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Abstract: Recognizing the value of open-source research databases in 

advancing the art and science of HVAC, in 2014 the ASHRAE Global Thermal 

Comfort Database II project was launched under the leadership of 

University of California at Berkeley's Center for the Built Environment 

and The University of Sydney's Indoor Environmental Quality (IEQ) 

Laboratory. The exercise began with a systematic collection and 

harmonization of raw data from the last two decades of thermal comfort 

field studies around the world. The ASHRAE Global Thermal Comfort 

Database II (Comfort Database), now an online, open-source database, 

includes approximately 81,846 complete sets of objective indoor climatic 

observations with accompanying "right-here-right-now" subjective 

evaluations by the building occupants who were exposed to them. The 

database is intended to support diverse inquiries about thermal comfort 

in field settings. A simple web-based interface to the database enables 

filtering on multiple criteria, including building typology, occupancy 

type, subjects' demographic variables, subjective thermal comfort states, 

indoor thermal environmental criteria, calculated comfort indices, 

environmental control criteria and outdoor meteorological information. 

Furthermore, a web-based interactive thermal comfort visualization tool 

has been developed that allows end-users to quickly and interactively 

explore the data. 
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Highlights: 

- The scope, development, contents, and accessibility of the Comfort Database is documented 

- The Comfort Database II includes approximately 76,000 complete sets of thermal comfort data 

- The Comfort Database provides access to the collected raw data 

- Web-based interactive visualization tool was developed that allows end-users to interactively 

explore the data 
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Abstract 1 

Recognizing the value of open-source research databases in advancing the art and science of 2 
HVAC, in 2014 the ASHRAE Global Thermal Comfort Database II project was launched under 3 
the leadership of University of California at Berkeley’s Center for the Built Environment and 4 
The University of Sydney’s Indoor Environmental Quality (IEQ) Laboratory. The exercise began 5 
with a systematic collection and harmonization of raw data from the last two decades of thermal 6 
comfort field studies around the world. The ASHRAE Global Thermal Comfort Database II 7 
(Comfort Database), now an online, open-source database, includes approximately 81,846 8 
complete sets of objective indoor climatic observations with accompanying “right-here-right-9 
now” subjective evaluations by the building occupants who were exposed to them. The database 10 
is intended to support diverse inquiries about thermal comfort in field settings. A simple web-11 
based interface to the database enables filtering on multiple criteria, including building typology, 12 
occupancy type, subjects’ demographic variables, subjective thermal comfort states, indoor 13 
thermal environmental criteria, calculated comfort indices, environmental control criteria and 14 
outdoor meteorological information. Furthermore, a web-based interactive thermal comfort 15 
visualization tool has been developed that allows end-users to quickly and interactively explore 16 
the data. 17 
 18 
Key words: Thermal comfort, Field study, Data repository, Visualization tool 19 

  20 
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1. Introduction 1 

The ASHRAE Thermal Comfort Database I (de Dear, 1998) was compiled in the late 1990s with 2 
the simple purpose of testing the adaptive thermal comfort hypothesis and developing a model 3 
(de Dear and Brager, 1998), and in 2004 the resulting model went on to form the empirical basis 4 
of ASHRAE’s adaptive thermal comfort standard for occupant-controlled, naturally conditioned 5 
spaces (ASHRAE 2017). That project collated high-quality instrumental measurements of indoor 6 
thermal environments and their simultaneous subjective thermal comfort evaluations from 52 7 
field studies conducted in 160 buildings worldwide, mostly commercial offices, between 1982 8 
and 1997. The database assembled almost all of the scientifically rigorous field study datasets 9 
available at that time (circa 22,000 questionnaire responses with accompanying instrumental 10 
measurements) into a single repository. Upon completion of the original ASHRAE research 11 
project, the research team made the database accessible to the global thermal comfort research 12 
community via the internet.   13 
 14 
An inductive strategy that begins with extant data and works “backwards” towards a research 15 
question now complements the more conventional deductive model of science based on 16 
hypotheses drawn from theory and testable with experimental data. Even the research niche of 17 
thermal comfort has benefited from data mining research methods (Han et al., 2011). In the two 18 
decades since its inception, the ASHRAE Thermal Comfort Database I has been mined for 19 
diverse research questions well beyond the scope of its original purpose, resulting in many 20 
papers in the peer-reviewed literature (e.g. Fanger and Toftum, 2002; Langevin et al. 2015; 21 
Zimmerman, 2008; Djamila, 2013, Arens et al. 2010) and higher degree research projects (e.g. 22 
Law, 2013). Furthermore, ASHRAE Thermal Comfort Database I has become the first port of 23 
call when a question regarding thermal comfort and HVAC practice arises.  For example, the 24 
current provisions for elevated airspeed in ASHRAE Standard 55 (ASHRAE, 2017) were based 25 
exclusively on the analysis of Database I (Arens et al., 2009), as was the dynamic clothing model 26 
implemented in the current ASHRAE Standard 55 to estimate indoor clothing insulation levels 27 
from 6:00 am outdoor meteorological observations (Schiavon and Lee, 2013). Given the strong 28 
connections of thermal comfort with the issues of energy consumption in the built environment 29 
(e.g. Nazaroff, 2008), along with building occupant wellbeing and productivity, it is 30 
understandable that there has been a resurgence of research activity in the topic over the last two 31 
decades (de Dear et al., 2013). New thermal comfort research containing original field data has 32 
grown dramatically since the Database I was launched twenty years ago, and so it seems timely 33 
that we consolidate those new data into an even larger repository. With a larger body of data to 34 
work on, comfort researchers will be able to drill down even deeper while still retaining enough 35 
power to deliver statistically significant findings. It should be possible to identify trends of 36 
thermal comfort preference over longer time periods as air-conditioning becomes the pervasive 37 
building control strategy.  The aim of this paper is to document the origins, scope, development, 38 
contents, and accessibility of ASHRAE Global Thermal Comfort Database II (short name: 39 
Comfort Database).  40 
 41 
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2. Methods 1 

