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Abstract 

The idea of grid friendly charging is to use electricity from the grid to 

charge batteries when electricity is available in surplus and cheap. The 

goal is twofold: to avoid putting additional load on the electricity grid 

and to reduce the cost to the consumer. To achieve this, a smart meter 

and a tariff with variable electricity prices has to be in place. In Day 

Ahead tariff (DA), prices are announced in advance for the next day, 

and this information can be used to select the cheapest times to charge 

the battery by the required amount. The optimization method is very 

simple, and it only has to be run once per day. However, the balance 

of supply and demand is not fully known in advance. Therefore Real 

Time Pricing (RTP) tariff supplies electricity at spot market rate 

depending on the current balance. This makes the charging process less 

predictable because it adds a stochastic element, but it does offer the 

potential of higher savings if future prices can be predicted with a 

reasonable degree of accuracy. 

This paper proposes an optimal controller based on a stochastic 

dynamic program (SDP), which predicts future price changes from 

available data. The controller takes into account price variability via a 

simple grid model that allows of unexpected price rises and a gradual 

return to a normal grid price. The DP algorithm has two variables, the 

state of charge (SoC) and the current electricity cost. It traces the 

expected total cost based on the stochastic model and makes a decision 

‘to charge or not’ to minimize the expected (average) total cost. The 

results show that in case of a positive probability of price rises, the 

time to charge is chosen slightly before the lowest expected cost during 

the night. This is a rational solution, because waiting longer does 

increase the risk of an unexpected price spike. In the trivial case of a 

zero probability of unexpected price rises, the solution converges to 

the one found by the previous deterministic optimization algorithm.  

Introduction 

Electric Vehicles (EV) are becoming more popular and abundant, as 

the requirement to reduce carbon and greenhouse emissions increases. 

Charging of EVs is a time and power consuming affair; the effects of 

which can be widespread on the Electricity Grid of the future. 

Electricity grids are going through a revolution as well in the aim to 

reduce the carbon footprint of generating energy. The smart grid vision 

is quickly spreading to all sectors of energy distribution and 

consumption that are currently dominated by fossil fuels. It will 

become important to align the transport and electricity sectors in order 

to maintain grid stability in the future; when grids are dominated by 

renewable generation, high power appliances (like EVs) and other 

problems which already exist. 

Hybrid EV (HEV) have been mildly successful in the past decade with 

the major producer, Toyota (Prius) selling 2 million units by 2009. 

Whilst it is widely accepted that market forces alone have not been 

able to make the EV a first choice for many consumers; government 

policy support, research to make EVs less expensive and economy 

improvement will improve their market significantly [1][2]. Although, 

electric driving ranges are limited for all three HEV, Plugin Hybrid EV 

(PHEV) and pure EV (BEV); surveys have indicated that 47-55% of 

single vehicle usage in a single day is less than 20 miles, with 82-88% 

of vehicles travelling less than 60 miles [3]. Kang and Recker’s 2009 

[3] study concludes that it is possible to convert between 80% to 90% 

of daily mileage to electric when using PHEV with a 60 mile range in 

California; under the condition that both home and public place 

charging stations are in use. These numbers indicate that EVs are more 

feasible than previously thought. JP Morgan performed a study in 2009 

which forecasted 11.28 million EVs worldwide by 2020 and 20% of 

the total cars sold in North America [4].  

A change from ICEVs to EVs’ main impact will be that on the already 

stressed electric grids. The batteries of these vehicles require long 

times and high power and currents for charging. For most domestic 

users, charging will take place overnight at their homes. Moreover, the 

tendency to plug the vehicle in as soon as they reach home is high. 

Other typical charging loads could be concentrated in office or public 

car parks depending on the actual use of the vehicle during the day. 

Studies like [5]–[9] highlight the impact of EVs on electricity 

distribution in the future, in elaborate detail. 

The subsequent effect will be to electricity market: generation 

methods, infrastructure and prices in the future will change 

significantly. In most countries the industrial sectors are on wholesale 

electricity prices- buying electricity at lower rates during off-peak 

hours. There is a possibility for such ‘spot-markets’ even for domestic 

electricity consumers as is case in Portugal, Germany, some parts of 

continental Europe and a few states in the USA. In such markets, the 

consumers are encouraged to shift their electricity usage to off-peak 

hours through high-price updates/alerts either hourly or daily. 

Advances in ‘Smart-Grid’ technology can allow this elastic behavior 

from households, helping them to reduce costs.  

The meter records hourly consumption and also alerts the consumers 

of the latest and future prices. The smart grid is being promoted and 

provided to consumers in the U.S.A. for some time now. Electric utility 

providers in California, Colorado, Florida, Illinois, Indiana, Ohio, 

Texas, Washington and some other states have already been 

introducing smart grids to many customers. There is also a strong 

financial incentive being provided for both smart grid research and 

introduction via the Energy Independence Act of 2007 and the US 

Stimulus Package of 2009 [10].  

The state of Illinois is a good example where RTP has been available 

to customers since 2003. The RTP programs have been successful in 

reducing the participating consumers’ electric usage and bills and 

shifting usage to non-peak times of the day [11]. The two electricity 

providers which allow the choice of RTP are Amaren and ComEd. 

Amaren’s Power Smart Pricing (PSP) and ComEd’s Residential Real 

Time Pricing (RRTP) programs have reduced their peak demand in the 
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range of 15% and achieved participant bill savings between 10-15% 

[11].  

The above discussion shows that there are two problems to consider: 

Firstly, it will be important to manage the electricity loads and peak 

demands due to user profile of EV charging. Some load may have to 

be shifted from peak times to others  either by persuading or enforcing 

the consumer to charge earlier or later. Secondly, charging the vehicle 

without control might also be a disadvantage for the consumer due to 

the possibility of a future with RTP. However both these problems can 

be looked as an opportunity for EVs. The flexibility of charging time 

can be looked as an advantage for load shifting and when smart-grid 

infrastructure is in place, communication with it can not only allow 

automatic flexible charging but can also be used to provide electricity 

from the vehicle to grid (V2G). 

The following paper progresses from the idea in [13] taking into 

consideration the need of more complex prediction methods to provide 

an optimal solution to the charging problem. The idea is to 

automatically manage the charging time once the vehicle is plugged in 

to provide a full charge when required but at the lowest cost (hence at 

low demand hours). This paper treats the EV charging problem as 

dynamic and stochastic. Therefore, a stochastic optimization algorithm 

is used to design a controller and the simulation results are presented 

towards the end. The subsequent advantage of this can be to the grid 

in a way of load shifting.  

