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Abstract

This work 15 devoted to mvestigation of tunnelling and switching phenomena aris-
ing m Condensed Matter Physics In the first part I investigate quantum tunnelling of
a single Abnkosov vortex n a superconducting quantum dot The escape of a vortex
carrymg magnetic flux leads to a switching of a quantum dot to non-magnetic state
Tunneling of a vortex manifests 1tself as a spontaneous relaxation of magnetization I
showed that 1t 15 possible to use an instanton technique based on path integral formal-
1sm even 1n presence of forces breaking time-reversal symmetry For instance, I adapted
this method for such systems as a charged particle tunnelling 1in a magnetic field or
a quantum vortex subjected to a Magnus force The comparison with the standard
WKB method revealed complete coincidence of the results The second part of the
thesis 1s dedicated to mvestigation of superconducting Josephson contacts, 1 particu-
lar, I devoted the main attention to the annular reahization I have developed a model
of switching to resistive state due to both quantum tunneling and thermal activation
The developed theory appears in a good agreement with available experunental data
I have proposed a model of a qubit for quantum computation that 1s based on two
states of a vortex 1n an annular Josephson junction with microshort Finally, I sum-
marized the swatching characteristics of annular Josephson junctions on a single phase
diagram The symmetry of the obtained graph perfectly manifests the fundamental
analogy between quantum mechanics of n-dimensional systems and classical statistical
mechanics 1n (n+1)-dimensions

Keywords: Josephson junctions, superconductors, quantum tunneling, quantum

computation, vortices, fluxons
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Introduction

Quantum tunneling attracts much interest because of 1ts importance for such phys-
1cal systems as helum surface structures, quantum dots, superconductors, that are
among the most promising for realization of large scale quantum computers Being
one of the most immportant mamfestation of quantum mechanics, tunneling process
occurs 1 many phenomena in physics, chemistry and biology

The first part of the thesis 1s dedicated to the problem of a vortex tunneling in
mesoscopic superconductors In order to describe this process 1 apply quantum field
theory methods, 1n particular the instanton technique mentioned above The escape of
a vortex trapped 1n a quantum dot leads to switching of a superconducting dot to non-
magnetic state This results in higher expulsion magnetic fields than expected from
pure thermodynamical considerations Study of tunneling vortex 1s important not only
from fundamental point of view, but from the practical pont as 1t 18 responsible for
low temperature creep i HTSC superconductors [YMS9(6]

The subsequent chapters have been written during a close collaboration with ex-
perimental group of Prof Ustinov in Erlangen (Germany) I have developed a model
describing an annular Josephson junctions that allowed interpretation of experimental
data obtamned by the expernimental group and proposed new experiments Josephson
junction 1epresents a contact of two thin superconducting films separated by msulator

When subjected to a magnetie field or an external curtent, the junction may switch to




a reststive state where 1t loses superconducting properties Normally, this switching 1s
induced by thermal activation or quantum tunnelling

Potential applications of Josephson junctions can be hardly overestimated Under-
standing of their switching characternistics also reveals prospects for the use of supercon-
ductors 1n our everyday lives Because of fast switching times and extreme sensitivity,
Josephson junctions have been always attractive for developing high frequency electron-
108, magnetic sensors and digital applications AJJ can be also used to implement par-
ticle and radiation detectors [NC97, CEFt99, LAB*T00, FLP*01, NCL*02, BCL*06]
An annular Josephson junction (AJJ) represents a very clean system for study sol-
tons — elementary excitations that propagate i non-linear systems similar to particles.
With respect to Josephson junctions such solitons are called Josephson vortices or flux-
ons In an AJJ one may accelerate them up to hight velocities so that they experience
relativistic effects like Lotentz contraction

I proposed a new type of elementary cell for superconducting quantum computer
based on an AJJ — the mucroshort qubit The qubit 1s based on a Josephson vortex
{fluxon) trapped i an AJJ and subjected to a magnetic field A small mpurity
called a microshort, mtroduced in the AJJ, induces a double well potential where
two quantum states available for quantum computation arise Independently from
our resecarch group, sinmular sistem has been designed by experimental group of Prof
Ustinov

The mtermediate results of this work include advances 1in the theory of sine-Gordon
solutions T have developed a perturbation method for periodic solutions of sine-Gordon
equation The most 1llustrative example of such solutions 1s a bound state of two soh-
tons called a breather [Ra)82] The developed theory enables one to describe localized
sine-Gordon solutions 1n a more simple and accurate manner compared with the sem-
mal McLaughlin-Scott approach [MS78]

I collaborated with a number of scientists and research groups, both theoretical and




experimental These are A Ustinov’s group, Erlangen, Germany, R Wérdenweber,
ISG, Juwlich, Germany, E Il'ichev, Jena, Germany, A Barone’s group, Napoh, Italy,
F Non and § Savel’ev RIKEN, Japan, K Kadowakt’s group, Tsukuba, Japan, K
Hirata’s and H Wang’s group, NIMS, Japan, A. Maeda, JSTA, Japan, T Bojadpev
Sofia, Bulgania, V' P Koshelets, IREE, Moscow, Russia, A L Pankratov, Nizhny
Novgorod, Russia, K N Alekseev, Oulu, Finland, N Pedersen, Lyngby, Denmark, A.
Vagov, Lancaster, UK, V Zalpaev, Liverpool, UK, P Warburton, UCL, UK There 18
specific expertise available for the research at the Department of Physics in Loughbor-
ough Staff of the Physics Department comprises top experts in superconductivity and
material science Nobel Prize winner Prof Alexer Abrikosov, Prof Sasha Andreev,
Prof Danya Khomsku, Prof A Alexandrov, Prof F Kusmartsev, Dr B Chesca and
Dr S Savel'ev

Present work devoted to investigation of Josephson junctions was distinguished by a
prize of the Britain’s Younger Scientists Poster Competition held at House of Commons
in November 2005 [SET06] My progress was highlighted 1 British and mternational
journals [AtS05, New(0]




Part 1

TUNNELING OF ABRIKOSOV
VORTEX




Chapter 1

Abrikosov vortex in

superconducting quantum dot

1.1 Quantum tunneling of vortices

The concept of quantum tunneling of vortices in superconductors (see Refs in the
review [YMS96] about magnetic relaxation in HTSCs) first appeared when measure-
ments of magnetic relaxation at ultralow temperaturcs have been made (Refs [5-10]
n [KS02]) The expertments have shown that the relaxation rate does not disappear
at zero temperature This phenomenon has been attributed to the gquantum tunneling,
but many details about 1t are not well understood until now Neither vortex mass nor
Hall cocflictent are known exactly  We suggest that quantum tunnehing of a vortex can
be also responsible for spontaneous relaxation of their magnetization 1n mesoscopic
superconductors The escape of a vortex trapped mm a quantum dot leads to switch-
ing of a superconducting dot to non-magnetic state This results in higher expulsion
magnetic fields than expected from pure thermodynamical considerations

Similar to vortices 1n gases and flinds Abrikosov vortices are subjected to Magnus




force From mathematical point of view, the system of a moving vortex 1s analogous
to a particle moving 1n a magnetic field The problem of a charged particle tunneling
in presence of magnetic field has itself both theoretical and practical mterest As the
tunnehng 1s strongly affected by magnetic field, applied 1 transveise direction, this
could be efficiently used to control qubits 1n possible quantum computer realizations
of the future In absence of magnetic field the decay rate is related to the imagmary
part of the free energy as I' = %ImF [Lan67] The escape rate can be found making
semuclassical approximations 1n the Euclhidean path integral The term corresponding
to the ground state gives the greatest contribution to the propagator transformed to
imagnary times i the limit of large time mnterval It makes possible to determine the
imagnary part of the ground state energy [KST00] The same considerations must be
valid when the magnetic field 1s applied However, because of the broken time-reversal
symmetry, a complex action appears under the path integral, when transformed to
Euchidean space Furthermore the imaginary time trajectories which extremize the
action become complex and the operator corresponding to the second variation of the
action 1s non-hermitian and possesses complex eigenvalues [SDP02, SDP00] In this
case one could make analytic continuation of the path integral to a complex coordinate
space or change the time contour in the complex plane Nevertheless we show that 1t 1s
possible to make analytic continuation in cyclotron frequency to transform the action
to a real one This makes the task much more transparent because of a close analog
with classical mechamics The comcidence with the result obtamned by usual WKB
(Wentzel-Kramers-Brillown) techmque [LL65, KST00] could also serve as a proof of
validity of the method

Normally the polar coordinates are used to study the systems that possess rota-
tional wmvariance However, 1t becomes hard to work with path integrals in curved
coordinates, becanse of additional terms appearing 1n the action [EG64, P169, Kle00)]

Usually one always begins with time-shiced path integral in cartesian coordinates be-




fore transformed to the curved ones, since change of variables 1n path integrals 18 not
a direct procedure Everywhere m this paper we work with path mtegrals written 1n
orthogonal coordinates

Thus, we consider an Abrikosov vortex trapped in a round superconducting quan-
tum dot. Let us investigate the problem of quantum escape of the vortex through a
barrier associated with the surface of a superconductor In the next sections we present

the possible factors that may affect the quantum dynamics of a vortex

1.2 Surface barriers

The barrter near the surface of type-IT superconductors was first studied by Bean
and Livingstone [BL64] It anses from competition of two forces attraction two the
image antivortex near the border and interaction with the Meissner current Usually,
the effect of the surface roughness 1s to suppress the barrier when a vortex enters a
superconductor [BL64] In our case we may completely neglect the influence of the
surface wrregulanties as 1t 1s much less pronounced for a vortex leaving a superconduc-
tor [TS72)

Another obstacle affecting flux dynamies i HTSCs m transverse magnetie field s
the geometrical barrer [STK*94a, ZLG194] Normally geometrical bartier affects the
magnetic behaviour of HTSCs of flat non-elliptic foim [SIK*94b, BC96, B193, CDJ+99]
As we consider a superconducting dot 1n a form of a disk, we neglect the contnibution

of the geometrical barrier

1.3 Dissipation

There are two main forces affecting vortex dynamics i superconductors Magnhus

(Hall) force and dissipation Feigel'man et al [FGLL93| proposed that the Magnus




force 1s dominant 1n clean superconductors, while other authors [vDGM™* 96, vDGL*96,
vDGK96] argued that the vortex tunneling may occur mn an mtermediate regune  As
long as we consider the HTSCs, the dissipative term must not be crucial because of
small coherence lengths {as well as vortex cores) The evidence for a low dissipation

regime 1n cuprate superconductors has been presented by [HYT*94]

1.4 Vortex mass

The same authors [HYT%94] argued that the Magnus force 1s also smaller than
standard estimates [PSO*95]. Thus, the mass of vortex can be relevant to the low-
temperature physics of clean HTSCs i superclean hmit [CK03] and should be taken
into account 1n our model. In 1965 two contributions to the vortex mass were cal-
culated by Suhl [Suh65] due to the kinetic energy of the vortex core and due to
electromagnetic energy Recently, Chudnovsky and Kuklov [CK03] have shown that
transversal displacements of the crystal lattice can give a signmificant contribution to the
vortex mass This contribution must be crucial in metals with high concentration of
superconducting electrons In our case of small coherence lenght £, the most important
contribution to the mass arises from the quantization of the clectron states mside the
vortex core (the same paper [CKO03]) It has been shown to exceed the cole mass by

the factor (ex/A)? (Refs [7-9] in [CK03])

1.5 Physical model

Let us summartize the basic points of the physical model of Abrikosov vortex tun-
neling fiom superconducting quantum dot 1 We mvestigate HTSC quantum dot at

low temperature




2 Pomnt Abnkosov vortex 1s trapped 1n the quantum dot by 1its surface barrier
3 We neglect surface roughness because wrregularities on the edges are less impor-
tant for leaving than for entry
4 No geometrical barrer
No dissipation — ”superclean” hmit

5

6 No bulk pinning.

7 Vortex mass 1s relevant
8

Magnus force 1s relevant

The typical parameters of the physical system under investigation could be the
follows disk diameter ~ 10 — 100 nm, thickness ~ 1 nm, coherence length £ ~ 1 nm,

bulk penetration depth A ~ 100 nm

10




Chapter 2

Instanton method

2.1 Euclidean Lagrangian

The system of a vortex in HTSC quantum dot can be modelled as a charged particle
trapped 1mn 2D potential well and subjected to a magnetic field playing a role of a
Magnus force For sumplicity we assume A == 1 and m = 1 and consider the linut of
large time T" (1e small decay rates), that 1s usual for the mnstanton techmque We
take the potential in the form of rotationally symmetric inverted double well The case
of a particle trapped mside one-dimensional inverted double well 1s studied 1n details
by {Sch81] See also [KST00] and [Col77, CC77, Col85] for 1D tunneling problems with
potential of another shapes

The Lagrangian of our 2D model in the Pomncare gauge (which comncides with the

—

Coulomb gauge 1n this case) A = (-2, B ()
2yt w
L= — - (zy —yx) - Ulr) (21)
2 2
2 2

w

(7 + ) — e + )’

U(r) = %r2 —art=

Here w denotes the frequency at the bottom of the parabolic potential well, while
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eld __
me

We = 8 15 the cyclotron frequency

The survival amplitude at the bottom of the well expressed mn terms of the Feynman

path integral:
G(0,T,0,-T) =< Ole"?HT|§ >= f Di(t)et - Lt (22)
implying the coordinates of the center by 0 Transforming to umaginary times ¢ — —17,

<0

G_QHT|6 >= /’Df'(r)c"ffTLdT

with Lagrangian

2 2
+ c
-+ @y —ya) + Ur)

where z = dz/dr and y = dy/dr (for ssmplicity we keep the same notation x and y)

L=

As 1t has been mentioned early, the action acquires a complex part after transforming

to 1maginary time, 1 contrast with the case of zero magnetic field

2.2 Analytic continuation in w,

We have found useful to make analytic contmuation m charge (or cyclotron fre-

quency w.) In order to validate this procedure, we cite the next theorem from
Ref [Fed77]

