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ABSTRACT

A Malay proverb 'Jika sesat di hujung 3ralan, baleklah
kepangkal 3jalan' roughly means "if you get lost at the end of
the road, go back to the beginning". In going back to the
beginning of the road, we learn our mistakes and hopefully
wi1ll not repeat the same mistake again. Thus, this work
1nvestigates the use of formal logic as a practical tool for
reascning why we could not infer or deduce a correct answer

from a question posed to a database.

An extension of the Prolog interpreter 1s written to mechanise
a theorem proving system based on Horn clauses. This extension
procedure will form the basis of the question—answering
system Both input into and output from this system 1s 1n the
form of predicate calculus. This system can answer all four

classes of gquestions as classified by Chang & Lee [1973].

A natural language (a subset of English) interface which will
be used i1n the question—answering system to enable the input
and output in the form of that language 1is discussed
especially 1n the context of using a reversible grammar. The
reversible grammar which 1s based on Definite Clause Grammar
rules 1s used both to analyse that language into predicate
calculus and also to synthesize a sentence in that language

from predicate calculus.



A technique to find out why we could not get the right answer
to the question or enquiry posed to a data base 15 explored
and explained. At first, a fault detection procedure which 1s
an extension of the above question—answering system is wraitten
and discussed. Then a rectification procedure which will
rectify the cause of failure in getting the right answer is

investigated and reported here.

The system 1is capable of checking the non-existence of
knowledge base clauses (factual or ruled), detecting the wrong
references 1in the question and also making appropriate
suggestions. In addition, the system can also find the set of

conditions i1n order for certain rules to bhe true
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CHAPTER 1

INTRODUCTIOCN




1.1 The Praoblem

Logic programming which began in the early 1970's originated
largely from advances 1in automatic theorem proving and
artificial intelligence, and in particular from the
development of the resolution principle (Robinson[1965]).
Constructing automated deduction systems 1is, of course,

central to the aim of achieving artificial intelligence.

The key 1dea underlying logic programming is programming by
description. The programmer describes the application area
and lets the program choose specific operations. Logac
pPrograms are easier to create and enable machines tc explain

their results and actions.

One of the main i1deas of logic programming , which 18 due to
Kowalski (1979] and [(1979a], 1is that an algorithm consaists
of two disjoint components, the logic and the control. In a
typical logic programming system, we can also view that the
description ¢f the control as an application-independent
deductive inference procedure. Applying such a procedure to
a description of an application area makes 1t possible for a
machine to draw conclusions about the application area and
to answer questions even though these answers are not
explicitly recorded in the description. This capability is

the basis for the technology of logic programming.

Departing from Kowalski's point of view about algorithms, we
aim to wraite a theorem prover based on Prolog to include
such controls as looping control whach Prolog lacks, thus
enabling the users to concentrate on the logic of their

algorithms or programs.




Logic also can be viewed as having three interpretations
(Lloyd([1984]). These interpretations are:

(a) . Procedural interpretation.

(b) . Database interpretataon.

(c). Process interpretation.
The second i1nterpretation means that a logic program 1is
regarded as a database thus we obtain very natural way and
powerful generalisation of relational databases. Databases
may also contain some rules to describe the information in
them. Thus we aim to write a gquestion-answering system to
deal with such databases. However, we may be frustrated with
the unexpectedly unsuccessful query we have attempted. It
may be due to the non-existent fact or the lack of
knowledge. The other reason 1is that we may ask the wrong
question such that we cannot get the expected or regquired
result., So we attempt to rectify this matter. To rectify
this matter, we divide the program into two main algorithms:

{1] Fault detection algorithm.

(2] Fault rectification algorithm.
The first algorithm is to find the reasons and the second
one will rectify them. The main idea of both algorithms is
stated in a Malay proverb which says "Jika sesat di hujung
jalan, baleklah ke pangkal jalan'". The Malay proverb roughly
means "1f you get lost at the end of the road, go back to
the beginning"”. During the process of going back, we learn
all our mistakes and rectify them accordingly and hopefully

we will not fall into the same traps again.

We also attempt to incorporate a subset of English grammayr
based on DCGS (Pereira and Warren([l1980]) into the theorem

prover and the detecting and rectifying fault algorithms.




1.2 Results

We have written a Prolog-based theorem prover with a looping
test which will terminate in any proving except in the case
of occur check. All the knowledge clauses are i1n the form of
Horn clauses after converting from PC. Following this
termination of the theorem prover, and by wusing the
backtracking techniques as implemented 1i1n Prolog, we are
able to detect faults which occurred at different levels of
any unexpectedly unsuccessful proving. The main idea of the
detecting and rectifying fault algorithm i1s as follows:
{1) read A, the question to he proved.
{2) convert the negation of @ into Horn clauses.
(3) deduce &n eapty clause from each resulting Horn clauses
by assuming any failed subgoal is true
and record all failed subgoal,
(4) Rectify each set of failed subgeals {reaspn clauses).

Algorathe 13 The detecting and rectifying fault algorithas

Steps (3) and (4) are actually fault detection and fault
rectification respectively. Here, the fault detection
algorithm 1s blended together with the theorem prover. The
fault detected is a type of non-existent clause or fact. As
zsaid above that the fault detection algorithm c¢an 1solate

the fault at different levels., For example:

[1:-neets{chang,nazrul, johorezns)
]
I leets(X,Y,I):-anilal(Xl,livest!,!!,person(Y),v151ts(Y,I)

[]:-anllaltchang) lives(chang, johorezoo},perseninazrul},visitsinazrul, yohorezool
' [f=chang , Y=nazrul, I=jchorezos)
k
[ ] ] i
{1s-animal (chang} (1:-lives(chang,jchorezaol Cli-personinazryl) [ls~visitsinazrul,johorezeoo)
! ! ! !
| animal{changl fails i personinazrul}  fails
i i
(h-11 {3:-01

Fig 1,2,4t The proving tree of “meetsichang,nazrul,jchorezos)®




Referring to Fig 1.2.1 above and by using ordinary Prolog's
backtracking, we can only detect one non-existent clause or
fact, 1.e '"visits(nazrul,johorezoo)'". But by using the fault
detection algorithm, both non—-existent clauses or facts, 1.e
"lives(chang,johorezoo)" and '"visits(nazrul,jiohorezoo)', can
be detected where both of them are members of the same set
of reason clauses. All members of the same set of reason
clauses must be true in order the goal to be true, i.e in
this case, both reason clauses must be true in order the

query (goal) "meets(chang.,nazrul, johorezoo)'" to be true.

The fault rectification algorithm assumes at first that the
gquery contains wrong references and 1f that 1s not the case,
then it assumes that the database 1lacks knowledge. In the
first case, the matching 1s carried out between the reason
clause and the knowledge base (KB) clauses. The following
are some of the examples of the suggestions made by the
rectification algorithm:

(a) 1f "johorezoo® of the question clause "meetsichang,nazrul,johorezoo)® 15 substituted with
*landonzoo"

(b} 1f "meets” of the question clause "seets{chang,nazrul, johorezos)® 1s substituted wath
"encounters’

{c) 1f the following clauses are true:

lives(chang, yoharezoo)
visits{nizrul, Johorezoo

{d)} 1f "all{_1,.,.)" 15 replaced with "exists(_f,...}"

(e) 1f “every san" 15 replaced with *a aan®,

The system 1s also able to accept 1nput 1i1n both PC and a
subset of English sentence. The example (e) above 1s
produced when the 1input 1s in the form of an English
sentence. The type of the answer of the query will depend on

the type of the i1nput, 1.e either PC or English sentence,




1.3 Related work

1.3.1 Logic programming and automatic theorem prover

Logic programming which has begun 1in the early 1970's
originated largely from advances in automatic theorem
proving and artafacial intelligence, and in particular from
the development of the resolution principle(Robinson{1965]).
The key 1dea underlying logic programming 15 programming by
description. Logilc programming differs fundamentally from
conventiconal programming in requiring us to describe the
logical structure of problem rather than making us prescribe

how the computer 1s to go about solving them.

Buildang on work of Herbrand(1930], there was much activaty
in theorem proving 1in early 1960's by Prawitz[1960],
Gilmore[1960], Davis and Putnam(1960] and others. This
effort culminated 1in 1965 with the publiacation of the
landmark paper by Robinson {1965], which introduced an
inference rule called the resolution principle which 1s
particularly well-suited to automation on a computer. In
1972, Kowalski and Colmerauer were led to the fundamental
1idea that logic can be wused as a programming language.
Before that (1972), 1logic had only ever been used as a
specification or declarative language 1n computer science.
However, what Kowalski{1974] showed 1s that 1logic has a
procedural interpretation, which makes 1t very effective as

a programming language.

One of the main 1deas of logic programming , which 18 due to
Kowalskil [1979] and [197%al, 1s that an algorithm consists

of two disjoint components, the logic and the control, i.e



"Logic + control = Algorithm". Thus, ideally, the programmer
should only have to specify the logic component of an
algorithm and the control should be exercised solely by the
logic programming system. Unfortunately, this ideal has not
yet been achieved with current logic programming systems
(Lloyd[1984]1). In order for this to be achieved there are
two broad problem which have to be solved, i.e control
problem (Genesereth et al.([1983], Lloyd[1984], Genesereth
and Ginsberg{1985}) and negation problem (Clark([1978],
Reiter(1978] and Shepherdson[1984]).

Apart from the procedural interpretation (Kowalski[1974]),
logic alse has two other interpretations, 1.e Database
interpretation {Lloyd[1983]; Gallaire and Minker(1978] and
[1981]); Gallaire et al. [(1984]) and process interpretation
(Clark and Gregory(1981] and [1983): Shapiro[1983] and
Shapiro and Takeuch1[1983]).

Most logic programming system use clausal form. However,
logic programming is by no means limited to PROLOG which is
based on Horn clauses. Various non-clausal resolution have
been developed, for example, Storm ([1974], Wilkins [1974],
Bibel [1976], Nilsson [1979]), Manna and Waldinger[1980},
Bowen [1982], Murray [(1982] and Stickel(1982]. Other methods
of non-resolution theorem—proving are such as natural
deduction (Bledsoce [1977], Hanson et al.{1982), and, Haridi
and Sahlin{1983]) and matraices and connections (Prawitz

[{1976], Andrews [1981])] and Bibel[1983]).

It 18 clear that logic thus provides a single formalism for

apparently diverse parts of computer science. This range of




applications assures that 1logical inference 18 about to
become the fundamental wuwnit of computation (Lloyd[1984]).
Thig view 15 strongly supported by the Japanese fifth
generation computer project where logic programming has
been chosen to provide the core programming language for

this very ambitious 10 vears project (Moto-0Oka([l1982]).

1.3.2 bebugging

Computer software is also very costly in terms of money and
labour. Boehm[1976], Brooks[1973]. Myers([1978], and Yourdan
and Constantine[1979]) indicate that testing and debugging
alone represent approximately half the c¢ost of new system
development. As error detection and error correction are
now considered to be the major cost factors in software
development, it is worth spending effort to make sure that
the programs we are writing are going to work. The area of
computer program debugging s also one of the key phases in

the system software cycle.

Many mathematical models such as the J-M model (Jelinski and
Moranda(1972]), the probabilistic model (Shooman [19721),
the execution-time theory model (Musa{1979]), Fault Removal
model (Littlewood ([1981)) etc (see ©Sallih [1986] for a
review of the said models and others) have been developed
to describe the behaviour of software package errors and
then to get some measures from which the reliability of

these software packages can be calculated.

Software reliability is important as hardware reliability as

the increasing usage of computer systems especially in very

critical fields such as air traffic control etc. For




example, 1in 1960 the US defence system software (NORADS) had
wrongly 1dentified the rising moon as a rocket from the
USSR. There 1s a difference between these two reliability as
Littlewood{1980], says "a hardware device 1s certain to fail
eventually, whereas a program 1if vperfect is certain to

remain failure free",

It has also been suggested that one way to eliminate the
need for debugging 1s to proviaide a correctness proof of the
program. Naur and Randell [1969] suggested that we can
dispense with testing altogether when we have given the
proof of correctness of the program. But, Goodenough and
Gehart[1975] found seven bugs 1n a simple text formatter
program described and informally proved by Naur [1969]). So,
the i1nformal or formal proofs of program correctness do not

guarantee that the program 1s correct.

However, as pointed out by Goodenough and Gehart [1975],
that the practise of proving program correctness i1s useful
for improving reliabilaty, but suffers from the same types
of errors as programming and testing, namely, failure to
find and validate all special cases relevant to a design,
1ts specification, the program and 1ts proof. Gries (1981]
also agreed that even though we can become more proficient
1n programming, we will still make errors, even 1f only of a
syntactic nature. Hence some testing will always Dbe
necessary. But, he does not refer +to the testing process as
debugging, and suggests that the test 1s to i1ncrease our
confidence 1n a program we are quite sure 1s correct;
finding an error should be the exception rather than the

rule.



The area of debugging crucial to software development and
maintenance 18 semantic debugging. Syntactic errors are
defined for the purpcses of computer programming as errors
that compilers recognise, and the use of high level
programming with a strong-typing mechanism, such as Pascal,
Algol-like languages will help toward finding syntactic
errors. The idea behind PASCAL and ALGOL 12 to move semantic
errors more and more into the syntactic areas, many errors
not spotted by FORTRAN would appear as syntactic errors in
ALGOL. Semantic errors are those that compiler cannot
recognigse and the adoption of structured programming
techniques will help a little bit in removing such errors.
Vessey [1986] view debugging from either a process viewpoint
or a functional wviewpoint. She also studied the relation

between novice and expert programmers.

Adam and Laurent [1980] discussed a debugging system called
LAURA which have been designed to detect or localize the
errors 1t may contain. Shapiro[1982) also tried to lay
theoretical foundations for program debugging, with the goal
of partly mechanising this actavity. In particular, Shapiro
attempted to formalise and develop algorithmic solutions to
the following two questions:

(1) How do we identify a bug 1n a program that behaves incorrectly?
{2) How do we f1x a bug, once one is 1dentified?

The algorithms Shapiro developed are interactive, as they
rely on the availability of answers to such queries. He
integrated both diagnosis and bug-correction algorithms into
a debugging algorithm. A debugging algorithm accepts as
input a program (or empty one) to be debugged and a list of

input/output samples, which partly define the behaviour of

the target program.
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Rule learning techniques can also be considered as
debugging program techniques. The task tackled by rule
learning techniques is to modify a set of rules of the form
hypothesis implies conclusion. This set of rules can be
considered as a program especially written in Proloeg
clauses, The basic rule learning technique 13 as follows:

Until the rules are satisfactoryr

1. Identify & fault with a rule

2. Modify the rule to resove the fault,
Bundy et al.[1985] give an excellent review and comparison
of rule learning techniques. Bundy et al[l985] also classify
these faults as factual or control one. Most identifying
faults techniques are by comparing the ideal trace (graph)
with a learning (program) trace (graph) (for eg.
Bradzil[1981]). Shapiro's techniques as briefly described
above 1s also one of the technique to i1dentify a fault. A
lot of techniques are used to modify the faulty rules such
as reordering them (eg. Bradzil({1981)), adding extra
condition(s) to them (eg. Bradzil [1981], Waterman [1970]),
instantiating them (eg. Bradzil [1981)], Shapiro [1982]),
updating them (eg. Waterman[1970}, Mitchell et al.[1981] and
[19831) or asking a ground oracle to the user

(Shapiro[19821) .

In proving a theorem or making an enquiry to the database,
we may also get negative answer due to some faults,
Bourne[1977] examined the frequency of spelling errors in a
sample drawn from 11 machine-readable bibliographic
databases and concluded that errors are not only in the

input queries, but also in the database itself.
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1.4 Outline of the thesis

The target and the implementation language for the
algorithms and systems developed in this thesis is Prolog.
Basic concepts of predicate calculus, other logics and
knowledge representations, logic programming and Prolog are
discussed in Chapter 2. Resolution concepts and the control
strategies for the implementation of the resolution are also

digscussed in Chapter 2,

In Chapter 3, we develop a theorem prover based on Prolog.
The Prolog-based theorem prover will accept an i1nput in the
form of PC which will subsequently be converted into Horn
clauses. All the conversion processes and the implementation
are described in this chapter. The theorem provers are
implemented and two search strategies are compared, i.e a

depth—first method and a breadth-first method.

Various techniques based on Definite Clause Grammars are
studied and compared 1in Chapter 4 for analysing and
synthesizing an English sentence from and to PC. This subset
of English grammar then 15 1interfaced 1into the theorem

prover developed 1n previous Chapter 3.

The fault detection and rectification algorithms which are
developed by extending the theorem prover implemented using
a depth—-first method are discussed in Chapter 5§ and 6

respectively. Some examples are also given in Chapter 6.

In Chapter 7. a subset of English grammar discussed in

Chapter 4 is then 1interfaced with the fault detection and
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rectification algorithms. Comments on the implementation of
various techniques discussed in Chapter 4 and some examples

are given in this chapter.

A discussion of the thesis and suggestions of further work

are given in the last chapter, i.e Chapter 8.



CHAPTER 2

FORMAL LOGIC AND LOGIC PROGRAMMING
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2.1 A Predicate Calculus

In order to solve the complex problems encountered in
artificial i1ntelligence (AI), one needs both a large amount
of knowledge and some mechanism for manipulating that
knowledge to create a solution to a new problems. A variety
of ways of representing knowledge (facts) have bheen
exploited in Al's problem solvers. Specific knowledge
representation models allow for more specific, more powerful

inference mechanisms that operate on them.

In many applications, the informaticn to be enceded into the
global database of a production system originates from
descriptive statements that are difficult or unnatural to
represent by simple structures like arrays or sets of
numbers. Intelligent information retrievel, robot problem
solving, and mathematical theorem proving, for example,
require the capability for representing, retrieving and

manipulating sets of statements.

One particular way of representing facts or knowledge is the
language of logic. Logic 1s a way of representing various
statements (propositions) about the world so¢ that it would
be possible to formally check whether these representations

were valiad or not.

The logical formalism is appealing because it immediately
suggests a powerful way of deriving new knowledge from old-—-
i.e mathematical deduction. In this formalism, we can
conclude that a new gstatement 1s true by proving that it

follows from the statements that are already known. Thus the
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1dea of proof can be extended to conclude a deduction, a way

of deraving answers to guestions and solutions to problems.

In this project, a first order calculus (logic) is adopted.
The first order predicate calculus is a formal language 1n

which a wide variety of statements can be expressed.

Predicate calculus (PC) iz a branch of symbolic logic, and

18 designed to express various statements about the world.

Now, let us define what is a PC. A PC (Predicate Calculus
and not Perscnal Computer) is a 1language and 1t is defined
by its syntax. To specify a syntax we must specify the
alphabet of symbols to be used in the language and how these
symbols are to be put together to form legitimate
expressions in the language. The legitimate expressions of

the PC are called the well-formed formulas (wffs).

2.1.1 The syntax and semantics of atomic formulas

The elementary components of the PC language are constant
symbols, function symbols, variable symbols and predicate
symbols set off by brackets, parentheses, and commas. For
example, the meaning of sentences 1is a proposition which
consists of terms, which are of two types, predicate and
arguments. The predicates are the relation names and usually
correspond to wverbs 1n sentences and arguments are the
objects that are related and usually correspond to nouns. In
the sentence below:

Aizat likes Nazrul
we have a relation (predicate) express 1in '"likes'" and two

objects (arguments) express in "Aizat" and "Nazrul". Thus
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"likes(Aizat,Nazrul)" could be a simple atomic formula for
the above sentence. In the above example sentence, "Aizat"
and "Nazrul" are constants which 1indicate a particular
individual or class of individuals. By using variables, 1t
may be possible to expand the representation te stand for
different 1ndaviduals at different times, where the
individuals or 1ts class remains unspecified, for instance,

"likes(X,Y)" where X and Y are wvariables.

In general, atomic formulas are composed of predicate
symbols and terms. All constants and variables symbols are
terms. The function which its arguments are terms, is also

a term.

In the PC, a wff can be given an interpretation by assigning
a correspondence between the elements of the language and
the relations, entities, and functions 1n the domain of
discourse. To each predicate symbol, we must assign a
corresponding relaticon in the function symbol, a function 1in
the domain. These assignments define the semantics of the PC
language. Once an interpretation from an atomic formula has
been defined, we say the formula has value T (true) just
when the corresponding statement about the domain 18 true
and that is has value F (false) just when the corresponding
statement is false. S50, all PC logic must have either the

value "true"(T) or "false"(F).
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2.1.2 Connectives

Atomic formulas are merely the elementary building blocks of
the PC language. We can combine atomic formulas to form more
complex wffs by using connectives such as "A" (and),
"\/"(or), "——J>"(implies), "(—)"(equivalent) and ""'(not).
Although "™" is called a connective, it is really not used
to connect two formulas. It is wused to negate the truth
value of a formula from "true" to "false", and vice-versa. A
formula with """ in front of it 1is called a negation.
Formulas built by connecting other formula by "and" and "or"

signs are called conjunctions and disjunctions respectively.

A formula built by connecting two formulas with an "implies”
sign 13 called an implication and it wusually represents
“1f-then" statements. The left-hand and right-hand sides of
an implication are called antecedent (or condition) and
consequent (or conclusion) respectively. If two formulas are
connected by "equivalent to" sign then it 1is called an

equivalence.

Any conjunctions or disjunctions composed of wffs, and the
negation of a wff are alsc wffs. An 1implication and
equivalence are also wffs 1f both the antecedent and the

consequent are wffs.

The following are the truth table for the described

connectives above:

A B A ANB AVBE A-B AC--)B
T T F T 1 ] T
T F F F T F F
F ) ) F ] ] F
F F I F F I 1

Table 2.4t The truth tables
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It can be s8seen from the above truth table that an
implication has a value T if either the consequent has value
T (regardless of the value of the antecedent) or if the
antecedent has value F (regardless of the value of the
consequent) ;: otherwise the implication has value F. This
definition of implicational truth value is sometimes at odds
with our intuitive notion of the meaning of "implies". For
example, the predicate calculus representation of the
sentence "If the sun 18 made of strawberry, then horse can
fly" has value T. The truth wvalues of an implication ais
equivalent to ""A \/ B". Furthermore, "A(~->B" 15 equivalent

to "(A-->B) A\ (B——>An)".

An atomic formula and the negation of an atomic formula are
both called 1literals. If the PC does not contain any
variables, then the PC 1s called propositional calculus. For
example, the sentence "he 1s sick, so he needs a doctor"
can be written in propositional calculus as "p——>q9" where

p="he 1s sick" and g="he needs a doctor".

A formula which is true wunder all its interpretations is
called a tautology {(or a valid formula). A formula is
invalid iff it s not valad, i.e there exists an
interpretation under which it is false. A formula which is
false under all 1ts interpretation is called a contradiction
(or unsatisfiable or inconsistent). A formula is consistent
(satisfiable) iff it 1is not inconsistent (unsatisfiable)},
i.e there exists an interpretation under which 1t is true. A
formula F is said to be a logical consequence of a formula,
or set of formulas, S, if F 1s satisfied by all

interpretations which satisfy S.
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2.1.3 Quantification.

To be able to account for modifiers such as brave in "brave
men'", some notion of "who is", 'who are", '"which is" etc.
are needed. Moreover distinctions need to be made between
"the brave men", "brave men" or "the brave man" and " a
brave man". Quantifiers are used 1in PC to process these
variables. Quantifiers which indicates how many of
variable’s instantiations need to be true for the whole
proposition to be true are of two types, namely universal
(¥) and existential (3J). " Y" is called the universal
quantifier because it talks about everything ain the
universe and "3 " is the existential quantifier because 1t

talks about the existence of some objects.

Any expression obtained by guantifying a wff over a variable
1s also a wff. The PC is called first order because it does
not allow quantification over predicate symbols or function
symbols. Thus formulas like '"¥p, p(X)" are not wffs in first
order PC, and this 1s called as a second order logic or
higher depending the 1level of the quantification of the

predicate symbols (see next section).
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2.2 Other logics and knowledge representations.

In the last section we have described a classical logic, i.e
a predicate calculus (logic). and also its wusage in
representing knowledge. In the following two subsections we
will discuss other logics and also other structured

knowledge representations in brief respectively.

2.2.1 Other logics.

As described 1in the last secticn, the predicate logics
(calculusg) can be very useful for scolving problems in a wide
variety of domains. Unfortunately, there are many other
interesting domains where a predicate logic does not provide
a good way of representing and manipulating the i1mportant

information such as:

"It 1s very cold today."” How can relative degrees of cold
{(or heat) be represented?

"Chinese people often have small eyes”. How can the amount
of certainty be represented?

"1f there 1s no evidence to the contrary, assume that any
boy you meet knows how to ride a bicycle." How can
we represent that one fact should be inferred from
the absence of another?

"I know Nazrul thinks the Everton will win but I thaink they
are going to lose." How can several different belief

systems can be represented at once?

Another point is that the way predicate calculus (PC) makes
assumptions about the relationships between conditions

{antecedents) and conclusions (consequents) do not apply to
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common sense reasoning in that, it is never necessary teo
withdraw any conclusions when additional facts became known.

For example:

If we had proved that : A——->C
then C will continue to be true given any additicnal

fact B i.e A&B -->C.

So PC's conclusions are additive (monotonic) and never to be
revised., This is clearly not acceptable 1in the real world
where we often have to modify or withdraw conclusions as new

facts beccme available (non—-monotonic).

Summarily, the use of logic in automated knowledge
processing has received various criticisms, and generally
the most common being
++ That logic 1s not expressive enough, 1.e that there
1s too great limit on what can be represented,
++ That logic cannect handle incomplete, uncertain,
impreclse vague, and/or inconsistent knowledge.
++ That the algorithms for manipulating Xknowledge,

which derive from logic are inefficaent.

The misconception of the logic encompassing first order
propositional and predicate logic (classical logic) only are
causing such criticisms. In actual fact, there are many
other logics , most of which were specifically designed to
overcome certain deficiencies of classical logic (some of

them as shown above}. However some of the received

criticisms could be arguably deserved.
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A logic consists of a well-defined notation for the
representation of knowledge, together with well-defined
methods for interpreting and manipulating the knowledge
which is represented. Therefore, Frost{1986] concludes that
people who criticise logic are unwittingly condoning the use

of ill-defined methods for knowledge processing.

A variety of techniques for handling these problems within a
computer program have been proposed, including non—-monotonic
logic, fuzzy logic, and probabilistic reasoning. The use of
other logics are also employed such as many-sorted,.
situational, non-monotonic, many-valued, modal, temporal,
epistemic, higher-order and intensional logics. Now we will

briefly described some of the other logics:

2.2.1.1 Many-sorted logic
In classical first order predicate logic, a relational
structure contains a single domain E of entities. Subsets of
this domain are defined by use of ‘'unary' (one-place)
predicates. In a many-sorted logic, the universe of
discourse 1s regarded as comprising a relational structure
in which the entities i1n the domain E are regarded as being
of various sorts. The sorts are related to each other in
various ways to form a 'sort structure'. There are different
kinds of sort structure (Frost [19861):
(a) Structure in which the sorts are all disjcint. For
example E might consist of entities of sort: man,

woman, car, bike.
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(b) Structure in which the sorts are related in a ‘subset’

tree structure. For example:

american—-woman european-woman
english-woman french-woman
(c) Structure 1n which the sorts are related in a lattice.
This is the most general sort structure. For example,
the following is a two-layers lattice:
””/’,f*”T
|
non-positive non-zero non—negative

| ><T T

- L

where T and B 1s the top and bottem (empty) sorts
respectively. The top and the bottom sorts are the most
general (totally unspecified) and the most specific
(over specified) one respectively. The bottom sort 1s
also i1nconsistent. The first and second layer are set
of all numbers and set of non—zero numbers

respectively.

By divaiding the entities 1in the domain of a relational
structure into different sorts can help to aimprove the
efficiency of mechanised reasoning. This 1is achieved when
the '"search space" is reduced,for examples, the meaningless
assertions such as the “ford is married to the rover" can be
easily detected. It should be noted, however many-sorted
logics are no more expressive than unsorted logics

(Enderton([19721).
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2.2.1.2 8Situational legic

In many applications there is a need to store and manipulate
knowledge which represents a changing universe of discourse
rather than the usual static relational structures. In order
to cater this type of application, 'Situational logic' was

developed {(McCarthy and Hayes[1969]).

In situational logic, all predicates are given an extra
argument which denotes the "situation" in which the formula
is true. A situation 1s a time interval over which no state
(of interest) changes truth value. In other words, a state
is something that is true for a while, false for a while,
and so on. For example,

under(blockl,block?2,=situationl).
~“under(blockl.block2,situation2).

The first formula states that bleckl is wunder block?2 in
situation "situationl”". On the other hand, the second one
states that Dblockl is not under block2 i1n situation

"gituation2"”. In other words, the statement "blockl 13 under

block2" 1is true in "situationl" and is false 1in
"situationz2". The transformation of “"situationl" to
"situaticon2" was caused by an ‘“event": the event of moving

block2 (or blockl) elsewhere.

2,2.1.3 Non—monotonic logics

In non-monotonic¢ logic, the addition of an assertion to a
theory may 1invalidate conclusions which could previously
have been made. On the other hand, in monotonic logic (such
ag predicate logic) the number of statements known to be
true is strictly increasing over time. Thus, no checks are
needed when asserting a new statement in the system and also

no need to remember the statements used for each
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successfully proven statement in monotonic logics. There are
three types of circumstance in which non-monotonic reasoning
may be appropriate (or in which monotonic reasoning are not
very good at dealing with):

(a) In problem solving where temporary assumptions are
made. For example, we have made an assumption that
everybody can come to a birthday party. Until this has
been proved otherwise, we will assume this assumption
is a correct one.

(b) When the knowledge is incomplete, default assumption
must be made which may be 1invalidated when more
knowledge becomes availlable. This construction of the
guesses ig known as default reasoning. For example that
we know that all birds can fly and emu is a bird, so we
conclude (or believe) by default that emu can fly. But
later we discovered that emu cannot fly. So we then
conclude that all birds can fly except emu.

(c) When the wuniverse of discourse 1s changing (as 1in
situational logic). In this case, it 1s not concerned
with default reasoning in the presence of i1ncomplete
knowledge Dbut rather reasoning with out-of-date

knowledge.

One implemented system that supports non-monotonic reasoning
is a Truth Maintenance System (TMS) of Doyle (Dovle [1979],
and Doyle{1982]). In his system, each statement or rule is
called a node, and 18, at any point in one of two states: IN
if is believed to Dbe true and OUT otherwise (because no
reasons for believing it to be true of because none of the

possaible reasons ig currently wvalid).
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2.2.1.4 Many-valued Logics

We have described so far that the logics have all been two-
valued, i.e either "true" or "false'". However, there 13 a
large amount of literatures which is concerned with logics
which have more than two values. A survey of the literatures
on many—-valued 1logic can be found in Rescher [1969].
However, one of the best known many-valued logics is a
three—valued logic proposed by Lukasiewicz where he
introduced another "intermediate” (or undecided) wvalue on
top of "true'" and "false" wvalues. As the number of values
(the degrees of truth wvalue) of many-valued 1logic can be
infinite, this can represent the measure of vagueness

concept such as "very tall".

2.2.1.9 Fuzzy logic

Fuzzy logic is useful for dealing with "vague" concept such
as "tall" where conventional 1logics cannot accommodate. For
example:

He is tall and has curly hair.

There is much "uncertainty"” in this statement. How tall he
is and how curly his hair, for 1instance. Fuzzy logic can
accommodate such uncertainty and does so by an approach to
"semantics"” which 1s quite distinct from that wused in
conventional logic. Various forms of fuzzy logic
(Zadeh[1965]), Zadeh([1973], Zadeh[1983]) have been proposed,
some of which have been used to solve problems in centrol
(Mamdani[1974]), in expert systems (ISIS system), in
reasoning (Baldwin {1981]), and also have been 1ncorporated
in Prolog system (Hinde [1983) and 1{1986]), although the

notion of fuzziness has a variety of interpretations.
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2.2.1.6 Modal logic

The 1logics discussed 80 far cannot accommodate the
distinction between possible worlds or environments; neither
can they accommodate states of affairs which exist in
people's beliefs, moral codes etc. In order to deal such

things, "modal logic" was developed.

Synder{1971) has described a modal 1logic as a logic which
allows ug to reason with statements which are in subjunctive
moods rather than in the indicative mood. Subjunctive
statements assert what must be, ought to be, might be, is
believed to be, hoped to be, wi1ll be in the future and so
on. On the other hand, the indicative statements, where
classical truth-functional logics are concerned with it,

simply assert what 1is.

Modal statements can be detected by the presence of modal

operators such as: "It 1is possible that", "It 13 not
possible that", "It 1s impossible that"," It 1s necessary
that”, "It 13 not necessary that", "It 1s permissible
that", "It will always be the case that”, "It is known that"

and so on. For examples:

{a) Tom has brain-tumour.

(b) It is necessarily true that Tom has or has not

brain—tumour.

{(c) It is possible that Tom has brain—-tumour.
Statements (a) is an indicative statement, thus it is not
modal. Both statements (b) and (c) true are modal as the
operators "It si necessarily true" and "It 18 possible"
presence in them respectively. Statement (c) is true if (a)
true but may be interpreted as true or false if (a) is

false.
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In modal logic, we can capture modality by means of
quantifiers over worlds or interpretations, 1.e

(b) ¥W, (Ton has brain-tumour) \/ (Tom has not brain-tuaour),
{c) 3N, (Tos has brain-tumour),

where Ws are possible worlds, so we get:

necessity ¥W: all possible worlds.
possibility 3IW: one or more worlds.

Modal logics, then, is concerned with states of affairs of
possible worlds in addition to the one that exists. There
are various types of modality such as alethic modality
(possibility and necessity; both statements (b) and (c) are
examples of this), temporal modality (modes for sometime and
always), deontic medality (modes for permission and
obligation) and epistemic modality (mode for knowing and

believing).

2.2.1.7 Higher-order logic
Any expression obtained by quantifying a wff over a variable
is also a wff. The predicate calculus (logics) is called
first order because 1t does not allow quantification over
predicate symbols or function symbols. The following are the
descriptions of some of higher—order logics:
(a) Second Order logic.
A second order logic 18 a logic which wvariable
functions and predicates are allowed and can be
quantified over., For example, we want to assert that
if two objects, X and Y, are equal then they have some
properties denoted by a variable predicate P:
¥P ¥X ¥Y X=Y —> (P(X) <—> P(Y))
First order logic only allows variables ranging over

objects (i.e in this case, over X and Y only).
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(b) Third Order logic.
By allowing wvariable functiaonals and quantification
over them takes us into Third Order logic. The such
functionals are for examples differentiation or

integration functions, i.e f takes cos to sain.

(c) Omega Order Logac,
From (a) and (b) above, we can 1iterate the process,
allowing functions of functionals (Fourth Order
Logic), functions of functions of functionals (Fifth
Order logic) and so on and then takes us to Omega
Order Logic (Bundy[1%83}1). Church {1940] proposed a
nice way of capturing all the sorts of functions,
functional etc which 18 called Typed Lambda Calculus,
This 1s one version of Omega Order Logic. All wvarious
expression such as formula, propositions, terms,
functions, predicates, connectives, variables and
constants can be defined i1n a uniform manner using the
terminology of the Lambda Calculus (Lambda Operator).
Lambda expression 1s as follows:
AX[...X...]

where ...X... denotes a formula which has X as a free
variable, for example, AX[loves(X,God)] denotes the

(function of) the set of individuals that loves God.
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2.2.1.8. Intensional logic

Intensional logic which was developed Dby Montague
(Montague[1973], Montague[1974]) employs many of the logic
concepts as explained before such as a hierarchy, higher-
order gquantification (variables and quantifiers for each
type— a higher order 1logic), lambda abstraction for all
types, tenses, modal operators, syntactic mechanisms for

dealing with intensions and extensions.

The language of Intensional Logics was used by Montague as
an intermediate translation language in a system called PTQ
(for Proper Treatment of Quantification in Ordinary English)
which is used to derived a semantic interpretation of a
fragment of English language, for example, "a woman" is
translated into:

WP 3X, woman' (X) ——> P(X))
Hence, "a woman jogs and talks" 1s translated into:

AP[ 3X, woman'(X) —=> P(X)]1( AY[ jogs'(Y) /\ talks'(Y)])
which, by lambda conversions, becomes:

33X, woman' (X) A\ jogs' () /\ talks'(X)

Nishida and Doshita(1983] have applied the Montague's method
in automatic translation of English into Japanese.
Montague's method also have been applied 1n "historical
database system" (Clifford and Warren(1983]), where a
historical database system contains Kknowledge representing

some time-varying universe of discourse.
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2.2.2 Other structured knowledge representation

We have already discussed the language of formal logic which
allow us to represent various aspects of the universe. The
major advantage of these representation, particularly
predicate calculus (logic), 1is that they can be combined
with simple, powerful inference mechanisms, such as
regolution, that make reasoning with the facts easy.
However, they do not in general allow us to structure this
knowledge to reflect the structure of that part of the
universe which ig being represented. In other words, the
objects 1n formal logic representation are so simple that
much of the complex structure of the world cannot be

described easily.

The world, for example, contains individual objects, each of
which has several properties, 1including relationship to
others. It 1is often wuseful to collect those properties
together to form a single description of complex object. One
advantage of such a scheme is that 1t enables a systems to
focus its attention on entire cbjects without also having to
consider all the other facts 1t knows. For example, we have

the information represented in first order logic as follows:

is_married (Razak,Rodziah) . /* £f1 */
1s_married(John,Joan) . /* £2 */
13_employed (Razak,UKM) . /* £3 */
1s_employvyed (John,LUT) . /* £4 »/
has_eve_colour (Razak,brown). /* £5 */
has_eve_colour(John,blue) . /¥ £6 */

Here, the order of assertions 1s irrelevant. In formal
logic, there 18 no facility for clustering formulas such f1,
f2 and £3 which are related to a particular object (in this
case, Razak) to form a single description of a complex

object.
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So, the appropriateness of a representation depends on the

application. A good system for the representation of complex

gtructured knowledge in a particular domain should possess

the following four properties (Rich [1983]).

(a) Representational Adequacy — the ability to represent all
of the kinds of knowledge that are needed in that
demain.

(b) Inferential Adequacy - the abi1lity to manipulate
representational structures in such a way as to
derive new structures corresponding to new knowledge
inferred form old.

(¢) Inferential efficiency — the ability to incorporate into
the knowledge structure additicnal information that
can be used to focus the attention of the inference
mechanisms in the most promising directions.

(d) Acquisitional efficiency - the ability to acquire new
information easily. The simplest case involves direct
insertion, by a person, of new knowledge into the
database. Ideally, the program 1itself would be able

to control knowledge acquisation.

Several techniques have been developed for accomplishing
these objective and can roughly be divided into two types:

[1] declarative method: most of knowledge 18 represented as

a static collection of facts accompanied by as small

set of general procedures for manipulating them (e.g

predicate logic). Each fact need only be stored once,

regardless of the number of different ways in which

it can be used. This method also allows new facts to

be added to the system easily without changing either

the other facts or the small procedure,.
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[2] procedural method: the bulk of the knowledge is
represented as procedures for using it. Knowledge of
how to do things and knowledge that does not fit well
into many simple declarative schemes are easy to be
represented by using this method, for example, the
default reasoning (non—-monotonic logic). It is also
easy to represent heuristic knowledge of how to do

things efficiently.

However, 1in practice, most representations employ a
combination of both methods (Brachman & Smith([1980]). There
ig a variety of knowledge structures where each of them is
a data structure in which knowledge about particular problem
domains can be stored. Thus knowledge structures will
scmetimes mean a complete database of information about a
particular domain and will sometimes refer to substructures
within the larger structure. We wuse the phrase knowledge
structure to describe these representational schemes,
because of the heavy emphasis on the structure of the
representation. Such knowledge structures are semantic nets,
frames, conceptual dependency and scripts. We will described
briefly all these structures and for more detail see books
on Artificial Intelligent such as Frost[1986], Rich([1983],
Charniak & McDermott[1985}, Nilsson[1980].

2.2.2.1 Semantic nets

Semantic nets is closely related to first order logic and
were first used by Quillian{1968] and, independently,
Raphael [1968]) to represent originally the meanings of

english words. Semantic nets is a directed graph in which

nodes represent entities and arcs represent binary
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relationships between entities. A gingle entity is
represented by a single node. Arce are labelled with the
namesgs of the relationships types. It is general encugh to

be able to describes both events and objects (entities).

Many complex objects can be decomposed into simpler ones.
These decompositions vyield two very common and wuseful
properties of objects ,i.e ISA and ISPART relationships. ISA
relationship shows the relationships between objects in a
hierarchical taxonomy. On the other  hand. ISPART
relationship shows the relationships between the objects
that are made up of a set of components and so forth. In
semantic net, apart from ISA and ISPART relationships, there
are other relationships which can be used such as "HEIGHT",

"COLOUR" etc.

Those relationship as said before can be represented as a
graph and it is wvery useful to think like 1t (see Fig.

2.2.2.1 below). A fragment of a typical semantic net 1s as

follows:
e 1oPART
! Culguter {{=mmmme== { CPU &
} IGA
[l
| Persen i | Personal-conputer |
! 158 ! 18R
H OWNER __ | HAVE -
}_Nazrul i{=====- tRastrad=gbd}=mmeonen-—- 2 Henitor |
! BUILT-IN i COLOUR
KEDIUM _ N/
! Tape [{ew=meea- { Datacorder ! ! breen |

E1g, 2:2:2:1t A semantic network

As said before that semantic net 18 related to first order

predicate calculus. It 1is clear that 1t can be used to
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represent two—-placed predicates in predicate calculus. For
example, scme of the arcs from Fig. 2.2,.2.1 could bhe
represented in predicate logic as follow:

ISA{Aastrad-&b4,Personal -conputer),

I9A(Nazrul ,Person),

COLOUR{Moni tor ,Ereen),

HAVE(Aastrad-444,Monitor},
Semantic nets are not restricted to represent first order
predicate only, but can alsc represent other predicates.
They are usually represented using some kind of attribute-
value memory structure. For example, the above semantic

networks shown in Fig 2.2.2.1 would be represented in Prolog

{see section 2.4 for more explanations of it) as follows:

f({spart,cpu,computer),
fl1sa,personal-computer,conputer),
flisa,anstrad-4b4, personal -cosputer!.
fthave,aastrad-464,monitor),
fbuilt-in,anstrad-444,datacorder),
f(omner, anstrad-4b4,nazrutl),
f{isa,nazrul,person).
f(colour,monitor,greent,

f{zed1un,datacorder,tapel.

It can be seen that there are six atoms, i.e computer,
personal—-computer, amstrad-464, monitor, datacorder and
nazrul. The predicates are in the form of f(R,A,P) where R
is a relationship (binary), A 1s an atom and P is a
property—list of A. It should be noted here that A and P are
both entities. By representing in Prolog in the above ways,
we are able to get the information about the relationship
between the entities easily where it wi1ll be difficult to
know the relationship between entities 1if the predicate is
in the form of "R(A,P)", for example, isal(nazrul,person) due

to Prolog's implementation.
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Work on semantic networks stem from many sources. The
Pioneers, Quillian[1968] and Raphael[1968) suggest the usage
in cognitive psychology and computer science. Other usage of
semantic networks are such as 1n representing and learning
information about configurations of blocks (Winston[19751]),
in cognitive psychology (Anderson and Bower({1973], Rumelhart
and Norman(1973]- they proposed memory models based on
networks), in natural language processing (Simmons(1973].
Walker([1978]) and in database management (Mylopoulus et
al{19761) . Several different types of semantic networks were
described in Findler[1979]. Hendrix [1977] and [1979] also
developed another type of semantic networks which 1s called

a partiticoned semantic network.

2.2.2.2 Frame

FPeople always analysed a new situation by wusing their
previous experience by evoking appropriate stored structures
and the fill them in with the details of the current event
or situation. A general mechanism designed for the computer

representation of such common knowledge is a frame.

Frame is often used to describe a collection of attributes
that a given object, such as a chair, normally possesses. A
frame 138 a data structure which represents an entity type.

The word frame has been applied to a variety of slot-and-

filler representation structures, mostly following the
theory presented in Minsky([1975]. In other words, a frame
consists of a collection of named '"slot'", that describe

asprects of the object, each of which can be "filled"™ by
values or by pointers to other frames describing other

objects.
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For example (adapted from Frost[1986]):
Fanily-san Frase

A« RATAK
generics HARRIE A

H i

} i Child frase !

aarital ! nased i NAIRUL |

status \ | H ! 1

{ ! Vool i 0 |

! Fanily-noman | v Al v

| frame | \ /| !
| RODIIAH § sarriedto V!  has children /

! ! i< 0

| 0 ] i\ \

! LA } I\ v !

{ | aged / \ cr \ i Child frame |

! \ gwnership A ALZAT |

/ \ ! ! ]

2 Y t 0 !

3 defaults IERD i I\ !

Eig, 2.2.2,21 Exasple of frame installation

In a frame, the slots can be filled by another frame such as
child and family-woman frames in the family-man frame. The
value of slots can be a pre-set wvalue (generic value) 1in
every frame instantiation such as the value MARRIED in the
"marital status" slot 1n family-man frame The value of slot
can be set to default value as in the "car ownership" slot

where the default value is ZERO.

Frames, like semantic nets, are general purpose structures
1n whiaich particular sets of domain-specific knowledge can be
embedded. The details of the operation of a frame-based
system vary with the sort of reasoning that the system will
be called upon to perform and also with the specific kinds

of knowledge the frames will contain.

There are implemented frame languages which allow the user
to build frame system such as KXRL-0 and KRL-1 (Bobrow and
Winograd (1977a]. [1977b] and [1979])), FRL (Roberts and
Goldstein [{1977]), OWL (Szclovits et al. [1977]).




There are also many implemented frame-based systems such as
UNITS (Smith and Friedland [1980]) which was developed for
application in molecular biclogy, WHEEZE (Smith and Clayton
[1980)) whiach performs medical pulmonary function diagnosis
based on clinical test results, AM (Lenat [1982])) which was
designed to discover concepts in mathematics, and GUS
(Bobrow et al. [1977]) which is a frame-driven dialogue

gystem.

2.2.2.3 Conceptual Dependency

Conceptual Dependency 13 a theory of how to represent the
meaning of a natural language sentence 1n a way that
facilitates drawing inferences from sentences and is
independent of the language 1i1n which the sentences were
originally stated. The theory was first described in
Schank{1973] and was further developed in Schank([1975] and
Schank & Abelson[1977].

The conceptual dependency (often nicknamed CD) is built not
out of primitives corresponding to the words wused in the
sentence, but rather out of conceptual primitives that can
combined to form the meanings of words 1in any particular
language. For example, the sentence "“Nazrul took the toy
from Aizat" would be conceptualized as "The toy was
ATTRANSed from Aizat (the original cowner) to Nazrul (the new
owner)'" or is represented as follows:

{===-azrul

p R
Nazrul (==z=2) ATRANS {======-==e |
N ]
ol {====Chizat
!
toy
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where "o", "p" and "R" are objective case., prast tense and
recipient case. ATRANS is a one of the primitive ACTs used
by the CD theory to indicate a transfer of possession from
one owner to another, 1in this case, "toy", from Aizat to
Nazrul. Arrows indicate direction of dependency. A double
arrow 1ndicates two way link between actor and action. The

primitive ACTs describe everyday human actions.

In brief, CD is a special-purpose structure in which
specific primitives to be wused 1n building individual
representations were defined, as were relationships that
could occur between elements of a representation. And, CD
requireg that all knowledge be decomposed into fairly low-
level primitives. Thais may be 1inefficient or perhaps even
impossible in some situations (Rich ({1983]1). A lot of work
must be done to convert each high-level fact into its
primitive form and then the primitives may require a lot of
storage. Another problem 13 that it is not at all clear what

the primitives should be.

2.2.2.4 Script

A script is a special-purpose structure that exploits
gpecific properties of their restricted domain. It is also a
structure which describes a stereotyped sequence of events
or a commonly occurring sequence of events in a particular
context such as ‘"going 1nto a restaurant and ordering,
eating, and paying for a meal" 1n a restaurant script

(Schank and Abelson(l1977]).

A script consists of a set of slots. Associated with each

slot may be information about what kinds of values it may
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contain, as well as a default wvalue to be used if no other
information is available. Typically, sets of slots are such
as a set of entry conditions, a set of roles, a set of

props, a set of scenes and a set of results.

A set of entry conditions must be satisfied before the
script may be instantiated. Pecple who would typically be
involved in instances of the scripts are slots in a set of
roles. Furthermore, objects which also would typically be
involved i1n instances of the scripts are slots in a set of
props. A set of events making up the sequence of events
represented by the script is called a set of scenes. A set
of results will be obtain after the sequence of events has

been completed.

Scripts are useful because, 1in the real world, there are
patterns to the occurrence of events. These patterns arise
because of causal relationships between events. The events
described in a script form a giant causal chain where the
beginning and the end of the chain are the set of entry
conditions and the set of results respectaively. Some
examples of script based systems are SAM (Cullingford
{1981]) which has been used to understand newspaper stories,
McSAM or Micro SAM (Sterling and Shapiro{1986]) which is a
simplified version of SAM and was written in Prolog, and IPP
(Lebowitz {1980]) which read and remembered newspaper

stories concerning international terrorism,
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2.3 Resolutiaon

In this section we will discuss on how to conclude whether a
new statement follows form the known statements. This proof
procedure is based on the resolution principle which was

proposed by Robinson [1965].

It would be useful from a computational point of view if we
had a procf procedure that carried out in a single operation
the wvariety of processes involved in reasoning with
statements i1n predicate calculus. Resolution 18 such a
procedure which gains its efficiency from the fact that it
operates on statements that have bheen converted to a very
convenient standard form, i.e a clausal (clause) form.
Before we describe how the resolution operates, we will
dascuss the standard form 1in which statements will be

represented and will be used i1n the resolution.

2.3.1. Conversion into Clausal Form

If the formula were in simpler form, the process of
resolution would be easier. The formula would be easier to
work with if 1t were flatter, i.e there was less embedding
of components and the quantifiers were separated from the
rest of the formula so that they did not need to be

considered.

Conjunctive normal! form {Davis and Putnam [1960]) has both
properties. Since there exists an algorithm for converting
any wff into conjunctive form, we lose no generality if we

employ a resolution procedure that operates only on wff's in

this form.
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However, the resolution method requires formulas to be
converted to a regular form called clausal form. A clause 1s
defined as a wff consisting of a disjunction of literals.
Formulas can be converted to clausal form once they have
been transformed to conjunctive normal form. The resoluticn
process, when it 1s applicable, is applied to a pair of of
parent clauses to produce a derived clause. The following
is a brief explanation of a sequence of steps to convert a
wff into clausal form (the detailed explanation will be
given in the next chapter):

[1]. Eliminate implication and equivalence 519ns
(symbols). Replace a——>b with “a\/b to eliminate
implication signs. And, a<-->b can Dbe replaced
with (a—->b) A\ (b—->a).

(2] . Reducing the scope of the negation signs, 1.e moving
inwards the negation signs by using De Morgan's
law.

(3]. Standardize variables so that each quantifier binds a
unique varilable. Within the scope of any
quantifier, a variable bound by that quantifier
18 a dummy variable and can be uniformly replaced
by any other (non—-occurring) variable throughout
the scope of the quantifier without changing the
the truth wvalue of the wff. For example, the
formula

¥X p(X) \/ X q(X)
would be converted to
¥X p(X) \/ FY a(Y¥)

[4]. Eliminate existential gquantifiers by replacing each

occurrence of its existential quantified variable

with a Skolem function.
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[6].

{7].

{81.

(91.

42

Convert to prenex form by moving all universal
quantifiers to the front (left) of the wff. The
resulting wff 1s said to be in prenex form
consisting a prefix of quantifiers followed by a
matrix, which is quantifier-free.

Eliminate all universal quantifiers (the prefix) as
the remaining variables left are wuniversally
quantified. So, we are left now with a matrix
only.

Converting a matrix into conjunction of disjuncts
(conjunctive normal form) by applying a
distribution law of logic.

Eliminate /\ (AND) symbols by replacing with the set
of disjunction of literals. Any wff consisting
solely of a disjyunction of literals is called a
clause. For example:

(P(X) \/ a(Z)) AN\ (r(X) \/ s(Z,a))
can be written as
{ (P(X)\/9(2)) , (r(X)\/s(Z.a)) }

Standardize apart the variables i1n the set of clauses
generated in step [8] such that no two clauses
make reference to the same variable. For example,
from step [8], the final clauses will be:

{ p(X)\/a(Z) , r(Y)\/s(W,a) }
As we can see that the 1literals may contain
variables but these variables are always
understood to be universally quantified. If
variables are substituted with terms 1in an
expression, we will obtain what 1s called a ground

instance of the literal, for example, "s(b,a)" is

a ground instance of "s(W.,a)".
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The final set of clauses, each of which is a disjunction of
literals, can now be exploited by the resolution procedure
to generate proofs. As we said above that each step of
converting a wff into clauses will be fully explained in the

next chapter.

2.3.2 Horn Clauses

A special important c¢lass of <clauses, both because they
arise so often in practice and because simplified
theoretical results apply to them are the Horn clauses,
named after Alfred Horn [1951), who originally isclated
them. For many applications of logic, it 1s sufficient to
restrict the form of clauses to those containing at most one
conclusion (Kowalski [1979]1). Clauses containing at most one
conclusion (consequent) are called Direct Horn clauses. It
can be shown, in fact, that any problem which can be
expressed in predicate logic can be re-expressed by means of

Horn clauses.

Obviously there are two types of Horn clauses, 1.e headed
and headless clauses. Headed and headless clauses are
clauses with one unnegated 1literal (or one conclusion) and
with no unnegated literal respectively. In other words,
there are four forms of Horn clauses:

[{1]. Implication clause: as N\...\ an ——>h

[2]. Goal clause: as N.../\ an ——>
[3]. Assertion clause: —>h
f4)]. Empty clause: -——>

So, implication and assertion clauses are headed Horn

clauses, And, goal and empty clauses are headless Horn
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clauses. For simplicity, we will denote asgertion and empty
clauses as h and [] respectively, 1.e by taking out the
implication signs. In fact, when we consider sets of Horn
clauses, we need only to consider those sets where all but
one of the clauses are headed. That is, any soluble problem
(a theorem proving task) that can be expressed in such a way
that:

(i) there is one headless clause.

(ii) all the rest of the clauses are headed.
Since it is an arbitrary how we decide which clauses are
actually the goals, we can decide to view the headless
clause as the goal and the other clauses as hypotheses or
axioms {known statements) or premises. This has a certain

naturalness.

2.3.3 The Basis of Resolution

The theoretical basis of the resolution procedure in
predicate logic is Herbrand's theorem (Chang and Lee
[1973]), which tells us the following:

[1] To see if a set of <clauses S is unsatisfiable, it
necessary to consider only 1interpretations over a
particular set, called the Herbrand Universe of S.

[2] A set of clauses S unsatisfiable if and only 1if a
finite subset of ground instances (in which all bound
variables have had a value substituted for them) of S

18 unsatisfiable.

Herbrand Universe of a set of clauses S 1s a special deomain

such that S 1s unsatisfiable 1f and only if § is false under

all the interpretations over this domain. Herbrand's theorem

is a very important theorem as i1t is a base for most modern
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proof procedures in mechanical theorem proving. The second
part of the above theorem, [2], suggest a refutation

procedure.

Gilmore was one the first men to implement the above idea
(Gilmore [1960]). However the method used by Gilmore is
inefficient. To overcome this inefficiency, Davis and Putnam
[1960] i1ntroduced a more efficient method for testing the
unsatisfiability of a set of ground clauses. Both methods
which are based on Herbrand's theorem requires the
generation of sets of ground instances of clauses, and for
most cases, this sequence grows exponentially. For instance,
for a small set of ten two-literal ground clauses, there are

1024 (2*°) conjunctions.

In order to avoid the generation of sets of ground instances
as required in Herbrand's procedure, Robinson{1965] suggests
a resolution principle which can be applied directly to any
set of clauses, 5, (not necessarily ground clauses) to test

the unsatisfiabilaty of S.

The essential idea of the resolution principles 1s to check
whether a set of clauses, S, contains the empty clause, [].
If S contains []1, then S 1s unsatisfiable. If § does not
contains (], then the next thing to do is to check whether
[] can be derived form S. Indeed, the resolution principle
can be viewed as an 1inference rule that can be used to

generate new clauses from S.

The resolution procedure is a simple iterative process. It

operates by taking two clauses that each contain the same
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literal. These two clauses are called parent clauses. The
literal must occur in positive form 1n one clause and an
negative form in the other. The resolvent is obtained by
combining all of the 1literals of the two parent clauses
except the ones that cancel. For example:

(a) sunny \/ raining

(b) ~“sunny \/ cold

(¢) raining \/ cold

(d) win

(e} ~win

(£) I[1]
The literal "sunny'" ain parent clause (a) and "“sunny" in
parent clause (b) will cancel each other to form a resolvent

clause (c).

If the clause that 1s produced 1s empty clause, then a
contradiction has been found, for example, two clauses (d)
and (e) will resolve each other to produce an empty clause
(f). If a contradiction exists, then eventually it will be
found. Of course, if no contradiction exists, it is possible
that the procedure will never terminate, although there are

are often ways of detecting that no contradiction exists.

Another way of viewing the resolution process is that it
takes a set of clauses all of which are assumed to be true.
It generates new clauses that represent restractions on the
way each of those original c¢lauses can be made true, based
on information provided by the others. A contradaction
occurs when a clause becomes so restricted that there 1s no

way it can be true., This 1is indicated by the generation of

the empty clause.
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2.3.4 Unification

The most important part of applying the resolution principle
is finding a literal in a c¢lause that 1s complementary to a
literal in another clause. In propositional logic, it 1s
easy to determine two literals that are complementary each
other, i.e by simply locoking for ~1 and 1. However, for
predicate logic (or for clauses containing variables), it is
more complicated. For example:

(cl). p(X) \/ a(X)
(c2). ~“p(b) \/ r(Y)

There 1s no literal in (cl) that 1is complementary to any
literal in (c2). However, if we substitute Db for X in (cl)
we will obtain:
(cl)'. p(b) \/ q9(b)

We know that clauses (cl)' and (c2) can be resolved with
each other to obtain "“q(b) Y}/ r(¥Y)". Thus in order to
determine two complementary literals, we need a matching
procedure that compares two literals and discovers whether
there exists a set of substitutions that makes them
1dentical (or complementary). The unification procedure will

do just this.

The basic 1dea of unification 1s very simple. The matching
rules are simple. Different constants, functions, or
predicates cannot match; identical ones can. A variable can
match another wvariable, any constant, or a function or
predicate expression with the restriction that the function
or predicate expression must not contain any instances of
the variable being matched. The only complication in thas
procedure 1s that we must find a single, consistent

substitution for the entire literal, not separate ones for

each piece of ait.
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The single consistent substitution 1is called the most
general (or simplest) unifier.We mentioned in the above
paragraph that a variable can match a function or predicate
expression with a restriction. This restriction 1s called
occur check, For example, two clauses X of p(X) and f({X) of
“p(f (X)) cannot be matched or unified with each other as
f(X) is a function which contains a variable being matched,

1.e variable X.

2.,2.5 The soundness and completeness

The soundness and completeness of resolution 1is a nice
mathematical property. It means that if some statement or
fact follows from known statements, we should be able to
prove 1ts truth using resclution. It is called sound because
if the empty clause 15 ever produced, the original set must
have been unsatisfiable. It 1is called complete because if
the original set 1is unsatisfiable, the empty clause will

eventually be produced.

The resolution process of deriving new clauses from old will
eventually derive the empty clause 1f and only if the
original clauses were unsatisfiable. The ‘only if' part of
this 1s the soundness theorem: that we cannot produce an
unsatisfiable conjunction of clauses, and in particular, one
containing the empty clause, from a satisfiable one. The
"1f' part 1s the completeness theorem: that 1s, if we start
with an unsatisfiable set and go on deriving new clauses by
resolution, we will eventually derive the empty clause. The
proof of both theorems can be found i1n Bundy [1983) (pp233-
234) .
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2.4 Control strategies for refutation process

The procedure in which the formula being tested 1s negated
are called '"refutation" procedure. In other words, to prove
a statement., the resolution attempts to show that the
negation of statement produces a contradiction with the

known statemente, 1.e that it is unsatisfiable.

Resolution—-based systems are designed to produced proofs by
contradiction or refutation. In resoluticon refutation, we
first negate the goal wff and then add the negation to the
set,S. This expanded set is then converted to a set of
clauses, and we use resolution in an attempt to derive a

contradiction represented by the empty clause.

Although resolution tell us how to derive a consequence from
two clauses, it does not tell us either how to decide which
clauses to look at next or which literals to match. If the
choice of clauses to resolve together at each step 1s made
in certain systematic ways, then the resolution procedure
will find a contradiction 1f one exists. However 1t may take
a very long time. There exist control strategies for making
the choice that can speed up the process congsiderably. Many
refinements of the original resolution principle have been
proposed, 1n order to control a resolution refutation

principle such that i1t does not produce unnecessary clauses.

A control strategy for a refutataion system is said to be
complete if it use results in a procedure that will find a
contradiction (eventually) whenever one exists. In Al
applications, complete strategies are not so important as

oneg that find refutations efficiently.
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Several control strategies for selecting clauses have been
developed for resolution that not produce unnecessary
clauses such as breadth-first strategy, the set-of-support
strategy, the unit-preference strategy, the linear-input
form strategy, the ancestry-filtered form strategy and

combinations of the strategies.

Beside control strategies to avoeid producing unnecessary
clauses, there are strategies which are called
simplification strategies. The aim of the simplification
strategies is to reduce the rate of growth of new clauses.
Such strategies involve the elimination of all tautologous
clauses and clauses that are subsumed by others, and the
resolving of pairs o¢f clauses that contain complementary

laterals only.

We have ment:ioned some of control strategies for selecting
clauses. Some authors (Chang and Lee [1973], Frost [1986])
use term resolution strategies instead of control strategies
(Nilsson [1980], Rich [1983]). We will use both terms
("control strategies” and "resolution strategies"”)
interchangeably thorough out 1in this thesis as both of them
are synonymous. Now we will describe some of the control

strategaies.
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2.4.1 Semantic Resolution

Semantic resolution was proposed by Slagle[1967]. In
semantic resolution, an interpretation to divide clauses 1is
used. For example, by using ordinary resolution to prove the
unsatisfiability of the set S where 8 congists of the first

four clauses as follows (Chang and Lee [19731):

th VIV )}

(§; p tj r ; §

{ qyr

(1) *r }

(3t qVr fros (1} and (2}
(&) p\Vr from {1) and (3)
{7) Vg fron (1) and (&)
{B) p from (2) and (§)
{9 q $roa (3} and (&)
(100 "q\Vr from (3} and (B}
. *p\Vr froa {1) and (%)
2y r froa (2) and (&)
13)  *q fron (4) ang (5)
4y * from (4) and (§)
FEVI fron (4) and {12)

Erxangle 2,4,0: Using unrefined resclution
Each segment shows the level of resolution where the new
generated clauses from a new segment are resolved with the
previously generated clauses., Among all these clauses
generated, only (6) and (12) are actually used in the proof.

All other clauses are irrelevant and redundant.

So, semantic resolution tries to avoid this. As said before,
they use an interpretation to divide clauses such that some
irrelevant and redundant clauses can be avoilded. For
example, suppose we divide the set S into two, 1.e {(2),(3)}
and {(1),(4)}. Thus, the resolution (1) and (4) will be
avolded i1f we adopt the restriction that no two clauses from

the same division (subset) are allowed.
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Another restriction which as adopted by the semantic
resolution is by ordering the predicate symbols, for
example:

P>9>r
and when we resolve two clauses from two subsets, we only
choose the largest predicate from, says, the first subset.
With this restriction, we cannot resolve (2) with (4)

because r is not the largest literal in (2) and (3).

By using the same set 5 as in the above example 2.4.1 and
and let the ordering of predicate symbols be p>g>r and let
the ainterpretation be {7p,”q,”r} such that the set S will be
divided into 8:={(2),(3)} and S=={(1).(4)}. Thus we will get

the following:

iy *pVyqVvr )

2) pVr Y 8

{3 Fvr )

(44 ‘r )

S “qVvr from (1) and (2)

(61t "o\ r fros (1} and (3}

{n r from (3) and (5}

{8} r froa (2} and (4)

9 }] from (4) and (7) or {B)

Exanple 2,412 Using semantic resolution
Clauses marked by "*" are members of subset Sz which satisfy

the adoprted interpretation.

It can be seen that by adopting some restrictions on the
resolution, the irrelevant and redundancy clauses can be
avoided as shown by the semantic resolution. Chang and Lee

(1973] showed that the semantic resolution 13 a complete

resolution.
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2.4.2 Hyper-resolution
Hyper-resolution which was introduced by Robinson ([1965a] is
a special kind of semantic resolution which uses a special
kind of interpretation, 1.e an interpretation in which every
literal is the negation of the atom. For example, we would
like to prove the unsatisfiability of set S consisting the
first four clauses as in example 2.4.3 below. Let the
ordering be p<{qalr and certainly the interpretation, I, be
{“p(a), Ta(a), "r(a)}, thus:

(1) gla) V pily )

@1 g Vpl) )} 8

{38 et V pla) ;

(4 r{a}
{5} p(d) \/ pla}  from (1) and (2)

(818 *plal from {31 and (&)
n £) from {5) and (4)

Example 2.4,2 Using hypher-resolution

As before, clauses marked “*" are satisfied by the adopted

interpretation.

2.4.3 Set-af-support strategy

The set-of-support strategy was proposed by Wos et al([l1963).
This strategy is also a special kind of semantic resolution
in the sense 1t divides the set to be proved unsatisfiable
into two. A subset T of a set S of clauses is called a set
of support of S if S5-T 1is satisfiable (Chang and Lee[1973).
So, a set-of-support resolution 13 a resolution of two
clauses that are not both from S-T, 1.e the two subsets are
T and S-T.

In other words, whenever possible, resolve either with one
of the clauses that 138 part of the statement we are trying

to refute or with a c¢lause generated by a resolution with
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such a clause. This is corresponds to the intuition that the
contradiction we are looking for must involve the statement
we are trying to prove. Any other contradiction would say
that the previously believed statements were inconsistent.
Thug, in this case, sets T and S-T are statements to be

proved and known statements (knowledge) respectively.

For example, let Si be a s8et congisting the first three
clauses and the negation of the statement to be proved from

S1 are clauses (4) and (5) as follows:

{1} patient (2} )
{2} *doctor (Y) V/ likes(a,Y) } &
{3) “patient (X) \/ *quack(¥) \/ *likes(X,¥) }
(1) dactor(b) }

{5) quack (b} y1

The set-of—support is a set T where T = {(4),(5)} and 1ts
complementary set 1s set 8Si: where S.:=5-T={(1)}.,(2}.(3)}. The

following 1s a refutation tree of the above proving:

likes(a,bl
!
1 (3
i/
*patient(a) \/ *guack(b)
|

I {1

i/
*patient (a)

!

]

)

{1

Example 2.4.3 Using set-of-support strategy

We can see that no rescolution 1i1s performed bhetween clauses

in the same set S..
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2.4.4 Lock resclution

Lock resolution is a refinement of resolution which uges a
concept similar to that of ordered c¢lauses and was
introduced by Boyer(1971]. The literals of clauses in a set
S is ordered according to their indices. The index is
arbitrarily given to each occurrence of a literal in S with
an integer. Resolution is then permitted only on the
literals of lowest 1index in each clause with all the
literals inherit their indices from their parent. In other
words, the index of each clause 1s maintained through out
the resolution process. If there are more than one with
the same laterals, all the literals will be merged into
one and the lowest index is assigned to it, 1.e take only
one literal with the lowegt index, for example, the

clause "iq \/ =qg9" wi1ll become ":g9". For example, let
S=4{p, 4, ¥, W, P\ "a\V “r \/ “w}! 18 a set to be proved
unsatisfiable. We will give an 1index to each literal
arbitrarily as follows:

{1} 1P

(2) 24

(31 af

(4) ak

(5) s*p \/ QN P oMy

(&) QN 2 Voo™ froa {1) and (3)
(7 2t A o™ fron (2) and (b)
(8} 3L froa (3} and (7}

(9 [1 fron (1) and (B

Example 2.4,43 Using Lock resolution
From the above example, only three lock resolvents were
generated. The lock resolution does not permit the
resolution between others pair of parent clauses such as (2)
and (5), (3) and (5) etc. If ordinary (unrefined) resoclution
were used, 40 clauses would be generated by the breadth-
first method before [] could be generated. The lock

resolution is a complete resolution (Chang and Lee [1973]).
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2.4.5 Linear Resolution

Linear resolution was independently proposed by
Loveland(1970] and Luckham[1%70]. The idea of linear
resolution i1s similar to proving an identity in mathematics.
In proving an identity, we often start with the left-hand
side expression of the identity, apply an inference rule (an
axiom) to obtain a new expression, then repeatedly apply
some inference rule again to the new freshly obtained
expression until the left-hand side expression is identical

to the right—-side expression of the identity.

Thus, a linear resolution starts with a clause, resolves it
against a clause to obtain a resolvent, and resolves this
resolvent against some clause until the emply c¢lause {] is
obtained. The two parents clauses are the new resclvent and
a clause from the set § to be prove unsatisfiable or from
one of the previous resolvents. For example, let set S to
be proved unsatisfiable be:

) q(X) \/ p{a)

) “q9(X) V/ p(X)
) “a(X) \/ "p(X)
) a(X) Vv "p(X)

then the following 18 its refutation graph:

{
142}
i
(8) ptny \/ pla)
!
1 )
il
{b) *qfa)
|
| (&)
)
(7 *pla)
{
{ )
i
[l

P
DW=

Erample 2.4,3:t Using linesr resolution
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It can be seen from example 2.4.5 that in order to resolve
(7)., we use the previous resolvent, i.e (5). Following Chang
and Lee [1973], clauses (1), (5), (6) and (7) are called
centre clauses and clauses (2), (3), (4) and also (5) are
called side clauses. ©Seo, linear resolution can use any
previous centre clauses or from base set S. Nilsson's
ancestry-filtered form strategy (Nilsson [1971]) 1s similar
to this linear resolution. Clause (5) is called an ancestor
clause. This linear resolution or ancestry-filtered form

strategy is complete (gee Chang and Lee[l1973]).

2.4.4 Linear Input Resolution

Linear input resolution (or 1input resolution in Chang and
Lee{1973] or vine form in Nilsson[1971]) 1s a special case
of linear resolution where all side clauses must be from the
base or i1nput set S. The base or 1input set 5 1s a set to be

proved unsatisfiable,

To prove a statement, F, using this method, we commence by
resclving “F with one o©of the 1input clauses to form a
resolvent, C. C is then resolved with also an input clause

to form another resclvent, and so on until we get an empty

resolvent or otherwise. For example, let an i1nput set § be
{(1),(2),(3).,(4),(5),(6),(7Y} and the negation of the
statement, F, to be proved be {(8), (9)} where:
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{1} *woabat{X} \/ *lives(l,zoal \/ *happy(X)

(2} happyt2) \/ *aninal (D) \/ *seets(1,¥) \/ person(¥) \{ kind(¥)

(30 kind(V} \/ “personi{V} \/ *visits(V,zoo}

() aeets(U, Y} \/ *animal () \/ “lives(U,zac) )/ *person(Y) V *visits(Y,z00)
{5)  animal(A) \/ “wombat(A)

()  persontnaz)

(7 visits(naz,zeo)

(8  worhat(w)

(9 lives(w,z00},

So, the following 15 an illustration to prove the statement

F using a linear input resolution (we start with clause(8)):

{10} *Lives(w,zo0) \/ *happy{n} fron (8) and (1)
(11 *livesiw,zoa) \/ *amumalin} \/ “meetsin, ¥} \/ personi¥) \/ kind(Y}
froa (10) and (2)
{12) “lives{n,zo0) \/ “aninaliw) \/ *meetsiw,¥) \/ “persontY} \/ *visits(Y,z00)
from {11} and (3) - after merging
(131 *lives{n,zo0) \/ *animalin} \J/ *personi¥) \/ *visits{Y,zce)
from (12} and (4) - after serging
{18 *lives{w,z00) \/ “woabat(x} \/ “person(Y} \/ *visits(Y,zo0)
fron (13} and (5)
(5 *lives(w,zo0) \/ *wosbat(w) W/ “visitsinaz,zo0)
froa (14) and (8)

(16) *livesiw,zo0) V' *woehatiw) fron (13) and (7)
(17} *lives(w,zo0} from (14) and (B)
(i, 0 fron (17) and (D)

Exanple 2.4,4: Using linear snput resolution
The above prove the statement F 1s a theorem of S. The new
resolvent is always resolved with the input clause S 1in
linear vresolution. Thus, 1t lacks completeness, for
example, we wWill not be able to prove the
unsatisfiability of set S as in example 2.4.5 above.

