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Abstract 

Modal testing is routinely applied to tyres for the identification of structural parameters and 

prediction of their vibration response to excitations. The present work focuses on the more 

demanding case of modal testing with the aim of constructing a full mathematical model of a tyre, 

appropriate for use in a generic time-based simulation. For this purpose, the less common free-

free boundary condition is employed for the wheel, while the tyre belt is excited in all three 

directions, namely radial tangential and lateral. To improve efficiency, a novel partial 

identification method is developed for the mode shapes, whereby measured and predicted 

frequency responses are matched around distinct resonance peaks, while eliminating the effect of 

out-of-band modes. Axial symmetry of the tyre requires high purity mode shapes to avoid angular 

dependency of the tyre’s response. For this reason, experimental mode shapes are digitally filtered 

and combined with their orthogonal counterparts. Processed data reveals apparent repetition of 

selected mode shapes and this is attributed to rim deflection.              
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List of Symbols 

Aij(ω)  Accelerance FRF from jth excitation to ith measurement point 

dqr  Modal participation factor of complex mode r 

{dx}  Calculated displacement vector of tyre belt  

Fi  Force along the ith degree of freedom 

P  Number of peaks (or troughs) in a mode shape  

sr  Complex eigenvalue of rth mode 

𝚻𝚻𝟏𝟏,𝟐𝟐  Transformation matrices from complex to real eigenvectors 

𝐓𝐓𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨,𝐓𝐓𝐨𝐨𝐨𝐨𝐨𝐨  Partial and total transformation matrices for obtaining orthogonal eigenvectors 

Y(𝑙𝑙)  Mode shape as a function of position along the tyre circumference 

Z  Amplitude of mode shape 

Greek Symbols 

αij(ω)  Receptance FRF from jth excitation to ith measurement point 

ξr  Damping ratio of rth mode 

φir  ith entry of the rth complex eigenvector 

𝚽𝚽  Overall matrix of equivalent real eigenvectors 

xi  Measured displacement of ith degree of freedom 

𝚿𝚿 or [Ψ] Overall matrix of complex eigenvectors 

{ψr}   rth complex eigenvector 

ω  Frequency 

ωr  Undamped natural frequency of rth mode 

ωs  Spatial frequency of mode shape 
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1. Introduction 

Modal testing of pneumatic tyres has been mainly used for identification and validation of 

analytical and finite element tyre models along with experimental identification of tyre properties 

and prediction of tyre structural response.  

Z Genk et al. in [1] and A. A. Popov and Z. Genk in [2] investigated the experimental 

identification of tyre damping with the wheel rigidly attached to a seismic table. In these works, 

the general non-proportional viscous damping model is suggested as more suitable for describing 

tyre damping. Tyre in-plane structural properties, i.e. mode shapes, natural frequencies and 

damping ratios, have been identified by F. Chengjian et al. in [3] performing both single and 

double-input modal testing. These results reflect only the radial response of the radially excited 

modes. A similar – radial excitation and response – in-plane study has been carried out by D. 

Guan et al. in [4], in which the structural differences between radial-ply and cross-ply tyres are 

demonstrated for several inflation pressures. L. H. Yam et al. in [5] adopted a more complete 

approach as they investigated the three-dimensional tire response resulting from radial and 

tangential excitation forces.  

The work of P. Andersson et al. in [6] investigates the influence of different tread patterns on the 

modal properties of the tyre while research conducted by I. Lopez et al. in [7] and [8] examines 

the effect of rotation on the dynamic response of the tyre and consequently on the observed 

eigenvalues. Typically, experimentally identified modal quantities may be used for the validation 

or parameterisation of a FE (Finite Element) model. For example, the response of a FE model is 

compared to modal data in the work of Y. Guan et al. in [9]. The reconstruction of a mathematical 

model of the tyre represents the ultimate use of modal information. F. Chengjian and G. Dihua in 

[10]  and D. Guan et al. in [11] have developed vertical and enveloping models using modal 

parameters in an analytical context. 

 

The present work presents a new method for efficient testing and post-processing for 

identification of high purity in-plane and out-of-plane tyre modal parameters. In this context, high 
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purity refers to free-from-noise mode shapes. A decision has been made to focus on the free-free 

boundary condition whereby the wheel is suspended from elastic chords. This is done with a view 

of using the identified modal parameters for the reconstruction of a generic mathematical model 

of a tyre’s structure that can be paired with a model of a suspension in a full-vehicle multi-body 

dynamics simulation [12]. The work herein focuses on the identification of the modal data and 

does not include the construction of the final tyre structural model. A passenger car tyre is used 

for demonstration of the method with its modal parameters identified and presented in the paper.        

2. Theoretical background 

For a tyre structure represented by N nodes and 3N degrees of freedom (radial, tangential and 

lateral per node), the relationship between the excitation and deformation vectors is expressed as 

follows: 

 

 �

𝑥𝑥1(ω)
x2(ω)
⋮

x3N(ω)

� = �

α11(ω) α13N(ω)
α21(ω) α23N(ω)

⋮
α3N1(ω)

⋯ ⋮
α3N3N(ω)

� ∙ �

F1(ω)
F2(ω)
⋮

F3N(ω)

� (1) 

 

where xi is the deformation of the ith degree of freedom, Fj is the force applied on the jth degree of 

freedom and αij is the respective receptance FRF (Frequency Response Function). As each node 

is defined in the three-dimensional space, the elements of the two vectors included in eq. (1) are 

presented in nodal groups consisting of three elements each: 
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The deformation of each node is defined with respect to a local, nodal-specific 

radial/tangential/lateral frame of reference, as shown in figure 1. 

