suppose ap+ bq (with
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a 6= 0) divides P2. Then, inserting the relation p = λq, with λ = −b/a into the first two equations
yields the following system of equations

q(D1q
2 + E1) = 0,

q(D2q
2 + E2) = 0,

for certain coefficients D1, D2, E1, and E2. One trivial solution is obtained when q = 0 and p = 0,
i.e., the origin is a singular point. Other solutions may exist provided that D1E2 = D2E1.

(iii) Holmboe’s configuration

Notice that the curve equation (21) has its homogeneous polynomial P2(p, q) given by

P2(p, q) = 4(ρ− 1)(p+ λ1q)(λ1p+ q).

The fact that P2 is prescribed as the product of linear factors is essential to use what was described
above. Besides the origin, we can infer that the candidate finite double points of the curve are solutions
of

16(λ1 − 1)2(λ1 + 1)2 λ3 ρ(1− ρ) = 0.

Four limits should be examined: λ1 → 1, λ3 → 0, ρ→ 0, and ρ→ 1. The first is obtained only if
r =∞ and α→ 0, under which (21) reduces to

4ρ (p+ q)2
(
pq + q2 − q + (ρ− 1)/ρ

)
= 0.

The curve is degenerate, splitting up into one (double) line and one hyperbola, and the flow is stable
regardless the shear across the layers. It can be easily checked that the remaining cases produce
degenerate curves as well. This said, in general, only the origin is a finite singular point.

We focus now on the non-degenerate cases and classify the possible configurations for the algebraic
curve. Similarly to what was found for the elementary flow (i) proposed by Taylor and Goldstein, any
transition between different configurations will be made at the expense of a singular point at infinity.
To find these, we only need to examine when the highest degree polynomial P4(p, q), given by

P4(p, q) = (p+ q)
[
(p+ λ1q){(λ1p+ q)

(
(λ2 − 2)q + (λ2 + 2)p

)
− λ3p(p+ q)}−

− ρ (λ1p+ q) [2(p− q)(p+ λ1q) + λ3q(p+ q)]
]
, (C.6)

has a repeated factor. To do that, it is convenient to define v ≡ p/q and look for multiple roots of the
polynomial equation P4(v, 1) = 0. It is clear that v = −1 is a solution. It would be a multiple root
provided that λ1 → 1 or ρ → 1, which can be discarded, since both correspond to degenerate cases.
As a result, p+ q = 0 is an asymptote to the curve (21), regardless of the physical parameters.

To inspect for other possible multiple roots, consider the cubic yield by the terms in the brackets
in (C.6). As any odd degree polynomial equation, this cubic has at least one real root, thus allowing
two or four asymptotes at infinity to the curve (21). The transition between the two scenarios will
happen when the discriminant for the cubic vanishes. Figure 10 shows, for different values of ρ, when
such transition occurs, and indicates that there are precisely two different configurations (cf. figure 7).

Appendix D. Symmetric instabilities under the Boussinesq approxi-
mation

One of the great advantages of using Boussinesq approximation is that the dispersion relations ob-
tained are considerably simplified. In terms of the algebraic curves presented in this manuscript,
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Figure 10: Transition between the two possible curve configurations for Holmboe’s basic flow (cf.
figure 7). Different values of ρ are considered: ρ = 0.998 (full line); ρ = 0.8 (dashed line); ρ = 0.6
(dotted line).

the Boussinesq approximation yields extra symmetry properties. The curves preserve the symmetry
about the origin, as it is the original case without approximations, and gains symmetry with respect
to the line q = p (and also the line q = −p, as a by-product). Notice that symmetry about the origin
implies that the curve equation contains only even powers, or only odd powers, of p and q combined.
If symmetry with respect to the line q = p is imposed in addition, then a4,0 = a0,4, a3,1 = a1,3, and
a2,0 = a0,2, where ai,j is the coefficient of piqj . This allows us to conclude that such curves have the
general form

P (p, q) = ap4 + bp3q + cp2q2 + bpq3 + aq4 + dp2 + epq + dq2 + f = 0.

If we rewrite the equation as

P (p, q) = a
[
(p2 + q2)2 − 2(pq)2

]
+ bpq(p2 + q2) + c(pq)2 + d(p2 + q2) + epq + f = 0, (D.1)

we see that the curve can be expressed strictly in terms of p2 + q2 and pq. Let ũ = (u1 + u2)/2 be the
average velocity. Then, by definition (6) of p and q, we have:

p = (ũ− c−∆)/
√

2gh, q = (ũ− c+ ∆)/
√

2gh,

with ∆ = (u2 − u1)/2. If we define c̃ as the wave speed relative to the mean flow, i.e., c̃ = c− ũ, then
p2 + q2 = (c̃2 + ∆2)/gh and pq = (c̃2 − ∆2)/2gh. This shows that the quartic for c̃ obtained from
(D.1) is indeed a biquadratic form. As a result, if c̃ is the complex wave speed of an unstable mode,
then there exists an unstable model with wave speed −c̃∗, also referred to as symmetric instabilities.
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