However, this linear resolution 1s efficient and furthermore

it is complete for Direct Horn clauses (Frost{1986]).
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2.4.7 Unit preference strategy

Unit preference strategy (or wunit resolution 1in Chang and
Lee[l1973]}) which was proposed by Wos et al[l964] 1is a
special kind of linear resolution. This resolution,
whenever possible, resolves with clauses with a single
literal (called a unit). Such resolution generates new
clauses with fewer literals than the larger of their parent
clauses, and thus are probably closer to the goal of a
resolvent with zero terms (empty clause). This method is
esgentially an extension of the one-literal rule of Davis

and Putnam {1960].

However this method may take longer to
reach the solution (empty clause) if it exasts. The
following example shows this shortfall. The following
1llustrates proving a statement using unit-preference
strategy. We will use the same set of 1input clause and
statements to be proved as in example 2.4.6 above (see
section 2.4.6):

(10)  “lives{w,zoo) \/ “happy(w) froa (B) and (1}
{11} “happyiw) fraa {190) and {8)
(12) *animl(e) \/ “geetsin, ¥} \/ person(¥Y) \/ kind(Y)

froa (11) and (2)
(3} “animaliw) \/ “acetsiw,naz) \/ kind(naz)
froa (12) and (8}
(14} “animal(w) \/ *meets{w,naz} \/ “personinaz) \/ *visitinaz,z00)
from (13} and (3
(15) *animaliw) \/ *peets(w,naz) \/ “visit(naz,zoo}
from (14) and (6)
{18) *animaliw) \/ *acetsiw,naz) fron (15) and (7
(17) “animalim} \/ “*livesiw,z00) \/ “person{¥) \/ *visits(},z00}
fron (14) and (4)- after serging
(18) *animal(w) \/ *lavesiw,200) \/ *visits(naz,zo0)
fron (17) and {4)

(19 “animal (w} \/ “lives(w,z00) fron {18) and (7)
{20) *animal{w} from (19) and (%)
{21) “wosbat(w) from (20) and (3)
22 [ from (21) and ()

Exangle 2,4,7; Using unit-preference strategy
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It can be seen from both examples 2.4.6 and 2.4.7 that a
unit-preference strategy (13 resolvents) takes longer to
reach the empty clause compared to a linear input resolution
(9 resolvents). Chang[1970) prove that both 1linear input
resolution and unit resolution (unit-preference strategy)
are equivalent. That is, theorems that can be proved by
linear input resolution can also be proved by unit-

preference strategy, and vice versa.

2.4.8 LUSH Resolution

LUSH stands for "Linear resolution with Unrestricted
Selection function for Horn clauses" (Hill [1974]). LUSH is
same as a linear 1input resolution except that at each
resolution step, the literal to Dbe used as complement 1s
selected from the last produced resolvent i1n a pre—defined
order. The same order must be used throughout the resolution
process once it was chosen. For example, suppose the order
were "take the rightmost literal which has a complement in
the input clause set S". The refutation search corresponding
to example 2.4.6 above would proceed as follows:

(10)  “*livesiw,zo0) \/ “happyiw) froa (B} and (1)
{11} *livesiw,z00) \/ “animal{n)} \/ *meetsin,¥) \/ person(¥} \/ kind(Y)
fron (10) and (2)
(120 *livestwyzoo) \/ “animal{w) \/ “aeetsiw,¥) \/ “personi¥) \/ *visits(Y,zo0)
fros (11) and (3) - after merging
{3} *livesiw,zo0) \/ “ammaliw) \/ *aeets(w,naz} \/ *personinaz)
froa (12) and (7}
(18) “lives{w,zo0) Y/ *animalin) \/ *aeetsin,naz)
froa (13} and (4)
(15) “livesiw,zan] \/ *animalin) \/ *personinaz) V *visits(naz,zoo)
fron (14} and (4)
{16) “livesiw,zon) \/ *animalin} \/ *personinaz)
froa (13} and (7

(17)  *livesiw,z0n) \/ *animal(w) from (18) and (b
{18} *livesiw,zo0] \/ “wonbatin) fron (17) and (3]
(19) *lives{w,zo0) fron (18) and (B}
200 1 from (19) and (9}

Example 2,4,8; Using LUSH resolution (selecting the rightmost literal)
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This resolution is similar to a resolution known as SLD
resolution which stands for "Linear resolution with selected
function for Definite clauses" (Llovd [1984]1) . LUSH
resolution 18 complete for Horn clause (Frost [1986]). SLD

is also a complete and sound resolution (Lloyd [19841).

2.4.9 Other strategies and the combination of strategies

There are other variation of regolutions but most of them
are basically the variation of gsemantic and linear
regolution as discussed in sections 2.4.1 and 2.4.5 above.
Such variations are selected lateral (5L} resolution
{Kowalski and Kuehner ([1971]), Loveland [1969], Reiter
(1971}), semantic resolution using ordered clauses (Chang
and Lee [1973)), linear resolution using ordered clauses and

the information of resolved literals (Chang and Lee(1973]).

It 18 also possible to combine the control strategies such
as linear input resolution and set—-of-support strategiles,
Scme combinaticon of the gstrategies preserve completeness,

some don't.

As most resolutions produce refutation graphs, there are
several ways of traversing the graphs. This traversing or
also known as search strategies are usually depth-first
strategy, breadth-first strategy and heurastic strategy.
These strategies have also been combined with the resolution
strategy to make the resolution more efficient. We will
discussed a combined strategies implemented with breadth-
first and depth-first search strategies 1in the next chapter

(chapter 3).
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2.5 Logic Programming

The key idea underlying logic programming i1s programming by
description. The programmer describes the application area
and lets the program choose specific operations. Logic
programs are easier to create and enable machines to explain
their results and actions, Logic programming differs
fundamentally from conventional programming in requiring us
to describe the logical sgtructure of problem rather than
making us prescribe how the computer is to go about solving

them.

Logic programming which has begun in the early 1970's
originated largely from advances in automatic theorem
proving and artificial intelligence, and in particular from
the development of the resolution principles. Constructing
automated deduction systems 13, of course, central to the
aim of achieving artificial 1intelligence. Building on work
of Herbrand(1930)], there was much activity 1n theorem
proving in early 1960's by Prawitz[1960], Gilmore{1960},
Davis and Putnam(1960] and others. This effort culminated in
1965 with the publication of the landmark paper by Robinson
{1965], which 1introduced an ainference rule called the
resolution rule which is particularly well-suited to

automation on a computer.

Some of the earliest work relating resolution to computer
programming was undertaken by Green[1969], who showed that
the answer-extraction mechanism could be used for
synthesizing conventional program by applying resolution to
their specifications expressed in clausal-form logic, and

also the works of Haves[1973] and Sandwell[1973].
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However, the credit for introduction of logic programming
goes mainly to Kowalski[1974] and Colmerauer(1973}. In 1972,
Kowalski and Colmerauer [1972] were led to the fundamental
idea that logic can be used as a programming language.
Before that (1972), 1logic had only ever been used as a
specification or declarative language 1n computer science.
However, what Kowalski[1974] showed 1s that logic has a
procedural interpretation, which makes it very effective as

a programming language.

One of the main ideas of logic programming , which is due to
Kowalski [1979] and [1979a], 1s that an algorithm consists
of two disjoint components, the logic and the control. The
logic is the statement of what the problem is that has to be
solved. The control is the statement of how 1t 1s to be
solved. This relationship plays a central role in the
philosophy of logic programming and can be expressed
symbolically by the equation:
Algorithm = Logic + Control (A =L + C)

As we said i1n the beginning of this section, there are
fundamental differences in logac and conventional
programming., In traditional sof tware engineering
(conventional programming), one builds a program by
specifying the operations to be performed in solving
problem, that 1s, by saying how the problem 18 to be solved.
The assumptions on which the program is based are usually
left implicit. In 1logic programming, one constructs a
program by describing its application are, that 1is, by
saying what is true. The assumptions are explicit, but the

choice of operations is implicit.
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The difference can be expressed also i1n terms of Kowalski'‘s
idea of algorithm (A=L+C). So. conventional algorithm and
programs expressed in conventional programming language
combines the logic of the information to be used in solving
problems with the control over the manner in which the
information is put to use, i.e (following Hogger(1984]):
conventional program
= conventional algoraithm (A)

= description of logic (L) and control (C).

On the other hand, 1logic programs express only the logic
component L of algorithms . The control component C 1s
exerciged by the program executor, either following its own
autonomously determined control decisions or else following
control instructions provided by the programmer. In Hogger's
[1984] formula:

logic program

= description of logic(L) + description of control(C)

There are several advantages to separate logic and control
conceptually (Kowalski[19791):

(1) Algor:ithms can be constructed by successive
refinement, designing the logic component before the
control component.

(2) Algorithms can be improved by improving their control
component without changing the logic component at all.

(3) Algoraithms can be generated from specifications, can
be verified and can be transformed into more efficient
ones, without considering the control component, by
applying deductive inference rules to the logic

component alone.
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(4) Inexperienced programmers and database users can
restrict their interaction with the computing system
to the definition of the 1logic component, leaving the
determination of the control component to the
computer.

In a typical logic programming system, we can also view that
the description of the control as an application—independent
deductive inference procedure. Applying such a procedure to
a description of an application are makes it possible for a
machine to draw conclusions about the application are and to
ansWwer questions even though these answers are not
explicitly recorded in the description. This capability is
the basis for the technology of logic programming. The
following figure 1llustrates a configuration of a typical

logic programming system (Genesereth and Ginsberg [1985]1):

=
w
m
-

Queries Angwers

Application-independent
inference procedure

}
! Conclusions
{

! {
! knowledge base |
| |

Fig 2,5,1t A Typical Logic Prograsming systes

As shown in the above figure (fig 2.5.1), the application-
independent inference procedure is independent of the

knowledge base it access, thus i1t gives some advantages:
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(1) Incremental development: as new information about an
application is discovered (or just discovered). that
information can added to the program's knowledge base
and so i1ncorporated into the program itself. There is
no need for algorithm development or revision.

(2) Explanation:it is easy to save a record of the step
taken in solving a problem due to the piecemeal nature
of automated reasoning. This record can be presented
te the user in some way such that the program explain
how it solves each problem and therefore, why it
believes the result to be correct. This 1is very
valuable for debugging logic programming

Thus, from Kowalski's idea of algorithm, we can conclude

that ideally, legic preogramming s that the programmer

should only have to specify the logic component of an
algoraithm and the control should be exercised solely by the
logic programming system. Unfortunately, this ideal has not
vet been achieved with current logic Pprogramming systems

(Lloyd(1984]1}. In order for this to be achieved there are

two broad problemswhich have to be solved:

(1) Control problem: more control features for programmers
should be the responsibility for the system itself.
Currently the programmer has to provide a lot of
contreol information such as clauses and atom ordering,
looping checking etc.

(2) Negation problem: the logical negation 18 not
implemented, but they implement the negation as a
failure rule in logic programming languages. A
negation as a failure rule means that the negation of
a goal (statement) is true if the positive of the goal

fails., Clark([1978] and Reiter([1978] hawve discussed
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this problem and have regarded the negation as failure
inference rule as deductions from the "completed data
base" (CDB) and “closed world assumptions"”(CWA)
respectively. According to Shepherdson[1984] these
deduction system are usually incomplete and CDB and
CWA daffers: one may be consistent and the other not,
and when both are consistent they may be incompatible
and both are compatable when the data base is Horn and
definite clauses.
As discussed above and following Kowalski[1974], logic has a
procedural interpretation which makes i1t very effective as a
programming language and one of the most important practical
outcomes of the research so far has been the language
PROLOG, which is based on the Horn clause subset of logic.
In addition to procedural interpretation, logic also has two
other interpretation (Lloyd{19841}):

(b) Database interpretation: logic program is regarded as
a database (Lloyd[1983]; Gallaire and Minker(1978] and
{1581])) thus we obtain very natural and powerful
generalisation of relational databases.

(c) Process interpretation: goal <-Bl,....Bn is regarded
as a system of concurrent process. There are now
several concurrent PROLOGs based on the process
interpretation (Clark and Gregory[1981] and [1983];
Shapiro[1983]). This interpretation allows logic to be
used for operating system applicaticns and object-
orientated programming (Shapiro and Takeuchi(1883]).

We have already discussed where we can use logic¢ programming
and 1ts difference between conventional programming. Most
logic programming system use clausal form. However, logic

programming is by no means limited to PROLOG which 1s based
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on Horn clauses. It 1s essential not only to find more
appropriate computation rules, but also to find ways to
program in larger subsets of 1logic, not just the clausal
subset. In particular, such systems need not necessarily be

based on clausal resolution or even rezsolution at all.

Various non-clausal resolution have been developed, for
example, Storm [1974], Wilking [1974], Bibel [1976], Nilsson
(1979]), Manna and Waldinger([1980], Bowen [1982]1, Murray
[1982] and Stickel[1982]. Other methods of non-resolution
theorem—proving are such as natural deduction (Bledsoe
{19771, Hanson et. al.[1982], and, Harid: and Sahlin[1983])
and matrices and connections (Prawitz (1976], Andrews [1981)

and Bibel{1983]).

It 13 clear that logic thus provides a single formalism for
apparently diverse parts of computer science. Logic provides
us with a general purpose problem-solving language, a
foundation for database systems, and also a concurrent
language suitable for operating systems and parallel
algorithm. This range of applications assures that logical
inference is about to become the fundamental unit of
computation (Lloyd(1984]). This view 1is strongly supported
by the Japanese fifth generation computer project where
logic programming has been chosen to provide the core
programming language for this very ambitious 10 vyears

project (Moto—-Cka[l198B2]1).
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2.6 A Logic Programming Language:r PROLOG

The language PROLOG, stands for "PROgramming in LOGic", is
one of the most practical outcomes of researches 1in logic
programming. The early developers of this idea i1ncluded
Robert Kowalski at Edinburgh (on theoretical side - see
Kowalski [1974)) and Alain Colmerauer at Marseilles
(implementation— see Colmerauer et. al.[1973]). The present
popularity of Prolog 1is largely due to David Warren's
efficient implementation at Edinburgh in m:d 1970s.
Nowadays, various Prolog interpreters or compilers have been
implemented, such as Quintus Prolog (Quintus Ref. Manual
(1985]), C-Prolog (Pereira (1982]), POPLOG Prolog (Mellash
and Hardy[1984]) etc (for example, see Clark and
Tarnlund[1982], Campbell([1984]).

The research in this thesis was first carried out by using
the UNIX Prolog 1in Edinburgh syntax (see Pereira et
al.[1978]) and later by using POPLOG Prolog which has more
facilities although similar syntax. Although there are some

differences, they will not be explained here.

Now, we will describe briefly the syntax of Prolog (based on
Edinburgh syntax) and also some problems encountered with
the Prolog during the carrying out of the project. As said
1n the last section that Prolog 1s based on the Predicate
calculus and takes the form of Horn clauses. The following
are summaries of Prolog syntax's (for more details see
Prolog bocks such as Clocksin and Mellish[1981] and
Bratko{19861}) :

© Prolog programming consists of defining relations and

querying about relations.




70

o Prolog programs are built from terms which are either a
constant, a variable or a structure. A constant consists
of a number or an atom (a symbol which starts with a
lower case letter). A variable loocks 1ike atom, except
they begin with a capital letter or an underline sign
" ". A structure which 18 a single object that have
several components, are constructed by means of functors.
Each functor is defined by its name (or predicate name)
and arity.

¢ Proleg clauses are of the form:

a :— bi,....,bn
where "a", and "bi,...,.b." are called head, body. The
sign “:-" and ", mean "is implied by" and
""and" (conjunction). Thus they can be classified to three
types: facts, rules and questions. If n=0 then the clause
18 called a fact and can be written without implication
sign. If n>0 then it 18 called a rule. If the head is an
empty clause (i.e [l}:-bs.,....bn) then 1t 1is called a
question or a geoal clause.

o A procedure is a set of clauses about the same relation,

i.e a set of clauses with the same predicate name.

Prolog's refutation is based on SLD resolution, 1.e the
literal to be matched (or unified) 1s always selected from
the first one in the goal clause. Basically, Prolog adopts a
depth-first strategy that is the new goals derived from the
use of a clause are placed at the front of the (current)
goal clause and Prolog finished satisfying a subgoal before
it goes on to try anything else. Prolog will do backtracking
in order to explore the alternative of the solution. Prolog

also does not carry out the occurs check. Although it may

-



71

give wrong answers (see Lloyd[1984] pp40), it may also show

a sign of programming error.

Prolog ,1n executing the goal clause, will make a copy of a
clause to be matched and all variables in it will be given
new variables names. This copying clause principle in Prolog
is equivalent to the process of standardizing variables

names in converting a predicate calculus into clausal form.

Prolog program can be written such that it may become a
reversible (inversible) program (Gries[1981]1). A reversible
program is a program of which we can get the input again
from the output, Although there 1s not an easy task, Prolog
in some cases, can do 1t, for example, the predicate
append(X,Y,Z) which it will append 1list Y to the end of X
and give the result list Z. The definition of append(X.Y.2)
18 as follows:

append{ld L L),
append([X/LID, L2, 0RIL3)1-append(Le,L2,L3),

If given X is an original list and Y is the input list to be
appended to original list X, then we will get the output
list, 2. The above program can also be used to get the input
list Y if given the output 1list Z. The following session
illustrates the feature of reversible program:

?- append{Ca,b,c1,(d,2,$],2),append ([a,d,c],Y,1),

1= [a,byc,d,0, ¢}
Y s [d,ef]

yes

Session 2,b.11 Exanple of a reversible progras
Another advantage of Prolog language that we can easily
write a Prolog program in any languages which uses a Roman

alphabet. For example:
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eats(nazral,apple), 1* English #/

nanger(nazral, ponne), /¥ German #/

netan(nazrel,epall, 1% Nalay &/
All other built—-in predicates can be defined in the
equivalent non English language, for example, predicate
write(X) can be defined in a nen English language asg
follows:

tulis(®)s-writelX), /% Malay’s definition of write ¢/

Thus, Preolog can be wratten 2in any Roman—alphabet language

without difficulty,

We will discuss 1n the following some of the problems we

have faced in the carrying out of the project:

{l1]. predicate not/1
As Prolog adopts a negation as a failure, so predicate
not/1 will not mean the real logical negation. In order
to make Prolog's program more readable especially in
testing a conditional predicate, 121.e a predicate which
13 used to represent a certain condition. Suppose, we
have a condition predicate newsubsidiary  which
indicates that new subsidiary clauses have Dbeen
asserted into the database. Instead of using
not(newsubsidiary) or newsubsidiary to show the non
existence or the existence of predicate newsubsidiary
respectively, we will use a new defined predicate
exists(X) or not_exists(X) to show the existence or non
existence of predicate (or fact) X. Predicates exists/1
and not_existence/l are defined as follows:

exists(X) 1= clause(k,trae},

not_exists(k) 1= clawse(k,tree}, !, fail
not_exists(X) 1= tree,

So, exists(newsubsidiary) and not_exists(newsubsidiary)
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will be used to test the existence or the non existence
of fact newsubsidiary.
[2]. Hardcopy.
It would be easy to make a hardcopy of a session in
POPLOG Prolog as there are built in predicates to cater
for this, i.e predicate log and nolog. However it would
be very difficult to make a hardcopy of a session by
using UNIX Prolog as it will make a hardcopy but we
will see nothing in terminal (VDU) or vice versa. To
make a hardcopy an DEC-10 Prolog, we need to use
predicates tell(Filename) to start of making a hardcopy
and told when it is finish and to close file
"Filename". For example:
urrte_answer(user,yes)s=!, [+ 15¢ definstion &/
nlyurite(’ 22Answers Yes’),
xrite_ansuer(f)i- 4 7% defimtion ¢/

nrrte_answer{user,yes),

tell(F),nrite_answer(F,yes),
The first definition of predicate write_answer/2 will
print the remark 1in the terminal and the second
definition will print the remark in both terminal and
the output file F provided F 1S not equal to "user". In
order for the second definition to work, we must
instruct the Prolog that the output file is F by
command tell(F) at the beginning of a session and

closed the file by issuing command told at the end of

Session.

Although there are problems of negation and the occur check,
Prolog has been used in various fields such as expert
gystems, natural language understanding etc. (gsee Clark and

Tarnlund[1982], Sterling and Shapiro{l1986], for examples).




CHAPTER 3

A PROLOG-BASED RESOLUTION
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X.1 Introduction

In this Prolog-based resolution, all the statements which
are already in the form of a first order logic or predicate
calculus, are transformed into Horn Clauses. The resolution
is based mainly on how resolution in Prolog 13 implemented.
The resolution strategy in Prolog is a kind of semantic
linear (SL) input resolution. Basically, Prolog adopts a
depth-first strategy. It means also that no occur check is

implemented in the implemented resolution.

There are two major steps in Prolog-based resolution. These
steps are
[1]. Converting a predicate calculus statement into Horn
clauses.

[2). The refutation process.

3.2 Converting a predicate calculus statement into Horn

Clauses

First of all, the predicate calculus statements are
converted into Horn Clauses 1n seven stages. The first six
stages which are based on Clocksin and Mellish{1981] are to
convert a predicate calculus formula into clausal form. So
the associated Prolog program for the first six stages will
not be explained here except 1f it 1s different or any
modification is made, otherwise the programs can be found 1n
the appendix. Before the conversion technique is described,

let us define the syntax that will be used as follows:



75

PC The syntax

Connective  svntax used Heaning

negation *2 | not a

conjunction aAb  akbd aand b
disjunction a W b alt aorb

fsplication a~==}b a=}b a implies b
equivalence a {-- (= is equivalent to
TABLE 3,2, 1t Syntax definition (connective)

And for gquantifiers , the following syntax will be used:

PC The syntax
syntax used Heaning

Yie  allla) For all X, a is true
El exists(X,a)  There exists ¥ such that a is true

TABLE 3,2.21 Syntax definition (quantifier)

For the purpose of operator precedence, the following
Prolog's operators declaration are defined for the
connectives:
-0p(225,xfx,{x}}.
=0 p{225,2fx, 23],
7"”(200,”1,“-
?'0’(200,!“,”.
7‘0#”0, fx,",r
Brogrew 3,2: 11 Operator Beclaration
The seven stages of converting a predicate calculus
statement i1nto Horn clauses are as follows:
(1]. Removing all implication and equivalence signs.
[2]. Moving negation signs inward.
(3]1. Skolemising existential quantifiers.
[4]. Moving outwards and eliminating universal quantifiers.
[5]. Distributing conjuction(&) over disjunction(#) signs.

[6]. Putting into a clausal form.

[7]. Converting into Horn clauses.

The following are the detail explaination of each stage.
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STAGE 1: Removing all implication and equivalence gsigns

Replace all occurrences of "“=>" and "<=>" 2igns by using

the following rules:

Foraula The Replaceaent foraula

1{=x b {a =} b)k(b =2 a}
2 {*a §b)

TABLE 3.2,3t The Replacesent formula

all (X, (man(X) #woman (X)) =>human (X))
is transformed to

all (X, (man(X) # woman(X)) # human(X)).

STAGE 2t Moving negation sign inwards

This stage is involved with cases where the negation
sign, " ~ ', is applied to a formula that 1s not atomic.
The end products are such that only the negation sign 1s
applied to an atomic formula by reducing the scopes of

n~t 33gn using the appropriate De Morgan's law as

follows:
The_forsula The reduction foraula
ad b} atth
*fath R
St 1
*ex1sts(X,a) it
*a1l (X, a) pristei¥, *a)

TABLE J.2.4: The reduction foraula
For example,

~axists(X,wombat(X) & lives(X,zo00) & happvy(X))

is transformed into

all (X, ~“wombat(X) # “lives(X,zoo) # “harpy(X))
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STAGE 3: Skolemising

Skolemising as a stage to eliminate existential
quantifiers by replacing all existentially quantified
variables by a Skolem function with parameters of the
universally quantified variables which bind it. In other
words, instead of saying that there exists an object with
a certain set of properties, one can create a name for
one such object and simply say that 1t has the
properties. Skolemisation has one important property, 1.e
there 13 an interpretation for the symbols of a formula
that makes the formula true if and only if there is an

interpretation for the Skolemised version of the formula.

The general rule for eliminating an existential
quantifiers from a well form formula (wff) 1s to replace
each occurrence of 1ts existentially quantified variable
by a Skolem function  whose arguments are those
universally quantified variables that are bound by
universal quantifiers whose scope 1nclude the scope of
the existential quantifiers being eliminated. For
example,
all(X,man(X)&exists (Y, "woman(Y) # likes(X,Y)))

is Skolemised into

all{X,man(X)& ("woman(womanO(X)) # likes(X,womanG(X)))

Here, the Skolem function which replaces the existential
quantifier ,Y, is ‘"womanO(X)" where X 138 a universal
quantifier which binds existential quantifier Y. The
index 0 (zero) of '"woman0" is to distinguish between
other Skolem function which refers to a different woman,

for instance, "womanO(X)" and ‘“womanl(X)" refer to two
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different women. Any function symbol used in Skolem
functions must be new in the sgense that they cannot be

the one that already occurs in wffs.

If the existential quantifier being eliminated is not
within the scope of any universal quantifiers, we use a
Skolem function with no arguments, which in fact is a
Skolem constant.
e.g.

exists(X,animal (X) & eats(X,human))
is Skolemised into

animal (animal0) &eats{animall,human)

STABGE 41 Moving outwards and eliminating universal

gquantifiers

All universal quantifiers bind their own dummy variables,

so move outwards all wuniversal quantifiers to the front

of the wff. The resulting wff 1s said to be 1in a prenex

form. This does not effect the meaning. For example,
all{X, "man(X)#all(Y, ~woman(Y)#likes(X.Y)))

is transformed into

all(X,all(Y, "man{X)#( ~woman{Y)#likes(X,Y))))

Since the order of universal quantifaications 1s
unimportant provided that all existential quantifiers
have been Skolemised, and all universal gquantifiers are
at the front or outside of the wff, so we may eliminate
the explicit occurrence of universal quantifiers without
loss of meaning. Thus the above example becomes

"man(X)#(“woman(Y)#likes(X,Y)).
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It should be noted here that no renaming universal

quantifiers or variables 13 required as Prolog will do it

automatically.

S8TAGE %¥:1 Distributing "&'" over "#"

In other words, at this stage, the wff is transformed
into conjunctive normal form by wusing the following

transformation rules:

Forsula The Distribution foraula

adibte) (atb klade
fadh $¢ {ade) b thdc
TABLE 3,2,5; The Distribution Formula

(¥ man(X) & ~ woman(X)) # human(X)
1s transformed i1nto

("man{X} # human(X)) & ("woman{(X) # human(X))

STAGE &6: Putting into a clausal form

At the beginning of this stage., all wifs are in the
conjunctive normal form. The "&" sign may be eliminated
resulting a finite set of wffs where each of wifs is made
up of literals Jjoined by disjunctions ("#"). Any wff
which consists of disjunction of 1literals 1s called a
clause. Any clause which contains both negated and
unnegated of the same literal are left out, since this
clause is a tautology, therefore the clause is traivially

true and contributes nothing.
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Each clause will be written as cl(A,B) where A 18 a
collection of unnegated literals and B 1s a collection of
negated literals but without negation """ sign. For
example,

("man(X) #human(X)) & (“woman(X)#human(X))
is written as

cl({human(X) ], (man{(X)]}.
cl{[human(X)], [woman{X})1).

8TAGE 7t Converting into Horn Clauses

All clauses are already in the form of cl(A,B). We will
use the convention to write <cl(A,B) as described in
Clocksin & Mellish [1981]. All literals in A and B will
be written separated by semic¢olon ":" and comma ".,"
respectively. Set of literals in A and B will be
separated with ":-" sign. If A and B consist of
unnegated literals a,b,... and negated literals k,1l,...
respectively, then the clause will be written as

a:b;... = k,1,...

in fact the signs "“:=-"., ";" and "," are just like
Prolog's syntax and their meaning are "ig implied by".

"or" and "and" respectively. For example, "a;b :- X,1" a1s
read as "if k and 1 then a or D" or "a or b is implied
by X and 1". Set A and B are called the head (or the
conclusion) and the body (or the condition) of the

clause. For examples:
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{S7.1]. «cl([],[wombat(X),lives(X,zoo),happy(X}]}).
is written as
[]:—wombat (X) , l1vesa(X,zoo) . happy(X) .
(i.e for all X, it is not the case that wombat(X) and
lives(X,zo0) and happy(X) OR no wombat who lives in
a zoo is happy).
[57.2]1. cl(([human(X) ], {man(X)])
is written as
human (X) :—man (X) .
(i.e human(X) 1s implied by man(X) ).
[S7.3]1. cl(lalave(X),dead(X)1.1))
is written as
alive(X);dead(X).
(i.e Either alive(X) or dead(X) is true)
(S7.4]. [cl(lfarst_man(adam)],[]).cl({first_woman(eve),[])]
is wraitten as

first_man{adam).
first_woman(eve).

(1.e adam and eve are the first man and woman
respectively)

[87.5]. cl([sad(joe) ,angry(3oe)l].
foffday(today) .rainang(today)l}

1S written as
sad(joe) ;angry(Joe) :— offdayvy(today) ,rartning(today)
(i.e 1f today is offday and it :i1s raining then joe is

sad or angry}.
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Since we are only interested in Horn clauses, the above
clauses will be converted into Horn clauses. As described
before that Horn clause 13 either a headless or a headed
clause. Furthermore a headed clause consists only one
unnegated literal. Where as A (1.e set of unnegated
literals) or the head of clause may contains none, one or
more than one unnegated literal. So examples [57.3] and
[S7.5] above are not Horn clauses, and example [S7.1] is
a headless Horn clause while examples [57.2] and [S7.4]
are already headed Horn clauses . However all Prolog
rules are in the form of headed Horn clauses, thus we

will transform all clauses into headed Horn clauses.

In order to transform the clauses into headed Horn
clauses, set A must contain only one literal. This can be
achieved by transferring either the extra literal(s) of
set A to B or one literal from set B to set A. By doing
so, the sign of the transferred literal or literals must
be changed 1i.e by putting a negation "7" sign in the
front of transferred literal(s) since " (7a) 18 equivalent
with a. For instance, example [57.1] above:

[]1:-wombat (X),lives(X,zo00) , happy(X)
is equivalent to (or can be written as)

“wombat (X) :—lives (X, zo0) ,happy (X) .

~1lives(X,zoo) :—happy (X) ,wombat (X) .
“happy (X) :—wombat (X)), lives(X,zo0).




83

Since Horn clauses are like Prolog rules or facts, the
negated sign will cause problem if 21t is straight
fowardly implemented in Proleg. This is due to the fact
that the operator '"not" in Prolog 1is not exactly
equivalent to the negation "~", i.e their meanings are
not equivalent. For instance, the meaning of

T

"not (man(mary))" in Proleg 1s different to "“man(mary)".
The first one refers to the fact that either mary is not
a man or an fact "man(mary)" dces not exist in Prolog's
database, while the latter only means that mary is not a
man. This is due to the definition of operator "not" in
Prolog which is defined as follows:

not(P)i=call(P),!, Teil,

not{f)i-tree.
To overcome this problem, the operator "™" which has
already been defined, is wused 1in order to make it as
valid rules of Prolog, thus the above examples will be

accepted as Prolog's rules (Note: for the purpose of

tracing, use ‘'‘spy 7' ).

It should be noted here that by doing so, the system
becomes an open world system. This 1s due to fact that in
order to prove a negated fact, the negated fact should
exist in the database, otherwise the system will tell
that the questioned fact does not exist in the database
or it cannot prove or deduce it from the database. This
is a contrast to a closed world system whereby we prove
the negation by trying to prove its counterpart, i.e. the

nonexistence or nondeducability of its positive fact.
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In addition, all possible combinations of Horn clauses
i.e with a different head or conclusion literal, will bhe
generated since we would like 1t to work just like
Prolog's rules or facts. If altogether there are N
literals in A and B, then N Horn clauses will be
generated. For examples:
(S7.2']. human(X) :—man(X)
is transformed into two Horn clauses:

human(X) :-man(X) .

a).
). "man(X) :=“human{X) .

(
(b
(1.e (b) means that if human(X) 1s false then man(X)
18 false or if X is not a human then X 1s not a man).
[S7.3'}. alive(X) ;dead(X)
is transformed into two Horn clauses:

alive(X) :="dead (X) .
dead (X) :=valive(X) .

(i.e The first one means that i1f dead(X) is false
then alive{X) is true. The second one means that if
alive(X) is false then dead(X) is true).
[S7.5'] sad(aoe);:;angry(joe) :— offday(today).raininag(today).
is transformed into four Horn clauses:
gad(joe) :— offday(today).raining{today), ~angry(ioe).
angry(joe) :— offday(today) ,.raining(today). ~sad(joce).
~of fday(today) :~raining(today), “sad(3oe) , Tangry{joe).
~“raining(today) :—="sad(joe), “angry(joe) ,of fday(today).
It should be noted here that clause (57.2']{b) above is
also called as the contrapositive form of clause
[§7.2']) (a) which 1is wuseful for backward producticn

gystems (Nilsson([1980]).
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The top procedurs to convert all clauses into headed Horn
claugses is carried out by procedure HC or predicate
horn_clauses/2 as shown in the Program 3.2.2 below:
{# Procedare B0 rconverting @ claesal nto headed Rorn claase 4/
harn _claeses([1,L1)1=1,
born clauses([ClaasalliClausald], Readedhorn)s=!,
horn_clauses!(Claesell,Bornl), 1% procedure §C1 ¥/

born_claases(Clagsal, Bornl),
2ppend(Bornl, Horn2 Beadedhorn),!,

Progras 3.3.4s Procedare If

So, the above procedure HC will convert a set of of all
clauses 1n the form of "Head:-Body" (variable "Clausall")
into headed Horn clauses. Each c¢lause 1s transformed into
equivalent headed Horn clauses by calling predicate
horn_clausel/2 or procedure HC1 which as shown in the
following program (Program 3.2.3):
I+ Procedure §01 screating N equivilence headed Born clauses ¥/
horn_claasest()1=Bady, L) i~
1+ procedere 01,1 ¥/
horn_claqsesd(Bady,(],0),!, it procedure §02 4/
horn_clausesl(Reads-Body, L)1~
/¢ procedare B01.1 ¥/
[}
c;nvert(ﬂeld,!odrf), 1% procedure LOKY #/
appendbody(Body!,Body, Body2), /¢ procedere BPRD #/
horn_clausesi{[]:-Body2,0),
horn_clausesi{(HeadReedl), L)1
1% procedure BC1.1 #/
[}
c;nvert((Eead:ieadl),!ndy),

horn_claases?(()s-Body,C).
horn_claesesi(Lateral,Liiteral]), /# procedure fC1,¢ ¥/

Prograp 31,2.3; Procedure §C!

As shown above (Program 3.2.3), procedure HCl 1s
classified into four subprocedures. Before a final
conversion into headed Horn clauses 1s done, all
clauses of the form "Head:-Body" will be converted into
“[]1:-Bodyl". Procedure HC.1 will test whether the get
"Head" is already empty, i.e "[]l:-Body", (see example

{87.1) above) and will do nothing.
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Procedures HC1.2 and HC1.3 will first convert clausesg of
type "a;b;...:-k,1,..." (see examples [57.2] and [S57.5]
above) and "a;b;..." (see example [S7.3] above)
respectively into the form of "{]}:-m,n,...." Dbefore
calling procedure HC2. If a clause 1is already in the
form of "a" or it consists only one literal (see example

[87.4]), then nothing is done (procedure HCi.4).

After all clauses have been changed 1into headless
clauses, then procedure HCZ2 will generate headed Horn
clauses. Procedure HC2 which will generate N eguivalent
headed Horn clauses where N is a number of literals in
each clause, 1s also subdivided 1into four subprocedures
(see Program 3.2.4 below).

It procedere B #/

born_clagses2({1,Bedy,(1)1-

/¥ procedare §C2,1 #f
!

harn_;!aﬁ:es?((vody,!ndy!),Body?,{Hathead:-kudyifiJ)l-
1% procedure BC1.1 #/
[

oy

canvert{Body, Nothead),

appendbody(Bady?,Body!, Bodpd),

appendbody(dody2,Body, Bodyd),

hern_clauses2(Bodyl,Bodyd, b},
hern_clauses2(Body, (], [Kothead))t-

i! procedere §{1,3 #f

!

convert(Body,Kothead),
harn_clauses2(Body,Rady?, [Rotheadr-Bodyl )i

/¢ procedure (2,4 2/

i

-t

convert{Bedy, Hothead).

frogras 3.2.41 Procedere BL2

As shown in the above Program 3.2.4, the first procedure
HC2.1 is the ending procedure when there is no more
literals to be transformed into headed Horn clauses. All
clauses are type of "[}:-k,l1,m,..." is passed from

procedure HCl to procedure HCZ.
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Procedure HC2.2 will first move literal k into the raght
hand side (RHS) of the rule and generate clause
““k:-1l.m,...". This process is continued by moving one
literal at a time into the RHS of the rule until N headed

Horn clauses are generated.

Procedure HC2.4 13 the ending of subprocess of procedure
HC2.2. When there is only one literal in the clause, for
example, "{]:-k", then procedure HC2.3 will convert 21t
into clause "“k". Procedures HC2.3 and HC2.4 are in
fact equivalent except that procedure HC2.3 is to form a

clause of ""k" instead of "““k:-{]".

All literals of either the head or the body of clauses is
moved from the left-hand side (LHS) or the right-hand
gside (RHS) to the opposite side of the rule by procedure
CONV or predicate convert/2 as shown in the following
program (Program 3.2.5).

/¥ procedure COKY smoving literals into the left hand side #
f or the rpight hand side of a rale s wppropriate ¢
convert({AyB},(R1,01))s-
1# procedare (ORU. 1 snove lateral{s) into the RES of a rule #/
Hconvert(d,nf},
convert(R, 1),
convert((X,L},(R{sL1})s-
1% procedure (ORV.2 smove literal(s) into the LB of 2 rale #/

I convert(l k1),

convert(l, L),
convert(“a,A)e~', I+ procedure LOKV.] #/
cenvert(f,“A}. f+ procedare (OXV,4 #/

frogran 3.2,31 Procedares COKY

11~ 1

Procedure CONV.3 (as shown above) will take away sign
from the literal if there already exists, otherwise the
gsign "7" will be added in the front of it if there does
not already exist (procedure CONV.4) when moving it from

one side of the rule into the other saide.
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3.3 The refutation process

As we said earlier that the implemented refutation system is
almost entirely based on the refutation 1in Prolog as the
Program 1s written in Prolog. In the last section we have
described how first order legic statements are transformed
into Horn clauses. These clauses are actually facts which
will be used to prove a hypothesis or to answer a gquestiocon.
In Prolog, a collection of facts 1is called a database. We
can divide the refutation procedure into three stages, i.e

(1). Setting up a database (knowledge base).

(2). Formatting a goal.

{3). The refutation procedure.

3.3.1 Setting up a database (knowledge base).

A database consists a collection of Horn clauses which are
generated from Known knowledge as well as from questions and
hypotheses. These clauses are called knowledge base clauses
(KB clauses). KB clauses are made up from two types of
clauseg. The first one is a collection of clauses resulting
from the negation of questions or hypotheses, 1.e query
clauses. And the other is a collection of axioms or known
clauses, i.e knowledge clauses. Thus the definition of KB
clauses 1s as follows:
knonledge_base(k}e-
query(k}. 1% query clauses #/
knonledge base(k)s-
knonledge(R).  /# knowledge clauses #/

Prograw 3,3, 1,ft Definition of knowledge base (KB) claeses




KB clauses can be categorised into two classes,

and ruled KB clauses,

clauses waithout and with

the fairast following three are

rest are ruled KB clauses.
tnonledge(perseninazral)).
Enoniedge(boy(nazat)),
querg(“girl{nazral}),

knowledgelhenen(k) s~aan(i)),
query(lrkes(X, Y 1=pan(}),nonan(y)}.

As we need these

query and knowledge clauses), we

Factual

body respectively,

two different types
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i.e factual

and ruled KB clauses are

for instance,

factual KB clauses and the

i & facteal KB clause ¢/
1 g factual K3 clagse ¥/
/¢ & factaal KB clase ¥/
It & reled FB cliese #/
It & roled KB clagse #/

of KB clauses (i.e

have to split the process

of converting a predicate calculus (PC) statement into three

subprocedures. There are procedures TRTOP, TRBEOT and
Skolemisation of existential gquantifiers for knowledge
statements (knowledge clauses) and questions (query

clauses) .
predicate translate_top
removing all implication and
moving in negation signs.
translate_top(%,52)s-
teploet(X, K1), [# STRGE | &/
negin(Xf,k2), /% STAGE 2 #/
Progran 3,3.1.21 Procedare TRIOP

Procedure TRBOT or predicate

Stage 4 up to stage 6 and also

process of prainting clauses in
3.3.1.3 below).

translate_bottan{X3,Claqse)s-
aniveut(X3, X4},
conjn(k4, X3},
cleesify(X§,16,L1)
baildclaases(ké,Clausel,
printclauses{Clanse),

froqras 3.1.1,31 Procedare TRROL

As shown in Program 3.3.1.2,

consists

procedure TRTOP or
stages,

and then,

first two 1.e

equivalence signs,

translate_bottom/2 consists of

a part of Stage 7, i.e. the

Clocksin format (see Program

1# STRGE { #/
{¥ STRBE § #/
/¢ STRGE & #/
14 STABE Ta 2/
f printing Clagse &/
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The Skolemisgation of existential quantifiers for each type
of clauses (Kknowledge and query) will be explained

accordingly in the following sections.

3.3.1.1 Knowledge clauses

Knowledge clauses result from the transformation of
axioms or known knowledge. These Horn clauses are
asserted in the Prolog system as facts by adopting them
as variables or arguments of a predicate, namely
knowledge. S0 predicate knowledge/l 1is a fact and its
object is a generated Horn clause. For examples, the
following generated Horn clauses:

human (X) : —man (X)

“man (X) :="human (X)

animal{fs(animal0))
are asserted in a Prolog's database as follows:

knowledge(hanan(X)i-aan(Xi},

knonledge(*van{l)t="haman{i}),

knonledge(animal{fs(aninalf})),
It should be noted that "fs" is taken as Skolem function
indicator for all knowledge clauses. This 1s done by
defining predicate skolem/3 or procedure SKOLEM (see
Appendix) to Skolemised existential quantifiers for all
knowledge clauses. Then procedure PICKSK or predicate
pickskolem/3 (see Program 3.3.1.49 is called from
procedure SKOLEM to pick a symbol's name for a Skolem
function in replacing the existential quantifiers.

packskolex(Hane,VYars,Sk)i-

gensyailane,f), {¥ procedure GENSYN #/

append{[F ), Yars,Fandarys),
Sk, J[isiFandargs),

frogran 3.3.1,41 Procedare PICRSY
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Procedure GENSYM or predicate gensym/2 (3ee Appendix)
will generate a symbol name for Skolemised existential
quantifier and variable "Sk" 1s a Skolem function or
variable. Thus “fs(animal0)" in the above example is a

Skolem congtant for an animal.

In general that if H is a Horn clause generated from
axioms or knowledge statements, then knowledge(H) is
asserted in the database as facts.

pefacts-

read(§), 1% read 2 PC statenent 4/
issert_knowledge(S), /¥ procedure 8SSKE #/

frograr 3.3,1,88 Procedare PCFACT
Procedure PCFACT or predicate pcfact/0 (see the above
Program 3.3.1.5) will read a predicate calculus (PC)
statement, S, and assert 1ts generated Horn clauses into
the database by procedure ASSKG or predicate
assert_knowledgesl as shown in the following program
(Program 3.3.1.6).

/% Procedure ASSEE 1to assert knowledge clauses info the databise #/
assert_knowledge(S)i-

translete(S,Claese}, ¥ procedure TRECE #/
horn_tleases(Clease,fornl, It procedure BC 8/
stassertz(fiorn).

/¢ Procedere JRPLK: to translate PC, 8, 1nte Clocksin format, (lause ¥/
trapslete(S,(lagse) s~
translate_top(§,12},
skolen(k2,83,01), /¥ Procedure SKOLEN tStage I for knowledge clauses #/
translide_botbom( X, (laase),

1% Procedure STAST rassert “knenledge(B)* in the database #/
stassert2il])s-!,
stassertz([R/11):-

issertz{inonledge(f}),

stassertz(l),

frogren 1,3.1.61 Asserbing knonledge cleases into the database
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Procedure ASSKG will firstly translate the PC statement S

into clauses of Clocksin format by procedure TRPCK or
predicate translate/2 (see Program 3.3.1.6). After that
the result (variable "Clause"}) is passed to procedure HC
(see section 3.2 Stage 7) in order to transform them into
headed Horn clauses. Finally the headed Horn clauses are
asserted in the database (procedure STASZ or predicate

stassertz/1 - see also Program 3.3.1.6).

The following is an example of Prolog's sgession which shows
how to assert Xknowledge c¢lauses by using the predicate
pcfact/0 or procedure PCFACT.
F-pefact,
i all i aan(X)=human{X}).
The tanslated clausest

husan{_1} t= man(_{),
LLELAALEL nextnextnext LAELAGLAELY

yes
?=listing{knonledge).

knowledge (human{_{}t-man{_1)),
knowledge(*mran{_1}1- “husan(_1)),

yes

Gession 3.3.1,13 Asserting knowledge clauses tn the database.

After procedure PCFACT is successfully called, then we
can see the listing of knowledge (KB} clauses in the

database as shown in the above session (Session 3.3.1.1).
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X.3.1.2 Query clausesn.

Query clauses result from the transformation of the
negation of questiona or hypotheses to be proved. In
order to distinguish between knowledge and query clauses,
query clauses are asserted into the database with
predicate query/l1. This will also make 1t easier to
retract all query clauses from the database as they will
not be permanently stored in the database. For example,
the following query clauses:

wombat (f{ q (wombatQ))
lives(fq(wombat0) ,z00))

are asserted into the database as follows:

qeeryinonbat{folnonbatd))},
querp(lives(fo(nonbat0), ze0)),

Here, "fq" 1s a Skolem function aindicator for all guery
clauses. This 18 to differentiate with the knowledge's
Skolem indicator "fs". Since knowledge clauses can be
permanently kept 1n a file, and at any time the file can
be consulted 1n Prolog session before proving a new
statement, then the same index of Skolem variable will
probably be generated. To overcome this problem, two
different symbols are used to represent query and
knowledge Skolem function indicators, 1i.e "fq" and "fs"

respectively.

Although, it can be overcome by keeping the log of
indices of Skolem functions used 1i1n the KB clauses, but
this technique does not overcome the most important
difference. The most important difference is that Skolem
function of query clause is actually a result of the

negation of universal guantifiers of a 4gquestion. So it
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does not only correspond to the meaning of replacing
existentially quantified with a Skolem function, but it
also serves a different purpose, 1i.e the query's Skolem
function 1s only to match or unify with any variable or
with the same Skolem function of KB clauses or otherwise
it defeats the purpose of the negation of a gquestion.
Therefore the unification between query and knowledge
Skolem functions are avoided. For instance, suppose the
database contains the following clauses:

Enoxledgetnonbat(fsinonbat0) )},
knowledge(lives(fs{noabat), 200)),

which means that there exists a wombat who lives in a
zoo, 1.e exists(X,wombat(X)&lives(X,zoo0)). And also
suppose the question is "do all wombats live in a zoo?",
thus the result of the negation of the question, 1.e.
all(X.wombat(X)=J>lives(X,zo00)), becomes:

qaery(unabat{folnonbatdl)),
query(“lives{fy(nonbat0), zo0}).

Indeed, ""lives(fg(wombatQ),z00)" of query clauses cannot
be resolved with "lives(fs(wombat0),zoo)" of knowledge
clauses to produce an empty clause due to the fact that
"fq(wombat0))" cannot be wunified with "fs({wombat0)". So
the proof 1s an unsuccessful one, or we can say that not
all wombats live in a =zoco. In this case, "fs{wombatQ)"
refers to only one particular wombat who 1lives in the
zoo (knowledge statement); on the contrary "fg(wombatO)"“
refers to all wombats whom we like to know whether all of

them live in a zoo.

Nilsson[1980] pointed out that in the answer-extracting
process, it 1s correct to replace any Skolem functions in

the clauses coming from the negation of the gocal wff by
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new variables. This 18 not true in this case, as if we
replace the Skolem function "fg(wombat()" of query
clauses with a variable, let say Y, to become:

queryincabat(y)),
qeery(*lives(¥, zo0)),

So, "7lives(Y,zo00)" of query clauses will be resolved
with "laves(fs(wombat0O) ,zo0)" of knowledge clauses to
produce an empty clause where variable Y is unified with
"fs(wombat0)". This means that the proof is successful or
we can say that all wombats live in a zoo. The irony lay
1n the fact that the refutation process produces a wrong
answer, although it ends wup with an empty clause. The
wrong answer is that all wombats live in a zoo (except
that if there is only one wombat i1n the world, i.e wombat
"fs(wombat0)") as we know that the contrary is a true
one. The arbitrary replacement of Skolem function with a
variable certainly can not be adopted here as the
refutation system which will be described later will not
only be used with the answer-extraction process only,

but it is also used to prove a hypothesais,

There are, however, certain cases where the BSkolem
function of gquestions causes a somewhat obtuse answer.
For instance, let the database contains the following
knowledge clauses which means that all men love Mary, i.e
all(X.man(X) =) loves(X.mary)):

Enonledgedloves(X, Nary) t-nan{i}},
knonledge{*nan{k) ¢~ “loves(i, Nary)).

and, let the question is that "do all men love Mary?" 1.e
all(Y,.mancY)=J>loves(Y.mary)). By saving the explanaticn
of refutation procedure for the next section, let see the

following session:
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7-pequest,
it alb(Y,man{Y)=}loves (Y, naryl},

The translation of its negatiomt

aanifqlmandl),
“loves{fq(nan0} ,mary)),

Phnswert Yes,
all{fq(man0},man{fqimandi=)loves{fg(nanl,aaryl),

!
Session 3.3,1,2! Exasple of an obtuse answer

We can see from the above session that the final answer
18 "all(fq(man0), man(fq(man0) =) loves(fgq(man0),mary))"
where "Y" 1s instantiated with "fgq(man0)" during the
refutation process. In other words, the answer means
that all men, namely "fg(manO)", loves mary . It should
be noted here that "“fg(manO0)" 1s the gquestioned Skolem
function which replaces the universal quantifier "Y".
This answered PC 13 quite an obtuse answer and i1t does
not clearly show that all men love mary due to the

existent of "fg(man0)" in the final answer.

To prevent this obtuse answer, we will replace all
questioned Skolem functions appearing in the final answer
(after the proving has been done) with variables as
opposed to the method suggest by Nilsson[1980] which
replaces Skolem functions before the refutation process
or immediately after the process of transforming the
negation of question into clausal form. After
substituting all questioned Skolem  functions with
variables, we will get "all(Z,man(Z2)=>loves(Z,mary))" as
a final answer which is more intelligible and meaningful.

In order to replace all Skolem functions 1in the final
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answer, we need to keep a list of all Skolem functions of
questions during Skolemisation of existential quantifiers

for query clauses.

The same technique as described before (section 3.3.1.1)
is used to create a symbol for Skelem functions for all
query clauses, 1.e by defining predicates skolemg/4
(procedure SKOLEM(O —-see Appendix) and pickskolema/3 (or
procedure PICKSKQ -see Program 3.3.1.7).
prekskoleng(Kane,Yars,Sk)1-
gensyr{fase, f),
append(iFl, Cars, Fandargs),
Skx, [foiFandargsl.
frogran 3.3,1,7¢ Procedare PILKS
In general , if H is a Horn clause generated from the
negation of a question , then gquery{H) 1s asserted into
the database as facts.
/4 Procedare A889 1o assert query clrases into the datebase ¥/
assert_query(8,Ciease,Skltst) i
translateq(d,Cleese,Sklist),
horn_claases(Ciause, darnl,
qassertziforn),
{% Procedure TRQ sto translate G, 0, rnta Clocksin fornat, Clruse #/
translateq(d, Claase, Sklist)s-
translate_top(S,12),
skolenq(X2,43,03,8k1is5t), I+ Procedare SROLERQ 1Stage ] for query clatses #/
translate botton(ky, Clause).
{# Procedure QASS tassert "query(H)* in the database ¢/
qassertz(fiie-!.
qussert2([8/1])4-
tsserbrlquery(i)},
qassertz(l),
frogras 1,3.1.81 Rssert query clauses into the database
As shown in Program 3.3.1.8, procedure ASSQ (predicate
assert_query/3) will convert a negation of question, Q,
(in PC) and transform 1t into Horn clauses (procedures
TRQ and HC) and assert the resulted headed Horn Clauses
into the database (procedure QASS or predicate

gassertz/1). This procedure 1is actually equiwvalent to
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procedure ASSKG but both of them produce two different

type of clauses (query and knowledge).

For example, if Q (in PC form) is a question, then query
clauses will be asserted into the database by calling
predicate assert_query(~Q,C,Sklist), where variable
“Sklist" contains a list of all questioned Skolem
functions. It should be noted here that this predicate
wi1ll not be used or executed independently, but will be
used 1n conjunction with proving a goal or answering a
question. However let see the following session:
7- assert_query( *all{X,man(X}=)loves (X, aary)},C,Skl1st),
C = [aan{fqinan0)), *loves(fgiman0l,mary}}l,
Sklist = [[_1,fg({man0i]]
yes
7-1istinglgueryl,

query (man{fqisand})).
query (*loves{fqlman0) aary)}),

yes
Session 3.3.1.31 Asserting query clauses into & databise

It can be seen from the above session (3.3.1.3) that by
calling the predicate assert_query/3, we will get the
the result of the converting the negation of the question
into Horn clauses. The variable "C" refers to the
resulting clauses in Clocksain format (as descrabed
before) and the variable *"Sklist" consist a list of
questioned Skolem functions and 1ts original universal
quantifiers, i.e in this case, the original universal
quantifier of the gquestion is "X or "_1" (Prolog
variable). The listing in the above session shows the

gquery clauses as in the database.
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X.3.2 Goal Formatting.
Once we have facts or have set up a database, i.e a
collection of knowledge and query clauses, we can ask a
question or prove whether a statement follows or can be
deduced from the database (KB clauses). A goal clause in a
set of Horn clauses is the headless one i.e cl([].B). These
can be written in Prolog's syntax as

7- B
where B is a collection of 1literals separated by comma. For
example, "cl([l,[a,b,c])" or equivalently "([l:-a,b,c" ., is
written as a goal in Prolog as

?7- a.b.c.
In order to format a goal in Prolog, one of gquery clauses
must be a headless Horn clause, 1i.e gquery([]:-B) or
cl([]1.B). As we have noticed that there does not necessarily
exist a headless query clause in the database , therefore
cone of query clauges must be converted i1into a headless one.
In other words, the head of the goal clause must be an

empty set [].

It can also be noticed that the required format of the goal
clause can be derived directly from the corresponding clause
in Clocksin format. Thus we do not need to reconvert again
from a headed Horn clause to a headless Horn clause. It 1is
enough just by storing the corresponding clauses in Clocksin
format and then transferring the head of the clause into the
body of the clause. For examples:
{3.3.2.1). If the query clause is
human (X) :—man (X) .
then the corresponding goal clause is

(]:—"human(X) ,man{(X) .
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[3.3.2.2]. If the question is
exists (X,wombat (X)&happy (X))
then the corresponding goal clause is
[1:-wombat (X) ,happy(X).
or 1n Prolog is written as
?-wombat (X} ,happy (X) .
{Note: This 13 & headless clause, so nothing is done)
(3.3.2.3] If the query clauses 1in Clockgin format are

wombat (fgq (wombatO0) ) .
lives (fg(wombatQ) ,zoco).

then the corresponding goal clauses are

{1:—"wombat (fg{wombat0))
[}:="1ives(fq (wombat0), zoo).

The program to format a goal 15 similar to the program
described 1n Stage 7 (section 3.2) with the exception that
we do not need to create N equivalent goals as all N
equivalent Horn clauses produce the same goal clause., For
example, the following two equivalent Horn clauses of the
query clause as 1n example [3.3.2.1]:

human(X) :—man(X) .
“man{X) :— “human(X) .

Ww1ll generate the same goal clause:
{]:= “human(X) ,man(X).

The following procedure FG or predicate format_goal/2 (see
Program 3.3.2.1) will format a goal from the query clause in
the form of Clocksin format.

{t Procedure £§ sgoal fornatting #/

fornat_goal(L11-Body,Body)s-

!, I# procedere £8.1 #

forsat_goal(Hs=T,80al) 1~
f* procedure f6,2 ¥/

convert(B, Koth), I+ procedure [ORY #/
appendbodyliioth, T, 80al), !, 1% procedare QFFD #/

forsat_goal{f,Goal)s-
/¢ procedare F§,1 ¢/
convert(d, boal),!,

Progres 3,3.2.13 Procedare 6 (goal formatting)
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If the query clause 13 already in the form of a headless
clause, then nothing is done (see example [3.3.2.1]) above),
so procedure FG.1 will just take the body of the clause as a

goal.

If there are 1literals in the head of ruled clause"H:-T",
1.e set H 18 a nonempty one (see example [3.3.2.2] above),
then all of them are moved into the RHS of the rule and
appended to the current body to become a goal (procedure

FG.2).

If the clause does not contain a body, i.e set T of "H:-T"
18 empty or the <clause 1s a factual one (see example
[3.3.2.3)] above)., then procedure FG.3 will carry across all
the literals of set H into the RHS of the rule to become a

headless clause and the new body is taken as a goal.

Procedures CONV and APPB have already been explained in
Stage 7 of section 3.2 (see Program 3.2.5). The following
session (Session 3.3.2.1) shows some examples of goal
formatting by using procedure FG.
?-forsat_goal(([J:-wonbat (k) happy(X}},¥).
Y acabat(_D), bappy{_ 1),
res
?=format_goal(Chapan(X)e-nan{k}), V),
Y = “hanan(_1}, nan(_{),
fes
Sessron 3.3,2.11 Sowe exanples of goal formatiing
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3.3.3 The Refutation Procedure

In the refutation or proving procedure, which will be
described here, a combination of control strategies and
resolution methods is adopted. The main strategy adopted is
the linear ainput form. Although the linear input form
strategy 1s incomplete in the sense that it does not produce
all possible solutions, it is used because of its simplicity

and efficiency. Furthermore Prolog adopts this strategy.

In addition to the linear input form strategy, we also adopt
the set of support strategy (gsee chapter 2 for the
definitions of all the strategies). By using the basis of
the set of support strategy, we start with a headless clause
from the set of query clauses. In other words, we take one
of the query clauses and convert 1t into a headless clause
and use this one as a goal <clause or one of the starting
parent clauses. The other parent clause is taken from the

set of KB clauses.

The proving or refutation procedure is actually just like a
Prolog interpreter written in Prolog. That is, we can define
what is to run a Prolog program by something which is 1tself
a Prolog program. This means that all the gquery and
knowledge clauses are Prolog rules and can be executed

directly.

Summarily, in our refutation or proving procedure, we start
with the goal clause and resclve 1t with one of the KB
clauses, to give a new claugse. Then we regolve it with cne

of the KB clauses, and so on. At each stage, we resolve the
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clause last obtained with one of the original knowledge
clauses. At no point in the refutation procedures, do we
either use a clauze that has been derived previously or
regsolve together two KB clauses. In Prolog terms, the latest
derived clause can be taken as the conjunction of goals yet
to be satisfied. Thas starts off as the goal, and hopefully

ends up as the empty clause.

At each stage , find a clause whose head matches the last
literal of the goals, instantiate variables as necessary. Do
the same process to the body of the instantiated clause
which becomes yet another goal. The literal to be matched is

always selected from the last one of the goal.

The instantiation of the variables or the unification
procedure 13 based on Prolog instantiation. For example, 1if
the goal clause is

{] :=drugpusher(X) ,officer(X).
then we wi1ll try to resolve officer(X) first and suppose
that the following knowledge clause exasts in the database:

knonledgelofticer(fs(searchedd,¥))t-entered(¥},*v2p(Y)},

thus, the new resolvent will become

[]1:~drugpusher(f (searched0,Y)) ,entered(Y),“vip(Y).
where X is 1nstantiated with "fs(searched0,Y)". The new
resolvent will form a new goal, 1.e:

{]1:~drugpusher (fs(searched,Y)).entered(Y) ., vip(Y)).
So the proof continues with a new literal goal, ""vip(Y)",
and so on taking new literal goal from right to the left of
the goal. If the proof ends with the empty clause then the

hypothesis 18 true, otherwise it fails.
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The refutation or proving procedures are implemented by two
different methods. One is a depth-first methed and the
other one 18 a breadth-first method. Before we describe both
depth-first and breadth-first methods in secticns 3.3.3.2
and 3.3.3.3 respectively, we will first explain the top
level predicate which do the proving controlling and the

answer printing.

X.5.3.1 The top level predicates
The most top level predicate which do the proving or
refutation control is a predicate pcquest/0 or procedure
PCQUEST as shown in the Program 3.3.3.1 below. In other
words, Program 3.3.3.1 shows how a dgquestion 1s proved or
answered. Procedure PCQUEST will prompt a question 1in a
predicate calculus form which will then be proved by
procedure QUEST or predicate question/1
1% procedure PLOUEST 2proapt @ question and prove 1t &/
peguests=
read(é), {t read & question & in PL forn #f
qeestion(@), /¥ procedgre QUEST #/

1% procedere QUEST sproving tr answering a question & 4/
question{Qi1-

clear_pc, {2 Step | tprocedure CLEARPC #/
question_to_hornclaase(@,Clause,Skiist), /¢ Step ! rprocedure QIAC #/
answer_search{Clause,8,Y,5k1ist), fv Step 3 tprocedure S #/
prant_ansuer(d,Y,Clause), f* Step 4 sprocedare £A 2/

frogras 3.3,3,1t Proving @ question

The procedure for proving or answering a question (as shown
in the above program 3.3.3.1) is divided into four steps as
follows:

[1]. Re-setting all contrel predicates.

[2]. Converting into Horn clauses.

[3]1. Searching for answers,

{4]. Prainting the answers.
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3.3.3.1.1 Re—setting all control predicates (8tep 1)

Before the refutation process 1is carried out, all control
predicates will be reset by calling procedure CLEAR (or
predicate clear_pc/0). Predicate clear_pc/0 (see Appendix)
will reset, by retracting or abolishing, all control
predicates which will be used during proving the hypothesis
or answering a dquestion. Library predicates are used to
retract (retractall/l) or to abolish (abolish/2) all control
predicates such as toptry0/1, toptry/l, proven/l etc. All
query clauses are also abolished from the database before we

start the refutation process.

3.3.3.1.2 Converting into Horn clauses (Step 2)
The second step of procedure QUEST, 1.e procedure QTHC or
predicate question_to_hornclause/3., (see Program 3.3.3.2
below) is to convert a negation of the question ,Q, into
query clauses (in the form of headed Horn Clause) by keeping
its clauses in Clocksin format (variable "Clause"”) and also
all questioned Skolem functions (variable "Sklist") for
changing back into wvariables later, and then assert them
(query clauses) into the database. This is done by calling
predicate assert_query(~Q,clause,Sklist) or procedure ASSQ
(see Program 3.3.8 of section 3.3.1.2 for 1ts detail
descriptions).

It procedare QIRC #/

guestion_to _hernclease{@, Clanse,8klist)s~

assert_qaery(*8,Llause,Ski1st), f# procedure #3854 #/
frogra 3,3.3.2¢ Procedure QTAC
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3.3.3.1.3 Searching for answers (Step 3I)

The third step of procedure QUEST, 1.e procedure AS (as
shown in Program 3.3.3.3 below), 18 to search the answers
for the question after its negation was transformed into

Horn clauses.

At first, (the first procedure of predicate answer_search/4,
i.e procedure AS.1)., we will try to find all possible
answers until the proving is exhausted. At this stage, the
question is already in the form of Clocksin format (variable
“Clause'"). The prove 18 carried out by procedure ANS or
predicate answer/3. This procedure (ANS)} will return answer

ves" or "no' (variable "Ans") depending on the result of

the proving.

For the purpose of printing and controlling, predicate
arfirm(Ans) will then be asserted in the database as in the
procedure AS.1. Variable "X" which 1s actually the question
in 1ts original form (PC), contains all unified quantifier
variables including questioned Skolem functions (if they

exist).

As explained before (section 3.3.1.2) this questioned Skolem
function gives unantelligent answers. Thus before this
answered PC which may contain unified quantified wvariables
is passed to other predicate for printing, all questicned
Skolem functions, if they exist, will be changed back to
variables (the last 1line of procedure AS.1) by calling
procedure SSK or predicate subst_ skolem/3 (see Appendix for

1ts definition). Thus, procedure SSK will return a new
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answered PC ,"Y", which 18 free from any questioned Skolem
functions.
/¢ procedure BS isearching answers for question 4 ¢/

answer_searchiClrase, X, Y, Skl1st)t-
14 procedure 85,11 find all possible ansuers entil exhaasted #/

ansuer(X,Clecse, bns), % procedure QNS #/
asseriz_nex{affireiing)},
sabst_skolen(X, Y, Sklist), 1% procedure SSK 8

answer_search(Clause,X,Y, Sklist}s-
1% procedure 28,15 na more answers {the praving ends) #/
Claesels=(],
existsltoptry(i)}, !,

Progras 3.3,3,31 Procedure §5

The second one of procedure AS, 1.e procedure AS.2, will

make itself successful after all possible proving paths are
explored ,1.e until predicate answer/3 fails, 1n order to
show that the proof is finished. The ending of proving is
indicated by the existence of predicate toptry([]) (=see
Program 3.3.3.3). Eventually this procedure (AS.2) wall
return the uninstantiated value of an answered PC, i.e

variable "Y'".

It should be noted here that the procedure ANS or predicate
answer/3 13 the core of refutation procedure and will be

explained i1n the next sections 3.3.3.2 and 3.3.3.3.

3.3.3.1.4 Printing the answers (Step 4)

The fourth step of procedure QUEST is procedure PA (see
Program 3.3.3.4). Procedure PA (or predicate print_answer/4)
15 called 1n order to print answers for the questions. The
procedure PA will be divided into two subprocedures. The
first one, procedure PA.1l, is to print a remark about the
inconsistency of the question. The remark is printed by

calling procedure AF. The second one, procedure PA.2, 13 to
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print the result of the proving of the question ,i.e either
successful or failure one. This is done by calling predicate
print_answer0/2 or procedure PAQ.
¥ procedure PR rprinting the answer or solution #/
print_enswer(@,¥,[1) 1=
It Procedare PA, 11 the clause 15 an inconsistent ane #/
affirallns),
answer_fora(Y,ins), 1¥ procedure ff ¢/
write(’ The question claase Is #n inconsistent ore '),
1]
print_tnswer(Q,! (lazse)s-
{# Procedure PR, 31 print either successiel or farlare proving #/
Clagsels=f],
print_tnswerd(a, 1), 1% pracedure PR #/
/¢ procedure A #/
answer_foralY, tns)

Nrite_enswer{user,Ans), /% procedare Ui #/
writepcluser,y), f# procedure JPL ¢/

Progras §,3.1,4¢ Procedures PA and Af

Procedure AF or predicate answer_form/2 (see also Program

3.3.3.4) wi1ll print a remark of the result or answer (either

ves" or "no" depending on the wvalue of "Ans") , and also
the answered PC. The remark and the answer itself are

printed by procedures WA and WPC respectively.

As shown in Program 3.3.3.5, procedure PAO or predicate
print_answer(/2 is subdivided into two procedures, namely
procedure PAQ.1 and PAO.2, which will handle positaive (yes)
answer and negative (no) or end of proving remarks
respectively. The positive answer or successful proving 1is
shown by the existence of predicate affirm(yes) and the
instantiated answered PC, "Y", (nonvar(Y) 1is true). As
described before that the unsuccessful proving will return
an uninstantiated wvalue of "Y" (see procedure AS.2 of
Program 3.3.3.3). The prainting of =uccessful result is done

by predicate more_answer/l or procedure MORE-ANS.




109

/* procedure PAG ¥/
prant_answerd(q,y)1-
J¥ procedure PAY, Lt to priné "yes” answer ¥/
nonvar(Y),
affiraiyest,
answer _foralY, yes), /% procedare &f ¢/
! nare_tnswer()), /¢ procedure NORE-ANS ¢/
print_answer0(8,Y}s-
/¥ procedure PRO.2t end of praving processing &/
existsitoptry((l)),
test_finish_fact(Q), /¥ procedare 16 4/

frograw 3,3.3,8: Procedure PAD
After the printing of result, the enquirer is given a set of
options. These options are by selecting or typing one of the
following: ;, ¥ . a, n., b, <return>, p or others characters,

The following table gives the meaning of every options.

Option Haaning

i abort

b bresk

P printing solution’s tree or graph

n or {return} not to find other answers (satisfy
with the given inswer)

jory find if there is other answer

pthers displaying help table {like this one)

TABLE 3.3.1¢ Options for procedure AR
The response from the enguirer will be diagnosed by
predicate answer_response/2 or procedure AR (see Appendix).
This procedure., AR, 18 called from procedures MQORE-ANS which
is shown in Program 3.3.3.6. When option p is typed,
predicate print_solution will print the scolution's tree (see
Appendix) .

1% procedore NORE-RHS #/

sore_answer(Y)g-

urite_proved{user,¥},

geto(R),
answer response(h,Y). 1% procedure QR #/

Progran 3,3,3,81 Procedare NORE-ANS
The second subprocedure of print_answer(, i.e procedure
PAQ.2, deals with the end of proving sign. The proof ends

when predicate toptry([]) exists in the database. If this 1is
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go, predicate test_finish fact/1 or procedure TFF will be
called. A3 shown 1n Program 3.3.3.7, procedure TFF is
sundered i1into two procedures, namely procedure TFF.1 and

TFF.2, by the value of "Ans" of predicate affirm(idns).

Procedure TFF.1 is to prant a remark that no more more
answers are possible or the proof ends successfully provided
that there exists the predicate affirm(yes). On the hand, if
the "Ans" is instantiated to ''mo", then procedure TFF.2 will
print a remark that the proof 1is unsuccessful and then the
enquirer or user will be ask a confairmation of asserting the
question as a knowledge in the database. Procedure AAF or
predicate ask_assert_fact/2 (see Appendix) will diagnose the
response given by the enquarer. There are only two options
avallable ,i.ey and n for vyes and not to assert the
question into the database respectively. If the user agree
to assert the question as a fact or knowledge, then
procedure ASSKG (predicate assert_knowledge) will be
called, otherwise procedure TFF will do nothing and
eventually the whole question-answering process comes to
end.
/% procedare IFF #/
test_finrsh_fact(Q)s-
/¢ procedure tF1.01 to print “no nore answers " #/
affiraiyes),
write_answerlaser,finish),!, [+ procedure KA #/
test_finash fact(ghs-
It procedare $11.2¢ to ask confirpation of esserting & question
is 2 fact inte the database 8/
affirn(m),
answer_fora(Y, nal, 1% procedure fF #/
nl,nl tab(8),nr2te(’ Do you Iike to assert '},
nl dab(8) nrite_guote(8),
mtab(8) wrrtel’ as 2 fact in the daetabace (y/n} 7 '),

gett(X),
ast_assert_fact{, 0}, /% procedure QA #/

frogrew §.3,3.7¢ Procedare IEE
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3.3.3.2 The Depth First Method

Beside using the combination of the set of support strategy
and linear input resolution as described earlier, we also
adopt the unit preference strategy in the depth first
method. Thas ig to make sure that the resolvent has fewer
literals than do their other parents 1.e the goal. This
process helps to focus the search towards producing an empty
clause, thus typically increases efficiency, although it may

take a longer path to reach the solution.

By using this method, we will prove only one goal clause at
any time. So there 1s only one goal clause or headless Horn
clause existing at any time of the proving. The proof is
successful if one of the goal clauses can derive an empty
clause, otherwise the proof fails if all goal clauses cannot
derive an empty clause. Thus, for instance, if the following
1s a list of query clauses:

[wombat (fq (wombat®) ), lives (fq(wombat0) ,zo0) ]
then first we convert the first query clause or the head of
the list into a goal or a headless clause, i.e.

