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Abstract.

This thesis is concerned with the commumication of information using auditory
techniques. In particular,‘ a music-based interface has been used to communicate the
- operation of a number of sorting algorithms to users. This auditory interface has been
further enhanced by the creation of an auditory scene including a soimd.wall which
enables the auditory interface to utilise music parameters in con_]unctmn with 2D/3D

spatial distribution to communicate the essential processes in the algonthms

The sound wall has been constructed from a grid of measurements using a human head to
create a spatial"ld.istr‘ibut.iqn. The algorithm designer can therefore communicate events
using pitch, rhythm and timbre and associate these with particular positions in space. A
number of experiments have been carried out to iﬁvestigate the usefulness of music and
the sound wall in commuﬁicating information relevant to the algorithms. Further, user
understanding of the six élgorithms has been tested. In 2ll experiments the effects of

previous musical experience has been allowed for.

" The results shov;} that users can utilise musical parameters in ﬁnderstanding algorithms
and that in all cases imprbvements have been observed using. the sound wall. Different
~‘user performance was observed with different algoriﬂlﬁls and it is .concluded that certain
types of information lend themselves more readlly to communication through auditory

interfaces than others

As a result of the experimental analysis, recommendations are given on how to improve

the sound wall and user understanding by improved choice of the musical mappings.
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.Chapt.er 1

 Introduction "

‘The aim of this document is to provide the reader with a background into spatial ancl non- -
.' spatial audrtory d1splays It focuses upon the spe01ﬁc use of non-speech mterfaces and -
 further concentrates on the use of music and spatlal enhancement at the human-computer -

. mterface

Chapter 1 gives a brief introduction to the topic covered by this thesis.

Chapter 2 introduces the general topic of the auditory medium. Further to this it raises

some issues of concern and discusses them in an effort to resolve some of the more

: common problems with using non- speech audio at the human- computer interface. More

| spec1ﬁcally to this thesrs it presents the toplc of algonthm aurahsat:lon

Chapter 3 Introduces the basics of acoustics and explores the properttes associated with

- sound source localisation. It then htghllghts and evaluates several approaches and -

' 1mplementat1ons for spatial audlo and 3D audio synthe51s.

- Chapter .4 analyses some common.sorting algorithms and makes selections for some of

these algorrthms to be explained in greater detarl The algonthms are then assessed for

- their appropnateness for musrcal aurallsatlon

Chapter 5 reports prehmmary experlmental work camed out in thls thesis perta1mng to- '-

basic p1tch and shape perceptlon
Chapter 6 introduces SH\ABAA, a musical auralisation toolbox and early experimentation.

Chapter 7_introduces SIMBAA 3D a spatially enhanced musical auralisation toolbox and _ |

its associated design considerations and implementation.” .




Chaptér 8 reports on experimental work carried out using._SIMBAA 3D.

Chaptcr'9 draws conclusions about spatially enhanced algorithm auralisation and makes

recommendations for future work and furthe_r enhancements,

The most exploited medium for computer - human communication to date is the visual
medium. Simple still pictures, full motion pictures and Yirtual_ Reality are 2ll examples of
this medium. However, there are many other media which can be exploited in Computer -
Human communication and one obvious possibility is the auditory channel. Until \}ery
recently this medium has conveyed only simple single or multi-tone notes, usually
~ indicating some form_-of error on the users part Recent research, however, has seen the
emergence of new information presentation formats, many utilising the properties of
Auditdry Displziys. Such auditory displays can bé‘ utilised either as a compleméntary

. channel to a visual one, or on their own as an autonomous communication medium,

A Graphical capability has been available for many years, but inexpénsive audio facilities
are much more recent additions to the personal computer “This is surprising smce early.
computer users often used sound. A common anecdote is that of early programmers who
tuned an AM radio to pick up the radlo interference emitted by the computer. By hstenmg
to the patterns of sounds in the interference they learnt to momtor CPU behavmur and

‘even to identify errant program behaviour.

Although the lack of standards for sound equipment has acted as a deterrent, the
emergence of the Musical Instfument Digital Interface (MIDI) specification [145] has
provided a- common language, although it is oriented towards the cbfnmunicatidn of
' musical data and not that of sound genefally. By the time affordable sound generating
equipment became available to the average computer user, graphical facilities were well
| advanced. So, for largely technological reasons, the human-computer interface has,.ﬁjom :
the start, been almost entirely visual in its construction. This may have helped to foster .

the belief that computer users tend to employ mental imagery in a visual form.




With advances in display technology came an inertia that led to an increasing bias

towards visual interfaces. This is reflected in the natural language of those cultures that _

rely on the wn'tteh word for communication, which, by using words like ‘imagery’ to

describe mental processes, ‘shows an inclination towards visual metaphors for the

explanation of ideas. The very act of thinking is defined usmg the visually or1ented word

‘imagine’. Given our tendency to represent ideas as images in our rmnds and the .

historical development of visual display hardware, it is not unreasonable that the

‘emphasis in software development and human computer interface design has focused

predominantly on the visual medium.

Recent suggestions concerning how to exploit the auditory channel have focused upon

the use of music within multitnedié, since there is limited reported work on the subject.

Music is the most sophisticated of the auditory media, allowing the conveyance of large
. amounts of information in parallel. Although music is a rich medium containing

. numerous structures introduced by musicians over many years of human evolution and

multimedia systems are fully capable of producing musical sounds relatively easily and

effortlessly, the use of music in interfaces is currently ata relatlvely low level. Music -

and, in particular, the auditory channel as a whole, has been neglected in the development
of user-interfaces p0331bly because there is very little known about how humans

understand and process music.

It is not intuitively obvious how to use musical structures in interface design. However,
there has been some research in the field of audio in interface design that includes
Gavers’ SonicFinder [92], a system that uses natural sound to indicate the state of the
natural environment, Earcons [18] from Blattner Vet al which maps audio ontd visual
representations of tasks, somcally enhanced graphical buttons by Brewster et al [3 5] and
Gaver et al’s ARKola simulation [96].




There are several valid reasons why the auditory channel and music in particular should

 be further investigated:

'« The auditory channel has been somewhat neglected in the area of user interface
design. This is desplte the fact that audltory interaction is one of the prlmary

" forms of human mteractlon

» Music has a number of powerful properties such as pitch, rhythm_ and melody that

ought to be able to convey rich messages from software components to the user.

. Musxc as well as other forms of audltory output, isofa partlcular value when the

user cannot be dlsturbed visually. -

o The visual channels are becoming very cluttered. For instance, current monitors

are often very overcrowded yet designers still try to present more information

visually.

e  When output is directed to users who do not have constant visual contact with the

VDU (Video Display Unit) screen, an alert or interrupt is required.

- o . This over-emphasis on visual communication presents. serious interface

~ difficulties for visually impaired users.

In the current information ege, more and more people with diverse backgrounds and .
experience use computers as part of their daily work both in their work and home
 environments. Music is also an integral part of most people’s daily lives. Research in the

area of using auditory-musical stimuli in HCI may therefore benefit a large proportion of

computer users.




The use of music as a communication metaphor could therefore assist in a number of

 interface situations mcIudlng the following;:

¢ Reducing the complexity of visually _cr.owded' user screens by presenting some

information using music.

e Presenting information of a graphical nature to blind users who usually interact

with computers using speech.

 Auralisation' of the intefnal execution of algorithms, in particular, sorting
algonthms ‘This has parucular implications in understanding sorting algorlthms
and debuggmg programs through authory means.

Recent research into the use of music to communicate algorithm ‘sfate and execution and
progrém execution and debugging has seen the development of ZEUS by Brown and
Hershberger [46] and CAITLIN by Vickers and Alty [181]. These systems have shbwn
that music can be used effectively to communicate information to users. CAITLIN was
_ prirriaﬁly concerned with using metaphorical musical cues to aid novice programmers

with debugging. ZEUS communicated algorithms using auditory means supplemental to

' visual representations, but no formal or empirical evaluation'was carried to determine the

effectiveness of the mappings or the degree of algorithm state and understanding
 attainable through algonthm auralisation. Aurahsat1on systerns such as ZEUS and
CAITLIN are discussed in more detail in the followmg chapter

One additional parameter in auditory presentation is stereophony. Existing attempts at

‘algorithm and program auralisation have confined themselves to using a common
- stereophonic presentation format. However, more complex presentation formats now

_exist that will allow the exploitation of spatial location of sound sources within a three-

1 duralisation, a term suggested by Brown and Hershberger [45], typically refers to the mapping of
program data to sound and is based on the execution of the program or algorithm.




dimensional environment. These might be employed to provide spatial enhancement to

‘algorithm and/or program auralisations to further disambiguate the presented information

through. the use of spatial location and movement as extra auditory cues. There are
currently several ‘methods of enhancing auditory presentations with 3D sound ranging

from simple stereophonic field extension (which is not really true 3D but more of a

commercial exploitation of the 3D logo) through to more complex and thorough 3D

_sdund modelling and syhthesis systems that employ complex filtering to spatialise
sounds. Within these extremes of 3D audio technologies there are several realistic and
-cost-effective techniques for producing 'spatiall_y‘ enhanced audio that could be readily

applied to 'algorithm and/or program auralisation.

The main fiurpbse of this thesis is to examine how relatively inexpensive 3-D sound

techmques can be used to improve disambiguation of musically auralised sorting -

algorlthrns This thesis is also concerned with the effect that musical training has on

understanding such sorting algorithm auralisations. The emphasis on sorting algonthms is

* due their diverse range of events, sorting natures and data. Many other information

sources exist that could be well suited to auralisation. However, this thesis is not

_concerned with defining which types of information sources are best suited to
aﬁralisation. It is more .concerned' with using sorting algorithms as a wvehicle for
preliminary experimentation of communicating information via spatially enhanced music.
* A detailed iﬁvestigation is proposed in order to determine which types of information

within sorting algorithms are more amenable to auralisation.




Chapter 2

Invésﬁgating the auditory medium
2.1. A multimedia approach.

Although most interface design is predominantly visual in nature, this thesis is
specifically concerned with the use of the audio medium in multimedia interfaces as an -
output. medium.” Even ‘though their use has been neglected, audio interfaces have a
number of advantages over visual interfaces. For example, the user can work on a’
visually oriented task whilst listening to instructions, thus employing two media with
minimal confusion. Audio interfaces are also useful when the recipient is movilig around
and the hands are bﬁéy. Clearly, visually handicépped p_eople can also benefit from use

of the audio channel.

In human;llumﬁn communication .the.'audio channel has long been established as a
medium for communicating rich meaning. However, with the huge growth in graphical
user interface design the auditory channel has been somewhat neglected. This has put
visually impaired users at a great disadvantage. Such users were originally able to use
computers via the use of applicatiohs such as screen readers. Unfortunately most modern
interfaces are designed with the assumption that the target users have full visual abilities.
Although this thesis is not concerned with providing an auditory presentation for the
visually impaired, it is an issue that is often considered central to auditory interface

design.

In order to enconipass a g;éater _variety' of potential users, it is necessary to create an
interface that could be interacted with via the anditory medium alone, the visual medium
alone, or a combination of both. The user could then be presented with a choice of
‘display format that may be employed at the user’s discretion. Alty has called this “an
" equal opportunities interface” [4]. In a combined mode, the auditory medium could be -
used to assisf the visual representation of information and reduce the visual ‘clutter’ often

encountered by many computer users. For computer users with considerable visual




1mpamnents the aud1tory channel offers 1tself as an obvious communications medium
and some examples of useful exploratlons are works carried out by Edwards [85], ngas
[159, 5] and Kennel [116]. These systems use music via the auditory medlum to represent
visual entities to visually 1mpa1red users. Slnce most operatmg systems use fully
integrated GUIs (graphical user interfaces), such approaches could offer a bridge to

conventional systems.

The types of auditory media available can be conveniently divided into three sub-areas —

speech, sound and music. .
2.2. Speech.

‘Text can be 6onveyed in two ways, either written or spoken (visual or audio). When
sboken the speaker may convey emotion through the tone of voice used, in addition to the
raw verbal information. In contrast, written information can convey emotion or emphasis
through the use of special fonts, italics, emboldenment or capitalisation. A user need not
be literate to understand oral crommunication, and spoken information -is clearly of
considerable usé to the visually impaired. The Speech medium has traditionally been
used to assist visually .challenged people, for example throdgh the use 6f screen rea;deré
but the recent emphasis on GUIs has made this difficult. For the purposes of representmg

1nformat10n through sound, speech offers very little by way of a solution,
2.3, Sound.
2.3.1. Sound and HumanTCompﬁter Interaction

The audio channel remains little used in interface applications although there now exists
a reasonable amount of work in the field. In most cases, where the sound medium has
béeh utilised, its usage is often trivial, for examplé, Microsoft’s arbitrary association of .
sound files with system events in its operéting systems. Most of these individual

~ applications of sound do not usually enhance the computer-user interaction experience.
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Moreover, they often serve as novelties rather than conveying any real meaning.
However, there have been some useful applications of sound in Microsoft’s systems, such -

as notification of task completion or mail notification,

Dﬁe to the obvious high information caﬁyﬁng capaéity of the visual medium many people
tend not to think of sound as an alternative comptiter-hmnén communication medium.
Auditory signals_howe_ver, can be used to build éomplex mental irhéges. As humans we

naturally associate sounds with real world 6bj ects. By simply listening to the engine of an
| aeroplane we can determine the size of the craft and in some cases gain a feel for its
altitude, speed and dirécti_on. This is all possible withoﬁ_t the néed to see the object. We
simply construct the images from prior experience_.': This association might be of use for’

algorithm auralisation, since metaphorical mappings could be learnt by the listeners.

When the current usage of the sound medium in computer interfaces is compared with the
sophisticated use of visual display techniques, the use of sound at the h'uman-computer‘ :
interface has been limited. This is surprising since sound is a most important .
Commu;u'cati'on channel for human beings, and should have much to offer in assisting
human-computer interaction, in particular it might be useful in understanding complex

structures and states like those present in algorithm executions.

Bly's research [22] b_n the use of sound in interfaces was among the first inves;tigations
into this area and since her initial 'wo.rk, the body of fesearch has grown slowly. A -
majority of auditory display work has, until recently, concentrated on supporting existing -
visual interfaces (graphical user interface). However, work on computer-based icons haé
now been extended to the audio medium via the use of auditory icons [92, 93, 2, 94, 95],

which are essentially symbolic sound effects.

Non-speech audio is a well-proven communication medium, and is extensively used in
the film industry to supplement motion pictures. Although it can be effective on its own
“(for example radio productions) it can be highly complememary and supportive for the

visual medium. It can add value in the following ways:
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“To represent unseen entities - Sound can enable us to picture things in our minds eye
that are not visible on a display, it can indicate specific situations and extend the

- visual display beyond what is actually visible.

As a feedback mechanisin - Sound can be used to acknowledge actions or can be used
to signify.proccss status. It can be used as a cue or as in. Gavers’ SonicFindéf [92] a
feedback for actions in a Graphical User Interface. Predictive sound can be used to
si gnflfy impending events, much like ominous music warns of up-and-coming danger
 inafilm202]. | | |

To imprové perceptions of quality - The impression of quality of a mulfimedia work
is influenced more by the quality of the audio rather than the quality of _the visual
media. This has been shown in tests by researchers at MIT’s Media Lab [7].

To support visual interfaces - Sound can considerably enhance a visual iﬁterface. The
audio effects can punctuate and emphasize a visual action. The impact of many films
would be considerably reduced if their soundtracks were removed or even just
degraded. Sound is also valuable for communicating additional layers of information
‘as users can listen to sounds without‘ha'ving to compromise their attentions.ﬁ'om the

visual information.

» To grab attention - It is easy to miss visual information. However, a user is less likely

to miss an audio message due to the intrusive nature of the auditory medium,
'Cohen [53] offers the following reasons for adopting sound to notify users of events:

¢ Audio does not take up screen space.

. Audib fades into the background but users are alerted when it changes.

e People can process audio information while simmltaneously engaged in an
unrelated task. '




11

- o The cocktail party effect [8] '(the ability to éeleotively attend to one conversation
in the midst of others in a crowded room) allows users to monitor multlple'
background processes via the audio channel so long as the sounds attributed to

" each process can be distinguished.

o Most direct manipulation tasks are visual, leaving the audio channe! free.

Aundio clearly has many beneficial properties and it might be useful to investigate the

types of information it could convey and if any special training would be required in
“order to use it effectively.‘ Brown, Newsome and Glinert [44] lshowed that complex

auditory cues could be used to replace visual cues. The prima-facie case behind their

research was to try and ascertain if sound could be used to reduce visual workload. With
the increased complexity of visual user interfaces, screens have become larger and often

involve multiple VDUs This permits the conveyance of 'greater afnounts of information. -
However, in some applications, the information transfer between computer and human is

near saturation and the user may not be able to effectively process all the mformatlon

being presented. Such difficulties suggest that sound might be a useful add1t1on in the

presentation of information, either autonomously or supplementary to the visual medium, -

Brown, Newsome and Glinert [44] undertook a study to find out if in.forolation that is
typically preSented visually could be communicated effectively using sound. The
experiment was primarily concerned with a subjeot’s ability tol locate a target lcharacter
string on a computer screen using both auditory and visual cues. The results showed that
subjects were equally successful in understandlng the auditory cues as they were with the
visual cues. This is encouraging for the field of representing complex information via
sound since it suggests that the audio channel could be ueed to convey information
typically presented visually, They also found that the human brain could extract multiple

* messages from a sound very quickly and then act on the information given.

* Walker and Scott [185] carried out work that involved the experimental testing of
perceived lights, tones and gaps. They found that humans judged one light as having a

shorter duration than an identical one when a tone was also played, The durations of the
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lights in both cases were the same, but the durations of the tones were different. This
indicates that what we perceive in.the visual channel is easily influenced by information
presented simultaneously in the auditory channel. They stated “auditory dominance
occurred under the preceding conditions, that is auditory - visual conflicts in perceived
durations were resolved in favour of the auditory modality'.” This supports the idea of
using the auditory medium for conveying information and highlights the power of its

influence on our perception.

Walker and Scott [185] suggest that the auditory medium should be used for conveying
temporal information and the visual medium should be used to convey spatial
information. However, Perrot et al [153] found that the auditory medium could also
convey spatial information effectively, since it can speed up location and identification of
objects within the spatial domain. O’Leary and Rhodes [148] found that ambiguity of
information in one mode can be resolved through information from another mode. This
supports the findings of Walker and Scott. This suggests that the auditory channel could
be used to assist a visual representation. However, this thesis is concerned with
investigating the use of the auditory channel autdnomously. Conversely, Wagenaar et al
[184] showed that combining modalities does not necessarily have a beneficial effect.
Experiments carried out by Paivio [149, 150, 151] showed that recall and recognition can
be improved by presenting information in both visual and verbal form. Paivio’s Dual
Coding Theory [149, 150, 151] assumes that there are two separate cognitive sub-systems

for processing both verbal and non-verbal representations.

* The task of choosing appropriate modalities for corﬁmunicating information is an
important one. The choices for mappings must also be a careful one as misconception of
~ the events or tasks can occur. Familiarity can be exploited. We often have a clue as to the
meaning of a sound by the context in which it is presented, and from our previous
experience. This highlights the importance providing a context when conveying complex

information via the auditory channel.

! Modality is defined as a prescribed method of procedure.
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Gaver Suggested that sound could be used to provide a ‘sonic landscape’ [93], which can
help us to navigate through complex information spaces. He proposed that issues such as
ambient audio and peripheral awareness would be critical to future of interfaces and

applications.

SCOPEOF INFORMATION

O ACTIONS & OBJECTS

Figure 2.1 - Scope of Visual medium,

Figure 2.1 represents the conceptual scope of visual peripheral awareness to objects and
events. It indicates that there exists an area of focus (area of concentration) and shows
that, in most cases, the scope of information reaches far outside of this. This is why
graphical interfaces can become cluttered; the information that is not in focus is often
hea;ﬁed into the scope of awareness. The boundaries of the peripheral scope can be seen
as the edges of a VDU, the scope of awareness is then the area upon which we focus our
eyes. Anything that occurs peripheral to our focus demands that we move this window of
attention to the source. This highlights the limitations of the visual medium for presenting
large amounts of information. The problem has initiated investigations into the use of
such techniques as the ‘fish eye’ lens [90] which represents the visual information in a
dominant magnified area in the central focal field, while other peripheral (and contextual)

information is represented in a less magnified area surrounding the central focal field.
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SCOPEOF MFORMATION

O ACTIONS @ OBJECTS

Figure 2.2 - Scope of Auditory medium.

Figure 2.2 shows the conceptual awareness and peripheral scope in the auditory medium.
As can be seen the difference is that the peripheral scope is much wider, indicating that
shifting our attention from one event to another is faster and the awareness of peripheral
events is greater. We are therefore not limited by the focusing constraints of vision.
Sound does not depend so much on the direction that the user is facing. An event that
takes place behind can often not be seen, but it can usually be heard. This supports the
use of spatial audio in auditory displays since it can be exploited to convey information

that would otherwise add to the clutter of a visual display..
2.3.2. Problems with the auditory medium

Since the use of sound to convey complex information is the main area of concern to this
thesis, it is important to highlight some of the possible problems when using audio in
information display. Kramer [119, 120, 121] has highlighted the low resolution of the
auditory medium in relation to the high resolﬁtion of the visual medium as a problem. He
noted that it was difficult to convey fine quantitative information through the use of
audio’s main features such as pitch, volume and placement etc. This has important
implications for the auralisation of sorting algorithms. The limited resolution of the
auditory medium will limit the depth of information about the auralisations to be

conveyed. It may not be possible to convey the exact state of algorithms but rather the
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general state. Combining features such as pitch, volume and placement might permit
higher resolution. Extending the placement feature into a higher resolution form of
display by employing 3D audio techniques may also resolve the resolution problem
further.

Placement in the central visual field gives an angular resolution of about 2 seconds of arc
difference. In the auditory field this difference falls to approximately 1 degree which
again falls further to about 15 degrees resolution to the sides [190]. If pitch were used in
the auditory domain, then in order for a user to understand absolute data he/she would
need to have perfect pitch, which is a rare skill in human beings. This does depend upon
the method of coding used to represent the data. Bregman [31] identifies a number of
factors that contribute to percéiving, recognising and interpreting auditory stimuli. These
factors are both perceptual and physical. Similarity and dissimilarity, proximity and good
continuation are some perceptual factors. However, sound location, frequency, rhythm,
scales, and keys are also examples of the physical contributing factors and are features
that should be exploited if sound is to be used to represent complex information as in the

context of this thesis.

In practice even most visually displayed data is presented with reference to something
* else, and high accuracy is not usﬁally required. Data is usually constrained within certain
limits, of which the user is also aware. Information must also have a corresponding range
and context for it to be of use. So, data does not always have to be absolute to be useful.
This is encouraging as some complex information that might not be presented well
audibly due the limited resolution of the auditory medium might be conveyed at a higher
level of abstraction. For example, if lists of numbers were represented using sound then
the absolute values might not need to be understood in order to perceive the ordering of
the list. However, the meaning of the data is usually grasped more quickly when
presented visually especially if it is complex. This is because we can see the boundaries
instantly and gauge roughly where the information of interest falls relative to this. It is

interesting to note that in most visual tasks users do not recall object placement very

accurately, and that real life experience rarely demands it.
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Auditory communication is usually communicated serially, and this means that the
instant appreciation of data that can be attained visually cannot easily be achieved
audibly. It takes a much longer time for quantitative information to be conveyed via the
auditory medium and may take several repetitions before the user can fully understand
this data. The use of auditory space and parallel multi- timbral structures might speed up
this data exchange', the aﬁditory space being used to provide the range or context for the
information. This is a prime area of concern in this thesis. Sending the data in a more
parallel fashion with the use of more than one timbre could also reduce this serial

limitation.

Similarly, speech interfaces suffer from the same problems as text.displays [160] in that
they both suffer from slow data transfer due to their inherent serial nature. In order for a
user to uhderstand a concept, the text must read or heard completely. Graphical displays
certainly speed up certain interactions, and the comment “a picture is worth a thousand
words” arose out if this property. This clearly discounts the use of speech to convey very

complex information, as it would be limited to slow information exchange rates.

In some cases auditory stimuli can invoke meaning for a listener as effectively as pictures
can invoke meaning for a viewer. Such meanings are often relative to the
listener/viewer’s personal experiences. Meaning is increased when pictures are
recognised. The same is also true of sounds, that when heard often enough their meaning
is increased. This highlights the ability of humans being able to learn mappings. This
gives some flexibility when designing displays that use the auditory medium. '

Continuous background sounds can be used to represent varying background information
[33]. In this case, the auditory interface is not usually an intrusive medium as claimed by
Berglund [17], who has suggested that sound at the computer interface is annoying to
users. When played in the background, non-speech sounds can be listened to, or ignored
at the listener’s discretion. Although this thesis is not concerned with presenting
background information, it is worth noting that some contextual information could be

played in the background while more vital information is presented in the foreground.
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It seems intuitive that the solution to the intrusive problems of audio at the interface is to
use earphones, but it may be argued that this is unsatisfactory since users may also need
to communicate aurally with each other. The alternative way to combat this problem is to
adjust the volume level to just above that of ambient sound. In other words, just enough
for the user to hear but not too loud as to annoy surrounding users. Another way of
dealing with this problem is to use sounds which naturally occur in the working
environment [49]. This thesis is more concerned with how useful the auditory medium
might be for conveying information, but it is important to indicate such potential

problems as intrusion.
'2.3.3. Auditory displays

In information visualisation, mappings are made between information attributes and
visual representations such as graphs, spectra etc. These kinds of mappings provide a
framework within which users are able to construct mental images of the states and
structures of the attributes of the information. Such visualisation works particularly well
in cases where the information attributes naturally map into a spatial domain, such as
hierarchical charts or sequenced events, Once the mapping has been made between the
information and the visual representation, the user learns a framework within whiéh
he/she is able to visualise future information. This can be looked upon as a form of
learning, When asked to draw the visual representation of new data they are

automatically able to do so without necessarily having to revise the mappings.

In the same way, when data is presented in an auditory format it is usually necessary for
the subject to first learn the mappings between the auditory cues and the information that
is being represénted. In some cases the mapping is obvious (for example the sound of a
police siren). For other audio interfaces the mapping has to be learned. Once learned the
subject will be able to model what further similar sounds represent and these may be

quite abstract. It is therefore essential that users understand fully the framework within

which the audio information is to be represented.
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This can often be an intuitive process when real world information is to be used.
However, the attributes of information in the computer science and data structure
“domains tend not to be real world objects and hence have few real world auditory
signatures. Thus, non-intuitive mappings will need to be ‘learnt’ by the user in order to
construct the necessary framework within which the information may be understood.

Frameworks have been developed to aid this process [4].

Broadly speaking, auditory displays can be divided into two sub-sections, auditory

interfaces® and auditory software visnalisation® systems.

¢ Data sonification/audification — sonifying data input or data processed by the
software. This involves mapping properties of data or events to sounds in an
attempt to represent the data or events in the audio channel. Audification is similar
but rather than using mappings, data are played back directly, e.g., scaling seismic

data up until their values li¢ in the andible frequency range [166].

¢ Algorithm/program auralisation — mapping audio events to events during
execution of the software itself. This is essentially ‘sonifying’ program

progression and state.

Vickers [182] indicates that the terms “auralisation” and “sonification” are often used
interchangeably. Vickers {182] states that sonification is concerned with the auditory
display of generic data, whilst auralisation is more properly about the visualisation of
programs and algorithms, which may involve the auditory display of data associated with
or created by with a program, i.e. the data is concerned more usually with the internals of

the program.

There has been much research in the field of Auditory Icons by many researchers,
particularly Gaver [92, 93, 94, 95, 96, 97]. Auditory Icons are real world sounds that are

used to represent an event or object. Where no real world sound exists a metaphorical

% Auditory interface, an interface that represent actions and objects using sound.
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mapping is made and the listener learns this mﬁpping. Gavers’ work was based on
theories by Vandeerveer {180] and Warren et al. [187]. Gaver has suggested that audio
interfaces should focus upon tasks that require the user to monitor his’/her environment
[62]. Examples of this approach include mdnitoring complex systems, supporting
computer access for the visually impaired [147], reading maps [19], sound-enhanced
word processors for the blind [85] and debugging parallel programs [110, 87, 88].
Mountford et al. [146] stated, “Sound can proi)ide information about many different
things within the environment”” Many environmental monitoring systems have been
devel.ope':d, including a system for monitoring background ﬁIe-sharing tasks entitled
ShareMon by Cohen [53] and a collaborative working environment monitoring system
called RAVE [97].

Other auditory interface applications include Mynatt’s [139] Mercator System, a sound-
enhanced graphical user interface for blind users. Colquhoun [55] developed a system
that added simple sounds to a visual sonar monitoring system. Brown et al [44]
performed similar work in that they carried out visual search experiments using auditory
or visual target cues. Their implementation was performed in accordance with the
multiple resource theory as described by Wickens et al [195]. Perrot et al [153] also
found that giving auditory clues can help in locating visual targets on a display. They
found that “The presence of spatial information from the auditory channel can reduce the
time required to locate and identify the location of a visual target...” 1t is clear from their
findings that auditory clues can help fix a region in a cluttered visual workspace. This is

encouraging for the use of spatial audio in algorithm auralisations.

2.4, Music
2.4.1. Music as an interface medium

The following sub-sections detail some of the aspects of music and how they might relate

to musical auditory display design. There has been relatively little work investigating the

3 Auditory software visualisation, using sound to represent the execution or structure of software,
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use of music at the human-computer interface. Initial research carried out by Alty [3]
suggested there might be potential in using music to communicate information. He
concluded that: “Music involves hfghly sophisticated use of the auditory channel and
there are some obvious reasons why the use of music should be considered for possible
use in human-computer interface design.... we now need some good experimentation to
determine what is possible and practicable”. Hotchkiss and Wampler [106] suggested
that music lends itself well to experiencing data and events subjectively and would
therefore give us a greater sense of participation than is possible when using more

objective numerical representations.

Music provides a powerful medium which ought to be capable of delivering large
amounts of data in parallel. Many musical styles employ such techniques as polyphony
and counterpoint. The purpose of these techniques is to convey distinct ideas in parallel

without confusing the listener.

Alty [3] has pointed out that: “The information contained in a large scale musical work
(say a symphony) is very large (a typical audio CD contains many hundreds of
megabytes). The information is highly organised into complex structures and sub-
structures. The potential therefore exists for using music to successfully transmit complex

information to a user.”

Schenker [167] proposed that perceived musical structure is represented intemnally in the
form of hierarchies. Given that users hear the musical structures in a hierarchical manner
it supports the concept of representing other hierarchical entities via music. Many data
structures and information sources can be viewed as hierarchical and Brewster has
employed hierarchical Earcons (discussed later in this chapter) to represent hierarchical
menus. Dibben [73] represented music by abstractions which listeners were able to match
with the original. This hierarchical structuring is similar to that used by many composers

for coping with the short term limitations of the human memory [3]. Such techniques

- need to be adopted due to the temporal characteristics of music.
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Alty [3] claims that: “Music is all-pervasive in life and forms a large part of people’s
everyday lives. It is very memorable and durable. Most people are reasonably familiar

with the language of music in their own culture. Once learned, tunes are difficult to

- forget.”

Music is prevalent in the everyday lives of most people. This suggests that benefits would
be obtained from exploiting its properties. Most people can hum a tune after they have
heard it once on the radio or television. Minsky [144] stated “We like tunes because they
have certain structural features”. Memorised tunes can be exceedingly durable [182],
and listeners often retain simple melodies long after they were first learned and
committed to long-term memory. Modern dance music is particularly accessible because
of the high repetition aspects of the melodies and their reliance on repeated cadences.
However, listeners are more adept at recognising tunes that they experience in their
everyday lives, and this raises an issue concerning the cultural differences between
listeners. A subject from a modern western culture would be more comfortable when
trying to understand a piece of modern western music as opposed to a subject from
another culture. Differences such as scales and rhythm can often be quite diverse from
culture to culture. However, some commonalities do exist that transcend many cultures
such as timbre and pitch. When attempting to create a universal interface using music,

HCI designers will need to take such differences into account.

Just as natural sounds play a common part in all of our lives so does music. A car hom
sounding in the street is an environmental sound that most of us are used to, and the same
is true of the sound of a musical instrument. More importantly, musical events do not
have intuitive mappings to real world actions or objects, so it could become a complex
task to convey a concept musically. It is here that metaphorical mappings are particularly

useful.
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Metaphors might be created by utilising the properties of music such as:

Timbre,

Rhythm,
Pitch,

Volume, and Stereo placement etc.

For example, the rising of pitch can be a metaphor for rising numbers. Different timbres

could signify mulfiple channels active at the same time.

Without metaphor serious problems can arise. For example, what does a sirhple musical
structure such as a triad (C-E-G) mean? Because there is no context in which this fits then
it becomes very difficult to understand just exactly what it means. A framework is needed
into which the mapping can fit. This provides the user with the necessary familiarity and
allows him/her to place what they hear within a context, thus yielding the underlying
rne'ssage within the information. Kaye et al [115] suggested involving musicians and

composers to help resolve some of these associated problems.

Alty [3] has commented that: “Music involves the simultaneous transmission of a set of
complex ideas related over time, within an established semantic framework. The job of a
composer is to use musical resources and techniques to enable a listener to successfully
disambiguate such information. There is therefore a strong parallel between the design

requirements of the interface designer and those of a music composer.”

Music composers often employ techniques such as polyphony and counterpoint to allow
the simultaneous presentation of multiple melodies and musical ideas. The multiple
melodies and musical ideas can be seen as different data streams. The same techniques
might therefore be used when presenting real data via music i.e. it must be conveyed

within a set semantic framework.,
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Brewster et al [38] combined Earcons (discussed later in this chapter) to deliver parallel
information, each Earcon being related to an interface event. This showed how
information can be conveyed simultaneously using complementary components. The
prime difference between the visual interface and the musical medium is that the GUI is a
spatial medium. Placement in visual space dictates how information is presented at the
interface. The visual medium permits the user the peruse information at a lower pace and
revisit ambiguous representations to further disambiguate the information. The musical
medium however, is of a temporal nature and the disambiguation of information is
dependent upon the time ordering. Information represented through this medium may
only be revisited if the user has memorised past events. Stereo placement, however, can

be used within the musical medium to allow spatial aspects to be presented.

Because of this, Walker and Scott [185] suggest that the visual.modality is better suited to
spatially oriented information whilst sound is more appropriate for processing temporal
information. Wenzel [191] suggests that audio is very well suited to monitoring state
changes over time. Thimbleby [179] reports that people working with early computers
could, by placing an AM radio on top of the machine, tell from the changes in the radio

interference when a particular batch run had finished or when the computer was in a loop.

In the 1980s the Musical Instrument Digital Interface (MIDI) was developed by Moog
[145, 163, 164] and provided interface designers with a simple means for controlling
peripheral electronic musical devices from a computer. It has now become very simple

for programmers to incorporate MIDI commands into their code and exploit the use of

musical sequences and notes to enhance the functionality of their programs. Further
details of the MIDI standard can also be found [6, 186, 51, 136, 62, 27].
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Music offers the following advantages. It can:
¢ Convey large amounts of information in parallel.
¢ Convey emotion on its own or supplemental to a visual display.
o Be used as a feedback mechanism for informing the user of success or failure of
an action.
o Alert the user dramatically of critical situations or gently of trivial but relevant
situations.
¢ Smooth over inconsistencies in the presentation of information.
Further benefits on the employment of music as a communications medium are:
¢ Most people are familiar with music of their culture. As Alty states, tunes can be
hard to forget and most people are often readily exposed to some form of music
throughout their daily lives [3].
e Alty indicates that there exists a strong parallel between the needs and
requirements of an interface designer and those of a composer [3]. Both are trying
to create representations using rules within semantic frameworks and also exploit

the characteristics of human perception.

» MIDI makes incorporating music into computer interfaces easier [145].

e [t provides a more important communications channel for the visually impaired

[132].
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|
|
However, the use of music in multimedia interfaces has some potential disadvantages. |
|
|
|

e Music is more closely associated with conveying emotion rather than information
and could therefore be considered to be inappropriéte for interface design — There
is some validity in this statement. However, it is the level at which music is used
that is important. For example, visual interface designers work at a much lower
level than that of painters and poets, and they do not create emotional interfaces,
this is with exception of the games domain. The same may be possible in the case
of music when not intended for conveying emotion but rather for conveying
information at a lower level. Picard and Marrin’s [133] study of emotional
expression as it relates to musical performance showed that several forms of
expressive communication can be measured and detected in physiological signals.
These include the use of handedness to emphasize musical changes, the signaling
of upcoming events with sudden changes in effort, the difference between
information-bearing and non-information-bearing gestures, the indication of
intensity and loudness with changes in muscular force, and the use of breathing to
express phrasing in the music. In this case it has been shown that emotional
expressiveness can be used to convey information pertaining to the musical

performance.

|
|
|
e Music is culturally dependent which might limit its use on a wider basis —
However, many musical scales are global and therefore possess universal appeal.
Frequency ratios between notes are common amongst many cultures.
* Music cannot convey quantitative information - Most people can tell if a note
increases or decreases, but only those with perfect pitch can determine actual

pitch levels. Listeners with such capabilities are rare.

e It is an intrusive medium, it demands attention - Some users may find the
information confusing if the level of stimulation is too high, particularly if audible

from another user’s interface. However, earphones do provide an alternative.
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¢ Music is a language not understood by everyone — However, listeners do not have
to be fully trained musicians in order for music to be a viable communication
medium as shown by Brewster [33]. Most people can recollect and hum tunes
-with no real difficulty, thus supporting its appeal to a majority. Some visual tasks
require brief training, so even if some basic grounding is required in music then it

should be supported.
2.4.2. Perception and understanding of music

In order to create effective musical auralisations it is important to understand some of the
perceptual factors associated with music. As with language, music has its own set of rules
and structures and strong parallels can be drawn between the two. The relationship
between music and language has been analysed by many scholars [16, 124, 198] and

several similarities have been suggested.

¢ Language is capable of creating many complex combinations to convey many

meanings. Music also possesses this ability.

. Mﬁsic and language both possess distinctive structures which develop over time
[198].

¢ Although music and language both have cultural dependencies, they possess
universal features that can traverse many cultures making them flexible

communication mechanisms.

¢ Human beings are able to comprehend both music and language.

e They both exploit the auditory channel by using sound patterns to convey
meaning, Both are therefore forms of communication within distinct semantic

frameworks.
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Although these parallels highlight the similarities between music and language, some
researchers such as Lerdahl and Jackendoff [126] and Kivy [118] have argued that
musical meaning has little resemblance to natural language meaning, and contended that

meaning in a musical sense cannot be translated into meaning in linguistic sense.

In the area of timbre* perception Grey [99] has performed experiments with trained
musicians to determine the similarities of musical sounds produced by different
instruments, The subjects were asked to rate the similarities on a scale ranging from 1
(very dissimilar) to 30 (very similar). Grey reported that the families identified with some

of their sub-families were:

i. Family one. E-flat clarinet, soprano saxophone, bass clarinet , and English horn.
ii. Family two. Oboe and mute trombone.

iii. Family three. Bassoon, French horn, cello, trumpet, and flute.

ﬁowever, the choice of instruments here is very limited. Rigas and Alty [158] carried out
experiments to find which timbres and timbre classes work well as discriminating factors.
They stated: “Our experiments suggest that one instrument from each of the following
families is likely to be recalled by the listener with no prior training.” [158]. Their study

identified the following families of timbre classes:

Piano Piano, harp, guitar, celesta, xylophone

Organ Organ, harmonica

Wind Trumpet, French horn, tuba, trombone, saxophone
Woodwind Clarinet, English horn, pan-pipes, piccolo, oboe,

bassoon, flute

Strings Violin, cello, double bass

Drums Drums

Figure 2.2a — Timbre classes from Rigas and Alty {158].
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The consequence of this is that there are really oﬂly six unique timbres. One limitation of
Rigas and Alty’s findings is that the timbres were generated by a low-quality synthesiser
(Roland MT-32). It is quite possible that a synthesiser with more faithful reproductions of

musical instruments would yield a larger set of useful timbres.

Further experimentation by Alty and Rigas [159] showed that the most readily recognised
groups of instruments were piano, woodwind and brass. They further recommend that
“...instruments such as Piano and Organ can easily be distinguished by non-musicians,
but that designers should avoid the expectation that such users can distinguish timbre

within musical families (e.g. a Cello and a Violin).”

At this point it is worth noting that the perception of pitch is of interest as it forms the
most basic component of tonal sequences. Other features such as intensity, placement and
timbre etc. are not considered to be as important when perceiving music [29, 30, 67, 122,

47).

The perception of music is a complex issue. The individual notes are not listened to in a
solitary manner but are listened to in relation to each other. Listeners group the notes.
This grouping is applied to both the pitch and location of the music. However, the
location of the source is less important than pitch [29, 30, 67, 122]. The reason for this is
that localisation is significantly more ambiguous than pure pitch. It is subject to
interference from echoes and certain sounds translate better than others. The human
auditory system can also be tricked into hearing false sounds. One instance of this is
when two identical sounds are played at mirrored locations either side of the head and the

listener hears a single sound directly from the centre.

Butler [47] demonstrated that the pitch-grouping phenomenon is very robust even when
real instrumental sounds are used with spatially separated loudspeakers. It was also

reported that most of the listeners performed the grouping by pitch even when notes from

* Timbre, the distinctive character of a musical sound or voice apart from its pitch and intensity.
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one speaker had a distinctive timbre. This suggests that pitch is more influential in

grouping than both placement and timbre.

This grouping phenomernon has so far centred on single notes. In order to understand how
we interpret music it is necessary to move up a level and look at how we perceive short
combinations of musical notes, chiefly melodies. Dowling [79] describes a melody as a
sequence of single pitches organised as an aesthetic musical whole. Deutsch [67, 68]
states that contour, timbre, rhythm, intensity and tempo influence the perception of a
melody. Dowling [78] performed experiments with real melodies constructed in such a
way that two melodies were inferleaved, note 1 of a tune A was played followed by note
1 of a tune B and so on alternately. The results of these experiments showed that it was
practically impossible to recognise overlapping melodies because the melodies seemed to
merge into one single unrecognisable sequence of notes. However, when the melodies did
not overlap they were easily recognised. He concluded that overlapping melodies were
only recognisable if the listener knew what to listen for. This suggests that there are
instances where the listener is required to actively concentrate and scan for a particular
melody when the overlapping causes some confusion as opposed to passively listening to
the melodies in a non-overlapping instance. Even when users had learned an unfamiliar
pattern of notes, it was found that they were not recognised when interleaved. This
suggests that prior musical knowledge may not be of assistance to a user when

interleaved pattern streaming is employed.

Investigation into melodic contour has been carried out to determine whether or not it
assists in recognising tonal patterns [79]. Dowling and Fujitani hypothesised that if the
interval size was altered but the contour remained the same then listeners would still
recognise melodies. Users listened to two successive musical sequences. They were then
asked to rate on a scale of 1 to 4 how close the tonal patterns were in relation to each
other. The results indicated that users were making their decisions based upon whether or
not the second melody was a transposed version of the first melody. In cases where the
second melody was not a transposed version of the first melody, the subjects that had

musical training showed to have no noticeable advantage over those with no or little
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musical training. This suggésts that those with musical training are more able to

‘recognise a transposed melody than those with little or no musical training.

Experiments by Davis et al [59, 60] showed that even though musical and non-musical

subjects were not always able to estimate the interval sizes of well-known melodies, they
were able to remember tunes. Davis and Yelland [61] found that remembering a set of
tunes improves when participants are trained to work with certain melodies [61]. Bartlett
and Dowling [13] found that when recognising tunes, the comtour was of great

significance.

Watkins [188] has shown that key signature plays a significant role in music. He
conducted experiments that showed that participants from the western musical
background were more capable of recognising melodies using pitch margins within the
diatonic scale. Balzano and Liesch [12] argued that intervals in melodies are heard as
positions within the scale and not as pure intervals. Dowling [80] also suggests that from
a psychological viewpoint, listeners perceive a set of pitches as opposed to a set of
intervals. This is further supported by investigations carried out by Dowling [78, 81] that
indicated that listeners were able to recognise melodies even when their intervals were
widened into different octaves whilst still maintaining the same pitches [78, 81]. This
suggests that the representation is constructed in terms of pitches and not in intervals by

the users.

Wolpert [200] argues that untrained musicians do not interpret musical stimuli in the
same way that trained musicians interpret musical stimuli. He found that musicians and
non-musicians follow different sets of rules when interpreting music. When matching

excerpts, musicians used melody and correct harmonic accompaniment as the major

criteria. Subjects that were termed non-musical did not use these same rules. Experiments

carried out by Brewster [33] in which pitch recognition tasks were performed using

earcons showed that musicians performed better than non-musicians. However, no

differences were reported when earcons were played from instruments with different
rhythms [33].
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Deutsch [69, 70, 71, 72] conducted a series of experiments to determine the memorability
~ of individual notes. In these experiments, listeners heard two notes separated by an
interval. The pitch of the notes was the same for half of the trials and differed by a
semitone for the other half, The subjects were asked to judge whether or not the notés had
the same pitch. Deutsch reported that most of the listeners judged the pitch of the notes as
100 percent accurate. In another set of experiments, spoken numbers filled the interval. '
Deutsch found that this did not alter the accuracy of the subjects’ judgement of pitch.
However, when the interval was filled with a number of random notes it was found that
the subjects’ accuracy fell to 68 percent. Therefore, Deutsch argued that the inteﬁéning
notes have a disruptive effect in recalling the pitch of an earlier note. This disruptive
effect is even greater when the intervening notes are closer in pitch to the pitch of the

earlier note.
However, Sloboda [169] remarks the following about Deutsch's experimental results:

“At first sight, Deutsch's results suggest a very gloomy conclusion about musical
memory. Memory for individual pitches seems incredibly poor, if it cannot survive a few
succeeding notes, How is it possible to remember notes across structures of symphonic
proportions, containing tens of thousands of notes? The general answer to this problem
would seem to lie in the opportunities, which most music affords for listeners to classify
and organise what they hear. Deutsch's sequences were atypical in two respects. They
did not confine themselves to the intervals of a common scale (using fractions of a
semitone in some instances), and their notes were randomly chosen so that they were not

designed to form common musical patterns within the scale framework”

Sloboda, here, suggests that Deutsch’s experimental work does not closely follow the
typical rules of music enough to be significantly related to the perception of music. The

results reported by Deutsch relate more to standalone experiments on the perception of

pitch outside of the musical framework.
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In the tests carried out by Alty [3], the reaction to tasks that required interpretation of
musical output was evaluated. The tasks were divided into two sub-tasks. In the first task,
12 male and 3 female subjects were asked to estimate the numerical difference between
two notes. The first note was always ‘Middle C’ and the second note was always taken
from the major scale above ‘Middle C’ (one octave). Sampling was limited to one octave
because it is known that subjects have exhibited difficulties with intervals of greater than
one octave [141]. The results for this first series of experiments showed that subjects
exhibited 62% accuracy when estimating the difference in semitones between two
musical pitches. The second test used the same subject group but listeners were presented
with different musical shapes, each consisting of six notes from the major scale. The
subjects were asked to sketch the shape they heard. The results showed that subjects were
generally able to draw the perceived shape of these short musical sequences and that the

ability to draw was also an important parameter in this context.

When a listener hears an extensive passage of music he/she segments the passage into
smaller passages of musical sequences. These sequences are then memorised. This
segmentation can be performed based upon properties such as timbre, rhythm, pitch or
placement. Tan et al. [177] experimented with note sequences that contained two melodic
phrases, each of which ended with a melodic cadence’. The melodies were played to
subjects who were then asked to judge whether or not any particular two note probes
were present in the melodies. There were three forms of the note probes. A pair of notes
ending the first phrase, a pair of notes beginning the second phrase and a pair of notes
*straddling’ the phrase boundary. According to their findings, subjects recognised more of
the first two types of probes as opposed to the probes ‘straddling’ the phrase boundary.
This would suggest that humans are more adept at perceiving such probes when

punctuated at the beginning or the end of a musical phrase.

- Memorising the segmented passages is determined by the capacity of the human memory.
Miller [143] suggested that this human short-term memory has a size of 712 chunks of

information, Composers are very aware of these limitations of the human memory and

5 Cadence, the close of a musical phrase, A fall in the pitch of the voice.
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employ such techniques as patterning, repetition and structuring in order to reinforce
musical sequences in the mind of the listener. Work carried out by Delis [65] provides
evidence that people remember musical extracts best if they are labelled with concrete
representation titles as opposed to abstract conceptual ones. These titles enable the
construction of some sort of story in the human memory that in turn is associated with

particular segments of music.

In psychoacoustics, experiments are performed using the scientific method of measuring
the Dependent Variable (DV) and changing the Independent Variable (IV) of the musical
stimuli. However, the musical stimuli may not satisfy the aesthetic qualities of music.

Clarke best describes this concern [52]:

“There are certain obvious advantages in this very controlled kind of approach, and it
has proved extremely powerful and productiﬁe Jor advancing our understanding of tonal
and metric hierarchies. However, it has left untouched a range of issues concerned with
listeners' understanding of more extended and elaborate structures in which a

considerable degree of interaction between different parameters can be expected.”

Researchers have investigated how measurable vartables that are apparent during
exposure to continuous music are processed [169, 52, 48, 63]. Pollard-Gott [155]
examined the possibility of participants focusing on particular musical themes when
exposed to repetitions of the musical stimuli. Musical and non-musical listeners were
asked to rate the similarity between two short musical passages. Results showed that the
musically trained subjects perceived the similarities more quickly than the non-musically
trained subjects. Other experiments with musically trained subjects have been performed

showing that they can accurately judge excerpts from musical pieces [52]. This suggests

that musically trained listeners have a distinct advantage over non-musical listeners.
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2.4.3. Musical auditory display using Earcons.

This thesis proposes a musical auralisation of algorithm state and execution. Information
available from algorithms can be in the form of both data and events. When representing
events, it is possible to use structured metaphors as motifs much like earcons. An earcon
is a brief succession of musical pitches structured to transmit specific items of
information to the computer user. The term was first suggested by Buxton, Baecker and
Amott in 1985 [49] in terms of alarms and waming messages and was more formally
defined by Blattner et al [18]. Brewster [36, 37, 38, 39, 40, 41] has since specified formal

Earcon design principles and has carried out studies into their usefulness.

Earcons use tones in structured combinations to create auditory messages. Blattner et al
define Earcons as “non-verbal audio messages that are used in the computer/user
interface to provide information to the user about some computer object, operation or
interaction.” The sounds and their respective mappings are learnt by the user. Unlike
Gavers’ auditory icons there is no intuitive link between the sound and what it represents.
They are a much more musical approach in that the sounds are structured and formed in

such a way as to produce a suggestion, much like a musical composition,

If it is possible for a user to learn the mappings between suggestive structured sounds and
objects or actions then it must also be clearly feasible to use musical structures to achieve

the same goal.
Earcons are basically constructed from motifs {174, 175, 176]:
“A motif is a brief succession of pitches arranged in such a way as to produce a

tonal pattern sufficiently distinct to allow it to function as a single recognisable

entity”.
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Motives are simple building blocks of short, rthythmic sequences of pitches that can be
combined in different ways. They are variable and may be used in conjunction with other

motives, or repeated, to form larger patterns of a more cdmplex nature.
The main features of motives are [174][33]:

e Rhythm - Blattner et al. suggest that this is the most prominent characteristic of a -

motive, it can be one of the most important characteristics of sound [66].

e Pitch - there are many different pitches in the western musical system. It is
recommended that combinations be taken from one octave to produce different

motives.
o Timbre - this is useful when differentiating between motives.

o Register - this is the position of the motive within the musical scale, duplicate motives

in different registers (pitches) can be segregated and thus convey different meanings.

e Dynamics - the volume of the motive can be increased or decreased during playback

of the routine.

In Earcons, the rhythm and pitch are fixed, whereas timbre, register and dynamics are

variable. Blattner et al [18] describe two Earcon structures made up from motives:

e Compound Earcons - these represent actions and objects that comprise an interface.
They are then combined in different ways to give information about any interactions

within the interface.

o Family or Hierarchical Earcons - in this case each Earcon is a node on a tree and
inherits the properties of the Earcons above it. There are only a maximum of five

levels within the hierarchy due there being only five parameters of a motive.
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Figure 2.3 — Example Earcon hierarchy from Brewster [35].

An example of an Earcon hierarchy designed by Blatiner [18] is shown in the Figure 2.3.
This is the family tree of earcons representing various errors. The root motif is a structure
comprising a single pitch (middle A) of indeterminate length. The two subclasses of
error, {operating system and execution) inherit this structure but modify the timbré used
in order to distinguish themselves from each other. Instances of these subclasses (e.g.
overflow and underflow) inherit the timbre from their parent and are distinguished by
melodic and rhythmic differences. Using design principles such as these, Earcons have
been found to be effective in communicating hierarchical information down to four levels

(for example, in telephone-based interfaces [37]).

Blattner also added these Earcons to two-dimensional maps [19]. Hierarchical Earcons

were mapped onto the attributes associated with a building layout, in this case the

Lawrence Livermore National Laboratory. They mapped sound to such information as
the amount and type of computer equipment in each building, the security clearance
required for each building and the jobs of the employees housed within each building. By

selecting the buildings on the screen it was possible to hear these attributes. The

technique allowed much more data to be presented than would have been possible
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graphically. No experimental testing was done with this system but it does indicate some
of the possibilities within this field. Earcons have also been experimentally tested to see
if users could extract algebraic information from sounds and identify their expressions
[172]. The results indicated that the use of sound in this case proved to be of benefit as
the number of correct interpretations of the information was better than chance. This
again reinforces the advantages of using auditory techniques at the human-computer

interface.

Earcons have also been employed in a menu hierarchy to aid navigation through its
complex levels. This work undertaken by Barfield et al [11] did not fully exploit all of the
features present within Earcons, The only feature employed was the use of pitch to
indicate the current level of depth within the menu; the aim was that the user could link
certain pitches with corresponding items within the menu structure. Barfield et al

described the mapping as

“The tones were played with a harpsichord sound and started in the Fifth octave
of E corresponding to the main or top level of the menu and descended through to

B in the Fourth octave.” [11]

The employment of Earcons in this system did reportedly improve the user performance
in the task but no further suggestions were given. Due to the lack of detail in the reports
that Barfield et al made, it is difficult to ascertain just how useful Earcons were in this
case. Further improved results might have been gained if the other features of Earcons

had been employed.

Brewster et al [42] similarly employed earcons in order to provide navigational cues in a

menu hierarchy. The Earcons were based upon the guidelines earlier set out by Brewster

et al [35]. Figure 2.4 shows the hierarchy of nodes used in Brewster's experimentation
[35]. -
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Figure 2.4 — Hierarchy of nodes from Brewster [35].

The menu hierarchy employed by Brewster et al has four disti_nct Ievels. In level one
(main menu level), a constant note of ‘D’ in the third octave was pléyed 1n the centre of -
the Stereophonic' field. In level two (application level), a. second note was added to the
existing note at level one, This second nofe was implexhenfed with a different register and
dxfferent stereophonic posmon The submenus in the thlrd level such as apphcauons, -
word processing, expenments and games were ass1gned C4, C3, C2 and C1 using an
| electric synthesised organ, violin, drum and trumpet. These timbres were placed in the .
stereophonic positions of far left, centre left, centre right and far right, respectively.
When the user descends th:ough the Jevels, the tnnbre changes in-accordance to the level_
whilst still maintaining the preceding level’s note. Results from Brewster et al’s
expenmentatmn indicated an accuracy of 81.5% in enabhng listeners to 1dent1fy their
position within the hierarchical menu. This highlights the effectiveness of using multiple
features such as timbre, pitch and position to convey 1nfonnatlon at the human-computer

- interface.

| Brewster further showed that reductions in the quélity of sound that o.ccur with telepﬁoﬁé | _
. systems can be offset by improvements in the design of earcons, thus making earcons a |
good method for providiﬁg navigation :cues in telephone based infterfaces. AResu‘lts
show_ed that training techniques' affected the recall rates of earcons and thé.t there was no
difference in the recall of earcons a week after their first preéentation. Brewster states that
the results obtained indicated that an online tutorial plus a short period of free call time

can enable users to reach hjgh'recall rates without much training cost,
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A further experimerlt by Brewster showed that-by using compound earcons rather than

‘hierarchical earcons to represent the hierarchy recall rates could be“signiﬁcantly

_ mcreased ‘with 97% recalled correctly with only a small amount of trammg This showed .

- that compound earcons could represent a hierarchical structure well.

Earcons have been esed in the interface to auralise data associated with turbulence [20].
Studies have shown that Earcons can be effective in cemmunicating such information to

.. users [41 127], and Lucas [127] has shown that the accuracy of recogmsmg the audltory_

cues increased when users were informed of the desrgn pl'mCIPICS of the Earcons

employed This hlghhghts the usefulness of context and the need for its presence when |

performing effective auralisations. Since its introduction, Brewster and others have used

the Earcon to make GUI components (such as buttons, menus and scrotlbars) more .
useable [43, 56, 125] and to reduce the length of audio messages.by.using parallel |
- Earcons [38]. Experiments showed that the time taken to successfully operate such

interface cornpenents was significantly reduced when the tasks were enharrced by the

addition of Earcons. When Barcons were applied to drag and drop activities [43] a

| significant reduction in time taken and mental workload was similarly observed. |

_ Brewster et al [34] reported that‘adding sound to a graphical interface could reduce task_ '
completion time and recovery tirne from errors. As with Barfield et al [11], the '
- eprmtatlon of the other features of Earcons could be employed to improve the ;
effectlveness of the system However making the system more musical by using the

rhythmic and multi-timbral features of Earcons could possibly have yleIded more .

2.4.4. Musical data sqrriﬁcatien

Several systems have been deyeloped_ to allow the general sonr'ﬁcatien' of data.,
Madhyastha and Reed’s Personify system {130, 131] was capable of sonifying data sets.
" The system was used to explore multivariate data related to North-American cities.

Variables such as population, climate, and housing cost were mapped to different sounds.
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' Theresultant sonifications were used to compare cities. Madhyastha and Reed offered no

formal or erﬁpiﬁcal_ evaluation of the system. Scaletti’s Kyma [165] system'uses a visual

'sound-specification language that also permits the sonification of data sets. The system

was applied to models of the human afteria_l system and city air pollution. Scaletti and

Craig claim the system was Successful [166] but again no formal or empirical evaluation

".'was offered to support their claim. Hayward [104] employed aiu_diﬁcation techniques t_e_. |

allow seismic data to be heard. The data from seismic recor_ders were eoIlected and then

scaled up so that the values leiy' in the audible frequency range. The data was played

through an amplification system and it was possible to discern one seismic event from

another without having to look at a seismogram plot. Again, Hayward failed to provide

any formal or empirical evaluation of the resultant audification. Further work has been

carried out by Dombois [76] in using audification in planetafy seismology. No empirical

evaluation was performed but Dombois did find that the signals were easy to recognise
even in noisy environments and that same ‘quakes’ were heard differently when placed at

different locations.

