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ABSTRACT

As a result of global climate changes brought about by human activity, more sustainable
sources of energy are being sought as alternatives to fossil fuels. Biomass is of particular
interest as a sustainable source of energy since 1t does not contribute to net CO; emusstons,
Reforming of methane denived from biomass with CO, may form the basis of an efficient
means to produce synthesis gas which has many applications in the petrochemical and
allied industries.

The objective of this study was the investigation of CO; reformung of methane (simulating
biogas) over effective supported nickel catalysts capable of long term operation without
sigmficant loss of activity and stability. Two sets of catalysts were designed for this
purpose (1) modification of the standard support material alumina (y-AlLO3;) with oxides
such as ZrO;, MgO and La,;0;, by the incipient wetness impregnation method using the
nitrates as N1 precursor and oxides. The catalysts prepared included the following: a
reference catalyst (Nuy-Al,O3), NU/Pr,Os;, NYZrOy/y-Al,0s, Ni/MgO/y-Al,O;  and
N1/La;O3/y-Al:03). The loadings of both nickel and support promoters were 15 wt% and 5
wt% respectively. (2) Promotion of the active phase (nickel) using palladium and copper:
Ni1-Pd/y-Al,O; and Ni-Cu/y-Al,O3; with promoter loadings of 025 wt%, 0.5 wt% and 1
wt% After preparation the catalysts were characterised using different techniques: BET
surface area, dispersion of active phase (CO chemusorption), and crystalline structure (X-
ray Daffraction). The characterisations also include the morphology of catalyst surface
(Scanning Electron Microscope) and catalyst reduction (Temperature-Programmed
Reduction)

The activity and stability of the catalysts were mvestigated during continuous operation for
pertod of 6 hours using a tubular reactor 1 m long of diameter 7.6 x 10° m and having a
volume of 45 x 10* m® at temperatures ranging from 923K-1073K. The effect of space
velocity was also investigated. Carbon deposition on the catalyst surface was determined by
the bum-off method The influence of the support on catalyst activity and stability and
carbon deposition was markedly different 1n each case Although the unpromoted catalyst
(N1/y-AlLO3) deactivated significantly with 6 hours on stream at 1073K, zirconia-containing
catalysts exhubited much higher stability showing activation during reforming. The zirconia
promoted catalysts showed the highest CO yield at almost all temperatures A high CO rate
constant (ks = 101* 107 s™') was obtained for the N/ZrO,/y-Al,O; catalyst compared to that
of the unpromoted catalysts (k3 = 60*10° s™') The activation energles of CHy, CO; and CO
were 29 8 kI/mol, 26 0 kJ/mol and 89.0 kJ/mol for N/ZrO,/y-Al,O3 catalyst whilst values
of 32.9 kJ/mol, 29.8 kJ/mol and 40 0 kJ/mol were obtained for the unpromoted catalyst.
The catalytic activity decreased following the order NIYZrO,/y-Al,O3 > Ni/La,03/y-AlLO; >
Nv/MgO/y-Al,03 > Ni/y-Al,O3. Comparable activity was observed for Ni/Pr,O; catalyst,
except at temperatures of 923K and 973K where no sigmficant activity was shown.

The mfluence of palladium and copper on the activity and stability of catalysts was also
studied over the same temperature range and space veloctties for 6 hours.
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A sigmficant difference was observed in both activity and stability compared to the
unpromoted catalyst. High imtial activity was achieved for the palladium promoted catalyst
especially at a low loading level of 0 25 wt% and this was sustained without deactivation.

In the case of copper promoted catalysts there was loss of imitial activity but activity
remained stable thereafter compared to the unpromoted catalysts that showed deactivation
at higher temperatures. The CO yield was lower for both palladium and copper promoted
catalyst compared to the unpromoted catalyst. The difference was possibly related to the
high rate constant of the unpromoted catalyst compared to both palladium and copper
promoted catalyst (ks = 191073 and k; = 11*¥107s"). The activation energies for CHy,
CO; and CO for the palladium catalyst were 11.0 kI/mol, 6 6 kJ/mol, 27.2 kJ/mol whhst
10 9 kJ/mol, 14 2 kl/mol, and 64 9 kJ/mol were obtained for the copper promoted catalysts.
The effect of space velocity on activity was also investigated The catalyst activity follows
the order: N1-Pd/y-Al;O3 > Ni1-Cu/fy-AL,O; > Ni/y-ALO;. Coke deposition for Pd promoted
catalyst increased with increasing Pd loading, whilst a decrease in coke formation was
observed for the Cu promoted catalyst. The decrease i coke formation for the Cu promoted
catalyst may have been due to high reduction in H; atmosphere, which can contribute to
rapid gasification of coke formed during reforming.

