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Abstract

Recent wave tank experiments on a flap-type wave energy converter showed
the occurrence of extreme wave loads, corresponding to slamming events
in highly energetic seas. In this paper, we analyse pressure-impulse values
from available pressure measurements, for a series of experimental slamming
tests. Then, we devise a pressure-impulse model of the slamming of a flap-
ping plate, including the effects caused by air entrapment near the plate.
Using a double conformal-mapping technique, we map the original domain
into a semi-infinite channel, by means of Gauss’ hypergeometric functions.
This allows us to express the pressure impulse as a superimposition of or-
thogonal eigenfunctions in the transformed space. The mathematical model
is validated against the experimental data. Parametric analysis shows that
the system is much more sensitive to the impact angle than to the initial
wetted portion of the flap. Furthermore, the presence of an aerated region
determines the pressure-impulse values to increase significantly at all points
on the flap surface.

Keywords:

1. Introduction

Slamming is the violent impact between a liquid surface and a structure
(Faltinsen & Timokha, 2009; Dias & Ghidaglia, 2018). Traditionally, slam-
ming has been studied and modelled in the context of seaplane mechanics
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and ship hydrodynamics. Slamming has been investigated also in the con-
text of traditional and innovative breakwaters and offshore structures, see
Oumeraci et al. (1993); Cuomo et al. (2010); Vicinanza et al. (2013); Jose
et al. (2016). Recently, experiments on a flap-type wave energy converter
(WEC) showed the occurrence of slamming events in highly energetic seas,
which are able to exert extreme loading on the device (Henry et al., 2014,
2015; Wei et al., 2016a).

Flap-type wave energy converters, such as the Oscillating Wave Surge
Converter (OWSC), are among the most effective concepts to extract energy
from the ocean (Babarit et al., 2012; Babarit, 2015). The OWSC is a pitching
flap which works as an inverted pendulum, driven by the surge movement of
waves in the nearshore (Renzi et al., 2014b). A power take-off mechanism
(PTO) linked to the device enables transformation of kinetic energy into
useful electricity. One of the most popular OWSC prototypes is the Oyster
wave energy converter (WEC), which was able to generate up to 1MWh in 5
h on a single power cylinder at the European Marine Energy Centre (EMEC)
in Scotland (Renzi et al., 2014b). Wave slamming has indeed been observed
on the Oyster 800 prototype at EMEC, when it was operating in a rough
sea of significant wave height Hs = 5 m (Wei et al., 2016a). During extreme
slamming events, the main engineering problem shifts from generating energy
to ensuring device survival. Therefore, understanding the dynamics of flap
slamming and calculating the maximum slamming loads is instrumental to
inform the optimal design of OWSCs, thus increasing device reliability and
reducing maintenance costs.

The slamming of an OWSC was first investigated by Henry et al. (2014) in
three dimensions (3D). As the flap rotates seaward with high angular speed,
it reaches a vertical position on encountering the wave trough. Then the
waterline drops down the flap surface, and the flap violently hits the water,
before the wave crest arrives. Later, Henry et al. (2015) and Wei et al. (2016a)
performed additional experiments on a 2D model, using higher sampling rates
that allowed more precise quantifications of the pressure peaks. Wei et al.
(2016a) also devised a computational fluid dynamics (CFD) model, which
successfully reproduced the main characteristics of the slamming event, such
as flap angular speed and free-surface deformation. However, due to the
very localised nature of the phenomenon and the stochastic behaviour of the
experimental data, Wei et al. (2016a)’s CFD model could not capture the
extreme pressure levels recorded in the experiments.

In this paper, we focus on the slamming pressure impulse, rather than
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on the peak pressure. Pressure impulse is defined as the integral of the pres-
sure signal with respect to time, over the duration of the impact (Cooker
& Peregrine, 1995; Faltinsen & Timokha, 2009). While slamming pressures
usually have a stochastic behaviour, the pressure impulse is better behaved;
therefore it is a better parameter to characterise extreme impacts (Lugni et
al., 2006). This paper is organised as follows: First, we re-analyse all the
experimental pressure recordings of Wei et al. (2016a) and use a local regres-
sion technique to calculate the mean curve. Then, we calculate the pressure
impulse for all the experimental time series and the relevant regression data
(Section 2). Second, we derive a pressure-impulse model of wave slamming
on a plate, based on the seminal work of Cooker & Peregrine (1995) and
Wood et al. (2000). The model includes the effect of air entrapment, which
was neglected in the numerical study of Wei et al. (2016a), and is validated
with the experimental data (Section 3). Finally, we perform a parametric
analysis of the system, highlighting the contribution of the main engineering
parameters (impact angle, contact point position, extent of the aerated re-
gion) on the maximum pressure impulse (Section 4). Our results show that
the system is much more sensitive to the impact angle than to the initial
wetted portion of the flap. Furthermore, in the presence of air trapping, the
pressure impulse values increase significantly at all points on the flap surface.