A DNA analysis progfam calledrP‘C/Gene was developed following the suggestion that

the one-dimensional structure of DNA could be mapped onto musical sequences. This

: sysiem utilises the Hayashi and Manakata algorithm [102] which facilitates the mapping

of music to DNA triplets by assigning tones to DNA bases. PC/Gene can scan the

sequence and identify such features as potential signature sequences, motifs, post-

translational modification sites and membrane spanning regions in the protein. Hayashi

‘and Menakaya’s work en further gene sequences [103] required feur octaves to map the

necessary information. However, King and Angus [117], pointed out théfth_is led to

- music- with large intervals of pitch that were distracting and discordant. They further -
noted that the mapping itself was one—dimensibnal and therefere led to a monodic® .

~ musical structure with no accompaniment. King and Angus developed thelr own system

called PM (Protein Music) [117], which permltted the mapping of an amino-acid

| sequence onto a two-part harmonic musical structure. The mapping consisted of two

* parts, the melody line of the sonification which was mapped to the DNA nucleotlde

- %Monodic, having a single vocal part,
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" sequence, and the bass part which was mapped to the properties of the sequence’s amino
acids. King and Angus argued that to achieve an equifalent visual mapping (in terms of
_ information presented) ‘would “be cw:::bersome as each position would have to be
mapped into seven colours. This abz’lity to display multivariate residue information
rep__resents an advance in this work”. No testing was carried to determine the

- effectiveness of the - audio representations compared to visual representations but
suggestions were made based upon the-apparent complexity of mapping the coﬁplex
information into the visual domain. This is a case where musical sonification can be seen .

“to be more useful at presenting complex information over a visual representatioh.

Chaotic attractors have been used as a source of information in using inosic to sonify -
data. This has been carried out by Mayer-Kress et al. [138] who utilised key features of
' -chaotlc systems such as intermittency and self-similarity, By mapping the Iow-level
sequence of system states onto audltory parameters, and high-level attnbutes (such as
intermittency and self-sumlanty) onto ponphomc audltory constructs, they were able to
utilise the data generated by a chaotic system by representing it musically. They reported
_ that the music generated by the chaotic systems and their mappings was pleasing to listen
- to for* two reasons. Fifstly, the sonification possessed aesthetic quaiiti_es that
- recmmnended it as a piece of music one oould actually listen to for enjoyment. Secondly,

| the“develo'pment of the music over time yielded the underlying structure within the

" chaotic system. The property of self-sumlarlty was represented by the form of musical

' phrases which repeated themselves but of which no two were ever exactly the same.
245, Musical sbﬁwafe/algoﬁthm auralisation

'Alty [3] has shown through his experlmentatlon that information about the run-time
| behaviour of simple sorting algorithms can be successfully communicated via musical
| mappings. Conveying precise quantltatlve information would be difficult in this manner
unless the listeners are musmally trained to a hlgh enough degree that semitone changes
~ could be easily identified. Conveymg general shape pertaining to the state of the list to be

sorted by the algorithm to non-musically trained users is however, a plausible scenario.
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Alty showed from his carly experimentation that musical experience can be useful in |
understandmg algorlthm aurahsatlon but is not essential. His results further showed that

an understandmg of pltch is not essential for understandmg aurahsanons

~ Alty has shown that sortihg algoriﬂlms can provide useful ‘inform'atio'n sources to which

musical features and structures can be successfully mapped leen that many dlfferent

© sorting aIgouthms exist, which operate in varymg manners and possess different sortmg :

characteristics, there ex1sts a rich source of qualitative and quantitative information to
which music can be mépped. Such musi.cal algbﬁt]un auralisation is the main foc'al point'
of this the51s, explomng the dxver51ty in sorting algorithms’ characteristics to 1nvest1gate :
the use of music in communicating different types of qualitative and quantltatlve .

~ information at the human-computcr interface.

Vickers et al [181] developed a system called CAITLIN. This was a inusical program |
-aura_lisation tool used to assist novice programmers with debugging. CAITLIN is
" described as “a pre-processof. for Turbo Pascal programs' that musically auralises
programs with a view to assisting novice programmers with IOcating errors in their
. code”. Tn this case the aim of software visualisation is simply to improve the
understan&iﬁg of software '[77'.]. Their auralisations were deliberately based upon musical

fechr_liques. This was presumably to exploit the features of music as much as possible.

The original source code is labelled with POI's (Points Of Interest) that in turn generate
'correspon'ding sounds. For examplel the POI’s of an IF construct would be [181]:

. Entry to the IF construct. '_
« Evaluation of the conditional expression.
» . Execution of the selected statement.

e Exit from the IF c_onStruct.

Instrumental sound séqucnces are mapped to each of these POI’s and then played in real-

time as the program code is executed. CAITLIN is a non-invasive system, in that it leaves

2
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the sour_ee code unchanged. Auralisations are affected by addiﬁg liBrary routine callsto a

"~ copy of the program. This is then compiled to produce an auralised executable image.

* Experiments were undertaken to evaluate the effectiveness of CAITLIN where subjects
were permitted time to familiarise themselves with the auralisations of constructs via
CAITLIN. They were then asked to identify the structures of nine progfalh auralisati_ohsi

The results proved favourable.

Program auralisation is beginning to attract much attention within the field of auditory
~ displays. The case for using music to aid debugging (like CAITLIN) was also supported
by Jackson et al [111], but they felt that this needed to be supplemented by a visual
representation in order to provide a framework ef context for the audio. This was because _
" they found it easier to pro{ride the boundaries and context visually and the relative
information audibly as opposed to 'channelling all of the ihfor_mation into the same
. medium. It is an effective way of sourcing the control information through one modality

and the informative data through another. -

- In early expenmentatmn with the CAITLIN system Vickers et al played ten exarnple
. aur ahsatlons to eight test subjects. - Following this familiarisation exercise the test -
listeners were then presented with nine further auralisations. For each aurahsatlon_ the
subjects were asked to describe the structure of the program. The results from this early
experimentation showed that the subjects were generally able to visualise the program’
structure ﬁsing only the auralisation. It was found that most subjects specified exactly the'
- program structure. Vickers et al also found that instrument selection played a very
important role in successful program auralisation. Subjects commehted that it was easy to
. deconstruct auralisations in the mind when the timbres used for the various constrects
‘were markedly different. It was also found that as the corﬁplexity of the program
constructs increased (in particular, when using nested constructs) the ‘identiﬁca-tion
accuracy decreased. The same complexity issue was also seen wheﬁ intricate signature
tunes were used to identify the constructs. Another finding that is worthy of attention is

that one of test subjects ‘who scored the lowest claimed to have no familiarity with .
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western music. This highlights the importance of cultural background in program
auralisation. Vickers did not report on how the aurahsatron of program structure

compared to the visualisation of the same program structure

- Vickers et al carried out further experimentation:on twenty-two novice programmers to
determine if CAITLIN coold aid in bug location. They concluded that the case. for
general program auralisation remained unproven, but for programs of a relatlvely high
complexity significant evidence was found for the auralrsatrons having a beneﬁcral effect.
It was also found that programs with typical novice programming errors and programs
that had hi gh cyclrcal complexity’ measures benefited from havmg the technique applied
to them It was also concluded from this series of expenments that musical knowledge
had no effect on subjects’ ability to make use of the auralisations. Addmonally it was

- found that no evidence existed to'sug'gest that lack of musical experience led to poorer

performance.

Program structure auralisation auralises the e'xecution state of a progra.nr. In a similar
manner, algorithm auralisation auralises the execution state of an algorithm. Brown & -
Hershberger used music to enhance and complement an ammatlon of several drfferent
algorithms [45]. They suggested that sound would be a powerﬁd techmque for
communicating information about algorithms”, though some potential difficulties with

 using sound were highlighted:

. Sound is difficult to use effectively because of its complex cognitive-perceptual
-aspects. The perception and coghition of sound is not yet fully understood, it is

therefore difficult to create effective auditory representations. Increased

o iknowledge about the cognitive-perceptual aspects of sound would facilitate .:' .

' greater exploitation of the features of sound. .

~ 7 Cyclic complexity, the level of complexity associated with the iterative properties of the structure of the
program. : :
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"o To find the best mappmg of data to sound charactenstlcs is hard. Data can be
‘mapped  to frequency, arnphtude, duratxon tlmbre stereo panorama,

reverberation, attack and decay rates etc. -

e ~When more than one computer is using audio techniques in the same room,

isolation of the sounds is difficult, whereas graphical isolation is not.

- Brown and Hershberger [45] animated six algorithms using newly developed teohniquas .
'~ that employed the features of colour and sound. The information was therefore presented
in .a bi-modal format involving both video and audio simultaneously. It must be noted
that the visual channel ptayed the dorninant role’in these auralisations and the auditory
medium was used tnerely as a supplement. A large content of their work focused upon
- the issues surrounding what kind of information to present aﬂtl_what was the best Way to
present it. As mentioned ear'lier.there is no ‘one-fit-all’ solution to this problem as each
~case has independent contributory factors. Brown and Hershberger noted that previous

work had been done in the area of algorithm visualisation (graphically-only), but that no .

prior research had been carried out in the use of music to auralise algorithms
| (supplementary to the visual channel or autonomously) They also outline the fact that

_ dynamlc algorithm animation 1s st111 a very obscure art.

They developed a system called ZEUS [46] for algorithm animation and stated that “it
_may be easy to animate a program, but it is not quite so simple to make informative
animations.” This is certainly true. The actual task of mapping data to music is a
N relatively trivial one; but it can also result in a task to develop a system that produces

| ‘maaoingless, unstructured music. The mappiﬁgé‘ and tint_bres etc. must be c'arefully_
 chosen in order to produce structured and informative musical representations of the data.’
Other animation systems include Stasko’s Tango [171], Kahn and Saraswats’ Pictoral
* Janus [114] and Heath and Etheridges’ ParaGraph {105]. .
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~ The ZEUS algorithm animation system [46] was developed from a previous algorithm

animation system called BALSA [90]. The problems cited by Brown and Hershberger,

-~ which tliey hoped to solve using colour and sound were:

Small screens - small real estate for presénting information,

Lower resolution - less detail can be conveyed.

Dynamic nature - flexible animation. ' |

Multiple views - views must Wofk together to give an overall synergy.

Multiple data sets - animation must handle a range of data values.

~ The principles used by Brown and Hershberger in the design of ZEUS were:

Reinforce visual views - associate sounds with relevant program events

corresponding to the visual representations. This technique uses the auditory

. presentation medium as a supplement to the visual one, its role is merely

supportive and it is heavily dominated by the graphical display.

Convey patterns - this technique picks out the temporal structureé and pﬁths
within the data, to give the user a greater feel of the overall direction of the

algorithm.

Replace visual events - useful when a \}isual mapping becomes difficult,

suggestive auditory representﬁtions of the data are employéd in place of the

-visual ones.

Signal exceptional conditions - an everyday. and simple use of sound.

The system was used to animated:

QuickSort algorithm.
Multi- level adaptive hashing algorithm. -

%
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e Algorithm of Boolean formulas for simple polygons. -
. Topological- sweepline algorithm..
~ Spin / Block algorithm.

- Compliant - motion - planning algorithm.

_ They also refer to but do not fully document animation of the foI.lowing algorithms:

. Insertion Sort algorithm,
' e Bubble Sort algorithm.
e Selection Sort algorithm.

- The work performed by Brown and Hershberger [451 yielded some guidelines fdr the
implementation of algorithm animation. They concluded that the techniqué was a
| complex one and req.uirled further investigation. The anhnaﬁoné that they perfoﬁned were |
| bi-modal. The auditory medium was used merely as a supplement to the visual
‘animations, which highlights the need for research to be done in the area of pure
* autonomous auralisation of algoritlnns.' The 'key-point about Brown and Hershbergers’
* work is that no evaluation was carried out. The techniques that they proposed for
algorithm animation were implemented but no evaluated results were attained. This

-further suppdrts the need for thorough research and evaluated experiments in this field.

Bock has developed a specification language known as the Auditory Domain
- Specification Language (ADSL) [25, 26]. ADSL does not require sounds to be aésociated
- with specific lines of program code or speciﬁc variaBles 'User:-s define ‘tracks’ using the
ADSL meta-language to assoc1ate audio cues with data and program constructs. A pre- -
- processor interprets these user—deﬁned tracks. The ongmal code has the auralisations
| added to it during compilation time allowing the program to be heard upon executlon
| This approach makes program auralisation less complex ‘When addmg lines of .
'aurahsatlon code within an editing window the original code can become obscure and
- difficult to follow. By specifying tracks, the original code is seen as unto_uched by the

code editor and therefore remains easy to read. Another advantage of this approéch is that
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it is possible to define '_a' g’eﬁeralepurpose auralisation. By specifying types of program
" construct to be auralised rthére is no requirement to tag individual lines of code with . -

auralisation specifications.

Bock’s ADSL used a mixture of MIDI messages, digiﬁsed recordings and sYnthesised_ |
speech. The desired output for each of the mappings is user specified and there exists the
ability for the user to auralise specific data items as well as the general tracks through the

program.,

‘Bock’s thesis [26] describes an experimént in which thirty programming-literate post-
graduate engineering students were required to locate a variety of program bugs in three

programs using only a pseudo-code representation of the program and the ADSL auditory -

output. Bock noted that 68% of the test subjects were able to locate the bugs. What Bock =~

failed to provide was a measure of how successful bug detection was when no ADSL
auditory output was present. Therefore, although the results were favourable, it is

impossible to ascertain how useful the ADSL auditory output was on its own.

Jameson’s Sonnet system [11.'2, 113], like CAITLIN and ADSL, is specifically aimed at
~using auralisation agents to éi_d the debugging process. The code to be debugged istagged
with these amalisa.tion agents that define how specific séctions of code will souﬂd. Figure |
2.5 shows a simple while loop with- the addiﬁon ofa c':omponent that allows a note to be

 turned on and off. The component allows static definition of the attributes of the note

such as amplitude and pitch, The first point in the source code identifies When thé_xiote'
will be activated and the second point in the soﬁrge identifies when the note will be

deactivated. Hence, upon execution, the note will be heard for the duration of the while -

loop.
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cntr = 0 ;
&

while (cntr' <= 1) v
{ - Oon
prm‘cf ("%d\n" cnt:r): ~ off ®

cntr ++ ; o :

3

o .
printf (“Bye bhye\n")

Figure 2.5 - While loop from Jameson’s Sonnet system [112, 113].

‘Clearly, in this cxample,' the m_ite only identifies the execution and duration of the while
looﬁ. It may be desirable to ‘hear’ the progression through the loop, in this case. it would
be necessary to auralise the dat‘a‘ eiement ‘entr’. Sonnet permits the connection of other
notes to specific data elements and also j)ennits the 60nneci_:ioi1 of components to identify
how many iterations of a loop are to be pIayed.’ Given that the programmer has added f_hé
auditory components to his/her code then they have already learned what the speciﬁc .
sounds signify. Upon execution the progrmnfner can hear the progression through the
code and identify from the auditory cues where the program deviates from the expected -

| executlon path. When such a deviation is heard, the point at which the deviation occurred

-will yield the location of the bug within the program code. Like ADSL, Sonnet mterfaces .

- directly with the executing program and it is therefore non-invasive to the ongmal code. .

It has the advantage of allowmg auralisation i ina v1sual programnnng env1ronment that .

offers greater ﬂexxbﬁlty to the programmer

Another system that shares a similar approach to Bock’s ADSL is Mathur et al’s Listen
project [137, 23, 24}. Mathur developed a meta-language entitled ‘Listen Speciﬁcaﬁon
Language’ (LSL). This language is used by a'programmér to write an auralisation
speciﬁc'ation that is parsed in a pre—proceséor phase to amend the original lsource code,
‘again leaving the original source code unchanged. This entire process is carried 'out'
before the comp1lat10n phase. An’ auralisation spec1ﬂcat10n specifies the mapping

- between program-domam events and auditory events.
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The Listen Sp'eciﬁcati()n Language (LSL) is described as a true meta-language because it

can be use-d‘ to define auralisations for prpgrarhs written in any language. Due to the -
' complexity.of the syhtdx of LSL, Wfiting auralisation spébiﬂéatibns requires a degree of
programming'understanding and ability. This limits its potential application to thdse withl
| .progrannning_ capabilities. Additionally, some musical kndwledge is requiréd in order to
- know ]10\'7;1 to spécify which pitches are used in the aﬁralisations. Again, the Listen j)rdject :
_is a prime example of an auralisation system that never underwent any formal | or

empirical experimentation or evaluation.

DiGiano and Baecker performed work which involved sound enhancements to the
| programming environment [74]. Their sysfeni LogoMedia [75] dealt speciﬁcallly.with the
use of sound within this progl_'axmning environment. Théy défmed program auralisation as

- “the us.e of non-speech audio for supporting thg understanding and '_eﬁ'ectiyé use of |

computer programs.” Their design suggestions for program auralisation are:

to exploit the loganthmlc nature of several sound dnnensmns to help to teach .
Jogarithms. '
to exploit the familiar connotations of everyday sounds. |
to use aurallsanon when screen sizes are too small to carry the commumcatlon '
v1sually

 to use auralisation to reducc clutter in graphic workspaces

to exp101t the many dimensions offered by sound (up to 20) [22]

. LogoMedia allowed audio output to be associated with program events. A prdgfammer '
annotates the original sourcé code wifh probes to track control and data-flow. Upon
execution of the program, the machine state and machine variables change over time. -
" These states and data are mapped to auditory events (sounds) that can be listened to. The
result is that the execution, progression and program state can be heard in real-time as the

" program runs. LogoMedia employs both sound effects and music.
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- The main fe_étures of LogoMedia are:

« During program execution, the relative values of variables are indicated and

“represented by tones and pitches.

. Durmg program creation, Opemng and closmg parenthes1s are associated with a

number of different tones.

- o While viewing a program, special sounds are associated with particular segments
of code. ' |

Longedia is the éuditory ddur_rterpart for the earlAier LOGOMotion sySt_em [10], which |
was used to visuaﬁse program data and control. A specific la.nguége for use with
LogoMedia and LOGOMotion is entitled LOGO [152], As previously mentioned, a -
programmer may annotate their LOGO code with.control probes and data probes. Control_.
probés are mainly used for monitoring a program's control flow. Particular sections of .

| LOGO software can be associated with particular prograrrr‘sections prior to execution. |
TIus results in the triggering of sound commands dunng execution. Data probes are used
for monitoring data flow and can-be associated with arbitrary LOGO soﬁware
expressions. Changes to these expressrons trigger sound commands during program

~ execution resulting in the ability to hear the data flow of the program. As with some of

- the previously mentioned systems, the LogoMedia system is capable of producing both -

MIDI and recorded audio output. The main limitation is that the auralisations have to be
defined by the programmer for each expressmn that is rcqurred to be monitored during
execution. Upon entering an expressmn the programmer is prompted for the desired
mapping for that expression. This requires some strong programming ability from the

user in order to successfully auralise program code. -
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© 2.4.6. Musical ‘aﬁditory epplicatiohs - so_me existing applieations o

Rigas [4, 159, 160] deVeIOped a system called AudieGraph, which is a tool that allows
informatioﬁ of a spatial nature to be communicated to \}isually impaired users using only
| music. AudioGraph permits visually impaired users to manipulate graphical objects on a
screen by providing information about cursor positien vis musical tones. The outline _'
. shape of simple graphical objects is convejed to users via 2 number of similar musical
mapp.ings.' Rigas showed that users’ ability to r_ec'ognise'a collection of graphical shapes
was very high fdllowing minimal training, The recognition level further increased when
- hints about the objects represented by the shapes were glven This hlghhghts the

impor tance of context in metaphorical mappmgs

AiidioGraph .is .essentially a diagram-reader and manipulator aimed at users wiﬂllviSUal
impairments It groups sequeﬁces.of pitches into groups of ten rising notes with pauses
between each group. leferent instruments are used for the X and Y coordinates.
Distance across the screen were mterpreted by listening to the length of the rising tonal‘
~sequence, the longer the sequence the greater the distance. Subjects therefore obtained
two clues 'abou't distaﬁce ~ the risihg pitch and the note grouping. The rising pitch clue
was particularly useful in the last group, which will normally be less than ten notes. Thls

shows how quantitative information can be conveyed via tonal sequences.

jEdwalds [85] developed hls Soundtrack system, Whlch provides an auditory mterface to
aid users with visual 1mpauments in using'a word processor. The system adapted a
mouse-based interface into one that employs audio techniques. Soundtrack used a
' combination of square waves of 'differing musical pitches and sYnthesised speech, When. -

a menu was selected by a mouse click the interface "spoke" the menu’s name. The _‘
location of the mouse pomter relative to the menu item was conveyed by the pitch of a . -
" note, moving the mouse up and down the menu’s optlons caused changes in the pitch of .

-the note.
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- The main problem that users encountered with Soundtrack was recalling the layout of the

internal structures of the windows. It was also found that most of the users did not use the
~ pitch of the notes to determine the menu position but rather counted the number of tonal

changes stressing the importance of multiple cues. However, one user who had musical

training did use the pitches. Brewster [32] stated of these results “It'may have been that :

as there were only a few tones so counting was easier, if there had been more then

counting would have become too slow and pitch percepiian would perhdps have been . -

used.” .

Cohen and Ludwig [54]'developed a prototype system called ‘audio windows' which

combines a spatial sound output and gestural input in a teleconferencing system. The -
spatial sound system that they employed was based on projecting a sound into three-

dimensional space. By manipulating the sound sources, virtual positions were achieved.

Different listening sensations were achieved by user controllable parameters. The users
moved their position around the conference room, and the sound sources would move
relative to the users’ virtual position. In this system, the user wears a DataGlove that

. feeds back gestural information to the system pertaining to the position, movement and

shape of the user’s hand. In order to capture the user’s hand position and motion, Cohen -

and Ludwig ‘er_nployed posture recognition with the visual programming language (VPL)

- supplied Gesture-Editor and an arm interpretation component.

.Cohen .and Ludwig remarked, “this prototype provides a test-bed Jor exploring the
- immediate potential of the emerging technology's application to teleconferéﬁcz‘ng and for

‘researching the relevant human factor issues ™.

" Mansur et al [132] developed a system called SoundGraphs, which is an.auditory -

- interface primarily aimed at blind users, employing both speech and sound. For partially

_sighted uoers a visual display was provided. The system is bi-modal and not solely

,' dedicated to the auditory medium alone. The system aims to permit the visually impaired -

. user to create and view graphs. The shapeé of the graphs can be conveyed in one of two

ways, either as a whole continuing graph, or in an interactive manner for those areas of

.33




54

~ the graph which the user is most interested. In the interactive mode the user ¢an control
the output of sound by moying the cursor forwards and backwards. The system also
mcmporates a speech output whereby the coordmates of the graph are spoken to the
user. It 1s clear that the system uses several different forms to represent the graphlcal
| data, visually, tonally and orally. It is primarily aimed at aldmg v1sually impaired users
" and is therefore not dedicated to determining whether an autonomous aliditory channel

- can convey quantitative information.

Sonnenwald et al developed a system called InfoSound [170]. This system is an audio- -
1r1terface tool kit that allows application developers to design and ~develop audro
~ Inter faces It provrdes the facility to design musical sequences and everyday sounds. It
.- __also allows the storage of designed sounds and their associations to apphcat:lon events.
One limitation is that_ the software developer is expected to compose the musical
sequences. The research work of Sonnenwald et al is a continuation of previous work
| concerning the use of sound to 'represent numerical data and to provide cues about
program events. It is also an extension of work carried out by Bly [22] to represent
multivariate data using musical sound, Mezrich’s [141] representation of mlrltivariate
time series using musical sound and Morrison and Lunney’s [128, 129] representation of
. chemical specfra data for visually impaired users using musical chords. The InfoSound
| :system offers 2 number of facilities and mechanisms for the design of musical auditory
interfaces such as audltory icons and Earcons. It also fac111tates the inclusion of everyday
sounds which themselves can be associated with program events and be heard dunng
program execution. The InfoSound toolkit is part of the IC* project [50] which is an
- environment for the design and development of sophisticated software systems such as

| telephone networks.

Camurri, Innocenti and Massucco [1‘08] developed a software environmeﬁt forl the real-
© time process_ing of sound, music and multimedja entitled HARP (Hybrid Action -
I .Representation and Planning). HARP is a software'arohitecture for the representetion and
| real-time processing of sound, music and multimedia using artificial intelligeﬁce‘
techniques. The HARP system is based uporr the WinProcne system (WINdows PROlog
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~ tool Combining logic and semantic NEts) [89, 91, 109] and is capable of storing and |
processing music and sound as"well as irnplementihg data manipulatibn. The core -
~ architecture of the system comprises two levels of rep_resentation in the knowledge base

of the system - the analogical and symbolic levels of representation. The syrnbolic level

of representation has a declarative symbohc environment and a mult1ple inheritance

semantic network, which has been based on KL-ONE [28, 201] with a number of .

additions such as temporal pnmmves and typmg mechanisms. The analogical level is 2

low level sound representation that incudes all associated data.
~ 2.4.7. Audio - Visual mapping |

Minsky [144] has stated that music facilitates the manipulation of spaée and time. If true,

this indicates that it is possible to convey both temporal and spati.al information via

music. He also noted that “We like tunes because they have certain structural Seatures™

but do we have to like them in order to understand what they mean? Human beings, as

listeners, have individual musical tastes and preferenqes. When Iistening to music that is o

not within these preferences, the listener may not be readily receptive. In this context, the -

* underlying information might become obscured. Therefore if music is to be employed at
‘the computer-human interface, it should be carefully chosen and structured so as to
appeal to the user aesthetlcally as well as informatively. In order for a musical interface

tobea truly global communications techmque it must fully exploit the features of music.

- In particular it must possess the flexibility to cater for many different musical tastes and -

cultures in order to appeal to a wide range of potential users. This can Be accomplished -

by exploiting the features of music that transcend cultural differences such as tone

intervals etc. At higher structured levels the presentations would need to be tailored to the

classic structures inherent within the target culture.

When comparing the audio" and visual senses Minsky [144] says that “When we enter a .

room, we seem to see it all at once: we are not permitted this illusion when listening to a
symphony.. hearmg has to thread a serial path through time, while sight embraces a

| space all at once.” He also states that there are strong similarities between these two
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modalities by “arguz'ng that hearing music is like ﬁewing scenery” and that “when vi)_e
- hear good music ourl'minds react in very.much the same way they do' when we see.
thing;ﬂ” Bearing these commonalities in' mind it can be surmised that music might
possess many of the qﬁalities that pictures do. As Minsky said, we do not get an overall

_ apprecmtlon of the whole as we do with sxght but there are certain snmlarltles in the ‘ways

~ . in whlch we react to the 1nformat10n

* To help outline the benefits of music as a commumications medium it can be compared to |
~ the visual medium 'by‘ identifying the_parzﬂlels ‘between their respébtive elementary
building blocks. Alty [3] draws parallels between still images in the visual domain a;id _

music in the auditory domain:
: e Pitch (frequency) - can be seen as the audio equivalent of Colour.
e Timbre (instrumental sound) - comparable to Texture.
. Volume (loudness) - analogous to visual Brightness.
. Durétion (‘on’ period) - again corhparable to visual Brightness.
e Reverbgration (echo) — closest visual comparison might be Focus..
» Location (stereo placement) - seen as 2 visual cobrdinéte on an X-¥Y piane.
In an undocumented informal test performed by Alty [3] that corresponded bounded
numbers to bounded shades and tone.s, it was found that the majority of people thought .
that they would find it easier to 'place a random nbﬁe than a random shade of colour
(within the bounded regions). This is of course unsubstantiated as no actual testing was
carried out, it was simply individuals views and thus based upon pure conjecture, but the

users attitudes do in some way support the validity of an investigation of a musical

commumcatmns mediurm.
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The next stage building blocks are composed of the following [3].
e Chords- Harmohf.‘ -
e Complex textures - Orchestration.

At this point music and the visual media diverge considerably [3]. Chords (harmony),

1hythm (note repetition with dlfferent duratlons) and polyphony (playmg simultaneous -~

musical parts) are very deﬁcult to map onto the visual medium because of the dlfference '

- between their respective eprmtat;ons of time, That is to say that:

» Audio channel - copes with a number of simultaneous events in parallel and is a
continuously moving sampler that cannot easily replay recent events without .

breeding confusion.

. Visual channel ~ for still images the focus is upon a srhall pért of the djspiay with -
awareness of peripheral events. The visual channel facilitates efficient scanning of
recent history and allows the user to reflect upon it. With regard to moving
pictures a temporal medium exists and such reflection and rescanning is not so

.'easily facilitated.

When comparing the scanmng of a painting to listening to a piece of music, a painting .
may be scanned time and time again which permits close exammatlon, whereas a musical
p1ece is listened to by the ear in real-tlme and does not easily facilitate this depth of
examination. However, close exammatlon is facilitated with repeated hstemng This
highlights a difference of temporal properties between visual stills and music. However, -
moving pictﬁres possesé a temporal dimension too which.is often suﬁplemented by an

'_ audio representation.
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o Composers' employ complex techniques to reinforce a piece of music into the users
memory. Pictures have been transformed into muswal composition in an atternpt to help o

- better understand the pictorial data [140]

Given the lack of any extensive formal or empirical investigation into the use of music
for communicating information and the strengths and attributes associated with the
auditory medium and more specifically the strengths and attributes of music, there is

clearly room for some detailed investigation.
2.4.8. Conclusions - Music in auditory systems -

Within the field of human-computer interaction very little emphasis has been placed on
the use of the anditory channel as a communication medium fc;r computer generated
events and entities. Interface designers have tended to concentrate on the development of
graphical user interfaces, often using the auditory medium to convey trivial information
as more of a novelty than of any real value. Although not an area of concern in this thesis,

this direction of interface design has left visually impaired users at a disadvantage.

Over the last decade, v1suahsat10n researchers have found that aural representations can

icomplement enhance or sometimes be superior to visual representations alone. This has

. spawned the new research area of auditory display in which those involved are examining - |

the different ways in which the auditory channel can be utilised in the process of human-

computer interaction. Different techniques for.using sound such as sonification and -

‘auralisation have been developed to exploit sound in various HCI applications. For
example, audio enhanced software interfaces, sound-controlled data exploration systems
or debuggers that use sound to represent program execution. Early systems ténded to be

, hybrids employing aural and graphical visualisation methods. Many systems use sound

effects.

~ Recent research has emerged in the field of human-computer interaction to support the

potential of the auditory medium at the interface. In particular, there has been much
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interest into the use of music in this context. The evolution of such musical auralisation'_‘
techniques as Earcons have begun to exploit the complex structured features of music,
Designers are now becoming aware of the potential of music and its ability to
communicate information to users. Music has been successfully used to aid visualisation

of software structure and program exeéutio_n as described previously in this chapter. -

All the described musical auralisation systems use musical pitches and MIDI data in their
approaclies to auralisétion. Although the term ‘music’ has been used to describe their
'auditoryr" outputs, few 6f them employ any musical grafnmar or structured framework.
Most of the systems that use music tend to do so on]y in the sense of representing data as
musical pitches .witho.ut any reference to musical ‘fonn.s, structures or syntz'ix; Music is
based upon a defined structure, or set of rules. Structuring auralisations ‘acco‘rc.ling to
simple syntactical rules offers the hope of music forming the basis for understanding
algorithm and program execution. Recently, efforts have been made to use more formal -
musical frameworks in auditbry dﬁsplay. Leplatre and Brewster [125] have begun
investigations into using music to aid navigatioﬁ around complex hierarchies of
information. Hankinson and Edwards [100] have started to Iaiy down a formal théoretical
_foundation for the use of musical grammars in audio cénnnunica_tion' applications.
Furthermore, most systems require the programmer to compose the musical sequences, so
the musicality of the output Iargelj depends upon the programmer’s musical ability. Such

| systems simply permit the mapping of program data and events to tonal outputs,

- Very little formal or empirical evaluation has been carried out in this field. With the
exception of Vickers’s [181] research into understanding prog;ét_m staté through "musical
software visualisation and Rigas’s [4] research with the visually impéired, there is a lack -
of evidence that communicafing élgorithrn (or program} information uéing inusic via the |
auditory medium is useful. Their experimentation using CAITLIN and Audiograph -
- resbect_ively has shown that listeners can use music well to understand and visualise
entities such as program structure and graphical objects. Vickf_:ré also showed that theré
~ might exist some cultural issues that could be relevant, but not so as to invalidate the

approach he took.
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One of the key issues surrbun_ding the use of 'ml...tsic withiﬁ algorithm' visualisation i$ how | .
to map domain entities to musical structures. Studies by Rigas have determined

empirically that certain musical features can be shown to convey information well. The |
ability of music to cdnvey temporal and spatial information in parallel data streams
within a coherent structure and syntax indicates that 1t offers much potential as a means

" of communicating information at the human—computer interface. In order to help |
disambiguate auralised information, several techniques have been employed when
performing musical mappings. These techniques have éxploited the features of tix.nbre,‘
rhythm, vblumé, éscend_ing pitch and spatial location of timbres. Given that previous .
experimentation in the field has shown that the approach of using musical auralisation to
- understand and visualise entities can be sucgeésful, it is feasible to extend the research by

enhancing the auralisation techniques by designing a bettér spatial approach. -

Maﬁy adequate tools exist for creating auditory' interfaces. However, MIDI i.s limited for -
. spatial audio. The spatial location employed by 'many of the systems described in this
chapter has been trivial, Only exploiting the use of lst.ereophony in most cases. The
limitations of the human perception accuracy of stereophonic placement have left it very .
much underu_sgd in the developnient of musical auditory systems and applications. Few
auditory displays have employed th.ree'-dimensional timbre placement as a means of
aiding the disambiguation of information. The explo1tat10n of 3D spatial dlstnbutlon as
an extra mformatwn cue mlght improve users’ understandmg of musxcally auralised
information, particularly program /- algonthm state and execution. In the followmg
chapter this spatial distribution and the assoc1ated propemes of the human perceptlon of -

spatially located sound sources are 1nvest1gated

. 'The main purpose of this thesis is to examine how felétively inexpensive 3-D sound
techniques can be. us_ed to improve disambiguation of musically auralised.sorting'
algorithms. This thesis is also concerned with the effect that musical training has on .
h understanding such sorting algorithm auralisations. The emphasis on using 3D to enhance

the Spatiél_ distribution of the auralisations has been born out of the limitations of

 stereophony and the aim of maximising the disambiguation of the presented information.
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) Chapter 3 _
Spatial Audio for HCI

Most modern computers provide some kind of audible "beep" to alert users, but today's _
more xﬁoderh multimedia-equipped corhputers are eapable of providing CD-quality steree
sound. ‘Cornventional stereophonic audio systems can easily piace a sound at any position
. between the left and right loudspeakers (or earphones) However, with true 3-D sound
- the source can be placed in any vectored location, at any height, distance or azimuth. In
| th1s section, the features of acoustics, sound localisation and several techniques for :

creating spatial audio environments will be investigated.
3.1. Basics of sound

" The process of communication is one that involves pattern recognition and information
processing. Living. organisms perform these processes by interacting with their
environment and other living organisms. Roederer [162] describes that external stimﬁli
are processed through various stages in the sensory systems. In the case of the visual
sense, Roederer points out that fhere are objects in space but in the auditory sense the.
objects are in time. A visual dbject has a physicel presence in real space whereas due to
the temporal nature of sound waves, an auditory o‘bject has a prese_nce_' within time. It mey
be possible to use 3D audio to create a spatial aspect in a typically temporal medium, this . .
extra feature might aid the disambiguation of information when musically auralising -

- sorting algorithms.

Harris [101] reports that a human being is capeble of defecting changes in frequency of
' about 3Hz for frequencies up to about 1000Hz. ‘For frequencies between 1000Hz and
IO ,000Hz, the required frequency change for recogmsmg a pitch difference can be
spec:lﬁed as a constant. For example, at 10 OOOHz, a 40Hz cha.nge is required in order for
one to detect the change. This limits the amount of information that can be conveyed

when using pitch as the resolution has limits based upon huinan perceptual factors. This
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_ mi'ght' impose limits on the types of information that could be conveyed when auralising

algorithm state and execution.
* There are several characteristics that are key factors in the process of hearing:

‘s Pitch is the sound's perceived frequency. Low frequencles produce a low pitch

and hxgh frequencxes produce a hlgh pitch.
* Loudness is propo.rtional 1o the ampIitude of the sound.

» Timbre denotes the special set of characteristics associated with a particular

creating instrument. For example, different instr_umén_ts produce different timbres.

- Intensity aleo has an effect on the perceived pitch of tones. Stevens [173] determined the
effect of intensity on the pitch of tones for a number of frequencies between 150Hz and
12,000Hz. It was concluded that for frequencies abcve 3,000Hz, a constant pitch is
maintained despite any mcreasmg intensity. Below 3,000Hz the pitch of the tone 1s
perceived subject to the 1nten81ty In order to reduce this effect the intensity could be
fixed fall all tones. In the context of this thesis, the intensity levels W1ll only be ad_]usted

* as.a matter of comfort.

When playing concurrent tones, if the two notes differ by more than ten percent then they
become distinctly separate and the listener perceives them as two separate notes. The
- " changes in loudness that result when two notes are separated by less then_ ten pefcent are
known as beets. Risset [161] defines the difference between consonance and dissonance
when more than one note is played at a given point in time: consonance occﬁrs when a
ccmbination of tones produces a pleasant result and diseonancc occurs when a-
combination of tones produces an unpleasant result. In the visual domain, a significantly_
| _ stroﬁg visual stimulus prevents the perception of a weaker visual stimulus. This also
translates to the auditory domain when one tone may mask another, though masking

- usually occurs when one tone is very intense and the other tone is very weak. To reduce
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- complex1ty the proposed aurahsatlons in th1s thesis could be performed sequentlally Tl'us

means that no sound event would share its presence in time with any other sound event.

1t s important to understand the process of hearing in order to create effective
' aurali'sation's that exploit as many features of the process as possible. Wolf and Marsnik

{199] describe listening as a complex process involving four elements:
. Hearing. This i.s the physiological process of receiving acoustic st;ir_nulli or .
signals. Hearing is fundamentally important in listening, because any form of

listening requires a good hearing capability.

'« Attention. The attentron and the conscious awareness of the listener are requrred

1n order to attend to a certain message.

. Understandmg The mterpretatlon and assrgnment of a meamng to the message

or signal received and attended
¢ Remembering. The process of storing the acoustical information received for
later retrieval. It mvolves two types of memory, the short-term rmemory (STM)
‘and the long-term memory (LTM) '
Wolff and Marsnik [199] further describe that there are a number of axioms for listening:

o Listeningisa mentalloperation. ,

e Lrstenmg is active. It 1nvolves several mtellectual operations. A person needs to

be alert when lrstemng

‘o Listening is learned. It can be learned and it improves with training.
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e Listening is complex. It involves, as noted above, hearing, attention,.
understanding and remembering.
- & Perceptive listeners must be trained, No.matter how much a person wishes to

listen, they can only do so to the level to which they have been trained.

o Listeners share responsibility for communication success.” Listeners have to
exercise their minds and sometimes do some fast mental manoeuvring -to

“understand a message (this applies particularly to conversation).
. Listéning is as vital a communication skill as reading. - |

e Listening is crucial to all communication. Listening is a major part of verbal

_commiunication and without it verbal communication itself cannot exist.
3.2 Spatial hearing and psychoacoustics

~ The ability of the auditory system to localise sound sources is just one componént of dur
s perceptual systems, it also has a high survival value, Living organisms‘ have found many
ways to .ex.tract directional information from sound.and. often usé fhefn in a self-
' preéerving capacity. Although there are some unknowns concerning the perception of
| écoﬁsti_c sources, the major cues have been known for a 10ng time. Many psychological
| studies have established how accurately we can localise acoustic sources. In order to
- generate spatial sound for HCI and create effective algorithm aurahsatlons it is 1mportant

- to understand that which influences the human audltory system
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32.1. Vectored Coordinate Systems

’

Figure 3.5 — Head-centred rectangular-coordinate system,

In order to specify the location of a sound source relative to the listener, it is‘n‘ecesséry to
~ utilise arc-o'ordinate system. Duda [83] noted that one natural choice is the head-centred
rectahgular-cbordinate system éhown in Figure 3.5. Here the x-aﬁs goes (approxirriateiy) '
through the right ear, the y-axis points straight ahead, and the z-axis is vertical. This
defines three standard planés, the x-y or horizontal plane, the x-z or frontal plane, and the

y-z or medijan plane. The horizontal plane defines up/down separation, the frontal plane

- deﬁnés-_ front/back scparatiph, and the median plane defines right/left separation.

Due to the approximate spherical éhape of the human head, a spherical coordinate system
is usually favoured. The stahdard coordinates used in a spherical coordinate system are
azimuth, elevation and range. Dud_a [83] points out that there are two common ways to
- define these coordinates, the ‘vertical-polar coordinate system’ and the ‘inter-aural-polar
: cdordinéte_ system’. The vertical-polar coordinate systefn, shown below on the left, ié the
most common spherical coordinate sysiem. -With this system the .:;'1zirnuth‘Ea is first
measured as the angle from the median plané_to a frontal plane passing through both the
source and the z-axis. Secondiyv the elevation.“’ is measured as the angle up from the

horizontal plane. With this choice, surfaces of constant azimuth are planes through the z-

axis, and surfaces of constant elevation are cones concentric about the z-axis.
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Figure 3.6 — Vector-polar and Inter-aural-polar coordinate system.

The second of the spherical coordinate systems is the inter-aural-polar coordinate system, - '

g shown on the right in Figure 3.6. Wlth ﬂ‘llS system the elevation is first measured as the

" angle ¥ from the horizontal plane to a plane that passes through the source and the x-~axis,

which is the inter-aural axis. Secondly the azimuth is measured as the angle ® over from

the median plane. With this choice, surfaces of constant elevation are planes through the

. inter-aural axis, and surfaces of constant azimuth are cones concentric with the inter-aural

axis.

'3.2.2. Azimuth cues

Lord Rayleigh (John Strutt) was one of the pioneers in spatial hearing research and '

approximately one hundred years ago he developed his Duplex Theory [157]. According

to this theory, there are two primary cues for azimuth; Inter-aural Time Delay (ITD) and

Inter-aural Intensity Difference (IID} (Figure 3.7).
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Sound Soures

' Figure 3.7 - ITD and IID diagram.

Lord Rayleigh had a simple explanation for the ITD. So_nnd travels at a speed of
approximately 343 m/s, say ‘c’. Consider a sound wave from a distant source that strikes
a spherical head of radius ‘a’ from a direction specified by the azimuth angle ®, Clearly,
the sound arrives at the right ear before it arrives at the left ear,. since it has to travel the -

extra distance®8+ 2518 to reach the left ear. Dividing that by the speed of sound it is.

possxble to obtain the followmg simple formula for the 1nter-aural time delay

I'I'D=_E-(8+sin8) . =80 s g =+450"

Furthermore, Lord Rayleigh also observed that the head diffracts sound wa\res. He solved
the wave equation to show how a rigid sphere diffracts a plane wave. His solution
showed that in addition to the mter-aural time delay there also existed a s1gn1ﬁcant
difference between the 51gna1 levels at each ear, thls is now termed as the inter-aural

intensity dlfference (11ID).

" IID is highly frequency dependent; at ‘lb'w frequencies, rvhere the Wavelength of the

sound is leng_relative to the head diameter, there is hardly any difference in sound
pressure at the two ears. However, at high frequenci_es, where the wavelength is short,
- there may well be a 20dB or greater difference. This is known as the head-shadow effect,

where the far ear is in the sound shadow of the head.
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Rayleigh’s Duplex Theory [157] states that the IID and the ITD are cornpleinentary. At
low frequencies (belowi 1.5 kHz); there s little TID information, but the ITD shifts the
waveform a fractioﬁ of a cycle, which is easily detected. At high frequencies (above 1.5
kHz), there is ambiguity in the ITD, Since there are several cycles of shift, but the 11D
resolves this directional ambiéﬁity. Rayleigfx's Duplex Theory sayé that the IID and ITD

taken together provide localization information ﬂlroughout the audible freqﬁency range.

© 3.2.3, Elevation cues

The primary cues for azimuth are largely binaural whereas the primary cues for elevation
are often considered to be monaural. The outer ear or pinna can be seen as a directionally
- dependent filter. It can amplify some _ﬁequencies'through its resonant cavities while at
the same time attenuating other frequencies due to the interference effects caused by

other geometrical attributes,

'_ Above , : Fra_rit‘
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| Figure 3.8 ~ Direction dependent frequency response from Duda [8‘3].

Duda [83] illustratéd, m Figure 3.8, measured frequency responses for two different
- directions of arrival. In both cases it can be seen that there are two paths from the source

to the ear canal; a direct path and a longer path following a reflection ﬁom the pinna.
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Duda further explains that at moderately low frequencies, the pinna essentially collects

| additional sound energy, and the signals from the two paths arrive in phase.

quevér, at high frequencies, the delayed sigﬁal is out of phase with the direct signal,
and destructive interfercnc¢ oceurs. _The greatest interference occurs when the difference
in path length d is a half wavelength, i.e., when f = ¢/2d. In the example shown, this
produces a "pmna notch” around 10 kHz. W1th typlcal values for d, the notch frequency

is usually in the 6kHz to 16kHz range.

The"pin'na notch is noticeably larger when the sound source i in front of the listener, this

is because the pinna is a less effective reflector of sounds that come from above than for

sounds that come from the front. Furthermore, the length of the sound path changes with
the elevation ahgle, this results in shiﬁin'g.the frequency of the pinna nqtch; Therefore,

both the size and frequency of the hotc_h are dependent upon the elevation.

3.2.4. Range cues

Estimating range is the most difficult element of localising sound sources in a spatial

- environment. As humans we are typically best at estimating azimuth, next best at
estimating elevation and worst at estimating range. The cues for each of these localisation
attributes are understood in the same order, we know most about azimuth cues and least

about range cués. There are, however, several cues pertaining to range.

As a sound source gets closer toa human head, the mter-aural intensity dlfference will
increase. This increase in difference is particularly noticeable for ranges under one meter.
Therefore it can be used as a cue for estimating range, distant sounds have very little IID

whereas clo-se sounds have a relatively large IID.

Motion parallax refers to the fact that if a listener translates his or her head, the change in

azimuth will be range dependent. For sources that are very distant, a small shift causes

very little change in azimuth, whereas for a close sound source, a small shift causes a
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relatively Iarge change in azimuth, This feature further assists in the human ability to
estimate range based upon geometry, this feature does, of course, require the listener to

actively move in order to identify the change in azimuth.. -

' _Anothe1 useful cue when est1mat1ng range is that of the ratlo of dxrect to reverberant
sound In a normal room the surface reflected reverberant energy of a sound source does’
not dlffer much from the sound source itself when it reaches the hstener It is also known |
that the energy received directly from a sound source drops off inversely with the square
of the range. Given these two characteristics, a comparison'c'an be made between direct
energy and reverberant eriergy where the variable is dictated by rhoving the sound source.

At close ranges, the ratio is very large, while at long ranges it is quite small.

As previously mentioned the energy received directly from_ a sound source drops off
inversely with the square of the rang.e. Therefore, as a constant-energy source approaches
- a listener, the loudness will increase. There is no direct one-to-one relationship between
- the received enefgy and the energy emitted by the source, this is because the relationship
is dependent upon the loudness of the rsignal source. When we estimate range using this
cue we ai'e more successful when we understand the context of the sound source.
Changing the volume of the sound source alone does not give the impression of a change
in range, therefore it is necessary to understand the source of the signal in order to create

the feIationship between the source and received energy.
3.2.5. Echoes and reverberation

As humans we are largely unaware of the quantlty of energy that is reflected frorn
'surfaces we are not conscious of such echoes unless they become extremely delayed and

apparent. Ina normal room it is obvious that sound waves are reflected from surfaces |
such as walls, objects, ceilings ete. Reflections also abound i in the outdoor environment,
they are reflections from the ground, vegetation and objects. The reflections that we are
- conscious of are those that exceed the echo threshold of approximately 30 to 50 fris,

sounds that have a delay of less thari this threshold are not easily determined as echoes
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but are nonetheless subconsciously used to aid localisation. Special rooms called
anechoic chambers are built to absorb sound energy, so that only the directly radiated
'energ,y reaches the ears. Such chambers essentially SUppress echoes by absorbmg them

into specmlly forrned surfaces that hne the chamber.

When creating a virtual 3D envirohment it is important to include such echoes in the
acoustic sounds that reach the ears, they are essential in localisation and playing pure

" sounds with no reflections would be similar to that of recording int an anechoic chamber.

We are, of course, not used to localising pure unreflected sounds and it would be alien for

~ us to estimate sound source positions in a non-reverberant environment. Upon entering an -
anechoic chamber for the first time, most people are astomshed by how much softer and

duller everything sounds :

‘ As previously mentioned, reﬂected sound is very common in ordmary acoustlc
environments. Such reflections do not interfere with our ability to locahze sources
' because we quickly adapt to a new environment, and our auditory system uses only -
partially im_derstood mechanisms to Sﬁppress the effects of reﬂections and reverberation.
The fact that we localize sounds on the basis of the signals that‘reach our ears first is
known as the ‘precedence effect’ or the ‘Law of the First Wavefront’ [1 86]. We are also

aware of the reflections that follow, we subconsciously use them to estimate range.

In a typical room, reflections begin to arrive a few milliseconds after the initial sound. If _
the initial sound is low frequenoy (below 250 Hz) and hence has a period that is longer
than that of the reflections, then the r_eﬂeotions ai'rive before the first wavefront (initial
direct sound). _After several cycles the sound pattefn_ that reaches the ears bécordes
complicated and rhixed, in this case it becomes almost impossible for the listener to
- localise the sound source. In sﬁmrnary, this means that Iow-frequency information is

rendered useless for localising sound sources in a reverberant environment.

Clearly, the inter-aural time delay is important when locali'sing sound sources althoﬁgh it

is severely impaired at low frequencies. However, that does not mean that inter-aural
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timing differences are unimportant, Other important tirriing information may be utilised,

in particular the inter-aural envelope difference (IED). The IED refers to the difference

between the transients at the onset of the emitted acoustic sxgnals

If a'sine wave is filtered into two channels, one low-pass filtered and the other high—paes

filtered, and the two channels are played through two loudspeakers pleced in different

. locations, then a listener would usually estimate the sound source to be emitting from the -

high-passed channel. This is commonly known as the Franssen Effect. Basically, the

starting 'transient provides unafnbiguous localization information, while the steady-state -

~ signal (low-pass filtered signal prov1d1ng most of the energy) is very dlfﬁcult to localize,

and in this circumstance the audltory system smlply 1gn0res the ambiguous mformatxon '
- 3.3. Basic spatial audio systems

Most people are aware of the possibilities of simple single plane spatial audio systems.
Such single plane spatial sound systems are primarily concerned with placing sound
sources at a fixed height and distance but varying the azimuth, There are two basic
classes of such systems, Stereophonic systems‘ (Two-channel systems) and Surround

sound systems (Multichannel systems).
33 1 Stereophonic systems (Two-Channel systems)

‘The concept of stereophony is a simple one and was the first succ'essful commercial
attempt at spatial sound reproduction. The coneept of stereophony is to- ut111se two
loudspeakers to produce two separate streams of audio, to produce a sound in the left ear
simply apply the sound to the left channel and vice versa for the nght_ear. If the sound is

equally applied to both channels then the resulting output is that of a perceived sound

~source between the two loudspeakers. It is important to maintain that the two - -

loudspeakers are in phase (pushing together and pulling together) otherwise the effect is
that of cancellation. Theoretically, if both channels, both signal sources and both

.Ioudspeakers are identical and the listener is sat directly between them in the centre of a
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symmetrical room then the listener would hear nothing when the two channels are
playing sound sources in exact anti-phase. The signal sources would effectively cancel - |

each other out. -

Maonaural Sourcs

gain: 0 < <1 ; '
-
Phantom Source .

SN
28

~ Figure 3.9 — The stereophonic ‘Phantom’ .sound source from Duda [83]'.

The perceived sound source shown in Figure 3.9 is dftenfermed a "phantom source" and
wiil appear to oﬁginate'ffom a point midway between the two loudspeakers when the
channels are equally applied. By "crossfading" the signal from one speaker to the other,

‘one can create the ‘impression of the source moving continuously between the two
loudspeaker positions. -Howev.er,. simple crossfading will never create the impression of a
source outside of the line segment between the two speakers, the very physical setup and . .

simplicity of the syétem will not permit this.

_ In a simple system such as this, another technique may be used instead of crossfadiﬁg to -
give the perception of é sound source somewhere between the two loudspeakers.
“This is sifnply achieved by delaying the sound source to one of the speakers by a fraction
of time. What this technique essentially doeé is to exploit the ‘precedenbe effect’ or the
‘law of the first wa\{eﬁqnt’. If the sound on the left is'cielayed by 10 or 15 ms relative to
the sound on the right, the listener will localize the sound on the right side. This applies |
“when the sound sources are of equal amplitude and still applies even if the sound that
comes from one loudspéaker is louder than that of the other. If the delay is too excessive
then the effect becomes disturbed and the listener hears the delayed signd_l as a mere
echo. Stefeoph_ony faqilitates the placement of sound sources along a line between the

listener’s ears. For the purposes of spatialising algorithm events it provides adequate _
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separation. However, for spatialising more complex information like algorithm data it is

limited in terms of resolution.
3.3.2. Surround sound systems (Multichannel systems) |

An extension of stereophony is the obvious progfessive step to utilise more than two
loudspeékers, this technique essentially employs a different loudspeaker (and channel)
for every desired direction (Figure 3.10). This is the same type of system that is
employed within surround sound cinemas such as Doiby Pro Logic Surround Sound [82].
In a typically reverberant environment this type of system exploits the Franssen efféct.'
Small loudsPeékers are placed at many locations except for ome- large speaker
(subwoofer) that provides the nondirectional, low-frequency content. The sigﬁals to the

small speakers are then complexly filtered to place the sound in the desired location.

Figure 3.10 — Multi speaker system.

* These types of systems clearly proﬁdé some amazing spatial sound effects but are often
very complex and costly to implément. They have been adopted by many commercial -
- cinemas and makers of hom¢ entertainment systems and have clearly made their mark in
| the field of spatial -audio. Surround sound systems can provide effective sound
spatialisation. This thesis is more concerned with using inexpensive 3D audio. techniques

and surround sound systems can be costly and complex.
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3.4 Binaural recording '

- The concept behind binaural recording is a very simple one, it involves simply recreating

the same sound pressure levels at each eardrum that would be present if the listener were

actually in the sound field. This technique only requires the use of conventiomal

stereophonic equipment as two channels (left ear and right ear) are all that is required.

The results of binaural recording can produce vivid 3D representations of sound sources.

. Mcrophones " Headphones
: é % JZ ;ﬁcoustic @
Saund Marikin /] Listerer \‘. <’

Source
ps T ' )
7 -

In order to recreate the same sound pressure levels 1t is important to take into account the

Figure 3. 1 1- Blnaural techmque

filtration effects that naturally ocour when we hear sounds. As previously mentioned,

~ sound localisation is primarily determined by the ITD, IID, reverberation and filtration

_effects (reflection and absorption) of the pinnae, Duda [83] oxpla_ined that in order to
“exploit these effects a conceptunlly simple approach is to put two microphones in the ear
- canals of an acoustic manikin (or human being) and record what they pick up (as shown
in Figure 3.11), the resulting recordings will have already been subjected to the effects of
- the environment and manikin, When the recorded left and right signals are fed to the left
and sight earphones respectively, the effect is that of the listener being present in the

original sound field. -

- The immediate problem that arises is that of the geometry of the manikin. If the manikin

and the listener have heads with the same size and shape, the same ITD and IID
1nformanon will be present; smnlarly, if the mamkm and the listener have pinnae with the
same sizes and shapes, the same elevation cues will be present. If, however, the
_geometrical differences between that of the listener and the manikin are significant, the
resulting perceptual 3D sound environment becomes subject to errors and localisation is
difficult.
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" The obvious way to reproduce a more precise individual listening experience is for the
listener to also be the manikin, this Way the geometrical similaritics of the recording head
and the listening head are as close as physwally possxble This does of course, mean that
each individual listener must have hisher own unique set of binaural recordings to .

| maximise the desired effect.

The technique of binaural recording is one of obvious economy and effect, there are ,

however, some disadvantages to using the binaural techniqlie:

’ | | » They require the use of headphones — due to the sounds being recorded
R within the eaf canal if is important to reprdduce at the same place, this
| limits this technique to earphones. | }

1 » They are not ‘. interactivé, but must be pre-recorded — a‘pure sound
P | source cannot be mampulated by binaural recordmg to produce a 3D
‘ - | o sound, what is heard by the listener must be pre-recorded and is

‘ - therefore fixed in the initial recorded location.

‘ . .« If the listener moves, so do the soﬁnds ~ as previoﬁsly mentioned,
‘ - because the sounds need i:o be pre-reéorded and are therefbre fixed in
‘ _ | ‘ the initial recorded positions. They are not altered when the listener
- moves his/her head during playback. For a truly interactive immersive
‘ environment the sounds should give the same pérceived fixed location
_ even when the listenér moves his’her head. This would requiré the
‘ : . addition of some head trackmg equxpment and further real-tlme
| ﬁltratlon ‘

-+ Sources that are directly in front usually seem to be much too close —
‘ ‘ . this is a known problem with binaural recording, frontal range doesnot

seem to translate well using the binaural technique.

» Because pinna shapes differ from person to person, elevation effects

are not reliable — pinnae are unique to each individual, even each of
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. the pinnae ona sin'gle Iistener will always be _different. Becauseiof this

| _individuality,:_binaurall recordings' do not translate well f‘romf user to

c user (partieularlv the pinna "dependent elevation Cues) ‘The 'rnost E
-'pragrnatlc approach is to use a ‘M. Average head for recordmg, '[hlS.-,_- :
_way ensures maximum possrble effects over a broad range of llsteners

Some degradatron of locahsatlon however 1s 1nev1table

A binaur'al'recording can b.e“improved-if we overeorne'some of the issues 'rn'entioned_l
- above in order to make the listening expenence more effectlve The next step is the use of
head-lelated transfer functrons (HRTFS) Binaural recordlng does offer an effectlve and :

, relatrvely mexpenswe solutron to the . spatrahsatron of musrcally aurahsed sortmg

.. algorrthms
- 3.5 Headphones vs.‘ Loudspeakers

It was stated earlier that the concept behind binaural recording is a very simple one. It

1nvolves srmply recreatmg the same sound pressure levels at each eardrum that would be

present if the listener were actually in the sound field. If the recordmg is made in the ear

~canal then it stands to reason that when the binaural recording is played bacl_{ it should be

played in exactly (or as .close' to as possible) the original position of the'r'ecording '

transducer, In order to fulﬁl this requirement it is’ necessary to employ earphones to
ploduce the sounds at the ear canaI Earphones certainly s1rnp11fy the problern of
' dehverrng one sound to one ear and another sound to another ear, however, earphones do '

B have certain problems

| . Earphones often have filtration characterlstrcs such as notches and |
peaks in their frequency responses sueh charactenstrcs often
resemble pinna responses In order to circumvent this problem it 1s
~important to use compensated earphones, if uncompensated

earphones are used then elevatlon effects can become mgmﬁcantly,

| _'augmented
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. Earphories are often uncdmfortable' ‘and headphones can be

- particularly cumbersome. The better the acoustic quality of the
headphones the larger and heavier they often are, this can cause
them to be very uncbmfortab_lei for a listener to wear for any
lengthy period of time. '

« One of the most commonly noted characteristics of earphones is
that when sounds are played back they often appear much closer
than they were in the original recording. This can, of course, be

compensated through some filtering. -

G-iven that earphones have tﬁgsé disadvantages if is :worthwhile looking for an alternative.
Loudspeakers do not suffer frorﬁ most of the problems associated with earphones and are
" therefore worth considering as a viable alternative. The immediate question that arises is
" how to successfully deliver binaural recordings over loudspeakers, the importance of

reproducing the recorded sounds at the ear canals has already been highlighted.