A mathematical model was proposed based on the mechamism of CQO, reforming of
methane with the three occurring reactions. The model equations obtained were solved
using a fimite difference programme to yield the three key rate constant. The experimental
data obtained was used to validate the proposed model.

Finally, the effects of NH3, normally present 1n brogas, on the performance of unpromoted
catalyst, NVZrO,/y-Al,O5, Ni1-Pdiy-Al,0; (025 wt%) and Ni1-Cufy-Al,O; (025 wit%)
catalysts was studied It was found that the activity increased 1n the case of the unpromoted
catalyst, while a decrease m activity was observed 1n the case of the other catalysts The
difference 1n activity may be due to surface rearrangement caused by nitrogen diffusion into
the unpromoted catalyst surface.

Keywords:  CO; reforming, methane, support promotion, alumina, mickel promotion,
palladium, copper, catalyst poisoning, ammonia
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Chapter 1. Introduction

CHAPTER 1

INTRODUCTION

1.1  Background and Applications

Synthesis gas constitutes a very important feed 1n the petrochemical industry. It is 2 mixture
of CO and H,, an intermediate product for synthesis of oxo-alcohol, acetic acid, dimethyl
ether, hydroformylation, and polycarbonates and in the Fisher-Tropsch synthesis to higher
liquid hydrocarbons. Also, 1t finds use 1n ammonia synthesis and hydro-desulphurisation.
Synthesis gas 1s a major raw matental for many chemical industries and is conventionally
produced from methane mostly by steam reforming (Kirk and Othmer ef al., 1980; Qin and
Lapszewicz 1994; 1996, Souza et al., 2001; Ruckenstein and Wang., 2001; Chen et al.,
2002).

There has been recently a revival of interest in carbon dioxide reforming of the methane
reaction, a process that was origmally studied by Fisher and Tropsch 1n 1928 (Sethuraman
et al, 2001; Blom et al, 1994) The reason for this growing interest is for both
environmental and commercial considerations (Blom et al., 1994, Souza et al., 2001).
Carbon dioxide and methane are green house gases and also abundant carbon containing
resources, and are thus consumed in a useful manner (Xu et al., 2001; Crisafulli et al.,

2002) This process offers important advantages compared to steam reforming of methane:

(a) it yields lower Ho/CO product ratios, which are preferable feeds for Fisher -
Tropsch plants (Tsipourian et al., 1994), and oxo-alcohol (methanol) (Seshan et al.,
1994; Crisafulli ef ai., 2002)

(b) 1t reduces CO;, and CH, emissions, which are both greenhouse gases; (Guerrro-
Ruiz et al., 1994; Roh et al, 2001) and it 1s well suited for chemical energy
transmission systems (Richardson and Paripatyadar 1990; Blom et al , 1994).

There is also a considerable increase in the demand for light olefins such as ethylene,
propylene and isobutylene (Sethuraman et al., 2001). The growing interest 1n their
application for the manufacture of highly desirable products such as polyethylene,

polypropylene, methyl tertiary butyl ether (MTBE) and ethyl tertiary butyl ether (ETBE)
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are highly important in the petrochemical industry. The latter two, being polymeric
matenals, are produced from isobutylene. These are in turn used as oxygenate additives in
reformulated gasoline, a fuel likely to meet the stringent requirement of US clean arr act of
1990 (Bridgwater 1994; Ajay et al., 2001)

