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ABSTRACT 

Impacts of oil and gas production operations are always very 

obvious when there is imbalanced operation, uncontrolled 

stoppage or catastrophic failure of the system during normal 

operations. These impacts may range from high flaring and 

venting of associated petroleum gas, oil release or spillage, 

equipment damage, fire outbreak to even fatality. Possible causes 

of imbalanced operations or system failure are categorised into 

process upset, system degradation, ineffective operation and 

maintenance procedures and human errors. Effective maintenance 

strategy integrates major components of the system; people 

(human factors), operation and maintenance procedures (process) 

and production plant (technology) to develop an intelligent 

maintenance solution that is capable of monitoring and detecting 

fault in the system at incipient stage before operational integrity is 

compromised. This paper deploys data-based analytics technique 

to develop condition-based predictive maintenance system to 

monitor, predict and classify performance of gas processing 

system. Exhaust gas temperature (EGT) of Gas Turbine Engine 

(GTE) is one of the operating and control parameters associated 

with efficiency of the GTE operation. The EGT is measured using 

several thermocouples, temperature sensors spaced equidistant 

around the circumference of the exhaust duct of the GTE. Neural 

network technique of multisensory data fusion is integrated with 

intelligent maintenance system to monitor performance of GTE, 

detect fault and classify performance of GTE to optimal, average 

and abnormal performance. 
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1. INTRODUCTION 
Oil and gas release, gas flaring and venting have been observed 

and accepted as inexorable parts of the processes in all phases of 

oil and gas production operations; drilling, producing, refining, 

NGL/LNG extraction and petrochemical products processing. The 

flared and vented gas, known as associated petroleum gas (APG), 

which is entrained in crude oil and is released when oil is brought 

out and processed, has lots of economic values [1]. 

Oil and Gas production and Processing Plants or systems are 

close, complex and hierarchically organised systems, bound to 

decay from stable state (order) to chaotic state, tending to 

maximum entropy, having stiff operating parameters, resistant to 

stresses within narrow boundaries and are susceptible to small, 

unpredicted perturbations [2]. This system’s degradation affects 

systems’ performance, reliability and availability, leading to low 

productivity due to inconsistent operations. It also has serious 

impact on the volume of APG flared or vented which in turn leads 

to environmental degradation. Ineffective maintenance techniques 

grossly compromise reliability and availability of the production 

system, which ultimately makes it difficult to optimise asset 

utilisation in the production facility [3]. According to [4], 

‘’Flaring and venting of associated petroleum gas occurs as a 

safety measure to safely dispose of gas during emergencies or 

during the breakdown of machineries’’ 

Maintenance and reliability challenges of oil and gas processing 

systems seem to negate the envisaged benefits of deployed 

advanced, innovative technologies and processes, due to inability 

of the extant maintenance practices to proffer optimal solutions to 

the problems during operational phase of the systems’ life cycle 

[5].  

Condition-based maintenance models have been developed and 

used in many industrial systems to elucidate maintenance and 

reliability challenges. Artificial Neural network (ANN) technique 

of multisensory data fusion is integrated with intelligent 

maintenance system to monitor performance of GTE, detect fault 

and classify performance of GTE to optimal, average and 

abnormal performance. 

1.1 Impacts of Reliability and Maintenance 

Problems in Oil and Gas Systems  
In Nigeria, industrial systems maintenance has been a destructive 

and chronic menace that has plagued oil and gas industries and 

even the economy of the country at large. The maintenance and 

reliability challenges are owed to ineffective maintenance 

techniques that are being practiced in the sector. These practices 

are very expensive, wasteful and in most cases introduce faults to 

the systems in the course of maintenance exercise due to human 

factors.  

1.2 30-Day Performance Monitoring of one of 

the Gas Plants in Nigeria 
The NGL extraction/processing plants are set up to gather and 

process APG from several oil production facilities. One of such 

plants was designed to process maximum of 650 mscf (million 

standard cubic feet) of gas per day and produce 25000 – 30000 

barrels of NGL per day. The system consists of ten gas turbine 

driven compressors of which nine were functional during the 

period of reliability assessment of the plant. Within this period, a 

total of thirty six unplanned shutdowns were recorded. A greater 

percentage of these unplanned stoppages was as a result of gas 

turbine failure due to defective or degraded components. In this 

system, a progressive decrease in speed of the gas turbine is an 

indication of present of slow developing fault in the system. It is 

partly an upshot of gradual decrease in exhaust gas temperature 

(EGT) of the GTE.  
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2. Approaches to APG Flaring/Venting 

Reduction/Elimination 
APG gathering for NGL/LNG extraction has really reduced the 

volume of flared and vented gas, due to deployment of the 

advanced processing systems, other best practices and procedures. 

