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ABSTRACT 

Several series of sequential mterpenetratmg polymer networks usmg natural rubber and 

poly(methylmethacrylate) were prepared. Three types of IPNs known as semi-1 IPNs, 

semi-2 IPNs and full IPNs have been prepared at vanous compositiOns In addition, 

blends of natural rubber and poly(methylmethacrylate) were prepared for comparison. 

These materials have been charactenzed by dynamic mechanical thermal analysis, 

modulated-temperature thermal differential scanmng calonmetry, stress-stram analysis 

and some soxhlet extraction studies. The effects of composition and cross-lmkmg ofNR 

component and/or PMMA component on the physical and dynamic mechanical properties 

have been evaluated. 

All types of IPN and the blends produced in this study were phase separated. However, 

the blends exhibited considerable amounts of mixmg of components resultmg most 

probably from graftmg PMMA chains on to natural rubber. In addition, incorporation of 

PMMA m to the natural rubber matnx rendered high tensile strength and modulus which 

tended to mcrease with mcreasmg PMMA content. 

Cross-lmking of the natural rubber m the semi-! IPNs reduced the extent of mixing of the 

NR component as was evident from DMTA data. In general, cross-hnking of the first 

polymer natural rubber, mcreased the extent of mixing of the PMMA component 

resultmg in a extensive mterphasial regions in the semi-! IPNs. Tensile properties 

significantly Improved with cross-lmking of the NR component 

Some mixmg of the NR component was evident for the semi-2 IPNs. Cross-linkmg of the 

PMMA component mcreased the extent of component mixmg resultmg in a substantial 

mterphase content m the semi-2 IPNs The tensile strength of these semi-2 IPNs 

mcreased with cross-hnkmg and the optimum tensile strength was found to be dependent 

on the EGDM level. 
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Cross-lmkmg of both components in the full IPNs improved the extent ofmlXlng of the 

components over the corresponding semi-2 IPNs The tensile properties and the 

mterphase content of full IPNs were comparable to the semi-! IPNs. 

Attempts were been made to improve the compatibility between the natural rubber and 

poly(methylmethacrylate) components by mcorporatmg epoxidised natural rubber (ENR) 

m to this system. Incorporation ofENR-45 and ENR-60 Improved the extent ofmlXlng of 

natural rubber component as was evident from the promment shift of the NR glass 

transitiOn to the higher temperature. With mcrease of the epoxidatwn level to a 60 mole 

%, the miscibility between the ENR component and PMMA component was mcreased 

when compared to the ENR with 45 or 50 mole % Apart from this, the physical 

properties such as tensile strength and tear strength m creased with mcorporation of ENR 

Because of the phase separation between the ENR and PMMA components, further 

attempts were made to Improve the compatibility. This target was achieved using I 0 

wt.% of acryhc acid which resulted in significant shifts m the NR and PMMA 

transitions. Moreover, compatibihzatwnlmiSCibihty between the ENR and PMMA 

components has been Improved to achieve a VIrtually miSCible system by incorporatmg 

acryhc acid at a level of20-30 wt.%. 
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CHAPTER 1 

1.1 General description 

Th1s chapter descnbes the composition, preservatiOn and biosynthesis of 

natural rubber (NR) latex. In addition, the methods which have been used for the 

modification of NR are also included Among the modified forms of NR, 

mterpenetrating polyn~er networks (IPNs) based on NR has been considered as 

one of the novel modified forms ofNR, as this modification method had not been 

prevwusly investigated thoroughly. Hence, the present investigation IS 

fundamentally concerned with IPNs based on NR and polyn~ethylmethacrylate 

(PMMA) A hterature survey on the chem1cal modificatiOn of NR and on IPNs 

based on NR and PMMA has been earned out and will be presented in the latter 

part of !Ius chapter. 

1.2 Natural rubber latex 

NR latex can be described as the cytoplasm of anastomosed cells stored m 

parenchyn~a cells or laticifers (d' Auzac, 1989). Laticifers are primanly div1ded 

into articulated and non-articulated types. Articulated-type lat1c1fers have a smgle 

or branched series of cells m which the end walls are perforated and form a 

anastomosed system. In Hevea and Mamhot glazzovl! of Euphorbiaceae, a 

branched artiCulated laticiferous system IS present and forms lateral anastomoses 

(Figure 1 1) ( d' Auzac, 1989). 

Even though ea. 7000 plants possess latex, exploitation of latex in the 

majority of plants is imposs1ble due to the presence of resm m the latex. 

Therefore, the Hevea braszlzenszs tree, the best plant for obtammg latex, has been 

cultivated on a commercial scale in most of the South Asian countries The NR 

industry plays a v1tal role m the econom1cs ofthese countries. 

1.2.1 Composition of rubber latex 

NR latex 1s obtamed from the tree bark by a process called tappmg, wh1ch 

helps to exploit the secondary laticifer vessels of the tnmk. As these latlcifers are 
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located m the phloem tissues, tapping process will not cause any damage to the 

tree (Figure 1.1) (d'Auzac, 1989). 

FIGURE I t Sketch of the general orgamzation of Hevea bras
ilrensu bark at tappmg cut level. (C) cambium; (CP) cooductmg 
phloem., (ISB) mner soft bark. (L) laticiferou:s vessels. (OHB) 
outer hard bark, (SX) secondary xylem, and (VR) vascular my. 
(Adapted froqa H(!!:bant~ C ,. Devic, C. • and de F.ay, E , Rev 
Gen. Caoutch Plasr. 614~ 97, 1981.) 

F1g.l.l Diagram of Hevea braszlzenszs bark 

Field latex, thus obtained, consists of 25-40 % (w/w) of rubber. Details of 

the rubber particles have been thoroughly mvestigated and it was found that most 

of the rubber particles (ea 3 - 5 pm Sizes) are spherical, but some are pear

shaped, surrounded by a thm skm, which is phospho-hpoprotem1c in nature 

(d' Auzac, 1989) Further, it is covered with a protein layer, whose isoelectnc 

point IS recorded as 3 0 to 50 (d'Auzac, 1989). Further, H braszlzenszs latex 

particles are found to be possessed of a negative charge ( d 'Auzac, 1989). In 

addition, the most important protein in fresh latex is Identified as a- globulin With 

a low content of sulphur [0.06 % (w/v)] (d' Auzac, 1989). NR latex also consists 

of non-rubber substances such as protems, lip1ds, sugars, minerals etc Fresh latex 

contains ea. 0 9 % (w/v) of hp1ds. Lipids are present m vanous types such as 

phospholipids, sterols, sterol esters etc. Phospholipids are long cham fatty acid 
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esters of glycerophosphoric acid. However, most of the hpids are found m the 

rubber phase and a lesser amount could be found m Frey-Wysshng particles 

(resmous globules beanng the yellow-orange colounng matter of latex which are 

bounded by a double membrane) Latex can be differentiated mto vanous 

fractiOns and a systematic diagram of the vanous fractions obtained from latex 

via the ultra-centrifuging method IS shown in Figure 1.2. 

AGURE 1 ':1 Ultracentrifugation of Hevea latex Fresh latex coTiected m ICe
clulled flask, 30 mm after btppmg, was eentnfugated !53,620 g max X 40 
mm) at a temperntUTe between 0 and 50C Fucttons 1-3 correspond to the 
whue rubbe&- phase Fract1on 4 1s a yellow-ornnge layer cono;tnuted by Frey
Wysshng panac:les Fractaon S IS an almost clear serum (C-serum) corre<;pond
mg to the latex cytosol Fracuons 6 to 11 const1tute the bouom fraclton'' m 
wh1ch fraction 8. quantuauvely the more tmportant ts the lutotd frac~ton 

Fig. 1.2 Fractions of NR latex (Adapted from Moir G. F J , Nature (London), 

184, 1626, 1959). 

Accordmgly, the white fraction, obtamed by ultra-centnfuging of NR 

latex, mainly consists of rubber particles The underlying layer, which appears 

yellow-orange m colour, mamly consists of Frey-Wyssling particles. They are 4-

6 pm in diameter and covered by a double membrane (d'Auzac, 1989). These 

particles contam carotenmds and enzymes, which are mvolved in the yellow 

colouration of rubber and isopremc synthesis pathway, respectively, (d' Auzac, 

1989). 

The bottom fraction contams lutoids (B serum) and It occupies I 0-20 % 

(v/v) of fresh latex These are spherical m shape (1-3 pm), covered with osmo-
3 



sensitive single membranes As a result, they swell and then burst in a hypotonic 

medium (d' Auzac, 1989) Ac1d hydrolases present in lutoids (d'Auzac, 1989) can 

serve as coagulatmg agents of the latex. In add1tion, due to the presence of Ca 2+, 
Mg2+ ions and pos1tively charged proteins, they have a destab1hzmg effect on the 

latex. Hence, bursting oflutmd particles releases ac1d hydrolases and the above

mentioned into the medium, which ultimately cause the coagulatiOn of the latex. 

Lutoids also contain anwmc proteins. Gel filtration studies ind1cated that B serum 

contains three basic protems: hevamine A and B, hevein, and ergothiOneine 

( d 'Auzac et al., 1989). Among these proteins, hevem 1s considered as the maJor 

protem (molecular weight ea 5 kDa) (d'Auzac, 1989) Apart from that, lutmds 

also contam microhehces, m1crofibnls, mtralutmd enzymes such as 

polyphenolox1dase. 

Various elements and organic solutes such as 1% (w/v) quebrachitol, 

glucose and fructose are found to be present in cytosol serum (C- serum). 

Furthermore, organ1c acids such as c1tric, succimc, fumaric, acomtlc, and lactic 

acid (d' Auzac, 1989) are also available in C- serum In addition to these non

volatile materials, volatile fatty ac1ds (VFA) such as form1c, acetic, propiomc, 

butync ac1ds are also present m latex. Furthermore, 1t is ev1dent that nucleiC acids 

such as soluble RNA, DNA and messenger RNA are present m C-serum 

(d' Auzac, 1989) 

1.2.2 Preservation of latex 

NR latex is a d1spers10n of rubber particles m water havmg ea. 30 % 

(w/w) of dry rubber content (DRC) However, field latex could not be directly 

used for product manufactunng due to the low level of DRC and therefore, 

centnfuging and creaming processes are commonly employed to increase the 

DRC in latex. 

It is a well-known fact that NR latex undergoes pre-coagulatwn, due to 

the formation of formic and acetic acids, resultmg from the microbial action on 

the sugars, such as quebrachitol, present in NR latex These acids are capable of 

coagulatmg the latex and this process is referred to as pre-coagulation oflatex. In 

addition to th1s process, bacteria can act on protems and produce fatty ac1ds, 

wh1ch thereafter partmlly replace the protein layer. These fatty acids can react 
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with Mg+2 tons available in the medmm and form msoluble magnesmm soaps, 

which facilitate coagulatiOn oflatex (Peiris and Femando, 1983). 

Therefore, prevention of pre-coagulation IS vital in the NR latex mdustry 

and preservatives are used for this purpose. Basically, latex can be preserved 

either for short or long periods. 

Short-term preservatives can also be referred to as anti-coagulants. 

Ammorua is the most widely used anti-coagulant as It destroys the bactena 

present m the medmm and helps to neutralise any acid already formed m the 

latex. In addition, the stability of latex IS Improved by the formatiOn of 

ammomum salts of the fatty acids and by removmg the magnesium tons, present 

m NR latex, by precip1tatmg magnesmm ammomum phosphate as a sludge. 

Instead of ammoma, sodium sulphite, washmg soda, and formaldehyde 

can also be used as anti-coagulants. Among these chemicals, sodmm sulphite IS 

preferred as the anti-coagulant m the crepe rubber manufactunng process as It 

helps to prevent the enzymatic dtscolouratwn. NRL can be preserved for longer 

penods by using the preservative systems given in Table 1.1. 

1.3 Natural rubber 

Previous studies based on NR mdiCated that the structure of NR IS 

essentially a 1,4-polyisoprenO!d in which monomer umts are jomed m head-to

tail fashwn (Hames, 1919, Pummerer et a/, 1931). IR studies revealed that NR 

contains a mmtmum of 97 % (w/v) 1,4-pol)'lsoprene. The presence of 1,2-

structures was hardly evident. 3,4-Structures apparently exist as indicated by the 

presence of weak infra-red absorptiOn at 390 cm·1 (Salomon et al., 1954; 

Dinsmore, 1955) In addition, X-ray studies mdtcated that repeat distance of the 

chain molecule is 0 81 run which is shorter than that of fully extended plam cham 

(Katz, 1925) This suggests that the rubber molecule is non-planar and shortening 

has occurred due to the rotatiOn around single bonds. 

NR exhibits excellent properties such as high tenstle strength, good green 

strength, which is attributed to the stram crystallization, low hysteresis, high 

resilience, resistance to fatigue and excellent tack. Therefore, It is an extremely 

important material in manufactunng articles, which require these properties 

5 



Table. 1.1 Preservative systems for centnfuged NR latex (Rubber handbook, 1983) 

Type oflatex 

High ammoma latex (HA) 

Low ammonia 

latex (LA) 

LA-SPP 

LA-BA 

LA-ZDC 

LA-TMTD-ZnO 

Amount of chemicals use for preservation 

0.7% ammonia 

0 2 % ammoma + 0 2 % sodmm pentachlorophenate 

0 2 % ammoma + 0 2 % bone acid + 0 05 % lauric acid 

0.2 % ammoma + 0.1 % zinc diethyldithiocarbamate + 0 5 % lauric acid 

0.2% ammoma + 0 013% tetramethyl thiuram disulphide+ 0.013% ZnO + 

0.05 % launc acid 



About 70% ofNR IS used m the tyre sector, especially for manufactunng radial 

and heavy-duty tyres. 

NR IS marketed m vanous forms such as nbbed smoked sheets (RSS), 

crepe grades, techmcally spec1fied rubber (TSR). Sn Lanka produces 40 % of 1ts 

rubber in crepe form for which attractive pnces are offered. RSS, traditional 

grades of rubber are produced m most of the rubber producmg countries. For the 

RSS manufactunng process, latex from various H braszlzenszs clones IS mixed 

together m bulking tanks and diluted to 10-12 5 % (v/v). Addition of formic ac1d 

at a particular concentratiOn as the coagulant facilitates the coagulation of this 

d1luted latex. Dilution IS essential as 1t facilitates the un1form distnbution of 

chemicals in the latex and it helps to form a soft coagulum In addition, acetic 

acid and ole1c acid can also be used as the coagulant. During crepe 

manufacturing, most of the carotenmd pigments present m the latex are removed 

by fractwnatwn or a bleachmg process. In addition, sodmm bisulphite and 

metablsulplute are used in the crepe manufactunng process in order to prevent 

enzymatic d!scoloratwn. However, the coagulum thus obtamed in both processes 

is subJected to the milling and drying processes. 

1.3.1 Biosynthesis of natural rubber 

A vast amount of research had been carried out on the biosynthesis of 

polyisoprene m latic1ferous plants. Stud1es carried out usmg ('4C) acetate, 

denved from acet1c acid, mdicated that most of the carbon atoms of rubber were 

denved from this carbon source (Arregum and Banner, 1950; Arreguin et al., 

I 95 I). Furthermore, the isoprene unit could be obtained by isolation of mevalomc 

ac1d (2, 4-dihydroxy-2-methylvalenc acid) (Wolf et al., 1957). Further, isoprene 

m anomer was identified as 3-isopentenyldiphosphate (IPP) (Bloch et al., I 959; 

Lynen et al., 1958) and it has been proven that this material can be incorporated 

into H. braszlienszs latex (Lynen and Hennmg, 1960; Hennmg et a!, 1961, 

Archer, et a!, 1963; 1961). It is necessary to undergo Isomerisation of one 

molecule of this monomer pnor to polymensation to provide the primer, di

methylallyldiphosphate (DMADP), wh1ch acts as a starter for pol)'lsoprene 

synthesis (Agranoff et al., 1960). Latex contams enzymes and eo- factors, wh1ch 

are reqmred to convert acetic acid, mevalonic acid and IPP to NR. Nevertheless, 
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non-rubber particles are not involved m the conversion of IPP mto NR and the 

locus of reaction is found to be on the surface of rubber particles as the rate of 

mcorporation is mcreased With decreasmg particle size (Archer et a/_, 1960) 

Barnard et al. (1965) also investigated the importance of DMADP m the 

formation of polyisoprenoids by H. braszlzenszs latex and showed that 

mcorporation of {l-14C) IPP into farnesol by serum from fresh latex occurred m 

the presence ofDMADP (Barnard, 1965). 

2 x Acetyl CoA 

Acetyl coenzyme A 

Acetyl transferase 

(Serum) 

Acetoacetyl CoA + Acetyl CoA 

3-Hydroxy 3-methylglutaryl Co A synthase 

(Serum) 

3,5,3-Hydroxy 3-methyl glutaryl CoA 

Stage I Formation of 3,5.3-hydroxy 3-methyl glutaryl CoA 

3,5,3-Hydroxy 3-methyl glutaryl CoA + 2 x NADPH + 2H+ 3-Hydroxy 3-methyl glutaryl Co A reductase 

5-Dtphosphomevalonate 

3-R-Mevalonate 

Mevalonate kmase 

Phosphomevalonate kmase 

Stage 2 The reduction of 3.5.3-hydroxy 3-methyl glutarvl CoA and formation of 

5-dtphosphomevalonate 
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5-Dlphosphomevalonate Decarboxylase lsopentenyl diphosphate 

(Serum) 

Isopentenyl diphosphate Isomerase 

Dunethyl allyl diphosphate 

Stage 3. The formatiOn of isoprenoid monomer-1sopentenyl diphosphate and 

primer, dimethyl allyl dophosphate 

Dimethyl allyl diphosphate + 3 x lsopentenyl diphosphate 

Prenyl transferase 

(Serum) 

Geranyl diphosphate + lsopentenyl diphosphate 

Stage 4 FormatiOn ofthe all-trans prenol diphosphate pnmer 

Geranyl diphosphate+ lsopentenyl diphosphate 

RUBBER Rubber transferase 

(Surface of small rubber particles) 

Fig. 1.3 Biosynthesis of natural rubber 

On the other hand, IPP was incorporated into famesol1somers, nerol, and 

geraniol, m the absence of DMADP (Archer and Audley, 1987). Further, 3-

hydroxy-3-methylglutarate IS involved in the biOsynthesis of rubber (Johnston et 

al., 1954) and mevalonate formed from 3-hydroxy 3-methylglutaryl CoA 

(HMGCoA) IS also mcorporated mto NR (Hepper and Audley, 1969) It has been 
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shown that 5-HMGCoA could be incorporated mto the white fractiOn ofNR in 

the presence of the latex bottom fractiOn and m the presence ofNADPH (Figure 

I 3) 

1.4 Modification of natural rubber 

The NR industry is one of the pnme mdustries, and has a major impact on 

the economies of most of the Asian countries. The present situation of NR 

production seems to be declimng This may be due to several reasons such as 

movmg away from agricultural development and due to lower pnces currently 

prevmlmg m Sn Lanka. 

Therefore, much attention has to be paid to the productiOn of value-added 

products and to mvestigate ways of widening applications of NR m other areas 

mcludmg engmeenng and dampmg applications. 

It is a widely accepted fact that NR properties have to be Improved and 

similarly it IS important to render new properties to NR by means of chemical 

and/or physical modification methods Various research work had been earned 

out on chemical modificatiOns ofNR. 

However, very few products such as epoxidised natural rubber (ENR), 

methylmethacrylate grafted NR (MG rubber) and depolymerised NR have been 

commercialised to any extent. However, It IS an indispensable task to mvestigate 

vanous chemical modificatiOn methods m order to mcrease the usage ofNR and 

widen its applications. 

Modification of NR can be performed by means of chemical methods and 

by physical methods. Physical methods include either blendmg ofNR with other 

polymers or by blendmg with other forms ofNR during the milling process or m 

a solution stage Examples for the latter process are supenor processmg (SP) 

rubber contammg 50 or less parts of vulcanised rubber. SP rubbers are used to 

Improve processmg qualities 

1.4.1 Blends ofNR with other polymers 

NR can be modified by melt-mlXlng with vanous other polymers 

Blending of two or more polymers can YJeld materials, havmg a combination of 

the physical properties of the homopolymers In the past, usage of polymer 
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blends has mcreased remarkably to meet industrial reqmrements. Reasons vzz 

cost reduction, improved processmg characteristics and enhanced final product 

performance have been pointed out for using polymer blends rather than 

mdividual polymers. Elastomer blends such as natural rubber/butadiene rubber 

(NRJBR), natural rubber/styrene-butadiene rubber (NR/SBR), natural 

rubber/styrene-butadiene rubber/ ethylene-propylene-diene rubber/synthetic 

Isoprene rubber (NR-SBR-EPDM-IIR) are used in tyre applicatiOns such as 

treads, black side walls and white side walls, respectively. 

A recent study based on natural rubber and BR blends indicated that the 

modulus of these blends increased with time depending on the storage 

temperature (Warley and Halladay, 2005). Oligomer-bound paraphenylene 

diammes as antioxidants had been tested for the NR/BR blends as well as for 

other vulcanizates of SBR or IIR and it was found that tlus type of bound 

antioxidants imparted flex resistance, ozone resistance and better mechanical 

properties to these blends (Sulekha et a/, 2002). Attempts had been also made to 

mcorporate poly (vinyl chloride) (PVC) into NR and the results of this study 

revealed that the tensile strength and elongatiOn at break lowered With the 

addition of PVC, but 01! resistance has mcreased due to Its polanty (Abdei-Bary 

et al., 1974) 

Fmdik et a/, 2004 has studied NR/SBR blends and reported that the 

tensile properties and wear properties were enhanced with mcreasmg NR content. 

A study conducted using pyrolysis-mass spectrometry revealed that the 

interactions of the components in the NRIBR/SBR blends are small (Lattimer et 

al., 1985) With the incorporation of carboxylated SBR in to NR/BR blends 

indicated that the thermal stability of these blends improved (Stephen et al., 

2006}. Companson of blends based on NR and diclorocarbene modified SBR or 

chloroprene were made and the mechanical properties and 01l, thermal, ozone 

resistance were found to be higher in the NR/dichlorocarbene-modified SBR 

blend (Ramesan, 2004 and Ramesan et al., 2005) than the corresponding blend of 

NR/chloroprene (Ramesan et a/ , 2005) As the NR content was mcreased the 

flame resistance and 01l and ozone resistance decreased and it could be accepted 

that as NR is a non-polar substance. 
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Nano-or micro-composite based on natural rubber and carboxylated SBR 

were prepared by using layered silicates such as sodmm bentonite and sodmm 

fluorohectonte as the nano fillers (Stephen et a/ , 2006) 

In addition to these blends, natural rubber is blended With reclrumed 

rubber or buffing dust With the rum of reducing the cost and often used to produce 

rubber based articles hke mats, retreading, etc. The studies conducted on this 

subject clearly indicated that the hardness and modulus increase With increasmg 

tyre crumb or buffing dust while adversely affectmg the other properties at high 

concentrations such as 50 wt. % (Rattanasom et a/ , 2005) Dynamic mechanical 

analysis of blends of natural rubber and reclrumed rubber was performed and 

found that the Tg increased with increasing content of reclaimed rubber and this 

was attributed to the increase of cross-hnk density (Kumnuant1p and 

Sombatsompop, 2003) 

Apart from elastomer blends, attentiOn had been paid to thermoplastic 

natural rubber (TPNR), which is prepared by mlXlng NR and polyolefines such as 

polypropylene. Depending on the blendmg ratio, various properties can be 

obtained from rubber-toughened polypropylene to thermoplastic elastomers. 

Rubber-modified polypropylene exhibits high Impact resistance and stiffuess 

(Kadir, 1990). Compared to other (TPEs ), TPNR also exhibits higher tensile 

properties due to the stram crystallization ofNR. Further, It has better resistance 

to agemg; especially to ozone (Kadir, 1990). Potential applicatiOns of TPNR 

mclude the hose, footwear, and automotive industnes. Ground tyre crumbs 

(GTR} has also been mcorporated mto low density polyethylene (LDPE) in 

combinatiOn of natural rubber, EPDM arid SBR with the aim ofproducmg TPE. 

The best performance was found in the EPDM contairung TPE and it Is 

associated with the compatibility of the ethylene units m EPDM with the similar 

counterpart in LDPE (Kumar et al., 2002). Unhke their counterparts of natural 

rubber blends, for TPE prepared With LDPE, and NR and reclaimed rubber (1:1) 

did not exhibit inferior physiCal properties ind1catmg that NR can be replaced 

with reclaimed rubber without any adverse effect on mecharucal properties (Al

Malaika and Amir, 1989). Nevertheless, this study indicated that the TPE 

prepared from NR or EPDM possess better resistance for photo-degradatiOn than 
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TPE's contaimng reclaimed rubber in which deterioration of properties had 

occurred when exposed to UV light. 

1.4.2 Chemical modification of natural rubber 

In recent times, research mterests have changed from synthesising new 

polymers towards modification of existing polymers. Basically, modificatiOn of 

polymers can be achieved by physical or chemical methods. Chemical 

modification of polymers has greater potential to impart new combinatiOns of 

properties to the resultant matenals Attempts had been paid in the recent past to 

produce chemically modified NR with the aim of rendering new properties to NR 

and thereby widemng the applications ofNR. Nevertheless, most of the products 

developed by chemical modificatiOn of NR can not be Implemented on the 

commercial scale. Only a few products such as methyl methacrylate (MMA) 

grafted NR (MG rubber) and ENR have been produced on a commercial scale. 

The followmg methods had been employed to produce chemically 

modified NR (Kad1r, 1990). 

1. Rearrangements of the bonds Without introduction of new chemical groups. 

E.g. 1somenzed NR, cyclised rubber. 

2. Attachment of pendent groups by olefinic addition or by substitution E.g. 

halogenated NR and ENR. 

3. Graftmg of another polymer to NR. E g. methyl methacrylate grafted NR. 

4 ReductiOn of molecular weight by scission. E.g. liqmd natural rubber (LNR) 

1 Rearrangement of bonds 

(1) Isomensed natural rubber 

Because of the presence of the methyl group m the isoprene unit, It 

facilitates different possible configurations such as czs, trans, synd10tactic and 

isotactic structures. Czs/ trans ratio of d1ene polymers can be changed by 

chemical treatinents and It IS referred to as czs/ trans 1somensation. Golub (1957), 

Cunneen and H1ggins (1963) conducted research on czs/ trans Isomerisation of 

polybutad1ene and natural rubber, respectively, (Brydson, 1978) Chemicals such 

as selemum, sulphur diOxide (Figure I 4) and butadiene sulphone have proven to 
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be effective Isomerisation agents for polyisoprene (Brydson, 1978). Among these 

chemicals, butadiene sulphone can be applied dunng solid state mixmg and 

further heatmg leads to m sztu formation of sulphur dioxide which reacts with 

polyisoprene to produce isomerised rubber (Brydson, 1978). Osltrans 

isomerisatiOn had been quantitatively determined by usmg NMR spectra (Golub 

et a!, 1962). Partially isomerised NR exhibits non-crystallizing and rubbery 

properties. 

Fig 1.4 Part A Isomensation ofpol)'lsoprene (Brydson, 1978) 

CH3 H " / yH• '- /c=c, / 
CH,=C-CH=CH2 CH2 CH

2 

I \
~ (CIS-1,4-) 

CH,~ CH, CH, 
I "- /'-;: 

-CH-CH-
I ' 

CH,-C 

• CH, 
(3,4-) 

-CH-C- C=C 
' I '-,/ '-

CH CH, H 
11 
CH, 
(1,2-) (trans-1,4-) 

F1g. 1.4 Part B. Possible structures of IsomenzatiOn of the repeating unit 

(Brydson, 1978) 

(ii) Cyclized NR 

Concentrated sulphuric acid (Harris, C. 1910), p-toluene sulphonic acid 

(Fisher, 1926) and a Lewis acid such as stannic chlonde (Bruson et al., 1927) 

have been used to produce soluble, less elastic products referred to as cyclised 
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rubber. During cyclisatiOn, unsaturatiOn ts reported as declmmg (Brydson, 1978) 

Imtial reactiOn steps for po1)'1SOprene are presented m Figure 1.5. Accordmgly, 

W IOns add to the double bond according to Markowmkoffs rule (Patterson and 

Koeing, 1987) to create carbonium ions (Patterson and Koemg, 1987). This ion 

reacts with the adjacent double bond followed by deprotonation resulting m a 

cyclic structure. NR seems to possess tn-and bicyclic structures as shown in 

Figure 1 6. Cyclised NR is used in various applications such as adhesives, paints 

and inks (Patterson and Koeing, 1987) 

-H,C..._,_ /CH, -H,C..._,_ __.-CH, 
HC'"'C C~H,- H C/Ci±: ......CH,-

1 11 L '1 ~H 
H,r- r., H,C,_ ~C'-c -'-c/- '"CH -....-

H, ' H, H, 

(A) 

Fig. 1.5 Cychzation ofpolysioprene 
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(B) 

(D) 



Fig 1 6 Structure of cychzed NR 

2. ModificatiOn ofNR by the mtroduct10n of pendent groups 

NR contains secondary carbon atoms at the double bonds, and, therefore, 

It IS more reactive towards free radicals and carbonium ions (Brydson, 1978). 

Therefore, the reactivity of the double bond of NR can be made use of to 

mcorporate vanous functional groups Basically, pendent groups can be 

introduced to the NR backbone via the followmg reactions 

(1) Ene reactions 

During the recent past, extensive research have been carried out to modifY NR 

using "ene" reagents (Figure 1.7) (Baker et al., 1970; Bamard, 1975). These 

reactiOns occur via a direct reaction between the "ene" reagent (C = C, C = 0, C 

= S, N = N, N = 0) and the Isoprene double bonds of NR without any 

intermediates In order to functionalise NR, X or Y should bear the substitute 

groups, which should not interfere w1th the addition reaction. One such addition 

IS the reaction ofnitroso-arenes (0 = N-C6H5-X, X= NHAr or X=OH) with NR 

(Bamard, 1975) and it IS illustrated m Figure 1 8. 

X=Y can be -N=O, 

HX 
CH V 
~ 

-N=N-, >c=s, >c=o, >c=c< 

F1g. 1.7 Addition of an "ene reagent" to 1sopremc double bond 

16 



F1g 1 8 Add1t1on ofmtroso-arenes with NR [After Bemard et al. (1975)] 

It is reported that 1f the substitute is an electron-releasing group then 

h1gher amounts ofhydroxylamme pnmary product is formed (Knight and Pepper, 

1971). On the other hand, the presence of electron WJthdrawmg groups enhances 

the formation ofsecondary-amme products (Krught and Pepper, 1971) This kmd 

of react1on has been used to develop rubber bound antioxidants by attachmg 

pendent p-phenyldiamine (Cam et al., 1968) produced by the reaction of p-nitroso 

phenylamlme. N1troso-arenes w1th hydroxy groups as the substitute resulted m 

aminophenol which had been used m a polyurethane vulcanisation system (Baker 

et al , 1970). 

A:zo ene reactions had also been used to modify NR (Rabjohn, 1948; 

Flory et al., 1949). A:zo-tipped polymers are useful m prepanng graft copolymers 

since this process has certain advantages such as the molecular weight of the 

polymer chain and the number of grafted polymer chains per rubber molecule can 

be controlled. In add1tion, azo t1pped functional groups fac1htate the effic1ent 

graftmg process (Bamard, 1982). 

Various types of azod1carboxylates had been synthesized and the reaction 

w1th NR had also been stud1ed (Rabjohn, 1948). These reactiOns are msens1tive 

to radical initiators, scavengers and to solvent type (Hoffmann, 1969) and a 

report ind1cated that pnmary hydrogen is more easily transferred to nitrogen than 

secondary and tertiary hydrogens (Thaler and Franzus, 1964). Further, the 

reaction ofENPCAF (ethyl-N-phenylcarbamoylazoformate) w1th NR was earned 

out m solid NR, as well as m de-ammoniated latex w1th h1gh efficiency and it 
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increased T 8, resistance to hydrocarbon solvents and the permeability of gases 

(Bamard, 1975). 

(n) Epoxidatwn 

a. General descrzptwn of Epoxzdzsed Natural rubber 

Recently, emphasis has been placed on ENR due to Its interesting 

charactenstics. Most of chemically-modified NR grades are apparently resinous 

substances. Nevertl!eless, ENR retams an elastic property even at qmte high 

epoxidation levels. ENR is commercially available in two forms. i e ENR 25 and 

ENR 50. The epoxidat10n reaction led to an mcrease in Tg by I °C per mole 

percentage of epoxidation (Baker, 1987). In addition, It mcreases resistance to 

non-polar solvents, decreases mr permeability and resilience (Baker, 1987). The 

most interestmg features of ENR are its low rolling resistance and high wet skid 

resistance (Baker, 1987). Furtl!er research based on GPC measurements indicated 

as tl!e epox1dation level increases, molecular weight decreases (Bac and 

Miha1lov, 1991) and tlus is may be due to tl!e occurrence of chain scission 

through a free radical mechanism as hydrogen peroxide is present m tl!e system 

(Hash1m and KohJiya, 1993). Furthermore, X ray studies revealed that ENR can 

undergo stram mduced crystallisation (Davies et a/ , 1983) and due to the former 

reason It exhibits higher tensile strength, but epoxidation levels greater than 50 % 

produce non-strain crystallizing rubbers (Baker, 1985). 

Agemg properties of ENR seem to be infenor (Gellmg and Morrison, 

1985). During agemg, carbonyls, alcoho1s, tetrahydrofuran (Chaki, 1992) and 

ether cross-links (Gelling and Momson, 1985; Chak1, 1992) are formed which is 

due to tl!e acid catalysed reaction of ring opemng of epoxide groups. Acid can be 

either residual acid (Chak1, 1992) or acid formed by thermal decompositiOn of 

oxidiZed sulphides (Gelling and Morrison, 1985) 

b Epoxzdzszng agents 

Perbenzmc acid (Koltl!off, 1973; Saffer and Johnson, 1948), perphtl!alic 

acid (Roux et a/, 1964) and peracetic acid (Mairs and Todd, 1932) have been 

used to syntl!esize ENR. When H20 2/acetic acid IS used for epoxidatiOn, catalysts 
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such asp-toluene sulfomc acid (Colclough, 1962, Badran and Abdel, 1977) have 

been used to promote peroxy acid formatiOn 

Epoxidatwn can be carried out successfully with either preformed perac1d 

or m sztu formed peracid. The latter process is preferred due to the mstab1hty of 

preformed perac1ds. This reaction can be performed either m solution or in latex 

form and the latter process is more convement and feasible due to the 

compatJbJhty of the peracid with the aqueous phase. Much attentiOn had been 

paid to the synthesis of epox1dised natural rubber by m sztu preparatiOn of per

acid. The reaction (Figure 1.9) IS known to proceed via a transition state 

involving bond formation and breaking between the oxygen and the double bond 

(Gelhng and Porter, 1988). 

l 

+ 

RCOOH 

Fig. 1 9 In sztu epoxidatiOn ofNR with performic ac1d and hydrogen peroxide 

(After Kohj1ya and Hashim, 1996) 

Kinetic parameters of epoxJdatiOn of NR latex by in situ performic ac1d 

had been mvestigated and it was reported that formatiOn of performic ac1d is the 

rate determmmg step and the activation energy IS 55±6 kJ mor1 (Gan and Ng, 

1986). Epoxidation 1s considered as a stereospecific reaction (Gellmg, 1988) and 

it leads to randomly distnbuted epoxy groups along the rubber chains (Bradbury 
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and Perera, 1985). Nevertheless, It IS Important to prevent side reactions such as 

ring opening reactiOns. Rmg opening of simple Isolated epoxy groups produces 

(Figure 1.10) glycols, hydroxy esters, and derived products (Rosowsky, 1964). 

Further, It was found that nng opening of adJacent epoxide groups of 

polyunsaturated compounds results m cyclic ethers (Sefton and Memll, 1976). 

Epoxy groups present in ENR can be used as reactive sites for further 

modification ofENR (Lye and Toh, 1984; Gan and Burfield, 1989, Jayawardena 

et a!, 1984, Perera, 1990). Feasibility of reactions of ammo functional groups 

with epoxy groups of ENR has been evaluated m several reports (Lye and Toh, 

1984; Gan and Burfield, 1989) In additiOn, reactions of aromatic amines with 

ENR have been performed m order to synthesize polymer-bound or 

macromolecular antioxidants (Jayawardena et a!, 1984; Perera, 1990) It is 

reported that phenol (Jayawardena et al., 1984), b1sphenol A (Hashim and 

KohJiya, 1992), hydroxy methyl groups (Hashim and Kohjiya, 1995) in epoxy 

resms, and mica (Okwuand and Okie1men, 1999), are capable of acceleratmg the 

rate of cure with ammes It was found that reinforced ENR vulcanisates prepared 

With p-phenylene d1amme exhibit relatively higher Tgs which may be due to the 

bulkmess of the amme cross-links and hydrogen bonds (KohJiya and Hashim, 

1996). ENR can be modified through graftmg reactiOns (Okwuand and Okie1men, 

1999, Burfield et al., 1984). 

~ 
0 #0 KOHOH "F<OH 0-CH ,; \ +H-e:"" H,O + 
~ 'oH . 

0 0 OHX 

Af\Y-<_ 
1 

~ OH 

F1g. 1.10 Rmg opemng reaction of ENR in an acidic medium 
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Research work also available on grafting formate and acetate groups to 

ENR found that the reactmn rate and properties depend on the acidity of the 

medium (Burfield et al., 1984; Ng and Gan, 1981). In addition, acrylate groups 

have been grafted to ENR and epoxidised liquid natural rubber (ELNR) using 

acrylic acid through a nng opemng reaction and kmetic studies performed usmg 

IR spectroscopy (Xuan and Decker, 1993). Results md1cated that acrylation 

follows first-order kinetics. During the acrylatmn process, 1t was reported that 

formatmn of small amounts of tetrahydrofuran structures occurred and this was 

due to the low acidity of form1c acid. UV curing of acrylated NR and acrylated 

LNR occurs through polymerization of acrylic groups and polymenzation of 

1soprene double bonds (Xuan and Decker, 1993). The rate of polymerization 

depends on the degree of acrylatwn. Products thus obtamed exh1b1ted excellent 

solvent resistance, 1mpact resistance and flexJbihty (Xuan and Decker, 1993). 

Modification of ENR has been achieved by reactmg 1t with thmglycollic 

ac1d and 17 % conversion could be ach1eved. The resistance to solvent and oil of 

the resultant product has been mcreased while the reverse trend has been 

observed for the tensile strength (Okwu and Okie1men, 2001 ). The epoxy group 

of ENR can further act as a reactive site, and, therefore, ENR had been reacted 

w1th benzoic acid. Th1s led to an mcrease m the Tg m the resultant product 

depending on the amount ofbenzmc acid (Gan and Burfield, 1989). In additiOn, 

research had been done to convert epoxy groups to dials To achieve this target, 

two methods had been employed. Boiling of ENR latex and heatmg of ENR in 

toluene with a mixture of water, acetic acid and THF at 60°C. The extent of 

conversiOn was found to be extremely low for the former method and the latter 

method y:telded 23 mol% dml content on rubber (Gan and Hamid, 1997). 

Epox1d1sed liqmd natural rubber 1s also commercially ava!lable and it is 

usually prepared by epox1dat10n reaction of liqmd natural rubber or 

depolymensation of ENR. Th1s product is commonly used as a plasticizer 

(Akmlabi et al, 2005 and as polymer m blends (Akmlabi et al, 2006) The latter 

study indicated that the physical properties of the blend depend on the mixmg 

procedure of rubber (Akmlab1 et al., 2006). 
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(ii1) Addition ofth10ls and related compounds 

Add1tion react10ns of th10ls having a functional group to NR have been 

studied by Cunneen et a/, 1960 and Marvel et al., 1953 and were found to 

proceed via a free radical reaction (F1gure 1.11) (Cunneen and Shipley, 1959). 

~+RS· 

~•RSH \_}H SttR 
~H ~ •RS· 

HS- (CHz)n-X X= COzH, COz Et, CHzOH, CN 

Fig. 1.11 Addition reactiOn ofth10l to natural rubber 

(iv) Addition of maleic anhydride 

Male1c anhydnde 1s frequently used for modification of polymers w1th the 

a1m of 1mprovmg miscibility between components m a compos1te or blend 

(Coran, 198 8; Suma et a/ , 1990). Maleic anhydride 1s also used to modify NR 

(P1nnazJ et a/ , 1960). The reaction between NR and maleic anhydnde takes place 

via a free radical pathway. Tins reactiOn was accelerated usmg benzoyl peroxide, 

AffiN and chlorobromodimethyl hydantom (Bacon and Fanner, 1939; Pmnazi et 

al., 1951 ). Though 1t was origmally assumed that the reaction takes place across 

the double bonds IR spectroscopy stud1es mdicated that the reaction takes place 

at the allylic-oc-methylene carbons (F1gure 1.12)(Fanner, 1942; 1943). 

a/0o 
220- 260'C 

F1g 1.12 Structure ofmaleated natural rubber 
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Maleated NR vulcanizates possess superior solvent resistance, flex cracking 

resistance and ageing resistance (Brydson, 1978). Photosensitive copolymers 

based on NR had been produced by introducing photoreactive cinnamoyl group 

through a reaction of NR with maleic anhydnde followed by nng opemng and 

condensatiOn with oxyalkylcinnamate esters (Leiia et al., 1990) 

(Iv) Addition of carbenes and mtrenes 

Carbenes or mtrenes have been mtroduced to NR (Figure 1.13) through 

either addition or msertion reactiOn (Bamard, 1982). Nitrenes and carbenes can 

be generated by thermolysis of azido compounds (Spurlin, 1971; Sayigh et al., 

1970) and by diazoxide compounds (SaYJgh et a/ , 1970), respectively. 

'c· 
I 

-N ~00 \.__ 

J-\~ 
\I\ -c H 
I 
H 

[~c~] I /\ 
H H 

[ ~c~] '-I\ lH 
Fig. 1 13 Additions of carbenes and mtrenes (Adopted from Bamard, 1982) 

ReactiOn of NR with aryl sulphonyl azide (X-C6H5-S02N3) has been 

studied and It IS mentioned that 1 ,3-cycloaddition of azide occurred before 

releasmg the mtrene. Break down of bonds results in bound aryl sulphonyl 

groups, which are fixed through an imme bond to the NR. Phenyl azides are also 

capable of releasmg nitrenes by photolysis or thermolysis process and it can 

insert m to CH or NH bonds resulting covalently bonded products (Scnven, 

1984). This technique has been applied to modify natural rubber m latex stage by 

using b10-matenal funct10nalized perflurophenyl azides (PFPA). Polyethylene 

glycol and hyaluronic acid were used as the b10 materials In additiOn, the 

presence of fluonne atoms on phenyl group facilitates the msertion of mtrene 

intermediates m to CH or NH bonds. Therefore, use of bio-material modified 

perfluorophenyl azides resulted in biocompatible coatmgs which will reduces the 

leaching of protems which are present in natural rubber. This can be used to 
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produce natural rubber latex w1th low protems contents with the a1m of 

mmimizmg the latex allergy problem (Y an, 2000). Add1tion of carbenes had been 

used in the production of a bounds- hindered-phenol antiOXIdant to NR (Kad1r, 

1975) and to other polymers (Kaplan et al., 1973). 

In add1t10n, dichlorocarbene modified NR was synthesized by hydrolysis 

of NR m chloroform solutiOn and it exlu.b!ted flame retardancy when the chlorine 

content was higher than 27.5 % (Sang, 1978). Nevertheless, tensile properties 

were not satisfactory, but damping properties improved (Sang, 1978) 

(v) Hydrohalogenatwn 

Hydrochlonnated NR, one of the mod1fied grades ofNR, is produced by 

passmg HCI mto a chloroform solution of NR This product is used m 

apphcatwns such as transparent wrappmg fihns and rubber-to-metal adhes1ves 

(Brydson, 1978). The hydrochlonnated product is polycrystalline and less elastic. 

However, it has a relatively low stab1hty towards hght and heat due to the 

poss1b1hty of hberatwn of HCI. Addmg heat stabihzers and UV absorbers are 

advisable to mmimize this effect (Brydson, 1978). 

(vi) HalogenatiOn 

Halogenated NR 1s obtamed by reactmg natural rubber w1th a halogen 

Cychsatwn, addition, and substitution reactwns are mvolved m the cychsation 

process and 1t is found that the empirical formula of halogenated NR 1s CsHsCh-s 

(Brydson, 1978). A study conducted on the elucidation of the compos1tion of 

chlonnated rubber ind1cated that if the composition is CI/Cs IS :5; I, then, 

structures due to add1tion of chlonne to the double bond was hardly ev1dent 

(Eskma et a/, 1990) This study indicated that the cychzation is poss1ble dunng 

the fast stage of reactiOn (up to CIIC5 = 1) resulting m formation of 5-6 member 

cycles. Chlorination of synthetic polymers such as a styrene-butadiene-styrene 

block co-polymer or styrene-butadiene rubber had been performed by tnchloro

isocyanunc ac1d (Jaen et al., 1999; Sanchez et al., 2001). Chlonnated rubber is 

also commonly used m chem1cal and heat resistant coatings apphcatlons 

(Brydson, 1978) 
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Bromination of NR proceeds vm a free rad1cal mechamsm and 

substitution takes place at the allyhc pos1tions (Bioomfield, 1943). In th1s 

reactiOn, s1de reactiOns such as cyclisation (Bioomfield, 1943) or cross-hnkmg 

(Bioomfield, 1943) can occur. Bromme water (Nakagawa et a!, 1990), bromine 

m dichloromethane solut10n (McNeill and Coskun, 1989) and N

bromosuccinimide (K.im et al., 2005) had been used for brominat10n of NBR, 

polystyrene and EPDM, respectively. 

3. Grafting polymer chains to NR 

Attention had been paid mostly to the modification of NR by grafting 

synthetic polymers on to NR. However, only methylmethacrylate-grafted rubber 

has been commercialised and is avmlable m vanous types such as MG1s, MG3o, 

MG4o, and MG49 where the classification IS based on the PMMA content. In 

general, MG rubbers are stiff and non-tacky, but processable due to the softemng 

at lugher temperatures. It is widely used in the adhesives mdustry and in impact 

resistant articles as 1t can be vulcan1sed to give self-reinforced vulcamsates 

(Bacon et al., 1938; Perera, 1999) 

In general, grafting of vinyl monomers on to NR is achieved through m 

sztu polymensation of the monomer in the presence of rubber e1ther m solid or 

latex form. It is well known that the followmg types of materials are produced 

(Bateman, 1963). 

Type1:MJxture ofNR and homopolymer 

Type 2.Rubber with grafted md1vidual monomer molecules 

Type3 :Rubber with a series of grafted short polymer chmns 

Polymensation of e1ther methylmethacrylate (MMA) or styrene in the 

presence ofNR has been mvestigated (RABRM, 1951; Misra and Kaul, 1983; 

Campbell and Tinker, 1984, Dafader et a!, 2006). 

Polymensations of vmyl monomers m the presence of natural rubber 

occur v1a a free radical pathway and three mam types of rad1cal intermediates are 

involved in this reactiOn (Bateman, 1963). 

1. Radicals derived from an mitiator 

2. Radicals produced from the polymenzation ofmonomers 

3. Radicals denved from rubber molecules (RH). 
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Radicals on NR are formed either by additiOn reaction or by removmg H 

atoms from rubber molecules as shown below (Figure 1.14). However, most of 

the studies (Angier and Watson, 1956; M1sra and Kaul, 1983; Roberts and 

Skinner, 1949) indicated that initmt10n takes place by the abstraction of allylic 

hydrogens present m NR molecules, thus creatmg a radical centre on the rubber 

The resultmg radicals are stabilised by resonance. Further evidence (Ang1er and 

Watson, 1956) also indicated that the polyisopremc radical is structurally related 

to Bin Figure 1.14 which is capable ofvmyl polyrnensa!ion. 1R studies further 

revealed that the B radical Is involved in grafting due to the presence of a peak at 

830-900 cm-1 due to C=C (c1s) absorp!ion (Misra and Kaul, 1983) 

Initiation 

~cHrQ-CH-<:H2-+ r - -CH2-C"-CH-CH2-

I I I 
Me Me I 

(A) 

-cH,-C=CH-cH,-+ I" - -CH,-C=CH-CH!...+HI 

Je ~e 

(B) 

NR" +M NR-M" 

Propagation 

NR-M" + M NR-Mt 

NR -M" ,-:y-+ M 
_____ NR-M; 

Termmation 

---+ 
Graft copolymer 

Fig.1.14 Steps in the grafting reactiOn 
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It was proposed that graft polymer IS formed by the following reactwns 

(F1gure 1.14) (Cooper and Vaughen, 1959). 

I. Reaction of rubber rad1cals and monomer. 

2. Reactions of rubber radicals and polymeric radicals. 

3. Reactwns ofmonomer radicals w1th rubber molecules. 

Among these reactwns, Kobryner and Banderet, (1959) proposed reaction 

No 2 considenng that the polyisopemyl radical cannot initiate po1ymensation 

due to its resonance stabihzation. 

Nevertheless, this 1dea could not be confirmed by further studies (Alien et 

al., 1959) and, therefore, 1t was assumed that the pol)'lsoprenyl radicals react w1th 

the monomer to )'leld graft polymer (Bateman, 1963). 

(i) Types of Irutiators 

Earlier research work based on polymerisatiOn of monomers in NR latex 

was not successful because of the mh1b1tory action of ammonia and non-rubber 

substances (Bacon et al., 1938) Nevertheless, by usmg water soluble imtiators 

such as persulphates and organ1c hydroperoxide graft polymensations have been 

successfully performed Furthermore, the !-butyl hydroperox1de and tetraethylene 

pentanune system was found to be an effective imtiator system for 

polymerizatiOn ofMMA m the presence ofNR (Bloomfield and McSw1ft, 1955). 

However, the !-butyl hydroperox1de/tetraethylene pentamme redox mitJator 

system helps to promote a core-shell structure, as the locus of polymensatwn is at 

the monomer swollen partiCle/water mterface. As a result, film-forming 

properties of the resultant product may not be satisfactory due to the mferior 

adheswn between particles (Bateman, 1963 ). However, when a hpophJ!1c redox 

system such as t-butyl hydroperox1de/dimethylan11ine 1s used more or less s1m1lar 

graftmg effic1encies to that of polyamine can be obtamed (Bateman, 1963) In 

addition, it leads to the formatiOn of sub-mcluswns ms1de the NR seed latex since 

polymensation takes place w1thm the monomer swollen NR latex particles 

(Schne1der et al., 1994). Maleic anhydnde has been grafted to natural rubber 

using BPO as the 1mtiator, and the graftmg efficiency increased w1th increasing 

temperature, 1mtiator and monomer concentration. The final product exh1b1ted 
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higher Tg than the NR (Nakason et al, 2004) Cumene hydroperoxide and 

tetraethylene pentamine system had been used to graft MMA or 

dimethylammoethyl methacrylate (DMAEMA) on to NR m latex stage (Oliveira 

et al, 2005; Romlly et al, 2004, Lamb et al., 2001) and the former study 

md1cated that the radical on natural rubber, the site needed for graftmg was 

formed by the abstraction of H atom from the allylic carbon MMA grafted 

rubber particles exlnb1ted core-shell morphology with inclusiOns ofPMMA m the 

NR particles and the DMAEMA grafted latex exhibited a core-shell morphology 

(Ohveira et al., 2005). 

The dimethylaniline (DMA)-cupric ion redox Imtiator system has been 

used for graftmg MMA onto NR. In this work, attempts have been made to 

evaluate the effect of monomer concentratiOn, DMA concentration, temperature 

and acid concentration on the grafting reactiOn. It is found that graftmg efficiency 

mcreased With increasmg DMA concentratiOn, MMA concentration, acid 

concentratiOn and reaches an optimum value, and, thereafter, tends to decrease 

(Lenka et al., 1986). In additiOn, the hydrazine/cupnc ion initiating system 

(Menon and Kapur, 1959), where hydraz1l radicals mitiate the polymensation 

reaction, can also be used for grafting vmyl monomers to rubber m latex stage. 

