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Abstract. 

This thesis is concerned with the communication of infonnation using auditory 

techniques. In particular, a music-based interface has been used to communicate the 

operation of a number of sorting algorithms to users. This auditory interface has been 

further enhanced by the creation of an auditory scene including a sound wall, which 

enables the auditory interface to utilise music parameters in conjunction with 2D/3D 

spatial distribution to communicate the essential processes in the algorithms. 

The sound wall has been constructed from a grid of measurements using a human head to 

create a spatial distribution. The algorithm designer can therefore communicate events 

using pitch, rhythm and timbre and associate these with particular positions in space. A 

number of experiments have been carried out to investigate the usefulness of music and 

the sound wall in communicating infonnation relevant to the algorithms. Further, user 

understanding of the six algorithms has been tested. In all experiments the effects of 

previous musical experience has been allowed for. 

> The results show that users can utilise musical parameters in understanding algorithms 

and that in all cases improvements have been observed using the sound wall. Different 

user perfonnance was observed with different algorithms and it is concluded that certain 

types of infonnation lend themselves more readily to communication through> auditory 

interfaces than others. 

As a result of the experimental analysis, recommendations are given on how to improve 

the sound wall and user understanding by improved choice of the musical mappings. 
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Chapter 1 

Introduction 

The aim of this document is to provide the reader with a background into spatial and non­

spatial auditory displays. It focuses upon the specific use of non-speech interfaces and 

fmiher concentrates on the use of music and spatial enhancement at the human-computer 

interface. 

Chapter I gives a brief introduction to the topic covered by this thesis. 

Chapter 2 introduces the general topic of the auditory medium. Further to this it raises 

some issues of concern and discusses them in an effort to resolve some of the more 

common problems with using non- speech audio at the humane computer interface. More 

specifically to this thesis it presents the topic of algorithm auralisation. 

Chapter 3 introduces the basics of acoustics and explores the properties associated with 

sound source localisation. It then highlights and evaluates several approaches and 

implementations for spatial audio and 3D audio synthesis. 

Chapter 4 analyses some common sorting algorithms and makes selections for some of 

these algorithms to be explained in sreater detail. The algorithms are then assessed for 

their appropriateness for musical auralisation. 

01apter 5 reports preliminary experimental work carried out in this thesis pertaining to 

basic pitch and shape perception. 

Chapter 6 introduces SIMBAA, a musical auralisation toolbox and early experimentation. 

Chapter 7 introduces SIMBAA 3D a spatially enhanced musical auralisation toolbox and 

its associated design considerations and implementation. 
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Chapter 8 reports on experimental work carried out using SIMBAA 3D. 

Chapter 9 draws conclusions about spatially enhanced algorithm auralisation and makes 

recommendations for future work and further enhancements. 

The most exploited medium for computer - human communication to date is the visual 

medium. Simple still pictures, full motion pictures and Virtual Reality are all examples of 

this medium. However, there are many other media which can be exploited in Computer -

Human communication and one obvious possibility is the auditory channel. Until very 

recently this medium has conveyed only simple single or multi-tone notes, usually 

indicating some form of error on the users part. Recent research, however, has seen the 

emergence of new information presentation formats, many utilising the properties of 

Auditory Displays. Such auditory displays can be utilised either as a complementary 

channel to a visual one, or on their own as an autonomous communication medium. 

A Graphical capability has been available for many years, but inexpensive audio facilities 

are much more recent additions to the personal computer. This is surprising since early. 

computer users often used sound. A common anecdote is that of early programmers who 

tuned an AM radio to pick up the radio interference emitted by the computer. By listening 

to th~ patterns of sounds in the interference they learnt to monitor CPU behaviour and 

even to identify errant program behaviour. 

Although the lack of standards for sound equipment has acted as a deterrent, the 

emergence of the Musical Instrument Digital Interface (MIDI) specification [145] has 

provided a· common language, although it is oriented towards the communication of 

musical data and not that of sound generally. By the time affordable sound generating 

equipment became available to the average computer user, graphical facilities were well 

advanced. So, for largely technological reasons, the human-computer interface has, from 

the start, been almost entirely visual in its construction. This may have helped to foster 

the belief that computer users tend to employ mental imagery in a visual form. 
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With advances in display technology came an inertia that led to an increasing bias 

towards visual interfaces. This is reflected in the natural language of those cultures that 

rely on the written word for communication; which, by using words like 'imagery' to 

describe mental processes, shows an inclination towards visual metaphors for the 

explanation of ideas. The very act of thinking is defined using the visually oriented word 

'imagine'. Given our tendency to represent ideas as images in our minds and the 

historical development of visual display hardware, it is not unreasonable that the· 

. emphasis in software development and human computer interface design has focused 

predominantly on the visual medium. 

Recent suggestions concerning how to exploit the auditory channel have focused upon 

the use of music within multimedia, since there is limited reported work on the subject. 

Music is the most sophisticated of the auditory media, allowing the conveyance of large 

amounts of information in parallel. Although music is a rich medium containing 

numerous structures introduced by musicians over many years of human evolution and 

multimedia systems are fully capable of producing musical sounds relatively easily and 

effortlessly, the use of music in interfaces is currently at a relatively low level. Music 

and, in particular, the auditory channel as a whole, has been neglected in the development 

of user-interfaces possibly because there is very little known about how humans 

understand and process music. 

It is not intuitively obvious how to use musical structures in interface design. However, 

there has been some research in the field of audio in interface design that includes 

Gavers' SonicFinder [92], a system that uses natural sound to indicate the state of the 

natural environment, Earcons [18] from Blattner et al which maps audio onto visual 

representations oftasks, sonically enhanced graphical buttons by Brewster et al [35] and 

Gaver et ai's ARKola simulation [96]. 

3 



4 

There are several valid reasons why the auditory channel and music in particular shoUld 

be further investigated: 

• The auditory channel has been somewhat neglected in the area of user interface 

design. This is despite the fact that auditory interaction is one of the primary 

forms of human interaction. 

• Music has a number of powerful properties such as pitch, rhythm and melody that 

ought to be able to convey rich messages from software components to the user. 

• Music, as well as other forms of auditory output, is of a particular value when the 

user cannot be disturbed visually. 

• The visual channels are becoming very cluttered. For instance, current monitors 

are often very overcrowded yet designers still try to present more information 

visually. 

• When output is directed to users who do not have constant visual contact with the 

VDU (Video Display Unit) screen, an alert or interrupt is required. 

• TIlis over-emphasis on visual communication presents serious interface 

difficulties for visually impaired users. 

In the current information age, more and more people with diverse backgrounds and 

experience use computers as part of their daily work both in their work and home 

environments. Music is also an integral part of most people's daily lives. Research in the 

area of using auditory-musical stimuli in HCI may therefore benefit a large proportion of 

computer users. 
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The use of music as a communication metaphor could therefore assist in a number of 

interface situations including the following: 

• Reducing the complexity of visually crowded user screens by presenting s0!Ile 

information using music. 

• Presenting information of a graphical nature to blind users who usually interact 

with computers using speech. 

• Auralisation l of the internal execution of algorithms, in particular, sorting 

algorithms. This has particular implications in understanding sorting algorithms 

and debugging programs through auditory means. 

Recent research into the use of music to communicate algorithm state and execution and 

program execution and debugging has seen the development of ZEUS by Brown and 

Hershberger [46] and CAITLIN by Vickers and Alty [181]. These systems have shown 

that music can be used effectively to communicate information to users. CAITLIN was 

primarily concerned with using metaphorical mUSical cues to aid novice programmers 

with debugging. ZEUS communicated algorithms using auditory means supplemental to 

visual representations, but no formal or empirical evaluation was carried to determine the 

effectiveness of the mappings or the degree of algorithm state and understanding 

attainable through algorithm auralisation. Auralisation systems such as ZEUS and 

CAITLIN are discussed in more detail in the following chapter. 

One additional parameter in auditory presentation is stereophony. Existing attempts at 

algorithm and program auralisation have confmed themselves to usmg a common 

. stereophonic presentation format. However, more complex presentation formats now 

exist that will allow the exploitation of spatial location of sound sources within a three-

I A IIraiisation, a tenu suggested by Brown and Hershberger [45]. typically refers to the mapping of 
program data to sound and is based on the execution of the program or algorithm. 
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dimensional environment. These might be employed to provide spatial enhancement to 

algorithm and/or program auralisations to further disambiguate the presented information 

through the use of spatial location and movement as extra auditory cues. There are 

currently several methods of enhancing auditory presentations with 3D sound ranging 

from simple stereophonic field extension (which is not really true 3D but more of a 

cOlnmercial exploitation of the 3D logo) through to more complex and thorough 3D 

sound modelling and synthesis systems that employ complex filtering to spatialise 

sounds. Within these extremes of 3D audio technologies there are several realistic and 

cost-effective techniques for producing spatially enhanced audio that could be readily 

applied to algorithm and/or program auralisation. 

The main pUrpose of this thesis is to examine how relatively inexpensive 3-D sound 

techniques can be used to improve disambiguation of musically auralised sorting 

algorithms. This thesis is also concerned with the effect that musical training has on 

understanding such sorting algorithm auralisations. The emphasis on sorting algorithms is 

due their diverse range of events, sorting natures and data. Many other information 

sources exist that could be well suited to auralisation. However, this thesis is not 

concerned with defining which types of information sources are best suited to 

auralisation. It is more concerned with using sorting algorithms as a vehicle for 

preliminary experimentation of communicating information via spatially enhanced music. 

A detailed investigation is proposed in order to determine which types of information 

within sorting algorithms are more amenable to auralisation. 
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Chapter 2 

Investigating the auditory medium 

2.1. A multimedia approach. 

Although most interface design is predominantly visual in nature, this thesis is 

specifically concerned with the use of the audio medium in multimedia interfaces as an 

output medium.· Even though their use has been neglected, audio interfaces have a 

number of advantages over visual interfaces. For example, the user can work on a· 

visually oriented task whilst listening to instructions, thus employing two media with 

minimal confusion. Audio interfaces are also useful when the recipient is moving around 

and the hands are busy. Clearly, visually handicapped people can also benefit from use 

of the audio channel. 

In human-human communication the audio channel has long been established as a 

medium for communicating rich meaning. However, with the huge growth in graphical 

user interface design the auditory channel has been somewhat neglected. This has put 

visually impaired users at a great disadvantage. Such users were originally able to use 

computers via the use of applications such as screen readers. Unfortunately most modern 

interfaces are designed with the assumption that the target users have full visual abilities .. 

Although this thesis is not concerned with providing an auditory presentation for the 

visually impaired, it is an issue that is often considered central to auditory interface 

design. 

In order to encompass a greater variety of potential users, it is necessary to create an 

interface that could be interacted with via the auditory medium alone, the visual medium 

alone, or a combination of both. The user could then be presented with a choice of 

display format that may be employed at the user's discretion. Alty has called this "an 

equal opportunities interface" [4]. In a combined mode, the auditory medium could be . 

used to assist the visual representation of information andreduce the visual 'clutter' often 

encountered by many computer users. For computer users with considerable visual 
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impainnents the auditory channel offers itself as an obvious communications medium 

and some examples of useful explorations are works carried out by Edwards [85], Rigas 

[159,5] and Kennel [116]. These systems use music via the auditory medium to represent 

visual entities to visually impaired users. Since most operating systems use fully 

integrated GUIs (graphical user interfaces), such approaches could offer a bridge to 

conventional systems. 

The types of auditory media available can be conveniently divided into three sub-areas -

speech, sound and music. 

2.2. Speech. 

Text can be conveyed in two ways, either written or spoken (visual or audio). When 

spoken the speaker may convey emotion through the tone of voice used, in addition to the 

raw verbal infonnation. In contrast, written infonnation can convey emotion or emphasis 

through the use of special fonts, italics, emboldenment or capitalisation. A user need not 

be literate to understand oral communication, and spoken infonnation is clearly of 

considerable use to the visually impaired. The Speech medium has traditionally been 

used to assist visually challenged people, for example through the use of screen readers, 

but tlle recent emphasis on GUIs has made this difficult. For the purposes of representing 

infonnation through sound, speech offers very little by way of a solution. 

2.3. Sound. 

2.3.1. Sound and Human-Computer Interaction 

The audio channel remains little used in interface applications although there now exists 

a reasonable amOlUlt of work in the field. In most cases, where the sound medium has 

been utilised, its usage is often trivial, for example, Microsoft's arbitrary association of 

sound files with system events in its operating systems. Most of these individual 

applications of sound do not usually enhance the computer-user interaction experience. 
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Moreover, they often serve as· novelties rather than conveying any real meaning. 

However, there have been some useful applications of sound in Microsoft's systems, such 

as notification of task completion or mail notification. 

Due to the obvious high information carrying capacity of the visual medium many people 

tend not to think of sound as an alternative computer-human communication medium. 

Auditory signals however, can be usedto build complex mental images. As humans we 

naturally associate sounds with real world objects. By simply listening to the engine of an 

aeroplane we can determine the size of the craft and in some cases gain a feel for its 

altitude, speed and direction. This is all possible without the need to see the object. We 

simply construct the images from prior experience. This association might be of use for 

algorithm auralisation, since metaphorical mappings could be learnt by the listeners. 

When the current usage of the sound medium in computer interfaces is compared with the 

sophisticated use of visual display techniques, the use of sound at the human-computer 

interface has been limited. This is surprising since sound is a most important 

communication channel for human beings, and should have much to offer in assisting 

human-computer interaction, in particular it might be useful in understanding complex 

structures and states like those present in algorithm executions. 

Bly's research [22] on the use of sound in interfaces was among the first investigations 

into this area and since her initial work, the body of research has grown slowly. A . 

majority of auditory display work has, until recently, concentrated on supporting existing 

visual interfaces (graphical user interface). However, work on computer-based icons has 

now been extended to the audio medium via the use of auditory icons [92, 93, 2, 94, 95], 

which are essentially symbolic sound effects. 

Non-speech audio is a well-proven communication medium, and is extensively used in 

the film industry to supplement motion pictures. Although it can be effective on its own 

(for example radio productions) it can be highly complementary and supportive for the 

visual medium. It can add value in the following ways: 
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• To represent unseen entities - Sound can enable us to picture things in our minds eye 

that are not visible on a display, it can indicate specific situations and extend the 

visual display beyond what is actually visible. 

• As a feedback mechanism - Sound can be used to acknowledge actions or can be used 

to signify process status. It can be used as a cue or as in Gavers' SonicFinder [92] a 

feedback for actions in a Graphical User Interface. Predictive sound can be used to 

signify impending events, much like ominous music warns of up-and-coming danger 

in a film [202]. 

• To improve perceptions of quality - The impression of quality of a multimedia work 

is influenced more by the quality of the audio rather than the quality of the visual 

media. This has been shown in tests by researchers at MIT's Media Lab [7]. 

• To support visual interfaces - Sound can considerably enhance a visual interface. The 

audio effects can punctuate and emphasize a visual action. The impact of many films 

would be considerably reduced if their soundtracks were removed or even just 

degraded. Sound is also valuable for communicating additional layers of information 

. as users can listen to sounds without having to compromise their attentions from the 

visual information. 

• To grab attention - It is easy to miss visual information. However, a user is less likely 

to miss an audio message due to the intrusive nature of the auditory medium. 

• Cohen [53] offers the following reasons for adopting sound to notify users of events: 

• Audio does not take up screen space. 

• Audio fades into the background but users are alerted when it changes. 

• People can process audio infonnation while simultaneously engaged in an 

unrelated task. 

10 
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• The cocktail party effect [8] (the ability to selectively attend to one conversation 

in the midst of others in a crowded room) allows users to monitor multiple . 

background processes via the audio channel so long as the sounds attributed to . 

each process can be distinguished. 

• Most direct manipulation tasks are visual, leaving the audio channel free. 

Audio clearly has many beneficial properties and it might be useful to investigate the 

types of infonnation it could convey and if any special training would be required in 

order to use it effectively. Brown, Newsome and Gliner! [44] showed that complex 

auditory cues could be used to replace visual cues. The prima-facie case behind their 

research was to try and ascertain if sound could be used to reduce visual workload. With 

the increased complexity of visual user interfaces, screens have become larger and often 

involve multiple VDUs. This permits the conveyance of greater amounts of infonnation. . 

However, in some applications, the infonnation transfer between computer and human is 

near saturation and the user may not be able to effectively process all the infonnation 

being presented. Such difficulties suggest that sound might be a useful addition in the 

presentation of infonnation, either autonomously or supplementary to the visual medium. 

Brown, Newsome and Gliner! [44] undertook a study to fmd out if infonnation that is 

typically presented visually could be communicated effectively using. sound. The 

experiment was primarily concerned with a subject's ability to locate a target character 

string on a computer screen using both auditory and visual cues. The results showed that 

subjects were equally successful in understanding the auditory cues as they were with the 

visual cues. This is encouraging for the field of representing complex infonnation via 

sound since it suggests that the audio channel could be used to convey infonnation 

typically presented visually. They also found that the human brain could extract multiple 

messages from a sound very quickly and then act on the infonnation given. 

Walker and Scott [185] carried out work that involved the experimental testing of 

perceived lights, tones and gaps. They found that humans judged one light as having a 

shorter duration than an identical one when a tone was also played. The durations of the 
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lights in both cases were the same, but the durations of the tones were different. This 

indicates that what we perceive in the visual channel is easily influenced by information 

presented simultaneously in the auditory channel. They stated "auditory dominance 

occurred under the preceding conditions, that is auditory - visual conflicts in perceived 

durations were resolved in favour of the auditory modalityl." This supports the idea of 

using the auditory medium for conveying information and highlights the power of its 

influence on our perception. 

Walker and Scott [185] suggest that the auditory medium should be used for conveying 

temporal information and the visual medium should be used to convey spatial 

information. However, Perrot et al [153] found that the auditory medium could also 

convey spatial information effectively, since it can speed up location and identification of 

objects within the spatial domain. O'Leary and Rhodes [148] found that ambiguity of 

information in one mode can be resolved through information from another mode. This 

supports the findings of Walker and Scot!. This suggests that the auditory channel could 

be used to assist a visual representation. However, this thesis is concerned with 

investigating the use of the auditory channel autonomously. Conversely, Wagenaar et al 

[184] showed that combining modalities does not necessarily have a beneficial effect. 

Experiments carried out by Paivio [149, 150, 151] showed that recall and recognition can 

be improved by presenting information in both visual and verbal form. Paivio's Dual 

Coding Theory [149,150,151] assumes that there are two separate cognitive sub-systems 

for processing both verbal and non-verbal representations. 

The task of choosing appropriate modalities for communicating information is an 

important one. The choices for mappings must also be a careful one as misconception of 

the events or tasks can occur. Familiarity can be exploited. We often have a clue as to the 

meaning of a sound by the context in which it is presented, and from our previous 

experience. This highlights the importance providing a context when conveying complex 

information via the auditory channel. 

I Modality is defined as a prescribed method of procedure. 
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Gaver suggested that sound could be used to provide a 'sonic landscape' [93], which can 

help us to navigate through complex infonnation spaces. He proposed that issues such as 

ambient audio and peripheral awareness would be critical to future of interfaces and 

applications. 

0 
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Figure 2.1 - Scope of Visual medium. 

Figure 2.1 represents the conceptual scope of visual peripheral awareness to objects and 

events. It indicates that there exists an area of focus (area of concentration) and shows 

that, in most cases, the scope of information reaches far outside of this. This is why 

graphical interfaces can become cluttered; the infonnation that is not in focus is often 

heaped into the scope of awareness. The boundaries of the peripheral scope can be seen 

as the edges of a VDU, the scope of awareness is then the area upon which we focus our 

eyes. Anything that occurs peripheral to our focus demands that we move this window of 

attention to the source. This highlights the limitations of the visual medium for presenting 

large amounts of information. The problem has initiated investigations into the use of 

such techniques as the 'fish eye' lens [90] which represents the visual information in a 

dominant magnified area in the centra! focal field, while other peripheral (and contextual) 

information is represented in a less magnified area surrounding the central focal field. 
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o ACTIONS • OBJECTS 

Figure 2.2 - Scope of Auditory medium. 

Figure 2.2 shows the conceptual awareness and peripheral scope in the auditory medium. 

As can be seen the difference is that the peripheral scope is much wider, indicating that 

shifting our attention from one event to another is faster and the awareness of peripheral 

events is greater. We are therefore not limited by the focusing constraints of vision. 

Sound does not depend so much on the direction that the user is facing. An event that 

takes place behind can often not be seen, but it can usually be heard. This supports the 

use of spatial audio in auditory displays since it can be exploited to convey information 

that would otherwise add to the clutter of a visual display .. 

2.3.2. Problems with the auditory medium 

Since the use of sound to convey complex information is the main area of concern to this 

thesis, it is important to highlight some of the possible problems when using audio in 

information display. Krarner [119, 120, 121] has highlighted the low resolution of the 

auditory medium in relation to the high resolution of the visual medium as a problem. He 

noted that it was difficult to convey fine quantitative information through the use of 

audio's main features such as pitch, volume and placement etc. This has important 

implications for the auralisation of sorting algorithms. The limited resolution of the 

auditory medium will limit the depth of information about the auralisations to be 

conveyed. It may not be possible to convey the exact state of algorithms but rather the 
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general state. Combining features such as pitch, volume and placement might permit 

higher resolution. Extending the placement feature into a higher resolution form of 

display by employing 3D audio techniques may also resolve the resolution problem 

further. 

Placement in the central visual field gives an angular resolution of about 2 seconds of arc 

difference. In the auditory field this difference falls to approximately 1 degree which 

again falls further to about 15 degrees resolution to the sides [190]. If pitch were used in 

the auditory domain, then in order for a user to understand absolute data he/she would 

need to have perfect pitch, which is a rare skill in human beings. This does depend upon 

the method of coding used to represent the data. Bregman [31] identifies a number of 

factors that contribute to perceiving, recognising and interpreting auditory stimuli. These 

factors are both perceptual and physical. Similarity and dissimilarity, proximity and good 

continuation are some perceptual factors. However, sound location, frequency, rhythm, 

scales, and keys are also examples of the physical contributing factors and are features 

that should be exploited if sound is to be used to represent complex information as in the 

context of this thesis. 

In practice even most visually displayed data is presented with reference to something 

else, and high accuracy is not usually required. Data is usually constrained within certain 

limits, of which the user is also aware. Information must also have a corresponding range 

and context for it to be of use. So, data does not always have to be absolute to be useful. 

This is encouraging as some complex information that might not be presented well 

audibly due the limited resolution of the auditory medium might be conveyed at a higher 

level of abstraction. For example, if lists of numbers were represented using sound then 

the absolute values might not need to be understood in order to perceive the ordering of 

the list. However, the meaning of the data is usually grasped more quickly when 

presented visually especially if it is complex. This is because we can see the boundaries 

instantly and gauge roughly where the information of interest falls relative to this. It is 

interesting to note that in most visual tasks users do not recall object placement very 

accurately, and that real life experience rarely demands it. 
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Auditory communication is usually communicated serially, and this means that the 

instant appreciation of data that can be attained visually cannot easily be achieved 

audibly. It takes a much longer time for quantitative information to be conveyed via the 

auditory medium and may take several repetitions before the user can fully understand 

this data. The use of auditory space and parallel multi- timbral structures might speed up 

this data exchange, the auditory space being used to provide the range or context for the 

information. This is a prime area of concem in this thesis. Sending the data in a more 

parallel fashion with the use of more than one timbre could also reduce this serial 

limitation. 

Similarly, speech interfaces suffer from the same problems as text displays [160) in that 

they both suffer from slow data transfer due to their inherent serial nature. In order for a 

user to understand a concept, the text must read or heard completely. Graphical displays 

certainly speed up certain interactions, and the comment "a picture is worth a thousand 

words" arose out if this property. This clearly discounts the use of speech to convey very 

complex information, as it would be limited to slow information exchange rates. 

In some cases auditory stimuli can invoke meaning for a listener as effectively as pictures 

can invoke meaning for a viewer. Such meanings are often relative to the 

listener/viewer's personal experiences. Meaning is increased when pictures are 

recognised. The same is also true of sounds, that when heard often enough their meaning 

is increased. This highlights the ability of humans being able to leam mappings. This 

gives some flexibility when designing displays that use the auditory medium. 

Continuous background sounds can be used to represent varying background information 

[33). In this case, the auditory interface is not usually an intrusive medium as claimed by 

Berglund [17), who has suggested that sound at the computer interface is annoying to 

users. When played in the background, non-speech sounds can be listened to, or ignored 

at the listener's discretion. Although this thesis is not concerned with presenting 

background information, it is worth noting that some contextual information could be 

played in the background while more vital information is presented in the foreground. 
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It seems intuitive that the solution to the intrusive problems of audio at the interface is to 

use earphones, but it may be argued that this is unsatisfactory since users may also need 

to communicate aurally with each other. The alternative way to combat this problem is to 

adjust the volume level to just above that of ambient sound. In other words, just enough 

for the user to hear but not too loud as to annoy surrounding users. Another way of 

dealing with this problem is to use sounds which naturally occur in the working 

environment [49]. This thesis is more concerned with how useful the auditory medium 

might be for conveying information, but it is important to indicate such potential 

problems as intrusion. 

2.3.3. Auditory displays 

In information visualisation, mappings are made between information attributes and 

visual representations such as graphs, spectra etc. These kinds of mappings provide a 

framework within which users are able to construct mental images of the states and 

structures of the attributes of the information. Such visualisation works particularly well 

in cases where the information attributes naturally map into a spatial domain, such as 

hierarchical charts or sequenced events. Once the mapping has been made between the 

information and the visual representation, the user leams a framework within which 

he/she is able to visualise future information. This can be looked upon as a form of 

learning. When asked to draw the visual representation of new data they are 

automatically able to do so without necessarily having to revise the mappings. 

In the same way, when data is presented in an auditory format it is usually necessary for 

the subject to first leam the mappings between the auditory cues and the information that 

is being represented. In some cases the mapping is obvious (for example the sound of a 

police siren). For other audio interfaces the mapping has to be learned. Once learned the 

subject will be able to model what further similar sounds represent and these may be 

quite abstract. It is therefore essential that users understand fully the framework within 

which the audio information is to be represented. 
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This can often be an intuitive process when real world information is to be used. 

However, the attributes of information in the computer science and data structure 

domains tend not to be real world objects and hence have few real world auditory 

signatures. Thus, non-intuitive mappings will need to be 'leamt' by the user in order to 

construct the necessary framework within which the information may be understood. 

Frameworks have been developed to aid this process [4]. 

Broadly speaking, auditory displays can be divided into two sub-sections, auditory 

interfaces2 and auditory software visualisation3 systems. 

• Data sonificationlaudification - sonifying data input or data processed by the 

software. This involves mapping properties of data or events to sounds in an 

attempt to represent the data or events in the audio channel. Audification is similar 

but rather than using mappings, data are played back directly, e.g., scaling seismic 

data up until their values lie in the audible frequency range [166]. 

• Algorithm/program auralisation - mapping audio events to events during 

execution of the software itself. This is essentially 'sonifying' program 

progression and state. 

Vickers [182] indicates that the terms "auralisation" and "sonification" are often used 

interchangeably. Vickers [182] states that sonification is concerned with the auditory 

display of generic data, whilst auralisation is more properly about the visualisation of 

programs and algorithms, which may involve the auditory display of data associated with 

or created by with a program, i.e. the data is concerned more usually with the internals of 

the program. 

There has been much research in the field of Auditory Icons by many researchers, 

particularly Gaver [92, 93, 94, 95, 96, 97]. Auditory Icons are real world sounds that are 

used to represent an event or object. Where no real world sound exists a metaphorical 

2 Auditory interface, an interface that represent actions and objects using sound. 
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mapping is made and the listener learns this mapping. Gavers' work was based on 

theories by Vandeerveer [180] and Warren et al. [187]. Gaver has suggested that audio 

interfaces should focus upon tasks that require the user to monitor his/her environment 

[62]. Examples of this approach include monitoring complex systems, supporting 

computer access for the visually impaired [147], reading maps [19], sound-enhanced 

word processors for the blind [85] and debugging parallel programs [110, 87, 88]. 

Mountford et al. [146] stated, "Sound can provide information about many different 

things within the environment." Many environmental monitoring systems have been 

developed, including a system for monitoring background file-sharing tasks entitled 

ShareMon by Cohen [53] and a collaborative working environment monitoring system 

called RAVE [97]. 

Other auditory interface applications include Mynatt's [139] Mercator System, a sound­

enhanced graphical user interface for blind users. Colquhoun [55] developed a system 

that added simple sounds to a visual sonar monitoring system. Brown et al [44] 

performed similar work in that they carried out visual search experiments using auditory 

or visual target cues. Their implementation was performed in accordance with the 

multiple resource theory as described by Wickens et al [195]. Perrot et al [153] also 

found that giving auditory clues can help in locating visual targets on a display. They 

found that "The presence of spatial information from the auditory channel can reduce the 

time required to locate and identify the location of a visual target ..... It is clear from their 

findings that auditory clues can help fix a region in a cluttered visual workspace. This is 

encouraging for the use of spatial audio in algorithm auralisations. 

2.4. Music 

2.4.1. Music as an interface medium 

The following sub-sections detail some of the aspects of music and how they might relate 

to musical auditory display design. There has been relatively little work investigating the 

3 Auditory software visualisation, using sound to represent the execution or structure of software. 
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use of music at the human-computer interface. Initial research carried out by Alty [3] 

suggested there niight be potential in using music to communicate information. He 

concluded that: "Music involves highly sophisticated use of the auditory channel and 

there are some obvious reasons why the use of music should be considered for possible 

use in human-computer interface design .... we now need some good experimentation to 

determine what is possible and practicable". Hotchkiss and Wampler [106] suggested 

that music lends itself well to experiencing data and events subjectively and would 

therefore give us a greater sense of participation than is possible when using more 

objective numerical representations. 

Music provides a powerful medium which ought to be capable of delivering large 

amounts of data in parallel. Many musical styles employ such techniques as polyphony 

and counterpoint. The purpose of these techniques is to convey distinct ideas in parallel 

without confusing the listener. 

Alty [3] has pointed out that: "The information contained in a large scale musical work 

(say a symphony) is very large (a typical audio CD contains many hundreds of 

megabytes). The information is highly organised into complex structures and sub­

structures. The potential therefore exists for using music to successfully transmit complex 

information to a user. " 

Schenker [167] proposed that perceived musical structure is represented internally in the 

form of hierarchies. Given that users hear the musical structures in a hierarchical manner 

it supports the concept of representing other hierarchical entities via music. Many data 

structures and information sources can be viewed as hierarchical and Brewster has 

employed hierarchical Earcons (discussed later in this chapter) to represent hierarchical 

menus. Dibben [73] represented music by abstractions which listeners were able to match 

with the original. This hierarchical structuring is similar to that used by many composers 

for coping with the short term limitations of the human memory [3]. Such techniques 

need to be adopted due to the temporal characteristics of music. 
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Alty [3] claims that: "Music is all-pervasive in life and forms a large part of people's 

everyday lives. It is very memorable and durable. Most people are reasonably familiar 

with the language of music in their own culture. Once learned, tunes are difficult to 

forget. " 

Music is prevalent in the everyday lives of most people. This suggests that benefits would 

be obtained from exploiting its properties. Most people can hum a tune after they have 

heard it once on the radio or television. Minsky [144] stated "We like tunes because they 

have certain structural features ". Memorised tunes can be exceedingly durable [182], 

and listeners often retain simple melodies long after they were first learned and 

committed to long-term memory. Modem dance music is particularly accessible because 

of the high repetition aspects of the melodies and their reliance on repeated cadences. 

However, listeners are more adept at recognising tunes that they experience in their 

everyday lives, and this raises an issue concerning the cultural differences between 

listeners. A subject from a modem western culture would be more comfortable when 

trying to understand a piece of modem western music as opposed to a subject from 

another culture. Differences such as scales and rhythm can often be quite diverse from 

culture to culture. However, some commonalities do exist that transcend many cultures 

such as timbre and pitch. When attempting to create a universal interface using music, 

Hel designers will need to take such differences into account. 

Just as natural sounds play a common part in all of our lives so does music. A car horn 

sounding in the street is an environmental sound that most of us are used to, and the same 

is true of the sound of a musical instrument. More importantly, musical events do not 

have intuitive mappings to real world actions or objects, so it could become a complex 

task to convey a concept musically. It is here that metaphorical mappings are particularly 

useful. 
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Metaphors might be created by utilising the properties of music such as: 

• Timbre, 

• Rhythm, 

• Pitch, 

• Volume, and Stereo placement etc. 

For example, the rising of pitch can be a metaphor for rising numbers. Different timbres 

could signify multiple channels active at the same time. 

Without metaphor serious problems can arise. For example, what does a simple musical 

structure such as a triad (C-E-G) mean? Because there is no context in which this fits then 

it becomes very difficult to understand just exactly what it means. A framework is needed 

into which the mapping can fit. This provides the user with the necessary familiarity and 

allows himlher to place what they hear within a context, thus yielding the underlying 

message within the information. Kaye et al [1I5) suggested involving musicians and 

composers to help resolve some of these associated problems. 

AIty [3) has commented that: "Music involves the simultaneous transmission of a set of 

complex ideas related over time. within an established semantic framework. The job of a 

composer is to use musical resources and techniques to enable a listener to successfully 

disambiguate such information. There is therefore a strong parallel between the design 

requirements of the interface designer and those of a music composer. " 

Music composers often employ techniques such as polyphony and counterpoint to allow 

the simultaneous presentation of multiple melodies and musical ideas. The multiple 

melodies and musical ideas can be seen as different data streams. The same techniques 

might therefore be used when presenting real data via music i.e. it must be conveyed 

within a set semantic framework. 
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Brewster et al [38] combined Earcons (discussed later in this chapter) to deliver parallel 

information, each Earcon being related to an interface event. This showed how 

information can be conveyed simultaneously using complementary components. The 

prime difference between the visual interface and the musical medium is that the GUI is a 

spatial medium. Placement in visual space dictates how information is presented at the 

interface. The visual medium permits the user the peruse information at a lower pace and 

revisit ambiguous representations to further disambiguate the information. The musical 

medium however, is of a temporal nature and the disambiguation of information is 

dependent upon the time ordering. Information represented through this medium may 

only be revisited if the user has memorised past events. Stereo placement, however, can 

be used within the musical medium to allow spatial aspects to be presented. 

Because of this, Walker and Scott [185] suggest that the visual modality is better suited to 

spatially oriented information whilst sound is more appropriate for processing temporal 

information. Wenzel [191] suggests that audio is very well suited to monitoring state 

changes over time. Thimbleby [179] reports that people working with early computers 

could, by placing an AM radio on top of the machine, tell from the changes in the radio 

interference when a particular batch run had finished or when the computer was in a loop. 

In the 1980s the Musical Instrument Digital Interface (MIDI) was developed by Moog 

[145, 163, 164] and provided interface designers with a simple means for controlling 

peripheral electronic musical devices from a computer. It has now become very simple 

for programmers to incorporate MIDI commands into their code and exploit the use of 

musical sequences and notes to enhance the functionality of their programs. Further 

details of the MIDI standard can also be found [6,186,51,136,62,27]. 
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Music offers the following advantages. It can: 

• Convey large amounts of information in parallel. 

• Convey emotion on its own or supplemental to a visual display. 

• Be used as a feedback mechanism for informing the user of success or failure of 

an action. 

• Alert the user dramatically of critical situations or gently of trivial but relevant 

situations. 

• Smooth over inconsistencies in the presentation of information. 

Further benefits on the employment of music as a communications medium are: 

• Most people are familiar with music of their culture. As Alty states, tunes can be 

hard to forget and most people are often readily exposed to some form of music 

throughout their daily lives [3]. 

• AIty indicates that there exists a strong parallel between the needs and 

requirements of an interface designer and those of a composer [3]. Both are trying 

to create representations using rules within semantic frameworks and also exploit 

the characteristics of human perception. 

• MIDI makes incorporating music into computer interfaces easier [145]. 

• It provides a more important communications channel for the visually impaired 

[132]. 
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However, the use of music in multimedia interfaces has some potential disadvantages. 

• Music is more closely associated with conveying emotion rather than information 

and could therefore be considered to be inappropriate for interface design - There 

is some validity in this statement. However, it is the level at which music is used 

that is important. For example, visual interface designers work at a much lower 

level than that of painters and poets, and they do not create emotional interfaces, 

this is with exception of the games domain. The same may be possible in the case 

of music when not intended for conveying emotion but rather for conveying 

information at a lower level. Picard and Marrin's [133] study of emotional 

expression as it relates to musical performance showed that several forms of 

expressive communication can be measured and detected in physiological signals. 

These include the use of handedness to emphasize musical changes, the signaling 

of upcoming events with sudden changes in effort, the difference between 

information-bearing and non-information-bearing gestures, the indication of 

intensity and loudness with changes in muscular force, and the use of breathing to 

express phrasing in the music. In this case it has been shown that emotional 

expressiveness can be used to convey information pertaining to the musical 

performance. 

• Music is culturally dependent which might limit its use on a wider basis -

However, many musical scales are global and therefore possess universal appeal. 

Frequency ratios between notes are common amongst many cultures. 

• Music cannot convey quantitative information - Most people can tell if a note 

increases or decreases, but only those with perfect pitch can determine actual 

pitch levels. Listeners with such capabilities are rare. 

• It is an intrusive medium, it demands attention - Some users may find the 

information confusing if the level of stimulation is too high, particularly if audible 

from another user's interface. However, earphones do provide an alternative. 
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• Music is a language not understood by everyone - However, listeners do not have 

to be fully trained musicians in order for music to be a viable communication 

medium as shown by Brewster [33]. Most people can recollect and hum tunes 

with no real difficulty, thus supporting its appeal to a majority. Some visual tasks 

require brief training, so even if some basic grounding is required in music then it 

should be supported. 

2.4.2. Perception and understanding of music 

In order to create effective musical auralisations it is important to understand some of the 

perceptual factors associated with music. As with language, music has its own set of rules 

and structures and strong parallels can be drawn between the two. The relationship 

between music and language has been analysed by many scholars [16, 124, 198] and 

several similarities have been suggested. 

• Language is capable of creating many complex combinations to convey many 

meanings. Music also possesses this ability. 

• Music and language both possess distinctive structures which develop over time 

[198]. 

• Although music and language both have cultural dependencies, they possess 

universal features that can traverse many cultures making them flexible 

communication mechanisms. 

• Human beings are able to comprehend both music and language. 

• They both exploit the auditory channel by using sound patterns to convey 

meaning, Both are therefore forms of communication within distinct semantic 

frameworks. 
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Although these parallels highlight the similarities between music and language, some 

researchers such as Lerdahl and Iackendoff [126] and Kivy [118] have argued that 

musical meaning has little resemblance to natural language meaning, and contended that 

meaning in a musical sense carrnot be translated into meaning in linguistic sense. 

In the area of timbre4 perception Grey [99] has performed experiments with trained 

musicians to determine the similarities of musical sounds produced by different 

instruments. The subjects were asked to rate the similarities on a scale ranging from 1 

(very dissimilar) to 30 (very similar). Grey reported that the families identified with some 

of their sub-families were: 

i. Family one. E-flat clarinet, soprano saxophone, bass clarinet, and English horn. 

ii. Family two. Oboe and mute trombone. 

iii. Family three. Bassoon, French horn, cello, trumpet, and flute. 

However, the choice of instruments here is very limited. Rigas and Alty [158] carried out 

experiments to find which timbres and timbre classes work well as discriminating factors. 

They stated: "Our experiments suggest that one instrument from each of the following 

families is likely to be recalled by the listener with no prior training." [158]. Their study 

identified the following families of timbre classes: 

Piano Piano, harp, guitar, celesta, xylophone 

Organ Organ, harmonica 

Wind Trumpet, French horn, tuba, trombone, saxophone 

Woodwind Clarinet, English horn, pan-pipes, piccolo, oboe, 

bassoon, flute 

Strings Violin, cello, double bass 

Drums Drums 

Figure 2.2a - TImbre classes from Rigas and Alty [158]. 
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The consequence of this is that there are really only six unique timbres. One limitation of 

Rigas and Alty's findings is that the timbres were generated by a low-quality synthesiser 

(Roland MT -32). It is quite possible that a synthesiser with more faithful reproductions of 

musical instruments would yield a larger set of useful timbres. 

Further experimentation by Alty and Rigas [159] showed that the most readily recognised 

groups of instruments were piano, woodwind and brass. They further recommend that 

" ... instruments such as Piano and Organ can easily be distinguished by non-musicians, 

but that designers should avoid the expectation that such users can distinguish timbre 

within mUSical/amities (e.g. a Cello and a Violin}." 

At this point it is worth noting that the perception of pitch is of interest as it forms the 

most basic component of tonal sequences. Other features such as intensity, placement and 

timbre etc. are not considered to be as important when perceiving music [29, 30, 67, 122, 

47]. 

The perception of music is a complex issue. The individual notes are not listened to in a 

solitary manner but are listened to in relation to each other. Listeners group the notes. 

This grouping is applied to both the pitch and location of the music. However, the 

location of the source is less important than pitch [29, 30, 67, 122]. The reason for this is 

that localisation is significantly more ambiguous than pure pitch. It is subject to 

interference from echoes and certain sounds translate better than others. The human 

auditory system can also be tricked into hearing false sounds. One instance of this is 

when two identical sounds are played at mirrored locations either side of the head and the 

listener hears a single sound directly from the centre. 

Butler [47] demonstrated that the pitch-grouping phenomenon is very robust even when 

real instrumental sounds are used with spatially separated loudspeakers. It was also 

reported that most of the listeners performed the grouping by pitch even when notes from 

4 Timbre, the distinctive character ofa musical sound or voice apart from its pitch and intensity. 
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one speaker had a distinctive timbre. This suggests that pitch is more influential in 

grouping than both placement and timbre. 

This grouping phenomenon has so far centred on single notes. In order to understand how 

we interpret music it is necessary to move up a level and look at how we perceive short 

combinations of musical notes, chiefly melodies. Dowling [79] describes a melody as a 

sequence of single pitches organised as an aesthetic musical whole. Deutsch [67, 68] 

states that contouT, timbre, rhythm, intensity and tempo influence the perception of a 

melody. Dowling [78] performed experiments with real melodies constructed in such a 

way that two melodies were interleaved, note 1 of a tune A was played followed by note 

1 of a tune B and so on alternately. The results of these experiments showed that it was 

practically impossible to recognise overlapping melodies because the melodies seemed to 

merge into one single unrecognisable sequence of notes. However, when the melodies did 

not overlap they were easily recognised. He concluded that overlapping melodies were 

only recognisable if the listener knew what to listen for. This suggests that there are 

instances where the listener is required to actively concentrate and scan for a particular 

melody when the overlapping causes some confusion as opposed to passively listening to 

the melodies in a non-overlapping instance. Even when users had learned an unfamiliar 

pattern of notes, it was found that they were not recognised when interleaved. This 

suggests that prior musical knowledge may not be of assistance to a user when 

interleaved pattern streaming is employed. 

Investigation into melodic contour has been carried out to determine whether or not it 

assists in recognising tonal patterns [79]. Dowling and Fujitani hypothesised that if the 

interval size was altered but the contour remained the same then listeners would still 

recognise melodies. Users listened to two successive musical sequences. They were then 

asked to rate on a scale of 1 to 4 how close the tonal patterns were in relation to each 

other. The results indicated that users were making their decisions based upon whether or 

not the second melody was a transposed version of the first melody. In cases where the 

second melody was not a transposed version of the first melody, the subjects that had 

musical training showed to have no noticeable advantage over those with no or little 
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musical training. This suggests that those with musical training are more able to 

recognise a transposed melody than those with little or no musical training. 

Experiments by Davis et al [59, 60] showed that even though musical and non-musical 

subjects were not always able to estimate the interval sizes of well-known melodies, they 

were able to remember tunes. Davis and Yelland [61] found that remembering a set of 

tunes improves when participants are trained to work with certain melodies [61]. Bartlett 

and Dowling [13] found that when recognising tunes, the contour was of great 

significance. 

Watkins [188] has shown that key signature plays a significant role in music. He 

conducted experiments that showed that participants from the western musical 

background were more capable of recognising melodies using pitch margins within the 

diatonic scale. Balzano and Liesch [12] argued that intervals in melodies are heard as 

positions within the scale and not as pure intervals. Dowling [80] also suggests that from 

a psychological viewpoint, listeners perceive a set of pitches as opposed to a set of 

intervals. This is further supported by investigations carried out by Dowling [78, 81] that 

indicated that listeners were able to recognise melodies even when their intervals were 

widened into different octaves whilst still maintaining the same pitches [78, 81]. This 

suggests that the representation is constructed in terms of pitches and not in intervals by 

the users. 

Wolpert [200] argues that untrained musicians do not interpret musical stimuli in the 

same way that trained musicians interpret musical stimuli. He found that musicians and 

non-musicians follow different sets of rules when interpreting music. When matching 

excerpts, musicians used melody and correct harmonic accompaniment as the major 

criteria. Subjects that were termed non-musical did not use these same rules. Experiments 

carried out by Brewster [33] in which pitch recognition tasks were performed using 

earcons showed that musicians performed better than non-musicians. However, no 

differences were reported when earcons were played from instruments with different 

rhythms [33]. 
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Deutsch [69, 70, 71, 72] conducted a series of experiments to determine the memorability 

of individual notes. In these experiments, listeners heard two notes separated by an 

interval. The pitch of the notes was the same for half of the trials and differed by a 

semitone for the other half. The subjects were asked to judge whether or not the notes had 

the same pitch. Deutsch reported that most of the listeners judged the pitch of the notes as 

100 percent accurate. In another set of experiments, spoken numbers filled the interval. 

Deutsch found that this did not alter the accuracy of the subjects' judgement of pitch. 

However, when the interval was filled with a number of random notes it was found that 

the subjects' accuracy fell to 68 percent. Therefore, Deutsch argued that the intervening 

notes have a disruptive effect in recalling the pitch of an earlier note. This disruptive 

effect is even greater when the intervening notes are closer in pitch to the pitch of the 

earlier note. 

However, Sloboda [169] remarks the following about Deutsch's experimental results: 

"At first sight, Deutsch's results suggest a very gloomy conclusion about musical 

memory. Memory for individual pitches seems incredibly poor, if it cannot survive a few 

succeeding notes. How is it possible to remember notes across structures of symphonic 

proportions, containing tens of thousands of notes? The general answer to this problem 

would seem to lie in the opportunities, which most music affords for listeners to classifY 

and organise what they hear. Deutsch's sequences were atypical in two respects. They 

did not confine themselves to the intervals of a common scale (using fractions of a 

semitone in some instances), and their notes were randomly chosen so that they were not 

designed to form common musical patterns within the scale framework" 

Sloboda, here, suggests that Deutsch's experimental work does not closely follow the 

typical rules of music enough to be significantly related to the perception of music. The 

results reported by Deutsch relate more to standalone experiments on the perception of 

pitch outside of the musical framework. 
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In the tests carried out by Alty [3], the reaction to tasks that required interpretation of 

musical output was evaluated. The tasks were divided into two sub-tasks. In the first task, 

12 male and 3 female subjects were asked to estimate the numerical difference between 

two notes. The first note was always 'Middle C' and the second note was always taken 

from the major scale above 'Middle C' (one octave). Sampling was limited to one octave 

because it is known that subjects have exhibited difficulties with intervals of greater than 

one octave [141]. The results for this first series of experiments showed that subjects 

exhibited 62% accuracy when estimating the difference in semitones between two 

musical pitches. The second test used the same subject group but listeners were presented 

with different musical shapes, each consisting of six notes from the major scale. The 

subjects were asked to sketch the shape they heard. The results showed that subjects were 

generally able to draw the perceived shape of these short musical sequences and that the 

ability to draw was also an important parameter in this context. 

When a listener hears an extensive passage of music he/she segments the passage into 

smaller passages of musical sequences. These sequences are then memorised. This 

segmentation can be performed based upon properties such as timbre, rhythm, pitch or 

placement. Tan et al. [177] experimented with note sequences that contained two melodic 

phrases, each of which ended with a melodic cadences. The melodies were played to 

subjects who were then asked to judge whether or not any particular two note probes 

were present in the melodies. There were three forms of the note probes. A pair of notes 

ending the first phrase, a pair of notes beginning the second phrase and a pair of notes 

'straddling' the phrase boundary. According to their findings, subjects recognised more of 

the first two types of probes as opposed to the probes 'straddling' the phrase boundary. 

This would suggest that humans are more adept at perceiving such probes when 

punctuated at the beginning or the end of a musical phrase. 

Memorising the segmented passages is determined by the capacity of the human memory. 

Miller [143] suggested that this human short-term memory has a size of 7±1 chunks of 

information. Composers are very aware of these limitations of the human memory and 

5 Cadence, the close of a musical phrase. A fall in the pitch of the voice. 
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employ such techniques as patterning, repetition and structuring in order to reinforce 

musical sequences in the mind of the listener. Work carried out by Delis [65] provides 

evidence that people remember musical extracts best if they are labelled with concrete 

representation titles as opposed to abstract conceptual ones. These titles enable the 

construction of some sort of story in the human memory that in turn is associated with 

particular segments of music. 

In psychoacoustics, experiments are performed using the scientific method of measuring 

the Dependent Variable (DV) and changing the Independent Variable (IV) of the musical 

stimuli. However, the musical stimuli may not satisfy the aesthetic qualities of music. 

Clarke best describes this concern [52]: 

"There are certain obvious advantages in this very controlled kind of approach, and it 

has proved extremely poweiful and productive for advancing our understanding of tonal 

and metric hierarchies. However, it has left untouched a range of issues concerned with 

listeners' understanding of more extended and elaborate structures in which a 

considerable degree of interaction between different parameters can be expected. " 

Researchers have investigated how measurable variables that are apparent during 

exposure to continuous music are processed [169, 52, 48, 63]. Pollard-Gott [155] 

examined the possibility of participants focusing on particular musical themes when 

exposed to repetitions of the musical stimuli. Musical and non-musical listeners were 

asked to rate the similarity between two short musical passages. Results showed that the 

musically trained subjects perceived the similarities more quickly than the non-musically 

trained subjects. Other experiments with musically trained subjects have been performed 

showing that they can accurately judge excerpts from musical pieces [52]. This suggests 

that musically trained listeners have a distinct advantage over non-musical listeners. 
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2.4.3. Musical auditory display using Earcons. 

This thesis proposes a musical auralisation of algorithm state and execution. Infonnation 

available from algorithms can be in the fonn of both data and events. When representing 

events, it is possible to use structured metaphors as motifs much like earcons. An earcon 

is a brief succession of musical pitches structured to transmit specific items of 

infonnation to the computer user. The tenn was first suggested by Buxton, Baecker and 

Arnott in 1985 [49] in tenns of alarms and warning messages and was more fonnally 

defmed by Blattner et al [18]. Brewster [36, 37, 38, 39, 40, 41] has since specified fonnal 

Earcon design principles and has carried out studies into their usefulness. 

Earcons use tones in structured combinations to create auditory messages. Blattner et al 

define Earcons as "non-verbal audio messages that are used in the computer/user 

interface to provide information to the user about some computer object, operation or 

interaction." The sounds and their respective mappings are learnt by the user. Unlike 

Gavers' auditory icons there is no intuitive link between the sound and what it represents. 

They are a much more musical approach in that the sounds are structured and fonned in 

such a way as to produce a suggestion, much like a musical composition. 

If it is possible for a user to learn the mappings between suggestive structured sounds and 

objects or actions then it must also be clearly feasible to use musical structures to achieve 

the same goal. 

Earcons are basically constructed from motifs [174, 175, 176]: 

"A motif is a brief succession of pitches arranged in such a way as to produce a 

tonal pattern sufficiently distinct to allow it to function as a single recognisable 

entity". 
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Motives are simple building blocks of short, rhythmic sequences of pitches that can be 

combined in different ways. They are variable and may be used in conjunction with other 

motives, or repeated, to form larger patterns of a more complex nature. 

The main features of motives are [174][33]: 

• Rhythm - Blattner et al. suggest that this is the most prominent characteristic of a 

motive, it can be one of the most important characteristics of sound [66]. 

• Pitch - there are many different pitches in the western musical system. It is 

recommended that combinations be taken from one octave to produce different 

motives. 

• Timbre - this is useful when differentiating between motives. 

• Register - this is the position of the motive within the musical scale, duplicate motives 

in different registers (pitches) can be segregated and thus convey different meanings. 

• Dynamics - the volume of the motive can be increased or decreased during playback 

of the routine. 

In Earcons, the rhythm and pitch are fixed, whereas timbre, register and dynamics are 

variable. Blattner et al [18] describe two Earcon structures made up from motives: 

• Compound Earcons - these represent actions and objects that comprise an interface. 

They are then combined in different ways to give information about any interactions 

within the interface. 

• Family or Hierarchical Earcons - in this case each Earcon is a node on a tree and 

inherits the properties of the Earcons above it. There are only a maximum of five 

levels within the hierarchy due there being only five parameters of a motive. 
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Figure 2.3 - Example Earcon hierarchy from Brewster [35]. 

An example of an Earcon hierarchy designed by Blattner [18] is shown in the Figure 2.3. 

This is the family tree of earcons representing various errors. The root motif is a structure 

comprising a single pitch (middle A) of indeterminate length. The two subclasses of 

error, (operating system and execution) inherit this structure but modify the timbre used 

in order to distinguish themselves from each other. Instances of these subclasses (e.g. 

overflow and underflow) inherit the timbre from their parent and are distinguished by 

melodic and rhythmic differences. Using design principles such as these, Earcons have 

been found to be effective in communicating hierarchical information down to four levels 

(for example, in telephone-based interfaces [37]). 

Blattner also added these Earcons to two-dimensional maps [19]. Hierarchical Earcons 

were mapped onto the attributes associated with a building layout, in this case the 

Lawrence Liverrnore National Laboratory. They mapped sound to such information as 

the amount and type of computer equipment in each building, the security clearance 

required for each building and the jobs of the employees housed within each building. By 

selecting the buildings on the screen it was possible to hear these attributes. The 

technique allowed much more data to be presented than would have been possible 
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graphically. No experimental testing was done with this system but it does indicate some 

of the possibilities within this field. Earcons have also been experimentally tested to see 

if users could extract algebraic information from sounds and identify their expressions 

[172]. The results indicated that the use of sound in this case proved to be of benefit as 

the number of correct interpretations of the information was better than chance. This 

again reinforces the advantages of using auditory techniques at the human-computer 

interface. 

Earcons have also been employed in a menu hierarchy to aid navigation through its 

complex levels. This work undertaken by Barfield et al [11] did not fully exploit all of the 

features present within Earcons. The only feature employed was the use of pitch to 

indicate the current level of depth within the menu; the aim was that the user could link 

certain pitches with corresponding items within the menu structure. Barfield et al 

described the mapping as 

"The tones were played with a harpsichord sound and started in the Fifth octave 

of E corresponding to the main or top level of the menu and descended through to 

B in the Fourth octave." [11] 

The employment of Earcons in this system did reportedly improve the user performance 

in the task but no further suggestions were given. Due to the lack of detail in the reports 

that Barfield et al made, it is difficult to ascertain just how useful Earcons were in this 

case. Further improved results might have been gained if the other features of Earcons 

had been employed. 

Brewster et al [42] similarly employed earcons in order to provide navigational cues in a 

menu hierarchy. The Earcons were based upon the guidelines earlier set out by Brewster 

et al [35]. Figure 2.4 shows the hierarchy of nodes used in Brewster's experimentation 

[35]. 
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Figure 2.4 - Hierarchy of nodes from Brewster [35]. 

The menu hierarchy employed by Brewster et al has four distinct levels. In level one 

(main menu level), a constant note of 'D' in the third octave was played in the centre of 

the stereophonic field. In level two (application level), a second note was added to the 

existing note at level one. This second note was implemented with a different register and 

different stereophonic position. The submenus in the third level such as applications, 

word processing, experiments and games were assigned C4, C3, C2 and Cl using an 

electric synthesised organ, violin, dmm and trumpet. These timbres were placed in the 

stereophonic positions of far left, centre left, centre right and far right, respectively. 

When the user descends through the levels, the timbre changes in'accordance to the level 

whilst still maintaining the preceding level's note. Results from Brewster et aI's 

experimentation indicated an accuracy of 81.5% in enabling listeners to identify their 

position within the hierarchical menu. This highlights the effectiveness of using multiple 

features such as timbre, pitch and position to convey information at the human-computer , 

interface. 

Brewster further showed that reductions in the quality of sound that occur with telephone 

systems can be offset by improvements in the design of earcons, thus making earcons a 

good method for providing navigation cues in telephone based intterfaces. Results 

showed that training techniques affected the recall rates of earcons and that there was no 

difference in the recall of earcons a week after their first presentation. Brewster states that 

the results obtained indicated that an online tutorial plus a short period of free call time 

can enable users to reach high recall rates without much training cost. 
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A further experiment by Brewster showed that by using compound earcons rather than 

hierarchical earcons to represent 'the hierarchy recall rates could be significantly 

increased, with 97% recalled correctly with only a small amount of training. This showed 

that compound earcons could represent a hierarchical structure well. 

Earcons have been used in the interface to auraIise data associated with turbulence [20]. 

