
LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TITLE

-------- __ !:lA~~~)---~-~-----------------

I ACCESSION/COPY NO

------------------ --~ ~§"~~-v-~L---------- ------
VOL NO CLASS MARK

r_- r ·-.

FAULT DETECTION AND RECTIFICATION ALGORITHMS

IN A QUESTION-ANSWERING SYSTEM

BY

ABDUL RAZAK HAMDAN

A Doctoral Thes1s

subm1tted 1n part1al fulf1lment of the requ1rements

for the award of Doctor of Philosophy

of the Loughborough University of Technology

April, 1987

(Sha' ban, 1407AHl

Supervisor: DR C.J.HINDE

Department of Computer Stud1es

0 by Abdul Razak Hamdan, 1987

,~:--~--::~f.~1i~l '1 ' .v~, ,.,,...---~ ••

IN THE NAME OF ALLAH
THE MERCIFUL THE COMPASSIONATE

0 LORD, ADVANCE NE IN KNOWLEDGE

Khas untuk (Ded1cated to):

Ayah. Bonda dan Bonda Mertua Ku

Z1

Nazrul. A1zat.

DECLARATION

I declare that I am responsible for the work submitted In

this thesis, and that the origlnal work 1s of my own except

as spec1fied 1n acknowledgements or In footnotes, and that

ne1ther the thesis nor the original work contained therein

has been submitted to this or any other Institution for a

higher degree.

Abdul Razak Hamdan

RCKHOHLED6£HEHT

First of all, my greatest and ult1mate debt and gratitude are

due to ALLAH, the almighty God. W1thout th1s will and great

help this knowledge, which must be seen as very small 1n H1s

presence, would never be existed.

Beyond these sent1ments, I thank my superv1sor, Dr C.J.HINDE,

for h1s execellent gu1dance, adv1ce amd w1ll1ngness to ass1st

me continuously throughout the programme of th1s work.

I acknowledge also, w1th grat1tude, the Un1versit1 Kebangsaan

Malays1a and JPA, Malaysia for their f1n1c1al support to

complete th1s proJect.

To my w1fe, I w1sh to express my endless grat1tude for her

pat1ent and great support 1n every aspect 1n wh1ch she could

help. I would l1ke also to express my thanks to my children

for the1r pat1ence and also to my parents for br1ng1ng me up.

Many people have helped me throughout the durat1on of th1s

research whom I wish to thank and whose names cannot be l1sted

here.

May Allah bless all of them.

ABSTRACT

A Mal ay proverb "J1ka se sat di huJung Jalan, baleklah

get lost at the end of kepangkal Jalan" roughly means "if you

the road, go back to the beg1nn1ng". In going back to the

beg1nning of the road, we learn our

w1ll not repeat the same mistake

1nvestigates the use of formal logic

reason1ng why we could not infer or

from a question posed to a database.

mistakes and hopefully

again. Thus, th1s work

as a pract1cal tool for

deduce a correct answer

An extens1on of the Prolog 1nterpreter 1s written to mechanise

a theorem prov1ng system based on Horn clauses. This extens1on

procedure w1ll form the bas1s of the quest1on-answer1ng

system Both 1nput into and output from th1s system 1s 1n the

form of pred1cate calculus. Th1s system can answer all four

classes of quest1ons as class1f1ed by Chang & Lee [19731.

A natural language (a subset of Engllsh) 1nterface wh1ch will

be used 1n the quest1on-answer1ng system to enable the 1nput

and output in the form of that language is d1scussed

especially 1n the context of us1ng a reversible grammar. The

reversible grammar wh1ch 1s based on Def1nite Clause Grammar

rules 1s used both to analyse that language 1nto pred1cate

calculus and also to synthes1ze a sentence in that language

from predicate calculus.

A techn1que to f1nd out why we could not get the right answer

to the quest1on or enqu1ry posed to a data base 1s explored

and explained. At f1rst, a fault detect1on procedure which 1s

an extension of the above quest1on-answer1ng system is wr1tten

and discussed. Then a rectif1cat1on procedure wh1ch w1ll

rect1fy the cause of failure 1n gett1ng the r1ght answer is

1nvest1gated and reported here.

The system is capable of checking the non-existence of

knowledge base clauses (factual or ruled), detect1ng the wrong

references in the quest1on and also making appropr1ate

suggest1ons. In add1t1on, the system can also f1nd the set of

cond1t1ons 1n order for certa1n rules to be true

CONTENTS

Chapter 1: INTRODUCTION

PAGE
NO.

1.1 The Problem 1
1.2 Results 2
1.3 Related work:

1.3.1 Logic programming and theorem prover 5
1. 3. 2 Debugg1 ng 7

1.4 Outl1ne of the thes1s 11

Chapter 2: FORMAL LOGIC AND LOGIC PROGRAMMING

2.1 Predicate Calculus 13
2.2 Other logics and knowledge representations:

2.2.1 Other logics 19
2.2.2 Other structured knowledge representations 30

2.3 Resolution 40
2.4 Control Strategies for the refutation process 49
2.5 Logic Programming 62
2.6 A logic programming language: PROLOG 69

Chapter 3: A PROLOG-BASED RESOLUTION

3.1 Introduction 74
3.2 Converting a predicate calculus statement

Into Horn clauses 74
3.3 The refutation process 88

3.3.1 Setting up a database (knowledge base) 88
3.3.1.1 Knowledge clauses 90
3.3.1.2 Query clauses 93

3.3.2 Goal Formatting 97
3.3.3 The refutation procedures 102

3.3.3.1 Top level predicates 104
3.3.3.2 A depth-first method 111
3.3.3.3 A Breadth-first method 126
3.3.3.4 Comparison of the Depth-first

and the Breadth-first methods 141
3.4 Comment and conclusion 148

Chapter 4: NATURAL LANGUAGE INTERFACING

4.1 Introduction 150
4.2 Analysizlng an English sentence

into Horn clauses 152
4.2.1 Analysizing an English sentence Into PC 153
4.2.2 Transforming PC Into Horn clauses 157

4.3 Interfac1ng an English grammar Into a
question-answering system 164
4.3.1 A PC Input 165
4.3.2 An English sentence Input 166
4.3.3 The output procedures 167

4.4 Analysing and synthes1zing an Engl1sh

PAGE
NO.

sentence into and from PC 170
4.4.1 The trac1ng techn1que 172
4.4.2 The wording technique 180
4.4.3 The cond1t1oning techn1que:

"nonvar(X)" and "var(X)" 190
4.4.4 Comments on the analysing and

synthesiz1ng techniques 195
4.5 Comments 197

Chapter 5: A FAULT DETECTING ALGORITHM

5.1 Introduction
5.2 Software reliabllity
5.3 Program debugging
5.4 A Fault Detection Algor1thm
5.5 Comments

Chapter 6: A FAULT RECTIFICATION ALGORITHM

6.1 Introduct1on
6.2 A Rect1f1cation Algor1thm

6.2.1 The match1ng process
6.2.2 The suggest1on process

6.3 The l1nk up procedures
6.4 Examples
6.5 Comment

Chapter 7: A COMPLETE SYSTEM

199
201
207
215
233

235
237
240
249
263
274
284

7.1 Introduct1on 287
7.2 Interfac1ng w1th the English grammar 288

7.2.1 The tracing techn1que 289
7.2.2 The word1ng techn1que 290
7.2.3 The cond1t1on1ng techn1que 293
7.2.4 Comments on

the 1ncoporat1on of the three techn1ques 295
7. 3 Ex amp le 296
7.4 Comment 301

Chapter 8: CONCLUSION

8.1 Discussion and comment
8.2 Further work
8.3 Conclus1ons

REFERENCES

APPENDIX

303
306
308

309

321

CHAPTER 1

INTRODUCTION

1

1.1 The Problem

Logic programming which began 1n the early 1970's originated

largely from advances 1n automatic theorem prov1ng and

art1ficial intelligence. and in particular from the

development of the resolut1on princlple (Robinson[l965)).

Constructing automated deduction systems is. of course.

central to the a1m of achieving artific1al intelligence.

The key 1dea underlying log1c programming is programming by

descript1on. The programmer descr1bes

and lets the program choose specific

the appl1cation area

operations. Log1c

programs are easier to create and enable machines to explain

their results and actions.

One of the main Ideas of logic programming • wh1ch 1s due to

Kowalsk1 [19791 and [1979a). is that an algorithm consists

of two d1sjoint components. the log1c and the control. In a

typ1cal log1c programming system. we can also view that the

descript1on of the control as an appl1cat1on-independent

deductive inference procedure. Applying such a procedure to

a description of an appl1cat1on area makes 1t possible for a

machine to draw conclusions about the application area and

to answer questions even though these answers are not

explicitly recorded 1n the description. This capab1lity 1s

the basis for the technology of log1c programming.

Departing from Kowalski's point of view about algorithms. we

aim to wr1te a theorem prover based on Prolog to 1nclude

such controls as loop1ng control wh1ch Prolog lacks. thus

enabl1ng the users to concentrate on the logic of their

algor1thms or programs.

2

Logic also can be viewed as having three interpretations

(Lloyd[1984)). These interpretations are:

(a). Procedural interpretation.

(b) . Database interpretation.

(c). Process interpretation.

The second Interpretation means

regarded as a database thus we

that a logic program IS

obtain very natural way and

powerful generalisation of relational databases. Databases

may also contain some rules to describe the Information in

them. Thus we aim to write a question-answering system to

deal with such databases. However, we may be frustrated with

the unexpectedly unsuccessful query we have attempted. It

may be due to the non-existent fact or the lack of

knowledge. The other reason is that we may ask the wrong

question such that we cannot get the expected or required

result. So we attempt to rectify this matter. To rectifY

this matter, we divide the program Into two main algorithms:

[11 Fault detection algorithm.

[2) Fault rectification algorithm.

The first algorithm is to find the reasons and the second

one Will rectifY them. The main idea of both algorithms IS

stated in a Malay proverb which says "Jika sesat di hujung

jalan, baleklah ke pangkal jalan". The Malay proverb roughlY

means "If you get lost at the end of the road, go back to

the beginning". During the process of going back, we learn

all our mistakes and rectify them accordingly and hopefully

we Will not fall Into the same traps again.

We also attempt to incorporate a subset of English grammar

based on DCGS (Pereira and Warren[1980)) into the theorem

prover and the detecting and rectifying fault algorithms.

3

1. 2 Results

We have written a Prolog-based theorem prover with a looping

test which will terminate in any proving except in the case

of occur check. All the knowledge clauses are In the form of

Horn clauses after converting from PC. Following this

termination of the theorem prover, and by using the

backtracking techniques as implemented In Prolog, we are

able to detect faults which occurred at different levels of

any unexpectedly unsuccessful proving. The main Idea of the

detecting and rectifying fault algorithm IS as follows:

Ill read Q, the question to be proved.
121 convert the negat1on of g into Horn clauses.
(31 deduce an e1pty clause fro• each resulting Horn clauses

by assu•lnq any failed subgoal Is true
and record all fa1led subgoal.

141 Rect1fy each set of failed subgoals (reason clauses),

Algor1th1 I; The detecting and rect1fy!ng fault algor1th1s

Steps (3) and (4) are actually fault detect1on and fault

rect1f1cat1on respect1vely. Here, the fault detection

algorithm 1s blended together w1th the theorem prover. The

fault detected is a type of non-existent clause or fact. As

sa1d above that the fault detect1on algor1thm can 1solate

the fault at different levels. For example:

[l;-•eetslchang,nazrul,johorezool
I
I •eets!X1Y1!l;-ani•ai!Xl,lives!X,ll,person!Yl 1v1Sits!Y,!l
1/

[ll-anllallchangl 1liveslchang,;ohorezool 1personlnazrull 1visltslnazrul,;ohorezool
I [l•chang 1 Y•nazrul, l•;ohorezool

~---·--~------------~----------1 I I
[];-ani•allchang) []1-liveslchang,;ohorezool [l:-personlnazrull [l:-vlsltslnazrul 1johorezool

I I I I
I anhallchangl f11ls I personlnazrull fails
1/ 1/

[]1-[l []1-[l

Fig 1.2,11 The proving tree of '•eetslchang,nazrul,;ohorezool'

4

Referring to Fig 1.2.1 above and by using ordinary Prolog's

backtracking, we can only detect one non-existent clause or

fact. I.e "visits(nazrul,Johorezoo)". But by using the fault

detection algorithm. both non-existent clauses or facts. I.e

"llves(chang,Johorezoo)" and "vlslts(nazrul,johorezoo)". can

be detected where both of them are members of the same set

of reason clauses. All members of the same set of reason

clauses must be true In order the goal to be true, i.e In

this case. both reason clauses must be true in order the

query (goal) "meets(chang,nazrul,Johorezoo)" to be true.

The fault rectification algorithm assumes at first that the

query contains wrong references and If that IS not the case.

then it assumes that the database lacks knowledge. In the

first case. the matching IS carried out between the reason

clause and the knowledge base CKBJ clauses. The following

are some of the examples of the suggestions made by the

rectification algorithm:

!al 11 'Jchcrezcc' cl the quest1cn clause '•eets!chang,nazrul,Jchcrezccl' IS substituted w1th
'lcndcnzcc'

!bl 1f '1eets' cl the quest1cn clause 'leets!chang,nazrul,Jchorezcol' IS substituted w1th
'encounters'

!cl 1f the fcllcw1ng clauses are true:

llves!chang,Jchcrezccl
VIS!ts!nazrul,Jchcrezocl

!dl 11 'all!_!,,,,!' 1s replaced w1th 'ex1sts!_1, ••• l'

!el If 'every 1an' IS replaced With 'a 1an',

The system IS also able to accept Input In both PC and a

subset of English sentence. The example (e) above 1s

produced when the 1nput 1s 1n the form of an English

sentence. The type of the answer of the query w1ll depend on

the type of the 1nput. I.e either PC or English sentence.

5

1.3 Related work

1.3.1 Logic programming and automatic theorem prover

Log1c programm1ng wh1ch has begun 1n the early 1970's

or1ginated largely from advances 1n automat1c theorem

proving and art1f1cial 1ntell1gence. and in particular from

the development of the resolut1on prlnciple(Robinson£1965)).

The key 1dea underlying log1c programm1ng IS programming by

description. Logic programming differs fundamentally from

convent1onal programming In requiring us to descr1be the

logical structure of problem rather than making us prescribe

how the computer 1s to go about solv1ng them.

Building on work of Herbrand£19301. there was much act1v1ty

In theorem proving In early 1960's by Prawltz£19601,

Gllmore[1960J. Davis and Putnam[1960) and others. This

effort culm1nated In 1965 with the publication of the

landmark paper by Rob1nson [1965], which 1ntroduced an

inference rule called the resolut1on prlnciple which lS

part1cularly well-suited to automation on a computer. In

1972. Kowalski and Colmerauer were led to the fundamental

Idea that logic can be used as a programm1ng language.

Before that (1972). logic had only ever been used as a

specification or declarative

However. what Kowalski[19741

language In computer science.

showed 1s that log1c has a

procedural Interpretation. wh1ch makes 1t very effect1ve as

a programming language.

One of the main Ideas of logic programming . which 1s due to

Kowalski [19791 and [1979al. Is that an algorithm consists

of two disjoint components. the log1c and the control, i.e

6

"Logic+ control- Algorithm". Thus. Ideally, the progranuner

should only have to specify the logic component of an

algorithm and the control should be exercised solely by the

logic programming system. Unfortunately. this ideal has not

yet been achieved with current logic programming systems

(Lloyd[1984]). In order for this to be achieved there are

two broad problem which have to be solved. i.e control

problem (Genesereth et al. [1983]. Lloyd[1984]. Genesereth

and Ginsberg[1985]) and negation problem (Clark[1978].

Reiter[1978] and Shepherdson[1984]).

Apart from the procedural interpretation (Kowalski[1974]).

logic also has two other interpretations. I.e Database

interpretation (Lloyd[1983]; Gallaire and Minker[1978] and

[1981]; Gallaire et al. [1984]) and process Interpretation

(Clark and Gregory[1981] and [1983]; Shapiro[1983] and

Shapiro and Takeuchi[1983]).

Most logic programming system use clausal form. However.

logic programming is by no means limited to PROLOG which is

based on Horn clauses. Various non-clausal resolution have

been developed. for example. Storm [1974]. Wilkins [1974].

Bibel [1976]. Nilsson [1979]. Manna and Waldinger[1980].

Bowen [1982]. Murray [1982] and Stickel[1982l. Other methods

of non-resolution theorem-proving are such as natural

deduction (Bledsoe [1977]. Hanson et al. [19821. and. Haridi

and Sah1In[1983]) and matrices and connections (Prawitz

[1976]. Andrews [1981] and Bibel[1983]).

It IS clear that logic thus provides a single formalism for

apparently diverse parts of computer science. This range of

7

applicat1ons assures

become the fundamental

Th1s v1ew 1s strongly

that logical inference 1s about to

un1t of computat1on (Lloyd[1984)).

supported by the Japanese fifth

generat1on computer project where log1c programming has

been chosen to provide the core programming language for

this very amb1t1ous 10 years proJect (Moto-Oka[1982)).

1.3.2 Debugging

Computer software is also very costly 1n terms of money and

labour. Boehm[1976), Brooks[1975], Myers[1978), and Yourdan

and Constantine[1979) indicate that test1ng and debugging

alone represent approximately half the cost of new system

development. As error

now considered to be

detection

the major

development, it is worth spending

and error correction are

cost factors in software

effort to make sure that

the programs we are writ1ng are go1ng to work. The area of

computer program debugging 1s also one of the key phases in

the system software cycle.

Many mathemat1cal models such as the J-M model (Jel1nsk1 and

Moranda[1972)), the probab1l1st1c model (Shooman [1972)),

the execution-t1me theory model (Musa[l979)), Fault Removal

model (Littlewood [19811) etc (see Sallih [1986) for a

review of the sa1d models and others) have been developed

to describe the behav1our of software package errors and

then to get some measures from which the reliab1l1ty of

these software packages can be calculated.

Software reliability is important as hardware reliabil1ty as

the increas1ng usage of computer

cr1t1cal fields such as a1r

systems espec1ally in very

traffic control etc. For

8

example, 1n 1960 the US defence system software (NORADS) had

wrongly Identified the rising moon as a rocket from the

USSR. There IS a difference between these two reliability as

Littlewood[1980]. says "a hardware device IS certain to fail

eventually, whereas a program If perfect is certain to

remain failure free".

It has also been suggested that one way to eliminate the

need for debugging IS to provide a correctness proof of the

program. Naur and Randell [1969] suggested that we can

dispense with testing altogether when we have given the

proof of correctness of the program. But, Goodenough and

Gehart[1975] found seven bugs In a simple text formatter

program described and Informally proved by Naur [19691. So,

the Informal or formal proofs of program correctness do not

guarantee that the program IS correct.

However, as pointed out by Goodenough and Gehart [1975],

that the practise of proving program correctness IS useful

for Improving reliabilitY, but suffers from the same types

of errors as programming and testing, namely, failure to

find and validate all special cases relevant to a design,

Its specification, the program and Its proof. Gries [1981]

also agreed that even though we can become more proficient

In programming, we will still make errors, even If only of a

syntactic nature. Hence some testing will always be

necessary. But, he does not refer to the testing process as

debugging, and suggests that the test IS to Increase our

confidence In a program we are quite sure IS correct;

finding an error should be the exception rather than the

rule.

9

The area of debugg1ng crucial to software development and

ma1ntenance 1s semant1c debugging. Syntactic errors are

defined for the purposes of computer programmJng as errors

that compilers recognise. and the use of h1gh level

programming with a strong-typing mechanism. such as Pascal.

Algol-lJke languages will help toward find1ng syntactJc

errors. The idea beh1nd PASCAL and ALGOL 1s to move semantic

errors more and more into the syntactic areas. many errors

not spotted by FORTRAN would appear as syntactic errors in

ALGOL. Semantic errors are those that compJler cannot

recogn1se and the adoption of structured programmJng

techniques will help a l1ttle bit in removing such errors.

Vessey [1986] view debuggJng from either a process v1ewpoint

or a functional viewpoint. She also stud1ed the relation

between novice and expert programmers.

Adam and Laurent [1980] dJscussed a debuggJng system called

LAURA wh1ch have been designed to detect or localize the

errors 1t may conta1n. ShapJro[1982] also tr1ed to lay

theoretJcal foundations for program debugg1ng, w1th the goal

of partly mechan1s1ng th1s act1vity. In particular. Shapiro

attempted to formal1se and develop algor1thm1c solutions to

the following two quest1ons·

Ill HoN do Nt identify a bug 1n a progra1 that behaves Incorrectly?
121 HoN do Me f1x a bug, once one is Identified?

The algor1thms ShapJro developed are interact1ve, as they

rely on the ava1labil1tY of answers to such quer1es. He

integrated both diagnosJs and bug-correction algorithms into

a debugging algor1thm. A debugg1ng algorlthm accepts as

input a program (or empty one) to be debugged and a list of

input/output samples. which partly def1ne the behav1our of

the target program.

'

10

Rule learning techniques can also be cons1dered as

debugg1ng program techn1ques. The task tackled by rule

learning techn1ques is to modlfY a set of rules of the form

hypothes1s implies conclusion. This set of rules can be

considered as a program especially written in Prolog

clauses. The basic rule learning technique 1s as follows:

Until the rules are satisfactory•
1. Identify a fault with a rule
2. "edify the rule to re1ovt the fault.

Bundy et al. [1985] give an excellent rev1ew and comparison

of rule learn1ng techniques. Bundy et al[1985] also classlfY

these faults as factual or control one. Most identifying

faults techn1ques are by comparing the ideal trace (graph)

with a learning (program) trace (graph) (for eg.

Bradzil[1981]). Shap1ro's techniques as briefly described

above 1s also one of the technique to 1dentifY a fault. A

lot of techniques are used to modlfY the faulty rules such

as reorder1ng them (eg. Bradzil£1981]), adding extra

conditlon(s) to them (eg. Bradzil [1981], Waterman [1970]),

1nstant1ating them (eg. Bradz1l [1981], Shap1ro [1982]),

updat1ng them (eg. Waterman[1970], Mitchell et al. [1981] and

[1983]) or asking a ground oracle to the user

(Shaplro[1982] l.

In prov1ng a theorem or making an enquiry to the database,

we may also get negative answer due to some faults.

Bourne[1977] examined the frequency of spell1ng errors 1n a

sample drawn from 11 mach1ne-readable bibliographlc

databases and concluded that errors are not only 1n the

1nput quer1es, but also in the database itself.

11

1.4 Outline of the thesis

The target and the implementation language for the

algorithms and systems developed in this thes1s is Prolog.

Basic concepts of predicate calculus, other logiCS and

knowledge representations. logic programming and Prolog are

discussed in Chapter 2. Resolution concepts and the control

strategies for the implementation of the resolution are also

discussed in Chapter 2.

In Chapter 3, we develop a theorem prover based on Prolog.

The Prolog-based theorem prover Will accept an Input In the

form of PC which will subsequently be converted Into Horn

clauses. All the conversion processes and the Implementation

are described in this chapter. The theorem provers are

implemented and two search strategies are compared, i.e a

depth-first method and a breadth-first method.

Various techniques based on Definite Clause Grammars are

studied and compared In Chapter 4 for analysing and

synthesizing an English sentence from and to PC. This subset

of English grammar then IS Interfaced Into the theorem

prover developed In previous Chapter 3.

The fault detection and rectification algorithms which are

developed by extending the theorem prover Implemented using

a depth-first method are discussed in Chapter 5 and 6

respectively. Some examples are also given in Chapter 6.

In Chapter 7. a subset of English grammar discussed In

Chapter 4 is then Interfaced With the fault detection and

12

rectif1cat1on algorithms. Comments on the implementat1on of

var1ous techniques d1scussed in Chapter 4 and some examples

are given in this chapter.

A discuss1on of the thesis and suggest1ons of further work

are given 1n the last chapter. i.e Chapter 8.

CHAPTER

FORMAL LOGIC AND LOGIC PROGRAMMING

13

2.1 A Predicate Calculu•

In order to solve the complex problems encountered in

artificial Intelligence (AI). one needs both a large amount

of knowledge and some mechanism for manipulating that

knowledge to create a solution to a new Problems. A variety

of ways of representing knowledge (facts) have been

exploited in AI's problem solvers. Specific knowledge

representation models allow for more specific, more powerful

inference mechanisms that operate on them.

In many applications. the information to be encoded into the

global database of a production system originates from

descriptive statements that are difficult or unnatural to

represent by simple structures like arrays or sets of

numbers. Intelligent information retrieval. robot problem

solving, and mathematical theorem proving, for example,

require the capability for representing, retrieving and

manipulating sets of statements.

One particular way of representing facts or knowledge is the

language of logic. Logic IS a way of representing various

statements (propositions) about the world so that it would

be possible to formally check whether these representations

were valid or not.

The logical formalism is appealing because it immediately

suggests a powerful way of deriving new knowledge from old­

i.e mathematical deduction. In this formalism. we can

conclude that a new statement IS true by proving that it

follows from the statements that are already known. Thus the

14

1dea of proof can be extended to conclude a deduction, a way

of der1ving answers to quest1ons and solutions to problems.

In this proJect, a first order calculus (logic) is adopted.

The first order pred1cate calculus is a formal language 1n

wh1ch a wide variety of statements can be expressed.

Predicate calculus (PC) is a branch of symbolic logic, and

lS designed to express var1ous statements about the world.

Now, let us define what is a PC. A PC (Predicate Calculus

and not Personal Computer) is a language and 1t is defined

by its syntax. To specify a syntax we must spec1fy the

alphabet of symbols to be used in the language and how these

symbols are to be put together to form legitimate

expressions 1n the language. The leg1t1mate express1ons of

the PC are called the well-formed formulas (wffs).

2.1.1 The syntaK and semantics of atomic formulas

The elementary components of the PC language are constant

symbols, function symbols, var1able symbols and predicate

symbols set off by brackets, parentheses, and commas. For

example, the meaning of sentences is a proposltion which

consists of terms, which are of two types, predicate and

arguments. The pred1cates are the relat1on names and usually

correspond to verbs 1n sentences and arguments are the

objects that are related and usually correspond to nouns. In

the sentence below:

A1zat l1kes Nazrul

we have a relation (predicate) express 1n "likes" and two

obJects (arguments) express in "Aizat" and "Nazrul". Thus

15

"likes(Alzat,Nazrul)" could be a simple atom1c formula for

the above sentence. In the above ex amp le sentence. "Aizat"

and "Nazrul" are constants which 1nd1cate a particular

individual or class of ind1viduals. By using variables, 1t

may be poss1ble to expand the representation to stand for

different 1nd1viduals at d1fferent times, where the

1nd1viduals or 1ts class remains unspecified, for instance,

"likes(X,Y)" where X and Y are var1ables.

In general, atomic formulas are composed of predicate

symbols and terms. All constants and variables symbols are

terms. The function which its arguments are terms, is also

a term.

In the PC, a wff can be g1ven an 1nterpretation by assigning

a correspondence between the elements of the language and

the relations, entities, and funct1ons 1n the doma1n of

discourse. To each predicate symbol, we must ass1gn a

correspond1ng relat1on in the function symbol, a funct1on 1n

the domain. These ass1gnments def1ne the semant1cs of the PC

language. Once an 1nterpretat1on from an atom1c formula has

been defined, we say the formula has value T (true) just

when the correspond1ng statement about the doma1n 1s true

and that is has value F (false) JUSt when the corresponding

statement is false. So, all PC log1c must have either the

value "true"(T) or "false"(F).

16

2.1.2 Connectives

Atomic formulas are merely the elementary building blocks of

the PC language. We can combine atomic formulas to form more

complex wffs by using connectives such as "/\" (and),

"V"(or), "-->"(implies), "(--)"(equ1valent) and "-"(not).

Although ,_,. is called a connective, it is really not used

to connect two formulas. It is used to negate the truth

value of a formula from "true" to "false", and vice-versa. A

formula with ,_, in front of it is called a negation.

Formulas built by connecting other formula by "and" and "or"

signs are called conJunctions and d1sjunct1ons respect1vely.

A formula built by connecting two formulas with an "imPlies"

sign IS called an impl1cat1on and it usually represents

"If-then" statements. The left-hand and right-hand sides of

an implication are called antecedent (or cond1t1on) and

consequent (or conclus1on) respectively. If two formulas are

connected by "equivalent to" sign then it is called an

equivalence.

Any conjunctions or disJunctlons composed of wffs, and the

negation of a wff are also wffs. An implication and

equivalence are also wffs If both the antecedent and the

consequent are wffs.

The following are the truth table for the described

connectives above:

A B •A A 7\ ~ A ll B A-->B A<·-~B
T T F T T T T
T F F F T F F
F T T F T T F
F F I F F I I

T1blt 2.11 The truth tables

17

It can be seen from the above truth table that an

implicat1on has a value T if either the consequent has value

T (regardless of the value of the antecedent) or if the

antecedent has value F (regardless of the value of the

consequent): otherw1se the impl1cation has value F. This

definit1on of implicational truth value is sometimes at odds

w1th our intuitlve notion of the meaning of "imphes". For

example. the predicate calculus representation of the

sentence "If the sun 1s made of strawberry. then horse can

fly" has value T. The truth values of an 1mplication 1s

equivalent to "-A V B". Furthermore. "A<-->B" 1s equ1valent

to "(A-->Bl 1\ (B-->Al ".

An atom1c formula and the negat1on of an atomic formula are

both called literals. If the PC does not contain any

variables. then the PC 1s called propos1t1onal calculus. For

example. the sentence "he 1s s1ck. so he needs a doctor"

can be wr1tten in propos1t1onal calculus as "p-->q" where

p="he is s1ck" and q-"he needs a doctor".

A formula which is true under all its 1nterpretat1ons is

called a tautology (or a val1d formula). A formula is

invalid iff it 1s not val1d. i.e there exists an

interpretat1on under wh1ch it is false. A formula which is

false under all 1ts interpretat1on is called a contradiction

(or unsatisf1able or 1ncons1stent). A formula is cons1stent

(satisfiable) iff it is not incons1stent (unsatisfiable).

i.e there exists an interpretation under wh1ch 1t is true. A

formula F is said to be a logical consequence of a formula.

or set of formulas. s. if F 1s sat1sfied by all

interpretations which sat1sfy S.

18

2.1.3 Quantification.

To be able to account for modifiers such as brave in "brave

men .. , some not1on of 11 Who is", "who are", "which is" etc.

are needed. Moreover distinctions need to be made between

"the brave men", "brave men" or "the brave man" and" a

brave man". Quantifiers are used In PC to process these

variables. Quantifiers which indicates how many of

variable's instantiations need to be true for the whole

proposition to be true are of two types, namely universal

<V) and existential (3). "\J" is called the universal

quantifier because it talks about everything In the

universe and "3 " is the existential quantifier because It

talks about the existence of some objects.

Any expression obtained by quantifYing a wff over a variable

IS also a wff. The PC is called first order because it does

not allow quantification over predicate symbols or function

symbols. Thus formulas like "-\fp, p(X)" are not wffs in first

order PC, and this IS called as a second order logic or

higher depending the level of the quantification of the

predicate symbols (see next section).

19

2.2 Other lcgics and kncwledge representations.

In the last section we have described a classical logic. i.e

a predicate calculus (logic). and also its usage in

representing knowledge. In the following two subsections we

will discuss other logics and also other structured

knowledge representations in brief respectively.

2.2.1 Other lcgics.

As described In the last section, the predicate logics

(calculus) can be very useful for solving problems in a wide

variety of domains. Unfortunately, there are many other

Interesting domains where a Predicate logic does not provide

a good way of representing and manipulating the Important

information such as:

"It IS very cold today." How can relative degrees of cold

(or heat) be represented?

"Chinese people often have small eyes". How can the amount

of certainty be represented?

"If there IS no evidence to the contrary, assume that any

boy you meet knows how

we represent that one

the absence of another?

to

fact

ride a bicycle." How can

should be inferred from

"I know Nazrul thinks the Everton will win but I think they

are going to lose." How can several different belief

systems can be represented at once?

Another point is that the way predicate calculus (PC) makes

assumptions about the relationshiPS between conditions

(antecedents) and conclusions (consequents) do not apply to

20

common sense reasoning 1n that. it is never necessary to

withdraw any conclus1ons when addit1onal facts became known.

For example:

If we had proved that : A-->C

then C will continue to be true g1ven any additional

fact B i.e A&B -->C.

So PC's conclus1ons are add1tive (monotonlc) and never to be

revised. This is clearly not acceptable 1n the real world

where we often have to modlfY or withdraw conclus1ons as new

facts become ava1lable (non-monotonlc).

SummarllY, the use of log1c 1n automated knowledge

processing has rece1ved various cr1tic1sms, and generally

the most common be1ng

++That log1c 1s not expressive enough, 1.e that there

1s too great limit on what can be represented.

++ That logic cannot handle incomplete, uncerta1n,

1mprecise vague, and/or incons1stent knowledge.

++That the algorithms for manipulating knowledge,

which der1ve from logic are inefficient.

The mlsconception of the logic encompassing first order

prepositional and pred1cate logic (classical logic) only are

caus1ng such cr1tic1sms. In actual fact, there are many

other log1cs , most of which were specifically designed to

overcome certa1n def1cienc1es of classical

them as shown above) . However some of

criticisms could be arguably deserved.

logic (some of

the received

21

A logic cons1sts of a well-defined notation for the

representat1on of knowledge, together with well-deflned

methods for interpret1ng and manipulating the knowledge

wh1ch is represented. Therefore, Frost[1986] concludes that

people who criticise logic are unwittingly condoning the use

of ill-defined methods for knowledge processing.

A variety of techniques for handling these problems w1thin a

computer program have been proposed, including non-monotonic

logic, fuzzy logic, and probabilist1c reasoning. The use of

other logics are also employed such as many-sorted,

situational, non-monotonic, many-valued, modal, temporal,

epistemic, higher-order and intens1onal log1cs. Now we will

briefly described some of the other log1cs:

2.2.1.1 Many-sorted logic

In class1cal f1rst order predicate logic, a relat1onal

structure contains a single doma1n E of entities. Subsets of

this doma1n are def1ned by use of 'unary' (one-place)

pred1cates. In a many-sorted logic, the un1verse of

discourse 1s regarded as compris1ng a relational structure

1n wh1ch the entities 1n the domain E are regarded as be1ng

of various sorts. The sorts are related to each other in

various ways to form a 'sort structure'. There are d1fferent

kinds of sort structure (Frost [1986]):

(a) Structure 1n wh1ch the sorts are all

example E might cons1st of entities

woman, car, bike.

disJoint. For

of sort: man,

22

(b) Structure in which the sorts are related in a 'subset'

tree structure. For example:

E
I \

woman man
/\

american-woman european-woman
/\

english-woman french-woman

(c) Structure In which the sorts are related in a lattice.

This is the most general sort structure. For example.

the following is a two-layers lattice:

where T and B IS the top and bottom (empty) sorts

respectively. The top and the bottom sorts are the most

general (totally unspecified) and the most specific

(over specified) one respectively, The bottom sort 1s

also Inconsistent. The first and second layer are set

of all numbers and set of non-zero numbers

respectively.

By diVIding the entities 1n the domain of a relational

structure into different sorts can helP to Improve the

efficiency of mechanised reasoning. This is achieved when

the "search space" is reduced.for examples. the meaningless

assertions such as the "ford is married to the rover" can be

easily detected. It should be noted. however many-sorted

logics are no more expressive than unsorted logics

(Enderton[1972)).

23

2.2.1.2 Situational logic

In many appl1cat1ons there is a need to store and manipulate

knowledge which represents a changing universe of discourse

rather than the usual stat1c relational structures. In order

to cater this type of application, 'Situat1onal log1c' was

developed (McCarthy and Hayes[1969]).

In situational log1c, all pred1cates are given an extra

argument which denotes the "situation" in which the formula

is true. A s1tuation 1s a t1me interval over wh1ch no state

(of interest) changes truth value. In other words, a state

is someth1ng that is true for a while, false for a while,

and so on. For example,

under(blockl,block2,situationl).
-under(blockl,block2,situatlon2).

The f1rst formula states that blockl is under block2 in

situat1on "s1tuationl". On th~ other hand, the second one

states that blockl is not under block2 1n situation

"situat1on2". In other words, the statement "blockl 1s under

block2" is true in "situat1onl" and is false 1n

"situat1on2". The transformat1on of "s1tuat1onl" to

"situation2" was caused by an "event": the event of moving

block2 (or blockl) elsewhere.

2.2.1.3 Non-monotonic logics

In non-monotonic log1c, the addition of an assertion to a

theory may 1nvalidate conclus1ons wh1ch could previously

have been made. On the other hand, in monotonic logic (such

as predicate log1c) the number of statements known to be

true is strictly 1ncreasing over time. Thus, no checks are

needed when assert1ng a new statement 1n the system and also

no need to remember the statements used for each

24

successfully proven statement in monotonic logics. There are

three types of circumstance in which non-monotonic reasoning

may be appropr1ate (or in which monotonic reasoning are not

very good at deal1ng with):

(a) In problem solving where temporary assumptions are

made. For example, we have made an assumption that

everybody can come to a birthday party. Until this has

been proved otherwise, we w1ll assume this assumpt1on

is a correct one.

(b) When the knowledge is incomplete, default assumpt1on

must be made wh1ch may be 1nvalidated when more

knowledge becomes ava1lable. This construction of the

guesses is known as default reason1ng. For example that

we know that all b1rds can fly and emu is a bird, so we

conclude (or believe) by default that emu can fly. But

later we d1scovered that emu cannot fly. So we then

conclude that all birds can fly except emu.

(c) When the universe of discourse 1s changing (as 1n

s1tuat1onal log1c). In th1s case, it 1s not concerned

the presence of 1ncomplete

reason1ng with out-of-date

with default reason1ng

knowledge but rather

knowledge.

in

One implemented system that supports non-monoton1c reason1ng

is a Truth Maintenance System (TMS) of Doyle (Doyle [1979],

and Doyle[1982]). In his system, each statement or rule is

called a node, and 1s, at any point in one of two states: IN

1f is bel1eved to be true and OUT otherw1se (because no

reasons for believing it to be true ot because none of the

poss1ble reasons is currently valid).

25

2.2.1.4 Many-valued Logics

We have described so far that the logics have all been two­

valued. i.e either "true" or "false". However. there IS a

large amount of literatures which is concerned with logics

which have more than two values. A survey of the literatures

on many-valued logic can be found in Rescher [1969].

However. one of the best known many-valued logics is a

three-valued logic proposed by Lukasiewicz where he

Introduced another "intermediate" (or undecided) value on

top of "true" and "false" values. As the number of values

(the degrees of truth value) of many-valued logic can be

Infinite. this can represent the measure of vagueness

concept such as "very tall".

2.2.1.5 Fuzzy logic

Fuzzy logic is useful for deallng with "vague" concept such

as "tall" where conventional logics cannot accommodate. For

example:

He is tall and has curly hair.

There is much "uncertainty" in this statement. How tall he

is and how curly his hair, for Instance. Fuzzy logic can

accommodate such uncertainty and does so by an approach to

"semantics" which IS quite distinct from that used in

conventional logic. Various forms of fuzzy logic

(Zadeh[1965]. Zadeh[1973]. Zadeh[1983]) have been proposed.

some of which have been used

(Mamdani[1974]). in expert

reasoning (Baldwin [1981]). and

in Prolog system (Hinde [1983]

to solve problems 1n control

systems (ISIS system). in

also have been Incorporated

and [1986]). although the

not1on of fuzziness has a variety of interpretations.

26

2.2.1.6 Modal logic

The logics discussed so far cannot accommodate the

d1stinction between possible worlds or env1ronments: neither

can they accommodate states of affa1rs which exist in

people's beliefs, moral codes etc. In order to deal such

things, "modal logic" was developed.

Synder[1971) has described a modal logic as a logic which

allows us to reason with statements which are in subjunctive

moods rather than in the indicative mood. Subjunct1ve

statements assert what must be, ought to be, might be, is

bel1eved to be, hoped to be, w1ll be in the future and so

on. On the other hand, the ind1cative statements, where

class1cal truth-functional logics are concerned w1th it,

simply assert what 1s.

Modal statements can be detected by the presence of modal

operators such as: "It is possible that", "It 1s not

possible that", "It 1s imposs1ble that"," It Is necessary

that", "It 1s not necessary that", "It 1s perm1ssible

that", "It will always be the case that", "It is known that"

and so on. For examples:

(a) Tom has brain-tumour.
(b) It is necessarllY true that Tom has or has not

brain-tumour.
(c) It is possible that Tom has brain-tumour.

Statements (a) 1s an indicative statement, thus it IS not

modal. Both statements (b) and (c) true are modal as the

operators "It si necessarllY true" and "It 1s possible"

presence in them respectively. Statement (cl is true if (a)

true but may be interpreted as true or false if (a) is

false.

27

In modal log1c. we can capture modality by means of

quantifiers over worlds or 1nterpretat1ons. 1.e

lbl ~. !Toa has braln-tuaourl 1/ !Toa hat not bra1n-tuaourl.
lcl:JN, !Toa hat braln-tuaourl,

where Ws are poss1ble worlds. so we get:

necessity VW: all possible worlds.
possibility 3W: one or more worlds.

Modal log1cs. then. is concerned with states of affairs of

possible worlds in addition to the one that exists. There

are various types of modality such as alethic modality

(possibilltY and necessi~: both statements (b) and (c) are

examples of this). temporal modal1ty (modes for sometime and

always). deontic modality (modes for perm1ssion and

obligat1on) and epistemic modal1ty (mode for knowing and

bel1eving).

2.2.1.7 Higher-order logic

Any express1on obta1ned by quant1fying a wff over a var1able

is also a wff. The pred1cate calculus (logics) is called

first order because 1t does not allow quantification over

predicate symbols or function symbols. The follow1ng are the

descriptions of some of higher-order logics:

(a) Second Order logic.

A second order log1c IS a logic which var1able

functions and pred1cates are allowed and can be

quantified over. For example. we want to assert that

if two objects. X and Y. are equal then they have some

properties denoted by a variable predicate P:

~p ¥X ¥Y X-Y --> (P(X) <--> P(Y))

First order logic only allows variables rang1ng over

objects (i.e in th1s case. over X and Y only).

28

(b) Third Order logic.

By allowing variable functionals and quantification

over them takes us into Third Order logic. The such

functionals are for examples differentiation or

integration functions, i.e r takes COS to Sin.

(c) Omega Order Logic.

From (a) and (b) above, we can Iterate the process,

allowing functions of functionals (Fourth Order

Logic), functions of functions of functionals (Fifth

Order logic) and so on and then takes us to Omega

Order Logic (Bundy[1983]). Church [1940] proposed a

nice way of capturing all the sorts of functions.

functional etc which IS called Typed Lambda Calculus.

This IS one version of Omega Order Logic. All various

expression such as formula, propositions, terms,

functions. predicates, connectives, variables and

constants can be defined In a uniform manner using the

terminology of the Lambda Calculus (Lambda Operator).

Lambda expression IS as follows:

>.xr ... x ... J

where ... X ... denotes a formula which has X as a free

variable, for example, ~X[loves(X,God)] denotes the

(function of) the set of individuals that loves God.

29

2.2.1.8. Intensional logic

Intensional logic which was developed

(Montague[1973]. Montague[1974]) employs many

by Montague

of the logic

concepts as explained before such as

order quantification (variables and

type- a higher order logic). lambda

a hierarchy, higher­

quantiflers for each

abstract1on for all

types. tenses. modal operators. syntactic mechanisms for

dealing with intensions and extensions.

The language of Intens1onal Log1cs was used by Montague as

an intermediate translat1on language in a system called PTQ

(for Proper Treatment of Quantificat1on in Ord1nary English)

wh1ch is used to derived a semant1c 1nterpretation of a

fragment of English language. for example. "a woman" is

translated into:

)o.P [3X. woman' (X) --> P(X) l

Hence. "a woman Jogs and talks" 1s translated into:

I-P[3X. woman' (X) --> PCXll ()Y[jogs' (Y) 1\ talks' (Ylll

whlch. by lambda convers1ons. becomes:

3X. woman' (X) 1\ jogs' (X) 1\ talks' (X)

N1shida and Doshlta[1983] have applied the Montague's method

in automatic translat1on of Engl1sh into Japanese.

Montague's method

database system"

also have been applied 1n "historical

(Clifford and Warren[l983]). where a

historical database system conta1ns knowledge representing

some time-varying un1verse of d1scourse.

30

2.2.2 Other structured knowledge representation

We have already discussed the language of formal logic which

allow us to represent various aspects of the universe. The

maJor advantage of these representation, particularly

predicate calculus (logic), is that they can be combined

with simple, powerful inference mechanisms, such as

resolut1on, that make reasoning with the facts easy.

However, they do not in general allow us to structure this

knowledge to reflect the structure of that part of the

universe which is being represented. In other words, the

obJects 1n formal logic representat1on are so simple that

much of the complex structure of the world cannot be

described easily.

The world, for example, contains indiv1dual obJects, each of

which has several properties, Including relationship to

others. It is often useful to collect those propert1es

together to form a single descriPtion of complex object. One

advantage of such a scheme is that 1t enables a systems to

focus its attention on entire obJects without also having to

cons1der all the other facts It knows. For example, we have

the information represented in first order logic as follows:

is married(Razak,Rodziah)
Is-married(John,Joan).
Is-employed(Razak,UKM).
Is-employed(John,LUT).
has eye colour(Razak,brown).
has=eye=colour(John,blue).

I* fl *I
I* f2 *I
I* f3 *I
I* f4 *I
I* f5 *I
I* f6 *I

Here, the order of assertions 1s irrelevant. In formal

logic, there IS no fac1lity for clustering formulas such fl,

f2 and f3 which are related to a particular object (In this

case, Razak) to form a single descriPtlon of a complex

obJect.

31

So, the appropr1ateness of a representat1on depends on the

application. A good system for the representation of complex

structured knowledge in a particular domain should possess

the following four properties (Rich [1983)).

(a) Representational Adequacy- the ab1lity to represent all

of the k1nds of knowledge that are needed in that

domain.

(b) Inferent1al Adequacy the

representational structures

ab1lity to manipulate

in such a way as to

derive new structures corresponding to new knowledge

inferred form old.

(c) Inferential efflciency- the ab1l1ty to 1ncorporate into

the knowledge structure addit1onal information that

can be used to focus the attention of the 1nference

mechan1sms in the most prom1sing directions.

(d) Acquisitional efficiency- the ability to acquire new

informat1on easily. The simplest case involves d1rect

1nsertion, by a person, of new knowledge 1nto the

database. Ideally, the program 1tself would be able

to control knowledge acqu1s1tion.

Several techniques have been developed for accomplishing

these obJect1ve and can roughly be divided 1nto two types:

[1) declarative method: most of knowledge 1s represented as

a static collection of facts accompanied by as small

set of general procedures for manipulat1ng them (e.g

predicate log1c) . Each fact need only be stored once,

regardless of the number of different ways 1n which

it can be used. This method also allows new facts to

be added to the system eas1ly without changing either

the other facts or the small procedure.

32

[2] procedural method: the bulk of the knowledge is

represented as procedures for us1ng 1t. Knowledge of

how to do things and knowledge that does not flt well

into many simple declarat1ve schemes

represented by using this method,

are easy to be

for example, the

default reason1ng (non-monotonic logic).

easy to represent heuristic knowledge of

things efficiently.

It is also

how to do

However, in practice, most representations employ a

combination of both methods (Brachman & Smlth[1980]). There

is a variety of knowledge structures where each of them is

a data structure 1n which knowledge about particular problem

doma1ns can be stored. Thus knowledge structures will

sometimes mean a complete database of 1nformat1on about a

part1cular domain and will somet1mes refer to substructures

within the larger structure. We use the phrase knowledge

structure to describe these representat1onal schemes,

because of the heavy emphas1s on the structure of the

representat1on. Such knowledge structures are semantic nets,

frames, conceptual dependency and scripts. We will described

br1efly all these structures and for more detail see books

on Artiflcial Intelligent such as Frost[1986], Rich[1983],

Charniak & McDermott[1985], Nilsson[1980].

2.2.2.1 Semantic nets

Semant1c nets is closely related to f1rst order logic and

were f1rst used by Qulllian[1968] and, independently,

Raphael[1968] to represent or1ginally the meanings of

english words. Semantic nets is a directed graph in which

nodes represent entities and arcs represent b1nary

33

relationships between entitles. A s1ngle entity is

represented by a s1ngle node. Arcs are labelled with the

names of the relationships types. It is general enough to

be able to describes both events and objects (entities) .

Many complex objects can be decomposed into simpler ones.

These decompositions yield two very common and useful

properties of obJects ,i.e ISA and ISPART relationships. ISA

relationship shows the relationships between objects in a

h1erarch1cal taxonomy. On the other hand, ISPART

relationship shows the relationshlPS between the objects

that are made up of a set of components and so forth. In

semantic net, apart from ISA and ISPART relationships, there

are other relationships which can be used such as "HEIGHT",

"COLOUR" etc.

Those relationship as said before can be represented as a

graph and it is very useful to think l1ke 1t (see Fig.

2.2.2.1 below). A fragment of a typical semant1c net 1s as

follows:

l Person l
A.
I !SA

!SPART
I Co1~rr 1<--------1 CPU I

I !SA
I

I Perso;4t·co1outrr I

I !SA
I ONNER I HAVE

I'"NC:az~ru~l--'1<------IA•strad-4641---------->1 "onitor I
I I
I BUILT-IN I COLOUR

-- "ED!U" \;1 ~
U!i.!_l <--------1 Dltacorder I I 6rren I

F1q, 2.2.2.11 A se1antic netMork

As said before that semant1c net 1s related to first order

predicate calculus. It is clear that 1t can be used to

34

represent two-placed pred1cates in pred1cate calculus. For

example, some of the arcs from Fig. 2.2.2.1 could be

represented 1n predicate logic as follow:

ISAIAtstrad-464 1Personal-cotputtrl,
ISAINazrul 1Personl,
COLOURI"onltor 16reenl,
HAYEIAistrad-464 1"onltorl,

Semant1c nets are not restricted to represent first order

predicate only, but can also represent other pred1cates.

They are usually represented using some kind of attr1bute-

value memory structure. For example, the above semant1c

networks shown in Fig 2.2.2.1 would be represented in Prolog

(see sect1on 2.4 for more explanations of it) as follows:

fllspart,cpu,cotputerl,

fllsa,personal-cotputer,cotputerl,

fllsa 1atstrad-4641personal-cotputerl.
flhave,atstrad-464 1tonitorl,
flbullt·in 1atstrad-4641datacorderl,
floMner,a•strad-464 1nazrull.

fllsa,nazrul,personl.

flcolour 1 tonitor 1greenl,

flted!ut 1datacorder 1tapel.

It can be seen that there are six atoms, i.e computer.

personal-computer, amstrad-464, mon1tor, datacorder and

nazrul. The predicates are in the form of f(R.A,P) where R

is a relationship (binary), A 1s an atom and P is a

property-llst of A. It should be noted here that A and P are

both entities. By representing in Prolog in the above ways,

we are able to get the informat1on about the relationship

between the entities easily where it w1ll be diff1cult to

know the relationship between ent1ties if the pred1cate is

in the form of "R(A,P)", for example, isa(nazrul,person) due

to Prolog's implementation.

35

Work on semantic networks stem from many sources. The

pioneers. Quillian£19681 and Raphael£19681 suggest the usage

in cognitive psychology and computer sc1ence. Other usage of

semant1c networks are such as 1n representing and learning

information about conf1gurations of blocks (Winston£19751).

in cognit1ve psychology (Anderson and Bower£19731. Rumelhart

and Norman£19751- they proposed memory models based on

networks), in natural language processing (Simmons£19731.

Walker£19781) and in database management (Mylopoulus et

al(19761J. Several different types of semantic networks were

described in Flndler£19791. Hendrix [19771 and [19791 also

developed another type of semant1c networks which 1s called

a partitioned semantic network.

2.2.2.2 Frame

People always analysed a new situat1on by us1ng the1r

previous experience by evoking appropr1ate stored structures

and the f1ll them 1n with the details of the current event

or situation. A general mechan1sm designed for the computer

representat1on of such common knowledge lS a frame.

Frame is often used to describe a collect1on of attributes

that a given object. such as a chair, normally possesses. A

frame 1s a data structure which represents an entity type.

The word frame has been appl1ed to a variety of slot-and­

filler representation structures, mostly following the

theory presented in Minsky£19751. In other words, a frame

cons1sts of a collection of named "slot", that describe

aspects of the object. each of which can be "filled" by

values or by pointers to other frames describ1ng other

objects.

For example (adapted from Frost[1986]):

Falily-aan Fr111

A, RAZAK
generlti"ARRIED ~

~ I
m! tal I I nand

status I I
I I I I
I Filii y·woun I I I -"1\
I fr111 I I I I
I RDDZIAH I lirrhd to I I hn th1ldr1n I
I I I <-----------------o------------------->
I o I 11 I
I 11 I I I I
I I aged I I m 1_

1 I I ownershiP -41
I I

it- .J1
33 dehult1 ZERO

Fig, 2.2.2.21 Exaapl1 of fra11 Installation

I I
I Child fmt I

NAZRUl I
I
0

11

I I
I Child frut I
I AIZAT I
I I I

0
11

36

In a frame. the slots can be filled by another frame such as

child and family-woman frames in the family-man frame. The

value of slots can be a pre-set value (generic value) In

every frame Instantiation such as the value MARRIED in the

"marital status" slot In family-man frame The value of slot

can be set to default value as in the "car ownershiP" slot

where the default value is ZERO.

Frames, like semantic nets, are general purpose structures

In which particular sets of domain-specifiC knowledge can be

embedded. The details of the operation of a frame-based

system vary with the sort of reasoning that the system will

be called upon to perform and also with the specific kinds

of knowledge the frames will contain.

There are implemented frame languages which allow the user

to build frame system such as KRL-0 and KRL-1 (Bobrow and

Winograd [1977a], [1977bl and [1979]), FRL (Roberts and

Goldstein [1977]), OWL (Szolovits et al. [1977)).

37

There are also many 1mplemented frame-based systems such as

UNITS (Smith and Friedland [1980]) which was developed for

application in molecular biology, WHEEZE (Smith and Clayton

[1980]) wh1ch performs medical pulmonary function diagnosis

based on cllnical test results, AM (Lenat [1982]) which was

designed to discover concepts in mathematics. and GUS

(Bobrow et al. [1977]) wh1ch is a frame-driven dialogue

system.

2.2.2.3 Conceptual Dependency

Conceptual Dependency 1s a theory of how to represent the

meaning of a natural language sentence 1n a way that

facilitates drawing inferences from sentences and is

independent of the language 1n wh1ch the sentences were

originally stated. The theory was first described in

Schank[1973] and was further developed in Schank[l975] and

Schank & Abelson[1977].

The conceptual dependency (often nicknamed CD) is built not

out of pr1m1tives correspond1ng to the words used in the

sentence, but rather out of conceptual primit1ves that can

combined to form the mean1ngs of words 1n any particular

language. For example. the sentence "Nazrul took the toy

from Aizat" would be conceptualized as "The toy was

ATTRANSed from A1zat (the orig1nal owner) to Nazrul (the new

owner)" or is represented as follows:

1---->Nmul
p R I

N1zrul <•••••> ATRANS <---------1
~ I

o I 1----(Aiut
I

toy

38

where "o". "p" and "R" are object1ve case. past tense and

rec1p1ent case. ATRANS is a one of the primit1ve ACTs used

by the CD theory to 1nd1cate a transfer of possess1on from

one owner to another. 1n this case. "toy". from Aizat to

Nazrul. Arrows lndicate direct1on of dependency. A double

arrow 1ndicates two way link between actor and action. The

primitive ACTs describe everyday human actions.

In brief. CD is a

specific primitives

special-purpose

to be used 1n

structure

bu1lding

in which

indlvidual

representations were defined. as were relationships that

could occur between elements of a representation. And. CD

requires that all knowledge be decomposed 1nto fa1rly low­

level primit1ves. Th1s may be 1neffic1ent or perhaps even

1mpossible in some s1tuat1ons (Rich [1983)). A lot of work

must be done to convert each hlgh-level fact into its

primitive form and then the pr1m1tives may requ1re a lot of

storage. Another problem 1s that it is not at all clear what

the prim1t1ves should be.

2.2.2.4 Script

A script is a special-purpose structure that exploits

spec1fic propert1es of their restricted domain. It is also a

structure which descr1bes a stereotyped sequence of events

or a commonly occurring sequence of events in a particular

context such as "go1ng 1nto a restaurant and ordering.

eating. and paying for a meal" 1n a restaurant script

(Schank and Abelson[1977)).

A scr1pt consists of a set

slot may be information about

of slots. Associated with each

what k1nds of values it may

39

conta1n, as well as a default value to be used if no other

1nformation is available. TYPically, sets of slots are such

as a set of entry conditions, a set of roles, a set of

props, a set of scenes and a set of results.

A set of entry conditions

script may be 1nstantiated.

must be

People

sat1sfied before the

who would typically be

involved in 1nstances of the scripts are

roles. Furthermore, objects which also

slots in a set of

would typically be

involved 1n instances of the scr1pts are slots in a set of

props. A set of events making up the sequence of events

represented by the script is called a set of scenes. A set

of results will be obta1n after the sequence of events has

been completed.

Scripts are useful because, 1n the real world, there are

patterns to the occurrence of events. These patterns arise

because of causal relationships between events. The events

described 1n a scr1pt form a giant causal chain where the

beg1nning and the end of the cha1n are the set of entry

condit1ons and the set of results respect1vely. Some

examples of script based systems are SAM (Cullingford

[1981]) which has been used to understand newspaper stories,

McSAM or Micro SAM (Sterling and Shaplro[1986]) wh1ch is a

simpl1f1ed version of SAM and was written in Prolog, and IPP

(Lebowitz [1980]) which read and remembered newspaper

stor1es concern1ng internat1onal terror1sm.

40

2.3 Resolution

In th1s section we will discuss on how to conclude whether a

new statement follows form the known statements. Th1s proof

procedure is based on the resolution pr1nciple which was

proposed by Robinson [19651.

It would be useful from a computat1onal point of view if we

had a proof procedure that carried out in a s1ngle operation

the variety of processes involved 1n reasoning with

statements 1n pred1cate calculus. Resolut1on 1s such a

procedure which gains its effic1ency from the fact that 1t

operates on statements that have been converted to a very

convenient standard form, i.e a clausal (clause) form.

Before we describe how the resolution operates, we will

d1scuss the standard form in wh1ch statements will be

represented and will be used 1n the resolut1on.

2.3.1. Conversion into Clausal Form

If the formula were in simpler form, the process of

resolut1on would be easier. The formula would be easier to

work with if 1t were flatter, i.e there was less embedding

of components and the quantifiers were separated from the

rest of the formula so that they did not need to be

considered.

Conjunct1ve normal form (Davis and Putnam [1960)) has both

propert1es. Since there exists an algor1thm for convert1ng

any wff 1nto conJunctive form, we lose no generality if we

employ a resolut1on procedure that operates only on wff's in

this form.

41

However, the resolution method requ1res formulas to be

converted to a regular form called clausal form. A clause 1s

defined as a wff consist1ng of a dlSJUnctlon of literals.

Formulas can be converted to clausal form once they have

been transformed to conjunctive normal form. The resolution

process, when it 1s applicable, is applied to a pair of of

parent clauses to produce a derived clause. The following

is a brief explanation of a sequence of steps to convert a

wff into clausal form (the deta1led explanation will be

given in the next chapter) :

[1). Eliminate implication and equivalence s1gns

(symbols). Replace a-->b with ~a\jb to eliminate

impl1cation signs. And. a<-->b can be replaced

with (a-->bJ/\(b-->a).

[21. Reducing the scope of the negat1on s1gns, 1.e mov1ng

1nwards the negation s1gns by using De Morgan's

law.

[3]. Standardize var1ables so that each quant1fier binds a

un1que var1able. W1thin the scope of any

quantif1er. a var1able bound by that quant1f1er

1s a dummy var1able and can be uniformly replaced

by any other (non-occurring) var1able throughout

the scope of the quantifler Wlthout chang1ng the

the truth value of the wff. For example, the

formula

vx p(X) V -¥-X q(X)

would be converted to

vx p(X) V -¥-Y q(Y)

[4]. El1minate existential quantif1ers by replacing each

occurrence of its existent1al quantified var1able

with a Skolem function.

42

[5). Convert to prenex form by moving all universal

quantifiers to the front (left) of the wff. The

resulting wff IS said to be in prenex form

consisting a prefix of quantifiers followed by a

matrix, which is quantifier-free.

(the prefiX) as [6). Eliminate all universal quantifiers

the remaining variables left

quantified. So, we are left now

are universally

WIth a matrix

only.

[7). Converting a matrix into conJunction of disjuncts

(conjunctive normal form) by applying a

distribution law of logic.

[8). Eliminate 1\ (AND) symbols by replacing with the set

of disjunction of literals. Any wff consisting

solely of a disJunction of literals is called a

clause. For example:

(p(X) V q(Z)) 1\ (r(X) V s(Z,a))

can be written as

{ (p(XJVq(Z)) . <r<X>Vs<Z.a)) l

[9) . Standardize apart the variables 1n the set of clauses

generated in step [8) such that no two clauses

make reference to the same variable. For example,

from step [8), the final clauses Will be:

{ p(XJVq(ZJ , r(YJVs<W.aJ }

As we can see that the literals may contain

variables but these variables are always

understood to be universally quantified. If

variables are substituted with terms In an

expression, we will obtain what IS called a ground

instance of the literal, for example, "s(b,a)" is

a ground Instance of "s (W. a) ".

43

The final set of clauses. each of which is a disjunction of

literals. can now be exploited by the resolution procedure

to generate proofs. As we said above that each step of

converting a wff into clauses will be fully explained in the

next chapter.

2.3.2 Horn Clauses

A spec1al 1mportant class of clauses,

arise so often in practice and

theoretical results apply to them are

named after Alfred Horn [1951]. who

both because they

because simplified

the Horn clauses,

or1ginally isolated

them. For many applicat1ons of logic, it 1s sufficient to

restrict the form of clauses to those conta1n1ng at most one

conclusion (Kowalski [1979]). Clauses containing at most one

conclusion (consequent) are called Direct Horn clauses. It

can be shown. in fact. that any problem which can be

expressed in predicate logic can be re-expressed by means of

Horn clauses.

Obviously there are two types of Horn clauses, i.e headed

and headless clauses. Headed and headless clauses are

clauses w1th one unnegated

w1th no unnegated l1teral

literal (or one conclusion) and

respect1vely. In other words.

there are four forms of Horn clauses:

[1]. Impllcation clause: a. /\ ... I\ an --> h

[2]. Goal clause:

[3]. Assertion clause:

[4]. Empty clause:

a. 1\ ... 1\ an -->
--> h

-->

So, implication and assertion clauses are headed Horn

clauses. And, goal and empty clauses are headless Horn

44

clauses. For simplicity, we will denote assertion and empty

clauses ash and [) respectively, i.e by taking out the

implication signs. In fact, when we cons1der sets of Horn

clauses, we need only to cons1der those sets where all but

one of the clauses are headed. That is, any soluble problem

(a theorem proving task) that can be expressed in such a way

that:

(i) there is one headless clause.

(ii) all the rest of the clauses are headed.

S1nce it is an arbitrary how we dec1de which clauses are

actually the goals, we can decide to view the headless

clause as the goal and the other clauses as hypotheses or

ax1oms (known statements) or prem1ses. This has a certain

naturalness.

2.3.3 The Basis of Resolution

The theoretical basis of the resolut1on procedure in

pred1cate logic is Herbrand's theorem (Chang and Lee

[1973)), wh1ch tells us the follow1ng:

[1) To see if a set of clauses S is unsatlsfiable, it

necessary to cons1der only 1nterpretat1ons over a

part1cular set, called the Herbrand Universe of S.

[2) A set of clauses S unsatisfiable if and only if a

flnite subset of ground instances (ln which all bound

variables have had a value subst1tuted for them) of S

1s unsatisf1able.

Herbrand Un1verse of a set of clauses S 1s a special domain

such that S 1s unsatisfiable 1f and only if S is false under

all the interpretations over this domain. Herbrand's theorem

is a very important theorem as 1t is a base for most modern

proof procedures in mechanical

part of the above theorem.

procedure.

Gilmore was one the first men

(Gilmore [1960)). However the

45

theorem proving. The second

[2). suggest a refutation

to implement the above idea

method used by Gilmore is

ineff1c1ent. To overcome this 1nefficiency, Davis and Putnam

[1960) 1ntroduced a more efficient method for testing the

unsatisfiability of a set of ground clauses. Both methods

which are based on Herbrand's theorem requires the

generat1on of sets of ground instances of clauses. and for

most cases. th1s sequence grows exponentially. For instance.

for a small set of ten two-literal ground clauses. there are

1024 (210
) conJunctions.

In order to avoid the generation of sets of ground instances

as required in Herbrand's procedure. Robinson[1965) suggests

a resolut1on pr1nc1ple which can be applied d1rectly to any

set of clauses. S, (not necessarily ground clauses) to test

the unsat1sf1ab1l1ty of S.

The essential idea of the resolution pr1nciples 1s to check

whether a set of clauses. s. contains the empty clause. [).

IfS conta1ns [J. then S 1s unsatisf1able. IfS does not

conta1ns [). then the next thing to do is to check whether

[) can be der1ved form S. Indeed. the resolut1on principle

can be viewed as an 1nference rule that can be used to

generate new clauses from S.

The resolution procedure is a

operates by taking two clauses

simple iterative process. It

that each contain the same

46

literal. These two clauses are called parent clauses. The

literal must occur in positive form In one clause and In

negative form in the other. The resolvent is obtained by

combining all of the literals of the two parent clauses

except the ones that cancel. For example:

(a) sunny \1 raining
(b) -sunny \1 cold
(c) raining \1 cold
(d) win
(e) -win
(f) [1

The literal "sunny" In parent clause (a) and "-sunny" in

parent clause (b) will cancel each other to form a resolvent

clause (c).

If the clause that IS produced IS empty clause. then a

contradiction has been found. for example. two clauses (d)

and (e) will resolve each other to produce an empty clause

(f). If a contradiction exists. then eventually it will be

found. Of course. if no contradiction exists. it is possible

that the procedure will never terminate. although there are

are often ways of detecting that no contradiction exists.

Another way of viewing the resolution process is that It

takes a set of clauses all of which are assumed to be true.

It generates new clauses that represent restrictions on the

way each of those original clauses can be made true. based

on informat1on prov1ded by the others. A contradiction

occurs when a clause becomes so restr1cted that there IS no

way it can be true. This is indicated by the generation of

the empty clause.

47

2.3.4 Unification

The most important part of applying the resolution princ1ple

is finding a l1teral in a clause that lS complementary to a

literal in another clause. In propositional logic, it 1s

easy to determine two literals that are complementary each

other. i.e by simply looking for -1 and 1. However. for

predicate logic (or for clauses conta1ning variables), it is

more complicated. For example:

(cl). p(X) V q(X)
(c2). -p(b) V r(Y)

There 1s no literal in (cl) that is complementary to any

literal in (c2). However. if we substitute b for X 1n (cl)

we will obtain:

(cl)'. p(b) V q(b)

We know that clauses (cl)' and (c2) can be resolved with

each other to obtain "q (b) V r(Y) ". Thus in order to

determ1ne two complementary literals, we need a matching

procedure that compares two literals and d1scovers whether

there exists a set of subst1tutions that makes them

Identical (or complementary). The unification procedure will

do JUst this.

The basic Idea of unification IS very simple. The matching

rules are simple. Dlfferent constants. funct1ons, or

predicates cannot match; identical ones can. A variable can

match another variable, any constant, or a funct1on or

predicate expression with the restriction that the function

or predicate expression must not conta1n any instances of

the variable being matched. The only complication in th1s

procedure 1s that we must f1nd a s1ngle. consistent

substitution for the entire literal. not separate ones for

each piece of 1t.

48

The single consistent substitution is called the most

general (or simplest) unifier.We mentioned in the above

paragraph that a var1able can match a function or predicate

expression with a restriction. This restriction 1s called

occur check, For example. two clauses X of p(X) and f(X) of

-p(f(X)) cannot be matched or un1fied with each other as

f(X) is a function which contains a variable be1ng matched,

1.e variable X.

2.3.3 The soundness and completeness

The soundness and completeness of resolution is a nice

mathematical property. It means that if some statement or

fact follows from known statements. we should be able to

prove 1ts truth using resolut1on. It is called sound because

if the empty clause 1s ever produced, the or1ginal set must

have been unsat1sf1able. It is called complete because if

the original set is unsatisf1able, the empty clause w1ll

eventually be produced.

The resolution process of der1v1ng new clauses from old will

eventually der1ve the empty clause 1f and only if the

orig1nal clauses were unsatisfiable. The 'only if' part of

th1s 1s the soundness theorem: that we cannot produce an

unsatisfiable conJunct1on of clauses, and 1n particular, one

containing the empty clause, from a satisf1able one. The

'1f' part 1s the completeness theorem: that 1s, if we start

with an unsatisfiable set and go on der1ving new clauses by

resolut1on. we will eventually derive the empty clause. The

proof of both theorems can be found 1n Bundy [1983)(pp233-

234) .

49

2.4 Control strategies for refutation process

The procedure in which the formula being tested IS negated

are called "refutation" procedure. In other words, to prove

a statement. the resolution attempts to show that the

negation of statement produces a contradiction with the

known statements, I.e that it is unsatisfiable.

Resolution-based systems are designed to produced proofs by

contradiction or refutation. In resolution refutation, we

first negate the goal wff and then add the negation to the

set,S. This expanded set is then converted to a set of

clauses, and we use resolution in an attempt to derive a

contradiction represented by the empty clause.

Although resolution tell us how to derive a consequence from

two clauses. it does not tell us either how to decide which

clauses to look at next or which literals to match. If the

choice of clauses to resolve together at each step IS made

in certain systematic ways, then the resolution procedure

Will find a contradiction If one exists. However It may take

a very long time. There exist control strategies for making

the choice that can speed up the process considerably. Many

refinements of the original resolution principle have been

proposed, In order to control a resolution refutation

principle such that It does not produce unnecessary clauses.

A control strategy for a refutation system is said to be

complete if it use results in a procedure that will find a

contradiction (eventually) whenever one exists. In AI

applications. complete strategies are not so Important as

ones that find refutations efficiently.

50

Several control strategies for select1ng clauses have been

developed for resolution that not produce unnecessary

clauses such as breadth-flrst strategy, the set-of-support

strategy, the un1t-preference strategy, the llnear-input

form strategy, the ancestry-filtered form strategy and

combinations of the strategies.

Bes1de control strategies to avoid produc1ng unnecessary

clauses, there are strateg1es which are called

simplification strategies. The a1m of the simpliflcation

strategies is to reduce the rate of growth of new clauses.

Such strategies 1nvolve the elimination of all tautologous

clauses and clauses that are subsumed by others, and the

resolving of pairs of clauses that contain complementary

l1terals only.

We have ment1oned some of control strateg1es for select1ng

clauses. Some authors (Chang and Lee [1973], Frost [1986])

use term resolut1on strateg1es instead of control strategies

(Nilsson [1980], R1ch [1983]). We Wlll use both terms

("control strateg1es" and "resolution strateg1es")

1nterchangeably thorough out 1n this thes1s as both of them

are synonymous. Now we will describe some of the control

strateg1es.

51

2.4.1 Semantic Resolution

Semantic resolut1on was proposed by Slagle[1967]. In

semantic resolution, an interpretation to divide clauses 1s

used. For example, by us1ng ordinary resolution to prove the

unsat1sfiability of the set S where S consists of the first

four clauses as follows (Chang and Lee [1973]):

Ill 'pV'qVr)
(2) p V r) s
131 q V r)

l!l •r l
1~1 •q V r fro• Ill and 121
161 •p V r fro1 Ill and 131
171 •p V •q fro1 Ill and 141
181 p fro• 121 and 141
191 g fro1 q1 and (41
UOI •q V r fro• Ill and !SI
1111 •p V r fro• Ill and (91
(121 r fro• 121 and !61
1131 •q fro1 141 and !~I

!141 •a fro1 141 and !61
m1 [] fro1 141 and 1121

Exatple 2,4,0; Using unref1ned resolution

Each segment shows the level of resolution where the new

generated clauses from a new segment are resolved w1th the

prev1ously generated clauses. Among all these clauses

generated, only (6) and (12) are actually used 1n the proof.

All other clauses are 1rrelevant and redundant.

So, semantic resolut1on tr1es to avo1d this. As said before,

they use an interpretation to d1v1de clauses such that some

irrelevant and redundant clauses can be avo1ded. For

example, suppose we div1de the setS into two, 1.e {(2), (3)}

and {(1),(4)}. Thus, the resolution (1) and (4) will be

avo1ded 1f we adopt the restr1ction that no two clauses from

the same d1vis1on (subset) are allowed.

Another restr1ction which 1s

resolution is by ordering

example:

P > q > r

52

adopted by the semantic

the pred1cate symbols, for

and when we resolve two clauses from two subsets. we only

choose the largest predicate from. says, the f1rst subset.

With this restriction, we cannot resolve (2) with (4)

because r is not the largest literal 1n (2) and (3).

By us1ng the same set S as in the above example 2.4.1 and

and let the ordering of predicate symbols be p)q)r and let

the 1nterpretat1on be {-p,-q.-r} such that the setS will be

divided into s,-{(2). (3)} and 82•{(1) .(4) }. Thus we will get

the following:

tilt
(21
(31
(411
(511
(611
t1l
(81
(91

•pv•qvr
p V r
q V r
•r
•q V r
•p V r
r
r
[]

l
l s
l
)

fro• t 11 and !21
fro• tll and t3l
fro• t3l and !51
fro1 !21 and (61
fro• !41 and t11 or tBI

Ext•ple 2,4,11 Us1ng se1antic resolution

Clauses marked by "*" are members of subset S2 wh1ch satisfy

the adopted interpretation.

It can be seen that by adopting some restr1ctions on the

resolution, the irrelevant and redundancy clauses can be

avoided as shown by the semant1c resolution. Chang and Lee

[1973] showed that the semantic resolut1on 1s a complete

resolut1on.

53

2.4.2 Hyper-resolutlon

Hyper-resolut1on which was introduced by Robinson [1965a] is

a special kind of semantic resolution which uses a special

kind of interpretation. 1.e an 1nterpretation in which every

literal is the negation of the atom. For example, we would

like to prove the unsatisfiabil1ty of set S consisting the

first four clauses as in example 2.4.3 below. Let the

ordering be p<q<r and certainly the interpretation. I, be

Ill qlal V pill I
121 I •qm v piX> I s
1311 •r la! V •p la! I
!41 r!al }

151 piXl V pial fro• Ill and 121
16!1 .Ill I f[DI q1 and !41
171 [I fro• 151 and 161

Ex111lt 2,4,2 Using hypher-resalutlan

As before. clauses marked "*" are sat1sf1ed by the adopted

interpretation.

2.4.3 Set-of-support strategy

The set-of-support strategy was proposed by Wos et al[1965].

Th1s strategy is also a spec1al k1nd of semantic resolution

1n the sense 1t divides the set to be proved unsat1sfiable

into two. A subset T of a set S of clauses is called a set

of support of S if S-T is satisfiable (Chang and Lee[1973).

So, a set-of-support resolution 1s a resolution of two

clauses that are not both from S-T. 1.e the two subsets are

T and S-T.

In other words, whenever poss1ble, resolve either with one

of the clauses that 1s part of the statement we are trying

to refute or w1th a clause generated by a resolution with

54

such a clause. Th1s is corresponds to the 1ntuition that the

contradiction we are looking for must involve the statement

we are trying to prove. Any other contrad1ction would say

that the previously bel1eved statements were inconsistent.

Thus, in this case, sets T and S-T are statements to be

proved and known statements (knowledge) respectively.

For example, let 81 be a set consisting the first three

clauses and the negat1on of the statement to be proved from

S1 are clauses (4) and (5) as follows:

I 11 patient (&I l
121 •doctoriYI V likesla1YI l s,
Ill •piltlentm V •quackiYI V •!ikesii,YI l
141 doctorlbl l
ISI quack lbl l T

The set-of-support is a set T where T- {(4), (5)} and 1ts

complementary set 1s set S1 where S1·S-T-{(1),(2) ,(3) }. The

following 1s a refutation tree of the above proving:

141 121
I I
11

llkesli11bl
I
1<31
I/

•patientlal \/ •quacklbl
I
I Ill
If

•pahentlal
I
I !SI
If
[]

Exa!Dle 2,4,3 Us1ng set-of-support strategy

We can see that no resolution lS performed between clauses

in the same set S1 .

55

2.4.4 Lock resolution

Lock resolution is a refinement of resolution which uses a

concept similar to that of ordered clauses and was

introduced by Boyer[1971]. The literals of clauses in a set

S is ordered according to their ind1ces. The Index is

arbitrarily given to each occurrence of a literal in S with

an integer. Resolution is then permitted only on the

literals of lowest index in each clause with all the

literals inherit their indices from their parent. In other

words, the Index of each clause IS maintained through out

the resolution process. If there are more than one with

the same literals. all the literals will be merged Into

one and the lowest index is assigned to it, I.e take only

one 11 tera 1 with the lowest Index. for example. the

clause " .q V 2q 11 Wlll become " q" For ex amp le. let 1 •

S - {p, q, r, w, -p \1 -q \1 -r \(-w} IS a set to be proved

unsatisfiable. We will give an Index to each literal

arbitrarily as follows:

{!)
(21
(31
(41
(~I
(61
(7)
(81
(91

•P
.q
.r
•• ,•p 1/ .•q 1/ ,•r 1/ •'•
.•q 1/ ,•r 1/ •'•
7 .. r \1
•••
[]

Exa•ple 2.4141 Using Lack resolution

fro• Ill and !51
fro• 121 and (61
fro• 131 and 171
fro• 141 and 181

From the above example, only three lock resolvents were

generated. The lock resolution does not permit the

resolution between others pair of parent clauses such as (2)

and (5). (3) and (5) etc. If ordinary (unrefined) resolution

were used, 40 clauses would be generated by the breadth-

first method before [] could be generated. The lock

resolution is a complete resolution (Chang and Lee [1973]).

56

2.4.~ Linear Resolution

Linear resolution was independently proposed by

Loveland[l9701 and Luckham[19701. The idea of linear

resolut1on 1s similar to proving an identity in mathematics.

In proving an identity, we often start with the left-hand

side expression of the identity, apply an inference rule (an

axiom) to obtain a new express1on, then repeatedly apply

some inference rule again to the new freshly obta1ned

expression until the left-hand side express1on is ident1cal

to the right-slde expression of the identity.

Thus, a linear resolution starts w1th a clause, resolves it

aga1nst a clause to obtain a resolvent, and resolves this

resolvent against some clause until the empty clause (] is

obtained. The two parents clauses are the new resolvent and

a clause from the set S to be prove unsat1sfiable or from

one of the previous resolvents. For example, let set S to

be proved unsatisflable be:

(1) q(X) V p(a)
(2) -q(Xl V p(X)
(3) -q(X) V -p(X)
(4) q(X) V -p(X)

then the following 1s its refutation graph:

(IJ
I (21
If

(51 ptXI \/ ptal
I
1<31
I/

(61 •q tal
I
I (41
If

<71 •p tal
I
I (51
If
[]

Exa•ple 2.4.5! Using linear resolution

57

It can be seen from example 2.4.5 that in order to resolve

(7), we use the previous resolvent, i.e (5). Follow1ng Chang

and Lee [1973]. clauses (1), (5), (6) and (7) are called

centre clauses and clauses (2), (3), (4) and also (5) are

called side clauses. So, linear resolution can use any

previous centre clauses or from base set S. Nilsson's

ancestry-filtered form strategy (Nilsson [1971)) 1s similar

to this linear resolution. Clause (5) is called an ancestor

clause. This linear resolution or ancestry-flltered form

strategy is complete (see Chang and Lee[1973)).

2.4.6 Linear Input Resolution

Linear input resolution (or 1nput resolut1on in Chang and

Lee[1973) or vine form 1n Nllsson[1971)) 1s a spec1al case

of linear resolution where all side clauses must be from the

base or 1nput set S. The base or 1nput set S 1s a set to be

proved unsatisfiable.