[]:—"wombat (fq(wombat0)) .
and we try to derive an empty clause from the above clause.
If 1t is successful, then the hypothesis 1s true. Otherwise,
we convert the second query <clause of the above original
list or the head of the current list, i.e
[lives(fq(wombat0),zo0)], into a headless Horn <c¢lause and
try to prove it, that is

[]:— “lives(fq(wombatQ),zoo}.
If this one is still unprovable then the hypothesis is false
or the question can not be proved, as there 13 no query

clauses left in the current list, i.e [] (an empty list).
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We will divide the refutation procedure based on a depth-
first method into five different levels of major procedures
as follows where the level 1 1s the highest level and the
level 5 18 the lowest (deepest) one:

(1]. Procedure ANS

[2]. Procedure ASK

{3]. Procedure FACTPR

[4). Procedure BASEPR

[51. Procedure FACTCL

3.3.3.2.1 Level 1: Procedure ANS
The highest level predicate or procedure in a depth-first
method of refutation procedure 18 procedure ANS (or
predicate answer/3), as shown in Program 3.3.3.8, which will
eventually return answer ‘“yes" or "no" to the proving
process of the question. This procedure which 1s called from
procedure AS.l1 (see Program 3.3.3.3 of section 3.3.3.1), is
subdivided i1nto two procedures, 1.e subprocedures ANS.1 and
ANS.2.
/¥ procedure AKS 5 answering the question #/
answer{Pc,8,re8}1-
I+ procedure NS, 15 return rexark *yes” for successfol proving #/
asking(Pc, 0}, /¥ procedere ASE &/
assert_ance(toptryd(Pc)).
answer(Pc,8,n0l 1=

{# procedure NS, 3t retarn remart no® for ansuccessful proving #
not_exists(toptre0ifel),

Progras 1.3.3.8: Frocedure ANS
The first one, procedure ANS.1l, will assert predicate
toptryO(Pc) only once in the database 1f the proof 1s
successful, and also 1t will return remark "ves". The proof
18 carried out by procedure ASK. In other words, the proof

is successful 1f procedure ASK succeeds.
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Otherwise, if the proof fails which 13 a consequent of the
failure of predicate asking/2, the second procedure, ANS.2,
will return remark "no". The predicate asking/2 fails when
all query clauses have been proved unsuccessful. This is
indicated by the nonexistence of predicate toptryO(Pc) in
the database: on the contrary the existence of predicate
toptryO(Pc) (which is asgserted by procedure ANS.1) will show
that at least one of the query clauses has deduced an empty
clause though predicate asking/2 fails. The predicate
asking/2 also fails when the resulting Horn clause of the
negated question 18 an empty one (Clause=[]). This means
that the question clause 13 an inconsistent one because the
negation of an ainconsistent clause 18 an empty one

{tautology) .

J3:3.3.2.2 Level 2t Procedure ASK
The major procedure in second level of refutation procedure
13 procedure ASK which 13 called from procedure ANS at level

one.

Procedure ASK (predicate asking/1)., as shown in Program
3.3.3.9, will prove the head clause 1in Clocksin format of
the current list of query clauses one by one depending on
the result of proving or the needs of other possible answers
until the current list become empty. BSo, we will divide

this procedure into three subprocedures.

The first suprocedure, 3i.e Procedure ASK.1, will first

convert the head of the current 1list into a headless one by

calling procedure TOPASK and then try to derive an empty
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clauge from it (the resulting headless clause) by calling
procedure FACTPR. If the proof of the clause is unsuccessful
(procedure FACTPR fails) or there are no more answers can be
generated from the clause when it 1s asked by the enquirer
(procedure FACTPR exhaustively fails) or the gquestion clause
is a tautology one (procedure SUCCESS fails), then
backtracking will occur and the same process will repeat but
by taking the next query clause in the current list i.e list
"Quest", (procedure ASK.2).
1# Procedure ASK ¢ to prove each cliuse of the question #/

asking(leestl/Quest])s
1t procedure BSE.1 #/

top_asking(Questi,boul}, /% procedure T0PASK #/
factprelog(boal L1,01, 8,01}, /¥ procedure FACIRR #/
successfel_sctiontip), ¥ procedare SUCCESS #/

asking(fQuest!/Quest])s-
I+ procedare ASK.L ¥/

print_cosnent{8eestl), 1% procedure PRONT #/
asking(Quest), /¥ prove the pext query claase #/
askingtlls-

/¥ procedure ASE, T #/
asserfzitoptry(l 1)), fail,

frograt 1.3.3.9: Procedore ASK

The proof comes to an end when the current list become empty
(procedure ASK.3). There are two possible conditions when thais
state is reached, either there are no more possible solutions
or the proof is unsuccessful. In either case, procedure ASK.3
will assert predicate toptry([]) into the database to mark the
end of proving and return the value of false, 1i.e the
predicate asking/1 will fail at the end of proving.
Consequently procedure ANS which calls 1t, will return with

remark “no" (see procedure ANS.2 of Program 3.3.3.8).
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3.3.3.2.3 Level 3
There are three major procedures in level three which are
called from procedure ASK at level two previously. There are

procedures TOPASK, SUCCESS and FACTPR which can be

clagsified as before proving, after succesaful proving and

the proving itself respectively.

Level 3.11 Procedure TOPASK

As we said earlier that before the proving process is
carried out, procedure TOPASK or vpredicate top_asking/2
{see also Program 3.3.3.10) is called first. We will keep
a log of goals and parent clauses by predicates goal/2 and
proving/2 respectively at each resolution node at which
both of them are successfully resolved with each other.
Furthermore, both predicates will be used during printing
the solution's tree. BSo, predicate node/l1 denotes node
number for each successful unified node. In other words,
procedure TOPASK will initialise predicate node/1 by
asserting a new predicate node(l) (by calling predicate
assertz new(nede(l))) and do the goal formatting

(predicate format_goal/2).

Level 3.2: Procedure SUCCESS

As the needs of proving other clauses from the same
question i1n order to find other possible answers or
solution tree may or usually does arise, but still, during
that process we do not want to prove the same goal clause
twice or more. However, there is no harm by proving the

same factual KB clause over and over again, but proving
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the same ruled KB clause can be overtaxed. For instance,
the following is a part of the solution tree:

|
{gl) [lr-asets(a,b),animal (2),personid),
!!Ipl) personibl,
!

{g2) [J1-seetsla,b),aninal(a),
{ {p2} aninal (a)z-wonbit(a),
i

(g3) Cli-neetula,b),woabat(a),
| (p3) wonbat(a),
if
(g8] [l1-gestsia,b).
| (ph) aeets{a,b)y~visits(b,zoo),lives(a,z00),aninal{a},persontbl.
i/
(g5) [Js-visits{b,zo0),lives(a,z00),aninal (a},person{bl.
:I(pS) personibl.
(gh) [l1-visits(h,zoo),iives(a,z00),aninal (a),
{ (p&) aninmal (a)t-wombatis),
i
{g7) [hi-visits(b,zo0),lives(a,z00) woabatlal.
i (p7) womhat{a),
i
{g8) [lt-visifsth,zuol.!ivet(a,zunl.

!
FI6 3.3,3,11 Solution subtree
It can be seen from the above subtree (Fig. 3.3.3.1) that

three pairs of parent clauses are the same 1,e clauses
[(p1),(P5)], clauses [(p2),(p6)] and clauses [(p3),(p7)}.
The farst, ((pl),(p5)] and third [(p3),(p7)] pairs are
factual KB clauses and the second one, [(p2).(p6)], is a

ruied KB clause,

All the proven ruled KB clauses c¢an be considered as
lemmas to the other goal clauses from the same gquestion.
When the same ruled KB clauses are going to be proved
again, we do not have to repeat the proving of the same
ruled clauses once again, but we will used the proven
ruled KB clause to show that we have already proved it
successfully before by asserting them into the database

(using predicate proven/1). 5o, from Fig 3.3.3.1 above, if
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we assert clause (p2) (i.e proven(animal(a):—-wombat(a))})
into the database then we can save one step here, that is,
we can go straight from goal (g6) to (g8) without the need
to prove "wombat(a)" again {(goal g7). However, we do not
gain any advantages from asserting proven factual KB

clauses.

Accordingly, after the proving ends successfully,
procedure PROVEN (predicate assertz_proven/l) which is
called from procedure SUCCESS (see Program 3.3.3.10), will
assert into the database all the proven ruled clauses
which was passed from procedure FACTPR. So if "Hp" 18 a
proven ruled KB clause, then ‘"proven(Hp)" 1s asserted in
the database.
1% procedure TOPASK 1 fop part of procedure ASK.L #/
top_asking(Questl, boal)s-
assertz_nexinode(l}), f# to initialise node(l) 4/
fornat_goal(fQuest!,Boall,!, f# procedare £&1 goal foraatiing ¢/
/¥ procedare SUCCESS #/
successfal_action{lipli-
assertr_provenifip), /1 procedure PRQVER ¥/
1% procedure PROVER #/
assertr proven(ll), {3 the end of procedure ¥/
assertz_proven{{Hp/fptarll1i-
f# procedure PROVEN,I ¥/
clagselproven(ip), treel,
assertz_proven(Bptail),’,
assertz_proven{[Hp/Mptaill)s-
1% procedore PROVEN.L #/

assertziproven(iip)),
assertr_proven{kptail),

frogras 3,3.3,101 Procedures JOPASK, SUCCESS and PROVEN

If there already exists fact proven(Hp) in the
database,then do not assert 1t 1in the database, but
continue asserting other proven clauses (procedure
PROVEN.1) . Otherwise procedure PROVEN. 2 will assert
proven(Hp) in the database and also continue asserting

other proven clauses 1f they exist.
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Level 3.3: Procedure FACTPR

All the proving will be done by procedure FACTPR, as shown
in Program 3.3.3.11). Procedure FACTPR 1s subdivided into
two subprocedures, viz. procedures FACTPR.1 and FACTPR.Z.

1% procedure FRCTPR #/
factprolog((Q1,82),Usedclaases, Bp,8pl,B0alclause)s-

1% procequre FACIPR, ] ¥/
{

o
factprolog(az,Usedclauses, bp, 8p2,[81/ Goalclausel},
factprolog(ll, Usedciauses, fpl, Bpl, 60alclause),
factprologi®,Usedclauses ip,8pf, Goalclaase)s-
1 pracedure ERCTPR, I #/
assertagoal (08 Goalcluesel M), {# procedure ASSELL #/
baseprolog(d,Usedclauses, Bp, Hpl Boalclaase,H). /¥ procedure BASEFR #/

Progran 3,3.3.11¢ Procedure FACIPR

This procedure 1s actually a top level of refutation
process. In other words, procedure FACTPR will steer the
proving order of each literal of the goal clause. Hence,
the first procedure, FACTPR.1, will eventually show the
way of proving the gocal which consists a conjunction of

literals (in the form of "k,1l.,...").

In this case, the proving is done from right to the left
of the goal, a contrast to the Prolog method where 1t does
from left to the right of +the goal. It <c¢an be easily
modified to make it proving from left to right. The second
one, procedure FACTPR.2, will call a refutation procedure,
BASEPR., in order to match a literal of the goal with the

head of KB clauses,
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3.3.35.2.4 Level 4

There are two major procedures in level four, 1.e
procedures ASSGL1 and BASEPR which are called from procedure
FACTPR at level three (Level 3.3).

Level 4.1: Procedure ASSGL1

Before a matching or unifying 1s done, procedure ASSGL1 or
predicate assertagoall/2 is called. Procedure ASSGL1 (as
shown in Program 3.3.3.12), firstly, will retract all
predicates goal/2 with the same node number N and assert
a new goal(Goal,N)), then update node number (procedure
UPNODE) .

f+ procedure RSSGLI #/
assertagoalliboal, K)s-
nedell},
retractall(goal(_ M)},
asserta(goal(boal, i},
apdating_node(k), 1 procedure UPROBE #/

f+ procedure [PNQDE ¥/
tpdating_node(¥) ;-
/¢ procedure UPNODE.L #/
Kl 15 K44,
assertz_peninode(i1)).
apdating_node(H)s=
/% procedure UPNODE.Z ¢/
asrertz_nen{node{N}),

Progran 3.3,3,12 1 Procedures ASSELI and [PHOBE

The first procedure, UPNODE.1, (of procedure UPNODE of
Program 3.3.3.12) will assert a new predicate node(N1l)
where N1 is an updated node number. On the other hand, the
second procedure UPNODE.2 will assert the old node number
(N), 1.e decreasing by one (compared to N1). This 1s a
consequent of the failure of procedure BASEPR (see
procedure FACTPR.2 of Program 3.3.3.11), so backtracking
will occur and the o©ld node number must be restored in

order to start a new solution tree.
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Level 4.2 Procedure BASEFPR
While procedure FACTPR do the proving steering, procedure
BASEPR (Program 3.3.3.13) will do the actual matching with
the current KB clauses. As there is a possibility that any
literal of the goal clause is a Prolog or library
predicates, procedure BASEPR.1 will match the goal
literal with them first. If 1t 1is8 unsuccessful, then
procedure BASEPR.2 will match or unify the goal literal
with any factual KB clauses. This strategy 1s known as the
unit preference strategy. If there 13 no factual KB
clauses which can be matched with the goal literal, Q,
then procedure BASEPR.3 will +try to match it with any
ruled KB clauses. If 1t ais successful, then procedure
FACTCL 1s called to do more test Dbefore the body of the
matching ruled KB clause 13 considered or taken as a next
goal.
1% procedure BASEPR #/
baseprolog(Q,Usedclauses Bp, B, foalclause, R} 1=
{¥ procedure BASERR, L #/
clagse(q, ),
calitd),
wssertaproving(e, i), /¥ procedure ASSPRYZ &/
baseprolog(d,Usedclauses,8p, Bp, Goalelause, Kit-
/¢ procedare BASERR, Y ¥/
knanledge_base(d),
dssertaproving?(2,4)., /% procedure RSSPRVY ¥/
baseprolog(d,Usedclaases,8p, Hpl botlciause, H):-
/4 procedare ERSERR.3 ¥/

tnonledge_base(R1-4),
factclause(Qe-R,Usedclauses, Bp, Bpl,Goalclaase,X). /¥ procedure FACTCE #/

frogran 3.3.3,133 Procedore BASEPR

At the end of successful matching of a goal lateral with
any KB clauses or system predicates (i.e at the end

procedures BASEPR.1, BASEPR.Z2 and also 1n procedure

FACTCL.2)., the matching KB clauses or system predicates
are asserted into the database by procedure ASSPRV2 (as

shown in Program 3.3.3.14) in order to trace a solution
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tree. So procedure ASSPRVZ will assert into the database a
new predicate proving(Q.N) where Q and N are the matching
clauses (parent clauses) and node number respectively
after retract all predicate proving/2 with the same node
number.

assertaproving2(d, i)1-

retractall(provingi_, M)},
asserta(proving(d,i)),

frogras 3,3,3,141 Procedare ASSPRYY

J3.3.3.2.5 Level 51 Procedure FACTCL
Although all KB clauses are Prolog rules and that they can
be executed directly, cares must be taken to prevent cycling
or looring in the refutation process. Cycling or looping in
the refutation process can happen when the goal clause has
itself as a subgoal. This may result from using the same
clause as one of the parent clauses. This (cycling) 1s the
main disadvantage of implementing the depth first method as
the method does not guarantee that the solution will be
reached though it exists. For example, 1f we have the
following knowledge clauses (This 1s a famous monkey-banana
problem) :
(ki) it(x,vglllilk(l.!,sn I‘lt(l,\',!,m-
(k2} ltﬂ,l,x,ﬂfry”,x,ﬁH'It W,x,Y,Si-
(k3} reach(clinh{5)}s-atth,b,h,5),
{kd) atla,b,c,s),
And if we try to prove {(]:-reach(B). then we will get the
refutation tree as follows:
{gt) [1:-reach(B}
i (p1) rezchiclinb(8))1-at{b,b,b,8}
i
(g2} [ls-attb,b,b,5)
1 {p2) attX,Y, X, malk(Z,¥,T))e=at(Z,Y,X,T)
i/
(g3} [1a-at(¥,b,b,2)
mnm Vi) attX, Y, X, walk(Z,Y,TH-at(2,Y,X,T)
| 1

FI6 3.3, 5,24 Refutation subtree (locping)
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It can be seen from the above subtree (Fig. 3.3.3.2) that a
cycle occurs in the above refutation process because the
parent clauses (p2) aﬁd (p3) are the same, i.e knowledge
clause (k1), thus produce the sgsame goal (g3). Clause (kl) as
chogen 1n preference to clause k(2) because it is on the top
of the list as Prolog adopts the selection from the top to
the bettom. The cycling must be prevented from happening if
we would like the refutation to reach a conclusion either
positive or negative but not hanging around until the Prolog

stack is exhausted.

As all KB clauses are Horn clauses and at any time we only
delete one literal which 1s actually a head of one of the
parent clauses, therefore we can make a log of the usage of
all ruled KB clauses in order to prevent the cycling. The
log will Keep a record of all the ruled clauses which have
been used as one of the parent clauses such that the same
ruled clauses will not be used twice or more in the same
path or subtree of the proving process. If the ruled clause
has been successfully proved then this clause will be taken
out from the record so that this clause can be used again 1in
the proving process but in a different path (branch) of the

proving tree or 1n the different subtree.

So, 1f we keep a log of the usage of all ruled parent
clauses, by taking it as an argument of predicate ‘try'. For
instance, from the above tree (Fig. 3.3.3.2), the side
clauses (one of the parent clauses which are ruled clauses;
the other one is a headless or goal clause) will be asserted
in a database as follows:

trytreachielinb(S1))e-ab(,b,b,80)),
t!‘ﬁlfu,r,x,"“”,l,snt'lfﬂ,7,‘,3”0
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Then , we can continue the refutation process by taking
knowledge clause (k2) as the third parent (p3'). In this
case, we can not used knowledge clause (kl) again because
the predicate try(at(X,Y.X,walk(Z,X.5)):-at(Z,Y,X,5)) exists
in the database. Thus, the new refutation subtree
(starting from goal (g3)) 13 as follows:

H
i/
g% [h-atiy,b,b, 1)
| (p3') atibyb,b,carry(l,b, 5} 1-at{l,b,U,5)
i/
(gd')  [hi-atib,b,U,8)
}
fails

FI6 3.3,3.3; Refutation subtree (failure

The subtree (Fig 3.3.3.3) in the above example 1incidentally
dces not derive an empty clause. However, by taking
knowledge clause (k3) instead of clause (k2) as the second
ruled (parent) clause , then we will be able to derive an
empty clause; hence the proof is successful as shown in the
following subtree (Fig 3.3.3.4). The variable "B" will be
instantiated to "climb(carry(c.b,walk(a.c,s}))" or ‘"walk
from position a to position ¢ then carry the box to position
b and finally climb 1t to reach a banana"

1
:Iw?laHL!JﬁuTHh!JH;th!JJI
{g3"} {Ji-ati¥,b, ¥, I}
bop3") at O, Y1, %, walk (Y2, X, 210 b e-at (Y2, ¥1,X,11)
¥
{gd") {Ti=ativ2,b,x,11)
iA{pd") at(a,b,cy8)
il
(33" (1t-{]

FI6 3.3,3.4t The refutation subtree (successful)
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or all above subtrees (Fig. 3.3.3.2, Fig 3.3.3.3 and Fig
3.3.3.4) are combined, then the following graph (F1g.
3.3.3.5) will be produced:

goal {g1)s  [Js-reach(B)

| (knowledge clauseik3)/parent clauses: bi)
!

{2}
|
(k1) (p211 ] 1(k21/ (p2*)
| (OR branch)  (g3")

M {gh) Lk /(p3%)
{ S (gé")
V3 & G/ (p3*) | (kd)/ (pd*)
{ ! { (11-01

(1ooping) {g4’) (g5")
| successful
farls

F16 3,3.3.5: Refutation tree {coabined

From Fig. 3.3.3.4, the number associated with a goal, for
instances gl and g3", refers to node number. Thus the number
with mark " 15 a current value of node number (see Program
3.3.3.12). Clauses referred by g (for instance g3") and p
(for instance p3") are 1inserted into the database by

predicates geoal/2 and proving/2 respectively.

This cycling checking will be carried out after the literal
goal is successfully matched with any ruled KB clauses in
the procedure FACTCL. The following program, 1.e¢ Program
3.3.3.15, shows procedure FACTCL, which 1s called after the

lateral goal 18 matched with any ruled KB clauses. This

procedure 18 divided into two, 1.e procedures FACTCL.1 and

FACTCL.Z2.
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1% procedsre FACICL 4/
factclaase{Brk, Usedclaases, Bp, Apl, Goniclause N} i-

1% procedure fACTEL, L #/

hiaveproved_top(dr-A,8p}, 1% procedure LAVEPR #/
assertaproving?(d, 1), 1 proceduore ASSPRYY ¥/

factclagse(Qs-k,Usedclaases, Ap, [s-ARpl], Goalcivase, N1
1% proceduere [ACTEL, L #/

rottryl(8s-A,Usedclanses), I+ procedere RQITRYI #/
check _failere(Qi-R), 1% procedure CRERIL ¥/
assertaprovingd{i-k, M}, /% procedare RSSPRVY #/

factprolog(h, fQs-/Usedclaases],Rp,Apl, Boalclanse), I# procedare fACTER #/
refractali(failure(8e-A}),

Progren 3,3,3, 181 Procedare FACTEL

The first one, procedure FACTCL.1, will check whether the
matching ruled KB clause has been proved before. The
checking 13 carried out by procedure HAVEPR by matching them
with predicate proven/l1 or all ruled clauses in list "Hp".
If it has already been proved before, then assert it inte
the database by procedure ASSPRVZ. If it has not been proved
before, the second procedure, FACTCL.2, will fairst check
whether the matching ruled KB clause has been matched before

in the same subtree or branch by calling procedure NOTTRY1.

Procedure NOTTRY1 will succeed if none has been matched
before. Following that, the predicate proving/2 1s asserted
into the database by procedure ASSPRVZ with the matched
ruled KB clause 1s one of the objects (arguments). Then the
body of the matched ruled clause 1s taken as a next goal and
the proving is repeated until the empty clause is deduced or

no more ruled KB clause c¢an be matched with the literal

goal.
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X.3.3.X The Breadth-First Methad

By adopting this method, all possible resolvents will be
generated at each level of the refutation tree until it
encounters an empty clause or resolvent. The refutation tree
generated is an OR graph. In order to generate a new
resolvent, each literal in the goal clause will be resolved
with one of the KB clauses from right to the left of the
goal, This method 15 quite different to the above depth-
first method in the respect of the way of a new resolvent is
generated. In the depth first method, only one lateral of
the goal will be resolved upon. While using this method,
all literals of the goal clause will be resolved from right
to the left of the goal in order to reduce the number of
possible resolvents generated, so the refutation graph will
be much smaller. For example, if the goal clause is as
follows:
[]:-strong(nazrul),intelligent (nazrul).
and given that the following are KB clauses:

intellaigent (nazrul).
gstrong(X) :—-athlete(X).

then the resolvent will be

[]:-athlete(nazrul).
as opposed to the above depth first method where the
resclvent will be:

[]:-strong(nazrul}.
This is due to that in the breadth-first method, all
literals of the goal clause will be resolved with the KB
clauses, 1.6 both literals "strong(nazrul}" and
"1ntelligent(nazrul)" of the goal c¢lause will be resolved
with the KB clauses. On the other hand, the depth-fairst

method will only resolve one 1literal gcal with one KB
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clauge, i.e "“intelligent(nazrul)" of the goal clause will

resolve with a KB clause ("intelligent{(nazrul)").

As the depth-first method, the same combination of
strategies i1s adopted, i.e a combination of the linear
input, the set of support and the wunit preference
strategies. However, as the name of this (breadth-first)
method suggests that all literals goal of query clauses will

be proved ain parallel,

The proof 1s successful if we encounter an empty resolvent,
"{]:-{]1". Otherwise, the proof 1is unsuccessful if we cannot
resolve the new generated resolvents any more. In other
words, we come to a dead end where all goal clauses cannot

derive an empty clause any further.

One or more new goal clauses which are a result of
resolution between the current goal clause and the KB
clauses, are said at one level down {or up) to the current
goal. So at every level there will be a set of goal ¢lauses
which is a result of previous resolution, and at level 1,
all goal clauses are query clauses themselves. In other
words, the goal clause 18 a father node and its resolvents
with KB clauses are 1ts son (daughter). For instance, Fig.
3.3.3.6 shows a solution tree of a question , (p&(gH#r)).
Thus its negation will produce two query clauses, 1.e "[]:-

p,q" and "[]:-p,xr".

By using a breadth first metheod, we will prove both query
clauses in parallel, that 18 we will find their sons (if

they exist) and followed by finding their grandscns and




then followed by finding their great—grandson

until we encounter an empty clause. Their son 1s

another goal clause and =s0 their grandson

grandson. In order to find their sons, the goal

be unified or matched with KB clauses. The order
of each laiteral of the goal clause 13 from right
3.3.3.6, the clause

of the clause. From Fig.
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and son on
vet became
and grand-
clause will
of matching
to the left

in a curly

bracket, {}, is a KB clause which i3 a matching clause for
the literal goal.
Level 1 (hi-p,q [1i-p,r
[ #1) I 3
i H
{ | ¥ OR branch [
{gi~u} H{qi-v} Hri-w} Hri-a,b}
Hpt-s,t} Hpt-s,t}  H{p1-s,t} Hpi-s,t}
i i ] T
Level 22 [li-s,t,u [11-5,t,v {1i-5,t,n [l:-%,t,a,b
oL N P, {2, 2
i{u} { I '
it} P ] ] t H
s} H t{wi={} {{wi-d} j{b} t{br~d} {bi-e)
i i it} it} {{a) {2} ia)
! i Hs) i} i{t) it) [{t)
i I i i{s) i{s) {(s)
| {1 | i i I
Level 3 (3:-[1 fails [1:-1, {1i-d, [13-{) ih-d [li~e,
11,1,11 {21 oz, L2223 12,2 i 1(3,2,2]
! { i
| ! i | (s}
i { } 1
Level 4; fails fails fails (-1
"3z
F16 3.3.3.6: Solution tree using a breadth-first aethod
Each goal clause 1s given a node number 1in the form of a
list i1n a square bracket, [], which is marked by a star, *,

as in Fig. 3.3.3.6. The node number is given to a

new son by

prefixing the father's number with the son's number. For
example, 1f the father's (goal c¢lause) number is (2], thus
itg first son ig given a number [1.2] by prefixing number 1

to the list [2] and the second

and so on.

son is given a number [2,2]
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By using this notation, given any (goal) clause number, we
can find its father, its grandfather and g0 on up to the
query clause. So, for instance, if given a node number
[1,2,2) (see Fig. 3.3.3.6), then its father is clause [2,2]
(i.e the tail of the given node number, [11[2.2]]) and its
grandfather is clause [2] which in fact ig a query clause.
Accordingly we can find a solution path of the question from
any empty clause. The 1length of 1list of the node number
shows the level number of the node itself, for instance,
node [(1,3,2,2] 13 at level 4 (i.e length([1,3,2,2}],L) where

L. is i1nstantiated to 4).

Before we describe the program itself, let us define control
predicates ¢_node/4, node/4 and node_no/l which will be used
in the program. Predicate node_no/1 represents the number of
sons for each goal clause such that its value will be reset
to zero before unifying the new goal clause with any KB
clauses. Both predicates c¢_node/4 and node/4 which represent
goal clause and 1ts son respectavely, contain the
information about the goal clause itself, 1.e its literals,
i1ts node number, its level number and the list of a
father-matching KB clauses which produces itself (a last in
the curly bracket {} - see Fig. 3.3.3.6). Once the son
become the goal clause, its representation changes from
predicate node/4 to predicate c¢_node/4. In other word,
predicate node/4 is a temporary representation of resolvent
(or the son) node before the son becomes yet another goal.
For example, predicate c¢_node(a,[1,1,2],3,.¢((w:-f),t,s5)) (see
Fig. 3.3.3.6) contains the information about the goal
"{l:-a" where its node number is [1,1,2]: its level is 3 and

father-matching KB clauses are {w-f},{t} and {(s}.
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As in the depth-first method, we will divide the main
refutation procedures for a breadth-first method into six
levels, i.e from the highest level 1 down to the lowest or
the deepest level 5, as follows:

{1]. Procedure ANSBF.

[2]. Procedures ASKBF and BF.

[3]. Procedures BFO and STOP-TEST.

[4). Procedures BF1l and others,

[S). Procedure BF2.

3.3:.3.3.1. Level 1: Procedure ANSBF
The highest 1level procedure in a breadth-fairst method
described here 1s a procedure ANSBF as shown 1n Program
3.3.3.16 below. This procedure 1s equivalent to procedure
ANS (see Program 3.3.3.8 in Level 1 of section 3.3.3.2) and
it 1s also called from procedure AS (see Program 3.3.3.3).
/¥ procedure RNSBE #/
answer{daest, yes)s-
{# procedure AASBE, 1 #f
dsseril_nen{nade_no{0}2, I 1mataelise nade_mal0) 4/
isking_bf(Quest), It proceduare ASKEf &/
breadth firstil), 1+ proceduare BF ¢/
answer{leest,no) -
[+ procedure RNSBE.2 #/
urite(’no’},
Progran 1,3.3, 181 Procedere RHSRF
Procedure ANSBF (see the above Program 3.3.3.16) is
subdivided intc two subprocedures. The first one, 1.e
procedure ANSBF.l, will first assert an initial value of
node number, i.e predicate node_no(0). in the database, then
will set a starting proving tree {procedure ASKBF) and
finally will find a solution to the question (procedure BF).
Eventually this procedure, ANSBF.l1l, will return a remark

"yes" 1if the proof iz successful, 1.e procedure BF 18 able
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to find an empty resolvent. The second one, procedure
ANSBF.2, will return a remark "no" if procedure BF 13 not
able to find an empty rescolvent or in simple words that this

procedure (BF) fails.

3.3.3.3.2. Level 2 Procedures ASKBF and BE
There are two main procedures at this level {level 2). These
are procedures ASKBF and BF where both of them are called

from procedure ANSBF at level 1 above.

Level 2.1 Procedure ASKBF
This procedure ASKBF (see Program 3.3.3.17 Dbelow) is
almost equivalent to procedure ASK (see Program 3.3.3.9 at
Level 2 of section 3.3.3.2). Their differences are the
order of goal formatting. Procedure ASK will format one
goal clause and then prove 1it. On the other hand,
procedure ASKBF will format all goal clauses and prove all
of them at the same time.
¥ procedare ASKBF #/
asking _bi(fQuest/CuestiI)i-
/% procedure ASEBE.L #f
forsat_goal{Quest,foal), {* procedare f§ ¥/
apdate_nude no(K}, /¥ procedure (PNQBKY #/
assertrinode{boal,[X1,1,(]))},
asting_bf(Questl).

asking _b1(L)}e=
i procedure ASERE,7 ¥/

1]
v e

frograr 1,3.3.171 Procedare ASERF

For every literal goal of the guestion ,procedure ASKBF,

as shown in Program 3.3.3.17, will format a goal from a
given query clause (procedure FG): update node number
node_no(N) and finally assert predicate

node(Geoal,[N],1.[]) (i.e a temporary representation of the
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goal node) into the database. The father—-matching KB
clauses, 1n thig case, 1is an empty clause as the goal
clause is not a resolvent one. However, predicate node/4
18 used here to represent every goal clause becauge that
at the starting point of proving process, each goal clause

can be considered as a son of the question.

The second procedure, ASKBF.2, does not fail as opposed to
procedure ASK.3 (see Program 3.3.3.9). The adopted
breadth-first method tries to resolve every query clause
each time. Thus, at the end of setting up initial proving
tree, the proving have not started vyet, consequently
procedure ASKBF must succeed or return true value. On the
contrary, the adopted depth-first method resolves one
query clause each time. So, procedure ASK.3 fail in order
to show that the proving of each query clause has

finished.

Referring back to Figure 3.3.3.6 at the beginning of
section 3.3.3.3, this procedure ASKBF will create all
first level nodes of the solution or proving tree, 1.e
nodes [1] and [2]. These nodes are actually goal clauses
formatted by procedure FG (see procedure ASKBF.1 of

Program 3.3.3.17).

Level 2.2: Procedure BF

After the temporary predicate node/4 have been asserted
into the database for every gocal clause or the farst level
of proving tree have been set up, predicate
breadth_first(1l) (or procedure BF) is called from

procedure ANSBF.1 (s3ee Program 3.3.3.16). The argument of
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predicate breadth_first/l1 is a level number of the
solution tree, thus the initial value of level number i1s 1
(one). We split procedure BF into two subprocedures, 1.e

procedure BF.1 and BF.2 as shown in Program 3.3.3.18.

/¥ procedare Bf ¥/

breagth_first(Levelna)s-
I# procedare M.l ¥/
retract(node(,Kodens, Levelno, 8fact)),
assertzic_node(Q,Nodeno,Levelne,8lact)),

assertz_new{node_noll}), 1% 1imtralise node nowber #/
Levell is Levelmo * &,
breadth first0(Q,Nodeno,Levell). ¥ procedure BEQ #/

breadth first(levelna) s~
/¥ procedure BE,2 ¥/
Levell is Levelna + 1,
level_limié{Upperboand)
stopping _test{levell,Upperbocnd}, /¥ Procedure ST0P-TEST ¥/
breadth_first(levell).

Progra 3,181 Procedare Bf

The first one, procedure BF.1, will retract from the
database one by one temporary predicate node/4 (a son of
the previous goal clause) and assert them back into the
database but this time with predicate c¢_node/4 to show
that this son now will become a new (current) goal clause.
Then an initial value of node number denoted by predicate
node_no(0) is asserted inte the database and the value of
level number, "Levelno", 1is also temporarily updated as
the new resolvent, 1f 1t exists, is at one level down. In
other words, the new resolvent is a son of the goal

clause.

Finally, in procedure BF.1, the goal c¢lause is matched
with others KB <clauses by calling procedure BFQ or
predicate breadth_first/4. The procedure BFOQ will
eventually fail if no solution is reached and backtracking
will occur. So it (procedure BF.1l) will try to generate

new resolvents from new goal clauses until no more
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predicate node/4 exists at a current level, "Levelno". If
thig happens then the second procedure _BF.2, will be

called.

The second procedure, BF.2, will wupdate the current level
number and then a stopping test is carried out (procedure
STOP-TEST) . If this procedure STOP-TEST succeeds, then the
proving process will continue to find the next generation
of resolvents, otherwise the proving will stop and
consequently procedure BF will fail and so too procedure

ANSBF (see Program 3.3.3.16).

3.3.3.3.3. Level 3t Procedures BFQ and STOP=-TEST
At this level 3, there two major procedures which are called
from procedure BF at level 2 above. These procedures are BFO

and STOP-TEST.

Level 3.1:1 Procedure STOP-TEST

After all new resolvents have been generated by procedure
BF.1, the stopping test (procedure STOP-TEST) is carried
out (see procedure BF.2). The procedure STOP-TEST (see
Program 3.3.3.19 below) are based on two stopping
criteria. These are an upperbound limit of the level of
the proving tree and the existence of any new resolvents
{sons) of the goal clause at the current level, i.e the
existence of predicate node/4 at a new updated level,

node(_,_.Levell, ).
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I+ procedure SIQP-TEST ¢/
stopping_testilevell, Upperboand) s~

{ procedure ST0P-TEST,] o/
Levell = §pperbound,
fxists(nodefﬂ,l,lovcl!,Of)),

stopping _test{Levell, Upperboand)s-
It procedure 3I0P-TEST,2 #/
Levell =( ipperboend,
not_exists(node(Q,N,levell, 8f)), .
assertz(toptryi(il),
4 fail,
stopping_test{Levell,Upperboend)i-
I¥ procedare SI0P-TEST, I ¥/
Levell > Upperboand,
exists(node(d, N, Levell,8t}),
gesertzitoptry(ll)),
;siirtz(reccb_lzlnt(Upperbound)),
il,
stopping_test(levell,Upperbound)s-
f¥ procedare STOP-TEST 4 ¥/
reach_Linit(Upperbeand),
ask_nen_linit, f+ Procedere ASE-MEWLINIT #/
Tevel_limt(Upperboandl),
Upperboandistipperboand?,
stopping _test(levell, Upperboundl)., /# Procedure STOP-TEST #/

Progray 1.3.3,191 Procedare STOP-TEST

Although there are two stopping criteria, the procedure
STOP-TEST is divided 1intc four subprocedures. The first

subprocedure STQOP-TEST.1 will =succeed when the level of

proving tree has not vet reached 1its wupper limit
{upperbound} wvalue and no solution has been found such
that the proving should be c¢ontinued (see procedure BF.2

of Program 3.3.3.18).

The second subprocedure STOP-TEST.2 will be set to fail

when no solution has been found although the level of the
proving tree has not vet reach 1ts upperbound value. This
happens when no new resolvent can be generated from all

goal clauses. In this case the proving process should be

stop immediately.
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The third subprocedure STCP-TEST.3 will also be set to

fail wvhen the level of proving tree has reached its
upperbound value and no solution has been found or more
solutions are needed. This procedure 18 set to fail such

that the fourth subprocedure can be carried out,.

The fourth subprocedure, STOP-TEST.4 will be processed

when the upperbound value of the level of proving tree has

been reached (i.e subprocedure STOP-TEST.3 fails). In this

case, the user will be asked whether to increase the
upperbound wvalue of the level or just stop there

{procedure ASK-NEWLIMIT). In the case of increasing the

upperbound value of the level, the proving process will
continue as it has not vyet reached 1ts upperbound value.
Otherwise, the proving will immediately stop. For example:

?-listing(knonledgel,

knowledge thuman{_{}1-nan{_t)),
knowledge (husan{_{}s-waman{_{)),
knowl edge{san(aizat)},

?-pcquest.,
{1 husanlaizat).

I
We cannot prove the question until level |1
Do you tike to update upperbound level liait
froa its current value (y/n) 2y

Type new value {followed by dot(.} and {returnd}t

Dhnswert Yes,
* humaniz1zat) *

Sessipn 5.3,3,1| Example on increasing the upperbound value of the leval
The above session shows how the upperbound value of the
level is increased from 1 {(original wvalue) to 4 (new
value) such that the question can be proved or answered.

The detail program of procedure ASK-NEWLIMIT can be found

in the Appendix.
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Level 3.2:1 Procedure BFO
Procedure BFO (as shown in Program 3.3.3.20) 1s also
called from procedure BF.1 at level 2. This procedure will
resolve a goal clause to form a new resolvent and will be
divided into two subprocedures

/% procedare BEQ ¥/

breadth first0(a,Kodeno,Levelna)s=
I+ procedare BEQ. L #/

breadth _first{(Q,Resolventt,8fact), /¥ procedure BE1 ¥4/
differences(Q,Resolvent(, Resolvent), /¥ procedure RIEF #/
epdute_node(Resolvent, Nodene,Levelno,@fact}, /# procedure YENGRE #/
is_selution(Reselvent, Nodeno,levelna). It procedure [3SOLN #/

breadth_first0(@,Kodenc,Levelno)t-
/¥ procedure }FQ. 8 #/

hode_neld), /* node nusber 2 0 7 2/
graph_prening{Kodens), 1¥ procedere GPRUNE ¥/

fails
frogras 3,3.3,20: Procedure BFQ

The first subprocedure, BF0.1, is to find a set of new
resolvents by matching the goal clause, Q, with the KB
clauses (procedure BFl) and then delete any repeating
literals which occur in the goal <clause to produce a free
repeating literal clause, Resolvent (procedure DIFF). The
predicate node/4 which contains information about the
resultant resolvent, as asserted into the database
(procedure UPNODE). Then procedure ISSOLN is called to
find out if the new resolvent 13 an empty clause, thus the

proof 1is successful, so too procedure BFO.

If no solution has been reached at this stage, the dead
end goal checking is carried out in order to find out
whether it generates any new resolvent (procedure BF0.2 of
Program 3.3.3.20). In order to save space, the solution
tree is pruned (procedure GPRUNE). Any dead node (branch
or goal) will be pruned from the proving graph. The goal

is said to he a dead end node (or branch or goal} if
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predicate node_no(0) exists. In other wordzs, a dead end
node or goal is the one without sons. In the end, as the
solution has not been reached vyet, procedure BFQO will be
set to fail such that backtracking will occur in procedure

BF.1 (see Program 3.3.3.18).

3.3.3.3.4. Level 431 Procedures BF1 and others.
At level 3, procedures BF1, UPNODE, DIFF, ISSOLN and GPRUNE

are called from procedure BFQ. At this level we will explaan
all the procedures except procedure DIFF where we can find

the definition in the Appendix.

Level 4.1: Procedures UPNODE and 1SSOLN

These two procedures, UPNODE and ISSOLN, are shown in
Program 3.3.3.21 below. Procedure UPNODE 1is to update node
number and assert the temporary predicate node/4 which
contains information about the new resolvents, into the
database. Procedure ISSOLN will detect whether the new
resolvent is an empty clause, if so then the solution 1is
reached and the associated predicate c¢_node/4 will be
asserted into the database.

/4 procedare PRODE #/

apdate_node(Q,(K/Nodeno],Levelne,Bfact)i-
apdate_nede_no(k), I+ procedure YPKORRD repdating node munber ¥/
fssertztnode(e,[Hfﬂodznal,levelno,ﬂfactJ),

1% procedure ISSOLN #/

1s_solutron(L1, Kodeno,levelno) -
nede_no(N),
retract(node{[],[K/Kedena],Levelne,@fact)),
assertz(c_node([],[W/Rodennl, Levelno,8fact)),

L

reqray 3,3.3, 245 Procedures UPNORE and JSSOLN
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Leval 4.2: Procedure GPRUNE
As we recalled that procedure GPRUNE is meant to prune the
proving graph in order to save space. This procedure, as
shown in Program 3.3.3.22 below, 1is called from procedure
BFD.2 (see Program 3.3.3.20).

greph_praning([X/Kodeng])s-

1 procedure GPRUNE.L ¢/
retract{c_nede(Q,[N/Kadenal,Levelna,8fact)),

{extstsinode(_,[_{Kodeno), Levelnn, )}
’ exists{c_nodel_,{_/Nademol,Levelne, ))),
graph_prening(LH/Kadenol)t-
¥ procedere GPRUNE,E ¥/
graph_praning(Nodeno), !,
graph_pramng{l]), ¥ procedure GPRUNE.T #/

frograw 3.3.3,021 Procedare SPRUNE
The predicate ¢_node/4 which associates with the dead end
node goal, will be retracted from the database and so
their dead end father goal and so on. The dead end father
goal is a goal clause without any son after pruning their
dead end =on (clause). The dead fathers node will emerge
after all their sons have been pruned, 1.e all of them are
dead nodes. This can be detected Dby the nonexistence of
the predicate node/4 or c¢_node/4 with the same father's
node number ,1.e node number [ _iNodenol. In other words,

the dead son does not have any brothers (sisters).

For instance, from Fig. 3.3.3.6, node [2,1] is a dead one,
so this node is pruned from the solution tree but its
father, node [1], is not a dead one as 1t has another son,
i.e node {1.1]). Another dead end node, i.e node [1,1,2],
is also pruned from the proving graph. It 1s also found
out that node [2,1,2] is a dead one, s¢o it will be pruned
too. Now 1ts father become a dead father (nocde [1,2]) as
1t has no more sons (both of them have been pruned), thus

node [1,2} is also pruned from the proving graph.
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Level 4.31 Procedure BF1
Procedure BFl, as shown i1n Program 3.3.3.23, 18 equivalent
to procedure FACTPR (see Program 3.3.3.11). The purpose of
this procedure which is called from procedure BF0.1 (zee
Program 3.3.3.20), 18 to steer a matching or unifying
process from right to the left of the goal clause.
Procedures BF1,1 and BFl.2 deal with a goal clause
consisting of a conjunction of 1literals and one lateral
only respectively. The unifying 13 carried out Dby
procedure BF2. Any repeated literal is then removed from
the resulted resolvent of procedure BFl1.1 by calling
procedure DIFFERS. List "Qfact” contains the matching KB
clauses of the literals goal.
breadth farsti{{Qh, 8¢} Resolvent, @fact)s-

I# procedare BEL 1 #/

breadih _firsti(Qt,Reselvent!,8¢fact),

breadth_first2(Qh,Resolvent? @hfact), /¥ procedure BFY ¥/

ditfers{Qh,Resolvent! Resolventl}, I+ procedure RIFFERS #/

vergelResolvent?, Resolventd, Resolvent), /% procedere NERGE ¥/

appendi{Qhfact, dtfact, ¢factl, i+ procedure QPPEND] #f

breadth_firsti(@,Resolvent,fact) s~

1¥# grocedure BFL.2 #/

fle2f],

breadth_1irst2(Q,Resolvent), /% procedure BFE #/

Progran 3,3,3.281 Procedere BF]

I.3.3.3.9. Level S5: Procedure BF2
Procedure BF2 (see Program 3.3.3.24) is to unify the literal
goal with any KB clauses. Procedures BF2.1 and BF2.2 will
match a lateral goal with factual and ruled KB clause
respectively with a wunification preference to factual KB
clause.
¥ procedure BEL &/
breadth_firstl(@,[),(0111-
I+ procedere Bf1,1 3/
Enounledge_base(d),
breadth_first2(8,8,(81-41) 3
1% procedare B0, ¥
knonledge_base(8:-3),

Progras 1,3,1,041 Procedare B
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X.3.3.4 Comparison between The Depth-First and The Breadth-
First Methods.

As it 1s Xknown that there are some advantages and
disadvantages between these two methods of implementation,
For simplicity, we refers the depth first and the breadth
first methods as algorithm DF and BF respectively in the
remaining thesis. The following points are the differences
between these two aimplemented methods in Prolog (see

sections 3.3.3.2 and 3.3.3.3 above).

[1l. The termination condition.

As the algorithm DF having a cycling checker which spots
cycle, thus 1t will terminate in most cases when the
searching of new resolvents i1s exhausted or it encounters
the empty resolvent. While algorithm BF will terminate
when 1t first encounters the empty resolvent (in all
cases) or the upperbound value of the specified level of
1ts proving tree 1s reached (due to the space). Thus
algorithm BF does not guarantee that all answers have been
extracted when it terminates as we cannot unspecify the
number of level of the proving graph due to the space
problem. Although we can increase the upperbound value of
the level of proving tree during the proving session, but
the space and cycling problem are still there. Furthermore
at the end of proving, algorithm DF guarantees that the
searching is exhausted. On the other hand, algorithm BF
does not guarantee the search 18 exhausted although 1t

does not derive any conclusion.
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L2]1. The answer extraction procedure.

By using the algorithm DF, the answer can be extracted in
natural due to the backward chaining of the Prolog
implementation. Conversely, the algorithm BF cannot
extract answers in a natural way, thus a special procedure
has to be written in order to extract answers. This
contradiction can be seen from the following examples:

?-pcquest, /% exanple (3.3.3.410 ¥/
Ty exista(X,husband(nary, X)),

t
Panswery Yes,
exists(john,husband (sary, john)},

1
yes

7-pequest, It example [3.3.3,4.2] &/
it reach(X).

!
yoanswery Yes,
reachicliab(carry(c,b,walkia, c,5)})

:
yes

Session 3,3.3,2: Solving by using the algoritha DF

In example [3.3.3.4.1] above, the answer by using
algorithm DF can be interpreted as '"mary has a husband
whose name is John". In example [3.3.3.4.2], the answer of
algorithm DF, i.e. "reach(climb(carry(c,b,walk(a,c,s)))",
can be interpreted as that the monkey can reach the banana
by walking from position a to position c, then carry the
chair from position ¢ to position b, and finally climb

the chair and grab the banana.
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T-pcquest, /8 example (33,5431 &/
1t existe(X,hushand{mary,Xi).

!
Yanswery Yes,
axists(_i, husband(mary, 11},

:
yes

7-pcquest. /% exanple [3.3,3.4.4] ¥/
ir reach(}},

t
Yranswers Yes,
reach(_1)

H
yes

Session 3.3.3.3: Selving by using algorathm BF

On the other hand, by using algorithm BF, both answers of
examples [3.3.3.4.3] and {3.3.3.4.4)] which are equivalent
to examples ([3.3.3.4.1] and [3.3.3.4.2] respectively
cannot be interpreted or extracted easily other than
showing that mary has a husband and there exists a way

of reaching the banana respectively.

[32] The cycle checking.

As algorithm BF guarantees, if the space permitted, that
the empty clause can be derived if exists, then there 1s
no need to implement cycle checking. Moreover, the cycle
checking procedure 18 quite difficult to implement
efficiently in algorithm BF. On the other hand, there is a
possibility that a cycle exists if algorithm DF 1s adopted
since the cycle (infinite) path may be explored first.
Hence the cycle checking is implemented in algorithm DF to
make sure that the empty c¢lause can be derived, 1f it

exists.
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[4]. The space problem.

As algorithm BF will generate all possible resolvent
(son) clauses, there 1s a possibility that the space is
not enough. So, the failure resolvent (dead son) 13 pruned
from the refutation tree. On the other hand, algorithm DF
naturally will generate only one subtree at any time then

there will not have any space problem,

[5] The average number of resolvents generated.
It is quite difficult to compare the average number of
resolvents generated as both methods resolve the literal

goal in different ways. For examples:

?-1isting(knoxledgel,

knowledgeipi-a),
knaw!edge (pt-b).

It clause (k1) 4/
/% clause (k2) ¥/

know] edge{gt-c). /% clause {k3) 8/

knowledge(qi-d}, It clause (kd) 4/

knowledgeirs-el, /% clause (k31 8/

knaw] edgs(re-f1. 1% clausa (k) ¥/

knowl edge (at-g). {t clause (k7T) &/

knowl edge(al, /% clause (k8) V/

knowledgelc), /% clause (k9) &/

knowl edge (), /% clause (k10) ¥/
?-prquest,

itplkqtr

Session 3,3.3,41 The listing of KB clauses

And suppose we would like to prove "“p & qa & r" (as shown
in the above session 3.3.3.4 by omitting the answer)
assuming that the KB clauses are also as shown in the
above session. By using algorithm DF, the refutation graph

of proving "p & g & r' or equivalently "[]l:-p,q,r" (the

goal clause) is as follows:
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Big, 3.3,3.1 R refutation graph of algoritha DF

The solution arrived after . 9 resolvents have been
generated and its path 1s marked by "*". The number at the
goal 18 the order (node) number of the refutation process
and the number at the branch, for example (k9), refers to
KB clauses number (see session 3.3.3.4). The signs "&" and
"#" at a branch node refer to AND and OR node

respectively. Now let see how the proving graph generated

by algoraithm BF:

(i-gyq,r
(the goal)
|
$
| ! i ! | ! ] |
{ (k) i (kS (k3 ] o) v (kb) i (Kb} RS )] i (ké)
{ (k3 | (k3) I {kd) {(kd) ()] i kD HRL L) k)
ikl i k2 t (k1) | (k) P {2 N (3Y) t(k2)
i/ " i i i : " i/
[]!'I,C,! []I-b,c,. [h'l’d" [Il'h,d'l []""c;f []I'B,C,f []I'a;d|‘ [ll'h,d,f
{1 {2) 3 {4 {5 18] {7 (8}
! ! ] ! Edki0d 1 (ki0)
{ ! | ! P k% tke)
| i [ ! { (k7 { (k2
! | H ! i i/
fails FAILS fals falls (i-g (111
L] 310

Fig 3.3.3.21 A refutation graph of algoritha BF
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From the above faigure, Fig. 3.3.3.2, the empty clause
(solution} has been derived after generating 10 resolvents
and at the second level of the refutation graph and its
solution path is also marked by "*". As explained before
algorithm BF will stop after it encounters the first empty
resolvent, in this case, the resolvent (10). The notations

used here are the same asg in Fig 3.3.3.1 above.

From the above two figures (Fig. 3.3.3.1 and 3.3.3.2).
algorithms DF and BF arrive at the solution after
generating 9 and 10 resolvents respectively. This number
cannot deduce anything relevant to the number of resolvent
generated. Moreover, the number of resolvents generated
during proving process depends on the arrangement of the
knowledge base clauses. Both algorithm will match from top

to the bottom of the list of KB clauses.

For example, 1f we rearrange the KB clauses in the order
of (k2), (K1), (k3), (k4), (k6), (K5, (K7), (kB),(k9) and (K10),
we will get a different number of resolvents generated
before deriving the empty clause. Thus, algorithms DF and
BF will generate 6 and 9 resolvents before arrivang at the

solution.

Another point is that algorithm DF will match one KB
clause at a time to produce one resolvent. On the other
hand, algorithm BF will match or unify with more than one

KB clauses to produce one resolvent at a time.

Theoretically and also practically it 13 very difficult to

compare these two algorithms DF and BF even we would like
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to use the average number of resolvents generated as we
have to rearranging the order of KB clauses. In proving '"p
& g & r", the average number of rescolvents generated for

algorithm DF and BF are 8 and 19.5 respectively.

In general, it can be seen that algorithm DF will give a
lower value for the average number of resolvents generated
(or matching clauses) compared to algorithm BF. And it is
equal when there is only one alternative of the matching
KB clause. This is due to the fact that algorithm BF will
match more clauses in order to generate a new resolvent as

shown in the above Fig 3.3.3.2.

L6]. The occur checking.

Both algoraithm DF and BF cannot handle the occur checking
as the unification of the variables 1is carried out
automatically by the Prolog. The POPLOG Prolog which we

use does not implement the coccur checking.

[7]. The i1ncompleteness.

Both algorithms DF and BF are incomplete as both adopt the
linear input resolution strategy. They are incomplete in
the sense that they do not derive an empty clause where
they should do. For example we cannot derive an empty
clause from the following premises: "q(X) # p(a)",
“Tg(X) # p(X)", "Ta(X) # “p(X3" and "q(X) # "p(X)" Dby

using both algorithms, although we know that these

premises are inconsistent.
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T.4 Comment and Conclusion.

The Prolog-based resolution which has been described above
can be used in a deductive question answering system as well
as 1n a problem solving system. It can answer all four
classes of questions as classified by Chang & Lee(1973].
However there 1is some restriction on the use of these
procedures. As described before that the instantiation or
unification method Iis based on Prolog's wunification,

therefore there 13 no occur checking in the procedure.

In these procedures, the statements, either Kknowledge or
query, are in the form of first order logic or predicate
calculus. However the procedures 1tself are flexible in the
sense that i1t can be modified to suit a second order
predicate calculus. This as achieved by changing the
representation of the predicate. Thus, feor anstance,
predicate "man(X)" can be written as "f(man,X)". In fact,
the procedures do not need any changes 1f the predicate is
written by using predicate "f" as described except in the
procedure of generating symbol names for Skolem function in

replacing existential gquantifiers.

Another interesting point 1s that algorithm DF can extract
information easily as regquired. This can clearly be seen

from the examples [3.3.3.4.1] and {3.3 3.4.2] above.

As there are cases 1n which a refutation exists but the
Prolog-based refutation does not: therefore Prolog-based
strategies are not complete. This 1s due to the adoption of

a linear input form strategy in the Prolog-based refutation
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procedures as it 12 known that the incompleteness property
of the linear input strategy. However, as the procedure as
used mainly for a deductive qgquestion—-answering system and
not for proving a set 18 unsatisfiable, the lack of
completeness cases are quite seldom due to the fact that the

get of knowledge clauses is usually unsatisfiable.

We have discussed how to assert facts or knowledge by using
procedure PCFACT (see Program 3.3.1.5) and how to ask the
question by using procedure PCQUEST ({see Program 3.3.3.1).
Another extra feature of procedure PCQUEST 1s that we can
assert the question into the database as knowledge or fact
(KB clauses) 1f it can be proved. This feature can be used
to find out whether any statements can be deduced from the
database before we assert them as knowledge into the
database. Thus our database will not grow unnecessarily
large 1f we use this extra feature of procedure PCQUEST. In

this case, we actually do not need procedure PCFACT anymore.

Apart from incompleteness and occur check problems, the
Prolog-based procedures seem quite efficient. We can also
see that the translation into Horn clauses acts like a
Prolog program generater while the proving procedures act

like a Prolog interpreter.




CHAPTER 4

NATURAL LANGUAGE INTERFACING
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4.1 Introduction

Pereira and Warren [1980] have proposed a method for
expressing grammars 1n logic, which 1is a natural extension
of a context free grammar and is <called "Definite Clause
Grammars" (DCGs). Winograd (1983] also pointed out that a
context free grammar stated in this form (DCGs) can be used
for parsing with a theorem prover. Fcllowing the work
described in Pereira and Warren [(1980] above on translating
natural language into 1st order predicate calculus and from
there into Horn clause format (Clocksin & Mellash [1981]),
it is clear that this could form the basis of an intelligent

front end (Bundy et al. [1983}1).

Bennett et al.[1986] divided the question-answering system
into two types, from the viewpoint of the relation between
the natural language processor and the data stored, as
follows:
fl1]. Integrated systems: the data structures are
conceived with the natural language (NL) processor
in mind, and/or vice versa.
[2]. Front ends: which can be plugged on to the 'front'
of a range of data retrievel systems to provide an

NL interface.

The question—-answering system which will be discussed in
this chapter is classified as the second one, 1.e the front
ends type. These front ends will analyse the questions in a
natural language (source language) , and as it were
‘translate’ the source language firstly into a predicate

calculus (PC) and later 1into Horn clauses to answer the
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particular question and the resulting PC will +then be

synthesized back into the source language.

In this chapter, a study of this method (DCGs) as a base for
a questicn—answering system 1s carried out. The question-
answering system as described in the chapter 3 is based on a
mechanical theorem prover, thus DCGs 18 chosen for a natural
language interfacing. It should be noted here that as
English is not my mother tongue language, a natural language
interfacing discussed here is based on a subset of English
language. The main aim here 1s to study how this grammar 1s
used in analysing an English sentence (source language) into
a PC and synthesizing from answered PC into an English
sentence (target language). Much of the emphasise 1s placed
on the technique for analysis into and synthesis from a PC.
The source and target languages can be different but in thas
study both the source and target languages are the same, 1.e

English language. This can be summarised as follows:

! ]
] |
g !
| / \ — |
i | Sourca | /1 n i Target | |
i | Llanguage }~-r=w=-m—-n b I M Language ! |
{4 {English) | /o oA ! (English) ¢ |
P ! { ] \ ' b
' ! ! \ |
H o\
[ A
/! | Horn | \
/ { Clauses ! \
/ i ! \
/ ] \
/ i \
/ ! \
/ ] ! \
/ ! Database setting up/ | \
/ { Huestion-answering ! \
f i systea ! \
! i ] \
{ \

Frgure 4,1,1; The described systes.
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From the previous figure, Fig. 4.1.1, the triangle
represents the mechanical theorem prover described in
chapter 3 where the 1input is a PC and the output is an
instantiated (answered) PC. The rectangle represents a phase
of analysing and synthesizing an English sentence which will
be described in this chapter. The rectangle and triangles
come together when the resultaing PC of analysing an English
sentence (source language) 1s passed into the triangle which
will then pass back the answered PC back into the rectangle
for synthesizing back into Englaish or another target

language.

The original DCGs system were described 1n Pereira and
Warren [1980]), and Clocksan and Mellish([1981]. Later
Hinde(1983] made some modification to suit the problem in
his Fuzzy Prolog. Then further modifications are made 1in
order to make the system works from an English sentence to
PC and back again to an English sentence. In cother words,
the grammar must work for translating a question (of course
in English language) to PC and the question 1s also answered

in English language.

4.2 Analysing an English sentence into Horn clauses
The question—-answering system described 1in chapter 3 1s
based on Horn clauses. So, an English sentence 1s analysed
into Horn clauses. We will divide the process of analysing
English sentence into Horn <clauses into two stages as
follows:

[1]. Analysing an English sentence intec PC.

[2]. Transforming PC into Horn clauses.
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4.2.1 Analysing an English sentence into PC.

The program or grammar to analyse an English sentence is
based on Hinde(1983]. The PC representation has been
modified as he used in Fuzzy Prolog. It can parse a simple

English sentence into PC. For examples:

(4,2,11 john loves aary,
;;:;::;:;;:lary).
[4,2.2] every aan who loves every woman likes every fish.
:I;::;:;:;i_ll&allt_2,unnan(_2!=>luves(_l 2=l 3, f1shi_31=dlkesd 1, 3N
Originally 1t could parse or translate a subset of English
sentences including the following syntactic relations:
(1) . Noun phrase:
—-proper noun
—-determiner (a & an) and noun phrase
-regular and irregular plural noun form.
(2). Verb phrase:
-transitive verbs
~intransitive verbs

{(3). Relative clause:

- who

Later, a few additions have been made to enhance the
capabilaity of the grammar 1itself. These additions can be
made easily without any amendments to the original grammar.

The followiang additions have been made:
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(1a) . Noun phrase:
—proper noun
~ any word starting with capital letters,
e.g John, Aizat etec.
- word "who" as used in a question-answering
system, e.g "who 13 kind".
~determiner:
— existential quantifier: the. some
- negation of existential quantifier: no
—quantified pronoun:
- existential quantifier: somebody., someone.

— unaversal quantifier: everybody, evervone,

~ negation of existential guantifier: nobody.

(2a) . Conjunction:
- and, or,
— neither...nor..
— elther...or..
— both...and..
(3a). Relative pronouns:

— that, whaich.

In parallel to the above additions, the size of the
dictionary has also been increased by adding new words
according to their classes and also according to the type of
the sentence which can be accepted 1n general. The classes
of the words i1n the dicticnary mostly are as described in

McArthur [1981].

In general, there is no major problem at all i1n adding new
grammar rules or words as long as the same representations

of grammar rules and predicate calculus are maintained. The
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above additions are made on the basis of the type of
examples 1n the chapter 2. In other words, it can be said

that the additions have been made on an ad hoc basis.

It should be noted here that, 1n order to accept any word
starting with capital letters as a word of the sentence but
not as a variable, the program which reads the sentence has
to be modified such that it will translate any word starting
with a capital letter as an atom but not as a variable in
the sense of Prolog term (see example [4.2.4] below and
compared with example (4.2.1] above). Another addition is to
accept any word starting with "$" as a variable in order to
distinguish the word which starting with capital letters as

a proper noun (see example {4.2.8] below).

The program to read any sentence is called read_in and 1its
detarl can be found i1n the Appendix. It should be noted here
that the equivalent program read_in has been made as a
library program in POPLOG Prolog, bDbut 1t does not have the
capability of accepting either a proper noun starting with a
capital letter or any word starting with "$" to denote a

variable,

The following are some examples of the analysis of Englash

sentence into PC:

{4,2,3). No wosbat who lives 1n 2 200 15 happy.

EZSEITEITRS)

Yexyste{_1,indefinite(_L},wonbat (_1)4existsi_2,zoo(_2)kan{_{,_2)klivas(_|)ithappy(_ 1)),
(4,2.41. John loves Mary,

ESTSEZZCTEE)

loves(John,Mary),
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(4.2,51. everyone «ho is both strong and intelligent succeeds.
samsgr=gzzs)
all(_1,person{_Ltistrong(_1kintelligent{_1)mdsucceeds(_[)}.

(4,2.61. Does Peter succeeds?

EREEIEIIRRE)
succeeds (Peterh,

[4.2,7). whao is kind?
SERERXERRAR)
kind(_1),

[4,2,Bl. #J loves Mary?
RRERIRZASER)
loves(_1,Mary}.

The grammar also accepts an English sentence in the form of
a question as shown 1n example [4.2.6] above. Thais form of
sentence (gquestion) will be used i1n a guestion—-answering

system which will be explained in the next section.

As we need to differentiate between determiners ‘“the" and
"a" 1n the PC representation of a sentence, we will add
another information 1in the PC, 1.e "definite(X)" and
“indefinite(X)" to denote definite and indefinite articles.
These addition 1s quite 1important especilally in translatang
PC 1into Horn clauses such that we can generate an
appropriate symbol for each class of articles. We also add
these two information in the PC representation of other
quantifiers (e.g "all", "“somebody" etc). For examples:

[4,2,9). somebody visits a zo0.

sxists(_{, sndefimtel_L},person{_t)kexasts{_2,1ndefimte(_2),200{_2)tvisatsi_{, 2N},

[4,2.10], somebody visits the zao,

zp=gexx=sa)

exists{_{,indefinite{_1},person{_1)kexists(_2,definite(_2),zo0{ 2kvisrts(_1, 2)}),
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(4.2.11], every man who loves every woman likes every fish,
axsszesass)
all(_i,indefinite(_L} man(_fikall(_2,indefinite(_2},wonan{_2i=}loves(_t,_2))=)
&} (3, indedinited_3) fish( T =dlikes!_{,_3))

Examples [4.2.9) and [4.2.10] show the difference bhetween
the PC representation of determiners "a" and "the"
respectively. Example [4.2.11) shows the new representation

of determiner "all" (compared this with example [4.2.2]).

4.2.2 Transforming PC into Hern clauses

Why we need to transform PC into Horn clauses? As explained
in the first paragraph of the section 4.2, the database 1is
in the form of Horn clauses and the theorem proving
mechanism as explained in the chapter 3 accepts an input
(gquestion) in the form of PC and subsequently transforms
them into Horn clauses. So that 15 why we need to transform

the PC into Horn clauses.

In section 3.2 of chapter 3., we have already explained how
to convert PC statement into Horn clauses., In analysing an
English sentence, the need to change the PC representation
has arisen especially in dealing with definite and

indefinite determiners.

The new rules to deal with this new PC representation are to
be added to the programs which process the quantifiers. The
affected programs are those 1n the first four stages, i.e.

removing all 1mplication and equivalence si1gns, moving
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negation i1nwards, skolemization and finally moving outwards

and eliminating universal quantifiers stages.

We need only to add new rules to deal with the new PC
representation of the forms "all(X,D,P)" and "exists(X,D,P)"
where D 15 a either “defimite(X)" or "indefimite(X)" in all
first four stages. Compared this with the old form of PC
representations, i.e "all(X,P)" and ‘“exists(X,P)" to denote
universal and existential quantifiers respectively (see
section 3.2 of chapter 3). The new rules are equivalent to
those dealing with the old form of representing quantifiers,
for examples in moving out all universal quantifiers (Stage
4):

unavuat(,ll(l,?i,?li:-

univout(P,Pl),
amevoub(all(k,0,P), PL}s-
i

1% the old forw (rule) #/

' /¢ the new forn (rule} #/

enivoutiP, pll,
We can see the similarity in those two rules above. The same
also applies in the first three stages 1.e removing all
implication and equivalence signs, moving negation signs
inwards (for universal quantifiers only) and the
skolemization of universal quantifiers for either knowledge

or query clauses (see section 3.3.1 of chapter 3).

The procedure to deal the indefinite and definite
existential quantifiers in moving negation 1nwards are
somewhat different. The method described 1in section 3.2 of
chapter 2 still applies to moving negation 1inwards for
indefinite existential gquantifiers. As a definite

existential quantifier or a definite determiner refers to a

subject which is known before hand, thus 1ts property of
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existential quantifier must be retained as assuming that the

subject 138 a proper noun. The following are some rules which

are concerned with the 1ndefinite and definite existential

quantifiers 1n moving inwards the negation signs:
neg(ezz:fs(l,?),lI!(l,PlJ:-

- !
neg(P,Pl),

neglexists(X, definitelX), P), exists(X, definite(k),P1)s-
[

neg(P,PD),
neglexists(X,indefanate(X),P},all(X, indef1n2te(k),Pl}s=
[

neg(?,P1),
negfcll(f,F,P),!xxsts(l,!,PI)s-

neg(P,p1).

The complete program of moving i1n negation signs c¢an be

found in the AppendaXx.

The other 1irregularity of dealing the definite and
indefinite quantifiers 1s 1n generating Skolem variables for
them, The method of generating the Skolem variables to
replace existentaal quantifiers of the form of
"exists(X,1ndefinite(X) ,P)" and "exists(X,defainite(X) ,P}"
are different for Dboth query and knowledge clauses. For
example, the following are two rules to generate Skolem
variables for knowledge clauses of both forms.

skolenlexrsés(X, definitecX), P), P2, Virs):-
!, /¢ for defintie deterxiners #/
picknare(X, P, Nane),
pickskolea{Nane,the,Yars,Sk), ¥ picking @ senbol nane #/
substatute(Sk, T, F,F1),
skoles(P1,P2,Vars),
skolenlexasts(X,B,P}, P2, Vars):-
5 J¥ for ather (indefinite} deterainers ¢/
picknare(},P Nire),
pickskolen{Kane,others, Yars, Sk}, /¢ prcking a syabol nare #/
sebstitate(Sk, X, P, P1),
skolen(P1,P2,Vers).

As in the example before this, we can sSee from the above

example that both rules are equivalent except 1in picking the
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symbol names for Skolem variables (predicate pickskolem/4).
Let us see in details how to pick up a symbol name for both

query and knowledge base (KB) clauges:

4.2.2.1 Knowledge base (KB) clauses

As explained in section 3.3.1.1 of chapter 3, "fs" is an
indicator to denote a Skolem function for knowledge
clauses. Here, we need to change the definition of
procedure PICKSK {(program 3.3.4 of section 3.3.1.1) to
accommodate the different method of generating symbols
for Skolem variables. We will generate a symbol the same
way as before (section 3.3.1.1) for other (indefinite)
determiners, 1.e a new number will be appended to a

picked symbol.

However, for the definite determiners, a new symbol will
not be generated, but instead the i1mmediately previous
one 13 taken to replace the definite existential
quantifiers. This method is adopted because the
determiner '"the'" usually refers to an immediately
previous subject. However this method 1is used with some
precautions from the semanti¢c point of view. So the new
procedure of picking a symbol for Xnowledge GSkelem
function (procedure PICKSK) is as follows:
pickskolen{Nane, the, Yars,Sk)2-
/% procedure PICKSE, I #/
skoles_the(Kane, 5k),
i
packskolen{Kane, Others, Vars,Sk) i-
{* procedare PICKSK.2 #/
gensyp(dane,f),
append(LF],Uars, Fandargs),
Sk=,.[fs/Fandargsl,
assertinglskalen_the(Kane,Sk)), 1, [# procedure ASSERTING #/

Proqres 4,2,4: The new procedure PICHSE
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The first procedure (PICKSK.l) takes the latest symbol
generated for the same existential quantifier or for the
same symbol name ''Name". The second one (PICKSK.2)
generates the symbol for the existential guantifiers and
the assert it i1nto the database by procedure ASSERTING.
The procedure ASSERTING will replace the old predicate
“skolem the(Name,Sk)" of the same symbol name “Name"
with a new one. For examples (an English sentence into
Horn clauses) :

(4,2,12). A wosbat lives in a zoo,

EZETaTEIEE)

exists(X,indefinite(X), wonhat (Xikexists{l,1ndefinte(Z),zoo(IbbiniX, 1) k11ves (X))

zzzzzzzIEE)

wonbat (fs (woabatd)),
200(f5{zn00)).
in{fs{nonbat0),fslzo0d)),
fives(fs(woabatol),

14,2.13). Nazrul visits the zoo.

EEZIZEIREE)

exists(X,definite(}),zoo{Xibvisats(Nazrul X)),

=zzzzzazes)

zo0(fs(zonl}),
visits(Nazrul,sizan0l),

(4.2,141, A wombat lives 1n a jungle,
zg2EEEzIII)
exists(X,indefrnite(X), wonbat (X) kexists (I 2ndefrnitedl), Jungle(ZHan(X, Dklives(X))}
soabat (fs(noabatil),
yungle{fs{jungled)),

in(fs (wonbatd), fslyungled)).
lives{fs{nonbat0]).

"the zoo" in example [4.2.13] refers to the same "zoo"
as in example [4.2.12], thus their Skolem functions are
the same, 1.e "fs(zoo0)". On the hand, "a wombat" in
examples [4.2.12] and [4.2.14] are certainly different,
thus their Skolem functions are different, 1i.e

"fs(wombat0)'" and "fs(wombatl)' respectaively.
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4.2.2.2 Query tlauses
As in section 3.3.1.2 of chapter 3, "fg" 1s to indicate
the Skolem function for query clauses. The method to
generate a symbol for definite and indefinite
determiners for query clauses 1s about the same as in
the query clauses with one extra rule for definite
determiners. The symbol for a definite determiner is
taken from the latest symbol for knowledge clauses, 1.e
skolem_the(Name,Sk) (procedure PICKSKQ.1l) or if it does
not exists, the symbol 1s taken from the latest symbol
for query clauses, 1.e skolemg_the(Name,Sk) (procedure
PICKSKD.2) . Otherwise the same method of generating
symbol is adopted (procedures PICKSKQ.3 and PICKSKQ.4
for definite and indefinite determiners respectively).
The following procedure 1is to replace the old one
(Program 3.3.7 of section 3.3.1.2) and will generate a
symbol for query Skolem function of existential
quantifiers,

pickskoleng(Nane, the,Vars,Sk}i-

/¥ procedure PICRSKE. ! #/
skolea_the(Nane,5k),
!

pickskalenq(Nane,the, Vars,Sk}i-
/¥ procedure PICKSKQ.Z #/
skolenq_the(Nize, 5k},
#

pickskolengiNene, the, Vars,Sk)1-

% procedare PICKSKE,T ¢/

gensy(Nane,fF},

append{ff1,Vars,Fandargs),

Sks. [fsiFandargsd,

asserfang(skolen_the(Nane, Sk}),!, /¢ procedure JSSERTING #/
pickskoleng(Kane, Others,Uars,5k)t-

I# procedure PICKSRQ. 4 #/

gensya{lane f},

append(LE ], Vars,Fandargs},

Sk=..(Tg/Fandargsl,

asserting(skoleng_the(Kane,Sk)),/, /¥ procedure RSSERTING ¢/

Progran 4,2.21 The new procedure PICHSKG
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The following are examples of how English sentences are
analysed into Horn clauses and suppose that we have
already asserted the knowledge clauses as in the example
(4.2.12] above in the database:

(4,2,151. No wombat lives in the zoo ?

azZCEEREER)

*existe(X,indefinite (X}, wonbat (X} kexssts(l,definitell),zooi2bbin(, 2} ives(l)}).