The need for C4 hydrocarbons (Fisher-Trospsch): namely 1sobutene, n-butane, isobutylene
and 1, 2- butanes cannot be over emphasised (Sethuraman et al., 2001; Ajay et al., 2001).
These mtermediate products, in turn, are raw materials for the alkylation processes to
produce branched Cg hydrocarbons (such as 1sooctane and tri-methyl pentane (TMP)-
constituents responsible for the high octane rating of alkylate gasoline (used as high
performance gasoline fuel). The C4 hydrocarbon is also widely used in the production of
acetic acid, maleic anhydride and butanediol, and these are important feedstocks for the
manufacture of resins, chemicals and tetrahydrofuran (THF). The latter is useful in the
manufacture of solvents, specialty chemicals and 1, 4 butane, which is further used to
produce plastics and plasticisers. Traditionally, Cs; hydrocarbons are obtained from
petroleum sources: natural gas, steam cracking of naphtha and gas oil. According to
Rostrup-Nielson (1993), it appears the conventional source of these hydrocarbons by
(Fisher- Trospsch synthesis) production is not economically viable, due to the associated
high production cost. Therefore, the need to obtain synthesis gas from biomass, which has a
large positive environmental impact and the better economics that would be achieved, is
likely to make hydrocarbon production by Fisher-Trospsch synthesis an attractive process.

The reforming reaction of methane with carbon dioxide, studied by Fisher and Tropsch was
based on nickel and cobalt catalysts (Tsipouriari et al., 1994, Zhang et al., 1996). The
growing interest of many researchers towards this process is also generated by the potential
for synthesis gas production from biomass (a renewable material) in which gases from a
variety of wastes (agriculture, wood waste, crop residue, pulp mill waste, waste oils,
munictpal sludges (Sethuraman et al., 2001) and animal manures (Nwanchukwu ef al.,
2000) waste water treatment facilities and flue gas from power plant are used as sources for
methane and carbon dioxide (see Figure 1.1). These waste materials can be subjected to
conditions such as gasification or an anaerobic digestion under which they decompose to
produce biogas. Gasification of solid waste and sewage is a recent innovation (Demurbas
2001), This process can be performed at high temperature in order to optimise gas
production. The resulting gas is a muxture of carbon monoxide, hydrogen and methane,

together with carbon dioxide and nitrogen.
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Source Component/composition reference
Municipal CH; = 20-80 vol. %, CO; = | Boyles (1984)
sewage sludge | 15-60 vol. %, H,0 = 2-3 vol
%
N;=0.5-1 vol. %, H,S = 1
vol. %
Wood waste H; = 20%, CO = 25%, CO2 | White and Plaskett (1981)
= 10%, C,H4 = 3%,
Higher hydrocarbons = 1%
N2=40%, Other = 1%
P1g manure CHy4=65%,CO;=35% White and Plaskett (1981
Cattle manure | CHy= 80% Slessers and Lewis (1981)
Paper  waste | CHy= 60% Slessers and Lewis (1981
sludge
Table 1 1 Biogas composition

Whilst, an anaerobic digestion is the decomposition of biomass through bacterial action in

the absence of oxygen. Products from both gasification and anaerobic processes also
include H,O (1%) and trace amount of H,S (1000-3000 ppm), and NH; (80-100 ppm)

(Effendi et al., 2002).

Conventionally, synthesis gas is produced by steam reforming of natural gas (methane).

Until recently, partial oxidation (POX) (Ashcroft et al, 1990) and CO; reforming (Rostrup-

Nielsen 1993) of natural gas to syngas have attracted much academic and industrial interest

because of the potential to reduce the cost of synthesis gas and its potential application in

energy storage technology. The overall stoichiometries for the three reactions are presented

as follows:
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CH; + HO « CO + 3H, (AHagg = +206 kJ/mol) (1.1)
CH4 + 1/20; « CO + 2H; {AH;08 = 38 KJ/mol} (1.2)
CH; + CO; & 2CO +2Hy (AHagg = + 247 KJ/mol) (1.3)

However, there are some drawbacks in reforming that employs all three routes. These are
hgh product ratio, (steam reforming) carbon deposition and catalyst deactivation (CO;
reforming). The latter is a major problem that has drawn attention of several researchers.
Unfortunately, there 1s no established industrial technology for carbon dioxide reforming of
methane, in spite of the potentially attractive incentives for a large number of applications

The principal reason is the carbon-forming reaction

CH; > C + 2H, (14)

which quickly deactivates conventional reforming catalysts 1f used without steam A similar

problem occurs, 1f there 1s CO disproportionation as shown 1 equation (1.5).