To prove a statement, F. using th1s method, we commence by

resolving -F w1th one of the 1nput clauses to form a

resolvent, C. C is then resolved with also an input clause

to form another resolvent, and so on until we get an empty

resolvent or otherwise. For example, let an 1nput set S be

{ (1). (2), (3). (4), (5), (6). (7)} and the negation of the

statement. F. to be proved be {(8). (9)} where:

58

Ill •Molbatm V •uves!l,zool V •happy!ll

121 happy!ZI \1 •anl•al!ZI \1 ••eets!Z,YI \1 person!YI \1 k1nd!YI

!31 klnd!YI V •penon!YI V •v!slh!Y,zool

!41 1eeh!U1YI V •anllal!UI \1 •!im!U,zool V •person!YI \1 •villh!Y1zool

m anlul!AI V •mbat !AI

161 person!nazl

171 vhlts!naz 1zool

(81 MOibit (M I

(91 lives(M1ZOOI,

So, the following 1s an illustration to prove the statement

F us1ng a linear 1nput resolut1on (we start with clause(B)):

(!01
(Ill

1121

!131

1141

(151

•11ves!w,zool V •happy!wl fro• !SI and Ill
•11ves!w,zool \1 •an11al!wl \1 ••eets!w,YI \1 person!YI \1 klnd!YI

fro1 1101 and 121
•11ves!w,zool \(•aniaal!MI \1 ••eets!w,YI \1 •person!YI \1 •vislts!Y,zool

fro• !Ill and 131 - after aerg1ng
•Hves!w,zool V •aninl!wl V •person!YI V •v!sits!Y,zool

fro• 1121 and 141 - after 1erg1ng
•llves!w,zool V •Molbat!wl V •person!YI V •vmh!Y,zool

fro• 1131 and !51
•Hves!w,zool V •Mo•bat!wl V •VInts!nn,zool

(161 •!ives(M1ZOOI \1 •wolb&t(MI
1171 •!ives!w1zool

fro• !141 and 161
fro• !!SI and 171
froa 1161 and !81
fro1 1171 and !91 1181 [I

Exa1ple 2.4.61 Using linear Input resolution

The above prove the statement F 1s a theorem of S. The new

resolvent is always resolved with the input clause S 1n

l1near resolution. Thus, lacks completeness, for

example, we Wlll not be able to prove the

unsatisfiability of set S as in example 2.4.5 above.

However, this linear resolution 1s efficient and furthermore

it is complete for Direct Horn clauses (Frost[1986)).

59

2.4.7 Unit preference strategy

Unit preference strategy (or unit resolution 1n Chang and

Lee[1973)) which was proposed by Wos et al[1964) is a

special k1nd of 1 inear resolution. This resolution,

whenever possible, resolves with clauses with a single

literal (called a unit). Such resolution generates new

clauses with fewer l1terals than the larger of their parent

clauses, and thus are probably closer to the goal of a

resolvent w1th zero terms (empty clause). This method lS

essentially an extens1on of the one-literal rule of Davis

and Putnam [1960).

However this method may take longer to

reach the solut1on (empty clause) if it ex1sts. The

following example shows this shortfall. The follow1ng

lllustrates proving a statement us1ng unit-preference

strategy. We will use the same set of 1nput clause and

statements to be proved as in example 2.4.6 above (see

sect1on 2.4.6):

1101 •11veslw,zool \1 •happylwl froa 181 and Ill
1111 'happylwl fro1 1101 and 191
1121 •anlaallwl \1 •aeetslw1YI \1 personiYI 1/ k1ndiYI

froa 1111 and 121
1131 •anlaallwl 1/ •aeetslw1nazl \1 klndlnazl

froa 1121 and 161
1141 •anlaallwl \1 •aeetslw,nazl \1 •personlnazl 1/ 'vlsltlnaz,zool

froa 1131 and 131
1151 •anlaallwl \1 •aeetslw,nazl \1 'vlsltlnaz,zool

fro• 1141 and 161
1161 •anlul lwl V •mtslw,nazl froa 1151 and 171
1171 •anhallwl 1/ •!iveslw,zool V •personm V 'vlslhll,zool

froa 1161 and 141- after aerglng
1181 •anlullwl V •hveslw,zool V 'visltslnn,zool

1191
1201
1211
1221

•anilal lwl \1
•anlul lwl
•woabatlwl
[I

•uveslw,zool

Exaaple 2,4 171 Using unit-preference strategy

froa 1171 and 161
froa 1181 and 171
froa 1191 and 191
froa 1201 and 151
fro• 1211 and 191

60

It can be seen from both examples 2.4.6 and 2.4.7 that a

un1t-preference strategy (13 resolvents) takes longer to

reach the empty clause compared to a l1near input resolution

(9 resolvents). Chang[1970) prove that both linear input

resolut1on and un1t resolution (unit-preference strategy)

are equivalent. That is. theorems that can be proved by

linear input resolution can also

preference strategy, and vice versa.

be proved by unit-

2.4.8 LUSH Resolution

LUSH stands for "Linear resolution with Unrestricted

Selection function for Horn clauses" (Hill [1974)). LUSH is

same as a linear 1nput resolution except that at each

resolut1on step, the literal to be used as complement 1s

selected from the last produced resolvent 1n a pre-defined

order. The same order must be used throughout the resolut1on

process once it was chosen. For example. suppose the order

were "take the rightmost llteral which has a complement 1n

the 1nput clause setS". The refutation search correspond1ng

to example 2.4.6 above would proceed as follows:

1101 'livnlw,zeel V 'happy!wl frea 181 and Ill
!Ill 'liveslw,zeel V 'an!tallwl \1 •aeetslw,YI \1 prrsen!Yl \1 k1nd!YI

frea 1101 and !21
1121 'l1ves!w1zoel \1 •aniaallwl 1/ •aeets!w1Yl 11 •persen!Yl 11 'visits!Y,zeel

frea !Ill and 131 • after aerging
1131 'lives!w,zeel 1/ •an1aal!wl 11 •aeetslw,nazl V •persen!nazl

frea 1121 and 171
1141 'hveslw,zeel 11 •an!ul!wl V •aeetslw,nazl

froa 1131 and 161
m1 'hveslw,zeel V •aniul!wl V •persen!nul 1/ 'vlllhlnu,zeel

froa 1141 and 141
1161 'liveslw,zeel V 'an1aal!wl 1/ •persen!nazl

fret 11~1 and 171
U7l 'hveslw,zeel V 'aniul!wl frea 1161 and !61
UBl '11ves!w1zoel V •woabat!wl froa 1171 and !51
1191 'llves!w,zoel froa 1181 and 181
1201 11 froa 1191 and 191

Exaaple 2,4,8(Using LUSH reselut1en !selecting the rightaest literal!

61

This resolution is similar to a resolut1on known as SLD

resolut1on which stands for "Linear resolut1on with selected

function for Definite clauses" {Lloyd [1984)). LUSH

resolution lS complete for Horn clause (Frost [1986)). SLD

is also a complete and sound resolution {Lloyd [1984)).

2.4.9 Other strate9ies and the combination of strategies

There are other variation of resolutions but most of them

are basically the var1ation of semant1c and linear

resolution as d1scussed in sect1ons 2.4.1 and 2.4.5 above.

Such var1at1ons are selected l1teral {SL) resolut1on

{Kowalski and Kuehner [1971)). Loveland [1969), Reiter

[1971)). semant1c resolution us1ng ordered clauses {Chang

and Lee [1973)). l1near resolution us1ng ordered clauses and

the information of resolved l1terals (Chang and Lee[1973)).

It lS also possible to combine the control strateg1es such

as linear 1nput resolut1on and set-of-support strateg1es.

Some comb1nation of the strateg1es preserve completeness,

some don't.

As most resolutions produce refutation graphs, there are

several ways of travers1ng the graphs. This travers1ng or

also known as search strategies are usually depth-first

strategy, breadth-first strategy and heur1stic strategy.

These strategies have also been comb1ned w1th the resolution

strategy to make the resolution more eff1c1ent. We will

discussed a comb1ned strategies implemented w1th breadth­

first and depth-first search strategies 1n the next chapter

{chapter 3) .

62

2.~ Logic Programming

The key idea underlying logic programming Is programming by

description. The programmer describes the application area

and lets the Program choose specific operations. Logic

programs are easier to create and enable machines to explain

their results and actions. Logic programming differs

fundamentally from conventional programming in requiring us

to describe the logical structure of problem rather than

making us prescribe how the computer is to go about solving

them.

Logic programming which has begun in the early 1970's

originated largely from advances in automatic theorem

proving and artificial intelligence, and in particular from

the development of the resolution principles. Constructing

automated deduction systems Is, of course, central to the

aim of achieving artificial Intelllgence. Building on work

of Herbrand[1930], there was much activity 1n theorem

proving in early 1960's by Prawitz[l960], Gilmore[1960],

Davis and Putnam[1960] and others. This effort culminated in

1965 with the publication of

[1965], which 1ntroduced

resolution rule which is

automation on a computer.

the landmark paper by Robinson

an 1nference rule called the

particularly well-suited to

Some of the earl1est work relat1ng resolut1on to computer

programming was undertaken by Green[1969], who showed that

the answer-extraction mechanism could be used for

synthesizing conventional program by applying resolution to

thelr specifications expressed in clausal-form logic, and

also the works of Hayes[1973] and Sandwell[1973].

63

However, the credit for introduction of logic programming

goes mainly to Kowalski[1974) and Colmerauer[1973). In 1972,

Kowalski and Colmerauer [19721 were led to the fundamental

idea that logic can

Before that (1972),

be used

logic had

as a programming language.

only ever been used as a

specification or declarative

However, what Kowalski[1974)

language

showed

procedural interpretation, which makes

a programming language.

In computer science.

IS that logic has a

it very effective as

One of the main ideas of logic programming , which is due to

Kowalski [19791 and [1979a), IS that an algorithm consists

of two disjoint components, the logic and the control. The

logic is the statement of what the problem is that has to be

solved. The control is the statement of how It IS to be

solved. This relationship plays a central role in the

Philosophy of logic programming and can be expressed

symbolically by the equation:

Algorithm - Logic + Control (A = L + C)

As we said In the beginning of this section, there are

fundamental differences in logic and conventional

Programming. In traditional software engineering

(conventional programming), one builds a program by

specifying the operations to be performed in solving

problem, that IS, by saying how the problem IS to be solved.

The assumptions on which the program is based are usually

left implicit. In logic programming, one constructs a

program by describing its application are, that is, by

saying what is true. The assumptions are explicit, but the

choice of operations is ImPlicit.

64

The difference can be expressed also In terms of Kowalski's

idea of algorithm CA-L+C). So. conventional algorithm and

programs expressed in conventional programming language

combines the logic of the information to be used In solving

problems with the control over the manner 1n wh1ch the

information is put to use. i.e (following Hogger£1984]):

conventional program

- conventional algor1thm (A)

- description of logic (L) and control (C).

On the other hand. logic programs

component L of algorithms The

exercised by the program executor.

express only the logic

control component C IS

either following its own

autonomously determined control dec1sions or else following

control instructions provided by the programmer. In Hogger's

[1984) formula:

logic program

- descriPtlon of logic(L) + descriPtion of control(C)

There are several advantages to separate logic and control

conceptually (Kowalski£1979)):

(1) Algor1thms can be constructed by successive

refinement. designing the logic component before the

control component.

(2) Algorithms can be improved by improving their control

component without changing the logic component at all.

(3) Algor1thms can be generated from speciflcations. can

be verified and can be transformed into more efficient

ones. without considering the control component. by

applying deduct1ve inference rules to the logic

component alone.

65

(4) Inexperienced programmers and database users can

restrict their interaction with the computing system

to the definition of the logic component, leaving the

determination of the

computer.

control component to the

In a typical logic programming system, we can also view that

the description of the control as an application-independent

deductive inference procedure. Applying such a procedure to

a description of an application are makes it possible for a

machine to draw conclusions about the application are and to

answer questions even though these answers are not

explicitly recorded in the description. This capability is

the basis for the technology of logic programming. The

following figure Illustrates a configuration of a typical

logic programming system (Genesereth and Ginsberg [1985]):

user

li{'
I I

Queries I I AnsMers
__;'1'_1 __ _

I I
I Application-Independent I
I Inference procedure I
I

11.'
I I

Facts I I Conclusions
_I.V_I __

I I
I knoMledge base I
I I

Fig 2.~.11 A Typ1cal Logic Progras1ing systel

As shown in the above figure (fig 2.5.1), the application-

independent inference procedure is independent of the

knowledge base it access, thus It gives some advantages:

66

(1) Incremental development: as new information about an

application is discovered (or just discovered). that

1nformation can added to the program's knowledge base

and so 1ncorporated into the program 1tself. There is

no need for algorithm development or revision.

(2) Explanation:it is easy to save a record of the step

taken in solving a problem due to the piecemeal nature

of automated reasoning. This record can be presented

to the user in some way such that the program explain

how it solves each problem and therefore. why it

believes the result to be correct. This is very

valuable for debugg1ng logic programming

Thus. from Kowalsk1's idea of algor1thm. we can conclude

that ideally. log1c programm1ng 1s that the programmer

should only have to spec1fy the log1c component of an

algor1thm and the control should be exercised solely by the

th1s ideal has not logic programming system. Unfortunately.

yet been achieved with current log1c

(Lloyd[l984ll. In order for th1s to

programm1ng systems

be achieved there are

two broad problemswhich have to be solved:

(1) Control problem: more control features for programmers

should be the responsibility for the system itself.

Currently the Programmer has to provide a lot of

control 1nformat1on such as clauses and atom ordering.

looping checking etc.

(2) Negat1on problem: the log1cal negat1on 1s not

implemented. but they implement the negation as a

failure rule in logic programming languages. A

negation as a failure rule means that the negation of

a goal (statement) is true if the posit1ve of the goal

fails. Clark[1978] and Relter[1978] have d1scussed

67

th1s problem and have regarded the negation as failure

1nference rule as deductions from the "completed data

base" (CDB) and "closed world assumptions" (CWA)

respectively. Accord1ng to Shepherdson[1984] these

deduction system are usuallY incomplete and CDB and

CWA d1ffers: one may be consistent and the other not,

and when both are consistent they may be incompat1ble

and both are compatable when the data base is Horn and

def1nite clauses.

As d1scussed above and following Kowalskl[1974]. logic has a

procedural 1nterpretat1on wh1ch makes 1t very effective as a

programming language and one of the most important practical

outcomes of the research so far has been the language

PROLOG. which is based on the Horn clause subset of log1c.

In addition to procedural interpretat1on. log1c also has two

other interpretat1on (Lloyd[1984]):

(b) Database interpretation: logic program is regarded as

a database (Lloyd[1983]; Gallaire and Minker[1978l and

[1981]) thus we obtain very natural and powerful

generalisation of relational databases.

(c) Process 1nterpretat1on: goal <-B1 •...• Bn is regarded

as a system of concurrent process. There are now

several concurrent PROLOGs based on the process

interpretation (Clark and Gregory[1981] and [1983];

Shapiro[1983]). Th1s interpretation allows logic to be

used for operat1ng system appl1cat1ons and object­

orientated programming (Shapiro and Takeuchi[1983]).

We have already discussed where we can use logic programming

and 1ts d1fference between conventional programming. Most

log1c programming system use clausal form. However, log1c

programming is by no means limited to PROLOG which 1s based

on Horn clauses. It 1s essential

appropriate computation rules, but

program in larger subsets of log1c,

68

not only to find more

also to find ways to

not just the clausal

subset. In particular. such systems need not necessarily be

based on clausal resolution or even resolution at all.

Var1ous non-clausal resolution have been developed, for

example. Storm [1974), Wilkins [1974), Bibel [1976), Nilsson

[1979), Manna and Waldinger[1980), Bowen [1982). Murray

[1982) and Stickel[1982). Other methods of non-resolution

theorem-proving are such as natural deduction (Bledsoe

[19771. Hanson et. al. [19821. and. Har1d1 and Sahlln[1983))

and matrices and connections (Prawitz [1976), Andrews [19811

and Bibel£1983)).

It 1s clear that logic thus provides a single formal1sm for

apparently d1verse parts of computer sc1ence. Logic prov1des

us w1th a general purpose problem-solving language, a

foundation for database systems, and also a concurrent

language su1table for operating systems and parallel

algor1thm. Th1s range of appl1cations assures that log1cal

inference is about to become the fundamental unit of

computation (Lloyd£1984)). This view is strongly supported

by the Japanese fifth generat1on computer project where

log1c programm1ng has been chosen to prov1de the core

programm1ng language for th1s very ambit1ous 10 years

project (Moto-Oka[1982)).

69

2.6 A Logic Programming Language• PROLOG

The language PROLOG, stands for "PROgramming in LOGic", is

one of the most practical outcomes of researches 1n logic

programming. The early developers of this idea 1ncluded

Robert Kowalski at Edinburgh (on theoretical s1de - see

Kowalski [1974]) and Alain Colmerauer at Marse1lles

(implementation- see Colmerauer et. al. [1973]). The present

popularity of Prolog is largely due to David Warren's

eff1cient implementat1on at Edinburgh in m1d 1970s.

Nowadays, various Prolog interpreters or compilers have been

implemented, such as Quintus Prolog (Quintus Ref. Manual

[1985]), C-Prolog (Pereira [1982]), POPLOG Prolog (Melllsh

and Hardy[1984]) etc (for example, see Clark and

Tarnlund[1982J. Campbell[1984]).

The research in this thes1s was f1rst carried out by us1ng

the UNIX Prolog 1n Ed1nburgh syntax (see Pere1ra et

al. [1978]) and later by us1ng POPLOG Prolog wh1ch has more

facilit1es although sim1lar syntax. Although there are some

d1fferences, they will not be explained here.

Now, we will describe br1efly the syntax of Prolog (based on

Edinburgh syntax) and also some problems encountered with

the Prolog during the carrying out of the project. As said

1n the last section that Prolog 1s based on the Pred1cate

calculus and takes the form

are summaries of Prolog

of Horn clauses. The follow1ng

syntax's (for more details see

Clocksin and Melllsh[1981] and Prolog books

Bratko [1986]) :

such as

o Prolog programming consists of defining relat1ons and

querying about relations.

70

o Prolog programs are bu1lt from terms which are either a

constant. a variable or a structure. A constant consists

of a number or an atom (a symbol which starts with a

lower case letter) . A var1able looks like atom, except

they begin with a capital letter or an underline sign

" " A structure which 1s a single object that have

several components, are constructed by means of functors.

Each functor is defined by its name (or predicate name)

and arity.

o Prolog clauses are of the form:

a :- b ••.••• b...

where "a", and "b ••...• b..." are called head, body. The

sign " " and 11 11 mean .. is implied by" and

"and"(conjunction). Thus they can be classified to three

types: facts, rules and questions. If n=O then the clause

1s called a fact and can be written Without Implication

sign. If n>O then it 1s called a rule. If the head is an

empty clause (i.e [):-b b...) then 1t is called a

quest1on or a goal clause.

o A procedure is a set of clauses about the same relation,

i.e a set of clauses with the same predicate name.

Prolog's refutation is based on

l1teral to be matched (or unified)

SLD resolut1on, 1.e the

1s always selected from

the first one 1n the goal clause. Basically, Prolog adopts a

depth-flrst strategy that is the new goals derived from the

use of a clause are placed at the front of the (current)

goal clause and Prolog finished satisfying a subgoal before

it goes on to try anything else. Prolog will do backtracking

in order to explore the alternative of the solution. Prolog

also does not carry out the occurs check. Although it may

71

give wrong answers (see Lloyd(1984) pp40), it may also show

a sign of programming error.

Prolog ,In executing the goal clause, Will make a copy of a

clause to be matched and all variables in it will be given

new variables names. This copying clause principle in Prolog

is equivalent to the process of standardizing variables

names in converting a predicate calculus into clausal form.

Prolog program can be written such that it may become a

reversible (inversible) program (Gries[1981)). A reversible

program is a program of which we can get the input again

from the output. Although there Is not an easy task, Prolog

in some cases, can do It, for example, the predicate

append(X,Y.Z) which it will append list Y to the end of X

and give the result list Z. The definition of append(X,Y,Z)

IS as follows:

1ppend1C J ,L, l>.
mendCCIILI J, Lt ,WU l r·mendC Ll ,U ,u l.

If given X is an original list and Y is the Input list to be

appended to original list X, then we Will get the output

list, Z. The above program can also be used to get the input

list Y if given the output list Z. The following session

illustrates the feature of reversible program:

?- appendt[l 1b,cl 1[d 1e1fl,ZI,applndt[a,b,cl,Y,ZI.

! • [a1b,c,d,e1fl
Y • [d 1e,fl

yes

Se11ion 2,6,1r Ex11ple of 1 rever11ble progra1

Another advantage of Prolog language that we can easily

write a Prolog program in any languages which uses a Roman

alphabet. For example:

rttslntzral,tpplrl.
ttngrrlntzral,pottf),
ttttnlntzral,rptll.

/t Engllsb t/
/f Srrttn t/
/f ktllf f/

72

All other built-ln predicates can be defined in the

equivalent non English language, for example, predicate

write(X) can be defined in a non Engl1sh language as

follows:

tulisiiii·MriteiXI. /1 "alay's definition of Mrite 1/

Thus, Prolog can be wr1tten 1n any Roman-alphabet language

w1thout difficulty,

We w1ll discuss 1n the following some of the problems we

have faced in the carrying out of the project:

[1]. pred1cate not/1

As Prolog adopts a negation as a failure, so pred1cate

not/1 w1ll not mean the real logical negation. In order

to make Prolog's program more readable espec1ally in

test1ng a cond1tional pred1cate, 1.e a pred1cate which

1s used to represent a certain condition. Suppose, we

have a cond1tion predicate newsubs1d1ary wh1ch

1ndicates that new

asserted into the

subsldiary clauses have been

database. Instead of using

not(newsubsidiary) or newsubsldiary to show the non

existence or the existence of predicate newsubsidiary

respect1vely, we w1ll use a new defined pred1cate

exists(X) or not_exlsts(X) to show the existence or non

ex1stence of predicate (or fact) X. Predicates exists/1

and not_existence/1 are def1ned as follows:

rristslll ,. cltasrll,trar),

not_tKistsiJI 1· cltasrll,trarl,!,ftll
not_rristslll 1- trat.

So, exists(newsubsidiary) and not_exists(newsubsidiary)

73

will be used to test the existence or the non existence

of fact newsubsidlary.

[2]. Hardcopy.

It would be easy to make a hardcopy of a session in

POPLOG Prolog as there are bu1lt 1n Predicates to cater

for this, i.e predicate log and nolog. However it would

be very difficult to make a hardcopy of a session by

us1ng UNIX Prolog as it will make a hardcopy but we

will see nothing in terminal (VDU) or v1ce versa. To

make a hardcopy 1n DEC-10 Prolog, we need to use

predicates tell(Fllename) to start of making a hardcopy

and told when 1t is finish

"F 11 ename" . For ex amp 1 e:

rrztr.uswrrCasrr,yrslr·!, /t 1•• dtf1n1tlan t/
nl,rrl!tC'>>Rnsrrrr Yts'l,

rrltt.I»SWtrCFl:· /t 2•• dtfin1tian f/
rrJtt_tnsrrrCasrr,rrsl,
trllCFl,rrltt.tnsrrrCF,rrsl.

and to close file

The f1rst def1nit1on of predicate wrlte_answer/2 will

print the remark 1n the terminal and the second

def1n1t1on will print the remark in both terminal and

the output f1le F provided F 1s not equal to "user". In

order for the second definltion to work. we must

instruct the Prolog that the output file is F by

command tell(F) at the beg1nning of a session and

closed the file by issuing command told at the end of

session.

Although there are problems of negat1on and the occur check,

Prolog has been used 1n various fields such as expert

systems, natural language understanding etc. (see Clark and

Tarnlund[l982], Sterling and Shapiro[1986), for examples).

CHAPTER 3

A PROLOG-BASED RESOLUTION

74

3.1 Introduction

In this Prolog-based resolution, all the statements which

are already in the form of a first order logic or predicate

calculus, are transformed into Horn Clauses. The resolution

is based mainly on how resolution in Prolog IS implemented.

The resolution strategy in Prolog is a

linear (SL) Input resolution. Basically,

kind of semantic

Prolog adopts a

depth-first strategy. It means also that no occur check is

implemented in the Implemented resolution.

There are two major steps in Prolog-based resolution. These

steps are

[1). Converting a predicate calculus statement Into Horn

clauses.

[2). The refutation process.

3.2 Converting a predicate calculus statement into Horn

Clauses

First of all, the predicate calculus statements are

converted Into Horn Clauses In seven stages. The first six

stages which are based on Clocksin and Mel1Ish[1981) are to

convert a predicate calculus formula into clausal form. So

the associated Prolog program for the first six stages will

not be explained here except If it IS different or any

modification is made, otherwise the programs can be found In

the appendix. Before the conversion technique is described,

let us define the syntax that will be used as follows:

75

PC Th1 syntax
Cono1ctl~! mh1 Ul!~ ~ming

negation •a •a not a
canjunctl an I A b alb a and b
diljunctian I V b I I b a or b
ilplicatian I ••) b I •) b a hplin b
eguivllenc1 I l-~ ~ I <·~ ~ I is egUIV&Ien! to ~

TABLE 3,2,11 Syntax definition Ccannectivel

And for quantifiers , the following syntax will be used:

PC Tha syntax
syntu used

Vx,a all u,al
3X.a exhh!X,al

Far all X, 1 it true
Thert exists X such that 1 it true

TABLE 3.2.21 Syntax definition !quantifier!

For the purpose of operator precedence, the following

Prolog's operators declarat1on

connectives:

?-opC22l,xfx,<•>J.
?-opC22l,xfx,•>J.
'·opC200,xfx,IJ,
?·opC200,xfx,IJ,
'·opClO,fx,•J,

Proqrat 1,2,/1 Optrator Btclarat1on

are defined for the

The seven stages of converting a predicate calculus

statement 1nto Horn clauses are as follows:

[11. Removing all implicat1on and equ1valence signs.

[2). Moving negation s1gns inward.

[3). Skolemising existent1al quantifiers.

[4). Moving outwards and el1minating universal quantifiers.

[5). Distribut1ng conjuction(&) over disjunction<*> s1gns.

[6) . Putting 1nto a clausal form.

[7). Convert1ng into Horn clauses.

The follow1ng are the detail expla1nation of each stage.

76

STAGE 11 Removing all imPlication and equivalence signs

Replace all occurrences of "•>" and "<•>" signs by using

the following rules:

fortu!l

I {•> b
I •) b

The Rtplacetent fortUit

TABLE 3.2.31 Tht Replacetent fortuit

e.g:

all(X.(man(X)twoman(X))=>human(X))

is transformed to

all(X.-(man(X) i woman(X)) i human(X)).

STAGE 21 Moving negation sign inwards

This stage is involved with cases where the negation

sign, " - ". is applied to a formula that IS not atomic.

The end products are such that only the negation sign IS

applied to an atomic formula by reducing the scopes of

11""'11 s1gn using the appropriate De Morgan's

follows:

The fortula

•fa I bl
., •• bl
•(•&)
•mstsfl,al
•an fX.al

The reduction fortula

•••• b
•a I •b
I
Ill u,•al
rxishfX,•a)

TABLE 3.2.4r Tht rtductlon fortul&

For example,

-exists(X,wombat(X) & lives(X.zoo) & happy(X))

is trans~ormed into

all(X, -wombat(X) 4 -lives(X.zoo) i -happy(X))

law as

77

STAGE 3• Skolemising

Skolemising 1s a stage to eliminate existential

quant1fiers by replacing all existentlally quantified

variables by a Skolem function w1th parameters of the

universally quantified variables wh1ch bind it. In other

words, instead of saying that there exists an object w1th

a certain set of propert1es, one can create a name for

one such object and s1rnply say that 1t has the

properties. Skolemisation has one important property, 1.e

there 1s an interpretation for the symbols of a formula

that makes the formula true if and only if there is an

interpretation for the Skolemised vers1on of the formula.

The general rule for eliminating an existential

quantif1ers from a well form formula (wff) 1s to replace

each occurrence of 1ts existent1allY quantlfied var1able

by a Skolem function whose arguments are those

universally quantlfied variables that are bound by

universal quantifiers whose scope Include the scope of

the existential quantifiers be1ng eliminated. For

ex amp le,

all(X,man(X)&exists(Y,-woman(Y) * likes(X.Y)))

is Skolemised into

all(X,man(X)& (-woman(womanO(X)) * likes(X,womanO(X)))

Here. the Skolem function which replaces the existential

quantifier , Y, is "womanO(X)" where X IS a universal

quantifier which binds existential quantifier Y. The

Index 0 (zero) of "womanO" is to distinguish between

other Skolem function which refers to a different woman,

for instance, "womanO(X)" and "womanl(X)" refer to two

78

different women. Any function symbol used in Skolem

functions must be new in the sense that they cannot be

the one that already occurs in wffs.

If the ex1stential quantifier being elim1nated is not

within the scope of any universal quantif1ers. we use a

Skolem funct1on with no arguments. which in fact is a

Skolem constant.

e.g.

ex1sts(X.an1mal(X) & eats(X.human))

is Skolem1sed 1nto

animal(an1malO) &eats(anlmalO.human)

STAGE 41 Moving outwards and el1minat1ng universal

quantifiers

All un1versal quantifiers b1nd the1r own dummy variables.

so move outwards all un1versal quant1f1ers to the front

of the wff. The resulting wff 1s sa1d to be 1n a prenex

form. This does not effect the mean1ng. For example.

all(X. -man(Xl*all(Y. -woman(Y)*llkes(X.Y)))

is transformed 1nto

all(X.all(Y. -man(Xl*< -woman(Yl*llkes(X.Y))))

S1nce the order

unimportant provided

of

that

universal quantiflcations 1s

all ex1stent1al quantlfiers

have been Skolemised. and all un1versal quantifiers are

at the front or outside of the wff. so we may el1m1nate

the expl1cit occurrence of universal quantifiers Wlthout

loss of meaning. Thus the above example becomes

-man(Xl*<-woman(Y)*likes(X.Y)).

79

It should be noted here that no renaming universal

quant1fiers or var1ables 1s required as Prolog will do it

automat1cally.

STAGE :S1 Distributing "&" over "i"

In other words. at this stage. the wff is transformed

1nto conjunctive normal form by us1ng the following

transformation rules:

For1ul1

1 I lb • cl
la • bl I c

The D1str1button for1ula

la I bl • la I cl
la I cl • lb I cl

TABLE 3,2,St The Distribution For1ula
e.g.

(- man(X) & - woman(X)) # human(X)

1s transformed 1nto

(-man(X) # human(X)) & (-woman(X) # human(X))

STAGE 61 Putting into a clausal form

At the beginning of th1s stage. all wffs are in the

conjunct1ve normal form. The "&" sign may be ellminated

result1ng a f1n1te set of wffs where each of wffs is made

up of literals joined by d1sjunctions ("i"). Any wff

which consists of disJunctlon of literals 1s called a

clause. Any clause which conta1ns both negated and

unnegated of the same literal are left out. since this

clause is a tautology. therefore the clause is tr1vially

true and contributes nothing.

80

Each clause will be written as cl(A,B) where A IS a

collection of unnegated literals and B Is a collection of

negated literals but without negation

example,

11""11

(-man(X)thuman(X)) & c-woman(X)thuman(X))

is written as

cl ([hurnan(X) l, [man(X) l).
cl ([human(X)], [woman(X) l).

STAGE 71 Converting Into Horn Clauses

For

All clauses are already In the form of cl(A,B). We will

use the convention to write cl(A.B) as described in

Clocksin & Mellish [1981]. All literals In A and B will

be written separated by semicolon 11 ; 11 and comma 11 11 .
respectively. Set of literals In A and B will be

separated With "·-" sign. If A and B consist of

unnegated literals a,b, ... and negated literals k.l •...

respectively, then the clause will be written as

a:b; ... :- k,l, ...

In fact the signs " " 11 • 11

• and 11 11 are Just like

Prolog's syntax and their meaning are "Is Implied by",

"or" and "and" respectively. For example, "a;b k # 1 11 IS

read as "if k and 1 then a or b" or "a or b is Implied

by k and 1 tt • Set A and B are called the head (or the

conclusion) and the body (or the condition) of the

clause. For examples:

81

[87.11. cl([I. [wombat(X) ,lives(X,zoo) ,happy(X))).

is wr1tten as

[I :-wombat(X) ,llves(X,zoo),happy(X).

(i.e for all X, it is not the case that wombat(X) and

lives(X,zoo) and happy(X) OR no wombat who lives in

a zoo is happy) .

[87 .21. cl ([human(X) I. [man(X) I)

is written as

human(X) :-man(X).

(i.e human(X) 1s impl1ed by man(X)) .

[87.31. cl([allve(X) ,dead(X) I.[))

is written as

alive(X);dead(X).

(i.e Either alive(X) or dead(X) is true)

[87.41 . [c 1 ([f 1rst_man (ad am) I , [I) , c 1 ([f 1rst_woman (eve) , [I) I

is wr1tten as

first man(adam).
first=woman(eve).

(l.e adam and eve are the f1rst man and woman

respectively)

!87 .51 . cl ([sad (j oe), angry(J oe) I,
[offday(today) ,ralnlng(today)l)

1s written as

sad(Joe);angry(Joe) :- offday(today) ,ralning(today)

(i.e 1f today is offday and it 1s ra1ning then JOe is

sad or angry) .

82

Since we are only interested in Horn clauses. the above

clausea will be converted 1nto Horn clauaea. As descr1bed

before that Horn clause 1a either a headleaa or a headed

clauae. Furthermore a headed clauae conaiata only one

unnegated literal. Where aa A (1.e aet of unnegated

literala) or the head of clauae may containa none. one or

more than one unnegated literal. So examplea [S7.3) and

[S7.5) above are not Horn clauaea. and example [S7.1) ia

a headless Horn clause wh1le examples [S7.2) and [S7.4)

are already headed Horn clauses However all Prolog

rulea are in the form of headed Horn clauaea. thua we

will tranaform all clauses into headed Horn clausea.

In order to tranaform the clausea 1nto headed Horn

clausea. set A must contain only one literal. Th1s can be

ach1eved by tranaferriug e1ther the extra literal(a) of

set A to B or one l1teral from aet B to aet A. By doing

so. the sign of the transferred literal or l1terals must

be changed i .e by putting a negat1on ,_, sign in the

front of transferred l1teral(s) s1nce -e-a> 1s equivalent

with a. For instance. example [S7.1) above:

[J :-wombat(X) .lives(X.zoo) .happy(X)

is equivalent to (or can be written as)

-wombat(X) :-lives(X.zoo).happy(X).
-livea(X.zoo) :-happy(X).wombat(X).
-happy(X) :-wombat(X) .llves(X.zoo).

83

Since Horn clauses are l1ke Prolog rules or facts. the

negated sign will cause problem if 1t is straight

fowardly implemented in Prolog. This is due to the fact

that the operator "not" in Prolog is not exactly

equivalent to the negation i.e the1r meanings are

not equivalent. For instance. the meaning of

"not(man(mary))" in Prolog 1s different to "-man(mary)".

The first one refers to the fact that either mary is not

a man or an fact "man(mary)" does not ex1st 1n Prolog's

database, while the latter only means that mary is not a

man. This is due to the definition of operator "not" 1n

Prolog which is def1ned as follows:

notCPJr-cillCPJ1!1 fill.
notcP I r·tr1r.

To overcome this problem. the operator 11, 11 which has

already been def1ned, is used in order to make it as

valid rules of Prolog, thus the above examples will be

accepted as Prolog's rules (Note: for the purpose of

trac1ng, use 'spy -·) .

It should be noted here that by doing so. the system

becomes an open world system. Th1s 1s due to fact that in

order to prove a negated fact, the negated fact should

exist in the database. otherwise the system will tell

that the quest1oned fact does not exist 1n the database

or it cannot prove or deduce it from the database. This

is a contrast to a closed world system whereby we prove

the negation by try1ng to prove 1ts counterpart. i.e. the

nonexistence or nondeducability of its positive fact.

84

In add1tion, all possible combinations of Horn clauses

i.e with a different head or conclusion l1teral, will be

generated since we would like 1t to work just like

Prolog's rules or facts. If altogether there are N

literals in A and B, then N Horn clauses w1ll be

generated. For examples:

[87. 2 ' I . human (X) :-man (X)

is transformed into two Horn clauses:

(a). human(X) :-man(X).
(b) . -man (X) :--human (X) .

(l.e (b) means that if human(X) 1s false then man(X)
1s false or if X is not a human then X 1s not a man).

[87.3' 1. al1ve(X) :dead(X)

is transformed 1nto two Horn clauses:

alive(X) :--dead(X).
dead(X) :--alive(X).

(i.e The first one means that if dead(X) is false
then allve(X) is true. The second one means that if
alive(X) is false then dead(X) is true).

[87.5' I sad(Joe) :angry(joe) :- offday(today) ,rainlng(today).

is transformed 1nto four Horn clauses:

sad(joe) :- offday(today) ,ralning(today), -angry(Joe).
angry(Joe) :- offday(today),ralning(today). -sad(Joe).
-offday(today) :-rainlng(today),-sad(Joe) .-angry(Joe).
-ralnlng(today) :--sad(joe) .-angry(Joe),offday(today).

It should be noted here that clause [87.2' I (b) above is

also called as the contrapos1t1ve form of clause

[87.2'1(a) wh1ch is useful for backward production

systems (Ni lsson [19801) .

85

The top procedure to convert all clauses into headed Horn

clauses is carried out by procedure HC or predicate

horn_clauses/2 as shown in the Program 3.2.2 below:

/f Proctdart ~ rconv1rtrng 1 cltastl rnto h11d1d Born cltost 1/
horn.cii1SISIC1,C11r·!,
horn.cltasrs!CCIIISIII/CIIISII211111dtdhornlr·!1

horn.CIIISISI!CI1111II1 Bornll1 /1 proctdart {tL f/
horn.cltasts!CI11SII11orn211
tpptndllornl,lorn21Betdtdhornl,!.

Proqr11 l.f.!r Proctdart ~

So, the above procedure HC w1ll convert a set of of all

clauses 1n the form of "Head:-Body" (var1able "Clausall"l

1nto headed Horn clauses. Each clause is transformed 1nto

equivalent headed Horn clauses by calling pred1cate

horn_clause1/2 or procedure HCl which as shown 1n the

follow1ng program (Program 3.2.3):

/1 Proctdarl lfL rcrr1t1ng H rqoivtlrncr hradtd Born cltoses 11
horn.cltasrsi!C1r-8odr1Cir·

/t procrd~r~ ICI, I tf
horn.cltasrs218odr1C11CI,!.

horn.cltusrsl!Nttdr-lodr1Cir·
/f procrdart ~ t/

' . ' convtrtlltld11odrll,
tpprndbodrllodrl,lodr,lodr21,
horn.cllasrsl!C1:-Iodr2,CI.

horn_cltasrsli!Btldlltidii,Cir­
/1 procrdarr ICJ.l 1/

' . ' convrrti!Btldlltid/111odrl,
horn.cltastslCCJr-lodr,CI.

horn.claasts/Ctrttrai,Ctittral11.

Proqr11 l.2.lr Procrdart l£!

11 procedarr tft t/

/f proctdart CQHQ 11
/f proctdart RPPI t/

/f procedare !tL.i f/

As shown above (Program 3.2.3).

classlfied into four subprocedures.

procedure HCl 1s

Before a f1nal

conversion 1nto headed Horn clauses 1s done. all

clauses of the form "Head:-Body" w1ll be converted into

"[J:-Bodyl". Procedure HC.l will test whether the set

"Head" is already empty, i. e " [1 :-Body", (see example

[87.11 above) and will do nothing.

86

Procedures HC1.2 and HC1.3 will first convert clauses of

type "a;b; ... :-k,l, ... " (see examples [87.21 and [87.51

above) and "a;b; ... 11 (see example [87.31 above)

respectively into the form of "11 :-m,n, " before

calling procedure HC2. If a clause is already in the

form of "a" or it cons1sts only one literal (see example

[87.41). then noth1ng is done (procedure HC1.4J.

After all clauses have been changed 1nto headless

clauses. then procedure HC2 will generate headed Horn

clauses. Procedure HC2 which will generate N equivalent

headed Horn clauses where N is a number of literals 1n

each clause, 1s also subd1v1ded into four subprocedures

(see Program 3.2.4 below).

,, proctdm m ,,
horn_cltasts21CJ,Bodr,CJJr­

/t proctdart IC2,1 t/
I . ,

horn_cltases211Bodr,BodytJ,Bodr2,CHothetdr-Body1/BJJr­
/t proctdlrt rct.2 ,,
I . ,
convertiBody,KothtidJ,
lpptndbodr1Body2,Bodyi,Bodr1J,
tpptndbodyllodrt,Badr,lodriJ,
horn_claasts21Bodri,Bodyi,BJ,

horn_cltasrs21Badr,CJ,CKothtidJJr­
/t proctdarr IC2,1 t/ , . ,
convtrtiBodr,NothttdJ.

harn_claasts21Body,lodr2,CNothtldr-Bodr2J:­
/t proced1rr ICZ.I t/
I . ,
convtrtiBodr,Kothttd/,

proqrtt 1.t.lr Procedart lit

As shown in the above Program 3.2.4. the first procedure

HC2.1 is the ending procedure when there is no more

literals to be transformed into headed Horn clauses. All

clauses are type of "11:-k.l.m •... " is passed from

procedure HCl to procedure HC2.

87

Procedure HC2.2 Will first move literal k into the right

hand side (RHS) of the rule and generate clause

"-k:-l,m, ... ". This process is continued by moving one

literal at a time into the RHS of the rule until N headed

Horn clauses are generated.

Procedure HC2.4 IS the ending of subprocess of procedure

HC2.2. When there is only one literal in the clause, for

example, "[] :-k", then procedure HC2.3 will convert It

into clause "~". Procedures HC2.3 and HC2.4 are in

fact equivalent except that procedure HC2.3 is to form a

clause of "-k" Instead of "-k:-[]".

All literals of either the head or the body of clauses is

moved from the left-hand side (LHS) or the right-hand

side (RHS) to the opposite side of the rule by procedure

CONV or predicate convert/2 as shown in the following

program (Program 3.2.5).

/f proced~re CONV :aovzn1 lzter•ls znto the left hrnd side 1
1 or the ri1ht h1nd side of • r~lt IS 1pproprz1te f/

convertiiRJil,IRI,I/JJ:-
11 proctd~rt COHV,/ :aovt lzter•llsl znto the RHS of • role 11
!1convertiR,RIJ,
convtrtii,W.

convrrtiiK,LJ,IK/JL/JJ:-
/1 procedart ~ :aovr lztertllsl znto the LBS of • role tl
',convertiK,KIJ,
convtr!IL,LIJ.

convertt•R,RJ:- 1,

conver!IR, •RJ,
/1 proctdlrt ~ 11
/f proctdart CONV.f tl

froqrrl 1.1.5: Proced~res CONV

Procedure CONV.3 (as shown above) will take away ,_., sign

from the literal if there already exists, otherwise the

sign will be added in the front of it if there does

not already exist (procedure CONV.4) when moving it from

one side of the rule into the other side.

88

3.3 The refutation process

As we said earlier that the Implemented refutation system is

almost entirely based on the refutation In Prolog as the

program IS written In Prolog. In the last section we have

described how first order logic statements are transformed

into Horn clauses. These clauses are actually facts which

will be used to prove a hypothesis or to answer a question.

In Prolog, a collection of facts is called a database. We

can divide the refutation procedure into three stages, i.e

(1). Setting up a database (knowledge base).

(2). Formatting a goal.

(3). The refutation procedure.

3.3.1 Setting up a database (knowledge base).

A database consists a collection of Horn clauses wh1ch are

generated from known knowledge as well as from questions and

hypotheses. These clauses are called knowledge base clauses

(KB clauses). KB clauses are made up from two types of

clauses. The first one is a collection of clauses resulting

from the negation of quest1ons or hypotheses, I.e query

clauses. And the other is a collection of axioms or known

clauses, i.e knowledge clauses. Thus the definition of KB

clauses IS as follows:

tnow!rdgr_b•srlllr-
qarrrW. /t qarrr ci•usrs ''

tnow!rdgt_btstlllr-
tnow!rdgrll), /f tnow!rdgt c!tasrs t/

Prograt 1,1,1.1r Drfinltion of tnowlrdgr bist CKBJ cl•asrs

89

KB clauses can be categorised into two classes, i.e factual

and ruled KB clauses. Factual and ruled KB clauses are

clauses w1thout and with body respect1vely, for 1nstance,

the f1rst following three are factual KB clauses and the

rest are ruled KB clauses.

lnowlrdgeCprrsonCnlzrriJJ,
lnowlrdgrCboyCIIZIIJJ,
qrrryc•giriCnlzrriJJ,
lnowlrdgrChlllnClll-llnCIII,
qaeryCIIIrsCl,Yll-llnllJ,wo••niYJJ,

/t I fiCflll fJ CIIISI t/
/1 I fiCIIII fJ CIIISI 1/
/1 I fiCflll fl CIIISI 1/
/1 I rlltd fJ Cl liSt f/
/1 I rrlrd fl Cl liSt f/

As we need these two different types of KB clauses (i.e

query and knowledge clauses), we have to spl1t the process

of converting a predicate calculus (PC) statement 1nto three

subprocedures. There are procedures TRTOP, TRBOT and

Skolemisat1on of existential quantifiers for knowledge

statements (knowledge clauses) and quest1ons (query

clauses). As shown in Program 3.3.1.2. procedure TRTOP or

predicate translate_top consists first two stages, 1.e

remov1ng all implicat1on and equivalence s1gns, and then,

mov1ng in negat1on s1gns.

frlnslllr_topll,l211-
llploatiX,I/11 /1 STR6E t 1/
nrgull/,121, /1 STR6E 2 f/

Proqr•• 1.1.1.21 Procrdore TRTOP

Procedure TRBOT or pred1cate translate_bottom/2 cons1sts of

Stage 4 up to stage 6 and also a part of Stage 7. i.e. the

process of pr1nting clauses in Clocksin format (see Program

3.3.1.3 below).

tr•nslltr_botto•II1,CIIosrll­
anivoatm, XII,
conJniH,m,
CII1Sifyii5,X61CJJ
bllldciiiStsll61CIIOSil 1

printclaosrsiCIIosrJ,

Proqr•• 1.1.1.11 Procrdorr !B!2L

/1 STR6E 4 1/
/t STRSE 5 t/
/1 STR6E 6 1/
/1 STRSE 71 f/
/f printing CIIISI 1/

90

The Skolem1sat1on of existential quantiflers for each type

of clauses (knowledge and query) will be explained

accordingly in the following sections.

3.3,1.1 Knowledge clauses

Knowledge clauses result from the transformation of

axioms or known knowledge. These Horn clauses are

asserted in the Prolog system as facts by adopting them

as var1ables or arguments of a predicate. namely

knowledge. So pred1cate knowledge/1 is a fact and its

object is a generated Horn clause. For examples. the

following generated Horn clauses:

human(X) :-man(X)
-man(X) :--human(X)
animal(fs(anlmalO))

are asserted in a Prolog's database as follows:

lnowlrdgrChatanC!I:·tanC!)),
tnow!rdgrC'tanCIIr-'hatanCIII.
lnowlrdgtCanltll(fs(anit•IOII).

It should be noted that "fs" is taken as Skolem funct1on

ind1cator for all knowledge clauses. Th1s lS done by

def1ning pred1cate skolem/3 or procedure SKOLEM (see

Appendix) to Skolemised existent1al quant1f1ers for all

knowledge clauses. Then procedure PICKSK or predicate

pickskolem/3 (see Program 3.3.1.4) is called from

procedure SKOLEM to p1ck a symbol's name for a Skolem

funct1on 1n replacing the existent1al quantifiers.

plc ks to lnC Knr, V•rs, Si 11-
grns,tCKnr,FI, /t procrdarr 6EHSYr f/
apprndCCFJ1Qars,Fandargsl 1
SI• •• Cfs/Find•rgsJ.

Proqrat 1.1.1.1: Procrdart PICKSK

91

Procedure GENSYM or predicate gensym/2 (see AppendiX)

will generate a symbol name for Skolemised existential

quantifier and variable "Sk" is a Skolem function or

variable. Thus "fs(animalOJ" in the above example is a

Skolem constant for an animal.

In general that if H is a Horn clause generated from

axioms or knowledge statements, then knowledge(H) is

asserted in the database as facts.

pcfiCtl-
rradCSI,
ISStrt_tnawltdgtCS/,

/f rttd 1 PC stttttent f/
/f procedure RSSKS f/

Pragrat 1.1.1.51 Pracedtrt PCFRCT

Procedure PCFACT or predicate pcfact/0 (see the above

Program 3.3.1.5) will read a predicate calculus (PC)

statement, S, and assert Its generated Horn clauses into

the database by procedure ASSKG or predicate

assert_knowledge/1 as shown In the following program

(Program 3.3.1.6).

/f Pracrdarr RSSKS 1ta assert lnawltdge cltasts rnta tht dattbtst f/
assrrt_lnawltdgtCSII­

trtnslateCS,Claastl,
harn_cltastsCC/arsr,Barnl,
stassertzCBarnl.

/f practdart I!ff! ''
/f pracedart BC f/

/f Practdurt I!ff!r to translttr PC, S, rnto C/aclszn forttl, Cltasr f/
translateCS,C/ausell-

trtnslttr_topCS,X21,
slalttCX2,X1,CJI, /f Procrdarr ~ 1Stagr 1 far lnowltdgt c/aasrs •t
translttr_battatCK1,C/tast/,

/f Pracrdurr ~ 11sstrt •tnawledgeCBI' in tht database •I
stassrrtzCCJ/1·!.
shmrtzCCB/TJ/1·

assertzCtnawltdgeCBII,
stusrrtzCTI,

Praqrtt 1.1.1.61 Rssrrting tnawlrdgt c/aasts rnto the databast

92

Procedure ASSKG will firstly translate the PC statement S

into clauses of Clocksin format by procedure TRPCK or

predicate translate/2 (see Program 3.3.1.6). After that

the result (variable "Clause") is passed to procedure HC

(see section 3.2 Stage 7) in order to transform them into

headed Horn clauses. Finally the headed Horn clauses are

asserted in the database (procedure STASZ or predicate

stassertz/1 - see also Program 3.3.1.6).

The following is an example of Prolog's session which shows

how to assert knowledge clauses by using the predicate

pcfact/0 or procedure PCFACT.

?·pcfact.
I; IIIIX,uniXI•>huunUII.

The tanslated clauses:

huun(11 ;· nn(11.
&&&&&&[&& nextnexfnext &&&&&&&&&&&

yes

?·listinglknowledgel.

knowledgelhuaan(_ll:·aan(_lll,
knowledge(•aanl_ll:· •huaanl.lll,

yes

Session 3,3,1,1: A1serting knowledge clauses ;n the databast.

After procedure PCFACT is successfully called, then we

can see the listing of knowledge (KBJ clauses In the

database as shown in the above session (Session 3.3.1.1).

93

3.3.1.2 Query clauses.

Query clauses result from the transformation of the

negation of questions or hypotheses to be proved. In

order to distinguish between knowledge and query clauses.

query clauses are asserted into the database with

predicate query/1. This will also make it easier to

retract all query clauses from the database as they will

not be permanently stored in the database. For example.

the following query clauses:

wombat(fq(wombatO))
lives(fq(wombatO) ,zoo))

are asserted into the database as follows:

qutrrCwolbttCfqCwo•batOlll.
qutrrCiivtsCfqCwolbttOl,zooll.

Here, "fq" 1s a Skolem function 1nd1cator for all query

clauses. Th1s 1s to d1fferent1ate with the knowledge's

Skolem 1nd1cator "fs". S1nce knowledge clauses can be

permanently kept 1n a file, and at any time the f1le can

be consulted 1n Prolog session before prov1ng a new

statement. then the same 1ndex of Skolem variable will

probably be generated. To overcome th1s problem, two

dlfferent symbols are used to represent query and

knowledge Skolem function ind1cators, i.e "fq" and "fs"

respectively.

Although, it can be overcome by keep1ng the log of

indices of Skolem funct1ons used 1n the KB clauses, but

this techn1que does not overcome the most important

difference. The most important difference is that Skolem

function of query clause is actually a result of the

negation of universal quantifiers of a question. So it

94

does not only correspond to the meaning of replacing

ex1stentially quantified with a Skolem funct1on. but it

also serves a different purpose, i.e the query's Skolem

function 1s only to match or unify with any variable or

wi~h the same Skolem function of KB clauses or otherwise

it defeats the purpose of the negation of a question.

Therefore the unification between query and knowledge

Skolem functions are avoided. For instance, suppose the

database contains the following clauses:

lnowlrdgr!wotbttlfs!wotbttOlll,
lnowlrdgr!livrs(fs(wotbtt0)1zooll,

which means that there ex1sts a wombat who l1ves 1n a

zoo, i.e exists(X,wombat(X)&llves(X,zoo)). And also

suppose the question is "do all wombats l1ve in a zoo?",

thus the result of the negat1on of the question, 1.e.

all(X.wombat(X)=>lives(X,zoo)), becomes:

qarrrCwotbttCfqCwotbi!Olll.
qarrrc•JzvrsCfqCworbatOl,zooll.

Indeed, "-lives(fq(wombatO) ,zoo)" of query clauses cannot

be resolved with "lives(fs(wombatO) ,zoo)" of knowledge

clauses to produce an empty clause due to the fact that

"fq(wombatO))" cannot be unif1ed with "fs(wombatO)". So

the proof 1s an unsuccessful one, or we can say that not

all wombats live in a zoo. In this case, "fs(wombatO)"

refers to only one part1cular wombat who lives 1n the

zoo (knowledge statement): on the contrary "fq(wombatO)"

refers to all wombats whom we l1ke to know whether all of

them 11ve in a zoo.

Nilsson[1980] pointed out that in the answer-extracting

process, it 1s correct to replace any Skolem functions in

the clauses coming from the negation of the goal wff by

95

new variables. Th1s 1s not true in this case, as if we

replace the Skolem function "fq(wombatO)" of

clauses with a variable, let say Y, to become:

flrrr<•otbiiiYJJ,
flrrrl'llrrsiY,:ooJJ,

query

So, "-lives(Y.zoo)" of query clauses will be resolved

with "llves(fs(wombatO) ,zoo)" of knowledge clauses to

produce an empty clause where variable Y is unified with

"fs(wombatOJ". This means that the proof is successful or

we can say that all wombats live in a zoo. The 1rony lay

1n the fact that the refutation process produces a wrong

answer, although it ends up with an empty clause. The

wrong answer is that all wombats l1ve in a zoo (except

that if there is only one wombat 1n the world, i.e wombat

"fs(wombatO)") as we know that the contrary is a true

one. The arbitrary replacement of Skolem function with a

variable certainly can not be adopted here as the

refutat1on system which w1ll be described later will not

only be used with the answer-extract1on process only,

but it is also used to prove a hypothesis.

There are, however, certain cases where the Skolem

function of questions causes a somewhat obtuse answer.

For instance, let the database contains the following

knowledge clauses wh1ch means that all men love Mary, i.e

all(X,man(X) => loves(X.mary)):

tno•lrdgrCiovrsCX,«•rrls·••nCIJJ,
tnowlrdgrC'tlnClls- 'lovrsCI,NirrJJ,

and, let the question is that "do all men love Mary?" i .e

all(Y,man(Y)=>loves(Y,mary)). By saving the explanation

of refutation procedure for the next section, let see the

follow1ng session:

?-pcquest.
11 all!Y,aan!YI•>loves(Y1taryll.

The translation of Its negat!on1

un(fq(unOII.
•loves(fq(tan01 1aaryll.

»Annm Yes,

96

all(fq(aan01 1tan(fq(aan01•>1oves(fq<•an01 1aaryll •
•••••••••••••••••••••••

Session 3,3.1.21 Exatple of an obtuse 1nswer

We can see from the above session that the final answer

1s "a11(fq(man0), man(fq(manO) => loves(fq(manO),mary))"

where "Y" 1s instantiated with "fq(manO)" during the

refutat1on process. In other words, the answer means

that all men, namely "fq(manO) ", loves mary . It should

be noted here that "fq(manO)" 1s the quest1oned Skolem

funct1on wh1ch replaces the universal quantifier "Y".

This answered PC 1s qu1te an obtuse answer and 1t does

not clearly show that all men love mary due to the

existent of ''fq(manO)'' 1n the final answer.

To prevent this obtuse answer, we w1ll replace all

quest1oned Skolem functions appearing 1n the final answer

(after the proving has been done) with variables as

opposed to the method suggest by Nilsson[1980] which

replaces Skolem functions before the refutat1on process

or immediately after the process of transforming the

negation of quest1on into clausal form. After

substitut1ng all quest1oned Skolem funct1ons w1th

variables, we will get "all(Z,man(Z)->loves(Z,mary))" as

a final answer which is more intell1gible and meaningful.

In order to replace all Skolem functions 1n the final

97

answer. we need to keep a list of all Skolem functions of

questions during Skolemisation of existential quantif1ers

for query clauses.

The same techn1que as descr1bed before (section 3.3.1.1)

is used to create a symbol for Skolem functions for all

query clauses. i.e by defining predicates skolemq/4

(procedure SKOLEMQ -see Appendix) and piakskolemq/3 (or

procedure PICKSKQ -see Program 3.3.1.7).

pzctstolrtqCNttr,Qtrs,StiJ­
gmytCHm,F I,
tpptndCCFJ,Qtrs,Ftndtrgsl,
St• •• Cfq!FandtrgsJ.

Proqr•• l.l./,71 Procrdurt PICKSKQ

In general • if H is a Horn clause generated from the

negation of a question then query(H) 1s asserted 1nto

the database as facts.

/t Proctdurt RSSQ 1to tsstrt qurrr cltusrs into tht dtltbtst t/
ISStrt_qurry(91Citust1StiiSIII•

transltltq(Q1Citust1Sklistl,
horn_cltastsCCiaasr,lornl,
qusrrtzC Born I.

/f Proctdart TRQ 1to translatr PC, 91 znto CJoctszn forrtt, Cltust 1/
trtnsltlrqCQ,Citusr,StlzstiJ-

trtnsltlr_topCS,K211
stolttqCK2,Kl,CJ,Stlistl, /t frocrdurr SKOL£N9 1St1gt l for qarrr claasrs f/
lrtnslttt_bottotCKl,Claastl.

/f frocrdllf QRSS :tssrrt 'qurryCBI' in tht dltlblst f/
qassrrtzCCJir-!.
qumtzCCB!TJI r-

tsstrtzCqatryCIII,
qmrrtzm.

froq111 l.l.t.Br Rsstrt qarrr claasrs into tht dattbtst

As shown in Program 3.3.1.8, procedure ASSQ (predicate

assert_query/3) will convert a negation of question. Q,

(in PC) and transform 1t into Horn clauses (procedures

TRQ and HC) and assert the resulted headed Horn Clauses

1nto the database (procedure or predicate

qassertz/1). This procedure is actually equivalent to

98

procedure ASSKG but both of them produce two d1fferent

type of clauses (query and knowledge).

For example, if Q (ln PC form) is a question, then query

clauses will be asserted 1nto the database by calling

predicate assert_query(-Q,C,Sklist), where variable

"Skl ist" conta1ns a 1 ist of all questioned Skolem

functions. It should be noted here that this predicate

w1ll not be used or executed independently, but will be

used 1n conjunction with proving a goal or answering a

question. However let see the following session:

?- &ssert_query! 'all!l 11an!ll•>laves(l11aryii 1C,Skllstl.

C • ll&n!fq!lan011 1 'laves(fq(l&n01 11arylll.

Sklist • !!_t,fq(lanOill

yn

?-listing(queryl.

query!•an!fq!•anOIII.
query('laves!fq!lan01 11arylll.

yes

Session 3.31 1.3! Asserting query cl&uses 1nto 1 d&tabase

It can be seen from the above sess1on (3.3.1.3) that by

call1ng the pred1cate assert_query/3, we will get the

the result of the converting the negation of the question

into Horn clauses. The variable "C" refers to the

resulting clauses 1n Clocksln format (as descr1bed

before) and the variable "Skl1st" consist a list of

questioned Skolem functions and 1ts orlginal un1versal

quantifiers, i.e in th1s case, the or1ginal universal

quantifier of the question is "X" or "_1" (Prolog

variable). The listing in the above session shows the

query clauses as in the database.

99

3.3.2 Goal Formatting.

Once we have facts or have set up a database, i.e a

collection of knowledge and query clauses, we can ask a

question or prove whether a statement follows or can be

deduced from the database (KB clauses). A goal clause in a

set of Horn clauses is the headless one i.e cl([J.B). These

can be written in Prolog's syntax as

?- B

where B is a collection of literals separated by comma. For

example, "cl([J.(a,b,c))" or equivalently "[J:-a,b,c". is

wr1tten as a goal in Prolog as

?- a,b,c.

In order to format a goal in Prolog, one of query clauses

must be a headless Horn clause, i.e query([]:-B) or

cl([J.Bl. As we have not1ced that there does not necessarily

exist a headless query clause in the database , therefore

one of query clauses must be

In other words, the head of

empty set (].

It can also be noticed that

converted 1nto a headless one.

the goal clause must be an

the required format of the goal

clause can be der1ved directly from the corresponding clause

in Clocks1n format. Thus we do not need to reconvert aga1n

from a headed Horn clause to a headless Horn clause. It 1s

enough just by storing the corresponding clauses in Clocks1n

format and then transferr1ng the head of the clause into the

body of the clause. For examples:

[3.3.2.1). If the query clause is

human(X) :-man(X).

then the correspond1ng goal clause is

[J :--human(X) ,man(X).

[3.3.2.21. If the question 1s

exists(X,wombat(X)&happy(X))

then the corresponding goal clause is

[]:-wombat(X),happy(X).

or 1n Prolog is written as

7-wombat(X),happy(X).

100

(Note: This 1s a headless clause, so nothing is done)

[3.3.2.3] If the query clauses 1n Clocksin format are

wombat(fq(wombatO)).
lives(fq(wombatO),zoo).

then the correspond1ng goal clauses are

[]:--wombat(fq(wombatO))
[] :--lives(fq(wombatO),zoo).

The program to format a goal 1s similar to the program

described 1n Stage 7 (sect1on 3.2) with the exception that

we do not need to create N equ1valent goals as all N

equivalent Horn clauses produce the same goal clause. For

example, the following two equivalent Horn clauses of the

query clause as 1n example [3.3.2.11:

human(X) :-man(X).
-man(X) :- -human(Xl.

w1ll generate the same goal clause:

[1 :- -human(X) ,man(X).

The following procedure FG or predicate forrnat_goal/2 (see

Program 3.3.2.1) will format a goal from the query clause in

the form of Clocksin format.

/f ProctdRrt [! rgo1l fortttting t/
fortlt_lotiCC1r-Body1Bodylr-

!, /t procrdart f!.L t/
fomt_goa!C Br-11 Solllr-

/t proctdarr f!.1 t/
convrrtCB,Hothl,
tpptndbodyCNoth1 T18otll 1!.

fortlt_lot!CB1Sotllr­
/l procrdarr f.Ll t/
convrrtc B, Soall,!,

/t proctdarr COHQ 1/
/f procrdm ~PPI t/

Progr11 l.l.t.lr Proctdarr FS Cgotl forttttzn11

101

If the query clause 1s already in the form of a headless

clause. then nothing 1s done (see example [3.3.2.1]) above).

so procedure FG.1 Wlll just take the body of the clause as a

goal.

If there are literals in the head of ruled clause"H:-T".

1.e set H 1s a nonempty one (see example [3.3.2.2] above).

then all of them are moved into the RHS of the rule and

appended to the current body to become a goal (procedure

FG. 2) .

If the clause does not contain a body, i. e set T of "H: -T"

1s empty or the clause 1s a factual one (see example

[3.3.2.3] above). then procedure FG.3 w1ll carry across all

the literals of set H into the RHS of the rule to become a

headless clause and the new body is taken as a goal.

Procedures CONV and APPB have already been expla1ned in

Stage 7 of sect1on 3.2 (see Program 3.2.5). The follow1ng

session (Session 3.3.2.1) shows some examples of goal

formatting by using procedure FG.

?-fartat_gatlCCCJ:-watbatCll,happyCllJ,Yl.

I • watbt!C_Il, happyC_Il.

yrs

?-fartat_gaalCChattnCll:-tanClll,IJ.

I • 'hatanC_Il1 tanC_Il.

Its

Srsszon l.l.t.l: Sate eratplrs of got! fartatting

102

3.3.3 The Refutation Procedure

In the refutation or proving procedure. which will be

described here, a combination of control strategies and

resolution methods is adopted. The ma1n strategy adopted is

the linear 1nput form. Although the linear input form

strategy 1s 1ncomplete in the sense that it does not produce

all possible solutions, it is used because of its simplicity

and efficiency. Furthermore Prolog adopts this strategy.

In addit1on to the linear 1nput form strategy, we also adopt

the set of support strategy (see chapter 2 for the

definitions of all the strategies). By using the basis of

the set of support strategy, we start w1th a headless clause

from the set of query clauses. In other words, we take one

of the query clauses and convert 1t into a headless clause

and use this one as a goal clause or one of the starting

parent clauses. The other parent clause is taken from the

set of KB clauses.

The prov1ng or refutat1on procedure is actually JUSt like a

Prolog 1nterpreter written 1n Prolog. That is, we can define

what is to run a Prolog program by someth1ng which is 1tself

a Prolog program. This means that all the query and

knowledge clauses are Prolog rules and can be executed

dlrectly.

Summarily, in our refutation or proving procedure, we start

with the goal clause and resolve 1t with one of the KB

clauses, to give a new clause. Then we resolve it with one

of the KB clauses, and so on. At each stage, we resolve the

103

clause last obtained with one of the original knowledge

clauses. At no point in the refutation procedures. do we

either use a clause that has been derived previously or

resolve together two KB clauses. In Prolog terms, the latest

derived clause can be taken as the conJunction of goals yet

to be satisfied. Thls starts off as the goal. and hopefully

ends up as the empty clause.

At each stage , find a clause whose head matches the last

literal of the goals, instantiate variables as necessary. Do

the same process to the body of the instantiated clause

wh1ch becomes yet another goal. The l1teral to be matched is

always selected from the last one of the goal.

The instantiation of the variables or the unlfication

procedure 1s based on Prolog instantiation. For example, If

the goal clause is

[l :-drugpusher(X) .officer(X).

then we Will try to resolve officer(X) first and suppose

that the following knowledge clause ex1sts in the database:

knowltdgtloffictflfslstffChtd01YJJr·tnltftdiYJ,•vrpiYJJ,

thus. the new resolvent will become

[] :-drugpusher(f(searchedO,Y)),entered(Y) .-vip(Y).

where X is Instantiated w1th "fs(searchedO,Y)". The new

resolvent will form a new goal, I.e:

(] :-drugpusher(fs(searched,Y)).entered(Y) .-vip(Y)).

So the proof continues with a new literal goal, "-vip(Y) ",

and so on taking new l1teral goal from right to the left of

the goal. If the proof ends with the empty clause then the

hypothesis IS true, otherwise 1t falls.

104

The refutat1on or proving procedures are implemented by two

different methods. One is a depth-first method and the

other one 1s a breadth-flrst method. Before we descr1be both

depth-first and breadth-first methods in sect1ons 3.3.3.2

and 3.3.3.3 respectively, we will f1rst explain the top

level pred1cate which do the proving controll1ng and the

answer printing.

3.3.3.1 The top level predicates

The most top level predicate which do the prov1ng or

refutation control is a predicate pcquest/0 or procedure

PCQUEST as shown in the Program 3.3.3.1 below. In other

words. Program 3.3.3.1 shows how a quest1on 1s proved or

answered. Procedure PCQUEST will prompt a question in a

predicate calculus form which will then be proved by

procedure QUEST or pred1cate question/1

/f procedure PCQUEST :pro1pt 1 qaestJon 1nd prove Jt f/
pcqautl·

rudW,
qmtmCQl,

/f re1d 1 question Q Jn PC for• 1/
/1 procedure iMl![1/

/f procedure QUEST :prorJng or 1nswerJng 1 qarstJon Q 11
qatstioniQl:-

clur _pc, /f Step I :procedure ClERRPC 1/
qaestJon_to_horncllasrCQ,CIIasr,SIIistl, /f Strp 2 :procedare QTHC 11
lnsnr_surchCCime,Q,Y,Stlistl, /1 Strp 3 :procedm RS 11
pnnt_mwerU,Y,Ciusrl. /f Strp 4 :procrdarr PA 11

Proqr11 3.3.3.1: Proving 1 qarstion

The procedure for proving or answering a question (as shown

1n the above program 3.3.3.1) is divided into four steps as

follows:

[1]. Re-sett1ng all control pred1cates.

[2]. Converting into Horn clauses.

[3]. Searching for answers.

!41. Pr1nting the answers.

105

3.3.3.1.1 Re-setting all control predicates <Step 1)

Before the refutat1on process is carried out, all control

predicates will be reset by call1ng procedure CLEAR (or

pred1cate olear_Po/0). Predicate olear_po/0 (see Appendix)

will reset, by retract1ng or abollshing, all control

predicates which will be used dur1ng prov1ng the hypothesis

or answering a question. Library predicates are used to

retract (retraota11/1) or to abolish (abollsh/2) all control

predicates such as toptry0/1, toptry/1, proven/! etc. All

query clauses are also abolished from the database before we

start the refutation process.

3.3.3.1.2 Converting into Horn clauses <Step 2)

The second step of procedure QUEST, 1.e procedure QTHC or

predicate quest1on to_hornolause/3, (see Program 3.3.3.2

below) is to convert a negat1on of the quest1on ,Q, into

query clauses (in the form of headed Horn Clause) by keeping

its clauses in Clocks1n format (variable "Clause") and also

all quest1oned Skolem functions (vanable "Sklist") for

changing back into variables later, and then assert them

(query clauses) into the database. Th1s is done by calling

predicate assert_query(-Q,olause,Skllst) or procedure ASSQ

(see Program 3.3.8 of section 3.3.1.2 for 1ts detail

descriptions) .

/t proctdart ii!t t/
qatstion_to _horncl•asriQ,CI•ast,SklisiJs·

•sstrt_qatrrc•Q,CI•asr,Slllst1.

~rogr11 1.1.1.11 Proctdart QTIC

/t prmdarr RSSQ t/

106

3.3.3.1.3 Searching for answers (Step 3)

The third step of procedure QUEST, 1.e procedure AS (as

shown in Program 3.3.3.3 below), 1s to search the answers

for the question after its negation was transformed into

Horn clauses.

At first, (the first procedure of predicate answer_search/4,

i.e procedure AS.l), we will try to find all possible

answers unt1l the proving is exhausted. At this stage, the

question is already in the form of Clocksin format (variable

"Clause"). The prove 1s carr1ed out by procedure ANS or

pred1cate answer/3. Th1s procedure (ANS) will return answer

"yes" or "no" (variable "Ans") depending on the result of

the proving.

For the purpose of pr1nt1ng and

affirm(Ans) will then be asserted 1n

controll1ng, predicate

the database as in the

procedure AS.l. Var1able "X" wh1ch 1s actually the question

1n 1ts or1ginal form (PC), conta1ns all unif1ed quantifier

var1ables includ1ng quest1oned Skolem funct1ons (if they

exist) .

As explained before (sect1on 3.3.1.2) this quest1oned Skolem

function g1ves un1ntell1gent answers. Thus before this

answered PC wh1ch may contain unified quantified variables

is passed to other predicate for print1ng, all questioned

Skolem functions, if they exist, w1ll be changed back to

variables (the last line of procedure AS.l) by calling

procedure SSK or predicate subst_skolem/3 (see Appendix for

1ts def1nition). Thus, procedure SSK will return a new

107

answered PC ,"Y", which 1s free from any quest1oned Skolem

functions.

/t pracrdarr ~ ISttrch1n9 rnswrrs far qarstian Q t/
IDSWtr_sttrchiCIIISI111Y1Sk11St)J•

/f practdlrf !!.LJ find Ill pGSSiblt IDSWtrs IDill IXhiiSttd f/
tmtrii1Cllm,lnsl, /t practdarr ill f/
tssrrtz_nr•ltfflrlllnsll1
nbst_skoluii,Y,Sklistl, /t proctdm tt(t/

tns•rr_srrrch1Citast11,Y1SklistlJ·
/t proctdlrt ~~ na 1arr rns1rrs llht prav1ng tndsl f/
Clusr\nCJ,
IXIStsltoptryiCJ))1!,

froqrrl 1.1.1.11 froctdlrt ~

The second one of procedure AS, 1.e procedure AS.2. will

make itself successful after all possible prov1ng paths are

explored ,1.e until predicate answer/3 fails. 1n order to

show that the proof is finished. The end1ng of proving is

indicated by the ex1stence of predicate toptry([J) (see

Program 3.3.3.3). Eventually th1s procedure (AS.2) w1ll

return the un1nstantiated value of an answered PC, i.e

variable "Y".

It should be noted here that the procedure ANS or pred1cate

answer/3 lS the core of refutation procedure and will be

expla1ned 1n the next sect1ons 3.3.3.2 and 3.3.3.3.

3.3.3.1.4 Printing the answers (Step 4)

The fourth step of procedure QUEST is procedure PA (see

Program 3.3.3.4). Procedure PA (or pred1cate prlnt_answer/4)

1s called 1n order to pr1nt answers for the quest1ons. The

procedure PA will be div1ded into two subprocedures. The

first one, procedure PA.l. is to print a remark about the

inconsistency of the question. The remark is printed by

call1ng procedure AF. The second one. procedure PA.2. 1s to

lOB

print the result of the proving of the question .i.e either

successful or failure one. This is done by call1ng pred1cate

print_answer0/2 or procedure PAO.

/f procrdarr f! rprinling lhr rnswtr or sol1lion f/
prrnl_lnswrrCQ,Y,CJJr-

/1 Procrd1rr f!.[r thr cl1asr 11 I» znconsistrnt onr f/
rffmUnsJ,
lnswrr_for•CY,RnsJ, /f procrd1rr 4[f/
wrztrC' Tht qarslion clrasr is 1n inconsistrnt onr 'J,
' 0 •

print_rnswrrCQ,Y,CIIasrJr-
/1 Procrdarr f!Jlr print rilhrr saccrssfal or frzlarr proving f/
Chasr\uCJ,
prinl_lnmrOCQ,YJ, /f ,rocrdarr eH f/

/f procrdarr RF 1/
rnswrr_for•CY,RnsJ

wrilt_rnswtrCasrr,RnsJ,
wrzltpcCasrr,YJ,

Progr11 1.1.1.4! Procrdarrt f! rnd 4[

/f procrdarr Kt f/
,, procrdm m,,

Procedure AF or pred1cate answer_form/2 (see also Program

3.3.3.4) w1ll print a remark of the result or answer (either

"yes" or "no" depend1ng on the value of "Ans") . and also

the answered PC. The remark and the answer itself are

pr1nted by procedures WA and WPC respect1vely.

As shown 1n Program 3.3.3.5. procedure PAO or predicate

print_answer0/2 is subdivided 1nto two procedures, namely

procedure PAO.l and PA0.2, wh1ch w1ll handle posit1ve (yes)

answer and negative (no) or end of proving remarks

respectively. The posit1ve answer or successful proving 1s

shown by the existence of pred1cate affirm(yes) and the

instant1ated answered PC. "Y", (nonvar(Y) is true). As

described before that the unsuccessful proving will return

an uninstantiated value of "Y" (see procedure AS.2 of

Program 3.3.3.3). The pr1nting of successful result is done

by predicate more_answer/1 or procedure MORE-ANS.

/f proctdtrr m f/
,rlnt_answrrOCQ,YII·

/1 procrdarr f!tc[1 to pr1nt 'rrs' answrr 1/
nonvarm,
afflra(yrsl,
ans•rr.fortCY,yrsl,
!,torr_answrrCYI.

print_answrrOCQ,YII·

/t ,rocrdarr ftf. t/
/1 procrdarr KORE·RKS 1/

/t proctdarr mJ.s rnd of proving procrsslng t/
rxistsCtoptrrCCJII,
trst.flnish_fact(Q), /1 procrdarr llL 11

troqr•• l,l.l,,l Procrdcrr PRO

109

After the printing of result. the enquirer is given a set of

options. Those options are by selecting or typ1ng one of the

following: ~. y . £, n. £, <return>. £or others characters.

The following table gives the mean1ng of every options.

Option

I
b
p
n or <return>

abort
break
pr1nting solution's tree or graph
not to find other answers !satisfy

w1th the g1ven answer)
1 or y
others

find If there !1 other answer
dtsplay!ng helo table !ltke this onel

TABLE 3.3.1: Options for procedure eR

The response from the enqu1rer will be d1agnosed by

pred1cate answer_response/2 or procedure AR (see Appendix).

This procedure, AR. 1s called from procedures MORE-ANS wh1ch

is shown in Program 3.3.3.6. When option £ is typed,

predicate pr1nt_solution w1ll print the solut1on's tree (see

Appendix) .

/1 ,rocedarr KORE·RKS 11
torr_answrrCYll·

writr_provrdCasrr,YJ,
grtoCRJ,
answrr_rrsponsrCR,YJ. /t procrdarr RR 1/

troqr11 l.l.l.61 Procrdarr KORE·RKS

The second subprocedure of pr1nt_answerO, i.e procedure

PA0.2, deals with the end of proving s1gn. The proof ends

when predicate toptry([J) exists 1n the database. If this 1s

110

so, predicate test_finish_fact/1 or procedure TFF will be

called. As shown In Program 3.3.3.7, procedure TFF is

sundered Into two procedures, namely procedure TFF.l and

TFF.2, by the value of "Ans" of predicate affirm(Ans).

Procedure TFF.l is to print a remark that no more more

answers are possible or the proof ends successfully provided

that there exists the predicate affirm(yes). On the hand, if

the "Ans" is instantiated to "no", then procedure TFF.2 will

print a remark that the proof is unsuccessful and then the

enquirer or user will be ask a confirmation of asserting the

question as a knowledge in the database. Procedure AAF or

predicate ask_assert_fact/2 (see Appendix) Will diagnose the

response given by the enquirer. There are only two options

available ,i.e ~ and n for yes and not to assert the

question Into the database respectively. If the user agree

to assert the question as a fact or knowledge, then

procedure ASSKG (predicate assert_knowledge) wi 11 be

called, otherwise procedure TFF wi 11 do nothing and

eventually the whole question-answering process comes to

end.

/t proctdm 1FF t/
test_fi»lsh_flciCQ)I-

/t procedure tff,/1 to prl»t '»o 1orr 1nswers ' t/
lffmCru>,
wrilt_l»swerCuser,finuh),!, /t procedare M t/

test_fi»ISh_flct(Q)I-
/1 procedarr tff.21 to 1st conflrlltlon of 1ssertzng 1 qaestzon

IS 1 f1ct into the datab1sr t/
•ffir.Cnol,
1nswer _fortCY,no), /t procrdart 4£. t/
»l,nl1tab(S) 1WrlttC'Bo roa lilt to ISStrt ')1
nl,tlbCBI,write_qaote(Q)1
nl,tlbCS),Nrltt(' IS I f1ct in the dltlbiSt Cr/n) 7 ')1
getOW,
•st_•ssert_flctCJ,Q), /t proctdart ~ t/

troqr•• 1.1.1.11 Procedart !fL

111

3.3.3.2 The Depth First Method

Beside us1ng the comb1nation of the set of support strategy

and linear input resolut1on as described earlier, we also

adopt the unit preference strategy in the depth first

method. Th1s is to make sure that the resolvent has fewer

literals than do their other parents 1.e the goal. This

process helps to focus the search towards producing an empty

clause, thus typically increases efficiency, although it may

take a longer path to reach the solution.

By using this method, we will prove only one goal clause at

any time. So there 1s only one goal clause or headless Horn

clause exist1ng at any t1me of the proving. The proof is

successful if one of the goal clauses can derive an empty

clause, otherwise the proof fails if all goal clauses cannot

der1ve an empty clause. Thus, for 1nstance, if the following

1s a l1st of query clauses:

[wombat(fq(wombatOJJ.lives(fq(wombatOJ ,zoo)]

then first we convert the first query clause or the head of

the list into a goal or a headless clause, i.e.

[] :--wombat(fq(wombatOJJ.

and we try to derive an empty clause from the above clause.

If 1t is successful, then the hypothesis 1s true. Otherwise,

we convert the second query clause of the above original

list or the head of the current l1st, i.e

[lives(fq(wombatOJ ,zoo)], into a headless Horn clause and

try to prove it, that is

[] :- -lives(fq(wombatOJ ,zoo).

If this one is still unprovable then the hypothes1s is false

or the question can not be proved, as there 1s no query

clauses left 1n the current llst, i.e (] (an empty list).