Firstly, a literature study explains the motivation and current research 

in this field. Then the optimal charging problem is explored based on 

time-discrete solution and then the dynamic problem is introduced. 

Secondly, a case is made for using stochastic optimization within a 

dynamic program (DP), to find an optimal solution to the ‘when to 

charge?’ problem. The approach is discussed, explained and connected 

to the grid model for price changes. The controller algorithm and 

assumptions are described with a typical user charging scenario 

(evening at home charging) for simulation purposes. Lastly, the results 

obtained from different simulation scenarios are presented, showing its 

validity, and a brief outlook to future work is discussed. 

Research Literature 

Vehicle Driver Charging Behavior  

Morrow et al. [14] performed a study for the U.S Department of 

Energy on PHEV charging and infrastructure. They looked at two main 

charging scenarios- at night home charging and opportunity charging 

at public facilities. The conclusion was that there is a peak in EV 

charging during the evening when users plug-in at home between 

19:00 and 23:00. Wang et al. [15] simulated four charging scenarios 

which included uncontrolled charging, delayed charging (to promote 

load shifting), smart charging and smart charging with demand 

response (where the charging is optimally controlled by the electricity 

distributor). They concluded that smart and delayed charging can 

significantly reduce the total cost of the system both on the electric and 

charging side. 

 

 

Kang and Recker [16] developed four theoretical scenarios of 

uncontrolled home charging, end of day travel charging, controlled 

(after 10 pm) charging and public infrastructure charging. They 

concluded that it was important for the electricity charging 

infrastructure’s circuits to be upgraded for faster recharge times, which 

would allow more of the daily mileage to be electric. Clement and 

Hasen [17], Parks et al. [18] have also considered both the 

‘uncontrolled charging’ and ‘charging with a time delay scenario’ in 

their studies. However, Clement and Hansen have suggested a 

‘coordinated controlled charging’ scenario which should help 

minimize grid power losses. Mullan et al. [19] also took into account 

three scenarios: evening time charge (16:00-23:00), night time charge 

(22:00-7:30) and controlled night time charging using smart meters. 

They concluded that shifting the EV peak to later in the night can 

benefit the base-load utilization in Australia up to a limit governed by 

other effects in daily electricity-grid/transformer maintenance. 

Most studies more or less conclude that the tendency to charge vehicles 

as soon as users reach home is extremely high. It will not be enough to 

allow users to charge their vehicles as they please without serious 

effects on the grid’s health and power quality or simply the capacity. 

Most of them highlight the requirement of a ‘smart’ or ‘controlled’ 

way of charging the vehicles, the control of which may be shared 

between the user and the electricity provider. The charging behavior 

of users is difficult to predict, although it can be derived from their 

usage profiles. Charging locations and times will vary on user type, 

infrastructure and geography. For instance, a company fleet user may 

opt to do most charging at work, where infrastructure may be provided. 

However, an individual user would choose to charge both at home and 

public infrastructure. It is likely though, human behavior will propel 

users to plug-in their chargeable appliance as soon as they are home so 

‘it remains charged’ by the time they need it. Studies like [20], [21], 

[19] and [22] conclude that the spike in charging requirements is 

pronounced between 5:00pm and 7am based on the time majority 

vehicles arrive home. What is more interesting is that these studies are 

done in different geographical regions of the world and yet this time 

period is of concern whether or not the morning period at work may be 

of charging demand (assuming infrastructure is provided). The current 

study therefore assumes, the best time to study a simulation for this 

case would be between 17:00 and 7:00 am. Other assumptions and data 

sources are listed before the results are presented later in the paper. 

17:00 

07:00 

1. When will individual users 

choose to charge? 

2. Will they plug in as soon as 

they are home? Most likely 

Charge 
Control 

Figure 1: Charging Time of Concern 
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Charging Solutions 

Studies on the effect of EV penetration to the electricity grid date back 

to the 1980s. In [23], Heydt discusses the effects on and of electric load 

management due to EV penetration. The study concludes that it is 

likely that charging will occur at peak demand times and some form of 

load management must be introduced to manage the additional EV 

charging load. Webster’s review of electric infrastructure in the UK 

[24] concludes that in case of high EV penetration, it is likely that 

battery recharging times will coincide with peak electricity demand. 

Measures must be taken to avoid this although the electric networks 

can cope with the additional load. Both these authors consider the user 

profiles to be of primary impact on recharging times. In a much more 

recent study, Camus et al. [25] simulate a 2020 scenario of 2 million 

EVs in the Portuguese spot electricity market, considering different 

mixes of renewable power generation. They conclude that with low 

renewables and high cost, charging of EVs during peak times can lead 

to electricity prices of 17 Euro cents/KWh. This can be brought down 

to 7 Euro cents/KWh with off-peak charging and with higher 

renewables and low general costs, down to 5.6 Euro cents/KWh. 

Mahalik et al. [26] performed a simulation to realize EV impacts on 

the Illinois grid in 2020 and concluded that on-peak uncontrolled 

charging would require an additional 400 MW unit to support the 

state’s reserve margin. If off-peak and controlled charging is 

facilitated, no additional supporting grid would be needed.  

Acha et al. [27] present a time coordinated optimal power flow 

(TCOPF) tool for distribution networks to decide on load control 

approaches for EVs in the future. The algorithms concentrate on 

showing different charging strategies to the electricity providers to see 

how they may have to change energy production to reduce carbon 

emissions and cost. They conclude for the UK context that, UK will 

need to introduce more renewables or non-carbon fuel mix to offset 

costs and emissions for high EV charging scenarios. Kristoffersen et 

al. [28] use a linear regression to minimize charging costs based on the 

Danish (Norpool) electricity market prices. The study made the 

assumption of an EV fleet controller who managed the participation of 

EVs during charging or providing electricity to the grid, based on fleet 

driving patterns and electricity prices. They concluded that EV driving 

patterns and hence charging time is highly flexible during the day but 

not from day to day. 

Mody and Steffen [13] presented a study in 2013 describing the need 

to use automated control for ‘optimal’ charging of EVs. They observed 

that the increasing EV population will lead to electricity grid problem 

if it is treated like a normal appliance. It would be necessary to use a 

smart method to offset EV charging to lower demand hours by 

automatically charging the vehicle rather than let it charge instantly 

when it is plugged in. The paper presented a sub-optimal controller for 

automated charging based on real time tariffs provided by electricity 

grid distributors in Illinois (Chicago).  The first conclusion was; if 

prices are known in advance (day-ahead pricing), the optimization only 

requires picking the cheapest time slots for charging the battery. 