In order to ensure that the quality of the database would permit end-users to conduct robust 2 
hypothesis testing, the team built the data collection methodology on specific requirements, as 3 
follows: 4 

• Data needed to come from field experiments rather than climate chamber research, so that 5 
it represented research conducted in “real” buildings occupied by “real” people doing 6 
their normal day-to-day activities, rather than paid college students sitting in a controlled 7 
indoor environment of a climate chamber.  8 

• Both instrumental (indoor climatic) and subjective (questionnaire) data were required, 9 
such that they were recorded in the same space at the same time.  10 

• The database needed to be built up from the raw data files generated by the original 11 
researchers, instead of their processed or published findings. 12 

• The raw data needed to come with a supporting codebook explaining the coding 13 
conventions used by the data contributor, to allow harmonization with the standardized 14 
data formatting within the database.  15 

• Data must have been published either in a peer-reviewed journal or conference paper. 16 

All data submissions were subjected to a rigorous quality assurance process. Field data were 17 
organised into separate folders according to their origins, including contributor’s name, country, 18 
and sample size. A detailed list of contributors and the sample size of each submission are 19 
summarized in section 3. Each folder contained the raw data files, supplementary codebook, and 20 
publication(s) providing details about the field study such as geographic location, building type, 21 
cooling strategy, season and climate information. These references are listed in the Comfort 22 
Database online Query Builder interface and the visualization online tool (more details below). 23 
The research team built a meta-file which allowed easy filtering, such as describing the origin 24 
and characteristics of the data, and included the following information: 25 

• Name of contributor.  26 
• Publications (Authors, Title, Journal/Conference information). 27 
• Year of the measurement. 28 
• Country. 29 
• City. 30 
• Season when the measurement was conducted. 31 
• Climate zone: data were classified into various climate zones using the Köppen climate 32 

classification. A detailed description of the sample sizes grouped in various climate 33 
categories is presented in the Results section. 34 

• Building type: data were classified into five categories, as follows: Multifamily housing, 35 
Office, Classroom, Senior Center and others.  36 

• Cooling strategy: data were assigned characteristics of the building’s cooling strategy, 37 
describing what system type was used while the study was conducted, using the 38 
following categories: air-conditioning, natural ventilation, mechanically controlled 39 
ventilation, and mixed-mode system (i.e., a combination of natural ventilation and 40 
mechanical cooling). 41 

• Sample size of each contribution. 42 
• Directory: The file path where the raw data, codebook, and publication(s) were saved. 43 
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• List of objective and subjective thermal comfort variables that each field study 1 
investigated.  2 

The research team created the database file itself using a standardized spreadsheet format. The 3 
main header contained the unique identifier for each column of data (i.e., variable names). The 4 
information was categorized into the following groups: 5 

• Basic identifiers, such as building code, geographical location, year of the measurements, 6 
and heating/cooling strategy. 7 

• Personal information about the subjects participating in the field studies, such as sex, 8 
age, height, and weight. 9 

• Subjective thermal comfort questionnaire, such as sensation, acceptability, and 10 
preference, as well as self-assessed metabolic rate (met) and clothing intrinsic thermal 11 
insulation level (clo).  12 

• Instrumental measurements indoor climate, including various types of temperatures, air 13 
velocity, relative humidity. 14 

• Comfort indices, including Predicted Mean Vote (PMV), Predicted Percentage 15 
Dissatisfied (PPD), and Standard Effective Temperature (SET) calculated uniformly 16 
throughout the entire database using a calculator that was fully compliant with the ISO 17 
Standard 7730 (2005) sourcecode in the case of PMV and PPD calculations, and 18 
ASHRAE/ANSI Standard 55 (2017) sourcecode in the case of the 2-node SET 19 
index. Compliance of the calculator was checked by applying it to the validation datasets 20 
supplied in appendices to the two standards.  21 