A method of replicating thé production of sound in the eai' canals using loudspeakers
needs to be invesﬁgated. In order fo sﬁccessfully. irﬁplernent such a system it is irnportant '
to note two key issues. Firstly, the sound produced at the loudspeakers must be filtered to
* replicate how it would sound to the user theri playback is via output dc_:vicés placed - -
- within the ear canals. Secondly, some co-channel cross-talk will be present due to both
channels having to traverse the same medium of aif (Figure 3.12). On way of addressing
the latter issue is to .emploj} a technique known as cross-talk-cancellation. Cross-talk-

cancelled stereo is also known as trans-aural stereo.

78




79

Figu.re 3.12 ~ Co-channel cross-talk from Duda [83]. -

Duda [83] éxplains that the idea is simply expressed in the frequency domain. In the

configuration shown in the diagram above, signal S1 drives the left loudspeaker and
~ signal S2 drives the n'ght loudspeaker. The signal_Yl reaching the left ear is a mixture of
S1 travelling through the H11 medium and the "cross-talk" from S2 travelling through

the HI2 medium. More precisely, Y1 = S1¥H11 + S2¥H12, where H11 is the HRTF . -

between the left speaker and the left ear and H12 is the HRTF between the right speaker
and the left ear. Similarly, Y2 = S1*H21 + S2*H22. What is reQuired is a way of
, rerﬁoving the cross-talk components and the effects of the Hmn mediuins to yield S1
being purely present at Y1 and S2 being purely prcsént at Y2. This diagram can be

mathematically represented as follows:

T Hyy Hp |5
Yol [Hyy Hpp|(8p]

In order to ﬁnd the desired oufputs at S1 and S2 énd hence cancel out the effects of the -

mediums and the cross-talk the equation needs to be rearranged as follows: -

-1 _
Sy Hn Hpl| N1
s Hyy Hyppl |F

»
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" Cross-talk-cancelled stereo can be quite effective when done carefully and can produce -

elevation as well as azimuth effects. The phantom source can be placed significantly
outside of the line segment between the two loudspeakers. Provided the listener is centred

between the loudspeakers, crosstalk cancellation is relatively insensitive to front-back

motions of the listener, however, crosstalk cancellation is degraded when the listener is |

off-centre or not facing forward. . Another way of saying this is that the sweet spof (the

optimum listening position for maximum effect) is Idng and narrow.

Lbudspeaker 3-D audio systems are effective in desktop'coinputing_eni/ironments. ‘This
 is because there is usually only a single listener (the computer user) who is almost always

centred between the spcékers and facing forward towards the monitor. Thus, the primary

user gets the full 3-D effect because the crosstalk is properly cancelled. In typical 3-D
audio applicaﬁoné, like video gaming, other listeners may gather around to watch, In this
case, the best 3-D audio effects are heérd by others when thej are also centred with
~ respect to the loudspeakers. Off-centre listeners may not get the full effect, but they still

hear a high quality stereo program with some spatial. enhancements.

 For headphone presentation, Wenzel [192] indicates that, "Alternatively, . éven
 inexperienced listeners may be able to adapt to a particular set of HRT Ps as long as they
provide adequate cues for localization.” Wenzel further notes that a reasonable approach
is to use HRTFs from a subj éct whose measurements have been "behaviourally
~ calibrated" and are thus correlated with known perceptual ability in both open field and
headphone conditions. Wenzel reports that in a recently completed study [192], sixteen

inexperienced listeners judged the spatial location of sources presented over multiple

~ loudspeakers in the open field and over headphones. The headphoné stimuli were

- generated digitally using HRTFs measured in the ear canals of a representative subject (a

good "localiser") from Wightman & Kistler [196, 197). For twelve of the subjects," N

* localization performance was relatively accurate, with judgements for the non-

individualized stimuli over headphonés being nearly identical to those in the open field.
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- Wenzel further reports that this data suggests that most listehers can obtain useful

directional information for an auditory display without requiring the use of individually -

tailored HRTFs. The results described above are based on analyses in which errors due to
front/back confusions were resolved for open field versus simulated open field stimuli.

Expenenced listeners exhibited front/back confusion rates of about 5% versus 10% and

inexperienced listeners showed average rates of about 22% versus 39%. Although the
reason for such confusmns is not _completer understood they are probably due to the °
static nature of the stimulus and the ambiguity resulting from the "cone of confusion” '

described by Blauert [21]. For the jjuxposes of spatialising auralisations it would be the

SImplest approach to used headphones This makes the presentatlon as effectlve as

p0331ble and reduces design complex1ty

3.6. Head-Related Transfer Functions

. Sound g
Source £

(1)

%) .=I hy {1} x(t-;l:) dr . yxg(t) = _[ hplt) x{t-r)de

Figure 3.13 - HRTF measurement from Duda [83].

Duda [83] pointed out that in order to find the souhd pressure that. an arbitrary sound

© source x(t) produces at the eardrum, all 'tha_tt needs to be done is to find the impulse
- respohse h(t) from the source to the eardrum. This impulse response is called the Head-
Related. Impulse Response (HRIR)(Figure 3.13). In the frequency domain its Fourier
transform H(f) is called the Head Related Transfer Function (HRTF). The HRTF
“provides all of the physical cues for source localization. Each ear requires _one HRTF, so

for each given fixed position in 3D space it is necessary to determine a pair of HRTFs.
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When the HRTFs are applied to a monaural sound source then the resulting listening
experience is that of the sound source emitting from the position in 3D space dictated by
~ the pair of HRTFs. If a sound was required to move around_ the head within a cube of 5
by 5 by 5 vectored coordinates (125 vectored coordinates) then 125 pairs (250) HRTFs
would need to be determined. The sound could then be placed in any of the 125 positions
by applying the relevant pair of HRTFs to a monaural sound source to create a
sy11t11e31sed binaural sound source. For the purposes of spatlahsmg aura11sat10ns HRTFs
offer a flexible and reahstlc solution. However it is often difficult to obtain a good set of

HRTFs and can be expenswe to create your own.

3.6.1 Head tracking

One of the issues addressed earlier was that of binaural recordings beiﬁg non-finteractive._
The main issue raised was that no feedback path was present to allow for user response,
chiefly the motion of the listener, When a listener hears a sound his/her natural response
is to shift gaze to the sound source. Thisloﬁen results in trying to align the head such that

- the sound source appears directly in the line of sight. Given that binaural recordings are
usually confined to fixed positions it is necessary to odjust the perceived location in
relation to the listener’s head motion. If this can be achieved the listener gains the

~ impression of being in a more realistic virtual acoustic environment. If this issue remains
unaddressed then some of the spatial effects can be weakened or even destroyed Sources
that are supposed to be dlrectly ahead or directly behind can be parncularly augmented :

since the rate of change of blnaural cues is greatest in those dlrectlons

An obvious solution is to employ some form of head motion tfacking 'sj%stem and us'e the
measured parameters to filter thelsou.nd source such that it moves to the correct location
in relation to the listener’s head. When a monaural sound source is convoluted with the
relevant pair of HRTFs to produce a perceived 3D sound it seems obvious to change the.
current pair of HRTFs in relation to the tracked position of the listener’s head. This
results in a real-time spatial audio system where the HRTFs (and hence relative location

of the perceived sound source) are constantly updated. Latency is the time between when
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a motion is made and the corrected HRTF is used, this shoﬁld typically be less than 50 ms

or the lag will be perceived. If one switches between one HRTF and another, audible

clicks may result. This may be overcome by implementing some "crossfading" between

‘the two - states. Head tracking is important in creating realistic audio environments.

However, for simple spatialisation of algorithm auralisation it is not essential, This thesis

is concerned with using low-cost 3D audio.

3.6.2. KEMAR responses

If HRTFs are to be used for the spatlahsatmn of sortmg algonthm auralisations then some

understandmg of their denvatlon is requ1red Thls derivation also shares some common

. features with binaural recordings.

" The HRTF is a function of four variables; three space coordinates and frequency. Most

HRTF measurements are made in the far field (greatér that one metre), this esséntially
reduces the HRTF to a function of azimuth, elevation and frequency because the HRTF
drops off inversely with range greater than one metre. Duda [83] made a series of HRIR '
measufenients on an acoustib manikin that matches as closely as possible the average
human head, this mamkm is known as KEMAR (Knowles Electronics' Manikin for

Auditory Research). To gain an understanding of how KEMAR's response varies with

azimuth and elevation, the followmg graphical representatlons of the HRIR and HRTF
were produced by Duda [83] ”

qure 3.14 is an image of KEMARs experlmentally measured head-related 1mpulse

© response (HRIR). It shows the response of the right ear to an unpulswe source in the

horizontal plane. The strength of the response is represented by brightness. Duda [83]

. explams that the sound is strongest and arrives soonest when it is coming from the right

side (azimuth = 90°). Snmlarly, it is weakest and arrives latest when it is coming from the |

left side (ammuth 270°) It can also be seen that the arnval tlme varies with azimuth i in
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an approximate sinusoidal fashion. The arrival time conforms well to the ITD equation.
In particular, the difference between the shortest and the longest arrival times is

approximately 0.7 ms as the theory predicts the delay to be from one ear to the other.

on
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Figure 3.14 - KEMAR’s HRIR in the horizontal plane from Duda [83].

The initial sequence of rapid changes (bright and dark bands) is due to pinna reflections.
The peak that arrives about 0.4 ms after the initial peak is due to a shoulder reflection.
The response when the source is in front is quite similar to the response when the source
is at the rear. This correlates with the difficulty associated with localising sound sources
in the front/back plane. This difficulty is often overcome by the user moving his/her head

to further localise the sound source.

Duda [83] explains that when the source moves around the head in the median plane, the
changes were much more subtle and the arrival time was approximately the same. In the
horizontal plane the changes were much more dramatic, this was due to the strong

asymmetry of the microphone in relation to the manikin head. In the median plane the
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symmetry is strong and differences do not show up quite so easily. The main changes are
in the relative arrival times and strengths of the pinna reflections. This appears in the
frequency domain as a notch whose frequency changes with elevation. It can be seen in
Figure 3.15 that the difference between front and back shows up once again in the subtle

yet clear lack of symmetry about a horizontal line at 90 degrees elevation.

150 §

100

Elevation (degrees)

Time (rAs)

Figure 3.15 - KEMAR’s HRIR in the median plane from Duda [83].

The mesh plot in Figure 3.16 shows the frequency response for KEMAR's right ear as the
source moves in the horizontal plane. Duda [83] notes that although the surface is bumpy,
it can be seen that at any one frequency there is an approximately sinusoidal change with
azimuth. As expected, the response is greatest when the source is at 90° and directed into

the right ear, and weakest when the source is at 270° on the opposite side of the head.
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Figure 3.16 - Frequency response for KEMAR's right car from Duda [83),

Once again, front/back (0° and 180°) responses are quite similar, The graph in Figure
3.17 shows two plots; one of the response from the front and one of the response from the
back. The front response is a few dBs greater than the back respon.se in the frequenﬁ:y
range from around 4 to 7 kHz. This is largely due to the asymmetry of the pinna. The
peak around 4 kHz is due to ear-canal resonance. The notch around 10 kHz that is also
clearly visible in the surface plot above is the "pinna notch", whose frequency changes

with elévation.‘

: 'Figuxe 3.17-KEMAR’s frontfbéck frequency response, horizontal plane - Duda [83).
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The plot in F jgure 3.18 shows how KEMAR's frequency response varies as the source
~ moves around in the. median plane. Duda {83] indicates that the broad ear-canal
resonance around 4 KHz does not change and that the frequency of the pinna notch
changes significantly with elevation. It goes from just below 6 kHz at low elevations ﬁp
to approximately 10 kHz as the source moves ovérhead, When the source is directly
above, fhe notch is hard to see, and the frequency response is fairly flat. It reappears as

the source moves around the back of the head and back towards the floor.

-Response (dB)

2 - 4 B 8 10 18
Frequency (kHz)

Figure 3.18 — KEMAR’s frequency response in the median plane from Duda [83].

As préviously mentioned, the shapeldf the pinnae determine the behaviour in the median-
plane' and this differs from listener to listener. Listeners with smallef ears produce a
lresponse with the frequencies shifted higher. This difference in _reéponse once again
. highlights the sensitivity of localising the elevation of sound sources from person to.
~ person. KEMAR is not exact for all listeners but is 'certainly a good approximation for

general application..
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The complexity of the spectral profile presented to.the ears has made it difﬁcﬁlt to

. formulate a comprehensive model of human directional hearing cues for sound from any

azimuth or elevation angle. Wenzel [192] highlights the issue of individual differences by

‘ staﬁng that, "4 recent study by Wightman and Kistler [197] 'cbnﬁrmed the perceptual '

adequacy of the basic technique for static sources; source azimuth was synthesized

nearly perfectly for all listeners while source elevation was somewhat less well defined in

. the headphone conditions." Further to this Blauert {21] has suggested that for successful
' three-dimensional sound presentation over headphones it is nécessary to measure each -

-potential listener's HRTF. However, as Wenzel [192] notes, "from an applied standpoint

measurement of each potential listener's HRTF may not be practical. It may also be the

case that the user of such a disPIay will not have the opportunity'of extensive training,

thus a critical research issue for virtual acoustic displays is the degree to which the

- general populatton of listeners can obtain adequate localization cues from stimuli based

‘on non-individualized transforms.”

- Preliminary data [193] suggests that using non-listener specific transforms to achieve

synthesis of localized cues is at least feasible. For experiencéd listeners, localization
p'erfomi_ance was only slightly degraded, even for the less robust elevation cues.
Furthermore, the fact that individual differences in performance could be traced to

acoustical idiosyncrasies in the stimulus suggests that it may eventually be possible to

. create a set of "universal transforms" by appropriate averaging [98] and data reduction

techniques or even enhancing the specﬁ‘a of emt:irically derived transfer functions [84].

Martens [134] used prinéipal components analysis (PCA) on spectral variation between o

HRTF's in an attempt to reduce the amount of data necessary to speéify the directionally |

. dependent spectral cues. He found that effective transfer functions could be TE-

- synthesised from just a ) few principle components that captured s1mp1e distinctions such

as front versus rear, and central versus lateral sound directions.

" Kendall and Martens {135] created a complete sphere of simulated transfer functions

using pole-zero approximations to measured HRTFs. Pérceptual evaluation showed that
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- their transfer functions could support 3D spatial imagery over loudspeakers but the cross
talk cancellation filters produced timbral changes that were unacceptable for professional
audio {135]. ' | '

3.6.3. Modelled HRTFs vs. Measured HRTFs

HRTFs are very complex and many spatial audio systems 'depe'nd upon experimental data
such as Duda’s KEMAR data shown earlier in this chapter. The main reason for using
HRTFs is to capture elevation effects alongside azimuth effects. As previously
mentioned, elevation cues are significantly sensitive to individual dlfferences and issues
arose about how best to implement a generic 3D spatial audio system. Given these key
| geometncal differences from- person to person it is 1mportant to 1nvest1gate the most

effective way to implement HRTFs.

One way istousea single standard set of HRTFs. There is, as yet, no recognised standard
set of HRTFs available. As previously mentioned most data is purely experimental. The
immediate problem associated with using é_ single set of HRTFs is that they will not
necessarily translate well with all'potential listeners. The best that can be hoped for it to
generate a set of HRTFs taken from a model whose characteristics closely match the
statistical norm. However, it is inevitable that in this case a petéentage of listeners will
experience pobr elevation results. This ‘single set’ approach is certainly the most

inexpensive but also the most inflexible.

Another approach would be to divide the general population into sub-groups based on
their physical attributes, particularly concentrating on the pinnae and head geometry. A
‘set of HRTFs could then be generated for each statisticél norm within each of the sub-
groups. Potential listeners could then be categorised into one of the sub-groups by their
physical atiributes and the closest relevant set of HRTFs could be implemented. The
result is a greater set of HRTFs and a more improved overall effect on the: general
population. Although this approach will y1e1d closer results than usmg a single set of
HRTFs it is still not the ideal solution. - ' ‘
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~ The obvious ideal solution is to tailor the HRTFs fof each individual listener. This would
prove costly and time consuming as each user would require measurement of HRTFs.

The results, however, would be as close as is physiéally possible because the physical
attributes of the listener would be identical to the physical attributes of the recording

subject.

The most flexible: approach would be to generate a model HRTF with | chaﬁgeable
parameters. The parameters could be of or relating to the physical attributes of the target

listener. In this case the HRTFs would adapt to each individual user.

3.6.4.7 HRTF Models

There are several possibilities for modelling head related transfer functions and the topic
has been subject to some extensive research. The following sub-sections deal with

Duda’s explanation of modelling ITD, 11D, épheric’al head and pinna.

The ITD model, which is shown in Figure 3.19, is one of the easiest and most effective
HRTF models. The motion of the sound source within the azimuth is controlled by an
azimuth-dependent time delay that differs for each ear. The eafs are clearly shown to be
modelled in opposition by the combined (-n/2 and +n/2) 180 degrees (r) phase difference
between them. ' |

ToLeftEar To Right Ear
- X kA
TaB+3) Tal8- T}

8

Sound Source Signal

Figure 3.19 — ITD model from Duda [83].
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Duda describes‘that using the same geometrical argument that was employed to derive
the ITD: - | | |

ITD = %(S-ksi.ne) L 90" = B =450
‘the time-delay function is given by:

a " R B
.é-(l-ccs gy ifig <5
Ta8) = ' __
a S 7
. E(IBI-!-I--z—) it T< |l <
L -

Where 'a' is the head radius and ‘¢’ is the speed of sound.

It is evident that in this model the energy emitted at each ear is the same as no attenuation
or ampliﬁcation components are presenf. It is the introduced tiine delay that gives the
listener the impression of a phantom sound source. This model exploits the features of the
‘precedence effect’ or the ‘Law of the First Wavefront’ as a means of altering the
azimuth of the sound source. The simplicity of the model does dictate that it produces no
sense of externalisation and no front/back discriminati.on It does, however, produce a
phantom sound source that is capable of movmg smoothly from the left ear through the
head to the right ear as the azimuth changes from ~90° to +90°. '

The effects of head shadow can be modelled by filtering the high frequency component
of the signal source when the head occludes the path to the receiving ear (Figﬁre 3.20).
Orice again[the frequency filtration Will be azimuth dependent where the model boosts
the high frequency component when the azimuth is zéro degrees and attenuates the high
fréquency component when the azimuth is 180. Duda [83] describes that Lord Rayleigh’s
analytical solution for the IID for a rigid sphere was in the form of an infinite series, yet

. its magnitude response can be well‘approximated_ by the one-pole, one-zerortransfer_
function | | |

H6O) - il Lhi 2

where ec{e)=1+cosa and p=2-; .
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By offsefting the azimuth to the ear positions (90 degrees each waY), the following -

simple IID model is obtained:
ToleftEar  To Right Ear

H(s 8+ IH(s 8-

Sound Source Sighal

 Figure 3.20 — IID model from Duda [83].

It can be seen from the simplicity of the one-pole, one-zero transfer function that the

model can be implerhénted as an infinite impulse response filter (IIR).

ToleftEar To Right Ear

o

T+ | |Ta®- 2
el

H(s 8+ | [H(s 8-3)
& \/ |
8

Sound Source Signal

Figure 3.21  Combined IID and ITD model from Duda [83].
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It is now possible to cascade the ITD model and the IID model (Figure 3.21) in order to
obtain an approximate spherical-head model. With this model, however, there is no sense
of externalisation or elevation; the model simply produces an azimuth controlled

phantom image somewhere along the axis between the two ears.

When no IID model is present, some wide-band signals give the impression of two sound
images, bhe displaced and one at the centre of the head. The is due to the fact that the
ITD cue is telling the brain that the soutce is displaced yet the energy at the two ears is
the same- and therefore the IID cue- is telling the brain that the source is in the centre. o
Conversely, when no ITD model is present, a listener once again géts the impression of
two sound images due to the conflicting information between the IID cue and the ITD
cué. Here, the IID cue is telling the brain that the source is displa'ced due to the difference -
in energy levels received at the ears while the ITD cue is telling the brain that the source

is in the centre due to no delay being present. The problem of producing split images is .
overcome by this combining of both the ITD model and the ITD model.

One way to add the missing externalisation is to introduce some simulated room échb;
this gives the impression of externalisation _-or ‘out-of-head’ sensation to the listener. The
diagram shown in Figure 3.22 illustrates this method by introducing some simulated echo
with variable delay and magnitude. The gain ‘K’ should be between zero and one, the
delay “T" should be between 10 and 30 ms. This very simple‘ room model is not fully
effective as it only produces externalisation when the azimuth is anything but zero. Also,

the same echo is sent to both ears and is therefore not azimuth dependent. -
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ToleftEar - To Right Ear

o echo H(S'B'Jzt_}
x _

. T
Gain . | - Delay_'l

Sounl;_r Source Signat = -
Figure 3.22 - Combined IID and ITD model with echo from Duda [83].
As previously menﬁoned,'th'e outer éa_r_br pinna can be seen as a directionally dependent
filter. It can amplify some frequencies through its resonant cavities while at the same
time attenuating other frequencies due to the interference effects caused by other
- geometrical attributes. Batte'au [14}, Watkins [189] and other researchers have suggested

modelling the effect of the pinna in terrﬁs of one or more pinna echoes. The diagram in

~ Figure 3.23 show_s a typical model_thét hasa multipath structure.

= E Ty
B T S
| s

" Figure 3.23 - Monaural Pinna Model from Duda [83].
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Each path produces an echo that is determined by two variables of gain and time delay. |
The problem is to determine what the actual values of gain K and time delay T are in -
relation to azimuth and elevation. Some research has been carried out in this field but
nothmg concrete has yet emerged A set of rules and relat1onsh1ps must be identified in
~order to estimate the parameters necessary for a given set of geomelncal attnbutes

per tammg to the physmal characteristics of a listener.

In order to fully synthesise the three-dimensional listening expeﬁence it is necessary to
create a much more complex model than has been shown so far. The models previously' _-
"described deal with simple yet very important localisation cues. There are, however,
many other features of 3D audio that need to be modelled in order to ‘further realise a-
truly'imrnersive spatial audio environment, necessary models such as shoulder reﬂectieh
models, torso diffraction models, room models, object occlusion models, ear canal
resonance models etc. A partially combined model is shown below in Figuie 3.24 with

only four components.

Mode!
Spherical Torso | [ Shoutder
Head Diffraction Refiection
Model Model Model

. Sound Source Slgnal
Flgure 3. 24 Combmed models from Duda [83].

As more and more features are modelled and added to the overall combined HRTF model
so it is possible to get better approximations pf the actual HRTF. It is clear that there is
still room for much research in this area before a complete HRTF model can be achieved,
what has been accomplisﬁed so far gives a rough approxim.ationrof the HRTF but is by no

_ means exact or exhaustive,
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| 3.7 Systems using HRTFs

To reiterate, simple spatlal audio systems have several d1sadvantages Stereophomc,

multi-channel and binaural recording systems all have fixed limitations and HRTF

- models are not well established enough to be of any real use at present. ‘The most

commonly used technique for creating spatial audio is that of the measured HRTF based
systems. They provide an acceptable level of accuracy coupled with a v1able

implementation complex1ty HRTF based systems are capable of producmg extremely

accurate azimuth effects as well as reasonable elevation and range effects. Some _

' difficulties with range and particularly elevation emerge due to géometrical differences
- from person to person. The following sub-sections now describe some existing HRTF
based systems that have been considered for implementing spatailised sorting algorithm

auralisations.

3.7.1. The Convolvotron

The Convolvotron [194]_was‘ a system manufactured by Crystal River Engineering [58]
and was originally developed for the National Aeronautics and Space Administration -

(NASA). It provides a conceptually simple way of implementing HRTFs in order to
create a spatial audio environment. The Convolvotron is a system that consists of two
‘convolution engines’ (Figufe 3.25) each of which is used to convolve the same monaural
audio input stream with a finite segment of a head-related impulse response (HRIR)
retrieved from an indexed table of measured values. The outputs of the c‘o,nvollvers are
passed through amplifiers to héadphones worn by the listener. If the HRIRs for the
listener are sufﬁcientl& close to the HRIRs used by the convolvers, the sound delivered to
the listener’s ears will contain all the correct spaﬁal cues, and the sound image will be

- properly localized. The tables indexed by the desired azimuth and elevation yield the

relevant pair of HRIRs for convolution.




To Left Ear To Right Ear

i

Convolver Cohvolver
! * A i

Table of Table of
left-gar right-ear
impulse impulse
responses || responses

\Suund /.‘

Direction

L Sound Source Sigria_! o

Figure 3.25 — Convolvotron systém from Duda [83].

The Convolvotron system can be customized for a particular individual by measuring and =
using that person's HRIRs. The HRIRs are simply measured for the desired listener and
stored within the HRIR tables and indexed during playback for convolution with the -
monaural signal source. If the stored HRIRs match those of the currentllistener then the
spatial audio effect is as close as possible. The HRIR tables are indexed by azimuth and
~elevation only. Range effe_cts are introduced by using the distance from the source to each

ear. Itis evident that the quantity of HRIRs required (and the size of the HR.IR tables) is-
dictated by the parameters of the audio space and the resolﬁﬁon of the sound source
~ positioning. By employing _coﬁrse sp'atial sampliilg the amount of HRIRs (and hence table
sizes) may be reduced, thié'does introduce quantisation errors thdugh. The coarser the
| spatial sampling the greater the quantisation errors and hence the more augmehted the
perceived sound source b.eéomés. It is, thereforg, important to maintain a minimum

resolution when measuring HRIRs.

Due to the real-time nature of the Convolvotron it is possible to further enhance the
spatial 'auc.lio' listening experience by implementing a head-tracking device. The
parameters obtained by the head tracker (az.imuth and elévation) can be used to index the
"HRIR tables within the Convolvotron system. The addition of this feedback path ailows
the listener to interact with the immersive spatial audio environment. When the listener

moves his’her head then the perceived phantom sound source moves in accordance. The
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result is a more realistic'listening experience. Adding extra féatures such as echoes and
‘room reverberation by including a room simulation model can further enhance the basic
* - system of convoluting tabulated HRIRs with monaural signal sources. The Convolvotron
was a relatively expensive system and is therefore unsuitable for creating low-cost |

spatialised algorithm auralisations.

- 3.7.2. TnMotion 3D Audio Producer

InMotion 3D Audio Producer_ [107), shown in Figﬁre 3.26, was created by Human
Machine Interfaces Inc and is a tool for creating realistic auditory scenes. InMotion
incorporates Wave Arts 3D Audio and Acoustic Environment Modelling technology,
which creates quite effective 3D audio effects over both headphones and loudsp'eakers'. :

Acoustic envuonments are realistically simulated, including reverberatlon, motion

effects, distance cues, obj ect occlusmn etc,

& InMotion 3D Audio Producer- [example1]
. e .

Figuré 3.26 - InMotion 3D Audio Producer screen shot [107].
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InMotion is essentially a sophisticated sound file mixing application, creating a 3D
~ output sound file from a set of input sound files. However, InMoﬁon also has real-time
- previewing capabilitiés; while producing auditory scenes, any portion of the scene can be
previewed in real-time. If the scene is too complicated to be rendered in real-time,

'InMotion will automatically render the scene to a file for later playback.

A lot of commeréial_audio products are described as héving 3-D capability, but in fact
there is gfeat disparity between the various technologies in use. Unfortunately, many of
the weakest products are marketed with the most exaggerated claims; For example, a
“number of stereo multimediarsp”eékers are marketed as having “3-D” technology. These
speakers inborpofate a simple circuit that has the effect of widening the perceived sound
field of a stereo recording. That is, the sound images that would noimally extend to the
' locations of the left and right speakers are widened to extend bej(ond the speakers. These
systems should md;'e properly be called stereo enhancement or “widening” systems.
They have no ability to position sounds around a listener, or to position sounds behind,
above, or Below the listener. The term ‘3-D audio’ really describes a much more
sophisticated system than can position sounds anywhere around a listener, Although
InMotion is described as a 3D audio producer, this is ot strictly true.l The system omits
the ability to vary the elevation of the sound source; it is only capable of synthesising
sounds.in a fixed elevation plane. The only variables permitted for object location are
azimuth and dlstance It can, therefore, be described as a pseudo-3D audio producer as it

does not perrmt sound source placement ina iruly three-dimensional capacity.

InMotion 3D Audio Producer is a system that works by mimicking the process of natural
hearing, essentially reproducing the sound localization cues at the 'ea.rs of the listener.
This is done by using a mathematlcal model (HRTFs) of a human listener that can
generate the proper sound cues for any desued sound direction. The model used by
InMotion is chosen to be as generic as possible, so that the resultmg locahzatlon cues w111
work for a majority of listeners. The performance of the InMoﬁoﬁ system 'depends
greatl'y on how well its generic head model happens to match the listener. The hea_d

model used by Wave Arts 3-D for the InMotion system has been specifically engineered -

* to be optimal for a majority of listeners.
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With the InMotion system the cues are applied to a sound by processing the sound
through a pair of digital filters {(equalizers), wlﬁch create the left and right ear signals to |

send to the listener. Essentially, the head model used by Wave Arts consists of a large set
of digital filters (HRTFs) with eaoh pair of digital filters comesponding to a sound
location. The head model used by Wave Arts 3-D consists of 710 different ﬁlter paits to |

reproduce 71 0 different directions around the head.

The Waye Arts Acoustic Environment Modelling system combines Wave Arts 3-D with

accurate simulations of the following acoustic phenomena:

Doppler Moﬁon Effeclt
s Air Absorption |

| . _Distance Cues |
¢ Object Occlos'ion.‘
. "Re'verber'altion

The Doppler motion effect is commonly heard in nature as a pitch change when a
speeding object passes a listener. When the object is approéching the listener, the pitol'l ié
higher fhan the resting pitch of the object. This is because in the time it takes the object
to emit one waveform the object has moved closer to the listener, and thus the emi&ed '
wavelength is shorter than norrnal Similarly, when the object is rotreating from the
listener, the pitch is lower than the resting pitch, because the emitted wavelengths are -
longer than normal. InMotion allows placement and movement of sound sources within a
spatlal environment. It is, therefore, important for InMotion to simulate the Doppler

effect as it is important for generating real1st1c motion effects.

When sound propagates through air, some sound energy is absorbed in the air itself. The
amount of energy loss depends on the frequency of the sound and atmospheric
conditions. High frequencies are more readily absorbed than low frequencies, so the high
frequencies are reduced with increasing distance. For example, at 100 metres distan‘ce,.

20 degrees Celsius, and 20% humidity, a 4 kHz tone will be attenuated by about 7.4 dB.
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However, the 'attenuation would be less than 1 dB for distances less than 10 metres.
InMotion simulates-this effect by employing a low-paes filter whose cut-off frequency

depends on the distance to the source.

The principal cue for distance is the loudness of the sound. A sound source will be
louder when it is closer to the listener than when it is farther away. However, this cue is
often anibiguous because the listener does not know a priori how loud the source is.
Thus, a moderately loud crashing sound could be perceived as a quiet, close crash, or a

distant, loud crash.

Another important cue for distance 1s the loudness of reverberation (see_secﬁon 3.2.5).
InMotion models this by decreasing the amplitude of the direct sound by a factor of one |
* half (BdB) for every doubling of distance. The amplitude of the reverberation, however,
does not decrease considerably with incfeasing distance. The ratio of the direct to
reverberant amplitude is greater with nearby objects than with distant objects. Thus, -

distant objects sound more reverberant than close objects.

- InMotion models the decay of reverberation over distance by attenuating the reverberated
. sound at a rate of half the slope of the direct sound, or 3 dB per doubling of distance |

(equal to 10 dB drop for a factor of 10 increase in'distance) In most reverberant spaces,
the reverberation does not actually drop this fast with i mcreasmg distance. However, for
the purposes of creating an effective sounding scene, it is often necessary to tweak the

parameters to get the desired effect. For very close distances, the reverberation is 20 dB

below the direct sound, equal to a 10% reverberation mix. For increasing distances, the -

ratio of direct sound to reverberation decreases, and at 100 feet the reverberation is louder

than the dIl'eCt sound.

.‘When a sound source is behind an occluding object, the direct path sound must diffract -
(bend) around the occluding object to reach the listener. Low frequencies with .

wavelengths larger than the size of the occluding object will not be affected much by the-

" occluding object. High frequencies with wavelengths smaller than the size of the =~

occluding object will be shadowed by the obj ect, and will be greatly attenuated. InMotion
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3D Audio Producér simulates the effect of an occluding objeét by employing a low-pass
filter whose cut-off frequency depends on the size of the occluding object. Simulating
object occlusion is important to achieve realism in film/video soundtracks where sound

| emitting objecfs are visibly moving behind occluding objects.

_ ‘The Wave Arts Acoustic Envirdnméntal Mddelling system is implemented using the
signal routing shown in Figure 3.27 below. The signal routing is conceptually similar to -
the .1°0uting seen in multichannel mikihg consoles; input signals are individually
processed, mixed to a set of shared signal busses, and then the bus signals are processed
and dutput. In Figure 3.27, the input signals shown at the top represent -the individuél

. monophonic (monaural) object sounds to be spatially proc:essed to create the scene.

Inputy

nputy
Air a.baorplion A absarpion
and occlusion and occlusion
| 3Dcues I 3Dcues
f2¢ch 1 F2ch

Reverb
bus

Direct
© bus

2¢h

Post EQ | . | Crosstalk
carceller

-Spesker -
owput

Figure 3.27 - Wave Arts Acoustic Environmental Modelling system signal routing.
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Each input signal is.processed through the Doppler effect, then the air absorption and

occlusion effect, and then the 3-D spatial effect, Iabelled_ “3;D cues” in the figure. The

Doppler effect and air abso.rption effect are controlled by the distance between the sound -
object and the listener. The oéclusiqn effect is controlled by the position of the sound

object, which determiﬁes the degree to which the sound:object is occluded, and the-
dimensions of the bccluding objecté. The 3-D spatial effect ié controlled by the position

of the sound object reiative to the listener. The 3-D spatial effect creates stereophonic

(two channel) output. The figure does not show the individual left and right channels

-output from the 3-D spatial proce&sor; instead the stereo ‘signals are Jabelled “2 chl.” .

The output from the 3-D spatial prdcessor is lsplit into two stereo signals, which are -
mixed to the “reverb bus” and the “direct bus,” each of which is a stereo bus. The
~amount of sound mixed to each bus depends on the “reverb gain” and “direct gain” *
mixing gains. These gains are controlled by the distance from the sound to the listener
according to the current distance model. Typically, the distance model parameters are set

up so that the direct to reverberant ratio increases as the sound object distance decreases.

The ‘reverb bus’ contains a mix of all sounds that aré ‘to be seﬁt to the reverberator.
These are processed by the reverberator and the result is mixed with the direct bus. The
reverb mix gain determines the overall level of reverberation in .the scene. The
- reverberator is controlled by the scene environment parameters, which include the:

_reverberation time, room size, damping, etc.

The direct bus output is suitable for listening to through headphones. The headphone
output is simply the direct bus processed through a set of tone controls labelled “Post
EQ”. . . ' '

For playback over loudspeakers, the direct bus must be further processed by the crosstalk
canceller. The crosstalk canceller is controlled by the speaker angle parameter. The

output of the crosstalk canceller is processed by the crosstalk equalization stage, and this
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signal is further processed by a set of tone controls labelled “Post EQ” and the résult is
output to the speakers. The InMotion system does provide quite realistic 3D audio.

However, the main disad{(antage is the lack of elevation which makes it unsuitable for the

- proposed 3D auralisations of concern in this thesis.

3.73. 3D Audio — Climax Software Solutions

' Climéx Software Solutions describe their 3D Audio sysfem as a system that allows the

creation of sound files that convey true spatial audio placement, which supﬁdrts multiple
sound sources and' features accurate physics. The prerequisite, however, is that for full
.effect the rendered‘ output is best héard 'over, headphones. Unlike InMotion 3D Audio
Producer, Climax’s 3D Audio system does not incorporate cross-talk cancellation to
permit playback over open loudspeakers. Although the effect is discémable over
loudspeakers, 1t is with headphones that a direct lmk is made between Chmax s 3D

Audio system and the listener’s ears.

The program focuses on the various empirical inﬂuéncés that determine the way the
human- brain localizes a_udio, the most essential of A these being rmodelled during -
simulation. Since the real world envelops a listener with objects that emit and reflect

sound waves, Climax have ensured that 3D Audio represents the physical surroundings of |
these sources. 3D Audio achieves this by introducing a virtual room in which, a virtual
head and an arbitrary number of virtual sounds may be positioned. The reflections from

virtual walls are calculated according to the order of reflections specified by the user.

~ Both head and sound source may be animated to give the impression of sound source -
~ motion and/or head motion when listening to the rendered output. 3D Audio requires a

- set of parameters from the user pertaining to the head position and motion, source -

pbsition and motion, monaural input file, head related transfer function, room size and
reflection coefficients. Theses parameters are entered into a tree structure shown in
Figure 3.28. ' | ‘
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Figure 3.28 - 3D Audio screen shot.

Climax supply their own set of HRTFs that were obtained by emi:irically measuring
impulse responses from an unspecified dummy head with microphones placed within its
ears. Siﬁce each individual response strongly deperids on the relative direétion. of the
sound, the included set of impulses covers the majority of possible directionﬁ. Climax
state that “Applying these data to a sound file, i.e. convoluting an impulse response
corresponding to a certain direction with the sound data, yields a vague impression of - |
spatial positioning of the sound.” The reason for the uncertainty of this statement is due
to-the fact that the _.iljnpulse response measurements were taken within an anechoic
chamber, which is perceptually cdnfusing Therefore, a virtual room was introduced td
allow for signal reflections from the suxroundmg environment. Providing that the sound
intended for the left ear reaches only the left ear and likewise for the nght these
. reflections supply additional information for localization and, hence, a more realistic .
. Immersive spatial audio environment. Once the user has specified all of the required
pérameters, an animated scene preview may be undertaken, as shown in Figure 3.29, to

allow the user to mor_litor the motion of the head and/or sound source. .
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3D Audio - unregistered version - [dem04'2]

E‘j Fule PiO]ECl Options . Window Help ; : a ..|6']_)g|

Time: 8.35 sec. Camera not aﬁhed CameraPos: 3. I] -17.5, 1.5. CameraDir: 0.00 l][l1 I][l 0.0
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Figure 3.29 — 3D Audio environment screen shot.

The simulation environment employed by Climax’s 3D Audio system is modelled to have
a regular 'boxlike' shape. To enhance realism, the user may define the interior dimensions
and reflecting properties of each surface. The reflection coefficients of the walls may be
given in the range from 0.0 to 1.0, where zero means total absorption and one means total
reflection. Thus, a wall may be omitted by setting its coefficient to zero. Since it is
computationally necessary for the rendering time to be finite, Climax has permitted the
user to specify the reflection order. A value of N means convoluting the line-of-sight
wave along with indirect waves arriving from a maximum of N walls. The reflection

order table is given in Figure 3.30.
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Reflection Order Reflected Beams
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62
128
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376
574
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Figure 3.30 — 3D Audio reflection order table.

Each higher order of reflection introduces additional waves from various directions;
therefore, each wave must be processed using a different impulse response. Hence,
rendering time dramatically increases with N. Using reflections of first order significantly
increases the simulation's "naturalness". Second-order reflections perform a little better,
and quadruple the rendering time. Climax state that seven is the highest order of
computation that completes in finite time. With an order of the magnitude of seven,

rendering takes 2000 times the project's duration to complete.

Unlike InMotion, there is no provision for such features as object occlusion, air
absorption or Doppler Motion Effect. The system does permit multiple sound sources and
allows the user to fully animate both the head and the sound source. Although it is not as
thorough as InMotion in some areas it is more detailed in others. Climax’s 3D Audio
system allows the user to specify his/her own set of HRTFs which gives the system
greater flexibility and permits it to be tailored to the target listener. Unlike InMotion, 3D
Audio includes elevation cues that permit it to be called a truly three-dimensional spatial
audio system. The main disadvantage with this system is that it facilitates predetermined

3D audio animations and would therefore be unsuitable for spatialising algorithm

auralisations that are to be presented in real time during execution.
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3.7.4. Ambisone - Prosoniq Products Software

Ambisone by Prosoniq [156] 1s a plug-in for Steinberg’s Cubase VST that allows the user
to mix audio tracks in full 3D stereo. Prosoniq claim that their unique Virtual Scenery
Modelling approach is different to methods found elsewhere. They state that it not only
allows for 3D placement when monitoring the mix through a loudspeaker set-up but also
retains the three-dimensional sound image when listening through headphones. This
indicates that Prosoniq have employed some cross-talk cancellation. The feature that sets
Ambisone apart from other 3D audio tools is the intuitive user interface (shown in Figure
3.31); it permits the listener to adjust the different parameters while monitoring both

position and elevation in real time.

-t Prosonig Ambisone Demo
File  ASIOE

AZIMUTH ELEVATION DISTANCE
,4:1 DEPTH
L 1o

SPEED
P

0" 19 QUALITY
~ 1157
WAVEFORM y

PATTERN

Figure 3.31 - Ambisone screen shot.

Distance and elevation parameters allow for placing the source further away from or
above the listening position. As opposed to other common methods, Prosoniq's Virtual
Scenery Modelling approach simulates relative sound positioning using a virtual head in
a virtual listening position by rendering real objects instead of using pre-calculated or
measured filters thus yielding considerable quality, continuity and convincability. The
user interface allows the listener to drag the virtual sound source around the virtual head

using the mouse, the response is instant and the movement of the sound source may be
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heard in real-time. The main disadvantage with this system is that it facilitates 3D audio

animations of predefined looped audio samples and would therefore be unsuitable for -

spatialising algorithm auralisations that are to be presented in real time during execution.

3.7.5. Other 3D spatial audio systems.

The AKG CAP 340‘system developed by Persterer [154] incorporates the use of ﬁlt_ers.to
simulate head related transfer functions (HRTFs). The filter outputs are fed to
headphones and no provision has been made for open field speaker systems. Persterer
accommodates the importance of room reflections as they affect sound localization. He

implements a simple delay and then assigns a direction by utilising a dedicated filter pair. :

‘Persterer states that, "The simulation of HRTF's with an FIR filter requires an impulse

response duration of some milliseconds. The required processing of several sound
sources and their reflections calls for computing power of several hundred million

operations per second." Hence the computational overhead of this system is relatively

* high. Binaural mixing software (SPATMIX) has been developed for the CAP 340, Itis

structured for the binaural processing of up to 32 input signals enabling sets of one direct
sound and three reflections to be simulated. Special filters simulate the absorption
properties of three materials. The proposed auralisations within this thesis are aimed at |
belng low cost and independent of hardware. This system is therefore unsuitable as it -

requires some dedicated hardware.

The Focal Point 3-D Audm System was a Macmtosh IT based application that used a

widely available i mexpenswe Macintosh II accelerator card as its signal processor, This

* system has been developed with the intention of being employed for the production of

applications relatmg to virtual environments and future aircraft cockpits. The binaural -
technology that the system employs is based upon head-related transfer functions. This

system is modular and possesses at least four 3-D audio channels that can be md1v1dua11y

| placed and moved by the use a mouse, keyboard and RS-232 port commands. The system -

accommodates the use of multlple sets of binaural HRTFs at the same time. The Focal
Point 3-D Audio System also incorporates a head-tracking feature and has a typical -
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Macintosh interface. Preliminary experiments have revealed large timbre differences

dependent upon the choice of pinnae sets, which illustrates the importance of the method

of obtaining HRTFs. This subsequently generates differences in localization cues causing

erroneous sound source localisation. The proposed auralisations within this thesis are

aimed at being low cost and 1ndependent of hardware. This system is therefore unsmtable'

as it requires some dedlcated hardware. .

The Auris quporation has developed a 3-D spatial sound processor entitled the VS-1.
This sound processor is equipped for use with both headphone applications and open

field Ioudspeaker presentation. The system assumes that the input audio is monophonic

and therefore contains little or no spatial information. There are two parts to the spatial _

sound processor's acoustical simulation design. The first part captures the acoustics of the

head pinnae and torso that are responsible for perceived direction. This provides the user

with three-dimensional panning through a full range of both azimuth and elevation. The

second part captures the acoustics of the user specified room or environment. This

environmental simulation also includes directional acoustics and creates the illusion of
the full three dimensional environment. The Auris Group states that the most important
_ feature of their environmental modelling is that it captures - the spatial-temporal

- distribution of sound in a natural environment. The time, intensity and direction of

reflected sound changes in response to the position of a sound source and the listener in
the model room. The combination of directional and environmental simulations provides

the user with control of source distance and environmental shape.

- With the VS1 processor design, virtually all of the signal processing algorithms
employed are designed for dynamic control by the user. The d1rect1on and dlstance of a .
“sound source can be smoothly varied and is intended to automatically include acoustic

~features such as Doppler shift and air absorptlon. The dyna:tmc steering of the sound

sources in three dimensions is implemented with time varying filtering based on the

continuous interpolation of directional transfer functions that are stored in the processor's

memory. The environmental sirnulator contains elements that are similar to conventional

reverberation generators Wlith the exception that the gain, delay and filtering of reflected
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sound is designed to be continually responsive to movement within the modelled

environment. Environmental sound processing includes static filters that capture

_ absoq)tioh and transmission loss for walls, objects and drganic material, Sampling rates

for the spatial sound processor are 44.1kHz or 48 kHz and the system has also been
designed to be fully MIDI compatible. '

For applications requiring fast animation, special hﬁrdwar'e is used to perform a small
" number of HRTF convolutions to model the direct sound arrival plil_s a number of early
reflections, and room reverberation. An éxample of this approach can Be seen in Lake
DSP’s A'niScap.e and MultiScape [123] applications. Real-time convolution with very

long room responses can be achieved using very high performance processors, such as

the Huron digital audio cdnvolution workstation built by Lake DSP. The Huron is

capable of computing both left and right binaural responses with a length of over 5
seconds each. The intention of the development at Lake was to produce a DSP system

capable of giving a subject the illusion of a particular acoustic space, with one or more

sound sources located within the space. The system was intended to fulfil the following -

requirements:

1. The sound sources and listener location within the space should be animated, so

that any of the objects (sources or receiver) could be moved in real-time.

2. The subject should be given the illusion of the'sou_nd source(s) being localised in

_space with the correct direction and distance impression:

3. The direct sound source and some early reflections should be animated to give the

correct impression of close reflective surfaces.

4. The absorption'pfopérties of the wall, floor and ceiling surfaces should be

" modelled.

5. The late reverberation should be ﬁrocessed to pfoﬁide the correct spatial

" impression,
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6. All jconf’iguratic_)n of the system should be possible from an external éomputer |

“(such as a graphics workstation) so that the audio simulation can be linked to 2

graphical visualisation/simulation system.

The proposed auralisations within this thesis are aimed at being low cost and independent

~ of hardware. This system is therefore unsuitable as it requires some dedicated hardware,

3.8. Commerﬁal 3D audio API’s

This section contains an explanation and appraisal of some commercially available APIs.

They are examined with a view to facilitating real-time spatialisation of musically

auralised sorting algorithms. As with 3D graphics, whenever there exists a substantial -

amount of processing to be executed, it is best performed directly in the hardware

components of the system rather than employed in some form of software solution.

Whether implemented in hardware or software there must exist some form of convention
pcrtaining' to the language that is tb be used to implement the relevant functions. This is
facilitated by the role of the API (Appiicatioﬁ Program Interface). There are several
~ API’s that exist within the commercial market that aim to facilitate the production of 3D
spatial audio; the most famous of these is Microsoft’s Direct3D APL

3.8.1. DirectSound3D — Microsoft Corporation

Iﬁitially,-f)irectSound was.shi_pped as a sub-component of Microsoft's DifectX APIL,
DirectSound supported basic WAVE file mixing alongside pitch control, volume.and
simple stereo  placement, DirectSound also incorporated support for offloading the
mixing, panning and pitch-shifting to external hardware, this is more commonly known

as’ audio acceleration. Few commercially available soundcards support true audio

acceleration due to the need for sound card designers to incorporate dedicated 'arlld

expensive memory within the audio system. DirectSound3D - was first shipped with

DirectX 5.0 and was designed to provide a standard API for 3D sound production that

~developers could employ with aﬁy sound card. DirectSoundBD would provide the basic |
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3D audio algorithm and permit acceleration of that algorithm in the same manner that
standard stereo DirectSound can be accelerated. With DirectX 5.0 DirectSound supported
- sound cards that use third party 3D audio algorithms to accelerate DirectSound.

DirectSound3D works most effectively with Vheac.iphones but employs further complex

filtering to support open ﬁéld stercophonic speakers, quadraphonic speakers and surround

sound speakers. DirectSound3D uses virtual 3D space where the sound source is defined

by X, ¥ and z coordinates. Similarly, the listener is placed in virtual space by the same 3D -.

vectored coordinate system. The listener also has a further parameter that defines the

orientation of the head. DirectSound3D implements distance cues by attenuating or

amplifying the sound source, it also employs some processing to yield a doppler effect
changing the pitch of the sound source as it moves closer to the listener. DirectX can
take advantage of many different types of hardware that can enhance the quality of the

3D audio production. This however, places much responsibility on the programmer.

Microsoft makes no provision for such effects as environment modelling, reverberation

and object occlusion but does now support Creative’s [57] EAX standard. Many of these
more complex features require the irhplementation of third party algorithms.

3.8.2. A3D — Aureal Technology

A3D was developed by Aureal Technology [9] as a third party API to be used with their

own integrated circuits. Aureal developed the Vortex2 IC that accelerated the Aureal-2
standard through it’s own A3D APL The specification of Aureal-2 includes all of the
features of Microsoft’s DirectSound3D algorithm with the addition of:

e Wall/ object occlusion.
¢ Increased sampling rates.
» Underwater effects.

. » Wavetracing technology.
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The"Wavetracing technology impleménted by Aureal traces the various paths from the

sound source to the listener as they bounce from or are occluded by, the walls in the

envxronment Further to this, the definition of the wall / obJect material is permissible

_ thereby defining the absorptmn and reﬂectlon of the surfaces.

Results ﬁom Aureal’s s extensive research have offered some sc1ent1ﬁc explanations of

why real-time binaural audio technologies such as thelr own A3D are effective across a

wide range of applications:

Binaural gain — When an audio signal is pléyed on top of white noise it Will-

app'ear 6 to 8 dBs louder than if the signal were non-binaural. This indicates that

~ identical audio contents can be more audible 'and'intelligible in the binaural case

as the human brain can localise and smgle out the signal while non-bmaural -

signals get lost into the nose.

“Cocktail party effect’ - With monaural recording, the'ability of the listener to

focus upon one feature (or conversation) is considerably less than when recorded
binaurally. This is because the audible components remain spatlally separated and

are subject to binaural gam

Fa's'ter reaction time — In an environment such as the cockpit of a jet fighter,
where a lot of complex information is éonveyed to the pilot, reaction time can be
critical. Research suggésts that audio information ¢an be processed and reacted to
more quickly when presented in a binaural format. Thé binaural signal does not

only contain information about the nature of itself but also about its source. -

Reduced listening fatigue — Aureal suggest that listening fatigue may be reduced

by employing binaural representations. Users that have to wear headphbnes for -

long periods of time are often subject to listening fatigue, this is due to the nature

of monaural signals appearing to emit from within the listener’s head. -
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o Increased immersion and perception — Binaural presentation offers a richer,
more in-depth listening experience. Listeners often report the experience as being

more immersive or of being of a higher quality.

A3D offers many features and reports to be based upoﬁ the worlds most advanced
algorithms and HRTF measurement and compression techniqués.' However, the system

does require some dedicated hardware.
3.8.3. Sensaura

Unlike Aureal, Sensaura [168] sxmply design audio processing techniques and then
licence their technology to external 1ntegrated circuit manufacturers. The Sensaura

_technology consists of the four following components:

e HRTF’s — These have been designed through Sensaura’s own ‘Digital Ear’
technology. They have measured 1,111 HRTFs to cover one complete hemisphere |
and employ a cross-fading technique to switch from one ﬁlter to another thus

reducmg the ghtch’ noises that often appear

e Multidrive technology — Both Aureal and Sensaura utilise complex cross-talk

cancellation techniques to facilitate the playback of binaural signals over open-

field stereophomc or quadraphomc speakers. With the four-speaker system, -

Sensaura have the ability to deliver HRTF based 3D audio to both front and rear
speaker. sets through their Multidrive technology. ‘

e Macro-FX technology Sensaura have incorporated their Macro-FX technology
to allow sound sources to appear from locations that are closer to the user than

other spat1al sound systems would facilitate. .
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) Environmental—FX technology — This technollogy‘prdvides compatibility with
Creative’s EAX 1.0 standard and includes wall occlusions and object

obstructions.

Sensaura have developed a clearly competent 3D audio technology yet it requires Speciﬁc
~ hardware for implementation. With the advent of cheap 'soundc':ards, this approach can
now be a relatively inexpensive way of achieving 3D audio production on a desktop

personal computer.
 3.8.4, Other 3D audio APP’s

" As previously mentioned, Sensaura have enabled compatibility with Creaﬁve’s EAX 1.0
technology (Environmental Audio Technology). The main point about Creative’s
technology is that it does not efnploy the use of HRTFs. ‘Instead, - Creative have

concentrated upon the ‘secondary’ cues that are produced by environmental effects.

Creative states that any positional audio implementation is better carried out through the

conventional surround-sound technique. Creative’s initial Environmental Audio
.Technology implemented'a simple feature that adjusted the Teverberation of a sound
source dependent upon its position within the énvironme;it. In later implementations théy
incorpofated 6bject obstructioﬁ and occlusion. They further added controllable variables

- pertaining to the early and late reverberations. Creative have clearly taken a different

route to mainstream HRTF based 3D spatial audio systems and have not implemented the

complex features necessary to produce realistic 3D representations.
3.9, Conclusion

It can be seen from the preceding investigative appraisal of 3D audio and its associated

: téchnologies that there are several approaches to creating 3D spatial audio systems. The

trade-offs between them are based upon effectiveness, complexity and expense.
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Simple stereophonic systems are limited to placing the sound source on an axis that runs
through the listener’s head from ear to ear. This is clearly the cheapest system to
ixhplement as stereoi)honic recording and playback systems are commonplace in today’s
technology The main drawback however, is that it fails to produce any andio

presentatlon that could even be remotely considered as three—chmensmnal

Spatial audio systems (or enhanced or extended field systems) are the next stage of ‘
evolution from pure stereophony. This approach does not create a 3D environment but |
siniply extends the sound field beyond the boundaries of the listener’s head. The sound
source still remains, as with conventional stereo, on the axis that Tuns between the .
listener’s ears, the exception is that this stereo line is extended to place the sound source

outside of the user’s head. This is another case where implementation is relatively cost

- effective. The result however, is again far from a true 3D spatial audio presentation.

Surround-sound systems have been proven to be extremely effective and have been

employed by many cinema theatres thus proving their commercial acceptance. They do

‘remain, however, very expensive to implement requiring many speakers and a complex

audio processing system with dedicated hardware. In terms of application at the human-

computer interface, surround-sound is not really viable, the overspill of audio within a

. cooperative working environment would be too great to go unnoticed.

~ Although HRTFs are rapidly becoming the industry standard for implementing 3D audio

algorithms they are not without their disadvantages. They require large overheads by
demanding sets of measured HRTFs. Another, and more important problem is the
geometrical differences that are present from human to human. There have been several

suggestions to circumvent this issue ranging from measuring HRTFs based upon the

‘statistical norm to measuring unique sets of HRTFs for each potential listener. Tn using
the HRTF's based upon the geometrical measurements of the statistical norm the resulting

‘audio experience will only translate effectively to a small pefcentage of the population.

Creating several HRTF sets based upon geometrically categorised groups resolves this

issue a little further but is still far from producing the perfect solution.
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The oniy conceivable. way of creating ‘effective HRTF based 3D spatial audio

presentations is to measure a unique set of HRTFs for each listener. The problem herein
is that the storage space required becomes extremely demanding in order to accommodate

such vast data. The adaptable solution that has been recently suggested is that of -

modelled HRTFs. Here the model contains several variables pertaining to the physical

 aftributes of the target listener, once in place, these variables will yield the relevant set of -

HRTFs for subsequent processing. The main problem here is that an accurate and
complete model does not yet exist, furthermore, each potential listener would require his

or her physical measurements to be taken and processed.

- It is clear that there are many issues still surrounding the effective use of HRTFs for 3D |

spatial audio presentation. To take this approach it is necessary in the first instance to

obtain a set HRTFs, further to this it is neceﬁsary to obtain a system that will effectively :

implement these HRTFs. Some of the applications appraised in this chapter will produce
acceptable 3D audio outputs but the most effective systems do require some lengthy

work,

The approach that falls part way between cost-effectiveness and realism is the use of pure
binaural recordings. They are, unlike HRTF based systems, inflexible in that once a
sound has been binaurally recorded its position is fixed. Again the overheads cén be high
as creating an auditory scene may require the storage of 1arge amoimt_s of audio files. It is
by far one of the cheapest solutions requiring a simple steredphonié digital reéording

device and a pair of small condenser microphones. It is possible to utilise a manikin head

within which the microphones may be placed or take the much cheaper approach of
placing them in the ear canals of a real human being. Again the resulting translation of-

the audio output will be dependent upon the physical similarities of the recording .

manikin/human and the listener.