Further savings can be made by using real time prices that are not 

known in advance. Although it becomes much more difficult to solve 

using price prediction strategies, the control can achieve optimal 

solutions (presented in this paper).  The main conclusion was made 

from the results and case study of the simulation of the sub-optimal 

controller. 

Scholer and Glynn [29] presented a charging solution in the technical 

paper (2014) with a similar idea to [13]. However, it was mainly a part 

of a series of technical papers written by the SAE PEV task force. The 

main theme of their paper was ‘smart-charging standards’ but their 

main conclusion also was; it is not necessary to charge the PEV 

immediately when plugged in and smart charging is required to 

balance the load and prevent problems in the local distribution circuit. 

They presented, a price-based smart charging idea based on RTP and 

smart grid communication very similar to the one presented by Mody 

and Steffen in [13]. It reacted to the price information and offset 

charging to lower demand times, still making sure that full charge was 

provided when needed. 

Yunus, Parra and Reza [30] presented a paper on distribution grid 

impact of fast charging with a stochastic charging model (2011). The 

stochastic model they used was for a simulation of the effect of many 

PEVs loading the grid when charging at high power (fast charging). 

The model results led to a conclusion that widespread fast charging 

affects the quality of electricity supply and necessary actions need to 

be taken to continue the use and deployment of such stations for EV 

charging. In 2012, Druitt and Fruh [21] investigated a comprehensive 

model and simulation to quantify the integration of additional wind 

power and electric vehicles in the future electricity network. They 

suggested a stochastic model for both wind power generation and 

electricity price market. The study’s aim however, was to investigate 

the role of a ‘fleet’ of EVs in a future grid to load management and 

energy storage potential (essentially V2G), with the integration of 

more wind power.  

Zheng and Wang [31] proposed an aggregation model for large number 

of EVs charging, to control power fluctuation problems. They consider 

the randomness of the number of EVs charging at any time as a 

stochastic disturbance and employ a genetic algorithm to obtain these. 

They simulate this model for a parking lot scenario and show the 

stochastic feature of the charging characteristics. Their proposed 

charging strategy is to control (minimize) the influence of many EVs 

charging simultaneously to the grid power. They conclude their 

updateable model reduced power fluctuation level in the residential 

district where EVs in parking lot are being charged. However, their 

idea does not take into account the effect to SoC and user needs. 

Although, there have been studies in the past few years (2010-2014) 

on future EV charging strategies; none of them have stressed on the 

need to find an optimal control solution for just the vehicle charging 

snapshot. Studies concentrate on the system view, including vehicle-

to-grid (which may be valid in the future and useful) and on 

assumptions about grid requirements regarding future regulations. 

Research so far has not been concentrated on isolating the ‘snapshot’ 

of charging a vehicle as a user might when they plug it in at home and 

won’t control the time it is switched on. This is more of an issue which 

must be addressed imminently, as it may affect grids in the near future. 

Moreover, none of them stress on ‘optimality’ in finding the control 

inputs.  

Hence, this paper explains the use of a stochastic dynamic approach to 

achieve optimality in the selection of charging power times. The 

advantage of this approach is that, it separates out the issue of charging 

hours and puts the confusion out of the user’s mind, simultaneously 

avoiding ‘instant charging’ in case the cost is high, therefore 

preventing grid problems (high cost means high demand). Secondly, it 

provides a low overall cost (based on smart-grid information) thus 

automatically choosing hours when the electricity demand is low but 

at the same time predicting fluctuations that might occur and change 

the price. This prediction can help the control system to take a safer 

route and provide the charge at a low average cost (take penalty in 

certain situations), if the user needs the vehicle at a certain time. Most 

importantly, this control system is independent of changes that might 

occur on a system level; for example: all it requires is pricing data, 
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time the charge is required (ToC) and level of charge (SoC). When the 

regulations for charging become clearer in the future, this system can 

fit in where required because parameters like ‘charging-power’ (likely 

to be regulated differently in the future) are variable in the control 

system. This means, their limits are pre-defined and the values can be 

picked when and as required rather than rigidly building a system 

which conforms to a single standard as it may exist today. 

The Charging Problem 

Overview 

The problem of ‘when to charge?’ is complicated because of the 

number of parameters which could affect this decision. However, in 

essence it can be explained in two states in discrete-time. Two 

variables of concern to the user are SoC and ToC: i.e. how much charge 

is required and when is it required by? The two states in effect that 

would change as time goes along are grid cost (due to market 

forces/electricity demand) and SoC as a result of input. The final cost 

(which we want to minimize) is the output of the problem. The basic 

problem in [13] assumes day-ahead prices are perfect, therefore we 

know the price in advance. In ‘spot’ electricity markets retailers 

purchase electricity at the spot price and sell it on at heavily-regulated 

market prices. This leads to the problem of price-spikes when the spot 

price changes significantly within a short period of time. Therefore, 

real time electricity prices can change unexpectedly, so the assumption 

that they are known in advance has to be revisited. The basic problem 

is re-explained here in brief followed by its evolution to the dynamic 

problem of concern in the current study.  

 

Figure 2: Problem diagrammatic representation 

Figure 2 shows the problem block diagram in each time step Ts:  

x1 is the battery SoC (state) 

x2 is the grid cost (state) 

c is the cost at each time step 

u is the input (here: charge power) 

d is the random disturbance causing price fluctuations 

The problem has two distinct parts, one is the disturbance which 

changes the basic problem into a stochastic one. The deterministic or 

basic problem is symmetric. The summation of each time steps (Ts) 

evaluation leads to a final cost, say JN. Where N is the final time-step. 

Basic Problem 

It has one control variable: the charging power  𝑢. The power is subject 

to two constraints: it cannot be negative and there is a constant 

maximum power 𝑢 such that  𝑢 ∈ [0, 𝑢].  

The behavior of the system is determined by two separate dynamics: 

the battery state and the total cost. Both accumulate (integrate) over 

time and the only difference is the coefficient.  

The battery state 𝑋1 is an integral of the charge power over time:  

𝑋1 𝑘+1 = 𝑋 1 𝑘 + 𝑇𝑢𝑘         (1) 

assuming that the self-discharge and charging losses are negligible. 

The cost 𝑐𝑘 is also an integral of the charge power but weighted by 

the current electricity price:  

𝑐𝑘+1 = 𝑐𝑘 + 𝑇𝑋2𝑢𝑘           (2) 

𝑐0 = 0. The price is a disturbance for the system, for the 

deterministic approach, it is assumed that it is known in advance. 

