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(i) 

SUNMARY 

The coalescence of single drops at a plane liquid-liquid 

interface has been studied both theoretically and experimentally, 

Experiments were carried out with a wide range of drop size 

using two and three component systems, The drops coalesced in a partial 

manner and the drop size ratios between stages were determined, A 

detailed examination is made of the rest-time distributions for each 

stage of coalescence, Generally,coalescence rest-times increased with 

increase in size of drop and fall height of the primary drop. Reasonable 

agreement between theory and experiment is approached for small drops, 

Coalescence rest-times of large drops were considerably less than 

predicted,presumably because of the deformation of the "trapped" film 

and uneven drainage, The variables affecting the coalescence are 

analysed and an empirical correlation is formulated to permit prediction 

of coalescence rest-times, 

Observations of the motion or the droplet fluid and the disturbed 

interface were carried out using schlieren photography, The way in 

which wave disturbances at the interrace can influence the coalescence 

process is examined, It is shown that that such wave disturbances may 

be responsible for the existence of ~he residence time distribution 

observed in all single drop coalescence studies, 
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CHAPTEH 1 

ItiT.HODUCTIOl'l 

As chemical engineering knowledge develops,increasingly more 

complex and sophisticated process designs are implemented. One area 

that has benefited from this advance is the process of liquid-liquid 

extraction. In this unit operation the recovery and separation of 

materials is accomplished by transfer between two liquid phases. The 

process may be one of simple physical transfer of a component,or it may 

include the more complex aspects of chemical reaction and ion transfer. 

It is quite understandable therefore,that the range of eqU1pment 

available for carrying out such operations is extensive. Inevitably, 

the choice of specific equipment is often a difficult one. 

One of the most important factors to be cons1dered in the 

selection of liquid-liquid extraction equipment is the ease of separation 

of the dispersion. The rate at which separation occurs is dependent on 

many physical and chemical factors,but predominant among these is the 

coalescence behaviour of the drops constituting the dispersion. The 

separation of most 11quid-liquid dispersions can be divided into two 

stages: (i) the primary stage,during which most of the dispersed drops 

coalesce to form a continuous phase,and (ii) the secondary stage when the 

haze' of very small drops,left behind from the first stage,finally coalesces 

and disappears. These two stages can in most cases be clearly distinguished 

unless the volume fraction of the dispersed phase is very small. It has 

been shown (83) that in principle,two quite different mechanisms of 

phase separation in the primary stage can be distinguished. These 

mechanisms have been termed the interdroplet and interfacial modes of 

phase separation. The behav1our of an actual dispersion may be a 

~or.b1~at1on of these mechan1sms. If the interdroplet mode of phase 

separat1on predom1nates,coalescence within the d1spersion layer tak~s 
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place primaril¥ between two or more drops. Generally,this mode of 

coalescence is marked Qy a wide range of drop sizes in the dispersion. 

When the interfacial mode of phase separation predominates,coalescence 

occurs mainly at the interface between the layer of dispersed phase 

already separated and the dispersion layer. 

The stu:ly of coalescence in technical equipment is complieated qy 

the large number and wide size range of drops present in such circumstances; 

furthermore, the hydrodynamics of the process is difficult to define. For 

this reason considerable attention has been directed towards simple 

systems in order to obtain fundamental information about coalescence. 

Hydrodynamically,one of the simplest situations is that provided by the 

approach of a single drop to a plane interface,and it is to this situation 

that the present work was confined. 

When a drop of liquid {phase-1) falls through a second immiscible 

liquid (phase-2) on to the bulk interface separating the two phases,it 

may rest at the interface for a period of time before coalescing. The 

drop is separated from the interface Qy a thin film of phase-2 liquid ani 

coalescence occurs when this film ruptures, Coalescence of the drop 

(primary drop) with the bulk phase-1 liquid may take place wholly or 

partially. Partial coalescence results in a secorrl smaller drop of phase-1 

liquid being formed from the drop. Frequently,the drop may coalesce in 

several stages,with a smaller drop being produced at each successive stage. 

The coalescence rest-time* is defined as the time between the arrival of 

the drop at the interface ani its coalescence. This time may inclu:le just 

the first stage of coalesence (first stage coalescence rest-time) or any 

subsequent stages which occur. The coalescence time of a drop,even for a 

given system (i.e. phase-1/phase-2) and fixed conditions,is not constant 

ani may take any of a wide range of values, The coalescence time may also 

" This is also referred to simply as the coalescence time 



be greatly affected qy small changes in conditions of the system. 

Although a great deal of interest has been shown in recent years 

in coalescence,maey important problems still remain unsolved. In an 

attempt to consolidate and extend the understanding of coalescence,the aim 

of the present work was: 

(i) To develop an apparatus in which the coalescence rest-times 

of single droplets at a plane interface could be measured 

for a wide range of drop size,with minimum disturbance of 

the bulk interface. 

(ii) To determine the coalescence rest-time distributions for 

all visible stages of coalescence,for a number of liquid­

liquid systems. 

(iii) To investigate the effect of length of fall of the drop 

on the coalescence rest-time. 

(iv) To develop a correlation between the coalescence rest-time 

and physical variables. 

(v) To observe the motion of the droplet fluid immediately after 

the rupture of the continuous phase film. 

, (vi) To investigate the way in which induced disturbances at 

the interface can influence the drainage of the continuous 

phase film. 

As part of a research contract with the Ministry of Technology, 

Warren Spring Laboratory,the coalescence in similar systems to those used 

qy Fletcher and Flett C37) was investigated. 

Throughout this thesis,a two-component system is regarded as 

comprising two purified liquids (phase-1 and phase-2),and a three­

component,as a two-component system containing a third component in the 

phase-2 liquid. 
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CHAPTER 2 

LITERATURE SURVEY 

Coalescence at a Flat Interface 

When a drop of liquid (phase-1) falls gently through a lighter 

immiscible liquid (phase-2) on to a flat interface* separating the two 

bulk phases,it rests on the interface for a time t before coalescing with 

tha urrler:cying homphase (phase-1) (16). Osborne Reynolds (111) arrl other 

early investigators (46,92,110) attributed this temporary stability to 

the presence of a residual film of phase-2 liquid, trapped between the drop 

arrl the interface, This film is drained out urrler the combined action 

of gravity and surface forces (79). When the film reaches a critical 

thickness,mechanical,thermal,Marangoni instability,or other disturbances 

arriving randomly in time,rupture the phase-2 film (83). The coalescence 

begins with the formation by film rupture,of hole in the phase-2 film. 

The hole expands,whilst the droplet liquid simultaneously drains through 

in to the lower bulk phase,or homophase (16,28), 

2,1 Coalescence Best-Time 

A number of investigators (16,19,33,44,67,79,97) have established 

that t,the coalescence rest-time,is not constant in either stabilised 

(i.e. with surfactant present) ,or unstabilised systems (i.e. without 

surfactant), 

One of the first furrlamental experimental investigations 

concerning coalescence rest-times was carried out by Cockbain and 

McRoberts (19). These workers studied the coalescence of liquid drops 

in stabilised systems, They state that if thirty or more identical drops 

are examined independently,then a reproducible coalescence rest-time 

* The interface between the phase-1 and phase-2 liquids is not to 
be regarded as a silllple geometric plane, upon either side of 
which exterrl the homogeneous liquid phases,but rather as a thin 
lamina;the material in this lamina exhibits properties differing 
from those of either the phase-1 or phase-2 liquids (20), 
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distribution curve can be obtained and that the distribution curve is 

approximately Gaussian. Because of the wide spread associated with 

these distributions the reproducibility of results is an important 

factor to be considered. In the light of more recent investigations, 

it is doubtful whether )0 drops are a sufficient population to give 

good reproducibility of these curves. Cockbain ard McRoberts expressed 

the first stage coalescence time distributions as plots of log N/N versus 
0 

t (Figure 2.1) where N is the number of drops which had not coalesced in 

time t,an:i N the total number of drops assessed. The shape of the 
0 

distribution curves expressed in this fashion,suggested to the authors 

t 

Figure 2.1 Rest-Time Distribution Curve 

that coalescence was occurring by drainage an:i rupture of the film trapped 

between the drop and the interface. They considered that localised 

displacement of the surfactant molecules from the interface,was responsible 

for the rupture of the trapped film. This concept,although accepted by a 

number of workers (97,1:34) cannot account for the similar coalescence 

time distribution curves found in pure two-component systems (16,)),44,68 

79,97). It was found (19) that the portion of the distribution curve BC 

(Figure 2.1) could be described by the equation: 

• 
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ln N = kt + constant (2.1.1) 

where k is a constant for the film rupture process. 

Gillespie ard Rideal (44) proposed an alternative theory for the 

rupture part of the process, based on irregular thinning of the phase-2 

film. They attributed the latter condition to the existence of capillary 

waves,generated by thermal and mechanical disturbances. Their semi-

theoretical analysis, which is somewhat obscure and difficult to follow 

and assumes an increased probability of rupture as the film thins beyond 

a critical thickness,produced the following equation: 

3/2 = -k(t - t ) 
0 

(2.1.2) 

where k is a rate constant arrl t and initial drainage period. Gillespie 
0 

and Rideal,and Charles and Mason (16) were able to correlate their results 

for unstabilised systems using Eqn. (2.1.2). Other investigators (97), 

who employed surfactants in their systems,found that their results did not 

agree with Eqn. (2.1.2). Jeffreys and Hawksley (67),who studied the systems 

kerosine-water and benzene-water,found that their results were correlated 

instead by ln N/~ vs. (t- t )5/2 and (t- t )
2

,respectively. The inability 
0 0 0 

to correlate their results for unstabilised systems using Eqn. (2.1.2) 

was attributed to the presence of a blue dye in the kerosine. This 

impurity may well have been surface active and it is recognised that the 

presence of quite a small amount of surface active impurity can 

considerably modifY the behaviour of a system. Agreement with Eqn. (2.1.2) 

was obtained by these authors for the liquid paraffin-water and redistilled 

kerosine-water systems. 

Elton ard Picknett (33),who studied the stability of single drops 

in the presence of electrolyte,could not correlate their results with 

I.;qn. (..:.1.2). Instead they proposed the folloWJ.nf; equation: 
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(2,1,)) 

and found that the exponent n2 was 2 for concentrated solutions of 

electrolyte,and 3 for dilute solutions, Eqn. (2,1,J),and equations of 

the general form: 

ln;! 
~~ 

0 

n1 
= -k(t - t ) 

0 
(2.1.4) 

have been used to correlate coalescence time distributions for coalescence 

with mass transfer occurring (66), The effect of mass transfer on 

coalescence will be treated later in this chapter (see Section 2.1~). 

Jeffreys and dawksley (68) foun~ that the exponent n
2 

in Eqn. (2,1,)) 

was J.ndependent of the system stlrlied and was equal to 4, By substituting 

t = (tt) 1 and tl/1~0 = 0.5 into Eqn. (2,1,J),they obtained the relationship: 

c ) -4 = O,J(t1. 1 2 
(2.1.5) 

where (t1.) 1 is the half-life of the first stage coalescence. These authors 
2 

were able to obtain an estimate for (t 1 ) using an empirical correlation 
2 1 

based on the physical properties of the system (see Chapter 7 for further 

details), The correlation is quite complex but the agreement between 

experimental and predicted points was apparently good, However,one must 

be critical of the graphical assessment used,because the logarithmic scale 

for t1/t~ tends to smooth the distributions, 
0 

Shellrlko (116,117) has presented a somewhat obscure modification 

of the theory of Gillespie and Rideal (44),based on statistical 

fluctuations in temperature, The following relationship was presented to 

account for this: 

-Bh
2 

f = Ae (2.1.6) 
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where A and B are constants which are characteristic of the system,and f is 

the fraction of droplets which have coalesced before the film thins to a 

certain thickness,h. It should be appreciated,that for random variations 

in temperature to affect the stability of the draining film,the film 
0 

thickness would need to be very small,probably less than 25 A. The idea 

that a van der Waals force of attraction can cause instability in the film, 

has also been advanced by Sheludko (118). This would seem to be a more 

reasonable concept than the one based on temperature fluctuations. 

Contrary to the author's own results,those of Charles and Mason (16) 

failed to agree with Eqn. (2.1.6). 

rlecently, Jeffreys and Hawksley (68) ,and Hartland (53) ,have observed 

that the drop tilts as it approaches the interface. The latter author has 

proposed that this behaviour may,in part,explain the scatter in the 

coalescence rest-time. He suggests that tilting of the drop causes 

unsymmetrical film drainage, which results in preferential film thinning 

in certain areas of the trapped f1lm. Thus the different times taken to 

thin down to a critical thickness are responsible for the residence time 

distribution. One aspect that is difficult to reconcile in this 

explanation,is the difference between large and small drops. Hartland 

only examined large drops. We would expect small drops,which are 

practically spherical,to approach the interface without tilting. It is 

well known though, that small drops exhibit the same scatter in the rest-

time. 

Coalescence Phenomena 

The process of coalescence,whether it involves a single drop and 

a plane interface,or two or more drops,takes place by drainaee and final 

rupture of the thin film trapped between them. In practice,the thin film 

1s really a liquid mixture,although in experimental work the liquids are 

often referred to as being 'pure'. 

In the sections which follow various models of the coalescence 
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process are discussed. These models are very idealised and they assume that 

the fluid or film drains by creeping flow between two rigid surfaces. Also 

included is a discussion of the various physical phenomena which affect the 

drainage process but which have not been accounted for in the idealised 

models of coalescence. 

2.2 Film Shape 

The shape of the film trapped between a single drop and an interface 

is dependent on the pressure distribution within the film and outside the film. 

To incorporate an exact mathematical description of the film shape in to 

an analysis of the film flow,would be an extremely complicated matter,and 

therefore a number of idealised models have been developed (see Fig. 2.2). 

If the drop boundary adjacent to the interface deforms in the 

direction of the drop interior so that a cavity is formed, then the drop 

is said to be dimpled. The existence of dimpling in gas bubbles has been 

investigated by Derjaguin and Kussakov (23). The film thickness between 

a bubble and a flat glass plate was measured using an optical interference 

technique. They found that the bubble was dimpled and that the phase-2 

film was plana-convex in shape and thinnest along a circle of radius R 

about the axis of symmetry. This position of minimum thickness is often 

referred to as the barrier ring. Lacking a satisfactory theoretical 

treatment of this profile, the measured values of R were nevertheless 

found to be in agreement with the relationship: 

R = b
2

( 2LlR )t 
n-

(2.2.1) 

where b is the spherical drop radius,~~ the density diference between the 

phases,and ~ the interfacial tension. The work of Derjaguin and Kussakov 

has been verified by many workers (17,34,45). It is interesting to note 

that the position of the barrier ring,for the case of a film f0rm"d betwaen 

two small identical sized drops,is given by the same equation (83*). 
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The approach of small nitrogen bubbles to a gas-liquid interface 

has been stu:iied by Allan et al. (2), These workers observed, that after 

the formation of the barrier ring, thinning took place at a greater rate 

near the edge of the film than at the centre and that the liquid at the 
0 

centre was temporarily immobilized, At a film thickness of about 1500 A 

there was a bulk movement of the liquid at the centre of the film and the 

film shape became more uniform, Thereafter, the rate of film thinning was 

more uniform in all areas of the film,except for occasional high rates 

observed near the centre. These observations thus illustrate how the 

film shape must be changing considerably during the film drainage, 

MacKay and Mason (89) have investigated the film profiles for 

electrically charged and uncbarged liquid drops approaching a flat liquid 

interface. For drops of diameter less than about 1 llllllo, they noticed that 

the film thickness at the periphery,for the uncharged case,was occasionally 
0 

500 - 1000 A less than at the centre. At coalescence, the trapped film 

was apparently curved and of uniform thickness, Therefore it seems that 

dimpling in both gas bubbles and liquid drops,occurs in similar manner, 

It was discovered that for the charged drop, the film retained the plana­
been 

conveli¥Jhape until rupture occurred, This of course,may havefdue to the greatly 

reduced rest-time,in comparison with the uncharged drop, For both uncharged 

and charged drops,above about 1 mm. in diameter,film thinning was uneven, 

some sections thinning more rapidly than others, The fluid dynamics of the 

coalescence of large drops is complex,ani we would expect therefore,some 

difference in film thinning behaviour,but perhaps in this instance, the problem 

is mainly associated with the tilting effect mentioned previously, 

Jeffreys and Hawksley (68) have carried out pressure drop 

calculations for the draining film,which indicate that there can be a 

dimple in the drop and a cavity in the interface, High speed photographic 

work by these authors has revealed,that frequently,coalescence was 

initiated at the periphery of the film. Thus,it was entirely reasonable 
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for them to suggest that this position corresponded to the thinnest part 

of the film. This is further evidence of possible dimple formation. 

Fairly conclusive evidence (photographic) has been presented by 

}~cKay and }~son (89) for the existence of a d~mple in a large (1.0 cm. 

diameter) silicon oil drop. The recent work of Hartland (56,57,58),who 

used electrical capacitance and photographic techniques to measure the 

film profile,demonstrates quite conclusively,the occurrence of dimple 

format~on in large liquid drops. 

In conclusion,it is reasonably certain that the film trapped 

between the drop and the interface is non-uniform in thickness. However, 

further work is required to establish how the f~lm thickness varies during 

the coalescence process. The importance of this work is readily apparent 

when it is realised that our ability to develop a satisfactory model for 

the coalescence process,~s very dependent on knowledge of film shape. 

2.3 F~lm Drainage 

Over a narrow range of f~lm th~ckness,~cKay and }~son (89) found 

good agreement between the observed rate of film thinning and that 

predicted by Model A (see Fig. 2,2). This occurred only at low values of 

the f~lm thickness,usually less than 1 micron. In the region where the 

f~lm thickness was less than 0.2 microns,the rate of film thinning was 

much greater than that predicted by the theory,suggesting that interface 

movement was taking place. Thus,it is apparent that the parallel discs 

model (Model A in Fig. 2.2) does not represent a l~miting case,but applies 

only over some intermediate range of film thickness. In l~cKay and ~son's 

case,this was between 1.0 and 0.2 microns,but the extent of applicability 

Wlll obviously vary according to the propert~es of the system. 

1,1 attompt2n;; to assess the usefulness of !l'lrticular dra~nage model, 

the method of plottu1g rclatlonships should be examined carefully. 

l'la~l\ay and Nason,unnt:: the parallel plates equation (see Eqn. (2.3.9)), 
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plotted their results in the form ~ versus h), where h is the film 
dt 

thickness, This plot is very insensitive at low values of h arx! is not 

therefore recommended, 

Van den Temple (126),who pressed together two oil drops in 

aqueous solution,fourxl that film thinning approximated to the prediction of 
0 

model A,if the separation was less than 1000 A, At separations in excess 

of this value,the rate of drainage was greater than predicted. Temple 

suggested that this was because the barrier ring (i,e, the extent of 

dimple formation) had not reached a sufficiently advanced stage, The 

reasoning would appear to be, that as the barrier ring mves outwards from 

the centre of the drop, the resistance to flow within the film increases. 

!lecent work by Hodgson and lee (83*) has shown that two drops of the same 

size resting against one another,are equally deformed. This mutual 

deformation results in a smaller area of contact than between a drop arxl 

a plane interface,and by symmetry, the overall shape of the intervening film 

is plane instead of being a spherical cap, This evidence would therefore 

tend to support van den Temple's finding that the rate of approach of 

two drops approximates that predicted by the parallel plates mdel, 

Representing a draining film by a model in which two plane 

parallel discs approach each other,is valuable because it provides a 

simplified mdel mre amenable to exact analysis than the dimpled film case, 

Hodgson (63) has shown,that for small drops,the surfaces of the film are 

almst plane, Even in the case of larger drops,surface movements from 

the centre may make the deformed film more uniform in thickness, Since 

use is made of the parallel discs drainage equation in the present work,it 

is instructive to present its derivation. Following the treatment of 

Hodgson (6J),the Navier-Stokes equations are used as a starting point: 

Viscous flow between immobile interfaces, 

A cylindrical coordinate system as indicated in Fig. 2,),is 

adopted to suit the symmetry of the problem, 



13 

l 
h 

Figure 2.3 Pressure Distribution for Approach of Parallel Plates 

(i) Continuity Equation (9): 

oo + 1 () 
~ --(oru) 
~ t r ,?>r ' r 

0 = 0 
+ ~z (~ ~) 

Q is constant for the liquid ani the £. term is zero by ae 
symmetry. Therefore: 

!~(ru) 
r or r 

= 0 

(2.3.1) 

(2.3.2) 

(ii) The equation of motion for a liquid of constant density (9) is, 

(r component) : 

(J.) 

\ll) 

C,u e ( C> tr + 

2 
ue u d u_ 
- + z---L) 

r C)z 
(2.3.3) 

= - 0 p f ,k.{ .) [ 1 e] 1 d2
ur - 2 dUg 0 

2 ~ } 
~""I. ar ;Cr Ur)ar + i=2 .)e2 ;2 ;)& + dz2 

where P f is the pressure in the film and f- is the viscosity. 

8 component: zero by symmetry 

z component: assumed to be negligible 

In the above r component equation the d /,)e and ~terms are 

zero by symmetry,and it is assumed that: 

0 but~uz f 0 
oz 

= c l..e. a pseu:i0 sv~a(ly-stat..8. 
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(iii) ~ d~;::: 0 i.e. inertial terms neglected,valid for creeping flow. 
()r 

The distribution of the velocity u will now be investigated. 
r 

S~nce the discs are parallel and remain parallel,~t is assU!IIed that 'du.,.jJz. 

is f(z) only,i.e. is independent of r. 

equation (2.).2) then becomes: 

.!. ~ (rur) - W = 0 
r t.7r 

with boundary conditions u = 0; r = 0. Integrating: 
r 

The continuity 

u = !<Jr (2.).4) 
r 

The implication of this equation is that the velocity profiles at 

various radial positions are geometrically similar. The equation of 

motion (2.).)),with the above simplifications,is: 

= (2.).5) 

If z is measured from the mid plane (fig. 2.)) then ) u Id z = 0, 
r 

z = 0 for all r. A further boundary condition in the case of immobile 

interfaces is: 

u =0, 
r 

z = h for all r. 
2 

Integrating Eqn. (2.).5) subject to these conditions: 

u 
r = (2.).6) 

Equat~ng ur from Eqns. (2.).4) and (2.).6) , (oPfld r) = -Kzr,where 

Kz = f- W I [<~)2 _ z2 ) and is a function of z only. Integrating with 

respect to r and setting Pf = 0 when r = 0 for all z: 

= 1 K 2 -z r z 
(2.).7) 

The distribut~on of Pf with r is thus parabolic. H0wever,the pressure 

o~ the drop side of the interface is virtually uniform. Th~s is a 



15 

fundamental inconsistency in the plane discs model. To circumvent this 

difficulty,we equate the total forces on either side of the interface: 

F = J: -6.P f.2'ii r dr 

where F is the force acting on the discs. Hence, K = 4F/ To R4 ani is 
z 

independent of r as required. Substituting above for K and hence (J) , 
z 

we obtain: 

u = 
r 

(2.3 .8) 

The rate of approach of the discsfollows from equating the total 

rate of outflow to the rate at which the liquid is displaced from the film: 

i.e. 

Q = fh/2 

-h/2 

!!h = 
dt 

u .2'ii Rdz 
r 

(2.3.9) 

This equation is identical with that previously quoted i~ the literature (16). 

Eqn. (2.3.9) was first derived by Osborne Reynolds (111). However, the 

methods that he used do not readily give the shear stress distribution at 

the surface. For drainage of the film from thickness h1 to thickness h2, 

the drainage time is: 

t 
1 

= 
- 11 4 

( 3 11 C2 R ) ( .!. 
2 4F h2 

(2.3.10) 

Assuming that a liquid drop of radius b approaches a flat liquid 

interface under its own weight,and deforms only slightly, the expression for 

f is (16): 

(2.3.11 

where ?. is given by Eqn, (2.2.1). Substituting into Eqn. (2.),10): 
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t - tl = 6 (~5) ( .1 1 
2 4 - h 2> ~ hz2 1 

(2.3.12) 

which reduces to: 

t2 - tl = JA-2 ,ARab\ < 1 T 02 h22) 
(2.3.13) 

when h 1>> h2• 

Charles and Mason (16) considered the case of a sphere of radius b 

approaching an unbounded plane. '£his is sometimes called the spherical­

planar model (see Fig. 2.2B). The space between the surface and the plane 

contained a liquid of viscosity~ 2• The distance between the surface and 

the plane at the vertical mid-axis was h,and at any radius r, 5 . 5 was a 

function of r. They assumed that the velocity of the liquid being squeezed 

out,u,was a function of r and z,and that the velocity profile was parabolic. 

Equating the work done by the force F to the anergy dissipated by viscous 

forces,Charles and Mason obtained the expression: 

V=-!ili.= 
dt 

(2.3.14) 

To render their approach tractable,they substituted for the sphere,a 

parabola of the same radius of curvature at the apex (see Fig. 2.2.E) ,and 

therefore: 

5 = h + .l 
2b 

which on substitution into Eqn. (2.3.14) and integration from r = 0 to 

r = b,gave: 

for b>>h• 

!lh = 
dt 

Fh (2.3 .16) 

Further integration between the limits h1 and h
2 

yielded the following equation: 

(6liAz b
2

) ln ( h1 
F h ) 

2 

(2.3.17) = 

It is pel'tinent to report that both the equations (2. 3. 14) and 
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(2.3.17) were earlier derived qy Taylor (122). Eqn, (2.3.17) was previously 

given without derivation qy Hardy and Bircumshar.r (52). We see in the 

film thickness term of Eqn. (2.3.17) the fundamental difference between 

this non-uniform film mdel (spherical-planar) and the uniform film model 

(parallel plates). The numerical value of the term ln (h1/h
2

) will always 

be ve~ small in comparison with the (1/h
2

2) term in Eqn. (2.3.13). There­

fore,in the case of drops loihich retain a spherical shape (or defol'111 only 

slightly),e.g. very small drops or moderately sized drops in high 

interfacial tension systems,Eqn. (2.3.17) will predict a very small rest-

time. 

Using an approach similar to that employed qy Charles and Mason, 

Mc:Avoy and Kintner (93) derived an equation for the approach of two solid 

spheres in a liquid field: 

\ = (2.3.18) 

where H = 2h is the minimum separation distance,and b>>h• It is 

interesting to compare this equation with Eqn, (2.3.17) obtained by 

Charles and 1-lason. We see that the only difference between the time of 

approach for a sphere to a flat plane,and to another sphere,is a numerical 

constant. 

The case of a rigid drop and a deformable interface,Model 2.2C, 

where the interfacial film has a spherical shape,was proposed qy Lang (79). 

The force balance,fJ.rst obtained by Nielsen (98) was: 

= z'0/(~ 1 -p2
)gb- ~ b 

(2.3.19) 

where m is the distance from the centre of the drop to the flat 

undisturbed interface. The time require to thin to a film thickness h
2

, 

based on parallel discs equal in area to the spherical segments was: 
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provided that hi>> h2• Eqns. (2.3.19) arrl (2.3.20) have been solved simultan­

eously Qy Chappelear (18). The results were presented in terms of dimension­

less groups and it was found that the relative equilibrium deformation is 

only a function of the dimensionless group: 

(2.3.21) 

It is of course hardly unexpected, that the shape of the deformed drop and 

bulk interface is dependent on the variables contained in Eqn, (2.3.21). 

This is explained in more detail Qy Princen (103). The results of the 

numerical solutions for small deformations,approach those of model 2.2A, 

given by Eqn. (2.3.13). 

Lang (79),who derived the time of approach for Model 2.2C to be: 

t - t = 2 1 [12 'fib4~J.-2 (cos p- 1- 41n COS(~ )/F) ( ~ 2 - ~ 2 )1 
I · 2 2 1 J 

(2.3.22) 

incorrectly assumed that the force causing drainage was F0 + F
0 

(see Fig. 

2.2C). It is apparent from a consideration of the simple drainage 

mechanics,that the correct drainage force is F = F = F • Hartland (53) 
D U 

has derived a similar equation to Lang for the same conditions: 

(2.3.23) 

2 where Q = 1 - cos e - tsin 6 ,R is the overall radius of curvature of the c c 

film and e is the inclination of the edge of the film to the horizontal 
c 

axis. It is to be expected that these two equations will produce very 

similar drainage times. 

Schotland and Hale (114) using Lang 1s model.found the time for 

liquid drops falling through a gaseous phase to a flat interface to be: 



t = 

19 

~ ( ~ )t 3/2 11 12lr -a 
(2.3.24) 

This work,which has a meteorological background,serves to demonstrate to the 

reader the wide range of topics where a basic understanding of coalescence 

phenomena is important. 

The two previous models which have been discussed (2.2A and C) 

are limiting cases (in terms of physical geometry) where R
1 

= c:Oand R
1 

= b, 

respectively~R1 being the radius of curvature of the film. A more general 

model would have a constant but arbitrary radius of curvature at the 

surface of contact. If one assumes small spherical deformations and equal 

deformations on both sides of the film: 

20 
R1 

= (2.3.25) 

(see Fig. 2,2). Neglecting the hydrostatic head,which would be satisfactory 

for a very small drop, then P 1 - P J is equal to the pressure drop across the 

free surface of the drop. Thus: 

= 20 
b 

(2.3 .26) 

This is the deformable drop and interface model presented by Chappelear (18). 

This model would appear to be the most realistic of the uniform film models, 

especially for large drops which are greatly deformed. For a sufficiently 

small drop, the following approximate equation can be derived: 

(2.3.27) 

Eqn. (2.3.13),as derived by Charles and Mason (16),may be put in the same 

form as Eqn. (2.3,27). The only difference between these two equations 

would then be the value of i. For Eqn. (2.3.13) i = 4 and Eqn. (2.3.27) 

J. = 1. This means that the area required to support the drop accordinP. to 

Eqn. (2.3.27) is only half as much as for Charles and Mason's model. It 

would appear then that small drops present proportionately less area for 
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film formation than do larger drops. 

All uniforJJI film models predict that the rest-time increases as 

~ ani with increasing density difference. However,these predictions 

require some qualification in the light of experimental findings. The 

rather surprising effect of increasing density difference can be explained 

on the basis of increased film area. This opposes the direct effect of 

increased drainage force due to increased density difference 0 but a number 

of workers have contested this point In practice, the effect of drop radius 

has been observed to be much less than b5• Therefore Model 2.2B might be 

a better approximation in the case of very small drops since this model 

predicts that the rest-time decreases with increasing radii and density 

difference. Intermediate radii would then require a 1mixed 1 model. 

To satisfy their results for the benzene-water system,for which 

t was proportional to the drop diameter,Jeffreys ani Hawksley (68) proposed 

a'mixed'model possessing a drainage film of non-uniform thickness (see Fig. 

2,2G). For their model (i),the film was thinnest at the centre,and for 

model (ii) thinnest at the periphery. The distance m was obtained from a 

force balance. The upward force F0 dua to the surface tension ,given qy: 

(2.).28) 

was equated with the downward force,equal to the weight of that part of tm 

drop above the interface,given qy: 

F = D 

In a similar manner to that of Charles and Mason (16) ,and substituting 

appropriately in Eqn. (2.).14),Jeffreys and Hawksley (68) derived the 

following equation for their model (i): 

t 
2 

t 
1 

= -6 li f':z 
4F '/) 2 

+ 9 
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where, <P = :. (1 -A)• e = ()...- 1)(b- m) and R =\b. The drainage 
2b 

equation derived for model (ii) was similar to Eqn. (2.).29). 

The app~cation of the equations derived for the respective models 

above,by Jeffreys and Hawksley,requires that arbitrary limits of h1 and h2 

be chosen and an appropriate value of ~ selected. This is not altogether 

satisfactory,since although the value of h1 was shown to be not very critical 

the value of t is extremely sensitive to the chosen value of h2• Jeffreys 

and Hawksley were unable to use their model (ii) to predict experimental 

results. This is disappointing,all the more so because model (ii) is the 

mostfrealistic of the two cases considered. Although the agreement obtained 

between the experimental results and those predicted by the model (i) 

equation was good, the real value of these semi-empirical equations is 

subject to some doubt, 

Princen has derived equations which give the pressure inside the 

film and the drop (102). These enable one to calculate the excess pressure 

across the surface of the drop,and hence determine the droP-interface profile 

or shape. Details of Princen 1s method are contained in Appendix 4, together 

with drop shape characteristics for a wide range of liquid-liquid systems. 

He has also shown that the drainage equation for the case of an infinitely 

large drop (assuming a uniform film thickness) is: 

(2.).30) 

where h?> h
2

• This is a very interesting equation since it predicts a 

dependency on the drop radius b to the third power,whereas all other uniform 

film models predict a dependency to the fifth power. To date,coalescence 

rest-tl.l!le experiments have been mainly concerned with drops having a 

diameter greater than about 0.5 mm. The drop size dependency in these cases, 

has been shown to be considerably less than b5. C:harles and Ha son ( 16), 

found that for the benzene-water system and a drop size greater than 0.1 cm. 
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the dependency on drop was b3• 15 ,approximately. This is remarkably close 

to that predicted qy Princen 1s equation (2.),)0), 

So far,the discussion has only been concerned with the process of 

film thinning. It is necessary at this point to consider some aspects 

of film drainage which are not explainable soley in terms of fluid mechanics. 

MacKay and Mason (89)have observed (using an optical interference 

technique) that the average rupture thickness of the film beneath liquid 
0 

drops was less than 500 A,when the drop diameter was less than 0,1 cm. At 

larger drop diameters than this,film thinning was uneven,but part of the 
0 

film was usually observed to have a critical thickness less than 500 A. 

Using Eqn. (2,),10) as an example,the calculated drainage time required to 
0 

approach a film thickness of 500 A would be at least an order of magnitude 

greater than the experimental rest-time. If fluctuations in temperature 

are responsible for the rupture of the fillll,which as Ewers and Sutherland (35) 
0 

have pointed out will only occur if the film thickness is less than 50 A, 

then the situation is even worse. Therefor~e should conclude that other 

forces,in addition to gravity and surface forces,become important as the 

film thins. 

It must be emphasised that the equations describing the approach 

of drops to liquid-liquid interfaces are subject to many limitations. It 

is assumed that the electrical double layer interaction (28),the electro­

viscous effect ()1,32),disjoining and London-van der Waals forces of 

attraction (28,73,99) are negligible, Furthermore,it is assumed that the 

interfaces are rigid and thus resist shear stresses due to finite velocity 

gradients at each surface. If liquid drops and bubblesare unable to resist 

imposed tangentialsurface stresses,they will have internal circulation 

(40-4),49,86,112), Infact,it is a common accAptance that a free interface 

1n a pure system cannot support a shear stress. Hodgson (63) has stated, 

that a more satisfactory concept is that free movement,retaroed 1110bility, 

and complete mobility of the interface are all possible modes of behaviour 
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in film flow. Rigid behaviour is reported to occur only with low velocity 

gradients,high interfacial tension (greater than 30dyne cm,-
1
),and in the 

presence of surfactants (40,86), 

2.4 Interface Curvature and Pressure Drop in the Draining Film 

In a liquid-liquid system,inwhich a drop of liquid is resting on 

a liquid-liquid interface,both the drop and the interface are distorted. 

If the film is thin,it has the general shape of a spherical cap (18,53,79, 

102,103), The film profile,i.e. the variation of film thickness with 

distance from the centre of the fillll,is dependent on the pressure 

distribution in the flowing film. It is important therefore,to present 

some of the more important details of an analysis of the pressure drop in 

the draining film as carried out by Jeffreys and Hawksley (68). 

ill! 
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Figure 2.4 Film Pressure Drop Models (68) 

The continuity equation for flow through the element ABCD is: 

= r:lli 
dt 

(2.4.1) 

and assuming that the velocity profile is parabolic,and u is a function of r: 

u = z ( .3 - z) f(r) (2.4.2) 
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A rate of momentum balance over the element AOCD gave: 

. '"- ~~. ['""r, f.',, J.. 
z = 0 0 

- 2Ti r 3 dP = 0 (2,4.3) 

The solution of these equations produced a relationship for calculating 

the pressure at any radial distance r. For fi.lJ!Is of uniform thickness, 

S = h and <jY = 0, the full equation reduced to the following form: 

6,_pf = 

Therefore,for thin films,when his sma.ll,6,Pf is independent of viscosity 

and film thickness. This conclusion may be misleading. The term -2F/IiR2 

suggests that the parallel plates and spherical planar models would infact 

be limiting cases for film flew. If the change in film shape,from one of 

these extremesto the other,was not dependent simply on R, the parallel plates 

model would no longer represent a limiting case. 

In order to evaluate the system completely,it is necessary to 

know the pressure distribution at the surface of the drop. Jeffreys and 

Hawksley calculated this from measurements of the radii of curvature of 

the drop obtained from projected photographs. Direct measurement of radii 

of curvature in this way,is not very precise,arrl MacDonald (94) has 

emphasised the difficulties involved. However,we would expect the analysis 

to indicate those aspects which are lllOSt likely to affect film drainage. 

Jeffreys am Hawksley concluded that the film was of non-uniform thickness 

and least thick at the periphery. A number of investigators have shown 

this to be true,at lMst for pure systet.s. 

Hodgson (63) has attempted to explain the phenomenon of dimple 

formation by considering changes in interface shape ,in terms of departure 

from the lllOdel of parallel plates. Frankel am Mysels (38) have treated the 
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the problem and its effect on film drainage,~ consideration of a two-

dimensional analysis. Assuming that the departure from parallel plates 

was small,Hodgson neglected the higher order powers of ~ in the 
dr 

differential equations describing the principal radii of curvature. Thus: 

1 = d2z and ! = !~ (2.4.5) 

~1 dr2 ~2 r dr 

Then: 

p = -1. d ~) (2.4.6) 
r d'/ r dr 

and, g,E = - g_ [! d ( dz 1 (2.4.7) 
dr dr r dr r dr) _ 

for a pressure gradient in the r-direction only. By asswning the same 

pressure gradient as pertaining in the plane discs model,it is possible 

to integrate Eqn. (2.4.7) and hence calculate the deformation from 

parallel plates. Hodgson concluded that if the deformation was small 

compared with the film thickness, then the model would give a fair 

approximation to the rate of fi.lm drainage. He found the deformation to be: 

(2.4.8) 

Except for very small drops,d will only be very small in comparison 

with the film thickness,at relatively large separations. It may also 

partzy explain wey small drops (less than 0,05 cm. diameter), which are 

almost spherical,have coalescence times which are much greater than those 

predicted ~ the spherical-planar model equation. 

The shape of the drop interface was given ~ (see Fig. 2.5): 

(h - h ) = o r 
(2.4.9) 

The value of R was found to be identical with the value of R calculated for 

model A in Fig. 2,2,but with allowance for interface deformation,i.e. 

Fb (2.4.10) 
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Figure 2,5 Drop Dimpling at a Rigid Interface (63) 

Once the interface has deforl!led to the shape given by Eqn, (2,4.9), 

drainage will be si.miJAr to that predicted by the parallel disc model, 

with virtua~ no change in interface shape until d becomes comparable 

with the film thickness, When the film thickness varies appreciably with r, 

the rate of film drainage must deviate significantly from that of parallel 

discs, 

Frankel and Mysels analysis (38) considered the film periphery 

only, Since the interface here is flat, there is no curvature,and: 

p (1) - p (2) = 
nn nn 

(After Levich (84)) 

reduc.es to: 

p (1) - p (2) = 
nn nn (2,4.11) 

ani since the pressure on the drop side of the interface is constant: 

!if = 
dr 

(2,4,12) 

Considering s1!19.ll drops and rigid interfaces, the now at any radius r is 

given by: 

Jh/2 
Q = 2'jfr~ 

r -h/2 
= .!12f- ( - dp )hr-3 2jj r 

dr (2,4,13) 

The following equation was given by Frankel am Mysels ,and 1!19.Y be obtained 

by substitution of Eqn. (2,4,12) in Eqn, (2,4,13): 
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(2.4.14) 

By assuming the flow per unit length of periphery to be constant, they were 

able to integrate Eqn. (2.4,19). From the shape of the dimple thus 

obtained, they predicted the rate of drainage (assuming the flow at the 

periphery to be Ti R2 dho ). Not surprisingl3',they found the rate of 
dt 

approach of the interfaces (at the periphery),to be close to that of parallel 

plates. This treatment is inadequate because,although it predicts that 

the dimple becomes 1110re pronounced as the fillll thickness decreases,no 

allowance is made for the variation in flow with radius,brought about by 

the changing film shape. 

For large drops it is conceivable that the value of d calculated 

from Eqn. (2.4.8) will be greater than the separation distance at which the 

barrier first forms. It is obvious that the film drainage must then be very 

different from that predicted by the usual parallel plates equation, 

Considering one interface to be rigid,reference to the corresponding 

observations (32,38,44) shows that while the barrier ring is still 

developing,the entrapped film is still substantial:cy- uniform (see Fig. 2.6). 

Figure 2.6 Observed Changes in Fillll Shape for a Bubble 
Approaching a Flat Rigid Interface (34) 

Once the barrier ring is completed,the film thins abrupt:cy- at its periphery. 

After this, there follows a slow adjustment to a trore uniform shape. 

The equations describing the above phenoxnena are complicated,but 

Hodgson (63) put forward a qualitative explanation which essentially can be 
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summarised as follows: "At the mment of completion of the barrier ring there 

is a large driving force for drainage outside the film but none inside, 

However, the drainage outside the barrier ring has then to be matohed by 

corresponding drainage inside the ring. The interface therefore deforms 

so there is a pressure drop and flow inside the film". A simplified 

analysis of the pressure drop gradient in the film during dimple formation 

was made, Using an equation of the form ~ = Krn, where K ani n are 
dr 

constant with respect to r,it was found that this was inconsistent with 

film thinning occurring at the film edge only. This indicated quite 

clearly,the necessity for matching the changing inter.face shape with the 

pressure gradient. 

Further evidence of dimpling behaviour (for large drops) presented 

by Hartlarrl (56) ,seems to indicate that dimpling and tilting of the drop 

are closely related events. This suggest that the tilting ability of 

drops at liquid-liquid interfaces should be examined in more detail. 

2.5 Film Thickness 

Before a drop may coalesce, the film separating it .from the 

homophase must rupture,arrl be.fore rupture can occur,the film must drain 

to a certain critical thickness (44,79). The effect other .factors may 

be ju:iged by their effect on either,or both of these two processes of 

film rupture and film drainage. 

Hartland (53) conducted electrical capacitance measurements of the 

phase-2 film. For ~given system and at a given time, the thickness of the film 

varied from drop to drop. The standard deviation o.f the film thickness 

distribution was approximately 30~. It is pertinent to report that this 

figure is approximately the same magnitu:ie as the standard deviation of 

rest-times for single drops. Hartland 1s results are of undeniable value, 

though the systems chosen must attract some criticism. The ver,y high 

viscosity liquids were chosen to confer a high degree of stability on 

the drops and so greatly facilitated the taking of physical measurements. 
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These substances are of low purity and therefore it is doubtful whether 

the drainage process observed with pure systems will be the same as that 

observed by Hartlani. 

The thickness of the draining film at rupture will depend on the 

liquids employed and also the temperature ani pressure of the system. 

There is little,it: any,positive agreement between experimental and 

theoretical values of the film thickness at rupture. Bearing in mind the 

inadequacies of the drainage models so far contained in the literature, 

it is certain that the estimates obtained will not be very satisfactory. 

The thickness at which a film beeomes in some way unstable is 

still a matter of eonjecture (see also Section 2.18). However,it is 

certain that the initial onset of rupture occurs at the thinnest point of the 

film. MacKay ani Mason's measurements,which are probabzy the most 

reliable,indicate that the film thickness at this location could be 
0 

considerably less than 500 A. In addition,the auguments advanced by de 

Vries (28) suggest that an incipient hole will onzy grow if the film thick­
o 

ness is less than about 25 A at the point in question. His calculations 

show,that at this thickness,the surfaces must be approaching each other 

quite rapidly,ani that the hole grows quite quickly once it has passed a 

critical size. The precise local film thickness at Which a hole develops, 

may not therefore be very important in determining the lifetime of the 

film. 

The state of knowledge in this vital area of coalescence studies 

is far from complete. It is essential therefore, that a greater effort 

be employed to expani the lmderstanding of the behaviour of thin liquid 

films. A first requirement is accurate,reliable data on the film thickness 

during the drainage of the film and at the rupture of the film. 

2.6 Temperature 

A number of investigators (13,16,33,44,60,81,82) have folmd,that in 

general,the coalescence rest-time decreases with increase in temperature 
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of the system. This is explained as being due to the reduction of the 

viscosity of the phase-2 film causing it to drain faster. 

Convection currents,caused b,r temperature gradients in the 

coalescence apparatus,were reported b,r Cockbain and McRoberts (19) ani 

Gillespie and Rideal (44) to decrease the rest-time. The importance of 

a well-thermostatted apparatus has thus been indicated quite clearly to 

future workers. Adams et al. (97) produced a decrease in drop rest-times 

b,r keeping the drop liquid at a lower temperature than the interface. 

But these authors and Cockbain and McRoberts (19),in some cases found no 

effect on rest-time due to temperature gradients. This may be partly due 

to the fact that they were using surfactants in all of their coalescence 

stu:lies. 

An increase in temperature will cause the 111utual solubility of 

the two liquid phases to increase. This will result in a higher interfacial 

bulk concentration of one phase in the other and increased interface-bulk 

concentration gradient. Prokhorov (104) has shown that such conditions 

favour premature coalescence. 

2.7 Drop Size 

Many investigators have found that the coalescence rest-time 

increased with increasing drop size (13,16,33,44,60,79,81,82). All the 

investigators discovered this trend to hold for tmax (the maximum rest-time), 

tm ani tt• However, the variation in tmin (the llliniJnullfest-time) ,was very 

erratic. Charles and Mason (16) attributed this to the large relative error 

involved in the measurement of small intervals of time,with a limited drop 

population. However, the times involved are usually between 0.1 ani 1 

second and are definitely measurable. Realistic measuring errors are 

unlikely to produce the larg" deviations that have been found,therefore 

some other cause must be responsible. 

In contradiction to the trenis normally observed,Nielsen,Wall 

ani Adams (97) fourxi that increasing the drop size could either increase 

or decrease the stability. Similar !Wings were reported by Keith ani 
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Hixon (72),studying the same system. Lang (79) remarks that the only 

systems showing this type of behaviour are those complicated by falling 

drop d1sturbances and contamination. Since Keith and Hixon conducted their 

experiments in a liquid-liqu1d spray column,they undoubtedly had falling 

drop d1sturbances, The erratic results of Nielsen,Wall and Adams may be 

attributed to the presence of surfactants in all of their experiments. 

To maintain a clean interface 1n the systems which he investigated, 

Hodgson (63) developed a novel method of interface cleaning,which he 

called the 11Teflon-Glass 11 method. The principal element used consists of 

a sl1m glass tube in the end of which is mounted a small piece of "Teflon" 

(referred to by the author as a 11Teflon-Whisker 11
). The principle involved, 

is that the glass is water-wetted and the "Teflon is organ1c phase-wetted. 

Thus,by inserting the tube in to an oil-water interface,it was possible to 

suck liquid from both sides. This technique,according to Hodgson,is 

superior to other methods of interface cleaning. Although there is no 

doubt that this method allows liquid to be drawn from both sides of the 

1nterface,it is questionable whether its performance is superior to the 

usual method of "spilling over" the interface. 

using the "Teflon-Glass 11 method,Hodgson (63) carr1ed out 

experiments on oil and water drops at liquid-liquid 1nterfaces. Generally, 

the coalescence rest-time increased with increasing size of drop. Rest-t1mes 

increased from apparently instantaneous,for oil drops below 0.1 mm. 

diameter, to about 1.5 seconds for a 5 mm. diameter o1l drop. The rest-times 

were surprisingly reproducible,but very small and much less scattered than 

before interface cleaning. At a certain interface age after clean1n~ the 

interface,the rest-times increased sharply to give very long rest-t1mes. 

The behaviour of very small water drops befor cleaning the interface, 

was strikingly different to that of similar sized oil drops. The rest-times 

were virtually instantaneous,1rrespect1ve of the age of the system. In 

add1t1on,water drops as large as 2 mm. d1ameter tended to give virtually 

zero rest-times.par1cularly when the drop was not ae;ed. Surprisingly,the 
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seconda~ drops (see Section 2.20 for a discussion of this phenomenon) then 

gave distinct rest-times. Hodgson 1s interpretation is that there exists 

a ve~ sm3.ll resistance to coalescence 1;hich can be readi],y overcol'le by the 

moment\llll of the drop. Although the !l'.omentum force of the d·op is quite 

capable of overcoming the srr.all "energy barrier" to coalescence,a large 

percentage of the energy must be imparted to the interface. This effect is 

discussed in the folloRing section. 