Theorem Consider the next multiple integral

F(A o) =/f(§',n)exp()\5(z‘.’ o))dz

whete @ = (a3, ,ai) 15 a set of parameters, v 15 a contour 1n C*, with conditions
that the functions f(Z, «) and S(Z, «) are analytic, §(Z, ) has non-degenerate saddle
points at 23, ,Zs and contour v goes through the saddle ponts when & = ¢ , Then
the asymptotics of the integral when A — 0o 18 given by the contribution of the saddle

pomts Z (), ,zs(c), such that # (o) = 2, ,Z(e) = £, f v 15 close enough to ¢y

12
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Figure 21 Inverted potential -U(r) that appear when transformation to imaginary
times t — —11 15 made wnside the Lagrangran The classical tragectories corresponding

to a particle sulyjected to an mverted potential are called instantons

It 1s straightforward to make generalization of the theorem cited above to the case
of path integrals, implying "path mtegral” stead of "n-dimensional integral” and
"trajectory” mstead of "n-dimensional stationary point” We have only one parameter
w 1nstead of the set of parameters o« = (; , ;) and the condition o« = ey corre-
sponds to w, = 0 But we have a real solution of the equation of motion at w. =0 It
follows from the theorem that the asymptotics of the path integral 1s given by the same
analytic formula inside some circle around w, = 0 on the complex plane Thus if we
calculate that one for which the stationary trajectories are real ones, the asymptotics
mside all the cicle can be found by continuation n w,

In order to have more ground, let us look at the convergence of the path integral

13




Written 1n the shiced form the path integral 1s

ol Yo o\ 1 Y 7 2
_ dutr _ il ad b2 St ) Sl -
]d:cl drn 1/dy1 YN lexp{ EZL( - ) +2( p +

=0

% Ly41 — I y;+1+y;r _ Y1 — Uy Ly+1 +x3 _
() () - (o) (2] v} -

N-1 2 2 2 9
T g~ 22,12, + 1 — 2y,01Y, +
=/d£1 duLN-J/d’yl dyn_1 exp{— E {( i+l 2’:1 ) +27) + (Y711 21:1 s yj)_{_

3=0
We

= 25) G 4150 = (11— ) (B + )] + 2,13 |

Consider the terms with the index k inside the sum

1

1
E (Q.EE - 2.Lk.Lk_1 — 21 k+1~Lk) + E (ng — kayk—l — 2yk+1yk) +

W,
4

+ [Tr1¥k — TrYkt1 — ThYe — Ye41Th + YeTrp1 + YeTrt

FTrYk + TEYk-1 — Th 1Yk — YkTk — YeTh—1 + Yo—_1Tk) + €U(rp, ys) =

]. 2 z(")c
= 1= Ig{Leet + Tha1) — E—g-ik(ljkﬂ — 1) | +

1 ey
+ - (T}f — Ye(Yeo1 + Y1) + f"?iyk(mkﬂ - I'k—l)) + eUl(zp, yi)

It can be seen that the term with w, must not affect convergence of the Gauss mntegrals
because of small factor € in front

Thus at lcast for small w, we can reduce the stationary pomnt (steepest-descent)
method to that of Laplace, which 1s more simple  As a result, all the equations become
real and the instanton trajectorics correspond to those of a classical particle moving

the mverted potential under transverse magnetic field

2.3 Classical trajectories

With these considerations in mind, after transforming to imaginary times t — —a7

as well as w, — w, (1n fact the sign m the last procedure must not be the matter) we

14




get the following Lagrangian

2 2
Y Yy ya) + U 23)

L=—5 9

Figure 22 The wnstanton tragectory shdes down from the haill at the center with almost
zero velocity, bounces from the wall draunng a hnt and returns back to the origin n
wnfinite time  There could be multiple wnstanton trajectory consisting of many turns,

differing both i time and angular position

The trajectories extremising the action corresponding to tlus Lagrangian are that
ones, which cortespond to a classical particle moving i the mverted potential —U(r)
and transverse magnetic ficld applied 1n the same direction as before Now we are going
to make a little step back from the promise to work mn cartesian coordinates and find
the classical trajectories from the equations of motion wrnitten 1 polar coordinates

Thus

L
2

+ 526+ U()

15




equations of motion

(¢ + %) = const
r—r¢? —w'r+4dar® —worep =0

We consider the it 77 — oo as usual for description of ground state decay in the
mstanton approach The classical trajectories that give the greatest contribution to
the path integral are that ones, that spend almost all their time at the origin, as the
action 1s zero there This gives E = 0 Let us consider the first equation of motion

and the energy conservation law

r*(¢ + ﬂ) = const
2
2 | 242
0=£="27% _y@)

Because the trajectory comes from the center of the system, r — 0 gives const = 0
(Suppose the opposite. Then at least ¢ ~ 1/r2 when r — 0 Obviously this contradicts
to the energy conservation law as the potential tends to zero under this himut )} Hence

¢ = —w./2 and the equations of motion transform to
r— Q% +4dar® =0

with 2 = w? — w?/4 The solution of this equation 1s

ra(T) = —Q
o B v2acosh Q1

It corresponds to the mstanton with the center at 7 = 0 There are many other classical
trajectories with different positions of the centers Obviously, all of them have the same

action
QS
" 3a

We will take them mto account when taking integral over time zero-mode below  Also,

Scl (2 4)

there are trajectories with the same position 1n time, but differing from each other by

16




rotation around the ongin  Similarly, these ones will be counted by the integral over
¢-mode below
The nstanton trajectory transformed to cartesian coordinates reads

Q e
iL‘cl(T) = Tcl(T) cos (_&%—T + QSO) = c\o/‘;cc):hm-(’)

we Qsin| -2 44
ycl(T) = Tcl(T) s (_TT + ¢0) = \/Q(Hcth QTO)

(25)

Where 1/2 plays a role of the "hifetune” of the mstanton, w,./2 1s the frequency of
rotation around the center For instance, when w,/2 ~ 1 the instanton makes approx-
imately one turn during his "life”, while for bigger w./2 the trajectories become spirals

spinning around the center

2.4 Jacobi fields

Let us calculate the contribution of quantum fluctuations near the classical trajec-
tories Obviously, there 1s a sct of them assoctated with different ¢y We can fix the one
corresponding to ¢ = 0 The other classical trajectories, as well as the fluctuations
around them, will be taken into account later integrating over the rotation symmetry
gronp

In the semiclassical approximation the action 15 decomposed about the classical

trajectory (for sake of simplicity we onut the normahzation constants n front of path

mtegrals)
f Di(r)e51 = ¢=Su / Dsi(r)e 35S (26)
where
F(r) = r4(r) + 07(r) and ﬁs=i/16ﬂﬁﬁmﬁ

The operator A mside the second variation of the Euclidean action 1s

—R+ U’ wed, + U

Ty

—wedr + U, -8 + U,

A=

17




with
202 + 4002 cos? W

Ul = — 2 1020/
§ cosh® Or o/
202 + 402 gin? wer
Ul =- 40w/
v cosh? Q17 o/
. 4 o1n 2L cos LT ——292 sin{w,T)
= 0S == C
*¥  cosh?Qr 2 2 cosh? Qr

being the second derivatives of the potential evaluated along the classical trajectory
It has been convement here to express the frequency w via 2 and w,
An arbitrary quantum deviation can be decomposed through normalized exgenfunc-

tions ¥, of the operator A
=> " Cx, (27)

Substitution to the path integral leads to the Gaussian integrations over the coeffi-

cients C,
1 dC, dC_ _1,m
DéF(TYe 295 = (vor (d et’ A)~1/2 ¢ 502
| Doty ¥ = (e dy e [ e [ [ O

where det’ A denotes product of the eigenvalues of A omitting the zero cigenvalues Ag,
A- and the negative one A_ They require special treatment and we will pay attention
to them 1n the next sections

It 1s convement to express the resulting survival amplitude G(0, T, 0, —T') 1n terms
of that one for pure parabolic well, that coincides with the contribution of the trivial

classical trajectory rg; = 0 up to the second order

d0¢ dC_ 87%(]3/\_
V2r \/ﬂ V2r

m this formula Z; defines single instanton contribution, while Zy 1s reserved for the

;s
é _ p_Srl l:d(‘t A (2 8)

Zy det Ay

trivial trajectory

18




In the multidimensional case [Pap75, LS77] the ratio of the determinant det’ A and

det Ao can be expressed through that one of the determmants J and J of Jacobt fields

det A J
det fio ']D’\r;ﬁ/\'r)\—

(29)

The Jacobi fields satisfy.

d { 9L oL &*L d [ &*°L oL
dt (axzaz;h’“) + (axla:c, B 8:r,8:1:1) i+ [E!E (thaa:g) - Bx,ﬁx;] Jue =0 (210)

with boundary conditions

00y _ 1

Jue =0, = —bp =0,
1k 57 Ok k

The determinant Jy as well as the eigenvalues i the formula (2 9) will be calculated
later Now we begin with evaluation of J
The system of fowr differential equations of the second order (2 10) wiitten for the

Lagrangian (2 3) decouples into two subsystems, each one of the form

—E+wn+ U+ Un=0

(2 11)
—n—wl+Un+ U E=0
or 1n terms of the operator A introduced above
;L - 3
Ag(r) =0, with Z(r)=
n
The boundary conditions are
€-T)=0, &-T)=1, n(-T)=0, y(-T)=0 (212)
for the first subsystem (for which § = J, = J,;), and
§(-T)=0, &-T)=0, n(=T)=0, n(-T)=1 (213)




for the second one (§ = Jyz, 0 = Jyy)

Let us find 4 independent solutions of the system Two solutions of this problem
are the zero eigenmodes, corresponding to the 7- and ¢-symmetries They can be
casily found by differentiating the classical trajectory (2 5) with 1espect to 7 and ¢y
One can check by straightforward substitution that the following solutions are indeed

zero-modes of the system

¢-mode
. & 1 sin <t
Alr) = - cosh Q7 WeT
poiad LN
M COS “¢
r-mode
N K< sih Qr [ ~cos st
7alr) = " cosh? Q7 wer
ol
M2 sin “%

where we have chosen the time zero mode without the ¢-shifting term, ¢ = 0

There are two more solutions left It could seem sophisticated to find them, however
we will use the following trick Suppose we deal with a 1-dimensional case If one
solution of the second order homogeneous differential equation (written in the Liouville

form) 1s
1

- cosh Q1r

then the second one can be found as (for example [But68] or [Kle00]-2 7 4)

—f/t dt’ _athT+ T
v= f@nz 20 2cosh Qr

and 1f
_ smhQr
"~ cosh?Qr
the second one 15
Eoar 1 sinh? Qr 3 smhQr 1
9= f/ f(#)? " coshir | 2Qcosh (7 * 2 cosh?§lr  Qcosh (7
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The 1dea to take the anzats i the similar form multiplied by sines or cosines turns out

to be successful. Indeed, making a straightforward substitution of functions

A(r) & [smh Qr + T J sin 7
WT) = =
- 202 2 cosh Q)1 cos WTrT
. &4 sih? Qr 3 smmhQr 1 — cos 4T
a(r) = = | 20comr T3 sk 0 Qeosh 0
o cosh Qr cosh” Q7 cosh §27 sin

mnto the system (2 11), we conclude that they are indeed the solutions we were locking
for
Let us analyze the properties of this 4 independent solutions It 15 easy to note
that
m(7), m(7), &(7), &(7) are EVEN functions (2 14)

&1(7), &(1), ma(7), na(r) are ODD functions

These important properties will be used 1 future for further calculations
At last we are able to find the solution of the system, satisfymg the desired boundary

conditions (2 12) and (2 13) Expanding

55(7-) = Z ('295‘1(7_)

we get the coefficients

p=—=8(-T), co=—~&(-T), c=&(-T), cq=28&(-T)

—_ (]:rl
tor the vector F(7) = , and

“Yyr

dy = —773(—T)= dy = ‘??4(—T), dy = 7]1("'T) ds = T?z(—T)
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Now let us look at their behavior in the limit 77— oo For simplicity we can choose

T m such a way that sin “T = 0 and cos“T = 1 Obviously, the final result must
Yy 2 2

not depend on our specific choice of T', hence choosing T 1n this way we get significant

stmphfication.
1
fl(T) =0, fg(T) = _26_QT1 53(T) ={}, §4(T) = —EBQT, (2 15)
1
m(T) =2, m(T) =0, n(T)= e, m(T)=0  (216)
and
1
61(_T) = 01 52(_T) = 28791‘7 53(_T) = 01 54("'T) = _EEQT,
m(=T) >~ 27, 1o(-T)=0, n3(=T) ~ ——l—eQT, m(-T)=0

40

Beaning this m mind we rewnte our coefficients m the following asymptotic form

1
1 = 0, Cy EEQT, Cq = 0, Cqg ™ 2e

-Qr

1 _
dlzaem", dy =0, dy~2""7 d,=0

Finally, the determinant J can be found

Jor o
J=det |7 7 _é
T Ju,

2.5 Elimination of zero eigenvalues

Now we need to get nd of the zero eigenvalues 1n the determinant J This could
be done by several ways One could introduce eigenvalue A as a small parameter,
perturbating the system of differential equations and take the limit A — 0 of the
determinator divided by A? at the end (as we have two zero eigenvalues) Note, that
this it must be taken after the imut 77 — oc, as the zero eigenvalues are not exactly

zero but tend to 1t as an exponential of T However this requires the precision at
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least 0o(A?) Thus 1t seems more convenient to elimmate Ay and A, separately using
the boundary perturbation mcthod, just looking at the behavior of this eigenvalues at
large T' As has been mentioned above we must expect exponential dependence of T

Consider the Green function

AC(r, 7"y = —I8(r — 7') (217)
'The reason to introduce the minus sign mnto the defimtion will be clear below we wall
receive Just the same boundary condittons for the system of differential equations that

was solved earlier The boundary conditions for the Green function are

G(-T,7") =0, %(—T, =0 v (2 18)

Then the general solution of Ay = \g¢ 15
— - T - —
F=tha=da [ Clnryir)ar
-T

where 1/;;) 1s a solution of the homogeneous equation Avg=0 The e genvalues Ay and
s can be caleulated requirmg (—7) and @(T) to be strictly zero (note, that the zero
modes that we have found carly do not satisfy this boundary conditions exactly for

finite values of T, but only 1n the imit T — oo) This leads to the following conditions
— — T - —
Yo(—=T) =0 and (7)) — )\0] G(T, 7" Wo(r")dr" =0
-7

where we have made the Born approximation substituting i by % nside the integral
as Ag 15 small
First let us find Ay = Ay Then the solution of homogencous system can be expressed

via ¢~ zero mode and othier solutions as

o = 1 + afa + 33 + 1
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and the boundary conditions become

G1(=T) + agy(=T) + BG3(—T) + 7@y (=T) = 0 19)
GUT) + g (T) + B (T) +15u(T) = A [T G(T, 7)1 (+')dr’

In the last formula the corrections were neglected mside the integral, as they give less
contribution than ) (more strictly one can find the values of the coefficients from

the equations below, substitute them into this integral and prove that 1t 1s mndeed the

case)
Taking the same T', chosen so that sin “’aT = 0 and cos % =1, we get
.
0 ) 2e=T 0 1)
+o ( +3 \ N =0
e~ 8T 0 —LeQT 0
)] e ) /
0 \ /_QB—QT 0 \ —-Z%)-BQT\ T oA
ta +8 +7 = 2 [T (T, )G ()
(\2e ) 0 e ) 0/

Note, that we have the products of two functions of 7/ inside the integral, that are
either even or odd (2 14) Thus only that terms contribute, that consist of functions,
both even or odd at the same time Using the explicit form the Green function from
the next section (2 21) we get the following expression for the mntegral

/ G(T, )Gi(r)dr' = ng T [ =&(T)&(r) = m(r)m (')
4 &(r)? + m(w')?