2CO0 «+C+CO, (1.5)

1.2 Justification for CO,/CH; reforming

Dry CO; reforming yields synthesis gas with a high CO concentration In the CALCOR
process, dry reforming is used to produce pure CO (Wang et al., 1996). CO; reforming 1s
economically advantageous over the other synthesis gas producing processes, depending on
the required Ho/CO ratio. CO; reforming is preferred over partial oxidation of natural gas
when a Hy/CO ratio of lower range is needed. Moreover, an economic evaluation of the
production of 100,000 tonnes of acetic acid also revealed that the use of CO, reforming
provides synthesis gas resulted in lower operating costs compared to steam reforming, or
partial oxidation. As was mentioned earlier, the major draw-back of dry CO; reforming 1s
the high thermodynamic dniving force to produce coke The CALCOR and the SPARG
process (sulphur passivated reforming) (Udengaard et al., 1992) have overcome the coking

problem during reforming
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1.2.1 CALCOR Process

The CALCOR process aiming at production of high punty CO from natural gas (Wang et
al., 1996) was developed to overcome problems involved in transportation of the toxic CO

and the need for high product quality. These factors favour the CO production on-site.

This process operates under dry reforming conditions 1n an excess of CO; The prevention
of carbon formation is achieved by using catalysts with different activities and shape and by
their specific arrangement throughout the reformer tubes. The CO produced contains less

than 0 1% of methane.

1.2.2 SPARG Process

The SPARG process was first commercialised at Sterling Chenucal Inc. Texas, USA in
1987 in order to reduce the syngas H»/CO ratio from 2.7 (obtained from steam reformmung)

to 1.8 without changing the steam reforming facilities (Udengaard et al., 1992).

Introducing a partially sulphur-poisoned nickel catalyst minimuzed the increased probability
of carbon formation and the associated catalyst deactivation. The process operates at
1188K-1218K that decreases the methane ship-unreacted methane in the product stream
(one of the major problems in CO production, The impurities in the CO (mainly H; and
CH.,) can cause mfenor mechanical properties of polycarbonates made from CO. Therefore,

low methane slip in the reforming step is required.

Although the problems related to catalyst deactivation are minimized, the SPARG process
operates in the presence of sulphur, Thus, traces of sulphur might be present in the
synthesis gas produced. When a pure synthesis gas is required an additional cleaning step
will be necessary which involves an additional investment. Therefore, a catalyst that

operates carbon-free without the addition of sulphur is preferred.
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1.2.3 Chemical energy transmission

Highly endothermic reactions such as steam reforming and CO; reforming are candidates
for chemical transmission systems (Richardson and Paripatyadar 1990, Wang ef al , 1996).
An example of an energy transmission system is the ADAM-EVA process (Figure 1.1).

In the EVA plant, steam reforming is carried out using a nuclear power source to supply the
required energy. The resulting synthesis gas 1s transported to the ADAM plant where
methanation of the synthesis gas is performed to release energy. When CQO»/CH, reforming
is used for the energy storage (CO/H;) there are two possibilities to regain the energy that
exist. In the closed loop thermo chemuical heat pipe, the CO/H; mixture is converted back to

CO,/CH, and the process can start again,

Endothermic reaction Exothermic reaction

Y

CH+C0y-—=2C0+2H; 2H,+2C0+CO0;+CH,

A

f

¥

Energy in Energy out

Figure 1.1 A chemical energy transmission system (Wang et al., 1996)

While with the open loop system, the resulting CO/H, mixture 1s combusted to CO; and

H,O when energy is needed.

Despite the numerous and promising applications for CO, reforming of methane for
synthesis gas production, it has not gone beyond laboratory research due to the coking of
catalysts.