 

 

Figure 1 – Nodal coordinate system 
 

The coordinate system shown in figure 1 indicates the axes along which acceleration is measured 

during testing. The radial direction is defined by axis Xrad which is normal to the surface of the 

tyre and points outward of the surface. Axis Xtan  defines the tangential direction which is 

orthogonal to Xrad and points clockwise. The lateral axis Xlat is obtained as the cross product of  

Xrad and Xtan and points into the page. As shown on the left-hand-side of eq. (2), the deformation 

triplets measured in the nodal frame of reference are arranged in the following order: radial, lateral 

and tangential for all the measurement nodes. From eq. (2) it is evident that (3N)2 frequency 
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response functions are required to fully describe a tyre. Such a large number may impose a 

significant challenge in terms of modal testing. To minimise the necessary number of frequency 

response functions, the principle of reciprocity is applied according to which: 

 

 αij(ω) = αji(ω) (3) 

 

This assumption is shown to be valid in [1], [2]. Due to eq. (3), only the upper or the lower 

triangular matrix of the FRF matrix in eq. (2) needs to be experimentally identified. Moreover, 

due to the non-proportional nature of tyre belt damping, the elements of the FRF matrix are 

expressed as follows [13]: 

 

 αij(ω) = ��
φirφjr

ar(iω− sr)
+

�φirφjr�
∗

ar∗(iω− sr∗)
�

m

r=1

 (4) 

 

where φirφjr is the residue of mode r, ar is the scaling factor of mode r set equal to unity, ()* denotes 

the complex conjugate of the quantity in the brackets and sr is the rth eigenvalue of the tyre belt: 

 

 sr = −ωrξr + iωr�1 − ξr2 (5) 

 

In eq. (5), ωr is the undamped natural frequency and ξr is the damping ratio of mode r. The 

numerators of the fractions in eq. (4) form the eigenvector matrix, comprising the first m tyre belt 

eigenvectors: 

 

 [Ψ] = �
φ11 φ12 φ1(m−1) φ1m
⋮ ⋮ ⋱ ⋮ ⋮

φ3N1 φ3N2 φ3N(m−1) φ3Nm
�

3Nxm

= [{ψ1} … {ψm}] (6) 
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Equations (2), (4) and (6) reveal that, due to consistency of modal constants [14], the tyre belt 

structure can be described by obtaining only three consecutive rows or columns corresponding to 

a particular node: 
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By comparing eq. (7) and eq. (1), it becomes clear that the number of the required FRF has been 

reduced from the initial (3N)2 to a more manageable number of 9N. This approach not only allows 

for a more economical and efficient modal testing procedure; it does so without any loss of 

fundamental information [12]. At this point, to enhance experimental efficiency with minimal 

loss of accuracy, an ad hoc assumption is made that there is no exchange of energy between in 

and out-of-plane modes [12]. According to this assumption an in-plane excitation will not trigger 

an out-of-plane mode and vice versa. This simplification does not apply in practice but can be 

considered harmless. Firstly, it was found that the lateral response to radial excitation was 

insignificant and difficult to confirm as a genuine lateral response to radial excitation, or 

conversely to dismiss as a lateral response due to small misalignment of the excitation probe 

and/or other similar effects. Essentially, it is difficult to robustly identify the cross-talk between 

radial/tangential and lateral directions, as the level of the response lies generally within the 

experimental noise band. Secondly, it must be emphasised that the measured mode-shapes are 
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true in their respective directions and for as long as they refer to the tread centre-line and small, 

linear deflections. A tyre model based on the identified mode shapes would provide realistic belt 

deflection at small lateral slip but no associated change in tyre radius because of that slip. This is 

a tolerable limitation of such a model. Of course, at very large (non-linear) slip, the radius of the 

tyre would be expected to change slightly because of that slip. This would involve highly non-

linear material/geometry interactions that are clearly not captured by a linear decoupled modal 

model. The sated simplification significantly reduces the workload imposed by modal testing, as 

it further reduces the required FRFs from 9N to 5N. This reduction is reflected in the following 

expression: 
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Having derived the structure of the receptance matrix, the next step is to experimentally identify 

the quantities populating the FRF matrix of eq. (8).  