2. Analysis of experimental data

2.1. Experimental layout

In order to develop a better understanding of the slamming of an OWSC,
an experimental campaign was undertaken in the wave flume at Ecole Cen-
trale de Marseille (ECM). The model OWSC was a 40th scale model with box-
shape geometry (width×height× thickness = 0.646 m×0.310 m×0.0875 m),
attached to a semi-circular tube under it, as shown in figure 1. The flap
spanned the width of the wave flume, hence the experiment was two dimen-
sional and represented a simplification of the slamming problem. A pressure
sensor (Kistler 211B6, sampling rate 2000 – 6250 Hz) was installed at the
centre of the flap near the mean water level, at a distance of 0.210 m above
the hinge. In addition, a high speed camera (sample rates of 200 fps up to
2000 fps) was installed close to the glass wall of the flume, which could pro-
vide a superior view to capture images of the wave-OWSC interaction. More
details about the experimental setup can be found in Henry et al. (2014).
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Figure 1: Snapshots from the experiments of Wei et al. (2016a) at two different stages of
a slamming event: (a) before slamming, the flap is vertical and the water line drops to
its minimum level; (b) at impact the flap hits the water, creating a jet which is associated
with a strong impulsive load on the structure. Waves are incoming from the left.

A series of tests with various wave amplitudes A, wave periods T and
water depths H were carried out in order to search for strong impacts. The
case with the strongest impact was found for A = 0.1 m, T = 1.9 s and
H = 0.305 m, with an average peak pressure of approximately 5 kPa. We
emphasise that the wave conditions that resulted in strong impacts were
sensitive to the distance between the wavemaker and the model OWSC, due
to the re-reflection phenomenon occurring in the flume (Wei et al., 2016a).

2.2. Experimental pressure time series

Figure 2(a) shows the time series of the pressure recorded during a typical
slamming event by Wei et al. (2016a). To display the full extent of the
pressure jump, the pressure before impact is corrected as 0. The time axis is
offset so that t = 0 corresponds to the pressure peak (starred marker). Note
that the pressure plot shows a violent impact, followed by a quasi-hydrostatic
phase of larger duration, but smaller intensity (Bullock et al., 2007).

The plot of figure 2(a) is similar to the records of pressure peaks generated
by extreme waves impacting a wall, see for example Cooker & Peregrine
(1995). Both phenomena (flap slamming, wave impact on a wall) belong to
the same class of elementary loading process (ELP) in which there is run-
up of liquid along a surface, see Dias & Ghidaglia (2018). In this type of
ELPs, whose dynamics is predominantly incompressible, the hydrodynamic
loads are generated by the change of fluid momentum. Such impacts are
also characterised by unpredictable variations of the peak pressure. Figure
2(b) shows a synoptic view of the pressure time series for 27 consecutive
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Figure 2: (a) Plot of experimental pressure measurements for a typical impact (Wei et
al., 2016a). The solid line represents the pressure data, the green dot (B) indicates the
time tb just before impact, the red dot (A) indicates the time ta just after impact. The
yellow parallelograms (1) and (2) indicate the instants at which the pressure is half the
peak value and the star indicates the peak pressure. (b) Plot of the experimental pressure
data for all the impacts analysed by Wei et al. (2016a). The green line shows the mean
pressure curve obtained with a local regression technique. Note that the peak impulsive
loads are followed by a quasi-hydrostatic phase of longer duration, but smaller intensity.
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slamming events investigated by Wei et al. (2016a). In order to enhance the
visual information contained in the scatter plot of figure 2(b), we applied a
locally weighted regression technique to the experimental data (Cleveland,
1979). This technique produced the smoothed regression curve plotted in the
same figure 2(b). The peak pressure of the regression is p ∼ 7 kPa, whereas
the scatter data values range from 4 kPa to about 11 kPa, exhibiting a strong
stochastic behaviour. This is inherently linked to the extremely localised
nature of the peaks, both in space and time. Such a nature makes it very
difficult to model slamming events mathematically (Faltinsen & Timokha,
2009).

CFD programs are very successful in modelling OWSCs under normal op-
erating conditions (Wei et al., 2013, 2015; Schmitt & Elsaesser, 2015; Abadie
& Dias, 2016; Wei at al., 2016b; Dias et al., 2017). However, they can hardly
be used to assess extreme slamming pressures. This is because their com-
putational time is currently O(104) longer than the real time, and also be-
cause of free-surface instabilities that are not well reproduced numerically
(Dias & Ghidaglia, 2018). Wei et al. (2016a) performed numerical simula-
tions of slamming on an OWSC using the commercial CFD package ANSYS
FLUENT with a dynamic mesh method. Their numerical model was able
to successfully reproduce the main characteristics of available experimental
observations, such as flap motion and free-surface elevation. However, the
numerical results underestimated the experimental peak pressure by a factor
10.

Analytical and semi-analytical theories have been used to model wave-
OWSC interactions in linear and weakly nonlinear regimes (Renzi & Dias,
2012, 2013a,b; Renzi et al., 2014a; Sarkar et al., 2014; Michele et al., 2015;
Noad & Porter, 2015; Sarkar et al., 2016; Michele et al., 2016, 2018). Such
theories are normally applied when the flap rotation is small, about 10◦

from the vertical (Renzi & Dias, 2012). This excludes their applicability to
slamming impacts, in which the flap rotation often reaches 60◦ with respect to
the vertical (see again figure 1). Some success has been achieved in modelling
slamming as an incompressible water entry problem. The latter was first
investigated analytically in the seminal work of Wagner (1932). Using a
potential flow model, Wagner (1932)’s solution gives the maximum pressure
on a rigid wedge entering water:

pmax =
1

2
ρ u2

jr,
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where ρ is water density and ujr is the jet root velocity. The latter can be cal-
culated as a function of the wedge velocity and geometry (Dias & Ghidaglia,
2018). Henry et al. (2015) showed that Wagner’s method gives a good esti-
mate of the peak slamming pressure on a flap, although the theoretical values
underestimate the experimental results. Several reasons might contribute to
that mismatch: (i) the jet root velocity is normally very difficult to evaluate,
(ii) the formation of air pockets near the contact point might influence the
peak pressure values and (iii) flap slamming depends on specific parameters,
such as initial water drop in front of the flap, flap angular velocity and im-
pact angle, which cannot be easily related to the jet root velocity (Henry et
al., 2015).