It has been established (Erdohelyi er al., 1993; Zhang ef al , 1996; Rostrup-Nielsen and Bak
Hansen 1993) that though the noble metals (Rh, Ru, Pt) do not suffer carbon deposition,
they are very expensive and of limited availability, making the process economically

nonviable,
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While the non noble metals Co, Ni and also Fe are very sensitive to deactivation by coking,
they are cheap and readily available. Therefore, 1t would seem to be worthwhile to develop
improved and effective catalysts that could be operated without carbon deposition to

achieve the goal, commercialising CO; reforming of methane

1.3  Objectives

The advantages of conducting CO; reforming of methane have been discussed above. The
major draw back of CO,/CH4 reforming of methane is catalyst deactivation due to carbon
formation As discussed above, adding steam or O; to the reactants can enhance the
stability of reformung of catalysts. A more effective way to overcome the coking problem is

the development of a catalyst on which coke formation 1s kinetically suppressed.

Attempts to eliminate carbon deposition are known to lead to poisoning of the catalyst.
Poisoning may also be caused by the presence of impurities in the feed gases (biogas) e.g.
NH; etc. Added to the development of an effective catalyst capable of operation without
significant carbon deposition is a desire to elucidate the mechanism leading to catalyst
poisoning. The latter have not been addressed in the literature of CO, reforming of

methane,

Therefore, the objectives are.

(1) To investigate CO, reforming of methane over effective supported nickel
catalysts capable of long term operation without significant carbon deposition.
Modification of active components (promotion and support materials).

(2)  To investigate catalyst poisoning ansing as a result of combating carbon
deposition and/or inherent compounds in biogas that may cause catalyst

poisoning

1.4 Structure of the thesis

Chapter 2 contains a review of the published literature, relevant to carbon dioxide

reforming of methane, carbon deposition and the kinetics of reformung of methane.
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A summary is presented at the end of each sub-section to draw together the common

findings by various authors. A discussion of catalyst poisoning is also included.

Chapter 3 descrnibes the experimental apparatus and the methods employed which include
the reforming of methane, preparation and characterisation of catalysts. The techmques
used for catalyst characterisation include surface area and pore size distribution, carbon
monoxide chemusorption, atomic absorption spectrophotometry, scanning electron
microscopy, X-ray diffraction and temperature—programmed reduction, Also included are
reactor temperature profile determination, gas chromatograph optimisation, and
calibrations, activity, stability and catalysts poisoning test. A kinetic model formulation is

also included.

Chapter 4 discusses the experimental results obtained over nickel-based catalysts. This
includes catalyst characterisation, the effects of support on activity, stability and space
velocity on conversion of CH4 and CO; as well as CO yield at different temperatures. The
vartous catalysts studied are Ni/y-Al,O3, Ni/MgO/y-Al;O3, Ni/La,Os/y-AlOs, NYZrOofy-
Al;O5 and Ni/Pr;0s;.

Chapter 5 discusses the results obtained over palladium and copper promoted N1 catalyst.
Catalyst characterisation and catalyst performance in terms of activity and stability are
discussed. Also included is the effect of space velocity on CHy and CO; conversion and CO
yield. The effects of metal loading (palladium and copper) are also included. The catalysts
studied are 15 wt% Ni1-Cu/y-Al;O3 and 15 wt% Ni-Pd/y-Al,O3

Chapter 6 discusses the effect of NH; and H,O (catalyst poisoning) on catalyst activity and
stability obtained using the following catalysts; N1/y-Al;Oz (reference catalyst) NiZrO»/fy-
Al;O3, N1-Pd/y-Al,03 (0.25 wt%) and Ni-Cufy-Al,O; (0.25 wt%) catalyst Also included is

the effect of space velocity on conversion of CHy, CO; and CO yield.

Chapter 7 discusses a set of conclusions and recommendations for further work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Catalytic reforming of methane with carbon dioxide (COz) to produce synthests gas has
attracted growing nterest in the last few decades. Particularly with respect to the chemical
utilisation of methane and CO, intimately related to the environment and energy resources
(Tomushige et al., 1998) Several investigations have been carried out on the production of
synthesis gas from gas fields, and biomass, by the reforming process, employing steam
reforming as the conventional method, 1s well documented n the literature (Choudhary et
al., 2001; 2002) However, a number of practical limitations such as coke formation, high
product H,/CO ratio which is not suitable for the Fisher-Trospsch synthesis of liquid
hydrocarbons, high energy requirements, poor selectivity for carbon monoxide and high

capital and operating cost making the process uneconomical.