• Indoor environmental controls available (blinds, fan, operable window, door, heater). 22 
• Outdoor meteorological information, such as monthly average temperatures. Some 23 

original data submissions contained relevant meteorological data. For cases without those 24 
data, fields meteorological data were updated based on archival weather data sourced 25 
from weather station websites based on the available information about location and the 26 
time of the measurements. 27 

All datasets from individual studies were subject to a stringent quality assurance process (Figure 28 
1) before being assimilated into the database. The research team conducted a final validation by 29 
first comparing each raw dataset with its related publication provided by the data contributor to 30 
prevent transmission errors.  Systematic quality control of each study was performed to ensure 31 
that records within the database were reasonable. Firstly, distributions of each variable were 32 
visualized to identify aberrant values. Then, cross-plots between two variables (e.g. thermal 33 
sensation and thermal comfort) were used to check for incorrectly coded data. Finally, a few 34 
rows from each study were randomly selected to verify consistency between the original dataset 35 
and the standardized database. Since the data came from multiple independent studies, every 36 
record did not necessarily include all of the thermal comfort variables. Where data were missing, 37 
that particular range of cells was filled with a null value. The thermal comfort visualization tool 38 
(described later) was used to help remove anomalies in the data. The detailed list of project 39 
identifiers and thermal comfort variables is presented in the Results section. 40 
 41 
The database is structured so that rows (i.e., “records”) represent an individual’s questionnaire 42 
responses, and the columns include the associated instrumental measurements, thermal index 43 
values, and outdoor meteorological observations. Table 1 summarizes the full listing of variables 44 
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in the database file and their coding conventions. There is a total of 49 possible thermal comfort 1 
variables for each record. There are 65 columns so that quantities can be expressed in both 2 
imperial and metric units, and any post-processed variables can be flagged. The “offline” 3 
spreadsheet version of the database includes the codebook for each parameter. The full citation 4 
for the original publication associated with each dataset is also stored in the database. Users can 5 
download the   latest database version through the University of California’s DASH repository 6 
(Foldvary et al. 2018) 7 
 8 
Table 1. Variable coding conventions. 9 
Variable Description 
Basic Identifiers 
Publication (Citation) Published paper describing the project from where the data was collected 
Data contributor Principal Investigator of the study 
Year Year when the field study was conducted 
Season Spring, Summer, Autumn, Winter 
Climate Köppen climate classification 
City City where the study was done 
Country Country where the study was done 
Building type Classroom, Multifamily housing, Office, Senior Center, others 

Cooling strategy 
Air Conditioned, Mechanically Ventilated, Mixed Mode, Naturally 
Ventilated 

Subjects’ Personal Information 
Age Age of the participants 
Sex Male, Female, Undefined 
Subject’s Weight Participating subject’s weight (kg) 
Subject’s Height Participating subject’s height (cm 
Subjective Thermal Comfort Information 
Thermal sensation ASHRAE thermal sensation vote, from -3 (cold) to +3 (hot) 
Thermal acceptability 0-unacceptable, 1-acceptable 
Thermal preference cooler, no changes, warmer 
Air movement acceptability 0-unacceptable, 1-acceptable 
Air movement preference less, no change, more 
Thermal comfort From 1-very uncomfortable to 6-very comfortable 
Clo Intrinsic clothing ensemble insulation of the subject (clo) 
Met Average metabolic rate of the subject (Met) 
activity_10 Metabolic activity in the last 10 minutes (Met) 
activity_20 Metabolic activity between 20 and 10 minutes ago (Met) 
activity_30 Metabolic activity between 30 and 20 minutes ago (Met) 
activity_60 Metabolic activity between 60 and 30 minutes ago (Met) 

Humidity sensation 3-very dry, 2-dry, 1-slightly dry, 0-just right, -1slightly humid, -2-humid, -
3-very humid 

Instrumental Thermal Comfort Measurements 
Air temperature Air temperature measured in the occupied zone (°C, °F) 
Ta_h Air temperature at 1.1 m above the floor (°C, °F) 
Ta_m Air temperature at 0.6 m above the floor (°C, °F) 
Ta_l Air temperature at 0.1 m above the floor (°C, °F) 
Operative temperature Calculated operative temperature in the occupied zone (°C, °F) 
Radiant temperature Radiant temperature measured in the occupied zone (°C, °F) 
Globe temperature Globe temperature measured in the occupied zone (°C, °F) 
Tg_h Globe temperature at 1.1 m above the floor (°C, °F) 
Tg_m Globe temperature at 0.6 m above the floor (°C, °F) 
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Tg_l Globe temperature at 0.1 m above the floor (°C, °F) 
Relative humidity Relative humidity (%) 
Air velocity Air speed (m/s, fpm) 
Velocity_h Air speed at 1.1 m above the floor (m/s, fpm) 
Velocity_m Air speed at 0.6 m above the floor (m/s, fpm) 
Velocity_l Air speed at 0.1 m above the floor (m/s, fpm) 
Calculated Indices 
PMV Predicted Mean Vote 
PPD Predicted Percentage of Dissatisfied 
SET Standard Effective Temperature (°C, °F) 

