		Loughborou	IGH		
1	University of Technology				
			_		
	AUTHOR				
1	AN	NYAKORA	<u>, S.</u>		
		008645	61.		
_	VOL NO.	CLASS MARK			
	FOR F	ARCHIVES COPY	CNLY		

MALFUNCTION OF PROCESS INSTRUMENTS AND ITS DETECTION USING A PROCESS CONTROL COMPUTER

.

SAMUEL NNAEMEKA ANYAKORA

MALFUNCTION OF PROCESS INSTRUMENTS AND ITS DETECTION USING A PROCESS CONTROL COMPUTER

by

SAMUEL NNAEMEKA ANYAKORA

Supervisor: DR. F.P. LEES

A Thesis Submitted for the degree of Doctor of Philosophy Loughborough University of Technology

Department of Chemical Engineering - September 1971

FOR MY MOTHER AND MY FAMILY

.

,

ŧ

CONTENTS

4

L

(

CONTENTS

1

-

Sect	tion			Page
ABST	RACT			
1.	INTRO	DUCTION	r	1
	1.1.	Project	t	3
2.	COMPU Intro	JTERS ANI	O OPERATORS IN INDUSTRIAL PROCESS CONTROL	7
	2.1.	Process	Characteristics	9
	2.2.	Functio	ons Performed by the Process Control Computer	11
		2.2.1.	Measurements and Calculations;	
			Scan and Correct Analog Calculations	13
		2.2.2.	Data Logging and Data Processing	14
		2.2.3.	Alarm Scanning and Analysis	15
		2.2.4.	Indirect and Direct Plant Control -	
			Equipment Regulation	16
		2.2.5.	Optimisation	17
		2.2.6.	Sequential Control	18
	•	2.2.7.	Special System Functions	18
		2.2 8.	Commercial Data Handling	19
		2.2.9.	Management Calculations, Information and	
			Background Capability	19
		2.2.10.	Control by Learning	19
2	2.3.	Example	s of Computer Control in Specific Chemical	
		Indus	tries	20
		2.3.1.	Computer Control in the Cement Industry	20
		2.3.2.	Computer Control in the Pulp and Paper Industry	23
		2.3.3.	Computer Control in the Iron and Steel Industry	24
		2.3.4.	Computer Control in the Glass Industry	25
2	24.	Function	ns performed by the Human Operator	26

27
29
30
30
31

Sec	ction		Page
	2.5.	Problems of Total Computer Control	32
	2.6.	Possibility and Direction of Computers and Computer	
		Control Development	33
	2.7.	Instrument Malfunction Detection - Its Selection for	
		Development	35
3.	INDUS	TRIAL SURVEY OF INSTRUMENT RELIABILITY	38
	3.1.	Introduction	38
	3.2.	Literature Survey	40
	3,3,	Methodology of Survey	.42
	3.4.	Definition of Failure	42
	3.5	Organisation of Survey	44
	3,6.	Statistical Basıs of Survey	45
	3.7.	Failure Rate Data	49
	3.8	Effects of Environment	51
	3.9.	Modes of Failure of the Instruments	55
-	3.10.	Discussion	56
4.	IMPRO	VEMENT OF RELIABILITY OF PLANT CONTROL SYSTEMS	84
	4.1.	Introduction	84
	4.2.	Reliability Engineering Technique Application to the	
		Process Plant Industry	85
	4.3.	Reliability Implications of Malfunction Detection	87
	4.4.	Substitute Measurements	90
	4.5.	Self-Organising Control Systems	96
	4.6.	Design of Reliable Systems	98
	4.7.	Design of Maintainable Systems	101
	4.8.	Reporting Failures	103
	4.9.	High Integrity Systems	105
5.	PRINC	IPLES AND TECHNIQUES OF INSTRUMENT MALFUNCTION DETECTION	106
	5.1.	Introduction	106
	5.2.	Literature Survey	108
	5.3.	Types of Malfunction Detection Techniques	1112
	5.4.	Comparison as Basis of Detection	115
	5.5.	Detection by the Operator	116
	5.6.	Detection by Computer .	123

.

Z

Sec	tion		Page
	5.7.	Comparison with Expected Signal	123
		5.7.1. Zero or Fuil Scale Signal	123
		5.7.2. High Rate of Change of Signal	124
		5.7.3. Proof Testing	124
	5.8.	Comparison with Duplicate Instrument	125
	5.9.	Comparison with Another Instrument	125
	5.10.	Comparison with Valve Position	125
	5.11.	Comparison with Past Signals	125
	5.12.	Comparison with Other Instruments using Unsteady	
		State Model or Filter	125
	5.13.	Action Taken on Detection	126
	5.14.	Feasible Algorithms Based on Some of the Foregoing	
		General Outline	126
		5.14.1. Zero or Full Scale Reading Detection	126
		5.14.2. Large or Sudden and Large Excursion	127
		5.14.3. Large Derivative	129
		5.14.4. Variation in Variance or Standard Deviation	129
6.	ON-LI	NE TIME SERIES ANALYSIS OF INSTRUMENT SIGNALS	130
	6.1.	Introduction	130
	6.2.	Methods of Analysis for Simple Signals	132
		6.2.1. Autocorrelation Function and Power Spectral	
		Density Function	132
		6.2.2. The Autocorrelation Function	ر 132
		6.2.3. The Power Spectral Density Function	133
		6.2.4. Practical Procedures for Estimating pectra	
		from Observed Time Series	134
		6.2.5. The Fast Fourier Transform	135
		6.2.6. The Discrete Fourier Transform	135
		6.2.7. Useful properties of the Discrete Fourier	
	,	Transform	137
		6.2.8. Applications of the Fast Fourier Transform	138
		6.2.9. Implementation of the Fast Fourier Transform	142
	6.3	DIGITAL FILTERS	443
		6.3.1. The Pulse Transfer Function, Poles and Zeroes	145
		6.3.2. The Digital Resonator	149
		6.3.3. Design of Digital Filters	151
		6.3.3.1. Indirect Method	152
		6.3.3.2. Direct Method	153

Section

				Page
		6.3.4.	Programming Digital Filters	155
	6.4.	Use of	Simple Filters to Detect Instrument	
		Malfu	unction	155
	6.5.	Use of	the Power Spectrum to Detect Instrument	
		Malfu	Inction	158
	6.6.	Use of	an Adaptive Model for Instrument	
		Malfu	nction Detection	159
7.	CASE	STUDIES	OF INSTRUMENT MALFUNCTION AND MALFUNCTION	۰
	DETEC	TION (1)	- THERMOCOUPLES	161
	7.1.	Introdu	ction	161
	7.2.	THERMOC	OUPLES INSTALLATIONS, NATURE AND CAUSES OF	
		THERMOC	OUPLE. FAILURE	163
		7.2.1.	General	163 [`]
		7.2.2.	Industrial Thermocouples	163
		7.2.3.	Use Characteristics of Thermocouples $\langle \cdot - i' \rangle$	166
		7.2.4.	Types and Methods of Use	167
		7.2.5.	Thermocouple Selection	168
		7.2.6.	Connecting Circuits	169
		7.2.7.	Materials for Thermocouples '	171
		7.2.8.	Thermocouple Insulation	175
		7.2.9.	Protection of Thermocouples	176
		7.2,10.	Thermocouple Failure	179
`			7.2.10.1. Noble Metal Thermocouple Failures	181
			7.2.10.2. Base Metal Thermocouple Failures	182
			7.2.10.3. Thermocouple Failure in Nuclear	
			Environment	183
~			7.2.10.4. Experience at the National Engineerin	g
			Laboratory	184
•			7.2.10.5. Other Sources of Possible Failures	
•			in the Thermocouple - Electrical	
		-	Instruments used with Thermocouples	188
	7.3.	Thermoco	ouple Failure Rate Data	189
	7.4.	Experime	ental Laboratory Work on Thermocouple Failure	190
		7.4.1.	Description of Apparatus .	191
		7.4.2.	Experimental Work Carried out	193

Se	ction			Page
		7.4.3.	Thermocouple Failure Determination	
			Algorithm as Tested On-line	195
		7.4.4.	Experimental Results and Analysis	197
8.	CASE	STUDIES	OF INSTRUMENT MALFUNCTION AND MALFUNCTION	
	DETEC	CTION (2)) - DIFFERENTIAL PRESSURE TRANSMITTERS AND	
	CONTI	ROL VALVI	2S	226
	8.1.	DIFFERI	ENTIAL PRESSURE TRANSMITTERS	226
		8.1.1.	Differential Pressure Transmitter Failure Rate	
			Data	227
		8.1.2.	Experimental Laboratory Work on Impulse	
			Line Blockage	2 29
			8.1.2.1. Description of Apparatus	230
	,		8.1.2.2. Experimental Work Carried Out	232
			8.1.2.3. Experimental Results and Analysis	233
			8.1.2.4. Discussion of Results	236
	8.2.	INDUSTR	IAL CONTROL VALVES	257
		8.2.1.	Nature and Causes of Control Valve Malfunction	257
		8.2.2.	Control Valve Failure Rate Data	258
`		8.2.3,	Detection of Control Valve Stickiness	260
		8.2.4.	Experimental Industrial Work on Control Valve	
			Signals	262
		8.2.5.	Analysis of Industrial Valve Data	264
	8.3.	DISCUSS	ION OF THE CASE STUDIES OF INSTRUMENT MALFUNCTION	N
		DETECTI	ON	268
9.	AN IN	DUSTRIAL	EXAMPLE	200
	9.1.	The Ind	ustrial Problem	290
	9.2.	The Pro	cess Characteristics	297
	9.3.	An Appro	oach to The Problem	298
10.	DISC	USSION		305
	10.1.	Review o	of Work	305
	10.2.	Suggest	ions for Further Work	307
	ACKNO	WLEDGEMEN	NTS	
	REFER	ENCES	,	309
-	APPEN	DICES		336

(v)

Section

-

•

,

.

Appendix 1	Differential Pressure Transmitter Data and	
	Spectral Analysis Results	336
Appendix 2	Sample Thermocouple Data for the Figures	
	given in the Main Text Chapter 7	354
Appendix 3	Industrial Control Valves Data and Standard	
	Deviations of Measuring Instruments Data	389
Appendix 4	Data for Industrial Example	407

~

٠

.

ABSTRACT

From an initial concern with investigation of ways in which the process control computer could learn, the project was narrowed down to instrument malfunction detection.

Preliminary surveys in industry were made and from there general ideas of modes of failure of some instruments were obtained. A wider survey of instruments in different environmental conditions followed. Failure information and reliability data on about 9,500 instruments representing a total of about 4,500 instrument years operating time were obtained.

A study of failure information from industry and study of available theory in the open literature that are amenable to malfunction detection techniques led to a presentation of some general ideas and techniques of instrument malfunction detection. Time series analysis was singled out for special attention because of its promised potential.

The implications of malfunction detection and reliability data for the improvement of plant and control systems are discussed.

Case studies of select instruments - thermocouples, differential pressure transmitters and control valves, were carried out. An instrument malfunction detection algorithm based on the standard deviation, calculated with a running mean, was tested on-line on the thermocouples and proved effective. Power spectral analysis results of signals from a differential pressure transmitter used as a flow measurement show the feasibility of the technique for instrument malfunction detection.

Industrial data on measuring instruments and control valves were obtained and analysed.

On the whole the feasibility and potentials of malfunction detection, particularly by the process control computer is shown.

```
(vii)
```

1. INTRODUCTION

1. INTRODUCTION -----

This project is essentially an initiation of a program of work on computer control with special emphasis on those functions which are normally not allocated to the computer but which are performed by the human operator.

Even though there are many successful computer control projects, there is need for more useful computer functions as even in these 'successful' computer control projects the potential of the process control computer is not fully exploited. The stage when computer control might be justified as an experiment must now be over for most firms. With the present trend of increasing sophistication in computer design and complexity of process plant design, there is need for a larger number of useful functions to make computer control easier to justify. This program aims to develop some of these.

More specifically, the objective of this program is to obtain more precise definition of the operator's functions, using logical and mathematical methods where possible. It is expected that this will improve understanding of these functions, help in the allocation of functions between the operator and the computer, indicate what aids and interface the operator should be given and lead to the development of techniques for making some of these functions automatic, where this is appropriate.

It is hoped that in this way the operation and availability of the plant will be improved - the upgrading of the performance not only of the instruments but of the plant items as a whole

resulting in more reliable installations; that the usefulness of the operator will be increased; that the capability of the computers will be more fully utilised; the operation of the plant with less or even no operator supervision will be made possible.

Within this general program, the work described here began as an investigation of the ways in which the computer could learn. Awareness of the growing literature on learning methods and pattern recognition led to the thought that it was about time development for and application of these techniques to the process industry was attempted. The emphasis here being more on reproducing rather than on improving human learning - the aim being to develop the techniques necessary to allow plants to be run without operators rather than those of making small improvements in efficiency.

With the development of the project, there has been a clearing of thinking and ideas. An initial study and consideration of the current thinking in computer control influenced the further development and defining of the project. The work described here, therefore, has since been narrowed down to methods by which the process control computer can detect the malfunctioning of its instruments.

The current thinking in computer control is that a more realistic trend in the further development of automatic control should be towards a shift from complete automation to achieving a proper balance between the division of labour between automatic equipment and man. This shift has already occurred in the aerospace industry in more recent years. The experience in process control with the emergence of a number of functions which have proved rather difficult

to automate and which can often be shown to be well suited to execution by the human operator, points to this shift as a more realistic general direction for the further development of automatic control in the process industry.

1.1 Project

Development of more useful functions which the process control computer can perform and which are considered in the work reported here include: methods by which the computer can detect whether its instruments (measuring elements and control valves) are working properly; methods by which in the event of failure, alternative approximate estimates of the variables can be made; methods of utilising the potential of the computer to maximise system reliability.

The detection techniques for measuring instruments have included generally comparative methods such as comparison between the actual reading and that expected from consideration of the instruments physical constraints, dynamic response and signal properties; and of other measurement readings, process relationships and control valve positions. These techniques could be divided generally into two types, based

(i) on instrument or equipment condition

(ii) on instrument or equipment performance
On this basis the techniques can be classified as passive or active.

The project is part of a continuing program of work in the department on the task of the process operator, on computer control and on reliability engineering.

Faults on the departmental computer, shortage of finance to spend some periods in industry and difficulty in getting on-line computer data from working plants were the main difficulties. Nevertheless, work was done and data were obtained from industry.

The general presentation of the thesis is one of first presenting the ideas and information leading to and the necessary theory developed; followed by a report on the application of the ideas and theory to both industrial and laboratory experimental data.

There is no single literature survey. The very nature of the project does not allow for a single survey. Where appropriate, a survey has been done on the separate subjects.

An initial and background study of the functions performed by both the computer and the process plant operator, the limitations and future trends and development of computer control is presented in Chapter 2. This study was a necessary and first step in the defining and development of the project, and influenced the narrowing down of the work as reported here.

One of the main experimental works carried out was the collection of failure information and reliability data on some 9,000 instruments representing a total of about 4,500 instrument years operating time from three chemical works. This yielded information on failure modes and behaviour of some instruments in their working environment. A report on this survey of instrument reliability carried out in industry is presented in Chapter 3.

The implications of malfunction detection and reliability data for the improvement of the reliability of plant and control systems

are discussed in Chapter 4. This is followed in Chapter 5 by the general ideas and techniques of instrument malfunction detection.

Because of the considerable potential of time series analysis as a method of malfunction detection, it has been singled out for special attention in Chapter 6.

The case studies of selected instruments and the application of malfunction detection techniques to both laboratory and industrial experimental data from them are presented in Chapters 7 and 8. The thermocouple was typically and illustratively studied in detail and has been presented on its own in Chapter 7.

Time series analysis of logged signals from a differential pressure transmitter, used as a flow measurement instrument, is contained in Chapter 8. An analysis of logged instrument data from industry is also contained in Chapter 8.

A report (i) below, on thermocouples and their failure described in Chapter 7, was written for the Central Electricity Generating Board. A paper (ii) below, based on the material of the industrial survey of instrument reliability in Chapter 3 has been written and submitted for publication. The title and synopsis of a paper (iii) based on the principles of instrument malfunction detection described in Chapters 5 and 6 has been submitted for publication.

(i) Anyakora, S.N

"Thermocouple installations and Their Failure" A Report

(ii) Anyakora, S.N., Engel, G.F. and Lees, F.P.

"Some Data on The Reliability of Instruments in Chemical 'Plant Environment" Submitted to the Institution of

Chemical Engineers for Publication.

(iii) Anyakora, S.N. and Lees, F.P.

"Principles of the Detection of Malfunction Using a Process Control Computer". Title and Synopsis Submitted For Publication, Instn. Chem. Engnrs. Symposium: Decision, Design and the Computer.

2. COMPUTERS AND OPERATORS IN INDUSTRIAL PROCESS CONTROL

.

.

.

١

:

2, COMPUTERS AND OPERATORS IN INDUSTRIAL PROCESS CONTROL

Introduction

At the early stages of this project some basic background work was necessary for the better defining and narrowing down of the work reported here, from the general program of work being initiated. The study of computer and operators in industrial process control is in this category. It influenced a more realistic definition of this project. It also, in retrospect, helps bring out the relevance and importance of malfunction detection. The computer functions such as alarm scanning, mathematical modelling, optimisation and sequential control emphasise the relevance of malfunction detection to the proper carrying out of these functions by the computer. Most of the functions performed by the computer rely on accurate and dependable information from its instruments for their meaningful execution.

The study of the functions carried out by the operator shows that a large amount of malfunction detection is carried out by him.

Even though a lot of this work is background work, besides its chronological relevance in the development of the project it is important in emphasising the relevance of malfunction detection.

Since the advent of automatic equipment the trend has been generally one of trying to replace the human operator with automatic equipment. Most development of automatic control over the years has been in this general direction. Because of the basic difference in intelligence between the man and the machine, it is not surprising that experience from the increasing degree of automation has shown up certain functions which are very well suited to execution by the operator but are rather difficult to automate. It would appear that

with the lack of intelligence and creativity of the machine, complete automation in the process industry would remain an ideal for a considerable time to come.

In more recent years, the emphasis in the aerospace industry, one of the main users of automatic systems, has shifted somewhat from complete automation to division of labour between automatic equipment and man. In process control, the achievement of a proper balance in the allocation of functions between the operator and the automatic equipment would be a more realistic future direction in the further development of automatic control. This is the current thinking in this field. It is an objective which can easily be achieved and which could have very desirable and considerable implications for upgrading the performance of plant items and of the plant as a whole.

A necessary first step in this direction would be a study of the functions performed by both the computer and the process plant operator as reported.

A survey of these functions in the chemical process industry is attempted. It starts with a brief discussion of a wide variety of process characteristics which determine computer and operator functions. It covers: functions performed by the process control computer in general; some actual examples of industrial applications of on-line computers, briefly; functions performed by the human operator and in the light of these problems of total computer control; and finally the possibilities and direction of computer control.

All this was relevant in selecting instrument malfunction detection for further development.

2.1. Process Characteristics

The characteristics of any process mainly determine the functions of both the plant operator and the automatic equipment. Before these functions can be defined and/or allocated an understanding of the process to be controlled is very necessary.

A number of circumstances can affect the characteristics of a given process. Factors of variability such as raw materials quality, feed rates, behaviour of plant equipment and instrument systems and overall environmental conditions can affect the process characteristics. These could generally be considered as disturbances to the system. These disturbances are almost inevitable and the process characteristics are subject to these disturbances.

Fouling and deteriorating factors are inevitable in certain circumstances as exemplified by the decaying of catalysts in catalytic reactions. These factors of course, cause disturbances in the process. Certain types of behaviour of process materials cause disturbances when they occur. Solidification in polymerisation and other such processes is a typical example. The materials might be very sensitive to certain parameters such as ambient temperature variations or variations in alkalinity which could arise from raw material variations. In the case of production of silica gels, any of these variations could lead to solidification. The very physical characteristics of the process could lead to disturbances such as the build up of dust particles in a dusty environment such as in a cement kiln could lead to blockages or clogging, or tearing of paper in a paper machine could lead to jamming. Some awareness of these distrubances is very essential for the allocation or defining of functions of either the plant operator

or automatic equipment in any given process.

Also very relevant and important are the intrinsic characteristics of the process such as the technical characteristics. Important technical characteristics are those with problems which could be due to the type of control - feedback, feedforward, continuous or sequential, malfunctions or just variation of parameters for optimisation purposes.

Measurement is basic in all process control systems and its many facets make it one of the most difficult aspects of process control. Measurement here includes both inferred and direct measurements. In control such as feedback or feedforward control, which is totally dependent on measurement, difficulties often arise which can make control impossible.

Non-linearity, inherent instability, dead-time, long and short time constants, recycle, limit cycles, strong interaction, to name a few can pose problems for continuous control. For sequential control the problems depend on whether it is a batch operation, plant start up or shutdown, or even variations in product quality or throughput. All these technical problems can characterise processes.

The malfunctioning of a process, the monitoring to detect the malfunctions, the techniques for diagnosing the malfunctions and the necessary emergency action to be taken can also characterise a process.

In cases where there are scope for optimisation changes in configuration, constraints, process inputs or internal drifts, optimisation of conditions may almost have to be done continuously. Such factors can characterise a given process when applicable.

It would be impossible here to mention all the possible characteristics of a process which are relevant to the allocation of functions, as the relevant characteristics vary from process to process

and are also related to the partiuclar objectives. All that has been done here is to mention a few fairly general characteristics to make the point about the necessity and relevance of such considerations in defining and allocating functions to both the plant operator and the automatic equipment.

2.2. Functions Performed by the Process Control Computer

Within the past decade, the process control computer has enjoyed a spectacular growth. The application of computers to the control of separate on-line chemical processes is rapidly becoming an established technique. The literature is full of publications on different aspects and developments of computer control in industry.

The functions carried out by control computers have now reached a certain degree of standardisation. The emphasis placed on individual functions varies with the nature of the process, but on the whole the similarities between systems are greater than the differences. Measurement, computation, communication and control are basic in all process control systems.

The versatility of the nature of the process digital computer equipment renders it applicable to nearly all process industries alike. Its lack of emotions is an invaluable asset. Because of its capability of being programmed with a set of simple, but meaningful commands the process digital computer can perform a myriad of desirable functions.

In general, two types of computer systems are possible with on-

(i) Fixed program system

(11) Variable program system

In fixed-program system, the operations of monitoring and control are

fully defined before the system is constructed. The required operations are accomplished merely by the inclusion of the necessary equipment. Because the latter can be quite large and the resulting system inflexible and costly to change, fixed-program systems are best applied to such simple operations as data acquisition, data logging and alarm indication.

In variable-program systems, the program is held in the store of the computer and can readily be changed. Hence, as further information becomes available, it is possible to make rapid adjustments to the program with a minimum of interference with the operation of the system. The flexibility of a digital computer and the ease with which its programs can be altered makes it an ideal tool for this type of application. By using sampling and time-sharing techniques, a digital computer can accommodate a large number of inputs or control loops with relative ease. The addition of further inputs or control loops can usually be accomplished with a minimum of effort and expense as, in general, all that is required is to bring signals from the additional points and to feed them into the computer.

The basic function of a process control computer is one of goal maintenance. This entails ensuring that primary and secondary aims of the control are maintained, that specific constraints are adhered to and that the order of priority of these is followed. Its lack of emotions is an invaluable asset in this type of function. More specifically, typical functions performed by the process control computer can be summarised with a brief explanation of each function as follows: (1,2,3)

- 2.2.1. Measurement and Calculations; scan and convert analog calculations
- 2.2.2. Data logging and Data processing
- 2.2.3. Alarm Scanning and Analysis

- 2.2.4. Indirect and Direct plant control Equipment regulation
- 2.2.5. Optimisation
- 2.2.6. Sequential control
- 2.2.7. Special system functions
- 2.2.8. Commercial data handling
- 2.2.9. Management calculations, information and Background capability
- 2.2.10. Control by Learning.

2.2.1. <u>Measurements and Calculations; scan and correct analog</u> <u>calculations</u>

With an analog input scan program, the interfacing required for communication between the process and the computer is provided. The analog input signals are converted by the computer to digital values, usually in engineering units (p.s.i., ^oC, lb/hr,etc.) and stored in storage locations reserved for the engineering units table. The functional programs use only the engineering units values of the process variables from the engineering unit table and not the actual analog signals transmitted from the process measurement transducers.

Thus, the computer receives crude instantaneous plant measurements which it may modify to eliminate, say, non-linearities such as occur in flow and temperature measurements. These measurements may be smoothed or averaged and other variables can be calculated from them. Such inferred measurements can also be obtained in some cases from say, the amount of control action needed to keep a variable constant and very often are more important than the original measurements (4,5).

The inferred measurements, once calculated can be used exactly as an ordinary measurement and can, in particular, be displayed, logged scanned for alarms or controlled. Hence, particularly at start up of a plant, the computer can be used to provide a temporary solution to measurement problems (1).

2.2.2. Data logging and Data processing

- Because of the computer's tireless and reliable ability to perform routine tasks at high speed, it is ideally suited to monitoring plant operations, logging and data processing. The computer is usually better than a special data logger, as it is usually well maintained for other purposes also.

Any data available in the computer - measured values, set points, valve positions, inferred measurements, may be logged on to paper or magnetic tape.

Several logs are generally provided. Typical are the instantaneous log, 8-hour summary log, 24-hour summary log, demand log and trend log.

Instantaneous logs provide the current values within a specified section of the process; the 8-hour log and 24-hour summaries are self explanatory.

The demand log may give mainly smoothed hourly readings of a large number of operational parameters for the eight hours previous to the demand, say. Examples are tables of . instrument readings and tables of a computer variable, such as product yield given as weight percentage of feedstock used in wight hours. The latest values of a variable chromatograph analysis and the like can also be printed.

A number of independent tables comprise the trend log. The latest instantaneous readings of an instrument or set of instruments, whose trend of behaviour is wanted, for instance, are typed at optional intervals for some set period.

For a computer executing direct digital control, in addition to logging measurements and readings, it can also record such very infor-

mative data as the interventions made by the plant operator such as set point insertions or changes. It can also log information on plant failures such as measurements taken over short intervals for a fixed period in the immediate past. Such information is held in the computer and continuously updated and in the event of a serious plant failure, this information can be retrieved and used to trace the source.

Since the amount of work the computer has to do during nonalarm conditions is smaller than that under alarm conditions, it normally has capacity to do additional work such as data processing. Computer usage of this type is feasible through the application of time-sharing techniques, priority and other routines in arranging computer programs.

2.2.3. Alarm Scanning and Analysis

There are different levels of alarm, starting from preliminary warnings and ending with emergency shutdown. Detection of certain alarm conditions can be used to initiate logging for fault tracing.

The alarm scanning program is used to check the process variables against preset limits for normal and safe process operation. The alarm limit could be an absolute value, a given deviation from set point, a specified rate of change or even a full scale instrument reading.

Even though alarms are usually confined to the process variables there may also be some form of indication that particular plant items are not in operation, either because they have failed or are not required.

In addition to alarm scanning on smoothed direct and inferred measurements, the alarm scanning function includes alarm analysis. (6,7) The latter involves the diagnosis of the possible fault condition and sometimes suggested corrected action by following an appropriate algorithm. This is sometimes known as 'alarm tree' analysis.

Start - stop monitoring and control implies two basic programs: scanning and alarming of equipment operations, and stored logic of all the sequencies of steps involved in start-ups and shutdowns. Scanning and alarming are carried out as usual, except that additional measurements are often required and typed warning messages include restrictions on further steps in the sequence.

To illustrate the nature of the logical start-up sequence, the computer steps required to open a valve may be listed (3); as below

- (i) check value limit switch to assure fully closed condition
- (11) check availability of power supply to operate the valve
- (iii) transmit signal for full opening of valve
- (iv) check valve limit switch to assure fully open condition
- (v) check valve limit switch to assure that "fully-closed"circuit is not energised

(vi) include analog flow signal in scan sequence.

(vii) check flow against high and low limits

(viii) select next logical step

Any of the check steps could give rise to an alarm condition.

2.2.4. Indirect and Direct Plant Control - Equipment Regulation

Increasing use is being made of computers for the control of plants such as in an indirect control capacity i.e. providing information for the adjustment of conventional closed-loop controllers

either normally or automatically.

In direct digital control, the computer controls the final control elements, alters set point and control parameters for the control loops at specified time intervals or when process variables exceed preset limits.

The computer can use inferred measurements as the controlled variables. Modified control algorithms including asymmetrical and non-linear gain, and a wider range of control constants can be used in direct digital control. In this way, common analogue controller disadvantages such as derivature kick or integral saturation are eliminated.

In equipment regulation, calculations are designed so as to control a single piece of equipment within an overall process.

2.2.5. Optimisation

Process efficiency, productivity, product distribution or product quality are optimised by the computer. Such techniques as linear programming, search techniques or statistical methods are used to define the operating conditions for process optimisation.

Process optimisation is probably the most important single operation performed by on-line computers. In fact, it is one function which has been the main factor in some of the most successful computer installations.

Models can be updated by the computer at periodic intervals to take into account deterioration factors such as decay of catalysts or fouling of heat exchangers. Some optimisation methods need reliable models and some do not need models at all. Since the original work of Box and Jenkins (8), a variety of techniques based on direct

experimentation with the process have been developed.

2.2.6. Sequential Control

The capability of executing logical sequencies swiftly and reproducibly, and of making large numbers of process inputs and outputs, makes the computer adaptable and essential for tasks like high speed sequential control. The program executed by the computer provides a rigid framework for sequential control operations such as batch processes, start-up and shut-down, change of throughput or grade.

For planned experimentation where a high degree of reproducibility is very valuable, for instance, this function is invaluable. Also it ensures a higher degree of safety if conditions are critical.

2.2.7. Special System Functions (3)

These include fill-in-the blank type programs for updating and expanding the basic system functions programs, as well as alarm action programs developed to provide specific actions based on random events occuring in the process. The actions initiated by such programs are both process oriented and operator oriented and may include all or only some of the following actions:

- (a) Activate deactivate single alarm points or entire blocks of alarms.
- (b) Activate deactivate specific control loops
- (c) Change control loop parameters
- (d) Change coefficients in analog conversion equations
- (e) Change the state of contact outputs
- (f) Activate central computer programs and other special process programs.
- (g) Provide print out or display on specified peripheral devices.

2.2.8. Commercial Data Handling

It can also control actual loading operations as exemplified by the use of punched card by lorry drivers.

2.2.9. Management Calculations, Information and Background Capability

The computer can perform many functions for management information. Two of the most important functions are:

(i) calculations of daily production records for individual

units and for the entire product,

(ii) developing economic reports for plant management.

Other functions such as production planning and scheduling based on sales demands or raw materials, also may be implemented. In some cases the computer has an important scheduling role. This usually arises in the control of large complexes where changes can occur in raw materials, services or throughputs. In this function there is usually rather less emphasis on dynamic and optimal features.

It is convenient in practice to include on-line certain technical and economic calculations in aid to management even though these can be done off-line.

2.2.10. Control by Learning

Control by learning is certainly not very widely performed by computers in industry as learning processes for computers are not well developed.

...

As applied to process control, learning could be achieved basically through association of cause and effect. This could be achieved by the controller learning through experimentation and observation which actions are most likely to result in an improvement of process performance. The controller can incorporate in this way, means for adapting the model to changes in the process characteristics.

However, despite great research interest in on-line adaptive modelling techniques, particularly determination of transfer functions by perturbations with psuedo-random binary signals and of state-variable models using the Kalman filter, there are very few practical applications yet.

2.3. Examples of Computer Control in Specific Chemical Industries

Even though the advantages of computer control have been recognised by major companies in the chemical industry for a long time, the limitations and shortcomings of the earlier computers retarded its implementation. Poor reliability problems and generally high installation costs were major setbacks to the early implementation of d.d.c. for instance. With the continuing design evolution of computers the door to the extensive use of both d.d.c. and general computer control has been opened.

A few examples of specific applications of computer to specific industries are briefly reviewed here.

2.3.1. Computer Control in the Cement Industry

As of now, there is very little d.d.c. control in the cement industry but mainly computer control. Most computers in operation in cement plants perform the raw material proportioning calculations and several employ on-line analysers to close the loop. Because of its importance to the quality of the cement and because of the adverse effects of poor blending control on kiln operation, the first area

to receive attention in computer application in the cement industry is usually the raw material preparation. Logging of kiln operating data, and supplying the operator with alarm messages for unusual or dangerous conditions, is usually the next application and most current installations include these functions.

The centrallized operating philosophy employed in the cement industry - and the long time lags encountered during the process lend themselves readily to direct digital control with manual back up. The material blending requirements and the complicated interactions of kiln parameters also contribute to making this an ideal process for d,d,c.

The first applications of a digital computer were in the automatic adjustment of set points in analog systems (9). To achieve proper performance, mathematical models were created. These models are not producing the desired results, so companies are now turning to an empirical approach. The delays created by the inadequacy of mathematical models have hindered most attempts to apply digital computers to a higher level of control. Process measurement and identification problems currently preclude automation.

The first computer reported to have been installed in a cement plant (10), in fact used a linear programming algorithm to determine the least cost of quarry materials. A similar technique is used at Ciments La Farge Azergnes Valley plant near Lyons, France.

In Tokuyama Soda Company's Nanyo, Japan, plant, for instance, continuous proportioning and blending are performed with the aid of a digital control computer (11). Limestone, clay gannister, and stag feeders are set directly by the computer based on the results of
a matrix inversion algorithm.

Generally, computers are being used to assist in the proportioning of raw materials, the operation of the rotary kiln, and the raw material and product grinding operations. Several different approaches (11-23) have been used to achieve the benefits from computer control of the cement kiln. However, difficulties in obtaining good measurements and identifying kiln dynamic characteristics have been the limiting factor in realizing the ultimate potential of process control computers in cement kiln operation.

Computer control of grinding involves primarily the monitoring of those variables that can be measured (mill, elevator, separator power and temperatures) and adjusting the fresh feed rate to obtain maximum production at the specified product size distribution or related surface area (24). The separator settings can normally be adjusted manually. Control algorithms vary but are usually simple (25,26). Studies have been directed towards the modelling of the crushing, grinding and separation phenomena, primarily on the basis of the principles of physics and probability theory (27-30).

In a particular installation most recently reported (31), the computer upgrades the plant measurements and calculates inferred or indirect measurements thus solving the problem of difficult important measurements. For instance, the dry solids flows were calculated from the raw materials wet solids flows, using laboratory water analyses; and the fuel oil flow was calculated, using the oil temperature measurement, to correct the flow. In addition all types of quantities instantaneous, or averaged, including plant, laboratory and inferred measurements, set points and valve positions were logged by the

computer. The plant measurements were scanned for alarm condition. Several calculations useful for management such as clinker output, fuel consumption per shift, and clinker compositions were also carried out by the computer.

2.3.2. Computer Control in the Pulp and Paper Industry

The application of digital computers to the pulp and paper industry has been mainly for supervisory control. The application of d.d.c. has been relatively cautious.

Generally, most of the successful development work has been oriented towards the solution of the following problems:

- (i) dead-time processes
- (11) feed forward control
- (iii) non interacting control
- (iv) automatic tuning and
- (v) calculated variable control.

A pulp and paper mill contains a wide variety of processes some with rapidly changing variables and some with long time lags. The processes with rapidly changing variables do not lend themselves to d.d.c., using relatively inexpensive manual back-up. Most companies require analog back up which is relatively expensive. Also companies are reluctant to put all of their faith into one piece of d.d.c. control equipment - without analog back up - especially on a paper machine where a loss of production is very expensive. However, one paper machine with 28 loops on d.d.c. has proved successful (9).

Brewster and Bjerring (32) have dealt in great detail with control computer application in the pulp and paper industries mainly in the U.S.A. but also with significant developments elsewhere from 1961 to 1969. They carried out a detailed review of the control problems and computer control solutions which have been used in a

number of important parts of the process.

The function of the Kamyr Digester is to delignify chips. The measure of this is the terminal K number. Keeping a constant K number is the object of the Kamyr regulatory control. The control of this K number has been effected through the control of the wood specie, the initial alkali - to - wood ratio, the initial liquor - to - wood ratio, the initial temperature of the cooking zone, and the residence time in the cooking zone. Further and more detailed information is given in references (33-36).

One of the most widely published and probably the most sophisticated integrated system in the industry is that consisting of two computers installed in Sweden at the Gruvon mill of Billeruds, in joint projects with KMW and IBM (37-49). In addition to the theoretical developments in the field of stochastic control (38,43) and production scheduling (40) an interesting approach to interpolation and extrapolation of real sample quality data involving Kalman filtering is reported (39,44).

Of interest also is the use of a small slow 8K Elliott ARCH 1000 computer at the Wolvercote Paper Mill, Oxford in 1965 (50,51). This system utilizes digitally directed analog control. A major characteristic of this system is the low capital cost and small number of technical personnel involved.

A rather more specialised development has been reported between English Electric and The Grove Mill Paper Company (52). Here a specially developed combination of analog computing and logic elements is used to perform a number of functions.