In summary, the peak pressures reached during a slamming event can be
hardly modelled mathematically. Alternatively, pressure impulse is a better
descriptor of wave slamming because: (i) it is more well-behaved than lo-
calised impact pressures, (ii) it can be determined analytically, based on the
momentum and continuity equations for the fluid and (iii) it depends directly
on impact angle and flap angular velocity. The latter can be obtained with
a high degree of accuracy both with experimental measurements and CFD
calculations, see Wei et al. (2016a). In the following, we will evaluate the
pressure impulse for the experimental data of figure 2 (Section 2.3). Then we
will use the new data to validate a pressure-impulse model of wave slamming
on a flap (Section 3).

2.3. Pressure impulse

Pressure impulse is defined for a single slamming event as

P (x) =

∫ ta

tb

p(x, t) dt, (1)

where tb and ta are two representative times, respectively, before and after the
event; p is pressure, x is the position vector on a Cartesian reference system
and t is time. To calculate the pressure impulse from the experimental data,
the representative time tb before impact can be conveniently set as the time
at which the pressure is minimum. This corresponds to the configuration in
which the flap is almost vertical and the water level in front of it is lowest (see
again figure 1). In the sample plot of figure 2(a), the time tb is represented
by a green circle. On the other hand, the representative time ta after impact
is more problematic to determine from the data, because the peak pressure
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Figure 3: Pressure-impulse values calculated from the 27 experimental pressure time series
of Wei et al. (2016a). The dashed line represents the pressure impulse Pr = 0.57 kPa s
obtained from the regression curve of figure 2(b).

is usually followed by an almost constant, quasi-hydrostatic pressure phase
(see again figure 2a). This makes it difficult to exactly define the end of each
impulsive loading process. We computed ta assuming the linear relationship

ta = tb + 2(t2 − t1), (2)

where t1 and t2 are the times at which the pressure is half the peak value,
respectively, during the loading and unloading phases. In the sample plot
of figure 2(a), t1 and t2 are represented by yellow diamonds and ta by a red
circle. Using the definition (2), ta conveniently falls at the beginning of the
quasi-hydrostatic phase that follows each impact, see for example figure 2(a).
Once the characteristic times are defined for each experimental time series,
use of Eq. (1) provides the relevant pressure impulse value at the sensor
position.

Figure 3 shows the pressure impulse P at the sensor position, for each of
the 27 consecutive impacts recorded in the wave tank by Wei et al. (2016a),
together with the regression value calculated using the mean pressure curve
of figure 2(b). Interestingly, the plot of figure 3 reveals that the pressure
impulse values, though distributed stochastically, decrease as the number
of impacts increases, exhibiting a deterministic basis. This fact was not
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evident from the pressure recordings and is likely due to the re-reflection
effects occurring in the wave tank. In their experiments, Wei et al. (2016a)
documented the development of strong re-reflection by the paddle, which
would contaminate the incident wave field. Such a phenomenon is inherently
linked to the extreme nature of the wave-structure interaction occurring in
slamming and can hardly be avoided. Wei et al. (2016a) showed that, as soon
as the paddle was set into motion, the energy density of the incident wave
would increase progressively towards a fully developed state. However, re-
reflection effects would gradually break that balance, until the incident field
was fully contaminated and its energy density changed, often decreasing.
After several re-reflection cycles, a new balance was finally reached and the
system set into a quasi-steady state. Therefore, higher energy levels at the
beginning of the experiment might explain the initial pressure-impulse peaks
in the plot of figure 3.

In the following section, we will derive a pressure-impulse model of flap
slamming and will validate it against the experimental data.

3. Mathematical model

3.1. Governing equations

In this section, we develop a pressure-impulse model of slamming on an
OWSC. The analysis is two dimensional and the effect of viscosity is unim-
portant (Wei et al., 2015). The typical impact speed of a slamming event in
the experiments of Wei et al. (2016a) is about 1 m/s. Using Froude scaling
with a full-to-model scale ratio λ = 40, the typical impact speed in full scale
amounts to about vs = 6 m/s, much less than the speed of sound in water
c = 1500 m/s. That gives a Mach number Ma = vs/c = 4 × 10−3. If air is
entrapped near the flap, the speed of sound in water can decrease down to
30 m/s, giving a Mach number Ma = 0.2. In both cases, the Mach number
gives Ma2 < 0.1, which means that water compressibility can be neglected
(Dias & Ghidaglia, 2018). Conservation of mass then requires

∇ · u = 0, (3)

where u(x, y, t) is the velocity vector and ∇ = (∂/∂x, ∂/∂y); x and y, re-
spectively, denote the horizontal and vertical coordinates, t is time. During
a slamming event, fluid acceleration and the induced pressure gradient are
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usually much greater than convective and gravity accelerations, see Cooker
& Peregrine (1995). Hence, the Euler equation simplifies to

∂u

∂t
= −1

ρ
∇p, (4)

where ρ is water density and p(x, y, t) is pressure. Integration of Eq. (4) with
respect to time and use of definition (1) give

ua − ub = −∇P
ρ
, (5)

where ub and ua define, respectively, the velocity field just before and after
the impact. Furthermore, calculating the divergence of Eq. (5) and using
conservation of mass (3) gives

∇2P = 0, (6)

which shows that the pressure impulse is a harmonic function in the fluid
domain. Note that the governing equation (6) has been derived without
making any limiting assumptions on the wave amplitude and flap rotation.