Environmental Control 

Blind (curtain) State of blinds or curtains if known (0-open, 1-closed); otherwise NA-non 
applicable 

Fan  Fan mode if known (0-off, 1-on); otherwise NA-non applicable 

Window 
State of window if known (0-open, 1-closed); otherwise NA-non 
applicable 

Door 
State of doors if known (0-open, 1-closed); otherwise NA-
non applicable 

Heater 
Heater mode if known (0-off, 1-on); otherwise NA-non 
applicable 

Outdoor monthly air 
temperature 

Outdoor monthly average temperature when the field 
study was done (°C, °F) 

 1 

 2 
Figure 1. Flowchart of the data collection and quality assurance processes. 3 

3. ASHRAE Global Thermal Comfort Database II 4 

3.1 Database description 5 

The final Comfort Database is comprised of field studies conducted between 1995 and 2016 6 
from around the world, with contributors releasing their raw data to the project for wider 7 
dissemination to the thermal comfort research community. After the quality-assurance process, 8 
there was a total of 81,846 rows of raw data of paired subjective comfort votes and objective 9 
instrumental measurements of thermal environmental parameters2.Standardized data files from 10 
the ASHRAE RP-884 Adaptive model project (de Dear, 1998) were transformed and assimilated 11 
into the new database structure with appropriate coding conventions. Thermal comfort indices 12 
were recalculated using the same validated code used throughout this project to ensure 13 
                                                
2 this paper is based on data contributions received by February 2018. Researchers can contribute new data to the 
ASHRAE Global Thermal Comfort Database II by contacting the corresponding author. 
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consistency. A total of 25,617 records from the RP-884 database were added to Database II, 1 
bringing the total to 107,463. The following sections will describe the new datasets only; more 2 
information on the field studies from the RP-884 database can be found in the final report (de 3 
Dear et al, 1997). 4 
 5 
3.1.2 Data distribution by geographical location  6 

The field studies from which this database draws were conducted in five continents, with a broad 7 
spectrum of geographical locations (countries) represented. Figure 2 shows the distribution of 8 
records within the database by continent. The largest portion is from European (n = 31,392) and 9 
Asian field studies (n = 29,064). South America (n = 7,390) and North America (n = 9,969) have 10 
a similar number of records. Africa is represented by 2,163 rows of data, and Australian studies 11 
accounted for 1,868 rows. Overall, the Comfort Database includes field study data from 23 12 
countries, including Australia, Belgium, Brazil, China, Denmark, France, Germany, Greece, 13 
India, Iran, Italy, Japan, Malaysia, Mexico, Nigeria, Philippines, Portugal, Slovakia, South 14 
Korea, Sweden, Tunisia, the United Kingdom and the United States of America (Figure 3).  15 
 16 
 17 

18 
Figure 2. Distribution of thermal comfort data by continent. 19 
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Table 2 lists the associated publications and important metadata for each dataset e.g. location, 1 
season, building type, etc. The largest dataset is from Oseland’s (1998) study based in the United 2 
Kingdom, which took measurements in all four seasons (spring, summer, autumn and winter), 3 
characterizing thermal environments in naturally ventilated multifamily houses (Loveday et al, 4 
2016) as well as office buildings using various cooling strategies such as natural ventilation, 5 
mixed-mode, mechanical ventilation (Oseland, 1998; Stoops, 2001; McCartney and Nicol, 2002) 6 
and air-conditioning (Oseland, 1998). The second highest number of observations comes from 7 
the Indian thermal comfort research community (Honnekeri et al, 2014 a; Honnekeri et al, 2014 8 
b; Indraganti et al, 2014; Manu et al, 2016; Singh et al, 2010), which is similar to the British 9 
contributions, originated from all four seasons representing thermal environments in air-10 
conditioned classrooms, naturally ventilated multifamily houses, offices and other building types 11 
using various type of cooling strategies.  12 

 13 
Figure 3. Location of the field studies contained in the ASHRAE Global Thermal Comfort Database II. 14 

Table 2. Basic metadata for contributions to the ASHRAE Global Thermal Comfort Database II. 15 

Publications Experiment location Building type Cooling 
strategy Sample size 

Andamon, 2006 Philippines Office AC 277 
Bae et al., 2016 
 South Korea Senior center MM 312 