3. Experimental layout 

The experimental parameters and the equipment used to populate eq. (8) are presented in table 1: 

Table 1 

Experimental parameters & equipment (for full details see [12]) 

Tyre Continental 195/50 R15 

Sampling rate 20000 [Hz] 

Analogue band-pass filter [1 3000] [Hz] 

Force transducer Brüel & Kjær – Type 8230 

Accelerometer Brüel & Kjær – Type 4332 
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Charge Amplifier Brüel & Kjær – Nexus Type 2691-A-0S2 

Modal Shaker Brüel & Kjær – LDS V201 

Acquisition Card NI PCIe-6259 

 

Similar works conducted in the past propose two different approaches regarding the boundary 

condition of the tyre. In the work of Z. Geng et al. in [1] the tyre is attached to a seismic table. In 

contrast, the free-free boundary condition is adopted by L. H. Yam et al. in [15]. In this paper the 

latter approach is followed with the tyre vertically suspended by several elastic bands ensuring 

that the excitation force of each test is applied along a direction normal to the direction defined 

by the primary axis of each band so as to minimise any reaction forces, see figures 2 and 3 and 

ref. [12]. 

 

Figure 2 – Experimental layout (in-plane excitation) 
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Figure 3 – Experimental layout (out-of-plane excitation) 
 

Adoption of the free-free boundary condition aligns with the scope of the proposed modal testing 

procedure, which is the identification of tyre modal properties to be implemented in a simulation 

environment. To fully understand the necessity of having the tyre freely suspended, one may 

consider the origin of the eigenproperties of any mechanical system, i.e. the solution of the 

eigenproblem formulated by the system of homogeneous differential equations of motion. By 

rigidly fixing in space any point of the structure, the respective columns and rows of the 

abovementioned system are omitted and consequently the eigenproperties obtained by the new 

eigenproblem are not related exclusively to the structure under investigation, but they depend on 

the adopted attachment method as well. Further, if a structure is to be accelerated in space by a 

generic load vector, the modal description of this structure must correspond to one that includes 

the rigid body modes. These rigid modes need not be identified themselves as they are easy to 

derive from the structure’s mass and geometry; however, the identified flexible modes should 

belong to the set that contains the rigid modes as well.  

 

The tyre is represented by 30 equi-spaced nodes along its circumference. As implied by eq. (8), 

the excitation force is applied on a single node. Several possible excitation methods are proposed 

by D. J. Ewins in [13]. In the present work, white Gaussian noise is preferred to a periodic 

excitation. The downside of using a periodic excitation, for example a sinusoidal frequency sweep, 
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is the deterministic relation between the excitation at the moment of examination and the 

excitation applied at every previous moment. In that case, a deterministic relation will exist in the 

response history of the structure as well, and this relation will influence the identified properties. 

To overcome this problem, the frequency components of the excitation signal must be defined in 

a stochastic rather than a deterministic manner, hence the use of a Gaussian excitation. 

 

The excitation force and the respective acceleration of every belt node are expressed in the 

frequency domain and thus the accelerance function is calculated. To populate the FRF matrix of 

eq. (8), the experimentally obtained accelerance functions are transformed into receptance 

functions as follows: 

 

 αij(ω) = −
Aij(ω)
ω2  (9) 

 

where αij(ω) is the receptance function corresponding to the ith and the jth node and Aij(ω) is the 

respective accelerance function. 

4. Post processing and identified properties 

4.1 Initial post processing 
 

Having experimentally populated the receptance FRF matrix of eq. (8), the next step is the 

estimation of the modal properties of interest, namely the residue and the eigenvalue of each mode. 

Keeping in mind the non-proportional nature of tyre damping and combining eq. (4) and (5), the 

following expression for the receptance functions holds: 

 

 αij(ω) = ��
φirφjr

�ωrξr + i �ω − ωr�1 − ξr2��
+

φir∗ φjr∗

�ωrξr + i �ω + ωr�1 − ξr2��
�

m

r=1

 (10) 
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Index m approaches infinity as new modes are included at increasing frequency. In practice 

though, there is an upper identifiable value of m which mainly depends on the experimental layout 

and the equipment used. This implies that there will always exist out of band residual modes, 

which are expressed by terms C1 and C3:   

 

 
αij(ω) = −

1
ω2Μij

R

�����
C1

+ ��
φirφjr

�ωrξr + i�ω − ωr�1 − ξr2��
+

φir
∗ φjr

∗

�ωrξr + i�ω + ωr�1 − ξr2��
�

m

r=1

�������������������������������������������
C2

+
1

Kij
R

�
C3

 

(11) 

 

These residual terms are included within the experimentally obtained frequency response 

functions. As a result, the modal quantities of eq. (10) cannot be directly identified and an indirect 

approach is required instead. Initially, the area surrounding each resonance of any particular FRF 

– where a single mode is dominant – is examined separately, see figure 4. This area requires a 

minimum of one term of eq. (4) describing the overall FRF. In practice additional terms may be 

included to improve accuracy in the neighbourhood of the resonance. In the current work, the sum 

of two terms has been used as shown in eq. (12).  