For the application of 3D audio in the musical representation of algorithm state and

execution in this thesis, it has been decided that the best approach to take would be the _
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implementation of binaural recordings. The target result is not required to be exact and to
translate precisely to all potential users. Furthermore, the information to be presented is
to be well defined and finite, therefore only requiring a specific set of binaural recordings

‘to-be employed in creating the musical auditory scene thus minimising the storage

overhead required.
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Chapter 4
An analysis of sorting algorithms

The Conmse Oxford Dictionary [178] defines an algorithm as:

algorlthm (say alga-rith’m) noun
Maths: a clearly defined sequence of operations for solvmg a particular

mathematical problem. ‘
4.1. Introduction -

Sorting is concerned with the organisation of information into some form of sequential
order to facilitate easier and faster information retrieval. It can be applied, for example, to °
a contact database where the information could be entered in any random order but
requires to be ordered alphabeticaliy to facilitate ordered retrieval. If the stored
information were to contain names and addresses for example, the data could be

reordered into alphabetical listings based upon name or address. This would permit a user

' to quickly retrieve the desired informaﬁon_ as opposed to methodically searching through

an unordered list of entries. There are many ways in which the reordering of the
information could be implemented. Each method of reordering can be classed as an
algorithm. Sorting is central to many tasks carried out on a computer, from database
entries to file structures for example, to increase the efficiency of information retrieval
rates. There has been a great deal of research which hés_ yielded an interesting range of
different algorithms. It is not alwoys possible to say that one algorithm is better than
another, as relative:perforrnance can vary depending on the type of data being sorted. In

some situations, most of the data is in the correct order with only a few items needmg to

‘be sorted. In other situations the data is in a random order and i 1n others the data will tend

to be in reverse order. Different algorithms will perforrn differently according to the
organisation of the data being sorted. Some common algorithms are the Exchange Sort,
the Bubble Sort, the Selection Sort, the Insertion Sort and Quick Sort algorithms. Some of

these algorithms. are easy to understand and simple to program whilst other are moré
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complex. For a given number of data items, certain sorts always go through a set number -

of comparisons and exéhanges, so their performance can be predicted.
4.2, Sorting algorithm summary
Thermore common algorithms are [ 1 83, 11

Exchange Sort. _ _ - _
In the Exchange Sort, every two numbers in the list are compared and swapped if the

second number is less than t_he first, thus yielding an increasingly sorted ascending list, .

Bubble Sort. |
The idea is to make several passes through the list. On each pass, each pair of adjacent
clements is compared. If they are in the wrong order, they are swapped. The sort -

completes after a pass with no swaps has been made.

- Insertion Sort. | ‘

The Insertion Sort traverses the list, inserting each element into 2 second list in sorted
order. Efficient implementation is achieved By quickly finding the correct position to
insert the current element, and making sure that the insertion oper.ation is incxpensi\'ré in

resource usage. For instance, a binary search can be used to locate the insertion position.

~ Selection Sort. _
A Selection Sort is very similar to an Exchange Sort. For a given list; the smallest
element of the list is selected and swapped with the first element of the list. The Selection .

Sort is then performed on the remaining list.

‘Quick Sort. .
"The Quick Sort algorithm is a fast sort. To sort a list, it divides it into two sub-lists where -
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the elements of the first list are all smaller than the elements of the second list. Then each

of the smaller Hists is recursxvely sorted.

Radix Exchange Sort.
This sort works by looking at the bmary representation of each number in the list. It sorts
based on whether a leading digit is 0 or 1, progressively going from left to right. This is

similar to the Quick Sort, since essentially a pivot is chosen around which elements get

sorted. For instance, if the data consisted of 4 bit numbers, the first pivot would be 1000,
then the algorithm would recurse with the p1vots 0100 and 1100, etc.

Heap Sort

This is based on a data structure called a heap, which is a tree with the following’
properties: every leaf has helght h or h-1, every leaf Qf helghth is to the left of those of .

height h-1, and the value of each vertex is greater than the value of amy of its
descendants. -This tree is represgltted in an array, Where for each vertex at index i, its
deséendants are at index 2i-and 2i+1. This sort works by swapping the largest element,
which is the root of the tree', at index 1, with the last element of the array. This ptuts the
largest element at the end. Then, the size of the tree is decreased by 1, leaving the largest

element in its correct final position, and outside the tree. Finally, the tree is reconverted

into a heap, with the largést element at the root, and thisiprocess is repeated until the heap

is empty.

Shell Sort.

The list is sorted by shells of decreasing size. S‘ay, for instance, that sizes of 8,5,3,2,1 are

. used. First, every list of every 8 elements is sorted, that is, those elements numbered
[1,9,17....], [2,10,18,...], ..., [8,16,24,...]. Then shells of size 5, 3, and 2 are sorted. Finally,

the whole list (every 1 element) gets sorted. The elements within each shell are sorted by -

a Bubble Sort, although other sorts could be _uséd, even the Shell Sort itself,

Bucket Sort. [199, 200].

In the Bucket Sort, the list is traversed, placing each element into its appropriate bucket
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(a container which only takes numbers in a given range," e.g. one bucket might take
numbers between 10 and 20). Within each bucket, the contents can be sorted using any

convenient method.
4.3. Further explanation of the more common algorithms
43.1. Exchangé Sort

The Exchange Sort is performed by comparing every two numbers in. the list and
swapping them if the second number is ‘less than the first, thus yielding a sorted .

ascending list. Below is the pseudo-code for the Exchange Sort algorithm:

Exchange Sort (Sbrting the array Af: siée])
While not sorted |
{ |
Forindex i=1uptoi=(size-])
© Reset count=0. |
{
While Not at end of list [(i + count) < size]
Compare the element A[i]with the element Afi + count].
If the current element is larger than the comparison element (Afi] > Afi +
count]), swap them. ' o

Increment count.

/
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- Example:
 Element 1 2 3 4 5 6 7. 8
" Data 6 3 - 2. 5 1 4 7T 8
1st pass 1 6 3 5 2 4 7 8
andpass 1 2 6 5 3 4 7 8
1 2 3 6 5. 4 7 8

3rd pass

The current indexed element (at .position D which is 6 is comi)ared with th.e'3 (pos. 2)

* and swapped, the 3 then becomes our current indexed element and is compared with the 2

| (pos. 3) and sWapped. 2 then becomes our current indexed element, which is compared

with the 5 (pos. 4), this is not ‘swapped as the current indexed element is not larger than

the comparison element. Then the 1 is considered (pos. 5} and this time a swap occurs, 1
is now the current indexed element and is compared to the 4, 7 and 8 (pos. 6, 7 and 8) | \
where no swaps occur. The second pass now begins with the current indexed element | ‘

| being the element in position 2, which is compared with elements 3,4, 5 and 6. This

continues until the list is sorted or all the elements have been cbmpared (N-1 passes).
4.3.2. Bubble Sort

Belmfv is the pseudo-code for the Bubble Sort Algorithm:

Bubble Sort (Sorting the array Afsize])

While not sorted

{

Forindexi=2uptoi = size
{ |

Compare the element Afi]with the preceding element (Afi - 1]).

If the element is smaller than the preceding one (Afi] <A[fi-1]), swap'them.
) _ _
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Exainple:

* Element 12 3 4 5 6 7 8
Daa 4 6 1 8 7 5 3 2
Istpass 4 1 - 6 7 S 3 2 8
ndpass 1 4 6 5 3 2 7 8
3rd pass 1 4 5 3 2 6 7 | 3

- The first two data items (4 and 6) are compared and the smaller one placed on the left-
hand side and the larger one on the right hand side. The second and third items (6 and 1)
are then compared and the smaller one placed on the left and so on. After all the data has
been passed through once, the largest data item (8) will have "bubbled" through to the

end of thé.‘_‘ list. At the end of the second pass, the second largest data item (7) will be in’

the second last position. For n data items, the process continues for n-1 passes, or until no

‘exchanges are made in a single pass.
4.3.3. Insertion Sort

The basic step in this algorithm is to insert data into an ascending ordered sequence. Thus
if the data ‘D’ is inserted in position i, then the data to the left 6f position i will be less
than ‘D’, and the data to the right of position i will be gi'eater than ‘D’. Starting at the end
of the list and working from right to left, all data on the right of the index is considered as
the sub-list. This means that as the index decreases toward the start of the list, the sub-list

increases in size. The data at the current mdex is ‘rippled’ through the sub-list via

compansons until it finds its correct posmon in the sub-list, Below is the pseudo-code of

the algorithm,




For index i = size downto i =2

{ While before reach the end of cells
Compare the element AfiJwith the preceding element {Afi- 1]).
if the element is smaller than the precedmg one (A[l] <Afi-1 ]) swap them

else, go to the next element.

}
y

-Example:
Element 1 - 2 -3 4 5. 6 7 8
Data 4 6 1 8 7. 5 '3 2
1st pass 4 6 1 8 7 5 2 3
* 2nd pass 4 6 1 - 8 -7 -2 3 5
4 6. 1 8 2 3 5 7

3rd pass

The insertion sort starts with the last two elements and creates a correctly sorted sub-list,
which in the example contains 2 and 3. It then looks at the next element (5) and inserts it

into the sub-list in its correct position. It takes the next element (7) and does the same,

continuing until the sub-list contains all the data,
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4.3.4. Selection Sort.
Below is the pseudo'-cedefor the Selection Sort;

E 'Selectzon Sort (: Sortmg the Array A [Szze])
For uqdex Ito Slze-]
. { I
- ‘.Small = index”
For count = index to Szze
R | S
If A[coun{] <A[smalU then small count {Fmd element number af
| _smallest value i in list} R '
Swap Afindex] for Afsmall] .

{Swap current indexed value for smallest value in list}

}
: - Example:
‘Element 1 2 3 4 5. 6 7 8
Data 4 6 1 8 7 5 3 2
stpass 1 6. 4 8 7 5 3 2
Jndpass 1 2 4 8 7 5 3 6
3rdpass 1 .2 3 8 7 -5 4 6.

The selection sort marks the ﬁrst‘element (4). It then goes through the remaining data to
ﬁnd the smallest number (1). It swaps this with the first element and the smallest element'
is now in its correct position. It then marks the second element (6) and looks through the

. remalnmg data for the next smallest number (2). These two numbers are then swapped ‘

+ This process contmues until n-1 passes have ‘oeen made.

o
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4.3.5. Quick Sort

. This algorithm partitions the array into‘. two parts by ﬁloving a pivot into its correct
position, so that items to the pivot's left are smaller than the pivot, and the items to- the -

. right are bigger. The algorithm is then called recursively so that it will partition the two
subordinate arrays on either side of the pivot until the entire array is sorted. Below is the =

pseudo -code of the chk Sort:. '

Quick Sort (Sorting array A[size])
While Low is less than High o
. {
Choose Pivot as the element at position A [Low] :
While A[High] is greater than Pivot, decremem‘ Hzgh else move A[Hzgh] to |
" AfLow] | | |
| While A[Low] is less than Pivot, increment Low; else move AfLow] to 4 [High]
J | | .
Move Pivot into A[High], see Pivot position as High.
If Low is less than Pivot point, recursively call 'Quicfc Sort with Low = Low, High = 7
Pivot point - 1 | -
If High is greater than Pivot point, recurs:vely call Quzck Sort w:th Low = szot point

+ 1, High = High.
Exﬁmple:

Element
Data
Ist pass
2nd paSs
3rd pass

W W W = W]
Lo S N
(TN 9
A N W u: th c\.
-..1‘ o0 '.‘oo L u -.:

PR T o T S S )
. . . | |
NONN RN YN

4th pass

~ sorted.
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- The Quick Sort takes the last element (2) and places it such that all the numbers in the left :
sub- hst are smaller and all the numbers in the right sub-list are blgger It then Quick Sorts
the left sub-list and then Quick Sorts the nght sub-list. This is a recursive algorithm, since |
itis deﬁne& in terms of itself. This reduces the complexity of programming it. In this
implementation the pivot is chosen at random (by picking the last element in the list, -
 whatever it may be), but if certain patterns of sortihg are required theh a pi{rot is chosen
through more selective mgaﬁs. For instance, if two sub-lists are required in the first pass
to be of approximately equal size then a pivot would be selecfed that would split the list
roughly in half. l | |

4.3.6. Radix Sort

Unlike most other sorting algorithms, the Radix Sort does not linv_olve comparison
between the items being soned. _Instead,' Radix Sort shufﬂes the items into small bins, '
‘then collects the bins and repeats the process until the array is sorfed. The- éfﬁci.ent
operation of the Radix Sort lies in ﬁndiﬁg the best key to shuffle the items. For integer
data, the key is each individual digit. In a group of data, there can be up to ten bins for
each digit (0 - 9). Thus each individual digit of each data is isolated and placed into the

' correspondmg bin. At the start, the least significant d1g1t is chosen and the algorithm = -

works its way up to the most 51gn1ﬁcant digit. Below is the pseudo-code of the Radix
Sort: ‘
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Radix Sort (Sorting array 4 [eize])
Create all of the bins. _
From the least significant digit to the most sign;‘ﬁcant digit
/ ‘

For each element (from the first to the last)

f
o

Isolate the value of the szgngf‘ cant digit. _
Store the element in the bin with the matchmg szgmf cant digit value
- |
~ For each bin (from the first to the last)

{

Retrieve all of the elements and store them back into the array.

y :
} Destroy all of the bins.

4.3.7. Heap Sort . .

By viewing the array as a complete binary tree, the Heap Sort transforms such a binary
tree into a heap. This algorithm does not require overheads and is not recursive. The

algorithm basically follows the following steps:

1. The eomplete binary tree (actually an array) is sorted so that it becomes a mex-heap,
thus the first element is always the biggest element. . ' | _ ,

2. Since exactly the oppos1te is required (the last element should be the biggest 1nstead), |
the first element and the last element are swapped '

e Now the array has to be re-sorted (except the last element), so that the ﬁrst element is .

| agam the biggest. '

4, The second step is repeated 80 that first element is swapped w1th current last element.

5. Steps 2 and 3 are repeated so that all the elements are sorted.
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Such a sttategy takes advantage of a binary tree. Every time an element is moved, it is

moved to its current position's child. Thus it moves a greater distance than the Insertion -

“Sort. Below is the pseudo-code of the Heap Sort:

'Heap Sort (Sori’ing array A[size])
For each parent node, - |

if there is any child node, we compare it with bigger child, If the parent

‘is less, we walk down the parent until none of its new qhifdren nodes are greater.

,}‘

While we do not reach the first cell,
{ B

. swap the f rst cell with the last cell. ‘

Change the last cell index to the cell precedmg the last cell. _

Walk down the first cell until none of its new children nodes are greater.
; , .

4.3.8. Shell Sort

This sorting algbrithm \;vas conceived by D. L. Shell (hence the name), and was inspired
by the Insertion Sort's ability to work quickly on an array that is élmost_iﬁ order. It is also
called a ‘diminishing increment’ sort. Unlike the Insertion Sort, the Sheli- Sort does not.
' sort the entire array at once. Instead, it divides the array into non-contlguous segments, |
which are separately sorted by usmg an Insertion Sort. Once all of the segments are.
“sorted, the Shell Sort re-divides the array into fewer segments and repeats the algonthm

_ until the number of segments equals one, then the array is sorted.

‘There are two advantages of the Shell Sort over the Insertion Sort. When the swap occurs’
in a non-contiguous segment, the swap moves the item over a greater distance within the
overall a_rrdy. The Insertion Sort only moves the item one position at a time. This means’

that in-ﬂle Shell Sért; the items being swapped are more likely to be closer to their final
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- position than with the Insertion Sort. Since the items are more likely to be closer to their

final positions, t_hé array itself becomes partially sorted. Thus when the segment number -

équals' one, and the Shell Sort is performing basically the Insertion Sort, it will be able to

‘work very fast, since the Insertion Sort is quick when the array is almost in order. There

are variations of the Shell Sort depending on the method of arranging segments The

“2X” method determines the number of segments by dividing the number of cells by

two ‘(int‘eger division), so that in the first round each segment will have mostly two cells.

After the first round, the number of segments is decreased by dividing them by two agam
_ This is repeated until there is one segment left. Below is the Shell Sort's pseudo-code:

Shell Sort (Sorting the array Afsize]) _
Determine the number of segments by dividing the number of cells by two.

While the number of segments are greater than zero

{

 For each segment, we do an Insertior_z Sort.

Divide the number of segments by two.

o

4.3.9. Bucket Sort

This algonthm partitions the array into two parts by movmg a pivot into its correct

position, so that items to the plvot‘s left are smaller than the pivot, and the items to the

right are bigger. Once the hst has been sorted into two buckets, any convenient algonthm

may be employed to complete the sorting of the contents of each bucket. Below is'the
pseudo-code for an instance of the Quick Sort employing the Bubble Sort as the

secondary sorting algorithm:
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Quick Sort (Sorting array Afsize])
. Choose pivot as mid-point
Reset Current pointer
- Reset Subl pointer and Sub2 pointer

While not at end of list

,f

IfA[ Current pointer]<=pivot
{ .
A_Sublist] [Subl pointer]=AfCurrent pointer]
Increment Subl pointer ' '
;

else
{ |
A_Sublist2[Sub2 pointer]=A[ _Current pointer]

. Increment Sub2 p‘oiﬁter‘ S o
Increment Current pointer
Call Bubble Sort for A_Sublist] and A_Sublist2

| Examplé: : . pivot=4‘
Element 2- 3 .4 5 -6
Data 4 6 "1 8 71 5
1st pass 4 1 3 2 {6 8
2nd pass 1. 3 2 4} {6 7
3rd pass {1 2 3 4 6. 5
2 3 4 {5 6

4th pass {1

8}

sorted.
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The Bucket Sort selects the pivot as the mid-point value in the list which is 4. It the
traverses the list comparing each element to the pivot. Elements with a value of less than
or equal to the pivot are placed into the left hand side of the list (A_Sublistl) while
elements of value greater than the pivot are placed into the right hand side of the list |
(A_SublistZ). Hence, on the first pass the 4 is compared to the pivot of 4 and placed into
the left hand sub-list, the 6 is then compared to the pivot of 4 and placed into the right
* hand sub-list. This continues until the entire contents of the list have been sorted around a
pivot into two sub-lists. The Bubble Sort is then applied to each of these sub-lists. In
A_Sublistl, the first element (4) is compared to the following element (1) and swapped.
1t is then compared to the third element (3} and swapped The last compare on this pass of
this sub-list is then performed against the fourth element (2) and swapped into its final R

correct Iocatlon The same actlon is repeatedly performed on each of the sub-lists unt11

" the entire list is eventually sorted.

4.4; Algorithm seI_eétion for auralisation

As stated in Chapter 1, the main purpose of this thesis is to examine how relatively
inexpensive 3-D sound techniques can be used to improve disambiguation of musically
auralised sorting algorithms. To reiterate, the emphasis on éorting algorithms is due their
diverse range of eveﬁté, sorting natures and data. Many other information sources exist |
that could be well suited to auraliéation. However, this thesis isrndt concgmed-with B
defining which types of information sources are best suited to auralisation. It is more
concerned with using sorting aléorithms as a vehicle for preliminary experimentation of '
cormnumcatlng information via spatlally enhanced musm Furthermore, this thesis also
sets out to determine which types of mfonnatlon wnhm somng algorlthms are more

amenable to aurahsatmn

. For the purpose of musical algorithm aurahsatlon itis necessary to look at the nature of

the sorting algorithms, For simplicity and the ability to draw comparisons, it will be

assumed that each algorithm will aim to sort the list into ascending order, It will also be

assumed that the target users will have little or no priof knowledge about the nature and




135

function of sorting algorithms, this is in order to ensure that all users possess the same
amount of prior training. Certain algorithms will posses particular characteristics that
make them more appropriate for musical auralisation than others. Such characteristics

will be defined by the available information present within the algorithm execution.

Some algorithms will possess characteristics that will be more reédily represented by -

musical metaphors. An example of this would be that a musical triad denoting the

occurrence of a swap in a Bubble Sort would translate with greatei' meaning than a single

- note representing a pivot in a Quiék Sort. This is because the musical triad ‘suggests’ the -

occurrence of a swap more than a smgle note ‘suggests’ the presence of a pivot point.
The swap structure lends itself more readily to a musical metaphor than a pivot does. It is
therefore important to identify the key features of each algorithm. The list below

identifies the prominent characteristics of each of the algorithms:

K Exchange Sort - This algorithm gradually sorts the list starting from the left by

swapping elements. This algorithm is iterative and as it repeats its sorting cycle

the sorted elements of the list grow to the right until the entire list becomes fully -

sorted when the algorithm can _terminaté.

+ Bubble Sort - This algorithm progressively sorts the list from the right. As large
elements are_‘rippled’ through the list to the right on each iteration by a process

of swapping neighbouring elements, .the list of sorted elements gradually- grdws

to the left until the entire list becomes fully sorted when the algorithm can

~ terminate.

e Insemon Sort This algonthm, like the Exchange Sort, gradually sorts the 11st
| startmg from left. This algorlthm is iterative and as it repeats its sortmg cycle by

| _ swappmg elements, the sorted elements of the Hist grow to the nght until the. .

entire list becomes fully sorted when the algonthm can termlnate

e Selection Sort -'.This'algorithm, like the Exchange Sort and Inse.rtioni'Sdrt,

grédually sorts the list starting from the left. Again this algorithm is iterative and
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as it repeats its sorting cycle by swapping pairs of elements the sorted elements of

the list grow to the right until the entire list becomes fully sorted and the -

algorithm can terminate. -

¢ Quick Sort - This algorithm sorts the list into ‘buckets’ by deciding thetr
‘destination about a pivot. The resulting list shape progression yields a grouping

_characteristic where the groups become smaller yet their number grows in size

with each iteration. When the sub-arrays or ‘bucket’ sizes become single then the -

list is deemed to be sorted and the algofithm can terminate. ;

o Radix Exchange Sort',- As this algorithm operates in the same manner as the
Quick Sort, it also yields a grouping characteristic aﬁd shares the placement,

iteration and termination characteristics.

o Heap Sort - This algorithm iteratively sorts the list from the right. As large
elements are sent to the end of the list to the right, the list of sorted elements
gradually grows to the left until the entire list becomes fully sorted and the

algorithm can terminate.

o Shell Soi't  The characteristics pertaining to the shape progressioﬁ of the list are

once again dependent upon the sub-algorithm that is employed.

e Bucket Sort - This algorithm dobs not fully sort a list and therefore feqliires a sub-
- algorithm to complete the sort. The initial characteristic that the algorithm yields

" is one of a’ groupin'g nature by placement of elementé'aroux}d a pivot, the

subsequent characteristics are then dependent upon the sub-algorithm employed.

Featlifcs that are common to all of the above algorithmé can be identified .by.working

| through the examples given e_aflier in this chapter. Eaéh shares the following common

_ steps:
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1. Check the state of the list to see if it is sorted.
2. Pass through list mampulatmg the elements.

3. Check the state of list and terminate if sorted or loop back to step 1 if not sorted
The characteristics from all of the above algorithms can 'n.o_w be identified:

.o Checking the list state.

e Progression of list shape — sortmg to the left, to the nght of into groups.

. ‘_ Manipulation of elements during a sorting pass — swapping elements or
place.ment of elements into sub-arrays based‘arc.)und pivot points.

o Iteration — denotes the amount of passes the algorithm has made through the list.

¢ Termination — denoting the successful completioﬁ of a sort.

The algorithms described above can be further categorised by their sortmg progression

charactenstxcs, the nature of the list progression:

. Algonthms that sort from the left 31de of the list-
0 Exchange Sort

o Selection Sort,

o Insertion Sort.

e Algorithms that sort from the ﬁght side of the list-
o - Bubble Sort.
‘o Heap Sort.

Algonthms that sort into groups and sub- -groups- |
‘o QuickSert. = -
o Radix Exchange Sort;‘
N o Postman's Sort, _ _
. Algonthms that sort dependent upon lmplemented sub-algonthms— s
' o BucketSort. ' |
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o Merge Sort,
o Shell Sort.

e Algorithms that have no sequential nature and might not translate well
musically - |

o Tree Sort,

It would be useful to auralise algorithms with different sorting characteristics. It would

therefore be a logical step to use one algorithm from each of the previoﬁsly mentioned ‘ |
groups. The algorithms listed below have therefore been chosen to represent each of the -
sorting characteristics with the exception of the non-sequential characteristic that might ' |
not translate well musically. The exéeption is that twb algorithms with the ‘sort from the ‘
left’ characteristic have been chosen. This is-due to the different ways in which this

characteristic manifests itself. The Selection Sort causes a single swap on each pass = . ‘
" whereas the Exchange Sort can cause multiple swaps when sorting and may therefore L
create confusion for the listener. Auralising both of these algorithins and comparing the |
resulting experimental data w111 show if this difference in sorting nature has any effect on

users perception and understandmg of the musical auralisations.
. The chosen algorithms'for auralisation are:

Selection Sort — Sorts from the left hand side. . o : | | ' ' |
Exchange Sort — Sorts from the left hai;d side: R ' | . ‘ ‘ |

‘Bubble Sort — Sorts from the right hand side. - | -
Quick Sort — Sorts into groups.

R A =

Bucket Sort - Sorts dependen_t upon sub-algorithnié.

Given these characteristics it would also be'useful to convey algorithms that sort from the

middle-out and sort from the outside to middle. This can be achieved by combixﬁng the

aforementioned algorithms and essentially implcmenting different versions of the Bucket
~ Sortalgorithm, o e i |
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A Bucket Sort'algorithm can be employeo to achieve a sorting nature that causes the list
to be gradually ordercd from the centrc.of the list growing out towards the ends of the
list, The Quick Sort algorithm can be applied for one cycle only to split the list into two -
- sub-lists. The resulting two sub-lists can then be sorted with the Bubble Sort algorithm
and either the Selection Sort or Exchange Sort respeotively.' Because the Bubble Sort
sorts from the right hand side and the Selection / Exchange Sort sorts from tho left hand
~ side, the resulting list appears to progressivoly sort from the middle-out when combined.
Similarly, the Bucket Sort algorithm can also be used to achieve a sortixig .nature that
causes the list to be gradually ordered from the ends of the list towards the centre of the
list. The Quick Sort algorithm can be applied for one cycle only to split the list into two
sub-lists. The resulting two sub-lists can then be sorted with either the Selection VSort or
 Exchange Sort and Bubble Sort respectively. Again, because the Selection / Exchange
" Sort sorts from the left hand side and the Bubble Sort sorts from the right hand side, the

resulting list appears to progressively sort from the outside to the middle when combined.
4.5. Conclusion
The final list of chosen algorithms for auralisation can now be summarised as follows:

Bubble Sort — Sorts from the right hand side.
Selection Sort — Sorts from the left hand side. -
Exchange Sort — Sorts from the left hand side.
Quick Sort - Sorts into groups. .
* Bucket ‘Inside-Out’ Sort — Qulck Sort + (Bubble Sort + Selectlon Sort) Sorts

A .

from the middle to the outside. - .
6. Bucket ‘0uts1de-In’ Sort - chk Sort + (Selection Sort + Bubble Sort) Sorts

from the outmde to the middle.

The characteristics from all chosen algorithms were identified as: -
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Checking the list state — passing through the list testing each element’s placement

_inrelation to all other elements in the list based upon a desired ‘sorted’ state.

~ Progression of list shape — sorting to the left, to the right, of into groups. The
“progression of the state of the list of numbers due to the algorithm’s sorting
nature. This is concerned with the ‘evolution’ and presence of certain features
within the list that provide information about its state. It has been identified that
certain algorithm sort from the left hand side while others sort frmﬁ the right hand -
side. Other algorithms have been shown to sort by ‘segmentation’ or ‘grouping’

while others sort from the inside-out or outside-in.

Ménipulation of elements during a sb'rting pe\ss — swapping elements or
placement of elements into sub-arrays based around pivot points. The Bubble,
-Exchange, Selection and Insertion Sort algorithms manipulate the data by
swapping pairs of elements. As previously mentioned, a musical swappihg
metaphor could be emplbyed here to denote the occurrence of this type of data
manipulation. In contrast, the Quick Sort, and both Bucket Sort algorithms on the
first pass, sort the data into sub-arrays by comparing the current data to a
predefined pivot .value The representation of this characteristic in the musical
‘domain is not as simple as the swap structure mentioned earlier. The visualisation
of sub-arrays and pivot points lends itself more readily to mapping into-a spatlal
domaln.‘The use of timbre and placement could play a key role here in order to
represent this characteristic. Such an approach could exploit the spatial nature of
timbre placement to provide a metaphof for a central ‘pivot,- while lesser values
would be sent to a left hand sub-array and greaier than of equal to values Would |

be sent to a right hand sub-array.

Iteration — denotes the amount of passes the algdrithfn has made through the list.
This feature would requlre the mapping of a control’ type event to represent the

- 1terat10n count
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"« Termination — denoting the successful completion of a sort. Would require a
‘control’ type metaphor to denote that the algorithm has successfully sorted the

list into the desired order.

- This chapter has id_entiﬁed the key features and characteristics of sorting algoritlnné that
might be amenable to musical auralisation. It is now important to determine how each of
fhesb features translates for each of .the aigorithms.‘-The following chapters document
experiments that are aimed at understanding the effect that musical training has on the
perception and understanding of sorting algorithm auralisations. Preliminary experiments
will be carried to test the basic building blocks of representing algorithms musically, such-
as pitch perc'eption,.shape perception, list state perception and list shape progreésion '

perception.
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Chapter 5

Preliminary experimental work
5.1. Introduction

This chapter documents a set of initial experiments carried out in order to obtain some

- understanding of  how an average person (i.e. non musically educated) perceives .

sequences of notes, shépes of musical tonal sequences with and without musical timing,
musically auralised list state, musically auralised list shape progression and musically
" auralised data manipulation. These tests from the building blocks for sorting algorithm
auralisation and are based upon the information attributes highlighted in Chapter 4. The

results, when taken with eXisting guidelines on the use of sound in interfaces, are used as -

the basis for the design of experiments that use music to communicate aigorithm state and
execution. The empirical evaluation of thcée musical auralisations should provide a
- preliminary understanding of how useful music might be for communicating infdrination
to assist. algorithm" understanding through algorithm auralisation. Supporting statistical
data, all raw data and all stimuli are given on the accompé.nying CD.

5.2 Research approach
5.2.1 Musical structure and understanding

There are many different types of musical structures that can be used to communicate

information. At the basic leve] there are single notes (or a short series of single notes).

'Such single notes can be used to alert a user about a particular event but in order to 7

communicate more complex information it is necesséry to take advantage of higher
. structures in music that involve a number of other properties such as pitch, timbre,
rhythm and harmony. Earcons [18] are examples of simple musical structures that

communicate information and experimentally derived guidelines are available for using

* such structures effectively (see Section 2.4.3). At a higher level, music is characterised by |

structures such as Major and Minor scales, tunes, complex rhythms, timbre combinations
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and harmony. Most of these structural devices can be used both in works for large sets of
instruments or for solo instruments. The more complex the music becomes, usually the

more the emphasié on higher level structures is required to hold the work together.

It is currer_itly not clear as to how much information listeners with no special musical
ability can comprehend. The important fesearch question is - to what level of complexity
can we utilise musical structures in HCI without losing comprehension in the average
user? To answer this question we need to determine the musical abilities of the average
listener. Examples of relevant ‘questions pertaining to the perbeption of musical

auralisation include:

o How accurately"can the average user ident';Lfy musical tones?

» Can users distinguish note sequences? | V

e Can users visualise the shapes of tonal sequences?

. Can users comprehend patterns of tones that denote the presence of a structure?
* Atwhat level can users comprehend thythms and tunes?

e To what accuracy can users identify and distinguish different timbres?

o How useful is timbre placement in the stereophonic field? . -

o Does musical training have any effect on the each of the tests? -

Some musical structures may be understood with Iittle or 1o training. For example, a
siren consisting of two-tone repetition to indicate an error is an intuitive representation
that indicates urgént attention is required. This is, of course, culturally biased as the users
requires 'prior knowledge of the meaning of a-siren in order to recognise it as a warning
sign. Rigas [160] calls these ‘self explanatory messages’ and are essentially auditdry |
icons. Other messages may require learning such as those employed in Earcons, Rigas
[160] calls these ‘trained messages’. Interfaces may need to use both types but a
 preference of the “self explanatory messages’ will make the interface easier to use. To
examine the questions posed above, four experimehtal procedures were designed and
carried out. These experimeﬁts investigated some key list properties and manipulations of

lists and how they might be perceived aurally.
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Firstly, experiménts were performed to determine if users (both trained and untrained)

can perceive different pitch intervals.

Secondly, experiments were carried out using short pitch sequences in order to
understand how subjects perceive the shape of tonal patfe'ms. These experiments are
important in determining whether or not subjects can comprehend the contour of the
éequenée. If so, it. would indicafe that they are capable of understanding pattens of

numerical data.

Thirdly, experiments were carried out Qn' pitch sequences that are essenﬁally in a
~ sequential order with only one or two notes being incorrectly placed. If users are capable
of identifying these ‘out of order’ notes then it would indicate that they are capable of

“pinpointing erroneous elements in numerical data lists.

Fourthly, experiments were carried out using pitch sequences as above, but with addition
of a second timbre to denote the manipulation of the incorrectly placed data elements. If
users can identify the erroneous elements (as above) and can also identify the
manipulation of such elements then it would indicate that they are capable of

comprehending list manipulation, which is the basis of sorting algorithms.

The manipulations in the above experiments represent some of the core transformations
used in sorting algorithms, The results of the experiments will enable us to verify and

understand how listeners perceivé and process the following:

. Orderéd and non-ordered pitch ranges.
. Rhythm in combination with pitch.
. Tempbral arrangements and pitch cdrhparisoﬁs between one or two instruments.
o How far a pattern of what .thé algoﬂtbm does can be uﬁderstobd without the

listener knowing its detailed processing.

¢ The abstract development of mental models of current list states.
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The results will enhance our undérstandi.ng of how usérs mentally react to, and process
musical stimuli. They will further highlight the feasibility of conveying information about -

algorithm state and execution via music.
5.2.2 Tools used

The experiments in this section have been implemented on a personal compliter équipped
with a standard soundcard. The system can be used with both an external MIDI
compatible multi-timbral syntheéisér ot the internal sound set of the sound card. Wave
Table synthesis is normally used as the quality of the pfoduced timbres is much closer to
that of real instruments. | ' |

5.2.3 Subjects and feedback

In order to classify the musical ability of the test subjects, information related to the
musical experience, interest and exposure of each listener was gathered. Edwards
developed an interactive musical ability test entitled MAT (Musicalr Ability Test) [86]
~ that required considerable time and effort on the part of the test subject. This thesis is
concerned with understanding what effect musical training and expoéure has on the above
described tests. It does not concern itself with the natural or actual ability of the test
subjects but relies more on history and self classification. The resulting individual scores
were plaéed into a scale ranging from 1 to 6. This information was obtained using a
questionnaire containixig questions determining listeners’ interest in music on a scale one

to six, theh ability to play a musical instrument on a scale of one to five and their singing

ability on a scale of one to six. The questionnaire is based upon questionnaires used by
Rigas [160], Alty [3] and Vickers [182]. The questionnaire is given in full in Appendix B.
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The received information was used to determine a users’ overall musical ability

"classification as follows:

1 - Absolutely no musical abitity.

s 2 —Litﬂe to avefagé musical ability.

. 3 - Average to greater than average musical ability,
. & 4 —Greater than average musical ability. - o

e 5 —Greater than average to exceptionally high musical ability.
e 6-Exceptionally high musical ability.

It was found that in all subsequent experiments, listeners with the ability extremes of 1 or
6 were never encountered. All of the test subjects fell into the scale of 2 to 5 and were

therefore split into two classifications. Those with a score of 2 were classed as having

- little to average musical ability and those with a score of 3, 4 or 5 were classed as having

greater than average to high musical ability. These two sub-groups will in future be

referred to as ‘non-musical’ and ‘musical’ listeners respectively. User feedback was

gathered before and during the experiments. Users then answered questions on a form in

response to musical stimuli.
5.3. Pitch perception experiments

5.3.1. Experiment construction

In this set of experiments thirty subjects were asked to listen to pairs of musical notes and

determine their position within a bounded diatonic' scale. The timbre employed was an
acoustic grand piano,' which was placed in the centre of the stereophonic field with no
' reverberation or chorus added. The bounded diatonic scale started at ‘Middle C* and
'ascended. by one octave (eight noteé). Each of the note pairs were'played within this

scale. In order to create a context, the scale was first played once and each note pair was

repeated three times. The time interval between the termination of the first note and the
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- initiation of the second note was zero and the time interval between repetitions was 2
seéonds. In some cases the second note in the pair was higher than the first, in other cases
 the note pairs were identical and in some cases the second note was lower in pitch than
the first note. Subjects were told that each of the eight notes within the bounded scale
were mapped to the Tumbers one to eight. Upon listening to each pair, the subjects were
asked to write down the numerical values of the notes. There was also the option of
writing down the initial note value and the difference between the two notes. This is to
allow for listeners that may not perceive the two notes absolutely and dis'tihctlyrbut hear
them relative to each other. An example of the scale and one pair of notes is shown in the

Figure 5.1.

” | | . I
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12345678 1

Figure 5.1 —Pitch test scale and note pair.

This diagram in Figure 5.1 was both shown and played to listeners. A further three
demonstrations with answers were given, but this time no visual representation was
present. Ten of these pitch pair tests were then carried on each of the thirty subjects. The

full workbook is given in Appendix C.
5.3.2. Results and analysis

Figure 5.2 shows the musical ability distribution of the 'grbup of thirty test subjects. Of
this test group, 17 have a musical ability score of 2 and 13 have a musical ability score of
between 3 and 5. Therefore the test group consists of 17 ‘non-musical’ listeners and 13

‘musical’ listeners. It must be noted here that the musical ability cl'assiﬁcation_were

! Diatonic, in#olving only notes proper to the prevailing key without chromatic alteration. -
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derived such the difference between abilities 2 and 3 is greater than the difference
between abilities 3 and 4, This facilitates the classification of the ‘non-musical” group as
" abilities 1 and 2, and the ‘musical’ group as abilities 3, 4, 5 and 6. This group are termed
- “Group 1’ and consist of 17 university students from University College London and 13

non-students. Of the whole group, 9 are male and 21 are female.

Interest Rating Distribution
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Musical Interest Rating

Figure 5.2 — Musical interest rating for pitch p.erception test subj ects.

Figure 5.3 shows the users’ perception of each of the tones separately. The plot indicates
the accuracy of each ‘absolute’ tone within the bounded diatonic single octave scale.

Thus the results have been analysed as twenty (ten pairs) individual notes.

148
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Mean and standard deviation plot of percieved tones «
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Figure 5.3 — Perceived tone accuracy for pitch perception.

Note 1 2 K 4 5 6 7 8
Mean | 1.228571 | 2.983333 | 3.733333 | 4.033333 | 5.088889 | 5.783333 6.8 7.816667 |
8.D 10.708893 | 1.255384 | 1.201532 | 0.956008 | 0.907453 | 1.378917 [ 0.761124 | 0.567231 ‘ R

Figure 5.4 ~ Table of perceived tone accuracy for pitch perception.

Figure 5.4 indicates the mean perception for each of the notes, the standard deviation and

the high and low boundaries. It can be seen that notes that fall close to the boundaries of
the scale are identified with greater accuracy than those that appear closer to the middle
of the scale [3]. This is because the scale that provides the boundaries gives fixed points
that the user can more readiiy recall. The middle.of the ‘scale has little boundary
information and can create an area of ambiguity. Over'all,‘ the group performed well but it
is important to split up the test subjects into their musical classification groups in order to

understand how the ‘non-musical” and ‘musical’ groups perfdrmed. Figure 5.5 indicates

the accuracy of the ‘non-musical’ compared to the ‘musical’ group.
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Note 1
1.032967

Note 2
2.730769

Note 3
3.923077

Note 4
3.923077

Note 5
5.128205

Note 6
5.884615

Note 7 Note 8

7

Figure 5.5 - Perceived tone accuracy for pitch perception — non-musical v. musical. -
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S.D

0.17954

- 1.150919

1.255756

0.744208

0.614709

0

0

Mean

1.361345

3.176471

3.647059

4.088235

012 4 JLE

5.058824

5.705882

0.765607

6.647059

7.676471

S.D

0.889973

1.313579

1.221739

1.083419

1.084652

1.714986

0.996317

0.726994

musical.

Figure 5.6 — Table of perceived tone accuracy for pitch perception, musical and non-

The data in Figure 5.6 suggest that the acéuracy of the ‘musical’ listeners appeérs to be

greater than that of the ‘non-musical’ group. Again the occurrence of inaécuracy appears

close to the middle of the scale where perception seems to be most ambiguous.
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Figure 5.6 also shows that the non-musical test subjects have the greatést influence over
the performance of the entire group. Figure 5.8b shows the reSults of the Mann-Whitney
(Wilcokon independent. samples) non-parametric test applied to the differeﬁces of
perceived notes from the true notes. This test has been employed due to fact that the

assumptions required for parametric testing were not satisfied. The hypotheses are:

Ho: There is no difference between the ‘non-musical’ and

‘musical’ test groups when perceiving musical notes.

H;: The ‘musical’ listeners perform with differing accuracy
than the ‘non-musical’ listeners when perceiving musical notes.

NOTE1 NOTE2 NOTE NOTE NOTE NOTE NOT NOTE

Mann- 29.5000 81.000 99.0000 101.500] 87.500 68.500] 52.000 6&5.000
Whitney U ‘ ‘
Wilcoxon W 120.5001 172.0000 190.0001 192.500{ 178.5001 159.500{ 143.00Q] 156.000
Z -3.59 127 . -514 -405 -1.04 -1.887]  -3.04 -2.57 )
Asymp. .000 .102 305 341 .149 -.029 .001 .005
. 8ig. (11 ' N '
tailed

Figure 5.8b — Table of test statistics for each perceived note, ‘non-musical’ v. ‘musical’.

As previously noted the ‘musical’ subjects performed extremely well, whereas now it can

be seen that the ‘non-musical’ subjects perform with greater inaccuracy particularly at the

“boundaries. The null hypothesis can be rejected at the 5% level for note 6, at the 1% level

for note 8 and at the 0.1% level for notes 1 and 7. For the remaining notes (2, 3, 4 and 5)
there is no significant ldifferenf.:e between the ‘non-musical’ and ‘musical’ test groups and
we qaﬁnbt reject the null hypothesis. This data suggest that when notes are played close
to the bouridarigs of the context scale the ‘musical” test group perform significantly better

than the ‘non-musical’ test group.

* Asypm. The significance level based on the asymptotic distribution of a test statistic.
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The data given in Figure 5.8c shows the results of a Chi-Squared test applied to the
| results obtained for pitch identification. The hypotheses are: |

Hy: Users are not capable of identifying pitch. In particular, they are not

capable of understanding musically represented numerical values.

Hy: Users are cepable of identifying pitch. In particular, they are capable of

- understanding musically repreéented numerical values.

Chi-Square] 1066.724; 71.733] 42.533| 121.087] 234.444] 92.800] 94.800| 317.333
df 7l 7 7 7 7
Asymp. Sig. .00 .00 .000 .00 0000 .00 .000 .00

Figure 5.8¢ — Table of test statistics for each perceived note.

These data show that the probability of obtaiﬁing the scores gathered from the users for
the pitch tests at random are extremely low. From these date the null hypothesis can be
confidently rejected concluding that users are capable of identifying pitch and in
particular that they are capable of identifying musically represented numerical values.
This is encouraging since it suggests that users might be capable of understanding

muswally auralised sorting algorithm lists.

The eecond feature of this experiment that warrants some investigation is how the test
groups performed when the'.results are analysed as relative pitch tests as opposed to
‘absolute pitch fests. Here, the data that are evaluated are the perceived differences
between the two notes and not how accurately they are placed Withiﬁ the scale. The
intervals played to the listeners ranged from 1 to 7 with the omission of intervals of 2 due

to the constraints of the absolute pitches used in the previous test. Figure 5.9 shows how

the entire group of test subjects performed as a whole.
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Mean and standard deviation plot of percieved
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Figure 5.9 — Perceived tonal interval.
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Note 1 P 3 5 6 7
Mean | 1.133333 | - | 2.383333 | 3.266667 | 4.716667 58 6.483333
S.D | 0.342803 | - | 0.922261 | 0.868345 | 1.450794 | 0.761124 | 1,185958

' Figure 5.10 ~ Table of perceived tonal interval.

Figures 5.9 and 5.10 show that the greatest accuracy occurs Whe_n' the actual tonal .
difference is least. The greatest inaccuracy occurs when the difference between the two
tbncs_is large. This indicates that it is easier to estimate small interval differences as
opposed to large interval differences. Again it isrimportant to divide the data into two

groups in order to better understand how the ‘musical’ and ‘non-musical’ sub-groups

perform.
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Figure 5.11 — Perceived tonal interval — non-musical v musical.

Diff 5

Musical Diff1 Diff2 Diff3 Diff 4 Diff 6 Diff 7
Mean 1.192308 | - 2.807692 | 3.8461564 | 4.848154 6 .| 7
S.D 0.401918 | - 0.800961 | 0.688737 | 0.880559 0 0
Non-Musical 1 2 3 4 5 6 7
Mean 1.088235 | - | 2.058824 | 2.823529 | 4.617647 | 5.647059 | 6.088235
S.D 0,287902 | - | 0.885615 | 0.727607 | 1.775502 | 0.996317 | 1.464068

Figure 5.12 — Table of perceived tonal interval — non-musical v musical.

The data given in Figures 5_.11 and 5.12 svggest the ‘musical’ group perform with greater-
accuracy than the ‘non-musical’ group. Figure 5.14b shows the results of the Mann-

Whitney (Wilcoxon independent samples) non-parametric test applied to the differences

of perceived intervals from the true intervals.
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The hypotheses are:

Hy: Thereis no difference between the ‘non-musical’ and

‘musical’ test groups when perceiving musical intervals.

H,: The ‘musical’ listeners perform with differing accuracy

than the ‘non-musical’ listeners when perceiving musical intervals.

DIFF1 DIFF3 DIFF4 DIFF5 DIFF6 DIFF7

Mann-Whitney U 86.0000 44,0000 43.0000 45.000 52.000 32.500
Wilcoxon W 239.000{ 135.000] 134.000 1386.000] 143.000] 123.500
-1.331 -2.901 -3.02 -2.853 -3.040 -3.696
Asymp. Sig. (1 092 002 001 002 001 000
tailed)

Figure 5.14b — Table of test stafistics for each perceived interval, ‘non-musical’ v

‘musical’.

From the data givén in Figure 5.14b the null hypothesis cannot be rejected for single
intervals suggestiﬁg that there is no significant difference between ‘musical’ and ‘non-
mu.sical.’ listeners when perceiving intervals of 1. For the remaining intervals (i.e. >1) the
null hypothesis can be rejected at the 1% level. This level of significance increases

approxirnétely in relation to the size of the true interval. This data suggests that there is

no significant difference between non-musmal’ listeners and ‘musical’ listeners when

percelvmg small intervals. The data also suggests that as the test interval i increases in size
~ then ‘musical’ listeners tend to perform mcreasmgly better than ‘non-musical’ Ilsteners.

Once again the data shows that the overall inaccuracy of the entire group increases as the

pitch mterval grows. Ina s1m11ar experiment Alty[3) also showed that users of ¢ average

musical ability’ were capable of identifying pltch Th13 is supported by similar

experiments performed by Rigas [160].
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The data given in Figure 5.14c shows the results of a Chi-Squared test apphed to the

' 1esults obtained for pitch interval 1dent1ﬁcat1on The hypotheses are:

"Hp: . Users are not capable of identifying pitch intervals. In particular, they are

not capable of understanding musically represented numerical differences.

Users are capable of identifying pitch intervals. In particular, ﬂley are

capable of understanding musically represented numerical differences.

DIFF1 DIFF3 DIFF4 DIFF5 DIFF6 DIFF7

Chi-Square| 307.200 89.067 50.000{ 94.400| 94.800) 241.067]
- dif 7l 7 7 7| 7 7
Asymp. Sig. 0000 .00 000 .00 000N .000

Figure 5.14¢ — Table of test statistics for each perceived interval.

These data show that the probability of obtaining the scores gafheréd from the users for

' the pitch interval tests at random are extremely low. From these data the null hypothesis

can be confidently rejected concluding that users are capable of identifying pitch intervals
and in particular that they are capable of identifying musically'represented numerical
differences. This is again encouraging since it suggests that users might be capable of

understanding musically auralised sorting algorithm lists.
5.4. Shape perception experiments
5.4.1. Experiment construction

This experiment was designed to in order to help understand how hsteners percewe the
shape of short sequences of nusical notes. As with the pitch tests documented earlier, the
sequences were all played within one diatonic octave starting at ‘Middle C’. Again, thirty °
subjects were asked to listen to the sequences ‘of musical notes and determine their shape
within the bounded diatonic scale. The timbre employed was again an acoustic grand

'. piano, which was placed in the centre of the stereophonic field with no reverberation or
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chorus added. In order to create a context, the scale was first played once and each
musical sequence was repeated three times. The time interval between repetitions was 2
seconds. The seqﬁences had timing applied to them to make them appear more musical
and hence more memorable, By this it is meant that rhythmic timing was applied to the
tunes as opposed to presenting them with equal note durations and equal spaces between

notes. The listeners were informed that information pertaining to the timing of the actual

- sequences was not important, the key feature was the overall contour of the tonal

sequence and how it fitted into the bounded diatonic scale, Subjects were once again told

that each of the eight notes within the bounded scale were mapped to the numbers one to

ei.ght. Upon listening to each sequence, the subjects were asked to ‘draw’ the shape of the-

tonal pattern by placing ‘X’ marks within a provided grid as shown in the demonstration
sequences below. Each sequence contained notes that were only present in the contextual
bounded diatonic octave scale. Each sequence was of varying length containing between

six and eight notes. Thus each grid was eight notes high by eight note events wide.

JeguanEa S

s it

LY

Figure 5.15 — Example answer grids, shape perception experiments.

The test subjects were played the four musical sequences and shown the four diagrams in

Figure 5.15 above. The questionnaire is given in full in Appendix D. The subject group

was then asked to draw the shape of a further six tonal sequences by placing ‘X’ marks in
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blank grids. Each test was performed on thirty individual test subjects. The six sequences
are given in the grid diagrams shown below in Figure 5.15a.

Shape 2.

7 Noto: Sequenca s [Fi PHE B [t NOTe S € qUente i
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X

Figute 5.15a — Shape test stimuli.

'5.4,2, Evaluation mechanism

In order to analyse the results of the above experiments it is necessary to create some
form of scoring mechanism. Certain algorithms exist that allow for the measurement of

similarities between two graphs. Parametric bivariate correlation equations such as
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Pearson’s correlation coefficient and non-parametric bivariate correlation equations such
as Kendall’s tau-b and Spearman’s rho can be used to test for linear correlation between
two data sets. Such approaches can be applied‘ to shapes represented by sequential
numerical values to compare similarities. However, signiﬁéant correlation is often only
observed when a laxge amount of the data correlation is present. The similarities that are
required for identification in this series of experimenté are not sinﬁply relationships

between numerical values. Certain general features such as ‘ascending’, ‘descending’ or
‘randomness’ are required to be identified and scored. Correlation alg.orithms as
mentioned above do not pbsseé.s the ability to correlate shépes in this way. In this case the
desired result is an approximate gaﬁgé of the accuracy of the pérceived contour of the

musical sequences. Therefore a scoring.rnechanisrn has been developed and employed.

In order to score the correlation between the reference shapes and those shapes drawn by
the test subjects it is important to identify the features of interest within the context of this

series of experiments. The following features were identified:

» Sequential pattern progression —this feature is concerned with identifying the kcy_ .
_points within each pattern and outlining the direction of each note with reference
to the other notes within .the- sequence. In the initial design of the scoring
mechanism, this feature was scored by comparing each element to the element
that preceded it and noting the direction of ‘tonal travel’ (up, down or same).
After preliminary experimentation with this méchénism, it was found that the
comparisons were t00 confined to their neighbouring elements and scoring
" appeared inaccurate in certain cases where Simple- shifting occurred but where the
shape was relatively accurate. Due to these inaccuracies it was decided that the
position of each element should be compared with the positions of all subsequent
elements. This mechanism scored the shape progressioﬁ relative to all elements
 within the list and therefore gave greater accuracy when scoring pairs shapes that

were almost identical with the exception of one or two elements missing or being

rrﬁsplaced. |
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 Amplitude — this feature is concerned with the spread of the amplitude of the
perceived shape. If the reference shape was spread over one entire diatonic octave
(8 riotes) and the perceived shape was spread over 4 notes then the score should

‘be low, if the spread is close to or exactly the same as the reference spread then
the score should be high.

¢ General shape - thié feature is the subjective element of the scoring mechanism.

The scorer gives a point score based upon how similar the general shape of the

- reference pattern is to the general Shape.of the perceived pﬁttérn. In order to

control the subjection, an informal test was performed by the author on 15 test

subjects which asked them to rate the similarity between graphs based upon
extraéting’ features cdncemed with this thesis. Specifically, the identification of up

to 3 general features classed as random or ordered in a specified direction.

The scoring mechanism was used to rate the similarity between 50 sets of graphs each
with a reference graph for comparison. The same data was also presented to 15 test
‘subjects and the results of the two tests analysed. The weighting of the components in the
scoring mechanism were then corrected to reflect the scores obtained from the subjective
opinions of the test subjects. It is important here to reiterate the reason for developing a
scoring mechanism with a subjective component, The correlation required between |
~ shapes that is of concern in this thesis is at a higher level of abstraction than mathematical
correlation schemes would permit. Several ‘problcrriatic’ shapes were subjected to the
scoring mechanism to identify the likely points of failure. By problematic, it is meant that
they would score a low mathematical correlation but would capture the more abstract:
properties of interest in this thesis. The scoﬁng mechanism was therefore derived by

identifying the more abstract features both mathematically and observationally in order to

capture the general attributes of a graph that would satisfy the concern of this thesis.
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The lderived weighting of each of the three features for the overall §core is given as:
. Sequéptial pattern progression — maximmﬁ 7 points.
.o Amplitude — inaximum 1 p_oipt.
 General shape ‘—lniaximum 2 points.

" The scoring out of a maximum of 7 for the sequential‘ pattém progression has been

" implemented with the following considerations. The total number of valid comparison

points between each current element and all subsequent following elements is given by

(n-1)+{n-2)+(n-3).....(nn) points, where ‘n’ répresents' thé number of elements in the list.

"1 point is given for an accurate correlation for each of the valid comparison points
between the reference list and the percelved list. The total score is then divided by 7 and
multlphed by the equation g1ven above, thus yielding a final score out of 7.

. The scoring for the amplitude is calculated by .ﬁnldjng the high and low points in both the

reference list and the perceived list and finding the difference between high and low
points in each case. The differences are then compared between lists to yield the
difference in spread' between the reference pattém and the perceived pattern. If the
difference in spread is zero, or one, then the lists are deemed to have similar amplitudes
aﬁd a score of 1 point is awarded. If the difference in spread is two then 0.5 points are
awarded and any spread difference greater than two yields a score of 0. These scores have

been distributed based upon the fact that the tonal sequences are all within the same eight

notes, therefore the maximum difference in spread between two sequences (one confined

to the same note and oné using the entire eight note octave) would be 7.

The scoring of the general shape out of a maximum of 2 is calculated by awarding the

appropriate portion of the maximum based upon the amount of identifiable features. One
feature that became apparent when initially scoring and analysing the results using this

mechanism was that patterns that are correct in every way except that they have been
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shifted left or right score relatively low. To accommodate this it was decided that the
scoring should be done on the given perceived list and on left and right shifted versions

of the perceived list. The highest of these three scores would be the score of interest.

“The scoring mechanism. has been implemented on PC and has been written in the C

programming language. This implemented version of the coneeptual scoring mechanism
has been used to score the correlation between the reference sequence shapes and those

given by the test subjects in this series of expenments

- 5.4.3. Results and analysie

The grou;ﬁ of test subjects used were the previously described ‘Group 1°. The diagram
given in Figure 5.17 shows the accuracy of each of the thirty test subjects for all six of
the shape perceptioﬁ questions. The graph hes been ordered and colour coded in terms of

misical ability. It can be seen that there is a general trend that might suggest that

‘musical’ test subjects tend to perform slightly better than ‘non-musical’ test subjects

when perceiving the contour of the tonal sequences.
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Figure 5.17 — Shape perception accuracy plot — entire test group.

The: gfaph in Figure 5.17 shows that of the ‘non-musical’ test subjects with a musical

ability rating of two (out of a-maximum of six), five performed with a greater than 80%

accur.acy level when perceiving the shapes of the tonal sequences. The remainder still

performed well but generally not as accurately as the ‘musical’ test subjects. These

have been combined to give an average score over all six shapes, it is important to

ascertain whether certain shapes were perceived more accurately than others and whether

the ‘musical’ group performed dlfferently to the ‘non-musical’ group for these different

information types.

Figuf_e 5.18 shows how the group ef test subj ects as a whole perforfned on Ieach of the six

shape perception questions. |

‘musical’ listeners performed with no less than 81% accuracy. Since the data in this case
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Figure 5.18 — Shape perception accuracy plot by shape — entire test group.

Figure 5.18 suggests that a small difference betweeﬁ the perceptions of the different
shapes. The noticeable difference is the increase in accuracy for the subjects’ perception -
of shapes 3, 4 and 6. The only observable difference in these shapes is that each possesses

- very promineht and obvious features.

The data given in Figure 5.18a shows the results of the Wilcoxon Signed Ranks test
applied to the shapes perception results given above. The hypothese are:

Hy: There is no difference in perception between tﬁf:_ shapes 3, 4 and 6 and
~ shapes 1,2 and 5.

Hy: Thereis a difference in perception between the shapes 3,4 and 6 and
' shapes 1, 2 and 5. ' ' |
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 EASY-HARD
Z -3.10
Asymp. Sig. (1-tailed .00

Figure 5. 18a - Table of test staustws for the perceptlon of shape 3,4and 6 compared to

shapes 1,2 and 5.

From this data the null hypothe31s can be rejected at the 0.1% level of confidence

concludmg that the perception of shapes 3, 4 and 6 is significantly better than the group's

perception of shapes 1, 2 and 5.

The features for shapes 3, 4 and 6 are:

_ Shape 3 - Long ascent followed by sharp descent followed by sharp ascent.

ElEC Nole'Sedience s=ws,

Shape 4 — Sharp shallow trough followed long descent followed by small ascent
at the tail. - | |
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e Shape 6— Medium descent followed repeated sharp peaks.

The features of Shap.es 1,2 and 5 are:

. Shape 1- Short flat sectlon followed by sharp ascent followed by short medium

descent followed by medium length ascent,

¢S BQURIICE S

» Shape 2 — Short flat section followed by medium length descent followed by short
sharp ascent followed by medxum length descent.

. Shape 5 - Shafp descent followed by medium ascent followed by sharp ascent
followed by very sharp descent followed by medium length ascent.

ImP:tchr. i Iaeagﬁoze“)‘ecmenw%?%@ﬁ
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The best perceived shapes were those that possess lo'ng' and obvious ascents or descents,
or repeated patterns. The shapes that did not translate quite so well each had more

complex and less obvious and non-repetitive features.

Figure 5.19 shows how °‘musical’ listeners performed compared to ‘non-musical’

listeners in terms of accuracy of perception for each of the six shapes.

Shape Question Plot - Non-Musical v Musical

100 .

90

80

70 |

60 -

50 a Non-Musical
m Musical

40
30 |}
20 |-f
10 |

% Subjects correctly answered

:» . ‘ _ : Shape Number

Figure 5.19 — Shape perception accuracy by shape — non-musical v musical listeners.

The same feature is observed for the musically untrained group of listeners as was
observed for the group as a whole. Certain obvious or repetitive features translate better

than more complex or non-repetitive features.

- Figure 5.19b shows the results of the Mann-Whitney (Wilcoxon indepéndent samples)
non-parametric test applied to the scores obtained for the perceived shapes compared to

the true shapes.
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- The hypotheses are:

Hp: There is no difference between the ‘non-musical’ and

‘musical’ test groups when percetving musical shapes.

Hi: - The ‘musical’ listeners perform with différiﬁg accuracy

than the ‘non-musical’ listeners when perceiving musical shapes.