The two equations from which the desired eigenvalue can be determined are

dr’

29 — gL =0

T

27 g™ = N85 P f 2+ m(r)?)dr
In the limit of large 7" this leads to {see Appendix)
/\¢, g 8928_2QT
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Using the same procedure we find the second zero-eigenvalue A, Decomposing the

solution of the homogeneous system as
Yo = @2 + oy + B33 + oy
we write the boundary condition

G3(—T) + g1 (=T) + B&(=T) + 7ga(=T) = 0 -
Go(T) + afi(T) + B4(T) +154(T) = A, | T G(T, 7)ga(r')dr!

Eventually, we get
A, o 24P T

Note, that A, has the same form as for the 1-dimensional case [Sch81] (there ¢ — %2 and

the operator, for which the eigenvalue 1s calculated 1s defined two times smaller than

our A), but the frequency 2 1s dependent on magnetic field now Q= {/w? —w2/4

2.6 Calculation of the Green function

The Green function, satisfying (2 17) and (2 18) has the next matrix form-

C’(T,T')z g1t gr2

ga1 G2

where g,, = ¢,,(7,7')

The equation (2 17) splits into two independent subsystems

i) _ (o=
921 0
and
}i 12 _ 0
922 —8(r — 1)
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with zero itral conditions following from (2 18) for both of them

Consider the first one It corresponds to the homogeneous system considered above
m the regions 7 < 7' and 7 > 7' In that terms g¢11(7,7') = £(7) and goy (7, 7') = (1)
Both ”left” and "right” solutions must be connected 1n such a way, that the delta
function comes out If we integrate the system over a small interval with the jomnt
wmside

—ETF wenlTE 4 [ URE + ULy) = —1

T —¢ T—¢
—nlrte = L+ LU+ ULE) = 0
as £ and 7 are continuous on the jomnt, the last terms at the left hand sides of the
equations tend to zero Obwiously, the solution 1n the "left” region (r < 7/) 1s the
trivial one &(7)|r<rr = 0, 7(7)|;<» =0 Thus we get the imitial conditions for the

"right” one
5(7_)|1'=T"+e =1

Ao = 0
Together with two other conditions coming from the continuity on the border of two

reglons, we have

§(r) =0, &r)=1, n(r)=0, n(r')=0
With the replacement 7 — —T this boundary conditions exactly coincide with (2 12)
(and (2 13) for the second subsystem) Thus the coefficients (that actually are functions
of ')
€1 = —53(’-”), co=—&(1"), e3=&(7"), o= £a(7")
dl = *T]3(T’), dg = —T]q(T’), d3 = 7]](7"), d4 = T]Q(T”)
Hence the Gieen function becomes

Grry= " ) =0 -1 (Zc(r’m(ﬂ,erz(r')@(r))

go1  G22

=1 =1
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Using the asymptotic forms (2 15) for 7 = T we have

O(T, ) w0 — 7y 30 GT) +267TG(T) —gqeTm(r) + 2" ()
_4_16897‘51(7_.') _ QB_QT&:,(T') %(-BQTT;?I(T') _ 25,—QT7?3 (Tf)
(2 21)

2.7 Integrals over the peculiar eigenmodes

Having found the determinator J and the zero eigenvalues, the mtegrals over zero
modes left to be evaluated explicitly, as they require special treatment Recall that
the ¢- and 7- modes were found differentiating the classical trajectory 7y(r) We can

express 7y through these modes

- Q [ We o Qq]
']"C = B
t e 5 ¥1 ¥2
0Ty Q

so that

- - - or,
TalT + d7)| p=as = Tet(T)pg=0 +FadT + aTqubu:Udé =
0

QO w Q Q
Fet{T) | ogm0 — ——= —A1dT + ——=QFod7T + —=5\d

Tlis Teylor series needs to be compared with our expansion (2 7) over the normalized

eigenfunction of the operator A

F= T:,g + C¢f¢ -+ C‘,-fq- + = T+ Co

where the zero eigenmodes were extracted from the sum explicitly In order to complete
the integration over the zero modes, the integrals over the coefficients C,, C, must be

transformed to the integrals over angular and time positions The expressions above
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make clear the procedure of changing vanables from Cy, C; to ¢, 7

dCy O we 0
ol = ~vas 2 AT+ pedd

dC. . 9%
1o = VT

The Jacobian of this transformation 1s

aC, ac, - w =

o 00 SNA —lal) o o
Jor = det oo oo = det a7 1= =E”‘P1”H‘P2“_\/§

&- B 0 werdlL 2l @

where we have have substituted |},]| and ||&|}, found to be (sce Appendix)

. 2 - 2
1=y 2 and il =/

Let us pay attention to the negative exgenvalue Physical mtwition tells that there
must be only one negative eigenmode, corresponding to the direction 1 the func-
tional space associated with escape of the particle One can use also oscillation
theorems to determine how many eigenvalues less than A, and X, left For one-
dimensional Shroedinger equation this 1s nothing but number of nodes of the exgenfunc-
tron that tells 1ts position number 1n the ordered series of corresponding eigenvalues
Ao <A < A < We have managed with the negative eigenvalue just as 1t was done
in one-dimensional case {sce [Col77, CC77, Col85] for details) There an analytical
continuation of the Gaussian mntegral over negative eigenmode has been used A spe-
clal feature 15 the factor %, arising from a half of the Gaussian peak The integration
over the other half axis turns out to be fake Thus the contribution of the negative
eigenmode ntegral 1s

dC_ 2
em 302 _

V2 i2,/—,\_

The sign here depends on how the analytical continuation 1s done In future we will

omit this sign as 1t 15 not mmportant The precise value of A_ 15 not important also as

1t cancel with A_ 1n the formula for the ratio of the determinants (2 9)
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Eventually,

dCy dC_ 12 1@ /2" f
- = d d 222
Ve ) 21r V 271' T 9/—A_2 ¢ ! ( )

We will retain this integrals unsolved for some time Note, that the integration over the

angular variable ¢ appears naturally from the mtegration over Cy along the direction
n the functional space corresponding to the ¢-symmetry zero mode This 1s nothing to
do with path integral written 1n polar coordimates, for which an additional care must

be taken

2.8 Contribution of the trivial trajectory

The determinant Jy of the Jacob fields along the trivial trajectory 7y = 0 1s estimated

by analogy with J The calculation 1s rather simple now

i -2+ 0?4+ wt/e we O,
0 =
—we0; —02+ QP w2/a

So that the system Ag@() = 0 reads

—&Hwen + (P + WP /4)E =
— —wf + (¥ +w?/d)n =

with the same boundary conditions (2 12) and (2 13) The system can be solved by
standard methods We only write the final answer for the determinants of the Jacobi
fields mn case of the pure parabolic potential

AT

J() ~ 492

29




2.9 Instanton gas

Frnally, substituting the deterrmnants and ergenvalues found above to (2 8) and
(2 9}, we obtamn the contribution of one 1nstanton trajectory (more strictly of a group
of equivalent instantons with different time and angular positions, as we have integrated

over the zero modes already)

Zl ~ [: J ] -1/2 2 1 Q2 /211' ]T s f?fr [T
=g Ve - d dr = e "H“K d dr
Zy JoAgAr A 29/ —A_ 27 /3 Jo ¢ T 0 ¢ -T

with

204

K=
2w

We must also take mto account the contribution of the multi-instanton trajectories

Also, we must integrate over their positions both in time and angular space Thus

Zn 2 T 2T 1 2 Tn—1 22T
= :e‘"S“‘K"/ d¢1f dﬁf d¢2/ drs . / d¢nf dry =e""5"K”—-—~——( T l )
Zy 0 -T 0 -7 0 _T n

represents the contribution of a trajectory with n instantons distributed 1 the time
interval (=T, T) and arbitrary directed with respect to the angular coordinate Finally,

we must sum all the contributions to get the survival amphtude

o0
o o 2721
G(O T! 0, _T) = ZO -+ Zl + Z2 + = ZO 5 e—nszI(n# = Zo CXp (QTTQTK(:Z_SM)
n
n=0
Thus the probability decay rate 1s
401
['=2/mE =dnKe 5t = ~—_ g5 (2 23)

o

Tlus sumple expression 1s just that one, that we were looking for To complete the

calculation we must transform back to the real cyclotron fiequencics w, — —uw,, 0
that the frequency 2 becomes a square root of the sum now )= \/m

We can rewrite the formula (2 23) 1n the following way using the expression for the

classical action (2 4)
[ = 120S,e 5 = 120(y/8,)%e ™5
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The factor v/ Sy has appeared twice here, just as much as the number of zero modes
This 1s a common situation mn the mstanton techmique (e g Coleman, ”Aspects of

Symmetry” [Col85] p 337 gets 4 factors v/ S, m case of four zero modes)
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Chapter 3

WKB method

3.1 Hamiltonian

Now we will get the samne 1esult using different method  Even the way, m what we deal
with the magnetic field 1s different here The Hamiltontan cortesponding to our mtial

system (2 1) 1s

—_ ¢t 2 — & 2 2
= (Pz 2c z) + (py 2c y) FU(), Ulr) = %Tﬂ i
Using the same gauge A = (—%, %, 0}, 1t can be rewnitten as follows
2 pi + paz w2 2 e - We =
H= —’+§°(a: +y?)— =L+ U(r)=Hy— =L

2 2 2

whete L 1s angular momentum operator L = zp, — yp, and we have defined

5 PitD;

W2
Hy 5 -I-?C(:rz-}-yz)-i-U(?)
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3.2 The use of symmetries

The 1mportant pont here 15 that Hy mntroduced above commutes with the angular
momentum [f{o, f,] = 0 This 1s because of the rotational invariance of the system,
as the potential (including the magnetic field term) 1n the Hamiltoman Hy 1s a pue

function of radial distance r = 1/x2 + 32

Consider the matrix R(—¢), rotating the vectors in the counterclockwise direction

R(—) = cos¢ smno

—sin¢ cosg

Then the angular momentum operator L generates rotations of the wave function.

e~ (F) = Y(R(—4)F)

This can be seen as follows (e g [Tha00] p 219} One can find generator of the rotation

unitary group by differentiating with respect to ¢

d d
13 V= ANlg=0 = Né(f?(—cb)r“)ggf?(—é)?lwo =

= V(7) —yd(, =— (:EC,% - ya—(i) () = Lo(7)

Thus £ 15 ndeed the generator of the unitary group of rotations

With all this in mind, the amplitude (2 2) becomes
G([_)" T, 6’ __T) =< 6|e—12HT|6 S ﬁle_ﬂﬁnTeMFi’Tlﬁ = 0‘|e—12H0T|0‘ >

as the rotation of the state |0 > 15 equal to itself Thus the problem has reduced

to finding the decay 1ate of the particle m the potential of the same shape with the

renoimahzed fiequency w — 4/w? -+ w?/4 = Q m absence of the magnetic field

- Pitp; 02
=1tz 5 Py + Uess(r) with Ugps(r) = ~2—r2 —ar?
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3.3 WKB expansion

Shroedinger equation 1n polar coordinates reads

[ 82 18 1 92
{—? (@ ror ;‘z“w) + UEff(T)J % = By

with [ = —1hZ and ¢ = e f(r)

[_%2 (% + %% - i—i) + Ueff(r)] f(r)=Ef(r)

As we are interested 1n the tunneling from the lowest state we take [ = 0 Consider 4

mn the form f(r) = e#5") with S(r) = Sy — thS; +  accordmg to the standard WKB

expansion
f(r) = S0
f.' r} = ES’+S,+ E%S(T)
h 0 1
1 r 22 1o [ £8(r
f(ry= (_Estf + 5551 + 25 + )ei 5

Substituting to the Shroedinger equation above and equalizing terms near the same

power of i we get
1
550 + Uess(r) = E
1
25,5; + 57 + ;S{, =0

From now we can assume 2 =1 The first equation gives

So=1 [ V2L =B = [0, p0) = \/2Ueis) — )
Dividing the second one by S,

1
257 + (In Sg) + - = 0
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that 15 also easily integrable Eventually, we get the underbarrier WKB wave function