2,8 l!echanical Disturbances 

The effect of distance of fall of the drop to the interface 11as 

investigated by Jeffreys and Hauksley (68). Increasing the fall height of the 

drop increases the energy carried by the drop, Thus,the disturbance produced 

finally at the interface,also increases ldth fall height of the drop (up to 

the point •rhero the terminal velocity is reached). It might be thought that 

an increasa. in disturbance at the inter.face uould cause the drop stab:Wlity 

to be reduced. This is not the case in practice. The disturb~nce causes the 

drop to bounce at the interface,thereby increasing the thickness of the 

trapped film, By contimul remmal and depletion of the film in this 

manner (for as long as the disturbance lasts) the coalescence rest-time is 

effective],y increased, Iang (79) has also presented an explanation for 

this phenomenon. 

2.9 Electrolyt~s 

Electrolytes llhen added to the l-Jater phase in sre:J.ll concentrations, 

have been shown to great],y reduce the rest-tit1e (12,33). Bro1m (12),l!ho 

has studied the effect of high concentrations of electrolyte,observed that 

the drops becama more stable 1dth increasing concentration. The effects 

were most pronounced when strong sodium hydroxide l-ras used (N/1.0 solution). 

This is hard],y surprising in view of the strong surface active character of 

the hydroxyl ion,relative to the hydronium ion. Enhanced stability vias also 

noted for N/1,0 hydrochloric acid. 

Lang has confirmed experill'8ntally (79),that low molecular Yeight 



33 

1118.terials will decrease the rest-time if' they are present in non-equilibrium 

quantities in the two phases. He attributed this effect to interfacial 

disturbances due toltl:le Marangoni Effect (to be discussed later). 

2.10 Surfactants and Interface Mobilitv 

A number of workers (12,19,63,79,97,129) have studied the effect 

of surfaceactive agents on coalescing drops. It is reported that even 

trace amounts of surfactant are sufficient to confer remarkable stability 

on drops. Watanabe and Kusui (129) have proposed a mechanism for coalescence. 

based on the formation of a ''defect" in the surfactant layer on the surface 

of the drop,in the vicinity of the trapped phase-2 film. The ''defect" is 

visualised as being a portion of the interfacial film which is not 

covered by the surfactant. The proposed mechanism is thus: (i) drainage 

first takes place in the manner described by Gillespie and Rideal (44); 

(U) onc;o a "~e>fect" forms in the adsorbed aurfactant layer, the liquid from 

the drop drains into it,due to the excess pressure within the drop. It 

is difficult to visualise exactly what the authors mean by a "defect". 

The proposed mechanism is obviously over simplif'ied,since it does not 

take into account secondary droplet formation,nor does it explain the 

phenomenon of coalescence in pure binary aystems. 

Hodgson (63) has investigated the effect of both ionic and non-ionic 

surfactants on the coalescence of oil and water drops. It was shown that the 

presence of a surfactant could set up interfacial forces capable of 

resisting interface expansion. If interface mobility was severely 

restricted, the continuous phase film drained as if it were between two 

immobile interfaces. Thus,the rest-time was increased considerably,due 

to the reduced rate of film drainage. 

The surfactant in a film will be swept out unless it reaches a 

certain critical interfacial concentration. This critical concentration 

was shown by Hodgson (63) to be very Slllllll. Thus,it is entirely possible 

for these interfacial concentrations of surfactant to be attained by the 
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adsorption of impurities,even though their concentration in the bulk liquid 

is extremel,y low, Once the critical concentration is exceeded, the interface 

mobility will be controlled by the rate at which surfactant is transferred 

to the expanied areas, Material can be transferred tothese areas along 

the interface or from the bulk phases. Transfer from the bulk phase is 

lllOSt likel,y to be important when the ratio of interfacial to bulk 

concentration is small, If the transfer is rapid,the expanded areas are 

readil,y replenished with surfactant. This causes relaxation of the tangential 

forces in the interface,thus maintaining interface mobility. This is 

usuall,y the case if the surfactant is present in the dispersed phase. When 

the surfactant is contained in the continuous phase onl,y, the film is likel,y 

to become denlrled of surfactant in the earl,y stages of drainage, Any 

material which is transferred from the bulk phase has then to diffuse along 

the narrow film, This transfer path behaves as a barrier to adsorption, 

The postulation of Hodgson 1 s (63), that free movement, retarded 

!1Xlbility arrl incomplete 11Xlbility are all possible modes of behaviour in 

film flow,seems likel,y to resolve some of the anomalies between the 

predictions of rigid interface models and experimental results, 

Hodgson (63) has developed an analysis of the criteria for 

interface mobility,based on the parallel plates film drainage model, He 

considered the case of an insoluble surfactant, Because of its,A.nsolubility, 

diffusion of the surfactant in the bulk of the liquid film is negligible. 

Therefore,an insoluble non-d1ffusing surfactant represents the simplest 

possible case,because no account needs to be taken of the diffusion equation. 

The radial velocity of the film was given as: 

u = 
r 

(see Eqn, (2.3.6)), 

2Fr [-(hl - (Z/] 
lfi f-R4 2 

(2,10,1) 

By differentiating Eqn. (2,10,1), the shear stress 1:' r due to viscous motion 

at any point on the surface,is fourrl to be: 
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Thus, 'C r is proportional to r,and the maximum shear stress occurs at the 

peripher,r of the film,at r = R, If one substitutesfor R from Eqn. (2.2,1) 

and also F = ~ t>J f!.~g, the following relationship is obtained: 
3 

"C = 
r 

(2.10.3) 

Thus,it is seen that the shear stre1rs increases very rapidly with decreasing 

drop radius, 

(i) Criterion for Complete Immobility: 

The insoluble surface active material is considered to be present 

in tha- interface,initially as a uniform layer. If a shearing action is 

applied, the material becomes redistributed so that the shear stresses are 

just opposed by the gradients in surface tension, This will only happen if 

a sufficiently large difference in sur£ace tension exists between the centre 

of the film ani the peripher,y,and therefore,only if the surfactant material 

is present in sufficient quantity. The smallest difference in surface 

tension,whichwill immobilise the film completely,can be established by 

using the result obtained for the parallel discs model. If 6."0 
0 

is taken 

as the difference in surface tension between the centre of the film r = 0, 

and the peripher,r r = R,then: 

Substituting for"'(: from Eqn. (2,10,2): 
r 

= - .G...h 
b 

It is interesting to note that 6. (S' 
0 

is proportional to .! , 
b 

(2,10,4) 

(2,10.5) 

Therefore 

Eqn, (2,10,5) predicts an increased tendency for the surfactant to be swept 
' ' 

away as the drop size decreases, It is therefore to be expected that small 

drops will have a much greater ability to resist the effects of surfactant 
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in the film. The film trapped beneath a large drop however,will no doubt 

strongly influenced by even quite small concentrations of surfactant. 

(ii) Criterion for Complete Mobility: 

In the limiting case, the discs are completely free of surfactant. 

At the edge of the discs,the surfactant concentration and hence the surface 

tension,cbanges sharply. In his analysis,Hodgson equated the pressure drop 

at the edge of the discs f:::.pR to the change in surface tension round 

the periphery, 6.o R'to obtain: 

6_'6 R = - h'6 
b 

(2.10.6) 

Therefore,this is just half the value which gives complete immobility to 

the film, 

When a~sorbed material is present in the interface,expansion 

causes the interfacial concentration r to fall and simultaneously. (i) the 

local interfacial tension rises and opposes the interfacial motion, (ii) mass 

transfer of the surfactant material from the bulk of the liquid,or other 

parts of the surface, tends to restore the surface concentration to its 

static value. The rate of mass transfer controls the rate of interface exp.. 

ansion,so that the two are in balance. 

If the surfactant material is soluble in the film phase only, 

and its concentration in the liquid trapped in the film is high,the 

interface is fed by diffusion and bulk flow in a direction normal to the 

interface, As described by Andrews (4), this occurs without the film 

becoming denuded of surfactant. If ho-wever, the concentration of the 

surfactant material,or strictly the ratio c/r ,is not high,the thin film 

will very soon be depleted by diffusion into the interfaces. Further 

material must be transferred in a "t"&dial direction from the main bulk of 

the liquid,which lies outside the film altogether, Since the diffusion 

path is relatively long (see Fig. 2.7).mass transfer is relatively slow. 

The surface movement is a controlled slip rather than a rapid expansion. 
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This latter case uas developed by Hodgson (63) and is outlined here. 
I 

The equation for bulk diffusion in the radial direction is,in 

cylindrical s~~etry (9): 

(2.10. 7) 

~rhere RA is the molar rate of production of A per unit volume. In Hodgson 1s 

example, unit volume was associated uith an ·area 2/h. Thus,if this area vias 

expanding ~rith a specific surface exp:msion rate S , the area per unit r 

volume l~as increasing at a rate 2S /h. \·lhen the local surface concentration 
r 

is j< 1'10le/unit area, RA = - 2Sr r /h. S - 1 d and substitution 
r -Far ( rus) 

of (u .. ) gives the follo~ng equation: -r av. 

r dh 0 c 
2ii"dt or 

= D ! e._ [r.£..g_ J -
ror 0 r 

OIL 

2r.! £. (ru ) 
h rdr 5 

(2.10.8) 

Figure 2.7 Adsorption at the interface within the Barrier 
Ring vrhen the Surfactant is present in the 
water phase only. 

In thesepquations,the quantity D is strictly a diffusion coefficient. 

However,Hodgson 1s development in this context suggests that D is really 

some form of dispersion coefficient. This is because of the effect of the 

partly parabolic profile. 

If surface diffusion alone lrere supplying the surfactant to the 

expanding interface,an equation very similar to the above uould apply: 

u ar s-;)r 
(Surface 

Flou) 

= Ds! Z.[r~J 
r;)-r d r 

(Surface 
Diffusion) 

.t_ g (ru) 
r dr s 
(Interface 

Diffusion) 

(2,10.9) 
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or,to correspond exactzy with the diffusion equation: 

= D8 1 ~ [r ~ (2t" /h)] - &..1£.. (ru ) 
ror dr h r(lr s 

(2.10.10) 

It was further assumed that in the surface now term,u ::= (u ) ,and s -r av. 

Ds = D, Thus,it is possible to write an equation which combines the effects 

of both bulk diffusion and surface dit:fusion: 

or, 

.t...•!!b.3 Cc + 2 t4{h) = 
2h dt ;} r 

L•!ib. d a 
2h dt or 

= D 1 r Q:_.r 0 a ~j 
r l~r ()r 

- 2}" ·1 £..(ru ) 
h r~r s 

(2.10.12) 

where a = c + 2 r /h. They act together to feed the expan:iing interface. 

Now the local surface tension gradient (i.e. "'C = grad 2$' ) provides the 

basic coupling between the Flow Equation ani the Dit:fusion Equation. Thus: 

'"C 
r 

(2.10.13) 

Writing ~ = 0~ .~ ,where (? was assumed to be a function of 
~c ~a 

concentration, '"'Cr = 12 0 a • If (!> is not strongzy dependent on r, 
\" or 

comparison between the Flow and Diffusion Equations is possible. Hodgson 

presented the final equations: 

Flow: !·!!b. 
h dt 

= 1 .2..(ru ) - !l Q....! !Z...r (d a ) 
r dr s 6 f- r ()r or 

Diffusion: !•!!!:!!: o a 
h dt 2 i)r 

= 

(2.10.14) 

These two equations I'IIUSt hold at each and every point in the film, A 

completezy determinate solut:!.on is obtained by using the bcW!dary conditions; 

a =ab when r = R; us = 0 when r = o. An examination of Eqns. (2.10.14) 

and (2.10,15) reveals that since /' is an arbitrary function of concentration, 

a numerical solution will,in general,be necessary. An approximate trial 
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solution of these equations was carried out by Hodgson and this is conven­

iently summarised in Fig, 2,8 below, 

c 
0 

t 
"!Lt1 

-

Figure 2.8 Distribution of c and t in the film when 
slip is controlled by radial diffusion (63) 

2.11 Dirty Interfaces 

Traces of dirt,which may be airborne dust or other material,when 

present at the interface,have been fourxl to promote coalescence (16,44,79). 

Usually,results obtained in these circumstances produce low rest-times, 

The presence of foreign particles may: 

(i) Absorb heat from external sources, This will cause local 

temperature gradients which may be sufficient to rupture 

the film, 

(ii) Form a hydrophobic,or partly hydrophobic particle in the 

film, This would form part of a ''bridge 11 which could 

reduce,or even eliminate the energy barrier to coalescence, 

The true nature of any contaminative dirt is in most cases 

impossible to determine. It is imperative therefore,that the experimental 

environment be well designed to prevent accidental contamination of the 

experimental equipment, Whilst extreme care has been taken by some 

workers,others have not been very careful in this regard, It is probable 

in the latter instances, that many unexplained results were caused by 
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accidental contamination of the liquid systems or apparatus, 

2.12 Mass Transfer and the Marangoni Effect 

When transfer of a solute takes place across a liquid-liquid interface, 

localised variations in concentration occur, These in turn produce changes 

in interfacial tension along the interface, The interface then seeks a 

lower state of free energy, This takes place through expansion of regions 

of low interfacial tension,at the expense of regions of high tension 

(the Marangoni Effect (92)), Sawistowski and Goltz (113),who employed 

a schlieren technique,produced some remarkable photographs of interfacial 

movement caused in this fashion. The Marangoni Effect has also been studied 

theoretically by Sternling and Scriven (120), 

Charles ani Mason (16) have studied the coalescence of chloroform 

drops at a chloroform-water interface, When the drops contained ethanol, 

they were found to coalesce almost immediately, It was concluded that this 

was due to the diffusion of the ethanol across the phase interface, 

Experiments conducted with water drops containing P-dioxane,also showed 

some interesting trends, The rest-time was observed to decrease with 

increasing amounts of P-dioxane, Thus,at a concentration greater than 1o% 

P-dioxane,the coalescence was instantaneous, This is quite a high concentrat­

ion,but even much smaller concentrations had a very noticeable effect on 

the rest-time, 

Smith,Caswell,Larson and Cavers (125) have presented an explanation 

of the effects mentioned above, The modal which they used to develop 

their hypothesis,was that of two drops in close proximity. This was also 

the arrangement which they employed in their experimental investigations, 

When the transfer of solute material is taking place from the dispersed 

phase to the continuous phasv, the direction of interfacial Ioovement was 

observed to be away from the zone of closest approach of the two drops, 

Circulation occurs within the drops arrl this serves to continue the process 

by br~nging fresh solute to the drop interface, Under these conditions 
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streaming of continuous phase fluid out of this zone occurs and drop 

coalescence is promoted, However,when solute transfer is in the reverse 

direction,a considerably different pattern of behaviour is observed. This 

time,the direction of interfacial movement is towards the zone of closest 

approach. Continuous phase fluid is drawn into this region thereqy 

keeping the drops apart. Hence,coalescence is prevented from taking place, 

The method used qy these authors to predict the ease of coalescence in 

different systems,is of some value, They employed equilibrium data and 

interfacial tension diagrams for this purpose. This approach should have many 

useful practical applications,providing of course,that the requisite data 

is available, 

2,1) Interfacial Tension 

Appal and Elgin (5) concluded that high interfacial tension 

promoted coalescence. In contradiction to this finding,Keith and Hixon (72) 1 

and a number of other investigators (48,119) have found that coalescence 

is promoted qy low interfacial tension. An explanation is that high 

1nterfacial tension promotes film thinning,whilst low interfacial tension 

promoted film rupture. Therefore,if film thinning is the rate controlling 

factor,then high interfacial tension is desirable to promote coalescence, 

If f1lm rupture is important,then low interfacial tension is desirable. 

In most of the systems stud1ed by Lang (79),film rupture was 

found to be the rate determining step. Thus,he arrived at the conclusion, 

that in an environment with few and weak d1sturbances,rapid coalescence 

will occur W1th systems having physical properties,such that the film 

ruptures easily. Conversely,in an environment with many strong disturbances, 

rapid coalescence will occur with systems having physical properties that 

cause t~3 film to ~hin rapidly. In other words,the one mechanism of 

several,that occurs most slowly,W1ll be the rate determining step, 
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2,14 Density 

A low density difference will cause the phase-2 film to thin rap1dly, 

but a high density difference will cause the film to rupture more easily, 

This is the conclusion reached by Lang (79). In v1ew of the difficulties 

experienced by Lang in some of his experimentation one should treat this 

f1nding with caution, It is true to say that the effect of density 

difference on coalescence has not been fully established, 

2.15 Viscosity 

!1ahajan (90,91) as long ago as 1930 investigated the effect of the 

surrounding medium on the lifetime of drops, His finding was,that the 

stability of drops increased as the viscosity of the surrounding medium 

(phase-2 fluid) increased. The relationship between the rest-time and the 

viscosity of the phase-2 fluid was claimed to be linear, Later workers 

have also established this fact (16,23,53,85). They all contend that the 

increase1dro~tability arises from the longer time required for the more 

viscous films to drain to their critical thickness, 

2.16 Electrostatic Phenomena 

The Double Layer 1n Liquid-Liquid Systems 

If two immiscible liquids in mutual contact contain electrolytes, 

even in very small arnounts,a potential differerence will be set up between 

the interiors of the liquids. This potential arises because of the generally 

unequal distribution coefficients of the positive and negative ions,and is 

known as the distribution potential~ • Each electrolyte present gives 

rise to a potential determined by the properties of the ions, Near the 

interface,the ionic concentration of one 1on increases and that of the 

other decreases. This occurq in S'JCh a way that the +.otal ·harge on both 

sides of the interface 1s equal but has opposite signs, This distribution 

of charge 1s known as the electrical double layer. The electrolytes may 

have been deliberately added to the system, On the other hand,the liquids 



43 

used generally contain sufficient electrolytic impurities to build up a 

double layer at the interface (NH4 +, H+ ,Hco
3
- ions in water,organic acids 

in organic liquids,etc,) 

The partition of the double layer potential between two liquids, 

depends upon the ratio of the ionic concentration in each phase,c1/c2,the 

ratio of the dielectric constants, £1/ ~2,and the actual potential. If 

c1€1 is much greater than c2€2,then the potential drop in phase-1 is less 

than in phase-2. Infact, the potentJ.al drop in the phase with the largest 

ionic concentration, becomes rather small as soon as c1 €: 1 differs 

considerably from c2€ 2• This is especially true for low values of the 

total potential (127). Thus,in oil-water systems,and especially with slightly 

polar oils,when the ionic concentrations differ by several orders of magnitude, 

the potential drop occurs mainly in the oil phase. 

The Interaction of Two Double Diffuse Layers 

If two interfaces are brought so close together that their double 

layers interact,these double layers cannot develop fully (see Fig. 2.9). 

h a 

The interaction of two double layers at the liquid­
liquids (127). (a) interface separation at 
infinity, (b) and (c) show the effect of decreasing 
interface separation,h. 

tihen the dispersed phase is oil,only a small part of the double 

layer potential occurs in the continuous phase. The double layer repulsion 

between the two interfaces of the dispersed phase is therefore always weak. 

It is a general observation that such dispersions are unstable. In the 

reverse situation,the greatest part of the potential drop is in the 



continuous phase (oil). However,the ionic concentration in the continuous 

phase is now ver,y small. Thus the double layer repulsion between the two 

interfaces of dispersed phase is again,always weak. 

The Double Layer in Oil-Water Systems and the 

Presence of Surfactants 

The presence of a surface active material,concentrated at the 

interface,can change the potential pattern of the double layer considerably, 

The magnitude of the potential difference between the interiors of thetwo 

phases,remains unchanged as long as the ionic concentrations in the bulk 

phases are not affected blf the adsorption process. However,the adsorption 

of surfactant causes a change in the surface potential,which must be 

compensated blf a rearrangement in the dissolved ions across the interface. 

The presence of a surface active charge pushes the potential drop into the 

phase with greater concentrat1on of counter ions. Thus,for oil-water systems, 

the potential drop is pushed into the aqueous layer. As a result of this, 

there is a greatl;y increased repulsion when oil is the dispersed Iilase. 

In fact,the double layer repulsion will be determined mainly by the surface 

charge due to the surfactant,and the ionic concentration in the aqueous 

phase. Unier these circumstance,it is possible to apply to liquid-liquid 

systems, the theor,y of double layer interactions which has been developed 

for solid-liquid systems, 

The repulsive farce due to the interaction of two double layers, 

has been calculated blf several workers (24,127). For the case of a 

symmetrical electrol;yte,the double layer thickness is found to be proportional 
1 

to 1/n2,where n is the total ionic concentration in the bulk phase. Thus, 

the thickness decreases as the ionic concentration increases (e.g. by the 

addition of electrol;yte). In the presence of non-ion1c surfactant,the 

additional counter ions will crow:i in around the surfactant molecules 

(which are oriented because they contain electrical dipoles). This decreases 

the double layer thickness,producing a layer of uniform thickness. To be 
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absolutely certain of the contribution of double layer repulsion in 

coalescence,direct measurement will be required. 

deduced Film Tension 

If at some film thickness,the repulsive force exceeds the 

attractive force between the interfaces,film drainage will be halted. 

There then exists a minimum in the free energy of the system. A typical 

example of the variation of free energy with separation for soap films is 

shown in Fig. 2,10. The secondary minimum is determined by the double 

layer repulsion,the van der Waals attraction and the pressure in the film 

(due to drop buoyancy). The primary minimum occurs at very small film thick-

nesses,when the film consists of a bimolecular leaflet of surfactant 

molecules. At such small separations,a very short range repulsive force 

i 
G 

Figure 2.10 Typical plot of the Free Energy versus 
Film Thickness for a Soap Film 

(Born repulsion) exists between the electron shells of the surfactant 

molecules or ions. When the above forces are significant compared with 

gravitational forces,the interfacial tension is effectively altered. Thus, 

Derjaguin defines a reduced film tension as (25,26): 

v - zY + 0 f - (2.16.1) 

(( f is the apparent interfacial tension of the interfaces of an equilibrium 

film, Gmin is the value of the free energy in the primary or secondary 

minimum. 
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'l'he case of a drop in a state of equilibrium,resting at a liquid­

liquid interface has been considered qy Princen and }~son (103). The 

interfacial tension outside of the barrier ring remains unaltered,but 

inside it is given qy Eqn. (2.16.1). These authors have shown that this 

situation must lead to an expansion of the barrier ring. One must presume 

that this tends to make the film more uniform and hence slower to drain. 

Further,it was shown that the effect is greater as the drop size decreases. 

Electroviscosity 

If an electrical double layer is sheared,for example,qy causing 

a flow relative to the interface,a potential known as the streaming 

potential is set up in the plane of shear. The streaming potential arises 

because part of the double layer is mobile and is carried away by the flow. 

It tends to resist the flow because of the electrical retarding force 

acting in the ions of the double layer. The effect is likely to be important 

in thin films and appears as an increased viscosity. 

Electroviscosity has been investigated in some detail qy Elton (31, 

32). To study the importance of the effect,he examined the physical 

sktuation of two approaching parallel discs contained in an ionic liquid. 

He also examined experimentally, the rate of approach of an air bubble to 

a flat glass plate, The approximate form of the electroviscous equation 

predicted by Elton is: 

= + (2.16.2) 

where K is the specific conductivity of the liquid and 5 is the electro­

kinetic potential. The latter is usually a little less than the surface 

potential lf 
0

• )A- a is the apparent viscosity of the liquid. 

'l'he rate of approach of two parallel plates (or discs) in an 

1onic liquid is: 

dh2 
Jt 

= 2F (2.16.3) 
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where R is the radius of the discs,F the force pressing them together,arrl 

f-a = f- + AE: 212
/h2K ,A being a constant. h2 is the distance of separation 

of the two plates at time time t 2• Integrating Eqn. (2,16.3) from h 1 to h
2

: 

where C is a constant. 

Some idea of the orderof the electroviscous effect,can be obtained 

by considering the following example. The times of approach for discs of 

1 cm. radius under a foce of 1000 dynes, (a) in a non-ionic liquid of 

viscosity 0,01 poise,arrl (b) in an ionic liquid ( t; = 100 mv, E. = 80 arrl 

-6 -1 -1 ) K = 10 ohm cm. of the same bulk viscosity are: 

Distance 
of Fall 

1,0 X 10-5 

to 

Clllo 

9 x 10-6 cm. 

non-ionic 
liquid 

4 
5.4 x 10 sec. 
(about 15 hr.) 

ionic 
liquid 

6 1,6 x 10 sec, 
(about 450 hr,) 

The results of the approxilllate calculations presented above indicate 

that the electroviscous effect is likely to be an important consideration in 

coalescence. Particularly so when the surface potential is high and the ionic 

concentration very low. 

In summary ,it is pertinent to mention that although Elton 1 s 

findings were justified by his eXPerimental results,his reasoning of the 

electroviscous effect has been contested by other workers (97). Finally, 

it 1118.Y be pointed out that there is an additional ~~~echanism whereby the 

viscosity of the draining fillll may be increased. It has been demonstrated 

experimentally,that the viscosity of the liquid immediately next to the inter­

face is greater than that of the bulk liquid (20), This is because of a 

strong attraction between layers of molecules which are induced to orientate 

at the interface. Again this phenomenon 111ust act to decrease the rate of 

film drainage. 
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Disioining Pressure 

When a fluid is squeezed out between two bodies,a resisting force 

can be measured which is not due to the viscosity of the liquid. This 

force is a measure of the long range attraction of the molecules (79). 

It is significant only when the film is ve!'YII;hin,i.e. because it arises 

by repulsive action due to electric charges in close proximity (16). 

Derjaguin and Kussakov (23) have named this force 11disjoining pressure" 

and have measured it; magnitude in a number of systems,as a function of 

film thickness. A typical value of the disjoining pressure is 500 dynes/ 

cm. 
2

,corresponding to a film thickness of 10-5 cm. 

Elton has suggested that the disjoining pressures that have been 

measured were really due to the fact that the film had not reached an 

equilibrium state. But since in coalescence work we are rarely concerned 

with equilibrium states (if at all), this does not give us concern to doubt 

its existance. However,Lang has reported (79),that the disjoining pressure 

has very little effect on the drop rest-time. If the existence of the dis-

joining pressure is assumed to be valid,then Lang 1s finding would suggest that 

the film does not drain to a sufficiently thin value. This seems a little 

bit perplexing,since as already mentioned in Section 2.5,the phase-2 film 

can reach very low film thicknesses before it rupture. 

London - van der Waals Forces 

Molecular attraction due to long range Lorxion-van der liaals forces 

have been observed by many investigators (27,99,126,127). These forces act 

to decrease the film thickness. Van den Temple has stated (126) that the 

contribution of these forces is only significant when the film thickness is 

0 
below 1000 A. This has been further substantiated by MacKay and Mason (89). 

Their finding was that the contribution was negligible if the film thickness 
0 

was greater than 500 A. Since the measurements of film thickness during 
0 

coalescence by these authors were in most cases less than 500 A,we must 

conclude that the London-van der Waals force is important in coalescence. 

Unfortunately, the precise form of the equation representing a 
-------------------
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London-van der Waals force is subject to some doubt (10,73,75,118), 

Theoreticall,y, the short range unretarded forces, which operate over a distance 
0 

of the order of 100 A, are proportional to 1/h'J. At distances greater the.n 
0 

about 1000 A, the forces are of the retarded kind ani are proportional to 1/h 4 • 

The most realistic values for the calculation of the van der Waals force lie 

in the retarded range. Since the film thickness at rupture is likely to be 

considerably below the retarded range,calculations o·f the van der Waals force 

should be treated cautiously, 

The Wlderstan:ling of electrostatic phenomena pertaining to liquid­

liquid systems is not completely reliable. This is mainly because very few 

experimental measurements have been carried out for liquid-liquid systems. 

Whilst valid interpretations may be made from the theory, the true 

significance of any findings will remain obscured until reliable data is 

available. 

2,1? Electric Fields 

The use of electrical fields to promote coalescence has proved to 

be one of the few practical successes in this field of en:leavour. This is 

all the more remarkable,considering the scant knowledge of the principles 

involved, 

As long ago as 1879 Hayleigh (106) produced easy coalescence of 

parallel jets by charging one to a higher potential the.n the other. Charles 

and Mason (16) he.ve investigated the coalescence of single drops when 

subjected to an elect~ical field. The electrical field was produced by 

placing electrodes (aluminium discs) on either side of the L~terface. 

With increasing potential, the rest-times of primary and secondary drops 

decreased,finall,yproducing instantaneous coalescence. Thus,the coalescence 

problem reduces tc one of very simple magnittrle if sufficie·.t electrical 

potential is applied, 

Without entering into great detail on this subject,the more 

important findings may be summarised as follows: 
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(i) For a D.C. field,an inverse linear relationship exists 

between the strength of the applied electrical field and 

the mean rest-time of a single drop;Allan and Mason (1). 

(ii) AJ.most identical affects to those listed in (i) are found 

if A.C. fields are used;Brown and Hanson (13). 

(iii) The field inside the drop,rather than the charge it carries, 

is responsible for premature coalescence (13). 

(iv) The potential drop across the aqueous phase is negligible 

compared With the organic phase (87,130). 

Item (iv) describes the important principle behirrl the development 

of electrical coalescence units for oil-water systems,used in the 

petroleum industry. It is important enough to merit mora extensive 

investigation so that the principle can be applied in other liquid-liquid 

systems. 

In examining the coalescence of two aqueous drops,Allan and Mason 

(3) found that there was a variation in coalescence angle with field strength. 

The coalescence angle is defined as the angle between the ~etric drop 

axis (about the vertical axis) and the vertical axis. In addition,the 

contact time was greatly reduced at high field strengths. The latter 

phenomenon is analogous to decreased rest-time found With single drops at 

a plane interface. The overall effect is one of increased film thinning, 

which may be explained in terms of electrostatic attraction. 

Stewart and Thornton (121) have applied D.C. fields to single 

drops moving through a non-conducting liquid. Theory predicts that such drops 

will have reduced interfacial tensions and higher terminal velocities. 

Both of these effects are likely to produce drop oscillation. Using high speed 

photography,it was observed that the terminal velocity of charged drops 

could be twice that of uncharged dzvps. This type of investigation should 

prove to be extremely valuable in obtaining fundamental information about 

the effect of electic fields on liquid-liquid systems, 
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2.18 Film Instability 

Early workers (16,33,44) used the parallel plates model ani the 

observed rest-times to calculate the film thickness at rupture, Thus, 

Gillespie and Rideal (44) were led to the conclusion that the film thickness 
0 

at rupture was of the order 1000 to 10,000 A. The variation in this value 

correponds to the observed scatter in the rest-times. These relativel,y large 

film thicknesses at rupture then led workers (16,33,44) to the conclusion 

that rupture was brought about by Mechanical ani thermal disturbances. 

Thus,a detailed investigation of the effects of mechanical disturbances on 

coalescence was undertaken by La.ng (79). He considered two possible ways 

inwhich a disturbance can grow in a film so that it might becoMe large 

enough to cause rupture, 

(i) Rayleigh Instability:(105,107,108). Rayleigh demonstrated 

that a disturbance can grow in a cylinder of ideal fluid provided that the 

disturbance produces a decrease in surface area, The driving force- for the 

final breakup of the cylinder is surface tension. However,La.ng conclW.ed 

that such a disturbance cannot grow in a film with spherical surfaces. 

(ii) Taylor !nstability: In this case (80,122),the driving force for 

the growth of a disturbance is gravity. The instability can arise whenever 

a more dense fluid overlies a less dense fluid. This must be the situation 

at one interface of the continuous phase film between the drop and the bulk 

interface. The Taylor instability was chosen by La.ng (79) as being 

responsible for film rupture in coalescence, 

La.ng considered the case of a layer of fluid,density e 2 ani 

thickness 2h,lying between two semi-infinite layers of fluid. The upper 

layer was of density e 1 ani the lower one of density e 3• He assUMed for 

simplicity that (( 
1 

= ~ 
3

,which is the actual situation in coalescence,ani 

reasoned that if~ 1>e 2,then from Taylor's instability,the upper interface 

will be unstable ani the lower one stable. La.ng SUIIIIIIIl.rised two important 

conclusions: "First,in a system containing two free interfaces, two wave 
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systems can exist correspoming to a single wave number. If the interfaces 

are far apart, the wave systems act indepemently of one another,each in a 

separate inter:face. If the two interfaces are close together,however,both 

wave systems exist in each interface. The relative initial amplitude of 

the waves in the upper am lower interfaces depeming on the kinematic 

viscosity. Second,i:f a denser phase overlies a less dense phase in a layered 

system, the system will be inherently unstable "• 

In his experimental investigations,Lang employed all sorts of sonic 

disturbances but found they did not increase the rest-time appreciably. 

Thus, the importance of instability in determining the film rupture process 

in coalescence was not established, A comment concerning Lang 1s experimental 

coalescence rest-time results is in order, It was noticed that a number of 

sets of results appeared to have very erratic trams, If contamination 

was responsible for these- trems,it is worth pointing out the damping effect 

which surfactants are known to have on surface disturbances (21). 

It seems most probable :from prior discussion,that rupture of the phase-

2 film occurs at film thicknesses of a few hundred Angstroms or less. 
0 

At inter:face separations of the order of 250 A,van der Waals forces are 

increasing very rapidly to create a significant attractive force between the 

interfaces, In view of this,and the doubts expressed above, the relevance 

of classical instability criteria in determining the stability of the phase-2 

film,is open to question, Thus,in practice its importance 111ay not be as 

great as suggested by idealised models. 

2,19 Hydrodynamic Stabilitv and the Marangoni Effect 

The onset of interfacial movement or interfacial turbulence caused 

by local variations of interfacial tension (Marangoni Effect) ,has been 

studied by Sternling and Scr:ven (:15,120). They pro~sed that interfacial 

turbulence is a mani:festation of hydrodynamic instability,loihich is 11touehed-

off" by ever present small ramom fluctuations o:f pressure and temperature. 

The model used by Sternling am Scriven consisted of two semi-
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infinite fluid phases in contact along a plane interface. The phases were 

considered to be in thennal but not in chemical equilibrium. Because very 

low concentrations of solute were Used, the fluid properties were taken to be 

constant. Sternling and Scriven obtained solutions by first solving the 

J:zydrodyn!lmic equations and then the diffusion equation describing the 

concentration disturbance. The two solutions were combined by means of the 

interfacial shear-stress boundary conditions. It was concluded that the 

stability of' the disturbed system depended on the viscosity ratio,the 

diffusivity ratio, the direction of' solute transfer and the sign of' the rate 

of change on interfacial tension. 

The analysis of Marangoni instability by Sternling and Scriven has 

led to some creditable explanations of a number of phenomenon. Thus,it 

explains why some systems are unstable with solute transfer in one direction, 

yet stable with transfer in the opposite direction,and others to be stable 

with transfer in either direction. Elegant as the analysis is,it is too 

simplified to be reproduced in the laboratory. 

It is important to realise that the factors which promote inter-

facial turbulence and hence J:zydrodynamic instability ,also ~promote coalescence. 

However,direct measurement of these complex effects will obviously be 

necessary in order to determine their particular significance. 

2.20 ftupture and Collapse of the Phase-2 Film 

Lang (79) has shown that the probability of rupture of the phase-2 

film is zero until it has thinned to a certain critical thickness. With the 

formation of a hole in the film,the interfacial tension acts to reduce the 

interfacial area and therefore to expand the hole. An analysis of the 

I 
hole expansion in thin soap films was carried out by Dupre (30). The 

surface free energy released was assumed to be completely converted into 

I 
kinetic energy in the film,and for mo tl.on within the film itself. Dupre 

proposed the following equation for the velocity of hole expansion: 



v=!U:.= 
dt 
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where r is the hole radius at time t,ard I( 2 the film density. 

(2.20.1) 

Obviously,Eqn, (2.20,1) can give only an upper limit for v. 

This is because energy will also be required for overcoming thal viscous 

drag on the receding edge of the film ard for the incoming phase-1 

replacement liquid. Charles ard Mason (15) carried out a similar analysis 

to that of Dupre, to derive the following equation for a coalescing system: 

V = (2,20.2) 

This equation is only an approximation,since the \~hole of the incoming fiuid 

does not move at the velocity v, It follows from Eqn. (2,20,2) that v is 

independent of r and constant for a film of uniform thickness, 

Assuming the spherical-planar approach to be the appropriate film 

model,Charles and Mason derived the following equation: 

1 + kr2 
-2 
vo 

(2.20.3) 

were k = (P1
4
+J2 ).( h)•ard R is the radius of curvature of the film. 

v
0 

is the initial velocity ard vr the velocity at hole radius r. In this 

derivation it was assumed that the film remains stationary until reached by 

the receding edge. Considering the rapid expansion of the hole,which 

initially may be as high as 1000 cm./sec, ard up to 300 cm./sec, afterwards 

(15),this is to be expected, Thus,according to Eqn, (2.20.3),the velocity 

of hole expansion decreases as the hole radius increases. Both Charles and 

Mason ard Hartland (53) have provided photographic evidence of this event, 

Elcperimental results plDtted according to Eqn. (2.20,3) ,in the form ~ 
2 

V 
versus r2 ,sholied a surprisingly good fit considering the simplicity r 

of the anazysis. 'A much more complicated expression, relating the hole 

expansion to the system properties,was formulated by Hartland (53). Here 
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again,a reasonable correlation was obtained,but not more so than for the 

simpler equation. 

The location of the initial rupture point in the draining film 

needs to be considered. High speed photography has shown that central 

rupture is the most common occurrence in systems contaminated by surfactant 

material. The only explanation for this would seem to be that the film is 

thinnest at the centre, In pure systems,the film ruptures at,or near the 

edge. If dimple formation is important, then rupture would be expected to 

occur at the barrier ring which is the thinnest part of the film. Tilting 

of the drop may also occur causing preferential thinning on one side of the 

film. Another more spectacular type of rupture has been observed by 

Hartland (55). When the film is very thin (glycerol drop: liquid paraffin­

glycerol system),instead of receding in the normal way,it shatters when 

rupture occurs, The film thickness at rupture was quite high compared 

with values obtained for less viscous systems,so that this event may not 

be very common. 

?.21 Partial Coalescence 

Coalescence is seldom a simple single-staged process. It is a 

common observation that coalescence takes place in a stage-wise manner 

(15,51,62,67,70,71,82,95). When the primary drop coalesces it produces a 

smaller secondary drop,which in turn produces a smaller tertiary drop and 

so on. l1ahajan (91) and others have observed as many as eight successive 

stages to occur in certain systems. These observations were made with the 

naked eye so that it is possible that many more actual stages exist, 

although the size of the drops produced will be exceedingly small. 

The viscosity ratio of the dispersed phase to the continuous phase 

p,is an important variable determining whether or not partial coalescence 

will take place, Charles and Mason (15) observed that coalescence became 

single-staged (no secondary drop formed) when p was less than 0,02 or 

greater than 11, We would infer from this that partial coalescence is 



indeed a Widely occurring phenomenon. It was also discovered by these 

workers that lowering of the interfacial tension (by the addition of slll'lll 

amounts of surfactants) had very little effect on the size of secondary 

drop produced, It is well to point out though,that the addition of a 

sufficiently high concentration of surfactant can suppress secondary drop 

formation altogether. Application of an electric field will also bring 

about the same effect, 

With the aid of high speed photography, using film speeds as high 

as 3500 frames per second,Charles and Mason (15) were able to observe in 

detail the partial coalescence process, After the phase-2 film had ruptured, 

the drop liquid was observed to form a liquid column. The height of this 

column was approximately equal to the diameter of the original drop. 

During the drainage period the height of the column did not change 

appreciably, It was deduced that the excess pressure ( '11' /R) across the 

surface of the cylindrical column was responsible for causing drainage 

into the lower phase. Charles and Mason proposed a partial coalescence 

mechanism based on a Rayleigh disturbance, It was assumed that when the 

height of the liquid column becomes equal to its circumference (27f R) ,a 

Rayleigh disturbance grows in amplitude,resulting in a ''necking down" at 

the base of the column. From here on there is a race between between the 

drainage and the "necking down" process, the outcome of which determines the 

size of the secondary drop. When the amplitu:le of the disturbance becomes 

equal to the radius of the column,the column breaks up and the undrained 

liquid forms the secondary drop. 

The size of the secondary drop produced by partial coalescence 

can be found from the foll<>wing equation. Charles and Mason (15) derived 

this equation by making use of Ray-1.eigh 1s theory (10€h 

(2.21,1) 
= 
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where, r 
n = drop diameter ratio 

a + 1 = diameter of secorrlary drop n 

a = diameter of primary drop 
n 

zo = 4.508 = optimum value of the dimensionless 

parameter ( /2R) 

Also, 

r = a!l± 1 (2.21.2) 
0 

(i2zo)1/3 

where, 

r = radius of column at breakup. 
0 

For z
0 

= 4,508,the calculated value of rn from Eqn. (2.21,1) is 0.42. 

Considering the limitations of the original Rayleigh theory, which are 

considerable in the present circumstances,and those of Charles arrl Mason's 

own analysis,this predicted value is quite excellent. It is well within 

the accuracy of Charles and Mason's own experimental results. One 

significant restriction of their analysis of this process is the assumption 

that no drainage takes place after instability has occurred. This means 

that the volume of the secondary drop will be the same as that of the 

column at instability. Considering the high rate of drainage during the 

partial coalescence process,further drainage must occur after this point, 

This may cause a significant difference in the size of secondary drop 

which is predicted. 

The Weber extension of Rayleigh 1 s analysis yd.al.ds the following 

equation for the breakup of the liquid column (131): 

~ = (1 + ~r) 
q 0 

1n .r... 
olo 

(2.21.3) 

where ~ is the time requl.red for ~e column to reacl:. an adlplitude r after 

instability has set in. Estimates for tb have been obtained from high speed 

photographs by Charles and Mason,and Brown am Hanson (14) have measured 

~directly using an electrical technique, The latter authors,using a 
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simplified anazysis incorporating Charles and Mason 1 s theory of partial 

coalescence,developed a pair of equations for the prediction of the 

secondary drop diameter from the expetrimental value of tb. The predicted 

values were in good agreement with those found from experiment. Their 

method overcomes the limitation of Charles and Mason 1 s assumption mentioned 

previouszy. However, the fluid mechanics picture of the drainage of the 

liquid column,is obvious:~¥ not as simple as they have assumed. 

Mainzy because of the work of Jeffreys and Hawksley (68) and 

Jeffreys and Lawson (66) ,doubt has arisen concerning the validity of the 

Rayleigh anazysis as applied to the partial coalescence process. An extensive 

high speed photographic stuiy of partial coalescence has been conducted by 

Lawson (82). Two important observations have resulted from this work: 

(a) That mvement of liquid back into the liquid column takes 

place from below the bulk interface. During the time this 

upward surge is taking place,material is still draining 

from the regions of the drop (liquid column) adjacent to 

the phase boundary. 

The evidence for this event is: (i) a maximum in the height of the liquid 

column is reached during the period described above,and (ii) both Jeffreys 

and Lawson (66) and Brown and Hanson (14) have reported that liquid from 

the homophase is present in the secondary droplet. The latter authors 

report that the extent of mixing is in the region of 20 to 30/>. 

(b) Break-off of the liquid column was observed to take place 

very low down,almost near the base of the column. 

According to the Rayleigh theory,if the liquid column is assumed 

to have a length greater than its circumference,this means that the 

disturbance should cause breakup at its mid-point. Thus,th~ actual 

break-off point is entire:!¥ in the wrong position for it to be caused by 

a Rayleigh disturbance. 

A suggestion originally made by Wark and Cox (128) concerning the 
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formation of a secondary drop,now appears to be reasonable. The suggestion 

was,that there is such a rapid deflation within the drop (i.e. liquid 

column) that its 1tail 1 is sheared-off. The following possible mechanism 

for secondary droplet formation has been advanced by Lawson (82). "There is 

a balance between the upward force and the drop deflation, which depending on 

the relative magnitude of the former,describes whether or not there will be 

a finite secondary drop 11 • The physical evidence certainly makes this 

explanation attractive,but the vagueness of the terms "upward force" and 

11deflation 11 requires some qualification. There does not seem to be a direct 

eqmlity between these two terms. It would appear that more stuiy is 

required to present the mechanism in a more quantitative fashion. 

Partial coalescence is an extensively occurring phenomenon in 

liquid-liquid systems. Its mechansim deserves to be understood if many 

practical problems are to be solved. 
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Cl!JU'TEH 3 

Introduction 

when a liquid drop falls onto a plane interface it is separated 

from that interface,prior to coalescence by a film of continuous phase fluid. 

It has been suggested that the residence time of the drop at the interface is 

equal to the time for this film to thin to a th~ckness at which it is unstable. 

Several authors have made a hydrodynamic study of the drainage of the 

film and attempted to calculate the film thickness as a function of time. 

"s the shape of the f~lm is not kno\'m, their approach has been to select a 

drainage n'.Odel which is geometrically simple and can be oxamFied rnathon>'l.tically, 

but does have some s~milarity to the shapes of drop and interface whlch arc 

observed during the coalescence process. The models which are used arc 

discussed fully in Chapter 2. The two extremes are a spherical-planar model 

and a parallel-plates model and the other models have surfaces which lie 

some>there bet;reen these two. 

The ,Javler-Stokes equation has been solved for the flow of f'luii 

in the film which is trapped bet>teen the surfaces described by the above models. 

The equations so obtained relate the film thich>1ess at some time with viscosity, 

density,~nterfacial tension and drop dlameter. 

IJacKay and !Jason (88) who studied the parallel-plates model, found 

that the~r drainage equation could be used to describe the ,Jrainar;o of tho film 

when the film thickness \'Ias bet>reen 1 micron and 0.2 microns. However, there is 

no evidence to suggest tnat the spherical-planar model gives an adequate 

descr~ption of the drainage. 

The drainage equat~ons may also be used to calculate the tJ.me 

required for the f~lm to thin from h 1 to h2 ,where h is the distance of 

separatJ.on of the bm surfaces at some particular point, lf h2 and n
1 

are 

to.ken as the respect~ve values of h at film rupture and at some zoro time 
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then t 2 - tl will be the coalescence time,provided that this coaJescence 

time is measured frou the same zoro time at whioh h1 is measured. clowever, 

neither h2 or h 1 are easy to determine. Present techniques do not allo;r h2 

to be measured, ··~reovGr, the zero time ~s taken as the moment >Jhen the drop 

first arr~ves at the interface and so does n~t take into account tho oscillation 

of the plane surface which occurs. This may result in the drop bouncin<; from 

the surface before finally coming to rest on it. 

Limited success has been obtained with the parallel-plates model 

and ;nth a non-uniform film model. The non-uniform film model was used by 

Jeffreys and Hawksley (68) to explain their experimental relationship, 

In the follo;dng sections,an attempt is made to calculate the shape 

of the film at the interface and to solve the lavier-Stokes equation for 

flow in this film, 

Before attempting a mathematical analys~s it is worth while 

considering a few general features associated with drainav,e of the phase-2 

f~lm;notably,the pressure distribution, 

3.1 Pressure Distribution 

Jl, Consroer the case of a thin spherical f~lm, closely resemblin<; 

the phase-2 filmC79,102),which is drain~ng slow~y (see F~g. (3,1)). 

r'ir;. 3.1 

If the principal radii of curvature of the drop and the main surfaces,are, 

respect~vely, ·{J.J1• ._02 and .lhl• •(1,2 , then: 



+ 1. 
rrn2 

+ 1. 
RJ11 
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(3.1.1) 

~!here Ho = radius of curvature at e = 0 and () = interfacial tension. 

Provided the fil:n l.S thin (i.e. h<<'l) a solution is: 

(3.1,2) 

B. For a similar situation (see Fig, 3.2) ue may Hrite the 

appropriate boundary conditions,Looking ac the principal radii of curvature: 

Fig. 3,2 

(i) At 9 = 0 both surfaces are spherical with radii of 

curvature ~ R
0

• 

(ii) At (} = some value 9 i, which changes tdth time, the main 

(iii) 

surface has radii of curvature ~ R
0

,0,and therefore the 

drop surface has radii of curvature ~ R
0 

and R0 /2. 

Betueen e = 0 and e = ei the radii of curvature of the 

main surface to!ill be R
0

, (some value between 0 and R0) and 

the drop surface R
0 

and some value betueen R
0 

and R
0

/2,such 

that, ~ + 0 = 2¥ ~2 , ~1.2 are the principal radii 
RD2 rt,i2 Ro j• 

of curvature of the tHO surfaces uhich are Varying Hith e o 

Provided there are no ripples in the film,it is obvious that uhere 

the film is thin,Eqn, (3,1,1) applies,except that near e = ei,~2 •l1·.z Hill 

be changing noticeably, This assumes that the fiJ~ is still thin at G i' 
If it is not, then Eqn. (3 .1.1) applies up to a value of e uhere the film 

can no lone;er be considered thin. Since the film is thin,any slo~;r chanzes 

of h with B will not affect the pressure distribution noticeably, Their only 

L 
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effect will be on the momentum and on the shear forces. 

c. 

PBO 

Figure 3.3 

Follow~ng on from part A,provided that the film is very thin,then: 

Pno - Poo = ~ Pne PB9 = 4lS" ,and 

''o "" 
Pre = PD& 2~ = Pno - ll_ R

0 
( 1 - COS 9 ) e 1 g 

Jto !to 

Pfe = PfO - 1<0 (1- cose )(' 1g 

where e 1 ~s the density of the dispersed phase and p the pressure. 