2.3.3. Computer Control in the Iron and Steel Industry

In the iron and steel industry, very few digital controls have been applied for the most part. Digital computers are being applied

to electric furnace melt shops but only in power demand is d.d.c. being applied. Leading candidates for d.d.c. are blast furnace stores, reheat furnaces, soaking pits, coke ovens and continuous casting operations.

In one computer installation reported (53) the computer has four major functions: the keeping of comprehensive records of each cast of steel produced; the processing of this data to issue reports to various departments of the works; giving a direct read out facility to each of three Quantovac vacuum spectrographs; and predicting using a mathematical process model of the charge and addition weights and oxygen volumes required for each cast. The mathematical model used for these predictions is a combination of theoretical balances with statistical regression on actual plant performance. Considerable accuracy was obtained with this model.

In another (54), an operational computer system controls data flow from a central position in the plant hierarchy. It communicates in one direction with process control and manufacture, and in the other with planning management. In this application the operational computer, given desired final product and its quality, arrives at decisions on selection of available cooking equipment, choice of blooming or slabbing, and choice of rolling with one or with two heats.

Koppel (9) suggests that the reluctance of the iron and steel industry to accept d.d.c. more quickly can perhaps be traced to the lack of success of the computer in controlling the basic oxygen furnace.

2.3.4. Computer Control in the Glass Industry

The glass industry is one industry which is known to have whole-heartedly embraced d.d.c. techniques and are known to be

applying the technique to many new installations. The large thermal storage type process operations used in this industry are readily adaptable to d.d.c. Unfortunately very little has been published in the open literature on computer application in this industry as of now.

The illustrative examples of computer control in specific industries above is not a comprehensive representation of such known applications. Some industries have published a lot of such applications in the open literature whereas others still treat such information as classified. Some publications do not contain or give out much information and some have been more on known conventional application lines. With such publications it was not considered worthwhile to include them in this brief survey.

The overall picture that has emerged from the study of the applications of the computer to the chemical industry is that in some cases computer application has been justified by some obvious single function for the computer to perform such as alarm, scanning, optimisation or feedforward control. This picture would fit better, earlier installations as more recent installations have required more than one function to justify them.

Movement now is towards larger and more complicated plants and plants in the former category could be in the minority. With increasing complexity and sophistication of the computer, currently, the computer needs many useful functions to justify it.

2.4. Functions Performed by the Human Operator

The computer has been used principally to complement the human operator. For the full exploitation of the potential of on-line

computers, particularly for the optimum division of labour between man and the machine, a study of the functions actually performed by the human operator on the chemical plant is a necessary step.

Generally, the functions performed by the operator are more varied than the corresponding functions currently carried out by the computer. The main reason for this being the fact that man is capable of creative thinking and high-speed correlation but is slow at calculation, reading and writing and is also error - prone whereas the computer has limited intellectual power but is capable of split-second calculations, reading and writing, rarely makes mistakes but also has uncertain reliability.

The choice of terminology for the description of the functions performed by the operator can be similar to those of the computer to bring out the fact that the computer principally compl**e**ments the operator. The overlap in the functions performed by the operator will not give similar sharp distinctions. The functions performed by the operator can be adequately described to bring out the similarity and main differences with computer functions under the following headings:

(i) Control

- (i1) Process optimisation and back-up
- (iii) Alarm scanning and malfunction detection
- (iv) Learning
 - (v) Manual operations

2.4.1. <u>Control</u>

The basic mechanism of on-line control is one of comparing the measured status with the desired status; making a decision based on

on the comparison; taking action based on the decision; which in turn causes a reaction in the process.

The basic function of the plant operator is to keep the plant running at the desired operating conditions and this involves essentially control. To carry out this function involves measurement, calculation, logging and control, especially.

The plant operator normally carries out a wide variation of measurements both direct and inferred. The off-line analyses he carries out, the samples he takes are all variations of the measurement function. The different variations give either direct and/or inferred measurements. Sometimes he obtains indirect or inferred measurements from variables which are measured directly as exemplified by inferring reaction rate from a pH measurement.

The calculation function the plant operator carries out is basically subsidiary to the other functions. Most of the calculations are either concerned broadly with inferred measurements or with a mental model or correlation.

As the operator gets about making sure that the plant is running at the desired operating conditions, he normally records information, usually instrument readings. This he does partly to provide a proper work load and to monitor the process more efficiently. He also logs on paper certain events which the system cannot pick up, such data as actual changes made and why. Very often, some of these are the most important information on plant operation and can sometimes provide information for interpreting his control of the process.

In the actual control of the plant, the operator can not only

understand the system, but he can also learn how to do many things. As one variable changes, he would change the setting of another vafiable because he had learned that this helped stabilize the process. Based on experience, he would anticipate load changes and help the system to meet the new demand. At different loads he would make different adjustments again based on experience. All this can be described in terms of different types of control terminology. Control engineers have invented these relationships and now refer to them in terms such as 'non-interacting', 'feedforward' and 'adaptive'. These functions have in fact always existed in the minds of the operators and he has always carried out the different types of on-line control.

2.4.2. Process Optimisation and Back-up

The basic mechanism of process optimisation and back-up is one of intelligence systems (55,56) outside of the on-line control loops making observations (such as observing other measurements, direct or inferential, or making calculations, mental or machine, assisted) which the on-line system cannot make; comparing these with the measured status, determining an inferred actual status (57); comparing the inferred actual status with the desired status; and making a new decision based on the comparison. These are not new ideas as in all control situations, prior to attempts to automate, these functions have been performed by the operator, assisted by safety or interlock systems. In non automated systems it has been, and in automated systems it must be, possible for the operator to intervene without confusion.

The main technique used by process plant operator for optimisation is a form of perturbation or hill-climbing and his application of it

is crude, even though he is usually able over the long run to come quite close to the optimum for a given set of conditions. When it comes to short term fluctuations in the optimum, he is less able to cope.

2.4.3. Alarm Scanning and Malfunction Detection

Usually, as the operator gets about his work, he quite unsystematically carries out some alarm scanning and malfunction detection. Much of the effort here is usually devoted to trying to forestall trouble.

He performs a variety of checks on instruments readings. These checks may be based on current or past behaviour of the instrument, for instance, off-scale, completely constant, excessivley noisy readings or readings which do not show expected relation to other measurements may be suspect. Using all human sensing facilities: sight, hearing, smell and touch, he checks continuously on the working of units such as pumps, fans, control valves and such process equipment which can go wrong and which are not instrumented. This in addition to, for instance, scanning inferred measurements to make sure that no variables have reached alarm limit. He usually has his own personal set of early warning conditionSat which he starts to take action. This function is one of the operators more routine functions.

2.4.4. Learning

Learning is the most creative part of the operator's task and virtually the whole range of his activities are covered by the learning function.

The main asset here is that when the system feeds out inform-

ation of a dynamic nature, man can learn and advance at the maximum rate. He usually starts by building up a mental image of the process, by recognising patterns and by devising algorithms: From a knowledge of the usual behaviour of his instrument readings, the operator can recognise divergencies from this either due to abnormal plant conditions or instrument malfunction. He learns to take early action to prevent the development of alarm conditions and when they occur, to cure them. Most of the operator's experience is derived from learning.

2.4.5. Manual Operations

It is the manual operations carried out by the operator that may make him indispensible for some time yet to come. Apart from the functions already mentioned, manual operations of various kinds make up his other work. These may be associated with measurement, such as sampling; with flow control or change-over, such as hand valve adjustments; with process additives such as catalyst addition; with mechanical adjustment, such as tightening bolts; or with replacement of deteriorating items such as filters or spent catalyst.

Not all of the functions of the operator described here are carried out in every case. This is due to differences in the nature of the process controlled and to differences of policy in what the operator is permitted to do and what should be programmed. Thus in a nuclear reactor for instance, the emphasis may be on alarm scanning and analysis, there may be strict limitations on the actions which the operator can take and the programming may be very comprehensive.

Nevertheless, an insight into the functions performed by the process control computer has been attempted.

2.5. <u>Problems of total Computer Control</u>

A general learning algorithm remains a daunting problem for total computer control. The complexity of industrial systems and the limitations of human decision making prevent an explicit application of formalised logical or numerical routines.

The operator/knows how he makes the decision, but he does not. usually know how to communicate his full action to someone from a different discipline. He may describe the action which he takes, but the decision-making process leading to the action is far more complex as it correlates all available explicit and implicit information. Since sensors, switches etc. are not perfect devices, he often makes correct decisions based on conflicting and imperfect information.

Any machine system designed to make these decisions as the human operator does, must operate on the same information and make the same, or as good, correlations and evaluations prior to taking action.

A real bottleneck in bringing, a computer controlled installation into being is the manpower needed to do the jobs. Availability of systems engineering talents and the associated costs are factors to be taken into consideration, especially with the decline in computer costs and more than compensative increase in labour costs.

The last and not the least important problem of complete computer control is the achievement of the type of instrument reliability required.

2.6. Possibility and Direction of Computers and Computer Control Development

As confidence grows in the reliability of the modern on-line computer, and in the handling of the versatile software associated with it, it can be expected that the use of on-line systems will rapidly increase. These will not be confined to plants in the chemical industry, but may extend for instance to the shift laboratory and the research department, taking over many of the routine functions done by the laboratory and the staff and giving more accurate results sooner (57).

Recently, there has been discernible trend towards making greater use of minicomputers, because, for the same power, computers are now much smaller and cheaper than they were, say, five years ago. At the same time, there is growing awareness of the merit, in some circumstances, of using a compact, semi-dedicated machine in preference to a small, and possibly busy part of a bigger machine. A survey of digital computers available in the U.K. and costing less than £10,000 has recently been made (58).

New concepts of reliability, modularity and high-speed real time structure and software are boasted by the small digital computer manufacturers. Small economic systems will open up the possibility of control for medium-to-small sized plant and will also provide operators of large industrial plant with much greater flexibility. In this latter area, a rapid growth in small dedicated d.d.c. systems operating in multi-computer configurations running under the control of a larger central computer that provides a back-

ground data processing capability, is expected (59,60).

Some work is being accomplished in the field of hierarchies of computers. This concept involves the use of one high powered executive computer to control a number of small computers which operate in satellite fashion. Each small computer can operate automatically and may be located in physical proximity to a process. The master computer has the function of scheduling and coordinating the smaller ones. This approach has already been implemented in the information system and data display area. Eventually the executive computer will schedule the functions between control information and display while the satellite computersretain localised, low level capability functions.

Considerable advances have been made in large-scale integrated circuitory in which from 100 to 200 logic functions are packaged in a $\frac{1}{2}$ by $\frac{3}{4}$ inch chip. This technology permits reduction in the size of a complete main frame. It will also reduce the price and greatly improve reliability since the number of connections are reduced. This concentration of logic functions will also reduce propagation delays.

Improved displays and better operator interfacing between the computer and the process are a prime consideration in utilizing computer techniques. There is a trend towards more cathode ray tube displays, especially with the development of coloured cathode ray tubes. The use of light pens to make changes in instructions to a process through an operator console should be in effect before long.

Overall, the general direction of development for both the chemical plant and the computer is one of increasing complexity,

sophistication and versatility.

2.7. Instrument Malfunction Detection - its Selection for Development

The number of computers on chemical plants now is large and the rate of installation seems to be still growing very rapidly. The current trend in process plants and computers is one of increasing complexity and sophistication. For some processes such as for the production of high quality products and for some highly integrated systems computer control could be regarded as essential.

In the present applications of the computer, the full potentials are not being exploited in most cases; the majority being used for functions such as data logging with the minority perhaps about a fifth of present installations only being truly on-line in the sense that they send out control signals to adjust the controller set point or control valves.

At this stage of computer control new projects are not approved unless they appear to be profitable in some other way, as the stage when computer control might be justified as an experiment must now be over.

Probably to a considerable extent, due to the relatively undeveloped state of the technology at the time when these systems were put in, full potential of the computer was far from exploited even in the systems considered highly successful.

Considerable improvements have since been made on making the equipment cheaper and more reliable as most effort seems to have been concentrated in this area. For the already installed systems this does not improve the exploitation of the computer capabilities, neither does it suffice to ensure that computers be installed as a matter of course.

Even though there is great scope for and value in developing the existing computer control techniques, there is still need for extending the computer's activity to some of the more routine functions carried out by the operator.

There is scope and immediate need to extend the range of useful functions which on-line computers can perform - a need for imaginative development of additional useful functions.

The retention of the human operator as of now and probably for a considerable time to come must be assumed and therefore emphasis should be placed on the allocation to the computer and the operator of the control tasks to which either is most suited.

There is a continuing tendency for the operator to take over the supervision of larger amounts of plants with the result that the attention which he can devote to a given amount diminishes. More recently, he is assuming simple maintenance functions which previously were done by other workers.

In the new situation, it is important that the operator should be well informed about abnormalities in his plant by correctly formulated and appropriately presented messages. If the routine part of off-normal signals or instruments malfunction detection should be done by the computer, the operator can then concentrate on more difficult and more creative jobs for which he is better suited.

Perhaps interplay between man and the machine may be the right way to use the relative strengths of both..

The overall improvement of the instrumentation and control system is one useful function which is relevant to all plants and is a useful added function which the computer can readily perform.

Instrument malfunction detection is a specific aspect of this function.

The prospects of significantly upgrading the performance not only of the instrumentation but of the plant items as a whole and the desirability of even more reliable installations are some further considerations that make an attempt in this direction . worthwhile.

With growing literature on learning methods and pattern recognition, it is time to try to develop these techniques and to apply them to the chemical industry. Instrument malfunction detection is one very relevant field to which these can be applied in the chemical industry.

The meaningful execution of computer functions - logging, alarm scanning, control, optimisation etc. depends on accurate and reliable instrument signals. The implications of malfunction detection are for ensuring this.

At the moment, most malfunction detection is done manually and unaided, by the process operator. The process operator might be superior in specific aspects of malfunction detection requiring intelligence, such as pattern recognition, decision making and taking certain corrective actions that involve manual operations. The routine tasks of off-normal detection, however, can readily be taken over by the computer. In this way a better, function allocation between the machine and man can be achieved leading to a more optimum use of both.

3. INDUSTRIAL SURVEY OF INSTRUMENT RELIABILITY

J.

•

,

i

-

3. INDUSTRIAL SURVEY OF INSTRUMENT RELIABILITY

3.1. Introduction

Still at the formative stages of the project the need for some data on instrument reliability in the chemical plant environment was realised. These were not available in the open literature.

Also, to realise the objectives of the project, a very necessary first step was to determine what instruments do fail, their mode of failure and their probable behaviour during failure. For the chemical industry, because of the importance and relevance of the working environment, it was very desirable to get the information in the actual working environment. The main difference between the chemical industry and other industries is the severity of the environments to which the instruments can be subjected.

Such information on failure of instruments is not only relevant to methods of instrument malfunction detection but also has very wide implications for the improvement of instrument reliability and maintenance strategies in general.

It will provide background in meeting future engineering requirements and offer clues to inherent weaknesses of materials and manufacturing processes. The failure of an instrument or instrument system is caused by the failure of its components. If the relative rates of failure of these is known, it is possible to design instruments or instrument systems which are less likely to fail and to predict the probability of failure of particular instrument designs. Similarly, if the failure frequency of individual instruments is known, it is possible to design more reliable control instrument systems.

With these considerations and insight gained from preliminary surveys, an instrument reliability survey in the chemical plant

environment was initiated with a view to getting some statistically meaningful data which could be published and which will help fill the vacuum created by the dearth of such information, at least in the open literature.

The survey was in two stages, the first being preliminary surveys from which evolved the survey which is reported here.

The problems of collecting and publishing such data were not easy ones. Detailed information on the preliminary surveys mentioned, for instance, cannot be published within the terms of reference of the agreement to carry them out. The author spent some time visiting some chemical works and studying available information on the failure of instruments. The preliminary surveys were a major guidance in the further narrowing down and development of the project.

Industrial secrecy and existence of usable systems of data collection were major problems in getting cooperation and in carrying out the survey.

This chapter is essentially a report on the survey carried out.

The survey covers the main measuring instruments (pressure, level by float as well as by pressure, differential pressure, flow, temperature, density, viscosity, thermal conductivity; analytical); controllers; control values. It does not cover indicators or recorders.

Data on the reliability of some 9,500 instruments in 3 chemical works with a total operating time of about 4,500 instrument - years have been obtained. For most of the instruments surveyed data have not previously been available, but the data obtained are reasonably consistent with such data as have been published.

Of special interest is very useful information on the nature of the failures of the instruments obtained from one of the works.

This was in the form of comments by the operator on the log tickets. A representative cross-section of these comments is presented in section 3.9.

3.2. Literature Survey

Very little failure rate data for instruments on chemical plants has apparently been published in the open literature. The available information is summarised in Table 3.1. Most of it is based on the publications of the U.K. Atomic Energy Authority, which has pioneered work on instrument reliability in this country.

The failure rate quoted for solenoid values in Reference (61) is based not on field tests, but on the specification to which industrial solenoid values are designed. The difference between the two failure rates quoted for temperature trip amplifiers in References (62,63) is at least partially explicable by the fact that the first is a much older design than the second and by the sensitivity of the failure rate of these instruments to performance required, extra facilities provided, such as low margin alarm, and operating conditions. The references quoted do not give information in the number of failures recorded or on confidence limits, except for Reference (63), which gives the latter.

Recent work by the I.S.A. (64) on the number of hours per year required for the maintenance of particular instruments is also relevant, but these data do not appear to correlate directly with failure rates.

Instrument	Failure	Rate	Ref.
	Actual Fault/ year	Assumed Fault/ year	
Control valve (p)	0,25	-	62
Solenoid valve	_	0.26	101
	-	0.1 (design)	61
Controller (p)	0.38	-	102
Differential pressure transmitter (p)	0.76	-	102
Variable area flowmeter transmitter (p)	0.68	-	62
Thermocouple	-	0,088	101
Temperature trip amplifier, type A	2.6	-	102
Temperature trip amplifier, type B	1.7	-	102
Temperature trip amplifier -	0,1	-	63
Pressure switch	0.14		62
Oxygen analyser	2.5	-	62
Tachometer	-	0.044	101
Stepper motor	-	0.044	101
Pressure gauge	-	0.088	101
Relay (p)	0.17	_	102
Indicator (moving coil meter)		0.026	107
Recorder	-	0.22	101
1	4	J]

Table 3.1.

Previously Published Data on Instrument Reliability

(p) : pneumatic

(e) : electronic

3.3. Methodology of Survey

Most firms have a system of maintenance job slips and some have also instrument record cards, which could be made the basis of a . data collection scheme. With the limitations of time and the difficulties, delays and complications of initiating a new data collecting scheme, already existing methods and organisations for reliability data collection within a given firm were used. Where these were inadequate for the purpose, the firm was avoided. The systems used could be improved but in the circumstances were the best and were considered adequate. From the shortcomings of existing systems could evolve new and better schemes or at least improvements on existing schemes.

In the survey, the instrument records have been used to determine how many instruments of each type were at risk and the instrument job sheets to determine what failures have occurred and any other useful information such as the operator's comments.

3.4. Definition of Failure

From the British Standard concepts of failure (67):

A <u>failure</u> is any inability of a part or of an equipment to carry out its specified function.

An item (any part, sub-system, system or equipment which can be individually considered and separately tested) can fail in many ways but these failures can be generally classified either as:

(i) Misuse failure: when the failures are attributable to the application of stresses beyond the stress capabilities of the item or

(i1) Inherent weakness failure: when the failures are attributable to weakness inherent in the item itself when subjected to stresses within the stated capabilities of that item.

The failures can be sudden or gradual in time. Sudden failures are generally failures that could not be anticipated by prior examination whereas gradual failures are failures that could be anticipated by prior examination.

The degree of failure could be partial or complete. Failures resulting from deviations in characteristic(s) beyond specified limits not such as to cause complete lack of the required function can be classified as partial failures. Failures resulting from deviations in characteristic(s) beyond specified limits such as to cause complete lack of the required functions are classified as complete failures. The limits referred to in this category are special limits specified for this purpose.

The combination of failures could be classified as Catastrophic or as a graceful Degradation. Catastrophic failures, here, are failures which are both sudden and complete, and graceful Degradation failures are failures which are both gradual and partial.

An important type of failure which does not quite fit into any of the above categories is latent failure. These are failures which, even though they may not be detectable could lead to a catastrophic failure. In fact they may be considered as the main causes of sudden failure.

The question of fail to safety or to danger is also relevant. Any of these incidents is a failure.

.In the present work the only practical definition and one which has been used is that the instrument is not working to the process operator's satisfaction.

3.5. Organisation of Survey

The survey was carried out in three large chemical works, referred to as A, B, C for security purposes. Works A is a large works producing a wide range of heavy organic chemicals. Works B makes heavy inorganic chemicals and consists of an acid, a sintering, a furnace and a water treatment plant. Works C is a glass works divided into two plants.

The instrumentation in Works A is pneumatic except on one plant, on which electronic instruments are used. Two of the four plants in Works B are computer controlled and electronic instruments are used on all plants. In Works C both pneumatic and electronic instruments are used.

At all three works preventive maintenance is carried out as well as repair of failed equipment. At Works A preventive maintenance comprises three quarters of the work. There are periodic plant shut downs at all three works, the intervals were between six months and two years at Works A and a year at Works B and C, with lesser shutdowns fortnightly at Works B.

The organisation of and information available about the instrument repair were slightly different at each works. At all three works there was a full system of records, so that it was possible to determine how many of each type of instrument were at risk during the survey period, but the information on failures was more variable. At Works A the job sheets gave information on the plant and on the type of instrument which had failed, but unfortunately in the case of measuring instruments it was sometimes possible to determine accurately only the general class of measurement (e.g. flow) and not the specific type of measurement tranducer (e.g. differential pressure transmitter). In every other respect, however, the quality of information available from these job sheets was high. This works has yielded not only the greatest quality of crude failure data, but also the detailed information given later on failure in

particular equipment such as control valves and impulse lines and on the effect of different environments.

At Works B the job sheets gave information on the plant and on the type of instrument, including measuring instruments, on which failure occurred. The information available on the sheet in this case, however, was limited to the fact that there has been a failure.

At Works C the information given by the job sheets was similar to that at Works B, but the quality of the information was not quite so good, so that rather a large proportion of faults were attributable only to a control loop in general and not to any particular element in it.

The number of instruments included in the survey and the period of the survey at each works are as follows:

<u>Works</u>	No. of Instruments	Period of Survey
A	7998	October 1 1968 - April 11 1969 = 0.477 yr.
в	951	October 6 1969 - March 23 1970 = 0.398 yr.
С	443	July 1 1968 - May 13 1969 = 0.858 yr.
		March 2 1969 - August 15 1969 = 0.458 yr.

The survey covers a different period in the two plants in Works C.

3.6. Statistical Basis of Survey

The statistical basis of the survey is important for the analysis and meaningful interpretation of the data obtained. The statistical basis of the analysis of the data obtained here derives from reliability theory considerations.

When an equipment is first put into use any inherently weak parts usually fail fairly soon. The early failure rate may, therefore, be relatively high, but falls as the weak parts are replaced. The inherently weak parts may be because the instrument is not standard, has not been

fully tested or has been incorrectly installed. There is then a period during which the failure rate is lower and fairly constant, and finally the failure rate rises again as parts start to wear out. This is illustrated in Fig. 3.1., where the high rate of initial failures can be seen. Although the steady rate is often shown as a straight line, in practice it will be wavy and in good (reliable) equipment it may be a long time before the wearout period is reached. The part of main interest is the constant failure rate period. The three parts may be defined as follows: early failure period, when the failure rate is decreasing rapidly as when the equipment is being run in and the failure rate is initially high but declining; the constant failure rate period during which the failure occurs at an approximately uniform rate as when the equipment is operating normally and failure rate is low and fairly constant; the wearout failure period during which the failure rate is rapidly increasing due to determination processes as when the equipment is wearing out and failure rate is high and rising.

The data obtained in this survey is assumed to correspond to the constant or chance failure rate period. Since the survey was carried out for a fixed time interval during which failed instruments were repaired or replaced, the data can be treated as data from a fixed-time test with replacement of failed items.

If the failure rates measured are significantly affected by either infant mortality or wearout, the assumption of chance failure would not be strictly valid. The instruments considered here are all standard types and are quite exhaustively tested in the works prior to installation. Added to the fact that almost all the instruments had been operating for at least a year, it is believed that infant mortality is not a significant factor. However, the possibility of an effect due to wearout is perhaps rather greater. In Works A there was a wide spread in the age of the

1 -

1

Fig. 3.1 Bath tub curve

. 47

ς.

instruments, some being about 15 years old, while in Works B and C very few instruments were more than 5 years old. The data obtained may, therefore include some wearout failures. The relevance of this would depend on the use to which the data are to be put, for instance, if it is desired to obtain data on the actual failure rates of instruments in a given works with a given maintenance policy, then the inclusion of some wearout failures is presumably not serious.

The data on instrument failure rates were obtained by determining the number of each type of instrument at risk and recording the number of failures over a fixed interval.

When the number of instruments at risk and the number of failures recorded is small, there is a degree of uncertainty about the failure rate calculated from the data, so that it is necessary to assign confidence limits to it. Graphs and formulae for the calculation of the confidence limits for the constant failure rate period are given in the literature (65, 66).

Most of the data obtained are presented even though the number of instruments at risk or the number of failures recorded is small. In most such cases the type of instrument involved is such that other works are not likely to have many either. The main hope of obtaining data for such instruments is in the publication of data by a number of firms.

The data are presented as annual failure rates. At Works A the job sheets usually gave enough information to classify a fault as a definite failure or as an incident. Thus a failure was recorded if the process operator stated that the instrument had failed, regardless of whether the instrument fitter found a failure, unless the fitter showed positively that the instrument had not failed and that the matter could be explained in some other way. A failure was also recorded if the operator was uncertain, but the fitter found a failure. All other cases were recorded as incidents. In particular, cases were recorded as incidents where the

operator required a check, but the fitter found no failure. In cases where a calibration was requested small errors were recorded as incidents, and large errors as failures. The definition of a large error was taken arbitrarily as 2% full scale or 2° C or 0.1 pH. On this basis 77% of the faults at this works were definite failures and 23% were incidents. At Works B and C it was not possible to distinguish from the job sheets between incidents and failures. The data given here are, therefore, simply in terms of total faults.

When some failures records indicated that an instrument was exhibiting a repeated or intermittent fault over a short period, such cases have been counted as a single failure.

In analysing faults on those plants in works where there is an online computer care has been taken as far as possible to avoid assigning to the instruments faults which are properly those of the computer.

3.7. Failure Rate Data

The instruments at risk, the number of faults and the annual failure rates for the three works are given in Tables 3.2.- 3.4. The environment factor quoted is explained in the next section.

As has already been mentioned, there was some difficulty at Works A in determining from the job sheets the type of measurement transducer involved in failures of flow, level and temperature measurement. For this works, therefore, the overall failure rates for these measurements are quite accurate but those for particular types of tranducer are less so.

In analysing the job sheets it was not always possible to assign the fault to a particular instrument in a control loop. In such cases it was necessary initially to assign the fault to the loop as a whole. The proportion of cases of this type was low in Works A, rather higher in Works B and higher still in Works C. These are the faults listed under

'control loop'. These faults were then assigned to the individual elements in the loop by allocating to each element additional faults proportional to those already assinged to it. The original data are given in brackets in the tables and the data after this correction are shown without brackets. The effect of this procedure on the failure rate data obtained is guite small.

In table 3.4. the relationship between the number of instruments at risk, the number of faults and the annual failure rate is complicated by the fact that the survey covers different periods in the two plants. The total number of instrument-years at risk is therefore given in a separate column for each type of instrument.

The temperature measuring elements listed include those on temperature controllers, but not those on the temperature transducers, so that the total number of actual elements is the sum of those quoted as such and of the temperature transducers. In works B and C some temperature measurements, such as those taken inside furnaces or in metal vapour, were not included, but the conditions in which all measurements quoted are taken are still more severe than in Works A. The pyrometer failures recorded in Table 3.4. are not all strictly failures of the measuring instrument itself but include adjustments to the field of view.

Impulse lines on analysers, on pressure and differential pressure transducers and on pressure switches connected to process fluids are listed separately. The lines for differential pressure devices are counted as one item, not two. The purge systems given in Table 3.2. consists of purge lines and small rotameters and are installed on differential pressure transducers measuring liquid flow and level.

The tables show that there are considerable differences in the failure rates obtained for certain types of instrument at the three works.

Most of these differences are explicable in terms of sample size or of environment, which is considered in the next section.

The data for all three works are given in Table 3.5. For most types of instrument the data from Works A, which has much the largest number of instruments, are dominant. This is satisfactory in that this works is probably the most typical of the chemical industry as a whole.

In addition to determining the overall failure rates of the instruments an attempt has been made to obtain data on the nature of the failures in the limited number of cases where this was possible.

In table 3.6. are given data on the failure rates of air supplies, pneumatic and electrical connections. The number of items has been com puter in the following way: The number of air supplies is obtained by assigning one each to control valves, valve positioners, pneumatic controllers or current pressure transducers and pneumatic-output measurement transducers; the number of pneumatic connections by assigning one each to control valves, power cylinders, valve positioners and pneumatic output measurement transducers; and the number of electrical connections by assigning one each to current-pressure transducers, electrical output measurement transducers and temperature measuring elements. These failures are not additional to those given in Tables 3.2 - 3.5.

3.8. Effect of Environment

The method of installation, working environment (corrosion, erosion, vibration) and operating conditions (temperature, pressure) all affect the performance and reliability of an instrument. In a chemical plant, the environment factors are even more important than any other considerations particularly as regards the location of the instrument and whether it is in contact with process materials or not. An instrument may be located in a clean control room or on the plant, where it may be exposed to adverse

conditions of temperature, humidity, corrosion, vibration or dust. In a control room and often on the plant it is in contact with instrument air only, but also, on the plant it is frequently in direct contact with process materials fluids or solids. These materials may be relatively harmless or very aggressive - hot, dirty - reactive, corrosive, erosive or prone to freeze or polymerise.

The environment conditions in the three Works A consists of a number of different plants in some of which the fluids are relatively clean (air, water, steam) and in others dirty or liable to block. The overall environment in this works, as regards instrument location, general plant conditions and types of process material, is considered to be very typical of heavy organic chemical plants. Two sets of data obtained in Works A have, therefore, been used in an attempt to arrive at some quantitative estimate of environment.

Works B is an acid, a sinter, a furnace and a water treatment plant. The environment on the first three of these is bad, owing mainly to acid corrosion, solids handling, high temperatures, so that the overall enviornment in the works is considerably more severe than in Works A. Works C is similar to works B but a large fraction of the instrument nominally mounted on the plant consists of equipment for the control of flow of furnace fuel oil and air which is housed in clean rooms adjacent to the control room.

Table 3.7 shows some common types of instruments, grouped according to whether or not they are in direct contact with process fluids. The failure rates of the first group, which are in direct contact with process fluids, are rather similar and have a calculated weighted average of 1.15 faults/ year, while those of the second group, which are not in direct contact

with process fluids, are again rather similar but have a weighted average of 0.31 faults/year. Control valves and temperature measurements, although in contact with process fluids, were found to have lower failure rates and are listed separately, while analysers are not listed at all. The second group includes instruments which are normally located in a control room and others which are normally located on the plant. The difference in failure rates between the two appears to be rather small. What the table does bring out is the large difference in failure rates between those instruments which are in contact with process fluids and those which are not

Table 3.8 gives data which offer a comparison between two types of instrument on contact with clean and dirty process fluids. This suggests that the failure rate of an instrument in contact with a clean process fluid differs little from that of an instrument which is not in contact at all, but that the failure rate of an instrument in contact with an aggressive process fluid is much higher. It also implies that the failure rate of the first group of instruments in table 3.7 is determined mainly by those in contact with aggressive fluids.

The data given in these two tables suggest that as a first approximation the severity of the environment of an instrument on a chemical plant can be defined in terms of the aggressiveness of any process materials with which it may be in contact and that other factors are of secondary importance.

The effect of environment may be taken into account by assigning to an instrument a basic failure rate which is then multiplied by a suitable environment factor. For a favourable environment this factor is by definition unity, while for an unfavourable one it is greater than unity.

An attempt has been made to define an environment factor for the main classes of instrument covered in the survey. This factor is determined mainly by the estimated degree of aggressiveness of the process fluids with which the instrument is in contact. The maximum value of the factor, based on the data given in Tables 3.7. - 3.8. was found to be about 4. Since the factor is approximate only integer values are used. These environmental factors are given in Tables 3.2 - 3.5.

The conclusion drawn about the conditions which affect the environment factor and the values assigned to this factor are based on quite slender evidence and are necessarily tentative. The justification for attempting to estimate this factor is that to neglect it entirely would be much more misleading.

Some of the instruments, such as controllers, are normally used, both in the works investigated and elsewhere, in control rooms under clean conditions, while others, such as flame failure devices are used in process fluids under severe conditions. For such instruments the crude failure rates quoted in the last columns of Tables 3.2 - 3.5 will not in general need further correction for environment. Such correction is required mainly where a particular type of instrument may be used in very different conditions. The instruments to which this principally applies are control valves and instruments for measuring fluid flow, fluid level, pressure and temperature.

The data obtained appear to suggest that some types of measurement transducer are much more reliable than others. What has actually been measured in the survey, however, is the reliability of instruments in those functions to which they are normally assigned. It does not necessarily follow that an instrument which has a/failure rate would in fact perform more reliably if it were used as an alternative to an instrument with a rather higher failure rate. This point is relevant also to the

definition of the environment factor. The values quoted for this factor are based on estimates of what constitutes a severe environment for a particular instrument. For instance, the measurement of a moderately high temperature may be a relatively favourable environment for a thermocouple but impossible for a mercury - in - steel thermometer.

3.9. Modes of Failure of the Instruments

In addition to reliability information on the failures of the instruments in their working environments, some information was also obtained on the nature of the failures. This information was expected, and obtaining such information was, in fact, one of the main reasons for carrying out the survey. An insight into the modes of failure of the instruments was expected from such information.

The preliminary survey on control valve failure - not reported here for instance, showed about half the valve failures in the works to involve either stickiness of the stem or blockage of the body. The failures of the instruments in this particular works were well documented but unfortunately this cannot be fully reported here. However, typical comments as documented on the cards by the operator, on the failures of control valves and differential pressure transmitters obtained from this works are presented in tables 3.9a and 3.9b.

In the work reported here, some information on the nature of the failures at Works A recorded in Table 3.2 was obtained. Such information would not be obtained from either Works B or C. Of the 359 control valve failures 23 were blockages and 53 leakages; of the 185 variable areanflowmeter failures 45 were blockages; and of the 364 impulse lines failures 194 were blockages and 99 leakages. The remarks on the failure of the instruments could be much clearer and more informative in a lot of cases, however, a study of the log ticket data as they were gave some

insight into the modes of failures of the instruments.

Some more meaningful and relevant comments on log tickets are presented in Tables 3.10 - 3.14. The symptoms or comments' column contains remarks as made by the process operator. When the causes of failure can be reconstructed from the comments, they have been included in the 'causes of failures' column.

Not all the comments obtained have been presented. Only a good cross-section of typical comments, to bring out the various useful information which can be got from them, have been presented. Also the comments quoted have been chosen to bring out how the operator executes the function of malfunction detection.

A study of the comments and an attempt to reconstruct probable behaviour of instrument signal suggests that a majority of the instrument malfunctions could be picked up from the instrument signals. Indeed pin most cases, the process operator seems to have detected the failures or malfunction from unusual signal characteristics. It is true that he has sometimes has to use his human senses of sight, smell and sound to sense trouble but even in these cases, perhaps, the symptoms of trouble could equally have been picked up from variations in the instrument signal characteristics.

A majority of the failures were 'hard - over' failures that could have been picked up earlier with a suitable malfunction detection method.

3.10 Discussion

The data given in Tables 3.2 - 3.4 show appreciable differences in the failure rates of particular types of instrument. These differences may be accounted for in most cases either by differences in the environment or by the smallness of the failure sample.
The control values failure rates at the three works show differences. It is believed that those at Works A are the most typical, as the conditions there are the most typical of a chemical works. The clean environment in which the values in Works C are housed, and the fact that they regulate only fuel oil and air, could account for the low failure rate recorded there. The high failure rate at Works B may reflect the large proportion of butterfly and diaphragm values, the large diameter of some of the pipelines and the presence of hot, dirty gases. The environment factor of 4, which is the maximum used in any of the tables, may be an underestimate of the effect of this environment.

A similar underestimate of the effect of this hot, dusty environment may account for the high failure rates of pressure and temperature measuring devices at Works B. These failure rates are much higher than those at Works A, but failure rates at Works B for flow and level measuring devices are closer to those at Works A. This is reasonable since there is probably a greater similarity between the liquids handled at the two works than between the gases. The failure rate of temperature measuring devices at Works C is also higher than at Works A, doubtless for similar reasons.

The very low failure rates obtained for mercury - in - steel thermometers are interesting, but the failure sample size is small and the data for the failure rates of the individual temperature measuring devices are not very accurate. More data are therefore needed on these instruments.