1n polar coordinates

B(r) = C \/T;Tr)exp (— ] p(r)dr)

where r; 1s the first classical turning point corresponding to the energy E The constant
C' can be found comparing the result with the normalized ground state wave function

for the two-dimensional parabolic well

U(r) = \/'g

For the underbarner WKB wave function near the bottom (but far enough from the

turmng point, so that WKB works already) the integral under the exponent 1s approx-

imated by

i T Qr?  FE E  2r’Q?
dr= | VQ2r2 -2 =—— — — —1
/rl p(ridr /rl T Edr 5 20t g

for £ as a small parameter Taking F = ) as the lowest energy level for two-

dimensional parabolic well and equalizing the both wavefunctions, we get

o 1 6_[973_%_%1112#9]: /QB_QTTZ
V2 T

where p(r) was also decomposed up to the lowest order p(r) =~ Q Al this leads to

o JE
2me

The outgomg wave function (r > ro, with 75 as a sccond turning pomnt outside the

well)
e wir)=C r;(r) exp (_ [”r? p(1)dr +1 /:p(r)dr)
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This 15 just the wave function, we are specially interested in  Using 1t, we can estimate

density of the probability current

d G, Cc? "
J= %(UJE’(/J* - 'l/J*é—T(/)) = %W exp (—2[ P("")d7) (—ep(r) — w(r))

1

02 T2 Q T2
= - exp (—2 /n p(r)d'r) = 5o OXP (—2 /Tl p(r)dr)

We must integrate the current density over the circumference to get the total proba-

bility current coming outside the well
27
2
D= / omryde = —e WIE)
0 e

As the wave function 1nside the well 1s normalized, this expression corresponds to the

transition probability through the barrer, 1e decay rate We have denoted W(E) =
T2
2 frl p(r)dr

3.4 Correspondence with the previous results

To link this result with the one, obtained by the mstanton technique, we must represent
the decay rate in terms of 1V (0} This can be done as follows We separate the integral
into three parts

W(E)/2 = /rip(r)dr —+ [ré {1 )dr + ]Trgp(r)dr

r1 1 2

Wheie the pomts 7] and 7 are chosen between the turning pomnts 7, and r, so, that
the first integral 1s calculated keeping the quadratic term only of the potential, the
second one 1s caleulated makimg expansion i £/U(r) and the last integral 1s calculated

approximating the potential by a hnear function near the turning point ry

g r " E E 27202
‘ d — 2,2 E = 2 _——_—— —
/T! p(r)dr /1:1 V242 — 2Edr fo  2Uess (1 50 " 20 In 3
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Th 4 h E
p(r}dr ~ / v/ 2Uess(7) —f ——dr =
fri r iV 2Uesg(r)
Q2 — 2ari)r]

& E. [+
= [ 2We(r)+ 5 n
[; (24 /2 =2 P

Near the second turning point 7o we approximate potential by a hnear function with

zero at the the pomnt ry = /v/2a, such that U.z(ry) =0

3
Ui ) == (r =10

so that the third mtegral becomes

/ dr~/\/ 03 (a7 )dr_/m 2aE\/ @

Combining this terms altogether and taking the hmits #{ — 0 and 7}, — ry we obtain

that gives

w here
ro o ré 523
0) = 2/ \/ Uesp(r)dr = Qf V22 — 2aridr = / V2 — 2ar2dr? = 30 = Sd
0 0 ) a

what comcides with S; (24) Ewvidently, using the different method we have got the

same result (2 23) that was derived by the mstanton technique
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Chapter 4

Summary

Now we are able to calculate the expulsion magnetic ficld, at what the vortex leaves
superconducting dot Using the London approximation and the method of images, the

potential well inside the disk can be estimated [BB94, BF96]

a3 [H , :
Vi) = TIE I—I—ln(R/ﬁ)—h(l—r)—l—ln(l—r)

whete t = HnR%/®;, and r 1s the distance from the centre mn umts of the radus R
The mmmoun exists until the field o = 1 However, due to quantum tunnecling the
vortex leaves the well at lngher 2 > 1 We approximate this potential by the inverted
double well and use the formula for the decay rate calculated above to estimate the
expulsion field Tls leads to the next dependence on the radius of the disk shown on
the Fig4 1 For comparnison we also present the typical dependence due to thermal

activation process for some fixed temperature

In dertving the formula for the decay rate using the instanton approach we have
restricted ouiselves to the small values of w, In the WKB result we have not made

such an assumption, so that the obtained formula turned out to be more general
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Vortex Expulcton Field vs Radws of the Disk

2l \

\ Quartum escape
b

11

10 +

LuH, LnQe
W

Classical
escape

Figure4 1 Dependence of the expulsion field on the radwus of the HTSC disk Eapulsion
field 1s characterized by the value of magnetic field at what an Abrikosov trapped by the
surface barrier leaves the superconducting dot As Abrikosov vortex carries magnetic
fluz, thes process manifests wtself as magnetic relaxation of the superconductor Three
mechanisms of magnetic relazation are shown for comparison pure classical escape,

quantum escape and thermal activation at some fued temperature

Thercfore, 1t 1s worthwhile to look at the mstanton trajectories even for w,/2 ~w In
this regime the trajectories are spirals, spinning outwards and inwards close to the top
of the hill A question arses how do the trajectories near the top "feel” the behavior
of the potential on large distances and reproduce the right dependence of the decay
tate on the 4th power term of the double well? Let us analyze this situation more

carefully During almost all the period of the instanton, the spirals are perpendicular
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to the gradient direction whereas the velocities are small at the top, because of zero
energy at the top Thus both the trajectories and the action must dependent strongly
on high order derivatives of the potential, including the 4th power term

Let us summarize the results

(1) The mstanton technique has been successfully applied to 2D models in magnetic
field

(1) Analytical continuation mn w, has been introduced to avoid the problem of
Imaginary action

() Comcrdence with standard WKB has been obtained

(1v) Decay rate of a superconducting quantum dot with a trapped Abrikosov vortex
has been calculated

The 1nstanton method 1s a non perturbative method that plays a crucial role m
quantum field theory and quantum mechamcs [Col77, CC77, Col85] The advantages
of the mnstanton techmque (IT) are (1) Stronger than standard Wentzel-Kramers-
Brillomn (WKB) method [LL65, KST00] Generally, 1t 15 hard to tell whether WKB
result 1s accurate, whereas the IT 1s controlled by well defined expansion parameters
(1} No connection formulas aie needed Indeed, 1n our calculations with the stan-
dard WKB method we were binding several solutions together — a wave function n
a parabolic well with a wave function under the barrier In the mstanton method
this procedure 1s absent (1) In some cases 1t 18 more accurate than WKB [GP77]
(1v) Instantons, as elementary excitations are topological objects configurations with

different number of mstantons arc topologically distmet
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Appendix A: Useful integrals

The following definite integrals can be useful for the calculations arsing 1n this problem

< d
|z =
oo COSh® x
0 ginh? 2
/ 810 4$dx=—
oo cOsh® x 3
/“’ dr 4
_wcoshiz 3

Appendix B: Faddeev-Popov procedure

There exists another way how the zero eigenvalues can be eliminated This 1s so
called Faddeev-Popov procedure [FP67, GP77] very useful for systems with constraints
1n quantum field theory

As our mitial path mtegral (2 6) 1s not properly defined because of overcounting of
zero eigenmodes we need to define correct measure of mtegration n order to discregard
the contribution of the equivalent trajectories related by symmetry group transforma-
tions (i the field theory this usually corresponds to gauge transformations) Thus

there are two constraints on our path ntegral
Fl[F(T + 7, ¢0 + 9)] =< F(T + B ¢0 + 9): (;51 (Ta ¢'0) >

Fy[f(T +m, 00+ 0)] =< 71 + 1, do + 0), Go(7, ) >

where ) and 5 are zero modes associated with the classical trajectones (2 5) Con-

sider the identity

T 27
AR, do)l, F2[F(T o)} [Tdn/() dBS(Fy[F(m 47, o+ )OS (Fo[i(r+n, do+0)]) = 1
(41)
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where the Faddeev-Popov determmant A[F, F3] 18 the Jacobran of transformation of
integration vanables A, as well as the action along the trajectories close to the classical

ones, 1s invariant under translations 1 time and ¢
A[R[T +n,¢0 + 0)], B[T(7 + 1, ¢o + 0)]] = A[F[7(T, ¢o)], F2[7(T, ¢o)]]

Indeed, this can be easily proved by sifting variables mside the mtegral (4 1)
Introducing the 1dentity (4 1) to the path integral (2 6)

T o . }
- ] dn / a6 / Die= S ARy, FJ3(F [7(r 41, do+0))3(BalF(r+n, do+0)]) = |
-7 0

T 2
= /_ Tdn /0 dé f Die=SFreoll A| |y | By]8(Fy[7(r, do)))S(Fa[7 (7, ¢0)])

where we have used the invariance both of the Faddeev-Popov determinant and the
action as well as the identity DF(t +1, ¢o + 8) = D7(7,¢y) Thus we have transformed
our integrations over zero modes to the integration over the groups of translational
symmetry

The Faddeev-Popov determinant 1s found to be

or,  9F
A[Fl, Fg] = det o9 on =
ap, 0P
a0 on J p=q =0
OF(T & = a7 ,G =
et < _Té_‘;;ogl F1{T,d) > < ’"‘g.r o) (7 o) > o
- OF(T & - or(r & - -
< T Grid) > <P Gy ) > ) VA

(compare with (2 22)) This 1s another way to take mto account the contribution of

zero modes
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Part 11

SWITCHING PHENOMENA IN
LARGE JOSEPHSON
JUNCTIONS
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Chapter 5

Annular Josephson Junction of

Intermediate Length

In this chapter we consider annular Josephson junctions of "intermediate lengths”
In this way we call junctions whose size 18 bigger than Josephson penetration length
A (for example 10A; like 1n experiments [FWK*03]), but they still exhubit small-like
switching characteristics, in particular, T7%/% dependence of the standard deviation on

temperature

5.1 Introduction

Thermal escape 1n Josephson devices associated with the transttion from super-
conducting to resistive state has been studied for a very long time Ongmally, 1t
was Kramers who first estimated the probahility of thermal escape from a metastable
state [Krad0] Small Josephson junctions (JJ) are among the most stucdied of all su-
perconducting devices There two types of escape, quantum and classical, have Dbeen
observed The classical or thermal escape usually ariscs at high temperatures while

the quantum escape manifests 1tsclf at low temperatures
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The thermal or quantum escape in small Josephson junctions 1s equivalent to escape
of a quantum particle from a metastable state In this paper we imnvestigate the thermal
escape of an object which has an extended dimension, 1e very different from such point
like objects like particles Such an extended object — let us call it a string — may arise 1n
a long annular Josephson junction (AJJ) In contrast to a small Josephson junction the
phase diffetence ¢(z) 1n AJJ depends on the position on the ning z The phase difference
satisfies perioche boundary conditions ¢(0) == &(L) where L 1s the circumference of the
AJJ Thus, the dependence ¢(z) 1s associated with a string of length L The string 1s
a one-dimensional object 1n contrast to a small JJ that 1s zero-dimensional Similar
behavior appears for dislocations 1n sohids The 1ssue of the classical and quantum
escape of an extended object such as a string or dislocation from a metastable state
has been the subject of long-term interest[KP70, PP72], which 1s still under intensive
discussion[VSC101, NLR*04]. In these papers 1t was suggested that 1f the extended
object 18 very long the escape process begins with the escape of some part of the object,
namely with the nucleation of a kink-antikink pair {or a fluxon-antifluxon pair m the
case of the Josephson junction) Eventually, this nucleation process gives rise to the
escape of the whole object such as a long string However, 1f the size of a kink-antikink
pair becomes comparable with the length of the string, the escape may arise via a
different mechanism without nucleation of the pair

We study a current-biased annular Josephson junction subjected to m-plane mag-
netic field In recent years tlus system has attracted much of attention Existing annu-
lar yunctions are favorite extended objects to study dynamics of Josephson vortices sub-
jected to an induced periodic potential There quantum switching of AJJ [FWK103]
has been cxperimentally observed and quantum dynamics of a single fluxon has been
investigated i detaill [WLL103] This prompts a possible application of AJJ for quan-
tum computer implementation

The use of the collective coordinate method in terms of vortex/antivortex positions
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1s an effective tool to describe very long JJ However, for moderate length junctions the
method gives some discrepancy with experimental data in the magnetic field depen-
dence of the switching current and the standard deviation [FWK*03] The experiments
show 1ncrease and then saturation with magnetic field while the exasting theory fails to
predict the correct saturation The reason 1s that effective size of a vortex-antivortex
pair depends crucially on the apphed hias and may even exceed the length of the junc-
tion Thus, the description in terms of vortex-antivortex positions breaks down In the
present work we consider the situation when the escape of a string from a metastable
state occurs 1n the form of a transition of the whole object homogeneously all along the
Junction In this view, the vortex-antivortex pair may develop on the later stage of the
phase evolution — after the escape occurred Such behavior 1s expected for moderate
length annular junctions at low temperatures

In our calculations we start from basic statistical field theory principles We con-
sider a string describing a superconducting phase difference across the junction In
classical statistical mechanics a thermal activation of a string 1s desciibed as a most
optimal or a most probable fluctuation In the framework of our approach, the satu-
ration behavior found 1 experiments 1s naturally explaimned Also, the critical current

dependence on magnetie field 1s calaulated It perfectly fits the expenmental data

5.2 Formulation

Our main purpose 1s to 1mvestigate the switching of an annular Josephson junction
from superconducting to resistive state It occurs when a parallel magnetic field and
a bias voltage are applied and reach some critical value We mtroduce a field ¢(z)
to deunote the supcerconducting phase difference across the junction  In thus view, the
analogy with classical mechanics becomes clear The fleld ¢(z) deseribes a stiing m

the perturbed sine-Gordon potential We analyze thermal fluctuation of tlis string
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and find the most optimal fluctuation associated with thermal activated switching of
the junction from superconducting to resistive state We study the classical thermal
activation and therefore we have to consider only stationary configurations of the phase
difference ¢(x) across the junction They are the only important ones since the other
type of fluctuations give a neglgible contribution 1n thits imit The energy of AJJ
under parallel external magnetic field # and ias current v applied may be described
with the use of the following expression (we use normalized units)
L/2 2

Vgl = /—L/'z dr [% + (1 — cosy) + v + hp coskz (51)
where & = 27/L and L 1s the circumference of the annular junction The classical
configurations associated with the extremal pomts of the energy functional, Eq (1) are

given by the perturbed sine-Gordon cquation (e g [MM96a, MM96b))
Yre — SN — v — heoskx =0 (52)
with periodic boundary conditions