112

We w1ll d1vide the refutation procedure based on a depth­

f1rst method into five different levels of major procedures

as follows where the level 1 1s the highest level and the

level 5 1S the lowest (deepest) one:

[1). Procedure ANS

[2] . Procedure ASK

[3] • Procedure FACTPR

[4] • Procedure BASEPR

[5] . Procedure FACTCL

3.3.3.2.1 Level 11 Procedure ANS

The h1ghest level pred1cate or procedure in a depth-first

method of refutation procedure 1S procedure ANS (or

predicate answer/3). as shown 1n Program 3.3.3.8, which w1ll

eventually return answer "yes" or "no" to the prov1ng

process of the question. Th1s procedure wh1ch 1s called from

procedure AS.l (see Program 3.3.3.3 of section 3.3.3.1), is

subd1v1ded 1nto two procedures, 1.e subprocedures ANS.1 and

ANS.2.

/f pracedare ~~S : 1nswerrng the question t/
inrwerCPc,S,reslr-

/f pracrdare ~~ retarn retrrk 'res' far raccrrrfal proving t/
ukingCPc,Q/ 1 /t pracedm QH t/
rssert_anceltoptrrOCPc//,

answerCPc,S,nolr-
/1 procedure ~~ retarn retrrk 'no' for tnsaccessfa! proving t/
not_existsltoptrrOCPcll,

Proqrrt 1.1.1.8: Procedure ~HS

The first one, procedure ANS.l, will assert predicate

toptryO(Po) only once in the database 1f the proof 1s

successful. and also 1t will return remark "yes". The proof

1s carr1ed out by procedure ASK. In other words, the proof

is successful 1f procedure ASK succeeds.

113

Otherwise. if the proof fails

fa1lure of predicate asking/2.

will return remark "no". The

which 1s a consequent of the

the second procedure. ANS.2.

predicate asklng/2 fails when

all query clauses have been proved unsuccessful. This is

indicated by the nonexistence of predicate toptryO(Po) in

the database; on the contrary the existence of predicate

toptryO(Po) (which is asserted by procedure ANS.l) will show

that at least one of the

clause though predicate

asking/2 also fails when

negated quest1on 1s an

query clauses has deduced an empty

asking/2 fails. The pred1cate

the result1ng Horn clause of the

empty one (Clause-[)). This means

that the quest1on clause 1s an 1nconsistent one because the

negat1on of an 1ncons1stent clause 1s an empty one

(tautology) .

3.3.3.2.2 Level 21 Procedure ASK

The maJor procedure in second level of refutat1on procedure

1s procedure ASK which 1s called from procedure ANS at level

one.

Procedure ASK (predicate asking/1).

3.3.3.9. will prove the head clause

as shown 1n Program

1n Clocks1n format of

the current list of query clauses one by one depend1ng on

the result of prov1ng or the needs of other possible answers

unt1l the current list become empty, So. we will d1vide

this procedure into three subprocedures.

The first suprocedure. i.e Procedure ASK.l. will first

convert the head of the current list into a headless one by

calling procedure TOPASK and then try to der1ve an empty

114

clause from it (the resulting headless clause) by calling

procedure FACTPR. If the proof of the clause is unsuccessful

(procedure FACTPR fails) or there are no more answers can be

generated from the clause when it 1s asked by the enquirer

(procedure FACTPR exhaustively fails) or the question clause

is a tautology one (procedure SUCCESS fails), then

backtracking will occur and the same process will repeat but

by taking the next query clause in the current list i.e list

"Quest", (procedure ASK.2).

/t Procrdart ~ 1 lo provr each cltosr of lhe qotslion t/
tstingCCQorstt/QorsiJll·

/t procrdart RSI.t t/
lop_tsking!Qorstt,Sotll,
ftclprolog1Soai 1CJ,CJ,Ip,CJJ,
sacctssfal.tctioniNpJ.

tskingCCQatstt/QatsiJJI·
/t proctdart 6!!.1 t/

/t procrdarr TQPRSr t/
/t proctdart FRCIPR tf
/t proetdm SUCCESS t/

prul_mmll8mltl1 /f procrdm eMI.1. t/
1Sklngl8atsll. /t provr lht nrxl qarrr cltast t/

utingCCJJ1·
/1 procrdarr m.1. t/
ISStrlzCtoptrrCCJJJ 1 ftil.

The proof comes to an end when the current list become empty

(procedure ASK.3). There are two possible cond1t1ons when thls

state is reached, either there are no more possible solut1ons

or the proof is unsuccessful. In either case, procedure ASK.3

will assert pred1cate toptry([J) into the database to mark the

end of proving and return the value of false, i.e the

predicate asking/1 will fail at the end of prov1ng.

Consequently procedure ANS which calls 1t, will return w1th

remark "no" (see procedure ANS.2 of Program 3.3.3.8).

115

3.3.3.2.3 Level 3

There are three maJor procedures in level three which are

called from procedure ASK at level two prev1ously. There are

procedures TOPASK, SUCCESS and FACTPR which can be

classified as before proving, after successful proving and

the proving itself respectively.

Level 3.11 Procedure TOPASK

As we said earl1er that before the proving process is

carried out. procedure TOPASK or predicate top_asklng/2

(see also Program 3.3.3.10) is called first. We will keep

a log of goals and parent clauses by pred1cates goal/2 and

proving/2 respect1vely at each resolution node at which

both of them are successfully resolved with each other.

Furthermore. both pred1cates will be used dur1ng pr1nt1ng

the solution's tree. So. predicate node/1 denotes node

number for each successful un1fied node. In other words.

procedure TOPASK w1ll initlalise pred1cate node/1 by

assert1ng a new pred1cate node(1) (by call1ng predicate

assertz_new(node(1))) and do the goal formatt1ng

(predicate format_goal/2) .

Level 3.21 Procedure SUCCESS

As the needs of proving other clauses from the same

question 1n order to f1nd other possible answers or

solut1on tree may or usually does ar1se, but still. dur1ng

that process we do not want to prove the same goal clause

twice or more. However. there is no harm by prov1ng the

same factual KB clause over and over again. but prov1ng

116

the same ruled KB clause can be overtaxed. For instance,

the following is a part of the solution tree:

I
!gll llr-•eetsla,bl 1anilal(al 1personlbl.

I lpll personlbl,
1/

lg21 lll·leetsla,bl 1ani•allal.
I lp21 anilallalr -Molbat (al.
1/

lg31 llr-aeetlla,bi,Molbat!al,
I lp31 MDibatlal,
1/

lg41 llr-mtsla,bl.
I lp41 •eettla1blt·vitittlb1zool 1livesla1zool 1ani•al(al 1personlbl,
1/

lg51 lll·visitslb,zoo1 1livesla,zool,aniaallal 1personlbl.
I lp51 person lb I,
I/

lg61 llt-visi h lb, zool,ll vu la, zoo I ,anilal I al.
I lp61 anilal lalr-Molbatlal.
1/

lg71 llt·visitslb1zool,llvesla,zool 1•o•bat(a),
1 lp71 mbat !al.
I/

lgBI lll-visitslb 1zool,livesla 1zool.
I

I
Fl6 3.3.3.1[Solution subtree

It can be seen from the above subtree (F1g. 3.3.3.1) that

three pairs of parent clauses are the same 1,e clauses

[(p1). (p5)], clauses [(p2). (p6)] and clauses [(p3), (p7) l.

The f1rst, [(p1),(p5)] and th1rd [(p3),(p7)] pairs are

factual KB clauses and the second one. [(p2) ,(p6)], is a

ruled KB clause.

All the proven ruled KB clauses can be considered as

lemmas to the other goal clauses from the same question.

When the same ruled KB clauses are going to be proved

again, we do not have to repeat the prov1ng of the same

ruled clauses once again. but we w1ll used the proven

ruled KB clause to show that we have already proved it

successfully before by assert1ng them 1nto the database

(using predicate proven/1). So, from Fig 3.3.3.1 above, if

117

we assert clause (p2) (i.e proven(anlmal(a):-wombat(a)))

1nto the database then we can save one step here, that is,

we can go straight from goal (g6) to (g8) Wlthout the need

to prove "wombat(a)" aga1n (goal g7). However, we do not

gain any advantages from asserting proven factual KB

clauses.

Accordingly, after the proving ends successfully,

procedure PROVEN (predicate assertz_proven/1) wh1ch is

called from procedure SUCCESS (see Program 3.3.3.10), will

assert 1nto the database all the proven ruled clauses

wh1ch was passed from procedure FACTPR. So if "Hp" 1s a

proven ruled KB clause, then "proven(HpJ" 1s asserted 1n

the database.

/1 procrdarr TOPRS« r top p1rt of procrdarr ASK./ 1/
top_lslzngCQarst/ 16olllr­

'ssrrtz_nrwCnodtC/111
forlll_gollCQarsti,So•ll 1!.

/1 to initzllrsr nodrC/1 1/
/1 procrdarr FSr go1l for11ttrng 1/

/1 procrdarr SUCCESS 1/
saccrssfal_lctronCNplr­

•sstrtz_provrnCHpl, /1 proctdart PROVEN 1/

11 prmdm PROm 11
•sstrtz_provtnCCJI. /1 tht rnd of procrdarr 1/
1mrtz_provrnC CNpt Kptfl I Jlr-

/1 proctdart PROVEN,/ 1/
C)laSt(provtnCHpl 1tratl 1
•ssrrtz_provtnCBptlill,'.

mrrtz_provrnC CNpt Rptli I Jlr-
/1 proctdart PROVEH.t 1/
•sstrtzCprovtnCHpll1
•ssrrtz_provtnCRptlill.

froqrn l.l,J,/Or frocedms TQPRSK 1 SUCCESS 1nd fM.YJ!

If there already exists fact proven(Hp) in the

database,then do not assert 1t in the database, but

continue assert1ng other proven clauses (procedure

PROVEN.l). Otherwise procedure PROVEN.2 w1Il assert

proven(Hp) in the database and also continue assert1ng

other proven clauses 1f they exist.

118

Level 3.31 Procedure FACTPR

All the prov1ng will be done by procedure FACTPR, as shown

in Program 3.3.3.11). Procedure FACTPR 1s subd1v1ded into

two subprocedures, v1z. procedures FACTPR.1 and FACTPR.2.

/t procrdarr F~CTfR t/
frctprolog((Q/ 1QZI,Usrdcli1Sts11p,lpi,Sollcli1SIII·

/t procrdart f~CTfR.I t/ , . ,
fret pro! ogm ,usrdc!mrs 11p1 lpZ,CQ//Sor!clmr Jl,
frctproiogiQI 1Ustdcirasrs,lpZ,Ipi,Soricirasrl.

frctproiogiQ,Ustdc!rasrs,lp,Bp/ 1Soricirasrlr·
/t procrdarr F~CTPB.t t/
rssrrtrgorl/CCQ/IorlclrasrJ,HI, /t proctdarr BSSS!/ t/

brsrprolog!Q1Usrdclrasts,Bp,lp1,6orlcirasr,HI. /t proctdarr BRSEPR t/

Proqrrt l.l.l,llr Procrdarr f~CTPR

This procedure 1s actually a top level of refutation

process. In other words, procedure FACTPR will steer the

prov1ng order of each literal of the goal clause. Hence,

the first procedure, FACTPR.l, Wlll eventually show the

way of prov1ng the goal which consists a conjunction of

literals (in the form of "k, 1. ... ").

In th1s case, the proving is done from r1ght to the left

of the goal, a contrast to the Prolog method where 1t does

from left to the r1ght of the goal. It can be eas1lY

mod1fied to make it proving from left to r1ght. The second

one, procedure FACTPR.2, will call a refutat1on procedure,

BASEPR, in order to match a 11teral of the goal with the

head of KB clauses.

119

3.3.3.2.4 Level 4

There are two major procedures 1n level four. 1.e

procedures ASSGL1 and BASEPR which are called from procedure

FACTPR at level three (Level 3.3).

Level 4.11 Procedure ASSGL1

Before a match1ng or un1fy1ng 1s done. Procedure ASSGL1 or

predicate assertagoall/2 is called. Procedure ASSGL1 (as

shown in Program 3.3.3.12). firstly, will retract all

pred1cates goal/2 with the same node number N and assert

a new goal(Goal,N)), then update node number (procedure

UPNODE) .

/1 procrdRrt ~ 1/
assertagoallC6oai,HJ:­

nodrCHJ,
rrtracta11Cgoa1C_1HJJ 1
assrrtaCgoaiC6oal1HJJ 1
1pdat1ng_nodrCHJ. /1 procrdRrr UPHOD£ 1/

/1 procrdRrr ~ 11
lpdatJng_nodrCHJ:-

/1 proctdRrt UPHOD£,1 1/
HI IS H+/ 1
assrrtz_newCnodrCH/JJ,

Rpdating_nodeCHJI-
/1 proctdRrt UPHOP£,f t/
assertz_ne•CnodtCHJJ,

Progra1 1.1,1,/2 1 ProcedRres ~SSSLI tnd UPHOD£

The first procedure. UPNODE.1. (of procedure UPNODE of

Program 3.3.3.12) will assert a new predicate node(Nl)

where N1 is an updated node number. On the other hand, the

second procedure UPNODE.2 will assert the old node number

(N). 1.e decreasing by one (compared to N1l. Th1s 1s a

consequent of the failure of procedure BASEPR (see

procedure FACTPR.2 of Program 3.3.3.11), so backtracking

w1ll occur and the old node number must be restored 1n

order to start a new solution tree.

120

Laval 4.2 Procedure BASEPR

While procedure FACTPR do the prov1ng steer1ng, procedure

BASEPR (Program 3.3.3.13) will do the actual matching with

the current KB clauses. As there is a possibility that any

literal of the goal clause is a Prolog or llbrary

predicates, procedure BASEPR.l Wlll match the goal

literal with them first. If 1t is unsuccessful, then

procedure BASEPR.2 Wlll match or unlfY the goal l1teral

with any factual KB clauses. This strategy 1s known as the

unit preference strategy. If there is no factual KB

clauses wh1ch can be matched with the goal literal, Q,

then procedure BASEPR.3 will try to match it with any

ruled KB clauses. If 1t 1s successful, then procedure

FACTCL 1s called to do more test before the body of the

matching ruled KB clause 1s considered or taken as a next

goal.

/t procrdarr IRSEPR t/
basrpro1ogCQ,Usrdc11KSts,Hp1Hp 160I1claasr1Kl:­

/l 1rocrdarr IRSEPR.I t/
clusrct,_J,
cdiCQJ,
umhpromg2Ct1KJ, /1 proctdm RSSPRV2 t/

blstprologCQ,Usedclaasrs,lp,Bp,lo•lciaasr,KJ:­
/1 procrdarr IRSEPR.! 1/
tna•Irdge_blsrCQJ 1
usrrtaprovug2CQ,KJ. /1 procrdm RSSPRV2 t/

basrprologiQ,Usedclaasrs,Hp,Bpl,loalcllasr,KJ:­
/1 pracedarr 8RSEPR.3 •I
tnowltdge_basrCQ:-RJ,
factci•asriQ:-R,Usrdcl•asts,Bp 11p1,6oalci••sr,ll, /t procrd1rt FRCTC! t/

Progr11 3.3.3,13: Pracrdarr BRSEPR

At the end of successful match1ng of a goal l1teral with

any KB clauses or system predicates (i.e at the end

procedures BASEPR.l, BASEPR.2 and also 1n procedure

FACTCL.2), the match1ng KB clauses or system pred1cates

are asserted into the database by procedure ASSPRV2 (as

shown in Program 3.3.3.14) in order to trace a solut1on

121

tree. So procedure ASSPRV2 will assert 1nto the database a

new predicate proving(Q.N) where Q and N are the matching

clauses (parent clauses) and node number respect1vely

after retract all predicate proving/2 w1th the same node

number.

ISStrtlprovrng2CQ11Jr·
rrtrtc!tllCprovlngC_,IJJ,
ISStrliCprovingCQ11)),

Proqr•• l,l,l.t4r Procrdarr ~

3.3.3.2,5 Level 5a Procedure FACTCL

Although all KB clauses are Prolog rules and that they can

be executed directly, cares must be taken to prevent cycling

or looping in the refutat1on process. Cycl1ng or looping in

the refutat1on process can happen when the goal clause has

itself as a subgoal. Thls may result from us1ng the same

clause as one of the parent clauses. Th1s (cycl1ng) lS the

main d1sadvantage of 1mplementing the depth first method as

the method does not guarantee that the solut1on w1ll be

reached though it exists. For example, 1f we have the

following knowledge clauses (This 1s a famous monkey-banana

problem) :

(kll tt!X,Y,X,walk(! 1X1SIIa·at(!1Y1X,SI,
(k21 at !11 x,X,mry(Y ,X, Sll•·•t !Y,X, V, SI,
(k31 reith(clltb(SIII·it(b1b1b1SI,
(k41 at(i 1b1c1sl,

And if we try to prove []:-reach(B), then we w1ll get the

refutation tree as follows:

!gll [l:·reach!BI
I (pll rmh(c!itb!SIII·it<b 1b1b,SI
1/

(g21 [];·at(b1b1b,&l
I !p21 itU1Y1X,walk(Z 1Y,TIII·it<Z,Y1X1TI
1/

!g31 [la·at!Y,b1b,ZI
/1\ I !p31 at!X 1Y1X1wilk!Z,Y,TIII·itlZ,Y,X,TI
1 __ 1/

Fl6 3,313,2; Refutation subtree (laoplngl

122

It can be seen from the above subtree (Fig. 3.3.3.2) that a

cycle occurs in the above refutation process because the

parent clauses (p2) and (p3) are the same, i.e knowledge

clause (kl), thus produce the same goal (g3). Clause (kl) lS

chosen 1n preference to clause k(2) because it is on the top

of the list as Prolog adopts the select1on from the top to

the bottom. The cycling must be prevented from happening if

we would like the refutation to reach a conclus1on either

positive or negative but not hang1ng around unt1l the Prolog

stack is exhausted.

As all KB clauses are Horn clauses and at any time we only

delete one l1teral which 1s actually a head of one of the

parent clauses, therefore we can make a log of the usage of

all ruled KB clauses in order to prevent the cycl1ng. The

log w1ll keep a record of all the ruled clauses wh1ch have

been used as one of the parent clauses such that the same

ruled clauses will not be used twice or more in the same

path or subtree of the proving process. If the ruled clause

has been successfully proved then this clause will be taken

out from the record so that this clause can be used aga1n 1n

the proving process but 1n a d1fferent path (branch) of the

proving tree or 1n the different subtree.

So, lf we keep a log of the usage of all ruled parent

clauses, by tak1ng it as an argument of predicate 'try'. For

1nstance, from the above tree (Flg. 3.3.3.2). the side

clauses (one of the parent clauses which are ruled clauses;

the other one is a headless or goal clause) will be asserted

in a database as follows:

lrrCrttcbCclitbCSIJJr-tiC1b1b1SlJJ,
frrCtfCI,Y,I,wtltCZ,I,Sllr·tfCZ1Y111SJJ,

123

Then • we can continue the refutat1on process by taking

knowledge clause (k2) as the third parent (p3'). In this

case. we can not used knowledge clause (kl) again because

the predicate try(at(X.Y.X.walk(Z.X.S)):-at(Z.Y.X.S)) exists

in the database. Thus. the new

(startlng from goal (g3)) 1s as follows:

I
1/

lg31 111-at!Y1b1b1ll

refutat1on subtree

I lp3'1 at!b 1b1b1carry!U1b1SIII-at(U1b1U1SI
1/

lg4'1 lh-atiU,b,U,SI
I

falh

El& 3,313,31 Refutation subtree (failure)

The subtree (Fig 3.3.3.3) in the above example 1ncidentally

does not der1ve an empty clause. However. by tak1ng

knowledge clause (k3) instead of clause (k2) as the second

ruled (parent) clause then we w1ll be able to derive an

empty clause; hence the proof is successful as shown in the

follow1ng subtree (Flg 3.3.3.4). The var1able "B" will be

instant1ated to "climb(carry(c.b.walk(a.c.s)))" or "walk

from posit1on a to position c then carry the box to pos1tion

b and flnally cllmb 1t to reach a banana"

I
I lp2'1 at!l 11111carry!Y111llll-at!Y111Y1ll
1/

!g3'1 111-at!Y1b1 Y,ll
I !pl'l atll 1YI 111MIIk!Y2111lllll-at!Y21YI 111lll
l/

lg4'1 C1:-at!Y21b111lll
l lp4'1 atla,b,c,sl
ll

(g5') [1.-11

El& 3,3,3,41 The refutat1an subtree !successful)

124

or all above subtrees (Fig. 3.3.3.2. F1g 3.3.3.3 and Fig

3.3.3.4) are combined, then the following graph (F1g.

3.3.3.5) w1ll be produced:

gall lglll lll-rlathiBI
I lknoMIIdge tl1UIIIk31/parent tliUIIII bll
I

lg21

lkll/lp21r-~---...... llk21/lp2'1
,..----1 IOR brmhl lg3'1

/(\ lg31 llkll/lp3')
I _I_ lg4'1
I lkll/lp311 I llkll/lp3'1 I lk41/lp4'1
I I I lll-ll

Uoop1ngl lg4' I lg5'1
I successful

fllh

F!6 3,3,3.5: Refutation trrt lcotbinedl

From Fig. 3.3.3.4, the number associated w1th a goal. for

1nstances g1 and g3", refers to node number. Thus the number

with mark " 1s a current value of node number (see Program

3.3.3.12). Clauses referred by g (for instance g3") and P

(for 1nstance p3") are 1nserted into the database by

predicates goal/2 and proving/2 respect1vely.

This cycl1ng checking will be carried out after the l1teral

goal is successfully matched with any ruled KB clauses in

the procedure FACTCL. The following program. 1.e Program

3.3.3.15, shows procedure FACTCL which 1s called after the

l1teral goal 1s matched with any ruled KB clauses. This

procedure 1s div1ded into two, 1.e procedures FACTCL.l and

FACTCL.2.

/f proctdtrt ~ t/
ltctclttst(fs·~,Usrdclttsts,Bp,lpi,Sotlclttsr,Nis·

/f procrdtrr F~ClCL.I 1/
htvrprovtd_top!Qs·~,Bp/ 1 /f procrdtrt ~ f/
rssrrttprorl»gtlf,l/, /f procrd1rr ~ t/

I tctc I 1111! Q 1·~ 1 U srdc lusr s 1 Bp, CQ s·M B pi J 1 Soli c I mt 1 NI 1·
/t procrd1rr FRCTCL.f 1/
nottrri!Qs·R,Usrdclrasrsl, /f procrdtrr !2II!!! f/
chtct_ftlltrt!Ss-~1, /f proctdtrt ~ t/
tssrrttprorlng21Qs·~1 NI, /f proctdtrt ~ f/
ftctprologlf1 CQs·~/UsrdcltasrsJ 1 Bp 1 1pi,Sotlclttsrl, /f procrdtrr (!tlf! f/
rttrtcltlllftlltrr!Qs·R//,

Proqrtt 1.1.1,/Ss Procrd1rt F~ClCL

125

The first one, procedure FACTCL.l, will check whether the

match1ng ruled KB clause has been proved before. The

checking 1s carried out by procedure HAVEPR by matching them

with predicate proven/! or all ruled clauses 1n llst "Hp".

If it has already been proved before, then assert it 1nto

the database by procedure ASSPRV2. If it has not been proved

before, the second procedure, FACTCL.2, Wlll f1rst check

whether the matching ruled KB clause has been matched before

in the same subtree or branch by call1ng procedure NOTTRYl.

Procedure NOTTRYl w1ll succeed if none has been matched

before. Following that, the predicate provlng/2 1s asserted

into the database by procedure ASSPRV2 with the matched

ruled KB clause 1s one of the obJects (arguments). Then the

body of the matched ruled clause 1s taken as a next goal and

the prov1ng is repeated unt1l the empty clause 1s deduced or

no more ruled KB clause can be matched w1th the literal

goal.

126

3.3.3.3 The Breadth-First Method

By adopting this method, all possible resolvents will be

generated at each level of the refutation tree until 1t

encounters an empty clause or resolvent. The refutat1on tree

generated is an OR graph. In order to generate a new

resolvent, each l1teral in the goal clause will be resolved

w1th one of the KB clauses from right to the left of the

goal. This method 1s qu1te d1fferent to the above depth­

flrst method in the respect of the way of a new resolvent is

generated. In the depth first method, only one l1teral of

the goal w1ll be resolved upon. Wh1le us1ng th1s method,

all l1terals of the goal clause will be resolved from r1ght

to the left of the goal in order to reduce the number of

possible resolvents generated, so the refutat1on graph w1ll

be much smaller. For example, if the goal clause is as

follows:

[I :-strong(nazrul) ,1ntell1gent (nazrul).

and given that the follow1ng are KB clauses:

intelllgent(nazrul).
strong(X) :-athlete(X).

then the resolvent w1ll be

[I :-athlete (nazrul).

as opposed to the above depth first method where the

resolvent will be:

[I :-strong (nazru 1) .

This is due to that in the breadth-first method, all

l1terals of the goal clause w1ll be resolved with the KB

clauses, l.e both llterals "strong(nazrul)" and

"lnte11lgent(nazrul)" of the goal clause will be resolved

w1th the KB clauses. On the other hand, the depth-flrst

method will only resolve one l1teral goal with one KB

127

clause, i.e "intelligent(nazrul)" of the goal clause Wlll

resolve with a KB clause ("intelligent(nazrul)").

As the depth-first method, the same comb1nation of

strategies lS adopted, i.e a combination of the linear

input, the set of support and the unit preference

strategies. However, as the name of this (breadth-first)

method suggests that all literals goal of query clauses will

be proved 1n parallel.

The proof lS successful if we encounter an empty resolvent,

" [I:-[I". Otherw1se, the proof is unsuccessful if we cannot

resolve the new generated resolvents any more. In other

words, we come to a dead end where all goal clauses cannot

derive an empty clause any further.

whlch are a result of

goal clause and the KB

down (or up) to the current

One or more new goal clauses

resolution between the current

clauses, are sa1d at one level

goal. So at every level there will be a set of goal clauses

which is a result of prev1ous resolut1on, and at level 1,

all goal clauses are query clauses themselves. In other

words, the goal clause lS a father node and its resolvents

with KB clauses are 1ts son (daughter). For instance, Fig.

3.3.3.6 shows a solut1on tree of a question , (p&(q#r)).

Thus its negation Wlll produce two query clauses, l.e "!I:­

P , q" and " I I : -p, r" .

By using a breadth flrst method, we will prove both query

will flnd their sons (if clauses in parallel, that

they exist) and followed

lS

by

we

finding their grandsons and

128

then followed by finding the1r great-grandson and son on

unt1l we encounter an empty clause. Their son 1s yet became

another goal clause and so the1r grandson and grand­

grandson. In order to find their sons, the goal clause will

be unified or matched with KB clauses. The order of matching

of each l1teral of the goal clause 1s from right to the left

of the clause. From Fig. 3.3.3.6, the clause in a curly

bracket, {}, is a KB clause wh1ch is a matching clause for

the literal goal.

Level 11 lll-p,q lll-p,r
' till ' m1 ' ' I_ ' ' I I I ' ----, OR branch ' ICq:-ul ICq:-vl I Cn-•l 1Cn-a1bl

ICws,tl I CpJ-1 1 tl I Cws, tl I CpJ-1 1 tl
I/ I/ 1/ I/

Level 2: 11:-s,t,u 11:-s,t,v 11:-s,t,• 11:-s,t,a,b
I m,11 1 m,11 ' m,21 ' m,21 ' ' ICul I I ' ' lctl ' -1 11 ' ' ' I Csl IC•:-fl IC•:-dl I Cbl ICb:-dl ICb:-el
I/ lctl lctl lhl lhl I Cal
I ICsl : Csl lctl lctl lctl

I/ I/ lhl Ill! I (s)
I I I I/ If If

Level 3: 11:-11 hlls Ill-f. Ill-d. I ll-1 1 11:-d 11:-e.
tl1,1,11 : m,1,21 : m,1,21 tl1,2,21 I 112,2,21 1 m,2,21

' I ' I ' ' I Cel
' I I I/ ' Level 4: fills hill fills lll-11

m,3,2,21

FI6 3.3.3,6: Solution tree uslnq 1 breadth-first 1ethod

Each goal clause 1s g1ven a node number 1n the form of a

list 1n a square bracket, [),which is marked by a star, *

as in F1g. 3.3.3.6. The node number is given to a new son by

prefix1ng the father's number with the son's number. For

example, 1f the father's (goal clause) number is [2], thus

its first son is given a number [1,21 by prefixing number 1

to the list [21 and the second son is given a number [2,21

and so on.

129

By using this notation, given any (goal) clause number, we

can find its father. its grandfather and so on up to the

query clause. So. for instance. if g1ven a node number

[1.2.21 (see Fig. 3.3.3.6). then its father is clause [2,21

(i.e the tall of the given node number. 11: [2.211) and its

grandfather is clause 121 which in fact is a query clause.

Accordingly we can find a solut1on path of the question from

any empty clause. The length of list of the node number

shows the level number of

node [1,3,2,21 1s at level

L is Instantiated to 4) .

the node itself. for instance,

4 (i.e length([1.3,2,2].L) where

Before we describe the program 1tself, let us define control

predicates c_node/4. node/4 and node_no/1 which w1ll be used

1n the program. Predicate node_no/1 represents the number of

sons for each goal clause such that its value will be reset

to zero before unifying the new goal clause with any KB

clauses. Both predicates c_node/4 and node/4 which represent

goal clause and 1ts son respectively, contain the

1nformat1on about the goal clause itself, 1.e its literals.

1ts node number. its level number and the list of a

father-matching KB clauses which Produces itself (a 11st in

the curly bracket {} see Fig. 3.3.3.6). Once the son

become the goal clause, its representation changes from

predicate node/4 to predicate c_node/4. In other word.

predicate node/4 is a temporary representation of resolvent

(or the son) node before the son becomes yet another goal.

For example. predicate c_node(a,[1,1,2],3.((w:-f).t,s)) (see

Fig. 3.3.3.6) contains the Information about the goal

" [1 :-a" where its node number is [1. 1. 21 : its 1 eve 1 is 3 and

father-matching KB clauses are {w-f},{t} and {s}.

130

As in the depth-first method, we will divide the main

refutat1on procedures for a breadth-flrst method into six

levels, i.e from the highest level 1 down to the lowest or

the deepest level 5, as follows:

[11 . Procedure ANSBF.

[21 . Procedures ASKBF and BF.

[31 . Procedures BFO and STOP-TEST.

[41 . Procedures BF1 and others.

[51 . Procedure BF2.

3.3.3.3.1. Level 1: Procedure ANSBF

The highest level procedure in a breadth-flrst method

descr1bed here 1s a procedure ANSBF as shown 1n Program

3.3.3.16 below. Th1s procedure 1s equ1valent to procedure

ANS (see Program 3.3.3.8 in Level 1 of sect1on 3.3.3.2) and

it 1s also called from procedure AS (see Program 3.3.3.3).

/t prmdm RNSBF t/
tDswrr(Qarst,rrsl:-

/t proctdart RNSBF,/ t/
ISStrtz_»twCnodr_noC0/1 1
lsl:ng_bfCQarst/ 1
breldth_firstC/1,

l»swtrCQoest,nol:­
/t procrdarr RNSBF.2 t/
wri!tC'no' 1.

Proqr11 l.l.l,/6: Procrd1rt RNSBF

Procedure ANSBF (see the

/t JDJ!Jtl:sr nodr_Do(OI t/
/t procrd.rr RSUF t/
/t procrd1rr BF t/

above Program 3.3.3.16) is

subd1v1ded into two subprocedures. The first one, 1.e

procedure ANSBF.1, w1ll first assert an in1tial value of

node number, i.e pred1cate node_no(O), in the database, then

will set a starting prov1ng tree (procedure ASKBFJ and

finally will find a solution to the quest1on (procedure BFJ.

Eventually this procedure, ANSBF.l, w1ll return a remark

"yes" 1f the proof is successful, i.e procedure BF 1s able

131

to f1nd an empty resolvent. The second one, procedure

ANSBF. 2, wi 11 return a remark "no" if procedure BF 1s not

able to find an empty resolvent or in simple words that th1s

procedure (BFJ fails.

3.3.3.3.2. Level 21 Procedures ASKBF and ~

There are two main procedures at this level (level 2). These

are procedures ASKBF and BF where both of them are called

from procedure ANSBF at level 1 above.

Level 2.1 Procedure ASKBF

This procedure ASKBF (see Program 3.3.3.17 below) is

almost equivalent to procedure ASK (see Program 3.3.3.9 at

Level 2 of sect1on 3.3.3.2). Their differences are the

order of goal formatt1ng. Procadure ASK Wlll format one

goal clause and then prove it. On the other hand,

procedure ASKBF will format all goal clauses and prove all

of them at the same time.

/f pracrdarr RSKBF 1/
ISklDg_bfCC~arst/Qarst/111-

/1 procrdarr RSKBF.I 1/
farllt_gollCQarst,6oll) 1
apdltt_Dadt_DaCHl,
ISStrtzCDadrC6oll 1CHJ 1 / 1(])) 1
ISking_bfC~arst/),

ISkJng_bf((])l-
/1 procrdarr RSKBF.Z 1/
I ..

froqr11 1.1.1,/71 frocedarr RSKBF

/1 pracrdarr F6 1/
/f procrdarr UPHQ9HQ 1/

For every l1teral goal of the question ,procedure ASKBF,

as shown In Program 3.3.3.17, w1ll format a goal from a

given query clause (procedure FG); update node number

node_no(N) and finally assert predicate

node(Goal,[NJ,l,[J) (i.e a temporary representation of the

132

goal node) into the database. The father-matching KB

clauses, 1n this case, is an empty clause as the goal

clause is not a resolvent one. However, pred1cate node/4

1s used here to represent every goal clause because that

at the starting point of prov1ng process, each goal clause

can be considered as a son of the question.

The second procedure, ASKBF.2, does not fail as opposed to

procedure ASK.3 (see Program 3.3.3.9). The adopted

breadth-first method tries to resolve every query clause

each time. Thus, at the end of setting up in1tial proving

tree, the proving have not started yet, consequently

procedure ASKBF must succeed or return true value. On the

contrary, the adopted depth-first method resolves one

query clause each t1me. So.

to show that the proving

finished.

procedure ASK.3 fail in order

of each query clause has

Referring back to Figure 3.3.3.6 at the beginning of

section 3.3.3.3, this procedure ASKBF Will create all

first level nodes of the solution or proving tree, I.e

nodes [11 and [21. These nodes are actually goal clauses

formatted by procedure FG (see procedure ASKBF.1 of

Program 3.3.3.17).

Level 2.21 Procedure BF

After the temporary predicate node/4 have been asserted

into the database for every goal clause or the first level

of proving tree have been set up, predicate

breadth_first(l) (or procedure BF) is called from

procedure ANSBF.l (see Program 3.3.3.16). The argument of

133

pred1cate breadth_first/1 is a level number of the

solution tree, thus the 1nitial value of level number 1s 1

(one). We split procedure BF into two subprocedures, 1.e

procedure BF.1 and BF.2 as shown 1n Program 3.3.3.18.

/f proctdm 1£. f/
brtaith.flrstCLtvrlnoll-

1• procrderr u..J. r/
rtlr•ciCnodtCI,Nodeno,Ltvtlno,Bf•clll,
•sstrtz(c_nodeCQ,Nodeno,Ltvelno,Qf•ctll,
•ssertz_ntwCnodt_noCOll, /f lnltlllist nodr Datbrr f/
Lrvrll Is Lmlno + I,
brudth_firstOCB,Hoduo,Lml/1, /t procrdm lf.2. t/

brr•dth_firstCLtvelnoll-
/1 procrdm l£.r1 r/
Ltvtll is Lrvrlno + 1,
lrvri_IItltCUpprrboandl
stoppinl_trstCLrvrii,Upprrbocndl, /f Procrderr STOP-TEST t/
brradth_flrstCLrvrl/l,

Proqrtt l.l.l,/8r Procrdert IF

The first one, procedure BF.1, will retract from the

database one by one temporary Pred1cate node/4 (a son of

the previous goal clause) and assert them back into the

database but this t1me w1th Pred1cate c_node/4 to show

that th1s son now w1ll become a new (current) goal clause.

Then an init1al value of node number denoted by predicate

node_no(O) is asserted 1nto the database and the value of

level number, "Levelno", is also temporarllY updated as

the new resolvent, 1f 1t exists, is at one level down. In

other words, the new resolvent is a son of the goal

clause.

Finally, 1n procedure BF.1. the goal clause is matched

w1th others KB clauses by call1ng procedure BFO or

predicate breadth_flrst/4. The procedure wi 11

eventually fail if no solut1on is reached and backtracking

will occur. So it (procedure BF.1) will try to generate

new resolvents from new goal clauses until no more

134

predicate node/4 ex1sts at a

this happens then the second

called.

current level, "Levelno". If

procedure ,BF.2, will be

The second procedure, BF.2, will update the current level

number and then a stopping test is carr1ed out (procedure

STOP-TEST). If this procedure STOP-TEST succeeds, then the

proving process will continue to

of resolvents, otherwise the

consequently procedure BF Wlll

ANSBF (see Program 3.3.3.16).

find the next generation

proving will stop and

fail and so too procedure

3.3.3.3.3. Level 31 Procedures ~and STOP-TEST

At this level 3, there two major procedures which are called

f<om procedure BF at level 2 above. These procedures are BFO

and STOP-TEST.

Level 3.11 Procedure STOP-TEST

After all new resolvents have been generated by procedure

BF.1, the stopping test (procedure STOP-TEST) is carr1ed

out (see procedure BF.2l. The procedure STOP-TEST (see

Program 3.3.3.19 below) are based on two stopping

of the leve 1 of cr1teria. These are an upperbound

the proving tree and the existence

(sons) of the goal clause at the

existence of pred1cate node/4 at

node(_,_,Levell,_).

l1mit

of any new resolvents

current level, i.e the

a new updated level,

/f procrdcrt STOP-TEST t/
stopping_trstCLrvrll,Upprrboandlr­

lt procrdcrt ST9f·TEST.I t/
Lrvrll •< Upprrbo1nd1
rxistsCnodrCO,N,Ltvtll,Qf))1
I
• !

stopping_trstCLtvrll,Upprrbo•ndlr-
lt procrd11t ST9f·TEST.t t/
Lrvrll •< Upprrbocnd,
nol_rristsCnodrCQ111Lrvri/1Qfll1
ISStiiZ(IoptlrCCJ))1
!,flil.

stopping_trstCLtvtii,Upprrbocndlr-
11 proctdllt ST9f·TEST.l 1/
Lrvrll > Upprrbocnd,
rristsCnodrCQ,N,Lrvrll,Qfll,
ISStrtzCtoptrrCC1ll 1
lssrrtzCrtlch_lliliCUpprrboandll,
flit.

stopping_trstCLrvrll,Upperboandlr­
lt proctdlrt STOP-TEST.! t/
retch_liritCUpprrbo•ndl,
1St_nrw_litil1 /t froctdllt RSI-NEKLIIIl t/
lrvrl_litliCUpperbo•nd/!1
Upprrbocnd\•Upprrbo•nd/ 1
stopping_trstCLrvrll,Upprrbolnd/J, /t frocrd1rr STOP-TEST tf

Prog111 l,l,l,/9r frocrd11t SlOP-lEST

135

Although there are two stopping criteria, the procedure

STOP-TEST is divided Into four subprocedures. The first

subprocedure STOP-TEST.l will succeed when the level of

proving tree has not yet reached Its upper limit

(upperbound) value and no solution has been found such

that the proving should be continued (see procedure BF.2

of Program 3.3.3.18).

The second subprocedure STOP-TEST.2 Will be set to fail

when no solution has been found although the level of the

proving tree has not yet reach Its upperbound value. This

happens when no new resolvent can be generated from all

goal clauses. In this case the proving process should be

stop immediately.

136

The third subprocedure STOP-TEST.3 w1ll also be set to

fall when the level of proving tree has reached its

upperbound value and no solut1on has been found or more

solutions are needed. Th1s procedure 1s set to fail such

that the fourth subprocedure can be carr1ed out.

The fourth subprocedure. STOP-TEST.4 will be processed

when the upperbound value of the level of proving tree has

been reached (i.e subprocedure STOP-TEST.3 falls). In this

case. the user will be asked whether to 1ncrease the

upperbound value of the level or Just stop there

(procedure ASK-NEWLIMIT) . In the case of 1ncreas1ng the

upperbound value of the level, the proving process will

continue as it has not yet reached 1ts upperbound value.

Otherwise, the proving will 1mmed1ately stop. For example:

?-list!n;lknewled;el.
knewled;elhutanl_lll·tanl_lll.
knewled;elhuaanl_lll·weaanl_lll.
knewledgelaanlatzatll,

?-pcquest.
11 huunl11zat1.

I
Ne cannet preve the quest!en until level I
De you like te updata upperbeund level !!tit
fre• Its current value (y/nl ? y

Type new value lfellewed by detl.l and <return>ll
4.

»Answm Yet,
• huaanlatzatl •

·=·==···=·=·················
I

Sessien 3.3.3,11 Exaaple en !ncreastn; the upperbeund value ef the level

The above session shows how the upperbound value of the

level is 1ncreased from 1 (orlginal value) to 4 (new

value) such that the question can be Proved or answered.

The deta1l program of procedure ASK-NEWLIMIT can be found

in the Appendix.

137

Level 3.21 Procedure BFO

Procedure BFO (as shown in Program 3.3.3.20) IS also

called from procedure BF.l at level 2. This procedure Will

resolve a goal clause to form a new resolvent and will be

divided into two subprocedures

/t proctdtrt l[t t/
6rttdlh.flrsi0(81Hodt»o 1Ltvtl»olr·

/f proctdtrt lf!.L t/
brttdlh.flrsi/(Q1Rtsolvr»t0,Qftctl, /t lfOCtdlrt ILL 1/
dlfftrt»cts(Q1Rtsolvt»t0,Rtsolvt»tl, /t proctdart li[[t/
tpdtlt.»odtCRtsolvt»t,Hodt»o1Ltvtl»o18ftctl 1 /1 procrdtrt ~ f/
ls.solatlo»CRrsolvt»t,Hodr»o,Lrvtl»ol. /f proctdtrr ~ t/

brttdth_flrsiOC&,Hodt»o,Ltvtl»olr·
/t proctdtrt lft.1 f/
»Odt.»0(0l 1
grtph_prt»i»gCHodtDol 1
ftll.

froqr11 3,3.3.201 Proctdtrt l[t

/f »Odt Dllbtr • 0 ? f/
/t lfO~tdtrt SPRUH! 1/

The first subprocedure. BFO.l, is to find a set of new

resolvents by matching the goal clause. Q, with the KB

clauses (procedure BFll and then delete any repeating

literals which occur In the goal clause to produce a free

repeating literal clause. Resolvent (procedure DIFF). The

predicate node/4 which contains information about the

resultant resolvent. IS asserted into the database

(procedure UPNODEJ. Then procedure ISSOLN is called to

find out if the new resolvent IS an empty clause. thus the

proof is successful. so too procedure BFO.

If no solution has been reached at this stage, the dead

end goal checking is carried out in order to find out

whether it generates any new resolvent (procedure BF0.2 of

Program 3.3.3.20). In order to save space, the solution

tree is pruned (procedure GPRUNEJ . Any dead node (branch

or goal) will be pruned from the proving graph. The goal

is said to be a dead end node (or branch or goal) if

138

predicate node_no(O) exists. In other words, a dead end

node or goal is the one without sons. In the end, as the

solution has not been reached yet, procedure BFO Will be

set to fail such that backtracking Will occur in procedure

BF.1 (see Program 3.3.3.18).

3.3.3.3.4. Level 41 Procedures ~ and others.

At level 3, procedures BFl, UPNODE, DIFF, ISSOLN and GPRUNE

are called from procedure BFO. At this level we will explain

all the procedures except procedure DIFF where we can find

the definition In the Appendix.

Level 4.11 Procedures UPNODE and ISSOLN

These two procedures, UPNODE and ISSOLN, are shown in

Program 3.3.3.21 below. Procedure UPNODE IS to update node

number and assert the temporary predicate node/4 which

contains Information about the new resolvents, Into the

database. Procedure ISSOLN will detect whether the new

resolvent is an empty clause, if so then the solution Is

reached and the associated predicate c_node/4 will be

asserted into the database.

/t procedure ~ t/
apdlte_nodeCQ1CH/Hodenol1Levelno1QfactJJ-

apdltt_node_noCHJ1 /t procedure UPHOBHO Japd1t1ng node na1ber t/
tssertzCnodeCQ1CHIHodenol1Levelno1QfactJJ1
I
o I

/t procedure !SSOLH t/
lS_solutJonCCJ1Hodrno 1LrvelnoJJ­

node_noCHJ,
retract CnodrCC 1 ,CHINodrnoJ 1 Lrvrlno 1Qf act) J 1
assertzCc_nodeCCJ1CHIHodenoJ,Levelno1QflctJJ1
I
o I

Proqr11 J,J,J,ZII Procedures ~ 1nd ISSOLH

139

Level 4.2: Procedure GPRUNE

As we recalled that procedure GPRUNE is meant to prune the

proving graph in order to save space. This procedure, as

shown in Program 3.3.3.22 below, is called from procedure

BF0.2 (see Program 3.3.3.20).

gr~phJranl ngCCK/NadrnaJl 1·
/t ,racrdarr fPRUN£.1 t/
rrtr~ct I c _nadrl Q 1 C NI Had m J 1 Lrvr I no 1 Qf 1ct 1 11
CtxJstsCnadrC_1C_/Nadrna11Lrvr/na1 _11 1

I .. rxlstsCc_nadrC_1C_INadrnaJ1Lrve/na1_1111

lfiPhJmingCCNINadenoJ 11-
/t ,racrdarr fPRUN£.1 t/
grtphJraningCNadrno11!,

grlphJranJngCCJl. /f pracedarr SPRUN£.1 t/

Praqr11 1.1.1.tZI Practdarr ~

The pred1cate c_node/4 which associates with the dead end

node goal, will be retracted from the database and so

their dead end father goal and so on. The dead end father

goal is a goal clause without any son after pruning their

dead end son (clause). The dead fathers node will emerge

after all the1r sons have been pruned, I.e all of them are

dead nodes. This can be detected by the nonexistence of

the predicate node/4 or c_node/4 With the same father's

node number ,l.e node number [:Nodeno]. In other words,

the dead son does not have any brothers (sisters) .

For instance, from Fig. 3.3.3.6, node [2,11 is a dead one,

so this node is pruned from the solution tree but its

father, node !1], is not a dead one as 1t has another son,

i.e node [1,1]. Another dead end node, i.e node [1,1,21.

is also pruned from the proving graph. It 1s also found

out that node [2,1,21 is a dead one, so it Wlll be pruned

too. Now Its father become a dead father (node [1,21) as

1t has no more sons (both of them have been pruned), thus

node [1,21 is also pruned from the proving graph.

140

L•v•l 4.31 Procedure BF1

Procedure BF1. as shown In Program 3.3.3.23, IS equivalent

to procedure FACTPR (see Program 3.3.3.11). The purpose of

this procedure which is called from procedure BF0.1 (see

Program 3.3.3.20), IS to steer a matching or unifying

process from right to the left of the goal clause.

Procedures BF1.1 and BF1.2 deal with a goal clause

consisting of a conjunction of literals and one literal

only respectively. The unifying IS carried out by

procedure BF2. Any repeated literal is then removed from

the resulted resolvent of procedure BF1.1 by calling

procedure DIFFERS. List "Qfact" contains the matching KB

clauses of the literals goal.

breadth_fzrst/CCQh1Qti,Rrsoivrnt,Qfactlr·
/f procrd;re ltL.L 11
breadth.first/CQt1Rrsoivent/1Qtfactl 1
breadth.first2CQh1Resoivrnt21Qhfactl, /t procrd1rr l[t 11
diffrrsCQh,Rrsoivrn!l,RrsoivenW, /t procrdm IIFFERS 11
arrgrCResoivrntt,Rrsolvrnt1,Rrtolvrntl, /f procrd1rr ~ f/
apprnd/CQhfact,Qtfact,Qfactl. /t proced1rr RPPEHD/ 11

breadth.fzrst/CQ,Rrsolvrnt,Qfactlr·
/t procrdm BF/.2 t/
Q\••CJ,
brudth_firstW,Rrsolvrntl. 11 procrdm ill. t/

Prpgr11 1.1.1.211 Procrd1rr ILL

3.3.3.3.5. Level 5: Procedure ~

Procedure BF2 (see Program 3.3.3.24) is to unify the literal

goal with any KB clauses. Procedures BF2.1 and BF2.2 will

match a literal goal with factual and ruled KB clause

respectively with a unification preference to factual KB

clause.

/t proctdm ill. t/
breadth_firsttca,cJ,CQJir·

/f procrd1rt UL1. t/
tnowlrdgr_basrCQJ,

brradth.firsttCQ,R,CQr·RJir·
/f pmrdm lfl.J. f/
tnowirdgr_basrCQr·RI,

Progrn 1.1.l,Ur Procrdm lf.

141

3.3.3.4 Comparison between Tha Depth-First and Tha Breadth­

First Methods.

As it 1s known that there are some advantages and

disadvantages between these two methods of implementation.

For simplicity, we refers the depth first and the breadth

first methods as algorithm DF and BF respectively in the

remaining thesis. The following points are the differences

between these two Implemented methods in Prolog (see

sections 3.3.3.2 and 3.3.3.3 above).

[1J. The termination condition.

As the algorithm DF having a cycling checker which spots

cycle. thus It will terminate in most cases when the

searching of new resolvents IS exhausted or it encounters

the empty resolvent. While algorithm BF will terminate

when 1t first encounters the empty resolvent (in all

cases) or the upperbound value of the specified level of

Its proving tree 1s reached (due to the space). Thus

algorithm BF does not guarantee that all answers have been

extracted when it terminates as

number of level of the proving

problem. Although we can Increase

we cannot unspecify the

graph due to the space

the upperbound value of

the level of proving tree during the proving session. but

the space and cycling problem are still there. Furthermore

at the end of proving, algorithm DF guarantees that the

searching is exhausted. On the other hand. algorithm BF

does not guarantee the search IS exhausted although It

does not derive any conclusion.

142

[2]. The answer extraction procedure.

By us1ng the algorithm DF, the answer can be extracted 1n

natural due to the backward chaining of the Prolog

implementation. Conversely, the algorithm BF cannot

extract answers in a natural way, thus a special procedure

has to be written in order to extract answers. This

contradiction can be seen from the following examples:

?-pcquest, /1 exa1plt 13.3,3,4.11 1/
11 existslX1husbandllary,XJJ,

»anum Yn,
existsiJahn,husbandllary,Johnll,

zz::::azsc:zzc:za::eaaaaaa:aza

yu

?-pcquest, 11 empll 13.3.3.4.21 11
ll mchlXI.

»answm Yn,
reachlclllblcatrylc,b1walkla,c,slll

······==·······················

yes

Session 3,3,3,2: Salving by us1ng the algar1th1 DF

In example [3.3.3.4.11 above, the answer by us1ng

algorithm DF can be interpreted as "mary has a husband

whose name is John". In example [3.3.3.4.21, the answer of

algor1 thm DF, i.e. "reach (cllmb (carry (c, b. walk (a, c, s))) ",

can be 1nterpreted as that the monkey can reach the banana

by walking from position a to position c, then carry the

chair from posit1on c to position b, and f1nally cl1mb

the chair and grab the banana.

?·pcquest, /t eXIIpll [J,J,J,4,Jl 1/
lr existsiX,husbandl•ary,XII,

>>ansMerr Yes,
•xlstsl_l,husbandlltry,_lll.

•••••c•••••••••••••••••••••• ..

yes

?-pcquest. /t exa1p!e [J,J,J,4.4l t/
lr reachiXI,

))ansMtrl Yes,
reachl_ll

·=········=····················

yes

Sess1on 3.3.3.31 Solving by using algcrlth• BF

143

On the other hand, by us1ng algorithm BF. both answers of

examples [3.3.3.4.3] and [3.3.3.4.41 wh1ch are equivalent

to examples [3.3.3.4.1] and [3.3.3.4.21 respect1vely

cannot be interpreted or extracted easily other than

showing that mary has a husband and there exists a way

of reach1ng the banana respect1vely.

[3] The cycle checking.

As algorithm BF guarantees, if the space perm1tted, that

the empty clause can be der1ved if exists, then there lS

no need to 1mplement cycle checking. Moreover. the cycle

checking procedure lS d1fficult to implement

efflciently in algorlthm BF. On the other hand. there is a

poss1b1l1ty that a cycle exists if algorithm DF 1s adopted

since the cycle (infinite) path may be explored first.

Hence the cycle checking is implemented in algorithm DF to

make sure that the empty clause can be derived. 1f it

ex1sts.

144

[4J. The space problem.

As algorithm BF will generate all possible resolvent

(son) clauses, there 1s a possibil1ty that the space is

not enough. So, the fa1lure resolvent (dead son) lS pruned

from the refutation tree. On the other hand, algor1thm DF

naturally will generate only one subtree at any time then

there w1ll not have any space problem.

[5] The average number of resolvents generated.

It is quite difficult to compare the average number of

resolvents generated as both methods resolve the l1teral

goal in different ways. For examples:

'-llltingtknowledge),
knowledgetp1-a1,
knowledgetpl·b),
knowledge(ql-cl.
knowledge(ql-dl,
knowledgetrl·tl,
knowledgetrJ•f),
knowledge tal-g),
knowledge tal.
knowledgetcl,
knowledge (f I ,

?-pc quest.
ilplqlr

/1 clause (kll 1/
/1 clause tk21 1/
/1 clause tk31 1/
/1 clause tk41 1/
/1 clause tk51 1/
/1 clause (k61 1/
/1 clause tk71 I/
/1 clause !kBI 1/
11 chuse tk91 11
/1 clause tk!OI 1/

Session 3.3.3.41 The l1st1ng of KB clauses

And suppose we wou Id 1 ike to prove "p & q & r" (as shown

1n the above session 3.3.3.4 by omitt1ng the answer)

assum1ng that the KB clauses are also as shown in the

above session. By using algorithm DF, the refutation graph

of proving "p & q & r" or equ1valently "[) :-p,q,r" (the

goal clause) is as follows:

111-p,q,r
lthl gal! I

I --·-1 I I
llJ-p llJ·q 11•-r
tl61 tl41 till

I I I
_I I t __

I I I I I
I lk21 I lkll I lk31 I lk61 I lk~l
1/ 1/ 1/ 1/ 1/

llJ·b Ill-a llJ•t llJ-f llJ·t
tl91 171 am tl31 121

I I I I I
I lk8l I lk7l I lk9l I lk!Ol I
I/ 1/ 1/ I/ I

llJ·Il llJ·Il []J·!l llJ·Il fails
181
I

hill

fig. 3.3.3.! A refutation graph of algorJth• DE

The solution arrived after 9

145

resolvents have been

generated and its path 1s marked by "*". The number at the

goal 1s the order (node) number of the refutat1on process

and the number at the branch, for example (k9), refers to

KB clauses number (see session 3.3.3.4). The signs "&" and

"t" at a branch node refer to AND and OR node

respectively. Now let see how the proving graph generated

by algor1thm BF:

111-p,q,r
ltht golll

I
I

I I I I I I ' lk5l I lk5l I lk~l I lk5l lk6l I lk6l I tk6l I lk6l
llk31 I lk3l I lk4l I lk4l I lk3l I lk3l I lk4l I lk4l
I lkll I lk21 I lkll I lk2l I lkll I lk2l I lkll I lk2l
1/ 1/ 1/ 11 1/ 11 1/ 1/

llJ·a 1t 1e 111-b,t,l 111-a,d,t 111-b,d,t 111-a,t,f llJ·b,t,f 111-a,d,f 111-b,d,f
Ill (2) 131 (4) 151 1161 171 181
I I I I I lk!OI l lk!Ol
I I I I I lk9l I lk91
I I I I I lk71 I lk21
I I I I 11 11

hill FAILS filii hill lh-g llJ-11
191 11101

fig 3.3.3.21 A refutation graph of a!gorithl BE

146

From the above f1gure, Fig. 3.3.3.2, the empty clause

(solution) has been derived after generat1ng 10 resolvents

and at the second level of the refutation graph and its

solution path is also marked by "*". As explained before

algorithm BF will stop after it encounters the first empty

resolvent, in th1s case, the resolvent (10) . The notations

used here are the same as in Fig 3.3.3.1 above.

From the above two figures (Fig. 3.3.3.1 and 3.3.3.2),

algorithms DF and BF arr1ve at the solution after

generating 9 and 10 resolvents respect1vely. This number

cannot deduce anything relevant to the number of resolvent

generated. Moreover, the number of resolvents generated

during proving process depends on the arrangement of the

knowledge base clauses. Both algorithm Wlll match from top

to the bottom of the list of KB clauses.

For example, 1f we rearrange the KB clauses in the order

of (k2), (k1), (k3), (k4), (k6), (k5, (k7), (k8), (k9) and (klO),

we will get a d1fferent number

before derivlng the empty clause.

of resolvents generated

Thus, algorithms DF and

BF will generate 6 and 9 resolvents before arriv1ng at the

solution.

Another point is that algorithm DF will match one KB

clause at a t1me to produce one resolvent. On the other

hand, algorithm BF will match or unlfY with more than one

KB clauses to produce one resolvent at a time.

Theoretically and also practically 1t 1s very difficult to

compare these two algorithms DF and BF even we would like

147

to use the average number of resolvents generated as we

have to rearranging the order of KB clauses. In proving "p

& q & r", the average number of resolvents generated for

algorithm DF and BF are 8 and 19.5 respectively.

In general, it can be seen that algorithm DF will give a

lower value for the average number of resolvents generated

(or matching clauses) compared to algorithm BF. And it is

equal when there is only

KB clause. This is due to

one alternative of the match1ng

the fact that algor1thm BF will

match more clauses in order to generate a new resolvent as

shown 1n the above Fig 3.3.3.2.

[6]. The occur checking.

Both algor1thm DF and BF cannot handle the occur check1ng

as the unification of the variables is carr1ed out

automat1cally by the Prolog. The POPLOG Prolog which we

use does not 1mplement the occur check1ng.

[7]. The 1ncompleteness.

Both algorithms DF and BF are incomplete as both adopt the

l1near input resolution strategy. They are incomplete in

the sense that they do not derive an empty clause where

they should do. For example we cannot der1ve an empty

clause from the following prem1ses: "q(X) # p(a)",

"-q(X) # p(X)", "-q(X) # -p(X)" and "q(X) # -p(X)" by

using both algorithms, although

premises are inconsistent.

we know that these

148

3.4 Comment and Conclusion.

The Prolog-based resolution wh1ch has been descr1bed above

can be used in a deductive question answer1ng system as well

as 1n a problem solv1ng system. It can answer all four

classes of questions as class1f1ed by Chang & Lee[1973].

However there is some restr1ction on the use of these

procedures. As descr1bed before that the instantiat1on or

un1f1cat1on method is based on Prolog's un1ficat1on,

therefore there 1s no occur check1ng in the procedure.

In these procedures, the statements, e1ther knowledge or

query, are in the form of f1rst order log1c or predicate

calculus. However the procedures 1tself are flexible in the

sense that it can be modif1ed to su1t a second order

pred1cate calculus. This 1s achieved by chang1ng the

representat1on of the pred1cate. Thus, for 1nstance,

pred1cate "man(X)" can be wr1tten as "f (man, X)". In fact,

the procedures do not need any changes 1f the pred1cate is

wr1tten by us1ng pred1cate "f" as described except 1n the

procedure of generat1ng symbol names for Skolem funct1on in

replacing ex1stent1al quant1f1ers.

Another 1nteresting point 1s that algor1thm DF can extract

1nformat1on easily as required. This can clearly be seen

from the examples [3.3.3.4.11 and [3.3 3.4.2] above.

As there are cases 1n which a refutat1on ex1sts but the

Prolog-based refutat1on does not; therefore Prolog-based

strategies are not complete. Th1s 1s due to the adoption of

a l1near 1nput form strategy in the Prolog-based refutation

149

procedures as it IS known that the Incompleteness property

of the linear Input strategy. However. as the procedure IS

used mainly for a deductive question-answering system and

not for proving a set Is unsatisfiable. the lack of

completeness cases are quite seldom due to the fact that the

set of knowledge clauses is usually unsatisfiable.

We have discussed how to assert facts or knowledge by using

procedure PCFACT (see Program 3.3.1.5) and how to ask the

question by using procedure PCQUEST (see Program 3.3.3.1).

Another extra feature of procedure PCQUEST IS that we can

assert the question into the database as knowledge or fact

(KB clauses) If it can be proved. This feature can be used

to find out whether any statements can be deduced from the

database before we assert them as knowledge Into the

database. Thus our database will not grow unnecessarilY

large If we use this extra feature of procedure PCQUEST. In

this case. we actually do not need procedure PCFACT anymore.

Apart from incompleteness and occur check problems. the

Prolog-based procedures seem quite efficient. We can also

see that the translation Into Horn clauses acts like a

Prolog program generator while the proving procedures act

like a Prolog Interpreter.

CHAPTER 4

NATURAL LANGUAGE INTERFACING

150

4.1 Introduction

Pere1ra and Warren [1980)

express1ng grammars 1n logic,

have proposed a method for

which is a natural extension

is called "Defin1te Clause

also pointed out that a

form CDCGs) can be used

of a context free grammar and

Grammars" (DCGs). Winograd [1983]

context free grammar stated 1n this

for pars1ng w1th a theorem prover. Follow1ng the work

described in Pereira and Warren [1980] above on translat1ng

natural language into 1st order predicate calculus and from

there 1nto Horn clause format (Clocksln & Mell1sh [1981)),

it is clear that this could form the bas1s of an intelligent

front end (Bundy et al. [1983]) .

Bennett et al. [1986) d1vided the quest1on-answer1ng system

1nto two types, from the v1ewpo1nt of the relat1on between

the natural language processor and the data stored, as

follows:

[1). Integrated systems: the

conce1ved Wlth the natural

1n mind, and/or vice versa.

data structures are

language (NLJ processor

[2). Front ends: wh1ch can be plugged on to the 'front'

of a range of data retrieve! systems to prov1de an

NL 1nterface.

The quest1on-answering system wh1ch will be

this chapter is classif1ed as the second one,

d1scussed in

1.e the front

ends type. These front ends will analyse the questions in a

natural language (source language), and as it were

'translate' the source language firstly into a predicate

calculus (PC) and later into Horn clauses to answer the

151

particular quest1on and the resulting PC will then be

synthes1zed back into the source language.

In this chapter. a study of this method (DCGs) as a base for

a questlon-answering system 1s carried out. The question­

answering system as described in the chapter 3 is based on a

mechan1cal theorem prover. thus DCGs 1s chosen for a natural

language interfacing. It should be noted here that as

English is not my mother tongue language, a natural language

1nterfacing discussed here is based on a subset of English

language. The main a1m here 1s to study how th1s grammar 1s

used in analys1ng an Engl1sh sentence (source language) into

a PC and synthesizing from answered PC into an Engl1sh

sentence (target language). Much of the emphasise 1s placed

on the techn1que for analys1s 1nto and synthes1s from a PC.

The source and target languages can be different but 1n th1s

study both the source and target languages are the same. 1.e

Engl1sh language. This can be summarised as follows:

11
I I

I I
, __ 1

,--Source I 11 I I Target I
Language 1---------->1 PC 1---------->1 Language I

!English! I I 1 __ : I I !Enghsl!l I
____ I I I I ____ I

---·-----:/ __ 1 ___ 1 _______ _
I _I_ I

I I I
I Horn I

I Chum I
I I

I I
I I

I I
I I I

I I Database setting up/ I I
I I Queshan-anmnng I I

I systn I I
I I I

I I

F;gure 4.!.!; The described systet.

152

From the prev1ous f1gure. Fig. 4.1.1. the triangle

represents the mechan1cal theorem prover described in

chapter 3 where the 1nput is a PC and the output is an

1nstant1ated (answered) PC. The rectangle represents a phase

of analys1ng and synthes1zing an Engl1sh sentence which will

be described in this chapter. The rectangle and triangles

come together when the result1ng PC of analys1ng an English

sentence (source language) 1s passed into the tr1angle which

w1ll then pass back the answered PC back into the rectangle

for synthes1z1ng back into English or another target

language.

The orig1nal DCGs

Warren [1980]. and

Hinde[1983] made some

system were described 1n Pereira and

Clocks1n and Mell1sh[1981]. Later

mod1f1cat1on to suit the problem 1n

Then further mod1f1cat1ons are made 1n h1s Fuzzy Prolog.

order to make the system works from an Engl1sh sentence to

PC and back again to an English sentence. In other words.

the grammar must work for translat1ng a question (of course

In English language) to PC and the quest1on 1s also answered

In English language.

4.2 Analysing an English sentence into Horn clauses

The quest1on-answering system described 1n chapter 3 1s

based on Horn clauses. So,

into Horn clauses. We will

English sentence into Horn

follows:

an Engl1sh sentence 1s analysed

divide the process of analys1ng

clauses into two stages as

[1]. Analysing an English sentence into PC.

(2]. Transforming PC 1nto Horn clauses.

153

4.2.1 Analysing an English sentence into PC.

The program or grammar to analyse an Engl1sh sentence is

based on Hlnde[1983]. The PC representation has been

mod1fied as he used 1n Fuzzy Prolog. It can parse a simple

English sentence 1nto PC. For examples:

[4,2,11 John loves tary,
••••'~~••=•z)
lovesfjohn,taryl,

[4,2.21 every tan who loves every woaan likes every fish.
::n::::s:c11)

allf_l 1aanf_lllallf_2 1wotanf_2l•>lovesf_l 1_2ll•>allf_3,ftshf_3l•>ltkesf_l 1_3ll

Or1ginally 1t could parse or translate a subset of English

sentences includ1ng the follow1ng syntact1c relations:

(1). Noun phrase:

-proper noun

-determiner (a & an) and noun phrase

-regular and 1rregular plural noun form.

(2). Verb phrase:

-transit1ve verbs

-intransltive verbs

(3). Relat1ve clause:

- who

Later. a few add1t1ons have been made to enhance the

capab1l1ty of the grammar 1tself. These add1t1ons can be

made easily without any amendments to the original grammar.

The follow1ng addit1ons have been made:

154

(la). Noun phrase:

-proper noun

- any word start1ng with cap1tal letters,

e.g John, A1zat etc.

- word "who" as used 1n a questlon-answering

system, e.g "who 1s k1nd".

-determlner:

existential quantlfier: the, some

negation of ex1stent1al quantifier: no

-quantlfied pronoun:

existential quantifier: somebody, someone.

un1versal quant1f1er: everybody, everyone,

negation of existent1al quant1fier: nobody.

(2a). ConJunction:

and, or,

neither ... nor ..

elther ... or ..

both ... and ...

(3a). Relat1ve pronouns:

- that, wh1ch.

In parallel to the above add1tions, the size of the

d1ctionary has also been increased by add1ng new words

accord1ng to their classes and also according to the type of

the sentence which can be accepted 1n general. The classes

of the words 1n the d1ct1onary mostly are as described 1n

McArthur [19811.

In general, there is no major problem at all 1n add1ng new

grammar rules or words as long as the same representat1ons

of grammar rules and predicate calculus are maintained. The

155

above add1t1ons are made on the bas1s of the type of

examples 1n the chapter 2. In other words, it can be sa1d

that the add1t1ons have been made on an ad hoc basis.

It should be noted here that, 1n order to accept any word

start1ng with cap1tal letters as a word of the sentence but

not as a variable, the program which reads the sentence has

to be modif1ed such that it will translate any word start1ng

with a capital letter as an atom but not as a variable in

the sense of Prolog term (see example [4.2.41 below and

compared with example [4.2.11 above). Another addit1on is to

accept any word starting with "$" as a var1able in order to

d1stinguish the word wh1ch start1ng w1th cap1tal letters as

a proper noun (see example [4.2.81 below).

The program to read any sentence is called read_ln and 1ts

deta1l can be found 1n the Append1x. It should be noted here

that the equivalent program read_ln has been made as a

library program in POPLOG Prolog, but 1t does not have the

capabil1ty of accept1ng either a proper noun start1ng with a

capital letter or any word starting w1th "$" to denote a

variable.

The following are some examples of the analysis of Engl1sh

sentence into PC:

[4,2.31. No woabat who lives 1n a zoo 11 happy,
·==··======>
'eKtstst_l,lndefinltet_ll,woabatt_llleKistst_2,zoot_21llnt_l,_21&llvest_llllhappyt_lll.

[4,2.41. John loves "ary.
·===··===••)
loves(John,"aryl.

[4,2.51. everyone who is bath strong &nd intelligent succeeds.
···=·===···> &lll_l,persanl_lllstrangl_tl•intelligentl_ll•)succeedsl_lll.

[4,2.61. Does Peter succeeds?
-=··········>
succeedsiPeterl.

[4.2.71. who is kind?

kind (_I),

[4,2.81. tJ loves "'ry?
•••••aaasaa)
lovn(_l,"iryl.

156

The grammar also accepts an English sentence in the form of

a question as shown In example [4.2.6] above. This form of

sentence (question) will be used In a question-answering

system which will be explained in the next section.

As we need to different1ate between determiners "the" and

"a" 1n the PC representat1on of a sentence, we w1ll add

another information in the PC, I.e "deflnite(X)" and

"indefinite(X)" to denote deflnite and Indefinite articles.

These addition IS quite Important espec1allY In translating

PC Into Horn clauses such that we can generate an

appropriate symbol for each class of articles. We also add

these two information in the PC representation of other

quantifiers (e.g "all", "somebody" etc). For examples:

[4,2,91, so•ebody visits 1 zoo.

:::::::::.)

exlstsl_1 11ndeflnltel_ll 1personl_lllexlstsl_2,1ndeflnltel_21,zool_21lvlsltsl_t,_2111,

[4,2.101. soaebody v1s1ts the zoo.

existsl_l,indefinitel_ll,personl_lllexlstsl_2,deflnlte1_21 1zool_21lvisltsl_t,_2111.

14.2.111. every 1an who loves evary wc•an likes every fish.

alll.11indeflnitel_1l 11anl.1llalll.211ndeflnitel_2l 1Nolanl_2l•>loves(_i,_2ll•>

all IJ,indefinlte(Jl,fish Ul•>Hkn(_I,Jll

157

Examples [4.2.91 and [4.2.10] show the difference between

the PC representation of determiners "a" and "the"

respectively. Example [4.2.111 shows the new representation

of determiner "all" (compared this with example [4.2.2]).

4.2.2 Transforming PC into Horn clauses

Why we need to transform PC into Horn clauses? As explained

1n the first paragraph of the sect1on 4.2, the database 1s

in the form of Horn clauses and the theorem prov1ng

mechanism as expla1ned in the chapter 3 accepts an 1nput

(quest1on) in the form of PC and subsequently transforms

them 1nto Horn clauses. So that 1s why we need to transform

the PC into Horn clauses.

In section 3.2 of chapter 3, we have already explained how

to convert PC statement into

English sentence. the need to

has arisen espec1allY in

indef1n1te determ1ners.

Horn clauses. In analysing an

change the PC representation

dealing with definite and

The new rules to deal w1th th1s new PC representation are to

be added to the programs which process the quantlfiers. The

affected programs are those 1n the first four stages. i.e.

remov1ng all 1mplication and equ1valence s1gns. mov1ng

158

negation Inwards, skolemization and finally moving outwards

and eliminating universal quantifiers stages.

We need only to add new rules to deal with the new PC

representation of the forms "all(X,D,P)" and "exists(X,D.Pl"

where D IS a e1ther "definite(X)" or "indefinite(X)" in all

f1rst four stages. Compared this with the old form of PC

representations. i.e "all(X,Pl" and "exlsts(X,Pl" to denote

universal and existential quant1fiers respectively (see

section 3.2 of chapter 3). The new rules are equivalent to

those dealing with the old form of representing quantifiers,

for examples in moving out all universal quantifiers (Stage

4) :

anlvoatCtllCI1P1 1P/1l·
! 1 /t the old fort Cralrl t/
ani voatcP 1 P/1,

anlvoatCallCI 1D1P1 1P/1:-
1 1 /f the new fort Craiel f/
mvoutcP1P/1,

We can see the similarity In those two rules above. The same

also applies In the first three stages I.e removing all

Implication and equivalence signs. moving negation signs

Inwards (for un1versal quantifiers only) and the

skolemization of universal quantiflers for either knowledge

or query clauses (see section 3.3.1 of chapter 3).

The procedure to deal the Indefinite and definite

existential quantifiers in moving negation Inwards are

somewhat different. The method described In section 3.2 of

chapter 2 still applies to moving negation Inwards for

indefinite existential quantifiers. As a definite

existential quantifier or a definite determiner refers to a

subject which is known before hand, thus 1ts property of

159

existential quantifier must be retained as assuming that the

subject IS a proper noun. The following are some rules which

are concerned With the Indefinite and definite existential

quantifiers In moving Inwards the negation signs:

neg(exzsts(I1PI 1all(I1PIIr·
I
• I
neg(P1PI/,

neglrxists(l1deflnitr(I/ 1PI 1exists(l1deflnite(I/ 1PII:·
I
• I
negCP1PI/,

neg(exists(l,indefznztr(II,PI,rllll,zndefznzte(I/1PI/r·
I . ,
neg(P,P/1,

neg(rliCI,B1P/ 1exzstsCI,B,PIIr·
I
• I
negCP,P/1,

The complete program of moving In negation signs can be

found in the Append1x.

The other lrregularity of deal1ng the def1nite and

lndefinite quantifiers 1s In generating Skolem var1ables for

them. The method of generat1ng the Skolem var1ables to

replace ex1stent1al quantiflers of the form of

"exists(X,1ndef1n1te(X) ,P)" and "exlsts(X,deflnite(X) ,P)"

are different for both query and knowledge clauses. For

example, the following are two rules to generate Skolem

variables for knowledge clauses of both forms.

skolet(rxzstsll,defznzteCII,PI,Pt,Vrrsl:·
! , /f for drfznztr detrrtiners 11
pzclnlttCI,P,Hrte/ 1
plclskolet(HIItlthe,VIrsiSII, ,, pzclzng I sr•bol Rllt ,,
sabstztatriSI,I,P,P/1 1
sloletCPI,Pt,Vrrs/,

slolet(exzstsCI,D,PI,Pt,Vars):·
! , /f for other (zndrfinitrl detminers ''
piclnatrCI,P,Hrtrl,
pzclslolet(Hitr,othrrs,Vrrs,SI/1 /f pzckzng 1 srtbol nate f/
sabstitate(SI,I,P1PI/ 1
slolet(PI,P21Varsl.

As in the example before this, we can see from the above

example that both rules are equivalent except 1n pick1ng the

160

symbol names for Skolem variables (predicate pickskolem/4).

Let us see in deta1ls how to pick up a symbol name for both

query and knowledge base (KB) clauses:

4.2.2.1 Knowledge base <KB) clauses

As expla1ned in sect1on 3.3.1.1 of chapter 3, "fs" is an

1nd1cator to denote a Skolem function for knowledge

clauses. Here, we need to change the def1n1tion of

procedure PICKSK (program 3.3.4 of section 3.3.1.1) to

accommodate the different method of generat1ng symbols

for Skolem variables. We will generate a symbol the same

way as before (section 3.3.1.1) for other (indefinlte)

determiners. 1.e a new number will be appended to a

picked symbol.

However, for the definite determiners, a new symbol will

not be generated, but instead the Immediately previous

one IS taken to replace the definite existential

quantifiers. This method is adopted because the

determiner "the" usually refers to an immediately

previous subJect. However this method is used with some

precautions from the semantic point of view. So the new

procedure of PlCking a symbol for knowledge Skolem

function (procedure PICKSK) is as follows:

pzckskoletCKite,the,Qirs,Skll­
/1 procedure PICKSK,/ 11
skolet_theCKite,Skl,
I ..

pzckskoletCKite10thers1Qirs1Skll­
/l procedure PICKSK,2 f/
gensraCKne,FI,
1ppendCCF11Qirs,Find•rgsl,
Sk• .. Cf s/F ndlrgs1,
1SsertlngCslolrt_theCK11e1Skll 1!, /1 procedure RSS£RIIN6 1/

Proqr11 4,2,11 lhr nrw procedure PICKSK

161

The first procedure (PICKSK.1) takes the latest symbol

generated for the same existential quantifier or for the

same symbol name "Name". The second one (PICKSK.2)

generates the symbol for the existential quantifiers and

the assert it Into the database by procedure ASSERTING.

The procedure ASSERTING w~ll replace the old predicate

"skolem_the(Name,Sk)" of the same symbol name "Name"

with a new one. For examples (an English sentence Into

Horn clauses):

14.2.121. A wDsbat lives in a !DD,
c:z:~zczzz)

exists!X11ndeflnlte!XI 1wDibat!XIlexlsts!l 11ndeflnlte!ll 1zoo(lllln(X 1lll11Ves(XIII
I::IUII:I:lll:al:a)

wDsbat!fs!wosbatOII,
zoo!fs(zDoOII.
in!fs!wosbatOI,fs!zooOII.
llves(fs!wolbltOII,

14.2.131, Nazrul visits the zoo.
z:::::n:zt:a)

exlsts!l 1definlte(l) 1lDD(lllVISits!Nazrul 1ll),
::::a::z::ta)

!DDifs!zooOII,
VISits!Nazrul,fs!zoDOII,

14.2.141. A WDibat lives 1n a Jungle.
=========•>
exlsts!X11ndeflnlte(XI 1wDibat!XIlexlsts!l,lndeflnlte!li 1JUngle!ll&ln(l 1ll&llves(XIII
=========•>
wo•bat!fs(wosbatlll,
Jungle!fs(JungleOII,
ln!fs!wDibat01 1fs(Jungle011.
llves!fs(wolbatOII,

"the zoo" In example [4.2.13) refers to the same "zoo"

as in example [4.2.12), thus their Skolem functions are

the same, 1.e "fs(zooO)". On the hand, "a wombat" in

examples [4.2.121 and [4.2.141 are certainly different,

thus their Skolem functions are different, i .e

"fs(wornbatO)" and "fs(wornbatl)" respectively.

162

4.2.2.2 Query clauses

As 1n sect1on 3.3.1.2 of chapter 3. "fq" 1s to 1nd1cate

the Skolem funct1on for query clauses. The method to

generate a symbol for def1nite and 1ndef1n1te

determ1ners for query clauses 1s about the same as in

the query clauses w1th one extra rule for def1nite

determiners. The symbol for a defin1te determiner is

taken from the latest symbol for knowledge clauses. 1.e

skolem_the(Name,Sk) (procedure PICKSKQ.l) or 1f it does

not exists. the symbol 1s taken from the latest symbol

for query clauses. 1.e skolemq_the(Name,Sk) (procedure

PICKSKQ. 2) . Otherwise the same method of generating

symbol is adopted (procedures PICKSKQ.3 and PICKSKQ.4

for def1nite and indefinite determ1ners respect1vely).

The follow1ng procedure is to replace the old one

(Program 3.3.7 of sect1on 3.3.1.2) and will generate a

symbol for query Skolem

quant1f1ers.

pzclsloletqCHate,the,VIrs,SI/:­
/1 procedure PICKSKQ,/ 11
stolet_theCKite,SI/ 1
I ..

piclskoletqCHite,the,VIrs 1St/:­
/l procedure P1CKSKQ.2 11
stoletq_theCKite,St/1
I ..

pzclskoletqCH1te 1the1VIrs,SI/:-
/I procedure P1CKSKQ.3 t/
gensytCHne1F/ 1

ippendCCFJ,Vars,Findargs/ 1
Sk• •• Cfs/Findlrgs11

funct1on of existent1al

assertzngCskolet_theCHate1SI// 1!. /t procedure RSSEITIHS t/
pzclstoletqCHate10thers1VIrs,Sk1:­

/f procedure PICKSKQ,I f/
gensytCHne,F/ 1
ippendCCFJ,Virs,Findargs/1
St• •• Cfq/F ud~rgsJ,
1SsertingCskoletq_theCHate1SI11 1!, /f procedure RSSEITIHS 1/

Proqrat 1.2.2: The ne• procedure PICKSK9

163

The following are examples of how English sentences are

analysed Into Horn clauses and suppose that we have

already asserted the knowledge clauses as in the example

[4.2.12] above in the database:

[4,2.151. No woabat l1ves In the zoo?
··········> •exlstsiX11ndeflnlteiXl 1woabatiXllexlstsl!1definltel!l,zool!lliniX1!llllvesiXll.