 

 αij
ω1→ω2(s) =

A1

s − s1
+

(A1)∗

s − (s1)∗ +
A2

s − s2
+

(A2)∗

s − (s2)∗ 
(12) 

 

The eigenvalue which yields a natural frequency closer to the resonance frequency is the most 

accurate estimate for that particular mode.  
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Figure 4 – Identification of an FRF in the neighbourhood of a single resonance 
 

On the contrary, the respective residue cannot be obtained via the numerators in eq. (12), as the 

residual terms C1 and C3 of eq. (11) are also included in the measured response but not accounted 

for in eq. (12). Hence an alternative approach must be adopted. B. J. Dobson in [16] proposed an 

identification method which considers the out-of-band modes and the resulting identified 

properties refer only to the modes of interest. This was achieved by assuming that the residual 

terms C1 and C3 are constant near each resonance. Dobson’s method was developed for cases with 

hysteretic damping, so an alternative version to allow for the identification of structures with non-

proportional damping is proposed here. The starting point for the new method is the equation 

describing the receptance FRF of the rth mode, as follows: 

 

 αr ij(ω) =
φirφjr

(iω− sr)
+

φir∗ φjr∗

(iω− sr∗) + K ⇒  

 

 αr ij(ω) =
Ar ij + Br iji
(iω− sr)

+
� Ar ij − Br iji�

(iω− sr∗) + K ⇒  
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αr ij(ω) =

� Ar ij + Br iji�(iω− sr∗) + � Ar ij − Br iji�(iω− sr)
(iω− sr)(iω− sr∗)

+ K 

(13) 

 

where K stands for the effect of the remaining modes on rαij(ω). If ωf is a frequency close to the 

natural frequency of mode r, the respective value of the FRF is: 

 

 
αr ij(ωf) =

� Ar ij + Br iji�(iωf − sr∗) + � Ar ij − Br iji�(iωf − sr)
(iωf − sr)(iωf − sr∗)

+ K 

(14) 

 

As mentioned above, it is assumed that the residual term K remains constant in the vicinity of 

mode r and can be eliminated by defining a new function [12]: 

 

 
D(ω) = � αr ij(ω) − αr ij(ωf)� (iω− sr)(iω− sr∗)(iωf − sr)(iωf

− sr∗) 
(15) 

 

The main property of the above relation is that the residual term K is eliminated by subtraction in 

the first set of brackets (term αr ij(ω) − αr ij(ωf)), which allows for the identification of the pure 

residue of mode r. Substitution of eq. (13) and (14) into eq. (15) yields the following quadratic 

expression: 

 

 
D(ω) = �2 Ar ijωfi − 2 Ar ija − 2 Br ijb�ω2 + �−2 Ar ijωf

2i − 2(a2 + b2)i + 2�−2 Ar ija − 2 Br ijb�ai�ω

+ C 
(16) 

 

where a and b represent the real and the imaginary parts of the eigenvalue sr respectively.  
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Having identified the rth eigenvalue of the system using eq. (12) and having experimentally 

obtained the receptance FRF close to the respective resonance, it is possible to express eq. (15) 

as follows: 

 

 D(ω) = K1ω2 + K2ω + K3 (17) 

 

By comparing the analytical terms of eq. (16) with the associated experimentally identified terms 

of eq. (17), the real and imaginary parts of the residue are estimated as follows: 

 

 
Λ1 = Re(K1) = −2 Ar ija − 2 Br ijb

Λ2 = Im(K1) = 2 Ar ijωf
� ⇒  

 

 

Ar ij =
Λ2

2ωf
 

Br ij =
−2 Ar ija − Λ1

2b
 

(18) 

 

The only required parameter in the above procedure is the fixing frequency ωf which, if selected 

close to the natural frequency of mode r, should not affect the estimated values of rAij and rBij. 

Nevertheless, due to experimentally induced errors in calculating Λ1 and Λ2 and numerical 

inaccuracy in estimating the eigenvalue of mode r, terms rAij and rBij are found to vary slightly for 

different fixing frequencies, resulting in different FRF curves, as depicted in figure 5. 
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Figure 5 – Variations of the fitted FRF with fixing frequency ωf 
 

Considering that mode r is dominant around the resonant frequency ωr, the most accurate amongst 

the curves presented in the above figure is the one which minimises the selection criterion of 

expression (19): 

 

 ��α(ωr)exp� − � αr (ωr)est�� → 0 (19) 

 

By applying this criterion, the optimum pair of rAij and rBij is obtained: 

 

 

Figure 6 – Final fitting around a single peak of the FRF 
The application of the above procedure on the response functions acquired along the 

circumference of the tyre leads to the calculation of the associated eigenvectors. Having obtained 

the residues of every radially excited mode, the respective residue vector is formulated: 
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� Arad + Brad i�

= [φ1φ1 0 φ3φ1 … φkφ1 0 φ(k+2)φ1 … φ(3N−2)φ1 0 φ3Nφ1]T 
(20) 

 

The complex eigenvector associated with the above residue vector is obtained by: 

 

 {ψr} =
� Ar + Br i�

φ1
⇒  

 

 {ψr} = [φ1 0 φ3 … φ3N−3 0 φ3N]T (21) 

 

Similarly, for the tangentially excited modes: 

 

 
� Atan + Btan i�

= [φ1φ3 0 φ3φ3 … φkφ3 0 φ(k+2)φ3 … φ(3N−2)φ3 0 φ3Nφ3]T 
(22) 

 

 {ψt} =
� Atan + Btan i�

φ3
⇒  

 

 {ψt} = [φ1 0 φ3 … φ3N−3 0 φ3N]T (23) 

 

and for the laterally excited modes: 

 

 � Alat + Blat i� = [0 φ2φ2 0 … 0 φkφ2 0 … 0 φ(3N−1)φ2 0]T (24) 

 

 {ψl} =
� Alat + Blat i�

φ2
⇒  
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 {ψl} = [0 φ2 0 … 0 φ3N−1 0]T (25) 

 

4.2 Identified properties 
 

The fitting procedure described by eq. (12) is applied to the in-plane and the out-of-plane modes 

of the tyre, providing the respective natural frequencies and damping ratios. Table 2 presents these 

quantities for the case of in-plane radially excited modes, table 3 for the in-plane tangentially 

excited modes and table 4 for the out-of-plane laterally excited modes. 