F~L/2) = ¢(L/2)

@o(—L/2} = . (L/2)

(53)

With such boundary conditions the total number of Josephson vortices trapped 1n the
junction 1s constrained to zeto Close to the cntical field configuration we make the
following decomposition ¢ (z) = —x/2 at h = 0 and ntroduce a new field vanable
&(1) = ¢(1)+7/2 Weexpect that this decomposition works well 1n the range |€(1)] <
7/2, since 1 this region the value sin € ~ & — £3/6 differs by less than 10% there! For

moderate lenght junctions L =~ 10A; tlus requuiement 1s satisfied when A <1 as can

'One should be careful when domng this decomposition Note, that some terms can be dismissed
mm this way when calculating the standard deviation They can become mportant 1 case of a short

junction (L < 6) In case of L ~ 10 the dismissed terms can be shown to be neglegible
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be checked at the end of the calculations Also, we mtroduce a new bias parameter
§ =1—+ <1 With the use of this new variable the energy functional takes the form,

which 1s equivalent to the previous one, up to an arbitrary constant

Lf2 52 £3
V[§]=/ dz [—$+—6§+h§coska: (5 4)
_L/2 2 6
while the equation of motion 15
52
§$$—§+5—fzcosk:c=0 (55)

with periodic boundary conditions implied We use the vanational method where
our variational function or an approximate solution [MM96b] 1s taken m the form
£(z) = vV2Acoskzr + B Substituting this function mnto (5 4) we get an expression for

the energy as a function of two variables A and B
L 2 2y 13
V[V2Acoskr + B] = 5 (AB+E)+35° - 285+ V2Ah
The extremal pomnts of this function arc determined by

2A(B+ k%) +2h =0
(56)
A2+ B —25 =0

Using the first equation, the energy of a classical string configurations can be reduced

to
L h? 1
== —-——_ 4 -.pB3_ 57
Vs(B) 5 ( 3B + 19 + 3 25’5) (57)
with a single constraint
L h2
ViBY==| =—=———=+B*-2§) =
+(B) 2(2(B+k2)‘2+ ) 0 (58)

Whence the problem 1s simplified to a single parametrical description At zeio mag-
netic field b = 0 there are two solutions B = ++v/2§ One of them corresponds to a

stable configuration, while the other one to the unstable one
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5.3 Critical 6.(h)

Switching to a resistive state occurs when these two configurations (the stable and
the unstable ones) become close to each other We find the critical bias parameter
dc(h) for such switching when these configurations comcide 1 the bifurcation pomnt of

the equation (65 5) Using Eq (5 7) we can casily find 1t
Vi'(Be) =0

Combining this equation with the constramnt (5 8), we recover the dependence é.(h)
the following impheit form

5c(h) = Bc(Bc + %2') (5 9)

2B.(B, + k)3 = 12

The dependence d.(/) found from these equations describes the experimental data [FWK+03]

very well To be consistent with experiments we have taken the value L = 10 5A;
Having started from onginal sine-Gordon equation we are able to obtain a more
general expression for the critical current involving Bessel functions with the use of the
more general approach developed in [MM96b], which 1s a generalization what we did
above Nevertheless even n this simple two parametric approximation, the agicement

with the experiment 1s surprising (Fig 5 2)

5.4 Barrier height

According to the thermal activation (Arrhemus) law, the thetmal activation rate
15 defined by the barrier height Let us find the behavior of the barrier height U
close to the critical bias §. Introduce the notation A = (6 — §,) > 0 Let By and

By correspond to the stable and unstable string configurations We use the Taylor
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expansion to decompose V;(B1) = V5(B. + b;) and V5(By) = V3(B, + by) close to B,
1 i i
U(A) = Vs(B1) = Vs(Bo) = [V5(Be)br — V5’(Bc)bo]+é—' [Vi"(Bo)bi — V5" (B:)b] (5 10)

Note that by the definition of the critical point B, the second derivative at this point

vamshes as V§'(B.) = 0, while the first derivative of the action 1s equal to
ViBY) = Vi(B) — L(§ - &) = -
The two corrections b; and by to the critical value B, are determined by the equation
Vi(B.+b) =0 (511)
Again, we use the Taylor senes appled to the function V}(B. + b) to get
—LA + V’”( B)b ~0
The two solutions to this equation are

- 2A (B, + k2)
v"' T4B. k2

Eventually, after the substitution of this solutions to (5 10) we have,

4 L a2y V2 [ Bo+AT
~ 2] — 12
Uid)=3 Vi"(B.) AL = 4B, + k? AT (512)

with B, given by the equation

2B(B, + k3 = 1n?

At zero magnetic field this expiession for the barrier height comncides with the sinlar

cxpression for a small Josephson junction
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5.5 Standard deviation

To evaluate the standard deviation of the switching current distribution P(I) we
mostly follow the approach developed by Garg [Gar95] It 1s related to the decay rate
I according to the equation [Kur72, FD74]

P(I) = ;exp (_ fo I ;.ﬂ)

where the decay rate I' 1s given by a standard formula

w u
[~ ﬁAl/‘l exp (—m)
Because of the weak dependence on the preexponential prefactor, we take 1t 1n the
form for a small Josephson junction in case of a moderate dissipation regime Then,
following [Gar95], the standard deviation 1s

ﬂ-ﬂ 2-[60"4' _1/3 _2/3
fo e~ 33 [log (3185/6)] B (513)

We have taken the decay rate in the form

[ = AAY* exp(—BA3?)

In our case,

and

g 4V2 B [B+k
3 LTV 4B.+ k2
where Fq defines a umt of energy (e g [KI96] p 12)

4]
Ey = —2).W Ay
2T

in ST units  For the width 1V = 0 5um, the critical current density 3, = 220A4/em? and
the Josephson length A; ~ 30um we get

Ey ~ 8 x 10°K
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Fnally, we obtain the following expression for o(h,T) (normalized to the critical cur-

rent)
V2[5 13 3kgT \? (4B, + k2\*
h,T) = Y21 2 0(T/T, B e 5 14
=3 [6 et/ ")] (4\/§LEO) (Bc+k2) o1
where we have introduced
6/5
kpTy ~ 1v2 ( 3”1) E,L
3 wpfco

neglecting the & dependence of the non-exponential terms \We have estimated T, about
07 x 107°K for the experiments [FWK*03]

Orne can notice that the presence of the expression (4B, + k%)/(B. + k%) 1n the
formula (5 14) results m saturation of the standard dewiation o for high magnetic
fields Indeed, (4B, + k?)/(B.+ k*) — 4 when |B,| — oo and |B,| — co when h — oo
(see (59)) This agrees with the experimental data (Fig 5 3) where the saturation of
the standard deviation with increasing magnetic field has been observed Also, the
developed model well explaing small dips of the standard deviation at small values of
magnetic field(Fig 53) On the othier hand the VA dissociation theory tails to predict
the correct behavour of the standard deviation n this region [FWK*03] To make
comparison with existing experimental data [FWK*03] we have used the following

values for the cnitical current, I =~ 3404 and for the sweep rate, [ ~ 0 245A/s

5.6 The deviation from 7%3 law

The phase switching in the annular Josephson junction may aise hoth in the form
of a string transition and via the vortex-antivortex pair dissociation[FWK*03] When
the value L 1s smaller than some cnitical value L (T), the switching to resistive state
occuis 1n the form of a string as described 1n the present paper The consequence of this

15 the dependence ~ T%/ of the standard deviation observed m experiments[FWK*03]
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Indeed, this means that this AJJ of a moderate length behaves effectively similar to a
small SJJ and rather than a long JJ [Kat00], which would exhibit ~ 7'1/5 dependence
Furthermore, 1t 1s 1mportant to note that the index of the power low dependence
observed 1n the experniments [FWK*03] 1s even less than 2/3 which 1s smaller than the
index 4/5 ~ (0 80 charactenstic for LJJ

Such behavior can be well explamed with the use of the Garg's formula (5 13)
Indeed, by differentiating the loganthm of (5 14), we find an effective slope of the

loganthme ¢{T') dependence

dloge 2 1
e . — 515
dlogT 3 3log(T/Ty) (515)
For the range of temperatures 7' ~ 1K this gives
dlogo
~ (64 516
dlogT 06 (516)

This value agrees with the experimental data [FWK*03] where a noticeable deviation

from 2/3 power law has been observed

5.7 Quantum case

We start from the Euclidean action

L/2 2 63
Sgl¢] = / d’i‘/ [ + 2= +(1—coscp)+—6~-c)§+h§coska:

L2
The classical solutions (1nstantons) satisfy the equation of motion
62
Err +&or — 5 +d—hcoskr =0
In the view of the same approximation we treat A and B as time dependent variables

L f° A
Sp[V2Acoskr+ B] = §f dr (A2 + B+ AAB+E)+ %33 — 284 -+ \/§Ah>
0
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with equations of motion

24 = 2A(B + k%) + v2h
(517)

2B=A2+ B2-2§

2 2

3 By b? 2 2
V(a,b)=A0ab+%+ ;b a(ank +5)

3 a2 b2
Sinst = Spl€(x,7)] — Seléo(x)] = L]O dr (— + — + V{a, b))

where

Ay=A.+ay, Bo=DB.+b

_ [28B. , _ [2A(B.+8)
WEVIB. v TN 1B+ &2

A. and B, are the parameters close at the critical point  From the previous calculations,
A2 = B,(B.+ k), 2B.B.+k%3=n?

This 15 just the problem of a particle tunneling from a two-dimensional well On the
{a,b)-plane the mstanton trajectory comes from the ongin (0, 0) and then goes close to

the saddle point (2a4,26y) We can reduce 1t to a one dimensional problem assuming

the scaling a = bag/by = b+/B./(B. + k?)
8 2
mb B,
Slnst =L /0 dr (T + V(b W, b))

a2 2B+ k?
=149 2= "
m=lt e = p iR

After that we can use the formula for escape rate of a particle form a metastable state

The effective mass

n the semiclassical WKB approximation (sce Likharev p 176 and Wallraff p 118 eq
72 ”Fluxon Dynamucs n AJJ 7, Ref [Leg84])

W Vmaa: 172 36 Vmaa:
I' = oy (8647r o ) exp(—g — )
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where

Br‘
2 _ idzv(b \ BoAr? b)[ _ V2A(B, + K?)(4B. + k?)
YT b =0 = 2B, + k?
and
42 | B, + k2
Ve = = ° 3/2
maz = U(4) = = 4B, + ptk

according to the formula (512) Eventually,

1/4
356 V;i,:m _ % [2(Bc+ k®)(2B, + k2)2] AL

Smst = = (4B, + k2)3

2.8 Vortex-antivortex pairs: dissociation and anni-
hilation

While in a moderate length AJJ the escape of the phase string may not happen 1n
the form of vortex-antivortex dissociation, nevertheless, the vortex-antivortex pair can
develop later during subsequent dynamical evolution of the string (after the escape)
Thermal cscape 1tself happens during a very short time The profile of the string docs
not change dramatically On the other hand, the evolution of the string after the escape
event 1s very dramatic and may lead to formation of fluctuating vortex-antivortex pair
This effect will manifest 1tself 1n the experimental current-voltage characteristics as a
voltage step different from that of a homogeneous phase rotation

Moreover, phase escape 1n the form of vortex-antivortex pair can be observed This
may result 1n vortex-antivortex anmhilation or creation of an osallating breather de-
pending on the dissipation rate  Let the bias magnetic field be close to zero  According
to the terminology used by [0S67] and [MA96a] the ciitical curtent curve (sce Fig 5 2)
cortesponds to a "0 to 1 pair mode” characterizing the degiee of penetration of a vortex-
antivortex parr mnto the junction While bemng at small magnetic field, the system 1s

in the stable 0-1 pair mode When mcreasing the field, the 1-2 mode becomes stable
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whereas the 0-1 mode disappears If we decrease the field, the system will persist 1n the

metastable 1-2 mode configuration, so that (thermal or/and quantum) decay onto the
stable 0-1 mode can be observed n the experiments At zero bias the size of soliton 1s
of the order ~ A; which 1s less than the circumference of the junction ~ 10A; Whence,
the metastable 1-2 configuration has a form of a fully developed fluxon and antifiuxon

trapped by a small magnetic field in opposite sides of the junction

5.9 Annular Josephson junction with impurity

Real Josephson juncitons studied expenimentally always have inhomogeneities and
impunties associated with imperfections during the fabrication process In this chapter
we consider a possible impact of an impurity on switching properties of an annular
Josephson junction when trapped fluxons are absent Presence of an impunity changes
the critical curtent [MST78, KI96] The energy of a phase configuration 1s

L2 2
Sle] = /L/2 dz [% + (1 + ed{z — 20))(1 — cos ) + v + hpcos kx
where & = 27 /L and L 1s the circumference of the annular junction The case € > 0
corresponds to enhanced critical current density 1n a narrow region of the junction (the
authors (KI96] use € == —¢) The dassteal confignrations nunimizing the eneigy ate
given by
Wrr — (1 +€d{r —xq))smp — v — hcoskz =0 (518}

with perlodic boundary conditions

p(=L/2) = ¢(L/2)
va(—L/2) = ¢.(L/2)

We consider a special case where the impurnity 1s placed symmetrically with respect to
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the magnetic field assuming zo = L/2 Thus, up to an additive constant
Lf2 .'/\2
Sl =/ dx [%+(1—COS(p‘)+'}’(p+thCOSk$ —ecosp(L/2)
—L/2

Wez —SINEY —y— hcoskr =0

with boundary conditions

w(=L/2) = ¢(L/2)
0z(—L/2) = ¢, (L/2) + esinp(L/2)

The last condition follows from eq (5 18)
L/2+0
/ Prz = ESan‘g(L/z)
L/2-0
Again, we make decomposition close to the cntical field configuration o (z) = —n/2
at h == 0 and introduce new field vanable £(r) = (1) + 7/2 and new bias parameter
d=1—-7vy<1.
L/2 E‘Z £3
S[¢] zf [—T+——5E+h£coskx —e£(L/2)
_12l2 6

whele we have approximated cos (—x/2 + £(L/2)) =~ £(L/2)

2

{m—g-i-d-—hcoski,:O

with

§(-L/2) = &(L/2)
§a(—L/2) =2 &(L/2) — ¢

The case of homogeneous AJJ (e = 0) was considered by us before We briefly review

(5 19)

the mamn considerations We have used the approximation &(r) = v2Acoshz + B to

get the effectine energy as a function of A and B
L. 2y, 1 p3
S[V2Acoskr + B] = 5 (A(B+K) + 5B — 280 + V2Ah
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The equations of motion

2A(B+ k%) +V2h =0
A24 B2 -26=10

We have got the following results

- k2
dc(h) = BB+ %

2B.(B. + k2)3 = h?