Studies have shown that Earcons can be effective in communicating such information to . 

users [41, 127], and Lucas [127] has shown that the accuracy of recognising the auditory 

cues increased when users were informed of the design principles of the Earcons 

employed This highlights the usefulness of context and the need for its presence when 

performing effective auralisations. Since its introduction, Brewster and others have used 

the Earcon to make GUI components (such as buttons, menus and scrollbars) more 

useable [43, 56, 125] and to reduce the length of audio messages by using parallel 

Earcons [38]. Experiments showed that the time taken to successfully operate such 

interface components was significantly reduced when the tasks were enhanced by the 

addition of Earcons. When Earcons were applied to drag' and drop activities [43] a 

significant reduction in time taken and mental workload was similarly observed. 

Brewster et al [34] reported that adding sound to a graphical interface could reduce task 

completion time and recovery time from errors. As with· Barfield et al [11], the 

. exploitation of the other features of Earcons . could be employed to improve the 

effectiveness of tile system. However, making the system more musical by using the 

rhythmic and multi-timbral features of Earcons could possibly have yielded more 

favourable results. 

2.4.4. Musical data sonification 

Several systems have been developed to allow the general sonification of data., 

Madhyastlla and Reed's Personify system [130, 131] was capable of sonifying data sets. 

The system was used to explore multivariate data related to North-American cities. 

Variables such as population, climate, and housing cost were mapped to different sounds. 
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The resultant sonifications were used to compare cities. Madhyastha and Reed offered no 

formal or empirical evaluation of the system. Scaletti's Kyma [165] system uses a visual 

sound-specification language that also permits the sonification of data sets. The system . 

was applied to models of the human arterial system and city air pollution. Scaletti and 

Craig claim the system was successful [166] but again no formal or empirical evaluation 

was offered to support their claim. Hayward [104] employed audification techniques to 

allow seismic data to be heard. The data from seismic recorders were collected and then 

scaled up so that the values lay in the audible frequency range. The data was played 

through an amplification system and it was possible to discern one seismic event from. 

another without having to look at a seismogram plot. Again, Hayward failed to provide 

any formal or empirical evaluation of the resultant audification. Further work has been 

carried out by Dombois [76] in using audification in planetary seismology. No empirical 

evaluation was performed but Dombois did find that the signals were easy to recognise 

even in noisy environments and that same 'quakes' were heard differently when placed at 

different locations. 

A DNA analysis program called PC/Gene was developed following the suggestion that 

the one-dimensional structure of DNA could be mapped onto musical sequences. This 

system utilises the Hayashi and Manakata algorithm [102] which facilitates the mapping 

of music to DNA triplets by assigning tones to DNA bases. PC/Gene can scan the 

sequence and identify such features as potential signature sequences, motifs, post­

translational modification sites and membrane spanning regions in the protein. Hayashi 

and Manakaya's work on further gene sequences [103] required four octaves to map the 

necessary information. However, King and Angus [117], pointed out that this led to 

music with large intervals of pitch that were distracting and discordant. They further 

noted that the mapping itself was one-dimensional and therefore, led to a monodic6 

musical structure with no accompaniment. King and Angus developed their own system 

called PM (Protein Music) [117], which permitted the mapping of an amino-acid 

sequence onto a two-part harmonic musical structure. The mapping consisted of two 

parts, the melody line of the sonification which was mapped to the DNA nucleotide 

• Monodic, having a single vocal part. 
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sequence, and the bass part which was mapped to the properties of the sequence's amino­

acids. King and Angus argued that to achieve an equivalent visual mapping (in terms of 

information presented) would "be cumbersome as each position would have to be 

mapped into seven colours. This ability to display multivariate residue information 

represents an advance in this work". No testing was carried to determine the 

effectiveness of the audio representations compared to visual representations but 

suggestions were made based upon the apparent complexity of mapping the complex 

information into the visual domain. This is a case where musical sonification can be seen _ 

to be more useful at presenting complex information over a visual representation. 

Chaotic attractors have been used as a source of information in using music to sonify 

data. This has been carried out by Mayer-Kress et al. [138] who utilised key features of 

chaotic systems such as intermittency and self-similarity. By mapping the low-level 

sequence of system states onto auditory parameters, and high-level attributes (such as 

intennittency and self-similarity) onto polyphonic auditory constructs, they were able to 

utilise the data generated by a chaotic system by representing it musically. They reported 

that the music generated by the chaotic systems and their mappings was pleasing to listen 

to for two reasons. Firstly, the sonification possessed aesthetic qualities that 

recommended it as a piece of music one could actually listen to for enjoyment. Secondly, 

the development of the music over time yielded the underlying structure within the 

chaotic system. The property of self-similarity was represented by the form of musical 

phrases which repeated themselves but of which no two were ever exactly the same. 

2.4.5. Musical software/algorithm auralisation 

Alty [3] has shown through his experimentation that information about the run-time 

behaviour of simple sorting algorithms can be successfully communicated via Ijlusical 

mappings. Conveying precise quantitative information would be difficult in this manner 

unless the listeners are musically trained to a high enough degree that semitone changes 

could be easily identified. Conveying general shape pertaining to the state of the list to be 

sorted by the algorithm to non-musically trained users is however, a plausible scenario. 
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Alty showed from his early experimentation that musical experience can be useful in 

understanding algorithm auralisation but is not essential. His results further showed that 

an understanding of pitch is not essential for understanding auralisations, 

Alty has shown that sorting algorithms can provide useful information sources to which 

musical features and structures can be successfully mapped. Given that many different 

sorting algorithms exist, which operate in varying manners and possess different sorting 

characteristics, there exists a rich source of qualitative and quantitative information to 

which music can be mapped Such musical algorithm auralisation is the main focal point 

of this thesis, exploiting the diversity in sorting algorithms' characteristics to investigate 

the use of music in communicating different types of qualitative and quantitative 

information at the human~computer interface. 

Vickers et al [181] developed a system called CAITLIN. This was a musical program 

auralisation tool used to assist novice programmers with debugging. CAITLIN is 

described as "a pre-processor .for Turbo Pascal programs that musically auralises 

programs with a view to assisting novice programmers with locating errors in their 

code". In this case the aim of· software visualisation is simply to improve the 

understanding of software [77]. Their auralisations were deliberately based upon musical 

techniques. This was presumably to exploit the features of music as much as possible. 

The original source code is labelled with POl's (Points Of Interest) that in turn generate 

corresponding sounds. For example the POl's of an IF construct would be [181]: 

• Entry to the IF construct. 

• Evaluation of the conditional expression. 

• . Execution of the selected statement. 

• Exit from the IF construct. 

Instrumental sound sequences are mapped to each of these POI's and then played in real­

time as the program code is executed. CAITLIN is a non-invasive system, in that it leaves 
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the source code unchanged. Auralisations are affected by adding library routine calls to a: 
copy of the program. This is then compiled to produce an auralised executable image. 

Experiments were undertaken to evaluate the effectiveness of CAITLIN where subj ecls 

were permitted time to familiarise themselves with the auralisations of constructs via 

CAITLIN. They were then asked to identify the structures of nine program auralisations. 

The results proved favourable. 

Program auralisation is beginning to attract much attention within the field of auditory 

displays. The case for using music to aid debugging (like CAlTLIN) was also supported 

by Jackson et al [111], but they felt that this needed to be supplemented by a visual 

representation in order to provide a framework or context for the audio. This was because . 

they found it easier to provide the boundaries and context. visually and the relative 

information audibly as opposed to channelling all of the information into the same 

medium. It is an effective way of sourcing the control information through one modality 

and the informative data through another. 

In early experimentation with the CAlTLIN system Vickers et al played ten example 

auralisations to eight test subjects. Following this familiarisation exercise the test 

listeners were then presented with nine further auralisations. For each auralisation ihe 

subjects were asked to describe the structure of the program. The results from this early 

experimentation showed that the subjects were generally able to visualise the program 

structure using only the auralisation. It was found that most subjects specified exactly the 

program structure. Vickers et al also found that instrument selection played a very 

important role in successful program auralisation. Subjects commented that it was easy to 

deconstruct auralisations in the mind when the timbres used for the various constructs 

were markedly different. It was also found that as the complexity of the program 

constructs increased (in particular, when using nested constructs) the identification 

accuracy decreased: The same complexity issue was also seen when intricate signature 

tunes were used to identify the constructs. Another finding that is worthy of attention is 

that one of test subjects who scored the lowest claimed to have no familiarity with 
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western music. Tins highlights the importance of cultural background in program 

auralisation. Vickers did not report on how the auralisation of program structure 

compared to the visualisation of the same program structure. 

Vickers et al carried out further experimentation on twenty-two novice programmers to 

determine if CAITLIN could aid in bug location. They concluded that the case for 

general program auralisation remained unproven, but for programs of a relatively high 

complexity significant evidence was found for the auralisations having a beneficial effect. 

It was also found that programs with typical novice programnring errors and programs 

that had high cyclical complexity7 measures benefited from having the technique applied 

to them. It was also concluded from this series of experiments that musical knowledge 

had no effect on subjects' ability to make use of the auralisations. Additionally it was 

found that no evidence existed to suggest that lack of musical experience led to poorer 

perfOlmance. 

Program structure auralisation auralises the execution state of a program. In a sinrilar 

manner, algorithm auralisation auralises the execution state of an algorithm~ Brown & 

Hershberger used music to enhance and complement an animation of several different 

algorithms [45]. They suggested that sound would be a "powerfol technique for 

communicating information about algorithms", though some potential difficulties with 

using sound were highlighted: 

• Sound is difficult to use effectively because of its complex cognitive-perceptual 

aspects. The perception and cognition of sound is not yet fully understood, it is 

therefore difficult to create effective auditory representations. Increased 

. knowledge about the cognitive-perceptual aspects of sound would facilitate 

greater exploitation of the features of sound. . 

7 Cyclic complexity, the level of complexity associated with the iterative propel1ies of the structure ofthe 
program. 
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• To find the best mapping of data to sound characteristics is hard. Data can be 

mapped . to frequency, amplitude, duration, timbre, stereo panorama, 

reverberation, attack and decay rates etc. 

• When more than one computer is using audio techniques in the same room, 

isolation of the sounds is difficult, whereas graphical isolation is not. 

Brown and Hershberger [45] animated six algorithms using newly developed techniques 

that employed the features of colour and sound. The information was therefore presented 

in a bi-modal format involving both video and audio simultaneously. It must be noted 

that the visual channel played the dominant role in these auralisations and the auditory 

medium was used merely as a supplement. A large content of their work focused upon 

the issues sUlTounding what kind of information to present and what was the best way to 

present it. As mentioned earlier there is no 'one-fit-all' solution to this problem as each 

case has independent contributory factors. Brown and Hershberger noted that previous 

work had been done in the area of algorithm visualisation (graphically only), but that no 

prior research had been carried out in the use .of music to auralise algorithms 

(supplementary to the visual channel or autonomously). They also outline the fact that 

dynamic algorithm animation is still a very obscure art. 

They developed a system called ZEUS [46] for algorithm animation and stated that "it 

may be easy to animate a program, but it is not qUite so simple to make informative 

animations. " This is certainly true. The actual task of mapping data to music is a 

relatively trivial one, but it can also result in a task to develop a system that produces 

meaningless, unstructured music. The mappings and timbres etc. must be carefully . 

chosen in order to produce structured and informative musical representations of the data. 

Other animation systems include Stasko's Tango [171], Kahn and Saraswats' Pictoral 

Janus [114] and Heath and Etheridges' ParaGraph [105]. 
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The ZEUS algoritIun animation system [46] was developed from a previous algorithm 

animation system called BALSA [90]. The problems cited by Brown and Hershberger, . 

which they hoped to solve using colour and sound were: 

• Small screens - small real estate for presenting information. 

• Lower resolution - less detail can be conveyed. 

• Dynamic nature - flexible animation. 

• Multiple views - views must work together to give an overall synergy. 

• Multiple data sets - animation must handle a range of data values. 

The principles used by Brown and Hershberger in the design of ZEUS were: 

• Reinforce visual views - associate sounds with relevant program events 

corresponding to the visual representations. This technique uses the auditory 

presentation medium as a supplement to the visual one, its role is merely 

supportive and it is heavily dominated by the graphical display. 

• Convey patterns - this technique picks out the temporal structures and paths 

within the data, to give the user a greater feel of the overall direction of the 

algoritIun. 

• Replace visual events - useful when a visual mapping becomes difficult, 

suggestive auditory representations of the data are employed in place of the 

. visual ones. 

• Signal exceptional conditions - an everyday and simple use of sound. 

The system was used to animated: 

• QuickSort algoritIun. 

• Multi- level adaptive hashing algoritIun.· 
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• Algorithm of Boolean formulas for simple polygons. 

• Topological- sweepline algorithm. 

• Spin / Block algorithm. 

• Compliant - motion - planning algorithm .. 

They also refer to but do not fully document animation of the following algorithms: 

• Insertion Sort algorithm. 

• Bubble Sort algorithm. 

• Selection Sort illgorithm. 

The work performed by Brown and Hershberger [45] yielded some guidelines for the 

implementation of algorithm animation. They concluded that the technique was a 

complex one and required further investigation. The animations that they performed were 

bi-modal. The auditory medium was used merely as a supplement to the visual 

animations, which highlights the need for research to be done in the area of pure 

autonomous auralisation of algorithms. The key point about Brown and Hershbergers' 

work is that no evaluation was carried out. The techniques that they proposed for 

algorithm animation were implemented but no evaluated results were attained. This 

further supports the need for thorough research and evaluated experiments in this field. 

Bock has developed a specification language known as the Auditory Domain 

Specification Language (ADSL) [25, 26]. ADSL does not require sounds to be associated 

with specific lines of program code or specific variables. Users define 'tracks' using the 

ADSL meta-Ianguage to associate audio cues with data and program constructs. A pre- . 

processor interprets these user-defined tracks. The original code has the auralisations 

added to it during compilation time allowing the program to be heard upon execution. 

This approach makes program auralisation less complex. When adding lines of. 

auralisation code within an editing window the original code can become obscure and 

difficult to follow. By specifying tracks, the original code is seen as untouched by the 

code editor and therefore remains easy to read. Another advantage of this approach is that 
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it is possible to define a generalcpurpose auralisation. By specifying types of program 

construct to be auralised there is no requirement to tag individual lines of code with 

auralisation specifications. 

Bock's ADSL used a mixture of MIDI messages, digitised recordings and synthesised 

speech. The desired output for each of the mappings is user specified and there exists the 

ability for the user to auralise specific data items as well as the general tracks through the 

program. 

Bock's thesis [26] describes an experiment in which thirty programming-literate post­

graduate engineering students were required to locate a variety of program bugs in three 

programs using only a pseudo-code representation of the program and the ADSL auditory 

output. Bock noted that 68% of the test subjects were able to locate the bugs. What Bock . 

failed to provide was a measure of how successful bug detection was when no ADSL . 

auditory output was present. Therefore, although the results were favourable, it is 

impossible to ascertain how useful the ADSL auditory output was on its own. 

Jameson's Sonnet system [112, 113], like CAITLIN and ADSL, is specifically aimed at 

using auralisation agents to aid the debugging process. The code to be debugged is tagged 

with these auralisation agents that define how specific sections of code will sound. Figure 

2.5 shows a simple while loop with the addition of a component that allows a note to be 

turned on and off. TIle component allows static definition of the attributes of the note 

such as amplitude and pitch. The first point in the source code identifies when the note 

will be activated and the second point in the source identifies when the note will be 

deactivated. Hence, upon execution, the note will be heard for the duration of the while 

loop. 
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/ 
'--'----10" 

while (cntr <= 10) 
{ 
printfC"%d\n" ,cntr)r'-: ---IOff Note 
cntr ++ ; ~ } ,'---_// 

-printf ("Bye bye\n") 

Figw'e 2.5 - While loop from Jameson's Sonnet system [112, 113]. 

Clearly, in this example, the note only identifies the execution and duration of the while 

loop. It may be desirable to 'hear' the progression through the loop, in this case it would 

be necessary to auralise the data element 'cntr'. Sonnet permits the connection of other 

notes to specific data elements and also permits the connection of components to identify 

how many iterations of a loop are to be played. Given that the programmer has added the 

auditory components to his/her code then they have already learned what the specific 

sounds signify. Upon execution the programmer can hear the progression through the 

code and identify from the auditory cues where the program deviates from the expected 

execution path. When such a deviation is heard, the point at which the deviation occurred 

will yield the location of the bug within the program code. Like ADSL, Sonnet interfaces 

directly with the executing program and it is therefore non-invasive to the original code. 

It has the advantage of allowing auralisation in a visual programming environment that 

offers greater flexibility to the programmer. 

Another system that shares a similar approach to Bock's ADSL is Mathur et ai's Listen 

project [137, 23, 24]. Mathur developed a meta-Ianguage entitled 'Listen Specification 

Language' (LSL). This language is used by a programmer to write an auralisation 

specification that is parsed in a pre-processor phase to amend the original source code, 

again leaving the original source code unchanged. This entire process is carried out 

before the compilation phase. An· auralisation specification specifies the mapping 

between program-domain events and auditory events. 
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The Listen Specification Language (LSL) is described as a true meta-Ianguage because it 

can be used. to define auralisations for programs written in any language. Due to the 

complexity of the syntax of LSL, writing auralisation specifications requires a degree of 

programming understanding and ability. This limits its potential application to those with 

programming capabilities. Additionally, some musical knowledge is required in order to 

know how to specify which pitches ani used in the auralisations. Again, the Listen project. 

is a prime example of an auralisation system that never underwent any formal or 

empirical experimentation or evaluation. 

DiGiano and Baecker performed work which involved sound enhancements to the 

programming environment [74]. Their system LogoMedia [75] dealt specifically with the 

use of sound within this programming environment. They defmed program auralisation as 

"the use of non-speech audio for supporting the understanding and effective use of 

computer programs." Their design suggestions for program auralisation are: 

• to exploit the logarithmic nature of several sound dimensions to help to teach 

logarithms. 

• to exploit the familiar connotations of everyday sounds. 

• to use auralisation when screen sizes are too small to carry the communication 

visually. 

• . to use auralisation to reduce clutter in graphic workspaces. 

• to exploit the many dimensions offered by sound (up to 20) [22]. 

LogoMedia allowed audio output to be associated with program events. A programmer 

annotates the original source code with probes to track control and data-flow. Upon 

execution of the program, the machine state and machine variables change over time .. 

These states and data are mapped to auditory events (sounds) that can be listened to. The 

result is that the execution, progression and program state can be heard in real-time as the 

program runs. LogoMedia employs both sound effects and music. 
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The main features of Logo Media are: 

• During program execution, the relative values of variables are indicated and 

. represented by tones and pitches. 

• During program creation, opening and closing parenthesis are associated with a 

number of different tones. 

• While viewing a program, special sounds are associated with particular segments 

of code. 

LogoMedia is the auditory counterpart for the earlier LOGOMotion system (10], which 

was used to visualise program data and control. A specific language for use with 

LogoMedia and LOGOMotion is entitled LOGO [152]. As previously mentioned, a 

programmer may annotate their LOGO code with control probes and data probes. Control. 

probes are mainly used for monitoring a program's control flow. Particular sections of . 

LOGO software can be associated with particular program sections prior to execution. 

This results in the triggering of sound commands during execution. Data probes are used 

for monitoring data flow and can. be associated with arbitrary LOGO software 

expressions. Changes to these expressions trigger sound commands during program 

execution resulting in the ability to hear the data flow of the program. As with some of 

the previously mentioned systems, the LogoMedia system is capable of producing both 

MIDI and recorded audio output. The main limitation is that the auralisations have to be 

defined by the programmer for each expression that is required to be monitored during 

execution. Upon entering an expression, the programmer is prompted for the desired 

mapping for that expression. This requires some strong programming ability from the 

user in order to successfully auralise program code. 
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2.4.6. Musical auditory applications - some existing applications 

Rigas [4, 159, 160] developed a system called AudioGraph, which is a tool that allows 

infonnation of a spatial nature to be communicated to visually impaired users using only 

music. AudioGraph permits visually impaired users to manipulate graphical objects on a 

screen by providing information about cursor position via musical tones. The outline 

shape of simple graphical objects is conveyed to users via a number of similar musical 

mappings. Rigas showed that users' ability to recognise a collection of graphical shapes 

was very high following minimal training. The recognition level further increased when 

hints about the objects represented by the shapes were given. This highlights the 

importance of context in metaphorical mappings. 

AudioGraph is essentially a diagram-reader and manipulator aimed at users Witll visual 

impainnents. It groups sequences of pitches into groups of ten rising notes with pauses 

between each group. Different instruments are used for the X and Y coordinates. 

Distance across the screen were interpreted by listening to the length of the rising tonal 

sequence, the longer the sequence the greater the distance. Subjects therefore obtained 

two clues about distance - the rising pitch and the note grouping. The rising pitch clue 

was particularly useful in the last group, which will normally be less than ten notes. This 

shows how quantitative information can be conveyed via tonal sequences. 

Edwards [85] developed his Soundtrack system, which provides an auditory interface to 

aid users with visual impainnents in using· a word processor. The system adapted a 

mouse-based interface into one that employs audio techniques. Soundtrack used a 

combination of square waves of differing musical pitches and synthesised speech. When. 

a menu was selected by a mouse click the interface 'spoke' the menu's name. The 

location of the mouse pointer relative to the menu item was conveyed by the pitch of a . 

note, moving tlle mouse up and down the menu's options caused changes in the pitch of 

the note. 
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The main problem that users encountered with Soundtrack was recalling the layout of the· 

intel11al stmctures of the windows. It was also found that most of the users did not use the 

pitch of the notes to determine the menu position but rather counted the number of tonal 

changes stressing the importance of mUltiple cues. However, one user who had musical 

training did use the pitches. Brewster [32] stated of these results "It may have been that 

as there were only a few tones so counting was easier, if there had been more then 

counting would have become too slow and pitch perception would perhaps have been 

used. " 

Cohen and Ludwig [54] developed a prototype system called 'audio windows' which 

combines a spatial· sound output and gestural . input in a teleconferencing system. The 

spatial sound system that they employed was based on projecting a soUnd into three­

dimensional space. By manipulating the sound sources, virtual positions were achieved. 

Different listening sensations were achieved by user controllable parameters. The users 

moved their position around the conference room, and the sound sources would move 

relative to the users' virtual position. In this system, the user wears a DataGlove that 

feeds back gestural information to the system pertaining to the position, movement and 

shape of the user's hand. In order to capture the user's hand position and motion, Cohen 

and Ludwig employed posture recognition with the visual programming language (VPL) 

supplied Gesture-Editor and an arm interpretation component. 

Cohenand Ludwig remarked, "this prototype provides a test-bed for exploring the 

immediate potential of the emerging technology's application to teleconferencing and for 

'researching the relevant human factor issues "'. 

Mansur et al [132] developed a system called SoundGraphs, which is an auditory 

interface primarily aimed at blind users, employing both speech and sound. For partially 

sighted users a visual display was provided. The system is bi-modal and not solely 

dedicated to the auditory medium alone. The system aims to permit the visually impaired 

user to create and view graphs. The shapes of the graphs can be conveyed in one of two 

ways, either as a whole continuing graph, or in an interactive manner for those areas of 
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the graph which the user is most interested. In the interactive mode the user can control 

the output of sound by moving the cursor forwards and backwards. The system also 

incorporates a speech output whereby the coordinates of the graph are 'spoken' to the 

user. It is clear that the system uses several different forms to represent the graphical 

data, visually, tonally and orally. It is primarily aimed at aiding visually impaired users 

and is therefore not dedicated to determining whether an autonomous auditory channel 

can convey quantitative information. 

Sonnenwald et al developed a system called InfoSound [170]. This system is an audio­

interface tool kit that allows application developers to design and develop audio 

interfaces. It provides the facility to design musical sequences and everyday sounds. It 

also allows the storage of designed sounds and their associations to application events. 

One limitation is that the software developer is expected to compose the musical 

sequences. The research work of Sonnenwald et al is a continuation of previous work 

concerning the use of sound to represent numerical data and to provide cues about 

program events. It is also an extension of work carried out by Bly [22] to represent 

multivariate data using musical sound, Mezrich's [141] representation of multivariate 

time series using musical sound and Morrison and Lunney's [128, 129] representation of 

chemical spectra data for visually impaired users. using musical chords. The InfoSound 

system offers a number of facilities and mechanisms for the design of musical auditory 

interfaces such as auditory icons and Earcons. It also facilitates the inclusion of everyday 

sounds which themselves can be associated with program events and be heard during 

program execution. The InfoSound toolkit is part of the IC* project [50] which is an 

environment for the design and development of sophisticated software systems such as 

telephone networks. 

Camurri, Innocenti and Massucco [108] developed a software environment for the real­

time processing of sound, music and multimedia entitled HARP (Hybrid Action 

Representation and Planning). HARP is a software architecture for the representation and 

real-time processing of sound, music and multimedia using artificial intelligence 

techniques. The HARP system is based upon the WinProcne system (WINdows PROlog 
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tool Combining logic and semantic NEts) [89, 91, 109] and is capable of storing and 

processing music and sound as well as implementing data manipulation. The core 

architecture of the system comprises two levels of representation in the knowledge base 

of the system - the analogical and symbolic levels of representation. The symbolic level 

of representation has a declarative symbolic environment and a multiple inheritance 

semantic network, which has been based on KL-ONE [28, 201] with a number of 

additions such as temporal primitives and typing mechanisms. The analogical level is a 

low level sound representation that includes all associated data. 

2.4. 7. Audio - Visual mapping 

Minsky [144] has stated that music facilitates the manipulation of space and time. If true, 

this indicates that it is possible to convey both temporal and spatial information via 

music. He also noted that "We like tunes because they have certain structural features .. 

but do we have to like them in order to understand what they mean? Human beings, as 

listeners, have individual musical tastes and preferences. When listening to music that is 

not within these preferences, the listener may not be readily receptive. In this context, the 

underlying inforniation might become obscured. Therefore if music is to be employed at 

the computer-human interface, it should be carefully chosen and structured so as to 

appeal to the user aesthetically as well as informatively. In order for a musical interface 

to be a truly global communications technique, it must fully exploit the features of music. 

In particular it must possess the flexibility to cater for many different musical tastes and 

cultures in order to appeal to a wide range of potential users. This can be accomplished 

by exploiting the features of music that transcend cultural differences such as tone 

intervals etc. At higher structured levels the presentations would need to be tailored to the 

classic structures inherent within the target culture. 

When comparing the audio and visual senses Minsky [144] says that "When we enter a 

room, we seem to see it all at once: we are not permitted this illusion when listening to a 

symphony ... hearing has to thread a serial path through time, while sight embraces a 

space all at once." He also states that there are strong similarities between these two 
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modaIities by "arguing that hearing music is like viewing scenery" and that ''when we 

hear good music our minds react in very much the same way they do when we see 

things." Bearing these commonalities in mind it can be surmised that music might 

possess many of the qualities that pictures do. As Minsky said, we do not get an overall 

appreciation of the whole as we do with sight but there are certain similarities in the ways 

in which we react to the information. 

To help outline the benefits of music as a communications medium it can be compared to 

the visual medium by identifying the parallels between their respective elementary 

building blocks. Alty [3] draws parallels between still images in the visual domain and 

music in the auditory domain: 

• Pitch (frequency) - can be seen as the audio equivalent of Colour. 

• Timbre (instrumental sound) - comparable to Texture. 

• Volume (loudness) - analogous to visual Brightness. 

• Duration ('on' period) - again comparable to visual Brightness. 

• Reverberation (echo) - closest visual comparison might be Focus .. 

• Location (stereo placement) - seen as a visual coordinate on an X-V plane. 

In an undocumented informal test performed by Alty [3] that corresponded bounded 

numbers to bounded shades and tones, it was found that the majority of people thought 

that they would find it easier to place a random note than a random shade of colour 

(within the bounded regions). This is of course unsubstantiated as no actual testing was 

carried out, it was simply individuals views and thus based upon pure conjecture, but the 

users attitudes do in some way support the validity of an investigation of a musical 

communications medium. 
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The next stage building blocks are composed of the following [3]. 

• Chords - Harmony. 

• Complex textures - Orchestration . 

. At this point music and the visual media diverge considerably [3]. Chords (harmony), 

rhytlun (note repetition with different durations) and polyphony (playing simultaneous 

musical parts) are very difficult to map onto the visual medium because of the difference 

between their respective exploitations oftime. That is to say that; 

• Audio channel - copes with a number of simultaneous events in parallel and is a 

continuously moving sampler that cannot easily replay recent events without 

breeding confusion. 

• Visual channel- for still images the focus is upon a small part of the display with 

awareness of peripheral events. The visual channel facilitates efficient scanning of 

recent history and allows the user to reflect upon it. With regard to moving 

pictures a temporal medium exists and such reflection and rescanning is not so 

easily facilitated. 

When comparing the scanning of a painting to listening to a piece of music, a painting 

may be scanned time and time again which permits close examination, whereas a musical 

piece is listened to by the ear in real-time and does not easily facilitate this depth of 

examination. However, close examination is facilitated with repeated listening. This 

highlights a difference of temporal properties between visual stills and music. However, 

moving pictures possess a temporal dimension too which is often supplemented by an 

audio representation. 
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Composers employ complex techniques to reinforce a piece of music into the users 

memory. Pictures have been transformed into musical composition in an attempt to help 

better understand the pictorial data [140]. 

Given the lack of any extensive formal or empirical investigation into the use of music 

for communicating information and the strengths and attributes associated with the 

auditory medium and more specifically the strengths and attributes of music, there is 

clearly room for some detailed investigation. 

2.4.8. Conclusions - Music in auditory systems· 

Within the field of human-computer interaction very little emphasis has been placed on 

the use of the auditory channel as a communication medium for computer generated 

events and entities. Interface designers have tended to concentrate on the development of 

graphical user interfaces, often using the auditory medium to convey trivial information 

as more of a novelty than of any real value. Although not an area of concern in this thesis, 

this direction of interface design has left visually impaired users at a disadvantage. 

Over the last decade, visualisation researchers have found that aural representations can 

complement, enhance or sometimes be superior to visual representations alone. This has 

spawned the new research area of auditory display in which those involved are examining 

the different ways in which the auditory channel can be utilised in the process of human­

computer interaction. Different techniques for using sound such as sonification and 

. auralisation have been developed to exploit sound in various HCI applications. For 

. example, audio enhanced software interfaces, sound-controlled data exploration systems 

or debuggers that use sound to represent program execution. Early systems tended to be 

hybrids employing aural and graphical visualisation methods. Many systems use sound 

effects. 

Recent research has emerged in the field of human-computer interaction to support the 

potential of the auditory medium at the interface. In particular, there has been much 
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interest into the use of music in this context; The evolution of such musical auralisation· 

techniques as Earcons have begun to exploit the complex structured features of music. 

Designers are now becoming aware of the potential of music and its ability to 

communicate information to users. Music has been successfully used to aid visualisation 

of software structure and program execution as described previously in this chapter. 

All the described musical auralisation systems use musical pitches and MIDI data in their 

approaches to auralisation. Although the term 'music' has been used to describe their 

auditory outputs, few of them employ any musical grammar or structured framework. 

Most of the systems that use music tend to do so only in the sense of representing data as 

musical pitches without any reference to musical forms, structures or syntax. Music is 

based upon a defined structure, or set of rules. Structuring auralisations according to 

simple syntactical rules offers the hope of music forming the basis for understanding 

algorithm and program execution. Recently, efforts have been made to use more formal 

musical frameworks in auditory display. Leplatre and Brewster [125] have begun 

investigations into using music to aid navigation around complex hierarchies of 

information. Hankinson and Edwards [\ 00] have started to lay down a formal theoretical 

foundation for the use of musical grammars in audio communication applications. 

Furthermore, most systems require the programmer to compose the musical sequences, so 

the musicality of the output largely depends upon the programmer's musical ability. Such 

systems simply permit the mapping of program data and events to tonal outputs. 

Very little formal or empirical evaluation has been carried out in this field. With the 

exception of Vickers's [181] research into understanding program state through musical 

software visualisation and Rigas's [4] research with the visually impaired, there is a lack 

of evidence that communicating algorithm (or program) information using music via the 

auditory medium is useful. Their experimentation using CAITLIN and Audiograph 

respectively has shown that listeners can use music well to understand and visualise 

entities such as program structure and graphical objects. Vickers also showed that there 

might exist some cultural issues that could be relevant, but not so as to invalidate the 

approach he took. 
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One of the key issues surrounding the use of music within algorithm visualisation is how 

to map domain entities to musical structures. Studies by Rigas have determined 

empirically that certain musical features can be shown to convey information well. The 

ability of music to convey temporal and spatial information in parallel data streams 

within a coherent structure and syntax indicates that it offers much potential as a means 

of communicating information at the human-computer interface .. In order to help 

disambiguate auralised information, several teclmiques have been employed when 

perfonning musical mappings. These techniques have exploited the features of timbre, . 

rhytIU1l, volume, ascending pitch and spatial location of timbres. Given that previous 

experimentation in tile field has shown that the approach of using musical auralisation to 

understand and visualise entities can be successful, it is feasible to extend the research by 

enhancing the auralisation techniques by designing a better spatial approach .. 

Many adequate tools exist for creating auditory interfaces. However, MIDI is limited for 

spatial audio. The spatial location employed by many of the systems described in this 

chapter has been' trivial, only exploiting the use of stereophony in most cases. The 

limitations of the human perception accuracy of stereophonic placement have left it very 

much underused in the development of musical auditory systems and applications. Few 

auditory displays have employed three-dimensiol1al timbre placement as a means of 

aiding the disambiguation of information. The exploitation of 3D spatial distribution as 

an extra information cue might inlprove users' understanding of musically' auralised 

infonllatioll, particularly program / algorithm state and execution. In the following 

chapter, this spatial distribution and the associated properties of the human perception of 

spatially located sound sources are investigated. 

The main purpose of this thesis is to examine how relatively inexpensive 3-D sound 

techniques can be used to improve disambiguation of musically auralised sorting 

algorithms. This thesis is also concerned with the effect that musical training has on . 

understanding such sorting algorithm auralisations. The emphasis on using 3D to enhance 

the spatial distribution of the auralisations has been born out of the limitations' of 

stereophony and the aim of maximising the disambiguation of the presented information. 
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Chapter 3 

Spatial Audio for HCI 

- -------------, 

Most modem computers provide some kind of audible "beep" to alert users, but today's 

more modem multimedia-equipped computers are capable of providing CD-quality stereo 

sound. Conventional stereophonic audio systems can easily place a sound at any position 

between the left and right loudspeakers (or earphones). However, with true 3-D sound, 

the source can be placed in any vectored location, at any height, distance or azimuth. In 

this section, the features of acoustics, sound localisation and several techniques for 

creating spatial audio environments will be investigated. 

3.1. Basics of sound 

The process of communication is one that involves pattern recognition and information 

processing. Living. organisms perform these processes by interacting with their 

environment and other living organisms. Roederer [162] describes that external stimuli 

are processed through various stages in the sensory systems. In the case of the visual 

sense, Roederer points out that there are objects in spacebut in the auditory sense the. 

objects are in time. A visual object has a physical presence in real space whereas due to 

the temporal nature of sound waves, an auditory object has a presence within time. It may 

be possible to use 3D audio to create a spatial aspect in a typically temporal medium, this 

extra feature might aid the disambiguation of information when musically auralising 

sorting algorithms. 

Harris [101] reports that a human being is capable of detecting changes in frequency of 

about 3Hz for frequencies up to about 1000Hz. For frequencies between 1000Hz and 

10,000Hz, the required frequency change for recognising a pitch difference can be 

specified as a constant. For example, at 10,000Hz, a 40Hz change is required in order for 

one to detect the change. This limits the amount of information that can be conveyed 

when using pitch as the resolution has limits based upon human perceptual factors. This 
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might impose limits on the types of information that could be conveyed when auralising 

algorithm state and execution. 

There are several characteristics that are key factors in the process of hearing: 

• Pitch is the sound's perceived frequency. Low frequencies produce a Iow pitch 

and high frequencies produce a high pitch. 

• Loudness is proportional to the amplitude of the sound. 

• Timbre denotes the special set of characteristics associated with a particular 

creating instrument. For example, different instruments produce different timbres. 

Intensity also has an effect on the perceived pitch of tones. Stevens [173] determined the 

effect of intensity on the pitch of tones for a number of frequencies between 150Hz and 

12,OOOHz. It was concluded that for frequencies above 3,OOOHz, a constant pitch is 

maintained despite any increasing intensity. Below 3,OOOHz the pitch of the tone is 

perceived subject to the intensity. In order to reduce this effect the intensity could be 

fixed fall all tones. In the context of this thesis, the intensity levels will only be adjusted 

as.a matter of comfort. 

When playing concurrent tones, if the two notes differ by more than ten percent then they 

become distinctly separate and the listener perceives them as two separate notes. The 

changes in loudness that result when two notes are separated by less than ten percent are 

known as beats. Risset [161] defines the difference between consonance and dissonance 

when more t1lan one note is played at a given point in time: consonance occurs when a 

combination . of tones produces a pleasant result and dissonance occurs when a 

combination of tones produces an unpleasant result. In the visual domain, a significantly 

strong visual stimulus prevents the perception of a weaker visual stimulus. This also 

translates to the auditory domain when one tone may mask another, though masking 

usually occurs when one tone is very intense and the other tone is very weak. To reduce 
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complexity the proposed auralisations in this thesis could be performed sequentially. This 

means that no sound event would share its presence in time with any other sound event. 

It is important to understand the process of hearing in order to· create effective 

auralisations that exploit as many features of the process as possible. Wolf and Marsnik 

[199] describe listening as a complex process involving four elements: 

• Hearing. TIns is the physiological process of receiving acoustic stimuli or 

signals. Hearing is fundamentally important in listening, because any form of 

listening requires a good hearing capability. 

• Attention. The attention and the conscious awareness of the listener are required 

in order to attend to a certain message. 

• Understanding. The interpretation and assignment of a meaning to the message 

or signal received and attended. 

• Remembering. The process of storing the acoustical information received for 

later retrieval. It involves two types of memory, the short-term memory (STM) 

and the long-term memory (L TM). 

Wolff and Marsnik [199] further describe that there are a number of axioms for listening: 

• Listening is a mental operation. 

• Listening is active. It involves several intellectual operations. A person needs to 

be alert when listening .. 

• Listening is learned. It can be learned and it improves with training. 
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• Listening is complex. It involves, as noted above, hearing, attention, 

understanding and remembering. 

• Perceptive listeners must be trained. No. matter how much a person wishes to 

I isten, they can only do so to the level to which they have been trained. 

• Listening is as vital a communication skill as reading. 

• Listening is crucial to all communication. Listening is a major part of verbal 

communication and without it verbal communication itself cannot exist. 

3.2. Spatial hearing and psychoacoustics 

The ability of the auditory system to localise sound sources is just one component of our 

perceptual systems, it also has a high survival value. Living organisms have found many 

ways to extract directional information from sound and often use them in a self­

preserving capacity. Although there are some unknowns concerning the perception of 

acoustic sources, the major cues have been known for a long time. Many psychological 

studies have established how accurately we can localise acoustic sources. In order to 

generate spatial sound for HeI and create effective algorithm auralisations it is important 

. to understand that which influences the human auditory system. 
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3.2.1. Vectored Coordinate Systems 

z 

x y 

Figure 3.5 - Head-centred rectangular-coordinate system. 

In order to specify the location of a sound source relative to the listener, it is necessary to 

utilise a coordinate system. Duda [83] noted that one natural choice is the head-centred 

rectangular-coordinate system shown in Figure 3.5. Here the x-axis goes (approximately) 

through the right ear, the y-axis points straight ahead, and the z-axis is vertical. This 

defines three standard planes, the x-y or horizontal plane, the x-z or frontal plane, and the 

y-z or median plane. The horizontal plane defmes up/down separation, the frontal plane 

defmes frontlback separation, and the median plane defmes right/left separation. 

Due to the approximate spherical shape of the human head, a spherical coordinate system 

is usually favoured. The standard coordinates used in a spherical coordinate system are 

azimuth, elevation and range. Duda [83] points out that there are two common ways to 

define these coordinates, the 'vertical-polar coordinate system' and the 'inter-aural-polar 

coordinate system'. The vertical-polar coordinate system, shown below on the left, is the 

most common spherical coordinate system. With this system the azimuth 8 is fIrst 

measured as the angle from the median plane to a frontal plane passing through both the 

source and the z-axis. Secondly· the elevation + is measured as the angle up from the 

horizontal plane. With this choice, surfaces of constant azimuth are planes through the z­

axis, and surfaces of constant elevation are cones concentric about the z-axis. 
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Figure 3.6 - Vector-polar and Inter-aural-polar coordinate system. 

The second of the spherical coordinate systems is the inter-aural-polar coordinate system, 

shown on the right in Figure 3.6. With this system the elevation is first measured as the 

angle ~ from the horizontal plane to a plane that pas~es through the source and the x-axis, 

which is the inter-aural axis. Secondly the azimuth is measured as the angle B over from 

the median plane. With this choice, surfaces of constant elevation are planes through the 

inter-aural axis, and surfaces of constant azimuth are cones concentric with the inter-aural 

aXIs. 

3.2.2. Azimuth cues 

Lord Rayleigh (John Strut!) was one of the pioneers in spatial hearing research and 

approximately one hundred years ago he developed his Duplex Theory[157]. According 

to this theory, there are two primary cues for azimuth; Inter-aural Time Delay (ITD) and 

Inter-aural Intensity Difference (lID) (Figure 3.7). 
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Sound Sourre 

Figure 3.7 - lTD and lID diagram. 

Lord Rayleigh had a simple explanation for the lID. Sound travels at a speed of 

approximately 343 mls, say 'c'. Consider a sound wave from a distant source that strikes 

a spherical head of radius 'a' from a direction specified by the azimuth angle e. Clearly, 

the sound arrives at the right ear before it arrives at the left ear, since it has to travel the 

extra distance a e + a sin e to reach the left ear. Dividing that by the speed of sound, it is 

possible to obtain the following simple formula for the inter-aural time delay: 

ITD = .!...( B+ sin B) • -90' ~ B ,,+90' c . 

Furthermore, Lord Rayleigh also observed that the head diffracts sound waves. He solved 

the wave equation to show how a rigid sphere diffracts a plane wave. His solution 

showed that in addition to the inter-aural time delay there also existed a significant 

difference between the signal levels at each ear, this is now termed as the inter-aural 

intensity difference (lID). 

no is highly frequency dependent, at low frequencies, where the wavelength of the 

sound is long relative to the head diameter, there is hardly any difference in sound 

pressure at the two ears. However, at high frequencies, where the wavelength is short, 

there may well be a 20dB or greater difference. This is known as the head-shadow effect, 

where the far ear is in the sound shadow of the head. 
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Rayleigh's Duplex Theory [157] states that the lID and the lID are complementary. At 

low frequencies (below 1.5 kHz), there is little lID information, but the ITD shifts the 

wavefol1n a fraction of a cycle, which is easily detected. At high frequencies (above 1.5 

kHz), there is ambiguity in the ITD, since there are several cycles of shift, but the lID 

resolves this directional ambiguity. Rayleigh's Duplex Theory says that the IID and ITD 

taken together provide localization information throughout the audible frequency range. 

3.2.3. Elevation cues. 

The primary cues for azimuth are largely binaural whereas the primary cues for elevation 

are often considered to be monaural. The outer ear or pinna can be seen as a directionally 

dependent filter. It can amplify some frequencies through its resonant cavities while at 

the same time attenuating other frequencies due to the interference effects caused by 

other geometrical attributes. 

Above 
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Figure 3.8 - Direction dependent frequency response from Duda [83]. 

Duda [83] illustrated, in Figure 3.8, measured frequency responses for two different 

directions of arrival. In both cases it can be seen that there are tWo paths from the source 

to the ear canal; a direct path and a longer path following a reflection from the pinna. 
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Duda further explains that at moderately low frequencies, the pinna essentially collects 

additional sound energy, and the signals from the two paths arrive in phase. 

However, at high frequencies, the delayed signal is out of phase with the direct signal, 

and destructive interference occurs. The greatest interference occurs when the difference 

in path length d is a half wavelength, i.e.,. when f = c / 2d. In .the example shown, this 

produces a "pinna notch" around 10kHz. With typical values for d, the notch frequency 

is usually in the 6kHz to 16kHz range. 

The pinna notch is noticeably larger when the sound source is in front of the listener, this 

is because the pinna is a less effective reflector of sounds that come from above than for 

sounds that come from the front. Furthermore, the length of the sound path changes with 

the elevation angle, this results in shifting the frequency of the pinna notch. Therefore, 

both the size and frequency of the notch are dependent upon the elevation. 

3.2.4. Range cues 

Estimating range is the most difficult element of localising sound sources in a spatia! 

environnlent. As humans we are typically best at estimating azimuth, next best at 

estimating elevation and worst at estimating range. The cues for each of these localisation 

attributes are understood in the same order, we know most about azimuth cues and least 

about range cues. There are, however, several cues pertaining to range. 

As a sound source gets closer to a human head, the inter-aural intensity difference will 

increase. This increase in difference is particularly noticeable for ranges under one meter. 

Therefore it can be used as a cue for estimating range, distant sounds have very little IID 

whereas close sounds have a relatively large IID. 

Motion parallax refers to the fact that if a listener translates his or her head, the change in 

azimuth will be range dependent. For sources that are very distant, a small shift causes 

very little change in azimuth, whereas for a close sound source, a small shift causes a 
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relatively large change in azimuth. This feature further assists in the human ability to 

estimate range based upon geometry, this feature does, of course, require the listener to 

actively move in order to identify the change in azimuth., 

Another useful cue when estimating range is that of the ratio of direct to reverberant 

sound. In a normal room the surface reflected reverberant energy of a sound source does 

not differ much from the sound source itself when it reaches the listener. It is also known 

that the energy received directly from a sound source drops off inversely with the square 

of the range. Given these two characteristics, a comparison can be made between direct 

energy and reverberant energy where the variable is dictated by moving the sound source. 

At close ranges, the ratio is very large, while at long ranges it is quite small. 

As previously mentioned the energy received directly from a sound source drops off 

inversely with the square of the range. Therefore, as a constant-energy source approaches 

a listener, the loudness will increase. There is no direct one-to-one relationship between 

the received energy and the energy emitted. by the source, this is because the relationship 

is dependent upon the loudness of the signal source. When we estimate range using this 

cue we are more successful when we understand the context of the sound soUrce. 

Changing the volume of the sound source alone does not give the impression of a change 

in range, therefore it is necessary to understand the source of the signal in order to create 

the relationship between the source and received energy. 

3.2.5. Echoes and reverberation 

As humans we are largely unaware of the quantity of energy that is reflected from 

surfaces, we are not conscious of such echoes unless they become extremely delayed and 

apparent. In a normal room it is obvious that sound waves are reflected from surfaces 

such as walls, objects, ceilings etc. Reflections also abound in the outdoor environment, 

they are reflections from the ground, vegetation and objects. The reflections that we are 

conscious of are those that exceed the echo threshold of approximately 30 to 50 ms, 

sounds that have a delay of less than this threshold are not easily determined as echoes 
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but are nonetheless subconsciously used to aid localisation. Special rooms called 

anechoic chambers are built to absorb sound energy, so that only the directly radiated 

energy reaches the ears. Such chambers essentially suppress echoes by absorbing them 

into specially formed surfaces that line the chamber. 

When creating a virtual 3D environment it is important to include such echoes in the 

acoustic sounds that reach the ears, they are essential in localisation and playing pure 

sowlds with no reflections would be similar to that of recording in an anechoic chamber. 

We are, of course, not used to localising pure unreflected sounds and it would be alien for 

us to estimate sound source positions in a non-reverberant environment. Upon entering an 

anechoic chamber for the first time, most people are astonished by how much softer and 

duller everytlling sounds. 

As previously mentioned, reflected sound is very common in ordinary acoustic 

environments. Such reflections do not interfere with our ability to localize sources 

because we quickly adapt to a new environment, and our auditory system uses only· 

partially understood mechanisms to suppress the effects of reflections and reverberation. 

The fact that we localize sounds on the basis of the signals that reach our ears first is 

known as the 'precedence effect' or the 'Law of the First Wavefront' [186]. We are also 

aware of the reflections that follow, we subconsciously use them to estinlate range. 

In a typical room, reflections begin to arrive a few milliseconds after the initial sound. If 

the initial sound is low frequency (below 250 Hz) and hence has a period that is longer 

than that of the reflections, then the reflections arrive before the first wavefront (initial 

direct sound). After several cycles the sound pattern that reaches the ears becomes 

complicated and mixed, in this case it becomes almost impossible for the listener to 

localise. tlle sound source. In sUl1lmary, this means that low-frequency information is 

rendered useless for localising sound sources in a reverberant environment. 

Clearly, the inter-aural tinle delay is important when localising sound sources although it 

is severely impaired at low frequencies. However, that does not mean that inter-aural 
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timing differences are unimportant. Other important timing information may be utilised, 

in particular the inter-aural envelope difference (lED). The lED refers to the difference 

between the transients at the onset of the emitted acoustic signals. 

If a sine wave is filtered into two channels, one low-pass filtered and the other high-pass 

filtered, and the two channels are played through two loudspeakers placed in different 

locations, then a listener would usually estimate the sound source to be emitting from the 

high-passed channel. This is commonly known as the Franssen Effect. Basically, the 

starting transient provides unambiguous localization information, while the steady-state 

signal (Iow-pass filtered signal providing most of the energy) is very difficult to localize, 

and in this circumstance the auditory system simply ignores the ambiguous information. 

3.3. Basic spatial audi~ systems 

Most people are aware of the possibilities of simple single plane spatial audio systems. 

Such single plane spatial sound systems are primarily concerned with placing sound 

sources at a fixed height and distance but varying the azimuth. There are two basic 

classes of such systems, Stereophonic systems. (Two-channel systems) and Surround 

sound systems (Multichannel systems). 

3.3. 1 Stereophonic systems (Two-Channel systems) 

The concept of stereophony is a simple one and was the flIst successful commercial 

attempt at spatial sound reproduction. The concept. of stereophony is to utilise two 

loudspeakers to produce two separate streams of audio, to produce a sound in the left ear 

simply apply the sound to the left channel and vice versa for the right ear. If the sound is 

equally applied to both channels then the resulting output is that of a perceived sound 

source between the two loudspeakers. It is important to maintain that the two 

loudspeakers are in phase (pushing together and pulling together) otherwise the effect is 

that of cancellation. Theoretically, if both channels, both signal sources and both 

.loudspeakers are identical and the listener is sat directly between them in the centre of a 
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symnletrical room then the listener would hear nothing when the two channels are 

playing sound sources in exact anti-phase. The signal sources would effectively cancel 

each other out. 

Monaural So un;e 

gain: 0 ~ '" ~ 1 t 

Phantom So un;e 

~b~ 
Figure 3.9 - The stereophonic 'Phantom' sound source from Duda [83]. 

The perceived sound source shown in Figure 3.9 is often termed a "phantom source" and 

will appear to originate from a point midway between the two loudspeakers when the 

channels are equally applied. By "crossfading" the signal from one speaker- to the other, 

one can create the impression of the source moving continuously between the two 

loudspeaker positions. However, simple crossfading will never create the impression of a 

source outside of the line segment between the two speakers, the very physical set up and _ 

simplicity of the system will not permit this. 

In a simple system such as this, another technique may be used instead of crossfading to -

give the perception of a sound source somewhere between the two loudspeakers. 

This is simply achieved by delaying the sound source to one of the speakers by a fraction 

of time. What this technique essentially does is to exploit the 'precedence effect' or the 

'law of the first wavefront'. If the sound on the left is delayed by 10 or 15 ms relative to 

the sound on the right, the listener will localize the sound on the right side. This applies 

when the sound sources are of equal amplitude and still applies even if the sound that 

comes from one loudspeaker is louder than that of the other. If the delay is too excessive 

then the effect becomes disturbed and the listener hears the delayed signal as a mere 

echo. Stereophony facilitates the placement of sound sources along a line between the 

listener's ears. For the purposes of spatialising algorithm events it provides adequate _ 
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separation. However, for spatialising more complex information like algorithm data it is 

limited in terms of resolution. 

3.3.2. Surround sound systems (Multichannel systems) 

An extension of stereophony is the obvious progressive step to utilise more than two 

loudspeakers, this technique essentially employs a different loudspeaker (and channel) 

for every desired direction (Figure 3.10). This is the same type of system that is 

employed within surround sound cinemas such as Dolby Pro Logic Surround Sound [82]. 

In a typically reverberant environment this type of system exploits the Franssen effect.· 

Small loudspeakers are placed at many locations except for one· large speaker 

(subwoofer) that provides the nondirectional, low-frequency content. The signals to the 

small speakers are then complexly filtered to place the sound in the desired location. 

Figure 3.10 - Multi speaker system. 

These types of systems clearly provide some amazing spatial sound effects but are often 

very complex and costly to implement. They have been adopted by many commercial 

cinemas and makers of home entertainment systems and have clearly made their mark in 

tile field of spatial audio. Surround sound systeins can provide effective sound 

spatialisation. This thesis is more concerned with using inexpensive 3D audio techniques 

and surround sound systems can be costly and complex. 
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3.4 Binaural recording 

The concept behind binaural recording is a very simple one, it involves simply recreating 

the same sound pressure levels at each eardrum that would be present if the listener were 

actually in the sound field. This technique only requires the use of conventional 

stereophonic equipment as two channels (left ear and right ear) are all that is required. 

The results of binaural recording can produce vivid 3D representations of sound sources. 

Headphones 

A 
Usterer 

Figure 3.11 - Binaural technique. 

In order to recreate the same sound pressure levels it is important to take into account the 

filtration effects that naturally occur when we hear sounds. As previously mentiQned, 

sound localisation is primarily determined by the ITD, lID, reverberation and filtration 

effects (reflection and absorption) of the pinnae. Duda [83] explained that in order to 

. exploit these effects a conceptually simple approach is to put two microphones in the ear 

canals of an acoustic manikin (or human being) and record what they pick up (as shown 

in Figure 3.11), the resulting recordings will have already been subjected to the effects of 

the environment and manikin. When the recorded left and right signals are fed to the left 

and right earphones respectively, the effect is that of the listener being present in the 

original sound field .. 

The immediate problem that arises is that of the geometry of the manikin. If the manikin 

and the listener have heads with the same size and shape, the same ITD and lID 

information will be present; similarly, if the manikin and the listener have pinnae with the 

same sizes and shapes, the same elevation cues will be present. If, however, the 

geometrical differences between that of the listener and the manikin are significant, the 

resulting perceptual 3D sound environment becomes subject to errors and localisation is 

difficult. 
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The obvious way to reproduce a more precise individual listening experience is for the 

listener to also be the manikin, this way the geometrical similarities of the recording head 

and the listening head are as close as physically possible. This does, of course, mean that 

each individual listener must have hislher own unique set of binaural recordings to 

maximise the desired effect. 

The teclmique of binaural recording is one of obvious economy and effect, there are , 

however,some disadvantages to using the binaural technique: 

• They require the use of headphones -due to the sounds being recorded 

within the ear canal it is important to reproduce at the same place, this 

limits this technique to earphones. 

• They are not interactive, but must be pre-recorded - a pure sound 

source carmot be manipulated by binaural recording to produce a 3 D 

sound, what is heard by the listener must be pre-recorded and is 

therefore fixed in the initial recorded location. 

• If the listener moves, so do the sounds - as previously mentioned, 

because the sounds need to be pre-recorded and are therefore fixed in 

the initial recorded positions. They are not altered when the listener 

moves hislher head during playback. For a truly interactive immersive 

environment the sounds should give the same perceived fixed location 

even when the listener moves hislher head. This would require the 

addition of some head tracking equipment and further real-time 

filtration. 

• Sources that are directly in front usually seem to be much too close -

this is a known problem with binaural recording, frontal range does not 

seem to translate well using the binaural technique. 

• Because pinna shapes differ from person to person, elevation effects 

are not reliable - pinnae are unique to each individual, even each of 
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the pinnae on a single listener will always be different. Because of this 

individuality, binaural recordings do not translate well from user to 

user (particularly the pinna dependent elevation cues) .. The most 

pragmatic approach is to use a 'Mr. Average' head for recording, this 

way ensures maximum possible effects over a broad range of listeners. 

Some degradation oflocalisation, however, is inevitable. 

A binaural recording can be improved if we overcome some of the issues mentioned 

above in order to make the listening experience more effective. The next step is the use of 

head-related transfer functions (HRTFs). Binaural recording does offer an effective and 

. relatively inexpensive solution to the spatialisation of musically auralised sorting 

algorithms. 

3.5 Headphones vs. Loudspeakers 

It was stated earlier that the concept behind binaural recording is a very simple one. It 

involves simply recreating the same sound pressure levels at each eardrum that would be 

present if the listener were actually in the sound field. If the recording is made in the ear 

canal then it stands to reason that when the binaural recording is played back it should be 

played in exactly (or as close to as possible) the original position of the recording 

transducer. In order to fulfil this requirement it is necessary to employ earphones to 

produce the sounds at the ear canal. Earphones certainly simplify the problem of .. 

delivering one sound to one ear and another sound to another ear, however, earphones do . 

have certain problems: 

• Earphones often have filtration characteristics such as notches and 

peaks in their frequency responses, such characteristics often 

resemble pinna responses. In order to circumvent this problem it is 

important to use compensated earphones, if uncompensated 

earphones are used then elevation effects can become significantly 

augmented. 
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• Earphones are often uncomfortable and headphones can be 

particularly cumbersome. The better the acoustic quality of the 

headphones the larger and heavier they often are, this can cause 

them to be very uncomfortable for a listener to wear for any 

lengthy period of time. 