Pf(9 +d9) = Pro- 1<0 {1- cos(e +d9))~ 1g 

Above the static pressure, 

l~OVl, 

6Pf- 13 + d9 = (E_> 1 - ~ 2 )a0g sined9 where~ 2 ~s the 

density of the continuous phase. l'lote that near 9 i (i.e. where :<~.1- 0) 

the pressure •fill decrease more rapidly than is shown by the above equation. 

3.2 Flow Out of the Phase-2 Film 

Figure ).4 

It is assumed that ~ is independent of 9 ~n the rer,ion where the 
dt 
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film is thin. The rate at vrh1ch fluid is displaced from the film betueen 

e = 0 and e = e is: 

[
!t_'ii (R + ]1)3 
3 2 

- !t_fi(R - ]1)
3 

-
3 2 

!t_lt (R + h - dh.J,p 
3 2 dt 2 

+ !tii<"- h + dh • .1? J <1 _ cos e) 
3 2 dt 2 2 

= z'ililll [(R- ]1)
2 

+ (1\ + ]1)
2 J (1- cos8 )/2 

dt 2 2 

= 2'i11t
2
(1- cos6)dh,sincc R>>h. 

dt 

Betucen 0 and c9 + d $ the rate of displacement of fluid is: 

2(j n2
(1 - cos<e + d8 )) dh 

dt 

- 2< e = 211 R 1 - cos + sin9 d(:l ) dh. 
dt 

+ 

(3.2.1) 

It is assumed that the tuo surfaces arc rigld and that the velocity profile 

in the film is parabolic. Thus, V= V
0
(1- l>x2/h

2
) 1.rhere xis the distance 

from the centre of the film and V the velocity at x = 0. Thus the flovr rate 
0 

)dx.2Ti ?c sine 

2 
and V = 2 R (1 - cose} dh/dj;_ , 

0 G. h 211 a sin & 
3 

so that V = .:ill (1 - cos8) dh (1_- 4x
2

) 
2h Sl.n dt h2 

The shear stresses at the interface are equal to: 

= .± 2 t\z 11 < 1 - cos e > dh [ !t J 
2( h sinG dt h 

(3 .2.2) 

L -
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= ± 6zt2 (1 - cos 9) dh 
sin 6 dt 

h2 F 

(3.2.3) 

whereJl
2 

is the phase-2 viscosity. 

element ( as sh01,m in Fig. 3.4 ) 

~nerefore the shear force acting on the 

c1 - cos e) 
sine 

Pressure Force on the ElemPnt 

fl1 [ 2 rr !t(R cos e 
dt 

,2 rJ.. 
27f 

Figure 3.5 

The pressure force = 

,h gJQ 
2'jj' 

- R cos (0+d6))] 

(3.2.4) 

this includes the static pressure, Takin& the pressure above the static value, 

to take into account the ;reight of the element, the effective force in fluid 

flou 
(3.2.6) 

Ho mentum 

The momertum into the element per second 

= 
-+h/2! 2 A lt' il (1- cose) clh (1- lrx )R sinO .d r· 
-h/2 2 \. h sin e dt h2 

l -
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·11i (1- cos9) dh (1- 4x
2

) 
2 h sin e dt h2 

The rate of momentum out 

= 2.o2 ;?( dh )2 (1- cos(e +de))
2 .d~ 

5\ h dt sin(e +dB) 

'The rate of change of momentum 

= Q.0 I? (dh)z [ 2(1 _ cos 8) _ 
5\ 2 h dt 

< 1 _ cos e ) 2 
cos e J dt<l .d ~ 
. 2e 

s~n 

(3.2. ?) 

lbmentum Dalance 

£e, ~(dh)2 [z(1- case-)- (1- cose/ case Jd9.d~ 
5 2 h dt . 2.n 

s~n 17 

2 ) .2 ,/.. = R (e._ 1 - ~ 2 g s~n eh d8 .d'f' + 121cJ ~2 .dh < 1 _ cos e )de .d A. 
/~- dt i 

h2 

(3.2.8) 

When dh/dt is very small, 

dh 
h
3 =_ 12f2 dt: (1 - cose) R 

(3.2.9) 

(~1- ez)~ sin29 

and the film thickness,h,increases very slowly with increase in 0 . This 

solution also gives,at a given value of e : 

• • • !::kt+C 

2h2 



where k = k 1~ and C is a 

term,the assum~ion requires 

constant of integration. Looking at the inertial 

that ,_.5 11 · · th •··2h i 1u1 J.S ver.J sma J.n comparJ.son WJ. .. , • e. 

for small values of h. The full equation for film thickness versus time is: 

3.3 Comparison of Calculated DraJ.nage Time and 

Experimental 11ean ?.est-Time 

·1 
h 2 

2 

(3.2.10) 

It is useful to compare the predicted value of the theoretical 

drainage time,t,for a given separation,h,with the experimental mean rest-time, 

tm. lor this purpose tuo examples have been taken from the Series 2 results 

which are described in Chapter 5 (see Appendix J for details of the results). 

The equations representing the various drainage models are as follows: 

where 

~lodel 1 Spherical-Planar 

h1,h2 = 

tl' t 2 = 

J-2 = 

6~ = 

b = 

Ct2 - t 1) = t = g_ _A2 __ ln h1 
9~ h2 

ini tJ.al and final film thickness,respectively. 

initial and final drainase time,corresponding to 

h2 ,respectively. 

phase-2 viscosity. 

( ~1 -~2) = phase density difference, 

droplet radius, 

h1 and 

Hodel 2 (i) Parallel-Plates ('I'wo Approachine. 1<lat DJ.scs) 
2 

( t2 - t1) = t = 3li/<- 2 lt 1 
} h 2 

mg 2 

for hj_>)h
2

,where 

mg = force pressing the two discs together. 

H = radJ.us of dJ.sc .:;: xc• 

LL should bo noted that in the above and subsequent models, the value of t is 
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based on an equivalent drainage force condition. In order to make a valid 

comparison between the parallel discs model and other models,it is necessary 

for the drainage force on the phase-2 film to be the same in all cases. 

When calculating this force the radius of the f1lm in the parallel discs 

model is equal to the radius of the discs. In the other cases,the horizontal 

distance from the mid-axis to the periphery of the film is taken to be 

equivalent to H. This distance is the value xc which can be calculated by 

the method due to Princen ( 102). Details of calculated drop shape 

characteristics for a number of different $YStems are contained in Appendix 4. 

Model 2(ii) Deformable Drop - Rigid Interface (Charles and 

Mason 1 s Uniform Film Model ( 16)). 

for hi)) h2,where 't = interfacial tension,and i = 1. 

Model 2 (iii) Deformable Drop - Deformable Interface (Elton 

and Picknett 1s Uniform Film Model (33)). 

Small Drops. 

Model 2(iv) Deformable Drop- Deformable Interface. Large Drops. 

for hJ?'>h2,where, 

2 

= t = ;_P2 A ..1 
4 Tf FD h 2 

2 

FD = drainage force (see Appendix 4) 

A = area of "spherical cap" (see Appendix 4) 
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= t = 

for hi>) h2• 
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1 
-2 
h2 

On the basis of experimental evidence (16),and provided that t is sufficiently 

large,it can be assumed that coalescence will occur at the edge of the phase-2 

film,i,e, ate c (see Appendix 4 for values of 9 ), c 

The following experimental results will serve as examples in the 

case of a large drop and a small drop, 

El<ample 1 Large Drop. System: Heptane-Water, 

b 0,2525 ~ 0,3158 
-3 

= cm, = gm. cm. 

R 0.4405 'If 50,75 dynes -1 
= cm, = cm, 

X c = 0,1608 cm, /-'-2 = 0,4158 c .p. 

9c = 21° 23 I FD = 18,81 dynes (deformed drop) 

tm1 = 7.95 secs, Fs = 20,81 dynes (spherical drop) 

El<ample 2 Small Drop. System: Heptane-Water, 

b = 0.03175 cm. Fs = 0,0414 dynes 

ec = 1° (assumed) 

tm3 = 1.53 secs, 

The predicted values of t for a range of film separations (h2 - h1) are 

presented in Tables 3,1 and 3,2, 

3,4 Discussion 

In Section 3,2 the Nav1er-Stokes equation was solved for the flow 

of the film fluid in theca se where dh/dt is independent of e . This 

assumption is valid over the region where the film is thin,since any slow 

changes of h with e will not affect the pressure distribut1on noticeably. 

Their'~nly effect will be on the momentum forces in the flowing flU1d and 

the shear forces atthe approaching 1nterfaces. It is noticed that as 

(1- cose )/sin2e ,i,e. 1/(1 + cose ),does not change rapidly with e ,the 
I, 
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assumption concerning dh/dt is consistent with Eqn. (3.2.9). 

According to Eqn. (3.2.9),the rate of film thinning is proportional 

to h3 • Eqn. (3.2.10) predicts that the drainage time t,increases with 

increase inJ- 2 and R,and decreases with increase in/:::,.~. The fact that the 

dependency on the drop size is to the first power,suggests that the model 

is a "mixed model11 ,i.e. that the predicted rest-time lies between the 

values predicted by the parallel plates model and the spherical-planar 

model. This is shown to be true in Table 3.2,for the case of a small drop 

(b = 0.03175). It is interesting to note,that as 6 becomes very small, 

the term (1 +case) in Eqn. (3.2.10),approaches the value 2. This 

suggests that very small drops are spherical but large drops are deformed. 

In the latter case, the lower deformed part of the drop has a radius R 

whilst the upper part has a different radius. 

The case of a large drop is considered in Table 3.1 and it is seen 

that the predicted drainage times lie outside the range between the 

parallel plates model and the spherical-planar model. In purified systems, 

it is likely that considerable movement occurs at the interfaces and this 

is not accounted for the present analysis. This will result in considerable 

increase in the rate of film thinning and hence the experimental rest-times 

will be much lower than the predicted values. 

Table 3.2 suggests that the drainage model represented by Eqn. 

(3.2.10) will provide a better estimate than aey of the other models for 

the case of very small drops. Without an exact knowledge of the film thickness, 

it is not possible to obtain a realistic estimate ,however. 

General Reference 

Longwell,P.A., ''Mechanics of Fluid Flow",McGraw Hill, 1966. 
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TABLE 3.1 

LArlGE Di\DP 

Distance Time Time Time Time Time 
of for for for for for 

Separation l1odel 1 }Jodel 2(i) Hodel 2(ii) Eodel 2(iv) l!odel 3 
cm, secs. secs. secs. secs. secs. 

0 0 4 0 0 0 0 3 
1,10-1 5.53.10-3 3.42,10-5 1.51.1~ 3.69.10-5 1.84.10-1 
1.10"'2 1.11.10- 3.42.10-~ 1.51.1 3.69.10-1 1.84.10-
1.10-3 1,66,10:5 3.42,10- 1.51.10~ 3.69.10- 1.84.10 

1.10=~ 2,21.10 3 3.42.103 1.51.109 3.69.10 1,8'1-.103 

1.10 6 2. 76.10-3 3.42.10 1.51.1011 3.69.103 1.84.105 
1.10- 2.32.10- 3.42.105 1.51.10 3.69.105 1.84.107 

TABLE 3,2 

S!'ulLL D::OP 

Distance Time Time Time Time 
o;f for for for :for 

Separation Hodel 1 l•Jodel 2(i) l·lodel 2(hi) Hodel 3 
cm, secs. secs. secs. secs. 

0 0 3 0 0 0 
1,10-1 4.38.10-3 3.82,10-2 1.92.103 2.55,10-4 

1.10-2 8. 76.10-2 3.82.10~ 1.92.105 2.55.10-2 

1.10-3 1.31.10:2 3.82.104 1,92.107 2.55 2 
1.10:~ 1.75.10 2 3.82.106 1.92.109 2.55.101 
1.10 / 2,19.10-2 3.82.108 1.92.1011 2.55·106 
1.10-0 2.63.10- 3.82.10 1.92.10 2.55.10 

** ( 1,1o-1 means 1 x 1o-1,etc.) 
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CHAPTER 4 

EQUIPl!ENT AND EXPE){ll-!ENTAL PHOCEDURE 

4,1 Purpose of Investigation 

'!'he purpose of the experimental investi ;a tion was to extend and 

consolidate the understanding of the coalescence of sin;:>:le drops at a plane 

liquid-liquid interface, The main objectives were: 

(i) To determine the rest-times of single drops for all stages of 

coalescence in purified liquid systems, 

(ii) To study the behaviour of a wide range of drop size and effect 

of important variables on the coalescence, 

1f,2 Choice of System 

The use of liquid-l~quid extraction techniques for the recovery 

and separation of metal-ions from solution has received much attention (35 ) , 

Extractants such as tr~butylphosphate (TBP) arrl methyl isobutyl ketone (HIBK) 

have been used for the recovery and separation of Uranium/Plutonium and 

rare earth metals, 

In recent years there have been attempts to find cheaper extractants 

which could be used for the recovery andsep~ration of comMoner metals, 

Fle~cher arrl Flett (37) of the liarren Spring Laboratory studied the use 

of commercially available naphthenic* and Versatic* acids for this purpose, 

This type of extractant is suitable for the extraction of divalent and rare 

earth metal cations from aqueous solutions, 

'l'he uncertain purity and composition of the or;';anic components used 

by l<'letcher and l"lett precluded their use in this investigation. However, 

components were selected which closely approximated the average properties 

of the liquid components used by Fletcher and Hett. Instead of VersatJ.c 

911 (a mixture of c9 - c11 acids) n-decanoic acid was used as the extractant, 

~ Shell Chemical Co, Ltd. 
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and the solvent,kerosine ( a mixture of c6 - c
9 

paraffins ),~1as replaced by 

n-heptane. 

4.3 Prehrninary Experiments 

In the binary system heptane-water,and the ternary system decanoic 

acid-heptane-v1a ter, single water drops were observed to coalesce at the interface 

in a stage~ri.se manner. Depending on the size of the primary drop, the 

coalescence was usually complete qy the fifth or sixth stage. The size of the 

drop beyond the fourth stage of coalescence was extremely small (estimated 

to be less than 0.01 cm.,approximately). 

The process of partial coalescence thus provides a convenient 

method of forming single drops J.n the system. Equally important,the size 

of drops formed in this way can be adjusted for a given system,qy altering 

the size of the primary drop. 

4.4 Scope of Exper~ments 

In order to achieve the main objectives,and to avoid unnecessary 

experimentation,the coalescence of single water drops was studied in the 

following systems: 

~ 

binary 

ternary 

ternary 

ternary 

System 

heptane-v1ater 

0.05h decanoic acid-heptane-water 

0,5!1 decanoic acid-heptane-water 

1.011 decanoic acid-heptane-water 

'l'he range of properties exhibited by these systems allowed a systematic 

invest~gation of tho important variables affectin; coalescence to be carried 

aut. 1be effect of temperature was excluded because as Ipsen (65) has shown, 

its ~nfluence is implicitly accounted for. All the expenments were therefore 

carr~ed out at 25°C. 

'l'wo principal items of apparatus were required for the experiments: 

(a) ,\ cell ln wlnch the coalescence of the sinr:le drops could 

bo observed and ~ts rost-timo Measure<!. 

(b) ,; eoll in Hh~ch the part~al coalescence process coul<l bo 

___________ _.::P::h::o:..:t::o:..:"!:'r:..:a.:_p_:h::_e:_:d::__:f:_:o:_:r_t:..:ho purpose of drop sizo m"asurmnont. 
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4.5 Coalescence ~est-Time Studies 

Design deguirements 

(i) The coalescence cell should be well thermostatted, 

(ii) The purified liquid components should be free from 

contamination, 

(hi) £he drops should be easily seen whilst they are at the 

interface, 

Apparatus 

(iv) A method of interface renewal to remove impurity which 

accumulates at the interface, 

(v) A method of forminB large drops accurately, 

(vi) A method of adjusting the height of fall of the drop 

to the interface, 

'£he apparatus used for the coalescence rest-time sttrlies was made of 

glass and its construction is shown in Fig, 4,1, To prevent seizure of the 

glass to glass surfaces,PfFB sleeves were fitted to all ground glass joints 

and stopcock plugs were made of PTFE, 

'£he coalescence cell,A,consisted of a Pyrex tube 42 cm, long and 5 

cm, diameter,fitted at each end with B55 ground glass joints, The arrangement 

was such that the operation of the cell could be reversed to allow the study 

of r1sing drops at a plane interface, A me~hoQ of interface renewal,similar to 

that used by Charles and Mason ( 16) was employed, '£he interface was maintained 

at the top of the tube,B,wh1ch was ground flat, VariOUs lengths of the tube 

B were available to allow the interface to be positioned at a convenient height 

in the cell,A, Drops were formed on a fine,drawn-out,glass capillary,C, 

approx1mately 18 cm, lone, the tip of which was ground flat and square, The 

rloN of l1quid from the reservoir,D, to the capillary was controlled by an 

1Alga 1 micrometer syringe connected to the reservoir by the PTFE tube,u, 

'I'he reservoir assembly was attached to a shding frame which could be moved in 

a vertical direct1on, A perspex cabinet was used to enclose the coalescence 

apparatus and the whole assembly was mounted on an antiv1bration mounting, 
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Fig. 4.1 Coa1escence Time Apparatus 
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The cell,A, and the various heavy and light phase reservoirs were enclosed 

in Jackets maintained at 25°C ± 0.01°C, In addition,fan-circulated air inside 

the cabinet was controlled at 25°C ± 0.25°C. Photograph 4.P.1 shows the unit 

fully assembled. 

Cleaning 

Prior to each series of experimental runs,the apparatus was thoroughly 

cleaned in the following manner: 

(i) All the items of glassware and PTFE were degreased with 

acetone and rinsed with copious supplies of hot water. 

(ii) The apparatus was filled with warm. concentrated chromic acid, 

freshly prepared,and allowed to stand for approximately 24 hrs. 

(~ii) The apparatus was drained of chromic ac~d and vip;orously 

r~nsed with warm,freshly-distilled water for a prolongod period. 

lt was then dried in a hot-air oven. During all the washing 

procedures and subsequent assembly,great care was taken in 

handling the apparatus so as to prevent contamination. 

(iv) Lastly,the apparatus was assembled in the Perspex cabinet, 

filled w~th double-dist~lled water and left to stand overnight. 

A close fitting sheet of PTFE was used to seal the top of the 

cell,A. 

Preparation of Y~terials 

The water used in all the experiments was double distilled from 

potassium permanganate solution and stored in glass receivers. The n-heptane 

used was to I,P. specification and was redistilled (the fraction boiling 

between 98 and 100°c was collected) except for those experiments specifically 

indicated in Appendix 3. 

Two grades of decanoic acid were used. The "Spec' ally Pure" grade 

used in the Series 1 experiments was obtained in crystalline form from 

Br~tish Urug Houses Ltd. For the Series 2 and 3 experi ments a purer form of 

decano~c acid was obtained from &stman Kodak,H.Y. In each case,the decanoic 
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acid was used without further preparation. All of the systems were mutually 

saturated in glass receivers at 2S°C. 

Experimental Procedure 

After the double-distilled water had been drained from the apparatus, 

the saturated uater phase was admitted to the reservoir,H. A quantity was run 

through the coalescence cell,A,in order to purge a~y unsaturated water. The 

drop forming arrangement was then lowered so that the tip of the glass 

capillary was just below the top of B. With a suction bulb attached to L 

and S4 closed,the heavy phase liquid was drawn up to a level just above SS. 

The suction bulb was removed and the drop forming arrangement was completely 

filled with liquid from the reservoir,I•'. With SS and SJ closed,the PTJi'E tube, 

G,and the micrometer syringe attached to it were also filled with liquid. 

Light phase liquid was then admQtted to the coalescence cell from reservoir I. 

A flat PTFE cover was moved into position so that it was flush with the top 

r1m of the cell,A. Theinterface was cleaned by allowing heavy phase liquid 

from H to overflo;r at B. The accumulation was removed through S1. 

The shape of the interface was adjusted by means of a suction bulb 

attached to H. A water droplet was formed at the tip of the capillary by 

adjustin~ the micrometer syringe. The hight of the pendant drop above the 

flat 1nterface was adjusted to that required by moving the frame supporting 

the drop forming device. SS was then closed and the contents of the apparatus 

were allowed to come to equilibr1um over a period of approximately 4 hours. 

Before a series of readings was commenced,the interface was renewed 

and made plane,after which a short period was allowed for attainment of 

equilibrium. Just before taking readings,the air-circulating fan was swJtched 

off. 

The interface was adjusted after about 10 primary drops had been 

invest1;ated. In the case of the Series 1 experiments the interface was 

r<'ncwed from time to time durin•; a run. 'I'his practice was not adopted in the 

Scr.teG 2 and 3 experiments. 
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The coalescence rest-time was recorded on mar,netic tape using a 

Fero;uson "Hodel 321411 tape recorder,each stage of coalescence beinr, 

re~istered by a manually produced input signal. The time between a drop 

arriving at the interface and the first stage of coalescence,and the tlmes 

taken betueen subsequent sta!';eS of coalescence,were determined with a stopwatch 

on playback of the tape. 

4.6 DroP Size ~tio Studies 

Jesign .~guirements 

ApParatus 

(l) A Slmple slass cell to allow the drop to be photographed 

whilst resting at the interface. 

(ii) A thermostatted enclosure to maintain the liquid contents of 

the cell at 25°C. 

The layout of the equipment is shown schematically in Fig. 4.2. A 

'tall form' 250 ml. ,:>lass beaker,E, was used to contain the two liquid phases. 

'fl1e beaker was placed in a thermostatically controlled tank,G,which was 

maintained at 25°C. Droplets were formed on the end of a glass capillary,B, 

whlch was connected to an 1Alga 1 micrometer syringe,C,by PTFE tubing. This 

connection was made via the reservoir arrangement used for the coalescence 

time experlments. 

Observations of the partial coalescence process were recorded on 

16 mm film. For this purpose a 16 mm Bolex cine camera,A,was used and it was 

mounted vertically above the 250 ml. beaker. Lighting was provided by a 

200>J tungsten filament bulb,F,poSltioned close to the bottom of the glass 

tank and directly below E. 

Photo&raphic Detail 

Camera: 

lens: 

Exposure: 

l•'llm: 

~'ilm Speed: 

Paillharo-Bolex,l:eflex,16 mm c'_ne. 

Kern-Paillhard, 1Pizar 1 ,f 2.8/50 lllln,fitted 

with 20 mm. extention tube and lens hood. 

1/1+0 second at f22. 

Kodak 'Plus X 1 • 

1ii fps. 
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Fig, 4.2 Apparatus for Drop Size Ratio Studies 
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ExPerimental 

All the pieces of PT~E and glass equipment were thoroughly cleaned 

in the manner described in Section 4.5. The preparation of the liquid 

components was also carried out as previously described in Section 1;.5. 

'fwo systems were investigated;the two-component system heptane-water 

and the three component system 0.51i decanoic acid-heptane-watcr. The study covered 

a range of primary drops~zes and lengths of fall of the drop to the interface. 

Experimental Procedure 

Heavy phase liquid was admitted directly ~nto the 250 ml. beaker,E. 

A quantity of light phase liquid was then gently poured onto the top of the 

heavy phase liquid. The drop forming capillary,B,was immersed below the 

level of the interface separating the heavy and li~ht phases. ~ means of a 

suction bulb attached to the heavy phase reservoir,a quant~ty of heavy phase 

liqu~ was drawn up through the glass capillary. The PTFE line connectin~ 

the glass capillary to the three-way tap was completely filled with liquid. 

The pos~tion of the three-way tap was reversed and the line to the micrometer 

syringe was f~lled by flowing liquid from the reservoir. 

The camera,A,was brought into position,the li~1tlng,F,was switched-on, 

and the three-way tap turned to co~~ect the micrometer syringe to the cap~llary. 

A number of trial drops were allowed to fall to the interface so that the 

camera could be focussed. 

Fresh liqu~d components were used in a clean beaker for each 

different drop size studied. fhe primary drop was formed very slowly on the 

end of the glass capillary so as to allow it to come to equ~l~brium with the 

bulk phase liquid. The fall height of the drop to the interface was 

conveniently adJUSted qy altering the height of the lower heav~)' phase liquid in 

the beaker. 

The primary drop volume was obtained directly from the micrometer 

read~ng and the spherical drop diameter calculated from this. The drop 

diameters at the second,third and fourth partial coalescence sta~es were 
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obtained from the projected image recorded on the cine film. A ma~n1fication 

of approximately 12X was employed and the projected drops were measured t<ith 

a transparent mm. rule. 

4.? Effect of Interface Age on Coalescence Rest-Time 

The 1Teflon-Lilass 1 method of cleaning the interface was reported by 

Hodgson (63) to be more effect1ve than the method of overflowing the interface. 

It involves sucking-off the interface by means of a drawn-out glass tube which 

is fitted with a small Teflon 1wh1sker'. Since the Teflon is organic phase 

wetted and the glass water wetted,the princ1ple is that both sides of the 

interface are swept clean. 

'fwo groups of experiments were carried out to investigate the effect 

of interface age and the effects reported by Hodgson. 

Experimental 

The coalescence cell shown in lo'ig. 4.1 ;ras used and it was fitted with 

a sucking probe similar to that used by Hodgson. Preparation of the 

equipment was carr1ed out in the manner described previously in Section 4.5. 

The interface was only cleaned with the Teflon-Glass probe prior to a run. 

l'hen the interface cleaning was complete,the interface a~e was designated to be 

zero and timing t<as corrunenced. The interface age was subsequently recorded 

when a drop had completely coalesced,and between such recordings the rest-times 

for each partial coalescence stage was registered on the recorder. 

Two runs at a single drop size were carried out for each of the 

systems heptane-water arrl 0.5i1 decanoic acid-heptane-water. The fall height 

cond1tion of the drop in each run was L = 0 ems! For each system,one run was 

performed with the primary drop aged for 1 m1nute prior to its release and the 

other without the drop being aged. 

4.8 Deternunation of Physical Properties of 

L1guid Components 

'rhe density, viscosity and interfacial tension for all solutions ~ore re 

* L1 this experiment,and all other experiments reported in this work, 
L = 0 cm. refers to the case ~orhere the drop was released from a position 
very close to the interface. In all cascs,the distance was estimated to 
be between 0.1 and 0.3 cm. 



81 

determined at 25°C, 

The clens~ty of solutions was determined using standard specific gravity 

bottlescalibrated with double-distilled water, The absolute density of water 

vias taken to be 0.997074 gm./ml. at 25°C (100), 

The viscosities were determined by using Cannon-fenske glass 

viscometers, These were calibrated with double-distilled water and the 

absolute viscosity of water was taken to be 0,8937 cp. (8). 

The interfacial tensions were determined by the drop volume method, 

'£his method is described in deta~l by Davies and T~ideal (21). 

'£he determinations of the interfacial tension were carried out in 

the coalescence cell described in Section 4.5. A glass nozzle with a carefully 

p,round end was used to form the drops. The drops were formed very slowly over 

a per~od of about J minutes and the final detachment was approached extreme~y 

slowly. 

The average volume readinr; for 8 drops was used to calculate the 

interfacial tension from the equation: 

.-
211 a 

where V volume of drop,c~. 

~ 1,~ 2= density of heavy and light phase,respective~y,gm./cm, 3 

2a = outside diameter of nozzle tJ.p, cm. 

e; = gravitat~onal constant,981 cm. 2/sec. 

~i interfacial tension,dynes -1 
= cm, 

<P = correction factor (58). 
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EXPE:tnJENTAL .~SULTS 

Partial Coalescence and Drop Size .~tio 

5,1 Partial Coalescence 

Observations of the coalescence of single water drops were mado 

visually (as part of the investigation of coalescence rest-time) and 

photographically (as part of the drop size ratio investigation), In each of 

the systems studied *,the drops were observed to coalesce ~n a partial manner, 

irom the experimental point of v~ew this is a very useful property (see Section 

4,)), The process of partial coalescence has been discussed i~ detail by 

Charles and Mason (17) and, Lawson (82), Picknett (101} and Jeffrcys and 

llawksley (67) have suggested that the formation of sub-micron drops by this 

process may be responsible for the secondary 1haze 1 commonly experienced in 

settler units, However,the attention in this work was focussed on those partial 

coalescence stages which were readi~y visible at the interface, This restricted 

the lo~rer limit on drop size to about 0,01 cm, 

Photograph 5.P,1 shows the ,artial coalescence of a pri~ry water 

drop in the systems A and C, '£he left-hand sequence is for a 0,445 cm. drop 

in system C and the right-hand sequence for a 0,5995 cm, drop in system A, 

In the centre sequence of 5,P, 1 a small "satellite" drop can be 

seen adjacent to the secondary drop (system A,O,IHI+ cm, primary drop), This 

phenomenon is refferred to as "double-drop" coalescence (soe f~r;. 5,1), 

* For reference the systems have been designated as: 

Series 

A 
B 

System 

l!eptane-i·ia ter 
0,051; Decanoic Acid-Her"':.ane-'<later 
0.5l~ Decanoic Acid-Ileptane-<iatcr 
1,0!\ Decanoic Acid-Heptane-l~ater 



0 
0 

Fig. 5.1 Simultaneous formation of 
tvo secondary droplets during 
partial coalescence process 
(schematic), (17). 



PHOTOGJAPH 5.P.t 

Partial Coalescence in the System Ileptane­

water and 0.51'! Decanoic Acid-Hepatane->-<ater 



0 

0 0 

0 

0 . 
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It was also observed to occur in the coalescence rest-time experiments,but 

onzy for the systems A and B. In these systems, the 11satellite 11 drop coalesced 

very rapidly with the bulk interface and did not appear to interfere with 

the coalescence of the primary drop, The "satellite" drop shown in 5.P.1 

possessed remarkable stability and persisted at the interface for a period 

of about 3 minutes, Again,the "satellite" drop did not appear to interfere 

with the secondary drop,which coalesced in the normal way (see right-hand 

sequence of 5,P ,1), 

Since the coalescence cell (i,e, 250 ml. beaker) was not totally 

enclosed,the interface became contaminated slightzy during the photographic 

run, Therefore,the rest-time of the "satellite drop was obviouszy 

influenced by the contaminant. Considering the very long rest-times which 

were observed,it is probable that the contaminant was surface active, 

However, the secondary and succeeding drops were not greatzy influenced by 

the contaminant. 

5.2 Drop Size Ratio 

The drop size ratio rn,is defined as an+l/an,where a is the spherical 

drop diameter and n the number of the coalescence stage, In the manner 

described ~n Section 4,6,the drop sizes at the first,second,third and 

fourth stages of coalescence were determined, A range of primary drop size 

was investigated from fall heights of L = 0 to 7.5 cm, Onzy the systems 

A and C were studied, 

The drop size ratio results are presented in Figs, 5.2 to 5.9 as 

plots of r 1,r2 and r3 versus a 1• Individual points on the graphs may 

represent single or multiple results. The weighting of each point is 

indicated by the number adjacent to it. Those points without a number are 

single determinations. The method of least squares was used to obtain 

the be&t fit to the experimental results, 

5.3 Coalescence Rest-Time 

The coalescence rest-time t,was measured for the primary drop 

(first stage) and three succeeding drops at the second,third and fourth 
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stages of coalescence,respectively. It is defined as the time between 

the arrival of the drop at the interface arrl its eventual disappearance 

(or release of a secondary drop). The drops which were produced at the 

fifth and sixth stages of coalescence were extremely small (probably of 

the order of 0,01 cm. ,and less). These rest-times were very short arrl 

could not be measured manually. Therefore,the overall rest-time~. 

previously calculated by a number of workers (12,16,19,44,55,60) can be 

calculated to a good approximation by: 

(5.2.1) 

where t 1,t2,t3 and t 4 are,respectively the coalescence rest-time at the 

first,second,third and fourth stages. 

5,4 Reproducibility of Coalescence Rest-Times 

Initial experiments revealed that the coalescence rest-time for 

any stage in the partial coalescence process was not constant,but had a 

range of values. This is in agreement with the findings of other workers 

in the field,who studied~ and t 1 (16,33,44,60,63,66-68,79,81,82). 

Sample sizes containing up to 200 drops were examined. The ratio 

of the mean rest-time to the time for 5o% coalescence of the drops tm/tt, 

was found to be the most reproducible characteristic of the rest-time 

distribution, This was so for sample sizes as low as 50. However,it did 

not guarantee the constancy of the distribution curve,which really suggests 

that this ratio is of little use in assessing the reproducibility. A 

sample size of 75 drops was found to be more reproducible than 50. Therefore, 

a sample count of 75 was adopted for the purpose of experiments arrl 

generally,sample sizes of this order have been used by other workers. 

5,5 Experimental Coalescence Hest-Times 

The main body of the results is contained in the Series 1 ani 

Series 2 groups of experiments. In all of the cases considered in these 

groups,the release of the drop was very close to the interface (reported as 
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L = 0 ems,), Thus, the effect of all height was excluded from these 

experiments, In addition,the experimental technique used in Series 2 

was slightly different to that employed in Series 1, This is explained fully 

in Section 4,6, It is not expected that this slight difference in 

technique will cause any marked differencesin the results of the two 

groups of experiments. Therefore,Series 1 and Series 2 may effectively be 

considered as one large group of experimental results,including the systems 

A,B,C and D, 

The Series 3 results are concerned primarily with the effect of 

fall height on the drop rest-time. They are a direct extens1on of the 

Ser1es 2 experiments since they were carried out under exactly the same 

experimental conditions,apart from the fall height. Only the systems A and 

C were 1nvestigated, 

In this section,the main features of the results are presented, 

whilst the results themselves are given in detail in Appendix 2, Here 

the results are presented in the form of tables of t versus N/N0 ,where: 

N = Number of drops which have not coalesced in time t. 

N
0 

= Total number of drops assessed, 

Series 1 Results 

Typical results,in the form ln N/N
0 

vs, t,are presented in Fig. 

5,10 for system A and in Figs, 5.11 to 5,15 for system C, The relationship 

between the mean rest-time tm,and the primary drop size,is presented in 

F1gs. 5,16 (A and B),5,17 and 5.18, For the system decanoic acid-heptane­

water,the effect of increasing the concentration of third component, 

decanoic ac1d,is sho>m 1n Figs, 5.19 to 5.22, The concentrations used 

were 0,05M,0,5M and 1,0M and the primary drop sizes were respectively, 

0,312,0.314 and 0,304 cm, 

Series 2 Results 

A representative selection of the results in the form ln N/N0 
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versus t is presented for all the systems,A,B,C and D,in Figs. 5.23 to 

5.38. These cover the drop size range for four stages of coalescence as follows: 

(i) 0,028 to 0.596 cm. for system A,in Figs. 5.23 to 5.26. 

(ii) 

(iii) 

0,0228 to 0.509 cm. for system B,in Figs. 5.27 to 5.31. 

0,0204 to 0.449 cm. for system C,in Figs.5.32 to 5.35. 

(iv) 0,022 to 0.385 cm, for system D,in Fibs. 5.36 to 5.38. 

The relationship between the mean rest-time t ,and the drop size 
m 

is presented for each individual stage in the heptane-water system in Fig. 

5.39. The slopes of the first,second and third stages are respectively, 

28.6 secs./cm,,11?.8 secs./cm, and 157.8 secs./cm. For the system 1.0M 

decano1c acid-heptane-water,the relat1onsh1p between tm and a (the drop 

diameter) is presented for each stage of coalescence in Figs. 5.40 to 5.42. 

The form of the relationship for the systems B and C is similar to that 

exhibited by D,but is not so well defined for these cases. 

Series 3 Results 

This set of results,with the inclusion of result A2/2,investigates 

the effect of fall height of the primary drop on the coalescence rest-time 

for the four stages of coalescence. In Figs. 5.43 to 5.46,the individual 

stage distributions,1n the form ln N/N0 vs. t,are g1ven for 1 = 0,2.5,5.0, 

7.5 arrl 10,0 ems. The curve for 1 = 7.5 cm. 1s omitted from Fig. 5.43 

because the value for tml (see Appendix 3) is suspect,being less than the 

correspond1ng value at L = 5.0 cm. 

Effect of Interface Age on Coalescence R ·st-Time 

The results of the individual stage rest-times with interface age 

('"(;) are presented for the four separate groups in Table 5.1. In Studies 1 

and 3 the drop was aged for 1 minute prior to release,and i~ Studies 2 and 

4 the drop ll"as not aged. Since the interface age >ras recorded at the 

~omplet1on of coalescence of a drop,the interfa~e age at the time of arrival 

,,r thn prill<~ry drop at tho interface 1s ~>1ven by: 

= ('t" - ~) 
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l'A!liZ 5.1 

COAIESC.ElJC.S T.Ib.£ ( t) 1[B~~US IlJTJI;~I.lACE AGr!; ('1:) 
EL:PLOYI.<:.T 'l'HE Tm•'LOiJ-GLASS l'iSTllOD o; hTE.\/AC~~ 

CLZALTI_,IG 

Systcn: Heptane-•later,a1 = 0.416 c.n, ,L = 0 cm. 

JJrop a:;ed Cor 1 minute pr1or ~o release. 

Drop t1 t2 tJ t4 'C 
~~umber secs. secs. secs. secs. mins. 

1 2.6 9.7 2.2 0.1> 2.95 
?. 26.5 7.8 2.0 0.3 1>.93 
3 8.1 8.6 2.3 0.3 6.53 
I; 11.2 6.0 2.1 0,1+ 8.1'1 
5 10.8 8.5 2.3 0.4 9.83 
6 21.8 9.2 2.1 0.3 13 .os 
7 18.6 7.5 2.0 0.3 15. Olf 
8 3.9 9.4 2.3 0.1> 16.1;0 
9 5.4 9.2 2.3 0,1> 18.15 

10 16.4 7.8 2.0 O,lf 20.00 

Study 2 

~.~rstem: llcptanc-•iater, a1 = O,IJ 16 cm. ,L = 0 cm. 

Vrop not aged. 

Drop t1 t2 t3 t4 't 
.,umber secs. secs. secs. secs. mins. 

1 5.3 8.3 2.1 0.3 1.37 
2 3.3 6.0 2.3 0.3 2.00 
3 4.1 5.8 1.8 0.7 2,80 
4 6.2 4.6 2.3 0,1; 3.47 
5 5 ·'~ 7.3 2.1. 0.3 4.10 
6 ).6 5.8 2.2 0.5 If ,66 
7 5·8 6.6 2.3 0.3 5.32 
8 ).6 6.6 2.1 0.5 5.90 
9 5.3 6.7 2.1. 0.5 6.55 

10 4.!} 5.3 2.3 0.3 7.12 
11 6.1 6.1 2.) 0.3 ?.80 
12 l.t.:S ~J.o 2.1> o.h 8,1+5 
13 10,0 8.2 ?..3 0,1; 9.20 
ill 1+.8 / ' 

O,lJ 2.3 0.5 9.83 
1) l,J. .!.t- ,),) 2.'3 O.l.s. 10.0) 
16 1>.9 6.3 2.1 o.s 11.33 
17 '1.9 9.3 2.3 0.5 22 .1:? 
1G 14.0 3.7 2.2 0.3 23 ,OJ 
19 5.7 7.2 2.3 0 ,, . ' ?.3. 71 
20 l.;..s G.8 ?..? 0.5 21~-53 
21 J/.5 0.'~ 2.2 0 ·'~ 56.JJ 
22 8.5 [J.I~ 2.?. 0,1; )'1.1! 
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Study 3 

System 0.51•1 J.lecanoic J<cid-Heptane-l·iater,a1 = 0.321; cm. ,L = 0 cm. 

Drop aged for 1 minute prior to release. 

Drop t1 t2 t3 t,. 't' 
1Jumber secs. secs. secs. secs. mins. 

1 29.5 18.4 3.9 0.6 2.8 
2 9.5 1?.3 4.1 o.6 7.18 
3 15.5 9.4 4.0 0.6 9.?3 
4 33.2 1'?.1 3.8 o.6 12.08' 
5 18.1 13.5 l;.o 0.'? 13.97 
' 24.4 6.4 3.8 0.? 16.10 0 

'? 21.2 4.5 3.8 o.B 1?.93 
8 7.9 4.9 2.3 0.4 20.93 
9 8.2 11.2 3.4 0.5 22.57 

10 8.5 '•.6 3.2 0.8 2'-f.47 

.:ltudy ~~ 

.:lystem: 0.5H l!ecanoic J<Cld-Heptane-•iater, a1 = 0.342 cms.,L = 0 cm • 

Drop not agcJ. 

Drop t1 t2 t t4 't 
:iumber secs. secs. seds. secs. mins. 

1 22.1 11.9 Lf.5 0.4 1.58 
2 17.1 16.7 4.0 0.7 3.54 
3 5.7 8.2 3.2 0.5 1>.1 '? 
4 9.9 '+.0 3.6 0.5 1;.83 
5 10.4 5.4 3.1 0.6 5.45 
6 14.3 4.1 3.2 0.7 6.17 
7 1}.2 4.3 3.4 O.? 6.83 
8 12.6 5·5 2.7 0.4 7.56 
9 9.0 10.3 3 .L; 0.4 e.17 

10 11.2 ?.e 3.1 o.·; 8.88 
11 9.0 2.6 3.0 o.L~ 9.52 
12 12.7 '7 .9 2.9 0.5 10.35 
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CHAPTER 6 

INTERPRETATION AND DISCUSSION OF RESULTS 

The experimental results presented in Chapter 5 may now be examined. 

6.1 Partial Coalescence and Drop Size Ratio 

The phenomenon of 11double drop" coalescence was observed to occur 

only in the systems for which redistilled heptane was used {see Appendix 3). 

It was not observed at all in the Series A1/1 and A1/5 for which undistilled 

heptane was used,nor in systems C and D. Hawksley (60) has suggested that 

contamination of the interface is responsible,but the above findings do 

not suggest this. 

The results contained in Appendix 3 suggest that the formation 

of a "satellite" drop with the secondary drop only occurs when (i) the 

primary drop,and {ii) the interfacial tension,are sufficiently large. In 

the case of the two lower interfacial tension systems,C and D ( ~ = 22.54 

and 18.62 dynes cm. - 1,respectively) ,a "satellite" drop did not result. 

However,in the two higher interfacial tension systems,A and B ( 0 = 50.75 

and 32.41 dynes cm.- 1,respectively) a "satellite" drop was formed in each 

case when the primary drop size was greater than 0.348 cm. and 0.509 cm., 

respectively. This latter finding is in agreement with the observations 

of Charles and Mason (15), 

The long rest-time of the "satellite" drop shown in 5.P,1, is 

almost certainly due to contamination of the interface, However,this did 

not appear to interfere with the coalescence of the secondary drop,or 

any other succeeding stages, 

The relationship between primary drop size a1 and the drop 

diameter ratios r 1,r2 and r3 is shown in Figures 5.2 to 5,9, A least 

squares fit has been carried out for r 1 and r 2 assuming a linear 

correlation,but it can be seen that this is often unsatisfactory, The 

linear correlation of r1 versus a1 is reasonable,but is less good as L 
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increases. ~ith the exception of Flg. 5.2d,the straight llne correlation 

is a fair lndlcation of the results for r2 and r
3

• The folloWlng features 

are apparent from a consideration of Flgs, 5,2 to 5,9: 

For each stage of coalescence the drop size ratio increases as 

the drop size decreases, rhis increase is greatest for r 1 and is small 

for r
3

,which lS approximately constant and equal to 0.5. In the heptane­

water system,larger secondary and tertlary drops are formed as the fall 

height of the primary drop is increased, The opposite result is found for the 

0,511 decanoic acld system, To illustrate the latter point,values of 

a2 and a
3 

calculated from Figs, 5,2 to 5,9 are given below in Table 6.1. 

System 

A 
A 
A 
c 
c 
c 

TABLE 6,1 

Effect of Fall Helght of the Primary Drop on 

the Size of Secondary and Tertiary Drops 

Fall 
Height Drop Size cm, 

L cm. a1 a2 a3 

0 0.475 0.1496 0.0648 
2.5 0.475 0.1509 0.0677 
5 0.475 0.1590 0,0745 
0 0.)50 0.1151 0.0540 

2.5 0,)50 0.1097 0.0511 
5 0.)50 0,1062 0.0468 

An explanation of the behaviour depicted in Table 6.1 is that the 

position of breakup of the liquid column when formed during coalescence, 

and hence the slze of secondary drop,is affected by the disturbances in 

the lnterface, These disturbances increase with increased distance of 

fall of the droplet onto the interface. 

Charles and ~~son (15) showed that lowering the interfacial tension 

of the benzene-water system ha~irtually no effect on the drop size ratio, 

Since the change in the value of the viscosity between systems A and B, 

and between the systems C and D,is small,it is valid to calculate the drop 

Slze ratio for system B from the results obtained for system A,and similarly 
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for system 0 from system C. 

6.2 Correlation of Coalescence ~est-Time Distributions 

A 
frev~ous workers have suggested that the d~stribution of t,the 

overall coalescence rest-time,and t 1,the rest-time for the f~rst stage of 

coalescence,may be correlated by equations which are of the form: 

(6.2.1) 

or 

= (6.2.2) 

For both the heptane-water and decano~c acid systems,the distribution 

of the rest-times for each stage of coalescence can be represented by Eqn. 

(6.2.1). Examples of the correlation for heptane-water (AZ/1) and decanoic 

ac~d (C1/5 and C2/1) are given in Figs. 6,1 to 6.3. However,with a sample 

size conta~n~ng only 75 drops,it is not possible to select values of t 0 

and n1 from a range of connected values of these parameters (see Fig. 6.4). 

All of the distributions are correlated satisfactorily by Eqn. (6.2.1) 

with t = 0 ,i.e. by Eqn. (6,2,2). An example of the correlation using 
0 

Eqn. (6.2.2) is given in Fig. 6.5 (C1/5),with n2 = 1.7,3.57 and 5.1 for 

the first,second and third stages of coalescence,respectively, In addition, 

Table 6.2 lists the values of n2 in Eqn. 6.2.2) for a number of cases for 

the Ser~es 2 results, F~g. 6.4 indicates how wide is the range of values 

of t
0 

and n1 which are possible when only 75 results are available. The 

h~gh values of n2 which are required to correlate the later stages of 

coalescence may l~mit the usefulness of Eqn. (6.2.2). Although the true 

values of n1 and t 0 in Eqn. (6.2.1) may not be determined with accuracy,it 

is apparent that n1 1ncreases with the stage of coalescence, This is also 

true for n2 ~n Eqn. (6.2.2). 

The distributions may also be correlated qy using arithmetic 

probability plots and an example is given in Fig. 6.6. Although this test 

of normality is insensitive (39) and the sample size too small to allow any 
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firm conclusions to be made,a number of features not immediately disce~nable 

in F1gs. 6.1 to 6.3 and Fig. 6.5 can be seen. Several distributions are 

best represented by two straight lines, Usually,the intersection of the lines 

1s at 0.85< N/N0< 0.15 ,and the one line exists in a region where the 

accuracy of N/N0 is not h1gh,because of the small sample size on which it is 

based. However,it may be poss1ble that certain distributions are best 

represented by the sum of two distributions. It should be mentioned,that 

if two normal distributions are involved,the two straight lines would infact 

be replaced by a curve ly1ng near to these lines (see Fig. 6.?). Generally, 

Eqns, (6.2.1) and (6.2,2) correlate the results better than a normal 

d1stribution, 

6.3 Propert1es of Coalescence Time Distributions 

Correlation of Hean Coalescence ,lest-Times 

Firstly,we will discuss the Series 1 results and later extend this 

to include the Series 2 results. 

The mean coalescence rest-times of the secondary and tertiary 

droplets are given in Figs. 5.16 at three decanoic acid concentrations as a 

function of the primary drop size,a1• It can be seen,that with1n the 

accuracy of the results,the relationship is linear for the third stage 

at the three concentrations investigated,and also for the second stage at 

the two h1ghest concentrations employed. The resultant curves for 0.5H and 

1.0H solutions coincide for both the second and third stages of coalescence, 

whilst the third stage of of coalescence with a 0.05llsolution shows lower 

coalescence rest-times than do the curves for the 0.5H and 1.0H solutions. 

The results/for the third stage of coalescence,with a 0.0511 solution,suggests 

a minimum corresponding to a 1 = 0,16 cm.,approximately, The graphs obtained 

for the first stage of coalescence (Fig. 5.17) are less well defined,but 

with both the 0.5H and 1.0N solutions the mean coalescence rest-time increases 

as the droplet size increases. With the 0.05M solution a minim~s again 

suggested at a drop size similar to that at which the minimum in the third 
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stage occurred, The curves obtainPd for the heptane-watPr system a~e ~iven 

J.n Fig. 5.18,nnd for comparison Fit'• 5.16 is superi.mposod, In this case, 

the curves for all sta"es indicate a minimum corrPsponding to a primar,l' 

drop size a1 = 0.18 cm.,approximately, 

'£ABLE 6,2 

Values of n2 in the Equation 

ln N. = - ctnz 
No 

Study a1 1st 2nd 3rd 4th 
No. cm, Stage Stage Stage Stage 

2 
AZ/1 0,325 0.635 sections 3.83 6.78 
A2/2 0.416 0.396 0.597 2.58 6.31 
AZ/3 0.505 0.228 0,252 1.73 4.04 

B2/1 
2 

0,224 sections 0,1442 4.580 15.50 
f52./2 0.326 0,0635 0,0915 4.000 6.40 
BZ/3 0.433 0.0830 0,2000 0.471 5.93 

C2/1 0.208 0.109 0,293 1.880 7.98 
CZ/2 0.324 0.241 0.370 2.130 4.93 
C2/3 0.387 0.122 0.421 1,108 10.10 

DZ/1 0,204 0.2490 0,440 1.341 12.35 
D2/2 0.299 0.0560 0,216 2.000 5.35 
D2/3 0.385 0.0498 0,214 0.955 5.35 

The Series 2 results cover a wider range of drop size and also 

serve to explain some of the features associated with the Series 1 results. 