The total number of steps 𝑁 to consider with 𝑘 = 0 … 𝑁 are also 

defined in advance.  

The basic optimal charging problem is defined by the cost function 𝐽 =
𝑐𝑁 representing the total electricity cost and the boundary 

condition 𝑋1 𝑁 = 𝑋1 𝑓𝑢𝑙𝑙 , which requires the battery to be fully charged 

at the end of the charging process.  

Because no discharge is allowed, it is not necessary to impose limits 

on the charge state. The advantage of using this simple model is that 

the final state and cost can easily be calculated as: 

𝑋1𝑁 = 𝑋1|0 + ∑ 𝑇. 𝑢

0…𝑁−1

  (3𝑎) 

𝑐𝑁 = ∑ 𝑇. 𝑋2. 𝑢

0…𝑁−1

        (3𝑏) 

Self-Discharge and Resistive Losses 

Every battery has losses which are associated with both charge and 

discharging. It can be assumed that the efficiency of the battery pack 

therefore, will be less than 100% and the battery loses a certain part of 

its charge at every time step. This modifies the basic battery model: 

𝑋1|𝑘+1 = 𝛿𝑋1|𝑘 − 𝜔 + 𝜑𝑇𝑢𝑘   (4) 

Where 1-δ is the relative discharge coefficient for each time-step, ω 

is the absolute discharge energy per time step and φ is the charging 

efficiency. This leads to the following battery SoC: 

𝑋1𝑁 = 𝛿𝑁𝑋1|0 − 𝜔 ∑ 𝛿𝑘

0…𝑁−1

+ 𝜑 ∑ 𝛿𝑁−𝑘−1𝑇𝑢𝑘

0…𝑁−1

 (5) 

Resistive losses within the battery (and the electricity supply) can be 

the dominating factor for charging losses. These resistive losses are 

proportional to the square of the current, assuming a constant voltage:  

𝑢𝑖𝑛 = 𝑢𝑜𝑢𝑡 + 𝑅𝑢𝑜𝑢𝑡
2       (6) 

where 𝑅 is the resistance normalized for the charging power. In terms 

of the optimization problem, the losses can be included either in the 
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power going into the battery or in the cost of the electricity depending 

on whether 𝑢𝑖𝑛 or 𝑢𝑜𝑢𝑡 is the wanted variable. The latter produces an 

easier problem definition: 

𝑐𝑘+1 = 𝑐𝑘 + 𝑇𝑋2 𝑘(𝑢𝑘 + 𝑅𝑢𝑘
2)    (7) 

These resistive losses in effect will tend have an influence in the 

decision to charge because practically the battery will only receive a 

part of the charging power. Secondly, losses are proportional to 

charging power, therefore they will be higher at higher charging 

powers (fast charging).  

Dynamic Problem and Random Disturbance 

The basic problem has a sub-optimal solution [13] but this is only 

applicable if the dynamics of decision problem are not taken into 

account. Once, the dynamic nature of the state variables are taken into 

consideration, the problem becomes a lot more complex. In this case, 

the varying nature of the grid-cost is important to the decision made by 

the controller and can be termed as the state which is affected by the 

stochastic disturbance (fig. 2). Therefore, this problem turns into a 2 

state dynamic problem with a stochastic element.  

By definition a dynamic programming problem is one which has both 

inputs and outputs which change dynamically with time [32]. This 

problem fits perfectly to this definition because we don’t want to view 

the decision of ‘when to charge’ in isolation. The time varying grid 

cost (and potential unpredictable disturbance) make the decision 

requirement dynamic. Dynamic programming helps to balance the 

trade-off between low present cost and need for reduction of high 

future costs. Taking figure 2 as a guide; the ultimate aim is to minimize 

the summation of c (from each time step) and the final cN.  

The problem with state X2 is its dependence on the random disturbance 

d whose nature is therefore, stochastic. The disturbance basically 

describes price ‘spikes’ or fluctuations which can change the trajectory 

of grid-cost and is dependent on market forces and electricity demand. 

The nature of the electricity market (purchase and sale) leads to 

unpredictable real time costs. This is what causes the difference 

between day-ahead prices and real-time prices when a smart-grid and 

smart-metering tariff is in question. By adding the stochastic element 

to the dynamic program, a solution for price prediction in context of 

EV charging (to try and minimize final cost) can be obtained as 

explained in further sections. 

New Grid Cost Model and Possible approaches 

To describe this nature of the electricity grid we can call the price 

‘spikes’ as events and associate a probability to the occurrence of these 

events. Describing the cost model as a standard first order linear 

process where:  

𝒅 is an uncorrelated random variable with a normal distribution. It can 

be possible to define this as Gaussian and may make solutions more 

accurate but this needs to be tested after the simulation stage 

𝒄𝒌+𝟏  is the cost (calculation for time-step k+1)  

𝜶 is the decay factor can be calculated by performing a correlation of 

the hourly prices 

𝜷 is the disturbance factor can be calculated by the difference in the 

hourly prices 

𝑷𝒆𝒗 is the probability of an event occurring 

𝜸 is the effect of an event 

We get: 

𝑐𝑘+1 = {
𝛼𝑐𝑘 + 𝛽𝑘 . 𝑑 | 𝑛𝑜 𝑒𝑣𝑒𝑛𝑡 (𝑑 ≥ 𝑃𝑒𝑣)

𝛼𝑐𝑘 + 𝛽𝑘 . 𝑑 + 𝛾 | 𝑒𝑣𝑒𝑛𝑡 (𝑑 < 𝑃𝑒𝑣)
       (8) 

The optimal solution, is defined as providing the lowest expected cost 

E<J> of deciding whether to charge or not, is difficult to find. There 

can be several approaches to solving the problem but some of the 

standard solutions are difficult to apply. The standard model predictive 

control (MPC) approach is difficult to justify because the applicability 

of limits is no longer a discrete decision, but a stochastic event. The 

limits then turn the Gaussian probability distributions into piecewise 

Gaussian distributions, which are difficult to handle numerically. 