. SHAPE1 SHAPE2 SHAPE3Z SHAPE4 SHAPES SHAPEG

Mann-Whitney U] 35,500t 22,000 71.000f 37.500f 27.500] 50.500

Wilcoxon 188.500, 175.000[ 224.000¢ 190.5000 180.5001 203.500

‘ -3.25 | -3.74 -1.80 -3.32 -3.508] -2.573

- Asymp. Sig. (1- .00 .00 .033 .000 000 - .005
tailed) ' :

Figuie 5.19b — Table of test statistics for each perceived shapé, ‘non-musical’ v

*musical’.

The null hypothesis can be rejected for all shapes suggesﬁng that there is significant

difference between ‘musical’ and ‘non-musical’ listeners when' perceiving musical

shapes. The null hypothesis can be rejected at the 0.1% level of significance for shapes 1,

2, 4 and 5. It can also be re_]ected for shape 3 at the 5% level of confidence and for shape
6 at the 1% level of confidence. This data suggests that overall musxcal’ listeners

perform sxgmﬁcantly better than ‘non-musical’ listeners when perceiving short musical

patterns. The data also suggests that there is a greater difference between ‘non-musical’ _

listeners and ‘musical’ listeners when perceiving complex shapes compared to simpler
. shapes, The overall‘accuracy for all test listeners is however, observably high. This data

suggests that musically trained people might be more suitable for unde'rst'andmg sorting

. algorithm auralisation. However, this experiment presented the listeners with tonal

sequences that had musical timing applied to them in an attempt to make them more
‘musical’. It would be of interest to remove this musical timing as the proposed algorithm
auralisations will not represent the list states with such ‘musicality’, but rather play the

lists with equal note durations and equal spacing between the note. This might yield more

favourable results for the musically untrained subjects.
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- The overall average score for the perception of musically represented shapes in the

context of this experiment and subject to the marking scheme is 80.1%. By examining the

marking scheme and using the binomial expansmn the probabllxty of obtammg such a -

score at random can be approximated.

1.

| Sequeﬁtial pattern progression — Assume simplest shape with a list size of six, the

minimum size played. Each element compared to all  following elements.

Therefore (6-1)! possible outcomes = 720. However, the score is given for the

_ relationship in terms of direction between element pairs. This mechanism allows

for ‘alias® shapes that would not exactly correlate with the reference shape by
more classical correlation methods but would score full' marks here as the
directional relationships between all element ﬁairs is satisfied. For a list size of 6,
the highest amount of alias shapes is 70. This value has been derived by using the
mechanism on all possible shapes and references, The mechanism also left and
right shifted the data to allow for shifting errors, yielding 3 comparisons, the best

of which was taken as the score. This trebles the chance of success. Therefore,

assuming the simplest and shortest shape with the highest amount of possible

aliases and accommodating the shifting nature of the mechanism, the probability

of gaining a maximum score at random is given as (3x70/720). Or 7/24.

Amplitude — Full marks awarded if amplitude is the same or 1 values either side,
therefore there are 3 -chances at gaining full marks. There are 8 possible values of

difference, so the probability of gaining a full score at random is 3/8.

General shape ~ The features are identified as randomness, sorted ascending and
sorted descending, Therefore there are three possible answérs Assuming the

simplest shape with only one single feature the probablhty of gammg a full score

at random is given as 1!3
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Where the number of successes (r) is approximately 8 and the number of trials (n) is 10.
The probability of the occurrence of r successes in n trials is given by the binomial

distribution:

ot n-r ¢
{n- ol 7

. P(r successes) =

Where p represents the probability of success and q represents the probability of failure.

By applying this equation to each of the three features of the marking scheme and

combining the probabilities and trebling (to account for the three possible scoririg
positions due to the left and right shifting in the marking scheme), the probability of
scoring 80% at ran_dom is calculated as being approximately of the order of '7_.434e'8
which is extremely low. Although it is not entirely appropriate to use a formal statistical
method on data that has been subjected to a subjective marking scheme, the value of
probability gives the approximate order of magnitude and along with observation of the
-experimentally derived data 1t might suggest that the users are able to understand certain

features of the shape of a list when represented musically. It is worth noting here that

determining at what level and how accurately users can interpret and understand shapes

of tonal sequences is not a real concern of this thesis. -~ .
5.5. List feature extraction experiments
5.5.1. Experiment construction

In this set of experiments twenty subjects were asked to listen to sequences of eight

musical notes that corresponded to a list containing the numbers 1 to 8. Once again the -

tonal sequences were all within a bounded diatonic octave scale. The timbre employéd
was an acoustic grand piano, which was placed in the centre of the stereophonic field
with no reverberation or chorus added. The bounded diatonic scale started at ‘Middle C’

and ascended by one octave (eight notes). In order to create a context, the scale was first

170
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played once before each note sequence. Subjects were told that each of the eight notes
within the bounded scale were mapped to the nu'mbers one to eight and that the sequences
therefore represented lists of eight numbers. The noticeable difference between this set of
| experiments and the previously documented shape perception experiments is that no
musical timing was preseﬁt in the sequences. Each element was sepa:ated by the same

~ time interval and all the shapes were extracts from algorithm executions,

After listening to each sequence, the subjects were asked to interpret the shapés of the
lists. This was done in three stages. The first time that the test subjects were played a
séquence they were asked to identify the features of the list and explain them with a
written description. The second time, they were presented with the list again and asked to
describe in words the shape features of the list. Qn the third repetition, test subjects were
asked to draw the shape of the tonal sequence by placing “X* marks in a blank grid (much

like the List'Shape Perception experiments previously documented in this chapter),

In order to ensure that subjects understood the procedure, an example shape was
presented three times with two written descriptions followed by a diagram of the tonal
sequence. The subjects were presented with the information in Appendix I and shown
Figure 5.20: o |

= The octave scale starting with middle C.
1 1234 5 67 8 '
= —Tr— 11— 1strepetition of musiczal sequence.
= =SS s
1 6 85 7 1 2 3 4
£ T 1 1 | ’ -
2nd repetition of musical seqence,
T T
2 6 85 7 1 2 3 4
” ‘

%‘:ﬁ’:ﬁ:ﬁﬁ 3rd repetition of musical sequence,
L2 =

! T
6857 1234

Figure 5.20 — List feature extraction example.

Five shapes each comprising eight notes within the bounded diatonic octave scale starting

“at *‘Middle C’ were then presented to 20 subjects.
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5.5.2. Results and analysis

Squects were given the musical questionnaire (shown in full in Appendix B) and the

results are shown in Figui'e 5.58. Subjecté were all computer studies undergfaduates ‘

- comprising 1 female and 19 male. The group consisted of 8 ‘non-musical’ listeners and

12 ‘musical’ listeners. This group are termed ‘Group 2’.

Interest Rating Distribution

~ No, of subjects
QO =N W BN RO

_ 4 5 6.
Musical Interest Rating

Figure 5.21 — Musical ability rating — list feature extraction experixlncn'ts.'

~ An additional test was carried out in order to check if the subjects could draw the shapes
of simple tunes. For example, some subjects rﬁight fully undérstand the shape of the tonal
sequences in their minds, but be unable to draw them, and the test would then be testmg
their drawing ability rather than their musical comprehension of the shapes They were

. each played a well-known tune. Figure 5.22 shows the performance of the entire group.

‘The results were scored using the scoring mechanism described in section 5.4.2. The'

classification boundaries were set at:

Good - 70% to 100%

Average . -  40%to 69%

Bad - - 0% to 39%
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The data shows that 60% of the test group were able to draw simple tunes at a ‘good’

level, with 25% being ‘average’ and the remaining 15% being ‘bad’ at drawing. These

classifications were derived from experiments where each listener was played a simple

well-known tune and asked to draw it. This drawing .ability (or lack of it) is distributed

across both the ‘non-musical’ and ‘musical’ groups as shown in Figures 5.23 an 5.24..

Ability to Draw - Total

100 |
90 .
80 .
70 .
60 -
50
40
30
20 -
10 |

'Populallon percentage

AVERAGE - . GOO
Abllity -

Figure 5.22 — Drawing ability rating — list feature extraction experiments.

Ability to Draw - No_n Musical

100
90 |
80 |
.70
60 |
50 |
40 |
30 |
20-1-
i 10 .

Population percentage

BAD

- Figure 523 - Drawing ability rating — list feature extraction experiments — non-musical.
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~ Ability to Draw - Musical

Population percentage

Figure 5.24 — Drawing ability rating — list feature extraction experiments - musical.

Figures 5.23 and 5.24 show that both sﬁb-grbups contain a majority of test subjects who |
* have the ability to draw. |

j - 100
: 90
80
70

50

% Correct

30
20
.10

% Correct by Subject - Total

60 .

40 .

N 15t Repetition
2nd Repetition
O3rd Repelition

Ability I Subject Number

. Figure 5.25 — List feature extraction accuracy 1% v 2" v 3% repetition — entire group.
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Figure 5.25 shows how the entire group of test subjects performed for the first, second
and third repetitions when describing 'and drawing the shape of the tonal sequences. The .
graph is ordered in terms of musical ability with the least musical subjects being plotted
to the left and those with the greatest musical ability being plotted to the right, There is a
small increase in éccuracy; due to learning effects where the second repetition reinforces
‘and further defines the first repetition and might also suggest'.that the shapes are easier to
draw than to describe. Again it is important to divide the entire group of fest sﬁbj ecfs into
 their musical ability classifications in order to show if being musically trained has any -
effect on perceiving the shapes of these tonal sequences. Figure 5.26 shows how the
‘non- musmal’ group of test subjects perform against the ‘musical’ group of test subJects

when drawmg the shapes du.nng the thu'd repetltlon

.! ' 3rd Repetition - % Correct by Shape Question - Total - Non
Musical v Musical

Non-Musical .
@ Musical

% Correct -

Shape Nﬁmber

Figure 5.26 — List feature extraction accuracy 3" repetition — musical v non-musical.

Figure 5.27b shows the results of the Mann-Whitney (Wilcoxon independent sampies)
non-parametric test applied to the scores obtained for the perceived shapes of short tonal

sequences compared to the true shapes of short tonal sequences with no musical timing.
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The hypotheses are:

Hy: There is no difference between the ‘non-musical’ and ‘musical’ test -

groups when perceiving tonal sequences with no timing,

Hi: The ‘musical’ listeners pefform with differing accuracy than the ‘non-

musical’ listeners when perceiving tonal sequences with no timing,

TOTAL s

Mann-Whitney Ul 26707.000
Wilcoxon W]  45235.000
-.583
Asymp. Sig. (1-tailed .281

Figure 5.27b — Table of test statistics for perceived shape, ‘non-musical’ v. ‘musical’,

Based upon the test statistics given in Figure 5.27b the null hypothesis cannot be rej ected
and we conclude that there is no difference between the performance of the ‘non-musical’
group and the ‘musical’ group when perceiving short tonal sequences with no musical

timing. As previously mentioned the data in this series of experiments has been analysed

" using the marking described in Section 5.4.2. In terms of magnitﬁde, the results are

observably comparable to those in the previous experiment. It is therefore not
unreasonable to suggest that the probability of obtaining these test scores at random
would also be exceptionally low. Suggesting that listeners might be able to determine the

features of interest to this thesis from musically represented lists of numbers.

Another feature of this series of experiments that warrants investigation is the
discrimination between the information types that have been used. It is important to
ascertain whether the test subjects in this context more readily understand certain types of

information. The diagram below in Figure 5.28 shows how the entire group of test

subjects performed with shapes that were termed as being ‘easy’, that is, shapes that '

comprised of two or less features such as ‘all ascending’ or ‘random then ascending’. A

“hard” shape contains three or more features.




Hard Questions

A L T L T e R

Shape Question Number
177

Shape Question Number

177
3rd Repetition « % Correct by Shape Question - Easy Questions

3rd Repetition - % Correct by Shape Question

— Feature extraction accuracy. 3™ repetition by hard question type — entire

322100 %

Figure 5.28 — Feature extraction accuracy 3™ repetition by easy question type — enti e

group.

Figure 5.29
group.
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Figures 5.28 and 5.29 suggest that tonal sequences with one or two features are more

readily identified than tonal sequences with three or more features.

The data in the tables given in Figure 5.31 shows the results of the Wilcoxon Signed
Ranks non-parametric test applied to the scores obtained for the perceived shapes of short
tonal sequences with no musical timing compared to the ‘ti'_ue shapes of short tonal
sequeﬁces with no musical timing for both groups of hard and easy questions'over' the

entire test group of listeners.
The hypotheses are:

Hy:  There is no difference between the *hard questions’ and ‘easy

questions” when perceiving tonal sequences with no musical timing.

H,: There is a difference in accuracy between ‘hard questions’ and ‘easy

questions’ when perceiving tonal sequences with no musical timing,

HardQ - EasyQ

Z -5.059
| Asymp. Sig. (1-tailed) 000

Figure 5.31 — Table of test statistics for perceived shape, hard questions v. easy questions

From the data given in Figure 5.31 the null hypothesis can be rejected at the 0.1% level
of confidence suggesting.that that there is a highly significant difference between ‘hard’
- question ltypes and ‘easy’ question types when perceiving the shapes of short tonal
sequences with no musical timing. It can therefore be concluded that ‘hard’ 'questlon‘

types are understood 51gmﬁcantly less than ‘easy’ question types.

~ As these data have proven that a significant difference exists between accuracies when
perceiving *hard’ and ‘easy’ qﬁestions it is necessary to test for any significant difference . |
- between ‘non-musical’ and ‘musical’ test groups for each of the question types. The data

in the tables given in Figure 5.33 shows the results of the Mann-Whitney (Wilcoxon
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independent samples) non-parametric test applied to the scores obtained for the perceived
shapes of ‘easy’ and ‘hard’ short tonal sequences with no musical timing for the ‘non-
‘musical’ group compared to the scores of the shapes of ‘easy’ and ‘hard’ short tonal

sequences with no musical timing for the “musical’ group.
* The hypotheses are:

Hy: There is no difference between the ‘non-musical’ and ‘musical’ test

groups when perceiving ‘easy’ or ‘hard’ tonal sequences with no timing.

H;: The ‘musical’ listeners perform with differing accuracy than the ‘non-

musical’ listeners when perceiving tonal sequences with no timing.

EasyQ HardQ
Mann-Whitney U} 4611.500] 9392.500
Wilcoxon\zj 7851.500] 23588.50

.0
-.68 -.025
Asymp. Sig. (1-tailed) .24 .488]

Figure 5.33 _ Table of test statistics for ‘hard’ and ‘easy’ shapes ‘non-musical’ v

‘musical’.

From the data given in Figuré 5.33 the null hypothesis cannot be rejected concluding that

there is no significant difference between the ‘non-musical’ group and the ‘musical’

group when perceiving short tonal sequences with no musical timing irrespectivé of the

level of difficulty of the shapes. These same data also suggest that there is less difference

between the two groups for hard questions than there is for easy questxons suggesting that

the ‘nwsical’ group perform better on easy question types.

The next feature of interest in this series of expenments is the investigation of whether

the users’ ability to draw affects the accuracy of the answers that they prowdcd
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The data shown below in Figure 5.34 represents the perception accuracy of shapes of
tonal sequences during the third repetition for all test subjects. The data are ordered in

terms of their drawing ability.

3rd Repetition (Draw) - % Correct by Subject - Split Group

All Subjects
| ™ 1]
i dg- o BAD
. WAVERAGE
3 QGOOoD

3'7 10 2 5 41 14201 4 6 8 9 12 13 15 16 17 18 19
Subject Number

Figure 5.34 — Feature extraction éccuracy 3" repetition by drawing ability — entire group.

These data suggest that there is little appreciable. difference in perception accuracy

between those of * good’ drawing ability and those with less than * goo'd’ drawing ability.

5.6. List state perception experiments

5.6.1. Experiment construction

~musical notes that corresponded to the numbers one to eight. Once again the tonal

sequences were all within a bounded diatonic octave scale. The timbre employed was an

acoustic grand piano, which was placed in the centre of the stereophonic field with no

reverberation or chorus added The bounded diatonic scale started at ‘dedle C’ and

- ascended by one diatonic octave (eight notes) ‘In order to create a context the scale was

first played or;ce and each note sequence was repeated three times. SubJects were told

130

In this set of experiments thirty subjects were asked to listen to sequences of eight .
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that each of the eight notes within the bounded scale were mapped to the numbers one to .
eight and that the sequences therefore represented lists of eight numbers. Upon listening

~to each sequence, the subjects were asked to select from a list of options comprising'
‘Unsdrted/Randbm’, ‘Sorted Ascending’ and ‘Sorted Descending’. The feature that was

-requiréd to be identified was the state of the list. The information presented to the group

is given in Appendix E. |

Gi'oup 1 were used in this set of experiments. Three examples were played to each test
subject three times. Following the examples, a further five tests were played. Only five
-tests were chosen at this stage in order to inveétigate if the more simple features could be
extracted. The most complex_ lists in this series only have two features in that they are
almost sorted with thé exception of one element. This test has been designed to also

determine if one element being out of place would be classed as unsorted by the listener.

These tests are given below.
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Sequence iy
b.S

T PchE |

X

Figuré 5342 — Preliminary list shape stimuli,

The results indicated that all of the test subjects successfully identified the states of all of
the lists with an accuracy of 100% (refer to data on accompanying CD). These results
showed that all liéteners, 'rega'rdless of their musical abili"fy, ‘were fully cdpable of
distinguishing between musically represented sorted and unsorted lists of numbers, even

when some lists were sorted with the exception of one element.

In a further set of further experiments, test subjects were again asked to listen to _
sequences of eighf notes that represented lists of eight numbers all played within the same

diatonic octave staring from ‘Middle C’. The same timbre and placement were also
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employed. This time listeners were played lists that were sorted into ascending order but :
betweeﬁ: one and three elements were incorrectly placed. Subjects were first shown and
played the example diagram given below in Figure 5.41. In this example elements 4 and

5 produce a descent in pitch and are therefore incorrectly placed.

Iilil.

L
12 34 35367 8

Figure 5.41 — Incorrect element placement example.

The thirty test subjects were then each asked to identify the incorrectly placed elements in

. each of the five tests by circling their position in diagrams.
5.6.2. Results and analysis

Group 1 were used in this set of experilﬁents. Figures 5.43 and 5.4 show the users’
perception of each of the incorrectly piaccd elements within the partially sorted lists. The
- stimuli were derived from real sorting algorithm list states andl hence the occurrence of
| swap a swap in the fifth position has been omitted due to the limitations of the derived .
lists. The results show that the error distribution is fairly even across the list of numbers
except for the eighth and final element. This decrease in placement accuracy is due to the

fact that the test lists incorporated some sequences where both the seventh and eighth

~elements were successively incorrectly placed. This successive erroneous information has
clearly been shown to confuse the listeners and would suggest that single out of place

elements are more easily identified than multiple neighbouring out of place elements.
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Mean and standard deviation plot - Note Order
Accuracy Plot - Total
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Figure 5.43 — List state note order accuracy - entire group.

Actual
Placement 1 2 3 4 5 6 7 8
Perceived . ‘
Placement : i .
Mean ' 2 3.066667 | 3.733333 5.892857 | 6.898305 7.6
S.D 0.454859 | 0.449776 | 0.449776 0.566947 | 0.515113 | 1.275769

Figure 5.44 — Table of list state note order accuracy — entire group.

Figure 5.45 shows how musically trained and untrained listeners performed in this series

- of experiments.
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Mean and standard deviation - Note Order Accuracy
Plot - Non-Musical v Musical

faemans ldeal ¢ Non-Musical g Musicali i

Perceived Placement

O =2 N W AR T N DO
.
.
.
»
. .
. -
R
. LY
.
LY

i
i
|
i
1

" Musical

Perceived _ |
Placement ' ‘ |
Mean « {2.076923|3.153846|3.846154| - 6 7.038462 8
S.D - | 0.27735 0.375534] 0.375534] - 0 0.196116 0 ) '

Non-Musical 1

Perceived
Placement . _
Mean -1 1941176 |- 3 3.647059 | - 5.8 6.787879 | 7.294118

S.D - | 0.555719 0.5 0.492502 | - | 0.774597 | 0.649883 | 1.649421

Figure 5.46 — Table of list state note order accuracy — non-musical v. musical.

The data for the ‘musical’ test subjects g'ivén'in Figure 5.46 suggest that they might
perform with greater accuracy than the group as a whole. The data obtained from the
‘non-musical’ test subjects shows reduced levels of accuracy when compared to the

“‘musical’ group for placing incorrectly ordered elements, Once again the greatest error

occurs when successive erroneous elements are played. The general accuracy of the test
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subJects within this sub-group is relatively high W1th most of the element placements

‘being perceived with little error. -

Figure 5.48b shows the results of the Mann-Whitney (Wilcoxon independent samples)
non—parémetric test applied to the scores obtained for the difference between perceived

erroneously placed elements compared to the true erroneously placed elements. The

hypotheses are:

Hy : - There is no difference between the ‘non-musical’ and

‘musical’ test groups when perceiving erroneously placed elements.

The ‘musical’ listeners perform with differing accuracy than

H[ H

the ‘non-musical’ listeners when perceiving erroneously placed elements.

PLACE2 PLAC E3 PLACE4 PLACE6 PLACE?7 PLACES
Mann-Whitney U 86.500] _ 101.500 __ 88.500]  78.000] _ 65.500  84.500
Wilcoxon W  177.500 1925000 179.500, 169.000{ 156.500 175.500
-1.44 -.543 -1.201 -2.096 -2.337] -1.842

Asymp. Sig. (1 .07 .295 115 18 .10 .033

tailed

BEAY

Fig'u.re 5.48b — Table of test statistics for each'perce'ived placement, ‘non-musical’ v

‘musical’.

The null hypothesis can be accepted for erroneously placed elements in all but the last
three positions suggesting that there is no significant difference between ‘musical’ and
‘non-musical’ listeners when perceiving erroneously placed elements in positions 2, 3
and 4 of the list. In‘ contrast, the null hypothesis can be rejected at the 5% level of
significance for erroneously placed elements in positions after position 4 suggesting that
there is significant difference between ‘musical’ and ‘non-musical’ listeners when
perceiving erroneously placed elements towards the end of the list. This difference in

significance is due to the increase in complexity as the positions of erroneously placed

elements become further away from the start of the list. This suggests that ‘musical’
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listeners are more adept at perceiving locations further into the scale Itis 1mportant to

determme how the group perform in general in this experiment.
The data given in Figure 5.48¢c shows the results of a Chi-Squared test applied to the
results obtained for the perceived erronéously placed elements compafe'd to the true

‘ er'roneously placed elements. The hypbtheses are:

Hy: Users are not capable of identifying a descent in pitch that denotes an out

of place numerical value. In particular, they are not capable of

understanding musically represented out of place numerical values within

data lists.

CHy: Users are capable of identifying a descent in pitch that denotes an out of
place numerical value. In particular, they are capable of understanding

musically represented out of place numerical values within data lists.

PLC2 PLC3 PLC4 PLC PLC
Chi-Square] 112.179] 116.105{ 94.545) 151.867] 130.568] 126.676]
df 1T 7 7 7 7 7
Asymp. Sig] 0000 000 .000| .00 000, 000

Figure 5.48c — Table of test statistics for each perceived out of place element,

These data show that the probability of obtaining the scores gathered‘from the users for

the identification of out of place elements at random are extremely low. From these data

the null hypothesis can be confidently rejected concluding that users are cap-able of _

identifying descents in pitch and in particular that they are capable of idgntifyiﬁg
musically represented out of place numerical values in data lists, This is encouraging
since it sﬁgges{s that users might be capable of understanding musically auralised sorting
algorithm lists. '
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5.7. List manipulation experiments
5.7.1. Experiment construction.

In the previous eﬁcperiment, listeners’ perception of the state of lisfs_ of numbers was
tested by nieasuring how .accurately the test subjects identified inborrectly placéd
individual elements. The next step towards testing algorithm execution and state is to
introduce some manipulation of the numerical data lists. The manipulation employed in
this series of experiments is the swappmg of incorrectly placed neighbouring elements
the same sorting mechamsm as that utilised by the Bubble Sort ‘algorithm.

Thirty subjects were asked to listen to sequences of musical notes within a .bdunded
diatonic octave scale beginning at ‘Middle C’. Each test comprised two components, a
" checking phase as with the previous experiment followed by a sorting phase. Different
timbres were chosen for each of these components. The tfmbres were chosen from
distinct families as suggested by Rigas and Alty [158] in order maximise disambiguation
of the two components. The timbre employed for the checking phase was a flute that was
placed to the left of the stereophonic field with no reverberation or chorus added. The
tfrnbre for the sorting phase was an acoustic grand pianb placed in the centre of the
stereophonic field with noladded chorus or echo. The auralisation of the sdrting' phaée has
“been employed to distinguish between the actions of testing the list and sorting the list. A
descent in pitch would indicate out of place elements. Also p;'eéent in the sorting phase -
was a trumpet to indicate the swapping action of the incorrectly placed elements. This
provides a second cue for identifying out of place’ elements and a cue for the
1naﬁipulation of the data. The Subjects were told that each of the eight notes within the
bounded scale was mapped to the numbers one to eight. Upon listening to each test, the
subjects would first hear the flute checking through the list. This would be followed by
, thé progression 6f the piano through the list where a swap would be denoted by a trumpet
triad. All test subjects were shown and played the example in Figure 5.49 that represented

the swapping of two elements after a descent in pitch indicated that element 4 should be

placed before element 3.
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Figure 5.49 — Checking and swapping example — list manipulation experiments.

Fbllowing the test example, listeners were played five further instances of chécking and
* ‘swapping where they wei‘e asked to identify which elements had been sWépped. In
comparison to the previ_ous experimeht, where the only cue that denoted erroneous
placement was a descent in pitch, this experiment provided two cues. The first cue was
* the descent in pitch during the checking phase, the second cue incorporated a descent in
pitch in the sorting phase directly followed by the trumpet triad denoting the occurrence
of a swépping of elements. Test subjecfs were asked to identify the elements that were
swapped by circling an element pair within a list. The swaps occurred between positions
1 and 7 with the omission of position 4 as no Swap occurred in the algorithm dérived |
examples. Test cornprised experiments that contained single swaps and multiple

successive swaps.

5.7.2. Results and analysis

Group 1 were used in this series of experiments. Figure 5.51 shows the users’ perception
. of each of the swapped element pairs within the partially sorted lists. The results show
- that the error distribution is fairly even across the range of positions. As with the previous

experiment, multiple erroneous elements were placed (and.‘inl this case swapped) in the

final portion of the list. In this case, however, there is no noticeable decrease in the users
accuracy of identifying the swapping of these latter elements. This may, in part, be due to
- the addition of a second and more distinct cue that highlighted the swapping of the

incorrectly placed elements and hence yielded a second cue as to the positional location
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within the scale. This suggests that the listeners are able to ideﬁtify the trumpet triad with
data manipulation and have also used it to help localise the position of the out of place
elements within the list. The triad employed has been used to 1dent1fy the occurrence of a

swap, this has been re- enforced by the use of a distinct timbre.

Mean and standard deviation - Swap Identification
Accuracy Plot - Total

Perceived Swap Placement '
E-N

3 4 5
Actual Swap Placement

L

Figure 5.51 — Swapping identification accuracy — entire group.

Actual

Swap
Element
Perceived
~ Swap ' ' : ‘
Mean 1.1 2.2 2.824561 53 5.8 6.386364
s.D 0.305129 | 0.610257 | 0.53881 0.466092 | 0.403376 | 0.618171

~ Figure 5.52 — Table of swappingi identification accuracy — entire gioup.

Figure 5.53 shows how musically trained and untrained listeners performed in this series
of _experimerits. The results for the ‘musical’ test subjects given in Figure 5.54 suggests

that the ‘musical’ group might be capable of identifying the swapped elements with

~ greater accuracy than the gioup as a whole. The data clearly shows that the musically
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trained listeners identified a large majority of the incorrectly placed elements including
some of the successive multiple erroneous elements. These successive multiple erroneous
elements have, in this instance, shown to cause a small amount of confusion with the

musically trained test subjects.

Mean and standard deviation - Swap Identification
Accuracy Plot - Non-Musical v Musical
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Figure 5.53 — Swapping identification accuracy —~ non-musical v. musical.

Musical Post Pos2 Pos3 Pos 4 Pos & Pos 6 Pos 7

Perceived
. Swap ' _ '
Mean 1 2 ]2.692308| - 5.307692 | 5.884615 6.56
8D 0 0 |0.549125 -. 10.480384 | 0.325813 | 0.50637
' Non-
| Perceived ‘ ‘
Swap :
Mean 1.176471 | 2.352941 | 2.935484 - 5.294118 | 5.735284 16.157895
sD 0.392853 | 0.785905 | 0.512216 - 0.469668 | 0.447811 (0.688247[

Figure 5.54 — Table of swapping identification accuracy — non-musical v. musical. |
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The data given in Figure 5.54 also suggests that the ‘non-musical’ test subjects perform
with a reduced accuracy compared to the ‘musical’ listeners when placing incorrectly
ordered and swapped elements. It can be seen from these data that no noticeable decr.ease. |
in accuracy occurs when successive multiple element swaps take place. The general
accuracy of the test subjects within this sub-group is relatively high with most of the

element placements being perc'eived as with little error,

Figure 5.56b shows the results of the Mann-Whitney (Wilcoxon independent samples)
" non-parametric test applied to the scores obtained for the difference between percéived
 erroneously placed and swapped elements compared to the true erroneously placed and

swapped elements. The hypotheses are:

Hy: There is no difference between the ‘non-musical’ and ‘musical’ test

~ groups when perceiving erroneously placed and swapped elements.

H;: The ‘musical’ listeners perform with differing accuracy than the ‘non-
musical’ listeners when perceiving erroneously placed and swapped

elements.

SWAP1 SWAP2 SWAP3 SWAPS SWAP6 SWAP7

Mann-Whitney Ui 91.000)  91.000] 98.500y 109.000 92.500 39.500
Wilcoxon W| 182.000 182.000Q] 189.500f 262.000] 183.500] 130.500

‘ 4 -1.570 -1.570 -.562 =079 -935  -3.052
Asymp. Sig. (1-tailed) .058 .058] .288 .468 75 001

Figure 5.56b — Table of test statistics for perceived placement/swap, ‘non-musical® v.

‘musical’.

It can be seen from the data given in Figure 5.56b that the null hypothesié cannot be
rejected for erroneously placed and swapped elements in the first six positions suggésting '
that there is no significant difference between ‘musical’ and ‘non-musical’ listeners when _

perceiving erroneously placed and swapped elements in the first six positions of the list.

In -contrast,_the null hypothesis can be rejected at the 0.1% level of significance'for
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erroneously placed ahd'swapped elements in the final position in the list (where the
successive swaps occur) suggesting that there is a significant difference between
‘musical’ and ‘non-ni_usical’ listeners when perceiving successive erroneously placed and

swapped elements towards the end of the list. This difference in significance is due to the
- increase in complexity as successive swaps occur towards the end of the list. This
suggests that ‘musical’ listeners are more adept at perceiving successively swapped
| elements than ‘non-musical’ listeners. It is important to see ‘ho'w the group pefform in

. general in this experiment.

The data given in Figure 5.56¢c shows the results of a Chi-Squared test applied to the
results obtained for the perceived erroneously placed and swapped elements compared to

the true erroneously placed and swapped elements. The hypotheses are:

Hy: Users are not capable of identifying descents in pitch and metaphors that
~ denote swapping. In particular, they are not capable of understanding
musically représented out of place and manipulated numerical values

‘within data lists.”

H,: Users are capable of identifying descents in pitch and metapfxbrs that

denote swapping. In particular, they are capablé of understanding

‘ musicaliy represented out of place and manipulated mimeric_al values
within data lists.

Chi-Squar | 142.200; 142.2000 164.700| 91.800] 225.600 93.911
- df 5 g 6| 6 B
Asymp. Sig. .00 .000 L0000 .000 .00 .000)

Figﬁre‘ 5.56c — Table of test statistics for each percei{/ed out of place and swapped

element.

- These data show that the probability of obtaining the scores gathered from the users for

the identification of out of place and swapped elements at random are extremely low.
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From these data the null hypothesis can be confidently rejected concluding that users are 7
capable of | identifying descents in pitch and metaphors that denote swapping. In
particular, they are capable of identifying musically represented out of place and swapped

numerical values in data lists. This is encouraging since it suggests that users might be

- capable of understanding musically auralised sorting algorithm lists.

5.8. List shape progression experiments
5.8.1. Experiment construction .

In this set of experiments twenty subjects were asked to listen to sequences of musical
notes of varying length within a bounded diatonic octave scale that corresponded to the
numbers one to eight. The lists corresponded to sequences of notes that might be

produced during the execution of Bubble Sort, Exchange Sort, Quick Sort, Inside-Out

and Outside-In Sorting Algorithms. List produced by the Selection Sort were not used in

this experiment as the Exchange Sort already provides these types of algorithm-derived
lists. Five sequences were pléyed — comprising 8, 5, 10, 8, and 8 notes. The objective of
the experiment ‘was to determine if listeners could identify the progressive changes in
shape that occur during algorithm execution. The timbre employed was an acoustic grand |
piano, which was placed in the centre of the stereophonic field with no reverberation or-
chorus added. The bounded diatonic scale started at ‘Middle C* and ascended by one
diatonic octave (cigﬁt notes). In order to create a context the scale was first played once
before each note sequencé. Subjects were told that each of the eight notes within the
bounded scale were mapped to the numbers one to eight and that the sequences therefore

represented lists of eight numbers.

Upon listening to each set of sequences, the subjects were asked to interpret the shapes of |
each of the lists within each sequence set. After having described the shape of each list,

teSt subjects were then asked to describe what had progressively happened to the shape of

the list in the given set of sequences.
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In order to better explain the concept to the listeners, a simple example of five sequences
. was played three times with a description of each list shape followed by a descﬁpﬁon of
what has progressively happened to the shape of the list. Figure 5.57 shows the
information that was presented to subj ects during the experiments. Each test listener was

also proirided with the information given in Appendix K.

Figure 5.57 - Example scale. )

FolioWing an example, each of the fwenty test subjects was played five of these tests each
of which comprised five tonal sequences within the bounded diatonic octave scale
starting at “Middle C”. |

5.8.2. Results and analyéis

Group 2 were used in this series of experiments.

% Accuracy Plot of Algorithm Identification - Total
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" Figure 5.62 — Algorifhm identification accuracy — entire group.
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The diagram in Figure 5.62 abovi;e shows how the entire group of test subj ects performed
when describing what had progressively happened to each of the five sets of sequences.
The graph is ordered and colour coded in terms of musical ability with the least musical
subjects being plotted to the left and those with the greatest musical ability being plotted
* to the right (abilities from 2 to 5). The graph suggests little difference between musically
trained and musically untrained listeners. Figure 5.62b shows the results of the Mann-

Whitney non-parametric test applied to the scores obtained for the perception of shape

- progression from ‘musical’ listeners compared to ‘non-musical® listeners. The hypotheses

are.

Hy: There is no significant difference between ‘musical’ and ‘non-musical’

listeners when perceiving the progression of musically represented
algorithm states. ' |

H;: There is a significant difference between ‘musical’ and ‘non-musical’

listeners when perceiving the progression of musically represented

algorithm states.

SCORE

Mann-Whitney U] 21.500
Wilcoxon W| 57.500

Zl -2.086
Asymp. Sig. (1-tailed) .018

Figure 5.62b — Table of test statistics for algorithm progression identification, ‘musical’

v. ‘non-musical’.

From the data given, the null hypothesis can be rejected at the 5% level of confidence

conéluding that there is significant difference between ‘musical’ and ‘non-musical®

listeners when perceiving the progression of musically represented algorithm states. In
particular, ‘musical’ listeners performed better than “non-musical’ listeners. This might
suggest that musically untrained listeners may not be capable of understanding sorting

algorithm auralistaions. However, it is important to indicate that although this data shows
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that musical training has a significant effect, it do not discount musically untrained

listeners from being able to understand the sorting natures. This data simply sho_ws that

musically trained listeners are better at the task. It does mean that musically untrained
listeners are incapable of performing the task. It is therefore important to determine how

the group perform in general.

The overall average score for the perception of musically represented algorithm sorting
natures is 50%. By using the binomial expansion the probability of obtaining such a score
at random can be calculated. Where the number qf successes (r) is 5 and the number of
trials (n) is 10. The probability of the occurrence of r successes in n trials is given by the

binomial distribution:

'm' ner e
fn-0tn °

Plr succesées} =

Where p represents the probability of success and q represents the probability of failure.

This yields a probability of 0.026, which strongly suggests at a level of 97.4% that the ,

group of listeners are capable of identifying the algorithm sorting natures when

- represented musically. -
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~ Algorithm Type - % Accuracy - Non-Musical v Musical
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Figure 5.62¢ - Algorithm identification accuracy by algorithm type — ‘musical’ v. ‘non-

musical’.

This difference can also be seen in Figure 5.62¢, which represents how musically trained

and musically untrained listeners performed in this series of experiments on each of the
information source fypcs. The data shows: that ‘musical’ test subjects show improved
identification and understanding of the nature of the Exchange Sort, Bucket Sort (In-Out)
and Bucket Sort (Qut-In) algorithms. The results for Bubble Sort and Quick Sort
algorithms show little difference between ‘musical’ and ‘non-musical; “listeners.
However, it is _interesting to note that in the case of the Bubble Sort auralisation musically

untrained listeners appear to perform better than musically trained listeners.

In terms of information type, it is important to highlight whether certain. types of

algornhms are more easily understood by the group of test subjects Figure 5.63 shows '

how the entire group performs as whole on each type of hst shapc progression.
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Algorithm Type - % Accuracy Plot - Total
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Figufe 5.63 — Algorithm identification adcu'.racy by algorithm type — entire group. :

These.data suggest that the less complex algorithms are more easily understood. Both the
Bubble Sort and the Exchange Sort share the common feature that the sorted list ‘grows’

from one end of the list boundary whlch can be seen as a smgle easily identifiable

‘anchor’ point from which the list grows. Given that complex algorithms are less |

understood by the listeners, some prior trainiﬁg might be of benefit. This suggests that the

simpler algorithms are learnt more quickly and with gfeater ease than’ complex

~ algorithms. It may also be that the difficulty associated with identifying the nature of the .

least understood algorithms is not attributed to the'complexity of the functionality of the
 algorithm itself, but rather the mechanism by which it has been auralised. The mapping of

pivot points and sub-buckets is harder to achieve than sequential swapping. This suggests

that at this level it is Vnotr the complexity of the algorithm that is problematic. Instead, it

suggests that certain algorithms do not translate well musically as their features and
natures' are not easily represented by musical metaphors. There is a clear case for learning

the mappings in this instance. However, this is not of real concern to this thesis.
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In previous experiments in this thesis it was found that tones, out of place elements and
swapped elements weré more easily identified when they were near to the 1ower and
upper boundaries of the diatonic octave scale starting at ‘Middle C’. In contrast, tones,
out of place elements and swapped elements near the middle of the scale were not so
easily identified as these positiéns are in the area of greate's.t ambiguity. This is mirrored
in the Quick sort élgorithm where the list is progressively sorted into increasingly smaller
grotps. In this instance, there is more than one ‘anchor’ point. As the list becomes
increasingly sorted, the number of *anchor’ points increases and their poéitionsi are .
always changing. Due to the varying nature of these ‘anchor’ points, understanding the |
Quick sort algorithm is more difficult than understanding the Bubble Sort and Exchange
- Sort algorithms (which in contrast only have a single constant fixed ‘anchor’ point
 throughout the entire auralisation). The auralisation for the Quick Sort algorithm utilised
the available information as effectively as would. allow. The nature of the varying
positions of the pivot points and the direction of the placement of -e_lements into sub-
buckets imposed limitations on the auralisation, as this information did not translate well
sequehtially. This information might be understood with greater clarity if extra cues were
ﬁsed to further disambiguate the information. Since the Quick Sort algorithm segments
‘the entire list into increasing groups of smaller sub-lists the spatial placement of the
- pivots and the buckets in a 3D audio environment might help to clarify the information
presénted. Essentialiy, the Quick Sort algorithm operates in a seqﬁential manner. This
would suggest its suitability for mapping into the temporal domain. However, the
visualisation of sorting elements into sub-buckets, to the left or right of a pivot, suggests
that it might be more suitable for mapping into the spatial domain, These concerns
suggest a spatially enhanced version of this auralisation, utilisiﬁg both the spatial and
) témporal domains, might better represent the sorting nature of the algorithm. |

The same can be seen for the Inside-Out and Oﬁtside-ln sort algorithms where the Quick
Sort is used for the first pass. In this instance, there are two ‘aﬁchor’ points in the first
pass followed by one ‘anchor’ point for each of the sub-sorting algorithms in subsequent
sorting passes. With the Inside-Out sort, the ‘anchor’ point is a single point in thc' centre

of the list, but this is in the area of ambiguity previously identified when compared to
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‘anchor’ points that are placed at the low and high boundaries of the context scale. In
contrast, for the Outside-In sort, both ‘anchor’ points are at the high and low boundaries.
This sugg ests that the increase of the number of ‘anchor’ points has impaired the .
understandmg of the sorting nature of the algorithm. Test subjects have shown to be able
to identify each of the sub-sorting algorithms when presented autonomously. In contrast,
‘when these algorithms are combined in a more complex manner the understanding is
significantly reduced. This may be attributed to the use of the _Quick Sort algorithm even
fhough this has only been used in the first pass in order to split the list into two sub-Iists;
The majority of the sorting is achieved by the dominant Bubble Sort and Exchange Sort
.aIgorithrlns but are not as clearly identified by the test subjects. |

As with the previous experiments that involved the perception of shapes of tonal
sequences, no appreciable difference in Iperceptio_n accuracy beh&een those of ‘gdod’
drawing ability and those with ‘less than good® drawing ability was observed. In general,
although musical training was found to have a beneficial effect, the data clearly shows
that both ‘musical’ and ‘non-musical’ listeners are capable of percelvmg and .

understanding the shape progression of aIgontInn generated lists,
5.9. Cohclusion

“For the pitch test experiments, the results have shown that there is a significant difference
between the ‘musical’ and ‘non-musical’ groups when perceiving tones that are close to
the boundaries of the context scale, These data further showed that there is no significant

difference between the groups when perceiving tones that fall into the area of greatest

ambiguity in the middle of the context scale. The use of an extra cue such as Spa:tiﬂ h

location may improve the perception results in this case, If this additional cue further aids
disambiguation then the ‘non-musical’ group might show an improvement in accuracy
when perceiving tones close to the boundaries of the context scale decreasing the
difference between the two test groups. The data obtained for the pitch interval test

experiments showed that for small intervals (less than 2) there isno ‘signiﬁc'ant difference

between ‘musical’ and ‘non-musical’ listeners. This difference becomes significant and
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increases in relation to the increase in interval size. Again, the use of spatial location cues
might further disambiguate the information and increase the accuracy when percewmg

pitch intervals.

For the shape perceptmn experiments using short musical sequences with musical tnmng
the results showed significant difference between the ‘musical’ and ‘non-musical’
listeners for all shapes. In contrast, the series of experiments using short tonal sequences
with no musical timing showed that there is no significant d1fference between the two
groups when perceiving the shapes. This difference in s1gn1ﬁcance suggests that when
tonal sequences have musical timing applied to them, making more ‘musical’, the.
‘musical * greup of test subjects tend to perform with greater accuracy than the ‘non-
musical’ group, subsequently suggesting that ‘musical’ listeners are more capable of
exploiting musical timing. When this musical timing is removed, as is employed for
aIgoﬂthm state auralisation within this thesis, the data shows that there is no significant
difference between the two greups when perceiving tonal shapes (or .musicall'y auralised

algorithm list states).

The data obtained for the series of experiments concerned with identifying out of place
elements in an otherwise ascending list of numeric elements showed there was no
‘significant difference between the two groups of ‘musical’ and ‘non-musical’ listeners for
elements identified in approximately the first half of the list. For the remainder of the list,
the diﬁ'erenee between the two groups ‘becomes significant due to the increasing
complexity as the positions of erroneously placed elements move further up the context
scale. Again fhe use of an extra cue such as spatial location may increase location

accuracy results, since the information required from the listeners is positional.

Similar results were observed for the identification of erroneously placed and swapped
elements in an otherwise ascending list of numerical elements. For the majority of
positions (all except the last) no significant difference was observed between the

“‘musical’ and non—musxcal’ test groups. The only significant difference between the two |

groups was observed when successive multiple erroneously placed and swapped elements
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occurred in the final position. These data suggest that multiple successive swaps
increases misunderstanding of swap occurrence and location. In comparison to the results |
obtained in the previously described out of place elements experimeﬁts, the same data
suggests that the addition of the extra cue (the sound of the elements swapping) aids
localisation and reduces the observable difference between ‘musical’ and ‘non-musical’

listeners.

The results of the experiments investigating the perception and understanding of
algorithm derived list shape'progressioﬁ showed that ‘musical’ listeners tend to perform
significantly better than ‘non-musical’ listeners. The data also shéwed that algorithms
that progress with easily identifiable and constant anchor points from which the sorted
list grows are more easily understood than the more complex algorithms that produce

anchor points which are constantly moving and changing in quantity.

In general it has been shown that musical training does have some affect on the
perception of musical seqﬁences and pitch. However, the results have shown that both
musically trained and untrained listeners are quite‘ cap'able of discerning pitch and
understénding shape and musically represented numerical data and that .the difference
between the groups depends upon the complexity of the musical structure, These results
are encouraging, since the content of the tests form the basic building blocks of algorithm

auralisation.
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Chépter 6
SIMBAA — A musica)l 'auralisation tool

In order to support the suggested investigations into algorithm auralisation using music, it
was decided to develop a systen to allow experimenters to easily auralise the execution
of a number of algorithms. The main design objective of this system was to pérmit fhe
mapping of key events and objects in algorithms to musical structures and timbres. Like
Vickers” CAITLIN system, the program code is “marked” in order to auralise key j)oints,
and this allows musical auralisation of its progression in real-time. After processing a
program through the system, the actions of the algorithm and the state of the variables
will be musically audible. It is important to clarify that this tool has been developed
purely to facilitate the auralisations fequired for the experimentation required in this

thesis. It does not aim to be commercial auralisation tool.
6.1. SIMBAA design and considerations |

The system, entitled SIMBAA. (System for the Implementation ._of Music Based
Algorithm Auwralisation), is based upon a combination of Vickers’ CAITLIN [181] and
Brown and Hershberger’s ZEUS [45, 46]. The key objectives of SIMBAA are to:

e Musically auralise any algorithm in real-time.

« Allow musical attributes to be allocated to events / objects.

o Provide atoolbox for working on existing algorithm program code.

o.' Explo'it the features of MIDI. (Timbre, stereo placement, echo, volume, chorus
etc.) | _ |

o Allow the user to play the auralisation at his/her own speed, permitting the user to

alter the information presentation rate fo match their own processing ability. This
is also useful for facilitating different levels of abstraction during playback.

e Permit the identiﬁcatidn_ of key events / objects by sclectively rﬁasking the output.

o Allow on-line adjustment of tempo to give different levels of abstraction during

auralisation.
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Like CAITLIN, SIMBAA is a pre- processor for program code but it processes C/C++
rather than PASCAL, SIMBAA needs more user input than CAITLIN, since it requires

the user to include a header file that contains the necessary library routines for

auralisation. The original code also needs to be ‘marked - up® with the necessary

auralisation calls (adding one-line function calls at the desired steps of the routine).

Auralisation is achieved in real-time during algorithm execution.

The SIMBAA system provides the following features:

' Library routine calls to -

Play tones from the chromatic scale for given octaves and notes.
Play chords following a root note and octave, standard, first inversion and
second inversion triads (21 chord possibilities for one root note).

Play a cadence for given root notes.

* Pre- execution controls include -

Instrument-to-channel assignment to allow the user to choose timbres that are
aestheﬁcally pleasing to their owﬁ preferences.

Channel pan - allowing instruments to be placed in audltory space to help
disambiguate between information members,

Channel volume - allowing the user to highlight or suppress certain aspects of
the information, this helps to focus_onl key events or actions.

Channel echo level - this feature can give a feeling of space to the instrument
ensemble and support the panning feéture. |

Channel chorus depth - permitting specific actions or events to be erﬁphasised
over other instruments. A

Global adjustment of the octave offset - this shifts the entire ensemble up or

down in octave steps, much like the register feature used in Sumlkawas motifs
for Earcons [174, 33].
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e Global online controls to - ‘

e Toggle muting of each channel in real- time to'permit key events or actions to
be identified and understood in solitude, or to permit verbose instruments to be
excluded. Supporting the information masking feature of the system.

¢ Key shift each channel in semitone stepé to .allow the system to be ‘tuned’ to
the users’ own preferences, also to help align the ‘orchestra’ to give a better
overall feel to the auralisation. |

¢ Adjust a global tempo to give different levels of abstraction duﬁng routine

execution,

. General features -
¢ Choice of internal OPL3 FM synthesizer or,
‘e External General MIDL
e Up to 8 instrument polyphony with full control.
* Environment saving allowing the system to retain a users preferences- of the

variables.

" SIMBAA makes no prior judgement about the musical ability of the user. However,
being musical would facilitate the productlon of more ‘musical’ presentatxons The output
of SIMBAA can be fed into any multi-timbral device. The experiments in this thesis
employed the use of external General MIDI driving a 16 channel multi- timbral Roland
Boss DS 330 synthe51zer '

6.2.7Eé1rly experimentétion on Algorithms using SIMBAA

It was decided first to auralise the simple Bubble Sort algorithm. This kind of algorithm
provides a useful testing ground fér the use of music to convey events through time. By
auralising it with the SIMBAA system it will be possible to test the usefulness.of the
system and the viability of using music in algorithm understanding. As with any interface‘
design, success depends upon the choice of mapping of the algorithm to the music [3].
The first step is to ‘identify the key information from the Bubble Sort algorithm that is to
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be auralised. These features were identified in Chépter 4. This preliminary auralisation
does not include the auralisation of the iteration count. This is because this study is aimed
at bringing together the coinpbnents examined in Chapter 5. More detailed experiments
follow that auralise all of the features identified in Chapter 4. _By‘ working through the

algorithm in Chapter 4 the features for this preiirninary auralisation can be summarised:

1. The current state of the list. _ _
2. Progression of the algorithm through the list of elements.
3. The swapping of elements.

4. Successful termination.

. As with previous attempts to auralise the Bubble Sort [3], the list of numbers was

converted to a sequence of notes in the diatonic scale. As the goal of the algorithm is to -

sort the elements into an ascending order then successful termination will be achieved
“when the cwrrent state of the list is heard as an ascending succession of notes. The
diatonic scale was chosen over notes in the chromatic or pentatonic scales due to the
early experimentation carried out by Alty [3], which highlighted listeners’ prefefenccs to
the presentations within the diatonic scale. All subsequent eﬁperiments and auralisations

in this thesis are performed with the same diatonic scale.

The auralisation code is termed ‘ghost code’, this is due its transparent nature. This ‘ghost
code’ is unseen by the algorithm and is only of use to the SIMBAA auralisation tool. The
nature Qf the iritegration technique adopted by the SIMBAA syétem enables the desired
code to be auralised without any adverse effects on its original functionality provided that

the original program code is not critically time dependent.

The mapping of music to the four points of interest has been chosen to be as

communicative as possible. Three different timbres were employed, these are not

changeable by the listener during experimentation. The three instruments were an 2

acoustic grand piano, a flute and a brass ensemble (each instrument being from a distinct

family to further aid disambiguation). In order to help disambiguate the information, the
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‘use of auditory placement was also used. The flute was placed centrally in the auditory
field, the piano to the left and the brass ensemble to the right, '

Disambignation of information in the algorithm was further achieved by the use of -
+ Contrasting timbre using a piano, a flute and a brass ensemble.
» Harmony using a major triad.

e The use of audit01_'y space by employing instrument placement via stereophony.

The auditory mappings were:

1. The current state of the list ‘Play Entire List’ - this auralisation was achieved by -

- mapping element values to pitch (a metaphor). The chosen instrument here was a flute.

2. Progressioﬁ of the algorithm through the list ‘Play Current Element’ - the chosen

mapping here was an acoustic grand piano, again the element values were mapped to

pitch.

- 3. The swapping of elements ‘Play Swap Structure’ - this is heard in parallel with the -

- ascending acoustic grand piano, the structure is a brass ensemble playing a major triad.
The first note is an element to pitch mapping of the higher value in the current pair,
the second note is an element to pitch mapping of the lower note in the current pair

and ﬁnally the third note is a repetition of the first note.

4. Successful termination ‘Play Successful Termination’ - this auralisation was achieved
by again using the brass ensemble, but this time it was used to produce a simple yet

suggestive “Ta - Da’ sequence.

208
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6.2.1. Preliminary findings

Pr.éliminary experiments were performed with the SIMBAA systém using the Bubble
Sort algorithm on ten subjects, five male and five female. Each listener answered a series
of questiohs about their musical interest, exposure and training, No attention was paid to
their computing skill but all subjects had no prior knowledge of algorithms. From this
information it was determined that each subject had an average musical ability, by this it

is meant that the subjects were not trained musicians.
~ The subjects were told about the nature of the Bubble Sort algorithm: |

- algorithm (say alga-rith’'m) noun
Maths: a clearly-defined sequence of operations for solving a particular

mathematical problem.

“The basfs of the Bubble Sort algorithm is to repeatedly iterate through a list of elements
corﬁparing every ac.ﬁacent. pair of elements and swapping them if they are not in the
correct relation. When an iteration takes places without any pairs of elements being
swapped then the list is known to be sorted into numerical order and the algorithm can

successfully terminate.”

" Via informal verbal feedback, all ten subjects gave descﬁptions about the nature of the
Bubble Sort algorithm sugge'sting that they understood the audible process of the
- algorithm after being presented with the auralisétion for the fourth time, The first time -
that the algorithm was played 8 of the subjects requested that it be played slower the next
time around. On the fourth pass‘,'ﬁ of those 8 were comfortable with reverting back to the - :
normal tempo. _The'Iisteners were asked a series of question about the auralisation and
ANSWErs were entéred into bfank workbooks. The subjécts were able to extract the

following quantitative and ‘qualitative information given in Figure 6.3 from the

auralisation procedure:
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" Attribute identified No. of subjects
e The number of elements in the list. 10
» The number of passes before successful termination. 8
» The act of swapping elements. (Descriptive answers accepted), 9
. The amount of ‘swap’ occurrencés within each pass / iteration. 4
o The “Test and Sort’ nature of the algorithm. 7 9
¢ The successful termination. (Descriptive answers accepted). 10

6.3. Further experimentation with the Bubble Sort algorithm

 differences between the two sets of experiments were:

" e Increased test subject group size to thirty listeners.

encouraging so a more detajled set of experiments was carried out.

Figure 6.3 - Bubble Sort algorithm auralisation information extraction accuracy.

Subjects had no direct interaction with the SIMBAA system controls. The results were

A further series of experiments were carried out that émployed auralisation of the Bubble

Sort algorithm in the same manner as was used in the previously documented study. The

o The addition of a fourth timbre in the form a wooden block, which is played at the

beginning of each sorting pass to indicate the iteration count. This has been added

to complete the set of features identified in Chapter 4. -

s The addition of algorithms that contained errors.

The SIMBAA system was utilised to facilitate the auralisations after the necessary

changes were made to incorporate the fourth timbre. .
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The peints of interest that were auralised in this implementation of the bubble sort were:

. The current state of the algorithm. .

. The iteration count. | | _

. Progression of the algorithm through the list of elements,
. The swapping of elements,

. Successful termination,

The subjects were once again told about the nature of the Bubble Sort algorithm with the

following information given in the workbook in Appendix L.
6.3.1. Results

Group 2 were used for this experiment. Accuracy was tested through a set of questions
posed to the test subjects concerning the state and execution of the algorithm. The
questions are designed to reflect the knowledge required to understand the Bubble Sort
algorithm. These test the understanding of list mampulatmn through swapping

neighbouring elements, list checking, 1terat10n and termination. The questlons are:

How many numbers (elements) are there in the list?.........ooieeieii i,

V.0 N AW e

10. What order is the llst sorted mto? ................. erarererien e er e eresaranrreeces
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Questions 6 and 7 produced some interesting responses. Some listeners answered both

questions with the same answer, that of the trumpet triad. In these cases, users clearly

_ failed to identify the descent in pitch in the list with out of place elements. Moreover they

failed to distinguish between the out of place elements cue and the swapping cue. Instead,

the stronger cue of the trumpet was used for identification of both. The results are shown.

in the graph below in Figure 6.5, which has been plotted horizontally in terms of musical

ability from least to greatest.

| Algorithm‘Informa'tion Accuracy Plot

Figure 6.5 — Bubble Sort auralisation information accuracy by musical ability.

This data shows that all of the test s_ubjects with a greater than average musical ability
. were able to identify all of the state and execution information requested with an

accuracy of 100%. By observation of the data, a large proportion of the test subjects with

' avefage musical ability were also capable of understanding the information that was

questioned.




213

A check was then made on which types of information were more easily identified and
understood. Figure 6.6 shows how successfully the subject group answered each of these -

questions.

Algorithm Question Plot - Total
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Figure 6.6 — Bubble Sort auralisation information accuracy by quéstionltype.

Questions 1 to 5 were requesting mformatlon of a quantitative nature and the accuracy
level of listeners’ identification and understandmg was in the range 90% to 100%. In
contrast to this, questions 6, 7 and 8 were requesting information of a qualitative nature

and the test subjects scored w1thln_ the range of 67.5% to 82.5%. Question 9 asked for the

the identification accuracy about this information was 82.5%. The tenth question
requested information about the final state of the list, the data shows that all listeners
“successfully identified this list state to an accuracy of 100%. The final state of the list in

|
- number of iterations required for the bubble sort algorithm to completely sort the fist, and |
this experiment was ascending order.
\
\
|
|
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The data gathered from this series of experiments suggest that information of a
quantitative nature was grasped better than information of a qualitative nature, The
exception is that the quantitative information did not include absolute data corresponding

to the value of each of the elements within the list.

Figure 6.6b stiows the results of the Wilcoxon Signed Ranks ilon-parametric test aﬁplied
to the scores obtained for the qualitative information extracted from this Bubble Sort

auralisation compared to the quantitative information extracted. The hypotheses are:

Ho: There is no difference in identification accuracy between qualitative

information and quantitative information in this auralisation,

H;: There is a significant difference in identification accuracy between

qualitative information and quantitative information in this auralisation.

Zl -2.98
Asymp. Sig. (1-tailed) .00
a Based on positive ranks.

b Wilcoxon Signed Ranks Test

Figure 6.6b — Table of test statistics for algorithrﬁ information extraction, qualitatiire v.

quantitative.

From the data given in the above figures, the null hypothesis can be rejected at the 0.1%
level of confidence concluding that there is a very significant difference between the

extraction. and understanding of qualitative information and the extraction and

understanding of quantitative information in this instance of the Bubble Sort auralisation.

~ - This data together with the scores represented in Figure 6.6 suggest that quantitative

information translates better than qualitative information through musical auralisations in

* this implementation.
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The graph shown below in Figure 6.7 shows how ‘musical’ and ‘non-musical’ test

- subjects perform comparatively.