Table 2  

In-plane Radial Modes (after [12]) 

Mode 
Nat. Freq. [Hz] 
(radial resp.) 

Nat Freq. [Hz] 
(tangential resp.) 

Delta 

[%] 

Damp. Ratio [%] 
(radial resp.) 

Damp. Ratio [%] 
(tangential resp.) 

1 115 118 2.58 3.63 3.81 

2 131 133 1.51 6.19 5.91 

3 155 153 1.30 6.61 6.28 

4 180 180 0.00 5.93 6.26 

5 208 207 0.48 5.48 6.05 

6 242 241 0.41 3.28 2.35 

7 275 276 0.36 5.81 5.91 

8 320 321 0.31 5.61 6.71 

9 371 370 0.27 6.87 6.87 

10 413 420 1.68 7.05 5.77 

 

Table 3 

In-plane Tangential Modes (after [12]) 

Mode 
Nat. Freq. [Hz] 
(radial resp.) 

Nat Freq. [Hz] 
(tangential resp.) 

Delta 

[%] 

Damp. Ratio [%] 
(radial resp.) 

Damp. Ratio [%] 
(tangential resp.) 
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1 108 106 1.87 4.14 3.54 

2 116 117 0.86 4.22 4.09 

3 134 135 0.74 6.50 6.63 

4 153 150 1.98 6.06 6.25 

5 177 177 0.00 5.28 6.48 

6 196 198 1.02 4.23 8.18 

7 207 208 0.48 4.64 5.26 

8 236 238 0.84 4.47 4.24 

9 273 272 0.37 4.51 4.56 

10 318 318 0.00 4.74 4.58 

11 375 375 0.00 5.95 5.18 

12 404 403 0.25 4.06 4.59 

13 473 459 3.00 1.64 2.20 

Table 4 

Out-of-plane Modes (after [12]) 

Mode Natural Frequency [Hz] Damping Ratio [%] 

1 59.39 2.75 

2 72.95 4.83 

3 103.19 4.38 

4 114.91 3.70 

5 131.26 4.49 

6 152.63 5.50 

7 174.56 4.78 

8 195.14 4.38 

9 216.03 3.44 

10 246.21 3.67 

11 274.12 4.68 
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As expected, for the cases where the response of each node is measured along the radial and the 

tangential directions, there is agreement in terms of natural frequency (see [5]). This agreement 

is quantified by the Delta function: 

 

 Delta =
|ωr − ωt|

(ωr + ωt)
2�

 (26) 

 

It is evident that in both cases of in-plane modes the natural frequency discrepancy along different 

response directions is kept below 3%. 

Table 4 suggests the existence of two out-of-plane modes (59.39 and 72.95 Hz) which do not 

correspond to any in-plane mode. These modes represent the translational out-of-phase/out-of-

plane motion of the belt with respect to the rim. In these low-frequency lateral modes the belt 

displaces with respect to the rim without flexing, hence there is no coupling with tangential or 

radial modes. This relative displacement is shown later when the relevant mode shapes are plotted. 

The identified eigenvectors are complex, which indicates of non-standing waves. This complexity, 

which derives from the non-proportional nature of tyre damping, is evident in the Argand 

diagrams in figures 7-11 where the eigenvector components are distributed in the phase range [-

180o 180o]. 

 

 

Figure 7 – Argand diagrams: complex radial modes, radial response 
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Figure 8 – Argand diagrams: complex radial modes, tangential response 
 

 

Figure 9 – Argand diagrams: complex tangential modes, radial response 
 

 