Equations (5) and (6) define the pressure impulse model, which is now
applied to the slamming problem described in Section 2. Figures 4(a) and
4(b) show a typical slamming event on the seaward face of the flap. To
simplify the choice of reference system in the mathematical model, we assume
that the waves are incoming from the right. The total water depth away from
the flap is H, which remains practically unchanged during the short time
interval of the event (see again figure 1). Before impact, the flap is almost
vertical (Wei et al., 2016a). Its wetted portion is denoted by µH, where the
real parameter µ ∈ (0, 1), see figure 4(a). At the time of impact, the flap is
inclined by an angle α ∈ (0, π/2] with respect to the horizontal x axis, see
figure 4(b). The wetted portion roughly corresponds to the projection of the
water depth H along the flap.

We now solve the governing equations (3)–(6) in the reference configura-
tion at impact. Figure 4(c) shows the relevant two dimensional boundary-
value problem in an idealised trapezoidal domain. Since the pressure impulse
is a local quantity, we only examine the seaward face of the flap, where the
impact occurs and the maximum pressures are recorded. The origin of the
reference system is located at the position of the hinge, which rests on the
bottom of the ocean. The water depth is H, measured from the bottom y = 0
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to the free surface y = H. The original wetted portion of the flap is described
by y = x tanα ∈ [0, µH sinα], whereas the wetted surface of the flap at im-
pact is y = x tanα ∈ [0, H]. Note that the choice of an idealised free-surface
profile of constant elevation (see again figure 4c) does not affect sensibly the
model results, because the pressure impulse is only weakly dependent on the
shape of the free boundary (Cooker & Peregrine, 1995).

The boundary conditions on the system are as follows:

(i) On the free surface, the pressure is atmospheric and therefore constant.
Without loss of generality, we choose this constant to be zero. Hence
the pressure impulse (1) is

P = 0, x ≥ H cotα, y = H. (7)

(ii) At the bottom, assumed impermeable, the normal component of the
velocity is always u ·n = 0, where n is the local normal. Hence Eq. (5)
gives

∂P

∂y
= 0, x > 0, y = 0. (8)

(iii) On the flap, the normal is n = (cosα,− sinα). The dot product be-
tween Eq. (5) and n gives

(ua − ub) · n = −1

ρ

∂P

∂n
. (9)

Now, on the portion of fluid in contact with the flap both before and
after impact, we assume ub ·n ∼ ua ·n. Indeed, experiments show that
the velocity field of the portion of fluid which stays always in contact
with the flap does not change much during the very short time interval
∆t = ta− tb ∼ 0.1 s, see Wei et al. (2016a). Experiments also show that
the water velocity on the free surface in front of the flap before impact
is close to zero, whereas the maximum velocity of the flap at impact is
much greater (about 3 m/s, see Wei et al., 2016a). Therefore, on the
portion of fluid that becomes in contact with the flap during impact,
we assume ub ·n� ua ·n = U(y), where U(y) is the normal component
of the flap velocity at impact. As a result of these assumptions, Eq. (9)
becomes

∂P

∂n
= 0, x = y cotα, y ∈ [0, µH sinα), (10)

∂P

∂n
= −ρU(y), x = y cotα, y ∈ [µH sinα,H]. (11)
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For a rotating motion with respect to the hinge, the normal velocity of
the flap at impact is U(y) = ωy/ sinα, where ω is the angular speed in
rad/s.

(iv) Finally, we request that the pressure impulse decays far away from the
impact zone, so that

P (x, y)→ 0, x→∞, y ∈ [0, H]. (12)

Before moving to the solution of the boundary-value problem, we note
that the geometrical layout of figure 4(c) is reminiscent of that used in the
models of Wu (2007) and Mokrani (2012). Both authors analysed the impact
of a triangular jet hitting a vertical solid wall with constant speed. The
problem is conceptually equivalent to that of a vertical solid wall hitting an
initially stationary liquid wedge. Wu (2007) used a potential-flow approach
coupled with a numerical boundary element method, based on the hypotheses
that the fluid is inviscid and incompressible and that the flow is irrotational.
The numerical results were compared with those obtained with a similarity
solution, in which the governing equations were converted into two integral
equations and then linearised under a thin-jet assumption. This allowed
Wu (2007) to find the surface profile of the liquid column and the pressure
distribution on the vertical wall. Mokrani (2012) found a self-similar solution
for the same problem of a fluid wedge hitting a vertical wall at constant
speed, and then determined the peak pressures on the wall. However, the
models derived by Wu (2007) and Mokrani (2012) differ from the one studied
in this paper, for the following reasons: (i) the boundary conditions of the
two systems are different and are applied on different surfaces (see Mokrani,
2012, Chapter 6.2) and (ii) the present model is based on pressure impulse
(see Eq. 1) and takes into account the effect of air entrapment. Such elements
were not investigated in the models of Wu (2007) and Mokrani (2012).