Algorithm Question Plot - Non-musical v Musical
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- 90 |[.
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: % g0 |.
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: .g 20 | o 8
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Figure 6.7 — Bubble Sort auralisation information accuracy — ‘non-musical’ v ‘musical’

listeners.

‘These data qualitatively suggest little difference between the perfonnance of ‘non-
musical’ listeners and ‘musical’ listeners. Overall, the entire group of test' subjects

identify the information requested about the state and execution of the Bubble Sort

" algorithm to an accuracy of 86.3%. This suggests that the majority of the requested

information was successfully translated.

"By using the same binomial expansion used in the previous chapter the probability of
obtaining such a score at random can be calculated. Where the number of successes (r} is
~ 8.63 and the number of trials (n) is 10. .
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The probability of obtaining the corréct answers at random for. each of the questions is

given:

‘ 1. How many numbers (elements) are there in the list? List sizes are always
presented between 6 and 8 elements. Therefore 5 possibilities gives the
probability of giving the correct answer at random is 1/5.

2. How many swaps are there in the first pass? Played Hst size is 8 elements so the

maximum possible number of passes is 7. Therefore, probability of answering

correctly at random is 1/7. - |

How many swaps are there in the second pass‘? As questlon 2.1/7.

How many swaps are there in the third pass? As question 2. 1/7.

How many swaps are there in the fourth pass? As queé_tion 2.1/7.

o kW

How do you know when elements are out of order? Five cues present, iteration

count, checking phase, sorting phase, swapping and success. Therefore 1/5.

7. How do you know when the recipe swaps elements? As question 6. 1/5.

8. How do you know when the list is sorted? As question 6. 1/5.

9. How many times does the recipe pass through the list? Maximum iterations in this
experiment is 5. Therefore random probability of giving the correct answer is 1/5.

10 What order is the list sorted into? Possible answers are sorted ascending, sorted
descending or remain unsorted. Therefore probability of answering this question

correctly at random is 1/3.

1 Q2 Q3 Q4 Q5 Q6 Q7 Q3 Q9 a10

P 1/5 117 117 117 117 1/5 1/5 1/5 1/5 1413

q 415 6/7 67 67 67 4/5 45 |- 45 4/5 23

n 10 10 10 10 10 10 10 10 10 - 10 - |
r

8.6333 8.6333 8.6333 8.6333 8.6333 8.6333 8.6333 8.6333 8.6333 8.6333 S :
(1)}6.1297]3.6880™"|3.6880 " [3.6886 |3.6880 }6.129¢>56.1296>16.1296|6.1296 *|3.9300 ™" :

Figure 6.7a ~ Table of statistics for each question for Bubble Sort algorithm auralisation.
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This yielldé a.total probability of answering the questions at random with a success rate of
86.3% of 6.283¢™*, which strongly suggests that the group of 11steners are capable of -
" under standmg Bubble Sort algonthm when represented musically,

Figure 6.7b shows the results of the Mann-Whimey'non-para_metric test applied to the
scores obtained by ‘musical’ listeners for the Bubble Sort auralisation compared to the

scores obtained by ‘non-musical’ listeners for the Bubble Sort auralisation.
The hypotheses are:

Hp: There is no difference in identification accui'acy between ‘non-musical’
listeners and ‘musical’ listeners when understariding the Bubble Sort

algorithm auralisation.

H,;: There is a significant difference in ‘identification accuracy between non-
musical’ listeners and mus1cal’ hstencrs when understanding the Bubble

Sort algorithm auralisation.

Mann-Whitnay U| 103.000

Wilcoxon Vg 194.000,
-.338
Asymp. Sig. {1-tailed) 367

. Figure 6.7b — Table of test statistics for algorithm information extraction, ‘non-musical’

v. ‘musical’.

The data give confirms that the null hypothesis cannot be rejected cohcluding that there is
no significant difference between ‘non-musical’ listeners and ‘musical® listeners when
ektracting and understanding information in this instance of the Bubble Sort auralisation.
The second part of this series of experiments tested the conveyance of erroneous’

- algorithm auralisation.
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The same thirty feét subjects (Group 1) were asked to listen to the auralisation of a

‘Bubble Sort algorithm that contained the following five errors:

False ‘success’ trumpet fanfare after the first checking pass.
Reversal of list during the second checking pass.
Third checking pass ignores changes made in the second sorting pass.

Iteration count indicates *1° before the 3™ sorting pass, it should indicate *3°.

AR S

- Incorrect swap of elements ‘1’ and ‘2’ in the third sorting pass.

The test subjects were told that the algorithm contained five errors but the nature of the

with least and progressing through to greatest.

“Algorithm Error Identification Accuracy Plot
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Figure 6.9 ~ Bubble Sort auralisation error accuracy.

errors was unknown. Figure 6.9 indicates the accuracy of error identification for each of

the listenai's, the graph has been plotted in terms of the subjects’ musical ability startiﬁg :
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It can be seen that algorithm error was not recognised well at all. This may be due to the
listeners” limited exposure to algorithms (possibly because the test subjects had little
prior knowledge about the nature and mechanics of the Bubble Sort algorithm). Such
inexperience may lead to a limited understanding of the nature of this particular
algorithm. Almost half of the test sﬁbjects failed to identify any of the errors. Of the
remaining participants, ten identified approximately half of the errors. The data also

suggests 51gn1ﬁcant difference between the two groups of hsteners

Figure 6.9b shows the__fesults of the Mann-Whitney non-parametric test applied to the
error identification scores obtained by ‘non-musical’ listeners for the Bubble Sort
_ auralisation compared to the error identification scores obtained by ‘musical’ listeners for

the Bubble Sort auralisation. The hypotheses are:

Ho: There is no difference in error identification accuracy between ‘non-
musical’ listeners and ‘musical’ listeners when understanding the Bubble

Sort algorithm auralisation.

H;: There is a significant difference in error identification accuracy between .
‘non-musical’ listeners and ‘musical’ listeners when understanding the
Bubble Sort algorithm auralisation.

Error

Identification
Score

Mann-Whitney U 82.000]
Wilcoxon Wi 245.000
-.837
Asymp. Sig. (1-tailed 201

Figure 6.9b — Table of test statistics for erroneous algorithm information extraction, ‘non-

musical’ v. ‘musical’. -

From the data given in the above figures, the null hypothesis cannot be rejected

" concluding that there is no significant difference between ‘non-musical’ listeners and

219
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‘musical’ listeners when extracting and understanding error information in this instance

* of the Bubble Sort auralisation.

Once again it is important to look at the data from an information type viewpoint, The
graph below in Figure 6.10 shows how successfully the group as a whole identified each
-of the algorithm errors.
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Figure 6.10 — Bubble Sort auralisation error accuracy by error type.

The third error, which ignored all swaps in the third checking phase, went entirely
unnoticed by all of the test subjects. The second least identified error was the incorrect
swapping of already ordered elements in the third sorting pass. The remaining three

errors were less subtle.

The more obvious errors were identified with greater success than the more subtle errors. .
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Although the general information identification is poor, between 33% and 43% of test

subjects identified the more obvious errors, This data suggests that the task of identifying

errors within unfamiliar algorithms is not a simple one and is certainly not as gasy as

identifying characteristics within an error free algorithm. To be able to identify such '

subtle information the listener would require some in-depth knowledge of the nature of
the algorithm, so that greater familiarisation of this Bﬁbble Sort algorithm could increase
error identification accuracy in this context. It is also possible that a better auralisation
might yield higher detection rates. The SIMBAA tool has been shown to successfully
convey information about the Bubble Sort algorithm in the previous experiment. The
possible available features of the algOrithin were'fully exploited. Howevcr, some training
of the mappings used might increase the identification accur_ady of the algorithm errors. It

is jimpdrtant to state here that this thesis is not concerned with using auralisation to aid

bug location in algorithnis. It is more concerned with thc_# ability of musical auralisation to

. convey information about the nature of the algorithms.
6.4, Multiple algorithm auralisation

Although in preliminary experiments the SIMBAA system was well received, if was
decided to auralise an array of different algorithms much like Brown and Hei'shbe'rger’s
selection [45]. This might highlight musical information structures that have a more

successful information transfer rates than others in algorithm auralisation.

’fhe aIgorithnié previously examined in Chapter 4 have been auralised in a similar

manner to that of the Bubble Sort algorithm. The following sections explain the chosen -

mappings and their implementaﬁon us_ing the SIMBAA toolbox.
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6.4.1. Selection Sort auralisation

The information defined m Chapter 4 to be auralised so that the Selection Sort algorithm

* can be understood musically is:

1. The current state of the list.

2. The iteration count. _ 7

3. Progressiqn of the algorithm through the list of elements.
4. The swapping of elements. '

5. Successful termination.

As the goal of the algorithm is to sort the elements into an ascending order then
successful termination will be achieved when the current state of the list is heard as an
ascending succession of notes in the diatonic scale. The mapping of music to the five

points of interest has been chosen to be as understandable as possible. The mappings are:
1. The current state of the list ‘Play Entire List’ - this auralisation was achieved by
mapping element values to pitch (a metaphor). The chosen instrument here was a flute,

chosen from a distinct family as suggested by Alty and Rigas [158].

2. Tteration count — this auralisation was achieved by mapping the iteration counter to a

wooden block. The sound of the wooden block is repeated for each iteration.

3. Progression of the aIgbrithm through the list ‘Play Current Element’ - the element

values were mapped to pitch 'using a piano.

4. The swapping of elements ‘Play Swap Structure’ - the structure uses a brass ensemble
playing a major triad. The first note is an element to pitch mapping of the higher value

in the current pair, the second note is an element to pitch mapping of the lower note in

the current pair and finally the third note is a repetition of the first note.
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5. Successful termination ‘Play Successful Termination’ - this auralisation also uses a
brass ensemble, but this time it was used to produce a simple yet suggestive “Ta - Da’

sequence.

Four timbres were necessary in order to achieve auralisation of the Selection Sort
algorithm, an acoustic grand piano, a flute, a brass ensemble and a wooden block. In
order to help disambiguate the information, panning was employed. The flute was
centrally located, the piano on the lleft, the brass ensemble on the right, and the wooden

| block also on the right within the stereophonic field.
6.4.2. Exchange Sort auralisation
The information which needs to be auralised is as follows:

1. The current state of the list.

2. The iteration count, ' ,
3. Progression of the algorithni through the list of elements.
4. The swapping of elements,

5. Successful termination.

As the goal of the algorithm is to sort the elements into an ascending order then
successful termination will be achieved when then current state of the list is heard as an

ascendlng succession of notes in the diatonic scale. The mappmg of music to the five -

points of interest was identical to the previous algonthm
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6.4.3. Quick Sort auralisation
The information from the Quick Sort algorithm that needs to be auralised is as follows:

The current state of the list.

The iteration count.

The value of the current pivot. A
The value of the current element.

The placing of the current element into the left or right sub-lists. -

- N

" Successful termination.

As the goal of the algorithm is-to sort the elements into an ascending order then
successful termiriation will be achieved when then current state of the list is heard as an
ascending succession of notes in the diatonic scale. The mapping of music to the six

points of interest has been chosen to be as understandable as possible. The mappings are:

1. The current state of the list ‘Play Entire List” - this auralisation was achieved by
~ mapping element values to pitch (a metaphor). Again the chosen instrument here

was a flute.

2. Tteration count ~ this auralisation was achieved by mapping the counter that is
used to control number of iterations to a wooden block. The sound of the wooden

block is repeated for each iteration.

3. Value of the current pivot — this is heard in the centre of the stereophonic field.
The chosen timbre is the trumpet with no addition of chorus or echo. The duration

of this note is twice as long as the other notes to highlight it as a decision point.

4, Playing the current element that is to be sorted based upon the current ch_dsen
pivot - the chosen mapping here was a simple acoustic grand piano placed in the

centre of the stereophonic field. Again the element values were mapped to pitch.

224
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5. The placement of elements — this is heard to the left of the stereophohic field if

the current element is smaller than or equal to the pivot and heard to the right if it

~ is greater. The chosen timbre is again the acoustic grand piano with no additional
effects.

6. Successful termination ‘Play Successful Termination® - this auralisation was
achieved by again using the brass ensemble, but this time it was used to produce a

simple yet suggestiv'e ‘Ta - Da’ sequence.

- The fouf instruments used were an acoustic grand piano, a ﬂuté, a brass ensemble and a
wooden block. All mappings pertaining to the values within the list during the sorting
passes employed the same timbre of the acoustic grand piano. The decision-making pivot
utilised the trumpet much like the previously described algorithms used the trumpet td

denote swapping.

~ Auditory space was used to assist disambiguation. The flute was central, the piano on the
left, the brass ensemble on the right and the wooden block also on the right within the
stereophonic field. The placement of elements into sub-lists also e'kploited the used of
auditory space by placing all elements that fall into the left sub-list to the left of the

stereophonic field and vice versa for the right sub-list.
. 6.4.4. Bucket Sort (Inside-Out) auralisation

The chosen information frbrri the Inside-Out Sort algorithm that is to be auralised is that
of a singlé pass in the Quick Sort auralisation followed by the auralisations of the Bubble
Sort and Selection Sort algbrithms on the left and right hand sub-lists respectively. As the
goal of the algorithm is to sort the elements into an ascending order then successful

~ termination will be achieved when then current state of the list is heard as an ascending

succession of notes in the diatonic scale.
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The same instruments and placements within the steréophonic field have been employed

as those previously described for the Quick, Bubble and Selection Sort algorithms.
. 6.4.5. Bucket Sort {Outside-In) auralisation

The chosen information from the Qutside-In Sort algorithm that is to be aﬁraiised is that
of a single pass in the Quick Sort auralisation followed by the auralisations of the
- Selection Sort and Bubble Sort algorithms on the left and right hand sub-lists
respectively. As the goal of the algorithm is to sort the elements into an ascending order
then successful termination will be achieved when then current state of the list is héard as
an ascending succession of notes in the diatonic scale. The same instruments and
placemé_ﬁts within the stereophonic field have been employed as those previously -
described for the Quick, Selection and Bubble Sort algorithms. "

6.5. Multiple algorithm auralisation information extraction
6.5.1. Experiment construction

In this series of expériments the Bubble Sort, Exchange Sort, Selection Sort, Quick Sort, -
Bucket In-Out Sort and Bucket Out-In Sort algorithms were auralised and played to thirty
test subjects. The SIMBAA system created the algorithm auralisations. The points of

interest that were auralised in for the various algorithms can be summarised as follows:

The currenf state of the algorithm.
The iteration count. | S
Progression of the algorithm through the list of elements,

The swapping or placement of elements around a pivot.

AR T

Successful termination. -

The subj ects were told about the nature of each of the algorithms. Information and played

example auralisations pertaining to each of the algorithms were presented to the test -
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subjects. The questionnaire presented to all test subjects pertaining to this series of

experiments is given in full in Appendix L sections 9.1 t0 9.6 and can be summarised as:

9.1 — Bubble Sort example and auralisation test.

9.2 — Selection Sort example and éuralisation test. .

9.3 — Quick Sort example and auralisation test. |

9.4 — Bucket In-Out Sort example and auralisation test.
95—~ Bucket Out-In Sort example and auralisation test.

9.6 — Exchange Sort example and auralisation test.

The information requested from the each of the algorithm auralisations differs between
aigbﬁthms. The question set shown below apply to the Bubble Sort, Exchange Sort and
Selection Sort algorithm auralisations, The questidns shown in bold print are those that
are of a quantitative nature, The remai:ﬁﬁg questions shown in italic print are those of a

. qualitative nature.

1 -How many numbers (elements) are there in the list?
2 -How maliy sWaps are there in the first pass?
3 -How many swaps are there in the second pass?
4 -How many swaps are there in the third paés" |
5 -How do you know when elements are ‘out of order?
6 -How do you know when the reczpe swaps elements?
7 -How do you Imow when the list is sorted?
8 -How many times does the recipe pass through the list? -

9 -What order is the list sorted into? (Perceived general shape of the list).

10 How does the shape of the list progress?
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The questions that were applied to the Quick Sort algorithm auralisation are given as:

1 -How many numbers (elements) are there in the list?:

2 ~What value is the pivot in the first pass?

3 —What are the sub-list sizes on the first pass? |

4 - How many pivets are there on thé final pass?

5 —What identifies element pldcement into sub-lists?

6 — How is the pivot musically represented?

7 -How do you know when the list is sorted?

8 -How many times does the recipe pass through the list?
9 -What orﬁer is the list sorted into?

10 - How does thg shape of the list pfogress?

The questions a?plied to the Bucket In-Out Sort and Bucket Out-In Sort are given as:

1 ;How many numbers (élements)' are there in the list?
2 —What value is the pivot in the first pass?
3 —What are the sub-list sizes on the first pass?
4 - How many swaps are there in the 2nd pass?
5 —After I* pa&s, what denotes swapping?
6 — How is the pivot musically represented?
7 -How do you know when the list is sorted?
~ 8-How many times does the recipe pass through the list?

9 -What order is the list sorted into?

10 - How does the shape of the list progress?
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6.5.2. Results and analysis

The diagram below in Figure 6.30 shows the musical ability distribution of the group of
thirty test subjects. The group consists of 14 ‘non-musical’ listeners and 16 ‘musical’

listeners. This group of test subjects are referred to as Group 4.

Interest Rating Distrib_ution

16 ,

14 .
ﬁ 12 .
:5._10_
n B
S 63
£ .

0 B _a_

1 _ ‘ 4 5. 8
Musical Interest Rating

Figure 6.30 ~ Musical ability rating — Multiple algorithm auralisation experiments.

* With this series of experiments a further preliminary test was carried out in order to
understand the users’ ability to draw the shapes of simple-tunes. Given that some |
musically trained test subjects might fully understand the shape of the tonal séquences it
may also be possible that they do not have the ability to draw. The test listeners that were
considered incapable of draiwing regardless of their musical ability were omitted from the
experimental data obtained through this series of experiments. All test subjects were

chosen on the basis that they had very little or no prior knowledge of sorting algorithms.
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Algorithm Accuracy Comparison Plot - Total
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Figure 6.30a — Algorithm information extraction accuracy for each algorithm,

The graph given in Figure 6.30a shows how each of the algoﬂﬂm auralisations compafe.
 These data represent the average information extraction for each of the algorithms for the
entire group of test listeners. These data suggest that the algorithms with the previously
described (Chapter 5) anchor points near to the boundaries of the context scale tend to be
more easily understood than the algorithms that employ the Quick Sort algorithm where
the anchor points are either moving between passes or becoming larger in number, It is
necessary to split this data info sub-groups defined by musical ability to investigate if

musical training has any effect on understanding the information. It is also necessary to

investigate whether certain information types, quantitative or qualitative, translate better -

during algorithm auralisation.

The graph in Figure 6.31 shows how Group 4 performed when answering questions

pertaining to information extraction from the Bubble Sort auralisation. The data is

. displayed along the x-axis in order of musical ability.
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Bubble Sort Algorithm Information Accuracy Plot
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Figure 6.31 — Bubble Sort information extraction accuracy.

these results are given in Figures M.1 to M.5 in Appendix M.

" The data suggests that there is little difference' between ‘musical’ and ‘non-musical’
subjects and that the overall performance of the test group looks encoﬁraging. The
average scores and the probabilities of the occurrence of these scores at random for each

algorithm auralisation calculated using the same Binomial expansion previously shown in

this chapter are:
Bubble Exchange Sefection Quick BIO BOI
Score% _
orr 86.333 | 84.867 89 70 75 78.667

p(r) | 6.283e™ | 7.393¢* | 1.217¢* |3.4676™ | 1.257% | 5.544e

Figure 6.32 — Table of statistics for each algorithm auralisation.
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The data for the remaining algorithm auralistaions exhibit similar results. The graphs for ©
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These data strongly suggest that the group of listeners are capable of understanding each

of the six algorithms when represented musically.

The data in the table given in Figure 6.36b shows the results of the Mann-Whitney non-
parametric test applied to the information extraction scores obtained from each of the six
algorithm auralisations for the ‘musical’ listeners compared to ‘non-musical® listeners.”

The hypotheses are:

Hy: There is no significant difference between ‘musical’ and ‘non-musical’
listeners ‘when extracting information from the specified algorithm
“auralisation. ' | '

“

H,: - There is a significant difference between ‘musical’ and ‘non-musical®
listeners when extracting information from the specified algorithm

auralisation.

Bubbl Exchang Selection Quick Bucket Bucket

In-Out  Out-In

Mann-Whitney U{ 108.500, 101.500 91.000] 109.000] 93.50 ; 103.000
Wilcoxon W 197.500- 182.5001 244.000| 262,000 184.500 194.000)

i -17 -40 -.866 -065 =73 -.325

Asymp, Sig. (1-tailed) A3 .34 182 472 23 371

Figure 6.36b — Table of test statistics, algorithm information extraction, ‘musical’ v.

‘non-musical’.

From the data given in the above figures, the null hypothesis cannot be rejected for each
algorithm . auralisation conclﬁding ‘that there is no significant difference between
- ‘musical’ and’ ‘non-musical’ listeners when uhderstanding and eXtracti'ng ‘information

from the each of the algorithm auralisations.

Figures M;6, M.7, M.8, M.9, M.10 and M.11 in Appendix M show the performance of . -
the group for each of the questions on the Bubble Sort, Ekchange Sort, Selection Sort,
Quick Sort, Bucket In-Out Sort and Bucket Out-In Sort auralisations respectively.

3
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Quantitative question are shown as solid bars and qualitative questions are shown as clear

bars.

The data suggests that there is some difference between quantitative and qualitative

information perception. It also suggests that overall performance of the test group is |

 generally high for each of the questions. Figure 6.42b shows the results of the Wilcoxon

Signed Ranks non-parametric test applied to the information extraction scores obtained

from each of the six algorithm au.rahsatlons for qual1tat1ve questions compared to

quantltatxve questlons The hypotheses are;

‘Ho: There is no significant difference between quantitative and qualitative |

information perception and understanding for the specified algorithm

auralisation.

Hi: There is a significant difference between quantitative and qualitative
information perceptlon and lmderstandmg for the spec1ﬁed algorithm

aurahsatlon

BIOQN2Z -

BQN2 - EQN2Z - SQN2 - QQN2 BOIQN2 -

BQL2 EQL2 SQL2 QaLz2 BIOQL2 BClQL2

Z -1.67 -2.20 -1.851 -1.869 -1.94 -1.854

Asymp. Sigj 047 .01 .032 .031 02 . 032
(1-tailed) : ‘

Figure 6.42b — Table of test statistics for algorithms’ information extraction, qualitative

V. quantitative.

This analysis has 'bee_:n performed as a matter of completeness because cases rriight exist

where only qualitative or only quantitative information might need to be presented.

However, in the context of this thesis, both information types are used for algorithm

understanding. From the data given in the above figures, the null hypothesis can be -

rejected at the 5% level of confidence for each algorithm auralisations concluding that
 there is a significant difference between the perception and understanding of quahtatwe

and quantltatlve mfonnatlon types for the each of the algorithm auralisations. -
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Furthermore the data shows that quantitative information translates better than qualitative
information. This suggests that the use of sonification of the data in the list (quantitative
information) translated with greater success than the more abstract metaphorical
mappings (qualitative' information). This might suggest that the use of different

metaphors could lead to increased understanding of qualitative information types.

Given that no significant difference between ‘musical’ test subjects and ‘ﬁon-musical’
test subjects when understanding musically auralised algorithm exécution and state has
been proven, it is important to examine if this also holds true for each of the informé.tion
types. The _graphs gwen m Figures M.12, M.13, M.14, M.15, M.16 and M.17 in |
Appendix M show how the two sub-groups perform on each question for the Bubble Sort, -
Exchange Sort Selection Sort, Quick Sort, Bucket In-Out Sort and Bucket Out-In Sort
algorithms respectively. |

The data given in the above figures suggests that there is little difference between
‘musical’ listeners and ‘non-musical’ listeners when understanding either quantitative

information types or qualitative information types.

Figure 6.48b shows the results of the Mann-Whitney non-parametric test applied to the -
information extraction scores obtained from each of the six algorithm auralisations for
‘musical’ listeners compared to ‘non-musical’: listeners for qualitative question types.

The hypotheses are:

Hy: There is no significant difference between ‘musical’ listeners and ‘non-
- musical’ listeners when understanding qualltatlve mforrnatmn for the

specified algorithm auralisation.

"H,: Thereis a signiﬁcant difference between ‘musical’ listeners and ‘non-

musical’ listeners when understanding qualitative information for the

specified algorithm auralisation.
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_ BUBB EXCH SEL QUICK BCKT I-O BCKT O-l
Mann-Whitney U] 102,500 107.000 86.500 93.500 110.000 _105.500
Wilcoxon W] 255.500] 260.000 239.500] 246.500] 263.000] 196.500
Z -357 -15 -1.08 ~74680  -023 -.225
Asymp. Sig. (1-tailed) 361 43 138 228 491 A11

Figure 6.48b — Table of test statistics - algorithms’ qualitative information extraction,

Mus V. NON-1us
From the data given in the above figures, the null hypothesis cannot be rejected for each

‘musical’ listeners and ‘non-musical’ listeners for the perception and understanding of

qualitative information types for the each of the algbrithm auralisations.
" Figure 6.49b shows the results of the Mann-Whitney non-parametric test applied to the
‘musical’ listeners compared to ‘non-musical’ listeners for quantltatlve question types.

The hypotheses are:

- musical’ listeners when understandmg quantntatlve information for the

specified algorithm auralisation.

musical’ listeners when understanding quantitative information for the

specified algorithm auralisation.

of the algorithm auralisations concluding that there is‘.no significant difference between

information extraction scores obtained from each of the six algorithm auralisations for

Hy: There is no significant difference between ‘musical’ listeners and ‘non- ‘

H;: There is a significant difference between ‘musical’ listeners and .‘non-

BUBB EXCH SEL QUICK BCKT -0 BCKT O-I8
Mann-Whitney U] 101.5001 96.000{ 103.000; ©6.00 79.000[  104.500
Wilcoxon W] 192.500{ 187.0001 256.000) 187.00 | 170.000] 195.500)
4 -452 -68 -405 -.64 -1.416 -.268
Asymp. Sig. (1-tailed 326 24 2343 25 78] .395

Figure 6.49b — Table of test statistics - algorithms’ quantitative information extraction,

IMus v, non-mus
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From the data given in the above figures, the null hypothesis cannot be rejected for each
. of the algorithm auralisations concluding that there is no significant difference between
‘musical’ listeners and ‘non-musical’ listeners for the perception and understanding of

quantitative information types for the each of the algorithm auralisations.

Given that no significant difference has been shown between ‘musical’ listeners and
‘non-musical’ lsteners when understanding either quantitative information types or
‘qualitative information types, it is also important to analyse the variance between the

information types.

Figure 6.50b shows the results of the Wilcoxon signed rank non-parametric test applied
to the information extraction scores obtained from each of the six algorithm auralisations
for ‘musical’ listeners for quantitative question types compared to qualitative question

types. The hypotheses are:.

Ho: There is no significant difference between qualitative and quantitative
question types for ‘musical’ listeners when understanding information for

" the specified algorithm auralisation.

H;: There is a significant difference between qualitative and quantitative
question types for ‘musical’ listeners when understaﬁding information for

- the specified algorithm auralisation.

Bubble Exchang Selection Quic Bucket in-Out Bucke Out-In}§

Z  -.690 -1.31 - 749 -52 -. 690 -1.115
Asymp. Sig. (1-tailed}  .245 .095 227 .30 .245 133 -

Figure 6.50b — Table of test statistics, algorithms’ ‘musical’ information extraction, ‘

_qualitative v. quantitative

From the data given in the above figures the null hypothesis cannot be rejected for each

algorithm auralisations concluding that there is no significant difference between

236




237

qualitative and quantitative question types for ‘musical’ test listeners when perceiving
and understanding information for the each of the a]gorithin auralisations. Again, both
information types are required for ﬁnderstanding sorting algorithms ‘within the context of
this thesis. The testing of information types here is not a primary concern of the thesis but
it does provide some useful information for auralistaion of qualitative only or quantitative

only presentations.

Figure 6.51b shows the results of the Wilcoxon signed rank non-parametric test applied
to the information extraction scores obtained from each of the six algorithm auralisations
for ‘non-musical’ lListeners for quantitative question types compared_ to qualitative

question types. The hypotheses are:

Hp: There is no significant difference between qualitative and quantitative
question types for ‘non-musical’ listeners when understanding

information for the specified algorithm auralisation.

H,: There is a significant difference between qualitative and quantitative
question " types for ‘mon-musical’ listeners when understanding

information for the specified algorithm auralisation.

Bubble

Selection Quick Bucket In- Bucket Out-

Exchang

~2.077 -1.99 -1.539

7 -1.64 -4.80 | = -1.814
Asymp. Sig. 050] 03 1035 019 02 062
~(1-tailed) 5

Figure 6.51b —Table of test statistics, algorithms"- ‘non-musical’ information éxtraction, '

qualitative v, quantitative

'From the data giveﬁ in the above ﬁgurés, the null hypothesis can be rejected at the 5%
level of confidence for almost all algorithm’ auralisations concluding that there is -
significant difference between quaﬁtitative and qualitative question types for ‘non-

musical’ listeners when perceiving and understanding information for the each of the
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algorithm auralisations. This data suggests that although no significant difference has -
been shown between ‘musical’ and ‘non-musical’ listeners when perceiving and
understanding qualitative and quantitative information types, the spread in accuracy
between the information types is greater for ‘non-musical’ listeners than for ‘musical’
listeners. It can be further concluded that ‘musical’. listeners are mofe‘ reliable at
percéiving and understanding both information types given that the spread in accuracy is
smaller, This increased reliability is present but not statistically significant, though

increasing the sample size in this case may have shown some significance.
6.6. Conclusions

Initial experimentation with the Bubble Sort algorithm showed that information
pertaining to state and execution can be successfully represented musically with test
subjects scoring generally high and identifying a large majority of the requested

mformation.

Further experimentation using the Bubble Sort algorithni with the addition of the fourth
timbre to denote iteration count, with increased test group sizes to allow for reliable
statistical analysis and the addition of deliberate algorithm error showed, that once again
- the information exchange was significantly high with the majority of information being
identified. Statistical analysis of the results showed that there is no signiﬁcaﬁt difference
between ‘musical’ and ‘non-musical’ test sﬁbj'e'cts when identifying algorithm state and
execuﬁon information and erroneous algotithm state and execution information. The
analysis also showed that quantitative information translates significantly better than
qhalitative information in the context of the experimental auralisations. Although the
identification of erroneous algorithm information Was low, the data suggested that
obvious errors were more easily identified than subtle errors. The identification of bugs in
sorting . algorithms through musical auralisation was not of concern in this thesis and
- SIMBAA was not désig113d to be a tool for aiding such bug location. However, it does
provide some interesting information about the difficulties associated with untrained

listeners attempting to identify the more subtle and intricate information present in -
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sorting algorithm. Further experimentation here might yield better error identification
rates 1f alternative musical metaphors were used. Tlus requires significant investigation

and is beyond the scope of this thesis.

ﬁlc_results for the experimentation using the six different algorithms showed that once
again the algorithms with fixed and constant anchor points are more readily understood
(Bubble Sort, Exchange Sort and Selection Sort algorithms). The data also showed thaf
overall there is no significant difference between ‘musical’ listeners and ‘non-musical’ .
listeners when percemng and understandmg musically represented information
pettaining to state and execution for each of the algorithms. It was also shown that
quantitative information types are significantly more easily understood and identified
than qualitative information types. Within each of these information types it was further
shown that there is no signiﬁcé.nt difference.between. ‘musical’ and ‘non-musical’
' listeners. The results again showed that for the °‘non-musical’ sub-group alone
quantitative infohnation types wére more easily understood than qualitative information
types. In contrast, no significant difference was observed between the two information
types for the ‘musical’ sub;groﬁp alone. This suggested that the spread between
information types for each sungroup was different but not different enough to be

significant when comparing the two sub-groups.

Once again the addition of extra cues might further disambiguate the in_formaﬁon
presented in each of the algorithm auralisations. Given that the addition of spatial
location cues could aid perceptmn of pitch and shape, it could also be used to aid
understanding of algonthm auralisations. In order to incorporate the extra spatial cues,
three-dimensional sound source ﬁlacement could be employed. The folldwing chapter
documents the design and implementation of the SIMBAA system incorporating spatial

enhancement to facilitate the subsequently documented algorithm auralisation -

experimentation using three-dimensional sound..
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Chapter 7
SIMBAA 3D - A spatially enhanced musical auralisation tool

7.1. Spatially enhancing SIMBAA

In the SIMBAA experiments in Chapter 6, dlsamb1guat10n of the musically presented

1nformat10n was achieved by the use of the following:

¢ Rhythm of ascension. '
¢ Contrasting timbre using a piano, a flute and a brass ensemble.
¢ Harmony using a major triad. o

e The use of auditory space by employing instrument placement via stereophony.

The auralisations implemented so far have exploited the features of the sorting algorithms
identified in Chapter 4. It might be argued that better auralisations could have produced
improved perception. This thesis is not concerned with developing optimum auralisations

but it is concerned with investigating the effect of the addition of spatialisation on the

" existing auralisations. However, the use of audltory space in this instance was under

explmted. Although placement of the different timbres in the Jeft, centre and right

ocationis within the stereophonic field aided disambiguation between events and actions

it was limited to the line between the listener’s ears. Better disambiguation might be -

achieved by extending the two-dimensional stereophonic field into a three-dimensional
auditory environment. In particular the spatialisation of the data might provide positional
cues about the values of the data and their positions within the list. This might further aid

- understanding of the.execut'ion and sorting natures of the algorithms.

It was therefore decided to develep SIMBAA into a 3-D anditory environment (calIed
SIMBAA . 3D). The enhanced system will have all the features of the existing SIMBAA

system together with a greatly enhanced 3-D environment. The method chosen has

. already been extensively discussed and justified in Chapter 3, namely, the use of stored

binaural recordings created using microphones placed inside the ears of subjects. The
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main new aspect of SIMBAA 3D is the creation of what we call a “SoundWall” - a two- _

dimensional projected wall onto which sounds can traverse aurally in two directions. In

addition, control sounds can be played behind the listener (left or right).

The diagram below in Flgure 7.1 shows the conceptual 3D spatial auditory env1ronment
with an example eight element list spatlally distributed on the Wall | |

Pitch

SuundWall

LIST STATE -
{21 4: 3: 2! 3: 5: 7’ 6}

8
T
6
13
4
3
2
1

- Event 1

Element

Event 2

Figure 7.1 — SIMBAA 3D conceptual auditory scene.

Control Events such as succes‘sful‘termination and iteration are located behind the -

listener’s ears and- identiﬁed -as ‘Eventl’ and ‘Event2’. The remaining mappings
pertaining to the data in the list are projected onto the 3DI ‘SoundWall’. The different
processes that can be applied to the data in the list (checking the data, sorting the data and
moving'the data) could be distinguished throughl the use of different timbres. |
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7.2. Algorithm experimentation and the SIMBAA 3D environment

All of the algorithm auralisation experimenfs performed in Chapter 6 utilise lists that
contain numbers between 1 and 8, this is to allow for a single diatonic octave to be used.

The reason for liﬁliting the representations to one octave is based upon Sumikawa et al’s
| [175, 176] findings that percepﬁon is increased when mappings are confined to one
octave as opposed to spanning octaves. Given that the varying pitch (8 notes in this case)
istobe mapped to the elevation cue of the ‘SoundWalI’, it can be defined that the wall

* must facilitate eight elevation posmons

To limit the complexity of the algorithm auralisations, the maximum number of elements
within the lists used in the experiments in Chapter 6 was never less than six and never
greater than ten. It is important to clarify for design purposes that this limitation has not
been based on the constraints of the human memory reported by Miller [142] which
-. stated thaf the human short term memory can only hold about 7+2 chunks of information

at any one time. The experiments involving algorithm auralisation are not concerned with

listeners being able to remember exact elements but rather the general shapes of the lists
‘of numbers, in particular which pdrtions of the list are random and which are sorted into
order. Given this, Miller’s observations on the constraints of human short term memory
are not of any significance as the features of the shapes of the lists are never likely to
exceed three (e.g. ,random-_smooth—random). due to the natures of chosen algorithms.
Having determined that the. maximum list size is never greater than ten for this series of
experiments, it can be deﬁned that the number of azimuth locatlons requlred on the
- “SoundWall’ is to be ten. | '

- In order to create an auditory scene capable of accommodating the necessary information

repreSenteci By algorithm auralisations as employed in Chépter 6 of this thesis it is

necessary to define the information that is to be represented musically for

experimentation. This information has been identified in Chapter 4 and 6 but needs to be

reiterated here, the information common to the selected algorithms for auralisation are:
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State of the list ~ tones mapped to numbers within the list. The relative pitch of
the tones alone gives the impression of the shape of the list, this shape could be
~ further clarified and disambiguated through the placerﬁent of the elements in 3D
auditory space. The shépe of the list could be projected onto the ‘SoundWall’. As -
the sequence progressed, the instrument would move along the wall from left to
right. Similarly, as the pitch of the tones increased, the elevation position of the
projected sound source would also increas'e.‘ This would provide an additional
cue, one of a positional nature, as to the data values and their positions within the -

list.

Sorting the list — tones mapped to numberé within the list. As- with the previous
mapping this phase “of the algorithm’s execution rtequires the musical -
‘representation of currenf elements within the list that are presently being sorted. |
" Again this could be projected onto the ‘SoundWall’. The difference between this
mapping aﬁd the previous mapping is the discrimination of timbre as employed in
the algorithm auralisations described in Chapter 6. The mapping for representing
the staté of the list uses a flute, this mapping employs an acoustic grand piano.
This would also provide an additional cue, one of a positional nature, as to the

data values and their positions within the list.

‘Swapping/placement of elements — tones mapped to numbers within the lisf. As
with the previous _mappings, this requires the numbers within the list to be
represented musically. Again this can be projected onto the ‘SoundWall’ W1th the
employment of different timbre, in this case the choice of timbre is a trumpet as
described for éxperimentation in Chapter 6. This would provide an additional cue,
one of a positional nature, as to the swapping of the data values and their swapped

positions within the list.

Iteration count -~ wooden block indicating.the iteration count. This mapping

requires the pass count to be represented musically. This does not require to be -

projected onto the ‘SoundWall’, rather, to discern this mapping from the pfevious
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pure data element mappings it could be placed 180 degrees (for maximum
segregation) away from the ‘SoundWall’, locating it behinc_l the listener. As with
the earlier experiments'with algorithm auralisation described in this thesis the

choice of timbre here is the wooden block.

o Successful termination — ‘Ta-Da’ success on algorithm sorting completion. The
choice of timbre here for pf_evious auralisations within this thesis has been a brass
ensemble. Again this timbre shall be employed and to discern this mapping from

the pure data element mappings it could again be placed behind the listener.

To summuarise, for application to algorithm auralisation within the scope of this thesis the

- ‘SoundWall’ needs to be constructed with the deloWing parameters:

o Three iﬁsu'uments — flute, acoustic grand piano and trumpet.
» FEight elevation positions — mapping to pitch within one diatonic octave starting at

- ‘Middle C". | | |
e Ten azimuth positions — mapping to the position of the current elements in the

 list, being between 6 and 10

- Therefore it is necessary to binaurally record 240 (3 instruments x 8 pitch locations x 10
positional locations) real audio samples with the addition of the two control events

(iteration count and successful termination).
*7.3. Creating the auditory scene

In order td Binaurally record the necessary real audio’ sounds a pair of binaural
" microphones is required. It has been decided that for cost effectiveness and simplicity a
real human being is to be used instead of a manikin for the object listener. One of the
concerns with using a real human being is the unpredictable motion of the listener. When
recording a series of audio samj:les it is important to retain the same relative position of
the object listener’s ears, head and torso. To accomplish this, a small laser pointef has

. . been employed. This laser was mounted on a paif.i)f glasses that are rigidly attached to
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the listener’s head, this is shown in the picture given below in Figure 7.2. It should be
noted here that the head mounted equipment might have an effect on the binaural
recordings, in that they might introduce extra reflections. To minimise this, all leads and
connectors were tied back behind the listener’s head. The reflections from the laser
mount, casing and glasses could not be effectively reduced without extensive design. It is
important to reiterate here that this thesis is concerned with using a low cost spatialisation

technique.

Figure 7.2 — Laser head alignment.

The centre point of the ‘SoundWall’ was located and a marker was affixed to retain the
focal point. Upon recording the samples, the object listener aligned the laser pointer to
this focal point (shown below) thereby maintaining approximately the same relative

pinna, head and torso positions.
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Figure 7.3 — Laser head alignment in semi-anechoic recording studio.

In order to reduce the localisation confusion introduced by excessive environmental
reverberation the sound samples were recorded in a professional recording studio with
semi-anechoic walls. The sound absorbent surfaces of the walls are shown in the picture
above in Figure 7.3 as the large blue cloth covered panels. The dimensions of the wall
were made as large as the recording studio would facilitate. This was done in order to
maximise the possible space between the three-dimensional coordinates of each sound
source to aid instrument location separation. The dimensions of the wall were 411.5 cm
(162 inches) wide by 186.7 cm (73.5 inches) high. The sound sources were therefore
placed with 45.7 cm (18 inches) of separation in the horizontal plane and 26.77 cm (10.5
inches) of separation in the vertical plane. The object listener was placed in the centre of
the ‘SoundWall’ 205.7 cm (81 inches) from the left most boundary and 93.4 cm (36.75)

inches from the lower most boundary.
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One concern that became apparent during the initial recording phase was the position of
the listener relative to the ‘SoundWall’ and the event objects. Two *‘trial’ auditory scenes
were therefore created with the listener being positioned six feet from the ‘SoundWall’
and three feet from the ‘SoundWall’. The four corners and an ascending pattern were
played to several test listeners each of whom was asked to choose which representation
gave the most realistic impression of three dimensional movement of sound on a
projected virtual ‘SoundWall’. It was found that all test listeners much preferred the
‘SoundWall” that was recorded at a distance of three feet. It was therefore decided that
this parameter should be used when recording the final ‘SoundWall’. As mentioned in
Chapter 3, the closer a source gets closer to a human head, the greater the inter-aural
intensity difference. This increase in difference is particularly noticeable for ranges under

one meter. This may be a factor in the listeners’ preference for the ‘SoundWall’ at 3ft.

Figure 7.4 — ‘SoundWall’ in semi-anechoic recording studio.
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Figure 7.6 — ‘SoundWall” and object listener — right perspective.
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The entire ‘SoundWall” and object listener are shown in the picture above in Figure 7.4.
The paper squares on the studio wall represent the indexed positions of the eighty sound
source locations. The pictures above in Figures 7.5 and 7.6 show the ‘SoundWall” and the

object listener from both the left and right hand sides.

The hardware configuration used to construct the three dimensional ‘SoundWall’ and

spatially located control events was:

o Sound source generator — a multi-timbral Roland Boss DS 330 synthesiser with
‘real’ sampled instruments driven by a PC running Steinberg’s CUBASE VST24.

e Sound source radiator —a high quality acoustic loudspeaker with a frequency
range of 50Hz to 11kHz (enough to cover the audible range).

e Binaural microphone pair — pair of ELECTRET condenser microphones placed in
the ear canals of the object listener.

e An ELECTRET condenser microphone interface — required to drive the
microphone pair.

¢ A two-channel digital recording device — a PC running Steinberg’s WaveLab.

This configuration is diagrammatically represented in Figure 7.7.

PC - Sound Digital Recording
Generator Driver Device
v L &
Sound Source Microphone
Generator Interface
- 3
Sound Source Binaural
Radiator Microphone Pair

ey

Figure 7.7 — Auditory scene generation system.
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The hardware consisted therefore of a straightforward sound source recording
configuration with the addition of some filtration supplied by the Acoustic Medium.
These filtration effects of this acoustic medium are dependent upon the location of the
sound source relative to the binaural microphones and the echoes and properties of the
object listener and recording environment. The hardware configuration employed during
the recording phase corresponding to this diagrammatical representation is shown in the

photograph in Figure 7.8.

Figure 7.8 — Auditory scene generation system hardware set-up.

As previously mentioned a pair of binaural microphones were required in order to
facilitate the binaural recording of the auditory scene. These microphones each require
secure placement within each ear canal of the listener. In order to accomplish this,
‘hearing aid’ like devices were fabricated. The diagram in Figure 7.9 shows the initial

design of the hearing aid which consisted of the ELECTRET condenser microphone, lead
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wire and a pinna clasp. The pinna clasp is made from rigid 2.5mm diameter wire and
coated with a rubber sheath to aid comfort when being worn by the object listener. The

pinna clasps were then customised to the dimensions of the test listener.

Finna Clasp Electret Condenser

L Microphone

Figure 7.9 —Binaural microphone and pinna clasp — conceptual.

The picture given below in Figure 7.10 shows the object listener’s pinna with the custom

formed pinna clasp and microphone assembly attached in position.

Figure 7.10 —Binaural microphone and pinna clasp.

ELECTRET condenser microphones are not passive transducer devices and therefore
require some simple interface circuitry. Each microphone was interfaced with the circuit

shown in the diagram given in Figure 7.11 below.
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Figure 7.11 —Binaural electret condenser microphone interface circuit diagram.

After initial construction, the author tested the realism of the resulting binaural recordings
created with the microphone pair. This initial testing took the form of recording two real
world sounds onto a portable digital recording device. The author recorded the auditory
environment typically encountered when crossing a busy road, stopping in the centre
island to capture the sounds of motor vehicles passing in both the front and rear planes.
The second sample consisted of a simple helicopter sample played and moved to give the
impression of the helicopter flying toward the listener object, circularly around the head
of the listener object and flying away off to the left field. The results of these preliminary
tests yielded most favourable results and the effects were quite dramatic, even between
different listeners. In order to make the binaural recording more precise, further tuning of
the matching of the characteristics of the two ELECTRET microphones was carried out

to minimise localisation error in the horizontal plane.

7.4. Hardware considerations

It is necessary to ensure that both left and right binaural microphones are as closely
matched as possible in order to create faithful 3-D recordings. Gross mismatching causes
unbalanced recordings that lead to inaccurate sound source placement. Preliminary
experimentation which compared two randomly selected ELECTRET microphones
showed a noticeable difference in the recorded amplitudes. Indeed the highest measured

difference in this case was up to 6dBs.

Four ELECTRET microphones were therefore selected, at random, and the amplitude and

frequency responses of each were analysed. Only four were chosen to reduce complexity
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and to eliminate only ‘rogue’ devices with significantly different characteristics. The two
most closely matched microphones were then selected for use in our binaural recordings.
The frequency range investigated covered the range 20Hz through to 20kHz, since this
more than covers the audible range and facilitates CD quality recordings with a sample
frequency of up to 44kHz. Nyquist’s criterion states that to have effective sampling, the
sampling frequency [Sample Frequency 40kHz] must be twice that of the highest
frequency component in the sample [20kHz]. Since the frequency response of the
microphones used was 50Hz to 8kHz, this more than covered the desired range of
frequencies. The frequency response of each microphone was investigated using a 3D

Frequency-Time plot, and both waveforms and peak amplitudes were examined.

Each frequency and amplitude plot had common features - peaks and troughs that did not
appear in the reference plot (Figure 7.12). These features were due to the frequency
response characteristics of the hardware used in this experiment. Thus, common elements
that differ from the source could be attributed to signal degradation through the hardware.
The important features to be compared were those that differ between microphones and
not those that differ between microphone and source. All speakers and microphones
were obtained from Maplin electronic supplies. The speaker was chosen for its frequency
response, which accommodated those of the microphones. The characteristics of speaker

and microphones are shown in Figures 7.11a and 7.11b.

6.5 inch High Fidelity Loudspeaker.

Frequency Response 50Hz to 11kHz
Impedance 8 Ohms

Coil Diameter 20mm

Chassis Diameter 166mm

Free Air Resonance 55Hz +/- 8Hz
Acoustic Output 89dB

7.11a. Loudspeaker specification.
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Omni directional Electret

Condenser Microphone.

Frequency Response 50Hz to 8kHz
Impedance 1 kOhm max
Power Supply 1.5vto 10v
Sound Pressure Level 120dB max
Sensitivity -62dB +/- 3dB

7.11b. Electret condenser microphone specification.

Figure 7.12 — Generated source sweep

Figure 7.12 shows the frequency sweep in the frequency domain and Figure 7.13 shows
the same frequency sweep in the temporal domain starting at 20Hz and sweeping through
to 20kHz, it also shows that the waveform is at maximum amplitude (-0dBs) throughout

the desired frequency range.
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Figure 7.13 — Generated Source Waveform.
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Figure 7.14 —~Microphone 1 Waveform.

In the waveform taken from recording through microphone 1, shown in Figure 7.14, it
can be seen how the response of both the speaker and the microphone contributed to
signal degradation, this becomes even more evident towards the higher frequencies where

the amplitude is significantly attenuated. In comparison to the source signal, a peak
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amplitude was measured using a peak level meter. This measurement indicated that the

recorded signal was -4.1dBs down from the source at its highest peak.
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Figure 7.15 —~Microphone 2 Waveform.

In the waveform taken from recording through microphone 2 shown in Figure 7.15 it can
again be seen how the speaker and microphone both contributed to common signal
degradation. The envelope 1s much the same as that of the waveform obtained using
microphone 1, the main difference however is the overall amplitude - it can be seen that

this envelope is much smaller.

The measurement taken using the peak level indicator showed that the waveform
obtained recording through microphone 2 was —8.6dBs down from the reference signal
source at its highest peak. This was an extra -4.5dBs down compared to that of

microphone 1.
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Figure 7.16 — Microphone 3 Waveform.

In the waveform taken from recording through microphone 3 shown in Figure 7.16 it can
yet again be seen how the speaker and microphone both contributed to common signal
degradation. The shape of the envelope is much the same as that of the waveforms
obtained using microphones 1 and 2, again the main difference is the overall amplitude -

it can be seen that this envelope is small as in the waveform for microphone 2.
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Figure 7.17 — Microphone 4 Waveform.
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The measurement taken using the peak level indicator showed that this waveform from
microphone 3 was —10.7dBs down from the reference signal source. This shows an extra
-6.6dBs down compared to that of microphone 1 and an extra —2.1dBs down compared

with microphone 2.

The waveform taken from recording through microphone 4 shown in Figure 7.17 again
shows how the speaker and microphone both contributed to common signal degradation.
The envelope shape is much the same as that of the waveform obtained using
microphones 1, 2 and 3, the main difference again however is the overall amplitude. It
can be seen that this envelope is much larger than those of microphones 2 and 3. It is
closest in terms of amplitude to the waveform obtained using microphone 1. The
measurement taken using the peak level indicator showed that this waveform was —
3.2dBs down from the reference signal source at its highest peak. This is comparable to
the characteristics associated with microphone 1 which is an extra -0.9dBs (being at —

4.1dBs).

Figure 7.18 — Generated Source Frequency Response.

Figure 7.18 shows the frequency sweep starting at 20Hz and sweeping through to 20kHz

over a period of time T=2.5s (approx.)
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Figure 7.19 — Microphone 1 Frequency Response.

It can be seen from the frequency response plot shown in Figure 7.19 above for
microphone 1 that there was significant attenuation of frequencies outside of the range
115Hz to 1400Hz, this attenuation is largely due to the characteristics of both the speaker
and the microphone. Very high and very low frequencies did not transfer very well with
the given acoustic hardware. As previously mentioned, of greater interest are the
differences between the microphones and not the differences between the microphone

and source, although this plot does yield some useful information.

Figure 7.20 — Microphone 2 Frequency Response.
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It can be seen from the frequency response plot shown in Figure 7.20 for microphone 2
that again there was significant attenuation of frequencies outside of the range 115Hz to
1400Hz, again this attenuation is largely due to the characteristics of both the speaker and
the microphone. It can be seen that there are no significant differences between

microphones 1 and 2 when looking at their respective frequency responses.

Figure 7.21 — Microphone 3 Frequency Response.

It can be seen from the frequency response plot shown in Figure 7.21 for microphone 3
that again there was significant attenuation of frequencies outside of the range 115Hz to
1400Hz, again this attenuation is largely due to the characteristics of both the speaker and
the microphone. It can be seen that there are no significant differences between

microphones 1, 2 and 3 when looking at their respective frequency responses.

It can be seen from the frequency response plot shown in Figure 7.22 for microphone 4
that again there was significant attenuation of frequencies outside of the range 115Hz to
1400Hz, again this attenuation is largely due to the characteristics of both the speaker and
the microphone. It can be seen that there are no significant differences between
microphones 1, 2, 3 and 4 when looking at their respective frequency responses. However
microphone 4 did attenuate the frequencies around 8kHz more than any of the other

microphones did.
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Figure 7.22 — Microphone 4 Frequency Response.

When comparing the frequency response of all four microphones there is negligible
difference with the exception of microphone 4 attenuating the frequencies around 8kHz
more than the other microphones. The technical specifications of the microphones state
that their frequency response is 50Hz to 8kHz, this can be seen in all four frequency plots
where the attenuation increases to almost fully suppress any frequencies outside of this
response range. This response is also aided by the characteristics of the speaker having a
frequency response of 50Hz to 11kHz as stated in the technical specifications. When
comparing the waveform amplitudes for each microphone there are significant
differences. To show this we have compared all microphones with each other in Figure

7.23 to highlight the differences.

MIC 1 MIC 2 MIC 3 MIC 4
-4.1dB -8.6dB -10.7dB -3.2dB
MIC 1 *
-4.1dB x +4.5dB +6.6dB -0.9dB
MIC2 X
-8.6dB -4.5dB il +2.1dB -5.4dB
MIC 3 *
-10.7dB -6.6dB -2.1dB > -7.5dB
MIC 4 *
-3.2dB +0.9dB +5.4dB +7.5dB X

Figure 7.23 — Microphone amplitude comparisons.
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Comparing all of the microphones with each other shows us that the most closely
“matched pair of microphones are microphones 1 and 4 with a difference of 0.9dBs
between them. M1cr0phones 2 and 3 are also a close match with a difference of 2.1dBs.

The largest difference exists between Imcrophones 3 and 4 with a difference of 7.5dBs.

The best matched pair of microphones were therefore decided to be xﬁicrophones 1and 4.
The first reason for choosing this pair is due to them having the smallest difference in |
peak level of 0.9dBs. The second reason is that they are more sensitive than microphones
2 and 3, this is shown in the individual peak levels. Microphones 1 and 4. were only
-4.1dBs and ~3.2dBs down froxﬁ the source compared with microphones 2 and 3 (which
were ~8.6dBs and ~10,7dBs down from the source). If the matching of the equipment
required greater precxsion then the difference in peak levels could be matched wn‘.h _‘

greater accuracy by using a potennometer _

The other hardware used in this experiment may also have contributed considerably to
the frequency responses obtained for each microphone, since the responses are limited by
the characteristics of the source speaker. However, the points of interest are the
differerices between pairs of nﬁcrophqnes as opposed to n\xicrophones' and the source.
Although more detailed characteristics of the_se'types of microphone might have been
obtained if a speaker Witﬁ an overall broader frequency response had been used, the
important -difference.s, between the microphones have béen determined, the main
differences being the recorded peak wave amplitude of the microphones and the general

frequency response being of negligible difference.
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Chapter 8
Experimentation with SIMBAA 3D

8.1. Introduction

In Chapter 6 it was shown how sorting algorithms can be musicallf aiuralised so that they
can be understood by the average user. In this chapter, a set of experiments is described
which were désigned to determine if the understanding of algorithms presented aurally to

~ an average person (i.e., non musically educated) would be improved if spatial distribution

. of the sounds was used in support. In other words - by how far would use ‘of_ the

‘SoundWall’ in SIMBAA 3-D enhance user understanding compared with presenting the
algorithms aurally alone? ' '

8.2 Research approach
8.2.1 Musical structure and understanding

We have already shown that users with no special musical ability can comprehend sorting

algorithmé aurally, provided that appropriate mappings are chosen. Spatial distribution

provides an additional dimension and might add new capabilities to shépe understanding

‘since the shapes can be represented in space as well as in sound. The ‘SoundWall’
provided by SIMBAA 3-D enables much more accurate aural placement to be realised,
“and the reseai‘ch_qucstion is: can users take advantage of this additional information

thereby allowing more complex ideds to be auralised?

The first step is therefore to investigate how much spatial information users can
understand in the SIMBAA 3-D environment. Questiohs that need to be answered

include:

» How accurately can users discern spatially distributed musical tones?
e Can users distinguish between different note sequences on the ‘SoundWall'?

e Can users visualise the shape of spatially distributed tonal sequences?
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o Can users comprehend pattemns of spatially dlstnbuted tones that denote the
presence of a structure or control? |

o At what level can users comprehend spatially distributed thythms and tunes'?

» To what accuracy can users identify and distinguish different spatially distributed
Timbres? |

o How useful is Timbre placement in the 3D spatial audio field?

Firstly, experiments have been performed, using basic structures invblving pitch, in order
to determine how well users can perceive tones when presented using spatially distributed -

‘music.

Secondly, expeﬁments‘have been carried out that use short spatially distributed musical
sequences in order to understand how listeners perceive the shape of tonal patterns when
represented in a 3D epatial environment. If the spatial distribution in the ‘SoundWall’ can -
assist users in understanding the contour of the sequence then this could open up .

‘additional poss1b111t1es for aural interfaces.

Thirdly, experiments have been carried out which- contain only one or two notes
" incorrectly placed in otherwise ordered lists. These experiments have been performed in
order to investigate if comprehenswn is improved through the use of spat1a1 distribution

to further disambiguate the mus1ca11y represented mformatlon
Fourthly, experiments have been carried out that use spatially dist-ributed' musical
sequences, with the addition of a second spatially located tlmbre to denote the

mampulatlon of the mcorrectly placed data elements

The mappings employed in auralising the sorting algorithms use continuous changes of

musical structure to communicate the state of the list and the rearrangements that occur,
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They are similar to those used in the earlier documented 2D experiments:

o Spatially located ordered and non-ordered pitch ranges.
s Rhythm in combination with spatially d.leIlbuted pitch.
e Temporal arrangements and pitch compansons between one or two spatially
located instruments.
o The development of a pattern of what the algoﬁth:n does without the listener
knowing its detailed processhig.

¢ - The abstract development of mental models of current list states.

The results from each of the experiments will then be compared to the earlier 2D
representations (in Chapiers 5 and 6) in order to determine how far spatial distribution

- has improved users’ perception and understanding. -
8.2.2 Tools used

The experiments with spatially distributed music in this section have been implemenfed
on an IBM compatible computer equipped with a soundcard capable of supporting the
CD quality format of 44.1kHz/ 16-bit, The sound is provided by the ‘SoundWall’ , which

was described in the previous chapter.

Thirty subjects were classified according to their musical ability (fhe test has béen

described earlier and is given in Append1x B). The group of test subjects are identified as

Group 3.