Kwon et al., 2011 South Korea Office MV, MM 262 
Bouden et al, 2005 Tunisia Multifamily housing, Office NV, MV 1 651 
Brager et al, 2004 USA Office NV 2 075 
Cândido et al., 2010 Brazil Classroom NV 2 075 
Cao et al, 2011 and 2016 China Classroom, Office AC, NV 1 735 
De Vecchi et al, 2012 Brazil Classroom, Office AC, MM 5 036 
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De Vecchi et al, 2017 
Deuble et al, 2012 Australia Office MM 1 359 
Djamila et al, 2013 Malaysia Multifamily housing, Office AC, Undefined 989 
Földváry et al, 2017, 
Pustayová, 2013 Slovakia Multifamily housing NV 648 

Hawighorst et al. 2016 Germany Office MM, NV 628 
Heidari et al, 2002 Iran Multifamily housing, Office NV 1 971 

Honnekeri et al, 2014 a India Classroom, Multifamily 
housing, Office, Others AC, NV 2 859 

Honnekeri et al, 2014 b USA  Office NV 1 408 
Indraganti et al, 2014 India Office AC, NV, MM 6 048 
Jin et al, 2013 China Others NV 376 
Kim, 2012 USA Office AC 84 
Konis, 2013 USA Office MM 2 482 
Kwok and Chun, 2003 Japan Classroom AC 74 
Langevin et al, 2015 USA Office AC 2 497 
Liu et al, 2013 China Multifamily housing, Others AC, NV 610 
Loveday et al, 2016 United Kingdom Multifamily housing NV 509 
Luo et al, 2016 China  Classroom NV 1 810 
Nakamura et al, 2008 Japan Multifamily housing MM 715 
Oluwafemi  and Adebamowo, 
2010 Nigeria Multifamily housing NV 512 

Oseland,1998 United Kingdom Office AC, NV 20 997 
Pedersen, 2012 Denmark Classroom MV 170 
Romero et al, 2013 Mexico Multifamily housing NV 1 423 
Manu et al, 2014 India Office AC, NV 6 330 
Loveday et al, 2016 
(based on India data from 
Rawal et al, CEPT University, 
India) 

India Multifamily housing NV 573 

Sekhar et al, 2003 Singapore Office AC 217 
Singh et al, 2010 India Multifamily housing NV 300 
Singh et al, 2014 Belgium Multifamily housing NV 85 

Stoops, 2001 
McCartney and Nicol, 2002 

France Office NV, MM, MV 516 
Greece Office NV, MM, MV 325 
Portugal Office NV, MM 1 559 
Sweden Office MM, MV 970 
United Kingdom Office NV, MM, MV 1 285 

Tanabe et al, 2013 Japan Office AC 118 
Tartarini, 2018 Australia Others AC, NV 509 
Teli et al, 2012 UK Classroom NV 2 990 
Wagner et al, 2007 Germany Office NV 427 
Wang, 2006 
Wang et al, 2011 
Wang et al, 2014 
 

China Office, Classroom, 
Multifamily housing NV, MV 1 380 

Xavier, 2000 Brazil Undefined Undefined 279 
Zangheri et al, 2010 and 2011 Italy Classroom, Office AC, NV 283 
Zhang et al, 2010 and 2013 China Classroom. Other AC, NV 2 324 

                                                                                                                                                                        Total 81,846 

Note: AC-Air Conditioned, NV-Naturally Ventilated, MM-Mixed Mode, MV-Mechanically Ventilated 1 
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 1 
3.1.3 Data distribution by climate zones and seasons 2 

Seasonal variations as well as prevailing weather can impact physiological acclimatization, 3 
behavioural adjustment and indoor comfort expectations (Brager and de Dear 1998). This section 4 
presents the distribution of thermal comfort data according to the Köppen climate classification.  5 
 6 
The Comfort Database contains thermal comfort field measurements from 16 distinct Köppen 7 
climate classes (Figure 2). Climate zones with the highest numbers of thermal comfort data 8 
include hot-summer Mediterranean (n = 23,192), humid subtropical (n = 15,536), hot semi-arid 9 
(n = 8,471), and tropical wet savanna (n = 6,633). Other samples were classified as warm-10 
summer Mediterranean (n = 5,980), temperate oceanic (n = 4,968), Monsoon-influenced hot-11 
summer humid continental (n = 3,809),warm-summer humid continental (n = 2,990), hot desert 12 
(n = 2,084), tropical monsoon (n = 2,075),  monsoon-influenced humid subtropical (n = 1,588) 13 
and cool-summer Mediterranean (n = 1,408) regions. Relatively small volumes of data came 14 
from the subtropical highland (n = 1,406),  tropical rainforest (n = 963), cold semi-arid (n = 312), 15 
and tropical dry savanna (n = 152) climate zones. Due to missing information, some samples (n 16 
= 279) could not be classified into any climate group and were assigned a null value. 17 
 18 
Figure 2 summarises the seasonal distribution of data points. The highest number of observations 19 
were collected in summer (n = 30,545). There was a slightly lower sample size for winter (n = 20 
30,440), and fair representation of the shoulder seasons of spring (n = 9,455) and autumn (n = 21 
9,177). Some datasets did not contain the requisite information to classify season (n = 2,229), 22 
and these entries were left undefined. 23 
 24 
3.1.4 Data distribution by building type and cooling strategy 25 