Figure 10 – Argand diagrams: complex tangential modes, tangential response 
 

  0.025

  0.05

30

210

60

240

90

270

120

300

150

330

180 0

Mode 1

  0.025

  0.05

30

210

60

240

90

270

120

300

150

330

180 0

Mode 2

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 3

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 4

  0.1

  0.2

30

210

60

240

90

270

120

300

150

330

180 0

Mode 5

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 6

  0.1

  0.2

30

210

60

240

90

270

120

300

150

330

180 0

Mode 7

  0.1

  0.2

30

210

60

240

90

270

120

300

150

330

180 0

Mode 8

  0.1

  0.2

30

210

60

240

90

270

120

300

150

330

180 0

Mode 9

  0.1

  0.2

30

210

60

240

90

270

120

300

150

330

180 0

Mode 10

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 1

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 2

  0.1

  0.2

30

210

60

240

90

270

120

300

150

330

180 0

Mode 3

  0.1

  0.2

30

210

60

240

90

270

120

300

150

330

180 0

Mode 4

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 5

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 6

  0.1

  0.2

30

210

60

240

90

270

120

300

150

330

180 0

Mode 7

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 8

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 9

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 10

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 11

  0.1

  0.2

30

210

60

240

90

270

120

300

150

330

180 0

Mode 12

  0.025

  0.05

30

210

60

240

90

270

120

300

150

330

180 0

Mode 13

  0.025

  0.05

30

210

60

240

90

270

120

300

150

330

180 0

Mode 1

  0.025

  0.05

30

210

60

240

90

270

120

300

150

330

180 0

Mode 2

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 3

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 4

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 5

  0.1

  0.2

30

210

60

240

90

270

120

300

150

330

180 0

Mode 6

  0.1

  0.2

30

210

60

240

90

270

120

300

150

330

180 0

Mode 7

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 8

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 9

  0.025

  0.05

30

210

60

240

90

270

120

300

150

330

180 0

Mode 10

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 11

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 12

  0.05

  0.1

30

210

60

240

90

270

120

300

150

330

180 0

Mode 13



22 
 

 

Figure 11 – Argand diagrams: complex lateral modes, lateral response 
 

4.3 Complex to real normal modes 
 

Although the experimentally identified complex modes presented in the previous section may be 

used in a simulation environment – which is the broader scope of the present research – the 

equivalent real modes need to be calculated for validation purposes and for comparison with 

previously published results. Amongst several transformation methods, the one developed by N. 

Niedbal in [17] is implemented in the present work. According to this approach, the real and the 

complex eigenvectors are related via the following transformation: 

 

 𝚽𝚽 = 𝚿𝚿𝚻𝚻𝟏𝟏𝚻𝚻𝟐𝟐 (27) 

 

where Φ and Ψ are the real and complex eigenvector matrices respectively and T1, T2 are 

transformation matrices. The first step is the calculation of transformation matrix T1, the real part 

of which is set equal to the identity matrix and the imaginary part is obtained by the following 

expression: 

 

 Im(𝚻𝚻𝟏𝟏) = −�Re�𝚿𝚿𝐓𝐓�Re(𝚿𝚿)�
−1

Re�𝚿𝚿𝐓𝐓�Im(𝚿𝚿)Re(𝚻𝚻𝟏𝟏) (28) 
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Having calculated the transformation matrix T1 and having experimentally identified the 

eigenvalues of the system, the following two auxiliary matrices are obtained [12]: 

 

 𝐌𝐌 = 𝐓𝐓𝟏𝟏T𝚻𝚻𝟏𝟏 (29) 

 

 𝐊𝐊 = 𝐓𝐓𝟏𝟏T�𝐬𝐬𝟐𝟐�𝚻𝚻𝟏𝟏 (30) 

 

The eigenproblem formulated by the above two matrices yields the second transformation matrix 

T2: 

 

 [𝐊𝐊 − [fr2]𝐌𝐌] 𝐓𝐓𝟐𝟐 = {0} (31) 

 

The real eigenvectors of the system are obtained by substitution of transformation matrices T1 

and T2 in eq. (27). These real eigenvectors lead to the real radial, tangential and lateral mode 

shapes shown in figures 12-16 (also see [12] for full detail). 

 

 

Figure 12 – Real mode shapes obtained via radial response to radial excitation 
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Figure 13 – Real mode shapes obtained via tangential response to radial excitation 
 

 

Figure 14 – Real mode shapes obtained via radial response to tangential excitation 
 

 

Figure 15 – Real mode shapes obtained via tangential response to tangential excitation 
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Figure 16 – Real mode shapes obtained via lateral response to lateral excitation 
 

4.4 Digital filtering of mode shapes 
 

Real tyre belt mode shapes have been previously obtained analytically [18] and it is proposed that 

each mode shape is a sinusoid of amplitude Z and of a single spatial frequency (ωs), along the 

circumference of the tyre belt (variable 𝑙𝑙): 

 

 Y(𝑙𝑙) = Zsin(ωs𝑙𝑙) (32) 

 

Visual inspection of the real mode shapes calculated in the previous section (figures 12-16) shows 

the presence of significant noise in the expected sinusoids. To quantify the amount of noise, the 

identified mode shapes are transformed in the spatial frequency domain using the Fast Fourier 

Transform. As an example, figure 17 shows the spatial frequency content of the 2nd radial mode 

of the tyre. 
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Figure 17 – Spatial frequency spectrum 
 

From figure 17 it is evident that there is one dominant spatial frequency component (rmax) and this 

is true for every identified mode shape. To eliminate noise, filtering is applied according to eq. 

(33) and the new spatial frequency spectrum – figure 18 – consists of a single sinusoidal form, 

see eq. (34).  

