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An electric vehicle model and
validation using a Nissan Leaf:
A Python-based object-oriented
programming approach

Simon Howroyd and Rob Thring

Abstract
Electric vehicles are becoming more and more prevalent, especially with major manufacturers announcing that they will
be focusing on electric or hybrid vehicles in the future. This article describes an object-oriented approach to a vehicle
model using Python 3. This approach allows for flexibility of vehicle design. The key parameters were input to define the
specific vehicle for validation, in this case a Nissan Leaf. It is anticipated that this flexibility will lead to rapid exploratory
design of vehicle variants, such as four-wheel drive, independent wheel drive and multiple electrical sources. The model
had its objects individually validated before the whole vehicle was verified against common drive cycles and a real-world
drive in the United Kingdom recorded using an On-board Diagnostics (OBD2) Bluetooth dongle.
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Introduction

Object-oriented programming (OOP) has many benefits
over other programming paradigms such as imperative,
functional or procedural paradigms with respect to
enhancing the functionality and usability of a vehicle
model.1–4 Many processor architectures are natively
capable of running compiled C++ code5 unlike a
multi-paradigm environment such as MATLAB6 which
generally requires an operating system. This opens the
door to opportunities of running the vehicle model on
small embedded systems in vehicle in future projects to
allow for hardware-in-the-loop (HIL) testing and model
predictive control (MPC).7–10 It is critical for advanced
software to be usable by others without a deep knowl-
edge of the language, style or structure of the software
in order to enhance usability.11

Furthermore, OOP gives the software for a vehicle
model some key functionality benefits. Encapsulation

allows for certain portions of data to be protected from
external manipulation. This encapsulation allows for
greater certainty that the model is performing correctly
and that data have not been manipulated by code try-
ing to force a desired output. It also allows for greater
decoupling of different data structures, leading to a
modular structure to the full model which utilises com-
position and inheritance. Composition allows for
objects to contain other objects in a ‘has-a’ methodol-
ogy. For example, a powertrain has a motor, battery
and gearbox (among others) and therefore receives a
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reference to these other objects within the model so it
can access their data in a controlled manner.
Inheritance allows for an ‘is-a’ relationship to be cre-
ated. For example, the battery and the motor are both
electrical devices so they can inherit the
‘ElectricalDevice’ abstract base class. From a user
friendliness point of view, it ensures that any access to
the voltage of the motor is done in the same way as the
voltage of the battery, for example. It also greatly
reduces the duplication of code which can lead to
excessive debugging. Inheritance goes hand in hand
with polymorphism which in turn allows for reduced
memory usage and quicker development time.12

On the road today are several different types of elec-
tric vehicles. They are often loosely categorised as
hybrids; however, this general umbrella term is not spe-
cific enough to describe this work. Any vehicle which
has a mechanical connection between an internal com-
bustion engine (ICE) and the wheels is not considered
in this model (although could be included in the future)
meaning that only electrical drive is explored. However,
the model does allow for an ICE to be used as a genera-
tor to convert fuel into electrical energy in vehicle as it
can be easily compartmentalised in the code as a type
of an ElectricalDevice object (utilising inheritance).
Similarly, a hydrogen fuel cell may also be represented
and used as a range extender or as a primary electrical
supply instead of a battery, for example.

In this article, we will only consider an electric vehi-
cle with a battery as the only energy store on the vehi-
cle, in order to validate the model and provide a
suitable foundation for future work. It is the authors’
intent to use this model to perform explorative research
on different vehicle powertrain design configurations
and their associated performance, such as independent
wheel drive, four-wheel drive (4WD) with one motor
and 4WD with one motor per axle, to name a few gen-
eral ideas.

The structure of the code is given to allow for repli-
cation, a demonstration of the programming methodol-
ogy used and the robustness of the code. To understand
and prove the model’s limitations, a robustness study
and a validation study were conducted using real-world
data.

Model

The OOP language being used for the vehicle model is
Python 3.13,14 This is a high-level interpreted language,
removing the need for length and complicated compila-
tions to run the code. Python has a large standard
library, automatic memory management and is cross-
compilable into C++ code for embedded systems mak-
ing it ideal for this research. Furthermore, it is open-
source and freely available.

Traditionally, MATLAB is used for engineering and
science programming; however, this software is not
ideal for low-power embedded systems.15,16 With a view
to running HIL testing onboard an electric vehicle, it is
logical to aim for the lowest power approach to reduce
any impact the computer has on vehicle range. Rather
than cross-compiling from MATLAB to an embedded
system, which is difficult to do, a native Python-to-
C++ cross-compiler may be used (e.g. Cython).