3.2. Conformal mapping

We now solve the governing equation (6) with the boundary conditions
(7)–(12) by using a double conformal transformation in the complex plane.
Referring to figure 5, we map the trapezoidal region A−B−C −D into the
upper half-plane A′−B′−C ′−D′ with a Schwarz-Christoffel transformation,
see Mei (1997); Carrier et al. (2005). First, introduce the complex coordinate
z = x+iy, where i is the imaginary unit. Second, define the points B = (0, 0),
C = (H cotα,H) and the points at infinity A = limx→∞(x, 0) and D =
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limx→∞(x,H). We now choose to map B and C, respectively, into B′ = (1, 0)
and C ′ = (−1, 0) in the τ plane, where τ = u + iv. As a consequence, A
is mapped into A′ = limu→∞(u, 0) and D into D′ = limu→∞(−u, 0). The
Schwarz-Christoffel transformation is then

z(τ) = a

∫ 1

τ

(1− τ ′)α/π−1
(1 + τ ′) dτ ′ + b, (13)

where a and b are complex parameters to be determined (Carrier et al., 2005).
The point B′ at τ = 1 corresponds to the point B at z = 0 (see again figure
5), so that b = 0. Similarly, the point C ′ at τ = −1 corresponds to the point
C at z = H(cotα + i). Substituting the latter into Eq. (13) and evaluating
the integral with formula 3.196 of Gradshteyn & Ryzhik (2007) gives

a =
H(cotα + i)

B(α/π, 1− α/π)
, (14)

where B(x, y) = Γ(x) Γ(y)/Γ(x+ y) is the Euler Beta function.
The complex integral in Eq. (13) does not admit a general analytical

solution for all τ ∈ C and for all α ∈ (0, π/2]. However, if α = π/2, then
Eq. (13) simplifies to the well-known result

z =
iH

π

∫ 1

τ

dτ ′√
1− τ ′2

=
H

π
arccosh(τ), (15)

where the principal branch for arccosh(τ) is chosen, such that 0 ≤ arccosh(u) ≤
π when |u| ≤ 1, see Gradshteyn & Ryzhik (2007); Olver et al. (2010).

Now let us transform the τ -plane into the semi-infinite channel A′′−B′′−
C ′′ −D′′ in the ζ-plane, where ζ = ξ + iη (see figure 5). Using the previous
result of Eq. (15), the Schwarz-Christoffel transformation is simply

ζ(τ) =
H

π
arccosh(τ). (16)

With the double transform of Eq.s (13) and (16), the boundary-value
problem of Eq.s (6)–(12) can be rewritten in the semi-infinite channel A′′ −
B′′ − C ′′ −D′′ as follows:

∂2P̄

∂ξ2
+
∂2P̄

∂η2
= 0, ξ ∈ (0,∞), η ∈ (0, H), (17)

P̄ = 0, η = H, (18)

15



∂P̄

∂η
= 0, η = 0, (19)

∂P̄

∂ξ
= 0, ξ = 0, η ∈ [0, µ̄H), (20)

∂P̄

∂ξ
= −ρŪ(η), ξ = 0, η ∈ [µ̄H,H], (21)

P̄ → 0, ξ →∞. (22)

In the latter system of equations,

P̄ (ξ, η) = P (x(u(ξ, η), v(ξ, η)), y(u(ξ, η), v(ξ, η))), (23)

while the point (0, µ̄H) in the ζ-plane corresponds to the point (0, µH sinα)
in the z-plane. Finally, Ū(η) = U(y(η)) corresponds to the transformation
of U(y) through Eq.s (13) and (16).

The equivalence between the systems (6)–(12) and (17)–(22) is granted by
the fact that both τ(z) and ζ(τ) are conformal transformations, see Carrier et
al. (2005). As a consequence, at any point ζ in the region A′′−B′′−C ′′−D′′,
the values of P̄ (Eq. 23) are equal to the values of P at the image point z(τ(ζ))
in the region A−B −C −D. Also, the outward normal at a point ζ0 in the
ζ-plane corresponds to the outward normal at z0 = z(τ(ζ0)) in the z-plane,
which justifies the boundary conditions (19)–(21).

Before solving the boundary-value problem (b.v.p.) of Eq.s (17)–(22), we
need to determine the parameter µ̄ and the function Ū(η) in the ζ-plane.
Note that the flap is described by the segments B−C, B′−C ′ and B′′−C ′′,
respectively, in the z-, τ - and ζ-plane. For a point on the flap along B′−C ′,
Eq. (13) becomes

y =
H

B(α/π, 1− α/π)

∫ 1

u

(1− u′)α/π−1(u′ + 1)−α/π du′. (24)

Using the change of variable σ = u′ − u and formula 3.196 of Gradshteyn &
Ryzhik (2007), the integral in (24) can be solved analytically, so that

y =
π

α

H

B(α/π, 1− α/π)

(
1− u
1 + u

)α/π
2F1

(
1,
α

π
; 1 +

α

π
;
u− 1

u+ 1

)
, (25)

where y ∈ [0, H]. In Eq. (25), 2F1(a, b; c;Z) is the Gauss hypergeometric
function, which is single-valued in the complex Z-plane with a branch-cut
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from 1 to +∞ on the real axis, see Olver et al. (2010). Using formulae
15.4.20 and 15.8.1 of Olver et al. (2010), one can show that limu→−1 y = H.
Similarly, for a point on the flap along B′ − C ′, Eq. (16) becomes

η =
H

π
arccos(u), (26)

where u ∈ [−1, 1]. Hence, η = µ̄H is the implicit solution of the system
(25)–(26) when y = µH sinα. On the other hand, the flap normal speed in
the transformed ζ-plane is

Ū(η) =
ω

sinα
y(η), (27)

where y(η) is the solution of the system (25)–(26) for given η ∈ [µ̄H,H]. Note
that the transformation (25) cannot be inverted explicitly in terms of known
functions. Therefore, the solution of (25)–(26) is parametric with respect to
u ∈ [−1, 1].