The failure rates of flame failure devices and pH meters are appreciably higher at Works B than at Works A, but in both cases the instrument sample size is small. The figures appear to reflect a small

number of rather troublesome instruments.

Somewhat similar considerations seem to apply to the high failure rates of the controllers and controller setting at Works B. These instruments are mostly working in conjunction with a control computer and are on rather critical loops, so that the criteria of failure are probably more stringent.

For Works C the failure rate of the impulse lines is low but that of the flow measurement transducers is high, which suggests that possibly some of the faults in the former have been recorded as faults in the latter.

The confidence limits for the failure rate data are not quoted in the tables. It is considered that in view of the importance of the environmental effect and, for some instruments, the smallness of sample of instruments at risk, the quotation of these limits might indicate a presumption of accuracy which would be spurious. The data required for the calculation of the limits are, however, given in the table.

No distinction has so far been made between electronic and pneumatic instruments. The data obtained does not in fact make it possible to distinguish between the two. Any differences appear to be small in comparison with the effect of environment.

Comparing those items which are common to Tables 3.1 - 3.5., it can be seen that the sets of data are reasonably consistent. In the absence of more information on sample size and environment for the data given in Table 3.1. no more detailed comparison can be made.

Instrument	No. at Risk	Environmont Factor	No. of 1	aults	Railt fault	iro Rate ts/yr.
Control valve	1330	, 2 [.]	359 (327)	• •	0.57	(0.51)
Globe (p)	1195	, , , , , , , , , , , , , , , , , , ,	ी ^भ	~ 1 , *	۰,	<u>،</u> ،
Butterfly (p)	105	، ، ، ، ،		, 1 •		•
Diaphragm (p)	30 ്	· · ,			•	•
Valve positioner (p)	320*	· 1	62.	• - •	0.41	- ` •
Solenoid valve	168	`1	24	-	0.30	, ,
Current/pressure transducer	89	2	23	-	0.54	,
Pressure measurement:	193	~ 3	89 (82)	۰ ب ک	0.97	(0.89)
Absolute pressure transducer (p)) 124	••••••	÷., -	``. 	, r	, `` ,
Differential pressure transducer (p & e)	69	· · · · · · · · · · · · · · · · · · ·	·, ·	• • • •	* /	,
Flow measurements (fluids)	1733 •	3	902 (890)	•	1.09	(1.08)
Differential pressure transducers (p & e)	473	3	419 .	•	1.86 [.]	, ' ` ,
Transmitting variable area flowmeter (p)	100	3	· 48	•	, 1.01	, , ,
Indicating variable area flowmeter	857	3	137		` 0.34	, °
Mercury manometer flowmeter	137 ,	, •	, C , , , , , , , , , , , , , , , , , ,	,		~
Turbine steam flowmeter	60 [°]	· · · · · ·		*	ż	٤,
Piston flowmeter	, 61 '	, , , <u>,</u> ,		نی ا		•
Turbine flowmeter	45	•	•	ر * ۱	, ,	,
Level measurements (liquids)	316	4	233 (206)	v	1.55	(1.37)
Differential pressure transducer (p & e)	130	· · · · · · · · · · · · · · · · · · ·	106		1.71	ب ۲
Float-type level	e) _	· ·	. •		•	ر بر ۲

1 11

59

.

Table 3.2. (cont.	inued)	1.		· · · ·
Capacitance-type level transducer	28	4	· - , 3	0.22
Tomporature measurement	2391	3	326 (320)	* 0.29 (0,28)
Thermocouple	<mark>_</mark> 663	· 3	127	0.40
Resistance thermomoter	[~] 441	, 3	68	0.32
Morcury-in steel thermometer	996	2	13	0.027
Temperature transducer	291 .	. 3	118	0.85
Controller	1083	: ` 1	133 (120)	0.26 (0.23)
General purpose (p)	767			', ,
General purpose (e)	81		` ,	, ,
Temperature	235			· .
Pressure switch	519	2.	75	0.30
Flame failure detector	43	[^] 3	28	1.37
Analyser	48		141 .	6.17
pH meter	, 29	· · ·	59	4.27
Gas-liquid chromatograph	3		30	• 20.9
0 ₂ analyser	9	•	30	7.0
CO ₂ analyser	4	t	20 .	10.5
Infra-red liquid analyser	3	-	2	1.40
Impulse lings	842	°. 3	364 (341)	0.91 (0.85)
Pressure transducer	124		·	-
Differential pressure transducer	672 `	•	. •	а 7 • х
Pressure switch	25		ی ۲	
, Analyser	· ` 21		• ~ ~	· · · ·
Purge systems	100	. 4	48	1.00
(Control loop	1083		120 · ·	0.23)
Controller setting	1083	-	66	0.13
* estimated number	•		· · ·	•

•

I

1

x

1

٢

 t^{-1}

Table'3.3.

Instrument Reliability Data for Works B

Instrument	No. a Risk	t Environm Facto	ont No.of Fa	ults Fail , faul	lure Rate ts/yr.
Control valves:	86	4 (78 (72)	2.27	, (2. 10)
Globe (p)	32	, ,	,	۱ م	• ;
Butterfly (p)	· 26 ~	. , 	- , - , -	1 J	۸ ۲
Diaphragm (p)	28	• •	``````````````````````````````````````	, ,	
Power cylinders (p)	່ 83	° 2.	21	.0,64	· •*
Valve positioner (p)	14	2	7	1.25	× 4
Solcnoid valve	84	2	24	. 0.72	•
Current/pressure transducer	ຸ 99 ່	1 .	22	0.56	
Pressure measurement	- 40	4	35 (34)	2.20	(2.14)
(all absolute pressure transducers (e))		•	, °, ,	, , , , , , , , , , , , , , , , , , ,	، د ر ه
Flow measurement (fluids)	, 81	4	54 (53)	1.68	(1.64)
· Differential pressure transducer (e)	35_	4	37	2.66	1 F g 4 s
Magnetic flowmeter	15	4	13	2.18	• ,
Indicating variable area flowmeter	. 31 [`]	4 •	x	, PK	• • • •
Flow measurement (solids)	,	. •	ı •		د و بر ۲
Load-cells	45		67	3.75	• • •
Belt speed measurement & control	`, 19	• • • • •	116	15.3	• •
Level measurement (liquids)	105	4	94 (89)	2.25	(2.12)
Absolute pressure transducer (e)	5	· · · · 4	0	, , 	
Electrical conductivity probes	100	4 4	. 94	2.36	
Level measurement (solids)	11	د ۲۰ ۲۰ می	30	、 1 6,86	
Radioactive gaugé	4	• • • •	,	· • •	u I
Electrical conductivity probes	• 5 ب	•		۱ ۲۰۰۰ ۲۰۰۰ ۴۰۰۰	ه مر ۲۰ مر ۲۰
Mechanical float	× 2	,	s - 1 * , ,		۰ ۱

• • Table 3.3.

.

(continued.)

Instrument	No. at Risk	.E: vironment Factor	No.of Faults	Failure Rato. • Íaults/yr.
Temporature measurement	167	4	· 81 (80)	1.21 (1.20)
Thermocouple	° 88	4	. 47	1.34
Resistance thermometer	38	. 4	24	1.59
Vapour pressure.bulb	27	. 4	4	0.37
Mercury-in-steel thermomoter	5.	2	• •	
Temperature transducer (e) 9	. 4	6 ,	1.67
Controller (e) (all general purpos	21 e)	1.	15 (12)	1.80 (1.43)
Pressure switch	, 30	· 4	12	1.00
Flow switch	·` 9	. •	4	1,12
Speed switch	6	•	0	••• · · ·
Monitor switch	16	• •	0	-
Flame failure detector	2 -	3	8	10.0
Mill Lvolt-current transduce	ə r 12	*	`8 -	1.67
Analyser:	21	· ·	172	20.6
pH meter	5	· · ·	34	17.1
Gas-liquid chromatograph	5	ş	75 ,	37.7
Electrical conductivity meter(for liquids)	` ⁵ .	• • •	33	16.7
Electrical conductivity meter (for water in s	3 solids)	•	17	14.3
Water hardness meter	3	(* }	13	10,9
Impulse lines	112	4	44 (43)	0.98 (0.96)
Absolute and differential pressure transducer	80			
Pressure switch	, 27		•	, t
Analyser :	5		· ·	•
(Control loop	21		18 .	2,16)
Controller setting	· 21		9	1,08

Instrument	No.at Risk	Inst. yr.	Envir- onment factor	No.of faults	Failure rate faults/yr.
Control valves (all Globe)	115	78,6	2	10(5)	0.127(0.064)
Power cylinders	15	6.9	З.	10	1.45
Current/pressure transducer	12	5.5	1	0	-
Flow measurement (fluids)	128	84.6 [.]	2	103(53)	1,22(0.63)
Differential pressure transducer (p)	115				۰ ،
Differential pressure transducer (e)	13				
Temperature measurement:	,		,		, ,
Thermocouple	21	18	4	18 '	1.00
Radiation pyrometer	4 3`	30.9	4	67	2.17
Optical pyrometer	4	3.4	4	33	9.70
Controllers .	88	50.7	1	16(6)	0.32(0.12)
General purpose (p)	76		,	•	
General purpose (e)	12				· ,
Analysers	17	7.8	٣	18	2.31
0 analyser	3	1,38	3	` 5	1.45
H ₂ analyser	11	5.04	Ł	5)	0,99
H O analyser (for gas)	3	1,38	3	11	\$. 00
Impulse line	145	92.4	2	8(0)	0.08(-)
Differential pressure transducer	128				
Analysers	17				
(Control loops	127			73	0.87)
Controller setting	127	84.2		9	0,11

Table 3.4. Instrument Reliability Data for Works C

Table 3.5.

Instrument Reliability Data for All Works

Instrument	No. at Risk	Instrument- Years	Environmont Factor	No. of Faults	Failurc Rate faults/year.
Control valve	1531	747	` 2	447 ·	0:60
Power cylinder	98	39 . 9	· 2 ·	31.	, 0,78
Valve positioner	. 334	158 '	1	· 69 .	0.44
Solenoid valve	252	113	1	48	0,42
Current/pressure t±ansducer	, 200 ·	. 87.3	. 1	43 .	0.49 ' ·
Pressure measurement	, 233	87.9	- 3	·124	1.41
Flow measurement (fluids)	1942	• 943	3	1069	1,14
Differential pressure trans-	636 .	324	΄ 3	559	1.73
ducer	•	•		• ،	ني . د ، د
Transmitting variable area flowmeter	100	47.7 · · · · · · · · ·	3	48 .	1.01
Indicating variable area flowmeter	857	409	3	137	0.34
Magnetic flowmeter	15	-5.98	- 4	13	· · 2.18
Flow measurement (solids)	- -			• •	* ;; ; !
Load cell	45	17.9	~	67	3.75
Belt speed measure- <pre> ment & control</pre>	• 19 • .	7.58		116	15.3
Level measurement (liquids)	421 ,	193	4	. 327 .	1.70
Differential pressure transducer	130	. 62	4 /	106	1.71
Float-type level transducer	158	. • 75.3	. 4	124	1.64
Capacitance-type level transduce	28 . r	13.4	4	3 ·	0.22
Electrical conducti	vity	20 O	4	, , , , , , , , , , , , , , , , , , ,	.
Level measurement (solids)	_11	4.38	• 6 <u>4</u> }	30 30	2,36 6,86

64'

Table 3.5.	(cor	tinued)	• • • • •	,	ر ۱
Instrument	No. at Risk	Instrument Years	'Environment Factor	•No. of Faults	Failure Rate
Tempcrature measure- ment (excluding	2579	1225	·. 3	425	0.35
Thermocouple	772	· ` 369	· · · ·	101	
Resistance thermometer	479	227	3	, 92	0.52
Mercury-in-steel thermometer	1001	477	2	13	0.027
Vapour pressure bulb	27	10.7	• 4 •	4	0.37
Temperature transc	lucer 300 (142	3	124	0.88
Radiation pyrometer	43	30 . 9	4	67	2.17
Optical pyrometer	4	3.4	4	33	9.70
Controller	1192	575	. 1	164	0.29
Pressure switch	549 ,	259	2	87	0.34
Flow switch	9 ′	3. 59 ·	• • •	4	1,12
Speed switch	, 6 ,	2.39	۔ د مع	10,	• ••
Monitor switch	16 ·	6.38		: 0	· - ·
Flame failure) ^{detector}	* 45 · ,	21.3	3	, 36	1.69
kkkivolt-current transducer	, 12 -	4.78		8	1.67
Analyser	86	.39.0		331 ,	8.49
pH meter	34	15.8	· · · ·	93	5,88
Gas-liquid	•	ند م ا	,	ء ج	- • •
chromatograph 4	8	3.43	• • • •	, 1 05 ,	30,6
02 analyser	12	5.67	· , - , ·	. 32 - '	5.65
CO ₂ analyser	4	1.90	• • • •	20	10,5
H ₂ analyser	11	5.04	• •	5 、	ö. 99
H ₂ 0 analyser (in gases)	. 3	, 1,38 ,	α ■	11	8.00
•	•	5 1 N	5 T 5	\$	د بار د سر چ

י, ב

- 、

٠

بر ج

1,

*

÷

.

65

		•
Table	3.5.	(continued)

Instrument	No. at Risk	, Instrument Years	Environment Factor	No. of Faults	Fallure Rate faults/year.
Infra-red liquid		•	• ,		÷
analyser	3	1.43	- '	· 2	1.40'
Electrical conduc	:t-	~	L		
lvity meter (fo	r .	,	•		
liquids)	5	1.99	, 	33	16,70
Electrical conduc	t-		•)	
ivity meter (fo	r	2	•		· · · ·
water in solids),3	1.20	-	, 17	14.2
Wator hardness me	ter 3	1.20	, -	13	10.9
<pre>> Tmpulse lines</pre>	1099	539	· .	416	0.77
	,		, , , , , ,	410	0.11
Controller settings	1231	609	, , .	84	0.14
•, •			ч ч т		· · · · · ·
ι,		* •	ند م و	,	
		•	*	<i>;</i> *	

66

.

. Table 3.6.

Reliability of Air Supply and of Pneumatic and Electrical Connections

•	No. at Risk	'No. of Faults	Failuro Rate faults/yoar.
Air supply : All works	2651	62	0.048
Works A	2335	51	· 0.046
В	113	5	0.11
C	203	6	Ø:046
Pneumatic connections : All works	3137	20	0.013 .
Works A .	2809	19	0.014
• B	183	1	0.014
• C	145 :	0	- ·
Electrical connections : All works	1680	. 23	0.03
Works A	1329	15	0.024
В	326	8	0.062
C	25	0	 , , ,

Effect of Environment on Reliability ; Instruments in Table 3.7. Contact with and not in Contact with Process Fluids at Works A. No. at Risk No. of Failure Rate Faults faults/year. Instruments in contact with process fluids : 2285 · 1252 1.15 Pressure measurement 193 89 0.97 Level measurement 316 233 1.55 Flow measuremont 1733 902 1.09 Flame failure devicc* 43 28 1.37 Instruments not in contact with process fluids; 2179 317 0.31 Valve positioner 320 62 0.41 Solenoid valve: 168 24 0.30

89

23

0.54

0.26

0.30

0.57

0.29

Current-pressure transducer

3

Controller1083133Pressure switch51975Control valve1330359Temperature measurement2391326

Table 3.8.	Effect	\mathbf{of}	Environment	on	Reliability	:	Instruments	
					۲			

,**,** , ,

' in Contact with Clean and Dirty Fluids at Works A

	Instrument	,	No.	at Risk	No. of Faults	Failuro Rate faults/year.
Control	valve:		۲ ج ن م	· · · ·		·
Clean	fluids	• * *	•	214	, 17	0.17
• Dirty	fluids	• • • •	f 3	. 167 :	,71	, 0.89
Differen	tial pressure	transmitter:	. 14	•	•	> 1 •
Clean	fluids	۰ ۸,	· · ·	27	5.	0.39
Dirty	fluids /	· · ·		90 ,	82	1.91

Table 3.9a Control Valves

•

.

-70 --

Types of Failure	Symptoms	Causes
l Fault, in gland	Venting to atmosphere, when valve should have been in closed posit- ion, other valves off same feed to head O.K.	Spindle seized in gland. P.T.F.E. chewron rings too tight in gland casing
2 Seat failure	Waste brine leaking up through valve spindle	Chemical attack on diaphragm
3 Body failure - blocking	20 psi output from MOD 40 cont- roller and high level in caustic stock tanks	2 inch nail and metal bits blocking valve plug, in body
4 Blocking	No flow	Dirty material caused blockage in valve
5 Seat failure	Passing when valve is closed	Plug and seat to be ground in and valve adjusted
6 Seat and Body failures	Bad leaks on body joint	Seat joint was found to be fractured
7 Relay Body failures	Bad leak from body joint and slow action .	Vibration and hydraulic hammering
8 Body failure	Bad leaks about the body	Internal corrosion
9 Blocking	No flow	Solid material in body of valve
10 -	Valve would not close	Large piece of PTFE wedged under seat of control valve

٠

5

•

-

Table 3.9a. Control Valves (Continued)

ll Failure of spindle		Restricted movement of spindle	Bottom guide had seized to spindle
12 Seat failure	•	Suspected blockage	Lock nut found loose in lower half of spindle

٠

-14

<u>mehlo 3.9b.</u> Differential Pressure Transmitters

.

Types of Failures	Symptoms	Causes
Impulse lines .	Fluctuating output	Leaking gland on equalising manifold
Diaphragm	None	Diaphragm found to be holed
Body	Incorrect readings	Bad leaks on body joints and manifold
Bellows	Sticktion on calibration	Deposit in High Pressure and low pressure chambers
Flapper/nozzle	Giving a low reading	Flapper and nozzle badly
Bellows	Continuous full output	Bellows unit and casting distorted
Flapper/nozzle	Reading fluctuating badly	Badly fitted nozzle

٠

.

-

,

.

Table 3.10 Control Valves

Symptoms or Comments

- 1 Not working properly
- 2 Valves failed to open
- 3 Gland leaking
- 4 Pressure connection line broken
- 5 Valve not shutting off
- 6 Valve leaking
- 7 Valve not opening at low flow
- 8 Valve passing when closed
- 9 Steam leak
- 10 Flow not zero with valve shut
- 11 Valve would not reset
- 12 Valve sticking
- 13 Cooling valve failure
- 14 Heating valve failed to open
- 15 No response on control valve damper
- 16 Stuffing box blowing
- 17 Control valve stem twisted
- 18 Operation at low level very faulty
- 19 Bottom body joint blowing
- 20 Not working, remains shut
- 21 Control value $\frac{1}{4}$ open with full controller output
- 22 Bonnet seems disconnected from valve

23 Instrument blocked

24 False reading

25 Hunting

Causes of failure

packing

packing

valve passing

sticking

shakle pin out of piston

bye pass open

locking nut adrift

sticking

<u>Tal</u>	ble 3.10 Control Valves (Continued)	x
26	Valve free but does not move in auto or manual .	* . sticking
27	Valve will not open	
28	Unable to control temperature	4
29	Not operating on full stroke	bent trim
30	Not working	blocked
31	Valve jammed	valve seat blocked
32	Passing steam when shut	broken stem and plug
33	Valve connecting link loose	
34	Output from controller rising jumpily	valve sticking
35	Not reading correct	valves seized solid and stem bent
36	Not controlling well, not steady in manual	· .
37	25% open when should be closed	·
38	Unsteady in auto, O.K. in manual	valve sticking
39	Valve will not seat	•
40	Valve stuck open	
41	Control valve stem twisted	<i>.</i>
42	Level higher than indicated in recorder	
43	Valves blocked	- '
44	Not working properly	valve alright but no flow in process line
45	Control valve not opening	·
46	Not working	blocked

Table 3.11 Valve Positioners

Symptoms or Comments

- 1 Valve open with controller shut
- 2 Valve sluggish
- 3 Control loop not working
- 4 Valve not opening
- 5 Valve not venting when open
- 6 Flow swinging
- 7 Hunting
- 8 Air leaking in valve positioner
- 9 Raise level keeps hunting
- 10 Valve slow on auto
- 11 Valve not closing
- 12 Cycling
- 13 Flow unsteady
- 14 Arm adrift
- 15 Valve not operating properly
 - 16 Not working on auto
 - 17 Seized up
 - 18 Suspect control
 - 19 Sticking

<u>Causes of Failure</u>

valve positioner arm loose

valve positioner out of alignment

valve activator flapper bent and restriction blocked

valve positioner out of alignment

valve positioner misaligned

relay gasket

valve positioner output . gauge

outlet valve positioner screws in valve positioner case tight

fault in valve positioner, baffle adjusting arm loose, relay damaged, trim capillary loose

valve positioner out of alignment

valve positioner faulty

gland follower rubbing on trim

Table 3.11 Valve Positioners (Continued)

20	Not controlling valve, manual or auto		valve	positioner	1005	se
21	Valve positioner out of alignment	1	2		٠	
22	Air output falls out on 'seal'		valve	positioner	rela	iy
23	Flow fluctuating					-
24	Valve not controlling level	, ,	valve	positioner	out	of

76

25 Check valve valve positioner out of calibration

valve positioner yoke corroded by acid and loose

Table 3.12 Impulse Line failures

Symptoms or Comments

- 1 Reading unsteady
- 2 No reading
- 3 Faulty reading
- 4 Gland leaking (
- 5 Transmission gives no output
- Reading zero 6
- 7 Reading sluggish
- 8 Valve not opening
- , 9 Boiler flow reading with boiler off
- 10 False reading
- 11 Clear rotameter
- Level indicators not working 12
- 13 Steam flow reading low
- 14 Coolant condenser level not recording
- 15 CO, analyser not reading
- 16 D/P transmitter not working
- 17 Level controller faulty
- 18 Water'meter flase reading
- 19 Vapour flow not recurring
- Electro flow D/P transmitter no output 20
- 21 Boiler steam meter reading high
- Faulty transmission in steam blow off 22
- Flow recorder reading low and unsteady '. lines blocked 23

Cause of Failure leak in impulse line impulse line blocked impulse line blocked

orifice blocked

blockage

blockage

impulse lines blocked

bad leak

'impulse line frozen

high pressure leg partly blocked

high pressure line blocked blockage in low pressure leg impulse line leaking impulse lines blocked impulse lines partly blocked lines blocked lines blocked orifice blocked system water-logged low pressure line blocked blockage and leaks

Table	3.12	Impulse	Line	Failures	(Continued)

``		,
24	Vaporiser - false recording	line full of acid
25	Flow indicator reading high	lines blocked
26	Steam flowmeter false reading	lines leaking
27	Erratic readings of flow recorder '	lines blocked
28	Flow stream.appears stuck	line iced up
29	No recording on steam absorber	_ lines iced up.
30	Control sluggish	leg blocked
31	Acetone peak high	sample line blocked
32	Reading dropped	lines frozen
33	Reading low	lines frozen
34	Steam input meter not moving	lines blocked
35	Circulation transmitter no reading	high pressure side leaking badly
36	Transmission faulty	ч Э
37	Control faulty	
38	Suspect	• blocked legs
3 9 -	Check	dirt in legs
40	Cock broken	۰. ۱
41	Tapping leaking	
42	Tower 3 circulation flowmeter not	blockage
43	Indicator shut off	leak in pipe union
44	Boiler steam flowmeter reading	blocked impulse lines
45	Level recorder reading high	impulse line blocked
46	Air flow reading zero	blockage
47 -	Steam balance indicates there should be	partial blockage

,	1		
· ·	I		· · · ·
	Tab	ole 3.12 Impulse Line Failures (Continue	d)
1	48	Export of steam	· · · · · · · · · · · · · · · · · · ·
·	49	Boiler CO ₂ meter not reading	blockage
	50	Clear rotameter	H.P. leg partly blocked
,	51	Feed to distillation faulty reading	leaking at all joints in impulse lines
, , ,	52	Treated water flow transmitter -	· · · · ·
•	53	Product flow no reading	H.P. line blocked
ا د	54	Meter reading low	much dirt in lines
, ,	55	Steam meter still working but no steam in main	air trapped in impulse lines
*	56	Steam meter still reading with no steam flow	klinger corks leaking
	57	H ₂ S meter sluggish	line blocked
	58	Boiler CO meter	tapping point blocked
111	59 ່	Erratic	lines blocked
	60	Meter, process stream changes but not recorded	much dirt in lines
1	61	Air in impulse legs cause trouble	, ' , '
	62	Reading 2,400 lb with line isolated	lines blocked

¢ , , , ,

ŧ

-		
Tab	le 3.13 Transmitter Failures	۰ ۱
٢	Symptoms or Comments	Cause of Failure
, 1	Level controller fluctuating	leak in impulse line transmission
2	Faulty reading in flow D/P transmitter	zero error 3%
3	Flow transmitter reading suspect	relay sticking
4	Alarm did not go when decounter	large zero error
5	Filled in level transmitter	•
6	Flow transmitter reading not consistent	large zero error
7	With valve position	
8	Flowmeter not reading zero	zero error
9	No reading from flow transmitter	restrictor blocked
10	Valve seemed to have reversed its action	transmission line frozen
11	Flow suddenly gave low reading	
12	Pressure transmitter alarm did not	pressure transmitter
13	Activate when down to 40 psi g	3 psi low
14	Pressure transmitter and gauge disagree	· · · · · · · · · · · · · · · · · · ·
,15	Flow transmitter reading suspect	equalising valve not quite shut
16	Controller output not changing value	۰ ۲
17	Flow controller no reading	7 V
18	Flow transmitter/rotameter	bobbin sticking
19	Flow transmitter zero error	
20	Flow meter faulty	top set of members now jammed
21	Level	purge line blocked
22	Flow transmitter differs from local	, • · · · · · · · · · · · · · · · · · ·
23	Measurement	х ,
24	No reading	
25 ·	Level transmitter reading 16" higher	water purge off

.

ן גי ז * †

ł

Table 3.13	Transmitter	Failuree	1 Chamber with 12
		rartures	(Continued)

26	than dip	
. 27	Flow transmitter water in air system ,	
28	Level transmitter reading constant	
29	Flowmeter sticking drive wheel loose	
30	Meter found not working	
31	Valve does not respond to low level in boiler	
32	Feed and air flow transmitter frozen	
33	Flow cycling in check	
34	Flow transmitter not consistent with level measured	
35	Level control erratic	
36	Flow valve cycling	
37	Flow transmitter will not indicate above 9 on scale	
38	Level transmitter does not read above 82°C	
39	Integrator fully at high constant rates	, ,
40	Flow transmitter reading when valve shut chamber filled with oil	_
41	Flow transmitter shut down but still reading flow not zeroing	
42	Level transmitter reading 8 when level zero	,
43	Integrator rate does not compare with evaporator rate	,
44	Flow will not register above 6	1
	Pressure Transmitter Failures	
45	pressure connections air line broken	•
46	pressure switch intermittent fault	

Table 3.13 Transmitter Failures (Continued)

47	Pressure control sluggish	perhaps valve bloçkage
48	No reading	blocked relay
49	Pressure switch, intermittent alarms	zero error
50	Blowing pressure with no pressure in line	line was still under pressure (process)
51	Pressure switch faulty	water in the switch body
52	Transmitter and guage disagree	
53	Pressure switch coming on late	
54	Will not follow load changes	n
55	Pressure switch	sticking
56	Reading low	pressure switch corrections in wrong terminals

Table	3.14	Thermocouple	Failures

à

Symptoms or Comments

- 1 Suspect reading
- 2 Faulty reading
- 3 Suspect reading
- 4 Temperature sluggish
- 5 Reading walking all over
- 6 Suspect reading low
- 7 Leaking thermocouple pocket
- 8 Reading 800⁺ at all levels
- 9 Excessive difference in readings between points
- 10 Went to 800⁺
- 11 Faulty reading
- 12 Temp pocket
- 13 Unsteady and low
- 14 Loose connection
- 15 Difference of 10°C between points
- 16 Pocket leaking
- 17 No reading
- 18 Reading 7^oC low
- 19 Thermocouple No. 2 low No. 3 high

83

- 20 Suspect reading low
- 21 Check calibration
- 22 Temperature hunting

Cause of Failure

loose connection in thermocouple head

open circuit in compensating cable

water in thermocouple head

loose connection in thermocouple head

contact with surface

leak in pocket

4. IMPROVEMENT OF RELIABILITY OF PLANT AND CONTROL SYSTEMS

IMPROVEMENT OF RELIABILITY OF PLANT AND CONTROL SYSTEMS

4.1 Introduction

4.0

Reliability is a universal subject, which embraces all fields and technical engineering specialities. The discipline has had broad and profound impact on some industries, such as, the electronics and subsequent military and aerospace industries where it has been successfully applied. Already, a solid foundation for the subject has been laid by these applications. The necessary probability - theory - based structure for its application in other industries has also been provided by these applications

The idea and techniques of malfunction detection developed and discussed in this project have very wide implications for reliability engineering and more especially to its application to the process plant industry. It is mainly these implications that will be discussed in this chapter.

The object here is plant and control systems which are reliable and maintainable. This involves also both initial design for reliability and maintainability, and the use of the computer to improve reliability and maintainability

The primary concern here is with whole systems rather than with very high reliability safety systems even though mention is also made of this.

4.2. <u>Reliability engineering technique application to the</u> process plant industry

'Reliability' means different things in the many differing operational requirements and varying environments. A generally accepted definition of reliability is (67), "Reliability - the characteristic of an item expressed by the probability that it will perform a required function under stated conditions for a stated period of time."

The principles are described in a number of textbooks (69-87). A number of examples of the use of probabilistic methods in general and of the techniques of reliability engineering in particular are well illustrated in references (88-93).

Recently, Pan (94) reviewed the application of reliability engineering to the chemical plant industry. He showed how reliability techniques can be applied in the design, construction, operation, and maintenance of process plants; and what can be done to increase the reliability of existing units. Of particular interest and relevance in his work are the presentation of a statistical method suited for analyzing field failure data for process equipment, and his discussion of maintainability and designing for plant availability. However, his review was primarily concerned with whole equipments in the refinery and petrochemical industries especially.

The basic ideas of reliability engineering and examples of how these techniques can be applied in process

design have recently been presented (95).

The need to combat unreliability of equipment is also a maintenance problem. Maintenance and replacement policies have been extensively studied (93,96-98) aiming either at minimising maintenance costs or maximising availability on on-stream time of the equipment or plant, or at optimising both of them. The subject of reliability and maintenance in process plants has been a topic for a recent paper by Freshwater et al (99).

The absence of a data bank adequate for industrial studies has been realised and has been the subject of comment quite recently (100).

The U.K. Atomic Energy Authority, Health and Safety Branch₉offers a reliability engineering consulting service and is also building up a data bank on instrument and equipment reliability. It is the most active group in reliability engineering in this country and has issued a number of papers and reports on basic reliability theory, system design and failure data, particularly, for instrument systems (101, 102).

There is no doubt that the field of reliability engineering is now ripe for full exploitation by the process plant industry. There is plenty of room for the improvement of reliability of plant and control systems starting right from the design stages. The absence of the necessary data to enhance such applications is glaring.

The principles of malfunction detection and its implications for reliability engineering have not been considered so far. Yet, the principles of malfunction

detection can yield the much needed data for the proper application of already existing theory of reliability engineering.

The effective and proper use of certain ideas such as substitute measurements and self organising control system which augur so well for instrument reliability depends very much on instrument malfunction detection.

The principles of malfunction detection therefore are very relevant for the application of reliability engineering techniques to the process plant industry. The implications of malfunction detection for the improvement of reliability of plant and control systems are discussed in the next section 4 3

4.3. Reliability Implications of Malfunction Detection

The implications of malfunction detection considered here are not only for instruments but also for all plant items.

Failures of instruments and key equipments such as pumps, compressors etc , often can be prevented if the early signs of impending breakdown are recognised. The statistical approach to plant reliability usually assumes that an instrument or equipment fails outright and is then replaced or repaired, and on this basis quite high reliabilities can be obtained. Such figures will become meaningless if an instrument has a fault which is allowed to go on undetected for a long period. This type of situation very easily leads to a catastrophic failure

with all the undesirable implications, such as, stoppages, possible accidents, and loss of production. The existence of such a situation falls broadly under conditions of unreliability.

The development of malfunction detection techniques is very necessary for the improvement of plant and control system reliability. The detection of incipient failures can initiate actions that can improve instrument and equipment maintenance, avoid poor control, and avoid catastrophies. Such actions as use of substitute measurements methods by which in the event of failure being detected, alternative approximate estimates of the variables can be made, Actions such as reorganisation of control systems on the event of failure can also be initiated. These actions when built into the system will, no doubt, improve the reliability of the system.

Maintenance, substitute measurements and self-organising ' control loops are dealt with, each separately, later

The routine analysis and possible checks that might be involved are functions which the process control computer can very readily take over, thereby contributing to the improvement of the reliability of the whole system. On-line malfunction detection techniques could, indeed, be considered equivalent to providing a redundant system without incurring any further costs, but purely, by using the capabilities of the computer more fully.

In the case of process instruments it is possible

that an experience in general malfunction criteria as is of interest in the present work, can be further developed to include smaller calibration errors or sluggish, response. This will lead to more reliable and accurate instrumentation, which is important, for full exploitation of on-line computers. At this stage, this might sound a bit ambitious but nevertheless it is realistic.

Taking a reciprocating compressor as an example, the detection of the compressor abnormalities, such as, valve leakage, ring blowby and power loss can be detected analytically (103). Such detection can enable the plant operators to schedule repairs and adjustments, thus preventing unscheduled stoppages, possible accidents and lost production.

A recent paper (104), presents a description of experimental investigations which demonstrate the feasibility of on-line monitoring of process vessels for incipient fatigue damage or stress corrosion damage. The possibility of pressure vessel loss prevention by analysis or scientific study of vibrations in rotating machinery, and acoustic emissions from the shells of pressure vessels, has also been pointed out (105).

Even though effort in this project has been principally devoted to developing malfunction detection techniques for instruments, the examples dited above illustrate the wider applications of the principles. Application of the principles and all that evolve from them, no doubt, will reduce the crucial downtime per failure factor in the reliability of equipments and instrument systems.

Because failure in the proper handling of malfunction can lead to catastrophic conditions such as danger to life and body parts, damage to plant and control equipment or loss in

production, provision for detection of incipient failure and correction of malfunction within a process should of necessity, be made at the design stage.

Separation and allocation of function relevant to process malfunction should be considered very carefully. Each stage in the whole process, from detection to action, should be such that as much versatility in behaviour as possible is allowed for. Such versatility may not be necessary during normal operation but in emergency it could be an important ingredient for success.

4.4 Substitute Measurements

It is desirable that all failures when they occur must either be detected and/or absorbed automatically with an efficiency which ensures that any output disturbance is acceptably low When the failure or incipient failure has been detected, it may be possible, very often, to provide substitute measurements. In this way downtime per failure can be drastically reduced

Substitute measurements will involve calculations of the inferred measurement type for which the computer is very well suited. General heat and mass balance type calculations can provide these substitute measurements (223).

Barton et al (31) reported recently programming a method for obtaining approximate alternative measurement for flow, which is generally applicable where there is a constant pressure drop across the system. In their device, during normal operation, the control valve position is calibrated against flow measurement. A divergence between the flow

measured and that calculated from the calibration was taken to indicate that a measurement failure may have occurred. In this event the valve position can then be used as a temporary measurement while the suspect instrument is investigated.

Taking the case of flow measurement as an illustrative example, substitute measurements can be got from the valve position as above or from differentiation of a head in storage vessel or from pressure drop in a pipe as shown in figs. 4.1(b) to (c). For a system illustrated in fig. 4.1(a) different calibrations 4.1(b), (c) of (a) flow vs valve position

(b) flow vs head

can be readily built up and stored in the computer and if need be, continuously updated. By such a simple provision, in a situation such as in the cement kiln where the most important measurements are flow measurements, a complete shut-down can be avoided in the event of a failure detection. Different processes have different such critical measurements, which can also be provided for in the event of failure of measurement. Combustion gas oxygen, as another example, can be calculated from fuel flow and fan damper position (31).

For a critical temperature measurement, such as an important controlled temperature of a process feed through a heat exchanger, an alternative approximate estimate of the temperature in the event of failure or malfunction of the temperature measuring device can easily be arranged. Consider a system such as is represented by fig. 4.2. If the feed rate is fixed and the feed temperature also, the temperature of the process feed out of the heat exchanger will
be related to the heat flow through the heat exchanger. If the heating medium is steam, this would mean the steam pressure with a simplified arrangement of a fixed feed rate and a fixed feed temperature, The computer could store a calibration of the steam pressure against the heat exchanger outlet feed temperature This arrangement should provide an approximate alternative estimate of the outlet temperature, purely from the steam pressure measurement. For varying conditions, a combination of heat and mass balances can provide an alternative approximate estimate of the temperature in the event of failure of the measuring device.