~4\/§ B, + L2

3/2
3 4Bc+k2A/ L

U{A)

Standard deviation normalized to the critical current

2 [5 3kpT )2/3 (4Bc+k2)1/3

~1/3
—log(T/T;
33 |6 8T/ 0)} (4\/§LED B, + k?

o(h,T) ~

where

6/5
5 I
kgTy ~ 42 ( 37 ) E,L

3 u)pIcD
In general case of non-zero e we change the approximation addmg a quadratic part m

order to satisfy the boundary conditions (5 19)
- - 6-[\; 2
£(z) = V2Acoskzr + B + o0

The problem can be reduced to the homogeneous case with the action

I 1
S=3 (Az(B +hipg) + 5B° = 2Boeys + ﬁAheff) :

new variables




=il -5 3 [

Figure 51 Suntching current vs magnetic field fore =0 and e =1

and effective parameters

S da €2 N €h €272
ST T ke T 9 T 360k2
; L €2 N 132 +ek
leff =h— — 4 ——— -

/1 6k  8k2q72 T
k? :kz €
eff +8A7r

From that follows

k2 2 2. 2
Ye(h) =1 = BB+ ") + e + 5% — 5052

(5 20)
2B Be 4+ RZpp)* = Ny

For positive € > 0 the ctical current lobe shufts up to the lugher values This

results 1 a broademing of the normalized I.(h)/I.(0} dependence

5.10 Conclusion

In conclusion, the switching distribution of the annular Josephson junction to a

99




resistive state has been investigated We have invoked the statistical field theory for-
mulation of a string escape problem where the superconducting phase difference plays
a role of a string. We have used a two parametric approximation and the variational
method to describe the string escape from a metastable state This approach 1s more
powerful than the collective coordinates method n the form of vortex/antivortex po-
sitions for investigation of the switching current distributions Indeed, we have shown
that the existing experimental results for AJJ can be well described 1n terms of the
thermal activation of a string crossing the potential barrier. The agreement with ex-
periments has been obtamed without any adjusting parameters

Although the length of the annular junctions considered above 1s larger than Ay,
their switching characteristics remind more those of a short Josephson junction rather
than long junctions (at least at the range of temperatures T' 1) In particular, they
exhibit T%? behaviour of the standard deviation stmlar to point Josephson junctions
In order to observe the genuine long junction behaviour one may need to move toward
longer lengths or lngher temperatures (see ”phase diagram” on Fig 9 7 in the Summary

of the thesis)
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data [FWK*03] The solid line 15 the theoretical calculation using our string escape
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Chapter 6

Long Annular Josephson Junction

In this chapter we consider truly long Josephson junctions, which are both longer than
Ay and exhibit appropriate switching characternistics, 1n particular, 77%% dependence of
the standard deviation on temperature We find the temperature dependent crossover
between intermediate and long junction domamns Also, m this chapter we explamn
weak dependence of the standard deviations on magnetic field of very long Josephson

Junctions

6.1 Long Annular Josephson Junction limit: simple
considerations

Consider a very long annular Josephson junction, L >> 1 where L 1s the circum-

ference The energy 1s

L2 (’92
Vigl = f dr [-—; + (1 —cosp) + v + hecoskr (61)
-L/2

with A =27 /L The extremal configurations satisty

Wrz —SIN@ — v — hcoshs =0 (6 2)
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and
w(—L/2) = p(L/2)

0e(~L/2) = 9a(L/2)

As the Jjunction 1s very long, the escape process begin at some part of the junction

(63)

Obwviously, the most ”biased” region for positive h 1s close to z = 0 In this region, the

term A cos kz can be approximated by 1 Thus,
Pzz —SINP —F =0 (6 4)

with ¥ = y+h The switching current 1s v, (h) = 5.—h = 1 —h For arbitrary magnetic
fields
Yelh) =1— ||

This should result 1n a sharp peak at the top of the switching current dependence on
magnetic field This can be seen clearly on the experimental data obtained by A Price
from Prof Ustinov’s experimental group in Erlangen (Germany), F1g 6 1 and Fig 6 2

Thus, the magnetic field only shifts the switching current by & Obviously, the
barnier height U(v.(h) — ~(h)) = U(F. — 4) does not depend on & Therefore, the

standard deviation 1s also independent of A
o(h) = const

This explains the experimental data Fig 6 1 and Fig 6 2 whete the obscived standard

deviation 1s almost mdependent on magnetic field

6.2 Long - short junction crossover

The enei1gy after decomposition,

L2 €2 g3
Ve = / dz [—" + 2= — 86 + h€coskr (65)
—-L/2 2 6
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while the equation of motion 1s

2
£I$—5+6—hcosk:r,=0 (6 6)
Close to z =0,
2

gzx—5+A:O (67)

A=5d—h
This 1s analogous to a classical equation of motion with £ and z playing a role
of a coordinate and time correspondingly The classical particle 1s subjected to the

potential U(£) = —553 + A There are two "stationary” solutions
f()’l(.’L') = :l:V 2A

corresponding to a particle resting at the top or bottom of the potential correspond-
ingly The particles also may undergo periodic oscillations close to the bottom & ~

—+v2A The minmal period of this osaillations 1s given by
w = U"(—=V2A) = (2A)1/4

Due to the periodic boundary conditions, this oscillatory solution may appear only if
2m
L>—
w
Irom what follows the crossover lenght
2n
(2A4) 1/
here Ay, 15 the average value when the switching occurs  According Garg,
N (3kBTlogX)2“
T\ 42 L E,

with log X = 5/6log(T"/To) mm my notation (case of moderate damping) Here we have

~
c —

used the expiession for the barrier height

=22 nue L
3
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normahzed to the unmit energy £y Thus,

1/6
L6622 ( 12 By )

= 211\ 3kpTlog X

E, 1/5
e84 ———
L 8 (kBTlogX)

From

log X ~ 11
Ey = 8600 K

T'~3K

that corresponds to the samples R35W3 (L ~ 18) and R50W3 (L ~ 26) we get

L.~26

that 1s just about the length of the sample R50W3

6.3 Another derivation

In case of a very long AJJ the escape occurs through the unstable solution

E(z) = V2A (1- 3sech? (2z/r))

(68)

with r = 4/(2A)/% being the width of the solution (e g [BL81), Eq (2 14)) That 1s

different from the homogeneous solution &;(z) = —v2A 1 case of a small junction

Let us formulate the criterra when the solution &(x) 15 valid We 1equire the width of

the solution (size of the VA pair) to be smaller than half lenght of the junction

4
W<L/Q
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Hence, the crossover lenght 1s
8

(20, )1/4

Thus, L < L, switching properties of the junction should be analyzed using *harmonic”

Lo~

approximation of the type £(2) ~ Acos(kz)+ B,1¢ the junction 1s effeetively ?short”
For L > L. one should use the solution of the SAN type (small-amphitude nucleus
according Buetttker [BL81]) that 1s & (1) as the escape goes through the VA pair

A o [BFsTlog X\
T\ 4821/4E,

nucleation

Barrter height in normahzed units

U = ViEa(@)] - Vigo(@)] = L2405

Eventually,

8 / 48214 g, \1®
= o (STrioet )

T i\ 5kaTlog X

E, 1/5
r~ _— 1
Le =11 (RBTlogX) (6.10)

For the same log X ~ 11 (we assume that log X should be about the same value as
above) this gives L. ~ 33 From the calculations above one can estimate the width of
the crossover region as a difference of the formula (6 8) and (6 10),

Ey 1/5
AL =26 ———— ~ 7
(kBTIOgX)
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Chapter 7

Fluxon in an Annular Josephson

Junction. Microshort Qubit.

We develop a model of a quantum qubrt based of an annular Josephson junction (AJJ)
with a microshort, The both cases of lytographical and pseudo-microshorts are con-
sicdered  Due to the microshort, a barne for a quantum fluxon motion 15 forined
Applymg a magnetic field parallel to the junction plane we show that such microshort
forms a double well potential for a fluxon As a result the fluxon 1s trapped 1 one of

the potential wells

7.1 Introduction

The use of superconductors for quantum computation 1s a prominent idea that 1n-
spire scientists over the recent years It relies on the significant advantages of using
macroscopically coherent state such as superconducting state Indeed, 1n the super-
conducting state the clementary charge shot noise 15 absent, while the 1educed number
of degiees of freedom due to a formation of superconducting long-range order helps to

enhance the coherence properties
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Recently different reahzations of superconducting qubits have been proposed One
of them 15 a formation of a charge qubit in Cooper boxes [NPT99, YPA103, PYA 03,
CBS*04] The other one 1s a flux qubit [NIOL*99] A superconducting tunnel junc-

tion circuit that behaves as a two-level atom' the ”quantromum” has been designed
An arbitrary evolution of its quantum state has been programmed with a series of
microwave pulses, and a projective measurement of the state has been performed by
a pulsed readout subcrrcuit [VACT02] Ewvidence for Entangled States of Two Cou-
pled Flux Qubits has been clearly presented [IGI*04] Reading out the state mduc-
tively and microwave spectroscopy of an interferometer-type charge qubit has been
performed {BSKT04] The 1dea of a vortex qubit has been reahised in different way,
with the use of a crcuit consisting of small Josephson junctions [GII05] In another
work of this group [GIvdP*05] a direct Josephson coupling between superconducting
flux qubits has been also realised There 15 a recent development of quantum com-
puting with the use of annular Josephson junction [WKL*00, KWU02, FU03, Cla03)
There the fluxon quantum states in a long annular JJ are proposed to use for quantum
computation The idea has got a further development Quantum tunneling of a single
vortex [\WWLL* 03] and rcad out of vortex states were successfully demonstrated for the
heart shape annular JJ [KWU02] Cieation of a double well 1n a long annular Joseph-
son junction has been also discussed recently [SK04] Here we propose to implement a
qubit by mecans of an annular Josephson junction (AJJ) with an mhomogeneity called
mucroshort We show that such microshort together with magnetic field parallel to the
Junction create a two states available for quantum computation Both the operation
and readout regimes for such qubit can be realized with the use of the external mag-
netic field and external bias current  We also show that in some hnut such qubit can be

described by a model of the pomnt impurity in an annular JJ, simlar to those proposed

by [Kat00] and by [SK04]
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7.2 Microshort qubit: general considerations

The two quantum states of the microshort qubit (MSQ) arise as a competition of
two forces ~ formation of a potential well due to magnetic field and a repulsion of the
fluxon by the impunty located 1n the centre of this potential well Different layouts of a
microshort qubit are possible ear-ring layout and wave layout Fig 71 We concentrate

our attention on the first one, that 1s based on an annular Josephson junction

¥ 9 1 e

L e anet : i
e !

SERIEE

(b)

Figure 71 Ear-ring and wave layouts

7.3 Annular Josephson junction with different mi-
croshort types

Consider the model of a microshort with the energy of phase configuration
o o

Lr2 Al ATV -2
Vie(r)] = /L/2 dr (1 + *T(:E)) [% + (1 —cosg) + ¢ — hgsmbhr (71)

where AW (z) = AW on the pseudo-mucroshort having the width Wy + AW and
the length Al There 1s no vanation AlV(z) = 0 elsewhete The manufactuie of

suchi a pscudo-microhsort can be produced with the use of a standaid hithographic
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process Such realistic manufacture methods makes these microshorts very attractive
for experimental investigations [PGK™]

Also, let us consider a model of the conventional microshort, where there 1s a local
enhancement of a cnitical current [MS78, KI96, Kat00] 1s described as a local point
mmpunty. The energy of the superconducting phase configuration for a long Josephson
junction with such a conventional microshort located at the position © = 0 may be

derived with a similar procedure and defined by the eq

L2 2
Vig(r)] = /L/z dr {% + (l + AZJAJC) (1 —cosg) +vg — hpsmkr (72}

where A = 27/L and L 1s a normalized circumference of the annular junction, Al 1s
a normalized length of the impurity One may notice strong similarities between the
models presented by the eq 71 and the eq 72 The classical configurations mimmiz-
ing both expressions, the (7 1) and the (7 2) are given by the perturbed sine-Gordon
equation

Pox —8INE —y+hsmkz =0, z ¢ microshort (73)

and the petiodic boundary conditions

H(=L/2) = @(L/2) - 2
£a(—L/2) = ¢(L/2)
1 case of a single fluxon trapped n the junction
We consider a trial function n the form of a non-perturbed sine-Gordon soliton
and use vanational method with respect to a single collective coordinate 1y (fluxon

posttion) Substituting

£(1) = 4 arctan ™" (7 4)

to the expressions for energies (9 22) and (9 21), we get an effective energy as a function

of I
27h cos(kTy) 2¢

kcosh(km/2) = cosh(zg)?