In line with these breakthroughs in the industries, gas flaring and 

venting could be seen as inevitably breaking of boundary between 

oil and gas processing system and the ecosystem or physical 

environment in a “controlled” manner when the safety of the 

operations are threatened due to unnecessary upset; or 

uncontrolled manner when there is a catastrophic failure of the 

processing system due to component degradation or human factor.  

2.1 Boundary design of oil/gas production 

system for Fail-Safe Operations 
Understanding the basic operations of oil and gas production 

systems helps in appreciating the complexity of the system; from 

exploration, development, production and processing, storage and 

transportation and marketing.  Oil and gas production system 

comprises people, plant (structural, architectural, control system, 

safety system), Process (oil/gas, operating procedures, standards 

and regulatory requirements), environment (local and global 

communities/ecosystems), and government policies and license 

requirements. Generally, the assessment of economic viability and 

technical feasibility to safely extract hydrocarbons is complex 

including numerous impacting variables that play in stochastically 

[6].  

Hazard of operations, dynamics of the processes and stiffness of 

operating boundaries make the system dangerous when there is an 

interaction outside of the designed boundaries of the system, that 

is, uncontrolled breaking of operating boundaries or designed 

containment. Effective and optimal control of the system involve 

monitoring the internal dynamics of the system through its critical 

parameters or variables (temperature, pressure, liquid levels, flow, 

vibration, speed, etc.) using sensors and regulating the behaviours 

or forcing the system’s operations to remain within the defined 

boundaries  using actuators or final control elements. Though 

these systems are always closed and highly pressurised, one of the 

critical considerations during design phase is ‘Fail-Safe 

Operations. The fail-safe operations ensure the safety of the 

system, personnel and environment should there be any process 

upset, component or system failure or any unbalanced operations. 

Hence, fail-safe operation ensures that operational boundaries are 

broken safely in a controlled manner whenever there is a system 

failure. 

Typically, gas processing include transporting gas from one vessel 

to another under pressure in pipelines, by increasing the pressure 

using compressors; heating and cooling  for NGL/LNG extraction, 

storage and transportation. The success of these operations is 

achieved if the associated risks are properly managed, reliability 

of the system sustained and human factors effectively analysed 

and integrated into the design, operations and maintenance of the 

system. In view of these, gas processing systems are designed 

such that whenever safety of the system is compromised, the 

operating boundaries are safely broken in a controlled manner to 

avoid catastrophic situation. Boundaries in this context are 

different valves and actuators that allow, prevent, relieve and 

regulate gas process variables, when there is need, upset or 

failure. Theses valves are shutdown valves (SDV), blowdown 

valves (BDV), pressure safety valves (PSV) and pressure relief 

valves (PRV). Control valves regulate the internal dynamics of the 

system, by forcing process variables to remain with designed 

operating envelops. The diagram below in figure 1 show 

simplified schematic and architecture of oil and gas system 

respectively, indicating some boundary valves.  

System failure and ineffective operational procedures have been 

highlighted as the primary causes of continued venting and flaring 

in oil and gas industries [7],[8]. According to Allen [9], previous 

works done in this area of research indicate that both equipment 

and operational procedures play key roles in sustaining the current 

volume of APG flared/vented globally.  

3. Reduction/Eradication of Gas Flaring 

Condition-Based Predictive Maintenance   
Intelligent maintenance and reliability approach to reduction of 

impacts of oil and gas operations aim at optimisation of operations 

and maintenance (O&M) phase of oil and gas system life cycle 

using advanced engineering tools and methodologies. This is 

achieved by integrating major components of oil and gas 

production system; people (human factors), operation and 

maintenance procedures (process) and oil and gas production 

plant (technology) to develop intelligent maintenance solution that 

is capable of monitoring and detecting fault in the system at 

incipient stage before operational integrity is compromised. 

Modelling O&M phase of system lifecycle from the perspective 

of a managed system makes it easier to utilise certain approaches 

such as system dynamics, agent-based simulation modelling and 

model-based systems engineering techniques to proffer optimal 

solution to engineering systems maintenance challenges. From the 

control system perspective, gas processing system can be 

analysed, monitored and its operation optimised using sensors 

information. 