3.3. Solution

We are now ready to solve the b.v.p. (17)–(22). Separation of variables
gives

P̄ (ξ, η) =
∞∑
n=1

an e−λnξ/H cos
(
λn

η

H

)
, (28)

which solves Eq.s (17)–(19) and Eq. (22). In Eq. (28), the λn’s are the
eigenvalues

λn = (2n− 1)
π

2
, n = 1, 2, . . . (29)

Application of Eq.s (20)–(21) and use of the orthogonality property∫ H

0

cos
(
λn

η

H

)
cos
(
λm

η

H

)
dη =

H

2
δnm, n,m = 1, 2, . . . (30)

where δnm is the Kronecker delta, gives then

P̄ (ξ, η) =
2ρωH2

sinα

∞∑
n=1

An e−λn ξ/H cos
(
λn

η

H

)
. (31)

In the latter,

An =
1

λnH2

∫ H

µ̄H

y(η) cos
(
λn

η

H

)
dη, n = 1, 2, . . . (32)

17



0 5 10 15 20 25 30

n

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

A
n

B
n

Figure 6: Behaviour of the series coefficients An (32) and Bn (38). The system parameters
are reported in table 1.

are non-dimensional parameters and y(η) is given by Eq.s (25)–(26). Numer-
ical inspection of Eq. (32) for a typical flap configuration shows that the An’s
are fast-decaying functions of the modal order n, see figure 6. This ensures
fast convergence of the series in Eq. (31) for ξ ≥ 0. Finally, the solution in
the original domain is obtained by substituting Eq. (31) into Eq. (23).

3.4. Effect of air entrapment

In this section we investigate the effect of air entrapment near the flap.
The experimental data of Wei et al. (2016a) show that a semi-cylindrical
region of water on the seaward side of the flap is aerated during the slamming
phase, see figure 1(a). For a plunging breaker impacting on a wall, Wood
et al. (2000) have shown that the presence of an air pocket near the wall
causes the water to bounce back, thus increasing the pressure impulse on
the structure. Similar dynamics can happen with flap slamming. When the
flap hits the water, trapped air first contracts because of the impact, and
then expands seaward, as the flap continues to pitch in the same direction.
As a consequence, the fluid normal velocity after impact ua · n increases
with respect to the case in which no air is trapped. Following Wood et al.
(2000), we assume that this increase of fluid velocity due to air entrapment is
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Figure 7: Geometry of the system with air entrapment. The aerated region extends from
yb = µH sinα to yt = νH sinα.

proportional to the flap speed U(y) and is normal to the semi-circular profile
of the air pocket. Referring to figure 7, the normal component of the velocity
after impact in the aerated zone becomes ua · n = U(y)[1 + f(y)], where

f(y) = cos
[
γ
( y

H sinα
− δ
)]

(33)

is a semi-circular shape function. In Eq. (33), the parameters γ = π/(ν − µ)
and δ = (ν+µ)/2 depend on the position of the bottom and top of the aerated
region, respectively, yb = µH sinα and yt = νH sinα, where ν ∈ (µ, 1/ sinα].
Note that the bottom of the aerated region corresponds to the position of
the contact point before impact. Wood et al. (2000) showed that a more
complex analysis of air entrapment is not justified by the strongly stochastic
nature of the impact properties that normally occur in experiments.

The governing equation of the mathematical b.v.p. is still Eq. (6). How-
ever, the boundary conditions on the flap (10)–(11) are now replaced by

∂P

∂n
= 0, x = ycotα, y ∈ [0, µH sinα), (34)

∂P

∂n
= −ρU(y)[1 + f(y)], x = ycotα , y ∈ [µH sinα, νH sinα], (35)

∂P

∂n
= −ρU(y), x = ycotα, y ∈ (νH sinα,H]. (36)

The boundary condition on the free surface (7) and at the bottom (8) remain
the same. The solution to this modified b.v.p. can be found by following the
same steps as in Section 3.3. Using the double-conformal mapping from the
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Water depth Angular speed Impact angle
H (m) ω (deg/s) α (deg)
0.305 400 40

Wetting parameter Air pocket parameter
µ ν

0.5 0.90

Table 1: Parameters representing a typical slamming event in the experimental layout of
Wei et al. (2016a).

z-plane to the ζ-plane and the method of separation of variables, the new
expression for the pressure impulse in the transformed domain is

P̄ (ξ, η) =
2ρωH2

sinα

∞∑
n=1

Bn e−λnξ/H cos
(
λn

η

H

)
, (37)

where

Bn =
1

λnH2

{∫ ν̄H

µ̄H

y(η) [1 + f(y(η))] cos
(
λn

η

H

)
dη

+

∫ H

ν̄H

y(η) cos
(
λn

η

H

)
dη

}
(38)

and η = ν̄H corresponds to y = νH sinα via Eq.s (25)–(26). The Bn’s are
fast-decaying functions of the modal order n, as shown in figure 6. We shall
now validate the pressure-impulse solution against the experimental data and
study the sensitivity of the system on its main parameters.