In the system illustrated in fig. 4.3., the pH in the main line is the controlled variable (215). A chemical solution is added to the flow, the quantity of which must be that required to maintain the pH in the main flow. The amount of chemical solution to be added depends on two factors: (i) the pH of the main line liquid before adding the chemical solution and (ii) the rate of flow in the main line. The pH and rate of flow are measured by separate instruments. If the system is simplified by keeping the flow in the mainline fixed, then the pH measurement will be dependent on the amount of chemical solution added. As the pH of the solution in the tank should be constant, an approximate estimate of the pH measurement can be based on the flow measurement of the added solution. In a general way this is equivalent to obtaining the substitute measurement by a mass balance calculation.

The controlled variable in the above example could have been a concentration measurement. In this case, for a two stream

Fig. 4.1 Substitute measurements for flow

Fig. .2 <u>Substitute measurements for outlet</u> temperature from heat exchanger

Fig. 4.3 Line diagram for H control scheme

່ ທ mixture, the concentration of the mixture will depend on the flows and concentrations of the two streams. A mass balance, with any of the two flows and their concentrations, can yield a substitute measurement for the third. An algorithm to provide these substitute measurements, as an alternative measurement in the event of failure or malfunction of a measuring instrument, can easily be built into the computer.

The specific examples considered above mainly serve to illustrate the ideas of substitute measurements. The provisions for different processes will differ; and will depend on the particular process and its requirements.

The provision of such substitute measurements is, in fact, equivalent to providing, stand-by or redundant systems in the event of failure. This, without incurring any further costs but by exploiting the capabilities of the computer.

Ability to provide such substitute measurements, no doubt, will increase overall plant availability, even in the event of failure of its measuring instruments. These substitute measurements could be quite simple sometimes and this may therefore be a fruitful area to explore further.

4.5. <u>Self organising control systems</u>

The operator normally carries out some reorganisation of control systems in the event of a failure or malfunction detection by him. One of the simple reorganisations of control systems carried out by the operator is when a measurement fails and he puts the loop on manual control. In this way, the failure or malfunction can be coped with on its detection. It is an effective way of coping with a failure without increasing the downtime per failure:

This type of function can be taken over by the computer. To do this, it is desirable that provision be made for the computer to be able to reorganise the control loop or control organisation to cope with a failure in the event of malfunction detection.

Grant (106) has very recently suggested a supervisory programme, one of whose duties is to inhibit control action from incorrect information by closing paths in the redundancy network which include failed equipment, and to divert the information flow through a path which is known to be functioning correctly. This duty may be fairly easily designed into a simple program for the computer equipment and in this way, plant availability can be improved even in the event of instrument or equipment failure.

Barton et al in their report on the operation of a DDC computer on a cement plant (31) indicated that DDC made their implementation of alternative control loop configuration easier.

Reorganisation of alternative control loop configuration . can be to

(i) switch over to single loops or auto-manual

(ii) making or breaking ratio controllers

(iii) making or breaking cascades

(iv) switching over to substitute measurement.algorithm

It is evident that a combination of malfunction detection by computer. with the ability to reorganise the control loop or control organisation to cope with a failure on detection, will improve computer system effectiveness and overall reliability of the whole plant system.

4.6. Design of reliable system

A typical breakdown (94) of difficulties and troubles experienced in most process plant commissioning and normal operation is given below, from various sources (216-218) as

١

Problem Area	Percentage	of Problem
General plant design	10% -	20%
Faulty erection	15% -	20%
Faulty equipment	40% -	75%
Faulty direction of operator and		
Human factor	10% -	30%

The above analysis points at faulty equipment as the major source of troubles.

There is plenty of room for the improvement of the reliability of plant and control systems starting right from the design stages. After the design stage, factors such as installation, operability and maintainability, can affect the reliability of an equipment or system. The factor of maintainability will be discussed separately in the next section.

Systems such as the electrical system, especially the power supply and control system, which are of extreme importance in the smooth and continuous operation of any process plant should be designed with extreme care and for high reliability. Detailed studies of this problem have been done and certain design criteria relating the reliability of such systems to the safe operation of refineries and chemical plants (219-221).

Bodine (222) has suggested the idea of suppliers' systems responsibility approach for achieving integrated reliability in instrumentation and control. Hensley (62) has shown how the performance of emergency shut down systems for process plants can be assessed numerically in relation to the safety and reliability of the plant operations.

Indispensable items in process plant operations, such as compressors, should be chosen very carefully and for reliability.

Simplicity, high component reliability, interchangeability and standardisation, rapid and positive identification of malfunction, minimum maintenance time, operability and other human engineering considerations are some points that should be aimed at and designed for.

Grant (106) in a recent paper suggested how, using standard contemporary equipment, it is possible to design computer control system of high reliability at acceptable cost. He suggested how, still at the design stage, the criticism that savings in plant manning is upset by need for highly skilled computer maintenance mechanics can be countered by the use of replaceable modules. Such replaceable modules which reduce repair to a plug - in replacement carried out by a non-specialist The replaceable modules should be such that they can be taken off or replaced without shutting down the plant; should be such that a test exists which allows the computer to report a fault within a small group of modules which

available either from the stores or the manufacturers, without much time lag from detection of failure.

All that have been discussed in this chapter on instrument malfunction detection and all that can evolve from it ______ instrument reliability data, substitute measurement techniques and so on-have implications for design of reliable systems. If the techniques are available, then it is possible to imagine designing systems so that a much higher degree of availability is achieved. This means building these techniques in, right at the design stage.

Much effectiveness of designing for more reliable computer______instrument system will be lost without consideration of the features of operability and maintainability. Operability here, is used in the common sense of ease and convenience of operation. Neither operability nor maintainability features are usually considered within the scope of reliability. Yet poor operability can lead to equipment failure, and poor maintainability can reduce the time during which an equipment is functioning normally. To be reliable therefore, equipments must be so designed as to minimise the probability of the operator making an error. This brings in ergonomics (the study of man in relation to work or human engineering) considerations.

The more comfortable the operator is, the less likely he is to make mistakes which will introduce an element of unreliability into the equipment he is controlling because, through faulty operation, it may fail to perform its specified function.

Ensuring correct operation involves more than just making

the operator comfortable. Most times, the operator's main responsibility is to assess an equipment's performance through displays such as chart recorders, meters, indicators, and to control it through the movement of knobs, switches and the like. The displays must be so designed that the operator will quickly and accurately understand the information they convey, and the controls must operate in a way which will, as far as possible, ensure that when the operator moves them he will produce the required change in the performance of the equipment. The techniques of malfunction detection can make a considerable contribution in the displays for the operator. This is one of the main ways of using the techniques envisaged, and one which should be brought in right at the design stage.

Therefore, in addition to the reliability of the component and whole system considerations at the design stage, operability considerations are also relevant at this stage to the improvement of the overall plant system reliability.

4.7. Design of Maintainable Systems

Very often, the user is more interested in availability, which is the period during which an equipment is functioning normally, than in reliability. Since no design can be made absolutely reliable, when an equipment or machine fails, as is inevitable sooner or later, it is important that it should be repaired quickly so as to become available for use again in the shortest time possible.

Equipments must therefore have good maintainability, maintainability used here in the sense that it is a measure of the speed with which loss of performance is detected, the fault

located, repairs completed and a check made that the equipment is functioning normally again. Maintainability must be built into the original design since like other reliability factors, attempts to incorporate it as an after thought by modifications to the manufactured equipment, will never produce a satisfactory solution. Features which improve maintainability can often be made part of the original design without a great deal of extra cost.

As a process plant is composed of a wide range of highly engineered, manufactured and technical systems, and components which do not all wear out or require maintenance at the same time, good maintenance strategy is very important for routine maintenance as it is for repair, since maintenance also represents a period of non-availability which must be made as short as possible. In complicated equipments, or where faulty operation may not be immediately obvious, some means must be provided to indicate quickly and clearly that a fault has occured, and the region where it is situated. Early detection of error therefore makes it easier to plan maintenance.

Grant's idea of a system to be modularised for repair by replacement (106) has already been mentioned as one way of cutting down repair time and improving system maintenance. Hoyte (107) has presented a discussion of how regular checks on instrument performance can be planned, based on, and carried out by a simple process - application digital computer, to use manpower very efficiently. The discussion has implications for maintenance. The programs for checking the instruments are

held in the computer, and the process operator initiates a check by keying in an instrument designation. Instrument faults will be reported to the maintenance group on their printer. Their report will contain full results of the instrument check. Previous check results will be stored in the computer, to assist in diagnosing a fault. The storage of check results will provide accurate statistics to the design department on the long-term performance of different instruments, assisting them to select instruments for new plants and providing information for planning an optinum maintenance strategy.

A computer based, 'tight' maintenance system can be built in at the design stage. Such a maintenance system will have advantages of systematic notification, objective trend record and such useful and important information as operator's diagnosis; this can be typed into the computer by the operator.

Malfunction detection techniques are likely to yield more precise reliability data; and the information from reliability data can be used to cure faults and so reduce maintenance and perhaps even more important, can be used to plan maintenance. When based on the computer, malfunction detection techniques will be invaluable for a computer based maintenance system as mentioned above.

4.8. Reporting Failures

No matter how carefully a design has been conceived and manufactured, failures which reduce the reliability are inevitable in particular parts, sooner or later, when the

equipment or system is in use. Accurate reporting of the nature of these failures is invaluable to the designer for making improvements which can increase reliability. This improved reliability may not be produced only in future designs of the same or similar equipments; the failure reports may also be useful for improving the reliability of other equipments or machines which use the same parts In addition, reports will provide the designer with background information which will assist his constant search for improved reliability. Collection of this information is largely routine work for which the computer is very well suited.

Reporting failures in use might well establish the shortcomings in one particular part, and so indicate how a minor and inexpensive modification could produce a substantial improvement in reliability. On the spot failure reporting can often save time and money by avoiding unnecessary laboratory analysis when failures are caused by improper operation or the cause of failure is obvious.

The need for reporting failures and its relevance for improving the reliability of a system is therefore obvious. Failure reporting should not be confined to those defects which actually lead to a breakdown. Incipient failure or unduly rapid deterioration in a part which may be revealed by malfunction detection techniques or normal maintenance is clearly a failure of the part, even though any necessary action may be taken while the equipment or system is still functioning normally and so not have caused a breakdown. The presence of

such situations is obviously a potential cause of equip ment unreliability, and in addition, the need to take corrective or preventive action at relatively frequent intervals increases maintenance time and reduces the equipment availability.

The importance of accuracy and speed of reporting cannot be over emphasised, as wrong information about the nature of the failure may do more harm than good. This means that the nature of the failure must be accurately diagnosed, the part which has failed must be identified, and the information clearly conveyed, making it clear which are facts and which are opinions or deductions about the cause of failure if done by the operator. A failure reporting system based on the computer should be most satisfactory. For this, computer based malfunction detection techniques are invaluable.

4.9. High Integrity Systems

High integrity systems such as those used for safety shut down are outside the scope of this work but even though the main concern in this work has not been with such systems, it is likely that in due course the techniques may make a contribution here also.

5. PRINCIPLES AND TECHNIQUES OF INSTRUMENT MALFUNCTION DETECTION

.

•

•

د

5. PRINCIPLES AND TECHNIQUES OF INSTRUMENT MALFUNCTION DETECTION

5.1. Introduction

With the advancement of modern technology, the growing number of problems whose solutions is demanded of engineering instruments in general and measuring instruments in particular, and the high reliability requirements imposed on acquired information from them, have led both to a greater complication of instruments and to the extensive incorporation of conceptually new elements. These factors tend to lower the reliability of measuring devices. The reliability of a measuring device is interpreted here as its ability to provide dependable information on the measured object under specified operational conditions.

For computer control, without the building of reliable instruments or improvement of the reliability of existing instruments, it would be impossible to solve many of the most important scientific and engineering problems in the further advancement of computer control.

The overwhelming majority of instruments have been manufactured ₉to date, without the provision of quantitative reliability or longevity specifications in the technical documentation. Information on their malfunctioning - mode of failure, exact behaviour when failing or when failed-are hard to come by. Hard to come by also, are works on the techniques of detection of the malfunctioning of the instruments. Yet, the problems of instrument systems cannot hope for an auspicious solution without regard for the particular features associated with the specific characteristics of these very relevant considerations.

At present, the function of malfunction detection is done predominantly by the process plant operator. The operator has to observe a large number of plant variables, watching the instruments in order to

detect any off-normal condition that may develop. Even though the operator performs this task fairly well despite its monotonous and therefore boring nature, the computer has definite advantages over the human operator in this type of routine work. The computer can perform the scanning function tirelessly, imperturbably, and faster. Even though the operator's malfunction detection functions cannot be taken over completely by the computer, as tasks such as detection of small leakages, cracks in valve body etc., have to be detected on the spot during inspection tours of the plant; if the computer can take over the routine part of the interpretation of off-normal signals, then the operator can concentrate on more difficult jobs for which he is better suited.

The Automatic detection of faulty behaviour of its own instruments is an added function which the process control computer can readily perform. The object here will be to detect the error before it is obvious and perhaps disastrous. This will obviously improve the maintenance and reliability of the instruments, more so, as the instrument will be tested in its actual working environment. Even though highly automated or very high integrity systems are not of main interest in this project, the ability of the computer to carry out this function would seem to be an essential requirement in such systems.

When an off-normal condition is detected, the operator normally decides on the probable cause by making some routine checks, in addition to checking relationships with other variables, that may also have become off-normal. If the computer takes over the off-normal detection, it can also handle these routine checks and deduce the most probable cause.

It is thought that any check must be some kind of comparison. There is quite a wide variety of possible comparisons. The checks could be on the equipment or instrument performance or condition. The checks can

be broadly looked at either as passive tests or active tests, even though such a demarcation may not be very sharp sometimes.

Detecting and establishing the cause of an off-normal condition calls for a remedial action decision. More information and intelligence are required for the remedial action decision. More information and intelligence are required for the remedial action than for the interpretation. Because of the complexity and nature of the decisions to be taken the human operator is sometimes superior to the computer. Complete automation of this function is therefore not envisaged in this project but even when the decision has to be taken by the operator the task is expected to be enhanced by displays or computer warnings; all arising from off-normal interpretations by the computer. Some form of interplay between the man and machine and a proper allocation of functions between them in this respect is envisaged.

A set of algorithms of increasing complexity and sophistication would be required for this function.

An approach to the development of some of these algorithms has been two pronged, namely from

- a study of data on instrument failure, covering as wide a range of instruments as could be obtained and
- (ii) looking at available relevant techniques and theories in the literature which can either be directly applied or adapted
 , to this end.

A review and development of these techniques and possible applications of the techniques follows.

5.2. Literature Survey

Experience has shown that a great many instrument failures are caused by periodic variations in their working parameters, until finally

their values exceed the permissible limits. This indicates that failure can result not only from sudden breakdown in the physical properties of an element in an instrument (disconnection, shorting, breakage etc.), but also from gradual variation of the parameters of the instrument elements due to aging and wear. Wear is associated with the partial breakdown of materials (abrasion and change in the geometry of moving parts) with aging and variation of the internal structure of materials (change in the resistance of insulation, embrittlement etc.) (108).

Most electronic objects are characterised by errors due to sudden failures. In well built products of this type, particularly those in which provision has been made for preventive replacement of parts having short service times, gradual failures constitute a negligible fraction (5-10%) of the total error. (109).

The distinction between sudden and gradual failure is an important one, because the nature of thé failure affects the choice of analytical method, the technique of instrument system design, the techniques for detecting and locating failures etc. Another important consideration is the fact that sudden failures are generally explicit (Failure. can be detected as soon as it happens) whereas gradual failures are latent by their very nature. The occurrence of this kind of failure in an instrument usually produces uncorrected error whose magnitude grows larger the greater the time that elapses between its occurrence and its detection. When there is interrelationship between elements (as is of course typical of many instruments) the gradual failure of one of them may not lead to the failure of the total system, but it can change the operating conditions of the other elements and thus change the quantitative reliability characteristics with respect to sudden failure.

At the present time the theory of gradual failures has not been adequately developed. There are a number of factors responsible for this state of affairs. (110) The majority of specialists so far concerned with reliability problems have concentrated their attention on the theory of sudden failure; it is far more complex to organise an ensemble of statistical data on the gradual failures of systems and constituent parts than on sudden failures, thus explaining the almost total lack of such data. The testing of products and components for the investigation of gradual failures is generally a protracted and costly process, it is often very difficult to ascertain the transformation operator (factor) between the input and output parameters of the instrument.

Not much work has been done in the field of instrument or equipment malfunction detection. Some work has been done by Rollins and Martin (111,112) to produce efficient calibration systems. They postulated that the decisions necessary to accomplish calibration can be made effectively when instrument data are interpreted as probabilistic phenomena. With case histories of two instruments, they showed how small samples of data could imply most of the knowledge necessary to manage instrument quality. Overall controls were given to verify the validity of samples of data interpretation. Hoyte (106) has discussed how instrument checks can be carried out by a process control computer. Using specific examples of how the operator carried out some checks, he showed how these checks could be carried out by the computer. He suggested that the specific examples illustrate general methods of using a computer to carry out automatic instruments checks. Doing a cost analysis with a specific example, he showed the feasibility of these checks by computer at justifiable costs. He did not, however, go further than defining the operator's checks logically and showing how these could be carried out in these specific examples by the computer.

Baarth and Maarleveld (7) have discussed the feasibility of including the function of off-normal interpretation by the computer in a d.d.c. project started at Pernis Refinery in 1966. The object of the offnormal interpretation program is to be able to warn the operator that an off-normal condition has arisen in the plant: one or more measured variables have passed beyond their limiting values. Calculated quantities have not been incorporated. Their proposal is based mainly on interrelationships between readings.

The Central Electricity Generating Board requirement for alarm analysis has been detailed and the different methods used have been reviewed by Welbourne (113). The method used at Wylfa is described, covering the different display and printing facilities available from the computer system. Both the alarm and data facilities are described and a brief account of the computer equipment is given, and the methods of alarm detection are described.

Alarms are detected by the data-processing system from the contact scanner inputs and by comparison of analogue scanner inputs; and by simple and calculated levels. The data processing system raises alarms, generated by program, on detection of faulty peripheral devices. Alarm grouping is done by the system programs.

Failure of peripheral devices, when used by the computer, is detected and alarmed. These alarms are, in most cases, fault incidents rather than fault states which persist.

Patterson (114) has described the alarm analysis by digital computer system which has been installed and is now operating at Oldbury power station. In this plant, alarm information is presented to the

operator by cathode ray tube displays. How the predicted alarm fault patterns, on which the analysis is based, were prepared for programming is described and some details of operational experience are also given.

The function of alarm trees (An alarm tree is defined by the Oldbury system, is any pattern of any number of real or derived alarms which can be interconnected in a predefined manner to demonstrate the relationship between cause and effect, and to show paths along which faults may develop from partiuclar causes) was divided into three parts in the way of the three things the analyser can be asked to do in processing a particular fault pattern, as follows:

- (1) to analyse an alarm pattern and produce an analysis of cause and effect.
- (i1) to consider the real alarms that are active, and display deduced alarms whose conditions for initiation are satisfied by these active real alarms
- (i11) to darken any information which is superflous to the operator's requirements for operation of the plant and determination of fault causes.

The primary aim at the Oldbury and Wylfa applications was for an alarm-analysis system to be able to detect the prime cause of any fault and able to display this to the operator with any significant associated alarms.

5.3. Types of Malfunction Detection Techniques

The different types of malfunction detection techniques can be based generally on

- (i) the condition or state of the equipment or instrument
- (ii) the performance of the equipment or instrument.

Two general types of malfunction detection techniques

(1) Active

(11) Passive

can be based on the above classification.

A specific definition here for Active and Passive techniques could run into interpretation problems and therefore will not be attempted.

As a general guide, by active type of malfunction detection, here, is meant the type of check procedure that is carried out either on routine basis or by some sort of initiation on either the equipment or instrument performance or on its condition. A pressure gauge installation for instance may be checked manually or automatically, on routine, for leakages, impulse line blockages or calibration errors. Impulse line may be tested manually by, isolating the line at the main and watching for a fall in the indicated pressure which would indicate a leak whose measure could be got from timing the rate; or by opening valve B see figure 5.1 (106) to change the indicated pressure, closing valve B and opening valve A. A slow rate of pressure rise when timed would indicate a blockage in impulse line.

The condition of a thermocouple can be tested by checking one of the characteristics of the thermocouple wire, say, the resistance. A dose of current can be passed through the wire and the resistance measured and compared with what is expected.

The dynamic response of a value stem to a step change can be used to check for stickiness. All these are examples of active malfunction detection checks. The checks are carried out to probe the condition or performance of the instrument or equipment, to observe any incident failure or failed modes.

On the other hand passive checks may rely on some form of signal analysis or relationship between readings to signify an incident or total failure. The off-normal type interpretations suggested by Baarth and Maarleveld (7) or the alarm analysis type checks at Oldbury and Wylfa (113,114), could fall generally within this category.

It would appear that the main distinguishing factor would be how the check is carried out; so that checks whereby the failures or malfunctions are picked up; can generally be called passive, and checks whereby the failures or malfunctions are picked up by probing, called active.

No attempts will be made to classify the methods of malfunction detection discussed in this chapter as some of the methods could fall into either category depending on how they are used and for what purpose they are used. General basis and methods of malfunction detection only will be discussed.

5.4. Comparison as basis of detection

For measuring instruments, comparison method of malfunction detection includes the comparison between the actual reading and the expected, from considerations of the instruments physical constraints, dynamic response and signal properties, and of other measurement readings, process relationships, and control valve positions. For control valves, they include the comparison of the actual and expected values of the valve positions and of the force needed to position the valve.

Two main features of correct instrument signal which may be chosen for comparison are absolute value and first derivative. All instruments have variation in all their responses which can be classified as:

(1) Random variation (related to the design)

(11) Permissible bias

(iii) Excessive variation

Excessive variation may be variability greater than normal but still random, time dependent variation or drift, or excessive bias.

Distinction between normal variation and excessive variation would be key requirements in detecting instrument malfunctioning. This could be done within the general premises of

- (i) the instrument capability
- (ii) the instrument use tolerance and/or
- (iii) the instrument performance requirement.

The comparison of signals may be

- (a) with expected correct signal
- (b) with correct signal of duplicate instrument
- (c) with correct signal of another instrument (using some simple model).
- (d) with correct control valve position
- (e) with own past signals
- (f) with past signals of other types of instrument (using some complex model or filter).

Simple comparisons of correct signal with expected values include checks on zero or full-scale deflection, or excessively rapid rate of change.

Proof-testing, in which once again there is an expected response, also comes in this category of comparison.

5.5. Detection by the Operator

The operator uses many of the methods just mentioned with the exception of (f). The survey on failure of instruments carried out in industry and reported in Chapter 3 indicates that sometimes the

Fig. 5 <u>Typical instrument signals</u>

٦

(d) Cycling Signal

(e) <u>Excessively noisy signal</u>

(f) Drifting signal

Fig. 5 contd.

Typical Instrument Signals

ł

operator has to use his human senses of sight, smell and sound in addition. Such visual aids as chart recorders are very useful to him in sensing trouble. Displays, therefore, would be an important aspect of any malfunction detection technique that will use the operator

Typical sketches of a recorder chart of normal signal, zero signal, full scale deflection, excessively noisy signal, cyclic signal and a drifting signal are shown fig. 5.0 as typical examples.

The chart recorder represents the common type of visual and normally provided which and the operator in his malfunction detection function. Displays specifically designed to help the operator carry out the malfunction detection part of his job, should greatly enhance this function. It is normally the initiation of departure from some pattern of systems performance which may first give rise to the suspicion that a fault may exist or will shortly exist.

The first step for the effective use of the display method of malfunction detection would be to examine the system for possible parameters, indicative of changing states; which would have significance for fault anticipation or detection. Proper display of such a parameter, to quickly show up any abnormally, should very much enhance the operator's task of interpreting off-normal conditions.

A typical example of displays serving this end is that given by Bowen (115). He uses the effect of changing display parameters to illustrate how almost unnoticeable non-linearities in an abnormal engine gimbal response to a step change, as displayed on a pen recorder, show up clearly and in real-time in the phase plane display. (see Fig. 5.2.).

Figs 5.2. (a) and (c) show the smooth or normal engine gimbal response to step function as displayed on pen recorder and phase plane respectively.

(b) and (d) show the corresponding non-linear or abnormal response. It would be extremely difficult to spot the beginning of the abnormally development before it would reach, probably; a state of malfunction. The almost unnoticeable non-linearities at points labelled (1) and (2) on the pen recording show up clearly in the phase plane display. Bowen also illustrated a method of displaying very large numbers of test data points in a way that facilitates the detection of the locus of a malfunction and the spread of its effect.

Further general illustrative examples of displays to this end are shown in Figs. 5.3. (a) to (d).

Fig 5.3. (a) shows a display of the noise level of a signal with the mean substracted. The average power or standard deviation of the signal could have done as well. With a noisy or rapidly changing signal, where it would be difficult otherwise to sense possibility or actual malfunction, this type of display should greatly enhance the task.

Some deviations from normal₂ of a signal₂ may not show up very well on a single statistical parameter but may on the other hand show up very well in the frequency domain. Frequency analysis based displays such as the line spectrum illustrated in Fig. 5.3 (b) should be most useful.

A powerful display technique which has been developed and is in use in the medical profession is the Wolf's "face" type display (116) shown in Fig 5.3. (c). This makes use of the well known psychological fact that man finds it easier to recognice round shapes like the face and deviations from them. Different critical system parameters which can indicate the behaviour of one system can be displayed in scaled formy as an axis or radius of the circle. Thus if the four main radii, for instance, represent measurements of temperature and pressure, these measurements are represented

Pen recorder displays

Phase plane displays

.

(a) Noise (with mean subtracted)

Fig. 5.3 <u>Displays</u>

in such a way that a circular display is shown. A deviation from normal of any of the parameters, would lead to a distortion of the circular shape and this could very easily be picked up. Thus an initiation or actual failure can easily be seen on such a display.

A simple display such as a graph of some trend log by the computer, such as flow against valve position, for instance, can show up a deviation better. Fig. 5.3. (d).

The power of such display techniques would be in their optimising and efficiently employing the operator's most powerful tools namely, his intelligence and his ability to learn.

The routine task of producing the displays is a task the computer is very well suited to.

5.6. Detection by Computer

Before the machine can be asked to analyse any situation, it must be furnished with some criteria such as algorithms. These could be based within the general premises of checking some critical parameter to see if it is within desired quality level or expected family capability.

It is desirable that general principles of detection methods suitable for the computer should be as economic, general, and robust as possible. In this respect such methods as based on duplicated instruments are not very economic; mass balances are not general; zero scale or full scale deflection methods tend to give false alarms.

Nevertheless all the methods given in section 5.4. (a) to (f) appear applicable in some form.

5.7. Comparison with expected signal

5.7.1. Zero or Full Scale Signal

For a zero signal, there are two types (i) a 'dead' zero and (ii) a 'live' zero. A dead zero, is when there is no output at all and the pen recorder for instance is not moving. A live zero, is when there is an output but

the output is _______hovering around zero. A pen recorder would be moving but around zero. A distinction between the two zero readings is important for diagnosing the fault. A dead zero signal could mean a failure in the electronics of the system whereas a live zero could eliminate this possibility. An algorithm to differentiate between the two will enhance fault diagnosis. Nevertheless, they both could represent malfunction behaviour.

With development to suppress false detection, an algorithm based on zero or full scale signal could probably be a valid check. 'Hardover' checks such as zero or full scale signal, however, have the disadvantages of false alarms and the fact that they very often represent and tend to occur with total failure.

The computer could learn to suppress false detection by observing which detections came up during some specified period. Suppression could be permanent or brought in only during start-up and shut down.

5.7.2. High Rate of Change of Signal

The maximum permissible rate of change can be specified in advance and learnt during specified period of running, thus making this a feasible valid check.

5.7.3. Proof-testing

The criteria of success in a proof test is achievement of an expected response, so that this comes into this category.

The intrinsic characteristics of the process can be used as perturbations. For a batch process with known cycles, for instance, the start of a cycle could be used as a perturbation. If this cycle is a heat cycle, for instance, in the case of a batch polymerisation process, the start of the heat input or the turn off of heat can be used as a perturbation to test the response or behaviour of a temperature measuring device such

as a resistance thermometer. The check procedure can be initiated by the start or finish of the cycle.

Within the general criteria of achievement of an expected response, dynamic tests can be initiated and situations of malfunction can be detected.

5.8. Comparison with Duplicate Instrument

This comparison may be based mainly on the premises of the instrument family capability. In a suspect situation, the reading of the duplicate instrument could be used for a check. The reading of the duplicate instrument could be used to set the limits of the normal instrument family capability. The deviation from the duplicate instrument reading could be one parameter indicative of a normal or off-normal condition.

5.9. Comparison with another Instrument

This comparison may be based on relations specified in advance, for instance, mass balance, or on relations learnt such as some plant pressures and temperatures being related to throughput.

5.10 Comparison with Valve Position

Although this is mainly a means of checking flow meters in situations where valve pressure drop is constant, or else measurable, flowmeters are so common that this is virtually a general technique.

5.11. Comparison with Past Signals

This is a general technique which depends on the fact that instrument and process noises are likely to have different characteristics. In this case a deviation from normal could very easily be detected from a frequency resolution of the signal. This is dealt with in the next chapter.

5.12. Comparison with other Instruments Using Unsteady State Model or Filter

This again is a general technique which depends on the fact that there are necessary relations between process variables. This technique is also dealt with in the next chapter,

5.13. Action taken on Detection

Detection of an off-normal condition should result in action. It can initiate a warning or a display for the operator. If measurement is used in control, either an approximate measurement may be actuated, or control organisation must be changed. These possibilities have already been discussed in Chapter 4. If it is used in some kind of model, some action is again required.

It is also then desirable that full information on the failure should be made available to the maintenance department. An 'alarm tree' type analysis can be triggered off. This offers hope of getting much more precise reliability data, because the computer's reason for declaring a failure will be quite precise.

5.14. Feasible Algorithms based on some Ideas of the Foregoing General Outline

5.14.1. Zero or Full Scale Reading Detection

The lower limit of scale L, the upper limit of scale U, the lower limit margin \$1 and the upper limit margin \$u.can be set as parameters for this algorithm. \$1 and \$u set the dead band. for hovering readings and should ensure that false alarms are not raised in such situations.

A check on the instanteneous measured value M_{k} , with respect to these parameters, can then be made to see either if

$$M_{k} < (L + \delta_{1})$$

or

Satisfaction of either of these conditions could be a suggestion of some spurious or unreliable signal.
In the case of a continuously fluctuating variable, the fluctuation should be within certain limits of tolerance. The upper and lower limits of this band together with the upper and lower margins can be designed as above and the algorithm similarly applied.

Continuous satisfaction of either or both of these above conditions could be a simple indication of trouble.

5.14.2. Large or Sudden and Large Excursion

For signals where the readings should remain reasonably steady within a certain limit, large, or sudden and large excursions, could be an indication of malfunctioning of the instrument. For an algorithm to deal with this type of situation, a running mean value of the signal $(\overline{M_k})$ would be required as well as a stipulation of the excursion limit (e max).

One equation for averaging (smoothing) the current value with the past values, in order to eliminate the effects of noise, is the single-exponential smoothing (17) and is given by

$$\overline{M}_{k} = \propto M_{k} + (1-\alpha) \widetilde{M}_{k-1}$$

where the smoothing constant ∞ , lies in the range $0 \leq \infty \leq 1$. Thus the smoothed value \overline{M}_k is constructed by taking some fraction of the present unsmoothed value and the complementary fraction of the previous smoothed value. A low value of smoothing constant should be used when it is suspected that the signal has large random fluctuations, since the weight placed on the current unsmoothed value will be sufficiently low to smooth out the effects of the fluctuations. On the other hand, an excessively low value of ∞ will also cause the smoothed signal \overline{M}_k to be unrepresentative of the actual signal if a steady real trend is present. Choosing $\infty = 1$ is clearly equivalent to not smoothing. The choice of \propto requires a compromise between noise rejection and speed of signal tracking. The lower the smoothing constant ∞ , the better the noise rejection, but the

slower the smoothed signal compared to the original. Typical values of commonly used in industry, are $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{3}$. This type of smoothing is normally done in d.d.c.

Having calculated the running mean, the excursion e_k can then be calculated as

$$\mathbf{e}_{\mathbf{k}} = \mathbf{M}_{\mathbf{k}} - \mathbf{\overline{M}}_{\mathbf{k}-1}$$

check if

$$e_k > e_{max}$$

where e is the permissible excursion limit as defined.

5.14.3. Large Derivative

Provided the mean does not move too rapidly this is virtually the same as above (5.14.2).

5.14.4. Variation in Variance or Standard Deviation

The variance σ^2 or the second moment about the mean is a measure of the spread of a distribution about the mean which can be defined in the discrete form as

$$\sigma^{2} = \frac{1}{n} \sum_{l=1}^{n} (M_{k} - \overline{M}_{k})^{2}$$

If the fluctuation of the signal tends to be narrow and concentrated about the mean, σ^2 will be small. Conversely if there are large fluctuations of the instantaneous reading far from the mean value, σ^2 will be large.

The standard deviation \overline{O} is simply the square root of the variance.

Therefore the single parameter σ can be used as a measure of the scatter of the instantaneous readings about the mean value over a period of time. Normally, there would be a limit for the fluctuation of the readings about the mean. A rise in level of σ above this limit would indicate unusually large fluctuations. The maximum tolerable value of σ , σ_{max} can be pre-specified.

For a continuously varying signal, a running mean would be preferable to a fixed mean.

Using single, exponential smoothing, a variance estimating algorithm could be as follows

(1) Calculate the running mean \overline{M}_{μ} as

$$\vec{M}_{k} = \alpha M_{k} + (1 - \alpha) \vec{M}_{k-1}$$

(11) Calculate error

$$e_k = M_k - \overline{M}_{k-1}$$

and hence

(111)

or

$$= \frac{\Sigma e \kappa}{n}$$
$$= \sqrt{\sigma^{2}}$$
$$= \frac{1}{\sqrt{n}} \sqrt{(\sum e_{k}^{2})}$$

2

(1v) Check if

σ

σ

$$\sigma > \sigma_{\max}$$

This technique should bring out an excessively noise-free as well as an excessively noisy signal. It has been used in this project for thermocouple signal malfunction detection and for the detection of off-normal conditions from industrial control value data.

6. ON-LINE TIME SERIES ANALYSIS OF INSTRUMENT SIGNALS

- . .

.

.

τ.

6. ON-LINE TIME SERIES ANALYSIS OF INSTRUMENT SIGNALS

6.1. Introduction

By definition, a statistical time series is a signal or function of time, x (t), which exhibits random or fluctuating properties. In most situations the fluctuation x(t) will be a function of time, but in other situations it may be a function of some other physical parameter t, for example, space.

Two simple concepts of time series are the <u>discrete</u> and <u>continuous</u> series as shown in Figs. 6.1. (a) and (b).

<u>Continuous time series</u>: Time series with continuous measurements for instance fluctuating yield from a chemical reactor as measured on a continuous basis by an infra-red sprectrometer:

<u>Discrete time series</u>: Time series for which the values are given only at specific instants of time. One way in which a discrete time series may be obtained is by sampling a continuous time series at equal intervals of time. It may also arise when a physical quantity does not have an instantaneous value but has meaning only when accumulated or integrated over a suitable time interval.

The main characteristics of on-line computer signals are that the signals are discrete and potentially of almost un-limited length; and also they contain both process and measurement noise. Each of these characteristics is important and it is these characteristics that make them amenable to the treatments discussed here.

This is divided into two main areas: various methods of analysis for simple signals and Kalman filters for multiple signals. It is on the former that most work has been done but the potential of the latter is pointed out.

The particular phenomena of interest here is power at particular frequencies. This involves resolving a signal into the frequency domain either by the Fast Fourier transform (FFT) techniques or by the use of digital filtering techniques.

It is expected that the behaviour of the power spectrum at a particular frequency or the power spectra over a range of particular frequencies of a given signal will show up any significant deviation in signal behaviour from normal which might indicate malfunctioning. It might amplify or show up the deviations better than, say, the average power in certain cases.

One such situation and one which has been used as an illustrative example here is the signal from a differential pressure (D/P) transmitter.

Normal and abnormal signals from a D/P transmitter have been subjected to frequency domain analysis using the FFT to calculate an equivalent of the power at particular frequencies. This analysis is not discussed in this chapter but is discussed later.

The necessary theoretical background and possible applications of FFT type analysis and digital filters to instrument malfunction detection are discussed in this chapter.

6.2. Methods of Analysis for Simple Signals

6.2.1. Autocorrelation Function and Power Spectral density function

Among the various statistical parameters associated with random processes, two stand out as being of greatest importance, namely, the power spectral density functions (also simply called power spectra) and correlation functions.

6.2.2. The Autocorrelation Function

If $x_1(t)$ is a time series, the concept of comparison of two signals, applied to the comparison of a signal with itself when shifted by an amount γ , is called the autocorrelation function $Q_{11}(\gamma)$ and is defined as

$$Q_{11}(\tau) = \int_{-\infty}^{\infty} x_1(t) x_1(t-\tau) dt$$
 (6.1.)

$$= \int_{-\infty}^{\infty} x_1(t+\zeta) x_1(t) dt \qquad (6.2.)$$

From equations 6.1. and 6.2. it is obvious that

$$Q_{11}(\gamma) = Q_{11}(-\gamma)$$

Evidently, the autocorrelation function is an even function of γ .