3.1 Gas Turbine Engine Performance 

monitoring 
GTEs find their applications both in industrial and aerospace 

communities. Industrial applications of GTE include driving of 

high capacity rotary or centrifugal compressors in oil and gas 

processing plants, generation of electricity while aerospace 

applications include commercial and military aircrafts. In oil and 

gas industries, the rotary compressors driven by GTE are used in 

various applications such as compression of APG for exportation 

through pipeline, storage, gas injection for reserviour 

maintenance, gas lifting to enhance oil recovery from reserviour 

and for NGL and LNG extraction processes. The power, 

performance and efficiency of GTE characteristic are the upshots 

of complex interactions of different subcomponents of gas turbine 

subsystem and the combustion subsystem [10], [11], [12].  

Performance monitoring of GTE considers several pertinent 

parameters which include ambient temperature, relative humidity, 

suction pressure, mass flow of fuel gas, quality of fuel gas, quality 

of inlet air to gas generator, compressor discharge pressure (CDP) 

of the turbine, firing temperature of the gas turbine, speed of shaft 

which determines the power output of the GTE [13].  

This paper focuses on analysis of exhaust gas temperature data 

from the GTE system using multisensory data fusion to detect 

performance degradation at the incipient stage so that planned 

system stoppage could be scheduled to avoid unbalanced 

operations which may lead to unnecessary plant shutdown. 

3.2 Intelligent Maintenance and Reliability 

Sustainment 
Intelligent maintenance systems utilise plant engineering 

informatics to monitor the health condition of the system, 

diagnose the failing components or system and predict the 

remaining useful life of the system using failure trajectories of the 



system. The implementation of these systems requires a 

combination of human factors, maintenance procedure/process 

and plant (plant information) in a creative manner. The proposed 

intelligent maintenance model incorporate key factors of 

integrated system development life cycle (SDLC) into 

maintenance reliability improvement procedure during operations 

and maintenance phase of the system life cycle as indicated in 

Figure 5. 

 

3.3 Condition-based Predictive Maintenance: 

An Intelligent Maintenance Solution 
Condition-based predictive maintenance (CBPM) approach is an 

intelligent maintenance (IM) philosophy that monitors the 

production system’s conditions and performances using sensor 

signals, detect fault at the incipient stage, estimate and predict the 

future state of the system. In addition to deployment of advanced 

engineering tools and techniques to modelling and development of 

intelligent maintenance solution, it also advocates incorporation of 

the maintenance system in the product life cycle. Thus CBPM is a 

holistic approach to enterprise asset lifecycle optimisation and 

management.  

3.4 Related Works on Intelligent Maintenance 

System 
A review of past research works on intelligent maintenance 

system shows that it has been on since year 1998 and in progress 

with various names such as intelligent maintenance system [14], 

intelligent prognostic system [15], e-maintenance [16], condition 

monitoring system [17], condition-based maintenance, predictive 

maintenance system [18]. These maintenance systems are mostly 

developed for specific assignments; they are not scalable, portable 

or applicable to other systems [15]. For instance, commendable 

successes have been recorded in intelligent maintenance system 

for commercial and military aircrafts, marine vessels and 

industrial machinery health condition monitoring and prognostics 

using advanced engineering principles such as multi-sensor data 

fusion (MSDF) technology [14], [16], [18]. Bayesian techniques 

have been used to develop diagnostic model for fault detection 

and condition based maintenance of offshore wind components 

[19].  In [20] Bayesian updating method was adopted to monitor 

degradation of bearings conditions in order to detect incipient 

fault and predict residual life of the bearing. Bayesian 

probabilistic model and naïve Bayes classifier have been 

implemented by [21], [22] for bearing condition monitoring and 

fault detection. Cascade correlation neural network classifier was 

found effective for vehicles door system degradation and failure 

detection [23]. 