Within the accuracy of the results,the heptane-water system exhibits a 

linear relationship between the mean rest-time and drop size, This is shown 

in Fig, 5.39 for each of the four stages of coalescence, However,for the 

first stage coalescence,the primary drop becomes less stable at a value of 

approximately a 1 = 0.5 cm. The results given in Fig, 5.39 suggest that the 

minimum condition shown in Fig, 5,18 does not exist, Figs, 5.40 to 5.42 

show the relationship between the mean rest-time and the drop size for 

each stage of coalescence in the system 1.0M decanoic acid. For each stage 

there is a firm trend for the mean rest-time to increase with increase in 

size of drop. Similar trends were exhibited by the 0,05M and 0.5M systems, 
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but they were not so well defJ.ned. The results for the 0.0511 system su~gest 

that the minJ.mum condition encountered in the Series 1 ~esults does not 

exist, A cautionary note is necessary when stressJ.ng the latter remark 

because 11high 11 aad 11low11 rest-time results (i.e. results which deviate from 

the normal trend) have been reported to occur by other workers (16,60), 

Both "high" ani "low" results could give rise to a minimum condition in the 

drop size vs. mean rest-time relationshJ.p. 

An interestJ.ng comparison can be made between the results shown in 

Fig. 5,39 and the results for the same system,heptane-water,presented by 

Allan and Nason (1), The values of tm1 in Allan and Ha son's Fig.3 agree 

closely with those presented in FJ.g.5.39. The overall trend of the author's 

results,and this applies to the other systems B,C and D,is described by the 

serJ.es: 

However ,Allan and ~Jason 1 s results describe the series: 

tm1 < tm2 > tm3 ,and also,their result at a1 = 0.29 cm. 

YJ.e lds: 

A comparison of the results for the second and third stage coalescence 

reveals two important differences: 

(i) Allan and Mason's values for tm2 and tm3 are much greater 

than those in Fig. 5,39, 

(ii) Allan and I•Jason 1 s results for tm2 and tre
3 

lie on a single 

curve,whereas those in Fig. 5.39 fall on separate curves, 

The first finding suggests that the system used by Allan and fason ~ 

have been contaminated,probab:cy- by a surfactant material. 

Standard Deviation of Coalescence Rest-Time Distributions 

For all the rest-time distributions obtained in this work,it was 

found that the standard deviation of adjacent stages mutually increased, 
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A.Y! example,for each coalescence stage for the 1,0;. decanoic acii system, 

is pres8nted l.n Fig, 6,8. It is seen that the relationships betv1een the 

standard deVl.atl.on of the first and second stage, the second an:! third stage, 

and the third and fourth stage,are liYlear. In the other systems k,3 and 8 

the relationships were also linear,but not so well defined as for system D. 

The relationship between the standard deviation of adjacent partial 

coalescence stages may be defl.ned as follows: 

= 1 n + 1/ n • 0 n 

where On = standard deviation of the nth stage. 

6' n + 1 = standard deviation of the (n + 1)th stage. 

~ n + 1/n = slope of the relationship between Cn and on + 1' 

Values of ifJ 
11 

+ 
1
/n are given in Table 6.3 for the systems A,B,C and D 

(including the Series 1,2 and 3 results), 

TABLE 6.3 

~elationship between the Standard Deviatl.on of AdJacent 

System 

A 
B 
c 
D 

Coalescence Stages 

= </> n + 1/n • 0 n 

if> 21 rp 32 

0.455 0.193 
0.259 0.175 
0.298 0.188 
0.483 0.213 

cp 43 

0.371 
0.275 
0.220 
0.220 

These findings,together with Fig. 5.16,suggest that with the system heptane-

water and the system decanoic acl.d-heptane-water,there is a simple 

relationshl.p between the size of drop before the coalescence and the size 

of drop which is subsequently produced by the coalescence. 
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Effect of Dlstance of Fall 

The djstnbutlons for the heptane-water system in Fig, 5,43 sho>~ 

that the rest-time t 1 increases •~th increase in fall height L,of the 

prlmary drop. Furthermore,the corresponding rest-times of the second, third 

and fourth stages of coalescence (Figs. 5.44 to 5.46) also increase, The 

result concerning the first stage rest-time is in agreement with the 

flndlngs of Jeffreys and Hawksley (67) and Lawson (81), It has recently 

been reported by Lawson (82) t~~t little if any effect of fall height is 

transmitted beyond the flrst stage. This led Lawson to postulate that the 

effect of dlstance of fall on coalescence lS merely a calibration of the 

experimental apparatus in which the study is conducted. In attempting to 

establish this hypothesis,he carried out observations of the periodic motion 

of the interface caused by a falling drop disturbance, If the total period 

of oscillation was subtracted from the measured mean rest-time,it was found 

that the difference was approximately constant, This was so for all the 

fall heights investigated, 

The n~thod adopted by Lawson to observe oscillations at the interface 

is one which lS very llable to error. As Lawson frankly points out, "There 

is the possibillty of error in measurement not only amongst different 

>rorkers but even,also with the same observer" I The small oscillations 

occurrlng at the interface during the later stages of coalescence may not 

have been perceptible to the naked eye, It is extemely unlikely that these 

disturbances would have no effect on these later stages, Also the 

coalescence of the primary drop ~1ill create a disturbance sufficient to 

lnfluence the secondary,and possibly succeeding drops. 

The trends exhibited in Figs, 5.4) to 5.46 can be seen more clearly 

lf the mean rest-time for each stage is plotted against the fall height as 

shown in Fig, 6.9, Whilst the results for the fourth stage of coalescence 

are a little scattered,the fall height effect for the coalescence stages 

is clearly defined, 
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The way in which the standard deviation of the coalescence ~est-

time distribution is affected by the fall height is shown in Table 6.4. 

It is interesting to observe that there is a considerable reduction in the 

percentage standard dev~ation for the first,second and third stages of 

coalescence,when the drop is released some distance from the interface 

(i.e. at L = 2,5,5.0,7,5 and 10,0 cm.). The reduction in the ,& standard 

deviation is most probably caused by the contribution of the periodic 

motion of the interface to the drop rest-time. 

TABLE 6.4 

Effect of Fall Height of the Primary Drop on the Standard 

Deviation of the Coalescence Rest-Time Distribution 

Study 

A2/2 
A3/1 
A3/2 
A3/3 
A3/4 

L 
c:m. 

0 
2.5 
5 

7.5 
10 

* Suspect Eesult 

'f, S.D. 
of 

1st Stage 

61.7 
29.7 
35.0 
* 

41.5 

;b S.D. 'J, S.D. 
of of 

2rrl Stage 3rd Stage 

37.8 21.5 
15.9 12.3 
19.3 14.5 
21,6 6.22 
18.5 5.63 

6.4 The Effect of Interface Age on Coalescence Rest-Time 

% S.D. 
of 

4th Stage 

25.8 
26.6 
21,4 
16.0 

The results in Table 5.1 for the heptane-water system and 

decanoic acid system do not reveal the same trends as were observed by 

Hodgson (63). The latter author found, that for water drops in purified 

systems,the rest-time for all coalescence stages wasVirtually instantaneous 

after cleaning the interface by the Teflon-Glass method. There is 

absolutely no indication of this behaviour in Table 5.1. This may suggest 

that Hodgson's results are of questionable value. 
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CHAPTEc( 7 

CO,hlEL.-\TIO;~ OF EXPE.:IME.~TAL flEA~ COALESCENCE 

.-\EST-TIME WITH PHYSICAL VA:UABLES 

The study of coalescence in technical equipment is difficult 

because of the compllcated hydrodynamics involved. To understand the 

process of coalescence,the author and many other workers have studied the 

coalescence of single drops at a plane interface. A large number of 

experimental results on single drop systems are to be found in the 

literature. 

~~1st the prediction of the behaviour of dispersions remains 

largely unsolved,the available experimental data on single drop coalescence 

should provide a useful guide in the design of technical equipment. The 

correlation of single drop rest-times using theoretically derived equations 

(previously discussed in Chapter 3) is far from satisfactory. An attempt 

is made in this Chapter to develop a more useful correlation. This is 

carried out in two parts: 

(i) A dimensional analysis to obtain a relationship between 

the coalescence rest-time and the important variables. 

(ii) A statistical analysis to fit the experimental data. 

?.1 Dimensional Analysis 

The coalescence of a single drop is mainly concerned with the 

drainage of the thin phase-2 film,which is trapped between the drop and 

the interface. It is therefore necessary to obtain a relationship between 

the film drainage time, the film thickness and other variables of the system. 

The variables considered in this analysis are the ones which have 

been found to be important in creeping flow problems. However,since the 

pressure distribution in the film is unknown,the pressure is expressed as 

a function of the drop size,density difference between the phas~ axrl the 
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interfacial tension, Thus,the drainage time t,which is assumed to be 

equivale~t to the coalescence rest-t~me,can be written as a function of the 

t = t ( a,6. e . g ·12· 0 . h) 

where, 

t = coalescence rest-time T 

a = spherical drop diameter L 

D.e = phase density difference ML-3 

g = gravitational constant LT-2 

}A-2 = continuous phase viscosity ML-1T-1 

0 = interfac~al tension MT-2 

h = film thickness L 

Following the procedure which is usually adopted in dimensional 

analysis ~t is assumed that this equation can be re-written as follows: 

(?.1.1) 

Because both a and h have the same dimension of length,it is convenient to 

rearrange Eqn. (?,1.1) as follows: 

(?.1.2) 

For this equation to be dimens~onally consistent: 

p = 2q + s +.!. 
2 2 

r = s +q- t 
2 

t = -q - s 

Substitut~ng for p,r and t in terms of q and s in Eqn. (?.1.2): 
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t = • 

(7.1.3) 

:tearranging Eqn. (?.1,J),the following equation is obtained: 

(7.1.4) 

The value of the constant C/J must be determined experimentally. 

DiscussJ.on 

Jeffreys and Hawksley (68) have carried out a dimensional analysis 

of the above system but without the inclusion of the variable h. They 

obtained the two dimensionless groups: 

'Ti 1 = and 

where (tt)
1 

is the first stage half-life time and b the spherical drop 

radius. The group 'fi 2 also occurs in Eqn. (7 .1,4). Jeffreys and Hawksley 1 s 

analysis infers the assumption that the fJ.lm breaks when (a) is equal to 
ii 

a constant, rtecent evidence however(54,79,89),indicates that in a given 

system,the film ruptures at a definite thickness, 

If the exponent s in Eqn, (?.1.4) is set equal to 1,the following 

equation is obtained: 

= 

If it is now assumed that the film breaks after some time t ,corresponding 
m 

to a film thickness ~.the above equation can be rewritten as: 

= 



By puttins q = 

t 
m 
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1 and n = 2,the following equation is obtained: 

fhis is the exact forM of the parallel plates equation,obtained by solving 

the l'lavier-Stokes equations (111) ,i.e. for the case of a deformable drop 

approaching a rigid flat plate, The parallel plates equation for this 

case is: 

7,2 Statistical Analysis 

It is not possible to determine experimentally the value of the 

film thickness at breakage and consequently Eqn, (7.1,4) cannot be used 

dlrectly. However,as a first assumption,the film thickness ~ >Qll be 

considered to be a function of the variables ~2,~e ,a and )( ,only. 

The following equation is easily derived from Eqn. (7.1.4): 

(7.2.1) 

where k,p,q,r and s are constants, In studies where L is important,the 

following equation can be similarly derived: 

(7.2.2) 

where k* and t are also consta~ts. 

The author's experimental data and the available data from the 

literature are correlated using Eqns, (7.2.1) and (7,2,2), This is 

achieved by fitting a t:ultiple Linear rlegression by the method of least 

squares. 

The mathematics of multiple linear regresslon and a computer 

program are descrlbed in Appendix 5, The computation for the analysis was 

performed on an I,C,T. 1905 computer. 
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?,3 .<esults and Discussion 

Correlat1ons ;rere attained for a variety of cases,and these are 

detailed in AppendlX 5, They are presented in Figs, 7,1 to 7,13 1n the 

form: 
(ln t ) vs, 

m EXP.EfUHEi'ITAL 
(ln t ) 

m PHEDICTED 
,where: 

(ln t ) = experimentally determined value of ln tm' 
m EXPE.tUJE,~TAL 

(ln t ) = value predicted by the regression model, 
m P.L.EDICTED 

rhe computer printout,giving details of the calculated statistics is 

contained in Appendix 5, 

The 95fo confidence limits for the true regression coefficients 

are given in Table 5,A,2 (Appendix 5), In a number of cases,certain of the 

regression coefficients are not precisely defined,e,g. the case PROL02: 

= 

= 

2,0829 .± ),8400 

1,1271 + 2.9630 

and 

rhe calculated t values (t-test,see computer printout) for b2 and b; 

similarly fa1l to reach the 0,05 significance level, It should be 

appreciated that the non-significance of a particular variable does not 

in anyway imply that the independent variable concerned does not affect, 

or is not related to the dependent variable, It implies merely, that at the 

level of significance adopted,the confidence limits for the estimated 

effect,or slope,include zero as a possible value, 

'L'he standard errors of the regression coefficients (see computer 

printout - AppendlX 5) and the confidence limits measuredtherefrom,measure 

the overall uncertainty of each estimated regression coefficient taken sep-

arately, kn estimate of the overall extent of association between the 

value of the dependent variable t,and the independent variables,is 

measured by the multiple correlation coefficient (see computer printout), 

An examination of the residual errors (see Figs, 5,A,2 to 5,A,4, 

Appendix 5) for the correlations does not reveal any abnormalities, The 
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statistlcal analysls therefore indlcates that a satisfactory correlatlon 

bntwenn the dependent variable t,arxl the indepen,le'1t varlables a , j--2 , 

6.~ , )S' and L has been obtained. 
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KEY TO CORRELATIONS 

Symbol System Reference 

0 Heptane-Water Series A2, A3, (16) 

• 0.05M Decanoic Acid/Heptane-~o/ater Series B2 

,0. O, 5M Decanoic Acid/lleptane-1·/ater Series C2, C3 

... , ,OM Decanoic Acid/Heptane-llater Series D2 

;3 [] Benz ene-';later (16, 60, 79, 81, 82) 

~ • CC14-14ater (16) 
(I) 

~ 
V Ethylene Glycol-n Hexane Konnecke'll: 

~~ t> Triethy1ene G1yco1-n Hexane Konnecke"' (I) 

<I Diethy1 ene G1yco1-n Hexane Konnecka'l! 

~ Ethyl ene G1 yco 1-Benz ene Konnecke'!E 

... Diethylene Glycol-Benzene Konnec ka'l! 

0 Tributy1 Phosphate-To/ater (79) 

• 1iater-Aniso1e (79, 101.) 

c Water 'Aroclor 12481 (79) 

m • Iso Octane (50:50)-'later (82) ....:1 Benzene + 

~ A Benzene+ Liquid Paraffin (50: 50) -Water (82) 
U) 

'<1 tO 
,,~ 

... Benzene+ Liquid Paraffin (75125)-Water (82) 

.s ... Heptane + Liquid Paraffin (50: 50) -Water {82) 

"'Konnecke, H,G,, Z, Physik Chem, (Leipzig),~. 208, (1959) 

( A m::rAILED LIST OF THE f!GlJ.<.r: 0J,UtEL:lTI0)13 IS GI\Ti!:l1 ON THE 



Case 
~Jo. 

SectJ.on 1. 

p;tQL 01 
P:tOL 02 
P'IOL 03 
P".OL 04 
P.IOL 05 
p,(()L 
p,(OL 

Section 2. 

PcVL 21 
P'VL 22 

Section 3. 

Pli.OL 31 

?:lOL 32 

Section lr. 

POOL 41 
P;',OL 42 

**~ 

r'igures 7.1 to 7.13 

Description ii'igure 1~o. 
for correlation 

(Series 2A, 2B, 2C, 2D) 

1st Stage Coalascence 
2nd Stage Coalescence 
3rd Stage Coalescence 
4th Stage Coalescence 
1st and 2nd Stage Coalescence 
3rd and 4th Stage Coalescence 
1st,2nd,3rd and 4th Stage Coalescence 

Two Component Systems for L = 0 ems. 
Two Cor1ponent Systems for L > 0 ems. 

fhree Component SysteMs for L = 0 ems. 
(present work only,for Series 23,2C,2D) 

rhree Component SysteMs for L> 0 ems. 

PROL 21 and P,lOL 31 for L = 0 ems. 
?:101 22 and PROL 32 for L > 0 eMs. 

Except for Section 1 CorrelatJ.ons,and unless specified 
otherwise,each of the co~rel~tions includes all of the 
Pelevant referenced data. 

7.1 
7.2 
7.3 
7 .I+ 
7.5 
7.6 
7.7 

7.8 
7.9 

7.10 

7.11 

7.12 
7.13 
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CHAPTER 8 

SCHLIE'tE'l PHOTO:.i-w'HIC STUJY 0;;' 

COALESCEtlCE 

'The aim of the photo;;raphic study was to observe the penetratJ.on 

of the fluid of the drop into the bulk aqueous phase, 

A schl1eren apparatus was readily available and this prov1des a 

convenient method of flow visualisation when density gradients exist in the 

flowing fluid, In the case under consideration, this was achieved by adding 

a small quantity of CuCl.z to the droplet fluid, 

8.1 Schlieren l'1ethod and Apparatus 

The method of flow visualisation using schlieren techniques has been 

described in detail elsewhere (96) and can be summarised as follows: 

The basis of thel;chlieren method 1s the deviation of some rays 

of light due to changes in the refractive index. 'This is because the 

velocity of light is related to the refractive index,e.g. in the case of a 

c ( 1 ) c* 
n 

= 

\<here, c =velocity of light, c* =velocity of light in vacuo,ancl. 

n = refractive index. If in the working section there is a g2·adient of 

refract1ve index (caused by density gradients) normal to the light rays, 

the light rays will be deflected because the light travels more slowly 

where the re~ractive index is larger, 

'The apparatus is illustrated in Fig. 8.1. Here the light source 1, 

a 250W mercury vapour lamp,is focussed by a condenser lens C,on the slit S 

(the slit gap was 0.065 cm,). The heat filter F,is inserted as shown to 

protect the lens C. A plane mirror P1 is used to 'fold' the light beam to 

obtain the experimentally more convenient Z-layout. The second plane mirror 

Pz is used to 'fold 1 the beam from l•lz for focussing at the camera. 11
1 

and 

h2 are concave mirrors, the latter one produces an image of the source in 
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vlorking Section 

I 
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FibUI'e 8.1 Sketch shO\ring the ::.rraneCJ:::ent of the' Schl!eren Appara~s: 
{Undisturbed rayc shoo,;n full,disturbod lines shown broken) 

Bolex 
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its focal plane K. Beyond K,a focussing lens J is used to give an ~ma~e 

or the obJect in the working sect~on,on the photo~raphic plate Q. 3ince 

thP li&ht ~s parallel bctwee'l H1 and r~z,the light from each point 1n the 

x - y plane may be considered to give an individual ~~ge of the source in 

the focal plane of E2 • If there is no gradient of refractive index (or if 

the gradient is uniform) over the working section,the ind1vidual images of 

the source 1-1ill coincide. However, when the gradient in a small area differs 

from that in the rest of the field,the angular deflection f.. will cause the 

co~responning image in the focal plane K to be moved approxiamtely by an 

amount fz E ,where f 2 is the focal length of l1z, I;:-respective of its 

direction,all light from a point in the object is brought to a focus at 

the corresponding point on thebhotographic plate. The 1mage on the 

photographic plate is accordingly not displaced ~ the deflection of the rays 

produced by the refractive index grad1ents in the object. 

To detect the displacement of the image of the source, the 'roepler 

method 1s used (see ref, 96). A knife edge is placed at the focal plane K, 

The edge is adjusted so that in the absence of the optical disturbance,a 

fraction of the light from the 1mage of the sou,.ce (the fraction is normally 

set at 0.5) is cut-off from the focuss1ng lens L,and the illuminatio'l is 

uniformly reduced. If,when the optical disturbance is introduced part of 

the 1mage of the sour~e is displaced,the illumination of the corresponding 

part of the image on the photograph1c plate Q,will decrease or increase ~ 

an amount proportional to ~yf2 ,according to whether the deflection is 

towards or away from the opaque side of the knife edge, Displacement of 

the image of the source parallel to the knife edge produces no effect at Q, 

and the ed~e must then be set perpendicular to the direction in which the 

density gradients are to be observed. 

The photographic and schlieren apparatus was mounted on optical 
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be 1ches t1hich l-Jcr•c supporte:l on ad jnstablc' co lum"IS. 

8.2 ~oaJescence ~oll 

l'he coalescc'1ce cell,Hhich :ts :tllustrated 1.'1 Ji~. 8.2,:ts maJe f~~"' 

standarcl 3" Q. l.1•. pire. i'he horu;ontal viewb~ section is fitter! at each 

one! \Jith 3" plane :;hss uinr!ous(schlieren quality). I'hose are mounted J ~ a s,ooc­

:tal flan,o arrat(;er:ent O.l'd a'1 exploded view of this :ts shown in r'1--;. 3.2. 

't'llis method of mountlng the Wlndows should considerably reduce the posSlbilit:, 

of the set tine up of tan;;ential stresses. il standard Q. v • ." dip-pip8, :, lS 

f1ttcd to the vortical scct1on of the <;lass-tee. Its purpose i.s to r·>ai'1tai'1 

an mterface at the viC'Wl'1,; level and accordinr;ly,the end Has r:rounJ flat and 

squar<'. l'o perm1t the l'1terface to be clcancrl,the si.de of the :,lass-toe lS 

fitted Wlth an overflo.v p1pe ,C, _lll liquid contact su-rfaces 1<erc >lass, 

l' N~ and stainless steel ( 18/8/3 quality). 

£h"' coalescence cell l<as mou:-tted independontlv of th'l schliere'l 

apparatus on a ri;;icl frame. In Photograph 8.P .1 the appan.tus is shoun 

full/ assembled al"ld the lay-out 1s ~iven in /ir;. 8.3. 