Effects of imtiator, monomer, ascorbic acid concentrations on graft 

copolymenzation ofMMA onto NR using the potassium permanganate-ascorbic 

acid redox system has been mvestigated (Nayak and Basak, 1986). Results 

indicated that as the temperature increases the rate of graftmg mcreases to an 

optimum level and then follows a downward trend, which may be due to the 

formatiOn of homopolymer at high temperatures. A similar trend has been 

observed for monomer and initiator concentratiOns. Lower grafting percentages at 

higher concentration of tnitiator are descnbed due to the formation of 

homopolymer at higher imtiator concentration. However, the presence of small 

amounts of solvent facilitates the grafting process and It was due to an mcrease of 

swelling capability, which ultimately led to an increase the miscibility of 

monomer (Nayak and Basak, 1986). 

Metallic compounds have also been used for graft copolymensation of 

MMA onto chlorinated NR (Nogues and Dawans, 1981). Among these metallic 

compounds low valent NI compounds such as tetrak1s(triphenylphosphate) nickel 
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are most efficient Initiators and their activity IS further enhanced m the presence 

of dimethylformamide It is reported that compared to free radical Initiators these 

Initiators exhibit higher grafting efficiencies (Nogues and Dawans, 1981). 

In addition to MMA, methacrylic acid, styrene, ethylacrylate, isobutyl 

methacrylate and acrylonitrile (Ciaramma et a/, 1989) had been grafted to NR 

latex using ammehydroperox1de, TEP and ferrous ions as the mitiator (Menon 

and Kapur, 1959). Misra and Kaul (1982; 1983) also studied the reactivity of 

graft copolymensation of ethylacrylate, butylacrylate and methylacrylate onto 

natural rubber usmg benzoylperox1de as the initiator. This study showed that the 

order of reactivity ofmonomers to graftmg onto NR was as follows, EA >BA> 

MA (M1sra and Kaul, 1982). Further, these studies md1cated that grafting 

percentage increases as BPO concentratiOn increases up to a optimum level and 

then decreases With further mcrease of BPO concentratiOn. It is thought that at 

higher BPO concentration termination of growmg radicals lead to decrease the 

grafting Yield. Effect of temperature has also been studied and results indicated 

that graftmg efficiency decreased With mcreasmg temperature. This IS due to the 

occurrence of chain transfer reactiOns having higher activation energ~es at high 

temperatures. Thermograms revealed that the graft product has lower thermal 

stability, which IS due to depolymensation of polyacrylates upon pyrolysis (M1sra 

and Kaul, 1983). Misra and Kaul (1982) have proposed a mechanism of graftmg 

of methylacrylate onto NR by duect attack that occurs m two modes (M1sra and 

Kaul, 1983) and It is in accordance with previous research findings (Roberts and 

Skinner., 1949, Ang1er and Watson, 1956). 

Methylvmylketone grafted NR (czs 1,4-poiYJSOprene) had been prepared 

using benzoyl peroxide (BPO) as Initiator and the effects of reaction conditiOns 

on graft Yield have been mvestigated. Results md1cated that as the BPO amount 

was increased, graftmg efficiency was mcreased and it was ascnbed to the 

increase of productiOn of radicals, which help to form reactive sites Further, it is 

reported that graft Yield increases remarkably with increasing monomer 

concentratiOn. Kinetic studies (Egbon and Fagbuli, 1988) revealed that the rate of 

polymerisation has first order dependency on monomer concentratiOn and the rate 
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of grafting has half order dependency on BPO concentration (Egbon and Fagbuh, 

1988). 

In addition to the above-mentioned imtiators, 1mtiat10n can be done by 

means of ultra-violet hght with ferric ions as a photosensitizer (Menon and 

Kapur, 1959). Recently research stud1es (Lenka et al., 1985, Nayak and Basak, 

1986) md1cated that graftmg of monomers could be performed by gamma 

irradiation and the grafting efficiency is comparatively h1gher than chemical 

1mt1ation 

Grafting of monomers on to the polymers can be performed usmg 

radiatiOn. Razzak et al. (1988; 1989) have mvestlgated the graftmg process of 

hydrophilic monomers such as N,N-d1methylamme ethylacrylam1de or N,N

d!methylammoethylacrylate onto NR and it produced a blood-compatible 

product. Earlier stud1es (Razzak et a/, 1993) conducted on th1s subJect showed 

that the Simultaneous grafting technique provides comparatively lower grafting 

efficiency. Therefore, perox1dation and/or pre-irrad1ation method has been used 

for grafting of DMAA onto NR and the results obtained clearly md1cated that the 

peroxidation method provides high grafting efficiency. In th1s peroxidatwn 

method, the sample is irradtated by y-rays in the presence of a1r prior to the 

graftmg by a heating process. Therefore, 1t creates perox1de groups, which 

dissociate mto peroxide rad1cals on heatmg and 1t fac1htate the initiatiOn of 

graftmg process. The optimum degree of graftmg was recorded as 42 wt. %. In 

th1s study, the Simultaneous irradiation technique were capable of 1mpartmg 22 

wt % degree of graftmg even at very low dose and 1t indicated that graftmg takes 

place by direct attack of rad1cals formed on natural rubber dunng irrad1at10n. It 

can mduce formation of monomer radicals md1rectly and 1t reacts w1th rad1cals 

on NR to mltiate graftmg (Razzak et a/, 1993) Stud1es conducted on radiatiOn 

grafting of MMA onto NR indicated that higher graftmg efficiencies could be 

obtamed at a lower dose rate (Perera, 1999). In radiatwn grafting, free rad1cals 

are created by the abstractiOn of hydrogen atoms from the monomer and natural 

rubber. It is ev1dent that the main rad1cal formed 1s the allylic radical (Hill et a/, 

2000) and it can undergo cross-linkmg or imtiat10n of polymensat10n of MMA, 

whtch results m the graft product It 1s reported that at h1gher dose rates formatiOn 
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of allylic radicals are htgher and this leads to cross-lmkmg reacttons and as a 

result number of allyltc radicals available for initiation of graftmg becomes less. 

Further, htgher dose rates cause formatton of radtcals on the monomer molecules 

which enable the polymensation of MMA and thereby decrease the graftmg 

effictency. However, it is noted that phase separation m the chemically-grafted 

product ts less compared to the radiation-grafted product (Perera, 1999). 

Radiation had been used for graftmg of dtfferent acrylates and methacrylate on to 

na!ttral rubber latex (Dafader et a! , 2006). It has been found that the stabthty of 

the latex grafted with acrylates are mferior than the corresponding methyl 

methacrylate (MMA), n-butyl methacrylate (BMA) and cyclohexyl methacrylate 

(CHMA) grafted products. Maxtmum amount of grafting was obtained at a 

radiation dose of 4 kGY (Dafader et al., 2006) . 

(b) Effects of imtiator system on the morphology and fihn forming properties 

Dependmg on the nature of the imtiator system, the morphology and film

formmg properttes are vaned. When the hydroperoxtde and amine tmtiator 

system was used, film-fonmng properttes were inferior due to the non-umform 

dtstribution of PMMA wtthm the natural rubber particles As the locus of 

polymensation is at the interface of monomer-swollen rubber parttcles and water, 

htgher concentratiOn of PMMA seems to be located near the rubber parttcle 

surface and thts prevents the adheston between particles. However, MG prepared 

wtth AIBN exhtbited better fihn-forming properties, but tt does not contain a 

considerable amount of grafted products (Bateman, 1963). 

4. Polymer modtficatton by cleavage of bonds 

(1) Ltquid natural rubber 

Ltqmd rubber was first synthesized by heating crude natural rubber under 

carefully controlled pressure, tempera!ttre and time and the resultant product was 

called depolymensed NR (DPNR). DPNR exhibits low creep and stress 

relaxatiOn properties and ts used in metal-rubber bonded components (Kadtr, 

1990). A new, convenient method has been used to produce hquid NR (LNR) by 

using phenyl hydrazme (Brosse et al., 1981) and the resultant product contams 

phenyl hydrazme-type cham extremities. Thts process ts commonly used for the 
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manufacturing of liqmd rubber. The extent of depolymensation occumng dunng 

the depolymerisation process pnmanly depends on the amount of phenyl 

hydrazme and the reactiOn time. 

LNR IS used as adhesives, in pamts and as a reactive plasticiser and 

compatib1ser in rubber processmg. LNR is used as a compatib1hser in improvmg 

homogeneity and the physical properties of rubber/ polyolefin blends (Dahlan, 

1988; Dahlan et al., 2002) It IS reported that LNR is capable of reducmg the 

interfacial tension and thereby improve the mechanical properties (Dahlan, 1988). 

In additiOn, liquid natural rubber was proven to be an effective viscosity modifier 

and can be used as a processmg a1d (Lloyd, 1991) 

(d) Surface modification 

Surface modificatiOn IS a widely used technique for modifications of 

polymers and it can be performed by chemical, photochemical and by high

energy techniques (Waddell et a! , 1992). Chemical methods such as oxidation, 

addition reactions, halogenation (Sanchez et al., 200 I) are used to reduce the 

surface friction and tack. Surgical gloves are also subjected to halogenation on 

the Inner and outer surface of the gloves to balance the ease of release with 

gnpping requirements (Momose, 1986). Photo-halogenation is used to improve 

surface properties of polymer products without affecting the bulk properties. It IS 

found that by spray deposition of an alkyl halide on the surface of NR, and 

NR/SBR blends, followed by UV irradiation helps to reduce a1r permeability, 

enhances ozone resistance and Improves release properties for applications in 

tyres (inner liners) (Gilhck et al., 1989). In addition, surface modificatiOn of 

NR/SBR blend had been earned out in the presence of allylamme (ShanmugharaJ 

et al., 2006) using benzophenone as the photo-mitlator. The modified rubber 

revealed a low thermal degradation rate due to the presence of the allylamme 

coating on the rubber surface (ShanmugharaJ et a! , 2006). 

Physical methods, mcludmg electron beam treatments have been used to 

reduce surface stickiness of moulded rubber articles consisting of fluorinated NR. 

Research had also been conducted on plasma modification of NR usmg C2F4, 

acrylic ac1d, oxygen and argon (Mattson and Stenberg, 1993). The surface 

modification provided surfaces which were less permeable to oxygen and with 
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improved resistance to agemg. In addition, argon plasma treatment followed by 

grafting of monomers such as acrylamide and 2,2,3,3,4,4,4-

heptafluorobutylacrylate on to natural rubber by UV radiatiOn had been carried 

out (W ang et al., 2000) and the results indicated that the hydrophilicity of the 

modified products is high m acrylamide grafted product. These modifications 

lead to reduced surface roughness. In addition, chemical doping of natural rubber 

usmg a halogen such as wdme would result in conJugate bonds winch IS the 

pnme requirement for conductivity (Thakur, 1998) 

Surface modification of polymers could be ach1eved by an 10n 

implantatiOn technique. This result m changes in polymer structure and properties 

such as degradation of polymer molecule referred to as carbomsatwn, sphttmg of 

bonds and changes in polanty, improved wettab1hty, conductivity and sticking 

properties, respectively (Svorcik et al, 1992, Birdwell, 1992 and Predeep et al., 

2005). 

1.5 Interpenetrating networks 

1.5.1 Definition and history 

1.5.1.1 Definition 

IPNs may be considered as both one of the newest m the sense that 

modem research d1d not begin un!il the class1cal types of blends, grafts and 

blocks had already become well established, but also as one of the oldest because 

there is excellent eVIdence that they were commerc!al materials m 1914 

(Aylsworth, 1914; Sperling, 1987) An IPN is defined as a combination of two or 

more polymers in network form m wh1ch at least one IS polymenzed and/or 

cross-hnked in the presence of the other (Sperling, 1981). The term 

"interpenetrating" was g1ven pnor to the understandmg of the1r phase separated 

morphology. At present, 1! 1s reported that most of IPNs do not interpenetrate on 

a molecular scale, but 1t leads to the formatiOn of fine phases (Sperling, 1994) 

Compared to blends, IPN phase domams are comparatively small, often in the 

order of 20-80 nm and exhibit better dispersibihty. Therefore, due to the presence 

of fine phases and mterpenetratwn between phases, IPNs, can 1mprove 

mlsclblhty, phys1cal properties and broaden the trans!lion reg~on. 
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a. Polymer blend b. graft copolymer c. block copoi)7Iler 

~-. -

~---~~. 
-- . --

d AB graft copolymer e.IPN f. Sem1-IPN 

Fig. 1.15 Schematic representation of d1fferent types of combmations of 

polymers (After Sperhng, 1994) 

IPNs can be classified under polymer blends, which are combmatwns of 

two or more polymers. Polymer blends can be diVIded mto six sub-classes and 

the schematic representations are given m F1gure 1 15. According to the synthes1s 

process, IPNs can be placed under the sub-class of graft polymers (Sperlmg, 

1971). However, they d1ffer from graft polymers due to the absence of covalent 

bonds between the homopolymers (Sperling, 1994). On the other hand, IPNs are 

related to block copolymers in wh1ch the length of the blocks determines the size 

of the domains. 

1.5.1.2 History ofiPNs 

The person to invent rubber-toughened plast1cs similar to IPNs was 

Aylsworth (Aylsworth, 1914). He had made attempts to m1x rubber and sulphur 

w1th monomers of phenol-formaldehyde compositions followed by 

polymerization and simultaneous cross-linking of rubber. However, dunng his 

penod, the term IPN was not established 

In 1941, Staudinger and Hutchmson prepared homo-IPNs based on 

polystyrene or polymethylmethacrylate w1th the mm of smoothmg the surfaces of 

transparent sheet (Staudmger et al., 1951). Solt (1955) developed cationic and 
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aniomc IOn exchange resms in which the networks were oppositely charged, to 

improve the exchange efficiency. Miilar (1960) IS considered as the person who 

introduced the term "mterpenetratmg networks". Sh1bayama and Suzuki (1967); 

Lipatov and Sergeeva (1967); Frisch et al., (1969) and Sperlmg and Fnedman 

(1969) were also piOneers in this field. 

1.5.2 Types of IPNs 

Accordmg to the synthesis method, IPNs are divided mto two major 

categories I.e. sequential IPNs and simultaneous IPNs (Figure 1 16). Further, the 

mode of preparation has a pronounced effect on domam size, shape, connectivity, 

interface mlXlng and bondmg (Sperhng, 1989). Furthermore, these IPNs can be 

divided mto sub-classes. 

1. Semi-1 IPNs, where the first polymer is present in network form and the 

second network IS present in the uncrosshnked state. 

2. Semi-2 IPNs where second polymer is crosshnked and first polymer IS 

present in linear form. 

3. Full IPNs m which both polymers are crosslinked to form networks. 

1.5.2.1 Sequential IPNs 

This proJeCt explores the possibilities of synthes1zmg IPNs based on NR and 

PMMA by the sequential mode of preparation. In this method, the second 

polymer is prepared by mcorporatmg monomer with other ingredients to the first 

polymer, which IS m sheet form, by a swelling procedure. This is followed by m 

sztu polymerization of the monomer m the presence of the first-formed polymer. 

However, wide ranges of composition are unable to be produced by this method, 

due to the fact that the maximum amount of second monomer that can be 

mcorporated depends on the eqmhbriurn swelling ofpolymerl. 

Sequential IPNs based on NR and PMMA could be prepared in the latex 

state and m the sohd state However, polymerization of the monomer in swollen 

NR in sheet form possesses advantages such as the lack of film crackmg at higher 

glassy polymer contents. In general, the description of sequential polymenzatwns 

IS given below. 
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A. Sequential polymerization step 

Monomer I 

Crosshnker 1 

Polymenze 

-----------~ 

Sequen!JaiiPN 

J Monomer 2 + Crosslmker 2 

Polymenze 

Fig 1.16 Synthetic routes to IPN formation (Part A) 

Results of many mvestigations (Sperhng, 1994) conducted on sequential 

IPNs indicated that m sequential IPNs, polymer! tends to be the contmuous phase 

for most of these IPNs In additiOn, they might exhibit dual phase contmuity for 

the mid-range and high concentratiOns of the second polymer Furthermore, 

phase separation occurs via a short period of nucleatiOn and growth followed by 

spinodal decomposition. Depending on the miscibility of the components, 

different domam sizes such as I 00 nm, I 0 nm could be ob tamed for highly 

immiscible systems and for micro-heterogeneous systems, respectively (Sperling, 

1994) In addition, in sequential IPNs, gelation appears to occur pnor to the 

polymerization of the second polymer, and, thereby leads to curtailed spmodal 

coarsening and agemg This will result in smaller domam sizes and improved 

miscibility (Sperhng, 1994). In sequential IPNs, due to the swelling effect, the 

first-formed polymer chains are in extended and less probable conformations. As 

a result, the second polymer chains exist m relaxed conformatiOns (M1shra et a/ , 

1995). Thermodynamic studies (Cuadrado et al., 1988) conducted usmg a model 

IPN md1cated that sequential polymenzatwn results m more mcompatlble 

systems as it enters the metastable regiOn at lower concentration. However, 

certam research work revealed that compatibility of sequential IPNs IS better than 

the simultaneous IPNs (Erb1l et al., 2004) 
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1.5.2.2 Simultaneous IPNs (SIN) 

Simultaneous polymerization step 

Monomer I 

Crosshnker I 

+ Monomer2 

Crosshnker 2 

j 
/ 

Simultaneous IPN 

Fig 1.16 Synthesis route to SIN IPN formatiOn (Part B) 

SINs are prepared by Simultaneous polymerization of monomers and/or pre

polymers v1a non-mterfenng reaction routes: e g. chain and step polymenzations. 

Though all reactants are fed Simultaneously for the preparation of SIN IPNs, they 

can be formed accordmg to three methods (Sperling, 1986). 

1. Network of first polymer is formed before the onset of the reaction of 

second monomer (In situ sequentlaliPNs (Jm et al., 1988). 

2. Network of second polymer 1s formed prior to the formatiOn of first 

polymer 

3. Both networks are formed simultaneously. 

However, these three systems render different morpholog1es, dens1ties 

and properties. Jm et al. (1988; 1993) conducted extensive research on m sztu 

sequential IPNs. In sztu sequential semi-1 IPNs based on PU/PS (Nevissas et al., 

1988; Jm et al, 1993) have been synthesized. In tins method, the modes of 

po1ymenzatwn of the two monomers are reported as chain polymenzation and 

step polymenzatlon. Further, they are piOneers m developing m situ sequential 

IPNs where both polymers are prepared by a free radical pathway. Tlus could be 

ach1eved by different react1v1ties of the monomers (e g. reactivity of ally1ic 
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double bonds IS less than acrylic and methacrylic bonds) towards free radicals or 

by using different irutmtors, where each one IS specific for one system One such 

example of preparation of zn s1tu sequential IPN s based on PMMNpoly( diallyl 

carbonate ofbishenol A) by usmg two different expenmental conditions At first, 

PMMA was synthesized at a moderate temperature using AIDN and then the 

temperature was mcreased to facilitate formatiOn of network using !-butyl peroxy 

Isononate (TBPIN) (Rouf et al., 1994). Suzuki and coworkers studied an 

acrylate/epoxy system, where they found that when the acrylic monomer was first 

subJected to polymerizatiOn it would result in a heterogeneous structure, but other 

methods resulted in more homogeneous products (Suzuki et al., 1980). NMR 

studies conducted on PUR!P AC IPN mdiCated that sequentially synthesized 

PUR/cross-linked PMMA (PAC) SIN exhibited a finer morphology than the 

corresponding true IPNs (Parizel et al, 1993; 1995). It was stated that the first 

formed network impede the gross-phase separation and the sequentially prepared 

IPNs exlubited more mteractions between PUR and PMMA components than the 

SIN IPNs (Parizel et al., 1995). Research conducted on PUR!PMMA SINs 

mdicated that when PUR is polymerized usmg dibutyltm dilaurate as a catalyst 

before the onset of PMMA polymenzation leads to improved phase mixing 

compared to SIN IPNs (Tung et al, 1992). 

IPNs can be further divided as follows mto vanous categories dependmg 

on the nature of the product. 

a. Latex IPNs 

Latex IPNs are produced by two methods Cross-linked latex particles are 

swollen With a second monomer, Imtiator and cross-linker and polymenzed in 

s1tu in latex form. The resultant IPNs can exlubit core-shell structures (Sperling 

et al., 1974). Latex IPNs can be prepared bymixmg of two types of cross-linked 

latexes followed by coagulation (Klempner et al, 1971) 

b. Gradient IPNs 

Gradient IPNs can be descnbed as IPNs m which the composition or 

cross-link density IS vaned from one locatiOn to another on the macroscopic 
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level. These can be produced by rapid polymerizatiOn of polymer, which IS 

partially swollen with monomer before reachmg the diffuswnal equilibrium 

c. Thermoplastic IPN s 

These are hybnds between thermoplastics and IPNs. Because of the 

presence of physical cross-links such as block copolymer morphologies, semi

crystallimty or wnic groups, these materials behave as thermoplastic materials at 

elevated temperatures and act as thermoset matenals at lower temperatures 

(Sperling, 1994). Thermoplastic IPNs based on polypropylene-EPDM 

combmatwns are used m automotive bumpers because of its high energy 

absorption (Sperling and M1shara, 1996). IfEPDM with long ethylene sequences 

IS used, it tends to crystallize slightly and hence cross-linkmg IS not reqmred. 

1.5.3 Factors affect morphology ofiPNs 

Morphology and physical properties of sequential IPNs pnmanly depend 

on the kmetics and extent of swelling, rate of polymerization, cross-linkmg and 

phase separatiOn (Utracki, 1994). 

In general, dunng mterpenetratmg polymerization four types of 

morphology can be seen (L1patov et a/, 1985; Sperling et al., 1989). In the first 

stage, due to solubilizatiOn of polymer 11 m monomer, an optically clear product 

results m which no phase separation would be found. This was followed by phase 

separation mdiCated by cloudiness due to nucleatiOn and growth, one of the major 

mechanisms of phase separatiOn. As a result, controiied spheres are formed 

(Femandez et al., 1984). Thereafter, appearance of cylinders occurs and the 

number of cylmders mcreased due to spinodal decomposition Fmally, the 

morphology become less d1stmct due to reductiOn in diffusion as the viscosity of 

the medium mcreased. When phase separation is considered, Imtiation of 

nucleation arises from nuclei and an activation energy is required for that 

purpose. As a result, spherical domams are formed and increase m number with 

time. In this case, diffusiOn of monomers into nucleus occur result in positive 

diffusiOn. 

Spinodal decomposition leads to the formatiOn of mter-connected 

cylinders as mentiOned above, but the size of the phases remams constant and 
39 



compos1t10n is subject to change w1th time. Here, negative d1ffus10n from low 

concentratiOn reg10n into domain takes place resulting in inter-connectivity 

(Sperling, 1994) ImmiSCibility of IPNs 1s ascnbed to positiVe thermodynamic 

binary mteraction parameters and unfavorable contnbut10ns to free energy from 

the elastic stretching of the first-formed polymer (Sperling, 1994). 

Factors affecting morphology can he summarized as follows. 

1. Compatibility (Manson and Sperling, 1976; Fnsch et al., 1980) 

2. Polymenzation sequence 

3. Cross-lmk dens1ty (Donatelh et at, 1977; Coleman et al., 1987) 

4 Chemical mteractions (X1ao et at, 1983; 1984; Pats1s et al., 1986; Lu et al., 

1995; Anzlovar and Malavas1c 1990; Chen and Chen, 1993) 

5. Expenmental conditiOns, wh1ch affect the reactiOn rates and network formation 

rates (Lee and Kim, 1984 a,b,c; 1992) 

1.5.3.1. Compatibility 

Compatibility plays an important role in determimng the degree of mixing 

m polymer blends. Compatibility can be defined in different ways and commonly 

used definitions are as follows. 

1. Frequently defined as the misc1b1hty of components at the molecular 

level. This defimlion IS confined only to blends, wh1ch show true 

thermodynamic misc!blhty. 

2. When gross-phase separatiOn of individual constituents 1s absent, then 

such materials are considered as compatible blends. Nevertheless, this still 

excludes some blends, wluch do not possess necessanly fine morphology 

and hence deS!fed phys1cal properties. 

3. Compatible blends are blends wh1ch possess a set of (commercially 

important) desirable propert1es. Technological compal!bihzation IS widely 

employed in the rubber mdustry m order to obtain less mcompat!ble 

blends with improved ultimate properties. The term technological 

compatib1hzatJOn does not 1mply obtaimng a true thermodynamic 

miscibility in molecular terms (Coran and Pate!, 1993). 
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Extensive research work had been carried out to improve compatibility 

between vanous polymer pairs. As a result, the followmg were Identified as the 

potential methods, which could lead to the compatibility in polymer blends. 

1. Introduction of interactions 

The introductiOn of strong interactions such as acid-base, IOn-dipole, 

hydrogen bonding (Santos and Guthne, 2005) is known to impart 

thermodynamic miscibility. 

2. Introduction of cross-linking 

IntroductiOn of cross-linking results in fine morphologies and prevents 

coalescence (Machado and Dum, 2005). Furthermore, dynamic 

vulcanisation is used as an efficient technique for achieving 

compatibilization m rubber blends. In the field of IPNs, forced 

compatibilizatiOn was used to achieve compatibilizatwn between 

components (S{mchez et a/, 2001). Sequential IPNs based on poly( methyl 

acrylate) and poly(methyl methacrylate) were found to be Immiscible at 

low cross-hnk densities Nevertheless, a homogeneous single phase 

structure could be obtamed when it was cross-hnked usmg 10 wt % 

ethyleneglycol dimethacrylate (Sanchez et al, 2001) 

3. Introduction of interfacial agents 

Introduction of an mterfacial agent, which can concentrate at the interface 

causmg an emulsifymg effect, is commonly used as compatibilizer as It reduces 

the mterfacial tension. Moreover these compatibihzers improve the interfacial 

adhesion at phase boundaries providmg Improved stress transfer. In additiOn, It 

would stabilise the dispersed phase against growth and coalescence. In these 

aspects, block or graft co-polymers, which are synthesised in-situ or separately, 

are commonly used to improve compatibility (Bonner and Hope, 1993) Inoue et 

a/ (I 970) mdicated that when the molecular weight of a homo-polymer is less 

than that of the correspondmg domam then only the solubilization of homo

polymer m the corresponding domain of the block copolymer occurs. The effect 

of molecular architecture of copolymers on compatibility was investigated by 
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several researchers. Studies by Riess et a/ (1967) md1cated that di-block 

copolymers are more effective than tn-block copolymers m d1spersmg two 

homopolymers. Similar conclusions were drawn by Koklas and Kalfoglou (1992) 

from their study based on epoxidised styrene-butad1ene (ESB) block copolymers 

of varymg architecture With chlonnated polyethylene and poly(vmyl chloride). 

They indicated that the d1-block ESB is more miSCible With chlorinated polymers 

than the tn-block ESBS In addition, research earned out by J1ang et al., (1986) 

also showed that the miscibility of pol)'lsoprene m polyisoprene and polystyrene 

co-polymers decreases in the order of d1block > tri block > four-arm star 

compatib1hzers. Th1s was due to the greater complex of the conformation wh1ch 

results restriction m conformatiOn m micro-domam formation. As a result, 

solubility of homo-polymer in the correspondmg domam become reduced. 

However, one of the drawbacks of using a preformed block copolymer is the 

tendency for formation of micelles and therefore only a fractiOn of the block 

copolymer IS actually situated in the interface regwn. 

Graft co-polymers are employed as compatlbJhzers for blends contammg 

corresponding homopolymers. A graft copolymer of natural rubber and 

polystyrene had been used to compatibJiize NR and polystyrene blends. It 1s 

reported (Oommen et al., 1997) that the additiOn of a small amount of 

compatibilizer reduces the domam size and the effect levelled off at lugher 

concentration due to the formation of a cntJcal micelle concentratiOn (Oommen et 

a/, 1997; Aravinda et al., 2004) Ieadmg to mterfacial saturatiOn. In addition, 

mechamcal properties were found to be improved due to compatibJhzatwn. 

Further, the actual conformation of co-polymer at the interface was found to be 

neither fully extended nor completely flat md1cating that the conformation IS 

between these two extremes, so that only a part a of co-polymer exists at the 

interface and the rest penetrates the correspondmg homo polymer phase 

(Aravmda et a/, 2004). 

4. Addition offunctional!reactive polymers 

Reactive processmg 1s a comparatively novel technique, in wh1ch reactive 

functional groups are used to enhance the compatibility through fast and 

mevers1ble reactwn Most commonly used functional groups are anhydndes (Sh1 
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et a!, (2001); Heinen et al., (1996); Pagnoulle and Jerome (2001)) hydroxyalkyl, 

carboxylic acids, methyl esters, amines (Aert et al., 2001) oxazolmes (Vrumo et 

a!, 1996) and glycidyl methacrylates (Al-Mala1ka and Kong, 2005b ). In addition, 

graft or block co-polymers formed via blends contammg cross-linkable units are 

usually utilized in reactive processing to Impart compatibility between the 

indlVldual constituents (Xantos and Dagii, 1991 ). In addition, It IS found that the 

micro-structure of functwnalised rubber has a prominent effect on morphology as 

well as dynamic properties (Al-Malaika and Kong, 2005a). 

Havmg studied the literature on the compatibility of blends contaming 

PMMA, reports on miscible blends of PMMA are available. Kalkar and Parkhi 

studied PMMNpoly(t-butyl phenol formaldehyde) (PTBF) blends by usmg 

differential thermal and dynamic mechanical analyses. Results of their study 

mdicated that this blend system exhibited a compositiOn dependent single glass 

transition temperature indicating miscibility between the individual components 

and further revealed that PTBF acts as a compatible plasticizer m PMMNPTBF 

blends (Kalkar and Parkhi, 1995) Miscibility of this polymer pair was attnbuted 

to the specific mter-molecular mteractwn between the carboxyl groups ofPMMA 

and the hydroxyl groups of PTBF. Research conducted on vanous poly(n-alkyl 

methacrylates), mamly PMMA, indicated that PMMA IS miscible with poly( vinyl 

chlonde), and is mdependent of tactic1ty and the composition of the blend 

(Vorenkamp et a! , 1985; Lemieux, et a! , 1988). This system exhibits a lower 

cntical solution temperature (LCST), which shows a declming trend With 

mcrease of the content of the isotactic component ofPMMA (Vorenkamp et al., 

1985; Lemieux, et al., 1988). Nevertheless, miscibility of poly(alkyl 

methacrylates) was found to be dependent on the size of the alkyl chain, and, 

therefore, decreases With increasmg the size of side group of the alkyl cham 

Research conducted on binary blends contammg PMMA, indicated that 

PMMA is completely miscible with poly(epichlorohydrin) (PECH) (Mm et a!, 

1987; Fernandes et a!, 1986) and poly(vmyl acetate) (PVAc) (Song and Long, 

1991; Cnspim et a!, 2000; Zidan et a!, 2003). and the latter combmation IS 

miscible at low temperature (Qipeng, 1990a). However, these two bmary systems 

do exhibit lower critical solutiOn temperatures (LCST). 
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The first report on a ternary system based on poly(epichlorohydnn), 

PMMA and poly(ethylene oxide) was reported by Mm et al., 1987 and this 

system was Identified as completely miSCible over the entire composition. Q1peng 

(1990b) investigated ternary systems where poly(vmyl acetate) was used as the 

third component to replace poly( ethylene oxide). For this ternary system, a smgle 

Tg could be found from the DSC measurements, but still the mteractlons between 

the components appeared to be weak. This system was found to be miscible over 

the entire composition range at low temperatures, but it does undergo phase 

separatiOn showmg LCST behavwur. 

In addition, PMMA 1s found to be miscible With copolymers such as 

poly(styrene-co-acrylomtnle) and poly( a-methylstyrene-co-acrylomtrile) and 

with poly(p-methylstyrene-co-acrylomtnle) (Goh et al, 1991) The miscJbihty of 

such systems was descnbed by recent theones havmg considered inter-molecular 

and intra-molecular attractions between different segments (Kambour et al, 

1983; ten Bnnke et a/, 1983, Paul and Barlow, 1984). Furthermore, the 

interaction between methacrylates and styrene is weakly repulsive as shown by 

the small positive X. (mteractwn parameter) value and dependent upon the 

pendent groups of methacrylates. Therefore, w1th mcreasmg the s1ze of pendent 

group, the mteraction decreases Dependence of interactiOn between 

methacrylates and acrylomtnle shows a reverse trend and the repulsive 

mteractwn appear to be strong (Goh et al., 1991). 

In an mcompat1ble systems, thermodynamic forces leading to phase 

separatiOn are higher, and, hence, phase separation occurs pnor to the kmetlc 

ramifications preventmg 1t. It IS reported that as compatibility mcreases phase 

separation of the second polymers occur at a later stage and thereby allows a 

greater amount of mixmg of the two networks. In this case, more interpenetration 

on molecular scale can occur (Manson and Sperhng, 1976). 

Studies earned out to date on the miscibihty of IPNs were conducted by 

usmg graftmg reactions and by mtroducing specific interactions such as hydrogen 

bonds and ion-ion mteractions. Graftmg between two networks is expected to 

enhance the compatibility and thereby change the IPN morphology (Chou and 

Lee, 1993). Hs1eh et al., (1995, 2001) studied the graft-mterpenetratmg polymer 
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networks based on a polyurethane and bismaleimide system. Graftmg was 
• 

achieved vm an incorporatiOn of one end maleimide group m the polyurethane 

prepolymer with bismaleimide (BMI) The results obtained from their study 

indicated that the grafted IPNs exhibited superior tensile properties and a large 

improvement m flexural strength, especmlly when short polyurethane segments 

were introduced However, a heterogeneous morphology was proved by the 

DMA and SEM studies, even for these grafted IPNs. 

Studies conducted by Chou and Lee ( 1995) stated that the reaction sequence 

is one of the pnme factors in determmmg the extent of component mixmg and the 

morphology. They have studied polyurethane-unsaturated polyester IPNs, where 

the reaction rate and the level of grafting were compared. It was found that when 

PU reaction was faster, extensive mixing occurred and it was attnbuted to strong 

graftmg or chain interpenetration. 

5. Chemical interactions 

Miscibility of large molecules can be achieved through a negative MI of 

mixing which can be obtamed by chemical mteract10n between functional groups. 

Introduction of funct10nal groups and the graftmg process lead to mcreased 

miscibility and vanous research publicatiOns are avmlable on this topic Xmo et 

al. (1983, 1984), Patsis et al. (1986) introduced tertiary aJnme groups into a PU 

backbone and carboxylic acid groups to the polymethacrylic backbone. Xmo et 

al. {I 984) reported that by mtroducing these functional groups greater 

mterpenetra!ion of the components can be obtamed due to the formation of 

hydrogen bonds. In addition, studies revealed that as the NCO/OH ratiO 

increased, compatibility also increased due to lowenng of enthalpy of mixing and 

it was further confirmed by improved physical properties. Lu et al. (1995) also 

introduced silanol groups and mmde groups as hydrogen bond donors and 

hydrogen bond acceptors, respectively. Anzlovar and Malavasic (1990) also 

conducted research on grafted PU/methacrylic copolymers by mtroducmg 

carboxylic acid groups to the PU and tertiary amme groups to the methacrylic 

component. Results indicated that as the functional groups increased, miscibility 

increased. Similar study was conducted by Culin et al., (2005) by usmg the 
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electron spm resonance (ESR) spm label method. This study revealed that the 

miscibility mcreased and the disorgaruzatwn of the ordered domains occurred at 

higher functiOnal groups. Furthermore, their study clearly indicated that better 

interpenetration and more mteractions occurred between the components in semi 

IPN than the corresponding eqmvalent blend (Culin et a/, 2005 ). SIN IPNs of 

PU/PS, prepared by a micro gel process lead to an increase in compatibility due to 

the occurrence of a graftmg reactiOn in between the phases and it IS revealed that 

the urethane component readily interpenetrates to the miCrogel to promote 

entanglements (Chen and Chen, I 993) This study leads to only one transition for 

the IPN prepared by this micro gel process 

In addition, research work based on IPNs had been conducted by 

mtroducmg ion-Ion mteractions. Ion-Ion interactions were introduced to 

components ofiPNs contammg polyurethane and PMMA vm mtroducing tertiary 

amme groups to the polyurethane and by copolymenzing MMA with acryhc acid 

A smgle phase morphology with a smgle glass transition was obtamed at a level 

of 9 -20 mol % acrylic acid umts. Nevertheless, SEM studies showed a phase

separated structure Hemandez et al., (2005) studied the interactions and 

motions ofiPNs ofpoly(vmyl alcohol) and poly( acrylic acid) (PAAc) using 

13C spm-lattice relaxation times. This study mdicated that the complex will form 

between the OH group ofpoly(vinyl alcohol) and between the carbonyl group of 

acryhc acid. Compatibility of PV A and P AAc was confined to low concentration 

of PV A content (25 - 30 wt. %). Xmo et a/ (1994) studied sequentially prepared 

poly(butyl acrylate) and modified polystyrene with hydroxy groups as the basic 

components and by varying the hydroxyl content. It is found that the apparent 

miscibility Improved With increasmg hydroxyl content However, unhke their 

blend counterparts for which only 2 % was sufficient to obtam complete 

miscibility, IPNs still exhibited a two-phase system even at high hydroxyl 

contents (30 mole%) (Xiao et a/, 1994). The effect ofcross-lmking for the same 

IPN system was studied by the same researchers and they found that the cross

hnkmg ofpoly(butyl acrylate) has two effect on the miscibility. They concluded 

that the miscibility tends to mcrease with cross-hnkmg in IPNs prepared with the 

Immiscible polymer pair with low hydrogen bonding On the other hand, as the 
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cross-link density mcreases, micro-heterogeneity could be obtained for the IPNs 

prepared with miSCible polymer pairs due to hydrogen bonding. 

6. Introduction of chemically similar components such as isomeric 

components: 

Studies conducted (Manson and Sperlmg, 1976) on an incompatible 

poly( ethyl acrylate) and polystyrene system mdicated that by replacmg PS with 

MMA compatibility increased and it this IS due to the 1somenc nature of PEA and 

PMMA. SEM studies md1cated that the cellular structure becomes smaller m size. 

When it IS completely replaced by PMMA, the cell structure disintegrates to a 

structure With greater interpenetration (Manson and Sperling, 1976). 

However, one phase can be formed with a completely compatible pmr, but 

still topological differences can be found between the networks. Fnsch et al. 

(1980) obtained a smgle glass transition for SIN PU-polyester and SIN PU

polyacrylate materials indicatmg no phase separation. These matenals consisted 

of fine domains so that the mstrument could not d1stmguish the phase separatiOn 

(Sperling, 1971). 

1.5.3.2 Polymerization sequence 

The polymerization sequence has a pronounced effect on morphology. 

The first formed polymer in sequenhaliPNs pnmanly governs phase continuity 

In the case of simultaneous IPNs, phase continuity depends on the relative rate 

formatiOn of networks Research conducted on IPNs based on poly:Isobutene 

(PIB) and PS, by Vancaeyzeele et al., (2006) indicated that when the 

polyisobutene network was allowed to form first, the highest mterpenetrat10n was 

obtamed. The smne conclusiOn was drawn for the IPN system consisted of PIB 

and PMMA (Vancaeyzeele et al., 2005) 

1.5.3.3. Cross-link density 

As descnbed earlier (Sperlmg, 1994), phase separatiOn occurs through 

nucleatiOn and growth or spinodal decomposition, which ultimately results in 

mter-connected cylinders. Later growth of these cylmders leads to coarsening and 

coalescence. Presence of cross-links can suppress these changes and m other 
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words they can restnct phase separation due to physical mterlockmg. Therefore, 

It helps to Improve the compatibility and results m small domains. However, this 

process is facilitated when gelation occurs pnor to phase separation and It helps 

to restrict phase separation and improved misicibility. Donatelli et al. (1977) 

indicated that as cross-lmk density mcreased domain size decreased. Studies on 

the effect of gamma rays on phase diagram of polyvmylmethylether/deuterated 

polystyrene IPNs (Briber and Bauer, 1988) mdiCated that the spinodial 

temperature increased remarkably with radiation dose from zero to 125 Mrad. 

Contradictory results could be found in work by Bauer et al. (1989), who studied 

semi IPNs. They mdiCated that when cross-hnk density was increased in the PS 

phase beyond the level of eqmlibnum support, the sample phase separated dunng 

polymenzatwn This behaviorwas ascnbed to the lowering ofmutl!al solubility. 

1.5.3.4. Experimental conditions 

By controllmg the rate of phase separatiOn, the extent of inter-mixing of 

an IPN can be controlled Research publicatiOns indicated that homogeneity and 

interpenetratiOn of SIN PU/PMMA IPNs could be achieved by applying high 

pressure (Lee and Kim, 1984 a,b,c; 1985; 1992). Such systems consist of small 

domains and exhibited near molecular level mixing. Polymenzation at low 

temperature also leads to a reduction m phase separation and improved 

homogeneity by increasmg the VISCOSity of the medium (Lee et a/, 1992). 

1.5.4 IPNs based on PMMA 

PMMA has been widely used for synthesizmg IPNs with vanous other 

polymers. These include simultaneous as well as sequential IPNs Recently 

reported IPNs based on PMMA are documented as follows. 

Xmo et a/, (1994) studied the rate of formation of networks based on castor 

m! PU/PMMA and It was found that the rate ofPU formation was higher than for 

the acrylic. These materials exhibited a broad glass transition temperature. 

Similar materials have been used m applicatiOns such as coatings for iron m order 

to mcrease the rust resistance (Honquan, 1993). 
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X~ao et al. (1994) and Zhou and Fnsch (1993) developed meta-stable 

phase diagram for PU/PMMA SINs (Zhou and Fnsch (1993), Fnsch and Zhou. 

(1993). M1shara et al. (1994) studied the d1stnbutwn of the remaining monomers 

dunng PU-PMMA SIN preparatiOn and it was found that monomer was 

partitioned 50150 between phases. This was further confirmed by the dominant 

entropy of m1xmg over a wide range of enthalpies of mlXlng (Mishara et a!, 

1994; Mishara and Sperhng 1995). This finding can be applied to most of the 

SIN or IPN polymerizatiOn with few exceptions such as crystallme polymers, 

highly cross-linked polymers and polymer systems where monomer II IS 

insoluble m polymer I. (Mishara and Sperhng, 1995). Jm et al. (1988) have 

undertaken IdentiCal studies and showed that m the PU/PMMA SIN preparation, 

the reaction of the remammg MMA takes place both at the mterface and w1thm 

the PU phase at later stages of polymerization 

Several researchers had also conducted research on m sztu sequential full 

IPNs based on PU/PMMA (Hermant et al., 1983; Monn et al., 1983; Djomo et 

a!, 1983; Jehl et al., 1983). It was observed that the tan delta peaks shifted 

inwards and broadened. It was mentioned that these materials were incompletely 

phase separated (Hermant et al., 1983; Morin et al., 1983; DJomo et al., 1983; 

Jehl et al., 1983). The kinetics of reaction of these lPNs, usmg FTIR 

spectroscopy, was studied (Jm and Meyer, 1986; Jin et al., 1988) In addition, 

Hourston and his coworkers made attempts to relate cross-hnk density and 

morphology of IPNs to the mechaniCal properties of PU/ PMMA semi-2 lPNs 

(Hourston and Zia, 1983; Hourston and McCluskey, 1985). These studies 

indicated that the reduction of molecular weight between two cross-links, 

improved the mixmg and Its effect was more pronounced in systems where the 

first network was cross-linked than the semi-2 IPNs (Hourston and McCluskey, 

1986). 

First report on the use oflPNs as energy damping matenals was published 

by Huelck et al. (1972). Dampmg depends on several factors such as the 

matenal's loss factor, modulus, substrate modulus and constraming layer 

modulus. Keskkula et a! (1971) quantified dampmg performance by usmg the 

area under the tan delta agamst temperature curves (Keskkula et al., 1971 ). In 

additiOn, the area under the loss modulus curve has been expressed as a dampmg 
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function (Fradkm et a!, 1986), or the loss area (LA) (Fradkm et a!, 1986, Chang 

et al., 1987). Latex IPNs based on poly(ethyl methacrylate) and poly(methyl 

methacrylate) exhibited high tan delta values over a broad range of temperature 

(Sperlmg and Thomas, 1974). Therefore, 1t led to the formation of micro

heterogeneous structJrres as the heat of mixing is near zero since these matenals 

are 1somers. Bauer et al. (1994) has studied IPNs based on PMMA by varying the 

graftmg reaction with the aim of developmg miscible systems. Attempts have 

been made to graft alkylcrylate, methacrylate, acrylate and a-methylstyrene on to 

PMMA In this study, acrylate and methacrylate chain ends were attached via an 

ester linkage and alkylacrylate chain end was attached through the a-methylene 

group SANS have been utilized to evaluate the effect of IPN structJrre on the 

mJscJb!IJty of two components. SANS data revealed that graftmg significantly 

enhances mJscJbihty. Further, thermal stud1es showed that one transition m a 

grafted sample for PMMAIPEG d1acrylates and two transitions for non-grafted 

IPNs. Furthermore, this study showed that by controlling the chemistry of cross

linking and graftmg dunng IPN polymenzation, the morphology of the resultant 

IPNs could be vaned. LIPNs based on polybutylacrylate/polystyrene/PMMA 

(Lmcheng, 1989) have been synthesized usmg potassmm persulphate as the 

catalyst and the latex particle distribution and the dynam1c mechanical properties 

have been evaluated. It was found that when PMMA was added drop-wise dunng 

synthesis, this led to a narrower particle s1ze distnbutwn Increase of catalyst 

concentration led to a decrease in the average particle s1ze, but had no effect on 

the d1stnbutwn. Furthermore, these materials exh1b1ted a phase-separated 

morphology Dynamic mechanical stud1es have been earned out for LIPNs based 

on PMMA/P (n-BA) and good damping properties were obtained for a 40 60 

PMMAIP(n-BA) IPN and tlus IS ascnbed to a core-shell structure of the latex 

particles (Shuca1 et al., 1991 ). LIPNs based on linear BA- ethylene glycol 

dimethacrylate copolymer, dlVinyl benzene-styrene copolymer and PMMA was 

synthezised usmg e1ther AffiN, or potassuim pursulphate, as the imtJator 

(Liucheng et a! , 1992). Effect of composition on phase mverswn had been 

evaluated for LIPNs based on poly(MMA)/poly (ethyl acrylate) At low levels of 

EA, the PEA cell structure IS dispersed m PMMA as the continuous phase 

However, mcreasmg EA content results m phase mverswn. Dual-phase contmmty 
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has observed at the EA contents 48-86 % (volume) (Yucai et al., 1992) Forced 

compatibihzatwn of poly(methylacrylae) and poly(methylmethacrylate) 

sequential IPNs was achieved by usmg 10% EGDM resulting smgle transitiOn. 

However, a two phase structure was obtamed for the materials havmg low cross

lmk density (Sanchez et al., 2001). IPNs based on PMMA and polybutadiene 

(Wang et a/,2000; J1a et a/, 1988), polydimethyl s!loxane (He et al., 1992,1989, 

Fnsch et a/, 1994), polymethylphenyl siloxane (Brachms et a/, 2002) and 

polyisobutene had been studied. The network formation of PMMA/Pffi and the 

extent of mterpenetration had been studied by FTIR spectroscopy and DMTA, 

respectively Results indicated that these matenals though they exhibit 

transparency, still possess a two phase morphology. Nevertheless, when the Pill 

network was synthesized first in the in situ sequential preparatiOn of IPNs, It 

results m higher interpenetration (V ancaeyzeele et a/ , 2005) 

Sequential IPNs based on PMMA have been used for developmg sohd 

electrolytes For an exmnple, sequential sem1-l IPNs based on methoxyohgo( oxy 

ethylene)methacrylate and PMMA had been synthesized and this material 

resembles a sohd polymer electrolyte and exhibited ioruc conductivity in the 

order of 10·3 S cm·1 at 25 oc (Hou and S1ow, 2001). In addition, membranes 

prepared from semi IPNs based on poly(ethylene glycol) grafted 

poly(methacrylates) and PMMA exhibited conductivity as 10·5 S cm·1 at 30 °C. 

DMTA analysis clearly demonstrated that these ruatenals are phase separated 

(Elmer and Janasch, 2006). IPNs based on poly(methyhnethacrylate) and 

poly(ethylmethacrylate) or poly(butylmethacrylate) were synthesized by 

suspensiOn polymenzat10n of MMA m the presence of other polymers 

(MacCallum and Smith, 2000) and it is found that that these matenals also 

exhibit phase separatiOn as evident by the presence of two glass transitiOns 

corresponds to their homopolymers. 

Rlbelles et al. (2002) had studied the sequential IPNs based on 

poly(ethylacrylate) and poly(methylmethacrylate) and the fraction of matenal 

which has a conformational mobility characteristics of hqmds had been 

calculated, This study also indicated that the miscibility of these materials are 

governed by the cross-hnk density of the first formed polymer 

(poly(ethylacrylate)) Homogeneous IPNs have been obtained for the highly 
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cross-hnked material and phase separated IPNs have been obtained for the lightly 

cross-hnked system. Thts trend is observed by vanous researchers. Nevertheless, 

an opposite trend which reveals that the phase separatiOn increases wttl! 

increasmg cross-link density ts found for the IPNs prepared from natural rubber 

and wtll be explained m the following section. 

1.5.5 Use of natural rubber for development of IPNs 

Interpenetrating polymenzation can be constdered as one of the novel 

methods of modtfymg existing naii!ral rubbers. Accordmg to the synthesis 

method, IPNs are closely related to graft copolymers, where polymerization of 

monomers is performed m the presence of natural rubber either m the latex stage, 

solution form or m dry form However, compared to graft copolymers, IPNs do 

not consist of covalent bonds between each constituent and possess dtfferent 

morphologies because of tl!e presence of cross-hnks. Avatlable hteraii!re on IPNs 

based on NR ts relatively few and recent research work done on tl!ts subJect will 

now be summarised 

Hourston and Romame (1990) have focused on NR and PMMA 

composite latex In thetr study, the emphasis was on synthesizmg NR/PMMA 

composites whtch can be referred to as IPNs by varying the mitiator system, tl!e 

plastomer type and the elastomer/ plastomer ratio. Full and semi latex IPNs 

(LIPN) based on NR and PMMA have been synthesized by usmg, t

butylhydroperoxtde - tetraethylenepentamine systems as the imtiator and It was 

found that tl!e resultant latex IPNs exhtbited long-term stabtlity. Nevertheless, 

film-formmg properttes were not satisfactory when the PMMA content ts greater 

than 10% and this was ascnbed to the formation of PMMA at the aqueous 

phase/rubber interface, whtch will prevent the adheston between particles. 

Further, the cast films, prepared from the resultant latex were transparent, stiffer 

and less tacky tl!an NR film. The extent of miscibthty of these IPNs was studted 

using DMTA and tt was indtcated that the mtroduct10n ofPMMA up to 20%, dtd 

not cause any significant shift of the Tg ofNR. DMTA data further showed that 

these matenals were phase separated and exhtbtted two Tgs wttl! httle or no 

evidence of mixmg. Further, stress-stram data indicated that the mtroduction of 

PMMA causes an increased tmtial modulus and tensile strength. Cross-linlang of 
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PMMA led to further improved properties The morphology of these IPNs was 

studied by TEM and 1t was evident that the IPNs exhibited very heterogeneous 

morphologies. 

Semi-IPNs based on NR/PS were synthesized by varying the nature of the 

mitiator system, the vulcanizmg method, the cross-link level and by varying the 

composition (Hourston and Romaine, 1989, 1991). Physical properties, tensile, 

tear and hysteresis, of these IPNs were investigated. Furthermore, the 

morphology of these materials was evaluated by TEM stud1es and DMTA was 

utilized to determine the extent of miSCibility. It was found that when amine

activated hydroperox1de was used as the initiator, a complex morphlogy ex1sts m 

these IPNs matenals in wh1ch pure PS domains and core-shell structured particles 

of PS-NR are present Nevertheless, the AffiN system provided a much finer 

morphology. It was concluded that in th1s system, polymenzatwn occurred w1thm 

the NR particles. From tins study, 1t was further confirmed that AmN caused 

degradation of the NR molecules and it also causes significant grafting. Stress

strain data mdicated that the mtroduction of PS to the NR matrix and/or cross

linking Improved the imtial modulus and tens1le strength. DMT A data showed 

that there was no sign1ficant change in the T8 of the NR, but the PMMA 

transition tends to sh1ft towards lower temperature for the semi-2 and full IPNs 

for compositions ofNR80:PMMA20 md1catmg that pre-cross-Iinking ofNR latex 

improved miXing. 