2.2  Biogas production and economics

Increasing fuel prices during the last decade have focused mterest on the utilization of
biomass as an additional source for the production of gaseous and liquid fuels
{Cheremusinoff et al., 1980; Bridgwater 1990). Biomass, one of the most attractive
renewable energy sources available, can be converted to biogas by anaerobic or aerobic
digestion (Effend1 er al., 2003) Raw matenals used in commercial methane generation
have been traditionally classified as waste materials, which include crop residues, animal
waste, domestic waste and various urban wastes,

The amount and quality of gas produced depends on the biomass used. About 50-70%
methane and 30-50% carbon dioxide can be produced (Cheremisinoff et al., 1980, Effend:
et al., 2003), including trace amount of ammonia, hydrogen sulphide and moisture

Methane was first recognised as having practical and commercial value in the 1890’s in
England, where a specially designed septic tank was used to generate the gas for the

purpose of lighting streets (Cheremisinoff et al., 1980).
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Methane was produced to fuel automobiles in Europe, during World War 11. The
generation of the gas have also been successfully applied to meeting energy needs i rural

arcas.

In India, methane generating units and plants using cow manure has been in operation for
years (Cheremisinoff et al., 1980). More than 7500 methane generating devices utilising
pig manure has been constructed and Korea 24,000 units (from 1969-1973). In the united
state, there has been considerable interest in process of anaerobic digestion as an approach

to generating a safe, clean fuel, as well as a source of fertilizer (Cheremisinoff et al., 1980).

2.3  Reforming Medium

The conventional method of methane reforming 1s to employ steam as the reforming
medium. However, the reforming process can be conducted by other method. They are the
oxy-steam (oxygen and steam), partial reforming (using oxygen) and carbon dioxide
reforming (dry reforming). Steam reforming and carbon dioxide reforming are endothermic
whilst partial reforming 1s exothermic. Partial oxidation reforming, an exothermic process
has several advantages over steam reforming, notably, a greater selectivity and because of
the more favourable Hy/CO product ratio obtained. The corresponding carbon dioxide
reforming of methane has been extensively studied and is widely used 1n the secondary

process to reduce the H»/CO ratio obtained by steam reforming (Ashcroft et al., 1991).

2.3.1 Steam Reforming of Methane

Steam reforming has been extensively studied particularly on nickel (N1) catalysts (Qin et
al., 1996) and it has two distinct drawbacks. The reaction is industrially operated at
temperature of 1000-1130K, total pressure between 2-4 MPa and a partial pressure of H,O/
CHjy varying from 2-6 pascal. The use of excess H>O in the reactant gas 1s to inhibit the
carbon deposition The reaction, 15 strongly endothermuc, to provide the required thermal
energy for the methane—steamn reforming reaction. Hence heavy demands are made on the

thermo-stability of both the materials of the reactor tubes and the catalyst (Qin ef al., 1996).
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Operation under these conditions has led to the higher Hy/CO ratio than 1s required for
subsequent 1ndustnal processes (Qin et al., 1996, Tomishge et al., 1998). This 1s as a result
of the presence of excess H;O, which favours the successive water gas shift reaction, that 1s
suitable for hydrogen production but not for the production of liqud hydrocarbons and
methanol. Therefore, the major commercial interest 1n the catalytic reforming of CHy with
CO; onginates from this need to obtain a product having a low H,/CO ratio. On the other
hand, there are some natural gas fields containing considerable amounts of CO, which
could be conveniently reformed at the gas fields and also, it is a possible means to process

biogas from biomass.

2.3.2 Partial Oxidation Reforming of Methane

Partial oxidation reforming produces synthesis gas in a muldly exothermic reaction with
lower Hy/CO ratio, compared to steam reforming. It has been suggested that partial
oxidation proceeds via a two step mechanism. In spite of the fact that, the partial oxidation
of methane to synthesis gas is muldly exothermic, (AH = -5.4 kcal/mol), the process is
highly hazardous and difficult to operate. It 1s difficult to avoid local establishment of

explosive gas mixtures during mixing of methane and oxygen.