For a given process, there is a unique autocorrelation function but the converse is not true. A given autocorrelation function may correspond to a large number of different processes. This is because an autocorrelation

function is not a complete measure of a random process but is one of the average parameters, and a certain average can correspond to an infinitely large number of situations.

The autocorrelation function, however, is one of the most significant quantities in the spectral analysis of random signals. It is a measure of the rapidity of variation of a given signal.

It has noise minimising properties which are extensively used in the detection of signals in the presence of noise (118,119). Applications have ranged from the detection of periodicities to the reception of weak signals from deep space vehicles.

The autocorrelation function is not of primary interest here but is relevant to one of the methods of estimating the power spectral density function.

6.2.3. The Power Spectral density function

The power spectrum P(f) and autocorrelation $Q(\mathcal{T})$ functions are related according to the Fourier transform relation

$$P(f) = \int_{-\infty}^{\infty} Q(\gamma) \cos 2\pi f \gamma \, d\gamma \qquad (6.3.)$$

and hence knowledge of the autocorrelation function of a process is equivalent to knowledge of the spectrum of the process.

However, in the analysis of a finite length of record, the power spectrum is often preferable to the autocorrelation function. First, estimates of the spectrum at neighbouring frequencies are approximately independent, and hence the interpretation of the sample spectrum is usually easier than that of the sample autocorrelation function. More important, in many physical, problems, the spectrum is of direct interest.

The power spectral density for a process indicates the contribution to mean-squared fluctuation due to signal components in any specified frequency interval.

It is not a complete measure of a signal but is just, an average parameter of the signal. This is because the power density spectrum by definition is a power density averaged over a large time interval T.

6.2.4. <u>Practical Procedures for estimating spectra</u> from observed time series:

The statistical theory of spectral analysis is normally derived assuming the data x(t) are continuous. In many situations, the data are essentially discrete and hence digital formulae are required. The accuracy, flexibility and relative availability of digital computers,today,make them the ready choice for most spectral analysis. The use of computers for spectral analysis implies <u>quantizing</u> (the process of converting from the analog to the digital form) and it will be assumed that the quantizing is fine enough so that no errors are introduced in the conversion from analog to digital form.

In practice, numbers are only represented to some finite degree of precision, due to the finite word length of a computer.

In a digital filter, the effect of numerical error has two main effects:

(i) the finite accuracy with which the coefficients can be specified limits the accuracy with which the frequency response can be defined.

(11) the effect of round-off which is inevitable at each computational stage produces error in the output number sequence. The error can often be regarded as being due to a uniformly distributed random number added to the result of each computation.

In many applications, particularly when a general purpose computer with large word length is used, the effect of quantization error in digital filters is negligible in comparison with the effects involved in analogue/digital conversion.

However, when the signal waveform as such is not of interest_yas in power spectrum analysis, then the effect of quantization error is negligle to a large extent.

It may be necessary to filter the data before estimating the autocorrelation function or the power spectrum from the autocorrelation function.

Even though the power spectrum can be estimated via the autocorrelation, this method is much inferior to the method of estimating the power spectrum by fast fourier transform techiques, particularly with the implementation of the latter by digital computer.

The practical procedures for estimating spectra from observed time series that are discussed here, therefore, are those using the more efficient and more economical (with computer application) fast Fourier transform methods.

6.2.5. The Fast Fourier Transform (FFT)

The fast Fourier transform is a computational tool which facilitates signal analysis such as power spectrum analysis and filter simulation by means of digital computers. It is not a transform as such but a collective term for a number of algorithms which facilitate the efficient computation of the discrete Fourier transform of a series of data samples or a time series.

6.2.6. The Discrete Fourier Transform (DFT)

The discrete Fourier transform is the sampled-data equivalent of the conventional Fourier transform.

A finite sequence (x_n) has a z - transform

$$X(Z) = x_0 + x_1 Z^{-1} + \dots + x_{N-1} Z^{-(N-1)}$$
 (6.5.)

If the Z - transform is evaluated at values of Z given by

(1, $e^{j2\pi/N}$, $e^{j4\pi/N}$, ..., $e^{j2\pi(N-1)/N}$)

a new sequence is obtained. These values of Z lie at regular angular intervals around the unit circle in the Z - plane.

Using W to represent $e^{-j2\pi/N}$ these values of the Z- transform are given by the equations

$$X_{0} = x_{0} + x_{1} + \dots + x_{N-1}$$

$$X_{1} = x_{0} + x_{1}W + \dots + x_{N-1}W^{N-1}$$

$$X_{2} = x_{0} + x_{1}W^{2} + \dots + x_{N-1}W^{2(N-1)}$$

$$\therefore \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

$$X_{N-1} = x_{0} + x_{1}W^{N-1} + \dots + x_{N-1}W^{(N-1)^{2}}$$
(6.6.)

The sequence (X_0, \dots, X_{N-1}) is the discrete Fourier transform of the sequence (x_0, \dots, x_{N-1}) .

The equations (6.6) can be written as a matrix equation

$$\underline{\mathbf{X}} = \underline{\mathbf{W}} \underline{\mathbf{x}}$$

where the column vectors \underline{X} and \underline{x} contain the elements of the sequence (\underline{X}_n) and (\underline{x}_k) . The matrix \underline{W} is given by

$$W = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & W & W^2 & \dots & W^{N-1} \\ 1 & W^2 & W^4 & \dots & W^{2(N-1)} \\ 1 & W^3 & W^6 & \dots & W^{3(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W^{N-1} & W^{2(N-1)} & \dots & W^{(N-1)^2} \end{bmatrix}$$

The DFT is written as

$$X_n = \sum_{k=0}^{N-1} x_k W^{nk}$$
, $n \ge 0, 1, \dots, N-1$

Since the x_k 's are often values of a function at discrete time points, the index, n, is sometimes called the 'frequency' of the DFT.

There exists the usual inverse of the DFT and, because the form is very similar to that of the DFT, the FFT may be used to compute it.

It can be verified that the inverse of the matrix \underline{W}^* is given by $\frac{1}{N} W^{-1}$ Thus the DFT is an invertible transform in its own right: given (x_n) the sequence (X_n) can be computed and vice versa.

The Inverse Discrete Fourier Transform (IDFT) can be written as

$$X_{L} = \frac{1}{N} \sum_{n=0}^{N-1} X_{n} W^{-nL} L = 0, 1, \dots, N-1.$$

6.2.7. Useful properties of the DFT

An important property that makes the DFT very useful is the relationship between the DFT of a sequence of Nyquist samples and the Fourier transform of a continuous waveform, that is represented by the Nyquist smaples.

(The Nyquist frequency $f_N = \frac{1}{2}\Delta$ is the highest frequency which can be detected with data sampled at intervals Δ).

Another very useful property of the DFT is the convolution relationship. That is, the IDFT of the product of two DFT's is the periodic mean convolution of the two DFT's. This relationship proves very useful when computing the filter output as a result of an input waveform; it becomes especially effective when computed by the FFT.

Other properties of the DFT are in agreement with the corresponding properties of the Fourier integral transform, perhaps with slight modifications. These properties have been compiled by Gentleman and Sande (120).

6.2.8. Applications of the Fast Fourier Transform

Before the advent of the fast Fourier transform, the Fourier transform served as a bridge between the time domain and the frequency domain. With the development of the FFT it is now possible to go back and forth between waveform and spectrum with enough speed and economy to create a whole new range of applications for this classic mathematical device.

The FFT can be used in place of the continuous Fourier transform only to the extent that the DFT could before but with a substantial reduction in time.

If the set $(X_0, X_1, \ldots, X_{N-1})$, equation 6.6., are computed directly, N operations (counting one complex multiplication as an operation, are required for each X_k , and N^2 for the whole set of N members. The fast Fourier transform reduces the number of operations for DFT evaluation to the order of N $\log_2 N$. For large N the saving can be dramatic. For example it has been calculated that a transform of 2^{17} complex points requiring 24 minutes of FFT computation on an IBM 7090 would run for about 65 days performing a direct evaluation. A fewer number of operations results in a reduction of cumulative round off error and hence the FFT is both faster and more accurate than the direct method.

The operations usually associated with the FFT are

(i) computing a spectrogram (a display of the short-term power spectrum as a function of time);

(11) the convolution of two time series to perform digital filtering;
 and (iii) the correlation of two time series.

Although all of these operations can be performed without the FFT, its computational savings have significantly increased the interest in performing them digitally.

(1) <u>Spectrograms</u>: In this case the square of the magnitude of the set of complex Fourier coefficients (that is, the periodogram) is used to estimate the power spectrum of the original signal.

A snapshot of the spectrum of the signal can always be computed from the last T seconds of data. By taking a series of these snapshots, estimates of the power spectrum can be displayed as a function of time.

When the spectrum of a signal contains a periodic component, this spectrum can be compressed by taking the logarithm, and then the fast Fourier transform can be taken. The result is called a cepstrum (121,122). For a more complete discussion of short-term spectrum and cepstrum analysis see references (121 - 132).

(11) <u>Use of the FFT for Digital filtering</u>: The problems of either determining the output, given the input and the impulse response, or finding the impulse response, given the input and the output, frequency confronted in a linear system, can be approached rather easily in the frequency domain.

The output of the general nonrecursive filter is given by,

$$y_n = \sum_{r=0}^{n} a_r x_{n-r}$$

The output sequence, (y_0, y_1, \ldots) is said to be the <u>discrete convolution</u> of the input sequence (x_0, x_1, \ldots) and the filter impulse response, (a_0, a_1, \ldots, a_L) .

Taking as an example, a three-coefficient filter of fig. 6.3 (L = 2), successive outputs are given by,

$$y_{0} = a_{0} x_{0}$$

$$y_{1} = a_{0} x_{1} + a_{1} x_{0}$$

$$y_{2} = a_{0} x_{2} + a_{1} x_{1} + a_{2} x_{0}$$

$$y_{3} = a_{0} x_{3} + a_{1} x_{2} + a_{2} x_{1}$$

$$y_{4} = a_{0} x_{4} + a_{1} x_{3} + a_{2} x_{2}$$
(6.7.)

etc.

The input sequence, (x_0, x_1, \ldots) may be very large or not entirely available before filter outputs are required and therefore to achieve a 'continuous' filtering action it is necessary to consider successive N - point segments of the input.

To implement the filter of fig. 6.3 by FFT methods, with N=8 the DFT of the sequence (x_0, x_1, \dots, x_7) is taken and multiplied by the DFT of a_0, a_1, a_2 . The IDFT of the product sequence then yields the <u>circular</u> convolution values. (a discrete convolution of the input sequencies (x_n) and (y_n) defined as

$$P_{r} = \sum_{n=0}^{N-1} y_{n} \cdot x_{r-n}$$

where x = x is said to be a circular convolution if x is treated as a periodic input).

A comparison with equation 6.7 indicates that the first two (in general L)

٠

Fig. 6.3 3-Coefficient non-recursive filter

/

results above do not agree with any of the required values and must therefore be discarded. The remaining results, however, are correct for y_2 , y_3 ,, y_7 . To apply the FFT method continuously it is therefore necessary to 'overlap' successive input segments by L points so that the first L erroneous convolutions associated with each segment can be discarded in favour of the correct values saved from the last L results of the previous segment. In terms of the example, this implied that the next DFT input is the sequence $(x_6, x_7, ..., x_{13})$ in which case the first two results of the circular convolution are discarded in favour of y_6 and y_7 which are available as the last two results from the previous segment. This procedure has been termed the <u>overlap-save</u> method (133). Other methods of comparable efficiency have been discussed in the literature (133). Tests (134) have shown that FFT methods of computing convolutions are faster than standard nonrecursive methods when L is greater than about 32.

Other Applications of FFT

A sampled power spectrum is given by the modulus squared of the frequency samples. Thus, $(|X_0|^2, |X_1|^2, \dots, |X_N - 1|^2)$ is amenable to rapid calculation by FFT methods.

Autocorrelation or cross - correlation is similar in mathematical structure to convolution. The same approach to FFT computation can therefore be applied.

6.2.9. Implementation of the fast Fourier transform

The number of variations of the FFT algorithm appears to be directly proportional to the number of people using it (135 - 153). Most of these algorithms are based on either the Cooley - Tukey or the Sande - Tukey algorithm (124), but are formulated to exploit properties of the series analysed or properties of the computer used.

A variety of different FFT programs for performing one - dimensional and multidimensional fast Fourier transforms have been made available by

Cooley (141, 142) Sande (148), Singleton (149 - 152) and Brenner (139), who have programmed most of the options available.

Bergland (154) has reported a survey of FFT processors and their characteristics.

The FFT program used for the analysis of the signals from the D/P transmitter in the present work is based on the decimation in frequency method algorithm (133, 155).

6.3. DIGITAL FILTERS

Digital filters, here, will be taken to imply linear digital filters. In this case the output number sequence is always some linear combination of past and present inputs and past imputs.

Digital filters employ digital hardware and software (delays, adders, multipliers) to perform spectral - shaping operations on signals represented by number sequencies (usually binary). For conceptual purposes a digital filter can be regarded as a system constructed from unit delay elements, adding units and coefficient multipliers. The only permitted operations are delay or storage, addition and multiplication by a constant coefficient. Therefore a digital filter, here, is regarded as an entity whose input and output are sequencies of numbers.

In general, the present output from a digital filter is related to the present input number and the past inputs and outputs by a difference equation of the form

$$y_n = \sum_{k=0}^{L} a_k x_{n-k} - \sum_{k=1}^{M} b_k y_{n-k} - \dots$$
 (6.8.)

Fig 6.4 <u>General digital filter - Direct realisation</u>

where,

x is the nth input number

y is the nth output number

 a_k and b_k are the kth of (L + 1) and M coefficients respectively which are real constants determining the particular filtering action performed.

The input and output sequences, x_n and y_n , n = 0, 1, 2, may be conceived as sampled and digitized values of analogue waveforms but this viewpoint is by no means necessary since the digital filter of equation 6.8 is fully specified by its action on input and output number sequencies. The coefficients (a_0, \ldots, a_L) and (b_1, \ldots, b_{-}) suffice to specify the filter. A digital filter can also be specified by its <u>impulse response</u> (the impulse response of a digital filter is defined later).

A direct realisation of the general digital filter in terms of digital hardware is illustrated in fig. 6.4. The index n is incremented by one every T seconds.

In this section₂basic properties of digital filters are summarised. This leads to a discussion of the digital resonator and an examination of two synthesis procedures which facilitate the design of a wide variety of filter types.

6.3.1. The Pulse Transfer Function, Poles and Zeroes

Digital filter design methods make use of the theory of functions of a complex variable.

The <u>pulse transfer function</u>, (p.t.f., denoted here by H(Z)) is defined as the ratio of the Z - transform of the output of a digital filter to the Z - transform of the input.

For equation 6.8., taking Z - transforms of both sides gives

$$Y(Z) = X(Z) \sum_{k=0}^{L} a_{k} Z^{-k} - Y(Z) \sum_{k=1}^{M} b_{k} Z^{-k}$$

$$H(Z) = Y(Z) / X(Z)$$

$$= \sum_{k=0}^{L} a_{k} Z^{-k} / \sum_{K=0}^{M} b_{k} Z^{-k} , \quad (b_{0} = 1) \quad (6.9.)$$

A <u>ZERO</u> of H(Z) is a value of Z for which H(Z) is zero. A <u>POLE</u> of H(Z) is a value of Z for which H(Z) (which is the ratio of the polynomials in Z^{-1}) becomes infinite i.e. a value of Z for which the denominator polynomial is zero.

If the poles and zeroes are known then the nominator and denominator polynomials may be written in factoral form:

$$H(Z) = K \frac{(1 - \alpha_1 Z^{-1})(1 - \alpha_2 Z^{-1}) \dots (1 - \alpha_L Z^{-L})}{(1 - \beta_1 Z^{-1})(1 - \beta_2 Z^{-1}) \dots (1 - \beta_M Z^{-L})}$$
(6.10.)

 \mathbf{or}

$$H(Z) = \frac{K (Z - \alpha_1)(Z - \alpha_2) \dots (Z - \alpha_L)}{(Z - \beta_1)(Z - \beta_2) \dots (Z - \beta_M)} Z^{-(L - M)}$$
(6.11.)

where K is a constant coefficient and ∞_1 ,, α_L are the zeroes and β_1 ,, β_M are the poles of H(Z).

It may be shown (123) that for stability the poles of H(Z) should be within the Z - plane unit circle (i.e. $|\beta_k| < 1$, k = 1, 2, M). Also because the coefficient a_k and b_k are real numbers the poles and zeroes of H(Z) are either real or else fall in conjugate pairs (123) Fig. 6.5. below shows the poles and zeroes of a typical stable filter

<u>Frequency Response of a Digital filter</u>: The frequency characteristic of a digital filter is determined by evaluating the p.t.f. H(Z) on the unit circle of the Z - plane. From equation 6.9. therefore, with $Z = e^{j2\pi ft}$ where f is the real frequency variable in Hertz (cycles per second) the frequency characteristic is given by,

$$H(e^{j2\pi ft}) = \sum_{k=0}^{L} a_k e^{-kj2\pi ft} M_{k=0} b_k e^{-kj2\pi ft}$$

<u>Amplitude Characteristic</u>: In general, the frequency characteristic is a complex function which can be expressed as

$$H(e^{j2\pi ft}) = R(e^{j2\pi ft}) + j I (e^{j2\pi ft})$$
 (6.12.)

where R and I denote real functions. The amplitude characteristic is given by,

$$H(e^{j2\pi ft}) = \sqrt{R^2(e^{j2\pi ft}) + I^2(e^{j2\pi ft})}$$
(6.13.)

It determines the gain or attenuation imposed by the digital filter on a sinusoidal input sequence of frequency f H_{a} .

<u>Phase Characteristic</u>: From equation 6.12, the phase characteristic of a digital filter is given by,

$$\arg\left[H(e^{j2\pi ft})\right] = \tan^{-1} \left[I(e^{j2\pi ft}) / R(e^{j2\pi ft})\right]$$

This characteristic determines the phase shift between output and input for a sinusoidal input sequence of frequency $f H \mathbf{z}$.

<u>Recursive Digital Filter</u>: If $M \neq 0$ in equation 6.9. the filter described by H(Z) is said to be recursive since feedback is implied. Under this condition poles appear in the p.t.f. (see equation 6.10) and instability will occur if they fall outside the z - plane unit circle.

<u>Nonrecursive Digital Filter</u>: If M = 0 in equation 6.9. then the filter is said to be nonrecursive since no feedback is involved. The p.t.f. (equation 6.11) possesses no poles and consequently the filter is stable under all conditions.

Impulse Response: This is the response of the digital filter to the input sequence,

(1, 0, 0,)

The Z - transform of this sequence is given by

$$X(Z) = 1$$

From the definition of the p.t.f., H(Z)

$$Y(Z) = H(Z) \cdot X(Z)$$

Thus, with X(Z) = 1 the Z transform of the output sequence is simply H(Z) and it follows that the p.t.f. is the Z-transform of the impulse response.

If the filter is nonrecursive then it is evident from equation 6.8 that the impulse response is the (L + 1) length sequence given, by the

coefficients (a_0, a_1, \ldots, a_L) . If the filter is recursive then in principle the impulse response will never terminate due to the action of feedback. In this case it is usually simpler to derive the impulse response by taking the inverse Z - transform of the p.t.f.

Summary of some important points

Without going into any details a summary of some important points at this juncture is thought more useful than going deeper into the mathematics. The points to be made here are

(i) Poles on the real axis give rise to non oscillatory components in the impulse response

(11) Complex poles give rise to oscillatory impulse responses.

(iii) The nearer a pole lies to the origin of the Z - plane, the more rapidly the associated component decays.

(vi) The frequency of the oscillatory component associated with complex poles increases with their angle measured from the real axis.

(v) The impulse response of a digital filter will decay (i.e. the filter will be stable) if and only if all the poles of the filter lie within the unit circle in the Z - plane. It is thus possible to test whether a filter is stable by factoring the denominator of its transfer function and observing the magnitudes of the poles.

6.3.2. The Digital Resonator

A digital filter can be specified by either the poles, zeroes and/or impulse response. The direct realisation of the second order difference equation

$$y_n = x_n - b_1 y_n - 1 - b_2 y_n - 2$$

is shown below Fig. 6.6 and the Pole positions are shown in Fig. 6.7.

The p.t.f. is given by,

 $H(Z) = \frac{1}{1 + b_1 Z^{-1} + b_2 Z^{-2}}$ $= \frac{Z^2}{(Z - \beta_1)(Z - \beta_2)}$

where,

$$\beta_{1,2} = -\frac{b_1}{2} + j \sqrt{\left\{ \frac{b_2}{2} - \left(\frac{b_1}{2}\right)^2 \right\}}$$
(6.14.)

If $b_2 > \left(\frac{b}{1}\right)^2$ then β_1 and β_2 form a conjugate pole pair as shown in fig 6.7. For stability the poles must fall within the unit circle and therefore,

 $|\beta_1| |\beta_2| < |$ 1. e. from equation 6.14. 5 ភា . ი

$$\left(\begin{array}{c} \frac{\mathbf{b}_1}{2} \right)^2 & + \left[\begin{array}{c} \mathbf{b}_2 & -\left(\frac{\mathbf{b}_1}{2} \right) \right] \\ - & -\left(\begin{array}{c} \frac{\mathbf{b}_1}{2} \right) \end{array} \right] \quad \boldsymbol{\swarrow} \quad |$$

or

b₂ < |

The frequency characteristic is given by,

$$H(e^{j2\pi ft}) = \frac{e^{j4\pi ft}}{(e^{j2\pi ft} - \beta_1)(e^{j2\pi ft} - \beta_2)}$$
(6.15.)

For positive f, $H(e^{j2\pi ft})$, the amplitude characteristic, will exhibit a single maximum value at a resonant frequency given by

$$\cos 2\pi ft = \frac{b_1}{2\sqrt{b_2}}$$

Also, the closer $|\beta_1|$ and $|\beta_2|$ approach unity i.e. $(b_2 \rightarrow 1)$, the closer the denominator of equation 6.15 will approach zero at the resonant frequency and the sharper will be the peak of the amplitude characteristic. b_2 therefore controls the degree of damping.

The digital resonator is the digital equivalent of the simple analogue inductance, capacitor, resistor resonator.

6.3.3. Design of Digital Filters

The design of a digital filter involves two main steps, synthesis and realisation. Synthesis is concerned with finding a suitable p.t.f. from design requirements such as frequency or impulse response specifications. When the p.t.f. has been determined a particular arrangement of digital filter elements (delays, multipliers, adders) must be selected to <u>realise</u> the pulse transfer function.

Two approaches which together are applicable to a wide range of filters will be discussed.

6.3.3.1. Indirect Method

Here, use is made of knowledge of analogue filters.

The transfer function of a linear analogue filter comprising inductance, capacitance and resistance is normally expressed as a rational function, A(s), say (i.e. A(s) is the ratio of two polynomials in s). In this case the frequency characteristic is derived by evaluating A(s) on the s plane imaginary axis (i.e. set $s = j2\pi f_A$ where f_A is the real analogue frequency variable). Suppose a method is available for synthesising A(s), (perhaps A(s) poles and zeroes are tabulated over a range of frequency domain design requirements) then, if s in A(s) is replaced by a rational function of Z which maps the s plane imaginary axis unto the Z plane unit circle the resulting function of Z (p.t.f.) will assume a set of values along the Z plane unit circle as A(s) along the S plane imaginary axis. There will therefore be a correspondence between the frequency characteristic of the analogue filter and the digital filter which is specified by the derived p.t.f.

The <u>bilinear transformation</u> is the simplest transformation, with the above property and is defined by,

$$S = \frac{Z - 1}{Z + 1}$$

The procedure for synthesizing a digital filter by analogue techniques using the bilinear transformation is summarised as follows:

(1) Note the critical frequencies and ranges of the required digital filter (i.e. the cut-off frequencies, pass band, stop band regions, etc.) thus defining, f_{D1} , f_{D2} , Compute the corresponding set of frequencies

for the analogue filter through,

$$f_{A_1} = \frac{1}{2\pi} \tan \left[\pi \cdot f_{D_1} T \right]$$
, $i = 1, 2, \ldots$

(ii) Determine the analogue transfer function, A(S) from the f_{A_1} specifications by some convenient analogue synthesis procedure.

(111) Replace A(S) by (Z - 1/Z + 1) to obtain the required digital filter.

The bilinear transformation transforms a lowpass analogue filter into a lowpass digital filter, a highpass into a highpass etc. Other transformations are available (133, 156) which transform lowpass to highpass, lowpass to bandpass, lowpass to bandstop etc. so that a wide variety of digital types may be synthesised from the basic analogue lowpass.

6.3.3.2. Direct Method:

Synthesis of the various classical filters (Butterworth, Chebyshev, Elliptic etc.) in the S plane begins with the specification of suitable squared amplitude characteristics. Applying the same technique in the Z plane results in a direct synthesis procedure for digital filters. The squared amplitude characteristic of a digital filter ($|H| (e^{J^2\pi ft})|^2$) is a real function of frequency which can be expressed as a real rational function in $\tan^2(\pi f t)$ (133, 156). A suitable lowpass filter function is then,

$$|H(e^{j2\pi ft})|^{2} = \frac{1}{1 + \frac{\tan^{2n}(\pi ft)}{\tan^{2n}(\pi ft)}}$$
(6.16.)

 f_{c} is the cutoff frequency and n denotes the order of the filter.

By analogy with the analogue form, equation 6.16 may be regarded as the definition of a digital Butterworth amplitude characteristic. The poles and zeroes of $H(Z) \cdot H(Z - 1)$ are found by setting

$$Z = e^{j2\pi ft}$$

in equation 6.16 and factorising. They are given by

$$U_{\rm m} = \frac{2(1 - \tan^2 (\pi f_{\rm c} t))}{1 - 2 \tan (\pi f_{\rm c} t) \cos (m\pi/n) + \tan^2 (\pi f_{\rm c} t)}$$
(6.17.)

$$V_{\rm m} = \frac{2 \tan (\pi f_{\rm c} t) \sin (m \pi / h)}{1 - 2 \tan (\pi f_{\rm c} t) \cos (m \pi / h) + \tan^2 (\pi f_{\rm c} t)}$$
(6.18.)

$$m = 0, 1, \ldots, (2 n-1)$$

where the mth pole is given by,

 $Z_{m} = U_{m} + j Vm$

Replacing $m\pi/n$ by $(2m+1)\pi/2n$ gives equivalent expressions for n even. 2 n zeroes are also located at Z = -1.

Having located the poles and zeroes of $H(Z) \cdot H(Z^{-1})$ the required p.t.f. H(Z) is constructed by selecting those poles which lie within the unit circle and an nth order zero at Z = -1.

Application of the direct method of synthesis to a wide variety of filter types is discussed in the literature (133, 156, 158).

The direct form has the advantage that it uses the coefficients of the transfer function without modification. It suffers from the disadvantage that it is sensitive to computational error. This is usually only an important consideration in computers with small word length.

Non - recursive filters are almost always implemented in the direct form.

6.3.4. Programming Digital Filters

A digital filter can be implemented as a computer program by the following procedure.

- (1) Label the variable which is held in each delay unit.
- (ii) Set the initial values of these state variables as zero.
- (iii) Each number is computed as a linear combination of the present input and the state variables.
- (iv) The state variables are transferred to auxilliary storage and their new values are computed.

6.4. Use of Simple Filters to detect Instrument Malfunction

The relevant theory for the use of digital filters has been reviewed in the foregoing sections. The specific use of the digital filter for instrument malfunction detection will now be discussed. The basis has already been mentioned but the point will be amplified here.

An instrument signal would have a range of frequency components from low to high. The frequency components of the instrument signal would be considerably higher than that of the process.

When the instrument is behaving normally the characteristics of the frequency components would be expected to show a pattern. If the instrument begins to malfunction, the likelihood also would be that the characteristics of the frequency components would change, and probably, considerably from that at normal behaviour. There might be an unusual rise or fall in the level of the components at a certain frequency.

Because of the inertia of a given process, excessive fluctuations in the process signal would not be expected. The overall contributions of the process signal to the frequency components of both the process and the instrument would be expected to be fairly steady and more in the low frequency region.

The frequency component contribution of a normal instrument would be

)

expected to be within some tolerance band. A considerable rise or fall in the high frequency components, say, would almost certainly be from the instrument and could therefore be an indication of an abnormality in the instrument behaviour.

By looking at the contributions of the components at specific frequencies, it should be possible to detect a significant change in frequency level. This is the whole basis of the application of this technique to the detection of instrument malfun ction.

A simple system to do this is illustrated below Fig. 6.8.

Fig. 6.8. Simple Second order filter

 $Y = X + a Z^{-1} Y + b Z^{-2} Y$

represents a simple second order filter. The output of the system Y is a combination of the outputs of the two filters in series. By the setting of the constants a and b, the attenuation of the outputs of the filters will be set and hence the contribution of the two frequency components would be set relative to each other.

For normal behaviour, the contribution of one of the filters might be negligible to the overall characteristics of the output of the system, say. The status quo could be a basis for the normal behaviour criterion.

A significant rise or fall in the contribution of the components could then be an indication of an abnormality.

Because the system suggested above is a recursive filter, the stability aspects as dealt with in section 6.3.1. have to be considered. The system can easily be programmed.

Unfortunately, a digital filter technique for instrument malfunction detection was not tested in the practical work done in this project. This was mainly due to the shortage of time and the loss of the on-line computer on which this work was based. /because the digital filter technique involves resolution of signals in the frequency domainjas do the fast Fourier transform based techniques; and because the digital filter might be considered more special in application than the FFT techniques, the practical work of testing the techniques was started with testing the more general fast Fourier transformjin the hope that there might be time for the digital filters.

The digital filter techniques and the fast Fourier transform techniques are nevertheless not the same. The two approaches are different in conception and realisation.

The digital filters can look at a specific or specific frequencies; they can be selective in the particular frequencies or band of frequencies to look at from a range of available or detectable frequencies. The fast Fourier transform can generally analyse a whole range of available or detectable frequencies.

The information offered by and the computational requirements of the '

6.5. Use of the Power Spectrum to detect Instrument Malfunction

The fact that the power spectral density for a process indicates the contribution to mean-squared fluctuation due to signal components in any specified frequency interval can be used as a criterion for instrument malfunction detection.

Because of the inertia of a given process, the spectral density plot of a normal process instrument signal would have a shape pattern for a given frequency interval or range. This might be a characteristic concentration of most of the power in a certain frequency region, say, high or low. For instance Fig. 6.9. can represent a typical power spectrum plot for a normal process instrument signal.

The instrument signal contribution to mean-squared fluctuation in a specified frequency interval and hence the spectral density plot would not be the same for normal and malfunctioning instruments.

A parameter of the spectral density plot such as the area under the curve or the ratio of the areas A_1 and A_2 on either sides of a specified critical frequency, f_c , can characterise normal or abnormal instrument signal.

It is envisaged that one possible way of using the technique is to set threshold values for one of such parameters gas mentioned above for normal or abnormal instrument behaviour.

In the present work, the fast Fourier transform has been used to estimate the power spectrum of some normal and abnormal signals from a D/P transmitter. The results are discussed in Chapter 8.

Fig. 6.9. Illustrative Power Spectrum Plot

6.6. Use of an adaptive model for instrument Malfunction detection

The findings of Sargent and Goldman (222) in a feasibility study of using linear recursive least - squares estimators for on-line state and parameter estimation suggest the possible implications of such techniques for instrument malfunction detection. They used a simulation of a binary distillation column to investigate how effective the filter is in detecting bias or drift in a particular instrument or a slow drift in plant conditions before this otherwise becomes obvious. Their findings indicate that the least squares filter could provide a means of detecting instrument malfunction.

The Kalman filter is a general model relating, in principle, all plant variables, in contrast to mass and heat balance type models and therefore promises to be a very powerful technique for instrument malfunction detection. It is envisaged that it will be suitable for analysing multiple instrument signals as opposed to single signals as have been dealt with

mainly in the present work.

Even though no work has been done on this in the present work, there has been all along, awareness of the potential of the Kalman _ ter in this direction.

~

7. CASE STUDIES OF INSTRUMENT MALFUNCTION AND MALFUNCTION DETECTION (1) THERMOCOUPLES
7. CASE STUDIES OF INSTRUMENT MALFUNCTION AND MALFUNCTION DETECTION (1) - THERMOCOUPLES

7.1. Introduction

From case studies of instrument malfunction, malfunction detection techniques can be developed and tested. Such case studies can throw light into the instruments' mode of failure, symptoms shown before or at failure, with their possible implications, and methods of forestalling undesirable consequences or disaster in such an event.

Ideally, study of as many instruments as possible under as widely varying environmental condition as can be achieved is desirable. With the limitation of time and facilities this is not possible in the present work.

Some select instruments, therefore, were studied. The systems studied were

- (i) Thermoconples
- (ii) Differential pressure transmitters as flow measuring instruments
- (iii) Control valves

The reasons for their choice are that the thermocouple and the D/P transmitter can easily both offer signals to analyse, but it was also expected that the thermocouple might provide a signal easily amenable to simple algorithms or analysis, while the differential pressure transmitter might require more sophisticated time series analysis. Some failure modes of the two instruments can easily be simulated in the laboratory.

Control values differ from the thermocouple and D/P transmitter in that they are not measuring instruments and again a different

technique might be needed.

All the systems studied are important systems in process control.

Of the three systems chosen for study, the thermocouple was typically and 'illustratively studied in detail. For this reason, the case study of the thermocouple has been presented on its own in this chapter. The other two systems were not studied in such detail and their case studies are presented in chapter 8.

Freezing of the impulse lines of the D/P transmitter was simulated in the laboratory and the signals obtained analysed using the fast fourier transform method.

For the control valves, data were obtained from industry and analysed.

7.2. THERMOCOUPLE INSTALLATIONS, NATURE AND CAUSES OF THERMOCOUPLE FAILURE

7.2.1. General

The thermocouple is not a new device, the thermoelectric effect having been demonstrated as far back as 1821 by Seebeck (159). It consists essentially of two dissimilar electrical conductors either or both of which may be pure metals, alloys or non-metals, having a common junction where the conductors are in good thermal and electrical contact (hot junction).

The other ends of the leads from this junction are kept at a common temperature (cold junction) and are connected to an instrument measuring the electromotive force which is developed. For thermoelectric thermometry theory one only has to turn to the literature (160-164).

Beyond the simple operating principle of the thermocouple lies much important information which instrumentation men must know to ensure accurate, reliable and reproducible measurement and minimum maintenance with thermocouples. The purpose of the background work 7.2.1. - 7.2.10.5 is mainly to bring out this information.

7.2.2. Industrial Thermocouples (165)

The two conductors constituting the thermocouple are chosen such that changes caused by the physical and chemical conditions to which they are exposed do not cause any appreciable departure of the calibrated values of the e.m.f. generated at certain known temperatures of the hot junction and cold junction respectively.

The conductors constituting the thermocouple have physical characteristics which are suitable for the temperature to which they are exposed, and must not melt or change in composition by evaporation at those temperatures.

A thermocouple may be used bare, but in the majority of applications it is necessary to insert it in a metallic pocket with a protecting head, Fig. 7.1.

The following factors are of particular importance when relating the basic principles of thermoelectricity to practical applications.

- (1) A thermocouple is installed directly (usually with a protecting tube) in the process medium, which can be corrosive and at high temperatures or pressures.
- (ii) Hundreds of temperature points are measured by thermocouples in many processes. This is a sizeable maintenance responsibility, even when minimum attention is required.
- (iii) Thermocouples are expendable, and replacement costs must be minimised by proper protection and care of those in service.
- (iv) A thermocouple involves an electric current, often with a path hundreds of feet long, with connections to remote panelboards. Failure of these connections at any point means failure of the entire instrument system and consequent loss of automatic recording and control.

Fig 7.1 Basic arrangement of thermocouple installation

7.2.3. Use Characteristics of Thermocouples

Thermocouples can be used over a very wide range from below 0^oC to 2600^oC and provide accurate, reliable and reproducible temperature measurements. The characteristics of the thermocouple method may be listed as follows

(i) Many thermocouple combinations exist and each has an optimum temperature range. Selections may be made from the variety of base and rare metal types to meet the requirements of most operating conditions.

(i1) Most thermocouple materials are readily available with the electromotive force/temperature characteristics guaranteed to within stated tolerances.

(iii) Thermocouples may be made from very fine wires and hence are of low thermal capacity. They can therefore respond rapidly to fluctuating temperatures.

(iv) No external electrical supply is required except where highly accurate potentiometric methods of electromotive force measurements must be used.

(v) Sensitivity of response may be increased by using several thermocouples in series.

(vi) Measuring junctions may be easily made by the user and thermocouples may be easily installed and maintained.

(vii) Usually only simple methods of measuring the electromotive force are required.