4. Multisensory Data Fusion for Intelligent 

Maintenance system 
Applications of multisensory data fusion (MSDF) technology 

span a wide range; from robotics, automated manufacturing, 

remote sensing and condition-based maintenance of industrial 

systems to military applications such as battlefield surveillance, 

tactical situation assessment and threat assessment. For a 

drivetrain and high capacity industrial gas compressor 

applications, for example, sensor data can be obtained from 

accelerometers, temperature sensors, pressure sensors, flow 

sensors, and vibration sensors. An online condition-monitoring 

system combines these observations in order to identify signs of 

failure, such as abnormal gear wear, shaft misalignment, bearing 

failure and low performance of the system. The use of such 

condition-based monitoring is expected to reduce maintenance 

costs, reduce operational risk and improve safety, improve 

productivity and reliability [17]. MSDF techniques can be 

categorised into probabilistic and statistical methods, Least-square 

and mean square methods and heuristic Methods. The heuristic 

methods include artificial neural network (ANN), fuzzy logic and 

approximate reasoning. In this paper, ANN technique of MSDF 

for GTE system performance classification is presented.  

  

4.1 Basic Estimation Fusion Process 
Consider a system with n number of sensors, at the sensor node, 

the following parameters are specified: Zi is the observations 

with, Ri the covariance matrix of the associated noises 

x is the variable to be estimated, and 

 ̂ is the local estimate of x, with its covariance matrix Pi = cov( ̂ )  

Thus the estimation error  ̃ =  ̂ - x 

For unified fusion model:  

zi  = hix + ɳi                                                       (1) 

              

Where: zi  is the measurement of the ith sensor and ɳi is the 

measurement noise 

A local estimate is considered as an observation of the estimate 

and is given by: 

 ̃ = x + ( ̂ - x)     (2)            

If the new observation  ̂ is actually the estimate of x, the standard 

distributed fusion model is given as: 

  ̃ = x + (- x)      (3) 

                 

Artificial neural network technique of multisensory data fusion for 

estimation, prediction and classification is very effective due to its 

supervised learning capability, its strengths and efficiencies 

include [24], [25], [26]; 

 Computation on each node of ANN is done concurrently 

independent of each other. 

 ANNs gather knowledge through inspection of the 

training dataset, makes intelligent predictions on the 

data and based on this acquired knowledge is able to 

produce desirable output on new dataset (test dataset). 

 With its adaptive capability, they can adjust their 

weights matrix to efficiently achieve a given task. ANN 

system adapts by iteratively adjusting the weights in 

order to improve subsequent results. 

 ANN systems are universally considered as 

approximators with appreciable accuracy. 

 ANN systems are non-linear models capable of 

modelling any complex non-linear relationships. 

 ANN models are robust to noise, resilient and fault 

tolerant 

A comprehensive review of neural network classification 

applications can be found in [27].  

4.2 GTE performance classification for 

incipient fault detection 
The presence of multiple faults in a system with many interacting 

variables such as GTE system can make fault identification very 

complex, especially at the incipient stage of a slow developing or 

evolving fault. The introduction of ANN that mimics the ability of 

a biological neuron in the human brains to learn and adapt the 

changing environment provides an intelligent solution, especially 

when there is no availability of exact physic-based mathematical 



models of the GTE system [28],[29].  Several methods have been 

used over the years to solve classification problems; these include 

statistical classification techniques, Bayesian classification 

approaches [21], [22], linear classifiers, nearest neighbourhood 

classifier, support vector machine and neural network based 

classification techniques.  

Classification in machine learning is the problem of identifying 

similar attributes among many entities in a given set of data and 

categorising them into classes [30]. Classification process is 

viewed as a supervised learning with a training set of properly 

identified observation  

Neural network classification techniques include linear perceptron 

classifier, radial basic network classifier, recurrent network 

classifier, cascade correlation neural network classifier [23], 

feedforward neural network classifier and learning vector 

quantisation network structure [31]. MLP FFNN Classification of 

GTE System EGT  

The ANN adopted in this study is a multi-input-multi-output 

(MIMO) system developed to monitor and classify GTE system 

performance in oil and gas processing plant. 

In Feed forward MLP neural network classifier, the input vector is 

fed into the input layer of the network, each input unit j, produces 

output Vj, which is equal to the input value Ij. The output Vj is 

then fed forward to the hidden layer through weighted 

connections where activation functions determine the final output 

of the network through output layer. One of the popular activation 

functions for back propagation network is sigmoidal function Sc : 

ʀ → (0,1) defined by: 

Sc(x) = 
 

           (4) 

The constant c can be selected arbitrarily and its reciprocal 1/c is 

called temperature parameter in stochastic ANNs. The value of c 

affects the shape of the sigmoid function. That is, as c →∞, the 

sigmoid converges to a step function at the origin. For simplicity 

sake, c is usually set at unity (1). 