• One of the most commonly noted characteristics of earphones is 

that when sounds are played back they often appear much closer 

than they were in the original recording. This can, of course, be 

compensated through some filtering. 

Given that earphones have these disadvantages it is worthwhile looking for an alternative. 

Loudspeakers do not suffer from most of the problems associated with earphones and are 

therefore worth considering asa viable alternative. The immediate question that arises is 

how to successfully deliver binaural recordings over loudspeakers, the importance of 

reproducing the recorded sounds at the ear canals has already been highlighted. 

A method of replicating the production of sound in the ear canals using loudspeakers 

needs to be investigated. In order to successfully implement such a system it is important 

to note two key issues. Firstly, the sound produced at the loudspeakers must be filtered to 

replicate how it would sound to the user when playback is via output devices placed 

. within the ear canals. Secondly, some co-channel cross-talk will be present due to both 

channels having to traverse the same medium of air (Figure 3.12). On way of addressing 

the latter issue is to employ a technique known as cross-talk-cancellation. Cross-talk­

cancelled stereo is also known as trans-aural stereo. 
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Figure 3.12 - Co-channel cross-talk from Duda [83]. 

Duda [83] explains that the idea is simply expressed in the frequency domain. In the 

configuration shown in the diagram above, signal SI drives the left loudspeaker and 

signal S2 drives the right loudspeaker. The signal Yl reaching the left ear is a mixture of 

SI travelling through the Hll medium and the "cross-talk" from S2 travelling through 

the H12 medium. More precisely, YI = SI*Hll + S2*HI2, where Hll is the HRTF 

between the left speaker and the left ear and H12 is the HRTF between the right speaker 

and the left ear. Similarly, Y2 = SI *H21 + S2*H22. What is required is a way of 

removing the cross-talk components and the effects of the Hnn mediums to yield SI 

being purely present at Yl and S2 being purely present at Y2. This diagram can be 

mathematically represented as follows: 

In order to find the desired outputs at SI and S2 and hence cancel out the effects of the 

mediums and the cross-talk the equation needs to be rearranged as follows: 

1311 = rHll HIZfrYil 
lsJ ~Zl HzJ LyJ 
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Cross-talk-cancelled stereo can be quite effective when done carefully and can produce 

elevation as well as azimuth effects. The phantom source can be placed significantly 

outside of the line segment between the two loudspeakers. Provided the listener is centred 

between the loudspeakers, crosstalk cancellation is relatively insensitive to front-back 

motions of the listener, however, crosstalk cancellation is degraded when the listener is 

off-centre or not facing forward. Another way of saying this is that the sweet spot (the 

optimum listening position for maximum effect) is long and narrow. 

Loudspeaker 3-D audio systems are effective in desktop computing enviromnents . .This 

is because there is usually only a single listener (the computer user) who is almost always 

centred between the speakers and facing forward towards the monitor. Thus, the primary 

user gets the full 3-D effect because the crosstalk is properly cancelled. In typical 3-D 

audio applications, like video gaming, other listeners may gatlier around to watch. In this 

case, the best 3-D audio effects are heard by others when they are also centred with 

respect to the loudspeakers. Off-centre listeners may not get the full effect, but they still 

hear a high quality stereo program with some spatial enhancements. 

For headphone presentation, Wenzel [192] indicates that, "Alternatively,. even 

inexperienced listeners may be able to adapt to a particular set of HRTFs as long as they 

provide adequate cues for localization." W enzel further notes that a reasonable. approach 

is to use HRTFs from a subject whose measurements have been "behaviourally 

calibrated" and are thus correlated with known perceptual ability in both open field and 

headphone conditions. Wenzel reports that in a recently completed study [192], sixteen 

inexperienced listeners judged the spatial location of sources presented over multiple 

loudspeakers in the open field and over headphones. The headphone stimuli were 

generated digitally using HRTFs measured in the ear canals of a representative subject (a 

good "Iocaliser") from Wightrnan & Kistler [196, 197]. For twelve of the subjects, 

localization performance was relatively accurate, with judgements for the non­

individualized stimuli over headphones being nearly identical to those in the open field. 
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Wenzel fUliher reports that this data suggests that most listeners can obtain useful 

directional information for an auditory display without requiring the use of individually 

tailored HRTFs. The results described above are based on analyses in which errors due to 

frontlback confusions were resolved for open field versus simulated open field stimuli. 

Experienced listeners exhibited frontlback confusion rates of about 5% versus 10% and 

inexperienced listeners showed average rates of about 22% versus 39%. Although the 

reason for such confusions is not completely understood they are probably due to the 

static nature of the stimulus and the ambiguity resulting from the "cone of confusion" 

described by Blauert [21]. For the purposes of spatialising auralisations it would be the 

simplest approach to used headphones. This makes the presentation as effective as 

possible and reduces design complexity. 

3.6. Head-Related Transfer Functions 

z . Sound 
Source 

Figure 3.13 - HRTF measurement from Duda [83]. 

x 

Duda [83] pointed out that in order to find the sound pressure that an arbitrary sound 

source x(t) produces at the eardrum, all that needs to be done is to find the impulse 

response h(t) from the source to the eardrum. This impulse response is called the Head­

Related Impulse Response (HRIR)(Figure 3.13). In the frequency domain its Fourier 

transform H(f) is called the Head Related Transfer Function (HRTF). The HRTF 

provides all of the physical cues for source localization. Each ear requires one HRTF, so 

for each given fixed position in 3D space it is necessary to determine a pair of HRTFs. 
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When the HRTFs are applied to a monaural sound source then the resulting listening 

experience is that of the sound source emitting from the position in 3D space dictated by 

the pair of HRTFs. If a· sound was required to move around the head within a cube of 5 

by 5 by 5 vectored coordinates (125 vectored coordinates) then 125 pairs (250) HRTFs 

would need to be determined. The sound could then be placed in any of the 125 positions 

by applying the relevant pair of HRTFs to a monaural sound source to create a 

synthesised binaural sound source. For the purposes of spatialising auralisations, HRTFs 

offer a flexible and realistic solution. However, it is often difficult to obtain a good set of 

HRTFs and can be expensive to create your own. 

3.6.1 Head tracking 

One of the issues addressed earlier was that of binaural recordings being non-interactive. 

The main issue raised was that no feedback path was present to allow for user response, 

chiefly the motion of the listener. When a listener hears a sound his/her natural response 

is to shift gaze to the sound source. This often results in trying to align the head such that 

the sound source appears directly in the line of sight. Given that binaural recordings are 

usually confmed to fixed positions it is necessary to adjust the perceived location in 

relation to the listener's head motion. If this can be achieved the listener gains the 

impression of being in a more realistic virtual acoustic environment. If this issue remains 

unaddressed then some of the spatial effects can be weakened or even destroyed. Sources 

that are supposed to be directly ahead or directly behind can be particularly augmented 

since the rate of change of binaural cues is greatest in those directions. 

An obvious solution is to employ some form of head motion tracking system and use the 

measured parameters to filter the sound source such that it moves to the correct location 

in relation to the listener's head. When a monaural sound source is convoluted with the 

relevant pair of HRTFs to produce a perceived 3D sound it seems obvious to change the 

current pair of HRTFs in relation to the tracked position of the listener's head .. This 

results in a real-time spatial audio system where the HRTFs (and hence relative location 

of the perceived sound source) are constantly updated. Latency is the time between when 
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a motion is made and the corrected HRTF is used, this should typically be less than 50 ms 

or the Jag will be perceived. If one switches between one HRTF and another, audible 

clicks may result. This may be overcome by implementing some "crossfading" between 

the two states. Head tracking is important in creating realistic audio environments. 

However, for simple spatialisation of algorithm auralisation it is not essential. This thesis 

is concemed with using low-cost 3D audio. 

3.6.2. KEMARresponses 

If HRTFs are to be used for the spatialisation of sorting algorithm auralisations then some 

understanding of their derivation is required. This derivation also shares some common 

features with binaural recordings . 

. The HRTF is a function of four variables; three space coordinates and frequency. Most 

HRTF measurements are made in the far field (greater that one metre), this essentially 

reduces the HRTF to a function of azimuth, elevation and frequency because the HRTF 

drops off inversely with range greater than one metre. Duda [83] made a series of HRIR 

measurements on an acoustic manikin that matches as closely as possible the average 

human head, this manikin is known as KEMAR (Knowles Electronics· Manikin for 

Auditory Research). To gain an understanding of how KEMAR's response varies with 

azimuth and elevation, the following graphical representations of the HRIR and HRTF 

were produced by Duda [83]. 

Figure 3.14 is an image of KEMAR's experimentally measured head-related impulse 

response (HRIR). It shows the response of the right ear to an impulsive source in the 

horizontal plane. The strength of the response is represented by brightness. Duda [83] 

explains that the sound is strongest and arrives soonest when it is coming from the right 

side (azimuth = 90°). Similarly, it is weakest and arrives latest when it is coming from the 

left side (azimuth = 270°). It can also be seen that the arrival time varies with azimuth in 
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an approximate sinusoidal fashion. The arrival time conforms well to the ITD equation. 

[n particular, the difference between the shortest and the longest arrival times IS 

approximately 0.7 ms as the theory predicts the delay to be from one ear to the other. 

0.5 1 
Time (ms) 

1.5 

Figure 3.14 - KEMAR's HRIR in the horizontal plane from Duda [83] . 

The initial sequence of rapid changes (bright and dark bands) is due to pinna reflections. 

The peak that arrives about 0.4 ms after the initial peak is due to a shoulder reflection. 

The response when the source is in front is quite similar to the response when the source 

is at the rear. This correlates with the difficulty associated with localising sound somces 

in the front/back plane. This difficulty is often overcome by the user moving hislher head 

to further local ise the sound source. 

Duda [83] explains that when the source moves around the head in the median plane, the 

changes were much more subtle and the arrival time was approximately tile same. In the 

horizontal plane the changes were much more dramatic, tillS was due to the strong 

asynuneu'y of the microphone in relation to the manikin head. In the median plane the 
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symmetry is strong and differences do not show up quite so easily. The main changes are 

in the relative alTival times and strengths of the pinna reflections. This appears in the 

frequency domain as a notch whose frequency changes with elevation. It can be seen in 

Figure 3.1 5 that the difference between front and back shows up once again in the subtle 

yet clear lack of synulletry about a horizontal line at 90 degrees elevation. 
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Figure 3. 15 - KEMAR's HRIR in the median plane from Duda (83). 
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The mesh plot in Figw-e 3.16 shows the frequency response fOf KEMAR's right ear as the 

source moves in the horizontal plane. Duda [83] notes that although the surface is bumpy, 

it can be seen that at anyone frequency there is an approximately sinusoidal change with 

azimuth. As expected, the response is greatest when the SOUfce is at 90° and directed into 

the right ear, and weakest when the sow-ce is at 2700 on the opposite side of the head. 
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Figure 3.16 - Frequency response for KEMAR's right ear from Duda [83]. 

Once again, frontlback (0° and 180°) responses are quite similar. The graph in Figure 

3.17 shows two plots; one of the response from the front and one of the response from the 

back. The front response is a few dBs greater than the back response in the frequency 

range from around 4 to 7 kHz .. This is largely due to the asymmetry of the pinna. The 

peak around 4 kHz is due to ear-canal resonance. The notch around 10kHz that is also 

clearly visible in the surface plot above is the "pinna notch", whose frequency changes 

with elevation. 

'4· ,. ,-" .10' 18 
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Figure 3.17 - KEMAR's frontlback frequency response, horizontal plane - Duda [83]. 
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The plot in Figure 3.18 shows how KEMAR's frequency response varies as the source 

moves around in the median plane. Duda [83] indicates that the broad ear-canal 

resonance around 4 kHz does not change and that the frequency of the pinna notch 

changes significantly with elevation. It goes from just below 6 kHz at Iow elevations up 

to approximately 10kHz as the source moves overhead. When the source is directly 

above, the notch is hard to see, and the frequency response is fairly flat. It reappears as 

the source moves around the back of the head and back towards the floor. 
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Figure 3.18 - KEMAR's frequency response in the median plane from Duda [83]. 

As previously mentioned, the shape of the pinnae determine the behaviour in the median 

plane and this differs from listener to listener. Listeners with smaller ears produce a 

response with the frequencies shifted higher. This difference in response once again 

highlights the sensitivity of localising the elevation of sound sources from person to. 

person. KEMAR is not exact for all listeners but is certainly a good approximation for 

general application .. 
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The complexity of the spectral profile presented to the ears has made it difficult to 

formulate a comprehensive model of human directional hearing cues for sound from any 

azimuth or elevation angle. Wenzel [192] highlights the issue of individual differences by 

stating that, "A recent study by Wightman and Kistler [197J confirmed the perceptual 

adequacy of the basic technique for static sources; source azimuth was synthesized 

nearly perfectly for all listeners while source elevation was somewhat less well defined in 

the headphone conditions.'" Further to this Blauert [21] has suggested that for successful 

three-dimensional sound presentation over headphones it is necessary to measure each 

potential listener's HRTF. However, as Wenzel [192] notes, ''from an applied standpoint 

measurement of each potential listeners HRTF may not be practical. It may also be the 

case that the user of such a display will not have the opportunity of extensive training. 

thus a critical research issue for virtual acoustic displays is the degree to which the 

· general population of listeners can obtain adequate localization cues from stimuli based 

on non-individualized transforms." 

Preliminary data [193] suggests that using non-listener specific transforms to achieve 

synthesis of localized cues is at least feasible. For experienced listeners, localization 

performance was only slightly degraded, even for the less robust elevation cues. 

Furthermore, the fact that individual differences in performance could be traced to 

acoustical idiosyncrasies in the stimulus suggests that it may eventually be possible to 

create a set of "universal transforms" by appropriate averaging [98] and data reduction 

techniques or even enhancing the spectra of empirically derived transfer functions [84]. 

Martens [134] used principal components analysis (peA) on spectral variation between 

HRTF's in an attempt to reduce the amount of data necessary to specify the directionally 

· dependent spectral cues. He found that effective transfer functions could be re-

· synthesised from just a few principle components that captured simple distinctions such 

as front versus rear, and central versus lateral sound directions. 

KendaII and Martens [135] created a complete sphere of simulated transfer functions 

using pole-zero approximations to measured HRTFs. Perceptual evaluation showed that 

88 

'. 



89 

their transfer functions could support 3D spatial imagery over loudspeakers but the cross 

talk cancellation filters produced timbral changes that were unacceptable for professional 

audio [135]. 

3.6.3. Modelled HRTFs vs. Measured HRTFs 

HRTFs are very complex and many spatial audio systems depend upon experimental data 

such as Duda's KEMAR data shown earlier in this chapter. The main reason for using 

HRTFs is to capture elevation effects alongside azimuth effects. As previously 

mentioned, elevation cues are significantly sensitive to individual differences and issues 

arose about how best to implement a generic 3D spatial audio system. Given these key 

geometrical differences from· person to person it is important to investigate the most 

effective way to implement HRTFs. 

One way is to use a single standard set ofHRTFs. There is, as yet, no recognised standard 

set of HRTFs available. As previously mentioned most data is purely experimental. The 

immediate problem associated with using a single set of HRTFs is that they will not 

necessarily translate well with all potential listeners. The best that can be hoped for it to 

generate a set of HRTFs taken from a model whose characteristics closely match the 

statistical norm. However, it is inevitable that in this case a percentage of listeners will 

experience poor elevation results. This 'single set'. approach is certainly the most 

inexpensive but also the most inflexible. 

Another approach would be to divide the general population into sub-groups based on 

their physical attributes, particularly concentrating on the pinnae and head geometry. A 

set of HRTFs could then be generated for each statistical norm within each of the sub­

groups. Potential listeners could then be categorised into one of the sub-groups by their 

physical attributes and the closest relevant set of HRTFs could be implemented. The 

result is a greater set of HRTFs and a more improved overall effect on the general 

population. Although this approach will yield closer results than using a single set of 

HRTFs it is still not the ideal solution. 
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The obvious ideal solution is to tailor the HRTFs for each individual listener. This would 

prove costly and time consuming as each user would require measurement of HRTFs. 

The results, however, would be as close as is physically possible because the physical 

attributes of the listener would be identical to the physical attributes of the recording 

subject. 

The most flexible approach would be to generate a model HRTF with changeable 

parameters. The parameters could be of or relating to the physical attributes of the target 

listener. In t11is case the HRTFs would adapt to each individual user. 

3.6.4. HRTF Models 

There are several possibilities for modelling head related transfer functions and the topic 

has been subject to some extensive research. The following sub-sections deal with 

Duda's explanation of modelling ITD, IID, spherical head and pinna. 

The ITD model, which is shown in Figure 3.19, is one of the easiest and most effective 

HRTFmodels. The motion of the sound source within the azimuth is controlled by an . 

azimuth-dependent time delay that differs for each ear. The ears are clearly shown to be 

modelled in opposition by the combined (-rt/2 and +rr.l2) 180 degrees (11:) phase difference 

between them. 

To Left Ear To Right Ear 

8 

Sound Source Signal 

Figure 3.19 - ITD model from Duda [83]. 
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Duda describes that using the same geometrical argument that was employed to derive 

the lID: 

ITD= ~ (6+.ln6) • -90' ,,6,,+90' 

the time-delay function is given by: 

, 

~
. ~(I-cos 6) if 161 < ~ 

Td(8) = 

a, 181+ 1- _") It" 161 C' 2 r< <" 
" 

Where 'a' is the head radius and 'c' is the speed of sound. 

It is evident that in this model the energy emitted at each ear is the same as no attenuation 

or amplification components are present. It is the introduced time delay that gives the 

listener the impression of a phantom sound source. This model exploits the features of the 

'precedence effect' or the 'Law of the First Wavefront' as a means of altering the 

azimuth of the sound source. The simplicity of the model does dictate that it produces no 

sense of extemalisation and no frontlback discrimination. It does, however, produce a 

phantom sound source that is capable of moving smoothly from the left ear through the 

head to the right ear as the azimuth changes from _900 to +900
• 

The effects of head shadow can be modelled by filtering the high frequency component 

of the signal source when the head occludes· the path to the receiving ear (Figure 3.20). 

Once again the frequency filtration will be azimuth dependent where the model boosts 

the high frequency component when the azimuth is zero degrees and attenuates the high 

frequency component when the azimuth is 180. Duda [83] describes that Lord Rayleigh's 

analytical solution for the lID for a rigid sphere was in the form of an infinite series, yet 

its magnitude response can be well· approximated by the one-pole, one-zero transfer 

function 

Ht 8) D ",(8)S+~ 
.'~ s+~ 
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By offsetting the azimuth to the ear positions (90 degrees each way), the following 

simple IID model is obtained: 

To Left Ear To Right Ear 

'" H(. e -:2") 

e 

Sound Source Signal 

Figure 3,20 - lID model from Duda [83], 

It can be seen from the simplicity of the one-pole, one-zero transfer function that the 

model can be implemented as an infinite impulse response filter (lIR), 

To Left Ear To Right Ear 

So und 50 urea Signal 

Figure 3,21- Combined lID and ITD model from Duda [83], 
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It is now possible to cascade the lID model and the IID model (Figure 3.21) in order to 

obtain an approximate spherical-head model. With this model, however, there is no sense 

of· externalisation or elevation; the model simply produces an azimuth controlled . 

phantom image somewhere along the axis between the two ears. 

When no IID model is present, some wide-band signals give the impression of two sound 

images, one displaced and one at the centre of the head. The is due to the fact that the 

ITD cue is telling the brain that the source is displaced yet the energy at the two ears is 

the same and therefore the IID cue is telling the brain that the source is in the centre. 

Conversely, when no ITD model is present, a listener once again gets the impression of 

two sound images due to the conflicting info=ation between the UD cue and the lID 

cue. Here, the IID cue is telling the brain that the source is displaced due to the difference 

in energy levels received at the ears while the lID cue is telling the brain that the source 

is in the centre due to no delay being present. The problem of producing split images is 

overcome by this combining of both the ITD model and the IID model. 

One way to add the missing externalisation is to introduce some simulated room echo; 

this gives the impression of externalisation or 'out-of-head' sensation to the listener. The 

diagram shown in Figure 3.22 illustrates this method by introducing some simulated echo 

with variable delay and magnitude. The gain 'K' should be between zero and one, the 

delay 'T' should be between 10 and 30 ms. This very simple room model is not fully 

effective as it only produces externalisation when the azimuth is anything but zero. Also, 

the same echo is sent to both ears and is therefore not azimuth dependent. 
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To Right Ear 

H('8-~) 

T 
Delay 

Sound Soun:eSignal 

Figure 3.22 - Combined lID and ITD model with echo from Duda [83]. 

As previously mentioned, the outer ear or pinna can be seen as a directionally dependent 

filter. It can amplify some frequencies through its resonant cavities while at the same 

time attenuating other frequencies due to the interference effects caused by other 

geometrical attributes. Batteau [14], Watkins [189] and other researchers have suggested 

modelling the effect of the pinna in terms of one or more pinna echoes. The diagram in 

Figure 3.23 shows a typical model that has a multipath structure. 

Figure 3.23 - Monaural Pinna Model from Duda [83]. 
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Each path produces an echo that is determined by two variables of gain and time delay. 

The problem is to determine what the actual values of gain K and time delay T are in 

relation to azimuth and elevation. Some research has been carried out in this field but 

nothing concrete has yet 'emerged. A set of rules and relationships must be identified in 

order to estimate the parameters necessary for a given set of geometrical attributes 

pertaining to the physical characteristics of a listener. 

In order to fully synthesise the three-dimensional listening experience it is necessary to 

create a much more complex model than has been shown so far. The models previously 

, described deal with simple yet very important localisation cues. There are, however, 

many other features of 3D audio thai need to be modelled in order to further realise a 

truly immersive spatial audio environment, necessary models such as shoulder reflection 

models, torso diffraction models, room models, object occlusion models, ear canal 

resonance models etc. A partially combined model is shown below in Figure 3.24 with 

only four components. 

+ Pinna 

Sphencal 
Head 
Model 

Model 

Torso 
Olttractlon 

Model 

Shoulder 
Retlection 

Model 

Sound Source Signal 

Figure 3.24 - Combined models from Duda [83]. 

As more and more features are modelled and added to the overall combined HRTF model 

so it is possible to get better approximations of the actual HRTF. It is clear that there is 

still room for much research in this area before a complete HRTF model can be achieved, 

what has been accomplished so far gives a rough approximation of the HRTF but is by no 

means exact or exhaustive. 
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3.7 Systems using HRTFs 

To reiterate, simple spatial audio systems have several disadvantages. Stereophonic, 

multi -channel and binaural recording systems all have fixed limitations and HRTF 

models are not well established enough to be of any real use at present. The most 

commonly used technique for creating spatial audio is that of the measured HRTF based 

systems. They provide an acceptable level of accuracy coupled with a viable 

implementation complexity. HRTF based systems are capable of producing extremely 

accurate azimuth effects as well as reasonable elevation and range effects. Some 

difficulties with range and particularly elevation emerge due to geometrical differences 

from person to person. The following sub-sections now describe some existing HRTF 

based systems that have been considered for implementing spatailised sorting algorithm 

auralisations. 

3.7.1. TIle Convolvotron 

The Convolvotron [194] was a system manufactured by Crystal River Engineering [58]· 

and was originally developed for the National Aeronautics and Space Administration· 

(NASA). It provides a conceptually simple way of implementing HRTFs in order to 

create a spatial audio environment. The Convolvotron is a system that consists of two 

'convolution·engines' (Figure 3.25) each of which is used to convolve the same monaural 

audio input stream with a finite segment of a head-related impulse response (HRlR) 

retrieved from an indexed table of measured values. The outputs of the cQnvolvers are 

passed through amplifiers to headphones worn by the listener. If the HRIRs for the 

listener are sufficiently close to the HRlRs used by the convolvers, the sound delivered to 

the listener's ears will contain all the correct spatial cues, and the sound image will be 

properly localized. The tables indexed by the desired azimuth and elevation yield the 

relevant pair ofHRlRs for convolution. 
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To Left Ear 

Table of 
left-ear 
Impulse 
responses 

To Right Ear 

Table of 
right-ear 
Impulse 
responses 

Direction 

Sound Source Signal 

Figure 3.25 - Convolvotron system from Duda [83]. 

The Convolvotron system can be customized for a particular individual by measuring and 

using that person's HRlRs. The HRIRs are simply measured for the desired listener and 

stored within the HRlR tables and indexed during playback for convolution with the 

monaural signal source. If the stored HRlRs match those of the current listener then the 

spatial audio effect is as close as possible. The HRIR tables are indexed by azimuth and 

elevation only. Range effects are introduced by using the distance from the source to each 

ear. It is evident that the quantity ofHRIRs required (and the size of the HRIR tables) is· 

dictated by the parameters· of the audio space and the resolution of the sound source 

positioning. By employing coarse spatial sampling the amount of HRIRs (and hence table 

sizes) may be reduced, this· does introduce quantisation errors though. The coarser the 

spatial sampling the greater the quantisation errors and hence the more augmented the 

perceived sound source becomes. It is, therefore, important to maintain a minimum 

resolution when measuring HRIRs. 

Due to the real-time nature of the Convolvotron it is possible to further enhance the 

spatial audio listening experience by implementing a head-tracking device. The 

parameters obtained by the head tracker (azimuth and elevation) can be used to index the 

HRIR tables within the Convolvotron system. The addition of this feedback path allows 

the listener to interact with the irmnersive spatial audio environment. When the listener 

moves hislher head then the perceived phantom sound source moves in accordance. The 
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result is a more realistic listening experience. Adding extra features such as echoes and 

room reverberation by including a room simulation model can further enhance the basic 

system of convoluting tabulated HRIRs with monaural signal sources. The Convolvotron 

was a relatively expensive system and is therefore unsuitable for creating low-c,ost 

spatialised algorithm auralisations. 

3.7.2. InMotion 3D Audio Producer 

InMotion 3D Audio Producer [107], shown in Figure 3.26, was created by Human 

Machine Interfaces Inc. and is a tool for creating realistic auditory scenes. InMotion 

incorporates Wave Arts 3D Audio and Acoustic Environment Modelling technology, 

whiCh creates quite effective 3D audio effects over both headphones and loudspeakers. 

Acoustic environments are realistically simulated, including reverberation, motion 

effects, distance cues, object occlusion etc. 

Figure 3.26 - InMotion 3D Audio Producer screen shot [107]. 

98 



99 

InMotion is essentially a sophisticated sound file mixing application, creating a 3D 

output sound file from a set of input sound files. However, InMotion also has real-time 

previewing capabilities; while producing auditory scenes, any portion of the scene can be 

previewed in real-time. If the scene is too complicated to be rendered in real-time, 

InMotion will automatically render the scene to a file for later playback. 

A lot of commercial audio products are described as having 3-D capability, but in fact 

there is great disparity between the various technologies in use. Unfortunately, many of 

the weakest products are marketed with ,the most exaggerated claims. For example, a 

number of stereo multimedia speakers are marketed as having "3-D" technology. These 

speakers incorporate a simple circuit that has the effect of widening the perceived sound 

field of a stereo recording. That is, the sound images that would normally extend to the 

locations of the left and right speakers are widened to extend beyond the speakers. These 

systems should more properly be called stereo enhancement or "widening" systems. 

They have no ability to position sounds around a listener, or to position sounds behind, 

above, or below the listener. The term '3-D audio' really describes a much more 

sophisticated system than can position sounds anywhere around a listener. Although 

InMotion is described as a 3D audio producer, this is not strictly true. The system omits 

the ability to vary the elevation of the sound source; it is only capable of synthesising 

sounds. in a fixed elevation plane. The only variables permitted for object location are 

azimuth and distance. It can, therefore, be described as a pseudo-3D audio producer as it 

does not permit sound source placement in a truly three-dimensional capacity. 

InMotion 3D Audio Producer is a system that works by mimicking the process of natural 

hearing, essentially reproducing the sound localization cues at the ears of the listener. 

This is done by using a mathematical model (HRTFs) of a human listener that can 

generate the proper sound cues for any desired sound direction. The model used by 

InMotion is chosen to be as generic as possible, so that the resulting localization cues will 

work for a majority of listeners. The performance of the InMotion system depends 

greatly on how well its generic head model happens to match the listener. The head 

model used by Wave Arts 3-D for the InMotion system has been specifically engineered 

to be optimal for a majority of listeners. 
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With the InMotion system the cues are applied to a sound by processing the sound 

through a pair of digital filters (equalizers), which create the left and right ear signals to 

send to the listener. Essentially, the head model used by Wave Arts consists of a large set 

of digital filters (HRTFs) with each pair of digital filters corresponding to a sound 

location. The head model used by Wave Arts 3-D consists of710 different filter pairs to 

reproduce 710 different directions around the head. 

The Wave Arts Acoustic Environment Modelling system combines Wave Arts 3-D with 

accurate simulations of the following acoustic phenomena: 

• Doppler Motion Effect 

• Air Absorption 

• Distance Cues 

• Object Occlusion. 

• Reverberation 

The Doppler motion effect is commonly heard in nature as a pitch change when a 

speeding object passes. a listener. When the object is approaching the listener, the pitch is 

higher than the resting pitch of the object. This is because in the time it takes the object 

to emit one waveform the object has moved closer to the listener, and thus the emitted 

wavelength is shorter than normal. Similarly, when the object is retreating from the 

listener, the pitch is lower than the resting pitch, because the emitted wavelengths are 

longer than normal. InMotion allows placement and movement of sound sources within a 

spatial environment. It is, therefore, important for InMotion to simulate the Doppler 

effect as it is important for generating realistic motion effects. 

When sound propagates through air, some sound energy is absorbed in the air itself. The 

amount of energy loss depends on the frequency of the sound and atmospheric 

conditions. High frequencies are more readily absorbed than low frequencies, so the high 

frequencies are reduced with increasing distance. For example, at 100 metres distance, 

20 degrees Celsius, and 20% humidity, a 4 kHz tone will be attenuated by about 7.4 dB. 
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However, the attenuation would be less than 1 dB for distances less than 10 metres. 

InMotion simulates this effect by employing a low-pass filter whose cut-off frequency 

depends on the distance to the source. 

The principal cue for distance is the loudness of the sound. A sound source will be 

louder when it is closer to the listener than when it is farther away. However, this cue is 

often ambiguous because the listener does not know a priori how loud the source is. 

Thus, a moderately loud crashing sound could be perceived as a quiet, close crash, or a 

distant, loud crash. 

Another important cue for distanceis the loudness of reverberation (see section 3.2.5). 

InMotion models this by decreasing the amplitude of the direct sound by a factor of one 

half (3dB) for every doubling of distance. The amplitude of the reverberation, however, 

does not decrease considerably with increasing distance. The ratio of the direct to 

reverberant amplitude is greater with nearby objects than with distant objects. Thus, 

distant objects sound more reverberant than close objects . 

. . InMotion models the decay of reverberation over distance by attenuating the reverberated 

sound at a rate of half the slope of the direct. sound, or 3 dB per doubling of distance 

(equal to 10 dB drop for a factor of 10 increase in distance). In most reverberant spaces, 

the reverberation does not actually drop this fast with increasing distance. However, for 

the purposes of creating an effective sounding scene, it is often necessary to tweak the 

parameters to get the desired effect. For very close distances, the reverberation is 20 dB 

below the direct sound, equal to a 10% reverberation mix. For increasing distances, the 

ratio of direct sound to reverberation decreases, and at 100 feet the reverberation is louder 

than the direct sound. 

When a sound source is behind an occluding object, the direct path sound must diffract 

(bend) . around the occluding object to reach the listener. Low frequencies with. 

wavelengths larger than the size of the occluding object will not be affected much by the 

.. occluding object. High frequencies with wavelengths smaller than the size of the 

occluding object will be shadowed by the object, and will be greatly attenuated. InMotion 
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3D Audio Producer simulates the effect of an occluding object by employing a low-pass 

filter whose cut-off frequency depends on the size of the occluding object. Simulating 

object occlusion is important to achieve realism in film/video soundtracks where sound 

emitting objects are visibly moving behind occluding objects. 

The Wave Arts Acoustic Environmental Modelling system is implemented using the 

signal routing shown in Figure 3.27 below. The signal routing is conceptually similar to 

the routing seen in multichannel mixing consoles; input signals are individually 

processed, mixed to a set of shared signal busses, and then the bus signals are processed 

and output. In Figure 3.27, the input signals shown at the top represent the individual 

monophonic (monaural) object sounds to be spatially processed to create the scene. 

R,v .. b -.'-+o$--+--
bus 2ctol 

Direct -.' __ ...... $-_ 
bus 2chl 

Reverb 

Headphone 
o\J:put 

Reverb 
mix 

Speaker 
oltput 

Figure 3.27 - Wave Arts Acoustic Environmental Modelling system signal routing. 
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Each input signal is processed through the Doppler effect, then the air absorption and 

occlusion effect, and then the 3-D spatial effect, labelled "3-D cues" in the figure. The 

Doppler effect and air absorption effect are controlled by the distance between the sound· 

object and the listener. The occlusion effect is controlled by the position of the sound 

object, which determines the degree to which the sound object is occluded, and the 

dimensions of the occluding objects. The 3-D spatial effect is controlled by the position 

of the sound object relative to the listener. The 3-D spatial effect creates stereophonic 

(two charmel) output. The figure does not show the individual left and right charmels 

output from the 3-D spatial processor; instead the stereo signals are labelled "2 chI." 

The output from the 3-D spatial processor is split into two stereo signals, which are 

mixed to the "reverb bus" and the "direct bus," each of which is a stereo bus. The 

amount of sound mixed to each bus depends on the "reverb gain" and "direct gain" 

mixing gains. These gains are controlled by the distance from the sound to the listener 

according to the current distance model. Typically, the distance model parameters are set 

up so that the direct to reverberant ratio increases as the sound object distance decreases. 

The 'reverb bus' contains a mix of all solinds that are to be sent to the reverberator. 

These are processed by the reverberator and the result is mixed with the direct bus. The 

reverb mix gain determines the overall level of reverberation in the scene. The 

. reverberator is controlled by the scene environment parameters, Which include the 

reverberation time, room size, damping, etc. 

The direct bus output is suitable for listening to through headphones. The headphone 

output is simply the direct bus processed through a set of tone controls labelled "Post 

EQ". 

For playback over loudspeakers, the direct bus must be further processed by the crosstalk 

canceller. The crosstalk canceller is controlled by the speaker angle parameter. The 

output of the crosstalk canceller is processed by the crosstalk equalization stage, and this 
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signal is further processed by a set of tone controls labelled "Post EQ" and the result is 

output to the speakers. The InMotion system does provide quite realistic 3D audio. 

However, the main disadvantage is the lack of elevation which makes it unsuitable for the 

proposed 3D auralisations of concern in this thesis. 

3.7.3. 3D Audio - Climax Software Solutions 

Climax Software Solutions describe their 3D Audio system as a system that allows the 

creation of sound files that convey true spatial audio placement, which supports multiple 

sotmd sources and features accurate physics. The prerequisite, however, is that for full 

effect the rendered output is best heard over. headphones. Unlike InMotion 3D Audio 

Producer, Climax's 3D Audio system does not incorporate cross-talk cancellation to 

permit playback over open loudspeakers. Although the effect is discernable over 

loudspeakers, it is with headphones that a direct link is made between Climax's 3D 

Audio system and the listener's ears. 

The program focuses on the various empirical influences that determine the way the 

human brain localizes audio, the most essential of these being modelled during 

simulation. Since the real world envelops' a listener with objects that emit and reflect 

sound waves, Climax have ensured that 3D Audio represents the physical surroundings of 

these sources. 3D Audio achieves this by introducing a virtual room in which, a virtual 

head and an arbitrary number of virtual sounds may be positioned. The reflections from 

virtual walls are calculated according to the order of reflections specified by the user. 

Both head and sound source may be animated to give the impression of sound source 

motion and/or head motion when listening to the rendered output. 3D Audio requires a 

set of parameters from the user pertaining to the head position and motion, source 

position and motion, monaural input file, head related transfer function, room size and 

reflection coefficients. Theses parameters are entered into a tree structure shown in 

Figure 3.28. 

104 



105 

~-;'Demo4.3da I!!!I~Ei 

Motion 
Absolute translation: Time 00:000 
Absolute tran,lation: Time 00:000 
Relative translation: Time 02:000 
Turning: Time 04:000 
•• End of Motion •• : Time 06:500 

8 all 2 

Figure 3.28 - 3D Audio screen shot. 

Climax supply their own set of HRTFs that were obtained by empirically measuring 

impulse responses from an unspecified dummy head with microphones placed within its 

ears. Since each individual response strongly depends on the relative direction of the 

sound, the included set of impulses covers the majority of possible directions. Climax 

state that "Applying these data to a sound file, i.e. convoluting an impulse response 

corresponding to a certain direction with the sound data, yields a vague impression of' 

spatial positioning of the sound." The reason for the uncertainty of this statement is due 

to the fact that the impulse response measurements were taken within an anechoic' 

chamber, which is perceptually confusing. Therefore, a virtual room was introduced to 

allow for signal reflections from the surrounding environment. Providing that the sound 

intended for the left ear reaches only the left ear and likewise for the right, these 

reflections supply additional information for localization and, hence, a more realistic 

immersive spatial audio environment. Once the user has specified all of the required. 

parameters, an animated scene preview may be Undertaken, as shown in Figure 3.29, to 

allow the user to monitor the motion of the head and/or sound source. 
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Figure 3.29 - 3D Audio environment screen shot. 

The simulation environment employed by Climax's 3D Audio system is modelled to have 

a regular 'box.like' shape. To enhance realism, the user may define the interior dimensions 

and reflecting properties of each surface. The reflection coefficients of the walls may be 

given in the range from 0.0 to 1.0, where zero means total absorption and one means total 

reflection. Thus, a wall may be omitted by setting its coefficient to zero. Since it is 

computationally necessary for the rendering time to be finite, Climax has pelmitted the 

user to specify the reflection order. A value of N means convoluting the I ine-of-sight 

wave along with indirect waves arriving from a maximum of N walls. The reflection 

order table is given in Figure 3.30. 
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Reflection Order 

o 
1 
2 
3 
4 
5 
6 
7 
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Figure 3.30 - 3D Audio reflection order table. 

Reflected Beams 

o 
6 
24 
62 
128 
230 
376 
574 

Each higher order of reflection introduces additional waves from various directions; 

therefore, each wave must be processed using a different impulse response. Hence, 

rendering time dramatically increases with N. Using reflections of first order significantly 

increases the simulation's "naturalness". Second-order reflections perform a little better, 

and quadruple the rendering time. Climax state that seven is the highest order of 

computation that completes in finite time. With an order of the magnitude of seven, 

rendering takes 2000 times the project's duration to complete. 

Unlike InMotion, there is no provlslOn for such featlU'es as object occlusion, all' 

absorption or Doppler Motion Effect. The system does pennit multiple sound SOlU'ces and 

allows the user to fully animate both the head and the sound SOlU'ce. Although it is not as 

thorough as InMotion in some areas it is more detailed in others. Climax's 3D Audio 

system allows the user to specify his/her own set of HRTFs which gives the system 

greater flexibility and pennits it to be tailored to the target listener. Unlike InMotion, 3D 

Audio includes elevation cues that permit it to be called a truly three-dimensional spatial 

audio system. The main disadvantage with this system is that it facilitates predetermined 

3D audio animations and would therefore be unsuitable for spatialising algorithm 

auralisations that are to be presented in real time during execution. 
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3.7.4. Ambisone - Prosoniq Products Software 

Ambiso ne by Prosoniq [156] is a plug-in for Steinberg's Cubase VST that allows the user 

to mix audio tracks in full 3D stereo. Prosoniq claim that their unique Virtual Scenery 

Modell ing approach is different to methods found elsewhere. They state that it not onl y 

allows for 3D placement when monitoring the mix through a loudspeaker set-up but also 

retains the tlu·ee-dimensional sound image when listening through headphones. This 

indicates that Prosoniq have employed some cross-talk cancellation. The feature that sets 

Ambisone apart from other 3D audio tools is the intuitive user interface (shown in Figure 

3.3 I); it pennits the listener to adjust the different parameters whi le monitoring both 

position and elevation in real time. 

- --................ =-................. 
: Prosoniq Ambisone Demo H(!] El 

Figure 3.3 1 - Ambisone screen shot. 

Distance and elevation parameters allow for placing the source further away from or 

above the listening position. As opposed to other common methods, Prosoniq's Virtual 

Scenery Modell ing approach simulates relative sound positioning using a virtual head in 

a virtua l listening position by rendering real objects instead of using pre-calculated or 

measured filters thus yielding considerable quality, conti nuity and convincability. The 

user interface allows the listener to drag the virtual sound source around the virtual head 

using the mouse, the response is instant and the movement of the sound source may be 
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heard in real-time. The main disadvantage with this system is that it facilitates 3D audio 

animations of predefmed looped audio samples and would therefore be unsuitable for 

spatialising algorithm auralisations that are to be presented in real time during execution. 

3.7.5. Other 3D spatial audio systems. 

The AKG CAP 340 system developed by Persterer [154] incorporates the use of filters to 

simulate head related transfer functions (HRTFs). The filter outputs are fed to 

headphones and no provision has been made for open field speaker systems. Persterer 

accommodates the importance of room reflections as they affect sound localization. He 

implements a simple delay and then assigns a direction by utilising a dedicated filter pair .. 

Persterer states that, "The simulation of HRTF's with an FIR filter requires an impulse 

response duration of some milliseconds. The required processing of several sound 

sources and their reflections calls for computing power of several hundred million 

operations per second." Hence the computational overhead of this system is relatively 

high. Binaural mixing software (SPATMIX) has been developed for the CAP 340. It is 

structured for the binaural processing of up to 32 input signals enabling sets of one direct 

sound and three reflections to be simulated. Special filters simulate the absorption 

properties· of three materials. The proposed auralisations within this thesis are aimed at 

being low cost and independent of hardware. This system is therefore unsuitable as it 

requires some dedicated hardware. 

The Focal Point 3-D Audio System was a Macintosh II based application that used a 

widely available inexpensive Macintosh II accelerator card as· its signal processor. This 

system has been developed with the intention of being employed for the production of 

applications relating to virtual environments and future aircraft cockpits. The binaural 

technology that the system employs is based upon head-related transfer functions. This 

system is modular and possesses at least four 3-D audio channels that can be individually 

placed and moved by the use a mouse, keyboard and RS-232 port commands. The system 

accommodates the use of multiple sets of binaural HRTFs at the same time. The Focal 

Point 3-D Audio System also incorporates a head-tracking feature and has a typical 
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Macintosh interface. Preliminary experiments have revealed large timbre differences 

dependent upon the choice of pinnae sets, which illustrates the importance of the method . 

of obtaining HRTFs. This subsequently generates differences in localization cues causing 

erroneous sound source localisation. The proposed auralisations within this thesis are 

aimed at being low cost and independent of hardware. This system is therefore unsuitable 

as it requires some dedicated hardware. 

The Auris Corporation has developed a 3-D spatial sonnd processor entitled the VS-I. 

This sound processor is equipped for use with both headphone applications and open 

field loudspeaker presentation. The system assumes that the input audio is monophonic 

and therefore contains little or no spatial information. There are two parts to the spatial 

sound processor's acoustical simulation design. The first part captures the acoustics of the 

head pinnae and torso that are responsible for perceived direction. This provides the user 

with three-dimensional panning through a full range of both azimuth and elevation. The 

second part captures the aconstics of the user specified room or environment. This 

environmental simulation also includes directional acoustics and creates the illusion of 

the full three dimensional environment. The Auris Group states that the most important 

feature of their environmental modelling is that it captures the spatial-temporal 

distribution of sound in a natural environment. The time, intensity and direction of 

reflected sound changes in response to the position of a sonnd source and the listener in 

the model room. The combination of directional and environmental simulations provides 

the user with control of source distance and environmental shape. 

With the VS I processor design, virtually all of the signal processing algorithms 

employed are designed for dynamic control by the user. The direction and distance of a 

sound source can be smoothly varied and is intended to automatically include acoustic 

features such as Doppler shift and air absorption. The dynamic steering of the sound 

sources in three dimensions is implemented with time varying filtering based on the 

continuous interpolation of directional transfer functions that are stored in the processor's 

memory. The environmental simulator contains elements that are similar to conventional 

reverberation generators with the exception that the gain, delay and filtering of reflected 
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sound is designed to be continually responsive to movement within the modelled 

environment. Environmental sound processing includes static filters that captnre 

absorption and transmission loss for walls, objects and organic material. Sampling rates 

for the spatial sound processor are 44.1kHz or 48 kHz and the system has also been 

designed to be fully MIDI compatible. 

For applications requiring fast animation, special hardware is used to perform a small 

number of HRTF convolutions to model the direct sound arrival plus a number of early 

reflections, and room reverberation. An example of this approach can be seen in Lake 

DSP's AniScape and MultiScape [123] applications. Real-time convolution with very 

long room responses can be achieved using very high performance processors, such as 

the Huron digital audio convolution workstation built by Lake DSP. The Huron is 

capable of computing both left and right binaural responses with a length of over 5 

seconds each. The intention of the development at Lake was to produce a DSP system 

capable of giving a subject the illusion of a partiCUlar acoustic space, with one or more 

sound sources located within the space. The system was intended to fulfil the following 

requirements: 

1. The sound sources and listener location within the space should be animated, so 

that any of the objects (sources or receiver) could be moved in real-time. 

2. The subject should be given the illusion of the sound source(s) being localised in 

. space with the correct direction and distance impression: 

3. The direct sound source and some early reflections should be animated to give the 

correct impression of close reflective surfaces. 

4. The absorption properties of the wall, floor and ceiling surfaces should be 

modelled. 

5. The late reverberation should be processed to provide the correct spatial 

impression. 
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6. All configuration of the system should be possible from an external computer 

. (such as a graphics workstation) so that the audio simulation can be linked to a 

graphical visualisation/simulation system. 

The proposed auralisations within this thesis are aimed at being low cost and independent 

of hardware. This system is therefore unsuitable as it requires some dedicated hardware. 

3.8. Commercial 3D audio API's 

This section contains an explanation and appraisal of some commercially available APIs. 

They are examined with a view to facilitating real-time spatialisation of musically 

auralised sorting algorithms. As with 3D graphics, whenever there exists a substantial 

amount of processing to be executed, it is best performed directly in the hardware 

components of the system rather than employed in some form of software solution. 

Whether implemented in hardware or software there must exist some form of convention 

pertaining to the language that is to be used to implement the relevant functions. This is 

facilitated by the role of the API (Application Program Interface). There are several 

API's that exist within the commercial market that aim to facilitate the production of 3D 

spatial audio, the most famous of these is Microsoft's Direct3D API. 

3.8.1. DirectSound3D - Microsoft Corporation 

Initially, DirectSound was shipped as a sub-component of Microsoft's DirectX API. 

DirectSound supported basic WAVE file mixing alongside pitch control, volume and 

simple stereo placement. DirectSound also incorporated support for offloading the 

mixing, panning and pitch-shifting to external hardware, this is more commonly known 

as audio acceleration. Few commercially available soundcards support true audio 

acceleration due to the need for sound card designers to incorporate dedicated and 

expensive memory within the audio system. DirectSound3D· was first shipped with 

DirectX 5.0 and was designed to provide a standard API for 3D sound production that 

developers could employ with any sound card. DirectSound3D would provide the basic 
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3D audio algorithm and pennit acceleration of that algorithm in the same manner that 

standard stereo DirectSound can be accelerated. With DirectX 5.0 DirectSound supported 

sound cards that use third party 3D audio algorithms to accelerate DirectSound. 

DirectSound3D works most effectively with headphones but employs further complex 

filtering to support open field stereophonic speakers, quadraphonic speakers and surround 

sound speakers. DirectSound3D uses virtual 3D space where the sound source is defined 

by x, y and z coordinates. Similarly, the listener is placed in virtual space by the same 3D 

vectored coordinate system. The listener also has a further parameter that defines the 

orientation of the head. DirectSound3D implements distance cues by attenuating or 

amplifying the sound source, it also employs some processing to yield a doppler effect 

changing the pitch of the sound source as it moves closer to the listener. DirectX can 

take advantage of many different types of hardware that can enhance the quality of the 

3D audio production. This however, places much responsibility on the programmer. 

Microsoft makes no provision for such effects as environment modelling, reverberation 

and object occlusion but does now support Creative's [57] EAX standard. Many of these 

more complex features require the implementation of third party algorithms. 

3.8.2. A3D - Aureal Technology 

A3D was developed by Aureal Technology [9] as a third party API to be used with their 

own integrated circuits. Aureal developed the Vortex2 le that accelerated the Aureal-2 

standard through it's own A3D API. The specification of Aureal-2 includes all of the 

features of Microsoft's DirectSound3D algorithm with the addition of: 

• Wall / object occlusion. 

• Increased sampling rates .. 

• Underwater effects. 

• Wavetracing technology. 
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The Wavetracing technology implemented by Aureal traces the various paths from the 

sound source to the listener as they bounce from, or are occluded by, the walls in the 

environment. Further to this, the definition of the wall I object material is permissible 

thereby defining the absorption and reflection of the surfaces. 

Results from Aureal's extensive research have offered some scientific explanations of 

why real-time binaural audio technologies such as their own A3D are effective across a 

wide range of applications: 

• Binaural gain - When an audio signal is played on top of white noise it will 

appear 6 to 8 dBs louder than if the signal were non-binaural. This indicates that 

identical audio contents can be more audible and· intelligible in the binaural case 

as the human brain can localise and single out the signal while non-binaural 

signals get lost into the noise. 

• 'Cocktail party effect' - With monaural recording, the ability of the listener to 

focus upon one feature (or conversation) is considerably less than when recorded 

binaurally. This is because the audible components remain spatially separated and 

are subj ect to binaural gain. 

• Faster reaction time - In an environment such as the cockpit of a jet fighter, 

where a lot of complex information is conveyed to the pilot, reaction time can be 

critical. Research suggests that audio information can be processed and reacted to 

more quickly when presented in a binaural format. The binaural signal does not 

only contain information about the nature of itself but also about its source. 

• Reduced listening fatigue - Aureal suggest that listening fatigue may be reduced 

by employing binaural representations. Users that have to wear headphones for 

long periods of time are often subject to listening fatigue, this is due to the nature 

of monaural signals appearing to emit from within the listener's head. 
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• Increased immersion and perception - Binaural presentation offers a richer, 

more in-depth listening experience. Listeners often report the experience as being 

more imrnersive or of being of a higher quality. 

A3D offers many features and reports to be based upon the worlds most advanced 

algoritlmls and HRTF measurement and compression techniques. However, the system 

does require some dedicated hardware. 

3.8.3. Sensaura 

Unlike Aureal, Sensaura [168] simply design audio processing techniques and then 

licence their technology to external integrated circuit manufacturers. The Sensaura 

. technology consists of the four following components: 

• HRTF's - These have been designed through Sensaura's own 'Digital Ear' 

technology. They have measured 1,111 HRTFs to cover one complete hemisphere 

and employ a cross-fading technique to switch from one filter to another thus 

reducing the 'glitch' noises that often appear. 

• Multidrive technology - Both Aureal and Sensaura utilise complex cross-talk 

cancellation techniques to facilitate the playback of binaural signals over open­

field stereophonic or quadraphonic speakers. With the four-speaker system, 

Sensaura have the ability to deliver HRTF based 3D audio to both front and rear 

speaker sets through their Multidrive technology. 

• Macro-FX technology - Sensaura have incorporated their Macro-FX technology 

. to allow sound sources to appear from locations that are closer to the user than 

other spatial sound systems would facilitate .. 
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• Environmental-FX technology - This technology provides compatibility with 

Creative's EAX 1.0 standard and includes wall occlusions and object 

obstructions. 

Sensaura have developed a clearly competent 3D audio technology yet it requires specific 

hardware for implementation. With the advent of cheap soundcards, this approach can 

now be a relatively inexpensive way of achieving 3D audio production on a desktop 

personal computer. 

3.8.4. Other 3D audio API's 

As previously mentioned, Sensaura have enabled compatibility with Creative's EAX 1.0 

technology (Environmental Audio Technology). The main point about Creative's 

technology is that it does not employ the use of HRTFs. Instead,· Creative have 

concentrated upon the 'secondary' cues that are produced by environmental effects. 

Creative states that any positional audio implementation is better carried out through the 

conventional surround-sound technique. Creative's initial Environmental Audio 

Technology implemented a simple feature that adjusted the reverberation of a sound 

source dependent upon its position within the environment. In later implementations they 

incorporated object obstruction and occlusion. They further added controllable variables 

pertaining to the early and late reverberations. Creative have clearly taken a different 

route to mainstream HRTF based 3D spatial audio systems and have not implemented the 

complex features necessary to produce realistic 3D representations. 

3.9. Conclusion 

It can be seen from the preceding investigative appraisal of 3D audio and its associated 

technologies that there are several approaches to creating 3D spatial audio systems. The 

trade-offs between them are based upon effectiveness, complexity and expense. 
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Simple stereophonic systems are limited to placing the sound source on an axis that runs 

through the listener's head from ear to ear. This is clearly the cheapest system to 

implement as stereophonic recording and playback systems are commonplace in today's 

tecImology. The main drawback however, is that it fails to produce any audio 

presentation that could even be remotely considered as three-dimensional. 

Spatial audio systems (or enhanced or extended field systems)· are the next stage of . 

evolution from pure stereophony. This approach does not create a 3D environment but 

simply extends the sound field beyond the boundaries of the listener's head. The sound 

source stilI remains, as with conventional stereo, on the axis that runs between the . 

listener's ears, the exception is that this stereo line is extended to place the sound source 

outside of the user's head. This is another case where nnplementation is relatively cost 

. effective. The result however, is again far from a true 3D spatial audio presentation. 

Surround-sound systems have been proven to be extremely effective and have been 

employed by many cinema theatres thus proving their commercial acceptance. They do 

remain, however, very expensive to implement requiring many speakers and a complex 

audio processing system with dedicated hardware. In terms of application at the human­

computer interface, surround-sound is not really viable, the overspill· of audio within a 

cooperative working environment would be too great to go unnoticed. 

Although HRTFs are rapidly becoming the industry standard for implementing 3D audio 

algorithms they are not without their disadvantages. They require large overheads by 

demanding sets of measured HRTFs. Another, and more important problem is the 

geometrical differences that are present from human to human. There have been several 

suggestions to circumvent this issue ranging from measuring HRTFs based upon the 

statistical norm to measuring unique sets of HRTFs for each potential listener. In using 

the HRTFs based upon the geometrical measurements of the statistical norm the resulting 

audio experience will only translate effectively to a small percentage of the population. 

Creating several HRTF sets based upon geometrically categorised groups resolves this 

issue a little further but is still far from producing the perfect solution. 
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The only conceivable. way of creating effective HRTF based 3D spatial audio 

presentations is to measure a unique set of HRTFs for each listener. The. problem herein 

is that the storage space required becomes extremely demanding in order to accommodate 

such vast data. The adaptable solution that has been recently suggested is "that of 

modelled HRTFs. Here the model contains several variables pertaining to the physical 

attributes of the target listener, once in place, these variables will yield the relevant set of 

HRTFs for subsequent processing. The main problem here is that an accurate and 

complete model does not yet exist, furthermore, each potential listener would require his 

or her physical measurements to be taken and processed. 

It is clear that there are many issues still surrounding the effective use of HRTFs for 3D 

spatial audio presentation. To take this approach it is necessary in the first instance to 

obtain a set HRTFs, further to this it is necessary to obtain a system that will effectively 

implement these HRTFs. Some of the applications appraised in this chapter will produce 

acceptable 3D audio outputs but the most effective systems do require some lengthy 

work. 

The approach that falls part way between cost-effectiveness and realism is the use of pure 

binaural recordings. They are, unlike HRTF based systems, inflexible in that once a 

sound has been binaurally recorded its positionis fixed. Again the overheads can be high 

as creating an auditory scene may require the storage of large amounts of audio files. It is 

by far one of the cheapest solutions requiring a simple stereophonic digital recording 

device and a pair of small condenser microphones. It is possible to utilise a manikin head 

within which the microphones may be placed or take the much cheaper approach of 

placing them in the ear canals of a real human being.· Again the resulting translation of· 

the audio output will be dependent upon the physical similarities of the recording. 

manikinlhuman and the listener. 

For the application of 3D audio in the musical representation of algorithm state and 

execution in this thesis, it has been decided that the best approach to take would be the 
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implementation of binaural recordings. The target result is not required to be exact and to 

translate precisely to ail potential users. Furthermore, the information to be presented is 

to be well defined and finite, therefore only requiring a specific set of binaural recordings 

to be employed in creating the musical auditory scene thus minimising the storage 

overhead required. 
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Chapter 4 

An analysis of sorting algorithms 

The Concise Oxford Dictionary [178] defmes an algorithm as: 

algorithm (say alga-rith'm) noun 

Maths: a clearly defined sequence of operations for solving a particular 

mathematical problem. 