3.3 ,;xper:t:nc,-,tal 

fhe schl1cre.1 lrJage of the flui.d motion at the interface uas re~or"'od 

uith a . .JOlo'< ci>1c camera • 

. ehotor·raohic: lnforrn tio11 

..;amera 

lens 

· 1lm .B.'xpo sure 

~~~erials ann Preparation 

l.)aillhard .3olex,~.teflex,16 rnm cinc • 

- •-c;ver-Optlk,fLf.5/300 mm, (Spec1al adaptor us"~) 

- ~\.odak 1 .t'lus ,( 1 

- 6'f fps, 

- 1/216 second. Full aperture and neutral 
dens1ty filter. 

'111e bulk liquid corJponcmts Wlre prepared i"l the r.anner previousl;r 

0escrJbc1 J.n r...:hapter l~. fhe clro{)l3t. ~')~13.88 matr-rial co11tained :uCl
2 

(/'-'1ala1 .. 

Grade) ar:d a so1utioYl ua.s prepa ..... orl uith double-dJ.stillcd uater USl'1~ 1 3!'1• 
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stor"~d 1.(1 ~lass 'Y'8'.!0lVC("S• 'l'he coalescence cell,aSS0Ci'J.tect r;laSS-tiaro,l f '-~ 

,J.rvl si..<'J.J.1lss.:; ::>"Cool _'J3.rt::::: ~rcro thoro.1-:hlj clea'leri J.~ t~o na-;.r.er ,__:_as::!rJ.l:r;:l 

l1he conplete apparatus ".Jas !l.oused 1~1 a specia.l d.ark roo.n uh~ch. -ras 

.•t'll!1taim•d "t a. eo 1sta,,t tGmperaturG of ::wproxlma tcb· 2)°C for the dJ.ra tlo'l 

,,· Uwexper1.me.1ts. 3in<'e the b<1lk liquid components Fore kept in th1.s room 

."1 p0~iocl of cqJ.J.libr::ttJ.o'1 prJ.or to actual cxperi:'1e'lts U:J.S n'Jt re<lUlrr l. 

1 ... roccdur0 

1'hc co."ll<'3C0.1CC cell, 3,ls fJ.lle·i HJ.th aqueous phase via th0 •lip­

pipe .l until the optJ.cD.l uirrlous are col'lpletely submerged. A quantity or 

1 ic;ht pl1ase liquid J.S then poured gently 'Jn top of the aqueous phase until 

a le~rel C)asts lll tho dip-pipG. Droplet formation is b.i' mea'lS of a ~;lass 

c::t;nll::try,c;,connocted uith l'l'JS tubin::; to the microl'letcr s.rrin·,c ... '111e 

droplet inJectJ.o.ll.J.'le,:, to :,J.s completely filled uith droplet phase liquid 

from t.ho rose1•voir p::-io.c to lnsertlon of the glass capillary into the dip­

[li,Jo. "h"n the c;lD.ss caplllary lS louered into posltion in the ·.lip-tube its 

I!Ul'tJ.cal nli :anent,as ucll as ti13.t of the coalesce11ce cell, is checked v;ith 

a plw,b-llne. To form drops 1.:1 thG coa]oscenoe cell the three Ha;r tap,l', 

is t"oved to t~o open pos2i:.i'"ln (1, to C) and the mi.cro"leter s-rrin~e adjusted. 

11 <1Ul'lber of trial drops arc allowed to fall to the interface pn0r to an 

acLual run so that the kdfo Gd :;o can be adjusted to its optimu.'ll posltlon. 

The :.'i'lal ad jus tme.1t ls ln practice found to be a comproniso bet•1een the 

unlfo,·mity of scrGen lllwnination and thG contrast of the sehllercn l:na';o. 

Onl" the sc:1lieren beam is used to J.ilU.'lllnate the i'lterface,all the other 

l'v;hts ln the room beJ.n:; s:ntched-off. ,\ drop is formed by slouly turni'l;; the 

cucro~Joter "'lnlst SlmtU.ta,leousl; observJ.n~ the c:tlm l'lterfaco throuo;h the 

cumcra, •lithout the aJ.d of an as:nswnt J.t J.s necessary to antlcipate the 

ar.clval of the drop ut the intcrface,althou:;h prior calibration of the 

m.tcrometor sy.clnt;o is a useful r~uidc. l~'ilminL was continued l.L"ltil the 

fluid of the coalesced drop uas uell clear of thG bulk i:'lterface. 
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il.l+ .esults 

1'ne coales":!eYlce of a uater drop at a plai"J.9 ~1te:rface ·...-ac; 

investi~;atetl 1n the tHo syster'ls hepta'1e-•mter (s-;>ter'l ,,) a'1d 0.5, r'~eca 1010 

acld-heptanc-;;ater (systeM_;). A ran,~e of fall he1;ht a'1d drop size Here stu:lle~. 

It Has observed that unless the drop Has formed close to the interface the 

wolion of drop fluld Ln the lol<ererbulk aqueous phase was very irrE>"ular. 

l'hercfore the results presente:i ln this section are mainly restrlcted to 

those cases Hhere the i'1terfa~e disturbance caused by the impact of the drop 

was S::Jl..all. 

i'he sequences preseC~ted in .t'hotoo;raphs 8.?. 2 and 8.P. 3 shot>~ the 

penetrat1on of the droplet fluld into the homophase,lmmcdiately after 

coalescence. The cases considered are: 

i'hotograph 8.<'.2: .\water drop,0.5995 cm. dlameter,coalescin; at 

the heptane-water interface,L = 0 cm. 

•' water drop,0.445 cm. diameter,coalescinc; at 

the 0.5h decanoic acid-heptane-><ater interface, 

L = 0 cm. 

fhe extent of penetration of the droplet fluid into the homophase 

lS ,"1ven i'l /1
0
·s. 3.4 and 8.5 for systems 11 and C,respectivel,y. It is seen 

that the rate of penetration of the droplet fluid passes throu~h a max1.mum 

at a positJ.on wh1ch lS ~lose to the level of the bulk interface. "fh1s Qccurs 

at approximatelv 0.425 cm. and 0.2 CI'l. in the systems A and C,rcspectlvelv. 

The curve fo,. the 0.299 cm. drop ln ,<'1~. 8.5 at L = 2. 5 cm. lS seen to be lnt-Jer 

tho.n the corraspon<lin, curve for .L = 0 cm. 

tls the droplet fluid pro.'resses downt-~ards throw;h its homophase 

:Lt eventually develops 1nto a torroldal vortex. l'he trail which lS le rt 

belund tf:!e vortex obscures the vieu of the later star C'S of coalescence. 

1-'hoto<,raph 8.?.4 shows the vortex formation resultinr; from four sta::;es of 

coalescence of a 0.414 CI'l. drop i"l sys-::.em A. Ehe fourth star;o is al!rost 

completely obscured by the vortex trall of the prev1ous star,;e. 

H. 5 Interpretation and lhscussion of '(esuJ ts 

l'hc main area of interest in Photographs 8.P.2 (frames 1 to 8) 



PHO'ft,_; t.<d;I S.P .2 

Penetration of Droplet lluid j_nto Julk aqueous Phase 

System: ileptane-~later 

a 1 = 0.5995 cm. L = 0 cm. 





l'I:O'l\J ,;• -"Pil 8. f. 3 

nmetration of .Jroplet <'lUJ.d int0 ilull< :~queous Phase 

3ystc:n: 0.5!•. :Jecanoic rlcid-:iepta"le- •atcr 

L = 0 cm. 







PriO'fO . ../ v\Ptl 8 . P . 4 

Jortex l or mation fo r ,,·our ;)tages of ~oalescence 

System: Heptano-•~ater 

a
1 

= 0 . 4140 cm. L = 0 cm . 
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and 8.P.3 (frames 1 to 16) is concer'1ed wo.tll the f·l.!·st few frames ir""Oe·!o.at0l•· 

alter rupture of the phas~-2 fo.)_r, has take'1 place. It is n0ticerl t0at franes 

1 to '• i'1 both photo<;raphs are practJ.cally 2-lentical in terms of seque1ce of 

events. l'hese frames can be explained Pith reference to the hi;h speed 

photoz;raphic work of Charles and t•,ason ( 16) and Lawson ( 82) as follows: 

t•'rame 1: The drop is rcstinz at the J.nterface and the phase-2 film is on th<' 

point o" rupture. 

"ramc 2: t,upture of tho phase-2 film has taken place between frames 1 and ? 

(time .tnterval = 1/61~ second). !'he lo.quJ.d colum'1 formed from the drop 1.s 

drainln'' throuzh the J.nterface lnto the bulk phase (phase-1). 

l•'rame 'l: Instability has occurred and separation of the secondary drop has, 

or lS about to take place. 

,•'rame 4: The drop fluid minus the volume of fluid contained in the secoryiarv 

drop has now draJ.ned completely throughthe o.nterface. As the drop fluid 

expands into the homophase the bulk interface returns to its equilibrium 

level. fhe latter process is complete at frame 6 J.n 8.P.3 and at frame 7 

1.n 8.f.2 . 

. ;harles and M.son (16) state that the hole J.n the phase-2 filrl 

expa'!ds very rapidly at speeds up to 300 cm./sec. Therefore this event takes 

place ln an extremely short time,of the order of 1/1000 second for the size 

of drops consJ.deroo lfl tho.s 1-~ork. 

The time period between the inJ.tial rupture of the phase-2 fllm 

an:! the fJ.'lal separatJ.on of the secondars drop J.S less tha'1 the p'1rlod 

bet>~een frames 1 and },l.e. less than 0.0312 seconds. Charles and 1.aso>1 (16) 

a>1d Lawson (82) "ho stu::lied the coalescence of a lar>"e water drop at the 

berw.ene-uater interface ,photor;raphically ,found this period to be 0.030 a'1rl 

0.0275 seconds,respectJ.vely. 

It lS interestin\ to note the presence of a 'lipht patch' at the dome 

of the lnterfacc depression in .'rame 1. l•eference to tloe tables on "Jrop 

Shape Charactero.sto.cs" in :<ppendix 4 shows that for the respecti"e cases: 
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":ts tern a LX h 
1 c cap. 

CI'lo ern. cm, 
fhoto~raph 8,P,2 11eptane-.:a ter 0.5995 0,1+280 0.0476 

.t'ho to ;:;ra ph 8.P.J 0 ,5,. ~ecanoic Acid 0.41+50 0,3'+34 0,01+62 
-He ptans-1Ja ter 

'l'he dJ.msnsJ.ons 2x
0

, tile maximum horizontal WJ.rith of ths phase-2 film,and h 
cap. 

the hei~hl of ths phaso-2 fJ.lm,a,,ree closely Hi.th those of tht> 1lio-ht patch 1 

in frame 1, lt J.S concluried therefore that this 11J.ght patch' represents 

the extent of the phase-2 fJ.lm, 

1~e interpretation of the penetration characteristJ.cs of the droplet 

fluid after coalescence is best achieved by referrin!j to the velocity profiles 

;;J.ven J.n h (S, 8.6 (A and l:l) and 8, 7 (A and B). They serve to give some 

J.dea of the way imlhJ.ch the liquid column drains throur;hthe interface, In 

r'iL• 8,6 for ths heptane-water system, the first profile (corrsspondi'1F, to 

Crams 2 posJ.tJ.on) sho~<s that the column draJ.nage is greatest at the rJ.~ht-

hand side of the film, l'his su;~:;ests that the i"litJ.al rupturs point nccurreri 

at the ed;:;e of the phase-2 film, Profiles 2 and 3 indicate that there is 

soms,oscillatnr{ motJ.on set up J.n the lJ.quid column. This J.S due to the 

unequal draina:,e o:f the liquid column caused by localised rupbl re of the 

phase-2 film, !~e oscillatory motion is superceded,and in profJ.le 4,draJ.'1a;;:e 

J'rom the centre of tho col= J.S ;;rea tly J."lcreased up to a maximum of 12.2 

cm,/sec, .\. SJ.lnilar process to that described above psrtains in the 0,5;, 

decanoJ.c acJ.d system, 

'l'he lower posJ.tJ.on o:f the curve at L = 2,5 cm, rslative to that at 

L = 0 cm. J.n tiJ.:;. 8,5 is due to the >my in which the drop fluJ.d is dispersed 

in the bulk nhase, '!~J.s is because the dJ.sturbed m-otion of the interface 

caused by the impact of t"-e drop considerably influsnces the <lay inwhich the 

liq uJ.d column drains through the interface. 
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C!IAPTER 9 

~·lA VE DISTU,ci3ANCES AT THE I:'lTE3.FACE 

V.'hen a drop rests on a plane lnterface,lt is separated from the 

lnterface by a fllm of phase-2 fluid, The upper surface of the film is 

inherently unstable in the presence of long wavelength disturbances,and 

provlded the film thickness is less than a certain critical value,this will 

lead to rupture of the film, 

The results of the investigation of coalescence of a single drop 

presented in Chapter 5,show that for a single size of drop in a given 

system,there is a dlstribution of coalescence rest-times, Previous workers 

in the fleld have also reported this behaviour for both purified and 

contaminated systems, It lS important to realise,that when a drop is 

introduced into a system for the purpose of measuring its rest-time,a 

dlsturbance lS also generated at the interface, This is especially so for 

large drops (i.e. greater than about 0,15 cm, dlameter). The effect of 

increasing the fall height of the drop (up to a point where the terminal 

velocity is reached) is to increase the size of the dlsturbance at the 

lnterface, It was shown in Chapter 5,that increasing the fall height 

caused the coalescence rest-time to increase at all stages of coalescence, 

Ln1Son (82) has suggested that the fall helght effect lS essentially an 

<>quip11ent calibration factor, This is true ln part,since a wave disturbance 

produced at the interface in this way will obviously be subJect to the wall 

effect of the apparatus, 

Practically all analyses to date have been based on idealised film 

drainage models, It is important therefore to examine the way in which 

dlsturbances at the interface can lnfluence the coalescence process,and 

specifically,the drainage of the phase-2 film, 

9.1 Impact of a Drop at the Interface 

As part of the photographic investlgation of the coalescence process, 

which lS described in detail in Chapter 8,the profiles of the interface after 
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the impact of the drop and prior to coalescence,were determined (see 

PhotoGraph 9.P.1), These were obtained by tracin~ the magnified 1mage 

projected from the cine film (magnificat1on 8.91X). The time 1nterval 

between each frame 1s 1/64 second. Profiles for a range of drop size and 

fall he1ght are presented in r'igs. 9.1 to 9.13. In l1gs. 9.1,9.2,9.4,9.5, 

9,6 and 9.11 a number of frames have been omitted from the sequences and 

this 1s ind1cated by a broken l1ne. The sequence below the broken line 

describes the shape of the interface immediately prior to coalescence, 

t<or the purpose of analysis,the 1nterface profiles may be treated as two­

dimensional 1~aves but in reality the disturbance is a three dimensional 

rad1al progressive wave, 

The profiles presented in Figs, 9.1 to 9.13 can be divided into 

two groups: 

(i) In this group,the interface deformation is mainly due to 

the weight of the drop, This is covered by the cases where the 

fall height of the drop is very small,i,e, L = 0 cm.,Figs. 

9,1,9.2,9,6 and 9,10. 

(ii) Here the interface deformation is much greater than in (i), 

'rh1s 1s decribed by those cases for which L::>O cm,,i,e, at 

L = 2.5,5,0,8,5 and 13.5 cm, 

For both groups (i) and (ii) the following sequence of events is 

observed to occur when the drop falls onto the interface;Fig, 9.2 w1ll serve 

as an example: 

(a) The impact of a 0,5995 cm, water drop causes the heptane­

water interface to deform, 

(b) The d1sturbance continues to grow 1n amplitude until 1t 

reaches a maximum about 4/64 second after impact, At this 

point,the amplitude of the wave is approximately 0,25 cm, 

(c) The wave then decays rapidly (in approximately 5/64 second) 

spreading outwards over the surface of the interface, 



PHO'l'OGJlAPH 9.P .1 

Impact of a water Drop at the 0.5M Decanoic Acid-Heptane 

-Water Interface 

L = 0 cm. 
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(d) After many frames have elapsed (equlvalent to approxiamolv 

1 second) the interface is observed to be stlll ln a disturbed 

condltion, The disturbance,although not symmetrical due to 

the presence of the drop,is of long wave length compared to 

the SlZe of the drop. 

1be discusslon in this Chapter lS concerned with those wave 

disturbances which can exist at the interface for periods long enough to 

lnfluence the drainage of the phase-2 film. As we have just seen from the 

example above,the wave disturbance may stlll be present at the interface 

when the drop coalesces, Infact,it is present at the interface after 

coalescence of the primary drop, 

It is interesting to note that in the exampleswhere 1 = 0 cm,,e.g, 

Fig.9.1,there is a lack of symmetry in the lower sequences. This condition 

was checked by comparingwith profiles obtained under exactly the same 

conditions and at the same time, The same lack of.symmetry was recorded, 

Since these were not attributable to tracing errors it must be concluded 

that the non-uniformity of the interface represents a wave disturbance, 

The amplitude of the disturbance for these cases is quite small in comparison 

to the size of the drop. It may,however,be extremely significant in 

comparison to the thickness of th~raining phase-2 film, 

Another interesting observation is revealed in Figs. 9.10 and 

9.11 whlch may be important, In both cases,the drop-interface profile has 

moved slightly to the left in the lower sequence, The logical explanation 

for this occurrence would seem to be the existence of a wave disturbance, 

The observations of the interface profiles suggest that the wave 

disturbance caused by the impact of the drop can exist for relative~y long 

periods, It may still be present at the coalescence of the primary drop or 

even later stages of coalescence, To investigate this aspect more closely, 

the damping of wave disturbances is considered in the following section. 
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9,2 Dampin~ of a Wave Disturbance 

The method of computJ.ng the rate of vJ.scous damping of surface 

waves was originally developed by Stokes (77), This method involves the 

assumptions that the flow be irrotational and that the velocity be very small 

at points distant from the interface, It produces results which are very 

similar to those whJ.ch are obtained by solving the Navier-Stokes equations, 

even though the assumptions stated above are partially violated, 

The method consists of equating the average rate of dissipation of 

energy, ~,due to viscous effects,to the rate of change of energy contained 

in the progressive surface waves (78), 

The damping of the waves is conveniently characterised by the 

damping factor,defined as: 

'L= (9,2.1) 

In the course of time,the energy of the wave decreases according to the law: 

-2"'C t = constant (e) (9,2.2) 

Since the energy is proportional to the square of the amplitude,the latter 

d "th t -'tt . ecreases w~ 1me as e ,2.e. 

= o< 0 
(9,2.3) 

; 
Using the equations for Ew and Ew,derived by Landau and Liftshitz (?8) the 

damping factor is found to be: 

(9.2.4) 

where: 
V ± ~2 = 41 = a pseudo kinematic viscosity e2 + ; 1 (n,b, if the film is sufficiently thin, 2 the disturbance can exist in both 

k = 0 /g =wave number interfaces of the 
film) 

0 = frequency of wave. 
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+ Jt 2l£J 4 

+ ~;j l 
(9.2.5) 

This is the same result as obta1ned by Bankoff (6). Koussakov (76) co~puted 

the viscous damping factor by means o:f the '~avier-Stokes equations and found 

for low viscosities: 

·t: = 2k
2 5 ( e yk-1 + R2f2) (9.2.6) 

< 5 ~ 1 + ~ 2l <( 1 + ( 2l 

1 

whereJ = (~ 1f2/~ zf1)2
• If the viscosities of the two phases are small, 

Koussakov 1s result is very similar to that of Eqn. (9.2.5). On the basis of 

this comparison,the approximate method would appear to be satisfactory, 

provided the v1scosities are low. 

9.3 Decay of the ~Jave Energv 

The surface disturbance created by a large drop fallinp; onto a 

quiescent 1nterface is gradually damped out by viscosity. Eqn. (9.2.5) 

indicates that at some zero time,which is a short time after the impact of 

the drop, the wave energy is equal to ~· If the wave energy decays to 50.~ 

of this value in t1me,t~,then by Eqn. (9.2.2): 
2 

(9.).1) 

In a s1m1lar manner, t 0•99 , the t1me for the wave energy to decay to 1,, of its 

original value,i.e. 0.01 Ew ,is given by the expression: 

= (9.3.2) 

The value of the damping factor,1:,may be found from Eqn. (9.2.4), 

and t~ can be calculated from Eqn. (9.).1). In Fig. 9.14,t, is plotted 
2 ~ 

against the frequency,~,for a W1de range of values of the kinematic viscosity. 
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)) , 'l'he curve for the heptane-water system is ~ndicated at a value of 

).) = 0,00843 cm, 2/sec. 

It was not poss~ble to est~te values of the wave ampl~tude,or the 

frequenc~es,from ligs. 9.1 to 9,13. Eqn. (9.2.3) is used to estimate the 

ampl~tude of the d~sturbance at the heptane-water ~nterface,tm1 seconds 

after the impact of the drop. tm1,is the mean coalescence time for the s~ze 

of drop,where: 

a 1 = 0.5995 cm, (as for Fig, 9.1) 

tml = 7.1 secs, 

't: =' (1.665 x w-4 lcu 4 

It is assumed that the initial amplitude of the disturbance is~ 0 = 0,2 cm. 

Using Eqn. (9.2.3) ~t is found that for: 

w = 10 c.p.s, ol..= 6,15 x w-6 cm, 

w = 1 c.p,s. o(= 0,2 cm, 

Discussion 

The experiMentally determ~ned profiles given in ligs, 9.1 to 9,13 

~ndicate that the interface is still in a disturbed condition for some time 

after the impact of the drop, This is true for all the cases investigated, 

at both high and low values of L, 'l'he curves for t 1 vs, W ,presented in 
2 

F~g. 9.14 reveal that the half-life decay time of the wave can be large for 

low viscosity systems (i.e.'))~ 0,01 cm, 2/sec,), In the case of the systems 

studied in this work,it is poss~ble for t~ to be greater than the measured 
' 

coalescence rest-time,and even greater than the overall rest-time,~. 
Knowing that the wave disturbance can continue to exist at the 

interface for long periods of time,the question ~s asked,"How does it 

~nfluence the coalescence process 711 'l'he work of Lang (?8) has already shown 

that the upper surface of the phase-2 film is inherently unstable to long 

wave length d~sturbances and so the film may rupture in this way, Before 

rupture of the phase-2 film can occur though,it must thin down to a certain 

critical thickness,or below. 'I'he experimental evidence on f~lm thickness is 
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small but the >Tork of ~JacKay and 1-lason (88) has shown that in liquid-hqu~d 
0 

systeMS the film th~cKness in the reg~on of rupture ~~y be less than 500 A. 

The rate of attenuation of the wave disturbance is determined 

mainly by the value of the damp~ng factor (see Eqn. (9.2.3)). If the 

amplitude of the wave d~sturbance is comparable,or greater than the thickness 

of the draining film,then it is reasonable to suggest that the wave motion will 

~nfluence the drainage process of the film. The precise manner inwhich the 

wave mot~on interferes with the film is complex. This is because of 

interaction between wave fronts due to rebound at the walls of the apparatus. 

A common observation supporting this behaviour is that the drop is often 

observed to meander slightly whilst resting at the flat interface. 

In summary,it is concluded that wave motion at the interface will 

have a significant effect on the rate of drainage of the phase-2 film, 

for at least the visible stages of coalescence. This would appear,in part, 

to be a logical explanation for the ex~stenoe of the residence time 

distribution observed in s~ngle drop coalescence studies. 
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CHAPTER 10 

CONCLUSIONS AND SUGGES'riONS FOR FUTURE \vOii.K 

10.1 Conclus1ons 

This study cons1sts of a theoretical and experimental 1nvestigat1on 

of the coalescence of s1ngle droplets at a plane liquid-liquid interface. 

The conclusions wh1ch may be drawn from this work are as follows: 

1. The values of t, t , t1 and t increased with increasing 
m 2 m.ax 

size of drop. Th1s trend was observed for all stages of 

coalescence. 

For the heptane-water system,there is a linear relation 

between the mean rest-t1me and size of drop at all stages 

of coalescence. 

There 1s a spec1fic relationship between the mean rest-

time and size of drop for a given stage in the coalescence 

process. 

2. The rest-time distributions,for all stages of coalescence, 

1n both two and three-component systems can be correlated by 

the following equations: 

and 

The value 

the stage 

ln ~ = 
N 

0 

N n 
ln = -et 2 

N 
0 

of n1 and n
2 

in these equations increases with 

of coalescence. However,the usefulness of the 

second equation,in the case of later stages of coalescence, 
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is llmlted because n
2 

has hl~h valuos. 

An approxlmately linear relation is exhibited by the 

standard deviations between adjacent coalescence stage rest­

tlme distributions. 

J. The coalescence rest-time increased with increase in fall 

height of the prlmary drop. This increase occurred at all 

stages of coalescence in the heptane-water system. 

The standard deviation of coalescence rest-time distributions 

is markedly reduced by increasing the fall height of the 

primary drop. This was observed for all stages of coalescence. 

The droplet size of second and third stages of coalescence 

are dependent on the distance of fall of the primary drop 

on to the interface. However,there is not a simple relation 

between these variables. In the heptane-water case,the drop 

size 1ncreased whereas 1n the 0.5M decanoic acid/heptane­

water case,it decreased. 

1+. There lS a llnear relation betl;-een the drop diameter ratio 

r
1

,and the size of primary drop for the systems A and c. 

Thus,there lS a linear relation between the size of drop 

before coalescence and the size of drop produced qy 

coalescence. 

The value of r
3 

is approximately 0,5,independent of the 

system. 

5. An expression for the rate of thinning of the continuous 

phase film has been developed. The model on which it is 

based is shown to lie somewhere between the parallel-plates 

model and the spherical-planar model. Comparison of predicted 
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dra~nage t~mes Wlth experimental coalescence rest-tiMes 

suggests that a satisfactory agreement Wlll be obtained 

for small drops (less than 0.01 cm. diameter). 

6. A correlation between the mean rest-time t ,and the 
m 

phys~cal variables a,6~ , j<-
2

, ¥ and L has been 

developed. 

7. The phenomenon of "double drop" coalescence (i.e. the 

formation of a satellite drop with the secondary) only 

occurs when the values of the interfacial tension and the 

size of the primary drop are sufficiently large. 

8. Disturbances of long wavelength and small ampl~tude can 

exist at the interface for appreciable periods. These 

t~me periods can be comparable to the coalescence rest-

time,or much longer. The rest-t~me distr~bution may thus, 

be partly explained,on the basis of the effect of long 

wavelength disturbances on the rate drainage of the phase-2 

hlm. 
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10.2 Suggestions for Further Study 

1. The thcoretJ.cal pl·odlctJ.on or t11~ ratc> of l'lll1 drcnna•':O 

shocld be developed further, particularly for the case 0 r 

large drops. A complication which Wlll have to be allowed 

for is the effect of lnterface movement. The scope of 

this type of investJ.gatlon would be greatly enhanced by 

undertaking a nUI'lerical solution of the full Navier-Stokes 

equatlons, This could be suitably accomplished by the 

recently developed Narker and Cell technique (HAC) (132), 

using a pot-~erful high speed computer, 

2. In view of the difflculties which have been experienced 

with experlmental single drop studies,it J.S essential that 

the approach be simpllfied as much as possible. The maln 

effort should be concentrated on the single drop situation 

rather than studying large numbers of -:!reps, Experirrcnts 

should be devised so that the rest-time,film thickness and 

rate of fiL~ dralnage can be measured simultaneously. 

It is liDportant that the experiments be tJ.ed ln closely 

with a SUltable theoretical treatment,e.g, as in 1, 

'fhere ><ill continue to be so!'le need for carrying out further 

rest-til'le dlstribution studies,particularly for comparing 

effects ln different systems, Houever,manual :recordlng of 

single drop rest-tJ.mes is notoriously slm; and is a serlous 

drawback to experlmentation. 
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APPENDIX 



APPENDIX 1 

PHYSICAL PROPERTIES OF SOLUTIONS AT 25°C 

System Phase Density Viscosity Interfacial 

~cm.-3 
Tension 

c.p. dynes -1 cm 

Heptane/Water 1 0.9968 0.9270 50.75 

2 0.6810 0.4158 

0.05M Decanoic Acid- 1 0.9935 0.9241 32.41 

Heptane/Water 2 0.6833 0.4257 
N 

0.5M Decanoio Acid- 1 0.9952 0.9286 
N 

22.54 ...., 

Heptane/Water 2 0.7003 0.5194 

1.0M Decanoic Acid- 1 0.9964 0.8962 18.62 

Heptane/Water 2 0.7232 0.6406 
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APPENDIX 2 

TABLES OF N/N9 AGAINST t 

N = Number of drops which have not coalesced in time t 

= Total Number of drops assessed 

= coalescence time, seconds 

The fraction N/N
0 

corresponds to a range of t up to the value of 

t given, e.g. in Series Al/l(i), N/N0 = 0.9200 corresponds to 

0 < t .::. 2 and N/N
0 

= o. 7600 corresponds to 2 <:::: t < 41 etc. The 

actual minimum and maximum values of t are given in Appendix J. 

In Series Al/1 the sample count (N0 = 150)is split into 

two parts to provide two distributions, namely; Al/l(i) which refers to 

the first part of the count (N
0 

= 75) and Al/l(ii) which refers to the 

second part of the count (N
0 

= 75). This also applies to the Series 

AV2, AV3, AV5 and AV6. 

Study 

Series A(Al, A2 and AJ) 

Series B(Bl and B2) 

Series C(Cl, C2 and CJ) 

Series D(Dl and D2) 

Contents 

System 

Heptan&-water 

o.05M Decanoic acid­
heptane/vater 

0.5M Decanoic aoid­
heptane/water 

l.OM Decanoic acid­
heptane/vater 
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S er1es A!L) ( 1) 

~ K/N 0 t2 N/N 0 t3 N/N0 t4 N/N0 

2 0.9200 1 0.7734 1.4 0.9867 0.3 0.8534 
4 0.7600 2 0.9468 1.5 0.9601 0.4 0.5734 
6 0.6934 3 0.9202 1.6 0.9201 0.5 0.2134 
8 0.5734 4 0.8002 1.7 0.8669 0.6 0.0401 

10 0.3868 5 0.6802 1.8 0.7069 0.7 0.0135 
12 0.2535 6 0.5202 1.9 0.5603 0.9 0.0002 
14 0.1869 7 0.4536 2.0 0.3603 
16 0.1069 8 0.3070 2.1 0.1870 
20 0.0537 9 0.2404 2.2 0.0537 
22 0,0137 10 0.0271 2.3 0,0137 
28 0,0004 11 0,0005 2.5 0,0004 

Series A!L1( ii) 

t1 N/N0 t2 N/N0 t3 N/N0 t4 N/No 

4 0.9316 2 0.7726 1.4 0.9867 0.3 0.9452 
6 0.8358 3 0.9452 1.7 0.7734 0.4 0.4932 
8 0.7126 4 0.9178 1.8 0.9068 o.5 0.0960 

10 0.5756 5 0.9041 1.9 0.7735 0.6 0.0139 
12 0.4661 6 0.7946 2.0 0.5:335 0.8 0.0002 
14 0.3155 7 0.6576 2.1 
16 0.2334 8 0.3289 
18 0.1513 9 0.1646 
20 0.1239 10 0.0276 
22 0.1102 11 0.0002 
24 0,0692 
28 0.0144 
30 0,0007 

Series Al/2(1) 

t1 N/N0 t2 N/N0 t3 N/No t4 N/No 

2 0.9867 2 0.9871 1.6 0.7734 0.3 0.7734 
4 0.8934 3 0.7742 1.9 0.9334 0.4 0.6401 
6 0.8402 4 0.9483 2.0 0.8401 o.5 0.2801 
8 0.7870 5 0.9224 2.1 0.5868 0.6 0.0135 

10 0.6937 6 0.8965 2.2 0.1468 0.8 0.0002 
12 0.6004 6.5 0,8576 2.3 0.0402 
14 0.4804 7 0.8317 2.4 0,0002 
16 0.3738 7.5 0.7538 
18 0.2938 8 0.5980 
20 0,2005 8.5 0.4682 
22 0.1473 9 0.2734 
24 0.0807 10 0,0397 
26 0.0674 11 0.0009 
30 0,0408 
32 0.0142 
34 0,0009 
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Series A:JL2(ii) 

t1 N/N0 t2 N/N0 t3 N/N0 t4 N/N0 

2 0.9595 3 0.9865 1.6 0.9867 0.3 0.9468 
4 0.6758 4 0.9730 1.8 0.9467 0.4 0.6002 
6 0.5272 4.5 0.9190 1.9 0,8001 0.5 0.3202 
8 0.4191 5 0.8785 2.0 0.5868 0.6 0.0402 

10 0.3651 5.5 0.7975 2.1 0.3868 0.7 0.0002 
12 0.2706 6 0.7300 2.2 0.0935 
14 0.1896 6.5 0,6895 2.3 0.0403 
16 0.1491 7 0,6085 2.4 0.0003 
18 0.1221 7.5 0.4599 
20 0,0816 8 0.3383 
22 0,0546 8.5 0.2708 
24 0,0276 9 0.1763 
26 0,0141 9.5 0,0547 
30 0.0006 10 0.0007 

Series A:JL2 {i) 

t1 N/N0 t2 N/N
0 t3 N/N

0 t4 N/N
0 

2 0.8948 1 0.9869 0,8 0.9867 0.3 0.9868 
4 0.7238 2 0.9475 1.2 0.9734 0.5 O,Q336 
6 0.5528 3 0,8694 1.6 0.9601 0,6 0.8670 
8 0.3423 4 0,8168 2.0 0.9335 0.7 0.7337 

10 0.2502 5 0.7387 2.2 0.9202 0,8 0.4671 
12 0,1845 6 0.6861 2.4 0.8936 0.9 0.2005 
14 0.1582 7 0.6335 2.6 0.8536 1.0 o.on~ 

16 0.1319 8 0.5678 3.0 0.8004 1.1 0.0006 
18 0.1056 9 0.5152 3.2 0.7738 
22 0.0793 10 0.4495 3.4 0.6672 
24 0.0399 11 0.3969 3.6 0.5472 
26 0.0136 12 0.3188 3.8 0.4139 
42 0.0005 13 0.2662 4.0 0,2806 

14 0,2005 4.2 0.0673 
15 0.1479 4.4 0,0273 
16 0.0558 4.6 0.0140 
17 0,0164 8.6 0.0007 
18 0.0033 

Series A:!Li ( ii) 

t1 N/N0 t2 N/N0 t3 N/N0 t4 N/N0 

2.5 0.9468 2 0.9734 1.8 0.9734 0.5 0.9865 
5 0.7468 3 0.9334 2.0 0,9601 o.6 0.9730 

7.5 0,6002 4 0,8802 2.2 0.9335 0.7 0,7839 
10 0.4536 5 0,8270 2.4 0.9202 0,8 0.6353 

12.5 0.3070 6 0.7337 2.6 0.9069 0.9 0.2570 
15 0.2670 7 0.6671 2.8 0,8669 1.0 0,1219 

17.5 0.2004 8 0.5871 3.0 0.7869 1.1 0.0409 
22.5 0,1738 9 0.5339 3.2 0.6403 1.2 0.0139 
27.\i 0.1338 10 0.4273 3.4 0.5737 1.3 0.0004 

30 0.0938 11 0.3873 3.6 0.4804 
32.5 0,0805 12 0.3341 3.8 0.3604 

35 0.0672 13 0,2809 4.0 0,2804 
37.5 0.0539 14 0,2676 4.2 0.1338 

40 0.0406 15 0,2410 4.4 0,0405 
42.5 0,0273 16 0.1344 4.6 0,0139 

50 0,0140 17 0.0678 5.2 0.0006 
62.5 0.0007 18 0,0146 
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Series A1/4 

t1 N/N0 tz N/N0 t.3 N/N0 t4 ?V' No 

1 0.9200 2 0.9200 0.8 0.9867 0.6 0.9867 
2 0.77.34 .3 0.81.34 1.4 0.9734 0.7 0.9067 
.3 0.6668 4 0.69.34 2.0 0.9601 0.8 0.65.34 
4 0.4935 5 0.6001 2.2 0.9468 0.9 0 • .3068 
5 0.4269 6 0.5469 2.4 0.93.35 1.0 0.1068 
6 0.2669 7 0.480.3 2.6 0.8935 1.2 0.0268 
7 0.17.36 8 0.4271 2.8 0.8535 1.3 0.0135 
8 0.1204 9 0.3205 3.0 0.8003 2.1 0.0002 

10 0.1071 10 0.1872 3.2 0.7072 
12 0.0405 11 0.1472 .3.4 0.57.39 
13 0.0139 12 0.1206 3.6 0 • .3606 
15 0.0006 1.3 0.0806 3.8 0.2273 

14 0.0673 4.0 0.1340 
15 0.0273 4.2 0.0274 
17 0.0007 4.4 0.0008 

Series Al./5( i) 

t1 N/N0 t2 ?V' No t.3 N/N
0 t4 N/N0 

1 0.9734 2 0.9067 0.6 0.9868 0.4 0.9200 
3 0.8934 3 0.6401 1.0 0.9602 0.5 0.8800 
4 0.7601 4 0.5601 1.4 0.9070 0.6 0.5600 
5 0.4801 5 0.4668 1.6 0.85.38 0.7 0.2800 
6 0 • .3735 6 0.33.35 1.8 0.7738 0.8 0.0800 
7 0.2669 7 0.2002 2.0 0.6272 0.9 0.0268 
8 0.1869 8 0.0802 2.2 0.4672 1.0 0.0002 
9 0.1337 10 0.0270 2.4 0.3072 

10 0.0937 11 0.0137 2.6 0.1339 
11 0.0804 13 0.0004 2.8 0.0273 
12 0.0404 3.0 0.0007 
13 0.0271 
14 0.0138 
19 0.0005 

Series Al./5(11) 

t1 N/N 
0 t2 ?V' No t3 ?V' No t4 ?V' No 

1 0.9734 1 0.97.34 1.0 0.9867 0 • .3 0.9867 
2 0.8801 2 0.9334 2.0 0.9067 0.4 0.97.34 
.3 0.7868 .3 0.9068 2.2 0.8535 0.5 0.9202 
4 0.7.3.36 4 0.7868 2.4 0.7069 0.6 0.6802 
5 0.5.3.36 5 0.7068 2.6 0.440.3 0.7 0.3.3.36 
6 0.4403 6 0.6135 2.8 0.1603 0.8 0.1070 
7 0.3.3.37 7 0.45.35 ,3.0 0.0537 0.9 0.05.38 
8 0.25.37 8 0.2802 3.2 0.0271 1.0 0.0006 
9 0.1471 9 0.1469 3.4 0.0005 

10 0.09.39 10 0.1069 
11 0.067.3 11 0.0269 
12 0.0407 1.3 0.0136 
16 0.02.74 14 0.000.3 
17 0.0008 
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Seriea KJL6{1) 

t1 N/N0 t2 N/No t3 N/No t4 N/N 
0 

2 O.CJ734 2 0.9600 0.8 0.9867 0.2 0.9867 
4 0.7868 2.5 0.8800 1.0 0.9467 0.3 0.8267 
6 0.6935 3 0.8134 1.1 0.8667 0.4 0.3867 
8 0.4802 3.5 0.5468 1.2 0.8001 0.5 0.0934 

10 0.3602 4 0.3202 1.3 0.6135 0.6 0.0134 
12 0.2402 4.5 0.2136 1.4 0.4535 0.7 0.0001 
14 0.1469 5 0.1203 1.5 0.2802 
16 0.0937 5.5 0.0803 1.6 0.1202 
18 0.0804 6 0.0403 1.7 0.0670 
20 0.0538 6.5 0.0137 1.8 0.0270 
22 0.0272 8.5 0.0004 1.9 0.0137 
32 0.0139 2.0 0.0004 
36 0.0006 

Series Al/6{11) 

t1 N/N0 

2 0.9468 
4 0.8402 
6 0.7336 
8 0.5870 

10 0.4270 
12 0.3604 
14 0.3338 
16 0.2806 
18 0.2673 
20 0.24CJ7 
22 0.20CJ7 
24 0.1741 
26 0.1608 
28 0.1208 
30 0.0942 
34 0.0809 
36 0.0676 
38 0.0543 
40 0.0410 
44 0.0144 
48 o.oon 

Series A"J/..7 

t1 N/No t2 N/N0 t3 N/N0 t4 N/No 

3 0.9460 1 0.9865 0.7 0.9867 0.2 0.9334 
4 0.9055 2 0.9595 1.0 0.9601 0.3 0.7068 
5 0.7299 3 0.8785 1.2 0.9468 0.4 0.3602 
6 0.6083 4 0.7CJ75 1.3 0.9335 0.5 0.0402 
7 0.5408 5 0.6894 1.4 0.8803 0.6 0.0002 
8 0.3922 6 0.5273 1.5 0.8271 
.9 0.2301 7 0.2031 1.6 0.7471 

10 0.1085 8 0.0680 1.7 0.6271 
11 0.0545 9 0.0140 1.8 0.3605 
12 0.0410 10 0.0005 1.9 0.1605 
13 0.0140 2.0 0.1205 
14 0.0005 2.1 0.0139 

2.2 0.0006 
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Series AV8 

t1 N/N0 t2 N/No t3 N/No t4 N/N0 

3 0.9606 3 0.9737 0,8 0.9867 0.1 0,9600 
4 0,9212 4 0,8816 1.2 0.9734 0,2 0.6267 
5 0,8160 5 0.8159 1.3 0,9601 0.3 0.2267 
6 0.4082 6 0.5923 1.6 0.9468 0.4 0,0267 
7 0.2635 7 0,3292 1.7 0,9335 0.5 0,0001 
8 0.1320 8 0,1056 1.8 0,7202 
9 0,0926 9 0.0399 1.9 0.3602 

10 0,0269 10 0.0136 2.0 0,1602 
19 0,0138 11 0.0005 2.1 0.0269 
21 0.0007 2.2 0.0003 

Series B:!L1 

t1 N/N
0 t2 N/N0 t3 N/No 

7.5 0,9867 3.5 0.9867 1.3 0.9734 
10 0.9734 4.5 0.9734 1.4 0.9068 

12.5 0,9601 5 0.9468 1.5 0.7735 
15 0.9335 6 0.9068 1.6 0.4802 

17.5 0.9202 6.5 0,8802 1.7 0,2136 
20 0,8802 7 0.8270 1.8 0,0270 

22.5 0.7869 7.5 0.7070 1.9 0,0137 
25 0.5336 8 0.3470 2.0 0.0004 

27.5 0,2803 8.5 0.0937 
30 0.1870 9 0.0004 

32.5 0,1204 
35 0,0271 

37.5 0,0005 

Series BV2 

t1 N/N
0 t2 N/No t3 N/No t4 N/No 

2.5 0.9734 4 0.9468 1.3 0.9867 0.25 0,8534 
5 0.9468 5 0.9068 1.7 0,9734 0,3 0.8134 

7.5 0.9335 6 0.7202 1.8 0.8801 0.35 0.4001 
10 0,8669 7 0.6402 1.9 0.6535 0.4 0.3735 

12.5 0.7869 8 0.4936 2.0 0,3869 0.45 0.1069 
15 0,6803 9 0,2270 2.1 0.1203 0.5 0.0803 

17.5 0.5470 10 0,0537 2.2 0.0537 0.55 0,0137 
20 0.4404 11 0.0137 2.3 0.0137 0,85 0,0004 

22.5 0.2271 13 0.0004 2.5 0,0004 
25 0,1471 

27.5 0,0671 
30 0,0405 

32.5 0,0272 
37.5 0,0139 

50 0,0006 
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Series BV3 

t1 N/N
0 t2 N/No t3 N/N0 t4 tVNo 

2.5 0.9867 3 0.9867 1.1 0.9867 0.15 0.9867 
5 0.9335 4 0.9734 1.9 0.9734 0.25 0.9335 

7.5 0.8935 5 0.9601 2.0 0.9601 0.3 0.9202 
10 0.8535 6 0,8001 2.1 0.9468 0.35 0.8269 

12.5 0.$402 7 0.5468 2.2 0.9202 0.4 0,7869 
15 0.8136 8 0.4135 2.3 0.$402 0.45 0.4269 

17.5 0.7470 9 0.3069 2.4 0.6136 0.5 0.3869 
20 0.6804 10 0.2136 2.5 0.4003 0.55 0.0669 

22.5 0.5471 11 0.1336 2.6 0.2537 0.65 0.0403 
25 0.4671 12 0.0403 2.7 0.1204 0.75 0.0137 

27.5 0.3605 13 0.0270 2.8 0.0538 
30 0,3073 14 0.0004 2.9 0,0138 

32.5 0.2140 3.0 0.0005 
35 0.1740 

37.5 0,1208 
40 0.0942 

42.5 0,0542 
45 0.0276 
50 0.0143 
60 0.0010 

Series BV4 

t1 N/No t2 N/No t3 N/N
0 \ N/N 

0 

2.5 0.9872 8 0,8832 2.2 0.9871 0.35 0.9871 
5 0.9744 9 0.7542 2.4 0.9742 0.45 0.9742 

7.5 0.9488 10 0.6633 2.6 0.9613 0.55 0.8963 
10 0.8208 11 0.5984 2.8 0.8964 0.6 0.9704 

12.5 0.8080 12 0.5205 3.0 0.7406 0.65 0.6886 
15 0.7952 13 0.4166 3.2 0.5199 0.7 0.6367 

17.5 0.7696 14 0.2348 3.4 0,2083 0.75 0.2991 
20 0.7568 15 0,0530 3.6 0.1044 0,8 0.2472 

22.5 0.6927 16 0.0141 3.8 0.0395 0.85 0,1182 
25 0.6543 18 0,0012 4.0 0.0006 0.95 0,0403 

27.5 0.5646 1.05 0.0014 
30 0.4877 

32.5 0.4365 
35 0.3853 

37.5 0.3084 
42.5 0.2572 
45.0 0.2316 
47.5 0.1547 

50 0.1419 
52.5 0,1035 

55 0.0779 
57.5 0.0651 
62.5 0.0395 
67.5 0,0267 

80 0.0139 
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Series cV1 

t1 W'N 
0 t2 W'No t3 W'N 

0 

2 0.9867 2.2 0.9867 1.0 0.9867 
4 0.9601 2.4 0.9734 1.2 0.9335 
5 0.9201 2.8 0.9601 1.3 0.8669 
6 0.8935 3.0 0.9069 1.4 0.5869 
7 0.8403 3.2 0.8003 1.5 0.2669 
8 0.8003 3.4 0.7070 1.6 0.0536 
9 0.7471 3.6 0.4670 1.7 0.0270 

10 0.6671 3.8 0.3337 1.8 0.0004 
11 0.5205 4.0 0.2137 
12 0.4539 4.2 0.1337 
13 0.3073 4·4 0.0805 
14 0.1473 4.6 0.0539 
15 0.0807 4.8 0.0273 
16 0.0141 5.2 0.0140 
18 0.0008 5.8 0.0007 

Series CV2 

t1 N/N0 t2 W'No t3 N/N 
0 

2 0.9867 2.8 0.9867 1.4 0.9867 
4 0.9601 3.8 0.9734 1.5 0.9201 
6 0.8668 4.0 0.9468 1.6 0.8401 
8 0.7468 4.2 0.8936 1.7 0.6268 

10 0.7335 4.4 0.8003 1.8 0.3202 
u 0.6269 4.6 0.7203 1.9 0.1469 
14 0.4536 4.8 0.6137 2.0 0.0269 
16 0.2270 5.0 0.4804 2.1 0.0009 
18 0.0537 5.2 0.3871 
20 0.0404 5.4 0.2538 
22 0.0271 
24 0.0005 
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Series CV3 

t1 N/No t2 N/No t3 N/No 

2 0.9468 3.6 0.9600 1.3 0.9600 
4 0.8002 4.0 0.8400 1.4 0.8667 
6 0.6136 4.2 0.7467 1.5 0.7467 
8 0.5203 4.4 0.6801 1.6 0.4934 

10 0.4270 4.6 0.5868 1.7 0.2934 
12 0.2804 4.8 0.5468 1.8 0.1334 
14 0.2004 5.0 0.4268 1.9 0.0801 
16 0.1338 5.2 0.3735 2.0 0.0135 
18 0.0806 5.4 0.2669 2.1 0.0002 
20 0.0406 5.6 0.2136 
22 0.0006 5.8 0.1870 

6.0 0.1337 
6.2 0.0937 
6.4 0.0671 
6.8 0.0405 
7.0 0.0272 
7.2 0.0139 

10.0 0.0006 

Series CV4 

~ N/No t2 N/No t3 N/N
0 

2 0.9460 3.2 0.9867 1.6 0.9865 
4 0.8920 4.2 0.9734 1.7 0.9730 
6 0.8515 4·4 0.9468 1.8 0.8785 
8 0.7705 4.6 0.9202 2.0 0.7570 

10 0.6219 5.2 0.8936 2.1 0.6760 
12 0.5409 5.4 0.7336 2.2 0.5004 
14 0.4329 5.6 0.6803 2.3 0.3654 
16 0.3113 6.0 0.6137 2.4 0.2709 
18 0.2033 6.2 0.4804 2.5 0.1629 
20 0.0953 6.4 0.4138 2.6 0.0684 
22 0.0413 6.6 0.3338 2.8 0.0279 
24 0.0278 7.0 0.2938 2.9 0.0144 
26 0.0008 7.2 0.2805 3.3 0.0009 

7.4 0.2272 
7.6 0.1606 
7.8 0.1473 
8.0 0.1340 
8.4 0.1074 
8.6 0.0808 
9.2 0.0542 
9.4 0.0276 