--········> Tht transforaatlon of the negation of the PC1

woabatlfqlwoabatOll.
zoolhlzooOll.
lnlfqlwoabatOl,fslzooOll.
liYtslfqlwoabatOl),

[4.2.161, All woabats art an111!S ?
cs::s====•)
al!IX 1indefinite1Xl 1woabat1Xl=>aniii!IXll
·======···>
The transforaation of the negat1on of the PC;

woabatlfqlwoabatlll,
•anual I fq lwoabatl l l,

[4,2.171. The boy loves K1tkat?
zs::::~:aas)

exJstsiX 1defJnlteiXl 1boyiXlllovesiX1K!tkatll.
r:::::::;:n)

The transforaat1on of the negat1on of the PC1

[J;-boylfslboy0ll 1loveslfslboy0l 1Kitkatll.

From example [4.2.15]. "the zoo" refers to the previous

zoo. I.e the zoo as referred in the example [4.2.12].

thus the questioned Skolem function for "the zoo" in

example [4.2.15] IS "fs(zooO)". On the hand. the

negat1on of the PC of example [4.2.16] gives an

existential quantifier of a wombat. accordingly the

questioned Skolem function which replaces It. IS

"fq(wombatl)" as this wombat "fq(wombatl)" has not been

referred to before thus it takes a new symbol name and

furthermore that "fq(wombatl)" IS a result of the

negation of a un1versal quantifier.

164

Example [4.2.171 shows that "the boy" is replaced with

"fs(boyO)" which has been symbollsed by procedure

PICKSKQ.3 as both the first two procedures (i.e

PICKSKQ.1 and PICKSKQ.2) fail. In this case "the boy" Is

not replaced by questioned

"fq" but instead it IS

function Indicated by

Skolem function indicated by

replaced by knowledge Skolem

"fs". This IS to show that

result of the negation of the "fs(boyO)" is not a

question so it cannot be replaced by "fq".

The details of programs for the first four stages after

adding new rules and modifying some rules as explained above

can be found in the Appendix.

4.3 Interfacing an Engl1sh grammar into the question-

answering system

As explained In chapter 3. the refutation process of the

Prolog-based resolution IS divided Into three stages. I.e

setting up a database (knowledge clauses). formatting a goal

(in Horn clause form), and the refutation procedure Itself.

Basically, the method of converting a PC Into Horn clauses

and the refutation procedure will be the same as explained

chapter 3 With some exceptions which will be explained in

due course.

The Prolog-based resolution described in chapter 3 accepts

Input In the form of a predicate calculus. So In Interfacing

an English language grammar to the question-answering system

(the resolution method), the input in English sentence will

be accepted. However we would like to maintain that the

input and output in a predicate calculus are st1ll intact.

165

As we aim to ma1ntain the question-answerlng system can

accept both an English sentence and a predicate calculus as

1nput, we need to assert 1n the database (or Prolog system)

a control predicate to 1nd1cate both 1nputs such that the

answer or output of the question 1s 1dent1cal to the 1nput.

For this purpose, we create a control pred1cate

form_of_answer(X) where X can be instant1ated with e1ther

"eng" or "pc" to 1nd1cate the 1nput and answer (output) are

English sentence or a pred1cate calculus respectively.

The need to differentiate the input or output does not arise

in the case of sett1ng up a database or asserting knowledge

clauses as we do not need any response at all; the Prolog

system w1ll response automatically w1 th "yes" 1f everything

1s alright. So we need only to d1fferent1ate between those

two quest1on inputs.

4.3.1 A predicate calculus input

We need to change the definit1on of procedure PCQUEST as in

the Program 3.3.3.1 of sect1on 3.3.3 of chapter 3. The new

def1n1tion 1s as follows:

pcqurstr·
rudW,
ISsertz.new(fort_of_lnswerCpcJJ,
qmtionCQJ,

Proqrit 4,1,/: R new def1n1t1on of procedure PCQUEST

The only d1fference with the old defin1t1on is the second

llne of the procedure where the new predicate

form_of_answer(pc) 1s asserted 1nto the database to replace

any pred1cate form_of_answer/1 1n the database.

166

4.3.2 An English sentence <language) input

In section 4.2.1, we have described the features of the

Implemented English language grammar. The top level

predicate of the English language grammar described IS a

predicate stat_or_quest/2 or procedure SORQ. However

procedure PHRASE IS the highest level predicate which will

called to read and to analyse an Input sentence:

/t procedure PNRRSE t/
phrurr·

retd_phrtseCS1 YJ 1 /t re1d an 1npat sentence t/
stlt.or_qaestCS,Yl. /t procedure SORQ t/

Proqr11 1.1.21 Procedure PNRRSE

There are two ways to distinguish whether the English

sentence input Is a question or not. The first one is either

the sentence ends With a question mark ("?") or others ("."

or "! "). It is clear if the Input sentence ends with a

question mark, this will indicate that the input IS a

question (procedures SORQ.1 and SOR1.3 below). However If

the Input ends with either a fullstop(".") or an

exc lamatlon ("! ") , then the structure of the sentence will

determine whether it IS a question to be answered (procedure

SORQ.1) or a fact to be asserted into the database

(procedure SORQ.2 below). The following IS a definition of

predicate stat_or_quest/2 or procedure SORQ:

st•t.or_qarstCY,Zll·
/f procrdarr SORQ,/ t/
qaestiO»_phriseCQ1Y,CJJ 1 /f procedure QUEST-PI 1/
assertz_newCfort_of.•nswerCengJJ,
qmtmCQl,

stlt_or_questCY,Zl!·
/t procedure SORQ,I ''
Zn\C?J,
state•ent_phr•seCS,Y,CJJ, 11 procedure STRTE·PI t/
•ssert.tnow!edgeCSJ,

Stft .Or _qutStfY 1 (?J) I"
/t procedure SORQ,l 11
•ssertz_newCfort.of.•nswrrCengll,
sentenceCQ1Y1CJJ, /1 procedure SENTENCE t/
qurstJonCQJ,

proqral f,l.l! Procedure SORQ

167

It can be seen from the above program that the predicate

form_of_answer(eng) 1s asserted into the database if the

1nput sentence is analysed as a quest1on (procedures SORQ.l

and SORQ 3). All sentences (phrases) are classif1ed 1nto two

types. i.e a statement sentence and a question sentence.

Procedures STATE-PH and QUEST-PH will analyse statement and

question sentences respectively, However. if the sentence

input is a question (ended w1th a question mark). then there

are two possibilit1es of 1ts type, i.e either statement or

question sentences. and this question w1ll be processed by

procedure SENTENCE as described below:

/1 procedure SEHTEHCE 1/
sentenceCQ1Y,CJJr-

/l procedure SEHTEHC£,/r to 1n1lyse 1 quest1on seatence 1/
question_pbrlseCQ 1Y1CIJ, /1 Procedore QUEST-PI 11

srntencrcs,r,cJ!r-
/1 procedure SEHTEHCE.gr to 1n1lyse 1 st1lttent srntence t/
stllttent_pbrasecs,Y,CJJ. /1 Procedure STRTE-PB t/

Progr11 f,!,fr Procedure SEHTEHC£

The programs of procedures STATE-PH and QUEST-PH can be

found in the Append1x.

4.3.3 The output procedure

After the proving has been carried out. the control

predicate form_of_answer(X) has already be asserted 1nto the

database where X has been instantiated Wlth either "pc" or

"eng". As explained in chapter 3 that the procedure wh1ch

prints the answer are procedures PA.l and AF (see Program

3.3.3.4). procedure PAO.l (see Program 3.3.3.5) and

procedure MORE-ANS (see Program 3.3.3.6). So all these

procedures have to be modified accord1ngly such that the

control predicate can be f1tted 1n. The follow1ng are the

new procedures PA.l. PAO.l and MORE-ANS:

print_lnswtrCQ,Y,CJII-
/1 Thr nrw Procrdarr f!.LI thr cJ1asr IS 1n 1nconszstrnt onr t/
1ffmCRnsl1
forl_of_lnswrrCForllnsrtrl 1
lnnrr_for•Cforunnrr,Y1S1Rnsl1 11 proctdarr RF 11
rr1trC' Thr qarstion cJ1asr is 1n incons1strnt onr '1 1
I ..

prlnl_lnswerOCQ,Yll-
ft lht nrw proctdart f!t.LI to print •rrs• 1nsrtr f/
nonmm,
•ffmCrrsl,
forl_of_lnswerCFor•rnswtr) 1
lnsrer_for•Cforllnsrtr1Y1S,rrsl,
1

11ort_lnswtrCForllnswtr1 Yl,
/t proctdarr RF t/
/f procedurt PR/ t/

/t lht new procrdarr W9RE-RNS t/
tort_lnswrrCForlanswrr,Yll-

prlnl_lnswrr/Cfor••nswtr,Yl, /t procedurt PRINT-INS/ t/
getOW,
anner _response eR, Yl. /t procedurt RR 11

Proqm 1.1.~1 The nu procedarrs PR,/ 1 PRO,/ 1nd «<RE-INS

168

As can be seen from the above new procedure, the control

predicate has been added to pr1nt the answer according the

1nput ("pc" or "eng"). In do1ng so, there are two new

procedures have been wr1tten accord1ngly, 1.e procedure

STATE-PHl and PRINT-ANSl. The follow1ng are new procedures

of AF and STATE-PHl

/t thr new proctdart RF t/
•nswrr_fortCpc,Y,Y,Rnsl:-

1• Proctdart RF.I: If tht 1nputloatpat IS PC 1/
wrlle_•nnrrCastr,Rnsl, /t procedure NR t/
wrlttpcCusrr,Yl, /t procedare HPC t/

lnswer_for•Ctng,Y,Y,Rnsl:-
/1 Proctdart RF.t1 if lht inpatloutpat is English t/
staleltnt_phrast_ontCY,S,CJI, /f proctdart STRTE-PH/ t/
rrllt_stntCmr,S,YI, /t procrdurt HENS 11

/t procedurt STRTE-PHI t/
statrtrnt_phrasr_onrCY,S,Clll­

statrtrnt_phrlseCY,S,Cll, , ..
Proqr11 1.1.61 Procrdurts RF and STRTE-PH/

The procedure STATE-PHl will generate one sentence only even

when more answers are required, otherwise the program w1ll

give another equivalent sentence and not another answer for

169

the question. Procedure PRINT-ANSl, as shown below, will

pr1nt the remark of ask1ng whether another answer is

requ1red or not.

/t 1rocrdart PRIHT·RHSI 1/
,rznt.•nswrrtc,c,YJI­

•ritt_frovtdCasrr,YJ.
1rint.•nswtr/Ctng,YJ1·

wrztt_tortCaserJ.

Proqrlt 4.1.71 Procedart PRIHT·RHS/

For examples, suppose that the question is "1s nazrul happy?"

(ln Engllsh) or equ1valently "happy(nazrul)" (ln PC). The

system will print the answer accord1ngly as follows:

(al if the input is 1 PC1

»anum Yes,
• happy(nazrull •

=·================·================

PROVED: happy(nazrull ? (ansMered·optlcn>

Cbl 1f the input u an Engluh:

Yes,1t is true that Nazrul IS happy.

top(phrlsel: 1ore 1nsMers ? <ansMer·optlon>

Session 4,3,11 The exaaples of output •nsMers

The remark <answer-option> as shown 1n the above sess1on

(4.3.1) is a user option as explained 1n Table 3.3.1 of

section 3.3.1 of chapter 3.

170

4.4 Analysing and synthesizing an English sentence into and

from PC.

A few problems arise as we use the same set of grammar rules

to analyse and synthesis a single sentence Into and from PC.

Those problems include:

(1) The univ operator "• " of Prolog.

(2) Errors of using library predicate "name(X,Y)" as X or

Y must be instantiated. This occurs particularly for

plural grammar rules i.e to test whether a given word

is a plural form of not.

(3) Taking more time to translate from PC to English than

from English to PC. This IS due to not using the

information in the representation of PC Itself.

(4) Giving a different generated English sentence to the

original sentence.

These problems give a serious look at the representation of

the PC Itself as well as some of the grammar rules.

The problem of the univ operator "= " arises during the

synthesis phase as the rule proceeds extremely timidly

having to search the whole dictionary of verbs before

finding the one that "fits" a termS where "S- .. {V,X,YJ", if

the condition which uses the univ operator IS placed at the

end of a rule, for example:

!rans_rtrbCplaral,X,Y,SJ-->
CZJ,
(CvtrbCQ1l> 1

plmllll,
S• .. CQ,X,YJ) J,

171

An alternative is the following where the last line is

moved up two l1nes:

trtns_vtrbCplurll 111Y1Sl-->
CZJ,
c cs• .. rv,r,YJ,

mbCV1l1 1
plmlCZJ) l.

However, this works adm1rably on the synthesis phase but

fails immed1ately and consistently dur1ng the analysis. A

"natural" replacement for both rules would be:

trtns_vrrbCplurll 111Y1VCI,Y/J-->
CZJ,
C CmbCV1l1 1

plmiClll 1.

This structure 1s not allowed 1n current Prolog interpreter

used and also 1n most Prolog 1mplementat1on. Hinde and

Mawds ley [19841 have proposed then a standard fix

"f(V,X,Yl"ls applled represent1ng structure V(X,Yl such that

the rule works 1n both d1rect1on and does not requ1re nearly

duplicate rules for analys1s and synthes1s phases. Although

th1s new structure suffers rather badly in readab1lity and

would be much clearer 1f var1able functors were allowed

(Warren[1980), and Hlnde[1984) and also [19861) . th1s

structure is adopted to overcome the problem concern1ng w1th

the un1v operator.

There are many methods or strategies to overcome those other

problems (problem 2, 3 and 4 above) bear1ng in m1nd that

these grammar rules will be used in a quest1on-answering

system and it may also be used in an inter-lingual

quest1on-answering system e.g from Engl1sh to PC and back to

Malay language or vice versa in future. The following

sections are three strategies which try to overcome those

remain1ng three Problems.

172

4.4.1 A Tracing techniqu•

By us1ng this technique, we add an extra var1able or

argument to the existing grammar rules. We called thls

var1able a tracing variable. A trac1ng var1able is used to

1dentify a particular grammar rule. For example:

sentence(X,TJ-->statement_phrase(X,TJ

will be converted 1nto Prolog clause as:

sentence(X,T,Y,ZJ :-statement_phrase(X,T,Y.ZJ.

The variables X and T which refer to the result1ng PC and

the trac1ng variable respect1vely, will be 1nstant1ated by

the end of translating process of an English sentence, Y.

So, by knowing the value of X and T, we can synthesize an

English sentence and furthermore the result of thls

synthesis of an Engl1sh sentence 1s actually Y itself, 1.e

the same as the origlnal (lnput) English sentence. Let see

another example of grammar rules with the trac1ng var1ables:

/f the gr1111r rales for proper noans f/
gproper_noanC!,N,Cgpn3,whoJ1-->

Cwhol.
gproper_noanCplarll,N,Cgpnf,!Jl-->

Cll,
(CplmlCP,!l,
proper.noanCP,Nl,
notCnoanCP,Ylll),

gproper.noanCslngalar,N,Cgpni,!J)··>
CXJ,
(Cproper.noanCI,NJ,
note no an Cl, Ill,
notCplaralC!t,IJ,
notCpronounCD,I,PJ)) l.

/f the gra111r rales for class of nares 11
class _me(SI ngal ar,!, P ,C cn/1 SnJJ-·>

CaJ,
gnoanCsJngalar,X,P,SnJ.

class _nml singal ar, I ,P ,c cntlinJ)-->
Can],
gnoanlsingalar,I,P,SnJ.

class_na•elplaral,X,P,Ccn316nJJ-->
gnoanlplaral,I,P,SnJ,

class _n1rel Pt, X, P, Ccn4/ladl J)-->
gadlectiveiPl,I,P,SadJJ,

The above example of the set of grammar rules are intended

to analyse proper nouns and a class of names. Each grammar

173

rule has a un1que trac1ng var1able. For instance, the

trac1ng variables for the grammar rules to analyse a class

of names are 11 cnl", .. cn2 .. , "cn3" and "cn4" wh1ch are to

ind1cate a singular noun which precedes w1th "a", a

singular noun which precedes with "an", a plural noun and an

adJective respectively.

Another by-product of 1mplementing the tracing technique is

that we may able to classify the class of each word of the

input sentence provided that the symbol used for the tracing

var1able is unique. For example:

?- revsent. 11 emple [4,4,1,111/
:: John loves "ary,
uss::n::a)))

f(loves,John,"aryl

The trmng vmable•

[s31[np71[gpni,John11 1[cvp0 1[vpl,[tv7,lovesll 1[cnp01[np7,tgpnl,"ary111111

(((••==~=*===·
John loves "ary.

yes

?- remnt. 11 exa.ple [4,4.1.21 11
:: so1ebody visits the zoo,
========~:::~)))

ex:sts!_1 11ndeflnlte!_ll 1f!person,_lllexlstst_2,deflnite!_2l,f!zoo,_2l'f!vlsits,_l,_2lll,

The trac1ng variable•

!s3,!np5,!qprl 1so•ebodyl1 1!cvp01!vp1,!tv71v:s:ts1 1!cnp01!np21[gdet31 1!gn2,!gn021zoo1111111

(((z=zn:zzn

SOiebody VISitS the ZOO,

yes.

Session 4.4.1.1: Exa1ples of us:ng trac1ng var:ables

From the above sess1on, we can analyse and syntheslze an

Engl1sh sentence by using the trac1ng techn1que. In the

example [4.4.1.11 above. the tracing var1able reveals that

"John.. and "Mary.. are proper nouns and .. loves.. is a

transit1ve verb. Furthermore the grammar rule whlch 1s used

174

to analyse "John" and "Mary" is the rule "gpnl" of proper

nouns and the rule "tv7" of trans1t1ve verbs is used to

analyse the word "loves". This 1nformat1on will be used to

synthesize an English sentence from the resulting PC. As we

intend to use the grammar 1n a question-answering system.

we demonstrate the follow1ng examples 1n a quest1on-

answering session:

?·listing(kno•ledgel. /la listing of KB clauses l/
knowledge(f(kind,Johnll
knowledge(f(kind,Peterll

?·phrm. ll emple [4.4,1.31 ll
1: who are k:nd?

NEXT SENTENCE:
who are kind?

z:::::r:::::~:zza)

NEXT QUESTION:
flhnd,_ll,

The trac1ng variable•

[s31[np71[gpn31wholl 1[cvp01[vp0 1[tv2,arell 1[ccn0 1[cn4 1gadJ 1klndlllll

The translation of the negat1on:
Cl:-flklnd,_ll.

»answer: Yes,
f(hnd,Johnl

lllllll&&&&&&&&&l&&l&

:::ns)

Yes, it IS true that •he are kind.

top(phrasel: 10r1 answers ? n

yes

Sess1on 4,4,1.2: A question-answering exa1ple us1ng the trac1ng techniqu1

It can be seen from the above sess1on that although there

exists John who is kind, but the answered sentence is still

the same w1th the quest1oned one. At least the answer should

be "Yes. it is true that John 1s kind". It should be noted

here that the word "who" is parsed as a Proper noun. The

inab1l1ty of the grammar system to return the correct

sentence 1s due to the rigid1ty of the tracing variable

175

itself. In other words, the tracing variable conta1ns fixed

words and their classes such that 1t cannot produce

d1fferent sentences other than the or1g1nal (input) sentence

itself.

It should be noted here that we use top level pred1cate

"phrase" 1n the above question-answering system and also in

the rest of this section. As explained 1n the last section

(section 4.3) about procedure SORQ and at the beg1nn1ng of

this section about the need to add one more variable 1n the

grammar rules for trac1ng variables, then we need to

redef1ne the procedure SORQ to accommodate these tracing

var1ables and the new procedure 1s called SORQTR which can

be found 1n the Appendlx.

Usually, 1n a quest1on-answer1ng system, the word "who" wi 11

be replaced by other proper noun such as "John" 1n the above

sess1on (4.4.1.2). So, the word "who" w1ll not be recorded

1n the trac1ng variable itself but 1nstead an un1nstantiated

var1able 1s recorded. This 1s parallel to the un1nstantiated

variable assigned to word "who" for the correspond1ng PC,

for 1nstance as shown in the above sess1on (4.4.1.2) where

var1able " 1" of "f(kind, 1)" represents "who" of the

question "who are klnd?". Thus the grammar rule wh1ch deals

the spec1al proper noun "who" is changed from:

to:

gproper_noaniX1H1Cgpn3,whoJ)·->
CwhoJ.

gproper_noaniX 1H,CZ,YJ>-->
Cwho11
((m(H)) I.

The above rule does not 1nstant1ate the tracing variables

"Z" and "W" with "gpn3" and "who" respectively. The var1able

176

"W" will be instantiated With any proper noun during a

question-answering session and thus the condition "var(W)"

will prevent the use of this rule during retranslation of PC

to English or synthesizing phase. While the variable "Z" IS

not instantiated such that It can be instantiated with other

rules of proper nouns. For example:

?· rtvsent. /1 exatplt !4.4.1.41 1/
11 •ho art kind?
c::nn .. ••)))

f !kind, _I)

The tracing variable•

[s31!np711.2,_311,!cvp01!vp01!tv2,arell1!ccn0,!cn4,gadJ 1klndlllll

(((u:n:u ..

•ho are kind.

yes

Session 4.4.1 13

Clearly it can be seen from the above examples that no word

"who" and the tracing variable which Indicated the grammar

rule for analysing the proper noun "who". are recorded or

Instantiated I.e variables "_3" and " 2" respectively.

However If this modified rule IS used in a question­

answering system, then the second question "who are kind?"

did not generate an acceptable answered sentence (see

example [4.4.1.6] of Session 4.4.1.4 below) by assuming the

same KB clauses exist In the database (see the listing of KB

clauses In the Session 4.4.1.2 above).

?·phrase, /1 exa•ple 14.4.1.51 1/
:: •ho Is kind?

NEXT SENTENCE!
•ho Is k1nd?

&:l::l:::::r:====•>

NEXT QUESTION!
Hklnd 1.11.

The tracing var1able !before)•

!s311np71!.21.3ll 1£cvp01£vp01!tvl,llll1[ccn01[cn4 1gadJ 1klndlllll

Tht translation of the negation•
[]1-f(klnd,_U.

»answm Yn,
I !klnd,Johnl

&&ll&&&&l&&&&&lllllll

The tracing variable (afterl•

[s31[np71[gpn1,Johnll1[cvp01[vp0 1[tv1,isll1[ccn0 1[cn4 1gadJ 1kindlllll

······> Yes, it Is true that John Is kind.

top(phrasell 10r1 answers ? n

yes

?-phrase. /1 exa1ple [4,4.1.61 1/
11 who are kind'

NEXT SENTENCE:
who are kind?

·=====·=·~~====>

NEXT QUESTION:
Hkind,_U.

The tracing variable !beforel•

Cs31[np71[_2,_31l 1[cvp0 1[vp01[tv2,arell 1[ccn0 1[cn4 1gadJ 1klndlllll

The translation of the negat1on1
[1:-f(klnd,_U.

))answerr Yes,
f(klnd,Johnl

&&&&&&&l&&&&&l&&&llll

The trac1ng variable (after!•

[s31[np71[gpn1,Johnll 1[cvp01[vp0 1[tv2,arell 1[ccn01[cn4 1gadJ,klndlllll

::::u)

Yes, it 11 true that who are kind.

top(phrasell 1ore answers? n

yes

Sess1on 4,4.1.41 A quest1on·answer1ng exa1ples using the trac1ng technique

177

Example [4.4.1.5] above give the correct answered sentence

" ... John is kind" where var1ables " 2" and "_3" 1n the

trac1ng variable (before prov1ng 1s carried out) are

1nstantiated with "gpnl" and "John" respectively (see the

178

trac1ng var1able after prov1ng lS carried out) and

furthermore that the answered sentence is a singular

sentence wh1ch is equivalent to the type of the 1nput

(quest1oned) sentence.

On the other hand, the example [4.4.1.6] above gives the

same answered sentence " ... who are kind" as the input

sentence. This is due to d1fferent type of the input and the

output (answered) sentences, i.e plural and singular types

respectively. As "John are kind" 1s not a correct sentence

(due to "[tv2,arel" 1n the tracing variable) then the

output sentence 1s the same w1th the 1nput sentence, i.e the

system uses the same set of grammar rules dur1ng analys1ng

and synthesiz1ng. In th1s case, during synthesiz1ng, the

trac1ng variable for the spec1al proper noun "who",1.e

"!_2,_31" (see the trac1ng var1able (before) in the example

[4.4.1.6] of Sess1on 4.4.1.4 above), will be 1nstant1ated to

"[gpnl ,John]".

In order to overcome th1s problem, the trac1ng var1ables of

the grammar rules for the s1ngular and plural trans1tive

verbs of "be" form are made equa 1 i. e:

trtns_vtrbCslngultr111Y1 fCQ 111YI,Ctv/ 1ZJI-->
m,
C Cvtrb_btCV,ZI),

trlns_verbCplurii,I,Y,fCV,I,YI,Ctv/ 1111-->
CZJ,
C CvtrbCV1ZI 1

plmiCZ>I 1.

It should be noted here that the two above rules are still

d1stinct 1n the sense of the type of the sentence, 1.e a

singular and a plural one. As a result of these

modifications, the question "who are k1nd" can be answered

properly.

179

Another def1c1ency of th1s technique 1s that the tracing

variable must be 1nstantiated in order to retranslate from

PC to an Engl1sh sentence. Otherwise it W111 cause unbounded

recursion or a syntax error particularly in the usage of the

llbrary predicate "name/2". In other words, the path taken

or the set of grammar rules used in translat1ng from PC to

English (synthesizing phase) is predetermined during

translating English to PC (analys1ng phase) and its value is

given by the tracing variable.

The time taken to translate

therefore. is about the same.

Engllsh to

In fact,

PC or v1ce versa.

the time taken to

translate PC to English 1s always less or equal to the t1me

taken to translate Engl1sh to PC s1nce the path from PC to

Engl1sh has been determ1ned. Another advantage of using the

tracing variable techn1que is that the result1ng trac1ng

var1able 1tself expla1ns the class of each word of the 1nput

sentence, for example, see sess1on 4.4.1.4.

No error of us1ng predicate "name(X.Y)" occurs as X is

always instant1ated before using the pred1cate "name/2". The

value of X is extracted from e1ther the 1nput sentence (from

Engl1sh to PC) or the trac1ng variable (from PC to English).

The details of the grammar rules incorporated w1th the

trac1ng variable can be found in the Appendix.

4.4.2 The wording technique

Mawdsley [19841 has proposed a

180

temporary data base wh1ch

was called FLOATING_VOCAB(X) to speed up the process of

translat1on from English to French or vice versa. The

wording techn1que is adapted from the very same idea in

order to study its suitability 1n English-PC-English system

especially in a quest1on-answer1ng system. In fact, it does

not restrict into a mono-lingual question-answering system

but it also effect a interl1ngual quest1on-answer1ng system.

So, the wording technique is actually keeping a record of

each word of the input sentence in the database. For

example, if the input sentence 1s "Nazrul 1s kind", then the

record of each word of the sentence is kept as follows:

Mord_used(Nazrull.
Mord_used (u).
md_used(kindl,

No repeating words will be recorded. For example, the words

of the sentence "every man loves every woman" wi 11 be

recorded as follows:

Mord_u!ed(every),
Mord_used(unl,
Mord_used!lovesl.
Mord_used(Molanl.

This database "word_used" will be used dur1ng the

retranslat1on of PC to an English sentence. We Wlll call

th1s database "word_used" as a wording database. Although

it will also be used dur1ng the translat1on from English to

PC but as an extra or a redundant condition s1nce the

grammar parses the input sentence by using the input

sentence itself. The extra condit1on "word_used(X)" 1s added

to the grammar rules wh1ch contains "[X]" where X is a word

of the 1nput sentence. In other words, all grammar rules

which class1fy the class of each word of the input sentence

with a few exception are added with the extra condition. The

follow1ng rules are examples of

"word_used(X)" and also not us1ng it:

/1 having tht condition 'word_used' 1/
trans_verblsingular1Z1Y,fiN1Z1Yll-->

[NI
(lword_used1Nl 1

verb_beiN,Nll 1.
/1 not having tht condition 'word_used' 1/
verb_phraseiZ,Y1Xl-->

trans_verbiZ1Y1U1f(is,Y,Ull 1
cp_class_naatll,Y,Xl.

181

using the cond1tion

A group of grammar rules of conta1ning the cond1tion "(X]"

but excepted from placing the condltion "word_used(X)" is

the group of the grammar rules wh1ch "X" has been determined

(or has been lnstantiated), for example, 1n the grammar

rules which classify a determiner, e.g "a", "the" and "an".

The wording database is set up before the sentence is parsed

and after the whole input sentence is read. Bas1callY the

technique 1s equ1valent to the previous technique, i.e the

tracing technique (see section 4.4.1) The only d1fferent

that the word1ng techn1que does not keep a track of the path

from English to PC. Instead, it uses the 1nformat1on

available from the word1ng database as well as the result1ng

PC in order to retranslate PC to Engl1sh aga1n.

The word1ng techn1que gives at least the same generated

sentence as the 1nput one. It generates also somet1mes the

equ1valent sentence with the input one. For examples:

?· revsent. /1 exaeple [4,4.2.11 1/
11 MhO il kind?

The listing of 'Mord_used'l
md_usedlMhal
Mord_used !ill
Mord_usedlklndl.

••••••z•••••)
flklnd,_ll

(........... .
Mho h kind.

?· revsent. /1 exaeple [4,4.2.21 1/
11 every tan Mho loves every •otan likes every food.

The list1ng of 'Mord_used'l
Mord.usedleveryl
Mord_uudlunl
Mord.used l•hol
Mord_usedllovesl
Mord_usedl•otanl
md.used U I knl
Mord_used (food I

•=c••••=•::~••)

alll_l 1indefinltel_ll 1fleanl_ll•>alll_2,1ndeflnltel_2l,flfood,_2l•>flllkesl_l,_2ll '
alll_3 11ndeflnitel.31 1fl•oean,_3l•>flloves,_l,_3lll

(=•=•••••z:;aa
every ean •ho loves every •otan likes every food.

(za::IIIII:IIZ:aaa

no tan Mho loves every •oean likes no food,

Session 4.4.2.1: The exaeples of us1ng a MOrd1ng database

182

In the example [4.4.2.21 above, two equ1valent sentences are

generated from one input sentence. The second sentence was

generated due to the non-existence of the cond1tion of

"word_used(no)" 1n the rule of analysing determiner "no",

thus perm1tt1ng the second sentence to be generated.

If these grammar rules are used 1n a quest1on-answer1ng

system. the generated answer sentence 1s not correct one. It

1s st1ll the same as the input sentence part1cularly with

regarding the questions such as "who 1s k1nd?" or "who are

k1nd?". For example:

?·listinglknowledgtl. /l listing of KB clauses l/
knowledgtlflkind,Johnll
knowledge(f(kind,Peterll

?·phrm. /l exuph 14.4.2,31 l/
11 who Is kind?

NEXT SENTENCE!
who Is kind?

asnac:a•••••••)

Tht listing of 'word_used'a
word_used !who!
word_used 11 si
word_usedlkindl.

NEXT QUESTION:
flkind 1_11,

The tr&nslatlon of the negat1on1
lh·flkind,_ll.

»answm Yes,
f !kind, John!

~~~~~~~~~~~~~~~~~···· 

ss:ss:n:) 

Yes, it IS true that who is kind. 

toplphr&sell 1ore answers? 1 

»answen Yes, 
flkind,Peterl 

~~~&&~~&~~~~~~~~~~~~~ 

·====•>
Yes, 1t 1s true that who IS kind.

toplphrasela 1ore answers ? n

yts

Sess1on 4,4,2.21 A quest1on·answer1ng exa1ple us1ng the word1ng database

183

The example [4.4.2.3) above (see Session 4.4.2.2) shows that

the answer sentence is "Yes, it 1s true that who is kind"

where the word "who" should be replaced w1th "John" or

"Peter" 1n th1s case. This 1s due to the non-existence of

"word_used(John)" or "word_used(Peter)" in the wording

database.

184

So the problem "who" encountered here is about the same one

as In the tracing technique. The solution of this problem

is a bit tricky as the wording database is set up before the

sentence IS parsed.

The "word_used(who)" wi 11 be asserted into the database if

an input sentence contains any word "who". In this case, we

also need a special rule to deal with proper noun "who" as

it can be a singular or a plural one. The special rule for

the proper noun "who" IS as follows:

gproper_noun<l,Yl-->
[Mho!
((var(Yll 1.

The above rule cannot be used if Y IS Instantiated

especially as a result of a question-answering session. It

prevents the retranslation of sentence (question) "who IS

kind?" in a question-answering system. So we need to define

a rule for the "word_used(Y)" if Y is a proper noun and the

"word_used(who)" exists In the database. The definition of

the rule IS shown as follows:

ml_mdCYll-
nomrm, /t I is znstanti.ted t/
proper_nounCY1Yl 1 /1 Y zs 1 proper nogn t/
rxzstsCword_gsedCwholl. /t zt rxzsts zn the wordzn9 database t/

Prograt 1.1.2,/r R speczal ralt for dealzn9 proper nogn 'who'

The above special rule for the proper noun "who" will only

be used during the retranslation of PC to English (l.e "Y"

IS instantiated) and provided that the "word_used(who)"

exists In the wording database and the Instantiated "Y" IS a

proper noun. This special rule is asserted into the

database before the whole input sentence IS parsed provided

that "word_used(who)" exists.

185

As in the tracing techn1que. the trans1t1ve verbs "1s" and

"are" will cause another problem in a quest1on-answer1ng

system. therefore. the condit1on "word_used(X)" in the

trans1t1ve verb rule which deals with verbs "is" and "are"

are om1tted. As a result. two sentences are generated from

one input sentence when it involves "is" or "are". For

example:

?- revsent, /1 exa1ple [4,4,2.4l 1/
11 who h kind?

The listing of 'word_used'l
word_used Cwhol
word_usedChl
word_usedCklndl
word_used (_lll-

nonvarC_II,proper_nounC_t,_ll1word_usedlwhol.

11:11:=1:1:1:1:1:1:1:1:1:1:1:1:)

!Ckind,_21

(1:1::1:11::1:111.1:ZI:I::II

who is kind.

(::::z:sz:zz:z:aa

who are ktnd.

Sesston 4.4.2.31

The same sentences will also be generated from the input

sentence "who are klnd?". The l1st1ng of "word_used" 1nclude

the extra rule as descr1bed before when the word "who" lS

part of an input sentence. Unfortunately. these modified

grammar rules when used 1n a question-answering system.

still does not generate the correct answers. 1.e the

answered sentence is st1ll the same as 1n the above Sess1on

4.4.2.2.

Although the equivalent modif1cat1ons have been made to

solve the same problem which occurred in the trac1ng

technique. the resultant grammar rules st1ll do not generate

a correct answer 1n thls case. Here. it seems that the

186

grammar rules did not use the Information available in the

resultant PC. I.e for Instance the Information "Peter" In

the resultant PC "f(kind.Peter)" during the retranslation of

PC to English. This Information IS gathered in the tracing

technique such that no such problems are encountered.

This means that the formulation of PC should be revised

especially the formulation of PC for a proper noun. Another

reason we should revise the PC formulation for a proper noun

can be seen in the following session:

?- revsent. /1 exaaple !4,4.2.~1 1/
11 a aan loves "ary.

The listing of 'word_used'l
word_used Cal
word_used Cunl
word_usedClovesl
word_und ("aryl

:::::::zzz::zz)

existsC_I,indeflnlteC_Il,fCaan,_lllf(loves,_I,Maryll

<=====••••z::zz
Mary loves a tan.

(==•=••••c•a:=•=
1 aan loves "ary.

Sess1on 4,4,2,4:

It can be seen from the above session (4.4.2.4) that the

sentence "a man loves Mary" retranslates Into two sentences.

I.e "Mary loves a man" and "a man loves Mary". It IS clear

that the first retranslation sentence is a wrong one

although It is grammatically correct and It also used all

the words In the wording database. In this case, the

variable " 1" has been instantiated with "Mary" as there

exists "word_used(Mary)" in the wording database.

187

All the deficlencies explained as above are caused by the

unsu1table method of PC formulation of a proper noun. So we

need to change the formulation for a proper noun. For

example. the PC wh1ch corresponds to the sentence "Peter is

kind":

"f(kind.Peter)"

is changed to:

"exJsts(Peter,proper_noun(Peter).f(kind,Peter))"

These changes affect only the noun phrase rules which

consist the rule "gproper_noun" as one of the cond1tions.

The 1nformation "proper_noun(Peter)" is included 1n the PC

to distinguish between a normal ex1stent1al quantif1er. For

example:

?- revsent. /t exa1ple [4,4.2.61 t/
11 John lovn "ary.

a::c:::a:c•==•)

exists(John1proper_noun!Johnl,exlstsl"ary,proper_nounl"aryl 1f(loves,John,Marylll

{:z•======•=•=.c
John loves "ary,

yn

Sess1on 4,4,2.5t A new representation of PC

So the new representat1on of PC is different 1f we compare

1t with the old one. i.e f(loves,John.Mary), Now let us see

how this modificat1on features 1n a questJon-answering

system as shown 1n the following session assum1ng that the

same KB clauses as shown in the Sess1on 4.4.2.3 exist 1n the

database:

?-phrm. 11 exnple [4,4,2.71 11
11 •ho is kind?

NEXT SENTENCE!
NhO is kind?

··············>
!the listing of 'Nord_used' is o1ittedl

NEXT QUESTlDNI
f!klnd,_ll.

The translation of the negation!
[li·Hkind1 _11.

»anum Yes,
f!kind,Johnl

llllllllllllllllllll~

====•=>
Yes, it 11 true that John is kind.

top!phrasel: 1ore ans•ers? 1

»ansnra Yes,
f!kind 1Peterl

lllllllllllllllllllll

=·===•>
Yes, it 11 true that Peter is kind.

top!phrasel: •ore ans•ers ? n

yes

Sess1on 4.4.2.6: A quest1on·ansNer1ng exa1ple us1ng the ne• representation of PC

188

From the above session, It can be seen that the generated

(answered) sentence IS a correct one which represents the

answered PC.

As the Instantiation of tracing variable, the wording

database should be created before the retranslation of PC to

English sentence, otherwise an unbounded recursion or a

syntax error Will occur. So we cannot use them to translate

from given PC to an English sentence straight forwardly. We

need to define a procedure which will extract any possible

word from the Input PC before we can continue the

synthesizing process. Here, we will not define the procedure

to extract

1nterested

translat1on.

the

in

word

the

from an 1nput

process of

189

PC as we are only

Engl1sh->PC->English

The wording technique does not determ1ne the path taken but

it will guide the grammar rules to retranslate the PC into

an Engl1sh sentence which corresponds to the wording

database. It does prevent the unbounded recursion or the

illegal used of pred1cate "narne/2". On the other hand. 1t

does not prevent other leg1timate or grammat1cal sentences

be1ng generated. For example. 1n the above session 4.4.2.3.

the input sentence "who 1s kind" is retranslated into two

sentences. 1.e "who is k1nd" and "who are kind" where both

of them are correct.

This technique used the

sentence (quest1on) or

1nformat1on

the PC

either

synthes1z1ng respect1vely. So the

way 1s about the same.

dur1ng

t1me taken

from the 1nput

analys1ng or

to go e1ther

The detailed grammar rules adopting the word1ng techn1que

can be found in the Append1x.

190

4.4.3 The c:cnditicning tec:hnique1 " var(X)" er "ncnvar(X)"

The main reason for a syntax error of us1ng predicate

"name(X.Y)" is the uninstantiation of the variable "X". In

order to prevent th1s error. an extra condition "nonvar(X)"

1s placed before the cond1t1on "name(X,Y)". The goal

"nonvar(X)" succeeds 1f "X" is currently an 1nstantiated

variable. The predicate "name(X,Y)" is usually used to find

out whether the input word is a s1ngular or a plural one.

Precisely, the pred1cate "name(X,Y)" will be used to convert

the 1nput word 1nto a s1ngular present tense word if it is

not already one, 1.e if 1t is a plural. past tense or

others. The following grammar rule is used to check whether

the word "W" 1s a plural verb ending with "s" or not.

trans_verb!plural,Z,Y,f!X,Z,Yll-->
m,
(!nue!N1Yl,

appendtY,'s',Tl,
nue!S, n,
verb!S1XI 1
trans1t1ve!Sll l.

However. the above rule cannot be used to translate PC to

English as the word W is still un1nstant1ated. So an extra

cond1t1on "nonvar(X)" 1s placed before the pred1cate

"name(W.V)" and another rule is to be wr1tten in order to

translate PC to Engl1sh of a trans1tive verb ending with

"s", 1.e the above rule Wlll be rewr1tten as:

trans_verb!plural,Z,Y,f!X1Z,Yll·-> /1 rule !al 1/
m,
(!nonvar !NI 1

nmtN,Yl, lt condition !il tl
append!Y,'s',Tl, /I condition !111 1/
nne!s,n, 1t condition !iill tl
verb!S 1Xl,trans1tlve!Sll), 11 cond1tlons !1vl 1/

trans_verb!plural,Z,Y,f!X,Z,Yll··> /1 rule !bl 1/
m,
(tvar!Nl,

verb!S1Xl 1transitive!Sl, /1 cond1t1ons !ivl 1/
nue!S, n, lt condition lull tl
append!Y,'s' 1TI 1 lt condition !iil tl
nm!N,Yll l. 1t condition 111 tl

191

The rule (a) above is used to check whether the instantiated

plural transit1ve verb "W" is end1ng with "s" or not and

bu1ld a root word "X" without "s". On the other hand, the

rule (b) is used to build a plural transit1ve verb "W"

ending with "s" as a part of a whole sentence from a root

word "X". Furthermore the order of the cond1t1ons 1n rule

(a) is a reciprocal to the same conditions in rule (b), i.e

the order is (1), (ii),(iii) ,(iv) in the rule (a) and a vice

versa in the rule (b) .

If we modify all the grammar rules which cons1st the

predicate "name/2" and write an extra grammar rule to each

of mod1ficat1on as above, then generally, the grammar rules

can be used to translate either Engl1sh to PC or a vice

versa, but w1th some precaut1ons especially regard1ng the

used of the proper noun rules. The follow1ng are examples of

translat1on from Engl1sh to English v1a PC.

[4,4.3.11 John loves "ary,

a:a:~:z::s:z:::aza)

exists(John,proper_noun(Johnl,exlsts("ary,proper_noun("aryl,f(loves,John,"arylll

(::;:;::z:sa::zzaa

John loves "ary.

[4,4.3.21 Peter Mho loves "ary likes Plaice.

::::s~:a::::::::}

exists1Peter,proper_noun(Peterl,exlsts(Pla!te1proper_noun(Piaicel,f(llkes1Peter,Plaltell •
exlsts("ary,proper_noun("aryl,flloves,Peter,"arylll

(::::::n:=•====•

1-that -,
Peter I Mho I loves "ary likes fla1ce.

I_Mhlth_l

192

[4,4,3.3] so1ebody visits tht zoo,

•••••a••••••••)
existsl_l,indefinitel_ll,flperson,_lllexlstsl_2,definitrl_21,flzoo,_21lf(vislts,_l,_2111

1 person -1
an person I vhi ts the zoo,
one person I
SOiebody I
souont _I

It should be noted here that the new representation of PC

for proper nouns, as described In the last section 4.4.2,

has already been adopted here (see example [4.4.3.1] above)

as the same problem of not using the information In the PC

formulation during synthesizing the sentence as in the

wording technique has arisen and furthermore to cut the

retranslation time from PC to an English sentence.

The example [4.4.3.1] produces one-to-one sentences. i.e

one Input sentence IS retranslated into one output sentence.

Since there are three relat1ve clause words defined in the

dict1onary, I.e "that". "who" and "which" in this order.

then three sentences are generated 1n example [4.4.3.2].

Th1s retranslat1on can be classified as a one-to-many

translation. Another example of one-to-many translat1on is

example [4.4.3.31 above where five equ1valent sentences have

been generated. So the number of generated sentences depends

on the number of a certain class of words used In the input

sentence and the number of the same class of words def1ned

1n the dictionary (see example [4.4.3.2]) or the number of

dlfferent sentences which produce the same PC (see example

[4.4.3.3]).

193

The same rule applies to the input sentence "who is/are

kind?". Beside the sentence "who is/are k1nd" is

retranslated, the other sentences "<proper_noun> is kind"

are also retranslated where "<proper_noun>" is any def1ned

proper noun words 1n the dict1onary database, for instance,

"Mary/John is kind", where "Mary" and "John" are defined as

proper noun. However, if it 1s used in a question-answering

system, the system will only generate the correct sentence

provided that there is an answer to the question as shown in

the following sess1on, 1. e the word "who" 1s rep laced with a

suitable proper noun:

?-lhting!kno"ledgel. /1 llst:ng of KB clauses If
kno"ledge!f!k:nd,Johnll
kno"ledge!f!kind,Peterll

?-phrase. /1 exa1ple [4,4.3.41 1/
11 "ha 11 kind?

NEXT SENTENCE!
"ha u kind?

::::ca:r::n:::zz)

NEXT QUESTION:
exlsts!_l,proper_noun!_ll,ffklnd,_lll,

The translat:on of the negat:on1
[]1-ffk!nd,_ll.

))ans"m Yn1
ex:sts!John1proper_noun!Johnl 1ffklnd,Johnll

llllllllllllllllll~ll

:::::::~)

Yes, :t 11 true that John :s k:nd.

top!phrasel: 1ore ans"ers ? 1

))ans"er: Yes,
ex!sts!Peter1proper_noun!Peterl,f!k:nd,Peterll

llll~lll~llllll~~l~l·

====:a•)
Yes, it is true that Peter 11 kind.

top!phrasel: 1ore ans"ers ? n

yes

Session 4,4,31 11 A quest:on-ans"er:n; exa1ple

194

On the other hand, if there is no answer to the question,

then the generated answer sentence IS wrong, i. e "Yes, It is

true that who Is kind". Only one sentence will be generated

during answering the question as the procedure STATE-PHl

allows only one sentence to be generated (see Program 4.3.6

of the previous section 4.3).

Although no problem of the usage of "name/2", but this

technique produced a different type of problem, i.e one-to-

many translation which sometimes may cause an irritating or

ungrammatical sentence, for example "an person visits the

zoo" as in example [4.4.3.3] above.

In the previous two techniques, I.e tracing and wording

techniques, no such problem occurs. One of the reasons, is

that the PC representation does not contain enough

information in order to produce a good sentence or the same

Input sentence when It matters. So, In order to get the

results as the other two techniques, we need to put more

information Into the PC representation and it may make the

PC more unreadable as It contains the information about the

words of the sentence. For example, in representing the

determiners, we add another extra Information In the PC, i.e

"det(X)" where X is a determiner to replace "Indefinite(X)"

or "definite(X)".

[4,4.3.41. 1 1an loves every wo1an
::z:zz:~Rs)

existsiX1detlal 1fl•an,XIlalliY1detleveryl,flwolan,YI=>flloves,X,YIII

[4,4.3.~1. the 1an visits the zoo,
====·====•>
existsiX,detlthel,fl•an,XIlexistsiY,detlthel 1flzoo,Yilflvisits1X1YIII

Both sentences will be produced exactly as the inputs due to

the completeness of the information contains In their PC

195

representat1on. It can be seen that thls technique resembles

the other two prev1ous techn1ques and the results w1ll

expect to be the same. However. we need to wr1te the exact

PC if we would llke to synthesize a sentence from a given PC

as the above method work well if we are working from

Engllsh->PC->English. The full grammar can be found 1n the

Append1x.

4.4.4 Comments on the analys1ng and synthesizing techn1ques

In the last three subsect1ons. we have d1scussed the three

techn1ques which may be used 1n analys1ng and synthes1z1ng

an Engllsh sentence. All three techn1ques work admirably 1n

the system of English->PC->Engllsh and also 1n the

questlon-answering system of English->PC->Engllsh. Th1s can

be extended to 1nter-l1ngua1 systems (as descr1bed 1n

Mawsdley[1984]. H1nde and Mawsdley[1984]. Baker[1985].

Kok[1986]) but the PC representat1on has to be ser1ously

looked and mod1fied where necessary to suit the quest1on­

answer1ng system espec1allY 1n converting PC 1nto Horn

clauses as the inter-llngual system conta1ns all the

1nformat1on for the translat1ons wh1ch may be redundant or

unsuitable for the quest1on-answer1ng system.

We need to be

techniques from

careful 1f we

PC->Engllsh (a

would l1ke to use three

synthes1z1ng phase) . The

trac1ng techn1que can not be used in such a way. The word1ng

techn1que needs extra help in order to extract the words

from the PC representat1on 1n order to make the synthes1z1ng

phase successful. The cond1t1on1ng techn1que (sect1on 4.4.3)

196

needs the PC input to be wr1tten just l1ke the sentence

which defeats the purpose of wr1t1ng them 1n PC form.

We have also introduced a new structure of PC. i.e

"exlsts(X,proper_noun(X) •...)" and "exists(X,det(X) •...)".

In case of "exists(X,proper_noun(X),P)". noth1ng is done

during the skolemizat1on process as this proper noun

existent1al quantifier does not really mean an existential

quant1fier which should be replaced by a Skolem function but

it is only for purpose of synthesiz1ng of English sentences.

In the last three sections which descr1be all the three

techn1ques. we have concentrated in a translation of English

sentences which conta1n the word "who" as a proper noun.

However, the grammars w1ll act approprlately in translating

word "who" as a relat1ve pronoun. 1.e a relat1ve pronoun

"who" will be translated 1nto "&"(conJunctlon) and not into

" 1" (a var1able) as a mean1ng of a proper noun.

The first four stages of transforming a PC of the forms

"exlsts(X,det(the),P)" and "exlsts(X.det(X),P)" where P 1s

not 1nstantiated to "the" are exactly the same as the stages

for a PC of the form "deflnite(the)" and "lndefinite(X)"

respect1vely.

We will revis1t these three

d1scuss the usage of them

process later (chapter 6).

techniques aga1n when we will

in rectifYlng and suggestion

197

4.5 Comments

We have already discussed how an English sentence is

analysed Into PC which then is passed into the Prolog-based

theorem prover for converting them into Horn clauses and

either asserting the Horn clauses as a fact or answering the

question (Horn clauses). The resulting PC is then IS passed

back to the English grammar for synthesizing them back Into

an ordinary (answered) English sentence.

We have seen also the problems In transforming a PC Into

Horn clauses for knowledge and query clauses especially

regarding the definite determiner "the". In this case, we

take the Immediately previous reference to the subJect as

the symbol for both knowledge and questioned Skolem

functions. This IS one of the ways of referring of the

definite determiner "the".

The question-answering system described is able to answer

the question depending on the Input, i.e either an English

sentence (natural language) or PC. such that we can bypass

the natural language grammar if we would like to and even

assert the fact straight Into the database using Prolog's

consult command. We also can add any other natural language

grammar to make the system inter-lingual on condition that

the PC representation is the same.

198

Finally, I must admit once more that my knowledge of English

grammar is limited thus the grammar which IS discussed In

this chapter may be small and may also not be satisfactory

from the linguistic point of view. However most of the

discussion IS around the techniques of analysing and

synthesiZing an English sentence which are about the same

regardless the size of the grammar apart from the grammar

complexilitY.

CHAPTER 5

A FAULT DETECTING ALGORITHM

199

3.1 Introduction

In prov1ng a theorem or mak1ng an enquiry to the database,

we may get a negat1ve answer due to some faults. Bundy et

al[1985) class1fy these faults as follows:

[1) Factual Faults:

A rule false i.e the rules const1tute a program

which calculates 1ncorrect answers.

[2) Control faults:

The rules are true, but have undesirable control

behaviour when run as a program, e.g they do not

terminate.

As descr1bed in chapter 3, the proving algor1thm has been

1ntegrated with the cycl1ng check1ng. So the control faults

w1ll not occur. In other words, the prov1ng will term1nate

1n all condit1ons except in the case of occur-check

condit1on. However the factual faults will st1ll occur. We

Wlll only concentrate on the required rule wh1ch s1mply does

not ex1st. Th1s non-ex1stent rule w1ll cause an error of

om1ss1on in the context of Bundy et al. [1985). Errors of

om1ss1on occur when a rule fa1led to f1re, e1ther because 1t

was incorrectly constrained, or the required rule s1mply

does not exist.

In this thes1s, we w1ll not discuss how to find the rules

wh1ch are 1nsuffic1ently or incorrectly constrained. The

1nsuff1ciently and incorrectly constra1ned rules will cause

errors of comm1ssion and omission respect1vely. Error of

commlSSlon 1s committed because the program f1res a rule

wh1ch is false or 1ncorrectly constra1ned. It should be

noted here what we mean by

(KB) clause In the database

3.3.1 of chapter 3).

200

the rule is the knowledge base

(see Program 3.3.1 of section

Why can we not get the result required? As explained above,

this is due to the non-existent KB clause (rule). The other

reason IS that we may ask the wrong question such that we

cannot get the expected or required result. So we will

divide Into two main parts:

(1] Fault detection.

[2] Fault rectification

In this chapter (section 5.4), we Will be only describing

the first part, i.e a fault detection algorithm or a critic

(followlng M1tchell et al. [1981]). The fault rect1f1cat1on

algor1thm will be explained 1n the next chapter (chapter 6).

In the following next two sections, (sect1ons 5.2 and 5.3),

we Wlll g1ve an overview of software rellabllity and program

debugging respectively.

201

3.2 Scftware Reliability

Due to expansion in software systems, the problem of

software rel1ability has arisen. Many mathematical models

such as the J-M model (Jelinski and Moranda[1972]), the

probabilistic model (Shooman [1972)), the execut1on-time

theory model (Musa[1979)), Fault Removal model (Littlewood

[1981)) etc (see Sall1h [1986) for a review of the said

models and others) have been developed to describe the

behaviour of software package errors and then to get some

measures from which the rel1ability of these software

packages can be calculated.

What is software? software includes the whole series of

non-electronic support to computers, in other words,

software is the non-physical part of the system

(Ogd1n[l979)). Software cons1sts of an appl1cat1on program

(a program 1s a un1que way of commun1cation (Prather[l984)))

whose role 1s to solve user's problems, and system programs

which handle the problems of computer service.

If we th1nk carefully about the process of wr1t1ng a

software system we find it is not as easy a Job as 1t m1ght

look, espec1ally when we know that programmers are l1m1ted

by time and cost spec1fied by their own managers. Under

these circumstances programs tend to have errors wh1ch make

them unable to do what they should do, and this has led to

the need to ensure rel1ab1lity 1n software systems.

What 1s software

ab1lity of a

rel1abil1ty? Software rel1ability 1s the

computer program to operate successfully

without fa1lure, prov1ded that its

parameters have been spec1fied. If a

different env1ronment. the reliability

202

environment and time

program 1s used in a

may be different for

each environment. There is no absolute measure of failure.

Software could be accepted but on certa1n cond1tions.

Putting in measures of successful program we can define

failure as a deviation from these measures.

Of course, failures are caused by bugs. Bas111 and Perr1cone

[1984] define a bug as someth1ng detected w1th1n the

executable code that caused the module 1n wh1ch it occurred

to perform in-correctly. However, in software reliabllity

studies, the number of faults 1s not their concern but the

performance of the program they are after. Somet1mes a

program contain1ng many bugs performs closer to our

requ1rements than a program contain1ng fewer bugs, and 1n

th1s matter L1ttlewood [1979], says, "software reliabil1ty

means operat1onal rel1abil1ty who cares how many bugs are 1n

a program? We should concerned with their occurrence on 1ts

operations". However and 1n spite of what we have said there

are some cases where we might w1sh to know that the software

1s completely bug free: such a case could be a nuclear power

stat1on safety system.

Software reliabllity 1s as important as hardware reliabilltY

as the 1ncreasing usage of computer systems espec1ally 1n

very critical f1elds such as air traffic control etc.

Computer software is also very costly 1n terms of money and

labour. Boehm[1976], Brooks[1975], Myers[1978], and Yourdan

and Constantine[1979] ind1cate that test1ng and debugging

alone represent approx1mately half the cost of new system

development. As error

now cons1dered to be

detection

the maJor

development. it is worth spend1ng

203

and error correction are

cost factors in software

effort to make sure that

the programs we are writ1ng are going to work.

To obtain increased reliability one should spot the cause of

failure and remove it. If 1t 1s 1n the program coding the

code should be corrected, or if 1t is a logical error the

logic should be corrected. In the extreme case where the

design of the software does not

software should be modified.

ach1ev1ng increased rel1abil1ty

cover every bit of a program.

accept certain 1nputs the

An 1mportant factor 1n

is test1ng. Testing should

Although there 1s similar1ty between software system test1ng

and the hardware l1fe-test1ng models, there are also

signlficant differences, because (see Rault[1979]), software

faults have a des1gn or1g1n while most hardware faults have

a phys1cal or1g1n. Also the object1ves of the tests are

different. In hardware test1ng the stat1st1cal emphasis 1s

often on est1mat1ng the fa1lure rate of an 1tem. In software

test1ng the main stat1st1cal emphas1s 1s on est1mating the

number of errors rema1n1ng in the system. Another reason for

not using hardware methods is, as L1ttlewood [1980], says "a

hardware device 1s certain to fall eventually, whereas a

program if perfect is certain to remain failure free".

To detect errors we need first to classify the errors a

piece of software may contain. These errors happen for a

variety of reasons (Baslli and Perricone [1984]):

[1]. misuse of the programming language

[2]. error In the logic of program.

[31 . error in the computational theory

[4] . error in the use of the data structures

[5]. error when correcting other errors.

204

and many other reasons which may cause other kinds of

errors. Errors differ not only according to their type, but

also in the way they present themselves. For example, Basili

and Perricone [19841 mentioned that errors occurring in

modified modules are detected earlier and at a slightly

higher rate than those In new modules. The reason for this

is that the causes of error in modified modules are due to

the misinterpretation of the functional specifications.

Correcting an error could be

errors (I.e either we fail

a source of generating more

to correct the error, or

correcting a bug produces another bug or bugs). It has long

been known that the debugging process is one of the sources

of uncertainty, In software development, since correcting an

error does not mean that our program has been freed from

that error (an imperfect debugging). There IS always a

probabilitY that this error will remain in the program, or

even worse cause other errors to rise to the surface. There

IS another problem, and this is what Downs [1985], called

the "obscure failures" problem.

happens and because of a lack

spent to Identify the error.

This means that a failure

of Information, no effort IS

A lot of software failure models assume that all errors are

detectable at all stages of testing; eventually this leads

to the assumption of monotonically increasing software

205

rel1ability, characterised

cumulative number of errors

by convex

versus t1me

upwards

(see

plot of

Fig 5.2.1

below).

n

Fig, ~.2.1

In pract1ce, however, many real

non-monotonic reliab1l1ty prof1le

n

software systems show a

(Angus et al. [1983]).

This is shown by an "s-shaped" curve of cumulat1ve number of

errors versus t1me (see Fig 5.2.2 above). Study1ng this

phenomenon reveals that in early debugg1ng the bugs may

take t1me to man1fest themselves: once these errors have

been detected other bugs may then become apparent. Various

reasons for th1s behav1our come to m1nd- for example, some

bugs may take an apprec1able time to f1x and during th1s

per1od, no further bugs are detectable. Furthermore, a

hierarchy of bugs may ex1sts 1n wh1ch 1t 1s not possible to

detect lower level bugs until the h1gher level ones have

been fixed.

Many explanat1ons could be g1ven to the s-shaped curve

produced by plotting errors detected aga1nst t1me. Some of

these are (Schagen [1985] and Salllh [1986]):

(1) If the debugging process is not constant, i.e there is a

change 1n the environment such as less effort being

spent at the beg1nn1ng of the debugging process, thus

fewer errors be1ng detected.

206

(2) If the correction of errors carried out dur1ng the

debugging process generates further errors. then

imperfect debugg1ng could lead to a cluster of errors.

(3) The structure of a piece of software may cons1st of

several modules and some of these modules wh1ch conta1n

many bugs will only be exercised in a later stage of

the debugg1ng process.

(4) Software may contain two kinds of bugs: the first being

major bugs wh1ch take some time to be fixed, during

which time the system 1s down and no other errors can be

detected. The second are m1nor bugs which take an

1ns1gnificant t1me to be f1xed.

(5) We may postulate a hierarchy of errors such that

"secondary" bugs cannot be detected unti 1 all the

"primary" bugs have been detected and removed. In other

words, the debugg1ng process does not "see" all poss1ble

errors from the beg1nn1ng, and thus error detect1on rate

1s not monotonically decreas1ng.

Therefore the 1dea that the rate of f1nding errors 1s a

monoton1cally decreas1ng funct1on of the number of errors

found should be abandoned as Angus et al. [1983) have failed

to f1t several different software fa1lure models to a range

of data that they had available relat1ng to US defence

software. Sall1h [1986) has stud1ed a few software

reliabil1ty models which f1t the s-shaped curve based on

some of the reasons described above.

5.3 Program Debugging

In the last sect1on. we have

reliability where many researchers

software reliab1lity models in order

207

d1scussed the software

have Proposed different

to study the behaviour

of the software fa1lure profiles based on the assumpt1on of

how the debugg1ng process is carr1ed out. In this section.

we will discuss the need of debugging, debugg1ng processes

and some debugging algorithms. The area of computer program

debugging is also one of the key phases in the system

software cycle. Debugg1ng 1s the process of locat1ng and

correcting the error w1th1n the program once the ex1stence

of an error has been establ1shing by test1ng (Myers [1978]).

It 1s evident that a computer can ne1ther construct nor

debug a program w1thout be1ng told. 1n one way or another.

what problem the program 1s supposed to solve, and some

constra1nts on how to solve 1t. No matter what language of

whatever generation we use to

are bound to make m1stakes. It

convey th1s information. we

1s not because we are sloppy

and und1scipl1ned, as advocates of some program development

methodolog1es may say, but because of a much more

fundamental reason: as po1nted out by Shaplro[1982] that we

cannot know, at any f1n1te point in t1me. all the

consequences of our current assumptions.

A program is a collect1on of assumption, wh1ch can be

arbitrarllY complex; its behav1our 1s a consequence of these

assumpt1ons: therefore we cannot. 1n general ant1cipate all

the poss1ble behav1our of a g1ven program (Shapiro[1982]).

Th1s pr1nc1ple manifests 1tself 1n the numerous

undecidabil1ty results, that cover most 1nteresting aspects

208

of program behaviour for any nontrivial Programming system

(Rogers[1967]). It follows from this argument that the

problem of program debugging is

or specification language used

computer.

present In any programming

to communicate with a

As pointed out In the last section that debugging process

accounted half of the cost of new system development. So If

we can eliminate the debugging process, then we will save a

lot of time and energy. It has also been suggested that one

way to el1m1nate the need for debugging 1s to provide a

correctness proof of the program. But, Goodenough and

Gehart[1975] found seven bugs In a s1mple text formatter

program described and 1nformally proved by Naur [1969] who

(together with Randell- Naur and Randell [1969)) suggested

that we can d1spense

g1ven the proof of

1nformal or formal

with test1ng altogether when we have

correctness of the program. So the

proofs of program correctness do not

guarantee that the program 1s correct.

However, as po1nted out by Goodenough and Gehart [1975),

that the practise of proving a program correctness 1s useful

for Improving reliabilltY, but suffers from the same types

of errors as programming and test1ng, namely, failure to

find and val1date all special cases relevant to a design,

its specification, the program and its proof. Gr1es [19811

also agreed that even though we can become more prof1c1ent

1n programming, we w1ll still make errors, even if only of a

syntact1c nature. Hence some testing w1ll always be

necessary. But, he disagrees to call the testing process as

a debugging, and suggests that the test 1s to increase our

confidence in a program we

finding an error should be

rule.

209

are quite sure IS correct;

the exception rather than the

Manna and Waldinger [1978] also suggest that one can never

be sure that specifications are correct, and agree that is

IS unlikely that program verification systems will ever

completely eliminate the need for debugging. Debugging is an

unavoidable component in the process of "model

verification", in which the system verifies that It has the

right Idea of what the target program is (Balzer [1972]).

Traditionally, the efforts In program debugging were focused

on how to bridge the gap between the programmer and the

executable program. Core dumps and print statements were the

common means of communication between the running program

and the programmer. However, these are Insufficient to solve

the problems of software development. Another approach IS

the adaptation of structured programming In program

development. This helps avoiding or detecting early many

syntactic or shallow semantic errors.

The area of debugging crucial to software development and

maintenance IS semantic debugging. Syntactic errors are

defined for the purposes of computer programming as errors

that compilers recognise, and the use of high level

programming with a strong-typing mechanism, such as Pascal,

Algol-like languages will help toward finding syntactic

errors. Semantic errors are those that comPiler cannot

recognise and the adaptation of structured programming

techniques will help a little bit In removing such errors.

210

In formal sense, debugging can be understood from either a

process viewpoint or a functional viewpoint (Vessey[1986)).

The follow1ng figure (Flg 5.3.1) shows the basic model of

debugg1ng process (Vessey[1986)). This representation which

she derived from medical d1agnos1s shows the different types

of debugg1ng behaviour as well as the relationships among

them.

I I I 6enerah I I I
~ 6et 1___,..-~7! hypothem 1~1 Evaluate I

lclue!sll lf\1 about errorl lhypothesisl-"
I
0

finish /'>-------~ Conflr1 ~~ Repair ILl
I error , I error ~-

Fig. 5,3,1: "ode! of debugging process !Vessey[198611

F1g. 5.3.2 below shows the understand1ng of debugging from a

funct1onal v1ewpo1nt 1.e the model of debugg1ng funct1ons

(Vessey [1986)) using structure chart convent1ons (Yourdan

and Constantine[19791; Welnberg[1979)).

I 6enerah
I hypo!m I

I Evaluate I
I h othms I

I Represent Code
I I Read Code I
I
I
I
I

~~
I Localize Code I 1"'1 ~Pr"':o~ce~s:-s "co:-:dr:-e-rl

Fig. S.3.2r "ode! of debugging functrons !Vessey[198611

211

The above Fig 5.3.2 shows top-down hierarchical relationshiP

of functions. The functions at the top of the structure are

responsible for control of the lower functions, which

achieve most of the work. and invoke them as they required.

The above chart defines the elements of procedural knowledge

for debugging. Vessey£19861 gives a list of literatures

which supports the debugging functions as shown above and

which will be briefly described below,

DEBUG PROGRAM is the topmost function which exercises

ultimate control over the debugging process. In FIND PROBLEM

function (or get clue(s)), the search for clues IS carried

out to reveal the problem With the program. The FORMULATE

HYPOTHESIS function IS subdivided Into GENERATE HYPOTHESIS

(I.e to search for a possible cause of the problem) which

invokes EVALUATE HYPOTHESIS (I.e to assess the validity of

the suggested cause of the problem) .

AMEND ERROR function

function. is further

which IS invoked by DEBUG PROGRAM

subdivided Into REPAIR ERROR (I.e

modification of the program in accordance with the perceived

cause of the error), which Invokes CONFIRM ERROR (I.e

JUStification for Introducing the suggested modification).

Another function Invoked by the topmost function IS

REPRESENT CODE function. This function cons1sts of the

elementary functions: READ CODE (l.e sequential examination

of program statements), LOCALIZE CODE (I.e search for a

particular piece of code) and PROCESS CODE (i.e mentally

process data through the program). Vessey [1986] pointed out

that the Inclusion of a REPRESENT CODE is essential that

212

when programmers are debugging programs w1th wh1ch they are

not famil1ar.

Adam and Laurent [1980] d1scussed a debugg1ng system called

LAURA which have been designed not to prove the correctness

of a program but to detect or localize the errors it may

contain. LAURA uses a procedural descript1on of the program

task. under the form of a program model. Debugging 1s then

viewed as a comparison of two graphs. bu1lt from the student

program and from the program model (wh1ch is supposed to be

a correct 1mplementation of the algorlthm). The system

debugs program in var1ous fields (e,g tax computation.

perfect numbers. 1ntegration etc) and let the user h1mself

make some difficult interpretations. i.e LAURA will localize

a semant1c error but it left to the user to solve 1t.

Shapiro[1982] also tr1ed to lay theoret1cal foundations for

program debugg1ng. w1th the goal

act1vity. In part1cular. Shapiro

develop algor1thm1c solutions

questions:

of partly mechanlsing th1s

attempted to formal1se and

to the following two

(1) How do we identify a bug 1n a program that behaves

1ncorrectly?

(2) How do we f1x a bug. once one 1s 1dent1fied?

These quest1ons (1) and (2) can be referred in term of

Vessey's functions as FORMULATE hypothes1s and AMEND ERROR

funct1ons respectlvely. However. Shap1ro class1f1ed

algorithms to solve the first problem as a diagnosis

algorithm and the one that solves the second is a bug­

correctlon algor1thm.

213

To debug an incorrect program one needs to know the expected

behaviour of the target program. Therefore Shapiro assumes

the existence of an agent, typ1cally the programmer , who

knows the target program and may answer queries concerning

1ts behaviour. The algorithms Shap1ro developed are

1nteractive, as they rely on the availability of answers to

such queries. He integrated both dlagnosis and bug­

correction algorithms 1nto a debugging algorithm. A

debugg1ng algor1thm accepts as 1nput a program (or empty

one) to be debugged and a list of lnput/output samples,

which partly define the behav1our of the target program.

Summarily, Shap1ro's system can debug a PROLOG program using

what lS known as a ground oracle. The ground oracle is asked

spec1f1c facts about the un1verse of discourse and must

return true or false answers by the programmer. The oracle

1s not required to answer any un1versally quant1f1ed

questions nor any conta1n1ng free var1ables. In particular

Shapiro's program can debug the empty program, or in other

words syntheslze a correct program from scratch us1ng advice

from the oracle. If a faulty (wrong) rule 1s f1red and

der1ved a contradict1on, then the contradict1on 1s

backtracked with the oracle consulted at each stage to

determ1ne which branch of the tree the faulty rule l1es. The

rule may then be fixed or rectified by add1ng cond1t1ons to

prevent the rule firing again 1n the erroneous context.

Rule learning techniques can

debugging program techniques.

also

The task

be considered as

tackled by rule

learning techn1ques is to modify a set of rules of the form

hypothes1s impl1es conclus1on. This set of rules can be

214

considered as a program especially wr1tten in Prolog

clauses. The basic rule learn1ng technique 1s as follows:

Until the rules are satrsfactoryr

I, Identify a fault With 1 rule

2. "od1fy the rule to re1ov• the fault.

Step 1 and 2 above can be

FORMULATE HYPOTHESIS and

considered in Vessey's terms as

AMEND ERROR functions. Most

identify1ng faults techniques is by comparing the ideal

trace (graph) w1th a learn1ng (program) trace (graph) (for

eg. Bradzll[1981]). Shapiro's techn1que as br1eflY described

above is also one of the technique to 1dent1fY a fault.

A lot of techn1ques are used to modify the faulty rules such

as reordering them (eg. Bradzil[1981]). adding extra

cond1t1on(s) to them (eg. Bradzll [1981]. Waterman [1970]),

1nstant1at1ng them (eg. Bradzll [1981]. Shap1ro [1982]).

updating them (eg Waterman£1970]. M1tchell et al. [1981] and

[1983]) or ask1ng a ground oracle to the user

(Shapiro[1982]). Bundy et al. [1985] give an excellent review

and comparison of rule learning techn1ques.

215

3.4 Faults Detection Algorithm

As we know Prolog implements backtracking in order to f1nd

other possible answers or paths. So we can append another

rule (procedure FACTPR.3) to the procedure FACTPR (see

Program 3.3.3.11 of chapter 3) 1n order to capture the

fa1led facts or goals during the proving process.

/f PROCEPUR£ F~CTPR.lr to ctptarr the ftlled f1cts or go1ls 1/
factpro/ogCQ,Usedcltases,Bp,Bpl,6otlcl•oseJr·

/f procedure FRCTPB.l 1/
noiCre•sonCQJJ,
tssertzCretsonCQJJ,
ftll.

Program 5.4.1 above shows the def1n1tion of procedure

FACTPR.3. In other words, if all KB clauses have been

unsuccessfully tried, then assert the failed goal or fact

into the database provided that the same failed goal or fact

has not been asserted before. Then the rule is set to fall

1n order to make Prolog backtrack aga1n to f1nd other

possible answers or fa1led goals. The fa1led goals or facts

are asserted 1n the database w1th predicate reason/1.

Accordingly we will call the failed goals or facts the

reasons. However the above procedure FACTPR.3 has some

defects. For example, suppose we have the follow1ng KB

clauses 1n the database:

lnowledgrCfCt,I,YJr-fCb,IJ,fCc,YJJ,
lnowledgeCfCc,yJJ,

And suppose we would llke to prove f(a,x,y) by using the

question-answering system descr1bed 1n Chapter 3 where

procedure FACTPR which includes an appended procedure

FACTPR.3 (see Program 5.4.1). The prov1ng is shown 1n the

follow1ng sess1on (Sess1on 5.4.1):

?- pcqunt.
11 Ha,x,yl.

NEXT QUESTION!
Ha, x, yl

The translation of Its negat1on1
th-fla, x, yl.
lllllllll&ll&llllllllll

>>ansMerl No, 1t cannot prove 1
'fla,x,yl'

··=······································

yes

do you like to assert
' Ha, x 1 yl '

as 1 fact In the database ly/nl? n

?- liltlnglreasonl.
reasonlflb, xll.
reason !He, yl I,
reasonlfla, x, y)),

yu

Sess1on 5.4.1: Prov1ng 'fla,x,yl'.

216

It clearly can be seen from the above session 5.4.1 that

"f(a,x,y)" IS undeducible as there are not enough knowledge

In the database. However the listing of predicate reason/1

produces an unacceptable list. From the following Fig.

5.4.1, the only true reason clause IS predicate

reason(f(b,x)), while the others two, I.e predicates

reason(f(c,y)) and reason(f(a,x,y)), are untrue reason

clauses.

[11-fla,x,yl
I
I fla 1l1YII·flb 111 1flc,Yl
1/

tl•·flb,xl,flc,yl
I
I f le, yl
1/

tll"flb,xl
I

fails

Eta. 5.4.11 Proving tree of fla,x,yl,

217

The untrue reason clauses are generated due to Prolog

backtracking. What we mean by the true reason clause 1s the

fa1led goal or fact wh1ch really does not exist 1n the

database either 1n the form of a ruled KB clause with the

failed goal as its head or a factual KB clause. The untrue

reason clause is a reason clause which is not a true one. So

we need to define pred1cate knowledge_base_head/1 in order

to prevent the generating of untrue reason clauses as

follows:

lnowledge_basr_headCHead!r­
lnowledge_baseCBead!.

lnowledge_basr_headCHead!r­
knowledge_baseCCBeadr-Bodr>>.

Proqra1 l.1.2: The defrnrtion of predrcate lnowledgr_base_head/1

And by putt1ng th1s extra condition to procedure FACTPR.3,

we will be able to produce true reason clauses only, 1.e

from the above example (Sess1on 5.4.1), only predicate

reason(f(b,x)). So, the new def1nit1on of procedure FACTPR.3

1s as follows:

/f PROCEDURE F~CTPR.1r to captvre the farled facts or goals t/
factprolog(Q,Usedclaases 1Hp 1Hp/ 16oalclaase)r-

/l procedure FRCTPR.1 t/
notCreasonCQJJ,
notCinowledge_base_headCQJJ,
assertzCreason(Q)) 1
fill.

Proqr11 5.1.3: The new definrtron of procedure F~CTPR.1

The non-existent and undef1ned pred1cates are two different

kind. The above procedure (Program 5.4.3) will detect the

non-existent pred1cates. On the other hand, POPLOG Prolog

will detect an undefined predicate. It is clear what 1s

meant by an undefined predicate. However, the non-ex1stent

pred1cate is a pred1cate wh1ch does not exist 1n the

database but it is not necessarily an undef1ned one. In

other words, a non-ex1stent pred1cate 1s more general than

218

an undef1ned pred1cate. The following session (5.4.2) shows

an example of a non-ex1stent pred1cate.

?- foo(a,bl,
no

?· listinglfool,
foo<a,cl.
foo<a,dl.
foo(a 1el•·foo(a1bl,

yes

Sess1on 5,4,2: An exa1ple of the non-existent predicate

From the above session 5.4.2. predicate foo(a,b) does not

exist in the database although predicate foo/2 has been

def1ned. In other word. predicate foo(a.b) 1s a non-ex1stent

one. This cannot be detected by POPLOG Prolog.

As ment1oned above. POPLOG Prolog has been integrated w1th a

method to handle the undef1ned pred1cate when 1t 1s used as

a goal. By default. when a goal 1s attempted for which there

1s no predicate. POPLOG Prolog will create one:

/1 assu1e no prior def1n1tion of 'pred/2' 1/
?- pred(l 121.
no

?- llstlng!predl,
pred!_l,_211·

fall,
'UNDEFINED-PREDICATE'.

Sess1on 5.4.3: the handling of an undef1ned predicate by POPL06 Prolog

The above session 5.4.3 shows an example how POPLOG Prolog

handles an undef1ned pred1cate, 1.e predicate pred/2. It

should be noted here that the early development of procedure

FACTPR.3 1s done by using the Ed1nburgh Prolog vers1on NU7

(see Clocksin &Mellish [1980a]) wh1ch does not have th1s

facility (detecting undefined predicates). Even 1f the

Ed1nburgh Prolog does have this fac1lity, it st1ll can

detect non-ex1stent pred1cates.

219

In order to see how the procedure works, suppose we have the

following KB clauses In the database as shown In List 5.4.1.

tnowltdgtCC•Crlr-bCrl1cCrlll.
tnowlrdgtCC•Cslr-bCsl,cCslll.
tnowltdgtCCbCslr-tCsi,JCsl 1hCsl,dCX,slll.
tnowltdgtCcCsll.
lnowltdgtCCdCX,slr-rCX,sl)),
lnowltdgtCCtCs1slr-fCs1slll.
lnowlrdgtCCtCs,slr-gCs,s))),
lnowledgtCtCr,sll.
lnowlrdgrCChCslr-JCs/11.
lnowlrdgrCiCsll.
lnowlrdgtCCICslr-•Csi 11Cslll.
lnowlrdgrCtCsll.

(IS! 5,4,/r I listing of KB cliRStS

And suppose we would like to deduce or prove "a(X)" from the

above database (List 5.4.1). The following figure (Fig.

5.4.2) gives a full proving tree of "a(X)".

tl:-am
11 16oal no, I

I
.----·---;O;;;R '"'no"'de~/~br-::-:an~ch~- i
i !aCrl:-blrl,clrl
il [X•rl

[J:-blrl,clrl
i 12
l AND node/branch

11
[J:-clrl !lr-blrl

i 13 14

i !alsl:-blsl,clsll
i I tX=sl

!lr-blsl,clsl
i 15

• I I
16 [J:-clsl [Jr-blsl 18

I
I i

fails fills
i !clsll
i I

I !blslr-klsl 1 j(sl,hlsl,d!X,sll
il

17 []:-[] tlr-klsl,Jisl,hlsl,diX,sl
i 19

------------------.-·--~~---' I I I
I I I IlB I 119

110 11:-dll,sl 115 [J:-hlsl !lr-jlsl !lr-klsl
i I I I
i !diX,sl:-eiX,sll i !hlsl:-ilsll I i Cklsl:-•lsl,llsll
il il faill il

Ill tlr-ell,sl 116 !lr-ilsl tlr-llsl,Hsl
I I I 120

- ------· i 11(5)) '
l ~ :I I \
1 !els,slr-lls1sll i !els,slr-gls,sll I !elr,sll !l:-11 I I
11 tx•sl 11 tX•sl 11 [X•rl 117 121 I I 122

[Jr-Hs,sl !Jr-gls,sl 111-[J tl1·llsl 11:-•lsl
I 112 I 113 114 I i
I I i I !llsll

fails fails fails 1/

F1gure 5.4.2r The prov1ng tree for the query 'a(Xl'

[]:-[]
123

220

As it can be seen from the above figure !Fig. 5.4.2) that

there are two possible solutions to the query "a(Xl". 1.e

"a(r)" !X•r) or "a(s)" (X-sl. However both solutions cannot

be der1ved from the database !L1st 5.4.1) because the

database lacks the 1nformat1on or the knowledge. The

following l1st (List 5.4.2) shows all reasons or non-

existent clauses wh1ch can cause the non-deducibllity of

"a!X)":

lrll. reasonltlrll
lr2l. reasonlblrll
lr3l, reason (f Is, sl I
lr4l, reasonlgls,sll
!r5l, reason (J !si I
lr6l, rmon (I lsll

List 5.4.21 The listing of non-existent clauses

The query "a(r) .. cannot be deduced because both

knowledge(c(r)) and knowledge(b(r)) do not ex1st 1n the

database. On the other hand. the query "a(s)" cannot be

deduced because of the non-ex1stent of pred1cates

know1 edge(J (s)). knowledge(l(s)) and either

knowledge(f(s.s)) or knowledge(g(s.s)). In other words. the

sets of reason clauses for deducing are

[(r3). (r5) • (r6) 1 and [(r4). (r5). (r6) 1 . And set [(rl). (r2)1

is the set of reason clauses for deduc1ng "a(r)".