4.1. Introduction 

Sorting is concerned with the organisation of information into some form of sequential 

order to facilitate easier and faster information retrieval. It can be applied, for example, to 

a . contact database where the information could be entered in any random order but 

requires to be ordered alphabetically to facilitate ordered retrieval. If the stored. 

information were to contain mimes and addresses for example, the data could be 

reordered into alphabetical listings based upon name or address. This would permit a user 

to quickly retrieve the desired information as opposed to methodically searching through 

an unordered list of entries. There are many ways in which the reordering of the 

information could be implemented. Each method of reordering can be classed as an 

algorithm. Sorting is central to many tasks carried out on a computer, from database 

entries to file structures for example, to increase the efficiency of information retrieval 

rates. There has been a great deal of research which has yielded an interesting range of 

different algorithms. It is not always possible to say that one algorithm is better than 

another, as relative performance can vary depending on the type of data being sorted. In 

some situations, most of the data is in the correct order, with only a few items needing to 

be sorted. In other situations the data is in a random order and in others the data will tend 

to be in reverse order. Different algorithms will perform differently according to the 

organisation of the data being sorted. Some common algorithms are the Exchange Sort, 

the Bubble Sort, the Selection Sort, the Insertion Sort and Quick Sort algorithms. Some of 

tllese algorithms. are easy to understand and simple to program whilst other are more 
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complex. For a given number of data items, certain sorts always go through a set number 

of comparisons and exchanges, so their performance can be predicted. 

4.2. Sorting algorithm summary 

The more common algorithms are [183,1]: 

Exchange Sort. 

In the Exchange Sort, every two numbers in the list are compared and swapped if the 

second number is less than the first, thus yielding an increasingly sorted ascending list. 

Bubble Sort. 

The idea is to make several passes through the list. On each pass, each pair of adjacent 

elements is compared. If they are in the wrong order, they are swapped. The sort 

completes after a pass with no swaps has been made. 

Insertion Sort. 

The Insertion Sort traverses the list, inserting each element into a second list in sorted 

order. Efficient implementation is achieved by quickly finding the correct position to 

insert the current element, and making sure that the insertion operation is inexpensive in 

resource usage. For instance, a binary search can be used to locate the insertion position. 

Selection Sort. 

A Selection Sort is very similar to an Exchange Sort. For a given list; the smallest 

element of the list is selected and swapped with the first element of the list. The Selection 

Sort is then performed on the remaining list. 

Quick Sort • 

. The Quick Sort algorithm is a fast sort. To sort a list, it divides it into two sub-lists where 
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the elements of the fIrst list are all smaller than the elements of the second list. Then each 

of the smaller lists is recursively sorted. 

Radix Exchange Sort. 

This sort works by looking at the binary representation of each number in the list. It sorts 

based on whether a leading digit is 0 or 1, progressively going from left to right. This is 

similar to the Quick Sort, since essentially a pivot is chosen around which elements get 

sorted. For instance, if the data consisted of 4 bit numbers, the fIrst pivot would be 1000, 

then the algorithm would recurse with the pivots 0100 and 1100, etc. 

Heap Sort. 

This is based on a data structure called a heap, which is a tree with the following 

properties: every leaf has height h or h" 1, every leaf of height h is to the left of those of. 

height h-I. and the value of each vertex is greater than the value of any of its 

descendants. This tree is represented in an array, where for each vertex at index i, its 

descendants are at index 2i 'and 2i+ 1. This sort works by swapping the largest element, 

which is the root of the tree, at index 1, with the last element of the array. This puts the 

largest element at the end. Then, the size of the tree is decreased by 1, leaving the largest 

element in its correct fInal position, and outside the tree. Finally, the tree is reconverted 

into a heap, with the largest element at the root, and this process is repeated until the heap 

is empty. 

Shell Sort. 

The list is sorted by shells of decreasing size. Say, for instance, that sizes of 8,5,3,2,1 are 

used. First. every list of every 8 elements is sorted, that is. those elements numbered 

[1,9, I 7 .... ], [2.10.18 •... ], ... , [8,16,24, ... ]. Then shells of size 5, 3, and 2 are sorted. Finally, 

the whole list (every 1 element) gets sorted. The elements within each shell are sorted by 

a Bubble Sort, although other sorts could be used, even the Shell Sort itself .. 

Bucket Sort. [199, 200]. 

In the Bucket Sort, the list is traversed, placing each element into its appropriate bucket 
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(a container which only takes numbers in a given range, e.g. one bucket might take 

numbers between 10 and 20). Within each bucket, the contents can be sOrted using any 

convenient method. 

4.3. Further explanation of the more common algorithms 

4.3.1. Exchange Sort 

The Exchange Sort is performed by comparing every two numbers in the list and 

swapping them if the second number is less than the first, thus yielding a sorted . 

ascending list. Below is the pseudo-code for the Exchange Sort algorithm: 

Exchange Sort (Sorting the array A[size]) 

While IIOt sorted 

{ 

For index i = I up to i = (size-I) 

Reset COUllt=O. 

} 

{ 

While Not at end of list [(i + count):; size] 

( 

} 

Compare the element A[i]with the element A[i + count]. 

If the current element is larger than the comparison element (A[i) > A[i + 
count]), swap them. 

Increment count. 

} 
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Example: 

Element 1 2 3 4 5 6 7 8 

Data 6 3 2 5 1 4 7 8 

1st pass 1 6 3 5 2 4 7 8 

2nd pass 1 2 6 5 3 4 7 8 

3rd pass 1 2 3 6 5 4 7 8 

The current indexed element (at position 1) which is 6 is compared with the 3 (pos. 2) 

and swapped, the 3 then becomes our current indexed element and is compared with the 2 

(pos. 3) and swapped. 2 then becomes our current indexed element, which is compared 

with the 5 (pos. 4), this is not swapped as the current indexed element is not larger than 

the comparison element. Then the 1 is considered (pos. 5) and this time a swap occurs, 1 

is now the current indexed element and is compared to the 4, 7 and 8 (pos. 6, 7 and 8) 

where no swaps occur. The second pass now begins with the current indexed element 

being the element in position 2, which is compared with elements 3, 4, 5 and 6. This 

continues until the list is sorted or all the elements have been compared (N-l passes). 

4.3.2. Bubble Sort 

Below is the pseudo-code for the Bubble Sort Algorithm: 

Bubble Sort (Sorting the array A[sizeJ) 

While not sorted 

{ 

For index i = 2 up to i = size 

{ 

Compare the element A{i}with the preceding element (A[i - 1]). 

lfthe element is smaller than the preceding one (A[i) < A[i -1J), swap them. 

} 

} 
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Example: 

Element 1 2 3 4 5 6 7 8 

Data 4 6 1 8 7 5 3 2 

1st pass 4 I 6 7 5 3 2 8 

2nd pass I 4 6 5 3 2 7 8 

3rd pass I 4 5 3 2 6 7 8 

The first two data items (4 and 6) are compared and the smaller one placed on the left-

hand side and the larger one on the right hand side. The second and third items (6 and 1) 

are then compared and the smaller one placed on the left and so on. After all the data has 

been passed through once, the largest data item (8) will have "bubbled" through to the 

end of the. list. At the end of the second pass, the second largest data item (7) will be in 

the second last position. For n data items, the process continues for n-I passes, or until no 

exchanges are made in a single pass. 

4.3.3. Insertion Sort 

The basic step in this algorithm is to insert diita into an ascending ordered sequence. Thus 

if the data 'D' is inserted in position i, then the data to the left of position i will be less 

than 'D', and the data to the right of position i will be greater than 'D'. Starting at the end 

of the list and working from right to left, all data on the right of the index is considered as 

the sub-list. This means that as the index decreases toward the start of the list, the sub-list 

increases in size. The data at the current index is 'rippled' through the sub-list via 

comparisons until it finds its correct position in the sub-list. Below is the pseudo-code of 

the algorithm. 
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Insertioll Sort (Sorting the array A[sizeJ) 

For index i = size down to i = 2 

{ While before reach the end of cells 

{ 

126 

Compare the element A[i}with the preceding element (A[i - Ij). 

If the element is smaller than the preceding one (A[i} < A[i -lJ), swap them; 

The insertion sort starts with the last two elements and creates a correctly sorted sub-list, 

which in the example contains 2 and 3. It then looks at the next element (5) and inserts it 

into the sub-list in its correct position. It takes the next element (7) and does the same, 

continuing until the sub-list contains all the data. 
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4.3.4. Selection Sort. 

Below is the pseudo-code for the Selection Sort: 

Selection Sort (Sorting the Array A[Size}) 

For index = 1 to Size-l 

{ 

small = index 

For count = index to Size 

{ 

If A[count} < A[small} then small = count {Find element number of 

smallest value in list} 

} 

Swap A[index} for A[small} 

{Swap current indexed value for smallest value in list} 

) 

Example: 

Element 1 2 3 4 5 6 7 8 

Data 4 6 1 8 7 5 .3 2 

1st pass 1 6 4 8 7 5 3 2 

2nd pass 1 2 4 8 7 5 3 6 

3rd pass 1 2 3 8 7 5 4 6 

The selection sort marks the first element (4). It then goes through the remaining data to 

find the smallest number (1). It swaps this with the first element and the smallest element 

is now in its correct position. It then marks the second element (6) and looks through the 

remaining data for the next smallest number (2). These two numbers are then swapped.· 

This process continues until n-l passes have been made. 
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4.3.5. Quick Sort 

This algorithm partitions the array into. two parts by moving a pivot into its correct 

position, so that items to the pivot's left are smaller than the pivot, and the items to the 

right are bigger. The algoritbrn is then called recursively so that it will partition the two 

subordinate arrays on either side of the pivot until the entire array is sorted. Below is the 

pseudo-code of the Quick Sort:. 

Quick Sort (Sorting array A[size)) 

While low is less than High 

( 

Choose Pivot as the element at position A[low) 

While A[High) is greater than Pivot, decrement High; else move A[High) to 

A[Low) 

While A[low) is less than Pivot, increment low; else move A[low) to A[High) 

} 

Move Pivot into A[High), see Pivot position as High, 

If Low is less than Pivotpoint, recursively call Quick Sort with low = low, High = 
Pivot point - 1 

If High is greater than Pivot point, recursively call Quick Sort with low = Pivot point 

+ 1, High = High. 

Example: 

Element 1 2 3 4 5 6 7 8 

Data 4 6 1 8 7 5 3 2 

Ist pass 1 2 6 8 7 5 3 4 

2nd pass 1 2 3 4 7 5 8 6 

3rd pass 1 2 3 4 5 6 8 7 

4th pass 1 2 3 4 5 6 7 8 sorted. 
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The Quick Sort takes the last element (2) and places it such that all the numbers in the left 

sub-list are smaller and all the numbers in the right sub-list are bigger. It then Quick Sorts 

the left sub-list and then Quick Sorts the right sub-list. This is a recursive algorithm, since 

it is defined in terms of itself. This reduces the complexity of programming it. In this 

implementation the pivot is chosen at random (by picking the last element in the list, 

whatever it may be), but if certain patterns of sorting are required then a pivot is chosen 

through more selective means. For instance, if two sub-lists are required in the first pass 

to be of approximately equal size then a pivot would be selected that would split the list 

roughly in half. 

4.3.6. Radix Sort 

Unlike most other sorting algorithms, the Radix Sort does not involve comparison 

between the items being sorted. Instead, Radix Sort shuffles the items into small bins, . 

then collects the bins and repeats the process until the. array is sorted. The efficient 

operation of the Radix Sort lies in finding the best key to shuffle the items. For integer 

data, the key is each individual digit. In a group of data, there can be up to ten bins for 

each digit (0 - 9). Thus each individual digit of each data is isolated and placed into the 

corresponding bin. At the start, the least significant digit is chosen and the algorithm 

works its way up to the most significant digit. Below is the pseudo-code of the Radix 

Sort: 
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Radix Sort (Sorting array A[sizeJ) 

Create all of the bins. 

130 

From the least significant digit to the most significant digit 

{ 

For each element (from the first to the last) 

{ 

Isolate the value of the significant digit. 

Store the element in the bin with the matching significant digit value. 

} 

For each bin (from the first to the last) 

{ 

Retrieve all of the elements and store them back into the array. 

} 

} Destroy all of the bins. 

4.3.7. Heap Sort 

By viewing the array as a complete binary tree, the Heap Sort transfom1S such a binary 

tree into a heap. This algorithm does not require overheads and is not recursive. The 

algorithm basically follows the following steps: 

1. The complete binary tree (actually an array) is sorted so that it becomes a max-heap, 

thus the fust element is always the biggest element. 

2. Since exactly the opposite is required (the last element should be the biggest instead), 

the first element and the last element are swapped. 

3. Now the array has to be re-sorted (except the last element), so that the fust element is 

again the biggest. 

4. The second step is repeated, so that first element is swapped with current last element. 

5. Steps 2 and 3 are repeated so that all the elements are sorted. 
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Such a strategy takes advantage of a binary tree. Every time an element is moved, it is 

moved to its current position's child. Thus it moves a greater distance than the Insertion . 

Sort. Below is the pseudo-code of the Heap Sort: 

Heap Sort (Sorting array A[size}) 

For each parent node, 

{ 

if there is any child node, we compare it with bigger child. If the parent 

is less, we walk down the parent until none of its new children nodes are greater .. 

} 

While we do not reach the first cell, 

{ 

. swap the first cell with the last cell. 

Change the last cell index to the cell preceding the last cell .. 

Walk down the first cell until none of its new children nodes are greater. 

} 

4.3.8. Shell Sort 

This sorting algorithm was conceived by D. L. Shell (hence the name), and was inspired 

by the Insertion Sort's ability to work quickly on an array that is almost in order. It is aiso 

called a 'diminishing increment' sort. Unlike the Insertion Sort, the Shell Sort does not· 

sort the entire array at once. Instead, it divides the array into non-contiguous segments, 

which are separately sorted by using an Insertion Sort. Once all of the segments are 

sOlied, the Shell Sort re-divides the array into fewer segments and repeats the algorithm 

. until the number of segments equals one, then the array is sorted. 

TIlere are two advantages of the Shell Sort over the Insertion Sort. When the swap occurs 

in a non-contiguous segment, the swap moves the item over a greater distance within the 

overall array. The Insertion Sort only moves the item one position at a time. This means 

that in the Shell Sort, the items being swapped are more likely to be closer to their final 
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position than with the Insertion Sort. Since. the items are more likely to be closer to their 

final positions, the array itself becomes partially sorted. Thus when the segn1ent number 

equals one, and the Shell Sort is performing basically the Insertion Sort, it will be able to 

work very fast, since the Insertion Sort is quick when the array is almost in order. There 

are variations of the Shell Sort depending on the method of arranging segments. The 

"2X" method determines the number of segments by dividing the number of cells by 

two (integer division), so that in the first round each segment will have mostly two cells. 

After the first round, the number of segments is decreased by dividing them by two again. 

This is repeated until there is one segment left. Below is the Shell Sort's pseudo-code: 

Shell Sort (Sorting the array A[sizeJ) 

Determine the number of segments by dividing the number of cells by two. 

While the number of segments are greater than zero 

{ 

} 

For each segment, we do an Insertion Sort. 

Divide the number of segments by two. 

4.3.9. Bucket Sort 

This algorithm partitions the array into two parts by. moving a pivot into its correct 

position, so that items to the pivot's left are smaller than the pivot, and the items to the 

right are bigger. Once the list has been sorted into two buckets, any convenient algorithm 

may be employed to complete the sorting of the contents of each bucket. Below is the 

pseudo-code for an instance of the Quick Sort employing the Bubble Sort as the 

secondary sorting algorithm: . 

132 



Quick Sort (Sorting array A[size}) 

Choose pivot as mid-point 

Reset Current pointer 

Reset Sub1 pointer and Sub2 pOinter 

While not at end of list 

{ 

If A[Current pointer}<=pivot 

{ 

133 

A _Sublist1 [Sub1 pointer}=A[Current pointer} 

Increment Sub1 pointer 

} 

else 

{ 

A_Sublist2[Sub2 pointer}=A[Current pointer} 

. Increment Sub2 pointer 

} 

Increment Current pointer 

} 

Call Bubble Sort for A _ Sublist1 and A _Sublist2 

Example: pivot=4 

Element 1 2 3 4 5 6 

Data 4 6 1 8 7 5 

1st pass {4 1 3 2} {6 8 

2nd pass {I 3 2 4} {6 7 

3rd pass {I 2 3 4} {6 5 

4th pass {I 2 3 4} {5 6 
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The Bucket Sort selects the pivot as the mid-point value in the list which is 4. It the 

traverses the list comparing each element to the pivot. Elements with a value of less than 

or equal to the pivot are placed into the left hand side of the list (A _ Sublistl) while 

elements of value greater than the pivot are placed into the right hand side of the list 

(A_Sublist2). Hence, on the first pass the 4 is compared to the pivot of 4 and placed into 

the left hand sub-list, the 6 is then compared to the pivot of 4 and placed into the right 

hand sub-list. This continues until the entire contents of the list have been sorted around a 

pivot into two sub-lists. The Bubble Sort is then applied to each of these sub-lists. In 

A_Sublistl, the first element (4) is compared to the following element (1) and swapped. 

It is then compared to the third element (3) and swapped. The last compare on this pass of 

this sub-list is then performed against the fourth element (2) and swapped into its fmal 

correct location. The same action is repeatedly performed on each of the sub-lists until 

. the entire list is eventually sorted. 

4.4; Algorithm selection for auralisation 

As stated in Chapter 1, the main purpose of this thesis is to examine how relatively 

inexpensive 3-D sound techniques can be used to improve disambiguation of musically 

auralised sorting algorithms. To reiterate, the emphasis on sorting algorithms is due their 

diverse range of events, sorting nature~ and data. Many other information sources exist 

that could be well suited to auralisation. However, this thesis is not concerned with 

defining which types of information sources are best suited to auralisation. It is more 

concerned with using sorting algorithms as a vehicle for preliminary experimentation of 

communicating information via spatially enhanced music. Furthermore, this thesis' also 

sets out. to determine which types of information within sorting algorithms are more 

amenable to auralisation. 

For the purpose of musical algorithm auralisation it is necessary to look at the nature of 

the sorting algorithms. For simplicity and the ability to draw comparisons, it will be 

assumed that each algorithm will aim to sort the list into ascending order. It will also be 

assumed that the target users will have little or no prior knowledge about the nature and . 
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function of sorting algorithms, this is in order to ensure that all users possess the same 

amount of prior training. Certain algorithms will posses particular characteristics that 

make them more appropriate for musical auralisation than others. Such characteristics 

will be defined by the available information present within the algorithm execution. 

Some algorithms will possess characteristics that will be more readily represented by 

musical metaphors. An example of this would be that a musical triad denoting the 

occurrence of a swap in a Bubble Sort would translate with greater meaning than a single 

note representing a pivot in a QuickSort. This is because the musical triad 'suggests' the 

occurrence of a swap more than a single note 'suggests' the presence of a pivot point. 

The swap structure lends itself more readily to a musical metaphor than a pivot does. It is 

therefore important to identify the key features of each algorithm. The list below 

identifies the prominent characteristics of each of the algorithms: 

• Exchange Sort - This algorithm gradually sorts the list starting from the left by 

swapping elements. This algorithm is iterative and as it repeats its sorting cycle 

the sorted elements of the list grow to the right until the entire list becomes fully 

sorted when the algorithm can terminate. 

• Bubble Sort - This algorithm progressively sorts the list from the right. As large 

elements are. 'rippled' through the list to the right on each iteration by a process 

of s'Yapping neighbouring elements,. the list of sorted elements gradually grows 

to the left until the entire list becomes fully sorted when the algorithm can 

terminate. 

• Insertion Sort - This algorithm, like the Exchange Sort, gradually sorts the list 

starting from left. This algorithm is iterative and as it repeats its sorting cycle by 

swapping elements, the sorted elements of the list grow to the right until the 

entire list becomes fully sorted when the algorithm can terminate. 

• Selection Sort - This algorithm, like the Exchange Sort and Insertion Sort, 

gradually sorts the list starting from the left. Again this algorithm is iterative and 
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as it repeats its sorting cycle by swapping pairs of elements the sorted elements of 

the list grow to the right until the entire list becomes fully sorted and the 

algorithm can terminate. 

• Quick Sort - This algorithm sorts the list into 'buckets' by deciding their 

destination about a pivot. The resulting list shape progression yields a grouping 

characteristic where the groups become smaller yet their number grows in size 

with each iteration. When the sub;arrays or 'bucket' sizes become single then the 

list is deemed to be sorted and the algorithm can terminate. 

• Radix Exchange Sort - As this algorithm operates in the same manner as the 

Quick Sort, it also yields a grouping characteristic and shares the placement, 

iteration and termination characteristics. 

• Heap Sort '- This algorithm iteratively sorts the list from the right. As large 

elements are sent to the end of the list to the right, the list of sorted elements 

gradually grows to the left until the entire list becomes fully sorted and the 

algorithm can terminate. 

• Shell Sort - The characteristics pertaining to the shape progression of the list are 

once again dependent upon the sub-algorithm that is employed. 

• Bucket Sort -This algorithm does not fully sort a list and therefore requires a suh­

algorithm to complete the sort .. The initial characteristic that the algorithm yields 

is one of a grouping nature by placement. of elements' around a pivot, the 

subsequent characteristics are then dependent upon the sub-algorithm employed. 

Features that are c'ommon to all of the above algorithms can be identified by. working 

through the examples given earlier in this chapter. Each shares the following common 

. steps: 
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1. Check the state of the list to see if it is sorted. 

2. Pass through list manipulating the elements. 

3. Check the state of list and terminate if sorted or loop back to step 1 if not sorted. 

The characteristics from all of the above algorithms can now be identified: 

• Checking the list state. 

• Progression of list shape - sorting to the left, to the right, of into groups. 

• Manipulation of elements during a sorting pass - swapping elements or 

placement of elements into sub-arrays based around pivot points. 

• Iteration - denotes the amount of passes the algorithm has made through the list. 

• Termination - denoting the successful completion of a sort. 

The algorithms described above can be further categorised by their sorting progression 

characteristics, the nature of the list progression: 

• Algorithms that sort from the left side of the list-

o Exchange Sort. 

o Selection Sort. 

o Insertion Sort. 

• Algorithms that sort from the right side of the list-

o Bubble Sort. 

o Heap Sort .. 

• Algorithms that sort into groups and sub-groups­

. 0 Quick Sort. 

o Radix Exchange Sort; 

o Postman's Sort. 

• Algorithms that sort dependent upon implemented sub-algorithms-

6 Bucket Sort. 
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o Merge Sort. 

o Shell Sort. 

• Algorithms that have no sequential nature and might not translate well 

musically -

o Tree Sort. 

It would be useful to auralise algorithms with different sorting characteristics. It would 

therefore be a logical step to use one algorithm from each of the previously mentioned 

groups. The algorithms listed below have therefore been chosen to represent each of the 

sorting characteristics with the exception of the non-sequential characteristic that might 

not translate well musically. The exception is that two algorithms with the 'sort from the 

left' characteristic have been chosen. This is due to the different ways in which this 

characteristic manifests itself. The Selection Sort causes a single swap on each pass 

whereas the Exchange Sort can cause multiple swaps when sorting and may therefore 

create confusion for the listener. Auralising both of these algorithms and comparing the 

resulting experimental data will show if this difference in sorting nature has any effect on 

users' perception and understanding of the musical auralisations. 

The chosen algorithms for auralisation are: 

I. Selection Sort - Sorts from the left hand side. , 

2. Exchange Sort - Sorts from the left hand side; 

3. Bubble Sort - Sorts from the right hand side. 

4. Quick Sort - Sorts into groups. 

5. Bucket Sort - Sorts dependent upon sub-algorithms. 

Given these characteristics it would also be'useful to convey algorithms that sort from the 

middle-out and sort from the outside to middle. This can be achieved by combining the 

aforementioned algorithms and essentially implementing different versions of the Bucket 

Sort algorithm. 
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A Bucket Sort algorithm can be employed to achieve a sorting nature that causes the list 

to be gradually ordered from the centre of the list growing out towards the ends of the 

list. The Quick Sort algorithm can be applied for one cycle only to split the list into two 

sub-lists. TIle resnlting two sub-lists can then be sorted with the Bubble Sort algorithm 

and either the Selection Sort or Exchange Sort respectively. Because the Bubble Sort 

SOltS from the right hand side and the Selection / Exchange Sort sorts from the left hand 

side, the resulting list appears to progressively sort from the middle-out when combined. 

Similarly, the Bucket Sort algorithm can also be used to achieve a sorting nature that 

causes the list to be gradually ordered from the ends of the list towards the centre of the 

list. The Quick Sort algorithm can be applied for one cycle only to split the list into two 

sub-lists. The resulting two sub-lists can then be sorted with either the Selection Sort or 

Exchange Sort. and Bubble Sort respectively. Again, .because the Selection / Exchange 

Sort sorts from the left hand side and the Bubble Sort sorts from the right hand side, the 

resulting list appears to progressively sort from the outside to the middle when combined. 

4.5. Conclusion 

The final list of chosen algorithms for auralisation can now be summarised as follows: 

1. Bubble Sort - Sorts from the right hand side. 

2. Selection Sort - Sorts from the left hand side. 

3. Exchange Sort - Sorts from the left hand side. 

4. Quick Sort - Sorts into groups .. 

5: Bucket 'Inside-Out' Sort - Quick Sort + (Bubble Sort + Selection Sort). Sorts 

from the middle to the outside. 

6. Bucket 'Outside-In' Sort - Quick Sort + (Selection Sort + Bubble Sort). Sorts 

from the outside to the middle: 

The characteristics from all chosen algorithms were identified as: 
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• Checking the list state - passing through the list testing each element's placement 

in relation to all other elements in the list based upon a desired 'sorted' state. 

• Progression of list shape - sorting to the left, to the right, of into groups. The 

progression of the state of the list of numbers due to the algorithm's sorting 

nature. This is concerned with the 'evolution' and presence of certain features 

within the list that provide information about its state. It has been identified that 

certain algorithm sort from the left hand side while others sort from the right hand 

side. Other algorithms have been shown to sort by 'segmentation' or 'grouping' 

while others sort from the inside-out or outside-in. 

• Manipulation of elements during a sorting pass - swapping elements or 

placement of elements into sub-arrays based around pivot points. The Bubble, 

Exchange, Selection. and Insertion Sort algorithms manipulate the data by 

swapping pairs of elements. As previously mentioned, a musical swapping 

metaphor could be employed here to denote the occurrence of this type of data 

manipulation. In contrast, the Quick Sort, and both Bucket Sort algorithms on the 

first pass, sort the data into sub-arrays by comparing the current data to a 
predefined pivot value. The representation of this characteristic in the musical 

. domain is not as simple as the swap structure mentioned earlier. The visualisation 

of sub-arrays and pivot points lends itself more readily to mapping into· a spatial 

domain .. The use of timbre and placement could play a key role here in order to 

represent this characteristic. Such an approach could exploit the spatial nature of 

timbre placement to provide a metaphor for a central pivot, while lesser values 

would be sent to a left hand sub-array and greater than of equal to values would 

be sent to a right hand sub-array. 

• Iteration - denotes the amount of passes the algorithm has made through the list. 

This feature would require the mapping of a 'control' type event to represent the 

iteration count. 
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• Termination - denoting the successful completion of a sort. Would require a 

'control' type metaphor to denote that the algorithm has successfully sorted the 

list into the desired order. 

111is chapter has identified the key features and characteristics of sorting algorithms that 

might be amenable to musical auralisation. It is now important to determine how each of 

these features translates for each of. the algorithms. The following chapters document 

experiments that are aimed at understanding the effect that musical training has on the 

perception and understanding of sorting algorithm auralisations. Preliminary experiments 

will be carried to test the basic building blocks of representing algorithms musically, such 

as pitch perception, shape perception, list state perception and list shape progression 

perception. 
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Chapter 5 

Preliminary experimental work 

This chapter documents a set of initial experiments carried out in order to obtain some 

understanding of how an average person (Le. non musically educated) perceives 

sequences of notes, shapes of musical tonal sequences with and without musical timing, 

musically auralised list state, musically auralised list shape progression and musically 

auraIised data manipulation. These tests from the building blocks for sorting algorithm 

auraIisation and are based upon the information attributes highlighted in Chapter 4. The 

results, when taken with existing guidelines on the use of sound in interfaces, are used as 

the basis for the design of experiments that use music to communicate algorithm state and 

execution. The empirical evaluation of these musical auralisations should provide a 

preliminary understanding of how useful music might be for communicating information 

to assist algorithm understanding through algorithm auralisation. Supporting statistical 

data, all raw data and all stimuli are given on the accompanying CD. 

5.2 Research approach 

5.2.1 Musical structure and understanding 

There are many different types of musical structures that can be used to communicate 

information. At the basic level there are single notes (or a short series of single notes). 

Such single notes can be used to alert a user about a particular event but in order to 

communicate more complex information it is necessary to take advantage of higher 

structures in music that involve a number of other properties such as pitch, timbre, 

rbythm and harmony. Earcons [18] are examples of simple musical structures that 

communicate information and experimentally derived guidelines are available for using 

sucb structures effectively (see Section 2.4.3). At a higber level, music is characterised by 

structures such as Major and Minor scales, tunes, complex rhythms, timbre combinations 
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and hannony. Most ofthese structural devices can be used both in works for large sets of 

instruments or for solo instruments. The more complex the music becomes, usually the 

more the emphasis on higher level structures is required to hold the work together. 

It is currently not clear as to how much infonnation listeners with no special musical 

ability can comprehend. The important research question is - to what level of complexity 

can we utilise musical structures in HCI without losing comprehension in the average 

user? To answer this question we need to determine the musical abilities of the average 

listener. Examples of relevant questions pertaining to the perception of musical 

auralisation include: 

• How accurately can the average user identify musical tones? 

• Can users distinguish note sequences? 

• Can users visualise the shapes of tonal sequences? 

• Can users comprehend patterns of tones that denote the presence of a structure? 

• At what level can users comprehend rhythms and tunes? 

• To what accuracy can users identify and distinguish different timbres? 

• How useful is timbre placement in the stereophonic field? 

• Does musical training have any effect on the each of the tests? 

Some musical structures may be understood with little or no training. For example, a 

siren consisting of two-tone repetition to indicate an error is an intuitive representation 

that indicates urgent attention is required. This is, of course, culturally biased as the users 

requires prior knowledge of the meaning of a siren in order to recognise it as a warning 

sign. Rigas [160] calls these 'self explanatory messages' and are essentially auditory 

icons. Other messages may require learning such as those employed in Earcons. Rigas 

[160] calls these 'trained messages'. Interfaces may need to use both types but a 

preference of the 'self explanatory messages' will make the interface easier to use. To 

examine the questions posed above, four experimental procedures were designed and 

carried out. These experiments investigated some key list properties and manipulations of 

lists and how they might be perceived aurally. 
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Firstly, experiments were performed to determine if users (both trained and untrained) 

can perceive different pitch intervals. 

Secondly, experiments were carried out using short pitch sequences in order to 

understand how subjects perceive the shape of tonal patterns. These experiments are 

impOliant in determining whether or not subjects can comprehend the contour of the 

sequence. If so, it. would indicate that they are capable of understanding patterns of 

numerical data. 

Thirdly, experiments were carried out on' pitch sequences that are essentially in a 

sequential order with only one or two notes being incorrectly placed. If users are capable 

of identifying these 'out of order' notes then it would indicate that they are capable of 

. pinpointing erroneous elements in numerical data lists. 

Fourthly, experiments were carried out using pitch sequences as above, but with addition 

of a second timbre to denote the manipulation of the incorrectly placed data elements. If 

users can identify the erroneous elements (as above) and can also identify the 

manipUlation of such elements then it would indicate that they are capable of 

comprehending list manipulation, which is the basis of sorting algorithms. 

The manipUlations' in the above experiments represent some of the core transformations 

used in sorting algorithms. The results of the experiments will enable us to verify and 

understand how listeners perceive and process the following: 

• Ordered and non-ordered pitch ranges. 

• Rhythm in combination with pitch. 

• Temporal arrangements and pitch comparisons between one or two instruments. 

• How far a pattern of what the algorithm does can be understood without the 

listener knowing its detailed processing. 

• The abstract development of mental models of current list states. 
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The results will enhance our understanding of how users mentally react to, and process 

musical stimuli. They will further highlight the feasibility of conveying information about 

algorithm state and execution via music. 

5.2.2 Tools used 

The experiments in this section have been implemented on a personal computer equipped 

with a standard soundcard. The system can be used with both an external MIDI 

compatible multi-timbral synthesiser or the internal sound set of the sound card. Wave 

Table synthesis is normally used as the quality of the produced timbres is much closer to 

that of real instruments. 

5.2.3 Subjects and feedback 

In order to classify the musical ability of the test subjects, information related to the 

musical experience, interest and exposure of each listener was gathered. Edwards 

developed an interactive musical ability test entitled MAT (Musical Ability Test) [86] 

that required considerable time and effort on the part of the test subject. This thesis is 

concerned with understanding what effect musical training and exposure has on the above 

described tests. It does not concern itself with the natural .or actual ability of the test 

subjects but relies more on history and self classification. The resulting individual scores 

were placed into a scale ranging from 1 to 6. This information was obtained using a 

questionnaire containing questions determining listeners' interest in music on a scale one 

to six, their ability to play a musical instrument on a scale of one to five and their singing 

ability on a scale of one to six. The questionnaire is based upon questionnaires used by 

Rigas [160], Alty [3] and Vickers [182]. The questionnaire is given in full in Appendix B. 
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The received information was used to determine a users' overall musical ability 

classification as follows: 

• 1 - Absolutely no musical ability. 

• 2 - Little to average musical ability. 

• 3 - Average to greater than average musical ability. 

• 4 - Greater than average musical ability .. 

• 5 - Greater than average to exceptionally high musical ability. 

• 6 - Exceptionally high musical ability. 

It was found that in all subsequent experiments, listeners with the ability extremes of 1 or 

6 were never encountered. All of the test subjects fell into the scale of 2 to 5 and were 

therefore split into two classifications. Those with a score of 2 were classed as having 

little to average musical ability and those with a score of 3, 4 or 5 were classed as having. 

greater than average to high musical ability. These· two sub-groups will in future be 

referred to as 'non-nlUsical' and 'musical' listeners respectively. User feedback was 

gathered before and during the experiments. Users then answered questions on a form in 

response to musical stimuli. 

5.3. Pitch perception experiments 

5.3.1. Experiment construction 

In this set of experiments thirty subjects were asked to listen to pairs of musical notes and 

determine their position within a bounded diatonic 1 scale. The timbre employed was an 

acoustic grand piano, which was placed in the centre of the stereophonic field with no 

reverberation or chorus added. The bounded diatonic scale started at 'Middle C' and 

ascended by one octave (eight notes). Each of the note pairs were played within this 

scale. In order to create a context, the scale was first played once and each note pair was 

repeated three times. The time interval between the termination of the first note and the . 
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initiation of the second note was zero and the time interval between repetitions was 2 

seconds. In some cases the second note in the pair was higher than the first, in other cases 

the note pairs were identical and in some cases the second note was lower in pitch than 

the first note. Subjects were told that each of the eight notes within the bounded scale 

were mapped to the numbers one to eight. Upon listening to each pair, the subjects were 

asked to write down the numerical values of the notes. There was also the option of 

writing down the initial note value and the difference between the two notes. This is to 

allow for listeners that may not perceive the two notes absolutely and distinctly but hear 

them relative to each other. An example of the scale and "one pair of notes is shown in the 

Figure 5.1. 

1 

1& i JJ:J J I :J J r F 1- 1 Ij -

12345678 1 

Figure 5.1 -Pitch test scale and note pair. 

This diagram in Figure 5.1 was both shown and played to listeners. A further three 

demonstrations with answers were given, but this time no visual representation was 

present. Ten of these pitch pair tests were then carried on each of the thirty SUbjects. The 

full workbook is given in Appendix C. 

5.3.2. Results and analysis 

Figure 5.2 shows the musical ability distribution of the group of thirty test subjects. Of 

this test group, 17 have a musical ability score of 2 and 13 have a musical ability score of 

between 3 and 5. Therefore the test group consists of 17 'non-musical' listeners and 13 

'musical' listeners. It must be noted here that the musical ability ciassification were 

I Diatonic, involving only notes proper to the prevailing key without chromatic alteration. 
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derived such the difference between abilities 2 and 3 is greater than the difference 

between abilities 3 and 4. This facilitates the classification of the 'non-musical' group as 

abilities 1 and 2, and the 'musical' group as abilities 3, 4, 5 and 6. TIns group are termed 

'Group l' and consist of 17 university students from University College London and 13 

non-students. Of the whole group, 9 are male and 21 are female. 
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Figure 5.2':' Musical interest rating for pitch perception test subjects. 

Figure 5.3 shows the users' perception of each of the tones separately. The plot indicates 

the accuracy of each 'absolute' tone within the bounded diatonic single octave scale. 

Thus the results have been analysed as twenty (ten pairs) individual notes. 
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Mean and standard deviation plot of percieved tones· 
Total Group 
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Figure 5.3 - Perceived tone accuracy for pitch perception. 

Figure 5.4 - Table of perceived tone accuracy for pitch perception. 

Figure 5.4 indicates the mean perception for each of the notes, the standard deviation and 

the high and low boundaries. It can be seen that notes that fall close to the boundaries of 

the scale are identified with greater accuracy than those that appear closer to the middle. 

of the scale [3]. This is because the scale that provides the boundaries gives fixed points 

that the user can more readily recall. The middle. of the . scale has little boundary 

information and can create an area of ambiguity. Overall, the group performed well but it 

is important to split up the test subjects into their musical classification groups in order to 

understand how the 'non-musical' and 'musical' groups performed. Figure 5.5 indicates 

the accuracy of the 'non-musical' compared to the 'musical' group. 
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Mean and standard deviation lot of percleved tones -
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Figure 5.5 - Perceived tone accuracy for pitch perception - non-musical v. musical. . 

Non-
Musical Note 1 Note 2 Note 3 Note 4 Note 5 Note 6 Note 7 Note 8 

1.361345 3.176471 3.647059 7.676471 

Figure 5.6 - Table of perceived tone accuracy for pitch perception, musical and non­

musical. 

The data in Figure 5.6 suggest that the accuracy of the 'musical' listeners appears to be 

greater than that of the 'non-musical' group. Again the occurrence of inaccuracy appears 

close to the middle of the scale where perception seems to be most ambiguous. 
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Figure 5.6 also shows that the non-musical test subjects have the greatest influence over 

the performance of the entire group. Figure 5.8b shows the results of the Mann-Whitney 

(WiIcoxon independent samples) non-parametric test applied to the differences of 

perceived notes from the true notes. This test has been employed due to fact that the 

assumptions required for parametric testing were not satisfied. The hypotheses are: 

Ho: There is no difference between the 'non-musical' and 

'musical' test groups when perceiving musical notes. 

HI: The 'musical' listeners perform with differing accuracy 

than the 'non~musical' listeners when perceiving musical notes. 

Figure 5.8b- Table of test statistics for each perceived note, 'non-musical' v. 'musical'. 

As previously noted the 'musical' subjects performed extremely well, whereas now it can 

be seen that the 'non-musical' subjects perform with greater inaccuracy particularly at the 

boundaries. The null hypothesis can be rejected at the 5% level for note 6, at the 1 % level 

for note 8 and at the 0.1 % level for notes 1 and 7. For the remaining notes (2, 3, 4 and 5) 

there is no significant difference between the 'non-musical' and 'musical' test groups and 

we cannot reject the null hypothesis. This data suggest that when notes are played close 

to the boundaries of the context scale the 'musical' test group perform significantly better 

than the 'non-musical' test group. 

, Asypm. The significance level based on the asymptotic distribution of a test statistic. 
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The data given in Figure 5.8c shows the results of a Chi-Squared test applied to the 

results obtained for pitch identification. The hypotheses are: 

Ho : Users are not capable of identifying pitch. In particular, they are not 

capable of understanding musically represented numerical values. 

HI : Users are capable of identifying pitch. In particular, they are capable of 

understanding musically represented numerical values. 

NOTE1 NOTE NOTE3 NOTE NOTES NOTE NOTE7 NOTE 
1- quare . ~~ '0 ~~ JL Ch S 106672 71 73 42 S33 121 067 23444 9280 94800 317 333 

d 7 7 
Asymp. Sig. .ooe .00 .Ooe .00 .ooe .00 .000 .00 

Figure 5.8c - Table oftest statistics for each perceived note. 

These data show that the probability of obtaining the scores gathered from the users for 

the pitch tests at random are extremely low. From these data the null hypothesis can be 

confidently rejected concluding that users are capable of identifying pitch and in 

particular that they are capable of identifying musically represented numerical values. 

This is encouraging since it suggests that users might be capable of understanding 

musically auralised sorting algorithm lists. 

The second feature of this experiment that warrants some investigation is how the test. 

groups performed when the results are analysed as relative pitch tests as opposed to 

absolute pitch tests. Here, the data that are evaluated are the perceived differences 

between the two notes and not how accurately they are placed within the scale. The 

intervals played to the listeners ranged from I to 7 with the omission of intervals of 2 due 

to the constraints of the absolute pitches used in the previous test. Figure 5.9 shows how 

the entire group of test subjects performed as a whole. 
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Mean and standard deviation plot of percleved 
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Figure 5.9 - Perceived tonal interval. 

Figure 5.10 - Table of perceived tonal interval. 

Figures 5.9 and 5.10 show that the greatest accuracy occurs when the actual tonal 

difference is least. The greatest inaccuracy occurs when the difference between the two 

tones is large. This indicates that it is easier to estimate small interval differences as 

opposed to large interval differences. Again it is important to divide the data into two 

groups in order to better understand how the 'musical' and 'non-musical' sub-groups 

perform. 
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Mean and standard deviation plot of percieved . 
difference - Non-Musical v Musical 
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Figure 5.11 - Perceived tonal interval- non-musical v musical. 

Figure 5.12 - Table of perceived tonal interval- non-musical v musical. 
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The data given in Figures 5J 1 and 5.12 suggest the 'musical' group perform with greater 

accuracy than the 'non-musical' group. Figure 5J4b shows the results of the Mann­

Whitney (Wilcoxon independent samples) non-parametric test applied to the differences 

of perceived intervals from the true intervals. 
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The hypotheses are: 

Ho : There is no difference between the 'non-musical' and 

'musical' test groups when perceiving musical intervals. 

HI: The 'musical' listeners perform with differing accuracy 

than the 'non-musical' listeners. when perceiving musical intervals. 

DIFF1 DIFF3 DIFF4 DIFF5 DIFF6 DIFF7 
Mann-Whitney U 86.000 44.000 43.000 45.000 52.000 32.500 

WilcoxonV\ 239.000 135.000 134.000 136.000 143.000 123.500 
-1.331 -2.901 -3.02 -2.853 -3.040 -3.696 

Asymp. Sig. (1 .092 .002 .001 .002 .001 .000 
tailed 

Figure 5.14b - Table of test statistics for each perceived interval, 'non-musical' v. 

'musical' . 

From the data given in Figure 5.14b the null hypothesis cannot be rejected for single 

intervals suggesting that there is no significant difference between 'musical' and 'non­

musical' listeners when perceiving intervals of 1.. For the remaining intervals (i.e. >1) the 

null hypothesis can be rejected at the 1% level. This level of significance increases 

approximately in relation to the size of the true interval. This data suggests that there is 

no significant difference between 'non-musical' listeners and 'musical' listeners when 

perceiving small intervals. The data also suggests that as the test interval increases in size 

then 'musical' listeners tend to perform increasingly .better than 'non-musical' listeners. 

Once again the data shows that the overall inaccuracy of the entire group increases as the 

pitch interval grows. In a similar experiment Alty[3] also showed that users of 'average 

musical ability' were capable of identifying pitch. This is supported by similar 

experiments performed by Rigas [160]. 
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The data given in Figure 5.14c shows the results of a Chi-Squared test applied to the 

results obtained for pitch interval identification. The hypotheses are: 

Ho:· Users are not capable of identifying pitch intervals. In particular, they are 

not capable of understanding musically represented numerical differences. 

HI: Users are capable of identifying pitch intervals. In particular, they are 

capable of understanding musically represented numerical differences. 

Figure 5.14c - Table oftest statistics for each perceived interval. 

These data show that the probability of obtaining the scores gathered from the users for 

the pitch interval tests at random are extremely Iow. From these data the null hypothesis 

can be confidently rejected concluding that users are capable of identifying pitch intervals 

and in particular that they are capable of identifying musically represented numerical 

differences. TIlls is again encouraging since it suggests that users might be capable of 

understanding musically auralised sorting algorithm lists ... 

5.4. Shape perception experiments 

5.4.1. Experiment construction 

This experiment was designed to in order to help understand how listeners perceive the 

shape of short sequences of musical notes. As with the pitch tests documented earlier, the 

sequences were all played within one diatonic octave starting at 'Middle C'. Again, thirty 

subjects were asked to listen to the sequences of musical notes and determine their shape 

within the bounded diatonic scale. The timbre employed was again an acoustic grand 

piano, which was placed in the centre of the stereophonic field with no reverberation or 
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chorus. added. In order to create a context, the scale was fIrst played once and each 

musical sequence was repeated three times. The time interval between repetitions was 2 

seconds. The sequences had timing applied to them to make them appear more musical 

and hence more memorable. By this it is meant that rhythmic timing was applied to the 

tunes as opposed to presenting them with equal note durations and equal spaces between 

notes. The listeners were informed that information pertaining to the timing of the actual 

sequences was not important, the key feature was the overall contour of the tonal 

sequence and how it fItted into the bounded diatonic scale. Subjects were once again told 

that each of the eight notes within the bounded scale were mapped to the numbers one to 

eight. Upon listening to each sequence, the subjects were asked to 'draw' the shape of the 

tonal pattem by placing 'X' marks within a provided grid as shown in the demonstration 

sequences below. Each sequence contained notes that were only present in the. contextual 

bounded diatonic octave scale. Each sequence was of varying length containing between 

six and eight notes. Thus each grid was eight notes high by eight note events wide. 

Demo 2 
~~ 

Figure 5.15 - Example answer grids, shape perception experiments. 

Th"e test subjects were played the four musical sequences and shown the four diagrams in 

Figure 5.15 above. The questionnaire is given in full in Appendix D. The subject group 

was then asked to draw the shape of a further six tonal sequences by placing 'X' marks in 
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blank grids. Each test was perfonned on thirty individual test subjects. The six sequences 

are given in the grid diagrams shown below in Figure 5.15a. 

Shape 1.. Shape 2. 

Shape 3. Shape 4. 

Shape 5. Shape 6. 

Figure 5.l5a - Shape test stimuli. 

5.4.2. Evaluation mechanism 

In order to analyse the results of the above experiments it is necessary to create some 

fonn of scoring mechanism. Certain algorithms exist that allow for the measurement of 

similarities between two graphs. Parametric bivariate correlation equations such as 
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Pearson's correlation coefficient and non-parametric bivariate correlation equations such 

as Kendall's tau-b and Spearrnan's rho can be used to test for linear correlation between 

two data sets. Such approaches can be applied to shapes represented by sequential 

numerical values to compare similarities. However, significant correlation is often only 

observed when a large amount of the data correlation is present. The similarities that are 

required for identification in this series of experiments are not simply relationships 

between numerical values. Certain general features such as 'ascending', 'descending' or 

'randomness' are required to be identified and scored. Correlation algorithms as 

mentioned above do not possess the ability to correlate shapes in this way. In this case the 

desired result is an approximate gauge of the accuracy of the perceived contour of the 

musical sequences. Therefore a scoring mechanism has been developed and employed. 

In order to score the correlation between the reference shapes and those shapes drawn by 

the test subjects it is important to identify the features of interest within the context of this 

series of experiments. The following features were identified: 

• Sequential pattern progression - this feature is concerned with identifying the key 

points within each pattern and outlining the direction of each note with reference 

to the other notes within the sequence. In the initial design of the scoring 

mechanism, this feature was scored by comparing each element to the element 

that preceded it and noting the direction of 'tonal travel' (up, down or. same). 

After preliminary experimentation with .this mechanism, it was found that the 

comparisons were too confmed to their neighbouring elements and scoring 

appeared inaccurate in certain cases where simple shifting occurred but where the 

shape was relatively accurate. Due to these inaccuracies it was decided that the 

position of each element should be compared with the positions of all subsequent 

elements. This mechanism scored the shape progression relative to all elements 

within the list and therefore gave greater accuracy when scoring pairs shapes that 

were almost identical with the exception of one or two elements missing or being 

misplaced. 
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• Amplitude - this feature is concerned with the spread of the amplitude of the 

perceived shape. If the reference shape was spread over one entire diatonic octave 

(8 notes) and the perceived shape was spread over 4 notes then the score should 

. be Iow, if the spread is close to or exactly the same as the reference spread then 

the score should be high. 

• General shape - this feature is the subjective element of the scoring mechanism. 

The scorer gives a point score based upon how similar the general shape of the 

reference pattern is to the general shape of the perceived pattern. In order to 

control the subjection, an informal test was performed by the author on 15 test 

subjects which asked them to rate the similarity between graphs based upon 

extracting features concerned with this thesis. Specifically, the identification of up 

to 3 general features classed as random or ordered in a specified direction. 

The scoring mechanism was used to rate the similarity between 50 sets of graphs each 

with a reference graph for comparison. The same data was also presented to 15 test 

subjects and the results of the two tests analysed. The weighting of the components in the 

scoring mechanism were then corrected to reflect the scores obtained from the subjective 

opinions of the test subjects. It is important here to reiterate the reason for developing a 

scoring mechanism with a subjective component. The correlation required between. 

shapes that is of concern in this thesis is at a higher level of abstraction than mathematical 

correlation schemes would permit. Several 'problematic' shapes were subjected to the 

scoring mechanism to identify the likely points of failure. By problematic, it is meant that 

they would score a low mathematical correlation but would capture the more abstract 

properties of interest in this thesis. The scoring mechanism was therefore derived by 

identifying the more abstract features both mathematically and observationally in order to 

capture the general attributes of a graph that would satisfy the concern of this thesis. 
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The derived weighting of each of the three features for the overall score is given as: 

• Sequential pattern progression - maximum 7 points. 

• Amplitude - maximum 1 point. 

• General shape '- maximum 2 points. 

The scoring out of a maximum of 7 for the sequential pattern progression has been 

implemented with the following considerations. The total number of valid comparison 

points between each current element and all subsequent following elements is given by . 

(n-l)+(n-2)+(n-3) ..... (n-n) points, where 'n' represents the number of elements in the list. 

1 point is given for an accurate correlation for each of the valid comparison points 

between the reference list and the perceived list. The total score is then divided by 7 and 

multiplied by the equation given above, thus yielding a fmal score out of7. 

The scoring for the amplitude is calculated by fmding the high and low points in both the 

reference list and the perceived list and finding the difference between high and low 

points in each case. The differences are then compared between lists to yield the 

difference in spread between the reference pattern and the perceived pattern. If the 

difference in spread is zero, or one, then the lists are deemed to have similar amplitudes 

and a score of I point is awarded. If the difference in spread is two then 0.5 points are 

awarded and any spread difference greater than two yields a score of O. These scores have 

been distributed based upon the fact that the tonal sequences are all within the same eight 

notes, therefore the maximum difference in spread between two sequences (one confmed 

to the same note and one using the entire eight note octave) would be 7. 

TIle scoring of the general shape out of a maximum of 2 is calculated by awarding the 

appropriate portion of the maximum based upon the amount of identifiable features. One 

feature that became apparent when initially scoring and analysing the results using this 

mechanism was that patterns that are correct in every way except that they have been 
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shifted left or right score relatively low. To accommodate this it was decided that the 

scoring should be done on the given perceived list and on left and right shifted versions 

of the perceived list. The highest of these three scores would be the score of interest. . 

The scoring mechanism has been implemented on PC and has been written in the C 

programming language. This implemented version of the conceptual scoring mechanism 

has been used to score the correlation between the reference sequence shapes and those 

given by the test subjects in this series of experirrients. 

5.4.3. Results and analysis 

TIle group of test subjects used were the previously described 'Group 1'. The diagram 

given in Figure 5.17 shows the accuracy of each of the thirty test subjects for all six of 

the shape perception questions. The graph has been ordered and colour coded in terms of 

musical ability. It can be seen that there is a general trend that might suggest that 

'musical' test subjects tend to perform slightly better than 'non-musical' test subjects 

when perceiving the contour of the tonal sequences. 
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Figure 5.17 - Shape perception accuracy plot - entire test group. 

The· graph in Figure 5.17 shows that of the 'non-musical' test subjects with a musical 

ability rating of two (out of a -maximum of six), five performed with a greater than 80% 

accuracy level when perceiving the shapes of the tonal sequences. The remainder still 

performed well but generally not as accurately as the 'musical' test subjects. These 

'musical' listeners performed with no less than 81% accuracy. Since the data in this case 

have been combined to give an average score over all six shapes, it is important to 

ascertain whether certain shapes were perceived more accurately than others and whether 

the 'musical' group performed differently to the 'non-musical' group for these different 

information types. 

Figure 5.18 shows how the group of test subjects as a whole performed on each of the six 

shape perception questions. 
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Shape Question Plot - Total 
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Figure 5.18 - Shape perception accuracy plot by shape - entire test group. 

Figw'e 5.18 suggests that a small difference between the perceptions of the different 

shapes. The noticeable difference is the increase in accuracy for the subjects' perception 

of shapes 3, 4 and 6. The only observable difference in these shapes is that each possesses 

very prominent and obvious features. 

The data given in Figure 5.18a shows the results of the Wilcoxon Signed Ranks test 

applied to the shapes perception results given above. The hypothese are: 

Ho : There is no difference in perception between the shapes 3, 4 and 6 and 

shapes 1,2 and 5. 

HI : There is a difference in perception between the shapes 3, 4 and 6 and 

shapes 1,2 and 5. 
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Figure 5.18a - Table of test statistics for the perception of shape 3, 4 and 6 compared to 

shapes 1,2 and 5. 

From this data the null hypothesis can be rejected at the 0.1% level of confidence 

concluding that the perception of shapes 3, 4 and 6 is significantly better than the group's 

perception of shapes I, 2 and 5. 

TIle features for shapes 3, 4 and 6 are: 

• . Shape 3 - Long ascent followed by sharp descent followed by sharp ascent. 

• Shape 4 - Sharp shallow trough followed long descent followed by small ascent 

at the tail. 
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• Shape 6 - Mediwn descent followed repeated sharp peaks. 

The features of Shapes 1,2 and 5 are: 

• Shape 1 - Short flat section followed by sharp ascent followed by short rnediwn 

descent followed by rnediwn length ascent. 

• Shape 2 - Short flat section followed by mediwn length descent followed by short 

sharp ascent followed by rnediwn length descent. 

• Shape 5 - Sharp descent followed by rnediwn ascent followed by sharp ascent 

followed by very sharp descent followed by rnediwn length ascent. 
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The best perceived shapes were those that possess long and obvious ascents or descents, 

or repeated patterns. The shapes that did not translate quite so well each had more 

complex and less obvious and non-repetitive features. 

Figure 5.19 shows how 'musical' listeners performed compared to 'non-musical' 

listeners in terms of accuracy of perception for each of the six shapes . 
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Figure 5.19 - Shape perception accuracy by shape - non-musical v musical listeners. 

The same feature is observed for the Inusically untrained group of listeners as was 

observed for the group as a whole. Certain obvious or repetitive features translate better 

than more complex or non-repetitive features. 

Figure 5.19b shows the results of the Mann-Whitney (Wilcoxon independent samples) 

non-parametric test applied to the scores obtained for the perceived shapes compared to 

the true shapes. 
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The hypotheses are: 

Ho : There is no difference between the 'non-musical' and 

'musical' test groups when perceiving musical shapes. 

HI: The 'musical' listeners perform with differing accuracy 

than the 'non-musical' listeners when perceiving musical shapes. 

Figure 5.l9b - Table of test statistics for each perceived shape, 'non-musical' v. 

'musical'. 

The null hypothesis can be rejected for all shapes suggesting that there is significant 

difference between 'musical' and 'non-musical' listeners when perceiving musical 

shapes. The null hypothesis can be rejected at the 0.1 % level of significance for shapes 1, 

2, 4 and 5. It can also be rejected for shape 3 at the 5% level of confidence and for ~hape 

6 at the 1 % level of confidence. This· data suggests that overall 'musical' listeners 

perform significantly better than 'non-musical' listeners when perceiving short musical 

patterns. The data also suggests that there is a greater difference between 'non-musical' . 

listeners and 'musical' listeners when perceiving complex shapes compared to simpler 

shapes. The overall accuracy for all test listeners is however, observably high. This data 

suggests that musically trained people might be more suitable for understanding sorting 

algorithm auralisation. However, this experiment presented the listeners with tonal 

sequences that had musical timing applied to them in an attempt to make them more 

'musical'. It would be of interest to remove this musical timing as the proposed algorithm 

auralisations will not represent the list states with such 'musicality', but rather play the 

lists with equal note durations and equal spacing between the note. This might yield more 

favourable results for the musically untrained subjects. 

168 



169 

The overall average score for the perception of musically represented shapes in the 

context of this experiment and subject to the marking scheme is 80.1 %. By examining the 

marking scheme and using the binomial expansion the probability of obtaining such a . 

score at random can be approximated. 

1. Sequential pattern progression - Assume simplest shape with a list size of six, the 

minimum. size played. Each element compared to all following elements. 