9.6 0.0143 

14.4 0.0010 
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Series OU2 

t1 N/No t2 N/No t3 N/N 
0 t4 N/N

0 

2.5 0.9865 4 0,9867 2.0 0.9867 0,2 0,9867 
5 0,9190 6 0,8801 2.2 0.9334 0,3 0,9601 

7.5 0.8380 7 0,8135 2.4 0.8534 0,5 0,8268 
10 0,7570 8 0.7335 2.6 0,7334 0,6 0,6668 

12.5 0,6895 9 0.6669 2.8 0.6934 0,7 0.5335 
15 0.5680 10 0.5336 3,0 0.5734 0,8 0.2802 

17.5 0.4600 11 0.3736 3.2 0,4801 0.9 0,1469 
20 0.4060 12 0,2670 3.4 0.3868 1.0 0,0269 

22.5 0.3250 13 0.1737 3.6 0.3068 1.1 0.0003 
25 0.2710 14 0,0804 3.8 0.2135 

27.5 0,2170 15 0,0404 4.0 0.1069 
30 0.1630 16 0,0138 4.2 0,0269 

32.5 0.1360 17 0.0005 4.6 0,0136 
35 0.0685 4.8 0.0003 

37.5 0,0280 
42.5 0,0010 

Series oU6 

tl N/No t2 N/N
0 t3 N/N

0 t4 N/N0 

5 0.9737 5 0,9734 3.0 0.9734 0.7 0.9868 
7.5 0.8422 6 0.8534 3.5 0.8934 0,8 0.9736 

10 0.7633 7 0,7734 4 0,8801 0.9 0.9472 
12.5 0,6976 8 0.6801 4.5 0.8001 1.0 0,8551 

15 0.5924 9 0.5735 5 0.7201 1.1 0.6447 
17.5 0,3820 10 0.3869 5.5 0,6001 1.2 o. 5921 

20 0.2899 11 0.2669 6.0 0.4135 1.3 0.4079 
22.5 0.2373 12 0,1603 6.5 0.2935 1.4 0.3027 

25 0.1979 13 0.1070 7 0,1602 1.5 0.1449 
27.5 0.1058 15 0.0804 7.5 0.0802 1.6 0,1055 

30 0.0795 16 0,0671 8 0.0669 1.7 0.0792 
32.5 0.0663 18 0.0405 9 0.0403 1.8 0,0529 

35 0.0531 24 0.0272 14.5 0.0270 2.0 0.0397 
42.5 0,0268 27 0,0139 45.5 0.0137 2.3 0.0265 

70 0,0136 32 0.0006 53.0 0.0004 4.7 0.0133 
75 0.0004 5.0 0.0001 

Series nUl 

tl N/No t2 N/N
0 t3 N/N0 

1 0.9730 2.5 0.9468 1.0 0.9867 
2 0.7298 3.0 0.8135 1.1 0.9734 
3 0,5271 3.5 0,6135 1.2 0.9068 
4 0.3380 4.0 0.4135 1.3 0,8402 
5 0.2029 4.5 0.2669 1.4 0.7202 
6 0.1219 5.0 0.2269 1.5 0.5469 
7 0.0814 5.5 0.1069 1.6 0.3069 
8 0,0544 6,0 0.0537 1.7 0,1469 
9 0.0274 6.5 0,0137 1.8 0.0937 

10 0.0004 12.0 0.0004 1.9 0.0271 
2.0 0.0138 
2.5 0.0005 
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Series D:\L2 

t1 N/No t2 N/N
0 t3 N/N

0 t4 N/No 

2.5 0.9334 3 0.9867 1.8 0.9334 0.3 0.9334 
5.0 0.7468 4 0.9335 2.0 0,8802 0.4 0.7334 
7.5 0.5602 5 0.8269 2.2 0,6402 0.5 0.2802 
10 0.4402 6 0.6936 2.4 0.4402 0.6 0.0536 

12.5 0.3202 7 0.4536 2.6 0.2269 0.7 0.0403 
15 0.1602 8 0.2536 2.8 0.0936 0.8 0.0003 

17.5 0.0936 9 0.1336 3.0 0,0136 
20 0.0670 10 0.0536 4.2 0.0003 

22.5 0.0138 11 0.0136 
25 0.0005 14 0.0003 

Series DU2 

t1 N/No t2 N/No t3 N/No \ N/N 
0 

2.5 0.9730 3.5 0.9595 1.6 0.9865 0.3 0.9595 
5 0.9055 4.0 0.9460 1.8 0.9730 0.4 0.8785 

7.5 0,7569 4.5 0.9325 2.0 0.9325 0.5 0.5542 
10 0.5948 5.0 0.8785 2.2 0.9055 0.6 0.2705 

12.5 0.4867 6.0 0.8245 2.4 o.8no 0.7 0,0814 
15 0.3651 6.5 0.7030 2.6 0.5138 0.8 0.0139 

17.5 0.2706 7 0,6085 2.8 0.3111 1.1 0.0004 
20 0.0950 7.5 0.5545 3.0 0.2030 

22.5 0.0410 8 0.3924 3.2 0.0544 
25 0.0140 8.5 0.2168 3.4 0.0409 

27.5 0.0005 9 0.1628 3.8 0.0275 
9.5 0.1358 4.0 0.0140 
10 0.0548 4.6 0.0005 

10.5 0.0413 
11 0,0278 

14.0 0.0143 
17.0 0.0008 

Series Dl/4 

t1 N/No t2 N/No t3 N/No t4 N/N 
0 

2.5 0.9343 2 0.9869 1.8 0.9869 0.5 0.9737 
5.0 0.8686 4 0.9738 2.2 0.9738 0.6 0.9344 
7.5 0.7502 6 0.9475 2.8 0.9345 0.7 0.6713 
10 0.5266 8 0,8686 3.0 0,8556 o.8 0.4477 

12.5 0.4477 10 0.6581 3.2 0.7899 0.9 0.2767 
15 0.3293 12 0.4608 3.4 0.6978 1.0 0.1320 

17.5 0.2504 14 0.2372 3.6 0.5926 1.1 0.0663 
20 0.1715 16 0.1583 3.8 0.4874 1.2 0.0270 

25.0 0,0926 18 0.0662 4.0 0.4481 1.3 0.0007 
27.5 0.0533 20 0.0399 4.2 0.3824 

30 0.0402 22 0,0268 4.4 0.3167 
32.5 0,0139 24 0.0005 4.6 0.2774 
37.5 0,0008 4.8 0.1985 

5.0 O.ll96 
5.2 0.0803 
5.4 0.0540 
5.6 0.0147 
6.0 0,0016 



Z39 

Series A2/1 

t1 N/No t2 N/N0 t3 N/N0 t4 N/N0 

1.0 0.9867 1.4 0.9867 0.6 0.9734 0.2 0.9468 
1.5 0.9734 1.4 0.9734 0.7 0.9334 0.3 0.3868 

2 0.9668 1.5 0.9334 0.8 0.7068 0.4 0.0802 
2.5 0.5735 1.6 0.7601 0.9 0.6002 0.5 0.0136 

3 0.3735 1.7 0.5335 1.0 0.3202 0.6 0.0003 
3.5 0.2002 1.8 0.3735 1.1 0.2269 

4 0.1336 1.9 0.3069 1.2 0.1737 
4.5 0.0804 2.0 0.2003 1.4 0.1337 

5 0.0404 2.1 0.1603 1.5 0.0805 
5.5 0.0138 2.2 0.1203 1.7 0.0672 

6 0.0005 2.3 0.1070 1.8 0.0539 
2.4 0.0670 1.9 0.0273 
2.6 0.0537 2.0 0.0140 
2.9 0.0404 2.1 0.0007 
3.0 0.0271 
3-3 0.0138 
3.4 0.0005 

Series A2/2 

t1 N/N0 t2 N/N0 t3 N/N0 t4 N/N 
0 

2 0.9734 2.0 0.9867 1.1 0.9734 0.3 0.8134 
4 0.7601 2.6 0.9601 1.2 0.8801 0.4 0.3601 
5 0.3335 2.8 0.9201 1.3 0.8135 0.5 0.0935 
6 0.2402 3.0 0.8135 1.4 0.6669 0.6 0.0002 
7 0.0936 3.2 0.7335 1.5 0.5736 
8 0.0536 3-4 0.6269 1.6 0.4270 
9 0.0270 3.6 0.5603 1.7 0.3470 

12 0.0004 3.8 0.4403 1.8 0.1870 
4.0 0.3470 1.9 0.1204 
4.2 0.2804 2.0 0.0538 
4-4 0.2404 2.1 0.0405 
4.6 0.2004 2.2 0.0139 
4.8 0.1338 2.3 0.0006 
5.0 0.1205 
5.2 0.0939 
5.4 0.0539 
5.6 0.0273 
5.8 0.0140 
7.0 0.0007 



240 

Series A.?/3 

t1 N/N0 t2 N/N 
0 t3 N/N

0 t4 N/N 
0 

2 0.9334 2 0.9867 1.1 0.9S67 0.3 0.9867 
4 O,S001 4 0.9201 1.6 0.9734 0.5 O,SSOl 
6 0.5201 5 0.826S 2.2 0.9601 0.6 0.6935 
8 0.3335 6 0,6668 2.5 0.9201 o.s 0.0802 

10 0.2135 7 0.5202 2.6 0.8669 0.9 0.0002 
12 0.1469 a 0.4002 2.7 0.7603 
14 0.1336 9 0.2402 2.S 0.6270 
16 0.1203 10 0.1602 2.9 0.4404 
1S O,OS03 11 0.0936 3.0 0.293S 
20 0.0670 12 0.0136 3.1 0.0938 
22 0.0404 13 0,0003 3.2 0.0672 
26 0,0271 3.3 0.0006 
28 o.ous 
34 0.0005 

Series A2/4 

t1 N/N
0 t2 N/N

0 t3 N/N 
0 \ N/N 

0 

1.0 0.9SOO 3 0.9SOO 1.2 0.9SOO 0.4 0.9000 
3 0.9200 4 0.8200 1.6 0.9400 0.5 0,7200 
4 0.9000 5 0.7400 1.8 o.s8oo 0.6 0.5000 
5 0.8400 6 0.6200 2.0 0.7400 0.7 0.2400 
6 0,6SOO 7 0.3600 2.2 0.6200 0.8 o.o8oo 
7 0.4200 8 0.2200 2.4 0.5000 0.9 0.0200 
8 0.2800 9 0.0400 2.6 0.3800 1.0 o.oooo 
9 0.2000 10 0.0200 2.8 0.2000 

10 0,1000 11 o.oooo 3.0 0,0600 
11 0,0800 3.2 0.0400 
12 0.0600 3.4 o.oooo 
15 0.0200 
19 o.oooo 

Series A2L2 

t1 N/N
0 t2 N/No t3 N/N

0 t4 N/N 
0 

3 0.9600 3 0.9000 1.8 0.9SOO 0.3 0.9800 
4 0.8800 4 0.7000 2.0 0.9600 0.4 0.9400 
5 0,6000 5 0.5800 2.2 0.9400 0.5 0,8400 
6 0.3000 6 0.4200 2.4 0,7200 0.6 o.5soo 
7 0.1800 7 0.2200 2.6 0.5800 0.7 0.3200 
8 0.1600 8 0.1200 2.s 0.3200 0.8 0,0600 
9 0.1200 9 0.1000 3.0 0.1400 0.9 o.oooo 

10 0.0800 10 0.0600 3.2 0.0400 
12 0,0600 11 0,0200 3.4 0,0200 
19 0.0400 12 0,0000 4.0 0,0000 
21 0,0200 
.36 o.oooo 



,~J.L.1 

Series A2/6 

t1 N/N
0 t2 N/N

0 t3 N/N
0 t4 N/N 

0 

1 0.8000 2 0.9800 1.2 0.9600 0.3 0.9300 
3 0.7600 3 0.9600 1.4 0.8400 0.4 0.7600 
4 0.6400 3.5 0.7800 1.6 0.5400 0.5 0.5400 
5 0.4300 4 0.7000 1.8 0.4400 0.6 0.4600 
6 0.4000 4.5 0.5200 2.0 0.4200 0.7 0.4400 
7 0.2200 5 0.4400 2.2 0.3600 0.8 0.3800 
8 0.1000 5.5 0.3200 2.4 0.3200 0.9 0.2400 
9 0.0600 6 0.2400 2.6 0.2800 1.0 0.1200 

10 o.oooo 6.5 0.2000 2.8 0.1800 1.1 0.0200 
7.5 0.1200 3.0 0.0800 1.2 o.oooo 
8.0 0.1000 3.2 0.0400 
8.5 0.0200 3.8 o.oooo 

9 o.oooo 

Series B2L1 

t1 N/N0 t2 N/N
0 t3 N/N 

0 t4 N/N 
0 

5 0.9834 2.5 0.9834 1.4 0.9500 0.3 0.9500 
10 0.9668 4·0 0.9335 1.5 0.9334 0.4 0.5500 
20 0.8502 4.5 0.9169 1.6 0.8501 0.5 0.0500 
25 0.7836 5.0 0.8503 1.8 0.5335 o.6 o.oooo 
30 0.5836 6.5 0.8337 1.9 0.2169 
35 0.3670 7 0.8004 2.0 0.0336 
40 0.1337 7.5 0.7838 2.1 0.0003 
45 0.0837 8 0.6338 
50 0.0504 3.5 0.3338 
60 0.0338 9 0.0672 
75 0.0005 9.5 0.0172 

10 0.0006 

Series B2/2 

\ N/N t N/N t3 N/N t4 N/N 
0 2 0 0 0 

5.0 0.8905 3 0.9864 1.6 0.9864 0.4 0.9864 
7.5 0.8221 5 0.9592 1.7 0.9728 0.5 0.8769 
10 0.6441 6 0.9182 2.6 0.9592 0.6 0.5756 

12.5 0.4661 7 0.8772 2.8 0.9456 o.7 0.2195 
15 0.3155 8 0.7951 3.0 0.8498 0.8 0.0552 

17.5 0.2334 9 0.7815 3.1 0.7266 0.9 0.0142 
20 0.1513 10 0.7405 3.2 0.3705 1.0 0.0006 

22.5 0.0692 11 0.6173 3.3 0.1925 
25 0.0419 12 0.5215 3.4 0.0554 

27.5 0.0146 13 0.3298 3.5 0.0007 
32.5 0.0010 14 0.1244 

15 0.0149 
19 0.0013 



Series 82/3 

\ N/N0 t2 N/N
0 t3 N/N0 t4 N/N0 

2.5 0,9869 4 0.9867 2.2 0.9867 0.6 0.9734 
5 0.9212 5 0,9601 2.4 0.9601 0.7 0,8134 

7.5 0,8818 6 0.8935 2.6 0.9468 0.8 0,6001 
10 0.6450 7 0.7602 3.4 0,8668 0,9 0.2935 

12.5 0.4872 8 0,6402 3.6 0.7735 1.0 0,0269 
15 0.3557 9 0.4669 3.8 0,4402 1.1 0.0136 

17.5 0.2373 10 0,3203 4.0 0,1336 1.2 0,0003 
20 0.1452 11 0.1870 4.2 0.0136 

22.5 0,0531 12 0.1070 4.4 0,0003 
25 0.0400 13 0.0804 

27.5 0.0006 14 0,0272 
15 0,0006 

Series 82/4 

t1 N/N 
0 t2 N/N 

0 t3 N/N 
0 t4 N/N

0 

2 0.9800 4 0,9800 1.8 0.9400 0,8 0.9200 
3 0.9400 5 0.9400 2.2 0,9000 0.9 0,8400 
4 0,9200 6 o. 7800 2.6 0,8600 1.0 0,5000 
6 0.8800 7 0.5400 3.2 0.8400 1.1 0.2000 
7 0.7800 8 0.3800 3.4 0.8200 1.2 0,0800 
8 0.6200 9 0,2800 3.8 0.7800 1.3 0,0200 
9 0.4800 10 0.2000 4.0 0,6200 2.4 o.oooo 

10 0,2200 11 0,1200 4.2 0,3600 
11 0,0800 12 0,1000 4o4 0,1200 
12 0.0400 13 0,0400 4.6 0.0200 
13 o.oooo 14 0.0200 4.8 0,0000 

15 0,0000 

Series 82L2 

tl N/N
0 t2 N/N 

0 t3 N/N
0 t4 N/N 

0 

10 0.9412 5.0 0.9616 2.2 0.9608 0.6 0,9804 
15 0.9C20 6 0.9232 2.6 0.9412 0.7 0,9020 
20 0.6471 7 0.8848 2.8 0.9216 0.8 0.8040 
25 0.4511 8 0,8464 3.0 0,8824 0.9 0.6276 
30 0,2355 9 0.8272 3.2 0,8628 1.0 0.3737 
40 0,1571 10 0.7696 3.4 0.8432 1.1 0.1375 
45 0,0983 11 0,6927 3.6 0.8236 1.2 0.0395 
50 0,0787 12 0.5775 4.0 0,8040 1.4 0.0199 
55 0,0591 13 0.5391 4.2 0.7844 1.5 0.0003 
70 0.0395 14 0.3468 4.4 0.5295 
85 0.0199 16 0.2507 4.6 0,2550 

lOO 0.0003 17 0.2123 4.8 0,0198 
18 0.1162 5.0 0.0002 
19 0.0393 
20 0.0009 



z1o. 

Series B2/.6 

t1 N/N
0 t2 N/No t3 N/N 

0 t4 N/N 
0 

2.5 0.9600 4 0.9800 1.0 0.9800 0,7 0,9600 
5 0,8000 6 0,8000 1.4 0.9400 0.8 0,9400 

7.5 0.6000 8 0.5800 1.6 0.9000 0.9 0.9200 
10 0.4200 10 0,2800 2.0 0,8800 1,0 0,8000 

12.5 0.2800 12 0,2000 2.2 0,8600 1.1 0,4800 
15 0,]800 14 0,0800 2.4 0.8400 1.2 0,0200 

17.5 0,1400 16 0,0400 2.8 0,8200 1.3 0,0000 
20 0.1200 22 0,0000 3,0 0,7800 

22.5 0.1000 3.2 0,7600 
25 0,0400 3.4 0,7400 

37.5 0.0200 3.6 0,7200 
52.5 o.oooo 3.8 0,7000 

4.0 0,6800 
4.2 0,5800 
4.4 0,2400 
4.6 0,1200 
4.8 0,0200 
5.0 0,0000 

Series 0~1 

t1 N/N
0 t2 N/N

0 t3 N/N
0 t4 N/N 

0 

2.5 0,9200 2 0,9867 1.3 0.9867 0,2 0.9600 
7.5 0,8800 3 0.9467 1.4 0.9734 0.3 0,7734 
10 0.7734 4 0,8801 1.5 0.9334 0,4 0.4268 

12.5 0.6401 5 0,8269 1.6 0,8534 0,5 0.0268 
15 0,4001 6 0.6269 1.7 0,7201 0.6 0.0002 

17.5 0,2668 7 0.3336 1,8 0.4801 
20 0,1602 8 0,1203 1.9 0,3201 

22.5 0,1070 9 0,0403 2,0 0,1868 
25 0,0804 10 0,0137 2.1 0.0668 

27.5 0,0538 12 0,0004 2.2 0.0136 
30 0,0138 2.3 0.0003 

32.5 0.0005 



Series C;i2 

t1 N/N 
0 t2 N/N

0 t3 N/N 
0 t4 N/N0 

2 0.9867 1.0 0.9868 1.1 0.9734 0.3 0.9734 
3 0.9201 1.5 0.9342 1.2 0.9068 0.4 0.6668 
4 0.8535 2.0 0.9079 1.5 0.8268 0.5 0.2535 
5 0.7469 2.5 0.8816 1.6 0.6668 o.6 0.0002 
6 0.6669 3.0 0.8684 1.7 0.4668 
7 0.6137 3.5 0.7763 1.8 0.3335 
8 0.4137 4.0 0.6053 1.9 0.2269 
9 0.3204 4.5 0.4869 2.0 0.1737 

10 0.2271 5.0 0.3817 2.1 0.1604 
11 0.1871 5.5 0.2896 2.2 0.1204 
12 0.1205 6.0 0.2107 2.3 0.1071 
13 0.0539 6.5 0.1186 2.4 0.()938 
14 0.0406 7.0 0.1054 2.5 0.0538 
15 0.0273 7.5 0.0660 2.'Z 0.0405 
18 0.0140 8.5 0.0528 3.0 0.0272 
27 0.0007 9 0.0396 3.2 0.0139 

9.5 0.0264 3.3 0.0006 
11.5 0.0132 
13.5 o.oooo 

Series C2Q 

t1 N/No t2 N/N0 t3 N/N
0 t4 N/N

0 

2.5 0.9867 1.0 0.9867 0.8 0.9867 0.3 0.9734 
7.5 0.9335 4.0 0.9734 1.6 0.9067 0.4 0.6401 
10 0.8803 4.5 0.9468 1.8 0.7467 0.5 0.3868 

12.5 0.7870 5 0.9068 2.0 0.5C67 0.6 0.0935 
15 0.5737 5.5 0.8135 2.2 0.2934 0.7 0.0269 

17.5 0.3871 6 0.6669 2.4 0.2001 0.8 0.0003 
20 0.2005 6.5 0.5069 2.6 0.1068 

22.5 0.1205 7 0.3869 2.8 0.0668 
25 0.0805 7.5 0.3203 3.2 0.0268 

27.5 0.0405 8 0.2270 3.4 0.0135 
32.5 0.0139 8.5 0.1337 4.2 0.0002 

35 0.0006 9 0.0937 
9.5 0.0804 
10 0.0538 

10.5 0.0405 
13.5 0.0272 
14.5 0.0139 
18.0 0.0006 



2.4_5 

Series C?/4 

t1 N/N
0 t2 N/N 

0 t3 N/No t4 N/N 
0 

2.5 0.9800 1 0.9800 1.2 0.9800 0.4 0.9800 
7.5 0.9400 4 0.7800 1.4 0.9600 0.5 0.8600 
10 0.8400 5 0.6200 1.6 0.9400 0.6 0.7600 

12.5 0.7800 6 0.4800 2.0 0.8800 0.7 0.4000 
15 0.7400 7 0.3200 2.2 0.8400 0.8 0.3000 

17.5 0.6600 8 0.2400 2.4 0.6800 0.9 0.1800 
20 0.6400 9 0.1200 2.6 0.6400 1.0 0.1400 

22.5 0.4600 10 0.1000 2.8 0.6000 1.1 0.0200 
25 0.3800 11 0.0600 3.0 0.5400 1.2 o.oooo 

27.5 0.2400 13 0.0200 3.2 0.4800 
30 0.1800 16 o.oooo 3.4 0.4200 

32.5 0.1200 3.6 0.2800 
35 0.0800 3.8 0.2400 

37.5 0.0400 4.0 0.2000 
45 0.0200 4.2 0.1800 
60 o.oooo 4.4 0.]200 

4.6 0.0800 
4.8 0.0600 
5.0 o.oooo 

Series C2/5 

t1 N/N
0 t2 N/N

0 t3 N/N 
0 

t4 N/N0 

5 0.9800 4 0.9800 3 0.9800 0.9 0.9400 
10 o.ssoo 6 0.9600 3.4 0.9600 1.0 0.8800 
15 0.6800 8 0.9400 3.8 0.9000 1.1 0.6800 
20 0.5000 10 0.8600 4.2 0.8000 1.2 0.2800 
25 0.3600 12 0.7400 4.4 0.5400 1.3 0.1600 
30 0.2600 14 0.5200 4.6 0.3400 1.4 0.0200 
35 0.1600 16 0.3400 4.8 0.2600 1.5 o.oooo 
40 o.noo 18 0.1600 5.0 0.0800 
45 0.1000 20 0.0600 5.2 0.0600 
50 0.0800 22 o.oooo 5.4 0.0200 
55 0.0200 
85 o.oooo 

Series D?/1 

t1 N/N0 t2 N/N
0 t3 N/N0 t4 N/N0 

5 0.9067 3 0.9067 1.0 0.9867 0.3 0.8667 
7.5 0.6934 4 0.8267 1.3 0.9601 0.4 0.4267 
10 0.4401 5 0.6534 1.4 0.8935 0.5 0.0801 

12.5 0.2535 6 0.3468 1.5 0.6669 0.6 o.ooo1 
15 0.1202 7 0.1602 1.6 0.5203 

17.5 0.0670 8 0.1202 1.7 0.4403 
20 0.0404 9 0.1069 1.8 0.2937 
25 0.0138 10 0.0!303 1.9 0.2137 

42.5 0.0005 11 0.0537 2.0 0.1737 
12 0.0271 2.1 0.1604 
16 0.0005 2.2 0.1338 

2.3 0.0938 
2.4 0.0672 
2.5 0.0539 
2.6 0.0406 
3.0 0.0140 
3.1 0.0007 



Series D2!2 

t1 N/N0 t2 N/No t3 N/N
0 t4 N/N0 

2.5 0.9600 1 0,9867 1.0 0.9734 0,3 0.9867 
5 0.8400 2 0.9734 1.4 0.9601 0,4 0.7734 

7.5 0,7600 3 0.8934 1.6 0.8668 0,5 0.3868 
10 0,5867 4 0.8001 1.8 0.7068 0.6 0.1068 

12.5 0.4134 5 0.7335 2.0 0.4668 0,7 0.0802 
15 0.2134 6 0.6402 2.2 0.3068 0.8 0,0669 

17.5 0,0534 7 0.3736 2.4 0.1735 0.9 0.0137 
20 0,0401 8 0,2670 2.6 0.1069 1.0 0.0004 

22.5 0.0135 9 0.1204 2.8 0,0803 
27.5 0,0002 10 0.0538 3.0 0.0670 

11 0.0272 3.4 0.0537 
15 0.0139 3.6 0.0404 
16 0.0006 3.8 0,0271 

4.0 0,0138 
4.2 0.0005 

Series D2/3 

t1 N/N
0 t2 N/N0 t3 N/N 

0 t4 N/No 

5 0,9867 4 0.9600 1.6 0.9867 0.4 0.9734 
7.5 0.9734 6 0,8800 2.2 0.8401 0.5 0,7868 
10 0,9601 8 0,6800 2.4 o. 7735 0,6 0.5868 

12.5 0,9069 10 0.3867 2.6 0.6802 0.7 0,3735 
15 0,8669 12 0,1734 2.8 0,5202 0,8 0.2402 

17.5 0.7336 14 0.0934 3.0 0.4269 0.9 0.0936 
20 0,6270 16 0,0402 3.2 0.3336 1.0 0.0536 

22.5 0,5070 18 0.0269 3.4 0.2804 1.1 0,0270 
25 0.3470 20 0,0136 3.6 0.2272 1.2 0.0004 

27.5 0.2804 24 0,0003 3.8 0.2006 
30 0,1738 4.0 0.1206 

32.5 0,1206 4.2 0.0940 
35 0,0806 4.4 0,0540 

37.5 0.0274 4.6 0,0141 
40 0.0142 5.0 0.0007 
50 0,0010 



247. 

Series D?/4 

t1 li/N
0 t2 N/No t3 N/No t4 N/No 

5 0.9388 4 0.9800 1.8 0.9600 0.4 0.9800 
10 0,8164 6 o.noo 2.0 0.9400 0,5 0.9600 
15 0.6532 8 0.4400 2.4 0.9000 0.6 0.9400 
20 0.5512 10 0,2600 2.6 0,8800 0.7 0.8400 
25 0.4084 12 0.1800 2.8 0.8400 0.8 0.5800 
30 0.2452 14 0.1600 3.0 0.7600 0.9 0.3800 
35 0.1840 16 0.1200 3.2 0.6600 1.0 0.2600 
40 0.1228 18 0.1000 3.4 0.6400 1.1 0.1400 
45 0,0820 22 0.0800 3.6 0.5200 1.2 0.1000 
50 0.0616 26 0.0600 3.8 0.4400 1.3 0.0200 
65 0.0208 30 0.0400 4.0 0.4000 1.4 0.0000 

105 0.0004 32 0,0200 4.2 0.3600 
34 o.oooo 4.8 0.3000 

5.0 0.2000 
5.2 0.1400 
5.4 0.1200 
5.6 0,0800 
5.8 0.0200 
6.4 o.oooo 

Series D2/5 

t1 N/N
0 t2 N/N

0 t3 N/N0 t4 N/N
0 

10 0.8432 4 0.9400 1.6 0.9800 0.4 0.9800 
15 0.5491 6 0.8200 2.0 0.9600 0.6 0.9600 
20 0.3923 8 0.6600 2.2 0.9400 0.7 0.9400 
25 0,2551 10 0.5200 2.6 0.9200 0.8 0.8200 
30 0.1767 12 0.4000 2.8 0.9000 0.9 0,6000 
35 0,0983 14 0.1600 3.0 o.sooo 1.0 0.4800 
45 0.0395 16 0.1000 3.2 0,6800 1.1 0,3600 
50 0.0199 18 0,0800 3.4 0.6600 1.2 0.2600 

100 0.0003 20 0,0600 3.6 0.5200 1.3 0.1600 
24 0.0400 3.8 0.4600 1.4 0,0800 
26 0.0200 4.0 0.3600 1.5 0.0400 
30 o.oooo 4.2 0.3000 1.6 o.oooo 

4.8 0.2200 
5.0 0.1600 
5.2 0,1200 
5.4 0.1000 
5.6 0.0800 
5.8 0.0400 
6.0 o.oooo 



2~~[~ 

Series A3/1 

t1 N/N
0 t2 N/N

0 t3 N/N
0 t4 N/No 

1 0.9867 2.5 0.9867 1.3 0.9600 0.3 0.8534 
2 0.9734 3 0.9734 1.4 0.8267 0.4 0.3201 
3 0.9202 3.5 0.8668 1.5 0.6801 0.5 0.0535 
4 0.8936 4 0.5468 1.6 0.4801 0.6 0.0269 
5 0.8270 4.5 0.1868 1.7 0.3068 0.7 0.0003 
6 0.6537 5 0.0535 1.8 0.1468 
7 0.3871 5.5 0.0135 1.9 0.0936 
8 0.1071 7 0.0002 2.0 0.0003 
9 0.0671 

10 0.0139 
12 0.0006 

Series A3/2 

t1 N/N
0 t2 N/N0 t3 N/N

0 t4 N/N
0 

2 0.9867 2.5 0.9734 1.3 0.9867 0.3 0.6934 
3 0.9734 3 0.9601 1.4 0.8401 0.4 0.2668 
4 0.9468 3.5 0.9069 1.5 0.7735 0.5 0.0135 
5 0.8402 4 0.8269 1.6 0.5869 0.6 0.0002 
6 0.7736 4.5 0.6269 1.7 0.4136 
7 0.6670 5 0.3469 1.8 0.2270 
8 0.4937 5.5 0.1869 2.0 0.0937 
9 0.2804 6 0.1069 2.1 0.0537 

10 0.2138 6.5 0.0136 2.2 0.0271 
11 0.1338 7 0.0003 2.3 0.0138 
12 0.0806 2.4 0.0005 
13 0.0406 
15 0.0140 
16 0.0007 

Series A3/3 

t1 N/N
0 t2 N/N0 t3 N/N

0 t4 N/N
0 

2 0.9600 3 0.9867 1.9 0.9600 0.4 0.8934 
3 0.8534 4 0.9067 2.0 0.8400 0.5 0.5734 
4 0.6134 4.5 0.8535 2.1 0.6267 o.6 0.2401 
5 0.4668 5 0.7602 2.2 0.3467 0.7 0.0135 
6 0.3868 5.5 0.6136 2.3 0.0934 0.9 0.0002 
7 0.2668 6 0.3470 2.4 0.0001 
8 0.2136 6.5 0.2537 
9 0.1470 7 0.1737 

10 0.1070 7.5 0.1071 
11 0.0404 8 0.0405 
12 0.0271 8.5 0.0139 
13 0.0005 9 0.0006 
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Series A3/4 

t1 N/No t2 N/N 
0 t3 N/N

0 t4 N/No 

2.5 0,9600 2.5 0.9867 1.8 0,9867 0,4 0,8667 
5 0.8934 3 0,9734 1.9 0.9201 0,5 0 • .3067 

7.5 0,8801 4.5 0.9468 2.0 0.7335 0.6 0,0134 
10 0,7.3.35 5.5 0,8802 2.1 0,4269 0,7 0,0001 

12.5 0,69.35 6 0.7602 2.2 0,1069 
15 0.5602 6.5 0.6936 2.3 0,000.3 

17.5 0 • .3469 7 0.4670 
20 0.120.3 7.5 0 • .3204 

22.5 0.0537 8 0.1471 
25 0.0271 8.5 0.0671 

27.5 0.01.38 9 0,0271 
32.5 0.0005 9.5 0.0005 

Series C3/1 

t1 N/No t2 N/N
0 t.3 N/No t4 N/No 

2 0.9867 .3 0.9867 2.2 0.9867 0.4 0.9200 
4 0.97.34 4 0.9467 2.4 0,8267 0.5 0,7867 
6 0.9.3.34 5 0,8267 2.6 0.5601 0.6 0.4134 
8 0,77.34 6 0.77.35 2.8 0.4935 0.7 0.1.3.34 

10 0.65.34 7 0.57.35 .3.0 0 • .3602 0.8 0,0001 
12 0.4668 8 0.4269 .3.2 0.2269 
14 0 • .3868 9 0 • .3.3.36 .3.4 0.160.3 
16 0.2802 10 0.25.36 .3.6 0,080.3 
18 0.2270 11 0.1470 3.8 0,0403 
20 0.1.337 12 0.0938 4.2 0.01.37 
22 0.1204 13 0.0672 4.4 0.0004 
24 0.0672 14 0.0406 
26 0.0539 15 0,0140 
28 0.0273 19 0.0007 
32 0.0140 
.34 0.0007 

Series C~L2 

t1 N/N0 t2 N/N0 t3 N/No t4 N/No 

2 0.9867 3 0.9734 1.0 0.9868 0.4 0.9867 
4 0.9067 4 0.9068 1.6 0.9736 0.5 0.8534 
6 0.8134 5 0,8268 1.8 0.9604 0.6 0 • .3868 
8 0.7067 6 0.7602 2.0 0.9472 0,7 0.1602 

10 0.4402 7 0.5869 2.2 0,9072 o.8 0.0536 
12 0,3736 8 0.4403 2.4 0,8006 0.9 0,0004 
14 0,2803 9 0.2137 2.6 0.6406 
16 0.1470 10 0.09.37 2.8 0 • .3740 
18 0.0804 11. 0.0405 3.0 0.1474 
20 0.0272 12 0.0139 3.2 0,0674 
22 0.01.39 15 0.0006 3.4 0.0408 
24 0,0006 3.6 0,0142 

4.0 0.0009 
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Series 03/3 

t1 N/N
0 t2 N/No t3 N/No t4 N/No 

3 0.9468 2 0,9867 1.4 0.9869 0,4 0,9867 
4 0,8668 3 0.9734 1,6 0.9738 0,5 0.6934 
5 0,7735 4 0.8268 1.8 0.9475 0,6 0.3868 
6 0,6269 5 0,7202 2.2 0.9081 0.7 0,0535 
7 0.4936 6 0.5736 2.4 0.7897 0,8 0.0135 
8 0.4536 7 0.3870 2.6 0.6319 0,9 0,0002 
9 0.3336 8 0.2537 2.8 0,4477 

10 0,2403 9 0,1604 3.0 0.1583 
11 0.2137 10 0,0804 3.2 0.0926 
12 0.1337 11 0.0272 3.4 0.0269 
13 0,1071 12 0,0006 3.6 0,0138 
14 0.0539 4.0 0,0007 
15 0.0273 
17 0,0140 
19 0,0007 

Series 03/4 

t1 N/No t2 N/No t3 N/No t4 N/N
0 

4 0,9600 2 0.9871 1.2 0.9867 0.4 0.9867 
6 0.9200 3 0.9352 2.2 0.9734 0,5 0,8801 
8 0,7067 5 0.8703 2.4 0,9601 0.6 0.5068 

10 0.49.34 6 0,7924 2.6 0,8801 0.7 0,0335 
12 0.3868 7 0.7145 2.8 0.7335 0,8 0.0669 
14 0.2668 8 0,5197 3.0 0,5469 0.9 0,0137 
16 0,1868 9 0.3249 3.2 0.3736 1.0 0,0005 
18 0,1068 10 0.2211 .3 .4 0,2136 
20 0,0668 11 0,1302 3.6 0.1470 
22 0,0536 12 0,0783 .3.8 0,0804 
26 0,0404 13 0.0264 4.0 0,0404 
30 0,0272 14 0.0135 4.2 0.0004 
32 0,0140 20 0,0006 
50 0,0008 
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APPENDIX 3 

CHARACTERISTICS OF COALESCENCE 

TIME DISTRIBUTIONS 

a
1

, a
2

, a
3

, a
4 

: Spherical drop diameter at the first, second, 

third and fourth stage of coalescence, respectively, ems. 

L : Fall height of the primary drop to the interface 

(N.B. Where L is reported as L = 0 ems. 

this means that the drop was formed very close 

to the interface and the distance of fall could 

not be measured accurately but vas estimated to 

be between 0.2 and 0.3 ems.) 

tml' tm2' t~, tm4 : Mean coalescence rest-time for the first, 

second, third and fourth stage of coalescence, respectively, seconds. 

E) 1.E>2,c>3,E>4 : Standard deviation of the coalescence rest--time 

for the first, second, third and fourth stage of coalescence, 

respectively, seconds. 

tmin 1 minimum coalescence rest-time, seconds 

tmax 1 maximum coalescence rest-time, seconds 

tt 1 the time for 50% of the drops to coalesce, seconds. 



Heptane-Water 

First Stage Coalescence 

Study a1 L tml 01 tmin tmax tt tml/t Number of Double-drop 
No. t Drops Assessed Coa1 escence 

Al/1(1) 0.324 0 9.11 5.78 1.30 26.80 8.75 1.041 75 NO 
Al/1(11) 0.324 0 11.72 6.65 2.60 29.40 11.26 1.041 75 NO 
Al/2.{1) 0.324 2.5 14.07 S.17 1.70 33.10 13.80 1.020 75 NO 
Al/2(11) 0.324 2.5 S.63 6.57 1.20 28.05 6.50 1.328 75 NO 
Al/3(1) 0.492 0 8.32 7.13 1.20 41.60 6.46 1.288 75 NO 
Al/3(11) 0.492 0 12.73 12.04 0.80 61.80 9.05 1.410 75 NO 
Al/4 0.492 5.0 4.71 3.05 0.70 14.40 3.98 1.185 75 NO 
Al/5 0.406 o.- 5.82 3.00 0.75 18.00 5.20 1.120 75 NO 
Al/6(i) 0.348 0 9.14 6.06 0.60 34.00 7.86 1.162 75 YES 
Al/6(11) 0.348 0 14.10 13.46 0.65 47.70 8.95 1.573 75 YES N Al/7 0.348 2.5 6.99 2.56 2.20 13.80 7.25 0.964 75 YES "' N Al/8 0.348 5.0 6.27 2.66 2.25 20.10 5.75 1.095 75 YES 

A2/1 0.325 0 2.80 0.97 0.50 5.50 2.65 1.059 75 NO 
A2/2 0.416 0 5.33 3.28 1.50 11.70 4.60 1.160 75 YES 
A2!3 0.505 0 7.94 6.15 0.80 33.30 6.11 1.300 75 YES 
A2/4 0.596 0 7.08 3.00 0.90 18.20 6.32 1.121 50 YES 
A2/5 0.596 0 6.64 5.22 2.40 35.30 . 5.29 1.047 50 YES 
A2/6 0.640 0 4.71 2.76 0.50 9.90 5.03 0.937 50 YES 

A3/1 0.416 2.5 6.30 1.87 0.60 11.60 6.60 0.956 75 YES 
A3/2 0.416 5.0 7.91 2.77 1.90 15.50 7.95 0.996 75 YES 
A3/3 0.416 7.5 5.46 2.81 1.30 12.40 4.76 1.149 75 YES 
A3/4 0.416 10.0 14-46 6.02 1.30 32.30 15.81 0.914 75 YES 



Heptane-11ater 

Second Stage Coalescence 

Study a2 tm2 c2 
No, 

tmin \nax tt \nt'tt rl 

Al/1{1) 0,1229 6.28 2.56 0,50 10.65 6 • .31 0.995 0 • .3790 
Al/1{11) 0.1229 7.01 2.2.3 1,20 11.00 7.58 0.924 0 • .3790 
Al/2(1) 0.1290 7.92 1.66 1.80 10.90 8 • .35 0.948 0 • .3980 
Al/2{11) 0,1290 7.06 1.83 2.60 9,60 7 • .36 0.960 0.3980 
Al/3 (1) 0.1540 9.16 4.63 0.90 17.20 9.15 1.001 0.31.35 
Al/3 (ii) 0.1540 9.76 4.75 1,.30 18.70 9.08 1.076 0 • .3135 
Al/4 0.1610 6.8.3 .3.92 1.20 16.00 6.61 1.0.33 0.3275 
Al/5 0.1409 4.72 2.43 1.15 12.00 4.64 1.017 0 • .3465 
Al/6(1) o.n5o 3.71 1.13 1.50 8.10 3.63 1,021 0 • .3302 
Al/7 0,1341 5.65 1.92 0,90 9.20 6.10 0.926 0.3855 

N 
Al/8 0.1189 6.11 1.53 2.45 10.10 6 • .31 0.968 0.3418 "' "' 
A2/1 0.12.30 1.77 0.43 1,30 3.30 1.72 1.031 0 • .3790 
A2/2 0,1426 3.911 1.47 1.90 6.80 3.75 1.042 0.3430 
A2/3 0,1558 7.22 2.41 1.90 12.10 7,10 1.018 0.3081 
A2/4 0.1622 6.22 1.82 2.30 10.40 6.50 0,957 0,2721 
A2/5 0,1622 5.54 2.22 2.10 u.oo 5.50 1.008 0.'2721 
A2/6 0,16.30 1.96 0,70 1.90 8,60 4.65 0.423 0.2546 

A3/1 0.1450 4.00 0.63 2.20 6.60 4.06 0.983 0.3480 
A3/2 0.1461 4.71 0,90 2.30 6.80 4.72 0.998 0.3519 
A3/3 0.1431 5.73 1.23 2.90 8.80 5.73 0.999 0.3440 



Heptane-l~ater 

Third Stage Coalescence 

Study a, tm3 b3 \nin t tt tmftt r2 
No. 

max 

Al./1(1) 0.0571 1.136 0.20 1.30 2.00 1.93 0.968 0.4665 
Al./1{11) 0.0571 1.887 0.34 1.30 2.30 2.06 0.916 0.4665 
Al/2(1) 0.0593 2.05 0.14 1.50 2.30 2.14 0.958 0.4600 
Al/2(11) 0.0593 1.99 0.15 1.50 2.35 2.03 0.977 0.4600 
Al./3 {i) 0.0662 3.48 0.96 0.65 8.50 3.66 0.950 0.4300 
Al./3(11) 0.0662 3.43 0.69 1.60 5.10 3.56 0.964 0.4300 
AJ./4 0.0750 3.31 0.64 0.65 4.35 3.47 0.955 0.4660 
AJ./5 0.0631 2.19 0.55 0.40 3.20 2.15 1.018 0.4480 
Al./6 0.0530 1.32 0.22 0.70 1.90 1.37 0.962 0.4610 
AJ./7 0.0601 1.65 0.27 o.6o 2.10 1.75 0.942 0.4580 N 

Al/8 0.0580 1.81 0.20 0.70 2.10 1.85 0.975 0.4880 
l..n ..,. 

A2/1 0.0573 0.94 0.28 0.50 1.90 0.93 1.018 0.4662 
A2/2 0.0635 1.53 0.32 1.00 2.20 1.55 0.988 0.4460 
A2/3 o.6650 2.77 0.33 1.00 3.20 2.87 0.965 0.4272 
A2/4 0.6790 2.31 0.48 1.10 3.30 2.40 0.962 0.4080 
A2/5 0.6790 2.59 0.36 1.70 3.80 2.68 0.966 0.4080 
A2/6 0.6480 1.96 0.70 1.00 3.70 1.65 1.190 0.3980 

A3/1 0.6580 1.55 0.19 1.20 1.90 1.59 0.975 0.4540 
A3/2 0.6970 1.62 0.23 1.20 2.30 1.65 0.982 0.4775 
A3/3 0.6830 2.09 0.13 1.80 2.30 2.15 0.973 0.4775 
A3/4 0.6830 2.0Z o.n 1.70 2.20 2.08 0.970 0.4775 



Heptane-1~ater 

Fourth Stage Coa1esoenoe 

Study a4 tm4 64 
No. 

\nin tmax tt tm/tt r3 

Al/1(1) 0.0285 0.39 o.n 0.20 0,80 0.41 0.921 0.5 
Al/1(11) 0,0285 0.36 0,10 0,20 0.70 0.39 0.882 0.5 
Al/2(1) 0,0297 0,40 0.09 0,20 0.75 0.44 0.911 0.5 
Al/2(11) 0,0297 0.40 0.09 0.20 0.60 0.42 0.935 0.5 
Al/3(1) 0,0331 0.81 0.68 0.25 1.00 0.79 1.020 0.5 
Al/3(11) 0.0331 0.78 0.17 0.45 1.20 0.83 0.937 0.5 
Al/4 0.0375 0.83 0,18 0.50 2.00 0.83 0.988 0.5 
Al/5 . 0.0315 0.59 0.12 0.30 0,90 0.62 0.945 0.5 
Al/6(1) 0.0265 0.34 0.09 0.15 0.60 0.37 0.878 0.5 
Al/7 0.0301 0.31 0.09 0,10 0.50 0.35 0,885 0.5 
Al/8 0.0290 0.20 0.07 0.05 0.40 0.22 O.B94 0.5 N 

"' "' A2/1 0.0287 0.24 0.07 0,10 0.50 0.27 0.899 0.5 
A2/2 0.0313 0.37 0,20 0.50 0.36 1.050 0.5 
A2/3 0.0333 0.59 0.12 0.20 0,80 0.66 0.905 0.5 
A2/4 0.0339 0.54 0.14 0.30 0.90 0,60 0.910 0.5 
A2/5 0,0339 0.57 0.13 0.20 0,80 0.63 0.910 0.5 
A2/6 0.0324 0.59 0.26 0.20 1.10 0.53 1.120 0.5 

A3/1 0.0329 0.32 0,08 0.20 0,60 0.35 0.920 0.5 
A3/2 0,0348 0.29 0.07 0,20 0,50 0.33 0,900 0.5 
A3/3 0,0342 0.47 0,10 0,30 0,80 0.52 0.910 0.5 
A3/4 0.0342 0.41 0,06 0.30 0,60 0.46 0.920 0.5 



0.05M Decanoic Acid 

First Stage Coalescence 

Stttd7 a,_ L tml 61 tmin tmax tt tllllitt Number of Doubl&-drop 

No. Drops Assessed Coalescence 

Bl/1 0.264 0 25.06 5.72 5.60 .36.50 25.25 0.992 75 NO 

Bl/2 0 • .312 0 18.14 7.6.3 1.90 48.00 18.50 0.980 75 NO 

Bl/.3 0 • .372 0 24.14 11.59 1.90 59.90 2,3.80 1.012 75 NO 

Bl/4 0.454 0 ,30.99 16.60 2.40 77.10 29.50 1.049 75 NO N 

"' a-. 

B2/1 0.224 0 ,31.77 11.98 4.70 71.80 .31.90 0.995 60 NO 

B2/2 0.326 0 12.74 6.15 3.10 30.20 11.90 1.070 75 NO 

B2/.3 0.4.3.3 0 1,3.09 5.8.3 2.40 27.20 11.79 1.110 75 NO 

B2/4 0.509 0 8.28 2.,38 1.40 12.50 8.85 0.9.35 50 YES 

B2/5 0.509 0 28.18 17 .5.3 6 • .30 99.00 2.3.75 1.182 50 YES 

B2/6 0.546 0 10.84 8.85 1.70 51.20 8.75 1.24.3 50 YES 



0.05M Decanoic Acid 

Second Stage Coalescence 

Study a2 tm2 b2 tmin tmax tt tm!t* r1 
No. . 

Bl/1 0.1062 7.51 1.03 3.30 8.90 7.80 0.962 0.4025 
Bl/2 0.1199 7.39 1.87 3.50 12.00 7.95 0.929 0.3840 
Bl/3 0.1340 7.87 2.32 2.10 13.70 7.28 1.081 0.3600 
Bl/4 0.1490 11.56 2.62 7.20 17.40 12.20 0.947 0.3280 

B2/1 0.0936 7.63 1.63 2.10 9.50 8.46 0.903 0.4180 
B2/2 0.1231 10.87 3.52 2.20 18.90 12.15 0.894 0.3780 
B2/3 0.1458 8.88 2.44 3.70 14.70 8.74 1.017 0.3361 "' 
B2/4 0.1560 7.76 2.46 3.90 14.40 7.20 1.079 0.3064 '-" 

--.) 

B2/5 0.1560 12.80 3.98 4.80 9.60 12.70 1.009 0.3064 
B2/6 0.1593 9.01 3.79 3.60 21.00 8.40 1.073 0.2920 



0,05M Decanoic Acid 

Third Stage Coalescence 

Study a3 tm3 6"'3 No, 
tmin tmax tt tm3/tt r2 

Bl/1 0,0510 1.54 0,13 1.25 1.90 1.59 0,968 0,4800 
B1/2 0,0561 1.91 0.16 1.20 2.40 1.95 0,975 0.4685 
Bl/3 0,0610 2.35 0.43 1,00 2.90 2.47 0,950 0.4550 
Bl/4 0.0653 3.08 0.49 2.00 3.90 3.21 0.962 0,4280 

B2/1 0,0457 1.73 0,16 1.30 2,00 1.83 0.944 0,4880 
B2/2 0.0575 2.99 0.58 1.50 3o40 3.16 0.948 0,4660 N 

B2/3 0,0645 3.65 0.39 2.10 4.20 3.76 0,972 0.4425 "' "' B2/4 0,0665 3.78 0.78 1.70 4.60 4.10 0,821 0.4265 
B2/5 0.0665 4.12 0,71 2.10 4.80 4·42 0.932 0.4265 
B2/6 0,0667 3.70 1.06 0,90 4.80 4.28 0,864 0.4190 



0,05M Decanoic Acid 

Fourth Stage Coalescence 

Study a4 tml,. 64 
No, 

\un tmax tt tmt/tt r3 

B1/2 0,0281 0.34 0,09 0,20 0,80 0.36 0.935 0,50 
Bl/3 0,0305 0,42 0,10 0,10 0,70 0.45 0.941 0.50 
Bl/4 0,0326 0.69 0.13 0,30 1.00 0.71 0.980 0.50 

B2/1 0.0228 0,36 0,06 0.20 0.50 0.42 0,855 0.50 
B2/2 0,0288 0.56 0,14 0.30 0,90 0.62 0,899 0,50 "' \J' 

B2/3 0.0323 0.77 0.12 0,50 1.10 0,8.3 0.930 0.50 '-'• 

B2/4 0,0333 0.98 0,22 0,70 2.30 1.00 0.976 0.50 
B2/5 0,033.3 0.89 0.17 0,50 1.40 0,97 0.918 0,50 
B2/6 0.0334 1.01 0,12 0.60 1.20 1.10 0,925 0.50 



0,5M Decanoic Acid 

First Stage Coalescence 

Study ~ L tml 6""1 tmin tmax tt tmJ!tt Number of Double-drop 
No, Drops Assessed Coalescence 

Cl/1 0.232 0 10.76 3.38 1.30 17.05 11.15 0,965 75 NO 
Cl/2 0.232 2.5 12.48 4.79 1.40 22.00 13.50 0.925 75 NO 
Cl/3 0,232 5.0 9.03 5.50 1,00 21.70 8.50 1.061 75 NO 
Cl/4 0.314 0 12.40 5.93 0.70 24.30 12,80 0.967 75 NO 
Cl/5 0,382 0 18.08 10,18 2.30 42.10 16.50 1.116 75 NO 
Cl/6 0,428 0 18.03 11.17 2.50 72.50 16.20 1.112 75 NO 

C2/1 0.208 0 14o42 6.27 2.50 30.40 13.90 1.039 75 NO 
C2/2 0.324 0 7.78 3.94 1.50 26.60 7.66 1.014 75 NO 
C2/3 0.387 0 16.27 5.98 0.90 34.20 15.85 1.026 75 NO N 

"' C2/4 0.449 0 21.85 10.58 1.50 58.10 22.20 0,9S5 75 NO 0 

C2/5 0.488 0 23.53 14.93 1.50 80,60 20,00 1.171 50 NO 

C3/l 0.324 2.5 13.Hl 6.40 1,80 33.00 11,60 1.135 75 NO 
C3/2 0.324 5.0 10.42 4.98 1,60 22.90 10.10 1.031 75 NO 
C3/3 0.324 7.5 7.76 3. 57 2.10 18.20 7.07 1.099 75 NO 
C3/4 0.324 10.0 11.90 6.95 2.30 48.60 10.20 1.168 75 NO 



0.5M Deoanoio Acid 

Second Stage Coalescence 

Study a2 tm2 G2 \nin tma.x tt tmt'tt r1 
No. 

Cl/1 0.0909 3.59 0.57 2.10 5.70 3.59 1.029 0.3920 
Cl/2 0.0889 5.12 1.02 2.70 8.20 4.98 1.028 0.3830 
C1/3 0.0970 4.95 1.03 3.40 9.90 4.90 1.010 0.4185 
Cl/4 0.1092 6.44 1.59 3.10 14.35 6.24 1.031 0.3480 
C1/5 0.1190 9.99 2.92 3.00 16.10 10.20 0.979 0.3115 
C1/6 0.1230 9.87 4.56 4.80 31.90 9.40 1.050 0.2870 

C2/1 0.0343 6.24 1.74 1.70 11.00 6.44 0.968 0.4050 
C2/2 0.1110 4.65 2.15 0.90 13.60 4.43 1.048 0.3425 
C2/3 0.1196 6.91 2.27 0.70 17.60 6.52 1.060 0.3086 N 

C2/4 0.1239 6.28 2.77 0.70 15.70 5.83 1.0'79 0.2760 "' ..... 

C2/5 0.1244 14.17 4.06 3.80 21.70 14.10 1.003 0.2546 

C3/1 0.1079 8.00 3.00 2.20 18.40 7.50 1.068 0.3325 
C3/2 0.1060 7.32 2.23 2.40 14.00 7.63 0.959 0.3275 

C3/3 0.1052 6.40 2.28 1.40 11.50 5.31 1.209 0.3245 
C3/4 0.1052 8.40 2.93 1.80 19.20 8.05 0.999 0.3245 



0. 5M Deoanoio Aoid 

Third Stage Coalesoenoe 

Study a3 tm3 63 tmin t tt \n:ltt r2 
No. 

max 

01/1 0.0438 1.37 0.14 0,90 1.70 1.43 0.962 0.4815 
01/2 0,0411 1.69 0.14 1.30 2,00 1.74 0.971 0.4740 
01/3 0.0522 1.56 0.18 1.20 2.00 1.60 0.976 0.5380 
01/4 0,0515 2.16 0.31 1.50 3.20 2.20 0.981 0.4710 
01/5 0.0551 3.13 0,65 1.90 4.70 3.15 0.994 0.4630 
01/6 0.0549 6.20 2.90 8.60 5.55 1.115 0,4460 

02/1 0,0408 1.75 0,20 1.20 2.20 1.79 0.979 0.4845 l\) 

02/2 0.0523 1.71 0.42 1.00 3.20 1.68 1.020 0.4700 0'> 

02/3 0.0554 2.03 0.49 0.60 4.10 2.20 0.925 0.4630 
N 

02/4 0,0564 3.07 0.97 1.00 4.90 3.13 0.980 0.4550 
02/5 0.0561 4.23 0.45 2.80 5.20 4.44 0.952 0.4510 

03/1 0.0490 2.81 0.49 2.10 4.30 2.75 1.003 0.4550 
03/2 0,0543 2.63 0.44 0,80 3.90 2.70 0.974 0.5120 
03/3 0,0539 2.64 0.42 1.30 3.90 2.75 0.957 0.5120 
03/4 0.0539 3.03 0.48 1.10 4.10 3.05 0.994 0.5120 



0.5M Decanoic Acid 

Fourth Stage Coalescence 

Study a4 tm4 04 tmin t tt \ntftt r3 
No, ma:x 

Cl/5 0,0275 0,64 0.19 0.15 1.00 0.71 0,903 0,5 
Cl/6 0,0275 1.30 0.63 0,60 4.90 1.25 1.032 0,5 

02/1 0.0204 0.32 0.09 0.10 0.50 0,37 0,862 0,5 
C2/2 0,0266 0.39 0,08 0,20 0.50 0.43 0,905 0,5 
02/3 0.0277 0.41 o.n 0.20 0.70 0.44 0,919 0,5 

N 

C2/4 0,0282 0.66 0,19 0,30 1.10 0.69 0.962 0.5 0'-
\..J 

C2/5 0,0281 1.10 0.13 0,80 1.40 1.15 0.954 0,5 

03/1 0.0245 0.53 0,11 0,30 0,70 0.58 0,905 0,5 
C3/2 0.0271 0.54 0,10 0,30 0,80 0.57 0.955 0,5 
03/3 0,0269 0.51 0,09 0,30 0,80 0.55 0.922 0.5 
C3/4 0.0269 0,56 0,10 0,30 0,90 0.60 0.931 0.5 



l.OM Decanoio Acid 

First Stage Coalescence 

Study al L tml c \n1n tmax tt \n]!tt Number of Double--drop 
No. 1 Drops Assessed Coalescence 

Dl/1 0.232 0 3.52 2.08 0.70 9.10 3.12 1.128 75 NO 
Dl/2 0.304 0 9.50 5.73 1.00 ;24.85 8.70 1.092 75 NO 
Dl/3 0.330 0 12.33 5.87 1.00 25.30 9.50 1.299 75 NO 
Dl/4 0.442 0 12.86 7.87 1.70 35.20 n.oo 1.170 75 NO 

D2/l 0.204 0 10.30 5.57 2.70 40.10 9.30 1.108 75 NO 
D2/2 0.299 0 11.09 5.10 1.30 27.20 11.10 0.997 75 NO 
D2/3 0.385 0 22.87 7.87 4.70 48.30 22.60 1.012 75 NO N 

D2/4 0.442 0 25.53 20.34 2.80 62.60 21.75 1.172 50 NO 'i' 
D2/5 0.473 0 18.97 10.22 6.20 95.40 16.80 1.130 50 NO 



1,0M Decanoic Acid 

Second Stage Coalescence 

Study a2 
No, 

tm2 G2 tmin tmax tt tmitt rl 

D1/1 0,0908 4.01 1 • .37 2 • .30 11,80 .3.75 1,070 0.3920 
Dl/2 0,107.3 6,84 1.94 2.10 1.3.90 6.77 1,010 0 • .35.35 
Dl/.3 0,1120 7 .5.3 2.24 .3.00 16.80 7.70 0.978 0.3400 
Dl/4 0,1232 11.84 4.09 .3.90 2.3. 90 11.55 1.025 0.2795 

D2/1 0,0830 5.8.3 2.49 2 • .30 15 • .30 5.45 1.070 0,4065 N 

D2/2 0.1062 6 • .39 2.62 0,70 15.70 5.55 1.150 0.3560 
G'-

"' 
D2/.3 0,1192 9.41 .3 • .34 2 • .30 22.00 9.20 1.02.3 0 • .3100 
D2/4 0.12.32 9.77 6,78 .3.50 .32.20 7.50 1 • .300 0.2795 
D2/5 0,1242 10.70 5.4.3 2.60 29.40 8,20 1 • .308 0,2625 



1.0M Decanoic Acid 

Third Stage Coalescence 

Study a3 tm3 6"3 \n1n t tt tmftt r2 
No. 

max 

D1/1 0.0436 1.46 0.23 0.90 2.40 1.54 0.953 0.4810 
Dl/2 0.0507 2.27 0.47 1.60 4.10 2.34 0.975 0.4725 
Dl/3 0.05.26 2.59 0.59 1.50 4.40 2.61 0.994 0.4696 
Dl/4 0.0563 3.88 0.87 1.60 5.80 3.78 1.028 0.4565 

D2/1 0.0440 1.68 0.39 1.00 3.00 1.62 1.039 0.4850 N 

D2/2 0.0504 2.03 0.56 0.80 4.10 1.97 1.031 0.4730 V-... 
(}'. 

D2/3 0.0552 2.97 0.79 1.40 5.70 2.84 1.048 0.4635 
D2/4 0.0562 3.81 1.17 1.60 6.30 3.65 1.045 0.4560 
D2/5 0.0562 3.79 1.030 1.40 5.80 3.67 1.031 0.4525 



l,OM Decanoic Acid 

Fourth Stage Coalescence 

Study a4 
No. 

tmt. 6' 
4 tmin tmax tt \D4!tt r3 

Dl/2 0,0254 0.41 0,10 0,25 0,70 0.44 0,953 0,5 

Dl/3 0,0263 0.49 0.132 0.20 1.00 0.51 0.975 0.5 

Dl/4 0,0282 0.76 0.17 0.40 1.20 o:n 0.994 0.5 

D2/1 0.0220 0.34 0,08 0.20 0.50 0,38 1.039 0.5 

D2/2 0,0252 0.44 0.13 0,20 0.90 0.46 1.031 0,5 N 

D2/4 0,0281 0,82 0,21 0,30 1.30 0.83 1.045 0.5 "' "" 
D2/5 0.0281 0.97 0.26 0.30 1.50 0,98 1.031 0.5 
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APPENDIX 4 

THE EXACT SHAPE OF A DEFORMED DROP 

The exact shape of a deformed drop in an equilibrium position at 

the interface, can be calculated by the method of Princen ;(102), employing 

the Bashforth and Adams TabJ es ( 9 ) • The calculated shape characteristics 

are shown in the figure below: 

L' 

{Xc,Zn) 

Zc 

heap 
/ 

In addition, the following can also be calculated: 

R = radius of spherical cap, cm. 

L' = level of bulk interface far from the drop, cm. 
I 

heap = R(l + cos e 
0

) = height of spherical cap, cm, 

hdrop = heap * z 0 = total height of drop, cm. 

A = 
V cap 

V 
c 

e I 
c 

2X90° 

q = 
p = 
and • • 

b = 
F = 
tm = 

2 'i[ Rh 
cap = surface area of spherical cap (•contact• area), 

= lth2 (3R h ) - cap - ea~ = volume of e2herical cap, en?. 
3 = volume of drop above the plane z = 

= angle of normal at (x , z ) c c 

= maximum horixontal diameter, cm. 

measure of deformation of the drop = 
R/b 

spherical drop diameter, cm. 

z , 
c 

2X c/h 
90 drop 

Force causing drainage = 2 'li XC () sin e 'a• df·nes 

mean coalescence rest-time, seconds. 

2 cm • 



The tables of drop shape characteristics cover the ~stems 

A, B, C and D in this work and a number of other systems reported 

in the literature. 



DROP SHAPE CHARACTERISTICS 

(Series A2, B2, C2 and D2) 

System b R q t' X z e' h h 2X 
90° 

p A F t 
c c c cap drop m 

Heptane 0.320 0.536 1.2735 0.3760 0.2420 0.4838 153.17 0.0576 0.5414 0.690 1.674 0.171 34.80 4.712 

-Water 
Heptane 0.298 0.505 1.2495 0.3690 0.2140 0.4613 154.90 0.0476 0.5089 0.6350 1.693 0.151 28.95 6.640 

-Hater 
Heptane 0.2525 0.4405 1.200 0.3420 0.1608 0.3986 158.61 0.03016 0.42876 0.5146 1.745 0.0835 18.81 7.948 

-Water 
Heptane 0.208 0.3745 1.1518 0.3066 0.1120 0.358 162.4 0.01753 0.3755 0.4326 1.800 0.0412 10.81 5.34 

-Hater 
Heptane 0.1625 0.3001 1.1088 0.2709 0.7345 0.291 165.81 0.0091 0.3001 0.3325 1.847 0,01714 5.74 2.804 

-Water 
o.o5M 0.273 0.4551 1.279 0.2929 0,2082 0.4090 152.80 0.0504 0.4594 0.5872 1.668 0.1443 19.42 10.84 

Decanoic 
Acid 
o.o5M 0.2505 0.4230 1.2622 0.2945 0.1847 0.3835 154.00 0.04284 0.4263 0.5385 1.688 0.1140 16.51 8.28 N 

"" 0 

Decanoic 
Acid 
o.o5M 0.2165 0.3747 1.2178 0.2765 0.1438 0.3478 157.31 0.0290 0,3768 0.4585 1.730 0.06825 11.33 13.09 

Decanoio 
Acid 
o.o5M 0.1630 0.2935 1.1521 0.2439 0.08635 0.2880 162.82 0.01311 0.3011 0.3465 1.800 0.02435 5.21 12.74 

Deoanoic 
Acid 
o.o5M 0.1120 0.2103 1.0911 0.1970 0.04315 0.2053 168.02 0.00441 0.2097 0.2285 1.879 0.00583 1.835 31.77 

Decanoic 
Acid 



{Continued) 
DROP SHAPE CHARACTERISTICS 

{Series A2, B2, C2 and D2) 

System b R q L X z e' heap hdrop 2I90° 
p A F tm c c c 

0,5M 0.244 0.3993 1.3083 0,2705 0.196 0.3521 150,63 0,05127 0.4034 0,5271 1.635 0.1285 13.62 23.53 
Decanoic 
Acid 
0,5M 0,2245 0.3751 1.2791 0,2634 0,1717 0.3365 152.40 0,04268 0.3792 0.4850 1.670 0,1008 11.22 21.85 
Decanoic 
Acid 
0,5M 0,1935 O,J3Z0 1.2303 0.2450 0.1328 0.306 156.32 0,02795 0.3340 0.4110 1.717 0,05825 7.545 16.27 
Decanoic 
Acid 
0,5M 0,162 0.2820 1,1835 0,2288 0,0961 0,2658 160.00 0.0170 0,2828 0.3346 1.75 0,03009 4.64 7.28 
Decanoic 
Acid 

N ...... 
0,5M 0,104 0,1940 1,104 0,1783 0.04268 0.1895 167.32 0,00474 0,1942 0,2143 1.867 0,0058 1.328 14o42 ..... 

Decanoic 
Acid 
1,0M 0,2365 0,384 1.3273 0,260 0,1968 0.3346 149.2 0,0541 0,3887 0,5150 1.621 0.1306 11,80 18.97 
Decanoic 
Acid 
1,0M 0,2210 0,3655 1.2930 0,2501 0,1731 0,3261 151.78 0.04215 0,3683 0,4765 1.654 0.09415 9.56 25.53 
Decanoic 
Acid 
1.0M 0,1925 0,3275 1.2458 0.2328 0.1372 0.2996 155.19 0,0302 0,3298 0.4109 1.700 0,06179 6.726 22.87 
Decanoic 
Acid 
1,0M 0.1495 0,2650 1.1753 0,2070 0,0871 0.2508 160.7 0,0149 0,2657 0,2915 1.774 0,0248 3.370 11.09 
Decanoic 
Acid 
1,0M 0,1020 0,1898 1.110 0.1673 0,0433 0,1849 166.86 0,00497 0,1899 0,2085 1.8610 0.00592 1.148 10.30 
Decanoic 
Acid 



DROP SHAPE CHARACTERISTICS 

' I 
System Reference h R q L X zc &c heap hdrop 2X90° 

p A F Temp. t c oc m 

Benzene 16 0.192 0.3562 1.085 0.3160 .Cfl25 .3475 168.42 .007:t75 .35478 .3850 1.857 .01629 .·3.243 20 4.1 
-vat er 
Benzene 0.208 0.3885 1.097 0.334 .08575 .3768 167.52 .00916 .38596 .4320 1.862 .0224 4.15 20 5.9 
-vater 
Benzene 0.272 0.4935 1.1404 0.3663 .1405 .4790 163.55 .0202 .4992 .5690 1.812 ;06255 8.90 20 11.7 
-vat er 
Benzene 0.302 0.5340 1.1650 0.4260 .1700 .5085 161.25 .10282 .5367 .6250 1.769 .0945 12.21 20 18.9 
-vater 
CC14 16 0.168 0.2917 1.206 0.2241 .1083 .2729 158.20 .02081 .2937 .3538 1.736 .03805 10.40 15 l).l 

-water 
CC14 0.168 0.2916 1.2075 0.2241 .109 .2724 158.04 ,02115 .29355 .3540 1.735 .0386 10.30 20 2.4 
-water 
CC14 0.164 0.2917 1.206 0.1975 .106 .2670 158.20 .02081 .2878 .3461 1.778 .03805 9.025 25 1.5 N -.._, -_, 
-vat er 
CC14 0.162 0.2819 1.205 0.2140 .1045 .2637 158.22 .0205 .2842 .3425 1.740 .03621 3.680 30 1.4 
-vat er 
Benzene 16 0,289 0.519 1.155 0,4276 .1560 .4970 162.58 .02379 .5218 ,6035 1.797 .0779 10.61 15 1.6.1 

-water 
Benzene 0,284 0,5095 1.15255 0.4196 .1541 .4873 162.38 .02385 .51115 .5776 1.795 .0765 10,(,4 20 14.8 
-t•ater 
Benzene 0.275 0.4935 1.1565 0.3774 .1509 .4712 162.11 ,0233 .4950 .5720 1.794 .0737 10.10 30 13 ,I! 
-uater 
Benzene 0,270 0.482 1.158 0.3920 .1492 .4605 161.86 ,02395 .48445 .5600 1.788 .0725 10.10 40 13.2 
-uater 
n Heptane 16 0.232 0.4315 1,178 0.2179 .1350 .3800 160.2 ,0255 .4055 .4780 1,860 ,0691 14.~8 20 3.6 
-water 
Ethylene Glycol* r:Onnecke 0,0965 0,1731 1.150 0.1488 ,05176 .1660 162.63 .0079 .1739 .1999 1.795 ,0086 1.562 20 3.0 
-n Hexane 
Ethylene Glycol 0.0965 0,1729 1.1555 0.14105 .05655 .1652 162.05 ,00841 .1736 .2004 1.790 ,00913 1.669 40 1.6 
-n Hexane 