TExTTARRRD )

The transforaation of the negation of the PLi
wonbat (fq(woabatoll,
too(fs(zood) ),

{n(fq(woabat0},fsiza001}.
Iives (Fqinombat0l )},

(4,2.16]. All wombats are anmiaals ?

cEzsz=sses)
a1l {X,indefinite (X}, vonbat (X)=dammal (X))
zzzzzzEER)

The transforaation of the negation of the PC:

worhat (g (woabatl}).
*aninal {#q{npshati}},

(4,2.171. The boy loves Kitkat?

Izzsszcass)

exists(X,defanitedX) boy () kloves{y, Kitkat}),
zEE3ITTTAY

The transformation of the negation of the PC:

[1:-boy(fs(hoy0)),loves (fs{boy0), Kitkat) ],

From example [4.2.15), "the zoo" refers to the previous
zoo, 1.e the zoo as referred in the example [(4.2.12],
thus the questioned Skolem function for '"the zoo" in
example ([4.2.15] 1s "fs{zoo0}",. Cn the hand, the
negation of the PC of example [4.2.16] gives an
existential quantifier of a wombat, accordingly the
questioned Skolem function which replaces 1t, 1s
“"fg(wombatl)" as this wombat "fqg(wombatl)'" has not been
referred to before thus it takes a new symbol name and
furthermore that "fg(wombatl)" 18 a result of the

negation of a universal gquantifaier.
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Example [4.2.17] shows that 'the boy" is replaced with
"fs(boy0)" which has been symbolised by procedure
PICKSKQ.3 as Dboth the first two procedures (i.e
PICKSKO.1 and PICKSK(Q.2) fail. In this case "the boy" ais
not replaced by questioned Skolem function indicated by
*fg" but instead it 18 replaced by knowledge Skolem
function 1indicated by "fs". This 13 to show that
"fs(boy0)" is not a result of the negation of the

question so it cannot be replaced by "fq".

The details of programs for the first four stages after
adding new rules and modifying some rules as explained above

can be found in the Appendix.

4.3 Interfacing an English grammar into the question-
answering system
As explained in chapter 3, the refutation process of the
Prolog-based resolution 12 divided 1i1ntco three stages, 1.e
setting up a database (knowledge clauses), formatting a goal
(in Horn clause form), and the refutation procedure itself.
Basically, the method of converting a PC into Horn clauses
and the refutation procedure will be the same as explained
chapter 3 with scme exceptions which will be explained in

due course.

The Prolog-based resolution described in chapter 3 accepts
input in the form of a predicate calculus. So in interfacing
an English language grammar to the question-answering system
(the resolution method), the input in English sentence will
be accepted. However we would 1like to maintain that the

input and output in a predicate calculus are still intact.
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As we aim to maintain the question-answering system can
accept both an English sentence and a predicate calculus as
input, we need to agsert in the database (or Prolog system)
a control predicate te¢ 1indicate Dboth 1inputs such that the
answer or output of the question 1s 1dentical to the input.
For this purpose, we create a control predicate
form of answer(X) where X can be instantiated with either
"eng" or "pc" to indicate the 1nput and answer (output) are

English sentence or a predicate calculus respectively.

The need to differentiate the input or output does not arise
in the case of setting up a database or asserting knowledge
clauses as we do not need any response at all; the Prolog
system will response automatically with "yes" 1f everything
1s alright. So we need only to differentiate between those

two question inputs.

4.3.1 A predicate calculus input
We need to change the definition of procedure PCQUEST as in
the Program 3.3.3.1 of section 3.3.3 of chapter 3. The new
definition 1s as follows:
pequeste-

rexdid),

assertz_nex{fors_of_answer(pcl),

qaestion(q),

Prograr 4,3.13 A new defrnition of procedure PCQUEST

The only difference with the old definition is the second
line of the procedure where the new predicate
form of _answer(pc) is asserted into the database to replace

any predicate form of answer/l1 1in the database.
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4.3.2 An English sentence (language) input
In section 4.2.1, we have described the features of the
implemented English language grammar . The top level
predicate of the English language grammar described 1s a
predicate stat_or_ quest/2 or procedure SORQ. However
procedure PHRASE 1s the highest level predicate which will
called to read and to analyse an input sentence:

/¥ procedare PRRASE #/

phrase:~

read_phrase(S,Y), /¥ read an tnput sentence #/

stat_or_quest(S,Y), /¥ procedare $0RQ #/
Progras 4.3.25 Procedure PHRASE

There are two ways to dastinguish whether the English
sentence input 1s a question or not. The first one is either
the sentence ends with a question mark ("?") or others ("."
or "!'"). It is clear 1if the 1input sentence ends with a
gquestion mark, this will indicate that the input 158 a
question (procedures SORQ.1 and SOR1.3 below). However 1if
the 1nput ends with eilther a fullstop(".") or an
exclamation("!"), then the structure of the sentence will
determine whether it 1s a question to be answered (procedure
SORQ.1) or a fact to be asserted into the database
(procedure SORQ.2 below}. The following 1s a definition of
predicate stat_or quest/2 or procedure SORQ:

steb_or_quest(¥,2)2-
I+ procedare S0RQ.1 #/

question_phraseld,f i1, /% procedure QUEST-PR ¢/
assertz_new{forn_of _answer(engl},
question(d),

stat_or_quest(¥,2)1-
it procedare S0R0.{ #/
I=2\[7],
statenent phrase($,t,(1), 1% procedure STATE-PE #/
assert_kncnledge($),
stat _or_guest(f,[?))i-
f# procedare $0RQ, 1 #/
assertz_new(forn_of _answer(engl},
sentence(q,Y,[1), /¥ procedure SENTERCE #/
question(g),

rogras 4,1.31 Procedure SORQ
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It can be seen from the above program that the predicate
form_of _answer(eng) 15 asserted into the database if the
input sentence is analysed as a gquestion (procedures SORQ.1
and SORQ 3). All sentencegs (phrases) are classified into two
types, i.e a statement sentence and a question sentence,
Procedures STATE-PH and QUEST-PH will analyse statement and
question sentences respectively. However, if the sentence
input is a question (ended with a question mark). then there
are two pogsibilities of i1ts type, 1i.e either statement or
question sentences, and this question will be processed by
procedure SENTENCE as described below:
I+ procedure SERTENCE ¥/
sentence(d,¥,{1)1-
1% procedure SENTENCE. It to analyse 2 question sentence #/
question_phrase(d,¥,(1), [* Procedure QUEST-PE #/
sentence(5,Y,(1):-
1¥ procedure SENTENCE. 21 €0 anilyse 2 statenent senfence #/
statesent phrase(S,¥,(1). [* Procedore STATE-PH #/

Progras 4.3.41 Procedare SEXTENCE

The programs of procedures STATE-PH and QUEST-PH can be

found in the Appendix.

4.3.3 The output procedure
After the proving has been carried out, the control
predicate form_of_answer(X) has already be asserted into the

database where X has been instantiated with either "pc" or
"eng", As explained in chapter 3 that the procedure which
prints the answer are procedures PA.l1 and AF (see Program
3.3.3.4), procedure PA0.1 (see Program 3.3.3.5) and
procedure MORE-ANS (see Program 3.3.3.6). So all these
procedures have to be modified accordingly such that the

control predicate can be fitted 1n. The following are the

new procedures PA.l, PAO.1 and MORE-ANS:
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print _answer(2,¥,L1)1-
/¢ The new Procedure PR, ft the clause 15 an nconsistent one #/
dffiralins),
fora_of _answer(Fornanswer),
answer_forn(Forsansuer,y, S, dnst, I¥ procedare fF #/
:rzte(' The question clause is an inconsistent one '),

print_answerd(8,¥) s~
1+ the new procedure PO, 11 to print "yes® answer ¥/
nonvar(f},
affiraiyes),
fors_of answer(Foraanswer},
answer_fora(Fornanswer,y, S, ves), 1% procedare BF #/
fopare_ansneriForzansuer,), {¥ pracedure PRI 2/

1# the nen procedare BORE-RNS #/

sore_answer(Foraanswer,f)i=
prant_answerf(Formansuer,¥}, /¥ procedare PRINI-ANSI &/
qeté(hl,
answer_respense(d, ¥, /¥ procedare AR #/

Progran 4.3.5: The new procedures PR.1, PAO.I ind KORE-ANS

As can be seen from the above new procedure, the control
predicate has been added to praint the answer according the
input ("pc" or "eng"). In doing so, there are two new
procedures have been written accordingly, 11.e procedure
STATE-PH1 and PRINT-ANS1. The following are new procedures
of AF and STATE-PH1

[ the new procedure fF #/

answer_forsipc, ¥, ¥, 8ns)1-
1% Procedure BF.1: 1f the 1nput/oatpat 1s PC ¥/
nrite_ansuer(eser,Ans), [+ procedure X3 #/
writepcluser,t), i procedure KEC #f

answer_foraleng,¥,t, dnsde-
7% Procedure RF.21 if the inpat/output is English 4/
statenent phrase_one(Y,S,{1), /% procedure SIATE-PRE 4/
arrte_sent(user,5,1), 1% procedure KEXE ¢/

/¥ procedare STRTE=PRL #/

statesent_phrase_onely,$,{))1-
statesent_phrase(Y,§,[1),
]

Progran 4.1.6; Procedures Af and SIATE-PAE

The procedure STATE-PH1 will generate cone sentence only even
when more answers are required, otherwise the program will

give another equivalent sentence and not another answer for
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the question. Procedure PRINT-ANS1l, as shown below, will

print the remark of asking whether another answer is

required or not.

1# procedure PRINT-RNSI #/

prant_answerlipe,fhi-
write_proved(user, ),

print_ansueri(eng,¥)t=
srite_sore(user),

Progras 4.3.7¢ Procedure PRINI-ANS!

For examples, suppose that the guestion is '"is nazrul happy?"”
(1n English) or equivalently “"happy(nazrul)" (in PC). The
system will print the answer accordingly as follows:

{a} if the input fy a PC!

Yyanswery Yes,
* happy{nazrul) *

zEs=zzzzzzzrszz=zasszzrazaszacsazas
PROVED: happy(nazrul) ?7 {answeregd-option}
{b) 1f the input 15 an English:

i
Yes, it is true that Nazru! is happy.

topiphrase): more answers ? {answer-option}

Session 4, 3,11 The exaaples of output answers

The remark <answer—option> as shown 11n the above session
(4.3.1) is a user option as explained in Table 3.3.1 of

section 3.3.1 of chapter 3.
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4.4 Analysing and synthesizing an English sentence into and
from PC.

A few problems arise as we use the same set of grammar rules

to analyse and synthesis a single sentence into and from PC.

Those problems include:

(1) The univ operator "=.." of Prolog.

(2) Errors of using library predicate '"name(X,Y)" as X or
Y must be instantiated. This occurs particularly for
plural grammar rules i.e to test whether a given word
is a plural form of not.

(3) Taking more time to translate from PC to English than
from English to PC. This 1s due to not using the
information in the representation of PC itself.

(4) Givaing a different generated English sentence to the
¢riginal sentence.

These problems give a serious look at the representation of

the PC i1tself as well as some of the grammar rules.

The problem of the univ operator "=.." arises during the
synthesis phase as the rule proceeds extremely taimidly
having to search the whole dictionary of verbs before
finding the one that "fits" a term S where "S=..{V,X,Y]", if
the condition which uses the univ operator 1s placed at the
end of a rule, for example:
trans_verb(pleral, i,¥,8)==>
{ {5erb(v,z:,

pleral(l),
S=..00,3,00 L
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An alternative is the following where the last line is
moved up two lines:
trans_verb(plaral,i,¥,8)-=)
( i?s..re,x,n,
verbt¥,1),
pleral(l)) ),
However, this works admirably on the synthesis phase but
fails immediately and consistently during the analysis. A
"natural" replacement for both rules would be:
trans_verb{plaral R, ¥ 01, ¥})-=>
i1,
{ (verblv, 2},
plerdl{l)) ).
This structure 1is not allowed 1in current Prolog interpreter
used and also 1n most Prolog implementation. Hinde and
Mawdsley[1584] have proposed then a standard fix
"f(V,X,Y)"1s applied representing structure V(X,Y) such that
the rule works in both direct:on and does not require nearly
duplicate rules for analysis and synthesis phases. Although
this new structure suffers rather badly in readabality and
would be much clearer 1f wvariable functors were allowed
(Warren[1980], and Hinde[1984] and also ([1986]). this

structure is adopted to overcome the problem concerning with

the univ operator.

There are many methods or strategies to overcome those other
problems (problem 2, 3 and 4 above) bearing in mind that
these grammar rules will be used 1in a question—answering
system and it may also be wused in an inter-lingual
gquestion—answering system e.g from English to PC and back to
Malay language or vice versa 1in future. The following
sections are three strategies which try to overcome those

remaining three problems.
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4.4.1 A Tracing technique
By using this technique, we add an extra variable or
argument to the existing grammar rules. We called this
variable a tracing variable. A tracing variable is used to
1dentify a particular grammar rule. For example:
sentence(X,T)-—->statement_phrase (X, T)
will be converted into Prolog clause as:
sentence(X,T,Y,Z) :—statement_phrase(X,T.Y.2Z).
The variables X and T which refer to the resultaing PC and
the tracing variable respectively, will be instantiated by
the end of translating process of an English sentence, Y.
So, by knowing the value of X and T, we can synthesize an
English sentence and furthermore the result of thas
synthesis of an English sentence 18 actually Y itself, 1i.e
the same as the original (ainput) English sentence. Let see
another example of grammar rules with the tracing variables:

[+ the grannr rules for proper nouns #/
gproper_noenik, N, [9pn3,nhol)==}

fubal,
gpraper_n;;n(plural,ﬁ,[gpn?,l])--)

{

'
{ (plural(p,l},
proper_nouniP,K),
pob{noun(P, Y1)} ),

gproper_noen(singuler, K, Lgpnl,X1)==)

£11,
{ (proper_noun(l, b},
net{noen(X,kf),
notiplural(k, k),
not{prangun{d, X, 1) 1,

/* the qraanar rules for class of nages #/
cIass_na;eS::ngular,l,?,fcnlfﬁn])--}
i,
gnoen{singalar, b, P 60},
¢lass_nase(singaler,X,P,(cn2/6n))-=)
{an],
gnoan{singular, X, P,bn},
class_pane(plural X, P [cnd/Gn))==)
gnean{plural K, P 6n),
class_nae(PL,X, P, [cndiBad)d)-=)
gadrective(Pl,X, P 62dj),

The above example of the set of grammar rules are intended

to analyse proper nouns and a class of names. Each grammar
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rule has a unique tracing variable. For instance, the
tracing variables for the grammar rules to analyse a class
of names are "cnl", "cnd", "ecn3" and ‘'cnd4" which are to
indicate a singular noun which precedes with "a", a
singular noun which precedes with "an", a plural noun and an

adjective respectively.

Another by-product of implementing the tracing technique is
that we may able to classify the class of each word of the
input sentence provided that the symbol used for the tracing
variable is unique. For example:

?- ravsent, /0 example [4, 4,11 ¥/
it John loves Rary,

EITETITEER}))

f (1oves,John, Hary)

The tracing variables

[s3, [np7, [gpni,dohn}l, [cvpl, Cvpl, kv, Toves]d, [cnp0, Inp7, Copnl, Mary31131]

{{{=szsesssas
John loves Mary.

yes

?- reveent, It example {4,4,1.21 &/
{+ somebody visits the zoo,

FEE=szzaEx} )
extsts(_l,indefimte!_I},¥(person, _!Ykexists( 2,definitel_2),f(za0, _2)L¢ (visits, 1, 21},
The tracing variahies

{53, Enp%, [qpri,sonebodyi], [cvpd, [vpl, [tv7, visited, [cnp0, [np2, [gdetdd, [gn2, [gnd2,200]111110

{{{=z=zzzazz2x

sonehody visits the zo0.
yes,

Session 4.4.1.1r Examples of using tracing variables

From the above session, we can analyse and synthesize an
English sentence by using the tracing technique. In the
example [4.4.1.1] above, the tracing variable reveals that
"John'" and "Mary" are proper nouns and '"loves" 1s a

transitive verb. Furthermore the grammar rule which i1s used
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to analyse "John" and "Mary" 1is the rule "gpnl" of proper
nouns and the rule "tv7" of transitive wverbs is used to
analyse the word "loves". This 1information will be used to
synthesize an English sentence from the resulting PC. As we
intend to use the grammar 1n a question-answering system,
we demonstrate the following examples 1n a question-
answering session:

7-listing{knowledge}, /% a listing of KB clauses t/

knowl edge (£ (kind, John))

knowledge(f (kind,Peter!)

-phrase, /3 example (4,4.1.3]1 §/
{1 who are k1nd?

NEXT SENTENCE:
who are kind?

EScpgss=IIoEEn)

NEXT QUESTION:
ftkind, 1),

The tracing variables
{s3,{np7,Lopn3,whol], [cvp0, Lvp0, (tv2,arel], Lcend, cnd, gad), kind]111]

The translation of the negation:
[h'{ (klnd._n.

yanswery Yes,

¢ (kind, John}
LLLERREARLLLLALLALLEL

=zzz23)

Yes, it 1s true that who are kind,
top(phraselt nore answers 7 n
yes

Session 4.4.1.21 A question-answering example using the tracing technique

It can be seen from the above session that although there

exists John who is kind, but the answered sentence is still
the same with the questioned cne. At least the answer should
be "Yes, it is true that John 1s kind". It should be noted
here that the word "who" is parsed as a proper noun. The
inability of the grammar system to return the correct

sentence 1s due to the rigidaty of the tracing variable
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itself. In other words, the tracing variable contains fixed
words and their classes sguch that 1t cannot produce
different sentences other than the original (input) sentence

itself.

It should be noted here that we use top level predicate
"phrase" in the above question-angwering system and also in
the rest of this section. As explained in the last section
(section 4.3) about procedure SORQ and at the beginning of
this section about the need to add one more variable in the
grammar rules for tracing variables, then we need to
redefine the procedure SORQ to accommodate these tracing
variables and the new procedure 13 called SORQTR which can

be found in the Appendax.

Usually. 1n a question-answeraing system, the word '"who" will
be replaced by other proper noun such as "John" 1in the above
session (4.4.1.2). So, the word 'who'" will not be recorded
in the tracing variable itself but instead an uninstantiated
variable 1s recorded. This 1s parallel to the uninstantiated
variable assigned to word ‘'who" for the correspondang PC,
for instance as shown in the above session (4.4.1.2) where
variable "_1" of ‘'f(kind,_1)" represents "who" of the
question "who are kind?". Thus the grammar rule which deals
the special proper noun "who" is changed from:

gproper_noan(k, K, [gpnd, nhol}==>
[whol,

to:
goroper_noun(k,K,[1,11}-=)
{nhel,
{ (var(k)) 1,
The above rule dees not instantiate the tracing variables

"Z'" and "W" with "gpn3" and "who" respectively. The variable
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"W' will be instantiated with any proper noun during a
question-answering session and thus the condition "var(W)"
will prevent the use of this rule during retranslation of PC
to English or synthesizing phase. While the variable "Z" 1is
not instantiated such that it can be instantiated with other
rules of proper nouns. For example:

7= revsent, /% exanple [4.4,4,4] ¥/
{1 who are kind?

z=zzeezaEm)})
f(kind, 1}
The tracing variables

(s3,Cnp?, 0 2, 313, Lcvp0,Lvp0, [tv2,arel], [ccn0, [cnd,gad), kind1)I1]

{{(ez=zazzc22

who are kind.

yes

Session 4,4.1,3
Clearly it can be seen from the above examples that no word
"who" and the tracing variable which i1ndicated the grammar
rule for analysing the proper noun ‘'who", are recorded or
instantiated 1.e variables "_3" and "_2" respectively.
However 1f this modified rule 1s wused in a question-
answering system, then the second question '"who are kind?"
did not generate an acceptable answered sentence (see
example [4.4.1.6] of Session 4.4.1.4 below) by assuming the
same KB clauses exist in the database (see the listing of KB
clauses in the Session 4.4.1.2 above).

T-phrase. /¥ example {4,4,1,81 ¢/
is who {s kind?

NEXT SENTENCE:
who is kind?

gEas=szgszsscx)

NEXT QUESTION:
§(kind, 1.

The tracing variable (before)=

(s3,0np7,0_2, 311, Levp0, Ivpo, [tvl, 181], (ecn0, [ond, gad), kind]1]]]
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The translation of the negationt
{1-f(kind, 11,

Ddanswer: Yes,
f (kind, John)
ELAARARALARRRALALELLL
The tracing variable {after}s
[s3,Cnp7, [gpn1, Jobn]l, [cvp0, Evpd,tvi,is1], [cen0, [end,gad),kind1111]

zro3RN)

Yes, it is true that John is kind.
topiphrasel: nore antwers 7 n
yes

7-phrase. /% example [4,4.5.8) ¥/
it who are kind?

NEXT SENTENCE:
who are kind?

======I==B===B)

NEXT QUESTION:
§ (kind, 1},

The tracing variable (before)s
[s3,Enp7,[_2, 313, [cvp0, Lvp0, [tv2,arel], [cend, Lend, gad), kand1]11]

The transiation of the negations
(13-4 {kind,_1).

Yranswer: Yes,

¢ (kind, John)
LERALARLAARLA A LbALLL
The tracing variable {afteri=

[s3,(np7, (gpnl,dohn]l, Tcvpd, {vpQ,Ctv2,arell, [cend, fend, gad), k1nd]210]

===22)

Yes, it 15 true that who are kingd.
topiphrasel: more answers 7 n
yes

Session 4,4.1,4: A question-answering examples using the tracing techmique

Example {4.4.1.5] above give the correct answered sentence
"...John is kind" where wvariables "_2" and "_3" 1in the
tracing variable (before provang 18 carried out) are

instantiated with "gpnl" and *"“John" respectively (see the
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tracing wvariable after pProving 18 carried out}) and
furthermore that the answered gentence 1is a singular
sentence which i3 equivalent to the type of the input

(gquestioned) sentence.

On the other hand, the example [4.4.1.6] above gives the
same answered sentence “...who are Kkind" as the input
sentence. This is due to different type of the input and the
output (answered) sentences, i.e plural and singular types
respectively. As "John are kind" 18 not a correct sentence
(due to "[tvZ2,are]" 1in the tracing variable) then the
output sentence 1s the same with the input sentence, i.e the
system uses the same set of grammar rules during analysing
and synthesizing. In this case, during synthesizing, the
tracing variable for the special proper noun "who',1.e
"{_2,_3]" (see the tracing variable (before) in the example
[4.4.1.6] of Session 4.4.1.4 above), will be instantiated to

“"fgpnl,John]".

In order to overcome this problem, the tracing variables of
the grammar rules for the singular and plural transitive
verbs of "be" form are made egual i.e:
trans_verb(singular, X, Y, 000, X, 1),08¢1,10)-=)
fzgim_bew,z) )
trans_verb{plural, X, Y, fC8, K, 1), Lbvd, 210)-)
fzg;erbw,li,
pleral(ll) 1,
It should be noted here that +the two above rules are still
distinct i1n the sense of the type of the sentence, 1.e a
singular and a plural one. As a result of these
modifications, the question "who are kind" can be answered

properly.
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Another defic:ency of this technique 15 that the tracing
variable must be instantiated in order to retranslate from
PC to an English sentence. Otherwise it will cause unbounded
recursion or a syntax error particularly in the usage of the
labrary predicate "name/2". In other words, the path taken
or the set of grammar rules used in translating from PC to
English (synthesizing phase) is predetermined during
translating English to PC (analysing phase) and its value is

given by the tracing wvariable.

The time taken to translate English to PC or wvice versa,
therefore, is about the same. In fact, the time taken to
translate PC to English 13 always less or equal to the time
taken to translate English to PC since the path from PC to
English has been determined. Another advantage of using the
tracing variable technique is that the resulting tracing
variable 1tself explains the class of each word of the input

sentence, for example, see session 4.4.1.4.

No error of using predicate '"name(X.Y)" occurs as X is
always instantiated before using the predicate ‘'name/2". The
value of X is extracted from either the input sentence (from

English to PC) or the tracing variable (from PC to English).

The details of the grammar rules incorporated with the

tracing variable can be found in the Appendix.
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4.4,.2 The wording technique
Mawdsley [1984] has proposed a  temporary data base which
was called FLOATING_VOCAB(X) to speed up the process of
translation from English to French or vice versa. The
wording technique is adapted from the very same idea in
order to study its suitability in English-PC-English system
especially in a question-answering system. In fact, it does
not restrict into a mono—-lingual question-answering system
but it also effect a interlingual question—answering system.
So, the wording technique 1is actually Xkeeping a record of
each word of the input sentence in the database. For
example, if the input sentence 1s "Nazrul 1s kind", then the
record of each word of the sentence is kept as follows:

word_used(Nazrul),

word_used(is),

word_used(kind),
No repeating words will be recorded. For example, the words
of the sentence "every man loves every woman'" will be
recorded as follows:

word_used(every),

word_used{man),

word_used (loves).

word_used{woman),
This database ‘'word_used"” will be used during the
retranslation of PC to an English sentence. We will call
this database "word_used" as a wording database. Although
it will also be used during the translation from English to
PC but as an extra or a redundant condition since the
grammar parses the input sentence by using the input
sentence itself. The extra condition "word_used(X)" 1s added
to the grammar rules which contains "[X]" where X is a word

of the input sentence. In other words, all grammar rules

which classify the class of each word of the input sentence

with a few exception are added with the extra condition. The
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following rules are examples of using the condition
"word_used(X)'" and also not using it:

/% having the condition *word _used" &/
trans_verh(sinqular,2,¥,§(N,Z,¥))==}
()]

{ (word_used (W},
verh peli, W)} 1.
/% nat having the condition "word_used" #/
verb_phrase(Z,Y,X}-=)
trans_verb(Z,Y,l,f(is,Y,U)),
tp_class_nise(1,Y,X).
A group of grammar rules of containing the condation "([X]"
but excepted from placing the condition "word _ used(X)" is
the group of the grammar rules which "X" has been determined
(or has been 1instantiated), for example, 1n the grammar

rules which classify a determiner, e.g "a'", "the" and "an".

The wording database is set up before the sentence is parsed
and after the whole input sentence is read. Basically the
technique 1s equivalent to the previous technique, i.e the
tracing technique (see section 4.4.1) The only different
that the wording technique dces not keep a track of the path
from English to PC. Instead, it wuses the information
available from the wording database as well as the resulting

PC in order to retranslate PC to English again.

The wording technigque gives at least the same generated
sentence as the input one. It generates also sometimes the

equivalent sentence with the input one. For examples:
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7~ revsent, /% exanple [4.4,2.11 ¥/
{1 who i3 kind?

The listing of "word_used™:
word_used (who)
word_used(jn)
word_used({kindl,

FEERTTIZZINT)

#ikind, 1)

{uxsERRZEXZEE

who i3 kind.

7= revsent. /¢ exasple [4.4,2,2) 8/
{1 every san who loves every wosan likss svery food.

The listing of "word_used®:
word_used(every)
word_used(man)
word_used (who)
word_used(loves)
word_used{woman)
word used(1ikes)
word_used{food)

zzETRIEINIIN)

all(_1,indefinite(_1), f (man{_{)=2all(_2,1ndefinute(_2},4(food, 20=2 (likes( 1, 21) &
all(_3,indefanited_3},f (wonan, 31=>t(loves, 1, 3N}

{sxzezaczazas

every man who loves every woman hikes every food.

{zzzzz=rz=zIR

no san who loves every woman likes no food.

Session 4,4,2.1: The exanples of using a wording database

In the example [(4.4.2.2] above, two eguivalent sentences are
generated from one input sentence. The second sentence was
generated due to the non-existence of the condition of
"word_used(no}" in the rule of analysing determiner "no",

thus permitting the second sentence to be generated.

If these grammar rules are used 1n a question—answering
gsystem, the generated answer sentence 18 not correct one. It
13 sti1ll the same as the input sentence particularly with

regarding the questions such as who 1s kind?" or "who are

kind?". Feor example:
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?-listing(knowledge), /% listing of KB clauses &/
knowledge(f (kind, Jehn))
knowledge(f (kind,Peter))

7-phrase, /¥ example {4,4.2,31 ¥/
it who iy kind?

NEXT SENTENCE:
who is king?

ATTLELINELARER)

The listing of “word_used®s
word_used (who)
word_usediis)
word_used{kind),

NEXT QUESTION:
£(kind, 1},

Tha translation of the negationt
[]l"f(kil‘ld,_“ .

Yanswert Yes,

f(kind, Jahn)
LARAAALAL LA AL

FEIETX}

Yes, it 1s true that who is kind.
top(phrasel: sore answers ? )
Nanswert Yes,

f(kind,Peter)
EAERRLAEALALARLAL ALY

z=zz=x)

Yes, 1t 1s true that who 15 kind.
top(phrase): more answers ? n
yes

Session 4.4.2,21 A question-answering example using the wording database

The example [4.4.2.3] above (see Session 4.4.2.2) shows that
the answer sentence is "Yes, it 1s true that who is kind"
where the word 'who'" should be replaced with "John" or
“Peter" 1n this case. This 1s due to the non-existence of

“word_used(John)" or ‘"word_ used(Peter)" in the wording

database.
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So the problem "who' encountered here 1is about the same one
as 1n the tracing techniqgue. The scolution of this problem
is a bit tricky as the wording database is set up before the

sentence 138 parsed.

The "word_used(who)" will be asserted into the database if
an input sentence contains any word "who". In this case, we
also need a special rule teo deal with proper noun “who" as
it can be a singular or a plural one. The special rule for
the proper noun "who" 18 as fellows:
gproper_noun{X,¥)--)
(whol
{ tvar(V)) 1,
The above rule cannot Dbe used if Y 13 1nstantiated
especially as a result of a gquestion-answering session. It
prevents the retranslation of sentence (question) "who 1s
kind?" in a question—answering system. So we need to define
a rule for the "word_ used(Y)" if Y 1is a proper noun and the
"word_used(who)" exists in the database. The definition of
the rule 13 shown as follows:
nord_used(¥)e-
nanvar(y), /¢ 1 is instantiated ¢/
praper_noun(t, ¥}, f#Y 15 2 praper noan ¥/

exists(word_asedinho)), /2 1t exists in the mording database #/

Progran €. 4, 2.2t A specaal rule for dealing proper noan “who*

The above special rule for the proper noun "who" will only
be used during the retranslation of PC to English (1.e "Y"
1s instantiated) and provided that the "word_used(who)}"
ex1sts in the wording database and the instantiated "Y" 1s a
proper noun. This special rule 1is asserted 1into the

database before the whole input sentence 13 parsed provided

that "word _used(who)" exists.
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As in the tracing technique, the transitive verbs "is" and
"are'" will cause another problem in a gquestion-answering
system, therefore, the condition ‘“word_used(X)' in the

transitive verd rule which deals with verbs "is" and "are"”
are omitted. As a result, two sentences are generated from
one input sentence when it involves "is" or '"are". For
example:

7= reveent, /% example [4,4,2,4] 8/
{1 who is kind?

The listing of "word_used":
word_used{who)
word_used{is)
word_used{kind)

word_used{_l)t~-
nonvar {_1),proper_nounf_t, L}, word_usediwhol.

!!!lllllslll!l)

f(kind, 2)

{ezzzzzzazczana

who is kind.

<=======BI=I=8I

who are kind,

Session 4,4,2. 01

The same sentences will also be generated from the input
sentence "who are kind?". The listing of "word_used”™ include
the extra rule as described before when the word "who" 1s
part of an 1input sentence. Unfortunately, these modified
grammar rules when wused 1n a question—-answering system,
still does not generate the correct answers, 1.e the
answered sentence is sti1l1l the same as i1n the above Session

4.4.2.2,

Although the eguivalent modifications have been made to
solve the same problem which occurred in the tracing
technique, the resultant grammar rules still do not generate

a correct answer 1n this case. Here, it seems that the
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grammar rules did not use the 1i1nformation available in the
resultant PC, 1.e for 1instance the i1nformation '"Peter" in
the resultant PC "f(kind,Peter)" during the retranslation of
PC to English. This information 1s gathered in the tracing

technique such that no such problems are encountered.

This means that the formulation of PC should be revised
especially the formulation of PC for a proper noun. Another
reason we should revise the PC formulation for a proper noun
can be seen in the following session:

7= revsent, /¥ example [4,4,2,51 &/
it & man loves Mary,

The listing of "word_used":
word_used(a)
word_used{nan)

word_used (loves)
word_used (Mary)

exists(_1,indefinite{_1),f(nan, _1)&f{loves,_|,Mary))

(=====llll!=:l8

Nary loves a san.

{ccazzrInczsize

a man loves Mary.

Session 4,4,2.4;

It can be seen from the above session (4.4.2.4) that the
sentence "a man loves Mary'" retranslates into two sentences,
1.e "Mary loves a man” and "“a man loves Mary". It 1s clear
that the first retranslation sentence 1is a wrong one
although 2t is grammatically correct and 1t also used all
the words 1i1n the wording datahbase. In this case, the

variable "_1'" has been instantiated with “Mary" as there

exists "word_used(Mary)'" in the wording database.
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All the deficiencies explained as above are caused by the
unsuitable method of PC formulation of a proper noun. So we
need to change the formulation for a proper noun. For
example, the PC which corresponds to the sentence '"Peter is
kind":

"f(kind,Peter)"
is changed to:

"exists(Peter,proper_noun{Peter) .f(kind,Peter))"
These changes affect only the noun phrase rules which
consist the rule "gproper_noun' as one of the conditions,
The information "proper_noun(Peter)" is included 1in the PC
to distinguish between a normal existential quantifier. For
example:

?- revsent, /% exaople (4.4,2.4] 8/
{1 Joha loves Mary,

EzzresssEERcER)

exists{John,proper_nouniJohn),ex1sts{Mary,proper_noun(Kary),f (loves,John,Mary) )}

{zzzzsTsssxavze

John loves Mary.
yas

Session 4,4.2.57 A new representation of PC

So the new representation of PC is different 1f we compare
1t with the old one, i.e f(loves,dohn.Mary). Now let us see
how this modification features in a question—answering
system as shown in the following session assuming that the
same KB clauses as shown in the Session 4.4.2.3 exist 1in the

database:
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T-phrase, /8 exasple [4,4.2.7]1 ¥/
15 who is kind?

NEXT SENTENCE:
wha is kind?

TETIXREXIEZREX )

! (the listing of "word_used® is omitted!

NEXT QUESTION:
f(kind, 1),

The translation of the negations
(1s~f{kind,_{},

Yanswert Yes,

$(kind, John]
LALLLLALLARARELLLLLEL

zzczxn)

Yes, it 18 true that John is kind,
top(phrasels more answers 7 §
Yanswery Yes,

f(kind,Peter)
LALELELRLALELENEALLY

sz==zx)

Yes, it 18 true that Peter is kind,
toplphrase): more answers ? n
yes

Session 4.4.2,61 A question-answering exaeple using the new representation of PC

From the above sessicn, 1t c¢can be seen that the generated
(answered) sentence 18 a correct one which represents the

answered PC.

As the ainstantiation of tracing wvariable, the wordang
database should be created before the retranslation of PC to
English sentence, otherwlise an unbounded recursion or a
syntax error will occur. So we cannot use them to translate
from given PC to an English sentence straight forwardly. We
need to define a procedure which will extract any possible
word from the 1input PC before we can continue the

gynthesizing process. Here, we will not define the procedure
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to extract the word from an 1input PC as we are only
interested in the process of English->PC->English

translation.

The wording technique does not determine the path taken but
it will guide the grammar rules to retranslate the PC into
an English sentence which corresponds to the wording
database. It does prevent the unbounded recursion or the
illegal used of predicate "name/2". On the other hand, it
does not prevent other legitimate or grammatical sentences
being generated. For example, in the above session 4.4.2.3,
the input sentence "who 13 kind" 1is retranslated into two
sentences, 1.e "who is kind" and "who are kind" where both

of them are correct.

This technique used the information either from the input
sentence (gquestion) or the PC during analysing or
synthesizing respectively. So the time taken to go either

way 1s about the same.

The detailed grammar rules adopting the wording technique

can be found in the Appendix.
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4.4,3 The conditioning technique: " var(X)" or "nonvar(X)"
The main reason for a syntax error of wusing predicate
"name(X,Y)" is the uninstantiation of the variable "X". In
order to prevent this error, an extra condition “nonvar(X)"
18 placed before the condition "name(X.Y)". The goal
"nonvar(X) " succeeds 1f "X" is currently an instantiated
variable. The predicate "name(X.,Y)" is usually used to find
out whether the input word is a singular or a plural one.
Precisely, the predicate "name(X.Y)" will be used to convert
the i1nput word into a singular present tense word if it is
not already one, 1.e if 1t 1is a plural, past tense or
others. The following grammar rule is used to check whether
the word "W" 1s a plural verb ending with "s" or not.
trans_verb(plural,1,vY,#{X,7,Y))--}
v,
{ (nane(il, v},

append(V,"s*,T),

naneis,T),

verb(s, X1,

transitive{S)) }.
However, the above rule cannot be wused to translate PC to
English as the word W is still uninstantiated. So an extra
condition ‘"nonvar(X)" 1s placed before the predicate
"name(W,V)" and another rule is to be written in order to
translate PC to English of a transitive wverb ending with
"s", 1.e the above rule will be rewritten as:

trans_verbiplural,Z,Y,f(X,2,Yi==) /[t rule {a} ¢/

1y
{ (nonvar (W),

name (N, ¥}, £V condition (i) 8/
append(y, s, 1), {4 condition (x1) &/
niee(5,7), {t conditron (ii1) ¥/

verb(5,X),transitivedS)) }. /% conditions vk 3/
trans_ve;:;plural,I,Y,f(X.I,YiI--) ft rule (b} &/
[

{ {varih),
verb(8, %), transitive (B}, /% condations [iv) ¥/
niae(S, T}, /% condition 11i) &/

sppend (¥, "s*,7), /% condition {ii) &/
nane(l,¥)) }, /t condition {1) &/
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The rule (a) above is used to check whether the instantiated
plural transitive verb "W" 1is ending with "s" or not and
build a root word "X" without '"s". On the other hand, the
rule (b) is used to build a plural transitive verb "W"

ending with “s" as a part of a whole sentence from a root
word "X". Furthermore the order of the conditions in rule
(a) is a reciprocal to the same conditions in rule (b), i.e
the order is (1), (ii).(iii).(iv) in the rule (a) and a vice

versa in the rule (b).

If we modify all the grammar rules which consist the
predicate "name/2" and write an extra grammar rule to each
of modification as above, then generally, the grammar rules
can be used to translate either English to PC or a vice
versa, but wath some precautions especially regarding the
used of the proper noun rules. The following are examples of
translation from English to English via PC.

[4,4.3.11 John loves Mary,

suE=LIISTEZ=EIZ)

exists(John,proper _noun{John),ex1sts(Xary,proper_noun(Mary),f(loves,John,Hary) )

{zz3zz=22==2C=Z2E
John loves Mary,

[4.4.3.2] Peter who loves Nary likes Plaice,

====BII===B==8)
exists(Peter,proper_noun{Peter),exists(Plaice,proper_noun(Plaice) ,f(l1kes,Peter,Plazcel) &
ex1sts{Mary,proper_noun{Mary},f{icves,Peter,Maryl)}

{=s=zzz=3=22=2
{"that

'
Peter | who | loves Mary likes Flaice.
i_which_|
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(4,4,3.3]1 somebody visits the zo0,

FFUERTERITERRR)

exists{_1,indefinite(_1),f(person, 1ltexiste(_2,definitel_2},f{zoo, 20tfivisits, 1, 21))

(mozarsszezzeEn

i person
an persan

B

! visits the zoo.
one person |

!

R

soashody
LT T

It should be noted here that the new representation of PC
for proper nouns, as described 1in the last section 4.4.2,
has already been adopted here (see example [4.4.3.1] above)
as the same problem of not using the information in the PC
formulation during synthesizing the sentence as in the
wording technique has arisen and furthermore to cut the

retranslation time from PC to an English sentence.

The example [4.4.3.1] produces one-to—one sentences, i.e
one 1nput sentence 13 retranslated into one output sentence.
Since there are three relative clause words defined in the
dictionary, 1.e "that", "who" and ‘“which" in this order,
then three sentences are generated 1n example (4.4.3.2].
This retranslation can be classified as a one-to-many
translation. Another example of one—-to-many translation is
example [4.4.3.3] above where five equivalent sentences have
been generated. So the number of generated sentences depends
on the number of a certain class of words used in the input
sentence and the number of the same class of words defined
in the dictionary (see example [4.4.3.2]) or the number of
different sentences which produce the same PC (see example

[4.4.3.31) .
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The same rule applies to the input sentence "who is/are
kind?". Beside the sentence "who is/are kind" is
retranslated, the other sentences "{proper_noun> is kind"
are also retranslated where “<{proper_noun>" is any defined
proper noun words in the dictionary database, for instance,
"Mary/John is kind", where "Mary” and "John" are defined as
proper noun. However, if it 18 used in a question—answering
system, the system will only generate the correct sentence
provided that there is an answer to the question as shown in
the following session, 1.e the word "who" 1s replaced with a
suitable proper noun:

I-listing(knowledge}. /¥ listing of KB clauses $/

knowledge(f (kind,John})

know)edge (§ (kind, Peter))

2-phrase. /1 example [4,4.3.41 ¥/
{1 who 15 kind?

NEXT SENTENCE:
who 18 kind?

====BII=3====I>

NEXT QUESTION:
exists(_i,praper_noun{_1),fikind, _1}).

The translation of the negatiom
{1:=f(kind, 1.

yanswer: Yes,
exists(John, proper_noun(Jahnl 44 {kind,John)
LALLARAALARARALELLLL

z=z=s3)

Yes, 1t 1s true that John 1s kind.
top{phrasel: sore answers ? §
answert Yes,

exists(Peter,proper_noun{Peter},f(kind,Peter})
LALELARALALARA L LALLLL

s=zcaz)

Yes, it is true that Peter 13 kind.
top(phrasel: more answers ? n
yes

Gession 4,4.3,§) A question-dnswering example
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On the other hand, if there 1is no answer to the question,
then the generated answer sentence 18 wrong, i.e "Yes, 1t is
true that who 1s kind". Only one sentence will bhe generated
during answering the question as the procedure STATE-PH1
allows only one sentence to be generated (see Program 4.3.6

of the previcus section 4.3).

Although no problem of the usage of ‘"name/2", but this
technique produced a different type of problem, i.e one-to-—
many translation which sometimes may cause an irritating or
ungrammatical sentence, for example "an person visits the

zoo" as in example [4.4.3.3] above.

In the previocous two techniques, 1.e tracing and wording
techniques, no such problem occurs. One of the reasons, is
that the PC representation does not contain enough
information in order to produce a good sentence or the same
input sentence when 1t matters. So, 1n order to get the
results as the other two technigques, we need to put more
information into the PC representation and it may make the
PC more unreadable as 1t contains the information about the
words of the sentence. For example, 1in representing the
determiners, we add another extra information in the PC, i.e
"det (X)" where X is a determiner to replace "indefinite(X)"
or "definite(X)".
[4.4.3.4], a san loves every wonan
sereszmves)
exists(X,det(a),f (zan, X &al1{Y,det(every), f(xonan,Y)=>f (loves, X, Y} }}
(4.4.3.3% t?e_lan_!isits the 200,
:;;;:::;:;:t(the),f(lan,Xlle:ists(Y,det(thal,f(zua.Y]lf(visits.X,Yl))
Both sentences will be produced exactly as the inputs due to

the completeness of the information contains 1in their PC
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representation. It can be seen that this technique resembles
the other two previous techniques and the results will
expect to be the same. However, we need to write the exact
PC if we would l:ike to synthesize a sentence from a given PC
as the above method work well if we are working from
English->PC->English. The full grammar can be found in the

Arpendix.

4.4.4 Comments on the analysing and synthesizing techniques

In the last three subsections, we have discussed the three
techniques which may be used 1n analysing and synthesizing
an English sentence. All three techniques work admirably in
the system of English->PC->English and also in the
question-answering system of English->PC->English. This can
be extended to ainter-lingual systems (as described ain
Mawsdley[1984], Hinde and Mawsdley[1984]), Baker([1985],
Kok{1986]) but the PC representation has to be seriously
looked and modified where necessary to suit the question-
answering system espec:ially 1n converting PC 1into Horn
clauses as the inter-lingual system contains all the
information for the translations which may be redundant or

unsuitable for the question—answering system.

We need to be careful :if we would like to use three
techniques from PC->English (a synthesizing phase). The
tracing technique can not be used in such a way. The wording
technique needs extra help in order to extract the words
from the PC representation in order to make the synthesizing

phase successful. The conditicning technique (section 4.4.3)




196

needs the PC input to be written Jjust like the sentence

which defeats the purpose of writing them in PC form.

We have also introduced a new structure of PC, i.e
"exi1sts(X,proper_noun(X),...)" and "“exists{(X,det(X),...)".
In case of ‘"exists(X,proper_noun(X),P)", nothing is done
during the skolemization process as this proper noun
existential quantifier does not really mean an existential
quantifier which should be replaced by a Skolem function but

it is only for purpose of synthesizing of English sentences.

In the last three sections which describe all the three
techniques, we have concentrated in a translation of English
sentences which contain the word '"who'" as a proper noun.
However, the grammars will act appropriately in translating
word "who" as a relative pronoun, 1.e a relative pronoun
"who'" will be translated into "&"(conjunction) and not into

" 1" (a variable) as a meaning of a proper noun.

The first four stages of transforming a PC of the forms
"exists(X,det(the) ,P)" and "exists(X,det(X),P)" where P 1is
not i1nstantiated to "the" are exactly the same as the stages
for a PC of the form "definite(the)" and "indefinite(X)"

respectaively.

We will revisait these three techniques again when we will

discuss the wusage of them in rectifying and suggestion

process later (chapter 6}.
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4.5 Comments

We have already discussed how an English sentence 1is
analysed into PC which then is passed intoc the Prolog-based
theorem prover for c¢onverting them into Horn clauses and
either asserting the Horn clauses as a fact or answering the
question (Horn clauses). The resulting PC is then 1s passed
back to the English grammar for synthesizing them back into

an ordinary (answered) English sentence.

We have seen alsc the problems 1n transforming a PC into
Horn clauses for knowledge and query clauses especially
regarding the definite determiner '"the'". In this case, we
take the 1mmediately previous reference to the subject as
the symbol for both knowledge and gquestioned Skolem
functions. This 1s one of the ways of referring of the

definite determiner "the".

The question—answering system described is able to answer
the question derending on the 1input, i.e either an English
sentence (natural language) or PC, such that we can bypass
the natural language grammar if we would like to and even
assert the fact straight 1into the database using Prolog's
consult command. We also can add any other natural language
grammar to make the system inter-lingual on condiation that

the PC representation is the same.
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Finally, I must admit once more that my knowledge of English
grammar is limited thus the grammar which 18 discussed 1n
this chapter may be small and may also not be satisfactory
from the linguistic point of view. However most of the
discussion 1s around the techniques of analysing and
synthesizing an English sentence which are about the same
regardless the size of the grammar apart from the grammar

complexilaity.



CHAPTER 5

A FAULT DETECTING ALGORITHM
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S.1 Introducticn

In proving a theorem or making an engquiry to the database,
we may get a negative answer due to some faults. Bundy et
al{1985] classify these faults as follows:
(1] Factual Faults:
A rule false i.e the rules constitute a program
which calculates ancorrect answers.
[2] Control faults:
The rules are true, Dbut have undesirable control
behaviour when run as a program, e.g they do not

terminate.

As descraibed in chapter 3, the proving algorithm has been
integrated with the cycling checking. So the control faults
will not occur. In other words, the proving will terminate
in all conditions except in the case of occur—-check
condition. However the factual faults will still occur. We
wi1ll only concentrate on the required rule which simply does
not exist. This non-existent rule will cause an error of
omission in the context of Bundy et al.[1985]. Errors of
omission occur when a rule failed to fire, either because 1t
was incorrectly constrained, or the required rule samply

does not exist.

In this thesis, we will not discuss how to find the rules
which are insufficiently or 1incorrectly constrained. The
insufficiently and incorrectly constrained rules will cause
errors of commission and omission respectively. Error of
commission 18 committed Dbecause the program fires a rule

which is false or aincorrectly constrained. It should be
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noted here what we mean by the rule is the knowledge base
(KB) clause in the database (see Program 3.3.1 of section

3.3.1 of chapter 3).

Why can we not get the result required? As explained above,
this is due to the non-existent KB clause (rule). The other
reason 1s that we may ask the wrong question such that we
cannot get the expected or required result. So we will
divide into two main parts:

[1] Fault detectaon.

f2] Fault rectification

In this chapter (section ©D.4), we will be only describing
the first part, i.e a fault detection algorithm or a critic
{(following Mitchell et al.[1981]1). The fault rectafication
algoraithm will be explained i1n the next chapter (chapter 6).
In the following next two sections, (sections 5.2 and 5.3),
we will give an overview of software reliability and program

debugging respectively.
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5.2 Software Reliability

Due to expansion in software systems, the problem of
software reli1ability has arisen. Many mathematical models
such as the J-M model (Jelinski and Moranda[1972]), the
probabilistic model (Shooman ([1972]), the execution-time
theory model (Musal[1979]), Fault Removal mecdel (Littlewood
[1981]) etc (see Sallih [1986] for a review of the said
models and others] have been developed to describe the
behaviour of software package errors and then to get some
measures from which the reliability of these software

packages can be calculated.

What is software? software includes the whole series of
non—-electronic support to computers, in other words,
software is the non—physical part of the gystem
(0gdin{1979]1) . Software consists of an application program
(a program 1s a unique way of communication (Prather(1984]))
whose role 1s to solve user's problems, and system programs

which handle the problems of computer service.

If we think carefully about the process of writing a
software system we find it is not as easy a Job as 1t might
lock, especially when we know that programmers are limited
by time and cost specified by their own managers. Under
these circumstances programs tend to have errors which make
them unable to do what they should do, and this has led to

the need to ensure reliability in software systems.

What 13 software reliability? Software reliability 1s the

abi1lity of a computer program to operate successfully
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without failure, provided that its enviromnment and time
parameters have been specified. If a program 15 used in a
different environment, the reliability may be different for
each environment. There is no absclute measure of failure.
Software could be accepted but on certain conditions.
Putting in measures of successful program we can define

failure as a deviation from these measures,

Of course, failures are caused by bugs. Basili and Perricone
[1984] define a bug as something detected within the
executable code that caused the module in which it occurred
to perform in—correctly. However, 1in software reliability
studies, the number of faults 1s not their concern but the
performance of the program they are after. Sometimes a
program containing many bugs performs closer to our
requirements than a program containing fewer bugs, and in
this matter Littlewood [1979], says, "scftware reliabilaty
means operational reliability who cares how many bugs are in
a program? We should concerned with their occurrence on 1its
operations'. However and in spite of what we have said there
are some cases where we might wish to know that the software
13 completely bug free: such a case could be a nuclear power

station safety system,

Software reliability 1s as important as hardware reliabilaty
as the i1ncreasing usage of computer systems especially in
very critical fields such as air traffic control etc.
Computer software is also very costly 1in terms of money and
labour. Boehm[1976], Broocks(1975], Myers[(1978], and Yourdan
and Constantine[1979] indicate that testing and debugging

alone represent approximately half the cost of new system
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development. As error detection and error correction are
now considered to be the major cost factors in software
development, it is worth spending effort to make sure that

the programs we are writing are going to work.

To obtain increased reliability one should spot the cause of
failure and remove it. If 1t 15 1in the program coding the
code should be corrected, or if 1t is a logical error the
logic should be corrected. In the extreme case where the
design of the software does not accept certain inputs the
software should be modified. An important factor 1in
achieving increased reliability is testing. Testing should

cover every bit of a program,

Although there 1s similarity between software system testing
and the hardware life—-testing models, there are also
significant differences, because (see Rault[1979]), software
faults have a design origin while most hardware faults have
a physical origin. Alsco the objectives of the tests are
different. In hardware testing the statistical emphasis 1is
often on estimating the failure rate of an 1tem. In software
testing the main statistical emphasis 1s on estimating the
number of errors remaining in the system. Another reason for
not using hardware methods is, as Littlewced [1980], says "a
hardware device 1s certain to fail eventually, whereas a

program if perfect i3 certain to remain fajilure free".

To detect errors we need first to classify the errors a

piece of software may contain. These errors happen for a

variety of reasons (Basili and Perricone [1984]):
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{1] . misuse of the programming language

[2]. error 1in the logic of program.

{3]. error in the computational theory

[4]. error in the uge of the data structures

[5]. error when correcting other errors.
and many other reasons which may cause other Kkinds of
errors. Errors differ not only according te their type, but
also in the way they present themselves. For example, Basila
and Perricone {19841 mentioned that errors occurring in
modified modules are detected earliier and at a slightly
higher rate than those 1n new modules. The reason for this
is that the causes of error in modified modules are due to

the misinterpretation of the functional specificataions.

Correcting an error could be a source of generating more
errors (1.e either we fail to correct the error, or
correcting a bug produces another bug or bugs). It has long
been known that the debugging process is one of the sources
of uncertainty, in software development, since correcting an
error does not mean that our program has been freed from
that error (an imperfect debugging). There 1s always a
probability that this error will remain in the program, or
even worse cause other errors to rise to the surface. There
13 another problem , and this is what Downs [1985]), called
the "obscure failures" problem. This means that a failure
happens and because of a lack of information., no effort 1is

spent to 1dentify the error.

A lot of software failure models assume that all errors are
detectable at all stages of testing; eventually this leads

to the assumption of monotonically increasing software
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reliability, characterised by convex upwards plot of
cumulative number of errors versus time (see Fig 5.2.1%1

below) . \ /A~

Fig, 3 fig. 5.2,2

In practice, however, many real scftware systems show a
non-monotonic reliability profile (Angus et al. [1983]1).

This is shown by an “s—-shaped'" curve of cumulative number of
errors versus time (see Fig §5.2.2 above)., Studying this
phenomenon reveals that in early debugging the bugs may
take time to manifest themselves; once these errors have
been detected other bugs may then become apparent. Various
reasons for this behavicur come to mind- for example, some
bugs may take an appreciable time to fix and during this
periocd, no further bugs are detectable. Furthermore, a
hierarchy of bugs may exists in which 1t 1s not possible to

detect lower level bugs until the higher level ones have

been fixed.

Many explanations could be given to the s-shaped curve

produced by plotting errors detected against time. Some of

these are (Schagen [1985] and Sallih {1986]):

(1) If the debugging process is not constant, i.e there is a
change 1n the environment such as less effort being
spent at the beginning of the debugging process, thus

fewer errors being detected.
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(2) If the correction of errors carried out during the
debugging process generates further errors, then
imperfect debugging could lead to a cluster of errors.

(3) The structure of a piece of software may consist of
several modules and some of these modules which contain
many bugs will only be exercised in a later stage of
the debugging process.

(4) Software may contain two kinds of bugg:; the first being
major bugs which take scme time to be fixed, during
which time the system i1s down and no other errors can be
detected. The second are minor bugs which take an
insignificant time to be fixed.

(5) We may postulate a hierarchy of errors such that
"secondary" ©bugs cannot be detected until all the
"primary'" bugs have been detected and removed. In other

L1

words, the debugging process does not '"see'" all posgsible
errors from the beginning, and thus error detection rate

15 not monotonically decreasing.

Therefore the idea that the rate of finding errors i1s a
monotonically decreasing function of the number of errors
found should be abandoned as Angus et al.[1983] have failed
to fit several different software failure models to a range
of data that they had available relating to US defence
software. Sallih {1986]) has studied a few software
reliabilaty models which fit the s-shaped curve based on

some of the reasons described above.
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9.3 Program Debugging

In the last section, we have discussed the software
reliability where many researchers have proposed different
software reliability models in order to study the behaviour
of the goftware failure profiles based on the assumption of
how the debugging process is carried out. In this section,
we will discuss the need of debugging, debugging processes
and some debugging algorithms. The area of computer program
debugging is also one of the key phases in the system
software cycle. Debugging 1s the process of locating and
correcting the error within the program once the existence

of an error has been establishing by testing (Myers [1978]).

It 15 evident that a computer can neither construct nor
debug a program without being told, 1n one way or another,
what problem the program 1s supposed to solve, and some
constraints on how to solve 1t. No matter what language of
whatever generation we use to convey this information, we
are bound to make mistakes. It 1s not because we are sloppy
and undisciplined, as advocates of some program development
methodologies may say, Dbut because of a much more
fundamental reason: asz pointed ocut by Shapiro{1982] that we
cannot know, at any finite point in time, all the

consequences of our current assumptions.

A program is a c¢ollection of assumption, which can be
arbitrarily complex; its behaviour 15 a consequence of these
assumptions: therefore we cannot, 1n general anticipate all
the possible behaviour of a given program (Shapiro{19821).
Thas principle manifests itself in the numerous

undecidability results, that cover most interesting aspects
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of program behaviour for any nontrivial programming system
(Rogers([1967]) . It follows from this argument that the
problem of program debugging is present 1n any programming
or specification language used to communicate with a

computer,

As pointed out in the last section that debugging process
accounted half of the cost of new system development. So 1if
we can eliminate the debugging process, then we will save a
lot of time and energy. It has also been suggested that one
way to eliminate the need for debugging 1s to provide a
correctness proof of the program, But, Goodenough and
Gehart[1975] found seven bugs 1n a simple text formatter
program described and informally proved by Naur [1969] who
(together with Randell- Naur and Randell [1969}} suggested
that we can dispense with testing altogether when we have
given the proof of correctness of the program. So the
informal or formal procfs of program correctness do not

guarantee that the program 1s correct.

However, as pointed out by Goodenough and Gehart (1975},
that the practise of proving a program correctness 15 useful
for improving reliability, but suffers from the same types
of errors as programming and testing, namely., failure to
find and validate all special cases relevant to a design,
its specification, the program and its proof. Gries {1981}
also agreed that even though we can become more proficient
in programming, we will still make errors, even if only of a
syntactic nature. Hence some testing will always be
necessary. But, he disagrees to call the testing process as

a debugging, and suggests that the test 13 to increase our
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confidence in a program we are quite sure 18 correct;
finding an error should be the exception rather than the

rule,

Manna and Waldinger [1978] also suggest that one can never
be sure that specifications are correct, and agree that is
18 unlikely that program verification systems will ever
completely eliminate the need for debugging. Debugging is an
unavoidable component in the process of "model
verification”, in which the system verifies that 1t has the

right i1dea of what the target program is (Balzer [1972]).

Traditionally, the efforts i1n program debugging were focused
on how to bridge the gap between the programmer and the
executable program. Core dumps and print statements were the
common means of communication between the running program
and the programmer. However, these are i1nsufficient to solve
the problems of software development. Another approach 1s
the adaptation of structured Programming in program
development. This helps avoiding or detecting early many

syntactic or shallow semantic errors.

The area of debugging crucial to software development and
maintenance 138 semantic debugging. Syntactic errors are
defined for the purposes of computer programming as €rrors
that compilers recognise, and the use of high level
programming with a strong—-typing mechanism, such as Pascal,
Algol-like languages will help toward finding syntactic
errors. Semantic errors are those that compiler cannot
recognise and the adaptation of structured programming

techniques will help a little bit in removing such errors.




In formal sense, debugging can be

process viewpoint or a functional
The following figure (Fig 5.3.1)
debugging process (Vessey[1986]1).

she derived from medical diagnosais
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understood from either a
viewpoint (Vessey[19861).
shows the basic model of
This representation which

shows the different types

of debugging behaviour as well as the relationships among
them,
] i i Generate | i i
@ Bet ! ! hypothesis i__ ! Evaluate |
leluals} A i ahout errori thypothesis!

1§ arror

tonfira?l

i Confirn 15 { Repiir If
| error | ierror |

Fig, 5.3.1: Model of debugging process {Vessey[19841)

Fig. 5.3.2 below shows the understanding of debugging from a

functional wviewpoint 1.e the
(Vessey [1986]) using structure

and Constantine[l1979];

model

of debugging functions

chart conventions (Yourdan

Weinberg([1979]).

] debugq Proqraa }

Foraulate hyputhes:i:

! [
! 1
i Find | | | Generate | |
{ Problen | ] { hypothesis | |
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! H
d {
! i
! { Evaluate | |
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Asend Error

Represent Code N

} Localize Code

RYR’4A 4
i Read Code !

{ Process Code |

Fig, 5.3.2{ Model of dsbugging functions {Vessey[19851)
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The ahove Fig 5.3.2 shows top-down hierarchical relationshap
of functions. The functions at the top of the structure are
responsible for control of the lower functions, which
achieve most of the work, and invoke them as they required.
The above chart defines the elements of procedural knowledge
for debugging. Vessey[1986] gives a list of literatures
which supports the debugging functions as shown above and

which will be briefly described below,

DEBUG PROGRAM 1is the topmost function which exercaises
ultimate control over the debugging process. In FIND PROBLEM
function (or get clue(s}), the search for clues 1s carried
out to reveal the problem with the program. The FORMULATE
HYPOTHESIS function 13 subdivided 1into GENERATE HYPOTHESIS
(1. to search for a possible cause of the problem) which
invckes EVALUATE HYPOTHESIS (1.e to assess the validity of

the suggested cause of the problem).

AMEND ERROR function which 1s 1invoked by DEBUG PROGRAM
function, is further subdivided 1into REPAIR ERROR (1.e
modification of the program in accordance with the perceived
cause of the error), which ainvokes CONFIRM ERROR (i.e

Justification for introducing the suggested modification).

Another function 1invoked by the topmost function s
REPRESENT CODE function. This function consists of the
elementary functions: READ CCDE (1.e sequential examination
of program statements), LOCALIZE CODE (i1.e search for a
particular piece of code) and PROCESS CODE (i.e mentally
process data through the program). Vessey [1986] pointed out

that the i1nclusion of a REPRESENT CODE 1is essential that
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when programmers are debugging programs with which they are

not familiar.

Adam and Laurent [1980] discussed a debugging system called
LAURA which have been designed not to prove the correctness
of a program but to detect or localize the errors it may
centain. LAURA uses a procedural description of the program
task, under the form of a program model. Debugging 1s then
viewed as a comparison of two graphs, built from the student
program and from the program model (which is supposed to he
a correct 1mplementation of the algorithm). The system
debugs program in various fields (e.g tax computation,
perfect numbers, integration etc) and let the user himself
make some difficult interpretations, i.e LAURA will localize

a gsemantic error but it left to the user to solve 1it.

Shapiro[1982) also tried to lay theoretical foundations for
program debugging, with the goal of partly mechanising thas
activity. In particular, Shapiro attempted to formalise and
develop algorithmic solutions to the following two
gquestions:
(1) How do we identify a bug 1in a program that behaves
incorrectly?

(2) How do we fix a bug, once one 1s i1dentified?

These questions (1) and (2) can be referred in term of
Vessey's functions as FORMULATE hypothesis and AMEND ERROR
functions respectively. However, Shapiro classified
algorithms to solve the first problem as a diagnosis
algorithm and the one that solves the second is a bug-

correction algorithm.
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To debug an incorrect program one needs to know the expected
behaviour of the target program. Therefore Shapiro assumes
the existence of an agent, typically the programmer , who
knows the target program and may answer queries concerning
1ts behavicur. The algorithms Shapiro developed are
interactive, as they rely on the availability of answers to
such queries. He integrated both diagnosis and bug-
correction algorithms 1into a debugging algorithm. A
debugging algorithm accepts as input a program (or empty
one) to be debugged and a list of input/output samples,

which partly define the behaviour of the target program.

Summarily, Shapiroc's system can debug a PROLOG program using
what 1s known as a ground oracle. The ground oracle is asked
specific facts about the wuniverse of discourse and must
return true or false answers by the programmer. The oracle
13 not required to answer any universally quantified
questions nor any containing free variables. In particular
Shapiro's program can debug the empty program, or in other
words synthesize a correct program from scratch using advice
from the oracle. If a faulty (wrong) rule 1s fired and
derived a contradiction, then the contradiction 1s
backtracked with the oracle consulted at each stage to
determine which branch of the tree the faulty rule lies. The
rule may then be fixed or rectified by adding conditions to

prevent the rule firing again i1n the erroneous context.

Rule learning technigques can also be considered as
debugging program techniques. The task tackled by rule
learning techniques is to modify a set of rules of the form

hypothesis implies conclusion. This set of rules can be
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considered as a program especially wratten in Prolog
clauses. The basic rule learning technique 1s as follows:
Until the rules are satisfactory:
1, Identify a fault with a rule
2, Modify the rule to resove the fault,

Step 1 and 2 above can be considered in Vessey's terms as
FORMULATE HYPOTHESIS and AMEND ERROR functions. Most
identifying faults techniques is by comparing the ideal
trace (graph) with a learning (program) trace (graph) (for
eg. Bradz:11[1981]1). Shapiro's technique as briefly described

above is also one of the technique to i1dentify a fault.

A lot of techniques are used to modify the faulty rules such
a8 reordering them {eg. Bradzil[1981]), adding extra
condition(s) to them (eg. DBradzil [1981), Waterman [1970)).
instantiating them (eg. Bradzil {1981], Shapiro [1982]).
updating them (eg Waterman([1970), Mitchell et al.(1981] and
[1983]) or asking a ground oracle to the user
(Shapiro[1982]1) . Bundy et al.[1985] give an excellent review

and comparison of rule learning technigues.
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5.4 Faults Detection Algorithm

As we know Prolog implements backtracking in order to find
other possible answers or paths. So we can append another
rule (procedure FACTPR.3) to the procedure FACTPR (=ee
Program 3.3.3.11 of chapter 3) 1n order to capture the
failed facts or goals during the proving process.
14 PROCEDURE FACTPR. 31 to captare the farled facts or goals #/
factprolog(d, Usedclauses, bp,Bpl, Boelclagse) 1=
it pracedure FACTPR, I #/
nod{reasonid)},
assertzireason(l}),
farl.

Progras 3.4.1s An appended rule of procedure FACIPR

Program 5.4.1 above shows the definition of procedure
FACTPR.3. In other words, if all KB clauses have been
unsuccessfully tried, then assert the failed goal or fact
into the database provided that the same failed goal or fact
has not been asserted before. Then the rule is set to fail
in order to make Prolog backtrack again to find other
possible answers or failed goals. The failed goals or facts
are asserted in the database with predicate reason/1.
Accordingly we will call the failed goals or facts the
reasons. However the above procedure FACTPR.3 has some
defects. For example, suppose we have the following KB
clauses 1n the database:

knonledgelf(a, X, Y)1=~1{b,k),f{c, 1)),
knonledge(fic,y}).

And suppose we would 1like to prove f(a.x.,y¥) by using the
question—-answering system described 1in Chapter 3 where
procedure FACTPR which includes an appended procedure
FACTPR.3 (see Program 5.4.1). The proving 1s shown 1in the

following gession (Session 5.4.1):
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7« pequest.
it fla,xyh.

REXT QUESTION
flag, 4, y)

The translation of its negation
th'f('| !' y)l
EPUTPL IR AR 22 RATAY)

answery No, 3t cannot prove i
*fla, "

de you like to assert
*fla, )"

a3 & fact in the database {y/n)? n
yes
?- listingireasen),
reason{f{b, x)).
reason(f{c, ¥},
reasonifla, x, y}).
yas

Session 3.4.1¢ Proving "#(a,x,y}".

It clearly can be seen from the above session 5.4.1 that
"f(a,x.y¥)" 1s undeducible as there are not enough knowledge
in the database. However the listing of predicate reason/1
produces an unacceptable 1list. From the following Fig.
5.4.1, the only true reason clause 1S predicate
reason(f(b,x)), while the others two, 1.e predicates
reasen(f(c,y)) and reason(f(a,x,y)). are untrue reason
clauses.
[li-¢{a,x,y!
} £1a, %, Y11-4(b, X, £{c,Y)
[h“%éﬂ!ﬁ(nﬂ
Lﬂnﬂ
[1e-f(b,%)
hhs

Fig. 5.4,11 Proving tree of f{a,x,y),
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The untrue reason c¢lauses are generated due to Prolog
backtracking. What we mean by the true reason clause 1s the
failed goal or fact which really does not exist in the
database either in the form of a ruled KB clause with the
failed goal as its head or a factual KB clause. The untrue
reason clause is a reason clause which is not a true one. So
we need to define predicate knowledge base_head/l1 in order
to prevent the generating of wuntrue reason c¢lauses as
follows:
knowledge base_head(Head)s-
knowledge baselfead).
knonledge_base_head(Head):-
knowledge base((Readi~Bady) ),

Progras 8.4.2: The defrnition of predicite knawledge_base head/!

And by putting this extra condition to procedure FACTPR.3,
we will be able to produce true reason clauses only, 1.e
from the above example (Session 5.4.1), only predicate
reason(f(b.x)). So, the new definition of procedure FACTFR.3
15 ag follows:
1% PROCEBURE FACTPR. 32 to capture the failed facts or qoals #/
factprologi{@,Usedclauses, Bp, 8pl,B0alclase) i~
1+ procedure [ACTPR.Y #/
nef(reasonil},
net(knoniedge base_head(l)),
assertzireason{dl},
fail.

Frograe 5.4.32 The new definrtren of pracedure FACTPR.I

The non—-existent and undefined predicates are two different
kind. The above procedure (Program 5.4.3) will detect the
non—existent predicates. On the other hand, POPLOG Prolog
will detect an wundefined predicate. It is clear what as
meant by an undefined predicate. However, the non-existent
predicate is a predicate which does not exist 1in the
database but it is not necessarily an undefined one. In

other words, a non—existent predicate 1s more general than
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an undefined predicate. The following session (5.4.2) shows
an example of a non—-existent predicate.

?- fﬂo(l,bl ]
na

?- listingifool.
foela,cl,
foola,d).
foola,eli-fools,b),
yes

Session 5,4,2¢ An example of the non-existest predicate

From the above session 5.4.2, predicate foo(a.b) does not
exist in the database although predicate foo/2 hag been
defined. In other word, predicate feoola,b) 13 a non—existent

one. This cannot be detected by POPLOG Prolog.

As mentioned above, POPLOG Prolog has been integrated with a
method to handle the undefined predicate when 1t 1s used as
a goal. By default, when a goal 1s attempted for which there
18 no predicate, POPLOG Prolog will create one:
/% assume no prior definition of “pred/2® ¥/
7~ gred(l, 2,
no
7- listingipred),
pred{_1, 2h-
fal,
*UNDEF INED-PREDICATE’.

Session 5.4.3: the handling of an undefined pradicate by POPLOE Prolog

The above session 5.4.3 shows an example how POPLOG Prolog
handles an undefined predicate, 1.e predicate pred/2. It
should be noted here that the early development of procedure
FACTPR.3 1s done by using the Edainburgh Prolog version NU7
(see Clocksin &Mellish [1980a)) which does not have this
facility (detecting undefined predicates}). Ewven 1f the
Edinburgh Prolog does have this facility, it still can

detect non—existent predicates,
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suppoge we have the

following KB clauses 1n the database as shown in List 5.4.1.

knonledge({alr)i=bir),c(r}}),
tnowledge((a(s)s=bis),cis))).
Enowledge{(b(shi=k(s), j{s),h(s),d(R,5))).
knonledge(c{s)),
Enonledgel{d (R, s)s=2(X,5)}),
knowiedge({e(s, s)e=1{s,5))),
tnonledge({e(s,s)1-0(s5,5)}}.
knowledge(elr,s)),
inowledge((his)i~2(s))}),
Enonledgelilsl},
knowledge((k(s)i-nis},1(5))).
Enonledge(als)).