111erefore (6-1)! possible outcomes = 720. However, the score is given for the 

relationship in terms of direction between element pairs. This mechanism allows 

for 'alias' shapes that would not exactly correlate with the reference shape by 

more classical correlation methods but would score full marks here as the 

directional relationships between all element pairs is satisfied. For a list size of 6, 

the highest amount of alias shapes is 70. This value has been derived by using the 

mechanjsm on all possible shapes and references. The mechanism also left and 

right shifted the data to allow for shifting errors, yielding 3 comparisons, the best 

of which was taken as the score. This trebles the chance of success. Therefore, 

assuming the simplest and shortest shape with the highest amount of possible 

aliases and accommodating the shifting nature of the mechanism, the probability 

of gaining a maximum score at random is given as (3x70/720). Or 7/24. 

2. Amplitude - Full marks awarded if amplitude is the same or 1 values either side, 

therefore there are 3 chances at gaining full marks. There are 8 possible values of 

difference, so the probability of gaining a full score at random is 3/8. 

3. General shape - The features are identified as randomness, sorted ascending and 

sorted descending. Therefore there are three possible answers. Assuming the 

simplest shape with only one single feature the probability of gaining a full score 

at random is given as 113. 
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Where the number of successes (r) is approximately 8 and the number of trials (n) is 10. 

The probability of the occurrence of r successes in n trials is given by the binomial 

distribution: 

n! ft-I I 

Per successes) = --- q . p 
(n - r]J r! 

Where p represents the probability of success and q represents the probability of failure. 

By applying this equation to each of the three features of the marking scheme and 

combining the probabilities and trebling (to account for the three possible scoring 

positions due to the left and right shifting in the marking scheme), the probability of 

scoring 80% at random is calculated as being approximately of the order of 7.434e-8 

which is extremely low. Although it is not entirely appropriate to use a formal statistical 

method on data that has been subjected to a subjective marking scheme, the value of 

probability gives the approximate order of magnitude and along with observation of the 

experimentally derived data it might suggest that the users are able to understand certain 

features of the shape of a list when represented musically. It is worth noting here that 

determining at what level and how accurately users can interpret and understand shapes 

of tonal sequences is not a real concern of this thesis. 

5.5. List feature extraction experiments 

5.5.1. Experiment construction 

In this set of experiments twenty subjects were asked to listen to sequences of eight 

musical notes that corresponded to a list containing the numbers 1 to 8. Once again the 

tonal sequences were all within a bounded diatonic octave scale. The timbre employed 

was an acoustic grand piano, which was placed in the centre of the stereophonic field 

with no reverberation or chorus added. The bounded diatonic scale started at 'Middle C' 

and ascended by one octave (eight notes). In order to create a context, the scale was first 
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played once before each note sequence. Subjects were told that each of the eight notes 

within the bounded scale were mapped to the numbers one to eight and that the sequences 

therefore represented lists of eight numbers. The noticeable difference between this set of 

experiments and the previously documented shape perception experiments is that no 

musical timing was present in the sequences. Each element was separated by the same 

time interval and all the shapes were extracts from algorithm executions. 

After listening to each sequence, the subjects were asked to interpret the shapes of the 

lists. TIlis was done in three stages. The first tinle that the test subjects were played a 

sequence they were asked to identify the features of the list and explain them with a 

written description. The second time, they were presented with the list again and asked to 

describe in words the shape features of the list. On the third repetition, test subjects were 

asked to draw the shape of the tonal sequence by placing 'X' marks in a blank grid (much 

like the List Shape Perception experiments previously documented in this chapter). 

In order to ensure that subjects understood the procedure, an example shape was 

presented three times with two written descriptions followed by a diagram of the tonal 

sequence. The subjects were presented with the information in Appendix I and shown 

Figure 5.20: 

1 

14$ I JJ J J I J J r F I The octave scale starting with middle C. 

1 1 2 3 4 5 6 7 8 

I' t J F J r IJJ J J I 1st repetition ofrnusieal sequence. 

1 
6 8 5 7 1 2 3 4 

141 t J F J r IJJ J J I 2nd repetition of musical seqence. 

6 8 5 7 1 2 3 4 
1 

I' I J F J r IJJ J J I 3rd repetition of musical sequence. 

6 8 5 7 1 2 3 4 

Figure 5.20 - List feature extraction example. 

Five shapes each comprising eight notes within the bounded diatonic octave scale starting 

at 'Middle C' were then presented to 20 SUbjects. 
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5.5.2. Results and analysis 

Subjects were given the musical questionnaire (shown in full in Appendix B) and the 

results are shown in Figure 5.58. Subjects were all computer studies undergraduates, 

comprising 1 female and 19 male. The group consisted of 8 'non-musical' listeners and 

12 'musical' listeners. This group are termed 'Group 2'. 
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Figure 5.21- Musical ability rating -list feature extraction experiments. 

An additional test was carried out in order to check if the subjects could draw the shapes 

of simple tunes. For example, some subjects might fully understand the shape of the tonal 

sequences in their minds, but be unable to draw them, and the test would then be testing 

their drawing ability rather than their musical comprehension of the shapes. They were 

each played a well-known tune. Figure 5.22 shows the performance of the entire group. 

The results were scored using the scoring mechanism described in section 5.4.2. The 

classification boundaries were set at: 

Good 

Average. 

Bad 

70% to 100% 

40% to 69% 

0% to 39% 
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TIle data shows that 60% of the test group were able to draw simple tunes at a 'good' 

level, with 25% being 'average' and the remaining 15% being 'bad' at drawing. These 

classifications were derived from experiments where each listener was played a simple 

well-known tune and asked to draw it. This drawing ability (or lack of it) is distributed 

across both the 'non-musical' and 'musical' groups as shown in Figures 5.23 an 5.24 .. 
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Figure 5.22 - Drawing ability rating -list feature extraction experiments. 

Figure 5.23 - Drawing ability rating -list feature extraction experiments - non-musical. 
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Figure 5.24 - Drawing ability rating -list feature extraction experiments - musical. 

Figures 5.23 and 5.24 show that both sub-groups contain a majority of test subjects who 

have the ability to draw. 
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Figure 5.25 - List feature extraction accuracy 1 SI V 2nd
v 3~ repetition - entire group. 
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Figure 5.25 shows how the entire group of test subjects performed for the fIrst, second 

and third repetitions when describing and drawing the shape of the tonal sequences. The 

graph is ordered in terms of musical ability with the least musical subjects being plotted 

to the left and those with the greatest musical ability being plotted to the right. There is a 

small increase in accuracy; due to learning effects where the second repetition reinforces 

and further defmes the fIrst repetition and might also suggest that the shapes are easier to 

draw than to describe. Again it is important to divide the entire group oftest subjects into 

their musical ability classifIcations in order to show if being musically trained has any . 

effect on perceiving the shapes of these tonal sequences. Figure 5.26 shows how the 

'non-musical' group oftest subjects perform against the 'musical' group of test subjects 

when drawing the shapes during the third repetition. 
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Figure 5.26 - List feature extraction accuracy 3rd repetition - musical v non-musical. 

Figure 5.27h shows the results of the Mann-Whitney (Wilcoxon independent samples) 

non-parametric test applied to the scores obtained for the perceived shapes of short tonal. 

sequences compared to the true shapes of short tonal sequences with no musical timing. 
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The hypotheses are: 

Ho : There is no difference between the 'non-musical' and 'musical' test . 

groups when perceiving tonal sequences with no timing. 

HI: The 'musical' listeners perform with differing accuracy than. the 'non­

musical' listeners when perceiving tonal sequences with no timing. 

TOTAL Q's 
Mann-Whitney U 26707.000 

Wilcoxon VI 45235.000 
-.583 

Asymp. Sig. (1-tailed .281 

Figure S.27b - Table oftest statistics for perceived shape, 'non-musical' v. 'musical'. 

Based upon the test statistics given in Figure S.27b the null hypothesis cannot be rejected 

and we conclude that there is no difference between the performance of the 'non-musical' 

group and the 'musical' group when perceiving short tonal sequences with no musical 

timing. As previously mentioned the data in this series of experiments has been analysed 

using the marking described in Section 5.4.2. In terms of magnitude, the results are 

observably comparable to those in the previous experiment. It is therefore not 

unreasonable to suggest that the probability of obtaining these test scores at random 

would also be exceptionally low,. Suggesting that listeners might be able to determine the 

features of interest to this thesis from musically represented lists of numbers. 

Another feature of this series of experiments that warrants investigation is the 

discrimination between the information types that have been used. It is important to 

ascertain whether the test subjects in this context more readily understand certain types of 

information. The diagram below in Figure 5.28 shows how the entire group of test 

subjects performed with shapes that were termed as being 'easy', that is, shapes that 

comprised of two or less features such as 'all ascending' or 'random then ascending'. A 

"hard" shape contains three or more features. 
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Figure 5.28 - Feature extraction accuracy 3,d repetition by easy question type - entire 

group. 
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Figure 5.29 - Feature extraction accuracy 3rd repetition by hard question type - entire 

group. 
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Figures 5.28 and 5.29 suggest that tonal sequences with one or two features are more 

readily identified than tonal sequences with three or more features. 

The data in the tables given in Figure 5.31 shows the results of the Wilcoxon Signed 

Ranks non-parametric test applied to the scores obtained for the perceived shapes of short 

tonal sequences with no musical timing compared to the true shapes of short tonal 

sequences with no musical timing for both groups of hard and easy questions over the 

entire test group oflisteners. 

The hypotheses are: 

Ho : There is no difference between the 'hard questions' and 'easy 

questions' when perceiving tonal sequences with no musical timing. 

H1: There is a difference in accuracy between 'hard questions' and 'easy 

questions' when perceiving tonal sequences with no musical timing. 

Figure 5.31 - Table of test statistics for perceived shape, hard questions v. easy questions 

From the data given in Figure 5.31 the null hypothesis can be rejected at the 0.1 % level 

of confidence suggesting that that there is a highly significant difference between 'hard' 

question types and 'easy' question types when perceiving the shapes of short tonal 

sequences with no musical timing. It can therefore be concluded that 'hard' question 

types are understood significantly less than 'easy' question types. 

As these data have proven that a significant difference exists between accuracies when 

perceiving 'hard' and 'easy' questions it is necessary to test for any significant difference 

between 'non-musical' and 'musical' test groups for each of the question types. The data 

in tlle tables given in Figure 5.33 shows the results of the Mann-Whitney (Wilcoxon 
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independent samples) non-parametric test applied to the scores obtained for the perceived 

shapes of 'easy' and 'hard' short tonal sequences with no musical timing for the 'non­

musical' group compared to the scores of the shapes of 'easy' and 'hard' short tonal 

sequences with no musical timing for the 'musical' group. 

The hypotheses are: 

Ho : There is no difference between the 'non-musical' and 'musical' test 

groups when perceiving 'easy' or 'hard' tonal sequences with no timing. 

HI : The 'musical' listeners perform with differing accuracy than the 'non­

musical' listeners when perceiving tonal sequences with no timing. 

EasyQ HardQ 
Mann-Whitney U 4611.500 9392.500 

WilcoxonW 7851.500 23588.50 
0 

z -.68 -.02t 
Asymp. 8ig. (1-tailed .24 .48E 

Figure 5.33 - Table of test statistics for 'hard' and 'easy' shapes 'non-musical' v 

'musical'. 

From the data given in Figure 5.33 the null hypothesis cannot be rejected concluding that 

there is no significant difference between the 'non-musical' group and the 'musical' 

group when perceiving short tonal sequences with no musical timing irrespective of the 

level of difficulty of the shapes. These same data also suggest that there is less difference 

between the two groups for hard questions than there is for easy questions suggesting that 

the 'musical' group perform better on easy question types. 

TIle next feature of interest in this series of experiments is the investigation of whether 

the users' ability to draw affects the accuracy of the answers that they provided. 
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The data shown below in Figure 5.34 represents the perception accuracy of shapes of 

tonal sequences during the third repetition for all test subjects. The data are ordered in 

terms of their drawing ability. 
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Figure 5.34 - Feature extraction accuracy 3rd repetition by drawing ability - entire group. 

These data suggest that there is little appreciable difference in perception accuracy 

between those of 'good' drawing ability and those with less than 'good' drawing ability. 

5.6. List state perception experiments 

5.6.1. Experiment construction 

In this set of experiments thirty subjects were asked to listen to sequences of eight 

musical notes that corresponded to the numbers one to eight. Once again the tonal 

sequences were all within a bounded diatonic octave scale. The timbre employed was an 

acoustic grand piano, which was placed in the centre of the stereophonic field with no 

reverberation or chorus added. The bounded diatonic scale started at 'Middle C' and 

ascended by one diatonic octave (eight notes). In order to create a context the scale was 

first played of;1ce and each note sequence was repeated three times. Subjects were told. 
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that each of the eight notes within the bounded scale were mapped to the numbers one to 

eight and that the sequences therefore represented lists of eight numbers. Upon listening 

to each sequence, the subjects were asked to select from a list of options comprising 

'Unsorted/Random', 'Sorted Ascending' and 'Sorted Descending'. The feature that was 

required to be identified was the state of the list. The information presented to the group 

is given in Appendix E. 

Group 1 were used in this set of experiments. Three examples were played to each test 

subject three times. Following the examples, a further five tests were played. Only five 

tests were chosen at this stage in order to investigate if the more simple features could be 

extracted. The most complex lists in this series only have two features in that they are 

almost sorted with the exception of one element. This test has been designed to also 

determine if one element being out of place would be classed as unsorted by the listener. 

TIlese tests are given below. 
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Figure 5.34a - Preliminary list shape stimuli. 

The results indicated that all of the test subj ects successfully identified the states of all of 

the lists with an accuracy of 100% (refer to data on accompanying CD). These results 

showed that all listeners, regardless of their musical ability, were fully capable of 

distinguishing between musically represented sorted and unsorted lists of numbers, even 

when some lists were sorted with the exception of one element. 

In a ·further set of further experiments, test subjects were again asked to listen to 

sequences of eight notes that represented lists of eight numbers all played within the same 

diatonic octave staring from 'Middle C'. The same timbre and placement were also 
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employed. This time listeners were played lists that were sorted into ascending order but 

between one and three elements were incorrectly placed. Subjects were first shown and 

played the example diagram given below in Figure 5.41. In this example elements 4 and 

5 produce a descent in pitch and are therefore incorrectly placed. 

1 

1'1 JJ:JJI;JJrFI 
12345678 

Figure 5.41 - Incorrect element placement example. 

The thirry test subjects were then each asked to identify the incorrectly placed elements in 

each of the five tests by circling their position in diagrams. 

5.6.2. Results and analysis 

Group 1 were used in this set of experiments. Figures 5.43 and 5.44 show the users' 

perception of each of the incorrectly placed elements within the partially sorted lists. The 

stimuli were derived from real sorting algorithm list states and hence the occurrence of 

swap a swap in the fifth position has been omitted due to the limitations of the derived 

lists. The results show that the error distribution is fairly even across the list of numbers 

except for the eighth and fmal element. This decrease in placement accuracy is due to the 

fact that the test lists incorporated some sequences where both the seventh and eighth 

elements were successively incorrectly placed. TIlls successive erroneous information has 

clearly been shown to confuse the listeners and would suggest that single out of place 

elements are more easily identified than multiple neighbouring out of place elements. 
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Mean and standard deviation plot - Note Order 
Accnracy Plot - Total 
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Figure 5.43 - List state note order accuracy - entire group. 

Actual 
Placement 1 2 3 4 5 6 7 
Perceived 
Placement 

Mean 2 3.066667 3.733333 5.892857 6.898305 
S.D 0.454859 0.449776 0.449776 0.566947 0.515113 

Figure 5.44 - Table oflist state note order accuracy - entire group. 

8 

7.6 
1.275769 

Figure 5.45 shows how musically trained and untrained listeners performed in this series 

. of experiments. 
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Mean and standard deviation - Note Order Accuracy 
Plot - Non-Musical v Musical 
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Figure 5.45 - List state note order accuracy - non-musical v. musical. 

Musical 1 2 3 4 5 6 7 
Perceived 
Placement 

Mean - 2.076923 ~.153846 3.846154 - 6 7.038462 
S.D - 0.27735 0.375534 0.375534 - 0 0.196116 

Non-Musical 1 2 3 4 5 6 7 
Perceived 
Placement 

Mean - 1.941176 3 3.647059 - 5.8 6.787879 
S.D - 0.555719 0.5 0.492592 - 0.774597 0.649883 

Figure 5.46 - Table oflist state note order accuracy - non-musical v. musical. 

8 

8 
0 

8 

7.294118 
1.649421 

The data for the 'musical' test subjects given in Figure 5.46 suggest that they might 

perform with greater accuracy than the group as a whole. The data obtained from the 

'non-musical' test subjects shows reduced levels of accuracy when compared to the 

'musical' group for placing incorrectly ordered elements. Once again the greatest error 

occurs when successive erroneous elements are played. The general accuracy of the test 
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subjeCts within this sub-group is relatively high with most of the element placements 

. being perceived with little error. 

Figure 5A8b shows the results of the Mann-Whitney (Wilcoxon independent samples) 

non-parametric test applied to the scores obtained for the difference between perceived 

erroneously placed elements compared to the true erroneously placed elements. The 

hypotheses are: 

Ho: . There is no difference between the 'non-musical' and 

'musical' test groups when perceiving erroneously placed .elements. 

HI : The 'musical' listeners perform with differing accuracy than 

the 'non-musical' listeners when perceiving erroneously placed elements. 

Figure 5A8b - Table of test statistics for each perceived placement, 'non-musical' v.· 

'musical'. 

The null hypothesis can be accepted for erroneously placed elements in all but the last 

three positions suggesting that there is no significant difference between 'musical' and 

'non-musical' listeners when perceiving erroneously placed elements in positions 2, 3 

and 4 of the list. In contrast, the null hypothesis can be rejected at the 5% level of 

significance for erroneously placed elements in positions after position 4 suggesting that 

there is significant difference between 'musical' and 'non-musical' listeners when 

perceiving erroneously placed elements towards the end of the list. This difference in 

significance is due to the increase in complexity as the positions of erroneously placed 

elements become further away from the start of the list. This suggests that 'musical' 
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listeners are more adept at perceiving locations further into the scale. It is important to 

determine how the group perform in general in this experiment. 

The data given in Figure 5.48c shows the results of a Chi-Squared test applied to the 

results obtained for the perceived erroneously placed elements compared to the true 

erroneously placed elements. The hypotheses are: 

Ho : Users are not capable of identifying a descent in pitch that denotes an out 

of place numerical value. In particular, they are not capable of 

understanding musically represented out of place numerical values within 

data lists. 

HI : Users are capable of identifying a descent in pitch that denotes an out of 

place numerical value. In particular, they are capable of understanding 

musically represented out of place numerical values within data lists. 

Figure 5.48c - Table oftest statistics for each perceived out of place element. 

These data show that the probability of obtaining the scores gathered from the users for 

the identification of out of place elements at random are extremely low. From these data 

the null hypothesis can be confidently rejected concluding that users are capable of 

identifying descents in pitch and in particular that they are capable of identifying 

musically represented out of place numerical values in data lists. This is encouraging 

since it suggests that users might be capable of understanding musically .auralised sorting 

algorithm lists. 
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5.7. List manipulation experiments 

5.7.1. Experiment construction. 

In the previous experiment, listeners' perception of the state of lists of numbers was 

tested by measuring how accurately the test subjects identified incorrectly placed 

individual elements. The next step towards testing algorithm execution and state is to 

introduce some manipulation of the numerical data lists. The manipulation employed in 

this series of experiments is the swapping of incorrectly placed neighbouring elements, 

the same sorting mechanism as that utilised by the Bubble Sort algorithm. 

Thirty subjects were asked to listen to sequences of musical notes within a bounded 

diatonic octave scale beginning at 'Middle C'. Each test comprised two components, a 

checking phase as with the previous experiment followed by a sorting phase. Different 

timbres were chosen for each of these components. The timbres were chosen from 

. distinct families as suggested biRigas and Alty [158] in order maximise disambiguation 

of the two components. The timbre employed for the checking phase was a flute that was 

placed to the left of the stereophonic field with no reverberation or chorus added. The 

timbre for the sorting phase was an acoustic grand piano placed in the centre of the 

stereophonic field with no added chorus or echo. The auralisation of the sorting phase has 

. been employed to distinguish between the actions of testing the list and sorting the list. A 

descent in pitch would indicate out of place elements. Also present in the sorting phase 

was a trumpet to indicate the swapping action of the incorrectly placed elements. This 

provides a second cue for identifying out of place elements and a cue for the 

manipulation of the data. The Subjects were told that each of the eight notes within the 

bounded scale was mapped to the numbers one to eight. Upon listening to each test, the 

subjects would first hear th.e flute checking through the list. This would be followed by 

the progression of the piano through the list where a swap would be denoted by a trumpet. 

triad. All test subjects were shown and played the example in Figure .5.49 that represented 

the swapping of two elements after a descent in pitch indicated that element 4 should be 

placed before element 3. 
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CHECKING SORTING 

1 1 

1&11JnIWJrrll&t lJn lJJ rr l 
12345678 

V 
'Swap' 

Unsorted Ilst· descent In pitch 

Figure 5.49 - Checking and swapping example - list manipulation experiments. 

Following the test example, listeners were played five further instances of checking and 

swapping where they were asked to identify which elements had been swapped. In 

comparison to the previous experiment, where the only cue that denoted erroneous 

placement was a descent in pitch, this experiment provided two cues. The first cue was 

the descent in pitch during the checking phase, the second cue incorporated a descent in 

pitch in the sorting phase directly followed by the trumpet triad denoting the occurrence 

of a swapping of elements. Test subjects were asked to identifY the elements that were 

swapped by circling an element pair within a list. The swaps occurred between positions 

1 and 7 with the omission of position 4 as no swap occurred in the algorithm derived 

examples. Test comprised experiments that contained single swaps and multiple 

successive swaps. 

5.7.2. Results and analysis 

Group I were used in this series of experiments. Figure 5.51 shows the users' perception 

of each of the swapped element pairs within the partially sorted lists. The results show 

that the error distribution is fairly even across the range of positions. As with the previous 

experiment, multiple erroneous elements were placed (and in this case swapped) in the 

final portion of the list. In this case, however, there is no noticeable decrease in the users 

accuracy of identifYing the swapping of these latter elements. This may, in part, be due to 

the addition of a second and more distinct cue that highlighted the swapping of the 

incorrectly placed elements and hence yielded a second cue as to the positionallocation 
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within the scale. This suggests that the listeners are able to identify the trumpet triad with 

data manipulation and have also used it to help localise the position of the out of place 

elements within the list. The triad employed has been used to identify the occurrence of a 

swap, this has been re-enforced by the use of a distinct timbre. 

Mean and standard deviation - Swap Identification 
Accnracy Plot - Total 
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Figure 5.51 - Swapping identification accuracy - entire group. 

Actual 
Swap 

Element 1 2 3 4 5 6 
Perceived 

Swap 
Mean 1.1 2.2 2.824561 5.3 5.8 
S.D 0.305129 0.610257 0.53861 0.466092 0.403376 

Figure 5.52 - Table of swapping identification accuracy - entire group. 

7 

6.386364 
0.618171 

Figure 5.53 shows how musically trained and untrained listeners performed in this series 

of experiments. The results for the 'musical' test subjects given in Figure 5.54 suggests 

that the 'musical' group might be capable of identifying the swapped elements with 

greater accuracy than the group as a whole. The data clearly shows that the musically 
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trained listeners identified a large majority of the incorrectly placed elements including 

some of the successive multiple erroneous elements. These successive multiple erroneous 

elements have, in this instance, shown to cause a small amount of confusion with the 

musically trained test subj ects. 

Mean and standard deviation - Swap Identification 
Accuracy Plot - Non-Musical v Musical 
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Figure 5.53 - Swapping identification accuracy - non-musical v. musical. 

Musical Pos 1 Pos 2 Pos 3 Pos 4 Pos 5 Pos 6 Pos 7 
Perceived 

Swap 
Mean 1 2 2.692308 - 5.307692 5.884615 6.56 
S.D 0 0 0.549125 -. 0.480384 0.325813 0.50637 

Non-
Musical Pos 1 Pos 2 Pos 3 Pos4 Pos 5 Pos 6 Pos 7 

Perceived 
Swap 
Mean 1.176471 2.352941- 2.935484 - 5.294118 5.735294 6.157895 
S.D 0.392953 0.785905 0.512216 - 0.469668 0.447811 0.688247 

Figure 5.54 -Table of swapping identification accuracy - non-musical v. musical. 
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The data given in Figure 5.54 also suggests that the 'non-musical' test subjects perform 

with a reduced accuracy compared to the 'musical' listeners when placing incorrectly 

ordered and swapped elements. It can be seen from these data that no noticeable decrease 

in accuracy occurs when successive mUltiple element swaps take place. The general 

accuracy of the test subjects within this sub-group is relatively high with most of the 

element placements being perceived as with little error. 

Figure 5.S6b shows the results of the Mann-Whitney (Wilcoxon independent samples) 

non-parametric test applied to the scores obtained for the difference between perceived 

erroneously placed and swapped elements compared to the true erroneously placed and 

swapped elements. The hypotheses are: 

Ho: There is no difference between the 'non-musical' and 'musical' test 

groups when perceiving erroneously placed and swapped elements. 

HI : The 'musical' listeners perform with differing accuracy than the 'non­

musical' listeners when perceiving erroneously placed and swapped 

elements. 

Figure 5.56b - Table of test statistics for perceived placement/swap, 'non-musical' v. 

'musical' . 

It can be seen froni the data given in Figure 5.56b that the null hypothesis cannot be 

rejected for erroneously placed and swapped elements in the first six positions suggesting 

that there is no significant difference between 'musical' and 'non-musical' listeners when 

perceiving erroneously placed and swapped elements in the first six positions of the list. 

In contrast, the null hypothesis can be rej ected at the 0.1 % level of significance for 
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erroneously placed and swapped elements in the final position in the list (where the 

successive swaps occur) suggesting that there is a significant difference between 

'musical' and 'non-musical' listeners when perceiving successive erroneously placed and 

swapped elements towards the end of the list. This difference in significance is due to the 

increase in complexity as successive swaps occur towards the end of the list. This 

suggests that 'musical' listeners are more adept at perceiving successively swapped 

elements than 'non-musical' listeners. It is important to see how the group perform in 

general in this experiment. 

The data given in Figure 5.56c shows the results of a Chi-Squared test applied to the 

results obtained for the perceived erroneously placed and swapped elements compared to 

the true erroneously placed and swapped elements. The hypotheses are: 

Ho : Users are not capable of identifying descents in pitch and metaphors that 

denote swapping. In particular, they are not capable of understanding 

musically represented out of place and manipulated numerical values 

within data lists .. 

HI: Users are capable of identifying descents in pitch and metaphors that 

denote swapping. In particular, they are capable of understanding 

musically represented out of place and manipulated numerical values 

within data lists. 

Figure 5.56c - Table of test statistics for each perceived out of place and swapped 

element. 

These data show that the probability of obtaining the scores gathered from the users for 

the identification of out of place and swapped elements at random are ~xtremely Iow. 

193 



194 

From these data the null hypothesis can be confidently rejected concluding that users are 

capable of identifying descents in pitch and metaphors that denote swapping. In 

particular, they are capable of identifying musically represented out of place and swapped 

numerical values in data lists. This is encouraging since it suggests that users might be 

capable of understanding musically auralised sorting algorithm lists. 

5.8. List shape progression experiments 

5.8.1. Experiment construction 

In this set of experiments twenty subjects were asked to listen to sequences of musical 

notes of varying length within a bounded diatonic octave scale that corresponded to the 

numbers one to eight. The lists corresponded to sequences of notes that might be 

produced during the execution of Bubble Sort, Exchange Sort, Quick Sort, Inside-Out 

and Outside-In Sorting Algorithms. List produced by the Selection Sort were not used in 

this experiment as the Exchange Sort already provides these types of algorithm-derived 

lists. Five sequences were played - comprising 8, 5, 10, 8, and 8 notes. The objective of 

tlle experiment was to determine if listeners could identify the progressive changes in 

shape that occur during algorithm execution. The timbre employed was an acoustic grand 

piano, which was placed in the centre of the stereophonic field with no reverberation or 

chorus added. The bounded diatonic scale started at 'Middle C' and ascended by one 

diatonic octave (eight notes). In order to create a context the scale was first played once 

before each note sequence. Subjects were told that each of the eight notes within the 

bounded scale were mapped to the numbers one to eight and that the sequences therefore 

represented lists of eight numbers. 

Upon listening to each set of sequences, tl1e subjects were asked to interpret the shapes of 

each of the lists within each sequence set. After having described tl1e shape of each list, 

test subjects were then asked to describe what had progressively happened to tl1e shape of 

tlle list in the given set of sequences. 
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In order to better explain the concept to the listeners, a simple example of five sequences 

was played three times with a description of each list shape followed by a description of 

what has progressively happened to the shape of the list. Figure 5.57 shows the 

information that was presented to subjects during the experiments. Each test listener was 

also provided with the information given in Appendix K. 

1 

1:2:3:45678 

Figure 5.57 - Example scale. 

Following an example, each of the twenty test subjects was played five of these tests each 

of which comprised five tonal sequences within the bounded diatonic octave scale 

starting at 'Middle C'. 

5.8.2. Results and analysis 

Group 2 were used in this series of experiments. 
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Figure 5.62 - Algorithm identification accuracy - entire group. 
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The diagram in Figure 5.62 above shows how the entire group of test subjects perfonued 

when describing what had progressively happened to each of the five sets of sequences. 

The graph is ordered and colour coded in tenus of musical ability with the least musical 

subjects being plotted to the left and those with the greatest musical ability being plotted 

to the right (abilities from 2 to 5). The graph suggests little difference between musically 

trained and musically untrained listeners. Figure 5.62b shows the results of the Mann­

Wllitney non-parametric test applied to the scores obtained for the perception of shape 

progression from 'musical' listeners compared to 'non-musical' listeners. The hypotheses 

are: 

Ho : There is no significant difference between 'musical' and 'non-musical' 

listeners when perceiving the progression of musically represented 

algorithm states. 

Ht : There is a significant difference between 'musical' and 'non-musical' 

listeners when perceiving the progression of musically represented 

algorithm states. 

SCORE 
Mann-Whitney U 21.500 

WilcoxonW 57.500 
z -2.086 

Asymp. Sig. (l-tailed) .018 

Figure 5.62b - Table of test statistics for algorithm progression identification, 'musical' 

v. 'non-musical'. 

From the data given, the null hypothesis can be rejected at the 5% level of confidence 

concluding that there is significant difference between 'musical' and 'non-musical' 

listeners when perceiving the progression of musically represented algorithm states. In 

particular, 'musical' listeners performed better than 'non-musical' listeners. This might 

suggest that musically untrained listeners may not be capable of understanding sorting 

algorithm auralistaions. However, it is important to indicate that although this data shows 
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that musical training has a significant effect, it do not discount musically untrained 

listeners from being able to understand the sorting natures. This data simply shows that 

musically trained listeners are better at the task. It does mean that musically untrained 

listeners are incapable of performing the task. It is therefore important to determine how 

the group perform in general. 

The overall average score for the perception of musically represented algorithm sorting 

natures is 50%. By using the binomial expansion the probability of obtaining such a score 

at random can be calculated. Where the number of successes (r) is 5 and the number of 

trials (n) is 10. The probability of the occurrence of r successes in n trials is given by the 

binomial distribution: 

n! (1-" 
Per successes) = --- q p 

(n - r)./ r./ 

Where p represents the probability of success and q represents the probability of failure. 

This yields a probability of 0.026,which strongly suggests at a level of 97.4% that the 

group of listeners are capable of identifying the algorithm sorting natures when 

. represented musically. 
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. Algorithm Type - % Accuracy - Non-Musical v Musical 
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Figure 5.62c - Algorithm identification accuracy by algorithm type - 'musical' v. 'non­

musical'. 

This difference can also be seen in Figure 5.62c, which represents how musically trained 

and musically untrained listeners performed in this series of experiments on each of the 

information source types. The data shows that 'musical' test subjects show improved 

identification and understanding of the nature of the Exchange Sort, Bucket Sort (In-Out) 

and Bucket Sort (Out-In) algorithms. The results for Bubble Sort and Quick Sort 

algorithms show little difference between 'musical' and 'non-musical' "listeners. 

However, it is interesting to note that in the case of the Bubble Sort auralisation musically 

untrained listeners appear to perform better than musically trained listeners. 

In terms of information type, it is important to highlight whether certain types of 

algorithms are more easily understood by the group of test subjects. Figure 5.63 shows 

how the entire group performs as whole on each type of list shape progression. 

198 



100 
90 

~ 80 u 
Q) 70 ... 
"'''0 
<3 e 60 
I/) Cl 50 .... :s: 
U III 40 Cl c :oct 30 ::I 
en 20 
~ 

10 • 
0 

199 

Algorithm Type· % Accuracy Plot· Total 
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Figure 5.63 - Algorithm identification accUracy by algorithm type - entire group. ' 

These data suggest that the less complex algorithms are more easily understood. Both the 

Bubble Sort and the Exchange Sort share the common feature that the sorted list 'grows' 

from one end of the list boundary, which can be seen as a single easily identifiable 

'anchor' point from which the list grows. Given that complex algorithms are less 

understood by the listeners, some prior training might be of benefit. This suggests that the 

simpler algorithms are learnt more quickly and with greater ease than· complex 

algorithms. It may also be that the difficulty associated with identifying the nature of the 

least understood algorithms is not attributed to the complexity of the functionality of the 

algorithm itself, but rather the mechanism by which it has been auralised. The mapping of 

pivot points and sub-buckets is harder to achieve than sequential swapping. This suggests 

that at this level it is not the complexity of the algorithm that is problematic. Instead, it 

stlggests that c·ertain algorithms do not translate well musically as their features and 

natures are not easily represented by musical metaphors. There is a clear case for learning 

the mappings in this instance. However, this is not of real concern to this thesis. 
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In previous experiments in this thesis it was found that tones, out of place elements and 

swapped elements were more easily identified when they were near to the lower and 

upper boundaries of the diatonic octave scale starting at 'Middle C'. In contrast, tones, 

out of place elements and swapped elements near the middle of the scale were not so 

easily identified as these positions are in the area of greatest ambiguity. This is mirrored 

in the Quick sort algorithm where the list is progressively sorted into increasingly smaller 

groups. In this instance, there is more than one 'anchor' point. As the list becomes 

increasingly sorted, the number of 'anchor' points increases and their positions are 

always changing. Due to the varying nature of these 'anchor' points, understanding the. 

Quick sort algorithm is more difficult than understanding the Bubble Sort and Exchange 

Sort algorithms (which in contrast only have a single constant fixed 'anchor' point 

throughout the entire auralisation). The auralisation for the Quick Sort algorithm utilised 

the available information as effectively as would allow. The nature of the varying 

positions of the pivot points and the direction of the placement of elements into sub­

buckets imposed.1imitations on the auralisation, as this information did not translate well 

sequentially. This information might be understood with greater clarity if extra cues were 

used to further disambiguate the information. Since the Quick Sort algorithm segments 

the entire list into increasing groups of smaller sub-lists the spatial placement of the 

. pivots and the buckets in a 3D audio environment might help to clarify the information 

presented. Essentially, the Quick Sort algorithm operates in a sequential manner. This 

would suggest its suitability for mapping into the temporal domain. However, the 

visualisation of sorting elements into sub-buckets, to the left or right of a pivot, suggests 

that it might be more suitable for mapping into the spatial domain. These concerns 

suggest a spatially enhanced version of this auralisation, utilising both the spatial and 

temporal domains, might better represent the sorting nature of the algorithm. 

The same can be seen for the Inside-Out and Outside-In sort algorithms where the Quick 

Sort is used for the first pass. In this instance, there are two 'anchor' points in the first 

pass followed by one 'anchor' point for each of the sub-sorting algorithms in subsequent 

sorting passes. With the Inside-Out sort, the 'anchor' point is a single point in the centre 

of the list, but this is in the area of ambiguity previously identified when' compared to 

200 



201 

'anchor' points that are placed at the low and high boundaries of the context scale. In 

contrast, for the Outside-In sort, both 'anchor' points are at the high and low boundaries. 

This suggests that the increase of the number of 'anchor' points has impaired the 

understanding of the sorting nature of the algorithm. Test subjects have shown to be able 

to identify each of the sub-sorting algorithms when presented autonomously. In contrast, 

when these algorithms are combined in a more complex manner the understanding is 

significantly reduced. This may be attributed to the use of the Quick Sort algorithm even 

though this has only been used in the first pass in order to split the list into two sub-lists. 

The majority of the sorting is achieved by the dominant Bubble Sort and Exchange Sort 

algorithms but are not as clearly identified by the test SUbjects. 

As with the prevIous experiments that· involved the perception of shapes of tonal 

sequences, no appreciable difference in perception accuracy between those of 'good' 

drawing ability and those with 'less than good' drawing ability was observed. In general, 

although musical training was found to have a beneficial effect, the data clearly shows 

that both 'musical' and 'non-musical' listeners are capable of perceiving and. 

understanding the shape progression of algorithm generated lists. 

5:9. Conclusion 

For the pitch test experiments, the results have shown that there is a significant difference 

between the 'musical' and 'non-musical' groups when perceiving tones that are close to 

the boundaries of the context scale. These data further showed that there is no significant 

difference between the groups when perceiving tones that fall into the area of greatest 

ambiguity in the middle of the context scale. The use of an extra cue such as spatial 

location may improve the perception results in this case. If this additional cue further aids 

disambiguation then the 'non-musical' group might show an improvement in accuracy 

when perceiving tones close to the boundaries of the context scale decreasing the 

difference between the two test groups. The data obtained for the pitch interval test 

experiments showed that for small intervals (less than 2) there is no significant difference 

between 'musical' and 'non-musical' listeners. This difference becomes significant and 
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increases in relation to the increase in interval size. Again, the use of spatial location cues 

might further disambiguate the information and increase the accuracy when perceiving 

pitch intervals. 

For the shape perception experiments using short musical sequences with musical timing 

the results showed significant difference between the 'musical' and 'non-musical' 

listeners for all shapes. In contrast, the series of experiments using short tonal sequences 

with no musical timing showed that there is no significant difference between the two 

groups when perceiving the shapes. This difference in significance suggests that when 

tonal sequences have musical timing applied to them, making more 'musical', the 

'musical ' group of test subjects tend to perform with greater accuracy than the 'non­

musical' group, subsequently suggesting that 'musical' listeners are more capable of 

exploiting musical timing. When this musical timing is removed, as is employed for 

algorithm state auralisation within this thesis, the data shows that there. is no significant 

difference between the two groups when perceiving tonal shapes (or musically auralised 

algorithm list states). 

The data obtained for the series of experiments concerned with identifying out of place 

elements in an otherwise ascending list of numeric elements showed there was no 

. significant difference between the two groups of 'musical' and 'non-musical' listeners for 

elements identified in approximately the first half of the list. For the remainder of the list, 

the difference between the two groups becomes significant due to the increasing 

complexity as the positions of erroneously placed elements move further up the context 

scale. Again the use of an extra cue such as spatial location may increase location 

accuracy results, since the information required from the listeners is positional. 

Similar results were observed for the identification of erroneously placed and swapped 

elements in an otherwise ascending list of numerical elements. For the majority of 

positions (all except the last) no significant difference was observed between the 

'musical' and 'non-musical' test groups. The only significant difference between the two 

groups was observed when successive multiple erroneously placed and swapped elements 
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occurred in the final position. These data suggest that multiple successive swaps 

increases misunderstanding of swap occurrence and location. In comparison to the results 

obtained in the previously described out of place elements experiments, the same data 

suggests that the addition of the extra cue (the sound of the elements swapping) aids 

localisation and reduces the observable difference between 'musical' and 'non-musical' 

listeners. 

The results of the experiments investigating the perception and understanding of 

algorithm derived list shape progression showed that 'musical' listeners tend to perform 

significantly better than 'non-musical' listeners. The data also showed that algorithms 

that progress with easily identifiable and constant anchor points from which the sorted 

list grows are more easily understood than the more complex algorithms that produce 

anchor points which are constantly moving and changing in quantity. 

In general it has been shown that musical training does have some affect on the 

perception of musical sequences and pitch. However, the results have shown that both 

musically trained and untrained listeners are quite capable of discerning pitch and 

understanding shape and musically represented numerical data and that the difference 

between the groups depends upon the complexity of the musical structure. These results 

are encouraging, since the content of the tests form the basic building blocks of algorithm 

auralisation. 
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Chapter 6 

SIMBAA - A musical auralisation tool 

In order to support the suggested investigations into algorithm auralisation using music, it 

was decided to develop a system to allow experimenters to easily auralise the execution 

of a number of algorithms. The main design objective of this system was to permit the 

mapping of key events and objects in algorithms to musical structures and timbres. Like 

Vickers' CAITLIN system, the program code is "marked" in order to auralise key points, 

and this allows musical auraIisation of its progression in real-time. After processing a 

program through the system, the actions of the algorithm and the state of the variables 

will be musically audible. It is important to clarify that this tool has been developed 

purely to facilitate the auralisations required for the experimentation required in this 

thesis. It does no! aim to be commercial auralisation tool. 

6.1. SIMBAA design and considerations 

The system, entitled SIMBAA (System for the Implementation of Music Based 

Algorithm Auralisation), is based upon a combination of Vickers' CAITLIN [181] and 

Brown and Hershberger's ZEUS [45, 46]. The key objectives ofSIMBAA are to: 

• Musically auralise any algorithm in real-time. 

• Allow musical attributes to be allocated to events / objects. 

• Provide a toolbox for working on existing algorithm program code. 

• Exploit the features of MIDI. (Timbre, stereo placement, echo, volume, chorus 

etc.) 

• Allow the user to play the auraIisation at his/her own speed, permitting the user to 

alter the information presentation rate to match their own processing ability. TIlls 

is also useful for facilitating different levels of abstraction during playback. 

• Permit the identification of key events / objects by selectively masking the output. 

• Allow on-line adjustment of tempo to give different levels of abstraction during 

auraIisation. 

204 



205 

Like CAITLIN, SIMBAA is a pre- processor for program code but it processes CtC++ 

rather than PASCAL. SIMBAA needs more user input than CAITLIN, since it requires 

the user to include a header file that contains the necessary library routines for 

auralisation. The original code also needs to be 'marked - up' with the necessary 

auralisation cans (adding one-line function calls at the desired steps of the routine). 

Auralisation is achieved in real-time during algorithm execution. 

The SIMBAA system provides the following features: 

• Library routine calls to -

• Play tones from the chromatic scale for given octaves and notes. 

• Play chords following a root note and octave, standard, first inversion and 

second inversion triads (21 chord possibilities for one root note). 

• Play a cadence for given root notes. 

• Pre- execution controls include -

• Instrument-to-channel assignment to allow the user to choose timbres that are 

aesthetically pleasing to their own preferences. 

• Channel pan - allowing instruments to be placed in auditory space to help 

disambiguate between information members. 

• Channel volume - allowing the user to highlight or suppress certain aspects of 

the information, this helps to focus on key events or actions. 

• Channel echo level - this feature can give a feeling of space to the instrument 

ensemble and support the panning feature. 

• Channel chorus depth - permitting specific actions or events to be emphasised 

over other instruments. 

• Global adjustment of the octave offset - this shifts the entire ensemble up or 

down in octave steps, much like the register feature used in Surnikawas' motifs 

for Earcons [174, 33]. 
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• Global online controls to -

• Toggle muting of each channel in real- time to pemnt key events or actions to 

be identified and understood in solitude, or to pernlit verbose instruments to be 

excluded. Supporting the information masking feature of the system. 

• Key shift each channel in senlitone steps to allow the system to be 'tuned' to 

the users' own preferences, also to help align the 'orchestra' to give a better 

overall feel to the auralisation. 

• Adjust a global tempo to give different levels of abstraction during routine 

execution. 

• General features -

• Choice of internal OPL3 FM synthesizer or, 

• External General MIDI. 

• Up to 8 instrument polyphony with full control. 

• Environment saving allowing the system to retain a users preferences of the 

variables. 

SIMBAA makes no prior judgement about the musical ability of the user. However, 

being musical would facilitate the production of more 'musical' presentations. The output 

of SIMBAA can be fed into any multi-timbral device. The experiments in this thesis 

employed the use of external General MIDI driving a 16 channel multi- timbriu Roland 

Boss DS 330 synthesizer. 

6.2. Early experimentation on Algorithms using SIMBAA 

It was decided first to auralise the simple Bubble Sort algorithm. This kind of algorithm 

provides a useful testing ground for the use of music to convey events through time. By 

auralising it with the SIMBAA system it will be possible to test the usefulness. of the 

system and the viability of using music in algorithm understanding. As with any interface 

design, success depends upon the choice of mapping of the algorithm to the music [3]. 

The first step is to identify the· key information from the Bubble Sort algorithm that is to 
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be auralised. These features were identified in Chapter 4. This preliminary auralisation 

does not include the auralisation of the iteration count. This is because this study is aimed 

at bringing together the components examined in Chapter 5. More detailed experiments 

follow that auralise all of the features identified in Chapter 4. By working through the 

algorithm in Chapter 4 the features for this preliminary auralisation can be summarised: 

1. The current state of the list. 

2. Progression of the algorithm through the list of elements. 

3. The swapping of elements. 

4. Successful termination . 

. As with previous attempts to auralise the Bubble Sort [3], the list of numbers was 

converted to a sequence of notes in the diatonic scale. As the goal of the algorithm is to 

sort the elements into an ascending order then successful termination will be achieved 

when the current state of the list is heard as an ascending succession of notes. The 

diatonic scale was chosen over notes in the chromatic or pentatonic scales due to the 

early experimentation carried out by Alty [3], which highlighted listeners' preferences to 

the presentations within the diatonic scale. All subsequent experiments and auralisations 

in this thesis are performed with the same diatonic scale. 

The auralisation code is termed 'ghost code', this is due its transparent nature. This 'ghost 

code' is unseen by the algorithm and is only of use to the SIMBAA auralisation tool. The 

nature of the integration technique adopted by the SIMBAA system enables the desired 

code to be auralised without any adverse effects on its original functionality provided that 

the original program code is not critically time dependent. 

The mapping of music to the four points of interest has been chosen to be as 

communicative as possible. Three different timbres were employed, these are not 

changeable by the listener during experimentation. The three instruments were an 

acoustic grand piano, a flute and a brass. ensemble (each instrument being from a distinct. 

family to further aid disambiguation). In order to help disambiguate the information, the 
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use of auditory placement was also used. The flute was placed centrally in the auditory 

field, the piano to the left and the brass ensemble to the right. 

Disambiguation of information in the algorithm was further achieved by the use of -

• Contrasting timbre using a piano, a flute and a brass ensemble. 

• Harmony using a major triad. 

• The use of auditory space by employing instrument placement via stereophony. 

The auditory mappings were: 

1. The current state of the list 'Play Entire List' - this auralisation was achieved by 

mapping element values to pitch (a metaphor). The chosen instrument here was a flute. 

2. Progression of the algorithm through the list 'Play Current Element' - the chosen 

mapping here was an acoustic grand piano, again the element values were mapped to 

pitch. 

3. The swapping of elements 'Play Swap Structure' - this is heard in parallel with the 

ascending acoustic grand piano, the structure is a brass ensemble playing a major triad. 

The first note is an element to pitch mapping of the higher value in the current pair, 

the second note is an element to pitch mapping of the lower note in the current pair 

and finally the third note is a repetition of the first note. 

4. Successful termination 'Play Successful Termination' - this auralisation was achieved 

by again using the brass ensemble, but this time it was used to produce.a simple yet 

suggestive 'Ta - Da' sequence. 
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6.2.1. Preliminary findings 

Preliminary experiments were performed with the SIMBAA system using the Bubble 

Sort algorithm on ten subjects, five male and five female. Each listener answered a series 

of questions about their musical interest, exposure and training. No attention was paid to 

their computing skill but all subjects had no prior knowledge of algorithms. From this 

infonnation it was determined that each subject had an average musical ability, by this it 

is meant that the subjects were not trained musicians. 

The subjects were told about the nature of the Bubble Sort algorithm: 

algorithm (say alga-rith'm) noun 

Maths: a clearly-defmed sequence of operations for solving a particular 

mathematical problem. 

"The basis of the Bubble Sort algorithm is to repeatedly iterate through a list of elements 

comparing every adjacent pair of elements and swapping them if they are not in the 

correct relation. When an iteration takes places without any pairs of elements being 

swapped then the list is known to be sorted into numerical order and the algorithm can 

successfully terminate." 

Via informal verbal feedback, all ten subjects gave descriptions about the nature of the 

Bubble Sort algorithm suggesting that they understood the audible process of the 

algorithm after being presented with the auralisation for the fourth time. The first time 

that the algorithm was played 8 of the subjects requested that it be played slower the next 

time around. On the fourth pass, 6 of those 8 were comfortable with reverting back to the 

normal tempo .. The . listeners were asked a series of question about the auralisation and 

answers were entered into blank workbooks. The subjects were able to extract the· 

following quantitative and qualitative information given in Figure 6.3 from the 

auralisation procedure: 
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Attribute identified 

• The number of elements in the list. 

• T he number of passes before successful termination. 

• T he act of swapping elements. (Descriptive answers accepted). 

• T he amount of 'swap' occurrences within each pass I iteration. 

• TI le 'Test and Sort' nature of the algorithm. 

• The successful termination. (Descriptive answers accepted). 

No. of subjects 

10 

8 

9 

4 

9 

10 

Figur e 6.3 - Bubble Sort algorithm auralisation information extraction accuracy. 

Subj 

enco 

ects had no direct interaction with the SIMBAA system controls. The results were 

uraging so a more detailed set of experiments was carried out. 

6.3. Further experimentation with the Bubble Sort algorithm 

Afu 

Sort 

rther series of experiments were carried out that employed auralisation of the Bubble 

algorithm in the same manner as was used in the previously documented study. The 

rences between the two sets of experiments were: diffe 

• 
• 

Increased test subj ect group size to thirty listeners. 

The addition of a fourth timbre in the form a wooden block, which is played at the 

beginning of each sorting pass to indicate the iteration count. This has been added 

to complete the set of features identified in Chapter 4. 

• The addition of algorithms that contained errors. 

The 

chan 

SIMBAA system was utilised to facilitate the auralisations after the necessary 

ges were made to incorporate the fourth timbre .. 
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The points of interest that were auralised in this implementation of the bubble sort were: 

1. The current state of the algorithm .. 

2. The iteration count. 

3. Progression of the algorithm through the list of elements. 

4. The swapping of elements. 

s. Successful termination. 

The subjects were once again told about the nature of the Bubble Sort algorithm with the 

following information given in the workbook in Appendix 1. 

6.3.1. Results 

Group 2 were used for this experiment. Accuracy was tested through a set of questions 

posed to the test subjects concerning the state and execution of the algorithm. The 

questions are designed to reflect the knowledge required to understand the Bubble Sort 

algorithm. These test the understanding of list manipulation through swapping 

neighbouring elements, list checking, iteration and termination. The questions are: 

1. How many numbers ( elements) are there in the list? .................................. . 

2. How many swaps are there in the frrst pass? ........................................... . 

3. How many swaps are there in the second pass? .................... , ................... . 

4. How many swaps are there in the third pass? .......................................... . 

5. How many swaps are there in the fourth pass?: ........................................ . 

6. How do you know when elements are out of order? .................................. . 

7. How do you know when the recipe swaps elements? ................................. . 

8. How do you know when the list is sorted? ............................................. . 

9. How many times does the recipe pass through the list? .............................. . 

10. What orderis the list sorted into? ...................................................... . 
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Questions 6 and 7 produced some interesting responses. Some listeners answered both 

questions with the same answer, that of the trumpet triad. In these cases, users clearly 

failed to identify the descent in pitch in the list with out of place elements. Moreover they 

failed to distinguish between the out of place elements cue and the swapping cue. Instead, 

the stronger cue of the trumpet was used for identification of both. The results are shown 

in the graph below in Figure 6.5, which has been plotted horizontally in terms of musical 

ability from least to greatest. 

i , 

• I • I 

Algorithm Information Accuracy Plot 

Figure 6.5 - Bubble Sort auralisation information accuracy by musical ability. 

l 

This data shows that all of the test subjects with a greater than average musical ability 

were able to identify all of the state and execution information requested with an 

accuracy of 100%. By observation of the data, a large proportion of the test subjects with 

average musical ability were also capable of understanding the information that was 

questioned. 
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A check was then made on which types of infonnation were more easily identified and 

understood. Figure 6.6 shows how successfully the subject group answered each of these 

questions. 

Algorithm Question Plot - Total 
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Figure 6.6 - Bubble Sort auralisation information accuracy by question type. 

Questions 1 to 5 were requesting infonnation of a quantitative nature and the. accuracy 

level of listeners' identification and understanding was in the range 90% to 100%. In 

contrast to this, questions 6, 7 and 8 were requesting infonnation of a qualitative nature 

and the test subjects scored within the range of 67.5% to 82.5%. Question 9 asked for the 

. number of iterations required for the bubble sort algorithm to completely sort the list, and 

the identification accuracy about this infonnation was 82.5%. The tenth question 

requested infonnation about the final state of the list, the data shows that all listeners 

successfully identified this list state to an accuracy of 100%. The final state of the list in 

this experiment was ascending order. 
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The data gathered from this series of experiments suggest that information of a 

quantitative nature was grasped better than information of a qualitative nature. The 

exception is that the quantitative information did not include absolute data corresponding 

to the value of each of the elements within the list. 

Figure 6.6b shows the results of the WiIcoxon Signed Ranks non-parametric test applied 

to the scores obtained for the qualitative information extracted from this Bubble Sort 

auralisation compared to the quantitative information extracted. The hypotheses are: 

Ho : There is no difference in identification accuracy between qualitative 

information and quantitative information in this auraIisation. 

HI : There is a significant difference in identification accuracy between 

qualitative information and quantitative infonnation in this auralisation. 

a on 
b Wilcoxon Signed Ranks Test 

Figure 6.6b - Table of test statistics for algorithm information extraction, qualitative v. 

quantitative. 

From the data given in the above figures, the nuII hypothesis can be rejected at the 0.1% 

level of confidence concluding that there is a very significant difference between the 

extraction and understanding of qualitative information and the extraction and 

understanding of quantitative information in this instance of the Bubble Sort auraIisation. 

This data together with the scores represented in Figure 6.6 suggest that quantitative 

information translates better than qualitative information through musical auraIisations in 

this implementation. 
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The graph shown below in Figure 6.7 shows how 'musical' and 'non-musical' test 

. subjects perfonn comparatively. 
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Algorithm Question Plot - Non-musical v Musical 

2 3 4 5 6 7 8 9 10 

Question Number 

1'1 Non-Musical 

• Musical 

Figure 6.7 - Bubble Sort auralisation information accuracy - 'non-musical' v 'musical' 

listeners. 

These data qualitatively suggest little difference between the perfonnance of 'non­

musical' listeners and 'musical' listeners. Overall, the entire group of test subjects 

identify the infonnation requested about the state and execution of the Bubble Sort 

algorithm to an accuracy of 86.3%. This suggests that the majority of the requested 

infonnation was successfully translated. 

By using the same binomial expansion used in the previous chapter the probability of 

obtaining such a score at random can be calculated. Where the number of successes (r) is 

8.63 and the number of trials (n) is 10. 
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The probability of obtaining the correct answers at random for each of the questions is 

given: 

1. How many numbers (elements) are there in the list? List sizes are always 

presented between 6 and 8 elements. Therefore 5 possibilities gives the 

probability of giving the correct answer at random is 115. 

2. How many swaps are there in the first pass? Played list size is 8 elements so the 

maximum possible number of passes is 7. Therefore, probability of answering 

correctly at random is 117. 

3. How many swaps are there in the second pass? As question 2. 117. 

4. How many swaps are there in the third pass? As question 2. 117. 

5. How many swaps are there in the fourth pass? As question 2. 117. 

6. How do you know when elements are out of order? Five cues present, iteration 

count, checking phase, sorting phase, swapping and success. Therefore 115. 

7. How do you know when the recipe swaps elements? As question 6. 115: 

8. How do you know when the list is sorted? As question 6. 1/5. 

9. How many times does the recipe pass through the list? Maximum iterations in this 

experiment is 5. Therefore random probability of giving the correct answer is 115. 

10. What order is the list sorted into? Possible answers are sorted ascending, sorted 

descending or remain unsorted. Therefore probability of answering this question 

correctly at random is 113. 

Figure 6.7a - Table of statistics for each question for Bubble Sort algorithm auralisation. 
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This yields a total probability of answering the questions at random with a success rate of 

86.3% of 6.283e-46
, which strongly suggests that the group of listeners are capable of . 

. understanding Bubble Sort algorithm when represented musically. 

Figure 6.7b shows the results of the Mann-Whitney non-parametric test applied to the 

scores obtained by 'musical' listeners for the Bubble Sort auralisation compared to the 

scores obtained by 'non-musical' listeners for the Bubble Sort auralisation. 

The hypotheses are: 

Ho : There is no difference in identification accuracy between 'non-musical' 

listeners and 'musical' listeners when understanding the Bubble Sort 

algorithm auralisation. 

HI : There is a significant difference in identification accuracy between 'non­

musical' listeners and 'musical' listeners when understanding the Bubble 

Sort algorithm auralisation. 