Now. let use again the question-answering system based on

procedure FACTPR wh1ch cons1sts a new procedure FACTPR.3

(Program 5.4.3) to deduce "a(X)" from the database as in

List 5.4.1 above. Clearly the system cannot deduce or prove

"a(X)". However the system has asserted pred1cate reason/l

1n the database to show the falled goals or facts. The

following session (Session 5.4.4) shows the l1st1ng of

pred1cate reason/l.

7- l:stinglreasanl,
reasanlclrll.
remnlfls,sll.
rmanlgls,sll.
rman (j lsll.
yes

221

Session ~.4 1 4: The listing af predicate reasanll

However the system only asserted four reason clauses as

shown in the above session 5.4.4 wh1ch correspond to (rl),

(r3), (r4) and (r5) respectively as listed in L1st 5.4.3.

This 1s a consequence of the way Prolog backtracking is

implemented. Prolog does not try to prove the remain1ng

goals, 1f they ex1st, when the current goal fails but

1nstead Prolog will go back (backtrack) to the last

successful goal and find its alternat1ve. The following

figure (Fig 5.4.3) shows the questlon-answering system's

proving tree for deducing "a(X)" by us1ng the same goal

number as shown 1n F1g. 5.4.2 above.

[l:·a!Xl
11 16aal na,l

I
---;O;;:;R. ~na~de::;/~br~an:-:c~h --~

i lalrl:-blrl,clrl i Calsl:-blsl,clsll
if [l•rl if U•sl

ll1·blrl,clrl
i 12

ll1·blsl 1clsl

i ·~ ' ' AND node/branch
I I I 18

Cl:-cCrl 13 16 ll1·clsl [l:-blsl
i lclsll i Cblsl!·klsl 1Jisl,hlsl 1dll,sll

fails 1/ 1/
17 Cl:-Cl lll·klsl,Jisl,hlsl,dll,sl 19

----------------------~--i----~--
1 ' I

UO ll!·dll,sl 115 ll1·hlsl [J:-J(sl 118
i ldiX,sll·eiX,sll i lhlsl1·ilsll
If if fails

Ill lll·eiX,sl 116 111-1 lsl
i I

----------·----------: I I
i lels,sl:-fls1sll I lels1sll·gls,sll i lelr1sll
if IX•sl 1/ CX•sl if IX•rl

[ll"fls,sl ll1·gls 1sl ll1·[J
I 112 I 113 114

fails fails

i Ci lsll
if

[h-[J
117

Figure ~.4.3: The syste1's prav:ng tree far the query 'alii'

222

It can be seen from the above f1gure 5.4.3, the system will

not prove the clauses "b(r)" of the goal (*2) and "k(s)" of

the goal (*9) as the goals "c(r)" (goal no. *3) and "J (s)"

(goal no. *18) fail respectively. Consequently the system

will not be able to assert clause "b(r)" and "l(s)" as

reasons. Furthermore the listing of pred1cate reason/1 as

shown in Sess1on 5.4.4 does not show the relationship among

them. In other words, the l1sting does not show the

membership relationshlP of the set of reason clauses among

them. for 1nstance reason(f(s,s)) and reason(J(s)) are

members from the same set of reason clauses.

By saving the deta1ls of the rect1fy1ng process of the

reason clauses for the next chapter, and by assuming that

the reason clauses do not ex1st 1n the database (1.e 1t

lacks knowledge). let see the follow1ng example to prove the

goal "a(X)" as shown 1n the following session 5.4.5:

?- pcquest.
lt a(_!),

NEXT QUESTION:
a (_I)

The translation of 1ts negat1on:
C lt -a (_I l.
&&&&&&&&&&&&&&&&&&&&&&&

»answer: No, 1 t cannot prove 1
• a(_l) •

=~==•=~z::s:zz::::::zs:::•===•===========

The reason why the goalt
'a(r)'

fatls is due to the non-extstence of the the followtng factt

c(r)

However, M! 1ay able to prove the goal
after do1ng so1e corrections or addttions

--Do you l1ke to conttnue ?y

If the fcllcwing 11 true1
c!rl

De you likt tc try aga1n by us1ng the above assu1pticn
---? y

RE-QUESTION!
a!rl

Tht translation cf its negat1cn1
Ill-a !rl,
•••••••••••••••••••••••
))answerl Ne, it cannot prove 1

' a!rl '

The reason why the goal1
'a!rl'

fails 11 due tc the non-existence of the following knowledge:

b!rl

However, we 1ay able tc prove the goal .
after do1ng sc•e corrections er additions

--Do you l1ke to cont1nue ?y

If the following IS true:
b!rl

De you like to try aga1n by us1ng the above assu1pt1on
---? y

RE-QUESTIDNI
a!rl

The translation of 1ts negat1cn:
lll·a!rl •
•••••••••••••••••••••••
))answer~ Yes,

a!rl

PROYED: a!rl '

yes

Sess1on 5.4.5: Prov1ng 'a!XI'.

223

It can be seen from the above Session 5.4.5. that 1n order

to prove "a(r)", the system successfully proves on the th1rd

attempt as in this case there are two reason clauses, i.e

clauses "c(r)" and "b(r)". Furthermore the reason clause

"c(r)" does not emerge on the f1rst attempt but 1t only

224

emerges on the second attempt. Th1s is the ma1n d1sadvantage

of the method of capturing reason clauses wh1ch does not

show the relationsh1ps among them. So the number of attempts

before the question 1s successfully proved, is more than the

actual number of the reason clauses for a particular

quest1on provided that no repeat1ng reason clauses occurred

and in the case of non-existent clauses.

The reason why both reason clauses "c(rl" and "b(r)" could

not be detected at the same time is that they are at a

different hierarchy or level. This is one of the

explanat1ons of s-shaped curves d1scussed 1n the previous

section5.2.In this case, as "c(r)" and "b(r)"canbe

considered as a primary and secondary bugs (faults)

respect1vely, so "b(r)" cannot be detected unt1l all pr1mary

faults (bugs) have been detected and rect1f1ed.

In order to overcome the problem of the relat1onship of the

reason clauses or the d1fferent h1erarchy (level) of reason

clauses, we now def1ne a new pred1cate set_of_reason/3 wh1ch

will provide the 1nformat1on of the relationship of the

reason clauses as well as the1r assoc1ated query goals.

However the most important problem here is to link the1r

relat1onship among the failed goals or reasons.

As shown 1n the Program 5.4.3 above, the last procedure of

FACTPR, 1.e procedure FACTPR.3. returns the failure value,

1n order to prevent the failed goals becom1ng successful

ones and also to make Pro!og backtrack. What we need here

1s a method of record1ng the fa1led goals without setting

procedure FACTPR.3 falls. such that the question-answering

225

system can cont1nue to prove the remaining goals until all

of them have been "successfully" proved. In other words. the

procedure FACTPR succeeds even though the answer may not be

a correct one.

This can be achieved by creat1ng another variable to record

the fa1led goals and then testing its ex1stence at the end

of prov1ng. For instance, if we refer back to Fig. 5.4.2,

all the fa1led goals, 1.e goals (*2), (*3), (*9), (*13),

(*14), and (*17), w1ll be set to succeed. All failed goals

w1ll also be recorded with the1r associated node numbers.

for instance, the fa1led goal "c(r)" 1s recorded as the pair

[(c(r),2).

Thus procedures FACTPR, BASEPR (see procedure 3.3.3.13 of

chapter 3) and FACTCL (see Program 3.3.3.15 of chapter 3)

need to be mod1f1ed as well as procedure ASK espec1ally

procedure ASK.1 (see Program 3.3.3.9 of chapter 3). The

following procedure (Program 5.4.4) is a f1nal vers1on of

procedure FACTPR with a new predicate factprolog/7. The

number of arguments of the pred1cate has been 1ncreased

from f1ve to seven in order to record the fa1led goals, i.e

variable "Fe".

/f 1 nrw version of procedarr F~CTPR f/
factprologCCQ/ 1Q2) 1Usedclaasrs 1Hp 1Hp/ 16oalclaasr1Fc 1Fc/)r­

/f procedarr F~CTPR,I •I
I
• I
factprologCG2 1Usrdclaases 1Hp 1Rp21CG/!6oalclaasr11Fc 1Fc2) 1
factprologCQ/ 1Usrdclaasrs 1Hp2 1Hp/ 16oalclaasr1Fc2 1Fc/),

factprologCQ 1Usrdclaases 1 Bp 1Bp/16oalclaasr1Fc1Fc/)r-
/f procrdart F~C1PR.t f/
assrrtagoall C CQI Sollclaasrl 1 HI 1
basrprologCQ1Ustdclaases 1Hp 1Bp/ 1Soalclaasr1H1Fc 1Fc/l,

factprologC9 1Usrdclaasrs 1Bp 1Hp/ 1Soalclaast1Fc 1CC9 1Hl!Fcllr­

/f procedure ~SSSLI t/
/f procedm US£PR f/

/f procedure F~CTPR.lr to captart thr farltd facts or goals f/
note rusonC Q)) 1
notCinowlrdgt_basr_headCQ)),

Proqrat 5.1.1r ~ fznal rersron of Procedure f!£1!!

226

As shown 1n the procedure FACTPR.3 above (see Program

5.4.4), the variable "FC" 1s a l1st of pa1rs of the failed

goal Q and 1ts assoc1ated goal or node number. Thls var1able

"Fe" w1ll be used to test the existence of failed goals. The

Prolog will automatically record the set of the pairs of

reasons and 1ts associated number for each query goal when a

backtracklng occurs. As procedure FACTPR is mod1f1ed,

accordingly procedures BASEPR and FACTCL have to be mod1fied

by adding two variables as their arguments for record1ng the

set of reason clauses exactly the same way as procedure

FACTPR. The f1nal vers1on of both procedures can be seen 1n

the Appendix.

The same modifications have also to be made 1n procedure

ASK.l wh1ch calls procedure FACTPR. Accordlngly a new

cond1tion to check the existence of the failed goals 1s to

be added 1nto procedure ASK.l as well. The new add1t1onal

condit1on 1s a procedure REASONING. So the new version of

procedure ASK is as shown 1n Program 5.4.5 below. The other

procedures of ASK (procedures ASK.2 and ASK.3) rema1n

unchanged.

/f P~oceda~e RSK 1 to p~ove each clause of the quest1on 1/
astingCCQurst/!Qaestlll-

/1 p~ocedm Rsr.t 11
top_lskJngCQaesti,Soaii,
factp~ologCSoai,Cl,Cl,Np,Cl,Cl,Fcl,
~eason_testJngCSoai,Fcl,
succrssfui_actJonCBpl.

astJngCCQaest/!Questlll­
/1 p~ocedu~e RSK.2 11

/1 p~oceda~e TOPRSK t/
/f 1 new p~oceda~e FRCTPR 11
/1 p~ocrda~r RERSONINS 1 1 new condition t/
/1 p~oceda~e SUCCESS 1/

p~Jnt_cottentCQuest/1, /1 p~ocedu~e PRCWT 1/
astingCQuestl. /1 P~ove 1 next que~r clause 11

astJngCCllr-
/t p~ocedm RSK.l 11
tssr~tzCtopt~rCClll,
fill.

P~oq~•• 1.4.1: 1 new ve~s1on of p,oceda~e RSK

227

At the end of proving or procedure FACTPR has been

successfully executed. procedure REASONING will check

whether the answer given by procedure FACTPR is a successful

answer or a fa1led one. This 1s ach1eved by testing the

value of the llst (variable) "Fe" wh1ch was returned by

procedure FACTPR (see the arguments of a new procedure

FACTPR in Program 5.4.5). If the list "Fe" is an empty one.

then the answer is a successful one (procedure REASONING.l).

otherwise the answer 1s a failed one and "Fe" consists of a

list of the failed goals (procedure REASONING.2). The

definition of procedure REASONING 1s given in Program 5.4.6

as follows:

/t Procedure RERSQHIHSr to test the 1nswers t/
reason_lestznglSoaJ 1FcJr-

/t Procedure RERSOKIKS,/ t/
Fc,.CJ1

'· reason_lestznglfoll 1FcJ:-
/t Procedure RERSOKIKS.Z t/
abolzshlfazlure_son1 2J 1
spllt_mmac,RusonJ, /t Procedure SPllT-FC t/
not_existslreJtctlReason))1
not_exzstsCconsaJted_sor(Soal,RtasonJJ,
not_exzstslsrt_of_reasonc_,goaJCSo•JJ,reasonlRelson))1
usrrt_ruson_son_fatherlSoilJ, /f Procedure t/
tssrrt_set_of_rusonlSoll 1Ruson) 1 /1 Procedure t/
!,flil.

Proqr1r S.f.6: The defznztzon of proctdare RERSOHIKS

Procedure REASONING .1 Wlll succeed when "Fe" 1s an empty

llst. i.e "Fe"=[]. and so does procedure ASK which calls 1t

and thus the proving 1s a successful one. The actions taken

upon successful proving have already been described 1n

Chapter 3. However if "Fe" is not an empty 11st, which means

that the answer is not a successful one. then procedure

REASONING.2 will be called.

The ma1n purpose of procedure REASONING.2 is to assert a

predicate set_of_reason/3 which conta1ns the 1nformation

228

about the fa1led goals of the query in the database. As the

answer g1ven is a failed one, th1s procedure (REASONING.2)

1s set to fail such that Prolog will automatically do a

backtracking to find other answers unt1l the whole proving

tree 1s traversed or

1n deduc1ng "a(X)"

searched exhaustivelY. For instance,

from given List 5.4.1 above, the

backtracking will cause the whole prov1ng tree as shown 1n

Fig 5.4.2 above to be traversed or searched exhaustlvelY.

However, before predicate set_of_reason/3 1s asserted 1nto

the database by procedure ASSERT-SOR, some act1ons and

test1ng must be done first. As the var1able "Fe" contains a

list of pa1rs of fa1led goals and the1r assoc1ated (node)

number, the actual reason clauses must be extracted from

this llst ("Fe") and this is ach1eved by calling procedure

SPLIT-FC.

So procedure SPLIT-FC w1ll return

conta1ns a l1st of fa1led goals

repeating fa1led goals or reason

deleted by the procedure SPLIT-FC.

a var1able "Reason" which

or reason clauses. Any

clauses will also be

This procedure will also

assert each pa1r of the reason clauses and 1ts assoc1ated

node number 1nto the database as arguments of a predlcate

fallure_son/2. This predicate fallure_son/2 is used to set

up the predicates reason_son_father/3 whlch will be asserted

in the database after the var1ous tests are successfully

carr1ed out.

The var1ous

REASONING.2

tests whlch are carr1ed out in the procedure

the list of failed are to make sure that

predicates or reasons, i.e var1able "Reason", has not been

229

reJected or has not been consulted or has not been

asserted into the database before by checking the ex1stence

of pred1cates rejeot(Reason), oonsulted_sor(Goal,Reason) and

set_of_reason(, goal(Goal), reason(Reason)) respectively

where var1able "Goal" corresponds to the query goal 1tself.

If all these three predicates do not ex1st in the database,

then procedure ASSERT-RSF is called to assert predicates

reason_son_father/3 1nto the database by using the

informat1on in predicates failure_son/2.

Pred1cates reason_son_father/3 which keep an 1nformat1on

about the failed goals and their fathers are used to set up

the fa1lure path or tree for each failed goal or reason

clause. The failure path or tree is a cha1n of the parent

clauses (the un1fied KB clauses) start1ng from the fa1led

goal lead1ng up to the query goal 1tself. Thus the user w1ll

know exactly how each fa1led goal or fact is generated. For

1nstance, referr1ng back to F1g. 5.4.2, and by taking the

fa1led goal "f(s,s)" (goal no. *13) as an example, the

follow1ng fa1lure tree or path can be produced from

predicates reason_son_father/3 at the end of an unsuccessful

proving.

'f!s,sl' fails
•••> 'e!s,sl 1· f!s,sl' fails
•••> 'd!s1sl •· e!s,sl' falls
•••> 'b(sl 1· k!sl,J(sl,h(sl,d!s,sl' fails
•••> 'a(sl 1· b!sl,c!sl' fa1ls
•••> 'gaal!a!Xll' fails

F1g 5,4,4: The failure tree far the !allure clause 'f(s,sl'

The def1nit1on of procedures SPLIT-FC, ASSERT-RSF and

ASSERT-SOR can be found in the Appendix. By using the same

database g1ven 1n L1st 5.4.1 above, we w1ll try to prove an

undeduc1ble goal "a(X)" aga1n. At the end of unsuccessful

230

proving, we w1ll get the follow1ng 11st of pred1cates

set_of_reason/3 as given in Session 5.4.6 below. The

var1able "opt1on(X)" is related to the opt1on of pred1cates

set_of_reason/3 available 1n the database.

?·listlng!set.of_reasonl.

set_of_reason!option!ll,goal!a!rll,reason![c!rl,b!rllll.
set_of_reason!option!21 1goal!a!sll 1reason([f(s 1sl,J!sl,l!sllll.
set_of_reason!option!31,goal!a!sl1 1reason![g!s 1s) 1J(s) 1J!sllll.

yes

Sess1on ~.4.61 The liSting of predicate set_of_reason/3

It can be seen from the above sess1on 5.4.6 that there are

three opt1ons for predicates set_of_reason/3. Each predicate

set_of_reason shows the relationshlP among the failed goal

and also the relat1onsh1P with the query goal itself. For

1nstance, for optlon(3) of set_of_reason/3, the query goal

"a(s)" fa1ls due to the fa1lure of the goals "g(s,s) ",

"j (s)" and "1 (s) ". In other words, the reason why the query

goal "a(s)" fa1ls 1s the non-existence of pred1cates

knowledge(J(S)), knowledge(l(s)), and knowledge(g(s,s)).

As before, by sav1ng the deta1ls of rectifying the reason

clauses for the next chapter, we use the same example to

prove the goal "a(XJ" as shown 1n the following sess1on

5.4.7:

?- pcqunt.
it a (_I I,

NEXT QUESTION!
a I _I I

Tht translation of its negatlont
!lt·ai_IJ,
,,,,,,,,,,,,,,,,,,,,,,.

>>ansMert No, it cannot prove 1
• a(_tl •

=======······=··=···=·=·=··======····==··
OPTION: I
The reason why the goal1

'alrl'
fails 1s due to the non-extstence of the foiiOMing fact11

clrl
blrl

HoMever, Me 1ay able to prove the goal
after doing so1e correcttons or addtttons

--Do you ltke to continue ?y

If the following are true1
c lrl
b lrl

Do you ltke to try aga1n by ustng the above assu1pt1on
---? y

RE-QUESTION!
alrl

The translation of 1ts negatton:
llJ·alrl. ,,,,,,,,,,,,,,,,,,,,,,,

»anuer: Yes,
air)

=========·==·==========·=======·

PROVEDt alrl ?

yes

Session 5.4.7: Prov1ng 'alii',

231

It can be seen from the above session 5.4.7 that the new

method of recording reason clauses IS able to f1nd the set

of them, thus after one repeated proving, the prov1ng 1s a

successful one. Th1s is better than the previous one as

232

shown in session 5.4.5 where the number of repeated prov1ngs

1s equal to the number of non-ex1stent pred1cates for a

particular goal.

In conclusion, the new procedure FACTPR (see Program 5.4.4)

is able to produce a set of reason clauses for an

unsuccessful query goal even though some of the reason

clauses are at different hierarchy or level or branch of

proving tree. This can clearly be seen from the results in

the session 5.4.5 above.

5.5 Comments

In the section 5.4. we

faulty fact. This faulty

have

fact

existent fact 1n the database.

the orig1nal control of theorem

233

discussed how to detect a

can be assumed to be non­

Without any mod1f1cation to

prover program described in

chapter 3. we will only able

existent facts and need to

all the non-existent facts

proved.

to find a f1rst level of non-

In order to d1scover

part1cular goal to be

branches of the proof

repeat

for a

the proving to discover

particular goal to be

all the non-existent facts for a

proved. we have to traverse all

tree. and th1s cannot be achieved

without control mod1fication of prov1ng mechan1sm such that

we can d1st1nguish between the successful and unsuccessful

prov1ng of a goal.

The fault detect1ng algor1thm descr1bed 1n sect1on 5.4 1s

able to distinguish between the successful and unsuccessful

proving. thus the algor1thm 1s able to detect all the non­

existent facts (or all the fa1led subgoals) for a goal to be

successfully proved.

Th1s algor1thm is quite different to the contradiction

backtracing algor1thm by Shapiro although both use a

backtracking method to discover faulty facts. ShaPlro's

algorithm w1ll find one faulty rule or fact at a time by

asking an oracle. The fault detecting algorithm described in

section 5.4 will find a set of faulty facts which are

inter-related 1n the sense that all of them must be true 1n

order for a particular goal to be successfully proved.

234

The assumpt1ons made by and the a1ms of Shapiro's techn1que

and the faulty detect1ng algorithm are also d1fferent.

Shapiro's technique is to f1nd any faulty rules or facts

used for an unexpected successfully proven goal. Our

algor1thm assumes that all the rules or facts are true and

tries to f1nd why we cannot prove a particular goal. In

other words, our algorithm will find a reason beh1nd an

unexpected unsuccessful goal. Furthermore, our algorithm

Wlll not detect looping (control) faults as the loop1ng test

has been incorporated 1n the algor1thm.

Th1s techn1que can also be used to f1nd the set of

condit1ons for a part1cular fact or

the above sess1on 5.4.6, the

set_of_reason/3 can be 1nterpreted

rule to be true. From

optlon(l) of pred1cate

as that 1n order "a(r)"

to be true, "c(r)" and "b(r)" must be true.

CHAPTER 6

A FAULT RECTIFICATION ALGORITHM

_j

235

6.1 Introduction

In the last chapter (section 5.4). we have descr1bed an

algor1thm to detect the reasons beh1nd the fa1lure of the

enqu1r1es of the database. As prom1sed 1n the last chapter.

we will be descr1bing an algor1thm to rect1fy those reasons

in this sect1on. The reasons wh1ch have been detected are

actually a set of condit1ons or pred1cates. There are two

possibllities which cause those failures. These are as

follows:

[1]. The wrong references 1n the enqu1ry.

[21. The non-ex1stence of the KB clauses in the database.

We will assume the first one above as the cause for the

unsuccessful prov1ng. If th1s 1s not the case then the

second cause 1s assumed and the enquirer will be asked to

choose whether to assert the non-ex1stent KB clauses 1n the

database or not. However before these assumpt1ons are

assumed. the enqu1rer Wlll be presented Wlth the reasons

f1rst and then w1ll be g1ven the cho1ces of look1ng at the

alternat1ve suggestlons to correct the reasons or look1ng

at other sets of reason clauses 1f they ex1st.

The wrong references mean that the one or more arguments of

the pred1cates of the query and the database do not match

w1th each other. For 1nstance. we would l1ke to prove

"man(ros1e)" but instead 1n the database exists

"man(nazrul)". so the argument "rosie" of "man(rosle)" does

not match w1th the argument "nazrul" of "man(nazrul)". The

wrong references do not only mean unmatch1ng arguments but

may also mean an unmatch1ng pred1cate's name. For instance.

236

the pred1cate's name "man" of "man(rosle)" does not match

w1 th the pred1cate 's name of "woman (rosle) ".

The ma1n problem here 1s to l1nk between the prov1ng

procedure and the rect1f1cation Procedure. We have to mod1fy

some of the top level procedures wh1ch link between the

prov1ng and the printing of result procedures as described

1n Chapter 3. We will described the link up between these

two procedures 1n the section 6.3.

All the reasons detected are actually the fa1led goals

(subgoals) and are not due to other reasons such as control

problems or loop1ng. Furthermore we assume that all the KB

clauses are correct. However we may detect an incorrect KB

clause in the match1ng process between the reason and the KB

clauses. So all methods as rev1ewed in Bundy et al[1985)

such as reordering rules, 1nstant1at1ng rules, updat1ng

rules or adding extra cond1t1ons to the rules are not

appl1cable here.

Bourne[19771 examined the frequency of spell1ng errors 1n a

sample drawn from 11 machlne-readable bibliographlc

databases and concluded that errors are not only 1n the

input quer1es, but also 1n the database itself. The fa1lures

may also caused by typing errors. Damerau[1964) indicates

that 80% of typing errors are caused by transposit1on of two

adJacent letters, one extra letter, one m1ss1ng letter, or

one wrong letter. These may also apply to pred1cates as

the1r arguments can be cons1dered as letters 1n the

Damerau's finding. This supports the wrong references as one

of the causes of the fa1lures.

237

6.2 Fault Rectification Algorithm

In this section, we Will describe an algorithm to rectify

all the reason clauses detected by the fault detecting

algorithm explained in the section 5.4 of chapter 5.

As explained in the chapter 3 that all questions will be

negated first before being used to deduce an empty

resolvent. In doing so, all relevant universal quantifiers

will be changed to existential quantifiers by using the

Indicator "fq" to represent their equivalent questioned

Skolem function. Accordingly If the unmatching arguments

Involve any questioned Skolem function then the wrong

reference is referred to as an unmatching quantifier, for

Instance, the argument "fq(a)" (the questioned Skolem

function) of "a(fq(a) ,s)" does not match with the argument

Each set of reason clauses ,If they exist, will be presented

to the enquirer according to their Increasing order of

option or their occurrence provided that the set of reason

clauses has not been reJected before by checking the

existence of predicate reJect(R) where R is the set of

reason clauses itself. This IS done by calling the procedure

WHY-FAILS as shown In the following Program 6.2.1. This

procedure 1s called from the answer printing procedure which

forms the link up between the finding and rectification

fault procedures (see the section 6.3.4).

/f to f1nd oat wby 1t f11Is t/
wby_it_flllsiOrlglnllgo•I,llstqaantl:­

retr•ctlset_of_re•sonloptloniOptlonl,go•ICSI,re•soniRIII,
not_existslrrJrctiRII1
•ssertlconsalted_soriS,RII,
equtevarsCS,OrJglnllgo•II, 11 procedure t/
llst_relsonl0ption161RI 1 /1 procrdarr f/
flnd_relsoniOptlon,S,R,llstqalntl. /1 procedure t/

Proqr•• 6.t.ll The procrdarr NfY·FR/lS

238

As explained 1n chapter 2 that Prolog adopts a klnd of

copy1ng clause from the database, thus when we retract a

pred1cate set_of_reason/3, d1fferent variable names were

g1ven to any un1versal quantifler wh1ch occurred 1n the said

pred1cate. To overcome this d1fferent 1nstantiatians of

variable names, procedure EQUATEVARS or pred1cate

equatevars/2 1s called from the above procedure WHY-FAILS

such that any un1versal quant1f1er 1n the retracted goal "G"

and 1n the or1g1nal goal (quest1on), "Originalgoal", wlll be

instant1ated w1th the same var1ables. The def1n1tion of

procedure EQUATEVARS can be found 1n the Append1x.

Before the match1ng process between the reasons and the KB

clauses in the database are carr1ed out, the enqu1rer w1ll

be presented w1th the f1rst set of reason clauses, then a

cho1ce of opt1ons as shown 1n the Table 6.2.1 must be chosen

by the enqu1rer in the order to cont1nue to the next step.

All of these options and the set of reason presentat1on are

carr1ed out by procedure LISTREASON wh1ch is called from the

above Program 6.2.1. So referr1ng back the last session

5.4.7 of chapter 5, the print1ng starting from "OPTION: 1"

unt 11 "---Do you like to continue ?" is done by th1s

procedure LISTREASON. And the chosen opt1on 1s typed after

the remarks "---Do you like to continue ?".

Ophon

I
b
n

s

t
y or <return>
others

abort
break
not accepting the given set of reason clauses

so see other alternative.
list other sets of reason clauses.
sho• the failure tree of the given set

of reason clauses.
type again the Introduction.
yes to continue 11th a 1atch1ng process.
displaying help table !like this one)

TABLE 6,2,11 Opt1ons for procedure LlSTREASON

239

In the end, we have to choose e1ther opt1on "n" or "y" only.

Other cho1ces except "a" and "b" w1ll lead to a repet1t1on

of ask1ng whether to continue w1th the rectif1cat1on

process. If we type "n" then the procedure LISTREASON falls,

so procedure WHY-FAILS Wlll backtrack to retract another

set of reason clauses, 1f 1t ex1sts. Otherwise procedure

WHY-FAILS falls and the act1ons taken afterwards will be

explained 1n the next sect1on 6.4. If we type "y" or press

<return> then a match1ng process w1ll be carried out by the

predicate flnd_reason/4 or procedure FINDREASON. The

program of procedure LISTREASON lS g1ven 1n the Appendix.

In the match1ng or rect1ficat1on process, the procedure

FINDREASON Wlll be div1ded 1nto two subprocedures as shown

1n the following program 6.2.2:

!1 Procedure FINIRERSON 1/
fznd_reasonCOptzon,goai,Reason,LzstquantJ:-

/1 Procedart FINDRERSON.I 1/
fJnd_tzsratch_clauseCReasonJ,
saggestionCOptlon,6oal,Reason,LJstqaantJ,

fznd_reasonCOpllon,6oai,Re;son,LJstquantJ:­
/I Procedure FINIRERSON.2 1/
;ssertlreJectCReasonJJ,
fail.

Proqrat 6.2.21 Prograt F/HIRERSOH

/1 procedure FINIHRTCH 1/
/1 procedure SU66ESTION 1/

240

The first one of the subprocedures, procedure FINDREASON.l

1s the ma1n part of the procedure. Procedure FINDREASON.l is

div1ded 1nto two parts, the first one 1s a matching process

(procedure FINDMATCH) and the second one 1s a suggest1on

process (procedure SUGGESTION). If we reJect all the

suggestions to rect1fy the question based on that part1cular

set of reason clauses, then the second procedure

FINDREASON.2 is called to assert predicate reject(Reason)

into the database to denote that the part1cular set of

reason clauses, Reason, has been rejected and will not be

consulted later aga1n.

6.2.1 The Matching Process

The match1ng process (procedure FINDMATCH) 1s div1ded into

three subprocedures as shown 1n Program 6.2.3 below. The

f1rst subprocedure, FINDMATCH.l will find any KB clauses

wh1ch d1ffers with a member of the set of reason clauses 1n

the sense of the wrong references as expla1ned 1n the

previous sect1on (6.1) and then records 1ts d1fference. If

there is none of the sa1d KB clauses, i.e procedure

FINDMATCH.l falls, then the second procedure, FINDMATCH.2 1s

called to continue the same process for the next member of

the set of reason clauses unt1l all members have been

matched w1th all KB clauses (procedure FINDMATCH.3).

/t Procedurt 1/NDNRTCH f/
fznd mutch c/luseCCR/111:-

- /t Procedure 1/NDNRTCH.t 1/
setup_predzcateCR1Q1 Hl 1

fast_setofCD,tzstatch_c/auseCR,Q,Bl,L:stl,
fznd_dzfferenceCR 1Lzstl 1
f:nd_t:statch_clauseCTl 1

1•

f:nd _tinatch_cl auseC CRI T 1 J :-
'' Proctdart IINDNRTCH.Z f/
f:nd_tistatch_c/austCTJ,!.

/t Step I 1/
/f Step 2 f/
/f Step 1: procedart FINDDIFFER t/

f:nd_mutch_ciauseCCll. /t Prmdurt FIHDWCH.1 t/

Prograt 6.2,11 Prograt FIHDNRTCH

241

The main part of the matching process as shown as procedure

FINDMATCH.1 1n the above Program 6.2.3 can be divided into

three steps. These steps are sett1ng up a potent1al

pred1cate to be matched (Step 1), f1nd1ng the m1smatch

clauses (Step 2) and f1nally finding the d1fferences between

the mismatch and the reason clauses (Step 3).

6.2.1.1 Setting up a predicate CStep 1)

In order to f1nd all KB clauses which have potentially wrong

references with the reason clause, R. a predicate

setup_predJcate/3 will be called to create a clause "Q"

which has the same predicate name and the number of

arguments, N. with the reason clause, R. (a member of the

set of reason) but 1ts arguments are un1nstantiated. For

example, suppose that the reason clause 1s the clause

"g(s.s)", then the following sess1on w1ll show the created

clause~ .. Qu.

?· setupJ1redmte(g(s 1si 1Q1NI.

g. g(_l,_21
N • 2

yes

Sess1on 6.2.11 An exa1ple of sett1ng up a clause

6.2.1.2 Find1ng a set of mismatch clauses (Step 2)

In the second step, a library pred1cate fast_setof/3 1s

called 1n order to produce a l1st of all var1ables "D"

which sat1sfy the cond1tions set 1n the pred1cate

mlsmatch_clause/3 or procedure MISMATCHCL. So the var1able

"List" will consist of a list of KB clauses whose either

some of 1ts arguments or its pred1cate name differ or do not

match with the reason clause "R". Then a difference l1st

242

w1ll be produced by procedure FINDDIFFER (Step 3) before the

next member of the set of reasons 1s to be matched with the

same process again. Each member of "L1st" conta1ns the

mismatch clause 1tself and 1ts type (e1ther a query clause

(q) or a knowledge clause (k)).

Two considerations are taken in f1nd1ng a set of m1smatch

clauses. A m1smatch clause is a KB clause whose arguments

or predicate name differs from the reason clause. It should

be noted here that the reason clause certa1nly cannot exist

1n the database.

The f1rst consideration 1s that the reason clause, R. 1s

matched with the query clauses, i.e the m1smatch clause 1s a

query clause. The second cons1derat1on 1s that the reason

clause, R, 1s a query clause and it w1ll be matched with any

non-query clauses, 1.e any KB clause wh1ch is not a query

clause. These considerat1ons are taken on the bas1s that the

enquirer has typed the wrong quest1on and the knowledge base

does not contain any wrong fact.

The program of f1nd1ng the mismatch clauses or procedure

FINDMATCH 1s as follow (Program 6.2 4):

tlstatch_clauseiR1 Q1Cq 1 (Q:·T)J):·
/t procedure WISWRTCH.I: the first cons1derat1on t/
query_clauseiQ:-Tl 1
Q\=R,

tlstatch_claaseiR,K,Rulel:-
/f procedure WISWRTCH.Z: the second cons1derat1on t/
convertiR1HotRJ 1 /f line I 1/
qaeryheadiHotRJ, /f lint 2 t/
tlstatch_clausr/IR,K,Ralrl. /t procedure HISHRTCH/ 1/

Proqrat 6.2.1: Finding tistatch clauses: proced1re KISKRTCI

243

6.2.1.2.1 The first consideration <procedure MISMATCH.1l

The program for the first cons1derat1on, 1.e when the reason

clause 1s matched with the query clause, 1s shown as

procedure MISMATCH.l in the above Program 6.2.4.

If the mismatch clause 1s a query clause, then only the

arguments of the mismatch and the reason clauses w1ll be

matched. In th1s case we do not match the pred1cate names of

the mismatch and the reason clauses because the reason

clause does not exist in the database and also the query

clauses for a particular quest1on are only temporarily

asserted 1nto the database. The new question w1ll retract

the old query clauses and will assert a new set of query

clauses into the database. So that 1f we permit the

predicate names to be compared and the suggest1on to replace

them 1s accepted, then after replacing pred1cate names 1s

carr1ed out. the old query clauses Wlll be retracted from

the database and will be replaced by the new set of query

clauses resulting from the new quest1on. For example.

suppose the follow1ng are KB clauses 1n the database:

kno~ledgeChutanC!I:-tanC!II.
knowledgeC'tanCXI:- 'hatanCXII,
kno~ledgeChutanC!I:-wotanC!II.
knowledgec•wotanC!I:-•hutanC!II.
knowledgeCtanCadatll.
knowledgeCwotanCevell,

Database 6.t.l: KB clauses

If we ask the question "ex1sts(X, -human(X)& -man(X))", then

the follow1ng query clauses w1ll be asserted 1nto the

database:

qurrrChatanCYI:- •tanCYII.
querrltanCYI:- 'hatanCYII.

Uatabase 6.t.t: The qurrr clarses

244

Certa1nly we cannot prove or answer the above quest1on as

the (reason) clause " -human(adam)" does not ex1st in the

database. If we perm1t the case that the m1smatch clause

has the same arguments but a different pred1cate name

w1th the reason clause where the m1smatch clause 1s a query

clause, then we will get a suggestion that the

predicate name, " -human", of " -human(Y)" 1s replaced

with "human" as ex1st "query(human(Y) :- -man(Y))". If we

accept this suggest1on, then the new question becomes

"exlsts(X,human(X)& -man(X))". So the query clauses as 1n

Database 6.2.2 w1ll be retracted and w1ll be replaced with a

new set, i.e:

queryl11niYJ:- hu•tn(f)),
querr<•hu••n<YJ:- •••n<YJJ,

Database 6.!.1: The nu set of querr cl.asu

It can clearly be seen from the above Database 6.2.3, that

the old clause "query(human(Y):- -man(Y))" does not ex1st

any more 1n the database. As the replacement suggest1on 1s

based on th1s old clause and th1s one does not exist any

more 1n the database, thus the new quest1on w1ll not be

guaranteed to be successfully proved. Consequently the

purpose of replacing someth1ng Wlth something else wh1ch

already or permanently ex1sts in the database 1s defeated

and th1s type of replacement does not always guarantee that

the new quest1on w1ll be answered successfully.

Another reason why we can compare the arguments of the sa1d

clauses (the reason and the query clauses) 1s that one of

the arguments of the reason clause or more may have been

instant1ated to the 1nstant1ated arguments of the g1ven

knowledge clauses but both clauses have the same predicate

245

name. For example, suppose the follow1ng knowledge clauses

ex1st 1n the database:

lnowlrdgr((•wotbltlllr-livesCI,londonzoo))),
lnowltdge((•JivesCI,londonzoo)r-wotbatll))),

D1t1b1st 6.t.lr The knowledge c!1uses

If the question:

"-exJsts(X,wornbat(X)&llves(X,twycrosszoo))"

1s asked, then the follow1ng query w1ll be asserted 1nto the

database:

queryCwotbltCfqlwotblt0)),
querrllrvesCfqlwotbltOJ,twycrosszoo)),

D1t1b1sr 6.t.lr The querr cl•uses

As the fact "llves(fq(wornbatO),londonzoo)" does not

ex1st 1n the database, the above quest1on w1ll eventually

fail or cannot be Proved. However as the clause

"query(lJves(fq(wornbatO),twycrosszoo))" ex1sts in the

database, the system w1ll suggest that "twycrosszoo" of the

quest1on 1s to be replaced w1th "londonzoo". Consequently

the new quest1on becomes:

"-exJsts(X,wornbat(X)&llves(X,twycrosszoo))"

and can be successfully proved. It can be seen here that

"londonzoo" 1s the argument der1ved from the knowledge

clause. 1. e "knowledge((-wornbat(X) :-llves(X, 1 ondonzoo)))".

6.2.1.2.2 The second consideration

The second cons1derat1on 1n the f1nd1ng m1smatch clauses

process, or procedure MISMATCH.2 as shown 1n the above

Program 6.2.4, 1s that the reason clause 1s a head of any

query clause and 1s matched w1th any knowledge clauses. So

the first two l1nes of procedure MISMATCH.2 (l.e line 1 and

246

l1ne 2) will test whether the reason clause IS a head of any

query clause. If so, the reason clause will be matched w1th

the head of any knowledge clause.

In this case (the second consideration), both the reason and

the non-query clauses with either the same predicate name

but different arguments or the same arguments but the

different pred1cate name will be matched or compared. Th1s

process w1ll be carr1ed out by procedure MISMATCHl or

pred1cate mismatch_clausel/3 as shown 1n the following

Program 6.2.5:

11SIItcb_c11ase1CR,K,Ck,CK:-TI11:­
/I procedart WISW~TCH/.1 t/
fict_blst_cllustCK,TI, /f procedart F~CTIRSECL t/
R\•K,

IISiitcb_cllastlCR,K,Raltl:-
/1 procedart WISN~TCH1,2 t/
fanctor/CR,Pred_nitt,NI,
f)zstCR,CPred_mel ~rgs11,
tiStitcb_cl•ase/CPred_nlle,N,R,~rgs,Ruitl. /t procedure WISN~TCHI/l t/

Proqr11 6.2.5: Procedure «IS«~TCHl

So procedure MISMATCHl.l Wlll match the arguments of both

the reason clause, R, and the non-query clauses as def1ned

by procedure FACTBASECL, but with the same predicate name.

On the other hand, the procedure MISMATCH1.2 Wlll match any

non-query clause with the reason clause wh1ch has the same

arguments but d1fferent predicate name. This 1s carr1ed out

by procedure MISMATCHl/5 or pred1cate mismatch_clausel/5

whose definition can be found 1n the Appendix. The

definition of procedure FACTBASECL can also be found 1n the

Append1x

After descr1b1ng both considerations, let us see an example

of how procedure MISMATCH works as shown 1n the following

sess1on by using the Database 6.2.1 and 6.2.2 and also

247

suppose that the reason clause is "-human(m)" such that the

predicate which will be set up IS "-human(X)":

?- fast_srtofiU,tlstatch_claasrC•haranlrJ,•haraniiJ,DJ,LJ.

J , I
I • -2
L • fet, lharanlt) :- ranlr)JJ, et, lharrnlr) :- woranlt))J,

et, lranlt) :- traeJJ, et, c•ranltJ :- •hattnltJJJ,
et, (•wotan(t) I" •hatln(l))]]

SeSSIOn 6.Z.Z: Rn tXIIplt of the OSI!t of procedarr ~~S~RTCI

It can be seen from the above session that "L" is a list of

mismatch clauses whose heads are having different predicate

name but the same argument with the reason clause.

6.2.1.3 F1nding the difference <Step 3)

In the step 2 above, a list of mismatch clauses has been set

up. In this step 3, we will find the difference between the

reason clause and all mismatch clauses. This IS carried out

by procedure FINDDIFFER or predicate f1nd_d1fference12 which

can be found In the AppendiX.

In this step, only the mismatch clause which IS thought to

be a good replacement candidate Will be asserted In the

database as predicate mismatch_palr([T.R.M,Dlff],Len) where

"T" IS a type of mismatch clause (either q (query) or

k(knowledge)), "R" IS a reason clause, "M" is a list of

mismatch clauses which have the differences with the reason

clause, "Diff" Is a list of differences between the reason

and mismatch clauses, and finally "Len" IS a a number of

differences between the reason and the mismatch clauses (I.e

the length of the llst "Diff").

A good replacement candidate clause is a mismatch clause

which has neither of these properties:

248

[1) One of the body clauses of the mismatch clause IS not

equal to the reason clause.

For example, suppose the reason clause is "g(s,s)" and

the mismatch clause IS "a(s,f):-k(s,t),g(X,Y)" then

one of the body clauses of the mismatch clause,

"g(X,Y)", is equal to the reason clause. Or, In terms

of the Prolog language:

g(X,Y) - g(s,s)

where both variables "X" and "Y" Will be instantiated

to "s". So the above mismatch clause IS not a good

replacement one as there may cause a repetition of the

suggestion as the clause "!l(s,s)" does not exist In

the database.

[2) The differences between the mismatch and the reason

clauses do not Involve any questioned Skolem function,

I.e the Skolem function with the indicator "fq".

If a questioned Skolem function 1s involved then this

case IS considered as an unmatching quantifier and

will be dealt In the suggestion process later.

For example, suppose the reason clause Is "g(s,s)" and

the mismatch clause IS "g(fq(a,X),s)". So the

difference between these two clauses 1s the1r first

argument, 1.e "s" and "fq(a,X)". So this mismatch

clause is not a good replacement one. Th1s IS because

the questioned Skolem function refers to the negation

of the questioned universal quantifier as explained In

Chapter 3.

249

6.2.2 The suggestion process

At the end of the match1ng process, pred1cates

mlsmatch_pair/2 are already 1n the database provided that

some of the found mismatch clauses are good replacement

candidates. As shown 1n the Program 6.2.2, this step 1s

carr1ed out by or pred1cate

suggestion/4 after

procedure

procedure

SUGGESTION

FINDMATCH is completely

successful. The procedure SUGGESTION is d1vided into two

subprocedures as shown 1n the follow1ng program (Program

6. 2. 6) :

/1 Proctdart SUSSESTION 1/
suggestionCOptlon,Soal,Reason,Llsquantl:-

/1 Procedure SUSSESTION,I 1/
process_reasonsCOptJon,Soal,Reason1Reason1,
acceptanceCOptlon,Relson,Soal,Lisquant),

suggestJonCOptlon,Soal,Reason,Llsquantl:-
/1 Procedure SUSSEST/ON.Z 1/
retractCaccepted_substJtatJonCSII,
suggestJonCOptJon,Soai,Reason,Llsquantl.

Proqra• 6,2,6: Procedure SUSSEST/ON

/t procedure PROCESS-REASONS t/
/t procedure ACCEPTANCE t/

The f1rst subprocedure, SUGGESTION 1 w1ll deal w1th an

actual suggest1on process and 1 ts acceptance. If the

enqu1rer does not agree w1th the suggest1on then the second

one, procedure SUGGESTION.2, will retract any previously

accepted subst1tution (replacement) of the reason clause and

w1ll repeat the same process as the first subprocedure to

f1nd other possible suggestions.

As said above, the f1rst subprocedure, SUGGESTION.l, will be

div1ded into two stages; these stages are the reason clauses

processing and the acceptance process1ng .

250

6.2.2.1. The reason clauses processing sta;e

This reason clauses processing step IS carried out by

procedure PROCESS-REASONS as shown In the following program,

I.e Program 6.2.7:

/t procedare PROCESS-RERSOKS t/
process_reasonsCOptJon,Boal,Reason,CHeadR/TallRJ):­

Process_saggestlonCOptJon,6oa1,Rrason,BradRI,
pracess_reasonsCOption,Soai,Reasan,TaJIRI,

/t praced1rr PROCESS-SU66ESTIOK t/

, ..
process_reasonsCOptJon,Soal,Reason,CJI.

Prograt 6.t.7r Procrdares to procrss evrrr reason clauses

As shown in the above Program 6.2.7, each member of the

set of reason clauses Will be processed one by one In

order to make appropriate suggestions. The actual

suggestion processing is carried out by the procedure

PROCESS-SUGGESTION which is called

PROCESS-REASONS.

from the procedure

The program of the procedure PROCESS-SUGGESTION is shown 1n

the following program (Program 6.2.8):

/t procedure PROCESS-SU66ESTIOH t/
process_saggestJonCOptzon,6oal,Reason,Rir-

/f procedure PROCESS-SU66£STIOK.l t/
fanctorCR,F,HJ 1
HI IS H+J,
ordered_tlstatch_clauseCP,R,T,BzffJ,Hl,l) 1 /t procedure OROEREO-HISKRTCH t/
not_exzstsCreJectCCP,R,T,OiffJ),
subst_logCBzff) 1 /t procedure SUBST-!06 f/
alreadr_accepted_subsCOptzon,Soal,Reason,CP,R,T,OiffJJ, /t procedure RCCEPT-SUBST f/ , .

process_saggestJonCOptzon,6oal,Reason,RI:­
/f procedure PROCESS-SU66EST/OH.t t/
extract_fqCR,LI, /t procedure EXTRRCT-FQ t/
process_othersCR,LI. /f procedure PROCESS-OTHERS f/

Proqrat 6,2,8: Procedures to process suggestions for reason claases

As the program 6.2.8 shown, the suggestion processing can be

classified Into two subprocedures. The first subprocedure

(procedure PROCESS-SUGGESTION.!) is to deal with the

predicate mismatch_pair/2 and Will eventually suggest a

251

subst1tution to the wrong reference.

(procedure PROCESS-SUGGESTION.2) deals w1th

The second

two things,

one

i.e

the m1smatch quant1f1ers and the lack of knowledge and w1ll

suggest to change the quantifiers b1nd1ng the quest1on

(goal) and assert a new KB clauses 1nto the database

respectively.

6.2.2.1.1 The first type1 the substitution suggestion

As said above that the procedure PROCESS-SUGGESTION.! w1ll

make appropr1ate suggest1ons of replacement or subst1tut1on

for the wrong references. There are two ways how to

implement the subst1tut1on. These ways are the clause and

the atomic substitut1ons.

The clause subst1tut1on 1s a

subst1tute the reason clause

local subst1tut1on whereby we

w1th the m1smatch clause by

d1sregard1ng the other clause 1n the quest1on. For example,

suppose the reason clause of the question "a(q,r,s)&b(q,s)"

is the clause "a(q,r,s)" and 1ts m1smatch clause 1s

"a(w.r.s)". In th1s local or clause subst1tut1on, the reason

clause will be replaced by the mismatch clause such that the

new question becomes "a(w.r,s)&b(q,s)". Although the

difference between these two reason

the1r first argument, 1.e "q" and

also occurred 1n the other clause,

question), but th1s (other) clause,

the same 1n the new quest1on.

and m1smatch clauses 1s

"W 11
, and also that "q"

"b(q,s)" (of the old

1.e "b(q,s)", remains

The atomic substitution 1s a global substitut1on. In this

global subst1tut1on, any substitution w1ll be carried out on

252

the whole question. For example, by us1ng the same example

1n the prev1ous paragraph, the new quest1on becomes

"a(w,r,s)&b(w,s)" where all occurrences of "q" are

subst1tuted w1th "w".

There are advantages and d1sadvantages over these two types

of subst1tut1ons. If there is no relatlonship between the

arguments of the clauses in a quest1on, then the local

subst1tution has an edge over the global substitution.

For example, refer to the same example in the prev1ous

paragraph. The local substitution produces a new question

where the clause "a(q,r,s)" lS replaced by the clause

"a(w,r,s)". Thls local subst1tut1on clause ("a(w,r,s)"), as

we know. already ex1sts in the database. So at least we

know the d1rect1on of prov1ng lS towards to a successful

one. We do not bother w1th the other clause ("b(q,s)") as 1t

has already been successfully proved. However, 1n thls

example, the global substitut1on produces a new clause

"b(w,s)" which has not been seen before, 1.e a totally new

clause wh1ch we do not know about 1ts prov1ng successful,

and 1t may even produce more reason clauses dur1ng the next

stage of prov1ng.

If there is a relationshlP between the arguments of the

question, then the global subst1tut1on has an edge over the

local one. For example. suppose the reason clause of the

question "man(dan)&loves(dan,eve)" 1s a clause "man(dan)",

and the mismatch clause is a "man(adam)". The d1fference

between the reason and the m1smatch clauses 1s their

argument. 1.e ''dan'' and ''adam''.

253

Subsequently, the local subst1tution Wlll produce a new

question "man(adam)&loves(dan,eve)". Th1s 1s qu1te different

from the or1g1nal meaning of the quest1on. The or1g1nal

meaning of the question can be sa1d to be •' there is a man

called "dan" who loves "eve" However the meaning of the

new question resulting from the local subst1tut1on can be

said as there is a man called "adam". and. "dan" loves

"eve .. .

The new question resulted from the global subst1tut1on is

"man(adam)&loves(adam,eve)" wh1ch can be sa1d as there is a

man called "adam" who loves "eve". This meaning is

equ1valent to the mean1ng of the or1g1nal quest1on. In this

case, the enqu1rer has wrongly named the man. However we

cannot say anyth1ng of the wrong reference 1n the context of

the local substitution as the new quest1on g1ves a totally

new perspective.

As the pred1cate calculus representat1on of the quest1on 1n

th1s system usually results from the natural language, then

the global substitut1on techn1que is adopted.

In th1s procedure PROCESS-SUGGESTION.l, for a part1cular

member (the var1able "R"), of set of reason clauses. a

correspond1ng pred1cate mismatch_palr/2 w1ll be retracted by

the procedure ORDERED-MISMATCH or the predicate

ordered mlsmatch_clause/3 accord1ng to the1r ascend1ng order

of the number of d1fferences between the reason and the

m1smatch clauses. The program of procedure ORDERED-MISMATCH

can be found in the Append1x.

254

Before the replacement or substitution suggestion is made,

some tests are carried out to make sure that the same

suggestions have not been reJected (by checking the non­

existence of predicate reject({P,R.T,Diff])) and have not

been accepted before on the earlier proving attempts (i.e

the successfulness of the procedure SUBST-LOG or the

predicate subst_log/1). The program of the procedure

SUBST-LOG can be found In the Appendix.

If the tests are successful. then the enquirer will be asked

whether to accept the suggested substitution provided that

the same suggested substitution has not been accepted before

during the earl1er attempt of the same question. In other

words, the suggested substitution has not been accepted

during processing of the other members of the same set of

reason clauses. This 1s carried out by the procedure

ACCEPT-SUBS or the predicate already_accepted_subs/4.

If the same suggest1on has been accepted before then noth1ng

1s done and the system w1ll process the next member of the

set of reason clauses. If it has not been accepted before,

then the enquirer w1ll be presented w1th the suggested

subst1tut1on and can choose one of the opt1ons as given 1n

the following table (Table 6.2.2):

Option

a
b
n
1
r
s
t
M
y or <return>
others

abort
break
not accepting the suggested subst1tut1on so see the next one.
list other possible subst1tution!sl.
reJect all possible substitutions.
show the failure tree of this particular reason clause.
type aga1n the 1ntroduct1on.
Mhy the substitution 11 suggested,
yes to accept the suggested substitution.
displaying help table !l1ke th1s one!

Table 6.2.21 The options for the suggested subst1tut1on

255

The pred1cate accept_subst1tut1on/4 w1ll handle the above

options and can be found 1n the Appendix. If the enqu1rer

does accept the suggested substitut1on, then the suggested

substitutlon will be added to the current list of the

accepted subst1tution. The current list of the accepted

substitution IS kept in the database as an argument of the

predicate accepted_substltution/1. This predicate will be

used during the creation of new question later. For

example, the following session shows the suggestion

suggested and processed by procedure PROCESS-SUGGESTION.!:

I
If ' nazrul ' of the question's clause ' •an!nazrull ' IS substituted

MI th ' aizat '
---Do you agree ' "

' un!nazrull ' fails, but exists
' un(aizatl '

---Do you agree ' b

Sess1on 6,2,2: A part of suggested subst1tut1on sess1on

The typed response after a remark "---Do you agree ?" IS as

shown In the above Table 6.2.2. The program of procedure

ACCEPT-SUBS can be found In the Appendix.

6.2.2.1.2 The second type of suggestion processing

This second type of suggestion processing is carried out by

the procedure PROCESS-SUGGESTION.2 as shown In the Program

6.2.8 above. This procedure IS called when one of these

cases occurred:

[1] If all the suggested substitutions have been reJected

in the first subprocedure PROCESS-SUGGESTION.!.

[2] No corresponding mismatch clause exists In the

database for .a particular member of the set of reason

clauses. In other words, no corresponding predicate

mismatch_pair/2 exists in the database.

256

[3] The difference between the m1smatch and the reason

clauses 1nvolves any quest1oned Skolem funct1on.

In the second case above, 1t 1s poss1ble that the reason

clause may also conta1n any questioned Skolem funct1on.

So, another procedure 1s called w1thin the procedure

PROCESS-SUGGESTION.2 to extract any questioned Skolem

function from the reason clauses. This procedure 1s called

EXTRACT-FQ whose detailed program can be found 1n the

Append1x. The procedure EXTRACT-FQ w1ll return a l1st of any

quest1oned Skolem function conta1ned in the reason clause.

Then the result1ng list of questioned Skolem funct1on 1s

passed to the procedure PROCESS-OTHERS (see Program 6.2.8

above) . The program of the procedure PROCESS-OTHERS is as 1n

the following program (Program 6.2.9):

/f procedure PROCESS-OTHERS 1/
process_othersiR1CJJ:-

/f procedure PROCESS-OTHERS.! f/
I I

•ssert_told_lzstCRJ. /f procedure ~SSERT-TOLDLIST f/
process_othersiR 1LJ:-

/f procedure PROCESS-OTHERS.2 f/
lssert_skolelfq_lzst!LJ 1 /f procedure ~SSERT LISTIQ f/
I'

Proqra• 6.2.9: Procedures to process the second type of SUIItstzon

If the l1st of questioned Skolem funct1ons 1s an empty one,

then the f1rst subprocedure PROCESS-OTHERS.l 1s executed to

append the reason clause to the current l1st of subsldiary

clauses (procedure ASSERT-TOLDLIST). A subsidiary clause is

a reason clause wh1ch w1ll be asserted 1nto the database if

1t 1s agreed by the enquirer. The list of the subs1diary

clauses 1s kept in the database as an argument of pred1cate

subs1diary_l1st/l.

257

On the other hand, 1f any Skolem questioned function

conta1ned in the reason clause (l.e the l1st 1s not an empty

one). the second subprocedure PROCESS-OTHERS.2 will be

executed to append the l1st to the current l1st of the

quest1oned Skolem funct1on contained 1n the reason clause.

The current list of the questioned Skolem function 1s kept

in the database as an argument of the predicate

skolemfq_lJst/1.

Both predicates skolemfq_list/1 and subs1d1ary_list11 will

be used 1n the acceptance processing and also in the

creation of a new quest1on. Both procedures ASSERT-TOLDLIST

and ASSERT-SKOLEMFQ can be found 1n the Appendlx.

6.2.2.2 The acceptance processing stage

The ma1n work 1n the reason clauses process1ng stage as

descnbed 1n the last sect1on (6.2.2.1), is to make a

suggestion on the substitution of the reason clauses.

Noth1ng lS done on others, i.e assert1ng a new knowledge or

chang1ng the quant1f1er m1smatch1ng. So, at the end of the

reason clauses processing stage, some or all of these three

predicates skolemfq_llst/1, accepted_subst1tut1on/1 and

subsldiary_llst/1 have been asserted 1nto the database to

1ndicate the l1st of unmatching quest1oned Skolem

functlons, the accepted suggested substitution for the

reason clause, and the l1st of suggested subs1d1ary clauses

respect1vely.

In th1s stage, the enqu1rer w1ll be

suggest1ons to assert more subsidiary

presented

knowledge

w1th the

1nto the

258

database or to change the particular quant1f1ers or both of

them. This is carr1ed out by the procedure ACCEPTANCE as

shown 1n the follow1ng program (Program 6.2.10):

/t procedart RCCEPTRHC£ t/
rcceptrncrCOptzon,Rerson,Sorl,LzstqrrntlJ­

print_saggestzonsCLzstqrrntl,
rcceptrncr_chozceCOptzon,Rerson,Sorl,Lzstqrrntl1
rcceptrnce_rctzon,
I ..

froqrrt 6.2.101 Procedure RCCEPTRHC£

/t proctdare PRIHT-SUSSEST!OHS t/
/t procedure RCCEPT-CIO!C£ t/
/t procedure RCCEPT-RCTIOH t/

The above procedure (see Program 6.2.10) can be d1vided into

three substages. These substages are pr1nting the

suggest1ons, choosing the acceptance opt1ons and f1nally the

action taken upon the acceptance of the suggestions.

6.2.2.2.1 The Printing cf the suggestions substage

The f1rst substage 1s carr1ed out by the procedure

PRINT-SUGGESTION 1n order to pr1nt all sorts of suggestions.

There are three sorts of suggest1ons dependlng on the

ex1stence of the three pred1cates, 1.e skolemfq_llst/2,

accepted_substltution/1 and subsidiary_llst/1.

If pred1cate accepted_substltutlon/1 ex1sts, then a summary

of the suggested subst1tut1ons which have been accepted 1s

pr1nted again as a reminder to the user. And also 1f

predicate subsldlary_list/1 ex1sts then a l1st of clauses

wh1ch w1ll be suggested to be asserted 1nto the database as

subs1d1ary clauses, 1s printed for confirmat1on.

And f1nally 1f predicate skolemfq_llst/1 ex1sts, then a

suggest1on of chang1ng the relevant quantif1er 1nto its

oppos1te quant1f1er 1s also printed for a conf1rmat1on.

259

There are some d1fficult1es to be overcame when pr1nting the

mismatch quant1f1er. Th1s 1s due to the method of copy1ng

clause techn1que implemented 1n Prolog as explained 1n the

Chapter 2.

So the un1versal quant1f1er referred in the suggest1on does

not match w1th the un1versal quantifier referred 1n the

original question. For example, suppose that the or1ginal

quest1on 1n terms of the variables g1ven by Prolog 1s:

"all(_l,man(_l) => all(_2,woman(_2) => llkes(1,_2)))"

and further that th1s quest1on cannot be proved due to the

mismatched quantlfier of the universal quantifier "_2" (the

quantifler bind1ng "woman(_2)"). However as we kept this

variable In the database, then the printlng of the

suggestion of quantifiers changlng may appear as follows:

"1f all(_4, ...)" is replaced with "ex1sts(_4, ...)"

In this case, we do not

suggestion referred to

know which universal quantifier the

as there are two universal

quantiflers In the original question.

To overcome th1s problem, we need to have a variable which

keeps the original var1ables for any quantlfier contained

In the quest1on as an argument which Wlll be passed

on from the top level predicate until the pred1cate to

print the suggestion. So, the variable "Listquant" In

the procedure ACCEPTANCE wh1ch IS passed to procedure

PRINT-SUGGESTIONS contains a list of quantifiers which have

been Skolemized dur1ng the negation of the quest1on. By

having this list of skolemised quant1fiers, the above

suggestion will appear as:

"1f all(_2) .. 1s replaced with "exists(_2)"

260

It can be seen that the suggestion clearly refers to the

universal quantif1er b1nd1ng the pred1cate "woman(_2)".

In order to pass the l1st of Skolem1zed quant1f1ers from

the process of the negation of the question through to the

pr1nt1ng the suggest1on. some modif1cations need to be done

in the process of the negat1on of the question. Th1s will

be explained in the process of link1ng up between the

process of finding and rectifying faults later (see the next

sect1on 6.3).

The following sess1on 6.2.2. shows how the suggestion 1s

pr1nted by the procedure PRINT-SUGGESTIONS by assum1ng that

all the said three pred1cates ex1st:

If the foiiOMinQ clause are true:
• happy!uzatl •
• l1kes!a1zat,sMeetsl •

If 'all!_l,,,,J' 15 replaced Mlth 'exists!_!,,,,!'

And, so you have already agreed that:
11 • nazrul • of the question's clause • boy!nazrull • IS substituted

MI th • all at •

Do you l1ke to try aga1n by us1ng the above assu•pt1on!sl
---? b

Sess1on 6.2.3: The sa1ple pr1nt1ng done by procedure PRINT-SUGGESTION

It should be noted here that the sample pr1nting above 1s

not a real problem such there are no re!at1onsh1PS among

three g1ven suggest1ons. In a real problem. there would be

relationsh1ps among them.

261

6.2.2.2.2 The substage of choosing the acceptance options

At the foot of pr1nted suggest1on in the f1rst substage, the

enqu1rer w1ll be asked to type an opt1on for the next stage.

By referr1ng back the Sess1on 6.2.3 above, the response is

typed after a remark "---?" which 1s below a remark "Do you

l1ke to try aga1n by us1ng the above assumpt1on(s) ". In th1s

substage, the typed opt1on will be processed by procedure

ACCEPT-CHOICE. The opt1ons ava1lable is given as 1n the

follow1ng table (Table 6.2.3). The detail program of

procedure ACCEPT-CHOICE can be found in the Appendix.

Option

I
b
n
s
t
w
y or <return>
others

abort
break
not accepting the suggestions, sa see the other alternative,
show the failure tree of th1s particular reason clause.
type aga1n the Introduction.
why the suggest1an 15 suggested.
yes to accept the suggested subst1tut1an.
displaying help table ll1ke th1s one)

Table b.2.3: The apt1ans far accepting a suggest1an

Although there are many opt1ons ava1lable, 1n the end there

are only two options wh1ch w1ll carry through 1nto the

next stage. If we response with "n" to refuse the given

suggest1on, then the system will backtrack to f1nd any

other poss1ble suggest1on, 1.e back to the procedure

PROCESS-SUGGESTION (see Program 6.2.8) If we do accept the

suggestion, the actions taken upon acceptance will be

described 1n the following section 6.2.2.2.3.

6.2.2.2.3. The acceptance action substage

If the suggest1ons are accepted, the procedure ACCEPT-ACTION

Wlll be executed to assert denotat1on pred1cates into the

database. A denotat1on predicate 1s a predicate to denote a

262

particular meaning. The denotation predicate which Will be

asserted Into the database are predicates newsubsidiary/0

and atomic_equiv/1. The program of procedure ACCEPT-ACTION

can be found In the Appendix.

The list of the differences between the reason and the

mismatch clauses will be asserted in the database as an

argument of the predicate atomic_equiv/1.

All members (fact clauses) of the list subsidiary_list/1

will be asserted in the database as an argument of

the predicate subsidiarY/1. A denotation predicate

newsubsidiary/0 is also asserted 1nto the database to denote

that the predicates subsidiary/1 have been asserted 1nto the

database. These predicates subsidiary/1 will be considered

as a new set of KB clauses and will be used to prove other

questions as well as any new question resulting from the

rectification process. So the new deflnition of KB clauses

is as f o 11 ows :

/f KB clauses 11
lnowledge_btseiQ!:-

qmriQ!, 11 • qaerr clause 11
lnowledge_blstiK!:-

fact_baseW. /f 1 non-querr clluse 11

/f non·querr claases 11
fact_bmiK!:-

claasellnowledgeiK!,true!.
fact_bmiK! :-

cl•astlplaas:bleiK!,trae!.
ftet blstiK!:·

- claastlsabsidi•rriK!,trae!.

Proqrat 6.1.1/: The new def:n:t:on of KB clauses.

The new predicate fact_base/1 is needed here to

differentiate between query and non query clauses. This is a

quite important feature in finding the mismatch clause as

explained In section 6.2.1.2 above.

263

6.3 The link up procedure

In this sect1on. we will be describing how the l1nk up

between the rect1fy1ng faults and the proving (faults

f1nding) processes is carried out. The ma1n technique used

to link up those processes 1s a backtracking method adopted

by the Prolog. So, many procedures described in the chapter

3 w1ll be modified to suit the link up process. The link up

procedure must be able to reformulate a new question

accord1ng the accepted suggestion and then reprove it and

also to cut out any unreasonable backtracking.

The f1rst procedure needs to be mod1f1ed 1s a top level

procedure, i.e procedure QUEST or pred1cate quest1on/l as

descr1bed in Program 3.3.3.1 (see Chapter 3). So the new

procedure QUEST 1s as follows:

/f the nu procedure QUEST f/
qmtJOnC!1:-

c!ur JC 1 /t Step /: proctdm CLERRPC t/
reset_newqutryC!,Z1, /f Step 2: pracedurt RESET-QUERY f/
pc_to_hornclauseCZ,Ciiuse,Lzstquant1, /f Step I: procedure PC-HORN f/
retrr_searchCZ,Lzstquant1, /f Step 4: proctdurt RETRY-SERRCH t/
answer_semhCCiam,Z,Y,Listquant1, /f StepS: proctdure RS t/
prznt_answerCZ,Y,Ciause,Lzstquant1. /f Step 6: procedure PRIHT-RNSHER t/

Praqrat 6.1.1: The new defznztzon of procedure QUEST

There are some obv1ous d1fferences 1f we compare between the

new and the old def1n1t1ons, 1.e the new def1n1tion has s1x

steps compared to the old one wh1ch has four steps. The step

1 (procedure CLEARPC - see Appendlx) of both old and new

def1nition. and also step 3 of the old def1nit1on and step 5

of the new one (l.e procedure AS -see Program 3.3.3.3 of

chapter 3) are the same. So, we will only describe the other

steps, i.e steps 2, 3, 4 and 6.

264

6.3.1 Step 21 to set up a new query

This step 2 wh1ch 1s a1med to set up a new query resulted

from the reformulation process 1s carried out by procedure

RESET-QUERY. The procedure RESET-QUERY 1s given as follows:

/t procrdurt RESET-QUERY t/
resrt_nrwquerrCOrzgzn•lqarst,Orzgznllqarstl. /t proctdurr RESET-QUERY.! t/
reset_newqaerrCOrzgzntlqurst,Hrwqurrrll·

/t proctdurt RESET-9UERY,2 1/
reset.newqurrylCOrzgznllqaest,Hewquerrl, /1 procrdart RESET-QUERY/ t/
print.nrwquerrCHrwqurrrl. /1 procrdart PR-HEHGUERY t/

/1 procrdart RESET-QUERY/ t/
reset.newqaerylCOrzgznllquest,Hrwquerrl:·

/1 proctdart RESET-QUERY/,/ 1/
retrlctCnew_qaerrCHewqarrrll,
ibolzshCcarrent_qaery,ll,
tssertCcurrrnt_qaerrCHrwqurrrl.

reset_newqarry/COrzgznllqurst,Hewqurrrl:·
/1 proctdart RESET·QUERY/.f t/
erzstsCnrw_qurrrC.II,
rrset.nrwquerrtCOrzgznllquest,Hewqaerrl.

Proqrlt 6.1.2: To set up 1 questzon to bt provtd

If the query or quest1on 1s an or1g1nal one, then take 1t as

a question to be proved (Procedure RESET-QUERY.l). In other

words, dur1ng the f1rst attempt of prov1ng the or1g1nal

quest1on, noth1ng 1s done. i.e take the or1g1nal question.

Otherw1se 1f the question 1s not the or1g1nal one, 1.e the

new reformulated question, then take th1s one as a question

to be proved (procedure RESET-QUERY.2). Actually, the second

procedure RESET-QUERY.2 1s executed as a result of Prolog's

backtracklng, 1.e. when procedure RETRY-SEARCH falls.

The new reformulated query or quest1on exists if predicate

new_query/1 exists 1n the database. This new query 1s

retracted from the database by procedure RESET-QUERYl.l.

The second procedure RESET-QUERY1.2 1s used to set another

new reformulated query for the next attempt of prov1ng.

Procedure RESET-QUERYl 1s a sort of an 1terat1ve or a

WHILE-DO procedure whereby as long as ex1sts pred1cate

265

new_query/1, th1s procedure Wlll be executed. The pred1cate

new_query/1 is asserted 1nto the

(procedure RETRY-SEARCH).

database at step 4

After the new reformulated query has been set up, then 1t

w1ll be printed. The print1ng of the new query 1s done by

procedure PR-NEWQUERY which can be found 1n the Appendix.

6.3.2. Step 3: converting a PC into Horn Clauses

In th1s step, a quest1on in the predicate calculus form is

converted to Horn clause by procedure PC-HORN. The program

of procedure PC-HORN is as follows:

/f proctdare PC-HORK 1/
pc_to_hornclaaseCX,Claase,Lzstqaantl:-

lzst_qmtzfiersCX,Allqaantzfzml, /f procedure LlST-QUAKT f/
qautzon_to_hornclaasec•x,Claase,Sklzstl, /f procedure QTHC ''
terge_qaantzfzersCSklzst,Rllqaanlzfzers,Lzslqaanll, /f procedure K£R6£-QURK1 f/
'• /f to prevent 1 useless bacltr~elzng f/

Proqrat 6,1,1: Convertzng a PC znto Horn clauses

Before the question 1s actually converted 1nto Horn clauses

by procedure QTHC (see Program 3.3.3.2 of chapter 3), all

Prolog var1ables ass1gned to all quant1f1ers conta1n in the

quest1on 1s recorded by procedure LIST-QUANT denoted by

var1able "Allquant1fiers" 1n the above program 6.3.3. A llst

of skolem1zed quant1f1ers wh1ch 1s denoted by the var1able

"Sklist" 1s also recorded by the procedure QTHC.

As we are only 1nterested in the list of Prolog variables

ass1gned to the skolemized quant1f1ers and the1r or1g1nal

quant1f1er before skolem1zat1on for the purpose of pr1nt1ng

the suggest1on (see sect1on 6.2.2.1.2), and furthermore, the

l1st "Allquant1f1ers" cons1sts of all the Prolog var1ables

assigned to all quant1fiers occurred 1n the quest1on, then

266

procedure MERGE-QUANT is called after the convers1on of PC

to Horn clauses in order to record the Prolog variables

assigned to skolem1zed quant1fiers only.

The programs of procedures LIST-QUANT and MERGE-QUANT can be

found in the Append1x.

6,3.3 Step 41 procedure RETRY-SEARCH

Th1s step 1s a reformulat1on of the new quest1on accord1ng

to the accepted suggest1ons. After we accept the suggest1on,

there are three predicates which may be asserted into the

database depend1ng on the certa1n cases as explained 1n

sect1on 6.3.2.2 before. These pred1cates are atomlc_equlv/1,

skolem_fq/1 and newsubsjdlary/0. This step 1s carr1ed out by

procedure RETRY-SEARCH as shown below:

/f proctdart RETRY·SE~RCH 1/
retry_sttrchCOldqaery,L:stqatntJ, /f procedart RETRY·SE~RCR.I f/
retry_searchCOldquery,L:stqaantJ:·

/1 procedure RETRY·SERRCR.t f/
retry_starchlCOldqaery,L:stqaantJ. /f proctdart RETRY-SERRCHI 11

/1 procedure R£1RY·S£RRCHI 1/
retry_searchi(Oldquery,L:stqurntJ;-

/1 procedure R£1RY·SERRCHI.I 1/
not_existslato•:c_equ:vi_JJ,
not_ex:stslskole•fq_lzsti_JJ,
ex:stslnewsabs:d:ary(_JJ.

retry_starch/COldquery,L:stqaantJ;·
/f procedure RETRY·SERRCHJ.t 1/
rtforlulatt_questzonCOldquery,L:stqatntJ, /f procedart R£FORNULRT£Q 1/
rbol:sh(set_of_reason,lJ,
rbolishlrerson_son_father,lJ,
tbol:shlrsf_head,lJ,
tbol:shlnewsabsid:try,OJ,
abolishlqaery,JJ 1
ftzl.

retrr_sttrch/COldqaery,LzstqutntJ:-
/1 procedure RETRY·SERRCH/,1 1/
(txzsts(newsubszdz•rrll

txists(skolelfq_lzsti_JII
tXIStS(ItOiiC_tquiv(_JJ)1

retry_search/COldqatry,ListqatntJ.

froqral 6.1.4: Rtfor•alttzng or reprovzng the questzon

267

The f1rst procedure RETRY-SEARCH.l 1s executed first t1me at

the first attempt of the prov1ng of a particular question.

The second procedure RETRY-SEARCH.2 is executed as a result

of backtracking when the suggestion are accepted (see

section 6.2.2.1.3) such that the procedure PRINT-ANSWER

fails (see Program 6.3.1).

However the reformulation of the new question depends on the

existence of either pred1cate skolemfq_list/1. or

atomlc_equlv/1 or both of them. If only predicate

newsubsldiary/0 exists in the database (see procedure

RETRY-SEARCH! 1 of program 6.3.4 above), then no

reformulat1on 1s carried out but

proved once aga1n by us1ng the

wh1ch have been asserted before

knowledge.

the same question w1ll be

extra subs1d1ary clauses

1nto the database as new

Otherwise, a new question will be formulated by procedure

REFORMULATEQ. After the new quest1on 1s reformulated, all

relevant predicates will be abolished or retracted from the

database as the reproving of the new quest1on soon will be

executed aga1n. Those relevant predicates are

set_ot_reason/3, reason son_father/3, rsf_head/3, query/1

and newsubs1d1ary/O. And the procedure RETRY-SEARCH1.2 is

set to fall in order a backtracking can occur such that

procedure RESET-QUERY.2 will be executed.

The th1rd procedure RETRY-SEARCH1.3 1s an 1terat1ve or a

WHILE-DO procedure such that a new question can be

reformulated or the question is reproved aga1n for the next

268

proving attempt after the new suggestions are accepted for

the previously new reformulated question.

As we said above that the reformulation of new question IS

carried out by procedure REFORMULATEQ which IS shown as

below:

/t procedure R£FOR!ULRT£Q t/
rtfarrulatr_qarstianCOldqarrr1Listqaantlr-

/l pracedart REFOR!ULRT£8,/ t/
rrtractCalatrc_rqaivCQII1
nrw_gaalCHrwqarry21 1
sabst_skaler_natCHewqaerr21Hewqarry/ 181 1
qaantrfltrs_changJngCHewqaery/ 1Hewqaerr 1LJstquantl 1 /t pracedurt QURHT-CHRHSE 11
assrrtCnew_qaerrCHewqarrrll 1
I ..

refarrulate_qaestJanCOldqarry1LJstqaantlr­
/l procedure REFOR!ULRT£0.2 1/
nat_rxJstsCatarJc_eqaJvC_II1
exrstsCskalrrfq_IJstCSqll 1
quantlfltrs_changingCOidquery1Hewquery 1Listqaantl 1 /f pracedurt QURHT-CRRHS£ 1/
asstrtCnew_querrCHewqatrrll1
I ..

Praqrat 6.1.5r Pracrdart REFORKULRTEQ

There are two cases In the reformulation process of the new

question. The first one IS that the predicate atom1c_equ1v/1

exists in the database (procedure REFORMULATEQ.l). If this

IS the case, first of all. the atomic or global

substitutions on the Instantiation of the failed old

question ("Newquery2") are carried out

subst_skolem_not/3. and then finally

quantifiers will be changed by procedure

by

all

provided that predicate skolemfq_llst/1 exists.

predicate

relevant

QUANT-CHANGE

The second case IS that the predicate atomic_equiv/1 does

not exist and but the predicate skolemfq_list/1 exists. If

this is the case then the procedure QUANT-CHANGE IS called

to change the relevant quantifiers.

269

At the end of both cases, a predicate new_query(Newquery)

1s asserted into the database where "Newquery" 1s a

new reformulated quest1on. In both cases, we do not care

whether the pred1cate newsubs1d1ary/O exists or not 1n the

database as the relevant subs1diary clauses have already

been asserted 1n the database. The program of procedure

QUANT-CHANGE can be found in the Append1x.

6.3.4. Step 6: Print1ng the answer

In th1s step the top level pred1cate for Prlnting the answer

for the question 1s carr1ed out by procedure PRINT-ANSWER.

Th1s procedure is equ1valent to the procedure PA (see

Program 3.3.3.4 of chapter 3). The only d1fference is the

extra argument in the predicate prlnt_answer/4 of

procedure PRINT-ANSWER which 1s shown as follows:

/f procedure PR/NT-RNSNER :przntzng the 1nswer or so/atzon t/
prznt_lnswer<S,Y,CJ,Lzstqu•nt!:-

/1 Procedure PR/NT·RNSN£R,/: the c/aase zs 1n znconsistent one f/
•ffm<Rns!,
uuer_for•<Y,Rns!, /f procrdure RF f/
wrzte(' The cl1use :s 1n :ncons:stent one'!,
' ..

prznt_lnswer(Q,Y,Ciaast,Lzstqa•nt!r·
/t Procedure PRINT·RNSN£R,2: pr:nt ezther successful or f11lure provzng t/
Clause\=-CJ,
prznt_lnswerO(Q,Y,L:stqulnt!. /f procedure PRINT·RNSNERO f/

Proqr•• 6,1,6: Procedure PR/NT·RNSNER

So the description of procedure PRINT-ANSWER 1s exactly the

same as the procedure PA. However, the second procedure

PRINT-ANSWER.2 has other alms than the pr1nt1ng of answer,

it also means to rect1fy the fa1lure quest1on. Th1s 1s

270

actually carr1ed out by procedure PRINT-ANSWERO which 1s

called by procedure PRINT-ANSWER.2. The following 1s a

program of procedure PRINT-ANSWERO:

/1 procedurt PR/HT-RHSKERO 1/
pr:nl_tnswer0CQ111Lislqotnll:-

/l procedort PR/HT-RHSHERO.I 1/
nonvtrCYJ 1
tffmCRnsl 1
tnswrr_fortCY1Rns) 1 /1 procrdorr RF 1/
I
• I
reclifzersCY1Rns1Lzstquantl. /f procrdorr R£CT/FI£RS 1/

prinl_tnswrr0CQ111L:stqatnll:-
/l procedure PRIHT-RHSK£R0.2 t/
aff:r•Cresll
ex: slsC set _of _rusonC _1 _, _) J 1
rect:fiersCY1no 1L:stqaanll, /t procedure R£CT/FI£RS t/

pr:nt_tnswer0CQ1Y1Listqainll:-
/t procedure PRIHT-RHSK£R0,1 t/
exzslsCtoptrrCCJll 1
not_rxzstsCset_of_retsonC_1 _1_ll 1
tesl_f:n:sh_ftci(Q), /f procedure ill. t/

Prograt 6,1,7: Procedore PRIHI-RHSHERO

Procedure PRINT-ANSWERO can be d1v1ded into three

subprocedures. The f1rst one. procedure PRINT-ANSWERO.l. 1s

meant to pr1nt the answer 1f the prov1ng 1s successful or

otherwise to detect the reason clauses and their

rectif 1cat1on.