This IS an md1cat10n of the effect of the tightness of the first formed 

polymer on the morphology of the IPN. Similar trend were not observed for the 

correspondmg compositions prepared usmg amme-acbvated hydroperox1de as the 

imhator and 1t mdicated that these IPNs were highly ImmiSCible and phase 

separated (Hourston and Romaine, I 989). S1gn1ficant sh1ft ofT 8 transitions and 

satisfactory mechanical properties could be obtained by using an Oil-soluble 

initiator t-butyl peroxy 2-ethyl hexanoate (Triganox 21S) as the 1mbator for the 

productiOn ofLIPNs based on NRIPS. 

Attempts had been made to synthesize IPNs based on NR and e1ther 

PMMA (Das and Gangopadhyay, 1992) or PS (Das et al., 1993) by a sequential 

mode of preparatiOn. This research work was mamly focused on semi-! IPNs and 

full IPNs, which were prepared by varymg the composition and cross-Iinker 
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level. The effect of cross-linking and the blendmg ratio (composition) on phys1cal 

properties and morphology of these IPNs were mvestigated. Results obtained 

from the study based on NR/PMMA revealed that with mcrease of PMMA 

content, or cross-linker dose, the initial modulus and tens1le strength has 

mcreased. A different trend was obtained for the compositiOn of NR25:PS75 

where tens1le strength increases up to an optimum point and thereafter showed a 

downward trend. In general, it was concluded that the tensile strength and the 

thermal stability (Mathew et al., 2001) of full IPNs were comparatively higher 

than semi-1 IPNs. The high thermal stability of full IPNs was attnbuted to the 

high entanglement dens1ty m the full IPN (Mathew et al, 2001) Scanmng 

electron microscopy studies showed that m NR-rich samples, PMMA exists as 

loosely bound diffused fibnls. The mcrease m the plastomer content imparts a 

more tight structure with lower fibril w1dth and lower average distance between 

fibrils (Das and Gangopadhyay, 1992). A similar observation was made for the 

IPNs based on NR/PS. These studies showed that cross-linking of the plastomer 

phase Improved the mJscJbJlity and resulted a much finer morphology (Das et al., 

1993). The study by Mathew and Thomas (2001) mdicated that the toughemng 

mechanism of NR/PS full IPNs will be the crazing followed by the shear 

)'lelding. Further, they have indicated that the 1mpact performance depended on 

cross-linking level of PS phase, blend ratio and morphology. Nano-scaled full 

IPNs based on NR and PS had been synthesized using different mitiators, 

dicumyl peroxide, benzoyl peroxide and AffiN and by Var)'lng the level of cross

linker. Among these initiators, DCP has resulted in better properties than the 

other initators. It IS reported that the component m1xing mcreased w1th increase 

of the PS content and cross-linkmg level However, high PS content and h1gh 

cross-link dens1ty resulted lowering of the extent of phase mixmg (Mathew et al , 

200la). 

NR, obtamed from Mamhot glazwvu, has been used in the preparation of 

full and pseudo IPNs using poly(2,6-dJmethyl-1,4-phenylene oxide) as the 

second polymer by the simultaneous method (Barros et al, 1992). It was noted 

that similar Mn ( 1 5 x 1 03
) values were obtained for each polymer by the cross

linking process usmg divinyl benzene and ethylene diamine for natural rubber 
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and for brommated phenylene oxide (Br-PPO), respectively. Despite the 

solub1hty differences ofthe pure components, fully miscible compositiOns for full 

IPNs with higher percentage ofNR (70%- 90%) and for higher percentages of 

Br-PPO (90 %) could be obtained. In these cases, only one Tg was obtained and 

SEM stl!d1es showed that a smgle-phase morphology for full IPNs with 90 % of 

Br-PPO. In pseudo IPNs, micro phase separation was observed as indicated by 

the presence of two separate Tgs in-between those of the homo-polymers. Diffuse 

particulate morphologies are observed for pseudo and full IPNs with 50 wt% of 

Br-PPO. However, IPNs prepared based on PPO with other polymers such as PS, 

PMMA, polybutadiene, and polyurethane were homogeneous indicating no micro 

phase domams (Fnsch et a! , 1980; 1989; Smgh et al., 1990; Fnsch and Hus, 

1989; Mengnjoh et a!, 1989). Sequentml pseudo IPNs based on natl!ral rubber 

(from Manzhot glazzov11) and PMMA was studied by varymg the cross-lmk 

density. This study mdicated that the misc1bihty decreased with increasing cross

link density. In other words, a smgle transition was obtamed as the cross-hnk 

density was decreased. The extent of cross-hnklng of natl!ral rubber and the 

composition are the decisive factors m determming the morphology (Alcantara et 

a!, 1999) 

Srud1es conducted on SIN IPNs based on NR-poly(carbonate-urethane) 

(PCU) md1cated that morphology vanes from totally homogeneous to 

m1crophase domams could be obtained dependmg on the molecular weight 

between cross-links. (Barros et al., 1990). Research work has been carried out to 

utihze core-shell latexes based on NR/PS-X linked LIPNs as a part of a study to 

investigate the use of core-shell latexes based on NR, PMMA or PS as Impact 

modifiers in a at bnttle polymer matrix (Schneider et al., 1994). It is found that 

NR-cross-hnked PMMA core-shell particles Improved the impact energy of 

PMMA and NR-PS LIPNs could effectively toughen PS. 

Attempts have been made to prepare IPNs based on epoxid1sed liquid NR 

(ELNR) m the presence of hexanediol d1acrylate (Decker et a! , 1995). In this 

srudy, ELNR was cross-hnked by means of a photmmtiator and the m sztu 

polymerization of d1acrylate led to the formation of two networks. It was found 

that by usmg a two-step cunng process 1 e. at first attempt, acrylate monomer was 

polymerized by madiatwn to form a sem1-IPN and the rubber epoxy was exposed 
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to full emissiOn as the second step which enables quasi-instant transformatiOn of 

the sem1-liPN to a true IPN (Decker et a/, 1995). Harun and Kass1m (1993) 

studied the thermal properties and morph'oiogy of latex IPNs based on semi-2 

NR/ polyacrylamide with ethylene glycol dimethacrylate as the cross-linker 

(Harun and Kassim, 1993). Results indicated that IPNs possess greater thermal 

stability than NR. In addition, SEM studies mdicated that these IPNs exhibited 

phase separation Pilla1 et al. (1995) has studied the physical, mechanical thermal 

properties ofsemi-IPNs (Pillai and Franc1s, 1994) based on liquid natural rubber, 

PU and Imear PS and full IPNs (PIIlai, I 995). The results obtained from this 

study showed that physical properties such as tensile strength, hardness and 

density of the resultant IPNs increased with mcreasmg the PS content. A similar 

trend had been observed with increasing NCO/OH ratio. Furthermore, the results 

md1cated that IPNs produced usmg PU/PS components exhibited Improved 

thermal stability and mecharncal properties than that of the corresponding semi 

IPNs. 

1.6 Objectives of present investigation 

At present, synthetic polymers are widely used in many industries. 

Therefore, NR has to compete with these synthetic counterparts. In the past, 

various modifications have been carried out with the aim of widenmg the 

applicatiOns of NR. In fact, only a very few chemical modifications were 

successful m commercial terms and one such modification of NR is MMA 

grafted NR which is referred to as MG rubber. MG rubber IS used in Impact 

resistant articles and as reinforcing agent (Bamard, 1956). 

Recently, attentiOn had been paid to the preparation of NR/PMMA 

combinatiOns, but the physical properties of the resultant blends were found to be 

mferior due to the incompatibility of components (Oommen and Thomas, 1993, 

1996) However, the physical properties had been Improved by the additiOn of 

PMMA-grafted NR (Oomrnen, 1997) Therefore, the IPN polymerizatiOn method 

can be Identified as a potential method for preparation of materials based on NR 

and PMMA with improved miscibility and physical properties due to its unique 

structure, which will prevent phase separation to a greater extent. Such materials 

may be employed in applications such as Impact resistant articles and reinforced 
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matenals In addition, these matenals can be used in manufactunng automobile 

components and moulded parts (Oommen, 1997). 

Havmg looked at the research work undertaken on IPNs based on NR 

(sectiOn 1 5.5), it has been noted that comprehensive studies based on IPNs 

contains NR are relatively few when compared to the IPNs based on other 

polymers such as polyurethanes. 

This present study basically explores the physical and dynamic 

mechanical properties of IPNs based on natural rubber and PMMA. In the initial 

part of the study (Chapters 3 and 4) is confined to an evaluatiOn of the physical 

properties and dynamic mechanical properties of four different types of matenals, 

namely, the blends, semi-2 IPNs, semi-1 IPNs and full IPNs based on natural 

rubber and PMMA In this part, semi-2 IPNs and full IPNs were prepared by 

varying the cross-hnker level in the PMMA phase using EGDM at 0.5, 1.0 and 

1.5 mole percent. In addition, the elastomer/plastomer ratio was also varied to 

evaluate the effect of the plastomer content on physical properties, miscibility 

and dymnamic mechanical properties. The objectives of this part are descnbed 

under 1.6.1. 

The first part of this study (Chapters 3 and 4) clearly md1cated that the 

matenals discussed m Chapter 3 were phase separated Therefore, It IS essential 

to investigate any potential materials which could enhance the compatibility 

between these two components namely, NR and the PMMA. In this exercise, 

epoxidised natural rubber had been identified as a potential material which could 

impart compatibility between NR and the PMMA components. In additiOn, the 

effect of epoxidation level and the effect of expenmental conditions used to 

synthesis ofENR on the compatibility were explored. 

In the latter part of this study (Chapter 5), attempts had also been made to 

exploit the possibilities of synthes1zmg grafted IPNs in order to enhance the 

compatibility between the ENR component and the PMMA component. This was 

to be achieved via graftmg of acrylic acid on to ENR. The main objectives of this 

latter part of this study (Chapter 5) will be presented under 1.6.2 section 
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1.6.1 Objectives ofthe synthesis of blends and different 

types of IPNs based on the NR and the PMMA components. 

1.0 EvaluatiOn of the physical and dyorumc mechanical properties ofNRIPMMA 

blends prepared at various compositions. 

2.0 Syothesis and evaluation of the dyoarnic and mechanical properties of semi-2 

IPNs based on NR and PMMA by vary:mg the composition and cross-link 

density of the second component (PMMA). 

3.0 Syothes1s and evaluatiOn of the dyoarn1c and mechanical properties of sem1-l 

IPNs based on NR and PMMA, where the NR component was cross-linked 

us:mg a conventiOnal sulphur vulcruuzing system. 

4.0 Syothes1s and evaluation of the dyoamic and mechanical properties of full 

IPNs w1th a range of compositions and cross-hnk densities ID the second 

polymer component. 

5.0 DetermiDatwn of the extent of miSCibihty of the constituents in the above 

IPNs by dyorumc mechanical thermal analysis and the modulated temperature 

differential scanmng calorimetric techniques. 

1.6.2 Objectives ofthe investigation of the effect of the addition of epoxidised 

natural rubber on the miscibility and /or compatibility of semi-1 IPNs 

based on NR and PMMA 

1.0 Investigate the effect of the level of epoxidation on the compatibility of the 

NR and PMMA components m semi-! IPNs and their effect on the physical 

properties of these sem1-l IPNs. 

2 0 Investigate the effect of the epoxid1sed natural rubber content on the 

compatibility of the indlVldual components ID IPNs based on NR and 

PMMA and their effect on the physical properties of these semi-1 IPNs 
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3.0 Investigate the effect of method of synthesis of epoxidised natural rubber on 

the compatibility and the effect on the physical properties of the IPNs. 

4.0 Investigate the effect of the incorporation of acrylic acid on the compatibility 

ofiPNs based on NR and PMMA. 
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Chapter2 

EXPERIMENTAL METHODS AND CHARACTERISATION 

2.1 Preparation of blends, semi-IIPNs, semi-2 IPNs and IPNs based on 

natural rubber and Poly(methylmethacrylate) 

2.1.1 Materials 

Matenals used for the IPN syntheses are given m Table 2.1. In this study, 

most of the chemicals were used as received, except for the monomers and the 

cross-hnker, EGDM, which needed punficatwn Therefore, punficatwn of the 

monomer and the cross-hnker was earned out by passmg them through a 

disposable column of quaternary ammonium amon exchange resm, to remove 

inhibitors such as hydroqumone and hydroqumone monomethyl ether. 

2.1.2 Determination of extent of monomer absorption by pre-vulcanised NR I 

uncross-Iinked NR 

Prehmmary expenments were conducted to determine the extent of 

absorptiOn of vanous monomers either by pre-vulcamsed NR or uncross-hnked 

NR. A sample of known weight of pre-vulcanised NR with a thickness of ea 0 8 

mm was placed m a closed bottle containmg a 25 m! of the particular monomer. 

Samples were allowed to swell for different time intervals. Then, each sample 

was removed and immediately blotted in order to remove the excess surface 

monomer and the weight of the swollen sample was recorded. The extent of 

monomer absorption by pre-vulcamsed natural rubber I uncross-hnked NR was 

calculated as follows 

Monomer absorption percentage= [(weight of the swollen sample -imtlal weight 

of rubber sample)/ (mitlal weight of rubber)] x 100. 

2.1.3 Determination of solubility parameters for methacrylate type polymers 

Solubility parameters of methacrylate-type polymers were calculated 

usmg the Small and Hoy equations (Polymer Handbook, I 975, I 999) accordmg 
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Table 2.1 Matenals used m the syntheses ofiPNs based on NR and PMMA 

Matenal Purpose AbbreviatiOn Supplier 

60 %NR latex To prepare cast NRL Ansell Lanka 
NR films Pvt. Ltd. 

Pre vulcanised NR latex To prepare cast 
NR films 

Methyl methacrylate Monomer MMA Aldnch 
(MMA) 

Tertiary-butyl peroxy-2- Im!Iator Tnganox 21S Akzo Nobel Co 
ethylhexanote 

Disposable Columns To remove Aldnch 

(Quaternary ammomum mhibitors 

amon exchange resm) 

Ethylene glycol Cross-lmker EGDM Aldnch 
dimethacrylate 

Ammonia To prepare NHJ BDH 
ammomum 

oleate 

Oleic acid To prepare BDH 
ammomum 

oleate 

Sulphur Vulcanising s Monsanto Co. 
agent 

Zmc dithwcarbamate Accelerator ZDC Monsanto Co. 

Dibenzothiazole MBTS Industnal grade 
disulphide 

Tetramethyl thmram Accelerator TMTD Industrial grade 
disulphide (TMTD) 

Zinc OXIde Activator ZnO Industnal grade 

Dispersible agent To prepare Monsanto Co. 
dispersiOns 

Acetone For extractiOns Analar grade 

Fonmc acid For epoxidation Analar grade 

Hydrogen peroxide For epoxidatwn Industnal grade 
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to the group contnbution method where It was assumed that the contnbut10n of 

different functional groups to the thermodynamic property is add1titive 

Small's method 

Small values were denved from heat of vaponzation and It can be 

descnbed by followmg equatwn. 

(I) 

8Ev, and 8eJ are energy of vaponzatwn of species and contnbution of 

group j, respectively. In addition, nJ IS considered as number of groups of type J m 

the molecule. 

Therefore, solub1hty parameter IS descnbed as follows. 

(2) 

V, IS the molar volume of species 1. Therefore, by combmmg these two 

equations o, can be further expressed as follows. 

o, = [ { L, nj 8eJ) N,}] y, (3) 

Accordmg to the Small method, the molar attraction constant, F,J IS defined 

below 

FJ = (8Ev,J,V,J)112 (4) 

Therefore, the solub1hty parameter can be calculated usmg the followmg 

equatwn 

o, = [ 8Ev, V ,I V,21 112 = L, F/ V,= p, L,F/M, (5) 

p, is the density of polymer andM,Is the molecular weight. 

Hay's method 

Solubility parameters for these polymers were also calculated usmg Hoy's 

method (Polymer Handbook, 1999) using the followmg equations. 

M= (o2.-o2p_o2h) y, 

o., op, oh can be calculated from followmg equatwns 

o,= [F, + B/n] N, 

whereB=277,F,is Ln,F,and ii=05/8<P\, 

n is considered as number of repeatmg umts per polymer cham segment 
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where Fp = I;n, Fp,i 

oh=ot[{cf-1}/ d'Ji'2· (9) 

where cl= 777 t;./PlN and where ex IS the molecular aggregation number, usmg 

below mentiOned equatwns. 

V= I;n,V, 

t;.<P\ = I;n, t'1T (p) 

2.1.4 Synthesis/preparation of materials 

2 1 4 1 Pre-vulcanzsatzon o(NR latex 

Table 2.2 Pre-vulcamsatwn formulations 

Matenals FormulatiOn 

(phr) 

60% Centnfuged high ammoma latex 167 

10 wt% Ammonium oleate 2.6 

10 wt% KOH 2.5 

50 wt% Sulphur dispersion 1 

50 wt% Zinc d1thwcarbamate dispersion 0 5 

50 wt % Zmc ox1de dispersion 0 2 

(10) 

(11) 

NR latex compound was prepared accordmg to the combinations giVen m 

Table 2.2. Th1s formula was des1gned to obtam a comparatively low cross-link 

dens1ty, and, hence, the amount of vulcanising agents includmg sulphur, ZDC, 

ZnO had been adJusted to meet this requirement. Furthermore, m this attempt, 

mstead of usmg 60 % dry rubber content (DRC) of centrifuged latex, the DRC of 

centnfuged latex was adJusted to 50% by adding dewmsed water Heating of 

latex compound at 60°C was carried out for nearly 4 hours. However, the extent 

of cunng was determmed by the v1sual appearance of the coagulum, obtained by 

coagulatmg latex sample m CHCb until it can be easily broken and the broken 

p1eces are non-tacky Th1s is commonly used to determine the state of cure 1 e 
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whether the sample IS cured or under-cured If 1t 1s cured then the coagulum can 

be eas1ly broken and the broken pieces are appeared to be non-tacky 

Pre-vulcamsed latex was cooled to the room temperature as qmckly as 

possible m order to prevent further reactiOn. The chem1cals, wh1ch prec1p1tated 

were removed to prevent any further reachon and this pre-vulcanJsed latex was 

used to synthes1se sem1-l IPNs and ful1 IPNs where the first polymer was m 

cross-linked state. 

Preparation of NR films 

NR latex With 60% DRC was obtamed and diluted to 45 wt.% by addmg 

de10nised water and used for prepanng the NR films. A known amount of diluted 

NR latex was s1eved usmg a mesh and poured on to open glass trays to obtain the 

final NR film with a th1ckness of ea. 1 mm Thereafter, these cast films were 

dned at room temperature until the films were transparent. These films were 

further dned by heatmg the sheet at 70°C for 1 hour m an oven Films thus 

obtamed were then placed m sealed polythene bags and used in the preparatiOn of 

NR/PMMA blends and semi-2 IPNs 

Pre-vulcan1sed NR films were similarly prepared, as ment10ned earlier, by 

using pre-vulcanised NR latex. These cast films were mamly used m the 

synthesis of sem1-1 and full IPNs 

2.1.4.2 Synthesis of blends and IPNs based on NR and PMMA 

(I) Syntheszs o(NRIPMMA blends 

Prelimmary stud1es md1cated that the matenals produced usmg the 

m1hator (Tnganox 21 S) do not undergo 100% polymerisatiOn m the presence of 

oxygen in the medium. Therefore, a predetermmed excess amount of monomer 

had to be added m order to gam the reqmred amount of PMMA m the final 

product. 

NR film was cut into the reqmred shape and the 1mhal weight of the NR 

sample was recorded. Then this sample was placed in a closed contamer, 

contammg a mixture of monomer and imhators. The imtlator was added at 1 

mole percent on monomer content. The Immersed sample was allowed to swell in 
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the monomerhm!iator mixture and the sample was removed after It reached a 

predetermmed weight (10 mmutes to 30 mmutes) Different composi!ions of 

elastomer and plastomer ralios were obtamed by allowmg swellmg for different 

penods of lime The swollen NR sheets were then placed m sealed polythene 

bags and stored at ea 5°C- 8°C for about 24 hours allowmg umform distnbutiOn 

ofMMA withm the NR matnx. Thereafter, the swollen samples were placed in a 

mould, as shown m Fig. 2.1, and polymensat10n of the MMA was allowed to take 

place by heatmg the mould at 80oC for 22 h Samples were removed from the 

mould, weighed and further dned m a vacuum oven at room temperature for one 

week m order to remove any residual monomer. Detmls of the composilions of 

the NR/PMMA blends are giVen m Table 2 3 Sample codes mdicate the 

approximate composilion by weight. 

Table 2.3 Composition range of the NR/PMMA blends 

Target composition Experimental 

composition 

NRIPMMA blend 

NR PMMA NR PMMA 

(wt%) (wt.%) (wt.%) (wt%) 

NR90PMMA10 90 10 91 9 

NR80PMMA20 80 20 83 17 

NR70PMMA30 70 30 73 27 

NR60.PMMA40 60 40 61 39 

NR50.PMMA50 50 50 52 48 

ii) PreparatiOn ofsemi-2 IPNs 

Semi-2 IPNs were synthesized m an idenlical manner to the above

mentioned procedure except that the first polymer, NR was allowed to swell m a 

mixture containing monomer, Imliator and cross-hnker, EGDM. 
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Table 2.4 Details of semi-2 IPNs synthesis mcludmg composition and cross-hnker level 

Target composition EGDM (mole percent on monomer) 

(Experimental composition) 

NR PMMA 05 1.0 

(wt%) (wt.%) NR PMMA NR PMMA NR 

(wt%) (wt.%) (wt.%) (wt%) (wt.%) 

90 10 91 9 92 8 91 

80 20 83 17 81 19 81 

70 30 71 29 71 29 72 

60 40 63 37 58 42 63 

50 50 52 48 51 49 53 

1.5 

PMMA 

(wt.%) 

9 

19 

28 

37 
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As descnbed earlier, IPNs w1th vanous elastomer and plastomer contents 

were synthesised by varymg the swelling hme. Furthermore, semi-2 IPNs were 

synthesised by varymg the EGDM concentrallon as shown m Table 2 4. In 

add1t10n to the sample codes g1ven m the Table 2 4, the value g1ven m the 

parenthesiS md1cates the mole percentage of the EGDM. 

(iii) Preparation ofsemi-1 IPNs 

Sem1-1 IPNs were synthesised by followmg the same procedure 

menlloned earlier for NRIPMMA blends Nevertheless, mstead of usmg un

vulcamsed cast NR films, cast films prepared usmg pre-vulcamsed latex were 

used for the preparatwn of the sem1-1 IPNs to meet the main reqmrement of 

sem1-1 IPN, where the first-formed polymer should be m the cross-linked state 

Sem1-1 IPNs w1th d1fferent NRIPMMA rallos were synthesised by varymg the 

swellmg time. Detmls ofsemi-1 IPNs are g1ven m Table 2 5. 

Table 2 5 Compos1llons of the sem1-1 IPN 

Target compositiOn 

NR PMMA 

(wt%) 

90 10 

80 20 

70 30 

6040 

50 50 

(iv) Preparation of IPNs 

Experimental compositiOn 

NR, PMMA 

(wt%) (wt%) 

97 3 

92 8 

68 32 

63 37 

49 51 

The IPNs were also synthesized accordmg to the procedure g1ven for the 

sem1-1 IPNs except that the pre-vulcamsed NR sheets were allowed to swell m a 

m1xture wh1ch contained monomer, imllator and cross-linker. The IPNs w1th 

vanous compos1llons were prepared by swellmg the matenal up to d1fferent 

levels by varymg the swellmg lime. In the IPNs, both the NR and PMMA phases 
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are m the cross-hnked state. The IPNs w1th vanous cross-hnk levels were 

prepared by varying the EGDM content as shown m Table 2 6 

2.2 Preparation of the semi-1 IPNs based on NR, PMMA and the ENR as the 

third component 

2.2.1 Synthesis ofEpoxidised Natural Rubber 

Matenals 

Form1c ac1d (98%) and 50% hydrogen peroxide, non-wmc surfactant 

(Wettem), potassmm hydroxide and methanol were used Without further 

purificatiOn. 

Method: 

H1gh ammoma centnfuged natural rubber latex havmg 60% dry rubber 

content (kmdly donated by Ansel Lanka Ltd., Sn Lanka) was used through out 

th1s study Natural rubber latex was stab1hzed w1th a non-wmc surfactant, 

Wettem at a level of 10 phr. Stab1hzed latex was diluted up to the reqmred dry 

rubber content by addmg distilled water followed by stirring for 5-10 mmutes 

The latex m1xture thus prepared was allowed to stand for 24 hours for maturatiOn 

Matured latex was poured into the reaction vessel, in a water bath, wh1ch was set 

at 60°C Stirring was continued for 1 hour to fac1htate the removal of ammoma 

and to achieve the reqmred temperature. The reqmred amount of formic ac1d (0.2 

moles/isoprene unit) was added qmckly so that 1t would pass the 1so-electnc point 

of latex at which coagulation takes place Thereafter, hydrogen peroxide 

(concentratiOn- 50 wt.%) was added drop-w1sely over 20 mmutes. 

ENR latex w1th different epoxy contents such as 50 mole %, 45 mole %, 

15 mole%, was obtained by performing the reactwn in latex (20% dry rubber 

content (DRC)) at 60°C usmg a higher level of hydrogen peroxide (rubber. 

form1c ac1d: hydrogen perox1de, 1.0.2 1 5 (mole ratio) at 20%, for I 0 hours, 8 

hours and 3 hours, respectively. For these ENR matenals, the level of hydrogen 

peroxide 1s g1ven in the parenthesis and denoted by- H symbohsmg higher level 
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Table. 2 6 Deta1ls of the composJ!Jon of the full IPNs. 

Target composJtJOn EGDM level (mole percent) 

05 1 0 1.5 
NR PMMA NR PMMA NR PMMA NR PMMA 

(wt.%) (wt%) (wt.%) (wt.%) (wt%) (wt.%) (wt.%) (wt.%) 

80 20 93 7 97 3 95 5 

70 30 73 27 74 26 73 27 

60 40 66 34 63 37 64 36 

50 50 52 48 51 49 52 48 



Upper part of the mould 

Soacer 

Rubber seal 

I Lower oart of the mould 
\ 
. i 

•' / 

F1g 2.1 Dmgram of mould used for the preparatiOn ofiPNs 
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In add1tion, ENR w1th 45 mole% epoxy content (error- ±3) (ENR-45 (M)) was 

synthesized usmg a low level of hydrogen perox1de (rubber form1c ac1d 

hydrogen perox1de; I 0.2·1 0 (mole rat10)) at a level of20% DRC (reaclion lime 

11 hours) Nonetheless, 1! was difficult to produce 60% ENR usmg a low level of 

hydrogen peroxide at a level of 20% DRC as 1! reqmres a rather long reactwn 

lime, and due to the destabJhsatwn of the latex due to the presence of ac1d. As 

such, 60 % epox1datwn level was ach1eved using latex w1th 30% DRC content 

and usmg an equivalent lower level of hydrogen peroxide (rubber: form1c acid 

hydrogen perox1de; 1 0.2 1 0 (mole ralio)), wh1ch was used for prepanng ENR-

45 (M) (reactiOn t1me 8 hours). It IS stated that the level ofDRC, up to 40%, Will 

not cause nng opening react10ns and s1de reaction (Vemekar et a/, 1992) Hence, 

vanation ofDRC level up to 40% would not have a s1gmficant effect on the final 

properlies ofENR After completion of the react10n, the resultant ENR latex was 

neutralized usmg 10% KOH, followed by the coagulatiOn of latex usmg 

methanol The coagulum, thus obtamed was passed several times through a 

smooth m1Il to obtam a thm lace that was thoroughly washed prior to drymg m a 

drymg tower at 32°C- 35°C Drymg ofENR was continued for one week. 

The epoxy content can be measured usmg different techniques, such as 

NMR, FTIR spectroscopy, DMTA, determmation of oxygen content (elemental 

analysis) and by litnmetnc methods. In th1s study, the epoxy content was 

measured by FTIR spectroscopy technique. For th1s purpose, the ratiO of the 

intens1ty of the epoxy peak to the total mtens1lies of the epoxy peak (870cm.1) 

and the olefin peak (830 cm'1) was measured (Nakason et al., 2004, Rahaman, 

1990). Nevertheless, DMTA data also prov1de an mdJcatJOn of the Tg of ENR 

based on the fact that 1 mole percent of epoxJdatJOn mcreases the Tg by 1 oc 
(Gelling, 1991). Both of these techniques would help to evaluate the epoxy 

content of the ENR 

2.2.2 Preparation of the blends of natural rubber and ENR 

Rubber was compounded accordmg to the formulae given m Table 2.7 

and the compositions of rubber blends prepared m this series are g1ven m Tables 

5.11 - 5 16. 
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For these expenments, natural rubber, in lace form, was obtamed by 

coagulatmg the high ammoma centnfuged latex (the same matenal used for 

reactions) by usmg I % (w/v) formic acid followed by washing the coagulum 

with water. Then the coagulum was passed through a senes of smooth mills while 

washmg the rubber dunng milling m order to obtam the rubber m lace form The 

final lace was also washed thoroughly in order to remove any residual acid The 

NR laces thus prepared were dned m the drying chamber (32°C - 35°C ) for one 

week 

300g of NR laces were milled for 3-4 mmutes usmg a two-roll mill 

(Kansai, Japan). Then the reqmred amount of synthetic polymer/ modified rubber 

was added and milled properly before the one at a time addition of compounding 

ingredients The curatlves were added last and milled for 1-2 mmutes. A low 

level of sulphur was intentiOnally used m these blends because free sulphur has 

an inhibition effect on the polymenzatwn of MMA as evident from literature 

(Bartlett and Trifan, 1956, Ghosh, 1971) as well as discussed in the section 3. 4.1. 

Table 2.7 Formula for preparation of rubber compound 

Matenal Amount(g) 

Rubber blend/ Rubber 100 

ZnO 5 

Steanc acid 2 

Dibenzothiazole disulphide (MBTS) 1.5 

Tetramethyl thmram disulfide 
0.75 

(TMTD) 

Sulphur 06 

Determination of cure time· 

Rheographs were obtained at 150'C for these rubber compounds using 

MDR 2000 mstrument m order to determme the time required for 90% curing 

Cured rubber sheets were prepared by heating the samples m a mould, for the 

reqmred period of cunng time at 150' C, usmg a hydraulic press. 
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2.2.3 Synthesis of IPNs using blend of NR and ENR and MMA as raw 

materials 

Punfication of methyl methacrylate was done by addmg 10 % (w/v) 

aqueous sodmm hydroxide solutiOn followed by washmg it w1th distilled water 

several times. The punfied MMA was dned over anhydrous calcmm sulphate 

The imtiator and the acrylic ac1d were used as rece1ved 

The m1xture of methyl methacrylate and the 1mtiator, d1benzoyl peroxide 

(5% w/v), was prepared by stirring the md!vldual components for 5-10 mmutes. 

A c1rcular sample havmg diameter of 4 inches was cut out from the cured sheet of 

rubber blend and the weight of the sample was recorded. The sample was 

Immersed m the monomerhmtiator m1xture for a certam time until it reached the 

reqmred weight. Then the swollen sample was kept for 24 hours at 8°C until it 

reached an eqmhbnum state. The sample was placed m a pre-heated (SOT) 

mould, after covering 1! w1th a polyester film, and then heated for 24 hours at 

80°C m an oven. The detailed compositwns of the blends and the IPNs are g1ven 

inTables5.11-516. 

2.2.4 Synthesis ofsemi-1 IPNs based on NR, ENR, acrylic acid and PMMA 

Mixture of imtiator d1benzoyl peroxide and monomers; methyl 

methacrylate and acryhc ac1d were prepared by stirring all ingredients for 5-10 

minutes Acryhc acid content was varied at 10, 20 and 30 w/v% on the PMMA 

content. Circular shaped samples from the cured sheets of the blend of 50/50 of 

NR/ENR-70 (M) was taken and 1mmersed in the m1xture containmg methyl 

methacrylate and acryhc ac1d and allowed to swell until the predetenmned we1ght 

was reached. The swollen samples were kept m the refngerator (0 to -5°C} for 24 

hours until they reached the eqmhbnum condition Thereafter, the samples were 

covered w1th a polyester film and placed in a pre-heated mould (80oC) and 

heating was contmued for 24 hours at 80°C. Detmls of the compositions of these 

sem1-l IPNs are given m Table 5 15 
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2.3 Characterisation ofiPNs and IPNs based on ENR 

2.3.1 Dynamic Mechanical Thermal Analysis (DMTA) 

DMTA has the advantage of lugher sensitivity m resolving transition 

positions than the conventional DSC technique, and it basically measures the 

molecular motions in polymers. Various instruments are used m DMTA 

experiments and modem techniques utilize direct phase measurements between 

stress and stram sme waves. Vanous deformatiOn modes such as bendmg, shear, 

tensile, compression, torsiOn etc are used depending on the nature of materials. 

Two basic models (Figure 2 2) are used to express the response to load of a 

perfect elastic material or an Ideal viscous material. The former can be explamed 

by a massless spnng and the latter is descnbed by a Newtoman dashpot 

Response of perfectly elastic matenal can be given by following equation. 

ul€ =E (12) 

u is the tensile stress, E is Young's modulus and f IS the tensile strain. 

Similarly, the response of an ideal viscous liquid is described by a N ewtoman 

dashpot and can be expressed by the followmg equatiOn (Brrley et a/, 1991) 

(] = TJ dfldt (13) 

TJ is the coefficient of viscosity and t is time. 

u = fo E' sm wt + fo E" cos wt (14) 

The above equatiOn indicates that u (mduced stress) can be divided mto 

two parts (Figure 2.3) I.e. stress in-phase with the apphed strain (o- phase Jag, o = 

0), and stress out-of-phase (o =90) with the applied strain. 

The m-phase stress is due to the elastic nature and is governed by the 

storage modulus The out-of-phase stress is due to the viscous nature and IS 

governed by the loss modulus. 
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(a) Spnng 

(c) Maxwell 
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(b) Dashpot 

(d) Kelvin - V 01gt 

Element 

(e) 4- Element 

Model 

Fig. 2 2 Different types of spring and dashpot models 
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Fig. 2 3 Vanatlon of response of stress to the apphed stram 
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RotatiOn of side groups 

Crankshaft motions 

E' 
Glassy 

Rubbery 

Temperature ("C) 

Fig. 2.4 Vanatwn of storage modulus with temperature for amorphous 

polymers (After Powell, 1983) 
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In addition, the storage modulus, loss modulus, tan ll and complex 

modulus (E*) can be further descnbed as shown below (B1rley et a/, 1991, Clegg 

and Collyer, 1993). 

E' =m-phase amplitude I strain amplitude 

E" =Out-of-phase amplitude I stram amplitude 

Tan delta= E" I E' 

E* = E' + 1E", where 1 = (-!) y, 

DMTA applzcatzons 

(15) 

(16) 

(17) 

(18) 

DMTA is extensiVely used to determme glass transitions temperatures and 

damping properties of polymenc substances The glass transition temperature can 

be descnbed as the temperature at which the transition from the glassy to the 

rubbery state of amorphous polymers takes place If a polymer 1s below Tg, the 

polymer chains are frozen and unable to move Dunng slow heatmg, a P 
transition may be reached due to the rotation of s1de groups and the storage 

modulus IS reduced to a certain extent. (Powell, 1983) (F1gure 2 4). On further 

heatmg, polymer segments start to move by crankshaft motwns leadmg to drastic 

reductwn m storage modulus (Powell, 1983) The actual mode of cham motwn 1s 

considered as reptatJon m which 10-50 atoms of the backbone are involved (de 

Gennes, 1971; Sperling, 1992) Because of these movements, at the glass 

transition temperature, mechanical energy of v1bratwns can be converted to 

thermal energy and th1s technique is used m commercial dampmg dev1ces and 

matenals 

When a V!sco-elastic material is heated from a temperature which 1s 

below the glass trans1t10n temperature (Tg), 1t undergoes a transition from the 

glassy to the rubbery state and thereafter 1t attams liquid-hke charactenstJcs 

(Sperling, 1992, Cow1e, 1991 ). However, dependmg on the matenal, the regwns 

may be varied (Sperhng, 1992). Moreover, Tg depends on a number of factors 

wh1ch mclude free volume, steric effects, pendent groups, flexibility, interactions, 

polanty, crystallinity and the extent of cross-linkmg (Murayama, 1978). In 

addition, DMTA data can be used to determme the extent of miscibility as 

depleted m F1g. 2.5, wh1ch md1cates that for an immiSCible system two transitions 
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that are stmtlar to the homopolymers are present However, m a completely 

mtsctble system, a smgle transition IS observed Thts shift of the transitiOn IS also 

be observed m partially mtsctble polymer blends In addition, a broad transition IS 

normally obtamed for micro-heterogeneous systems. The broadenmg of the 

transition also provtdes mformation about the extent of heterogeneity (Perera et 

a/, 2000) In additiOn, DMTA also provides mformatwn about agemg of glassy 

polymers (Perera et a/, 2000), and molecular relaxation of polymenc matenals 

Tano 

(d) 

,.-, 
I \ 

I \ 

/ (c) \ 
I I 
I I 

---1- --1--
1 I 
I I 
I I 

Temperature ("C) 

(a) Imrmscible blend 
(b) Partially rruscible 
(c) Blends with rrucro-

heterogeneous 
morphology 

(d) MISCible blend 

Fig 2.5 DMTA spectra for blends With vanous degrees ofmiscibthty 

Types of instrument 

Dynamic testing IS performed by subJectmg the matenal to a deformation 

pattern and cychc stress/stram behaviOur is calculated ((Murayama, 1978) 

Dynamic mechanical instruments can be bastcally be divided mto two types 

depending on the nature of the dynamic motions. 

1 Free vibration in which the test piece IS subJected to oscillations and the 

amplitude is allowed to decay due to dampmg m the system This type of 

vibration is commonly measured by usmg a torsiOnal pendulum method and It 

covers the frequency range 0.01-10 Hz (Murayama, 1978) 

2 Forced vibration m which oscillatiOns are mamtained by external 

means. This type of instrument IS further sub-divided into forced vibratiOn 

machmes operative at resonance, or away from resonance, transient loadmg (as 

opposed to contmuous) loading, and wave propagatiOn (Murayama, 1978) 
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These mstruments can be further classified accordmg to the method of 

oscillatiOn such as mechamcal or electromagnetic 

Electromagnetic v1brat10ns are commonly used m small mstruments at 

low strams and cover a w1de range of frequenc1es up to I 00 Hz. Electromagnetic, 

or hydraulic, v1brat1ons are used basically m the Rheov1bron, and 1t can cover 

free v1brat10n apparatus as well as forced Vibratwn apparatus The Polymer 

Laboratones mstrument IS operated electro-magnetically where automatic 

scannmg 1s allowed through frequency or temperature range. 

Hydraulic activation can be considered as the most versatile technique 

and th1s facilitates the control of stress/stram and IS able to use waveforms other 

than sinusmdal. 

Experimental conditions for DMTA 

Dynamic mechamcal properties of the IPNs based on NR and PMMA 

were determmed usmg a dynamic mechamcal thermal analyser (DMA 2980, TA 

Instruments) Rectangular stnps with umform width (3 mm) and known thickness 

(ea. I mm) were clamped on to the mechanical head and the length between 

clamps measured. The DMA multi-frequency mode was selected and the sample 

was clamped m slight tenswn mode. The sample oscillates smusmdally up to a 

preset stram max1mum (amplitude 20 !LID) at a frequency of I Hz The 

temperature ramp was set at 3°C mm-1 and a static force 0 01 N was used. Scans 

were recorded from -1 OO'C to 200'C. 

The dynamic mechanical thermal analysis of the samples for Chapter 5 

was earned out usmg different expenmental conditions because samples were 

th1ck and apparently looked like rubber toughened plastics Therefore, dual 

cantilever bendmg mode was chosen because of the convemence mstead ofusmg 

shear mode, and the measurements were made at 10 Hz Amplitude was selected 

as 20 Jlm and the heatmg rate was 3°C mm-1. 

2.3.2 Scanning calorimetry techniques 

Dzf(erentwl scannzng calorzmetrv (DSC! 

Thermal analys1s techniques are w1dely used for polymer charactenzatwn 

Phase changes, such as crystallizatiOn, are usually accompamed w1th energetic 
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effects (Richardson, 1989). Dunng a phase change m a sample, wh1ch has a heat 

of transitwn, the sample temperature is increased. Tlus can be recorded as either 

~Tin a heat flux DSC or as ~pm a power compensation DSC. 

However, the s1gnal on heatmg IS related to the difference between the 

thermal capacity of the sample and the reference This thermal capacity is 

generally based on the mass and heat capacity of the matenal and the heat 

exchange between the two cells (Richardson, 1989) It can be used successfully 

to determine the glass transition temperatures of polymers. 

Modulated differential scanning calorimetry (MDSC) 

Modulated differential scanning calonmetry (MDSC) 1s a recent 

teclulique possessing certain advantages over the conventional DSC teclui1que. 

In this tecluiJque, the conventwnal heating programme IS modulated by a 

perturbatiOn and the resultant heat flow IS deconvoluted mto the response of the 

perturbatiOn and the response of the underlying heatmg program (J ones et al., 

1997) Therefore, the heat flow s1gnal is split mto an underlymg and a periodic 

part In this tecluiJque, the underlying response is obtained by employmg an 

averaging procedure and then a Fourier transform to the response of temperature 

modulatiOn and phase Jag (Jones et al., 1997, Reading and Hourston, 2006). 

Theoretically, different types of contributions to the heat flow could be 

expressed by below mentioned equatiOn. 

dQ/dt = Cpt dT/dt + f(t,T) (19) 

dQ/dt -heat flow into the sample 

Cp., - reversmg heat capacity of the sample owing to 1ts molecular motwns such 

as vibratiOnal, rotational and translational motions). 

f(t,T) is the heat flow wh1ch is irreversible and IS the result ofkinetlcally hmdered 

events. 

However, at the glass transition the heat capacity as a functiOn of temperature 

depends on the frequency. 
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In MDSC, the sample IS subjected to a sinusoidal modulated heatmg programme 

T =To+ Bt + ~ sm rot 

To - Jrutial temperature, 

B - heatmg rate 

~ - amplitude of modulation 

ro - angular frequency 

dQ/dt = ~Cpt + f{t,T) + ro~ Cp1 cos rot+ C sin rot 

f(t,T) 

(underlying 

signal) 

- average f (t,T} 

(cyclic sgnal) 

C- ampli!IIde of the kmetically hmdered response 

(20) 

(21) 

Cpt and C vary with time and temperature, but It IS assumed to be a 

constant over the duratiOn of a single modulation and the heat flow depends on 

tempera!IIre modulatiOn Further, heat flow and tempera!IIre are given by the 

superimposition of the underlying and the cyclic parts. Therefore, Cpt is 

mdependent of B (heatmg rate), but C IS proportiOnal to It 

The cyclic component will have an ampli!IIde and a phase shift, which is 

determmed, by ro~ C pt and by C. 

C =A HF/AHR, Cyclic heat capacity 

A HF- ampli!IIde of heat flow modulation 

AHR - ampli!IIde ofheatmg rate modulation 

Cp1 = C cos o 
C = ro~C sin o 
o -Phase shift 

(22) 

Three basic signals, the average or underlying signal, the in-phase cyclic 

component and the out-of-phase signal, C, from which Cp1 is calculated, are used 

m MTDSC. Readmg et a/ suggested (Reading et a/, 1992; 1993) that it is useful 

to calculate the non-reversmg signal, which IS governed by the difference 

between the underlymg, and the cyclic signals. 
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Therefore, the non-reversing heat flow IS governed by the subtracting 

reversmg heat flow from the underlying heat flow and can be expressed as 

follows. 

Non-reversing heat flow = underly:mg heat flow - ~Cc cos o 
If cos o = 1, then the phase angle shift dunng transition IS small. 

The non-revers:mg process :mvolves the loss of a volatile material, cold 

crystallizatiOn or a chemical reaction etc. 

Expenmental conditions for MDSC 

In this present study, the MDSC technique was used basically to 

determine the glass transition temperatures (T g), the weight fraction of NR 

component in interface region, the total interface fraction and the miscibility of 

the components. For this purpose, all measurements were obtained using a TA 

Instruments (2920 Modulated DSC). IPN samples (ca.5 mg) were weighed and 

placed m alummium pans and carefully sealed. The sealed pan, containing the 

sample, and the reference pan were placed m the sample holders. The sample was 

heated from -130°C to I 80°C at a heating rate of 3°C min-1
• Experiments were 

performed usmg mtrogen as the purge gas at a flow rate of 60 ml mm·1
• Scans 

were obtained over the temperature range -130°C to I 80°C. Plots of dCp/dt, or 

dCp/dT, versus temperature were plotted, and the 8Cp at a particular transitiOn 

was obtained usmg a computer programme. The data was then used to determme 

the weight fraction of the mdiVIdual components ( DNR and DrMMA) in the 

mterphase as follows. 

For this calculation, It IS assumed that 8Cp is proportional to the weight 

fractiOn (Hourston et a/, I 997). Hourston et a/ (1997) further mdicated that the 

weight fractiOn of the mterfacial layer can be obtamed from the m1ssmg amounts 

of each component. In other words, it is assumed that the reduced amount of 

homopolymers participated in the formation of the mterfacial layer With a fimte 

thickness, which IS formed by the mter-diffus10n of the two components driven 

by the chemical potential gradient (Song et al., 1999). Therefore, in this case, 

8Cp NR and 8Cp PMMA are considered as the increments of heat capacities at their 

correspondmg T 8s before mixing. 
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~Cp NR-IPN and ~Cp PMMA-IPN are referred to as mcrements in heat capacity 

at their corresponding T 8s in the IPN. The morphology of an IPN system based 

on NR/ PMMA can be assumed to contam mostly a three-phase structure, whiCh 

includes pure NR, pure PMMA (homo PMMA) and the mterphase. Hence, the 

total interphase content and ~Cp can be stated as follows. 

~Cp = ~Cp NR-IPN + ~Cp PMMA-IPN + ~cpi (23) 

~Cpi refers to the increment of heat capacity of the interface. 

However, it was noted that graft polymer can also be formed during the 

polymerizatiOn of MMA in the presence of NR. Therefore, it IS assumed that 

graft polymer may also be present in the mterface layer. 

Therefore, the weight fractiOn ofNR and PMMA (oNR or DPMMA) in interphasial 

layer for each IPN was calculated usmg followmg equatiOns (Hourston et al., 

1997). 

ONR = WNR- ~Cp NRIPN I ~Cp NR, 

where WNR IS the weight fraction ofNR m the sample. 

Similarly, 0 PMMA = WPMMA- ~Cp PMMA IPN I ~Cp PMMA, 

WPMMA is the weight fraction of PMMA m the sample. 

2.3.3 Stress-strain measurements 

(24) 

(25) 

Stress-stram measurements can be determined in vanous modes such as 

the tensiOn mode, the compressiOn mode etc However, among these modes, the 

tension mode is commonly used to determine stress-stram data and It provides 

mformatwn about stress at any given stram, tensile strength, yield strength and 

elongatiOn at break. These properties are used as measures of performance of the 

material. 

In this method, stress is applied to the matenal and 1t is defined as the 

force exerted on a umt cross-sectiOnal area and IS expressed as follows. 

cr=FI Ao (26) 

cr, F and Ao are the tensile stress, tensile force and original cross-sectiOnal 

area respectively. 

The mduced tensile stram, caused by the applied stress can be expressed 

as a ratio of mcreased length to that of ongmal length. 
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e=h-lo!lo (27) 

Tensile strength IS calculated as the stress at break. However, in this 

calculation, though the dimensiOns of the cross sectional area varies as It 

stretches, for experimental convemence the original cross sectiOnal area IS used to 

calculate the tensile strength. 

Accordmg to Hooke's law, the stress is proportiOnal to the strain for Ideal 

elastic solids. Despite tlus, most polymers deviate from Hooke's law and stress 

may be proportional to stram only at extremely low levels of strain. Carswell and 

Nason (1944) mdicated five possible stress-strrun diagrrun types. See Figure 2 6 

In addition, a more general representatiOn of a stress-strain curve IS presented in 

Figure. 2.7. 

2.3.3.1 Determination of stress-strain properties 

A tensometer is used to perform tensile, flexural, compression, tear and 

adhesiOn tests. Though there are two types ofmachme avrulable, the constant rate 

of loading and the constant rate of traverse types, the latter is a perfect machme 

for rubber testmg. In this machme, the test p1ece IS stretched at a constant rate and 

the force measurements are measured. These instruments possess electnc 

transducers for determining the force measurements (Brown, 1996). 

In additiOn, a very wide range of forces can be measured by varying the 

runplificat10n of the electrical signal which allows recording and further 

automatic handling of data. Further, certain facilities such as off-set zero and 

automatic test piece cross-sectional area compensatiOn are also avrulable with 

these instruments. In additiOn, modern machines use data caprure systems and 

computers to store data and digital display facilities. An extensometer IS 

commonly used to determine the extension. Various types of extensometers are 

available includmg contact types and non-contact types. The traditional types of 

extensometers have grips which have to be fixed on to the test piece. This has 

several disadvantages such as slippage and may cause failures at the attaclunent 

points Hence, the gnps are designed to be hght and pressure compatible m order 

to mimmize those effects. 
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A non-contact optical extensometer, wh1ch uses vis1ble and mfrared light, 

has advantages such as elimmating slippage and damage to the test piece. On the 

other hand, th1s system also exhibits some disadvantages such as difficulties of 

markmg the surfaces or where coloured surfaces are present. 

In addition to optical extensometers, laser extensometers and video 

extensometers are currently avrulable. However, accuracy at low strruns IS limited 

m laser extensometers. Video extensometers have the umque advantage of 

recordmg the mode of fracture as the 1mage of test piece is produced by a v1deo 

camera, which IS fed to a computer. However, the choice of extensometer 

depends on the stram range, accuracy and cost. Non-contact types can be used 

with lack of interference by the test p1ece (Brown, 1996) Nevertheless, m this 

study a extensometer with gnps (traditional type) fitted to the sample has been 

used to determme tensile properties ofthe NRJPMMA IPNs. 

Experimental conditions 

Tensile testing was performed accordmg to ISO 37 by using a Hounfield 

tensometer (Model No. H 5000M). Dumb-bell shaped test pieces, in which stress 

and strain are assumed to be un1form throughout the central parallel portion, were 

used in these expenments. 

The dumb bell test pieces were fixed to eccentric roller grips and strruned 

at a constant speed of 500 rmn mm·1 using a 500 N load cell. Test was performed 

at room temperature (25"C) using 5 test pieces for each sample and the average 

values are recorded. 

Cycling test 

The Hounsfield test machme, controlled by a computer prograrmne, was 

used for the cycling tests. For this purpose, dumb bell test pieces were fitted 

between the eccentric rollers and subjected to three consecutive cycles up to 300 

% strain at an extensiOn rat10 of 20 mm mm·1 (temperature (25"C)). As shown in 

the Lloyd mstrument program, force against extensiOn was plotted for each cycle 

and the area m between extensiOn and retractiOn curves was calculated as an 

energy value (J). In addition, hysteresis was determmed by plotting stress versus 
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stram curves for extensiOn and retractwn of the first cycle For each sample, 4 or 

5 test pteces were tested and the average values are reported. 

2.3.4 Determination of Tear strength 

Tear strength of the semt-1 IPNs containmg ENR was performed 

accordmg to the ISO 34 (BS903) Standards usmg crescent type samples. Tear 

testmg had been earned out at a constant traverse rate (500 mm/min) at 25°C 

temperature. The tear strength was calculated as the ratio of maxtmum force to 

the thickness of the sample. 

2.3.5 Determination of cross-link density 

In thts study, the cross-link denstty was determined by usmg the Flory

Rehner equatiOn (Flory and Rehner, 1943) based on swelling measurement data 

(Brydson, 1978). 