Ethylene Glycol 0.0965 0,1731 1.15375 0.14125 ,0526 .1654 162.24 .003255 .17366 .2002 1.795 .00899 1.582 60 1,0 
-n Hexane 
Tri-Ethy1ena 
Glyco1-n Hexane ''i\onnecke ,Ii, G., ~.Physik Chem,, (Leipzie:), 211,208, ( 1959). 



(Continued) 
DROP SHAPE CHARACTERISTICS 

System Reference b R q t' X z e' heap hdrop 2X90° 
p A F Temp. tm c c c oc 

Tri-Ethylene ionnecke* O,(J]8 0.1391 1.1610 0.1141 ,04.355 .1.329 161.69 ,Q(J]Q4 .1.399 .1625 1,78.3 .00615 0.845 20 2 • .3 
Glycol-n Hexane 
Tri-Ethylene O,(J]8 0.1.384 1.167 0.11215 .0445 .1320 161,15 ,Or:J740 .1.394 .1628 1.775 .0064.3 0.835 40 1.6 
Glycol-n Hexane Kon\'lecke 
Tri-Ethy1ene 0,(J]8 0.1389 1.163 0.1139 .0439 .1329 161.45 .Or:J720 .1401 .16301.780 .00628 0.796 60 1.3 
Glyco1-n Hexane 
Di-Ethylene Konnecke .r:J75 0.1.350 1.1498 0,1089 .0401 .1292 164. 16 • 00511 .134.3 .1543 1.80 .00433 0,680 20 3.8 
G1ycol-n Hexane 
Di-Ethylene ,(J]5 0.1349 1.150 0.1106 .04038 .1291 164.06 ,005175 .13428 .1546 1.799 .0043850.689 40 1,8 
Glycol-n Hexane Konnecke 
Di-Ethylene ,(J]5 0.134751.1525 0,10875 .04115 .1288 162.37 ,00632 .1.351 .1558 1.795 .00534 0.760 60 1.3 
G1ycol-n Hexane N 

"" Ethylene Glycol ,085 0.1552 1.1.33 0.1282 • 04272 .14 91 164.91 ,00534 .1544 .1750 1.829 .00521 0.5165 20 5.1 w 
82 

-Benzene 
Ethylene Glycol ,085 0.1540 1.1410 0.1254 .0440 .1478 163.48 .00636 .15416 .1760 1.810 .00615 0.5160 40 1.0 
-Benzene 
Ethylene Glycol ,085 0,1535 1.1432 0.1291 .0444 .1473 163.27 .00650 .1538 .1760 1.805 .00626 0,567 60 2.6 
-Benzene 
Benzene 
-uater 

82 o.~r:J75 0.3865 1.101 0.3281 ,0880 .3745 167.17 ,00965 .3842 .4230 1.863 ,0234 4.~4 25 4.7 

Ethylene Glycol 82 0.0975 0,1737 1.162 0.1358 ,0544 .1658 161.58 ,00889 .1747 .2030 1.780 .0097 0,802 25 23.5 
-Benzene 
Ethylene Glycol 0.0795 0.14641.1320 0,1183 • 037 43 • 1409 165 • .36 ,00478 .1447 .1639 1.842 .0044 0.441 25 14.0 
-Benzene 
Ethylene Glycol 0.0625 0,1231 1.08306 0,096 .02469 .1202 168.44 ,00250 .1227 .1328 1.971 .001~ 0,2282 25 20.9 
-Benzene 
Water 82 .114 0.2120 1.108 0,2059 .0503 .2042 166.5 .00585 .2101 .2325 1.859 .00779 3.02 25 206.0 
-'Aroclor' 
Benzene 82 0.215 0,401 1.097 0.3389 .3843 .1632 167.03 ,01025 .1735 1.865 .0258 1.890 25 6.0 
-water 

*Mnnecke ,a,;:;, ,l,Physik Chem, (Le~pzi<:;) ,21i, 208, ( 1959) 
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APPENDIX 5 

FITTII\G OF HULTIPLE REGRESSIC'N BY THE 

}ih'THOD OF LEAST SQUARES 

A.l. :t1athematica1 Hodel and Least Squares Equations 

The mathematical model re1 ating the mean coal.escence time to the 

physical variables of the system is given by Eqn. (7.2.1): 

tm = k a"jt 2q ,6~ r 0 s (A. 1 .) 

A non-linear model of this type is referred to as being intrinsi~al1y 

1 inear (29) and it can be expressed by a suitable transformation of the 

variables, in a standard linear form. Taking logarithms to the base e 

of Eqn. (7.2,1): 

lntm = lnk+p1na+q1n.J'-
2 

+rl.n.L\~ +s1n'( (A.2) 

In the case where the fall height, L, is important Eqn. (7.2.2) is 

transformed to: 

ln t = ln k
1 

m 
+ pln a+ q lnj{. 2 +r1n .6.~ 

+ t ln L 

+ sln '( 

(A.3) 

If we out y, x11 x2 ••• x5 equal to 1n tm' ln a, ln)L 
2

, ln ~ , 1n D 
and ln L, respectively, the equations (A.2) and (A,J) may be re-written in 

the general manner as described by Davies (22): 

y=b+bx.+ 
0 l 1 

where p = 4 for Eqn. (A.2) 

b2 x2 ••• bp xp 

and p = 5 for Eqn. (A.3). 

satisfying this relationship exactly 

(A.4) 

For sets of values 

(A.5) 

For any set of values x111 ••• 1 xpi of the independent variables 

x11 ••• 1 xp we may derive an "expected value" Y:t of the ''dependent" variable 

y from the relationship: 

(A.6) 
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Observations obtained in practice wi11 be more or less scattered 

about an exact relationship. To each observed set of values xli' ••• ,xpi 

will correspond an expected value of Yi of the dependent variable y, but the 

observed valueHif y1 or y wi1 1 not, in genera 1 , be e:; ua 1 to Y i. The 

difference between the observed and expected values of y wi11 be: 

{yi - Yi) = {yi - bo - bl xli - ... bp xpi ) (A.?) 

The values of the constants b
0

, ••• , bp are as yet unknown, The prob1 em 

is to derive those values for the constants which will give rise to the 

least disagreement, overall, between observation and expectation, As a 

measure of the overall disagreement we take: 

(A.8) 

i.e. the sum of squares of the deviations of observed values of the 

dependent variable from those expected. In fitting by the method of 1 east 

squares we aim to choose b0 , ••• , bp so as to minimise Q, This may be 

done by the methods of the differential calculus, The partia1 deviations 

of Q with respect to b
0

, ••• , bp are each equated to zero, giving a set 

of simultaneous e:;uations for the desired val_ues of b
0

, • , • bp• 

We have that: 

(A.9) 

where, for convenience, we have dropped the subscript i and the summation 

is understood to be over then sets of observations i = 1, ••• , n, 

Differentiating with respect to b
0 

and equating to zero: 

?.g = -2Z (y - b - b1x1 - ••• b x ) = 0 
C>bo o PP 

i.e. nb0 = £ y - b1 x1 - ... -bp Xp 

or = 

For k /: 0: 

(A,1 0) 



2?6 

Now b
0 

= "J - b1x1 - ••• - bpip, from Eqn. (A.10). 

Hence, ell iminating b , Eqn. (A. 11.) becomes: 
0 

yxk 

{A.ll) 

+ • • • + bk .Z xk (xk - XJJ + 

zxk(y-y) 

Now z_· xk (xl - i,_) :; .:£.. (xk - Xk) (x1 - xl) i 

••• + bp£ xk (~ - xp) = 
(A.l2) 

the difference between the two expressions is~~ (x,_- xl), which is 

identically zero from the definition of i 1• A similar modification may be 

made to the other summations involved in Eqn. (A.12) which thus becomes: 

b] 2.. (x,_ - xl) (xk - ~k) + ••• + bk z (xk - Xk) 2 
+ ••• + bpZ (xp - ltp) 

(xk- Xk) = 2.. (y- y) ( xk - iJJ (k = 1, ••• , p) 

or more concisely 

bl Clk + ••• + bk Ckk + ••• bp Cpk = Cyk (A. 13) 

(k = l, ••• , p), where elk denotes z. <x, - i,_) (xk - ~), etc. 

Eqn. (A.l3) represents in fact a set of p simultaneous equations for 

the regression coefficients b,_, ••• , bp. Written out in more detail these 

take the form 

b,_c,_ + b2 c12 + ••• + bp clp = Cyl 

b1C12 + b2 C22 + ••• +hp C2p = c72 

b,_C13 + bz c23 + ... +hp c3P = CY.3 

• • • • •• • •• 

blClp + b2 c2p + ••• + bp CPP = Cyp 

bo = Y- blil- b2Xz- ••• bP~ 

(A.14) 

These equations, together with Eqn. (A.10), give the least squares estimates 

of the constants in the regression equation representing the dependence of 
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y on x1, ••• , x • 
p 

The number of equations is equal to the number of 

constants to be estimated, i.e. (p + 1), and the coefficients (apart from 

those in the equation of means defining b
0

) form a symmetrical pattern, 

with sums of squares along the principal (N.W, - S,E,) diagonal, and sums 

of products elsewhere. 

A.2 Solution of the Least Squares Equations 

One form of solution of the equations is obtained by solving, not 

the original set of p equations, but the p sets of p equations obtained by 

successively substituting on the right of the original equations the sets 

of values (1, o, o, ... , O), (o, 1, o, .. ,o), (o,o,l ... ,o), ... , (o,o,o, 

• • • , l). The importance arises from the fact that this form of the 

solution gives as a by-product, the standard errors of the regression 

coefficients. 

With for example, four independent variables, as in Eqn. (A.2), 

the Least Squares equations are 

We 

bl en + b2 c12 + b3 c13 + b4 c14 = cyl 

bl c12 + b2 c22 + b3 c23 + b4 c24 = cy2 

b1 c13 + b2 c23 + b3 c33 + b4 c34 = cy3 

bl 014 + b2 °24 + b3 °34 + b4 °44 = 0Y4 

replace these by four sets of equations 

P en + q c12 + r c13 + s o14 = 1 ,o,o,o 

P o12 + q 022 + r 023 + s 024 = o,J.,o,o 

P 013 + q 023 + r 033 + s 034 = 0,0,1,0 

P c14 + q c24 + r c34 + s 0 = 
44 

o,o,o,J. 

each set eorresponding to a particular column of figures on the right, 

Let the solutions to the first set (right-hand sides l,o,o,o respectively) 

be 
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P,_ = en 

ql = e21 

rl = c:n 
sl :: cP 

Let those to the second set be similarly 

p2 = e12 

q2 = e22 

rz = e32 

sz = e42 

and so on for the third and fourth sets. We may write the four sets of 

solutions as the array of numbers 

en el2 e13 e14 

e21 e22 e23 e24 

e31 e32 e33 e34 

e41 c42 043 c44 

each set of solutions forming one column of the array, 

The reader familiar with matrix algebra, will recognise this array 

as the inverse of the matrix of sums of squares and products formed by the 

coefficients on the left-hand sides of the original equations. Using the 

inverse matrix, the solutions to the original equations are given by: 

c,_ = e, e + e12 eyz + e13 CY3 + e14 
eY4 yl 

bz c21 0yl + e22 ey2 + e23 ey3 + e24 c 
y4 (A,l5) 

h:3 cJ1 Cyl + e32 ey2 + cJ3 ey3 + e34 ey4 

b4 cfl Cyl + c42 eyz + 043 ey3 + e44 
Sr4 

Thus, b1 is obtained by summing the products of successive terms in the 

first ro$1 of the inverse matrix with the corresponding quantities on the 

right hand sides of the original equations, b by using simi1ar1y, the 
2 

second row of the matrix, and b3 by using the third row, 
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A.3 Analysis of Variance 

The sum of squares due to regression is given QY 

b1 cy1 + b2 cy2 + ••• bP cYP 

and is associated with p degrees of freedom. The residual sum of squares 

is: 

(A.16) 

and is associated with n- p- , degrees of freedom where n is the number of 

sets of observations used in deriving the regression equation. He may thus 

draw up an An91ysis of Variance cab1e as follows:-

TABLE 5.A.1 

AiiALYSIS OF VARIANCE FOR ~:ULTIPLE 

RSGRE:SSION 

Source Degrees Sum Mean 
of of of Squares 

variation Freedom Squares 
---

Attributable p blCYl + b2cy2 + ••• •bpGYP 
to regression 

Deviation from n- p- 1 Gyy- b1cyl - ••• -bPCYP 
regression 

Tota1 Cyy n-1 

The F-ratio ca1 cu' ated from this tab1 e may be used to test for the 

significance of the apparent dependence, but such a test of the combined 

dependence on all independent variables is not usua1 1y sufficient, since it 

tells nothing about the significance of particu1 ar tei'!lls in the regression 

e<Juation. 

A.4 Standard Errors and Confidence Limits 

The residual_ sum of squares due to regression (i.e. Deviation from 

Regression in Tab1 e 5.A.1) gives an estimate of the resiclua1 variance based 

on n - p - 1 degrees of freedom, sirtce in a1.1 p + 1 parameters have been 
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estilll!lted. It shou1d be noted, however, that the residual variance ui11 

only esti:nnte the true "error' mean square if the regression e::juation is 

correctly for~u'gted. If significant variables hove been omitted, on if 

the true relationshi~ is non-1 inear, the estimate uill bo biased. 

The estimate of the residual variance is: 

2 
s = l - ... -

n-p-1 
b c ) 

p yp 
(A,17) 

As mentioned earlier, the standard errors of the estimated regression 

coefficients are obt'lined by way of the inverse matrix, Thus 

s.E. (bl) = s /en 

S,E, (b2) = s I e22 

s.E. (IJ:3) = s / e33 

etc. 

Limits within which the true regression coefficients b 1 , ••• b p 

probably 1 ie, i, e, the confidence limits, are ca1 cul ated from the standard 

errors by means of the appropriate t- multipliers. 

confidence , buts for b 1 are 

bl + 

Thus the (1 - 2 d.. ) 

(A. 18) 

where t has the same nrn~~er of degrees of freedo~ (n- p- 1) as the 

estimate of s2, i,e, on the residual scatter about the regression, on the 

nUMber of observations available (which determines the appropriate t-

multipliers) and also on the inverse motrix term ell, This 1 ast 

depends on the spread of t!:e observed x1 - va1 ues, and a1 so on the extent 

to which the variations in Xr are correlated with variations in the other "in-

dependent'' variables. The greater the spread, and the less the corre1 ation, 

the smaller will be the value of ell. Its reciprocal ljc11, is in fact the 

resinua1 s~~ of squares of the x1-values about a regression of x1 on the 

independent variables Xz• ,,,, xp, and this is used to derive the standard 

error of b1 • 
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The si,c;nificance of b,_ is measured by its ratio to its standard 

error, i.e. by: 

t = (A. 1 9) 

The degrees of freedom for t are, as for t oL , n - p - 1. 

For example, consider the case PROL 33 for which the calculated 

statistics are contained in Appendix 5. The resi~ual sum of &luares 

(i.e. "Deviation from Regression" in the computer print-out) is 2. "25360 

and this corresponds to (55 - 5 - 1) = 49 degrees of freedom. The 

estimated residual va~iance is thus 

52 = 1 (2. "2536) = 0.4599 
49 

giving s = 0.6781 

Hence S.E. (b1) = 0.07557 

s.E. (bz) = 0.07362 

s.E. (b3) = 0.11480 

s.E. (b4) = 0.11959 

s.E. (b5) = 0.03915 

95% confidence 1imits for the true regression coefficients are: 

For 1 = 0.94123 + 2.011 X 0.07557 -
2 = 0.92540 + 2.011 X 0,07362 

3 = 0.37b33 + 2.on x o.n480 

4 = -1.59875 + 2.011 X 0.11959 -
5 = 0.04132 + 2.0'.1 X 0.03915 -

whi1 e the ca1 cu1ated t - values for testing the significance of the b' s 

are 12.4545, 12.5696, 3.7280, -13.3681 and 1.0553 respectively. The t -

value for a11 of the coefficients except ~ 
5 

is significant at the 99% 

1 eve1. 'le see from the confidence , imits that the estimate of 0 
5 

is so 

imprecise that it is not un1 ike1y that the t11ue va1 ue is zero. The 
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t-value for (3 fails, si:nilarly, to reach the 0.05 significance 1 eve1.. 

" 5 
The confidence 1 i:nits for each of the other cases is presented in 

TAb., e 5.A.2 end the significance at the 95% 1 evel is reported as 

rt significantn or ~~not significant~•. If the regression coefficient is 

significant at the 99% 'evel then it is reported as 1highly significant". 

A.5 Examination of Residua1s 
;\ 

The residua1s defined as then differences ei = Yi- Yi' i = 1,2, 
A 

••• , n where Yi is an observation Gnd Yi is the corresponding fitted 

value obtained by use of the fitted regression equation. 

:le can see from this definition that the residual s ei are the 

differences between what is actua'. ly observed, and what is predicted by the 

re;;ress~on equation - that is, the amount which the regression equation has 

not been able to explain. Thus ei may be thought of as the observed 

errors if the 11l0de1 is correct. !low in performing the regression 9nalysis 

certain assumptions have been made concerning the errors; the usual 

assumptions are that the errors are independent, have zero mean, a constant 

variance, c-2 , and follow a normal distribution. Thus if the fitted 

model ~s correct, the residuals should exhibit tendencies that confirm the 

assumptions that have been llL~de, or at least, shou'd not exhibit a denial 

of the assumptions. 

The residuals can be exBilLined graphically and the principal ways of 

plotting these are (29). 

1. Overall 

2. In ti:'le sequence, if the order is know 

3. Against the fitted Yi va,_ues 

4. Against the independent variables 

If we choose method (3) then the plot may be one of the forms 

indicated in Fig. (5.A.l) 



(a) I I !/llffi/1/ 

(b) 

(c) 

(d) 

Fig. (5.A.l) 

They represent: 

(a) a •horizontal band" indicating no abnormality (the same form 

wou1d be obtained for method (i) ) 

(b) Variance not constant, as assumed; need for weighted 1east 

squares or a transformation on the observations Yi before 

making a regression analysis 

(c) Error in ana1ysis; the departure from fitted equation is 

systematic 

(d) Nodal inadequate - need for extra terms in the mode1, or need 

for a transformation on the observations Yi before analysis 



Figs. (5.A.2) to (5,A.4) show plots of ei against Y1 for the 

cases PROLQ3, PROL r:t7 and PROL 41, respectively, Cases PROL 03 and 

PROL 41 clearly exhibit the trend shown in Fig. (5.A.l (a) ), Whi1st the 

trend exhibited by case PHOL r:t7 in Fig. (5.A,J) is not definitely of this 

latter type an overall plot of e
1 

does not indicate any abnormality. 

The examples shown in Figs. (5.A.2) to (5,A.4) are typical of the rest of 

the cases examined, 

A.6 Prediction using the Regression Equation 

The regression equation is of the form y = b
0 

+ b1~ + ,,, + bpxp 

where b0 = y - ~'ii\ - , , • - bpxp. lfe may therefore re-tn-ite the 

equation as: 

y = y + br (x - i:t> + , , , + b (x - x ) p p p (A.20) 

remembering of course that, 

y = ln tm 

X"!. = ln a -
x2 = lnj- 2 -
XJ = 1 n f>(( 

x4 = ln ~ 

x5 = ln L -
Corresponding to any set of assigned va1ues (~, ••• , XP) of the 

independent variab"!.es ~· ,,, , xp' there is a predicted va1ue Y of y which 

may be calcu1ated from the equation, This value is subject to uncertainty, 

since it is derived by using coefficients which are themse1ves subject to 

uncertainty, The standard error of the estimate of Y is ca1cu1 sted by the 

computer program and 95% confidence 1 imits are found in the same manner as 

for the regression coefficients. 
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TABLE 5.A.2 

95% CONFIDENCE LIMITS FOR TRUE REGRESSION 

COEFFICIENTS 

CASE LIMITS SIGNIFICANCE 

PROL 01 <11 = 1.0128 + 0.4370 Highly significant -
~2 

= fsil Not significsnt 

(?.3 = fsil Not significsnt 

8~ 
= fsi1 Not significsnt 

PROL 02 = , .4671 + 1.2050 High1y significsnt 

\32 = 2.0829 + 3.8400 Not significant -
~i 

= ,_.1271 + 2.9630 Not significant 
= -O.B255 + 0.4080 High1y significant 

PROL 03 (31 = 2.2769 + 1.1410 High1y significant -
02 = 2.0806 + 2.4850 Not significant 

~! 
= , .0197 + l.B460 Not significsnt -= -0.4905 + 0.2600 Highly significant 

PROL 04 
8~ 

= 2.6578 + , .0990 High1y significant 
= 1.1104 + 2.1400 Not significant 

03 = o., 053 + 1.6200 Not significant 
= -0.4048 + 0.5400 High1y significant 

~4 -
PROL 05 

~~ 
= 0.6834 + 0.2320 High1y significant -= 2.2243 + 2.1610 Significant 

&! 
= , .3:302 + 1.6220 Not significant 
= -0.9041 + 0.3438 High1y significAnt 

PROL 06 

~~ 
= 2.2044 + 0.2237 High1y significant 
= , .2821 + 1.2750 Significant 
= 0.3669 + 1.0550 Not significant 

Si -= -0.4353 + 0.1590 High1y significant 

PROL 07 ~1 = 1.2964 + 0.1382 High1y significant -
G2 = 0.7866 + 1.9830 Not significant 

= 0.1641 + , .5770 Not significant 

~! 
-= -0.6702 + 0.2755 High1y significant 

PROL 21 Ch = 0.4075 + 0.4570 Not significant 
= 0.4789 + o. 1512 High1y significant 

%! -= 0.3100 + o. 1820 High1y significant 
= o., 565 + 0.3840 Not significant 

PROL 22 (?>1 = , .6384 + 0.2350 High1y significant 
= 0.3935 + 3.0650 Not significant 

(}2 = -0.9748 + 2.7150 Not significant 

~~ 
-= 1.7473 + 4.520 Not significsnt -= -0.1096 + 0.1492 Not significant 
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TABLE 5.A.2 (Continued) 

CI\SE LI!'I'.:'S SIGNIFICANCE 

r;-_oL 23 ~ 1 
= , .3939 + 0.3760 Highly significant -= 0.5779 + 0.0966 Highly significant 

a! = -0.0670 + o. 1354 not significant -= -0.4326 + 0.2226 Hic;hl y significant 

= -0.7072 + 0.2334 High'y significant 
' 5 

:'ROL 31 (31 = 0.7573 + o., 590 Highly significont 

= -0.4276 + fail !lot significant 
(32 -= -0.2203 + fail !lot significant 
(?3 -
(>4 = -0.2733 + fail llo t significant 

PROL 32 ().1 = , .4501 + 0.2303 llighl y significant -= 0.8534 + 0.1060 llighl y significant 
G 2 -
8i = 0.1334 + 0.2432 !lot signific01nt -= -1.1868 + 0.3242 Highly significant -
($5 = o., 390 + 0.0601 Jlighl y significant 

P1toL 33 (51 = 0.9412 + o., 519 High' y significant 

i! 
= 0.9254 + o. 1480 Highly significant -= 0.3763 + 0.2303 l!igh1 y significant -= _, .59:r? + 0.2400 Highly significant -= 0.0413 + 0.0786 Not significant 

PROL 41 \21 = 0.3098 + 0.3796 Not significant 

02 = 0.4170 + o., 519 l!igh'y significant 

~i 
= -0.2320 + 0.1848 Significant -= -0.1059 + 0.3710 Not significant 

PROL 42 g; = , .5959 + 0.'091 ll igh 1 y significant -= 0.73<5 + 0.06345 :ligh'y signific3nt -= -0.0126 + o. 1390 Not significant 
83 -= -1.0248 + 0.2630 High1y significant g; -= 0.1669 + 0.0292 Highly significant 

PROL 43 ~, = 0.6044 + 0.2236 Highly significant -= 0.461.1 + 0.0969 Highly significant -' 2 = -0.2360 + o., 202 Highly significant 
03 -= -0.3572 + 0.2183 Highly significant 
84 -
()5 = -0.0393 + 0.0736 ;;ot significant 
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APPENDIX 5 

COMPUTER PROGRAM 

MULTRREGRE 

Description 

The multiple linear regression program consists of a modified program 

named REGRE, a special input subroutine named DATA, and four subroutines, 

namely, CORRE, ORDER, MINV and MULTR, from the I,B,M, Scientific Subroutine 

Package ~), 

Input 

One control card is required for each problem and is read by the 

main program, REGRE. This card is prepared as follows! 

Columns 

1-6 

7-11 

12-13 

14-15 

Data Cards 

Sel action Card 

Contents 

Problem number (may be alphameric) 

Number of observations 

Number of variables 

Number of selection cards 

For Sample 
Problem 

Sample 

000.30 

06 

02 

if the data field format exceeds 72 columns each row 

of data is continued on the second and third cards until 

the last data point is key punched. However, each row 

of data must begin on a new card. 

the selection card is used to specify a dependent 

variable a~4 a set of independent variables in a multiple 

linear regression analysis. Any variable can be 

designated as a dependent variable, and any number of 

variables can be specified as independent variables, 

Selection of a dependent variable and a set of independent 

variables can be performed over and over again using the 

same set of original variables. The Selection Card is 

prepared as follows! 
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ColWII!ls Contents For Sample Problem 
Selection Selection 

2 2 

1-2 Option code for table of residuals 

00 if it not desired 01 01 
01 if it is desired 

3-4 Dependent variable designated for 
the forthcoming regression 01 01 

5-6 Number of independent variab1es 
included in the forthcoming 04 05 
regression (the subscript numbers 
of variables are specified belov) 

7-8 1st independent variable included 02 02 
9-10 2nd independent variable included 03 03 

11-12 3rd independent variable included 04 04 
13-14 4th independent variable included 05 05 
15-16 5th independent variable included 06 

Output 

The output of the program for the multiple linear regression 

includes a 

1. Means 
2. Standard deviations 
3. Correlation coefficients betveen the independent variables 

and the dependent variable 
4. Regression coefficients 
5. Standard errors of regression coefficients 
6. Computed t-values 
7. Intercept 
8. Multiple correlation coefficients 
9. Standard error of estimate 

10. Analysis of variance for the multiple regression 
11. Table of residuals (optional) 

Designation of Variables 

The variables included in the analysis vere designated as fo11ovsa 

a 

dependent variable number 1 (mean coalescence in seconds) 

independent variable number 2 (equivalent spherical drop 
diameter in ems.) 

independent variable number 3 (continuous phase viscosity in 
poise) 

independent variable number 4 1phase density difference 
( ~ 1 - {(2) in gm./ cm. ) 
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~ independent variable number 5 (interfacial tension in 
dynes/cm.) 

L independent variab1e number 6 (fall height to the interface 
in ems.) 

Order of Data Processing for Multiple Regression Analysis 

Section 1 

Case 

PROL 01 
PROL 02 
PROL 03 
PROL 04 
PROL 05 
PROL 06 
PROL fY7 

Section 2 

PROL 21 
PROL 22 

Section 3 

PROL 31 

PROL 32 

Section 4 

PROL 41 
PROL 42 

Description 

(Series 2A, 2B, 2C, 2D) 

1st Stage coalescence 
2nd Stage coalescence 
3rd Stage coalescence 
4th Stage coalescence 
1st and 2nd Stage coalescence 
3rd and 4th Stage coalescence 
1st, 2nd, 3rd and 4th Stage coalescence 

Two Component Systems for L = 0 ems. 
Two Component Systems for L > 0 ems. 

Three Component Systems for L = 0 ems. 
(present work only for Series 2B, 
2C, 2D) 

Three Component Systems for L ) 0 ems. 

PROL 21 and PROL 31 for L = 0 ems, 
PROL 22 and PROL 32 f'or L > 0 ems, 

Fig. No, for 
Correlation 

7.1 
7.2 
7.3 
7.4 
7.5 
7.6 
7.7 

7.8 
7.9 

7.10 

7.11 

7.12 
7.13 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
e 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

e • t I t I I • I o o • t o • o I o I •• I I I I 1 I I I t t I 1 1 1 I I I I I I I I I I I I I 1 I I o I o 

PUR~"l$" 
(I) R:Arl Hrf PRC1&LEM PARAMETER CARD FOR A MIILTI"LF. qEGRES­
SI01j1 (2) >lEAD ~lJBSE'T S!'LECTIC1N C6RDSr 13) CAlL THE' SUB• 
~OLITI~ES T(1 CaLCULATE ~FANSr STINDARO OEV!ATIONSr SIMPLE 
A~D ~JLTIPL~ CORRELATION COFFFIC!FNTSr REGRESSION COFFFI­
:IE'~JB, T•VALUES~""-AN[) ANALYSIS np VARIANCE FOR MULTIPLE 
l<FGDF.<;SIC'Ir AIHl 14) PRINT HIE RESULTS. 

REI~Al:lk''\ 

Ti-Ji:: N IM~ER rl= O~SERVATIONS, N, MUST BE GREATER THAN M+ I, 
•wf~E ~ IS THE NU~RFR OF VARIABLES. 11= SUBSET ~ELECTION 
CARDS I~E NOT PRESENT, THE PROGRAM CAN NOT PERFORM MULTIPLE 
~<=GQ~c;SID'J, 

~qFR RFTUF<NirJG FROM SUBROUTINE MINV, THE VALIJE OF DF.Tf=R· 
~!N~NT fOETI IS TESTEn TO CHECK ~HETHER THE CORRELATION 
~ATR!K IS SINGULAR, IF DET IS COMPARED AGAINST A SMALL 
CllN<;T,NTr THI<: TEST lvAY ALSO ~'>E LISEO TO CHECI( NF.AF<-
S I N ~ lJ '- tA !ll TV • 

~U9~0LJTJ~~S AND FUNCTJO~ SUBPPDGPAMS RFOUIREO 
C~k~E (WHICH; JN TUP~, CALlS THE SUBROUTIN~ NAMED OAT~) 

~POJ!R 
~INV 

~IJL T R 

'1ET ~')0 
~::;F<;~ Tl'l H, OSTI.E, SHTISTICS IN "ESE~13CH , THE IOWA STATE 
C:JLLE~F. Pf<E'SS I 1954, CHAPTF.R 8. 

...................................................................... 
THE FO~LO•I! \JG Ol"'ENS!Ot>;S t~l'ST BE GRE~TER THAN OR EOUAL TO THE 
NlJMf\ER OF 1/~RIASl.FS, r~., 

O!MENSIO~ XBANI40),STDI4.),Q(40),RY(40),!SAVE(1Q),B(40lo 
SBI40),TI40lo~(40) 

c 
C THE FOLLOWI'JG Olt.<FNSION !~IJST I?E GREATER T~AN OR EllU~l TO THE' 
C PRODUCT 01' H-.1,. 

c 
DIMENSTD~ RXft60Ul 

c 
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C THE FOLLDW!~G DIMENSION MIJST !'lE GI'IEATF'fl THAN OR EllU~L TO 
C (M+\)*11/:(,. 
c 

DI~~~SIO~ R(A20) 
c 
C THE F'OLLOwi~G DIMENSION MUST BE GI'IEATEfl TWAN OR EllUAL TO 10 •• 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

DIME'JSIO~ ANS( 10 l 

a & & a a & a a a • & • a a 1 a 1 & & a & a & a a a & a a a I a a a I I I & a a & I a I a & & & I & & & & I I I I & & & a & & a & a 

IF A onu;LE PfiECISION VERSION OF THIS ROUTINE IS DESIRED, THE 
C I~ COLJ~~ 1 SHOULD BF RFMOVEO FflnM THE DOUBLE P~ECISIDN 
STATEMENT WHICH FOLLOw~: 

OOUAL~ PR~C!SION XBAR,STD~RI,R,n,~,T,RY,OET,SBoANS,SUM 

THE C ~U~T ALSO ~E RFM~VED FROM DOU&LE PREeiSION STATEMENTS 
APPEAA1N1 I~ OTHER RQUTINES USED I~ CnNJUNCTIOM WITH THIS 
ROUTI~E. 

a a & & & 1 ~ I • & I I a 1 I 1 I 1 I I I 1 1 1 a I 1 I I 1 I I I I I 1 & I I 1 I & a & a I & & & & I I & I & & a & & I & I • 

1 FORMATCA~,A~,I5,212l 
2 FOI'I~1ATC25HI AULTIPLE fiFGRESS!Of'J, •••• ~4,A2//6X,!4HSELFCT!ON,, ••• 1211 

t ) 
3 FOR:~ATC9HOV~RIARLE,5X,4HMF~N,6X,8HSTA~DAI'I0,6X,ItHCORRELATION,4X;IO 

1HREGRESSIGN,4X,!OHSTD. ERRQR,5X,8HCOMPUTED/6H NO,,t8X,9HDEV1ATIO 
2No7X,6~X VS Y,7~•11HCOEFFICIENT,3X,!2HOF REG.eOEF,,3X,7HT VALUEl 

4 FORt/AT( IH , T~,6~tA,5) 
5 FOR~AT(IOH 1EPE•1DfNTl 
6 FORMATCIHO/!OH INTERC~PT,13X 1 F13,5//23H MULTIPLE CORRELATION ,FI3 
1,5//23~ STD. ERRCR OF ESTIMATE,F13,5//l 

7 FURMATC1HO,,!V,39HANALYSIS OF VARIANC~ FOR THF REGRES510N//5XolqHS 
IDU~CE JF VA,IATION 1 7X,7HDEGREFS,7X•6HSUM OFoiOX,4H~E~N,12Y,7HF VAL 
2UE/3CX,tO~u: FREEDOM,4X,7HSQUARES,9X,7HSQUARESl 

8 FORMATC30" HTRIBIITH<LE TO REClRF.SS!ClN ,It\,~F15,"1/30H Df'V!ATION F 
!ROM RE~RE~SION ,I6,2F16.5) 

9 FORMAT!\W .~x,5~TnTAL,I9X;I&,F16,5) 
10 FORMAT(35!21 
11 FOR~AT(!H ,t5X,t8HT~BLE OF RESIDUALS//9H CASE NO;,sx,7HY VALUE,5X, 

110HY ESTI~ATEo6X,8H~ESIOUAL) 
12 FORMAT!!H ,J6,F15,5,?FI4,5) 
13 FORMATC53HI~UMBER OF SELECT!nNS NOT SPECIFIED. JOB TERMINATED.! 
14 FORMATC52HOTHE MATRIX IS SINGULAR, THIS SELECTION IS SK!PPEn,) 

c 
c • • • • • • • • • • e • • e 1 • 1 1 , e , " • • e , • • • tt 1 • 1 • 1 1 1 • • • , • • , • • , • ,' , 1 • • 1 • e e • • • • • • • • • 

c 



c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c 

c 
c 
c 

c 

c 

100 

295 

RE A D ( 5 .1 I = "l 1 P ~ 1 , ~~ , ·~ • '' S 
~R,,,, .•.• PRC'PLEM NUMBER <~AY AE ALPHA~ER!Cl 
PR 1,,, .•• , P><ObLE:~ 11:\JI-IP.FR < CO'H 111.\IEC\ l 
M •••.•... ,NU~BER OF OB~ERVAT!DNS 
v ...... , .. NI;!.<!?- ER 01= VARPBI ES 
NS,,., .•.• ~U~8ER OF SELECTIONS 

LOGICAL TAP: 13 IS IJSED AS !NTE~MFD!ATE STORAGE TO HOLD INPUT 
DATA. THr- !NPUT DATA ARE i-RITTION Cl'' LDG!Cbl TAPE 13 !!Y THE 
SPECIAL' !'liP JT SUP.ROUT!NE NAMED OATA, THE STORED DATA MAY BE USED 
FOR RES!D'J4~' ANAlYSIS. 

10=' 
X=O,O 

REWIND 13 

TESl NJ~B~R OF ~ELECTIONS 

lF!NSl 10•, 108, 10Q 
108 ~RilE (f>ri31 

GO 1C' 300 

10q DO 200 I=t,,s 
~RITE <"•/) pc,PH! 1 l 

C READ SJ~S~T SELFCTIQN CARO 
c 

READ (5.tr·) 'JRE:-SI,NDEP,K,<ISAVE(JlrJ=I,Kl 
C 'JRESI •. , .• OPTION CODF FOR TABLE OF RESIDUALS 
C 0 I>' IT IS t-.:OT DE~IRE["I; 
C 1 IF' IT IS DESIRE!), 
C 'JDE~ ••.•.• DEPEMDENT VAR!IELE 
C ~ •••••.•.• ~U~8ER OF INDEPENDENT VA~IABlES IN~LUDED 
C ISAV~ •.•. ,A VfCTnM CC'NTAI~!NG THE INDEPENDFNT VAQIABLE~ 
C INCLUDED 
c 

c 
CALl. MINI/ (~X,KrDF.Tr8rTl 

c 
C TEST Sl~G'JL~RITY OF THE MATRI~ INVERTED 



c 
IF IDIOT l 112, 110, 112 

110 Y<R!TE (f>,tl) 
Gf'J TO 2,'0 

c 
112 CALL MJLTq tNrKolkAR,STOrDrRX,RYrlSAVE,R,SS;T,ANSoMl 

c 
C PRprT ~FA•:s; STAf\rlA~'D DEVIATinNS, lNTEFlCORRELATIO'JS SF.TWI:'EN 
C • A~O y, ~E,PESSION COEFFICIENTS, STANrARD DEV!ATIO~S OF 
C REGRESSIO'I ~OEFF'!CIENTS; AND COMPUTED T•VALIJES 
c 

c 

MM•K+I 
WRITE (~,.._) 

DO 115 J:1o< 
L=l~AIIE(Jl 

115 WRlfE (5,1) L,XP.MI!I.l,STDILl,RY(Jlii'I(JioSRfJloTCJl 
WRITE (5,o;) 

L:slSAVE!I>IY.l 
WRITE (n,1) L.X~A~(LlrSTrliLl 

C PRJ~T I~T~R·EPT, Y.ULTIPLE CORRELATION COEFFICIENT, A~O STANDARD 
C ERROR ~F ESTI~ATE 

c 
WRITE (5,~) ANS!tl,ANSI2l;ANSI31 

c 
C PRINT ANALY~IS nF VARIANCF FOR THE REGRFSSION 
c 

c 

WRITE (5,7) 
L=ANS<Sl 
WRITE (6,~) K,ANSI4l,ANSI5),ANS!tO),L,ANSI7loANS!9l 
L=N-1 
SIJM:A~S!4l+~N5(7) 
i'IRilE (~,O) LrSiih• 
IF!NRES!l 2•0, 20u, 120 

C PRINT TABLE OF RESIDUALS 
c 

120 WRITE (5,~) PR,~R\ 1 1 

WRI1E c•ot!l 
M"1:tSAIIEIK+1 l 
DO •ao I !:a! ;N 
READ !1~l (~LJ),J:t,t~) 

SUM=ANSI!l 
00 1 30 .J: I , ( 
L=ISAVE!Jl 

130 SUM:SU~•Will*Q(Jl 
RES I ,. w ! •' ~~ l - :; U '1 

140 WRITE (~,121 ll;w(~~·),SUM,R~SI 

REWIND 13 
200 CONTINJF. 

GO TO I (l 

300 CONTINJF. 
END 

END OF SEGME~T, L:Nr.TH 436, NAMF REGRE 



MIILTIPU· '"G<~S<;I~N ..... PROL· 

SELF~T[J~ .. 2 

VARIABU 'I!= AN STANDARD 
NO. DEVIATION 

2 -I . 27 ~ .317\? 
3 -5 21!4 73 .17937 
4 -' 363Clt . 24- 52 
5 3.257!~ 4 3 2?'1 

DEPENDF.~T 

1 ?.5 777 .6991tl 

INTERCEPT 28.61512 

MULTIPL:: cnR~ELA T I ON ',t;182?7 

SfD, ER~Qf; o= E<;TIMATE ··.!fi919 

CORRELATION 
X vs V 
, .• 2~2C)B 

.66688 
- .39574 - ,8°52 

~EGIIESSION 
COEFFICIENT 

l.'JI2!3 
3.89770 
1. 45338 

-0.80875 

STO. ERRO~ 
OF ~EG.COEF. 

~'• I 7842 
97454.19637 
351l24.Cl6272 
23F.Q7. 796: 1 

COMPJTED 
T VA~UE 
t;,F.757i 
•• 1:( •• 04 
.. "0 .(\d 

.. ~.:--r .. O' 

ANALYSIS OF VARIANCE FOR THE RF.GRE<;S!ON 

SnliRC· o:: VtR!HION 

ATTR!BliHPI E T() P:GI<ESS!OI•I 
OEI!IAT l 11 F'<Jil ><E:;RE<;SION 

TOTA• 

OEGR!=ES 
OF FRFEDOf.! 

4 
6 

10 

SUM OF 
SQUARES 

4.7162& 
'.17176 
4. 881'\o.>l 

MEAN 
SQUA~ES 

1. 179 6 
0.028'>3 

F VALIIE 



MUL TIPl •· ~e:G:H::SS!lN., •• ,PR()l.• 2 

VI\RIABL" 'olEA"! STANDARD 
NO. DEVIATION 

2 -2.111221 2029 
3 -5.27692 ;>OQ75 
4 -!.:'16<147 .24843 
5 3. 08 21 ~ .52921 

DEPENDFNT 
J. 93495 .• 51880 

INTf'RCFPT 2o.t5t53 

MULTIPLE U1P ~!'LA TT ON .• 118091 

STD. EQ~o:.· o= !:~TtMATE '. 30072 

CORRELATION 
X vs V 
,,, • 1 2 51 a 
v,291!17 

-". 285::1!; 
-~ • 74000 

REGRESSION 
COEFFICIENT 

t.Hl7t4 
2. (>8;:'92 
t,t27!1 

.,,!12551 

o;To. ERROR 
OF REG.COEF. 
~.'52215 
1.667(4 
1. 28786 
.;,17695 

COMPJTFO 
f VALUIO 
=' •• v.;!\r 
t • 24 g,p 
· • A7~U\ 

-4.56527 

ANALYSIS OF vARIANCE FOR THE REGRESSION 

AlTR!Bllr~~l F. iO R=r.RESSION 
DEV!ATI ~~ I'RJ\1 QE'~RESSlON 

Tr>TA_ 

I)F:GRFES 
OF FREEDOM 

4 
8 

'? 

SUM OF 
SQUARES 

2.50637 
0.72345 
3. 22Cl8' 

MEAN 
SQUARES 

0,6265Cl 
0.09•J43 

F VALIJf: 



MULTIPL" ""'G~ESSI 'N ••. ,.PRO! 3 

VARIABL~ ~F•N 

NO. 
2 -2 f<871l ~ 
3 -5.3'f>7S 
4 -l 3071P 
5 3 11098 

OF.PENOFNT 
1 0. 8?~35 

lNTERCFPT 

MULTIPLE ~OR~ELtTJON 

STAI><OARO 
DEV!AT!o:>J 

1~3!? 
·86 3 
;;?44! 
56077 

,40035 

<'1 32 67 

.23!08 

CORRE'LAT!ON 
X VS V 

,;:18291 
• !'5\4! 

- , 1 54 If\ 
- ,539 

REGRESSION 
COEFFICIENT 

2,27&98 
2.~1! 62 
\,•JI970 

- ,49 50 

STO ERROil 
OF REG.CO~'F. 

~.'H233 
1. o7593 
.· .82772 
,,1!61',. 

COMP,ITED 
T V lLU~" 
.1,4423~ 

1. 933H 
1,?:5!911 

-4.?('55Q 

ANALYSIS OF VARIANCE FOR THE ~EGRESSION 

ATTR!BUT~~LE 10 R:GRESSIO~ 
OEVIAT N FRJ~ RE3RESSION 

Tf1TA~ 

DEGREES 
OF F~~EDOM 

4 
10 
!4 

SUM OF 
<;Oil ARES 

I 709<l7 
0.53'19q 
? 243Q6 

MEAN 
SQUARES 

0.42749 
0.'15341') 

F V~LIJE 

8.0 5'>7 



MULTIPI ,- '~'"G~O:SS!'J"J .•• ,.P>~Ol <l 

S"lf'_TJJ'l 2 

Vt.~'~IA~Le 

NO. 
2 
3 
4 
5 

OE'PENDF'·T 

INTERCFPT 

-3 5821~ 
-5 2976 

~2371 

3. l 2 5 

5536:) 

MULTIPI"' •'OR~FI hT!O~ 

STO. ~P~o~ o: ~~TI~ATE 

STAIIJOAPD 
DEVIATION 

,4<1& 
185&1 

.22857 
,52651 

.41191 

15.13483 

0,1\7069 

0. 23303 

CORREL~T!ON 

X VS Y 
.·,S54QF. 

• 128 5 
- .~1317 
-•,:16448 

RE'GI<ESSION 
COEFFICIENT 

2,')5769 
1,11 47 
•,lfl53<l 

- .• 4~4l\4 

<;To. FRROQ 
OF REG COEF. 

··.5')437 
· •• 98094 
il,743t5 
.. 11 794 

COMP•JTEI) 
T VHUE 
5,U,97t 
1.13?05 
..• 14\112 
-~.4325? 

ANALYSIS nF VARIANCE FOR THE RFGRESSION 

ATTR!fliJP.;LE' TO P:t;RE';SIO"J 
DEV!AT; W FPJ~ RE~R~SS!ON 

T('IT ~~ 

DEGFFES 
OF F~EEDO~ 

4 
I? 
16 

SUM OF 
SQUARES 

2.'·579l'l 
0 .6%6Q 
2.7!4EF. 

MEAN 
SQUARES 
0.514~<l 
0,0547:? 

F VALdE 

9.4014.7 



VARH9l: \I E' A"' 
NO. 

2 _,_53.!1 

3 -5.25215 
4 -1 '16;;2? 
5 3.t'55Cl: 

OFPENDt=r,T 
? . 197 5 

INTERCEPT 

MIJLT!P•_E r'1R=lt'LbT l ON 

STD. ED•O'< o:: !;<:;TJMATE 

STANDARI) 
DEVIATION 

o. f>2237 
0 1871311 
0 239411 
0. 466 

.., 
L 

.6617'3 

!9,76358 

0. q0449 

0.310S4 

CORRELATlON 
X vs V 

,46597 
,45839 

- ,3"31 

- ,5731:'1 

REGRESSION 
COEFFICIENT 

"•68348 
2,22'36 
1.38 23 

-·.9.'413 

STD. ERROR 
OF REG.CO!':F. 

· •. !1'?12 
1,'13675 
,, . 777'?3 
.. t644 5 

COMP.JT!=') 
T VALIJ~ 

>,,•'9&1< 
2,!1154q 
1,775811 

•5,1197'il 

ANALYSIS OF VAP!ANCE FOR THE REGR~~SION 

SOLI~C· o: VARiATION 

AHR!flliH.,LE 10 ~=GRESSI01' 
OEV!AT' N FRJ~ RE~RFSSION 

TI'JT A 

DEG;JEFS 
OF FR!;EOOM 

11 

19 
?3 

SUM OF 
SQUARES 

11.24<'54 
I ,11323~ 

lf1.f>77.84 

MEAN 
SQUARES 
2,06"'3 
<'.096411 

F VALIIF 

2!.36252 

"' 0 .... 



MULTIPI" <=G~ES<;ll'l ..•. PPOL 6 

SFLE·'T!')'< 2 

VAR!ABl;: ".1 E ,, 'I ST~NOARO 

NO. DEVIATION 
2 -3 ?%51 311!39 
~ -5 3 67 .18314 J 

4 -I ;\'"-23 t23! 
5 3,10523 .5~397 

OE'PENDP<T 
3372 .85399 

INTERCEPT 15.8517' 

MULTIPLE ·.OR=!Ei.AT!O"< 0. 970r 1 

STD. r:~...,:("l .... oe <=<;T !MATE o.22tF.7 

CORRELATION 
X vs y 

,G'• 97 

' . 184 8 - . 552 3 
• 1 ,2 ... _31 

REGRESSION 
CO!'FFICIENT 

2.2:44<; 
1.28?19 
,\. 3!)69'1 

- .43~39 

STD. E'RRM 
OF REG.COEF. 

.. I !9f'l\ 
.1.62!23 
c'.5~1JG\ 

0. 17 7 ~ \• 

COMI"JTF') 
T VLUE 

2".::>2?6! 
2,'•&395 

.73?52 
-5.F.t75!5 

ANALYSIS nF V~RIANCE FOR THF REGRESSION 

SOIII'C- o: VA'~!AT!u"J 

ATTR!BIJTBRLE TO R:GRESSIO~ 
OEVIAT ~ F~~M ~"~RtSSION 

TOTAl 

nEG"FFS 
OF FI'<E'EDOM 

a 
27 
~ 1 

SUM OF 
SOU ARES 
21 28!311 

1.32677 
22.608\5 

MEAN 
SQUARES 

5,32•)'15 
0.04914 

F VALUE 



MULTIPL~ "EG~~S~I1~ •.•• PROL 7 

S~I_E(T l jN. . . 2 

VARIABLe 'lE' AN STANDARD 
NO. DEVIATION 

2 -2.55Cl9t o.Cl5o!2 
3 -5.28761 0 18481 
4 -! 13f>B~ o.22937 
5 ,_t3t7;> o. 5\033 

OEPENOENT 
.9510'> j .32727 

INTE>iCEPT I0.757il 

MULTIPLE t:OR~EU, T I O'l .937'l:? 

STD. EI<PQR OF E'<;TI~IATE .478 7 

CCIRRELA TJ ON 
X vs V 
.• 89:'22 
•• 2. 174 

- • I 7.__44 - ,!4,·68 

!'!EGRESSION 
COEI'FICIENT 

1.291.>47 
.• 76655 
,!641:5 

- .• &7 2! 

STD. ERROI'! 
OF REG CO~F. 

0
.' • 069r•7 
('. 98982 
•!.786"5 
0.13733 

I':QMPJTEr) 
T VALII~ 

!'1.7716d 
.• 7Q~ 74 
.:?~~81 

-<1.~8 n 

ANALYSIS OF VARIANCE FOR THE R~G~ESSIO"' 

SOUrCe o: V~RrATION 

AlTRll:!tllA><LE TO <l=G<lESSION 
DEVIAT',N FRJ~ RE~QESSION 

TOTA• 

DEGREES 
OF FRF.E'DO~• 

4 
51 
55 

SUM OF 
SOU ARES 
85,23450 
11 .f'>559f' 
Cl6. 1190'19 

MEAN 
SOUARES 
21.308&2 

l\,2285o; 

F VALUE' 

93.235? 



MULTIPle ·'"G'S<;C:Tl"' .... PROL2! 

S"LECTIJ~ 2 

V~RIABI F 'AE~N STANDARD 
NO. DEVIATION 
~ -1. a2~91 0.6~767 L 

3 -4 . 7 q4~ I 66002 
4 -t 84835 ' . 3123 
5 2.9781~ .78677 

Ot:PENDEI\T 
1 6500q I . 1499 

INTERCEPT 4.57951 

MULTI Pt ~ c:OR,SLAT!ON 0.73'1 A 

STO. E~'-0~ o= E<;T P.tATE 0,8!687 

cnRRELAT!ON 
X vS V 

,06461 
,62222 
,31,'!11 
, 1653G 

REG~ESS!ON 
COEI"FICIENT 

• 4 c 758 
v,47893 

• I, 31003 
-.;,15653 

STD. ERROR 
OF qEG.COEF. 

•,. ,2817 
J,()7559 
'. 09'·~ 1 
•;,t9t79 

COMPuTe!') 
T VAL.lJC 
i • 785:)() 
6.:'13!)11 
·3.41~0? 
•·,AI~I.O. 

ANALYSIS OF VARIANCE FOR T~E REGRESSION 

sou~c. o= VoR!AT!ON 

ATTR!BIJT~qLE TO A:GRESS!ON 
OEVJAT· N FRJ~ REiRESSION 

rnTA·. 

OEG"FES 
01" I"I<Et:OOM 

d 

<!4 
41'1 

S lJM OF 
SOU ARES 
34.10871'1 
29.36 <45 
63 . 46922 

MEAN 
SQUARES 

8.52719 
0.6672.11 

F VALUE' 

12.7711~" 



MULTIPlr .:::G~ESS!lN .•. ,,PROl22 

SE'LF(TIJN. 2 

VARIABLe 
NO. 

2 
3 
4 
5 
6 

OEPE'NDe"JT 
1 

INTERCEPT 

~1 3206~ 

~s.t~Oo~ 

~2.0902~ 

3. 57080 
~9 50&11 

l Cl' 1\81 

MULTIPI.E ;QR~ELATtON 

STD. ER~n. o: ESTIMATE 

STANDARD 
DEVIATION 

. 23. 53 

.09!43 

.22364 

.0831& 
36!5 

~3.2?398 

0.9051! 

0.16674 

CORRELATION 
X VS Y 
.• 84925 

~ .04220 
,OCI68Cl 

·,t5393 
·,33740 

REGRESSION 
C:'JEI'I'JC!ENT 

\,53!147 
'. ~9356 

• ·. 9H85 
1.747'34 

- .l''<l66 

STD. ERROR 
OF REG COEF. 

: . I I 709 
1.52866 
\,35C48 
2,256?1 
, .• 07439 

IC!'l"'PJTC:n 
T VA_LJ;· 

1'1,093?~ 

0./5746 
•0.7,!8~ 

O. 77H6 
•!.11711 <1. 

ANALYSI~ OF VARIANCE FOR THE REGRESSION 

SOUHC o: VAR!AT!O~ 

ATTRIBU~Ibl.E TO R=GRESSIO~ 

OEVIATT N F~'~ RE1R~SSION 
TOTA. 

OEGRFES 
OF F~F:i=DOM 

5 
5~ 

5tl 

SUM OF 
SQUARES 

6 .67H4 
I .4735? 
8.15136 

MEAN 
SQUARES 

1.33557 
(\,027.,1) 

F VALUE' 

48.C'3H9 



MlJL T IPU ~"G~;:~q JN .•• ,. PRI1L23 

S"l EI'TIJN. • 2 

VI>RIABlC 
NO. 

2 
3 
4 
5 
5 

OFPENDE''· T 

INTE~CEPT 

-1.%79? 
-4.94C.6:l 
-1.Q64• 

3. 3 '191 
-9 2535 

MULTIPLE SOR~ELATION 

SYO. ~R.Qw 0~ ESTIMATE 

STANDARD 
DEVIATION 

0,47493 
I 1345 
0.90231\ 
o. 50771 
0,7324Cl 

I. 3CJ8:<3 

.. 7CJ386 

CORRELATION 
X VS V 
<•,16264 
' • 566()1 

-· ,283311 
0,!5766 

.... 11862 

REGPE~SION 

COEFFICIENT 
I, 39393 
c,577Cl5 

-~~.~·67 ~3 
-.,43253 
- ,7 722 

STrl. ERROR 
OF REG COEF. 
0.!8~V5 

( • 041163 
0.06812 
~· • 1 1 2 4 " 
J,!172· 

COMPJTI=D 
T VA~lJf': 
7.~73\Cl 

1 1. Al\535 
-· .<:1~10! 
.. 3.R4'l!R 
-6.n'!5~4;> 

ANALYSIS OF VARIANCE FO~ THE REGRESSION 

sou~c. o• VMnATIDN 

ATTRI8lli At<LE ro R=GRESSIDN 
DEVIAT' tl FR~\1 RE:l!IESSIO'J 

TOTA•. 

OEGRFE'S 
OF Fr;EFOOM 

5 
2 

1 7 

SUM OF 
SQUARES 
45.19451l 
26.511!5° 
7!.713_1 

MEAN 
SQUARE<; 

9,1136il0 
0.2590CJ 

F VALUE' 



VAPUf'LE '·'Et.~ 
Nn. 

2 -l,o'lT77 
;\ -5,lR~6' 
4 -1. :13~7~ 
5 2,'lt~f>'l 