Moreover, pure oxygen mstead of air must be used despite the fact that the production of
pure oxygen is expensive (Qin et al., 1996). In order to overcome, these lirmitations, efforts
have been made to carry out an exotherm:c oxidative conversion simultaneously with
endothermic steam reforming Ashcrof et al., 1991 (Choudhary et al., 2001) Alternately,
both the exothermic and endothermic reactions could be coupled making the process not

only highly energy efficient but also safe to operate,

23.3 CO; Reforming of Methane (Dry Reforming)

In recent years, considerable attention has been paid to global warming due to the
greenhouse effect. The reduction and utilisation of greenhouse gases such as carbon

dioxide is, therefore becoming of ever-greater importance (Hayashi ez al., 2001).

R.H.Gumus 11




Chapter 2 Literature Review

The catalytic reforming of methane with carbon dioxide to synthesis gas has been proposed
as one of the most promising technologies for the utilisation of carbon dioxide as carbon-
containing materials. The synthesis gas produced by this reaction has a high CO content,
which is favourable for the synthesis of valuable oxygenated chemucals. The synthesis gas
thus generated, has a low H,/CO ratio (< 1) and 1s therefore suitable for the Fisher—Trospsh
synthesis of liquid hydrocarbons and for the oxo—synthesis or synthesis of oxygenates
(Souza et al, 2001; 2002; 2004). CO, reforming of methane has been comprehensively
studied over the past few years (Erdohely: et al., 1993; Zhang et al., 1996; Mark ef al.,
1996).

However, the major disadvantages of CH4-CO; reforming, is the high potential for coke
formation (Souza er al., 2001). This process is more prone to coke deposition than steam

reforming because of the low H/C ratio in the reactant gas.

In addition, carbon deposition seems to be unavoidable even under higher CO,/CH, ratios
(Tomushige et al., 1998). Thermodynamically, the hmitation of carbon deposition can be
estimated by the H/C and O/C atomuc ratios in the reactant gas (Rostrup-Nielsen et 1994,
Ruckenstein and Hu 1996)

The amount of carbon deposition decreases as the atomuc ratio of H/C and O/C increase. It
has also been suggested that carbon deposition can be suppressed when the metal is
supported on a metal oxide with a strong Lewis basicity (Zhang and Verykios 1994). The
increase in Lewis basicity of the support increases the ability of the catalyst to chemisorb
CO; in the reforming of methane, and H,O in steam reforming forming adsorbed species.

These species react with carbon to form CO, resulting 1n a reduction 1n coke formation

Carbon dioxide reforming is estimated to have economic advantages over other synthesis
gas production routes (Bitter er al., 1997). Basically, supported Ni or noble metals are
reported as potential catalysts for the reforming reaction (Richardson and Paripatyadar
1990; Ascroft et al., 1991; Udengaard et al., 1992; Rostrup—Nielsen and Hansen 1993; and
Erdohelyi et al., 1993). However, catalyst deactivation is a serious challenge, particularly

for the non noble metals and must be overcome by development of effective catalysts.
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Two potential causes of catalyst deactivation exist;

(1) Carbon depositton (Ashcroft et al , 1991; Richardson and Panipatyadar 1990)
(1) Sintering of the metal particles (Ruckenstein and Hu 1996)

However, most authors suggested, however, that coke formation 1s the main cause of

deactivation (Nagaoka et al , 2001).

2.4  Deactivation of Catalysts during the Carbon Dioxide Reforming of Methane

There is no established industrial technology for the carbon dioxide (CO3) reforming of
methane, m spite of the fact that the economical and environmental benefits constitute an
attractive incentive. The major problem lies in catalyst deactivation caused by carbon
deposition and/ or sintering and plugging of reactors or breakdown of the catalysts
(Rostrup-Nielsen 1994). Although N1 and Co based catalysts are easily available, they
deactivate rapidly when the conventional supports, such as AlOs and SiO; are employed.

The exception to this 1s MgO when it is used as alkaline promoters (Chang et al., 2000).