Expenmental Method 

A sample of vulcanised NR (ea. 0 25 g) was weighed and placed m a 

bottle containing 25 m! of toluene and allowed to swell for three days m order to 

attain Its equihbnum level. The swollen sample was blotted immediately after Its 

removal from the toluene and reweighed and then oven dried at Joo·c for 30 

minutes. Thereafter, the final weight of the sample was recorded and the volume 

of rubber m the swollen sample was calculated by constdenng the de-swelled, the 

swollen, the mttial weight of the sample and the densities for rubber and toluene 

Furthermore, the cross-hnk density and Me (the molecular weight between two 

cross-hnks) were calculated usmg the Flory-Rehner equation gtven below (X=

.42 (Polymer Handbook, 1999)). 

V.= (-IN,) In 0-V,) + Vr + xV, 2 (28) 

V, 113 -2 V,lf 

(29) 

v. IS the moles of effective network chams per cm3 of rubber, V, is the molar 

volume of the swellmg agent, V, is the volume fraction of rubber in the swollen 

gel and fis the functlonahtyofcross-hnking (f= 4). 
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2.3.6 Determination of sol-gel content 

Sol-gel contents of the IPNs and MG rubber have been determined by 

various researchers w1th the mm of determining the content of homopolymer and 

the mnounts of grafted polymer present m such materials (Romame, 1988; Perera, 

1999). However, recently pubhshed reports ind1cated that this method is not an 

accurate method for the estlmatwn of homopolymers and the extent of graftmg, 

as it depends on the extractiOn procedure (Lehrle and Willis, 1997). Therefore, in 

tlns study th1s method has been used only for approximate quantitative analysis 

of the sol contents of the IPNs. 

Method 

A smnple (0 I g) was we1ghed and placed in a glass bottle containing 75 

m! of acetone and the soluble matenal extracted at room temperature for about 

one month. Dunng th1s penod, the solvent was stirred for 2 hours per day and 

once a week, the acetone was replaced by a fresh quantity in order to the fac1htate 

the extractiOn process. Th1s expenment was performed at room temperature m 

order to prevent degradation. After extractiOn, the smnple was removed and 

allowed to dry at 100• C for 30 mmutes. After that the final weight of the smnple 

was recorded and used m the determmation of the soluble matenal present m the 

IPN smnple. Thereafter, the smne extraction and drymg procedures were 

followed for the extractiOn of dried smnple by using petroleum ether ( 40/60) 

wh1ch IS a moderate solvent for NR and it is reported that this solvent will not 

remove PMMA (Lehrle and Willis, 1997). The mnount of soluble material 

extracted by petroleum ether was calculated by considering the weight difference 

before and after extraction 

An IPN smnple (ea. 0.2 g), which is we1ghed accurately, cut mto small 

square p1eces and the we1ght of the smnple was recorded. Thereafter, it was 

placed in thimble. This paper thimble, contaimng the smnple was placed m a 

extraction apparatus, which was attached to the round bottom flask, contamed 

ca.ISO m! of acetone (F1gure 2.8). Acetone was used to extract the homo PMMA 

content present in the IPN smnples. Hot extraction of the smnple was earned out 

for 16 h. The extracted smnples and the residual acetone was kept separately for 
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further studies. The extracted samples were further dried in an air-circulating 

oven for 30 mmutes at 1 oo•c. Thereafter, the weight of the dried material was 

determmed. The amount of soluble material was determined by the ratio of 

difference of weights before and after extraction to the Imtial weight of the dned 

sample. 

2.3.7 Determination ofMooney viscosity and Mooney stress-relaxation data 

Mooney viscosity of the compounded rubber as well as the raw rubber 

was determined according to the ISO 289 method. The NR sample was pre

heated for 1 minute at 1 OO"C. Then the sample was subJected to a shearing force 

at a rate of 2 rpm (I 6 s"1
) for 4 mmutes. The torque finally achieved was 

recorded and expressed as ML(l +4). Thereafter, the rotor was stopped and the 

decaymg Mooney torque, whtch is a characteristic of the rubber relaxation, was 

measured. 
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Chapter3 

RESULTS AND DISCUSSION OF THE BLENDS, SEMI-I IPNS, SEMI-2 

IPNS AND FULL IPNS 

3. 1 General Description 

This chapter discusses four types of matenals vzz. blends, semi-! IPNs, 

sem1-2 IPNs and full IPNs. The effect of composition on the physical and 

dynamic properties of these materials has been evaluated usmg the results of 

stress-strain tests and dynamic testing. In addition, the dependence of miscibility 

of the components of the IPNs/blends on the PMMA content has also been 

detenmned using the data obtained from MDSC. 

In this study, the natural rubber and the PMMA has been chosen smce 

such a combma!ion of elastomer and thermoplas!ic polymers would an!icipate to 

prov1de synergJslic properties. The evaluatwn of compalibility of these two 

components IS vital as it affects the morphology, phys1cal and dynamic 

mechanical properties of the IPNs, based on these two polymers. The most 

extensively used parameter to pred1ct compatibility is the solubility parameter, 

but this has been lim1ted to non-polar matenals. Nevertheless, attempts had been 

made to evaluate solubility parameters for acrylic polymers whose dielectric 

constants are rather low (Polymer Handbook, 1975; Hourston and Satgurunathan, 

1984) Similarly, the solubility parameters for natural rubber and PMMA were 

determmed according to the Small's and Hoy's methods as explamed in chapter 

2, sectwn 2.1.3. The values of solub1hty parameter for each polymer are listed in 

Table 3.1. 

Accordmg to the empmcal cntenon established by Pazon)'l and Dimitrov 

(1967), compa!ibility is feasible when the difference of the cohes1ve energy 

dens! lies, r,Z, is less than 6.69 X I 04 J/m3 (Hourston and Satgurunathan, 1984). 

Based on that, the difference between the cohesive energy dens1!ies (orMMA2-

ONR
2

) of the natural rubber and the PMMA is 66.1 x 106 Jm-3 (calculated using 

Small's values). It is clear that natural rubber is predicted to be incompa!ible w1th 

PMMA 
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Table 3 1 Solubility parameter (o) values for natural rubber and 

poly(methylmethacrylate) determmed accordmg to Small's and Hoy's methods. 

Method 

Small 

0 

Hoy op 

oh 
0d 

Solubility parameter 

(MP a") 

Polymer 

Natural rubber 

16.73 

18.02 

4 58 

o.- accounts for the permanent dipole-dipole mteractwns 
oh- accounts for the hydrogen bondmg forces 
lia accounts for the dispersive forces (Brandrup et a/, 1999) 

PMMA 

18 6 

19 4 

9.25 

10 3 

134 

An alternative method for determmmg the compatibility of polymers, 

proposed by Krause (1972;1978), utilizes the interactiOn parameter between two 

polymers as well as the mterac!Ion parameter at the critical point on the phase 

diagram for a binary system. In this method, the two parameters were calculated 

as follows. 

X12 =/Y ,IRT ]eo,- oz)2 (3.1) 

Where V, is the molar volume of the smaller repeating unit, R is the gas 

constant and T is the temperature, which IS 298 K. 

(X12)cr=Yz(l!n, 112 + llnz112
)
2 (3.2) 

n1 and n2 represent the degree ofpolymensation of each polymer. 

The molecular weight for the poly( Isoprene) was considered as 100,000 g 

mo1"1for this calculation. The molecular weight of the PMMA was vaned from 

5,000-80,000 g mor'. The calculated values for the (X12) er coefficients are given 

in the Table 3.2. 

Accordmg to the Krause method, If X12 is greater than the (Xdcr (Hourston 

and Satgurunathan, 1984). then It Implies the existence of incompatibility 

between the components of a particular polymer parr at some compositions. For 
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this system, XI2 was found to be 0.11. Hence, It can be assJuned that 

poly(Isoprene) and PMMA are mcompatible in the given range of molecular 

weight 

Table 3 2 The calculated values for (XI2)cr for the binary system consisting of 

poly( Isoprene) and PMMA 

Polymer system 

Poly( Isoprene )/PMMA 

3.2 NRIPMMA blends 

Molecular weight of 

PMMA 

(glmol) 

80,000 

60,000 

40,000 

20,000 

10,000 

5,000 

0.0019 

0.0022 

0.0029 

0 0046 

00079 

0.014 

Blends with different compositions of NR and PMMA were successfully 

synthesized usmg Tnganox 21S as the initiator (Table 2.3) These blends were 

prepared by a process which is similar to the preparation of IPN s, with the 

exception of the absence of cross-links in both components These samples are 

transparent and less tacky than the NR heated under the same conditions, and 

these observatiOns are in agreement With Romame (1988). Moreover, compared 

to NR treated under the same conditiOns, the hardness of the blends containing 

PMMA was found to be Ingh. 

3.2.1 Effect of blend composition on miscibility 

3.2.1.1 Analysis of dynamic mechanical properties 

Dynamic mechanical thermal analysis is the most widely used technique 

to determme the miscibility between components in blends. It is accepted that a 

single glass transition would result due to mixmg of components at the molecular 

level for a fully miscible system On the other hand, two glass transitions, 
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corresponding to the homopolymers, could be identified for the individual 

components in an immiscible blend (George et a/, 1997). However, with 

increasing miscibility, the two glass transitions shlfl to mtermed1ate positions 

(Arenas et al., 2002) Therefore, the extent of miscibility of components m a 

blend can be determined depending on the position of glass transitiOn and 1ts 

characteristics. 

The effect of composition on the loss tangent of the NR component for 

the NRJPMMA blends 1s shown in Figures 3.1 and 3.2. Throughout this study, 

the Tg was determmed as the temperature at whiCh highest loss tangent value was 

obtained. 
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F1g. 3.1 Effect of composition on the loss tangent of the NR component 

of the NRJPMMA blends 

Compared to the NR, heated under the same conditiOns, the Tg of the NR 

component has sh1fted to higher temperatures by 2T to 6T in all the NRJPMMA 

blends (Figure 3 2 and Table 3.3). Th1s can be considered as evidence for some 

mixmg of the components in these samples (Hourston and Romaine, 1990). 

Interpenetration and/or graftmg ofPMMA onto NR are believed to be the reasons 
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for this behaviour. Graftmg of a polymer on to another polymer chain improves 

the extent of mixing and simultaneously restricts the segmental motwns resulting 

m an increase in the glass transi!ion temperature of the rubbery component. A 

Similar trend had been observed m the study carried out on graft IPNs based on 

caster ml-based polyurethane and mtrohgnin. T g of the PU component increased 

due to the graftmg of the latter component to the former component (Huang and 

Zhang (2002). Work done by Hourston and Zia (1984) also mdicated that the 

segmental restrictwns of polyurethane occurred due to the graftmg process, 

which was revealed by a shift of T g of the polyurethane component to higher 

temperature. A sluft of 4 'C has been observed in the NR T g transition m PMMA 

(18 wt.%) grafted natural rubber by radiatiOn (Perera, 1999). It also suggest that 

the graftmg of PMMA to natural rubber will result m an mcrease of the NR T g 

~ 

~ 
~ 

-44 

-45 

-46 

-47 

-48 
• 

-49 

-50 

-51 

-52 
0 10 20 

• 

30 

PMMA(wt%) 

40 

• 

50 60 

Fig. 3.2 Effect of composition on the NR Tg of the NR/PMMA blends 

(Expenmental error 5 %) 

Among these blends, the Tgs of NR70 PMMA30 and NRSO:PMMASO 

samples were 3T and 4'C (Figure 3.2 and Table 3.3), higher than the 

NR90:PMMA10 and NR80 PMMA20 samples Furthermore, the results 

indicated that the half-peak-widths of the loss tangent of the NR70:PMMA30 and 
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NR50 PMMA50 compositiOns were 5"C- 6"C higher than the NR90:PMMA10 

and NR80 PMMA20 samples (Table 3.3). This evidence further venfied some 

component miXing m these samples. MDSC data hsted m Table 3.5 (sectiOn 

3.2.1.2) also indicated that the extents of miXIng of components m the 

aforementioned samples were relatively higher than the sample having 20 wt.% 

ofPMMA. 

Table 3.3 Half peak widths of the NR transition and the T8s of the NR and 

PMMA transitiOns (from DMTA data) 

Sample 

Natural rubber* 

NR90PMMA10 

NR80PMMA20 

NR70.PMMA30 

NR60PMMA40 

NR50.PMMA50 

NR T8 

("C) 

-51 

-49 

-49 

-46 

-48 

-45 

• Natural rubber treated under same cond1llons 

Half peak width 

("C) 

16 

17 

17 

22 

21 

23 

PMMATg 

("C) 

156 

158 

154 

As Figure 3.1 indicates, mcreasmg the percentage of PMMA caused a 

reduction in tan Omax of the NR component Similar trends have been observed m 

other studies ofMMA-grafted NR (Perera, 1999) and NR/PS lPNs (Hourston and 

Romame, 1989). As the height of the tan o peak reflects the relative quantities of 

each component present in such composites, this reductiOn can be pnmarily 

attnbuted to the reduction in rubber content, (McCrum, 1958, 1959a, 1959b). 

As revealed by the dynamic data, the transition due to the PMMA 

component is not fully resolved m the dynamic spectra of NR/PMMA of 90/10 

and 80/20 samples (Figure 3.3). However, the absence of a promment PMMA 

transition in the DMTA spectra IS not an mdication of complete mixing of 

PMMA component because of the resolution limitations of tins technique 

Moreover, the PMMA transition of the NR70:PMMA30 blend is present as a 
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broad minor peak, indicative of Improved m1xing of the components. Results for 

the blends mdicated that as the percentage of PMMA increased, the magn1tude of 

the PMMA loss tangent also increased. 

However, as shown in Table 3.3 and Figure 3.3, as the PMMA content 1s 

mcreased from 40 wt.% to 50 wt.%, the PMMA Tg has sh1fted to lower 

temperature by 4°C (Table 3.3). This IS in accordance w1th the MDSC data 

presented in Table 3.5. Th1s could be the result of enhanced mlXlng w1th 

mcreasing PMMA content (Table 3 5) 
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Unhke the blends investigated m tJus study, PMMA grafted natural rubber 

containing 18 wt.% and 33 wt.% PMMA content (MG rubber), prepared by the 

radiation method, exhib1ted a broad peak around so•c (Perera, 1999). In fact, a 

broad peak extendmg from o•c to 175•c was observed for the MG rubber 

contaming 47 wt.% of PMMA, prepared by a chemical method. These 

observations suggest that there is some considerable amount of component 

m1xing in the PMMA-grafted natural rubber. Comparison of the DMTA results of 

the blends (present investigation) and the PMMA-grafted natural rubber (Perera, 
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1999) mdicated that the extent ofmixmg of the NR and the PMMA components 

m the blends was lower than m the grafted product. It IS obvious that the extent of 

mixmg is higher m the grafted material because graftmg takes place on a 

molecular level. In addition, performing the graftmg reactiOn in a latex of rubber 

particles, undoubtedly leads to more mixing than performmg a reactiOn in dry 

rubber. Moreover, the technique, applied to prepare the blends, mvolved swelling 

of the NR by the monomer, methyl methacrylate Thus, the natural rubber has 

undergone a deformation due to stretching, which might lead to an unfavourable 

entrop1c condition In addition, under the expenmental conditions used in this 

study, the homo-polymensation of MMA will be favoured (Perera, 1999). 

Because of these reasons, It may be assumed that the extent of component m1xmg 

in the blends IS relatively lower than in their graft counterparts. 

From the DMTA studies, It can be concluded that the NR and the PMMA 

components are phase separated due to the presence of two glass transitions 

corresponding, approximately, to the homopolymers. This is in agreement with 

the prediction of compatibility usmg solubility parameters, as stated m section 

3.1 The same conclusiOn was drawn by other researchers (Perera, 1999), 

indicating natural rubber and PMMA are phase separated even in the graft 

product as well as in IPNs. 

Figure 3.4 depicts the effect ofPMMA content on the storage modulus for 

the NRIPMMA blends. Below the glass transitiOn, molecules are in glassy state. 

No co-operative motiOns occur m the back bone chains. Therefore, in this region, 

the molecules are present m a frozen state With only limited motions of side 

groups. Moreover, the matenal behaves as a nearly perfect elastic material and, 

therefore, It could store energy without dissipatiOn. As a result, the storage 

modulus IS sigmficantly higher below the T 8• When the transition from glassy to 

rubbery states takes place, there will be a d1stnbution of glassy phases and 

rubbery phases. Therefore, during transitiOn, softening takes place and, therefore, 

the storage modulus decreases. This trend can be clearly seen m the storage 

modulus values for the NR transition as well as for the PMMA transitiOn. 

It is noted in Figure 3 4 that with increase of the PMMA content from 30 

wt.% to 50 wt.%, the storage modulus value at 20"C had increased from 1.53 

MPa to 6.71 MPa An Identical trend had been observed for pol)'lsobutene (PIB)-
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PMMA semt-11PNs when the PMMA content was increased from 0 to 50 wt.% 

(V ancaeyzeele et al., 2005). Thts behavtour ts the result of the remforcement 

effect imparted by the hard, glassy PMMA phases. 

In addttion, phase contmmty can be determmed usmg DMTA data. As the 

NR transition is prominent (Ftgures 3.1, 3.2, 3.3 and 3.4) and the height between 

glassy regton and the rubbery region of NR transition is greater than that of the 

PMMA component (Ftgure 3 4), it can be concluded that the NR phase is the 

contmuous phase m all these samples (Figure 3.4). Therefore, the materials 

behave as remforced elastomers as the modulus mcreased in a stmtlar way to the 

addition of a hard filler (V ancaeyzeele et al , 2005) 
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It has been reported (Chang et al, 1987) that the activation energy of the 

backbone motion is related to the area under the tan delta curve. Therefore, the 

activation energy for a particular transition can be calculated by usmg the 

followmg equatton (Lin and Lee, 1997). 

(3.3) 
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TA IS the area under the tan delta curve, Ea and ER are the storage modulus values 

in the glassy and rubbery regions, respectively. EA is considered as the activation 

energy. R and T g refer to the gas constant and the glass transition, respectively. 

In this study, compared to the data for NR treated under the same 

conditiOns, this equation had been used for the calculation of the normalized 

activation energy. The area under the loss tangent peak was calculated usmg 

following equation. 

(3.4) 

The results obtained for the normalized activation energies of the blends 

ofNR and PMMA are listed in Table 3 4. 

Table 3 4 Calculated normalized activation energies of the NR transitiOn for the 

NRIPMMA blends 

Sample Normalized ActivatiOn Energy 

Natural rubber* 1.0 

NR90:PMMA10 1.04 

NR80PMMA20 1.06 

NR70PMMA30 1 05 

NR60PMMA40 1.11 

NR50PMMA50 1 21 

*Natural rubber, treated under the same conditiOns 

Increasmg the percentage ofPMMA caused an mcrease m the normalized 

activation energy. A similar trend had been found for the normalized activation 

energy of the PMMA grafted natural rubber samples in which graftmg was 

performed by radiation (Perera, 1999) This behaviour had been attnbuted to the 

reductiOn of backbone motion with increasing PMMA content resulting m an 

mcrease of the activation energy (Perera, 1999) It could be anticipated that the 

presence of hard, glassy PMMA phases would hinder the backbone motions of 

the rubber chains leadmg to mcrease m the activatiOn energy. 
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This deviation of the NR70 PMMA30 blend may possibly be attnbuted to 

changes in the mterfacml region (Perera and Rowen, 2000) probably caused by 

improved component mlXlng as evident not only from the shifts of NR transition 

ofDMTA spectra (Table 3.3), but also from the MDSC data mdicated in Table 

3 5. 

3.2.1.2 Analysis ofMDSC data 

Effect of composition on the complex Cp for the blends is shown m 

Figure 3.5. Two distmct glass transitiOns were observed for the blends contammg 

10 wt. % and more PMMA. From these data, attempts were made to calculate the 

weight fractiOn of NR (oNR) or PMMA component (OPMMA) in the interface 

regiOn. 
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Fig. 3 5 Effect of compositiOn on the complex Cp for the NR/PMMA blends 

(*Complex Cp refers to the ratio of amplitude of the heat flow to the 

heatmg rate) 

Accordmg to the results (Table 3.5), a defimte trend for the values of ONR 

and OPMMA was not observed. However, when the whole set of results are 

considered, a substantial amount of the NR, or PMMA, component was found m 

the mterface regwn Nonetheless, the total interface contents and the ONR values 
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of samples contammg 30 wt.% to 50 wt.% of PMMA were significantly higher 

than the samples with 10 wt.% and 20 wt.% of PMMA and were in agreement 

with the DMTA data. This ts an expected trend since the higher the PMMA 

content, the greater are the chances for mixing of the NR wtth the PMMA 

component. In addition, grafting ofPMMA onto natural rubber can be considered 

as one of the probable causes for improved mtxmg. 

Table 3.5 Calculated interphase fractions (o) and multiple peak analysis data for 

the NRJ PMMA blends 

NRJPMMA NR Tg ONR 0PMMA Multiple peak analysts data 

ratio ("C) (weight (wetght Interphase NR-nch PMMA-rich 

(wt.%) fraction) fractiOn) (%) phase phase 

100/0* -68 

90/10 -67 0.02 ** 

80/20 -66 0.09 ** 25*** 

70/30 -65 0.16 00 16 12 11 

60/40 -66 0.11 00 19 15 18 

50/50 -66 0.16 004 23 16 14 

*NR treated under the same conditiOns 
**The o PMMA content has not been calculated because of the dtfficullles m resolvmg the PMMA 
transrtmn 
*** Mtxed phases (NR-nch phase, PMMA-nch phase and mterphase) 
o NR• calculated With respect to the un-vulcamzed NR 
o PMMA. calculated wtth respect to the uncross-hnked PMMA 
Data were obtamed from the plot of dCp/dt Vs Temperature plot for the calculations of li NR and 
OPMMA 

MTDSC data have been used for the analysis of multtphase systems by 

Hourston et al. (1997). Furthermore, accordmg to thetr study, the area under the 

peak corresponding to glass transition region can be obtamed by integrating the 

stgnal over a glass transitiOn region and is related to the heat capacity of the 

phase represented by the peak. As such, multi peak analysis for the dCp/dT 

curves is done using a computer program. For this purpose, a baseline correction 

was made. In this attempt, the curve has been resolved mto five Gaussian curves 

(Song et al., 1997) correspondmg to NR phase, NR-nch phase, mterphase, 

PMMA-rich phase and PMMA phase. The percentage mterphase was calculated 
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as the ratio of the area of the middle peak corresponding to mterphase to the total 

area of peaks and by multlplymg 1t by 100. Similarly, percentage of NR-nch 

phase and PMMA-nch phase were also calculated as the ratio of the peak area of 

relevant peak to the total peak area and the resultant value multlphed by 100. 

Nevertheless, these values only prov1de approximate values According to the 

data shown in Table 3.5, there are d1screpanc1es between the values calculated 

from the equation (we1ght fractwn of PMMA incorporated mto the mterphase; 

0PMMA= WPMMA- (~Cp PMMA-IPN/ ~Cp PMMA (homopolymer))} and from the multi peak 

analys1s method Reasons for this vanation may be connected to the peak area 

determined by two methods. When the weight fraction was calculated usmg the 

above mentioned equation, m order to determine the ~Cp PMMA-IPN, the baseline 

pos1tlons of the PMMA transition were taken as the onset point of glass transitiOn 

peak and the end pomt of the glass transition If the PMMA transition was 

broader then the resultant ~Cp PMMA-IPN was lngher than the ~Cp PMMA(homopolymer)· 

As such, the calculated OrMMA values were sigmficantly low. However, the 

multiple peak analysis clearly md1cated that th1s peak consists of two peaks 

corresponding to PMMA nch phase and pure PMMA phase. Th1s is poss1ble 

because sometimes a shoulder appeared on the PMMA transition (F1gure 3 .6). 

0 018 

0 016-
-- dCp/dT data proftle 

0 014- --Gausstan f1t peak for the dCp/dT data 
---- Gausstan fll peak for the NR phase 

0 012- --Gausstan fll peak for the NR nch phase 
--Gausstan fll peak for the tnterphase 
- - -Gausstan ftt peak for the PMMA nch phase 
-- -- Gausstan ftt peak for the PMMA phase -~ 

0 010-

0 008 

'i 0 006 u 
~ 

0 004-

0 002 

0 000 f 

-0 002 
-lOO -SO 0 so 100 ISO 

Temperature (°C) 

Ftg 3 6 Temperature dependence of dCp/dT for the NR50:PMMA50 blend 
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When companson of the Tgs of the PMMA transitions m the NRJPMMA 

blends w1th the Tg of the homopolymer (91°C, determined by MDSC) was made, 

1t was found that the Tgs of the PMMA transitions m the blends were 

comparatively h1gher. Therefore, this shift of T g of the PMMA component to 

higher temperature is pnmanly attnbuted to a reductiOn of mobility of PMMA 

cham segments m the final matenal and it may also be due to changes in the 

conformation of PMMA molecules (Pandit et al., 1994) caused by packing 

constraints. V ancaeyzeele et a/ (2005) also reported a h1gher T g of the PMMA 

component m a PIB/PMMA semi-1 IPN than the T8 of the single PMMA 

network. The confined environment experienced by the PMMA chams present 

mside the PIB network was considered as the pnme reason for their observed 

trend. 

3.2.2. Effect of composition on stress-strain behaviour 

3.2.2.1 Tensile properties 

F1gures 3.7- 3.9 show the effects of composition on the tensile properties of the 

NRJPMMA blends The graphs showing physical properties such as tensile 

strength, modulus and elongation at break were plotted With the error bars by 

talang the standard error in to consideration 

Incorporation of PMMA leads to a s1gmficant increase m tensile strength 

of the NR90:PMMA 10 blend compared to NR treated under the same conditions. 

Furthermore, the results clearly show that the tensile strength had increased 

sigmficantly with increased PMMA content This was accompanied by a decrease 

m the elongatiOn at break with increase m the PMMA content. These results are 

m agreement w1th other studies (Das and Gangopadhyay, 1992) Therefore, the 

improved tens1le properties of these blends are probably a result of a synerg1stic 

effect of the remforcement and improved miSCibility resulting from some 

interpenetratiOn and/or graftmg of PMMA onto NR chains. Nevertheless, 

comparison of the tensile strength for the blends used for this study and the 

blends prepared by solution state mlXlng (Oomman and Thomas, 1996) mdicated 

that the tensile strength of these blends are significantly h1gher than the tensile 

strength values reported for the solution state mixing of NR and PMMA 

(Oomman and Thomas, 1996). It is expected that when polymer molecules with 
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high molecular weight are miXed together, the entropy of mixing IS very httle 

(Bauer et al , 1994) resultmg in immiSCibility between the components. Whereas, 

m this case, natural rubber mixed with the monomer, in which the latter particles 

are present as smaii molecules with an appreciable amount of entropy of mixmg. 

Hence, one would expect that the extent of mixing of components IS at high when 

one component is at the smaii molecular level. Therefore, a high level of mixing 

would render better physical properties than the blends prepared by mixmg two 

polymers. 

30 

~ 25 
" c.. 
6 20 
-5 
"" 15 " ~ 10 

..2 
;; 

" 5 
" E--

0 
0 10 20 30 40 50 

PMMA (wt%) 

Fig. 3 7 Effect of composition on the tensile strength of the 

NR/PMMA blends 

60 

Higher value of tensile strength (5 MPa) was reported for the latex 

composites based on natural rubber and I 0 wt.% of PMMA prepared using 

hydroperox1de and an amme-activated redox mitiator system. However, higher 

compositions could not be reached due to the mferior film formation properties. 

The locus of polymerization was considered as the rubber/aqueous phase since 

amine activator is water soluble. Therefore, it can be assumed that the 

polymenzation of MMA would take place mostly on the outer surface of rubber 

particles which may affects the film formatiOn properties as weii as tensile 

properties due to lack of adhesion between rubber particles. However, the higher 

values obtamed for the tensile strength of these blends could be primarily 

associated with the better film formatiOn properties due to lack of considerable 

amount of polymerisation of MMA on the outer surface of NR particles, 

Improved extent of mixing between components which may resulted by the use 
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of 011 soluble Imtiator; Tnganox 21S, which was proven to be an effective 

mitiator for enhanced miXIng (Romaine, 1988) 
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Fig 3 8 Effect of composition on the 100, 300 and 500% moduli of the 

NRIPMMA blends 
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Fig. 3 9 Effect of composition on the elongation at break for the NR/PMMA blends 

Analyszs of hystereszs data 

Softemng behaviour associated with a hysteresis test whether it IS 

performed by cyclic tensile testmg or by compressiOn, is mostly studied for 

vulcanizates With fillers 
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Various basic concepts (phenomenolog~cal approach) whtch had been 

presented for thts softening behaviOur wtll be dtscussed m detail prior to the 

dtscusswn of the hysteresis results. 

The concept forwarded by Mulhns and Tobm (1957) deals with two types 

of region m a rubber matrix referred to as soft and hard It was believed that the 

most of the straimng takes place in the soft regions. According to thetr theory, 

hard regiOns ( domams) break down to form soft regiOns and as a result, the 

fraction of soft regions increases resulting in amplificatiOn of stram (Qi and 

Boyce, 2005) 

Nevertheless, some researchers (Medaha and Kraus, 1994, Bergstrom and 

Boyce, 1999) have forwarded an idea about the entrapped vulcantzates particles 

wtthm the hard domams. Therefore, m the case of a thermoplastic, plastic 

deformation leads to release of entrapped vulcamzate particles so that a pseudo

contmuous elasotomer phase will be formed, thus resulting in softenmg in 

subsequent cycles (Qi and Boyce, 2005). 

The theory of Bueche (1960) deals with the breakmg of bonds between 

the chams and filler particles. As the load (stress) IS apphed, the chains attached 

to filler particles will stretch and it is presumed that the shorter chains rupture 

initially. Subsequently, intermediate and longer chams rupture at moderate stretch 

values and very large extensiOn, respectively. Consequently, the chams separated, 

or tom off have undergone deformation and wtll not be elastically effective. Due 

to the fact that those chains are unable to contribute to entropy changes, softening 

on reloadmg after retraction takes place. 

Green and Tobolsky (1946) forwarded a theory which is known as the 

transient network theory based on breakmg and reforming of cross-hnks (Junction 

points). The rate dependent viscous behaviOur of the polymer network could be 

explamed using thts theory. GeneralizatiOn of the breakage mechanism of Buche 

has been considered byDannenberg (1974) and Right (1980) and it would help to 

explam vtscoelastic and stress softenmg effect In this theory, under the apphed 

load, the polymer chams move relative to the filler particles without rupture 

allowmg stress distnbution. Thus, a random distnbutwn of chams with longer 

contour lengths will result during unloadmg. 
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Cychng tests have been earned out to determine the effect of PMMA 

content on the hysteresis behaviOur (HL) and hystereis (energy loss) of the blend 

In most of the research work, hysteresis was considered as the area between the 

loadmg and unloadmg curves which is a measure of energy loss In this study, 

energy loss had been determmed and tabulated in Table 3.6. Moreover, the 

hysteresis behaviour which is referred to as the ratio of the energy lost to the 

energy recovered (stored) were also determmed (Kohjiya et a/, 2005) and 

presented m Table 3 6. 

Natural rubber possesses thixotropic characteristics and, therefore, 

undergoes structure break down dunng stretchmg. In the case of un-vulcanised 

natural rubber, entanglements play a predommant role in the stress softening and 

probably this is associated With a d1sentanglmg process. In addition, hysteresis is 

associated with the strain-induced crystalhtes (lndukuri and Lesser, 2005; Tok1 et 

a/, 2000) and their transformation to the secondary strain mduced crystalhtes 

Toki et al. (2000). However, It is doubtful whether strain-mduced crystalhszation 

IS probable at 300% strain, which is the limit applied for the cyclic stress-strain 

test. Toki et al. (2000) indicated that two stram levels at which stram induced 

crystallization takes place depend on the method of stress-stram measurements 

with wide-angle X-ray scattering In sequentially performed stress-stram 

measurements, strain-mduced crystalhzat1on occurred at 200% stram. On the 

other hand, 400% stram was reqmred for crystallization when stress-stram 

measurements were performed simultaneously. Vanation m dynamic deformation 

and eqmlibnum state would have been the probable causes for the discrepancy m 

results governed by these two techniques Tok1 et a/ (2000). They have indicated 

that during stretching molecular onentation takes place and stram-induced 

crystallization takes place at 400% strain However, dunng retractiOn, most of the 

crystallites convert mto secondary stram-mduced crystallites which are m the 

form of folded-chain lamellae and do not contnbute to the stress. As a result, 

stress softening takes place. X-ray diffractiOn analyses on natural rubber 

(Mitchell,1984, Sh1momura et al., 1982) md1cated that strain-induced 

crystallization occurs even at 200% stram. Andrew (1962; 1964) mdicated that the 

sperulites will be formed at 0 - 50% stram, and, thereafter, row-nucleated kebab 

like structures appear at I 00-200% strain. He further showed that extended-cham 
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crystals are formed when the stram exceeds 400%. Therefore, due to the 

differences m theories, It IS difficult to confirm whether the strain-induced 

crystallization takes place m the range of strain applied. Nevertheless, It can be 

assumed that stram-mduced crystallites can form to a certain extent and If any are 

formed, they might undergo transformation to secondary, strain-mduced 

crystalhtes dunng reloadmg which involves reduction of stress. The latter type of 

crystallites do not contnbute to the stress, and, therefore, drastic reduction of 

stress takes place dunng retraction leading to hysteresis (energy loss). 

Results of cyclic stress-strain are given m Table 3 6. Furthermore, as 

shown by the hysteresis loop of the first cycle (Figures 3.10 and 3.11). 

Accordmgly, the amount of energy dissipated as heat also increased with 

mcreasing PMMA content. The increase in the amount of energy dissipated 

during cyclmg testmg with mcrease of PMMA could be attnbuted to the 

reduction in the amount of the elastic component, which leads to a diminutiOn m 

the recoverable stored energy. This leads to an mcrease m the heat bmld up m the 

matenal. In additiOn, It IS stated that the reductiOn of segmental mobility by the 

presence of filler would enhance the hysteresis (Agarwal et al., 2005). The same 

effect might imparted by the presence of hard, glassy PMMA phases resulting m 

mcrease of hysteresis with increase of the PMMA content. This general trend IS 

m agreement with the findmgs of earher studies conducted on IPNs based on NR 

and PMMA (Romaine, 1988). Study based on poly(styrene-b-ethylene-co

butylene-b-styrene) thermoplastic elastomers (TPEs) and natural rubber also 

exhibited lngher permanent set with mcreasmg glassy PS content (Indukuri and 

Lesser, 2005). This also indirectly indicates that the hysteresis is higher in the 

samples contammg higher amount of glassy components. However, It may be 

assumed that in these blends, the PMMA phases have undergone a plastic 

deformatiOn and they may have undergone breakdown of structure resultmg in a 

softemng of the material. It could be anticipated that the most of the phase 

structures break down in the first cycle resulting in maximum stram softenmg m 

the first cycle. Thus, the stram softenmg and hysteresis is low in the subsequent 

cycles as revealed from Table 3.6. After several cycles, the stress-strain 

behaviOur would be stab1hzed (Qi and Boyce, 2005) 
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Table 3.6 Energy loss and hysteresis behaviOur for the NR/ PMMA blend 

Composition Cycle 1 Cycle2 Cycle3 

Energy HL Energy HL Energy HL 

NR/PMMA loss loss loss 

Ratio (J) (J) (J) 

NR** 0.57 0.45 

90/10 0.11 0.28 0.04 0 11 0 03 0 07 

80/20 0 15 0.47 0.07 0.23 0 07 0 21 

70/30 0 64 1.26 0.38 0 84 0 33 0 75 

50150 4 01 25 X X X X 

• HL-Hysteresis behaviOur calculated as the ratio of the amount of energy lost to the amount of 

recovered m each cycle 

• • NR, treated under the same conditions 

x Permanent set exhibited by the stretched sample 
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Fig. 3.10 The first hysteresis cycle for the NR80.PMMA20 blend 
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F1g. 3 11 The first hysteresis cycle for the NR70.PMMA30 blend 
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Furthermore, companson of hysteresis data (Table 3.6) of the blends and 

NR, treated under same conditions indicated that the hysteresis data for the 

NR/PMMA blends w1th 90/10 and 80/20 compositions are Significantly lower 

than that of NR, probably due to the effect of entanglements resulting from the 

interpenetratiOn of PMMA It is assumed that the entanglements help to regam 

the ongmal position of polymer chams and their coil conformations during 

unloading, thus reducing the hysteresis. It could also be due to the presence of 

smaller phases of PMMA, which reduces the hysteresis unhke big domains or 

aggregates (Hourston and Romaine, 1991 ). 

3.2.3 Effect of composition on the sol-gel ratio of the NRIPMMA blends 

Results of grav1metnc analysis of the extracted samples are g~ven in Table 

3.7. The data were obtained by performing the hot extractiOn for the blend sample 

using acetone as the solvent with the aim of extracting homo PMMA (Perera, 

1999; Lehrle and Willis, 1997). Th1s solvent was chosen as 1t 1s a good solvent 

for PMMA, but a non-solvent for natural rubber (Perera, 1999) Nevertheless, 1t 

has to be mentioned that acetone can extract PMMA w1th natural rubber, when 1t 

is present m the form of a graft matenal. In th1s study, a minor peak due to NR 

could be observed in the IR spectra of the extract. The other researchers (Perera, 

1999; Lehrle and W1llis, 1997) also confirmed the presence of NR m acetone 

extract by NMR stud1es They have considered that it would be a result of the 

presence of PMMA grafted NR. Normally, it is expected that only one graft is 

present per rubber molecule, but more than one graft per molecule could result 

under circumstances where higher grafting efficienc1es prevruled. These 

molecules could be extracted With acetone (Perera, 1999). 

The amount of extractable material mcreased at h1gher PMMA content, 

(Table 3. 7). It IS well established that as the monomer concentration increases the 

efficiency of graftmg decreases and the tendency for homopolymerisatwn of 

MMA mcreases (Perera, 1999). Therefore, it can be assumed that homo

polymensatwn IS favoured m the blends containing 40wt.% to 50wt.% PMMA. 

Homopolymerisatwn of methyl methacrylate monomer resultmg m h1gher 

homopolymer content and, therefore, the soluble materials m those two samples 

were relatively higher than the blends containmg 10 wt.% to 30 wt.% PMMA 
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content. However, the observed lesser amount of soluble fract1on in the 

NR50 PMMA50 blend than the NR60 PMMA40 blend may be attnbuted to the 

presence of a comparahvely lower amount of the PMMA homopolymer as 

mdicated by the MDSC data (Table 3.5). 

Table 3 7 Sol content of the NR/PMMA blends calculated from the hot acetone 

extraction process 

NR/PMMA rat10 

3.3 Semi-2 IPNs 

1000 
90:10 
80.20 
70 30 
60.40 
50 50 

Sol fractiOn 
(wt.%) 

25 
30 
53 
65 
12.1 
88 

Sem1-2 IPNs were prepared with varying percentages ofPMMA and With 

varymg levels of PMMA cross·hnker. Details of the semi-2 IPN series are 

descnbed in Table 2 4 

The resultant sem1-2 IPN samples were non-tacky and s!Jffer than the 

NR/PMMA blends Even though, the IPNs were expected to be opaque due to 

phase separatiOn, th1s senes of IPNs were less transparent Th1s may be because 

of the improved misc1b1hty because of the grafting of the PMMA on to the NR 

during the MMA polymerisation. 

3.3.1 Effect of composition on the physical properties of the semi-2 IPNs 

(EGDM crosslinker 0.5 mole%) 

3.3.1.1 Effect of composition on miscibility 

Analyszs of the dynamzc mechamcal data 

NR transllton 

Loss tangent data for the NR component m the sem1-2 IPNs (0.5) are 

!llustrated in Figure 3.12. The Tg of the NR component m all the semi-2 IPNs are 

approximately 3•c to s•c h1gher than the NR treated under the same cond1hons, 

mdicating some miXIng of the NR component (Table 3 8) 
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Table 3 8 Half peak widths of the NR transitiOn and the Tgs of the NR and 

PMMA transitions ofsemi-2 (0 5) IPNs 

Sample NR T g Half peak width PMMA Tg 

("C) 
Natural rubber* -51 

NR90:PMMAIO -48 

NR80:PMMA20 -46 

NR70:PMMA30 -46 

NR60:PMMA40 -46 

NR50:PMMA50 -48 

*Natural rubber heated under the same condtttons 
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Fig. 3.12 Effect of composition on the loss tangent of the NR component 
of the semi-2 IPNs prepared usmg 0.5 mole% EGDM crosshnker 

Interpenetration of PMMA phases mto the NR matrix and /or grafting of 

PMMA onto NR can be considered as the prime causes of tlus limited extent of 

mixing. It may be assumed that the enhanced component mixmg has pnmanly 
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resulted from the grafting process and the interpenetratiOn process The unique 

feature Imparted by interpenetration is the fonnation of entanglements between 

components and this will Impart forced component miXing, probably m a similar 

way to the enforced mixing resultmg from a cross-linking process. The NR T g of 

the NR50.PMMA50(0.5) semi-2 IPN was relatively lower than the 

NR60:PMMA40(0.5) semi-2 IPN. A similar trend observed for the Tg of the 

polyurethane component m the sem1-IPNs based on polyurethane and nitro

chitosan was attributed to the phase separation (Zeng et a! (2005). Nevertheless, 

in this case, the lowenng of NR Tgof the NR50:PMMA50 blend can not be 

considered as a significant shift because It IS with in the expenmental error. 

It should be noted that the extent of mixing of the NR component in the 

NR50 PMMA50 (Table 3.10) IS higher than the NR60.PMMA40. Therefore, the 

key factor for the Improved NR component miXIng in the NR50:PMMA50 blend 

can be considered as the interpenetratiOn of polymer chams. Moreover, as the 

PMMA content is higher, the hkehhood of component mixing will be higher. 

Table 3.9 Calculated relative activation energies for the semi-2 (O.S)IPN for the 

NR transition 

Sample 

NR90PMMA10 

NR80PMMA20 

NR70PMMA30 

NR60.PMMA40 

NR50:PMMA50 

Nonnahzed Activation Energtes 

1.08 

1.08 

1.17 

1.13 

1.38 

Similar to the NR/PMMA blends, the results of the calculated nonnalized 

activation energies (Table 3 9) do exhibit an increasing trend with increase of 

PMMA content, With the exception of the NR60:PMMA40(0.5) semi-2 IPN. In 

fact, the activation energy should be increased with incorporation of PMMA due 

to the restnctions in mob1hty of the NR polymer chain segtnents. However, 

deviatiOn of the NR60 PMMA40(0.5) semi-2 IPN from this general trend IS 

perhaps related to a lower extent of mixing of the NR component as was also 

evident from the MDSC data shown m Table 3 10. 
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PMMA transltzon 

When the loss tangent ofPMMA component is considered (Figure 3.13), 

the transition due to PMMA component appeared as a mmor peak in the 

NR70:PMMA30 sample. In this senes, compared to the NR60 PMMA40(0.5) 

sem1-2 IPN, the Tg of the PMMA transition shifted towards lower temperature by 

5"C (Table 3.8) with increase of PMMA content mdicatmg improved mixmg of 

the PMMA and NR components. A similar trend had been observed for a 

poly(1sobutene) - PMMA IPN, where the PMMA Tg decreased with increasing 

the PMMA content (Vancaeyzeele et al., 2005). 

This trend is probably attnbuted to the mcrease of contact area between 

phases with increase of PMMA content, thus enhancmg the possible extent of 

mixing between components. In this case, the PMMA IS rruxed w1th a more 

mobile component (NR) with a lower T g thereby increasmg the segmental 

motions ofPMMA polymer chains resultmg in a lowenng of the PMMA Tg (Jha 

and Bhowm1ck, 1997). 
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F1g. 3.13 Effect ofcompos1tion on the loss tangent of the PMMA component for 

the semi-2 IPNs prepared usmg 0.5 mole% EGDM crosslmker 
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Storage modulus data 

The storage modulus data provide mformat10n on degree of 

interpenetratiOn, and the extent of mteractions between the components 

dependmg on the slope m the modulus plateau between the two transitions 

(V ancaeyzeele et al., 2006). The height and position of the plateau are governed 

by the relative amount of each polymer. The extent of flatness depends on the 

extent of phase separation suggestmg that the higher the msensitivity of the 

modulus to temperature the greater the phase separatiOn (V ancaeyzeele et a! , 

2006). Apart from this mformation, phase contmmty can also be determmed 

using storage modulus data. The storage modulus data for some of the semi-2 

(0.5) IPNs are shown in the Figure 3.14. 
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Fig. 3.14 Effect of composition on the storage modulus the semi-2 IPNs 

prepared usmg 0 5 mole% EGDM crosshnker 

As can be seen from Figure 3 .14, the plateau between the two transition m 

the NR70:PMMA30(0.5) semi-2 IPN do not vary considerably with the 

temperature. Nevertheless, slope of the plateau region tended to increase with 

increasing the PMMA content suggesting interactions between two components 
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in the NR50:PMMA50(0.5) semi-2 IPN. In addition, it is noted that the E' of the 

rubbery region of the NR transition mcreased from 3.1 MPa to 29 MPa at 20 oc 
With mcreasing the PMMA content from 30 wt.% to 50 wt% Vancaeyzeele et 

a/, (2005) also reported such a trend m their study of poly(Isobutene) - PMMA 

semi-1 IPNs. This behaviOur is probably associated with the reduction of 

mobihty of polymer chains due to the presence ofPMMA 

It was noted that the both transitions are prominent m the 

NR50:PMMA50(0.5) semi-2 IPN (Figure 3 14 and Table 3 8). Therefore, It may 

be deduced that the PMMA phase is present as a co-contmuous phase in this 

particular sample. 

Analyszs of MDSC data 

The weight fractions of the NR component m the interphasml regiOns of 

the semi-2 IPNs are g~ven m Table 3.10. 

Table 3.10 Calculated interphase fractiOns (5) and multiple peak analysis data for 

the semi-2 (0 5) IPNs 

Sample 

NR90.PMMA10 

NR80:PMMA20 

NR70:PMMA30 

NR60PMMA40 

NR50PMMA50 

*Mixed phases 

0 NR 

(weight 

fraction) 

0.46 

0.12 

0.14 

0.15 

0.20 

0PMMA 

(weight 

fractiOn) 

0.05 

0.0 

0.05 

00 

00 

Multiple peak analysis data 

NR-nch PMMA-nch 
Interphase 

phase phase 
(%) 

(%) (%) 

27* 

25 8 12 

27 13 8 

30 20 16 

5 NR,and 5 PMMA were calculated with respect to the un-vulcanized NR and cross
liked PMMA, respectively 
Data were obtained from the plot of dCp/dt vs temperature plot for the 
calculations of 5 NR and o PMMA 

The multiple peak analysis data are also mcluded m Table 3.1 0. Semi-2 

IPNs with 10 wt.% to 20wt.% of PMMA content, the mtermedmte region 
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--- --------------------

between two glass transitions could not be resolved mto three peaks 

correspondmg to NR rich phase, mterphase and PMMA nch phase. Therefore, 

this area was considered as one region and the whole spectra differentiated mto 

three peaks correspondmg to NR phase, mixed phases and PMMA phase. 

Therefore, the term mixed phases has been used to express the regions includmg 

NR-nch phase, PMMA-rich phase and interphase. In this series, the highest ONR 

content was observed for the NR90 PMMA10(0.5) composition. Despite this, a 

considerable amount of interface regiOn was found for the other samples 

containing 20 wt.% to 50 wt.% ofPMMA (Figure 3.15). An mcreasmg trend of 

the total amount of mixed phases with the PMMA content was found with 

mcrease of PMMA content from 40 wt.% to 50 wt.%. The enhanced mixing 

found in the NR90:PMMA10(0 5) semi-2 lPN IS probably associated with 

enhanced grafting of the MMA on to natural rubber. Reasons for havmg 

extremely low values for the OPMMA values were given in section 3.2.1.2. 

0 014 

' 0 012 \ 
' 

-- dCp/dT data proftle 

--Gauss1an fit peak for the dCp/dT data 
- - - Gausstan fit peak for the NR phase 

0 010 --------- Gausstan fit peak for the NR nch phase 
--Gausstan fit peak for the mterphase 

0 008 

iJ 

- - -Gausstan fit peak for the PMMA nch phase 
---·- Gausstan fit peak for the PMMA phase 

~ 0 006 
~ .... 
"' 8" 0 004 
"0 
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0 000 
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Fig. 3.15 Temperature dependence of dCp/dT for the NR50:PMMA50 (0 5) 

sem1-21PN 
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3.3.1.2 Effect of composition on the stress-strain behaviour 

Tenszle data 

Dependencies of tensile properties on the composition of the semi-2 (0.5) 

IPNs are illustrated m Figures 3 16-3.18. It IS evident that the tensile strength of 

these compositions has increased with increasing the PMMA content. A dramatic 

increase m the 300% and 500% moduli was observed in these semi-2 IPNs, when 

the PMMA content was between 30 and 50 wt.% (Figure 3.17). Therefore, the 

improved tensile properties thus obtamed could be ascnbed to the 

Interpenetration and reinforcement effects, Imparted by the glassy cross-linked 

PMMA phases. 
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Fig 3.16 Effect of composition on the tensile strength for the 
semi-2 (0.5) IPN senes 
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semt-2 (0.5) IPN senes 

60 

As shown m Ftgure 3.18, the elongation at break decreased wtth 

mcreasmg PMMA content, which may be simply due to the lowenng of the 

amount of the elastic component, the pnme component that detenmnes the EB 

value (Pillat, 1995). A stmilar observation was made for the NR/PMMA blends m 

previous studtes (Das and Gangopadhyay, 1992). 

Hystereszs data 

Energy losses dunng the cycling tests of semt-2 (0.5) IPNs are hsted in 

the Table 3 11. In addition, the hysteresis of these IPNs IS illustrated m Figures 

3.19 - 3.21. The amount of energy dtssipated as heat markedly mcreased wtth 

increasmg PMMA content This may be associated With the plastic deformation 

ofPMMA phases and/or due to the break down of structure in the PMMA phases. 

A stmilar trend was observed in the NR/PMMA blends. However, the amount of 

heat dissipated m the NR90.PMMA10(0.5) semi-2 IPN does not vary strongly 

from the conesponding control sample This behaviour could be ascnbed to the 

higher degree of mixmg of the NR wtth the PMMA component in that particular 

sample as shown by MDSC data (Table 3.10). 
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Table 3.11 Energy loss and hysteresis behaviour results for the sem1-2 (0 5) IPN 

senes 

Sample Cycle 1 Cycle2 Cycle3 

composition Energy Energy Energy HL 

NR/PMMA loss HL loss HL loss 

(wt %) (J) (J) (J) 

100/0 0.57 0.45 

90/10 0.12 0.31 003 0.11 002 0.07 

80/20 0.22 0.51 0.13 0.33 0 09 024 

70/30 0.44 0.96 0.28 0.72 0 25 0.73 

60/40 1.34 28 

50150 7.03 5.3 

*Natural rubber treated under the same cond1!Ion 

HL-Hysteres1s behaviOur was calculated as the ra!Jo of the energy lost to the energy recovered m 
each cycle 
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F1g 3.19 The first hysteresis cycle ofthe NR70 PMMA30(0.5) sem1-2 IPN 
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F1g 3.20 The first hysteresis cycle of the NR60.PMMA40(0.5) semi-2 IPN 
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Ftg 3 21 The first hysteresis cycle of the NRSO:PMMASO(O.S) semt-2 IPN 

In addttion, a large increase m hysteresis (energy loss) was observed 

when PMMA content was increased from 40 wt.% to 50 wt.%. 