Figure 6.7b - Table of test statistics for algorithm information extraction, 'non-musical' 

v. 'musical'. 

The data give confirms that the null hypothesis cannot be rejected concluding that there is 

no significant difference between 'non-musical' listeners and 'musical' listeners when 

extracting and understanding information in this instance of the Bubble Sort auralisation. 

The second part of this series of experiments tested the conveyance of erroneous . 

. algorithm auralisation. 
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The same thirty test subjects (Group 1) were asked to listen to the auralisation of a 

Bubble Sort algorithm that contained the following five errors: 

1. False 'success' trumpet fanfare after the first checking pass. 

2. Reversal of list during the second checking pass. 

3. Third checking pass ignores changes made in the second sorting pass. 

4. Iteration count indicates' 1 ' before the 3rd sorting pass, it should indicate '3'. 

5. Incorrect swap of elements '1' and '2' in the third sorting pass. 

The test subjects were told that the algorithm contained five errors but the nature of the 

errors was unknown. Figure 6.9 indicates the accuracy of error identification for each of 

the listeners, the graph has been plotted in terms of the subjects' musical ability starting 

with least and progressing through to greatest. 
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Figure 6.9 - Bubble Sort auralisation error accuracy. 
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It can be seen that algorithm error was not recognised well at all. This may be due to the 

listeners' limited exposure to algorithms (possibly because the test subjects had little 

prior knowledge about the nature and mechanics of the Bubble Sort algorithm). Such 

inexperience may lead to a limited understanding of the nature of this particular 

algorithm. Almost half of the test subjects failed to identify any of the errors. Of the 

remaining participants, ten identified approximately half of the errors. The data also 

suggests significant difference between the two groups of listeners. 

Figure 6.9b shows the results of the Mann-Whitney non-parametric test applied to the 

error identification scores obtained by 'non-musical' listeners for the Bubble Sort 

auralisation compared to the error identification scores obtained by 'musical' listeners for 

the Bubble Sort auralisation. The hypotheses are: 

Ho : There is no difference in error identification accuracy between 'non­

musical' listeners and 'musical' listeners when understanding the Bubble 

Sort algorithm auralisation. 

HI: There is a significant difference in error identification accuracy between 

'non-musical' listeners and 'musical' listeners when. understanding the 

Bubble Sort algorithm auralisation. 

Error 
Identification 

Score 
Mann-Whitney U 92.000 

Wilcoxon VI 245.000 
-.837 

Asymp. 8i9. (l-taiJed .201 

Figure 6.9b - Table of test statistics for erroneous algorithm information extraction, 'non­

musical'v. 'musical' .. 

From the data· given in the· above figures, the null hypothesis cannot be rejected 

concluding that there is no significant difference between 'non-musical' listeners and 
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'musical' listeners when extracting and understanding error information in this instance 

of the Bubble Sort auralisation. 

Once again it is important to look at the data from an information type viewpoint. The. 

graph below in Figure 6.10 shows how successfully the group as a whole identified each 

of the algorithm errors. 
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Figure 6.10 - Bubble Sort auralisation error accuracy by error type. 

5 

The more obvious errors were identified with greater success than the more subtle errors. 

The third error, which ignored all swaps in the' third checking phase, went entirely 

unnoticed by all of the test subjects. The second least identified error was the incorrect 

swapping of already ordered. elements in the third sorting pass. The remaining three 

errors were less subtle. 
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Although the general infonnation identification is poor, between 33% and 43% of test 

subjects identified the more obvious errors. This data suggests that the task of identifying 

ell'OrS within unfamiliar algorithms is not a simple one and is certainly not as easy as 

identifying characteristics within an error free algorithm. To be able to identify such 

subtle information the listener would require some in-depth knowledge of the nature of 

the algorithm, so that greater familiarisation of this Bubble Sort algorithm could increase 

error identification accuracy in this context. It is also possible that a better auralisation 

might yield higher detection rates. The SIMBAA tool has been shown to successfully 

convey information about the Bubble Sort algorithm in the previous experiment. The 

possible available features of the algorithm were fully exploited. However, some training 

of the mappings used might increase the identification accuracy of the algorithm errors. It 

is important to state here that this thesis is not concerned with using auralisation to aid 

bug location in algorithms. It is more concerned with the ability of musical auralisation to 

. convey information about the nature of the algorithms. 

6.4. Multiple algorithm auralisation 

Although in preliminary experiments the SIMBAA system was well received, it was 

decided to auralise an array of different algorithms much like Brown and Hershberger's 

selection [45]. This might highlight musical information structures that have a more 

successful information transfer rates than others in algorithm auralisation. 

The algorithms previously examined in Chapter 4 have. been auralised in a similar 

manner to that of the Bubble Sort algorithm. The following sections explain the chosen 

mappings and their implementation using the SIMBAA toolbox. 
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6.4.1. Selection Sort auralisation 

TIle infonnation defmed in Chapter 4 to be auralised so that the Selection Sort algorithm 

can be understood musically is: 

I. The current state of the list. 

2. The iteration count. 

3. Progression of the algorithm through the list of elements. 

4. The swapping of eleinents. 

5. Successful termination. 

As the goal of the algorithm is to sort the elements into an ascending order then 

successful tennination will be achieved when the current state of the list is heard as an 

ascending succession of notes in the diatonic scale. The mapping of music to the five 

points of interest has been chosen to be as understandable as possible. The mappings are: 

1. The current state of the list 'Play Entrre List' - this auralisation was achieved by 

mapping element values to pitch (a metaphor). The chosen instrument here was a flute, 

chosen from a distinct family as suggested by Alty and Rigas [158]. 

2. Iteration count - this auralisatlon was achieved by mapping the iteration counter to a 

wooden block. The sound of the wooden block is repeated for each iteration. 

3. Progression of the algorithm through the list 'Play Current Element' - the element 

values were mapped to pitch using a piano. 

4. The swapping of elements 'Play Swap Structure' - the structure uses a brass ensemble 

playing a major triad. The first note is an element to pitch mapping of the higher value 

in the current pair, the second note is an element to pitch mapping of the lower note in 

the current pair and finally the third note is a repetition of the first note. 
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5. Successful tennination 'Play Successful Tennination' - this auralisation also uses a 

brass ensemble, but this time it was used to produce a simple yet suggestive 'Ta - Da' 

sequence. 

Four timbres were necessary in order to achieve auralisation of the Selection Sort 

algorithm, an acoustic grand piano, a flute, a brass ensemble and a wooden block. In 

order to help disambiguate the infonnation, panning was employed. The flute was 

centrally located, the piano on the left, the brass ensemble on the right, and the wooden 

block also on the right within the stereophonic field. 

6.4.2. Exchange Sort auralisation 

The infonnation which needs to be auralised is as follows: 

1. The current state of the list. 

2. The iteration count. 

3. Progression of the algorithm through the list of elements. 

4. The swapping of elements. 

5. Successful tennination. 

As the goal of the algorithm is to sort the elements into an ascending order then 

successful tennination will be achieved when then current state of the list is heard as an 

ascending succession of notes in the diatonic scale. The mapping of music to the five 

points of interest was identical to the previous algorithm. 
. . 
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6.4.3. Quick Sort auralisation 

The information from the Quick Sort algorithm that needs to be auralised is as follows: 

1. The current state of the list. 

2. The iteration count. 

3. The value of the current pivot. 

4. The value of the current element. 

5. The placing of the current element into the left or right sub-lists. 

6. Successful termination. 

As the goal of the algorithm is· to sort the elements into an ascending order then 

successful termination will be achieved when then current state of the list is heard as an 

ascending succession of notes in the diatonic scale. The mapping of music to the six 

points of interest has been chosen to be as understandable as possible. The mappings are: 

I. The current state of the list 'Play Entire List' - this auralisation was achieved by 

mapping element values to pitch (a metaphor). Again the chosen instrument here 

was a flute. 

2. Iteration count - this auralisation was achieved by mapping the counter that is 

used to control number of iterations to a wooden block. The sound of the wooden 

block is repeated for each iteration. 

3. Value of the cUrrent pivot - this is heard in the centre of the stereophonic field. 

The chosen timbre is the trumpet with no addition of chorus or echo. The duration 

of this note is twice as long as the other notes to highlight it as a decision point. 

4. Playing the current element that is to be sorted based upon the current chosen 

pivot - the chosen mapping here was a simple acoustic grand piano placed in the 

centre of the stereophonic field. Again the element values were mapped to pitch. 
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5. The placement of elements - this is heard to the left of the stereophonic field if 

the current element is smaller than or equal to the pivot and heard to the right if it 

is greater. The chosen timbre is again the acoustic grand piano with no additional 

effects. 

6. Successful termination 'Play Successful Tennination' - this auralisation was 

achieved by again using the brass ensemble, but this time it was used to produce a 

simple yet suggestive 'Ta - Da' sequence. 

The four instruments used were an acoustic grand piano, a flute, a brass ensemble and a 

wooden block. All mappings pertaining to the values within the list during the sorting 

passes employed the same timbre of the acoustic grand piano. The decision-making pivot 

utilised the trumpet much like the previously described algorithms used the trumpet to 

denote swapping. 

Auditory space was used to assist disarnbiguation. The flute was central, the piano on the 

left, the brass ensemble on the right and the wooden block also on the right within the 

stereophonic field. The placement of elements into sub-lists also exploited the used of 

auditory space by placing all elements that fall into the left sub-list to the left of the 

stereophonic field and vice versa for the right sub-list. 

6.4.4. Bucket Sort (Inside-Out) auralisation 

The chosen information from the Inside-Out Sort algorithm that is to be auralised is that 

of a single pass in the Quick Sort auralisation followed by the auralisations of the Bubble 

Sort and Selection Sort algorithms on the left and right hand sub-lists respectively. As the 

goal of the algorithm is to sort the elements into an ascending order then successful 

tennination will be achieved when then current state of the list is heard as an ascending 

succession of notes in the diatonic scale. 
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The same instruments and placements within the stereophonic field have been employed 

as those previously described for the Quick, Bubble and Selection Sort algorithms . 

. 6.4.5. Bucket Sort (Outside-In) auralisation 

The chosen information from the Outside-In Sort algorithm that is to be auralised is that 

of a single pass in the Quick Sort auralisation followed by the auralisations of the 

Selection Sort and Bubble Sort algorithms on the left and right hand sub-lists 

respectively. As the goal of the algorithm is to sort the elements into an ascending order . 

then successful termination will be achieved when then current state of the list is heard as 

an ascending succession of notes in the diatonic scale. The same instruments and 

placements within the stereophonic field have been employed as those previously 

described for the Quick, Selection and Bubble Sort algorithms. 

6.5. Multiple algorithm auralisation information extraction 

6.5.1. Experiment construction 

In this series of experiments the Bubble Sort, Exchange Sort, Selection Sort, Quick Sort, . 

Bucket In-Out Sort and Bucket Out-In Sort algorithms were auralised and played to thirty 

test subjects. The SIMBAA system created the algorithm auralisations. The points of 

interest that were auralised in for the various algorithms can be summarised as follows: . 

1. The current state of the algorithm. 

2. The iteration count. 

3. Progression of the algorithm through the list of elements. 

4. The swapping or placement of elements around a pivot. 

5. Successful termination. 

The subjects were told about the nature of each of the algorithms. Information and played 

example auralisations pertaining to each of the algorithms were presented to the test 
. . . 
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subjects. The questionnaire presented to all test subjects pertaining to this series of 

experiments is given in full in Appendix L sections 9.1 to 9.6 and can be summarised as: 

9.1 - Bubble Sort example and auralisation test. 

9.2 - Selection Sort example and auraIisation test. 

9.3 - Quick Sort example and auralisation test. 

9.4 - Bucket In-Out Sort example and auralisation test. 

. 9.5 - Bucket Out-In Sort example and auralisation test. 

9.6 - Exchange Sort example and auralisation test. 

The information requested from the each of the algorithm auralisations differs between 

algorithms .. The question set shown below apply to the Bubble Sort, Exchange Sort and 

Selection Sort algorithm auralisations. The questions shown in bold print are those that 

are of a quantitative nature. The remaining questions shown in italic print are those of a 

qualitative nature. 

I-How many numbers (elements) are there in the list? 

2 -How many swaps are there in the first pass? 

3 -How many swaps are there in the second pass? 

4 -How many swaps are there in the third pass? 

5 -How do you know when elements are out of order? 

6 -How do you know when the recipe swaps elements? 

7 -How do you know when the list is sorted? 

8 -How many times does the recipe pass through the list? 

9 -What order is the list sorted into? (Perceived general shape of the list). 

10 - How does the shape of the list progress? 
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The questions that were applied to the Quick Sort algorithm auralisation are given as: 

I-How many numbers (elements) are there in the list? 

2 -What value is the pivot in the first pass? 

3 -What are the sub-list sizes on the first pass? 

4 - How many pivots are there on the final pass? 

5 -What identifies element placement into sub-lists? 

6 - How is the pivot musically represented? 

7 -How do you know when the list is sorted? 

8 -How many times does the recipe pass through the list? 

9 -What order is the list sorted into? 

10 - How does the shape of the list progress? 

The questions applied to the Bucket In-Out Sort and Bucket Out-In Sort are given as: 

I-How many numbers (elements) are there in the list? 

2 -What value is the pivot in the first pass? 

3 -What are the sub-list sizes on the first pass? 

4 - How many swaps are there in the 2nd pass? 

5 -After 1" pass, what denotes swapping? 

6 - How is the pivot musically represented? 

7 -How do you know when the list is sorted? 

8 -How many times does the recipe pass through the list? 

9 -What order is the list sorted into? 

10 - How does the shape of the list progress? 
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6.5.2. Results and analysis 

The diagram below in Figure 6.30 shows the musical ability distribution of the group of 

thirty test subjects. The group consists of 14 'non-musical' listeners and 16 'musical' 

listeners. This group of test subjects are referred to as Group 4. 
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Figure 6.30 - Musical ability rating - Multiple algorithm auralisation experiments. 

With this series of experiments a' further preliminary test was carried out in order to 

understand the users' ability to draw the shapes of simple tunes. Given that some 

musically trained test subjects riright fully understand the shape of the tonal sequences it 

may also be possible that they do not have the ability to draw. The test listeners that were 

considered incapable of drawing regardless of their musical ability were omitted from the 

experimental data obtained through this series of experiments. All test subjects were 

chosen on the basis that they had very little or no prior knowledge of sorting algorithms. 
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Figure 6.30a - Algorithm information extraction accuracy for each algorithm. 

The graph given in Figure 6.30a shows how each of the algorithm auralisations compare. 

These data represent the average information extraction for each of the algorithms for the 

entire group of test listeners. These data suggest that the algorithms with the previously 

described (Chapter 5) anchor points near to the boundaries of the context scale tend to be 

more easily understood than the algorithms that employ the Quick Sort algorithm where 

the anchor points are either moving between passes or becoming larger in number. It is 

necessary to split this data into sub-groups defmed by musical ability to investigate if 

musical training has any effect on understanding the information. It is also necessary to 

investigate whether certain information types, quantitative or qualitative, translate better 

during algorithm auralisation. 

TIle graph in Figure 6.31 shows how Group 4 performed when answering questions 

pertaining to information extraction from the Bubble Sort auralisation. The data is 

displayed along the x-axis in order of musical ability. 
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Figure 6.31 - Bubble Sort information extraction accuracy. 

The data for the remaining algorithm auralistaions exhibit similar results. The graphs for 

these results are given in Figures M.1 to M.S in Appendix M .. 

The data suggests that there is little difference between 'musical' and 'non-musical' 

subjects and that the overall performance of the test group looks encouraging. The 

average scores and the probabilities of the occurrence of these scores at random for each 

algorithm auralisation calculated using the same Binomial expansion previously shown in 

this chapter are: 

Bubble Exchange Selection Quick BIO BOI 
Score% 

orr 86.333 84.667 89 70 75 78.667 
p(r) 6.283e~· 7.393e"" 1.217e~' 3.467e'" 1.257e-32 5.544e-35 

Figure 6.32 - Table of statistics for each algorithm auralisation. 
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These data strongly suggest that the group of listeners are capable of understanding each 

of the six algorithms when represented musically. 

The data in the table given in Figure 6.36b shows the results of the Mann-Whitney non­

parametric test applied to the information extraction scores obtained from each of the six 

algorithm auralisations for the 'musical' listeners compared to 'non-musical' listeners.· 

The hypotheses are: 

Ho : There is no significant difference between 'musical' and 'non-musical' 

listeners . when extracting infonnation from the specified algorithm 

auralisation. 

Ht: There is a significant difference between 'musical' and 'non-musical' 

listeners when extracting infonnation from the specified algorithm 

auralisation. 

Figure 6.36b - Table of test statistics, algorithm information extraction, 'musical' v. 

'non-musical' . 

From the data given in the above figures, the null hypothesis cannot be rejected for each 

algorithm. auralisation concluding that there is no significant difference between 

'musical' and 'non-musical' listeners when understanding and extracting information 

from the each of the algorithm auralisations. 

Figures M.6, M.7, M.8, M.9, M.10 and M.ll in Appendix M show the performance of. . 

the group for each of the questions on the Bubble Sort, Exchange Sort, Selection Sort, 

Quick Sort, Bucket In-Out Sort and Bucket Out-In Sort aitralisations respectively. 

232 



~--------------------------------- -

233 

Quantitative question are shown as solid bars and qualitative questions are shown as clear 

bars. 

TIle data suggests that there is some difference between quantitative and qualitative 

infonnation perception~ It also suggests that overall perfonnance of the test group is 

generally high for each of the questions. Figure 6.42b shows the results of the Wilcoxon 

Signed Ranks non-parametric test applied to the infonnation extraction scores obtained 

from each of the six algorithm auralisations for qualitative. questions compared to 

quantitative questions. The hypotheses are: 

Ho : There is no significant difference between quantitative and qualitative 

infonnation perception and understanding for the specified algorithm 

auralisation. 

HI : There is a significant difference between quantitative and qualitative 

infonnation perception and understanding for the specified algorithm 

auralisation. 

Asymp. Sig. 
(1-tailed 

BQN2 - EQN2 - SQN2 - QQN2 BIOQN2 - BOIQN2 -
BQL2 EQL2 SQL2 QQL2 BIOQL2 BOIQL2 

2.20 1.851 1.86 • 1.94 
. 01 .032 .031 .02 

Figure 6.42b -:- Table of test statistics for algorithms' infonnation extraction, qualitative 

v. quantitative. 

This analysis has been perfonned as a inatter of completeness because cases might exist . 

where only qualitative or only quantitative infonnation might need to be presented. 

However, in the context of this thesis, both infonnation types are used for algorithm 

understanding. From the data given in the above figures, the null hypothesis can be 

rejected at the 5% level of confidence for each algorithm auralisations concluding that 

there is a significant difference between the perception and understanding of qualitative 

and quantitative information types for the each of the algorithm auralisations. 
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Furthermore the data shows that quantitative information translates better than qualitative 

infonnation. Tins suggests that the use of sonification of the data in the list (quantitative 

information) translated with greater success than the more abstract metaphorical 

mappings (qualitative information). This nlight suggest that the use of different 

metaphors could lead to increased understanding of qualitative information types. 

Given that no significant difference between 'musical' test subjects and 'non-musical' 

test subjects when understanding musically auralised algorithm execution and state has 

been proven, it is important to exanline if this also holds true for each of the information 

types. The graphs given in Figures M.l2, M.l3, M.l4, M.15, M.l6 and M.17 in 

Appendix M show how the two sub-groups perform on each question for the Bubble Sort, 

Exchange Sort, Selection Sort, Quick Sort, Bucket In-Out Sort and Bucket Out-In Sort 

algorithms respectively. 

The data given in the above figures suggests that there is little difference between 

'musical' listeners and 'non-musical' listeners when understanding either quantitative 

information types or qualitative information types. 

Figure 6.48b shows the results of the Mann-Whitney non-parametric test applied to the 

information extraction scores obtained from each of the six algorithm auralisations for 

'musical' listeners compared to 'non-musical'· listeners for qualitative question types. 

The hypotheses are: 

Ho : There is no significant difference between 'musical' . listeners and 'non~ 

musical' listeners when understanding qualitative information for the 

specified algorithm auralisation. 

HI : There is a significant difference between 'musical' listeners and 'non­

musical' listeners when understanding qualitative information for the 

specified algorithm auralisation. 
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Figure 6.48b - Table of test statistics - algorithms' qualitative infonnation extraction, 

mus v. non-mus 

From the data given in the above figures, the null hypothesis cannot be rejected for each 

of the algorithm auralisations concluding that there is no significant difference between 

'musical' listeners and 'non-musical' listeners for the perception and understanding of 

qualitative infonnation types for the each of the algorithm auralisations. 

Figure 6.49b shows the results of the Mann-Whitney non-parametric test applied to the 

infonnation extraction scores obtained from each of the six algorithm auralisations for 

'musical' listeners compared to 'non-musical' listeners for quantitative question types. 

The hypotheses are: 

Ho : There is no significant difference between 'musical' listeners and 'non­

musical' listeners when understanding quantitative infonnation for the 

specified algorithm auralisation. 

HI : There is a significant difference between 'musical' listeners and 'non~ 

musical' listeners when understanding quantitative infonnation for the 

specified algorithm auralisation. 

Figure 6.49b - Table of test statistics - algorithms' quantitative infonnation extraction, 

mus v. non-mus 
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From the data given in the above figures, the null hypothesis cannot be rejected for each 

of the algoritlun auralisations concluding that there is no significant difference between 

. 'musical' listeners and 'non-musical' listeners for the perception and understanding of 

quantitative information types for the each of the algorithm auralisations. 

Given that no significant difference has been shown between 'musical' listeners and 

'non-musical' listeners when understanding either quantitative information types or 

. qualitative information types, it is also important to' analyse the variance between the 

information types. 

Figure 6.50b shows the results of the Wilcoxon signed rank non-parametric test applied 

to the information extraction scores obtained from each of the six algorithm auralisations 

for 'musical' listeners for quantitative question types compared to qualitative question 

types. The hypotheses are: 

Ho : There is no significant difference between qualitative and quantitative 

question types for 'musical' listeners when understanding information for 

the specified algorithm auralisation. 

HI : There is a significant difference between qualitative and quantitative 

question types for 'musical' listeners when understanding information for 

the specified algorithm auralisation. 

Figure 6.50b - Table of test statistics, algorithms' 'musical' information extraction, 

qualitative v. quantitative 

From the data given in the above figures the null hypothesis cannot be rejected for each 

. algoritlun auralisations concluding that there is no significant difference between 
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qualitative and quantitative question types for 'musical' test listeners when perceiving 

and understanding information for the each of the algorithm auralisations. Again, both 

infonnation types are required for understanding sorting algorithms within the context of 

this thesis. The testing of information types here is not a primary concern of the thesis but 

it does provide some useful information for auralistaion of qualitative only or quantitative 

only presentations. 

Figure 6.51 b shows the resnlts of the Wilcoxon signed rank non-parametric test applied 

to the information extraction scores obtained from each of the six algorithm auralisations 

for 'non-musical' listeners for quantitative question types compared to qualitative 

question types. The hypotheses are: 

Ho : There is no significant difference between qualitative and quantitative 

question types for 'non-musical' listeners when understanding 

information for the specified algorithm auralisation. 

HI: There is a significant difference between qualitative and quantitative 

question . types for 'non-musical' listeners. when understanding 

information for the specified algorithm auralisation. 

Asymp. Sig. 
(1·tailed 

Bubble Exchang Selection Quick Bucket In· Bucket Out· 
Out In 

1.64 1.80 • • 1.99 
.05 .03 .02 

Figure 6.51b -Table of test statistics, algorithms' 'non-musical' information extraction, 

qualitative v. quantitative 

From the data given in the above figures, the null hypothesis can be rejected at the 5% 

level of confidence for almost all algorithm auralisations concluding that there is 

significant difference between quantitative and qualitative question types for 'non­

musical' listeners when perceiving and understanding information for the each of the 
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algorithm auralisations. This data suggests that although no significant difference has 

been shown between 'musical' and 'non-musical' listeners when perceiving and 

understanding qualitative and quantitative information types, the spread in accuracy 

between the information types is greater for 'non-musical' listeners than for 'musical' 

listeners. It can be further concluded that 'musical' listeners are more reliable at 

perceiving and understanding both information types given that the spread in accuracy is 

smaller. This increased reliability is present but not statistically significant, though 

increasing the sample size in this case may have shown some significance. 

6.6. Conclusions 

Initial experimentation with the Bubble Sort algorithm showed that information 

pertaining to state and execution can be successfully represented musically with test. 

subjects scoring generally high and identifying a large majority of the requested 

information. 

Further experimentation using the Bubble Sort algorithm with the addition of the fourth 

timbre to denote iteration count, with increased test group sizes to allow for reliable 

statistical analysis and the addition of deliberate algorithm error showed, that once again 

the information exchange was significantly high with the majority of information being 

identified. Statistical analysis of the results showed that there is no significant difference 

between 'musical' and 'non-musical' test subjects when identifYing algorithm state and 

execution information and erroneous algorithm state and execution information. The 

analysis also showed that quantitative information translates significantly better than 

qualitative information in the context of the experimental auralisations. Although the 

identification of erroneous algorithm information was low, the data suggested that 

obvious errors were more easily identified than subtle errors. The identification of bugs in 

sorting. algorithms through musical auralisation was not of concern in this thesis and 

SIMBAA was not designed to be a tool for aiding such bug location. However, it does 

provide some interesting information about the difficulties associated with untrained 

listeners attempting to identify the· more subtle and intricate information. present in 
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sorting algoritlun. Further experimentation here might yield better error identification 

rates if altemative musical metaphors were used. This requires significant investigation 

and is beyond the scope of this thesis. 

TIle results for the experimentation using the six different algorithms showed that once 

again the algorithms with fixed and constant anchor points are more readily understood 

(Bubble Sort, Exchange Sort and Selection Sort algorithms). The data also showed that 

overall there is no significant difference between 'musical' listeners and 'non-musical' . 

listeners when perceiving and understanding musically represented information 

pertaining to state and execution for each of the algorithms. It was also shown that 

quantitative information types are significantly more easily understood and identified 

tllaJl qualitative information types. Within each of these information types it was further 

shown that there is no significant difference between 'musical' and 'non-musical' 

listeners. The results again showed that for the 'non-musical' sub-group alone 

quantitative information types were more easily understood than qualitative information 

types. In contrast, no significant difference was observed between the two information 

types for the 'musical' sub-group alone. This suggested iliat the spread between 

information types for each sub-group was different but not different enough to be 

significant when comparing the two sub-groups. 

Once again the addition of extra cues might further disarnbiguate the information 

presented in each of the algorithm auralisations. Given that the addition of spatial 

location cues could aid perception of pitch and shape, it could also be used to aid 

understanding of algorithm auralisations. In order to incorporate the extra spatial cues, 

three-dimensional sound source placement could be employed. The following chapter 

documents the design and implementation of the SIMBAA system incorporating spatial 

enhancement to facilitate the subsequently documented algorithm auralisation 

experimentation using three-dimensional sound. 
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Chapter 7 

SIMBAA 3D - A spatially enhanced musical auralisation tool 

7.1. Spatially enhancing SIMBAA 

In the SIMBAA experiments in Chapter 6, disambiguation of the musically presented 

information was achieved by the use of the following: 

• Rhythm of ascension. 

• Contrasting timbre using a piano, a flute and a brass ensemble. 

• Hmmony using a major triad. 

• TIle use of auditory space by employing instrument placement via stereophony. 

The auralisations implemented so far have exploited the features of the sorting algorithms 

identified in Chapter 4. It might be argued that better auralisations could have produced 

improved perception. This thesis is not concerned with developing optimum auralisations 

but it is concerned with investigating the effect of the addition of spatialisation on the 

existing auralisations. However, the use of auditory space in this instance was under 

exploited. Although placement of the different timbres in the left, centre and right 

locations within the stereophonic field aided disambiguation between events and actions 

it was limited to the line between the listener's ears. Better disambiguationmight be 

achieved by extending the two-dimensional stereophonic field into a three-dimensional 

auditory environment. In particular the spatialisation of the data might provide positional 

cues about the values of the data and their positions within the list. This might further aid 

understanding of the execution and sorting natures of the algorithms. , ' 

It was therefore decided to develop SIMBAA into a 3-D auditory environment (called 

SIMBAA 3D). The enhanced system will have all the features of the existing SIMBAA 

system together with a greatly' enhanced 3-D environment. The method chosen has' 

already been extensively discussed and justified in Chapter 3, namely, the use of stored 

binaural recordings created using microphones placed inside the ears of subjects. The 
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main new aspect of SIMBAA 3D is the creation of what we call a "SoundWall" - a two­

dimensional proj ected wall onto which sounds can traverse anrally in two directions. In 

addition, control sounds can be played behind the listener (left or right). 

The diagram below in Fignre 7.1 shows the conceptual 3D spatial auditory environment 

with an example eight element list spatially distributed on the wall. 

Pitch 8 

LIST STATE­
(2,4,3,2,3, S, 7,6} 

Event 1 

I 
User 

Event 2 

I 
Figure 7.1 - SIMBAA 3D conceptual auditory scene. 

Element 

Control Events such as successful termination and iteration are 'located behind the 

listener's ears and'identified as 'EventI' and 'Event2'. The remaining mappings 

pertaining to the data in the list are projected onto the 3D 'SoundWall'. The different 

processes that can be applied to the data in the list (checking the data, sorting the data and 

moving the data) could be distinguished through the use of different timbres. 
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7.2. Algoritlun experimentation and the SIMBAA 3D environment 

All of the algoritlun auralisation experiments performed in Chapter 6 utilise lists that 

contain numbers between 1 and 8, this is to allow for a single diatonic octave to be used. 

The reason for limiting the representations to one octave is based upon Surnikawa et ai's 

[175,176] findings that perception is increased when mappings are confmed to one 

octave as opposed to spanning octaves. Given that the varying pitch (8 notes in this case) 

is to be mapped to the elevation cue of the 'SoundWall', it can be defined that the wall 

must facilitate eight elevation positions. 

To limit the complexity of the algoritlun auralisations, the maximum number of elements 

within the lists used in the experiments in Chapter 6 was never less than six and never 

greater than ten. It is important to clarify for design purposes that this limitation has not 

been based on the constraints of the human memory reported by Miller [142] which 

stated that the human short term memory can only hold about 7±2 chunks of information 

at anyone time. The experiments involving algoritlun auralisation are not concerned with 

listeners being able to remember exact elements but rather the general shapes of the lists 

of numbers, in particular which portions of the list are random and which are sorted into 

order. Given this, Miller's observations on the constraints of human short term memory 

are not of any significance as the features of the shapes of the lists are never likely to 

exceed three (e.g: random-smooth-random) due to the natures of chosen algoritluns. 

Having determined that the maximum list size is never greater than ten for this series of 

experiments, it can be defmed that the number of azimuth locations required on the 

. 'SoundWall' is to be ten. 

In order to create an auditory scene capable of accommodating the necessary information 

represented by algoritlun auralisations as employed in Chapter 6 of this thesis it is 

necessary to defme the information. that is to be represented musically for 

experimentation. This information has been identified in Chapter 4 and 6 but needs to be 

reiterated here, the information common to the selected algorithms for auralisation are: 
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• State of the list - tones mapped to numbers within the list. The relative pitch of 

the tones alone gives the impression of the shape of the list, tlus shape could be 

. further clarified and disambiguated through the placement of tile elements in 3D 

auditory space. The shape of the list could be projected onto the 'SoundWall'. As 

the sequence progressed, tl1e instrument would move along the wall from left to 

right. SinJilarly, as the pitch of the tones increased, the elevation position of the 

projected sound source would also increase. This would provide an additional 

cue, one of a positional nature, as to the data values and their positions witl1in the 

list. 

• Sorting the list - tones mapped to numbers within the list. As with the previous 

mapping this phase of the algorit11m's execution requires the musical 

representation of current elements within the list that are presently being sorted . 

. Again this could be projected onto the 'SoundWall'. The difference between this 

mapping and the previous mapping is the discrinJination of timbre as employed in 

tile algorithm auralisations described in Chapter 6. The mapping for representing 

the state of the list uses a flute, tl1is mapping employs an acoustic grand piano. 

This would also provide an additional cue, one of a positional nature, as to the 

data values and their positions witl1in the list. 

• Swapping/placement of elements - tones mapped to numbers within the list. As 

Witll the previous mappings, this requires the numbers witl1in the list to be 

represented musically. Again tlJ.is can be projected onto the 'SoundWall' with the 

employment of different timbre, in this case the choice of timbre is a trumpet as 

described for experimentation in Chapter 6. This would provide an additional cue, 

one of a positional nature, as to the swapping of the data values and their swapped 

positions witl1in the list. 

• Iteration count - . wooden block indicating the iteration count. This mapping 

requires the pass count to be represented musically. This does not require to be 

projected onto the 'SoundWall', rather, to discern this mapping from the previous 
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pure data element mappings it could be placed 180 degrees (for maximum 

segregation) away from the 'SoundWall', locating it behind the listener. As with 

the earlier experiments with algorithm auralisation described in this thesis the 

choice of timbre here is the wooden block. 

• Successful termination - 'Ta-Da' success on algorithm sorting completion. The 

choice of timbre here for previous auralisations within this thesis has been a brass 

ensemble. Again this timbre shall be employed and to discern this mapping from 

the pure data element mappings it could again be placed behind the listener. 

To summarise, for application to algorithm auralisation within the scope of this thesis the 

'SoundWall' needs to be constructed with the following parameters: 

• TIrree instruments - flute, acoustic grand piano and trumpet. 

• Eight elevation positions - mapping to pitch within one diatonic octave starting at 

'Middle C'. 

• Ten azimuth positions - mapping to the position of the current elements in the 

list, being between 6 and 10. 

Therefore it is necessary to binaurally record 240 (3 instruments x 8 pitch locations x 10 

positional locations) real audio samples with the addition of the two control events 

(iteration count and successful termination). 

7.3. Creating the auditory scene 

In order to binaurally record the necessary real audio sounds a pair of binaural 

microphones is required. It has been decided that for cost effectiveness and simplicity a 

real human being is to be used instead of a manikin for the object listener. One of the 

concerns with using a real human being is the unpredictable motion of the listener. When 

recording a series of audio samples it is important.to retain the same relative position of 

the object listener's ears, head and torso. To accomplish this, a small laser pointer has 

been employed. This laser was mounted on a pair. of glasses that are rigidly attached to 
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the listener's head, this is shown in the pictw-e given below in Figw-e 7.2. It shou ld be 

noted here that the head mounted equipment might have an effect on the binaw-al 

recordings, in [hat they might introduce exu'a reflections. To minimise tltis, all leads and 

connectors were tied back behind the listener ' s head. The refl ections fro m the laser 

mount, casing and glasses could not be effectively reduced without extensive des ign . It is 

important to reiterate here that this thesis is concerned with ll sing a low cost spati ali sation 

technique. 

Figure 7.2 - Laser head alignment. 

The centre point of the 'SoundWaU' was located and a marker was affixed to retain the 

foca l po int. Upon recording the samples, the object listener aligned the laser pointer to 

th is foca l point (shown below) thereby maintaining approximately the same relative 

pinna, head and torso positions. 
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Figure 7.3 - Laser head alignment in semi-anechoic recording studio. 

In order to reduce the localisation confusion introduced by excessive environmental 

reverberation the sound samples were recorded in a professional recording studio with 

semi-anechoic walls. The sound absorbent surfaces of the walls are shown in the picture 

above in Figure 7.3 as the large blue cloth covered panels. The dimensions of the waIJ 

were made as large as the recording studio would fac ilitate. Tllis was done in order to 

maximise the possible space between the three-dimensional coordinates of each sOlUld 

source to aid instrwnent location separation. The dimensions of the wall were 411.5 cm 

(162 inches) wide by 186.7 cm (73.5 inches) high. The sound sources were therefore 

placed with 45.7 cm (18 inches) of separation in the horizontal plane and 26.77 cm (10.5 

inches) of separation in the vertical plane. The object listener was placed in the centre of 

the ' SollndWall' 205.7 cm (81 inches) from the left most boundary and 93 .4 cm (36.75) 

inches from the lower most boundary. 

246 



247 

One concern that became apparent during the initial recording phase was the position of 

the listener relative to the 'SoundWall' and the event objects. Two 'trial' auditory scenes 

were therefore created with the listener being positioned six feet fmm the 'SoundWall' 

and three feet from the 'SoundWall'. The four corners and an ascending pattern were 

played to severa l test listeners each of whom was asked to choose which representation 

gave the most realistic impression of three dimensional movement of sound on a 

projected virtual 'SoundWall'. It was found that all test li steners much preferred the 

'SoundWall' that was recorded at a distance of three feet. It was therefore decided that 

thi s parameter should be used when recording the final 'SoundWall '. As mentioned in 

Chapter 3, the closer a source gets closer to a human head, the greater the inter-aural 

intensity difference. This increase in difference is particularly noticeable for ranges under 

one meter. This may be a factor in the listeners' preference for the 'SoundWall ' at 3ft. 

Figure 7.4 - 'SoundWall' ill semi-an echoic recording studio . 
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Figure 7.5 - 'SoundWall' and object listener - left perspective. 

Figure 7.6 - 'SoundWall ' and object li stener - right perspective. 

248 



249 

The entire 'SoundWall ' and object listener are shown in the picture above in Figure 7.4. 

The paper squares on the studio wall represent the indexed positions of the eighty sound 

source locations. The pictures above in Figures 7.5 and 7.6 show the 'SoundWall ' and the 

object li stener from both the left and right hand sides. 

The hardware configuration used to construct the three dimensional 'SoundWall' and 

spatially located control events was: 

• Sound source generator - a multi-tiInbral Roland Boss DS 330 synthesiser with 

'real' sampled instruments driven by a PC running Steinberg's CUBASE VST24. 

• Sound source radiator -a high quality acoustic loudspeaker with a frequency 

range of 50Hz to 11kHz (enough to cover the audib le range). 

• Binaural microphone palr - pair of ELECTRET condenser microphones placed in 

the ear canals of the object listener. 

• An ELECTRET condenser microphone interface - required to drive the 

microphone pair. 

• A two-chal1l1el digital recording device - a PC ruruting Sternberg 's WaveLab. 

This configuration is diagrammatically represented in Figure 7.7. 

PC - Sound Digit al Recording 
Generator Driver Device 

..j,. i 
Sound Source Microphone 

Generator Interface 

..j.. i 
Sound Source Binaural 

Radiator Microphone Pair 

~~coust iC Medium] 

Figure 7.7 - Auditory scene generation system. 

249 



250 

The hardware consisted therefore of a straightforward sound source recording 

configuration with the addition of some filtration supplied by tile Acoustic Medium. 

These filtration effects of tilis acoustic medium are dependent upon the location of the 

sound source relative to the binaural microphones and the echoes and properties of the 

object li stener and recording environment. The hardware configuration employed during 

the recording phase cOlTesponding to this diagranunatical representation is shown in the 

photograph in Figure 7.8. 

Figure 7.8 - Auditory scene generation system hardware set-up. 

As previously mentioned a pair of binaural microphones were required in order to 

facilitate the binaural recording of the auditory scene. These microphones each require 

secure placement within each ear canal of the listener. In order to accomplish this, 

'hearing aid ' like devices were fabricated. The diagram in Figure 7.9 shows the initial 

design of the hearing aid which consisted of the ELECTRET condenser microphone, lead 
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wire and a pinna clasp. The puma clasp is made from rigid 2.5mm diameter wire and 

coated with a rubber sheath to aid comfort when being worn by the object listener. The 

pinna clasps were then customised to the ctimensiolls of the test listener. 

Electret Condenser 
Microphone 

Wire 

Figure 7.9 - Binaural microphone and pinna clasp - conceptual. 

The picture given below in Figure 7. 10 shows the object li stener's pinna with the custom 

formed pinna clasp and microphone assembly attached in position. 

Figure 7.1 0 - Binaural microphone and pinna clasp. 

ELECTRET condenser microphones are not passive transducer devices and therefore 

require some simple interface circuitry. Each microphone was interfaced with the circuit 

shown in the diagram given in Figure 7.11 below. 
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4.7uf 

r------t--.:...j+ .... 1-- -----<0 8 
CD J ~ + 1K Output 

~(2) -r 1.51/ 

~------~--------~~ () 
Figure 7.11 - Binaural electret condenser microphone interface circuit diagram. 

After initial construction, the author tested the realism of the resulting binaural recordings 

created with the microphone pair. This initial testing took the fOlm of recording two real 

world sounds onto a portable digital recording device. The author recorded the auditory 

envirolUnent typically encountered when crossing a busy road, stopping in the centre 

island to capture the sounds of motor vehicles passing in both the front and rear planes. 

The second sample consisted of a simple helicopter sample played and moved to give the 

impression of the helicopter flying toward the listener object, circularly around the head 

of the listener object and flying away off to the left field . The results of these preliminary 

tests yielded most favourable results and the effects were quite dramatic, even between 

different li steners. In order to make the binaural recording more precise, further tuning of 

the matching of the characteristics of the two ELECTRET microphones was carried out 

to minimise localisation error in the horizontal plane. 

7.4. Hardware considerations 

It is necessary to ensure that both left and right binaural microphones are as closely 

matched as possible in order to create faithful 3-D recordings. Gross mismatching causes 

unbalanced recordings that lead to inaccurate sound source placement. Preliminary 

experimentation which compared two randomly selected ELECTRET microphones 

showed a noticeable difference in the recorded amplitudes. Indeed the highest measured 

difference in this case was up to 6dBs. 

Four ELECTRET microphones were therefore selected, at random, and the amplitude and 

frequency responses of each were analysed. Only four were chosen to reduce complexity 
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and to eliminate onl y 'rogue' devices with significantly different characteristics. The two 

most closely matched microphones were then selected for use in our binaural recordings. 

The frequency range investigated covered the range 20Hz tlu·ough to 20kHz, since this 

more than covers the audible range and facilitates CD quality recordings with a sample 

frequency of up to 44kHz. Nyquist's criterion states that to have effective sampling, the 

sampling frequency [Sample Frequency 40kJfz) must be twice that of the highest 

frequency component in the sample [20kHz). Since the frequency response of the 

microphones used was 50Hz to 8kHz, this more than covered the desired range of 

frequencies. The frequency response of each microphone was investigated using a 3D 

Frequency-Time plot, and both waveforms and peak amplitudes were examined. 

Each frequency and amplitude plot had common features - peaks and troughs that did not 

appear in the reference plot (Figure 7. 12). These features were due to the frequency 

response characteristics of the hardware used in this experiment. Thus, common elements 

that differ from the SO Ul"ce could be attributed to signal degradation tlu·ough the hardware. 

The important features to be compared were those that differ between microphones and 

not those that differ between microphone and source. All speakers and microphones 

were obta ined from Maplin electronic supplies. The speaker was chosen for its frequency 

response, which accolTunodated those of tlle microphones. The characteristics of speaker 

and microphones are shown in Figures 7. 11 a and 7. llb. 

6.5 inch High Fidelity Loudspeaker. 

Frequency Response 50Hz to 11 kHz 

Impedance 8 Ohms 

Coi l Diameter 201TU11 

Chassis Diameter 166mm 

Free Air Resonance 55Hz +/- 8Hz 

Acoustic Output 89dB 

7.1 I a. Loudspeaker specification. 
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Omni directional Electret 
. 

Condenser Microphone. , 

Frequency Response 50Hz to 8kHz 

Impedance 1 kO lun max 

Power Supply 1.5v to l Ov 

Sound Pressure Level 120dB max 

Sensitivity -62dB +/- 3dB 

7.11 b. Electret condenser microphone specification. 

Figure 7.12 - Generated source sweep 

Figure 7.12 shows the frequency sweep in the frequency domain and Figure 7.13 shows 

the same frequency sweep in the temporal domain starting at 20Hz and sweeping through 

to 20kHz, it also shows that the waveform is at maximum amplitude (-OdBs) t1u·oughout 

the desired frequency range. 
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Figure 7. 13 - Generated Source Wavefonn . 
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Figure 7.14 - Microphone I Wavefoml. 

In the wavefonn taken from record ing through microphone I, shown in Figme 7.14, it 

can be seen how the response of both the speaker and the microphone contributed to 

signal degradation, thi s becomes even more evident towards the higher frequencies where 

the amplitude is significantly attenuated. In comparison to the source signal, a peak 
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amplitude was measured using a peak level meter. This measurement indicated that the 

recorded signal was -4.1dBs down from the source at its highest peak. 

"'"' ._. _ __ .--1 ___ . ~ ____ -'--' ____ h~.. h _ __ . ....... -'-L...:....o ___ .~ ...... __ . ........ ..... .----- ......... -
i ~ ....... ,. ~ 

., 
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Figure 7.15 - Microphone 2 WavefOlm. 

[n the waveform taken from recording through microphone 2 shown in Figure 7.15 it can 

again be seen how the speaker and microphone both contributed to common signal 

degradation. The envelope is much the same as that of the waveform obtained using 

microphone I, the main difference however is the overall amplitude - it can be seen that 

this envelope is much smaller. 

The measurement taken usmg the peak leve l indicator showed that the waveform 

obta ined recording through microphone 2 was -8.6dBs down fro m the reference signal 

source at its highest peak. TIllS was an extra -4.5dBs down compared to that of 

microphone I. 
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Figure 7.16 - Microphone 3 Waveform. 

In the waveform taken from recording through microphone 3 shown in Figure 7.16 it can 

yet again be seen how the speaker and microphone both contributed to common signal 

degradation. The shape of the envelope is much the same as that of the waveforms 

obtained using microphones 1 and 2, again the main difference is the overall amplitude · 

it can be seen that this envelope is small as in the waveform for microphone 2. 
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Figure 7.17 - Microphone 4 Wavefoml. 
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The measurement taken using the peak level indicator showed that this waveform from 

microphone 3 was - 10.7dBs down from the reference signal source. Tills shows an extra 

-6.6dBs down compared to that of microphone 1 and an extra -2.ldBs down compared 

with microphone 2. 

The waVef0l111 taken from recording tlu'ough nlicrophone 4 shown in Figme 7.17 again 

shows how the speaker and nlicrophone both contributed to common signal degradation. 

The envelope shape is much the same as that of the wavefolm obtained using 

microphones 1, 2 and 3, the main difference again however is the overall amplitude. It 

can be seen that tillS envelope is much larger than tllOse of nlicrophones 2 and 3. It is 

closest in tClms of amplitude to the waveform obtained using nlicrophone 1. The 

measurement taken using the peak level indicator showed that this waveform was -

3.2dBs down from the reference signal source at its highest peak. TIllS is comparable to 

the characteristics associated with microphone 1 which is an extra -0.9dBs (being at -

4.1dBs). 

Figure 7. 18 - Generated Source Frequency Response. 
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Figure 7. 18 shows the frequency sweep starting at 20Hz and sweeping tlu'ough to 20kHz 

over a period of time T=2.5s (approx.) 
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Figure 7. 19 - Microphone 1 Frequency Response. 

! 2. . ... :r 2.17h 
-L 1.H3 . 

,. U52s 

l
r~~:. 

'''~ 
, J lO m. 

-L. 

It can be seen from the frequency response plot shown in Figure 7.19 above for 

microphone I that there was significant attenuation of frequencies outside of the range 

115Hz to 1400Hz, tillS attenuation is largely due to the characteristics of both the speaker 

and the microphone. Very high and very low frequencies did not transfer very well with 

the given acoustic hardware. As previously mentioned, of greater interest are the 

differences between the microphones and not the differences between the nllcrophone 

and source, although this plot does yield some useful information. 

Figure 7.20 - Microphone 2 Frequency Response. 
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It can be seen fi'om the frequency response plot shown in Figure 7.20 for microphone 2 

that aga in there was significant attenuation of frequencies outside of the range 115Hz to 

1400Hz, again this attenuation is largely due to the characteristics of both the speaker and 

the microphone. It can be seen that there are no significant differences between 

microphones 1 and 2 when looking at their respective frequency responses. 

"'" 

Figure 7.2 1 - Microphone 3 Frequency Response. 
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It can be seen from the frequency response plot shown in Figure 7.21 for microphone 3 

that again there was significant attenuation of frequencies outside of the range 115Hz to 

1400Hz, again this attenuation is largely due to the characteristics of both the speaker and 

the microphone. It can be seen that there are no significant differences between 

microphones 1, 2 and 3 when looking at thei r respective frequency responses. 

It can be seen from the frequency response plot shown in Figure 7.22 for microphone 4 

that again there was significant attenuation of frequencies outside of the range 115Hz to 

1400Hz, again this attenuation is largely due to the characteristics of both the speaker and 

the microphone. It can be seen that there are no significant differences between 

microphones I, 2, 3 and 4 when looking at their respective frequency responses. However 

microphone 4 did attenuate the frequencies around 8kHz more than any of the other 

microphones did . 
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Figure 7.22 - Microphone 4 Frequency Response. 

When companng the frequency response of all four microphones there is negligible 

difference wi th the exception of microphone 4 attenuating the frequencies around 8kHz 

more than the other microphones. The technical specifications of the microphones state 

that their frequency response is 50Hz to 8kHz, this can be seen in all four freq uency plots 

where the attenuation increases to almost fully suppress any frequencies outside of this 

response range. This response is also aided by the characteristics of the speaker having a 

ti'equency response of 50Hz to 11kHz as stated in the tec1mical specifications. When 

comparing the waveform amplitudes for each microphone there are significant 

differences . To show this we have compared all microphones with each other in Figure 

7.23 to highlight the differences. 

MI C 1 MIC2 MI C 3 MIC4 
-4. l dB -S.6dB -IO.7dB -3.2dB 

MIC 1 * 
-4.ldB * +4.SdB +6.6dB -O.9dB 
MIC 2 * 
-S.6dB -4 .SdB * +2.1 dB -S.4dB 
MIC 3 * 
-IO.7dB -6.6dB -2.1dB * -7.5dB 
MI C4 * 
-3.2dB +O.9dB +5.4dB +7.5dB * 

Figure 7.23 - Microphone amplitude comparisons. 
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Comparing all of the microphones with each other shows us that the most closely 

matched pair of microphones are microphones 1 and 4 with a difference of O.9dBs 

between them. Microphones 2 and 3 are also a close match with a difference of 2.1dBs. 

The largest difference exists between microphones 3 and 4 with a difference of 7.5dBs. 

The best matched pair of microphones were therefore decided to be microphones 1 and 4. 

The first reason for choosing this pair is due to them having the smallest difference in 

peak level of O.9dBs. The second reason is that they are more sensitive than microphones 

2 and 3, this is shown in. the individual peak levels. Microphones 1 and 4. were only 

-4.1dBs and -3.2dBs down from the source compared with microphones 2 and 3 (which 

were -8.6dBs and -lO.7dBs down from the source). If the matching of the equipment 

required greater precision then the difference in peak levels could be matched with 

greater accuracy by using a potentiometer. 

The other hardware used in this experiment may also have contributed considerably to 

the frequency responses obtained for each microphone, since the responses are limited by 

the characteristics of the source speaker. However, the points of interest are the 

differences between pairs of microphones as opposed to microphones and the source. 

Although more detailed characteristics of these types of microphone might have been 

obtained if a speaker with an overall broader frequency response had been used, the 

important differences between the microphones have been determined, the main 

differences being the recorded peak wave amplitude of the microphones and the general 

frequency response being of negligible difference. 
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8.1. Introduction 
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Chapter 8 
Experimentation with SIMBAA 3D 

In Chapter 6 it was shown how sorting algorithms can.be musically auralised so that they 

can be understood by the average user. In this chapter, a set of experiments is described 

which were designed to detennine if the understanding of algorithms presented aurally to 

an average person (i.e., non musically educated) would be improved if spatial distribution 

of the sounds was used in support. In other words - by how far would use of the 

'SoundWall' in SIMBAA 3-D enhance user understanding compared with presenting the 

algorithms aurally alone? 

8.2 Research approach 

8.2.1 Musical structure and understanding 

We have already shown that users with no special musical ability can comprehend sorting 

algorithms aurally, provided that appropriate mappings are chosen. Spatial distribution 

provides an additional dimension and might add new capabilities to shape understanding 

since the shapes can be represented in space as well as in sound. The 'SoundWall' 

provided by SIMBAA 3-D enables much more accurate aural placement to be realised, 

and the research question is: can users take advantage of this additional information 

thereby allowing more complex ideas to be auralised? 

The first step is therefore to investigate how much spatial information users can 

understand in the SIMBAA 3-D environment Questions that need to be answered 

include: 

• How accurately can users discern spatially distributed musical tones? 

• Can users distinguish between different note sequences on the 'SoundWall'? 

• Can users visualise the shape of spatially distributed tonal sequences? 
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• Can users comprehend patterns of spatially distributed tones that denote the 

presence of a structure or control? 

• At what level can users comprehend spatially distributed rhythms and tunes? 

• To what accuracy can users identify and distinguish different spatially distributed 

Timbres? 

• How useful is Timbre placement in the 3D spatial audio field? 

Firstly, experiments have been perfonned, using basic structures involving pitch, in order 

to detennine how well users can perceive tones when presented using spatially distributed 

music. 

Secondly, experiments have been carried out that use short spatially distributed musical 

sequences in order to understand how listeners perceive the shape of tonal patterns when 

represented in a 3D spatial environment. If the spatial distribution in the 'SoundWall' can 

assist users in understanding the contour of the sequence then this could open up 

additional possibilities for aural interfaces. 

Thirdly, experiments have been carried out which· contain ouly one or two notes 

incorrectly placed in otherwise ordered lists. These experiments have been perfonned in 

order to investigate if comprehension is improved through the use of spatial distribution 

to further disambiguate the musically represented infonnation. 

Fourthly, experiments have been carried· out that use spatially distributed musical 

sequences, with the addition of a second spatially located timbre to denote the 

manipulation of the incorrectly placed data elements. 

The mappings employed in auralising the sorting algorithms use continuous changes of 

musical structure to communicate the state of the list and the rearrangements that occur. 
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They are similar to those used in the earlier documented 2D experiments: 

• Spatially located ordered and non-ordered pitch ranges. 

• Rhythm in combination with spatially distributed pitch. 

• Temporal arrangements and pitch comparisons between one or two spatially 

located instruments. 

• The development of a pattern of what the algorithm does 'without the listener 

knowing its detailed processing. 

• The, abstract development of mental models of current list states. 

The results from each of the experiments will then be compared to the earlier 2D 

representations (in Chapters 5 and 6) in order to determine how far spatial distribution 

has improved users' perception and understanding. 

8.2.2 Tools used 

The experiments with spatially distributed music in this section have been implemented 

on an IBM compatible computer equipped with a soundcard capable of supporting the 

CD quality format of 44.1kHz/ 16-bit. The sound is provided by the 'SoundWall' , which 

was described in the previous chapter. 

Thirty subjects were classified according to their musical ability (the test has been 

described earlier and is given in Appendix B). The group oftest subjects are identified as 

Group 3. 

8.3. Pitch perception experiments 

. 8.3.1. Experiment construction 

In this set of experiments, like those using the 2D stereophonic MIDI output in Chapter 5 

(Section 5.3), thirty subjects were asked to listen to pairs of musical notes, and determine 

their position within a bounded diatonic scale. The experiment construction was the same 
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as the one given in Section 5.3 with the exception of the added spatialisation. The timbre 

employed was an acoustic grand piano, whose position on the Sound Wall was dependent 

upon pitch. The linear mapping between pitch and vertical placement and position and 

horizontal placement produced a line on the'SoundWall' that corresponded to the scale 

starting from bottom-left on the 'SoundWall' up to top-right. Each of the test pitches was 

placed along this virtual scale-line. Instrument play-back used binaurally recorded sound 

with no reverberation or chorus added. The instrument was kept in its pure form to 

maintain the binaural cues obtained through the recordings. 

1 

1$ t JJ J J I J J rF 1- 1 Ij -
12345.678 1 3 

Figure 8.1 - Spatially distributed pitch perception example. 

Figure 8.1 was both shown and played to listeners. The scale and test pitches were all 

mapped to linearly related horizontal and vertical locations on the 'SoundW all', elements 

with a value of 1 appearing to the bottom-left of the wall and elements with a value of 8 

appearing to the top-right of the 'SoundWall'. This is demonstrated in the diagram given 

below in Figure 8.2 that shows the distribution for Figure 8.1. 

266 



267 

Pitch 

3 •••• 

~ • [!J' Scale 

o 
Listener 

Figure 8.2 - Spatial location and movement of the pitch perception example. 

8.3.2. Results and analysis 

Figure 8.3 shows the musical ability distribution of the group of thirty test subjects 

known as Group 3. Of this test group, 14 have a musical ability score of2 and 16 have a 

musical ability score of between 3 and 5. Therefore the test group 'consists of 14 'non­

musical' listeners and 16 'musical' listeners. 

i , 
I 
I 
I 
I 

Interest Rating Distribution 

2 3 4 5 6 

Muslcallnteresl Rallng 

Figure 8.3 - Musical interest rating for pitch perception test subjects. 
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Figure 8.4 shows the users' perception of each of the tones separately. The plot indicates 

the accuracy of each 'absolute' tone within the bounded diatonic single octave scale. 

Thus the results have been analysed as twenty individual notes (even though they were 

presented as pairs). 

Mean and standard deviation· plot of percleved tones 
Total Group 
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lJ'1 u 
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&! 3 
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a 
a 2 4 6 8 

Actual tones 

Figure 8.4 - Perceived tone accuracy for individual pitch perception. 