List §.4.1¢ a listing of KB clauses

And suppose we would like to deduce or prove "a{X)" from the

above d

5.4.2)

\ o1

atabase (List 5.4.1). The following figure (Fig.
gives a full proving tree of "a(X)".
[Tr-afl)
{ H (Boal na,)
1
; OR node/branch i
i (alrds=bir),ctr) i {als)i-b{s),c(s)}
) EX=r] ' [¥=5]
[1:-bir),cir) [i-bisl,cis)
LS ¥/ {15
k AND node/branch &
I\ I\
[li=clr) [13-bir) 16 [1i=c(s) [li-h{s) 49
IR ST 34 ! !
! ! v {oisty ] {b(sde-kis),j(s),h{s),d(X,s)}
fails fails i i
17 (=01 [de-kis),yis),his),dif,s
R £
]
! ! \ \
/ ! \ ¥8
$10 [a-d(X,s) 115 (2:-his) Ih-jts) [
' i

]
i {diX,s)e-elX,s)} i {his)z-i{s)}
i

|
|

li-k(s)
|

t (kisis-nis},lls)}
i

[1:-nis),1(s)

: i fails
1 [l1-eiX,s) $é {1-ifs)
i '
§ i 1ish)
! ! : i
| {els,s)1-fis,8)} 1 {els,s)i-qis, )} | {elr,s)} [}i-[] /
i [X=s) i (Xas] i [herl 17 121 /
[1-f(s5,8! [Ji-gls,s) [1:-0] [1r-1(s)
|2 i "3 e ]
{ |
fails fails fails

Figure 5.4.21 The proving tree for the query "a(X)*

R ¥
i
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\
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[1i=ais)

1
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As it can be seen from the above figure (Fig. 5.4.2) that
there are two possible solutions to the query "a(X)"., 1.e
“"a(r)" (X=r) or "a(s)" (X=s). However both solutions cannot
be derived from the database (List 5.4.1) Dbecause the
database lacks the information or the knowledge. The
following list (List 5.4.2) shows all reasons or non-—
existent c¢lauses which can cause the non—-deducibility of
Ila(x) II:

(rf), reasonic(r))

(r2}, reasonibir})

(r3), reason(f{s,s)}

(rd), reason{gls,s))

{rod, reasonlyis))

{rb), reasenflis))

List 5.4,21 The Tisting of non-existent clauses

The query "al(r)"” cannot be deduced because both
knowledge(c(r)) and knowledge(b(r)) do not exist 1in the
database. On the other hand, the query "a(s)'" cannot be
deduced Dbecause of the non—-existent of predicates
knowledge(3(s)). knowledge(1l(s)) and either
knowledge(f(s,s)) or knowledge(g(s,s)). In other words, the
sets of reason clauses for deducing "a(s) " are
[(r3).(r3),(r6)] and [(r4).(r5).(r6)}. And set [(ri),(r2)]

is the set of reason clauses for deducing "a(r)".

Now, let use again the question-answering system based on
procedure FACTPR which consists a new procedure FACTPR.3
(Program 5.4.3) to deduce "a(X)'" from the database as in
List 5.4.1 above. Clearly the system cannot deduce or prove
"a{X)". However the system has asserted predicate reascen/1
in the database to show the failed goals or facts. The
following session (Session 5.4.4) shows the lasting of

predicate reason/1.
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?- listing(reason),

reason{cirl},

reason(f(g,5)),

reason(gis,s)),

reasen(jisl}.

yes

Bession 5.4,43 The listing of predicate reason/t!
Howewver the system only asserted four reason clauses as
shown in the above session 5.4.4 which correspond to (ril),
(r3), (r4) and (r5) respectively as 1listed in List 5.4.3.
This 1s a consegquence of the way Prolog backtracking is
implemented. Prolog does not ¢tyry to prove the remaining
goals, 1f they exist, when the current goal fails but
instead Prolog will go back {backtrack) to the last
successful goal and find 1its alternative. The following
figure (Fig 5.4.3) shows the question-answering system's

proving tree for deducing "a{(X)" by using the same goal

number as shown in Fig. 5.4.2 above.

(1:-a(X}
i (Goal mo.)
4
! OR node/branch '
i Catr)s=bir),clr) i laisli-bis),cish}
i/ (X=r] i [f=s]
[hi-birh,cir} {l:i-bis),cls)
. v I ]
& AND node/branch ]
/ Iy 88
(Js=clr) 13 th [Ji-cls)  [di-bls)
i i {elsl} | (b(s)s-k(s),){s),his),d(X,s)}
fails i/ 1"
87 [:-11  {1i-kis},s(s},his),d{X,s) 89
/ I \
$0 [Di-d(X,8) $113 {hi=hisg) (Ji=jls) 18
i {d{X,sh1-e(X,s)} { {hishi-i{s)} |
1) " fails
1 (h-e(X,s) b [1i-1is}
| !
' i {ids))
i ' i v
| (els,sls~fis,8)} | {els,s)1-qis,s}} | {elr,s)} [Li-0]
i [X=s] 1) (X=s] i [X=r] 17
[11-f(s,s) [11-g(s,s) {):-[]
412 I 8] $4
faily fails

figure 5.4,3: The systea’s proving tree for the query "a(l}®
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It can be seen from the above figure 5.4.3, the system will
not prove the clauses "b(r)" of the goal (*2) and "k(s)" of
the goal (*9) as the goals "c(r)" (goal no. *3) and "3(s)”
(goal no. *18) fail respectively. Consequently the system
will not be able to assert clause "b(r)" and "l(s)" as
reasons. Furthermore the listing of predicate reason/1 as
shown in Session 5.4.4 does not show the relationship among
them. In other words, the listing does not show the
membership relationship of the set of reason clauses among
them, for 1nstance reason(f(s,s)) and reason(j(s)) are

members from the same set of reason clauses,

By saving the details of the rectifying process of the
reason clauses for the next chapter, and by assuming that
the reason clauses do not exist 1in the database (1.e 1t
lacke knowledge), let see the following example to prove the
goal "a(X)" as shown 1in the following session 5.4.5:

7- prquest,
ioal

NEXT QUESTION:
al_t)

The translation of 1ts negation:
(hr-af_1),
BEAAEALALLALELLLLLAALL

Yanswers No, 1t cannot prove !
tal 11"

The reasan shy the goaly
alr)*®

fails is due to the non-existence of the the following facts
clr)

However, we may able to prove the goal
after doing some corrections or additions

--Jo you like to continue %y
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[f the following 18 true
cir)

Do you like to try again by using the above assusption
-7y

RE-BUESTION
alr}

The translation of its negationt
{li-air),
FEEELELAAALAAARELENALLL

ynanswert No, it cannot prove ¢
"atr) *

The reason why the goal:
*alr)®

fails 15 due to the non-existence of the following knowledge:
bir)

However, we may able to prove the goal .
after doing sose corrections or additions

=-Do you like to continue %y

1f the following 18 true:
bhir)

Do you like to try again by using the above assusption
——f v

RE-GUESTION:
alr)

The translation of 1ts negation:
(J-alri,
SERLELAALLARLLALLLLLY

Panswert Yes,
alr)

PROVED: alr) ?
yes

Session 9,4,5: Proving "ald)®.

1t can be seen from the above Session 5.4.5. that in order
to prove "a(r)", the system successfully proves on the thard
attempt as in this case there are two reason clauses, 1i.e
clauses "c(r)" and "b(r)". Furthermore the reason clause

"e(r)" does not emerge on the first attempt but it only
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emerges on the second attempt. This is the main disadvantage
of the method of capturing reason clauses which does not
show the relationships among them. So the number of attempts
before the question i1s successfully proved, is more than the
actual number of the reason clauses for a particular
question provided that no repeating reason clauses occurred

and in the case of non-—-existent clauses.

The reason why both reason clauses "c(r)" and "b(r)" could
not be detected at the same time 1is that they are at a
different hierarchy or level. This is one of the
explanations of s—shaped curves discussed 1in the previous
section 5.2. In this case, as ‘'c(r)" and "b(r)" can be
considered as a primary and secondary bugs (faults)
respectively, so "b(r}" cannot be detected until all praimary

faults (bugs) have been detected and rectified.

In order to overcome the problem of the relationship of the
reason clauses or the different hierarchy (level) of reason
clauses, we now define a new predicate set_of_reason/3 which
will provide the 1information of the relationship of the
reason clauses as well as their associated query goals.
However the most important problem here is to link their

relationship among the failed goals or reasons.

As shown 1n the Program 5.4.3 above, the last procedure of
FACTPR, 1.e procedure FACTPR.3, returns the failure value,
in order to prevent the failed goals becoming successful
ones and alsc to make Prolog backtrack. What we need here
1g a method of recording the failed goals without setting

procedure FACTPR.3 fails, such that the question—-answering
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gystem can continue to prove the remaining goals until all
of them have been "“succesgsfully' proved. In other words, the
procedure FACTPR succeeds even though the answer may not be

a correct one.

This can be achieved by creating another variable to record
the failed goals and then testing its existence at the end
of proving. For instance, if we refer back to Fig. 5.4.2,
all the failed goals, 1.e goals (*2), (*3), (*9), (*13),
(*14), and (*17), will be set to succeed. All failed goals
wi1ll also be recorded with their associated node numbers,
for instance, the failed goal '"c(r)" i1s recorded as the pair

[(c(r),21.

Thus procedures FACTPR, BASEPR (see procedure 3.3.3.13 of

chapter 3) and FACTCL (see Program 3.3.3.15 of chapter 3)
need tc be modified as well as procedure ASK especially
procedure ASK.1l (see Program 3.3.3.9 of chapter 3). The
following procedure (Program 5.4.4) 1is a final version of
procedure FACTPR with a new predicate factprolog/7. The
number of arguments of the predicate has been increased
from five to seven in order to record the failed goals, i.e
variable 'Fc¢",

/% a2 new version of procedure FALIPR #/
factprolog((81,82), Usedclauses Hp Hpl,Goalclause,Fe, felde-
/¥ procedure FRCTPR. L #/
1

'y

factprolog(G2,Usedclauses, Hp, Rp2, (01! Boalclaesel, Fe,Fel),

factprologtds,Usedciauses, Ap2, fpl boalclause,Fed Fed),
factprelog(d,Usedclauses, Bp, Rpf,Goalclause, Fe, Felds-

f# procedure FRCTPR,D &/

assertagoal 1{L8/60alclausel ), ¥ procedure RSSELE #/

baseprolog(q,Usedclauses,dp,fpl, boalclaese, N, Fe,Fcl), /¢ procedure BASEPR #/
factprolog(8,Usedclaases,Bp, Kpl, Goalclaase, Fe, LL8, M)/ Fe))s-

/¢ procedure FRCTPR, 31 to capture the farled facts or goals #f

net(reason(t)),

not{knonledge_base_head(d)),

frogray 3.4,4¢ & final version of Procedure FALL
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Az shown 11n the procedure FACTPR.3 above (see Program
5.4.4), the variable "FC" 13 a list of pairs of the failed
goal Q and 1ts associated goal or node number. This variable
"Fc" wi1ll be used to test the existence of failed goals. The
Prolog will automatically record the set of the pairs of
reasons and its associated number for each query goal when a
backtracking occurs. As procedure FACTPR is modafaed,
accordingly procedures BASEPR and FACTCL have to be modified
by adding two variables as their arguments for recording the
set of reason clauses exactly the same way as procedure
FACTPR. The final version of both procedures can be seen 1n

the Appendix.

The same modifications have alse to be made 1n procedure
ASK.1 whaich calls procedure FACTPR. Accordingly a new
condition to check the existence of +the failed goals 1s to
be added intc procedure ASK.1 as well. The new addational
condition 1s a procedure REASONING. So the new version of
procedure ASK is as shown in Program 5.4.5 below. The cother
procedures of ASK (procedures ASK.2 and ASK.3) remain
unchanged.

/% Procedure ASK 1 to prove each clause of the question #/
asting({[Questl/Quest])s-

1% procedure BSK L ¥/

top_asking{Qeest!,foal), /¥ procedere TOPASK #/

factpralog(Boal,[1,01,8p,02,01,Fc), 14 & new procedure FACTER ¢/

reason_testing(boal,fel, /¢ procedare RERSONING i & new condrtion #/

successfal _action(fp), /% procedare SUCCESS #/
asking({Questl/Quest))s-

/¥ procedure ASK.2 #/

print_cornent(Questl}, /¥ procedure PRLAT #/

astingl8uest), {t Frove a pext query clinse #/
asking(l1i=

/¥ procedure BSK.T #/

!

asserdz{toptry(()))
fal,

Brogran §.4.5: 2 new version of procedere ASK
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At the end of proving or procedure FACTPR has been
successfully executed, procedure REASONING will check
whether the answer given by procedure FACTPR is a successful
answer or a failed one. This 1s achieved by testing the
value of the 1list (variable) "Fc¢'" which was returned by
procedure FACTPR (see the arguments of a new procedure
FACTPR in Program 5.4.5). If the 1list "Fc" is an empty one,

then the answer is a successful one (procedure REASONING.1),

otherwise the answer 15 a failed one and "Fc¢'" consists of a

list of the failed goals (procedure REASONING.Z2). The

definition of procedure REASONING 18 given in Program 5.4.6

as follows:

/¥ Procedure REASONING: to test the answers #/
reason_testinglboal,fe)i-

/4 Procedure REASONING, ! #/

fFeesl],

1

reason_testing(Goal,fe)i-
/4 Procedure REASONING.{ ¢/
sholash(farlure_son,2),
split_redson(fe,Reason}, f# Procedure SPLIT-FC #/
not_exists(reject(Reason}),
not_exists(consulted_sor{Boal,Reasen)},
nob_exrstsiset of reason{_jqoal(boal),reason(Reasan)i,
assert_reason_son_father(Goel), T# Procedure ASSERT-RSE #/
assert_seb_of reason(foel, Reasent, [+ Procedure RSSERT-SOR #/
! fadl,

frograz 5.4.6: The definttion of procedure REASONING

Pl 2L LSS

Procedure REASONING.1 will succeed when "Fc¢" 1s an empty

list, i.e "Fc¢"=[], and so does procedure ASK which calls it
and thus the proving 18 a successful one. The actions taken
upon successful proving have already been described in
Chapter 3. However if "Fc" is not an empty list, which means
that the answer 1is not a successful one, then procedure

REASONING.2 will be called.

The main purpose of procedure REASONING.Z iz to assert a

predicate set_of_reason/3 which contains the information
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about the failed goals of the query in the database. A= the

answer given is a failed one, this procedure (REASONING.Z)

1s set to fail such that Prolog will automatically do a
backtracking to find other answers until the whole proving
tree 1s traversed or searched exhaustively. For instance,
in deducing "a(X)" from given List 5.4.1 above., the
backtracking will cause the whole proving tree a3 shown 1in

Fig 5.4.2 above to be traversed or searched exhaustively,

However, before predicate set_of_reason/3 1s asserted into
the database by procedure ASSERT-S0R, some actions and
testing must be done first. As the variable "F¢" contains a
list of pairs of failed goals and their associated (node)
number, the actual reason c¢lauses must be extracted from
this list ("Fc") and this 1is achieved by calling procedure

SPLIT-FC.

So procedure SPLIT-FC will return a variable "Reason" which
contains a list of failed goals or reason clauses. Any
repeating failed gocals or reason clauses will also be
deleted by the procedure SPLIT-FC. This procedure will also
assert each pailr of the reason clauses and 1ts associated
nede number into the database as arguments of a predicate
failure_son/2. This predicate failure_son/2 1is used to set
up the predicates reason_son_father/3 which will be asserted
in the database after the variocus tests are successfully

carried out.

The wvariocugs tests which are carried out in the procedure

REASONING.2 are to make sgsure that the list of failed

predicates or reasons, i.e variable "Reason', has not been
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rejected or has not been consulted or has not been
asserted into the database before by checking the existence
of predicates reject(Reason), consulted_sor(Goal,Reason) and
set_of_reason(_, gocal(Goal), reason(Reason)} vrespectively
where variable "Goal" corresponds to the query goal 1tself.
If all these three predicates do not exist in the database,

then procedure ASSERT-RSF is called to assert predicates

reason_son_father/3 1into the database by using the

infermation in predicates failure_son/Z2.

Predicates reason_son_father/3 which keep an 1information
about the failed goals and their fathers are used to set up
the failure path or tree for each failed goal or reason
clause. The failure path or tree iz a chain of the parent
clauses (the unified KB clauses) starting from the failed
goal leading up to the gquery gocal 1tself. Thus the user will
know exactly how each failed goal or fact is generated. For
instance, referring back to Fig. 5.4.2, and by taking the
failed goal "f(s.s)" (goal no. *13) as an example, the
following failure tree or path can be produced from
predicates reason_son_father/3 at the end of an unsuccessful
proving.
"flg,s)" fails

xz=) *pls,8) 1- fis,5)" fails

=3} "dis,8) 1~ els,5}" fals

z=x) *his] 1~ k(s),)(sh,his),dis,s)" fails

222} "3{s) (- his),c{s]* fails

==z} "goal(a(X))" fails

F1g 3,4.42 The failure tree for the failure clause "f(s,s}"

The definition of procedures SPLIT-FC, ASSERT—-RSF and
ASSERT—S0OR can be found in the Appendix. By using the same
database given 1in List 5.4.1 above, we will try to prove an

undeducaible goal "a(X)" again. At the end of unsuccessful
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proving, we will get the following 1list of predicates
set_of reascn/3 as given in Session 5.4.6 below. The
variable "option(X)" is related to the option of predicates
set_of reason/3 available in the database.

?-listing{set_of_reason).,

sat_of_reason{opticn(l),goal (alr)),reasonilcir),bir)1}},

set_of_reason(option(2),qoel (als)),reason((f(s,s),i{s),1{s}D)},

set_of _reasonioption(3),goal (als}),reasonilg(s,s), (s} ,1(s}]}),

yes

Session_3.4.61 The listing of predicate set_of reason/3

It can be seen from the above session 5.4.6 that there are
three coptions for predicates set_of_ reason/3. Each predicate
set_of_reason shows the relationship among the failed goal
and also the relationship with the query goal itself. For
instance, for option(3) of set_of reason/3, the query goal
"a(s)" fails due to the failure of the goals "g(s.,s)",
"j(s)" and "1(s)". In other words, the reason why the query
goal “"a(s)" fails 1s the non-existence of predicates

knowledge(i(s)). knowledge(l(s)), and knowledge(g(s.s)).

As before, by saving the details of rectifvying the reason
clauses for the next chapter, we use the same example to
prove the goal "a(X)" as shown 1n the following session

5.4.7:
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7= pcquest,
ol 1),

NEXT QUESTION:
al_1)

The translation of its negation:

{hi=al_ 1),

SRLELLLALLRRRELAAALLLLL

Nanswers No, it canant prove ¢
tal

OPTION: 1
The reason why the goal:
*alr)’
f3ils 18 due to the non-existence of the following facts

cir)
bir}

However, we may able to prove the geal
after doing scee corrections or additions

-~Do you like to continue %
1f the following are trues
elr)
bir)
Do you gxke to try again by using the above assumption
==’y

RE-BUESTION:
ilr)

The translation of 1ts negation:
[1;-ate).
ERALLEAAALAALARALLLELLL
Yranswers Yes,

alr)
FROVED: alrd ?

yes

Sesgien 3.4.71 Proving "ai{X)*,

It can be seen from the above session 5.4.7 that the new
method of recording reason clauses 15 able to find the set
of them, thus after cne repeated proving, the proving 1s a

successful one. This 18 better than the previous one as
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shown in session 5.4.5 where the number of repeated provings
18 equal to the number of non-existent predicates for a

particular goal.

In conclusion, the new procedure FACTPR (see Program 5.4.4)
is able to produce a set of reason clauses for an
unsuccessful query goal even though some of the reason
clauses are at different hierarchy or 1level or branch of
proving tree. This can clearly be seen from the results in

the session 5.4.5 above.
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5.3 Comments

In the section 5.4, we have discussed how to detect a
faulty fact. This faulty fact can be assumed to be non-
existent fact i1n the database. Without any modafication to
the original control of theorem prover program described in
cthapter 3, we will only able to find a first level of non-
existent facts and need to repeat the proving to discover
all the non—existent facts for a particular goal to be

proved.

In order to discover all the non-existent facts for a
particular goal to be proved, we have to traverse all
branches of the proof tree, and this cannot be achieved
without control modification of proving mechanism such that
we can distinguish between the successful and unsuccessful

proving of a geocal.

The fault detecting algorithm described 1in section 5.4 1is
able to distinguish between the successful and unsuccessful
proving, thus the algorithm 15 able to detect all the non-
existent facts (or all the failed subgcals) for a goal to be

successful ly proved.

This algorithm 1is quite different to the contradiction
backtracing algorithm by Shapiro although both use a
backtracking method to discover faulty facts. ©Shapiro's
algorithm will find one faulty rule or fact at a time by
asking an oracle. The fault detecting algorithm described in
section 5.4 will find a set of faulty facts which are
inter-related in the sense that all of them must be true in

order for a particular goal to be successfully proved.
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The agsumptions made by and the aims of Shapiro's technique
and the faulty detecting algorithm are also different.
Shapiro's technique is to find any faulty rules or facts
used for an unexpected successfully proven gecal. Our
algorithm assumes that all the rules or facts are true and
tries to find why we cannot prove a particular goal. In
other words, our algorithm will find a reason behind an
unexpected unsuccessful goal. Furthermore, our algorithm
will not detect looping (control) faults as the looping test

has been incorporated in the algoraithm.

This technique can also Dbe wused to find the set of
conditions for a particular fact or rule to be true. From
the above session 5.4.6, the option(l) of predicate
set_of_reason/3 can be interpreted as that in order "a(»)"

to be true, "o(r)' and "b(r>" must be true.




CHAPTER 6

A FAULT RECTIFICATION ALGORITHM
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6.1 Introduction

In the last chapter (section 5.4), we have descraibed an
algorithm to detect the reasons behind the failure of the
enquiries of the database. As promised in the last chapter,
we will be describing an algorithm to rectify those reasons
in this section. The reasons which have been detected are
actually a set of conditions or predicates. There are two
possibilities which cause those failures. These are as
follows:
[l]. The wrong references in the enguiry.

[2]. The non—-existence of the KB clauses in the database.

We will assume the first one above as the cause for the
unsuccessful proving. If this 1s not the case then the
second cause 1s assumed and the enquirer will be asked to
choose whether to assert the non-existent KB clauses 1n the
database or not. However before these assumptions are
assumed, the enquirer will be presented with the reasons
first and then will be given the choices of looking at the
alternative suggestions to correct the reasons or looking

at other sets of reason clauses 1f they exist.

The wrong references mean that the one or more arguments of
the predicates of the query and the database do not match
with each other. For 1nstance, we would 1like to prove
"man(rosie}"” but instead in the database exists
"man(nazrul)", so the argument ‘'rosie" of "man(rosie)" does
not match waith the argument "nazrul" of "man(nazrul)™. The
wrong references do not only mean unmatching arguments but

may also mean an unmnmatching predicate's name. For instance,
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the predicate's name "man" of "man(rosie)" does not match

with the predicate's name of "woman(rosie)'.

The main problem here 15 to 1link between the proving
procedure and the rectification procedure. We have to modify
some of the ¢top level procedures which 1link between the
proving and the printing of result procedures as described
in Chapter 3. We will described the 1link up between these

two procedures 1n the section 6.3.

All the reasons detected are actually the failed goals
(subgoals) and are not due to other reasons such as control
problems or looping. Furthermore we assume that all the KB
clauses are correct. However we may detect an incorrect KB
clause in the matching process between the reason and the KB
clauses. So all methods as reviewed 1in Bundy et al[1983]
such as reordering rules, instantiating rules, updating
rules or adding extra conditions to the rules are not

arpplicable here.

Bourne[1577] examined the frequency of spelling errors 1in a
sample drawn from 11 machine—-readable bibliographic
databases and concluded that errors are not only in the
input gqueries, but also i1in the database itself. The failures
may also caused by typing errors. Damerauf[l964] indicates
that 80% of typing errors are caused by transposition of two
adjacent letters, one extra letter, one missing letter, or
cne wrong letter. These may also apply to predicates as
their arguments can Dbe considered as letters 1in the
Damerau's finding. This supports the wrong references as one

of the causes of the failures.
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4.2 Fault Rectification Algorithm

In this section, we will describe an algorithm to rectify
all the reason clauses detected by the fault detecting

algorithm explained in the section 5.4 of chapter 5.

As explained in the <chapter 3 that all questions will be
negated first before being used to deduce an empty
resclvent. In doing so, all relevant universal quantifiers
will be changed to existential gquantifiers by using the
indicator ''fg" to represent their egquivalent questioned
Skolem function. Accordingly 1if the unmatching arguments
involve any questioned Skolem function then the wrong
reference is referred to as an unmatching quantifier, for
instance, the argument "fgq(a)" {the aguestioned Skolem
function) of "a(fg(a).s)" does not match with the argument

r' of "a(r,s)".

Each set of reason clauses ,1f they exist, will be presented
to the enguirer according to their 1increasing order of
cption or their occurrence provided that the set of reason
clauses has not been rejected before by checking the
existence of predicate reject(R) where R 1is the set of
reason clauses itself. This 1s done by calling the procedure
WHY-FAILS as shown 1n the following Program 6.2.1. This
procedure 1s called from the answer printing procedure which
forms the link up between the finding and rectification

fault procedures (see the section 6.3.4).
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f¢ to find out why 2t faals #/

why_it_farls{0rtginalgoal Lastoeant}:-
retract(set_of reason(eptron{Option,goal(b},reason{f)}},
not_exists(reject(R)),
assertconsulted_sor(8,R)),

equetevars(8,0r1ginalgoal), ¥ procedare EQUATEVARS #/
List_reason(Option,é,R), {2 procedure LISTREASON #/
find_reason(Option, 6, R, Lastquant), /* procedure FIKDRERSOM #/

Progran 6.2,11 The procedure WEY-FRIIS

As explained 1n chapter 2 that Prolog adopts a kind of
copying clause from the database, thus when we retract a
predicate set_of reason/3, different variable names were
given to any universal gquantifier which occurred in the said
predicate. To overcome this different 1instantiatians of
variable names, procedure EQUATEVARS or predicate
equatevars/2 1s called from the above procedure WHY-FAILS
such that any universal quantifier in the retracted goal "G"
and in the original goal (question), "Originalgoal", will be
instantiated with the same wvariables. The definition of

procedure EQUATEVARS can be found in the Appendix.

Before the matching process between the reasons and the KB
clauses in the database are carried out, the enguirer will
be presented with the first set of reason clauses, then a
choice of options as shown 1in the Table 6.2.1 must be chosen
by the enquirer in the order to continue to the next step.
All of these options and the set of reason presentation are
carried out by procedure LISTREASON which is called from the
above Program 6.2.1. So referring back the last session
5.4.7 of chapter 5, the printing starting from "OPTION: 1"
until "-——Do you 1like to continue ?'" 1is done by thas
procedure LISTREASON. And the chosen option 1s typed after

the remarks "—-—Do you like to continue 2",
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Option Maaning

a abort

b break

n not accepting the given set of reason clauses
so see pther alternative.

1 list other sats of reason clauses.

g show the failure tree of the given set
of reason clauses.

t type again the introduction.

y or {return> yes to continue with a matching process.

others displaying help table (like this ons)

TABLE 4.2.1t Options for procedure LISTREASON

In the end., we have to choose either option "n" or "vy" only.

Other choices except "a" and "b" will lead to a repetition
of asking whether to continue with the rectification

n'" then the procedure LISTREASON fails,

process. If we type
so procedure WHY-FAIIS will backtrack to retract another
set of reason clauses, 1f 1t exists. Otherwise procedure
WHY-FAILS fails and the actions taken afterwards will be
explained in the next section 6.4. If we type "y" or press
{return> then a matching process will be carried out by the
predicate find_reason/4 or procedure FINDREASON. The

program of procedure LISTREASON 1s given 1n the Appendix.

In the matching or rectification process, the procedure
FINDREASON will be divided 1into two subprocedures as shown
in the following program 6.2.2:

1% Procedure FINDREASON ¥/

find_reason{Option,qoal Reason, Lastquant)s=-
/¢ Procedure FINDREASON.L #/

find_nisnatch_clause(Reason), 1% procedure FINDKAICH 4/
suggestion{fption,foal,Reason,Listquant}, /¥ procedere SUBGESTION #/

find_reason{lption,foal,Reason, L1stquant)s-
/¢ Procedure FINDRERSON,Z #/
assertireject{Reasont},
fail,

Progran 6,2.2¢ Program FINBREASON
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The first one of the subpreocedures, procedure FINDREASON.1

18 the main part of the procedure. Procedure FINDREASON.1l is

divided into two parts, the first one i1s a matching process
(procedure FINDMATCH) and the second one 15 a suggestion
process (procedure SUGGESTION). If we reject all the
suggestions to rectify the question based on that particular
set of reason clauses, then the second procedure

FINDREASON.2 is called to assert predicate reject(Reason)

into the database to denote that the particular set of
reason clauses, Reason, has been rejected and will not be

consulted later again.

6.2.1 The Matching Process
The matching process (procedure FINDMATCH) 18 divided into
three subprocedures as shown 1n Program 6.2.3 below. The

first subprocedure, FINDMATCH.1 will find any KB clauses

which differs with a member of the set of reason clauses in
the sense of the wrong references as explained 1in the
previocus section (6.1) and then records 1ts difference. If
there 1is none of the saixd KB clauses, 1.e procedure

FINDMATCH.]l fails, then the second procedure, FINDMATCH.Z 1s

called to continue the same process for the next member of
the set of reason clauses until all members have been

matched with all KB clauses (procedure FINDMATCH.3).

/¥ frocedare FIRDNATEN #/

find_masnatch_clause({R/T1}2=
[+ Procedure FIKDNATCH. L ¢/
setup_predicate(R,q,x), f* Step 1 #/
fast_selof(D,misnateh_clause(R,Q,0),L1st), [+ §tep 2 ¥
find_difference(R,List), fe §lep 3¢ procedure FIKMDIFFER #/
find_nisnatch clause(l),’,

find_aiswatch clause((R/T1):-
i# Procedure EINDNATEN, 2 #/
find_pisnabch_clagse(l), !,

find_nisaatch_clause(l]). /¥ Frocedure FINDMATCR.T #/

Progran €.2.31 Progran FINDRATCH
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The main part of the matching process as shown as procedure

FINDMATCH.1 in the above Program 6.2.3 can be davided into

three steps. These steps are setting up a potential
predicate to be matched (Step 1). finding the mismatch
clauses (Step 2) and finally finding the differences between

the mismatch and the reason clauses (Step 3).

6.2.1.1 Setting up a predicate (Step 1)

In order to find all KB clauses which have potentially wrong
references with the reason clause, R, a predicate
setup_predicate/3 will be <called to create a clause "Q"
which has the same predicate name and the number of
arguments, N, with the reason clause, R, (a member of the
set of reason) but 1ts arguments are uninstantiated. For
example, suppose that the reason clause 1s the clause
"g(s,s5)", then the following session will show the created
clause, “Q".

?- setup_predicate{gis,s),q, N,

R=q0,2
=2

yes

Session #,2.1 An example of setting up a clause

6.2.1.2 Finding a set of mismatch clauses (Step 2)

In the second step, a library predicate fast_setof/3 1s
called 1n order to produce a 1list of all variables "D"
which satisfy the conditions set in the predicate
mismatch_clause/3 or procedure MISMATCHCL. So the variable
"List" will consist of a list of KB clauses whose either
some of 1ts arguments or its predicate name differ or deo not

match with the reason c¢lause "R". Then a difference list
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will be produced by procedure FINDDIFFER (Step 3) before the
next member of the set of reasons 138 to be matched with the
same process again. Each member of "List" contains the
mismatch clause 1tself and 1ts type (either a guery clause

(g) or a knowledge clause (K)).

Two considerations are taken in finding a set of mismatch
clauses. A mismatch clause is a KB clause whose arguments
or predicate name differs from the reason clause. It should
be noted here that the reason clause certainly cannot exist

in the database.

The first consideration 1s that the reason clause, R, 1s
matched with the query clauses, i.e the mismatch clause 1s a
query clause. The second consideraticn 1s that the reason
clause, R, 18 a query clause and it will be matched with any
non—-query c¢lauses, 1.e any KB c¢lause which 1is not a query
clause. These considerations are taken on the basis that the
enquirer has typed the wrong question and the knowledge base

does not contain any wrong fact.

The program of finding the mismatch clauses or procedure
FINDMATCH 1s as follow (Program 6.2 4):

niseatch_clause(R,@,Lq,(Q:-T)2) e
f# procedure XISHATER. 11 the first consideration ¥/
query_clause(8:-1),
ai=8,

nsaatch_clause(R, K, Rule)s~
/¢ procedure NISKATCR,2: the second consideration #/
convert(R, Notk), fe line 1 #/
queryhead(Kotk), ¢ Jine 1 ¥/
nrsnatch_clausel(R K, Rule). /¥ procedure RISNATCR! #/

Progran 6.2.4: Finding niswateh claases: procedure NISNATEN
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6.2.1.2.1 The first consideration (procedure MISMATCH.1)
The program for the first consideration, 1.e when the reason
clause 153 matched with the query clause, 15 shown as

procedure MISMATCH.1 in the above Program 6.2.4.

If the mismatch clause 1s a query clause, then only the
arguments of the mismatch and the reason clauses will be
matched. In this case we do not match the predicate names of
the mismatch and the reason clauses because the reason
clause does not exist in the database and also the guery
clauses for a particular question are only temporarily
asserted i1nto the database. The new question will retract
the old query clauses and will assert a new set of query
clauses into the database. So that 1f we permit the
predicate names to be compared and the suggestion to replace
them 1s accepted, then after replacing predicate names 1s
carried out, the old query clauses will be retracted from
the database and will be replaced by the new set of query
clauses resulting from the new question. For example,
suppose the following are KB clauses 1n the database:

knowledgethanan(X)i-panik}},

knowledge(™nan(X)i= “hanan(l}),

knewledgeChuran{k)i-sonanii}),

knowledge{*wonan(k}s-*hunan{il}),

knowledqe(aan(adanl},

knewledge(nonanievel),

Batabase £,2.12 KB clauses

I1f we ask the gquestion "exists(X. “human(X)& “manc(X))'". then
the following query clauses will be asserted into the
database:

query(heran{¥)s- “man(¥}),
query{aan{y) s~ “heran(¥}),

Database 6.2.2¢ The query claases




244

Certainly we cannot prove or answer the above question as
the (reason) clause " “human(adam)" does not exist in the
database. If we permit the case that the mismatch clause
has the same arguments but a different predicate name

with the reason clause where the mismatch clause 1s a query

clause, then we will get a suggestion that the
predicate name, " “human', of " “human(Y)" 1S5 replaced
with "human'" as exist "queryChuman(Y):— “man(Y))". If we

accept this suggestion, then the new question becomes
"exists(X,human(X)& “man(X))". So the gquery clauses as 1n
Database 6.2.2 will be retracted and will be replaced with a
new set, i.e:

query(aan(f}i~ human(¥)),
query(“hagan(¥) = *pan(¥}},

Database 6.2.3: The new set of query clauses

It can clearly be seen from the above Database 6.2.3, that
the old clause ‘query(human(Y):— “man(Y))" does not exist
any more in the database. As the replacement suggestion 1is
based on this old clause and this one dces not exist any
more in the database, thus the new question will not be
guaranteed te be successfully proved. Consequently the
purpose of replacing something with something else which
already or permanently exists 1in the database 15 defeated
and this type of replacement does not always guarantee that

the new question will be answered successfully.

Another reason why we can compare the arguments of the said
clauses (the reason and the guery clauses) 1s that one of
the arguments of the reason c¢lause or more may have been
instantiated to the 1nstantiated arguments of the given

knowledge clauses but both clauses have the same predicate
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name. For example, suppose the following knowledge clauses
ex1st 1n the database:

knonledge(({*wonbat(R)s-lives(k,londonzoo})),
knouledge((*lives(},londonzon) s-nanbat(k))),

Database 6.2.4: The knowledge clauses

If the question:

“~exi1sts(X,wombat(X)&lives(X, twycrosszoo))"
1s asked, then the following query will be asserted into the
database:

query(noabat(fq{nonbatd)),
querp(lives(fq(nonbatd), tuycrosszon)).

Balabase &.2.31 The query clauses

As the fact “lives(fg(wombatQ), londonzoo)" does not
exist 1n the database., the above question will eventually
fail or cannot be proved. However as the clause
"query(lives(fq(wombat0), twycrosszoo))" exi1sts in the
database, the system will suggest that "twycrosszoo" of the
question 1s to be replaced with "londonzoo'. Consequently
the new question becomes:
"“exists(X,wombat(X)&lives(X, twycrosszoo))"

and can be successfully proved. It can be seen here that
"londonzoo" 1is the argument derived from the knowledge

clause, 1.e "knowledge((“wombat(X):—lives(X,londonzoo)))".

6.2.1.2.2 The second consideration

The second considerat:ion 1in the finding mismatch clauses
process, or procedure MISMATCH.2 as shown 1in the above
Program 6.2.4, 1s that the reason clause 1s a head of any
query clause and 1s matched with any knowledge clauses. So

the first two lines of procedure MISMATCH.2 (1.e line 1 and
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line 2) will test whether the reason clause 13 a head of any
query clause. If so, the reason clause will be matched with

the head of any knowledge clause.

In this case (the second consideration), both the reason and
the non—-query clauses with either the same predicate name
but different arguments or the same arguments but the
different predicate name will be matched or compared. Thais
process will be carried out by procedure MISMATCH1L or
predicate mismatch_clausel/3 as shown in the following
Program 6.2.5:
nseateh claasel (R, K, Tk, (K3-T)1}s-
/¥ procedure MISKATCRI, ! #/
fact_base_clauself,f), /¥ procedure FACTBASECL #/
R"‘t
nisratch clagsel(R, K, Rele)s~
/¢ procedure XISHATCRL,Z ¥
fanctorl(R Pred_nise,X),
f_listiR, LPred _nanelfrgsl),
nsaateh_clausel{Pred_nave, K, R, Arys, Relel, 1% procedure KISNATCRI/S #/

Progras 8,2.5; Procedure KISNATLR!

So procedure MISMATCH1.1l will match the arguments of both

the reason clause, R, and the non—gquery clauses as defined
by procedure FACTBASECL, but with the same predicate name.
On the other hand, the procedure MISMATCH1.2 will match any

ncn—query clause with the reason c¢lause which has the same
arguments but different predicate name. This 1s carried out

by procedure MISMATCH1/5 or predicate mismatch_clausel/5

whose definition can be found in the Appendix. The
definition of procedure FACTBASECL can also be found in the

Appendix

After describing both considerations. let us see an example
of how procedure MISMATCH works as shown i1n the following

session by using the Database 6.2.1 and 6.2.2 and also
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suppose that the reason clause is "“human(m)' such that the
predicate which will be set up 18 "“human(X)'":

9- fast_setaf (B, nasnatch_clagse(*hanan(n), “havan(i), B}, L),

e

}r
s
[ =

—

k, (haman(nz} = manin))1, [k, (haman(al} = woman{n)}l,
£k, (oan{n} &= trueld, [k, (*wan(n) 3= *henanial)l,
Lk, (“wovan(s) 1= “besan{a})]]
Session 6:2.21 An exanple of the usege of procedare KISKATCH
It can be seen from the above session that "L" is a list of
mismatch clauses whose heads are having different predicate

name but the same argument with the reason clause.

6.2.1.3 Finding the difference (Step 3)

In the step 2 above, a list of mismatch clauses has been set
up. In this step 3, we will find the difference between the
reason clause and all mismatch clauses. This 13 carried out

by procedure FINDDIFFER or predicate find_difference/2 which

can be found i1n the Appendix.

In this step, only the mismatch clause which 1s thought to
be a good replacement candidate will be asserted in the
database as predicate mismatch_pair([(T.R,M.Diff],Len) where
"T" 1s a type of mismatch clause (either g(gquery) or
k(knowledge)), "R" 15 a reason clause, "M" 1is a list of
mismatch clauses which have the differences with the reason
clause, "Diff" 1s a list of differences between the reason
and mismatch clauses, and finally "Len" 1s a a number of
differences between the reason and the mismatch clauses (1.e

the length of the list “Daff").

A good replacement candidate clause 1s a mismatch clause

which has neither of these properties:
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[1] One of the body clauses of the mismatch clause 18 not

[2]

equal to the reason clause.

For example, suppose the reason clause is '"g(s,s)" and
the mismatch clause 1s "a(s,¥):-k(s.t).,g(X.Y)" then
one of the body clauses of the mismatch clause,
"g(X,Y)", is equal to the reason clause. Or, in terms
of the Prolog language:

g(X,Y) = g(s,5)
where both variables "X" and "Y" will be instantiated
to '"s". So the above mismatch clause 1s not a good
replacement one as there may cause a repetition of the
suggestion as the clause "g(s,s)" does not exist in

the database.

The differences between the mismatch and the reason
¢clauses do not involve any guestioned Skolem function,

1.¢ the Skolem function with the indacator '"fq".

If a questioned Skolem function 115 involved then this
case 1s considered as an unmatching quantifier and

will be dealt 1n the suggestion process later.

For example, suppose the reason clause 1s "g(s,s)" and
the mismatch c¢lause 1s “"g(fgla,X).s)". S0 the
difference between these two clauses 18 thear first

argument, 1.e s and "faq(a.X)". BSo this mismatch
clause is not a good replacement one. This 1s because
the questioned Skolem function refers to the negation
of the questioned universal quantifier as explained in

Chapter 3.
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6.2.2 The suggestion process

At the end of the matching process, predicates
mismatch_pair/2 are already 1in the database provided that
some of the found mismatch clauses are good replacement
candidates. As shown 1n the Program 6.2.2, this step 1s
carried out by procedure SUGGESTION or predicate
suggestion/4 after procedure FINDMATCH is completely
successful. The procedure SUGGESTION is divided into two
subprocedures as shown 1n the following program (Program
6.2.6):
/¥ Procedure SUBRESTION #/

suggestion(Qption, foal, Reason, L1squant):-
I+ Procedure SUBBESTION. ! #/

process_reasons{Opiion, foal Reason, Reason), It procedure PROCESS-REASONS #/
acceptance(Optron,Reason, boal,Lisquant). 1+ procedure ALCEPTARCE #/

suggestaon{Option, foal, Reason,L1squant);~
/¥ Procedare SUGEESTION.2 #/
retractlaccepted_sebstrtution{($)),
suggestron{Option, foal, Reason,L1squant),

Progran 4.8,41 Procedure SUBRESTION

The first subprocedure, SUGGESTION 1 will deal with an

actual suggestion process and 1ts acceptance. If the
engquirer does not agree with the suggestion then the second

one, procedure SUGGESTION.Z2, will retract any previously

accepted substitution (replacement) of the reason clause and
w1lll repeat the same process as the first subprocedure to

find other possible suggestions.

As said above, the first subprocedure, SUGGESTION.1, will be

divided into two stages; these stages are the reason clauses

processing and the acceptance processing
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&£.2.2.1. The reason clauses processing stage
This reascon c¢lauses processing step 18 carried out by

procedure PROCESS-REASONS as shown ain the following program,

1.e Program 6.2.7:

/¥ procedare PROCESS-REASONS #/

process_reasons(Qption,8oel, Reason, [ReadRi Ta1IR]}:-
process_sagoestron{Option,Goal, Reason, Readh), I# procedure PROCESS-SUBBESTION #/
process_reasons(0phion, Goal Reason,Ta1lR),
[

process_reasons(Optien,Goal, Reason, (13,

frograw 6.2.7¢ Procedares to process every reason clauses

As shown in the above Program 6.2.7, each member of the
set of reason clauses will be processed one by one 1in
order to make appropriate suggestions. The actual
suggestion processing 1s carried out by the procedure
PROCESS-SUGGESTION which 1is called from the procedure
PROCESS-REASONS.

The program of the procedure PROCESS-SUGGESTION is shown in

the following program (Program 6.2.8):

/¥ procedure PROCESS-SUGGESTION #/

process_suggestion(Option, boal, Reason,R) 1=
i procedure PROCESS-SUSGESTION.I #/
funcfor(R,f, K},
Bl 1s K48,
erdered_wispatch_clause(P,R,T,B1f11,K1,1), /¥ procedure QRDERED-NISNATCR #/
not_existsiregect{(P,k,T,02f11),
subst_log(Biff), 1% procedure SUBST-108 #/
already_accepted_subs(0ption,Goal,Reason,(P,R,T,0111]), /¥ procedure ACCEPT-SURST #/
!

process_saggestion{fption, boal,Reason,R):-
1% procedure PROCESS-SUGEESTION.2 ¢/
extract_fq(a,l), /¥ procedare EXTRACT-FR #/
process_others(R, L), /¢ procedure PRGLESS-OTRERS #/

Progras §.2.8:1 Procedures to process suggestions for reason claases

As the program 6.2.8 shown, the suggestion processing can be
clasgsified into two subprocedures. The first subprocedure

(procedure PROCESS-SUGGESTICON.1) is to deal with the

predicate mismatch_pair/2 and will eventually gsuggest a
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substitution to the wrong reference. The second one
(procedure PROCESS-SUGGESTION.Z2) deals with two things, i.e
the mismatch quantifiers and the lack of knowledge and will
suggest to change the quantifiers binding the question
(goal) and assert a new KB clauses 1into the database

respectively.

6.2.2.1.1 The first type: the substitution suggestion
As said above that the procedure PROCESS-SUGGESTICN.1 will

maKke appropriate sugdestions of replacement or substitution
for the wrong references. There are two ways how to
implement the substitution. These ways are the clause and

the atomic substitutions.

The clause substitution 15 a local substitution whereby we
substitute the reason c¢lause with the mismatch clause by
disregarding the other clause i1n the gquestion. For example,
suppose the reason clause of the gquestion "a(q.r.s)&b(qg,s)"
is the clause "a(q.,r.s)" and 1ts mismatch clause 1is
"a(w,r.,s>'". In this local or clause substitution, the reason
clause will be replaced by the mismatch clause such that the
new question becomes "a(w,r,s)é&b(q,s)". Although the

difference between these two reason and mismatch clauses 1s

(k] i1 n

their first argument, 1.e q and "w'", and alsoc that "g
also occurred i1in the other clause, '"b(qg,s)" (cf the old
gquestion), but this (other) clause, 1.e "b(g,s)'"., remains

the same 1n the new gquestion.

The atomic substitution 1s a global substitution. In this

global substitution, any substitution will be carried out on
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the whole question. For example, by using the same example
in the previous paragraph, the new dquestion hecomes
"a(w,r,s)&bi{w,s)'!" where all occurrences of "q" are

substituted with "w".

There are advantages and disadvantages over these two types
of substituticons. If there 1is no relationship between the
arguments of the clauses in a question, then the local

substitution has an edge over the global substitution.

For example, refer to the same example 1n the previous
paragraprh. The local substitution produces a new question
where the clause "a(q.r.,s)" 1s replaced by the clause
"a(w,r,s)". This local substitution c¢lause ("a(w,r.s)"), as
we know, already exists in the database. So at least we
know the darection of proving 15 towards to a successful
one. We do not bother with the other clause ("b(qg,s)") as it
has already been successfully proved. However, 1in this
example, the global substitution produces a new clause
"b(w,s)'" which has not been seen before, 1.e a totally new
clause which we do not know about 1ts proving successful,
and 1t may even produce more reason clauses during the next

stage of proving.

If there is a relationship between the arguments of the
question, then the global substitution has an edge over the
local one. For example, suppose the reason clause of the
question "man({dan)&loves(dan,eve)" 18 a clause '"man(dan)",
and the mismatch clause is a '"man(adam)". The difference
between the reason and the mismatch clauses 13 their

argument, 1.e '"dan'" and "adam'.
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Subsequently, the local substitution will produce a new
question "man{adam)&loves(dan,eve)". This 18 quite different
from the original meaning of the gquestion. The original
meaning of the question can be said to be '' there is a man
called "dan" who loves 'eve" ''. However the meaning of the
new guestion resulting from the local substitution can be
said as there 1is a man called "adam", and, "dan" loves

Yeve',

The new question resulted from the global substitution is
"man(adam) &loves(adam, eve)'" which can be said as there is a
man called '"adam" who loves "eve', This meaning is
equivalent to the meaning of the original question. In this
case, the enguirer has wrongly named the man. However we
cannot say anything of the wrong reference in the context of
the local substitution as the new question gives a totally

new perspective.
As the predicate calculus representation of the question in
this system usually results from the natural language, then

the global substitution technique is adopted.

In this procedure PROCESS-SUGGESTION.1, for a particular

member (the variable "“R"), of set of reason clauses, a
corresponding predicate mismatch_palr/2 will be retracted by

the procedure OQRDERED-MI SMATCH or the predicate

ordered _mismatch_clause/3 according to their ascending order
of the number of differences between the reason and the
mismatch clauses. The program of procedure ORDERED-MISMATCH

can be found in the Appendix.
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Before the replacement or substitution suggestion is made,
some tests are carried out to make sure that the same
suggestions have not been rejected (by checking the non-
exi1stence of predicate reject({P.R,T.D1ff])) and have not
been accepted before on the earlier proving attempts (i.e
the successfulness of the procedure SUBST-LOG or the
predicate subst_log/1l). The program of the procedure
SUBST-LOG can be found in the Appendix.

If the tests are successful, then the enquirer will be asked
whether to accept the suggested substitution provided that
the same suggested substitution has not been accepted before
during the earlier attempt of the same question. In other
words, the suggested substitution has not been accepted
during processing of the octher members of the same set of
reason clauses. This 1s carried out by the procedure

ACCEPT-SUBS or the predicate already accepted_subs/4.

If the same suggestion has been accepted before then nothing
158 done and the system will process the next member of the
gset of reason clauses. If it has not been accepted before,
then the enquirer will be presented with the suggested
substitution and can choose one of the options as given 1in

the following table (Table 6.2.2):

Opt1on Neaning

abort

break

not accepting the suggested substitution so see the next one,
list other possible substitution(s),

reject all possible substitutions,

show the failure tree of this particular reasen clause.

type again the introduction,

why the substitution 1% suggested,

y or {return> yes to accept the suggested substitution,

others displaying help table (fike this one)

i oyt ™ e DD Do

Table 5,2,2: The options for the suggested substitution
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The predicate accept_substitution/4 will handle the above
options and can be found in the Appendix. If the enguarer
does accept the suggested substitution, then the suggested
substitution will Dbe added to the current list of the
accepted substitution. The current 1list of the accepted
substitution 1s kept in the database as an argument of the
predicate accepted_substitution/l. This predicate will be
used during the creation of new question later. For
example, the following session shows the suggestion

suggested and processed by procedure PROCESS-SUGGESTION.1:

!
If * nazrul ® of the gquestion’s clause * maninazrul} * 15 substituted
with * zizat *
===Da you agree ? u
* gan{nazrul) " fails, but exists
* manfaizat} *
-==Da you agree ? b

Gession 6,2.2¢ A part of suggested substitution session

The typed response after a remark "——-Do vou agree ?" 15 as
shown 1n the above Table 6.2.2. The program of procedure

ACCEPT-5UBS can be found in the Appendix.

£.2.2.1.2 The second type of suggestion processing
This second type of suggestion processing is carried out by

the procedure PROCESS-SUGGESTION.Z2 as shown 1n the Program

6.2.8 above. This procedure 13 called when one of these
cases occurred:
[1] If all the suggested substitutions have been rezected

in the first subprocedure PROCESS-SUGGESTICON.1.

[2] No corresponding masmatch clause exists 1n the
database for a particular member of the set of reason
clauses. In other words, no corresponding predicate

mismatch_pair/2 exists in the database.
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[3] The difference between the mismatch and the reason

clauses 1nvolves any questioned Skolem functaon.

In the second case above, 1t 11s possible that the reason
clause may also contain any gquestioned Skolem function.
So, another procedure 1is called within the procedure

PROCESS-SUGGESTION.2 to extract any questioned Skolem

function from the reason clauses. This procedure i1s called
EXTRACT-FO whose detailed program can be found :1n the
Appendix. The procedure EXTRACT-FQ will return a list of any

questioned Skolem function contained in the reason clause.

Then the resulting 1list of questioned Skolem function ais

passed to the procedure PROCESS-OTHERS (see Program 6.2.8

above) . The program of the procedure PROCESS-OTHERS is as 1in

the following program (Program 6.2.9):

/% procedure PROCESS-OTHERS #/
process_others(R,[1) -
/¥ procedure PROCESS-OTHERS.I #/
!

!

assert_told_list{R], £ procedure ASSERT-TOLDLIST #/
process_othersiR,Lh-

/¥ procedure PROCESS-QTHERS.2 #/

assert_skoleafg list(L), [+ procedure RSSERT LISTFR #/

i
]

froqran &.2.9: Procedures to process the second fype of suppestion

If the list of guestioned Skolem functions 15 an empty one,

then the first subprocedure PROCESS-OTHERS.1 1s executed to

append the reason clause to the current list of subsaidiary

clauses (procedure ASSERT-TOLDLIST). A subsidiary clause is

a reason clause which will be asserted intc the database if
it 1s agreed by the enquirer. The list of the subsidiary

clauses 1s kept in the database as an argument of predicate

subsidiary_list/1.
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Cn the other hand, 1f any Skolem questioned function
contained in the reason clause (1.e the list 12 not an empty

one), the second subprocedure PRCCESS-OTHERS.2 will be

executed to append the 1list to the current 1list of the
questioned Skolem function contained 1in the reason clause.
The current list of the questioned Skolem function 1s kept
in the database as an argument of the predicate

skolemfq_list/1.

Both predicates skolemfq_list/1 and subsidiary_list/1 will
be used 11n the acceptance processing and also in the
creation of a new 4guestion. Both procedures ASSERT-TOLDLIST
and ASSERT-SKOLEMFQ can be found in the Appendax.

6.2,2.2 The acceptance processing stage

The main work 1in the reason clauses processing stage as
described in the last section (6.2.2.1), is to make a
suggestion on the substitution of the reason clauses.
Nothing 1s done on others, i.e asserting a new knowledge or
changing the quantifier mismatching. So, at the end of the
reason clauses processing stage, some or all of these three
predicates skolemfqg_list/1, accepted_substaitution/1 and
subsidiary_list/1 have been asserted into the database to
indicate the list of unmatching questioned Skolem
functions, the accepted suggested substitution for the
reason clause, and the list of suggested subsidiary clauses

respectively.

In this stage, the enguirer will be presented with the

suggestions to assert more subsidiary knowledge 1inte the
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database or to change the particular quantifiers or both of

them. This is carried out by the procedure ACCEPTANCE as

shown 1n the following program (Program 6.2.10):

/¥ procedure RCCEPTANCE ¢/

acceptance(fptaon, Reason, boal, Lastqaanths-
print_suggestrons{lastquant}, 1% procedure PRINT-SUSBESTIONS #/
acceptance_choice{Option,Reasan, Boal Lastoeant), [+ procedare RCCEPT-CHOICE ¢/

acceptance acton, % procedare ALCEPT-RCTION #/
1

frogran §.2,101 Procedure BCCEPTANCE

The above procedure (see Program 6.2.10) can be divided into
three substages. These substages are printing the
suggestions, choosing the acceptance options and finally the

action taken upon the acceptance of the suggestions.

6.2.2.2.1 The Printing of the suggestions substage
The first substage 18 carried out by the procedure

PRINT-SUGGESTION in order to print all sorts of suggestions.

There are three sorts of suggestions depending on the
existence cf the three predicates, 1.e skolemfq_list/2,

accepted_substitution/l and subsidiary_ laist/1.

If predicate accepted_substitution/l exists, then a summary
of the suggested substitutions which have been accepted 1s
printed again as a reminder to the user. And also 1f
predicate subsidiary list/1 exists then a 1list of clauses
which wi1ll be suggested to be asserted into the database as

subsidiary clauses, 1s printed for confirmation.

And fainally 1f predicate skolemfq_list/1l exists, then a

suggestion of changing the relevant guantifier 1into its

opposite quantifier 18 also printed for a confirmation.
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There are some difficulties to be overcame when printing the
mismatch quantifier. This 18 due to the method of copying
clause technique implemented in Prolog as explained in the

Chapter 2.

So the unaversal quantifier referred in the suggestion does
not match with the wuniversal quantifier referred in the
original 4question, For example, suppose that the original
question in terms of the wvariables given by Prolog 1is:
"all{(_1,man(_1) =) all(_2.woman(_2) =) likes(_1,_2)))"
and further that this question cannot be proved due to the
mismatched quantifier of the universal gquantifier "_2" (the
quantifier binding "woman(_2)"). However as we kept this
variable 1n the database, then the printing of the
suggestion of quantifiers changing may appear as follows:
"1f all(_4....)" is replaced with "exists(_4....)"
In this case, we do not Xknow which universal gquantifier the
suggestion referred to as there are two universal

quantifiers in the original question.

To overcome this problem, we need to have a variable which
keeps the original wvariables for any quantifier contained
in the question as an argument which will be passed
on from the top level predicate until the predicate to
print the suggestion. So, the variable 'Listgquant" 1in
the procedure ACCEPTANCE which 1s passed to procedure
PRINT-SUGGESTIONS contains a list of quantifiers which have

been Skolemized during the negation of the question. By
having this list of skolemised quantifiers, the above
suggestion will appear as:

"1f all(_2,...)" 1s replaced with "exists(_2,...)"
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It can be seen that the suggestion clearly refers to the

universal quantifier binding the predicate "woman(_2)".

In order to pass the 1list of Skolemized gquantifiers from
the process of the negaticon of the question through to the
printing the suggestion, some modifications need to be done
in the process of the negation of the question., This will
be explained in the process of 1linking up between the
process of finding and rectifying faults later (see the next

section 6.3).

The following session 6.2.2, shows how the suggestion 1s

prainted by the procedure PRINT-SUGGESTIONS by assuming that

all the said three predicates exist:

[f the following clause are true:

* happyfarzat) *

" likes{aizat,sweets) *
If "all€_{y00a]® 15 replaced with "exasts(_1,...)"
fAnd, so you have already agreed that:

I8 " nazrul " of the question’s clause * boy(nazryl) " 15 substituted
with * a1zat *

Do you like to try again by using the zbove assusptionis)

fession 4,2.3: The sample printing dane by procedure PRINT-SUGBESTION

It should be noted here that the sample printing above 1is
not a real problem such there are no relationships among

three given suggestions. In a real problem., there would be

relationships among them.
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6.2.2.2.2 The substage of choosing the acceptance options

At the foot of printed suggestion in the first substage, the
enquirer will be asked to type an option for the next stage.
By referring back the Session 6.2.3 above, the response is
typed after a remark "———?7" which 1s below a remark '"Do you
like to try again by using the above assumption(s)". In thas
substage, the typed option will be processed by procedure

ACCEPT-CHQICE. The options available is given as 1in the

following table (Table 6.2.3). The detail program of
procedure ACCEPT—-CHOICE can be found in the Appendix.

Dotion Meantng

1 abort

b break

n not accepting the suggestions, so see the other alternative,
] show the failure tree of this particular reason clause,

t type again the introduction,

" why the suggestion 15 suggested.

y or <retern) yes to accept the suggested substitution.
pthers displaying heip table {like this one)

Table 6.2.3: The options for accepting a suggestion

Although there are many options available, i1n the end there
are only two options which will carry throcugh into the
next stage. If we response with "n" +to refuse the given
suggestion, then the system will backtrack to faind any
other possible suggestion, 1.e back to the procedure

PROCESS—-SUGGESTION (see Program 6.2.8) If we do accept the

suggestion, the actions taken upon acceptance will be

described in the following section 6.2.2.2.3.

65.2.2.2.3. The acceptance action substage

If the suggestions are accepted, the procedure ACCEPT-ACTION

w1ill be executed to assert denotation predicates into the

database. A denotation predicate 13 a predicate to denote a
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particular meaning. The denotation predicate which will be
asserted i1nto the database are predicates newsubsidiary/0

and atomic_equiv/1. The program of procedure ACCEPT-ACTION

can be found in the Appendix.

The list of the differences between the reason and the
mismatch clausegs will be asserted in the database as an

argument of the predicate atomic_equiv/1.

All members (fact clauses) of the list subsidiary_list/1
will be asserted in the database as an argument of
the predicate subsidiary/1. A denotation predicate
newsubsidiary/0 is also asserted into the database to denote
that the predicates subsidiary/l have been asserted into the
database. These predicates subsidiary/1 will be considered
as a new set of KB clauses and will be used to prove other
questions as well as any new gquestion resulting from the
rectification process. So the new definition of KB clauses
1s as follows:
I* KB ¢lauses ¢/
knowledge_base(Q)s-
query(8}, /¥ a query clause #/
knowledge_base(k)s-
fact_base(K). [+ a non-query clause #/
I+ pon-qeery clagses 4/
fact_base(k}:-
clagse(knonledge(X), true).
fact_base(f):-
clegselplagsible(X), truel,
fact_bese (k)1
claase{sabsidiary(K}, tree),

frograw 6,2.18¢ The nen definitzon of KB clauses.,

The new predicate fact_base/1 is needed here to
differentiate between guery and non query clauses. This is a
quite important feature in finding the mismatch clause as

explaitned in section 6.2.1.2 above.
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6.3 The link up procedure

In this section, we will be describing how the link up
between the rectifying faults and the proving (faults
finding) processes is carried out. The main technique used
to link up those processes 18 a backtracking method adopted
by the Prolog. So, many procedures described in the chapter
3 will be modified to suit the 1link up process. The link up
procedure must be able to reformulate a new question
according the accepted suggestion and then reprove it and

also to cut out any unreasonable backtracking.

The first procedure needs to be modified 1s a top level
procedure, i.e procedure QUEST or predicate question/l as
described in Program 3.3.3.1 (see Chapter 3). BSo the new
procedure QUEST 1s as follows:

/1 the new procedure QUEST &/

questzon(k):-
clear_pc, 1 §tep I procedare CLEARPL #/
reset_nenquery(, 1}, /¥ Step 21 procedure RESET-QUERY #/
pe_to_harnclausell flause,irstquant), /¢ Step 3: procedure PL-HORK #/
retry_search(l,L1stquant), {# Step 4; procedere RETRY-SERRCE ¢/

answer_search(Clause, .Y, Listquant}, /¢ Step 5t procedure A5 #/
print_answer(l, ! Clagse,Listquant), /# Step 61 procedure PRINT-ANSHER #/

Progran 4.3.12 The new defimition of procedure QUEST

There are some obvious differences 1f we compare between the
new and the old defainitions, 1.e the new definition has six
steps compared to the old one which has four steps. The step
1 (procedure CLEARPC - see Appendix) of both old and new
definition, and also step 3 of the old definition and step 5
of the new one ({1.e procedure AS -see Program 3.3.3.3 of
chapter 3) are the same. So, we will only describe the other

steps, 1.e steps 2, 3, 4 and 6.
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6.3.1 Step 2: to set up a new query
This step 2 which 13 aimed to set wup a new query resulted
from the reformulation process 1s carried out by procedure

RESET-QUERY. The procedure RESET-QUERY 1s given as follows:

f# procedare RESET-QUERY #/
reset_pewquery(Originalquest,friginalquest), /% procedure RESET-BUERY,! #/

reset _newquery(Originalquest Hewnquery) s~
/¥ procedure RESET-QUERY,E #/
reset_newqueryi{Origanalquest, Newquery), /¥ procedore RESET-QUERYY ¢/
print_newquery{Henguery), ¥ procedare FR-NEKQUERY #/

/% procedure RESET-QUERY! 4/
reset_newqueryl(Graganalquest, Newquery):-
f¥ procedure RESET-QUERYE,L ¥/
retract(nen_query{Nemgueryl},
2bolish(carrent _query, 1},
assert{current _query(Nenguery),
reset_newqeeryl{0ragtnalquest, Newquery)s-
/% procedure RESET-BUERYE.Z #/
exsts{nen_query(_)),
reset_newqueryi(Originalquest, Rewquery),

Prograw §,3.2: To set up @ questron fo be proved

If the query or gquestion 1s an original one, then take 1t as

a question to be proved (Procedure RESET-QUERY.1l). In other

words, during the first attempt of proving the original
question, nothing 1s done, 1i.e take the original guestion.
Otherwise 1f the question 1s not the original cne, 1.e the
new reformulated question, then take this one as a gquestion

to be proved {(procedure RESET-QUERY.Z2). Actually, the second

procedure RESET-QUERY.Z2 15 executed as a result of Prolog's
backtracking, 1.e. when procedure RETRY-SEARCH fails.

The new reformulated query or question exists if predicate
new_query/1 exists 1in the database. This new dquery 1s
retracted from the database by procedure RESET-QUERY1.1.
The second procedure RESET-QUERY1.2 1s used to set another
new reformulated query for the next attempt of proving.

Procedure RESET-QUERY1 1s a sgsort of an iterative or a

WHILE-DO procedure whereby as long as exists predicate
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new_query/1l, this procedure will be executed. The predicate
new_query/l1 1is asserted 1inte the database at step 4

(procedure RETRY-SEARCH) .

After the new reformulated query has been set up, then 1t
will be printed. The printing of the new query 13 done by

procedure PR-NEWQUERY which can be found in the Appendix.

4.3.2. Btep 3: converting a FC into Horn Clauses
In this step, a question in the predicate calculus form is
converted to Horn clause by procedure PC—HORN. The program
of procedure PC-HORN is as follows:
1% procedure PL-HORK #/
pe_to_barnclausedk Clause Lastquant):-
list_quantafiers(X,Allquantifiers), f¢ procedure LIST-QUANTY #/
question_to_hornclause(*X,(lause,Sklist), 1 procedure QTHC #/
perge_guantafrers(Sklast, allquantifrers, Lastquant), /+ procedure NERSE-QUANT #/
!y /¢ to prevent @ aseless backiracking #/

Progras £.3,3: Converting @ PC 1nto Forn Cladses

Before the question 1s actually converted into Horn clauses
by procedure QTHC (see Program 3.3.3.2 of chapter 3), all
Prolog variables assigned to all quantifiers contain in the
question 1s recorded by procedure LIST-QUANT denoted by
variable "Allquantifiers" in the above program 6.3.3. A list
of skolemized quantifiers which 1s denoted by the varaiable

"Sklist" 1s also recorded by the procedure QTHC.

As we are only i1nterested in the 1list of Prolog variables
assigned to the skolemized quantifiers and their original
quantifier before skolemization for the purpose of printing
the suggestion (see secticon 6.2.2.1.2), and furthermore., the
list "Alliquantifiers" consists of all the Prolog variables

assigned to all quantifiers occurred 1in the question, then
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procedure MERGE-QUANT is called after the conversion of PC

to Horn clauses in order to record the Prolog variables

assigned to skolemized quantifiers only.

The programs of procedures LIST-QUANT and MERGE-QUANT can be
found in the Appendix.

6.3.3 Step 4: procedure RETRY-SEARCH

This step 18 a reformulation of the new question according
to the accepted suggestions. After we accept the suggestion,
there are three predicates which may be asserted into the
database depending on the certain cases as explained in
section 6,3.2.2 before. These predicates are atomic_equiv/1,
skolem_fq/1 and newsubsidiary/0. This step 1s carried out by

procedure RETRY-SEARCH as shown below:

/¥ procedure RETRY-SEARCH ¢/
retry_sexrch{lidquery,Lostquant), /¢ procedure RETRY-SEARCR.! #/
retry_search(Qldquery,listquant):-
f+ procedure RETRY-SERRCE.Z #/
retry_searchi{Qldguery,Lastquant), /% procedere REIRY-SEARCHI #/

/% procedure RETRY-SEARCHL #/
retry_searchi(Qldquery,listquant)s-

/% procedure REIRY-SEARCRI.L ¢/

not_existslatonic_equiv(_1),

not_exists(skoleafq_lisi( ),
extsts(newsubstdaary(_}).
retry_searchi(Qldquery, L1stquant)s-

/¢ procedare REIRY-SEARCR!. 2 #/

reforvalate_questrontOldguery, Listouint), /¥ precedure REFORNULATEQ #/

abolishiset_of reason,i),

ibolish(reason_san_father,i),

aboleshirsf_head,1),

gbolrshinensabsidrary, ),

abolish(guery, ),

fal,

retry_searchi(Dldguery, Lastqeant):-

/¥ procedure RETRY-SEARCHI.T #/

{ extsts(newsubsidiary)}
existsisioleafg_list(_}}}
exists(atoric_equivi ) ),

retry_searchl(Qldguery,listquant),

frogras §,3.45 Reforaulating or reproving the question
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The first procedure RETRY-SEARCH.1 1s executed first time at

the first attempt of the proving of a partaicular question.

The second procedure RETRY-SEARCH.Z2 is executed as a result

of backtracking when the suggestion are accepted (see

section 6.2.2.1.3) such that the procedure PRINT-ANSWER

fails (see Program 6.3.1).

However the reformulation of the new question depends on the
existence of either predicate skolemfq_list/1, or
atomic_equiv/1 or both of them. If only predicate
newsubsidiary/0 exists in the database (see procedure

RETRY-SEARCH1 1 of program 6.3.4 above), then no

reformulation 1s carried ocut but the same question will be
proved once again by using the extra subsidiary clauses
which have been asserted before 1i1nto the database as new

knowledge.

Otherwise, a new question will be formulated by procedure
REFORMULATE(Q. After the new question 115 reformulated, all
relevant predicates will be abolished or retracted from the
database as the reproving of the new question soon will be
executed again. Those relevant predicates are
set_of_reason/3, reason_son_father/3, rsf_head/3, query/l

and newsubsidiary/0. And the procedure RETRY-SEARCH1.Z2 is

set to fail in order a backtracking can occur such that

procedure RESET-QUERY.Z2 will be executed.

The third procedure RETRY-SEARCH1.3 15 an 1iterative or a

WHILE-DO procedure such that a new gquestion can be

reformulated or the guestion is reproved again for the next




268

proving attempt after the new suggestions are accepted for

the previously new reformulated question.

As we said above that the reformulation of new question 1is
carried out by procedure REFORMULATEQ which 1s shown as

below:

/% procedure REFORNULATEG #/
refornulate_question(0ldquery,listquant)i-

13 procedure REFORRULATEQ.] #/

retract{atonic_equiv(f)),

new_goal(Nenquery?),

subst_skalen_not{Newquery2, Rewqueryl,b),
quantifiers_chanqing(Kewqueryl Kewquery, Listquant), ¥ procedure QUAKT-CRANGE #/
1ssertinen_guery(Henguery)),

4

reforluiite_questzon(Oldquery,LJstguant!:-

/% procedure REFORNULATER,Q #/
not_existslatonse_equav( )},

exists(skolenfq_l1st(Sg)),

quantifrers_changing(Qldquery Nemquery, Listquant), [+ procedare QUANT-CHANEE #/
assert(nen_queryifenguery)},

t

Progran 4.3.5: Procedure REFQRNULATEQ

There are two cases in the reformulation process of the new
question. The first one 1s that the predicate atomic_equiv/1
exists in the database (procedure REFORMULATEQ.1). If thas
13 the case, first of all, the atomic or global
substitutions on the 1instantiation of the failed old
question ("Newguery2") are carried out by predicate
subst_skolem_not/3, and then finally all relevant

quantifiers will be changed by procedure QUANT-CHANGE

provided that predicate skolemfq list/1 exists.

The second case 1s that the predicate atomic_equiv/1 does
not exist and but the predicate skolemfq list/1 exaists. If
this is the case then the procedure QUANT-CHANGE s called

to change the relevant quantifiers.
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At the end of Dboth cases, a predicate new_gquery(Newquery)
18 asserted into the database where ‘“Newgquery" 18 a
new reformulated question. In both cases, we do not care
whether the predicate newsubsidiary/0 exists or not in the
datahase as the relevant subsidiary clauses have already
been asserted in the database. The program of procedure

QUANT-CHANGE can be found in the Appendix.

6.3.4. Step 6: Printing the answer

In this step the top level predicate for printing the answer
for the question 1s carried out by procedure PRINT-ANSWER.
This procedure 1is equivalent to the procedure PA (see
Program 3.3.3.4 of chapter 3). The only difference is the
extra argument in the predicate print_answer/4 of

procedure PRINT-ANSWER which 1s shown as follows:

it procedure PRINI-ANSKER sprinting the answer or solution &/
print_snswerdd, ¥, (1, Lastquant) -
/% Frocedure PRINT-RHSRER.I: the clause 15 an Inconsistent one #/
affira(fns},
answer_faraiy,Ans}, 11 procedure #F #/
urifel’ The clause 15 an inconsistent one '),
i
prant_answer(8,¥,Clause, Listquant)s-
/¥ Procedare PRIKT-BNSHER.2: print exther successful or farlare proving #/
Llagse\==(],
print_enswer0(8,Y,Listquant). /¥ procedure PRINT-ARSKERD #/

Progran €.3,41 Procedare PRINT-ANSKER

So the description of procedure PRINT-ANSWER 15 exactly the

same as the procedure PA. However, the second procedure

PRINT-ANSWER.2 has other aims than the prainting of answer,

it also means to rectafy the failure question. This 1s8
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actually carried out by procedure PRINT-ANSWERO which 1s

called by procedure PRINT-ANSWER.2. The following 18 a

program of procedure PRINT-ANSWERO:

/¥ pracedure PRINT-ANSHERD #/
prant_answerQ(8,Y,Listquint)s-

/% procedure PRINT-RHSNERD,! #/

ranvar(ll,

affire{Ans),

answer_fore(Y,Ans), /¥ procedure Bf ¥

[

v r

rectifiers(¥ dns,L1stquant), /¥ procedure RECTIFIERS #/
print_answerd(Q,Y, Listqeanthi-

I+ procedure PRINT-ANSKERG, D ¢/

affiraiyes),

exstsiset_of reason(_, , 1),

rectifiers(y,no L1stquant), /¥ procedure RECTIFIERS #/
print_answer((0, ¥, Listquant)s-

{1+ procedure PRINT-ANSHERG, T 3/

exists(toptry(il},

not_existsiset of _reason{_,,_}},

test_finish_fact(Q), /¢ procedure IFF #/

Progras 6.3.7; Procedare PRIKT-ANSKERQ

Procedure PRINT--ANSWERO can be divided into three

subprocedures. The first one, procedure PRINT-ANSWERO.1l, 1s

meant to praint the answer 1f the proving 1s successful or
otherwise to detect the reason clauses and their

rectification.