3.3.2 Semi-2 IPNs prepared using EGDM crosslinker at a level of 1.0 

mole percent 

3.3.2.1 Effect of composition on miscibility 

Analys1s of dynamic mechamcal data 

NR transltwn 

The effect of composition on the loss tangent of the NR component 

is presented m Ftgure 3.22. Accordmgly, companson of NR T 8 data for the 

semt-2 (I 0) IPNs and the control sample mdicated that the NR T 8 has 

increased by 4"C wtth mcreasmg PMMA content from 0 to 40 wt% 

mdicatmg enhanced mixing in these materials (Table 3.14). Reasons for 

such behaviour were gtven for the precedmg senes. MDSC data also provide 

supportive evtdence for the Improved mixing of the NR component at these 

compostttons (see Table 3.14). 
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FJg.3.22 The effect of composition on the loss tangent ofthe NR component 

for the semi-2 (I 0) IPN series 

In these semi-2 (1.0) IPNs, the PMMA phase had been cross-linked 

usmg 1 mole % of EGDM on MMA. Cross-lmkmg of the PMMA 

component probably mcreases the rigidity of the matenal, and also reduces 

the segmental mobility of NR polymer segments 1f there are connections 

between those two components. This effect could be more pronounced in the 

samples havmg higher PMMA content resultmg m an mcrease in NR T 8• 

This probably explains the reason for absence of significant lowering ofNR 

T8 in the NR50.PMMA50(LO) sem1-2 IPN. However, this trend probably 

suggests interlinking of components. It is accepted that the conformational 

mob1lity of polymer chain segments of each component m the immJscJb!e 

blend will not be affected by the presence of other component (Arenas et al., 

2002). As such, the observed T g shift has been resulted from the mter

linkmg (m1xing) of components due to mterpenetration and/or due to 

graftmg. 
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Table 3.12 Half peak widths ofthe NR transition and the NR and PMMA Tg 

transitions for the semi-2 (1.0) IPNs 

Sample 
NRTg Half peak Width 

("C) ("C) 

Natural rubber* -51 16 

NR90PMMA10 -49 18 

NR80:PMMA20 -48 21 

NR70PMMA30 -47 25 

NR60PMMA40 -47 25 

NRSO·PMMASO -49 24 

*Natural rubber heated under the same conditions 

PMMATg 

("C) 

162 

154 

150 

Further, It is evident that tan <>max·NR decreased With increasmg 

PMMA percentage A similar trend has been observed not only for the 

previously mentioned NRJPMMA blend senes, but also in other reported 

work (Vancaeyzeele, 2005, Perera, 1999). As the transition from the glassy 

to the rubbery state takes place via co-operative motions, the segmental 

mobility is the decisive factor in determmmg the tan delta values 

(V ancaeyzeele et al., 2005). Hence, the tan delta values will be affected by 

the composition (Vancaeyzeele. et al., 2005). Therefore, as the amount of 

glassy polymer content increases, the tan limax-NR should decrease due to the 

reduction of mobility ofNR polymer chains. 

The normalized activation energies for the semi-2 (1.0) IPNs are 

presented m Table 3.13. 

Table 3.13 Calculated relative activation energies for the NR transition of semi-2 

(1.0) IPN 

Sample 

NR90PMMA10 

NR80.PMMA20 

NR70PMMA30 

NR60:PMMA40 

NRSOPMMASO 

Normalized activatiOn energy 
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1 07 

1.17 

1.29 
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As was seen for the semi-2 (0.5) IPNs, the normalized activation 

energy increased w1th increasing PMMA content As stated earlier for the 

blends and the semi-2 (0.5) IPNs, 1t IS pnmarily associated w1th increase of 

the activatiOn energy of the back bone motions of the NR polymer chains 

caused by a reduction of mobility w1th mcorporatlon of higher amounts of 

PMMA. 

PMMA transztzon 

Vanat10n of the loss tangent of the PMMA component w1th 

composition 1s illustrated in Figure 3.23. 
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Flg.3 23 Effect of compositiOn on the loss tangent of the PMMA 

component of the sem1-2 (1 0) IPN series 

200 

It was found that the PMMA transitions IS broad in the relaxation 

spectra of the NR70.PMMA30(1.0) sem1-2 IPN indicating mcreased 

m1croheterogemty. Nevertheless, compared to the NR70.PMMA30, the Tgs 

of the PMMA transition m the NR60:PMMA40(1 0) and 

NR50 PMMA50(1 0) samples tend to sh1ft towards lower temperatures. A 

probable reason for this behaviour has been proposed in sect10n 3.3.1.1. 

Furthermore, tan Omax-PMMA tends, as expected, to mcrease w1th 

mcreasmg PMMA content As mentioned earlier, the loss tangent 1s 

sensitive to the relative we1ght fractwn of the components m mulh

component materials (McCrum, 1958, 1959a, 1959b) Therefore, the 
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increase m the magmtude of the PMMA loss tangent is the result of the 

increase ofPMMA m these samples. 

Analys1s of MDSC data 

The temperature dependence of dCp/dT for the NR70.PMMA30(1 0) 

semi-2 IPN compositiOns are presented in Figures 3 24 
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Fig 3.24 Temperature dependence of dCp/dT for the NR70 PMMA30(1 .0) 

semi-2 IPN 

Considerable amount ofNR-rich and PMMA-nch regions can be seen m 

Figure 3.24, mdicative of some enforced component mixmg in the 

NR70 PMMA30(1 0) semi-2 IPN. In addition, a considerable amount of mixed 

phases could also be found for the semi-2 IPN havmg 20 wt.% PMMA content 

For these composition, it IS difficult to differentiate regtons into NR nch phases, 

PMMA nch phase and interphase. Therefore, the phases will be referred to as 

mixed phases which mcludes the mterphase regiOn too for convemence From 

these data, It IS noted that the extent of mixing of the components m the 

NR60:PMMA40(1 .0) semi-2 IPN was significantly higher than the other samples 
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Table 3.14 Calculated mterphase fractions (o) and multiple peak analysis data for 

the semi-2 (I 0) IPN 

Multiple peak analysis data 

ONR 0 PMMA 

Sample (weight (weight 

fractiOn) fractiOn) Interphase NR-nch PMMA-

content phase rich phase 

(%) (%) (%) 

NR 90:PMMA 10 0.10 ** 

NR 80:PMMA 20 0.18 ** 31* 

NR 70:PMMA 30 0.18 00 7 15 12 

NR60PMMA40 0.18 0.04 27 25 15 

NR SO:PMMA 50 0 21 0.13 19 35 3 

* Mixed phases 
**The o PMMA content has not been calculated because of the difficulties in 
resolving the mmor PMMA transition 
li NR,and o PMMA were calculated with respect to the un-vulcanized NR and cross
liked PMMA (EGDM I 0 mole%), respectively 

3.3.2.2 Effect of composition on stress-strain behaviour 

Tenszle data 

Effects of compositiOn on the tensile properties of the semi-2 (1.0) IPN 

series are presented m Figures 3.25 - 3.27. Unhke m the semi-2 (0 5) IPNs senes, 

the tensile strengths of these IPNs mcreased with increasmg PMMA content up to 

40 wt.%, and thereafter showed a downward trend (Figure 3.25). Improved 

tensile properties of the NR60 PMMA40(1 0) sample IS perhaps related to the 

enhanced miXing of components in this particular sample as seen from the MDSC 

data (Table 3.14). These results may suggest that the cross-linking of the PMMA 

component usmg EGDM at 1.0 mole%, leads to a reduction in the tensile strength 

of the NRSO.PMMASO(l.O) composition. A feasible explanation for this trend 

can be proposed as follows. 

126 



'2 30 
0.. 

6 25 
.c 
Oh 20 
c 

~ 15 

" ~ 10 
c 
~ 5 

0 10 20 30 40 50 60 

PMMA(wt%) 

F1g. 3.25 Effect of compos1t1on on the tensile strength of the semi-2 (1 0) IPN series 

Cross-linking of the PMMA component of these IPN, especially those 

w1th higher PMMA contents, will result in harder materials. When a stress is 

applied to the harder material, stress will be carried by the effective PMMA 

polymer chams and the NR polymer chains. However, the mobJ!ity of both the 

NR and PMMA polymer chains will be reduced as a consequence of cross

lmkmg, resulting m a reduction of the efficient distnbution of stress among the 

neighbounng polymer chams. A study based on nano-structured full IPNs based 

on natural rubber and polystyrene (Mathew et a!, 2001) mdicated that as the PS 

content and the cross-hnk dens1ty of PS phase are high, there IS a tendency to 

form agglomerates which results in bnttleness and poor mechanical performance. 

This phenomenon may have occurred here. Accordingly, such materials may 

break at a lower force causmg a reduction m tenslie strength. 

Results obtamed from this senes (F1gure 3.26) md1cated that the I 00%, 

300% and 500% moduli mcreased w1th mcreasmg PMMA content and was 

sim1lar to the trend observed in the other semi-2 IPNs senes. This IS mamly 

attributed to the filler remforcement effect caused by the glassy PMMA part1cles 

m the NR matnx and/or due to the cross-linkmg effect of PMMA phase. In 

add1tion, the elongation at break decreased with increasmg amount of PMMA 

(Figure 3 27), which could be attributed to the lowering of the mobli1ty of 

polymer chains due to interpenetration of PMMA phases mto the NR matnx 

(P1lla1, 1995) 
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Fig. 3.26 Effect of composition on the 100,300 and 500% moduli of the 

semi-2 (1.0) IPN series 

950 

850 

750 

;a: 650 

""' ffi 550 

450 

350 

250 

0 10 20 30 40 50 

PMMA(wt%) 

60 

60 

Fig. 3 27 Effect of compositiOn on the elongation at break of the semi 2 (1.0) IPN 

senes 

Hystereszs data 

Energy losses (hysteresis) and hysteresis behaviour found for the cyclic 

tests on the semi-2 (1.0) IPNs series are reported m Table 3 15. The hysteresis 

loops for these IPNs are presented in Figures 3.28 to 3 30. As the PMMA content 

mcreased, the hysteresis shown by the IPNs also increased strongly. 

Comparatively high hysteresis values were obtamed for the IPNs With the 
128 



NR60.PMMA40(1.0) and the NR50.PMMA50(1.0) compositions Most probably 

this behaviOur results from the mcreased presence of PMMA which has Iugh 

hysteresis properties. As the PMMA content increased, resultant friction between 

PMMA domains and NR polymer chains also increased as a result of orientation 

of PMMA domains by overcommg mteractJons between PMMA hard segments 

and NR polymer chains. The same trend was found m NRIPMMA blend and the 

semi-2 (0.5) IPNs senes. 

Table 3.15 Energy losses and hysteresis for the semi-2 (1.0) IPN series 

Cycle 1 Cycle 2 Cycle3 

NRJPMMA Energy loss Energy loss Energy loss 
Ratio HL HL HL 

(J) (J) (J) 

90/10 0.13 0.39 0.03 0.07 0.01 007 

80/20 0 31 0.72 0 16 0.40 013 0.28 

70/30 072 1 59 0 35 0.86 0.35 0.84 

60/40 3.00 3.78 

50150 7.9 6.17 

HL-Hysteresis behaviour calculated as the ratio of the energy lost to the energy 

recovered m each cycle 
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F1g 3.28 The first hysteresis cycle of the NR70:PMMA30(1 0) semi-2 IPN 
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F1g 3.29 The first hysteresis cycle of the NR60.PMMA40(1.0) semi-2 IPN 
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Fig. 3.30 The first hysteresis cycle of the NR50 PMMA50(1 0) semi-2 IPN 

3.3.3 Semi-2 IPNs prepared using EGDM cross-tinker at a level of 1.5 mole 

percent 

3.3.3.1 Effect of composition on miscibility 

Analyszs of dynamzc mechamcal data 

NR transztzon 

The effect of composition on the NR loss tangent of the semi-2 (1.5) IPNs 

IS shown m Figure 3.31 Comparison of tan delta values of the NR components of 
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these semi-2 IPNs w1th the correspondmg control sample showed that the glass 

transition temperatures of former samples were relatively higher by 3°C to 6°C 

than the control sample (see Table 3.16), mdicating some mixing of the NR and 

PMMA components in these semi-2 IPNs. This observation is akm to the 

observatiOns made for the other sem1-2 IPN series. This trend IS primanly 

attnbuted to some interpenetratiOn of the PMMA network phases into the NR 

matnx (Donatelli et al., 1976). As a result, adhesiOn between phases would be 

expected to mcrease (Xanthos and Dagli, 1991). On the other hand, cross-linking 

of the PMMA component leads to the formation of smaller domams, wh1ch may 

also lead to improved miSCibility. Nevertheless, the chances of graftmg of the 

PMMA network onto NR are probable and such a process most probably 

improves the mJSCibihty of the two components. 

Table 3.16 Half peak w1dths of the NR trans1tion and the Tgs of the NR and 

PMMA trans1tions of semi-2 (1.5) IPNs 

Sample 
NR Tg Half peak w1dth Tan Omax PMMATg Tan limax 

("C) (NR) (NR) ("C) (PMMA) 

("C) 

Natural rubber* -51 16 24 

NR90.PMMAIO -48 19 2.0 

NR80:PMMA20 -47 20 1.9 173 0.33 

NR70:PMMA30 -46 22 1.6 178 0.20 

NR60:PMMA40 -45 26 08 156 0.40 

NRSO:PMMASO -49 23 05 150 0.54 

*Natural rubber heated under the same conditions 

Moreover, as previOusly reported (Perera, 1999, Romame, 1988), tan liNR-max 

gradually decreased w1th increasmg PMMA content. The reasons for th1s trend 

have been explained ear her. As seen m sect10n 3 3 2.1, the tan liNR-max values for 

the sem1-2 (1.5) IPNs contaming more than 30 wt.% PMMA are s1gmficantly 

lower than the values calculated on a pro rata bas1s (see Table 3.16). As such, it 
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may be anticipated that the fractiOn of natural rubber remaimng as homopolymer 

was lower in these two semi-2 (1.5) IPNs Study of IPNs based on 

poly(isobutene) (Pill) and polystyrene (PS) clearly indicated that as the cross

linking density of PS phase was increased from 0 to 20 wt.%, the height of the 

loss tangent ofPffi relaxatiOn decreased (Vancaeyzeele et a!, 2006). Therefore, 

the mfluence made by the cross-linking of PMMA phase on mobility of the NR 

polymer chams should also be considered for the mterpretatwn of lowering of 

heights of loss tangents of semi-2 IPNs with 40 wt.% and 50 wt.% of PMMA 

content, than the pro rata values Therefore, It is reasonable to assume that the 

lowering of the heights of the NR loss tangent in semi-2 (1.5) IPNs are due to the 

combined effect of improved mixing of the components (Table 3.17) and also due 

to the reductiOn of mobility of NR polymer chains due to cross-linkmg of the 

PMMA phase. The calculated weight fractwns of natural rubber m the interphase 

are shown in Table 3.17. It also mdicated that these two samples possess 

substantial interface regwns. 
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PMMA transztzon 

The loss tangent due to the PMMA component tends to shift to lower 

temperatures by 27°C w1th increasing PMMA content from 30 wt.% to 50 wt.% 

(Figure 3.32). This 1s, again, an indication of1mproved mixmg of the components 

as was evident from the MDSC data shown m Table 3.17. 
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Fig. 3.32 Effect of composition on the loss tangent ofthe PMMA component 

in semi-2 IPN (1.5) senes 

Increase in the contact area w1th increasing PMMA content is believed to 

be the pnmary reason for this trend. In addition, the PMMA component in the 

NR70.PMMA30(1.5) sem1-2 IPN appeared as a broad mmor peak (Figure 3.32). 

The same situatiOn has been encountered for the NR80:PMMA20(1.5) semi-2 

IPN. Nevertheless, It is noted that the height of the PMMA transitiOn in the 

NR70:PMMA30(1.5) semi-2 IPN was lower than the NR80.PMMA20(1.5) semi-

2 IPN Smce the height of the loss tangent is a measure of the quantity of polymer 

which is present as homopolymer, 1! may be postulated that the reduction of the 

PMMA transitwn m the NR70 PMMA30(1.5) semi-2 IPN IS pnmanly due to the 

reductwn of homo PMMA. Th1s indicated that the considerable amount of the 

PMMA component is present in a m1xed state rather than a pure PMMA phase m 

the NR70 PMMA30(1.5) sem1-2 IPN, mdicatmg improved component mixmg in 
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this sample. With the exception of the NR70:PMMA30(1.5) semi-2 IPN 

compositiOn, the loss tangent data revealed that the tan Omax of the PMMA peak 

gradually mcreased with increasing PMMA content. Weight fraction of a 

particular component in the composites can be considered as one of the factors 

which determine the height and the magnitl!de of the loss tangent of a particular 

component. Therefore, it is expected that the height of the PMMA transition 

should mcrease with mcrease in the PMMA content. A similar trend was found in 

the previously discussed semi-2 IPN (0.5 and 1.0) senes. 

When the heights of the loss tangent of the NR transition and the PMMA 

transition are compared, it IS noted the PMMA phase IS the contmuous phase m 

the NR50.PMMA50(1.5) semi-2 IPN and as a result the tensile strength and the 

elongation at break was relatively low (Figures 3 34 and 3 35) 

Storage modulus data 

The dependence of storage modulus on composition of the semi-2 (1.5) 

IPNs is presented in Figure 3.33. E' values of the plateau between the two 

transitions increased gradually with mcreasing PMMA content, with the 

exception ofNR70 PMMA30(1 5) semi-2 IPN. The mcrease ofE' m the plateau 

region of these IPNs IS pnmar~ly attributed to a reduction in mob1hty of the both 

polymer chains with increase of PMMA content. The PMMA transition of the 

NR50 PMMA50(1.5) semi-2 IPN appeared to be the prominent transitiOn. 

Therefore, it can be concluded that the PMMA phase IS either present as a 

contmuous phase or a co-contmuous phase in this particular sample. 

Nevertheless, exceptionally, the lower E' of the NR70:PMMA30(1.5) sample can 

be attributed to the slightly higher phase continuity arJsmg from Improved 

component m1xmg, as was evident from the DMTA data as well as the MDSC 

data. 

When the plateau regwn between the two glass transitwns were taken mto 

consideration, it was noted that there was a gradual increase in the slope with 

mcrease of temperature, probably indicating some mteractlons between 

components, except for the NRSO PMMA20(1.5) semi-2 IPN. In the latter 

sample, E' values between the transitions do not change with mcrease of the 
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temperature perhaps ind1cating a relative lack of mteract10n between the NR and 

PMMA components m th1s sample 
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Fig. 3.33 Effect of compos1t10n onE' of the NR component for the 

semi-2 IPN (1.5) senes 

Analysis ofMDSC data 

The calculated interface fract10ns for the sem1-2 (1.5) IPNs are given in 

Table 3.17. 

Table 3.17 Calculated interphase fractions (8) and multiple peak analysis data for 

the semi-2 (1 5) IPNs 

0 NR 0 PMMA 

Multiple peak analysis data 

Interphase NR-rich PMMA-nch 
Sample (weight (weight 

content phase phase 
fraction) fraction) 

(%) (%) (%) 

NR90·PMMA10 0.02 ** 28* 

NR80.PMMA20 011 0.14 26* 

NR70PMMA30 0.41 ** 31 18 3 

NR60PMMA40 0.08 0.39 25 11 0.8 

NR50PMMA50 0.20 0.38 28 27 0.5 

*Mixed phases 

**The 1i PMMA content has not been calculated because of the difficulties m 

resolving the PMMA transitionS NR and 8 PMMA calculated with respect to the UTI

vulcanized NR and the cross-lmked PMMA (EGDM 1 5 mole%) 
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It was noted that the weight fraction of the NR component m the mterphase, NR

nch phase and the mterphase content of the NR70.PMMA30(1.5) semi-2 IPN 

were considerably high indicatmg some mixing of the components. With the 

exception of the NR70.PMMA30(1.5) semi-2 IPN, the NR-nch phase mcreased 

With mcrease m the PMMA content (Table 3.17). This result is m agreement with 

the DMTA results which md1cated that the PMMA transition of the loss tangent 

of the NRSO PMMA50(1 5) semi-2 IPN had shifted by 5°C towards lower 

temperature with increasmg the PMMA content from 40 wt.% to 50 wt.%. 

3.3.3.2 Effect of composition on the stress-strain behaviour 

Tenszle data 

Variations of tensile strength of the semi-2 (1 5) IPNs with compositiOn are 

Illustrated m Figure 3.34. The tensile strengths of the semi-2 IPNs have 

significantly mcreased up to 30 wt.% PMMA and thereafter they showed a clear 

downward trend. The comparatively higher tensile strength of the 

NR70:PMMA30(1.5) semi-2 IPN could be attnbuted to improved mixing of the 

components, as indicated by DMTA and MDSC data 
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Fig.3.34 Effect of composition on the tensile strength of the semi-2 (1.5) IPN 
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It is apparent from the results that cross-linking of the PMMA component 

usmg 1.5 mole% ofEGDM tends to cause a reduction of the tensile strength of 

the semi-2 (1.5) IPNs, especially those w1th higher plastomer content. The 

probable reason for such behaviour is considered to be the presence of hard, 

cross-linked PMMA domams, which hinder the segmental mobility of the NR 

polymer chams resultmg in an inefficient stress d1stnbut10n in the contmuous 

phase. As a result, the samples may break at relatively low loads. Nair et a/ 

(1990) found a similar trend for a polyurethane-polyacrylamide IPN, wluch they 

ascnbed to phase separatiOn Figure 3 35 shows the effect of composition on the 

elongation at break and the results clearly mdicate that EB decreases with an 

mcrease m the PMMA content. 
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Fig 3 35 Effect of composition on the elongatiOn at break of the sem1-2 (1.5) IPN 

senes 

Hystereszs data 

The effect of composition on the energy losses dunng cyclic tests of the 

sem1-2 (1.5) IPN is presented m Table 3 18. 

The results clearly indicated that hysteresis (Figures 3 36 to 3.38) m tlus 

senes of IPNs mcreased w1th increase of the PMMA content and the probable 

reason for this behaviOur has been explamed in section 3.3.2.2. 
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Table 3.18 Energy losses during stress-stram testing of the semi- 2 (1.5) IPN 

senes. 

Cycle1 Cycle 2 Cycle3 

Composition 

NR/PMMA 
Energy HL Energy HL Energy HL 

Loss Loss Loss 
Ratio 

(J) (J) (J) 

90/10 020 046 0070 0.17 0.06 0.15 

80/20 0.39 093 0.23 0 59 0 21 0.60 

70/30 0.93 2.1 0.53 1 14 044 0.96 

60/40 3.50 40 ** ** ** ** 

50/50 8.42 4.84 ** ** ** ** 

* HL-Hysteres1s behavwur calculated as the ratw of the energy lost to the 

energy recovered m each cycle 

** - Sample had undergone permanent set 
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F!g.3.36 The first hysteresis cycle of the NR70 PMMA30(1.5) sem1-2 IPN 
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Fig. 3.37 The first hysteresis cycle of the NR60 PMMA40(1.5) semi-2 IPN 
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F1g. 3.38 The first hysteresis cycle of the NR50:PMMA50(1.5) semi-2 IPN 

3.3.3.3 Effect of composition on the sol-gel ratio 

According to the gravimetric results, there is no significant difference m the 

sol content of these semi-2 IPNs with increase in PMMA content (Table 3.19) In 

companson w1th the NR90·PMMA10(1.5) semi-2 IPN, a marginally higher level 

of extractable matenals IS present in the NR70.PMMA30(1 5) semi-2 IPN sample 

which was subjected to the hot extraction process using acetone as the solvent. 
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Table 3. 19 Amounts of extractable materials present m different types of IPN. 

Amount of extractable matenal 

(%) 
Type NRIPMMA blend Semt-1 IPN Semi-2 IPN (I. 5) IPN (I. 5) 

Extraction SE RTE SE RTE SE RTE SE 

Type 

Solvent Ace. Ace. PET Ace Ace. PET Ace. Ace. PET Ace Ace. 

Composttlon 

NRIPMMA 

90.10 
3 2.9 24.3 3.0 36 31.2 2.2 2.2 28 4 3.1 4.2 

70:30 65 7.1 7.8 14.4 17.0 16.4 3.3 2.6 11.2 3.1 5.3 

SE: Soxhlet extractton usmg acetone, RTE- Extraction was earned out at room temperature (27 ± 3 oq 
Solvent used: Acetone (Ace.) and Petroleum ether 40/60 (PET) 

RTE 

PET 

20 5 

17.0 



It is expected that the homo PMMA content present m these semi-2 IPNs should 

increase with increase of the PMMA content, The solubility of the PMMA 

component m acetone will be reduced resulting in lowermg of extracted materials 

because of the cross-lmked nature in the PMMA component As such, a big 

variation in acetone-extractable materials was not be observed with mcreasmg the 

PMMA content from 10 wt.% to 30 wt.%. A similar trend was obtained for the 

full (1.5) IPN, m which PMMA phase IS also cross-linked using 1 5 mole% of 

EGDM crosslinker The amount of soluble material extracted using petroleum 

ether at room temperature clearly md1cated that the amount of extractable 

material decreases with mcreasing the PMMA content. Petroleum ether was 

expected to remove natural rubber (Romaine, 1988) and, therefore, the amount of 

extractable matenal by petroleum ether will be reduced with a decrease of the 

natural rubber content in the sample. This is the reason for obtaining lowers 

amount of extractable matenal m the NR70 PMMA30(1.5) semi-2 IPN when 

petroleum ether was used as the solvent 

3. 4 Semi-1 IPNs 

3.4.1 General information on the semi-1 IPNs 

Semi-1 IPNs were prepared as descnbed m chapter 2 and the detmls of the 

compositions are given in Table 2 5. Unhke m the NR/PMMA blends and the 

semi-2 IPNs, these samples were less transparent, probably due to the gross phase 

separation of the components. 

In general, the semi-1 IPNs with higher PMMA contents are hard and non

tacky when compared to the vulcanized NR. However, the IPNs with low 

amounts of PMMA are more or less similar m appearance to the vulcanised NR 

control, ind1catmg an absence of stiffuess usually resultmg from the incorporation 

of the PMMA m to a NR matrix. This indicated that the polymerizatiOn ofMMA 

had not fully taken place as was evident from the gravimetric data. Furthermore, 

these samples were slightly tackier than the vulcanised NR control sample. 

Therefore, tlus is considered as evidence that degradation of the NR has occurred 

in the absence of a considerable amount ofMMA polymensat10n by the initiator, 

Tnganox 21S A similar observatiOn was made for Tnganox 21S m earlier 
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studies oflatex IPNs based on NR and polystyrene (Romame, 1988). It IS evident 

from the gravimetric data (Table 2 5) that the actual (experimentally determmed) 

amounts of PMMA in the NRIPMMA (90:10) and (80.20) IPNs are extremely 

low (3 and 8 wt %, respectively). Therefore, hereafter these two semi-1 IPNs are 

referred to as NR97:PMMA3 semi-1 IPN and NR92:PMMA8 semi-1 IPN. 

Drastic reduction in PMMA content m these samples may be attributed to an 

inhibition of the polymensatwn of MMA, most probably caused by one of the 

NR vulcanising agents. Therefore, hereafter, the samples which had Significantly 

varied from the target composition will be represented by therr expenmental 

composition. 

However, th1s effect is apparently mmimJsed m IPNs, containing 30 - 50 

wt.% PMMA. This could be attnbuted to the comparatively higher amounts of 

1mtiator and /or monomer present in these systems. Elemental sulphur IS known 

to exist as cyclic Ss molecules (Bartlett and Trifan, 1956; Ghosh, 1971) and 1t is 

capable of undergomg homolytic cleavage at elevated temperatures resulting in 

di-radJCals that take part in polymensatwn by radical couplmg reactions On the 

other hand, the Ss molecules can be mvolved in chain transfer reactions w1th 

vinyl monomers resultmg in a polysulphur radical (HSs") (Bartlett and Trifan, 

1956, Ghosh, 1971). These radicals react subsequently w1th another vmyl 

monomer to yield RSx" which can undergo a vigorous termination reaction with 

growmg polymer cham radicals causing a mlub1tory action on the polymensation 

of vinyl monomers (Bartlett and Trifan, 1956; Ghosh, 1971). 

As shown above, although MMA radicals may link with sulphur, due to the 

large number of MMA radicals, the MMA homopolymerisation reactiOn would 

also take place. This may overcome the inhibition process m samples containing 

higher percentages of MMA 

Therefore, preliminary studies were earned out to mvestlgate the effect of 

each vulcanismg chemical on the final properties of the resultant NR/PMMA 

(50· 50) blends. In this attempt, each chemical has been mcorporated alone in to 

the NR phase m the same amounts as used m the pre-vulcanization formula 

Blends based on NR and PMMA were prepared accordmg to the procedure given 

m Chapter 2.1. 
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The results of these prelimmary stud1es (Table 3.20) mdicated that among 

the chemicals used, the presence of zinc dithJOcarbamate (ZDC) m the NR matnx 

had no detnmental effect on the tens1le strength of the blends. When compared to 

the equivalent blend with no added chemicals and the blends which contain 

added chemical, the results clearly mdicated that the tens1le strength had declined 

when sulphur was mcorporated into the matrix This is perhaps due to the PMMA 

with low molecular weight resulting from inhibition of the MMA polymerization 

by sulphur. 

Although sulfur compounds are mvolved m the vmyl polymenzat10n, the 

mechanism is unclear (Ghosh, 1971). However, sulphur is known to be an 

initiator, modifier, and chain tenmnating agent or 1nh1bitor (Ghosh, 1971) Clear 

evidence of the inhibitory effects of elemental sulphur on free radical vinyl 

polymenzations is available (Bartlett and Kwart, 1950). Studies based on the 

inhibition of the thermal polymenzation of styrene in the presence of sulphur 

md1cated that sulphur combines with styrene radicals to form a low molecular 

weight product containing 8 sulphur atoms per styrene unit (Barlett and Tnfan, 

1956) 

In the present mveshgat10n, such an inhibitory effect on the polymerization 

of MMA m the presence of sulphur has been observed in the sem1-1 lPNs and in 

the full lPNs, especially those havmg lower PMMA contents, where the NR 

component is cross-linked usmg conventiOnal sulfur vulcanizing systems. 

3.4.2. Effect of composition on miscibility 

Dynamzc mechamcal data 

F1gures 3 39 and 3.40 depict the effect of the composition on the loss 

tangent data for the semi-1 IPN senes. The T8 of vulcamzed NR was slightly 

higher (3°C} than that of an-vulcanized NR because of the cross-lmlang of the 

NR component. 

As far as T8 of the NR component 1s concerned, the Tg.NR of the semi-1 

IPNs did not vary much from the T8 of vulcanized NR (Table 3.21). These results 

suggested that under the experimental conditions used in this study, cross-linkmg 

of the NR component does not lead to improvement m the extent ofmixmg of the 

NR component and the PMMA. 
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Table. 3.20 Tensile properties and sol content of blends, prepared by addmg vulcanizmg chemicals to NR phase. 

Tensile properties 

Descnption of the sample 
100% 300% 500% Tensile EB 

Modulus Modulus Modulus strength (%) 
(MPa) (MPa) (MPa) (MPa) 

NR50:PMMA50 without vulcamzmg 3.9 21.1 26.1 378 

- chemicals ~ 
~ 

ZDC mcorporated sample (0.25 phr) 47 17 5 26 0 403 

Sulphur mcorporated sample (0.5phr) 7.0 18.0 283 

ZnO mcorporated sample (0 I phr) 5.4 136 22 0 413 
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F1g. 3.39 Effect of composition on the loss tangent of the NR component 

of the semi-! IPNs 

As seen earlier, tan Ornax decreased w1th an mcrease m the PMMA content, 

except for the NR97·PMMA3 sample (expenmentally determined), m which tan 

Ornax was just shghtly h1gher than that of vulcanised NR Reduction of magmtude 

of the NR loss tangent w1th mcreasing PMMA content is as expected because the 

loss tangent reflects the volume fractiOn of each component. Nevertheless, 

dev1ation of the NR97 PMMA3 sample from the expected trend probably may be 

attnbuted to some degradation of the NR component results m lowering of the 

cross-lmk dens1ty. 
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Table 3.21 Half peak widths of the NR transition and the Tgs of the NR and 

PMMA transitions ofsemi-llPNs 

NR Tg Half peak w1dth Tan Omax PMMATg Tan Omax 
Sample 

(OC) (NR) ("C) (PMMA) (NR) 

("C) 

Vulcarused 
-49 15 2.3 

natural rubber* 

NR97PMMA3 -48 19 2.4 

NR92:PMMA8 -49 18 22 

NR70:PMMA30 -47 22 1.4 150 0.19 

NR60.PMMA40 -48 21 0.9 145 0.39 

NR50:PMMA50 -47 23 06 146 0.44 

*Vulcanised natural rubber heated under the same conditions 

When the PMMA trans1tion is taken mto consideration, 1t is present as a 

broad minor peak m the NR70·PMMA30 sem1-IIPN (Figure 3.40) 
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F1g 3.40 Effect of composition on the loss tangent of the PMMA 

component of the semi-IIPNs 

As expected, the height of the PMMA loss tangent had mcreased by a 

factor of 2.3, With mcreasmg the PMMA content from 30 wt% to 50 wt.%. 

Compared to the PMMA Tg of the NR70 PMMA30 semi-! IPN, the Tgs of the 

PMMA trans1ttons of the NR60 PMMA40 semi-! IPN and NR50·PMMA50 
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semi-1 IPN had relatively shifted towards lower temperature by 4°C to 5°C. This 

shift probably arise from the plasticization ofPMMA by the NR component due 

to enhanced interpenetration of components (V ancaeyzeele et a! , 2005). 

Furthermore, It IS noted that there 1s a minor transitiOn at I 08°C poor to the a 

transition As there is a possibility to appear J}-transit10n (usually 0.75 times of 

the Tga-trans1tlon ((Murayama, 1978)) as a shoulder in the a transition for the 

amorphous polymers (Murayama, 1978), this minor peak can be referred to as a 

J}-transit!On probably raised due to rotations of the side groups methyl (Sanchez 

et al., 2001) or ester group (Murayama, 1978) ofPMMA. 

Analyszs of MDSC data 

Accordmg to the data listed m Table 3.22, there is no promment effect of 

the PMMA content on the extent of mixing with the cross-linked NR component 

The effect of PMMA content on the NR-rich phase and interphase content m 

these semi- I IPNs was not significant. However, the weight fractiOn of PMMA 

component which had been incorporated in to the interfacial layer and and the 

PMMA-nch phase content tends to increase w1th an mcrease of the PMMA 

content from 30 wt.% to 40 wt.%. 

Table 3 22 Calculated weight fractions of components and the multiple peak 

analysis data for the semi- 1 IPNs 

CompositiOn ONR 0PMMA Multiple peak analysis data 

NR/PMMA (weight (weight fraction) Interphase NR-rich PMMA-

(wt.%) fraction) (%) phase nchphase 

(%) (%) 

97.3 

928 

70 30 0.15 0.07 30 14 9 

60·40 0.20 0.13 26 14 15 

50 50 0.21 0.23 30 13 26 

(O,R was calculated Wlth respect to the denvattve of the complex Cp of un-vulcamsed NR 

However, O,R calculated wtth respect to the vulcamsed rubber for the senn-1 lPNs are not gtven 

due to the lngh vanatton m values obtamed usmg the equation) 
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3.4.3 Effect of composition on stress-strain behaviour 

Tenstle data 

Compared to the vulcanised natural rubber, the tensile strength of the 

NR97: PMMA3 semi-! IPN (Figure 3.41 and Table 3.23) was significantly lower 

and winch IS perhaps related to degradation of the rubber caused by the mitiator 

in the absence of significant polymerisation of MMA. However, the 

NR92 PMMA8 sample exhibited improved tensile strength When compared to 

the vulcaomsed natural rubber, the Improved tensile strength obtained for the 

NR92 PMMA8 sample may due to some remforcement effect caused by ngid 

PMMA domains. A further mcrease of the PMMA content up to 30 wt.% caused 

a marginal increase in the tensile strength. On the other hand, mcreasmg the 

PMMA content from 30 wt.% to 50 wt.% led to a marginal decrease of the tensile 

strength (Figure 3.41). The optimum tensile strength has resulted probably 

because of better mterpenetration of NR and PMMA components at this 

particular compositiOn (Kumar et a/, 2006, W ang et a/ , 1992). 
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Fig 3 41 The effect of composition on the tensile strength of the semi-1 IPNs 
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Table 3 23 The tensile data for the semi-! IPNs 

Composition Tensile strength 

NR/PMMA (MPa) 

(wt.%) 

100:0 23 (1 3*) 

97:3 19 (1.2*) 

92:8 30 (1.1*) 

68:32 32 (1 6*) 

63.37 29 (1.5*) 

49:51 27 (0 7*) 

* Standard deviation 

Besides this observation, with the exception of the NR97:PMMA3 sample, the 

improved tensile strength of these semi-1 IPNs, can be ascnbed to the 

reinforcement Imparted by the PMMA phases m the cross-hnked NR matnx 
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Fig. 3.42 Effect of compositiOn on 100,300 and 500% moduli of the 
semi-1 IPNs 

In general, as the PMMA content increases, the modulus of the matenal should 

increases due to the remforcement by the hard, glassy PMMA particles. It could 

be anticipated that the PMMA may exert a Similar effect to a filler dispersed m a 
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cross-hnked NR phase. As shown m the F1gure 3 42, a marked increase of the 

100% moduh were found at 40 wt.% of the PMMA content. If the 300% moduli 

values are considered, the modulus mcreased Significantly at 30 wt.% PMMA 

(Figure 3.42). As expected, the elongation at break tended to decrease with 

increasing PMMA content {Figure 3.43). A feasible explanation has been gJVen 

m sectwn 3.3.1.2. 
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Fig. 3.43 Effect of composition on the elongation at break of the 
sem1-1 IPN series 

Hysteres1s data 

60 

The amounts of the energy lost dunng the cychc tests of these sem1-1 

IPNs are hsted in Table 3.24. A companson of hysteresis behaviour of an cross

linked NR and cross-hnked NR, heated under the same conditwns, can be made 

using the data presented in Table 3.24. TJus md1cates that even thought the 

energy loss in vulcanised NR IS apparently higher; the hysteresis behaviour, the 

ratiO of energy lost to the energy recovered during the retraction IS also 

Significantly lower than the correspondmg an-vulcanised sample This IS 

basically due to the higher amount of energy recovered dunng retractiOn, due to 

the presence of cross-links. These results also agree with the DMTA data. 
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In addition, the data presented in Table 3.24 clearly mdicate that the energy loss 

also mcreases when the percentage of PMMA is increased, except for the 

NR97:PMMA3 semi-1 IPN sample. This is an expected trend which results from 

the plastic deformation and breakdown ofthe PMMA phases. 

Table 3.24 Energy loss and hysteresis behavwur data for the semi-1 IPN series 

CompositiOn Cycle 1 Cycle 2 Cycle3 

NR/PMMA 

(wt.%) Energy Loss HL Energy Loss HL Energy Loss HL 

(J) (J) (J) 

100/0 0.06 0.45 

100/0* 0.08 0.15 0.04 0 09 003 0.04 

97/3 0.10 0.14 0.05 0 07 0.04 0.06 

92/8 0.34 049 027 042 0.26 0.43 

70/30 0.97 1.3 0 61 0 83 0 71 0.86 

60/40 2.59 3 43 

50/50 11.8 767 
*Prevulcanised natural rubber heated under the same conditions 
HL-Hysteresis behavwur calculated as the ratio of the energy lost to the amount 
of energy recovered m each cycle 
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Fig. 3.44 The first hysteresis cycle for the NR70 PMMA30 semi-11PN 
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Fig. 3.45 The first hysteresis cycle for the NR60:PMMA40 semi-! IPN 
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Fig.3 46 The first hysteresis cycle for the NR50 PMMA50 semi-! IPN 

However, when compared to the correspondmg control sample, the absence of 

sigmficant differences in hysteresis values in the NR97: PMMA3 semi-! IPN 

sample can be attnbuted to the presence of an extremely low amount of PMMA 

(3 wt.%) and/or to degradatiOn of the NR component (Table 3.24) Further, It has 

been noted that the difference m energy loss between cycles I and 2 was higher 

than those between cycles 2 and 3. A similar observation was made for the 

NRJPMMA blends. 
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3.4.4 Effect of composition on sol-gel ratio 

IPNs havmg NR97:PMMA3 and NR70 PMMA30 compositions were 

subjected to the extraction process usmg hot acetone as the solvent m order to 

determine their sol and gel contents. The results (Table 3.19) clearly indicated that as 

the PMMA content mcreases, the sol content also mcreased which was attnbuted to 

the presence of a higher amount of PMMA homopolymer in the latter samples. This 

observation IS consistent with the trends found m the blend senes. 

3.5 Full IPNs 

3.5.1 General information 

The appearance of the IPNs are somewhat similar to the eqmvalent semi-1 

IPN samples. IPNs havmg less than 30 wt% PMMA content were prone to the 

mhibitlon of the MMA polymerization reaction. The full IPNs with 30 - 50 wt% 

PMMA were hard and non-tacky. Furthermore, these samples contaimng more than 

20 wt.% PMMA were less transparent As observed m the semi-1 IPNs, the full (0.5) 

IPNs which were expected to contain 10 wt.% and 20 wt.% PMMA were unable to 

reach the expected target composition due to the inhibitiOn effect exerted by the 

vulcanizmg agent, as discussed in section 3.4.1. Therefore, in this section, the 

samples which vaned sigmficantly in their compositions between the target 

composition and the experimental values were denoted usmg the expenmental 

values. 

3.5.2 Effect of composition on the dynamic and mechanical properties of the 

IPNs series (EGDM level- 0.5 mole%) 

3.5.2.1 Effect of composition on miscibility 

Dynamzc mechamcal data 

Selected DMTA traces are presented in Figures 3.47 and 3.48 As shown m 

Figure 3.47, the Tg of the NR component of the 70/30 ofNRIPMMA composition 

had shifted by 4"C towards higher temperature (Table 3.25). 
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Fig. 3.4 7 Effect of compositiOn on the loss tangent of the NR 
component of the full (0.5) IPN series 

If the NR component had been mixed with the PMMA component, the TgNR 

value should be increased due to the reduction in mobility. Therefore, the observed 

trend has probably resulted from the Improved mixing of the NR network with the 

PMMA network. Further evidence for some mixmg is also available from the MDSC 

data (Table 3 26). In additiOn, the maximum tensile strength was obtamed for this 

partiCular composition suggesting Improved miscibility of the components m this 

sample. 

Tan Omax has decreased (Table 3.25) with mcrease in the PMMA content, in 

the same manner as seen in other studies (Romame, 1988; Perera, 1999) and also m 

the previously studied semi-! IPNs in this present investigation (sectiOn 3.3.2.1). 
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Furthermore, Akhtar and Bhagawan, (1987) also reported that the area under the loss 

tangent curve increased with increase m the NR content in NR!high density 

polyethylene (HDPE) blends. The same trend has been observed m the IPN senes of 

the present study (Figure 3.47). 

Table 3 25 The loss tangent data for the full (0.5) IPNs 

NR/PMMA NRTg Tan ONR-max PMMA Tg Tan OPMMA-max 

(wt.%) ("C) ("C) ("C) ("C) 

100/0* -49 2.3 

93/7 -49 22 

70/30 -45 I 3 !52 0.17 

60/40 -49 0.55 145 0.56 

50150 -52 0.45 146 0.51 

* Vulcamsed natural rubber heated under the same condition 

The ddependence of the PMMA component loss tangent on the compositiOn 

of the full (0.5) IPNs is shown in Figure 3 48 As also seen for the blends, semi-2 

(1.0) IPNs and semi-! IPNs studied in this investigation, the PMMA transitiOn exists 

as a broad mmor peak in the NR70 PMMA30(0.5) full IPN sample. 

Moreover, the results clearly showed that the T g of the PMMA transition has 

shifted towards lower temperature by 6"C With increasmg the PMMA content from 

30 wt.% to 50 wt.%. The tan o max-PMMA of the NR/PMMA of the 50/50 sample was 

lower than that of the 60/40 NRIPMMA sample suggestmg enhanced mixing of 

components m the NR50:PMMA50 sample (Table 3.25) This suggestion is further 

confirmed by the MDSC data listed m Table 3 26. In addition, the results m Table 

3 25 mdicated that the PMMA phase is the contmuous phase m the full (0.5) IPN 

having 50 wt.% PMMA (Figure 3.49). 
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Analyszs of MDSC Data 

The wetght fraction (o) of each component m the mterface region for the 

IPNs (0.5) was determmed m two different ways. 

oNR values were calculated wtth respect to the dtfferential heat capacity 

values ofvulcamsed NR as follows. 

ONR = WNR -(D.Cp NR IPN/ D.Cp vulcamse<l NR) 

The calculated ONR data are listed m Table 3 26. 

Table 3.26 Weight fraction of components in the interphase and the multiple peak 

analysis data for the full IPNs (0.5) 

NR/PMMA 
ONR* 0PMMA 

Multiple peak analysis data 

(%) 
(weight (wetght 

Interphase NR-nch PMMA-rich 
fraction) fraction) 

phase phase 

(%) (%) (%) 

70 30 0.25 0.17 29 10 13 

60.40 0.15 29 13 17 

50:50 015 0.23 20 20 23 

oNR* was calculated wtth respect to the denvaltve ofthe complex Cp ofvulcamsed NR 

A considerable amount of the NR component and the PMMA component had 

been incorporated m to the interphase of all full (0.5) IPNs. Furthermore, calculated 

weight fraction of the PMMA component in the interphase indtcated that the extent 

of mtxmg of the cross-linked PMMA component mcreased wtth mcreasmg the 

PMMA content from 30 wt.% to 50 wt.% (Table 3.26) Moreover, multiple peak 

analysis data also provide supporttve evtdence for enhanced mixing of PMMA 

component with mcrease ofPMMA content. 
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3.5.2.2 Effect of composition on the stress- strain behaviour 

Tenszle data 

The effect of composition on the tensile strength of the full (0 5) IPN 

senes is presented in F1gure 3.52. Relatively low tens1le strength of the 

NR93:PMMA7(0.5) full IPNs can probably be attnbuted to the some degradation 

of rubber matrix due to the presence of 1mt1ator and the absence of complete 

MMA polymerizatiOn. However, incorporatiOn of30 wt.% PMMA led to a clear 

increase in tensile strength. Further, an mcrease of the PMMA content up to 50 

wt.% caused a significant reduction in tensile strength. Th1s observation is akin to 

the trend found for the sem1-1 IPNs. A sim1lar trend has been obtamed for IPNs 

based on a polyurethane-urea and a polyacrylate co-polymer, which were cross

lmked by a conventional sulphur system (Frisch et al., 1972). 
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Fig. 3.52 Effect of composition on the tensile strength of the full (O.S)IPNs 

Furthermore, mterpenetratlon at the phase boundaries leads to a reduction 

in the domain size and thereby improves the adheswn between particles (Morton 

et al., 1969; Morton and Healy, 1967). It was assumed that the remforcement was 

not directly dependent on the physical entanglements caused by mterpenetratwn, 

but depends on the reduced domain size and improved adhesion between phases 

because of interpenetration (Kim et al., 1977). The results of tlus study also 

support this view as the maximum tensile strength was observed for the sample 

for which the highest mJSClblhty of components was obtamed. 
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Variation of modulus data of the full (0.5) IPN series with PMMA content 

is Illustrated m Figure 3.53 As was seen in semi-1 IPNs, the 100% and 300% 

moduli values are sigrnficantly mcreased with increasing PMMA content from 30 

wt.% to 50 wt% The Improved modulus properties could be attnbuted to the 

remforcement effect caused not only by the mcorporation of glassy, hard, cross

lmked PMMA phases m the NR matrix, but also to the entanglements caused by 

interpenetratiOn of the PMMA network. It is reported that the contnbut10n from a 

second network to the modulus is comparatively high and may be attnbuted to 

molecular entanglements (Gent et al., 1974). 
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Fig. 3.53 Effect of composition on the 100, 300 and 500% moduli of 
the full (0.5) IPN senes 

Nevertheless, the absence of a pronounced mcrease m modulus values in 

the IPNs, contammg less than 30 wt% PMMA IS mainly attributed to the 

existence of low amounts of PMMA m these IPNs Furthermore, the elongation 

at break has decreased with increasmg PMMA content (Figure 3.54). This is due 

a the reduction m mobility of the polymer chams as a result of interpenetration of 

the glassy PMMA phases. Tins result IS consistent with the findmgs of earlier 

work {P1llai, 1995; Lee and Klm, 1985). 

160 



1050 

950 

850 a 
750 

~ 

650 ~ 
Ol 550 "' 

450 

350 

250 

150 

0 10 20 30 40 50 60 
PMMA(wt%) 

Fig 3 54 Effect of composition on the elongatiOn at break for the full (0.5) IPN 

senes 

Hysteresis data 

The energy loss dunng cycling tests and hysteresis behav1our data are 

summarised m Table 3.27 and F1gures 3 55 to 3 56 The amount of energy 

d1ss1pated during stress-strain testing increased sharply With increase in the 

PMMA content. This trend is the same as the trends observed in the prev1ously 

stud1ed series of sem1-1 IPNs in the present investigation. As the PMMA content 

mcreases, there is a reduction m the elastic component m the matenal, which 

ultimately reduces the elastic response. As a result, hysteresis mcreases with 

increasing PMMA content 
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F1g. 3 55 The first hysteresis cycle of the NR60.PMMA40(0.5) full IPN 
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Fig. 3 56 The first hysteresis cycle of the NR50.PMMA50(0 5) full IPN 

Table 3.27 Energy loss and hysteresis data for the full (0.5) IPNs 

Sample Cycle! Cycle2 Cycle3 

NR/PMMA Energy loss HL Energy loss HL Energy loss 

(wt%) (J) (J) (J) 

Control 

sample· 
0.76 0 15 0 35 0.09 0.28 

100/0** 0.04 008 002 0 03 0.02 

93/7 0.14 0.26 0.10 0 19 009 

70/30 0.94 1.39 0.49 0.86 043 

60/40 7.2 9.44 

50/50 10.4 10.7 

HL- Hysteresis behaviour IS the ratio of energy lost to the energy recovered 
during the cyclmg test 
* Similarly treated vulcamsed NR 

HL 

0.04 

0.04 

0.17 

0.79 

** Full (0.5)IPN which had been expected to contam 10 wt. % PMMA content, 
but actual value was 0% due to inhibition ofMMA polymensation by the 
presence ofvulcamsmg mgred1ents. 
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3.5.3 full IPNs prepared using EGDM at a level of 1. 0 mole percent 

3.5.3.1 Effect of composition on miscibility 

Please note that the DMTA spectra were unable to be obtamed for th1s senes of 

full (1.0) IPNs due to lack of time in the first part of this study programme wh1ch 

was planned to be on a split bas1s. 

Analyszs of MDSC data 

Accordmg to the MDSC data shown in Table 3.28, the weight fraction of 

NR component mcorporated into the interphase was found to be low. Tlus 

probably suggests that the extent of miXIng of cross-hnked NR was low. 

However, multiple peak analys1s data 1s cons1dered, a considerable amount of 

mterphase could be found for these full (1 0) IPNs (Figure 3.57 and Table 3.28). 