This problem is of a much more complicated nature, because it asks 

the question whether it is better to charge at current electricity prices, 

or to wait for them to fall. The central question “are prices going up or 

down?” lies at the heart of economic markets and market theory, and 

it cannot be answered with certainty. Typical solutions can be based 

on the Hamilton-Jacobi-Bellman (HJB) equation, which traces the 

expected cost based on a stochastic pricing model. Approximating and 

solving this equation is numerically challenging and it may not be 

practically feasible with any degree of accuracy. Theoretical advances 

are being made in a number of fields. MPC with stochastic weight 

models can be used [33] (most stochastic MPC approaches will 

consider only stochastic limits, not weights). On the other hand 

dynamic programming (usually involving quantization) and mixed 

integer algorithms can help to find the expected cost benefit of 

charging at specific times [34] with relative ease and accuracy. Finally 

there are a number of industry specific approaches coming from 

operations research, that deal with the question of optimal load shifting 

and scheduling using a limited capacity [35][36]. 

Stochastic Dynamic Programming (SDP) 

Overview of Dynamic Programming 

A great method to find optimal control solutions is to use DP. This 

solution is almost never casual because we need to know future 

disturbances or changes in advance. However, if these are known there 

is a strong case for using DP to find an optimal solution. In a typical 

deterministic DP; at each stage, decisions are ranked based on the 

summation of present cost and expected future cost, assuming optimal 

decision making for subsequent stages [32]. 

The symmetric part of the problem shown in fig.2 can be successfully 

dealt in this manner. When the stochastic element is taken into account, 

DP methods can be evolved to solve them in an effective way [37]. 

Moreover, the cost model we have in equation (8) is similar to a 

Markov process because decisions are only based on the current state 

and the future but not any past decisions. 

A typical DP is shown in the next few equations based on the 

definitions and algorithm in [38].  

The structure of the problem in DP format can be described for a 

discrete-time system: 

𝑥𝑘+1 = 𝐹𝑘(𝑥𝑘 , 𝑢𝑘) where 𝑘 = 0,1, … , 𝑁 − 1 (time-steps)  (9) 
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Here, 𝑥𝑘 is the state which uses information from the previous step for 

future optimization, 𝑢𝑘 is the control variable which is the decision to 

be made. N is the size of control applications. This leads to a cost-

function which is additive over time: 

𝐽𝜋 = 𝐸 〈𝐹𝑁(𝑥𝑁) + ∑ 𝐹𝑘(𝑥𝑘, 𝑢𝑘)
𝑁−1

𝑘

〉       (10) 

Here 𝜋 is the control policy- 𝜋 = {𝜇0, 𝜇1, … , 𝜇𝑁−1}, where 𝜇𝑘 is the 

control for state 𝑥𝑘 

For initial state 𝑥0, expected cost of 𝝅 will be given as: 

𝐽𝜋(𝑥0) = 𝐸 〈𝐹𝑁(𝑥𝑁) + ∑ 𝐹𝑘 (𝑥𝑘, 𝜇𝑘(𝑥𝑘))

𝑁−1

𝑘=0

〉      (11) 

The optimal control policy 𝝅𝟎 is the policy that minimizes 𝐽𝜋 for  𝑘 =
0,1, … , 𝑁 − 1 

𝐽0(𝑥0) = min
𝑥∈𝑆

𝐽𝜋(𝑥0)         (12) 

Where S is the set of all admissible policies. 

If we assumed a random stochastic element 𝑑 that affects the states, 

(11) becomes: 

𝐽𝜋(𝑥0) = 𝐸 〈𝐹𝑁(𝑥𝑁) + ∑ 𝐹𝑘(𝑥𝑘, 𝜇𝑘(𝑥𝑘), 𝑑)

𝑁−1

𝑘=0

〉      (12) 

The definition of d depends on the specific problem and the probability 

density function applied to the disturbance. There are some 

assumptions central to this theory: the set of values which control the 

input uk depend on the state only at k (Markov property) and not on 

previous steps; the information from the previous step is used in 

determining the current state value and the probability distribution of 

d does not depend on itself at other time steps (i.e. time-invariant) but 

depends on state xk   and input uk. 

DP algorithm for the EV charging problem 

The most promising method, has shown to be a modified algorithm of 

dynamic programming (DP) presented in [37]. The DP function solves 

discrete-time optimal control problems using Bellman’s DP algorithm. 

The work done in this paper by ETH Zurich affiliated Sundstrom and 

Guzella, describes a generic DP MATLAB function. This proved to be 

a good starting point as they have shown their function to be applicable 

to a hybrid EV energy management system.  

The charging problem described in the current paper is different, 

therefore the function had to be significantly customized and recoded 

with the stochastic computational elements added to the overall 

program. The final code for the controller simulation is quite different 

and is based on the algorithms explained here, and in the SDP 

algorithm section. Although this function is specific to the EV 

charging problem, as a matter of another study it could be modified to 

fit any Stochastic Dynamic Program.  

The following inputs are defined for the algorithm 

Algorithm 1: Deterministic Dynamic Programming 

• State:  x (here X1 – SoC and X2 – grid-cost) 

• Control: u (here Charge Power) 

• Grid size for all states 

• Model functions: f and c 

here:  

𝑥1,𝑘+1 = 𝑥1,𝑘 + uk 

x2,k+1 = 𝛼𝑥2,𝑘 + 𝛽𝑘 

𝑐𝑘 = 𝑥2,𝑘 + 𝑅𝑢2
 

• Final state cost: 𝐽𝑁+1
∗  for all states 𝒙𝑘+1 on the grid 

(here: 𝐽𝑁+1 = 𝑐𝑁+1(𝑥𝑁+1) × 𝑘, where 𝑐𝑁 is the distance 

from the admissible set, and 𝑘 is a penalty factor) 

• Time horizon: N 

1. State and input grids are created from discretization limits 

2. Iterate over the time horizon backwards 𝑘 = 𝑁 … 1  

2.1 For each state 𝒙𝑘   

2.1.1 For each input 𝒖𝑘 

2.1.1.1 Evaluate the Model: 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) 

𝑐𝑘 = 𝑐(𝑥𝑘 , 𝑢𝑢) 

 

2.1.1.2 Interpolate the  remaining cost 

𝐽𝑘+1
∗  (𝑥𝑘+1) based on 𝑥𝑘+1 and 

the cost at the state grid points.  

2.1.1.3 Calculate the total cost 

Based on the step cost and the 

remaining cost  

𝐽𝑘(𝑥𝑘, 𝑢𝑘) = 𝑐𝑘(𝑥𝑘 , 𝑢𝑘) + 𝐽𝑘+1
∗ (𝑥𝑘+1)  

2.1.2 Find the best input 𝑢𝑘
∗ (𝑥𝑘) that produces the 

lowest cost 𝐽𝑘(𝑥𝑘 , 𝑢𝑘
∗ ) = 𝐽𝑘

∗(𝑥𝑘) 

2.2 A cut-off grid-cost line is mapped for visualization 

purposes. This is the grid cost for a given state of 

charge at which the charging power reaches 50%. 