 

 Zisin(ωsi𝑙𝑙) = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑙𝑙𝑙𝑙 i ≠ rmax  (33) 

 

 Y(𝑙𝑙) = Zrmaxsin�ωsrmax𝑙𝑙�  (34) 
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Figure 18 – Spatial frequency spectrum (digitally filtered) 
 

Thus, without any loss of fundamental information (since the dominant spatial frequency is 

retained in whole), this digital filtering procedure allows for noise-free mode shapes which – 

when coupled with the phase of the original complex modes – can be readily implemented in a 

tyre simulation environment. The resulting filtered real mode-shapes for all modes are shown in 

figures 19-28, see also ref. [12].  
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Figure 19 – Radial response to radial excitation: comparison of original (dotted lines) and filtered (solid lines) mode shapes 
 

 

Figure 20 – Polar plots of modes obtained from radial response to radial excitation 
 

 

Figure 21 – Tangential response to radial excitation: comparison of original (dotted lines) and filtered (solid lines) mode shapes 
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Figure 22 – Polar plots of modes obtained from tangential response to radial excitation 

 

Figure 23 – Radial response to tangential excitation: comparison of original (dotted lines) and filtered (solid lines) mode shapes 
 

 

Figure 24 – Polar plots of modes obtained from radial response to tangential excitation 
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Figure 25 – Tangential response to tangential excitation: comparison of original (dotted lines) and filtered (solid lines) mode 
shapes 

 

 

Figure 26 – Polar plots of modes obtained from tangential response to tangential excitation 
 

 

Figure 27 – Lateral response to lateral excitation: comparison of original (dotted lines) and filtered (solid lines) mode shapes 
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Figure 28 – Three-dimensional real lateral mode shapes 
 

The frequencies associated with the first two lateral modes in figure 28 (59.39 Hz and 72.95 Hz, 

see also table 4) do not correspond to any in-plane modes and this is because these modes do not 

include lateral flexing of the belt as mentioned earlier.  

 

4.5 Apparent repetition of mode shapes 
 

The modes presented in the above section include several occasions of repeated mode shapes, 

which are not found in previous analytical and experimental results, since a particular pattern of 

tyre belt deformation cannot occur in more than one natural frequencies. To further study these 

spurious modes, the motion of the rim was measured and examined. Tables 5 and 6 summarise 

the state of the tyre belt and the rim for each problematic mode. The asterisk (*) indicates modes 

which include combined rim and belt resonances. Analysis of the rim motion revealed that for 

any set of repeated mode shapes there is only one mode featuring pure belt deformation. The 

remaining modes describe a different state of tyre-rim motion, as belt deformation is coupled with 

flexing of the rim. In the current work these rim deflections are omitted under the assumption of 

a rigid rim and only the flexible belt modes are considered. 
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116.5 Hz (*) 132.0 Hz 

  

 

 

Table 6 

Repeated lateral mode shapes 

59.4 Hz (*) 73.0 Hz (*) 

  

103.2 Hz (*) 114.9 Hz (*) 
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152.6 Hz (*) 174.6 Hz (*) 195.1 Hz 

   

216.0 Hz 246.2 Hz (*) 

  

 

4.6 Orthogonal modes 
 

Because of symmetry in tyre geometry [13], the identified set of mode shapes is not generally 

sufficient to predict belt deformation under any arbitrary excitation. Dealing with arbitrary 

deformations is necessary when the identified modal model is to be used as a tyre model in multi-

body simulation [12]. To overcome this limitation, an orthogonal mode set is required so that the 

deformation of the belt is obtained as a linear combination of the deformation (participation 

factor) of each mode and its orthogonal counterpart. To illustrate this, the spatial deformation of 

the belt due to a single mode is considered as follows: 

 

 {dx} = dqr{ψr} (35) 
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Where {ψr} is the eigenvector of mode r, dqr is the corresponding modal participation factor and 

{dx} is the deformation vector of the structure.  

The eigenvector {ψr}orth  which is orthogonal to {ψr} is obtained by rotating this initial 

eigenvector by an angle δφ. The value of δφ depends on each mode shape and specifically the 

number of peaks contained within it and is given by the following equation: 

 

 δφ = π p�  (36) 

 

where p is the number of peaks (or troughs) contained within the initial mode shape. Looking at 

the first identified radial mode as an example, p=2 and the rotation angle is δφ=45ο. This angle is 

used in the calculation of the transformation matrix of each node as follows: 

 

 𝐓𝐓𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 = �
cos(δφ) 0 −sin(δφ)

0 1 0
sin(δφ) 0 cos(δφ)

� (37) 

 

and the calculation of the overall transformation matrix: 

 

 𝐓𝐓𝐨𝐨𝐨𝐨𝐨𝐨 = �
𝐓𝐓𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 … 0
⋮ ⋱ ⋮
0 … 𝐓𝐓𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨

� (38) 

 

Having obtained the overal transformation matrix, the new orthogonal eigenvector derives from 

the following equation: 

 

 {ψr}orth = 𝐓𝐓𝐨𝐨𝐨𝐨𝐨𝐨{ψr} (39) 

  

Equation (40) represents an alternative version of eq. (35), which has been extended to include 

the initial (term A) and the associated orthogonal eigenvector (term B) of the first radial mode: 



35 
 

 

 {dx} = dq1{ψ1}�����
A

+ dq1orth{ψ1}orth���������
B

 (40) 

 

 

Figure 29 – 1st radial mode and its orthogonal 
 

The first radial mode and its associated orthogonal mode obtained using eq. (39) are shown in 

figure 29. Application of this procedure to every experimentally identified mode yields the 

following expression for the calculation of the total deformation vector: 

 

 {dx} = �dqr{ψr}
m

r=1

+ �dqrorth{ψr}orth

m

r=1

 (41) 

 

where m is the total number of identified modes. This approach allows for describing any possible 

belt deformation up to the maximum natural frequency of the modes included in eq. (41). 