V(rg) = —n 2719 — (7 b)
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which 1s valid for a small microshort strength € << 1, with

Al Aje/3., for a conventional microshort
€ =

2 Al AW/W,y, for a pseudo-microshort

7.4 Switching current branches

Let us find the critical current when the switching of the junction to a resisitive
state occurs One of the branches of the critical current 1s associated with a fluxon
escaping from a well induced by the magnetic field In case of a long AJJ and small
impurity strength e << 1, 1t 1s reasonable to assume that this critical current 1s weakly

mfluenced by the mnpunty Therefore,

h

m (7 6)

Vel (h‘) =

The second branch 1s due to the impurity In this case we assume ry ~ 0 and

decompose the action (up to an additive constant)

3
V(zp) ~ =272 — To° (2(—' — M—)-) + z 0! (26 -—ﬂ—w—) (77)

cosh(&F 3 i cosh(])

That 15 a biased double well potential At large L we neglect the last term 1 brackets

Ik 4
V(To) ~ =2y Ty — r02 e — __lTTr + _5 T04 (7 8)
cosh(T”) 3

The fluxon positions and the critical point are defined by the equations
V,(.’L'g) =0 and V”(Ig) =0 (7 9)

Then, the second critical current 15

3/2
_ _hhimw
(26 cosh(kT") )

762(}1) = 371'\/2_6 (7 10)
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7.5 Quantum properties

To investigate quantum properties of AJJ with a microshort, we consider the Euchd-

ean actron
L/2 o2
Sgle(r, 7)] —/ d’T/ [ 2 = 4+ (14 €d(7))(1 — cos) +yp — hpsmkz
Lj2
(7.11)
The vortex coordinate x¢(7) 1s treated as time dependent now
¢(z, 7) = 4 arctan ¢ ~*7) (712)

Hence, the effective action obtained via an integration the eq 7 11 over x has the form

Sleto] = [ dr (T4 Vi) (713)

This 15 a problem of one-dimensional tunneling of a particle with mass

L/2 2 o 8
mf ( ):/d(ﬂ:g (714)
L/2 81170 dIO
At zero current the mstanton action, determining the coupling between the two wells,

15 given by
36 AV, 0

ow
normalized by Eohg/(fw,) The frequency at the bottom of the wells w 15 determined

by

Sinst = (7 15)

V”
w? = iﬁfﬂl’ (7 16)

I

where £z, are equilibrium positions of a fluxon, satisfying V'(+z.,) =0 Eventually,

we got very simple expression for the action associated with the fluxon tunneling

27 ik e
ot = = | 26— —— (717)
10 v2¢ cosh(£T)

One may see that this action decreases with magnetic field This means that the
barrier height associated with the microshort decreases It 15 obvious that for a longer

junction the mfluence of the magnetic field 1s weaker
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Figure 72 Dots are numerical calculation Solid hnes are the theoretical estimations

of the eritical currents
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Chapter 8

Perturbation Theory of Localized

Excitations. Decay of a Breather.

In chapter 5 has been noticed that phase escape of a weakly biased annular Josephson
junction under magnetic field may result m a creation of a breather — a bound state of a
fluxon and an antifluxon  In this chapter we considet the dynamies of such a breather m
the presence of small dissipation We develop perturbation theory especially designed
to describe excitations localized mn a confined arca We have carried out numerical
simulations with dissipative sme-Gordon equation and have made comparison with
the McLaughlin-Scott theory Sigmificant distinction between the McLaughlin-Scott
calculation for a breather decay and our numelical result indicates that the history
dependence of the breather cvolution can not be neglected even for small damping

parameter

8.1 Introduction

The sine-Gordon equation 1s one of the most famous 1n physics It was known yet

in 19th century, but its impoitance grew up when its localized solitary waves [Ra)82] or
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solitons were discovered First 1t was borrowed by particle physicists, but now appears
in various areas of physics It desribes chains of mechamical pendula, dislocations 1n
crystals and 1s extremely important in theory of superconducting Josephson junctions

In 1deal case when the Josephson junction 1s infimtely long and narrow, Josephson
sohtons can be descrnibed analytically by well known exact solutions of the sine-Gordon
equation However, there 1s always dissipation assoclated with quasiparticle current
through the Josephson junction and inhomogeneities associated with 1ts width and
thickness Moreover, real physical systems are always subjected to the influence of
external forces All these factors may have a significant impact on soliton behaviour

Although, the strictly one dimensional sine-Gordon equation 1s integrable [AS80,
Ra)82|, the perturbations to this equation associated with the external forces and 1n-
homogeneities spoil 1ts integrability and the equation can not be solved exactly Nev-
ertheless, 1f their influence 1s small, the solution can be found perturbatively The
perturbation theory for solitons was described m detail by [KM77] Later, 1n appl-
cation to the dynamics of vortices i Josephson contacts, perturbation analysis of the
sine-Gordon equation was developed by McLaughlin and Scott [MST78]

In many applications there appears a need 1 localized oscillatory solutions of the
sine-Gordon equation For mstance, a Josephson vortex pinned by an inhomogeneity
or a bound state of a vortex with an antivortex known as breather Breather nay
appear as a result of colhsion of a fluxon with an antifluxon or even in the process
of measurements of switcling current characteristics [GK06] The role of breathers 15
ambiguous Depending on our expectations, they can be parasitic excitations or, vice
versa, a good substance for generation of THz waves

There have been many theoretical and numerical studies dedicated to contmuous
sie-Gordon breathers [IC79, Ino79, KRS82, Kar82, LOS84, BFL*83, LS86, GJKS91,
GK93, 0881, CPS*78, DHN75, MT79, Ram01] In particular, the decay of a bicather

mnto a fluxon and antifluxon mduced by an external current has been studied by many
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authors [IC79, Ino79, KRS82, Kar82, LOS84] Morcover, 1t was shown [BFL*83,
LS86, GJKS91, GK93] that a breather can be stabilized by an ac drive even 1n the
presence of energy losses  Also, the influence of the boundaries on breather dy-
namics [OS81, CPS*78] has been mvestigated and quantization of 1ts energy spec-
trum [DHN75, MT79] has been predicted

Nevertheless, despite numerous theoretical studies, the dynamics of a bireather un-
der dissipation has not been fully understood McLaughlin-Scott theory gets overcom-
plicated when applied to nontrivial solutions such as breathers, whereas 1ts simphfi-
cations fail to predict the correct dynamics We have performed numerical simula-
tions of breather dynamics and found that there 1s a sigmificant discrepancy with the
McLaughhn-Scott calculation In particular, 1t manifests itself in the dependence of
the breather energy on time, Fig 8 1 The thin hine 1s the dependence following from
the McLaughlin-Scott calculation (formula (5 5) in Ref [MS78]) and the solid line rep-
resents our numerical simulations This discrepancy stimulated us to look mmto this
problem once agam and develop a perturbation theory that 15 designed especially for
localized solutions of the sine-Gordon equation We have found that at the construc-
tion of such theory 1t 1s very important to take into account the history dependence of
the breather evolution Also, we have carried out direct numerical simulations with the
dissipative sine-Gordon equation The numerical results appear i perfect agreement

with our theory

8.2 Perturbation theory for localized solutions
Consider the (141)-dimensional sine-Gordon equation

@ = @rp o =0 (81)
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Figure 8 1 Dissipative dynamies of a sine-Gordon breather Dependence of the energy

HSC of a breather on time ¢ calculated according to the McLaughhin-Scott formula
(5 5) from Ref [MS78] 1s presented by the thin solid Iine  Dependence of the energy
H9C of a breather on time  calculated by direct numerical simulations of sine-Gordon
equation with damping 1s shown by the thick sohd line The dampmng constant 1s

=001

The cquation possesses solutions mn the form of solitons (antisolitons)

1 —ut
@1, t) = darctanexp (iﬁ) (8 2)

The pecular feature of solitons 1s that they keep their shapes while moving and even

restore their shapes after collision The attractive forces between a soliton and anti-
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soliton allow their bound state — a sme-Gordon breather [Ra)82, MS78] (sometimes

called doublet or bion),

¢(x,t) = 4darctan oosh (83)
ucosh L=

which oscillates pertodically 1n time with frequency w = u/v/1 4+ u2

The reason why the McLaughlin-Scott formula for breather decay (the formula (5 5)
in Ref [MS78]) fails to predict correctly the dissipative dynamics of a breather 1s the
followmng Breather 1s an oscillatory solution that 1s charactenized by some " phase” that
depends on the history of the evolution In their general formulation McLaughlin and
Scott treat this difficulty by introducing the history dependent term ftz u(t') dt’ and
allowing additional time-dependent modulation of the free parameters (such as imtial
positions of fluxons or phases of breathers) mn the non perturbed solution [KM77,
MS78] The modulation of the free parameters 1s governed by additional differential
equations Obviously, this leads to additional complications because of the coupled
differential equations for the modulated parameters Moreover, with such a modulation
the oniginal solution no longer satisfies the non perturbed sie-Goidon equation exactly
so that additional perturbation terms appear [MS78] Here we describe a method
that does not involve the modulation of free parameters, but correctly deals with the
time-dependent dynamics due to an appropnately chosen ansatz of the non-perturbed
sine-Gotdon solution

Consider a solution of the sine-Gordon equation (8 1) in the form {g(u) 1, g(u) ut, u)
with g(u) = 1/v/1£u? Such a parametrization 1s natural for the sime-Gordon equa-
tion and obviously compiises the special cases of a soliton (8 2) and a breather (8 3)

The sine-Gordon Hariltoman 1s a functional of the field vanable ¢,

HSG[Aﬁ_ Ood ‘,02 ‘ﬁ?«c .
(f/]r- T ?4“?4-1—006(,/ (84)

Substitution of ¢ = £(g(u) 1, glu) ut, u} gives the effective encigy as a function of a
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single parameter u,
HZfj(w) = H¥[p(g(u) 2, glu)ut,u)]

The second argument of ¢{g(u)z, g(u)ut, u) which we call here a phase T(t) =
g(u)ut can be wiitten m different ways, such as T(t) = g(u) f; wdt' or T(t) =
f; g(u)udt’ Obviously, in the case of u mdependent of time these cases are equivalent
and the choice does not make any difference However, this definition of the phase
1s very important when taking mto account the influence of perturbations, as will be
shown below

In the presence of perturbations we assume that the dominant effect 1s to modulate
the parameter v = u(¢) In other words, with appropriate choice of u(t) we may satisty

the perturbed sine-Gordon equation

Y= @rztSME =cf

by the function ¢ = @(g{u(t)) z, T(t),u(t)) Here, we take the perturbation ¢f 1 a

general form

ef == mdlz—z)smg—y—ap

T

In contrast to the case of constant u, the choice of the non-perturbative solution 1s not
umque anymore Indeed, depending on the choice of the phase T'(t), we come out with
different functions of ¢ We will show, that with the appropriate choice of the phase
T(t) we may correctly describe the time evolution of localized sine-Gordon solutions 1n
presence of perturbations We describe the dynamies by a single modulated parameter
u = u(t) without introducing additional modulation of the free parameters This gives
considerable stmplification and umprovement because the other free parameters such as
metial location of solitons or mitial phases of breathers remain fixed and do not result

n auxihary differential equations like those mtroduced 1in the Ref [MS78]
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Consider the ansatz

Mdﬂﬂﬁﬂ%%ﬁﬂ)wmlTW%iLngDMﬁdf (85)

where function ¢ 1s an exact solution of non-perturbative sine-Gordon equation (8 1)
In further consideration we omit highlighting the explicit dependence of the functions
u = u(t) and T = T(t) for typographical convemience Obviously, the drawback of the

time modulation of u affects the time derivative of ¢,

d
¢ = Te(g(w) 7, T,u) = 41 0, uz + P29 u+ @su

Where @1, @2 and g3 are denvatives of ¢ with respect to first, second and third
argument correspondingly As we consider localized solutions confined in some area
|2| < C, the term ; ¢'(u) w1 18 of the order O(¢) The third term also can be neglected

as 1t does not contamn explicit linear terms in z and ¢ Therefore, denoting pr = 9,
¢ =wrgu+ Ofe) (86)

that remains valid even m the hmt of large times, ¢ — oc  Obviously, another choice
of T'(t) would spoil this equation with terms expheitly dependent on time ¢, e g for
T(t) = g(u(t)) fy u(t')dF we would have

t

plo(w)a, T u) = p1euT +p2gu+tagau / w(t')dt’ + 3 u
0

that contain a non-zeio term jot u(t’) dt’ proportional to ¢ Thus, m this case the
dynamics would not be correctly described on large time scales, f — oo Mclaughhn
and Scott overcome this problem troducing additional modulation of free parameters

Substituting (8 6) to (8 4) we obtain the effective energy as a function of u(t),

Sl (g(u(t)) = T(t), ult))] = HGH(u(t)) 87)
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that 1s valid for any values of ¢ It 1s important to note that this expression comncides
exactly with the effective energy of non-perturbed solution (8 4) and depends on time
inderectly only via u(t)

In the presence of external forces, we may wnite the full Hamiltoman,
H=H%+ H"

and take mto account the dissipative perturbations affecting the encrgy dissipation

rate [MS78]
% = —/_ vpldr

oG
The Hamiltonian H¥ serves to describe non-dissipative perturbations mduced by ex-

ternal potential forces This could be microshorts, microresistors or applied driving

current

/ (Z 6 )1 — cosp) +'Ys0) dx

Thus,
dHSG

e / (Z fa 0L — 2,) @ s + yp + ct(pz) dr

—CcQ

Substituting (8 7), we obtain the equation for parameter v,

dHSG

U d;ff / (Z,u (r — 7, (pSlan+’yga+(v<p2)d’r (8 8)

where ¢ = ¢(g{u)z T) and ¢ ~ 7 g(u) u should be substituted Tlis equation 1s

coupled to the equation for T,
T = glu)u (8 9)

In some cases 1t can be convenient to rewrite this system of differential equations for

independent varable T,

. dHSE, 1
F=- (T” g(u) U) SO O, md(a —z)p sy +7¢ +op?) de
F; -1
F = (o(v) u)

The dynamucs 1s described by «(7'(¢)), where T'(f) 18 a mverse function of #(T')

(8 10)
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8.3 Pinning by a microresistor
Let us consider a single solution
¢(g(w)) z,T) = 4arctanexp (g(u)z — T), g(u) =1/v1 —u2
subjected to the attractive potential of a microresistor
ef = —pé(z)smyp, pu<0

The energy of a sohiton 1s equal to

8
V1—u2

From (8 8) and (8 9) we obtain the next system of coupled differential equations,

Hff(}(u) o~

u = 1u(l — u®)sech®(T'(t)) tanh(T(¢))

T = %

I—u

(8 11)

We have found that after some simplifications, the McLaughlin-Scott s formula (4 3)
from Ref [NS78] can be reduced to the exactly the same system of differential equa-
tions Although, both approaches lead to exactly the same result, McLaughlin-Scott’s

formulation 1s, obviously, more cumbersome

8.4 Decay of a breather

Consider a breather solution

sinT
" — ta NNEN ST AEYEY
e(g(u) z,T,u) = 4arctan (u cosh (Q(U)T))

with g(u) = 1/v/1+ u? As a perturbation we consider the dissipative term

€f = —ayp
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The effective energy 1s

16
HfH(u(t)) =

T V1 +ut)?