(optional)  

Once the ideal control strategy has been found, it is simulated to find 

the projected cost. 

Algorithm 2: Optimal Charging Simulation 

1. For the forward simulation, define the initial state 𝑥1 

2. Iterate over the time horizon forwards 𝑘 = 1 … 𝑁  

2.1 Evaluate the model 

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘
∗ (𝑥𝑘)) 
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SDP version of the Algorithm 

The previous algorithm successfully describes the dynamic 

programming stage for the deterministic part (fig.2). The stochastic 

element is now included in the algorithm, however as will be seen it is 

computed prior to the DP stage (fig.3). The advantage of this approach 

is that it makes the final algorithm elegant and computationally less 

intensive. It can achieve this because it essentially isolates the 

stochastic element; thus not having it calculated in every single nested 

iteration.  

 

Figure 3: Charging controller with functions 

Regarding state X2 

If at time-step say, k we define the stochastic state as 𝑥′𝑘, the function 

is: 

𝑥𝑘
′ = 𝑔(𝑥𝑘 , 𝑑) 

Here, 𝑥𝑘 is the deterministic state of grid-cost and as known d is the 

stochastic disturbance. If, the deterministic function is f, the fig.2 

becomes as above. 

The algorithm can now be rewritten as follows. 

Algorithm 3: Stochastic Dynamic Programming 

• State:  x (here X1 – SoC and X2 – grid-cost) 

• Control: u (here Charge Power) 

• Grid size for all states 

• Model functions: f and c 

here:  

𝑥′1,𝑘 = 𝑥1,𝑘 + uk 

x′2,k = 𝛼𝑥2,𝑘 + 𝛽𝑘 

𝑐𝑘 = 𝑥2,𝑘 + 𝑅𝑢2
 

• Final state cost: 𝐽𝑁+1
∗  for all states 𝒙𝑘+1 on the grid 

(here: 𝐽𝑁+1 = 𝑐𝑁+1(𝑥𝑁+1) × 𝑘, where 𝑐𝑁 is the distance 

from the admissible set, and 𝑘 is a penalty factor) 

• The stochastic model g 

here: 

𝒙𝟏,𝒌+𝟏 = 𝒙′𝟏,𝒌 

𝐱𝟐,𝐤+𝟏 = 𝒙′𝟐,𝒌 + 𝒅𝒌 

• Time horizon: N 

1. State and input grids are created from discretization limits 

2. Iterate over the time horizon backwards 𝑘 = 𝑁 … 1  

2.1 The expected cost function using the stochastic 

function g is calculated 

𝑱′
𝒌

(𝒙′
𝒌) = 𝑬〈𝑱𝒌+𝟏

∗ (𝒙𝒌+𝟏)〉 

2.2 For each state 𝒙𝑘   

2.1.1 For each input 𝒖𝑘 

2.1.1.1 Evaluate the Model: 

         𝑥′𝑘 = 𝑓(𝑥𝑘 , 𝑢𝑘) 

         𝑐𝑘 = 𝑐(𝑥𝑘 , 𝑢𝑢) 

 

2.1.1.2 Interpolate the remaining cost 

𝐽𝑘
′  (𝑥′𝑘) Based on 𝑥′𝑘 and the cost at the 

state grid points. 

2.1.1.3 Calculate the total cost 

Based on the step cost and the 

remaining cost  

𝐽𝑘(𝑥𝑘, 𝑢𝑘) = 𝑐𝑘(𝑥𝑘 , 𝑢𝑘) + 𝐽𝑘
′ (𝑥′𝑘)  

2.1.2 Find the best input 𝑢𝑘
∗ (𝑥𝑘) that produces the 

lowest cost 𝐽𝑘(𝑥𝑘 , 𝑢𝑘
∗ ) = 𝐽𝑘

∗(𝑥𝑘) 

2.3 A cut-off grid-cost line is mapped for visualization 

purposes. This is the grid cost for a given state of charge 

at which the charging power reaches 50%. (optional) 

Once the ideal control strategy has been found, it is simulated to find 

the projected cost using Algorithm 2. 

Controller 

Overview 

The SDP controller can be termed as the ‘decision-module’ in the 

system shown in figure 4. It uses the algorithm discussed to make the 

decision ‘to charge or not’ on the basis of: event-probability (Pev), 

decay factor (α) and cost-disturbance (β) all of which are predicted 

from annual data of day ahead prices (DAP) or real time prices (RTP) 

for any electricity grid.   

This paper explains the SDP controller and discusses simulation 

results. The statistical stochastic predictor is scientific work to be done 

in the future which will help investigate the approach to obtain realistic 

values for constants like α, β and Pev. 
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Figure 4: System Idea Overview 

Assumptions 

The simulation which was performed to test the controller is based on 

some assumptions. The aim here is to test the controller’s basic 

function: its decision ability to pick the best hours to charge by using 

a prediction for price changes.  

A DAP profile for an arbitrary evening is selected from the Amaren 

tariffs for Illinois, Chicago, USA [39]. A hypothetical event is 

triggered (or not triggered) to test the controller’s reaction in different 

scenarios. 

• The grid model described is a Markov process and uses basic 

principles for price changes 

• The decay factor (α), disturbance (β) and price-event change 

are all assumed as constant for simulation (stated in each 

scenario results) 

• The Pev, probability that an event might occur is selected 

constant and arbitrary for simulation; to help verify the 

controller functioning in different probability situations 

• The grid model function is mostly linear 

• Battery losses are represented by multiplying or adding 

simple penalties to the final cost 

• The EV specifications are all assumed to have no effect on 

charging, the controller is tested for a 14 hour charging 

situation where the user reaches home and plugs in the 

vehicle at 5:00pm and requires the vehicle by 7:00am 

• The user is requesting a (0.8 x battery power) 80% SoC by 

7:00am 

• EV battery temperature, ambient temperature effects are not 

taken into account 

• The charge power is represented as a fraction of the battery 

power (u) 

• Charging power is assumed to be ‘fast-charge’ when using 

more than 0.2 times x battery power 

• DAP information has been received by the controller via a 

smart-grid connection prior to or as soon as the vehicle is 

plugged in 

Results 

Basic Scenario 

The baseline scenario provided to the controller assumes fast-

charging at (𝟎, 𝟓 𝒙 𝒃𝒂𝒕𝒕 𝒑𝒐𝒘𝒆𝒓) and no resistive losses. Different 

cases are explored in this scenario to see the decisions the controller 

makes and this tests the SDP output.  