4. Discussion

4.1. Experimental comparison

We consider a typical slamming event as described in Section 2. The
parameters of the system representative of the experimental layout of Wei et
al. (2016a) are summarised in table 1. While the water depth, angular speed
and impact angle can be determined directly from laboratory measurements,
typical values for the wetting parameter µ and the air entrapment parameter
ν have been determined by inspecting the frame sequences in Henry et al.
(2014) and Wei et al. (2016a). Figure 8 shows the profile of the pressure
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Figure 8: Pressure impulse P (horizontal axis) versus distance from bottom y (vertical
axis) for the parameters of table 1. The values without air entrapment have been calculated
with equation (31), those with air entrapment with equation (37).

impulse on the flap, with respect to the vertical coordinate y, for the cases
with and without air entrapment, respectively. A total of 30 normal modes
were used to evaluate P in both cases. If air entrapment is neglected, the
pressure impulse has a maximum of 0.44 kPa s slightly above the position of
the sensor used in the experiments, and then it decreases down to a constant
value in the initial contact zone. Air entrapment can amplify the pressure-
impulse values at all points along the flap and shift the maximum inside
the aerated zone. This is because aeration tends to increase the duration of
the impact and to distribute high impulse values across a larger portion of
the impacted surface, see Bullock et al. (2007). With air entrapment, the
pressure impulse at the sensor position is 0.48 kPa s, whereas the maximum
is 0.51 kPa s and is located at about 0.15 m from the bottom of the channel.
Note that these values are consistent with the experimental data plotted in
figure 3, except for the first stages where the system has not yet reached the
quasi-steady state. In the next section we will perform a parametric analysis
based on the pressure-impulse model to identify the role of the main physical
quantities of the system.
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Figure 9: Contour plot of the maximum pressure impulse on the seaward side of the flap,
with respect to the wetting parameter µ and impact angle α, see again figure 4. Pressure
impulse values are in non-dimensional form: P/(ρωH2). Air entrapment is neglected.

4.2. Parametric analysis

In this section, we study the dependence of the system on the wetting
parameter, impact angle and extent of the aerated region. First, we analyse
the influence of the wetting parameter µ and impact angle α on the maximum
pressure impulse on the flap, in the absence of air entrapment. Figure 9
shows a contour plot of the maximum pressure impulse on the seaward face
of the flap versus α and µ, in non-dimensional form. Note that the pressure
impulse increases when the initial wetted area and the impact angle decrease.
In particular, the contours show that the maximum pressure impulse is more
sensitive to variations of the impact angle than of the initial wetted portion
of the flap. The influence of the impact angle α on the pressure impulse is
similar to the effect of the deadrise angle β on the impact pressure of a falling
wedge. According to Wagner (1932)’s theory, the maximum impact pressure
on the wedge depends on tan−2 β, and so it increases as the deadrise angle
tends to zero (Dias & Ghidaglia, 2018). A similar phenomenon occurs in the
case of flap slamming, where the non-dimensional pressure impulse on the
flap is maximum at small impact angles, which occur with strongly nonlinear
oscillations of the flap.

Let us now analyse the influence of the air pocket dimension on the distri-
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Figure 10: Behaviour of the non-dimensional pressure impulse on the flap (horizontal axis)
with respect to the non-dimensional distance from the bottom (vertical axis), for several
values of the air pocket parameter ν. The other parameters are detailed in table 1.

bution of the pressure impulse along the flap. Figure 10 shows the behaviour
of the pressure impulse on the flap for several values of the air trapping pa-
rameter ν ∈ [µ, 1/ sinα], in non-dimensional form. Note that the presence of
air trapping always amplifies the pressure impulse with respect to the case
without air pockets. When the dimension of the aerated zone is small with
respect to the full height of the flap, the pressure impulse increases only in
an area inside the air pocket (see curve ν = 0.711 of figure 10). However,
when the dimensions of the air pocket are comparable to the flap height, the
pressure impulse increases substantially at all points along the flap. In the
extreme case where air entrapment occurs all along the flap, the maximum
pressure impulse is almost twice as that without aeration (see curve ν = 1.556
of figure 10). Interestingly, when no air is trapped the maximum pressure
impulse is near the top of the flap. If a small air pocket appears near the
bottom of the flap, then the maximum pressure impulse shifts towards that
region. However, when the size of the air pocket increases, the maximum
pressure impulse moves again towards the top of the flap (see figure 10).
Therefore, the position of the maximum pressure impulse depends sensibly
on the extent of the aerated region. A similar result was obtained by Bullock
et al. (2007) when analysing experimental data of violent impacts on vertical
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walls.
From the non-dimensional pressure-impulse values of figure 10, an esti-

mate of the slamming pressure can be obtained by assuming that the pressure
time series is triangular (see again figure 2a). As a consequence, the peak
pressure along the flap is approximately

pmax ∼
2 max {P (y)}

∆t
, (39)

where ∆t is the impact duration, see Cooker & Peregrine (1995). For the
experimental tests of Wei et al. (2016a), the average impact duration is
∆t ∼ 0.13 s. Using the pressure-impulse values of figure 10 and the di-
mensional parameters of table 1, the peak slamming pressure (Eq. 39) falls
in the interval

pmax ∈ [6.8, 11.8] kPa s. (40)

Such values agree very well with the experimental data shown in figure 2(b).
However, there is evidence that the impact duration ∆t tends to increase
when air is trapped (Bullock et al., 2007). Therefore, a more accurate calcu-
lation of the peak pressure (39) from the pressure impulse in strongly aerated
regimes would require a detailed knowledge of the correlation between the ex-
tent of the aerated zone and the impact duration, which necessitates further
research.