The second subprocedure, PRINT-ANSWERO. 2, 1s aimed to find

any other possible suggestions for the question provided
that the set of reason c¢lauses exists 1n the database and
also the proving of the question 1s successful (1.e
predicate "affirm(yes)'" exists 1in the database). Although
the question 1s successfully proved, 1t may also produce
some sets of reason clauses. So this subprocedure will

handle those set of reason clauses as assuming that the
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question can not be proved. For instance, let us see the

following session (6.3.1):

?-1isting(knowledge),

knowl edge (husaninazrul}l,

knowl edgethunanfaizat)),

knowl edge (happy inazrul)},

know] edged(success(_L1z=happy(_1},hunan{_111),
yes

T-pcquest,
i1success(X),

NEXT GUESTION:
success(_1)

The translation of its negation:
[Js-success{_i),
BLLERALAREAMIA AR LLLLLL

Nanswer: Yes,
sutcess(nazrull

PROVED: successinazrul) ? §

OPTION 1:

The reason why the goal:
* success{arzat) *

fails is the non-existeace of the following knowledge:
happy(aizat)

However, we may able to prove the goal
after doing some corrections or additions

Bo you like to continue ? a
Sessi0n 4.3.1: Finding other sugoestion for a successful question

From the above session (6.3.1), we can see that although the
question "success¢X)" is successful, i.e "X" 1s 1nstantiated
to "nazrul", but the goal (question) "success(aizat)'" fails.

So the second subprocedure PRINT—-ANSWERO.Z2 handles this type

of result.

The third subprocedure, PRINT-ANSWER0.3, 13 to mark the end

of proving and its exactly the same with procedure PAO.2
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(see Program 3.3.3.5 of chapter 3) but with the extra
condition, 1.e no more predicate set_of reason/3 exists in

the database.

So, in the first and second subprocedures, i.e procedures

PRINT-ANSWERO.1 and PRINT-ANSWERO.2, the process of finding

the reason clauses 1s carried out even though the proving is
not necessarily unsuccessful. This finding 1is carried out

by procedure RECTIFIERS which 13 as follows:

f# procedure RECTIFIERS #/
rectifiers{y,yes,Listquant)s=
1% proceduare RECTIFIERS.I #/
write_proved(user,¥),
get0(x},
answer response{d, ¥, Listquant), /# procedure AKS-RESPONSE
rectifiers(Y,no,L1stquant) i~
i+ procedure RECTIFIERS.] 4/
why_2t_farls(Y,Listquant), /¢ procedare RRY-FRILS #/
clear_ped, /% procedure [LERRPCY #/
‘il

Progran &.3.8; Procedure RECTIFIERS

The first subprocedure, RECTIFIERS.1, is to praint the

successful answer and the engquirer will be given a choice of

options by procedure ANS-RESPONSE. The options awvailable are

the same as 1n the Table 3.3.1 of chapter 3. 5o the
procedure AR (see Appendix) 1is equivalent to procedure

ANS—RESPONSE apart from the different number of arguments.

The program ANS—-RESPONSE can be found 1in the Appendix). In

other words, the procedure RECTIFIERS.1 1is egquivalent to

procedure MORE-ANS (see Program 3.3.3.6 of chapter 3).

The second subprocedure, RECTIFIERS.?Z, 15 the main link up

between the two procedures of finding and rectifving faults.
The finding faults is called within procedure PC—-HORN above

(see Program 6.3.3) or to be precise from procedure ASK (see
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Program 6.2.5 in section 6.2 above). The rectifying faults
procedure which 1s called from thas subprocedure
RECTIFIERS.2 1s a procedure WHY-FAILS (see Program 6.3.1 1in
section 6.3 above} . After procedure WHY-FAILS is
successfully executed, procedure CLEARPC1 is called to reset
all the relevant control and denotation predicates. The

program of procedure CLEARPCl can be found in the Appendix.

This second subprocedure (RECTIFIERS.2) is set to fail such
that a backtracking can occur to the point of step 4
(procedure RETRY-SEARCH) given that there 1s no more other
possible answers to the question, However the first

subprocedure (RECTIFIERS.1) will Dbacktrack to the gstep 5

(procedure AR) when the user requires more answers to the

question.
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6.4. Examples

We have already described the fault detection algorithm
(section 5.4) which has been incorporated with the theorem
prover program (chapter 3), the fault rectification
algorithm (section 6.2) and a system to 1link up both
algorithms. In this section we will show some examples
following the description of both algoraithms, For
simplicity, suppose the following KB clauses have already
been asserted in the database:

knowledge(nanfarzat)),

knowledge{maninazrall),

knouledge(nanirzak)),

knowledge(womanirosie) ),

knowledge(wonan(sarah)},

knowledge(noran{eve)},

knowledge((loves(arzat, rosie}),

Database &, 4,15 & list of sample KB clayses

6.4.1. Example |

In this section, we will show how a substituted suggestion

15 dealt.

?-pcquest,
it manlrosiel,

KEXT BUESTION:
nanlrosie)

The translation of 1ts negation:
(lt-aanfrosiel,
SEELARARLALLELLLALLLLLL

»answer: No, it cannot prove !
* manirosie) *

2% Ez=sEs £ ] SESISTEEIETTREEZ

Session b.4.1,13 The frrst part of a session to prove "san(rosie)”

Certainly, from the above Database 6.4.1, we cannot prove or
deduce "man(rosie)". Up toe this stage, all sets of reason
clauses have already been recorded by the system (see

section 5.4). In other words, the first five steps of
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procedure QUEST (see Program 6.3.1 of section 6.3) has
finished. Let us see the continuation of the proving session
which 1s actually the step 6 of procedure QUEST:
OPTION 13
The reason why the goals
"sanirosiel*
fails 15 due to the non-existence of the the foliowing facts
fan(rosie)

However, we may able to prove the goal
after doing some corrections ar additions

=-Do you like to continue i
Sorry, no other set of reason clauses
--Do you like to continue %s

*aanirosiel® fails
=22} "poal (aan{rosie))® fails

--Da you like to continue %

fSession 6.4.1.2¢ The second part of proving session of "san(rosie)’

As the proving fails, procedure PRINT-ANSWER(Q.l1 (see Program

6.3.7 of section 6.3.4) will handle this situation. The
system will list the first opticn of the reason why the goal
{question) fails as shown in the above session 6.4.1.2, and

will ask the user "Do you like to continue ?".

In the above session (6.4.1.2), the user response with "1"
in order to see other possible set of reason clauses and the
system will laist all other possible set of reason clauses,
if they exist, or will print a remark that no other set of
reason clauses as shown 1n the above session 6.4.1.2, 1if
this 1s the case. The user then responds again to the
question by typing "s" 1n order to see the failure tree of
the reason clause as shown in the above session where, in

this case, the goal 1tself 12 actually the reasoen clause.
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All other wvalid responses to this question are as in the
Table 6.2.1 (of section 6.2). Finally, the user agrees to
continue the session by typing an option "y" 1in order to see
the rectification suggestions which will be made by the
gystem. This reason clauses processing 2i1s carried out by

procedure PROCESS-REASONS (see Program 6.2.7 of section

6.2.2.1). where then the suggestion will be made by
procedure SUGGESTION (see Program 6.2.8 of section 6.2.2.2).
The following session shows the continuation of proving

session of "man(rosie)":

1f " rosie " of the question’s clause * man{rosie)* 1s substituted
with "aizat"
---Do you agree ? w

" manfrosie)® fails, but exists
" aanfaizat) "

ven 50
1f" rosie " of the question’s clause * man(rosiel® 1s substituted
with "ajzat"
-==0o you agree ? |

The other possibality of substitution of "azn{rosie}” are as follows:

¥ "rosie” can also be replaced with "nazrul® as exists
*aan(nazrul)*

$ "rosie" can also be replaced with "rzak" as exists
"manirzak)®

¥ "nan" can also be replaced with “wonan® as exists
"woman(rosje)*®

.50
:f,' rosi2 * of the question’s clause " aan{rosie}*® 15 substituted
with *a1zat’
~==Do you agree ? n

1f * rosie " of the question’s clause * aan(rosiel* is substituted
with “nazrul®
-~=Do you agree ? n

if " rosie " of the question’s clause " manirosie)" 1s substituted
with "rzak”
---0o you agree ? n

1f " man * of the question’s clause * manlrosiel® is substituted
with “woaan®
---Do you agree 7y

Session &.4.1.3: The third part of proving session of "manfrosie)’
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In the above session (6.4.1.3), the various substitutions

are presented by procedure ACCEPT-SUBS (see Appendix)

after the matching process is carried out by procedure
ORDERED-MISMATCH (see Aprendix). Both procedures are called

form procedure SUGGESTION.1 (see Program 6.2.8 of section

6.2.2.1 and also section 6.2.2.1.1). The above session shows
the system's responses to the user's response of "Do you
agree' such as "w'" to see why the suggested substitution 1s
made; "1" to list other possibility of substaitution; "n" and
"y" to reject and accept the suggested substatution
respectively. Other wvalid responses of '"Do you agree" 1s as
shown in Table 6.2.2 of section 6.2.2.1.1. The following
session shows part of the acceptance of other
rectifications (see section 6.2.2.2), 1f they exist, of the
proving session after the wuser has 1natially agreed to
substitute "man" of "man(rosie)" with "woman".
+o150 you have already agreed that:
'lan'l:z'::E question’s clause "san{rosie)® 15 substituted with

Do you like to try again by using the above assusption
| Y

Session b.4.1,4: The fourth part of the proving session of "man(rosie)"”

All the suggested substitutions which has been initially
agreed in the third part will be presented again by the
system for a confirmation. The valid responses to '"Do you
like to try again by using the above assumption ?" are shown

in Table 6.2.3 of section 6.2.2.2.2.

All the processing shown 1n sessions 6.4.1.2, 6.4.1.3 and

6.4.1.4 above are carried out by procedure RECTIFIERS.Z (see

Program 6.3.8 of section 6.3.4). As shown 1n session

6.4.1 4, the user confirms his (her) 1nitial agreement of
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the suggested substitution. Consequently procedure
RECTIFIERS.2 15 set to fail (by commands "!,fail") and thus
procedure PRINT-ANSWER (The step 5 of procedure QUEST - see

Program 6.3.1 of section 6.3) fails. Prolog w:ill
automatically backtrack to the step 3 of procedure QUEST
(1.e procedure RETRY-SEARCH) where the new question will be

reformulated.

As shown 1n session 6.4.1.4, there 1s only one substaitution
to be made to the original question (by procedure

RECTIFIERS.2). As this 1s the case, the procedure RECTIFIERS

will alsc be set to fail and Prolog will backtrack again to

the step 2 (procedure RESET-QUERY) 1n order to reset the new

question and start the proving all over again as shown in
the following session (6.4.1.5):
RE-QUESTION:
womani{rosiel
The translation of 1ts negation:
[Ys-uonanirosiel
EAA AL AR LE LA LR LNLY

Yranswert Yes,
womanirosie)

BRI CECEC I SIS EIICCLISEIITIIX

PROVED:
woman(rosie) 7

no more answer!

Session_6.4.1,51 The final (fi1fth) part of proving sessitn of "san{rosiel”

And finally we succeed in proving a new question
"woman(rosie)" after starting with the unsuccessful one, i.e

"man(rosie)".
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b6.4.2 Example 2

In this example, we will be dealing with a non—matching
reason clauses. In other words, the detected reason clauses
do not have any mismatch KB clauses and as a result, new
knowledge will be asserted into the database. Suppose we
would like to prove "boy(tony)". We will use the same part
of the session as explained in example 1 (see section 6.4.1)

for an explanation of how the rectification 18 carried out.

By skipping the first part of & Proving session as it 1s
obvious that the proving fails. And also that the goal
"boy(teony) " fails because it does not exists in the Database
6.4.1., so assuming the user agrees to see the rectification
process. This means that we will also skip the second part

of the proving session.

The system will then process the reason clauses and will
present suggested substitutions to the user. As there
1S no corresponding mismatch KB clauses, the reason
clause "boy(tony) " will be processed by procedure

PROCESS-SUGGESTION.2 (see Program 6.2.8 of section 6.2.2.1).

The third part of the proving session will also be skipped
here as no substitution wilil be suggested. So we will move
on the fourth part of the proving session which are as
follows:
I¥ the following clause 19 true:
*hoyltony)!

Do you like to try again by using the above assusption
---? y

Sessipn 4.4.2.12 The fourth part of the proving session of "boy(tenyl®
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The above session shows the system's suggestion, 1.e if
“boy(tony)" 1s true. By accepting the suggestion, the system
will assert predicate “"subsidiary(boy(tony))'" 1into the
database as explained in section 6.2.2.2. BAs a result of
this, Prolog will backtrack to the step 4 of procedure QUEST

(1,e the explanation 18 as in example 1 bhefore).

In this case, procedure RETRY-SEARCH1.1 will be executed as

only predicate newsubsidiary exists in the database. So. no
reformulation of new question will be carried out, but the
proving will be once again carried out, 1.e the steps 6 and
7 of procedure QUEST will be executed. The following session
shows the final part of proving "boy(tony}":

Yanswer: Yes,
boy (tony)

I EEEECICSIEDTICISTEZEISTITESRIER

PROVED:
boy{tony) ?

yes

Session 4.4.2,2: The final (f1fth} part of proving session of “boyitony)®

In this example, no reformulation of the original question
18 performed. In other words, the same gquestion 1s reproved
again but this time a new knowledge (fact) has been asserted
into the database. This example shows the second possible

cause of faillures as discussed 1n section 6.1,



281

4.4.3. Example 3

In this example, we will show how the system weakens the
gscope of the binding of the question's quantafier(s). The
weakening process 15 performed when the difference between
the reason clause and the mismatch KB c¢lause contains a
gquestioned Skolem function (denoted by '"fq'"). It should be
noted here that i1t 1is not always the case to weaken the
question's quantifiers, but it may alsc to universify the
question's quantifiers, 1i.e changing from existential
quantifier into universal quantifier. This case happens as a
result of the negation of the question's c¢lause before
proving 1t. However., we will not show this case in thas
example as the process of universifying the quantifier 1s

equivalent to the process of weakening the quantifier.

By assuming the present of Database 6.4.1, let us prove the
unprovable question (for the sake of clarifvying the system's

work) as shown in the following session 6.4.3.1.:

?-pcquest,
1t all(X,man(tizdenists{Y, wonan(¥ikloves(X,Yi}),

NEXT QUESTION:
alll_fymanl_f)=dexists(_2,womanl_2)%loves{_1, 2}

The translation of its negation:
nan(fqlmanf}),
[1:-uoman{_2),loves(fq(nzn0), 2},
EALRRLEERLALRALLALALY

03) can not prove manifginan0d)) {4
M) can not prave (1:-woman(_2),Lloves{fq(mand), 2} <{{{(

ranswer: No, 1t cannot prove t
all(_tyman(_{)=dexists{_2,woman{ 214loves(_{, 2))

ot SETSISTESSEER

Session 6.4,3,%r The second part of the proving session

From the above session, a universal gquantifier of the

question, 1.e¢ X (or "_1" ), have been changed to question's
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Skolem function, 1.e "fgq(man0)", Now, let us see the second
part of the proving session as shown i1n the following
gession (6.4.3.2):
OPTION 13
The reason why the goely
* all(_,man{_{l=dexiste(_2,wonani_2,)kloves{_{, 201 "
fails is due to the non-existence of the the following fact:

“san(fqinand))

However, we sdy able to prove the goal
after doing some corrections or additions

--0o you like to continue 7s

" *san(fg(ean0})" fails
rex) "goal{all(_1,man{_{)=dexists{_2,nonan{_2,)klovest {, 2N" fails

~-Do you like to continue %y

Segsion 6.4,3.2¢ The second part of the proving session

One of the set of the reason clauses of the failed question

is " "man(fq(man0))" as shown in the above sessicon. So., the
rectification process continues by processing the reason
clauses as explained 1n the example 1 before. The third part
of the proving session will not be presented by the system
as the difference between the reason clause and a mismatch
KB clause 1nvolve a questioned Skolem function, 1i.e
“fg(man0)". So the system will continue with the fourth part
of the proving session as shown 1in the following session

(6.4.3.3):

If *all(_1ys0e)" 15 replaced with *exists(_1,..)"

Do you like to try again by using the above assumption
===l

the reason clause contains & Skolem functien "fq°

Do you like to try again by using the above assumption
....-‘? y

Session 6.4.3.5t The fourth part of the proving sessien
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So the system will backtrack to the step 4 of procedure
QUEST to reformulate new question as the user has agreed to
weaken the universal gquantifier binding ‘'man(X)" to an
existential quantifier. After the new question has been
reformulated, then the system will backtrack again to the
step 4 of procedure QUEST to restart again the proving
process but with a new modified question and the process
starts all over again as explained in the example 1 before.

RE-GUESTION:

exists{ _3,man(_Tkexists! 4, woman{_41tloves{_J, 41}
The translation of its negation!
[Is-nan(_3i,woman{_#),loves( 3, 41,

PRUTIA IR AT IT AL R AL

yranswer: Yes,
exists{atzat,man(aizat)kexists(rosie, wonan{rosie)d]oveslaizat, rosiel})

PROVED:
existslaizat,nan{aizat)dexists{rosie,wonan{rosiel kloves(aizat, rostel})

yes

Session 4.4.3.4: The final {fifth) part of the proving session

We can see from sSession 6.4.3.4, that the wuniversal
quantifier of the original gquestion has been weakened to
become an existential quantifaier and furthermore the
implication sign corresponding to the universal quantifier
has also been changed to a conjunction sign (&) . In other
words, the old question "all(X,man(X) =>...)" 1s changed to
a new gquestion "exists(X.man(X) &...)". As shown 1n session
6.4.3.4, the new question has been successfully proved by

the system.
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&.95 Comments

In this chapter, we have discussed the fault rectification
algorithm, the procedures to link up this algorithm and the
fault detection algorithm (section 5.4) and 1in the last
section (6.4), we have given three examples to show the
ability of the system in detecting and rectifying fault. All
the original questions of these examples are in the form of
predicate calculus. It should be noted here that the system
1s able to diagnosis the qgquestion in the form of PC where
the predicate is either in the form of ,say, "man(X)'" or

“f{man,X)'" (see chapter 4).

Summarily, the system 15 able to rectify those reason
clauses detected either by
[1] substituting all wrong references in the gquestion's
clause,
[2] weakening (universifying) the scope of the relevant
quantifiers in the question's clause,
or {3] asserting the relevant reason clauses 1into the

database as a subsidiary clauses (a new kKnowledge).

These rectifications are carried out on the assumption that
the user make a wrong gquestion and the database does not
contain any faulty data. However, the user also can rectify
any faulty clauses (facts) 1in the database. Those faulty
facts can be spotted by the user during interacting with the
system especially when asking why a substitution 1is
suggested and also when prainting the failure path of the

failed goals (subgoal).




285

For example, sSuppose we would like to query about
"man(razak)'" from the database 6.4.1 (section 6.4).
Unfortunately, the system cannot deduce or prove the
particular question, 1i.e "man(razak)". And the user
continues interacting with the system to find out the
reasons or any rectification. In the third part of the
proving session (as explained in section 6.4).,which is as

follows: -

if " razak " of the question’s clause ® manlrazak)" is substituted

with "rzak*
---Do you agree ? w
* manirazakl" fails, but exists
" aanirzak) *
ll!sol
1¢ " razak " of the question’s clause * manfrazak)® 1s substituted
with "rzak*

~==0o you agree ? b

Sessron 6.5.5¢ The third part of proving session of "man{razak)®

The above session (6.5.1) shows the suggestion of
substituting ''razak" with "rzak" as exists "man(rzak)'"' 1in
the database. We, as a user, could notice that we know the
correct spelling of "razak", thus '"man(rzak)' is wrong and
should be corrected and not to rectify the question, in this
case. Consequently we break out from the proving session and
rectify the database contents. This methed 1s still helpful
although a bit manually. Even Shapiro's method needs the

user to modify the faulty rules.

This method can also be extended to find and to rectify
faulty rules by applying Shapiro's contradiction
backtracking technigue to the failure tree as shown in the
second part of the session (see section 6.4) and also by

assuming that the reason <c¢lauses are true (and thus the
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proving succeeds). After detecting faulty rules or facts,
the modification of the rules or facts can be made by using

Prolog commands (such as retract, consult etc).

Shapiro's technique 18 used to detect and to modify any
faulty rules or facts when the proving gives unexpectedly
successful results. However, our techniques 1is wused to
detect and to rectify any query or fact when the proving

ends up with unexpectedly unsuccessful results.



CHAPTER 7

A COMPLETE SYSTEM
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7.1 Introduction

In chapter 4, we have discussed the problems i1n interfacaing
a subset of natural language processor to the theorem
prover. Three methods of implementing the subset of natural
language have been discussed. Those techniques are the
tracing technique, the wording technique and the extra
conditions of "nonvar(X)" and ‘"var(X)". These techniques
have been used to analyse English sentence inte PC and also

to synthesize them from the resulting PC.

In chapter 5 and 6, we have also discussed algorithms on how
to detect and to rectify a faulty fact respectively and
also the procedure to 1link both algorithms. We restrict
courselves 1n discussing both algorithms that the 1input
question 15 1n the form of PC However, the PC's form 1s 1n
either, say., "man{(X)" or "f(man,X)". The latter was adopted
in translating an english sentence 1into PC {(chapter 4). The
Prolog-based theorem prover have also been modified to

translate both PC forms into Horn clauses.

In the following section (7.2), we will discuss how the
three techniques discussed in chapter 4 can be 1incorporated
with the fault detecting and rectifying algorithms. In other
words, we would like to build a complete system such that 1t
can process both types of 1input, 1i.e an English (a natural
language) sentence or a PC. We will show some examples how
the system works with an English sentence as ainput in

section 7.3.
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7.2 Interfacing with the English grammar

In this section, we Wwill discuss how the three techniques
discussed ain chapter 4, 1.e the tracing, the wording and the
extra conditioning techniques, will be incorporated into the
detecting and the rectifying algorithms (as discussed 1in

chapter 5 and 6 respectively).

In chapter 6, we assume two possible types of fault, i.e

[1]. The wrong references in the query.

(2] . The non—-existence of the facts in the database,
After detecting those faults, we have taken one or more of
the following rectification steps depending the nature of
the fault detected:

(a) by substituting an atom 1i1n the question clause, for

11

example, by substituting man' of ‘“man(rosie)" with
"woman' to become woman(rosie)'.

{b) by weakening (or universifying) the relevant
quantifiers of the question c¢lause, for example, by
weakening a universal quantifier binding "man(X)'" of
"all(X,man(X)=>loves(X,god))" into an existential
gquantifier, thus "exaists(X.man{X)&loves(X,god))" became
a new question.

{c) Dby asserting a new knowledge clause i1nto the database
when the proposals as suggested 1n (a) or (b) are
rejected and also when no mismatch clauses can be
found. For example., "man(razak)" 1s asserted into the

database as a subsidiary clause.

In both cases (a) and (b) and any combination of (a), (b) or

(c), we will have to reformulate a new question. On the
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other hand, i1n the case (¢} alone (without cases (b) and
(a)), the old gquestion will not be changed but instead a

reproving 18 carried out again.

Thus when a new gquestion (i1n the PC form) is reformulated,
we also need to rephrase a new English (a natural language)
question corresponding to the new PC question. This 1s where
the incorporation of the three techniques discussed in

chapter 4 will be discussed.

7.2.1. The tracing technique

By using this technigque, as discussed 1n chapter 4, we will
be at ease 1f the analysing and synthesizing process deals
in generating the same original English guestion (sentence),
for example, the gquestion sentence '"Tony 1s kind?", says,

will give the answer sentence as '"Yes, Tony 1s kaind".

However, 1if the need of substituting and/or weakening
processes are required, this technigque will be very
difficult to i1mplement. We would not have any difficulty in
gubstituting and/or weakening processes of the gquestion in
PC form, but the new PC question will Dbe very hard to be
synthesized back into English sentence again, as the tracing
variable recorded during the process of analysing is no use
at all due to the rectification process of cases (a) and/or
{(b) have taken place. Thus the old tracing variable also
needs to be modified according the rectification processes

of (a) and/cor (b) which were taken upon the old question.

All the grammar rules numbers and the wording itself must be

modified in the tracing wvariable. Furthermore, the most
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difficult modification 1s when the rectification of the
case (b) is carried out, 1.e the whole series of grammar
rules used may be different from the grammar rule used as
explicitly shown in the original tracing wvariable. In
foreseeing this dafficulty, this method has not been
incorporated 1in the fault detection and rectification

algorithms.

7.2.2 The wording technique

After a new PC question 1s reformulated, then 1f using the
wording technique, the wording database which contains all
the words of the question or the sentence, has to be
modified according to the process taken wupon the old
question, 1.e when cases (b) and/or (c) are carried ocut. For
example, see the following session:

T-phrase,
'+ Tony 15 kind?

KEXT SENTENCE:
Tony 1s kind?

The 1tsting of “word_used®s
word_used(Tony),
worg _used(1s),
word_used(kind},

|
No, 1t 15 false that Tony 15 kind,
OPTION 13
The reason why the goal:
*ex1sts (Tony, proper _noun(Tonyl,f (kind, Tany))"
fails 1s due to the non-existence of the the following fact:
¥ (kind, Tony}

Howgver, we say akle to prove the goal
after doing some corrections or additions

--Da you like to continue %y

Session 7.2,2,1; 1** and 2" part of proving session of *Tony 15 king?"
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The above session shows that the question "Tony 1s kind?"
fails due the non-existence of "f(kind,Tony)" in the
database. If we see the next part of the proving session
which 1s shown as follows:
{f * Tony * of the question’s clause "f(kind,Tony}" is substituted
with *John"
---Do you agree ? w

* f{kind,Tony)® fails, but exists
* fikind,Jchn}"

".?2,' Tony " of the question’s clause * f{kind,Tony)* 15 substituted
with *Joha"
---Do you agree 7y

Session 7.2,2,2: The 3v° part of proving session of *Tony 1s kind?*
So, after accepting the suggested substitutiaon, the system
will reformulate the new dquestion 1in the PC form which
become 'exists(John,proper_noun{(John),f(kind,John))" after
replacing "Tony" with "John". However, without modifying the
wording database, the new corresponding question "John as

kind?" will not be generated as "word_used{John}" does not

exist 1in the database In order to generate the new

corresponding sentence (question), we need also to assert
"word_used(John)" in the wording database to replace
"word_used(Tony)". And so, the proving session will continue

until the user satisfies with the response from the system

or no other possible solution.

From the above example, the substitution of type (a) can be
easily be implemented. However, this 1s not so in case (b)
where the quantifier of the question's clause (sentence) 1is
involved. For example, suppose the question 1s "every man
loves a woman"” which will be translated into PC form as

follows:

all (X, indefinyte (X}, finan, Xi=dexastsiY,indefanite (Y}, ¢ (wonan,Yi4f (1oves, i, Y1)
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This PC representation 1s equivalent with the example 3 of
section 6.4.3. And the wording database 15 as follows:
The 1isting of "word_used™:
word_used{everyl,
word_used{aan],
word_used (loves),
word_usedfal,
word_used (woman),
The new question reformulated after accepting the suggested
rectification, 1.e by weakening the universal quantifier
binding "f(man,X)'", 18 became:
extsts(X,indefinite (X}, f(man,Xikexists(Y,indefinite(Y},f (wonan, Yikf (loves, X, 1)1}
The above new PC question 1s equavalent to "a man loves a
woman". Then, by using the wording technigque, the original
wording database should be modified i1n order to generate the
equivalent new PC. Thus, "word_used(every)" of the wording
database should be replaced with word_ used(a)". In this

case, 1t 15 not wvery difficult toc i1mplement the modafication

of the wording database.

However, the guestion "all men love a woman'" should give the
same PC gquestion but, of course, with a different wording
database:
The listing of 'word_used™:

word_used{alll.

word_used{aen},

word_used(love),

word_used(al.

word_used (wosan),
Then the new reformulated PC question 1n English sentence
will be hard to generate, as we need to replace three
wordings, i.e "all', "men", and "love" with "a', "man'" and
“"loves" resgpectively. This 1is one of the difficulties
in 1mplementing this technique when we would 1like to
synthesize from the given PC 1into the corresponding English

sentence.
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Although we can write a program to extract all the relevant
words of the sentence from the PC itself, but the relevant
extracted words do not indicate their singularity or
plurality. For example, the word "man" which is extracted
from "all(X,indefinite(X),f(man,X)=>...)", does not indicate
whether 1ts original sentence form 1s ‘"every man " or
"all men ..." or other forms. Furthermore, the wording
database does not also show the relationships between those
words. For example, the wording databases for sentences

"every man loves a woman" and “a man loves every woman' are

the same.

In viewing these difficulties, the wording technique has not
been i1ncorporated i1nto the fault detection and rectification

algorithms.

7.2.3% The conditioning technique: "var(X)" and "nonvar ()"

This technique 1s quite similar to the wording technique
except that this conditioning technique does not Keep a
record of all wordings of the English sentence. It also puts
more information about each word of the sentence into the

corresponding PC i1tself as discussed in section 4.4.3.

In incorporating this conditiconing technique into the fault
detection and rectification algorithms, we will face the
same problems as discussed 1n the last two sections, 1.e

sections 7.2.1 and 7.2.2.

We would not have any problem 1f the rectification of type
(a) and/or {(c) are involved. However, 1f the rectification

of type (b) has to be carried out, then we would not have as
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many problems as discussed in the last two sections (7.2.1
and 7.2.2) due to the new and old PC itself containing more
information about the sentences they represented. For
instance, referring back to the question "every man loves a
woman' where its PC representation is as follows:
all (X, det (every}, f(man,X)=dexista(Y,det(a), f (woman, ¥)Lf (loves, X, Y) )}

and the proving session of the above session is exactly
equivalent with the example 3 of section 6.4.3 except the
above PC use the form of "f(man,X)'" whereas the example 3
used the form of "man(X)'". As shown 1in session 6.4.3.3 of
section 6.4.3, 1.e the fourth session of the proving
session, the system has suggested weakening the universal
quantifier binding "man¢(X)" (or in this case, "f(man,X)') to
become an existential guantifier. Thus after weakening the
universal quantifier, the new PC question 15 as follows:

exists (X, det feveryl, f (nan, N kexists(Y,det{a), ¢ {wonan,Y) &f {loves, X, Y)))

However, the system could not translate the new PC question
into an English question because the new PC contains term
"det(every)'". This term, "det(every)'", should also be
changed 1nto an appropriate term to correspond an
existential quantifier such as ‘''det(a)". The program below
1s aimed to accomplish this purpose:

f4 to weaken for umversify) the corresponded determiners $/
meaken_det (det (X}, det (Y})2-change_det (X, Y},

/t to change froe a universal determiner to an existential determiner ¥/
change_det (every,al,

change_det(zll,al.

change_det {everybody, somebadyl.

/% to change fros an existential determiner to a unmiversal detersiner 3/
change_det(a,all).

change_det {san2,everyl,

change_det (soxebody,everybodyl,

Progras 7,2,3.1: Changing the determiners
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The program 7.2.3.1 which shows only some of the changing
determiners can be extended to include more relationship
between the universal and existential determiners. So by
applying the above program, the new PC question becomes:

exists(X,det{a),f(man, X)kexasts(¥,det(a),f (nonan, Y}k (loves, X, Y1)}

which corresponds to the English question "a man loves a
woman". In general, during weakening the quantifier, the PC
of the form of “all(X.det(U),f(man,X)=>...)" is changed 1into
"exists(X,det(E),.f(man,X)&...)" where "all", '"det(U)" and
"=)" are changed into "exists", "det(E)" and "&"
respectively Furthermore, the English question 1s changed

from “"every man loves ...'" into “a man loves

7.2.4 Comments on the incorporation of the three techniques

In the last three sections (7.2.1, 7.2.2 and 7.2.3), we have
discussed the main problem 1n synthesizing an equivalent
English sentence from the new reformulated question (in
PC). We have also discussed why the tracing and wording
techniques have not Dbeen incorporated into the fault
detection and rectification algorithms. Thus, i1n foreseeing
those difficulties, the conditioning technique has been
incorporated intc the fault detection and rectification

algorithms.

Other changes 1n the fault detection and rectification
algorithms are cosmetic only and are not very difficult to
imp lement regardless of the technigques we choose, for
example, to change the remark of "if ‘'all(_1,..}' |is
replaced with 'exists(_1.,...}'" into says, "if 'every man'

15 replaced with 'a man'.
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7.3 Examples

We have already described in section 7.2.3 how the Englash
grammar 18 1ncorporated with the fault detection and
rectification algorithms. In this section we will show some
examples of the complete system. It should be noted that the
system 18 still able to accept the inputs either in the form
of English or PC. Furthermore, the input PC can also be

either in the form of says. "man(X)" or "fl(man.X)".

7.5.1 Example 1
We can start from scratch, 1.6 an empty database. Let see
the following session:

9-phrase,
13 Jchn loves Mary?

»
¥

NEXT QUESTION:
*ex1sts (John,proper _nouniJohnl,ex1sts{Mary, proper_nountMary),f (loves,John,Mary)))®,

No, st 15 false that John loves Mary,
QPTION 1t
The reason why the goal:
*exists(John, proper_nouniJohnl,exists(Mary,proper_noun{¥ary),f(loves,John,Mary) 1) ®
fails 15 dug to the non-existence of the the following fact:
{(loves,John, Xary)

However, we aay able to prove the goal
after doing some corrections or additions

~~Do you like to continue ™n
Do you like to assert

"Jahn loves Mary®
as a fact in the datahase? y
yes

?- listing(knowledge),
knowledge(f (1oves,’John’, "Hary'},

yes

Session 7,3.1.1: Proving "John loves Mary"
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The above session shows how we start the session from
scratch, i.e by asking "John loves Mary?" and, of course,
the proving fails as the database contains nothaing. At the
end of the proving session, after rejecting to rectify 2it,
the system will ask whether we would 1like to assert 1t as a
fact i1n the database. The database then will containsg the
first fact as shown in the laisting of KB clauses in the
above session after we accept to assert 1t into the

database.

7.3.2 Example 2

Let us continue the 1interaction (of example 1 above) with
the system by asking a question '"every man loves every
woman" which is shown i1n the following session:

7-phrase.
it every man loves every woman?

NEXT SENTENCE:
every man loves every woman?
SSRTRIIZTIZELIX)

NEXT QUESTION:
all(_1,det (everyl, finan, 1)=3al1(_2,det (everyl,f (wonan, _2)=)¢(loves, 1, _2}1)
H
rzzazzszz)
No, 1t 15 false that every man loves every woman,

OPTIEN 13
The reason why the goal:
"all (_f,det(every),f(nan,_1)=>all{_2,det (every),f (woman, 2)=)¢(laves,_l, 21})"
fails 1s due to the non-existence of the the following fact:
¢ (loves,fq(man0}, fq{wonand)}

However, we may able to prove the goal
after doing some torrettsons or additions

--0o you Iike to continue %y

1f "every man® 1s replaced wath “a man'
1f "every woman" 1s replaced with "2 woman"

Do you lske to try again by using the ahove assuaptien
---? Y

fession 7,3.2.12 Proving “every man loves every woman'
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After accepting the replacement of the determiners (the
weakening of the universal quantifiers binding "f(man,_1)"
and "f(woman,_2)"), the system will reformulate a new PC
question and then 1t (the system) will synthesize into a new
English question from the new PC question. Thus the system
will continue proving the new question as shown in the
following session:

RE-PHRASE:
&t man loves & woean.

EI!SH========S==II>

RE-BUESTION:
evicts( _3,det(al),f (nan, Slkexists{ 4 ,detta),f(woman, 4)&f (laves, 3, 41}

=zz=sesza)
No, it 15 false that a man loves a woman,
OPTION 11
The reason why the goal:
*exists{John,det (a),§ (aan, John)kexasts (Mary,det (2}, f (woman,Nary) &f (Joves,John, Hary))) "
fails 1s due to the non-existence of the the following fact:

f (a2n, Johnl,
f (wonan, Maryl,

However, we aay able to prove the goal
after doing some corrections or additions

«-Do you like to continue %y
I the following clauses are trues

{{san,lohn},
f (woman, Maryl,

Do you like to try again by using the above assusption
. y

Session 7.3.2.2: Proving "every san loves every wcaan®

As shown in the above session (7.3.2.2), the new question is
became "a man loves a woman?"., However the new gquestion
sti1ll fails due to non-existence of clauses "f(man,John)"
and "f(man,Mary)" 1in the database. So after asserting both
clauses i1nto the database, the system will succeed in

proving the new question.
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7.3.3 Example 3
The following example is based on the following premises:
(1) No wombat who laves 1in Twycrosszoo 1S5 happy.
(2) Any animal who meets kind people 1s happy.
(3) People who visat Twycrosszoo 1s Kind.
{4) Animals who 1lives 1in Twycrosszoo meets people who
vis1ts Twycrosszoo.
(5) Wombats are animals.

{6) Somebody visits Twycrosszoo.

In this case, Twycrosszoo 1s considered as a proper noun.
For the sake of space, we will show the PC equivalence of
some of the premises only as follows.

7=phrase,
1t no wosbat who lives i1n Twycrosszos 15 happy.
zzzzceooEszEEa)

The tran;lated clauses:
{1:-f (wonbat, _L},#(1yves, 1), ¢(1n,_{,Twytrosszonl,fthapay, 1.

yes,

?-phrase.

i1 any animal who seets kind people 15 happy.
zzzssssssssssz)

1

The translated elauses:

{thappy, 1i-f{animal,_1),neets( !, 2),f(person, 2],f(kind, 2},
yes,

7-phrase,
it Animals who lives in Twycrosszoo meets people who visits Twycrosszon,

sorzssssssssss)

The tran;lated clauses:
fineets, 1, 2):-f(animal,_{),¢{lives, {),fi1n,_1,Twycrosszonl,f(person, _2),§(vissts, 2, Twycrosszool.

yes,
Session 7.3.3,13 Asserting premises 1nto the databass,
After asserting the above premises 1i1nto the database, the

following session (7.3.3.2) shows a proving session of a
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question “No wombat lives in Londonzco?" which 1s based on
the above premises.

7-phrase,
1 no wosbat who lives tn Londonzoo?

!
NEXT BUESTION:
~exists(_1,det(no},f(voman, 1}4f(lives,_{14f(1n, {,Londonzon)

H
tRTEERIIS)

No, it is false that no wosbat who lives 1n Londonzoo.

{JPTICN ¢

The reason why the goal:
*vexists{_1,det(nol,f(wosbat, 1}kf(l1ves, 1)&f(1n,_i,Londonzon)®

fails 1s due to the non-existence of the the following factt

§tin,fq{noabat0), Tuycrosszoo!)

However, we may able to prove the goal
after doing some corrections or additions

--Do you like to continue %
1f * Londonzoo * of the question’s clause * f(in,#q{wonbat0},Londonzaol) * 18 substituted
with "Twycrosszon'
--=Do you agree 7 y

!
Do you like to try again by using the above assumption
-—=? y

RE-PHRASE:
no wanbat lives 1n Twycrosszoo,

RE-QUESTION:
“~ex1sts(_{,det (na),f iwoabat, _1)tf{l1ves, 1)&¢(an, 1, Twycrosszoo)®
!
Yes, 1t 15 true that no woabat who lives i1n Twycrosszoo

!

Gession 7.3.3.21 Proving "no wombat lives in Londonzon °°

The session above (7.3.3.2) shows a proving session of the
original guestion '"no wombat lives 1in Londonzoo'" and after
rectification process of type (a) has taken placed, the new
question is became "no wombat lives 1n Twycrosszoo'" and 1is

succesgsfully proved by the system.
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7.4 Comments

In the last section (7.3) we have given some examples to
show the ability of the system which can accept an English
sentence and also PC( section 6.4) as input. The answer will

accordingly depend on the type of input.

Example 1 (section 7.3.1) shows that we can start the
database from scratch, :.e from nothing and build up the
database. In this sense, we can do a test for each fact or
rule before each of them is asserted in the database. Thus
any provable fact or rule can be filtered before asserting

them i1nto the database.

Example 2 (section 7.3.2) shows how rectification processes
of types (b) and (c) are carried out. At first the weakening
of the quantifiers is carried out and 1s followed by
asserting the subsidiary clauses after the new question
after weakening process still fails However this example
show only one reformulation and followed by another
reproving process after new facts are Known or are asserted

into the database.

Example 3 (section 7.3.3) shows a rectification process of
type {(a) where a wrong reference 13 asked, 1.e '"Londonzoo"
is asked instead of "Twycrosszoo'. Although the non-existent
fact 1s "f(lives,fg(wombat0) ,Twycrosszoo)" which does not
contain "Londonzoo', but as exists a query clause:
query(f (11ves,#q(woabatd) ,Londanzaol)

in the database, thus a suggestion 1s proposed to substitute
“Londonz¢oo" which 1s a term of gquestion clause with

"Twycrosszoo" which 1s a term resulting from the
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instantiation of the KB clauses. In other words, the
assumption that the query 13 always wrong 1n the case of

mismatching, 1s adopted.

There 1s not much modification made on the fault detection
and rectification algerithms as much of the work done 1s to
distinguish the types of 1nput and output as explained in

chapter 4.

More time should be devoted if we would like to 1ncorporate
the tracing and wording techniques 1into the fault detection
and rectaification algorithms to overcome the difficulties as
explained 1n sections 7.2.1 and 7.2.2. However the
conditioning technique 1s also able to perform the task as
we already add more 1information 1into the PC in order to

guide the synthesizing process.




CHAPTER 8

CONCLUSION
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8.1 Discussion and comments

The problem of software reliability 1s getting a great deal
of attention. One aspect of software reliability is program
debugging. Program debugging could also be congidered as a
rule learning program where the user learn to write rules
which eventually will become a program. In the process of
learning to write the rules, debugging is carried out to
make the rules as consistent as possible. Most of the rules

are written in clausal form.

In this thesis, a mechanical theorem prover program has been
written (see chapter 3) ain Prolog to take advantage of
Prolog as a theorem prover 1tself. The theorem prover which
15 a Prolog-based theorem prover has been written using two
search strategies, 1.e a depth-first strategy and a
breadth-first strategy. We have also discussed the
advantages and disadvantages of both methods. After weighing
all the pros and cons (as discussed section 3.3.3.4), the
depth—-first method has been adopted for further work in this
thesis Furthermore, Proleg also adopts a depth-first
strategy. The Prolog-based theorem prover which has been
incorporated with the looping test as 1ts control feature is
capable of handling four classes of questions as classified
by Chang and Lee[1973]1. The 1loopring tests enable the prover
to control the selection of the firing rules and thus the
user 1s left with the problem of writing the rules as
suggested by Kowalski[1979] to make:

"Logic + Control! = Algoraithm"

The Prolog-based theorem prover is then incorporated with a

subset of English grammar (chapter 4} based on a Definite
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Clause Grammars (DCGS) which was proposed by Pereira and
Warren {1980]. The English grammar written 1s based on the
grammar as used 1in Hinde{1983] and ({19861 for his Fuzzy
Prolog. Some modifications have been made in corder to make
the grammar reversible, 1.e it can Dbe used for analysing as
well for synthesizing an English sentence (question). So the
grammar 1s used to translate an English question (and
sentence) 1nto a corresponding gquestioned PC and here the
Prolog-based theorem prover 1is arplied to answer the
questioned PC. The answered PC is then passed back to the
grammar to retranslate it into a corresponding answered
Engliish sentence. For this purpose, three techniques have
been investigated to make the grammar produce a sensible
English sentence (answer). Those techniques are the tracing,
the wording and the conditioning techniques. All three
techniques are capable of synthesizing a sensible English
sentence from the answered PC. But 1in the process of doing
so, the PC representation has been changed to overcome some

difficulties and to prevent an unsensible sentence.

A Prolog—-based theorem prover can also be viewed as a
question—answering system which can accept the question and
give the answer in PC as its natural ability. But 1t also
can accept the input in the form of c¢lauses (such as Horn
clauses) and in the form of a subset of natural language
(English) as a result of aincorporating the English grammar

(Chapter 4}.

In a question-answering system, we sometimes (or always) get
an unexpectedly unsuccessful answer due to whether we ask a

wrong dquestion or the database does not contaln any
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information about what we ask. The wrong gquestion may
contain wrong references which do not match with the
information contained in the database, or it (the gquestion)

is too general to be answered correctly.

The theorem prover is then modified to detect the faulty
fact or non-existent clauses (Chapter 5). The modification
is done mainly by recording the failed goals (or subgoals)
during the process of proving of the main question (goal).
It records all non-existent clauses at different levels

duraing backtracking.

After detecting all the non—-existent clauses, an algorithm
to rectify those faults 13 written and explained as in
Chapter 6. The assumptions made are that the non-exastent
clauses are as a result of wrong references i1n the gquery
(question) or the lack of knowledge (1nformation) in the
database. Based on these assumptions, the algorithm will
rectify the fault by suggesting the substitution of the
wrong reference term or by asserting the new information

into the database.

All the inputs of the algorithms discussed in chapter 5 and
6 are i1n the form of PC. The English grammar discussed in
chapter 4 1s then incorporated 1into both algorithms to make
it as a complete question-answering system with the
capability of fault detection and rectafication. In
foreseeing the diafficulties discussed 1n chapter 7, the

conditioning technigue 15 adopted for the complete system.
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8.2 Further work

In the last section. we have discussed what we have achieved
or done in this thesis. A lot of works can be extended in

future.

The English grammar used in the system 1s only a subset of
English grammar. The grammar can be extended to include time
reference (such as past tense, future tense etc), noun
phrases (such as "it", possessive adiectives, etc). The
Skolem functions used to denote noun phrases could be
modified to refer the extended noun phrase included in the

grammar for the purpose of theorem proving

Apart from the English grammar, other languages could be
incorporated to make a multi-lingual question—-answering
system. Mawdsley(1984], Baker[1985]) and Kok[1986] have
designed multi—-lingual machine translation of French, German
and Malay languages respectively and English. These works
could be 1ncorporated into the system by modifvying their PC

representation to suit the question—-answering system.

Fuzziness properties could also be included i1n the system,
either at PC level or at a natural language level. If 1t 1s
incorporated at PC level, the PC representation needs to be
changed accordingly. If 1t 1s 1ncorporated at a natural
language level, the grammar has to be wratten again in order
to capture the meaning of the fuzziness word 1in the

sentence.
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The question—-answering system can also be used in writing a
program direct from a natural language with suitable grammar
or direct from the PC 1itself. As the system already
incorporates loop checking, the tasks left are to detect
faulty rules or facts. As, the system can detect faulty
facts then 1t remains to incorporate detection of faulty
rules. Here Shapiro's technique could be incorporated into
the system. Thus the system would be able to cater for
unexpectedly successful proving (Shapiro's technique) and
unexpectedly unsuccessful proving (our system). Shariro's
technique can be fitted into the proving tree of the
solution which shows the firing of rules or facts and ground

oracles,

As Dameraul[l1964] 1ndicates that 80% of typing errors are
caused by transposition of two adjacent letters, one extra
letter, one missing letter, or one wrong letter These may
also apply to predicates as their arguments can be
considered as letters i1n the Damerau's finding. The matching
process between the reason clauses and the KB clauses could
be extented to include these type of errors In other words,
the matching could be i1n the form of spelling checkers, 1.e
in this case, the argument checkers. This method may be
useful in the either form of 1inputs, 1.e PC or English
sentence. In PC's form, 1t may ainclude to check, says,
"f(sort,a,b,c)'" with "f(sort,b,a,¢)" where the second and
third arguments are transposed with each other. Perharps 1t

could be used i1n the context spelling checkers.
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8.3 Conclusions

In this thesis, we have designed a question—-answering system
with the capability of detecting and rectifying faults which
occur when we get unexpectedly unsuccessful answers.
Furthermore the system 18 designed in such a way that it can
accept both input either in the form of PC or a subset of
English sentence. So we can add any language grammar as long
as its PC representation 1is the same as the standard PC

input.

The technique of detecting faults discussed is a complement
of Shapiro's technique which detects a faulty rule when the
answer is unexpectedly successful. In our rectification
technique, we 1ntroduce matching between arguments with the
same predicate or between predicates with the same
arguments. In other words, both predicates must have the
same number of arguments. This matching could be
incorporated with techniques used 1n spelling checkers.,
Perhaps by combining both techniques of detecting fault
(Shariro's and ourselves) and 1incorporating the spelling

checking technigque, we will have a better system in future.



REFERENCES



309

Adam,A. and Laurent,J-P. [1980]1, "Automatic Diagnostics of
Semantic errors', Proceedings of the AlISB-80 conference on
Artificial Intelligence, Amsterdam . 1-4th July, 1980,
pp (ADAM-1) - (ADAM-10) ,

Anderson,d. and Bower,B6. {19731, Human Associative Memory
Winston, Washington, D.C. 1973,

Andrews,P.B. [1981]1, "Theorem proving wvia general matings",
Journal of the ACM, 28(2), ppl93-214.

Angus,J.E., Bowen,J.B. and VanDenberg,S.J. ([1983], RADC
(Rome Air Development Centre)-— TR=83-207, Vol 1 (of two),
August 1983.

Baker,W. [1985), Refinements to an existing interlingual
machine Translation system, M. 8¢ Dissertation, Dept. of
Computer Studies, Loughborough Uniwversity of Technology,
1985.

Baldwin,J.F. [19811, "Fuzzy logic and Fuzzy reasoning"”, 1in
Fuzzy Reasoconing and 1ts Applications, Mamdani,E.H and
Gaines,B.R. (eds). Academic Press, ppl33-148, 1981.

Balzer,R. [1975]1, "Automatic Programming", Technical Report
1, USC/1IS51I, September 1972.

Basili,V.R. and Perricone,B.T. {15841, "Software errors and
complexity: an empirical investigataion”, Communications of
the ACM, Vol 27(1), January 1984, pp42-52.

Bennett,P., Johnson,R., McNaught,J., Pugh,J., Somers,H. and
Sager,Jd.C. (198461, Multilingual Aspects of Information
Technology. Gower Publishing Co Ltd, England. 1986.

Bibel,W. [1976]1, "A syntactic¢c connection between proof
procedures and refutation procedures'”. Second Conference on
Automated Deduction, Oberwolfach, West Germany.

Bibel ,W. [19831, "Matings in matrices", Communication of the
ACM, 26(11), pp844-852

Bledsoe,W.W. [19771, "Non-resolution theorem proving',
Artificial Intelligence, 9(1), ppl-35, 1977,

Bobrow,D.6. and Winograd,T. [1977al, "An overview of KRL, s
knowledge representation language'" Cognitive Science, 1(1).
pp3-46, 1977.

Bobrow,D.G. and Winograd,T. [1977b1, "Experience with KRL-0:
one cycle of a knowledge representation language"
Proceedings of the 5th International Joint Conference on
Artificial Intelligence pp 213-222, 1977.

Bobrow,D.G. and Winograd, T, [1979]. "KRL: another
perspectave"”, 1n Cognitive Science, 3(1l), pp29-42.

Bobrow et al. [19771, “GUS, A frame driven dialog system”
Artificial Intellignence, 8(2), pp 155-173

Boehm,B.W. E£1976], '"Software engineering”, IEEE Trans.
Computi., VOl c=25, ppl226-1241, 1976.




310

Bourne,C.P. [1977]1, 'Frequency and impact of spelling errors
in bibliographic data bases", Inform, Processing and Mgmt..
Vol 13, No. 1, 1977, ppl-12.

Bowen,K.A. (19821, "Programming with Full First-Order Logic,
Machine Intelligence 10, 1982, pp421-440,

Boyer,R.S. (19711, Locking: & restriction of resolution,
PhD. thesis, University of Texas.

Brachman,R.J. and Smith,B.C. [19801, "SIGART Newslatter 70,
Srecial Issued on Knowledge Representation', 1980.

Bradzil,F. [19811, A model for error detection and
correction, Ph.D thesis, University of Edinburgh, 1981.

Bratko,l. 1[198&1, Prolog Programming for Artificial
Intelligence, Addision Wesley, Great Britian, 1986.

Brooks,F.P. [19751, The Mythical Man-Month, Addison-Wesley,
Reading ,Ma, 1975.

Bundy,A. [19831, The Computer Modelling of mathematical
Reasoning, Academic Press, London, 1983.

Bundy,A., Sharpe,B., Uschold,M. and Harding,N. (eds) [19831,
"Intelligent Front End", Intelligent Front FEnd Workshop
Report No. 1, Consener's House, abingdon, England, 26-27th
Sept., 1983,

Bundy,A., Silver,B. and Plummer,D. £[19851, "An analytaial
comparison of some rule-learning programs", Artificial
Intelligence, Vol 27, 1985, ppl37-181

Campbell,J.A. (ed) [1984]1, Implementation of Prolog, Ellis
Horwood, England, 1984.

Chang,C.L [1970], "The unit proof and the 1nput proof 1in
thecorem proving" Journal of ACM, 17, pp6987-707.

Chang,C.L and Lee,R.C. [1973], Symbolic Logic and Mechanical
Theorem Proving Academic Press, London, 1973.

Charniak,E. and McDermott,D. 19833, Introduction to
Artificial Intelligence, Rddison Wesley, 1985.

Church,A.L,. [194Q], "A formulation of the simple theory of
types" in Symbolic Logic, 5(1), pp56-68, 1940.

Clark,K.L. [19781, 'Negation as Failure", in Logic and
Databases, Gallaire,H and Minker,J. (eds), Plenum Press,
New York., 1978, pp293-322

Clark,k.L and Gregory,S5. [19811, "A relational Language for
Parallel Programming', Proc. ACM Conference on Functional
Programming Languages and Computer Architecture, 1981, pp
171-178.

Clark,kK.L and Gregory,S. C£19833, "PARLOG: A Parallel Logic
Programming Language', Research Report DOC 83/5, Dept. of
Computing., Imperial College, 1983.




311
Clark,K.L. and Tarnlund,S.-A. (eds) [19821, Logic
Programming, Academic Press, London, 1982,
Clifford,J. and Warren,D.S. C[1983], "Formal semantics for
time i1n database". ACM TODS 8(2), pp2l14-254.
Clocksin,W.F. and Mellish,C.S5. £19811, Programming 1n

Preolog. Sprainger Verlag, 1981,

Colmerauer,A., Kanoui,H., Rousel,P. and Pasero,R. [19731],
"Un systeme de communication homme-machine en Francais",
Research Report, Artificial Intelligence Group, Uni. Of
Aix-Marseille, Luminy, France, 1973,

Cullingford,R. [19811, "SAM" in Inside Computer
Understanding Schank,R.C and Riesbeck,C.K. (Eds), Erlbaum,
Hillsdale, N.J., 1981.

Damerau,F.J. [1964]1, "A technique for computer detection and
correction of spelling errors", Comm. of the ACM, 7(3).
March 1964, ppl71-176.

Davis,M. and Putnam,H. [1960]1, " A computing Procedure for
Quantification Theory" Journal of the ACM, 7(3), 1965,
pp201-215.

Downs,T. {19851, "An approach to the modelling of software
testing with some applicataions', IEEE Transactions on
gggtware Engineering, Vol. SE-11, No. 4, April 1985, pp375-
Dowsing,R.D., Rayward-Smith,V.J. and Walter,C.D. L[19861 A
First Course 1in Formal Logic and 1ts Applications 1in
Computer Science, Blackwell Scientifaic Publications, Great
Britian.

Doyle,d. [19279]1, "A Glimpse of Truth Maintenance” 1in
Artificial Intelligence: An MIT Perspective, Vol 1 MIT
Press, Cambridege,Mass, 1979.

Doyle,d. [19821, "A Truth Maintenance System" Artificial
Intelligence Vol 12, No 3. 1982.

Enderton,H.B. [1972]1, A Mathematical Introduction to Logic
Academic Press, New York, 1972.

Findler,N.V. {eds) [19791, Associative Networks — The
representation and Use of Knowledge 1n Computers, Academic
Press, New York

Frost,R.A. [19846]1, Introduction to knowledge base system
Collins, Great Britian,1986.

Gallaire,H. and Minker,J (eds) (19781, Logic and Databases,
Plenum Press, New York, 1978B.

Gallaire,H. and Minker,J {(eds) [19811, Advances 1n Database
Theory, veol 1, Plenum Press, New York, 1981.

Gallaire,H., Minker,J. and Nicolas,J-M. [19841, "Logic and
Databases: A Deductive Approach', Computing Surveys, Vol 16,
No. 2, June 1984,




312

Genesereth,M,R. and Ginsberg,M.L.L[19851, '"Logic Programming'
Communication of the ACM, 28(9), pp933-941, Sept. 1985.

Genesereth,M.R., Greiner,R. and Smith,D.E.[19831, "MRS - a
meta—~level representation system", HPP-83-27 ,Heurestaic
Programming Project, Standford Unaversity, Calif., 1983

Goadenough,J.B. and Gerhart,8.L. (19751, "Towards a theory
of test data selection", IEEE Transactions on Software
Engineering, Vol SE-1, June 1975, ppl56-—-173.

Gilmore,F.C C1940]1, "A proof method for quantification
theory: Its justification and realization'", IBM Journal of
Research Development, vol 4, 1960, pp28-35.

Gray,P. £19841, Logic, Algebra and Databases, Ellis Horwood,
Great Britian.

Green,C. [19691, "Applications of Theorem Proving to Problem
Sclvaing", International Joint Conferences on AlI, Walker,D.E.
and Norton,L.M. (eds), Washington, 1969, pp219-239

Gries,D. [19811, The Science of Programming, Springer-—
Verlag, New York and Berlain, 1981.

Hanson,A., Haridi,S. and Tarnlund,S-A. [1982]1, "Properties
of a lovic Programming Language', in Logic Programming,
Clark,K.L. and Tarnlund,S-A. (eds), Academic Press, 1982,
pp267-280

Hari1di,S. and Sahlin,D. £1983]1, "Evaluation of Logic
Programs Based on Natural Deduction'", TRITA-CS5-8305, Roval
Institute of Technology., Sweden, 1983.

Hayes,P.J. [1973]), "Computation and deduction", Proceedings
MFCS Conference, Czechoslovakian Academy Press, 1973.

Hendrix,6.6. £1975]), "Expanding the utilaty of semantic
networks through partitioning" in Proceedings of the Fourth
IJCAI Tiblais.

Hendrix,B8.6. [19771, "Human Engineering for applied natural
language processing”, i1n Proceedings of the Fifth IJCAI,
MIT, Cambridge, Mass.

Hendrix,®6.6. [1979]1, "Encoding knowledge 1n partitioned
networks" in Associative Networks — The representation and
Use of Knowledge 1n Computers, Findler,N.V.(eds), Academic
Press, New York, 1979,

Herbrand,Jd. L19301, '""Researches in the Theory of
Demonstration", in From Fredge to Godel. A source book 1n
Mathematical Leogic, 1879-1931, wvan Heijenoort,J. {eds),
Harvard University Press, Mass., 1967, pp525-581.

Hill,R. [19743, "LUSH resolution and 1its completeness' DCS
memo No 78. 8School of Artificaial Intelligence, Edinburgh
University.

Hinde,C.Jd. [19831, Fuzzy Prolog. Computer Studies Internal
Report No. 199, Dept of Computer Studies, Loughborough
University of Technology, September 1983



313

Hinde,C.J. [1984], An application and use of higher order
fuzzy predicates Symposium on Fuzzy Inference, Cambridge
1984.

Hinde,C.J. [1986]1, "Fuzzy Prolog'", Internaticonal Journal of
Man—Machine Studies, 24, pp569-595, 1986.

Hinde,C.J. and Mawdsley,A. [1984], An Interlingual English
to French Machine Translation System Computer Studies
Internal Report No. 218, Dept. of Computer Studies,
Loughborough University of Technology, Dec 1984.

Hogger,C.J. [19841, Introduction to Logic Programming
Academic Press, London.

Horn,A. [19511, "On sentences which are True of direct
Unions of Algebras" Journalof Symbolic Logic, 16, ppl4-21.

I1SIS systems Micro-Expert Reference Manual

Jelinski,Z. and Moranda,P. [19721, ‘'"Software Reliability
research"” Conference , Statsitical computer Performance
Evaluation, Academic Press, NewYork and London, 1972,
pp4d465-484.

Kok,Y.P. [19848], Implementation of Malay to an existing
interlingual Machine Translation System Final Year Report,
Dept. Of Computer Studzies, Loughborough Unversity of
Technology, 1986

Kowalski R.A. [1974]1, '"Predicate Logic as Programming
Language'", Proceding of IFIP 74, North-Holland Publishing
Co., Amsterdam, ppS69-574.

Kowalski,R.A. [197?), Logic for Problem Solvaing, North-
Holland, New York, 1979.

Kowalski,R.A. [1979al., '"Algorithm = Logic + Control",
Communication of the ACM, 22(7). ppd424-436

Kowalski,R.A. and Kuehner,D. [1971], "Linear resolution with
selection function', Artificial Intelligence, vol 2, pp227-
260.

Lebowitz,M. [1980], "language and memory: generalization as
a part of understanding” in Proceedings of AAAI 80,
Standford University, Californ:ia

Lenat,D.B. [19821, "AM: an artificial intelligence approach
to discovery 1n mathematics as heuristic search" in
Knowledge Based Systems i1n Artificial Intelligence, Davis,R.
and Lenat.,D.B., McGraw Hill, New York.

Littlewood,B. [1979], "How to measure software reliabality
and how not to", IFEE Transaction on Reliability, Vel r-28,
No. 2, June 1979, pp 103-109.

Littlewood,B. [1980], "What makes a reliable program- Few
bugs or a small failure rate?", National Computer Conference
1980, pp 707-712.




314

Littlewood,B. [1981], "Stochastac reliability-growth: A
model for fault-reoval 1in computer programs and hardware
designs", IEEE Transaction on Reliability., vol. R-30., No. $%.
October 1981, pp 313-320.

Lloyd,Jd.W. €19831, "An introduction to deductive Database
Systems", Australian Computer Journal, 15(2), pp 52-57.

Lloyd,J.W. [1984], The foundation of Logic Programming
Springer-Verlag, Germany, 19684.

Loveland,D.W. L1949], "Theorem provers combining model
elimination and resolution"” Machine Intelligence 4,
Meltser,B. and M:chie,D.(eds), Elsevier North Holland. New
York.

Loveland,D.W. [1970]1, "A linear format for resolution”,
Proceedings IRIA Symposium on Automatic Demonstration,
Versaillles, France, Springer-Verlag, New York, 1968,
ppl4d47-162.

Luckham,D. C[£1970]1, "Refinement theorems in resolution
theory" Proceedings IRIA Symposium on Automatic
Demonstration, Versaillles, France, Springer-Verlag, New
York, 1968, ppl63-190.

Mamdani,E.H. (19741, "Applications of fuzzy algorithms for
control ¢of simple dynamic plant'" Proc. IEEE (1974) ppl585-
1588.

Manna,Z. and Waldinger,R. [1978], "“The logic of computer
programming', IEEE Transactions on Software Engineering,
Vol. SE-4, May 1978, ppl%9-229.

Manna,Z. and Waldinger,R. [19801, “A deductive approach to
program synthesis", ACM transactions on Programming
languages and Systems, 2(1}, pp90-121.

Manna,2. and Waldinger,R. L[19831, The Logical Basis for
computer programming, Veolume 1. deductive Reasconing,
Addison-Wesley.

Mawdsley,A. L[19841, An Inter-ligual English te French
Machine Translation System M Sc¢ Dissertation, Loughborough
University of Technology, September 1984.

McArthur,T. (19811, Longman Lexicon of Contemporary English.
Longman Group Ltd. 1981.

McCarthy,J. and Hayes,P.dJ. L1969, "Some philosphical
problems from the standpeint of artificial intellaigence". In
Meltzer,B and Mitchie, D. Machine Intelligence 4 Edinburgh
Universaity Press,New York, 1969.

Mellish,S. and Hardy,S. [1984], ‘'Integerating Prolog 1in the
POBPLOG environment', in Implementation of Prolog,
Campbell,J.A.(ed), Ellis Horwood.




315

Mitchel,T.M., Utgoff,P.E and Baneriji,R. (19831, "Learning by
experimentation: acquiring and meodifying problem—solving
heuristics", in Machine Learning. Michalski,R.5.,
Carbonell,J.G. and Mitchell,T.M. (Eds), Tioga, Palo Alto,
1983, ppl63-190.

Mitchel,T.M., Utgoff,P.E., Nudel,B. and Banerji,R. [1981],
"Learning problem-solving heuristics through practice”, in
Proceedings Seventh International Joint Conference on
Artificial Intelligence, Vancauver, BC, 1981, ppl27-134.

Minsky,M. [19731, "A TFramework for representing Knowledge"
in The Psychology of Computer Vision, Winston,P.H (ed),
McGraw Hill, New York.

Montague,R. [1973]1, "The proper reatment of guantification
in ordinary English", in Approaches to Natural Languages,
Hintikka,K.J.J.. Dordrecht, Germany, 1973.

Montague,R. (19741, Formal Philosophy: Selected papers of
Richad Montague, Yale University Press, New Haven, 1974.

Moto-0ka,T. (ed) [19821, "Fifth Generation Computer
Systems'", Proceedings International Conference on Fifth
Generation Computer Systems, JIPDEC, North-Holland, 1982.

Murray,N.V. [1982], "Completely non-clausal theorem
proving', Artificial Intelligence, 18(1l), pp 67-85

Musa,J.D. [1979], "Validity of execution-time theory of
software reliability" IEEE Transactions on Reliability, Vol
R-28, No. 3, August 1979, pplB81-191.

Myers,6.J. [1978]1, "A Controlled experiment 1n program
testing and code walkthroughs/inspection", COmmunication of
the ACM, Vol 21, pp 760-768, 1978

Mylopoulus,J., Borgida,A., Cohen,P., Roussopoulus,N.,
Tsotsosy,Jd. and Wong,H.K.T. 19761, "TORUS - a natural
language understanding system for data management”, 1in

Proceedings of the Fourth IJCAI, ppd4l4-421, Tiblis

Naur,P. [194%9], "Programming by action clusters", BIT, Vol
9, 1969, pp250-258.

Naur,P. and Randel,B. (eds) [1958?]1, Software Engineering,
NATO Scientific Affairs Division, Brussels, Belgium , 1969.

Nilsson,N.J. [1971]1, Problem—Solving methods 1in Artificial
Intelligence, McGraw Hill, United States of America, 1671.

Nilsson,N.J. [1979], "A production system for automatic
deduction", Machine Intelligence 9, Haves,J.D., Michie,D.,
and Mikulach,L I. (eds), Ellis Horwood, Chichester, 1979.

Nilsson,N.Jd. (19801, Principles of Artificial Intelligence,
Springer Verlag, Germany, 1971.

Nishida,T. and Doshita,S. [19831], “An application of
Montague grammar to English-Japanese machine translation" in
"Proceedings of the Conference on Applied Natural Language
Analysis, Santo Monica, California.



316

Ogdin,C.A. [1979]), Software design for micro computers,
Prentice~Hall, Englewood CLiffs. NJ.

Palmer,F.R. [1976], Semantics - a new outline Cambridge
Unaversity Press, 1976.

Pereira,F. [1982]), C-Prolog User's Manual University of
Edinburgh: Dept. of Computer Aided Architectural Design.

Pereira,L.M., Pereira,F. and Warren,D.H.D. [1978]1, User's
Guide tce DEC-system—10 Proleog, University of Edainburgh:
Dept. of Artificial Intelligence.

Pereira,F.C.N. and Warren,D.H.D. [19801, "Definite clause
grammars for language analysis— a survey of the formalism
and a comparison with augmented transition networks'.
Artificial Intelligence 13:3(1980), pp231-178.

Peterson,J.L. [19801, "Computer Programs for Detecting and
Correcting Spelling Errors", Comm of the ACM, 23¢(12), Dec.
1980, pp676-687.

Peterson,J.L. [1986]1, "On note on undetected typing errors®,
Comm. of the ACM, 29(7), July 1586, pp633-637.

Prather,R.E. (19841, "An axiomatac theory of software
complexity measure', The computer Jounal., Vol 27, No. 14,
1984, pp340-347.

Prawitz,D. [19401, "An 1improved Proof Procedure', Theoria,
26(1960), ppl02-139

Prawitz,D. L[197461], "A proof procedure with matrix
reduction”, in Lecture notes 1n Mathematics, Spraing-Verlag,
Berlin and New York.

GQuillian,R. C19&81], "Semantic Memory" in Semantic
Information Processing, Minsky .M. {eds), MIT Press,
Cambridge, Mass., 1968.

Quintus Prolog User’s Guide and Reference Manual ({19851,
Quintus Computer System Inc., Palo Alto, 1985,

Rapheal,B. ({19481, 'A computer program for Semantic
Information Retrieval" in Semantic Information Processing,
Minsky,M. (eds), MIT Press, Cambridge, Mass., 1968,

Rault,J.C. [19791, "An approach towards reliable software",
IEEE 1979, pp 220-227.

Reiter,R. [1971], "Two results on ordering for resolution
gégh merging and linear format", Journal of ACM, vol 18, pp
-646.

Reirter,R. [19781, "On closed world data bases"”. in Logic and
Databases, Gallaire,H. and Minker.,J. (eds), Plenum Press,
New York, 1978, ppb5-76.

Rich,E. [19831, Artificial Intelligence McGraw Hill, Japan,
1983.



317

Roberts,R.B. and Goldstein,I.P. [19771, The FRL Primer Memo
408, Massachusetts Institute of Technology Artificial
Intelligence Laboratory, Cambridge, Mass,

Robinson,J.A. [1965]1, "A machine-oriented Logic Based on the
Resolution Principle" Journal of the ACM, 12(1), 1965,

pp23-41.

Robinson,J.A. [1965al, "Automatic deduction with hypher-
resolution” Internaticonal Journal of Computing Mathematic, 1,
pp227-234,

Rabinson,J.A. [197%7], Logic: Form and Functiom, the
mechanization of deductive reasconing, Edinburgh University
Press,

Rogers,H., Jr. L[1947]1, Theory o¢f Recursive Functions and
Effective Computability, McGraw Hill, 1967.

Rumelhart,D.E. and Norman,D.A. £19731, "The active
structural network" in Explorations in Cognition, Norman,D.A
and Rumelhart,D.E. (eds), W.H.Freeman, San Francisco

Sallih,M.M. E[19841, A study of Models for Predicting
Computer Software Reliability M.Phil thesis., Loughborough
Unaversity of Technology, January 1986.

Sandwell,E. (19731, "Conversion of predicate-calculus
axioms, viewed as non—-deterministic programs, to
corresponding deterministaic programs', Proceedings of third
International Joint Conference on Al - 73, Standford
Unaversaity, California, pp 230-234

Schank,R.C. L[19731, "identification of Conceptualization
Underlying Natural language' 1n Computer Models of Thought
and Language Schank,R.C and Colby,K.M.(Eds), Freeman, San
Francaisco, 1973.

Schank,R.C. [19731]. Conceptual Information Processing
North-Holland, Amsterdam, 18575.

Schank,R.C and Abelson,R.P. {19771, Scraipts, Plan, Goals,
and Understanding Erlbaum, Hillsdale, N.J., 1977.

Schagen,I.P. [1985]1, "Software Reliability", Department of
Computer Studies Seminar, Lough. Univ. of Technology, 1985.

Shapiro,E.Y. [19821, Algorithmic Program Debugging., MIT
Press, Cambridge Mass. and London, 1982.

Shapiro,E.Y. [1983]1, "A subset of Concurrent PROLOG and 1ts
interpreter', Technical Report TR-003, I1COT, Tokyo, 1983.

Shapiro,E.Y. and Takeuchi,A. 11983)], "Obiect—-oriented
programming in Concurrent PROLOG'", New generation Computing,
1(1), pp25-88.

Shepherdson,J.C. [£1%9841 "Negat:ion as Failure: A comparison
of clark's completed data base and Reiter's closed world
assumption'", Report PM-84-01, School of Mathematics,
University of Bristol, Brastol.




318
Shooman,M.L. [19721, ‘'"Probablistic models for software
reliability prediction"™, Conference, Statsitical computer

Performance Evaluation, Academic Press, NewYork and London,
1972, pp48-55.

Simmons,R.F. [19731, "Semantic networks: their computation
and use for understanding English sentences" 1in Computer
Meodels of Thought and Language, Schank,R. and Colby.K.
{eds), pp63-113, W.H.Freeman, San Francisco.

Slagle,J.R. [1947], "Automatic theorem pProving with
renamable and semantic resolution'", Journal of ACM, 14(2).
pp687-697.

Smith,D.E. and Clayton,J.E. £19801], "B frame based

production system architecture' in Proceedings of the AA3AI
80, Stanford University, California

Smith,R.G. and Friedland,P. [19801, "A user guide to the
UNITS system'", Technical Report, Heuristic Programming
Preoject, Stanford Unaiversaity, California.

Sterling,L. and Shapiro,E. (19861, The Art of Prolog, MIT
Press, USA, 1986.

Stickel,M.E. £19821], “"A non—-clausal connection—graph
resolution theorem proving program", Proceedings of the AAAI
82, University of Pittsburg, Pennsylwvania.