NO EVENT 
Table 1 shows the input parameters: for the first baseline case, we 

discuss the results for price-selection, charge-decision, optimal-control 

map, cost-of-control decision and a snapshot of the cut-off prices. 

There is a positive event probability but no price-event for the first 

case. 

Table 1: Input Parameters for Basic Scenario 

 Current Parameters 

Time Step 1 

Number of Hours 14 

Alpha 0.8 

Charge Power 0.5 

Resistive Penalty 0 

Event Probability 0.1 

Event Time None 

 

Figure 5 shows, the controller decides to start charge at 21:00 

(allowing full power at 22:00) and realizes it may need lesser time than 

initially calculated to charge. The charge power drops after 22:00 and 

a full charge is achieved by 00:00. What is of importance here is that 

the SDP controller picks a slightly higher cost than the lowest possible 

in the 14 hours. This is because it has a positive event probability and 

it decides it is better to provide a ‘full’ charge at a minimal penalty 

(low enough cost at 22:00) than to wait for the lower cost (at a later 

hour) and risk having to charge during a price-event. It therefore 

predicts an event and prefers to pick a low enough price to charge ‘and’ 

provide required SoC by 07:00.  

 

Figure 5: Controller output for Base Scenario 
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Figure 6: Cut-off Cost Trajectories 

This shows that with a probability of an event occurring at (Pev=0.1), 

the controller works intelligently to provide a full charge (which is a 

boundary condition E=Efull) whilst picking the lowest possible cost 

trajectory to follow in the process. This can be seen in the cut-off cost 

plot: a higher cut-off cost is being preferred between 20:00 and 00:00, 

initially this is because of the probability and later this cut-off falls 

because the SoC increases and less time is needed to complete the goal; 

it can risk and wait to find a lower cost. 

Figure 6 shows the cut off cost selection for odd hours for the 14 hour 

time period. It is visible that as time passes and SoC has not been met, 

the controller is ready to pick a higher cost to make sure charge is 

provided in time. When possible, the lowest cost is chosen proving that 

the controller works to provide 'the optimal cost charging' within the 

set parameters (SoC and ToC) by predicting an event based on 

probability.  

 

Figure 7: Controller Maps Base Scenario 

Figure 7 shows a snapshot of the optimal control map where the 

colourbar represents charge power for 21:00 and 23:00 (covers one 

charge decision and one discharging decision for this scenario). The 

selection of the cost is logical as seen here: The charge power is 

increased if the cost and SoC are lower. As both increase, charge power 

is decreased. In this case the most important area is between 0 and 37% 

SoC, where the decision to charge or not falls within a small range of 

grid-cost. The map suggests that once the cost is near $0.1, the 

controller will charge because the cost before is very high and $0.1 is 

a low-enough cost to pick and charge to achieve full SoC. The black 

line follows the trajectory of the cost cut-off decision which shows 

risking to wait for a lower-cost as battery charge increases. At 23:00 

time has passed (SoC has increased), the controller selects to lower 

charge power, getting ready to wait for a lower cost but it is low enough 

to continue charging and not risk an event (because of probability). 

Figure 8 shows the map of cost (of control decision) at 17:00. The 

colourbar indicates the cost of control. The plot shows that cost is 

proportional to the SoC missing in the battery. The cost of use is only 

low if the grid-cost is low and SoC is higher, otherwise the controller 

has to charge to provide E=Efull at a higher cost.  

 

Figure 8: Cost (J) map for 17:00 

NO PROBABILITY 
Figure 9 shows the controller reacting very differently. It does not rush 

to charge but waits until the price is much lower because it predicts no 

events. It picks the lowest hours to charge at full power provided it can 

give a full charge in the remaining hours. This is evident in the plot as 

the cut-off costs become higher as time passes, until the battery charge 

is higher. This reinforces the requirement for accurate probability 

values to be passed from the predictor. 

 

Figure 9: Controller output with Pev=0 
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EVENTS 
Table 2 shows the input parameters: There is a positive event 

probability and early, middle, late hours and long events. The 

reactions of the controller in each case are compared. 

Table 2: Input Parameters for base scenario events 

 Current Parameters 

Time Step 1 

Number of Hours 14 

Alpha 0.8 

Charge Power 0.5 

Resistive Penalty 0 

Event Probability 0.1 

Event Time 3, 6, 12, 6+ 

Figure 10 shows the early event case; at 20:00 the price event occurs 

and alters the trajectory for future hours. The controller detects this, 

avoids the event and the increased prices until 00:00. The prices have 

started falling and reach low enough at 1:00 to warrant a charging 

phase to complete the charge. The cut-off prices increases (therefore, 

the need to charge in any cost situation) after 00:00 because the ToC 

is nearing with no charge in the battery. The controller successfully 

picks low price hours till 3:00 to charge leaving no risk for later in case 

there is another event.  

 

Figure 10: Early Event (base) 

Figure 11 shows the middle event case; the controller sees a low price 

point at 21:00-22:00 where it decides to charge but an event occurs and 

changes the cost significantly after 22:00. The controller predicts and 

stops charging before the price reaches a high at 23:00. The battery is 

50% charged by then so it waits for a very low cost until 3:00-4:00 

when it decides to charge again to provide SoC as required. In the 

second charge phase it does not use all the charging power (only 0.3 

compared to 0.5). This shows it meets the goals of avoiding high 

demand and cost, but still provides a full charge by ToC. 

 

Figure 11: Middle Event (base) 

Figure 12 shows the late event case; here the controllers picks to charge 

almost exactly like the no event case in Figure 5. This proves that it 

predicts the possibility of an event due to the positive Pev and decides 

to charge with a minimal penalty, to be safe and provide SoC at ToC. 

Only, in this case, the prediction is right and there is an event at hour 

12, changing the costs quite significantly.  

 

Figure 12: Late Event (base) 

Figure 13 describes the long event case; initially the controller behaves 

similarly to the middle event case, where it charges between 21:00 till 

the event alters the costs. It then stops and waits for a time of low cost 

to try and save both demand and price. However, the event continues 

to keep the prices high all through the remaining hours and the 

controller panics at 5:00 because the battery is not charged. It decides 

to charge bearing the penalty in order to provide SoC at ToC. The cut 

off cost trajectory shows this decision behavior, as it keeps increasing 

the risk cost because SoC has not been met as the hours pass.  
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Figure 13: Long Event (base) 

Scenario with Resistive Losses 

Scenario 2 provided to the controller aims to analyse the decisions in 

a little more realistic situation where the resistive battery losses affect 

the charging power. The obvious implication is that as losses affect 

charge power, it will take longer to finish charging, so the 

predictions and decisions will change accordingly. 