8.3, Pitch perception experiménts
‘ 8.3.1. Expenment construction

In this set of expenments like those using the 2D stereophomc MIDI output in Chapter 5
| (Section 5.3), thirty subjects were asked to listen to pairs of musical notes, and determine

their position within a bounded diatonic scale. The experiment construction was the same
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| as the one given in Section 5.3 with the excepfion of the added spatialisation. The timbre
employed was an acoustic grand piano, whose position on the Sound Wall was dependent
upon pitch. The linear mapping between pitch and vertical placement and position and
horizontal placement produced a line on the “‘SoundWall’ that corresponded to the scale
startmg from bottom-left on the ‘SoundWall’ up to t0p-r1ght Each of the test pitches was |
placed along this virtual scale-lme Instrument play-back used binaurally recorded sound
with no reverberation or chorus added. The instrument was kept in its pure form to

maintain the binaural cues obtained through the recordings.

1 -

A
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12345678 1 -3

Figure 8.1 - Spatially distributed pitch perception example.

Figure 8.1 was both shown and played to listeners, The scale and test pitches were all
" mapped to linearly related horizontal and vertical locations on the ‘SoundWall’, elements
‘with a value of 1 appearing to the bottom-left of the wall and elements with a value of 8

appearing to the top-right of the ‘SoundWalP’. This is demonstrated in the diagram given

below in Figure 8.2 that shows the distribution for Figure 8.1.




SaundWall

O Progression

Listener

Figure 8.2 — Spatial location aﬁd movement of the pitch perceptidn example.

8.3.2. Results and analysis

Figure 8.3 shows the musical ability distribution of the group of thirty test subjects -
known as Group 3. Of this test group, 14 have a musical ability score of 2 and 16 have a

musical ability score of between 3 and 5. Therefore the test 'gfoup consists of 14 “non-

musical’ listeners and 16 ‘musical’ listeners.

Interest Rating Distribution

No. of subjects
=]

12 3 4 5 G
Muslical Interest Rating

. Fi gure 8.3 —~ Musicai interest rating for pitch perception test sque’cts.
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Figure 8.4 shows the users’ perception of each of the tones separately. The plot indicates
the accuracy of each ‘absolute’ tone within the bounded diatonic single octave scale.
.Thus the results have been analysed as twenty individual notes (even though they were

presented as pairs).

; Mean and standard deviation - plot of percleved tones
b ‘ . Total Group )

Perceived tones

Actual tones

Figure 8.4 — Perceived tone accuracy for individual pitch perception.

Mean | 1.085714 | 2.266667 | 3.366667 3.4 -5 - | 5.916687 | 7.033333 | 7.866667
S.0 ]0.381743 | 0.63424 | 0.808717 | 0.905726 | 0.635999 | 0.590652 | 0.413841 | 0.342803

Hi | 1.467458 | 2.900906 | 4.175384 | 4.305726 | 5.635999 | 6.507319 | 7.447174 | 8.20947

Lo [0.703971 | 1.632427 2.494274 | 4.364001 | 5.326014 | 6,619492 | 7.623863 |

2.55796

Figure 8.5 — Table of perceived tone accuracy for pitch percéﬁtion.

Figure 8.5 indicates the mean perception for each of the notes, the standard deviation and

the high and Jow boundaries. It can be seen that notes that fall close to the boundaries of

the scale are identified with greater accuracy than those that appear in the middle of the
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scale (as was documented in Chapter 5). This is because the scale that provides the
boundaries gives fixed points that the user can more readily recall. The middle of the
scale has little infonﬁaﬁon and can create an area of ambiguity. Overall, the group
performed well, however it is interesting to see how subjects ‘perfo'rmed when separated -
into their musical class_iﬁc_ation groups. Figure 8.6 compares the accurécy of the

‘musical’ and ‘non-musical’ groups.

Mean and standard deviation - plot of percieved tones
; Musical v Non Musical .
i .
* foeaee. ideal ¢ Non-Musical @ Musical |
L9
L8
: T.”’
7 % |
g6 E
. ¢
| €5 ‘
: : g - P 'E ’
i = 4 . ‘
P g , ‘
a3 .
e g
!_ 'l' )
A i :
oo
| 0 2 4. 8 8 10
i : Actual tones ‘
i

Figure 8.6 — Perceived tone accuracy for pitch perception of musical and non-musical

listeners. - _ : : o E R
Note Note
Musical Note1 Note 2 Note 3 Note 4 Note 5 Note 6 7 ]
Mean | 1.035714 | 2.15625 3.5 3.1875 5.041667 .| 5.84375 71 8
S.D 0.207998 | 0.514899 1 0.730297 | 0.931094 | 0.54415 0514889 | 0 | O
Non-
Musical Mote 1 Note 2 Note 3 Note 4 Note 5 Note 6 Note 7 Note 8
Mean | 1.142857 | 2.392857 | 3.214286 | 3.642857 | 4.952381 6 7.071429 | 7.714286
S.D | 0.454077 | 0.737327 | 0.892582 { 0.82616 | 0.730933 | 0.666667 [ 0.615728 | 0.460044

Figure 8.7 — Table comparing perceived tone accuracy for pitch perception of musical

and non-musical listeners.

-~
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It can be seen in Figure 8.7 that the accuracy of the ‘musical’ listeners is greater than that
of the ‘non-musical’ group. The inaccuracy appears close to the middle of the scale

where perception seems to be most ambiguous.

Figure 8.8b shows the results of the Mamn-Whitney (Wilcoxon independent samples)
non-parametric test applied to the differences of perceived notes from the true notes for

the ‘non-musical’ group compared to the ‘musical’ group. The hypotheses are:

Hy: Thereis no difference between the ‘non-musical’ and ‘musical’

test groups when perceiving spatiélly distributed musical notes.

| H;: The ‘non-musical’ listeners perform with differing accuracy than the

‘musical’ listeners when perceiving spatially distributed musical notes.

ERRNOTE1 ERRNOTE2 ERRNOTE3 ERRNOTE4 ERRNOTEES ERRNOTEE ERRNOTE? ERRNOTES

Mann{ 70.000] 87.000 95.0001 80.0007 103.0000 96.500 - 72.0000 48.000
Whitney U : :
Wilcoxon| 206.0001 223.0001 231.000| 185.000) 239.0001 232,500 208.000, 184.00
. W
-2.158] -1.188 -791  -1.420 -.465 -723 -2575 -3.472
Asymp,| .16 18 . 215 078 - .32 235 .005 .001
Sig. (1 , ' ' : '
tailed

Figure 8.8b — Table of test statistics for each perceived note, ‘non-musical’ v. ‘musical’.

The ‘non-musical’ sﬁbjects perform with greater inaccuracy. The null hypothesis can be
rejected at the 5% level for note 1 and at the 1% level for notes 7 and 8. For the
remaining notes (2 to 6) there is no significant difference between the non-mus1cal’ and
mus1ca1’ test groups and the null hypothesis cannot be rejected. These data suggest that
when notes are played close to the boundaries of the context scale the ‘musical’ test
* group pei‘fonn significantly better than the ‘non-musical’ test group,.whilst there is no

| signiﬁi:ant difference between the two groups for notes that fall into the middle of the

context scale where the greatest level of ambiguity and error can be observed.
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Figure 8.9b shows the overall impact of the addition of spatial distribution and compares
the data for this series of experiments with the data obtained for the non-3D pitch tests

carried out in Chapter 5 using the Wilcoxon Signed Ranks non-parametric test.

The hypotheses are: |

Hp: " The addition of spatial distribution has had no significant impact on the |

whole group’s perception of absolute pitch. -

H;: The addition of spatial distribution has significantly increased the

accuracy of the whole group’s perception of absolute pitch.

ErrNote1 -ErrNote2 - ErrNote3 - ErrNoted4 -ErrNote5 -ErrNote6 - ErrNote? -ErrNote8 -
ERRNOTEERRNOTEERRNOTEERRNOTE ERRNOTEERRNOTE ERRNOTEERRNOTE

1 . k] 4 5 6 7 ]
Z . -2.538
Asymp. .00 .001 .003 .003 .001 008 010 295
Sig. (1- '
tai!ed)_

F igure 8.9b - Table of test statistics for each perceived note, 3D v. non-3D.

From this data the null hypothesis.éan be rejected at the 1% level for all notes except note

8 for which the null hypothesis cannot be rejected. This suggests that the addition of

spatial distribution has significantly affected the entire group’s perception of absolute -

_ pitch. In particular, it has significantly improved the perception of pitch. The fact that no

significant difference is observed for note 8 may be due the fact that it is the last note

heard in the context scale before the test note pairs are heard. It is therefore the most |

recently held form of reference in the li_stener’é memory and as such is already subject t6

high levels of identification accuracy prior to the addition of spatial location, hence the

lack of any significant increase in'pe:ception' accuracy.

The results also need to be analysed in terms of relative pitch tests as opposed to absolute

‘pitch tests. Here, the data that is evaluated is the perceived difference between the two '
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notes and not how accurately they are placed within the scale. The intervals ranged from
1 to 7 with the omission of 2 due to the constraints of the previous absolute pitch

experiments. The diagram in Figure 8.10 ‘shows how the entire group of test subjects

performed as a whole.

Piot of percleved difference

» Total Group

Perceived Difference
-

0 e

* o 1 2 3 4

i
1
i
IS

5 6 -
Actual Difference :

Figure 8.10 — Perceived tonal interval.

Note 1 2 3 4 5 6 7

Mean | 1.433333 2,55 3.566667

4.916667

6.033333

8.75

S.D | 0.908838 0.790301 | 0.626062

0.590652

0.413841

0.654191

_Figure 8.11 —Table of percéived tonal interval.

Figures 8.10 and 8.11 show that the accuracy of the entire group, is again high when

- perceiving the interval difference between two notes. Again it is important to divide the

" data into two groups in order to better understand how the ‘musical’ sub-group performs.
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; Mean and standard deviation - plot of percieved
i -difference - Muslcal v Non Musical

i ...... ldeal ¢ Non-Musical g Musical |
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t
|
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Diff Diff
Musical Diff1 2 Diff 3 Diff 4 Diff 5 6 Diff7
Mean | 1,566667 2.566667 3.875 4933333 | 6 6.9
S.D 0.85836 0.727932 0.5 0.449776 | 0 10.547723

Non- Diff
Musical Diff1 2 Diff 3 Diff 4 Diff 5 Diff 6 Diff 7
Mean | 1.433333 2433333 | 3.214286 | 4.866667 | 6.071429 | 6.833333
s.D 0.85836 0.971431 | 0.578934 | 0.860366 | 0.615728 | 0.461133

Figure 8.12b — Table of perceived tonal interval —~ musical and non-musical listeners.

_Isigures' 8.12a and 8.12b again suggesis f.he ‘musical’ group perform with greater

accuracy than the ‘non-musical’ group. .

273



274

Figure 8.13b shows the results of fhe Mann-Whit_ney (Wilcoxon independent samples)
non-parametric test applied to the differences of perceived intervals from the true

intervals for the ‘non-musical’ group compared to the ‘musical’ group. The hypotheses

are:
Hy: There is no difference between the ‘non-musical’ and ‘musical’ test
groups when perceiving spatially distributed musical intervals.
H,: The ‘musical’ listeners perform. with differing accuracy than the ‘non-
musical’ listeners when perceiving spatially distributed musical intervals.
RRD RRD RRD RRD RRDIFF6 ERRD
Mann-Whitney U 89.000 72.000 58.000 50.000 72.000 89.000
Wilcoxon W) 194.000f 208.00¢¢ 194.000 186.000 208.000] 225.000)
Z -1.00 -1.78 -2.56 -2.74 -2.575 -1.474
Asymp. Sig. (1-tailed) A5 .03 .00 .003 .005 070

Figure 8.13b — Table of test statistics for each perceived interval, ‘non-musical’ v.

‘musical’.

It can be seen from the data given in Figure 8.13b that the null hypothesis can be rejected

at the 5% level for interval 3 and at the 1% level for intervals of 4, 5 and 6. For intervals
of 1 and 7 the null hypothesis cannot be rejected. This suggests that the ‘musical’ group

perform better than the ‘non-musical’ group when the intervals are extreme (1 or 7) but

that there is no significant difference when the intervals are not extreme. When

comparing this data to the data obtained for the non-3D interval pitch tests documented in

Chapter 5 it can be seen that the bnly difference is that large intervals of 7 yield no

significant difference between the two groups. This suggests that the addition of spatiél
distribution has narrowed the margin between the groups for such large intervals. Figure

8.14b shows the overall impé_ét of the spatial distribution by comparing the data for this

series of experiments with the data obtained for the non-3D interval pitch tests carried out |

in Chapter 5 using the Wilcoxon Signed Ranks non-parametric test.
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The hypotheses are:

Hp: The add1t1on of spatial distribution has had no significant impact on the

whole group’s perceptlon of pitch intervals.

Hl The addition of spatial distribution has significantly increased the

accuracy of the whole group’s perception of pitch intervals.

ErrDiff1 ErrDiff3 ErrDiff4 - ErrDiff5 ErrDifi6 ErrDiff? -

ERRDIFF1 ERRDIFF3 ERRDIFF4 ERRDIFF5 ERRDIFF6 ERRDIFF7

Z -3.61 -1.55 -3.000 3711 . -2.33 -2.469
Asymp. Sig. 000 .06 002 1000 09 007
(1-talled) : '

Figure 8.14b — Table of test statistics for each perceivéd note, non-3D v. 3D.

From this data the null hypothesis can be rejected at the 1% level for all differences
except the interval of 3 for which the null hypothesis cannot be rejected. The addition of
B spﬁtial distribution here has significantly affeéted the entire group’s perception of pitch'
intervals. The fact that no significant difference has been observed for the interval of 3

may be due to the fact that this interval is between the extremes. This suggests that the

addition of spatial distribution has effected the perceptlon of intervals that are nearest to
the extremes. The intervall that falls between the extremes and shows the least effect of
the addition of 3D placement is considered to be in the area of highest ambiguity. The
results oBtained from the experiment documented in Section 5.3 showed that listeners
could successfully identify pitch and intervals, the results obtained in tlﬁs set of -
-experiments have shown that the addition of spatial location.has significantly improved .
the group’s perception of pitch and intervals. This might suggest that the addition of |
spatial location in sorting algorithm auralisations might aid understanding of the- -

operation and execution of algonthm, pitches and intervals form the basic building blocks

for musical algonthm auralisation within the context of th1s thesis.
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8.4. Shape perception experiments
8.4.1. Experiment construction

This experiment was designed in order to help'understand how listeners perceive the
shape of short sequences of spatially distributed musical notes. This set of experiments
are the same as shépe tésts_ documented earlier i.n Chapter 5 (Section 5.4) with the
exception of the addition of spatialisation. Again, thirty subjects were asked to listen to
the sequences of musical notes and determine their'shaperwlithin the bounded diatonic
scale. The tixhbre empléyed was again an acoustic grand piano whose position on the
‘SoundWall’ was mapped directly to the shape of the tune. More specifically, its position
 was dependent upon the pitch for the verticél placement and the sequence order
progreésion for the horizontal placement. The sound .sources employed weré those
obtained by the biﬁaural recording of the ‘SoundWall’. The stimuli were the same as
~ defined in Section 5.4. The workbook is given in full in Appendix D. The subject group
were then asked to draw the shape of a fur:ther six tonal sequences by plac.ing ‘X’ marks
in blank grids; Each of these tests was performed on thirty individual test éubj ects. Figure
8.16 shows how']_)emo 1 (Figure 5.15, Section 5.4) was mapped into 3D audio Spacé.

The stimuli are the same as used in the experiment documented in SAection' 5.4.

Soundwall

Pitch

Q Progression

Listener -

Figure 8.16 — Spatial location and movement of the shape perception Demol exaxﬁple.
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8.4.2. Results and analysis

The evaluation mechanism was the same as described for the 2D stereophonic (non 3D)
“shape perception experiments documented in Chapter 5. The test group was the same as

was used for the previous experiment, Group 3.

Figure 8.17 shows the accuracy c_>f eagh of the thirty test subjécts for all six of the shape -
perception questions; The graph has been ordered and colour coded in terms of musical
ability. It can be seen that there is a general trend that might suggest that ‘musical’ test
subjects tend to perform slightly better than ‘non-musical® test subjects when perceiving

the contour of the tonal sequences.

Figure 8.17 shows that of the ‘non-musical’ test subjects w1th a musical ability rating of
two, five of the’ listeners performed above 80% accuracy level when perceiving the
shapes of the tonal sequences, The remainder still perform well but generally not as
_accurately as the ‘musical® test subjects. These ‘musical’ listeners perform with no less
than 70% accuracy. Since the data, in this case have been combined to give an average
SCOTe Over all six shapes, it is important to ascertain whether certain shapes are perceived
more accurately than others and whether the ‘musical’ group performed differently to the ‘

‘non-musical’ group for these different information types.
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Figure 8.17 — Spatially distributed shape perception accuracy plot — entire test group.

Figure 8.18 shows how the grbup of test subjects as a whole perform on each of the six

shape perception questions.

% Subjects donectly answered _

100
90
80
70
60
50
40

30 |
20 .
10 |-

Shape Question Plot - Total

3 4
Shape Question Number . .

Figure 8.18 — Shape perception accuracy plot by question ~ entire test group.
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Figure 8.18 shows that there is little difference between the perception of the different
shapes. The only noticeable difference is the very slight increase in accuracy for the
subjects’ perception of shapes 3, 4 and 6. The only observable difference in these shapes

is that each possesses very prominént and obvious features (Section 5.4).

The best perceived shapes were those that possess long and obvious ascents or descents,
or repeated patterns. The shapes that did not translate quite so well each had more

“complex and less obvious and non-repetitive features. This supports findings by Alty [3]

who reported that as shape complexity increases and the mmber of chianges in direction |

of pitch increases then the understanding and pcrcéption accuracy of listeners decreases.

Figure 8.19 shows how ‘musical’ listeners compared to. ‘non-musical’ listeners in terms

of accuracy of perception for each of the six shapes.

Shape Question Plot ~ NON-Musical v Musical

]
j
i
\
i
i
i
|
!

100
Q0 .
80 |
70|
60
50 .

" 40
30 |
20
10 |

Non-Musical
m Musical

% Subjects correctly answered

: Shapé Question Number

Figure 8.19 — Shape perception accuracy by shape — non-musical v musical listeners.

The same feature is observed for the musically untrained group of listeners as was

observed for the group as a whole. Certain obvious or repetitive features translate better

than more complex or non-repetitive features,
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Figure 8.20b shows the results of the Mann-Whitney (Wilcoxon independent samples)
ﬁon-parametric test applied to the scores obtained for the perceived shapes compared to
the true shapes for the ‘musical’ group compared to the ‘non-musical’ group. The

hypotheses are:

Hp: There is no difference between the ‘non-musical’ and ‘musical’

test groups when perceiving spatially distributed musical shapeé. =

H,: The ‘musical’ listeners perfbrm with differing accuracy than the ‘non-

musical’ listeners when perceiving spatially distributed musical shapes.

[ 1) L ) & L) ()4 (] ) Q630

Mann-Whitney Ul 46.500] 24,0000 87.000] 46.50 | 55.500] 47.500]
Wilcoxon W] 151.500] 129.000] 192.000] 151.50 | 160.500] 152,500
-2.8490 - 3,718 -1.086 -3.07| 24101 -2.78
Asymp. Sig. (1-tailed .002 .000, 14 .00 .008§| .00

Figure 8.20b — Table of test statistics for each perceived shape, ‘non-musical’ v.-

‘musical’.

The null.hypotheéis can be rejected for all shapes except shape 3 suggesting that there is

generally a significant difference between ‘musical’ and ‘non-musical’ listeners when
perceiving spatially distributed musical shapes. The null hypothesis can be rejected at the
0.1% level of significance for shapes 2 and 4, It can also be rejected for shapes 1, 5 and 6
at the 1% level of confidence. The overall accuracy for all test listeners is observably
high. It is interesting to note that overall, shape 3 is the easiest shape to understand, so
" both groups do particularly well in i‘ecognising this shape, hence the lack of significance
| ‘in the difference between them. This suggests' that as the complexity of thé'lshapes
increases, the effects of musical training become .significantly beneficial. waever, it was
shown in Chapter 5 that if the musical timing is removed then no difference is observed.
In the algorithm auralisations employed in this thesis the representation of lists is
perforrned without any musical timing, where the effect of musical training has been of

- no beneﬁt.
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~ The data given in the table in Figure 8.215 show the overall impact of the spatial B
_distribution by comparing the data for this series of experiments with the data obtained
for the non-3D shape tests carried out in Chapter 5 using the Wilcoxon Signed Ranks

non-parametric test.
The hypotheses are:

| Hp: The addition of spatial distribution has had no significant impact on the

whole group’s perception of the shapes of short tonal sequerces.

H,;: The addition of SPaﬁaI distribution has significantly increased the
accuracy of the whole group’s percept'io'n' of shapes of short tonal

sequences,

Q13D - Q23D - Q33D - Q53D - Q63D -

Q12D Q22D Q32D Q52D Q62D

Z -1.81 -1.90 -2.748 -1.007] -2.24 -2.160

Asymp. Sig. 035 02| 003 157] o1 016
(1-taited) ‘ .

Figure 8.21b — Table of test statistics for each perceived shape, non-3D v. 3D.

From this data the null hypothesié can bé rejected at the 3.5% level for all shapes except
shape 4 for which the null hypothesis cannot be rejected. This suggests that the addition
of spatial distribution has significantly effected the entire group’s perception of short
tonal seqﬁences. ‘Although the data suggests. a difference in accuracy for shape 4,
increased‘sample size may have resulted in the possibility of rejecting the null hypothesis.
The results obtained from the experiment documented in Section 5.4 suggested that -
listeners couId identify pattems and shapes of musically auralised lists of numbers. This
set of experiments has shown that the addition of spatlahsauon significantly i Improves

listeners® perception of the mus1ca1 shapes and patterns.
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8.5, List state perception experiments
8.5.1. Experiment construction

This set of experiments was performed using the same stimuli and same construction as
dbcumented in Section 5.5 with the exception o_f the addition of spatialistaion. Thirty -
subjects were asked to I_isten" to sequences of eight musical notes that corresponded to the
numbers one to eight. Once again the tonal sequences were all within a bounded diatonic
octave scale. The timbf_e employed was an acoustic grand piano whose position on the
‘SoundWall’ was again mapped directly to the ‘shape of the tonal sequence. More ‘
speéiﬁcally, its position was dependent upﬁr_i the pitch for the vertical placement and the
sequence order progression for the horizontal placement. Again the sound sources
emplbyed were those obtained by the binaural recording of the ‘SoundWall’ and no
reverberation or chorus were added. The results indicated that again allr of the test
subjects successfully identified the states of all of the spatially distributed lists with an
accuracy of 100%. Some of the lists were totally random and others were almost ordered
_ With the exception on one element. These results showeq.that all listeners, regardless of
their musical ability and regardless of the addition of 3D spatial location, were fully
_capable of distinguishing between musically .represented sorted and unsorted lists of

numbers.

In order to determine the level of understanding a more detailed investigation was
required. In this set of further experiirlents, .t_est subjects were once again asked to listen
to sequences of eight notes that represented lists of eight numbers. The questionnaire is
given in full in Appendix F. Again these sequences were all-played within the same
diatonic octave staring from ‘Middle C’. The same timbre and positional relationships
were also employed. This time listeners were played lists that were sorted into ascending
-order with the exception of between one and three incorrectly placed elementé. Subjects

were shown and played the examplé diagram below in Figure 8.22 that showed how

“elements 4 and 5 caused a descent in pitch and were therefore incorrectly placed.
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Figure 8.22 — Spatially distributed list state perception example.

The thirty test subjects were then each asked to identify the incorrectly placed elements '
by circling diagfams for five tests. Thc diagram shown below in Figure 8.23 corresponds

to the spatial location of the instrument for the example given above,

SoundWall

Pitch| Scale

Sequence

Progression

Listener

- Figure 8.23 — Spatial location and movement of list state perception example.
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8.5.2. Results and analysis

The test group used for this set of experiments was Group 3. Figures 8.24 and 8.25 show

~ the users’ perception of each of the incorrectly placed elements within the partially sorted
lists. The results show that the error distribution is fairly even across the list of numbers.

| The greatest inaccﬁracy can be seen at the final position. This is due to thc. fact that the

' test lists again incorporated some sequences where both the seventh and eighth elements
were successively incorrectly placed. This successive erroneous information has clearly
been shown to confuse the listeners and would indicate that single out of place elements

are more easily identified than multiple neighbouring out of place elements.

|
i " Mean and standard deviation - Note Order Accuracy
i ~ Plot- Total '
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. Figure 8.24 — List state note order accuracy — entire group.

Actual
Piacement 1 2 3 4 5 6 7 8

Perceived

Placement :

Mean 't - | 1.966667 3.1 3.9 5.928571 | 6.966102 | 7.833333
. 8D 0.319842 | 0.305129 | 0.305129 0.262265 | 0.319811 | 0.530869

Figure 8.25 — Table of list state note order accuracy — entire group.
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Figure 8.26 shows how musically trained and untrained listeners performed in this series | |

of experiments.
Mean and standard deviation - Note Order Accuracy
Plot - Musical v Non-Musical
! ..... ldeal ¢ Non-Musical gy Musical |
9
: 8 _'f ’
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\

Figure 8,26 — List state note order accuracy — musical and untrained listeners.

Musical -

Actual
Placement
Perceived
Placement :

Mean ' 2 3.125 4 - 59375 | 7.0625 8

S.D 0.365148 0.341565 0 0.25 0.25 0

Non-Musical -

Actual
Placement 1

" Perceived
" Placement : . :
Mean 1.928571 | 3.071429 | 3.785714 5.916667 | 6.857143 | 7.642857
s.D 0.267261 | 0.267261 | 0.425815 0.288675 | 0.363137 | 0.744946

Figure 8.27 — Table of list state note order accuracy — musical and untrained listeners.
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The data for the ‘musical’ test subjects given in Figure 8.27 again suggests that the
musically trained group perform with greater accuracy than the results of the group as a

whole.

Figure 8.28b shows the results of the Mann-Whitney (Wilcoxon independent samples)
non-parametric test applied to the scores obtained for the difference between perceived
erroneous placed elements compared to the true erroneous placed elements for ‘non-

musical’ listeners compared to ‘musical’ listeners. The hypotheses are:

Hy: There is no difference between the ‘non-musical’ and ‘musical’ test

groups when perceiving spatially distributed erroneously placed elements.

H;: The ‘musical’ listeners perform with differing accuracy than the ‘non-

musical’ listeners when perceiving spatially distributed erroneously placed

elements.

PLC PLC PLC PLC PLC7 PLC

Mann-Whitney U 106.00 | 106.000] 88.0000 94.000{ 78.000] 88.000
Wilcoxon W] 211.00 | 211.000| 224.000| 230.000] 214.000| 224.000

Z SAB | 48 | 1911 -1.067] -2.027] -1.91

Asymp. Sig. (1-aled) .31 31 02 103 022 .02

Figure 8.28b — Table of test statistics for each perceived placement, ‘non-musical’ v.

‘musical’.

The null hypothesis cannot be rejected for erroneously placed elements in positions 2, 3

and 6 suggesting that there is no significant difference between ‘musical’ and ‘non-

niusi;:a_l’ listeners when perceiving erroneously placed elements in these three positions.
In contrast, the null hypothesis can be rejected at the 5% level of confidence for
~ erroneously placed elenients in positions 4, 7 and 8 suggesting that there is significant

~ difference between ‘musical’ and ‘non-musical’ listeners when perceiving erroneously

placed elements towards the end of the {ist. This difference in significance is again due to-

the increase in complexity as the positions of erroneously placed elements appear further
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away from the start of the list. This suggests that ‘musical’ listeners are more adept at

perceiving locations further into the scale and successive erroneously placed elements.

The data given in the table in Figure 8.29b show the overall impact of the spatial
distribution by comparing the data for this series of experiments with the data obtained
for the non-3D element placement tests carried out in Chapter 5 using the W1lcoxon

Signed Ranks non-parametnc test The hypotheses are:

Hy: The addition of spatial distribution has had no significant impact on fhe

whole group’s perception of element placement.

H;: The addition of spatial distribution has significantly increased the

accuracy of the whole group’s perception of element placement.

3d2-2d 3d3-2d 3d4-2d 3d6-2d 3d7-2d 3d8 - 2d8
Z -1.73 -1.73 -2.23 <173 - -2.142 -1.633
Asymp. Sig. (1-tailed .04 .042 .01 .04 1 051

Figure 8.29b — Table of test statistics for each perceived placement, non-3D v, 3D,

‘From this data the null hypothesis can be rejected at the 5% level for all Iocaﬁons except
the very last location for which the null hypothesis cannot be rejected. This suggests that
the addition of spatial disnibution has - sign:iﬁcantly increased the entire group’s
perception accuracy of element placement but has ndt increased the accuracy when
undersfanding and identifying successive erroneously placed'elements. It was shown in
the experiment documented in Section 5.6 that listeners could successfully identify out of .
place elements in musically represented lists of numbers. It has been shown in this
"experiment that the addition of spatialisation has nnproved hsteners identification of the

out of place elements.
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8.6. List manipulation experiments
8.6.1. Experiment constr_uctioﬁ

This experiment uses the same construction and stimuli as the experiment documented in
Section 5.7 with exception of the addition of spatialisation. In the previous experiment,
users’ perception of the state of lists of numbers was tested by measuring how éccurately
the users identified incorrectly placed individual elements. The next step towards testing
algorithm execution and state is to introduce some manipulation of the numerical data
lists, The manipulation employed in this series of experiments is the szapping of
incorrectly placed neighbouring elements, the same sorting mechanism as that utilised by
the Bubble Sort algorithm. ‘ - |

In this set of experiments, th.u'ty subjects were asked to hsten to sequences of musmal
notes w1t111n a bounded diatonic octave scale beginning at ‘Middle C’. Each test
comprised two components, a checking phase as with the previous experiment followed
by a sorting phase. The timbre employed for the checking phase was a flute whose
position on the ‘SoundWall’ was again mapped directly to the shape of the tonal
sequence. More specifically, its position was dependent upon the pitch for the vertical
“placement and the sequence order progression for the horizontal placement. The sound
sources empldyed were those obtained by the binaural recording of the ‘SoundWall’ with
no reverberation or chorus added. The timbre employed for the sorting phase was an
acoustic grand piano whose position on the ‘SoundWall’ was mapped directly to the
shépe of the tonal sequence. Also present in the sorting phase was a trumpet to indicate
the swapping action of the incorrectly placed elements. The pbsition of this ﬁ‘umpet on
the ‘SoundWall” was dependent upon the position within the list for the horizontal and’
the pitch of the currently mapped element for the vertical with no chorus or revefbefation '
added. Subjects were told that each of the eight notes within the bounded scale were
mapped to the numbers one to eight. Upon listening to each test, the subjects first would
hear the flute check through the list. This would be followed by the progression of the
piano through the list where a swap would be denoted by a trumpet triad. All test subjecté '
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were shown and played the example shown below in Figure 8.30 that represeﬁted the
swapping of two elements after a descent in pitch indicated that element 4 should be

placed before element 3.

CHECKING SORTING .

Mﬁﬁﬁ@@%@é

1234456768

\Y)

'Swap’

Unsonted fist - descent in pitch 7

Figure 8.30 — Spatié.lly distributed list manipulation perception example.

The workbook is given in full in Appendix G. Following the test example, listeners were
played five further instances of checking and swapping where they were asked to 1dent1fy

which elements had been swapped

In cbmﬁarison to the previous experiment, where the only cues that denoted erroneous
‘pIacement were a déscent in pitch and a descent in the placement of the instrument, this
experiment provided four cues. The first and second cues were the descent in pitch and
instrument location duﬁng the checking phase, the third and fourth cues incorporated a |
descent in pitch and instrument location in the sorting phase directly followed by the
trumpet triad denoting the occurrence of a swapping of elements. Test subjects were
asked to 'identify the e.l‘téments that were swépped by circling an element pair within a list.
The diagrams given below fepresent the . spatial locations of the instrumeﬁts

corresponding to the checking and sorting phases of the example shown above. |
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SoundWall

Pitch

Flute
Checking
- Sequence

O Progression
Listener
Figure 8.31 — Spatial location and movement of list checking example.
~ The diagram given above in Figure 8.31 shows the context scale as the solid circles

placed upon the ‘SoundWall’ and the flute as the square symbols creatmg the shape of
the sequence on the projected ‘SoundWall’.

SoundWaIl

Trumpet
Swappmg

Pitch 5%9 ’
~ Piano
O Progression

Sorting
Listener

Sequence

Figure 8.32 — Spatial location and movement of list element swapping example,
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The diagram given above in Figure 8.32 shows the more 'complex representation of the
. sorting/swapping phase. Again the solid circles represent the context scale. This time the
square symbols represent the progresston of the piano through the hst in the sorting
phase. The diamond symbols represent the swappmg action mapped to the trumpet

It can be seen that at the third element there is a double diamond whereas at the fourth

element there is a single diamond. This is due to the ‘hi-lo-hi’ sequence of the trumpet .

triad where the element with the higher value is played twice during the triad.

Another noticeable feature of the diagram is that the elements of values 3 and 4 both
appear at the fourth position. This is also seen as the element of value 4 appearing at both
the third and fourth locations. This replication is due to the sorting nature of the
algorithm. The piano plays the list up to and including the fourth element where a descent
in pitch is heard denoting an out of place element at the fourth position. The third and
fourth elements are then swapped and heard by the ‘hi-lo-hi’ trumpet triad. The piano
then continues its sorting progression through the list continuing frorh the fourth location

containing its newly swapped element. Hence the representation plays the contents of -

location four twice (representing the old and new.contents before and after swapping).
- Within the tests the swaps occurred between positions 1 and 7 with the omission of

position 4 as no swap occurred in the alg'otithm‘derived examples,

8.6.2. Results and analysis

The test gtoup used for this experiment were Group 3. Figure 8.33 and 8.34 show the

users’ perception of each of the swapped element pairs within the partially sorted lists.

The results show that the error distribution is fairly even across the list of numbers. As -

with the preuious experiment, multiple erroneous elements were placed (and in this case
swapped) in the final pomon of the list. In this case, however, there is no noticeable

decrease in the users accuracy when 1dent1fy1ng the swappmg of these latter elements.

This may, in part, be due to the addition of a second and more distinct cue that
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highlighted the swapping of the incorrectly placed elements and hence yielded a second

cue as to the positional location within the scale.

Mean and standard deviation - Swap Iden_tifica'tion
' Accuracy Plot - Total

Perceived Swap Placement

Actual
Swap
Element
Perceived
Swap . ; -
Mean | 1.033333 2.1 2.859649 52 . | 5.916667 | 6.818182
sS.D 0.182574 | 0.305129 | 0.479531 0.406838 | 0.278718 | 0.390154

Figure 8.34 — Table of swapping identification accuiacy — entire group.

Figure 8.35 shows how musically trained and untrained listeners performed in this series

of experiments.
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Mean and standard deviation - Swap Identification
Accuracy Plot - Non-Musical v Musical
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‘Musical’
Actual

Swap

Element
Perceived |
Swap ‘ . B

Mean 1 2.125 2.75 5.1875 | 5.96875 6.75
s.D 0 [0.341565| 0.508001 0.403113 | 0.176777 | 0.440059

‘Non- )
Musical’ . |
Actual _ :
Swap '
Element
Perceived

"Swap ’ . . . .
Mean 1.071429 | 2.071429 3 5.214286 | 5.867143 | . 6.9375 |
S.D 0.267261 | 0.267261 | 0.408248 0.425815 | 0.356348 0.25

BT AN

Figure 8.36 - Table df swapping identification accuracy all listeneré.
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The results for both ‘musical’ and “non-musical” subjects 'given. in Figure 8.35 and 8.36

suggest little difference between the ‘musical’ group and the group as a whole.

Figure 8.37b shows the results of the Mann-Whitney (Wilcoxon independent samples)

non-parametrlc test applied to the scores obtained for the difference between perceived

eIToneous placed and swapped elements compared to the true erroneous placed and

swapped elements for ‘musical’ listeners compared to ‘non-musical’ listeners. The

hypotheses are:

‘Hp: There is no difference between the ‘non-musical’ and ‘musical’ test

‘groups when percelvmg spatially distributed erroneously placed and

swapped elements.

H;: The ‘musical’ listeners perform with differing accuracy than the ‘non-
musical’ listeners when percelvmg spatlally distribution - erronecusly

placed and swapped elements,

SWP SWP SWP3 SWP5 SWP8 SWP
Mann-Whitney U| 104.00 | 106.000f 106.500{ 109.000] 87.0600] 88.000
Wilcoxon W| 240.00 | 211.000; 242,50 | 245,000 223.000 224.000

Z] -1.06 -48 -26 | -.180] -1.609] -1.05 |
Asymp Sig. (1-tailed) 14 .13 .39 429 .054 .14

. Figure 8.37b — Table of test statistics for perceived placement/swap, non—musmal’

‘musical’.

It can be seen from the data given in Figure 8.37b that the null hypothesis cannot be

rejected for erroneously placed and swapped elements at any position in. the list

suggesting that there is no significant difference between ‘musical’ and ‘non-musical’ -

listeners when perceiving spatially distributed erroneously placed and swapped elements.
This data, in contrast to the results gathered for the non-3D version of this test

documented in Chapter 5, shows that the previously observed margin between the two

sub-groups for successive swaps towards the end of the list cannot be seen in this
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- spatially distributed version. This suggests that the ‘“non-musical’ grbup have benefited
more from the addition of 3D placement. More specifically, the ‘non-musical’ group have
shown increased uxi_derstanding of successively swapped elements due to addition of -

spatial distribution. The overall accuracy for all test listeners is still observably high.

'The_data given in the table in Figure 8.38b show the overall impact of the spatial
distribution by comparing the data for this series of experiments with the data obtained
for the non-3D element swapping tests carried out in Chapter 5 using the Wilcoxon

Signed Ranks non-parametric test. The hypotheses are:

Ho: The addition of spatial distribution has had no signiﬁcant impact on the

whole group’s perception of element éwapping/placemenf.

H;: The addition of spatial distribution has significantly increaéed'_ the

accufécy of the whole group’s perception of element swapping/placement.

3d1-2d 3d2-2d 3d3-2d3 3d5-2d 3d6-2d 3d7-2d7
Z -1.41 -.966 200 - -1.73 -1.80 -3.491
Asymp. Sig. (1-talled) - .07 167 .02 .04 .03 .000

Figure 8.38b — Table of test statistics for each perceived swap, non-3D v. 3D.

From this d_atﬁ the null hypothesis can be rejected at the 5% level for the final four
locations. For the first two locations the null hypothesis cannot be rejected. This suggests
~ that the addition of spatial distribution has significantly. incréased the entire group’s
perception accuracy of element swapping placement 'for the majority of locations in the |
list, particularly in the latter half. In the experiment docuxﬁented in Section 5.7 it was
shown that listeners could successftﬂly identify erroneously placed and swapped elements

within numerical lists when represented musically. It has been show in this experiment

that the addition of spatial location has improved listeners’ identification accuracy.
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8.7. Spatially enhanced multiple algorithm auralisation

Having carried out preliminary work which indicates that spatial distribution can improve
the understanding for both musical and non-musical listeners when listening to elements
of auralised sorting routines, this section describes experiments using the complete

algorithms and spatial distribution.

The algorithms identified previously in this thesis have now been auralised in a similar
manner to those of the 2D stereophonic auralisations but have been extended into 3D
auditory space using the SIMBAA 3D toolbox.

8.7.1. Spatially enhancing the Bubble Sort auralisation '

In order to remain in a constant semantic framework, the musical mappings used in this
auralisation are the same as were used in the experiments documented in Chapter 6 with
the exception of the spatialisation of the data onto a ‘SoundWall’ and the spatial location
of control events behind the listener. The basis of this algorithm is to repeatedly iterate
through the list comparing every adjacent pair of elements and swapping them if they are
not in the correct relation. When an iteration takes place without any pairs;of elements

being swapped then the list is known to be sorted and the algorithm can terminate.

The features identified in Chapter 4 and auralised in the spatially distributed version of

the algorithm auralisation are: .

1. The current state of the list - this auralisation was achieved by ma;ﬁping elerrient
values to pitch (a metaphor). The chosen instrument here was a flute whose
position is projected onto the virtual ‘SoundWall’. The horizontal position of the
flute upon the ‘SoundWall® is mapped diréctly to the position within the list of the
element that is currently being played. The vertical position of the flute is
siinilérly, mapped directly to the numerical value (which is also mapped to pitch)
of the element that is currently béing p_layéd. The sequence is played on the flute

and moves across the wall from left to right.and the vertical position reflects its
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pitch. The contour of the moving flute positions yields the shape of the numerical _
~ list. It was expected that these extra spatial cues would allow the hstener to better

visualise the shape of the tonal sequence.

. Iteration count — this auralisation was achieved by mapping the counter that is
used to control the number of iteratibns to a wooden block. The sound of the
wooden block is repeated as many times as the iteration count indicates. This
mapping is to one of the binaurally recorded control events and is placed behind

the listener.

. Progression of the algorithm through the list - the chosen mapping here is a
simple acoustic grand piano whose position is projected onto the .virtual

‘SoundWall’. The horizontal position of the piano upon the ‘SoundWall’ is

mapped directly to the position within the list of the element that is currently .

being played. The vertical position of the piano is similarly mapped directly to the
numerical value (which is also mapped to pitch) of the element that is currently
‘being played. As the sequence is played,‘ the piano moves across the wall from left
to right. The contour of the moving piano positions yields the .sh‘ape of the

numerical list.

. The swapping of elements - this is heard in paralle]l with the ascending acoustic
grand piano. The structure is a brass ensemble playing a major triad. The first note
is an element to pltch mapping of the higher value in the current pair, the second a
note is an element to pitch mapping of the lower note in the current pair and
finally the third note is a repetition of the first note. As with the two previous
mappings the positidn of the brass ensemble is dependent upon the positions of
the two swapping elements within the list and their individual values (also
mapped.to pitch). The pbsitio'ns of the tﬁad notes are in neighbouring positions
due to the sorting nature of the Bubble Sort algorithm. '
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5. Successful termination - this auralisation is achieved by agaixi using the brass
ensemble, but this time it was used to produce a simple yet suggestive ‘Ta - Da’
sequence. This mapping is in the form of the other binaurally recorded control
event and is placed behind the listener’s head. |

8.7.2. Spatially enhancing the Selection Sort auralisation

. The basis of this algorithm is tb repeatedly iterate through the List searching for the
been filled then the list is known to be sorted and the algorithm can terminate.
The features identified in Chapter 4 and the auralisation of these features are:

1. The current state of the list — same as Bubble Sort

2. Iteration count — same as Bubble Sort

3. Progression of the algorithm through the list — same as Bubble Sort
ensemble playing a major triad. The values (and pitches) and positions within the
list of the two elements being swapped again yield the coordinates of the position

of the brass ensemble upon the ‘SoundWall’. Unlike the Bubble Sort algorithm

'neighbouring. This is due to the difference in sorting natures between the two
algorithms | S

. Successful termination — same as Bubble Sort

smallest element and then placing it in its correct location. When all target elements have

4. The swapping of elements — a'gain‘ the structure employed here is a brass

auralisation however, the positions of notes within the triad are not always-
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8.7.3. Spatially enhancing the Exchange Sort auralisation

The basis of this algorithm is to repeatedly iterate through the list comparing the current
element to all subsequent elements and swapping them to place the smallest element in
the current location. When all target elements have been filled then the list is known to be

sorted and the algorithm can terminate.
The features identified in Chapter 4 and the au.réiisation of these features are:

1. The current state of the list — implemented in exactly the same manner as the

| Bubble Sort and the Selection Sort..

2. Iteration count — implemented in exactly the same manner as the Bubble Sort
and the Selection Sort. - |

3. Progression of the algorithm through the list — implemented in exactly the

same manner as the Bubble Sort and the Selection Sort. -

4. The swapping of elements — implemented in a similar manner to the Bubble Sort
and the Selection Sort, Again the positions of the notes within the triad will not
always be neighbouring and can theoretically be anywhere within the list.

5. Successful termination — implemented in exactly the same manner as the
Bubble Sort and the Selection Sot.

8.7.4. Spatially enhancing the Quick Sort auralisation

The basis of this algorithm is to divide the 1_isf into two sub-lists where the elements of

the first list are all smaller than the elements of the second list, this is decided about a
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pivot that is chosen to be the mid point of the data in the list. Each sub-list is then

recursively sorted until all of the elements have been correctly placed.
The features identified in Chapter 4 and the auralisation of these features are: -

"1. The current state of the list ~ implemented in exactly the same manner as the

Bubble Sort, Selection Sort and Exchange Sort algorithms.

2. Iteration count — implemented in exactly the same manner as the Bubble Sort,

Selection Sort and Exchange sort algorithms.

3. Value of the current pivot —The chosen timbré is the trumpet whose position
_ upbn the *‘SoundWall’ is solely dependent upon the numerical value (pitch) of the
pivot. Pivots will therefore always be heard along the line of a scale as projected
onto the ‘SoundWall’. The duration of this note is held for'twice the period of all
.others to highlight it as a decision point.

-4, Playilig the current ele_ment that is to be sorted based upon the current
chosen pivot — implemented in exactly the same manner as the list elements for
the Bubble Sort, Selection Sort and Exchange Sort algorithms. The position is
dependent upon numerical value (pitch) and current position of the ‘element within
the list.

5. The placement of elements — the chosen timbre here is again the acoustic grand
piano whose position is dependent upon the target location. The location is given
by the next empty slot W1thm the sub-list that is to receive the current element.

Placement is mapped to the position of these current sub-lists.

6. Successful termination — 1mplemented in exactly the same manner as the Bubble

Sort, Selection Sort and Exchange sort algonthms
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8.7.5. Spatially enhancing the Inside-Out Sort auralisation

* The basis of this algorithm is to divide the list into two sub-lists where the elements of
the first list are all smaller than the elements of the second list, this is decided about a -
pivot that is chosen to be the mid point of the data in the list. The left sub-list is then
auralised and sorted with the Bubble Sort algonthm and the right sub-list is aurahsed and
sorted using the Selectlon Sort algorithm,

The auralisation is based upon a combination of the Quick Sort algorithm and the Bubble
and Selection Sort algorittmis."I"he spatial distributions for this algorithm are therefore
given by the spatial distributions described previously.

8.7.6. Spatially enhancing the Qutside-In Sort auralisation

The basis of this algorithm is to divide the list into two sub-lists where the elemeﬁts of
the first list are all smaller than the elements of the second list, this is decided about a
pivot that is chosen to be the mid point of the data in the list. The left sub-list is then
auralised and sorted with the Selection Sort algorithm and the nght sub-list is aurahsed‘
- and sorted using the Bubble Sort algorithm. -

The auralisaﬁon is based upon a combination of the Quick Sort algorithm and the Bubble
" and Selection Sort algorithms. The spatial distributions for this algorithm are therefore
given by the spatial distributions described previously.

8.8. Multiple algorithm auralisation information extraction
-8.8.1. Experiment construction

- In this series of experiments all six of the previously described algorithms were auralised
and played to thirty test subjects. The auralisations were the same as used in the
experiments documented in Chapter 6 with the exception of the addition of spatialisation

of the information. The SIMBAA 3D system was utilised to provide the spatially

301



302

distributed auralisations. The points of interest that were auralised in these

implementations of the various algorithms can be summarised as follows:

The current state of the list..
The iteration count. .
Progression of the algorithm through the list of elements.

The swapping or placement of elements.

B .

Successful termination. -

The subjects were told about the riature of each of the algorithms. The same information
and played examples pertaining to the algorithms were used as described in Chapter 6.
The workbook presented to all test subjects for this series of experiments is given in ﬁﬂl
in Appendix L. The 'questions asked of the test subjects are also the same as documented

in Chapter 6. - -

8.8.2. Results and analyéis

The test group used for this series of experiments was Group 4. This group were also
used in the algorithm auraliéation experirﬁents documented in 'Chapter 6. The e}'cperiment

| was a counter balanced within groups construction to compensate for the learning effeét.
With this series of experiments a further preliminary test was carried out in order to
understand the users’ .abi_lity to draw the shapes of simple tunes. Given that some
musically trained test subjects might fully understand the shape of the tonal sequences it
may also be pbssible that they do not have the ability to draw. All subjects passed this

test.
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N Algorithm Accuracy Comparison Plot - Total

100

% information extraction accuracy

Bubb Exch Sel - Quick  Bcktl-O Bckt O-1
Algorithm Type =~ '

Figure 8.40 — Algorithm information extraction accuracy for each algorithm. |

Figure 8.40 shows how eﬁch of the algorithm auralisations compared. The data represents
the average information extraction for each of thé_algorithms for the entire group of test
listeners. The data again suggests that the algorithms with the previously describ.ed.
anchor points 'ne'ar to the boundaries of the context scale tend to be more easily
understood than the algorithms that employ the Quibk Sort algorithm where the anchor
points are either moving between passes or becoming larger in number. It is necessary.to
split this data into s.ub—groﬁps defined by musical ability to investigate if musical training

has any effect on understanding the information. -

Figure 8.41 shows how the groﬁp of test subjects performed when answering questions
on information extraction from the spatially distributed Bubble Sort auralisation. The data

is displayed along the x-axis in order of musical ability.
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Bubble Sort Algorithm Information Accuracy Plot

100 .

" 9% Accurac

Figure _8;41 — Bubble Sort information ex_traction abcuracy.

The data for the remaining algorithm auralistaions exhibit similar results. The graphs for |
these results are given in Figures M.18 to M.22 in Appendix M. The data suggests that
there is little difference between ‘musical’ and ‘non-musical’ subjects and that the overall

-performance of the test group is generally high,

The data in the table g1ven in Figure 8.47b show the results of the Mann—Whtney non-
parametric test applied to the information extraction scores obtaxned from each of the six
algorithm auralisations for the ‘musical’ listeners compared to ‘non-musical’ listeners.

The hypotheses are:

Hy: There is no significant difference between ‘musical’ and ‘non-musical’
listeners when extracting information from the specified spatially

distributed algorithm auralisation.

H;: There is a significant difference between ‘musical’ . and ‘Iion—musical’
' listeners when extracting 1nformat1on from the specified spatlally
T dIStnbuted algonthm auralisation. o
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. . E - Q3 BIO3 BOI:
Mann-Whitney Ui 108.00 | 94.500 108.500f 104.500] 98.000] 104.500
Wilcoxon W 200.00 | 247.500( 199.5001 257.500 189.000 165.500
4 -.06 -74 -.09 -258 -548 -25
Asymp. Sig. (1-tailed) 47 23 46 .349 .292) .39

Figure 8.47b — Table of test statistics, alg info extraction, ‘musical’ v. ‘non-musical’.

From the data given in the above figures, the null hypothesis cannot be rejected for each
algorithm auralisation concluding that there is no signiﬁcént difference between
~ ‘musical’ and ‘mon-musical’ listeners when understanding and extracting information

from the each of the spatially distributed algorithm auralisations. -

- The graphs in Figures M.23 to M.28 given in Appendix M show the perfdrmance of the
group for each of the questions on the spatially distributed Bubble Sort, Exchange Sort,
Selection Sort, Quick Sort, Bucket In-Out Sort and Bucket Out-In Sort auralisations
respectively. Quantitative question are shown as solid bars and qualitative questions are

shown as clear bars.

" The data suggest that there is some difference between qﬁantitative and qualitative
information perception. It also suggests that overall performance of the test group is

generally high for each of the questions.

Figure 8.54b shows the results of the Wilcoxon Signed Ranks non-parametric test applied
to the information extraction scores obtained from each of the six spatially distributed

 algorithm auralisations for quaiitative questions compared to quantitative questions,
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-The hypotheses are:

Ho: There is no significant difference between quantitative and qualitative
information perception. and understanding for the specified spatially

distributed algorithm auralisation.

" H;: There is a significant difference between quantitative and qualitative
' information perception and understandmg for the spec1ﬁed spatially
‘ dlstnbuted algorithm aurahsatmn |

BQN3 - EQNS3 - SQN3 - QQN3 BIOGN3 - BOIQNS -

BQL3 EQL3 sSQL3 QQL3 BIOQL3 BOIQL3 K
Z -2.07 -2.55 -2.399 -2.095 -2.44 -2.200 -
~ Asymp. Sig. .019 .00 ~.008 .018 -.00 01
(1-tailed AI

Figure 8.54b — Table of test statistics for algorithms’ info extraction, qualitative v.

quantxtatlve

From the data glven in the above ﬁgures, the nuil hypothesis can be rejected at the 5%
level of confidence for each algonthm auralisations concluding that there is a significant
‘dxfference between the perception and understanding of qualitative and quantitative
|  information types for the each of the algorithm auralisations. Furthermore the data shows

that quantitative information translates better than qualitative information.

Given that there is no significant difference between ‘musical’ test subjects and ‘non-
musical’ test subjects when understanding musically auralised algorithm execution and

state, does this also hold true for each of the information types?

-The graphs given in Figures M.29 to M.34 in Appendix M show how the two sub-groups
perform ‘on" each question for the spatially distributed Bubble Sort, Exchange Sort,
Selection So_rt,' Quick Sort, Bucket In-Out Sort" and Bucket Out-In Sort algorithms

respectively.
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The data given in the above figures suggests that there is little difference between
“‘musical’ listeners and ‘non-musical’ listeners when understanding either quantitative

information types or qualitative information types.

"~ The d_ata in the table given in Figure 8.61b show the results of the Mann-Whitney non-

parametric test applied to the information extraction scores obtained from each of the six

spatially distributed algorithm auralisations for ‘musical’ listeners compared to ‘non-

- musical’ listeners for qualitative question types. The hypotheses are:

Hy: There is no significant difference between ‘musical’ listeners and ‘non-
musical’ listeners when understanding qualitative information for the

specified spatially distributed algorithm auralisation. -

H;: There is a significant difference between ‘musical’ listeners and ‘non-
- musical’ listeners when understanding qualitative information for the

specified spatially distributed algorithm auralisation. \

BQL3 EQL3 SQL3 QQL BIOQL3 BOIQL3IE
Mann-Whitney Ul 101.0001 103.500{ 96.5001 90.00 | 102.000} 106,000
Wiilcoxon W 254.000| 256.500 249.500( 243.00 200.000_| 197.000

_ -439 ~.331 -.66 -.93 -.067| -.199

Asymp. Sig. (1-tailed) 331 371 .26 A7 A73 241

Figure 8.61b — Table of test statistics - algorithms’ qualitativé info éxtraction, musical v.

non-musical .

From the data given in the above figures, the null hypothesis cannot be rejected for each

algorithm auralisations concluding  that there is no significant difference between
‘musical’ listeners and ‘non-musical’ listeners for the perception and understanding of

qualitative information types for the each of the algorithm auralisations.

Figure 8.62b shows the results of the Mann-Whitney non;pararnetric test applied to the

information extraction scores obtained from each of the six spatially distributed algorithm |
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aur ahsations for ‘musical’ llsteners compared to ‘non-musical” listeners for quantitative

question types The hypothcses are:

Ho: There is no significant difference between ‘musical’ listeners and non- _
musical’ listeners when understanding quantitative mformatlon for the 2

spemﬁed spatlally dlstnbuted algorithm aurahsation .

T H: "There is'a mgmﬁcant difference between ‘musical’ llsteners and ‘non-
musical’ listeners when understanding quantltatlve 1nformat10n for the

specified spatially distributed algorithm auralisation.

BQN3 EQN3 SQN3 QQN BIOQN3 BOIQN3

Mann-Whitney U] 88.000]  99.500 98.000] 100.5001 74.000] 102.500|
Wilcoxon W] 189.000 252.500] 189.000] 191.500] 165.000] 255.500
- A =781 -810] -.44 -1.671 =370

Asymp Sig. (1-tai|ed) 2341 . 218 209 32 048 356

Figure 8.62b — Table of test statisucs algorithms quantitative mfo extraction, musical v.

non- musmal

From the data given in the above ﬁgmeé, the null h_ypothesis agaiii cannot be rejécted for
all -but one of the spatially distributed algorithm eiuralisations. Howe{rer, the algorithm
that does show a significant difference between the two groups is only just considered to
- be Sighjﬁcani. This sUggests that in general there is no significant difference between -
‘musical’ listeners and ‘non-miisic_:al’. listeners for the perception and understanding of-
: quani_itativé information types for the each of the algorithm auralisations. Given that no .
- signiﬁcant différence has been shown between ‘musical’ listeners and ‘non-musical’
listeners when . understanding either Quantitative .info‘nnation types or qualitative .
.inforrneition types, it is also inipqrtant to énalyse the variance' .between th.e.iiifonnationl

. types. :

' The data in the table given in Figure 8.63b show the res_ults.of_ t_he'Wilcoxon signed rank

non-parametric test applied to the information extraction scores obtained from each of the
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six spatially distributed algorithm auralisations for ‘non-musical’ listeners for

quantitative question types compared to qualitative question types. The hypotheses are:

Hy: There is no significant difference between qualitative and quantitative
question types for ‘non-musical’ listeners when understanding

information for the specified spatially distributed algorithm auralisation.

H,: There is a signjﬁca‘ntr difference between qualitative and quantitative
question: types for ‘non-musical’ listeners when understanding

information for the specified spatially distributed algorithm auralisation. -

. MBQN3 - MEQNS3 - MSQN3. MQQN3- MBIOQN3 MBOIQNS -
MBQL3 MEQL MSQL3 = MQQL3 MBIOQL3 MBOIGL3

. Z -1.89 -1.81 -2.530 =202 - 242 | -1.615
Asymp. Sig. 029 . 03 .006 022 01 - ,053
(1-tailed : ' ' ' : :

Figure 8.63b — Table of test statistics, algorithms’ ‘non-musical’ info extraction,

qualitative v. quantitative

From the data given in the above figures, the null hypothesis can be rejected at the 5%
level. of confidence for almost all algorithm auralisations concluding that there is
significant difference between quantitative and qualitative question types for ‘non-
musical’ listeners when perceiving and understandihg information for the each of the

spatially distributed algorithm auralisations.

The data in the table given in Figure 8.64b show the results of the Wilcoxon signed rank
non-parametric test applied to the information extraction scores obtained from each of the
six spatiaily distributed algorithm auralisations for ‘musical’ listeners for quantitative

question types compared to qualitative question types.
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_'Iflte hypotheses are:

Ho' H

Hy:

There is no significant difference between qualitative and quantitative

question types for ‘musical’ listeners when understanding information for

the specified spatially distributed algorithm auralisation.

There is a significant difference between qualitative and quantitative

question types for ‘musical’ listeners when understanding information for

the specified spatially distributed algorithm auralisation.

NBQN3 -

NEQN3- NSQN3- NQQN3 NBIOQN3 NBOIQN3 -
NBQL3 NEQL NSQL3  NQQL  NBIOQL3 NBOIQL

Z ~.905 -1.89 -.905 -811 -1.15 -1.461

Asymp. Sig. 183 03 183 209 A2 072)
(1-tailed) '

Figure 8 64b — Table of test statistics, algonthms ‘musical’ info extraction, qualitative v.

quantltatlve

From the data giveh in the above figures the nulI hypothesis cannot be rejected for all but

one of the spatlally distributed algonthtn aurahsatlons suggesting that there is no

significant difference between qualitative and quantitative question types for ‘musical’

test listeners when perceiving and understanding information for the each of the

algorithm avuralisations.