Let X = (x1, x2, …, xi), be a set of normalised input vector in n-

dimensional space which are to be classified into k different 

classes, for multi-class classification problem, k ≥ 3. The output 

vector X in n-dimensional input space and a unit j in hidden or 

output layer, the net input Ij to unit j is given by: 

Ij = bj + ∑     
 
         (5) 

Where Wij is the connection weight from the unit i in the previous 

layer to unit j in the next layer  

Vi is the output of unit i from the previous layer 

bj is the bias of the unit. 

With the net input Ij to unit j, using sigmoidal function, the output 

Vi is given by: 

Vi = 
 

    
   

     (6) 

The parameters of neural network are estimated by minimising the 

error, that is, the difference between the actual output Aj and the 

predicted output Vj. This error is known as the cost function; it 

signifies the accuracy of the classifier. Mean square error is the 

mostly used cost function and is given by: 

MSE = 
 

 
∑    

 
    -    

     (7) 

4.3 Multi-Class Classification of GTE 

Performance Using MLP FFNN 
Multi-class performance classification of GTE is a problem of 

building a system that accurately maps an input feature space to 

output space of three or more classes [32]. Multi-class 

classification has been used for object classification [33], speech 

tagging and recognition [34], [35], text categorisation and 

information retrieval [36]. Figure 3. Shows a architecture of 

multi-class neural network model for GTE system performance 

classification. 

A multi-class, also known as K-class, neural network 

classification problem can be expressed as; for n-dimensional 

feature space hɵ, and a training dataset Xtr Ϲ hɵ, where each 

element x in Xtr is associated with class label C, C є Class Labels 

= {C1, C2… Ck}, k ≥ 3. 

A neural network Ƒ can be trained on Xtr such that given a set of 

feature vector x є X, Ƒ(x) є Class Labels. Ƒ is a neural network 

whose weights are computed by a neural learning algorithm.  

For a given neural network, the input and output at a hidden node 

j, is given by: 

  
  = ∑    

  
          (8) 

Zi =      
 ),  j = 1, …, H    (9) 

Where xi is the input of the feature vector X,    
  is the weight 

association with input xi to the ith hidden node, H is the number of 

the hidden node, gh(•) is the activation function used in the hidden 

layer. 

In the output layer, each node Vk has the input and output as: 

  
  = ∑    

  
          (10) 

yk =      
 ),  k = 1, …, M    (11) 

where zj = output value from the jth  hidden unit, 

    
  = weight associated with jth hidden node and the kth output 

nodes 

go() = the activation function used in the output layer which is the 

sigmoidal function. 

5. Case Study System 
The focus of this paper is on gas processing system which 

involves compression, heating, cooling and separation of various 

hydrocarbon components. The system is made up of trains of high 

capacity gas compressors, driven by gas turbine engines (GTE). 

The GTEs are the pivot of these operations because they drive the 

gas compressors and their exhaust gas is used as heating medium 

for NGL or LNG extraction processes. 

A single train of gas compression system comprises of gas 

generator (GG), combustion chamber (CC), GT, power turbine 

(PT) with associated gear box and gas compressor (mostly rotary 

or centrifugal compressor). The interactions of the components 

and their associated parameters give rise to power, performance, 

efficiency and characteristics of the GTE system. The diagram in 

Figure 4 highlights components level, parameters and functional 

interactions within gas processing system. 

In this paper, performance of the GTE system is analysed and 

classified using EGT sensor data for incipient fault detection. 

Seventeen thermocouple temperature sensors are used to monitor 

exhaust gas temperature of the GTE, one of the critical parameters 

of system which affects many system variables and is affected by 

other variables as well. For example, temperature and mass flow 

of the exhaust determine the speed of the power turbine that 

drives the rotary compressors which in turn compress the process 

gas. As the load of the driven compressors increases, the fuel flow 

increases, leading to increase in firing temperature of the gas 

turbine [37]. The speed of the compressor, gas turbine, power 

turbine and the firing temperature depend on the fuel flow and 



quality of fuel (constituents of fuel, wet/dirty fuel) and 

compressor discharge pressure of the GG. Sensor data from this 

system was collected periodically over a period of thirty days with 

two hundred and fifty data instances. The seventeen thermocouple 

sensors are the seventeen input features and three classes as target 

outputs, making the data size of 3000 (150 by 20 matrix). The 

data was pre-processed and normalised using z–score and min-

max normalisation techniques. FFNN with back propagation 

model was used to predict and classify the performance of GTE 

system using exhaust gas temperature data, with seventeen sensor 

data set as inputs to the model and the target output as classes of 

health state or performance condition of the system. The decision 

table below in table 1 indicates EGT ranges for a given 

performance and their class labels. 