 

 

Table 3: Parameters for Scenario with Losses 

 Current Parameters 

Time Step 1 

Number of Hours 14 

Alpha 0.8 

Charge Power 0.5 

Resistive Penalty 0.03 

Event Probability 0.1 

Event Time 6 

Figure 14 shows that the controller decides to charge at the low price 

point at 21:00. It starts to provide charge after 20:00 and more power 

by 22:00 when price is even lower but the power is clearly affected by 

the resistive losses and effectively reaches only a value of 0.3. The 

event occurs at 22:00 and the price shoots up, the controller stops 

charge and waits. Unlike the choice in scenario without resistive losses 

(Figure 11), the controller picks a slightly higher price at 2:00 because 

more time is needed to charge owing to low net charge power. This 

proves the intelligence in the controller works both for picking a low 

cost and compensating for losses. This can also be seen in the cut-off 

cost trajectory, where the risk cost is higher at 2:00.  

 

Figure 14: Controller output with Resistive Losses 

 

Figure 15: Cut-off cost trajectories for Losses 

 

Figure 16: Cost (J) Map for 17:00 

The cost of control map in Figure 16 also reflects this change. It 

indicates clearly that the controller is ready to accept higher penalties 

to finish the job. This scenario and the reaction to it shows that in 

reality, with losses taken into account, any controller will have to make 
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compromises but the SDP controller makes these whilst still striving 

to find the lowest possible expense. 

 

Figure 17: Controller Map for Losses 

Figure 17 shows the optimal controller map for this scenario which 

differs significantly from the base shown in Figure 10-13. The price 

range at low SoC is much wider in this case, which is forced by lower 

net power due to losses. The controller has to compensate for this to 

provide the required full SoC on time. Proving once again that it will 

always meet the most important goal of finishing the charge. 

Scenario using Slow Charging 

Scenario 3 tries to explore the slow charging base scenario without 

resistive losses. The obvious implication is that with lower charge 

power, battery will need more time to charge, so the strategy will 

have to be altered accordingly. 

Table 4: Input Parameters for Scenario 3 

 Current Parameters 

Time Step 1 

Number of Hours 14 

Alpha 0.8 

Charge Power 0.2 

Resistive Penalty 0 

Event Probability 0.1 

Event Time 3, 6, 12 

 

Figure 18 shows the middle event case; 21:00 has a lower cost and just 

like in the cases the controller decides to charge but encounters an 

event at 22:00. As the charging stops, the SoC achieved is lower 

compared to fast-charge scenarios. Figure 18, 19 both show the cut-off 

cost trajectories which describe the risk selections are much higher to 

compensate. The controller waits until 2:00 but takes the penalty of the 

higher costs (compared to 4:00) to be safe and provide charge. Figure 

19 shows a very different plot compared to other cases; here at 3:00 as 

well as 5:00 the cut –off values are much higher for the range of SoC, 

indicating the willingness to accept penalties if the SoC is too low. 

 
Figure 18: Controller output for slow charge 

 
Figure 19: Cut-off Trajectories for slow charge 

Figure 20 shows the strategy for the case with an early event. As the 

event really causes a high in the early hours, the controller completely 

avoids charging and waits for a really low cost. At 00:00, it picks a low 

cost but predicts a possible event later and for safety begins charging. 

It continues to provide power as the costs only fall over the period and 

provide SoC by 5:00. The cut-off cost penalties increase all the way 

through 20:00 to 3:00 (where the battery achieves 50% SoC).  

 

Figure 20: Slow Charge with early event 
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Figure 21 shows a late event case; here the controller predicts an event 

because of the positive Pev. So, it picks a low enough cost at 20:00 and 

provides full power at 21:00 when the cost is low. It charges till 00:00, 

when the cost jumps a little; it stops charging and waits. The next hour, 

the cost falls again and the controller charges at full power and 

achieves SoC quickly. The event that occurs at 4:00, is therefore 

avoided completely by the controller’s strategy. 

 

Figure 21: Slow charge with late event 

Conclusions 

The paper presented takes the basic EV charging problem and explains 

the dynamic side of it. The stochastic nature of the problem is realized 

and a better and optimal solution is presented compared to the sub-

optimal controller presented in [13]. The optimal controller uses a 

time-discrete stochastic optimization within a dynamic program. The 

MATLAB controller function is a significantly elaborate yet based on 

a simple and functional algorithm. The controller takes into account 

the required SoC and ToC (user-defined) and controls charging over 

the provided time period (and time period data). It successfully 

predicts possible price-events (‘spikes’) and compensates to charge the 

battery at lower cost hours. The main goal of the control is to provide 

required SoC in time, which it attempts to achieve by selecting the 

lowest possible costs. It is intelligent enough to make compromises 

and charge at penalty prices if required for SoC at ToC. The SDP 

controller is a large improvement over the sub-optimal solution 

presented before. The old controller could not predict price changes 

but simply reacted to DAP data provided by a smart-grid.  

The prediction ability of the controller has been tested using simulation 

of a 14hour period of an arbitrary evening in the year. Testing scenarios 

included positive and no event probabilities, effect of resistive losses 

and a lower charge power. In each case, the controller behaves as 

expected and not only predicts possible price jumps but also reacts to 

them in a ‘safe’ manner thus being able to provide SoC and not leaving 

the user stranded. In all cases it picks lower costs than otherwise if the 

charging was performed arbitrarily (for example: as soon as the EV is 

plugged in). The results comprehensively prove this as an optimal 

solution, where the EV would charge automatically saving costs and 

in turn offsetting high demand. We conclude that the next step is to 

subject this controller to a case-study based on an accurate prediction 

system (dubbed statistical predictor fig.4) for the constants (especially 

price-disturbance β) used in the current paper. This system would use 

annual DAP and RTP data and analyze it to provide predicted values 

for any day of the year, for disturbance and ‘event’ probability. 
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Definitions/Abbreviations 

BEV battery electric vehicle 

DA day-ahead pricing 

HEV hybrid electric vehicle 

ICE internal combustion engine 

MPC model (based) predictive control 

RT/RTP real time pricing 

PHEV plugin-in hybrid electric vehicle 

SOC (battery) state of charge 

SD standard deviation 

V2G vehicle to grid 

EV Electric vehicle 

DP Dynamic programming 

SDP Stochastic dynamic programming 

ToC Time of charge (required time) 

SoC State of charge (required) 
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