From (8 10) we obtain the next system of coupled differential equations

u? arctanh (—E‘T—)

du __ (1+‘U.2 )3/2 cos? T + Ven? Toud
= pi
dT sin® T+u? sinT A/sin? T+u? (8 12)
dt . Vidu
dr u

where « = «(7'(¢)) This1s a new result that may not be obtained from the McLaughlin-
Scott theory by straightforward mamipulation The system can be solved numerically
The dissipative dynanues of a breather 1s well 1eflected by tune dependence of its
energy, Iig 8 2 The results are mn perfect agreement with our numerical simulations

using the complete sine-Gordon equation with dissipative term

8.5 Conclusion

In summary, we have found that our perturbation theory describes well the dy-
namics of locahzed excitations subjected to mfluence of external forces such as various
mhomogenaities and damping associated with quasiparticle current In particular, we
have described a fluxon trapped in a potential well which could be related to a microre-
sistor 1n the Josephson junction Here the equations derived with the use of our method
cowcides 1dentically with equations dertved by McLaughhin-Scott [MS78] However the
derivation of these equations obtamed by our method 15 significantly simpler  Second
we have deseribed the decay of the breather under dissipation In this case, the equa-
tions are dillerent from the McLaughlin-Scott’s [MS78] According to our calculation
the breathel 1s decaying sigmificantly faster In order to resolve this difference we have
performed numerical simulations with dissipative sine-Gordon equation The results

of these numesrical simulations are i close agreement with our theoretical results The
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20 40 60 30 100 120 140

Figure 8 2 Dissipative dynamics of a sine-Gordon breather Dependence of the energy
HS5C of a breather on time ¢ calculated using perturbation theory for localized sine-
Gordon solutions (thin hne) Dependence of the energy H5% of a breather on time ¢
calculated by direct numerical simulations of sine-Gordon equation with damping 1s

shown by the thick solid lime The damping constant 1s o = 0 01

compatison of our perturbation theory with the McLaughlin-Scott’s calculation [MS78]
indicates that the history dependence of the breather evolution has a strong influence
on 1ts dynamics even at low damping

To conclude, we have developed the perturbation theory which perfectly describes
the localized 1n space solutions of sine-Gordon equation The theory may allow gener-

alization to ngher dimenstons This can be of use to study localized pulsating solutions
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of sine-Gordon 1n two spatial dimensions [PZ98]
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Chapter 9

Two-dimesional Josephson

Junctions

In the previous chapters we have discussed a thermal escape of a superconducting phase
difference 1n a long annular Josephson junction It has been stated that the escape
process 18 analogous to the escape of a classical string from a potential well Here we
consider the case of a two dimensional geometry where a similar role 1s played by a
membrane Starting with a two dimensional formulation and appropriate boundary

conditions we reduce the description to an effective single variable equation

9.1 2D Josephson junctions

Stationary 2D sine-Gordon equation 1in normahzed Caitesian coordinates has the
form

Vip —simg =0 (91)

The boundary conditions follow from the continuity of the tangential component of

magnetic field Hy parallel to the junction’s boundary and the relation [BP82] (pp 79,
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112)
20 pod

Vg = H x e, (92)

0
(MKS umts) where d 1s a magnetic thickness of the junction (d =~ 2)p), e, 1s a normal

to the plane of the junction, H 1s a superposition of external magnetic field He*
and magnetic field generated by currents We can normalize this expression to the

Josephson penetration depth, that in MKS system 1s given by

5 i
A, = = 93
! \/Qeuodjc \/2modjc ©3)

Assume the magnetic field 1s laying 1n the plane of the Josephson junction (XY plane)

and the normal vector n 1s defined on the junction boundary pointing outside Thus

the boundary conditions expressed in normalized coordinates are

1
n Vo=«xn (Hxe,), with k= (94)
/\J Je
where the rght hand side can be written explicitly,
n Ve =x(nH, —n,H,) (9 5)

Magnetic field induced by the bias current at the point r 1n normalized coordinate

system,
Ay [I) x(r—1)
H(r) = == a*r’ 96
x) 47r] [r — /|3 (96)
As we assume homegeneuty of the current, J(r') = —je,, we may take 1t out from the

mtegral Using r = p + ze, we integrate over z (in the hmt of an infimte film width),

LN fex(p—p) o,
H(p) = -52 [y 97)

H,(r.y) = J/\J/f }—y)di dy’ (98)

(' —z)+ (¥ —y)?

O e %)

20

Or expliatly

and




9.2 Square geometries

A
f T® !
- Y
ch o
Figure 91

In case of square geometry, the value of magnetic field on the corner

ch — J /\J chn
2w

and on the border close to the corner

., 33X Lk,
chlose to the corner — \/i = 2\/571’

where k., 18 a geometrical factor for the corner of the square,

ken =160

When calculating the geometrical factor using the formulas above we have neglected
the magnetic properties of the matenal and have assumed =1
Let us consider a laige junction of square geometry, L > 1 Introduce the coord:-

nates (£,7) with a center at the left bottom corner

r+y r—1
£ = =

vz TS

Peg T gy — s = 0
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The boundary conditions become

p, _ yLke
o9 = o
Ve — Py Y Lken

where we have introduced 4 = /5. From the last condition,

¥ Lken
Enlr=¢ = Peln=¢ — o

Assuming @el,—¢ =~ ¢¢ly=0 as the vortex penctrates i € direction,

¥ Lken
‘Pn|n=£ = 9"6|ﬂ=0 -

On the other hand, from the symmetry we also may conclude that

Prlp=0 =0

Hence, with the use of the boundary conditions on the corner

~ %rlg:S - @5(‘5)[?7:0 —g_ ‘PE(O)|77=0 ~ ?9«5&(5)

That 15 valid close to the comner of the square On the other hand, the equahty

(&)

Loy =2 e 15 also satisfied 1n the center of the square due to the symmetry Eventually

we get an approximate one dimensional equation
2@ —smp ~ (0
The solution to this equation 1s a sime-Gordon soliton stretched along the € axis,
(£) = darctan c(E-0)/V2
The maximal slope guaianteed by this solution 1s

@' (&) = V2
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From what the critical current follows

The critical current 1n physical units,
[.~586y. L /\3

that 1n case of a large square depends linearly on the size of the junction compared to
the case of a small junction

In conclusion, the switching to resistive state of large square Josephson junctions
occurs due to Josephson fluxons penetrating from the corners of the geometry They

can be approximately described as stretched sine-Gordon solitons

9.3 Derivation of the microshort models

In order to denve an effective 1D model fiom the discussed above 2D model we
have to start with the conventional 2D Sine Gordon equation written i normalized

polar coordinates
Py 10g 1 d%
o trgr tagm —ome =0 (©10)

Let us assume, that the has current 7 1s flowing umformly, paiallel to the junction
ax1s The magnetic field generated by a thin cylhinder 1s equal to I /27 Ay (7 - a distance
from the symmetiy axis) outside and 0 mside Thus, the boundary conditions can be

written as
3]
-ﬁr:m =kH s 6 (911)
i
Op kI
==, — ,.He:r:t 9 _
gr =R T R Y T S e

(9 12)
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Figure 92 Dependence of the normalized critical current 4, on the linear size of the

square junction under constant material parameters A; and 3. The dots correspond to

numerical calculation with a 2D geometry The sohid line 1s the theoretical dependence

for large squares (L > 1) The last 4 points are calculated for the lenghts L=37 5,

50, 75 and 100, that corrseponds to the experimental samples 15x15 pm?, 20x20 pum?,

30x30 grm?, 40x40 pm? and A; = 0 4 pm

For AR < 1 (1e the width 1s less than A;) we assume that 9y /0r 1s hnear function

of r
Op e ' kI (r—R)
FrR A wy - ey~
82 kl

ar2 ~  2nR.ARX,
Substituting mnto the eq (9 10) and usimng AR < R,, R.

1
ﬁ\ﬁao—smp—v-l—hmné):(l

with [ ~ R, ~ I?., and we have introduced the notations

k1 1

= — — X I =2 2
STRARN, L where 1, TRARMN ;.

v
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Figure 93 Numerical calculation for a 2D square geometry with a side L=2
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Figure 94 Numerical caleulation for a 2D square geometry with a side L=15




Figure 95 Nurmernical calculation for a 2D square geometry with a side L=50

The normalized magnetie field 1s defined as

f’{,cht
h = 917
: (017)
From this expression we see that the field b 1s notmalized to field unt
(I)()R
Rik = ——— 918
/% 2mpodA g ( )

With the substitution # = 27r/L = kr we rccover the conventional model for AJJ as
Cor — SN — 7y + Asimkr =0 (919)

This equation can be obtaned durectly from the following energy functional

Lj2 1. 2

Vie(z)] = / {%—T- +1—cosg+yp — hosinkz| rdr (9 20)
—L/2

If there 15 a variation mn a local width AW or in the tlhuckness Ad of the AJJ mn a

comparison with the width Wy or the thickness Ad of the AJJ the similar procedure
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Figure 36 Superconducting phase difference (&) across the corner of the square with

L=50 External current 1s close to the critical The lowest curve (blue) — numecrical

calculation, the top curve {black) — theory

can be apphed In the case when such vanations are small we may use the perturbation

theory The perturbation expansion may result to the model

Lz Al ATV o2
Vie(@)} = j dr (1 + IW—I(Q:)) [% + (1 —cos) + v — hpsimkr|  (921)
~L/2 0

where AV (7} = AW on the psendo-microshort having the width 1, + AW and the
length Al The re 15 no vanation AlV{(z) = 0 elsewhere The manufacture of such a
pscudo-microhsort can be produced with the use of a standard hithographic process
Such 1ealistic manufacture methods makes these micio-shoits very attractive for all
possible experimental investigations

In previous studies 1t was mentioned the models of the conventional microshort,
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where there 15 a local enhancement of a critical current [MS78, KI96, Kat00] may
be described as a local pomt impurity The energy of the superconducting phase
configuration for a long Josephson junction with such a conventional mecrohsort located

at the position z = ) may be denived with a sunilar procedute and defined by the eq

Lz Tl Al A
Vie(z)] = /L/2 dx [% + (1 + ; Jc) (1 —cosy)+ vy — hesinkz (9 22}

where k£ = 27 /L and L 1s a normalized circumference of the annular junction, Al 1s
a normalized length of the impunity One may notice strong similanties between the
models presented by the eq 9 21 and the eq 9 22 Within the quasi one-dimensional
approxiumations, the both equations eq 921 and the eq 9 22 result m two identical

models described 1n the chapter 7

2mh cos(kxy) 2e
kcosh(km/2) = cosh(xp)?

V{ip) = —=v2ma0 — (9 23)

with

Al Aj./7.,  for a conventional microshort
£ =

2 AL AW/W,,  for a pseudo-microshort
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Summary and Conclusions

In the first part I have studied the process of quantum tunneling of an Abrikosov
vortex responsible for switching of a superconducting dot to a non-magnetic state
Similar process may arise m Josephson contact when tunnelng of a single Josephson
vortex trapped 1 an annular Josephson junctions leads to switching to resistive state
This sitnation may appear when the read out of the proposed microshort qubit 1s
realized Bias of the annular Josephson junction by an external current decreases the
potential barrier that confines the fluxon and forces its escape via quantum tunneling

I have summanzed the switching phenomena of an AJJ on a single "phase di-
agram” Fig 97 One may immmediately see its perfect symmetry This symmetry
has a fundamental nature concerned with the analogy between quantum mechanics of
n-dimensional systems and classical statistical mechanmics mn (n+1)-dvnensions The
explanation of this umque rescmblance between n-dimensional quantum and (n+1)-
dimensional classical worlds 1s still a mystery According to A N Polyakov the reasons
may be concerned with the fundamental properties of the space-time continuum [Pol87]

Let us consider a set of annular Josephson junctions with varying lengths Suppose
we have small annular Joscphson that effectively behave like a O-dimensional object
and long annular junctions that are analogues of 1-dimenstonal objects According the
statement above, there should be coirespondence betw cen quantum short annular junc-

tions and classical long annular junctions Mathematically, the instanton trajectories of
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quantum short AJJ correspond to stationary trajectories of the vortex-antivortex type
of the ¢lassical long annular junctions Because the main contribution to the imagiary
action 1s by the periodic-in-time trajectories (see part I of the thesis), the quantum
0-dimensional Josephson junction can be seen as an "annulus in time”. As for quantum

long annular junctions, they are represented by toruses in space-time continuum

[ ) 3
Quantm ; Quantum
Small | Long
514 ; 1

5 |
: o
; 5/4
: . L

Figure 97 7"Phase diagram” of an annular Josephson junction Indices are the critical
exponents of the Fuchdean (instanton) action close to the switching pownt " Thermal”
stands for thermal escape according the classical statwstical field theory, "Quantum” -

for the phase escape via quantum tunneling

Let us summarize the 1esults obtained n this study
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1. Demagnetization rate of a superconducting quantum dot 1s found to be given by

the formula (2 23).

2 The quantum tunneling rate has been calculated by means of the nstanton
technique and standard WKB. Both method give the identical result

3 A model of switching of an annular Josephson junction has been proposed The
recent experimental data has been explamed (Fig 5 2,F1g 5 3)

4 A formula for the crossover length between short and long annular Josephson
junctions has been found (Eq (6 8), (6 10))

5. The model of a microshort qubit has been proposed

6 Perturbation theory describing localized excitations has been developed

7 Switching of two-dimensional Josephson junctions has been analyzed In par-
ticular, switching current of a large Josephson junction of square geometry has been

calculated
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