Sintering accelerates carbon deposition since large metal ensembles stimulate coke
formation. Due to the coexistence of both reductive (CH4, Ha and CO) and oxidative (CO,
and HyO) species in CO,/CH, reforming, the atmosphere in the reactor 1s both reducttve
and oxidative During the reaction, a fraction of the catalyst being oxidised is reduced again
to its former state by carbon species, thereby generating a dynamic redox process. The
reductive atmosphere stimulates the generation of metallic catalysts and the dissociative
adsorption of CH,, while the oxidative atmosphere favours the oxidation of the metallic
catalysts. When the former dominates, an excess of carbon 1s deposited; with the later
dominating, the number of metallic sites decreases due to their oxidation state and
subsequent restructurmg of catalysts occurs and this may lead to severe catalytic

deactivation.
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Tsipounan et al., (1994) suggested that the rate of deactivation is lower at higher

conversions and decreases with an increase in temperature

Ruckenstein and Wang (2002) investigated CO, reforming of methane over Cofy-Al,05
catalysts, at different calcination temperatures (Te = 773K and 1273K), with different
catalysts loading (2 wt%-20 wt%) 1n order to correlate carbon deposition and catalytic
deactivation. According to their report, the stability of Co/y-Al,O5 catalysts was strongly

dependent on the Co loading and calcination temperature.

They observed stable activities with Co loadings of 6 wt%, Teacnauon = 773K and 9 wt%,
Tealemauon = 1273K. With high Co loadmg (> 12 wt%) , notable amounts of carbon were
accumulated and deactivation also observed. Severe deactivation over 2 wt% with carbon
deposition was noted at Teatemanon = 773K 0 Teatinanon = 1273K. They suggested that the
deactivation of the latter may be due to the oxidation of the metallic sites. They also
observed a colour change during calcination with 2 wt% and 6 wt% Co/y-Al, O3, and in the
reforming reaction, probably as result of spinel (Co,AL Q4 and CoAl,Q,) formation (Wang
and Ruckenstein 2001). The colour change 1s an indication that a large number of metallic
Co sites were oxidised and restructuring of catalysts took place to form CO,Al,0; and
CoAl;O;4 during the reforming reaction over Cofy-Al,O3 (1273K), with Co loading below 9
wt%.

Ruckenstein and Wang (2002) also observed that carbon deposition with 2 wt% loading
was much lower than that with 20 wt%, although the deactivation was higher over the
former than the latter. They also noted that the carbon deposited over 2 wt%/Cofy-Al,O;
catalyst was more difficult to remove with CO; than that deposited over 6 wt%/y-Al,05 12
wt%/y-Al;03 and 20 wt%/y-Al,O5 catalysts. The difficulty m the removal of the carbon
deposited on the 2 wt%/y-Al,O; catalyst with CO, may be due to fewer accessible metallic

Co sites being available

In summary, carbon deposition probably may not be the only cause for catalysts
deactivation. The oxidation of the metallic sites leads to a decrease of the total number of

metallic sites, which also causes catalytic deactivation.

R H.Gumus 14




Chapter 2 Luterature Review

2.5  Carbon Deposition with Carbon Dioxide Reforming of Methane

Due to the inherent inertness of methane, a high temperature (typically, 1073K-1173K)} is
needed to achieve a meaningful yield during reformung. Under such severe conditions,
excess carbon deposition occurs on the surface of the catalyst. This constitutes a major
drawback in carbon dioxide reforming of methane (Ruckenstein and Wang 2002).
Although the noble metal -based catalysts (such as Rh, Ru, Pd and Pt) can provide high
activity and selectivity with little or no carbon deposition, they are unsuitable for large-
scale commercial use because of their limited availability and cost (Ascroft et al, 1991;

and Rostrup-Nielsen 1993).

Numerous mechanstic studies have suggested that during CH4/CO; reformung, CHj 1s
decomposed on the metallic sites to a number of reactive carbon species. The carbon
species are being oxidised to CO by the oxygen—containing species that originate from CO,
that chemisorbed on the support (Rostrup—Nielsen 1993 and Qin et al , 1996). The rate of
carbon accumulation on the catalyst surface is determined by the relative rates of the
generation of carbon species and their oxidative removal When the rate of generation is
faster than the oxidative removal, excess carbon deposition will occur (Ruckenstein and
Wang 2002).

Nagacka et af , (2001) described the reaction model and the coking scheme over PUAL,Os
at high reaction temperatures (= 1070K) presented n Figure 2 1. In this model, CHy 15
decomposed both on Pt and on the acid sites of the support to form CHy (coke} species. In
their mvestig