Storm,E.F. (192741, “Evaluation procedures for resolution
without normal forms" System and Information Science Report,
Syracause Universaity, Syracause, New York.

Synder,D.P. [19711, Modal logic and 1ts applications Van
Nostrand, New York, 1971

Szolovits,P., Hawkinson,L.R., and Martin,W.A. [1977]1, "An
overview of OWL: a language for knowledge representation.
Report Massachusetts Institute of Technology/LCS5/TM-86, MIT,
Cambridge, Mass.

Vessey, I. [1986]1, "Expertise in Debugging Computer Programs:
An analysis of the Content of Verbal Protocols", IEEE
Transactions on Systems, Man, and Cybernatics, Vol SMC-16,
No. 5, Sept/Oct 1986, pp 621-637.

Walker,D.E. (ed) £[19781, Understanding Spoken Language.
North-Holland, New York.

Warren,D.H.D. [19803, "Higher-order extensions to Prolcog -
are they needed", Department of Artificial Intelligence
Research Report 154, Edinburgh Unniversaity.

Waterman,D.A. [1970]1, ‘"Generalization learning technigques
for automating the learning of heuristics'", Artificial
Intelligence, Vol 1, 1970, ppl21-170.

Weinberg,V. [1979]1., Structured Analysis, Gower Publishing,
Farnborough, Hants.

Wilkins,D. [1974]1, "A non-clausal theorem proving system",
Proceddings of the AISB Summer Conference, Brighton, UK.



319

Winograd,T. [1980]1, Language as a Cognitive Process. Volume
1: Syntax. Addison—-Wesley, 1980.

Winston,P.H. [197351, “Learning structural descriptions from
example'" 1n The Psychology of Computer Vision, Winston,P.H.
(ed), McGraw Hi1l. 1975.

Wos,L., Carson,D.E. and Rcobinson,b6.A. C([(1964], "The unit
preference strategy in theorem proving", Porc. AFIPS 1964
Fall Joint Computer Conference, vol 26, pp 616-621.

Wos,L., Carson,D.E. and Robinson,G.A. [1965], "Efficiency
and completeness of the set of support strategy in theorem
proving" Journal of ACM, 12(4), pp336-541

Yourdan,E. and Constantine,lL.L. [19791, Structure Design,
Prentice—-Hall, Englewocd Cliffs, NJ, 1979.

Zadeh,L.A. [1965], '"Fuzzy sets" Information and Control, Vol
8, 1965. pp338-353.

Zadeh,L.A. (19731, "Outline of a new apprcach to the
analysis of complex system and decision processes" IEEE
Trans. Syst. Man and Cybern. Vol 1, 1973, pp28-44,

Zadeh,L.A. C[19831, "Commonsense knowledge representation
based on Dbased fuzzy logic", Computer Vol 16(10),pp61-
65,1983,




APPENDIX



321
Jul 18 19:04 1986 pcprove Page 1

/********************************************************

To define the operators and the most common predicates
*********************************************************/

:— [oplog]. /* to be used by prolog/poplog only */

/********************************************************

Transforming predicate calculus into clausal form and

print it as Clocksin’s format.
*********************************************************/

['PC/pc top'].
consult{’PC/pc skolem’).
consult{'PC/pc_bottom’).
consult(’'PC/pc_skolemg’).
['PC/substitute’].
consult(’'PC/pc_gensym’).
consult(’'PC/pc trans'’).
consult(’PC/hornclause’).
[ "PC/outputfpd’].

/****************************************************

newprove::
(a) the replacement of relevent quantifiers only
(b} no duplication of reason
{c) handles both english and pc as input and output

*****************************************************/

:— ['PCransearch’].

:— consult(’'PC/fprologl3’).
t+—- consult('PC/listquant’).
:- consult('PC/mergequant’).
+- consult(’PC/reasontest’).
:— consult(’PC/topfprolog’).
t=- ['Y¥/aaccsubst’].

:— consult(’'Y/acceptance’).
:— consult(’'Y/acceptsubs’).
consult(’Y /asserting’).
consult(’Y/changequant’).
consult(’Y /equatevars').
consult(’'yY/fdifference’),.
consult{’Y¥/listreason’).
[*¥/mismatclause’],
consult{’Y /pracceptance’}.
consult({’Y /prtreefail’}).
consult(’'Y/topc’).
consult(’'Y /whyitfails’).
fothermeaning].
consult(pctop).
consult(rectifiers).
consult(remarkwriter).
consult{toplevel).
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:— op(255,xfx,:).
1— op(225,x£fx,<=>).
:— op(225,xfx,=>).
:— op(200,xfy,&).
:— op(200,xfy,#).
- op(30,£x,7).
op(255,xfx,::).
op(15,x£fx,”).
library(log).
library(date).

I T

/*to print system date and time */

date:-date([H,B,T,J,M,S]),
write(B),write(’,’),write(H),write{(" ')
write(T), write(' '),write(J),write(’:’
two_digit(m),write(':'),two_digit(S),nl.

)

two digit(Num):-
name { Num,List),
two digitlist(List),
write(Num).

two_digitlist([X]):-!,write(’0").
two digitlist(X).

logdate:-log,
write(’ on '),date,nl.

nologdate:-
nl,write(’'On ’),date,nolog.

/* to check membership */
member(X,Y):-var(Y),!,fail.
member (X,[Y|T]) :-X==Y,
member(X,[Y|T]):-member(X,T).

append([X|Al,B,[X|C]):-append(A,B,C).
append(([],B,B).

/* to prevent backtracking */
appendl(X,Y,2):-append(X,Y,2},!.

/% to change the output file from file X to user */
tells(X):-telling(X},tell(user).

/* asserting an atomic only once */
assert_once(x):-clause(x,true),!.
assert_once(X):-assert(X). |
/* asserting a predicate F only once */
assert_pred_once(X):-

functor(X,F,N), functor(Y,F,N),

clause(Y,true),!.
assert pred once(X):-

assert(X).
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/* replacing old predicate or atomic with a new one */

assertz_new(X):-
functor(X,F,N}), functor(Y,F,N),
retractall(Y),assert(X}.

/* existence and non existence test of
a predicate in a database */
not exists(X):-
clause(X,true},
t,fail.
not exists(X):-
true.

exists(X):-
clause (X, true},!.

/* defination of digit(D) */
digit(D):~ 47<D,D>58.
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/% TOP OF PREDICATE TRANSLATE (PC_TOP)

/* Stage 1: taking out implication sign
implout ((P<=>Q), (P1l&Ql): -
!

implout((P=>Q),P1),
implout((Q=>P),Ql).

implout ((P=>Q),("Pl#Ql)):-
1

implout(P,P1),

implout(Q,Q1}.
implout(T:P,T:Q):-

1

iﬁplout(P,Q).
implout((P&Q),(P1&Ql}):-
L,
implout(p,Pl1),
implout{Q,Q1}.
implout((P#Q),(P1#QL1)):-
1

implout(p,Pl),

implout(Q,Ql).
implout{({“P),{("Pl)):~

1,

implout(P,Pl).
implout{all(X,P),all(X,P1l}):-

!

implout(E,Pl).
implout(all(X,D,P),all(X,D,Pl)):-

!

implout(P,P1).
implout{exists(X,P),exists(X,Pl)):-

i

iﬁplout(P,Pl).
implout(exists(X,D,P},exists{X,D,Pl)):—
!
implout(P,Pl).
implout(P,P}.

/* Stage 2: to bring in negation sign */
negin{(~P),P1l):-
1

neq(P,P1).
negin(T:A,T:B{C]):-
[

negin(a,B,C).
negin((P&Q),(P1&Ql)}:~
t

negin(p,P1),
negin{Q,Ql).
negin( (P#Q), (P1#Ql)):-
!,
negin{P,P1},
negin(Q;Ql)-

*/
*/
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negin{all(X,P),all(X,P1l)):-

négin(P,Pl).
negin{(all(x,p,p),all(x,D,P1l)):-

!

négin(P,Pl).
negin(exists(X,P),exists(X,Pl)):-

!,
negin(P,P1l).
negin(exists(X,D,P),exists(X,D,P1l)):-

negin(p,Pl).
negin(P,P).

neg((“P),Pl):-
1

negin(P,Pl).
neg(T:A,T:B|C]):-

L,

neg{A,B,C).
neg((P&Q), (P14#Q1)):-

1

neg{P,Pl),
neg{(Q,Ql}.
neg((P#Qz.(Pl&Ql)):-
neg{(P,Pl),
neg(Q,Ql).
neg{exists(X,P),all(x,Pl)):-
]

neq(P,pl).
neg(exists(X,det(the),P),exists(X,det(the),Pl}):-
]

L
neg(P,Pl).
neg(exists(X,D,P),all(X,D,P1l)):-

!,

neg(P,Pl1),.
neg(all(X,P),exists(X,Pl)):-

!

nég(P,Pl).
neg{(all(X,D,P),exists(X,D,P1l)):-

!

neg(P,pl).
neg(P,("P)).
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/* STAGE 3: skolemizing a variable of knowledge
skolem(T:A,T:B,C):-

!,

skolem(A,B,C).
skolem({P#Q),(P1l#Ql},Vars):-

1

L
skolem{P,Pl,vVars),
skolem(Q,Q1,Vars).
skolem({P&Q), (P1l&Ql),Vars):-
!,
skolem(P,Pl,Vars),
skolem(Q,Ql,Vars).
skolem{all({X,P),all(X,Pl),Vars):-
Ly
skolem(P,Pl,[X|Varsl]).
skolem(all(x,D,P),all(X,D,Pl),vVars):—~
Ly
skolem(P,P1l,[X|Vars]).
skolem(exists(X,P),P2,Vars):-
pickname(X,P,Name),
pickskolem(Name,anything,vars,sk),
substitute(Sk,X,P,Pl},
skolem(P1l,P2,Vars).
skolem(exists(X,proper noun(X),P},Pl,Vars):-
Ly
skolem(P,Pl,vVars).
skolem(exists(X,definite(X),P),P2,Vars):—
pickname{X,P,Name),
pickskolem(Name, the,vars,sk),
substitute(sk,X,P,Pl),
skolem(Pl,P2,Vars).
skolem(exists(X,det(The),P),P2,Vars):-
The==the, ! ?
pickname(X,P,Name),
pickskolem(Name, the,Vars, Sk},
substitute(Sk,X,P,P1l),
skolem{P1l,P2,Vars).
skolem(exists{(X,D,P),P2,Vars):—
pickname(X,P,Name},
pickskolem(Name,D,Vars,Sk),
substitute(sk,X,P,Pl1),
skolem(P1l,P2,Vars}.
skolem(P,P,Vars).

/% Procedure PICKSK: picking a Skolem variable
for knowledge statements */
pickskolem(Name, the,Vars,Sk):~

skolem the(Name,Sk},
t

pickskolem({Name,D,Vars,Sk):~
gensym{Name,F),
append{|[F],Vars,Fandargs),
Sk=..[fs|Fandargs],
asserting(skolem the(Name,Sk)).

326

statements */
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asserting(F):-
F=..{F1,N,8k],
G=.. [Fl,N,X] '
retractall(G),
asserta(F).
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/% BOTTOM'S PART OF PREDICATE TRANSLATE (PC_BOTTOM) */

/% STAGE 4: deleting all universal quantifiers */
univout(T:P,T:Pl)}:-

univout(p,Pl).
univout(all(X,P),Pl):-

I,

univout(P,Pl).

univout{all(X,D,P),Pl):~
L,
univout(p,Pl).

univout{(P&Q),(Pl&Ql)}):-
L,
univout(p,Pl),
univout(Q,Q1l).

univout ((P#Q),(PL#Q1})):-
1

.7
univout(P,Pl),
univout(Q,Q1).

univout(P,P).

/% STAGE 5: transforming into conjunction form */
conjn{ {P#Q),R):-
1,
conjn(P,Pl),
conjn{Q,Ql),
conjnl((P1#Q1l),R).
conjin{ (P&Q},(P1l&Ql)):-
L,
conjn(P,P1),
conjn(Q,Q1).
conjn{{A:P),(A:P1l)):-
conijn({P,Pl).
conjn(P,P).

conjnl({(P&Q)#R),(P1l&Ql)):-
L,
conjn( {P#R},Pl),
conjin({Q#R),0Q1).
conjnl( (P#(Q&R)),(P1l&Ql)):-
!

conjn{ (P#Q),Pl),

conjn((P#R),0Q1).
conjnl({(P#T:(Q)),T:(R}):-

conjnl({P#Q),R).
conjnl((A:P),(A:Pl})):~-

conjinl{P,Pl).
conjnl{P,P}.

/% STAGE 6: transforming into clausal form, cl(A,B) */

clausify((P&Q),C1,C2):-
1,
clausify(P,C1,C3),
clausify(Q,C3,C2).



Apr 3 17:41 1987 PC/pc_bottom Page 2

clausify(P,[c1l(A,B)|Cs],Cs):~-
inclause(P,A,[]1,B,[1},
!

clausify(P,C,C).

inclause( (P$Q),A,Al,B,Bl):-
1
inclause(P,A2,A1,B2,B1),
inclause(Q,A,A2,B,B2).
inclause{(“P),A,A,B1,B):-
'

L
notin(P,A)},
putin(pP,B,Bl).
inclause(P,Al,A,B,B):-
notin(P?,B},
putin{P,A,Al).

notin{X,[Y|L]}}:~-
X==Y'
Ly
fail.
notin(X,[Y|L}):-t,
notin(X,L).
notin(X,[]).

putin(X,[1,[X]):-1.
putin(X,[Y|L],[Y|L]):-
X ==Y,
!O
putin(X,[Y|L],[Y|L1])):-
putin(X,L,L1).

/% STAGE 7: writing cl(A,B) in Clocksin’'s format */

buildclauses([{cl{(A,B)|Cs],[D|D1]):~-

buildclause(A,B,D),
buildelauses(Cs,D1l).
buildclauses([],[]1}):-!.

buildclause(L,[]):-!,disjunc(L,D).
burldclause([]),L,[}1:-B):-!,conjunc(L,B).

buildclause{(Ll,L2,{A:-B}):-

disjunc(Ll,A),conjunc(L2,B).

disjunc([L],L):-!.

d153unc([L|Ls],(L;A)):-disjunc(Ls,A).

conjunc([L],L):— !,

conjunc({LjLs],(L,A}) :-conjunc(Ls,A).

/% STAGE 8: print clauses */

printclauses([]):-!.

printclauses([X|Y]):-
write(X),write(’.?),nl,
printclauses(Y).
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/* STAGE 3q: skolemizing a question */

/% to convert existential quantifiers into skolem functions
skolemg(T:A,T:B,C,S5):-

!,
skolemg(A,B,C,8).
skolemq( (P$Q), (P1#Q1) ,Vars,S):-
!,
skolemg(P,Pl,vars,Sl),
skolemg{Q,Q1,vVars,S2},
appendl(sl,s2,s).
skolemg( (P&Q}, (P1&Ql) ,vVars,S):~
1

[

skolemg(P,P1,vVars,Sl},

skolemg(Q,Q1,vars,S52},

appendl{sl,s2,s).
skolemg(all(X,P),all(X,Pl),Vars,S):-

!y

skolemg{P,Pl,[X|Vars],S).
skolemg(all(X,D,P),all(X,D,Pl),Vars,5):-

]

LI ]

skolemg(P,Pl,[X|Vars],S).
skolemg(exists(X,P),P2,Vars,s):-

picking skolem(exists(X,P),P2,anything,Vars,Sk,S).
skolemg(exists(X,proper_noun(X),P),P2,Vars,S):-

sﬂolemq(P,PZ,Vars,S).
skolemg(exists{X,definite(X),P),P2,vars,(isl2,s8):-

!,

picking_skolem{exists(X,P),P2, the,Vars,Sk,8).
skolemg{exists(X,indefinite(X),P),P2,Vars,[s12,8):-

!

picking_skolem(exists(X,P),P2,anything,Vars,Sk,S).
skolemg{exists(X,det(D),P),P2,Vars,S5):—

picking skolem(exists(X,P),P2,D,Vars,Sk,5)}.
skelemg(P,P,vVars,[]).

substitutel(X,Y,A,B):-substitute(X,¥,A,B),!.

/* by converting to a skolem function */

picking_skolem(exists(X,P),PZ,D,Vars,Sk,[[x,sk]|S]):-
pickname(X,P,Name),
pickskolemg(Name,D,Vars,Sk),
substitutel(Sk,X,P,Pl),
skolemg{Pl,P2,vars,S).

*/
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/* picking the Skolem function for existential quantifiers */

pickskolemg{Name,the,Vars,5k):-
skolem the(Name, Sk},
!

pickskolemg{Name, the,Vars,Sk):-
skolemg the(Name,Sk),
1

pickskolemqg(Name, the,Vars,Sk):~
gensym(Name,F),
appendl((F],Vars,Fandargs),
Sk=..[fs|Fandargs],
asserting(skolem_ the(Name,Sk)),
1

pickskolemg(Name,D,Vars,Sk):—
gensym{Name,F),
appendl(([F],vars,Fandargs),
Sk=..[fq|Fandargs],
asserting(skolemq_the(Name,Sk)),
1
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/* PC/substitute */

/* to substitute a variable 0l1dl with New in clause 0142 */
substitute(New, 0141, 01d2, New} :-
/* to tackle 0l1dl and 0142 in the form of fg(...) */
nonvar(01ldl),
nonvar(0ld2),
0l1dl = 0l1d2,
!.
substitute(New,01dl,01d2,New}:-
0ldl == Qld2,

1.
substitute(Newl,01d1,01d2,01d2):-

var(0l1ld2),

01d1l \== 01dz2,

|
substitute(New,01d,val,val):-

not{var(val)),

atomic(val),

t
substitute{New,01d,("P),("P1)):—-

substitute(New,0ld,P,P1).
substitute{New,01d,Val,Newval):-

val=,,.[Fn|Args],

subst args(New,0ld,Args,Newargs),

substitute(New,01d,Fn,Fnl),

newval{Fnl,Newargs,Newval),

newval(“Fnl,Newargs, “Newval):-!,
Newval=, .[Fnl |Newargs].

newval (Fnl,Newargs,Newval):-!,
Newval=..[Fnl|Newargs].

subst_args(X,Y,[],[]1):-
!.

subst_args(New,0ld,[Arg|Args], [Newarg|Newargs]):-
substitute(New,0ld,Arg,Newarg),
subst_args(New,0ld,Args,Newargs).
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/* Create a new atom starting with a root provided and

finishing with a unique number */
gensym(Root ,Root):-

var (Root),

1
gensym(Root ,Atom) : -

get num(Root,Num),

name { Root ,Namel),

name { Num, Name2),

append(Namel,Name2,Name),

name (Atom, Name) .

get_num({Root,Num):-
/% this root encountered before */

retract(current num(Root,Numl)),

[

L

Num is Numl + 1,

asserta(current num(Root,Num}).
get_num{Root,0):-

/% first time for this root */

asserta{current num(Root,0)).

/* to pickup the name of atom */

pickname (X, (P#Q) ,Name):-
pickname(X,P,Name),
L

pickname{X, (P&Q) ,Name):-
pickname(X,P,Name),
!,

pickname(X,(T:(P)),Name}:-
pickname(X,P,Name),
!.

pickname(X, P,Name):-
pickname(X,P,Name),
1

pickname(X,P,Name):-
P =.. [f,Name|Args], /* fact => £ */
!.
pickname(X,P,Name) :-
P =.. [Name|Args],
Name\==exists,
Name\==all,
]

picknamefi,P,skolem).
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/* Procedure STASZ: assert "knowledge(X)"into
the database */

stassertz([]):-1!.

stassertz([X|Y]):-
assertz(knowledge(X)),
stassertz(Y}.

/% Procedure TRPCK: to translate PC, "X", into
Clocksin format, "Clause" */
translate(X,Clauses}):-
translate_ top(X,X2),
skolem(x2,%x3,[])},
translate_bottom(X3,Clauses).

/* procedure TRTOP */

translate top(X,X2):-
implout(X,X1l),
negin(X1,X2),
!.

/* procedure TRTOP */

translate bottom(X3,Clauses):-
univout(X3,X4),
conjn(X4,X5},
clausify(xb,X6,[1),
buildeclauses(X6,Clauses),
printclauses(Clauses),
!.

/* Procedure TRQ: to translate PC, "X", into
Clocksin format, "Clause" */
translateq(X,Clauses,Sk):-
translate top(X,X2),
skolemq{X2,X3,[],8k),
translate_bottom(X3,Clauses).
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/* Procedure QASS: assert "query(X)" into the database */
gassertz([]):-!.
gassertz([X|Y]):-

assertz{query(X)),gassertz{¥),!.

/* Procedure ASSKG: to assert knowledge clauses into
the database */

assert knowledge(X):-
nl,write(’'knowledge statement:’),nl,tab(4),write(X),nl,
wrlte( ’==============nn=.—===="> ) nl '
write(’The translated clauses :'),nl,nl,
translate(X,Clause),
horn clauses(Clause,Horn),
write(’&s&s&6&&E&E&&ENEeXtNEeXtNexXt&E&ELEEEE&EE" ) ,n],
stassertz(Horn}.

/* Procedure QTHC */
question to hornclause(Q,Clause,Sklist):-
assert _query(~Q,Clause, Skllst)

/* Procedure ASSQ: to assert knowledge clauses into
the database */

assert query(X,Clause,Sklist):-
translateq(X, Clause Sklist),
horn clauses(Clause,Horn),
write('&&&65568866GGE&6&&E5&EE") ,n],
gassertz(Horn).

/* Procedure HC: converting a clausal into headed Horn clause */
horn clauses([]1,[])):-!.
horn clauses([Second1|Second2] First):-
horn clausesl(Secondl,Firstl),
horn_clauses(SecondZ First2),
append(Firstl,First2,First}),
1.

/* Procedure HCl: creating N equivalence headed Hornclause */
horn_clausesl([]:-Body,C):-

!

hérn clauses2(Body,[],C).
horn_clausesI(Head:-Body,C):-

Ly

convert(Head,Bodyl),

appendbody({Bodyl,Body,Body2),

horn clausesl([]:-Body2,C),!.
horn_clausesI((Head;Headl),C):-

Ly

convert( (Head;Headl),Body},

horn clausesl([]:-Body,C),!.
horn_clausesI(Atomic, [Atomic]).
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/* Procedure HC2 */
horn_clauses2([],Body,[]):-!.
horn_clauses2((Body,Bodyl),Body2, [Nothead:-Body3|D2]):-
1,
convert({Body,Nothead),
appendbody(Body2,Bodyl ,Body3),
appendbody(Body2,Body,Body4),
horn clauses2({Bodyl,Body4,D2).
horn clauses2(Body,[],[Nothead]):-!,
convert(Body,Nothead}).
horn_clauses2(Body,Body2,[Nothead:-Body2]):-
convert(Body,Nothead).

/* Procedure CONV: moving literals into the lefts hand side
or the right hand side of a rule as appropriate */
convert(A;B,(Al,Bl)):-
/* Procedure CONV.1l */
1,convert(A,Al),convert(B,Bl).
convert((K,L),(K1;L1)}:-
/% Procedure CONV.2 */
!, convert(K,Kl),convert(L,L1).
convert(™P,P):-!. /* Procedure CONV.3 */
convert(p,"P). /% Procedure CONV.4 */

/* Procedure APPB */

appendbody(K,[],K).

appendbody((],M,M).

appendbody((K,L),M, {(K,N)):—appendbody(L,M,N).
appendbody{K,M, (K,M)).

1 '
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/% £ile ¢ PC/outputfpd */

/% procedure ASSPRV2Z */

assertaproving2(Q,N):-
retractall(proving( ,N)},
asserta(proving(Q,N}).

/* procedure ASSGL1 */

assertagoall(Q,N):-
node(N),
retractall{goal( ,N)),asserta(goal(Q,N}),
updating node(N).

/* procedure UPNODE */
updating node(N):-N1 is N+1l,assertnode(Nl).
updating node(N):-assertnode(N),fail.

assertnode(N):-rectractall{node( )),asserta(node(N)).

/* Procedure HAVEPR */
haveproved(Q,(Head|Tail]):~Q==Head, !.
haveproved(Q, [Head|Tail]):-haveproved(Q,Tail).

haveproved_top(Q,Hp):-haveproved(Q,Hp),!.
haveproved top(Q,Dummy):-nonvar(Q),
proven(Q),!.

/* procedure NOTTRY1l */
nottryl(Q,[1).
nottryl(Q,[H|T]):-
oN\==H,
nottryl(Q,T),!.
nottryl(Q,[H|T]):~
Q==H'
asserta(looping(Q}},
1,fail.

/* procedure ASSGL1l */
assertz_proven([Hp|Hptail]):-
proven(Hp),assertz proven(Hptail),!.
assertz proven([Hp|Hptaill):-
assertz(proven(Hp)),assertz_proven(Hptail}.
assertz_proven([]).

/* procedure ASSGL1 */
check failure(Q):-failure(Q),!,fail.
check failure(Q):-asserta(failure(Q)).
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/*******************************************************/

/%* TO PRINT THE SOLUTION’S PATH OF THE QUERY(QUESTION) */
print solution:-node(N),nl,nl,nl,
write(’The path of solution of the goal clause: '},
goal(G,1),nl,tab(5),write(’[]}:-"),writegoal(G),
nl,nl,print solutionl(N,1),!.

print_solutionl(N,Nl):-proving(P,N1),
N1<N,
goal(G,N1),
nl,tab(4),write(’[]:-7),writegoal(G),
nl,tab(8),write("|"),
nl,tab(8),write(’| '),write(P),write(’."),
nl,tab(8),write('|/"),
N2 is N1+1,
print_solutionl(N,N2},!.
print_solutionl(N,N1):-
nl,tab(4),write{’[J:=[]."},!,nl.

writegoal([Gl|G2]):-

writegoall(G2),

write(Gl),write(’."),!. /% right to left */
writegoal(G):-

write(G),write('.’}. /* for left to right */

writegoall{[G2]|G3]):-writegoall(G3},write(G2),write(’,"),!.
writegoall([]):-!.
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/** PC/ansearch== *%/

/* AS:searching for answers of the question */
answer_ search(Clause,X,Y,Newskquant):-

answer(X,Clause,Ans),

assertz new({affirm(Ans)),

subst skolem(X,Y,Newskquant).
answer_searchTClause,X,Y,Newskquant):-

/* no more exists possible answers

i.e the proving ends */

Clause\==(],

exists(toptry([])),1!.
/* end AS:searching for answers of the question */
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/%% PC/fprologl3 == to prove from right to left */

/* Procedure ASK: to prove each clause of the question */
asking(Pc,[X|Y]):-
top_asking(X,Q),
factprolog(Q,[]),[]1,Hp,[],[],Fc),
reason testing(Pc, Fc),
successful action(Hp).
asking(Pc,[X|YT):-
print_ comment(X),
asking(Pc,Y).
asking(Pc,[]):-
assertz(toptry((])),fail.

/% Procedure FACTPR */
factprolog((Q1,Q2),Usedclauses,Hp,Hpl,Goalclause,Fc,Fcl) -
1

L]
factprolog(Q2,Usedclauses,Hp,Hp2,[Ql|Goalclause] ,Fc,Fc2),
factprolog(Ql,Usedclauses,Hp2,Hpl,Goalclause,Fc2,Fcl).

factprolog(Q,Usedclauses,Hp,Hpl,Goalclause,Fc,Fcl):—
assertagoall([Q}Goalclause],N),
baseprolog(Q,Usedclauses,Hp,Hpl,Goalclause,N,Fc,Fcl).

/% recording an unsatisfiable or a failure atom */

factprolog(Q,Usedclauses,Hp,Hp,Goalclause,Fc,[[Q,N]|Fc]):~-
test failure loop(Q),
node{N),
updating node(N).

/* Procedure BASEPR: to match with a single atom */
baseprolog(Q,Usedclauses,Hp,Hp,Goalclause,N,Fc,Fe) 2~
clause(Q, ),
call(Q}, /* if Q is a system predicate */
assertaproving2(Q,N).
baseprolog(Q,Usedclauses,Hp,Hp,Goalclause,N,Fc,Fc) s~
knowledge_ base(Q),
assertaprDV1ng2(Q N).
baseprolog(Q,Usedclauses,Hp,Hpl, Goalclause N,F¢,Fel):-
knowledge_base(Q: -A),
factclause(Q:-A,Usedclauses,Hp,Hpl,Goalclause,N,Fc,Fcl).

/* Procedure FACTCL: to match with a headed clause */
factclause{Q:-A,Usedclauses,Hp,Hp,Goalclause,N,Fc,Fc) -
haveproved tOp(Q —-A,Hp),!,
assertaprov1ngZ(Q-—A N).
factclause(Q:-A,Usedclauses,Hp,{Q:-A|Hpl],Goalclause,N,Fc,Fcl):-
nottryl(Q:—A,Usedclauses), /* cycling test */
check failure(Q:-a),
assertaproving2(Q:-A,N},
factprolog(A,[Q:-A|Usedclauses],Hp,Hpl,Goalclause,Fc,Fcl),
retractall(failure{Q:-A)).
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/* to extract the failure or unproveable clause/fact */
test failure loop(Q):-

not(knowledge base head(Q)),
not(clause(Q, }),!.

test failure loop{Q):-
exists(looping(Q:-T)),
exists(failure(Q:-T)),!.

/% Procedure SUCCESS */
successful action(Hp}:-
assertz proven(Hp).
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/** PC/listgquant */

/* to list all quantifiers of PC formula */
list quantifiers((P<=>Q),L):-
!
list_quantifiers(P,Ll),
list quantifiers(Q,L2),
append(L1l,L2,L).
list quantifiers((P=>Q),L):~-
!
list quantifiers(P,L1),
list quantifiers(Q,L2),
append(Ll,L2,L).
list quantifiers(T:P,L):~
!
list quantifiers(P,L}.
list_quantifiers({P&Q),L):-
!
list_quantifiers(P,Ll),
list quantifiers(Q,L2),
append(Ll,L2,L).
list quantifiers((P#Q),L):~-
H
list_quantifiers(P,Ll),
list_quantifiers(Q,L2},
append(Ll,L2,L).
list quantifiers((“P),L):~
1

iist quantifiers(P,L).
list quantifiers(all(X,P),[([all,X])|L]):-
|

iist guantifiers(P,L).
list quantifiers(all(x,D,P),[[all,X])|L]):~
Ly
list quantifiers(P,L).
list quantifiers(exists(X,P),[[exists,X]|L]):-
Ly
list quantifiers(P,L).
list quantifiers(exists(X,D,P),[[exists,X}{L]):~
!
list quantifiers(P,L).
list quantifiers(P,[]).
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/* to merge two lists i.e Skhead and Listquant
into a new list, ie Newlist */

merge_quantifiers([Skhead|Tail],Listquant, [Newlistl |Newlist2]):-
merge_quantifier(Skhead,Listquant,Newlistl),
merge quantifiers(Tail,Listquant,Newlist2),!.

merge quantifiers([],Listquant,{]).

merge quantifier((X,sSk],[[Quant,Y]|Tail],[X,Sk,Quant]):~
x==Y' ! -

merge _quantifier(Skhead,[Listghead|Tail],Newlistl):-
merge quantifier(Skhead,Tail,Newlistl),!.

merge_quantifier(Skhead,[],(]).
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/% transf(P,Q,R): to transform Q and P into R */
transf(Q,”P,"R):-transf(Q,P,R).
transf(all(Y,Q2=>Ql),all(Xx,P2=>Pl),
all{x,P2=>all{Y,Q2&Q1=>Pl))):-1!.
transf(all(Y,Q2=>01),exists(X,P2&Pl),
exists(X,P28all(Y,Q2&0Q1&P1))):-!.
transf(exists(Y,Q),all(X,P2=>Pl},
all(Xx,P2sexists(Y,Q)=>P1l)):-1I.
transf(exists(Y,Q),exists(X,P2&P1),
exists(X,P2&exists(Y,Q&P1l))):-!.
transf(Q,all(X,P2=>P1l),all(X,P2&Q=>P1)):-1.
transf(Q,exists(X,P2&Pl),exists(X,P25Q&P1)):-!.
transf{(Q,P,P&Q):-t.

incorporate(P,Q,R}:-incorporatel(P,Q,R).
incorporate(P,Q,R):—incorporateZ(P,Q,R).

incorporatel(P1,all(X,P=>P2),all(X,P=>Q)):-

incorporatel(P1,P2,Q),!.
incorporatel(Pl,exists(X,P),exists(x,P=>P1)):
incorporatel(Pl,all(X,z,P=>P2),all(X,2,P=>Q)):

incorporatel(P1,P2,Q),!.
incorporatel(Pl,exists(X,Z,P),exists(X,Z,P=>P1)):—!.
incorporatel(Pl,exists the(X,z,P),exists_the(X,2,P=>P1l)):-!.
incorporatel(Pl,P=>P2,P=>Q):—

incorporatel(P1,P2,Q}),!.
incorporatel(Pl1,P,P=>P1):-!.

1
.

incorporate2(Pl,all(X,P=>Q),all(X,P&P1=>Q)):- I,
incorporateZ(Pl,exists(X,P),exists(X,P&Pl)):—!.
incorporateZ(Pl,all(x,Z,P=>Q),all(x,Z,P&Pl=>Q)):-
incorporateZ(Pl,exists(X,Z,P),exists(X,Z,P&Pl)):—
incorporate2(Pl1,P,P&P1l):— !.
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/* to remove any duplicate reason from the list of reasons */

/* Procedure REASONING: to test the answers */
reason_testing(Goal,Fc):—

c==[]l

!,used_query only.
reason_testing(Goal,Fc):-

abollsh(fallure_son,Z),

split reason(Fc,Reason),

not exzsts(re]ect(Reason)),

not exlsts(consulted sor(Goal,Reason)),

not _exists(set of reason( ,goal(Goal),reason(Reason)}),

assert reason son father(Goal),

assert set_ of reason{Goal,Reason},

1, fail’

/* checking the use of query clauses only
during proving */
used query only:-
node(N),
used_query onlyl(N),
!,retract(used fact clause).

used_guery onlyl(N):-
Nl iS N_lf
proving(Q,N1),
used query only2(Q,N1l).
used_query onlyl(NJ.

used_query only2{(Q,N1):-
query(Q),
!,used query onlyl(N1).
used query only2{Q,NI):-
fact _base(Q),
assert(used_fact_clause},
1, fail.

/% to split reason and its node number,
and to assert failure son/2
and to remove any duplication of reason */
split_reason{[[R,N]|Tail],Rtail):-
exists(failure_son(R,N1)),
assert(failure son(R,N}),
split reason(Tail,Rtail),!.
split_reason(T[R,N]|Tail],[R|Rtail]):
not exists(failure son(R,N1)),
assert(failure_son(R,N)),
split reason({Tail,Rtail},!.
split_reason(T1,[]).

/* assert reason_son_father/3 by using proving/2 */
assert_reason_son father(Goal):-

node(N),

Nl J.S N""l'

access proving(Goal,Nl}.
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access proving(Goal,0):-
goal(G,1),
assert rsf{G,goal(Goal},0),
abolish(failure_son,2),
abolish(failure_father,2),

access_proving(Goal,N):~
exists(proving(H:-T,N)},
assert rsf(T,H:-T,N),
N1l is N-1,
access proving(Goal,N1}.
access_proving({Goal,N):-
not exists(proving(H:-T,N)),
N1l iIs N-1,
access_proving(Goal,Nl}.

assert rsf([Gl|G2],Father,N):-
assert rsf(Gl,Father,N},
assert rsf(G2,Father,N).
assert rsf([],Father,N).

assert rsf((Tl1,T2),Father,N):-

assert rsf(T2,Father,N),

assert rsf(Tl,Father,N).
assert_rsf(T,Father,N):-

exists{failure son{T,Nl}),

N=<N1,

option{(Option),

retract(failure son(T,N1)},

assert(rsf head{Option,T,Father)),

assert(failure father(Father,N)).
assert rsf(T,Father,N):-

exists(failure father(T:-Tail,Nl1}),

N=<N1,

option(Option),

assert(reason_son_father(Option,T,Father)),

assert(failure_ father(Father,N)).
assert_rsf(T,Father,N}.
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/* proving the conclusion of questions as prolog system */
/% with addition of testing failure clause */

/% in order to reduce execution time*/

/* set of reason are taken in FIFO's order */

/* Procedure CLEARPC */

clear pc:-
abolish{reject,1l}),
abolish{query,1),
abolish{current numgs,l},
abolish(toptry,1),
abolish(toptry0,1),
abolish({option,l), assert(option(l)},
abolish(set of reason,3),
abolish(old set of reason,3),
abolish(failure father, 2),
abolish(failure son,2},
abollsh(substltutlon _log,1),
abolish(consulted_sor,2),
abolish{reason son father 3),
abolish{rsf head, 37,
abolish(mismatch pair,4),
abolish(howmany subst,2),
abolish(skolemfq list,1),
abollsh(mlsmatch“palr 2),
abolish(mismatch list,1),
abolish(old goal,l),
clear_pcl.

/* Procedure CLEAR-PCl */

clear pcl:-
abolish{accepted substitution,l),
abolish{subsidiary list,l),
abolish(scan_fail,I), /* depth+breadth first */
abolish(failure,l},
abolish(looping,l),
retractall(toptry(I[])).
abolish(proven,l),
abolish(proving,2),
abolish(goal,2),
abolish{try,2),
abolish{try,l).

/* Procedure ANS: answering the question */
answer(Pc,Q,ves):—

asking(Pc,Q),

assert once(toptry0(Pc)).
answer(Pc¢,Q,no) :—

not_exists(toptry0(Pc)).

/* Procedure TOPASK */

/% top portion of predicate 'asking' */

top asking(X,Q):~
assertnode(l), /* to initialize node(l} */
format_goal(Xx,Q),
1.
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/* Procedure PRCMT: to print comment */
print comment(X):-
not ex1sts(toptry(x)),
nl,write(’>>>>>> can not prove '),
wrlte(x) write(’ <<<<<<’),nl,
!.
print_comment(X).

/* defination of KB clauses (data base) */
knowledge_ base(Q):-

query(Q).
knowledge_ base(Q):-

fact _base(Q).

/* defination of fact base clause (data base) */
fact base(Q):~-

clause(knowledge(Q),true).
fact base(Q):-

clause(subsidiary(Q),true).
fact_base(Q):-

clause(plausible(Q},true).

/* defination of knowledge base head */
knowledge _base head(Q): -knowledge base{Q}.
knowledge base _head(Q): —knowledge base(Q:-T).

/% Qh:to finding the head clause of the query clause */
queryhead(H) :—query(H).
queryhead(H) :-query(H:-T).

/* new defination of query clause */
query clause(Q:-true):-
gquery(Q).
query_clause(Q:-T):-
query(Q:-T).

/* new defination of fact base_clause */
fact base clause(K,true):-
—  fact base(K).
fact_base clause(K,T):-
fact _base(K:-T).

/* Procedure FG: to format goal */
format goal([]:-Body,Body):-1.
format_goal(Head:-Body,Goal):-
l
convert(Head,Nothead),
appendbody(Nothead, Body,Goal),
format goal(Head,Goal):-
convert{Head,Goal),!.

rightside(X,Y):~format_goal(X,Y).



349
Apr 30 19:38 1986 Y/aaccsubst Page 1

already accepted_subs(Option, Goal ,Reason,[P,R,T,Diff]):-
already accepted subsl(lef,Newdlff),
accept subs(Option,Goal,Reason,[P,R,T,Newdiff]).

already accepted subsl(Diff,Newdiff):-
exists(accepted substitution(S)},
already accepted subs2(Diff,s,Newdiff).
already accepted subsl(Diff, lef) -
not exlsts(accepted substitution(8)}.

already accepted subs2({]),S5,[1]).

already accepted_ susz([H|T] S,NewT) : -
already accepted subs3(H,s, Hl),
already accepted subs2(T,S,T1),
insertfront(H1,TI,NewT),!.

already accepted subs3(H,[[P,R, Mis, [H|T]]|Ta11] [1):-
already accepted subs3([5,Q], [[P R,Mis,[{Q,S]]|T] ]|Ta11] [1):-1.
already accepted subs3(H,[[P,R,Mis, [H1|T]]|Ta11],Tl)°-
already accepted subs3(H, [[P R, MlS T1|Ta1l],Tl).
already accepted_subs3(H,[(P,R,Mis, []]ITall] Tl)-—',
already accepted subs3(H, Tall Tl)
already accepted_subs3(H,(],{H]).

insertfront([],T,T):-!.
insertfront([H]},T,[H|T]).

accept subs(Option,Goal,Reason,[P,R,T,[]]):-1.
accept subs(Option,Goal,Reason,[P,R,T, Diff}]):-
accept substltutlon(Optlon Goal Reason,[P,R,T,Diff]).
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/* acceptance enquiry of the whole suggestion */
acceptance(Option,Reason,Goal,Listquant):-
acceptancel(Listquant},
print acceptance(Option,Reason,Goal,Listquant}),
acceptance action,
eliminate_failure_atom,!.

acceptancel(Listgquant):-
exists(subsidiary list(S}),
nl,write(’ If the following clause’),
test_is(S),write(’ true'),
nl,write_reason($§),nl,
fail,

acceptancel(Listquant):-
exists(skolemfq list(S5Sq)),
test _and_if(subsidiary list(S)),
print _quantifier(Sq,Listquant),nl,
fail.

acceptancel(Listquant):-
exists{accepted_substitution(s)),
nl,print accepted_substitution,nl,
fail.

acceptancel{Listquant).

/* action taken on the acceptance of the suggestion */
acceptance_action:-
retract(subsidiary list(s)),
assert subsidiary(s},
fail.
acceptance action:-
refract(accepted_substitution(E)),
assert_atom_equiv22(E),
fail.
acceptance_action.

350
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/* to ask for an agreement of the suggested substitutions */
accept_substitution(Option,Goal,Reason,S):-
print substitute([S1]),
tab(40),write(’'---Do you agree ? '),
getO(X),
substitution_response(x,Option,Goal,Reason,S),nl.

/* analysizing the accept substitution response */
substitution response(10,0ption,Goal,Reason,S):-
/*return(<nly) 10: to accept the suggestion */
!, assert_accepted substitution(Ss).
substitution response(121,0ption,Goal,Reason,S):~-
/* yles) 121: to accept the suggestion */
!,getl( ),
assert accepted substitution(s).
substitution response(97, e )i—
/* a(bort) 97: to abort the session */
. ,gF-‘tU(_) P
abort.
substitution response(98,0ption,Goal,Reason,S):~
/% b(reak) 98:to break from the session */
1,9et0(_),
break,
prompt(0ld,’ '),
accept substitution(Option, Goal,Reason,S).
substitution response(119,0ption, Goal Reason,S):—-
/* w(hy) 119: to show why it was is suggested */
L,g9et0(_),
print wHy substltute([S]),
nl,write(” ...S0,"),
accept substitution{(Option,Goal,Reason,sS).
substitution response(l16, Option, Goal Reason,S}):-
/* t(ype) 116:to type again the assumption */
t,get0(_),
write hEveproved(Optlon Goal ,Reason),
print_ accepted substitution,
accept substitution(Option,Goal,Reason,S).
substitution response{(110, , , ,S):-
/* n{o) 1T0:not to accept the suggestion */
1,g9et0(_),
assert(reject(s)),
fail.
substitution response(l14, , , ,[P,R,T,Diff]):-
/* r(eject) 11l4:to reject aTl substltutlons of R *x/
t,get0(_),
assert(reject({P,R,T,Diff])),
retract{mismatch pa1r([P1 R,T1,Diffl1],N)},
assert(reject([PT,R,Tl,Diffl})),
fail,
substitution_response(115,0ption,Goa1,Reason,[P,R,T,Diff]):-
/* s(how) 115: to show the effect of the failure atoms */
l,get0(_),
print_ tree _failure(Option,[R]),
accept substitution{Option,Goal,Reason,[P,R,T,Diff]).
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substitution response(108,0ption,Goal,Reason,5):-
/* l(isting) 108: listing other p0551b111t1es */
1,get0(_),
print other_substitution(sS},
nl,write(’ ...S0,'),
accept substitution(Option,Goal,Reason,S}.
substitution response(X,Option, Goal Reason,S):-
/* others(help): to print the menu */

get0(_).,!,

nl,tab(4),write(’Response options’),
nl,tab(4),vwrite(’==ss==ssss========/) 1],

nl,tab(S),write('a abort’),

nl,tab(8),write(’b break'),

nl,tab(8),write{(’'n not accepting and try others )},
nl,tab(8),write(’1 list other poss substitution(s)'’),
nl,tab(8),write(’'r reject all poss. substitution(s)’),
nl,tab(8),write('s show the failure path of the goal’),
nl,tab(8),write('t type again the assumption’),
nl,tab(8),write{'w why the substitution is suggested’),
nl,tab(4),write(’y or <nl> yes {accepting) '),
nl,tab(4),write(’<others> this message’),

nl,accept _substitution(Option,Goal,Reason,S).

/* asserting accepted substitution */

assert_accepted substitution(s):-
retract{accepted substitution(0lds)),
assert(accepted substitution([S|01dS])),!.

assert_accepted_ substitution(s):-
assert(accepted substitution([8])).

/% printing accepted substitution */
print_accepted substitution:-
ex1sts(accepted substitution(s)),
nl,nl,tab{5),write(’... so you have already agreed that: 7},
prlnt accepted substitutionl(s),!.
print_accepted_substitution,

print_accepted substitutionl({]}:-
nl.
print_accepted substitutionl([Head|Tail]):-
nl,tab(5),
wrlte_subs_dlff(Head),
print accepted_substitutionl(Tail),!
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/* to list other possibility of substitutions of R */
print other substitution((P,R,T,Diffl}l):-
exists{mismatch  pair([_,R,_, 1,N)},
nl,nl,tab{5),
wrlte('The other possible substitution of 7),
write quote(R),
write plural clause(mismatch paic(l_,R,_,_1,N)),
write(’ as follows: '), -
print other substitutionl(R),!.
print_other substitution([P,R,T,Diff]):-
nl,nl,tab(5),
write('Sorry, no other possible substitution of ),
write_quote(R),nl.

print other substitutionl{(R):-
mismatch pair([G,R,M,Diff],N),
nl, tab(GT,wrlte('**')
wrlte subs diff2(piff,Diffl),
write{’ can also be replaced with '),
write subs diff3(Diffl),write respectlve(lefl),
write{’ as exists '),
print_exists_fact(M),
fail.™

print_other substitutionl(R):-
nl.

/* printing the comment of why the substitution is suggested */
print why substitute([[G,R,M,Diff]|Tail}):-
nl, tab(5),write quote(R) write(’ fails ,but exists 7},
prlnt ex1sts _fact(M),
nl,to contlnue(Tall),
prlnt “why substitute(Tail),!.
print why substitute([]):-!,
nl.

/% to print the comment of substitution of failure atoms */
print substitute([H|Tail]):-

tells(F),write subs(F,H),

print substitute(Tail).
print substitute([]):-nl.

write subs(user,Sublist):-!,
nl, tab(5),write(’If '},
write subs diff(Sublist).
write subs(F,H):-
nl,write_ subs(user,H),tell(F),nl,write subs(user,H).

write subs diff([q,R,[(M:-T)|Tail],Diff])}:-!,
write subs diffi(M,Diff).

write subs diff([k,R,Mis,Diff}):-1?,
erte_subs_diffl(R,Diff).



354
May 7 10:15 1986 Y/acceptsubs Page 4

write subs diffl(FClause,[[S,0]]):-!,
write quote(Q),
write{’ of the question\’s clause ’),write quote(FClause),
write(’ is substituted with '),write_quoteTS),nl.
write subs_diffl(FClause,[[5,Q])|T]):-
write subs diff2([[5,Q]|T],Slist),
write{’ of the question\’'s clause ’),write quote{(FClause},
write(’ are substituted with '), -
write subs diff3(slist),write(’ respectively’),nl.

write subs diff2([[s,Q])]),[8S]):-!,
write quote(Q).

write suEs_diffZ([[S,Q]|T],[S|Sl]):—
write quote(Q),
write{’ AND '),write_subs diff2(T,Sl}.

write subs diff3([8]):-!,
write quote(S).
write subs diff3(([S5|S1]):-
write quote(S),
write{’AND ’),write_subs diff3(sl).

print exists fact({]1):-nl.

print exists_ fact([M|T]):-
nl,tab(12},print_head_tail(M),
write_and nl(T),
print_exists_fact(T).
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/* asserting the subsidiary list */
assert subsidiary list(s):-
assert subsidiary listl(s).
assert subsidiary list(s) :-
retract(subsidiary list([S]|S1])},
assert subsidiary Tist2(sl),
!, fail.

assert subsidiary listl(S}:-
T retract{subsidiary list(sl)),
assert(subsidiary Tist({S]S1])),!.
assert_subsidiary listl(S):-
assert(subsidiary list([s]1)),!.

assert subsidiary list2([]):-
!, fail.

assert sub51d1ary list2(X):-
assert(subsidiary list(X)).

/* asserting skolemfqg’'s list */

assert skolemfq list(S):-
retract{skolemfqg list(sl}),
check dupllcate(s s1,82),
assert(skolequ llst(SZ)),!.

assert_skolemfq _ list(s):-
assert(skolequ list(s8)),!.

check_duplicate([S5],81,81):-
a member(S, Sl),..

check_duplicate(s,sl, SZ) -
append(S,Ss1, SZ)

a_member(X,[XlZ]):—!.
a_member(X,[Y|Z]):-a_member(X,2).

/* to assert subsidiary clauses after agreeing it */
assert_subsidiary([H|T]):~
clause(subsidiary(H},true},
assert subsidiary(T),!.
assert sub51d1ary([H|T])--
assert(subsidiary(H)),
assert subsidiary(T),!.
assert sub51d1ary([])'—
assert{newsubsidiary),!.

/* asserting predicate ’'set of reason’ */
assert_set of reason(G,Fc):-
ex1sts(set of reason(_,goal(G),reason(Fc))).
assert set of reason(G,Fc¢):—
not exlsts(set of reason( ,goal(G),reason(Fc))),
retract(optlon(Optlon)),
Optionl is Option+l,
assert(option{Optionl})),

assert(set_of reason(option(Option),goal(G),reason(Fc}))
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/* asserting atom equiv22(list) */
assert_atom equivZ2([[Q,R,T,Diff]|Tail]):-
assert(substitution log(Diff)),
assert_atomic_equiv22(Diff),
assert_atom equiv22(Tail).
assert_atom equiv22{[]).

assert_atomic_equivzz(Diff):-
retract(atomic_equiv(0OldDiff)),
assert atomic equiv22a(Diff,0ldDiff,NewDiff),
assert{atomic equiv(NewDiff)),!.

assert atomic equiv22(Diff):-~
assert(atomic_equiv(Diff)).

assert atomic_equiv22a([[Qarg,Kbarg]|Tail],0ldDiff, NewDiff):-
check _member([[Qarg,Kbarg]], Olleff Neleffl),
assert atomic _equiv22a(Tail, NewD1ff1 (NewDiff),!.
assert_atom1c__equ1v22a( [1,NewDiff,NewDiff}).
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/* to change the relevent quantifiers */
quantifiers out(Oldpc,Newpc,Newskquant):-
retract(skolemfq list(sq)),
subst skolemr(Oldpc,Newskquant),
change quantifiers(0ldpc,zl,Sq),
subst skolem(Zl,Newpc, Newskquant),
!0
quantifiers out(Oldpc,Newpc,Newskquant):-
subst skolem(Oldpc,Newpc,Newskquant),!.

/* to change relevent quantifiers of PC */

change_quantifiers((P<=>Q),(P1<=>Ql),5q):—
change _quantifiers(P,Pl,Sq},
change quantlflers(Q Q1,8q}).

change quantlflers((P >0),(Pl= >Q1) Sq) e~

change quantifiers(P,Pl,8q),
change _quantifiers(Q,01, sq).
change quantlflers(T P,T:0,8q):-

change quantifiers{P,Q,3q).
change quantlflers((P&Q),(Pl&Ql) 5q):-

change _quantifiers(P,Pl,Sq),

change “quantifiers(Q,Q1,8q).
change quantlflers((P#Q)-(Pl#QI) Sq):-

change quantifiers{(P,Pl,8q),

change quantlflers(Q Q1,5q}.
change quantlflers(( P),{("Pl}),8q}:-

change quantifiers(P,Pl,Sq).
change quantifTers(all(x P),Pc,8q):-

change _quantifiers(P,Pl,8q),
change “quantifier(all(Xx,pl),Sq,Pc).
change_quantifiers(all(X,D,P),Pc, Sq)°-

change quantifiers(P,P1l,8q),
change quantlfler(all(x D,Pl),8q,Pc).
change_quant1f1ers(ex1sts(x P),Pc, Sq)°—
change _quantifiers(P,Pl,8q),
change quant1f1er(ex1sts(x Pl),Sq,Pc).
change gquantifiers(exists(X,D,P),Pc,Sq):-
Ly
change_quantifiers(P,Pl1,5q),
change quantlfler(exlsts(x D,Pl),Sq,Pc).
change quant1£1ers(exlsts the(X,D,P), ex1sts _the{X,D,Pl1),8q):-
! ’
change quantifiers(P,Pl,S8q}.
change quantifiers(exists_the(X,P),exists the(X,Pl),S5q):-
1
change gquantifiers(P,P1,8q).
change quantifiers(P,P,Sq).
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change quantifier(0Oldpc,Sq,Newpc):-—
arg(1l,0ldpc,Varquant),
nonvar(Vargquant),
not(atomic{Vvarquant)),
functor({varquant, fq, ),
memberfqg(Varquant,sq),
change quantifierl(0Oldpc,Newpc),!.

change quantifier(0ldpc,Sq,0ldpc).

change quantifierl(all(X,D,P=>Q),exists(X,D,P&Q)):-!.
change_quantifierl{exists(X,D,P&Q},all(X,D,P=>Q}):-!.
change_quantifierl(all(X,P=>Q),exists(X,P&Q)):-!.
change quantifierl({exists(X,P&Q),all(X,P=>Q)):-!.
change quantifierl{all(X,P),exists(X,P)):-!.

change quantifierl(exists(X,P),all(X,P)}:-!.

memberfg(var,[H|T]):-
functor(var,£fq,N),
functor(H, fq,N),
arg(l,var,Skolemization),
arg{l,H,S5kolemization),!.

memberfqg(Var,[H|T]):-
memberfqg(var,T).
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/* to equate the variables of original and current goals */
equatevars(Goal,Originalgoal):-
equate vars(Goal,Originalgoal),!.

equate_vars{P<=>Q,Pl<=>Q1):-
1

L]

equate vars(P,Pl),

equate vars(Q,Ql).
equate_ vars(P >Q,P1l=>Ql):-

eéuate vars(P,Pl),

equate vars(Q,Ql).
equate vars{P&Q,Pl&Ql}:—

!

eéuate vars(P,Pl),

equate vars{Q,Q1).
equate vars(P#Q P1#Q1):-

e&uate vars(P,Pl),

equate_vars(Q,Q1).
equate vars("P, Pl):~—

!

!

equate vars(P,Pl).
equate vars(all(X,P),all(Y,Pl)):-

!

eéuate_varsl(X,Y),

equate vars(P,Pl).
equate_ vars(alT(X D,P),all{y,D1,Pl)):~

eéuate varsl(X,Y),

equate “vars(P,Pl).

equate_ vars(exists{X,P),exists(Y,Pl}):-

!,

equate varsl(X,Y),
equate_ “vars{P,Pl).
equate vars(exists(X,D,P),exists(Y,D1,P1)):-
Ly
equate varsl(X,Y),
equate_ ~vars(P,Pl).
equate vars(P, Fl).

equate varsl(X,Y):-
var(X),var(Yy),
X=Y,!.

equate_varsl(X,Y).
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/% finding the differences between R and Q */
find difference(R,D}:-

f list{R,Rlist),

find difference0O(R,Rlist,D).

/% finding the differences between R and Q %/
find_differenceO(R,Rlist,[H|Tail}):-

fing dlfferencel(R Rlist,H).
find dlfferenceO(R Rlist, [HlTa11]) -

find dlfferenceO(R Rlist,Tail),!.
find_differenceO(R Rlist,[]):-1.

find differencel(R,Rlist,[G,(M:-T)]):-
~  test reason tail(Rr,T),
f list(mM,Mlist),
find difference2(G,Rlist,Mlist,D),
length(D,Len},
assert mismatch pair([(G,R,(M:~T),D],Len),
1,fail.

find_differencez(q,Rlist,Mlist,D):-!,
find difference3(Mlist,Rlist,D).

find dlfferenceZ(k Rlist,Mlist,D):~-t,
find dlfferenceB(Rllst Mlist, D)

find difference3([Rhead|Rtail}, [Qhead|Qtail],D1):-
Rhead\=0Qhead,
not contain fgq2(Rhead},
find difference3(Rtail,Qtail,D),
check member ([ [Qhead,Rhead)],D,D1),
1
find difference3([Rhead|Rtail],[Qhead|Qtail},D):-
~  Rhead=Qhead,
find difference3(Rtail,Qtail,D),!
find difference3([),[]),[]):-!.

assert_mismatch pair([G,R,Mis,Diff],Len):-
retractTmismatch palr([G R,X,Diff]),Len)),
assert(mismatch pair([G R, [MlSIX] Diff] Len)).
assert mismatch palr([G R,Mis, lef] Len) :-
~ not exlsts(mlsmatch palr([G R,X,Diffl,Len)),
assert(mismatch pair([G,R, [M1s] Diff),Len)).
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/% to list all reasons */

list reason{Option,Goal,Reason):-
write haveproved(Optlon Goal,Reason),
do_you_like to contlnue(Optxon Goal,Reason),
assertz _new(new_goal(Goal)),

* .

/* to print an introduction of the suggestion */
write haveproved(Option,Goalpc,Reason):-
not exists(toptry0{Goalpc)),
telTs(F),wrlte_order(F Option,Goalpc,Reason,S),!.
write haveproved(Option,Goalpc,Reason}):-
exists(toptry0(Goalpe)),
tells(F),write already(F,Option,Goalpc,Reason,S),!.

write_order(user,Option,Goalpc,Reason,S):—!,
nl,nl,write(’OPTION: '),write(Option},
nl,write(’ The goal :'), nl,tab(10),write(’ \" '},
write goal(Goalpc,S),write{(’ \"’),nl,
write{’fails due to the failure of the following clause:'},
nl,write reason0(Reason),
nl,write({’ However, we may be able to prove the goal’),
nl,write(’ after doing some corrections or additions’),nl.
write order(F,Option,Goalpc,Reason,S):-
write order(user,Option,Goalpc,Reason,S),
nl,tell(F),write order(user,Option,Goalpc,Reason,S).

write already(user,Option,Goalpc,Reason,8):-1,
nl,nl,write(’OPTION: ’),write(Option},
nl,write{' We have already proved ’'),nl,tab(10),
write(’ \" "), write_goal(Goalpc,S), wrlte(' \" "), nl,
write(’It falls due to the failure of the following clause°')
nl,write reasonl(Reason),
nl,writeT' However, we may be able to reprove it again’),
nl,write{(’ after doing some corrections or additions ’),nl.
write already(F,Option,Goalpe,Reason,S):-
write already(user,Option,Goalpc,Reason,S),
nl,teTl(F),write_already(user,Option,Goalpc,Reason,s).

write goal(Goalpc,S):-
form of answer{Form),
wrlte_goalform(Form Goalpc,S).

write goalform(pe,Goalpc,S):-
t,write(Goalpc).

write goalform(eng,Goalpc,S):-
nonvar(sS},
writelist(Ss),!.

write goalform(eng,Goalpc,S):-
var(8}),
statement phrase_one(Goalpc,S,[]),
writelist{s).
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/* analysizing the do_you_like to_continue response */
do_you like to continue(Option,Goal,Reason):~
“nl,tab(5),write{’ --Do you like to continue ? '},
getO(X),
continue response(X,0Option,Goal,Reason}.

continue response(121, , , ):-
/* yles) 121: to continue and see the suggestion */
!,get0(X}).
centinue response(l10, , , ):=
/* <nl> = 10: to continue and see the suggestion */
l.
continue response(97, , ):-
/% al(bort) 97: to 3borT the session */
get0(X),
abort.
continue_response(98,0ption,Goal Reason) -
/* b(reak) 98: to abort the session */
!,get0(X),
break,
prompt(01ld,’ '),
do_you like to continue(Option,Goal,Reason}.
continue response(115,0ption,Goal Reason)°—
/% sthow) 115: to show the effect of the failure atoms */
1,get0(X),
print_tree failure(Option,Reason),
do you like to continue(Option,Goal,Reason}.
continue response{116,0Option,Goal,Reason):—
/% t{ype) 116:to type again the assumption */
!,get0( ),
write haveproved(Optlon Goal,Reason},
do_you like to cont1nue(0pt10n Goal ,Reason).
continue responseTlOB Option,Goal, Reason)-—
/% 1(1st) 108:to list others set of reason */
t,get0(_),
print_others_setofreason,
do_you_llke_to continue({Option,Goal,Reason}.
continue response(110,0ption, , ):-
/* n(o) 110:not to accept the suggestion */
get0(_),
retractall(rsf head(Option, , )),
retractall(reason son father(Opt1on, 1))
t, fail.
continue response(X,Option,Goal,Reason):-
/* others(help) : to print the summary of responses */

get0(_),!,

nl,tab(4), wrlte( Response options’),

nl tab( 4) er te( 'ee=—=s====c=====1 ) 'nl,

nl,tab(8),write('a abort’),

nl,tab(8),write(’b break'),

nl,tab(8),write(’'n not accepting and try other alternative’
nl,tab(8),writef{’1 list other set of reason , if exists ),
nl,tab(8),write(’s show the effect of failure atoms’),
nl,tab(8),write(’t type again the introduction’},
nl,tab(4),write(’y or <nl> yes to see the suggestion(s)'’),
nl,tab{4),write(’<others> this message’),

nl,nl,

do_you_like to continue{Option,Goal,Reason).
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/* printing others set of reason */
print_others_setofreason:-
exists(set of reason(_, , )),
nl,tab(2),
wrlte('The others set of reason clauses’),
write plural clause(set of reason(_, ,_ )),
write(’ as follows:'),nl,
print others setofreasonl
print__ others setofreason:-
nl,nl,tab{2},
wrlte('Sorry, no other set of reason clause’),nl.

print_others_setofreasonl:-
set of reason(optlon(O).goal(G) reason(R)),
nl,tab{2),write(’OPTION '), wrlte(o) write(’: "),
write('SET OF REASON = '),write(R),
nl,tab(10),write('THE FAILURE GOAL : '), write quote(G},
fail.

print_others setofreasonl:-—
nl,nl.

/% a new defination of printing failure atoms one */
write reasonQ([H|T]):-
exists(dup_reason(H)),!,
write reason0O(T).
write reasonO([H|T])-—
nl,tab{(10),write(H),
assert(dup reason{H)},
write reasonO(T).
wrlte_:easonO([])-—
! ,abolish(dup reascn,l),nl.
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/% Procedure FINDMATCH */
mismatch clause(R,Q,[q,(M:~-T)]):-
/* the mismatch clause(Q) is a query clause */
query_clause(M:—T),
O\=R
mismatch clause(R,M,Rule):-
/% Procedure MISMATCH.Z2 */
convert{R,NotR},
queryhead(NotR},
mismatch clausel(R,M,Rule).

mismatch_clausel(R,M,[k,(M:-T}]):-
/% to find a rule which have the same
predicate name but different arguments */
fact base clause(M,T),
R\=HM.
mismatch_clausel(R,M,Rule):-
/* to f£find a rule which have a different
predicate name but the same arguments */
functorl(R,Pred name,N),
f list(R,[Pred name|Args]),
stmatch_clausel(Pred_name,N,R,Args,Rule).

mismatch clausel(Pred_nameR,N,R,Args,[k,(M:-T)]):-
7/* Pred nameR is not in the form of
“either £, “f or not £ */
f\==Pred_nameR,
not f\==Pred nameR,
“f\==Pred nameR,!,
fact base(K),
a_rule(K,[M,T]),
functorl(M,Pred nameM,N},
Pred nameM\==Pred nameR,
f list(M,[Pred nameM|Args]).
mismatch_clausel(Pred name,N,R, [X|Args] [k, (M:~T)]):-
7% Pred name = £ or “f or not £ */
argl(1l, R,X),
f list(M,[Pred name,Y|Args]),
fact base clause(M T),
Y\--x



365
Jun 4 20:05 1986 Y/pracceptance Page 1

/* to print the response of the suggestion */

print acceptance(Option,Reason,Goal,Listquant):-
tells(F),write in(F,assumption),
getl(X),
tells(F),write_in(F,X, response),
acceptance_response(X,Option,Reason,Goal,Listquant),
nl.

/* checking the response */
acceptance response(1l0,0ption,_, ,_):-
/% <nl>(return) 10: to accept the suggestion */
L,
retractall(rsf head(Option,_,_)),
retractall(reason_son father(Option,_, )),
abolish(mismatch _pair,2).
acceptance_response{121,0ption, , ,_):-
/* y(es) 121: to accept the suggestion */
t,9et0(_),
retractall{rsf head{(Option, , )),
retractall(reason_son_father(Option, , )},
abolish(mismatch_pair,2).
acceptance_response(97, , , ,_):-
/* a(bort) 97: to abort the session */
!:getO(_):
abort.
acceptance_response(98,0ption,Reason,Goal,Listquant):-
/* b(reak) 98: to break the session */
!rQEto(_)r
break,
prompt(old,’ *},
print acceptance(Option,Reason,Goal,Listquant).
acceptance_response(115,0ption,Reason,Goal,Listquant):-
/% s(how) 115: to show the effect of the failure atoms

1:get0(_);

print_tree_ failure(Option,Reason),

print acceptance(Option,Reason,Goal,Listquant).
acceptance response(119,0ption,Reason,Goal,Listquant):-

/% wihy) 119: why it was suggested **/

IrQEtO(_)r

complete resp why,

print_acceptance{Option,Reason,Goal,Listquant).
acceptance_response(116,0ption,Reason,Goal,Listquant):-

/% t(ype) 1ll6:to type again the assumption */

lthto(_)r

write_ haveproved(Option,Goal,Reason),

acceptancel(Listquant),

print_acceptance(Option,Reason,Goal,Listquant).
acceptance_response(110, , ,_,_):-

/* n{o) 110 :not to accept the suggestion */

!,get0( ),

abolish(subsidiary list,1),

abolish(skolemfq 1ist,1),

fail,
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acceptance_response(X,Option,Reason,Goal,Listquant):-
/* others(help) : to print the summary of responses */

get0(_),!,

nl,tab(4),write(’Response options’),

nl ’ tab( 4 ) ’write( L S LT LT LT T T T T ) ’ nl ’
nl,tab(8),write{’a abort’),

nl,tab(8),write{’b break’),

nl,tab(8),write{’n not accepting and try others’),
nl,tab(8),write(’s show the failure paths’),
nl,tab(8),write(’t type again the assumption’),
nl,tab(8),write(’w why the substitution is accepted
nl,tab(4),write(’y or <nl> yes (accepting) 7},
nl,tab({4),write(’<others> this message’),

print_acceptance(Option,Reason,Goal,Listquant).

complete_resp why:-
exists(accepted substitution(E)),
print why substitute(E),
fail.

complete resp why:-
exists(skolemfq list(Sq)),
nl,tab(5),
write{'...because the failure clause(s)’,
write{’ contained Skolem\‘’'s function’}),
nl,tab(5),write(’i.e '),write_reason(Sq),nl,
fail.

complete resp why:-
exists(subsidiary list(s)),
nl,tab(5),
write(’...because the following clause’},
write does(S),
write{’ not exist in the database:'),
nl,write reason(s),
fail. -

complete resp why.
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/* to print the proving tree of each failure atom */
print tree fa11ure(0pt10n [Son|T])):-

print_tree failureO(Option,Son),

to cont1nue(T),

print tree failure(Option,T),!.
print_tree failure{Option,[]):-!,

nl,

print _tree failure0(Option,Son):~-
rsf_head(Option,Son,Father),
prlnt tree fa11ure01(0pt10n Sen,Father),
fail.

print_tree_failure0O(Option,Son):~!.

print_tree failure0l(Option,Son,Father):-
nl,tab(4),write(Son), wrlte(' fails *),nl,tab(10}),
wr1te('-==> ), write(Father) wr:te(' fails’),
print_tree_failurel(Option,Father),

print_tree failurel(Option,goal(Pc)):-!,
nl,nl.

print_tree failurel(Option,{(H:-T)}:-!,
reason son _father(Option,H,Father), nl,tab(10),
write( === " wrlte(Father) write(’ fails’},
prlnt tree fa11ure1(0pt10n Father)

print_tree failurel(Option,H):-
reason_son_father(Option,H,Father), nl,tab(10),
write( ===> Y, wrlte(Father) ;write(’ fails'),
print_tree failurel(Option, Father)

to continue(([]):-
to _continue(T):-

tab(4),write(’Press <return>!!’},
1

1!
getO(Press) (Press=10;g9et0( )},
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/% 8Sr:to equate E with § in X */
subst skolemr(X,[]):-!.
subst_skolemr(X,[[E,S)|T]):-
E=S,
subst_skolemr(X,T),!.

/* SS:substitute 5 in X with a variable becomes Y*/
subst skolem{X,X,[]):-1.
subst skolem(X,Y,[[E,S]|T]}:-
substitute(Z,5,X,X1}, /* Z replaces E */
subst_skolem(X1l,Y¥,T},!.

/* SSN: to substitute S in X with a variable and becomes Y
and replacing sign " between E and 5 */
subst skolem not(X,X,[])}:-
subst skolem not{X,Y,[[E, S]|T]) -
replacing(E,S,E1,51),
substitute(El,51,X,X1),
subst_skolem_not(xl,Y,T),'

/% 88¢c: */

subst_skolemc(x,X,[l):—!.

subst_skolemc([],[],E):-

subst™ skolemc([X|Y] [XnewIYnew] E):-
subst skolem(x Xnew,E),
subst_skolemc(Y Ynew,E)}.

/* new defination using Newskquant #*/
subst_skolemr(X,[]):-!.
subst skolemr(X,[[E,S,Quant]|T]):-
E=8§S,
subst skolemr(X,T),!.

subst_skolem(X,X,[]):-!.

subst_skolem(X,Y,[[E,5,Qu ant]|T]):-
substltute(z S,X,X1), /* Z replaces E */
subst skolem(Xl1,Y,T),!.

subst skolem not(X,X, (]

subst skolem not(X,Y, [[E S Quant]lT])-—
replacing(E,S,El Sl),
substitute(El,S1,X,X1),
subst_skolem_not(xl,Y,T),

/% replac1ng "not " with """ *x/
replacing(~ E,” 8, E, S):-1.
replacing( E,” §,” E, S):-!
replacing( E, §, E, S).
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replacing(X,”Y):-
functor(X,r,N),
name(F,Flist),
append([110,111,116,95]1,Flistl,Flist),!,
name{Fl,Flistl),
X=..[F|A],
Y=..[F1)]A]}.

replacing(X,X).

/* NNfq: checking whether the reason predicate contains "fq" */
not_contain fq(R):-

functorl(Rr,F,N),

not_contaln_fql(R,N).

not contain fql(R,0):-!.

not contain  fql(R,N): —arg(N R,Nth),
not contain_fq2(Nth),
N1l Is N-1,
not_contaln_fql(R,Nl).

not contain fq2(Nth):-var(nth),!.

not contain fq2(Nth):-
functorl(Nth,Fq,N1),Fg\==£fq,
not contain fql(Nth,N1).

/* checking whether the reason predicate contained "fq" */
not_contained fq(R,L):-

functorl(R,F,N),

not_contalned_fql(F,R,L).

not_contained fql{(fq,R,[R]):-!.
not _contained fql(F,R, L)-—
f list(Rr, {FlArguments]),
not contained_fq2(Arguments,L).

not contained fq2([]),[]):-

not contained_ fq2([A1|Ta11] L) -
not_ contained fq3(A1 L1},
not contained £fq2(Tail,L2),
append(L1,L2,L),!.

not contained fqg3(Nth,[]):-
var(Nth),!.

not contained £q3(Nth,L):
functorl(Nth,F Nl),
not_ccntalnedqul(F Nth,L).
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setup_predicate(R,Q,N):~
/* for predicates f(P,....}/not_£(P,....} */
functorl(R,F,N),
(F==f; F==not f{ ;" f==F ),
functorl{Q,F,N),
argl{l,Rr,P},
argl(1l,Q,Pl},
Pl=P,
1.
setup predicate(R,Q,N):-
/* for predicates P(.,..) where P\=f or not_f */
functorl(Rr,P,N),
functorl(Q,P,N).

/* to check membership */

check member([E2],E1,El):~
member(E2,E1),1.

check_member(E2,El,E)}:-
append(E2,E1,E),!.

not_rejected(R):- /* collective test */
not(reject(R)),!.