5. Conclusions

We derived a pressure-impulse model of wave slamming on a flap-type
wave energy converter. The mathematical model is based on a double conformal-
mapping transform, which allows us to determine the pressure impulse on
the seaward side of the flap in terms of Gauss hypergeometric functions and
Fourier series of orthogonal eigenfunctions in the transformed space. The ini-
tial pressure-impulse model was then extended to account for the effect of air
entrapment near the surface of the flap, following a semi-empirical method
devised by Wood et al. (2000). For the experimental layout of Wei et al.
(2016a) described in table 1, the mathematical model predicts a pressure-
impulse value of around 0.48 kPa s at the sensor position. This value is very
consistent with the experimental pressure-impulse values estimated from the
pressure time series of Wei et al. (2016a). Parametric analysis also shows
that the flap inclination (with respect to the vertical) at impact has a ma-
jor effect on the pressure impulse: the larger the flap inclination at impact,
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the larger the maximum non-dimensional pressure impulse on the flap. The
effect of the impact angle is therefore similar to that of the deadrise angle
for a wedge entering calm water (Dias & Ghidaglia, 2018). Naturally, if the
flap inclination with respect to the vertical becomes very large (i.e. the im-
pact angle becomes very small), the device will be fully submerged. In that
case, overtopping will occur and the dynamics will change considerably. The
model also shows that the initial wetted area of the flap has a minor effect on
the maximum pressure impulse. Finally, air entrapment is shown to have a
major effect in enhancing the pressure-impulse values at all points along the
flap and changing the position of the pressure-impulse peak. This might ex-
plain the failure of early attempts to evaluate the maximum impact pressure
by means of CFD models that neglected the presence of air pockets near the
surface of the flap.

The importance of air entrapment in enhancing the impact loads on the
flap has been recently pointed out by Martinez Ferrer et al. (2016), who
used the open-source CFD library OpenFOAM to model the same system
studied in this paper. Martinez Ferrer et al. (2016) found that peak slamming
pressures could only be captured when the manifestation of entrapped air was
included in the CFD model. Our results confirm that slamming loads are
enhanced by the formation of air bubbles trapped on the seaward side of the
converter (see again figure 10). However, we note that Martinez Ferrer et
al. (2016)’s CFD code presented several convergence issues when calculating
the slamming torque at the hinge and the pressure peaks. Furthermore, such
a high-end computational tool comes with a very expensive computational
cost, needing about 12 days to model 60 seconds of physical time, on a quite
advanced hardware architecture.

The present study offers a valuable analytical tool to obtain a reliable
estimate of the peak pressure-impulse values at no computational cost. The
analytical formulae presented in this paper are easy to implement in popu-
lar mathematical software packages (e.g. MATLAB R©, see Palm, 2012) and
can be evaluated in a matter of seconds. As such, they could be instrumen-
tal to hydrodynamicists and structural engineers designing flap-type devices,
without the need of running very expensive computational models on super-
computers. Our results can be applied to identify a range of extreme cases
that could then be studied more in depth with CFD models, thus optimising
the design process while saving computational time.
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6. Open questions

Our analysis points out some fundamental challenges in characterising
slamming events for wave energy converters. First of all, experimental accu-
racy is paramount to obtain meaningful data for comparison with numerical
and analytical models. A sampling rate of at least 1 - 10 kHz is necessary
to characterise the impulsive pressure peak and relevant rise time in exper-
iments, allowing one to fully reproduce the typical “church-roof” pressure
diagram (see Bullock et al., 2007). At full scale, sampling rates of at least 20
kHz are recommended for global loading studies, and up to 100 kHz for local
extreme loading analysis. This poses a fundamental challenge, because exist-
ing piezoelectric and piezoresistive pressure sensors can reach those very high
natural frequencies only when used in air, not in water (Dias & Ghidaglia,
2018).

Second, the effects of scale ratio, impact dynamics, air compression and
leakage still represent unsolved issues (Cuomo et al., 2010; Dias & Ghidaglia,
2018). In terms of scaling, it appears that pressure impulse is a more ap-
propriate parameter to use than pressure, because the former can be scaled
by Froude even when the latter cannot (Cuomo et al., 2010). Indeed, using
Froude scaling may lead one to significantly overestimate the impact pres-
sures at prototype scale. Therefore, appropriate correction factors for Froude
scaling should be used when inferring the impact pressure from model data
(Cuomo et al., 2010). Such factors exist for fixed structures, but have yet to
be determined for moving bodies such as WECs. Recently, Dias & Ghidaglia
(2018) have remarked that scaling remains the most important open prob-
lem for slamming applications, adding that surface tension effects, largely
ignored until now, may play a more important role than originally thought.

Scale effects are also related to air compression, entrapment and leakage
(Cuomo et al., 2010). Such dynamics still remain very elusive for fixed struc-
tures, not to mention moving devices. In this respect, future work should
clarify the dynamics of air entrapment close to the surface of the prime mover,
and the role of the compressibility of air/water mixture within the aerated
region.
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