(viii) The thermocouple method requires the use of a reference junction and special precautions may be adopted to compensate for variations in the temperature of this junction.

7.2.4. Types and Methods of Use (166,167)

There are three usual methods of using thermocouples corresponding to three types namely

(a) <u>Surface contact type</u> - With this type, thermal equilibrium is established between the solid body, whose temperature is being measured, and hot junction of the thermocouple by means of a contact plate. Here it is important that the temperature of the thermocouple is not affected to any appreciable extent by heat exchange between the thermocouple contact system and any adjacent surfaces other than those of the hot body whose temperature is being measured.

(b) <u>Immersion type</u> - The hot junction is immersed or inserted into the body whose temperature is being measured, the body being either a liquid, a gaseous atmosphere, or a gaseous atmosphere in an enclosure in which the body whose temperature is to be measured is also enclosed. With a liquid, thermal equilibruim between the liquid and the thermocouple is established by direct conduction. In a gaseous atmosphere, this thermal equilibrium is maintained by direct contact between the hot junction and the gas. However, unless conditions are favourable, radiation from other gaseous zones and surrounding solids affect the measurement, and the temperature measured will be that of the gas only if the other radiating bodies are at the same temperature as the gas in the immediate neighbourhood of the hot junction of the thermocouple.

In the third instance thermal equilibrium between the body whose temperature is being measured and the hot junction of the thermocouple is established partly by gaseous heat transfer and partly by radiation from the hot body, and errors may occur from

167

the same causes as previously mentioned.

(c) <u>The suction type</u>: is used for the measurement of temperature of a gas in a furnace (or other enclosure) where the walls are not in thermal equilibrium with the gas. A small portion of gas under measurement is extracted so that it flows continuously past the hot junction during measurement, both the mounting and surroundings of the hot junction being designed to reduce thermal exchange by radiation to a minimum so that a measured temperature approximating as closely as possible to the actual gas temperature is obtained.

7.2.5. Thermocouple Selection (168)

Even though any two dissimilar conductors can form a thermocouple and develop an e.m.f. when their junctions are at different temperatures, only a relative few thermoelement combinations are used. Some of the reasons for a choice of a pair of materials are evident while others may not be quite so obvious (168-170). Finch (168) suggests that the characteristics of an acceptable pair of materials should be such that:

(1) Their melting points are higher than the higest temperature at which the thermocouple is to be used.

(2) Their thermal e.m.f. is large enough to be measured with reasonable accuracy.

(3) Their thermal e.m f. increases continuously with increasing temperature over the temperature range in which the thermocouple is to be used, preferably approximating a straight line relationship.

(4) They are resistant to oxidation and corrosion in the medium and at the temperature to which they are to be exposed.

(5) They are homogeneous.

(6) Their electrical resistances are not too high to limit their use.

(7) They maintain their e.m.f. stability during calibration and use, within acceptable limits.

(8) Their thermal e.m.f. is not appreciably altered during use by internal physical or chemical changes, or by contamination from materials of their environment.

(9) They can be melted from their raw materials and fabricated into wire or any other desired shape without undue difficulty.
(10) They are reproducible in the quantities desired, and of uniform quality.

(11) They can be fabricated with actual thermocouples with relative ease.

(12) Their cost must bear a reasonable relationship to the degree with which they meet the optimum of the above requirements. Every added restriction narrows the choice of pairs of materials until only a few are left. Of these, the majority may be eliminated by consideration of the economics of procurement which weigh heavily in the final choice for industrial applications.

7.2.6. Connecting Circuits (166)

The protection of the compensating leads from mechanical damage, from burning or from the effects of damp and from electrolytic action, electrical leakage or induced voltages from power or lighting circuits is vital to the performance of the measuring system. The conductors should have adequate strength appropriate

to the nature of the installation. The conductor cross section is also governed by considerations of the electrical resistance acceptable to the measuring instrument.

The insulation between the conductors must be reliable and that normally used for high voltage is satisfactory. In damp situations lead covering may be employed but its tendency to sag must be guarded against. In hot, dry situations woven asbestos covering by itself is satisfactory provided those coverings are never exposed to damp, but if conditions of dampness are unavoidable the only safeguard is to use asbestos covering outside rubber or plastics insulation and this double covering should encase each of the conductors individually. Permanent installations are preferably protected in conduit.

Copper Cables Where copper connecting cables are used in place of, or in addition to, the compensating leads referred to above, the same remarks as to protection and conditions for installation apply. A method of protection sometimes used is that in which the conductors are embedded in compressed magnesia in a copper tube. Switches : Switch contacts and the contacts at all other points where the circuit may be broken and reconnected should preferably be of corrosion resisting metals as the available voltages are seldom sufficient to break down even an invisible film of oxide. Care should be taken to ensure that the switch itself does not give rise to unwanted thermal electromotive forces. The act of making the connections between contact and contact should involve some degree of wiping action between the two elements. On installations involving alternative connections of several thermocouples to one measuring instrument, double-pole switches are essential if there is any risk of an earth connection in the thermocouple circuit. The type of

switch making contact between mercury and mercury in hermetically sealed capsules has been found to provide a very reliable form of contact.

7.2.7. Materials for Thermocouples

Of the infinite combinations of metals, alloys, semiconductors, and non metals that can form thermocouples, only a few have found use as temperature sensors. Because of the needs of the new technologies-jet engine, reactor, and rocket technologies in the higher temperature ranges and cryogenics in the lower temperature ranges, new thermocouples are being developed to meet these recent requirements.

The emphasis in this paper is on industrial type thermocouples.

The materials considered here can be classified into four groups for convenience.

1. Noble or Rare Metals.

2. Base Metals

3. Refractory Metals

4. Carbon and Carbides

The Noble and Base Metals represent the vast majority of thermocouples now in use. Fewer data are available on Refractory metal thermocouples, but a considerable effort is being exerted in the field of refractory metals to meet the high temperature needs of recent technological developments. Relatively little work has been done on Carbon and Carbides, but some thermocouples employing graphite, carbon, and carbides are used.

Table 7:1 shows materials most widely used (165,166,174). The base metal thermocouples are used at temperatures up to $1,200^{\circ}$ C and the rare metals up to $1,500^{\circ}$ C, while non-metallic

thermocouples, because of their other limitations, are only used for temperatures too high for either of the other groups. (167) In both the Rare and Base metal groups, the limiting minimum electromotive force which can be employed with measuring instruments usually decides the low temperature limit. In this respect base-metal thermocouples have the advantage in general of developing relatively large electromotive forces and Coxon (167) in fact gives - 200°C as their lower temperature limit.

Schulze (172) has made an extensive review of many thermocouple combinations for operation at high temperatures, particularly platinum: molybdenum, platinum: tungsten, platinum: tantalum, and various alloys of the platinum metals coupled with either pure platinum, rhodium or iridium. The high cost and difficulty of manufacture of many of these metals and alloys in the form of wire prevent their having any commercial applications.

Descriptions and properties of thermocouples of the refractory metals are found in the works of Sanders (173), Kuether (174), Lachman and Kuether (175), Kuether and Lachman (176), Lachman and McGurty (178).

For the carbon and carbides group, work has been done mainly by Thielke and Shepard (179), Ubbelhode (180), Bidwell (181), Watson and Abrams (182), Fitterer (183) and Shepard and Westbrook (184). Even though carbon and carbides have been subjects of investigation, for many years, to avoid problems inherent in the use at high temperatures of thermocouples of metals and alloys; thermocouples of this kind have not yet, from the number in use, assumed an important position in the temperature measuring field; but some are used now, and the possibility exists that more will be used in the near future (185).

TABLE 7.1

.

.

ŧ

- 173-

COMPOSITIONS AND OPERATING TEMPERATURES OF THERMOCOUPLES (166)

	• • · · ·	·		•		t		
1	2	3	4	5	6	7	8	
THERMOCOUPLE		OPERATING TEMPERATURES		APPROXIMATE	TOLERANCE	TEMPERA TURE	RELEVANT B.S	
	ROMINAL COMPOSITION	NORMAL RANGE • FOR CONTIN- UOUS USE	MAXIMUM 'SPOT' READINGS	E.M.F. (MICROVOLTS) DEG. C.)	/	RANGE C	REFERENCE TABLES	
		°c	°c				, ,	
<u>Base Metals</u> *Copper v Constantan	Cu v Cu-Ni (40/45% Ni)	- 250 to 400	500	56	<u>+</u> 1 deg C <u>+</u> 1%	0 - 100 100 - 400	B.S. 1828	
*Iron v Constantan	Fe v Cu-Ni (40/45% Ni)	- 200 to 850	1100 .	57	<u>+</u> 3 deg C <u>+</u> 1%	0 - 300 300 - 850	B.S. 1829	
*Nickel/Chromium v Constantan	Ni 90%, Cr 10% v Cu-Ni (40/45% Ni)	See Note 2 - 200 to 850	1100	•	+ 3 deg C + 0.75%	0 - 400 400 - 850	Refer to Manufact-	
•Nickel/Chromium v Nickel/Aluminium	Ni 90%, Cr 10% v Ni 95% balance Al, Si, Mn	See Note 2 - 200 to 1100	1300	40	+ 3 deg C + 0.75%	0 - 400 400 - 1100	Data B.S. 1827	
Tungsten/rhenium v Tungsten rhenium (See Note 4)	W 95%, Re 5% v W 7 4% Re 26%	See Note 2 O to 2,300	2600		Tolerances agreed bet and manufa	should be ween user cturer	Refer to Manufact- ure's Dat	
Tungsten v Molybdenum (See Notes 4 and 5)	WVMO	1250 to 2600	2600		ditto			
Rare Metals					······			
Platinum/rhodium v Platinum	Pt 90% Rh 10% v Pt 100%	0 to 1400	1650	12	+ 1 deg C + 2 deg C + 3 deg C	0 - 1100 1100 - 1400 above 1400	B.S. 1826	

Table 7.1. Compositions and Operating Temperatures of Thermocouples (166) (Continuation)...

.

•

ν.

	· · · · · · · · · · · · · · · · · · ·		L	1			
Platınum/rhodıum v Platınum	Pt 87% Rh 13% v Pt 100%	0 - 1400	1650	11			
Platinum/rhodium v Platinum/rhodium	Pt 8P% Rh 20% v Pt 95% Rh 5%	0 to 1500	1700		$\frac{+}{+} 3 \operatorname{deg} C$ $\frac{+}{+} 4 \operatorname{deg} C$	0 to 1100 1100 to 1550	Refer to Manufact- urer's Data
Platinum/rhodium v Platinum/rhodium	Pt 70% Rh 30% v Pt 94% Rh 6%	0 to 1500	1700				
Platinum/rhodium v Platinum/rhodium	Pt 60% Rh 40% v Pt 80% Rh 20%	1000 to 1600	1800				
Rhodıum/ıridıum v ırıdıum	See Note 3	See Note 6 0 to 2,000	2100				

``,

1

.

7.2.8. Thermocouple Insulation (166)

Electrical insulation between the two conductors is essential except at their measuring junction, and except in certain cases (e.g. when used with some electronically operated indicators, recorders or controllers) they should be each insulated from earth or from any high electric potential that may exist in the plant or apparatus in which the thermocouple is installed.

The form and nature of the insulation will depend on the use to which the thermocouple will be put. Table 7.2 shows the maximum temperatures to which various forms of insulation may be taken without suffering deterioration.

The insulating resistance between conductors and earth or between the two conductors must be high enough to prevent unacceptable reduction of the electromotive force measured. As reduction is likely to be more pronounced with increasing temperature a general guide (8) would be to select the insulating material such that the reduction of the generated electromotive force at the maximum operating temperature should be less than 0.1 cent.

Cotton, silk, woven glass or asbestos when used should be in a relatively dry atmosphere because if they should absorb moisture, a voltaic cell will be formed, the electromotive force of which will modify the normal electromotive force of the thermocouple and so may give rise to incorrect results.

TABLE 7.2.

Maximum Limiting Temperatures For Various Insulating Materials

(Continuous use in dry air)

P.V.C.	70-100 ⁰ C according to grade.				
Rubber	80-100 ⁰ C according to grade.				
Cotton	100°C)				
Silk) (if varnished 150°C) 100°C)				
Enamel (Synthetic base)	150°C				
P.T.F.E.	250°C (Intermittent use up to 300°C)				
Woven glass	$350^{\circ}C$ (Varnish impregnated) (Intermittent use up to $400^{\circ}C$).				
Woven Silica	1000°C				
Aluminous Porcelain	1400 ⁰ C (Electrical resistance begins to decline appreciably at 900 ⁰ C)				
Recrystallized alumina	1950 ⁰ C (Electrical resistance begins to decline appreciably at 1200 ⁰ C).				

7.2.9. Protection of Thermocouples (166)

In order to preserve the electromotive force/temperature characteristics of a thermocouple and also to protect it from the effects of rapid oxidation or other deterioration due to the action of gases or liquids in which it is immersed, it is essential, at temperatures where such deterioration is possible, to provide protection which usually takes the form of a tubular sheath closed at the immersed end.

Generally, for temperatures exceeding 500°C unless very rapid response to change of temperature is essential, the mechanical protection provided by a sheath is desirable and in some circumstances a sheath of ordinary mild steel is suitable. For

•

.

TABLE 7.3

-

•

T

THERMOELECTRIC SHEATHS (184)

		· · · · · · · · · · · · · · · · · · ·	•	
GENERAL DESCRIPTION AND/ OR TRADE NAME	MAXIMUM TEMP. C	PROTECTION AFFORDED AGAINST	USUAL CAUSE OF FAILURE	REMARKS
Metallic Mild Steel, solid-drawn or welded.	ос 800	Oxidation, but emits metal vapour above 500 C.	Oxidation and/or fluxing in metals.	Welded end, or bored from solid.
Mild Steel, solid-drawn, surface treated, e.g., by 'calorizing'.	900	Oxidation, but emits metal vapour above 500°C.	Oxidation and/or fluxing in metals. (Less rapid than above).	Welded end, before surface treatment.
Nickel-free stainless iron.	800	Low temperature molten metals, but emits vapour above 500°C.	Oxidation.	Bored from solid.
Hıgh chromium-nıckel stainless steels.	1,000	Oxidation, but emits metal vapour above 500°C.	Oxidation and/or fluxing in metals (less rapid than above).	Welded end or bored from solid.
Nickel-chromium alloy with some 1ron, solid-drawn.	1,000	Oxidation but emits metal vapour above 500°C, may also re-emit absorbed SO ₂ or CO.	Oxidation, slow, and attack by SO ₂ or CO, fluxing in metals.	Welded-end.
Nickel-chromium alloy with some iron cast.	1,000	Oxidation, but emits metal vapour above 500°C, may also re-emit absorbed S0 ₂ or CO.	Oxidation slow, and attack by SO ₂ or CO, fluxing in metals.	Cast with closed end, bore must be freed from core-wires.
Nıckel-chromium alloy, nominally pure, cast,	1,100	Oxidation but emits metal vapour above 500 C, may also re-emit SO ₂ or CO.	Oxidation, slower than above and attack by SO or CO, fluxing in metals.	Cast with closed end, bore must be freed from core-wires.
Nickel-chromium alloy with 1 to 2 percent W.	l,100 in most cir- cumstances	Generally similar to nickel-c	hromium alloy, but more resistan	t to corrosion attack.

Table 7.3

-178-

.

Thermoelectric Sheaths (184) (Continuation)...

				1
Refractory Fused silica, milky.	1,000	Oxidation, gas entry, but may emit silicon above 800 C.	Devitrification, fluxing in slag, etc.	End closed by fusing, withstands temper- ature shock.
Fused silica, clear.	1,100	Oxidation, gas entry, but may emit silicon above 800 C.	Devitrification, fluxing in slag etc.	End closed by fusing, withstands temper- ature shock.
Fire Clay	1,400	Oxidation	Cracking, fluxing or building up.	Usually open-ended outer sheath.
Porcelain, glazed and unglazed.	1,400	Oxidation, gas entry.	Cracking, fluxing or building up.	Closed and moulded firing. Manufactures recommendations should be followed in the us of porcelain.
Recrystallized alumina.	1,700	Oxidation and gas entry.	Cracking, fluxing or building up, slow, failure usually trace- able to builders.	-
Silicon carbide.	2,000	Oxidation tool,400°C	Fluxing, or disintegration Not much used es or binder. as outer sheath	
Alundum	1,550	Oxidation	Cracking, fluxing of American. building up.	

temperatures not exceeding 900°C, a sheath of steel suitably treated, e.g., by 'calorizing', can be used or, for prolonged exposure up to this temperature, a sheath of nickel-chromium alloy. Some heat-resistant metals are used, on occasion, up to 1100°C, and at even higher temperatures. For prolonged service where the temperatures may exceed 1100°C a sheath of refractory material is necessary.

The liability of rare-metals to become contaminated by metal vapours and by gases in the hot zone in which the thermocouple is immersed, makes it desirable to use a sheath of refractory material with a rare-metal thermocouple for all temperatures and, further, to ensure that the sheath used has low permeability to gases.

Table 7.3 as indicated in B.S.1041: 1943 (184) gives a guide to choice of a suitable sheath. Brass and copper can be used up to 250° C and 500° C respectively.

7.9.10. Thermocouple Failure

Because the use of thermocouples in industry is of almost infinite variation, it is difficult to express an exact service life to be expected, but generally the nearer the maximum recommended temperatures for the thermocouples are approached, the shorter their life. Rare metal thermocouple materials are almost immune from chemical attack, but they have a tendency to self-contamination which increases as the temperature increases. In normal use thermocouples fail by many extraneous causes, the occurence of which is often unpredictable. Observed types of failure can be divided roughly into four categories.

1. Chemical

Mechanical

3. Electrical

4. Miscellaneous

Main causes of the different types of failure are briefly outlined below.

(i) Chemical

Oxidation of thermocouple wires.

Diffusion of metal (particularly rhodium).

Volatilisation of thermocouple material.

Gain or loss of impuritues.

Contamination - Gas absorption in the metals in reducing

atmospheres, chemical fumes attack and metal vapour attacks. Corrosion.

(ii) Mechanical

Cracking of sheaths.

Fracture of thermocouple wire due to embrittlement.

Plastic strain.

Stress fatigue.

Vibrational fatigue.

(iii) Electrical

Open circuit in loop.

Electrical leakage to earth.

Electrolytic effects in immersed thermocouples.

Pick up from mains.

Shorting of hot junction.

(iv) Miscelleneous

Moisture or dust in thermocouple head. Bad contact at terminals. Neutron irradiation at high temperatures. Work hardening of thermocouple material. Poor annealing of thermocouple material.

Not a lot of work has been done on the specific study of the failure of thermocouples. The bulk of what work has been done has been on the noble metal thermocouples. For convenience the studies will be treated under their thermocouple material groups.

7.2.10.1. Noble Metal Thermocouple Failures

Rare metals do not oxidise appreciably but there is a tendency for rhodium to transfer from the alloy to the pure platinum. This may be either a diffusion process via the hot junction or volatilization. The effect is continuous, increases with temperature and duration of heating and results in a progressive decrease of the electromotive force (166). This fall may be considerable before any mechanical failure calls attention to its existence. In addition to this self-contamination, a similar and much more rapid fall in electromotive-force follows exposure to metal vapours or contact with metallic oxides in reducing atmosphere. The atmosphere may be accidentally generated by the burning of carbonaceous substances. Of the metallic oxides, silica is the most common cause of trouble.

(i) Contamination of the Thermocouples

Contamination of the pure platimum leg in service is perhaps the main reason for loss of calibration (186,187). Diffusion of rhodium increases with the temperature and the

time during which the thermocouple is exposed to the temperature Its effect is negligible if the furnace temperature is uniform (188), and if there is sufficient depth of uniform temperature, as then the zone containing the diffused rhodium acts only as a connector between the legs of the thermocouple and so does not interfere with the indications of the thermocouple. Should the diffused zone enter a region of non-uniform temperature, the result would be to reduce the e.m.f. output of the thermocouple, thus making the indicated temperature lower than the true temperature of the furnace.

At temperatures over 1900°C, diffusion of rhodium into the platinum leg by volatilization from platinum - rhodium wire and deposition on to the platinum occurs significantly, (196) particularly in oxidising atmospheres (168,188).

According to Finch (168), a common fault in thermocouple materials at temperatures above 1000° C, and the most outstanding fault of the Pt - Pt Rh thermocouple is rapid deterioration in 90 10 reducing atmospheres which results from gas adsorption in the metals, from the reduction of metallic oxides in its environment, and the absorption of the reduced metals by the platinum, tending to change the e.m.f.

Contact between any metals (solids, liquid or vapour) and the thermocouple leads to alloying which will change the e.m.f. o f thermocouple and render it unfit for further use (186). Furnace gases or chemical fumes, particularly those carrying sulphur or sulphur compounds, may cause embrittlement of the wires in addition to affecting the e.m.f. output. (186,189) (190), but there is no evidence that sulphur alone will contaminate platinum from

an experiment by Bennett (187) in which samples of platinum were heated at 1200° C for half an hour in atmospheres of H₂S and SO₂ without an embrittlement being observed.

Attack by lead or zinc vapours are frequently encountered. This attack produces embrittlement and hot shortness, so that if the wires are subject to any stress even at a relatively low temperature they are liable to fracture, with a very crystalline break (187). This often occurs at the places where insulating tubes meet and the platinum wire is exposed to the contaminating vapour. This kind of contamination often occurs when scrap that contain lead or zinc bearing solders is being melted. In such instances it is generally found that the thermocouple sheath has cracked or the vapours have had access to the thermocouple system in some unsuspected way. Refractory cement when used sometimes have been found to contain lead which volatilises and contaminates the thermocouple. Heated brass and galvanised iron sheets may be a source of contamination through volatilization of zinc.

(ii) Reducing Atmosphere

Under reducing atmosphere conditions the silica in silica and siliceous refractories is reduced to silicone which alloys with platinum lowering the melting point. It has been shown that a thermocouple contaminated with silicon in this way has failed at as low a temperature as 1200°C due to melting of grainboundary films of platinum - platinum silicide eutectic (191,192). Chausian (193) has reported some experiments in which platinum: 10% rh/pt thermocouples were heated in

various refractory oxides. He observed high e.m.f. outputs.

(iii) Prolonged heating at high temperatures

There appears to be disagreement as to which metal (platinum or rhodium) volatilizes preferentially from the platinum - rhodium alloys. Several experimenters (186,194,195) have found that slightly more platinum volatilizes than rhodium. Others (196-199) have found a slight preference for rhodium volatilization. Work done to 1400°C (200) in a moving dry air atmosphere on pure platinum group metals indicates that slightly more platinum than rhodium will volatilize. Generally, however, after prolonged heating at a high temperature, platinum thermocouples tend to produce a decreasing e.m.f. due chiefly to the pick up on the pure platinum wire of rhodium volatilised from the alloy wire (187). Powell (201) critically reviews work on this subject up to 1958 and describes some original experimental work.

It has been observed that heating under load at 1400°C produced very large grain growth in the pure platinum, the wire consisting of a chain of large crystals of the diameter of the wire. Under prolonged stress at low loads grain boundary sliding occurs and ultimately leads to a brittle type of fracture, which is occasionally found in a couple after long service at a high temperature (187).

. In service the platinum wire is subject to grain growth which eventually causes the wire to consist of a series of crystals each occupying its entire cross-section. This has little effect on the e.m.f. of the thermocouple, but contamination and volatilization proceed more rapidly and the

wire becomes brittle, resulting eventually in failure. Thermocouples left permanently in a fixed position last longer than those subject to mechanical disturbance (167).

Because many factors are involved in the evaluation of a thermocouple, references (183,191,197,198) only give a guide from experiments in the cases where volatilization appears to be the main problem.

7.2.10.2. Base Metal Thermocouple Failures

Oxidation is the main cause of failure for this group of metal thermocouples (166,204 - 206). The thermocouple deteriorates rapidly due to oxidation and the oxidation process is continuous. Nickel/Chromium and nickel/ aluminium are less readily oxidised; these alloys are, however, susceptible to atmospheres containing active compounds of sulphur. Nickel/chromium is also susceptible to compounds of carbon and cyanide fumes.

Inherent inhomogeneity in the as received metals and plastic strain are known to cause a drift in the thermocouple e.m.f. (205-207). Dahl's (204) stability tests in air indicate that long-time exposure to high temperatures causes the em.f. corresponding to a given temperature to increase, or the temperature corresponding to a given e.m.f. to decrease.

Roeser and Dahl (208) found that the thermoelectric changes in copper due to coldworking was not very large, this they attributed to the exceptionally uniform thermoelectric properties of the commercial metal. The assumption therefore being that the greater part of the change in service of copper v constantan thermocouples is due to damages in the

constantan wire (204).

Experience in Rolls-Royce Limited (Aero-Engine Division) (209) where Ni Cr/Ni Al thermocouple is very widely used at well under the maximum recommended temperature is that there are two main types of failures. (i) Mechanical: Usually in the form of Intergranular or Transgranular fractures.

(ii) Electrical: Reduction in thermoelectric output in extreme high temperature and oxidising conditions.

The behaviour of the thermocouple at failure has been complete loss of output, although intermittent signals, as a result of make and break action of fractured section, can be received. These effects were more pronounced on current drawing readout equipment due to time resistance changes.

Causes of failure were attributed to Gas and/or Stress corrosion, small stress fatigue, high temperature creep and vibrational fatigue.

7.2.10.3. Thermocouple Failure in Nuclear Environment

The stability of platinum vs platinum 10% rhodium thermocouples has been reported poor when they were exposed to neutron irradiation for fairly long periods of time at high neutron flux (210). The cause of the instability has been attributed to nuclear conversion. Because the rhodium in the alloy leg has a large cross section, neutrons transform part of the rhodium to palladium, effectively producing a platinum vs platinum, rhodium palladium couple (211).

Weaving (212) draws attention to problems and experience in reactor temperature measurement. From his experience the

186 🕔

main problems are

(1) Drift

Considerable drift can occur in a thermocouple calibration following extended periods at high temperature because of lack of or inadequate annealing on completion of manufacture and possibly also due to work hardening during installation.

(ii) Sulphur embrittlement

Thermocouple conductor failures have occured due to sulphur embrittlement, the sulphur attack being negligible at room temperature and accelerating at high temperatures. If sulphur is present the attack often occurs during the annealing processes and failure occurs due to subsequent cold work.

(iii) Effect of Moisture

Contamination of magnesia insulation by moisture, by exposure to atmosphere, will probably lead to embrittlement of the conductors following exposure to high temperature for an extended period.

The moisture has a further effect in that it can bring about a low insulation resistance when the thermocouple is at a high temperature. The insulation resistance may be sufficiently low to create difficulties in obtaining a satisfactory temperature measurement.

7.2.10.4. Experience at the National Engineering Laboratory

Three main modes of failure namely (i) open circuit in loop, (ii) Electrical leakage to earth or adjacent metal work and (iii) Hot junction shorted out have been experienced in

the National Engineering Laboratory (213). A signal may be developed across part of the thermocouple to give a reading . either higher or lower than expected in the case of electrical leakage to earth. A special case of this had been observed where bare thermocouples were immersed in water. Electrolytic effects can arise and are most noticeable in a differential configuration (large error signals, often of a random bit varying nature, are observed).

If the instrument 1s not 1solated from earth, large signals may be developed due to 1ts own power supply in an earth loop where the thermocouple lead forms a path for the error current. High or low readings may be expected.

Where a.c. currents are adjacent, such as form the mains, effects may be observed if the equipment is sensitive to rapidly changing signals. On an oscilloscope or an ultra violet recorder the effect will be a trace of a periodic nature superimposed on the expected signal. If the equipment is a digital voltmeter performing repeated scans in a data logging system, a scatter of readings is obtained about an expected mean.

7.2.10.5. Other Sources of Possible Failures in the Thermocouple Installation -Electrical Instruments used with thermocouples

In the overall reliability consideration of the thermocouple system, consideration of the electrical instruments and connections that go with the thermocouple is relevant. Errors arising from the electrical instruments used with the thermocouple would result in outputting of eroneous signals.

There are two main types of electrical instruments used with thermocouples.

(i) Direct deflection instruments e.g. Millivoltmeter

(ii) Potentiometer type instrument e.g. Null Potentiometer. Associated with these could be voltage amplifiers.

Errors in the indications given by a millivoltmeter may arise due to parasitic or stray electromotive forces. Such electromotive forces may be caused by leakage currents from neighbouring power and lighting circuits; by breakdown of electrical furnaces at high temperatures; by electrolytic effects occuring as a result of dampness at any junctions, including switchgear; to thermoelectric. effects arising from temperatures differences between the junction of similar metals other than in the thermocouple itself; and to thermionic effects.

The above sources of error also apply to instruments recording an out-of-balance current from a potentiometer system. For the null method potentiometers there are other sources of possible error. These are (i) A change in e.m.f. of the standard cell against which the potentiometer current is adjusted (ii) a change in the potentiometer current during intervals between adjustments; (iii) indefinite or slack mechanical linkage between the slide wire contact and the pointer of indicator or of the pen of the recorder; (iv) insensitivity of the balancing mechanism to the galvanometer deflections.

---'

7.3. Thermocouple Failure rate data

There is not much published work on thermocouple failure rates in the open literature. The only published figure on thermocouple failure rate known to the author is that by

Green and Bourne (101) where they quoted an assumed failure rate of 0.088 faults per year. However, actual data from the survey carried out by the author and already reported in Chapter 3 show much higher: failure rates. Relevant extracts of summary of the survey are given below. Table 7.4. Interpretation of the tables and other background information are as given in Chapter 3.

Table 7.4.

Works	Number at Risk	Instrument Years	Environ- ment factor	Number of faults	Failure rate, faults/year
A	663	-	3	127	0.40
в	88	-	4	47	1.34
С	22	18	4	18	1.00
A11	772	369	3	191	0,52

Thermocouple Reliability Data

The figures shown above point at the influence of environment on the failure rate. Obviously, the severer the environmental conditions, the higher the failure rate expectation.

7.4. Experimental Laboratory Work on Thermocouple Failure

The temperature range limitation of the experiments carried out were imposed by the furnace available in the laboratory. Because of this temperature range limitation the choice of possible thermocouples for testing to failure under severe temperature conditions was limited to only copper vs

constantan and possibly iron vs constantan and nickel/10% chromium vs constantan thermocouples. The copper vs constantan thermocouple was easily the best choice in the circumstances as its recommended range of operation is well below that of the furnace and it was easily available, hence its choice for the experiments. For similar reasons Chromel vs Alumel thermocouple was used as the reference or comparator thermocouple as its range of operation is outside the range of the furnace and it was also readily available.

7.4.1. Description of Apparatus

A line diagram of the apparatus set up is shown in Fig. 7.2.

The copper vs constantan (Cu/Const) thermocouples were part insulated by ceramic sleeves and part by insulating tape. Most of the thermocouple in the furnace and out of the furnace was insulated by ceramic sleeves and the remainder by insulating tape. The Chromel vs Alumel (Cr/Al) thermocouples already had fibre glass insulation.

The Cu/Const thermocouples were made up in the laboratory by braising the two wires together while the CR/Al thermocouples were spot welded. The Cu/Const wires were 18 gauge and the Cr/Al about 19 gauge.

A constant temperature water bath was used to maintain a 'cold junction'. The temperature of the bath was controlled at 22°C.

The thermocouples therefore had their cold junctions in the water bath, their hot junction in the furnace and the

Fig 7.2 Line diagram of thermocouple failure logging rig.

-192-

loose ends connected up to a junction point from which they were linked directly by cable to the analogue to digital converter and hence to the computer.

The analogue to digital converter incorporates amplifiers which were set to an amplification of 100 and had an internal resistance of 10k ohms.

The power input to the furnace is controlled by an energy regulator which is a periodic current interruptor having a continuously variable ratio of the 'on' to the total cycle time. Because the energy regulator compensates automatically for voltage variations and the furnace winding has a large heat capacity, quite accurate temperature control can be expected but because the regulator only controls the power input, it does not operate in the same way as a thermostat and the temperature will only remain constant if the ambient temperature does not change and the furnace is not exposed to draughts.

The furnace is fitted with a Cr/Al thermocouple which is connected to a temperature indicator at the front of the furnace by a compensating cable.

There was provision for four channels into the computer from the junction point so that four thermocouple readings could be logged simultaneously.

7.4.2. Experimental Work Carried Out

All the laboratory experimental work was done on-line using the departmental Argus 100 computer.

Initial experimental runs were carried out to develop the best way of logging the thermocouple signal by the computer. From the initial runs and the difficulties encountered, modifications were made until a satisfactory logging state - as was used - was achieved.

Cu/Const thermocouples were then subjected to severe temperature conditions and tested to failure; the behaviour before, during, and after failure was thus recorded and observed.

A series of experimental runs were then carried out from fairly high temperatures ($860^{\circ}C$) for Cu/Const thermocouples to just above the recommended upper temperature (400°), to observe the approximate relations for times to failure and the general pattern of behaviour at failure at these various environmental conditions.

Following the analysis of the earlier runs, a simple algorithm, based on the , standard deviation of the signal, was developed to detect thermocouple malfunction.

It is easy to detect total failure but the object of the algorithm was to detect the start of failure. Fuller details on the algorithm are given in the next section 7.4.3.

The logging program was then modified to incorporate and test the algorithm on-line. A series of experimental runs were carried out to do this. The parameters of the algorithm were investigated on-line also.

In addition to simulating thermocouple failure under severe temperature environmental conditions, open circuit or loose end failure was also simulated. Finally, chemical attack or severe corrossive atmosphere environment effect

was simulated. The latter two simulations were done using the Cr/Al thermocouple and working well within its recommended temperature range.

The results of the experimental runs carried out are presented later in section 7.4.4.

7.4.3 Thermocouple Failure detection algorithm as tested on-line:

Invariably a thermocouple failure would result in its giving out erroneous signals. From the work carried out in the laboratory and from data from industry, an excessive rate of change of readings of the thermocouple is almost a common characteristic. This can easily be picked up by looking at the variation in the standard deviation of the signal, calculated by using a running mean.

A running mean is important as the thermocouple mean may move. A mean is necessary for the effectiveness of the algorithm as it is important to damp out spurious signal noises and avoid false alarms by spurious spikes.

The procedure for calculating standard deviation is the same as that for average power. The variance and average power are effectively the same.

The standard deviation based algorithm was developed and tested both off-line and on-line. The algorithm is exactly on similar lines as that described in Chapter 5 Section 5.14.4.

The running mean is calculated by using a single exponential smoothing as follows:

(i) running mean mik

 $\overline{m}_{k} = \alpha m_{k} + (1-\alpha) \overline{m}_{k} - 1$

(11) error ek

 $\mathbf{e}_{\mathbf{K}} = \mathbf{m}_{\mathbf{K}} - \mathbf{m}_{\mathbf{K}} - \mathbf{1}$

(111) variance 5-2

$$\sigma^2 = \frac{\sum e_k^2}{N}$$

(iv) standard deviation σ

$$\sigma = \sqrt{\sigma^2}$$
$$= \frac{1}{\sqrt{N}} \sqrt{(\mathcal{Z}e_k^2)}$$

In the present work, the standard deviation was simply calculated and displayed as a function of time This was adequate for the objectives of illustrating the feasibility of the use of the technique It could be displayed in various ways to aid the operator in malfunction detection Some display types have already been described in Chapter 5 section 5.5. For automatic detection by computer, threshold values can be set for the standard deviation values calculated

The Astral programs to carry out the operations both off-line and on-line are given in the Appendix (2,)

Values of α used were the common type values used in industry ______ $\frac{1}{2}$, $\frac{1}{4}$, and 1/8. The values of N used were 20, 30, 60, 120 The sampling times were 1, 5, 10, 20, 30 seconds. The speed of the punch out-put was a limiting factor to how fast the logging could be. For the investigation of a particular parameter, the other two were held constant.
7.4.4. Experimental results and analysis

The cold junction was a water bath maintained at 22°C.

The tolerance for copper/constantan (Cu/Const) thermocouple in the range +100 to +400°C $_{1S} \pm \frac{3}{4}\%$. That for chromel/Alumel (Cr/Al) thermocouple in the range 300°C to 1000°C is $\pm \frac{3}{4}\%$ (184). There is nothing in the literature for the tolerance of the Cu/const thermocouples in the temperature ranges to which they were subjected in the laboratory tests (400°C to 860°C) as this was outside their recommended range of operation. The environmental conditions in which the Cu/Const thermocouples were tested were drastic for them.

The computer loggings are the actual e.m.f. outputs of the thermocouples. The outputs are in millivolts because of an amplification factor of 100 of the signal by the analogue to digital converter before the signal is read into the computer. The computer outputs can easily be converted into actual temperature readings in engineering units by using standard calibration curves for the particular thermocouples. Because the Cu/Const thermocouples were tested outside their recommended temperature range of operations, there is no such calibration data in this range. Nevertheless the signal outputs were considered adequate for representing a normal and failing instrument signal pattern and for the purposes of testing the standard

deviation algorithm. Analyses have therefore been done directly on the actual e.m.f. outputs of the thermocouples partly because it was not considered necessary to work in engineering temperature units and partly because the e.m.f. outputs are the actual signals that reach the computer and the behaviour of which is of primary interest.