Note 1 2 3 4 5 6 
Mean 1.085714 2.266667 3.366667 3.4 5 5.916667 
S.D 0.381743 0.63424 0.808717 0.905726 0.635999 0.590652 

. 

Hi 1.467458 2.900906 4.175384 4.305726 5.635999 6.507319 
La 0.703971 1.632427 2.55795 2.494274 4.364001 5.326014 

Figure 8.5 - Table of perceived tone accuracy for pitch perception. 

10 

7 8 
7.033333 7.866667 
0.413841 0.342803 

7.447174 8.20947 
6.619492 7.523863 

Figure 8.5 indicates the mean perception for each of the notes, the standard deviation and 

the high and low boundaries. It can be seen that notes that fall close to the boundaries of 

the scale are identified with greater accuracy than those that appear in the middle of the 
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scale (as was documented in Chapter 5). This is because the scale that provides the 

boundaries gives fixed points that the user can more readily recall. The middle of the 

scale has little information and can create an area of ambiguity. Overall, the group 

perfOlmed well, however it is interesting to see how subjects performed when separated 

into their musical classification groups. Figure 8.6 compares the accuracy of the 

'musical' and 'non-musical' groups. 

Mean and standard deviation - plot of percleved tones 
Musical v Non Musical. 

1_ - - - •. Ideal • Non-Musical • Musical 1 

9r---------------------~------------~ 

8 

7 

2 

o L-____ ~ ______ ~ ____ ~~ ______ ~ ____ ~ 

o 2 4 6 8 10 

Actual tones 
L ________ ...,--__________ ---' __ ---.J 

Figure 8.6 - Perceived tone accuracy for pitch perception of musical and non~musical 

listeners. 

Non-
Musical Note 1 Note 2 Note 3 Note 4 Note 5 Note 6 Note 7 Note 8 

1.142857 2.392857 3.214286 3.642857 

Figure 8.7 - Table ·comparing perceived tone accuracy for pitch perception of musical 

and non-musical listeners. 
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It can be seen in Figure 8.7 that the accuracy of the 'musical' listeners is greater than that 

of the 'non-musical' group. The inaccuracy appears close to the middle of the scale 

where perception seems to be most ambiguous. 

Figure 8.Sb shows the results of the Mann-Whitney (Wilcoxon independent samples) 

non-parametric test applied to the differences of perceived notes from the true notes for 

the 'non-musical' group compared to the 'musical' group. The hypotheses are: 

Ho : There is no difference between the 'non-musical' and 'musical' 

test groups when perceiving spatially distributed musical notes. 

HI: The 'non-musical' listeners perform with differing accuracy than the 

'musical' listeners when perceiving spatially distributed musical notes. 

Figure 8.8b - Table oftest statistics for each perceived note, 'non-musical' v. 'musical'. 

The 'non-musical' subjects perform with greater inaccuracy. The null hypothesis can be 

rejected at the 5% level for note I and at the 1% level for notes 7 and S. For the 

remaining notes (2 to 6) there is no significant difference between the 'non-musical' and 

'musical' test groups and the null hypothesis cannot be rejected. These data suggest that 

when notes are played close to the boundaries of the context scale the 'musical' test 

group perform significantly better than the 'non-musical' test group, whilst there is no 

significant difference between the two groups for notes that fall into the middle of the 

context scale where the greatest level of ambiguity and error can be observed. 
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Figure 8.9b shows the overall impact of the addition of spatial distribution and compares 

the data for this series of experiments with the data obtained for the non-3D pitch tests 

calTied out in Chapter 5 using the Wilcoxon Signed Ranks non-parametric test. 

The hypotheses are: 

Ho : The addition of spatial distribution has had no significant impact on the 

whole group's perception of absolute pitch. 

HI : The addition of spatial distribution has significantly increased the 

accuracy of the whole group's perception of absolute pitch. 

ErrNote1 - ErrNote2 - ErrNote3 - ErrNote4 - ErrNote5 - ErrNote6 - ErrNote7 - ErrNote8 -
ERRNOTEERRNOTEERRNOTEERRNOTEERRNOTEERRNOTEERRNOTEERRNOTE 

1 2 3 4 5 6 7 8 

<. - - J< - - - D~ - - . ,< -271 346 276 2740 316 2538 233 540 
Asymp. .00 .001 .00 .003 .001 • OOE .01l .295 
Sig. (1 
tailed 

Figure 8.9b - Table oftest statistics for each perceived note, 3D v. non-3D. 

From this data the null hypothesis can be rejected at the 1 % level for all notes except note 

8 for which the null hypothesis cannot be rejected. This suggests that the addition of 

spatial distribution has significantly affected the entire group's perception of absolute 

pitch. In particular, it has significantly improved the perception of pitch. The fact that no 

significant difference is observed for note 8 may be due the fact that it is the last note 

heard in the context scale before the test note pairs are heard. It is therefore the most 

recently held form of reference in the listener's memory and as such is already subject to 

high levels of identification accuracy prior to the addition of spatial location, hence the 

lack of any significant increase in perception accuracy. 

The results also need to be analysed in terms of relative pitch tests as opposed to absolute 

pitch tests. Here, the data that is evaluated is the perceived difference between the two 
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notes and not how accurately they are placed within the scale. The intervals ranged from 

1 to 7 with the omission of 2 due to the constraints of the previous absolute pitch 

experiments. The diagram in Figure 8.10 shows how the entire group of test subjects 

performed as a whole. 
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Figure 8.10 - Perceived tonal interval. 

. Figure 8.11 - Table of perceived tonal interval. 

Figures 8.10 and 8.11 show that the accuracy of the entire group is again high when 

perceiving the interval difference between two notes. Again it is important to divide the 

data into two groups in order to better. understand how ,the 'musical' sub-group performs. 
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Mean and standard deviation - plot of percleved 
. difference - Musical v Non Musical 

! •••••. Ideal • Non-Musical • Musical I 

2 3 4 5 6 

Actual difference 

7 8 

Figure 8.12a - Perceived tonal interval- musical and non-musical listeners. 

Figure 8.12b - Table of perceived tonal interval- musical and non·musicallisteners. 

Figures 8.12a and 8.12h again suggests the 'musical' group perform with greater 

accuracy than the 'non-musical' group. 
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Figure 8. I3b shows the results of the Mann-Whitney (Wilcoxon independent samples) 

non-parametric test applied to the differences of perceived intervals from the true 

intervals for the 'non-musical' group compared to the 'musical' group. The hypotheses 

are: 

Ho: There is no difference between the 'non-musical' and 'musical' test 

groups when perceiving spatially distributed musical intervals. 

HI: The 'musical' listeners perform. with differing accuracy than the 'non­

musical' listeners when perceiving spatially distributed musical intervals. 

Figure 8.I3b - Table of test statistics for each perceived interval, 'non-musical' v. 

'musical'. 

It can be seen from the data given in Figure 8. I3b that the null hypothesis can be rejected 

at the 5% level for interval 3 and at the 1 % level for intervals of 4, 5 and 6. For intervals 

of 1 and 7 the null hypothesis cannot be rejected. This suggests that the 'musical' group 

perform better than the 'non-musical' group when the intervals are extreme (1 or 7) but 

that there is no significant difference when the intervals are not extreme. When 

comparing this data to the data obtained for the non-3D interval pitch tests documented in 

Chapter 5 it can be seen that the only difference is that large intervals of 7 yield no 

significant difference between the two groups. This suggests that the addition of spatial 

distribution has narrowed the margin between the groups for such large intervals. Figure 

8.l4b shows the overall impact of the spatial distribution by comparing the data for this 

series of experiments with the data obtained for the non-3D interval pitch tests carried out' 

in Chapter 5 using the Wilcoxon Signed Ranks non-parametric test. 
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TIle hypotheses are: 

Ho : The addition of spatial distribution has had no significant impact on the 

whole group's perception of pitch intervals. 

HI : The addition of spatial distribution has significantly increased tlJe 

accuracy oftlJe whole group's perception of pitch intervals. 

Asymp. Sig. 
(1·tailed) 

ErrDiff1 ErrDiff3 ErrDiff4 • ErrDiffS ErrDiff6 ErrDiff7 • 
ERRDIFF1 ERRDIFF3 ERRDIFF4 ERRDIFFS ERRDIFF6 ERRDlFF7 

3.61 1.55 3.711 2.33 2.46 • 
. 000 .06 .000 .01 .00 

Figure 8,14b - Table of test statistics for each perceived note, non-3D v. 3D. 

From tlJis data tlJe null hypotlJesis can be rejected at tlJe 1% level for all differences 

except tlJe interval of 3 for which tlJe null hypotlJesis cannot be rejected. The addition of 

spatial distribution here has significantly affected tlJe entire group's perception of pitch 

intervals. The fact tlJat no significant difference has been observed for tlJe interval of 3 

may be due to tlJe fact tlJat tIris interval is between tlJe extremes. This suggests tlJat tlJe 

addition of spatial distribution has effected tlJe perception of intervals tlJat are nearest to 

ilie extremes. The interval iliat falls between the extremes and shows ilie least effect of 

ilie addition of 3D placement is considered to be in tlJe area of highest ambiguity. The 

results obtained from ilie experinlent documented in Section 5.3 showed tlJat listeners 

could successfully identifY pitch and intervals, ilie results obtained in tIris set of 

experiments have shown iliat tlJe addition of spatial location has significantly improved . 

ilie group's perception of pitch and intervals. This might suggest iliat ilie addition of 

spatial location in sorting algorifum auralisations might aid understanding of the 

operation and execution of algorithm, pitches and intervals form tlJe basic building blocks 

for musical algoriilim auralisation witIrin ilie context of tIris thesis. 
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8.4. Shape perception experiments 

8.4.1. Experiment construction. 

This experiment was designed in order to help understand how listeners perceive the 

shape of short sequences of spatially distributed musical notes. This set of experiments 

are the same as shape tests documented earlier in Chapter 5 (Section 5.4) with the 

exception of the addition of spatialisation. Again, thirty subjects were asked to listen to 

the sequences of musical notes and detenmne their shape within the bounded diatonic 

scale. The timbre employed was again an acoustic grand piano whose position on the 

'SoundWall' was mapped directly to the shape of the tune. More specifically, its position 

was dependent upon the pitch for the vertical placement and the sequence order 

progression for the horizontal placement. The sound. sources employed were those 

obtained by the binaural recording of the ·SoundWall'. The stimuli were the same as 

defined in Section 5.4. The workbook is given in full in Appendix D. The subject group 

were then asked to draw the shape of a further six tonill sequences by placing 'X' marks 

in blank grids. Each of these tests was performed on thirty individual test subj ects. Figure 

8.1 6 shows how Demo 1 (Figure 5.15, Section 5.4) was mapped into 3D audio space. 

The stimuli are the same as used in the experiment documented in Section 5.4. 

o 
Ustener 

Figure 8.16 - Spatial location and movement of the shape perception Demo 1 example. 
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8.4.2. Results and analysis 

The evaluation mechanism was the same as described for the 2D stereophonic (non 3D) 

shape perception experiments documented in Chapter 5. The test group was the same as 

was used for the previous experiment, Group 3. 

Figure 8.17 shows the accuracy of each of the thirty test subjects for all six of the shape 

perception questions. The graph has been ordered and colour coded in terms of musical 

ability. It can be seen that there is a general trend that might suggest that 'musical' test 

subjects tend to perform slightly better than 'non-musical' test subjects when perceiving 

the contour of the tonal sequences. 

Figure 8.17 shows that of the 'non-musical' test subjects with a musical ability rating of 

two, five of the listeners performed above 80% accuracy level when perceiving the 

shapes of the tonal sequences. The remainder still perform well but generally not as 

accurately as the 'musical' test subjects. These 'musical' listeners perform with no less 

than 70% accuracy. Since the data, in this case have been combined to give an average 

score over all six shapes, it is important to ascertain whether certain shapes are perceived 

more accurately than others and whether the 'musical' group performed differently to the 

'non-musical' group for these different information types. 
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Sequence Shape Accuracy Plot 
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Figure 8.17 - Spatially distributed shape perception accuracy plot - entire test group. 

Figure 8.18 shows how the group of test subjects as a whole perform on each of the six 

shape perception questions. 
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Figure 8.18 - Shape perception accuracy plot by question - entire test group. 
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Figure 8.18 shows that there is little difference between the perception of the different 

shapes. The only noticeable difference is the very slight increase in accuracy for the 

subjects' perception of shapes 3, 4 and 6. The only observable difference in these shapes 

is that each possesses very prominent and obvious features (Section 5.4). 

The best perceived shapes were those that possess long and obvious ascents or descents, 

or repeated patterns. The shapes that did not translate quite so well each had more 

-complex and less obvious and non-repetitive features. This supports findings by Alty [3] 

who reported that as shape complexity increases and the number of changes in direction 

of pitch increases then the understanding and perception accuracy oflisteners decreases. 

Figure 8.19 shows how 'musical' listeners compared to 'non-musical' listeners in terms 

of accuracy of perception for each of the six shapes. 
_. __ ._._--------------------------, 
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Figure 8.19 - Shape perception accuracy by shape - non-musical v musical listeners. 

The same feature is observed for the musically untrained group of listeners as was 

observed for the group as a whole. Certain obvious or repetitive features translate better 

than more complex or non-repetitive features. 
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Figure 8.20b shows the results of the Mann-Whitney (Wilcoxon independent samples) 

non-parametric test applied to the scores obtained for the perceived shapes compared to 

the true shapes for the 'musical' group compared to the 'non-musical' group. The 

hypotheses are: 

Ho : TIlere is no difference between the 'non-musical' and 'musical' 

test groups when perceiving spatially distributed musical shapes. 

HI : The 'musical' listeners perform with differing accuracy than the 'non­

musical' listeners when perceiving spatially distributed musical shapes. 

Figure 8.20b - Table of test statistics for each perceived shape, 'non-musical' v.· 

'musical'. 

The null hypothesis can be rejected for all shapes except shape 3 suggesting that there is 

generally a significant difference between 'musical' and 'non-musical' listeners when 

perceiving spatially distributed musical shapes. The null hypothesis can be rejected at the 

0.1 % level of significance for shapes 2 and 4. It can also be rejected for shapes 1, 5 and 6 

at the I % level of confidence. The overall accuracy for all test listeners is observably 

high. It is interesting to note that overall, shape 3 is the easiest shape to understand, so 

both groups do particularly well in recognising this shape, hence the lack of significance 

. in the difference between them. This suggests that. as the complexity of the shapes 

increases, the effects of musical training become significantly beneficial. However, it was 

shown in Chapter 5 that if the musical tinring is removed then no difference is observed. 

In the algorithm auralisations employed in this thesis the representation of lists is 

performed without any musical timing, where the effect of musical trainmg has been of 

no benefit. 
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The data given in the table in Figure 8.21b show the overall impact of the spatial 

. distribution by comparing the data for this series of experiments with the data obtained 

for the non-3D shape tests carried out in Chapter 5 using the Wilcoxon Signed Ranks 

non-parametric test. 

The hypotheses are: 

Ho : The addition of spatial distribution has had no significant impact on the 

whole group's perception of the shapes of short tonal sequences. 

HI : The addition of spatial distribution has significantly increased the 

accuracy of the whole· group's perception of shapes of short tonal 

sequences. 

0130 - 0230 - 0330 - 0430 - 0530 - 0630 -
0120 0220 0320 0420 0520 0620 

L. -1. 81 -190 274 - ~~ -100 JI 2 4 - .2 -2.160 
Asymp. Sig. .03: .02 .003 .151 .01 .016 

(1-tailed 

Figure 8.21 b - Table of test statistics for each perceived shape, non-3D v. 3D. 

From this data the null hypothesis can be rejected at the 3.5% level for all shapes except 

shape 4 for which the null hypothesis cannot be rejected. This suggests that the addition 

of spatial distribution has significantly. effected the entire group's perception of short 

tonal sequences. Although the data suggests. a difference in accuracy for shape 4, 

increased sample size may have resulted in the possibility of rejecting the null hypothesis. 

The result~ obtained from the e~periment documented in Section 5.4 suggested that 

listeners could identify pattems and shapes of musically auralised lists of numbers. This 

set of experiments has shown that the addition of spatialisation significantly improves 

listeners' perception of the musical shapes and patterns. 
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8.5. List state perception experiments 

8.5.1. Experiment construction 

This set of experiments was performed using the same stimuli and same construction as 

documented in Section 5.5 with the exception of the addition of spatialistaion. Thirty . 

subj ects were asked to listen to sequences of eight musical notes that corresponded to the 

numbers one to eight. Once again the tonal sequences were an within a bounded diatonic 

octave scale. The timbre employed was an acoustic grand piano whose position on the 

'SoundWall' was again mapped directly to the shape of the tonal sequence. More 

specifically, its position was dependent upon the pitch for the vertical placement and the 

sequence order progression for the horizontal placement. Again the sound sources 

employed were those obtained by the binaural recording of the 'SoundWall' and no 

reverberation or chorus were added. The results indicated that again all of the test 

subj ects successfully identified the states of all of the spatially distributed lists with an 

accuracy of 100%. Some of the lists were totally random and others were almost ordered 

with the exception on one element. These results showed that all listeners, regardless of 

their musical ability and regardless of the addition of 3D spatial location, were fully 

capable of distinguishing between musically represented sorted and unsorted lists of 

numbers. 

In order to determine the level of understanding a more detailed investigation was 

required. In this set of further experiments, test subjects were once again asked to listen 

to sequences of eight notes that represented lists of eight numbers. The questionnaire is 

given in full in Appendix F. Again these sequences were all played within the same 

diatonic octave staring from 'Middle C'. The same timbre and positional relationships 

were also employed. This time listeners were played lists that were sorted into ascending 

order with the exception of between one and three incorrectly placed elements. Subjects 

were shown and played the example diagram below in Figure 8.22 that showed how 

elements 4 and 5 caused a descent in pitch and were therefore incorrectly placed. 
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lit JJJJIjJrrl 
12345678 

Figure 8.22 - Spatially distributed list state perception example. 

The thirty test subjects were then each asked to identify the incorrectly placed elements 

by circling diagrams for five tests. The diagram shown below in Figure 8.23 corresponds 

to the spatial location of the instrument for the example given above. 

Pitch 

Progression 

Listener 

Figure 8.23 :... Spatial location and movement of list state perception example. 
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8.5.2. Results and analysis 

The test group used for this set of experiments was Group 3. Figures 8.24 and 8.25 show 

the users' perception of each of the incorrectly placed elements within the partially sorted 

lists. The results show that the error distribution is fairly even across the list of numbers. 

The greatest inaccuracy can be seen at the fmal position. This is due to the fact that the 

test lists again incorporated some sequences where both the seventh and eighth elements 

were successively incorrectly placed. This successive erroneous infonnation has clearly 

been shown to confuse the listeners and would indicate that single out of place elements 

are more easily identified than multiple neighbouring out of place elements. 
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Figure 8.24 - List state note order accuracy - entire group. 

Actual 
Placement 1 2 3 4 5 6 7 
Perceived 
Placement 

Mean 1.966667 3.1 3.9 5.928571 6.966102 
S.D 0.319842 0.305129 0.305129 0.262265 0.319811 

Figure 8.25 - Table of list state note order accuracy - entire group. 
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Figure 8.26 shows how musically trained and untrained listeners performed in this series 

of experiments. 
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Figure 8.26 - List state note order accuracy - musical and untrained listeners. 

Musical· 
Actual 

Placement 1 2 3 4 5 6 7 
Perceived 
Placement 

Mean 2 3.125 4 5.9375 7.0625 
S.D 0.365148 p.34156e 0 0.25 0.25 

. 

Non·Musical • 
Actual 

Placement 1 2 3 4 5 6 7 
Perceived 

Placement 
Mean 1.928571 3.071429 3.785714 5.916667 6.857143 
S.D 0.267261 0.267261 0.425815 0.288675 0.363137 

8 

8 
0 

8 

7.642857 
0.744946 

Figure 8.27 - Table of list state note order accuracy - musical and untrained listeners. 
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The data for the 'musical' test subjects given in Figure 8.27 again suggests that the 

musically trained group perform with greater accuracy than the results of the group as a 

whole. 

Figure 8.28b shows the results of the Mann-Whitney (Wilcoxon independent samples) 

non-parametric test applied to the scores obtained for the difference between perceived 

erroneous placed elements compared to the true erroneous placed elements for 'non­

musical' listeners compared to 'musical' listeners. The hypotheses are: 

Ho : There is no difference between the 'non-musical' and 'musical' test 

groups when perceiving spatially distributed erroneously placed elements. 

HI : The 'musical' listeners perform with differing accuracy than the 'non­

musical' listeners when perceiving spatially distributed erroneously placed 

elements. 

Figure 8.28b - Table of test statistics for each perceived placement, 'non-musical' v. 

'musical'. 

The null hypothesis cannot be rejected for erroneously placed elements in positions 2, 3 

and 6 suggesting that there is no significant difference between 'musical' and 'non- . 

musical' listeners when perceiving erroneously· placed elements in these three positions. 

In contrast, the null hypothesis can be rejected at the 5% level of confidence for 

erroneously placed elements in positions 4, 7 and 8 suggesting that there is significant 

difference between 'musical' and 'non-musical' listeners when perceiving erroneously 

placed elements towards the end of the list. This difference in significance is again due to· 

the increase in complexity as the positions of erroneously placed elements appear further 
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away from the start of the list. This suggests that 'musical' listeners are more adept at 

perceiving locations further into the scale and successive erroneously placed elements. 

The data given in the table in Figure 8.29b show the overall impact of the spatial 

distribution by comparing the data for this series of experiments with the data obtained 

for the non-3D element placement tests carried out in Chapter 5 using the Wilcoxon 

Signed Ranks non-parametric test. The hypotheses are: 

Ho : The addition of spatial distribution has had no significant impact on the 

whole group's perception of element placement. 

HI : The addition of spatial distribution has significantly increased the 

accuracy of the whole group's perception of element placement. 

Figure8.29b - Table of test statistics for each perceived placement, non-3D v. 3D . 

. From this data the null hypothesis can be rejected at the 5% level for all locations except 

the very last l~cation for which the null hypothesis carmot be rejected. This suggests that 

the addition of spatial distribution has significantly increased the entire group's 

perception accuracy of element placement but has not increased the accuracy when 

understanding and identifying successive erroneously placed elements. It was shown in 

the experiment documented in Section 5.6 that listeners could successfully identify out of 

place elements in musically represented lists of numbers. It has been shown in this 

. experiment that the addition of spatialisation has improved listeners' identification of the 

out of place elements. 
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8.6. List manipulation experiments 

8.6.1. Experiment construction 

11lis experiment uses the same construction and stimuli as the experiment documented in 

Section 5.7 with exception of the addition of spatialisation. In the previous experiment, 

users' perception of the state ofIists of numbers was tested by measuring how accurately 

the users identified incorrectly placed individual elements. The next step towards testing 

algoritllm execution and state is to introduce some manipulation of the numerical data 

lists. The manipulation employed in this series of experiments is tl1e swapping of 

incorrectly placed neighbouring elements, the same sorting mechanism as that utilised by 

the B"ubble Sort algorithm. 

In tlus set of experiments, thirty subjects were asked to listen to sequences of musical 

notes witllin a bounded diatonic octave scale beginning at 'Middle C'. Each test 

comprised two components, a checking phase as witl1 the previous experiment followed 

by a sorting phase. The timbre employed for tl1e checking phase was a" flute whose 

position on tl1e 'SoundWall' was again mapped directly to the shape of tl1e tonal 

sequence. More specifically, its position was dependent upon tl1e pitch for tl1e vertical 

placement and the sequence order progression for the horizontal placement. The sound 

sources employed were those obtained by the binaural recording of the 'SoundWall' witl1 

no reverberation or chorus added. The timbre employed for the sorting phase was an 

acoustic grand piano whose position on tl1e 'SoundWall' was mapped directly to tl1e 

shape of the tonal sequence. Also present in the sorting phase was a trunlpet to indicate 

the swapping action of the incorrectly placed elements. The position of this trunlpet on 

the 'SoundWall' was dependent upon the position within the list for the horizontal and 

tile pitch of tl1e currently mapped element for the vertical witl1 no chorus or reverberation 

added. Subjects were told that each of the eight notes within tl1e bounded scale were 

mapped to tl1e numbers one to eight. Upon listening to each test, the subjects first would 

hear the flute check through the list. This would be followed by the progression of tl1e 

piaIl0 through tl1e list where a swap would be denoted by a trunlpet triad. All test subjects 
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were shown and played the example shown below in Figure 8.30 that represented the 

swapping of two elements after a descent in pitch indicated that element 4 should be 

placed before element 3. 

CHECKING SORTING 

1 1 

1$ljJJJIJJr rll&11JJJI:JJ rrl 
. 12345678 

V 
'Swap' . 

Unsorted list· descent in pitch 

Figure 8.30 - Spatially distributed list manipulation perception example. 

The workbook is given in full in Appendix G. Following the test example, listeners were 

played five further instances of checking and swapping where they were asked to identify 

which elements had been swapped. 

In comparison to the previous experiment, where the only cues that denoted erroneous 

placement were a descent in pitch and a descent in the placement of the instrument, this 

experiment provided four cues. The first and second cues were the descent in pitch and 

instrument location during the checking phase, the third and fourth cues incorporated a 

descent in pitch and instrument location in the sorting phase directly followed by the 

trumpet triad denoting the occurrence of a swapping of elements. Test subjects were 

asked to identify the elements that were swapped by circling an element pair within a list. 

The diagrams given below represent the spatial locations of the instruments 

corresponding to the checking and sorting phases of the example shown above. 
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Pitch 

o 
Ustener 

Figure 8.31 - Spatial location and movement of list checking example. 

The diagram given above in Figure 8.31 shows the context scale as the solid circles 

placed upon the 'SoundWall' and the flute as the square symbols creating the shape of 

the sequence on the projected 'SoundWall'. 

Pitch 

Trumpet 
Swapping 

jr~~t!t~ 
[!J~ l~ \ 

o Progression 

Listener 

Figure 8.32 - Spatial location and movement of list element swapping example. 
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The diagram given above in Figure 8.32 shows the more complex representation of the 

s0l1inglswappingphase. Again the solid circles represent the context scale. This time the 

square symbols represent the progression of the piano through the list in the sorting 

phase. TIle diamond symbols represent the swapping action mapped to the trumpet. 

It can be seen that at the third element there is a double diamond whereas at the fourth 

. element there is a single diamond. This is due to the 'hi-lo-hi' sequence of the trumpet 

triad where the element with the higher value is played twice during the triad. 

Another noticeable feature of the diagram is that the elements of values 3 and 4 both 

appear at the fourth position. This is also seen as the element of value 4 appearing at both 

the third and fourth locations. This replication is due to the sorting nature of the 

algorithm. The piano plays the list up to and including the fourth element where a descent 

in pitch is heard denoting an out of place element at the fourth position. The third and 

fourth elements are then swapped and heard by the 'hi-Io-hi' trumpet triad. The piano 

then continues its sorting progression through the list continuing from the fourth location 

containing its newly swapped element. Hence the representation plays the contents of 

location four twice (representing the old and new. contents before and after swapping). 

Within the tests the swaps occurred between positions 1 and 7 with the omission of 

position 4 as no swap occurred in the algorithm derived examples. 

8.6.2. Results and analysis 

The test group used for this experiment were Group 3. Figure 8.33 and 8.34 show the 

users' perception of each of the swapped element pairs within the partially sorted lists. 

The results show that the error distribution is fairly even across the list of numbers. As 

with the previous experiment, multiple erroneous elements were placed (and in this case 

swapped) in the fmal portion of the list. In this case, however, there is no noticeable 

decrease in the users accuracy when identifying the swapping of these latter elements. 

TIlis may, in part, be due to the addition of a second and more distinct cue that 
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highlighted the swapping of the incorrectly placed elements and hence yielded a second 

cue as to the positional location within the scale. 

Mean and standard deviation - Swap Identification 
Accuracy Plot - Total 

2 

f 
",t' 

, ' . ' 
• . ' 

345 
Actual Swap Placement 

6 

", I 

7 8 

Figure 8.33 ~ Swapping identification accuracy - entire group. 

Actual 
Swap 

Element 1 2 3 4 5 6 
Perceived I· 

Swap 
Mean 1.033333 2.1 2.859649 5.2 5.916667 
S.D 0.182574 0.305129 0.479531 0.406838 0.278718 

Figure 8.34 - Table of swapping identification accuracy - entire group. 

7 

6.818182 
0.390154 

Figure 8.35 shows how musically trained and untrained listeners performed in this series 

of experiments. 
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Mean and standard deviation - Swap Identification 
Accuracy Plot - Non-Musical v Musical 
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Figure 8.35 - Swapping identification accuracy - musical and non-musical listeners. 

'Musical' 
Actual 
Swap 

Element 1 2 3 4 5 6 7 
Perceived 

Swap 
Mean 1 2.125 2.75 5.1875 5.96875 6.75 
S.D 0 b.341565 0.508001 0.403113 0.176777 0.440959 

'Non_ 
Musical' 
Actual 
Swap 

Element 1 2 3 4 5 6 7 
Perceived 

Swap 
Mean 1.071429 2.071429 3 5.214286 5.857143 . 6.9375 
S.D 0.267261 0.267261 0.408248 0.425815 0.356348 0.25 

.. ,,~,':. 

Figure 8.36 - Table of swapping identification accuracy all listeners. 
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The results for both 'musical' and "non-musical" subjects given in Figure 8.35 and 8.36 

suggest little difference between the 'musical' group and the group as a whole. 

Figure 8.37b shows the results of the Mann-Whitney (Wilcoxon independent samples) 

non-parametric test applied to the scores obtained for the difference between perceived 

erroneous placed and swapped elements compared to the true erroneous placed and 

swapped elements for 'musical' listeners compared to 'non-musical' listeners. The 

hypotheses are: 

. Ho: There is no difference between the 'non-musical' and 'musical' test 

groups when perceiving spatially distributed erroneously placed and 

swapped elements. 

HI: The 'musical' listeners perform with differing accuracy than the 'non­

musical' listeners when perceiving spatially distribution erroneously 

placed and swapped elements. 

Figure 8.37b - Table of test statistics for perceived placement/swap, 'non-musical' v. 

'musical' . 

It can be seen from the data given in Figure 8.37b that the null hypothesis cannot be 

rejected for erroneously placed and swapped elements at any position in the list 

suggesting that there is no significant difference between 'musical' and 'non-musical' 

listeners when perceiving spatially distributed erroneously placed and swapped elements. 

This data, in contrast to the results gathered for the non-3D version of this test 

documented in Chapter 5, shows that the previously observed margin between the two 

sub-groups for successive swaps towards the end of the list cannot be seen in this 
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. spatially distributed version. This suggests that the 'non-musical' group have benefited 

more from the addition of 3D placement. More specifically, the 'non-musical' group have 

shown increased understanding of successively swapped elements due to addition of 

spatial distribution. The overall accuracy for all test listeners is still observably high. 

The data given in the table in Figure 8.38b show the overall impact of the spatial 

distribution by comparing the data for this series of experiments with the data obtained 

for the non-3D element swapping tests carried out in Chapter 5 using the Wilcoxon 

Signed Ranks non-parametric test. The hypotheses are: 

Ho : The addition of spatial distribution has had no significant impact on the 

whole group's perception of element swapping/placement. 

HI: The addition of spatial distribution has significantly increased. the 

accuracy of the whole group's perception of element swapping/placement. 

Figure 8.38b - Table of test statistics for each perceived swap, non-3D v. 3D. 

From this data the null hypothesis can be rejected at the 5% level for the final four 

locations. For the first two locations the null hypothesis carmot be rejected. This suggests 

that the addition of spatial distribution has significantly. increased the entire group's 

perception accuracy of element swapping placement for the majority of locations in the 

list, particularly in the latter half. In the experiment documented in Section 5.7 it was 

shown that listeners could successfully identify erroneously placed and swapped elements 

within numerical lists when represented musically. It has been show in this experiment 

that the addition of spatial location has improved listeners' identification accuracy. 
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8.7. Spatially enhanced multiple algorithm auralisation 

Having carried out preliminary work which indicates that spatial distribution can improve 

the understanding for both musical and non-musical listeners when listening to elements 

of auralised sorting routines, this section describes experiments using the complete 

algorithms and spatial distribution. 

The algorithms identified previously in this thesis have now been auralised in a similar 

manner to those of the 2D stereophonic auralisations but have been extended into 3D 

auditory space using the SIMBAA 3D toolbox. 

8.7.1. Spatially enhancing the Bubble Sort auralisation 

In order to remain in a constant semantic framework, the musical mappings used in this 

auralisation are the same as were used in the experiments documented in Chapter 6 with 

the exception of the spatialisation of the data onto a 'SoundWall' and the spatial location 

of control events behind the listener. The basis of this algorithm is to repeatedly iterate 

through the list comparing every adjacent pair of elements and swapping them if they are 

not in the correct relation. When an iteration takes place without any pairs of elements 

being swapped then the list is known to be sorted and the algorithm can terminate. 

The featUres identified in Chapter 4 and auralised in the spatially distributed version of 

the algorithmauralisation are: 

1. The current state of the list - this auralisation was achieved by mapping element 

values to pitch (a metaphor). The chosen instrument here was a flute whose 

position is projected onto the virtual 'SoundWall'. The horizontal position of the 

flute upon the 'SoundWall' is mapped directly to the position within the list of the . 

element that is currently being played. The vertical position of the flute is 

similarlymapped directly to the numerical value (which is also mapped to pitch) 

of the element that is currently being played. The sequence is played on the flute 

and moves across the wall from left to right and the vertical position reflects its 
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pitch. The contour of the moving flute positions yields the shape of the numerical 

list. It was expected that these extra spatial cues would allow the listener to better 

visualise the shape of the tonal sequence. 

2. Iteration count - this auralisation was achieved by mapping the counter that is 

used to control the number of iterations to a wooden block. The sound of the 

wooden block is repeated as many times as the iteration count indicates. This 

mapping is to one of the binaurally recorded control events and is placed behind 

the listener. 

3. Progression of the algorithm through the list - the chosen mapping here is a 

simple acoustic grand piano whose position is projected onto the virtual 

'SoundWall'. The horizontal position of the piano upon the 'SoundWall' is 

mapped directly to the position within the list of the element that is currently 

being played. The vertical position of the piano is similarly mapped directly to the 

numerical value (which is also mapped to pitch) of the element that is currently 

being played. As the sequence is played, the piano moves across the wall from left 

to right. The contour of the moving piano positions yields the shape of the 

numerical list. 

4. The swapping of elements - this is heard in parallel with the ascending acoustic 

grand piano. The structure is a brass ensemble playing a major triad. The fIrst note 

is an element to pitch mapping of the higher value in the current pair, the second 

note is an element to pitch mapping of the lower note in the current pair and 

fInally the third note is a repetition of the fIrst note. As with the two previous 

mappings the position of the brass ensemble is dependent upon the positions of 

the two swapping elements within the list and their individual values (also 

mapped to pitch). The positions of the triad notes are in neighbouring positions 

due to the sorting nature of the Bubble Sort algorithm. 
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5. Successful termination - this auralisation is achieved by again using the brass 

ensemble, but this time it was used to produce a simple yet suggestive 'Ta - Da' 

sequence. This mapping is in the form of the other binaurally recorded control 

event and is placed behind the listener's head. 

8.7.2. Spatially enhancing the Selection Sort auralisation . 

The basis of this algorithm is to repeatedly iterate through the list searching for the 

smallest element and then placing it in its correct location. When all target elements have 

been filled then the list is known to be sorted and the algorithm can terminate. 

The features identified in Chapter 4 and the auralisation of these features are: 

1. The current state of the list - same as Bubble Sort 

2. Iteration count - same as Bubble Sort 

3. Progression of the algorithm through the list - same as Bubble Sort 

4. The swapping of elements - again the structure employed here is a brass 

ensemble playing a major triad. The values (and pitches) and positions within the 

list of the two elements being swapped again yield the coordinates of the position - . 

of the brass ensemble upon the 'SoundWall'. Unlike the Bubble Sort algorithm 

auralisation however, the positions of notes within the triad are not always 

neighbouring. This is due to the difference in sorting natures between the two 

algorithms 

5. Successful termination - same as Bubble Sort 
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8.7.3. Spatially enhancing the Exchange Sort auralisation 

TIle basis of this algorithm is to repeatedly iterate through the list comparing the current 

element to all subsequent elements and swapping them to place the smallest element in 

the current location. When all target elements have been filled then the list is known to be 

sOl1ed and the algorithm can terminate .. 

The features identified in Chapter 4 and the auralisation of these features are: 

1. The current state of the list - implemented in exactly the same manner as the 

Bubble Sort and the Selection Sort .. 

2. Iteration count - implemented in exactly the same manner as the Bubble Sort 

and the Selection Sort. 

3. Progression of the algorithm through the list - implemented in exactly the 

same manner as the Bubble Sort and the Selection Sort. 

4. The swapping of elements - implemented in a similar manner to the Bubble Sort 

and the Selection Sort. Again the positions of the notes within the triad will not 

always be neighbouring and can theoretically be anywhere within the list. 

5. Successful termination - implemented in exactly the same manner as the 

Bubble Sort and the Selection Sort. 

8.7.4. Spatially enhancing the Quick Sort auralisation 

The basis of this algorithm is to divide the list into two sub-lists where the elements of 

the first list are all smaller than the elements of the second list, this is decided about a 
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pivot that is chosen to be the mid point of the data in the list. Each sub-list is then 

recursively sorted until all of the elements have been correctly placed. 

The features identified in Chapter 4 and the auralisation of these features are: 

1. The current state of the list - implemented in exactly the same manner as the 

Bubble Sort, Selection Sort and Exchange sort algorithms. 

2. Iteration count - implemented in exactly the same manner as the Bubble Sort, 

Selection Sort and Exchange sort algorithms. 

3. Value of the current pivot -The chosen timbre is the trumpet whose position 

. upon the 'SoundWall' is solely dependent upon the numerical value (pitch) of the 

pivot. Pivots will therefore always be heard along the line of a scale as projected 

onto the 'SoundW all'. The duration of this note is held for twice the period of all 

others to highlight it as a decision point. 

4. Playing the current element that is to be sorted based upon the current 

chosen pivot - implemented in exactly the same manner as the list elements for 

the Bubble Sort, Selection Sort and Exchange Sort algorithms. The position is 

dependent upon numerical value (pitch) and current position of the element within 

the list. 

5. The placement of elements - the chosen timbre here is again the acoustic grand 

piano whose position is dependent upon the target location. The location is given 

by the next empty slot within the sub-list that is to receive the current element. 

Placement is mapped to the position of these current sub-lists. 

6. Successful termination - implemented in exactly the same manner as the Bubble 

Sort, Selection Sort and Exchange sort algorithms .. 
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8.7.5. Spatially enhancing the Inside-Out Sort auralisation 

The basis of this algorithm is to divide the list into two sub-lists where the elements of 

the first list are all smaller than the elements of the second list, this is decided about a 

pivot that is chosen to be .the mid point of the data in the list. The left sub-list is then 

auralised and sorted with the Bubble Sort algorithm and the right sub-list is auralised and 

sorted using the Selection Sort algorithm. 

The auralisation is based upon a combination of the Quick Sort algorithm and the Bubble 

and Selection Sort algorithms. The spatial distributions for this algorithm are therefore 

given by the spatial distributions described previously. 

8.7.6. Spatially enhancing the Outside-In Sort auralisation 

The basis of this algorithm is to divide the list into two sub-lists where the elements of 

the first list are all smaller than the elements of the second list, this is decided about a 

pivot that is chosen to be the mid point of the data in the list. The left sub-list is then 

auralised and sorted with the Selection Sort algorithm and the right sub-list is auralised 

and sorted using the Bubble Sort algorithm. 

The auralisation is based upon a combination of the Quick Sort algorithm and the Bubble 

and Selection Sort algorithms. The spatial distributions for this algorithm are therefore 

given by the spatial distributions described previously. 

8.8. Multiple algorithm auralisation information extraction 

8.8.1. Experiment construction 

. In this series of experiments all six of the previously described algorithms were auralised 

and played to thirty test SUbjects. The auralisations were the same as used in the 

experiments documented in Chapter 6 with the exception of the addition of spatialisation 

of the information. The SIMBAA 3D system was utilised to provide the spatially 
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distributed auralisations. The points of interest that were auralised in these 

implementations of the various algorithms can be summarised as follows: 

1. The current state of the list. 

2. The iteration count. 

3. Progression of the algorithm through the list of elements. 

4. The swapping or placement of elements. 

5. Successful termination. 

The subjects were told about the nature of each of the algorithms. The same information 

and played examples pertaining to the algorithms were used as described in Chapter 6. 

The workbook presented to all test subjects for this series of experiments is given in full 

in Appendix 1. The questions asked of the test subjects are also the same as documented 

in Chapter 6. 

8.8.2. Results and analysis 

The test group used for this series of experiments was Group 4. This group were also 

used in the algorithm auraiisation experiments documented in Chapter 6. The experiment 

was a counter balanced within groups construction to compensate for the learning effect. 

With this series of experiments a further preliminary test was carried out iri order to 

understand the users' ability to draw the shapes of simple tunes. Given that some 

musically trained test subjects might fully understand the shape of the tonal sequences it 

may also be possible that they do not have the ability to draw. All subjects passed this 

test. 
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Figure 8.40 - Algorit1un infonna!ion extraction accuracy for each algorit1un. 

Figure 8.40 shows how each of the algorit1un auralisations compared. The data represents 

the average infonnation extraction for each of the algorit1uns for the entire group of test 

listeners. The data again suggests that the algorit1uns with the previously described 

anchor points near to the boundaries of the context scale tend to be more easily 

understood than the algorit1uns that employ the Quick Sort algorit1un where the anchor 

points are either moving between passes or becoming larger in number. It is necessary to 

split this data into sub-groups defmed by musical ability to investigate if musical training 

has any effect on understanding the information .. 

Figure 8.41 shows how the group of test subjects performed when answering questions 

on information extraction from the spatially distributed Bubble Sort auralisation. The data 

is displayed along the x-axis in order of musical ability. 

303 



~---------------

100 
90 
80 

. >- 70 
~ 60 
k 

: B 50 
·U 
. <t: 40 
oft 30 

20 
10 
o 

304 

Bubble Sort Algorithm Information Accuracy Plot 

Figure 8.41 - Bubble Sort infonnation extraction accuracy. 

The data for the remaining algorithm auralistaions exhibit similar results. The graphs for 

these results are given in Figures M.18 to M.22 in Appendix M. The data suggests that 

there is little difference between 'musical' and 'non-musical' subjects and that the overall 

. performance of the test group is generally high. 

The data in the table given in Figure 8.47b show the results of the Mann-Whitney non­

parametric test applied to the infonnation extraction scores obtained from eachof the six 

algorithm auralisations for the 'musical' listeners compared to 'non-musical' listeners. 

The hypotheses are: 

Ho : There is no significant difference between 'musical' and 'non-musical' 

listeners when extracting infonnation from the specified spatially 

distributed algorithm auralisation. 

HI : There is a significant difference between 'musical'. and 'lion-musical' 

listeners when extracting infonnation from the specified spatially 

distributed algorithm auralisation. 
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B E 5 Q3 BI03 BOI' 
Mann-Whitney U 109.00 94.500 108.500 104.500 98.000 104.50C 

WilcoxonW 200.00 247.50( 199.500 257.500 189.00e 195.50e 
2 -.06 -.74 -.09 -.258 -.548 -.25 

Asymp. Sig. (1-tailed .47 .23 .46 .349 .292 .39 

Figure 8.47b - Table oftest statistics, alg info extraction, 'musical' v. 'non-musical'. 

From the data given in the above figures, the null hypothesis cannot be rej ected for each 

algorithm auralisation concluding that there is no significant difference between 

'musical' and 'non-musical' listeners when understanding and extracting information 

from the each of the spatially distributed algorithm auralisations. 

The graphs in Figures M.23 to M.28 given in Appendix M show the performance of the 

group for each of the questions on the spatially distributed Bubble Sort, Exchange Sort, 

Selection Sort, Quick Sort, Bucket In-Out Sort and Bucket Out-In Sort auralisations 

respectively. Quantitative question are shown as solid bars and qualitative questions are 

shown as clear bars . 

. The data suggest that there is some difference between quantitative and qualitative 

infOlmation perception. It also suggests that overall performance of the test group is 

generally high for each of the questions. 

Figure 8.54b shows the results of the Wilcoxon Signed Ranks non-parametric test applied 

to the information extraction scores obtained from each of the six spatially distributed 

algorithm auralisations for qualitative questions compared to quantitative questions. 
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The hypotheses are: 

Ho : There is no significant difference between quantitative and qualitative 

infonnation perception and understanding for the specified spatially 

distributed algorithm auralisation. 

HI : There is a significant difference between quantitative and qualitative 

infonnation perception and understanding for the specified spatially 

distributed algorithm auralisation. 

Asymp. Sig. 
(1·tailed 

BQN3· EQN3 • SQN3 • QQN3 BIOQN3 • BOIQN3· 
BQL3 EQL3 SQL3 QQL3 BIOQL3 BOIQL3 
2.07 2.55 2.20 

.01 .00 .01 

Figure 8.54b - Table of test statistics for algorithms' info extraction, qualitative v. 

quantitative. 

From the data given in the above figures, the null hypothesis can be rejected at the 5% 

level of confidence for each algorithm auralisations concluding that there is a significant 

difference between the perception and understanding of qualitative and quantitative 

infomlation types for the each of the algorithm auralisations.Furthennore the data shows 

that quantitative infonnation translates better than qualitative infonnation. 

Given that there is no significant difference between 'musical' test subjects and 'non­

musical' test subjects when understanding musically auralised algorithm execution and 

state, does this also hold true for each of the infonnation types? 

The graphs given in Figures M.29 to M.34 in Appendix M show how the two sub-groups 

perfonn ,on each question for the spatially distributed Bubble Sort, Exchange Sort, 

Selection Sort, Quick Sort, Bucket In-Out Sort and Bucket Out-In Sort algorithms 

respectively. 
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The data given in the above figures suggests that there is little difference between 

'musical' listeners and 'non-musical' listeners when understanding either quantitative 

infOlmation types or qualitative information types. 

The data in the table given in Figure 8.61b show the results of the Mann-Whitney non­

parametric test applied to the information extraction scores obtained from each of the six 

spatially distributed algorithm auralisations for 'musical' listeners compared to 'non­

musical' listeners for qualitative question types. The hypotheses are: 

Ho : There is no significant difference between 'musical' listeners and 'non­

musical' listeners when. understanding qualitative information for the 

specified spatially distributed algorithm auralisation. 

HI : There is a significant difference between 'musical' listeners and 'non­

musical' listeners when understanding qualitative information for the 

specified spatially distributed algorithm auralisation. 

Figure 8.61b - Table of test statistics - algorithms' qualitative info extraction, musical v. 

non-musical 

From the data given in the above figures, the null hypothesis cannot be rejected for each 

algorithm auralisations concluding that there is no significant difference between 

'musical' listeners and 'non-musical' listeners for the perception and understanding of 

qualitative information types for the each of the algorithm auralisations. 

Figure 8.62b shows the results of the Mann-Whitney non-parametric test applied to the 

information extraction scores obtained from each of the six spatially distributed algorithm 
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amalisations for 'musical' listeners compared to 'non-musical' listeners for quantitative 

question types. The hypotheses are: 

Ho : There is no significant difference between 'musical' listeners and 'non­

musical' listeners when understanding quantitative information for the 

specified spatially distributed algorithm amalisation. 

HI: There is a significant difference between 'musical' listeners and 'non­

musical' listeners when understanding quantitative information for the 

specified spatially distributed algorithm auralisation. 

Figure 8.62b - Table of test statistics - algorithms' quantitative info extraction, musical v. 

non-musical. 

From the data given in the above figures, the null hypothesis again caunot be rejected for 

all but one of the spatially distributed algorithm auralisations. However, the algorithm 

that does show a significant difference between the two groups is only just considered to 

be significant. This suggests that in general there is no significant difference between 

'musical' listeners and 'non-musical' listeners for the perception and understanding of 

quantitative information types for the each of the algorithm auralisations. Given that no 

significant difference has been shown between 'musical' listeners and 'non-musical' 

listeners when understanding either quantitative information types or qualitative 

information types, it is also important to analyse the variance between the information 

types. 

The data in the table given in Figure 8.63b show the results of the Wilcoxon signed rank 

non-parametric test applied to the information extraction scores obtained from each of the 
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six spatially distributed algorithm auralisations for 'non-musical' listeners for 

quantitative question types compared to qualitative question types. The hypotheses are: 

Ho : There is no significant difference between qualitative and quantitative 

question types for 'non-musical' listeners when understanding 

information for the specified spatially distributed algorithm auralisation. 

HI : There is a significant difference between qualitative and quantitative 

question types for 'non-musical' listeners when understanding 

information for the specified spatially distributed algorithm auralisation. 

Asymp. Sig. 
(1-tailed 

MBON3 - MEON3 • MSON3 - MOON3 - MBIOON3 MBOION3 • 
MBOl3 MEOl MSOl3 MOOl3 MBIOOl3 MBOIOl3 

1.89 1.81 2.12 
.02 .03 .01 

Figure 8.63b - Table of test statistics, algorithms'. 'non-musical' info extraction, 

qualitative v. quantitative 

From the data given in the above figures, the null hypothesis can be rejected at the 5% 

level of confidence for almost all algorithm auralisations concluding that there is 

significant difference between quantitative and qualitative question types for 'non­

musical' listeners when perceiving and understanding information for the each of the 

spatially distributed algorithm auralisations. 

The data in the table given in Figure 8.64b show the results of the Wilcoxon signed rank 

non-parametric test applied to the information extraction scores obtained from each of the 

six spatially distributed algorithm auralisations for 'musical' listeners for quantitative 

question types compared to qualitative question types. 
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The hypotheses are: 

Ho : There is no significant difference between qualitative and quantitative 

question types for 'musical' listeners when understanding information for 

the specified spatially distributed algorithm auralisation. 

HI : There is a significant difference between qualitative and quantitative 

question types for 'musical' listeners when understanding information for 

the specified spatially distributed algorithm auralisation. 

Asymp. Sig. 
(1-tailed 

NBQN3 - NEQN3 - NSQN3 - NQQN3 NBIOQN3 NBOIQN3 -
NBQL3 NEQL NSQL3 NQQL NBIOQL3 NBOIQL3 

.90 .811 

.183 .209 

Figure 8.64b - Table of test statistics, algorithms' 'musical' info extraction, qualitative v. 

quantitative· 

From the data given in the above figures the null hypothesis cannot be rejected for all but 

one of the spatially. distributed algorithm auralisations suggesting that there is no 

significant difference between qualitative and quantitative question types for 'musical' 

test listeners when perceiving and understanding information for the each of the 

algorithm auralisations. 

This data suggests that although no significant difference has been shown between 

'musical' and 'non-musical' listeners when perceiving and understanding qualitative and 

quantitative information types, the spread in accuracy between the information types is 

greater for 'musical' listeners than for 'non-musical' listeners. 
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Algorithm Accuracy Comparison Plot 2D v 3D - Total 

ri3ol;;JD 11I2D 1 
L 

Sel Quick Bckt~O BcktO-1 

Algortthm Type 

Figure 8.65a - Information extraction accuracy for each algorithm (2D v 3D). 

Figure 8.65a shows the impact of the addition of spatialisation for each of the algorithm 

auralisations. These data might suggest· that the addition of spatiaIisation has had a 

beneficial effect. Figure 8.65b shows the overall impact of the spatial distribution by 

comparing the data for this series of experiments with the data obtained for the non-3D 

algorithm auralisation tests carried out in Chapter 5 using the Wilcoxon Signed Ranks 

non-parametric test. The hypotheses are: 

Ho : The addition of spatial distribution has had no significant impact on the 

whole group's identification and understanding of musically auralised 

algorithm state and execution. 

HI : The addition of spatial distribution has significantly increased the 

accuracy of the whole group's identification and understanding of 

musically auralised algorithm state and execution .. 
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Figure 8.65b - Table of test statistics for each algorithm auralisation, non-3D v. 3D .. 

From this data the null hypothesis can be rejected at the 5% level for the Bucket Sort 

Out-In auralisation and at the 1% level for the remaining algorithm auralisations. This 

strongly suggests that the addition of spatial distribution has significantly increased the . 

entire group's identification and understanding of musically auralised algorithm state and 

execution 

8.9. Conclusion 

For the pitch test experiments, the results have shown that there is a significant difference 

between the 'musical' and 'non-musical' group when perceiving tones that are close to 

the boundaries of the context scale supporting the findings in Chapter 5 for the non-3D 

pitch tests. The data obtained for the pitch interval test experiments showed that for small 

intervals (less than 2) and large intervals (greater than 6) there is no significant difference 

between 'musical' and 'non-musical' listeners. TIlls difference becomes significant as the 

interval size moves furthest away from the extremes. The addition of spatial location in 

this context has narrowed the difference between the 'musical' and 'non-musical' groups 

for large intervals. The addition of spatial distribution has also shown an observable 

increase in the perception and accuracy of absolute pitch and pitch intervals. Thus 

overall, spatial distribution does act as an additional cue and listeners can use it 

particularly if they are not musically trained. 

For the shape perception experiments using short musical sequences with musical timing 

the results showed significant difference between the 'musical' and 'non-mu~ical' 

listeners for all shapes, supporting the fmdings reported in Chapter 5 fot the non-3D 

version of this test. The addition of spatial distribution has also shown an observable 

.. increase in the perception and accuracy of the shapes of short tonal sequences with no 

312 



313 

timing. In other words the performance of both groups has improved significantly as a 

result of the addition of spatial distribution, but the improvement does not favour one 

group over the other. The only shape which did not show improvement was a very 

variable one. 

The data obtained for the series of experiments concerned with identifying out of place 

elements in an otherwise ascending list of numeric elements showed there is no 

significant difference between the two groups of 'musical' and 'non-musical' listeners for 

elements identified in approximately the first half of the list. For the remainder of the list, 

the difference between the two groups becomes significant due to the increasing 

complexity as the positions of erroneously placed elements move further up the context 

scale. This again supports the findings documented in Chapter 5 for the non-3D version 

of this test. However, the addition of spatial location has also shown a significant 

observable increase in the perception and accuracy of out of place elements. 

Similar results were observed for the identification of erroneously placed and swapped 

elements in an otherwise ascending list of numerical elements. For approximately the 

first half of the list no significant difference was observed between the 'musical' and 

'non-musical' test groups. The significant difference between the two groups is observed 

where successive multiple erroneously placed and swapped elements occur in the latter 

half of the list. Again the addition of spatial location has also shown an observable 

increase in the perception and accuracy of the location of swapped elements. 

The results for the experimentation using the six different spatially distributed algorithms 

showed that once again the algorithms with fixed and constant anchor points are more 

readily understood (Bubble Sort, Exchange Sort and Selection Sort algorithms). The data 

also showed that overall there is no significant difference between 'musical' listeners and 

'non-musical' listeners when perceiving and understanding musically represented 

information about the state and execution for each of the algorithms. 
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However quantitative information types are significantly more easily understood and 

identified than qualitative information types for both groups. Though for both 

infonnation types there is no significant difference between 'musical' and 'non-musical' 

listeners. The results again showed that for the 'non-musical' sub-group alone 

quantitative information types were more easily understood than qualitative information 

types. In contrast, no significant difference was observed between the two information 

types for tile 'musical' sub-group alone. This again suggested that the spread between 

infonnation types for each sub-group was different but not different enough to be 

significant when comparing the two sub-groups. These fmdings generally support the 

findings documented in Chapter 6 for the non-3D version of this series of experiments. 

Again tile addition of spatial distribution has also shown an observable increase in the 

perception and accuracy of information about each algorithm's state and execution. In . 

Chapter 6 it was shown how the identification of errors in algorithm auralisations was 

difficult. It has not been subject to spatialisation in this chapter because the SIMBAA tool 

is not aimed at being used to aid bug location in sorting algorithms. Furthermore, the 

accuracy of the identification of bugs in musically auralised sorting algorithms is not an 

area of concern within this thesis. 

In . general it has been shown that musical training· does have some affect on the· 

perception of musical sequences and pitch but the effect is not a strong one. However, the 

results have shown that both musically trained and untrained listeners are quite capable of 

discerning pitch and understanding shape and musically represented numerical data with 

a promising degree of accuracy. The algorithm auralisation experiments have shown that 

no significant difference exists between the 'musical' and 'non-musical' groups with or 

without spatial distribution. Throughout each of the experiments the addition of spatial· 

location cues has been proven to increase listeners' perception, identification and 

understanding. Spatial distribution of the type used here, is therefore really useful and 

could enhance aural based presentations. 
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Chapter 9 
Discussion and conclusions 

This final chapter summarises the research described in this thesis and the results 

obtained. It also analyses these results and draws conclusions about the usefulness of the 

auditory approach taken. It then discusses the limitations of the work and how these 

might be overcome. It assesses the contribution of the thesis to the field of musical 

auditory display and suggestsareas for future investigation of the use of music and spatial 

enhancement in algorithm auralisation. 