The second subprocedure. PRINT-ANSWER0.2. 1s a1rned to f1nd

any other possible suggestions for the quest1on prov1ded

that the set of reason clauses ex1sts 1n the database and

also the proving of the quest1on 1s successful (1. e

pred1cate "afflrm(yes)" exists 1n the database). Although

the question 1s successfully proved. 1t may also produce

some sets of reason clauses. So th1s subprocedure w1ll

handle those set of reason clauses as assum1ng that the

271

question can not be proved. For instance, let us see the

following sess1on (6.3.1):

?-list:ng(kncwledgel.

kncwledge(hu•an(nazrulll.
kncwledge(hu•an(alzatll.
kncwledge(happy(nazrulll,
kncwledge((success(_ll:-happy(_ll 1hu•an(_llll.

yes

?-pcquest.
:uuccmm.

NEXT QUESTION:
success (_tl

The translat:cn of its negation:
[J:-sumss(_ll,
&&&&&&&&&&&&&&&&&&&&&&&&&&&

))answer: Yes,
success (nazrull

E::::::::::::E::::::::::::::::

PROVED: success(nazrull ? 1

OPTION 1:
The reason why the goal:

1 success(a:zatl 1

fa:ls is the ncn-ex:stence of the following knowledge:

happy(matl

However, we 1ay able to prove the goal
after do:ng sc1e ccrrect:cns or add:t:ons

Do you l:ke to continue ? a

Sess:on 6,3,1: F:nd:ng ether suggestion fer a successful quest:cn

From the above session (6.3.1), we can see that although the

quest1on "success(X)" is successful, i. e "X" 1s 1nstant1ated

to "nazrul", but the goal (quest1onl "success(alzat)" falls.

So the second subprocedure PRINT-ANSWER0.2 handles this type

of result.

The th1rd subprocedure, PRINT-ANSWER0.3, 1s to mark the end

of prov1ng and its exactly the same with procedure PA0.2

272

(see Program 3.3.3.5 of chapter 3) but with the extra

condit1on, 1.e no more pred1cate set_of_reason/3 exists in

the database.

So, in the first and second subprocedures, i.e procedures

PRINT-ANSWERO.l and PRINT-ANSWER0.2, the process of find1ng

the reason clauses 1s carr1ed out even though the prov1ng 1s

not necessarily unsuccessful. This find1ng is carr1ed out

by procedure RECTIFIERS which 1s as follows:

/f procedure RECTIFIERS 1/
rectzfzerslY,yes,Lzstqu•nt!z-

/1 procedure RECTIFIERS,/ 1/
wrzte_provedluser,Y!,
getom,
•nswer_responselR,Y,Listqu•nt!. /f procedure RHS-RESPOHSE

rectifierslY,no,Lzstqutnt!z-
/1 procedure RECTIFIERS.2 f/
why_zt_fizlslY,Lzstqu•nt!,
elm _pc I,
',fill.

Proqrat 6.3.8: Procedure RECTIFIERS

/f procedure HHY-FRILS t/
/f procedure CL£ARPC/ 11

The f1rst subprocedure, RECTIFIERS.l, is to pr1nt the

successful answer and the enqu1rer w1ll be g1ven a cho1ce of

opt1ons by procedure ANS-RESPONSE. The options ava1lable are

the same as 1n the Table 3.3.1 of chapter 3. So the

procedure AR (see Appendix) is equ1valent to procedure

ANS-RESPONSE apart from the d1fferent number of arguments.

The program ANS-RESPONSE can be found 1n the Appendix) . In

other words, the procedure RECTIFIERS.l is equivalent to

procedure MORE-ANS (see Program 3.3.3.6 of chapter 3).

The second subprocedure, RECTIFIERS.2, 1s the main l1nk up

between the two procedures of finding and rect1fying faults.

The find1ng faults is called within procedure PC-HORN above

(see Program 6.3.3) or to be prec1se from procedure ASK (see

273

Program 6.2.5 in section 6.2 above). The rectifying faults

procedure wh1ch 1s called from th1s subprocedure

RECTIFIERS.2 1s a procedure WHY-FAILS (see Program 6.3.1 1n

sect1on 6.3 above). After procedure WHY-FAILS is

successfully executed, procedure CLEARPCl is called to reset

all the relevant control and denotation predicates. The

program of procedure CLEARPCl can be found in the Appendlx.

Th1s second subprocedure (RECTIFIERS.2) is set to fail such

that a backtracking can occur to the po1nt of step 4

(procedure RETRY-SEARCH) g1ven that there 1s no more other

poss1ble answers to the quest1on. However the f1rst

subprocedure (RECTIFIERS.!) will backtrack to the step 5

(procedure ARJ when the user requ1res more answers to the

quest1on.

274

6.4. Examples

We have already descr1bed the fault detect1on algor1thm

(section 5.4) which has been incorporated w1th the theorem

prover program (chapter 3) • the fault rectification

algor1thm (sect1on 6.2) and a system to link up both

algorithms. In this section we will show some examples

following the description of both algor1thms. For

simPllcltY. suppose the follow1ng KB clauses have already

been asserted in the database:

lnowledgeCtinCIIZitll.
lnowledgeCtinCntzralll.
lnowledgeCtlnCrz•kll.
lnowledgeCwo••nCros/ell.
lnowledgeCwo••nCsarihll.
lnowledgeCwo••nCevell.
lnowledgeCClovesCilZtt,roslell.

Pttiblse 6.4./: R l1st of Sitple KB cltases

6.4.1. Example 1

In th1s sect1on, we will show how a subst1tuted suggest1on

1s dealt.

?-pcquest.
11 unlrosul.

NEXT QUESTION:
unlrosul

The translation of 1ts negat1on:
[h-unlrosill.
&&&&&&&&&&&&&&&&&&&&&&&

))answer: No, 1t cannot prove 1
• un lrosul '

==·

Sess1on 6,4,1.1: The f1rst part of a sess1on to prove '1anlros1el'

Certa1nly, from the above Database 6.4.1, we cannot prove or

deduce "man(rosie)". Up to this stage, all sets of reason

clauses have already been recorded by the system (see

sect1on 5.4). In other words, the f1rst five steps of

275

procedure QUEST (see Program 6.3.1 of sect1on 6.3) has

f1n1shed. Let us see the cont1nuat1on of the prov1ng sess1on

wh1ch 1s actually the step 6 of procedure QUEST:

OPTION 11
The reason why the goal:

'unlrosiel'
fails IS due to the non-existence of the the following fact:

un lrosltl

However, we 1ay able to prove the goal
after do1ng 1011 corrections or additions

--Do you like to cont1nue 'l

Sorry, no other set of reason clauses

--Do you l1ke to cont1nue ?s

'•anlrosiel' fails
•••> 'goall1anlros1ell' fails

--Do you l1ke to cont1nue 'Y

Sesston 6,4,!,2; The second part of prov1ng sess1on of '1anlros1el'

As the proving falls, procedure PRINT-ANSWER0.1 (see Program

6.3.7 of section 6.3.4) will handle th1s situation. The

system will l1st the f1rst option of the reason why the goal

(question) falls as shown 1n the above sess1on 6.4.1.2, and

w1ll ask the user "Do you l1ke to cont1nue ?".

In the above session (6.4.1.2). the user response with "1"

in order to see other possible set of reason clauses and the

system w1ll l1st all other possible set of reason clauses,

if they exist, or will pr1nt a remark that no other set of

reason clauses as shown In the above session 6.4.1.2, If

this 1s the case. The user then responds again to the

question by typing "s" In order to see the failure tree of

the reason clause as shown in the above session where, in

this case, the goal Itself 1s actually the reason clause.

276

All other val1d responses to this quest1on are as in the

Table 6.2.1 (of section 6.2). Finally, the user agrees to

continue the session by typ1ng an option "y" 1n order to see

the rect1f1cat1on suggestions wh1ch will be made by the

system. Th1s reason clauses processing 1s carr1ed out by

procedure PROCESS-REASONS (see Program 6.2.7 of section

6.2.2.1). where then the suggestion will be made by

procedure SUGGESTION (see Program 6.2.8 of section 6.2.2.2).

The following session shows the cont1nuat1on of proving

session of "man(rosie)":

1f ' ros1e ' of the question's clause ' aanlros1el' 1s substituted
w1 th 'aiut'

... sa,

---Do you agree ? •

' aanlrosiel' falls, but exists
' unl11zatl '

If ' ros1e' of the question's clause 'aanlrosiel' IS substituted
w1th 'aizat'

---Do you agree ? 1

The other possibility of subst1tut1on of 'aanlros1el' are as follows!

".so,

'ros1e' can also be replaced w1th 'nazrul' as ex1sts
'un lnazrul)'

'ros1e' can also be replaced w1th 'rzak' at ex1sts
'unlrukl'

'aan' can also be replaced w1th 'woaan' as ex1sts
'wounlrosi!l'

1f 'ros1e 'of the question's clause 'aanlros1el' 11 substituted
w1th 'uut'

---Do you agree ? n

1f ' ros1e ' of the question's clause ' aanlros1el' is substituted
w1th 'nazrul'

---Do you agree ? n

if ' ros1e ' of the question's clause ' aanlros1el' 1s substituted
with 'rzak'

---Do you agree ? n

1f ' aan ' of the quest1on'1 clause ' aanlros1el' is substituted
w1 th 'woun'

---Do you agree ? y

Sess1on 6.4.1.3: The th1rd part of prov1ng session of 'aanlros1el'

277

In the above sess1on (6.4.1.3), the var1ous subst1tut1ons

are presented by procedure ACCEPT-SUBS (see Appendlx)

after the matching process is carr1ed out by procedure

ORDERED-MISMATCH (see Appendix). Both procedures are called

form procedure SUGGESTION.! (see Program 6.2.8 of sect1on

6.2.2.1 and also sect1on 6.2.2.1.1). The above sess1on shows

the system's responses to the user's response of "Do you

agree" such as "w" to see why the suggested substitut1on 1s

made; "1" to llst other possibi llty of subst1tut1on; "n" and

"y" to reject and accept the suggested subst1tut1on

respectively. Other val1d responses of "Do you agree" 1s as

shown 1n Table 6.2.2 of sect1on 6.2.2.1.1. The follow1ng

sess1on shows part of the acceptance of other

rect1f1cations (see section 6.2.2.2). 1f they ex1st, of the

proving session after the user has 1n1t1allY agreed to

subst1tute "man" of "man(rosle)" with "woman".

,,,so you have already agreed that;
'1an' of the question's clause '•an!rosael' as substatuted •ath

'Mcun•

Do you lake to try agaan by usang the above assu1pt1on
---? y

Sess1on 6,4.1,4: The fourth part of the prov1ng sess1on of '1an!rosael'

All the suggested subst1tut1ons wh1ch has been 1nitially

agreed in the third part w1ll be presented aga1n by the

system for a confirmat1on. The valid responses to "Do you

llke to try aga1n by us1ng the above assumpt1on ?" are shown

1n Table 6.2.3 of sect1on 6.2.2.2.2.

All the processing shown 1n sess1ons 6.4.1.2, 6.4.1.3 and

6.4.1.4 above are carr1ed out by procedure RECTIFIERS.2 (see

Program 6.3.8 of sect1on 6.3.4). As shown 1n sess1on

6.4.1 4, the user confirms his (her) 1n1tial agreement of

278

the suggested subst1tut1on. Consequently procedure

RECTIFIERS.2 1s set to fail (by commands "!,fall") and thus

procedure PRINT-ANSWER (The step 5 of procedure QUEST - see

Program 6.3.1 of sect1on 6. 3) falls. Prolog Wlll

automatically backtrack to the step 3 of procedure QUEST

(l.e procedure RETRY-SEARCH) where the new quest1on Wlll be

reformulated.

As shown in session 6.4.1.4, there 1s only one subst1tution

to be made to the orig1nal question (by procedure

RECTIFIERS.2). As th1s lS the case, the procedure RECTIFIERS

w1ll also be set to fall and Prolog Wlll backtrack aga1n to

the step 2 (procedure RESET-QUERY) 1n order to reset the new

question and start the prov1ng all over aga1n as shown in

the following sess1on (6.4.1.5):

RE-QUESTION!
MDiin(rcslel

The translat1cn cf 1ts negaticn:
lli·Mcaan!rcslel
&&&&&&&&&&&&&&&&&&&&Ill

))ansMerl Yes,
MD un (res u I

·============================·=·

PROVED:
Mcaan!rcs1el ? ;

ne acre ansMer 1

Sess1cn 6.4.1.51 The f1nal (flfthl part cl prcv1ng sess1cn cl 'aan!rcs1el'

And finally we succeed in proving a new question

"woman(rosle)" after starting with the unsuccessful one, i.e

.. man(rosie) 11
•

279

6.4.2 Example 2

In th1s example, we Wlll be deal1ng w1th a non-matching

reason clauses. In other words. the detected reason clauses

do not have any m1smatch KB clauses and as a result. new

knowledge w1ll be asserted into the database. Suppose we

would llke to prove "boy (tony) ". We wi 11 use the same part

of the sess1on as expla1ned in example 1 (see section 6.4.1)

for an explanation of how the rectif1cation 1s carried out.

By skipp1ng the first part of a prov1ng sess1on as it lS

obvious that the prov1ng fails. And also that the goal

"boy(tony)" fails because 1t does not ex1sts 1n the Database

6.4.1 .. so assum1ng the user agrees to see the rectification

process. This means that we w1ll also sk1p the second part

of the proving session.

The system will then process the reason clauses and w1ll

present suggested subst1tut1ons to the user. As there

1s no correspond1ng m1smatch KB clauses. the reason

clause "boy(tony)" wi 11 be processed by procedure

PROCESS-SUGGESTION.2 (see Program 6.2.8 of section 6.2.2.1).

The th1rd part of the proving sess1on w1ll also be skipped

here as no subst1tut1on will be suggested. So we will move

on the fourth part of the prov1ng session wh1ch are as

follows:

If the follOM1ng clause 11 true:
'boyltonyl'

Do you like to try aga1n by us1ng the above assuapt1on
---? y

Session 6.4.2.1: The fourth part of the prov1ng sess1on of 'boyltonyl'

280

The above session shows the system's suggestion, I.e if

"boy(tony)" IS true. By accepting the suggestion, the system

will assert predicate "subsidiary(boy(tony))" Into the

database as explained in section 6.2.2.2. As a result of

this, Prolog will backtrack to the step 4 of procedure QUEST

(I,e the explanation IS as in example 1 before).

In this case, procedure RETRY-SEARCH1.1 will be executed as

only predicate newsubsjdjary exists in the database. So, no

reformulation of new quest1on will be carried out, but the

prov1ng will be once again carried out, I.e the steps 6 and

7 of procedure QUEST w1ll be executed. The following session

shows the final part of proving "boy(tony)":

»ansMer: Yn,
boyltonyl

:::::::::::z::::::::::::::::::::

PROVED:
boyltonyl ?

yes

Sess:cn 6.4.2.2: The f:nal lf:fthl part of prov:ng sess:on of 'boyltcnyl'

In th1s example, no reformulation of the original question

IS performed. In other words, the same question 1s reproved

again but this time a new knowledge (fact) has been asserted

1nto the database. This example shows the second possible

cause of failures as discussed In section 6.1.

281

6.4.3. Example 3

In th1s example, we w1ll show how the system weakens the

scope of the bind1ng of the quest1on's quantlfier(s) 0 The

weakening process 1s performed when the difference between

the reason clause and the mismatch KB clause contains a

quest1oned Skolem function (denoted by "fq") o It should be

noted here that 1t is not always the case to weaken the

quest1on's quantifiers, but it may also to un1versify the

question's quantiflers, ioe chang1ng from existential

quantifier 1nto un1versal quantlfiero Th1s case happens as a

result of the negation of the quest1on's clause before

prov1ng 1to However. we w1ll not show this case 1n th1s

example as the process of un1vers1fY1ng the quantifler 1s

equ1valent to the process of weakening the quantiflero

By assum1ng the present of Database 6o4o1, let us prove the

unprovable question (for the sake of clarlfying the system's

work) as shown in the follow1ng session 6o4o3o1o:

?-pcquest.
1: alliX,•aniXI=>exlstsiY,wo•aniYI~lovesiX 1 Yill.