A check on the fluctuations of the Cr/Al thermocouple readings(for which there are standard calibration data in the literature) showed the fluctuations to be within the recommended tolerance limits for the range of operation. The fluctuations were generally of the order of 0.1 and 0.2 millivolt. A change of 0.1 millivolt in the Cr/Al thermocouple output as logged by the computer is equivalent to a change of approximately 2.5°C. On this basis, the laboratory set up was found sufficiently accurate for the purposes of this project. The logging is only accurate to 3 decimal places and the fourth decimal place is liable to round off error in the computer.

The level of tolerance in the fluctuations of the Cu/Const thermocouples would be expected to be higher than those of the Cr/Al thermocouples as the Cu/Const thermocouples were run at temperatures above their recommended range of operation. The general level was about 2 or 3 times that of the Cr/Al for temperatures around 800° C.

All the data analysed are given in the appendix tables $A = \frac{4}{20}$.

Fig. 7.3 is a computer plot of a failing Cu/Const thermocouple signal. Fig. 7.4 is the computer plot of the corresponding standard deviation as calculated on-line by the algorithm.

Period A in fig. 7.3 corresponds to D in fig. 7.4 and represents the period of normal instrument behaviour just before failure. For this region, the signal fluctuations and the standard deviation values are within limits of tolerance and reasonably steady; At point B the instrument signal was beginning to go off-normal. In this particular case, this was characterised by spikes such as B and C, a general rise in the magnitude of the fluctuations and an upward drift in the thermocouple output signal. There was no corresponding rise or change of conditions in the furnace temperature as indicated by both Cr/Al thermocouple output and the furnace temperature indicator. This type of signal behaviour would therefore signify the beginning of an off-normal behaviour of the instrument signal. This off-normal trend was immediately picked up by the standard deviation calculations and clearly shown by peaks E and F, and by the general upward trend of the values thereafter. This type of behaviour of the standard deviation would not be expected for a normal instrument signal. Because of the thermal inertia of the furnace, temperature fluctuations of the furnace would be slower and more gradual. If it is a drift due to

varying ambient temperature or change in the measured temperature, the running mean should be able to cope with it. Fig. 7.5 (a) shows the computer plot for normal behaviour Cu/Const and Cr/Al thermocouples for varying measured temperature conditions. There was a rise in the measured temperature from 580°C to 860°C. The rise was gradual and the fluctuations were within limit. The standard deviation calculations fig. 7.5 (b) remained within tolerance and showed a steady pattern.

For off-normal detection purposes, a combination of peaks such as E and F, and a general rise in the level of the standard deviations could be indicative of the beginning of an off-normal condition.

As the general instrument signal fluctuations rose in level and the spikes increased in frequency, more high peaks and generally high values of the standard deviation appear in fig. 7.4. The standard deviation calculations alone could have clearly and positively inducated the off-normal condition in the signal long before it was obvious from the signal itself. A display of the standard deviation calculations would have shown up the on set of off-normal behaviour in the instrument signal well and long before the total failure. Such a display would be superior to a display of the actual signal or pure instantaneous error as neither could differentiate between a normal drift in the measured temperature and spurious excursions and spikes.

The running and continuously updated mean of the algorithm is designed to cope with spurious spikes or normal varying conditions in the measured instrument signal. The standard deviation plot of the rising temperature signal of fig. 7.5 (a) given in fig. 7.5 (b) shows how well the algorithm can cope with such temperature variations. The standard deviation, because it is an average parameter of the signal, tends to damp out any spurious excurisions and spikes and therefore when they show up significantly on the standard deviation, they must be significant and can be interpreted as such.

Fig. 7.5 (b) 1s the standard deviation plot of the signal shown in fig. 7.5 (a) for the normal behaviour of a Cu/Const thermocouple at above 800°C. Even at such severe temperature conditions, fig. 7.5 (b) shows a steady pattern for the standard deviation. For varying environmental conditions, the computer can learn such patterns and this would increase the versatility of the standard deviation-based malfunction detection algorithm. Fig. 7.6 shows the standard deviation for the failing instrument signal whose normal behaviour is shown in fig. 7.5 (b). The general pattern is the same — a combination of large peaks and general rise in the level of the standard deviations at the on set of off-normal condition.

A crude plot of the times to failure of different Cu/Const thermocouples at different temperatures is given

in fig. 7.7. An attempt at an Arhenius type plot, fig. 7.8, suggests that the temperature vs time to failure relationship does not readily fit a chemical rate type equation. Nevertheless, the pattern was one of rapidly decreasing time to failure with increasing temperature — a drastic drop from under 1000 hrs. at 400°C to about 10 hrs. at 860°C, see table 7.5.

The investigation of the effects of the parameters in the standard deviation algorithm was carried out on Cr/Al thermocouples behaving normally and well within their operating temperature range. The investigations were done on the Cr/Al thermocouples because in the above temperature range of operation, they would be more reliable and would be expected to be more reproducible. The different plots of the standard deviations for the investigations have been included not only to show the effect of varying the parameters but also to show the type of consistency and pattern of the standard deviation to be expected for normal instrument behaviour.

The variations of the smoothing constants figs. 7.9 and 7.10 did not affect the general pattern or values of the standard deviations. The values tested were the normal type of values used in industry. They all seem adequate for the purposes of the algorithm. Choosing $\alpha = 1$ is equivalent to no smoothing whereas an excessively low value of α will cause the smoothed signal to be unrepresentative of the actual signal when a steady real trend is present. A low value of α should

be used to smooth out large random fluctuations. The choice of α therefore requires a compromise between noise rejection and speed of signal tracking.

The effect of varying the sampling times and the sample sizes figs, 7.11 to 7.18 did not show on the general pattern or values of the standard deviations. The sampling times tested appear therefore adequate for satisfactory representation of the signal for the purposes of calculating representative values of the standard deviation. Because the standard deviation is an average parameter of the signal, the larger the sample size, the better statistically would be the standard deviation estimate. The choice of the sample size and sampling time, therefore, appears, on the basis of the above findings, to be a rational decision with considerations of how soon the off-normal condition should be detected on occurence and a good representation of the signal characteristics for standard deviation estimation, borne in mind.

Loose connection would typify such sudden thermocouple failures and was simulated in the laboratory. The thermocouple contacts were broken and reconnected while logging the instrument signal. Fig. 7.19 shows how rapidly the algorithm positively picks up such an effect. The thermocouple contacts were disturbed twice in the experimental run shown and the values of the standard deviations between and after the disturbances show how quickly the algorithm recovers from, and its

sensitivity to such a fault. Even though the values of the standard deviation shot up on loss of contact, on reconnection, the values quickly came down to the normal level. Again, the general behaviour of the standard deviation at off-normal condition was excessive deviation of the value from normal or expected values.

A similar pattern of behaviour was shown by the standard deviation calculations when a chemical attack of the Cr/Al thermocouple was simulated even though the general behaviour of the instrument signal was different in this case. Instead of a rise in output of the thermocouple, there was a downward drift until total failure when the instrument went open circuit. The on-set of chemical attack was characterised by the high level of fluctuations in the instrument signal. This was followed by a general drop and downward drift of e.m.f. output. The beginning of chemical attack was immediately picked up by the algorithm fig. 7.20 and the off-normal state of the signal was also clearly shown.

Generally, the patterns of the standard deviations for both the Cu/Const and Cr/Al thermocouple signals in the normal and failed states were consistent. When the thermocouples were in their normal states, the standard deviations fluctuated within tolerable limits. As soon as off-normal conditions arose, large excursions showed up as peaks and as the condition deteriorated the excursions were larger and persistent.

The standard deviation algorithm tested here, therefore, could be effectively used for a display technique to aid the operator in malfunction detection or as a computer based technique. For the latter use, two or three consecutive large excursions could be used as a basis for malfunction. Threshold values of tolerance can be set a priori but the computer could learn and set its values with varying environmental conditions. Ability to do the latter would increase the versatility of the algorithm.

The conditions simulated here may be considered too drastic and a bit artificial, nevertheless, they are representative of the pattern of behaviour that would be expected albeit less drastically.

Fable 7.5	Cu/Const	thermocouple	failure	time	and	temperature

Temperature	Time to failure (hrs.)	Absolute temperature $(\frac{1}{T})$	$\frac{1}{t}$ hrs ⁻¹
400	840	1.49×10^{-3}	1.19×10^{-3}
600	300	1.14×10^{-3}	3.34×10^{-3}
680	170	^{1.05} x 10 ⁻³	5.90×10^{-3}
800	20	0.935×10^{-3}	5.0×10^{-2}
860	10	0.885×10^{-3}	1.0×10^{-1}

For Figs. 7.5 to 7.20 the values of the Standard deviation σ are in millivolts x 10.

The points marked x stand for values of σ > 100.

207 (9)

ſ

. .

Fig. 7.6 Failure of Cu/Const thermocouple

- 211 -

ł

- 212----

1

Fig. 7.8. Arhenius type plot for time to failure vs temperature

-215 -

Fig. 7.11 Effect of sampling time T = 1 sec.

-218-

~219-

-220-

7

-221

~

222-

- +

- -- -- ---

С

Fig 7.19 Simulation of loose connection

*

さない

.

<u>'</u> ٦

 CASE STUDIES OF INSTRUMENT MALFUNCTION AND MALFUNCTION DETECTION (2) - DIFFERENTIAL PRESSURE TRANSMITTERS AND CONTROL VALVES

,

.

8. <u>Case Studies of Instrument Malfunction and Malfunction</u> <u>Detection (2) - Differential Pressure Transmitters</u> <u>and Control Valves</u>

8.1. DIFFERENTIAL PRESSURE TRANSMITTERS

Differential pressure (D/P) transmitters are very simple but widely used measuring instruments in industry. The purpose of the instrument is to receive a differential pressure from some primary element such as an orifice or from a liquid level installation.

 Some hints on symptoms and causes of failure of the

 Taylor instruments (214) D/P transmitters is given below;

 <u>Hints on Failure of Taylor Instruments D/P transmitters</u>

 <u>Symptom</u>
 <u>Cause</u>

 Output pressure low
 (i) leak in output line

 (ii) plugged orifice
 plugged nozzle

Transmitter fails to respond leak in impulse lines to change in differential

Output oscillates Sensing diaphragm

There is, otherwise, not much in the open literature on their failures.

From the preliminary survey of instrument failures in industry and from the survey reported in chapter 3, the majority of D/P transmitter malfunctions were associated with the impulse lines connecting it to the primary element. Blockage of the impulse lines was a predominant cause of malfunction.

The D/P transmitter was primarily chosen for study because it was expected to offer suitable signals for analysis. The signals would be different from those offered by the thermocouple and might be amenable to more sophisticated time series analysis. Impulse line blockage was chosen because it is important and easy to simulate in the laboratory.

8.1.1.D/P Transmitter Failure rate data

Į

Green and Bourne (101) published a failure rate for pneumatic differential pressure transmitters of 0.76 actual calculated fault per year. A summary of the failure rate data, already presented, in details in chapter 3, is given below.

Table 8.1. Summary of D/P transmitter failure rate data

Works	Type of Measure- ment	Number at risk	Instrument years	Environ- ment factor	No. of faults	Failure rate faults/year
	Pressure	69		_	-	-
A	Flow (fluids) (P and e)	473	_	3	419	1.86
	Level (liquids) (P and e)	130	-	4	106	1.71
В ,	Flow (fluids) (e)	35	-	4	37	2,66
	Flow					
С	(fluids) (e)	13	-	-	•	-
	(p)	115	-	-		-
A11	Flow (fluids)	- 636	324	3	359	1.73
	Level (liquids)	130	62	4	106	1.71

e = electronic

p = pneumatic

Table 8.2.Effect of environment on Reliability of D/Ptransmitters in contact with Clean and Dirtyfluids in works A

No. at No. of Failure rate, faults/year Risk faults Clean fluids 27 5 0.39 Dirty fluids 90 82 1.91

The background and full explanation of the figures have already been given in chapter 3. A direct comparison of the failure rates obtained by the author and that published by Green and Bourne (101) cannot be made, as not enough information on how the latter obtained their figure is given. Also their figure is for pneumatic D/P transmitters. From the figures in table 8.1, the failure rate for the electronic transmitters are much higher than those for combined electronic and pneumatic instruments. This could be explained by the fact that the electronic D/P transmitters were on severe enviornment plant.

The effect of environment does show a marked difference in the failure rates of D/P transmitters in contact with clean or dirty fluids, see table 8.2.

Of the 364 impulse line failures recorded at works A, 194 were blockages and 99 were leakages.

More information on the nature of the failures of the instruments at works A was obtained, a cross-section of the operators comments on the log tickets for the impulse line

and transmitter failures, are given in tables 3.12 and 3.13 of chapter 3.

Most of the D/P transmitter failures and failures associated with it such as impulse line failures were 'hard-over' type failures. Most of these failures could have been picked up earlier with a suitable malfunction detection technique; and in cases involving loss of variable measurement, alternative approximate substitute readings could have been easily calculated, particularly in the cases of flow and level measurement.

8.1.2. Experimental laboratory work on impulse line blockage

The primary objective of the laboratory experimental work on impulse line blockage was to obtain signals that would be amenable to time series analysis. The noisy signals from a differential pressure transmitter responding normally as a flow measurement instrument under conditions of turbulence in the orifice flowmeter, was considered suitable. The signal with the impulse lines blocked or frozen was expected to be less noisy or damped down. Freezing of the impulse lines could be easily simulated in the laboratory and this set-up would be adequate for the limited objective of, showing the feasibility of time series analysis for instrument malfunction detection. The fact that freezing of impulse lines in industry during the winter is one of the main causes of blockage type malfunction of the differential pressure transmitter, made the choice a better one.

It was hoped that subsequently an algorithm based on frequency analysis (time series) methods could be developed

and tested on-line. All the impulse line blockage experiments were done on-line using the Departmental computer. The early loss of the computer towards the end of this project and the shortage of time limited the experimental work that could be done. However, there was time to obtain data, to show the feasibility of frequency analysis, for instrument malfunction detection, and to investigate some relevant considerations in the application of the technique.

Data for analysis were obtained for the unfrozen impulse lines, frozen impulse lines and freezing impulse lines. Experiments to investigate the effect of sampling frequency were also carried out. The fastest logging time was limited to 5 samples per second by the output paper punch used with the computer.

8,1.2.1. Description of apparatus

A line diagram of the impulse line freezing apparatus is given in fig. 8.1.

The orifice meter was designed according to British Standard 1042; Part 1 : 1964 specification for use with a Taylor Instruments fixed range D/P transmitter. The input range of the transmitter is 0-30 inches, water gauge for a 3-15 p.s.i. output.

The pneumatic output from the transmitter was converted into an electric signal by a fast pressure to current transducer. Because of the low signal output from the pressure to current transducer, it had to be amplified before going into the analogue to digital converter and hence to the computer for output on punched paper tape.

,

Fig. 8.1 Impulse Line freezing Rig

The freezing of the impulse lines was done more gradually initially by circulating a low temperature ethylene glycol/water mixture through shells round the impulse lines. With the rise in ambient temperature₂this became inadequate and the freezing arrangement was modified to a solid carbon dioxide chamber. The freezing was more drastic than with the circulation of ethylene glycol/water mixture. The rate of freezing could be controlled by the amount of solid carbon dioxide in the chamber.

Water was circulated through the orifice plate and the liquid in the impulse lines was water also. The flow of water could be varied to create laminar or turbulent conditions around the orifice plate. In this way the noisiness of the signal output of the D/P transmitter for normal operation, could be varied and set.

8.1.2.2. Experimental work carried out

The experimental work carried out consisted essentially of automatically logging signals from the differential pressure transmitter using an Argus 100 digital computer.

When the logging technique was adequately developed, the flow rate of water through the orifice plate was adjusted to the turbulent regime so as to give a sufficiently noisy signal output from the transmitter.

With this setting, a series of loggings were done. The normal noisy instrument signals, the instrument signal variation during freezing and the instrument signal with the impulse lines frozen. All these were logged at the fastest logging interval that could be achieved - which was

0.2 second interval. These signals were the important and relevant ones for an instrument malfunction algorithm.

To investigate possible aliasing effects and the effect of the sampling interval on the frequency analysis of the signals, a series of freezing runs were logged at various sampling intervals of 0.2 second, 1 second, 5 second and 1 minute. The use of the computer for on-line experiments was lost shortly after this series of experiments. At this stage sufficient data for analysis had been obtained.

8.1.2.3. Experimental results and analysis

Instrument signals of a differential pressure transmitter were obtained for analysis by the fast Fourier transform methods. The signals analysed were the signals for normal instrument operation and when the impulse lines were frozen. The standard deviations of these two signals were also calculated for comparison with the above analysis.

The data analysed were logged at the maximum achievable frequency which was 0.2 second interval logging time. The highest detectable or available frequency in the analysis therefore was 2.5 cycles per second.

The signals were analysed principally to investigate the general patterns of the power spectrum plots and signal power distribution over the detectable frequency range. It was envisaged that from these, the practical use of the FFT analysis for instrument malfunction detection could be assessed.

Signals were obtained from different experimental runs and analysed for reproducibility of the patterns of power spectra distribution. Some of the practical considerations for the application of the technique were made.

The Fortran IV coded FFT program used for the analysis of the signals is given in the appendix (|). The algorithm is based on the decimation in frequency method (155). It computes the discrete Fourier transform given by

$$X_n = \sum_{k=0}^{N-1} x_k W^{nk}$$
, n = 0, 1,, N - 1

where $W = e^{-j2\pi/N}$

The X computed using the FFT program are the Fourier coefficients of the corresponding exponential series of the N samples of the signal.

A sampled power spectrum estimate is given by the modulus squared of the frequency samples. Thus, $(|X_0|^2, |X_1|^2, \dots, |X_{N-1}|^2)$ are the power spectrum estimates for the zero frequency, 1st positive frequency harmonic, 2nd positive frequency harmonic etc.

In this work the power spectra have been calculated for fractions $(\frac{1}{8} \text{ parts})$ of the highest detectable frequency. This is effectively

 $\mathbf{234}$

normalising the frequency axis for the purpose of comparison of the parts. The calculations of power spectra were normalised also to avoid the dependence of the power spectra values on the sample size.

The only limitation of the program used is that N, the sample size must be an integer of 2. This is purely for program simplicity.

Real time plots of the D/P transmitter signal for normal instrument behaviour and for instrument signal with the impulse lines frozen are shown in the appendix Figs Al and A2. These are typical signals for the two states and the type of signals analysed.

The calculated power spectra estimates for the line spectra plots of Figs 8.1 to 8.4 are given in the appendix tables Al to A3.

Figures 8.1 and 8.2 show the type of reproducibility obtained for the plots of the line spectra of different portions but the same value of N, the sample size, for a typical instrument signal. They also represent the general pattern of the line spectra plots for the two states of instrument signal.

The signal power distribution for the same analyses are given in tables 8.3(a) and 8.3(b) for both the normal instrument signal and for the instrument signal when the impulse lines were frozen. Not all the data of tables 8.3(a) and 8.3(b) were plotted. The general pattern was the same and so only three plots each are shown. The data for all the tables, however, are given in the appendix Al to A3.

Data from different experimental runs were analysed for normal instrument behaviour and for the instrument signal with the impulse lines frozen. The line spectra plots are given in Figs. 8.3

and 8.4. The corresponding signal power distribution calculations are given in tables 8.4(a) and 8.4(b).

A typical signal for each of the two instrument states considered here, were subjected to analysis for different values of N, the sample size. The average values of the line spectra for each value of N were calculated. They have not been plotted as the general pattern is the same. The calculated values, however, are given in the appendix. The signal power distribution are given in tables 8.5(a) and 8.5(b).

The ratios of the total signal power for frequencies below half the highest detectable frequency to the total signal power for frequencies above, were also calculated and are given in tables 8.3. to 8.5. The total power was calculated as the area under the line spectra plots.

The data shown in Figs. Al) and AZ were analysed using the standard deviation algorithm of chapter 7. The value of the smoothing constant used was 0.25 and the sample size was chosen as 32 to correspond to the predominant value of N used in the above analyses. The values of the standard deviation calculated are given in the appendix, table A4. The plots of these values are shown in Fig. 8.5.

8.1.2.4. <u>Discussion of results</u>

There is a striking difference in the shapes of the line spectra of the instrument signals for the two states of normal behaviour and instrument signal with the impulse lines frozen.

In the results obtained, the general pattern for the normal instrument signal is one of concentration of power in the low frequency region - at frequencies below half the highest detectable available frequency. There are characteristic high values of the line spectra at these low frequencies and a drop in values at higher frequencies. This pattern was reasonably reproducible for all the

samples analysed.

With the results for the instrument signal with the impulse lines frozen, this pattern is not there. There are characteristic low values over the entire frequency range for all the frozen impulse lines, instrument signals.

Fluctuations in the absolute values of the line spectra at specific frequencies were observed, but even then, the magnitude and overall pattern was consistent.

A striking difference in patterns as obtained could be an effective means of detecting off-normal behaviour of the instrument malfunction by visual display of these plots.

There is more consistency in the magnitudes of the total power. The total power for the normal instrument signals were generally about an order of magnitude higher than the total power for instrument with the frozen impulse lines. Tables 8.3(a) and 8.3(b) bring out the point very well.

The ratios of the total power on either side of half the highest detectable frequency show reasonable consistency in magnitude and absolute values. The values for the normal instrument signal were generally over 10 while those for the instrument signal with frozen impulse lines were generally below or around 1. When the values for the ratios have varied outside the general values, the values of the total power of the instrument signal have been consistent with general patterns.

With the type of consistency obtained for the total instrument 's signal power and ratios of instrument power on either side of a critical frequency, the setting of threshold values for these could

be an effective computer based check for detecting off-normal conditions in the instrument signal behaviour. The routine task of calculating these values is well suited to the computer.

The pattern for different experimental runs, Figs. 8.3 and 8.4, are consistent with the general shape of the line spectra plots for the two instrument states. Even though the absolute values of the total power showed some variation, the ranges were consistent and the ratios also consistent with the general pattern observed for any one signal of either state of the instrument.

When the same signal was subjected to analysis with different values of N, the sample size, the results were consistent with the general patterns observed. They showed a good measure of reproducibility of pattern. This would be expected as the length of record determines the extent to which peaks in the line spectra may be distinguished. It is the sampling interval that determines the maximum frequency which can be distinguished. When the general shape of the line spectra is of main interest, any value of N should give the general shape but the value of N will determine the number of line spectra, over the range of highest detectable frequency. Thus if N = 32 for a maximum detectable frequency of 5 cycles per second gives 16 line spectra, for that frequency range at intervals of $\frac{1}{16}$ parts of the highest frequency, N = 16 will give 8 at intervals of $\frac{1}{9}$ parts of the highest frequency while N = 64 will give 32 at intervals of $\frac{1}{32}$ parts of the highest frequency. Each analysis should give the same general shape of the line spectra plot. Therefore, it would be adequate, normally, to select N such that at least the frequencies or fractions of the maximum detectable frequency of interest in the line spectra are contained in the results of the analysis.

Aliasing is the key problem that occurs with sampled data. Frequencies which are really above the samplang frequency are observed at a frequency below. The spectral effect is to fold back the spectrum about the Nyquist frequency. In practice aliasing always occurs to some extent because band limited signals are an ideal not real. Therefore a first requirement for digital analysis is to sample at a high enough rate so that all frequencies of interest are identified properly. The part of the spectrum which is folded back must be sufficiently low in magnitude, that it does not interfere with any part of the spectrum for which information is desired. The effects of aliasing are very relevant to high resolution frequency analysis requirements and interpretation. The frequency analysis requirements for malfunction detection - patterns of line spectra and total power distribution-are relatively coarse. The effect of aliasing therefore, is negligible or not so important for this type of analysis.

The standard deviation plots for the normal instrument behaviour and the instrument signal with the impulse lines frozen, Fig. 8.5 are rather similar in shape. The magnitude of the absolute values are different, however. For visual display the plots will not be as effective as the line spectra plots. The setting of threshold values for the standard deviation of the signal could be an effective check for off-normal instrument behaviour but the difference in magnitudes is not as marked as, say, the difference in magnitudes of the total power or power distribution ratios.

For the type of signals analysed here, even though the standard deviation algorithm could be effective for off-normal signal detection, the method of FFT analysis would be more superior.

TABLES

Tables 8.3 to 8.5 represent total signal power distribution for normal instrument signal and for instrument signal with impulse lines frozen.

Al represents the total signal power in the range of frequencies above $\frac{1}{2}$ the highest detectable frequency

A2 represents the total signal power in the range of frequencies below $\frac{1}{2}$ the highest detectable frequency

A TOTAL represents the total signal power over the entire range of detectable frequencies.

The units of power are **vot**ts/hertz.

The total signal power over a range of frequency has been calculated as the area under the line spectra curve for the given frequency range.

For Table 8.3., the numbers 1, 2, 6 are different portions of the same signal.

same signal

•	Power X 10 ⁻¹				
	* 1	A TOTAL	Al	A 2 · ,	A2/A1
ł	1	7812	135	7676	58
	2	5349	314	5035	16
Ľ	3	6718	405	6313 [,]	15.6
	, 4) 6503	387	6116	15.8
	5_	4734	136	4598	33.8
	6	5330	348	4982	14.3

Table 8.3 (a): Normal instrument signal

Table 8.3 (b): Instrument signal with impulse

<u>lines frozen</u>

•	Power X10 ⁴⁹						
	А ТОТАЦ	Al	- A2	A2/AL			
1		~	_				
1	347	/197	150	0.76			
2	330	177'	153	0.86			
3	2 57	101	155	1.53			
.4	275	166 .	119	0.72			
5	265	. 115	150	1.30			
6	292	, 204 (;	88	0.45			

Table 8.4 Different experimental runs

Experimental Run	A TOTAL	Al	A2	A2/A1
1	1372	83	1289	15.5
2	9029	365	8664	23.8
3	734	79	655	, 8.4
	. <u></u>		L	l

Table 8.4 (a) Normal Instrument signal

Power x10 +9

Table 8.4 (b) Instrument signal with frozen impulse lines

Power X1079

Experimental Run	A TOTAL	Al	Å2	A2/A1
1 .	, 242	,123	119	• 0 . 97
2	209	129	80 ;	0.62
3	167 -	ʻ 34	133	3.92

Table 8.5 Different values of N for the same instrument signal

N •	ATOTAL	Al	A2	A2/A1
32	65 03 ,	387	6116	1 5. 8
64	5504	366	5138	14.0
128	6218	193	6015	31.0

Power X10⁴⁹

Table 8.5 (a): Normal instrument Signal

Table 8.5 (b): Instrument Signal with impulse

lines frozen

Power X10 ⁺⁹						
N	ATOTAL	Al .	A2 '	A2/A1		
32	196	106	90	0.85		
64	r ' 22 7 🕔	101	126 ,	1.23		
128 '	· 244	,135	109	0.82		

Figs. 8.1. to 8.4. are line spectra plots of normal instrument signals and instrument signals with the impulse lines frozen.

The units of power P_w are vaits/hertz.

f (in & of 2.5 Hz) -----

.

of the same signal

Fig 8.3 (a) Normal signal different experimental run

Fig. 8.5 Standard deviation plots for Normal and Frozen Impulse line signals

8.2 INDUSTRIAL CONTROL VALVES

Control values are the most common form of final control element in a control loop and may be considered the muscle of automatic process control. Modern processes depend a great deal on the correct distribution ______ and control of flowing liquids and gases --___ a majority of the industrial control loops use the control value as the final control element for increasing mass flow or steam supply as the case may be. The importance of the control value in the process industry cannot therefore be over-emphasised.

This importance of control values was recognised at the formative stages of this project and this coupled with the fact that it was not a measuring instrument made it a ready choice for study. It was expected to offer different signals and perhaps a different malfunction detection approach from that used for measuring instruments.

8.2.1 Nature and causes of Control valve malfunction

From the preliminary survey of failure of plant instruments, the limited data on control valves failure showed about half the valve failures to involve either stickiness of the stem or blockage of the body. Leakages in body and joint were also major causes of malfunction.

In the work reported in Chapter 3, of 359 control valve failures in Works A, 23 were blockages and 53 leakages. Sluggishness of the valves were often traced to sticking. Sometimes the malfunctions of the valves derived from faults in the valve positioner, see Table 3.11, Chapter 3. Valve positioner misalignment, being

out of calibration or loose, often affected the behaviour of the control valve.

Hysteresis or dead-zone caused by valve friction is often a source of difficulty in some control valves. This is a specific aspect of valve stickiness which has been recognised in the literature (224). It can lead either to lack of sensitivity to small process disturbances or to sustained oscillations around the dead zone. The friction is largely caused by the gland packing and it has the insidious feature that when the spindle has been static for some time, the problem becomes worse due to congealing of process material in the gland packing. These effects are particularly severe in some temperature control systems, where the valve may be static for many hours, and then, when a small load change occurs, the friction is so great that the valve will not move to the desired new position.

The Survey reported in Chapter 3 revealed a lot of random failures such as bending or breakage of spindles or breakage of pressure connection line, etc. There are perhaps no obvious methods of predicting such failures. Incipient stickiness, leakages or blockages can lend themselves to the techniques of malfunction detection.

8.2.2 Control valve failure rate data

A brief summary of the data already given in detail in Chapter 3 will be made here.

The only available figure on control valve failures found in the literature is a figure of 0.25 actual fault/ year for pneumatic control valves quoted by Hensley (62).

Reference table 8.6. All the values were pneumatic. Of Of the 1330 values in works A, 1195 were globe values, 105 butterfly and 30 diaphragm; of 86 in works B, 32 were globe, 26 were butterfly and 28 diaphragm values. All the values in works C were globe.

Works	Number at	Instrument	Environment	Number`of	Failure rate
	<u>Risk</u>	<u>Years</u>	<u>factor</u>	faults	<u>faults/year</u>
А	1330	_	2	359	0,57
В	86	-	4	78	2,27
С	115	78.6	2	10	0.127
ALL	1531	747	2	447	0.60

Table 8.6(a) Summary of Control valve failure rate data

Table 8.6(b) Effect of environment on reliability of

	<u>Number at</u> <u>risk</u>	<u>Number of</u> <u>faults</u>	<u>Failure rate</u> <u>faults/year</u>
Clean fluids	214	17	0.17
Dirty fluids	167	71	0,89

control valves

The environment - whether the valve is in contact with clean fluids or dirty fluids has a marked effect on the reliability of control valves, see Table 8.6(b). The failure rate of 0.17 faults/year for valves in contact with clead fluids compares with Hensley's 0.25 faults per year. Again there is not enough information on his figure for comparison with the findings of the survey reported in Chapter 3.

8.2.3 Detection of control valve stickiness

At the formative stages of this work, it was thought desirable to be able to detect stickness of control values as soon as it occurs because of its insidious nature and the fact that it might be expected in a lot of the more serious and frequent control value failures. The object of detecting value stickiness being, as has been the central theme of this work, to avoid poor control, avoid catastrophies and improve instrument maintenance.

Preliminary analysis of control valve data collected, suggested that a simple detection of error between valve demand and valve position was not good enough for malfunction detection. A significant error after a change in valve demand was thought likely. Α compensation for the uncorrected error was thought necessary for estimating a significant error and this required a knowledge of valve dynamics. Hence it was thought necessary to study the dynamics of control valves. In addition to the malfunction detection implications, such a study would be of value itself since many of the most difficult industrial control problems involve fast gas control loops on reactors, compressors, electrolysis cells, where control valve dynamics is significant. Account has not been taken, hitherto, of the control valve dynamics in the design of such loops and better knowledge of the control valve dynamics can only improve the design of such loops. Also knowledge of the actual movement of control valves in practice was thought of interest, as such information could not be found in the

open literature. The manufacturers contacted could not provide such information either.

The above considerations led to an attempt, at the early stages of this project, at the modelling of control valves. The aim of the modelling was primarily to see how valves should respond to signal if they are not faulty. Considerable time was spent on this but work was progressing slowly and it appeared that the malfunction detecting objectives could be better achieved by studying control valve signals, and so emphasis was shifted to obtaining and analysing control valve signals from an industrial installation.

Normally, there will be a unique relation between the air pressure on the valve bonnet and the valve stem position. The relation between instrument signal and valve stem movement is usually linear. If there is stickiness, none of these relations will hold. It was therefore thought that a method of detecting stickiness might be based on comparison of signal to bonnet and stem position.

This comparison might be carried out while the valve is in a working control loop or while the loop is broken. It may often be possible to break the loop for the purpose of doing a test; but it might be expected that when stickiness is just beginning it will be intermittent and will often not show up. Hence even if the loop is taken off, nothing may be detected. It is not desirable to have to break the loop too much. This suggested that it is desirable to have a method of detection which will be effective while the loop is

working.

At the initiation of the industrial experimental work, a simple comparison of the desired valve position and the actual valve position was envisaged to provide a satisfactory method of malfunction detection. The industrial experimental work was therefore designed to measure these two quantities in working control loops. It is the result of the analysis of the data collected from this experiment that is reported here, in the following sections.

8.2.4 Experimental industrial work on control valve signals

Datawere obtained from an industrial computer installation in which positional algorithm is used, valves are positioned by air pressure regulated by solenoids, and valve stem positions are measured.

The general configuration of values is as shown in Fig. 8.6. There are twelve towers. The computer was the same; so was the method of value positioning as was described in details by Thompson (225). The computer was originally at Fleetwood and was transferred to Winnington. It was on an ammonia - soda plant in both cases. Data were collected at Winnington.

Two sets of data were obtained. In 1967 the top and bottom cooling valves were found to be sticking, Data on the 1967 valves were obtained. By 1970 all the faulty valves had been replaced. Data on the 1970 valves were also collected.

<u>Valve types</u>: The carb vat liquour (CVL) valves are Saunders 3 inch diaphragm valves. The top and bottom

cooling valves are Audco is "slimseal" butterfly valves. Draw valves are Saunders is inthe diaphragm valves. No valve positioners are used.

Frequency of calculation of valve demand: CVL and draw valves' demands were calculated every one second. Top and bottom cooling valves' demands were calculated every 5 seconds. The frequency of output of signal to position the valves was 6 times per second. The frequency of output of data was 20 seconds.

Smoothing: Valve demands were smoothed using algorithm

$$\overline{P}_{n} = \overline{P}_{n-1} + K (P_{n} - \overline{P}_{n-1})$$

where P_n is the instantaneously measured pressure and \overline{P}_n is the smoothed estimate. K is the smoothing constant with values 1, 1/2, 1/4, 1/8. It is believed that K = 1/4 was used. There was no smoothing in value position measurement.

Dead band: An allowance of 0.7% is made for the "dead band" range, that is, there is no output to valve unless

8.2.5 Analysis of industrial valve data

ر

At the time of the initiation of the collection of control valve data, a simple comparison of the desired valve position and the actual valve position was envisaged to provide a satisfactory method of malfunction detection. At that initial stage, the parameter of primary interest was the error between the desired and actual valve positions. The computer plots of the valve analysis were carried out to study this.

The valve demand (V_D), valve position (V_p), error between valve position and valve demand (error) and change in valve demand (delta) were plotted for all the data. The aim of the plots was for a visual appreciation of the correlation of the different plotted values. The correlation was not very good and so less emphasis was placed on these plots, instead the emphasis was shifted to the plots of the standard deviation of the error calculations. Typical complete computer plots of the above mentioned variables, for four different valves are shown in Figs. 8.7 to 8.10. The plots are shown mainly to illustrate the type of correlation that was obtained for the plotted variables and the basis for the preliminary conclusions. For ease of comparison of the different plots, these were repeated on a common scale. Figs. 8.11 to 8.14 show only the computer plots of errors for some further data, all plotted on the same scale. Figs. 8.7 to 8.10 are not on the same scale, but on different scales to best represent the values of the variables plotted.

The preliminary analysis and the above plots suggested that a simple check on error between desired and actual valve position might not be enough for malfunction detection. It was thought that the standard deviation of the errors might be better and therefore these were calculated and plotted for comparison, particularly between the 1967 valve data when some of the valves were known to be malfunctioning and 1970 data when this type of information was not available. The plots of the standard deviations are given in Figs. 8.15 to 8.23.

The study of instrument signals from industrial installations has always been of interest throughout this project. Programmes were initiated for obtaining these but not all the expected data were obtained. Signals from gas pressure, flow, pressure and temperature measuring devices were obtained at the late stage of this work. The signals were for the normal instrument behaviour. The standard deviations of the signals were calculated and have been plotted in Figs. 8.24 to 8.27.

The data for all the plotted figures are given in the appendix tables A21 to A31, for the gas pressure, flow, pressure and temperature measuring instrument data, only the standard deviations have been given.

The computer plots shown are for the 1970 valve data. The errors were generally within the 0.8% band, see Figs. 8.7 to 8.14. The errors were larger for CVL valves than for the others, see Figs. 8.7 and 8.8.