High-level classes

In Python, the vehicle is defined as an interface class as
in Figure 1. This structure allows for all vehicles to
have the same methods at the higher level, that is, a
global interface to interact with the vehicle without
needing to know the specifics of what type of vehicle it
is or how it works. For simplicity, the only methods
that are required by higher levels are an ability to
demand a velocity and the ability to run the model and
update the output at each time step. A key advantage
of this method is that multiple vehicles can be spawned
into the environment with the same or different para-
meters allowing for a study of a fleet of vehicles.

Inherited by the car class are the aerodynamics and a
powertrain. The aerodynamics only required velocity at
each time step since the model is two-dimensional (2D).
It then outputs a drag force. The powertrain requires
the velocity at the last time step and the demanded velo-
city at this time step; however, this method can be
improved by adding future demands to anticipate a
change occurring, that is, feed-forward control. The
powertrain outputs a force which is summed with the
aerodynamics force and the new velocity is calculated
using Newton’s first and second laws.

The powertrain is a dynamic class that can be instan-
tiated in different ways based upon the objects that get
passed to its constructor. For example, a single motor
object connected to the two front wheels may be passed
to the powertrain to define a front wheel drive car like
the Nissan Leaf. However, the user may pass the con-
structor four motors, each only connected to one wheel
to simulate a four-wheel independent drive car.

Low-level classes

Beneath the powertrain in the model hierarchy are the
motor, wheel, battery, friction brakes, transmission,
road and the electronic speed controller (ESC) classes.

The motor and battery both inherit the abstract base
class of an electrical device. In this article, a battery is
considered but any electrical device could be looked at
in the future such as an ICE driving a generator, fuel
cell or a supercapacitor. Furthermore, these can be
hybridised.17 Again, this allows for various methods
and properties to be defined as common between all

2 Advances in Mechanical Engineering



electrical devices, such as voltage, cumulative energy
and power limit. All of these data are available on each
iteration allowing for any of these data to be plotted to
understand device specification requirements.

Similarly, the motor, wheel, transmission and fric-
tion brake all inherit the abstract base class of a rota-
tional, mechanical shaft. This is to permit setting torque
limits and to understand how the torque is being trans-
ferred around the system. It is notable that here the
motor is inheriting two base classes; this is called multi-
ple inheritance.

Finally, the ESC and separate traction control mod-
ule both inherit from a proportional–integral–deriva-
tive (PID) controller abstract base class. The whole
speed management system is constructed in a nested
logic manner to allow the motor and friction brake to
have their own independent control systems with rate
limits and saturation limits. The two are controlled by
the ESC which attempts to reduce the error between
the velocity demand from the drive cycle and the actual
vehicle speed. The traction control system may have
different modes, such as economy, comfort, sport and
race, as is seen in many vehicles today, and intercepts
the velocity demand signal before it reaches the ESC. It
then may amplify or reduce the error or apply a
derivative-based ramp to suit the different driving
modes. It is notable that the model can bypass the
cruise controller and send signals directly to the motor
and brake to mimic a driver controlling the vehicle with
pedals.

User interface

The user interface (UI) is the main runtime code that

the user can configure to meet the needs of the simula-

tion. Pre-defined vehicle parameters can be passed from

the UI into the high-level car class constructor to

instantiate an object representative of a Nissan Leaf,

for example. Furthermore, these pre-defined values can

be modified to create subtle or extreme changes to the

object in order to perform exploratory research, for

example, halving the battery size, reducing motor

power or making the car 4WD. Finally, a whole custom

car could be defined or iterated to produce the specifi-

cation of vehicle required to meet certain requirements

such as range, weight and power.
The UI is also responsible for interrogating the drive

cycle that the user wishes to follow and analysing which

point in time, with respect to the system clock, that the

model is in. This non-deterministic approach means

that faster computers will ultimately produce more data

points per second of drive cycle time than the slower

ones. It also means that the model runs in real time,

opening the door for future HIL testing. Different drive

cycles can be attached to different vehicle objects, so

multiple vehicles can be simulated simultaneously while

driving different cycles, or alternatively a drive cycle

can be repeated indefinitely (or until the battery is fully

discharged).
Outputs from the UI are typically time series data-

sets of any user-accessible property of any object within

Figure 1. Software schematic showing the various objects of the model, each being independent blocks of code. Of particular note
are the abstract base classes which define the linking structure between the higher level classes. This methodology is native to OOP
and provides simplicity when changing the vehicle configuration to, for example, four-wheel drive or independent wheel drive.
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the model which are typically presented as comma-
separated value files or graphs.