NEXT QUESTION!
alll_1 1 1anl_!l=)ex!stsl_2,wo•anl_21~lovesl_1 1 _2ll

The translation of its negat1on:
unlfqlunOll.
Cl:-•o•anl_21 1loveslfql•an01,_2l,
~~~~,~~~~~~&&&&&&&&~&~~ 

)))))))) can not prove lan(fqllanOll ((((( 
>>>>>>>>can not prove Cll-wo•anl_2l,loveslfqllan01,_21 <<<<< 

>>answer: No, 1t cannot prove 1 
al11_1 1 •anl_!l•>exlsts1_2 1 wo•an(_2l~lovesl_1,_21l 

========================================· 

Sess1on 6.4.3.1: The second part of the prov1ng sess1on 

From the above session, a universal quantif1er of the 

quest1on. loe X (or "_1" ) • have been changed to quest1on's 



282 

Sko lem function. 1. e "fq (manO) ". Now, let us see the second 

part of the prov1ng sess1on as shown 1n the follow1ng 

session (6.4.3.2): 

OPTION 11 
The reason Mhy the goal! 

' ill (_l,un(_ll•>existsi_21Mounl_21l•lovn(_l 1_2ll ' 
fails is due to the non-existence of tht the folloMing fact• 

••anlfqlunOll 

HoMever, Me •ay able to provr the goal 
aft&r do1ng so1e corrections or additions 

-·Do you like to continue 's 

• ••anlfql•anOll' fails 
•=•> 'goallalll_l,lanl_ll•>exlstsi_21Molanl_21l•loves1_1,_2ll' fa1ls 

--Do you like to continue ?y 

Sess1on 6.~.3.2: The second part of the prov1ng sess1on 

One of the set of the reason clauses of the fa1led question 

is" -man(fq(manO))" as shown 1n the above sess1on. So. the 

rect1f1cat1on process cont1nues by process1ng the reason 

clauses as expla1ned 1n the example 1 before. The third part 

of the prov1ng sess1on w1ll not be presented by the system 

as the dlfference between the reason clause and a m1smatch 

KB clause 1nvolve a questioned Skolem funct1on. i.e 

"fq(manO)". So the system w1ll cont1nue w1th the fourth part 

of the prov1ng sess1on as shown in the following session 

(6 .4.3.3): 

If 'alii_!,,,,)' IS replaced Mlth 'exists!_!,,,,)' 

Do you like to try again by us1ng the above assu1pt1on 
••• ? M 

the reason clause conta1ns a Skole1 funct1on 'fq' 

Do you like to try aga1n by us1ng the above assu1pt1on 
---? y 

Sess1on 6.~.3.31 The fourth part of the prov1ng sess1on 



283 

So the system will backtrack to the step 4 of procedure 

QUEST to reformulate new question as the user has agreed to 

weaken the un1versal quantif1er b1nd1ng "man(X)" to an 

existent1al quantif1er. After the new question has been 

reformulated, then the system w1ll backtrack again to the 

step 4 of procedure QUEST to restart aga1n the prov1ng 

process but w1th a new mod1fied question and the process 

starts all over aga1n as explained in the example 1 before. 

RE-QUESTION: 
ex!stsl.31•anl_31&exlstsl.4,wo•an(_41&loves(_3,_4111 

The translation of 1ts negation! 
[l:·•anl_31,wo•anl_41 1lovesl_3,_41, 
&&&&&&&&&&&&&&&&&&&&&&& 

»answer! Yes, 
existslalzat,•anlalzatl&exlstslrosle,wo•anlroslel&loveslalzat,roslelll 

==~=====================·======· 

PROVED I 
exlstslaizat,•anlalzatl&exlstslrosle,wo•anlroslel&loveslalzat,roslelll 

yes 

Sess1on 6,4.3.4: The f1nal lflfthl part of the prov1ng sess1on 

We can see from sess1on 6.4.3.4. that the universal 

quant1f1er of the original quest1on has been weakened to 

become an ex1stent1al and furthermore the 

1mplicat1on s1gn correspond1ng to the un1versal quantifier 

has also been changed to a conJunctlon sign (&). In other 

words, the old quest1on "all(X.man(X) => ... )" 1s changed to 

a new quest1on "exists(X.man(X) & .. . )". As shown 1n sess1on 

6.4.3.4. the new question has been successfully proved by 

the system. 



284 

6.5 Comments 

In th1s chapter, we have discussed the fault rect1fication 

algorithm, the procedures to link up this algor1thm and the 

fault detect1on algor1thm (section 5.4) and 1n the last 

sect1on (6.4), we have given three examples to show the 

ability of the system in detect1ng and rectifying fault. All 

the or1g1nal quest1ons of these examples are 1n the form of 

predicate calculus. It should be noted here that the system 

1s able to d1agnosis the question in the form of PC where 

the predicate is e1 ther 1n the form of , say. "man(X)" or 

"f(man,X)" (see chapter 4). 

Summar1ly, the system 1s able to rectlfY those reason 

clauses detected e1ther by 

[1] subst1tuting all wrong references in the quest1on's 

clause, 

[21 weakening (un1vers1fY1ng) the scope of the relevant 

quant1f1ers 1n the quest1on's clause, 

or [3] assert1ng the relevant reason clauses 1nto the 

database as a subs1d1ary clauses (a new knowledge). 

These rect1f1cations are carried out on the assumpt1on that 

the user make a wrong quest1on and the database does not 

contain any faulty data. However, the user also can rectlfY 

any faulty clauses (facts) 1n the database. Those faulty 

facts can be spotted by the user dur1ng interacting with the 

system especially when ask1ng 

suggested and also when pr1nting 

failed goals (subgoal). 

why 

the 

a subst1tution 1s 

fa1lure path of the 



285 

For example, suppose we would 

"man(razak)" from the database 

llke 

6.4.1 

to query about 

(sectlon 6 .4). 

Unfortunately, the system cannot deduce or prove the 

part1cular quest1on, i.e "man(razak)". And the user 

cont1nues interact1ng with the system to f1nd out the 

reasons or any rectiflcation. In the th1rd part of the 

proving session (as explained in sect1on 6.4) ,which is as 

follows: 

if ' razak ' cl the question's clause ' aan!razakl' is substituted 
Ml th 'rzak' 

... so, 

---Do you agree ? M 

' aan!razakl' falls, but ex1sts 
' aan!rzakl ' 

1! ' razak ' cl the questtcn's clause ' aan!razakl' 11 substituted 
Ml th 'rzak' 

---Do you agree ? b 

Sesstcn 6.5.!: The thtrd part of prcvtng sesstcn cl 'aan!razakl' 

The above sess1on (6.5.1) shows the suggest1on of 

subst1tut1ng "razak" w1th "rzak" as ex1sts "man(rzak)" 1n 

the database. We, as a user, could not1ce that we know the 

correct spell1ng of "razak", thus "man(rzak)" is wrong and 

should be corrected and not to rect1fY the question, 1n th1s 

case. Consequently we break out from the prov1ng sess1on and 

rect1fy the database contents. Th1s method 1s still helpful 

although a b1t manually. Even Shap1ro's method needs the 

user to mod1fY the faulty rules. 

Th1s method can also be extended to f1nd and to rectify 

faulty rules by applying Shap1ro's contrad1ction 

backtrack1ng techn1que to the fa1lure tree as shown 1n the 

second part of the session (see section 6.4) and also by 

assum1ng that the reason clauses are true (and thus the 



286 

prov1ng succeeds). After detecting faulty rules or facts, 

the mod1f1cat1on of the rules or facts can be made by using 

Prolog commands (such as retract, consult etc). 

Shap1ro's techn1que 1s used to detect and to modify any 

faulty rules or facts when the prov1ng g1ves unexpectedly 

successful results. However, our techniques is used to 

detect and to rectify any query or fact when the prov1ng 

ends up with unexpectedly unsuccessful results. 



CHAPTER 7 

A COMPLETE SYSTEM 



287 

7.1 Introduction 

In chapter 4. we have d1scussed the problems 1n 1nterfac1ng 

a subset of natural language processor to the theorem 

prover. Three methods of 1mplement1ng the subset of natural 

language have been d1scussed. Those techn1ques are the 

tracing techn1que. the wording technique and the extra 

cond1t1ons of "nonvar(X)" and "var(X) ". These techn1ques 

have been used to analyse Engl1sh sentence 1nto PC and also 

to synthes1ze them from the resulting PC. 

In chapter 5 and 6. we have also d1scussed algor1thms on how 

to detect and to rect1fy a faulty fact respect1vely and 

also the procedure to llnk both algor1thms. We restr1ct 

ourselves 1n discussing both algorithms that the Input 

question IS 1n the form of PC However. the PC's form IS 1n 

either. say. "man(X)" or "f(man.X)". The latter was adopted 

1n translating an engl1sh sentence Into PC (chapter 4). The 

Prolog-based theorem prover have also been modlfied to 

translate both PC forms into Horn clauses. 

In the following section (7.2). we Will d1scuss how the 

three techn1ques d1scussed 1n chapter 4 can be Incorporated 

with the fault detect1ng and rectlfYing algorithms. In other 

words. we would like to bu1ld a complete system such that 1t 

can process both types of Input. I.e an English (a natural 

language) sentence or a PC. 

the system works with an 

sect1on 7.3. 

We w1ll show some examples how 

English sentence as 1nput in 



288 

7.2 Interfacing with the English grammar 

In th1s sect1on, we will d1scuss how the three techniques 

d1scussed 1n chapter 4, 1.e the tracing, the word1ng and the 

extra cond1t1on1ng techn1ques, w1ll be 1ncorporated into the 

detect1ng and the rect1fying algorithms (as discussed 1n 

chapter 5 and 6 respectlvely). 

In chapter 6, we assume two possible types of fault, i.e 

[1]. The wrong references 1n the query. 

[2]. The non-exlstence of the facts 1n the database. 

After detecting those faults, we 

the follow1ng rectif1cat1on steps 

the fault detected: 

have taken one or more of 

depend1ng the nature of 

(a) by subst1tuting an atom 1n the 

example, by subst1tuting "man" 

question clause, for 

of "man(rosie)" with 

"woman" to become woman(rosle)". 

(b) by weaken1ng (or unlverslfYlng) the relevant 

example, by 

(c) 

quant1fiers of the question clause, for 

weaken1ng a un1versal quant1f1er b1nd1ng "man(X)" of 

"all(X,man(X)=>loves(X,god))" 1nto an ex1stent1al 

quant1fier, thus "exlsts(X,man(X)&loves(X,god))" became 

a new quest1on. 

by asserting a new 

when the proposals 

reJected and also 

found. For example, 

knowledge clause 1nto the database 

as suggested 1n (a) or (b) are 

when no mismatch clauses can be 

"man(razak)" 1s asserted into the 

database as a subs1diary clause. 

In both cases (a) and (b) and any comb1nation of (a), (b) or 

(c), we will have to reformulate a new question. On the 



other hand. In the case (c) 

(a)). the old question will 

alone 

not be 

reproving IS carried out again. 

289 

(without cases (b) and 

changed but Instead a 

Thus when a new question (In the PC form) is reformulated. 

we also need to rephrase a new English (a natural language) 

question corresponding to the new PC question. This Is where 

the Incorporation of the three techniques discussed in 

chapter 4 will be discussed. 

7.2.1. The tracing technique 

By using this technique. as discussed In chapter 4, we Will 

be at ease If the analysing and synthesizing process deals 

in generating the same original English question (sentence). 

for example, the question sentence "Tony IS kind?", says, 

will give the answer sentence as "Yes, Tony IS kind". 

However, if the need of substituting and/or weakening 

processes are required. this technique will be very 

difficult to Implement. We would not have any difficulty In 

substituting and/or weakening processes of the question In 

PC form, but the new PC question will be very hard to be 

synthesized back Into English sentence again, as the tracing 

variable recorded during the process of analysing is no use 

at all due to the rectification process of cases (a) and/or 

(b) have taken place. Thus the old tracing variable also 

needs to be modified according the rectification processes 

of (a) and/or (b) which were taken upon the old question. 

All the grammar rules numbers and the wording itself must be 

modified in the tracing variable. Furthermore. the most 



290 

diff1cult modif1cation 1s when the rectif1cation of the 

case (b) is carr1ed out, 1.e the whole series of grammar 

rules used may be d1fferent from the grammar rule used as 

explicitly shown in the or1ginal trac1ng variable. In 

foresee1ng th1s dlfficulty, this method has not been 

incorporated 1n the fault 

algor1thms. 

detect1on and rectificat1on 

7.2.2 The wording technique 

After a new PC quest1on 1s reformulated, then 1f using the 

word1ng technique, the word1ng database which conta1ns all 

the words of the quest1on or the sentence, has to be 

mod1fied according to the process taken upon the old 

quest1on, 1.e when cases (b) and/or (cl are carr1ed out. For 

example, see the follow1ng sess1on: 

'·phrase. 
1: Tony Is k1nd? 

NEXT SENTENCE: 
Tony IS kind' 

···············> 
The listing of 'word_used': 

word_used!Tonyl, 
word_usedl1sl. 
word_usedlk1ndl, 

......... ) 
No, 1t IS false that Tony 1s kind, 

OPTION 11 
The reason why the goal: 

'exlsts!Tony,proper_noun!Tonyl,flkind,Tonyll' 
fa1ls IS due to the non-existence of the the following fact: 

f !kind, Tonyl 

However, we 1ay able to prove the goal 
after do1ng so1e corrections or add1t1ons 

--Do you like to cont1nue ?y 

Sess1on 7.2.2.1: t•• and 2•• part of proving sess1on of 'Tony 11 k1nd?' 



291 

The above session shows that the question "Tony 1s kind?" 

falls due the non-ex1stence of "f(klnd.Tony)" in the 

database. If we see the next part of the prov1ng sess1on 

wh1ch 1s shown as follows: 

if • Tony • of the question's clause 'flkind,Tonyl' is substituted 
Nlth 'John' 

, .. so, 

---Do you agree ? • 

• flkind,Tonyl' falls, but exists 
• flkind 1Johnl' 

if • Tony • of the question's clause • flk1nd 1 Tonyl' IS substituted 
Nlth 'John' 

---Do you agree ? y 

Sess1on 7.2,2,2: The 3'" part of prov1ng sess1on of 'Tony IS kind?' 

So. after accept1ng the suggested substitut1on. the system 

Wlll reformulate the new quest1on 1n the PC form wh1ch 

become "ex1sts(John.proper_noun(John).f(k1nd.John))" after 

replac1ng "Tony" w1th "John". However. w1thout mod1fying the 

word1ng database. the new correspond1ng quest1on "John lS 

kind?" w1ll not be generated as "word_used(John)" does not 

ex1st in the database In order to generate the new 

correspond1ng sentence (questlon) . we need also to assert 

"word_used(John)" 1n the wording database to replace 

"word_used(Tony) ". And so. the proving session w1ll cont1nue 

unt1l the user sat1sf1es w1th the response from the system 

or no other possible solut1on. 

From the above example, the substitution of type (a) can be 

easily be 1mplemented. However. th1s 1s not so 1n case (b) 

where the quant1fier of the question's clause (sentence) lS 

1nvolved. For example. suppose the quest1on 1s "every man 

loves a woman" which w1ll be translated into PC form as 

follows: 

aii!X,indeflnlte!XI,fl•an,XI=>exlsts!Y11ndeflnlte(YI 11(NOIIn1Yilflloves 1X1YIII 



292 

Th1s PC representation 1s equivalent w1th the example 3 of 

sect1on 6.4.3. And the wording database 1s as follows: 

The listing af 'ward_used'l 
ward_used!everyl, 
ward_used!unl. 
ward_used!lavesl. 
ward_used !al. 
ward_used!waaanl, 

The new question reformulated after accepting the suggested 

rectif1cat1on, 1.e by weaken1ng the un1versal quant1f1er 

bind1ng "f(man.X)", 1s became: 

exlsts!l 11ndeflnltt!XI,f!tan 1XIlexists!Y11ndeflnlte!YI,f!waaan,Yilf(laves1l 1YIII 

The above new PC question 1s equ1valent to "a man loves a 

woman". Then, by us1ng the word1ng technique, the orig1nal 

word1ng database should be modifled In order to generate the 

equ1valent new PC. Thus, "word_used(every)" of the word1ng 

database should be replaced with word_used(a)". In th1s 

case. 1t 1s not very d1ff1cult to 1mplement the mod1f1cation 

of the wording database. 

However, the question "all men love a woman" should give the 

same PC question but, of course, Wlth a different wording 

database: 

The listing af 'ward_used': 
oard_used !all I. 
ward_ used !ten I. 
ward_used!lavel. 
ward_used !al. 
ward_used!watanl, 

Then the new reformulated PC quest1on 1n Engl1sh sentence 

will be hard to generate, as we need to replace three 

wordings, i.e 11 all .. , "men" .. and "love" w1th .. a 11
, "man 11 and 

"loves" respect1vely. This is one of the d1fficult1es 

1n lmplementing th1s techn1que when we would like to 

synthes1ze from the given PC Into the corresponding English 

sentence. 



Although we can write a program 

words of the sentence from the 

293 

to extract all the relevant 

PC itself, but the relevant 

extracted words do not Indicate their singularity or 

plurality. For example, the word "man" which is extracted 

from "all(X,1ndef1nite(X) ,f(man,X)=> ... )", does not indicate 

whether Its original sentence form IS "every man ... "or 

"all men " or other forms. Furthermore, the wording 

database does not also show the relationships between those 

words. For example, the wording databases for sentences 

"every man loves a woman" and "a man loves every woman" are 

the same. 

In viewing these difficulties, the wording technique has not 

been Incorporated Into the fault detection and rectification 

algorithms. 

7.2.3 The condit1on1ng technique: "var<X>" and "nonvar<X>" 

This technique IS 

except that this 

quite simllar to the word1ng techn1que 

condit1on1ng techn1que does not keep a 

record of all word1ngs of the English sentence. It also puts 

more 1nformat1on about each word of the sentence 1nto the 

corresponding PC Itself as d1scussed 1n sect1on 4.4.3. 

In 1ncorporat1ng this cond1t1oning techn1que Into the fault 

detection and rectificat1on algorithms, we will face the 

same problems as discussed In the last two sections, I.e 

sections 7.2.1 and 7.2.2. 

We would not have any problem 1f the rectification of type 

(a) and/or (c) are involved. However, If the rectif1cat1on 

of type (b) has to be carried out, then we would not have as 



294 

many problems as d1scussed in the last two sect1ons (7.2.1 

and 7.2.2) due to the new and old PC 1tself conta1ning more 

inforrnat1on about the sentences they represented. For 

1nstance, referring back to the quest1on "every man loves a 

woman" where its PC representat1on is as follows: 

aiiiX 1detleveryl,flaan,XI•>ex:stsiY1detlal,flwoaan,YI•flloves,X,YIII 

and the proving session of the above sess1on is exactly 

equivalent w1th the example 3 of sect1on 6.4.3 except the 

above PC use the form of "f(man,X)" whereas the example 3 

used the form of "man(X)". As shown 1n sess1on 6.4.3.3 of 

sect1on 6.4.3, 1.e the fourth session of the prov1ng 

sess1on, the system has suggested weakening the un1versal 

quantlfier b1nd1ng "man(X)" (or 1n th1s case, "f(man,X)") to 

become an existent1al quant1f1er. Thus after weaken1ng the 

un1versal quant1fier, the new PC quest1on 1s as follows: 

ex:stsiX 1detleveryl 1flaan,XI&ex:stsiY 1detlal 1flwoaan,YI&flloves,X 1Yill 

However, the system could not translate the new PC quest1on 

1nto an Engl1sh question because the new PC contains term 

"det(every)". Th1s term, "det(every)", should also be 

changed 1nto an appropr1ate term to correspond an 

ex1stent1al quant1f1er such as "det(a)". The program below 

1s a1med to accompl1sh th1s purpose: 

/1 to weaken lor un:vers:fyl the corresponded deter11ners 1/ 
weaken_detldetiXI 1detiYil:-change_detiX 1Yl. 

/1 to change fro• 1 universal detera:ner to an ex:stent:al detera:ner 1/ 
change_det !every, al. 
change_detlall,al, 
change_det leverybody,smbodyl. 

/1 to change fro• an ex:stent:al deter11ner to a un:versal detera:ner 1/ 
change_detla,alll. 
change_detlso•e,everyl. 
change_detlsoaebody,everybodyl. 

Proqra1 7,2,3.!1 Chang:ng the deter1:ners 



295 

The program 7.2.3.1 which shows only some of the changing 

determiners can be extended to Include more relationshiP 

between the universal and existential determiners. So by 

applying the above program. the new PC question becomes: 

exists!X1detlal,f!aan,XI&exlsts!Y1detfal,f!Moaan,YI&flloves1X1YIII 

which corresponds to the English question "a man loves a 

woman". In general. during weakening the quantifier, the PC 

of the form of "all(X,det(U) ,f(man,X)-> ... )" is changed Into 

"exlsts(X,det(E) ,f(man,X)& ... )" where "all". "det(U)" and 

11 =>.. are 

respectively 

changed Into "ex1sts". 

Furthermore, the English 

"det(E)" 

question IS changed 

from "every man loves ... " into "a man loves ... ". 

7.2.4 Comments on the incorporation of the three techniques 

In the last three sections (7.2.1. 7.2.2 and 7.2.3). we have 

d1scussed the ma1n problem 1n synthes1z1ng an equivalent 

English sentence from the new reformulated question (In 

PC) . We have also discussed why the tracing and wording 

techniques have not been Incorporated into the fault 

detect1on and rect1f1cat1on algorlthms. 

those difficulties. the conditioning 

incorporated Into the fault detection 

algorithms. 

Thus. In foreseeing 

technique has been 

and rectification 

Other changes 1n the fault detection and rectificat1on 

algorithms are cosmetic only and are not very diff1cult to 

1mplement regardless of the techniques we choose. for 

example. to change the remark of "If 'all( 1.,.)' is 

replaced with 'exists( 1 .... ) "' Into says, "if 'every man' 

IS replaced with 'a man'. 



296 

7.3 Examples 

We have already descr1bed 1n sect1on 7.2.3 how the Engl1sh 

grammar 1s 1ncorporated w1th the fault detect1on and 

rectification algor1thms. In th1s sect1on we w1ll show some 

examples of the complete system. It should be noted that the 

system 1s st1ll able to accept the 1nputs either in the form 

of English or PC. Furthermore, the input PC can also be 

either 1n the form of says, "man(X)" or "f(man,X)". 

7.3.1 Example 1 

We can start from scratch, 1.e an empty database. Let see 

the following sess1on: 

?·phrase. 
l: John loves ~ary? 

NEXT QUESTION: 
'ex:sts1John 1 proper_noun1Johnl,ex:stsl~ary 1 proper_nounl!aryl 1 flloves 1 John 1 !arylll', 

=========> 
No, :t IS false that John loves !ary, 

OPTION 1: 
The reason why the goal: 

'ex:sts1John 1 proper_noun1Johnl 1 ex:stsl~ary,proper_nounl!aryl 1 flloves,John,!arylll' 
fails IS due to the non-ex:stence of the the follow:ng fact: 

flloves,John,!aryl 

However, we •ay able to prove the goal 
after do:ng so1e correct:ons or add:t:ons 

--Do you like to cont:nue ?n 

Do you l:ke to assert 
'John loves !ary' 

as a fact :n the database? y 

yes 

?· listinglknowledgel. 
knowledgelflloves,'John','!ary'l, 

yes 

Session 7.3.1.1: Prov:ng 'John loves !ary' 



297 

The above session shows how we start the sess1on from 

scratch, i.e by asking "John loves Mary?" and, of course, 

the proving falls as the database conta1ns noth1ng. At the 

end of the proving sess1on, after reJecting to rectifY 1t, 

the system w1ll ask whether we would l1ke to assert 1t as a 

fact 1n the database. The database then will conta1ns the 

f1rst fact as shown in the l1st1ng of KB clauses 1n the 

above session after we accept to assert 1t into the 

database. 

7.3.2 Example 2 

Let us cont1nue the Interaction (of example 1 above) w1th 

the system by ask1ng a quest1on "every man loves every 

woman" wh1ch is shown 1n the following session: 

?-phrase. 
:: every 1an loves every wc•an' 

NEXT SENTENCE1 
every 1an loves every wcaan? 

===============> 

NEXT iUEST!ON: 
a111_1,det(everyl 1f(•an,_11•>alll_2,det(everyl,f(wo•an,_21•>fllcves,_1,_2111 

=========> 
Ne, 1t IS false that every aan loves every wcaan. 

OPTION h 
The reason why the goal: 

"all(_!,det(everyl,f(aan,_tl•>all(_21det(everyl,flwclan,_21=>flloves,_l,_2111' 
falls IS due tc the non-existence cl the the fcllowlng fact: 

f(lcves,fq(aanOI,fq(wcaanOII 

However, we aay able to prove the goal 
after dc1ng so•e corrections or additions 

--Do you like to ccnt1nue 'Y 

1f 'every aan' 15 replaced w1th "a aan' 
If 'every woaan• 15 replaced w1th 'a woaan' 

Do you l1ke to try aga1n by using the above assuapt1cn 
---? y 

Session 7,3,2.1: Prcv1ng "every 1an !eves every wc•an• 



298 

After accept1ng the replacement of the determ1ners (the 

weakening of the un1versal quant1f1ers b1nd1ng "f(man, 1)" 

and "f(woman._2)"), the system will reformulate a new PC 

quest1on and then 1t (the system) w1ll synthesize into a new 

Engllsh quest1on from the new PC quest1on. Thus the system 

will continue prov1ng the new question as shown in the 

follow1ng session: 

RE-PHRASE: 
a 1an loves a wo1an. 

cczcc::::::z:s:::c) 

RE-QUESTION! 
exJstst.31dettal 1f(•an,_3l&exJstst_4 1dettal,ftwo•an 1_4l&ftloves 1_3,_4lll 

=========> 
No, it IS false that a 1an loves a wo1an. 

OPTION 11 
The reason why the goal: 

'exlsts(John,dettal,ft•an,Johnl&exJstst~ary,dettal 1 ftwoaan 1 Karyl&ftloves 1 John 1 Karylll' 
falls IS due to the non·ex1sten'e of the the following fa,tt 

f tun 1Johnl. 
f(woun,Karyl, 

However, we 1ay able to prove the goal 
after do1ng soae 'orre't1ons or add1t1ons 

--Do you l1ke to 'ont1nue 'Y 

If the following 'lauses are true: 

ftun 1Johnl. 
ftwoun,Karyl. 

Do you l1ke to try aga1n by us1ng the above assu1ption 
---? y 

Session 7,3,2.2: Prov1ng 'every 1an loves every wo1an' 

As shown in the above sess1on (7.3.2.2). the new quest1on is 

became "a man loves a woman?". However the new quest1on 

st1!1 fails due to non-ex1stence of clauses "f(man,John)" 

and "f(man,Mary)" 1n the database. So after asserting both 

clauses 1nto the database, the system will succeed in 

proving the new quest1on. 



7.3.3 Example 3 

The follow1ng example is based on the following prem1ses: 

(1) No wombat who l1ves 1n Twycrosszoo 1s happy. 

(2) Any an1mal who meets k1nd people 1s happy. 

(3) People who v1s1t Twycrosszoo 1s k1nd. 

299 

(4) Animals who lives in Twycrosszoo meets people who 

v1s1ts Twycrosszoo. 

(5) Wombats are animals. 

(6) Somebody vis1ts Twycrosszoo. 

In th1s case, Twycrosszoo is cons1dered as a proper noun. 

For the sake of space, we w1ll show the PC equivalence of 

some of the premises only as follows. 

'·phrase. 
l1 no wo1bat who l1ves 1n Twycrosszoo IS happy. 
==============> 

The translated clauses1 
Cl:-f(wo•bat,_ll,f(llves,_ll 1f(ln 1_1 1Twycrosszool 1f(happy,_ll. 

?-phrase. 
l: any an11al who 1eets k1nd people IS happy. 
==============> 

I 
The translated clauses: 
f!happy,_ll1-f(ani•al 1_11 1•eets!_1,_21 1f(person,_21 1f(klnd,_21. 

yes. 

?-phrase. 
ll An11als who l1ves 1n Twycrosszoo 1eets people who VISits Twycrosszoo. 

==============> 

The translated clauses: 
f(•eets,_1,_21:-f!anllal,_ll 1f(llves,_ll 1f(ln 1_1 1Twycrosszool,f(person 1_21 1f(v1SI!s 1_2,Twycrosszool. 

yes, 

Sess1on 7.3.3.1: Asserting pre11ses 1nto the database. 

After asserting the above prem1ses 1nto the database, the 

following session (7.3.3.21 shows a prov1ng sess1on of a 



300 

question "No wombat l1ves in Londonzoo?" wh1ch 1s based on 

the above prem1ses. 

'·phrase. 
11 no wo1bat who l1ves 1n Londonzoo? 

I 
NEXT QUESTION! 

•exlstsl_l,detlnol,flwo•an,_ll&flllves,_ll&flln,_I,Londonzool 

I 
c:::•c•n•) 
No, it Is false that no wo1bat who l1ves 1n Londonzoo. 

OPTION 11 
The reason why the goal: 

••exlsts(_l,det(nol,f<•o•bat,_lllflllves,_lllf<ln1_1 1Londonzool' 
falls IS due to the non-existence of the the following facti 

f(in 1fq(wo•bat0l 1Twycrosszooll 

However, we 1ay able to prove the goal 
after do1ng so•e correct1ons or add1t1ons 

-·Do you like to cont1nue ?y 

If 'Londonzoo' of the quest1on's clause 'f(ln,fq(wo•bat0l 1Londonzooll ' 11 substituted 
with 'Twycrosszoo' 

···Do you agree ? y 

I 
Do you l1ke to try aga1n by us1ng the above assu•pt1on 

---? y 

RE-PHRASE: 
no wo1bat l1ves 1n Twycrosszoo, 

=================:) 

RE-QUESTION: 
••exlsts<_1 1det(nol,f<wo•bat,_lllf(llves,_lllf(ln 1_1,Twycrosszool' 

=========> 
Yes, 1t IS true that no wo1bat who lives 1n Twycrosszoo 

Sess1on 7.3.3.2: Prov1ng 'no wo1bat l1ves 1n Londonzoo '' 

The sess1on above (7.3.3.2) shows a prov1ng sess1on of the 

or1g1nal question "no wombat lives in Londonzoo" and after 

rectif1cation process of type (a) has taken placed. the new 

question is became "no wombat llves 1n Twycrosszoo" and 1s 

successfully proved by the system. 



301 

7.4 Comments 

In the last section (7.3) we have given some examples to 

show the abilitY of the system which can accept an English 

sentence and also PC( section 6.4) as input. The answer will 

accordingly depend on the type of input. 

Example 1 (section 7.3.1) shows that we can start the 

database from scratch. I.e from nothing and build up the 

database. In this sense. we can do a test for each fact or 

rule before each of them is asserted In the database. Thus 

any provable fact or rule can be filtered before asserting 

them Into the database. 

Example 2 (section 7.3.2) shows how rectification processes 

of types (b) and (c) are carried out. At first the weakening 

of the quantifiers is carried out and IS followed by 

asserting the subsidiary clauses after the new question 

after weakening process still fails However this example 

show only one reformulation and followed by another 

reproving process after new facts are known or are asserted 

Into the database. 

Example 3 (section 7.3.3) shows a rect1f1cat1on process of 

type (a) where a wrong reference IS asked, 1.e "Londonzoo" 

is asked Instead of "Twycrosszoo". Although the non-existent 

fact IS "f( llves.fq(wombatO) .Twycrosszoo)" which does not 

contain "Londonzoo". but as exists a query clause: 

querylflllves,fqiMclbatOl,Lcndcnzccll 

in the database. thus a suggestion IS proposed to substitute 

"Londonzoo" which IS a term of question clause With 

"Twycrosszoo" wh1ch IS a term resulting from the 



302 

instantiation of the KB clauses. In other words. the 

assumption that the query IS always wrong In the case of 

mismatching. IS adopted. 

There IS not much modification made on the fault detection 

and rectification algorithms as much of the work done IS to 

distinguish the types of Input and output as explained in 

chapter 4. 

More time should be devoted if we would like to Incorporate 

the tracing and wording techniques Into the fault detection 

and rectification algorithms to overcome the difficulties as 

explained In sections 7.2.1 and 7.2.2. However the 

conditioning technique IS also able to perform the task as 

we already add more Information Into the PC in order to 

guide the synthesiZing process. 



CHAPTER 8 

CONCLUSION 



303 

8.1 Discussion and comments 

The problem of software rel1abil1ty 1s gett1ng a great deal 

of attent1on. One aspect of software rel1ab1lity is program 

debugging. Program debugg1ng could also be considered as a 

rule learn1ng program where the user learn to wr1te rules 

wh1ch eventually Wlll become a program. In the process of 

learning to wr1te the rules, debugg1ng is carr1ed out to 

make the rules as consistent as poss1ble. Most of the rules 

are wr1tten 1n clausal form. 

In this thes1s. a mechan1cal theorem prover program has been 

written (see chapter 3) 1n Prolog to take advantage of 

Prolog as a theorem prover 1tself. The theorem prover wh1ch 

1s a Prolog-based theorem prover has been written using two 

search strategies, 1.e a depth-flrst strategy and a 

breadth-flrst strategy. We have also d1scussed the 

advantages and d1sadvantages of both methods. After we1gh1ng 

all the pros and cons (as d1scussed sect1on 3.3.3.4), the 

depth-flrst method has been adopted for further work 1n th1s 

thes1s Furthermore, Prolog also adopts a depth-flrst 

strategy. The Prolog-based theorem prover wh1ch has been 

1ncorporated w1th the loop1ng test as 1ts control feature 1s 

capable of handl1ng four classes of quest1ons as class1f1ed 

by Chang and Lee[1973]. The loop1ng tests enable the prover 

to control the selection of the f1r1ng rules and thus the 

user 1s left with the problem of wr1t1ng the rules as 

suggested by Kowalski[1979] to make: 

"Logic + Control - Algorlthm" 

The Prolog-based theorem prover is 

subset of Engl1sh grammar (chapter 

then 1ncorporated with a 

4) based on a Def1n1te 



304 

Clause Grammars (DCGS) wh1ch was proposed by Pere1ra and 

Warren [1980]. The Engl1sh grammar wr1tten 1s based on the 

grammar as used 1n Hlnde[1983] and [1986] for h1s Fuzzy 

Prolog. Some mod1f1cat1ons have been made 1n order to make 

the grammar revers1ble. 1.e it can be used for analys1ng as 

well for synthesiz1ng an Engl1sh sentence (questlon). So the 

grammar 1s used to translate an Engl1sh question (and 

sentence) 1nto a correspond1ng quest1oned PC and here the 

Prolog-based theorem prover 1s applled to answer the 

quest1oned PC. The answered PC is then passed back to the 

grammar to retranslate it into a corresponding answered 

Engl1sh sentence. For th1s purpose, three techniques have 

been 1nvest1gated to make the grammar produce a sens1ble 

Engl1sh sentence (answer). Those techn1ques are the trac1ng, 

the wording and the cond1t1on1ng techn1ques. All three 

techn1ques are capable of synthes1z1ng a sens1ble English 

sentence from the answered PC. But 1n the process of do1ng 

so, the PC representat1on has been changed to overcome some 

d1ff1cult1es and to prevent an unsens1ble sentence. 

A Prolog-based theorem prover can also be viewed as a 

quest1on-answer1ng system wh1ch can accept the quest1on and 

g1ve the answer 1n PC as its natural ability. But 1t also 

can accept the lnput in the form of clauses (such as Horn 

clauses) and in the form of a subset of natural language 

(Engllsh) as a result of 1ncorporat1ng the Engl1sh grammar 

(Chapter 4). 

In a quest1on-answer1ng system, we somet1mes (or always) get 

an unexpectedly unsuccessful answer due to whether we ask a 

wrong quest1on or the database does not contain any 



informat1on about what we ask. The 

conta1n wrong references wh1ch do 

informat1on conta1ned 1n the database. 

305 

wrong quest1on may 

not match w1th the 

or it (the quest1on) 

is too general to be answered correctly. 

The theorem prover is then 

fact or non-ex1stent clauses 

mod1f1ed 

(Chapter 

to detect the faulty 

5) . The modif1cation 

is done mainly by recording the fa1led goals (or subgoals) 

dur1ng the process of proving 

It records all non-ex1stent 

dur1ng backtrack1ng. 

of the ma1n question (goal). 

clauses at different levels 

After detect1ng all the non-ex1stent clauses. an algor1thm 

to rectlfY those faults lS written and explalned as in 

Chapter 6. The assumpt1ons made are that the non-ex1stent 

clauses are as a result of wrong references 1n the query 

(questlon) or the lack of knowledge (lnformatlon) 1n the 

database. Based on these assumpt1ons. the algor1thm w1ll 

rectlfY the fault by suggest1ng the subst1tut1on of the 

wrong reference term or by assert1ng the new 1nformation 

1nto the database. 

All the 1nputs of the algor1thms d1scussed 1n chapter 5 and 

6 are 1n the form of PC. The Engl1sh grammar discussed in 

chapter 4 lS then lncorporated 1nto both algor1thms to make 

it as a complete question-answering system w1th the 

capab1l1ty of fault detection and rectlfication. In 

foresee1ng the d1ff1cult1es discussed 1n chapter 7. the 

cond1t1on1ng technique 1s adopted for the complete system. 



306 

8.2 Further work 

In the last section, we have discussed what we have ach1eved 

or done in this thesis. A lot of works can be extended in 

future. 

The English grammar used in the system IS only a subset of 

English grammar. The grammar can be extended to include time 

reference (such as past tense. future tense etc). noun 

phrases (such as "It", possessive adJectives, etcl. The 

Skolem functions used to denote noun phrases could be 

modified to refer the extended noun phrase Included in the 

grammar for the purpose of theorem proving 

Apart from the English 

Incorporated to make a 

system. Mawdsley[l984]. 

grammar, other 

multi-lingual 

Baker[l985] 

languages could be 

question-answering 

and Kok[l986] have 

designed multi-llngual machine translation of French, German 

and Malay languages respectively and Engl1sh. These works 

could be Incorporated Into the system by modifYing their PC 

representation to suit the question-answering system. 

Fuzziness properties could also be included In the system, 

either at PC level or at a natural language level. If It Is 

incorporated at PC level, the PC representation needs to be 

changed accordingly. If it IS Incorporated at a natural 

language level, the grammar has to be wr1tten aga1n in order 

to capture the meaning of the fuzziness word in the 

sentence. 



307 

The questlon-answering system can also be used 1n wr1t1ng a 

program d1rect from a natural language w1th su1table grammar 

or d1rect from the PC itself. As the system already 

1ncorporates loop check1ng, the tasks left are to detect 

faulty rules or facts. As. the system can detect faulty 

facts then 1t rema1ns to incorporate detection of faulty 

rules. Here Shapiro's technique could be incorporated into 

the system. Thus the system would be able to cater for 

unexpectedly successful 

unexpectedly unsuccessful 

techn1que can be fitted 

prov1ng (Shap1ro's techn1que) and 

prov1ng (our system). Shap1ro's 

into the prov1ng tree of the 

solut1on which shows the fir1ng of rules or facts and ground 

oracles. 

As Damerau[1964] 1nd1cates that 80% of typing errors are 

caused by transpos1t1on of two adJacent letters, one extra 

letter, one m1ss1ng letter, or one wrong letter These may 

also apply to predicates as their arguments can be 

cons1dered as letters 1n the Damerau's f1nd1ng. The match1ng 

process between the reason clauses and the KB clauses could 

be extented to 1nclude these type of errors In other words. 

the match1ng could be 1n the form of spelllng checkers, 1.e 

1n th1s case, the argument checkers. Thls method may be 

useful 1n the e1ther form of 1nputs, 1.e PC or English 

sentence. In PC's form, 1t may 1nclude to check, says, 

"f(sort,a,b,c)" w1th "f(sort,b,a,c)" where the second and 

third arguments are transposed w1th each other. Perharps 1t 

could be used 1n the context spelling checkers. 



308 

8.3 Conclus1ons 

In this thesis, we have designed a question-answering system 

with the capability of detecting and rectifYing faults which 

occur when we get unexpectedly unsuccessful answers. 

Furthermore the system IS designed in such a way that it can 

accept both input either In the form of PC or a subset of 

English sentence. So we can add any language grammar as long 

as its PC representation is the same as the standard PC 

Input. 

The technique of detecting faults discussed is a complement 

of Shapiro's technique which detects a faulty rule when the 

answer is unexpectedly successful. In our rectificat1on 

technique, we Introduce match1ng between arguments with the 

s~ae pred1cate or between predicates with the same 

arguments. In other words, both predicates must have the 

same number of arguments. This matching could be 

Incorporated with techniques used In spelling checkers. 

Perhaps by comblning both techn1ques of detecting fault 

(Shapiro's and ourselves) and Incorporating the spelling 

check1ng techn1que, we will have a better system in future. 



REFERENCES 



309 

Adam,A. and Laurent,J-P. [ 1980]. "Automat le D1agnost1cs of 
Semant1c errors". Proceed1ngs of the AISB-80 conference on 
Artif1c1al Intell1gence. Amsterdam .1-4th JulY. 1980. 
pp(ADAM-ll-(ADAM-10). 

Anderson,J. and Bower,G. [1973l. Human Assoc1at1ve Memory 
W1nston. Wash1ngton. D.C. 1973. 

Andrews,P.B. C1981l. "Theorem prov1ng v1a general mat1ngs". 
Journal of the ACM. 28(2). pp193-214. 

Angus,J.E., Bowen,J.B. and VanDenberg,S.J. [1983]. RADC 
(Rome A1r Development Centre)- TR=83-207. Vol 1 (of two). 
August 1983. 

Baker,W. [1985]. Refinements to an ex1sting 1nterl1ngual 
mach1ne Translation system. M. Se D1ssertat1on. Dept. of 
Computer Stud1es. Loughborough Un1vers1ty of Technology. 
1985. 

Baldwin,J.F. [1981l. "Fuzzy log1c and Fuzzy reasoning". 1n 
Fuzzy Reason1ng and 1ts Appl1cat1ons. Mamdan1.E.H and 
Gaines.B.R. (eds). Academ1c Press. pp133-148. 1981. 

Balzer,R. [1975]. "Automat le Programm1ng". Techn1cal Report 
1. USC!ISI. September 1972. 

Basili,V.R. and Perricone,B.T. [1984J. "Software errors and 
complexity: an empir1cal 1nvest1gat1on". Commun1cat1ons of 
the ACM. Vol 27(1). January 1984. pp42-52. 

Bennett,P., Johnson,R., McNaught,J., Pugh,J., Somers,H. and 
Sager,J.C. [1986J. Mult1l1ngual Aspects of Informat1on 
Technology. Gower Publ1sh1ng Co Ltd. England. 1986. 

B1bel ,w. [1976]. "A syntact1c connect1on between proof 
procedures and refutat1on procedures". Second Conference on 
Automated Deduct1on. Oberwolfach. West Germany. 

Bibel,W. [1983]. "Mat1ngs in matr1ces". Commun1cat1on of the 
ACM. 26(11). pp844-852 

Bledsoe,w.w. C1977J. "Non-resolut1on theorem prov1ng". 
Art1f1c1al Intell1gence. 9(1). pp1-35. 1977. 

Bobrow,D.G. and Winograd,T. [1977al. "An overv1ew of KRL. s 
knowledge representat1on language" Cogn1t1ve Science. 1(1). 
pp3-46. 1977. 

Bobrow,D.G. and Winograd,T. [1977Ell. "Expenence w1th KRL-0: 
one cycle of a knowledge representat1on language" 
Proceed1ngs of the 5th Internat1onal Joint Conference on 
Art1f1c1al Intell1gence pp 213-222. 1977. 

Bobrow,D.G. and Winograd, T. [1979]. "KRL: 
perspect1ve". 1n Cogn1t1ve Sc1ence. 3(1). pp29-42. 

another 

Bobrow et al. [1977]. "GUS. A frame dr1ven d1alog system" 
Artific1al In_tellignence. 8(2). pp 155-173 

Boehm,B.W. [1976J. "Software eng1neering". IEEE Trans. 
Comput1 .• VOl c=25. pp1226-1241. 1976. 



310 

Bourne,C.P. [1977J. "Frequency and Impact of spelling errors 
In bibliographic data bases". Inform. Processing and Mgmt .. 
Vol 13. No. 1. 1977. pp1-12. 

Bowen,K.A. [1982J. "Programming with Full First-Order Logic. 
Machine Intelligence 10. 1982. pp421-440. 

Boyer,R.S. [1971J. Locking: a restriction of resolution. 
PhD. thesis. University of Texas. 

Brachman,R.J. and Smith, B. C. [1980J. "SIGART News latter 70. 
Special Issued on Knowledge Representation". 1980. 

Bradzil,P. [1981J. A model for error detection and 
correction. Ph.D thesis. UniversitY of Edinburgh, 1981. 

Bratko,l. [1986], Prolog Programming for Artificial 
Intelligence. Addision Wesley. Great Britian. 1986. 

Brooks,F.P. [1975J. The Mythical Man-Month. Addison-Wesley. 
Reading .Ma. 1975. 

Bundy,A. [1983]. The Computer Modelling of mathematical 
Reasoning. Academic Press. London. 1983. 

Bundy,A., Sharpe,B., Uschold,M. and Hard1ng,N. (edsl [1983J. 
"Intelligent Front End". Intelligent Front End Workshop 
Report No. 1. Consener's House. abingdon. England. 26-27th 
Sept. 1983. 

Bundy,A., S1lver,B. and Plummer,D. [1985]. "An analytial 
comparison of some rule-learning programs". Artificial 
Intelligence. Vol 27. 1985. pp137-181 

Campbell,J.A. <edl [1984]. Implementation of Prolog. ElliS 
Horwood. England. 1984. 

Chang,C.L [1970]. "The unit proof and the Input proof In 
theorem proving" Journal of ACM. 17. pp697-707. 

Chang,C.L and Lee,R.C. [1973]. Symbolic Logic and Mechanical 
Theorem Proving Academic Press. London. 1973. 

Charniak,E. and McDermott,D. [1985J. Introduction to 
Artificial Intelligence. Addison Wesley. 1985. 

Church,A.L. [1940]. "A formulation of the simple theory of 
types" in Symbollc Logic. 5(1). pp56-68. 1940. 

Clark,K.L. [1978J. "Negation as Failure". In Logic and 
Databases. Gallaire.H and Minker.J. (eds). Plenum Press. 
New York. 1978. pp293-322 

Clark,K.L and Gregory,S. [1981J. "A relatlonal Language for 
Parallel Programming". Proc. ACM Conference on Functional 
Programming Languages and Computer Architecture. 1981. pp 
171-178. 

Clark,K.L and Gregory,S. [1983J. "PARLOG: A Parallel Logic 
Programming Language". Research Report DOC 83/5. Dept. of 
Computing, Imperial College. 1983. 



Clark,K.L. and Tarnlund,S.-A. (eds) 
Programming, Academ1c Press, London, 1982. 

[1982J, 

311 

Clifford,J. and Warren,D.S. [1983J, "Formal semantics for 
t1me 1n database". ACM TODS 8(2), pp214-254. 

Clocks1n,W.F. and Mellish,C.S. 
Prolog. Spr1nger Verlag, 1981. 

[1981J, Programm1ng 1n 

Colmerauer,A., Kanoui,H., Rousel,P. and Pasero,R. [1973J, 
"Un systeme de commun1cat1on homme-mach1ne en Francais", 
Research Report, Artlficial Intelligence Group, Uni. Of 
A1x-Marse1lle, Lum1ny, France, 1973. 

Cullingford,R. t1981J, "SAM'' in Ins1de Computer 
Understanding Schank,R.C and Riesbeck,C.K. (Eds), Erlbaum, 
Hi llsdale, N.J., 1981. 

Damerau,F.J. C1964J, "A technique for computer detect1on and 
correct1on of spell1ng errors", Comm. of the ACM, 7(3), 
March 1964, pp171-176. 

Dav1s,M. and Putnam,H. [1960J, 
Quant1f1cation Theory" Journal 
pp201-215. 

A computing Procedure for 
of the ACM, 7(3), 1965, 

Downs,T. 
test1ng 
Software 
386. 

t1985J, "An approach to the modell1ng of software 
w1th some applicat1ons", IEEE Transact1ons on 
Eng1neer1ng, Vol. SE-11, No. 4, April 1985, pp375-

Dowsing,R.D., Rayward-Smlth,V.J. and Walter,C.D. [1986J A 
F1rst Course 1n Formal Loglc and Its Appl1cat1ons 1n 
Computer Sc1ence, Blackwell Scientif1c Publicat1ons, Great 
Br1t1an. 

Doyle,J. C1979J, "A Gl1mpse of Truth Ma1ntenance" 1n 
Artlficlal Intell1gence: An MIT Perspective, Vol 1 MIT 
Press, Cambr1dege,Mass, 1979. 

Doyle,J. [1982J, "A Truth Ma1ntenance System" Artificial 
Intelligence Vol 12, No 3. 1982. 

Enderton,H.B. C1972J, A Mathematical Introduction to Logic 
Academ1c Press, New York, 1972. 

Findler,N.V.(eds) C1979J, 
representation and Use of 
Press, New York 

Associative Networks The 
Knowledge In Computers, Academ1c 

Frost,R.A. t1986J, Introduction to knowledge base system 
Collins, Great Britlan,1986. 

Gallaire,H. and Minker,J (eds) C197BJ, Logic and Databases, 
Plenum Press, New York, 1978. 

Galla1re,H. and Minker,J <eds) C1981J, Advances In Database 
Theory, vel 1, Plenum Press, New York, 1981. 

Gallaire,H., Minker,J. and Nicolas,J-M. C1984J, "Logic and 
Databases: A Deduct1ve Approach", Computing Surveys, Vol 16, 
No. 2, June 1984. 



312 

Genesereth,M,R. and G1nsberg,M.L. [1985], "Logic Progranumng" 
Commun1cat1on of the ACM, 28(9), pp933-941, Sept. 1985. 

Genesereth,M.R., Greiner,R. and Smith, D. E. [1983], "MRS - a 
meta-level representation system", HPP-83-27 ,Heurest1c 
Programming ProJect, Standford University, Calif., 1983 

Goodenough,J.B. and Gerhart,S.L. 
of test data selection", IEEE 
Englneering, Vol SE-1, June 1975, 

C1975L "Towards a theory 
Transact1ons on Software 
pp156-173. 

Gilmore,P.C [1960], "A proof method for quantification 
theory: Its JUStification and realization", IBM Journal of 
Research Development, vol 4, 1960, pp28-35. 

Gray,P. C1984l, Logic, Algebra and Databases, Ellis Horwood, 
Great Britian. 

Green,C. C1969J, "Applications of Theorem Proving to Problem 
Solving", International Joint Conferences on AI, Walker,D.E. 
and Norton,L.M. (eds), Washington, 1969, pp219-239 

Gries,D. C1981l, The Science of Programm1ng, Springer­
Verlag, New York and Berlin, 1981. 

Hanson,A., Haridi,S. and Tarn1und,S-A. C1982l, "Properties 
of a lovic Programming Language", In Logic Programm1ng, 
Clark,K.L. and Tarnlund,S-A. (eds), Academic Press, 1982, 
pp267-280 

Handi,S. and Sah1in,D. C1983J, "Evaluation of 
Programs Based on Natural Deduction", TRITA-CS-8305, 
Institute of Technology, Sweden, 1983. 

Log1c 
Royal 

Hayes,P.J. C1973J, "Computation and deduction", Proceed1ngs 
MFCS Conference, Czechoslovak1an Academy Press, 1973. 

Hendnx,G.G. C1975J, "Expanding the utility of semantic 
networks through part1t1on1ng" 1n Proceed1ngs of the Fourth 
IJCAI Tiblis. 

Hendrix,G.G. C1977l,"Human Engineering for applied natural 
language processing", In Proceedings of the Fifth IJCAI, 
MIT, Cambridge, Mass. 

Hendrix, G. G. [ 1979], "Encoding knowledge In partItioned 
networks" in Associative Networks - The representat1on and 
Use of Knowledge 1n Computers, Findler,N.V. (eds), Academic 
Press, New York, 1979. 

Herbrand,J. C1930J, "Researches In the Theory of 
Demonstration", In From Fredge to Godel. A source book In 
Mathematical Log1c, 1879-1931, van Hel]enoort,J. (eds), 
Harvard Un1versitY Press, Mass, 1967, pp525-581. 

Hi 11, R. C 1974l, "LUSH 
memo No 78. School 
University. 

resolution and Its completeness" DCS 
of Artificial Intelligence, Edinburgh 

Hlnde,C.J. 
Report No. 
UniversitY 

C1983l, Fuzzy Prolog. Computer Studies Internal 
199, Dept of Computer Studies, Loughborough 

of Technology, September 1983 



Hinde,C.J. [1984l. An appl1cat1on and 
fuzzy predJcates Symposium on Fuzzy 
1984. 

313 

use of h1gher order 
Inference, Cambr1dge 

Hinde,C.J. [1986]. "Fuzzy Pro log". Internat1onal Journal of 
Man-MachJne StudJes. 24, pp569-595, 1986. 

Hinde,C.J. and Mawdsley,A. [1984], An InterlJngual English 
to French Machine Translat1on System Computer Studies 
Internal Report No. 218, Dept. of Computer Stud1es, 
Loughborough Un1vers1ty of Technology, Dec 1984. 

Hogger,C.J. [1984], Introduct1on 
Academ1c Press, London. 

to Logic Programm1ng 

Horn, A. [1951]. "On sentences wh1ch are True of d1rect 
Un1ons of Algebras" Journalof SY!llbol1c Log1c, 16, pp14-21. 

ISIS systems M1cro-Expert Reference Manual 

Jelinski,Z. and Moranda,P. [1972], 
research" Conference , Stats1t1cal 
EvaluatJon, Academic Press, NewYork 
pp465-484. 

"Software Re l1ab1l1 ty 
computer Performance 

and London, 1972. 

Kok,Y.P. [1986], Implementation 
1nterl1ngual Machine Translation 
Dept. Of Computer Stud1es, 
Technology, 1986 

of Malay to an ex1sting 
System F1nal Year Report. 

Loughborough Unvers1ty of 

Kowal ski, R. A. [ 1974]. "Pred1 cate Log1 c as Programm1ng 
Language", Proced1ng of IFIP 74. North-Holland Publ1sh1ng 
Co .• Amsterdam. pp569-574. 

Kowalski,R.A. [1979], Log1c for Problem Solv1ng, North­
Holland, New York. 1979. 

Kowalsk1,R.A. [1979al. "Algor1thm Log1c + Control", 
Communicat1on of the ACM, 22(7). pp424-436 

Kowalski,R.A. and Kuehner,D. [1971], "L1near resolut1on w1th 
selection funct1on". Art1f1cial Intelllgence, vol 2, pp227-
260. 

Lebow1tz,M. [1980], "language and memory: general1zat1on as 
a part of understanding" in Proceed1ngs of AAAI 80, 
Standford Un1vers1ty, Cal1forn1a 

Lenat,D.B. [1982]. "AM: an artif1c1al 1ntelllgence approach 
to discovery in mathemat1cs as heurist1c search" in 
Knowledge Based Systems 1n Art1f1c1al Intelllgence, Dav1s,R. 
and Lenat.D.B .. McGraw H1ll, New York. 

Littlewood,B. [1979], "How to measure software rel1abll1ty 
and how not to", IEEE Transact1on on RellabllltY. Vol r-28. 
No. 2. June 1979, pp 103-109. 

Littlewood,B. [1980], "What makes a rel1able program- Few 
bugs or a small fa1lure rate?", National Computer Conference 
1980, pp 707-712. 



314 

Littlewood,B. C1981J, "Stochast1c rellabllity-growth: A 
model for fault-reoval in computer programs and hardware 
designs", IEEE Transaction on ReliabilitY. vol. R-30, No. $, 
October 1981, PP 313-320. 

Lloyd,J.W. C1983J, "An introduct1on to deductive Database 
Systems". Austral I an Computer Journal. 15 ( 2) . pp 52-57. 

Lloyd,J.W. C1984J, The foundation of Logic Programming 
Springer-Verlag, Germany, 1984. 

Loveland,D.W. C1969J, "Theorem 
el1m1nat1on and resolution" 
Meltser.B. and M1chie,D.(eds), 

provers 
Machine 

Elsev1er 

combining model 
Intelligence 4, 

North Holland, New 
York. 

Loveland,D.W. C1970J, "A linear format for resolution". 
Proceedings IRIA Symposium on Automatic Demonstration, 
Versa1llles, France, Spr1nger-Verlag, New York, 1968, 
pp147-162. 

Luckham,D. C1970J, "Ref1nement theorems 1n resolution 
theory" Proceedings IRIA Symposium on Automatic 
Demonstration, Versa1llles, 
York, 1968, pp163-190. 

France, Spr1nger-Verlag, New 

Mamdani,E.H. C1974J. "Appl1cat1ons 
control of s1mple dynam1c plant" 
1588. 

of fuzzy algor1thms for 
Proc. IEEE (1974) pp1585-

Manna,Z. and Wald1nger,R. C1978J, "The log1c of computer 
programm1ng", IEEE Transactions on Software Engineering, 
Vol. SE-4, May 1978, pp199-229. 

Manna, z. and Wald1nger,R. C1980J. "A deduct1ve approach to 
program synthes1s", ACM transactions on Programming 
languages and Systems, 2(1), pp90-121. 

Manna,Z. and Waldlnger,R. C198SJ, The Logical Basis for 
computer programming, Volume 1. deductive Reasoning, 
Addlson-Wesley. 

Mawdsley,A. C1984J, An Inter-1Igua1 English to French 
Machine Translation System M Se D1ssertat1on, Loughborough 
Univers1ty of Technology, September 1984. 

McArthur,T. [1981], Longman Lexicon of Contemporary English. 
Longman Group Ltd. 1981. 

McCarthy,J. and Hayes,P.J. C1969J, "Some ph1losph1cal 
problems from the standpo1nt of art1f1c1al 1ntell1gence". In 
Meltzer,B and M1tchie, D. Machine Intelligence 4 Ed1nburgh 
Un1vers1ty Press,New York, 1969. 

Mellish,S. and Hardy,S. C1984J, "Integerat1ng Pro log 1n the 
POPLOG env1ronment", in Implementation of Prolog, 
Campbell,J.A.(ed), Ell1s Horwood. 



315 

Mitc:hel,T.M., Utgoff,P.E and Banerji,R. [1983], "Learning by 
exper1mentat1on: acqu1r1ng and mod1fy1ng problem-solvlng 
heur1st1cs", in Mach1ne Learmng, Michalskl,R.S., 
Carbonell,J.G. and M1tchell,T.M. (Eds), T1oga, Palo Alto, 
1983, pp163-190. 

Mitc:hel,T.M., Utgoff,P.E., Nudel,B. and Banerji,R. [1981], 
"Learn1ng problem-solving heur1st1cs through pract1ce", 1n 
Proceedings Seventh International Jo1nt Conference on 
Artificial Intelligence, Vancauver, BC, 1981, pp127-134. 

Minsky,M. [1975J, "A Framework 
1n The Psychology of Computer 
McGraw H1ll, New York. 

for represent1ng Knowledge" 
Vision, W1nston.P.H (ed), 

Montague,R. [1973], "The proper reatment of quantlfication 
in ord1nary English", 1n Approaches to Natural Languages, 
H1nt1kka,K.J.J., Dordrecht, Germany, 1973. 

Montague,R. [1974], Formal Philosophy: Selected papers of 
R1chad Montague, Yale Univers1ty Press, New Haven, 1974. 

Moto-Oka, T. <ed) [1982], "F1fth Generat1on Computer 
Systems", Proceedings International Conference on Fifth 
Generation Computer Systems, JIPDEC. North-Holland, 1982. 

Murray,N.V. [1982], "Completely non-clausal 
prov1ng", Artificial Intelligence, 18(1), pp 67-85 

theorem 

Musa,J.D. [1979], "Val1d1ty of execut10n-t1me theory of 
software rel1abil1ty" IEEE Transactions on ReliabilitY. Vol 
R-28, No. 3, August 1979. pp181-191. 

Myers,G.J. C1978J, "A Controlled exper1ment 1n program 
test1ng and code walkthroughs/lnspectlon", COmmunication of 
the ACM, Vol 21, pp 760-768, 1978 

Myl opoul us, J., Borgi da, A., Cohen, P., Roussopoulus, N., 
Tsotsos,J. and Wong,H.K.T. [1976], "TORUS a natural 
language understand1ng system for data management", 1n 
Proceed1ngs of the Fourth IJCAI. pp414-421, Tiblis 

Naur,P. [1969], "Programm1ng by act1on clusters", BIT. Vol 
9, 1969, pp250-258. 

Naur,P. and Randel,B. (eds) [1969], Software Eng1neenng, 
NATO Sc1entific Affa1rs D1vis1on, Brussels, Belg1um , 1969. 

Nilsson,N.J. [1971J, Problem-Solv1ng methods 1n Art1f1c1al 
Intell1gence, McGraw H1ll, Un1ted States of America, 1971. 

Nilsson,N.J. C1979J ~ .. A production system for automatic 
deduct1on", Mach1ne Intelllgence 9, Hayes,J.D .. Michle,D .. 
and M1kul1ch,L I. (eds), Ell1s Horwood, Chichester, 1979. 

N1lsson,N.J. [1980], Principles of Art1f1c1al Intelligence, 
Spr1nger Verlag, Germany, 1971. 

Nishida,T. and Doshita,S. [1983], "An application of 
Montague grammar to Engllsh-Japanese mach1ne translat1on" in 
"Proceed1ngs of the Conference on Appl1ed Natural Language 
Analys1s, Santo Mon1ca, Californ1a. 



316 

Ogdin,C.A. [19791. Software des1gn for m1cro computers. 
Prent1ce-Hall, Englewood CLiffs. NJ. 

Palmer,F.R. [19761. Semant1cs 
Un1vers1ty Press. 1976. 

a new outl1ne Cambr1dge 

Pere1ra,F. [1982], C-Prolog User's Manual Un1vers1ty of 
Ed1nburgh: Dept. of Computer A1ded Arch1tectural Des1gn. 

Pereira,L.M., Pereira,F. and Warren,D.H.D. [19781, User's 
Guide to DEC-system-10 Prolog, Un1versity of Edlnburgh: 
Dept. of Artific1al Intell1gence. 

Pereira,F.C.N. and Warren,D.H.D. [1980]. "Def1nite clause 
grammars for language analys1s- a survey of the formal1sm 
and a compar1son with augmented trans1 t 1on networks". 
Art1ficial Intelllgence 13:3(1980), pp231-178. 

Peterson,J.L. [19801, "Computer Programs for Detect1ng and 
Correcting SpelllngErrors", Comm of theACM. 23(12). Dec. 
1980, pp676-687. 

Peterson,J.L. [19861, "On note on undetected typ1ng errors", 
Comm. of the ACM, 29(7), July 1986, pp633-637. 

Prather,R.E. [19841, "An ax1omat1c theory of software 
complex1ty measure", The computer Jounal. Vol 27, No. 14, 
1984. pp340-347. 

Prawitz,D. [1960], "An 1mproved Proof Procedure", Theona. 
26(1960). pp102-139 

Prawitz,D. [19761. "A proof procedure with matr1x 
reduction", 1n Lecture notes 1n Mathematics. Sprlng-Verlag, 
Berlin and New York. 

Glu1ll1 an, R. [ 1968], "Semantic Memory" 
Informat1on Process1ng, Mlnsky,M.(eds), 
Cambr1dge, Mass .. 1968. 

1n Semant1c 
MIT Press. 

Quintus Prolog User's Gu1de and Reference Manual [1985], 
Quintus Computer System Inc .. Palo Alto, 1985. 

Rapheal, B. [ 19681. "A computer program for Semant 1 c 
Information Retr1eval" 1n Semant1c Informat1on Process1ng, 
Minsky,M. (eds). MIT Press. Cambr1dge, Mass .. 1968. 

Rault,J.C. [19791, "An approach towards rel1able software", 
IEEE 1979, pp 220-227. 

Reiter,R. [19711, "Two results on order1ng for resolut1on 
w1th merg1ng and l1near format", Journal of ACM. vol 18, pp 
630-646. 

Re1ter,R. [1978], "On closed world data bases". 1n Log1c and 
Databases, Galla1re.H. and Mlnker,J. (eds). Plenum Press, 
New York, 1978, pp55-76. 

Rich,E. [19831, Art1f1c1al Intelligence McGraw H1ll, Japan, 
1983. 



317 

Roberts,R.B. and Goldstein,I.P. [19771, The FRL Primer Memo 
408, Massachusetts Institute of Technology Art1f1c1al 
Intelligence Laboratory, Cambridge, Mass. 

Robinson,J.A, [1965]. "A mach1ne-or1ented Log1c Based on the 
Resolution Prlnciple" Journal of the ACM, 12(1), 1965, 
pp23-41. 

Robinson,J.A. [1965a], "Automatic deduction w1th hypher­
resolution" International Journal of Col!lPuting Mathematic, 1. 
pp227-234. 

Robinson,J.A. [1979], Logic: Form 
mechanizatJon of deductive reasoning, 
Press. 

and Functiom, the 
Edlnburgh UniversltY 

Rogers,H., Jr. [19671, Theory of Recurs1ve Functions and 
Effective ComputabilJty, McGraw Hill, 1967. 

Rumelhart,D.E. and Ncrman,D.A. [19751, "The active 
structural network" 1n ExploratJons In CognitJon, Norman,D.A 
and Rumelhart,D.E. (eds), W.H.Freeman, San Francisco 

Salllh,M.M. [1986], A study of Models for Predicting 
Computer Software Re1JabJ1Jty M.Ph1l thesis, Loughborough 
Un1vers1ty of Technology, January 1986. 

Sandwell, E. [19731, "Conversion of predicate-calculus 
ax1oms, viewed as non-deterministic programs, to 
corresponding deterministic programs", Proceed1ngs of th1rd 
International Jo1nt Conference on AI 73, Standford 
Univers1ty, California, PP 230-234 

Schank,R.C. [1973], "Identiflcat1on of Conceptualization 
Underly1ng Natural language" In Computer Models of Thought 
and Language Schank.R.C and Colby,K.M.(Eds), Freeman, San 
Franc1sco, 1973. 

Schank,R.C. [1975], Conceptual 
North-Holland, Amsterdam, 1975. 

Information Process1ng 

Schank,R.C and Abelson,R.P. [1977], Scripts, Plan, Goals, 
and Understand1ng Erlbaum, Hillsdale, N.J., 1977. 

Schagen,I.P. [1985], "Software Reliability", Department of 
Col!lPuter Studies Seminar, Lough. Un1v. of Technology, 1985. 

Shapiro,E.V. [1982], Algorithmic Program Debugging, MIT 
Press, Cambridge Mass. and London, 1982. 

Shap1ro,E.V. [1983], "A subset of Concurrent PROLOG and Its 
1nterpreter", Technical Report TR-003, ICOT, Tokyo, 1983. 

Shap1 re, E. V. and Takeuchi, A. [ 1983], "ObJect-oriented 
programming 1n Concurrent PROLOG", New generatl on Computing, 
1(1)' pp25-88. 

Shepherdson,J.C. t1984J "Negation 
of clark's completed data base 
assumption", Report PM-84-01, 
UniversitY of Bristol, Bristol. 

as Failure: A comparison 
and Re1ter's closed world 
School of Mathematics, 



318 

Shooman,M.L. [1972], "Probablistic models for software 
reliability prediction", Conference, Statsit1cal computer 
Performance Evaluat1on, Academic Press, NewYork and London, 
1972, pp48-55. 

Simmons,R.F. [1973], "Semantic networks: their computation 
and use for understanding English sentences" In Computer 
Models of Thought and Language, Schank,R. and Colby,K. 
(eds), pp63-113, W.H.Freeman, San Francisco. 

Slagle,J.R. [1967], ''Automatic theorem 
renamable and semantic resolution", Journal 
pp687-697. 

proving with 
of ACM, 14(2), 

Smith,D.E. and Clayton,J.E. [1980], "A frame based 
production system architecture" In Proceed1ngs of the AAAI 
80, Stanford University, California 

Sm1th,R.G. and Friedland,P. [1980], "A user guide to the 
UNITS system", Technical Report. Heuristic Programming 
ProJect, Stanford University, California. 

Sterllng,L. and Shapiro,E. [1986], The Art of Prolog, MIT 
Press, USA, 1986. 

Stlckel,M.E. [1982], "A non-clausal connection-graph 
resolution theorem proving program", Proceed1ngs of the AAAI 
82. University of Pittsburg, Pennsylvania. 

Storm, E. F. [1974]. "Evaluation procedures for resolution 
without normal forms" System and Information Sc1ence Report. 
Syracause University, Syracause. New York. 

Synder,D.P. [1971], Modal log1c and 1ts appl1cat1ons Van 
Nostrand, New York, 1971 

Szolov1ts,P., Hawk1nson,L.R., and Mar-tin,W.A. [1977], "An 
overview of OWL: a language for knowledge representation". 
Report Massachusetts Inst1tute of Technology/LCS/TM-86. MIT. 
Cambridge, Mass. 

Vessey,I. [1986l, "Expertise in Debugging Computer Programs: 
An analysis of the Content of Verbal Protocols", IEEE 
Transactions on Systems. Man, and Cybernat1cs, Vol SMC-16. 
No. 5, Sept/Oct 1986, pp 621-637. 

Walker,D.E.(edl [1978], 
North-Holland. New York. 

Understanding Spoken Language. 

Warren,D.H.D. [1980]. "Higher-order extens10ns to Pro log -
are they needed". Department of Art1 f1 c1al Intell1gence 
Research Report 154, Edinburgh Unniversity. 

Waterman,D.A. [1970]. "Generalization learning techniques 
for automating the learning of heuristics", Artificllll 
Intel11gence, Vol 1. 1970, pp121-170. 

Weinber-g,V. [1979], Structured Analys1s, Gower Publishing, 
Farnborough, Hants. 

Wilkins,D. [1974], "A non-clausal theorem proving system", 
Procedd1ngs of the AISB Summer Conference, Brighton. UK. 



319 

Winograd,T. [1980], Language as a Cognitive Process. Volume 
1: Syntax. Addison-Wesley, 1980. 

W1nston,P.H. [19753. "Learning 
example" In The Psychology of 
(ed). McGraw Hill. 1975. 

structural descriPtions from 
Computer VIsion. Winston,P.H. 

Wos,L., Carson,D.E. 
preference strategy 
Fall Joint Computer 

and Robinson,G.A. [1964J. "The unit 
In theorem proving". Pore. AFIPS 1964 
Conference. vol 26, PP 616-621. 

Wos,L., Carson,D.E. 
and completeness of 
proving" Journal of 

and Robinson,G.A. [1965]. "Efficiency 
the set of support strategy in theorem 
ACM. 12(4). pp536-541 

Vourdan,E. and Constantine,L.L. [19793, Structure Design, 
Prentice-Hall. Englewood Cliffs. NJ. 1979. 

Zadeh,L.A. [1965]. "Fuzzy sets" Information and Control. Vol 
8, 1965. pp338-353. 

Zadeh,L.A. [1973], 
analYsis of complex 
Trans. Syst. Man and 

"Out line of a new approach to 
system and decision processes" 

Cybern. Vol 1. 1973. pp28-44. 

the 
IEEE 

Zadeh,L.A. [1983]. "Commonsense knowledge representation 
based on based fuzzy logic". Computer Vol 16 (10). pp61-
65,1983. 



APPENDIX 



321 
Jul 18 19:04 1986 pcprove Page 1 

/******************************************************** 
To define the operators and the most common predicates 

*********************************************************/ 

:- [oplog]. /* to be used by prolog/poplog only */ 

/******************************************************** 
Transforming predicate calculus into clausal form and 
print it as Clocksin's format. 

*********************************************************/ 

:-['PC/pC top']. 
:- consultT'PC/pc skolem'). 
:- consult('PC/pc-bottom'). 
:- consult('PC/pc-skolemq'). 
:-['PC/substitute']. 
:- consult('PC/pc gensym'). 
:- consult('PC/pc-trans'). 
:- consult('PC/hornclause'). 
:- ['PC/outputfp4']. 

/**************************************************** 
newprove:: 

(a) the replacement of relevent quantifiers only 
(b) no duplication of reason 
(c) handles both english and pc as input and output 

*****************************************************/ 

:- ['PC/ansearch']. 
:- consult('PC/fprolog13'). 
:- consult('PC/listquant'). 
:- consult('PC/mergequant'). 
:- consult('PC/reasontest'). 
:- consult('PC/topfprolog'). 
:- ['Y/aaccsubst']. 
:- consult('Y/acceptance'). 
:- consult('Y/acceptsubs'). 
:- consult('Y/asserting'). 
:- consult('Y/changequant'). 
:- consult('Y/equatevars'). 
:- consult('Y/fdifference'). 
:- consult('Y/listreason'). 
:- ['Y/mismatclause']. 
:- consult('Y/pracceptance'). 
:- consult('Y/prtreefail'). 
:- consult('Y/topc'). 
:- consult('Y/whyitfails'). 
:- [othermeaning]. 
:- consult(pctop). 
:- consult( rectifiers). 
:- consult(remarkwriter). 
:- consult(toplevel). 



Apr 5 11:35 1987 oplog Page 1 

:- op(255,xfx,:). 
:- op(225,xfx,<=>). 
:- op(225,xfx,=>). 
:- op(200,xfy,&). 
:- op(200,xfy,#). 
:- op(30,fx,-). 
:- op(255,xfx,::). 
:- op(15,xfx, "). 
:- library(log). 
:- 1ibrary(date). 

/*to print system date and time */ 
date:-date([H,B,T,J,M,S]), 

write(B),write(' ,'),write(H),write(' '), 
write ( T) , write ( ' ' ) , write ( J) , write ( ' : ' ) , 
two_digit(M),write(':'),two_digit(S),n1. 

two digit(Num):-
- name(Num,List), 

two digitlist(List), 
write(Num). 

two digitlist( [X]) :-1 ,write( '0'). 
two=digitlist(X). 

logdate:-log, 
write(' on '),date,nl. 

nologdate:-
nl,write('On '),date,nolog. 

/* to check membership */ 
member(X,Y):-var(Y),!,fail. 
member(X,[YIT]):-X==Y. 
member(X,[YIT]):-member(X,T). 

append([XIA],B,[XIC]):-append(A,B,C). 
append ( [ J , B, B) • 

/* to prevent backtracking */ 
append1(X,Y,Z):-append(X,Y,Z),I. 

/* to change the output file from file X to user */ 
tells(X):-telling(X),tell(user). 

/* asserting an atomic only once */ 
assert once(X):-clause(X,true),!. 
assert=once(X):-assert(X). 

/* asserting a predicate F only once */ 
assert pred once(X):-

- - functor(X,F,N),functor(Y,F,N), 
clause(Y,true),!. 

assert pred once(X):-
- - assert(X). 

322 



Apr 5 11:35 1987 op1og Page 2 

I* replacing old predicate or atomic with a new one *I 
assertz new(X):-

-functor(X,F,N),functor(Y,F,N), 
retractall(Y),assert(X). 

I* existence and non existence test of 
a predicate in a database *I 

not exists(X) :-
- clause(X,true), 

!,fail. 
not exists(X) :-

- true. 

exists(X) :­
clause(X,true),!. 

I* defination of digit(D) *I 
digit(D):- 47<D,D>58. 

323 



Apr 3 17:03 1987 PC/pc_top Page 1 

/* TOP OF PREDICATE TRANSLATE (PC_TOP) */ 

/* Stage 1: taking out implication sign */ 
implout((P<=>Q),(Pl&Ql):-

1 , 
implout((P•>Q),Pl), 
implout((Q=>P),Ql). 

implout((P=>Q),(-Pl#Ql)):­
! , 
implout(P,Pl), 
implout(Q,Ql). 

implout(T:P,T:Q):-
! , 
implout(P,Q). 

implout((P&Q),(Pl&Ql)):-
1 , 
implout(P,Pl), 
implout(Q,Ql). 

implout((P#Q),(Pl#Ql)):­
! , 
implout(P,Pl), 
implout(Q,Ql). 

implout((-P),(-Pl)):-
1 , 
implout(P,Pl). 

implout(all(X,P),all(X,Pl)):-
1 , 
implout(P,Pl). 

implout(all(X,D,P),all(X,D,Pl)):-
1 , 
implout(P,Pl). 

implout(exists(X,P),exists(X,Pl)):-
! , 
implout(P,Pl). 

implout(exists(X,D,P),exists(X,D,Pl)):-
1 , 
implout(P,Pl). 

implout(P,P). 

/* Stage 2: to bring in negation sign */ 
negin( (-P) ,Pl) :-

! , 
neg ( P, Pl) . 

negin(T:A,T:BjC]):-
! , 
negin(A,B,C). 

negin((P&Q),(Pl&Ql)):­
! , 
negin(P,Pl), 
negin(Q,Ql). 

negin((P#Q),(Pl#Ql)):-
1 , 
negin(P,Pl), 
negin(Q,Ql). 

324 



Apr 3 17:03 1987 PC/pc_top Page 2 

negin(all(X,P),all(X,Pl)):-
1 , 
negin(P,P1). 

negin(all(X,D,P),all(X,D,P1)):-
I ' 
negin(P,P1). 

negin(exists(X,P),exists(X,P1)):-
I ' 
negin(P,P1). 

negin(exists(X,D,P),exists(X,D,Pl)):-
1 , 
negin(P,P1). 

negin(P,P). 

neg( (-P) ,P1) :-
! , 
negin(P,Pl). 

neg(T:A,T:BIC]):-
1 , 
neg(A,B,C). 

neg((P&Q),(PliQl)):­
! , 
neg(P,P1), 
neg(Q,Ql). 

neg((PIQ),(P1&Q1)):­
I , 
neg(P,Pl), 
neg(Q,Q1). 

neg(exists(X,P),all(X,P1)):-
! , 
neg(P,P1). 

neg(exists(X,det(the),P),exists(X,det(the),P1)):-
! , 
neg(P,Pl). 

neg(exists(X,D,P),all(X,D,P1)):-
I ' 
neg(P,P1). 

neg(all(X,P),exists(X,P1)):-
I ' 
neg(P,Pl). 

neg(all(X,D,P),exists(X,D,P1)):-
! , 
neg(P,P1). 

neg(P,(-P)). 

325 



326 
Apr 3 18:06 1987 PC/pc_skolem Page 1 

/* STAGE 3: skolemizing a variable of knowledge statements */ 
skolem(T:A,T:B,C):-

1 , 
skolem(A,B,C). 

skolem((PiQ),(P1iQ1),Vars):­
! , 
skolem(P,P1,Vars), 
skolem(Q,Q1,Vars). 

skolem((P&Q),(P1&Q1),Vars):­
l , 
skolem(P,P1,Vars), 
skolem(Q,Q1,Vars). 

skolem(all(X,P),all(X,P1),Vars):-
l , 
skolem(P,P1,[XIVars]). 

skolem(all(X,D,P),all(X,D,P1),Vars):­
l , 
skolem(P,P1,[XIVars)). 

skolem(exists(X,P),P2,Vars):­
pickname(X,P,Name), 
pickskolem(Name,anything,Vars,Sk), 
substitute(Sk,X,P,P1), 
skolem(P1,P2,Vars). 

skolem(exists(X,proper noun(X),P),P1,Vars):-
l, -
skolem(P,P1,vars). 

skolem(exists(X,definite(X),P),P2,Vars):­
pickname(X,P,Name), 
pickskolem(Name,the,vars,Sk), 
substitute(Sk,X,P,P1), 
skolem(P1,P2,Vars). 

skolem(exists(X,det(The),P),P2,Vars):­
The==the, ! , 
pickname(X,P,Name), 
pickskolem(Name,the,Vars,Sk), 
subst1tute(Sk,X,P,P1), 
skolem(P1,P2,Vars). 

skolem(exists(X,D,P),P2,Vars):­
pickname(X,P,Name), 
pickskolem(Name,D,Vars,Sk), 
substitute(Sk,X,P,P1), 
skolem(P1,P2,Vars). 

skolem(P,P,Vars). 

/* Procedure PICKSK: picking a Skolem variable 
for knowledge statements */ 

pickskolem(Name,the,Vars,Sk):-
skolem the(Name,Sk), 
! . -

pickskolem(Name,D,Vars,Sk):­
gensym(Name,F), 
append([F],Vars,Fandargs), 
Sk= •• [fsiFandargs), 
asserting(skolem_the(Name,Sk)). 



Apr 3 18:06 1987 PC/pc_skolem Page 2 

asserting( F):-
F= •. (F1,N,Sk), 
G= •• [F1,N,X), 
retractall (G), 
asserta(F). 

327 



Apr 3 17:41 1987 PCipc_bottom Page 1 

I* BOTTOM'S PART OF PREDICATE TRANSLATE (PC_BOTTOM) *I 

I* STAGE 4: deleting all universal quantifiers *I 
univout(T:P,T:P1):-

univout(P,P1). 
univout(all(X,P),Pl):-

1 , 
univout(P,P1). 

univout(all(X,D,P),P1):­
! , 
univout(P,Pl). 

univout((P&Q),(P1&Q1)):­
I , 
univout(P,Pl), 
univout(Q,Q1). 

univout((P#Q),(Pl#Q1)):­
! , 
univout(P,P1), 
univout(Q,Ql). 

univout( P, P). 

I* STAGE 5: transforming into conjunction form *I 
conjn( ( PliQ) ,R) :-

1 , 
conjn(P,P1), 
conjn(Q,Q1), 
conjn1((P1liQ1),R). 

conjn((P&Q),(P1&Q1)):­
I , 
conjn(P,Pl), 
conjn(Q,Q1). 

conjn( (A:P), (A:Pl)) :­
conjn(P,P1). 

conjn(P,P). 

conjnl(((P&Q)liR),(Pl&Q1)):­
I , 
conjn((PliR),P1), 
conjn((Q#R),Q1). 

conjn1((Pli(Q&R)),(P1&Q1)):­
I , 
conjn((PliQ),P1), 
conjn((Pl!R),Q1). 

conjn1( (PiT: (Q)) ,T: (R)) :­
conjn1( (PliQ) ,R). 

conjn1((A:P),(A:P1)):­
conjn1(P,Pl). 

conjn1(P,P). 

I* STAGE 6: transforming into clausal form, cl(A,B) *I 

clausify((P&Q),C1,C2):-
I , 
clausify(P,C1,C3), 
clausify(Q,C3,C2). 

328 



Apr 3 17:41 1987 PC/pc_bottom Page 2 

clausify(P,[cl(A,B)ICs),Cs):­
inclause(P,A,[),B,[)), 
!. 

clausify(P,C,C). 

inclause((P*Q),A,A1,B,B1):-
! , 
inclause(P,A2,A1,B2,B1), 
inclause(Q,A,A2,B,B2). 

inclause((-P),A,A,B1,B):­
! , 
notin(P,A), 
putin(P,B,B1). 

inclause(P,A1,A,B,B):­
notin(P,B), 
putin(P,A,A1). 

notin(X, [YILI) :-
X== Y, 
! , 
fail. 

notin(X,[YIL)):-!, 
notin(X,L). 

notin(X, [I). 

putin(X, [I, [X)):-!. 
putin(X,[YIL),[YILI):-

X == Y, 
! • 

putin(X,[YIL),[YIL1)):­
putin(X,L,L1). 

/* STAGE 7: writing cl(A,B) in Clocksin's format */ 

buildclauses([cl(A,B) 1Cs),[DID1)):­
bu1ldclause(A,B,D), 
buildclauses(Cs,D1). 

buildclauses( [I, [I):-!. 

buildclause(L,[)):-!,disjunc(L,D). 
bu1ldclause( [I ,L, [I :-B) :-1 ,conjunc(L,B). 
buildclause(Ll,L2,(A:-B)):-

disjunc(L1,A),conjunc(L2,B). 

disjunc([L],L):-!. 
diSJUnc([L!Ls],(L;A)):-disjunc(Ls,A). 

conjunc([L),L):- !. 
conjunc(!LILs),(L,A)) :-conjunc(Ls,A). 

/* STAGE 8: print clauses */ 
printclauses([)):-!. 
printclauses([XIYJ):-

write(X) ,write('.!) ,nl, 
printclauses(Y). 

329 



330 
Apr 4 12:07 1987 PC1pc_sko1emq Page 1 

I* STAGE 3q: skolemizing a question *I 

I* to convert existential quantifiers into skolem functions *I 
skolemq(T:A,T:B,C,S):-

1 , 
skolemq(A,B,C,S). 

skolemq((P~Q),(P1~Q1),Vars,S):-
1 , 
skolemq(P,P1,Vars,S1), 
skolemq(Q,Q1,Vars,S2), 
appendl(Sl,S2,S). 

skolemq((P&Q),(P1&Q1),Vars,S):-
1 , 
skolemq(P,P1,Vars,S1), 
sko1emq(Q,Q1,vars,S2), 
append1(S1,S2,S). 

skolemq(all(X,P),a1l(X,P1),Vars,S):-
1 , 
skolemq(P,P1,[XIVars],S). 

skolemq(all(X,D,P),all(X,D,P1),Vars,S):­
! , 
skolemq(P,P1,[XIVars],S). 

skolemq(exists(X,P),P2,Vars,S):-
picking skolem(exists(X,P),P2,anything,Vars,Sk,S). 

skolemq(exists(X,proper noun(X),P),P2,Vars,S):-
1, -
skolemq(P,P2,Vars,S). 

skolemq(exists(X,definite(X),P),P2,Vars,[s12,S) :-
1 , 
picking skolem(exists(X,P),P2,the,vars,Sk,S). 

skolemq(exists(X,indefinite(X),P),P2,vars,[s12,S):-
! , 
picking skolem(exists(X,P),P2,anything,Vars,Sk,S). 

skolemq(exists(X,det(D),P),P2,Vars,S):-
picking skolem(exists(X,P),P2,D,Vars,Sk,s). 

skolemq(P,P,Vars,[]). 

substitute1(X,Y,A,B):-substitute(X,Y,A,B),!. 

I* by converting to a skolem function *I 
picking skolem(exists(X,P) ,P2,D,Vars,Sk, [ [X,SkliSl) :-

-pickname(X,P,Name), 
pickskolemq(Name,D,Vars,Sk), 
substitute1(Sk,X,P,P1), 
skolemq(P1,P2,Vars,S). 



331 
Apr 4 12:07 1987 PC/pc_skolemq Page 2 

/* picking the Skolem function for existential quantifiers */ 
pickskolemq(Name,the,Vars,Sk):-

skolem the(Name,Sk), 
!. -

pickskolemq(Name,the,vars,Sk):­
skolemq the(Name,Sk), 
!. -

pickskolemq(Name,the,Vars,Sk):­
gensym(Name,F), 
append1([F),Vars,Fandargs), 
Sk= •. [fsiFandargs), 
asserting(skolem the(Name,Sk)), 
!. -

pickskolemq(Name,D,Vars,Sk) :­
gensym(Name,F), 
append1([F),Vars,Fandargs), 
Sk= •• [fqiFandargs), 
asserting(skolemq the(Name,Sk)), 
!. -



332 
Apr 4 11:21 1987 PC/substitute Page 1 

/* PC/substitute */ 

/* to substitute a variable Old1 with New in clause Old2 */ 
substitute(New, Old1, Old2, New) :-

/*to tackle Old1 and Old2 in the form of fq( ••. ) */ 
nonvar(Old1), 
nonvar(Old2), 
Old1 = Old2, 
!. 

substitute(New,Old1,0ld2,New):­
Old1 •= Old2, 
!. 

substitute(New1,0ld1,0ld2,0ld2):­
var(Old2), 
Old1 \== Old2, 
! . 

substitute(New,Old,Val,Val):­
not(var(Val)), 
atomic(Val), 
!. 

substitute(New,Old,(-P),(-P1)):­
substitute(New,Old,P,P1). 

substitute(New,Old,Val,Newval):­
Val= •• [FnjArgs], 
subst args(New,Old,Args,Newargs), 
substTtute(New,Old,Fn,Fn1), 
newval(Fn1,Newargs,Newval). 

newval(-Fn1,Newargs,-Newval):-!, 
Newval= •• [Fn1jNewargs]. 

newval(Fn1,Newargs,Newval):-!, 
Newval= •• [Fn1jNewargs]. 

subst args(X,Y,[ ],[]):-
- !. 

subst args(New,Old,[ArgjArgs],[NewargjNewargs]):­
- substitute(New,Old,Arg,Newarg), 

subst_args(New,Old,Args,Newargs). 



Apr 4 12:18 1987 PCipc_gensymlg Page 1 

I* Create a new atom starting with a root provided and 
finishing with a unique number *I 

gensym(Root,Root):-
var(Root), 
!. 

gensym(Root,Atom):-
get num(Root,Num), 
name(Root,Name1), 
name(Num,Name2), 
append(Name1,Name2,Name), 
name(Atom,Name). 

get num(Root,Num):-
- I* this root encountered before *I 

retract(current_num(Root,Num1)), 
! , 
Num is Num1 + 1, 
asserta(current num(Root,Num)). 

get num(Root,O):- -
- I* first time for this root *I 

asserta(current_num(Root,O)). 

I* to pickup the name of atom *I 
pickname(X,(P#Q),Name):­

pickname(X,P,Name), 
!. 

pickname(X,(P&Q),Name):-
pickname(X,P,Name), 
I. 

pickname(X,(T:(P)),Name):­
pickname(X,P,Name), 
I. 

pickname(x,-P,Name):-
pickname(X,P,Name), 
!. 

pickname(X,P,Name):-
P • •• [f,NameiArgs), I* fact m) f *I 
I. 

pickname(X,P,Name):-
P - .• [NameiArgs), 
Name\==exists, 
Name\==all, 
!. 

pickname(X,P,skolem). 

333 



Apr 4 12:33 1987 PCipc_trans Page 1 

I* Procedure STASZ: assert "knowledge(X)"into 
the database *I 

stassertz( [ 1) :-!. 
stassertz([XIY]):-

assertz(knowledge(X)), 
stassertz(Y). 

I* Procedure TRPCK: to translate PC, "X", into 
Clocksin format, "Clause" *I 

translate(X,Clauses):-
translate top(X,X2), 
skolem(X2~X3,[]), 
translate_bottom(X3,Clauses). 

I* procedure TRTOP *I 
translate top(X,X2):­

iiiiplout(X,X1), 
negin(X1,X2), 
!. 

I* procedure TRTOP *I 
translate bottom(X3,Clauses):­

univout(X3,X4), 
conjn( X4 ,XS), 
clausify(X5,X6,[]), 
buildclauses(XG,Clauses), 
printclauses(Clauses), 
!. 

I* Procedure TRQ: to translate PC, "X", into 
Clocksin format, "Clause" *I 

translateq(X,Clauses,Sk):-
translate top(X,X2), 
skolemq(X2,X3,[ ],Sk), 
translate_bottom(X3,Clauses). 

334 



335 
Apr 5 12:08 1987 PCihornclause Page 1 

I* Procedure QASS: assert "query(X)" into the database *I 
qassertz( [I) :-1. 
qassertz([XIY)):-

assertz(query(X)),qassertz(Y),!. 

I* Procedure ASSKG: to assert knowledge clauses into 
the database *I 

assert knowledge(X):-
- nl,write('knowledge statement:'),nl,tab(4),write(X),nl, 

write('m=============ma=======>'),nl, 
write('The translated clauses :' ),nl,nl, 
translate(X,Clause), 
horn clauses(Clause,Horn), 
write('&&&&&&&&&&&&nextnextnext&&&&&&&&&&&&'),nl, 
stassertz(Horn). 

I* Procedure QTHC *I 
question to hornclause(Q,Clause,Sklist):­

assert_query(-Q,Clause,Sklist). 

/* Procedure ASSQ: to assert knowledge clauses into 
the database */ 

assert query(X,Clause,Sklist):-
- translateq(X,Clause,Sklist), 

horn clauses(Clause,Horn), 
write('&&&&&&&&&&&&&&&&&&&&&&&'),nl, 
qassertz (Horn). 

/* Procedure HC: converting a clausal into headed Horn clause */ 
horn clauses([),[)):-!. 
horn-clauses([SecondliSecond2],First):-

- horn clausesl(Secondl,Firstl), 
horn-clauses(Second2,First2), 
append(Firstl,First2,First), 
I. 

I* Procedure HCl: creating N equivalence headed Hornclause *I 
horn clausesl([):-Body,C):-

- I' 
horn clauses2(Body,[),C). 

horn clausesl(Head:-Body,C):-
- I' 

convert(Head,Bodyl), 
appendbody(Bodyl,Body,Body2), 
horn clauses!([ ]:-Body2,C),!. 

horn clausesl((Head;Headl),C):-
- I' 

convert((Head;Headl),Body), 
horn clausesl([ 1:-Body,C),I. 

horn_clausesl(Atomic,[Atomic)). 



Apr 5 12:08 1987 PC/hornclause Page 2 

/* Procedure HC2 */ 
horn clauses2([],Body,[]):-l. 
horn-clauses2((Body,Body1),Body2,[Nothead:-Body3ID2]):-

- l. 
convert(Body,Nothead), 
appendbody(Body2,Body1,Body3), 
appendbody(Body2,Body,Body4), 
horn clauses2(Body1,Body4,D2). 

horn clauses2(Body,[],[Nothead]):-!, 
- convert(Body,Nothead). 

horn clauses2(Body,Body2,[Nothead:-Body2]):­
- convert(Body,Nothead). 

336 

/* Procedure CONV: moving literals into the !efts hand side 
or the right hand side of a rule as appropriate */ 

convert(A;B,(Al,Bl)):-
/* Procedure CONV.1 */ 
!,convert(A,A1),convert(B,B1). 

convert( (K,L), (K1;Ll)) :-
/* Procedure CONV.2 */ 
l,convert(K,K1),convert(L,Ll). 

convert(-P,P):-!. /*Procedure CONV.3 */ 
convert(P,-P). /* Procedure CONV.4 */ 

/* Procedure APPB */ 
appendbody(K,[],K). 
appendbody([],M,M). 
appendbody((K,L),M,(K,N)):-appendbody(L,M,N). 
appendbody(K,M,(K,M)). 



Apr 5 13:04 1987 PCioutputfp4 Page 1 

I* file : PCioutputfp4 *I 

I* procedure ASSPRV2 *I 
assertaproving2(Q,N):-

retractall(proving( ,N)), 
asserta(proving(Q,NT). 

I* procedure ASSGLl *I 
assertagoall(Q,N):­

node(N), 
retractall(goal( ,N)),asserta(goal(Q,N)), 
updating_node(N)~ 

I* procedure UPNODE *I 
updating node(N):-Nl 1s N+l,assertnode(Nl). 
updating=node(N):-assertnode(N),fail. 

assertnode(N):-rectractall(node( )),asserta(node(N)). 

I* Procedure HAVEPR *I 
haveproved(Q,[HeadJTail]):-Q==Head,!. 
haveproved(Q,[HeadJTail]):-haveproved(Q,Tail). 

haveproved top(Q,Hp):-haveproved(Q,Hp),l. 
haveproved-top(Q,Dummy):-nonvar(Q), 

proven(Q),l. 

I* procedure NOTTRYl *I 
nottryl(Q,[]). 
nottryl(Q,[HJT]):-

Q~==H, 
nottryl(Q,T),!. 

nottryl(Q,[HJT]):-
Qa=H, 
asserta(looping(Q)), 
!,fail. 

I* procedure ASSGLl *I 
assertz proven([HpJHptail]):­

-proven(Hp),assertz proven(Hptail),l. 
assertz proven([HpJHptaillT:-

-assertz(proven(Hp)),assertz proven(Hptail). 
assertz_proven([]). -

I* procedure ASSGLl *I 
check failure(Q):-failure(Q),!,fail. 
check=failure(Q):-asserta(failure(Q)). 

337 



338 
Apr 5 13:04 1987 PC/outputfp4 Page 2 

/*******************************************************/ 
/* TO PRINT THE SOLUTION'S PATH OF THE QUERY(QUESTION) */ 
print solution:-node(N),nl,nl,nl, 

- write('The path of solution of the goal clause: '), 
goal(G,1) ,nl,tab(S) ,write(' [I:-') ,writegoal(G), 
nl,nl,print_solution1(N,1),!. 

print solution1(N,N1):-proving(P,N1), 
- N1<N, 

goal ( G, N1) , 
nl,tab(4),write('[]:-'),writegoal(G), 
nl, tab ( 8) , write ( ' I ' ) , 
nl,tab(8) ,write(' 1 ') ,write(P) ,write('.'), 
nl,tab(8) ,write(' I/'), 
N2 is N1+1, 
print solution1(N,N2),!. 

print_solution1(N,N1):-
nl, tab ( 4 ) , write ( ' [ I :- [ I . ' ) , ! , nl. 

writegoal([G1IG21):-
wr i tegoall ( G2 ) , 
write(G1),write('.'),!. /*right to left*/ 

writegoal(G) :-
write(G),write('.'). /*for left to right*/ 

writegoall([G21G31):-writegoall(G3),write(G2),write(' ,'),!. 
writegoal1([ ll:-!. 



Apr 5 12:33 1987 PCiansearch Page 1 

I** PCiansearch== **I 

I* AS:searching for answers of the question *I 
answer search(Clause,X,Y,Newskquant):-

- answer(X,Clause,Ans), 
assertz new(affirm(Ans)), 
subst sKolem(X,Y,Newskquant). 

answer searchTclause,X,Y,Newskquant):-
1* no more exists possible answers 

i.e the proving ends *I 
Clause\==[], 
exists(toptry([])),!. 

I* end AS:searching for answers of the question *I 

339 



340 
Apr 5 13:03 1987 PCifprolog13 Page 1 

I** PCifprologl3 == to prove from right to left *I 

I* Procedure ASK: to prove each clause of the question *I 
asking(Pc,[XIY]):-

top asking(X,Q), 
factprolog(Q, [ 1, [],Hp, [ 1, [ 1 ,Fe), 
reason testing(Pc,Fc), 
successful action(Hp). 

asking(Pc,[XIYTl:-
print comment(X), 
asking( Pc, Y). 

asking(Pc, []) :­
assertz(toptry([])),fail. 

I* Procedure FACTPR *I 
factprolog((Ql,Q2),Usedclauses,Hp,Hpl,Goalclause,Fc,Fcl):-

! , 
factprolog(Q2,Usedclauses,Hp,Hp2,[Q11Goalclause],Fc,Fc2), 
factprolog(Q1,Usedclauses,Hp2,Hp1,Goalclause,Fc2,Fc1). 

factprolog(Q,Usedclauses,Hp,Hp1,Goalclause,Fc,Fc1):­
assertagoal1([QIGoalclause1,Nl, 
baseprolog(Q,usedclauses,Hp,Hpl,Goalclause,N,Fc,Fc1). 

I* recording an unsatisfiable or a failure atom *I 
factprolog(Q,Usedclauses,Hp,Hp,Goalclause,Fc,[[Q,N] IFc]):­

test failure loop(Q), 
nodeTNl, -
updating_node(N). 

I* Procedure BASEPR: to match with a single atom *I 
baseprolog(Q,Usedclauses,Hp,Hp,Goalclause,N,Fc,Fc):­

clause(Q, ) , 
call(Q), I* if Q is a system predicate *I 
assertaproving2(Q,N). 

baseprolog(Q,Usedclauses,Hp,Hp,Goalclause,N,Fc,Fc):­
knowledge base(Q), 
assertaprovlng2(Q,N). ~ 

baseprolog(Q,Usedclauses,Hp,Hp1,Goalclause,N,Fc,Fc1):­
knowledge base(Q:-A), 
factclause(Q:-A,Usedclauses,Hp,Hp1,Goalclause,N,Fc,Fc1). 

I* Procedure FACTCL: to match with a headed clause *I 
factclause(Q:-A,Usedclauses,Hp,Hp,Goalclause,N,Fc,Fc):­

haveproved top(Q:-A,Hp),!, 
assertaproving2(Q:-A,N). 

factclause(Q:-A,Usedclauses,Hp,[Q:-AIHP11,Goalclause,N,Fc,Fc1):-
nottry1(Q:-A,Usedclauses), I* cycling test *I 
check failure(Q:-A), 
assertaproving2(Q:-A,N), 
factprolog(A,[Q:-AIUsedclauses],Hp,Hp1,Goalclause,Fc,Fc1), 
retractall(failure(Q:-A)). 



341 
Apr 5 13:03 1987 PC/fprolog13 Page 2 

/* to extract the failure or unproveable clause/fact */ 
test failure loop(Q):-

not(knowiedge base head(Q)), 
not(clause(Q,-)),!~ 

test failure loopTQ):-
exists(looping(Q:-T)), 
exists(failure(Q:-T)),!. 

/* Procedure SUCCESS */ 
successful action(Hp):­

assertz_proven(Hp). 



Apr 5 13:17 1987 PC/listquant Page 1 

/** PC/listquant */ 

/* to list all quantifiers of PC formula */ 
list quantifiers((P<=>Q),L):-

- !, 
list quantifiers(P,Ll), 
list-quantifiers(Q,L2), 
append(Ll,L2,L). 

list quantifiers((P=>Q),L):-
- !, 

list quantifiers(P,Ll), 
list-quantifiers(Q,L2), 
append(Ll,L2,L). 

list quantifiers(T:P,L):­
- !, 

list quantifiers(P,L). 
list quantifTers((P&Q),L):-

- !, 
list_quantifiers(P,Ll), 
list quantifiers(Q,L2), 
append(Ll,L2,L). 

list quantifiers((P*Q),L):-
- !, 

list quantifiers(P,Ll), 
list-quantifiers(Q,L2), 
append(Ll,L2,L). 

list quantifiers((NP),L):­
- !, 

list quantifiers(P,L). 
list quantifTers(all(X,P),[[all,X] ILl):­

- !, 
list quantifiers(P,L). 

list quantifTers(all(X,D,P),[[all,X]ILl):­
- !, 

list quantifiers(P,L). 
list quantifTers(exists(X,P),[[exists,X]ILl):­

- !, 
list quantifiers(P,L). 

list quantifTers(exists(X,D,P),[[exists,X]ILl):­
- !, 

list quantifiers(P,L). 
list_quantifTers(P,[ ]). 

342 



Apr 9 09:43 1986 PC/mergequant Page 1 

/* to merge two lists i.e Skhead and Listquant 
into a new list, ie Newlist */ 

343 

merge quantifiers([Skhead1Tail],Listquant,[Newlistl1Newlist2]):­
merge quantifier(Skhead,Listquant,Newlistl), 
merge-quantifiers(Tail,Listquant,Newlist2),!. 

merge_quantifiers([ ],Listquant,(]). 

merge quantifier([X,Sk],[[Quant,Y]ITail],[X,Sk,Quant]):­
x==Y,l. 

merge quantifier(Skhead,[ListqheadiTail],Newlistl):­
merge quantifier(Skhead,Tail,Newlistl),!. 

merge_quantifier(Skhead,[ ],[]). 



Mar 29 09:21 1985 E/transf Page 1 

/* transf(P,Q,R): to transform Q and Pinto R */ 
transf(Q,-P,-R):-transf(Q,P,R). 
transf(all(Y,Q2=>Q1),all(X,P2=>P1), 

all(X,P2=>all(Y,Q2&Q1=>P1))):-!. 
transf(all(Y,Q2=>Q1),exists(X,P2&P1), 

exists(X,P2&all(Y,Q2&Q1&P1))):-!. 
transf(exists(Y,Q),all(X,P2=>P1), 

all(X,P2&exists(Y,Q)=>P1)):-!. 
transf(exists(Y,Q),exists(X,P2&P1), 

exists(X,P2&exists(Y,Q&P1))):-!. 
transf(Q,all(X,P2=>Pl),all(X,P2&Q=>Pl)):-!. 