DEPEN~ENT 

I 2,15~~1 

I ~!HRCEPT 

MULTIPLE COR~El~itO•• 

STD, ER~Ofl o:: E<;T! ~Hf' 

STA'"DARD CCRRF'l.A T I ON 
':'F'Ji 1\T I ON X vs y 

(',<.2Cl50 (1,93023 
'J,l5757 0,( 1221\ 
0),2377/l 0,060:'14 
:,2!f'6Cl 0,17795 

1',479!2 

:?. • oonq 

o.M!ito 

0,!7745 

~EG11Eo;SION 

cner:r:JcJENT 
o;7H39 

-o:d2760 
-o:no39 
-v:<>ne5 

STD. FRROI< 
OF REr..COEF. 

0,07355 
38272,7HO! 
22450,'1 774 
10!7Cl,I\5C!44 

COMPUTED 
T VAL.UE 

1o:2o629 
-o:oo~ot 
.,:oo~ot 
.. ,:oo~o3 

A~ALYS!S OF 'JAPIANCE FOR T~E R~GRESSION 

S~URCf o= VARTATIG~ 

ATTI'l!f'UTAPLF TO R=G~ESSIO~ 
OEVIATIGN ~~'w ~E,~ESSIO~ 

TOHL 

DEGREFS 
OF F'~EEDn'' 

4 
13 
I 7 

SUM OF 
C:QUAI'lES 

3.49!115 
0.40936 
3.90250 

MEAN 
SOUAI<ES 

0,87329 
0,0314q 

F VALUE 

'7.73310 



MULTIPLE' ><FG~ESC:: I lN.,., P~<OI 32 

SELECT!~~ •.•.• ~ 

VARIAf<LE I'Eff\1 STAfJQARD CORRELA TJ ON 
NO, ()FVl/11 ION ~ V!, V 

2 •1. 3!l'll! I 0,203!9 0.~5:'126 

! .4,141'lt •1,56~10 0,7211'1 
4 -1,7755_ u,3!C143 -0,47075 
5 :'1,7t1Q8~ ' • 20355 -c·, ?53!! 1 

7 C,83"6~ r·,B78'o 0,16617 
OEPENDE~~T 

1 t,'l4755 \ ,62832 

INTERCEPT I 2. <1 (•3 , 9 

MULTIPLE coP=::L~Tr·J', 0,98116 

STD, ~~QQ~ (li' E<;T!'1~H 0,!3<:8? 

ATT~I~UT~~LE TO ~=G~ESSION 
OEVIATICN FRJ~ >~E,RESSION 

TOTAL 

I'EGPE'"'S 
OF F~EEDOI>l 

5 

S IJM OF 
SOUARES 
13.58171 
0.53052 
14.212~3 

3 I 
36 

REG~ESS!Oill 
cnE~~ICIENT 

I: H0 16 
r:a51l43 
c: 131\40 

-t:te~~?. 
r:t390I 

STO, F.RRO~ 
OF REG.COE;F: 

0,11348 
O,C5054 
o·.lo45t 
0,15'155 
0,02955 

COMPJTEO 
T V~l.UE 

127T7922 
!l;:oe!40 

1:32?92 
-7:43S79 
4:,0353 

MEAN 
sQUARES 

2. 7!1534 
0,01711 

F VALUE 

159:M27e 



MULTIPLE REG~ES<:! 1N •••• ,PRO! 33 

SELECT !J" ..• :. 2 

VARIABLE V.EAN STANDARD 
NO. DEV I AT I Q'J 

2 -t.l900'i C,<l\67<1 
3 ... <1.58"2~ 0,5899?. 
4 ... t.5&'10t C,328711 
5 3,:>'),11 i),d!\353 
7 0,:!3?0? 1,3031~ 

OEPENOENT 
I 2.1!472 !, • 62767 

l"'TERCEPT 1<4,C7'l37 

MULTIPLE COR~fLATIO~ c.94~55 

STD. ERFlOR r]: FST 1 \I AT~ C.214af:, 

CORRE'LATION 
X vs y 
0,4!505 
1',;?3356 

-0,09&94 
-•),4Q!Q8 
-0,276Q2 

RI:'G'IESSION 
COEFFICIENT 
0~~4123 
c,;Q25~0 
(.1;3753!1 

-t:59A7~ 
o:o4t32 

STD: E'RROR 
OF QEG.COEF; 

o:o7557 
0,07362 
0,11480 
o:ttQ5CI 
0~03CI!5 

ANALVSIS nF VARIANCE FOR THE R~GRESS!ON 

SrURCE o: VARtATI~N 

ATTRIBUTAaLE TO R;GRE~SIO~ 

DEVIATION FR~~ RE1RESS!ON 
TOTAL 

DEGREES 
OF FRE!'DOM 

5 
49 
54 

SU"1 OF 
SQUARES 
!Q.02058 
2.25360 

,1.274!~ 

MEAN 
SQUARES 

3,804!2 
0,04'59'l 

CDUPUTEO 
T VALUE 

!2;45155 
12:!16969 

3 :27~00 
-t3:36~19 

t:o5531 



SELECTIJ~ •.•.• 2 

VARIA!ILE '~EAN 

NO, 
2 -t.l982t. 
3 ... ,0.3'1~.1 
4 .. t.7372• 
5 2.q60f\? 

OEPENtlE"'T 
1 2 •• 1~4~ 

INTERCEPT 

MULTIPLE COR~FLIT!O"i 

STD. ERPQR u: EST!MATF 

ST ~NllAF.D 
DEV!ATlrJ"i 

e.6568e 
!,433CI8 
1.1406~ 
'•. n6C6o 

1.04622 

4,40625 

(,,6151'0 

0,850!'50 

CORRELATIQN 
X vs y 
0 ,1CA70 
0 ,o;3711\ 

•0,24202 
0,14857 

REGIIESSION 
COEFFICIENT 
o:3o!lst 
o:4t7~!1 

-0,23?00 
-c·.toc;95 

STD. ERR('H~ 
OF REG.COEF: 
0,!8993 
0.07'5112 
0,09236 
0,18579 

PNALYS!S OF VARIANCE FOR T~E R~GPESSION 

ATTRI~UTABLF TO p:G~ESSIO~ 
OEV!ATICN ~RJ~ ~E~~ESS!ON 

TOT At 

DIOGREES 
OF' FRE'F'OO~' 

4 
!>2 
56 

SIJM OF 
SOUARES 
27.39458 
~11.8477!1 
72.24236 

~EA"' 
SO.UA~ES 
6,84865 
0,72335 

COMPuTED 
T VALUE 
t:l'>!\20 
5:50060 

oo2:!H201 
-o:57:J29 



MULTIPLE RFI':~E~SI1~ ••.•• P~nL42 

SELECT I :JO,:, • • • • 2 

VARIAI'ILE YE~N SHNDARD 
NO, DEVIATIC'N 

2 -I. 'l4'>1l~ n,221113 .. -~ ,117097 ·:·, 494G:S 
4 -1,'16~97 'J,30125 
5 ~.55~23 <.:,177'?.7 
7 1,\311.3~ '·' ,S427!5 

DEPENDENT 
I I. q2375 u,48556 

INTERCEPT 11.17259 

MULTP'LE Cf1Ro;'LAT!0" C,97218 

STD, ERR('R (]!:: ESTI"ATIO 0,1161\d 

COPRELA T I ON 
w vs V 
0,70~54 
0,43010 
-0~18404 
-0,09071 

0,26284 

REG~ESSION 
COE~"~"ICIENT 

!;~9594 
C,73253 

-C>:o126~ 
-t:o24!1t 
o:IH9tl 

STD: ERROR 
OF REI':.COEF. 

0.05510 
0.03187 
0.06980 
0,13467 
o·.ol468 

COIAPUTEO 
T VALUE 
28:n5o~ 
22:9es41 
.. (':t8:l94 
.. 7:60995 
t I :'H28 

ANALYSIS OF VA~!ANCE FOR THE REGPE~SIO~ 

SOLI~<Cr.: o;: VHIIAT!(HI DEG~EIOS S IJM OF MEAt.J F V4LUE 
OF FfiEEUOM SOUARES SQUARES 

ATTRISUTA"LE TO R=G~ESSION 5 2t.H897 4.23379 3tc;tt834 
DEVIATION FRJ~ ~E~RfSS!ON 90 I .22~70 0,0131;5 

TOTAL 05 22'.39767 



MULTIPLE' REG<FS<::I 1~< ... ,.PRO! 43 

~ELECTIJ~ •••• , 2 

VARIA~LE '•lE f. "J ST.\NOAFID 
"JO, [1 E V I AT !C"• 

2 -l,lO'il~ 1),45850 
~ -4.~575~ (•,09053 
4 -1.~737t 1.'. 77227 
5 3. >:608 ' (, ,5&07~ 
7 0, 10!\8~ t ,50! Cl:? 

DF.PE~rENT 

I ),Q('.(l5t n,7556t 

INTHI('EPT 5,828!7 

MULTIPLE' COR~ELnT!O~ 0.648L5 

STD. ERRO<i a• ESTI't~Te (',50:<!30 

CGPRFLA i I ON 
V V!, 'I 
0,20381\ 
0,513"70 

-0,21'715 
0,(.,5:'152 
0,•,0262 

REG~E~SION 

COEFFICIE~T 
o;&o442 
::;4&4te 

-o:236o5 
-o:~572o 
o:o!'leo 

STD, ERROR 
C1F REr..COEF~ 

O,!!e-76 
'l,04CIIS 
0,()6\00 
0,11108 
0,03740 

C01,1PJTED 
T VA!..lJE 
s:tB!O 
9;43907 

-3,116 960 
-3:2!572 
t:o&~o' 

fNALYSIS Q~ VAFIANCE Fo~ THE PEG~ESSID~ 

sruRCE o: VA~t~TIUN 

ATTRIEIUTA~LE TO R=G"f:S$1(11• 
DEVIATION FRJ~ RE~PESS!GN 

TOTAL 

OEGqE"S 
OF FRE'FDC:t~ 

5 
!57 
!62 

SUM OF 
SQUARES 
39,87Q7'l 
55.0779Q 
94.95777 

MEAN 
SQUAI'lES 

7,975CI6 
0,350~2 

F VALUE 



General Nomenclature 

a 

b 

B 

d 

F 

G 

H 

k 

K 

L 

m 

N 

p 

Drop diameter 

Drop radius 

van dar Waals constant 

Coalescence constant in Eqn. (2.1.3) 

Concentration; concentration in bulk of liquid; concentration 

when r is zero 

Total ionic concentration 

Deformation from parallel plates defined by Eqn, (2.~.13) 

Diffusivity,surface diffusivity 

Force on film due to buoyancy only 

Total force on film 

Upward surface tension force resulting from the deformation of 

the interface by the drop 

Downward force equal to the weight of that part of the drop 

above the interface 

Helmholtz free energy per unit of surface 

Minimum separation distance = 2h 

Coalescence constant in Eqn.(2.1.1),(2.1.2) and (2.1.~) 

Specific conductivity of liquid 

Length of fall of drop to the interface 

Distance from the centra of the drop to the plane of the interface 

Exponents in Eqns. (2.1.~) and (2.1.3),respactively 

Number of drops not coalescing in time t 

Total number of drops assessed 

Viscosity ratio =f t/f 2;angle between the radius positioned at 

the edge of the interface and m 

Pressure in film at r = O,pressura at edge of film at r = R 



J14 

P ,P Pressure in film at any radial distance r,pressure on film 
r 

q Degree of instabilty or growth constant 

Qr Flow at any radius r in the film 

r,r
0 

Radius,radial co-ordinates;radius of liquid column at break-up 

R,d! Radius of disc or barrier ring,radius of deforme~ interface and 

deformed drop_ surface 

RA Molal rate of production of A per unit volume 

S Specific surface expansion rate 

A t,t1,t
2 

Coalescence rest-time for the overall,first,second,third and 

"t;, t
4 

fourth stages of coalescence ,respectively 

~m,tml'tm2' ~~an coalescence rest-time for the overall,first,second,third 

tmJ'~ and fourth stages,respectively 

to,tt Initial draJ.nage period,half-life time or time for sa% of drops 

T 

V 

x, 

y 

to coalesce 

Temperature 

Velocity of flow in the film,radial velocity in film at r, 

tangential velocity in general 

Radial velocity at surface of film;Stokes velocity 

Velocity of approach of opposite faces of film :dh/dt 

Vertical distance from axis of symmetry 

Horizontal distance from axis of symmetry,distance along y-axis 

Di:nensionless parameter ~ opt/2r 

Greek Symbols 

Wave amplitude 

. Principal radii of curvature 

Dielectric constant 

Electrokinetic potential 

FJ.lm thickness at any radial distance r 



9 I 
c 

,....,. ,_ 
ll 1'112 

~ /j. 0 

315 

Wavelength 

Interfacial potential 

Surface concentration 

Measurement,micron;dispersed phase viscosity,continuous phase 

viscosity 

Density,dispersed phase density,continuous phase density 

Density difference 

Angle of normal at (xc,z0 ),see Appendix 4 

Dimensionless groups 

Interfacial tension 

Difference in interfacial tension between the centre of the film 

r = 0 and periphery r = R 

Shear stess in the interface defined by 't: = grad 0 ,hence 

~r = VL(2>~) ;interface age 
f or 

Standard deviation of coalescence rest-time distribution 
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COALESCENCE IN THE SYSTEM DECANOIC 
ACID-HEPTANE-WATER 

By R. M. EDGE, Pb.D.*t and M. GREAVES, B.Tech.* 

SYNOPSIS 

The coalescence of a water droplet wtth an od-water mterface has been studied for the three-component system 
n-decanoic acid-n-beptane-water. It was found that the coalescence occurred m the stagewise manner and 
coalescence-tune distributions are presented for four stages. The coalescence-bme d•stnbubon of all stages 
may be correlated by equations sinular to those presented by other workers for the first stage of coalescence 
with binary systems~ 

The vanahon of both the mean res1dence tune and the standard deVIations of the coalescence t1me distribu­
tions wdh the d1ameter of the pnmary drop are discussed, and correlatiOns are presented for a number of 
condttlons 

Introduction 

Recently, solvent extractiOn has been used for the recovery 
and separatiOn of common metals and attentiOn has been 
gtven to the use of long-cham carboxylic acids as the extractmg 
agent 1 The techmque of hquid-hqmd extraction requues 
that one of the phases be dispersed, and the eventual coales­
cence of the dispersed phase may Impose hmttatmns on the 
capacity and operatiOn of the plant These features, associ­
ated with plant operation led to an mvestigatlon mto the 
phenomena of coalescence and the system heptane-decan01c 
ac1d-water was chosen for th1s purpose 

The stability of smgle droplets at an oil-water mterface 
has been studied for both stabihzed2

-
5 and unstabthzed drop­

lets 5- 9 Although correlatiOns descnbmg the distnbutwns 
of coalescence times of pnmary drops at an Interface exist for 
two phase, two component systems there IS no consensus of 
opm10n as to the actual mechamsm of coalescence Thus at 
the present ttme no adequate theory exists for predictmg 
coalescence times from a knowledge of the physrcal properties 
of the system Jeffreys and Hawksley10 have formed an 
empmcal equation v.h1ch enables first and overall stage times 
to be estimated for two component systems from a knowledge 
of the physical properties of the system They were able to 
obtam good agreement with their expenmental coalescence 
t1mes but not w1th the coalescence times reported by other 
workers Thts was attnbuted m part to different designs of 
eqwpment 

The process of coalescence m many systems takes place m 
a stepw1se fashion called " partial coalescence". Thts 
phenomenon of partial coalescence was first noticed by Wark 
and Cox 11 dunng froth flotation expenments and by 
MahaJan 12 dunng expenments With drops at lrqmd-lrqwd 
mterfaces Cockbam and McRobert&2 observed partial 
coalescence only occasiOnally, as d1d Lmton and Suther­
land,13 for drops coalescmg wtth themselves and w1th an 
a1r-hqmd mterface Charles and Mason6 reported partial 
coalescence m every case, after a senes of expenments wtth a 
number of two-component, hqmd-hqmd systems These 
mvesttgators earned out an extenstve study of the process by 

• Department of Chenncal Engmeenng, Umverstty of Techno­
logy, Loughborough, Letcestershtre 

t Present Address Department of Chemical Engmeenng, 
Umverstty of Strathclyde, Montrose Street, Glasgow, Cl 

high-speed cme photography and suggested that the mechan­
Ism of partial coalescence IS as follows: 

"followmg the rupture of the film separatmg the drop 
and the mterface, the pnmary drop IS deflated by the excess 
mternal pressure, until a column 1s formed (see Fig 1) 
The radms, R, of the column contmues to decrease from the 
action of the excess pressure (y/ R) until, the Circumference 
becomes k.ss than the he1ght, and a Rayleigh disturbance 
can grow From here on there IS a race between dramage 
and the neckmg down process, the outcome of whtch deter­
mmes the size of the secondary droplet or droplets •• 

Figure 1 shows two secondary droplets resultmg from a 
partial coalescence stage and wtth the system heptane-water 
thts process of "double-drop" coalescence was observed m 
every case. It has been shown6 that the drop diameter ratiO, 
secondary to pnmary, r, vanes with the viscosity ratio, p, 
and passed through a maxtmum near p = 1 Jeffreys and 
Hawksley9 showed r varied wtth p 9 and generally, the larger 
the value of r the larger the number of coalescence stages 
However, no clearly defined regions were found to correspond 
to a gtven number of coalescence stages, and It was concluded 
that other factors have to be taken m to account. The applica­
tion of an electnc field between the drop and the mterface has 
been mvesttgated6

• 
14 and Its effect ts to promote drop 

coalescence Brown and Hanson 14 found that a high­
frequency osctllatmg electnc field brought about smgle-staged 
and mstantaneous coalescence when a certam cnttcal voltage 
was reached 

Cockbam and McRobcrt.> found that coalescence v..:t~ 
unlikely to occur until a certam time, ! 0 , had elapsed, which 
depended on the system and expenmental cond1ttons 

0 
0 

F1g 1 -Simultaneous formation of two secondary droplets durmg part1al 
coalescence (schem.at1c) 
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GdlespJe and R1dcaF. whose results agreed With the above 
rnechamsm, suggested that a dtstorted drop profile previOusly 
observed by DerJagum and Kussakov15 for mr-water 
systems could be apphed to hqmd-hqmd systems They 
proposed the followmg equatton t 

log N ~ - K(l-to)'1' 
No 

to correlate their results 

(I) 

El ton and P1ckne1t'· 4 who stud10d the stabd1ty of droplets 
m the presence of electrolytes found that thetr results could 
not be correlated by equatwn (I) They proposed the 
equatton 

N 
log-= -et" 

No 
(2) 

to correlate the1r results, where n has the value two for low 
electrolyte concentratiOn and three for h1gh electrolyte 
concentratiOn 

Coalescence time dtstnbuttons for bmary systems8 • 16 

have also been correlated by 

and· 

N 
log-~ - K(t-10)' (3) 

No 

N 
log-= -ct4 

• 
No 

(4) 

Equatwns (3) and ( 4) were used by Jeffreys and Lawson 17 

to correlate coalescence time distnbutwns for the ternary 
system acetone-benzene-water wtth mass transfer takmg 
place 

t Symbols hate the meanmgs gwen them on p. 72. 

Experimental 

Apparatus 

The apparatus used for the coalescence studies was made of 
glass and ItS construction IS shown m Ftg 2 To prevent 
seizure of glass to glass surfaces, PTFE sleeves were fitted to 
all ground glass JOmts and stopcock plugs were made of 
PTFE 

The coalescence cell, A, conststed of a Jacketed Pyrex tube, 
42 cm long and 5 cm d1am, fitted at each end w1th B55 ground 
glass JOmts The arrangement was such that the operatiOn 
of the cell could be reversed to allow the study of the coales­
cence of nsmg droplets at a plane mterface A method of 
mterface renewal stmllar to that used by Charles and Mason6 

was employed The mterface was mamtamed at the top of 
tube B, wluch was ground flat Vanous lengths of tube B 

were available to allow the mterface to be positiOned at a 
convement hetght m the cell, A Drops were formed on a 
fine, drawn-out, glass captl1ary, c, approxunately 18 cm long, 
the tip of whtch was ground flat and square The flow of 
hqwd from the reservou, D, to the capillary was controlled 
by a mtcrometer synnge connected to the reservoir by the 
PTFE tube, o The reservoir assembly was attached to a 
shdmg frame whtch could be moved m a vertical directton 
A Perspex cabmet was used to enclose the coalescence 
apparatus and the whole assembly was mounted on an antl 
vtbratwn stand The cell A and the vanous heavy and hght 
phase reservOirs were enclosed m Jackets mamtamed at 
25 O(rC±O 01 degC In addmon, fan-cJrculated a1r mSlde 
the Perspex cabmet was controlled at 25 00 ± 0 25 deg C 

Cleamng 

Pnor to each senes of observatiOns the apparatus was 
thoroughly cleaned, m the followmg manner: 

(I) All Items of glassware and PTFE were degreased 
wtth acetone and nnsed wtth coptous supplies of hot water 

(2) The apparatus was filled wtth warm, concentrated 
chromiC acid, freshly prepared. and allowed to stand for at 
least 24h 

(3) The apparatus was dramed of chromiC actd and 
VIgorously nosed with warm, freshly-dtshlled water for a 
prolonged penod It was then dned m a hot-air oven 
Durmg all the waslung procedures and subsequent assem­
bly great care was taken m handhng the apparatus so as to 
prevent contammat10n 

(4) Lastly, the apparatus was assembled m the Perspex 
cabmet, filled with distilled water, and left to stand over­
mght 

Preparation of matenals 

The water used. m all studtes was double-dtstilled from 
potassmm permanganate solution and stored m glass receivers 
The n-heptane used was to I P spectficatton and was redts­
tilled, except for expenments wtth the heptane-water, m 
which drop stzes ofO 162 and 0 264 cm were used 

The decanoic acid was a "specially pure" grade, obtamed 
m crystalline form from Bnttsh Drug Houses Limited It 
was used without further punfi.catiOn AB the solutiOns used 
were mutually saturated m glass receivers at 25°C 

Fdlmg and use of apparatus 

After the double-dJstJlled water had been dramed from the 
apparatus, the saturated water phase was admitted to the 
reservorr, H, and a quantity was run through the coalescence 
cell, A, m order to purge any unsaturated water The drop 
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F1g 3 -Part1al coalescence ttme d1stnbut1ons for system heptane­
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formmg arrangement was then lowered slightly so that the 
tip was JUSt below the top of B With a suction bulb attached 
to L and s4 closed, the heavy-phase hqmd was drawn up to a 
level JUSt above s5 The suctiOn bulb was removed and the 
drop formmg arrangement was completely filled wtth hqmd 
from the reservoir, F Wtth s5 and s3 closed, the PTFE tube, 
a, and the micrometer synnge attached to It were also filled 
with hqwd The light phase was then admitted to the 
coalescence ceii from the reservOir I 

The shape of the mterface was adjusted by means of a 
suctiOn bulb attached to H A water droplet was formed at 
the tip of the capillary by adjustmg the micrometer synnge 
and Its positiOn relative to the mterface was adjusted to that 
reqUired by movmg the frame supportmg the drop formmg 
devtce s5 was then closed and the whole apparatus together 
with Its contents was allowed to come to eqwhbrmm dunng a 
penod of about 12 h 

Before a senes of readmgs was taken the mterface was 
renewed and made plane, after whtch a short penod was 
allowed for attamment of eqmhbnum The mterface was 
subsequently adJuSted after ten pnmary drops had been 
mvesttgated and was renewed from ttme to ttme dunng a 
particular mvesttgation 

The coalescence was recorded on tape usmg a Ferguson 
"Model3214 •• tape recorder, each stage of coalescence bemg 
registered by a manually produced mput signal The time 
between a drop arnvmg at the mterface and the first stage of 
coalescence, and the ttmes taken between the subsequent 
stages of coalescence, were determmed with a stopwatch on 
playback of the tape 

Reproducibt!ay of coa!escc?nce tunes 

Prehmmary mvestigatwns of the coalescence ttme showed 
that there was a distnbutiOn about some mean value Thts 
IS m accord wtth the findmgs of other workers m the 
field 2--4, 6 - 10 16 It was necessary therefore to determme 
the mmtmum drop count reqUired to produce a reproductble 
dtstnbutwn Coalescence-time distnbutwns were determmed 
for samples contammg up to 300 drops for both a bmary and 
ternary system It has been reported6

• 
8 that the ratto 

Ctm)4/(ty)4 IS the most reproductble charactenstic of a parttcu­
tar dtstnbution, and m fact, tt was found that this ratio was 
reproducible With samples contammg more than 50 drops 
However, thts dtd not guarantee that the actual distnbutiOn 
curve was the same With a sample of 75 drops the dtstnbu­
tiOn curve was reproducible and thts was taken as the mmi­
mum drop count Generally, samples of this stze have been 
used by other workers 3 • 4 • 6 8 9, 16 

Results 

For both bmary and ternary systems, partial coalescence 
was observed m every case In the bmary system heptane­
water there v.ere four vJstble stages, whereas five or some­
times SIX were vtstble m the three-component system In the 
latter case, the droplet Sizes of the fifth and sixth stages were 
extremely small and the coalescence time correspondmgly was 
very short and could not be recorded manually 

It should be mentiOned that m the bmary system, m which 
redtstilled heptane was used (see Ftgs 3A and 3B), the first 
stage of coalescence took place by what IS known as "double­
drop" coalescence ThiS was mvanably the case though the 
satellite droplet was small m companson wtth the parent 
droplet Accordmg to the theory proposed by Charles and 
Mason/ a Raleigh dtsturbance of the type Illustrated m Fig 1 
IS responsible for thts phenomenon Hawksley8 has suggested 
that contammatiOn of the system may result m double-drop 
coalescence, but thts seems unlikely smce this phenomenon 
was not observed wtth undishlled heptane 
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Coalescence t1mes 

The mterval between the drop arnvmg at the mterface and 
the first stage of coalescence, t1o and the mtervals between 
three further stages of coalescence, 12 , t3 , and t4 respectively, 
were detenmned Typ1cal results are presented m Ftg 3 for 
heptane-water and m Figs 4-8 for the 0 5M decanmc actd­
heptane-water system The values of t,., the mean coales­
cence ttme, and I to the time for 50% coalescence, were calcu­
lated from the dJstnbutiOns obtamed for each stage and the 
values of /"' are presented m Table I and Ftgs 9, 10, and 11. 
The overall mean coalescence time fm, defined as the sum of 
the partial coalescence times 

The term 

• 2 (!.), 
q=l 

IS also presented m Table I and Table 11 hsts values of 
[(tm)q/(l,t}q)Averaae and [fmfft)Averaae where these ratiOS are the 
average values for the range of drop s1zes whtch were mvestJ­
gated These are presented so that a comparison can be 
made w1th the values obtamed by other workers (Table Ill). 
however, we do not regard them as very useful charactenstics 
of the system because, by defimtwn, they are dependent on 
a number of dtstnbutwns thereby makmg thetr nature 
complex 

In the system decanmc ac1d-heptane-water, the effect of 
mcreasmg the concentratiOn of the third-component (decan01c 
acid) IS shown m Figs 12-15 The concentratiOns used were 
0 05, 0 5, I OM and the droplet SIZes were respectively 0 156, 
0 157, and 0 I 52 cm eqmvalent sphcncal radms 
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F1g 5 -F1rst stage coalescence time dJstnbut1ons for system 0 SM 
decano1c OCid-heptane-water 

TABLE I -Mean Coale:.cence T1me for each Parllal Coalescence Stage at D1ffe1ent Fall He1ghts for the Systems Heptane-Water 
and 0 5M Decanmc Ac1d-Heptane-Water 

EqUivalent sphencal radms Distance of fall to the 
System of the drop mterface i. (r.), (1",), (1.), (1m)4 

(cm) (cm) (s) (s) (s) (s) (s) 

Heptanc-Water 0 172 0 18 13 11 89 4 50 I 41 0 33 
0 174 25 14 44 6 84 5 63 1 66 0 31 
0 174 50 14 47 6 29 6 18 1 80 0 20 

0 5 M Decanmc 0 116 0 15 66 10 73 3 56 1 37 • 
Actd-Heptane-Water 0 119 25 19 51 12 53 5 08 I 90 • 

0 116 50 15 77 915 500 1 62 • 
• Mean coalescence times were not recorded for this stage 
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TABLE H -Values of the Ratws [(tm)q/(t~,)q)Amage for each Partial Coalescence Stage and [f ... /i.~JAverage for Overall Coale~cence 

Decanmc Ac1d 
Concentration System 

0 Heptane-Water 

005M Decan01c Acid-
Heptane-Water 

0 5M Decanmc Ac1d-
Heptane-Water 

I 0\1 Decano1c Ac1d-
Heptane-Water 

Disscussion 

Correlatwn of coalescence-tune distnbutwn 

PreviOus workers have suggested that the distnbution of f, 
the overall coalescence-time, and of /1 , the coalescence-time 
of the first stage of the coalescence, may be correlated by 
equatiOns whtch are of the form 

or of the form 

N 
Jog-~ -K(t-10)' 

No 

N 
log-= -et" 

No 

(Sa) 

(Sb) 

For both the hcptane-water and the decan01c acid­
heptane-water systems the d1stnbut1on of the coalescence 
times of each stage of the coalescence can be represented by 
equation (Sa) (F1gs 16 and 17) However, w1th a sample 
contammg only 70 drops. 1t IS not possible to select particular 
values of /0 and n from a range of connected values of these 
parameters and all of the distnbutJOns are correlated satJs­
factonly by equatiOn (Sa) w1th 10 ~ 0 [1 e by equatwn S(b)] 
For example, the distnbutJons of coalescence trmes for the 
system 0 5M dccan01c acid-heptane-water are correlated 
sat1sfactonly by equation (5b) with n equal to I 7, 3 57, and 
5 I for the first, second, and third stages of coalescence 
respectively However the usefulness of equatiOn (5b) may 
be hm1ted by the high values of n which are obtamed for the 
latter stages of the coalescence Figure 16 and the values of n 
which are quoted above for equatiOn (5b) Illustrate how wide 
IS the range of values of /0 and n which are possible when 
only 70 results are avilable (the usual number analysed by 
other workers) Although the true values of nand /0 m equa­
tron (5) may not be determmed With accuracy, It IS apparent 
that n mcreases with the stage of the coalescence 

The d!stnbutJons may also be correlated usmg anthmetlc 
probabthty plots and an example IS shown m Ftg IS Al­
though this test of normality IS msensitrve18 and the sample 
Size IS too small to allow any firm conclusiOns to be made, a 
number of features not Immediately observable m Fig 16 and 

System [(I.), l [ ;.,,] 
(lt)t AvetiiRC it Averaac 

Present Authors Heptane-Water I 27 I 10 
Lawson16 Benzene-Water I 09 104 
Charles & Mason6 Benzene-Water Ill 
Hawksley 8 Benzene-Water 104 I 01 

Stage 

Overall 1st 2nd 3rd 4th 

110 I 27 I 12 I 01 104 

104 110 I 03 I 02 I 05 

I 06 I 12 Ill I 05 I 06 

I 18 I 18 I 14 I 06 I 12 

Ftg 17 can be seen Several dJstnbutwns are best represented 
by two straight lmes Usually, the IntersectiOn of the hoes ts 
at 0 85 < N/N0 or < 0 15 and the one Ime exists only m a 
regton where the accuracy of N/N0 IS not htgh, because of the 
small sample on whtch 1t JS based However, tt may be 
possible that certam dJstnbutJOns are best represented by the 
sum of two distnbuttons It should be mentiOned that If 
two normal d1stnbutlons were mvolved, the two straight Imes 
would m fact be replaced by a curve, Jymg near to the hnes 
Generally, equatiOn (5) correlates the results better than a 
normal distnbutwn It Is mtended to repeat at least part of 
the mvestigatwn with mcreased sample Sizes to determme the 
form of the correlatiOn With more certamty 

Properttes of coalescence ltme d1stnbutwns 
CORRELATION OF MEAN COALESCENCE TIMES 

The mean coalescence ttmes of the secondary and tertiary 
droplets are given m Fig 9 at three decan01c acid concentra­
tions, as a functiOn of the size of the pnmary drop, a 1 It 

0 50 

~010 
<: 

0 05 

0 01 
0 

\\ \ 
\ \ . . \ 
. \ \ 

' t r 
2 4 6 6 10 12 14 16 18 

TIME (s) 

a, 
Drop s1ze 

(cm) 

0 0 116 

• 0 157 
/', 0 191 

F1g 6 -Second stage coalescence time distributions for system 0 SM 
decan01c ocsd-heptane-woter 

I.Chem E. SYMPOSIUM SERIES No. 26 (1967: lnstn chem. Engrs, London) 



68 EDGE and GREAVES. COALESCENCE IN THE SYSTEM DECANOIC ACID-HEPTANE-WATER 

100 

050 

~
0 

010 

0 05 

0 01 
0 

TI·" ............ \ 

'""' I \ \ \ 0 • \ 

\ . 
I 

1 

• 

• I 
2 3 " 5 6 7 

TIME (s) 

a, 
Drop SIZe 

(cm) 

0 0 116 

• 0157 

/::, 0 191 

0 0 214 

F1g 7 -Th~rd stage coalescence tsme dsstnbutsons for system 0 5M 
decono1c ocld-heptane-water 

can be seen that, with m the accuracy of the results, the rela­
tiOnship JS linear for the thtrd stage at the three concentra­
tiOns mvest1gated, and also for the second stage at the two 
highest concentrations employed The resultant curves for 
0 5M and 1 OM solutions comc1de for both the second and 
thtrd stages of coalescence, whilst the third stage of coales­
cence With a 0 05M solutiOn shows lower coalescence ttmes 
than do the curves for the 0 5M and 1 OM solutions The 
results for the thtrd stage of coalescence wtth a 0 05M solutiOn 
suggest a mm1mum correspondmg to a 1 = 0 16cm, approxt~ 
mately The graphs obtamed for the first stage of coalescence 
(F1g 10) are less well defined but With both the 0 5M and 
I OM solutiOns the mean codlescence ttme mcreases as the 
droplet stze mcreases W1th the 0 05M solutiOn a mtmmum 
ts agam suggested at a drop s1ze stmllar to that at whtch the 
mJmmum m the second stage occurred The curves obtamed 
for heptane-water are g1ven m F1g 11, and for companson 
Flg 9 IS supenmposed In thts case, the curves for all stages 
mdtcate a mmtmum correspondmg to a pnmary drop stze, 
approximately, of a1 = 0 18 cm It IS mtended to carry out 
further work to mvesttgate th1s phenomenon 

STANDARD DEVIATION OF COALESCENC'E~TTME DISTRIBUTION 

The standard devtatiOn of the normal d1stnbut10n whtch 
best fitted the coalescence~ttme d1stnbutwns over the range 
0 I < N/N0 < 0 9 was determmed for each stage of the 
coalescence It was found that for both 0 5M and 1 OM 
decan01c actd solutiOns the standard devtatton for the th1rd 
stage of the coalescence mcreased with mcrease m the 
standard deviatiOn for the second stage of the coalescence 
The relat10nsh1p was well descnbed by the equation 

(6) 

A similar relatwnshtp was obtamed for the second and third 
stages of the coalescence With the heptane-water system 
although the correlatiOn was less sattsfactory However, tt 
was expected that the correlatiOn would be less satisfactory 
because several dJstnbutJons obtamed for thts system were 
not adequately descnbed by a smgle normal d1stnbut10n 

The standard devtatJon for the first stage of the coalescence 
was also found to mcrease with mcrease m the standard devia­
tion for the second stage of the coalescence for both 0 5M and 
1 OM decan01c ac1d solutiOns The relationship was hnear 
for the 0 5M solut1on 

Wtth 0 5M and l OM decanotc ac1d solutiOns the standard 
devJatiOn of the coalescence-time dJstnbutron could be 
related to the mean of the dtstnbutiOn Lmear relatwnsh1ps 
were found for both the second and the th1rd stages of the 
coalescence 

These findmgs together w1th Ftg 9 suggest that with the 
system decan01c actd-n-heptane-water and small drop­
sizes there IS a simple relatwnshtp between the drop stze and 
the constants m the equatwns wh1ch descnbe the coalescence­
time dtstnbutwns Also that there IS a lmear relatwnshtp 
between the size of the drop before coalescence and the size 
of the drop whtch IS subsequently produced by the coales~ 
cence 

Effect of dJStance of fall 

Although Jeffreys and Hawksley 9 and Lawson16 have 
reported that the coalescence time mcreases With the dtstance 
of fall of the pnmary drop on to the mterface, other workers 
have not found a satisfactory relatwnshtp A number of 
expenments earned out by us for heptane-water have also 
been mconclusJve It IS worth notmg that tmmedtately after 
formation, drops m free fall undergo oscillatiOn from a 
prolate to an oblate spherotd ThJs oscillatiOn may be con-
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Ftg B --.Fourth stage coalescence t1me distributions for system 0 5M 
decano/C acJd-heptane-water 
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stderable Wtth the punfied, two-component systems mvestl­
gated, especmlly when larger stzes of drop are bemg used As 
It IS likely that the shape of the drop on arnval at the mterface 
JS an Important factor m the coalescence, It IS posstble that 
the relatiOnship between coalescence time and d1stance of 
fail wtll be osc1IIatory m form 

Three faH heights, namely 0, 2 5, and 5 0 cm, were mvestt­
gated for the system 0 5M decan01c acid-heptane-water, 
usmg drops havmg an eqmvalent sphencal radiUs 
a1 = 0 116 cm The results are quoted m Table I Usmg 
Fig 9, the mean coalescence times for the second and thtrd 
stages of coalescence obtamed with fail lengths of 2 5 and 
5 0 cm are equal to those obtamed for drops wtth a1 = 0 125 
and 0 135 cm formed at the mterface It would appear there­
fore that when the pnmary drop IS formed some distance 
from the mterface, larger secondary and tertiary drops are 
produced than when the pnmary drop 1s formed at the mter­
face The ratio of the standard devxatwns of the coalescence­
time d1stnbut10ns of the second and tlurd stages was found 
to be m agreement With that found for drops whrch were 
formed at the mterface 

Conclusions 

For the systems heptane-water and decan01c acid­
heptane-water the distnbutton of coalescence t1mes for all 
stages of the coalescence may be represented by equatiOns of 
the form 

N 
log-= -K(t-10 )' 

No 

However, w1th a sample Size of 70-80 drops, tt has not been 
possible to select the actual correlatiOn as a range of mter­
connected values of n and t 0 IS possible 

The mean coalescence times for all the stages of coales­
cence, wtth 0 5M and 1 OM solutions of decan01c acid m 
heptane, were found to mcrease with the SIZe of the pnmary 
drop With 0 05M solution, a stmtlar trend was shown by 
the later stages of the coalescence, but the early stages 
exhtbited a mmtmum m the relatiOnshtp Wtth heptane and 
water all stages exhibtted thrs mtmmum 

The standard deviations of the coalescence time drstnbu­
tions of the thud and fourth stages of coalescence are shown 

I.Chem E. SYMPOSIUM SERIES No. 26 (1967: Instn chem Engrs, London) 



70 EDGE and GREAVES. COALESCENCE IN THE SYSTEM DECANOIC ACID-HEPTANE-WATER 

35 

• 30 
' 
I -

~ ' ' I 
w 
::;: 
>= 
w 
u 
z 
w 
u 

"' w _, .., 
0 
u 
z .., 
w 
::;: 
I 
~' 

• ' 25 1- I ' I d 
I I I 

' I ' I I 20 1- I I . ' 
-

'! <J.' , , , , , 15 , , , , , 
,~ox , 

, 
X , , 

10 o,.."' / 

/ 

-

. 

' , , 
51- , 

'x 

0 o~------~0~1~------~02~------~c~-~3_J 
a 1- SIZE OF THE PRIMARY DROP (cm) 

!::,. 0 OSM decan01c ac1d 0 0 SM decanorc ac1d 
X 1 OM decano1c actd 

F1g 10 -Mean coafescence time of the first stage of coalescence as a 
functson of the srze of the pnmary drop 

"' w 
::;: 
>= 
w 
u 
z 
w 
u 
"' w _, 
(5 
u 
z 

"" w 
::;: 

I 
.! 

12 

, 
10 

X 

9 
0 
I 
IX 
11 

B 11 
11 
I I 
I I 

7 I I 
I I 

1/ I 11 I 
6 I I I 

" \ 
\ I I • }" • " 5 'o-
, 

4 Thrrd 
stage 

CorrelatiOn 
F1g 9 0 , 

3 I 
I 

I 

2 

0
o 005 010 015 020 025 030 

a,- SIZE OF THE PRIMARY DROP (cm) 

X first stage 
0 th1rd stage 

0 second stage 
1:::. fourth stage 

F1g 11 -Relatranshrp between the mean coalescence t1me and the 
prrmary drop srze for the system heptane-water 

050 

~· 010 

005 

\ 
0 010 10 20 30 40 50 

T1MEis) 

a, Concentration 
Drop slze of decano1c 

(cm) ac1d 

0 0152 1 OOM 

•• 0 157 0 50M 
;:,. 0 156 0 05M 

Ftg 12 -Effect of aCid concentratton on the overall coalescence> t1me 
d1stnbut1ons for the system decano~e aCHI-heptane-water 

\ 

\ 
\ 

• 

1 \ 
\ 

\ 
10 20 30 40 50 

TIME {s) 

a, Concentratton 
Drop stze of decanotc 

(cm) actd 

0 0152 1 OOM 

• 0157 0 50M 

L 0156 0 05M 

F1g 13 -Effect of ocrd concentratron on the first stage coalescence trme 
drstrtbutrons for the system decanotc aCid-heptane-water 

I.Chem.E. SYMPOSIUM SERIES No. 26 (1967: lnstn chem. Engrs, London) 



I:DGE and GREAVES COALESCENCE IN THE SYSTEM DECANOIC ACID-HEPTANE-WATER 71 

1 DO c--1'--=..,;~-.-----,----.--------:: 

050 

~010 

005 

0 

• 
[', 

2 4 

a, 
Drop s1ze 

(cm) 

0 152 

0 157 

0 156 

6 B 
TIME (s) 

Concentration 
of decanotc 

ac1d 

1 OOM 

0 SOH 

0 OSM 

\ 
10 12 

F1g 1-4 -Effect of aCid concentration on the second stage coalescence 
trme diStnbutJOnS for the system decano1c aCid-heptone-water 

1 OD 

050 

\ \'" 
0 

~0 010 \ 
" 

d 
005 

• 
0 01 I 

15 20 25 3002 03 04 05 06 
TIME (s) 

a, Concentration 
Drop SIZe of decano1c 

(cm) ac1d 

0 0 152 I OOM 

• 0 157 0 SOM 

[', 0 156 0 OSM 

F1g 15 -Effect of acid concentration on (1) thlfd stage, (2) fourth stage 
coofescence t1me dtstr1but1on for the system decanosc actd-heptane­

water 

10~-.--.--.--.--.--.-~ 
OB 
o.s 

;;!O 4 
~ 03 

02 

10~-.-.--.-.--,,--.-~ 
OB 
06 

<:00 t. 
~ 03 

02 
F1rst stage ............. 
to= 40 
n = 175 

01o~~50~~10~0~1~5~0~20~0~2~5~0~3~00~3~570J 
(f-f

0
)n 

0 SM decano1c ac1d 

Drop s1ze, o1 = 0 191 cm 

F1g 16 __.correlation of d1stnbut10ns for the system heptane-decanotc 
aCid-water usmg equat1on (So) 

to be related when 0 5M and 1 OM solutiOns of decanmc ac1d 
are uc;ed 

Acknowledgment 

The authors w1sh to acknowledge the financml support 
g1ven by the Warren Sprmg Laboratory, Mm1stry of Techno­
logy, to carry out th1s work 

bg~~~~~~~-----d 
06 
04 

<::0 0 3 
~02 

10~~--~~--~~~~--~ OB 04 06 
06 
04 
03 
02 

01~~~~~-.~~~~~ 0 2 4 6 B 10 12 14 
(t -tJ' 

0 5M decanorc acrd 

Drop srze, a 1 = 0 191 cm 

Frg 17 -Correfatron of drstnbutrons for the system heptane-decanorc 
ocrd-water usmg equotron (So) 

I Chem E SYMPOSIUM Sf<.RIES No. 26 (1967: Instn chem Engrs, L<mdon) 



72 EDGE and GREAVES. COALESCENCE IN THE SYSTEM DECANOIC ACID-HEPTANE-WATER 

001r--,---r--~~r--r--.---r--r 

0 05 
0 10 

os 

10 

998 
999 

A 
I 
r 

99 99 0!--,~--28:---:'::12:---:'::16:--:2;';;0--;;2';-4 --::28:;----;32 

e first coalescence stage 
0 second coalescence stage 
£:::. thtrd coalescence stage 

Drop stze, a1 = 0 162 cm 
Drop formed 2 5 cm above the mterface 

Ftg 18 -Correlat1on of coafescence t1me dtstnbuttons for the system 
heptane-water usmg probability paper 

Symbols U>ed 

a 1 = radms of pnmary drop 
a2 = radiUs of secondary drople.t 
n = power m equatiOn (5) 

c = a constant m equatwns (2), (4), and (5b) 
K = a constant m equatiOns (I), (3), and (5a) 

N = number of drops not coalescmg m ttme t 
No = total number of drops assessed 

t~~. = coalescence ttme for qth coalescence stages, where q 
IS I to 4. 

f::::; overall coalescence ttme ( = "~1 lq) . 
(tm)4 = mean colaescence time for qth coalescence stage, where 

qiS!to4 

f'" =mean overall coalescence t1me [ = 4~1 (tm)4 ] 

Ctt)11 = half-hfe coalescence time for qth coalescence stage, 
where q IS 1 to 4. 

it = overall half-hfe coalescence time [ = i (1_~),] ,., 
10 = 1mtml dramage penod for the film between the drop 

and the mterface Equal to the mimmum value of 1
11 

[(tm),/(t,),]A,..,., = the average value of (tm),!(t.), for the 
range of drop sizes whrch were mvestl­
gatcd 

[fm/fthmarc = the average value of lmfft for the range of 
drop sizes which were mvestJgated 

R = radius of liqUid column 

M= molar concentratiOn of decanmc acrd m heptane 
p =VISCOSity ratio(= JltfJl2) 

Jlt = VISCOSity of droplet hqUid 

p 2 =VISCOSity of hqmd surroundmg droplet 
y = mterfacial tensiOn 

aq = standard devratwn of the coalescence trme dtstnbu­
tron of the qth coalescence stage where q IS 1 to 4 

The above quantities may be expressed m any set of con­
Sistent umts m which force and mass are not defined Inde­
pendently 
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