/* checking such that the reason is not same with one of
the tail of substitution rule */

test_reason_tail(R,true):-!.

test_reason_tail(R,(H,T)):-
R\=H, /* have been changed to \= from \== */
test reason tail(R,T),!.

test reason tail(R,T):-

~  R\=T,!. /* have been changed to \= from \== */

/* to eliminate a duplicate */

eliminate failure_ atom:-
retract(set of reason{Option,G,reason(Fc))),
eliminate failure atom(Fc,Newfc),

Newfe\==[T,
assert(temp list(Option,G,Newfc)),
fail.

eliminate_failure_atom:-
retract(temp list(Option,G,Newfc)),
assertz(set of reason(Option,G,reason{Newfc})),
fail. -

eliminate_failure_ atom:-!.

eliminate failure atom([H|T],Newtail):-
clause(subsidiary(H), ),
eliminate failure atom(T,Newtail

eliminate failure atom([H[T],{H|Newtail]}
eliminate failure_atom(T,Newtail

eliminate failure atom([],[]):-1!.

T N T
- s ™

/% defination of functorl to accomodate “f or nott(f) */
functorl(“F,”P,N):-!,functor(F,P,N).
functorl(F,P,N):-functor(F,P,N).
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f list("™M,["H|T])):-1,

- M=..[H|T].

f list(M,Mlist):—
M=..Mlist.

argl(N,”F,P):-!,arqg(N,F,P).
argl(N,F,P):-arg(N,F,P).

/* to copy a clause to another clause */
copy_clause(Clausel,Clause2}:-
call(Clausel},
assertz new(Clause2),
fail.
copy _clause(Clausel,Clause2).

/* testing whether a given clause is a rule or an atom */
a_rule((M:-T),[M,T]):-!.
a_rule(M,[M,true]).
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/* to retract a set of reason clauses */
why it fails(Originalgoal,Lisquant):-
retract(set of reason(option(QOption),goal(G),reason(R)}),
not_ex1sts(re]ect(R)),
assert(consulted sor(G,R)),
equatevars(G,Originalgoal),
list reason(Option,G,R),
find reason(Optiocn,G,R,Lisquant).

/*to print the reason */

find reason{Option,Goal,Reason,Lisquant):-
find_mismatch clause(Reason),
suggestion(Option,Goal,Reason,Lisquant).

find reason(Option,Goal,Reason,Lisquant):-
asgsert(reject(Reason)),
fail.

suggestion(Option,Goal, Reason,Lisquant):~-
process reasons(Option,Goal,Reason,Reason),
acceptance(Option,Reason,Goal,Lisquant).
suggestion{Option,Goal,Reason,Lisquant):-
retract(accepted substltutlon(s)), |
suggestion(Option,Goal,Reason,Lisquant).

process_reasons(Option,Goal,Reason,[H|T])}:-
process_ suggestlon(OPtlon Goal ,Reason,H},
process “reasons(Option,Goal, Reason T),..

process_reasons(Option,Goal,Reason, {]) -

process suggestion(Option,Goal,Reason,R):-
functor(r,F,N},
Nl is N+1,
ordered mismatch clause([P,R,T,Diff],N1,1), |
not_exists(reject([P,R,T,Diff])),
not ex1sts(subst1tut10n log(lef)),
already accepted_ subs(Option,Goal,Reason,[P,R,T,Diff]),!.
process suggestion(Option,Goal, Reason R):-
extract fq(R,L),
process_ “others{(R,L).

process_others(R,[]):-!,
assert told list(R).

process others(R,L):-
assert_skolemfq list(L),!.

assert told list(R):-
assert sub51d1ary list(R).
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find mismatch clause([R|T]):-
setup predicate(R,Q,N),
fast setof(D,mismatch clause(R,Q,D),List),
find difference(R,List),
find_mismatch_clause(T),!.

find mismatch_clause([R|T]):-
find mismatch clause(T),!.

find mismatch_clause([]):-!.

ordered_mismatch_clause(Triplet,N,Ni):-
retract(mismatch_pair(Triplet,Ni)).
ordered mismatch clause(Triplet,N,Ni}):-
Nn is Ni+l,
Nn =< N,
ordered mismatch clause(Triplet,N,Nn). ‘
\
\
\
|

write_proved(user,X):- I,
nl,write(’ ****{rectifiers) PRCVED:’),
nl,tab{10),write(X)},write(* 2 7).
write proved(F,X):-
write proved(user,X),
tell(F),write proved(user,X).

extract fq(R,L):-not_contained fq(R,L).
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form of answer(eng),!,
write meaning(user),

get0(A),

meaning response(A).

other _meaning.

/* to print the response of the given answer
for finding different meaning */
meaning response(97):-

i (get0(_),
abort.

/* a=97 -to abort */

meaning response(98):-

1,9et0( ),
break,

/% b=98 -to break */

prompt(0l4,’ '),
other meaning.
meaning response(59):-
/* ;=59 —-finds other meaning, if exists */

!,g9et0(_},
fail.

meaning response(121):-
/% y=121 —finds other meaning, if exists */

!,get0( ),
fail.

meaning response(10):-
1

/* <return>=10 : that’'s all folks */

meaning_éésponse(llO):—
/* n=110- not to find other meaning*/

L,9et0( }.

meaning response{A):-

!,get0( ), /* to print help’s table */
nl,tab(4d),write(’Response options’),

nl ? tab( 4 ) ’write( I so===s==' ) 'nl P
nl,tab(8),write(’a abort’),

nl,tab(8),write(’'b break'}),

nl,tab(4),

write(’; or y finds other meaning’),
nl,tab{4),

write(’n or <nl)> not to find other meaning’),
nl,tab(4),write(’'<others> this message’},

nl,nl,other meaning.
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/* Procedure PCFACT */

pcfact:-
prompt{0ld,’ ’),write(0ld},
read(8),
assert knowledge(S).

/% Procedure PCQUEST */

pcquest:—
prompt(0ld,’ *),write(01d),
read(Q),
assertz new(form of answer{pc)),
question{Q).

375
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/* Procedure RECTIFIERS */
rectifiers(X,yes,Newskquant):-
form of answer(Formanswer),
print answerl(Formanswer,X),
get0(A),
answer_ response{A,X,Newskquant}.
rectifiers(X,no,Newskquant):-
why it fails(X,Newskquant),
clear pcl,
!, fail.

/* PAl: print answerl */
print_answerl{pc,X):-

write proved(user,X).
print_answerl{eng,X):-

write more(user).

/* to print the response of the given answer */
answer_response(97,X,Newskquant):-
1,9et0(_), /* a=97: to abort */
abort.
answer_response(98,X,Newskquant):-
'yget0(_), /* b= 98: to break */
break,
prompt(0ld,’ 7)),
rectifiers(X,yes,Newskquant),
answer response(l21,X,Newskquant):-

T 1,get0( ),

answer_response(59,X,Newskquant):-
1,get0(_).
fail.
answer response(l12,X,Newskquant}:-
!,get0( ), /* p=112: to print the solution tree */
print solution,
rectifiers(X,yes,Newskquant).
answer response(l1l0,X,Newskquant):-
T /% <return>=10 : that’'s all folks */
I.
answer_response(110,X,Newskquant):-
!,9et0{ ). /* p=110: not to find other answers */
answer_response(A,X,Newskquant):-
t,9et0( ), /* others : to print help’s table */
nl,tab(d),write(’Response options’),

nl,tab{4),write(’'========s======='),nl,
nl,tab(8),write(’'a abort'},

nl,tab(8),write(’'b break'},

nl,tab(8),write(’'p print solution\’s tree’},
nl,tab(4),

write('n or <nl> not to find other answers’},
nl,tab(4),

write('y or ; finds other answers’),
nl,tab(4),write(’<others> this message’},

nl,nl,rectifiers(X,yes,Newskquant).
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/* Wpc: */

writepc(X,Y,Sk}):-
subst skolem(X,Y,Sk),
tells(F),writepc(F,Y),!.

writepc(user,Y):-!,

write quote(Y),nl,

wri teT' T e T ) ’ nl ’ nl -
writepc(F,Y):-

writepc(user,Y),

tell(F),writepc(user,Y).

/* Wi-response: */

write in{user,X,response):-!.

write in(F,X,response):-
tell{F),name(Y,[X]),write(Y)},nl,nl,

/* Wi-assumption: */
write_in(user, assumption):-
nl, write(’ Do you like to reprove again by using'’},
nl, write(’ the above assumption(s) ---2 "},!.
write_in(F, assumption) :-
write in(user,assumption),
tell(F), write in(user,assumption}.

/% WI-if: */
write in(user,R,if):-1!,
nl wrlte( if ),
prlnt sentence(R),!.
write in(F,R, if):-
wr1te in{user,R,if),
tell(F) wr1te_1n(user,R,if).

/% WI-subsidiary: */

write_in(user,R, subs1d1ary) -!
nl ertE( subsidiary(’

write in(F,R,subsidiary):-
wrlte in{user,R,subsidiary),
tell(F), wrlte_ln(user R,subsidiary).

;,write(R),write(').'),nl-

/* WI-equiv: */
write in(user,[R, Q],equiv):-
print_ message(Q R),!.
write in(F, [R,Q),equiv):~
write in(user,[R,Q],equiv),
tell(F) wrlte_ln(user [R,Q],equiv).

/* WhA-yes: */

write answer(user,yes):-!,
nl,write(’>>answer: Yes,'),nl, tab(4).

write answer(F,yes)--wrlte answer(user,yes),
tell(F),write answer(user,yes)
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/* WA-no: */

write answer(user,no):-!,
nl, wr1te('>>answer- No, it cannot prove :'),
nl,write(’ .

write_answer(F,no):—write_answer(user,no),
tell(F),write_answer{user,no).

/* WA-finish: */
write answer(user,finish}):-!,
nl,nl,write(’'no more answers!’),nl.
write_answer(F finish):-write_ answer(user, finish},
tell(F),write_answer(user,finish).

/* to print all the failure atoms or the reason */
write reason([H|T]):-
tells(F),write reasonl(F,H},
write reason(TT
write_reason([]):-1,nl.

-

write_reasonl(user,X):-
nl,tab{10), wrlte( ).

write reasonl(F X)y:-
write reasonl(user,X),
tell(F),write_reasonl(user,X).

/* writing the answer as an english sentence */
write sent(user,A,Ans):-
nl wr1te('>> Answer: '),
nl,write_rem(Ans), writelist(A),write(’."’}),
nl,nl,!.
write sent(F A,Ans) :-
write sent(user A,Ans),
tell(F)},nl wrlte_sent(user,A,Ans),!.

/* writing remarks */
write rem(yes):-write(' Yes, it is true that ).
write rem(no) —write(’ No, it is false that ').

/* to get more answers */
more answers--tells(F) write more(F),other_answers.

write more(user):-

1,nl,write(’** top(phrase): more answers? ').
write more(F): -write more(user),

tell(F),nl,nl,write more(user).

write meanlng(user)-—!,nl
write(’** top{(phrase): more answers’),
write{’ with a different meaning ? ').
write meaning(F)}:-write meaning(user),
tell(F),nl,nl,write _meaning(user).

/% writing a list as a sentence */
writelist([X|Y]):—-write(X),write(’ '),writelist(Y).
writelist([]).
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/* printing a comment of replacing relevent quantifiers */

print quantifier([Skhead]Sktail],Listquant):-
print_quantifierl(Skhead,Listquant),
print _ “quantifier(Sktail,Listquant).
print quantifier([],Listquant}.

print_quantifierl(Skhead,[[Vars,Sk,Quant])|T]):-
Skhead = 8k, /* modify on 0740 081285 */
nl,tab(5), wrlte(' Ak Wory,
write(Quant),write('('),write(Vars),
write(’, ...} " is replaced with " ’),
print quantifier2(Quant,Newquant),
writeTNewquant),
write(’(’},write(vars), write(’, ...} "™ 7),!.
print_ quant1f1er1(Skhead [H|T]):-
prlnt quantifierl(Skhead,T),!.
print_quantlflerl(skhead in.

print quantifier2(all,exists).
print quantifier2(exists,all).

/*to write X in a quote i.e "X" */
write quote(X):-
write(?" \" /),write(X},write(’ \" ").

/* to print respectively where appropriate */
write respective([H]):-!.
write_respective(Diff):-write(’ respectively ’).

/* to print the conjuction 'and’ */
test and if(8):-

exists(8),

nl,nl,tab(5),write{(’AND if 7)},!.
test_and 1f(S)--

nl,nl,tab(5),write('If ).

/* to test the plurality of the sentence */
test is([H]):-!,

write(' is 7).
test 1s([H|T])--

write(’s are ).

write plural list([L}):-
length([L],N},
write_plural(N).

write plural clause(X):-
fast setof(X,X,L),
length(L,N),
write plural(N).

write plural(l):-!,write(’ is ).
write plural(N):-write(’ are "). /% N>1 */

write_and nl([]):-!.
write_and nl(X):- nl,tab(8),write(’ AND’).
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write_does([S]):-!,write(’ does’).
write does(S):-write(’s do’).

/* to print a rule */
print_head tail(Q:-true):-t,
write quote(Q).
print_head tail(Q):-
write quote(Q).
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/* Procedure QUEST */
question(X):-
prompt(_," '),
clear pc,
nl,nl,write(’NEXT QUESTION:’),nl,tab(4),write(X),nl,
reset newquery(X,2),
pc_to hornclause(Z,Clause,Newskquant),
retry search{z, Newskquant),
answer search(Clause Z,Y,Newskquant),
print_Enswer(Z,Y,Clause,Newskquant).

question(z,Y,Clause,Newskquant):-
pc_to hornclause(z Clause,Newskquant),
retry search(Zz, Newskquant),
answer search(Clause,Z,Y,Newskquant).

/* Procedure PC-HORN */
pc_to hornclause(X,Clause,Newskquant):-
nl,write(’The translat1on of its negation:’),nl,
11st _quantifiers(X, Llstquant),
question to hornclause(~X,Clause,T,Sk),
merge quantifiers(sk, Llstquant Newskquant),

/* Procedure RESET-QUERY: to set a query or
to reset a new query and prove it */
reset newquery(Oldquery,Oldquery).
reset_newquery(Oldquery,Newquery):-
reset newqueryl{Oldquery,Newquery),
print newquery({Newquery).

reset newqueryl(Oldquery,Newquery}:-

- retract(new_query(Newquery)),
abolish(current query,l),
assert(current_query(Newquery)).

reset _newqueryl(Oldquery,Newquery}:-
exists(new query( )),
reset newqueryl{Oldquery,Newquery).
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/* Procedure RESET-SEARCH: to reformulate new query
or to reprove again */
retry search(Oldquery,Newskquant).
retry search(Oldquery,Newskquant):-
retry searchl(0ldquery,Newskquant).

retry_searchl(Oldquery,Newskquant):—

not exists(atomic equiv( )),

not exists(skolemfq list{ )),

retract(newsubsidiary).

retry searchl(Oldquery,Newskquant):-

reformulate question(Oldquery,Newskquant),

abolish(set of reason,3),

abolish(reason son father,3),

abolish(rsf head, 37},

abolish(newsubsidiary,0)},

abolish(query,1),

fail.

retry searchl(Oldquery,Newskquant):-

( exists(newsubsidiary);
exists(skolemfq list(_));
exists(atomic_equiv(_7J) ),

retry searchl(Oldquery,Newskquant).

/* procedure REFORMULATEQ */

reformulate question(Oldquery,Newskquant):-
/* reformulation when atomic/predicate

are equivalent and also if 'fq’' exists */

retract(atomic_equiv(Q)),
new goal(NewqueryZ),
subst skolem not(Newquery2,Newqueryl,Q),
quantifiers changing(Newqueryl,Newquery,Newskquant),
assert(new query(Newquery)),

reformulate_questlon(Oldquery,Newskquant):—
/* reformulation when only ‘fq' exists */
not exists(atomic equiv( )),
exists((skolemfq Iist(Sq)),
quantifiers_changing(Oldquery,Newquery,Newskquant),
assert(new query(Newquery)),
1

/* Procedure PRINT ANSWER: printing the answer */
print_answer(Q,Q1,T],Newskquant):-

/* the questlon clause is [],

i.e the inconsistent clause */

form of answer(Formanswer),

affirm(Ans),

answer_ form(Formanswer,Ql,Q2,Ans),

nl,nl,

write('It fails because the question’},

write(’ clause is an inconsistent one!l’),

!,nl,nl,other meaning.
print_answer(Q,Ql,Clause,Newskquant):-

Clause\==[],

print answer0(Q,Ql,Newskquant).
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print answer0(Q,Ql,Newskquant):-

/* either printing yes answers
or finding the cause of failure
if the answer is no */

nonvar(Ql},

affirm(aAns),

form of answer(Formanswer),

answer form(Formanswer,Ql,A,Ans),

!, rectifiers(Ql,Ans,Newskquant).

print answer0(Q,Ql,Newskquant):-

/* checking if we can find any other answers
(proving tree) if the reason exists
and that the answer is yes */

affirm(yes),

exists(set of reason(0,G,R}},

rectifiers{Q,no, Newskquant)

print_answer0(Q,Ql,Newskquant):-

/* finding more answers with

different meanings of the sentence */
exists(toptry([]1)),

not_exists(set of reason(_, , }),

test finish fact(Q), -7

t,nl7nl, other meaning.
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/* print new query */

print newquery(Newquery):-
/* if the top language is a predicate calculus */
form of answer(pc),
nl,nl,write(’RE-QUESTION:'),
nl,tab{4),write(Newquery),nl.

print newquery{Newquery):-
/* if the top language is an english */
form of answer(eng),
statement phrase one(Newquery,S (1},
nl,nl,write(’RE-PHRASE: '),
nl,tab(4), writelist(S),write{’ ?'),nl,
nl,nl,write('RE-QUESTION:’),
nl,tab(4),write(Newquery),nl.

/* AF:answer form */
answer_form(pc,Y,Y,Ans):-
write answer(user,Ans),
writepc(user,Y).
answer_form(eng,Y,S,Ans}:-
statement phrase one(Y¥,5,{1]),
nl,write_sent(user,S,Ans).
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/* Procedure TFF */

test finish fact(Q):-
affirm(yes),
write answer(user,finish),!.
test_finish fact(Q):-
affirm(no),
nl,nl,tab(5), write('Do you like to assert '),
nl,tab(a),write quote(Q),
nl,tab(5),write{’as a fact in the database (y/n)? '},
get0(X),
ask assert fact(X,Q).
ask_assert fact(121,Q):-
/* yles) 121: to assert Q in the database */
get0(X},
assert knowledge(Q),!.
ask_assert fact(110,Q):-
/* n(o) 110. not to assert Q in the database */
get0(X}), .
ask_assert fact(X,Q):-
/* “others (help) */
(X==10;qget0(_)),!,
nl,nl,tab(S),
write(' type "y"{(yes) or "n"(no) only please’'),
nl,tab(5),write(’ type your response now ? '},
get0(Y),
ask_assert fact(Y,Q).

quantifiers changing(0ld,New,Listquant):-
quantifiers out(0ld,New,Listquant).
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/* a new version of read in in popleog (using name(X,Y))*/
/* Read a sentence from the terminal, and convert it into
a list of atoms and integers
Main predicate provided:

read in(P) - Read a sentence and unify P with
the list of atoms/ integers

*/
read_in(P) :- initread(L)}, words(P,L,[]), L.

/* Get list of characters - everything up to a
full stop, exclamation mark or question mark */

initread([K1,K2|U]) :- get(Kl), get0{K2), readrest{(K2,U).

readrest(46,[]) = 1. /% """ *x/
readrest(63,[]) :— 1. /% "2V */
readrest(33,[]) = '. /% "IV k/

readrest(K,[KltUj) K<33, !, get(Kl), readrest(Kl,U).
readrest{K1l,[K2|U]) :- get0(K2), readrest{K2,U).

/* Convert list of characters into a list of atoms and
integers. This bit is written as Prolog grammar
rules

*/

words([wW|Ws1,80,83) :-
word(w,s0,s1), !, blanks(sl,s2), words(ws,S2,53).
words([],5,8).

word(w,[C|S0],S1) :-
basic_character(C), !,
alphanums(As,s0,51),
name(W,[C|As]) .

word(P,{C|S],S} :- name(P,[C]).

alphanums([A|As],S0,52) :-
alphanum(A,so0,81), 1!,
alphanums{As,S1,82).

alphanums([],5,5).

alphanum(a,[C|S],S) :— 1lc(C,A),
alphanum(C,[C|S],S) :- digit(C),

!I

rnumber (N1,N3,[C|S0],81) := digit(C), !,
N2 is (C-48 )+(10*N1l),
rnumber{N2,N3,50,51).
rnumber(N,N,S,S).

blanks([C|S0],81) :- blank(C), !,
blanks{(s0,51}.
blanks(S,5).

/* Basic Character types */
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basic_character(C):- lc(C,X).
basic_character(C):- digit(C).
blank(X) :- X<33.

sx% digit(X) :— 47<X, X<58. **x/

le(X,X):-64<X,X<91. /* retaining the capital letters */
le(X,X) = 96<X, X<123.
1c(95,95). /* =95 : to retain underscore

- for denoting a variable */
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/* reading an english sentence */

read phrase(Y, %) :-read_in(X),get0(_),
nl,write('NEXT PHRASE: '),
nl,tab(4),writelist(X),

nl wrlte( e o===mo====)"' ) '
append(Y Z,X),2\==[1,
t. /* to prevent analysizing all words */

/* asserting a knowledge or answering a question */
stat_or _quest(Y, Z):-
assertz new(form of answer(eng}),
question phrase(Q, Y, 1),
question(Q).
stat or quest(Y,2):-
Z\“-[?]r
statement phrase(S,¥,[]),
assert knowledge(S).
stat_or quest(Y [21):-
Tassertz _new(form_of answer(eng)),
sentence(Q,Y,[1),
guestion(Q).

statement phrase_one(Q,A,{]):-
/* to regenerate one sentence only */
statement_phrase(Q,A,[]),!.
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/* The TRACING TECHNIQUE */

Jxkkxkxxxk* SENTENCE *kkkkkkkxk/

sentence{z,Y,X,W):-

statement phrase(z,Y,X,W).
sentence(Z,Y,X,W):-

question phrase(Z,Y,X,W).

Jxkkkkkxkkx STATEMENT PHRASE *k**x#&kkkk/

statement phrase(Z,[s3,Y,X],W,V):
noun phrase(U,T,S,2,Y¥,W,

cp_verb phrase(U,T,S,X,R
statement phrase(z is4,Y, X] W,V):
noun phrase not(U T,5,2,¥,W,.R},

cp_verb phrase not(U T 8, X,R,V).

)
V).

LI - « )

/xkkkkxkxkx CP CLASS NAME #kkkkikkkk /

cp_class name(Z,Y¥,X,[cecnl,W],V,U):-
class name(z Y, X,w,v, U)
cp_class nameTZ Y,X, [ccnl W, [V v],T],I[S]|R),Q):-
conj palr(S U),
class _nare(Z,Y,P,W,R,0),
conjunction(P,N,X, [V ul,o,M),
cp_class_name(Z,Y,N,T, Q)
cp_class name(Z,Y¥,X,[ccn2,W,V, T,S):-
class name(z Y,R,W,T,
conjunction({R,P,X,V,Q,
cp_class name(Z,Y,P,U,0,8).

M

U]
Q):

0),

Jhkkkkskkkk CLASS NAME **%skkkkkkk /

class_name(singular,z,Y,[cnl|X],[a|W],V):-
gnoun(singular,z,Y,X,W,V).

class_name(singular,Z,Y,[(cn2|X],[an|{W],V):-
gnoun(singular,z,Y,X,w,V}.

class name(plural,z,¥Y,[cn3|X],W,V):-
gnoun(plural,z,Y¥,X,w,V).

class name(Z,Y,X, [cn4lW] v U)-—
gadjectlve(z Y,X,W,v,U).

Jx*Kkkkkkkkk CP NOUN PHRASE **xkkhkkkhk /

cp noun phrase(z,Y,X,W,[cnp0,V],U,T):~
noun phrase(z,Y,X,wW,V,U,T).

cp_noun phrase(Zz,Y,X,w,[cnpl,Vv,[U,T},S],[R|Q],P):-
conj pair(R,T),
substitute(0,Y¥,X,N),
noun phrase(z,0,N,M,V,Q,L),
conjunction{M,K,W,([U,T],L,J)},
noun phrase(z,Y,X,K,5,J, P)

Cp_noun_ phrase(Z,Y,X,W, [cnp2 V u,T],5,R):-
substltute(Q Y,X,P),
noun_phrase(Z,Q,P o,v,s,N),
conjunction(0O,M,W,U,N,L),




cp_noun_phrase(z,Y,X,M,T,L,R).
cp noun_phrase(Z,Y,"X,W,{cnp3,V],U,T):—
- noun phrase_not(z,Y¥,X,W,V,U,T).
cp_noun_phrase(z,Y,X,W,[cnp4,V],U,T):—
noun_phrase_not(z,Y,"X,W,V,U,T).

JRkdkxkxkxk NOUN PHRASE *#xkkkkkkk/

noun_phrase(z,Y,x,W,[npl,V,U,T},S,R):-
gdeterminer(z,Y,Q,P,wW,Vv,5,0),
gnOUﬂ(Z.Y,QrU:OrN)f
rel_clause(Z,Y,M,T,N,R),
incorporate2{X,M,P).
noun phrase(Z,Y,X,W,[np2,V,U],T,S):-
- gdeterminer(Z,Y,R,X,W,V,T,Q),
gnoun(Zz,Y¥,R,U,Q,S5).
noun_phrase(Z,Y,x,X,[np3,W],V,U):-
gnoun(Z,Y,X,wW,V,U).
noun_phrase(Z,Y,X,W,[np4,V,U]
!
t

S5):-
quan pronoun{(Z,Y,R,W '
rel clause(2,Y,P,U,Q
incorporate2(X,P,R).
noun_phrase(z,Y,x,W,[np5,V] U
guan_pronoun(z,Y,X,
noun_phrase(Z,Y,x,W,[np6,V,
gproper_noun(z,Y,U,
rel clause(Z,Y,Q,V,
incorporate2(X,Q,W).
noun_phrase(z,Y,x,x,[np?,w],V,U):—
gproper_noun(z,Y,Ww,V,U}.
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JRkkkkrkkkk CP VERB PHRASE **kkkkkkkk/

cp_verb_phrase(Z,Y,X,[cva,W],V,U):—
verb_phrase(Z,Y,X,W,V,U).

cp_verb_phrase(z,Y,x,[cvpl,W,V,U],T,S):-
verb_phrase(Z,Y,R,W,T,Q),
conjunction{R,P,X,V,Q,0),
cp_verb_phrase(z,Y,P,U,O,S).

JHkkkkhkkxk YERB PHRASE **%kkkkkik/

verb_phrase(Z,Y,X,[vaO,W,not,V],U,T):—
trans verb(z,Y,s,f(is,¥Y,S),W,U,R),
negatif(R,Q),
cp_class_name not(%,Y,X,V,0,T).
verb_phrase(z,Y,X,[val,W,not,V,U],T,S):—
auxiliary(z,w,T,R),
negatif(Rr,Q),
trans_verb(plural,Y,P,O,V,Q,N),
cp_noun_phrase(M,P,"O,X,U,N,S).
verb_phrase(z,Y,”x,[vp21,W,not,V],U,T):—
auxiliary(z,w,U0,8),
negatif(S,R),
intrans_yerb(plural,Y,X,V,R,T).
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verb phrase(2,Y,"(XswW),[vp3l,V,not,U,T},S5,R):-
auxlllary(z v,S,Q),
negatif(Q,P),
intrans verb(plural,Y,X,U,p,0),
glocator(Y W,T,0,R}.

verb_phrase(Z,Y,X, [val w,v,u],T,8):—
aux111ary(Z w,T, R),
trans_verb(plural Y,q,P,V,R,0},
cp_noun_phrase(N,Q,P,X,U,O,S).

verb phrase(Z,Y,X,[vp02,W,V]},U,T):-
auxilaiary(2,w,U,S},
intrans verb(plural Y,X,v,5,T).

verb phrase(2,Y, T X&W, [vp03,V,U, T] S, R) -
auxlllary(z v,.5,0),
intrans verb(plural Y,X,U,0,P},
glocator(Y,w,T,P,R).

verb _phrase(Z,Y,X, [vp0 W,v]),U,T):-
trans verb(z Y,Ss, f(1s Y¥,s),w,U,R),
cp_ class name(z Y X,Vv,R,T).

verb phrase(z Y, X,[(vpd,w, V] U, T)-—
trans verb(Z Y,S3, f(1s Y,s),w,U,R},
glocator(Y,X,V,R,T).

verb_phrase(2,Y,X, [vPl w,v],0,T):~
trans verb(z Y,S,R, W u,Q),
cp_ noun phrase(P S,R,X,V,Q,T).

verb ph:ase(z Y,X,[(vp2,W],V, U) -
intrans verb(z Y,X,wW,Vv,U).

verb phrase(Z,Y, L X&W, [vp3,V, U] T,5):-
intrans verb(z Y,X,v, T R),
glocator(Y,w,U,R, S)

Jhkkkhkkkkk GLOCATOR **kkkkkkkk/

glocator(2,Y, (gl ,X|W],[X|V],U):-
locator(X,T),
noun_phrase(s,R,£(T,z,R},Y,W,V,U).

JhKkkkkkxkkk GPLACE **kkkikikkk/

gplace(2,Y,X,[gp|W],V,U):-
noun_phrase(z,Y¥,X,X,W,V,U),

J*kkkxkhkkxk REL, CLAUSE ***k%hkakk /

rel clause(Z,Y,X,{rc,W|V],[W|U],T):-
rel clause(W),
verb phrase(z,Y,X,V,U,T).

JRFxKkkkkkkx% GDETERMINER **kkdkkkkk/

gdeterminer(2,Y,X,W,all(Y,indefinite(Y),X=>W),
[ngt]-:V] :[V|U] yU)s-
determiner(Z,universal,Vv).
gdeterminer(2,Y,X,W,exists(Y,indefinite(Y),X&W),
[gdet2,V],[V|U],U):-
determiner(Z,existential,Vv).

389
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gdeterminer(singular,2,Y,X,exists(2,definite(2),Y&X),
[gdet3],[the|W] ,W):-
true.
gdeterminer(plural,s,¥,X,all(Zz,indefinite(2),¥=>X},
[gdeté],W,W):-
true.

JhEkkkhkkkkk GNOUN Axkkkkkkxk/

gnoun(Z,Y,Xs&W,[gnl,v,U],T,5}):-
gadjective(z,Y¥,W,V,T,R),
gnoun(z,Y¥,X,U,R,S).

gnoun{z,Y,X,[gn2,W],V,U):-
gnoun0(z,Y,X,wW,V,U).

Jrkkkkkkkkk GNOUNQ **kkdkkkks/

gnoun0(singular,2,f(Y,2),[gn02,X],[X|W],W):~
noun(X,Y).
gnoun0O(plural,z,£(Y,2),[(gn03,X], [X|W],W):-
plural(Vv,X),
noun{v,Y).
gnoun0{plural,z,£(Y,2),{gn04,X],[X|W],W):-
name(X,V),
append(u,[105,101,115],V),
append{(U,[121],T),
name(S,T),
noun(s,Y).
gnoun0(plural,z,£(Y,2),[gn05,X],[X|W],W):-
name(X,V),
append(U, [115],V),
name(T,U},
noun(T,Y}.

JRk*kkkkkkkx GADJECTIVE *¥kkkhkdkk/

gadjective(2z,Y,£f(X,Y),[gadj, W], [W|V],V):-
adjective(W,X).

JREkxkkk*kxk GPROPER NOUN #kkkkkkksk/

gproper noun(Z,Y,[X,Y],[who|W],W):-
var{Y). -
gproper_noun(plural,z,[gpn2,Y],[Y[X],X):-
nonvar({Y),
plural(w,Y),
proper_noun(wW,Z),
not noun(wW,V).
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gproper nounf{singular,Z,(gpnl,Y],[Y|{X],X):-
“nonvar(Y),
proper noun{Y,Z),
not noun{Y,W),
not plural(Vv,Y),
not pronoun{U,¥,T).

JhXxkkkkkkkx TRANS VERB *hkhkakkhiki/

trans verb(singular,z,Y,f(X,2,Y)},[tvl,X],[X|W],W):~-
verb be(X,X}.
trans _verb(plural,z,Y,f(X,2,Y),[tvl,X],[W|V],V):-
verb be(X,W),
plural(w).
trans_verb(singular,2,Y,£(X,2,Y),[tv7, W], {W|V],V):-
verb(W,X),
transitive(w).
trans_verb(plural,z,Y,f(X,2,Y),[tv8,W],[W|V],V):-
plural(u,w),
verb(U, X},
transitive(U).
trans_verb(plural,z,Y,£(X,2,Y),[tv9,W],[W|V],V):-
name(W,U),
append(U,[115],T),
name(S,T),
verb{sS,X),
transitive(S).

Jhkkkkkkkkx INTRANS VERB ***kkkkkkk/

intrans_verb(singular,2,£(Y,2},[1v1,X],[X|W],W):-
verb(X,Y),
intransitive(X).
intrans verb(plural,z,£(Y¥,2),[iv2,X],[X|W],W):-
“plural(v,X),
verb(V,Y),
intransitive({V).
intrans_verb(plural,z,f(Y,2),[iv3, X}, [X|W],W):-
name(X,V)},
append(V,[115],U),
name(T,U),
verb(T,Y),
intransitive(T).

Jhkkkkxkkkk QUAN PRONOUN **kakkkkik /
quan_pronoun(sin§ular,z,Y,exists(Z,indefinite(z),f(W,Z)&Y),
[gprl,X],[X|V],V):-
pronoun(existential ,X,W).
quan_pronoun{singular,Z,Y,all(z,indefinite(2),£(W,2)=>Y),
(gpr2,X],[X|V],V):-

pronoun(universal ,X,W).
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Jrxkxkkkkkx CONJUNCTION kxkkkkkkkk /

conjunction(z,Y,z&Y,{conjl,and]),land|X],X):-
true.

conjunction(z,Y,24Y,[conj2,0r],[or|X],X):~
true.

conjunction{z,Y,”~(2&Y),[conj3,nor],[nor|X],X):-
true.

Srkkkkkkkxxk CP CLASS NAME NOT hkkkkhhkkh /

cp_class _name_not(Z,Y,"X,[ccnn0,w],V,U):-
class name not(Zz,Y,X,W,V, U)

cp_class name “not(z,Y,X, [ccnnl Ww,[v,Uu},T],[S|R],Q):-
conj_pair(s, U),
class name _not(z,Y,P,W,R,0),
conjunction(”~P,N,X, [V U] o,M),
cp_class_name not(Z Y,N,T,M,Q).

I
cp _class name not(z,Y,X, [ccnnz W v, uU],T,8):-
class_name_not(z Y,R,W,T,Q),
conjunction(”R,P,X,v,Q o),

cp_class_name_not(2,Y,P,U,0,S).
JhRkkkkkhkk CLASS NAME NOT **kkkkkkkk/

class_name_not(singular,z,Y,(cnnl|X],[a|W],V):-
gnoun_ not(51ngu1ar Z,Y,X,W, V)
class name_not(singular,Zz,Y, [cnn2|x] (an|W],V):-
gnoun_ not(51ngu1ar 2,Y,X,W, V)
class_name _not(plural,z,vY, [cnn3|X] W,V}i—
gnoun__ not(plural Z Y, X, W V)
class_name_not(z,Y,X, [cnn4|W] v,U):
gaajectlve(z Y,X,W,v, U)

/********** NOUN PHRASE NOT **********/

noun phrase not(Z,Y¥,X,W,[npnl1,Vv,U,T]),S,R):-
gdeterminer__ no(z Y,Q,P,W,v,8 0),
gnoun{(2,Y,Q,U,0, N),
rel clause(z Y,M,T,N,R),
1ncErporate2(x M, P)

noun phrase_not(Zz,Y, “X,9, [npnz v,ul,T,8)
gdetermlner no(Z Y,R,"X,W,V,T,Q)
gnoun{(z,Y,R,U,Q,S).

noun_phrase not(z,Y,X,W,[npn3,V, ul,T,8):-
gdetermlner no(Z Y,R,X,wW,V,T,Q),
gnoun{Z,Y,R,U,Q,S).

o
.
r

Jk%k%kkkkkkx CP VERB PHRASE NOT kkkkdkkkkkk / ) )

cp_verb phrase not(z,Y,X, [cvpno w],v,U):-
“verb phrase_ not(z Y,X,W,V U)
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cp_verb_phrase not(Z,¥,X,[cvpnl,W,V, v],T,8):—
“verb phrase not(z Y,R,W,T, Q),
conjunction(R,P,X,V,Q, 0),
cp_verb_phrase_ not(z Y,P,U,0,8).

J*xkkkkkskk VERB PHRASE NOT **kkkkkikk/

verb phrase not(Z,Y,X, [vpn4,W,not,V],U,T) -
trans verb(z Y,s,f(is,Y, S) W,U,R},
negatif(R,Q),
cp_class_name(Z,Y,X,V,Q, T).

verb phrase not(Z,Y,X, [vpn5 W,not,v,U],T,8):-
auxiliary(z,w,T,R),
negatif(R,Q),
trans verb(plural Y,p,0,v,Q,N),
cp_noun phrase{(M,P,0, X U,N,S).

verb phrase not(z,Y,X, [vpn6 W, not V] U, T):-
auxiliary(2,W,U,S),
negatif(s,R),
intrans verb(plural Y,X,V,R,T).

verb_phrase__ not{2,Y,X&W,[vpn7,V,not,U,T],5,R):~
aux1l1ary(z v,5,0),
negatif(Q,P),
intrans verb(plural Y,X,Uu,p,0),
glocator(Y,w,T,0,R).

verb_phrase not(z,Y,X, [vpnOl w,v,ul,T,5):-
auxlllary(z w,T,R),
trans verb(plural Y,Q,P,V,R,0},
cp_noun phrase(N,Q, P,X,U,0,5}.

verb phrase not{z,Y,"X,[vpn02,%, V] U,T):-
auxiliary(z,w,U,5),
intrans verb(plural Y,X,v,8,T).

verb_phrase_ not(z, Y,"(x&W),[vpnOB v,u,T1,8,R}:-
auxiliary(z,v,s,Q),
1ntrans_verb(p1ura1 Y,X,u,Q,P),
glocator(Y,w,T,P,R).

verb phrase not(Z,Y,X, [vpno w,v],U,T):-
trans verb(z Y,S, f(1s,Y S) Ww,U,R},
cp_ class name not(z Y, X,V,R, T)

verb phrase not{%Z,Y,X,[vpnl,W, V] U, T)-—
trans verb(z Y,5,R,W,U,Q),
cp_noun phrase(P S,"R,X,V,Q,T).

verb phrase not(z,Y,"X, [vpnz W] V,U):-
intrans verb(z Y,X,W,V, U)

verb_phrase_not{z, Y,"(X&W) [vpn3 v,ul,T,8):-
intrans verb(z Y,X,V,T,R},
glocator(¥,w,U,R, S)

SRRk khxdkkk NEGATIF *xhhdkhddk/

negatif({not|Z2],2):-
true.

JRkkdkkkkkkk AUXILIARY *kk*kkkhkk /

auxiliary(plural,[auxl,do]},[do|Z],Z):-
true.

393
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auxiliary(singular,[aux2,dces],[does|2Z],2):~
true.

JHEkKxxkxkxk* GDETERMINER NO ***kkkaxkk/

gdeterminer_no(singular,Z,Y,x,all(Z,indefinite(z),Y->x),
[gdetnl]),[no|W],W):-
true.

ShEkkdkkkkkk GADJECTIVE NOT *¥*¥kkkkkksk/

gadjective not(Z,Y,X#W,[gadjnl,Vv,U],T,8):-
gadjective not0(z,¥,X,v,T,R),
gadjective not(z,¥,w,U,R,S).

gadjective not(z,Y,X,[gadjnl,W],V,U):-
gadjective not0(z,Y,X,W,V,U).

/¥ kkkxkkkk* GADJECTIVE NOTO **kkkkxkkk/

gadjective not0(2,Y,f(X,Y),[gadj,W],[W|V],V):-
adjective(Ww,X).

SRRk xKkkkkk QUAN PRONOUN NOT **kkkkkkkk/

quan_pronoun_not(singular,Z,Y,
exists(z,indefinite(2),£f(W,2)&Y),[qprl,X],[X|V],V):-
pronoun{existential,X,W).
quan_preonoun_not(singular,2,Y,
all(Z,indefinite(2z),£(W,2)=>Y),[qpr2,X],[X|V],V):-
pronoun(universal,X,W).

JrEkEkxkkkkkk GNOUN NOT *khkkkkkkx/

gnoun_not(z,¥, X#w,[gnnl,v,U],T,S5):~
gadjective"not(Z,Y,W,V,T,R),
gnoun_not(Z,Y,X,U,R,S).

gnoun not(Z,Y,X,[gnn2,W],V,U):-
gnoun0{(Z,Y,X,W,V,U).
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/* the WORDING TECHNIQUE */
Jkkkkkkkkkk SENTENCE **kkkkikkk/

sentence(Z,Y,X):-
statement_phrase(Z,Y,X).

sentence(Z,Y,X):-
question_phrase(Z,Y,x).

Jrxkhkkkdks STATEMENT PHRASE hkkkkhkkkk /

statement_phrase(z,Y,X):—
noun_phrase(W,V,U,Z,Y,T),
cp_verb_phrase(W,V,U,T,X).
statement_phrase(Z,Y,x):—
noun phrase_not(W,V,U,z,Y,T),
cpﬁvErb_phrase_not(W,V,U,T,X).

J*kfxkxkkkk CP_CLASS NAME Kkkkkkrkkkk /

cp_class_name(Z,Y,x,W,V):—
class_name(Z,Y,X,W,V).

Jhkkkhkkkkk CLASS NAME kdxkkkdkik/

class_name(singular,z,Y,[a;x],W):—
gnoun({singular,2,¥,X,W).
class_name(singular,Z,Y,[an[X],W):—
gnoun(singular,2,Y,X,W).
class_name(plural,Z,Y,X,W):—
gnoun(plural,Z,Y,x,W).
class_name(Z,Y,X,W,V):-
gadjective(z,Y,X,W,V).

JRkkkwkkxkx CP_NOUN_PHRASE *kxkkiikxx/

cp_noun_phrase(Z,Y,x,W,V,U):—
noun_phrase(z,Y,x,W,V,U).

cp_nOun_phrase(Z,Y,“X,W,V,U):—
noun_phrase_not(z,Y,X,W,V,U).

cp_noun_phrase(Z,Y,X,W,V,U):-
noun_phraseﬂnot(Z,Y,"X,W,V,U).

Jhkxkxkkkkk NOUN PHRASE **¥x*kkikk/

noun_phrase(z,Y,X,exists(Y,R,W),V,U):—
gproper_noun(z,Y,R,V,T),
relative_clause(z,Y,X,W,T,U).
noun_phrase(Z,Y,X,exists(Y,U,x),W,V):—
gproper noun(z,Y,U,W,V).
noun_phrase(Z,Y,x,W,V,U):—
gdeterminer(z,Y¥,T,S,W,V,R),
gnoun(z,Y¥,T,R,Q),
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relative_clause(2,Y,X,S,Q,U).
noun_ phrase(z,Y,X,W,V, U)'—
gdetermlner(z Y, T,X,w,v,8),
gnoun{z,Y,T,S U).
noun phrase(z,Y,X,X,W,V):-
gnoun(z,¥,X,W,V).
noun_phrase(2,Y¥,X,W,V,U):
quan_ pronoun(z Y, T, W v,S5),
relative clausa(z Y X,T,5,U0).
noun_ phrase(z,Y,X,W,V,U):-
quan_ pronoun(z Y,X,W,V,U).

J**kkkkkxkk CP VERB PHRASE **#kkkkkkk /

cp_verb_phrase(Z,Y,X,W,V):-
“verb phrase(z Y, X,W,V).

/**kxkkkxkk VERB PHRASE **kkhkkkkk/

verb phrase(Z,Y,X,W,V):-
trans verb(z Y,u,f{is,Y,U),wW,T},
cp_ class name(z Y,X,T V)
verb phrase(z,Y,X,W,V):-
trans verb(z vy,u,£f({is,Y,U),W,7T),
glocator(Y,X,T V)
verb_phrase(2,Y,X,W, V)--
trans verb(Z Y,u,T,%w,S8),
cp noun phrase(R u,7,X,8,V).
verb_phrasE(Z,YTx,W,V):—
intrans verb(Z,Y,X,W,V).
verb phrase(Z, Y, X&W,V,U):-
intrans verb(Z Y,X,v,T),
glocator(Y,w,T, U)
verb_phrase(z,Y,X,W, V) -
trans verb(z Y,u,£(is,Y,U},W,T),
negatif(T, S),
cp_class name not(Zz,Y,X,5,V).
verb_phrase(Z,Y,X,W,V):-
auxlllary(z w,u),
negatif(u,T),
trans_verb(plural,Yy,s,R,T,Q
cp_noun_phrase(P,S,"R,X,Q,V
verb phrase(2,Y, X,W,V):-
auxiliary(z,w,U),
negatif(u,T),
intrans verb(plural ¥Y,X,T,V).
verb phrase(Z,Y,”(X&W),V,U):-
auxiliary(2z,V, T),
negatif(T,S),
intrans verb(plural,Y,X,5,R)},
glocator(Y W,R,U).
verb phrase(Z,Y,X,W, V)-—
auxiliary(Z,W,U),
trans_verb(plural,y,T,S,U,R),
cp_noun phrase(Q,T,S5,X,R,V).

N St
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verb_phrase(Z,Y,x,W,v):-
auxiliary(z,W,0),
intrans_verb(plural,Y,X,U,V).
verb phrase(Z,Y,XsW,V,U):~
- auxiliary(z,Vv,T),
intrans_verb(plural,Y,X,T,S),
glocator(Y,w,5,U).

JX*kxkKxkkkk GLOCATOR **kkkkkkkk/

glocator(z,¥,[X|W],V):-
word _used(X),
locator(X,U),
noun_phrase(T,S,f(U,Z,S),Y,W,V).

JrHxkxkkkkdk GPLACE **kdkdkxxk/

gplace(Z,Y,X,W,V}:-
noun_phrase(Z,Y,X,X,W,V).

Jhk*kkxkkkk REL CLAUSE ***kkkkiksk/

relative_clause(Z,Y,T,T&X,[W|V],U):-
word used(W),
rel clause(W),
verb phrase(z,Y,X,V,U).

/********** GDETERMINER **********/
gdeterminer(Z,Y,X,W,all(Y,indefinite(Y),X=>W),[V|U],U):—
word used(V),
determiner{Z,universal,V).
gdeterminer(Z,Y,X,W,exists(Y,indefinite(Y),x&W),[VlU],U):—
word _used(V),
determiner{Z,existential,V).
gdeterminer(singular,Z,Y,x,exists(z,definite(Z),Y&X),
[the|W],W):—
true.
gdeterminer(plural,Z,Y,X,all(z,definite(z),Y&X),[thelW],W):—
true.
gdeterminer(plural,Z,Y,X,all(z,indefinite(Z),Y=>x),W,W):-
true.

JrEKERIKkk% GNOUN ***kkkkkkk/

gnoun{(Z,Y,X,W,V):-
gnoun0(2z,¥,X,W,V).
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/********** GNOUNO **********/
gnounO(singular,Z,f(Y,Z),[le],W):-
word used(X),
noun{X,Y).
gnoun0{plural,s, £(Y,2),[X[W],W):-
word used(X},
plural(v,X),
noun(Vv,Y).
gnounO(plural,z,f(Y,Z),[XIW],W):—
word used(X),
name{X,V),
append(U,[105,101,115]1,V},
append(U,(121},T),
name(s,T),
noun(s,Y}.
gnounO(plural,Z,f(Y,z),[XlW],W):—
word used(X),
name(X,V),
append(U,[115],V),
name(T,U),
noun(T,Y).

JREkFkkkkkk GADJECTIVE **kkkdkixk/

gadjective(Z,Y,f(x,Y),[WIV],V):—
word_used(w),
adjective(W,X).

Jk*kkhkkkkx GPROPER NOUN ¥ kkkkk*k/

gproper_noun(_,z,proper_noun(Z),[wholxl,x):—
var(2).
gproperﬁnoun(singular,Z,proper_noun(z),[le],x):-
proper_noun(Y,2}),
word used(Y).
gproper_nounTplural,Z,proper_noun(z),[Y|x],x):—
word_used(Y},
plural(w,Y),
proper noun(W,2},
not noun(w,v).

Sx¥kkkdkkkkk TRANS VERB *kxkkkkdxk/

trans_yerb(singular,Z,Y,f(W,Z,Y),[W|X],x):-
/*word used(W),*/
verb be(w,W).
trans_verb(pIural,z,Y,f(v,Z,Y),[W|X],X):—
/*word_used(W),*/
verb be(V,W),
plural(w).
trans_yerb(singular,Z,Y,f(x,Z,Y),[W[V],V):—
word used{W),
verb(W,X),
transitive(W).
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trans_verb(plural,Z,Y,f(X,Z,Y),[WlV],V):—
word used(W),
plural(u,w),
verb(U,X},
transitive(U).
trans_verb(plural,z,Y,f(x,Z,Y),[WlV],V):—
word used(W),
nane(W,U0),
append(U,[115],T),
name(S,T),
verb(5,X),
transitive(S).

JxKkKxkkkkkkx INTRANS VERB **kkhkxkkk/

intrans_verb(singular,z,f(Y,Z),IX|W],W):—

word used(X),

verb(X,Y),

intransitive(X).
intrans_verb(plural,z,f(Y,Z),[X|W],W):-

word used(X),

plural(Vv,X),

verb{V,Y},

intransitive(V).
intrans_verb(plural,z,f(Y,Z),[X|W],W):—

word used(X),

name(X,V),

append(V,[115],0),

name(T,U),

verb(T,Y),

intransitive(T).

/********** QUAN PRONOCUN **********/
quan_pronoun(sinEular,Z,Y,exists(Z,indef1nite(z),f(W,Z)&Y),
IXIV],V):—
word used(X),
pronoun{existential , X,W).
quan_pronoun(singular,Z,Y,all(Z,indefinite(z),f(W,Z)u>Y),
[XIV],V):—
word used(X),
pronoun{universal,X,W).

JRukdkkakrk CONJUNCTION ***%kikkdx/

conjunction(z,Y,2&¥,[and], [and|X],X):~
true.

conjunction(z,Y,zZ#Y,{or],[or|X],X):-
true.

conjunction(z,Y¥,”(2&Y),[nor]),[nor|X],X}):~-
true.
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Jkkkkkkkxxkx CP CLASS NAME_NOT *hkkkkkkkx/
cp_class_name_ﬁot(Z,Y,"X,W,V):—
class_name_not(z,Y,X,W,V).

Jkkkkkkdkkk CLASS NAME NOT **xkkkkxk%/

class_name_pot(singular,Z,Y,[a|x],W):—
gnoun_not(singular,Z,Y,X,W).
class name_not(singular,Z,Y,[an[x],W):—
~ gnoun_not(singular,z,Y,X,W).
class_name_not(plural,Z,Y,x,W):—
gnoun_not(plural,Z,Y,X,W).
class_name not(2,Y,X,W,V):-
gadjective(2,Y,X,W,V).

/*%kkkxkkkk NOUN PHRASE NOT kkkkkhkkdk /

noun_phrase_not(Z,Y,X,W,V,U):-
gdeterminer_no(Z,Y,T,S,W,V,R),
gnoun(Z:Y:T:RaQ):
relative#clause(Z,Y,X,S,Q,U).

noun_phrase_not(z,Y,"X,W,V,U):—
gdeterminer_no(Z,Y,T,"X,W,V,S),
gnoun(Z,Y¥,T,5,U).

nounﬂphrase_not(Z,Y,X,W,V,U):—
gdeterminer_no(z,Y,T,X,W,V,S),
gnoun(Z,Y,T,S,U).

JkxFxkxxkxk CP VERB_PHRASE_NOT Kk khkhkhk /

cp _verb phrase not(Z,Y,X,W,V):-
verb phrase_not(z,Y,X,W,V).

J¥**kkkkkkxk VERE PHRASE_NOT kkkkRRXK*k /

verb phrase not(Z,Y,X,wW,V):-
trans verb(z,Y,U,f(is,Y,U),w,T),
neqatif(T,S),
cpﬂclass_name(z,Y,X,S,V).
verb phrase not(Z,Y,X,W,V):-
auxiliary{(z,w,U),
negatif(u,T},
trans_verb(plural,Y,S,R,T,Q),
cp_noun phrase(P,S,R,X,Q,V).
verb phrase not{Z,¥,X,W,V):-
auxiliary(z,W,U),
negatif(u,T),
intrans verb{plural,Y,X,T,V).
verb_phrase not{z,Y,X&W,V,U):-
auxiliary(z,v,T},
negatif(T,Ss),
intrans_verb(plural,Y,X,S,R),
glocator(Y,W,R,U).

400
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verb_phrase_ not(Z,Y,X,W,V):-
auxiliary(z,W, U),
trans verb(plural Y,t,5,U,R),
cp_noun phrase(Q T,”S,X,R,V}.
verb_phrase_not{z,Y,"X,W, V)-—
aux111ary(z W, U),
intrans verb(plural ¥, X, U V).
verb_phrase__ not{z,Y,” (X&W),V, U)
auxiliary(2,V,T),
1ntrans_verb(p1ural,Y,X,T,S),
glocator(¥Y,w,5,U).
verb phrase not(2,Y,X, W V):-
trans verb(z y,u,f(is,Y,U),W,T),
cp_class_name not(Z Y,X,T, V)
verb_phrase not(Z,Y,X, LW, V)
trans verb(Z Y,u,T,w,S8),
cp_ noun phrase(R u,”T,X,5,V).
verb phrase not{Z,Y,"X,W,V):-
intrans verb(Z Y.X,W,V).
verb phrase not(z,Y, (X&W),V,U)
intrans _verb(Z,Y X,V,T),
glocator(Y W, T U)

SrFkkkkkkkk NEGATIF *xkdkkkkkk/

negatif([not|Z},2):-
true.

JRkkxxkkdkkk AUXILIARY ***kkkkkkk/

auxiliary(plural,ido|2],Z):-
true.

auxiliary(singular,[does}z]),Z):~
true.

/********** GDETERMINER NO **********/
gdeterminer . no{singular,Z,Y,X,all(%,indefinite(2}, Y=>X),
[no|W],W):-
true.

JRxx Kk *Kkk k% GADJECTIVE _NOT *k¥kkakkkk/
gadjective not(Zz,Y,X,W,V):-

gaHjectlve notO(Z Y,X,W,V).
Jxkkkkkkkkx GADJECTIVE NOTQ **kkkkkkkkk/
gadjective not0(z,Y,£(X,Y),[W|V],V):-

word used(w),
adjective(W,X).

401
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JRxkkFxkkk* QUAN PRONOUN_NOT Kkkkkhrkkk /
quan_pronoun_not{singular,Zz,¥,
exists(z,indefinite(z),f(w,z)&Y),[XIV],V):-
word used(X),
pronoun{existential ,X,W}.
quan_pronoun_not(singular,z,Y,
all(z,indefinite(2),£(wW,2)=>Y),[X|V],V):-
word used(X},
pronoun(universal,X,W).

khkkkkkkhkhkk UN T % % %k % % Kk ok ok kR

/ GNOUN_NO /

gnoun_not(Z,Y,x,W,V):—
gnoun0(Zz,Y,X,W,V).
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Jkkxkkkkkkk SENTENCE *xk*kkkkikk /

sentence(Z,Y,X):-

statement phrase(Zz,Y,X).
sentence(Z,Y,X):

question phrase(Z,Y,X).

Jhkkkkkkkkk STATEMENT PHRASE **kkkxkkk# /

statement phrase(2,Y,X):
noun phrase(w v, U Z,Y,T),
cp_verb phrase(w v, U T X).
statement phrase(Z,Y,X):
noun_phrase_ not(W v,u,2,Y,T),
cp_ verb phrase not(W v,u,T,X).

Jxkkkxkkkkk CP CLASS NAME *#kkkkkkkk/

cp_class_name(z,Y,X,W,V):-
class name(Z Y, X,W, V).

Jkkkkkkkkkk CLASS NAME **kkskkkkk /

class name(singular,z,¥,[a|X],W):-
gnoun(s1ngu1ar Z2,Y,X,W).

class name(singular,2,Y, [an|X] W)yz=
gnoun(51ngular Z Y, X W)

class name(plural,z,¥,X W) -
gnoun(plural z Y,X,W).

class _name(Z,Y,X,W,V):-
gadjective(Z,Y,x,w,V).

J**kkkkkkkk CP NOUN PHRASE ***xxkxkkxkkx/
cp_noun_phrase(z,Y¥,X,wW,V, U):

noun phrase(z Y,X,W, V u).

cp_noun phrase(z,Y¥,”X,W,V,U):-
noun_phrase _ not(Z Y, X,W,V,U),
cp_noun _phrase(z,Y,X,W,V U)
noun phrasa not(Z Y, "X,w,V,U).

Jhkkkxkkkkk NOUN PHRASE **xkkkkkkk/

noun_phrase(z,Y,X,exists(Y,R,W),V,U):-
gproper noun(z Y,R,V, T),
relative clause(z Y,X,W,T,U).
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noun_phrase(Z,Y,x,exists(Y,U,x),W,V):-
gproper noun(2,Y,U,W,V).
noun_phrase(Z,Y,X,W,V,U):—
gdeterminer(Z,Y,T,S,W,V,R),
gnoun(Z,Y,T,R,Q),
relative clause(Zz,Y,X,5,Q,U}.
noun_phrase(Z,Y,x,W,V,U):—
gdeterminer(Z,Y,T,X,W,V,S),
gnoun(z,Y¥,T,S,U).
noun_phrase(z,Y,x,X,W,V):-
gnoun(Z,Y,X,W,V).
noun_phrase(Z,Y,x,W,V,U):—
quan_pronoun(Z,Y,T,W,V,S),
relative_clause(Z,Y,X,T,S,U).
noun_phrase(Z,Y,x,W,V,U):—
quanﬁpronoun(Z,Y,X,W,V,U).

/***xkxkkkx CP_VERB_PHRASE Kkkkkhkkdk /

cp_verb_phrase(z,Y,X,W,V):-
verb_phrase(Z,Y,x,W,V).

/********** VERB PHRASE **********/
verb_phrase(z,Y,i,W,V):—
trans_verb(Z,Y,U,f(is,Y,U),W,T),
cp_class_name(Z,Y,X,T,V).
verbﬂphrase(Z,Y,x,W,V):—
trans_verb(z,Y,U,f(is,Y,U),W,T),
glocator(Y,X,T,V).
verb_phrase(z,Y,X,W,V):-
trans_verb(Z,Y,U,T,W,S),
cp_noun_phrase(R,U,T,X,S,V).
verb_phrase(Z,Y,x,W,V):—
intrans_verb(z,Y,X,W,V).
verb_phrase(z,Y,X&W,V,U):-
intransﬁverb(Z,Y,X,v,T),
glocator(Y,w,T,U).
verb_phrase(z,Y,X,W,V):-
trans verb(z,Y,u,£f(is,Y,U0),w,T),
negatif(T,S),
cpwclass_name not(2,Y¥,X%X,8,V).
verb_phrase(z,Y,x,W,VT:-
auxiliary(z,wW,U),
negatif(u,T),
trans verb(plural,y,Ss,R,T,0),
R\=f(is,_,_ ), /* to prevent ’do <not> is
cp_noun_phrase(P,S,"R,X,Q,V).
verb_phrase(Z,Y, X,W,V):-
auxiliary(z,W,U),
negatif(u,T),
intrans_verb(plural,Y,X,T,V).
verb_phrase(Z,Y,"(X&W),V,U):—
auxiliary(z,v,T),
negatif(T,S),
intrans”verb(plural,Y,X,S,R),
glocator(Y,W,R,U).

*/

404
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J*kkkkxxkx* GLOCATOR kkhkkhkkxk /
glocator(Z,Y,[XlW],V):-
locator(X,U},
noun_phrase(T,S,f(U,z,s),Y,W,V).

/********** GPLACE **********/

gplace(z,Y,X,W,V):-
noun_phrase(Z,Y,x,x,W,V).

Jhkkkkkxkk%x REL CLAUSE **kkkikkik/
relative_clauseTZ,Y,T,T&X,[W|V],U):—
rel clause(W),
verb phrase(3z,Y,X,V,U).

/********** GDETERMINER **********/
gdeterminer(z,Y,X,W,
all(Y,indefinite(Y,coverage(Coverage)),X=>W),[V|U],U):—
nonvar(v),
determiner(2,universal,Vv,Coverage).
gdeterminer(2,Y,X,W,
exists(Y,indefinite(Y,coverage(Coverage)),X&W),[VtU],U):—
nenvar(v),
determiner(Z,existential,Vv,Coverage).
gdeterminer(2,Y,X,W,
all(Y,indefinite(Y,coverage(Coverage)),X=>W),[VIU],U):-
var(Vv),
determiner_coverage(Z,universal,V,Coverage).
gdeterminer(2,Y,X,W,
exists(Y,indefinite(Y,coverage(Coverage)),X&W),{V|U],U):—
var(v),
determiner_coverage(z,existential,V,Coverage).
gdeterminer(singular,z,Y,X,
exists(Z,definite(Z,coverage(10)),Y&X),[thelW],W).
gdeterminer(plural,z,¥Y,X,
all(z,definite(z,coverage(10)),YsX),[the|W],W).
gdeterminer{plural,Z,¥,X,
all(z,indefinite(z,coverage(70)),Y-)X),{VIW],[V]W]}:—
W==vho.

determiner_coverage(Z,Quantifier,V,Coverage):—
integer(Coverage),
determiner(Z,Quantifier,Vv,Coveragel),
Coveragel=Coverage.

determiner_coverage(Z,Quantifier,V,Coverage):—
integer(Coverage),
determiner(z,Quantifier,V,Coveragel),
Coveragel<Coverage,!.

determiner_coverage(z,Quantifier,V,Coverage):-
nonvar (Coverage),
determiner{Z,Quantifier,V,Coveragel),
Coveragel=<50.
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Jhhkkkdkkik GNOUN **hkkikkix/
gnoun(z,Y,X,W,V):-
gnoun0(Z,Y,X,W,V).

/********** GNOUNO **********/
gnoun@(singular,Z,£(Y,2),[(X|W],W):-

nonvar(X),

noun{(X,Y).
gnoun0O(singular,z,£(Y,2z),[X|W],W):-

var{X},

noun(X,Y),

X==Y. /* to prevent X={what,which} */
gnounO(plural,z, f(Y,2),[X|W],W):-

nonvar(X),

plural(v,X),

noun(Vv,Y)}.
gnoun0(plural,2,£(Y,2),[X|W],W):~-

var(X),

noun(v, Y},

V==Y,

plural(v,X}.
gnoun0(plural,z, £f(Y,2),[X|W],W):-

nonvar(X),

name(X,V),

append{U,[105,101,115)},V),

append{U,[121],T),

name(S,T),

noun{s,Y).
gnoun((plural,z,£f(Y,2),[X|W],W):-

var(X),

noun(v, Y},

V==Y,

name(V,U),

append(T,(121],U0),

append(T,{105,101,115],s),

name(X,8).
gnoun0(plural,z,f(Y,2),[X|W],W):-

nonvar({X),

name{X,V),

append(U,[115],V),

name(T,U},

nouni{T,Y).
gnounO(plural,z,£(Y,Z),[X|W],W):-

var(X),

noun(V,Y),

V==Y,

not(plural(v,vl)),

name(V,U},

append(U,[115],T),

name(X,T).

406
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JRkkkkkxkkk GADIJECTIVE **kkkkkkikk /

gadjective(z,Y,£(X,Y),[W|V],V):-
adjective(W,X).

JHkkkhkkhkk GPROPER NOUN ***kkkkxdx/

gproper noun(Arbitarary,Z,proper_noun(Z),[wholx],X):—
“wvar(z).
gproper noun{singular,2,proper_ noun(Z),[¥|X],X):-
proper noun(Y,Z).
gproper noun{plural,Z,proper_noun(Z),{Y¥|X],X):-
“nonvar{Y),
plural(w,Y),
proper noun(W, Z),
not (noun(W,V)).
gproper_noun(plural,Z,proper_noun(Z), [YiX],X):~-
“wvar(Y),
proper noun{w,2),
plural{w,y),
not (noun{w,v)).

JRkkkkkkkkk TRANS VERB **¥x¥xkkkkk/

trans_verb(singular,Z,Y, f(w,2,Y),[W|X],X):-
verb be{W,W).
trans_verb(plural,z,¥,£(V,2,Y),[W]X],X):-
verb be(V, W),
plural(w).

trans verb(51ngu1ar 2,Y,£(X,2,Y),[Wlv],V):-
verb(W,X),
transitive(W}.
trans verb(plural,Z,Y, f(X,z,Y),[W|V],V):-
plural(U, W),
verb{U,X),
transitive(U).
trans_verb(plural,z,Y,f(X,3, Y),w|v],v):-
nonvar (W),
name(W,U),
append(Uu,[115],T),
name(S,T),
verb(s,X},
transitive(s).
trans_verb(plural,z,Y,f(x,z,Y),[WiV],V):—
var(w),
verb(U,X),
transitive(U),
name(U,T),
append(s,[115],T),
name(W,S).
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/********** INTRANS VERB **********/
intrans verb(singular,z,f(Y,z),[X|W]},W):-

verbh(X,Y),

intransitive(X).
intrans_verb(plural,z,f(Y,2),[X|W],W):-

plural(v,X),

verb(v,Y),

intransitive{V).
intrans verb(plural,Z,£(Y,Z),[X|W],W):-

nonvar(X),

name(X,V),

append(Vv,[115],U0),

name(T,U),

verb(T,Y¥Y),

intransitive(T).
intrans_verb(plural,z,f(Y,2),[(X|W],W):-

var{X),

verb(v,Y),

intransitive(V),

name(V,U),

append(T,[115],U)},

name(X,T).

/********** QUAN PRONOUN **********/
quan_pronoun(singular,2,Y,
exists(Z,indefinite(Z,coverage(Coverage)),f(W,Z)&Y),[X|V],V):-
nonvar(X),
proncun{existential,X,W,Coverage).
quan pronoun(singular,2,Y,
all(z,indefinite(Z,coverage(Coverage}),f(W,2)=>Y),[X|V],V):-
nonvar(X),
pronoun(universal,X,W,Coverage}.
quan pronoun(singular,z,Y,
exists(z,indefinite(2,coverage(Coverage)),f(W,z)&Y),[X|V],V):-
var(X),
pronoun_coverage(existential,x,W,Coverage).
quan_pronoun(singular,Z,Y,
all(z,indefinite(Z,coverage(Coverage)),f(W,2)=>Y),[X|V],V):-
var(X),
pronoun coverage(universal,X,W,Coverage).

pronoun_coverage(Quantifier,X,W,Coverage}:-
integer(Coverage),
pronoun(Quantifier,X,W,Coveragel),
Coveragel=Coverage.

pronoun coverage(Quantifier,X,W,Coverage):—
integer{Coverage),
pronoun(Quantifier,X,W,Coveragel),
Coveragel<Coverage,!.

pronoun_coverage(Quantifier,X,w,Coverage):-
nonvar(Coverage),
pronoun{Quantifier,X,W,Coveragel},
Coveragel=<50.
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/********** CONJUNCTION **********/

conjunction(Z,Y,Z&Y,[and],[andlx],x):-
true.

conjunction(Z,Y,z#Y,[or],[or|x],x):—
true.

conjunction(Z,Y,"(Z&Y),[nor],[norlx],x):-
true.

Jkkkkkkxkk® CP CLASS NAME NOT **¥kikdkidk/

cp_class_name_not(Z,¥Y, X,W,V):-
class name_not(z,Y,X,W,V).

Jhkxkkkkkkx CLASS NAME NOT **kkkkkikx/

class_name_not(singular,z,Y,[a|x],W):-
gnoun not(singular,Z,Y,X,W).
class_name_nof(singular,Z,Y,[an|x],w):—
gnoun_not(singular,Z,Y,X,W).
class_name_not(plural,z,Y,X,W):-
gnoun not(plural,z,Y,X,W).
class_name not{z,Y,X,W,V):-
gadjective(Z,Y,X,W,V).

J*¥kxxx*k*x NOUN PHRASE NOT Akkhkhkkkhk /

noun_phrase_not(Z,Y,X,W,V,U):—
gdeterminer_no(Z,Y,T,S,W,V,R),
gnoun(szrTrRrQ) '
relative_clause(z,Y,X,S,Q,U).

noun_phrase_not(Z,Y,”X,W,V,U):-
gdeterminer_no(z,Y,T,"X,W,V,S),
gnoun{z,Y¥,T,S5,U).

noun_phrase_not(Z,Y,X,W,V,U):—
gdeterminer_no(Z,Y,T,X,W,V,S),
gnoun(z,Y,T,S,U).

/**k¥xxkkxx CP_VERB_PHRASE_NOT Khkhkkkdkk /
cp_verb phrase not(Z,Y,X,W,V):-
verb phrase_not(z,Y,X,W,V).

/********** VERB PHRASE NOT **********/
verb_phrase_not(f,Y,X,WTV):—
trans verb(Zz,Y,U,f{is,Y,U0),W,T},
negatif(T,S), .
verb phrase not{(z,Y,X,w,V):-
auxiliary(z,w,U),
negatif(u,T),
trans verb{plural,Y,s,R,T,Q),
R\=f(-i_5 r_r__) ’
cp_noun_phrase(P,S,R,X,Q,v).
cp_class_name(Z,Y,X,S,V).

409
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verb phrase not{Z,Y,X,W,V):-
auxiliary(z,W,U)},
negatif(Uu,T),
intrans verb(plural,Y¥,X,T,V).
verb phrase not(z,Y,XswW,V,U):-
auxiliary(z,V,T),
negatif(T,S),
intrans_verb(plural,Y,X,S,R),
glocator(Y,w,R,U).
verb phrase not(Z,Y,X,W,V):-
auxiliary(Z,W,U),
trans verb(plural,Y,T,S,U,R),
S\=f(-{50_:__) '
cp_noun phtase(Q,T,”S,X,R,V}.
verb phrase_not(z,Y,"X,W,V):-
auxiliary(z,W,U),
intrans verb(plural,¥,X,U,V).
verb phrase not{z,¥,” (XaW),v,U):-
auxiliary(z,Vv,T),
intrans_verb(plural,Y,X,T,s),
glocator(Y,W,S,U).
verb_phrase_not(z,Y,X,W,V):w
trans_yerb(z,Y,U,f(is,Y,U),W,T),
cp_class_name_not(Z,Y,X,T,V}.
verb_phrase_not(z,Y,X,W,V):—
trans_verb(Z,Y,U,T,W,s),
cp_noun phrase(R,U,”T,X,S,v).
verb_phrase_notTZ,Y,"X,W,V):—
intrans verb(z,Y,X,W,V).
verb_phrase_poth,Y,"(X&W),V,U):—
intrans_verb(Z,Y,X,V,T),
glocator(Yy,w,T,U).

Jhkkkkkkkkx NEGATIF *¥xkkkxkik*/

negatif([not|2],2):-
true.

/********** AUXILIARY **********/

auxiliary(plural,[dolz],z):-
true.

auxiliary(singular,[does|Z],Z):-
true.

J*kkxkkk%kk GDETERMINER NO kkkkkkkkkk/
gdeterminer no(singular,2,Y,X,

all(z,iﬁdefinite(Z,coverage(50)),Y=>X),[n01W],W).

gdeterminer no(singular,z,¥Y,X,

410

all(z,iﬁdefinite(Z,coverage(Coverage)),Y=>x),[No]W],W)

var(No},
Coverage=<50,
No=no.
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Jrkkkwkkkkk GADJECTIVE NOT *kkkkkkikk/
gadjective not(Z,¥,X,W,V):-
gadjective not0(2,Y,X,W,V).

Jhkxkkkkxk* GADJECTIVE NOTQ *dkkixkdkx/
gadjective not0(z,Y,£(X,¥),[W]V],V):-
adjective(W,X).

JkkkkkKxrkx% QUAN PRONOUN NOT **#kkkxkkk/

quan_pronoun not(singular,2,Y,
exists(Z,inaefinite(z,coverage(Coverage)),f(W,Z)&Y),[XlV],V):—
neonvar(X),
pronoun(existential,X,W,Coverage).
guan pronoun not{singular,z,Y,
aTl(z,indefinite(Z,coverage(Coverage)),f(W,Z)-)Y),[XlV],V):-
nonvar(X),
pronoun(universal,x,W,Coverage).
quan_pronoun not(singular,Zz,Y,
exists(z,inHefinite(Z,coverage(Coverage)),f(w,z)&Y),[Xivl,V):—
var(X),
pronoun_coverage(existential,X,W,Coverage).
quan pronoun not(singular,z,Y,
alT(Z,indefinite(z,coverage(Coverage)),f(W,Z)=>Y),[x|V],V):—
var(X),
pronoun_coverage(universal,X,W,Coverage).

JRkkdkkxkkd GNOUN NOT **kkkkkkskk/

gnoun not(2,Y,X,W,V):-
gnoun0(z,Y,X,W,V).