Moreover, the amount of m1xed phases apparently increased w1th mcrease of 

PMMA content from 40 wt.% to 50 wt.%. 
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F1g. 3.57 Temperature dependence of dCp/dT of the NR70·PMMA30(1.0) full IPN 
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Table 3.28 Weight fraction of components m the mterphas1al layer and multi

peak analysis data for the full (1 0) IPNs 

Composition ONR* 0PMMA 
Multiple peak analysis data 

NR/PMMA (weight (weight Interphase NR-rich PMMA-
(wt%) fractiOn) fraction) (%) phase rich phase 

97.3 0.07 

70:30 0.12 31 6 8 

60:40 35 8 6 

50:50 33 6 29 

~R * were calculated Wlth respect to the denvattve complex of the Cp of vulcamsed NR and 

cross-hnked PMMA (EGDM I 0 mole%), respectively 

3.5.3.2 Effect of composition on stress-strain behaviour 

Tenszle data 

The effects of composition on the tensile properties of this IPN series are 

presented m Figures 3.58 to 3.60 The tensile strength (20 MPa) of the full (1.0) 

IPN which should have contained 10 wt % of PMMA content (experimentally 

determined PMMA content was negligible) was margmally lower than that of the 

correspondmg control sample (23 MPa) This may be attributed not only to the 

presence of a low amount of PMMA m this sample due to mhibition of 

polymensation, but may also be due to the degradation ofNR, which could occur 

during the polymerisation of MMA. Prelimmary studies conducted on samples, 

prepared using Tnganox 21 S indicated that the tensile properties of these samples 

are lower than that of the NR control Such a reduction in tensile strength could 

be attnbuted to some degradatiOn of the NR A similar observatiOn has been 

made m earlier studies based on NR/PS blends prepared using the same Initiator 

(Romame, 1988). The tensile strength of the NR97 PMMA3(1.0) full IPN does 

not vary significantly from the correspondmg control sample indicating that this 

amount of PMMA IS not sufficient to impart Sigiiificant reinforcement. However, 

a further increase of PMMA content up to 40 wt.% led to a small increase m the 

tensile properties of these IPNs. 
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Fig 3 58 Effect of compositiOn on the tensile strength of the full (1.0) IPN series 

The 1 00%, 300% and 500% moduli have sigmficantly increased at a level 

of 30 wt.% ofPMMA content and further increased with mcreasmg PMMA up to 

50 wt.%. The combmed effects of remforcement and entanglements caused by 

the cross-linked PMMA phases and mterpenetrat10n contnbute to the improved 

tensile properties (modulus) of these full (1 0) IPNs (Figure 3.59). 
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Fig 3 60 Effect of composition on the elongatiOn at break for the full (1.0) IPNs 

As expected, the elongation at break decreased wtth increasing PMMA content 

(Ftgure 3.60), due to a reduction in the elastomer content and due to the presence 

of the mterpeneted cross-linked PMMA phases. 

Hystereszs data 

Energy losses during the cychc tests are hsted m Table 3 29. Hysterests 

data of these full IPNs are also shown m Ftgures 3 61 to 3 63 

Table 3 29 Energy loss and hysteresis behaviOur data for the full (1.0) IPNs 

Sample Cycle 1 Cycle2 Cycle 3 

NRIPMMA Energy loss HL Energy loss HL Energy loss 

(wt.%) (J) (J) (J) 

Control 

sample" 
0.76 0.15 0 35 009 0 28 

97/3 0 12 027 009 0.2 0.06 

70/30 1 21 2 19 0.5 1 16 0.47 

60/40 3 55 487 

50150 10 0 12.8 

HL-Hysterests behavtour ts the ratio of energy lost to the energy recovered 

during the cycling test 

*Stmtlarly treated vulcantsed NR 
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In general, hystereSIS has mcreased with mcreasmg PMMA content. The 

same trend has been observed for other IPN series studied m the present 

investigatiOn. As reported earlier (Roland and Lee, 1990), lugher hysteresis 

values can be obtained by increasmg carbon black flocculat10n The relevance of 

th1s m this discussion is that the PMMA phases may act as filler particles and 

may undergo structural breakdown resulting m a softenmg of particles lh1s 

process ultimately leads to a decrease in the fractiOn of hard component (Mulhns 

and Tobin, 1957). In addition, 1fthere are any trapped NR phases in the PMMA 

phase, breakdown of the PMMA phase would release such trapped NR phases 

resulting in mcrease of fractiOn of effective soft component in the matenal. Both 

these effects may also lead to an mcrease m the hysteresis of the IPN samples. It 

1s stated that the structure of domams/phases to evolve in deformation IS the 

pnme cause of hysteresis and stress-softening (Q1 and Boyce, 2005). Stress 

softenmg takes place mostly in the first cycle, and thereafter m subsequent cycles 

stress softenmg w1ll be reduced and ultimately reach an eqmhbrium (Qi and 

Boyce, 2005). Therefore, reductiOn of energy loss dunng cycles 2 and 3 may be 

assocJated with the reduction of stress softemng and breakdown of the PMMA 

phases present m IPNs. 

3.5.4 Full IPNs prepared using EGDM at a level of 1.5 mole% 

3.5.4.1 Effect of composition on miscibility 

Dynamzc mechanzcal analyszs data 

The data denved from loss tangent spectra for the full (1.5) IPNs w1th 

compositiOn 1s shown in Table 3.30. The results md1cate that there is no clear 

compositional trend of NR T8 w1th mcrease in the amount of PMMA. 

Nevertheless, the NR loss tangent seems to be broadened by mcreasing the 

amount of PMMA up to 50 wt.%, ind1cating the occurrence of some degree of 

component mixing (F1gure 3.64). As shown from F1gure 3.65, the height of the 

mtermlttent area between the two glass transitions had mcreased and a broad 

peak appeared m the region of 4°C to 11 o•c. Therefore, 1t may be assumed that 

some amount of mixing of the components has occurred m the 

NR50 PMMA50(1.5) full IPN and further venfied from the MDSC data 

J!lustrated m Table 3 31. Furthermore, PMMA apparently exists as the 
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continuous phase in the NR50:PMMA50(1.5) full IPN composition as indicated 

by the presence of a promment PMMA transitiOn (Table 3.30 and Figure 3.66). 
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Table 3.30 The loss tangent data for the full (1.5) IPNs 

NRIPMMA NRTg Tan DNR·max PMMATg TanorMMA· 

(wt.%) ("C) ("C) ("C) max 

(oC) 

100/0 -49 2.3 

95/5 -48 20 

60/40 -47 0.85 154 0.25 

50150 -48 0.35 154 0.55 
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F1g. 3 66 Temperature dependence of the storage modulus for the full (1.5)IPNs 

with 40 wt.% and 50 wt.%. PMMA content 

The behaviOur of tan Omax of the NR transitiOn with mcrease in the PMMA 

content is similar to the other lPN senes (Table 3.30). Dimmutwn of tan Omax 

w1th increasmg PMMA content is possibly due to two reasons. Fustly, it is 

attributed pnmarily to the reduction of the NR content. Secondly, it could be 

related to the lowenng of molecular mobility, caused by interpenetrated cross

linked PMMA network chams m the NR matrix. 

The tan Omax of PMMA transition has mcreased with an mcrease of the 

PMMA content (Table 3 30) This trend is obvious as the magnitude of loss 

tangent reflects the relative amounts of the polymers m the system. Nevertheless, 

the PMMA transition of the NR60:PMMA40(1.5) full lPN IS significantly broad, 
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wh1ch 1s md1cative of some mixing of the PMMA component. This is further 

confirmed by the MDSC data. 

Desp1te some evidence for mixmg, these IPNs can be considered as phase 

separated as indicated by the presence of two distmct transitions due to the NR 

and PMMA components. 

Analyszs of MDSC data 

The data derived using derivative complex Cp full (I 5) IPNs are 

Jllustrated m Table 3.31. Accordmg to the data in Table 3.31, the 

NRSO:PMMASO(I.S) fuii IPN compositiOn does exhibit significant amount of 

interphase! content and are in agreement With the DMTA data.. 

Table 3.31 Calculated mterphase fractions (li) and multiple peak analysis data for 

the full (I.S)IPNs 

Sample 

compositiOn 

NR/PMMA 

(%) 

70:30 

60:40 

50:50 

(weight 

fraction) 

0.16 

0 IS 

0 PMMA 

(weight 

fraction) 

0.22 

0.28 

** 

MDSCdata 

Multiple peak analysis data 

Interphase NR-nch PMMA-rich 

(%) phase phase 

25 

28 

38 

(%) (%) 

26 

20 

2 

16 

19 

16 

**The li PMMA content has not been calculated because of the difficulties m 

resolving the broad PMMA trans1tion 

li NR •, calculated w1th respect to the vulcanized NR 

1i PMMA, calculated w1th respect to the cross-linked PMMA (EGDM 1.5 mole%) 
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Table 3.32 Effect of composition on the tensile strength for the IPNs prepared 
using EGDM at a level of 1.5 mole Qercent 

Sample composition Tensile properties 

NR!PMMA ratio 100% 300% 500% Tensile Elongation 

Modulus Modulus Modulus strength at break 

(MP a) (MP a) (MP a) (MP a) (%) 

9515 0.6 0.96 1 9 21.3 873 

(0 03*) (0 08*) (0 44*) (I 7*) (39 7*) 

- 3.9 14 6 31.2 692 _, 73/27 1 2 
"' (0 09*) (0 76*) (I 5*) (0 77*) (32 5*) 

64/36 3.8 116 26.8 302 575 

(0 37*) (0 46*) (0 92*) (I 2*) (17 9*) 

52/48 9.5 19.4 25 9 407 

(0 39*) (0 92*) (I 6*) (28 4*) 

* Standard devmlion 



3.5.4.2 Effect of composition on stress-strain behaviour 

Tenszle data 

Deviations of the tensile strength with composition of the full (1.5) IPNs 

are given in Table 3.32 Unhke for the full (0.5) IPNs, the optimum tensile 

strength was obtained at a level of 30 wt.% to 40 wt.% PMMA. 

The effect of composition of these IPNs on the modulus is also shown m 

Table 3.32. Accordingly, the 100%, 300%, 500% moduli values showed an 

increasing trend With an increasing PMMA content, except for the samples 

contammg 5 wt% of PMMA The improved modulus values of the full (1.5) 

IPNs having 30 - 40 wt.% PMMA are primanly the result of the filler 

reinforcement caused by the hard, glassy cross·lmked PMMA phases. hi additiOn, 

the elongatiOn at break decreased With increasmg PMMA content (Table 3.32). 

Similar findmgs were obtamed in most ofthe IPNs mvestigated m this study. The 

reductiOn of elongation at break may be mamly the result of lowering of mobility 

of polymer chams due to interpenetration of PMMA particles into the NR 

network. 

Hysterezs data 

The energy losses during cyclic tests are listed in Table 3.33. hi addition, 

the hysteresis data for the full (1.5) IPNs are presented m Figures 3.67 to 3.68. A 

general trend of mcreasmg hysteresis with increasing PMMA content was 

observed. 
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F1g 3 67 The first hysteresis cycle of the NR 70. PMMA 30 (1.5) full IPN 
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Fig. 3.68 The first hysteresis cycle of the NR60 PMMA 40(1.5) full IPN 

Table 3.33 Energy loss and hysteresis behaviOur for the (1.5) IPNs 

Sample Cycle I Cycle 2 Cycle 3 

NR/PMMA Energy loss HL Energy loss HL Energy loss HL 

Ratio (J) (J) (J) 

Control 
• 0.76 0.15 0 35 009 0.28 0.04 

sample 

95/5 0.10 0.16 0.05 0.09 004 0 07 

70/30 1.83 2.17 070 1.07 0.53 0 91 

60/40 7.10 10.20 

50150 13.5 17 70 

HL- Hysteresis behaviour is the ratio of energy lost to the energy recovered dunng 

the cycling test 

* Similarly treated vulcanised NR 

3.5.4.3 Effect of composition on the sol gel ratio 

Results of extractiOn experiments (Table 3.19) clearly mdicate that as the 

IPN PMMA content increased the amount of soluble, extractable matenal 

obtamed by hot acetone extraction process had not markedly mcreased as 

expected. A similar trend was obtamed in the semi-2 IPN senes. This trend had 

been attnbuted to the cross-Iinkmg of the PMMA phase which reduces 

dramatically the solubility of the PMMA m the acetone solvent. 
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CHAPTER4 

A critical overview of the effects of cross-linking of the NR and/or the 

PMMA components on the dynamic and physical properties of the blends, 

semi-1, semi-2 and fnll IPNs 

4.1 Introduction 

In this study, different types of IPNs based on NR and PMMA were 

prepared at various EGDM levels by the sequential polymerisation method. The 

resultant blends and IPNs possessed d1stmctive morphologies and physical 

properties. A detailed companson of the dynamic and other mechanical 

properties of these materials will now be presented In addition, the effects of 

cross-linker level on the dynamic and mechanical properties of these IPNs and 

the blends are discussed. 

4.2 Effect of cross-linking of the NR component on the dynamic and other 

mechanical properties 

4.2.1 Effect of cross-linking of the NR component on miscibility 

Cross-linked polymers are being mcreasmgly used as engineering 

materials. Substantial attentiOn has been drawn to the effect of cross-linkmg of 

the components on the morphology and mechanical properties of multi

component matenals. The effect of cross-linking of the first-formed polymer on 

the IPNs morphology is well documented (Sperling, 1994; Donatelli et al, 1976; 

Hourston and McCluskey, 1985; Hourston and Romaine, 1991). In this study, 

attempts were made to mvestigate the effect of cross-linking of the first formed 

polymer (NR) on the extent ofm1xmg of the components 

Cross-linking of the first-formed polymer results in smaller domams often 

with a large inter-phase component (Sperling, 1994). Theoretically, this leads to 

an improvement m the extent of miXIng of the components resultmg m shifts of 

the glass transition relaxations correspondmg to the md1vidual components 

present m the matenal In the case of cross-lmked systems, the morphology of the 

IPNs vary dependmg on the sequence of the processes of gelation and phase 

separation. As this study IS limited to the sequential IPNs, It IS known that the 
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gelation of the first polymer has occurred pnor to the phase separation of the 

second polymer. Therefore, It would be expected that the cross-linking of the

first-formed polymer leads to mcrease the extent ofmtxing of the components. 

Semi-! IPNs and full IPNs which were expected to contam 10 wt.% and 

20 wt.% PMMA, vmed significantly in their actual and target compositions due 

to the inhibition of MMA polymerisatiOn. Hence, these IPNs are represented by 

their acrual values of the composition mstead of the target composition 

The effect of cross-hnkmg of the NR component on the NR loss tangent 

for the semi-! IPN with a NR92·PMMA8 composition is presented m Figure 4 I 

The DMTA spectrum for the cross-linked NR IS also shown in Figure 4.1. 

Accordingly, compared to the NR, the height of the loss tmgent has been 

marginally reduced by cross-linkmg. 
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In general, cross-lmkmg of the NR component results m a network with 

an increased number of effective network chams. As a result, the elastic response 

to a smusmdal stress, or stram, has mcreased, simultaneously decreasing the heat-
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bmld up during the recovery. As a consequence, tan o decreased with the cross

linking of the NR component (Akhtar and Bhagawan, 1987) This IS in agreement 

with the results of Hur et al. (1989), which also indicated that when the nmnber 

of effective network chains has mcreased, tan Omax decreased. 

In addition, compared to the uncross-lmked natural rubber, the T8 of the 

vulcanised NR component has increased by 3•c. In this case, It should be noted 

that the extent of cross-hnking of the NR component had been kept intentiOnally 

low, as such; the effect of cross-linkmg of NR component on the tan Omax of the 

NR transition is not promment. Similar observatiOns were made by Reichenboch 

et al. (1990) and LJau (1999). L1an and Chen (1998) indicated that the cross-hnks 

would not result in significant change m molecular motions when the cross-linker 

level Is low for example less than 1 phr of sulphur on natural rubber. 

As it can be seen from the Figure 4.1, the height of the NR loss tangent of 

the blend IS lower than that of the semi-1 IPN. It is expected that the height or the 

magmtude of the loss tangent of the NR component should decrease with the 

cross-hnking of the NR phase, Nevertheless, the semi-1 IPNs having 

NR92 PMMA8 {Figure 4.1) composition deviate from this general trend. As 

explamed earlier, the polymensation of MMA has not occurred to the desired 

level due to the inlnbitwn of the polymerisation reaction of MMA by sulphur, 

leavmg higher level of NR in this sample. Therefore, degradation of NR may 

have occurred to a certain extent in this semi-1 IPN where complete 

polymensat10n of the MMA monomer had not been occurred. As the loss tangent 

reflects the mob1hty of the NR polymer chams, one would expect an increase of 

the height or magnitude of loss tangent due to the degradation of polymer. 

Unhke for the NR92:PMMA8 semi-1 IPN, tanOmax of the NR70 PMMA30 

semi-1 IPN (Figure 4.2 and Table 4.1) was lower than for the NR/PMMA blend. 

It has been established that the intensity of the loss tangent at the glass transition 

temperature represents the extent of mob1hty/movement of polymer chams 

(Roberts and White, 1973). The both effects; cross-hnking of the NR component 

and the enhanced m1xmg of the PMMA component as was evident from the 

MDSC data (Table 4 2), would restncts the mobility of the NR polymer chains, 

and, therefore, can be identified as the potential factors which affected the 

mtens1ty of the NR loss tangent in the semi-1 IPNs 
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Table 4.1 Dynamic mechanical data for the blends and semi-1 IPNs 

Sample NRTg Tan 0 NRmax PMMATg Tan 0 PMMAmax 

("C) ("C) 

NR90:PMMA10 blend -49 2.1 

NR90:PMMA10 semi-1 IPN -49 2.2 

NR70.PMMA30 blend -46 1.7 156 02 

NR70.PMMA30 semi-1 IPN -47 1.4 150 0.2 

NR50:PMMA50 blend -45 1.3 154 04 

NR50:PMMA50 semi-1 IPN -47 0.6 146 0.4 

I 8 

I 6 __._Blend 

14 ,..,. -··X · · Serrn-1 IPN .,. 
I 2 "' "' 

ll "' 
~ "' 
~ "'· 08 -,. 

"' 06 "' "' 
.,._ 

04 "'· ':<. 
)< ~- :::K ...... ;i:::~ ,.· 02 

"' 
0 

-65 -60 -55 -50 -45 -40 -35 -30 -25 -20 

Temperature CC) 

F1g. 4 2 Effect of cross-linking of the NR component on the NR loss 

tangent for the blend and the semi-1 IPN with a 

NR70.PMMA30 compositiOn 

-15 

Moreover, the DMTA data clearly md1cated that the height ofthe NR loss 

tangent of the semi-1 IPNs contammg 40-50 wt% PMMA (Table 4 1) IS 

significantly lower than the correspondmg blend, md1catmg some molecular 

mixing of the components and/or hmdenng of segmental mobility of the NR 

polymer chain segments. The values of dCp/dT vs temperature signals for the NR 

transition of the semi-1 IPNs exh1b1ted the same trend (Figure 4 4) As dCp/dT IS 

proportiOnal to the weight fraction, It may be anticipated that the reduction of the 
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magnitude of the deriva!Jve of the complex Cp for the NR transition could result 

from the reductiOn of pure rubber content or be due to cross-lmkmg of the NR. 

The mul!iple peak analysis data support the former view 
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Table 4 2 Calculated weight fractions of the natural rubber and 

poly(methylmethacrylate) components in the interphase and multiple peak 

analysis data for the blends and semi-! IPNs 

Sample MDSC data 

Multiple peak analysis data 

ONR 0PMMA 

NR-Type of the material (weight (weight PMMA-
nch fractiOn) fractiOn) Interphase 

nch phase 
(%) phase 

(%) 
(%) 

NR70:PMMA30 Blend 0.16 0.0 16 12 11 

NR70:PMMA30 semi-1 IPN 0.15 0.07 30 14 9 

NRSO:PMMASO Blend 0.16 0.04 23 16 14 

NRSO PMMASO semi-1 IPN 0.21 0.23 30 13 26 

ONR, calculated with respect to the un-vulcanized NR 

By taking the degree of shift ofNR T8 m to an account, It IS noted that the 

shift of TgNR was higher in blends (S"C to 6"C) than the semi-1 IPN (2"C) 

compared to its control sample Without havmg any PMMA. This may reveal that 

the extent of mlXlng of natural rubber in the semi-1 IPNs was relatively lower 

than their equivalent blend counterparts implymg cross-linking of the NR 

component reduces the extent of mixing of the NR component. With respect to 

the dynamic mechanical properties, the effect of cross-hnkmg of the NR 

component does not have a promment effect on the T g of the NR loss tangent m 

companson with the eqmvalent blend (Figures 4 2 and 4.3 and Table 4 1 ). 

ReductiOn of the mobility of NR polymer chams due to interpenetratiOn of 

PMMA and/or due to the graftmg of PMMA onto the NR polymer chams are 

considered as the pnme reasons for having higher NR T g for the compos1tionally 

Identical blend The presence of graft copolymer and entrapped molecules 

resultmg due to the mterpenetration (Sperhng, 1971) would enhance the degree 

ofmixmg of the NR component resultmg m a promment mward shift of the NR 
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transtlion m the blend. As such, a stgmficant dtvergence in the correspondmg T gs 

of the semi-1 IPN and the eqmvalent blend could not be dtstmgmshed. 

When the PMMA transttion is taken into constderatJOn, the DMTA data 

(Table 4 1) indtcated that the Tg of the PMMA transitiOn of the semi-1 IPNs 

contammg 30- 50 wt.% PMMA has shifted to lower temperal!lre by 6°C to 8°C 

mdicating some molecular miXing of the components (Table 4.1 and Figure 4.5). 

A similar trend has been obtamed for the complex Cp data shown m Figure 4.6 

The mulli-peak analysis data calculated usmg MDSC data clearly mdtcated that 

the mterphase content increased stgruficantly with cross-lmkmg of the NR 

component. These results suggest that the cross-lmking of the NR component 

improves the extent of mixing of the PMMA component. Stmilar observations 

were reported by Donatelh et al. (1976); Hourston and McCiuskey, (1985); 

Hourston and Romaine, (1991). As a result of the cross-lmking of the NR 

component, smaller domams are formed, and, subsequently, the spectfic surface 

mteract10ns were increased (Donate1h et al, 1976). This process leads to 

enhanced mtsctbility. However, it has been reported that many of the mteractions 

occur at the phase boundaries and the actual amount of molecular mixmg is in 

fact very small (Donatelh et a/, 1976). 
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Fig. 4.6 Dependence of the complex heat capacity with temperature for 

the blends and semi-! IPNs with a NR70 PMMA30 

and NR50:PMMA50 composition 

4.2.2 Effect of cross-linking of the NR component on the stress-strain 

behaviour 

Tenszle data 

Compared to the correspondmg NR/PMMA blend, cross-linking of the 

NR component of these matenals imparted a significant mcrease of tensile 

strength of the semi-1 IPNs contammg 10 to 40 wt.% PMMA (Figures 4.7 and 

4.8) 

NR is an amorphous polymer at ambient temperature and It was assumed 

that amorphous chain segments are onented with stram and this is then followed 

by crystallizatiOn (Toki et al., 2002). However, they have used the m sztu 

synchrotron wide-angle X-ray diffractiOn (W AXD) technique to show that 

crystallizatiOn starts at a stram of ea 2 5, at which pomt the fractiOn of onented 

chain segments decreases and the fraction of mduced crystals begin to mcrease. 

At a stram of 3, the fractions of onented chams and the mduced crystals become 
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equal At strams larger than 3, the crystalline phase becomes the dommant one. 

The onented amorphous cham segments are the precursors of the mduced 

crystals Their study further suggests that the stram-mduced crystallites form a 

physical cross-linked network which bears most of the applied load (Toki et a!, 

2002). Nevertheless, 1t is concluded that the majonty of polymer chains (75 %) 

(Toki et a!, 2002) ofNR remam in the cmled state (Gehrnan and F1eld, 1939, 

Luch and Yeh, 1973; Shimomura et al., 1982) even at a larger stram indicating 

that only 20% stram-induced crysta1lites and about 5% onented amorphous 

chams are present. When cross-links are considered, they may have a dual effect 

on strain-induced crystallisatiOn. Sulphur cross-links can also facilitate the 

onentation of polymer chams and thereby mduce stram crystallisatiOn (Toki et 

a!, 2002). On the other hand, these cross-links may hinder the growth of 

crystalline structures espec~ally m the regwns contammg polymer chains w1th 

lower molecular weight between cross-links (lower Me) 

When a force is applied to a cross-linked material, the load applied may 

be borne by chemical cross-lmks as well as the physical network of stram

mduced crystals. This process Imparts a higher tensile strength. On the other 

hand, Improved tensile properties could be ascribed to the cross-linkmg ofthe NR 

component by the conventwnal vulcanising system contaming sulphur as the 

curing agent. The tensile rupture depends on the degree of crystallisation 

(Bateman, 1963), cross-lmk density, type of cross-lmk, filler type and on the s1ze 

offillerpart1cles (Bateman, 1963) etc Accordmgly, the type ofcross-lmk plays a 

vital role m tensile rupture. In this study, a conventwnal sulphur system has been 

used for vulcanisatiOn of the NR. In fact, a system of this nature usually provides 

a higher number of polysulphidic linkages, which possess the lowest bond 

energy. It has been reported that the lower the bond energy, the higher the tensile 

strength of such vulcamzates (Brydson, 1978) This IS mamly due to the 

occurrence of a )'leld mechanism for the dissipation of stress at the cntical pomt 

of fmlure with the break down of labile bonds under stress (Brydson, 1978). 

However, the variation of the tensile strength of the NR50 PMMA50 

semi-1 IPN (Figure 4 9) from the correspondmg NRIPMMA blend was less 

significant. 
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4.3 Effect of cross-linking of the PMMA component on the dynamic and 

mechanical properties of the semi-2 IPNs 

4.3.1 Effect of cross-linking on miscibility 

Dynam1c mechamcal data analysts for the NR trans1t10n 

The effects of cross-linkmg of the PMMA component on the NR loss 

tangent are presented m Figures 4.10 tG 4 12. A comparison of the data for the 

correspondmg NR/PMMA blend and the semi-2 IPNs (Figures 4 10 and 4.11 and 

Table 4 3) show that the Tg denved from the loss tangent does not vary much, 

with the exception of the NR80.PMMA20(0 5) semi-2 IPN (Figure 4.10) and the 

NR60 PMMA40(1.5) semi-2 IPN (Figure 4.12). 

In Figure 412, the Tg of the NR component of the semi-2 IPN (1.5) has 

been shifted towards higher temperature by 3°C, wh1ch IS mdicative of enhanced 

component m1xmg A similar observation had been seen for the Tg of the PU 

component in semi IPNs based on PU/polyvmyl acetate, which has been ascnbed 

to some molecularmixmg of the components (Hourston and Zia, 1984) 
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Table 4.3 Dynamic mechanical data for the blends and the semi-2 IPNs 

Sample NRT8 TanONR PMMAT8 Tano PMMA 

("C) max ("C) max 

NR90·PMMA10 blend -49 2 1 

NR90 PMMA10 semi-2 (0.5)IPN -48 1.8 

NR90 PMMA10 semi-2 (1.5)IPN -48 1 9 

NR80 PMMA20 blend -49 2.1 

NR80 PMMA20 semi-2 (0.5)IPN -46 1.8 

NR80:PMMA20 semi-2 (1.5)IPN -47 1.9 173 03 

NR70 PMMA30 blend -46 1.7 156 0.2 

NR70:PMMA30 semi-2 (0.5)IPN -46 1.4 160 03 

NR70 PMMA30 semi-2 (1.5)IPN -46 1.6 178 0.2 

NR60:PMMA40 blend -48 1.5 158 0.3 

NR60:PMMA40 semi-2 (1.5)1PN -45 0.8 156 04 

NR50:PMMA50 blend -45 1.3 154 04 

NR50 PMMA50 semi-2 (0.5)IPN -48 0.7 154 0.4 

NR50:PMMA50 semi-2 (1.5)IPN -49 0.5 150 05 

* PMMA transition present as a broad asymmetnc peak 

225 

2 --& -- blend 

I 75 - · o- · Serm-2 (0 5) IPN 

I 5 

~ I 25 ., 
~ 

075 

05 a: . 
r;[ 

025 a:" 
-« 

0 

-65 -55 -45 -35 -25 

Teltl>emture CC) 

Fig 4 10 Effect ofcross-lmkmg of the PMMA component on the NR loss tangent 

for the blend and the semi-2 (0 5) IPN with a NR90:PMMA1 0 

composition 

186 



I 8 

I 6 -· .. -· Blend 

I 4 

I 2 
~ 
"ii 
"" " 08 "' !-< 

06 

04 

02 

0 

·70 -60 -50 -40 -30 -20 -10 

Temperature ("C) 

Fig. 4.11 Effect ofcross-hnkmg of the PMMA component on the NR loss tangent 

for the blend and the semi-2 (0.5) IPN w1th a NR70 PMMA30 

~ 
"ii 
"" " "' !-< 

compositiOn 

I 8 

16 -· .. -· Blend 

14 - .... - Senn-2 (I 5) IPN 

I 2 J. 
I 

J. 
08 I 

06 

04 

02 

0 

·70 -60 -50 -40 -30 -20 ·10 

Temperature ("C) 

Fig. 412 Effect ofcross-lmkmg of the PMMA component on the NR loss tangent 

for the blend and the sem1- 2 (1.5) IPN with a NR60 PMMA40 

compos1t10n 

187 



Despite the evidence obtamed for the NR T g shift of the 

NR60.PMMA40(1.5) semi-2 IPN sample to higher temperatures, m general, the 

results clearly mdicate that the cross-lmkmg of the PMMA component does not 

have a strong effect on the T g of the NR component. 

However, the values obtamed for the tan ONR·max of most of the semi-2 

IPNs are substanttally lower than those of the correspondmg NR/PMMA blend 

(Table 4.3). The same trend was found from the MDSC data shown in the Figure 

4.13. In addition, as the cross-link density mcreased from 0 5 mole% to 1 5 

mole%, the magnitude of the NR transition obtamed by the MDSC data had also 

declmed significantly 

0025 

002 

~ 

~ 0015 
Oil 

~ 
E-< ., 
~ 001 0. 
u ., 

0005 

0 

-80 -75 -70 

~· .. --- .. 
· .. 

-65 
Temperature ("C) 

-+--Blend 

· · · •· · · Serrn-2 (I 5) IPN 

- .....-- Serrn-2 (0 5) IPN 

-60 -55 -50 

Fig. 4 13 dCp/dT vs temperature for the NR transition of the blend and the 

semi-2 IPNs with a the NR70 PMMA30 composition 

Therefore, the reductiOn in the magnitude or in the height of the NR 

transition of the semi-2 IPNs than the identical blend, may be due to two reasons 

the reductiOn in the pure NR component (homopolymer); and/or to the lowenng 

of mobility of the NR polymer chams It may be assumed that the reductiOn of 

homopolymer content of NR could be resulted from the formation of mterfacial 

layers by mter-diffuswn of components dnven by chemical potential gradient If 

such processes have occurred, then the weight fractiOn of the NR component in 
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the interfacial regwn would be expected to be high m the sem1-2 IPN sample. 

Data shown m Table 4.4 provide strong evidence for the presence of higher 

mterphase content m the semi-2 IPNs than the equivalent blends md1cating cross-

linkmg of the PMMA component facilitates miXing of components. The 

restnctwn of the phase separatiOn of components by the cross-hnks (Lee et al, 

1992) in the PMMA phase 1s considered as the reason for th1s behaviour. 

Table 4 4 Calculated we1ght fractwns of the NR and PMMA components present 

in the interphase and multiple peak analysis data for the blends and semi-2 IPNs 

Sample MDSCdata 

Multiple peak analys1s data 

ONR 0PMMA NR- PMMA-
Type of the matenal (weight (we1ght Interphase rich nch 

fractwn) fractwn) (%) phase phase 

(%) (%) 

NR70PMMA30 
0.16 00 16 12 11 

Blend 

NR70PMMA30 
0.14 0.05 25 8 12 

semi-2 (0.5)IPN 

NR70:PMMA30 
0.41 000 31 18 3 

sem1-2 (1 5)IPN 

NR50:PMMA50 
0.16 0.04 23 16 14 

Blend 

NR50.PMMA50 
0.20 00 30 20 16 

semi-2 (0 5) IPN 

NR50PMMA50 
0.20 0.38 28 27 0.5 

sem1-2 (1.5) IPN 

ONR, calculated with respect to the un-vulcan1zed NR 

Several stud1es mdicate that the addition of a hi-functional monomer such 

as divmyl benzene, tnethylene glycol d1methacrylate (Shukla and Athalye, 1993) 

m small quantities leads to an mcrease m the amount of grafted products 
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Therefore, It may be assumed that EGDM perhaps enhances the grafting of 

PMMA onto the NR, thus Improving the miSCibility with the NR component. 

Therefore, It can be assumed that the major contnbut10n to the lowenng 

of the height of the NR loss tangent m the semi-2 IPNs comes from the improved 

mixmg of the NR components because of the cross-linkmg of the PMMA 

component This view is further confirmed by the MDSC data shown m Table 

4 4, where significantly higher weight fractions of the NR components were 

found for the semi-2 IPNs, prepared usmg 1 5 mole% of EGDM. Moreover, 

considerably high level of mixed phases includmg interphase were obtamed for 

the NR70 PMMA30 and NR50:PMMA50 semi-2 IPNs, prepared using EGDM at 

a level of 1 5 mole% (Table 4 4). This ts further evident from the complex heat 

capacity data at the NR transition ofNR70:PMMA30 semi-2 IPN (1.5) (.:lCp = 

0.12) (Figure 4.14), winch indicated that the increment of complex Cp at the NR 

transition is relatively low compared to the compositionally analogous blend 

(.:lCp = 0.22). 
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Fig. 4.14 The effect of cross-linkmg of the PMMA component on the complex 

heat capacity of the blend and semi-2 (I 5) IPN with a NR70:PMMA30 

Composition 

As the heat capacity of a particular component depends on Its weight 

fractiOn, reduction of the heat capacity at the NR transition may indicate the 

presence of a smaller amount ofNR m the semi-2 IPN (1 5) sample. 
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This evidence possibly mdicates that the extent of mixmg of the NR 

component increases substantially with cross-hnking of the PMMA component. 

The effect of level of EGDM on the extent of miXIng of the NR component is 

shown in Table 4.4. Accordmgly, the extent of miXIng of the NR component of 

semi-2 IPNs contaming 30-40 wt.% PMMA apparently mcreases with mcrease 

in the level of EGDM from 0.5 to I 5 mole%. This could be a result of the 

improved component mixing (Table 4 4) due to a reduction in the size of domams 

an/or the cham length between cross-hnks of the PMMA polymer cham, as a 

result of increased cross-hnk density m the PMMA phase Mathew and Thomas 

(2001) stated that urn form distribution of phases and appreciable reductiOn m 

domain size resulted due to interpenetration and cross-linkmg of the second 

component m a full!PN when compared to the semi-11PN based on NR/PS IPN 

(Mathew and Thomas, 2001). This implies that the cross-hnkmg of the second 

phase also leads to a reduction m domain size. 

Dynamzc mechanzcal data analyszs of the PMMA transztzon 

The consequence of cross-hnkmg of the PMMA component on Its 

miscibility apparently depends on the composition of the matenal Companson of 

the T g of the PMMA loss tangent for the materials havmg 10 wt.% PMMA 

content could not be made because of the difficulty encountered in the resolvmg 

the mmor PMMA transition 

The effect of cross-hnkmg of the PMMA component on Its PMMA loss 

tangent for the semi-2 IPNs with a NR70 PMMA30 composition is shown in 

Table 4 3 and Figure 4.15 (DMTA data) and Figure 4 16 (MDSC data). 

Compared to the compositionally Identical blend, shifting of the PMMA T g of 

NR70 PMMA30(0 5) semi-2 IPNs towards a higher temperature region sigmfies 

a reductiOn m the mobility of the PMMA polymer chams due to cross-hnkmg 

(Figure 4 15) Further mcrease of the EGDM cross-linker level up to 1.5 mole% 

led to a further increase of the PMMA T g m the semi-2 (1.5) IPN (Table 4 3 and 

Figures 4 15) This would be an expected trend as cross-hnkmg of the PMMA 

polymer chams results m a dimmution of the mobility ofPMMA polymer chams 

segments and thereby affects the cooperative motions. Vancaeyzeele et al. (2006) 

also observed such a trend for the Tg of the PS transition m 
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pO)'ISObutene/polystyrene (PS) IPNs and they ascnbed this effect to the cross

linking effect of the PS phase. 
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F1g. 4.15 The effect of cross-linking of the PMMA component on the PMMA 

loss tangent for the semi-2 IPNs with a NR70:PMMA30 compositiOn 

M~ 

u 
~ 
~ 
f-o 
:g_ 
u 
""' 

0008 

00075 

0007 

00065 

0006 

0 0055 

0005 

00045 

0004 

70 80 90 100 110 

Temperature ("C) 

-+--Blend 
· •· · · Senn-2 (I 5) IPN 

- ""*"" - Senn·2 (0 5) IPN 

120 130 140 150 

F1g. 4.16 dCp/dT vs temperature for the PMMA trans1t10n of the blend 

and sem1-2 IPNs W1th a NR70:PMMA30 composition 

The MDSC data shown in the Figure 4.16 follow the same trend 

md1catmg that the PMMA Tg mcreases w1th increasmg the cross-hnk level m the 

PMMA phase However, 1t has been noted that the cross-hnkmg of the PMMA 

phase usmg 0 5 mole percent of EGDM led to a broadenmg of the PMMA 
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transition, probably indicating an mcrease of micro-heterogeneity m the PMMA 

phase resultmg from some mixing. On the other hand, PMMA transition had been 

markedly reduced with increase of the cross-linker level up to a 1 5 mole%. This 

reduction is not primarily due to the increase of cross-linkmg of the PMMA 

phase, but due to Improved component mixing as indicated m Table 4.4 in which 

weight fraction ofPMMA phase was calculated by takmg the cross-linking of the 

PMMA phase m to an account 

However, the shift of the PMMA transition could also be considered as 

phase separation of the PMMA phase. Min et al., 1983 and Okubo et al., 1982, 

md1cated that the cross-hnking in immiscible polymer pairs resulted m phase 

separation. In addition, a study based on phase separation m PS latex lPNs 

mdiCated that as the degree of cross-hnking increased m the PS particles, phase 

separation also increased (Sheu et al., 1990). Therefore, it IS difficult to decide 

which factor; phase separation or cross-linking contributed to the shift ofPMMA 

T8 towards higher temperature As the MDSC data clearly md1cated that the 

extent of mixmg of components in semi-2 lPNs was relatively higher than the 

corresponding blend, it IS reasonable to assume that the cross-linking of the 

PMMA component resulted m increase of Tg of the PMMA component This 

effect was evident because, the blend exhibited relatively lower T8 for Its PMMA 

component most probably due to the graftmg ofPMMA onto natural rubber. 

Such effect was not promment in the semi-2 lPNs havmg higher PMMA content 

where homopolymerisation IS preffered than the graftmg process 

Tg-PMMA of the semi-2 lPN w1th 40 wt.% and 50 wt.% PMMA 

content(F1gure 4.17), shifted towards lower temperature by 4°C and probably 

associated w1th the Improved miXing of the PMMA component due to cross

linkmg of the PMMA phase .. The mlXlng of the PMMA with the NR polymer 

chams which might have a plasticising effect resultmg m an mcrease of mobility 

of the PMMA polymer chams leading to decrease m the PMMA T 8• The same 

trend has been observed for polYJsobutene - PMMA lPNs when the EGDM level 

was higher than 10 wt.% on MMA (Vancaeyzeele et al., 2005) These authors 

considered the lowenng of T8-PMMA as a character caused by the improved 

mterpenetratwn. The same phenomenon could have ansen m the semi-2 lPNs 

with mcrease of the EGDM content from 0 to 1 5 mole%. 
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Fig 4.17 The effect of cross-hnking ofthe PMMA component on the 

PMMA transitiOn of the blend and the semi-21PNs With a 

NRSO.PMMASO composition 

Therefore, in general, it can be stated that the cross-hnking of the PMMA 

component enhances the extent of miXing of the components in the semi-2 IPNs. 

An identical trend was found for the Pm - PMMA IPNs when the EGDM level 

mcreased from 10 wt.% to 30 wt %. (Vancaeyzeele et al., 2005). 

Figures 4.18 and 4.19 clearly mdJCate the effects of cross-hnking of the 

PMMA component as well as the EGDM content on the storage modulus at the 

NR transitiOn Accordingly, with cross-linkmg of the PMMA phase, the storage 

modulus values m the rubbery regiOn of the NR transition mcreased noticeably. 

For a example, E' at 20°C increased from 6 MPa to 15 MPa With mcrease of the 

EGDM level from 0.5 to 1 5 mole% in the semi-2 IPN with a 40 wt % PMMA. 

An mcrease from 29 MPa to 113 MPa was noted for the semi-2 IPNs with 50 

wt.% PMMA content when the EGDM level was rmsed from 0 5 mole to 1.5 

mole percent. 
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Fig. 4 18 The effect ofcross-linkmg of the PMMA component on the storage 
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F1g. 4.19 The effect of cross-linkmg of the PMMA component on the storage 

modulus data for the sem1-2 IPNs w1th a 40 wt. % PMMA content 

In general, the storage modulus mcreased w1th the level of EGDM With 

the exceptton of semi-2 IPN w1th 30 wt.% PMMA content. These trends are 

associated w1th the lowenng of the mobihty of polymer chams (Sombatsompop, 

1998), as a consequence of cross-hnkmg of the PMMA phase to a higher degree. 

An analogous trend had been observed in the study by L1 et al. (2002), based on 

nanometre-dispersed polypropylene/polystyrene IPNs, wh1ch they also attnbuted 

to the h1gher cross-hnk dens1ty. 
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4.3.2 Effect of cross-linking on the stress-strain behaviour 

The tens1le properties ofvanous types ofiPNs havmg 10 wt.%- 50 wt.% 

PMMA are presented m F1gures 4 7 to 4 9. The effect of cross-linkmg of the 

PMMA component on the tensile strength is less s1gmficant when the PMMA 

component was cross-linked usmg 0 5 mole% EGDM. Th1s is m accord with 

Donetelli et al. (1976), who showed that the effect of cross-linkmg of the second 

polymer on the mechamcal properties of the resultant IPN is not strong. 

Nevertheless, a further increase of EGDM level up to 1.5 mole% caused a 

significant mcrease m the tensile strength m the semi-2 IPNs w1th 10- 30 wt.% 

PMMA contents (Figure 4.8). Therefore, these data demonstrate that the effect of 

cross-linkmg of the PMMA component on the tensile propertieS IS Significant 

only at a relatively high cross-link density. As the cross-link density of PMMA 

phase increases, the number of effective network chains has also been increased. 

As a result, in addition to the stram-induced crystals present in the NR phase, 

applied load will also be borne by the cross-linked PMMA polymer chams, thus 

requmng a h1gher force for tensile rupture In addition, the improved tensile 

properties could be ascnbed to the remforcement caused by hard, cross-linked 

PMMA domains dispersed in a contmuous NR matnx. 

The effect of cross-linking of the PMMA component of the semi-2 IPNs 

having higher plastomer contents (50 wt.%) (F1gure 4 9) differs from that of the 

sem1-2 IPNs havmg lower plastomer content. The tensile strength of the 

NR50:PMMA50 semi-2 IPNs follow a decreasmg trend w1th mcreasing EGDM 

level. These results suggest that when the PMMA phase is highly cross-linked, 

the tensile strength of these IPN s decreases and such an effect IS promment m the 

IPN s w1th a higher PMMA content. This is m accord with previous stud1es 

conducted on IPNs based on NR and PS (Das et al, 1993) Th1s behavwur may 

be attnbuted to the presence of h1ghly cross-linked PMMA domains, wh1ch 

restnct not only the formatiOn of stram-mduced crystals, but also retard the 

effic1ency of the stress distnbutlon m the matnx 

Hystereszs data 

Companson of data for the blend and the sem1-2 IPN md1cated that the 

hysteresis values mcreased significantly w1th increasmg cross-linkmg level m the 
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PMMA component usmg EGDM at a level of 1.5 mole percent. Th1s is 

understandable as the cross-hnkmg of the PMMA component may reduce the 

mob1hty of the neighbouring NR polymer chams. This m1ght affect the 

reorientahon ofNR polymer and thereby mcreases the hysteresis. 

Table 4.5 Energy loss and hysteresis behavwur for the blend and semi-2 IPNs 

Sample composition Cycle 1 Cycle 2 

NRIPMMA Energy loss HL Energy loss HL 

(wt.%) (J) (J) 

NR90:PMMA1 0 blend 0.11 0 28 004 0.11 

NR90:PMMA10 sem1-2 (0.5) IPN 0.12 0.31 0 03 0.11 

NR90:PMMA10 sem1-2 (1.5) IPN 0.20 046 007 0.17 

NR70:PMMA30 blend 0 64 1.26 0.38 0.84 

NR70:PMMA30 semi-2 (0.5) IPN 0.44 0.96 0.28 0.72 

NR70 PMMA30 semi-2 (1.5) IPN 0.93 2.1 0.53 1 14 

NR50·PMMA50 blend 4 01 25 ** ** 

NR50 PMMA50 semi-2 (0 5) IPN 7.03 5.3 ** ** 

NR50:PMMA50 semi-2 (1 5) IPN 8 42 4.84 ** ** 

* HL-Hysteres1s behaviOur calculated as the ratio of the amount of energy lost to 

the amount of recovered in each cycle. 

x Permanent set exh1b1ted by the stretched sample 

4.4 Effect of cross-linking of the NR and PMMA components 

4.4.1 Effect of cross-linking on miscibility 

Dvnamic mechamcal data 

NR trasitwn 

In th1s section, the term full IPN refers to the matenal m which the NR and 

PMMA components are both present in the cross-hnked state. 
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EvaluatiOn of the effect of cross-hnkmg of the NR and PMMA 

components of the full IPNs having 20 wt.% PMMA content is difficult because 

of the presence of the low level ofPMMA (3 wt.% to 7 wt.%) m these samples. 

The DMTA data for the semi-! IPNs, sem1-2 IPNs and for the full IPNs are 

shown in Table 4.6. 

In general, the effect of cross-hnkmg of both the NR and PMMA 

components on the T 8 of the NR IS not dramatic (F1gures 4.20 and 4.21 and Table 

4.6) when compared to the correspondmg sem1-l IPNs. This may emphasise that 

the effect of cross-linking of both components will not result m a significant 

Improvement in the extent of mixmg of the NR component compared to the 

identical semi-1 IPN. Compared to the correspondmg semi-1 IPN, the height of 

the NR transition tended to decrease when PMMA was cross-linked usmg 0.5 

mole percent EGDM as md1cated in Table 4 6. As the height of the NR transition 

is dependent on the fraction of homo polymer which 1s not m the form of a mixed 

state, and the mobility of back bone of the NR polymer chain, it IS difficult to 

distmgu1shed both these effect. As shown m earlier studies (Vancaeyzeele et al., 

2005), cross-linking of the PMMA phase m full IPNs should affect the mob1hty 

of the cross-linked NR polymer chams resultmg in lowenng of the height of the 

NR transition. 
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Fig. 4.20 The effects of cross-linking ofthe NR and the PMMA components on 

the NR loss tangent of the sem1-l IPN, semi-2 (0.5) IPN and full (0.5) IPN 

w1th a 30 wt % PMMA content 
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F1g. 4.21 The effect of cross-linking of the NR and the PMMA components 

on the NR loss tangent ofthe semi-11PN, semi-2 (0.5) lPN and full (0 5) lPN 

With a 40 wt % PMMA content 

Havmg considered the data presented in Table 4.7, it can be stated, m 

general, that the extent of mixing of the NR component in the full lPNs was 

slightly higher than m the equivalent semi-1 lPNs (Table 4. 7) and mostly 

ascnbable to the cross-hnkmg of the PMMA component in the lPN. 

When the DMTA data of fulllPNs are compared with the semi-2 lPNs, It 

IS worth mentioning that the T 8 of the NR transitiOn of the full lPN has shifted 

slightly towards lower temperature by 3°C to 4°C, than the correspondmg semi-2 

lPNs containing 40 wt.% and 50 wt.% of PMMA, except the NR50 PMMA50 

(1.5) fulllPN (Table 4 6). These results also mdicated that the extent of miXIng of 

the NR component in the lPNs are relatively low In other words, the extent of 

mixing of the NR component in the semi-2 lPNs is relatively higher than the 

eqmvalent fulllPNs and it can probably be attnbuted to mterpenetrated PMMA 

and /or to graftmg ofPMMA on to NR chains. 
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Table 4 6 DMTA data for the semi-1 IPNs, sem1-2 IPNs and for the full IPNs 

Sample NR Tg Tan ONRmax PMMA T g Tan 0MMAmax 

("C) ("C) 

NR70 PMMA30 sem1-1 IPN -47 1.4 150 0.19 

NR70 PMMA30 (0.5) sem1-2 IPN -46 1.4 160 0.29 

NR70 PMMA30 (0.5) full IPN -45 1.3 152 0.16 

NR70.PMMA30 (1.5) semi-2 IPN -46 1.6 178 0.20 

NR60:PMMA40 semi-1 IPN -48 0.85 145 0.39 

NR60 PMMA40 (0.5) sem1-2 IPN -46 1.4 159 0.32 

NR60·PMMA40 (0.5) full IPN -49 0 55 145 0 56 

NR60 PMMA40 (1.5) sem1-2 IPN -45 08 156 040 

NR60:PMMA40 (1.5) full IPN -47 0.35 154 0.25 

NR50.PMMA50 sem1-1 IPN -47 064 146 0.44 

NR50:PMMA50 (0.5) semi-2 IPN -48 0 71 154 0.4 

NR50.PMMA50 (0 5) full IPN -52 0.45 146 0.51 

NRSO·PMMA50 (1.5) sem1-2 IPN -49 0.5 150 0.54 

NRSO PMMA50 (1.5) full IPN -48 0.35 154 0.55 

PMMA transition 

Companson of the DMTA data for the semi-2 IPNs and the full IPNs can 

be done usmg the data presented in Table 4.6 and m Figures 4 22 and 4.23 The 

plot of tan delta versus temperature data for the PMMA transition for the 

different types of IPNs having 30 wt.% PMMA are shown in F1gure 4.22. 

Comparison of the Tgs of the PMMA transitions of the semi-2 IPN and the IPN 

prepared using 0.5 mole percent of EGDM, md1cated that the Tg of the IPN has 

significantly shifted towards lower temperature by 8°C. The same trend has been 

observed for the IPNs w1th 40 wt.% (Figure 4 23) and 50 wt.% ofPMMA (Table 

4.6). Th1s behavwur could be ascribed to improved mlXlng of the PMMA 

component due to cross-linking of both components Further evidence for the 

improved mixing of the NR components can be seen from the MDSC data shown 

in Table 4 7 Nevertheless, comparison of the PMMA Tg values ofthe semi-2 IPN 

and the full IPNs w1th a 40 wt.% PMMA, prepared usmg EGDM at a level of 1.5 
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mole percent mdicate that there 1s no s1gmficant shift m the T g of the PMMA 

transition towards lower temperature in the full IPNs. 
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Fig. 4 22 The effect of cross-hnking of the NR and the PMMA components 

on the PMMA transition of the sem1-1 IPN, semi-2 IPN and 
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F1g 4.23 The effect ofcross-hnkmg of the NR and the PMMA components 

on the PMMA transition of the sem1-1 IPN, semi-2 IPN and 

full IPN w1th a 40 wt.% PMMA 
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Table 4.7 Calculated we1ght fractiOns of the NR and PMMA components and multiple peak analysis data 

for the semi-1IPN, sem1-2 IPN and full IPNs 

MDSCdata 
Sample 

Type of the matenal ONR 0 NR 
• 

0PMMA Multiple peak analysis data 

(weight (we1ght (weight 
Interphase NR-rich PMMA-

fraction) fraction) fraction) 
(%) phase rich phase 

(%) (%) 
N 
0 NR70.PMMA30 sem1-1 IPN 0.07 30 14 9 N 

NR70 PMMA30 sem1-2 (0.5) IPN 0.14 0.05 25 8 12 

NR70 PMMA30 full (0.5) IPN 0.25 0.17 29 16 13 

NR50:PMMA50 sem1-1 IPN -0 023 30 13 26 

NR50·PMMA50 sem1-2 (0.5) IPN 0.20 0.0 30 20 16 

NR50.PMMA50 full (0.5) IPN 0.15 0.23 20 20 23 

oNR, calculated With respect to the un-vulcamzed NR 

~.', calculated WJth respect to the vulcamzed NR 



Moreover, T8 of the PMMA transition of the NR50:PMMA50(1 5) IPN has 

shifted to lugher temperatures by 4°C (Table 4.6) compared to the eqmvalent 

semi-2 IPN This behaviour IS probably attnbuted to high level of cross-linkmg. 

Hence, based on this evidence, It can be concluded that in the full IPNs 

prepared using 0 5 mole percent EGDM, the cross-linking of both components 

improved the extent of the mixmg of the PMMA component compared to the 

correspondmg effect caused by the cross-linking of the PMMA component alone. 