The research team classified the thermal comfort data into five main building categories, 26 
including offices (n = 55,238), classrooms (n = 12,755), multifamily houses (n = 10,120), senior 27 
centers (n = 312) and a building category defined by the contributor as “others” (any other 28 
building type than the defined ones) (n = 3,421).  29 
 30 
The team also collected information on cooling strategy used in each building, with the largest 31 
proportion of measurements being from buildings using natural ventilation (n = 38,584), 32 
followed by air-conditioned buildings (n = 28,544). A significant number of thermal comfort 33 
data came from environments using mixed-mode cooling (n = 11,745), while a smaller sample 34 
was collected from mechanically ventilated spaces (n = 1,804). As with other descriptors, data 35 
that could not be confidently classified into any of the defined cooling strategies were grouped as 36 
undefined (n = 1,169). 37 
 38 
Table 3 shows the distribution of records by continent, building type, and cooling strategy. Most 39 
of the field measurements from European studies were collected from offices (n = 26,929) that 40 
were either naturally ventilated or air-conditioned. Similarly, most of the data sourced from 41 
Asian countries were from office buildings (n = 14,839), with the majority using mixed mode 42 
ventilation. Data from South America, however, are mostly measurements made in classrooms (n 43 
= 4,366) that were naturally ventilated or with mixed-mode cooling. The residential context is 44 
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well-represented in the African dataset. Both the North American and Australian datasets were 1 
wholly comprised of offices. 2 
 3 
Table 3. Sample size distribution according to the data´s experimental location. 4 

 

Cooling Strategy 

Air-
conditioning Mixed Mode Mechanically 

Ventilated 
Natural 

Ventilation Undefined 

Europe 
(n = 31,392) 

Classroom 8 0 170 3,034 0 
Multifamily 
housing 0 0 0 1,242 0 

Office 11,408 2,191 1,386 11,944 0 

Asia 
(n = 29,064) 

Classroom 2,190 0 0 2,978 0 

Multifamily 
housing 618 715 0 3,889 890 

Office 7,925 2,283 191 4,440 0 

Others 1,404 0 0 1,229 0 

Senior Centre 0 312 0 0 0 
South 
America 
(n = 7,390) 

Classroom 0 2,291 0 2,075 0 
Office 1,274 1,471 0 0 0 
Others 0 0 0 0 279 

North 
America 
(n = 9,969) 

Multifamily 
housing 0 0 0 1423 0 

Office 2,581 2,482 0 3,483 0 

Africa 
(n = 2,163) 

Multifamily 
housing 0 0 26 1,317 0 

Office 0 0 31 789 0 
Australia 
(n = 1,868) 

Office 1065 0 0 294 0 
Others 71 0 0 438 0 

 5 

3.2 Interactive thermal comfort data visualization tool 6 

The aim of developing an interactive visualization tool (see Figure 4) was to provide a user-7 
friendly interface for researchers and practitioners to explore and navigate their way around the 8 
large volume of data in ASHRAE Global Thermal Comfort Database II.4  The tool is built with R 9 
version 3.2.3, using “ggplot2”, “ordinal” and “shiny” packages for graphic visualization, 10 
percentage of dissatisfied probit curve analysis and web-based interaction respectively. One key 11 
feature of the visualization tool is the ability for users to customize their selected dataset over the 12 
entire database for specific data comparisons. Some major filters are cooling strategy, building 13 
type, meteorological context, indoor climatic physical parameter ranges, along with various 14 
human factors. This tool was originally developed by Pigman (2014), and modified by research 15 
team members from the Center for the Built Environment (CBE) to reflect the newly updated 16 
database. On top of the original features, the current version includes some new graphic types to 17 
assist data visualization and analysis, including two boxplots and a bar chart for data statistics, a 18 

                                                
4 https://cbe-berkeley.shinyapps.io/comfortdatabase/ 
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scatter plot of raw data on the elevated air speed comfort zone in ASHRAE Standard 55 1 
(ASHRAE, 2017), and two local relationship plots available for user-customized parameters in 2 
the x and y axis. 3 
 4 

 5 
 6 

Figure 4. A screen shot showing an example of the thermal comfort visualization tool’s “Satisfaction” page. The tool 7 
is freely available at https://cbe-berkeley.shinyapps.io/comfortdatabase/ 8 