Vehicle configuration

As has been shown, the structure of the object-oriented
approach allows for linking of different classes to be
changed, that is, there are fewer dependencies and there-
fore fewer changes to the code required to alter the setup
of the model. For example, extra motor objects can be
spawned, perhaps one per wheel, to simulate indepen-
dent wheel drive, or the single motor can be linked to all
four wheels to provide a more traditional 4WD setup.
Alternatively, two motors could be used, one on each
axle to provide a distributed 4WD setup. The idea in
this example is that it may be preferred to design a vehi-
cle with no motor bay to maximise the interior space, so
smaller motors in the wheel hubs would be ideal. The
model will assist in explorative design to assess the per-
formance of the vehicle in this configuration.

Verification

Module

This section of the article describes the model verifica-
tion, that is, the confirmation that the code has been
correctly implemented and is performing as expected.
This includes each of the individual objects within the
model and the linking between objects to become the
full model.

Figure 2(a) shows a verification of the wheel object.
This test shows the stability and accuracy of the wheel
under low acceleration and full power, followed by
increasing brake torque for deceleration. For this test,
the effects of aerodynamic drag, vehicle inertia and
wheel slip were ignored as these effects require feed-
back from a higher level object in the overall model to
calculate. For this test, the whole vehicle model was
not included in order to ensure that the only effects
seen in the verification are those caused by the wheel
and its directly coupled components of the drivetrain.

Following the verification of the wheel model, the
whole powertrain needed to be verified. This includes
both powered wheels and the two non-driven wheels
(which includes brakes on each wheel). It can be seen
from Figure 2(b) that very little force is required by the
motor for maintaining a constant speed. This is to be
expected when aerodynamic drag is omitted. The speed
controller is also included in this test to ensure its basic
ability to control the motor and brakes.

Controller

Figure 3(a) shows the speed response to the step input
of 25 and 100km/h. Both show that there is an

overshoot of 3km=h for no more than 1 s, which holds
true for any step input of significant size. The
Worldwide Harmonised Light Vehicles Test Procedure
(WLTP) states a trace tolerance of 6 2 km=h and
6 1 s.18 The WLTP does not implement full accelera-
tion step changes such as this test, so this is a more
extreme case. Therefore, it is deemed to be acceptable
at this stage since the controller is being developed to
match the performance of the Nissan Leaf, not one
optimised to meet the WLTP.

The speed control system, imitating the driver’s
acceleration and brake pedal positions, must be robust
enough to not become unstable during normal opera-
tion. The control system has been tested using step
inputs, impulses, ramps and sine waves. Figure 3(b)
shows that there are minimal phase lag (\1 s) and
amplitude losses when the acceleration demand for the
vehicle is constantly varying, noting that the frequency

Figure 2. Verification of powertrain: (a) Wheel object
verification achieved by simulating a single wheel, motor and
brake without any higher level linking. The wheel does not
decelerate noticeably once spooled up as it is freewheeling in
space, and it only has inertia in this test. (b) Powertrain object
verification achieved by simulating two driven and two non-
driven wheels which all have independent brakes and no
aerodynamic drag or higher level linking. The powertrain is
slightly overdamped resulting in no overshoot.
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and amplitude of the sine wave have been chosen to
ensure that the acceleration demand is always within
the capabilities of the Nissan Leaf, that is, \10 s.
Figure 3(c) shows the full frequency response of the
model.

Typical controller testing has also been conducted at
high- and low-frequency sine wave inputs, impulse and
various steady-state conditions. The results have shown
that the simple PID controller is robust and able to take
a velocity demand and control the motor/brake in order
to meet this demand in a realistic way with respect to
the Nissan Leaf. The results shown have been validated
against the authors’ Nissan Leaf; however, this is dis-
cussed in detail later.

Whole vehicle

The final phase of verification is to link all the various
objects into the whole model of the Nissan Leaf. This
was done using the structure shown in Figure 1 and the
data from Table 1. It is well known that the Nissan
Leaf meets various drive cycle standards, for example,
New European Driving Cycle (NEDC) and Federal
Test Procedure (FTP)-75. These drive cycles were used
as inputs to the vehicle model and are shown in

Figure 3. Controller robustness: (a) Velocity step change
showing that the controller is slightly underdamped at a
maximum power step input resulting in an acceptable overshoot
of 3 km=h. (b) Constantly varying acceleration showing minimal
phase lag (\1 s) between the desired velocity and the actual
velocity in a sinusoidal demand test. There is no wind-up or
diversion over time. (c) Frequency response showing the
increase of magnitude of dV as the acceleration requirements
increase towards a 0� 60 mile=h of 10 s.