9.2. The results obtained 

TIle listening tests (Chapter 5) and the algorithm auralisation tests (chapters 6 and 8) form 

an extension of earlier work carried out by Alty [3], Vickers [181], Rigas [160], and 

Brown and Hershberger [45] etc. The difference is in the evaluation of the listening tests 

and algorithm auralisations. All the results were analysed for statistical significance. 

9.2.1. The effect of musical training 

The listening tests (described in Chapters 5 and 8) assessed how humans perceive pitch, 

shape, list state and list manipulation. 

The results obtained for the pitch tests showed that there was a significant difference 

between the 'musical' and 'non-musical' group when perceiving tones that appear ~lose 

to the boundaries of the context scale. This data further showed that there is no significant 

difference between the groups when perceiving tones that fall into the area of greatest 

ambiguity in the middle of the context scale. The experiment further showed that for 

small intervals (less than 2) there was no significant difference between 'musical' and 

'non-musical' listeners. This difference became significant for interval sizes greater than 
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1 and increased in relation to the increase in interval size. These results suggested that 

musical training could be beneficial when estimating large pitch intervals or pitches that 

are close to the limits of their context scales. For small intervals and the majority of. 

pitches (which are not close to the boundaries of the context scale) there was no evidence 

to support the notion of musical training being beneficial to pitch perception. For the 

majority of cases little or no noticeable difference between the two groups was observed 

suggesting that musically trained and untrai~ed listeners are both viable groups as target 

users for musical auditory interfaces. 

For the shape perception experiments using short musical sequences with musical timing 

the results showed a significant difference between the 'musical' and 'non-musical' 

listeners for all shapes. In contrast, the series of experiments using short tonal sequences 

with no musical timing showed that there was no signifi~ant difference between the two 

groups when perceiving the shapes. This difference in significance suggests that when 

tonal sequences have musical timing applied to them, making them more 'musical', the 

'musical ' group of test subjects tend to perfonn with greater accuracy than the 'non­

musical' group. When this musical timing was removed, as was employed for algorithm 

state auralisation within this thesis, the data showed that there was no significant 

difference between the tw.O groups when perceiving tonal shapes (or musically auralised 

algorithm list states). Musically trained listeners were therefore able to use the properties 

of the timing applied to the musical shapes. This exploitation of timing highlights the 

importance of maintaining the musicality of the auralisations, since both musical and 

non-musical listeners are familiar with scales and rhythm. Although these results suggest 

that musicians can benefit more from these features, they also suggest that the musical 

context should be maintained for both musically trained and untrained listeners. Making 

the auralisations as musical as possible can be achieved by paying' attention to the 

properties of such features of music as scales and. rhythm and using realistic timbres. 

Following these musical guidelines allows us to exploit listeners' experience of musical . 

presentations making the auralisations more effective ... 

316 



317 

The previously described results suggested that musical training has no beneficial effect. 

when understanding algorithmcderived shapes with no musical timing. The results from 

experiments investigating the perception and understanding of algorithm derived list 

shape progression showed that 'musical' listeners performed significantly better than 

'non-musical' listeners. This further suggests that musically trained listeners are more 

adept at understanding the progressive evolution of a musical shape. 

The results obtained for listeners when identifying out of place elements in an otherwise 

ascending list of numeric elements showed that musical training was not significantly 

beneficial when identifying out of place elements in approximately the first half of the 

list. For the remainder of the list, the difference between the two groups became 

significant due to the increasing complexity as the positions of erroneously placed 

elements move further up the context scale. These results suggest that musical training is 

only beneficial when identifying elements further in the list. 

Similar results were observed for the identification of erroneously placed and swapped 

elements in an otherwise ascending list of numerical elements. For the majority of 

positions (all except the last) no significant difference was observed between the 

'musical' and 'non-musical' test groups. The only significant difference between the two 

groups was observed where successive multiple erroneously placed and swapped 

elements occurred in the fmal position. This data suggests that mUltiple successive swaps 

increase misunderstanding of swap occurrence and location. In comparison to the results 

obtained in the previously described out of place elements experiments, the same results 

suggest that the addition of the extra cue (the sound of the elements swapping) aids 

localisation and reduces the observable difference between 'musical' and 'non-musical' 

listeners. 

The results obtained for the multiple algorithm auralisation information extraction tests 

showed that overall there was no significant difference between 'musical' listeners and 

'non-musical' listeners when perceiving and understanding musically represented 

information pertaining to state and execution for each of the· algorithms. Within each of 
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the information types presented (qualitative and quantitative) it was further shown that 

there was no significant difference between 'musical' and 'non-musical' listeners. For the 

'non-musical' sub-group alone, quantitative information types were more easily 

understood than qualitative information types. In contrast, no significant difference was 

observed between the two information types for the 'musical' sub-group alone. This 

suggested that the spread between information types for each sub-group was different but 

not different enough to be significant when comparing the two sub-groups. This further 

suggests that musically trained listeners are generally a more reliable group when 

identifying either information type. 

In general it has been shown that musical training does have some effect on the 

perception of musical sequences and pitch but the effect is not large. However, the results 

have shown that both musically trained and untrained listeners are quite capable of 

discerning pitch and understanding shape and musically represented numerical data with 

an acceptable degree of accuracy. It has also been shown that the difference between the 

groups depends upon the complexity of the musical structure and that musical training 

has no significant effect when understanding algorithm auralisations. These results are 

encouraging as one of the principal motivations behind this research was to demonstrate 

that music could be used as a commuuication medium regardless of musical skill. 

9.2.2. Algorithm understanding 

In the algorithm information extraction experiments (Chapters 6 and 8) subjects were 

asked to identify qualitative and quantitative features· about the state and execution 

progress of six different algorithms. The auralisations were designed using the same 

criteria as for the listening tests. The algorithm information extraction experiments aimed 

to test the general hypothesis: The musical program auralisations generated by SIMBAA 

3D call successfully convey information about algorithm state and execution. 
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From this general statement three specific hypotheses were identified: 

1. Users can successfully understand musically auralised algorithm state and execution. 

2. Certain information types are more readily identified and understood than others. 

3. Certain algorithms convey information more readily than others. 

To reiterate the findingsconcemed with the effect of musical training on understanding 

auralised algorithm state and execution it was found that no significant difference was 

present. Figure 9.1 shows that listeners are capable of understanding and identifying 

algorithm information with between 78% and 93% accuracy. These accuracy scores are 

high enough to suggest that music has been highly successful in conveying algorithm 

state and execution. It can also be seen that the listeners more readily understand certain 

algorithm types than they do others. 

Algorithm Accuracy Comparison Plot - Total 
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Figure 9.1 - Information extraction accuracy for each algorithm (3D auralisation). 
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The experiments showed that quantitative information types were significantly more 

easily understood and identified than qualitative information types for both groups of 

musically trained and untrained listeners. TIlough for both information types no 

significant difference between 'musical' and 'non-musical' listeners was observed, the 

results showed that for the 'non-musical' sub-group alone quantitative information types 

were more easily understood ilian qualitative information types. In contrast, no 

significant difference was observed between the two information types for the 'musical' 

sub-group alone. This suggested iliat the spread between information types for each sub­

group was different but not different enough to be significant when comparing ilie two 

sub-groups. In general these results suggest that musically trained listeners are more 

reliable when understanding both information types and that quantitative information 

types are more readily understood through musical auralisation ilian qualitative 

information types. 

It has been shown iliat listeners can successfully identify and understand musically 

auralised algorithm information with a high degree of accuracy. Before the experimental 

auralisations were performed, the six sorting algorithms were chosen based upon ilieir 

relative sorting characteristics and natures. Each was chosen to create as diverse a 

selection of musical sorting algorithm auralisations as possible. 

Figure 9.1 shows that certain algorithms are more readily understood than oiliers. The 

results showed that the algorithms with fixed and constant anchor points were more 

readily understood (Bubble Sort, Exchange Sort and Selection Sort algorithms) ilian ilie 

other more complex algorithms (Quick Sort, Bucket Sort In-Out and Bucket Sort Out-In 

algorithms). The data. also showed iliat overall iliere is no significant difference between 

'musical' listeners and 'non-musical' listeners when perceiving and understanding 

musically represented information about the state and execution for each of ilie 

algorithms. 
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9.2.3. The usefulness of spatial enhancement 

The addition of spatial distribution had shown an observable increase in the perception· 

and accuracy of pitch and pitch intervals. This suggests that spatial distribution does act 

as an additional cue and listeners can use it effectively. The addition of spatial 

distribution had also shown an observable increase in the perception and accuracy of the 

shapes of short tonal sequences with no timing. In other words the performance of both 

groups had improved significantly as a result of the addition of spatial distribution, but 

the improvement does not favour one group over the other. The only shape that did not 

show improvement was a very variable one. The addition of spatial location had also 

shown a significant observable increase in the perception and accuracy of out of place 

elements and swapped out of phice elements. In the final experimentation, the addition of 

spatial distribution had also shown an observable increase in the perception and accuracy 

of information about each algorithm's state and execution ranging from a 3% to 8% 

accuracy increase (Figure 8.65a in Chapter 9). Throughout each of the experiments the 

addition of spatial location cues has been proven to increase listeners' perception, 

identification and understanding. Spatial distribution of the type used here, is therefore 

really useful and could enhance aural based presentations. 

9.3. Limitations of research 

One of the limitations iIi this thesis is lack of investigation into the use of musical 

auralisation to aid bug location in sorting algorithms. A cursory study was undertaken 

and documented in Chapter 6 but this was by no means exhaustive as it was beyond the 

scope of this thesis. It might also have been useful to investigate whether the addition of 

spatialisation aids bug location. This thesis set out to determine how useful music might 

be when used to convey information about the state and execution of sorting algorithms. 

It was also concerned with the effects of musical training and which types of information 

translated best. It was not concerned with determining how useful music might be for 

assisting algorithm designers in bug location. 
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The main limitation of this research has been concerned with the Binaural Recording 

teclmique, more specifically, the problem of the geometrical differences that are present 

from human to human. There have been several suggestions to circumvent this issue 

ranging from measuring HRTFs based upon the statistical norm to measuring unique sets 

of HRTFs for each potential listener. In using the HRTFs based upon the geometrical 

measurements of the statistical norm the resulting audio experience will only translate 

effectively to a small percentage of the population. Creating several HRTF sets based 

upon geometrically categorised groups resolves this issue a little further but is still far 

from producing the perfect solution. 

Manikins exist that are modelled on the statistical norm. If the manikin and the listener 

have heads with the same size and shape, the same ITD and liD information will be 

present; similarly, if the manikin and the listener have pinnae with the same sizes and 

shapes, the same elevation cues will be present. If, however, the geometrical differences 

between that of the . listener and the manikin are significant, the resulting perceptual 3D 

sound environment becomes augmented and localisation is difficult: 

The obvious way to reproduce a more precise individual listening experience is for the 

listener to also be the manikin, this way the geometrical similarities of the recording head 

and the listening head are as close as physically possible. This does, of course, mean that 

each individual listener must have hislher own unique set of binaural recordings to 

maximise the desired effect. 

In the binaural recordings used in this research work the manikin was actually the head of 
c 

a real human being selected at random and having no obvious prominent features that 

differentiated him from the norm. The desired spatially distributed auralisations were not 

designed to be as 'truly' 3D as possible but more cost-effective and aimed at giving a 

general idea as to the usefulness of the technique. The obvious limitation here is the 

geometrical differences between the live manikin and any potential listeners. More 

specifically, the limitation is the reduced effect that such differences might have on the 

perception of spatially distributed musically represented information. 
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Another limitation of the experimentation carried out in this research is concerned with 

the perceived distance between the listener and the 'SoundW all'. The SoundWall was 

initially tested at 6 feet but it was found that the separation between positions was too 

narrow and this caused ambiguity when locating positions on the 'SoundWall'. The 

'SoundWall' was finally constructed at a distance of 3 feet from the listener. This 

distance was obtained through a process of trial and error and sUbjective judgement. The 

immediate limitation here is that no optimum distance was calculated. More accurate 

spatial location identification might have been achieved if more attention had been paid 

to the relative physical positioning of the 'SoundWall' to the listener. 

9.4. Future work 

It has been shown that music (with or without spatial enhancement) can communicate 

information about algorithm execution and state to a wide range of subjects with differing 

musical abilities. The SIMBAA 3D system was intended as a tool used to facilitate the 

spatially enhanced musical auralisation of several algorithms. Ultimately it might be 

desirable to construct an algorithm auralisation and visualisation environment in which 

the user had full control over the application of visualisation and auralisation techniques. 

Alty and Rigas [4] described this as an 'equal opportunities interface'. This is 

specifically an interface that makes no prior judgement about the capabilities of the user 

population regarding the use of different input/output modalities. Such an interface would 

offer " ... a variety of communication media, from which the user can select an 

appropriate mix to match their capabilities and limitations" [4]. Because this research 

was investigating the role of music as -a communication medium and because there is 

little prior research into this field, it was beyond the scope of this thesis to investigate the 

multi-modal representation of algorithm state and execution. Further work could 

investigate ways in which music, other non-speech audio, and visual display techniques 

could be combined. 

A complementary modality has been provided that goes some way to fulfilling the ai~ of 

an equal opportunities interface [4]. It is not proposed that auralisation necessarily be 
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used exclusively, but that it offers an additional tool. The results of this research could 

allow musical frameworks to be developed for general interface tasks and so. future 

projects could use these frameworks to assist in the construction of a true equal 

opportunities interface as envisaged by Alty and Rigas [4]. 

A feature not investigated in the research described in this thesis was the rate at which the 

musical representations were played. SIMBAA 3D was designed to execute at variable 

rates of tempo in order to provide different levels of abstraction. In the experiments, each 

musical output was played at the same tempo. Further work should be undertaken to 

assess the effect of different tempos on the auralisations. This is important, as some 

algorithm auralisations may take a long time to complete and might become tedious and 

tiresome for the listener. It is also possible that different speeds of presentation will create 

different levels of abstraction for the listener. 

Further work could be carried out as an extended study of SIMBAA 3D on an extended 

set of subjects. Such a study could involve training the subjects in the use of the 

SIMBAA 3D system alongside basic instruction . of algorithms. Assuming relevant 

control samples were used, such a study would be able to show what effects training and 

familiarity with the technique have on subjects' ability to identify and understand 

algorithm state and execution. Similarly, studies could be carried out to determine the 

benefit of extensively training the listeners on the 'SoundWall' before hearing the 

musical algorithm auralisations. 

It has been shown that listeners can successfully identify and understand musically. 

auralised algorithm information with a high degree of accuracy. The results from this· 

research suggest that certain classes of algorithm are more amenable to auralisation than 

others (Chapters 6 and 8). Fot example, the algorithms with fixed and constant anchor 

points (Bubble Sort, Exchange Sort and Selection Sort algorithms) were more readily 

understood than the other more complex algorithms (Quick Sort, Bucket Sort In-Out and 

Bucket Sort Out-In algorithms). Before the experimental auralisationswere performed, 

the six sorting algorithms were chosen based upon the properties of their sorting 

324 



325 

characteristics and natures. Each was chosen to create as diverse a selection of musical 

sorting algorithm auralisations as possible. Extended studies could be undertaken to test 

whether algorithms of a higher complexity or algorithms that produce output that 

contains little information benefit from auralisation. Algorithms of a highly complex 

nature might benefit from auralisation more than less complex sorting algorithms. This 

complex information might be further disambiguated and more easily understood with 

the aid of auralisation techniques. In contrast, less complex algorithms might not benefit 

as much from auralisation as little information is available for musically auralised 

presentation. Similarly, information from sources other than sorting algorithms might 

show how information types and structures of differing complexity benefit from the 

auralisatioll technique. 

Although this research did not address the needs of blind and visually impaired users, the 

results suggest that a musical auralisation system could be of use to the visually impaired. 

Given that existing sighted users have shown that auralisations can communicate 

algoritlun information, it is not unreasonable that the system could be adapted and 

extended for use by the visually impaired. Visually impaired users have limited spatial 

perception. The use of 3D audio in the algorithm auralisations within this thesis has 

added a spatial element to a typically temporal medium. Such a technique may be 

adapted to provide spatial visualisationllocation for non-sighted users. 

The 3D audio technology used for the spatial enhancement of the experimental musical 

algoritlun auralisations in this work was simple and inexpensive. A study into the 

acceptability of other 3D audio technologies might yield some guidelines for the cost 

effective spatial enhancement of similar auralisation systems. Of particular interest would 

be the emerging field of modelled head related transfer functions (HRTFs). Such 

modelling techniques are aimed at producing flexible parameter driven 3D audio 

syntheses tllat can be tailored to each user's specifications to produce the most effective 

and realistic spatial audio presentations. The binaural recording technique used in the 

experimentation described in this thesis has been subject to the limitations explained in 

section 9.4. These limitations could be overcome by the use of more precise tailored 3D 
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audio presentations. The use of surround sound systems could also be investigated as a 

means of providing 3D program I algorithm auralisations in open-field presentations. 

Many spatial audio techniques exist offering differing degrees ofrealism. The 'reality' of 

these 3D audio techniques should be tested against the accuracy increases in information 

understanding to identify which approaches are most effective, most ineffective and most 

cost-effective. 

The spatial enhancement technique used in this research could be applied to other 

existing auditory systems such as Vickers's CAITLIN [181] and Rigas's AudioGraph [4,. 

159, 160]. The addition of spatial location to CAITLIN could further disambiguate the 

musical representation of program execution. Elevation cues could be used to help 

visualise the top-down procedural· nature of the program execution and the cyclic 

movement in iterations. Azimuth cues could also be used to visualise the decision making. 

process of conditional statements. Similarly, AudioGraph might benefit from the addition 

of spatial location. Visually impaired users have limited spatial perception. The use of 3D 

audio in the algorithm auralisations within this thesis has added a spatial element to a 

typically temporal medium. This 3D enhancement could provide visually impaired 

listeners with spatial visualisationllocation of graphical objects within AudioGraph. 3D 

spatial audio could also be applied to other works like Blattner's research using Earcons . 

in turbulent fluid flow [20]. Again this enhancement could provide a spatial element to 

the presentations helping listeners to better visualise and understand the information. 

9.5. Conclusions and contribution of this thesis 

Prior to this research there was little evidence to support or discount algorithm 

. auralisation as a useful tool. Previous auralisation. systems had been published without 

empirical evidence to prove their efficacy. Brown and Hershberger [45] performed 

simple algorithm auralisations for supporting visualisation. Alty. [3] performed some . 

. early research that documented the usefulness of simple autonomous algorithm 

auralisations. However, no -Cormal or empirical evaluation of the usefulness of several 

different types of algorithm auralisations had been performed. In particular, no attempt 
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had been made to employ spatial audio technologies to assist in the musical conveyance 

of such information. This research offers the first attempt and empirical evaluation of 

spatially enhanced algorithm auralisation. Some recommendations for the incorporation 

of spatially enhanced musical sounds have been suggested but without attention to music­

cognitive and music-theoretic principles. 

TIle development of spatially enhanced musical algorithm auralisations is a measured 

contribution to the field. Prior to this research, any form of algorithm auralisation had not 

been evaluated. Following this work, further and more detailed investigations of how far 

the teclmique can be taken could be undertaken. The major strength of this work over 

prior algorithm auralisation is that it is based on empirical results . 

. TIlis thesis set out to address the questions of whether music can be used as a 

communication medium to convey information about algorithm state and execution and 

whether spatial enhancement could be of benefit to listeners in this context. The 

experiments have shown that the musical mappings can be comprehended and that, 

within celtain constraints, they can be used to help understand algorithm progression. No 

musical experience is necessary, indeed, those with musical training generally performed 

no better on the experimental musical algorithm auralisation tasks. The experiments also 

showed that the addition of spatial enhancement was generally significantly beneficial in 

all auralisations. 

In sunmlary, it has been shown that music can convey information about algorithm state 

and execution. Secondly, it has been suggested that it can play a complementary role in 

the process of algorithm visuaIisatioll; Finally, it has been shown that the addition of 

spatial location cues can aid understanding and help further disambiguate information 

about algorithm state and execution. 
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B. Musical ability questionnaire. 

IMP ACT Research Group - Musical Ability Questionnaire. 
Welcome, thank you for agreeing to take part in this test which will last approximately 40 
Minutes. We are trying to determine how the AVERAGE person processes musical 
infonnation. Some of you may be professional musicians and others may describe 
themselves as having no musical ability at all, but we need all of these types in our study 
so do not worry if you consider yourself not to be musical. 

You can neither pass nor fail this test, we are simply looking for results in order for us to 
determine an average viewpoint. This series of tests is designed at understanding how 
each of us as individuals perceives music, hence there are no right or wrong answers. 

Your participation in this test is entirely voluntary and you may decline to take part at any 
point, but please leave quietly so as not to disturb the other participants. 

Please ensure that you have a pen or pencil ready for the test. 

1.0 ~Your Age 
1.1- Your Sex 
1.2 - Education 
1.3 - Ethnic Origin 

experienced) 
White African 

10-19 120-29 1 30-391 40-49 1 50-59 160-69 170+ 
Male 1 Female 
None 1 0 Level 1 A Level 1 Degree 1 Higher Degree 1 Higher+ 
(This is only to determine the cnlture that you may have 

Afro-Cari bbean Chinese Indian Other 

2.0 - How would you classify your interest in music? 

I have no interest in music at all 

I enjoy music as background or to dance to 

I am very interested in music as a listener 

I enjoy performing music to myself or friends 

I play music to others (not just close friends) 

I am a professional musician 
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2.1 - If you play an instrument/s, please indicate below: 

Level 
1. 
2. 
3. 
4. 
5 .. 

Instrument 
Not at all (never) 
Can play a simple tune 
Reasonably competent 
Very competent - can play before others 
Professional 

Which instrument -......................... At what level- 1,2,3,4,5 
1, 2, 3, 4, 5 
1,2,3,4,5 

2.2 - Do you sing? 

Not at all- no ability 

Sing to myself, but embarrassed in public 

Will sing along with others 

Sing in a choir 

Will confidently sing solo in public 

Professional singer 
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C. Pitch perception workbook. 

IMPACT Research Group - Pitch Perception Test. 

3.0 - Pitch. 

In tlus section we are going to play two notes and ask you to detern1ine the numerical 
difference between them. To enable you to do this we select notes from the normal scale 
of 8 notes and we want you to think of them as having values from 1 through to 8. The . 
bottom note having a numerical value of 1 and the top note of the scale having a 
numerical value of 8. To help you we will play a demonstration, you will hear the scale 
first then you will hear the two notes, this will be repeated three times over. 

1 

1$ i 1; J J 1 J J r F 1- 1 Ij -
12345678 1 3 

The answer to this demonstration test is : 

Note 1 ~ ..... 1. ..... Note 2 ...... 3 ...... Difference ...... 2 ..... . 

Now we will carry out ten of these tests. After you have heard the last of each three 
. repetitions, please write your answers down in the spaces provided. 

3.1- Note 1 ............ Note 2 ............ Difference ........... . 
3.2 - Note 1 ............ Note 2 ............ Difference ........... . 
3.3 - Note 1 ............ Note 2 ............ Difference ........... . 

. 3.4 - Note 1 ............ ·Note 2 ...........• Difference ........... . 
3.5 - Notel ............ Note 2 ............ Difference .......... .. 
3.6 - Note 1 ............ Note 2 ............ Difference ........... . 
3.7 - Note 1 ... I •••••••• Note 2 ............ Difference .... I ••• I ••• 
3.8 - Note 1 ............ Note 2 ............ Difference .... eo •••••• 

3.9 - Note 1· ............ Note 2 ............ Difference ........... . 
3.10 - Note 1 ............ Note 2 ............ Difference .......... .. 
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D. Shape perception workbook. 

IMPACT Research Group - Shape Perception Test. 

4.0 - Musical Shape Perception. 

You will now hear 6 short musical sequences, in this test unlike the previous one the 
scale will be played only once at the beginning of each test, then each sequence will be 
repeated 3 times after which you must draw in the boxes the shape of the music by 
placing X's. The boxes are 8 high, the musical sequences are all within this scale of 8 
notes (I being the lowest note and 8 being the highest note). Don't worry about the 
timing. 

4.3 - 4.4 -

4.5- 4.6-
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E. List state perception workbook. 

IMPACT Research Group - List Shape Perception Test. 

5.0 - Examining Lists of Numbers. 

Lists are everywhere in our daily lives, they come in many forms from names in an 
address book to postal codes in a mail sorting office. These lists often need to be sorted 
into some order, such as surnames into alphabetical order or postal codes into 
alphanumeric order. There are many different recipes available for sorting such lists, this 
is because there are many different ways in which they can be sorted. Each entry into a . 
list is known as an element, such as one persons contact details in an address book. The 
concepts introduced in this section of the test involve the use of lists of numbers, these 
numbers (elements) have been mapped to music - the higher the number, the higher the 
note. 

The following example is an unsorted list of 8 numbers: 
Here is the same list of numbers sorted into descending order: 
and here is the same list of numbers sorted into ascending order: 

4,2,8,5,1,7,3,6 
8, 7, 6, 5,4, 3, 2, I 
1,2, 3, 4, 5, 6, 7, 8 

You will now hear 5 different lists, each list will be repeated 3 times in a row. For each of 
these lists we want you to identify which are unsorted, sorted into ascending order or 
sorted into descending order. . 

5.1- Unsorted 0 Sorted - Ascending O. Sorted - Descending 0 
5.2 - Unsorted 0 . Sorted - Ascending 0 Sorted - Descending· 0 
5.3 - Unsorted 0 Sorted - Ascending 0 Sorted -Descending 0 
5.4 - Unsorted 0 Sorted - Ascending 0 Sorted - Descending 0 
5.5 - Unsorted 0 Sorted - Ascending 0 Sorted - Descending 0 
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F. Out of place element perception workbook • 

. IMPACT Research Group - Out Of Place Element Perception Test. 

Think about how the patterns of the notes help you to determine if a list is sorted or not. 
If we require a list that is sorted into ascending order, then we can identify an incorrectly 
placed element because it would cause a descent in pitch in the list and would deem it 
unsorted. This can be seen in the following example where elements 4 and 5 cause a 
descent in pitch and are therefore incorrectly placed. 

1 

1.1 JJJJ/:JJrrl 
12345678 

You will now hear another 5 lists of numbers, each repeated three times in a row. We 
want these lists to be sorted into ascending order, see if you can identify which numbers 
(elements) are out of place in each list. (Ring the elements that you think are out of 
place). . 

5.6 - A BeD E F G H 
5.7 - A BeD E F G H 
5.8- AB C D E F G H 
5.9 - A BeD E F G H 
5.10 - A BeD E F G H 
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. G. Element swapping perception workbook •. 
, 

IMPACT Research Group - Element Swapping Perception Test. 

6.0 - Manipulating Lists of Numbers. 

'So far we have only checked the state of a list by listening to the order of its elements, we 
are now going to introduce the concept of element swapping. This is done by simply 
swapping two neighbouring elements for each other, this 'neighbour swapping' action 
fonns the basis of one of our sorting recipes known as the Bubble Sort. The following 
example shows the swapping of two elements after a descent in pitch indicated that 
element 4 should be placed before element 3. You will fIrst hear the list being sorted, this 
will then be followed by a checking of the list. Listen for the musical sequences that 
denote the occurrence of a swap during the sorting phase and the occurrence of success 
after the checking phase. 

SORTING CHECKING 

1 1 

1& t 1; n IV r F I 1&11J<JJIJJ rr l 
12345678 

V 
'Swap' 

Unsotted list ~ descent in pitch Sorted list- (uti ascent 

You can now see that not only have we mapped music to the elements in the lists, but 
also to the action of swapping. You will now hear another fIve lists, each will be repeated 
three times in a row. See if you can identify which elements are being swapped. (Ring the 
neighbouring element pairs that are swapped) 

6.1 - A B C D E F G H 
6.2- ABCDEFGH 
6.3- ABCDEFGH 
6.4- ABCDEFGH 
6.5- ABCDEFGH 
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H. Bubble Sort algorithm auralisation workbook. 

IMPACT Research Group - Bubble Sort Algorithm Auralisation Test. 

7.0 - Recipes for Sorting. 

So far we have seen that we can examine and manipulate lists of numbers which are 
represented by musical notes. In the previous section we saw that by passing through the 
list we could swap incorrectly placed neighbouring elements. If we repeat this action of 
passing through the list several times then the list would eventually become sorted. 

You will now hear this repetition of sorting to achieve a fully sorted list. As before, we 
will examine and manipulate our list. As well as these two techniques, listen for the 
addition of a wooden block that counts how many times the recipe is passing through the 
list to sort it. The entire recipe, which is shown below, will be played three times in a 
row. 
Step 1 - Examine the list. 1 2 3 4 6 7 5 8 10 9 

(Identify out of place elements) " A A " 

Step 2 - Pass through the list manipulating as we go. 
On this step we swap the 7 for the 5, and the 10 for the 9. 

Step 3 - Examine the new list 
(Identify out of place elements) 

Step 4 - Pass through the list manipulating as we go. 
On this step we swap the 6 for the 5. 

Step 5 - Examine the new list 
(Identify out of place elements) 

1 2 3 4 6 5 7 8 9 10 
A A 

1 2 3 4 5 6 7 8 9 10 
None 

Step 6 - Successfully terminate and indicate that the list is sorted . 
. 

TIns above recipe is the recipe for the Bubble Sort that you just heard. You will now hear 
tIlls recipe being used on another list, see how many of the following questions you can 
answer. As before the entire recipe from start to finish will be repeated three times in a 
row. 

7.1 How many numbers (elements) are there in the list? .................................. .. 
7.2 How many swaps are there in the flIst pass? ............................................ . 
7.3 How many swaps are there in the second pass? ........................................ .. 
7.4 How many swaps are there in the third pass? .......................................... .. 
7.5 How many swaps are there in the fourth pass? .......................... : .............. . 
7.6 How do you know when elements are out of order? ............. : .................... .. 
7.7 How do you know wh~n the recipe. swaps elements? ............................ ; .... .. 
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7.8 How do you know when the list is sorted? ............................................. .. 
7.9 How many times does the recipe pass through the list? ............................... . 
7.10 What order is the list sorted into? ....................................................... ; 

You will now hear the same Bubble Sort recipe used on yet another list, but this time we 
have included some errors in the sorting procedure that we would like you to fmd. Again 
the entire recipe from start to fmish will be repeated three times in a row. 

Comments on errors: 

********You have now reached the end of the test, thank you for your time. ******* 
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I. Algorithm generated shape perception workbook. 

IMPACT Research Group - Algorithm Generated Shape Perception Test. 

You are about to hear a series of short musical sequences. Each sequence will contain 
between 6 to 10 notes, these notes that you hear will all be within the same octave 
starting from 'Middle C'. For each test you will fIrst hear this octave scale followed by 
three repetitions of the musical sequence. Musical scores showing an example comprising 
of 8 notes are shown below. 

1 I' I 
1 

141 I 
1 

1$ ~ 

The octave scale starting with middle C. 

12345578 

J J 1 1 st repetition of musical sequence. 

685712 3 4 

J J 1 2nd repetition of musical seqenee. 

685712 3 4 

J r J r 1 J J J J 1 3rd repetition ofrnusical sequence. 

58571234 

. On the following sheets each question has three entry fIelds in which you should flace 
your answers. These fIelds shown in the example below as 1st Rep, 2nd Rep and 3r Rep 
correspond to the three sequence repetitions you will hear within each question. After the 
fIrst repetition you should describe (in the 1st Rep fIeld) the shape of the musical 
sequence. After the second repetition you should again describe the shape adding or 
changing anything that differs from your original description (this second description 
should be entered in the 2nd Rep fIeld). After the third repetition you should draw the 
shape of the sequence in the grid provided, once you have drawn this please do not . 
change your previous descriptions. It is also important that during the 1st and 2nd Rep 
stages you do not sketch the shape to aid your descriptions. 

Some of the features that you should listen for and describe are - jaggedness or 
randomness, ascending or descending order, note repetitions, ordered except for one 
note, random tlten ordered, ordered tlten random or any combination of these features. 
You will now hear the example shown above, this corresponds to the answer below so 
listen carefully. (Remember - Scale, 1st rep, 2nd rep and 3rd rep). 
Answer to Example. (Typical descriptions that would be correct). 

1 ,t Rep. - "Sort of random at the start and then smooth at the end." 
2nd Rep. - "Jagged at the start then a smooth ascending pattern at the end." 
3rd Rep.-
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You will now hear the tests, listen and enter you answers on the following pages.·. 
The following 5 tests are each comprised of 8 notes. 

2.1- 2.2 -
1" Rep ............................. . l"R . ep ............................. . 

2nd Rep ............................. . 2nd Rep ............................. . 

2.3- 2.4-
1" Rep ............................. . 1st Rep ............................. . 

2nd Rep ............................. . 2nd Rep ............................. . 
•••••••••• • ••••••••••••••••••••••••• 0". 
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2.5-
1" Rep ............................. . 

2nd Rep .............................. · 

3rd Rep. 

The following 5 tests are each comprised of 6 notes. 

3.1- 3.2 -
1" Rep ............................. . 1" Rep ............................. . 

. ..................................... . 
2nd Rep ............................. . 2nd Rep ............................. . 

. ..................................... . 
3rd Rep. 

~~ 

(Draw what you hear) 

3.3- 3.4-
1" Rep ............................. . 1" Rep ............................. . 

2nd Rep ............................. . 2nd Rep ............................. . 
...................................... '. 
3rd Rep. 

~~ 

'., ., 

",., ;'; 
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3.5-
1st Rep ............................ .. 
.. ..... ...... ......... . ............... . 
2nd Rep .............................. . 

The following 4 tests are each comprised of 10 notes. 

4.1- 4.2 -
1st Rep .............................. . 1" Rep ............................ .. 

. ..................................... . 
2nd Rep ............................ .. 2nd Rep ............................ .. 

. ..................................... . 
3,d Rep. 3,d Rep. 

4.3- 4.4-
I"Rep ............................. . 1" Rep ............................ .. 
........... .. ......... . .. ............. . .' ..................................... . 
2 nd Rep ............................ .. 2nd Rep ............................ .. 
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The following 5 tests are each comprised of 8 notes. 

5.1- 5.2 -
I" Rep ............................. . I" Rep ............................ .. 

2nd Rep ............................. . 2nd Rep ................... ; ........ .. 
....................................... 
3,d 

5.3- 5.4 -
I" Rep ............................ .. I" Rep ............................. . 

2nd Rep ............................. . 2nd Rep ............................. . 

5.5-
I"Rep ............................. . 

2nd Rep ............................. . 
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The following 5 tests are each comprised of 8 notes. 

6.1- 6.2 -
1 SI Rep ............................. . SI . 

1 Rep .............•................ 
....................................... 

2nd Rep ............................. . 2nd Rep ............................. . 
. ..................................... . 
3,d 

~~~~ 

6.3- 6.4-
1 SI Rep ............................. . 1 SI Rep ............................. . 

2nd Rep ............................. . 2~dR~~:: ::::: :::: :::: ::::::: ::: :::: .. 
3·,d····· .............................. . 

6.5-
1 SI Rep ............................. . 

2nd Rep ............................. . 
....... . ... . , ........................... . 
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J. Drawing ability workbook. 

IMPACT Research Group - Drawing Ability Test. 

In this final section we would like you to listen to a well-known tune which is played 

within our familiar octave scale starting from 'Middle C'. What we would then like you 

to do is to either sing it or hum it to the instructor, once you have done this we would like 

you to draw the shape of this tune in the grid provided below. 

You will frrst hear the octave scale, this will then be followed by three repetitions of the 

tune. Listen carefully. 

7.1- Do you recognise this tune? Yes / No 

7.1 - Can you sing or hum this tune ? Yes / No 

7.2 - Now.draw the shape of the tune. 
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K. Sorting characteristics workbook. 

IMPACT Research Group - Sorting Characteristics Identification Test. 

The following section is divided into 5 parts, each of these parts contains 4 or 5 musical 
sequences. Each musical sequence is composed of between 6 to 10 notes which are all 
within the same octave starting from 'Middle C' (shown in the diagram below). At the 
start of each of the 5 parts you will hear this octave scale, this will then be followed by 
the musical sequences within that part. 

We have selected notes from the nonnal scale of 8 notes (shown below) and we want you 
to think of them as having values from 1 through to· 8. The bottom note having a 
numerical value of 1 and the top note of the scale having a numerical value of 8. To help 
you we will play the scale shown below which corresponds to the numbers 1,2,3,4,5,6,7 
and 8. 

1 

I't JJJJIJJrrl 
I 2 3 4 5 is 7 8 

As previously mentioned, all of the sequences that you will hear will be within the octave 
scale shown above, therefore when a sequence contains 10 notes then it must mean that 
some notes in our octave scale are repeated. Similarly when a sequence contains 6 notes . 
then it must mean that some notes in our octave scale have been omitted. Given that each 
note represents a number, then the sequences that you will hear represent lists of 
numbers. 

For each of the five parts we would like you to listen carefully to the sequences and try to 
visualise the shapes of the lists from their musical representations. Starting with the first 
sequence and proceeding through to the last we would like you to try and explain what 
has progressively happened to the shape of the list. (E.g.- Starts random, gradually gets 
ordered beginning from the left, ends in ascending order etc.) Write your observations in 
the spaces provided for each part 

You will now hear a set of example sequences, they correspond to the descriptions given 
below and are followed by an explanation of what has progressively happened to this 
example list. Remember that [lfst you will hear the scale, this will then be followed by 
the five example sequences (each comprising 8 notes). 

1. Scale. 
2. 1 SI sequence - All disordered random notes.· . 
3. 2nd sequence - 3 ordered ascending notes followed by jagged randomness. 
4 .. 3rd sequence - 4 ordered ascending notes followed by jagged randomness. 
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5. 4th sequence - 6 ordered ascending notes followed by 2 disordered notes. 
6. 5th sequence - 8 ordered ascending notes. . 

What has progressively happened to the list? 

The list began in random order, gradually became more ordered starting from the 
left and ended up in sorted ascending order. 
You will now hear the tests, listen and enter you answers in the following sections. 

PART 1 - 5 sequences each containing 8 notes. 
Remember that you will fIrst hear the scale and then you will hear the sequences. Write 
down in the space below what you think has progressively happened to the list. 

PART 2 - 5 sequences each containing 5 notes. 
Again, remember that you will fIrst hear the scale then you will hear the sequences. Write 
down in the space what you think has progressively happened to the list. 

PART 3 - 4 sequences each containing 10 notes. 
Again, remember that you will fIrst hear the scale then you will hear the sequences. Write 
down in the space what you think has progressively happened to the list. 

PART 4 - 5 sequences each containing 8 notes. 
Again, remember that you will fIrst hear the scale then you will hear the sequences. Write 
down in the space what you think has progressively happened to the list. 

PART 5 - 5 sequences each containing 8 notes. 
Again, remember that you will fIrst hear the scale then you will hear the sequences. Write 
down in the space what you think has progressively happened to the list. 
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L. Multiple algorithm auralisation workbook. 

IMPACT Research Group - Musical Ability Questionnaire & Multi-Sort Information 

Auralisation Test. 

So far we have seen that we can examine and manipulate lists of numbers which are 
represented by musical notes. In the previous section we saw that by passing through the· 
list we could swap incorrectly placed neighbouring elements. If we repeat this action of 
passing through the list several times then the list would eventually become sorted, this is 
one metllod of implementing a sorting algorithm. In this section you will listen to several 
different sorting algorithms and will be asked questions about what the algorithm is 
doing. 

9.1 - Algorithm 1. 

You will now hear this repetition of sorting to achieve a fully sorted list. As before, we 
will examine and manipulate our list. As well as these two techniques, listen for the 
addition of a wooden block that counts how many times the recipe is passing through the 
list to sort it. The entire recipe, which is shown below, will be played three times in a 
row. 

Example of Algorithm 1. (B) 

Step 1 - Examine the list. 1 1 324 6 758 8 
(Identify out of place elements) A A A A 

Step 2 - Pass through the list manipulating as we go. 
On this step we swap the 3 for the 2, and the 7 for the 5. 

Step 3 - Examine the new list 
(Identify out of place elements) 

Step 4 - Pass through the list manipulating as we go. 
On this step we swap the 6 for the 5. 

Step 5 - Examine the new list 
(Identify out of place elements) 

1 1 2 3 4 6 578 8 
A A 

1 1.2 3 4 5 6 7 8 8 
None 

Step 6 - Successfully terminate and indicate that the list is sorted. 

You will now hear this recipe being used on another list, see how many of the following 
questions you can answer. As before the entire recipe from start to fInish will be repeated 
three times in a row. 
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9.1.1 -How many numbers (elements) are there in the list? .............................. .. 
9.1.2 -How many swaps are there in the fll'st pass? ......................................... .. 
9.1.3 -How many swaps are there in the second pass? ...................................... .. 
9.1.4 -How many swaps are there in the third pass? ......................................... .. 
9.1.5 -How do you lmow when elements are out of order? .................................. . 
9.1.6 -How do you lmow when the recipe swaps elements? .............................. .. 
9.1.7 -How do you lmowwhen the listis sorted? ............................................ .. 
9.1.8 -How many times does the recipe pass through the list? .............................. . 
9.1.9 -What order is the list sorted into? ...................................................... . 
9.1.10 - How does the shape of the list progress? ............................................ .. 

9.2 - Algorithm 2. 

You will now hear a different algorithm that also sorts a list of numbers but in a different 
manner. This recipe searches all elements in the list until it fmds the one that belongs in· 
the current location, when it finds this element its swaps it into the current location. As 
before, we will examine and manipulate our list. As well as these two techniques, listen 
for the addition of a wooden block that counts how many times the recipe is passing 
through the list to sort it. The entire recipe, which is shown below, will be played three 
times in a row. 
Example of Algorithm 2. 
Step 1 - Examine the list. 

(Looking for correct element for current location) 

Step 2 - Pass through the list manipulating as we go. 
Identify correct element for current location. 

On this step we swap the 4 for the I, 

Step 3 - Examine the new list 
(Looking for correct element for current location) 

Step 4 - Pass through the list manipUlating as we go. 
Identify correct element for current location. 
On this step we swap the 3 for the 2, 

Step 5 - Examine the new list 
. (Looking for correct element for current location) 

Step 6 - Pass through the list manipulating as we go. 
Identify correct element for current location. 
On this step we swap the 4 for the 3, 

4 3 I 2 

" 

4 3 1 2 

I 342 

" 

1 342 
/\ " 

1 2 4 3 
/\ 

124 3 
/\ /\ 

Step 7 - Examine the new list. I 2 3 .4 
Step 8 - Successfully tenninate and indicate that the list is sorted. 
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You will now hear this recipe being used on another list, see how many of the following 
questions you can answer. As before the entire recipe from start to finish will be repeated 
three times in a row. 

9.1.1 -How many numbers (elements) are there in the list? .............. , ................ . 
9.1.2 -How many swaps are there in the flIst pass? ......................................... . 
9.1.3 -How many swaps are there in the second pass? ...................................... . 
9.1.4 -How many swaps are there in the third pass? ......................................... . 
9.1.5 -How do you know when elements are out of order? ................................. . 
9.1.6 -How do you know when the recipe swaps elements? ............................... . 
9.1.7 -How do you know when the list is sorted? ............................................ . 
9.1.8 -How many times does the recipe pass through the list? ....... p ••••••••••••••••••••• 

9.1.9 -What order is the list sorted into? ..................................................... . 
9.1.10 - How does the shape of the list progress? .......................... ~ ................. . 

9.3 - Algorithm 3. 

You will now hear a different algorithm that also sorts a list of numbers but in a different 
manner. This algorithm splits the list into two parts by moving a pivot into its correct 
position, so that items to the pivot's left are smaller than the pivot, and the items to the 
right are bigger. The algorithm is then called recursively on each of the sub-lists until the 
list is eventually fully sorted. As before, we will examine and manipulate our list. As well 
as these two techniques, listen for the addition of a wooden block that counts how many 
times the recipe is passing through the list to sort it. The entire recipe, which is shown 
below, will be played three times in a row. 
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Example of Algorithm 3. 

Step 1 - Examine the list. 
(Pivot is mid point oflist, pivot is 5) 

Step 2 - Pass through the list manipulating as we go. 
Sort list into sub-list around the pivot. 
(LHS takes< pivot, RHS takes >= pivot) 

(Q) 
7 I 8 3 642 5 3 7 

[{I 3 4 2 3 }{ 7 8 6 57}] 
" . 

pivot (P)=5 

Step 3 - Examine the new list I 3 4 2 3 7 8 6 5 7 
(Sub-list pivots are 3 for Left list and 7 for Right list) 

Step 4 - Pass through the list manipulating as we go. 
Sort into smaller sub-lists around pivots. [{I 2}{34 3}] [{6 5}{7 8 7}] 
Left list pivot around 3, Right list pivot around 7 " " 

p=3 p=7 

Step 5 - Examine the new list 123 4 3 657 8 7 
(Sub list pivots are now 2, 4, 6 and 8) 

Step 6 - Pass through the list manipulating. [{1}{2}] [{3 3}{4}] [{5}{6}] [{7 7}{8}] 
Sort into smaller sub-lists around pivots " " " " 

Sub-list pivots are 2, 4, 6 and 8 p=2 p=4 p=6 p=8 , 

Step 5 - Examine the new list 123 345 677 8 

Step 6 - Successfully terminate and indicate that the list is sorted . 
. 

You will now hear this recipe being used on another list, see how many of the following 
questions you can answer. As before the entire recipe from start to fInish will be repeated 
three times in a row. 

9.1.1 -How many numbers (elements) are there in the list? ................................ . 
9.1.2 -What value is the pivot in the fIrst pass? .............................................. .. 
9.1.3 -What are the sub-list sizes on the frrst pass? ........................................ .. 
9.1.4 - How many pivots are there on the fInal pass?. .............................. . 
9.1.5 -What identifIes element placement into sub-lists? .................................. . 
9.1.6 - How is the pivot musically represented? ............................................... . 
9.1.7 -How do you know when the list is sorted? ............................................. . 
9.1.8 -How many times does the recipe pass through the list? ............................. .. 
9 .1.9 -What order is the list sorted into? ...................................................... . 
9.1.10 - How does the shape of the list progress? ............................................. . 
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9.4 - Algorithm 4. 

You will now hear a different algorithm that also sorts a list of numbers but in a different 
manner. This recipe uses Algorithm 3 on the first pass to split the list into two sub lists, it . 
then uses Algorithm 1 on the left-hand sub list and Algorithm 2 on the right-hand sub 
list. As before, we will examine and manipulate our list. As well as these two techniques, . 
listen for the addition of a wooden block that counts how many times the recipe is 
passing through the list to sort it. The entire recipe, which is shown below, will be played 
three times in a row. 

Example of Algorithm 4. 
Step 1 - Examine the list. 

(Pivot is mid point oflist, pivot is 5) 
Step 2 - Pass through the list manipulating as we go. 

Sort list into sub-list around the pivot. 
(LHS takes < pivot, RHS takes >= pivot) 

(BIO) 
847 3 526 1 

A 

[{4 3 2 1}{8 7 56}] 
A 

pivot (P)=5 

Step 3 - Examine the new list 4 3 2 1 8 7 56 
Step 4 - Pass through the list manipulating as we go. {4 3 2 1 } {8 7 5 6} 

Alg 1 swaps the 4 for the 3, then the 2 and then 1. A A A A 

Alg 2 swaps the 8 for the 5. 
A A 

Step 5 - Examine the new list 
Step 6 - Pass through the list manipulating as we go. 

Alg 1 swaps the 3 for the 2, then the 1. 
Alg 2 swaps the 7 for the 6. 

Step 7 - Examine the new list 
Step 8 - Pass through the list manipulating as we go. 

Alg 1 swaps the 2 for the 1. 
Alg 2 swaps the 8 for the 7. 

Step 9 - Examine the new list 

3 2 I 4 5 7 8 6 
{3 2 1 4} {5 7 8 6} 

A A A A A 

2 1 3 4 5 6 8 7 
{2 1 3 4} {5 6 8 7} 
A A A A 

1 234 567 8 

Step 6 - Successfully terminate and indicate that the list is sorted . 

. You will now hear this recipe being used on another list, see how many of the following 
questions you can answer. As before the entire recipe from start to finish will be repeated 
three times in a row. 
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9.1.1-How many numbers (elements) are there in the list? ................................ . 
9.1.2 -What value is the pivot in the fust pass? .............................................. . 
9.1.3 -What are the sub-list sizes on the fust pass? ........................................ .. 
9.1.4 - How many swaps are there in the 2nd pass? ....................................... . 
9.1.5 -After I st pass, what denotes swapping? ............................................. . 
9.1.6 - How is the pivot musically represented? .............................................. .. 
9.1.7 -How do you know when the list is sorted? ............................................ .. 
9.1.8 -How many times does the recipe pass through the list? ............................. .. 
9.1.9 -What order is the list sorted into? ..................................................... .. 
9.1.10 - How does the shape of the list progress? ........................................... .. 

9.5 - Algorithm 5. 

You will now hear a different algorithm that also sorts a list of numbers but in a different 
. manner. This recipe uses Algorithm 3 on the fust pass to split the list into two sub lists, it 

then uses Algorithm 2 on the left-hand sub list and Algorithm 1 on the right-hand sub 
list. As before, we will examine and manipUlate our list. As well as these two techniques, 
listen for the addition of a wooden block that counts how many times the recipe is 
passing through the list to sort it. The entire recipe, which is shown below, will be played 
three times in a row. 
Example of Algorithm 5. 
Step 1 - Examine the list. 

(Pivot is mid point of list, pivot is 5) 
Step 2 - Pass through the list manipulating as we go. 

Sort list into sub-list around the pivot. 
(LHS takes < pivot, RHS takes >= pivot) 

Step 3 - Examine the new list 
Step 4 - Pass through the list manipulating as we go. 

Alg 2 swaps the 4 for the 1. 
Alg 1 swaps the 8 for the 7, then 6, then 5. 

Step 5 - Examine the new list 
Step 6 - Pass through the list manipUlating as we go. 

Alg 2 swaps the 3 for the 2. 
Alg 1 swaps the 7 for the 6, then the 5. 

Step 7 - Examine the new list 
Step 8 - Pass through the list manipulating as we go. 

Alg 2 swaps the 4 for the 3. 
Alg 1 swaps the 6 for the 5. 

Step 9 - Examine the new list 

(BOJ) 
847 3 6 I 5 2 

A 

[{4 3 1 2}{8 7 6 5}] 
A 

pivot (P)=5 

4 3 1 2 
{4 3 1 2} 
A A 

876 5 
{8 7 6 5} 

1\ 1\ 1\ /\ 

1 342 765 8 
{I 3 4 2} {7 6 5 8} 

1\ 1\. 1\1\/\ 

124 3 6 5 7 8 
{J 2 4 3} {6 5 7 8} 

/\/\ 1\/\ 

123 4 567 8 

Step 10 - Successfully terminate and indicate that the list is sorted. 
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You will now hear this recipe being used on another list, see how many of the following 
questions you can answer. As before the entire recipe from start to finish will be repeated 
three times in a row. 

9.1.1 -How many numbers (elements) are there in the list? .............................. .. 
9.1.2 -What value is the pivot in the first pass? .............................................. .. 
9. 1.3 -What are the sub-list sizes on the fIrst pass? ......................................... . 
9.1.4 - How many swaps are there in the 2nd pass? ...................................... .. 
9.1.5 -After 1st pass, what denotesswapping? ............................................. .. 
9.1.6 - How is the pivot musically represented? ................. : ............................. . 
9.1.7 -How do you know when the list is sorted? ............................................ .. 
9.1.8 -How many times does the recipe pass through the list? ............................. .. 
9.1.9 -What order is the list sorted into? .................. ; .................................. .. 
9.1.10 - How does the shape of the list progress? ......................... ; .................. .. 
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9.6 - Algorithm 6. 

You will now hear a different algorithm that also sorts a list of numbers but in a different 
manner. This recipe compares each location in the list with all other following elements, 
if out of place it swaps them until the correct element is placed at the current location. As 
before, we will examine and manipulate our list. As well as these two techniques, listen 
for the addition of a wooden block that counts how many times the recipe is passing 
through the list to sort it. The entire recipe, which is shown below, will be played three 
times in a row. 

Example of Algorithm 6. 
Step 1 - Examine the list. 

(Compare current element to all following elements) 
Step 2 - Pass through the list manipulating as we go. 

On this step we swap the 4 for the 2, 

then we swap the 2 for the I. 

(E) 
421 3 
/\ 

4 2 1 3 
/\ /\ 

241 3 
/\ /\ 

we do not swap the current element for the 3 as we already have the smallest 
element in the right place 1 4 2 3 

Step 3 - Examine the new list 
(Compare next current element to all following elements) 

Step 4 - Pass through the list manipulating as we go. 
On this step we swap the 4 for the 2, 

I 4 2 3 
/\ 

142 3 
/\ /\ 

we do not swap the newly placed 2 for the 3 as 2 is in the correct place ... 
1 243 

Step 5 - Examine the new list 
(Compare next current element to all following elements) 

Step 6 - Pass through the list manipulating as we go. 
On this step we swap the 4 for the 3, 
3 is now correctly placed, so is 4 by default. 

Step 7 - Examine the new list. 
Step 8 - Successfully terminate and indicate that the list is sorted. 

1 243 
/\ 

124 3 
/\ /\ 

123 4 

You will now hear this recipe being used on another list, see how many of the following 
questions you can answer. As before the entire recipe from start to finish will be repeated 
three times in a row. 

9.1.1 -How many numbers (elements) are there in the list? ................................ . 

9.1.2 -How many swaps are there in the fust pass? .......................................... . 
9.1.3 -How many swaps are there in the second pass? ...................................... .. 
9.1.4 -How many swaps are there in the third pass? ......................................... .. 
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9.1.5 -How do you know when elements are out of order? ................................. .. 
9.1.6 -How do you know when the recipe swaps elements? ................................ . 
9.1.7 -How do you know when the list is sorted? ............................................. . 
9.1.8 -How many times does the recipe pass through the list? ............................. .. 
9.1.9 -What order is the list sorted into? ...................................................... . 
9.1.10 - How does the shape of the list progress? ............................................. . 
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M. Experimental data. 
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Figure M.I - Exchange Sort information extraction accuracy. 
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Figure M.2 - Selection Sort information extraction accuracy. 
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Quick Sort Algorithm Information Accuracy Plot 
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Figure M.3 - Quick Sort infonnation extraction accuracy. 
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Figure M.4 - Bucket In-Out Sort infonnation extraction accuracy. 
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Bucket Out-In Sort Algorithm Information Accuracy Plot 
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Figure M.5 - Bucket Out-In Sort infonnation extraction accuracy . 
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Bubble Sort Algorithm Question Plot - Total 
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Figure M.6 - Bubble Sort infonnation extraction accuracy by question type. 
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Exchange Sort Algorithm Question Plot -Total 

"0 100 
l'! 90 Q) 

~ 80 
c: 70 m 

'" 60 ., 
u 
Q) 50 t: 
0 40 u 

'" 30 tl 
Q) 

20 :0' 
" 10 en 
~ 0 0 

'E ~N :g-C") ~<o:t 
~ ~ ~ 

~co "" i'o (ij in ' mm m .... mm 
m~ £lo £lo £lo 9. 0 9. 0 "0 £lo "0 ,,~ 

,,0 0 0 2. 0 
2. 2. 0 2. ~ 2. ~ 

~ 

Ques!ion Number 

Figure M.7 - Exchange Sort infonnation extraction accuracy by question type. 
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Figure M.8 - Selection Sort infonnation extraction accuracy by question type. 
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Quick Sort Algorithm Question Plot - Total 
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Figure M.9 - Quick Sort infonnation extraction accuracy by question type. 
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Figure M.l 0 - Bucket In-Out Sort infonnation extraction accuracy by question type. 
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Bucket Out-In Sort Algorithm Question Plot - Total 
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Figure M.II - Bucket Out-In Sort infonnation extraction accuracy by question type. 
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Figure M.12 - Bubble Sort infonnation accuracy by question type, 'musical' v. 'non­

musical'. 
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Figure M.IS - Quick Sort information accuracy by question type, 'musical' v. 'non­

musical'. 
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Figure M. 17 - Bucket Out-In Sort infonnation accuracy by question type, 'musical' v. 

'non-musical'. 
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Figure M.21 - Bucket In-Out Sort information extraction accuracy. 
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Figure M.22 - Bucket Out-In Sort infonnation extraction accuracy. 
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Figure M.23 - Bubble Sort information extraction accuracy by question type. 
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Figure M.24 - Exchange Sort information extraction accuracy by question type. 
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Figure M.26 - Quick Sort information extraction accuracy by questiori type. 
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Figure M.27 - Bucket In-Out Sort information extraction accuracy by question type. 
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Figure M.28 - Bucket Out-In Sort information extraction accuracy by question type. 
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Figure M.29 - Bubble Sort info accuracy by question type, 'musical' v. 'non­

musical'. 
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Figure M.30 - Exchange Sort info accuracy by question type, 'musicaI' v. 'non­

musical'. 
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Figure M.31 - Selection Sort info accuracy by question type, 'musical' v. 'non­

musical'. 
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Figure M.32 - Quick Sort info accuracy by question type, 'musical' v. 'non-musical'. 
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Figure M.33 - Bucket In-Out Sort info accuracy by question type, 'musical' v. 'non­

musical'. 
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Figure M.34 - Bucket Out-In Sort info accuracy by question type, 'musical' v. 'non­

musical' .. 
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