 9 
3.2.1 Data filters 10 
The graphic interface is divided into three pages to examine satisfaction scores, adaptive 11 
comfort, and scatter plots of selected variables. Below the graphs are four categories, or tabs, to 12 
filter the data and create different subsets:  13 

(1) The “building” tab allows the selection of a satisfaction metric to use (acceptability or 14 
comfort), conditioning type, and building type.  15 

(2) The “geography” tab allows filtering of selected data by seasons, climate classifications, 16 
countries, and cities.  17 

(3) The “conditions” tab allows for the creation of a subset of data where bounded ranges of 18 
selected physical parameters are specified, such as prevailing mean outdoor, indoor, 19 
radiant and operative temperature, indoor relative humidity, and indoor air speed.  20 

(4) The “human factors” tab allows filtering by characteristics of subjects, including sex, age, 21 
clothing insulation and metabolic rate; or by the availability of indoor environmental 22 
controls (if provided), such as operable windows, doors, thermostats, blinds, heaters, and 23 
fans. 24 

3.2.2 Graphic output 25 

Above the graphs are three different pages for exploring the data and generating different types 26 
of graphs:  27 
 28 

 “Satisfaction” page  29 
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ASHRAE Standard 55 defines thermal comfort as the “condition of mind that expresses 1 
satisfaction with the thermal environment and is assessed by subjective evaluation” (ASHRAE, 2 
2017). Since most field studies do not ask directly about satisfaction with the thermal 3 
environment, researchers use questions about thermal sensation, acceptability and comfort to 4 
infer occupant thermal satisfaction. The “Satisfaction” page explores the relationship between 5 
thermal sensation and these other two metrics (thermal acceptability and thermal comfort) using 6 
multinomial probits. The probit plot displays curves of percent dissatisfied (based on thermal 7 
acceptability and comfort votes in field surveys) against either the subjects’ thermal sensation 8 
vote or PMV (i.e., similar to the PPD vs. PMV graph). Furthermore, the graphic output on this 9 
page displays basic statistical distributions from the selected subsets of the filtered database. In 10 
addition to the filters previously mentioned, one can choose from a variety of parameters to 11 
summarize as counts in a bar chart (e.g., basic identifiers), or as boxplot distributions (e.g., 12 
instrumental, or measured, parameters).  13 
 14 
“Adaptive model” page  15 
This graphic output is used for comparing the measured percentage satisfied (using acceptability, 16 
comfort, or sensation votes) with predicted ranges of comfortable indoor temperatures based on 17 
adaptive comfort standards in ASHRAE Standard 55 (ASHRAE, 2017) and EN 15251 (Standard 18 
EN 15251, 2007). These adaptive models establish a range of comfortable indoor temperatures 19 
based on prevailing outdoor temperatures. The “Adaptive model” page analyses the database 20 
within the adaptive framework by binning thermal comfort votes according to the prevailing 21 
outdoor temperature and the indoor temperature the subjects were experiencing at the time 22 
(shown on the x- and y-axis, respectively). The percentage of satisfied votes is calculated within 23 
each two-dimensional bin and visualized with a color scale, with 80% or higher satisfaction 24 
being shown in green. For example, Figure 5 shows that the bin with an outdoor and indoor 25 
temperature each of 20 °C has 100 acceptability votes of which 90 are acceptable. This bin (20 26 
°C, 20 °C) is colored green to indicate it has >80% satisfaction. Conversely, there are 50 votes in 27 
the bin of 20 °C outdoor and 30 °C indoor temperature, and 10 of them are “acceptable,” so that 28 
bin (20 °C, 30 °C) is colored red to mark it as having only 20% satisfaction. An accumulation of 29 
the green bins delineates an observed comfort zone, and one can compare it with the adaptive 30 
comfort zones predicted by the ASHRAE 55 and EN 15251 standards.  31 
 32 
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 1 

Figure 5. An example of binning thermal comfort votes according to the coincident indoor and outdoor temperature 2 
conditions 3 

 4 
“Scatter” page:  5 
The three graphs on this page are used for evaluating a filtered subset of the database using 6 
scatter plots. The first graph is specifically designed to display the air speed (y-axis) against 7 
different types of temperature (x-axis) and compares that distribution with the elevated velocity 8 
comfort zone in ASHRAE Standard 55 (ASHRAE, 2017). The elevated air speed comfort zone 9 
in ASHRAE Standard 55 (ASHRAE, 2017) is adopted when the average air speed exceeds 10 
0.2m/s, subject’s metabolic rate is 1 to 2 met, and clothing insulation is between 0 and 1.5 clo. It 11 
is permissible to determine the operative temperature range by linear interpolation between the 12 
limits found in corresponding comfort zones. The first graph on this page considers the data in 13 
this aspect and overlays onto the raw data scatter plot two comfort zones criteria (for clothing 14 
insulation = 0.5 and 1 clo) at 1.1 met. One can also generate two additional scatter plots with 15 
selectable x-axis and y-axis for a wide variety of variables, with an overlay identifying local 16 
regressions.  17 
 18 
3.3 ASHRAE Global Thermal Comfort Database II Query Builder  19 