Table 1. Vehicle data.

Battery Vmax 398.419 V
Battery Vnom 36019 V
Battery Vmin 24019 V
Battery Pmax 90,00020 W
Battery mass 29419 kg
Battery capacity 30,00019 Wh
Battery h 97.0521 %
Battery utilisation 88.5021 %
Inverter Vmax 40322 VDC
Inverter Vmin 24022 VDC
Inverter Imax 34022 ARMS

Inverter Imax4sec 42522 ARMS

Cd 0.2820

CdA 0.768 m2

Area 2.74423 m2

Mass 152124 kg
Wheel rolling r 0.216a m
Brake r 0.100a m
Brake Tmax 500 N m
Regen Rmax 20,000a W
Motor Tmax 28025 N m
Motor V 34525 V
Motor Pmax 80,00022 W
Motor reduction ratio 7.937725

Motor rpmmax 10,39025

Motor h 9624 %
0–60 mile/h 6.3a s

a
Measured from the author’s 2016 Nissan Leaf.
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Figure 4(a) and (b), respectively. The points of interest
here are the agressive acceleration zones of the FTP
where dV increases to a maximum of 11mile=h; how-
ever, this error is not sustained for more than 1s put-
ting it within the tollerance of the standard test, which
would normally be driven by a human.

Validation

Following verification, the vehicle model must be vali-
dated against real-world data to ensure that it is an
accurate representation of an electric vehicle. In this
article, the authors’ Nissan Leaf is used to validate the
model. Figure 5 shows a 44�mile (70� km) real-world
drive captured by the author using an OBD2 dongle
attached to the car. This allows for the recording of

data at variable, random frequencies between
0:5 and 3Hz which are constantly changing and not
definable. The velocity data were saved and input into
the model as a target, the output of which is also shown
in Figure 5. Note that since the dongle does not record
throttle position, the real-world velocity is being used
as the target velocity to the model’s speed controller.
Feed-forward control has not been implemented in this
article. This means that there is no ability to compare
the phase lag between demand and response for the
model and real car. Instead, the authors’ experience as
a Nissan Leaf owner has been used to ensure that the
model is representative, as far as is possible with this
method, by ensuring that the transient accelerations are
well within the capabilities of the Nissan Leaf such that
the real vehicle (or model) has an acceleration capabil-
ity in excess of the rate of change of target velocity.

Nevertheless, the variance between the setpoint and
modelled velocity is less than 3 km=h throughout and
was only higher during sudden acceleration or decelera-
tion events. A phase shift of under 1s is observed which
is reasonable for stereotypical driving styles; however,
it may not be so for race driving (which is not consid-
ered). Further studies might be conducted in the future
to validate the model for more extreme driving styles.

Conclusion

This article has presented a flexible new electric vehicle
model which can be easily reconfigured to any electric
vehicle using the parameters in Table 1. The model was
validated using a 2016 Nissan Leaf and written in
Python 3.

Using the programming paradigm of object orienta-
tion, the vehicle model is configurable in its setup. For
example, the Nissan Leaf, front wheel drive, single-
motor setup can be extended to 4WD with a gearbox

Figure 4. Whole vehicle verification using common standardised drive cycles as velocity inputs: (a) New European Driving Cycle
(NEDC) and (b) Federal Test Procedure (FTP)-75 US Environmental Protection Agency Federal Test Procedure.

Figure 5. Real-world comparison–real-world drive from
Birmingham to Loughborough, UK. The car velocity data were
captured using an OBD2 dongle and then fed into the model as
a velocity demand. Phase lag is \1 s and the velocity matched to
\6 3 km=h. The driving style used on this journey was neither
aggressive nor modest.
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coupling or independent motors on each wheel. This
encourages some exciting future work into specification
optimisation for different variants of the Nissan Leaf
or other validated vehicles using this model.

Verification included an evaluation of each object
within the model both independently and with linked
dependencies to ensure an accurate representation of
the real world. The model was then validated using a
real-world drive between Birmingham and
Loughborough, recorded by the means of an OBD2
Bluetooth dongle connected to the authors’ Nissan
Leaf. The validation was acceptable and showed a
phase shift of under 1s due to the intentional lack of
feed-forward control in the speed controller algorithm.
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