 

5. Conclusions 
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The structural parameters of a pneumatic tyre have been experimentally identified. The tyre was 

suspended freely in space, with the excitation force during each test being perpendicular to the 

supporting elastic bands to minimise reaction forces. The tyre belt was excited along the radial, 

tangential and lateral direction of the first node using a white noise signal. The in-plane response 

of every node was acquired for the radially and the tangentially excited modes. For the case of 

lateral modes, the lateral response of each node was obtained. 

Excitation and response signals were processed in the frequency domain, providing the elements 

of the FRF matrix which were used to estimate eigenvalues by application of a typical rational 

fraction polynomial method. The natural frequency and the damping ratio of each mode are 

calculated directly from these experimentally identified eigenvalues. Good agreement is found 

between natural frequencies obtained for the same mode along different response directions. 

Moreover, there is good correlation between the natural frequencies of radial, tangential, and 

lateral modes although the out-of-plane modes include two additional modes to the in-plane ones. 

In both these additional out-of-plane modes, the tyre belt moves laterally with respect to the rim 

without flexing, hence there is no coupling with in-plane modes.  

The identification of the residue of each mode presented a challenge, as the neighbourhood of the 

experimentally obtained frequency response function around the resonance of a specific mode is 

influenced by all the remaining modes. Considering the non-proportionality of tyre belt damping, 

a new identification method was developed which eliminates these residual terms allowing for 

the exclusive identification of the mode residue under investigation. This identification process 

allowed calculation of the complex eigenvector matrix. The complex eigenvectors were 

transformed into real ones for inspection and comparison with similar published results. To 

enhance the quality of the obtained data, all spatial eigenvectors were transformed into the spatial 

frequency domain and the dominant spatial frequency of each mode shape was identified. The 

remaining frequency components were eliminated and the mode shapes were reconstructed using 

only the dominant spatial frequency. Visual inspection of the digitally filtered waveforms 

revealed several repeated mode shapes, an observation which does not agree with the literature, 

or expectation. To investigate further, the motion of the rim was acquired and processed. This 
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showed that for every case of repeated mode shapes there is one mode of exclusive belt resonance, 

at most. In the remaining repeated modes, the belt resonance is coupled with rim resonance so 

these modes describe a different state of the tyre/rim assembly. Moreover, to fully describe any 

possible configuration of the belt – up to the maximum experimentally identified natural 

frequency – a second set of modes was analytically calculated. This set of mode derives by 

rotation of the original modes, to create orthogonal pairs.  

The final step is the reverse transformation from real to complex modes. This is achieved by 

coupling the digitally filtered real modes with the complex phase component of the 

experimentally identified complex modes. 

The main sources of error in the suggested procedure are the narrow-bandwidth partial 

identification of residues by assumption of a constant contribution of out-of-band modes, as well 

as digital filtering of the eigenvectors in the spatial domain. The latter point requires further 

explanation. With the suggested filtering, the underlying dominant sinusoid is maintained, while 

all spatial noise is removed from the eigenvector. This is appropriate if a perfectly symmetric tyre 

is required. However, if the aim is to model a specific real tyre with potential manufacturing 

asymmetries, it is possible that some of the rejected noise is due to inherent asymmetric behaviour 

of the tyre. The current procedure does not distinguish between genuine asymmetries and 

experimentally induced noise, resulting always in perfectly symmetric eigenvectors. Inherent 

asymmetries could manifest as additional vibration and harshness during tyre operation in a full 

vehicle simulation environment. Clearly, this information would be missing from the model. 

Despite this shortcoming, preliminary attempts to synthesize a tyre model from modal data 

obtained by the suggested method have been largely successful, with the synthesized tyre model 

showing very good correlation with the real tyre in terms of vertical stiffness, while also capturing 

the expected increase of relaxation length with vertical load [12], [19]. 

Although the developed procedure is thorough enough to allow synthesizing a tyre model from 

modal data [19], it can also be used to parameterise physical tyre models used in multi-body 

simulations, such as the FTire [20]. Typically, such models require cleat testing to identify many 

of their structural parameters. Cleat testing involves the tyre rolling over cleats on purposely 
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designed rest-rigs which constrain the vertical motion of the wheel and measure the resulting 

force as the cleat passes under the tyre at different speeds. Given the success of the synthesized 

model in predicting the vertical stiffness of the tyre [19] and provided that the size of the cleat is 

relatively small so as not to introduce severe non-linearities in the response, a modally 

parameterised tyre model should show representative cleat response. In this respect, the proposed 

method is more economical than cleat testing in that it does not require the use of costly test 

benches. On the other hand, during cleat testing, other aspects of a tyre model may be identified, 

such as the tread stiffness and damping, as well as corrective parameters that aim to improve the 

correlation between measured and simulated impact loads. The latter tend to be severely non-

linear so that a mere superposition of linear radial/tangential modal responses cannot offer the 

required fidelity. Where high fidelity in terms of durability loads is required, cleat-test-based 

identification is likely to give much better results.       
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