This was pnmarily attnbuted to two reasons: the reduction of phase separation 

due to cross-hnking of the PMMA component; and formatiOn of smaller domains 

as a consequence of the cross-hnking of the NR and PMMA components. As a 

result, the interphase regwn would be mcreased and thereby adhesiOn of the 

PMMA phases With NR would be Improved due to the combined effect of an 

mcrease of the surface area and an m crease of interpenetration at these surfaces. 

However, when the T8s of the semi-llPN and the full!PN, prepared usmg 0 5 

mole percent EGDM are considered, no significant vanation was observed either 

in the NR T 8 or PMMA T 8 See Table 4 6 

A different trend was found for the full IPNs prepared usmg 1 5 mole 

percent of EGDM. In this case, the PMMA T8 of the full!PN IS considerably 

higher than the semi-! IPN (Figure 4.23) This trend was purely due to the 

reductiOn ofmob1hty ofPMMA molecular segments caused by the cross-linkmg 

of the PMMA chams. Broademng of the PMMA transitiOn of the full IPN 

compared with the correspondmg transitiOn of the semi-llPN was also attnbuted 

to the cross-linking effect of the PMMA component. 

4.4.2 Effect of cross-linking on stress-strain behaviour 

Tenszle data 

Comparison of the full IPNs, prepared using different EGDM levels, 

md1cated that as the EGDM level increased from 0.5 to 1 5 mole%, the tensile 

strength of the full IPNs with an approximate composition of NR90·PMMA10 

(Figure 4.7) has also been mcreased marginally. As the PMMA content IS low m 

these full IPN samples, It could be assUIDed that the EGDM may cross-hnk 

natural rubber resultmg m greater cross-hnkmg As the cross-hnk density in NR 
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mcreases, the mobility of the NR polymer chains decrease which causes 

inefficient stress distribution among the neighbounng polymer chains resultmg in 

a lowenng of tensile strength. In additiOn, compared to the NR/PMMA blend and 

the semi-2 IPN, the tensile strengths of the IPNs (Table 4.8) were Sigmficantly 

higher, probably due to the cross-linkmg of the NR component usmg the 

conventional vulcanismg system, as discussed in sectwn 4.2.2. 

Compansons of the stress-strain data for the IPNs with the 

NR70.PMMA30 (Figure 4 8) and NR60:PMMA40 compositiOns (Figure 4.24) 

mdicate that the tensile strength of the full (0.5) IPN is lower than that of the 

eqmvalent semi-! IPN. 
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NR/PMMA blend Senn-21PN Senn-IIPN Full!PN 

Type ofmatenal 

Fig. 4.24 The effect of cross-linkmg of components on the tensile strength 

of the blend, semi-! IPN, semi-2 IPN and full IPN With a 

NR60 PMMA40 compositiOn 

In the full IPN, the NR polymer chams are tied by polysulphidic cross

hnks with low mechanical strength (Bateman, 1963). However, the mtroduction 

of C-C cross-hnks in the PMMA component, usmg EGDM, may lead to a system 

which not only consists of different types of cross-links which have greater bond 

strength. As such, unhke polysulphidic linkages which are capable of easy bond 

breakmg, and, therefore, capable of distnbuting stress efficiently, the C-C cross-

204 



hnks present in the PMMA phase may break mstead of d1stnbutmg stress when 

they experience h1gh loads (Bateman, 1963) Therefore, tens!le rupture may 

m1tiate m these areas leadmg to lower tens1le strength. However, the tensile 

strength of the full IPNs mcreased margmally (11 %, 15%, 17%, respectively, for 

70/30, 60/40 and 90/10 NRIPMMA compositiOns w1th mcreasmg cross-hnk 

dens1ty of the PMMA phase. 

Table 4 8 The tens!le strength of the sem1-1 IPN, semi-2 IPN and the full IPN 

Sample Tens1le strength (MPa) 

NR92.PMMA8 sem1-1 IPN 19 (1 1 *) 

NR90:PMMA1 0 (0 5) semi-2 IPN 13 (1 1 *) 

NR93:PMMA7 (0.5) full IPN 18 (0.9*) 

NR90:PMMA10 (1.5) semi-2 IPN 

NR95 PMMA5 (1.5) full IPN 

NR70 PMMA30 semi-1 IPN 

NR70 PMMA30 (0.5) sem1-2 IPN 

NR70.PMMA30 (0 5) full IPN 

NR70:PMMA30 (l 5) semi-2 IPN 

NR70:PMMA30 (1 5) full IPN 

NR60·PMMA40 semi-1 IPN 

NR60 PMMA40 (0.5) seml-2 IPN 

NR60 PMMA40 (0.5) full IPN 

NR60 PMMA40 (1.5) sem1-2 IPN 

NR60 PMMA40 (1.5) full IPN 

* Standard deviation 

15 (0 8*) 

21(1.7*) 

32 (1.6*) 

21 (1.4*) 

28 (1.1 *) 

27 (1 3*) 

31(08*) 

30 (1 5*) 

24 (0.7*) 

26 (1.0*) 

25(1.2*) 

30 (1.2*) 

According to Flory (1949), the tens!le strength ofmatenals is governed by 

the fraction of matenal capable of onentat10n and by the fraction of active 

network chams. Therefore, as the cross-hnk density increased, the number of 

active network chains in the PMMA phases also mcreased resulting in a higher 

tens!le strength. These results also suggest that the cross-hnking of the second 

component does not have a marked effect on the tens!le properties of the 

matenals m which the first polymer is moderately cross-hnked. The same trend 
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had been obtamed for the NR/PS full IPNs m wh1ch, the first polymer has been 

h1ghly cross-linked (Das et a/, I 993). 

4.4.3 Effect of cross-linking on hysteresis data 

The hysteresis data md1cate that there was no marked vanat10n m 

hysterers1s between the sem1-1 IPN and the full (0.5) IPN with the 30 wt.% 

PMMA content (Table 4.9). On the other hand, the hysteresis shown by the full 

IPNs 1s apparently higher than that of the corresponding semi-2 IPNs. Sim1lar 

observations were made for the NRSO PMMASO compositions. 

Table 4.9 Energy loss and hysteresis behaviour for the blend and semi-2 IPNs 

Cycle 1 Cycle2 
Sample composition 

NRJPMMA Energy loss Energy loss 
(wt.%) HL HL 

(J) (J) 

NR70.PMMA30 sem1-1 IPN 0 97 1 3 0.61 0.83 

NR70 PMMA30 sem1-2 (0.5) IPN 0.44 0.96 0 28 0.72 

NR70 PMMA30 full (0 5) IPN 0 94 1.39 049 0.86 

NR70:PMMA30 full (1.5) IPN 1.83 2.17 0.70 1.07 

NRSO.PMMASO sem1-1 IPN 11.8 7.67 X X 

NRSO PMMASO sem1-2 (0.5) IPN 7.03 53 X X 

NRSO:PMMASO full (0.5) IPN 10.4 10.7 X X 

NR50:PMMA50 full (1.5) IPN 13.5 17.7 X X 

* HL-Hysteres1s behaviour calculated as the ratio of the amount of energy lost to the 

amount of recovered m each cycle. 

x Permanent set exh1b1ted by the stretched sample 

As stated earlier, during stretchmg some polymer chain segments orient 

parallel to the stretchmg d1rect10n and act as precursors for stram-mduced 

crystals. On the other hand, when the stress IS relieved dunng the retraction 

process, these polymer segments regam the1r non-onented conformations. 

However, the presence of cross-links in the NR phase and the presence ofPMMA 

domams w1thm the NR network may impede reorientation and break down of 
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crystals delay:tng the return to onginal conformations. This process leads to 

higher hysteresis. A similar trend has been obtamed for the hysteresis of semi-2 

IPNs and LIPNs ofNR/PS with 80/20 compositions, in which the NR phase has 

been cross-linked by gamma irradiation (Romame, 1988). 
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CHAPTERS 

Semi-1 IPNs based on epoxidised natural rubber 

and/or acrylic acid 

5.1 Introduction 

Micro-phase separation is known to occur dunng the formation of IPNs 

resulting in heterogeneous two phase systems (Alekseeva et al., 2005). The same 

observation was made for the IPNs reported in chapter 3 and 4, as these IPNs 

exhibited two glass transitions correspondmg essentially to their constituent 

homopolymers. Th1s is an expected observation as natural rubber and 

poly(methylmethacrylate) are known to be a pa1r of mcompatib1e polymers 

(Oommen et al., 1997:1996; Oommen and Thomas, 1993). Different solubility 

parameters and unfavourable thermodynamic factors can be considered as the 

pnme reasons for the mcompatibility between NR and PMMA. In an 

mcompatlble blend, strong mterfac1a1 adheswns are absent and presumed to 

contain only few entanglements and such a system would impart inferior phys1cal 

properties. Phys1cal properties of NRJPMMA blends are mferior resultmg from 

the mcompat1b1lity of the two components Nevertheless, IPNs based on NR and 

PMMA possess better phys1cal propert1es and enhanced component mixing due 

to the umque characteristics of IPN formation. 

Extensive work had not been earned out on the compat1b1hzation of these 

immiSCible polymer components m such IPNs. Several studies have been carried 

out using fillers (Lipatov et a/ , 1988) and compatlbihzing agents (Lipatov et a/ , 

1999). In one of these stud1es (L1patov et a/ , 1988), compatib1hty was achieved 

by introducing fillers into polyurethane -polyester acrylate IPNs. It was reported 

that w1th the mtroductwn of fillers, compatibility improved w1th the reduction of 

phase segregatiOn indicated by the appearance of a broad transition instead of two 

of mechanical loss maxima. This behaviour was attributed to the effect of 

interactions such as Coulombic interactions between the filler and the IPN 

components on m1crophase separatiOn (L1patov et al., 1988). Compatlbilizers 

such as the monomethacrylester of ethylene glycol (MEG), ohgourethane 

d1methacrylate (OUDM) and a triblockurethane have been used in seml-1 IPNs 
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based on cross-linked polyurethane (PU) and poly(n-butyl methacrylate) (PBMA) 

(Lipatov et al, 1999; Alekseeva et al., 2001). Tlus study indicated that 

mcorporahon ofMEG, OUDM and a triblock polyurethane with two -CH3CH2-

0--CH2CH:r units markedly improved the compatibility resulting m a smgle 

broad trans1t10n Formation of graft polymer, cross-linkmg with butyl 

methacrylate via double bonds and segregatiOn of a tnblock PU at the mterface 

were considered, respectively, as the reasons for improved compatibility m these 

lPNs They have extended their study usmg OUDM for a system wh1ch consists 

of a cross-hnked polyurethane and linear polystyrene. It was found that a smgle 

transition could be obtamed at 20 wt.% OUDM and the T8 depended on the 

compos1tion and the reactiOn conditions (Alekseeva et al, 2005) In addition, 

forced compatib1lizat10n (L1 et al., 1994, Fradkin et al., 1996) resultmg from a 

cross-linkmg process was found to be a potential method to obtain a compatible 

system For example, poly(methylacrylate) and poly(methylmethacrylate) 

sequentiallPNs were found to be compatible w1th just a single relaxation, when 

they were cross-linked usmg 10 wt.% EGDM (Sanchez et al, 2001) In addition, 

the cross-link density of the first formed network had a profound effect on the 

compatibility of the lPNs (L1 et al., 1994; Sanchez et al, 2001) 

In th1s present investigatiOn, attempts were made to explore the 

poss1b1hties of improving the compatibility/miSCibility of NR and PMMA by 

introducmg substances which interact with, or are capable of formmg interactiOns 

between, the individual components at the mterface If the chemical nahlre of 

natural rubber and PMMA 1s taken mto consideration, natural rubber 1s a non

polar substance, while PMMA is a polar component as 1t contains oxygen with 

unpaired electrons wh1ch exerts a d1pole moment and/or polarity. Based on these 

facts, 1f a polar group/material is incorporated on to e1ther the NR molecule or in 

to the NR matnx, compatibility of NR and PMMA could be improved The 

former path may be the more effective smce the polanty will be introduced at the 

molecular level. In addition, introduction of potential matenals w1th functional 

groups would be helpful in improving miscibility as they can undergo formation 

of chem1cal mteractions which can impart true thermodynamic miscib1hty in 

some cases. When PMMA is concerned, 1t has a carbonyl group which can act as 

a hydrogen bond accepter. Therefore, introduction of matenal With functional 

groups which can act as a hydrogen bond donatmg groups would lead to 
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formation of hydrogen bonds between the PMMA and the functiOnal groups of 

the added matenal and thereby help to Improve the miSCibility of the components 

(Eastwood et al, 2005). 

Based on these facts, chapter five IS designed to mvestigate the effect of 

the additiOn of epoxidised natural rubber on the compatibility of the individual 

components, natural rubber and PMMA, m the semi-1 IPNs with 50 wt.% of 

PMMA. 

Epoxidised natural rubber, one of the modified forms of natural rubber IS 

weakly polar and partially compatible with PMMA (Yusof, 1999), was chosen 

for this mvestigation. It has been reported that the ENR-50 - PMMA polymer pair 

IS a partially miscible system as the IPNs still exhibited two glass transitions 

(Yusof, 1999). Technological compatibihzation does not refer to a system With 

complete miscibility at the molecular level. 

The effect of the addition of epoxidised natural rubber (ENR) on the 

compatibility/miscibility of IPNs contaming NR and PMMA has been 

mvestigated. For a comparison of results, I 00% ENR materials have been used. 

In addition, epoxidised natural rubber with different epoxy contents ( epoxidatwn 

levels), was used and their effect on the compatibility ofNR and PMMA were 

evaluated. Moreover, the effect of the expenmental conditions used for the 

synthesis of ENR on the physiCal properties of the IPNs were evaluated In this 

mvestigatwn, two different levels of hydrogen peroxide were used for the in-situ 

preparation of a peracid. For convemence, the letter given m the parenthesis 

represents the level of hydrogen peroxide which was denoted by either the 

symbol H or M referring to a higher level or a moderate level, respectively. The 

expenmental details relevant to this chapter are located m the section 2.2. 

NR sheets prepared from prevulcanised natural rubber latex were used as 

the basic matenal for the preparatiOn of the IPNs discussed in chapters 3 and 4. 

Smce chapter 5 mvestigates the potentiality of ENR which are capable of 

enhancmg the compatibility/miscibility between the components, NR and 

PMMA, the most appropnate way is to mcorporate the ENR by solid state mixing 

of the components m a two-roll mill Therefore, the NR sheets were prepared by 

mixmg natural rubber with the ENR in a two-roll mill followed by preparing 

sheets usmg a hot press, m which the cunng process took place. In a two-roll 

mill, rubber IS usually subjected to a mastication process m which mechanical 
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rupture of primary bonds is possible resultmg in a lowenng of the physical 

properties (Blow, 1971). 

The Triganox 21S, the m1!iator used for the in-s1tu polymenza!ion of 

MMA in the preparation of the IPNs discussed in chapters 3 and 4, was not 

avmlable m Sri Lanka, where th1s part of the inves!igation was carried out. Under 

these circumstances, the IPNs were synthesized usmg d1benzoyl peroxide as the 

initiator for the polymerization of MMA. Apart from these differences, the 

synthes1s route for the IPNs and the basic components of the IPNs were the same, 

and, therefore, the differences descnbed above should not have any adverse 

mfluence on the determination of the effect of the add1!ion of ENR as a tlurd, 

polar component on the compa!ibihty/miscJbihty of the NR and the PMMA 

components of these semi-I IPNs. 

There may be structural changes in the ENR dependmg on the rate of 

epox1dation reactiOn as well as on the level of hydrogen peroxide. As such, m 

order to highlight the ENR prepared using different hydrogen perox1de levels, the 

letter Hand M are g~ven m the parenthesis for 1.5 mole and 1.0 mole of hydrogen 

peroxide per repeating unit of rubber, respectively. The number in the code 

represents the approximate level of epoxidat10n 

5.2 Raw rubber characteristics 

5.2.1 Infra red spectroscopic analyses of the raw materials 

FTIR spectra of the ENR w1th different epoxy contents are shown in 

F1gures 5.1 to 5.6 Absorption frequencies of the relevant groups are shown in 

Table. 5.1. 

It is noted that the epoxy peak at 870 cm-1 mcreased w1th increase in the 

epoxy content. Peaks at I 065 cm·1, due to furan structures caused by secondary 

react10ns, were not observed. The hydroxyl absorbance observed in these spectra 

could arise because of the moisture present in the matenal and/or due to nng 

opening of ENR during the reaction. The peak observed at the 1700 cm-1 in the 

FTIR spectra of natural rubber (Figure 5_1) IS associated with the carbonyl groups 

probably resulted by the degradation process. 
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Table 5.1 Absorption frequencies of relevant functiOnal groups or bonds 

(WJ!hams and Fleming, 1989) 

Group Band Remarks 

R2C-CHR 840-790 (m) 

-CH3 1390-1370 (m) -CH3 symmetrical 

deformation 

-CH 2890-2880 (w) 

Epoxy group 900-800 

Furan group* 1065 

Free OH 3650-3590 (v) 0-H stretchmg 

H-bonded-OH 3600- 3200 (s) 

Ac1d-OH 2500-3300 Strong and broad 

Intra-molecular H- bonded-OH 3200-2500(v) 

-0-H 1410-1260(s) 0-Hbendmg 

C-QH 1150-1040(s) e-o stretchmg 

(m)- medmm; (w)- weak; (s)- strong; (v)- vanable 
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Fig. 5.1 ATR-FTIR spectrum of the natural rubber (spectrum obtamed usmg a 

thm film which was produced from the NR latex) 
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Fig. 5.6 ATR-FTIR spectrum of the ENR-60 (M) (spectrum obtamed usmg a 

thin film which was produced from the ENR latex) 

5.2.2 Mooney viscosity data and Mooney stress-relaxation data for the raw 

materials 

Raw Mooney viscosity data and the Mooney stress-relaxation data for the 

natural rubber and for the ENR samples which were prepared using a fairly high 

level of hydrogen peroxide (denoted by- H) are Illustrated in Table 5.2 

The theory behind the stress relaxatiOn determmed by measunng the 

decay:mg torque after perform:mg a normal Mooney test IS descnbed m the 

following text. 

In this study, an MV2000E instrument was used to obtain the Mooney 

viscosity data as well as the Mooney stress relaxation data. The relaxatiOn 

response was used for charactenzation of the raw polymers and the compound 

stock behaviour. It IS stated that the stress relaxatiOn data obeys the power law 

(D1mauro, Monsanto Company (Private communication)) and can be expressed 

by an equation as follows. 

ML=kt-• 

Where ML IS the decay:mg Mooney stress, t is the relaxation time after the rotor 

stops, k IS the stress value at I second and "a" IS a measure of speed of relaxation 

(Dimauro, private commumcation). 

Log ML = - a log t + Jog k 
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The value of the gradient, "a", was obtamed by plotting the log ML values against 

the log t values. Therefore, negative gradient can be obtamed and, therefore, the 

negative sign will not be taken into account for the interpretation of "a" values. k 

is a measure of stiffness and is proportiOnal to the MLl +4 value. "a" is a measure 

of visco-elastic properties of the material without resolving the "a" into their 

individual components; viscous and elastic, respectively. The higher the "a" 

value, the higher the rate of relaxatiOn, mdicating a more viscous and less elastic 

nature. As such, "a" can convemently be used to charactenze the polymer and It 

facilitates prediction of the processing behaviour (Dimauro, private 

communicatiOn). 

Table 5.2 Mooney viscosity data for the natural rubber and the ENR rubber 

prepared usmg higher amount of hydrogen peroxide 

Property 

(Mooney umts (MU)) 

lmtial viscosity 

VISCOSity@ 10s 

Viscosity @ 20s 

VISCOSity@ lOOs 

VISCOSity@ 10% decay 

VISCOSity@ 20 %decay 

final VISCOSity 

ML1+4 

Intercept (K) 

Slope (a) (MU/s) 

Matenal 

Natural rubber ENR -15 (H) ENR-50 (H) 

92.6 120.3 174.4 

28.4 42.0 47.1 

22.7 35.8 40.8 

12.6 23 4 27.7 

72.5 86 8 94.1 

65 7 724 78.8 

83 3 98 5 107.0 

83 3 98 5 107.0 

57 2 700 75.4 

-0 32 -0.23 -0 21 

The concept of entanglement coupling is used to interpret visco-elastic behaviour. 

It IS thought that these entanglements act as topological constrams. However, It 

had been md1cated that, factors such as the molecular weight, branching, length 

of branches, molecular weight d1stnbutions and gel content affect the Mooney 
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viscosity (Roberts, 1988). It was reported that the total gel content (macrogel plus 

m1crogel content) is related to the relaxation time. Accordingly, as the total gel 

content mcreases, the stress relaxation time increases (Ehabe et al., 2005) 

Therefore, if the total gel content has mcreased under such circumstances, the 

relaxation time should be mcreased indicating a slow rate of relaxatiOn with a low 

"a" value. Tins may be the reason for havmg a lower "a" value with increasing 

ENR content as the ENR gel content may mcrease due to the cross-linkmg 

process via secondary reactions during storage ( agemg). Therefore, the higher "a" 

value obtamed for the natural rubber md1cated that the processmg of natural 

rubber IS comparatively easier than that for the epoxidJsed natural rubber. In 

additiOn, 1t should be noted that the Mooney viscosity and the mitial viscosity 

mcreased with an increase m the level of epoxJdatJOn Th1s may be attnbuted to 

mcreased gel content and/or to cross-linking dunng storage 

5.3 NR!ENR blends 

5.3.1 Cure characteristics of the NR!ENR blends 

The cure characteristics of the NRIENR blends containing ENR-60 (M) 

are shown in Table. 5 3. Companson of the cure charactenstics of the blends 

indicated that the cure rate index mcreased to a maximum value with increase m 

the ENR content up to 50 wt.% - 75 wt.% and then decreased with further 

increase in the ENR content up to 100 wt.% A similar trend has been obtained 

for the ENR-50(H) series (results were not giVen). The observed mcrease trend 

could be the result of the cross-linking of the ENR by sulphur and by cross

linking of the epoxy groups via ring opening (Gelling, 1991). These two 

processes may cause a synergistic effect, and, therefore, the cure rate index has 

increased With increasing ENR content up to 50 wt.%. The decreasmg trend may 

be attributed to the reduction of unsatura!Ion in the blend with increasmg the 

ENR content (Amu et a!, 1985) In fact in ENR-60, 1t can be considered that the 

unsaturation has declined by 60 mole percent, and therefore, expected to exlnb1t a 

slower cure rate (Amu et al., 1985) However, in practice, this effect had not been 

observed m other studies conducted on ENR-50 vulcanizates prepared by usmg 

1-1.5 phr of sulphur Hence, the observed trend may be associated with the 

availability of less unsaturation caused by the higher epoxidatJOn level and also 

by the availability of a lesser amount of sulphur. In general, it can be concluded 
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that scorch time decreases with incorporation of ENR-60 (M) content. This IS an 

accepted trend smce residual acid in ENR can cause nng opening of epoxy group 

and thereby mtroducing few ether cross-links. TJus would result a reductiOn in 

processing safety. However, the observed reduction in cure time IS advantageous 

in processing 

Table 5 3 Cure charactenstics for the blends containing ENR-60 (M) 

Compos1t10n Scorch time Curet1me Curet1me Cure time Cure rate 

NR/ENR-60 ts1 tw tso t90 mdex 

(M) (mmutes) (minutes) (minutes) (mmutes) 1 OO/(t9o. ts1) 

100.0 4 4 6 12 13 

97 5:2.5 4 5 7 10 17 

75:25 2 3 4 6 25 

50:50 2 3 3 5 33 

25:75 2 3 4 5 33 

0.100 3 4 5 7 25 

5.3.2 Mooney viscosity and Mooney stress relaxation data for the NRJENR 

blends 

Mooney viscosity data for the compounded rubber blends (with 

vulcan1zing mgredients) wJuch were prepared using both ENR-45 (M) and ENR-

60 (M) are presented m Tables 5.4 and 5 5. The results clearly ind1cate that the 

Mooney v1scosities of the mlil-mixed compounds based on e1ther 100% NR or 

100% ENR were sigmficantly lower than the correspondmg Mooney v1scosities 

of the raw matenals, namely natural rubber (MLl +4 = 83), ENR-45 (M) (MLl +4 

= 107.5) and ENR-60 (M) (ML1+4 = 114). This is basically attnbuted to the 

relatively high degrees of mlil breakdown occurring dunng the mashcatwn 

process. Nevertheless, when compared to the initial Mooney v1scos1t1es ofnahlral 

rubber and ENR, the extent of reduction m Mooney viscosity is higher for the 

ENR than for the natural rubber A simtlar trend was observed m the mlil break 

down behaviour of ENR-50 m wh1ch Mooney viscosity was reduced up to 25 

Mooney umts from the ongmal value (105) at 24 hours mashcatwn time (Amu et 

al., 1985) It was reported (Amu et al., 1985) that the reduction of Mooney 
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viscosity of ENR-50 to half of Its original value occurred within 4 mmutes and 

the rate of reduction was higher for ENR than that of the natural rubber. Such 

behaviour was attnbuted to the relatively high degree of mill breakdown of the 

ENR rubber (Amu et a/, 1985) 

Table 5.4 Data obtained usmg a Mooney viscometer (MV 2000) for the blends 

contaimng ENR-45 (M) 

Composition 

Property (NR: ENR-45 Ratio) 

(Mooney units 

(MU)) 100:0 90:5 90:10 87 5 12.5 50· 50 25·75 0·100 

Initial viscosity 73.9 61.5 71.6 61.4 67.1 69.2 76.1 

VIscosity @ 1 Os 7.5 5.2 643 50 7.2 84 10 0 

VISCOSity@ 20s 5.1 3.5 4.3 33 4.9 6.0 7.5 

Viscosity @ I OOs 2.0 1.4 1 6 I 2 2.1 2.7 35 

VISCOSity@ 10% 39 3 31.0 35.5 31.2 35.4 36 6 40.3 

decay 

VISCOSity@ 20 % 342 26.5 30.6 266 30.5 31.6 34 9 

decay 

VISCOSity@ 90 % 4.7 3.8 4.3 3.8 4.3 44 4.9 

decay 

Final viscosity 46.9 38.0 42.9 38 4 42.9 44.4 48 6 

ML1+4 46.9 38.0 42.9 384 42.9 44.4 48.6 

Intercept (K) 26 6 19.4 23.7 19 8 23.2 24.5 26.6 

Slope (a) -056 -057 -0.58 -061 -0.52 -0.48 -0.43 

There were no distingmshable differences among the Mooney viscositles 

of the mill miXed compounds prepared using ENR-45 (M) (Table 5.4). 

Nevertheless, two different trends for the vanation of "a" were noted for the 

NR/ENR-45 (M) blends and NR/ENR-60 (M) blends (Tables 5.4 and 5 5) For 

the former matenals (Table 5.3), the "a" value tends to increase with mcreasmg 

the ENR content and thereafter it exhibited a decreasing trend. In the case of the 
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ENR 60 (M) matenals, a gradual decrease in the "a" value was observed. Smce 

the "a" value represents a measure of the V1Sco-elastic1ty of the matenal, the 

1mtml mcrease in "a" value could be attributed to the mcrease of flow properties 

resulting poss1bly from a reduction of the molecular weight caused by the 

presence of residual hydrogen peroxide which may cause a degradation process. 

Despite this fact, the decreasing trend of the "a" values of the materials w1th 

increase m the ENR content, or at higher epox1dat10n level, could be pnmanly 

attnbuted to the lowenng of the mobihty of the polymer chains due to the 

presence ofless flexible epoxy nngs 

Table 5.5 Mooney viscosity data and Mooney stress relaxation data for the blends 

contaimng ENR-60 (M) 

Property Composition 

(Mooney umts) (NR·ENR-60 Ratio) 

(MU) 100:0 97.5:2.5 92.5:7.5 87 5:12.5 75:25 50:50 25 75 0:100 

lmtiaJ VISCOSity 73.9 76 0 69.7 63.7 69.8 65.1 70.3 105 62 

Viscos1ty@ 75 85 8.4 78 9.0 10 3 15.4 18.6 

!Os 

VISCOSity@ 5.1 59 5.9 5.5 65 7.7 12.3 14.7 

20s 

V1scosity@ 2.0 2.4 2.5 23 2.9 3.8 6.9 7.9 

lOOs 

VISCOSity@ 10 39.3 39.5 37 9 35.6 38.0 37.3 443 54.5 

%decay 

Viscos1ty @ 20 34.2 34.3 32.9 30.8 32 9 32.5 39.1 48.2 

%decay 

Viscos1ty @ 90 4.7 48 4.6 4.3 46 4.5 

%decay 

FmaJ VISCOSity 469 47.8 45.7 43 2 461 45.1 52 8 64.84 

MLI+4 469 47.8 45.7 43 2 46.1 45.1 52 8 64.8 

Intercept (K) 26.6 27 0 25.9 24.3 25 5 25 7 31.8 39.8 

Slope (a) -056 -0.52 -0 50 -0.50 -0.46 -0 41 -0.32 -0.34 
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The graphical representations presented in F1gures 5. 7 to 5.10 for the 

stress relaxation of ENR-45 (M) and ENR-60 (M) indicated that the "a" values 

(slope) decreased w1th an mcrease m the level of epoxJdatJOn. This IS also due to 

the reduction in the mobility of the polymer chains with an increase in the 

number of epoxy groups. This result IS in good agreement w1th the work by 

D1Mauro, who confirmed that the reductiOn of mobility of polymer chains 

resulted in a slow relaxatiOn with a decreasmg "a" value (DiMauro (private 

commumcation) Hence, the processing charactenshcs such as die swell, nerve, 

rate of extrusiOn etc. w1ll be affected at higher epoxy contents or With compounds 

containmg only ENR. 

5.3.3 Stress-strain data of the NR!ENR blends 

Tables 5.6 and 5.7 summanse the results in terms of the tensile properties 

for the blends with ENR-15 (H) and ENR-50 (H). 

Table 5.6 Tensile and tear properties of the NRJENR-15 (H) blends 

Tensile properties 
Tear 

ENR-15-(H) Modulus(%) Tensile ElongatiOn 

(wt.%) (MP a) strength at break 
strength 

(N/mm) 
50 100 300 500 700 (MP a) (%) 

0 0 37 0 55 I 2 2.2 6.6 16.0 836 51 

(0 04*) (0 03*) (0 06*) (0.15*) (1.1*) (I 2*) (32 I*) (I 5*) 

5 037 0 53 I 2 2.1 5.0 16.4 844 53 

(0 04*) (0 02*) (0 02*) (0 11*) (0 3*) (I 3*) (28 2*) (I 6*) 

10 0 36 0 57 1 3 2.5 9.2 18.9 776 49 

(0 02*) (0 03*) (0 12*) (04*) (I I*) (I 5*) (18 4*) (2 0*) 

12.5 0.35 0 57 1.3 2.3 7.0 17.0 825 52 

(0 01*) (0 04*) (0 08*) (0 21*) (I 8*) (I 6*) (13 3*) (I 4*) 

25 0.40 0.65 1.4 2.9 9.4 16.1 769 48 

(0 02*) (0 05*) (0 13*) (0 5*) (I 4*) (I 3*) (23*) (2 3*) 

50 0 30 050 1 2 2.1 5.2 10.8 743 40 

(0,04*) (0 03) (0 06*) (0 27) (I I*) (I 5*) (28 5*) (I 5*) 

*Standard devmhon 
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In relation to the moduh and the tensile strengths of the blends contammg 

NRIENR-15 (H) and ENR-50 (H), a significant Improvement m the tensile 

strength was not observed. The tensile strength significantly decreased at higher 

ENR contents. 

Unlike m the ENR senes prepared usmg the higher level of hydrogen 

peroxide, a s1gruficant drop of tensile properties was observed at 75% ENR 

content for the NR/ENR blends prepared using a moderate amount of hydrogen 

peroxide (Refer to Tables 5.8 and 5.9). A similar observation was found for the 

elongation at break. Structural differences m these two ENR types may be 

responsible for of the observed differences in the ENR content at wluch a 

significant drop in tensile strength occurred. These structural differences may be 

related to some degradation caused by the use of excessive hydrogen peroxide 

which causes inferior strength properties. It IS reported that the molecular weight 

of the natural rubber IS reduced by ox1dative degradation caused by peroxide 

(Tangpakdee et al., 1988; Khnkla1 et al., 2003) Ieadmg to the formation of 

aldehyde, ketone and a-{3 unsaturated carbonyl groups. 

Table 5.7 Tensile properties of the NRIENR-50 (H) blends 

Tensile properties 

ENR-50 (H) Modulus(%) Tensile Elongation 
(wt.%) (MPa) strength at break 

50 100 300 500 700 (MPa) (%) 

0 0.37 0.55 1.2 2.2 66 16 0 836 
(0 04*) (0 03*) (0 06*) (0 15*) (I I*) (I 2*) (32 I*) 

5 0.35 0.57 1.2 22 61 15 6 702 
(0 03*) (0 04*) (0 09*) (0 24*) (2 I*) (I 9*) (45 5*) 

10 0 34 0.57 1.3 2.4 8.0 15 2 786 
(0 06*) (0 07*) (0 05*) (0 06*) (I I*) (I 2*) (17 2*) 

12.5 0 35 0 57 1.2 22 6.3 17.1 820 
(0 04*) (0 04*) (0 04*) (0 05*) (I 3*) (0 63*) (23 2*) 

25 0.34 0 53 1.2 2.1 6.1 16.6 850 
(0 04*) (0 04*) (0 06*) (0 10*) (I I*) (I I*) (24 6*) 

50 0.35 0 58 1.5 2.8 - 5.9 557 
(0 03*) (0 02*) (0 14*) (0 33*) (0 71*) (29 o•) 

75 0.39 0.59 1.3 - - 1 7 396 
(0 03*) (0 02*) (0 05*) (031*) (19 0*) 

*Standard deviation 
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It was observed that the tensile strength decreased especially at higher ENR 

contents. Reduction in the tensile strength with increasing ENR content was 

reported m a study conducted on ENR/NR blends (Rahman,l990). The observed 

lower tensile strength values for the NR/ENR blends having more than 50% ENR 

content was pnmarily due to the low cross-hnk density arismg because of the 

lower unsaturatlon level in the ENR, but is also due to the utilization of low 

levels of curative agents for vulcanizatiOn of these blends (Table 2. 7). 

Table 5.8 Tensile properties of the NR/ENR-45 (M) blends 

Tensile properties 

ENR-45 (M) 
Modulus(%) 

Elongation (MP a) Tensile 
(wt%) strength at break 

(MP a) (%) 
50 100 300 500 700 

0 037 0.55 1.2 2.2 6.6 16 0 836 
(0 04*) (0 03*) (0 06*) (0 15*) (I I*) (I 2*) (32 I*) 

75 036 0.56 1.2 2.2 56 14 9 714 
(0 02*) (0 04*) (0 03*) (0 03*) (0 98*) (I 8*) (23 6*) 

10 0.32 0.54 I 2 2.1 8.3 15.6 778 
(0 02*) (0 03*) (004*) (0 20*) (I 5*) (I 2*) (22 I*) 

12.5 0.33 0.53 1.2 2.1 64 16.9 729 
(0 01*) (0 01*) (002*) (0 19*) (0 5*) (0 6*) (17 9*) 

25 0.34 0.59 1.3 2.6 82 14.9 710 
(0 01*) (0 02*) (0 03*) (0 16*) (I 2*) (I 3*) (11 2*) 

50 0.32 0.53 1.2 2.1 6.5 13.0 730 
(0 03*) (0 03*) (0 07*) (0 18*) (0 55*) (I 2*) (42 9*) 

75 042 0 51 1.1 1 8 - 7.0 596 
(0 02*) (0 06*) (0 08*) (0 13*) (I 2*) (19 2*) 

100 034 0.55 1.2 2.2 54 585 
(0 02*) (0 02*) (0 01*) (0 4*) (0 80*) (20 8*) 

*Standard deviation 

It is sensible to mention that, in this present mvestigation, an extremely 

low level of sulphur was used as the main cunng agent because sulphur is 

capable of exertmg an inhibition effect on the polymenzahon of MMA (Bartlett 

and Tnfan, 1956; Ghosh, 1971). As the NR and the ENR matenals are not a 

miscible pair, the distnbutwn of vulcanizing agents in each phase depends on 

their solubility m each phase. This will cause changes m the distnbutwn of cross-
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lmks m each phase dependmg on the reactivity of cunng agents m each phase 

resultmg m a heterogeneous morphology for these blends (Wang and Roland, 

2005). Because of these factors, the tensile strength of the NR/ENR blends 

contaimng more than 50 wt.% of ENR was mfenor probably owing to a low 

cross-link density in these materials. It was reported that the cross-link density 

decreased as the ENR content mcreased {lsmaii and Suzaimah, 2000), Their 

results further mdicated that the ENR phase would be the continuous phase when 

the ENR content is more than 50 wt.% . 

Table 59 Tensile properties of the NR/ENR-60 (M) blends 

Tensile properties 

ENR-60 (M) Modulus (100%) Tensile ElongatiOn 
(wt%) (MP a) strength at break 

50 100 300 500 700 (MPa) (%) 

0 0.37 0.55 1.2 2.2 6.6 16.0 836 
(0 04') (0 03') (0 06') (0 15') (I I') (I 2') (32 I') 

2.5 0.34 0.56 1.2 2.2 61 12.9 800 
(0 03') (0 02') (0 04') (0 17') (I 0') (0 9') (13 9') 

5 0.45 067 1.5 3.1 10.7 14.8 757 
(0 05') (0 06') (0 12') (0 34') (I 2') (I 3') (45 2') 

7.5 0.37 0.58 1.2 2.4 7.1 13.2 781 
(0 02') (0 2') (0 09') (0 22') (0 71') (0 9') (24 0') 

10 0.36 066 1.5 2.9 9.2 16.5 849 
(0 01') (0 05') (0 12') (0 44') (I 5') (I 3') (30 0') 

12.5 0.37 0.58 1.3 2.4 8.0 17.6 802 
(0 02') (0 03') (0 09') (0 09') (0 7) (I I') (17 6') 

25 046 0.70 1.5 28 8.0 21.1 842 
(0 08') (0 10') (0 12') (0 24') (I 6') (I 6') (37 I') 

50 040 0.67 1.7 3.2 9.2 19.3 833 
(0 04') (0 07') (0 16') (0 23') (0 85') (I I') (32 9') 

75 0.37 0.59 1.5 3.1 - 5.4 442 
(0 06') (0 05') (0 11') (0 26') (I I') (43 3') 

100 035 0.59 1.3 - - 2.0 383 
(0 01') (0 03') (0 08') (04') (30 7') 

*Standard deviation 

The tear properties of the blends contaimng ENR-50 (H), ENR-45 (M) 

and ENR-60 (M) are presented in Figures 5.11 and 5.12. These matenals 
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exhtbited very margmal mi!!al increase in tear strength and thereafter showed a 

decreasmg trend with mcrease m the ENR content. 
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5.4 Semi-1 IPNs based on ENR or ENR!acrylic acid 

5.4.1 Semi-1 IPNs based on natural rubber, PMMA and the 

epoxidised natural rubber 

In this chapter, the mam objective IS to mvestigate the effect of the 

addition of ENR as a third polar component on the miscibility, or compatibility, 

of the components of the IPNs based on natural rubber and PMMA. Epox1dised 

natural rubber is a form of modified rubber and It may be expected that It is 

partially compatible with natural rubber. On the other hand, as ENR contains 

ox1rane group which render polanty it may be partially compatible with the 

PMMA component too Hence, epoxidised natural rubber is expected to act as a 

compatibilizer to improve the compatibility of the natural rubber and PMMA 

components in the IPNs. In this chapter, attentiOn has been paid to the synthesis 

of semi-! IPNs m which the composition was limited to 50150 of elastomer 

(natural rubber, or a blend of natural rubber with ENR) and PMMA. For this 

purpose, blendmg of natural rubber and ENR was earned out pnor to the 

synthesis of semi-1 IPNs Blending of polymers is a most extensively used 

technique to obtain desired physical and chemical properties. Blendmg can be 

achieved by various methods such as solution m1xmg, mixmg of latexes or solid 

state mixing Solution state mlXlng is used to evaluate the miSCibility of 

components smce It will facilitate the reaching of eqmlibrium conditions. 

Compatib1lizers is the term used for materials commonly used to enhance the 

compatibility between immisCible polymer pairs. This IS generally aclueved by 

means of addmg a third component: homopolymer, graft co-polymer or a block 

co-polymer. In addition, the formation of covalent bonds between homo

polymers is employed using matenals with reactive functional groups to Impart 

compatibility and is referred to as reactive processing (Jeon et al., 2005) It IS 

bemg widely used by industry. 

Mixing of the compatib1lizer in the solid state can be performed m two ways. 

1 Smgle-step mixmg 

2. Two-stage mixing. 
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Two-stage m1xing can be performed according to two methods. In the 

first method, the compatib1hzer (e g. ENR) can be mixed imtially w1th the 

d1screte phase (e g PMMA) Thereafter, this mixture will be mixed with the 

material (eg. natural rubber) which act as the matnx. 

In the second method, the compatib1hzer ( e g. ENR) is mixed initially 

with the major component (eg. natural rubber) which acts as the matrix. Then this 

material will be m1xed With the matenal (MMA, startmg matenal for 

polymerization ofPMMA) which serves as the dispersed phase. 

However, in this present work, the first method, two-stage mixing of 

natural rubber and PMMA 1s difficult to apply as PMMA has to be synthesised 

w1thm the cross-lmked matrix. Hence, the second method was employed. In the 

first stage of mlXIng, ENR, wh1ch was used to improve the compatibility, was 

m1xed w1th the natural rubber (matnx) and the resultant matenal1s referred as the 

rubber blends. These rubber blends were vulcanised usmg a low level of sulphur. 

Unlike the normal second stage mlXIng where the second polymer is m1xed m the 

solid state using a m1ll, here, the mixing of methyl methacrylate w1th the blend 

was carried out by swelling the NR m MMA. The MMA polymenzat10n will then 

take place in the NR/rubber blend matnx Th1s process will facilitate more 

mlXIng than the conventional m1xing of polymers with high molecular we1ghts as 

the m1xing is earned out v1a the monomer. This facilitates interpenetration of 

PMMA in to the NR matrix and the simultaneous formatiOn of catenane 

structl!res, which IS the umque feature of mterpenetratmg networks. 

In brief, five types of blends and sem1-1 lPNs were prepared using 

following ENR types. 

1. ENR- 15 (H) (0- 50 wt.%) 

2. ENR-45 (H) (0- 50 wt.%) 

3. ENR-50 (H) (0- 75 wt.%) 

4. ENR-45 (M) (0- 100 wt.%) 

5. ENR-60 (M) (0- 100 wt.%) 

In th1s investigation, the term "th1rd component" is preferentially used 

instead of usmg the term compatibilizer for the ENR as most compatibilizer 

levels used for the blends are m general confined to below the 15 wt % level. 
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Th1s study will mveshgate the effect ofENR on the compahb1hty of sem1-l IPNs 

based on natural rubber and PMMA over a wide range of composition 

5.4.1.1 Detail description of the materials 

Compositions of the blends and IPNs determined gravimetncally are given in 

Tables 5.10 to 5.14. 

Table 5.10 Compositions of the semi-! IPNs and the blends contammg ENR-

15(H) 

Composition 

IPN 

Sample code 
Blend Target Detemuned 

(NR ENR-15) composition CompositiOn* 

(wt%) (Blend PMMA) (Blend PMMA) 

(wt%) (wt%) 

NR50 PMMA50 1000 50 50 53 47 

NR/ENR-15 (H) (95/5) 50 PMMA 50 95 5 50 50 5050 

NR/ENR-15 (H) (90/10) 50 PMMA 50 90 10 5050 52 48 

NR/ENR-15 (H) (87 5/12 5) 50 PMM A 50 87 5 12 5 50 50 54 46 

NR/ENR-15 (H) (75/25) 50 PMMA 50 75 25 50 50 50 50 

NR/ENR-15 (H) (50/50) 50 PMMA 50 50 50 50 50 50 50 

• Detemuned graVImetncally 

Table 5.11 CompositiOns of the sem1-l IPNs and the blends containing ENR-

45(H) 

Composition 

IPN 
Blend 

Sample code Detemuned 
(NRENR-45) Target composition 

CompositiOn* 
(wt%) (Blend PMMA) 

(Blend PMMA) 
(wt%) 

(wt%) 

NR50 PMMA50 100 0 50 50 53 47 

NR/ENR-45 (H) (95/5) 50 PMMA 5 0 95 5 50 50 52 48 

NR/ENR-45 (H) (90/1 0) 50 PMMA 5 0 90 10 50 50 5149 

NR/ENR-45 (H) (87 5/12 5) 50· PMMA 50 87 5 12 5 50 50 5050 

NR/ENR-45 (H) (75/25) 50 PMMA 5 0 75 25 50 50 49 51 

NR/ENR-45 (H) (50/50) 50 PMMA 5 0 50 50 50 50 53 47 

• Detemuned graVJmetncally 
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Table 5.12 CompositiOns of the semi-! IPNs and the blends contammg ENR-50 (H) 

Composition 

IPN 

Blend 
Target 

Deternnned 
Sample code (NR: ENR-50) 

composition 
Composition • 

(wt%) 
(Blend 

(Blend PMMA) 
PMMA) 

(wt%) 
(wt%) 

NR50 PMMA50 1000 50 50 51 49 

NR/ENR-50 (H) (97 5/2 5) 50 PMMA 50 97 52 5 50 50 48 52 

NRJENR-50 (H) (95/5) 50 PMMA 50 95 5 50 50 50 50 

NRJENR-50 (H) (92 5n 5) 50 PMMA 50 92 57 5 50 50 52 48 

NR/ENR-50 (H) (90/10) 50 PMMA 50 90 10 50 50 50 50 

NR/ENR-50 (H) (87 5/12 5) 50 PMMA 50 87 5 12 5 50 50 52 48 

NRJENR-50 (H) (75/25) 50 PMMA 50 75 25 50 50 5149 

NRJENR-50 (H) (50/50) 50 PMMA 50 50 50 50 50 47 53 

NR/ENR-50 (H) (25n5) 50· PMMA 50 25 75 50 50 50 50 

* Deternnned gravimetncally 

Table 5.13 Compositions of the semi-! IPNs and the blends containing ENR-45 (M) 

Composition 

IPN 

Blend 
Target 

Deternnned Sample code composition 
(NR ENR-45) Composition• 

(wt%) 
(Blend 

(Blend PMMA) 
PMMA) 

(wt%) 
(wt%) 

NR50 PMMA50 100 0 50 50 53 47 

NRJENR-45 (M) (97 5/2 5) 50 PMMA 50 97 52 5 50 50 51 49 

NRJENR-45 (M) (92 5n 5) 50 PMMA 50 92 57 5 50 50 48 52 

NRJENR-45 (M) (87 5/12 5) 50 PMMA 50 87 5 12 5 50 50 52 48 

NRJENR-45 (M) (75/25) 50 PMMA 50 75 25 50 50 50 50 

NRJENR-45 (M) (50/50) 50 PMMA 50 50 50 50 50 46 54 

NR/ENR-45 (M) (25n5) 50 PMMA 50 25 75 50 50 52 48 

NRJENR-45 (0/100) 50 PMMA 50 0 100 50 50 55 45 

* Deternnned gravimetncally 
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Table 5.14 Compositions of the semi-1 IPNs and the blends containing 

ENR--60(M) 

Compos1t1on 

IPN 

Blend 

Sample code (NR ENR-60) 
Target composii!On 

(wt%) 
(Blend. PMMA) 

(wt%) 

NRSO PMMASO 1000 50 50 

NRIENR-60 (M) (90/10) SO PMMA SO 90 10 50 50 

NR/ENR-60 (M) (87 S/12 5) SO PMMA 50 87 5 12 5 50 50 

NR/ENR-60 (M) (7S/2S) SO PMMA SO 75 25 50 50 

NR/ENR-60 (M) (SO/SO) SO PMMA SO 50 50 50 50 

NR/ENR-60 (M) (2SnS) 50 PMMA SO 25 75 50 50 

NR/ENR-60 (0/100) SO PMMA SO 0 100 50 50 

• Determmed gravunetncally 

5.4.1.2 Physical properties of the NR-ENR-PMMA semi-1 IPNs 

Detemuned 

Composii!on* 

(Blend PMMA) 

(wt%) 

53 47 

51 49 

49 51 

50 50 

5248 

47 53 

5050 

5.4.1.2.1 Solubility parameters and interaction parameters for ENR 

Solubility parameters ( o) for different ENR grades, natural rubber and 

PMMA which are shown m Table 5.15. 

Table 5.15 Solubility parameters and interaction parameters for ENR 

Polymer 

ENR-25* 

ENR-50* 

NR 

PMMA 

* Literature values 

o (MPa)112 

17.4 

18.1 

16.7 

18.6 

The difference between the solubility parameters of ENR and NR 

increases with an increase of the epoxidation level. On the other hand, the 

difference between the same parameter of ENR and PMMA components 

decreases with the epoxidation level. These data clearly indicate that the 
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compatibility of ENR and NR decreases with increasing the epoxidation level 

The reverse trend is noted for the compatibility between ENR and PMMA 

components. Yusof (1999) and Nakason et a/ (2004) clearly indicated that the 

ENR and PMMA are phase separated, but could be descnbed as a partially 

compatible polymer pair proven from the DMTA studies. Such a trend 1s 

attnbuted to the presence of mteract10ns between the polar groups of the ENR 

and PMMA components (Nakason et al., 2004) 

5.4.1.2.2 Tensile properties of the NR-ENR-PMMA semi-1 IPNs 

As is illustrated m F1gure 5.13, a promment enhancement m the tensile 

strength of the NR-ENR45 (M)-PMMA semi-1 IPNs was 1mtlally observed at 25 

wt.% ENR content and 1t further improved w1th mcreasmg the ENR content from 

25 wt% up to 75 wt %. The optimum tensile strength was obtamed at a level of 

75 wt% ENR content on rubber. Nevertheless, if the additive rule is taken into 

consideratiOn, a positive dev~ation was observed for the NR-ENR45 (M)-PMMA 

sem1-1 lPNs w1th 50 wt % and 75 wt.% of content. This illustrates that the ENR-

45 (M) compatlbil1zes the NR and the PMMA component at 50 wt.% and 75 

wt.%. ENR -45 (M) content for these semi-11PNs 
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Fig. 5.13 Variation of the tensile strength With the level ofENR-45 for 

the NR-ENR45 (M)-PMMA semi-11PNs 
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A similar trend was obtmned for the sem1-l IPNs with ENR-60 (M) 

(Figure 5.14). However, a pos1hve devmtion (synergism) from the additive rule 

was observed only for the NR-ENR60 (M)-PMMA semi-! IPNs w1th 75 wt% 

ENRcontent 
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80 

Level ofENR-60 ( wt %) 
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100 

Fig. 5.14 Vanation of the tensile strength w1th the level ofENR-60 for 

the NR-ENR60 (M)-PMMA semi-! IPNs 

120 

This tensile property enhancement may be related to vanous reasons It 

could be primarily related to the interactions (Mohanty et al., 1996) occumng 

between the oxygen of the carbonyl group ofPMMA and the hydroxyl groups of 

ENR, formed v1a a nng opening reaction. Increase m the intensity of the peak due 

to hydroxyl groups was evident from the FTIR spectra of the sem1-l IPN 

compared to the correspondmg blend (Figures 5.21 and 5.23). Therefore, the 

hydroxyl groups formed m the ENR (Figure 5.15) may possibly form hydrogen 

bonds with the oxygen of the carbonyl groups of the PMMA However, as there 

were no evidence for a prominent sh1ft m the hydroxyl absorptiOn peak towards 

lower frequencies, 1t may be assumed that the extent of formation of hydrogen 

bonds IS not very significant. On the other hand, the hkehhood of the occurrence 

of an ester mterchange reactiOn between the ester groups of the PMMA and 

hyroxy groups as shown in Figure 5.16, cannot be under-estimated. Therefore, 

these factors will undoubtedly contribute for the enhancement of tensile 

properties. The factors affect the formation of hydrogen bonds can be identified 

as the amount of hydroxyl groups avmlable and their proximity between the 

acceptor group (Eastwood et al , 2005). It is reported that as the amount of 

hydroxyl groups mcreases the probability to form mtramolecular hydrogen bonds 

236 



will be higher (Eastwood et a/ , 2005). It may be assumed that as the epoxidation 

level mcreased, the chances of hydrogen bonds between the hydroxyl groups in 

ENR chains are higher (self-assocmtwn) and this may lead to a reductiOn m the 

formatiOn of hydrogen bonds between ENR and PMMA. This may reduce the 

extent of compa!Ibihzation to a certam degree. 