transf(Q,exists(X,P2&Pl),exists(X,P2&Q&P1)):-!. 
transf(Q,P,P&Q):-!. 

incorporate(P,Q,R):-incorporatel(P,Q,R). 
incorporate(P,Q,R):-incorporate2(P,Q,R). 

incorporatel(P1,all(X,P=>P2),all(X,P=>Q)):-

344 

incorporate1(Pl,P2,Q),!. 
incorporatel(P1,exists(X,P),exists(X,P=>Pl)):-!. 
incorporatel(Pl,all(X,Z,P=>P2),all(X,Z,P=>Q)):-

incorporatel(Pl,P2,Q),!. 
incorporatel(P1,exists(X,Z,P),exists(X,Z,P=>Pl)):-!. 
incorporate1(P1,exists the(X,Z,P),exists the(X,Z,P•>P1)):-!. 
incorporatel(Pl,P=>P2,P=>Q):- -

incorporatel(Pl,P2,Q), !. 
incorporatel(P1,P,P=>Pl):-!. 

incorporate2(Pl,all(X,P=>Q),all(X,P&Pl=>Q)):- I. 
incorporate2(P1,exists(X,P),exists(X,P&Pl)):-!. 
incorporate2(Pl,all(X,Z,P=>Q),all(X,Z,P&P1=>Q)):- !. 
incorporate2(P1,exists(X,Z,P),exists(X,Z,P&Pl)):- !. 
incorporate2(P1,P,P&Pl):- !. 



345 
Jun 18 11:14 1986 PCireasontest Page 1 

I* to remove any duplicate reason from the list of reasons *I 

I* Procedure REASONING: to test the answers *I 
reason testing(Goal,Fc):-

- Fe== [ 1, 
!,used query only. 

reason testingTGoal,Fc):-
- abolish(failure son,2), 

split reason(Fc~Reason), 
not exists(reject(Reason)), 
not-exists(consulted sor(Goal,Reason)), 
not-exists(set of reason( ,goal(Goal),reason(Reason))), 
assert reason son-father(Goal), 
assert-set of-reason(Goal,Reason), 
I, fail-:- - -

I* checking the use of query clauses only 
during proving *I 

used query only:-
- noae(N) I 

used query onlyl(N), 
!,retract(used_fact_clause). 

used query onlyl(N):­
- Nl-is N-1, 

proving(Q,Nl), 
used query only2(Q,Nl). 

used_query_onlyl(NT. 

used query only2(Q,Nl):-
- query(Q), 

!,used query onlyl(Nl). 
used query only2(Q,NI):-

- fact base ( Q), 
assert(used fact clause), 
I ,fail. - -

I* to split reason and its node number, 
and to assert failure son12 
and to remove any dupiication of reason *I 

split reason([[R,N] ITail],Rtail):-
- exists(failure son(R,Nl)), 

assert(failure-son(R,N)), 
split reason(Tail,Rtail),!. 

split reason(T[R,NliTail],[RIRtail]):-
- not exists(failure son(R,Nl)), 

assert(failure sonTR,N)), 
split reason(Tail,Rtail),!. 

split_reason(TJ,[]). 

I* assert reason son fatherl3 by using provingl2 *I 
assert reason son father(Goal):-

- node(N), -
Nl is N-1, 
access_proving(Goal,Nl). 



Jun 18 11:14 1986 PC/reasontest Page 2 

access proving(Goa1,0):-
- goal ( G, 1) , 

assert rsf(G,goal(Goal),O), 
abolisli(failure son,2), 
abolish(failure=father,2), 
!. 

access proving(Goal,N):-
- exists(proving(H:-T,N)), 

assert rsf(T,H:-T,N), 
N1 is N-1, 
access proving(Goal,Nl). 

access provingTGoal,N):-
- not exists(proving(H:-T,N)), 

N1 Ts N-1, 
access_proving(Goal,N1). 

assert rsf([G11G2),Father,N):-
- assert rsf(G1,Father,N), 

assert-rsf(G2,Father,N). 
assert_rsf([),Father,N). 

assert rsf((T1,T2),Father,N):-
- assert rsf(T2,Father,N), 

assert-rsf(Tl,Father,N). 
assert rsf(T,Father,N):-

- exists(failure son(T,N1)), 
N=<N1, -
option(Option), 
retract(failure son(T,N1)), 
assert(rsf headTOption,T,Father)), 
assert(fa1Ture father(Father,N)). 

assert rsf(T,Father,N)T-
exists(failure father(T:-Tail,Nl)), 
N=<N1, -
option(Option), 
assert(reason son father(Option,T,Father)), 
assert(failure father(Father,N)). 

assert rsf(T,Father,N)~ 

346 



347 
Apr 5 13:48 1987 PC/topfprolog Page 1 

/* proving the conclusion of questions as prolog system */ 
/* with addition of testing failure clause */ 
/* in order to reduce execution time*/ 
/* set of reason are taken in FIFO's order */ 

/* Procedure CLEARPC */ 
clear pc:-

- abolish(reject,1), 
abolish(query,1), 
abolish(current numqs,1), 
abolish(toptry,T), 
abolish(toptry0,1), 
abolish(option,1), assert(option(1)), 
abolish(set of reason,3), 
abolish(old-set of reason,3), 
abolish(fa1Ture-father,2), 
abolish(failure-son,2), 
abolish(substitution log,1), 
abolish(consulted sor,2), 
abolish(reason son father,3), 
abolish(rsf head,3T, 
abolish(mismatch pair,4), 
abolish(howmany subst,2), 
abolish(skolemfq list,1), 
abolish(mismatch-pair,2), 
abolish(mismatch-list,l), 
abolish(old goal~l), 
clear_pc1. -

/* Procedure CLEAR-PC1 */ 
clear pcl:-

- abolish(accepted substitution,!), 
abolish(subsidiary list,1), 
abolish(scan fail,l), /* depth+breadth first*/ 
abolish(failure,1), 
abolish(looping,1), 
retractall(toptry([ ])), 
abolish(proven,1), 
abolish(proving,2), 
abolish(goal,2), 
abolish(try,2), 
abolish(try,1). 

/* Procedure ANS: answering the question */ 
answer(Pc,Q,yes):-

asking(Pc,Q), 
assert once(toptryO(Pc)). 

answer(Pc,Q,noT:-
not_exists(toptryO(Pc)). 

/* Procedure TOPASK */ 
/* top portion of predicate 'asking' */ 
top asking(X,Q):-

- assertnode(1), /*to initialize node(1) */ 
format goal(X,Q), 
!. -



Apr 5 13:48 1987 PCitopfpro1og Page 2 

I* Procedure PRCMT: to print comment *I 
print comment(X):-

- not exists(toptry(X)), 
n1,write('>>>>>> can not prove '), 
write(X),write(' <<<<<<'),nl, 
I • 

print_comment(X). 

I* defination of KB clauses (data base) *I 
knowledge base(Q):-

query(Q). 
knowledge base(Q):­

fact_base(Q). 

I* defination of fact base clause (data base) *I 
fact base(Q):-

- clause(knowledge(Q),true). 
fact base(Q):-

- clause(subsidiary(Q),true). 
fact base(Q):-

- clause(plausible(Q),true). 

I* defination of knowledge base head *I 
knowledge base head(Q):-knowledge base(Q). 
knowledge=base=head(Q):-knowledge=base(Q:-T). 

I* Qh:to finding the head clause of the query clause *I 
queryhead(H):-query(H). 
queryhead(H):-query(H:-T). 

I* new defination of query clause *I 
query clause(Q:-true):- -

- query(Q). 
query clause(Q:-T):-

- query(Q:-T). 

I* new defination of fact base clause *I 
fact base clause(K,true):= 

- fact base(K). 
fact base clause(K,T):-

- fact_base(K:-T). 

I* Procedure FG: to format goal *I 
format goal([]:-Body,Body):-!. 
format-goal(Head:-Body,Goal):-

- !, 
convert(Head,Nothead), 
appendbody(Nothead,Body,Goal),!. 

format goal(Head,Goal):-
- convert(Head,Goal),!. 

rightside(X,Y):-format_goal(X,Y). 

348 



Apr 30 19:38 1986 Y/aaccsubst Page 1 

already accepted subs(Option,Goal,Reason,[P,R,T,Diff]):­
already accepted subsl(Diff,Newdiff), 
accept_subs(Option,Goal,Reason,[P,R,T,Newdiff)). 

already accepted subsl(Diff,Newdiff):-
exists(accepted substitution(S)), 
already acceptea subs2(Diff,S,Newdiff). 

already accepted suosl(Diff,Diff):-
not_exists(accepted_substitution(S)). 

already accepted subs2([),S,[)). 
already-accepted-subs2([HIT),S,NewT):­

already accepted subs3(H,S,Hl), 
already-accepted-subs2(T,S,Tl), 
insertfront(Hl,Tl,NewT),!. 

349 

already accepted subs3(H,[[P,R,Mis,[HITIIITail),[)):-!. 
already-accepted-subs3([S,Q),[[P,R,Mis,[[Q,S) IT)) !Tail),[)):-!. 
already-accepted-subs3(H,[[P,R,Mis,[HliTII ITail],Tl):-

already accepted subs3(H,[[P,R,Mis,TIITa11),Tl). 
already accepted suos3(H,[[P,R,Mis,[])ITail),Tl):-!, 

already accepted subs3(H,Tail,Tl). 
already_accepted_suos3(H,[),[H)). 

insertfront([),T,T):-!. 
insertfront([H),T,[HIT)). 

accept subs(Option,Goal,Reason,[P,R,T,[ ))):-!. 
accept-subs(Option,Goal,Reason,[P,R,T,Diff)):­

accept_substitution(Option,Goal,Reason,[P,R,T,Diff)). 



Apr 23 11:40 1986 Ylacceptance Page 1 

I* acceptance enquiry of the whole suggestion *I 
acceptance(Option,Reason,Goal,Listquant):­

acceptance1(Listquant), 
print acceptance(Option,Reason,Goal,Listquant), 
acceptance action, 
eliminate_railure_atom,!. 

acceptance1(Listquant):-
exists(subsidiary list(S)), 
nl,write(' If the-following clause'), 
test is(S),write(' true'), 
nl,write reason(S),nl, 
fail. -

acceptance1(Listquant):­
exists(skolemfq list(Sq)), 
test and if(subsidiary list(S)), 
print quantifier(Sq,Listquant),nl, 
fail.-

acceptance1(Listquant):-
exists(accepted substitution(S)), 
nl,print accepted substitution,nl, 
fail. - -

acceptance1(Listquant). 

I* act1on taken on the acceptance of the suggestion *I 
acceptance action:-

retract(subsidiary list(S)), 
assert subsidiary(S), 
fail. -

acceptance action:-
retract(accepted substitution(E)), 
assert atom equiv22(E), 
fail. - -

acceptance_action. 

350 



351 
May 7 10:15 1986 Ylacceptsubs Page 1 

I* to ask for an agreement of the suggested substitutions *I 
accept substitution(Option,Goal,Reason,S):-

print substitute([S]), 
tab(40),write('---Do you agree? '), 
getO(X), 
substitution_response(X,Option,Goal,Reason,S),nl. 

I* analysizing the accept substitution response *I 
substitution response(10,0ption,Goal,Reason,S):­

I*return((nl>) 10: to accept the suggestion *I 
I, assert accepted substitution(S). 

substitution-responseT121,0ption,Goal,Reason,S):­
I* y(es) T21: to accept the suggestion *I 
!,getO( ), 
assert accepted substitution(S). 

substi tutTon response ( 97, , , , ) :-
1* a(bortT 97: to abort the session *I 
! ,getO( ) , 
abort. 

substitution response(98,0ption,Goal,Reason,S):­
I* b(reakT 98:to break from the session *I 
l,getO( ), 
break, -
prompt(Old,' '), 
accept substitution(Option,Goal,Reason,S). 

substitutTon response(119,0ption,Goal,Reason,S):­
I* w(hy) T19: to show why it was is suggested *I 
l,getO( ), 
print wny substitute([S]), 
nl,wrTte( 7 ••• so,'), 
accept substitution(Option,Goal,Reason,S). 

substitutTon response(116,0ption,Goal,Reason,S):­
I* t(ype)-116:to type again the assumption *I 
I ,getO( ) , 
write haveproved(Option,Goal,Reason), 
print-accepted substitution, 
accept substitution(Option,Goal,Reason,S). 

substitutTon response(110, , , ,S):-
1* n(o) 1TO:not to accept-tne suggestion *I 
I ,getO( ) , 
assert(reject(S)), 
fail. 

substitution response(114, , , ,[P,R,T,Diff]):-
1* r(eject) 114:to reject-aT! substitutions of R *I 
!,getO( ), 
assert(reject([P,R,T,Diff])), 
retract(mismatch pair([P1,R,T1,Diff1],N)), 
assert(reject([PT,R,T1,Diff1])), 
fail. 

substitution response(115,0ption,Goal,Reason,[P,R,T,Diff]):­
l* s(how)-115: to show the effect of the failure atoms *I 
I ,getO( ) , 
print tree failure(Option,[R]), 
accept_substitution(Option,Goal,Reason,[P,R,T,Diff]). 



May 7 10:15 1986 Y/acceptsubs Page 2 

substitution response(108,0ption,Goal,Reason,S):­
/* l(isting) 108: listing other possibilities */ 
l,getO( ), 
print other substitution(S), 
nl,wrTte(' -:- .. so,'), 
accept substitution(Option,Goal,Reason,S). 

substitutTon response(X,Option,Goal,Reason,S):­
/* othersThelp): to print the menu*/ 
getO( ),!, 
nl,tao(4),write('Response options'), 
nl,tab(4),write('================'),nl, 
nl,tab(8),write('a abort'), 
nl,tab(8),write('b break'), 
nl,tab(8),write('n not accepting and try others ), 

352 

nl,tab(8),write('l list other pass substitution(s)'), 
nl,tab(8),write('r reject all pass. substitution(s)'), 
nl,tab(8),write('s show the failure path of the goal'), 
nl,tab(8),write('t type again the assumption'), 
nl,tab(8),write('w why the substitution is suggested'), 
nl,tab(4),write('y or <nl> yes (accepting) '), 
nl,tab(4),write('<others> this message'), 
nl,accept_substitution(Option,Goal,Reason,S). 

/* asserting accepted substitution */ 
assert accepted substTtution(S):­

retract(accepted substitution(OldS)), 
assert(accepted substitution([SIOldS])),!. 

assert accepted suostitution(S):-
assert(accepted_substitution([S])). 

/* printing accepted substitution */ 
print accepted substitution:­

exTsts(accepted substitution(S)), 
nl,nl,tab(5),wrTte(' ... so you have already agreed that: '), 
print accepted substitution1(S),!. 

print_accepted_suostitution. 

print accepted substitution1([]):-
nl: -

print accepted substitution1([Head1Tail]):­
nl-;-tab( 5), -
write subs diff(Head), 
print=accepted_substitution1(Tail),!. 



May 7 10:15 1986 Ylacceptsubs Page 3 

I* to list other possibility of substitutions of R *I 
print other substitution([P,R,T,Diff)):­

exTsts(mTsmatch pair([ ,R,, ),N)), 
nl,nl,tab(5), - - --
write('The other possible substitution of '), 
write quote(R), 
write-plural clause(mismatch pair( [ ,R, , ),N)), 
writeT' as follows: '), -
print other substitutionl(R),!. 

print otner suostitution([P,R,T,Diff)):­
nl-;-nl, tao ( 5) , 
write('Sorry, no other possible substitution of '), 
write_quote(R),nl. 

print other substitutionl(R):­
mismatch-pair([G,R,M,Diff],N), 
nl,tab(6T,write('**'), 
write subs diff2(Diff,Diffl), 
writeT' can also be replaced with 'l, 
write subs diff3(Diffl),write respective(Diffl), 
writeT' as-exists'), -
print exists fact(M), 
fail.- -

print other substitutionl(R):­
nC -

353 

I* printing the comment of why the substitution is suggested */ 
print why substitute([[G,R,M,Diff)ITail]):-

nl-;- tao(5),write quote(R),write(' fails ,but exists '), 
print exists fact(M), 
nl,to-continue(Tail), 
print-why substitute(Tail),!. 

print why suostitute([)):-!, 
nf:- -

I* to print the comment of substitution of failure atoms *I 
print substitute([HITail)):-

teils(F),write subs(F,H), 
print substitute(Tail). 

print_suostitute([)):-nl. 

write subs(user,Sublist):-!, 
nl-;- tab(5),write('If '), 
write subs diff(Sublist). 

write suos(F,H) :­
nl-;-write_subs(user,H),tell(F),nl,write_subs(user,H). 

write subs diff([q,R,[(M:-T) ITail),Diff)):-!, 
wrTte subs diffl(M,Diff). 

write suEs ditf([k,R,Mis,Diff)):-!, 
wrTte_subs_diffl(R,Diff). 



354 
May 7 10:15 1986 Y/acceptsubs Page 4 

write subs diff1(FClause,[[S,Q))):-I, 
write quote(Q), 
writeT• of the question\'s clause '),write quote(FClause), 
write(' is substituted with '),write quoteTS),nl. 

write subs diff1(FClause,[[S,Q)ITJ):- -
write subs diff2([[S,QJIT),Slist), 
writeT' of-the question\'s clause '),write quote(FClause), 
write(' are substituted with'), -
write_subs_diff3(Slist),write(' respectively'),nl. 

write subs diff2([[S,Q)),[S)):-I, 
write quote(Q). 

write suDs diff2([[S,Q)IT),[SIS1)):­
write quote(Q), 
writeT• AND '),write_subs_diff2(T,S1). 

write subs diff3([S)):-!, 
write quote(S). 

write suDs diff3([SISl)):­
write quote(S), 
writeT'AND '),write_subs_diff3(Sl). 

print exists fact([]):-nl. 
print-exists-fact([MITJ):­

nl~tab(12T,print head tail(M), 
write and nl(T),- -
print=exists_fact(T). 



Apr 10 09:50 1986 Ylasserting Page 1 

I* asserting the subsidiary list *I 
assert subsidiary list(S):-

- assert suosidiary list1(S). 
assert subsidiary list(S)-:-

- retract(subsidiary list([SIS1])), 
assert subsidiary Tist2(S1), 
!,fail~ -

assert subsidiary list1(S):-
- retract(subsidiary list(S1)), 

assert(subsidiary Tist([SIS1])),!. 
assert subsidiary list1(ST:-

- assert(suosidiary_list([S])),!. 

assert subsidiary list2([]):-
- !,fail. -

assert subsidiary list2(X):-
- assert(suosidiary_list(X)). 

I* asserting skolemfq's list *I 
assert skolemfq list(S):-

- retractTskolemfq list(S1)), 
check duplicate(S,S1,S2), 
assert(skolemfq list(S2)),!. 

assert skolemfq list(s):-
- assert(skolemfq_list(S)),!. 

check duplicate([S],S1,S1):-
- a member(S,S1),!. 

check dupTicate(S,S1,S2):-
- append(S,S1,S2),!. 

a member(X,[XIZ]):-!. 
a=member(X,[YIZJ):-a_member(X,Z). 

I* to assert subsidiary clauses after agreeing it *I 
assert subsidiary(!HITJ):-

- clause(subsidiary(H),true), 
assert subsidiary(T),l. 

assert subsidiary([HITJ):-
- assert(subsidiary(H)), 

assert subsidiary(T),!. 
assert subsidiary([]):-

- assert(newsubsidiary),!. 

I* asserting predicate 'set of reason' *I 
assert set of reason(G,Fc):= -

- exists(set of reason( ,goal(G),reason(Fc))). 
assert set of reason(G,Fc):--

-not exists(set of reason( ,goal(G),reason(Fc))), 
retract(optionToption)), -
Option1 is Option+1, 

355 

assert(option(Option1)), 
assert(set_of_reason(option(Option),goal(G),reason(Fc))) 



Apr 10 09:50 1986 Y/asserting Page 2 

/* asserting atom equiv22(list) */ 
assert atom equiv22([[Q,R,T,Diff] JTail]):­

assert(substitution log(Diff)), 
assert atomic equiv22(Diff), 
assert-atom equiv22(Tail). 

assert_atom_equiv22T[J). 

assert atomic equiv22(Diff):-
- retract(atomic equiv(OldDiff)), 

assert atomic equiv22a(Diff,OldDiff,NewDiff), 
assertTatomic-equiv(NewDiff)),!. 

assert atomic equiv22TDiff):-
- assert(atomic_equiv(Diff)). 

356 

assert atomic equiv22a([[Qarg,Kbarg]JTail],OldDiff,NewDiff):­
- check-member([[Qarg,Kbarg]],OldDiff,NewDiff1), 

assert atomic equiv22a(Tail,NewDiffl,NewDiff),!. 
assert_atomic_equiv22a([],NewDiff,NewDiff). 



Apr 24 10:40 1986 Y/changequant Page 1 

/* to change the re1event quantifiers */ 
quantifiers out(Oldpc,Newpc,Newskquant):­

retract(skolemfq list(Sq)), 
subst skolemr(Olapc,Newskquant), 
change quantifiers(Oldpc,z1,Sq), 
subst skolem(Z1,Newpc,Newskquant), 
!. -

quantifiers out(Oldpc,Newpc,Newskquant):­
subst_skolem(Oldpc,Newpc,Newskquant),!. 

/* to change relevent quantifiers of PC */ 
change quantifiers((P<=>Q),(P1<=>Q1),Sq):-

- ! , 
change quantifiers(P,P1,Sq), 
change-quantifiers(Q,Q1,Sq). 

change quantif1ers((P=>Q),(P1=>Q1),Sq):­
- ! , 

change quantifiers(P,P1,Sq), 
change-quantifiers(Q,Q1,Sq). 

change quantifTers(T:P,T:Q,Sq):-
- ! , 

change quantifiers(P,Q,Sq). 
change quantif1ers((P&Q),(P1&Q1),Sq):­

- ! , 
change quantifiers(P,P1,Sq), 
change-quantlflers(Q,Q1,Sq). 

change quantif1ers((P#Q),(P1#Q1),Sq):­
- ! , 

change quantifiers(P,P1,Sq), 
change-quantifiers(Q,Ql,Sq). 

change quantif1ers((-P),(-P1),Sq):­
- ! , 

change quantifiers(P,P1,Sq). 
change quantifTers(all(X,P),Pc,Sq):­

- ! , 
change quantifiers(P,Pl,Sq), 
change-quantifier(all(X,Pl),Sq,Pc). 

change quantifTers(all(X,D,P),Pc,Sq):-
- I' 

change quantifiers(P,P1,Sq), 
change-quantifier(all(X,D,Pl),Sq,Pc). 

change quantifTers(exists(X,P),Pc,Sq):-
- ! ' 

change quantifiers(P,P1,Sq), 
change-quantlfier(exists(X,P1),Sq,Pc). 

change quantifTers(exists(X,D,P),Pc,Sq):-
- I' 

357 

change quantifiers(P,P1,Sq), 
change-quantifier(exists(X,D,P1),Sq,Pc). 

change quantifTers(exists the(X,D,P),exists the(X,D,P1),Sq):-
- ! I - -

change quantifiers(P,P1,Sq). 
change quantifTers(exists the(X,P),exists the(X,P1),Sq):-

- ! , - -

change quantifiers(P,P1,Sq). 
change_quantifTers(P,P,Sq). 



Apr 24 10:40 1986 Y/changequant Page 2 

change quantifier(Oldpc,Sq,Newpc):-
- arg(1,0ldpc,varquant), 

nonvar(Varquant), 
not(atomic(Varquant)), 
functor(Varquant,fq, ), 
memberfq(Varquant,sqT, 
change quantifier1(0ldpc,Newpc),l. 

change_quantifTer(Oldpc,Sq,Oldpc). 

change quantifier1(all(X,D,P=>Q),exists(X,D,P&Q)):-!. 
change-quantifier1(exists(X,D,P&Q),all(X,D,P=>Q)):-!. 
change-quantifier1(a1l(X,P=>Q),exists(X,P&Q)):-I. 
change-quantifier1(exists(X,P&Q),all(X,P=>Q)):-I. 
change-quantifier1(all(X,P),exists(X,P)):-!. 
change:quantifier1(exists(X,P),al1(X,P)):-I. 

memberfq(Var,[HIT]):-
functor(Var,fq,N), 
functor(H,fq,N), 
arg(1,var,Skolemization), 
arg(1,H,Skolemization),!. 

memberfq(Var,[HIT]):­
memberfq(Var,T). 

358 



359 
Apr 9 09:44 1986 Y/equatevars Page 1 

/* to equate the variables of original and current goals */ 
equatevars(Goal,Originalgoal):­

equate_vars(Goa1,0riginalgoal),!. 

equate vars(P<=>Q,P1<~>Q1):­
- !, 

equate vars(P,P1), 
equate-vars(Q,Q1). 

equate vars(P=)Q,P1=>Q1):­
- !, 

equate vars(P,P1), 
equate-vars(Q,Ql). 

equate vars(P&Q,Pl&Q1):­
- !, 

equate vars(P,P1), 
equate-vars(Q,Q1). 

equate vars(PiQ,PliQ1):­
- !, 

equate vars(P,Pl), 
equate-vars(Q,Q1). 

equate vars(-p~-Pl):-
- !, 

equate vars(P,Pl). 
equate vars(ali(X,P),all(Y,Pl)):­

- !, 
equate varsl(X,Y), 
equate-vars(P,P1). 

equate vars(ali(X,D,P),all(Y,Dl,P1)):­
- !, 

equate vars1(X,Y), 
equate-vars(P,P1). 

equate vars(exists(X,P),exists(Y,P1)):­
- !, 

equate varsl(X,Y), 
equate-vars(P,Pl). 

equate vars(exists(X,D,P),exists(Y,D1,P1)):­
- !, 

equate vars1(X,Y), 
equate-vars(P,P1). 

equate_vars(P,Pl). 

equate vars1(X,Y):-
- var(X),var(Y), 

X=Y,!. 
equate_varsl(X,Y). 



Apr 29 19:42 1986 Y/fdifference Page 1 

/* finding the differences between R and Q */ 
find difference(R,D):-

- f list(R,Rlist), 
find_differenceO(R,Rlist,D). 

/* finding the differences between R and Q */ 
find differenceO(R,Rlist,[HITaill):-

- find difference1(R,Rlist,H). 
find differenceO(R,Rlist,[HITaill):-

- find differenceO(R,Rlist,Tail),l. 
find_differenceO(R,Rlist,[l):-!. 

find difference1(R,Rlist,[G,(M:-T)I):-
- test reason tail(R,T), 

f list(M,Mlfst), 
find difference2(G,Rlist,Mlist,D), 
length( D, Len), 
assert mismatch pair([G,R,(M:-T),DI,Len), 
!,fail-:- -

find difference2(q,Rlist,Mlist,D):-!, 
- find difference3(Mlist,Rlist,D). 

find difference2(k,Rlist,Mlist,D):-!, 
- find_difference3(Rlist,Mlist,D). 

find difference3([RheadiRtaili,[QheadiQtaili,D1):-
- Rhead\=Qhead, 

not contain fq2(Rhead), 
fina difference3(Rtail,Qtail,D), 
checK member([[Qhead,Rheadii,D,D1), 
! . -

find difference3([RheadiRtaili,[QheadiQtaili,D):­
- Rhead=Qhead, 

find difference3(Rtail,Qtail,D),I. 
find_difference3( [I, [I, I I):-!. 

assert mismatch pair([G,R,Mis,Diffi,Len):-
- retractTmismatch pair([G,R,X,Diffi,Len)), 

assert(mismatch pair([G,R,[MisiXI,Diff],Len)). 
assert mismatch pair([G~R,Mis,Diffi,Len):-

not exists(mismatch pair([G,R,X,Diffi,Len)), 
assert(mismatch_pair([G,R,[Mis),Diff),Len)). 

360 



May 9 10:59 1986 listreason Page 1 

/* to list all reasons */ 
list reason(Option,Goal,Reason):-

write haveproved(Option,Goal,Reason), 
do you like to continue(Option,Goal,Reason), 
assertz_newTnew_goal(Goal)), 
!. 

/* to print an introduction of the suggestion */ 
write haveproved(Option,Goalpc,Reason):-

not exists(toptryO(Goalpc)), 
telTs(F),write order(F,Option,Goalpc,Reason,S),!. 

write haveproved(Option,Goalpc,Reason):­
exTsts(toptryO(Goalpc)), 
tells(F),write_already(F,Option,Goalpc,Reason,S),!. 

write order(user,Option,Goalpc,Reason,S):-!, 
nl~nl,write('OPTION: '),write(Option), 
nl, write ( ' The goal : ' ) , nl, tab ( 10) , write ( ' \" ' ) , 
write goal(Goalpc,S),write(' \"'),nl, 

361 

writeT'fails due to the failure of the following clause:'), 
nl,write reasonO(Reason), 
nl,writeT' However, we may be able to prove the goal'), 
nl,write(' after doing some corrections or additions'),nl. 

write order(F,Option,Goalpc,Reason,S):-
wrTte order(user,Option,Goalpc,Reason,S), 
nl,teTl(F),write_order(user,Option,Goalpc,Reason,S). 

write already(user,Option,Goalpc,Reason,S):-1, 
nl~nl,write('OPTION: '),write(Option), 
nl,write(' We have already proved '),nl,tab(lO), 
write('\" '),write goal(Goalpc,S),write(' \" '), nl, 
write('It fails due to the failure of the following clause:'), 
nl,write reasonO(Reason), 
nl,writeT' However, we may be able to reprove it again'), 
nl,write(' after doing some corrections or additions '),nl. 

write already(F,Option,Goalpc,Reason,S):-
wrTte already(user,Option,Goalpc,Reason,S), 
nl,teTl(F),write_already(user,Option,Goalpc,Reason,S). 

write goal(Goalpc,S):-
form of answer(Form), 
write_goalform(Form,Goalpc,S). 

write goalform(pc,Goalpc,S):-
!,write(Goalpc). 

write goalform(eng,Goalpc,S):­
nonvar ( s), 
writelist( S), I. 

write goalform(eng,Goalpc,S):­
var(S), 
statement phrase one(Goalpc,S,[ ]), 
writelistTS). -



May 9 10:59 1986 listreason Page 2 

/* ana1ysizing the do you like to continue response */ 
do you like to continue(Option~Goal,Reason):­

-nl,tab(ST,write(' --Do you like to continue?'), 
getO(X), 
continue response(X,Option,Goal,Reason). 

continue response(121,,, ):-
/* y(es) 121: to contTnue and see the suggestion */ 
!,getO(X). 

continue response(10, , , ):-
/* <nT> - 10: to continue and see the suggestion */ 
I. 

continue response(97, , , ):-
/* a(oort) 97: to abort the session */ 
getO(X), 
abort. 

continue response(98,0ption,Goal,Reason):­
/* b(reak) 98: to abort the session */ 
! ,getO(X), 
break, 
prompt(Old,' '), 
do you like to continue(Option,Goal,Reason). 

continue responseT115,0ption,Goal,Reason):-
/* s(now) 115: to show the effect of the failure atoms */ 
!,getO(X), 
print tree failure(Option,Reason), 
do you like to continue(Option,Goal,Reason). 

continue responseT116,0ption,Goal,Reason):-
/* t(ype) 116:to type again the assumption */ 
!,getO( ), 
write haveproved(Option,Goal,Reason), 
do you like to continue(Option,Goal,Reason). 

continue responseT108,0ption,Goal,Reason):-
/* l(Tst) 108:to list others set of reason */ 
! , getO ( ) , - -
pr1nt others setofreason, 
do you like to continue(Option,Goal,Reason). 

continue responseT110,0ption, , ):-
/* n(o) 110:not to accept the suggestion */ 
getO( ) , 
retractall(rsf head(Option, , )), 
retractall(reason son father(Option, , )), 
!, fail. - -

continue response(X,Option,Goal,Reason):-
/* otners(help) : to print the summary of responses */ 
getO ( ) , ! , 
n1,tao(4),write('Response options'), 
n1,tab(4),write('================'),n1, 
n1,tab(8),write('a abort'), 
nl,tab(8),write('b break'), 

362 

nl,tab(8),write('n not accepting and try other alternative' 

nl,tab(8),write('l list 
n1,tab(8),write('s show 
nl,tab(8),write('t type 
nl,tab(4),write('y or <nl> 
nl,tab(4),write('<others> 

other set of reason, if exists'), 
the effect of failure atoms'), 
again the introduction'), 

yes to see the suggestion(s)'), 
this message'), 

nl,nl, 
do_you_like_to_continue(Option,Goal,Reason). 



May 9 10:59 1986 listreason Page 3 

I* printing others set of reason *I 
print others setofreason:­

exists(set of reason( , , ) ) , 
nl,tab(2),- ---
write('The others set of reason clauses'), 
write plural clause(set of reason( , , )), 
writeT' as follows:'),nT,- ---
print others setofreason1,!. 

print otners setofreason:­
nl-;-nl, tabT2), 
write('Sorry, no other set of reason c1ause'),nl. 

print others setofreason1:-
set of reason(option(O),goal(G),reason(R)), 
nl,tabT2),write('OPTION '),write(O),write(': '), 
write('SET OF REASON = '),write(R), 
nl,tab(10),write('THE FAILURE GOAL : '), write_quote(G), 
fail. 

print others setofreason1:­
nl-;-nl. -

I* a new defination of printing failure atoms one *I 
write reasonO([HJT]):-

exists(dup reason(H)),!, 
write reasonO(T). 

write reason0([HJT]):­
nl-;-tab(10),write(H), 
assert(dup reason(H)), 
write reasonO(T). 

write reason0([)):­
l,abolish(dup_reason,1),nl. 

363 



Apr 5 15:04 1987 Y/mismatclause Page 1 

/* Procedure FINDMATCH */ 
mismatch clause(R,Q,[q,(M:-T))):-

7* the mismatch clause(Q) is a query clause */ 
query clause(M:-T), 
Q\=R.-

mismatch clause(R,M,Rule):-
7* Procedure MISMATCH.2 */ 
convert(R,NotR), 
queryhead(NotR), 
mismatch_clause1(R,M,Rule). 

mismatch clause1(R,M,[k,(M:-T)]):-
7* to find a rule which have the same 

364 

predicate name but different arguments */ 
fact base clause(M,T), 
R\=M-:- -

mismatch clause1(R,M,Rule):-
7* to find a rule which have a different 

predicate name but the same arguments */ 
functor1(R,Pred name,N), 
f list(R,(Pred nameiArgs)), 
mTsmatch_clause1(Pred_name,N,R,Args,Rule). 

mismatch clause1(Pred nameR,N,R,Args,[k,(M:-T))):-
7* Pred nameR-is not in the form of 

-either f, -f or not f */ 
f\==Pred nameR, 
not f\==Pred nameR, 
-f\~=Pred nameR,!, 
fact baseTK), 
a ruTe(K,[M,T)), 
functor1(M,Pred nameM,N), 
Pred nameM\==Pred nameR, 
f list(M,[Pred nameMIArgs]). 

mismatch clause1(Pred name,N,R,[XIArgs),[k,(M:-T))):-
7* Pred name ~ f or -f or not f */ 
arg1(1,R,X), -
f list(M,[Pred name,YIArgs)), 
fact base clause(M,T), 
Y\--x. -



Jun 4 20:05 1986 Y/pracceptance Page 1 

/* to print the response of the suggestion */ 
print acceptance(Option,Reason,Goal,Listquant):-

- tells(F),write in(F,assumption), 
getO(X), -
tells(F),write in(F,X,response), 

365 

acceptance response(X,Option,Reason,Goal,Listquant), 
nl. -

/* checking the response */ 
acceptance response(10,0ption, , , ):-

/*-<nl>(return) 10: to-accept the suggestion */ 
I ' 
retractall( rsf head(Option, , ) ) , 
retractall(reason son father(Option, , )), 
abolish(mismatch pair~2). 

acceptance response(121,0ption, , , ):-
/*-y(es) 121: to accept-toe-suggestion */ 
l,getO( ), 
retractall(rsf head(Option, , )), 
retractall(reason son father(Option,_,_)), 
abolish(mismatch pair~2). 

acceptance response(97, ~, , ):-
/*-a(bort) 97: to-aEort the session */ 
l,getO( ), 
abort. 

acceptance response(98,0ption,Reason,Goal,Listquant):­
/*-b(reak) 98: to break the session*/ 
l,getO( ), 
break, -
prompt(Old,' '), 
print acceptance(Option,Reason,Goal,Listquant). 

acceptance response(115,0ption,Reason,Goal,Listquant):­
/*-s(how) 115: to show the effect of the failure atoms * 

I ,getO( ) , 
print tree failure(Option,Reason), 
print-acceptance(Option,Reason,Goal,Listquant). 

acceptance response(119,0ption,Reason,Goal,Listquant):­
/*-w(hy) 119: why it was suggested **/ 
I ,getO( ) , 
complete resp why, 
print acceptance(Option,Reason,Goal,Listquant). 

acceptance response(116,0ption,Reason,Goal,Listquant):­
/*-t(ype) 116:to type again the assumption */ 
I ,getO( ) , 
write haveproved(Option,Goal,Reason), 
acceptance1(Listquant), 
print acceptance(Option,Reason,Goal,Listquant). 

acceptance response( 110, , , , ) :-
/*-n(o) 110 :not-to accept the suggestion */ 
I ,getO( ) , 
abolishTsubsidiary list,1), 
abolish(skolemfq 1Tst,1), 
fail. -



366 
Jun 4 20:05 1986 Y/pracceptance Page 2 

acceptance response(X,Option,Reason,Goal,Listquant):-
1*-others(help) : to print the summary of responses */ 
getO( ),!, 
nl,tab(4),write('Response options'), 
nl,tab(4),write('================'),nl, 
nl,tab(8),write('a abort'), 
nl,tab(8),write('b break'), 
nl,tab(8),write('n not accepting and try others'), 
nl,tab(8),write('s show the failure paths'), 
nl,tab(8),write('t type again the assumption'), 
nl,tab(8),write('w why the substitution is accepted 

nl,tab(4),write('y or <nl> yes (accepting) '), 
nl,tab(4),write('<others> this message'), 
print_acceptance(Option,Reason,Goal,Listquant). 

complete resp why:-
exists(accepted substitution(E)), 
print why substTtute(E), 
fail.- -

complete resp why:­
exists(skolemfq list(Sq)), 
nl,tab(S), -
write(' ... because the failure clause(s)', 
write(' contained Skolem''s function'), 
nl,tab(S),write('i.e '),write reason(Sq),nl, 
fail. -

complete resp why:­
exists(subsidiary list(S)), 
nl,tab(S), -
write(' ... because the following clause'), 
write does(S), 
writeT' not exist in the database:'), 
nl,write reason(S), 
fail. -

complete_resp_why. 



Jun 19 10:07 1986 Y/prtreefail Page 1 

/* to print the proving tree of each failure atom */ 
print tree failure(Option,[SoniT]):-

- print tree failureO(Option,Son), 
to continue(T), 
print tree failure(Option,T),!. 

print tree failureTOption,[]):-!, 
- nC 

print tree failureO(Option,Son):-
- rsi head(Option,Son,Father), 

print tree failureOl(Option,Son,Father), 
fail.- -

print_tree_failureO(Option,Son):-1. 

367 

print tree failureOl(Option,Son,Father):-
- nl~tab(4),write(Son),write(' fails '),nl,tab(lO), 

write('••=> '),write(Father),write(' fails'), 
print tree failure1(0ption,Father), 
! . - -

print tree failurel(Option,goal(Pc)):-!, 
- nl~nl. 

print tree failurel(Option,(H:-T)):-!, 
- reason son father(Option,H,Father), nl,tab(lO), 

write(T===> '),write(Father),write(' fails'), 
print tree failurel(Option,Father). 

print tree failurel(Option,H):-
- reason son father(Option,H,Father), nl,tab(lO), 

write(T===> '),write(Father),write(' fails'), 
print_tree_failurel(Option,Father). 

to continue([]):-!. 
to-continue(T):-

- tab(4),write('Press <return>!!'), 
getO(Press),(Press=lO;getO( )),!. 



Apr 28 22:01 1986 Yltopc Page 1 

I* ssr:to equate E with s in X *I 
subst sko1emr(X,[]):-!. 
subst-skolemr(X,[[E,S] IT]):-

- E=S, 
subst_skolemr(X,T), !. 

I* SS:substitute S in X with a variable becomes Y*l 
subst sko1em(X,X,[]):-!. 
subst-skolem(X,Y,[[E,S]ITJ):-

- substitute(Z,S,X,X1), I* z replaces E *I 
subst_skolem(X1,Y,T),!. 

368 

I* SSN: to substitute S in X with a variable and becomes Y 
and replacing sign - between E and s *I 

subst skolem not(X,X,[]):-!. 
subst-skolem-not(X,Y,[[E,S] IT]):-

- replacing(E,S,E1,S1), 
substitute(E1,S1,X,X1), 
subst_skolem_not(X1,Y,T),!. 

I* SSc: *I 
subst skolemc(X,X,[]):-!. 
subst-skolemc( [], [ 1 ,E):-!. 
subst-skolemc([XIY],[XnewiYnew],E):-

- subst skolem(X,Xnew,E), 
subst=skolemc(Y,Ynew,E). 

I* new defination using Newskquant *I 
subst skolemr(X,[ ]):-!. 
subst-skolemr(X,([E,S,Quant] IT]):-

- E=S, 
subst_skolemr(X,T),!. 

subst skolem(X,X,[]):-!. 
subst-skolem(X,Y,[[E,S,Quant]ITl):-

- substitute(Z,S,X,X1), I* z replaces E *I 
subst_skolem(X1,Y,T),!. 

subst skolem not(X,X,[]):-!. 
subst-skolem-not(X,Y,[[E,S,Quant]ITl):-

- replacing(E,S,E1,S1), 
substitute(E1,S1,X,X1), 
subst_skolem_not(X1,Y,T),!. 

I* replacing "not " with ••-• *I 
replacing(- E,- S~ E, S):-!. 
replacing( E,- s,- E, S):-!. 
replacing( E, S, E, S). 



Apr 28 22:01 1986 Y/topc Page 2 

replacing(x,-Y):-
functor(X,F,N), 
name(F,Flist), 
append([110,111,116,95),Flist1,Flist),!, 
name(F1,Flist1), 
X= •• [ F I A) ' 
Y= •• ( F11 A) • 

replacing(X,X). 

369 

/* NNfq: checking whether the reason predicate contains "fq" */ 
not contain fq(R):-

- functor1(R,F,N), 
not_contain_fq1(R,N). 

not contain fq1(R,O):-!. 
not-contain-fq1(R,N):-arg(N,R,Nth), 

not-contain fq2(Nth), 
N1 Is N-1, -
not_contain_fq1(R,N1). 

not contain fq2(Nth):-var(Nth),!. 
not-contain-fq2(Nth):-

- functor1(Nth,Fq,N1),Fq\==fq, 
not_contain_fql(Nth,N1). 

/* checking whether the reason predicate contained "fq" */ 
not contained fq(R,L):-

- functor1(R,F,N), 
not_contained_fql(F,R,L). 

not contained fql(fq,R,[R)):-!. 
not-contained-fq1(F,R,L):-

f list(R,[FIArguments)), 
not_contained_fq2(Arguments,L). 

not contained fq2([),[)):-!. 
not-contained-fq2([A11Tail],L):-

- not contained fq3(A1,L1), 
not-contained-fq2(Tail,L2), 
append(L1,L2,L),I. 

not contained fq3(Nth,[)):-
- var(Nth),!. 

not contained fq3(Nth,L):-
- functor1(Nth,F,N1), 

not_contained_fq1(F,Nth,L). 



Apr 28 22:01 1986 Yltopc Page 3 

setup predicate(R,Q,N):-
- I* for predicates f(P, ..•• )Inot_f(P, •••• ) *I 

functor1(R,F,N), 
(F==f; F==not f ;-f==F ), 
functor1(Q,F,N), 
arg1(1,R,P), 
arg1(1,Q,P1), 
P1=P, 
!. 

setup predicate(R,Q,N):-
- I* for predicates P(., •• ) where P\=f or not f *I 

functor1(R,P,N), 
functor1(Q,P,N). 

I* to check membership *I 
check member([E2],E1,E1):­

- member(E2,E1),!. 
check member(E2,E1,E):-

- append(E2,E1,E),!. 

not rejected(R):- I* collective test *I 
- not(reject(R)),!. 

I* checking such that the reason is not same with one of 
the tail of substitution rule *I 

test reason tail(R,true):-!. 
test-reason-tail(R,(H,T)):-

- R\=H, I* have been changed to \= from \-= *I 
test reason tail(R,T),!. 

test reason tail(R,T):-
- R\=T,!. I* have been changed to\= from \=• *I 

I* to eliminate a duplicate *I 
eliminate failure atom:-

retract(set of reason(Option,G,reason(Fc))), 
eliminate failure atom(Fc,Newfc), 
Newfc\==IT, -
assert(temp list(Option,G,Newfc)), 
fail. -

eliminate failure atom:-
retract(temp list(Option,G,Newfc)), 
assertz(set of reason(Option,G,reason(Newfc))), 
fail. - -

eliminate failure atom:-!. 

eliminate failure atom([HIT],Newtail):­
ciause(suEsidiary(H), ), 
eliminate failure atom(T,Newtail),!. 

eliminate failure-atom(!HTTJ,[HINewtail]):-
eiiminate-failure atom(T,Newtail),!. 

eliminate_failure=atom([J~[]):-!. 

370 

I* defination of functor1 to accomodate -f or nott(f) *I 
functor1(-F,-P,N):-!,functor(F,P,N). 
functor1(F,P,N):-functor(F,P,N). 



Apr 28 22:01 1986 Y/topc Page 4 

f list(-M,[-HIT]):-1, 
- M= •• [HIT). 

f list(M,Mlist):-
- M= •• Mlist. 

arg1(N,-F,P):-!,arg(N,F,P). 
arg1(N,F,P):-arg(N,F,P). 

/* to copy a clause to another clause */ 
copy clause(Clause1,Clause2):-

- call(Clause1), 
assertz new(Clause2), 
fail. -

copy_clause(Clause1,Clause2). 

371 

/* testing whether a given clause is a rule or an atom */ 
a rule( (M:-T), [M,T)) :-!. 
a=rule(M,[M,true)). 



Apr 5 15:54 1987 Y/whyitfails Page 1 

/* to retract a set of reason clauses */ 
why it fails(Originalgoal,Lisquant):-

372 

retract(set of reason(option(Option),goal(G),reason(R))), 
not exists(reject(R)), 
assert(consulted sor(G,R)), 
equatevars(G,Originalgoal), 
list reason(Option,G,R), 
find=reason(Option,G,R,Lisquant). 

/*to print the reason */ 
find reason(Option,Goal,Reason,Lisquant):­

fTnd mismatch clause(Reason), 
suggestion(Option,Goal,Reason,Lisquant). 

find reason(Option,Goal,Reason,Lisquant):-
assert(reject(Reason)), 
fail. 

suggestion(Option,Goal,Reason,Lisquant):­
process reasons(Option,Goal,Reason,Reason), 
acceptance(Option,Reason,Goal,Lisquant). 

suggestion(Option,Goal,Reason,Lisquant):­
retract(accepted substitution(S)), 
suggestion(Option,Goal,Reason,Lisquant). 

process reasons(Option,Goal,Reason,[HITJ):­
process suggestion(Option,Goal,Reason,H), 
process-reasons(Option,Goal,Reason,T),!. 

process_reasons(Option,Goal,Reason,[)):-!. 

process suggestion(Option,Goal,Reason,R):­
functor(R,F,N), 
Nl is N+l, 
ordered mismatch clause([P,R,T,Diff),Nl,l), 
not exists(reject([P,R,T,Diff))), 
not-exists(substitution log(Diff)), 
already accepted subs(Option,Goal,Reason,[P,R,T,Diff)),l. 

process suggestion(Option,Goal,Reason,R):-
extract fq(R,L), 
process:others(R,L). 

process others(R,[)):-!, 
assert told list(R). 

process othersTR,L):­
assert_skolemfq_list(L),!. 

assert told list(R):­
assert_subsidiary_list(R). 



Apr 5 15:54 1987 Y/whyitfails Page 2 

find mismatch clause([RIT]):­
setup predicate(R,Q,N), 
fast setof(D,mismatch clause(R,Q,D),List), 
find-difference(R,List), 
find-mismatch clause(T),!. 

find mismatch clause([RITJ):­
find mismatch clause(T),!. 

find_mismatch_clause([ ]):-!. 

ordered mismatch clause(Triplet,N,Ni):­
retract(mismatch pair(Triplet,Ni)). 

ordered mismatch clause(Triplet,N,Ni):­
Nn is Ni+1, -
Nn =< N, 
ordered_mismatch_clause(Triplet,N,Nn). 

write proved(user,X):- !, 
nl~write(' ****(rectifiers) PROVED:'), 
nl,tab(10),write(X),write(' ? '). 

write proved(F,X):-
write proved(user,X), 
tell(F),write_proved(user,X). 

extract_fq(R,L):-not_contained_fq(R,L). 

373 



May 7 10:16 1986 othermeaning Page 1 

other meaning:-
- form of answer(eng),l, 

write meaning(user), 
getO(A), 
meaning response(A). 

other_meaning. -

/* to print the response of the given answer 
for finding different meaning */ 

meaning response(97):-
-l,get0( ), /* a=97 -to abort*/ 

abort. -
meaning response(98):-

-!,get0( ), /* b=98 -to break*/ 
break, -
prompt(Old,' '), 
other meaning. 

meaning response(59):-
-/* ;=59 -finds other meaning, if exists */ 

!,getO( ), 
fail. 

meaning response(121):-
-/* y=121 -finds other meaning, if exists */ 

!,getO( ), 

374 

fail. 
meaning_response(10):-

!. /* <return>=10 : that's all folks*/ 
meaning response(110):-

-/* n=110- not to find other meaning*/ 
l,getO( ). 

meaning response(A):-
-, ,getO( ) , /* to print help's table */ 

nl,tab(4),write('Response options'), 
nl,tab(4),write('================'),nl, 
nl,tab(B),write('a abort'), 
nl,tab(B),write('b break'), 
n1,tab(4), 
write('; or y finds other meaning'), 
nl,tab(4), 
write('n or <nl> not to find other meaning'), 
nl,tab(4),write('<others> this message'), 
nl,nl,other_meaning. 



May 7 19:48 1986 pctop Page 1 

/* Procedure PCFACT */ 
pcfact:-

prompt(Old,' '),write(Old), 
read(S), 
assert_knowledge(S). 

/* Procedure PCQUEST */ 
pcquest:-

prompt(Old,' '),write(Old), 
read(Q), 
assertz new(form of answer(pc)), 
question(Q). - -

375 



May 7 20:02 1986 rectifiers Page 1 

I* Procedure RECTIFIERS *I 
rectifiers(X,yes,Newskquant):-

form of answer(Formanswer), 
print answerl(Formanswer,X), 
getO (A), 
answer response(A,X,Newskquant). 

rectifiers(X,no,Newskquant):-
why it fails(X,Newskquant), 
clear pcl, 
!,faiT. 

I* PAl: print answerl *I 
print answerlTpc,X):-

- write proved(user,X). 
print answerlTeng,X):-

- write_more(user). 

I* to print the response of the given answer *I 
answer response(97,X,Newskquant):-

- ! ,getO( ) , I* a=97: to abort *I 
abort. 

answer response(98,X,Newskquant):-
- !,getO( ), I* b= 98: to break *I 

break, -
prompt(Old,' '), 
rectifiers(X,yes,Newskquant). 

answer response(121,X,Newskquant):­
- !,getO( ), 

fail. 
answer response(59,X,Newskquant):­

- !,getO( ), 
fail. 

376 

answer response(112,X,Newskquant):-
- !,getO( ), I* p=ll2: to print the solution tree *I 

print solution, 
rectiiiers(X,yes,Newskquant). 

answer response(lO,X,Newskquant):-
- I* <return>•lO : that's all folks *I 

I. 
answer response(llO,X,Newskquant):-

- l,getO( ). I* p=llO: not to find other answers *I 
answer responseTA,X,Newskquant):-

- !,getO( ), I* others : to print help's table *I 
nl,tab(4),write('Response options'), 
nl,tab(4),write('================'),nl, 
nl,tab(S),write('a abort'), 
nl,tab(8),write('b break'), 
nl,tab(8),write('p print solution\'s tree'), 
nl,tab(4), 
write('n or <nl> not to find other answers'), 
nl,tab(4), 
write('y or; finds other answers'), 
nl,tab(4),write('<others> this message'), 
nl,nl,rectifiers(X,yes,Newskquant). 



May 7 20:24 1986 remarkwriter Page 1 

I* Wpc: *I 
writepc(X,Y,Sk):-

subst skolem(X,Y,Sk), 
tellsTF),writepc(F,Y),!. 

writepc(user,Y):-!, 

377 

write quote(Y),nl, 
writeT'========~=================m==••=•'),nl,nl. 

writepc(F,Y):-
writepc(user,Y), 
tell(F),writepc(user,Y). 

I* WI-response: *I 
write in(user,X,response):-!. 
write-in(F,X,response):-

- tell(F),name(Y,[X)),write(Y),nl,nl,!. 

I* WI-assumption: *I 
write in(user,assumption):-

- nl, write(' Do you like to reprove again by using'), 
nl, write(' the above assumption(s) ---? '),1. 

write in(F,assumption):-
- write in(user,assumption), 

tell(F),write_in(user,assumption). 

I* WI-if: *I 
write in(user,R,if):-!, 

- nl,write('if '), 
print sentence(R),!. 

write in(F,R,Tf):-
- write in(user,R,if), 

tell(F),write_in(user,R,if). 

I* WI-subsidiary: *I 
write in(user,R,subsidiary):-!, 

- nl,write('subsidiary('),write(R),write(').'),nl. 
write in(F,R,subsidiary):-

- write in(user,R,subsidiary), 
tell(F),write_in(user,R,subsidiary). 

I* WI-equiv: *I 
write in(user,[R,Q),equiv):­

- print message(Q,R),!. 
write in(F,[R~Q),equiv):-

- write in(user,[R,Q),equiv), 
tell(F),write_in(user,[R,Q),equiv). 

I* WA-yes: *I 
write answer(user,yes):-!, 

- nl,write('>>answer: Yes,'),nl,tab(4). 
write answer(F,yes):-write answer(user,yes), 

- tell(F),write_answer(user,yes). 



May 7 20:24 1986 remarkwriter Page 2 

I* WA-no: *I 
write answer(user,no):-!, 

- nl,write('>>answer: No, it cannot prove :'), 
nl, write ( ' ' ) • 

write answer(F,no):-write answer(user,no), 
- tell(F),write_answer(user,no). 

I* WA-finish: *I 
write answer(user,finish):-!, 

- nl,nl,write('no more answers!'),nl. 
write answer(F,finish):-write answer(user,finish), 

- tell(F),write_answer(user,finish). 

I* to print all the failure atoms or the reason *I 
write reason([HIT]):-

- tells(F),write reasonl(F,H), 
write reason(TT. 

write_reason(Tll:-!,nl. 

write reasonl(user,X):- !, 
- nl,tab(lO),write(X). 

write reasonl(F,X):-
- write reasonl(user,X), 

tell(F),write_reasonl(user,X). 

I* writing the answer as an english sentence */ 
write sent(user,A,Ans):-

- nl,write('>> Answer: '), 
nl,write rem(Ans),writelist(A),write('.'), 
nl, nl, ! • -

write sent(F,A,Ans):-
- write sent(user,A,Ans), 

tell(F),nl,write_sent(user,A,Ans),!. 

I* writing remarks *I 
write rem(yes):-write(' Yes, it is true that '). 
write=rem(no):-write(' No, it is false that '). 

I* to get more answers *I 
more_answers:-tells(F),write_more(F),other_answers. 

write more(user):-
- !,nl,write( '** top(phrase): more answers? '). 

write more(F):-write more(user), 
- tell(F),nl,nT,write_more(user). 

write meaning(user):-!,nl, 
- write('** top(phrase): more answers'), 

write(' with a different meaning? '). 
write meaning(F):-write meaning(user), 

- tell(F),nl,nl,write_meaning(user). · 

/* writing a list as a sentence *I 
writelist( [XIYJ) :-write(X) ,write(' ') ,writelist(Y). 
writelist( [ 1). 

378 



379 
May 7 20:24 1986 remarkwriter Page 3 

/* printing a comment of replacing relevent quantifiers */ 
print quantifier([Skhead!Sktail),Listquant):-

- print quantifier1(Skhead,Listquant), 
print-quantifier(Sktail,Listquant). 

print_quantifTer([),Listquant). 

print quantifier1(Skhead,[[Vars,Sk,Quant)ITI):-
- Skhead = Sk, /* modify on 0740 081285 */ 

nl, tab ( 5) , write ( ' * * " ' ) , 
write(Quant),write('('),write(Vars), 
write(', .•. ) " is replaced with " '), 
print quantifier2(Quant,Newquant), 
write TNewquant) , 
write('('),write(Vars), write(', ••• ) " '),!. 

print quantifier1(Skhead,[HITJ):-
- print quantifier1(Skhead,T),!. 

print_quantifTer1(Skhead,[ )). 

print quantifier2(all,exists). 
print=quantifier2(exists,all). 

/*to write X in a quote i.e "X" */ 
write quote(X):-

- write(''" '),write(X),write(' '" '). 

/* to print respectively where appropriate */ 
write respective([H)):-!. 
write=respective(Diff):-write(' respectively'). 

/* to print the conjuction •and' */ 
test and if(S):-

- exists(S), 
nl,nl,tab(5),write('AND if '),!. 

test and if( S) :-
- nl,nl,tab(S),write('If '). 

/* to test the plurality of the sentence */ 
test is([H)):-1, 

- write(' is '). 
test is( [HIT)):-

- write('s are '). 

write plural list([L)):­
- length([L),N), 

write plural(N). - ' 

write plural clause(X):­
- fast-setof(X,X,L), 

length(L,N), 
write_p1ural(N). 

write plural(1):-!,write(' is '). 
write=plura1(N):-write(' are '). /* N>1 */ 

write and nl([)):-!. 
write=and=nl(X):- nl,tab(8),write(' AND'). 



May 7 20:24 1986 remarkwriter Page 4 

write does([S)):-!,write(' does'). 
write=does(S):-write(•s do'). 

/* to print a rule */ 
print head tail(Q:-true):-!, 

- wrTte quote(Q). 
print head taTl(Q):-

- wrTte_quote(Q). 

aao 



Apr 5 18:40 1987 toplevel Page 1 

I* Procedure QUEST *I 
question(X):-

prompt( ,' '), 
clear pc, 

381 

nl,nl~write('NEXT QUESTION:' ),nl,tab(4),write(X),nl, 
reset newquery(X,Z), 
pc to-hornclause(Z,Clause,Newskquant), 
retry-search(Z,Newskquant), 
answer search(Clause,Z,Y,Newskquant), 
print_answer(Z,Y,Clause,Newskquant). 

question(Z,Y,Clause,Newskquant):-
pc to hornclause(Z,Clause,Newskquant), 
retry-search(Z,Newskquant), 
answer_search(Clause,Z,Y,Newskquant). 

I* Procedure PC-HORN *I 
pc to hornclause(X,Clause,Newskquant):-

- - nl,write('The translation of its negation:'),nl, 
list quantifiers(X,Listquant), 
question to hornclause(-x,Clause,T,Sk), 
merge quantTfiers(Sk,Listquant,Newskquant), 
I. -

I* Procedure RESET-QUERY: to set a query or 
to reset a new query and prove it *I 

reset newquery(Oldquery,Oldquery). 
reset-newquery(Oldquery,Newquery):-

- reset newqueryl(Oldquery,Newquery), 
print=newquery(Newquery). 

reset newquery1(0ldquery,Newquery):-
- retract(new query(Newquery)), 

abolish(current query,1), 
assert(current query(Newquery)). 

reset newquery1(0ldquery,Newquery):-
- exists(new query( )), 

reset_newquery1(0Tdquery,Newquery). 



Apr 5 18:40 1987 top1eve1 Page 2 

/* Procedure RESET-SEARCH: to reformulate new query 
or to reprove again */ 

retry search(Oldquery,Newskquant). 
retry-search(Oldquery,Newskquant):-

- retry_search1(0ldquery,Newskquant). 

retry search1(0ldquery,Newskquant):-
- not exists(atomic equiv( )), 

not-exists(skolem!q listT )), 
retract(newsubsidiary). -

retry search1(01dquery,Newskquant):-
- reformulate question(Oldquery,Newskquant), 

abolish(set-of reason,3), 
abolish(reason-son father,3), 
abolish(rsf head,3T, 
abolish(newsubsidiary,O), 
abolish(query,1), 
fail. 

retry search1(0ldquery,Newskquant):-
- ( exists(newsubsidiary); 

exists(skolemfq list( )); 
exists(atomic equiv( Tl ), 

retry_search1(0ldquery,Newskquant). 

/* procedure REFORMULATEQ */ 
reformulate question(Oldquery,Newskquant):­

/* reformulation when atomic/predicate 
are equivalent and also if 'fq' exists */ 

retract(atomic equiv(Q)), 
new goal(Newquery2), 
subst skolem not(Newquery2,Newquery1,Q), 

382 

quantifiers changing(Newquery1,Newquery,Newskquant), 
assert(new query(Newquery)), 
! . -

reformulate question(Oldquery,Newskquant):-
/* reformulation when only 'fq' exists */ 
not exists(atomic equiv( )), 
exists((skolemfq Iist(sqTl, 
quantifiers changing(Oldquery,Newquery,Newskquant), 
assert(new query(Newquery)), 
! . -

/* Procedure PRINT ANSWER: printing the answer */ 
print answer(Q,Q1,TJ,Newskquant):-

- /*the question clause is [ ], 
i.e the inconsistent clause */ 

form of answer(Formanswer), 
affirm(Ans), 
answer form(Formanswer,Q1,Q2,Ans), 
nl,nl,-
write('It fails because the question'), 
write(' clause is an inconsistent one!'), 
!,nl,nl,other meaning. 

print answer(Q,Q1,Clause,Newskquant):­
- Clause\==[], 

print_answer0(Q,Q1,Newskquant). 



Apr 5 18:40 1987 toplevel Page 3 

print answer0(Q,Q1,Newskquant):-
- /* either printing yes answers 

or finding the cause of failure 
if the answer is no */ 

nonvar ( Q1), 
affirm(Ans), 
form of answer(Formanswer), 
answer rorm(Formanswer,Q1,A,Ans), 
!,rectTfiers(Q1,Ans,Newskquant). 

print answer0(Q,Q1,Newskquant):-
- /* checking if we can find any other answers 

(proving tree) if the reason exists 
and that the answer is yes */ 

affirm( yes), 
exists(set of reason(O,G,R)), 
rectifiersTQ,no,Newskquant). 

print answer0(Q,Q1,Newskquant):-
- /* finding more answers with 

different meanings of the sentence */ 
exists(toptry([ ])), 
not exists(set of reason( , , )), 
test finish faCt(Q), - - -
!,nl~nl, otlier_meaning. 

383 

/* print new query */ 
print newquery(Newquery):-

- /* if the top language is a predicate calculus */ 
form of answer(pc), 
nl,nT,write('RE-QUESTION:'), 
nl,tab(4),write(Newquery),nl. 

print newquery(Newquery):-
- /* if the top language is an english */ 

form of answer(eng), 
statement phrase one(Newquery,s,[ ]), 
nl,nl,write('RE-PHRASE:'), 
nl,tab(4), wntelist(S) ,write(' ?') ,nl, 
nl,nl,write('RE-QUESTION:'), 
nl,tab(4),write(Newquery),nl. 

/* AF:answer form */ 
answer form(pc,Y,Y,Ans):-

- write answer(user,Ans), 
writepc(user, Y). 

answer form(eng,Y,S,Ans):-
- statement phrase one(Y,S,[]), 

nl,write_sent(user,S,Ans). 



Apr 5 18:40 1987 toplevel Page 4 

/* Procedure TFF */ 

test finish fact(Q):­
- affTrm(yes), 

write answer(user,finish),!. 
test finish fact(Q):-

- affTrm(no), 
nl,nl,tab(S), write('Do you like to assert '), 
nl,tab(8),write quote(Q), 

384 

nl,tab(5),writeT•as a fact in the database (y/n)? '), 
getO(X), 
ask assert fact(X,Q). 

ask assert ~act(12l,Q):-
- /*-y(es) 121: to assert Q in the database */ 

getO(X), 
assert knowledge(Q),!. 

ask assert fact(110,Q):-
- /*-n(o) 110: not to assert Q in the database */ 

getO(X), !. 
ask assert fact(X,Q):-

- /*-others (help) */ 
(X==10;get0( )),!, 
nl,nl,tab(S)-;-
write(' type "y"(yes) or "n"(no) only please'), 
nl,tab(5),write(' type your response now? '), 
getO(Y), 
ask_assert_fact(Y,Q). 

quantifiers changing(Old,New,Listquant):­
quantifiers_out(Old,New,Listquant). 



384 
Apr 10 19:05 1986 read_in Page 1 

/*a new version of read in in poplog (using name(X,Y))*/ 
/* Read a sentence from the terminal, and convert it into 

a list of atoms and integers 

Main predicate provided: 

read_in(P) 

*I 

- Read a sentence and unify P with 
the list of atoms/ integers 

read_in(P) :- initread(L), words(P,L, [I), 1. 

/* Get list of characters - everything up to a 
full stop, exclamation mark or question mark */ 

initread([Kl,K2IUI) :- get(Kl), get0(K2), readrest(K2,U). 

readrest(46,[1) :-!. /* "." */ 
readrest(63,[1) :- !. /*"?"*I 
readrest(33,[]) :- !. /* "!" */ 
readrest(K,[KliUI) :- K<33, !, get(Kl), readrest(Kl,U). 
readrest(Kl, [K21UI) :- get0(K2), readrest(K2,U). 

/* Convert list of characters into a list of atoms and 
integers. This bit is written as Prolog grammar 
rules 

*I 

words([WIWsi,SO,S3) :-
word(W,SO,Sl), !, blanks(Sl,S2), words(Ws,S2,S3). 

words( [I ,S,S). 

word(W,[CISOI,Sl) :­
basic character(C), !, 
alphanums(As,sO,Sl), 
name ( W, [ C I As I ) . 

word ( P, [ C Is I , S) :- name ( P, [ C I ) • 

alphanums([AIAsi,SO,S2) :­
alphanum(A,SO,Sl), !, 
alphanums(As,Sl,S2). 

alphanums([ I,S,S). 

alphanum(A,[CISI,S) :- lc(C,A), !. 
alphanum(C, [Cl SI ,S) :- digit( C), I. 

rnumber(Nl,N3,[CISOI,Sl) :- digit(C), I, 
N2 is (C-48 )+(lO*Nl), 
rnumber(N2,N3,SO,Sl). 

rnumber(N,N,S,S). 

blanks( [Cl SOl ,Sl) :- blank(C), ! , 
blanks(SO,Sl). 

blanks(S,S). 

/* Basic Character types */ 



Apr 10 19:05 1986 read_in Page 2 

basic character(C):- lc(C,X). 
basic=character(C):- digit(C). 

blank(X) :- X<33. 

/** digit(X) :- 47<X, X<58. **/ 

385 

lc(X,X):-64<X,X<91. /*retaining the capital letters*/ 
lc(X,X) :- 96<X, X<123. 
lc(95,95). /* =95 to retain underscore 

for denoting a variable */ 



Apr 29 09:58 1986 engtop Page 1 

/* reading an eng1ish sentence */ 
read phrase(Y,Z):-read in(X),getO( ), 

- nl,write('NEXT-PHRASE: '), 
nl,tab(4),writelist(X), 
nl,write('===============>'), 
append(Y,Z,X),Z\==(], 
!. /*to prevent analysizing all words*/ 

/* asserting a knowledge or answering a question */ 
stat or quest(Y,Z):-

- -assertz new(form of answer(eng)), 
question phrase(Q,Y~[]), 
questionTQI. 

stat or quest(Y,Z):-
-Z\== [?], 

statement phrase(S,Y,[]), 
assert knowledge(S). 

stat or quest(Y,[?]):-
-assertz new(form of answer(eng)), 
sentence(Q,Y,[])~ -
question(Q). 

statement phrase one(Q,A,[]):-
1* to regenerate one sentence only */ 
statement_phrase(Q,A,[]),!. 

386 



Dec 11 20:34 1986 E/trparser4 Page 1 

/* The TRACING TECHNIQUE */ 

/********** SENTENCE **********/ 

sentence(Z,Y,X,W):-
statement phrase(Z,Y,X,W). 

sentence(Z,Y,X,W)!­
question_phrase(Z,Y,X,W). 

/********** STATEMENT_PHRASE **********/ 

statement phrase(Z,[s3,Y,X],W,V):-
noun phrase(U,T,S,Z,Y,W,R), 
cp verb phrase(U,T,S,X,R,V). 

statement phrase(Z,[s4,Y,X],W,V):-
noun phrase not(U,T,S,Z,Y,W,R), 
cp_verb_phrase_not(U,T,S,X,R,V). 

/********** CP_CLASS_NAME **********/ 

cp class name(Z,Y,X,[ccnO,W],V,U):-
- class name(Z,Y,X,W,V,U). 

cp class nameTZ,Y,X,[ccnl,W,[V,U],T],[SJR],Q):-
- conj pair(S,U), 

class name(Z,Y,P,W,R,O), 
conjunction(P,N,X,[V,U],O,M), 
cp class name(Z,Y,N,T,M,Q). 

cp class name(Z,Y,X,[ccn2,W,V,U],T,S):-
- class name(Z,Y,R,W,T,Q), 

conjunction(R,P,X,V,Q,O), 
cp_class_name(Z,Y,P,U,O,S). 

/********** CLASS_NAME **********/ 

class name(singular,z,Y,[cnliXl,[aJW],V):­
- gnoun(singular,Z,Y,X,W,V). 

class name(singular,Z,Y,[cn2JX],(anJW],V):­
- gnoun(singular,Z,Y,X,W,V). 

class name(plural,Z,Y,[cn3JX),W,V):-
- gnoun(plural,Z,Y,X,W,V). 

class name(Z,Y,X,[cn41Wl,V,U):-
- gadjective(Z,Y,X,W,V,U). 

/********** CP_NOUN_PHRASE **********/ 

cp noun phrase(Z,Y,X,W,[cnpO,V),U,T):-
- -noun phrase(Z,Y,X,W,V,U,T). 

cp noun phrase(Z,Y,X,W,[cnpl,V,[U,T],S),[RIQJ,P):-
- -conj pair(R,T), 

substitute(O,Y,X,N), 
noun phrase(Z,O,N,M,V,Q,L), 
conjunction(M,K,W,[U,T],L,J), 
noun phrase(Z,Y,X,K,S,J,P). 

cp noun phrase(Z,Y,X,W,[cnp2,V,U,T],S,R):­
-substitute(Q,Y,X,P), 

noun phrase(Z,Q,P,o,v,s,N), 
conjunction(O,M,W,U,N,L), 

387 



Dec 11 20:34 1986 E/trparser4 Page 2 

cp noun phrase(Z,Y,X,M,T,L,R). 
cp noun phrase(Z,Y,NX,W,[cnp3,V],U,T):-

- -noun phrase not(Z,Y,X,W,V,U,T). 
cp noun phrase(Z,Y,X,W,[cnp4,V],U,T):-

- -noun_phrase_not(Z,Y,NX,W,V,U,T). 

/********** NOUN_PHRASE **********/ 

noun phrase(Z,Y,X,W,[np1,V,U,T],S,R):-
- gdeterminer(Z,Y,Q,P,W,V,S,O), 

gnoun(Z,Y,Q,U,O,N), 
rel clause(Z,Y,M,T,N,R), 
incorporate2(X,M,P). 

noun phrase(Z,Y,X,W,[np2,V,U],T,S):­
- gdeterminer(Z,Y,R,X,W,V,T,Q), 

gnoun(Z,Y,R,U,Q,S). 
noun phrase(Z,Y,X,X,[np3,W],V,U):­

- gnoun(Z,Y,X,W,V,U). 
noun phrase(Z,Y,X,W,[np4,V,U],T,S):­

- quan pronoun(Z,Y,R,W,V,T,Q), 
rel clause(Z,Y,P,U,Q,S), 
incorporate2(X,P,R). 

noun phrase(Z,Y,X,W,[np5,V],U,T):­
- quan pronoun(Z,Y,X,W,V,U,T). 

noun phrase(z,Y,X,W,[np6,V,U],T,S):­
- gproper noun(Z,Y,U,T,R), 

rel clause(Z,Y,Q,V,R,S), 
incorporate2(X,Q,W). 

noun phrase(Z,Y,X,X,[np7,W],V,U):­
- gproper_noun(Z,Y,W,V,U). 

/********** CP_VERB_PHRASE **********/ 

cp verb phrase(Z,Y,X,[cvpO,W],V,U):-
- -verb phrase(Z,Y,X,W,V,U). 

cp verb phrase(Z,Y,X,[cvp1,w,v,u],T,S):-
- -verb phrase(Z,Y,R,W,T,Q), 

conjunction(R,P,X,V,Q,O), 
cp_verb_phrase(Z,Y,P,U,O,S). 

/********** VERB_PHRASE **********/ 

verb phrase(Z,Y,X,[vpOO,W,not,V],U,T):-
- trans verb(Z,Y,S,f(is,Y,S),W,U,R), 

negatTf(R,Q), 
cp class name not(Z,Y,X,V,Q,T). · 

verb phrase(Z,Y,X,[vpT1,W,not,V,U],T,S):-
- auxiliary(Z,W,T,R), 

negatif(R,Q), 
trans verb(plural,Y,P,O,V,Q,N), 
cp noun phrase(M,P,NO,X,U,N,S). 

verb phrase(Z,Y~Nx,[vp21,W,not,V],U,T):­
- auxiliary(Z,W,U,S), 

negatif(S,R), 
intrans_verb(plural,Y,X,V,R,T). 

388 



Dec 11 20:34 1986 E/trparser4 Page 3 

verb phrase(Z,Y,N(X&W),[vp31,V,not,U,T),S,R):-
- auxiliary(Z,V,S,Q), 

negatif(Q,P), 
intrans verb(plural,Y,X,U,P,O), 
glocator(Y,W,T,O,R). 

verb phrase(Z,Y,X,[vp01,W,V,U),T,S):­
- auxiliary(Z,W,T,R), 

trans verb(plural,Y,Q,P,V,R,O), 
cp noun phrase(N,Q,P,X,U,O,S). 

verb phrase(Z,Y~X,[vp02,W,V),U,T):-
- auxil1ary(Z,W,U,S), 

intrans verb(plural,Y,X,V,S,T). 
verb phrase(Z,Y~X&W,[vp03,V,U,T),S,R):­

- auxiliary(Z,V,S,Q), 
intrans verb(plural,Y,X,U,Q,P), 
glocator(Y,W,T,P,R). 

verb phrase(Z,Y,X,[vpO,W,V),U,T):-
- trans verb(Z,Y,S,f(is,Y,S),W,U,R), 

cp class name(Z,Y,X,V,R,T). 
verb phrase(Z,Y,X,[vp4,W,V),U,T):-

- trans verb(Z,Y,S,f(is,Y,S),W,U,R), 
glocator(Y,X,V,R,T). 

verb phrase(Z,Y,X,[vp1,W,V),U,T):­
- trans verb(Z,Y,S,R,W,U,Q), 

cp noun phrase(P,S,R,X,V,Q,T). 
verb phrase(Z,Y~X,[vp2,W),V,U):-

- intrans verb(Z,Y,X,W,V,U). 
verb phrase(Z,Y~X&W,[vp3,V,U),T,S):­

- intrans verb(Z,Y,X,V,T,R), 
glocator(Y,w,u,R,S). 

/********** GLOCATOR **********/ 

glocator(Z,Y,[gl,X!W),[X!V),U):­
locator(X,T), 
noun_phrase(S,R,f(T,Z,R),Y,W,V,U). 

/********** GPLACE **********/ 

gplace(Z,Y,X,[gp!W),V,U):­
noun_phrase(Z,Y,X,X,W,V,U). 

/********** REL_CLAUSE **********/ 

rel clause(Z,Y,X,[rc,WIV!,[WIUJ,T):-
- rel clause(W), 

vero_phrase(Z,Y,X,V,U,T). 

/********** GDETERMINER **********/ 

gdeterminer(Z,Y,X,W,all(Y,indefinite(Y),X=>W), 
[gdet1,V),[V!U],U):­

determiner(Z,universal,V). 
gdeterminer(Z,Y,X,W,exists(Y,indefinite(Y),X&W), 

[gdet2,V),[V!U),U):­
determiner(Z,existential,V). 

389 



Dec 11 20:34 1986 E/trparser4 Page 4 

gdeterminer(singu1ar,z,Y,X,exists(Z,definite(Z),Y&X), 
[ gdet3), [the I W), W) :­

true. 
gdeterminer(plural,Z,Y,X,all(Z,indefinite(Z),Y=>X), 

[gdet6),W,W) :-
true. 

/********** GNOUN **********/ 

gnoun(Z,Y,X&W,[gn1,V,U),T,S):­
gadjective(Z,Y,W,V,T,R), 
gnoun(Z,Y,X,U,R,S). 

gnoun(Z,Y,X,[gn2,W),V,U):­
gnoun0(Z,Y,X,W,V,U). 

/********** GNOUNO **********/ 

gnoun0(singular,Z,f(Y,Z),[gn02,X),[XIWJ,W):­
noun(X, Y). 

gnoun0(plural,Z,f(Y,Z),[gn03,X),[XIW!,W):­
plural(V,X), 
noun(V,Y). 

gnoun0(plural,Z,f(Y,Z),[gn04,X),[XIWJ,W):­
name(X,V), 
append(U,[105,101,115),V), 
append(U,[121),T), 
name ( S, T), 
noun(S,Y). 

gnounO(plural,Z,f(Y,Z), [gn05,X), [XIW),W) :­
name (X, V), 
append(U, [115),V), 
name ( T, U), 
noun( T, Y). 

/********** GADJECTIVE **********/ 

gadjective(Z,Y,f(X,Y),[gadj,W),[WIVJ,V):­
adjective(W,X). 

/********** GPROPER_NOUN **********/ 

gproper noun(Z,Y,[X,Y),[whoiWJ,W):­
-var(Y). 

gproper noun(plural,Z,[gpn2,Y),[YIXJ,X):-
-nonvar(Y), 

plural(W, Y), 
proper noun(W,Z), 
not noun(W,V). 

390 



Dec 11 20:34 1986 E/trparser4 Page 5 

gproper noun(singular,Z,[gpn1,Y],(YIXJ,X):-
-nonvar(Y), 

proper noun(Y,Z), 
not noun(Y,W), 
not plural(V,Y), 
not pronoun(U,Y,T). 

/********** TRANS_VERB **********/ 

trans verb(singular,Z,Y,f(X,Z,Y),[tv1,X),[XIWI,W):­
- verb be(X,X). 

trans verb(piural,Z,Y,f(X,Z,Y),[tvl,X),[WIVI,V):­
- verb be(X,W), 

plural(w). 
trans verb(singular,Z,Y,f(X,Z,Y),[tv7,W),[WIVI,V):­

- verb(W,X), 
transitive(W). 

trans verb(plural,Z,Y,f(X,Z,Y),[tv8,W),[WIVI,V):­
- plural(U,W), 

verb(U,X), 
transitive(U). 

trans verb(plural,Z,Y,f(X,Z,Y),[tv9,W),[WIVI,V):-
- name ( W, U) , 

append(U,[ll5),T), 
name ( S, T), 
verb(S,X), 
transitive(S). 

/********** INTRANS_VERB **********/ 

intrans verb(singular,Z,f(Y,Z),[1vl,X),[XIWI,W):­
-verb(X, Y), 

intransitive(X). 
intrans verb(plural,Z,f(Y,Z),[iv2,X),[XIWI,W):­

-plural(V,X), 
verb(V,Y), 
intransitive(V). 

intrans verb(plural,Z,f(Y,Z),[iv3,X),[XIWI,W):-
-name(X,V), 

append(V,[llS],U), 
name ( T, U), 
verb(T,Y), 
intransitive(T). 

/********** QUAN PRONOUN **********/ 

391 

quan pronoun(singular,Z,Y,exists(Z,indefinite(Z),f(W,Z)&Y), 
- [qprl,X), [XIV) ,V):-

pronoun(existential,X,W). 
quan pronoun(singular,Z,Y,all(Z,indefinite(Z),f(W,Z)=>Y), 

- [qpr2,X),[XIVJ,V):-
pronoun(universal,X,W). 



Dec 11 20:34 1986 E/trparser4 Page 6 

/********** CONJUNCTION **********/ 

conjunction(Z,Y,Z&Y,[conj1,and],[andiXl,X):­
true. 

conjunction(Z,Y,Z#Y,[conj2,or],[oriXl,X):­
true. 

conjunction(Z,Y,-(Z&Y),[conj3,nor],[noriXl,X):­
true. 

/********** CP_CLASS_NAME_NOT **********/ 

cp class name not(Z,Y,-x,[ccnnO,W],V,U):-
- class-name not(Z,Y,X,W,V,U). 

cp class name-not(Z,Y,X,[ccnn1,w,[V,U],T],[SIRl,Q):-
- conj pair(S,U), 

class name not(Z,Y,P,W,R,O), 
conjunction(-P,N,X,[V,U],o,M), 
cp class name not(Z,Y,N,T,M,Q). 

cp class name not(Z,Y~X,[ccnn2,W,V,U],T,S):-
- class-name not(Z,Y,R,W,T,Q), 

conjunction(-R,P,x,v,Q,O), 
cp_class_name_not(Z,Y,P,U,O,S). 

/********** CLASS_NAME_NOT **********/ 

class name not(singular,Z,Y,[cnn11Xl,[aiWl,V):­
- gnoun not(singular,Z,Y,X,W,V). 

class name not(singular,Z,Y,[cnn21Xl,[aniWl,V):­
- gnoun not(singular,Z,Y,X,W,V). 

class name not(plural,Z,Y,[cnn31Xl,W,V):-
- gnoun not(plural,Z,Y,X,W,V). 

class name not(Z,Y,X,[cnn41Wl,V,U):-
- gaajective(Z,Y,x,w,v,u). 

/********** NOUN_PHRASE_NOT **********/ 

noun phrase not(Z,Y,X,W,[npn1,V,U,T],S,R):-
- gdeterminer no(Z,Y,Q,P,W,V,S,O), 

gnoun(Z,Y,Q~U,O,N), 
rel clause(Z,Y,M,T,N,R), 
incorporate2(X,M,P). 

noun phrase not(z,y,-x,w,[npn2,v,u],T,S):­
- gdeterminer no(Z,Y,R,-x,w,v,T,Q), 

gnoun(Z,Y,R~U,Q,S). 
noun phrase not(Z,Y,X,W,[npn3,V,U],T,S):­

- gdeterminer no(Z,Y,R,X,W,V,T,Q), 
gnoun(Z,Y,R~U,Q,S). 

/********** CP_VERB_PHRASE_NOT **********/ 

cp verb phrase not(Z,Y,X,[cvpnO,w],V,U):-
- -verb_plirase_not(Z,Y,X,W,V,U). 

392 



Dec 11 20:34 1986 E/trparser4 Page 7 

cp verb phrase not(Z,Y,X,[cvpnl,W,V,U],T,S):-
- -verb plirase not(Z,Y,R,W,T,Q), 

conjunctionTR,P,X,V,Q,O), 
cp_verb_phrase_not(Z,Y,P,U,O,S). 

/********** VERB_PHRASE_NOT **********/ 

verb phrase not(Z,Y,X,[vpn4,W,not,V],U,T):­
- trans verb(Z,Y,S,f(is,Y,S),W,U,R), 

negatTf(R,Q), 
cp class name(Z,Y,X,V,Q,T). 

verb phrase not(Z,Y,X,[vpn5,W,not,V,U],T,S):-
- auxTliary(Z,W,T,R), 

negatif(R,Q), 
trans verb(plural,Y,P,O,V,Q,N), 
cp noun phrase(M,P,O,X,U,N,S). 

verb phrase notTz,Y,X,[vpn6,W,not,V],U,T):­
- auxTliary(Z,W,U,S), 

negatif(S,R), 
intrans verb(plural,Y,X,V,R,T). 

verb phrase notTZ,Y,X&W,[vpn7,V,not,U,T],S,R):-
- auxTliary(Z,V,S,Q), 

negatif(Q,P), 
intrans verb(plural,Y,X,U,P,O), 
glocator(Y,W,T,O,R). 

verb phrase not(Z,Y,X,[vpnOl,W,V,U],T,S):­
- auxTliary(Z,W,T,R), 

trans verb(plural,Y,Q,P,V,R,O), 
cp noun phrase(N,Q,-P,X,U,O,S). 

verb phrase notTZ,Y,-x,[vpn02,W,V],U,T):­
- auxTliary(Z,W,U,S), 

intrans verb(plural,Y,X,V,S,T). 
verb phrase notTZ,Y,-(X&W),[vpn03,V,U,T],S,R):­

- auxTliary(Z,V,S,Q), 
intrans verb(plural,Y,X,U,Q,P), 
glocator(Y,W,T,P,R). 

verb phrase not(Z,Y,X,[vpnO,W,V],U,T):-
- trans verb(Z,Y,S,f(is,Y,S),W,U,R), 

cp class name not(Z,Y,X,V,R,T). 
verb phrase not(Z,Y,X~[vpnl,W,V],U,T):-

- trans verb(Z,Y,S,R,W,U,Q), 
cp noun phrase(P,S,-R,X,V,Q,T). 

verb phrase notTz,y,-x,[vpn2,W],V,U):­
- intrans verb(Z,Y,X,W,V,U). 

verb phrase notTZ,Y,-(X&W),[vpn3,V,U],T,S):­
- intrans verb(Z,Y,X,V,T,R), 

glocator(Y,w,u,R,S). 

/********** NEGATIF **********/ 

negatif([notiZ],Z):­
true. 

/********** AUXILIARY **********/ 
auxiliary(plural,[auxl,do],[doiZ],Z):­

true. 

393 



Dec 11 20:34 1986 E/trparser4 Page 8 

auxiliary(singular,[aux2,does],[doesiZ],Z):­
true. 

/********** GDETERMINER_NO **********/ 

gdeterminer no(singular,Z,Y,X,all(Z,indefinite(Z),Y->X), 
- [gdetnl],[noiW],W):-

true. 

/********** GADJECTIVE_NOT **********/ 

gadjective not(Z,Y,X#W,[gadjnO,V,U],T,S):­
gaajective notO(Z,Y,X,V,T,R), 
gadjective-not(Z,Y,W,U,R,S). 

gadjective not(Z,Y~X,[gadjnl,W],V,U):­
gaajective_notO(Z,Y,X,W,V,U). 

/********** GADJECTIVE_NOTO **********/ 

gadjective notO(Z,Y,f(X,Y),[gadj,W],[WIVJ,V):­
ad]ective(W,X). 

394 

/********** QUAN_PRONOUN_NOT **********/ 

quan pronoun not(singular,Z,Y, 
- exists(Z,indefinite(Z),f(W,Z)&Y),[qpr1,X],[XIV],V):­

pronoun(existential,X,W). 
quan pronoun not(singular,Z,Y, 

- all(Z,indefinite(Z),f(W,Z)=>Y),[qpr2,X],[XIV],V):­
pronoun(un1versal,X,W). 

/********** GNOUN_NOT **********/ 

gnoun not(Z,Y,NX#W,[gnnl,V,U],T,S):­
- gadjective not(Z,Y,W,V,T,R), 

gnoun not(Z,Y,X,U,R,S). 
gnoun not(Z,Y~X,[gnn2,W],V,U):-

- gnounO(Z,Y,X,W,V,U). 



Apr 6 13:47 1987 E/wordparser4 Page 1 

/* the WORDING TECHNIQUE */ 
/********** SENTENCE **********/ 

sentence(Z,Y,X):-
statement phrase(Z,Y,X). 

sentence(Z,Y,X):-­
question_phrase(Z,Y,X). 

/********** STATEMENT_PHRASE **********/ 

statement phrase(Z,Y,X):-
noun phrase(W,V,U,Z,Y,T), 
cp verb phrase(W,V,U,T,X). 

statement phrase(Z,Y,X):-
noun phrase not(W,V,U,Z,Y,T), 
cp_verb_phrase_not(w,v,u,T,X). 

/********** CP_CLASS_NAME **********/ 

cp class name(Z,Y,X,W,V):-
- class_name(Z,Y,X,W,V). 

/********** CLASS_NAME **********/ 

class name(singular,Z,Y,[a!X],W):­
- gnoun(singular,Z,Y,X,W). 

class name(singular,Z,Y,[aniX],W):­
- gnoun(singular,Z,Y,X,W). 

class name(plural,Z,Y,X,W):-
- gnoun(plural,Z,Y,X,W). 

class name(Z,Y,X,W,V):-
- gadjective(Z,Y,X,W,V). 

/********** CP_NOUN_PHRASE **********/ 

cp noun phrase(Z,Y,X,W,V,U):-
- -noun phrase(Z,Y,X,W,V,U). 

cp noun phrase(z,y,-x,w,v,u):-
- -noun phrase not(Z,Y,X,W,V,U). 

cp noun phrase(Z,Y,X,w,v,u):-
- -noun_phrase_not(z,y,-x,w,v,u). 

/********** NOUN_PHRASE **********/ 

noun phrase(Z,Y,X,exists(Y,R,W),V,U):­
- gproper noun(Z,Y,R,V,T), 

relative clause(Z,Y,X,W,T,U). 
noun phrase(Z,Y,X,exists(Y,U,X),W,V):­

- gproper noun(Z,Y,U,W,V). 
noun phrase(Z,Y~X,W,V,U):-

- gdeterminer(Z,Y,T,S,W,V,R), 
gnoun(Z,Y,T,R,Q), 

395 



Apr 6 13:47 1987 E/wordparser4 Page 2 

relative clause(Z,Y,X,S,Q,U). 
noun phrase(Z,Y,X,W,V,U):-

- gdeterminer(Z,Y,T,X,W,V,S), 
gnoun(Z,Y,T,S,U). 

noun phrase(Z,Y,X,X,W,V):-
- gnoun(Z,Y,X,W,V). 

noun phrase(Z,Y,X,W,V,U):-
- quan pronoun(Z,Y,T,W,V,S), 

relative clause(Z,Y,X,T,S,U). 
noun phrase(Z,Y,X,W,V,U):-

- quan_pronoun(Z,Y,X,W,V,U). 

/********** CP_VERB_PHRASE **********/ 

cp verb phrase(Z,Y,X,W,V):-
- -verb_phrase(Z,Y,X,W,V). 

/********** VERB_PHRASE **********/ 

verb phrase(Z,Y,X,W,V):-
- trans verb(Z,Y,U,f(is,Y,U),W,T), 

cp class name(Z,Y,X,T,V). 
verb phrase(Z,Y,X,W,V):-

- trans verb(Z,Y,U,f(is,Y,U),W,T), 
glocator(Y,X,T,V). 

verb phrase(Z,Y,X,W,V):-
- trans verb(Z,Y,U,T,W,S), 

cp noun phrase(R,U,T,X,S,V). 
verb phrase(Z,Y~X,W,V):-

- intrans verb(Z,Y,X,W,V). 
verb phrase(Z,Y~X&W,V,U):-

- intrans verb(Z,Y,X,V,T), 
glocator(Y,W,T,U). 

verb phrase(Z,Y,X,W,V):-
- trans verb(Z,Y,U,f(is,Y,U),W,T), 

negatif(T,S), 
cp class name not(Z,Y,X,S,V). 

verb phrase(Z,Y,x,w,vT:-
- auxiliary(Z,W,U), 

negatif(U,T), 
trans verb(plural,Y,S,R,T,Q), 
cp noun phrase(P,S,-R,X,Q,V). 

verb phrase(z,y~-x,w,V):­
- auxiliary(Z,W,U), 

negatif(U,T), 
intrans verb(plural,Y,X,T,V). 

verb phrase(Z,Y~-(X&W),V,U):-
- auxiliary(Z,V,T), 

negatif(T,S), 
intrans verb(plural,Y,X,S,R), 
glocator(Y,W,R,U). 

verb phrase(Z,Y,X,W,V):­
- auxiliary(Z,W,U), 

trans verb(plural,Y,T,S,U,R), 
cp_noun_phrase(Q,T,S,X,R,V). 

396 



Apr 6 13:47 1987 Ejwordparser4 Page 3 

verb phrase(Z,Y,X,W,V):­
- auxiliary(Z,W,U), 

intrans verb(plural,Y,X,U,V). 
verb phrase(Z,Y~X&W,V,U):-

- auxiliary(Z,V,T), 
intrans verb(p1ural,Y,X,T,S), 
glocator(Y,w,s,u). 

/********** GLOCATOR **********/ 

glocator(Z,Y, [X lW] ,V):-
word used(X), 
locator(X,U), 
noun_phrase(T,S,f(U,Z,S),Y,W,V). 

/********** GPLACE **********/ 

gplace(Z,Y,X,W,V):­
noun_phrase(Z,Y,X,X,W,V). 

/********** REL_CLAUSE **********/ 

relative clause(Z,Y,T,T&X,[WIVJ,U):­
word used(W) I 

rel clause(W) I 

vero_phrase(Z,Y,X,V,U). 

397 

/********** GDETERMINER **********/ 
gdeterminer(Z,Y,X,W,all(Y,indefinite(Y),X=>W),[VIU],U):­

word used(V), 
determiner(z,universal,V). 

gdeterminer(Z,Y,X,W,exists(Y,indefinite(Y),X&W),[VIUJ,U):-
word used(V), 
determiner(Z,existential,V). 

gdeterminer(singular,Z,Y,X,exists(Z,definite(Z),Y&X), 
[the lW] ,W) :-

true. 
gdeterminer(plural,Z,Y,X,all(Z,definite(Z),Y&X),[theiWl,W):­

true. 
gdeterminer(plural,Z,Y,X,all(Z,indefinite(Z),Y=>X),W,W):­

true. 

/********** GNOUN **********/ 

gnoun(Z,Y,X,W,V):­
gnounO(Z,Y,X,W,V). 



Apr 6 13:47 1987 E/wordparser4 Page 4 

/********** GNOUNO **********/ 
gnounO(singular,Z,f(Y,Z),[XIW],W):­

word used( X), 
nounTx, Y). 

gnounO(plural,Z,f(Y,Z),[XIW],W):­
word used( X), 
plural(V,X), 
noun(V, Y). 

gnounO(plural,Z,f(Y,Z),[XIW],W):­
word used(X), 
nameTx, V), 
append(U,[105,101,115],V), 
append(U,[121],T), 
name ( S , T) , 
noun( S, Y). 

gnounO(plural,Z,f(Y,Z),[XIW],W):­
word used( X), 
name Tx, V), 
append(U, [ 115], V), 
name ( T, u) , 
noun(T,Y). 

/********** GADJECTIVE **********/ 

gadjective(Z,Y,f(X,Y),[WIV],V):­
word used(W), 
adjective(W,X). 

/********** GPROPER_NOUN **********/ 

gproper noun( ,z,proper noun(Z),[whoiX],X):-
-var(Z). -

gproper noun(singular,z,proper noun(Z),!YIX],X):-
-proper noun(Y,Z), -

word used(Y). 
gproper nounTplural,Z,proper noun(Z),[YIX],X):-

-word used(Y), -
plural(W, Y), 
proper noun(W,Z), 
not noun(W,V). 

/********** TRANS_VERB **********/ 

trans verb(singular,Z,Y,f(W,Z,Y),[WIX],X):­
- /*word used(W),*/ 

verb he(W,W). 
trans verb(pTural,Z,Y,f(V,Z,Y),!WIX],X):­

- /*word used(W),*/ 
verb he(V,W), 
plural (W). 

trans verb(singular,Z,Y,f(X,Z,Y),[WIV),V):­
- word used(W), 

verbTW,X), 
transitive(W). 

398 



Apr 6 13:47 1987 E/wordparser4 Page 5 

trans_verb(p1ura1,Z,Y,f(X,Z,Y),[WIVI,V):­
word used(W), 
p1ura1(U,W), 
verb(U,X), 
transitive(U). 

trans_verb(p1ura1,Z,Y,f(X,Z,Y),[WIVI,V):­
word used(W), 
nameTW,U), 
append(U,[115),T), 
name ( S , T) , 
verb(S,X), 
transitive(S). 

/********** INTRANS_VERB **********/ 

intrans verb(singu1ar,Z,f(Y,Z),[XIWI,W):­
-word used(X), 

verbTx, Y), 
intransitive(X). 

intrans verb(p1ura1,Z,f(Y,Z),[XIWI,W):-
-word used(X), 

p1ural(V,X), 
verb(V,Y), 
intransitive(V). 

intrans verb(plural,Z,f(Y,Z),[XIW),W):-
-word used(X), 

name Tx, V), 
append(V,[115),U), 
name ( T, U) , 
verb(T,Y), 
intransitive(T). 

399 

/********** QUAN PRONOUN **********/ 
quan pronoun(singular,Z,Y,exists(Z,indef1nite(Z),f(W,Z)&Y), 

- [XlVI ,V):-
word used( X), 
pronoun(existential,X,W). 

quan pronoun(singular,Z,Y,all(Z,indefinite(Z),f(W,Z)•>Y), 
- [XIV),V):-

word used(X), 
pronoun(universal,X,W). 

/********** CONJUNCTION **********/ 

conjunction(Z,Y,Z&Y,[and),[andiXI,X):­
true. 

conjunction(Z,Y,Z#Y,[or],(oriXI,X):­
true. 

conjunction(Z,Y,-(Z&Y),[nor),[noriXI,X):­
true. 



Apr 6 13:47 1987 Ejwordparser4 Page 6 

/********** CP CLASS NAME NOT **********/ 
cp class name not(Z,Y,-x,W,V):-

- class=name_not(Z,Y,X,W,V). 

/********** CLASS NAME_NOT **********/ 

class name not(singular,Z,Y,[aiX],W):­
- gnoun not(singular,z,Y,X,W). 

class name not(singular,Z,Y,[aniX],W):­
- gnoun not(singular,Z,Y,X,W). 

class name not(plural,Z,Y,X,W):-
- gnoun not(plural,Z,Y,X,W). 

class name not(Z,Y,X,W,V):-
- gaojective(Z,Y,X,W,V). 

/********** NOUN_PHRASE_NOT **********/ 

noun phrase not(Z,Y,X,W,V,U):-
- gdeterminer no(Z,Y,T,S,W,V,R), 

gnoun(Z,Y,T~R,Q), 
relative clause(Z,Y,X,S,Q,U). 

noun phrase not(Z,Y,-x,w,v,u):-
- gdeterminer no(Z,Y,T,-x,W,V,S), 

gnoun(Z,Y,T~S,U). 
noun phrase not(Z,Y,X,W,V,U):-

- gdeterminer no(Z,Y,T,X,W,V,S), 
gnoun(Z,Y,T~S,U). 

/********** CP_VERB_PHRASE_NOT **********/ 

cp verb phrase not(Z,Y,X,W,V):-
- -verb_phrase_not(Z,Y,X,W,V). 

/********** VERB PHRASE_NOT **********/ 

verb phrase not(Z,Y,X,W,V):-
- trans verb(Z,Y,U,f(is,Y,U),W,T), 

negatTf(T,S), 
cp class name(Z,Y,X,S,V). 

verb phrase not(Z,Y,X,W,V):-
- auxTliary(Z,W,U), 

negatif(U,T), 
trans verb(plural,Y,S,R,T,Q), 
cp noun phrase(P,S,R,X,Q,V). 

verb phrase notTz,Y,X,W,V):­
- auxTliary(Z,W,U), 

negatif(U,T), 
1ntrans verb(plural,Y,X,T,V). 

verb phrase notTz,Y,X&W,V,U):-
- auxTliary(Z,V,T), 

negatif(T,S), 
intrans verb(plural,Y,X,S,R), 
glocator(Y,W,R,U). 

400 



Apr 6 13:47 1987 E/wordparser4 Page 7 

verb phrase not(Z,Y,X,W,V):­
- auxTliary(Z,W,U), 

trans verb(plural,Y,T,S,U,R), 
cp noun phrase(Q,T,-S,X,R,V). 

verb phrase notTz,Y,-x,w,v):-
- auxTliary(Z,W,U), 

intrans verb(plural,Y,X,U,V). 
verb phrase notTZ,Y,-(X&W),V,U):-

- auxTliary(Z,V,T), 
intrans verb(plural,Y,X,T,S), 
glocator(Y,w,s,u). 

verb phrase not(Z,Y,X,W,V):-
- trans verb(Z,Y,U,f(is,Y,U),W,T), 

cp class name not(Z,Y,X,T,V). 
verb phrase not(Z,Y,X~W,V):-

- trans verb(Z,Y,U,T,W,S), 
cp noun phrase(R,U,-T,X,S,V). 

verb phrase notTz,Y,-x,w,v):-
- intrans verb(Z,Y,X,W,V). 

verb phrase notTZ,Y,-(X&W),V,U):­
- intrans verb(Z,Y,X,V,T), 

glocator(Y,W,T,U). 

/********** NEGATIF **********/ 

negatif([notiZ),Z):­
true. 

/********** AUXILIARY **********/ 

auxiliary(plural,[doiZ),Z):­
true. 

auxiliary(singular,[doesiZ),Z):­
true. 

401 

/********** GDETERMINER NO **********/ 
gdeterminer no(singular~Z,Y,X,all(Z,indefinite(Z),Y•>X), 

- [no I W I , W) :-
true. 

/********** GADJECTIVE_NOT **********/ 

gadjective not(Z,Y,X,W,V):­
gaajective_notO(Z,Y,X,W,V). 

/********** GADJECTIVE_NOTO **********/ 

gadjective notO(Z,Y,f(X,Y),[WiVJ,V):­
word used(W), 
adjective(W,X). 



402 
Apr 6 13:47 1987 Ejwordparser4 Page 8 

/********** QUAN PRONOUN NOT **********/ 
quan pronoun notTsingu1ar,z,Y, 

- - exists(Z,indefinite(Z),f(W,Z)&Y),[XIV),V):-
word used(X), 
pronoun(existential,X,W). 

quan pronoun not(singular,Z,Y, 
- - all(Z,indefinite(Z),f(W,Z)=>Y),[XIVJ,V):-

word used(X), 
pronoun(universal,X,W). 

/********** GNOUN NOT **********/ 
gnoun not(Z,Y,X,W~V):-

- gnounO(Z,Y,X,W,V). 



Apr 6 14:19 1987 Ejvarparser4 Page 1 

/********** SENTENCE **********/ 

sentence(Z,Y,X):-
statement phrase(Z,Y,X). 

sentence(Z,Y,X):-­
question_phrase(Z,Y,X). 

/********** STATEMENT_PHRASE **********/ 

statement phrase(Z,Y,X):-
noun phrase(W,V,U,Z,Y,T), 
cp verb phrase(W,V,U,T,X). 

statement phrase(Z,Y,X):-
noun phrase not(W,V,U,Z,Y,T), 
cp_verb_phrase_not(w,v,u,T,X). 

/********** CP_CLASS_NAME **********/ 

cp class name(Z,Y,X,W,V):-
- class_name(Z,Y,X,W,V). 

/********** CLASS_NAME **********/ 

class name(singular,Z,Y,[aiX),W):­
- gnoun(singular,Z,Y,X,W). 

class_name(singular,Z,Y,[aniX),W):­
gnoun(singular,z,Y,X,W). 

class name(plural,Z,Y,X,W):-
- gnoun(plural,Z,Y,X,W). 

class name(Z,Y,X,W,V):-
- gadjective(Z,Y,X,W,V). 

/********** CP_NOUN_PHRASE **********/ 

cp noun phrase(Z,Y,X,W,V,U):-
- -noun_phrase(Z,Y,X,W,V,U). 

cp noun phrase(Z,Y,-x,w,v,u):-
-noun phrase not(Z,Y,X,W,V,U). 

cp noun phrase(Z,Y,x,w,v,u):-
- -noun_phrase_not(Z,Y,-x,w,v,u). 

/********** NOUN_PHRASE **********/ 

noun phrase(Z,Y,X,exists(Y,R,W),V,U):­
- gproper noun(Z,Y,R,V,T), 

relative_clause(Z,Y,X,W,T,U). 

403 



Apr 6 14:19 1987 E/varparser4 Page 2 

noun phrase(Z,Y,X,exists(Y,U,X),W,V):­
- gproper noun(Z,Y,U,W,V). 

noun phrase(Z,Y~X,W,V,U):-
- gdeterminer(Z,Y,T,S,W,V,R), 

gnoun(Z,Y,T,R,Q), 
relative clause(Z,Y,X,S,Q,U). 

noun phrase(Z,Y,X,W,V,U):-
- gdeterminer(Z,Y,T,X,W,V,S), 

gnoun(Z,Y,T,S,U). 
noun phrase(Z,Y,X,X,W,V):-

- gnoun(Z,Y,X,W,V). 
noun phrase(Z,Y,X,W,V,U):-

- quan pronoun(Z,Y,T,W,V,S), 
relative clause(Z,Y,X,T,S,U). 

noun phrase(Z,Y,X,W,V,U):-
- quan_pronoun(Z,Y,X,W,V,U). 

/********** CP_VERB_PHRASE **********/ 

cp verb phrase(Z,Y,X,W,V):-
- -verb_phrase(Z,Y,X,W,V). 

/********** VERB PHRASE **********/ 
verb phrase(Z,Y,X,W,V):-

- trans verb(Z,Y,U,f(is,Y,U),W,T), 
cp class name(Z,Y,X,T,V). 

verb phrase(Z,Y,X,W,V):-
- trans verb(Z,Y,U,f(is,Y,U),W,T), 

glocator(Y,X,T,V). 
verb phrase(Z,Y,X,W,V):-

- trans verb(Z,Y,U,T,W,S), 
cp noun phrase(R,U,T,X,S,V). 

verb phrase(Z,Y~X,W,V):-
- intrans verb(Z,Y,X,W,V). 

verb phrase(Z,Y~X&W,V,U):-
- intrans verb(Z,Y,X,V,T), 

glocator(Y,W,T,U). 
verb phrase(Z,Y,X,W,V):-

- trans verb(Z,Y,U,f(is,Y,U),W,T), 
negatTf(T,S), 
cp class name not(Z,Y,X,S,V). 

verb phrase(z,Y,x,w,vT:-
- auxiliary(Z,W,U), 

negatif(U,T), 
trans verb(plural,Y,S,R,T,Q), 
R\=f(Ts, , ), /*to prevent 'do <not> is ' */ 
cp noun phrase(P,S,-R,X,Q,V). 

verb phrase(Z,Y~-x,W,V):­
- auxiliary(Z,W,U), 

negatif(U,T), 
intrans verb(plural,Y,X,T,V). 

verb phrase(z,y~-(X&W),V,U):-
- auxiliary(Z,V,T), 

negatif(T,S), 
intrans verb(plural,Y,X,S,R), 
glocator(Y,W,R,U). 

404 



Apr 6 14:19 1987 E/varparser4 Page 3 

/********** GLOCATOR **********/ 
glocator(Z,Y,[XIW],V):-

locator(X,U), 
noun_phrase(T,S,f(U,Z,S),Y,W,V). 

/********** GPLACE **********/ 

gplace(Z,Y,X,W,V):­
noun_phrase(Z,Y,X,X,W,V). 

/********** REL CLAUSE **********/ 
relative clauseTz,Y,T,T&X,[WIVI,U):­

rel clause(W), 
vero_phrase(Z,Y,X,V,U). 

/********** GDETERMINER **********/ 

405 

gdeterminer(Z,Y,X,W, 
all(Y,indefinite(Y,coverage(Coverage)),X=>W),[VIUJ,U):-

nonvar(V), 
determiner(Z,universal,V,Coverage). 

gdeterminer(Z,Y,X,W, 
exists(Y,indefinite(Y,coverage(Coverage)),X&W),[VIUI,U):-

nonvar(V), 
determiner(Z,existential,V,Coverage). 

gdeterminer(Z,Y,X,W, 
all(Y,indefinite(Y,coverage(Coverage)),X=>W),[VIUI,U):-

var(V), 
determiner coverage(Z,universal,V,Coverage). 

gdeterminer(Z,Y,X,W, 
exists(Y,indefinite(Y,coverage(Coverage)),X&W),[VIUI,U):-

var(V), 
determiner coverage(Z,existential,V,Coverage). 

gdeterminer(singular,Z,Y,X, 
exists(Z,definite(Z,coverage(10)),Y&X),[the1Wl,W). 

gdeterminer(plural,Z,Y,X, 
all(Z,definite(Z,coverage(10)),Y&X),[theiWI,W). 

gdeterminer(plural,Z,Y,X, 
all(Z,indefinite(Z,coverage(70)),Y•>X),[VIW],[VIWI):-

V\==who. 

determiner coverage(Z,Quantifier,V,Coverage):­
integer(Coverage), 
determiner(Z,Quantifier,V,Coverage1), 
Coverage1=Coverage. 

determiner coverage(Z,Quantifier,v,coverage):­
integer(Coverage), 
determiner(Z,Quantifier,V,Coverage1), 
Coverage1<Coverage,!. 

determiner coverage(Z,Quantifier,V,Coverage):­
nonvar(Coverage), 
determiner(Z,Quantifier,V,Coverage1), 
Coverage1=<50. 



Apr 6 14:19 1987 E/varparser4 Page 4 

/********** GNOUN **********/ 
gnoun(Z,Y,X,W,V):­

gnounO(Z,Y,X,W,V). 

/********** GNOUNO **********/ 
gnounO(singular,Z,f(Y,Z),[XIWl,W):­

nonvar(X), 
noun(X, Y). 

gnounO(singular,Z,f(Y,Z),[XiWl,W):­
var(X), 
noun(X, Y), 
X~=Y. /* to prevent X={what,which} */ 

gnounO(plural,Z,f(Y,Z),[XiW],W):­
nonvar(X), 
plural(V,X), 
noun(V, Y). 

gnounO(plural,Z,f(Y,Z),[XiW],W):­
var(X), 
noun(V, Y), 
V==Y, 
plural(V,X). 

gnounO(plural,Z,f(Y,Z),[XIW],W):­
nonvar(X), 
name (X, V), 
append(U,[105,101,115],V), 
append(U,[121],T), 
name( S,T), 
noun( S, Y). 

gnounO(plural,Z,f(Y,Z),[XiW],W):­
var(X), 
noun(V, Y), 
V==Y, 
name (V, U), 
append(T,[121],U), 
append(T,[105,101,115],S), 
name (X, s). 

gnounO(plural,Z,f(Y,Z),[XIW],W):­
nonvar(X), 
name(X, V), 
append(U, [115] ,V), 
name ( T, U), 
noun( T, Y). 

gnounO(plural,Z,f(Y,Z),[XIW],W):­
var(X), 
noun(V, Y), 
V==Y, 
not(plural(V,V1)), 
name (V, U), 
append(U,[115],T), 
name(X,T). 

406 



Apr 6 14:19 1987 Ejvarparser4 Page 5 

/********** GADJECTIVE **********/ 

gadjective(Z 1Y1f(X 1Y) 1[WIV] 1V):­
adjective(W1X). 

/********** GPROPER_NOUN **********/ 

gproper noun(Arbitarary1Z1proper noun(Z) 1[whoiX) 1X):-
-var(Z). -

gproper noun(singular 1Z1proper noun(Z) 1[YIX) 1X):-
-proper noun(Y 1Z). -

gproper noun(pTural 1Z1proper noun(Z) 1[YIX) 1X):-
-nonvar(Y)1 -

plural(W1Y) 1 

proper noun(W1Z) 1 
not (noun(WIV)). 

gproper noun(plural 1Z1proper noun(Z) 1[YIX) 1X):-
-var(Y)1 -

proper noun(W1Z) 1 
pluralTW1Y) 1 
not (noun(W1V)). 

/********** TRANS_VERB **********/ 

trans verb(singular 1Z1Y1f(W 1Z1Y) 1[WIX) 1X):­
- verb be(W 1W). 

trans verb(pTural 1Z1Yif(V 1ZIY)I[WIX]IX):­
- verb be(V 1W) 1 

plural(W). 

trans verb(singular 1Z1Y1f(X 1Z1Y) 1[WIV) 1V):­
- verb(W 1X) 1 

transitive (W). 
trans verb(plural 1Z1Y1f(X 1Z1Y) 1[WIVI 1V):­

- plural(U 1W) 1 

verb(U 1X) 1 

transitive(U). 
trans verb(plural 1Z1Y1f(X 1Z1Y) 1[WIV) 1V):-

- nonvar (W) 1 

name(W 1U) 1 

append(U 1[115) 1T) 1 
name ( s 1 T) 1 

verb(S 1X) 1 

transitive(S). 
trans_verb(plural 1Z1Y1f(X 1Z1Y)I[WIVIIV):­

var (W) 1 

verb(U 1X) 1 

transitive(U) 1 

name ( U 1 T) 1 

append(S 1[115] 1T) 1 
name (W 1 S). 

407 



Apr 6 14:19 1987 E/varparser4 Page 6 

/********** INTRANS VERB **********/ 
intrans verb(singular,Z,f(Y,Z),[XIWJ,w):­

-verb(X,Y), 
intransitive(X). 

intrans verb(plural,Z,f(Y,Z),[XIWJ,W):­
-plural(V,X), 

verb(V,Y), 
intransitive(V). 

intrans verb(plural,Z,f(Y,Z),[XIW),W):-
-nonvar(X), 

name(X,V), 
append(V,[ll5),U), 
name(T,U), 
verb(T,Y), 
intransitive(T). 

intrans verb(plural,Z,f(Y,Z),[XIW),W):-
-var(X), 

verb(V,Y), 
intransitive(V), 
name(V,U), 
append(T,[l15),U), 
name(X,T). 

/********** QUAN PRONOUN **********/ 

408 

quan pronoun(singular,Z,Y, 
exists(Z,indefinite(Z,coverage(Coverage)),f(W,Z)&Y),[XIVI,Vl:­

nonvar(X), 
pronoun(existential,X,W,Coverage). 

quan pronoun(singular,Z,Y, 
all(Z,indefinite(Z,coverage(Coverage)),f(W,Z)•>Y),[XIVJ,V):­

nonvar(X), 
pronoun(universal,X,W,Coverage). 

quan pronoun(singular,Z,Y, 
exists(Z,indefinite(Z,coverage(Coverage)),f(W,Z)&Y),[XIVI,V):­

var(X), 
pronoun coverage(existential,X,W,Coverage). 

quan pronoun(singular,Z,Y, 
all(Z,indefinite(Z,coverage(Coverage)),f(W,Z)->Y),[XIVI,V):­

var(X), 
pronoun_coverage(universal,x,w,coverage). 

pronoun coverage(Quantifier,X,W,Coverage):­
-integer(Coverage), 

pronoun(Quantifier,X,W,Coveragel), 
coveragel=Coverage. 

pronoun coverage(Quantifier,X,W,Coverage):­
-integer(Coverage), 

pronoun(Quantifier,X,W,Coveragel), 
Coverage1<Coverage,!. 

pronoun coverage(Quantifier,X,W,Coverage):­
-nonvar(Coverage), 

pronoun(Quantifier,X,W,Coveragel), 
Coverage1=<50. 



Apr 6 14:19 1987 Ejvarparser4 Page 7 

/********** CONJUNCTION **********/ 
conjunction(Z,Y,Z&Y,[and],[andiXl,X):­

true. 
conjunction(Z,Y,Z#Y,[or],[oriXl,X):­

true. 
conjunction(Z,Y,-(Z&Y),[nor],[noriXl,X):­

true. 

/********** CP_CLASS_NAME_NOT **********/ 

cp class name not(Z,Y,-x,W,V):-
- class=name_not(Z,Y,X,W,V). 

/********** CLASS_NAME_NOT **********/ 

class name not(singular,Z,Y,[aiX],W):­
- gnoun not(singular,Z,Y,X,W). 

class name not(singular,Z,Y,[aniXJ,W):­
- gnoun not(singular,z,Y,X,W). 

class name not(plural,Z,Y,X,W):-
- gnoun not(plural,Z,Y,X,W). 

class name not(Z,Y,X,W,V):­
gaajective(Z,Y,X,W,V). 

/********** NOUN_PHRASE_NOT **********/ 

noun phrase not(Z,Y,X,W,V,U):-
- gdeterminer no(Z,Y,T,S,W,V,R), 

gnoun(Z,Y,T~R,Q), 
relative clause(Z,Y,X,S,Q,U). 

noun phrase not(Z,Y,-x,w,v,u):-
- gdeterminer no(Z,Y,T,-x,w,v,s), 

gnoun(Z,Y,T~S,U). 
noun phrase not(Z,Y,X,W,V,U):-

- gdeterminer no(Z,Y,T,X,W,V,S), 
gnoun(Z,Y,T~S,U). 

/********** CP VERB PHRASE NOT **********/ 
cp verb phrase-not(Z,Y,X,W~V):-

- -verb_plirase_not(Z,Y,X,W,V). 

/********** VERB PHRASE NOT **********/ 
verb phrase not(Z,Y,X,W~V):-

- trans verb(Z,Y,U,f(is,Y,U),W,T), 
negatTf(T,S), 

verb phrase not(Z,Y,X,W,V):-
- auxTliary(Z,W,U), 

negatif(U,T), 
trans verb(plural,Y,S,R,T,Q), 
R\=f(Ts, , ) , 
cp noun phrase(P,S,R,X,Q,V). 
cp-class name(Z,Y,X,S,V). 

- -

409 



Apr 6 14:19 1987 E/varparser4 Page 8 

verb phrase not(Z 1Y1X1W1V):­
- aux1liary(Z 1W1U) 1 

negatif(U1Tl 1 

intrans verb(plural 1Y1X1T1V). 
verb phrase notTZ 1Y1X&W 1V1U):-

- aux1liary(Z 1V1T) 1 
negatif(T 1S) 1 
intrans verb(plural 1Y1X1S1R) 1 
glocator(Y1WIR 1U). 

verb phrase not(Z 1Y1X1W1V):-
- aux1liary(Z 1W1U) 1 

trans verb(plural 1Y1T1SIU 1R) 1 
S\=f(Tsl 1 ) 1 

cp noun phrase(QITI-slxiRIV). 
verb phrase notTZ 1 Y~-x~w~v>:-

- aux1liary(Z 1W1U) 1 
intrans verb(plural 1Y1X1U1V). 

verb phrase notTZ 1Y1-(X&W) 1V1U):-
- aux1liary(Z 1V1T) 1 

intrans verb(plural 1Y1X1T1S) 1 
glocator(Yiwlslu). 

verb phrase not(Z 1Y1X1W1V):-
- trans verb(Z 1Y1U1f(is 1YIU)IW 1T)I 

cp class name not(Z 1Y1X1T1V). 
verb phrase not(Z 1 Y 1 X~W 1 V):-

- trans verb(Z 1Y1U1T1W1S)I 
cp noun phrase(R1U1-T 1X1S1V). 

verb phrase notTZ 1 Y~-x~W 1 V):-
- intrans verb(Z 1Y1X1W1V). 

verb phrase notTZ 1 Y~-(X&W) 1 V 1 U):­
- intrans verb(Z 1Y1X1V 1Tl1 

glocator(YIWITIU). 

/********** NEGATIF **********/ 
negatif([notiZ] 1Z):-

true. 

/********** AUXILIARY **********/ 
auxiliary(plural 1[doiZ] 1Z):­

true. 
auxiliary(singular 1[doesiZ] 1Z):­

true. 

/********** GDETERMINER NO **********/ 

410 

gdeterminer no(singular~Z 1 Y 1 X 1 
all(Z 1indefinite(Zicoverage(50))1Y=>X)I[noiWliW). 

gdeterminer no(singular 1Z1Y1X, 
all(Z 1indefinite(Z,coverage(Coverage))IY=>X)I[NoiW]IW):-

var(No) 1 

Coverage=<50 1 
No=no. 



Apr 6 14:19 1987 E/varparser4 Page 9 

/********** GADJECTIVE NOT **********/ 
gadjective not(Z,Y,X,W~V):­

gaajective_notO(Z,Y,X,W,V). 

/********** GADJECTIVE NOTO **********/ 
gadjective notO(Z,Y,f(X,Y),[WIV),V):­

ad)ective(W,X). 

/********** QUAN_PRONOUN_NOT **********/ 

411 

quan pronoun not(singular,Z,Y, 
exists(Z,inaefinite(Z,coverage(Coverage)),f(W,Z)&Y),[XIV],V):­

nonvar(X), 
pronoun(existential,X,W,Coverage). 

quan pronoun not(singular,Z,Y, 
aTl(Z,indefinite(Z,coverage(Coverage)),f(W,Z)•>Y),[XIV],V):­

nonvar(X), 
pronoun(universal,X,W,Coverage). 

quan pronoun not(singular,Z,Y, 
exists(Z,inaefinite(Z,coverage(Coverage)),f(W,Z)&Y),[XIV],V):­

var(X), 
pronoun coverage(existential,X,W,Coverage). 

quan pronoun not(singular,Z,Y, 
alT(Z,inderinite(z,coverage(Coverage)),f(W,Z)=>Y),[XIVJ,V):­

var(X), 
pronoun_coverage(universal,X,W,Coverage). 

/********** GNOUN_NOT **********/ 

gnoun not(Z,Y,X,W,V):-
- gnounO(Z,Y,X,W,V). 