The ability to explore the Comfort Database using the interactive thermal comfort visualization 20 
tool provides convenient access for many users. However, most end-users of these comfort 21 
databases have proficiencies in common statistical software packages and very specific queries 22 
in mind when they use such a data repository. It is therefore likely that they will prefer 23 
performing analyses using their own suite of software. To accommodate such end-users, the 24 
Query Builder tool is accompanied by a simple web-based Graphical User Interface (GUI).5 This 25 
tool allows users to filter the database according to a set of selection criteria, and then download 26 
the results of that query in a generic comma-separated-values (.csv) file format for importing into 27 

                                                
5 ASHRAE Global Thermal Comfort Database II Query Builder can be found at www.comfortdatabase.com 
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their software package of choice. In this way, the Comfort Database may be accessed by users 1 
with differing analytical skills. 2 
 3 
The Query Builder tool uses a combination of Javascript for the interface, and PHP and MySQL 4 
for the backend. There are 49 parameters upon which the database can be filtered, with 5 
descriptions of each parameter displayed in the sidebar (Figure 6). Less common parameters 6 
(defined as those contained in less than 30% of all database records) are indicated by an asterisk 7 
character to alert users that queries that include these may not return any meaningful results. 8 
Parameters are organized into 7 groups for easier navigation (which are similar, but slightly 9 
different than the groups defined in Table 1 for organizing the database): 10 

• Study: the origins of the data (e.g., study, year). 11 
• Climate: locational context (e.g., season, climate etc.). 12 
• Building: building typology and use (e.g. building type, HVAC type etc.). 13 
• Demographic: respondent anthropometrics (e.g., age, sex, height weight). 14 
• Subjective: common survey measures (e.g., thermals sensation, thermal acceptability, 15 

thermal preference). 16 
• Comfort: indices relevant to thermal comfort (e.g., PMV/PPD, clothing, activity). 17 
• Measurements: instrumental measurements of the thermal environment (e.g., air 18 

temperature, globe temperature, relative humidity, air velocity). The system of units is 19 
user-selectable but defaults to SI. 20 

Filters are based on radio buttons, checkboxes, or sliders, depending on the level of measurement 21 
for the parameter in question. For example, categorical variables like thermal acceptability or 22 
building type use checkbox selection, whilst interval or ratio variables like air temperature or air 23 
velocity use slider selection. Filters are only applied to queries upon user selection. Queries 24 
containing multiple filters are executed using Boolean ‘AND’ statements, meaning all selection 25 
criteria are to be met for results to be returned. Any resulting output from the query contains the 26 
entire record or row from the database. Finally, new data can be easily added to the Comfort 27 
Database without requiring any modification to the Query Builder code; the only requirement is 28 
for new data to be organized in the same structure and parameters coded in the same convention 29 
as the existing database. 30 

 31 
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 1 
Figure 6. A screenshot of the Query Builder tool. The accordion menu to the left organizes variables by their 2 
categories, the central section presents the filtering capabilities, and the right sidebar gives descriptions of the 3 

selection parameters. 4 
 5 

4. Conclusion 6 

The purpose of this paper is to describe the methods behind the development of the ASHRAE 7 
Global Thermal Comfort Database II (“Comfort Database”) and its accompanying analysis tools, 8 
to provide attribution to all of the contributors of the raw data, and to inspire researchers and 9 
practitioners who might want to use this open resource.  The Comfort Database is made available 10 
under the Open Database License (Open Data Commons, 2017). This means that end-users are 11 
free to share (i.e., duplicate, disseminate and use the database), to produce new works from the 12 
database, and to transform the Comfort Database, providing they comply with the following 13 
rules:  14 
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• Attribute: End-users must attribute any publicly visible application of the Comfort 1 
Database, or works derived from it, in the manner specified in the ODbL (Open Data 2 
Commons, 2017). Dissemination of the database or any products or services derived from 3 
it, must make clear the license of the Comfort Database and keep intact any notices on 4 
the original database. Research papers derived from the Comfort Database must cite the 5 
current paper (full citation given on both web tools). 6 

• Share-Alike: If end-users publicly use any modified version of the Comfort Database you 7 
must also offer that modified database version under the same Open Database License. 8 

• Keep open: If end-users redistribute the Comfort Database, or a modified version thereof, 9 
then they may restrict accessibility to the work as long as they also make publicly 10 
available a version without such access restrictions in place. 11 

It is hoped that Comfort Database will support diverse inquiries about thermal comfort in the 12 
built environment and be used as a resource to support numerous subsequent publications by 13 
varied authors. 14 
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