H 
/ 

H,C H 
-, / w 

c-c /' ,, 
0 

-HF CH1-

ENR 

CH2 H 
~ / 
c-c 

/ I ' 
-HF OH CH2 -

Secondary alcohol 
(A) 

CH3 CH3 CH3 

I I I 
-(CH2-C=CH-CH2).-(CH2C-CH-CH2)b-{CH2-C-CH-CH2)c-

\ I I I 
0 OHOH 

Figure 5.15 Ring openmg ofENR groups and the some possible structures of 

nng-opened ENR (After Gan and Hamid, 1997; Mohanty and 

Nando, 1997) 

R-OH 
+ H3C-OH 

Figure 5.16 Ester interchange reactwn 

A lower tensile strength observed for the semi-11PNs having 100 % ENR 

is purely due to the lower cross-hnk density resultmg from not only the low level 
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of unsaturat10n, but because of the usage of a low level of sulphur as the pnme 

curing agent. The cross-link density is considered as one of the decisive factors in 

determimng the domain size (Yeo et al., 1983).1t IS expected that if the cross-link 

density of the first-formed network is low, then the number of moles of the 

second monomer present between the tied polymer chain segments of the first 

polymer will be higher. With the polymerizatiOn of the second monomer, 

growmg polymer chains of the second polymer repel the already existmg polymer 

chains of the first polymer (Sanchez et a/, 2001) resultmg in large domams 

Therefore, it may be expected that the size of the domains, or PMMA phases, will 

increase with decreasmg the cross-hnk density, resulting m a lower strength. 

However, It is noteworthy that the tensile properties of the sem1-l IPN based 

purely on 1 00 % ENR IS still higher than those of the sem1-l IPN based on NR 

andPMMA. 

Stress-strain plots for the ENR-45 (M), ENR-60 (M) and ENRSO (H) are 

shown in Figures 5.17 to 5 19. From these, It can be seen that the stress-strain 

behaviour vanes from ductile behaviour to a more bnttle behaviour. 
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5.4.1.2.3 Tear properties of the semi-1 IPNs 
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Fig 5.20 The tear strength with ENR content at two different 

epox1dation levels for the (NR/ENR)/PMMA semi-! IPNs 

Tear strength data for different ENR contents are shown m Figure 5.20. 

The results indicated that the tear strength increased significantly with mcreasmg 

the ENR content up to 75 wt.%, regardless of the level of epoxidation. This 

improvement m tear strength could be a result of increased compatibility between 

NR and PMMA through the presence of the epoxidised natural rubber 

The tear strength of the semi-! IPNs contammg 100 % ENR is 

significantly lower than the semi-! IPNs contammg 75 wt.% ENR and this might 

be expected as there IS a possibility of a reduction m stram-induced 

crystallizatiOn with further cross-hnkmg of the ENR. 

5.4.1.2.4 FTIR spectroscopy analysis of the semi-1 IPNs 

A companson of FTIR spectra for the correspondmg blend and the semi-1 

IPN contaimng 100% ENR-60 (M) are given in Figures 5 21 and 5.23. The 

presence of a peak (medmm) for the carbonyl absorption for the NR/ENR-60(M) 

(50/50) blend was noted m the Figure 5.21, which may be due to either carbonyl 

groups present m the natural rubber (protemic layer on the rubber particles) or 
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due to residual formic acid From these spectra, it can be seen that the hydroxyl 

peak height mcreased more in the semi-! IPN than m the correspondmg blend, 

mdicating the formatiOn of hydroxyl groups possibly by the ring opemng of the 

epoxy group at 80°C dunng heat processing Therefore, some degree of hydrogen 

bonding can be present. The enhanced tensile and tear properties of the semi-! 

IPNs with ENR could be the result of these interactions . 
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FTIR spectroscop1c studies indicated that as the ENR content m the IPN 

IS mcreased the hydroxyl peak height increased sigmfymg mcrease of hydroxyl 

content perhaps due to nng opemng of epoxy groups. Broadenmg of hydroxyl 

peak also evident and 1t may be an mdicat10n of the presence of hydrogen bonds. 

Broademng of hydroxyl peak m ENR-50 and PMMA blend had been attnbuted to 

the presence of hydrogen bonds (La!if et al., (2006). LatJf et al. (2006) concluded 

that ENR and PMMA are partially miscible via formatiOn of hydrogen bonds 

between ENR-50 and PMMA. 
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Nevertheless, strong evidence for the presence of hydrogen bonds was not 

obtamed as there was no significant shift m the carbonyl peak towards lower 

frequencies (Figures 5.24 to 5 26). A shift of the carbonyl peak is considered as 

strong evidence for the presence of hydrogen bonding (Huang et a/, 2006). 

Nevertheless, this does not mean that hydrogen bonds are not there, but JUSt not 

in detectable amounts. Furthermore, peak broadening of the carbonyl absorption 

was observed with mcrease of the ENR content. 
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Companson of the FTIR spectra of the semi-! IPN contammg ENR-45 

and ENR-60 (M) (Figures 5.27 and 5.28) indicated that with increasmg 

epoxidation level, the peak height of the absorbance of the hydroxyl group 

mcreased. 

Ritzenthaler et a! (2000) have studied PMMA-modified epoxy resm 

based on the diglycidyl ether ofbisphenol A (DGEBA).They reported that there 

were no evidence for the presence of hydrogen bonding between PMMA and 

DGEBA from the FTIR studies due to lack of any shift of the carbonyl peak 

towards lower frequency and broademng of the lower frequency region which are 
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considered as strong ev1dence for the presence of hydrogen bonded carbonyl 

groups. Further, the presence of a trans-esterification reaction between DGEBA 

and PMMA was also unable to be proved from FTIR studies due to lack of 

reductiOn in the peak due to the --O-CH3 groups of PMMA (2850-2950 cm-1
) 

wh1ch IS an md1cat1on of a trans-estenfication reaction. In order to investigate 

further th1s, a small molecule, monoepoxy and a diamine were heated w1th 

PMMA and chromatograms (SEC) were obtamed for the product. There was no 

prominent vanahon m PMMA peak md!Catmg lack of grafting of epoxy-amine 

on to PMMA component {R!tzenthaler et a! , 2000) Based on these facts, they 

have concluded that hydrogen bonds and trans-estenficatwn reactions are absent 

between PMMA and DEGBA {R!tzenthaler et a!, 2000). In th1s study too, a 

prominent variation in peaks between 2850 cm·' - 2950 cm·' were not obtamed. 

However, even m the NRIENR blends, three peaks were present in this regwn, 

but the peak at 2950 cm·' is more prominent in the sem1-1 IPN than the 

corresponding blend. However, there is not much variatiOn m the peak height at 

2950 cm-1with the ENR content. If !Tans-esterification (ester-mterchange) 

reactwn occurs, it is expected that the peak height should decrease with ENR 

content. Nevertheless, such trend could not be found from the FTIR stud1es, and, 

therefore, 1t was concluded that the trans-estenfcatwn reactwns are not present in 

the ENR/PMMA system to any significant level 

In contrast, Janarathanan and Thyagarajan (1992) had found presence of 

hydrogen bonding between DGEBA and PMMA at room temperature m1xmg. 

5.4.1.3 Dynamic mechanical thermal analysis data for the NR-ENR-PMMA 

semi-1 IPNs 

5.4.1.3.1 NR-ENR-50 (H)-PMMA semi-1 IPNs 

The data derived from the relaxatiOn spectra of the sem1-1 IPNs are 

shown in Table 5 16. The ENR-50 (H) content based on natural rubber 1s g1ven in 

the first column. The a-transition corresponds to conformational molecular 

rearrangements which are considered as co-operative processes They were 

denved from the loss tangent data. As can be seen from the DMTA traces (Figure 

5.29) of these semi-1 IPNs, three maJor transitions could be detected 
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correspondmg to natural rubber, ENR and PMMA dependmg on the ENR 

content, stgrufymg these semt-1 IPNs are heterogeneous and phase separated m 

nature. 

.!! 
Ol 
"0 

" ~ 

07 

06 __.._ NRIENR (50/50) 50 PMMA50 se1111-l IPN 

05 · · ·o· · · NR/ENR(25175) 50 PMMA50 se1111-l IPN 

04 

03 

02 

0 1 

-80 -60 -40 -20 0 20 40 60 80 lOO 120 140 160 180 200 

Telll'erature ("q 

Ftg. 5.29 The temperature dependence ofloss tangent for the semi-! IPNs 

wtth a levels of 50 wt.% and 75 wt% ofENR-50 (H) 

Table 5.16 DMTA data for the semt-1 IPNs with ENR-50 (H) 

ENR-50 (H) content NRT8 ENRT8 PMMAT8 

(wt.%) ("C) ("C) ("C) 

0 -45 137 

2.5 -44 134 

7.5 -44 133 

10 -39 130 

12.5 -44 133 

25 -43 58 133 

50 -35 45 137 

75 -38 48 131 

In addttion, 1t was noted that the transition correspondmg to ENR-50 (H) 

component is prominent m the semi-! IPNs with greater than 12.5 wt.% ENR. 

The absence of this transttion in the semi-! IPNs with 0 wt.% to 12.5 wt% 
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ENR50 (H) not considered as evidence for complete miscibility of the ENR 

component of these levels because of instrument limitatiOns. As far as ENR 

transition is concerned, it is interesting to note that it has shifted approximately 

34'C to 47'C compared to the ENR Tg (11 'C) obtained for the vulcanizates of 

ENR-50 (H) A shift (8'C) of the ENR Tg was obtained for ENR-50/PMMA IPNs 

by Yusof (1999). Compared to the Yusof study, the lugher shift of ENR Tg 

observed m tlus study Is pnmanly attnbuted to the improved mixing obtamed by 

the use of a low amount of cunng agent (sulphur), the low PMMA molecular 

weight resulting from the use of a lugh amount of initiator and due to the 

presence of hydroxyl groups m the ENR caused by the experimental conditions 

employed. Moreover, Improved mixing may be achieved via cross-linkmg and/or 

chemical mteract10ns, especially hydrogen bonds. It has been stated that 

hydrogen bonds are one of the decisive factors which governs the miscibility of 

IPNs (Kim et al., 1989). However, it could be anticipated that the mteract10ns 

between ether group and carbonyl groups of epoxy and PMMA components is 

weak probably in the order of van der Waals forces as in the case ofpolyethylene 

oxide and PMMA (Rao et al., 1985) Therefore, one could expect that the 

formatiOn of hydrogen bonds most probably occur between the hydroxyl groups 

ofENR formed via the nng openmg reaction, and the carbonyl groups ofPMMA. 

This can be supported by the FTIR spectra of the semi-1 IPNs With ENR, in 

which the absorbance for the epoxy groups IS no longer detectable perhaps due to 

nng openmg and is further supported by the increased hydroxyl absorbance. 

On the other hand, when the PMMA transition is concerned, generally, 

PMMA Tg shifted to lower temperature by 7'C when the ENR-50 (H) content 

mcreased up to 10 wt.%. This is clearly an indication of some m1xmg occurred 

through either interpenetratiOn of the rubbery components m to the PMMA phase 

via Improved compatibility arismg from specific interactions or to the similar 

polanties of the ENR and PMMA components However, a further increase of the 

ENR-50 (H) content up to 50 wt.% caused an mcrease (3'C to 7'C) of the 

PMMA T g· This behaviour may be related to the high extent of interactions 

between, ENR and PMMA which may lead to a reduction m the mobility of 

PMMA polymer chain segments. 

When the ENR-50 (H) content increased to 75 wt %, the PMMA Tg has 

shifted towards lower temperature by 6'C at a level of 75 wt.% ENR content. 
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Thts IS basically attnbuted to the plasticizing effect resulting from improved 

mter-dtffuswn of components at the phase boundanes because of the simtlanties 

m polanties ofENR and PMMA components. 

There is no noticeable defimte trend in the NR Tg wtth ENR-50 (H) 

content. However, some improved mixing of the NR component was evtdent 

from the shift ofNR T g to htgher temperature by 6'C to I O'C at level of 10 wt %, 

50 wt% and 75 wt.%. 

5.4.1.3.2 NR-ENR-45 (M)-PMMA semi-1 IPNs 
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Fig. 5.30 The temperature dependence ofloss tangent for the semt-1 

IPNs with ENR-45 (M) 

The loss tangent versus temperature plots for the NR-ENR-45 (M)

PMMA semt-1 IPNs are shown m Ftgure 5.30. Table 5.17 shows the glass 

transition temperatures denved from the loss tangent data for each component in 

these semi-1 IPNs. Unhke for the ENR-50 (H) senes, the observed shift of the 

NR Tg by 7'C to 19'C towards higher temperature m all semi-1 IPNs is pnmanly 

associated With the reductiOn of mobility of NR polymer chams caused by the 

mter-mtxing of PMMA component and/or ENR. This may be considered as 
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-------- -- ------

strong evidence for Improved mixing due to the mcorporation of ENR-45 (M) 

WithNR. 

The ENR transitiOn has shifted by more than 20°C to 39oC towards higher 

temperature signifying improved mixing of ENR with the PMMA component 

The reasons given for the observed Identical shift m ENR Tg m the NR-ENR-50 

(H)-PMMA semi-1 IPNs are also applicable to tins situation. 

The PMMA T8 Imtially decreased by TC at 2.5 wt.% ENR content, 

compared to the semi-1 IPNs without ENR. Thereafter, the PMMA T8 shifted to 

higher temperature by 13°C with mcreasmg the ENR level up to 50 wt.%. An 

Identical trend was observed for the ENR-50 (H) series and reason for this 

behaviOur was gtven m sectiOn 5.4.1.3.1. Further increase ofENR up to 100 wt% 

caused an mward shift by 23 OC, indicatmg enhanced mixing. This suggestion is 

further strengthened by the increase of the mtermediate region between the ENR 

and PMMA transitions. It appears that these two transitions merged to form a 

broad transition perhaps indicating micro-heterogeneity (Figure 5 30) However, 

even at 100% ENR content, two transitions were resolvable, and therefore, 

considered as phase separated. The same conclusiOn was drawn by Yosof (1999) 

m his study based on ENR- PMMA IPNs Apart from that, a significant slnft of 

the PMMA transition was found only at 2 5 wt% and 100 wt % ENR contents 

Table 5 17 DMTA data for the semi-1 IPNs with ENR-45 (M) 

ENRcontent 
NR T8 ENRT8 PMMAT8 

(wt.%) 
("C) ("C) ("C) 

0 -45 137 

2.5 -26 130 

7.5 -28 136 

12.5 -29 49 136 

25 -28 45 135 

50 -34 50 143 

75 -38 30 138 

100 41 120 
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F1g. 5.31 The temperature dependence ofloss modulus for the semi-1 

IPNs w1th ENR-45 (M) 

The loss modulus data shown m Figure 5 31 illustrate that the magmtude 

of the ENR transition increased w1th increase in the ENR content mdicatmg the 

dampmg characteristics of ENR However, the loss modulus peak of the PMMA 

component was not resolvable. This may 1mphes that the extent of mlXlng of 

PMMA IS also Ingher. The opposite trend was found for the loss tangent. The 

presence of a promment PMMA loss tangent indicate that the PMMA phase 

would be the continuous phase and as a result tens1le properties may be low due 

to the inherent bnttleness ofPMMA matnx. However, the absence of prominent 

loss modulus peak for the PMMA component IS probably related to the improved 

mlXlng of the PMMA component. 
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5.4.1.3.3 NR-ENR-60 (M)-PMMA semi-1 IPNs 

The NR Tg data presented in Table 5.18 indicated that incorporation of the 

ENR-60 (M) as a third component caused a shift of NR Tg towards higher 

temperature by 8T to 18T, mdicating a significant extent of mixing of the NR 

component. 

When ENR Tg is concerned, ENR Tg in these semi-1 lPNs shifted 

towards higher temperature by 44'C to 51'C compared to the ENR Tg (18T) of 

the cross-hnked ENR-60 (M) rubber without PMMA. Moreover, ENR transition 

has apparently merged with the PMMA transitiOn resultmg m a shoulder on the 

PMMA transition. This clearly mdiCates that ENR IS present in a PMMA-rich 

phase resultmg from the enhanced mixing of the ENR component with the 

PMMA component via mterac!Ions or by formation of chemical hnks between 

ENR and PMMA components. 
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Fig. 5.32 The temperature dependence ofloss tangent for the semi-1 

lPNs With ENR-60 (M) 
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Table 5.18 DMTA data for the semi-1 IPNs with ENR-60 (M) 

ENR-60(M) content NR T8 ENRT8 PMMAT8 

(wt%) (OC) ("C) ("C) 

0 -45 137 

12.5 -27 137 

25 -30 137 

50 -32 69 136 

75 -37 68 133 

100 62 141 

Any promment shift in the PMMA T 8 towards lower temperature were not 

able to be detected from the DMTA traces of these ENR-60 (M) semi-1 IPNs. It 

IS accepted that the conformational motwns of individual component would not 

be affected by the presence of other components 1f there is prevailing macro

heterogeneity in the sample The observed promment shift m not only NR T 8, but 

also m the ENR T8 would suggest that the extent of mixing of these two 

components with the PMMA component IS higher in these samples. If the PMMA 

transition IS considered, m1xmg of rubbery component With PMMA should 

Impart a plastic1zatwn effect and therefore, one could expect that the PMMA T 8 

should be decreased upon mixing with the rubbery component In this case, It 

may be presumed that the interactions between ENR and PMMA may be higher 

resulting in a lowering of mobility of PMMA cham segments. In additiOn, if 

formatiOn of covalent bonds occurs between nng opened ENR and PMMA, most 

probably VIa ester mterchange reactions (Figure 5.16, section 5.4.1.2.1), tlus 

might lead to a reductiOn of mobility of each component resultmg m mcrease in 

their glass transition temperatures. The likelihood of such a reaction may be 

higher at higher epoxidation levels and higher ENR contents. Therefore, the shift 

ofT8 PMMA by 8'C towards higher temperature region in the semi-1 IPN based 

on 100% ENR-60(M) as the rubbery component, is primarily due to the 

formation of links (ester) and/or interactions between ENR and PMMA 

components. This could be the one of the reasons for significant shifting of ENR 
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transition towards higher temperature region and the merging with the PMMA 

transition. 
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F1g. 5.33 The temperature dependence ofloss modulus for the semi-1 

IPNs w1th ENR-60 (M) 

As can be seen from the loss modulus data for the semi-1 IPNs with ENR-

45 (M) senes (Figure 5.31), the magnitude of the loss modulus ENR peak 

mcreased with mcreasmg the ENR content (Figure 5.33). It IS well known that the 

ENR is a good damping (h1gh hysteresis) matenal (Baker, 1985), and, therefore, 

it can be presumed that the magnitude of the loss tangent should mcrease with 

mcrease in the ENR content. The PMMA loss modulus peak is less prominent 

than the loss modulus peaks of the rubbery component. An identical trend was 

seen for the ENR-45 (M) senes. The probable reason for this behaviOur was 

given in sectiOn 5 4 1.3 2 

5.4.2. Semi-1 IPNs based on natural rubber, ENR, PMMA and acrylic acid 

5.4.2.1 General description 

In this study, several semi-1 IPNs based on ENR and acrylic ac1d were 

prepared m order to mvestigate the effect of acrylic acid on the compatibility of 

NR, ENR and PMMA semi-1 IPNs. It is expected that when acrylic acid is used 

as a monomer together w1th MMA, three possible reactions can occur. 
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1. It can undergo fonnat10n of a copolymer poly(MMA-co-acrylic ac1d). 

Simultaneously, pendent carboxylic group of the acrylic component can 

react with hydroxyl groups of ENR which are fonned through the nng 

opening reaction resulting in ester fonnation On the other hand, ester

interchange reaction between carboxylic group of acrylic component and 

the hydroxyl group of ENR IS also possible. These two reactiOns lead to a 

fonnation of mter-grafts between the copolymer and ENR component. It 

is a well known fact that grafting reactions between components enhances 

the compatibtlity, mtcro-phase heterogenetty and mechantcal properties 

(Hsteh et al., 1995; 2001). Further, fonnation of hydrogen bonds between 

the hydroxyl group of acrylic actd and carbonyl group of PMMA or 

hydroxyl groups, tf any fonned through the ring opemng of epoxy group, 

ts posstble All these factors would enhance the misctbtlity between ENR 

and PMMA component and thereby may exert an effect on the misctbility 

ofNR and PMMA 

2. Acrylic acid is capable of reacting wtth ENR directly to fonn acrylic 

actd grafted ENR (acrylic acid grafted ENR). If acrylic acid grafted ENR 

IS fonned, then the copolymerisation of acrylic component is still posstble 

with etther MMA or natural rubber due to the presence of olefin bond as a 

pendent group m the acrylic component. This will also lead to tmpart 

force misctbtlity between components. Thts process also leads to 

fonnatwn of mter-grafts. 

3. Acrylic acid may graft on to natural rubber resultmg grafted product 

(acrylic actd grafted natural rubber). Thts would factlitate the fonnatwn of 

hydrogen bonds with PMMA and ENR components and thereby 

enhancing mtsctbility between components. 

The composttion of the semi-I IPNs based on acrylic acid are given m 

Table 5.19. 
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Table S.19 CompositiOns ofthe semi-1 IPNs and containmg acrylic acid 

Composition 

IPN 

Sample code Blend Target Determmed* 
(NR:ENR-60) composition composition 

(wt.%) (Blend ·(PMMA/ (Blend PMMA/ 
Acryhc acid)) Acryhc acid) 

(wt.%) (wt.%) 
NR/ENR-60 (M) (SO/SO) SO: 

SO:SO SO:SO S3:47 
PMMA /Acryhc acid (90/10) SO 
NR/ENR-60 (M) (SO/SO) SO: so so SO:SO S3:47 
PMMA I Acrylic actd (80/20) SO 
NR/ENR-60 (M) (SO/SO) SO: 

SO:SO SO:SO S1:49 
PMMA /Acrylic acid (70/30) SO 
* Determmed gravtmetncally 

5.4.2.2 Solubility parameters aud interaction parameters for the poly(MMA

co-acrylic acid) 

Solubthty parameters for the random poly(MMA-ca-AA) was obtamed by 

using followmg equation 

o=Eo, v, 
o, is the solubthty parameter of each component and V, IS the volume fractiOn of 

each component (Table S 20). 

Table S.20 Solubility parameters and interactiOn parameters for poly(MMA-ca

acrylic actd) 

Acrylic actd content 

of poly(MMA-ca

acrylic acid) 

(wt.%) 

10 

20 

30 

100* 

* Poly(acryhc actd) 

o (MPa)112 

19.9 

20.4 

20.9 

24.39** 

** Data obtained from Mohanty et al. (1996) 
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From the data shown m Table 5.20, it can be clearly seen that the 

difference between the solubility parameters of co-polymer and ENR-50 (18.1) or 

PMMA (18.6) mcreased With an increase of the acrylic acid component m the co

polymer resulting in gradual mcrease m incompatibility between individual 

components. 

5.4.2.3 Tensile and tear properties of the semi-1 IPNs based on natural 

rubber, ENR, PMMA and the acrylic acid 

Table 5 21 Mechanical properties of the semi-1 IPNs based on acrylic acid 

CompositiOn Tensile Tear 
strength strength 
(MP a) (N/mm) 

NR/ENR-60 (M) (50/50) 50: 8.4 (1.2*) 92.4 (3.3*) 
PMMA/Acrylic acid (100/0) 50 

NR/ENR-60 (M) (50/50) 50: 6.1 (0.99*) 76.7 (2.1 *) 
PMMA I Acrylic acid (90/1 0) 50 

NR/ENR-60 (M) (50/50) 50: 4 6 (0 78*) 44.5 (I 9*) 
PMMA I Acrylic acid (80/20) 50 

NR/ENR-60 (M) (50/50) 50: 5.2 (1.1 *) 56.7 (1.5*) 
PMMA I Acrylic acid (70/30) 50 

* Standard deviation 

From these results, it was noted that the introduction of up to 20 wt % 

acrylic acid resulted m a lowenng of both tensile and tear strengths However, 

further increase of acryhc acid increased the tensile and tear strength. In 

companson With the semi-1 IPN without acrylic acid, the observed lower 

mechanical properties of the semi-1 IPNs havmg acrylic acid is primarily 

ascnbed to the reduction of the reinforcement caused by the lower PMMA 

content (less than 50 wt %) in these materials. However, the mcrease in tensile 

strength and tear strength With mcrease of the acrylic acid content from 20 wt.% 

to 30 wt.% possibly related to the simultaneous copolymerisation of acrylic acid 

With the MMA. As indicated from the DMT A results which will be discussed 

later, increased of miscibility between the ENR and PMMA, and increased 

chemical interactions may be the reasons for improved tensile and tear properties 

as the acrylic acid content increased from 20 wt% to 30 wt.% . However, a 

defimte explanation could not be forwarded at this stage. 
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5.4.2.4 FfiR spectroscopy analysis of the semi-1 IPN s based on natural 

rubber, ENR, PMMA and acrylic acid 

As far as FTIR spectra of the semi-1 IPNs containmg acrylic acid are 

concerned, It was found that as the acrylic acid content mcreased from 10 to 30 

wt.%, the hydroxyl absorbance mcreased (Figures 5.36 to 5.38) It is noteworthy 

that these spectra were obtamed for the condensed matenal which was collected 

after heating the sample to red-hot condition {pyrolysed samples) As seen m the 

previous case, a significant shift of the carbonyl absorbance towards lower 

frequency was not detected, implymg the absence of a large amount of mter

molecular hydrogen bonding between the oxygen m the carbonyl groups and the 

OH groups of the acrylic acid component. Nevertheless, self-associatiOn of OH 

groups present m ENR or in the acrylic acid groups IS possible, but this type of 

mteraction could not be clearly distmgmshed from these IR spectra. However, the 

carbonyl absorbance due to the ester groups (1735-1750 cm -I) IS promment for 

the semi-1 IPNs contammg 0 wt % {Figure 5.23) and 10 wt.% of acrylic acid 

(Figure 5.36). Then the carbonyl absorbance of acid groups (1700-1725 cm-1
) 

became prominent {Figure 5 37 and 5.38) with increasmg acrylic acid from 10 

wt.% (Figure 5.36) to 20 wt.% (Figure 5.37). 

! H H 
+ H»--OH-

0 

Fig. 5.34 Proposed reaction of acrylic acid and epoxidised natural rubber 
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As far as the probable reactiOns of the acrylic acid are concerned, 

acrylat10n of epoxy group (Figure 5.34) and/or co-polymensation of acrylic acid 

with MMA can be Identified as the two major competitive reactiOns. 

Phmyocheep and Duangthong (2000) reported that acrylic acid (acrylation) 

bound on to epoxide groups at so•c and this reaction was accelerated by the 

presence of a photo-initmtor Therefore, It may be assumed that at low levels of 

acrylic acid, the acid might undergo an acrylatwn reaction with epoxy groups 

resultmg m graft IPNs havmg pendent acrylic groups on the ENR backbone. 

Thus, carbonyl absorbance due to acid was unable to be detected as it may have 

reacted with hydroxyl groups to from pendent groups on the ENR. On the other 

hand, at higher acrylic acid contents, co-polymensatwn (Figure 5.35) would be 

more likely to be the dominant reaction, and, therefore, carbonyl absorbance due 

to acid would be observed at 20 to 30 wt.% of acrylic acid was mcorporated m to 

the system. 

H,c==(CH3 + 

)r-o-cH3 
0 

\=/ - rHzC-/~,cT 
ff )r-oH o9 ~o 

0 0 OH 
I CH3 

Fig. 5.35 Copolymerisation of acrylic acid and methyl methacrylate 
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Fig. 5.38 The FTIR spectrum of the NR/ENR-60 (M) (50/50)50: PMMNacryhc 

acid (70/30)50 semi-IIPN 

Miscibility mcreases with the mtroductwn of interactiOns and some times 

It Will lead to true thermodynamic miSCibility. In addition, near similarities of the 

polanty of each component (van der Waals energies) result in improved 

miscibility (W ang and Roland, 2005). Hence, It may be expected that the 

incorporatiOn of ENR and/or acryhc acid m to a NR and PMMA system would 

improve the compatibility A study (Yusof, 1999) has been carried out on IPNs 

based on ENR and PMMA. It mdicated that these matenals are phase separated 

as indicated by the presence of two glass transitions In this study (Yusof, 1999), 

attempts were made to mcorporate methacryhc acid With MMA and revealed that 

the mcorporation of methacryhc acid led to an increase in the T 8 of the PMMA 

component, which was associated with eo-polymerisation of methacrylic acid 
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with MMA. Their study further indicated that the formatiOn of a graft IPN 

depends on the rate of the acrylation reaction and the rate of phase separation. 

Compared to methacryhc acid, acrylic acid IS more reactive, and, therefore, it 

may be expected that the incorporation of acryhc acid would Impart higher 

compatibility by the formatiOn of graft IPNs due to the acrylation of some of the 

epoxy groups. 

The physical appearance of acrylic acid-based semi-! IPNs was more 

transparent than their equivalent semi-1 IPNs, which does not contain any acrylic 

acid. This may mdicate a lesser extent of phase separation and m agreement With 

the DMTA data which showed that the extents of mixing were higher in the semi-

1 IPNs With acrylic acid. Moreover the product seems to be more flexible than 

the semi-! IPN With no acrylic acid. This observation is further venfied from the 

DMTA storage modulus data of which storage modulus decreased from 422 

MP a to 240 MP a at o·c by a factor of 0 6 limes with mcrease in the acrylic acid 

content from 0 wt %to 30 wt% (Figure 5.40) 

5.4.2.5 DMTA analysis ofsemi-1 IPNs containing acrylic acid 

In companson with the loss tangent data for the NR/ENR-60 (M) (50/50) 

50.PMMA /acryhc acid (100/0) 50 semi-! IPN, the NR Tg of the sem1-l IPN with 

10 wt.% acryhc acid shifted by 9"C towards higher temperature (Figure 5 39 and 

Table 5.22) This is clearly evidence for a considerable amount of mixmg due to 

incorporation of 10 wt.% of acrylic acid m to this system. Acrylic ac1d can form 

grafts on to natural rubber and if this occurs, It would enhance the compatibility 

between PMMA and ENR as well via formatiOn of hydrogen bonds and by 

acrylation reaction with the ENR component resulting in grafts. As stated earlier, 

the most probable reaction is the acrylation of ENR Therefore, it could be 

expected that the pendent vmyl group (double bond) which will form as a result 

of acrylat10n of ENR can further undergo copolymensation with MMA, or can 

react with natural rubber to form graft products. All these factors may lead to 

improved miscibihty/compatJbility between the components. 

When the PMMA transition is taken into account, a shift of 23 ·c towards 

lower temperature resulted from the incorporation of I 0 wt.% of acrylic acid. In 

addition, mergmg of ENR transition and PMMA transition is evident from the 
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appearance of a broad peak perhaps md1catmg micro-heterogeneity With 

improved extent of m1xing. Nevertheless, ENR transition IS still resolvable 

mdicating certam degree of phase separation. Copolymerisahon of acrylic ac1d 

w1th MMA 1s also a plausible reactiOn wh1ch results pendent carboxylic groups 

capable of resulting m spec1fic interactions w1th ENR and PMMA. The same 

lime, the chances of formation of mter-grafts between the carboxylic groups of 

poly(MMA-co-acrylic ac1d) with ENR cannot be considered as negligible. Such 

mter-graft formatiOn undoubtedly results better miSCibility. Bauer et al. (1994) 

md1cated that the graftmg between the IPN components results in better 

misc1bility than their blends or un-grafted products and tailor-made morpholog1es 

varymg from phase separated to complete miscibility can be obtained by 

controlling the extent of grafting. Based on these facts, one would expect to 

enhance miscib1hty of components via mtroduct10n of acrylic ac1d in to tlns 

system Th1s IS achieved by incorporatiOn of I 0 wt.% acrylic acid as a co

monomer w1th MMA mto the cross-linked NRIENR matnx followed by 

polymensat10n ofmonomers resultmg in sem1-l IPN. Due to the un1que feature 

of IPN preparatiOn in which cross-linking of the first formed polymer retard the 

phase separation and more entanglements resulted by interpenetration would 

result ultimately a more miscible system. All these factors would contnbuted to 

the observed Significant improvement in the miscibility of PMMA and NR 

components m the semi-1 IPNs havmg 10 wt% of acrylic ac1d (Figure 5 39 and 

Table 5 22). 

Table 5.22 DMTA data for the sem1-1 IPNs w1th acrylic ac1d 

Acrylic ac1d content 

(wt%) 

0 

10 

20 

30 

NR Tg 

(•C) 

-32 

-23 

-34 

-33 
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ENR Tg 

("C) 

69 

PMMATg 

("C) 

136 

113 

85 

84 
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Fig. 5 39 The temperature dependence ofloss tangent for the semi-1 

IPNs with acrylic acid 

If the loss tangent data of the semi-1 IPNs with 10 wt% of acryhc acid 

and Without any acrylic acid are compared, the ENR transitiOn appeared as a 

shoulder m the PMMA transition of the latter sample. However, in the former 

sample It has merged nearly completely to form a single broad peak, indicating a 

greater extent ofmixmg of the ENR-60 (M) and PMMA components in the semi-

1 IPNs with 10 wt.% of acryhc acid. At this level of acrylic acid content (10 

wt %), ENR and PMMA phases probably exhibit micro-heterogeneity and the 

miscibility ofNR component has also mcreased to a significant extent 

Attempts had been made to produce graft IPNs based on ENR-25 -

PMMA by mcorporatmg methacryhc acid (MAA) at level of 10 wt.% , 25wt.% 

and 50wt.% MMA (Yusof, 1999). From the DMTA studies, it was proven that 

these sequentially-prepared IPNs still exhibited two prominent transitions, 

corresponding to their individual components: ENR and PMMA were phase 

separated IncorporatiOn of 25 wt.% and 50 wt % of MAA led to an mcrease of 

PMMATg by 49T and 70'C, respectively (Yusof, 1999). Moreover, the shift of 
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ENR transition were not able to be obtamed by mcorporatmg MAA into the 

system. Use of dimethylbutylamme as a catalyst has also been tned (Yusof, 

1999), but improvement in grafting reactiOn was not achieved. High level of 

cross-lmkmg in each phase which would keep some of these reactive groups 

apart was the one of the reasons forwarded for the absence of grafting reaction 

and their ultimate effect on any shift of PMMA transition towards lower 

temperature. The other reason forwarded for the lack of formatiOn of graft lPNs 

was the rate of phase separation was higher than the rate of oxrrane reaction 

(Yusof, 1999). As far as the acrylation reactiOn IS concerned, both acrylic acid 

and methacryhc acid should undergo an acrylatwn reaction. The polanzahon of 

the double bond by the adjacent carbonyl group would lead to enhanced 

neucleoph!lic additions. In additiOn, the presence of the methyl group m 

methacrylic acid would resist the reactions (Leonard, 1970). Therefore, in this 

study, Improved miscibility was governed by the incorporation of acrylic acid 

into NR - ENR - PMMA semi-1 lPN is pnmarily attributed to the higher 

reactlVlty of acrylic acid than the MAA, structural variations in ENR (presence of 

hydroxyl groups as evidence from FTIR) In addition, low level of cross-lmkmg 

in NR phase and/or ENR phase, the absence of any cross-lmks m the PMMA 

phase may also contnbuted to enhance the miSCibility because high cross-lmk 

level leads to a reduction in miscibility (Bauer et al., 1994; Coleman et al., 1987; 

Fehsberti, et al., 1990; Bnber and Bauer, 1991). 

As can be seen clearly from the Figure 5 39, a single loss tangent peak for 

the ENR and PMMA transition was obtained when the acryhc acid content 

mcreased from the 10 wt.% to 20 wt% and 30 wt.% signif)'lng more miscible 

ENR and PMMA systems. From this data, it was found that as the acryhc acid 

content mcreased from 10 wt.% to 20 wt.% and 30 wt.%, ENR transition became 

hardly evident and the PMMA transition shifted to lower temperatures by 28T to 

29°C, md1catmg a significant amount of mixing of the ENR and PMMA 

components. Companson of the extent of the shift of PMMA transition for the 

semi-1 lPN with and without acryhc acid indicate that the PMMA transitiOn has 

shifted to lower temperature by 51 OC to 520C mdicating a greater extent of 

PMMA mixmg in the system with 20 wt.% and 30 wt% of acryhc acid. 

However, if the NR transition is taken into an account, it can be clearly seen that 

the NR component IS still phase separated from the rest of the components. 
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Moreover, it is interesting to note that this mward shift of the PMMA 

transitiOn IS levelled off at 20 wt.% of acrylic acid Any further mcrease of 

acrylic acid content did not result in any further reduction of the PMMA T g· 

Therefore, it may be anticipated that the formation of mter-grafts may be levelled 

off due to the copolymensation of acrylic acid at higher acrylic acid contents. 

However, if the PMMA transition of semi-! IPN With 30 wt.% acrylic acid is 

compared with the same having 20 wt.% of acrylic acid, one would consider that 

the sharpness of the PMMA transition is higher m the former sample ind1catmg 

more miscible system m the semi-1 IPN contaming 30 wt.% of acrylic acid. 

However, the ENR, acrylic acid and PMMA components m the semi-1 IPNs will 

not referred to as fully miscible system as a single glass transition would appear 

for the systems with weak phase separation (Bauer et a/, 1994). TEM studied 

would have been useful for the conformatiOn of this, but unable to conduct due to 

difficulties encountered in the cryogeruc sectiOning of the sample due to 

unavoidable circumstances Since mteractiOn parameter values md1cate lack of 

molecular level mixing between ENR, acrylic acid, PMMA and poly(MMA-co

AA) components, the observed greater extent of mixmg between ENR, acrylic 

acid and PMMA components, which one may interpret as a miscible system, is 

pnmanly governed from the formation of inter-grafts and specific mteractwns 

including hydrogen bonds, dipole forces between components. It is believed that 

chemical mteractwns alone may result true thermodynamic miscibility. 

The plots of loss modulus versus temperature for the semi-1 IPNs based 

on acrylic acid are shown m Figure 5 40. When the difference between the T8 at 

the higher temperature region, denved from loss tangent data and loss modulus 

data (Figure 5.39) IS concerned, it IS noted that it decreases with increasing 

acrylic acid content. For example, the difference between the T" derived from the 

loss tangent and from loss modulus data are found to be 34°C, for the semi-1 IPN 

containing 10 wt.% of acrylic acid. On the other, the difference between the Tg 

derived form the loss tangent data and the loss modulus data is 22°C, for the 

semi-1 IPN with 30 wt.% acrylic acid content. It was reported that the higher the 

difference between the T 8 derived from loss modulus and loss tangent, the lower 

the mobility of the polymer chams (Perera, 1999; Hill et a/, 1997). Therefore, It 

can be assumed that the mcrease in mobility of the PMMA polymer chain 

segments with increase m the acrylic acid content is attnbuted to the improved 
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mixing of rubbery component with PMMA as well as due to eo-polymerisatiOn of 

MMA with acrylic acid which reduces the hardness or stJffuess of PMMA 

phases. 
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Fig 5 40 The temperature dependence of loss modulus data for the semi-1 

IPNs with acrylic acid 

120 

It can be seen from the storage modulus data shown in Figure 5.41, that 

the semi-1 IPN with no acrylic acid content exhibited three transitiOns 

correspondmg to the NR, ENR and PMMA components. However, with the 

mcorporatlon of 10 wt.% to 30 wt.% acrylic acid content, only the NR and 

PMMA transitiOns are promment, implymg Improved mlXlng of the ENR 

component. 
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Fig. 5 41 The temperature dependence of storage modulus for the semi-1 

IPNs with acryhc acid 

In addition, the glass transition temperature of the PMMA component has 

shifted significantly towards lower temperature in the semi-1 IPNs With acrylic 

acid. The storage modulus values not only m the rubbery region of the NR 

transition, but also in the glassy region, decreased With an increase of acrylic acid 

content. This may be associated with the plasticising effect resulting from the 

introduction of acrylic acid and/or due to the reduction of extent of reinforcement 

resultmg from lowering of hard glassy PMMA content in the semi-1 IPN. 
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CHAPTER6 

General conclusions and suggestions for future work 

6.1 Introduction 

This chapter bnefly presents the conclusions drawn from the results presented m 

chapters 3, 4 and 5. In addttton, suggestions for future work wtll be presented m the 

latter part of thts chapter. 

6.2 General conclusion 

In thts study, sequential IPN s were prepared using natural rubber and 

poly(methylmethacrylate) as the basic constituents because such a combmation of 

elastomer and plastomer would result in a broad range of matenals varymg from 

thermoplastic elastomers to rubber toughened plastics dependmg on the composition. In 

fact, Hevea Plus: MG rubber IS the term used for the commercial products based on 

natural rubber and poly(methylmethacrylate) in which PMMA is present as grafts on the 

NR polymer chains. Thts product is pnmarily used m adhesives and m shoe soles, where 

the MG rubber is used as a remforcmg filler. This product can be used to produce hard, 

the impact resistant mouldmgs by vulcanizing the rubber. Nevertheless, due to the 

drawbacks of film formation properties at higher PMMA contents limits it apphcattons. 

Therefore, the route of IPN synthesis provides a novel path to produce useful products 

with Improved physical properties without having any draw backs such as lack of film 

formation properties and lack of cracks on the surface of the products. 

In the Imtial part ofthts investigation, blends, semt-1 IPNs, semi-2 IPNs and full 

IPNs based on NR and PMMA were prepared. The effect of composition, the effect of 

cross-linkmg of the NR component and/or the PMMA component and cross-Iinker level 

m the PMMA phase on the dynamic mechamcal properttes and phystcal properties of 
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these matenals were investigated. In addition, the extent of mixing of each component 

was detenmned by usmg MDSC data. 

In the latter part of this study, the potentiality of ENR to Improve the 

miscibility/compatibility between NR and PMMA in the semi- I IPN with a 50/50 

rubber/PMMA ratio was investigated using DMTA and physical properties. Moreover, 

the effects of the level of the epoxidation, epoxidised natural rubber content and the 

expenmental conditions used for the preparation of ENR were also mvestigated. In 

additiOn, a study of the addition of acrylic acid to the semi- I IPNs based on NR, ENR 

and PMMA was also undertaken 

6.2.1 Blends 

The blends of NR and PMMA were prepared by employing the same techmque 

used to prepare sequential IPNs, with the exception of the cross-Imking ofNR component 

and/or PMMA component and the resultant material, perhaps in graft form, can be 

categonzed as a thermoplastic material. Hence, unlike their graft product: MG rubber, the 

blends produce m this study do not exhibit any mfenor film formation properties or film 

crackmg at higher PMMA contents Therefore, this product can be processed as a 

thermoplastic and can be used to produce impact resistant articles. By taking dynamic 

DMTA data, MDSC data and physical properties as a whole, the followmg conclusions 

can be drawn. 

• The blends, produced m this study usmg NR and PMMA, were phase

separated matenals as they possessed two glass transitions correspondmg 

to their homopolymers. 

• Incompatibility of the NR and the PMMA components, as reflected by 

their solubility parameters, IS considered one of the prime reasons for the 

phase separatiOn. 
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• Some miXIng of the NR component was found m ail the blends. The extent 

of mixing of the components in the blends increased with increase of 

PMMA content from 30 wt.% to 50 wt.%. 

• From the storage modulus data and tensile properties, It was concluded 

that the mcorporat10n of PMMA mto the NR matnx imparted a 

remforcement effect. 

• Companson of the tensile properties for the blends produced m this study 

and the blends produced by melt mixing (Oommen and Thomas, 1993) or 

solutiOn blendmg (Oommen and Thomas, 1996) of NR and PMMA by 

other researchers, concluded that the method employed m this study to 

produce the NR/PMMA blends resulted much better tensile properties. 

6.2.2 Semi-1 IPNs 

Sem1-l IPNs were produced by cross-linking the NR component by using sulphur 

as the vulcanizmg agent A sulphur cross-linking system has not been commonly 

employed in the preparation of IPNs to date. Nevertheless, in th1s study, sulphur was 

chosen as the mam curing agent for natural rubber, based on the fact that 1t is the most 

widely used cunng agent for vulacanisation of the rubber on the commercial scale 

ConclusiOns drawn for the semi-1 IPNs by taking physical properties and dynamic 

mechamcal properties into account are summarized as foiiows 

• The semi-! IPN s prepared in th1s study were phase separated. 

• The extent of mixing of the NR component was significantly lower in the 

sem1-l IPNs 

• These semi-1 IPN s exhibited h1gh tensile strength, with the exception of 

the NR50:PMMA50 composition 

• Hysteresis of the sem1-l IPNs mcreased with mcreasmg PMMA content. 
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6.2.3 Semi-2 IPNs 

The semi-2 IPNs were produced by cross·hnkmg the PMMA component to different 

levels Followmg conclusions were drawn based on the physical properties and DMTA 

results of the semi-2 IPNs. 

• The semi-2 IPNs also exhibited phase separation as mdicated by the 

presence of two glass transitions correspondmg to their homopolymers 

• Some mixing in the NR component was evident from the DMTA and 

MDSC data m all the semi-2 IPNs. 

• Composition of the material has a significant Impact on the magnitude of 

the loss tangent at the glass transitiOn region of the NR and the PMMA 

components. 

• Tensile strength, moduh and hysteresis mcreased With increasing PMMA 

content m the semi·2 (0.5) IPNs. However, the PMMA content at which 

maximum tensile strength was observed vaned with the EGDM content. 

For the semi-2 (I 0) IPNs and the semi-2 (1.5) IPNs, the maximum tensile 

strength was found to be at 40 wt. %and 30 wt% ofPMMA, respectively 

6.2.4 Full IPNs 

Full IPNs were prepared by cross-lmkmg of both the components, NR and 

PMMA. ConclusiOns drawn for these IPN s are as follows. 

• Full IPNs are also phase separated and the extent of mixing of the natural 

rubber component was low 

• Hysteresis mcreased with an increase m the PMMA content. 
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6.2.5 Conclusions drawn for the effect of cross-linking of each component 

• Accordmg to the DMTA, 1t was concluded that the cross-linkmg of the NR 

component does not cause any significant Improvement in the extent ofm1xing of 

the NR component m the semi-! IPNs, when the NR component IS moderately 

cross-hnked usmg a conventiOnal vulcamzing system. 

• According to the MDSC data, the cross-hnkmg of the NR component increases 

the extent of m1xing of components resulting in high mterphase content in semi-! 

IPN over the equivalent blends. 

• Compared to the equivalent blend, cross-lmkmg of the PMMA component 

increased the mterphase content resulted from improved component mixing in the 

sem1-2 IPN s. 

• With the semi-! IPNs, it was concluded that cross-lmkmg of both components has 

no marked effect on the extent of mixing of either the NR or the PMMA 

components perhaps mdicating that cross-hnking of the first formed network IS 

more mfluential than the cross-linking of both components on physical properties 

and extent of mixing. 

• In general, compared to the sem1-2 IPNs, cross-linking of both components 

increased the m1xing of the PMMA component m full IPNs w1th the exception of 

NRSO:PMMASO compositiOn. 

• The effect of cross-lmkmg of the second component on the tensile strength is not 

Significant, especially at low levels of cross-link dens1ty. Nevertheless, the tensile 

strength of the semi-2 IPNs with 10 wt.% to 30 wt.% PMMA content s1gn1ficantly 

increased at I 5 mole percent of EGDM Cross-hnked PMMA domains also exert 

a reinforcement effect, as was evidence from the increase of storage modulus 

data. 
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6.2.6 Conclusions drawn for the effect of the addition of ENR and/or acrylic acid on 

the miscibility and physical properties of the semi-1 IPNs with 50/50 NRIPMMA 

ratio 

• When the effect of the addttiOn of ENR as a thtrd component on the 

physical properties was considered, it was concluded that wtth 

mcorporation of25 wt.% ,or greater, ofENR-45 (M) or ENR-60 (M) the 

tensile strength increased by significant level 

• However, compared to the NR50 PMMA50 semi-! IPN, the tear strength 

of the semi-! IPN only increased at a level of 50 wt.% to 75 wt.% ofENR-

45 (M) or ENR-60 (M) content 

• FTIR studtes indtcated that the presence of hydrogen bonds between ENR 

and the PMMA component were not as signtficant as expected. 

• DMTA studies clearly mdicated that the NRIENRIPMMA semt-1 IPNs 

were also phase separated. 

• When ENR-50 (H) was mcorporated at a level of 10 wt.% and 75 wt.% on 

natural rubber, the extent of mixing of the NR components as well as the 

extent of mixmg of the PMMA component has increased as was evident 

by the prominent shtfts of their T 8s. In addttion, some mixing of the 

PMMA component was evtdent from the PMMA T8 shtft for the other 

levels ofENR-50 (H), wtth the exceptiOn of 50 wt.% case. 

• In corpora !ton of ENR-45 (M) caused a marked increase of the NR T 8, 

whtch is a result of the improved miXlng of the NR component wtth the 

PMMA component Addttton ofENR-45 (M) at a level of2 5 wt.% also 
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improved PMMA mixing, as mdicated by a promment inward shift of 

PMMATg 

• In all the semi-! IPNs based on ENR-45 (M), the compatibility of ENR 

with PMMA was very much higher as shown by the shift of the ENR T g 

towards higher temperatures. 

• The ENR45(M)50.PMMA50 semi-! IPNs exhibited a micro

heterogeneous morphology due to improved component m1xmg through 

chemical interactiOns. 

• As shown from the DMTA data, the compatibility ofNR was increased by 

adding ENR-60 (M) as the th1rd component to the NR/PMMA system 

• If the compatibility of ENR-60 (M) component IS considered, it was 

concluded that the compatibility of ENR-60 (M) component with the 

PMMA component was significantly higher as It appeared as a shoulder in 

the PMMA transition in the loss tangent spectrum. 

• ENR-60 (M) component was more compatible with the PMMA 

component in the ENR-60 (M)SO:PMMASO semi-! IPN as revealed by the 

appearance of a smgle transition m which ENR transition IS still resolvable 

as a shoulder. 

• For the semi-! IPNs With acrylic ac1d, the addition of 10 wt.% acrylic acid 

with MMA markedly increased the miscibility of the NR and PMMA 

components. Also, ENR - PMMA miSCibility has significantly increased 

as was evident from the mergmg of ENR and PMMA transition with the 

additiOn of I 0 wt.% acrylic acid on MMA. 
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• H1gher acrylic acid contents of 20 wt% to 30 wt.% resulted in a more or 

less m1sc1ble system between the ENR and PMMA components. 

Nevertheless, the NR component was st!ll phase separated. 

• Therefore, in general, it can be concluded that add1tion of acrylic acid 

and/or ENR to IPNs based on NR and PMMA leads to improved 

compat1b!l1ty of the NR and PMMA components to a considerable extent, 

as predicted 

• The compat1b1hty Imparted by the add1t1on of acryhc ac1d IS purely 

governed by the specific interactions and the formation of inter-grafts 

between the components as explained in the section 5.4.2.4. 

6.3 Suggestions for future work 

As research on nano-composites is growing rap1dly, 1t would be interesting to 

carry out an mvestlgation based on nano IPNs based on natural rubber, ENR and PMMA 

components as there are no hterature ev1dence m th1s field. Although fillers were not 

incorporated in the IPNs prepared in this study, the add1tion of fillers could enhance the 

phys1cal properties as well as the dampmg properties. Therefore, an mvestigation of the 

effects of nano-scale fillers on the dynamic and phys1cal properties of IPNs based on NR, 

ENR and PMMA is suggested. 

Another possibility IS to mod1fy the filler chemically to Improve the adhesiOn 

between filler and the matrix thereby expectmg to Improve the mechamcal and physiCal 

properties. 

As the study of the sem1-l IPNs based on NR-ENR-PMMA-acryhc ac1d IS limited 

only to few compOSitions, it would be benefic1al to extend th1s study by usmg higher 

acrylic ac1d contents and/or cross-linkmg the other components. 
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