Given a training dataset {(x(1), y(1)), (x(2), y(2)), …, (x(m), y(m))} 

Let L = total number of layers in the network 

SL = number of unit (excluding bias unit) in layer l 

In this analysis, L = 3 (that is, input layer, one hidden layer and 

output layer). 

S1 = 17 neurons in input layer 

S2 = (8, 9, 10, 11, 12, 14, 15), number of neurons in hidden layer 

for different runs of the experiment. 

S3 = 3 neurons in output layer 

y є Rk;  k ≥ 3 

C1 = [
 
 
 
] Optimal  performance of GTE 

C2 = [
 
 
 
] Average performance of GTE 

C3 = [
 
 
 
] Abnormal performance of GTE 

6. Results of the GTE Performance analysis 
The classification results shows that S2 = 7, 9 and 10 give accurate 

classification results as indicated in figure 5; meaning that the 

multiclass neural network can be used to monitor the performance 

of the GTE using the EGT sensor data. Poor classification 

accuracy is achieved when the number of neurons in the hidden 

layer S2 is 13. The Essence of performance monitoring of GTE 

system is to detect the start of average performance of the system 

so the operations of the gas processing plant can be properly 

managed without unnecessary system upset or stoppage. This 

decisional information if communicated on time could be used to 

reduce impact of oil and gas operations such as uncontrolled 

venting and flaring, oil release or spill, in extreme case fire 

outbreak which may impact on the business, environment or may 

lead to fatality.    

7. Conclusions and Future Works 
This paper has provided intelligent maintenance solution through 

integration of condition-based predictive maintenance strategy 

into integrated oil and gas processing system development life 

cycle. The reliability and maintenance challenges in oil and gas 

have grossly affected normal operations of the system, which in 

turn leads to serious safety, health, business and environmental 

impacts.  Reduction of impacts of oil and gas operations can be 

achieved by properly monitoring performance of the system for 

incipient fault detection. 

Total performance condition monitoring of oil and gas processing 

system can play a major role in providing early warning of 

potential failure and performance deterioration of the system. One 

of the key operating and control parameters associated with 

performance efficiency of the GTE system operations is the EGT. 

In this paper, MLP FFNN multi-class classification technique was 

used to monitor and classify performance of GTE system which 

drives rotary compressors for NGL extraction. Performance 

classification of the system was carried out on EGT data from 

seventeen thermocouple temperature sensors.  The GTE system 

performance was classified into optimal performance (EGT range 

of 1275 - 1426ºF: C1); average performance (EGT range of 1175 - 

1270ºF: C2); abnormal performance (EGT range of 1075 - 1170ºF: 

C3). The classification accuracy was high (100% correct 

classification) when the number of neurons in the hidden layer of 

the model were S2 = 7, 9 and 10. S2 = 13 gave relatively poor 

classification result. This information is very useful for effective 

operation and maintenance management of the system. 

This research categorises oil and gas system data into monitoring, 

performance and condition datasets. In the course of the research 

project, condition dataset such as vibration data and bearing 

temperature shall be analysed for fault detection estimation and 

prediction using wavelet packet, Hidden Markov and Bayesian 

classification techniques 

8. Figures and Tables 
 

 
Figure 1. Architectural Design of NGL Extraction System 

showing boundary Valves and Flare system 

 

 

 
Figure 2. Compact IM model for M&R solution. 

 



 
Figure 3. Architecture of multi-class neural network model 

for GTE performance classification 

 

 
Figure 4: Components and Functional Interactions within gas 

processing system 

 

Table 1. Decision table showing EGT ranges and GTE 

performance class labels 

EGT Range GTE Performance Class 

Label 

Required 

Actions 

1275 - 1426ºF Optimal 

Performance 

1 No action 

1175 - 1270ºF Average 

Performance 

2 Plan for 

inspection; 

incipient fault 

1075 - 1170ºF Abnormal 

Performance 

3 Needs urgent 

maintenance 

actions 
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Figure 5. Classification of GTE performance for fault detection using Artificial Neural Network ANN. 

 

 