This data suggests that although no significant difference haé been shown between

‘musical’ and ‘non-musical’ listeners when perceiving and understanding qualitative and

quantitative information types, the spread in accuracy between the information types is

 greater for ‘musical’ listeners than for ‘non-musical’ listeners.
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Algorithm Accuracy Comparison Plot 2D v 3D - Total
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Figure 8.65a — Information extraction accuracy for each algorithm (2D v 3D).

| Figui'e 8.65a shows the impact of the addition of .spatialisation‘ for each of the algorithm
auralisations. These data might sﬁggest'ﬂiat the addition of spatialisation has had a.
beneficial effect. Figure 8.65b shows the overall impact of the spatial distribution by
comparing the data for this series of eicperiments with fhe datla obtained for the non-3D
algorithm ﬁuralisation tests carried out in Chapter 5 using the Wilcoxon Sigl;ed Ranks

non-parametric test. The hypotheses are:

"Hy: The addition of spatial distribution has had no signi.ﬁéant i_mpact on. the-
whole group’s identification and understanding of musically auralised

algorithm state and execution.

Hy: The addition of spatial distribution has significantly increased the
accuracy of the whole group’s identification and understanding of

musically auralised algorithm state and execution.-
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B3-B2 E3-E2 S3-S2 Q3-Q BIO3 - BIO2 BOI3 - BOI2]
-3.318] -2.261] -2.79 -2.287 -1.727
Asymp. Sig. (1-talledy ~_.004] .001] .012  .003 011 042

Figure 8.65b — Table of test statistics for each algorithm auralisation, non-3D v, 3D,

From this data the null hypothesis can be rejected at the 5% level for the Bucket Sort
Out-In aﬁralisation and at the 1% level for the remaining algorithm auralisations. This

strongly suggests that the addition of spatial distribution has significantly increased the i
| entire group’s identification and understanding of musically auralised algorithm state and .

execution
- 8.9. Conclusion
For the pitch test experiments, the results have shown that there is a significant difference

between the ‘musical’ and ‘non-musical’ group when perceiving tones that are close to

the boundaries of the context scale supporting the findings in Chapter 5 for the non-3D

pitch tests. The data obtained for the pitch interval test experiments showed that for small = -

intervals (less than 2) and large intervals (greater than 6) there is no s1gmﬁcant difference
between ‘musical’ and ‘non-musical’ listeners, This difference becomes significant as the
interval size moves furthest away from the extremes. The addition of spatial locatlon in
~ this context has narrowed the difference between the ‘musical’ and ‘non-musical’ groups
for large intervals. The addition of spatial distribution has also shown an observable
increase in the perception and accuracy of | absolute pitch and. pifch intervals, Thus
overall, spatial distribution does act 'afs an additional cue and listeners can use it

particularly if they are not musically trained.

For the shape'pell‘ception experiments using shert musical sequences with musical timing
the results showed significant difference between the ‘rnusical" and ‘non-musical’
listenere' for all shapes, supporting the findings reported in Chepter 5 for the non-3D
version of this test. The addition of spatial distribution has also shown an 'obser;rable

“ increase in the perception and accuracy of the shapes of short tonal sequences with no _'
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timing. In other words the performance of both groups has improved significantly as a
result of the addition of spatial distribution, but the improvement does not favour one
group over the other, The only shape which did not show improvement was a very

variable one.

The data obtained for the series of experiments concerned with identifying out of place
glements in an otherwise ascending list of numeric elements showed there is no
significant difference between the two groups of ‘musical’ and ‘non-musical’ listeners fo_r.
elements identified in approximately the f1rsf half of the list. For the remainder of the list,
the difference between the two groups becomes significant due to the increasing
-complexity as the positions of erroneously placed elements move further up the contéxt
scale. This again supports the ﬁndixigs documented in Chapter 5 for the non-3D version
of this test. However, the addition of spatial location has also shown a signiﬁcantA -

observable increase in the perception and accuracy of out of place elements. |

Sm‘ular results were observed for the identification of erroneously placed and swapped
elements in an otherwise ascendmg list of numerical elements. For approximately the
first half of the list no significant difference was observed between the ‘musical’ and
“‘non-musical’ test groups. The significant difference between the two groups is observed
where successive multiple erroneously placed and swapped elements occur in the latter
half of the list. Again the addition of Spat1a1 location has also shown an observable

increase _m the perceptmn and accuracy of the location of swapped elements.

The results. for the expenmentatlon usmg the six different- spatlally distributed algonthms
showed that once again the algonthms with fixed and constant anchor points are more

‘readily understood (Bubble Sort, _Exchange Sort and Selectlon Sort algorithms). The data |
also showed that overall there is no significant difference between ‘musical’ listeners and
‘non—nﬁusical’ listeners when perceiving énd understanding musically represented

information about the state and execution for each of the algorithms.
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However quantitative information types are significantly more easily understodd-and
identified than q;iélitative “information types for both gfoups. Though for both
‘information types there is no signiﬁcéﬁt difference between ‘musical’ and ‘non-musical’
listeners. The results again showed that for the ‘mon-musical’ sub-group aione
quantitative information types were more easily understood than qualitative information
types. In contrast, no significant difference was observed between the two information
types for the ‘musi'cal’.sub-group alone. This again suggested that the spread between
information types for each sub-'group was different but not different enough to be
significant when _coniparmg the two sub-groups. These findings generally support the
findings documented in Chapter 6 for the non-3D version of this seties of experiments.-
Again thé addition 6f spatial distribution has also shown an observable increase in the
perception and accuracy of information about each algorithm’s state and execution. In -
Chapter 6 it was shown how the identification of errors in algorithm auralisations was
difficult. It has not been subject to_ spatialisation in this chapter because the SIMBAA tool
is not aimed- at being used to aid bug location in sorting algorithms. Furthermore, the
accuracy of the identification of bugs. in musically auralised sorting algorithms is not an

area of concern within this thesis.

In.general it has been shown that musical training does have some affect on the-
perception of musicallsequences and 15itch but the effect is not a strong one. However, the
results have shown that both musically'trained and untrained listeners are quite capable of
discerning pitch and understanding shape and musically represented numerical data with
a promising degree of accuracy. The algorithm auralisation expeﬁménts hav¢ shown that
- no significant difference exists between the ‘musical’ and ‘non-musical’ groups with or

without spatial distribution. Throughout each of the experiments the addition of spatial -

location cues has been proven to increase listeners’ perception, identification and -

- understanding. Spatial distribution of the type used here, is therefore really useful and

could enhance aural based presentations.
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Chapter 9
Discussion and conclusions

9.1. Introduction

This final chapter summarises the research described in this thesis and the results
" obtained. It also analyses these results and draws conclusions about the usefulness ef the
auditory approech taken. It then discusses the limitations of the work'lan.d how these
might be overcome. It assesses theé contribution of the thesis to the field of musical
anditory display and suggests areas for future investigation of the use of mu51c and spatial

enhancement in algonthm aurahsatlon
9.2‘.'The results obtained

The listening tests (Chapter 5) and the algorithm auralisation tests (chapters 6 and 8) form
an extension of earlier work carried out by Alty [3], Vickers [181}, Rigas [160], and
Brown and Hershberger [45] etc. The difference is in the evaluation of the listening tests

and algorithm auralisations. All the results were analysed for statistical significance.
9.2.1. The effect of musical training

The listening tests (described in Chaptérs 5 and 8) assessed how humans perceivepitch, ‘

shape, list state and list manipulation.

The resuits .obteined for the pitch tests showed t}lxat' there was a significant difference" :
between the ‘musical’ and ‘non-musical’ group when perceiving tones that appear close
to the boundaries of the context scale. Th15 data further showed that there is no s1gmﬁcant '
-difference between the groups when perceiving tones that fall into the area of greatest
ambiguity in the middle of the context scale. The experiment further showed that for
small intervals (Iese than 2) there was no significant difference between ‘musical’ apd '

‘non-musical’ listeners. This difference‘became significant for interval sizes greater than
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1 and increased in relation to the increase in interval size. These results suggested that
musical training could be beneficial when estimating large pitch intervals or pitches that
are close to the limits of their context scales. For small intervals and the majority of
pitches (which are not close to the boundaries of the context scale) there was no evidence
to support the notion of musical training being beneﬁmal to pitch perception. For the
majority of cases little or no noticeable difference between the two groups was observed
suggesting that musically trained and untrained listeners are both viable groups as target

users for mus1ca1 audltory interfaces.

For the shape perception experiments using short musical sequences with musical timing
“the results showed a .signiﬁcant difference between the ‘musical’ and ‘non-musical’
listeners for all shapes. In contrast, the series of experiments using short tonal sequences
with no musical timing showed tﬁat there was no siglﬁﬁ'Eant difference betweeﬁ the two
groups when perceiving. the shapes. This difference in significance suggests that when
tonal sequences have mﬁsical timing applied to them, making them more ‘musical’, the
‘musical ¢ group of test subjects tend to perform with greater accuracy than the ‘non-
musical® group. When this musical timing was removed, as was employed for algorithm
state aur_alisation within this thesis, the data showed fhat there was no significant
difference between the two é;roups when perceiving tonal shapes (or musically auralised
algorithm list states), Musically trained listeners were therefore able to use the properﬁes '
 of the timing applied to the musical shapes. ThlS exploitation of timing highlights the

importance of maintaining the musicality of the auralisations, since both musical and -

non-musical listeners are familiar with scales and rhythm. Although these results suggest .

that mueieians can benefit more from these features, they also suggest that the musical
context should be maintained for both musically trainecf and untrained listeners. Making.
the auralisations as mﬁsical as possible can be achieved by paying 'aftention to the |
 properties of such features of music as scales and rhythni and using realistic timbres."
Followmg these musical guldehnes allows us to explmt listeners” experience of musmal =

presentations making the aurahsatlons more effectlve
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The preﬁously described results suggested that musical training has no beneficial effect .
~when understanding algorithm-derived shapés with no musical timing. The results from
experiments investigating the percepﬁon and understanding of algorithm derived list -
shape progression showed that ‘musical’ listeners performed significantly better than
‘non-musical’ listeners. This further suggests that musically trained listeners are more

adept at understanding the pfogressive evolution of a musical shape.

The results obtained for listeners when identifying out of place elements in an otherwi'se
ascending list of numeric elements showed that musical traihing was not significantly
beneficial when identifying out of place elements in approximately the first half of the
list. For the remainder of the list, the difference between the two groups became
significant due to the increasing complexity as the positions of erroneously placed
elements move further up the context scale. These results suggest that musical training is
only beneficial when identifying elements further in the list. |

Similar results were observed for the identification of erroneously placed and swapped
clements in an otherwise ascending list of numerical elements. For the majority of
positions (all except the last) no sigmiﬁcﬁnf -difference was o’bsefved between the
‘musical’ and ‘non-musicai’ test groups. The only significant difference between the‘two
groups was observed where successive multiple erroneously placed and swapped
elements occurred in the final position. This data suggests that multiple successive swaps
increase misunderstanding of swap occurrence and location, In corhparison to the results
6btained in the previously described out of place elements experiments, the same results
suggest that the addition of the extra cue (the sound of the_ elements swapping) aids
localisation and reduces the observable difference between ‘musical’ and ‘non-musical’

listeners.

The results obtained for the multiple algorithm auralisation information extraction tests .
showed that overall there was no significant difference between ‘musical’ listeners and
‘non-musical® listeners wh_eri perceiving and understanding musically represented

information pertaining to state and_execution for each of 'the'algorithms. Within each of
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the information types presented (qualitative and quantitative) it was further shown that
‘there was no significant difference between ‘musical’ and *non-musical’ listeners. For the
‘non-musicaf | sub-group alone, quantitative information types were more easily
 understood than qualitative information types. In contrast, no significant difference was
observed between the two information types for the ‘musical’ sub-group alone. This
suggested that the spread between information fypes for each éub-group was different but
not different .enough to be significant when comparing the two sub-groups. This further -
suggests that musically trained listeners are generally a more reliable group when

identifying either information type.

In general it has been shown that musical training doé_*é have some effect on the
perception of musical sequences and pitch but the effect is not large. However, the results
have shown that both musically trained and untrained listeners are quite capable of
discerning pitch‘ and uhdersfanding shape and musically represented numerical data with
- an acceptable degree of accuracy. It has also been shown that the difference between the
a groups‘ depends upon the complexity of the musical structure and that musical training
has no significant éffect when mderstanding algorithm auralisations. These results are
encouraging as one of the principal motivations behind this research was to demonétrate

that music could be used as a communication medium regardless of musical skill.
9.2.2. Algorithm understanding

In the algorithm information extraction ‘expe_n'men'ts (Chapters 6 and 8) subjects were
~asked to identify qualitative and quantitative features about the state and execution‘ _
prbgress of six different'algdritlllms.r The auralisatibns were designed using the same
criteria as for the listening tests. The algorithm information extraction experiments aimed
to test the general hypothesis: The musical program auralisations generated by SIMBAA

3D can successfully convey information about algorithm state and execution,
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From this general statement three specific hypotheses were identified:

1. Users can successfully understand musically auralised algorithm state and execution.
2, Certain information types are more readily identified and understood than others.

3. Certain algorithms convey information more readily than others.

To reiterate the findings concerned with the effect of musical training on ilnderstanding

auralised algorithm state and execution it was found that no significant difference was
| present. Figure 91 shows that listeners aire, capable of understanding and identifying
algorithm information with between 78% and 93% accuracy. These accuracy scores are
high enough to éuggest that music has been highly successful in conveying algorithm
state and execution. It can also be seen that the listeners more readily understand certain

- algorithm types than they do others.

Algorithm Accuracy Compai'ison Plot - Total

100

% information extraction accuracy

_ Bubb "Exch Sel  Quick Bekt O Bckt O-
P ' o . Algorithm Type

Figure 9.1 — Information extraction accuracy for each algorithm (3D auralisatioil).
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The experiinents showed that quantitative information types were significantly more
easily understood and identified than qualitative information types for both groups of
musically trained and untrained listeners. Though for both information types no
significant difference between ‘musical’ and ‘non-musical’ listeners was observed, the
results showed that for the ‘non-musical’ sub-group alone quantitative information types
were more easily understood than qualitative information types. In contrast, no
significant difference was observed between the two information types for the ‘musical’
sub-group alone. This suggested that the spread between information types for each sub-
group was different but not different enough to be significant when comparing the two
sub-groups. In general these results suggest that musically trained listeners are more
reliable when understanding both information types and that quantitative information
types are more readily understood through musical auralisation than qualitative

information types.

It has been shown that listeners can successfully identify and understand musically

auralised algorithm information with a high degree of accuracy. Before the exp-erimen.tal ‘
auralisations were performed, the six sorﬁng algorithms were chosen based upon their
" relative sorting characteristics and natures. Each was chosen to create as diverse a

" selection of musical sorting algorithm auralisations as possible.

Figure 9.1 shows that certain algorithms are more readily understood than others. The
results showed that the algorithms with fixed and constant anchor points were more .
: 're‘ad_ily‘ﬁnderstood (Bubble Sott, Exchénge Sort and Selection Sort algorithms) than the
other more complex algorithms (Quick Sort, Bucket Sort In-Out and Bucket Sort Out-In
algérithms). The data also showed that overall there is no significant difference between -
‘musical’ listeners and ‘non-musical’ listeners when perceiviﬁg and understanding
mu'sicallyl represented information about the state and execution for each of the

algorithms.
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9.2.3. The usefulness of spatial enhancement

The addition of spatial distribution had shown an observable increase in the perception -
and accuracy of pitch and pitch intervals. This 'suggests that spatial distribution does act

as an additional cue and listeners can use it _effecti{rely. The  addition of spatial

. distribution had also shown an observable increase in the perception and accuracy of the

shapes of short tonal sequences with no timing. In other words the performance of both -
groupé had improyed _signiﬁcanﬂy as a resuit of the addition of spatial distribution, but
the improverneht does not favour one group over the other. The only shape that did not |
show improvement was a very variable one. _The addition of spatial locatidn had also
shown a significant observable increase in the perception and accuracy of out of place
elements and swapped out of place elements. In the final experimentation, the addition of
spatial distribution had also shown an observable increase in the perception and accuracy
of information about .each'algon'thm’s state and execution ranging from a 3% to 8%
accﬁracy increase (Figure 8.65a in Chapter 9). Throughout each of the experiments the
addition of spatial location cues has been proven to increase listeners’ perception,
identification and understanding. Spatial distribution of the type used here, is therefore

really useful and could enhtance aural based presentations.

9.3, Limitations of research

Oﬂe of the limitations in this thesis is lack of investigation ‘into' the use of musical
-auralisation to aid bug location in sorting algorithms. A cursory study was uhdértaken
and documented in Chapter 6 but this was by no means exhaustive as it was beyond the
scope of this thesis. It might also have been useful to investigate whether the addition of -
spatialisation aids bug lbcation. This thesis set out to determine hdv? useful music might
be when used to convey inforrﬁatidn_ about the state and execution of sorting algorithms.
It was also concerned with the effects of musical traihing and which types of information -
translated best. It was not concemed with determining how ﬁéeful music might be for

assisting algorithm designers in bug location.
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The main limitation of this research has been concerned with the Binaural Recording

technique, more specifically, the problem of the geometrical differences that are present

from human to human, There have been several suggestions to circumvent this issue
ranging from measuring HRTFs based upon the statistical norm to measuring unique sets
of HRTF's for each potential listener. In using the HRTFs based upon the geometrical
measurements of the statistical norm the resulting audio experience will only translate

~ effectively to a small percentage of the population. Creating several HRTF sets based

upon geometrically categorised groups resolves this issue a little further but is still far

from producing the perfect solution;

- Manikins exist that are modelled on the statistical norm, If the manikin and the listener

have heads with the same size and‘shape, the same ITD and IID information will be

present; similarly, if the manikin and the listener have pinnae with the same sizes and . -

shapes, the same eIevatlon cues w111 be present. If, however, the geometrical differences

between that of the listener and the manikin are significant, the resultmg perceptual 3D

sound environment becomes augmented and localisation is difficult.

The obvious way to reproduce a more precise individual listening experience is for the

listener to also be the manikin, this way the geometrical smnlantles of the recording head

and the listening head are as close as physically possible. This does, of course, mean that '

- each individual listener must have his/her own unique set of bmaural recordings to

maximise the des1red effect.

In the binaural recordmgs used in this research work the manikin was actually the head of

a real human bemg selected at random and havmg no obvious prominent features that

' differentiated him from the norm. The desired spatially distributed auralisations were not

designed to be as ‘truly’ 3D as possible but more cost-effective and aimed at giving a

: ggneral idea as to the usefulness of the technique. The obvious limitation here is the

geometrical differences between the live manikin and any potential listeners. More

specifically, the limitation is the reduced effect that such differences might have on the

“perception of spatially distributed musically répresented information. .
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Another limitation of the experimentation carried out in this research is concerned with
the perceived distance between the listener and the ‘SoundWall’. The SoundWall was
initially tested at 6 feet but it was found that the sepafation between positions was too
© narrow and this caused ambiguity when locating positions on the ‘SoundWall’. The
‘SoundWall’ was finally constructed at a distance of 3 feet from the listener. This
distance was obtained through a process of trial and error and subjective judgement. The
immediate limitation here is that no optimum distance was calculated. More accurate
spatial location identification might have been achieved if more attention had been paid

' to the relative physical posiﬁoniﬂg of the ‘SoundWall’ to the listener.
9.4. Future work

It has been shown that music (with or without spatial enhancement) can communicate -
information about algorithm execution and state to a wide range of subjects with differing
musical abilities. The SIMBAA 3D system was intended as a tool used to facilitate the
spatially enhanced musical auralisation of several algorithms. Ultimately it might be
desirable to construct an algorithm auralisation and visualisation environment in which-
the user had full control over the application of visualisation and auralisation techniques.
Alty and Rigas [4] described this as an ‘equal opportunities interface’. This is
- specifically an interface that makes no prior judgement about the capabilities of the user
population regarding the use of different input/output modalities. Such an interface would
offer “...a variety of cornmunica'ti.on_ media, Jfrom which the user can select an
appropriate mix to match their capabilities and Iimitcitions” [4]. Because this reseafch
was investigating the role of music as’'a communication medium and because there is-
little prior research into this field, it was beyond the scope of this thesis to in\}estigate the
multi-modal representatwn of algorithm state and execution. Further work could
investigate ways m which music, other non-speech audlo and visual dlsplay techniques

could be combmed

A eomplementary modality has been provided that goes some way to fulﬁlling the aim of

an equal opportunities interface [4]. It is not'lproposed that auralisation necessarily be -
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used exclusively, but that it offers an additional tool. The results of this research could
allow musical frameworks to be developed for general interface tasks and so future
projects could use these frameworks to assist in the construction of a true equal

opportunities interface as envisaged by Alty and Rigas [4].

A feature not investigated in the research described in this thesis was the rate at which the
* musical representations were played. SIMBAA 3D \lvas designed to execute at variable
rates of tempo in order to provide different levels of abstraction. In the experiments, each
musical output was played at the same tempo. Further work should be undertaken to
‘assess the effect of different tempos on the aurahsatlons This is important, as some
algorithm aurahsatlons may take a long time to complete and might become tedious and
tiresome for the listener. It is also possible that different speeds of presentation will create

different levels of abstraction for the lister_ler.

Further work could be carried out as an extendedr study of SIMBAA 3D on an extended
set of subjects. Such a study could involve training the subjects in the use of the
- SIMBAA 3D system alongside basic instruction of algorithms. Assuming relevant
control samples were used, such a study would be able to show what effects training and
fannhanty with ‘the technique have on subjects’ ability to identify and understand
algonthrn state and execution. Similarly, studies could be carried out to determine the
benefit of extenswely trammg the_ listeners on the ‘SoundWall’ before hearing the

* musical algorithm auralisations.

It has been shown that listeners can sucoessfully identify and 'understend musically
 auralised algorithm information with a high degree of accuracy. The results from this
research suggest that certain classes of algorithm are more amenable to auralisation than
 others (Chapters 6 and 8). For example, the algorithms with fixed and constant anchor
points (Bubble Sort, Eichange’ Sort and Selection Sort algorithms)'were more readily
understood than the other more complex algorithms (Quick Sort, Bucket Sort In-Out and
Bucket Sort Out-In algorithms). Before the experimental au:ralisat-ions'were performed,

the six sorting algorithms were chosen based upon the properties of their softing
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characteristics and natures. Each was chosen to create as diverse a selection of musical
sorting algorithm auralisations as possible. Extended studies could be undertaken to test
whether algorithms of a higher complexity or algorithms that produce output that
contains little information benefit from auralisation. Algorithms of a highly complex
nature might benefit from auralisation more than less complex sorting algorithms. This

complex information might be further disambiguated and more easily understood with
 the aid of auralisation techniques. In contrast, less complex algorithms might not benefit
as ‘much from auralisation as little information is available for musically auralised
presentation. Similarly, information from sources other than sorting algorithms might
show how information types and structures of differing complexity benefit from the

auralisation technique.

Although this research did not address the needs of blind and visually impaired users, the
results suggest that a musical auralisation system could be of use to the visually irnpa_iired.
Given that existing sighted users have shown that auralisations can communicate
algorithm information, it is not_mlreasonablé that the system could be adapted and
extended for use by-the visually impaired. Visually impaired usefs have limited spatial
perception. The use of 3D audid in the algorithm auralisations within this thesis has
added a spatial element to a typically temporal medium. Such a technique may be

adapted to provide spatial visualisation!locat_ioh for non-sighted users.

The 3D audio technology used for the spaﬁal enhancement of the experimental musical
aIgbfithm auralisations in this work was simple and inexpensive. A study into the )
acceptability of other 3D audio technologies might yigld some guidelines for the cost
effective spatial enhancement of similar auralisation systems. Of particular interest would
be the emerging field of modelled head related transfer functions (HRTFs). Such
-inodelling technfques are . aimed at pr‘oducing‘ flexible parameter driven 3D audio
syntheses that can be tailored to each user’s specifications to produce the most effective
and realistic spatial audio presentations. The binaural recording techniqué used in the
experimentation described in this thesis has been subject to the limitations explained in

section 9.4. These limitations could be overcome by the use of more precise tailored 3ID
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audio presentations. The use of surround sound systems could also be investigated as a
-means of providing 3D program /. algorithm auralis_atibns in open-field presentations.
- Many spatial audio techniques exist offering differing degrees of realism. The ‘reality’ of

these 3D audio techniques should be tested against the accuracy increases in information
| understanding to identify which approaches are most effective, most ineffective and most

cost-effective.

The spatial enhancement technique used in this research could be applied to other |
existing auditory systems such as Vickers’s CAITLIN [181] and Rigas’s AudioGraph [4,
159, 160]. The addition of spatial location to CAITLIN could further disambiguate the
musical representation of program execution. Elevation cues could be used to help
visualise the top—doWn 'procedural nature of the prqg'rani execution and the éyclic
movement in iterations. Azimuth cues could also be used to visualise the decision making.
process of conditional statements. Similarly, AudioGraph fm'ght benefit from the.addition
of spatial location. Visually impaired users have limited spatial perception; The use of 3D
audio in the algorithm auralisations within this thesis has added a spatial element to a
typically temporal medium. This 3D enhancement could provide visually impaired
listeners with spatial visualisation/location of graphic.al objects within AudioGraph. 3D
spatial audid could also be applied to other works like Blattner’s research using Earcons’
" in turbulent fluid flow [20]. Again this enhancement could provide a spatial. elemen't‘to

the presentations helping listeners to better visualise and understand the information.
9.5. Conclusions and contribution of this thesis

Prior td' this research there was little evidenéé to support -or discount élgorithfn
.. auralisatibn as a useful tool. Previous auralisation systems had been published without
enﬁpirical evidence to prove their efficacy. Brown and Hershberger [45] performed
simple algorithm auralisations for supporting visualisation, VAIty, [3] performed sofne A
~.early research that documented the usefulness of simple autonomous algorithm
auralisations. 'Ionwever, no formal or empirical evaluation of the usefulness of several

different types of algorithm auralisations had been performed. In pérticular, no attempt
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" had been made to employ spatial audio technologies to assist in the musical conveyance
of such information. This research offers the first attempt and empirical evaluation of
spatially enhanced algorithm auralisation, Some recommendations for the incorporation
of spatially enhanced musical sounds have been suggested but without attention to music-

cognitive and music-theoretic principles.

The development of spatially enhanced musical élgorithm auralisations is a measured
contribution to the field. Prior to this research, any form of algorithm auralisation had not
‘been evaluated. Following this work, further and more detailed investigations of how far
the technique can be taken could be undertaken..The major strength of this work over

prior algorithm auralisation is that it is based on empirical results.

~This thesis set out.to address the questions of whether music can be used as a
communication medium to convey information about algorithm state and execution and

~ whether spatial enhancement could be of benefit to listeners in this context, The

experiments have shown that the musical mappings can be comprehended and that, '

 within certain constraints, they can be used to help understand algorithm progression. No
musical experience is necessary, indeed, those with musical training generally performed
no better on the experimental musical algorithm auralisation tasks. The experiments also
- showed that_ the additiori of spatial enhancement was generally significantly beneficial in

all auralisations.

In summary, it has been shown tha'; music can convey information about algorithm state
- and execution. Secondly, it has been suggested that it can play a complementary role in
the process of algorithni visualisation: Finally, it has been .shown that the addition of
spatial location cues can aid understanding and help further disambiguate i_nforfnatioh

about algorithm state and execution.
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B. Musical ability questionnaire.

IMPACT Research Group'- Musical Abilit‘yQuestionnaire. "

Welcome, thank you for agreeing to take part in this test which will last approximately 40
Minutes. We are trying to determine how the AVERAGE person processes musical
information. Some of you may be professional musicians and others may describe

themselves as having no musical ability at all, but we need all of these types in our study

* 50 do not worry if you consider yourself not to be musical.

You can neither pass nor fa11 this test, we are sunply looking for results in order for us to
determine an average viewpoint, This series of tests is designed at understanding how
each of us as individuals perceives music, hence there are no right or wrong answers.

Your partmlpatxon in this test is entlrely voluntary and you may decline to take part at any -

point, but please leave quietly so as not to d13turb the other participants. -

Please ensure that you have a pen or pencil ready for the test.

1.0 - Your Age 10-19/20-29 / 30-39 / 40-49 / 50-59 / 60-69 / 70+
1.1 - Your Sex - Male /Female
1.2 - Education None /O Level/ A Level / Degree / Higher Degree / Higher+
1.3 - Ethnic Origin  (This is only to determine the culture that you may have
experienced) : o
White - African = Afro-Caribbean  Chinese Indian Other

2.0 - How would you classify your interest in l.nusic‘?
| I have no interest in music at all
- I enjoy music as background or to dance to
I am.very intefested in music as a lisfener
1 enjoy performing music to myself or friends
I pllay music to others (not just close friends)

1 am a professional musician
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2.1 - If you play an instrument/s, please indicate below :

Level Instrument
- L Not at all (never)
2. Can play a simple tune
3. . Reasonably competent
4. - Very competent - can play before others -
5. Professional
Which instrument -.........cccvveivennannns Atwhatlevel- 1,2,3,4,5
.......................... . 1,2,3,4,5
_ e e AP 1,2,3,4,5
2.2 - Do you sing ? ' ' '
~ Not at all - no ability

‘Sing to myself, but embarrassed in public
| Will‘sing along with others

Sing in a choir |

Will confidently sing solo in public

Professional singer

T




IMPACT Research Group — Pitch Perbeption Test.

3.0 - Pitch.

In this section we are going to play two notes and ask you to determine the numerical -
. difference between them. To enable you to do this we select notes from the normal scale

- of 8 notes and we want you to think of them as having values from 1 through to 8. The .
bottom note having a numerical value of 1 and the top note of the scale having a
~numerical value of 8. To help you we will play a demonstration, you will hear the scale
first then you will hear the two notes, this will be repeated three times over,

1

T S 8
]
il
|

= T =

12345678 1 3

The answer to this demonstration test is :

U Note1aueniduvenns Note 2 ...... K JUT Difference ...... y T

~ Now we will cén'y out ten of these tests. After you have heard the last of each three
- repetitions, please write your answers down in the spaces provided,

‘3.1- Nofe 1 Note2 covererenns Difference ....ccue....
32- Notel . eerrereese NOtE 2 vovvrieneses Difference voveevesenes
33- Notel.oivererreee NOtE 2 secrernnenes Difference vuvveveenens

3.4~ Notel.cowrerren ‘Note 2 .euveeeneee . Difference ......c0u.s
35- Notel..oovvvannen Note 2 cceveneneene Difference ..... vessene
3.6- Notel .iieersnens Note 2 cecvvennress Difference ............

3.7- Notel........oees Note 2 ..cvueeeens. Difference covovenenaes
38~ Notel.....oorvree NOte 2 ceivnnsnes Difference coveveneneee
© 3.9- Notel verrerserese NOtE 2 ourreneres.. Difference coceeeseenes

. 310-Notel cieevncrnnne Note2 ..cceevnene Difference .....cceveee.

|
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D. Shape pefception workbook.

IMPACT Research Group — Shape Perception Test. .

4.0 - Musical Shape P-erception._

You will now hear 6 short musical sequences, in this test unlike the previous one the
scale will be played only once at the beginning of each test, then each sequence will be
repeated 3 times after which you must draw in the boxes the shape of the music by
placing X’s. The boxes are 8 high, the musical sequences are all within this scale of 8
notes (1 being the lowest note and 8 being the highest note). Don’t worry about the
timing. - ' : :

pSeqlencetisdi

Nota:Sequence:

iNofa Saghenca sl
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E. List state percepfion workbook.

IMPACT Research Group — List Shape Perception Test.

5.0 - Examining Lists of Numbers,

Lists are everywhere in our daily lives, they come in many forms from names in an
- address book to postal codes in a mail sorting office. These lists often need to be sorted
into some order, such as sumames into alphabetical order or postal codes into
alphanumeric order. There are many different recipes available for sorting such lists, this
is because there are many different ways in which they can be sorted. Each entry into a .
list is known as an element, such as one persons contact details in an address book. The
concepts introduced in this section of the test involve the use of lists of numbers, these
numbers (elements) have been mapped to music - the higher the number, the higher the -
note. : ‘ :

The following example is an unsorted list of 8 numbers : N 4,2

,8,51,7,3,6
Here is the same list of numbers sorted into descending order: - 8,7,6,5,4,3,2,1
and here is the same list of numbers sorted into ascending order: 1,2,3,4,5,6,7,8

You will now hear 5 different lists, each list will be repeated 3 times in a row. For each of
these lists we want you to identify which are unsorted, sorted into ascending order or
sorted into descending order.

5.1- Unsorted O o Sorted-Ascending. O Sorted - Descending 0 .

5.2- Unsorted O - . Sorted - Ascending 0 Sorted - Descending O
5.3- Unsorted D ' Sorted - Ascending O Sorted - Descending O
5.4- Unsorted O Sorted - Ascending O Sorted - Descending O

5.5- Unsorted O ‘Sorted - Ascending O Sorted - Descending O
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F, Out of pl.ace element perception workbook.

' IMPACT Research Group — Out Of Place Element Perception Test,

Think about how the patterns of the notes help you to determine if a list is sorted or not.
If we require a list that is sorted into ascending order, then we can identify an incorrectly
placed element because it would cause a descent in pitch in the list and would deem it
unsorted. This can be seen in the following example where elements 4 and 5 cause a
descent in pitch and are therefore incorrectly placed.

’, '..

L7 ] ) Y 1
fr g7 T e
L — -
o 1234 567 8

You will now hear another 5 lists of numbefs, each repeated three times in a row. We
want these lists to be sorted into ascending order, see if you can identify which numbers
(elements) are out of place in each list. (R.mg the elements that you think are out of .
place).

'56- ABCDEFGH
57- ABCDEFGH
58- ABCDEFGH
50- ABCDEFGH

BCDEFGH

. 5.10- A
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* G. Element swapping perception wbrkbook_. |

v

IMPACT Research Group —VEI'ement'Swappir'lg Pefception Test.

6.0 - Manilﬁulating Lists of Numbers.

‘So far we have only checked the state of a list by listening to the order of its elements, we
are now going to introduce the concept of element swapping. This is done by simply
swapping two neighbouring ¢lements for each other, this ‘neighbour swapping’ action
forms the basis of one of our sorting recipes known as the Bubble Sort. The following

example shows the swapping of two elements after a descent in pitch indicated that -

element 4 should be placed before element 3. You will first hear the list being sorted, this
will then be followed by a checking of the list. Listen for the musical sequences that
denote the occurrence of a swap during the sorting phase and the occurrence of success
after the checking phase.

SORTING CHECKING

Fal

A L N
o : - — I a7 s 1 T
3 4 gg |

12345678

| ‘Swap’ . |
Unsorted Iist « descent in pitch Sorted fist - full ascent

You can now see that not only have we mapped music to the elements in the lists, but

also to the action of swapping. You will now hear another five lists, each will be repeated

three times in a row. See if you can identify which elements are being swapped. (Ring the
neighbouring element pairs that are swapped)

61- ABCDEFGH

'62- ABCDEFGH

63- ABCDEFGH

64- ABCDEFGH
ABCDEFGH

6.5 -
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H. Bubble Sort algorithm auralisation workbook.

IMPACT Research Group — Bubble Sort Algorithm Auralisation Test.

s 0 - Recipes for Sortmg

So far we have seen that we can exarnine and mampulate lists of numbers whmh are
represented by musical notes. In the previous section we saw that by passing through the

list we could swap incorrectly placed neighbouring elements. If we repeat this action of

passing through the list several times then the list would eventually become sorted.

You will now hear this repetition of sorting to achieve a fully sorted list, As before, we
will examine and manipulate our list. As well as these two techniques, listen for the
addition of a wooden block that counts how many times the recipe is passing through the

list to sort it. The entire recipe, which is shown below, will be played three times in a

Tow.

Step 1 - Examine the list. : -1 2346758 10 9
(Identify out of place elements) : AN AA

Step 2 - Pass through the list mampulatmg as we go,
On this step we swap the 7 for the 5, and the 10 for the 9.

Step 3 - Exanunethenewhst 12346578910
(Identify out of place elements) . A A

Step 4 - Pass through the list manipulating as we go.
On this step we swap the 6 for the 5.

Step 5 - . Examine the new list 12345678910
(Identify out of place elements) : None

Step 6 - Succeesfully terminate and indicate that the list is sorted.

This above recipe is the recipe for the Bubble Sort that you Jttst heard. You will now hear -
this recipe being used on another list, see how many of the following questions you can

answer. As before the entire recipe from start to finish will be repeated three times in a
TOW.

71 Howmanynumbers (elements) aretheremthehst.............,......,....; .......
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7.8 How do you know when the list is sorted?...c.ccuviiiiiiieiiiicriarareerricrianennnn
7.9 How many times does the recipe pass through the list?........coceiiiinininnincnnn.,

7.10 What order is the list sorted into?............

You will now hear the same Bubble Sort recipe used on yet another list, but this time we
have included some errors in the sorting procedure that we would like you to find, Again
the entire recipe from start to finish will be repeated three times in a row. ' '

Comments on errors:

*rkE*k%*Y ou have now reached the end of the test, thank you for your time, ****#***
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I. Algorithm generated shape perception workbook.

IMPACT Research Group — Algorithrn Generated Shape Perception Test.

You are about to hear a series of short musical sequences. Each sequence will contain
between 6 to 10 notes, these notes that you hear will all be within the same octave
starting from ‘Middle C’. For each test you will first hear this octave scale followed by
three repetitions of the musical sequence. Musical scores showmg an example comprising
of 8 notes are shown below.

= The octave scale starting with middle C. )

1st repetition of musical sequence,

1 2nd repetition of musical seqence.

3rd repetition of musical sequence.

6§ 857 1234
" On the following sheets each question has three entry fields in whlch you should dplace

your answers. These fields shown in the example below as 1% Rep, 2™ Rep and 3" Rep
correspond to the three sequence repetitions you will hear within each question. After the
first repetition you should describe (in the 1% Rep field) the shape of the musical
-sequence. After the second repetition you should again describe the shape adding or
changing anything that differs from your original description (this second description
should be entered in the 2" Rep field). After the third repetition you should draw the
shape of the sequence in the grid prowded once you have drawn this please do not -
change your previous descriptions. It is also important that during the lSt and 2" Rep -

~ stages you do not sketch the shape to aid your descriptions.

Some of the features that you should listen for and describe are — jaggedness or
randomness, ascending or descending order, note repetitions, ordered except for one
note, random then ordered, ordered then random or any combination of these features.
You will now hear the example shown above, this corresponds to the answer below 50
listen carefully. (Remember — Scale, 1% rep, 2™ rep and 3" rep).

Answer to Example. (Typical descriptions that would be correct).

1 Rep. — “Sort of random at the start and then smooth at the eﬁd.” :
2“: Rep. — “Jagged at the start then a smooth ascending pattern at the end.”
3" Rep. - A




" You will now hear the tests, listen and enter you answers on the following pages.
The following 5 tests are each comprised of 8 notes.

C2.1-

C EBeESEPAEFPENIAGLLAGLEBCAREERREREICSEPEES

2" REp. it

----------- R T NN RN XY

et NOTe S eqUEnTe w®ih)

S,
(Draw what you hear)

2-3"

....... R N

2 RED. veereiirereee et e,

StvdnusreseRBATREBANRI . 4ressssrsncnns e

o fraica Nota:Sed

22- -
IS 10 - H OO

L N Y Y TR TNy

p 00 T T

-------- IR RS N RN

fuance:==<z1|

24 -

TTREPL et -

2 REPriiritreeiei i
Tt e
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S RHER Y [ Noterseqnencetri]




------- Y Y Y
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2 REP ettt

AAdtetEabAVANAAS R RIE T RARREEARRERTS raaea

3 N0 SeqUenca s yis.

31- 32
T REP. ettt I¥ REP vverrireereiriniiiereeeeeenn,

4B IV ISV AN avesR st neannEROEn ssseaas LR Y N N R T T asvrn

d d
2T RED e | 2" REP. e ienre it
................

ot i
(Draw what you hear)

3.3- - 34-
1F REPieenriieeiienirereenannnnes S I¥REPreeeeirrernirarieee i reeeae,

o rreee b —e e
A T T o 2 Rep..ccrrnrieninnns

3" Rep.

itc,

Nota s equence s, Nota S equence—.
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The following 4 tests are each éompﬁsed of 10 notes.

4.1
TERED et
2""Rep.............................7.

eetboruod b

, tbfaWY'What you hear})

2 REP. i iiiieiieerenrirree e

B AN PR E T VAR S aR RN BN AR AT PSRRI RIIINTY

i lotesSequencemrhiBasiG]

42 -
1* ReEP.cviciiiiiis

------- L N Y R PR RN N WY

Z“dRep.... rrereerernna——————

3rd Rep

44-

L PR R WY

—2""Rep........... ..... eeeees
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The following 5 tests are each comprised of 8 notes.

'5!1"’ ) . ) 502"
I REDP. eriveerieeeir e eneens _ R Y

N
nd :

2RED. e
.............

ot -Sequencain-is

(Draw what you hear)

5.3- o : 54
Rl 2 ) T

“ssss4sasansssasssssusrsansnssnuns sasay
------- IR LR R TN,

P e Y Y N N R RN Y|

Note Sequenca i

55
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6.5-
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The following 5 tests are each comprised of 8 notes.

6.2 - .
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64- . '
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J. Drawing ability workbook.
IMPACT Research Group - Drawing Ability Test,

In this final section we would like you to listen to a well-known tune which is -'played
within our familiar octave scale starting from ‘Middle C’. What we would then like you
to do is to either sing it or hum it to the instructor, once you have done this we would like

you to draw the shape of this tune in the grid provided below.

You will first hear the octave scale, this will then be followed by thrgée repetitions of the
tune. Listen carefully. ' : _ '

7.1-Do you récogxlise this tune ?  Yes / No
7.1- Can you sing or hum this tune ? Yes / No

7.2 - Now draw the shape of the tune,

T, NS SGHeRCe o i)
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K. Sorting characteristics workbook.

IMPACT Research lGroup — Sorting Characteristics Identification Test.

The following section is divided into 5 parts, each of these parts contains 4 or 5 musical

sequences. Each musical sequence is composed of between 6 to 10 notes which are all
within the same octave starting from ‘Middle C’ (shown in the diagram below). At the

start of each of the 5 parts you will hear this octave scale, this will then be followed by

the musical sequences within that part.

' We have selected notes from the normal scale of 8 notes '(sho'wn below) and we want you

to think of them as having values from 1 through to' 8. The bottom note having a

numerical value of 1 and the top note of the scale having a numerical value of 8. To help

you we will play the scale shown below which corresponds to the numbers 1,2,3,4,5,6,7
" and 8.

Mﬁt'ga{;i:i!—‘i—tﬁ*"—:

=y
' 1 2 3 2 5 6 7 8

As previously mentioned, all of the sequences that you will hear will be within the octave
scale shown above, therefore when a sequence contains 10 notes then it must mean that

some notes in our octave scale are repeated. Similarly when a sequence contains 6 notes

then it must mean that some notes in our octave scale have been omitted, Given that each
note represents a number, then the sequences that you will hear represent lists of
numbers.

For each of the five parts we would like you to listen carefully to the sequences and try to
visualise the shapes of the lists from their musical representations. Starting with the first
sequence and proceeding through to the last we would like you to try and explain what
has progressively happened to the shape of the list. (E.g.- Starts random, gradually gets
ordered beginning from the left, ends in ascending order ete.) Write your observations i in
the spaces provided for each part .

You will now hear a set of example sequences, they correspond to the descriptions given
below and are followed by an explanation of what has progressively happened to this

example list. Remember that first you will hear the scale, this will then be followed by '

the five example sequences (each comprising 8§ notes).

Scale.

1 sequence All disordered random notes.

2" sequence — 3 ordered ascending notes followed by jagged randomness
- 3" sequence ~ 4 ordered ascendmg notes followed by jagged randomness.:

bl e
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5. 4" sequence — 6 ordered ascending notes followed by 2 disordered notes,
6. 5" sequence — 8 ordered ascending notes.

 What has progressively happened to the list?

The list began in random order, gradually became more ordered startmg from the
left and ended up in sorted ascending order.
* You will now hear the tests, listen and enter you answers in the following sections.

PART1-5 sequences each containing 8 notes.
Remember that you will first hear the scale and then you will hear the sequences. Wnte
down in the space below what you think has progressively happened to the list.

PART2-5 sequencés each containihg 5 notes.
Again, remember that you will first hear the scale then you will hear the sequences. Write
down in the space what you think has progressively happened to the list.

PART 3 — 4 sequences each containing 10 notes,
Again, remember that you will first hear the scale then you will hear the sequences. Write
down in the space what you think has progressively happened to the list.

PART 4 — 5 sequences each containing 8 nofes.
Again, remember that you will first hear the scale then you will hear the sequences. Write
down in the space what you think has progressively happened to the list.

PART 5-5 sequences each contalmng 8 notes.
Again, remember that you will first hear the scale then you will hear the sequences. Write.
down in the space what you think has progresswely happened to the list.
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L. Multiple algorithm auralisation workbook.

IMPACT Research Group - Mu51cal Ability Quesuonnalre & Multi-Sort Informatxon
. Auralisation Test.

‘So far we have seen that we can examine and manipulate lists of numbers which are

represented by musical notes. In the previous section we saw that by passing through the’

list we could swap incorrectly placed neighbouring elements. If we repeat this action of
passing through the list several times then the list would eventually become sorted, this is
one method of implementing a sorting algorithm. In this section you will listen to several
different sorting algorithms and will be asked questions about what the algorithm is
doing. .

9.1 - Algorithm 1.

" You will now hear this repetition of s-orting to achieve a fully sorted list. As before, we

will examine and manipulate our list. As well as these two techniques, listen for the
addition of a wooden block that counts how many times the recipe is passing through the
list to sort it. The entire recipe, which is shown below, will be played three times in a
row.

Example of Algorithm1. | ®)

Stepl-Examinethelist. " 113246758 8
(Identify out of place elements) - A A A A

Step 2 - Pass through the list manipulating as we go.
On this step we swap the 3 for the 2, and the 7 for the 5.

Step 3 - Examine the new list . ' 1123465788
- (Identify out of place elements) A A

Step 4 - Pass threugh the list manipulating as we go.
On this step we swap the 6 for the 5

|Step 5 - Exammethenewllst _ ' ‘ 112345 6788 E
(Identify out of place elements) None

Step 6 - Successfully terminate and indicate that the list is sorted.

You will now hear this recipe being used on another list, see how many of the following
questions YOU can answet. As before the entire recipe from start to ﬁmsh will be repeated
~ three times inarow.
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9 1. S -How do you know when elements are out of order?..........coovveiveniinivinnninnen.
9.1.6 -How do you know when the rec1pe swaps elements?......... e

9.2 - Algorithm 2,

You will now hear a different algorithm that also sorts a list of numbers but in a different

manner. This recipe searches all elements in the list until it finds the one that belongs in-

the current location, when it finds this element its swaps it into the current location. As
before, we will examine and manipulate our list. As well as these two techniques, listen
. for the addition of a wooden block that counts how many times the recipe is passing
through the list to sort it. The entire recipe, which is shown below, will be played three
times in a row. ‘

Example of Algorithm 2. - (S)

Step 1 - Examine the list. 4312
(Looking for correct element for current location) ~

Step 2 - Pass through the list mé:ﬁpulating as we go.
Identify correct element for current location. -

| On this step we swap the 4 forthe 1, - 4312
. A - A
Step 3 - Examine the new list S 1342
' A

(Lookmg for correct element for currcnt location)

Step 4 - Pass through the list mampulatmg aswe go.
Identify correct element for current location.

On this step we swap the 3 forthe2, 1342

. . ' ) ’ - A A

Step 5 - Examine the new list ' 1243
"(Looking for correct element for current location) ,- A

Step 6 — Pass through the list manipulating as we go.
Identify correct element for current location.

On this step we swap the 4 for the 3, : . 1243
. A A
Step 7 — Examine the new list. ' 1234

| Step 8 - Successfully terminate and indicate that the list is sorted.
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You will now hear this recipe being used on another list, see how many of the following
questions you can answer. As before the entire rec1pe from start to finish will be repeated
~ three times in a row.

9.1.1 -How many numbers (elements) are there in the llst ............. e

9.3 - Algorithm 3,

You will now hear a different algorithm that also sorts a list of numbers but in a different

manner. This algorithm splits the list into two parts by moving a pivot into its correct
position, so that items to the pivot's left are smaller than the pivot, and the items to the
right are bigger. The algorithm is then called recursively on each of the sub-lists until the

- list is eventually fully sorted. As before, we will examine and manipulate our list. As well
as these two techmques listen for the addition of a wooden block that counts how many
times the recipe is passing through the list to sort it. The entire re01pe which is shown
below, will be played three times in a row. :
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Example of Algorithm 3. Q)

Step 1 - Examine the list. ' 7183642537
(Pivot is mid point of list, pivot is 5) ‘ '

Step 2 - Pass through the list manipulating as we go.
Sort list into sub-list around the pivot. [{13423}{78657}]
(LHS takes < pivot, RHS takes >= pivot) A

pivot (p)¥5 '

Step3-Examinethenew1ist" | _ 1 3423786‘57
(Sub-list pivots are 3 for Left list and 7 for Right list)

Step 4 - Pass through the list maniptﬂatixlg as we go. . p ' |
Sort into smaller sub-lists around pivots. [{1 2}{3 4 3}] [{6 5}{7 8 7}]
Left list pivot around 3, Right list pivot around 7 # A

- p=3 p=7

Step 5 - Examine the new list ' 1234365787
(Sub list pivots are now 2, 4, 6 and 8) :

Step 6 — Pass thrdugh the list manipulating.  [{1}{2}] [{3 3} {4}]1 [{5}{6}1[{7 7}{8}]
Sort into smaller sub-lists around pivots # A A A
Sub-list pivots are 2, 4, 6 and 8 p=2 p=4 p=06 p=8

Step 5 - Examine the new list | 1233456778

Step 6 - Successfully terminate and indicate that the list is sorted.

You will now hear this recipe being used on another list, see how many of the following
questions you can answer. As before the entire recipe from start to finish will be repeated
three times in arow.

0.1.9 -What order is the list S0Ited INt07. ... eiiisiiiiie i rereeaantrersersonsrnnns
- 9.1.10 - How does the shape of the list progress? :
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9.4 - Algorithm 4.

You will now hear a different algorithm that also sorts a list of numbers but in a different
manner. This recipe uses Algorithm 3 on the first pass to split the list into two sub lists, it -
then uses Algorithm 1 on the left-hand sub list and Algerithm 2 on the right-hand sub
list. As before, we will examine and manipulate our list. As well as these two techniques, '
listen for the addition of a wooden block that counts how many times the recipe is
passing through the list to sort it. The entire rempe, which is shown below, will be played
three times in a row. ‘ ‘

Example of Algorithm 4, | (BIO)

Step 1 - Examine the list. 84735261
(Pivot is mid point of list, pivot is 5) A
Step 2 - Pass through the list manipulating as we go. : _
“Sort list into sub-list around the pivot. [{4 32 1}{8 7 5 6}]
(LHS takes < pivot, RHS takes >= pivot) ~ '
' ‘ pivot (p)=5
Step 3 - Examine the new list. 4321 8756
Step 4 - Pass through the list mampulatmg as we go. {4321} {8756}
Alg 1 swaps the 4 for the 3, thenthe 2 and then 1. ~ ~ A A AoA
Alg 2 swaps the 8 for the 5.
Step 5 - Examine the new list 3214 5786 -
Step 6 — Pass through the list mampulatmg as we go. {3214} {5786}
Alg 1 swaps the 3 for the 2, then the 1. AN A AoA
Alg 2 swaps the 7 for the 6. '
Step 7 — Examine the new list 2134 5687 .
Step 8 — Pass through the list manipulating as we go. 2134 {5687}
Alg 1 swaps the 2 forthe 1. nA : nA
Alg 2 swaps the 8 for the 7.
Step 9 — Examine the new list : 1234 5678

Step 6 - Successfully terminate and indicate that the list is sorted.

“You will now hear this recipe being used on another list, see how many of the following
questions you can answer. As before the entire recipe from start to finish w111 be repeated
three tlmes in arow.
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9 1. 3 —~What are the sub-list sizes on the first pass?......c.ccveeveirnrenenenes PO Ve
9.1.4 - How many swaps are there in the 2nd pass?........cvervevvevrinevenrineninininen 7
9.1.5 -After 1St pass, what denotes swapping?............. e eerierertbreraria e et s b

9.5- Algorlthm 5.

You will now hear a different algorithm that also sorts a list of numbers but in a different
- manner. This recipe uses Algorithm 3 on the first pass to split the list into two sub lists, it
then uses Algorithm 2 on the left-hand sub list and Algorithm 1 on the right-hand sub
list. As before, we will examine and manipulate our list. As well as these two techniques,
listen for the addition of a wooden block that counts how many times the recipe is

passing through the list to sort it. The entire recipe, which is shown below, will be played :

three times in a row. _
Example of Algorithm 5. ' : (BOI

Step 1 - Examine the list. _ 84736152
(Pivot is mid point of list, pivot is 5) . A
Step 2 - Pass through the list manipulating as we go.
Sort list into sub-list around the pivot. [{4312}{87 6 5}]
(LHS takes < pivot, RHS takes >= pivot) A
s ' R pivot (p)=5

Step 3 - Examine the new list ' 4312 8765

Step 4 -~ Pass through the list mampulatmg as we go. {4312} {876 5}
Alg 2 swaps the 4 forthe 1. = noA A AAA
Alg 1 swaps the 8 for the 7, then 6, then 5. '

Step 5 - Examine the new list.

Step 6 — Pass through the list manipulating as we go. {
Alg 2 swaps the 3 for the 2. :
Alg 1 swaps the 7 for the 6, then the 5.

ek ek
>0 W
NN
>R
B
i
> ~1
>
>w oo
o0
Yoyt

Step 7 — Examine the new list 1243 6578
Step 8 — Pass through the list manipulating as we go. {1243} {6578}
Alg 2 swaps the 4 for the 3. o AR AR
Alg 1 swaps the 6 for the 5.

Step 9 — Examine the new list - 1234 56738

Step 10 - Successfully terminate and indicate that the list is sorted. _ -

368



- 369

You will now hear this recipe being used on another list, see how many of the following
questions you can answer. As before the entire recipe from start to finish will be repeated
three times in a row. .

9.1.1 -How manynumbers (elements) are there in the List?........eeveeeeeivrrersenans
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9.6 - Algorithm 6.

You will now hear a different algorithm that also sorts a list of numbers but in a different
manner. This recipe compares each location in the list with all other following elements,
if out of place it swaps them until the correct element is placed at the current location. As
before, we will examine and manipulate our list. As well as these two techmques, listen
for the addition of a wooden block that counts how many times the recipe is passing
through the list to sort it. The entire I‘CClpe which is shown below, will be played three
times in a row. _ .

'Example of Algorithm 6. ) , N _' (E)

Step 1 - Examine the list. 4213
(Compare current element to all following elements) n

Step 2 - Pass through the list manipulating as we go.
On this step we swap the 4 for the 2,

then we swap the 2 for the 1. 13
A
~we do not swap the current element for the 3 as we already hav the smallest
element in the right place 1423
Step 3 - Examine the new list - 1423
(Compare next current element to all followmg elements) A
Step 4 - Pass through the list manipulating as we go. _
On this step we swap the 4 for the 2, 1423
. A A

- we do not swap the newly placed 2 for the 3 as 2] is in the correct place. .

1 243
Step 5 - Examine the new list =~ 1243
(Compare next current element to all following elements) A
Step 6 — Pass through the list manipulating as we go.
On this step we swap the 4 for the 3, ' - 1243
3 is now correctly placed, so is 4 by default A A
Step 7 — Examine the new list. 1234

Step 8 - Successfully terminate and indicate that the list is sorted.

“You will now hear this recipe being used on another list, see how many of the following
questions you can answer. As before the entire recipe from start to finish will be repeated
three times in a row.

' 9.1.1 -How many numbers (elements) are there in the list?........eviieeeeieeeerernnnennns
9.1.2 -How many swaps are there in the firSt PASST....veveeerieeerrnreeereresnnnererneennes

9 1.4 -How many swaps are there in the third pass?............. et ettt aeares
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9.1.9 -What order is the list SOrted Into?......cceeeeneernirennrre et ieterr s e :
9.1.10 - How does the shape of the list progress?....covciciviieiiiririiininiereniisinnnn
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M. Experimental data.

Exchange Sort Algorithm Information Accuracy Plot

28(30( 3
ect Number

)

L ub

15{19|22|23|24|25)|26|27
. A m

7i11]12

.00000000
M~ © W < o N -

Figure M.1 — Exchange Sort information extraction accuracy.
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Figure M.2 - Selection Sort information extraction accuracy.
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Figure M.3 - Quick Sort information extraction accuracy.
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- Figure M.4 — Bucket In-Out Sort information extraction accuracy.
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Figure M.5 ~ Bucket Out-In Sort ipfbnnation extraction accuracy.
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Figure M.6 — Bubble Sort information extraction accuracy by question type.
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Figure M.7 — Exchange Sort information extraction accuracy by question type.
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Figure M.8 — Selection Sort information extraction accuracy by question type.
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Quick Sort Algorithm Question Plot - Total
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Figure M.9 - Quick Sort information extraction accuracy by question type.'
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~ Figure M.10 — Bucket In-Out Sort information extraction accuracy by question type.
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: Bucket Out-In Sort Algorithm Question Plot - Total
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Figure M.11 — Bucket Out-In Sort information extraction accuracy by question type.
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Figure M.12 — Bubble Sort information accuracy by question type, ‘musical’ v. ‘non-

musical’.
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Figure M.13 — Exchange Sort information accuracy by question type, ‘mﬁsical’ v.

‘non-musical’
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~ Selection Sort information accuracy by question type, ‘musical’ v.

‘non-musical’.
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Figure M.17 — Bucket Out-In Sort information accuracy by question type,
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Selection Sort Algorithm Information Accuracy Plot
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Figure M.19 - Selection Sort information extraction accuracy. o
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.Figure'M.ZO - Quick Sort information extraction accuracy.

381




382

Bucket In-Out Algorithm Information Accuracy Plot
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Figure M.21 — Bucket In-Out Sort information extraction accuracy.
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- Figure M.22 — Bucket Out-In Sort information extraction accuracy.
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Figure M.23 — Bubble Sort information extraction accuracy by question type.
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Figure M.24 — Exchange Sort information extraction accuracy by question type.
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Figure M.25 — Selection Sort information extraction accuracy by question type.
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Figure M.26 — Quick Sort information extraction accuracy by quéstiori type. .
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Figure M.27 — Bucket In-Out Sort information extraction accuracy by question type.
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Figure M.28 — Bucket Out-In Sort information extraction accuracy by question type.
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Figure M.31 — Selection Sort info accuracy by question type, ‘musical’ v. ‘non-

musical’.
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- Figure M.32 — Quick Sort info accuracy by question tjpe, ‘musical’ v. ‘non-musical’, -

387




- 388

Bucket In-Out Algorithm Question Plot - Non-
Musical v Musical
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Figure M.33 — Bucket In-Out Sort info accuracy by question type, ‘musical’ v. ‘non-

musical’.
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Figure M 34 — Bucket Out-In Sort mfc accuracy by question type, ‘musical’ v. ‘non-

musmal’
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