Errors arose from both excursions of valve demand while valve position remained constant and vice versa but
these errors were not sustained. The correlation between the plots of valve position and valve demand, error and delta was not very good. The typical complete plots of these four variables shown in Figs. 8.7 to 8.10 bring this point out very well. The correlation between error and valve demand change-rate was low and almost arbitrary. Figs. 8.7 to 8.10 generally bring out this point but Figs. 8.7 and 8.9 particularly show it well. There was a finite error even when change in valve demand was zero. This appeared to be due to variation of the valve position Again Figs. 8.7 and 8.9 show this very well. signal.

Rapid excursions of valve demand may arise as a result of derivative action. Rapid excursions of valve position may arise from the equipment measuring valve position, or, possibly, from that sending the signal to the valve. In any event, a simple detection of error between valve demand and valve position did not seem good enough. The standard deviation was expected to be better as it is an average parameter and is more likely to show up persistent and significant errors after a change in valve demand.

The standard deviation plots for the 1970 valve data, Figs. 8.15 to 8.18 show some consistency in low values. The plots for the top cooling and draw valves show values well below the 1.0 margin. Valve one of the CVL, Fig. 8.15, shows some high values. These may be significant and indicative of an off-normal condition. The states of the 1970 valves is not known but the standard deviation values of this particular valve in that series are much higher than the others.

The 1967 values were known to be generally sluggish with zero errors. The degree of severity of these faults are not known but the standard deviation plots of these values, Figs. 8.19 to 8.23 are much higher, and were consistently so, than the 1970 values. The bottom cooling value, Fig. 8.23, must have been particularly bad.

On the basis of these plots, the standard deviation characteristics of the valve signals do show different characteristics which could be indicative of an off-normal condition. On this basis, high values of the standard deviation above a tolerance limit could be indicative of development or existence of an off-normal condition. This can form the basis of a computer based algorithm that will use the standard deviation technique for malfunction detection.

Values were set to give 2 and 98% full travel for 0 - 100% value demand. Many of the 1967 faulty values gave for 0 value demand zeros in the region of 5 to 37%. So they would not shut off. If they had been working 50% open say, this might not have been detected.

A check on zero and full range error is clearly desirable as there could be real trouble if a valve will not shut off completely in an emergency.

The plots of the standard deviations of the gas pressure, flow, pressure and temperature measurements showed interesting characteristics. The different measurement signals showed consistency in the levels and behaviours of their standard deviations, see Figs. 8.24 to 8.27. The temperature measurement signals, Fig. 8.7 for instance 9

showed consistently low and steady values whereas the flow measurements on the other hand showed higher values. The interesting point is that despite these variations, the same type instrument measurements showed similar and consistent characteristics. This brings out the relevance of the intrinsic characteristics of a particular measurement or instrument in setting a basis for off-normal behaviour detection. These would vary and the computer can either learn these or such information would have to be fed in a priori. It would have been more intersting to have obtained the corresponding instrument signals for off-normal conditions.

8.3. DISCUSSION OF THE CASE STUDIES OF INSTRUMENT MALFUNCTION DETECTION

The different instruments studied offered both different signals and malfunction detection approaches. The specific techniques tested promised effectivness and versatility of application.

The standard deviation of the signal mean error proved adequate for thermocouple malfunction detection. The technique promises wide applications but for instruments such as the differential pressure transmitter, the power spectral analysis promised a more superior approach.

The control valve differed from the differential pressure transmitter and the thermocouple because it is not a measuring instrument. Because the valve demands and valve positions tend to make single point excursions, stickiness tests on the basis of error between valve demand and valve position are unlikely to be sufficient, at

least, if based on the absolute value of error or standard deviation of error alone. What might be better is something which detects persistent error over a short period as this is likely to be a better guide. It seems likely that the sampling and control interval for stickiness tests will affect the sort of tests required. It is clear that more work is required with shorter sampling intervals than were used in the data obtained and analysed in this work.

An algorithm that can detect error and unsatisfactory response to valve demand could be more effective for detection of control valve stickiness. Knowledge of control valve dynamics - the movement of control valves in practicewould be relevant to the detection of unsatisfactory response to valve demand. Other possible algorithms to detect stickiness and blockage could include 'stroking' the valve, or comparison with flowmeters.

Techniques that will be based on spectral analysis of signals, promise both a powerful computer based and display type malfunction detection technique. The results of the differential pressure transmitter analysis are very encouraging and promise versatility in the use of this technique. More work needs to be done in this direction, particularly in developing an on-line algorithm based on the technique and exhaustively testing it.

The thermocouple malfunction detection algorithm proved effective for the laboratory simulations. Data were expected from an industrial installation which uses many thermocouples and in which thermocouple failure is frequent. It was hoped to test the algorithm on them but

the data are not yet available. It was hoped that the stage might have been reached in this project when the algorithm could have been tried on an industrial installation. The time did not permit this but this would be an interesting next step with the algorithm_and another test for its effectiveness.

Generally, the different instruments, because of their varying intrinsic characteristics, bring out the relevance of these considerations for the malfunction detection of different instruments. The central ideas put forward in Chapter 5 offer a wide scope for direct application and adaptation to particular requirements.

.

,

.

Fig. 8.15 1970 CVL valve data standard deviations of errors

ر

۲

۳.,

Fig. 8.16 1970 draw valve data standard deviation of errors

-284-

Fig. 8.17 1970 Top cooling valve data standard deviation of error

Fig. 8.19 1967 Bottom cooling valve data standard deviation of error (known zero error only)

*

Fig. 8.20 1967 Top cooling valve data standard deviation of error (known sluggish and zero error)

•

4

.

-288

Fig. 8.21 1967 Top cooling value data standard deviation of error (known sluggish and zero error)

4

•, .

.4

)

-162-

Fig. 8.24 Standard deviation of Gas pressure signal measurements

ł

.

-293-

¥

Fig. 8,26 Standard deviation of pressure signal measurements

4

-295-

9. AN INDUSTRIAL EXAMPLE

.

9. AN INDUSTRIAL EXAMPLE

The project has a strong industrial bias. The stage of direct industrial application and use of the malfunction detection techniques has always been envisaged. It was hoped that some of the algorithms could have been tried on-line on actual working industrial installations. Work was initiated on this line but the stage of trying out the algorithms was not reached in the present work. However, towards the end of this work, an interesting industrial situation that could have been ideal for an industrial testing of the algorithms arose. At this stage there was not enough time to do more than examine the problem . A probing of the problem was carried out and a possible line of approach to its solution is presented here.

9.1 The industrial problem

The process is an industrial batch polymerisation process. The temperature measurements and control are critical in the different cycles of the process. The process is not automated at present but will soon be.

The present arrangement uses two temperature measuring instruments in the same sheath - a resistance thermometer and a mercury in steel thermometer, to indicate the batch temperature. This is the critical temperature measurement.

The output of the resistance thermometer is logged by a data logger and the output of the mercury in glass thermometer is a chart recorder trace. The resistance thermometer has shown a high degree of unreliability, hithertogand the mercury in steel thermometer has been much more reliable. With the present arrangement, the malfunctioning of the resistance thermometer is not known until after the batch process run is

completed and the printout of the resistance thermometer is compared with the usually more reliable and accurate chart recording of the mercury in steel thermometer. This arrangement will not be satisfactory when the process is automated and the control actions will be based on the temperature measurement signals.

The company is in the process of installing an on-line process control digital computer to automate and control the process. It is desired to eliminate the mercury in steel thermometer and use the resistance thermometer only. This, of course, requires more reliable instrument signals from the resistance thermometer. It is not only desirable that the instrument signal be reliable but because of the importance of the temperature measurement, it will be desirable that any off-normal condition be detected immediately and to avoid poor plant availability, that approximate substitute estimate of the measurements be used in the circumstances of unreliable instrument signals.

This would be the right stage to plan and build these provisions into the computer.

9.2 The process characteristics

The batch process characteristics are well known. Briefly, it is a multi-stage batch process in which each stage involves heating the batch to a desired temperature and maintaining it at that temperature for a desired time. The heating is done by an oil jacket round the reactor. Apart from the measurements of the batch temperature, the heating oil temperatures at the inlet and outlet are also measured. The environmental conditions for their measurement are less

r severe than those for the measurement of the batch temperature.

A typical two stage reaction would look like Fig. 9.1. Known disturbances are sometimes introduced.

Fig. 9.1 <u>Typical temperature characteristics of a two stage</u> reaction

9.3 An approach to the problem

The first step in approaching the problem was to obtain data for normal functioning of the instruments and for offnormal conditions of the instruments also.

The resistance thermometer loggings were obtained and the corresponding mercury in steel thermometer readings were extracted from the chart recorder traces. All the data are given in the appendix tables AZ2 to AZ5. Most of the loggings were printed out at ten minute intervals. The readings are in degrees centigrade.

Fig. 9.2 is a plot of normal behaviour of the two

instruments. It shows the degree of agreement of the readings to be expected normally. The closeness of the readings would be expected as the two instruments are placed in the same well.

Figs. 9.3 to 9.5 show the different forms of off-normal behaviour of the resistance thermometer signal. The temperature response was different from what it should be in all cases. Figs. 9.3 and 9.5 bring this out very well. Fig. 9.4 suggests that other than responding improperly, the bad instrument signals show excessive noisiness.

A study of these plots suggests that the problem could be amenable to the ideas generally discussed in Chapter 5. Most appropriate of all, is the use of the known process temperature characteristics as a forcing function for routine checking of the instrument behaviour. The temperature "response at the start of a stage; the time to reach the reaction temperature; the temperature behaviour at the steady state and such characteristics should offer an effective means of detecting the on-set of off-normal behaviour. Fig. 9.4 suggests that the problem could also be amenable to the standard deviation approach - for instance, the standard deviation of the signal error.

Instrument signal data at shorter logging intervals could have been of interest but unfortunately these were not available and could not be obtained in the time that was available. A study of these shorter logging interval data could suggest the best approach and other possible approaches.

Detection of an off-normal condition in this case is only the beginning, even though a very important one, of any

improvement of instrument signal reliability and plant availability. It is also necessary that some substitute action for the measured variable be taken on detection of unreliability in the instrument readings.

Approximate estimates of the batch temperatures, it would appear, could be got from a heat and mass balance calculation using such knowledge as the inlet and outlet temperatures of the heating oils which are usually reliably known.

The routine checks and calculations involved are very well suited to the process control computer and should provide added functions which it can perform and which should help to justify and make fuller the use of it.

Fig. 9.3 Malfunction of resistance thermometer

-202-

Fig. 9.5 Resistance thermometer malfunction

10. DISCUSSION

10. DISCUSSION

10.1 Review of Work

The complete program of work is industrially biased. It is a large program and because of its various unexplored aspects, there was a danger of pursuing too many different subjects at the same time. It was not easy narrowing down this work.

The review of computers and operators in industrial control, helped to reduce and define this project as instrument malfunction detection. Even though a lot of the work on the functions currently performed by the operator and computer is background work, on reflection, it helps bring out the relevance and importance of malfunction detection for automatic control of process plants.

One of the major experimental results achieved in this project is the result of the industrial survey of instrument reliability. There is a need for data on instrument reliabilities in their working environments. There is a glaring absence of this in the open literature. More information could have been obtained from the survey with an improvement on the existing data collecting systems in the different works studied. Despite the lack of some desirable information on the log tickets of two out of the three works the survey still yielded useful information.

Most valuable of the information from the survey is considered to be the operator comments obtained from one of the works. These threw light on instrument failure and their modes and behaviour during and at failure. Information on the reliability of the instruments, particularly the influence of environment, is invaluable for meeting future engineering requirements and for planning instrument maintenance.

The principles and techniques of instrument malfunction detection discussed promise very wide, direct or adapted applications in industry.

The use of display techniques should optimise man-machine interplay for malfunction detection. The continuing developments in display techniques augurs very well for this. The illustrations cited in this work show how effective the selection of the right display parameter(s) can be for malfunction detection.

The two main techniques (standard deviation and spectral analysis) tested in this work promise both effectiveness and versatility in application. The quality and superiority of the standard deviation algorithm lies in the fact that it is an average parameter and also has the ability, based on the use of a running mean, to damp out spurious spikes and cope with normal drifts in the measured variable. The potential of the technique lies in its application to such situations.

The work based on spectral analysis techniques, did not reach the same stage as the use of standard deviation technique. What has been done in the project is effectively a feasibility study of its practical usefulness for malfunction detection. The results of the analysis of the differential pressure transmitter signals are very encouraging and suggest that effective algorithms for malfunction detection can be based on this technique. The display of the line spectra should be a very effective display method of malfunction detection for the operator. A lot more work clearly needs to be done in further development of this technique for use in industry. The emphasis placed on developing and exhaustively testing an algorithm based on the technique.

The case studies of different instrument signals bring out the relevance of considerations of the intrinsic characteristics of a particular instrument signal to the malfunction detection approach to be adopted for it.

The routine tasks of the techniques discussed and tested are very

well suited to process control computers. It is an added function the computer can readily take on. In this way, fuller use can be made of its potentials, and it can contribute to the upgrading of the performance of its own instruments and to the plant system as a whole.

Even though the emphasis in the project has been on the detection of the malfunction of instruments, the malfunction of plant items such as pumps and compressors are important as well.

The detection of an off-normal situation should lead to action. The use of substitute measurements or changing of control organisation in such an event have been discussed. Some examples have been given and these show how fruitful an area for exploration and development this field is.

The detection of malfunction will only be the beginning of any maintenance or repair procedure. An actuation of diagnosis and location of the failure should provide information that will offer hope of getting more precise reliability data. Some such implications of malfunction detection have been discussed and it has always been envisaged that malfunction detection will be an initiation of the development of such implications.

10.2 Suggestions for further work

Generally, different aspects of this work need further development. Some suggestions have been made in the main text. Various suggestions.put forward add up to a very large program of work but the following may be high lighted.

(a) Collection of reliability data in some more precisely defined instruments and environments. This will involve initiating new data collecting systems or improving existing systems to offer more useful information.

(b) Detailed study and analysis of malfunction detection done by the operator.

(c) Study of data from on-line computers' instruments going into the failed mode.

(d) Application of malfunction detection algorithms on on-line computers.

(e) Use of advanced filter algorithms of the type based on the work of Wiener and Kalman to detect instrument malfunctions.

ACKNOWLEDGEMENTS

The author is indebted to Dr. F.P. Lees for his supervision of this work and for his invaluable suggestions and sustained interest in the success of this project. He wishes to thank Professor D.C. Freshwater for his interest and encouragement. The entire staff of the Process Dynamics and Control Group showed a healthy interest in the project for which the author is grateful.

There were illuminating discussions with many of the staff of the Electrical Engineering Department, especially Dr. M.H. Ackroyd on time series analysis. The work on industrial survey of the reliability of instruments received the collaboration of Dr. F.P. Lees and Mr. G.F. Engel for which the author is grateful. The technicians, especially the Chief Technician, always showed willingness to help. M. Morris helped with obtaining the computer plots of the industrial data_m. The author is grateful for all this kindness.

Without the offer of a grant from the Department of Chemical Engineering and the University, this work would not have been carried out. The author is grateful for this grant.

The patient job of typing this thesis has been done by Miss Everline Johnson.

ŘEFERENCES

ş

 F.P. LEES "The Evaluation and Organisation of New On-line Computer Control Projects in the Chemical Industry" J. of Birmingham Univ. Chem. Eng. Soc. Vol. 19, No. 3, 1968.

~

- P.W. GALLIER "Surveying process digital control"
 1965 IEEE International Convention RC pt. 6.Vol. 13
 pp. 2-9.
- A.H. HIX "Status of Process Control Computers in the Chemical Industry" Proc. IEEE, Vol. 58 Jan 1970.
- 4. MCMILLAN, J. Control, 10, 512 1966.
- ROQUEMORE, K.G. AND EDDEY, E.E., Chem. Eng. Prog., 57
 (9).
- 6. KAY, P.C.M., Industrial Electronics, 4, 50, 1966.
- 7. BARTH, J. AND MAARLEVELD, A. The Application of Automation in the Process Industries, p.23 Inst. Chem. Eng. 1967.
- BOX, G.E.P. AND JENKINS, G.M., Application of Mathematical Models in Chemical Engng., Research and Production, p. 61, Inst. Chem. Eng. 1965
- KOPPEL, H.H. "Direct Digital Control" Automation
 Oct. 1969 pp. 77

- 10. WEEKS, L.V. "Magic memory solves raw mix problems" Rock Prod., Vol. 63, April 1960.
- 11. KAISER, V.A. AND SCHIOYA, Y. "Computer controls two kilns at Japanese cement plant", Rock Prod., Vol. 67, Feb. 1964.
- 12. TRAUFFER, W.E. "New Computer control concept adapted to Penn-Dixies Peloskey wet process plant", Putt and Quarry, Vol. 58 Dec. 1965.
- "Closing the Loop at North Western States",
 Vol. 58 May 1966.
- 14. WEEKS, L.W. "Control of Kiln operations with a digital computer", Mining Congr. J., June 1964.
- 15. BAY T et al. "Dynamic control of the cement process with a digital computer system", IEEE Trans. Industry and General Applications, Vol. 19A-4 pp. 294-303, May-June 1968.
- 16. KAISER, V.A. "A scheme for dynamic control of a cement kiln" Proc. 4th Annual Cement Industry Operations Seminar, Chicago, Illi. Dec. 1968.
- 17. JOHNSON R.L. AND LYLE J. "Installations of a computer for kiln control (a method)," Minerals Process, Vol. 6 Aug. 1965.

- "The year ahead" Rock and Prod. Vol. 69, pp. 70-71, Jan 1966.
- 19. TRAUFFER W.E. "Computer, other changes at Dundee's Michigan plant", Pitt and Quarry, Vol. 59, July 1966.
- HIGHAM J.D. "Computer control at Dalen Portland
 Cement fabrick", Pitt and Quarry, Vol. 61, Aug. 1968.
- 21. "Cement Plant will use direct digital control", Control Engng., Vol. 13 p. 24, July 1966.
- _"First DDC system in cement goes on-line", I.S.A.
 J., Vol. 13, p. 16, Dec. 1966.
- 23. WONG K.W. et al., "Computer control of the Clarksville cement plant by State space design method", Proc. IEEE Cement Industry Tech. Cmf. St. Louis, Mo., May 1968.
- 24. KIHLSTEDT P.G. "Der Zusammenhang Zivischen Kornverteilung und spezifischer Oberflache bei der Zerkleinerung", Zenaent - Kalk - Gips, Vol. 16, No. 2 1963.
- 25. TRAUFFER W.E. "Whitehall successfully applies full digital antrol, Pitt and Quarry, Vol. 59, pp 127-140 July 1966.
- 26. HURLBUT M.R. et al "Applications of digital computer control to the cement manufacturing process" Presented at the Internatl. Seminar on Autom. Control in line, Cement and Connected Industries, Brussels, Belgium, Sept. 1968.

ŝ

- 27. HOLMES J.A. "A contribution to the study of communication - a modified form of Kick's law" _____Trans._Inst._of_Chem. Engnrs. Vol. 35, 1957.
- KUONG J.F. "Nomograph finds cyclone particle size" Hydrocarbon Process, Vol. 46, March 1967.
- 29. ROSE H.E. "A mathematical analysis of the internal dynamics of the ball mill on the basis of probability theory" Trans. Inst. of Chem. Engrs. Vol. 35 1957.
- BOND F.C., "The third theory of communition".
 AIME Soc. Minining Engnrs: Vol. 193, May 1952.
- 31. BARTON A.D. et al, "Commissioning and Operation of a Direct Digital Control Computer on a cement Plant".
- 32. BREWSTER D.B., AND BJERRING A.K., "Computer Control in Pulp and Paper 1961-1969" Proc. IEEE, Vol. 58 No. 1 Jan. 1970.
- 33. FOX E.C. "Computer control of the continuous digester at the Gulf States Paper Corporation", Southern Pulp Paper Manuf. Vol. 27, No. 2, Feb. 10, 1964.
- FOX E.C., "Control Strategy", TAPPI, Vol. 49, 5, p.
 87A. May 1966
- 3
- 35. HOAG D.S. "Analog computer control of a Kamyr digester" TAPPI, Vol. 47, pp. 734-741 Dec. 1964.

36. HOAG D.S. "Computer Control of a Kamyr Digester", presented at the 2nd Ann. Workshop on the Use of Digital Computers-in-Process-Control,-Louisiana State University, Baton Rouge, La. March 1967.

3

3

4

- 37. SANGREGORIO G. AND ALSHOLM O., "Integrated computer control of a paper machine - process control", Billeruds/ IBM Private Symposium, June 1966.
- 38. ASTROM K.J. "Computer Control of a paper machine application of linear stochastic control theory", IBM J. Res. and Develop., Vol. 11 No. 4, pp. 389-405, July 1967.
- 39. ASTROM K.J., "Computer problems in paper making", presented at the IBM scientific computing symp. N.Y., Oct. 1964.
- 40. PETTERSON B., "Optimal production schemes co-ordinating sub-process in a complex integrated pulp and paper mill" presented at the ISA/CPPA Symp. on pulp and paper process control, Vancouver, Canada, April 1969.
- 41. MARTENSSON E., "Integrated computer control of a paper machine - production planning", presented at the Billeruds/IBM Private Symp. June 1966.
- EXSTRON A AND HEMPEL A., "Integrated computer control
 of a paper machine the production supervising system"
 Ibid.

43. ASTROM K.J. AND BOHLIN T., "Integrated computer control of a paper machine - new methods for control strategy design in operation" Ibid.

1

- 44. ASTRON N.J. AND TVEIT 0., "Integrated computer control of a paper machine quality control" Ibid.
- 45. EKSTROM A. "Integrated computer control of a paper machine systems summary" Ibid.
- 46. BILLERUDS A.B. AND I.B.M.WORDD TRADE CORP. "Computer plays sophisticated role at a Swedish Mill", Pulp. and Paper Magazine of Canada, Vol. 67, pp. 100-103, Oct. 1966.
- 47. EISTROM A.AND SENGREGORIO G., "Automating the control loops on a Swedish Kraft paper machine", Pulp and Paper, p.30, April 3, 1967.
- 48. ALSHOLM O., "Computer control at Billerud", presented at the ISA/CPPA Symp. on Pulp and paper process co.ntrol, Vancouver, Canada, April 1969.
- 49. ALSHOLM O. "Integrating process computers into production operations,", Pulp. and Paper Internatl.
 Vol. 73, pp. 43-47, Feb. 1969.
- 50. SIDEBOTTOM A.W. and OUGHTON K.D., "Computer Control at Wolvercote paper mill", Paper Technol. Vol. 6 no. 4 pp. 335, 1965.
- 51. LARKING J.H. "Are computers for paper makers?" Norsk. Skogind., Vol. 20 no. 6 pp. 218-223, 1966.

- 52. BENNETT J.A. "Computer Controlled paper making at Grove Mill Paper Company", The Paper Maker, May 1968.
- 53. CLOSE D.G., "Computer Control of the LD/AC steel making process" I.Ch. E. Symp. series No. 24 (1967: Inst. Chem. Engnrs.)
- 54. TESCHNER H.G., "Controlling Data Flow in a steel mill" Cont. Engng. April 1968 p. 76.
- 55. HESS W.T. et al "The Little Gipsy Story" Electrical world, May 1962.
- 56. SKLANS'Y J. "Dearning Systems for automatic control" IEEE International Convention Proc. part 6, March 1965.
- 57. BRISTOL D.R., "Computer Controlled Hot Rolling of Steel", 19th Annual ISA Conf. Proc., Vol. 19, 1964.
- 58. THOMSON J.W. et al, Trans. Soc. Instr. Tech <u>19</u>, 19, 1967.
- 58. "Digital Mini-Computers: on the British Market" Automation Sept. 1969 pp. 18-21.
- 59. FREAR D. "The Industrial applications of small computers, Automation. Sept. 1969 p. 9.
- 60. "Small Control Computers" Equity Research Associates, July 31, 1969.

ŝ

- 61. MERCER J.R., "Reliability of solenoid valves" Conference on Safety and Failure of Components, University of Sussex, Sept. 3-5, 1969, Inst. Nech. Engnrs. (London).
- 62. HENSLEY G. "Safety assessment A method for determining the performance of alarm and shut down systems: for chemical plants" Trans. Inst. Meas. and Cont. 1968, <u>1</u>, T72.
- 63. LOW T.A.W. and SANDLE P.J., "Analysis of reliability data from operational control equipment," in Reliability in Electronics, Inst. Elec. Engnrs. (London) 1969, p. 178.
- 64 I.S.A. NANAGEMENT COMMITTEE', MAINTENANCE DIVISION, "Standard Instrument Rating," (draft) Inst. Soc. of America 1970.
- 65. BAZOVSKY I., "Reliability Theory and Practice" Prentice Hull, 1961.
- 66. MYERS R.H. et al, "Reliability Engineering for Electronic Systems," John Wiley 1964.
- 67. BRITISH STANDARDS INSTITUTION (BS 4200: Part 2: 1967) and I.E.C. (International) definitions.
- 68. LENK J. "ABC's of Thermocouples," W.Foulsham and Co.
 i
 Ltd., Slough, England, 1968.

- 69. CHOROFAS D., "Statistical Processes and Reliability Engineering", 1960 (Princeton: van Nostrand Co. Inc.)
- 70. SANDLER G., "System Reliability Engineering", 1963 (Englewood Cliffs: Prentice - Hall Inc.).
- 71. LLOYD D.R. and LIPOW M. "Reliability: Management, Methods and Mathematics", 1962 (Englewood Cliffs: Prentice - Hall Inc.),
- 72. PIERUSCHKA E. "Principles of Reliability", 1963
 (Englewood Cliffs: Prentice Hall Inc.)
- 73. COX D.R. "Renewal Theory", 1962 (New York: John Wiley & Sons Inc).
- 74. CALABRO S.R. "Reliability Principles and Practice", 1962 (New York: McGraw - Hill Bock Co.).
- 75. ZELEN M. "Statistical Theory of Reliability", 1963 (University of Winsconsin Press).

76. VON ALVEN W.H. (Ed.) "Reliability Engineering", 1963 (Englewood Cliffs: Prentice - Hall Inc.)

77. BARLOW R. and PROSCHAN F. "Mathematical Theory of Reliability" 1965 (New York: John Wiley & Sons Inc.).

78. ROBERTS N.H. "Mathematical Methods: in Reliability Engineering" 1964 (New York: McGraw - Hill Book Co.).

- 79. MYERS R.H. et al "Reliability Engineering for Electronic Systems", 1964 (New York: John Wiley & Sons Inc.).
- 80. POLOVKO A.M. "Fundamentals of Reliability Theory", 1968 (New York: Academic Press Inc.).
- 81. HAVILAND R.P. "Reliability Engineering and long life Design", 1964 (Princeton: Van Nostrand Co. Inc.).
- 82. GOLDMAN A. and SLATTERY T. "Maintainability: A major element of system effectiveness", 1964 (New York: John Wiley & Sons Inc.).
- 83. IRESON W.G. (Ed) "Reliability Handbock", 1968 (New York: McGraw Hill Book Co.).
- 84. SCHOOMAN N.L. "Probabilistic Reliability: An Engineering Approach", 1968 (New York: McGraw - Hill Books Co.).

85. HAJEK and DUPAC V. "Probability in Science and Engineering", 1967 (New York: Academic Press).

86. BLANCHARD B.S. and LOWERY E.E. "Maintainability Principles and Practice", 1969 (New York: McGraw - Hill Book Co.).

318

Ł

- 87. GNEDENKO B.V. et al "Mathematical Methods of Reliability Theory", 1969 (New York: Academic Press Inc.)
- 88. RUDD D.F. and WATSON C.C. "Strategy of Process Design" 1968 (New York: John Wiley and Sons Inc.).
- 89. WEISMAN J. "Engineering Design Optimisation under conditions of risk", 1968 Pl.D Thesis, University of Pittsburg.
- 90. RUDD D.F. Ind. Engng. Chem. Fund. 1962 1, 138
- 91. WILLIAMS H.L. and RUSSELL B.H. "The application of NASA reliability techniques to the Chemical Industry" paper presented to third joint meeting of the A.I. Ch. E and Puerto Rican I.Ch.E., San Juan, Puerto Rico, May 17-20, 1970.
- 92. TUCKER W. and CLIVE W.E., "Plant Reliability and its impact on large plant design and economics". Ibid.
- 93. CORNETT C.L. and JONES J.L. "Reliability revisited" Ibid.
- 94. PAN J.J., "Reliability Engineering and the Process Plant Industry", 1970, M.Sc. Thesis, Loughborugh University of Technology.

- 95. BUFFAM B.A. et al. "Reliability Engineering A Rational Technique for Minimising Loss" Inst. of Mech. Engnrs. Conference on Maintenance in the Process Industries, Durham 24th-25th March 1971.
- 96. BARLOW R.E. and HUNTER L.C. . "Optimum Preventive Maintenance Policies", Operations Research, Vol. 8, No. 1 Jan-Feb. 1960, pp. 90-100.
- 97. CROOKES P.C.I., "Replacement Strategies", Operational Research Quarterly, Vol. 14, No. 2, June 1963. pp. 167-185.
- 98. GLASSER G.J. "Planned Replacement. Some Theory and its Applications", Journal of Quality Technology, Vol. 1, No. 2, April 1969, pp. 110-119.
- 99. FRESHWATER D.C. and BUFFAM B.A. "Reliability and Maintenance in Process Plants". Paper Presented at the Instn. of Chem. Engnrs. Symposum, New Castle, July 1971.
- 100. NARESKY J.J., Proc. Sixth Reliability and Maintainability Conference, S A.E., A.S.M.E., and A.I. A.A. 1967, p. 113.
- 101. GREEN A.E. and BOURNE A.J. U.K.A. E.A. Report No. AHSB(S) R117, parts 1-3, 1966.

- 102. EAMES A.R. U.K.A.E.A. Report No. AHSB(S) R138, 1967.
- 103. BADGER F.W. Symposium on Stop Equipment Failures Analytically, The American Inst. of Chem. Engnrs. 68th National Meeting, 6th Petrochemical and Refining Exposition, Houston, Texas Feb. 28 - March 4, 1971.
- 104. JONES F.G. "Prevention of Catastrophic Failure of Reciprocating Compressors" paper No. 47C. Ibid.
- 105. BETRAM J.B. et al "Acoustic Emission A powerful new tool for the Petroleum Industry" paper No. 47d, Ibid.
- 106. GRANT J. "An economic design method for computer supervision of large plant" (draft). Paper to be presented at Symposium on "On-Line Computer Methods Relevant to Chemical Engineering" Nottingham, BCS/I.Chem. E. Sept. 1971.
- 107. HOYTE D.W. "The Checking and calibration of process instruments on the plant with a digital computer" I.E.E.E. On-line measurement techniques 1968.
- 108. TATIEVSKII A.B. "Allowance for gradual failures in calculations of the reliability of electrical measuring instruments" Reliability of Electrical Heasuring Instruments (In Russian) On Tipribor, Moscow (1967).

- 109. RAIVERSON S.M. "Theory of instrument reliability testing on the basis of Poisson distribution" Problems of the Reliability of Radio Electronic Equipment (edited by I.I. Morozona) (in Russian) Izd. Sov. Radio, Moscow (1959.)
- 110. ARUTYUNOV V.O. et al "Reliability in Measures and Instruments - General problem and specific aspects of reliability in measuring devices". Measurement techniques No. 3 March 1969.
- 111. ROLLINS T.J. and MARTIN T.D. "An analysis of Instrument functions to produce efficient calibration systems" Instruments and control (1966) pp 165-174.
- 112. ROLLINS T.J. and MARTIN T.D. "The assured performance calibration (APC) program", pp 463-473) Nineteenth Annual Convention Transactions, ASQC, 1965.
- 113. WELBOURNE D. "Alarm analysis and display at Wylfa Nuclear power station" Proc. IEE Vol. 115, No. 11 Nov. 1968.
- 114. PATTERSON D. "Application of a computerised alarm analysis system to a nuclear power station" Proc. IEE Vol. 115, No. 12 Dec. 1968.
- 115. BOWEN H.M. "The Imp in the System" The Human Operator in complex systems. Edited by Singleton W.T. et al., Taylor Francis Ltd., London 1967.

- 116. HUGO WOLFF, Introductory paper, Symposium on Data Reduction, Communication and Presentation. Inst. Meas. and Control, Univ. of Susser, March 22-25, 1971.
- 117. KOPPEL L. "Introduction to Control Theory, pp 453-461. Prentice - Hall, Inc. (1968).
- 118. LEE Y.W., "Statistical Theory of Communication,", Wiley, New York 1960, Chap.12.
- 119. LANGE H.F.H., "Correlation Techniques" (P.B. Johns Transl) Van Nostrand, Princeton, 1967.
- 120. GENTLEMAN W.M. and SANDE G. "Fast Fourier transforms for fun and profit", 1966 Fall joint computer conference AFIPS Proc. Vol. 29 Washington DC: Spartan, 1966 pp. 563-578.
- 121. BOGGERT B.P. et al "The frequency analysis of time series for echoes: Cepstrum, pseudo autocovariance, cross-cepstrum and saphe-cracking", Time series analysis, Hurray Rosenblatt, ed. New York: Wiley 1963, pp 201-243.
- 122. TUKEY J.W., "An introduction to the calculations of numerical spectrum analysis, "in spectral analysis of time series, Bernard Harris, ed. New York: Wiley, 1967 pp 25-46.
- 123. GOLD B. and RADER C.M., Digital Processing of Signals. New York: McGraw - Hill 1969.

124. BINGHAM C. et al., "Modern techniques of power spectrum estimation", IEEE Trans. Audio and Electroacoustics, Vol. AU-15, pp 56-66, June 1967.

٢,

- 125. BLACKMAN R.B. and TUKEY J.W., "The Measurement of Power Spectra." New York: Dover, 1958.
- 126. NOLL A.M. "Short-time spectrum and 'cepstrum' techniques for vocal - pitch detection," J. Acoust. Soc. Am., Vol. 36, pp 296-302, 1964.
- 127. OPPENHEIM A.V. et al. "Nonlinear fittering of multiplied and convolved signals "Proc. IEEE Vol. 56, pp. 1264-1291, Aug. 1968 (Reprinted in IEEE Trans. Audio and Electroacoustics, vol. AU-16, pp. 437-465, Sept. 1968).
- 128. PARZEN E., "Statistical spectral analysis (single channel case) in 1968["], Tech Rep. 11, ONR Contract Nonr - 225 (80) (NR-042-234), Stanford University, Dept. of Statistics, Stanford, Calif. June 10, 1968.
- 129. Richards, P.I. "Computing reliable power spectra", IEEE spectrum, vol. 4, pp 83-90, Jan 1967.
- 130. TUKEY J.W. "An introduction to the measurement of spectra" in probability and statistics, Ulf. Grenander, ed. New York: Wiley 195 9, pp. 300-330.

131. WELCH P.D. "A direct digital method of power spectrum estimation", IBM J. Res. Develop., vol. 5, pp. 141-156, 1961.

- 132. WELCH P.D., "The use of the fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms", IEEE Trans. Audic and Electroacoustics, vol. AU-15, pp. 70-73. June 1967.
- 133. GOLD B., and RADER C.M., "Digital Processing of Signals", McGrew-Hill, 1969.
- 134. STOCKHAM T.G. Jr. "Highspeed Convolution and Correlation", 1966 Spring Joint Computer Conference, AFIPS Proc. 28: 229-233 (1966).
- 135. BERGLAND G.D., "The fast fourier transform recursive equations for arbitrary length records", Math. Comput., Vol. 21, pp 236-238, April 1967.
- 136. BERGLAND G.D. "A fast fourier transform algorithm using base 8 iterations", Math. Comput., vol. 22, pp. 275-279, Apr. 1968.
- BERGLAND G.D., "A fast fourier transform algorithm
 for real-valued series", Commun. Assoc. Comput. Mach.
 vol. 11, pp 703-710, Oct. 1968.

138. BERGLAND G.D., and WILSON D.E., "An FFT algorithm for a global, highly parallel processor", IEEE Trans. Audic and Electro-acoustics, vol. AU-17, June 1969.

- 139. BLUESTEIN L.I., "A linear filtering approach to the computation of the discrete fourier transform", 1968 NEREM Record, pp 218-219.
- 140. BRENNER N.M., "Three Fortran programs that perform the Cooley-Tukey Fourier transform", Tech.Note 1967-2, Lincoln Laboratory, N.I.T., Lexington, Mass., July 1967.
- 141. COOLEY J.W. and TUKEY J.W., "An algorithm for the machine calculation of complex Fourier series", Math. Comput., vol. 19, pp.297-301, Apr. 1965.
- 142. COOLEY J.W., "Harmonic analysis complex Fourier series," SHARE Doc. 3425, Feb. 7, 1966.
- 143. COOLEY J.W., "Complex finite Fourier transform subroutine", SHARE Doc. 3465, Sept. 8, 1966.
- 144. DANIELSON G.C. and LANCZOS C. "Some improvements in practical Fourier analysis and their application to X-ray scattering from liquids," J. Franklin Inst., vol. 233, pp 365-380, 435-452.

- 145. GOOD I.J., "The interaction algorithm and practical Fourier series," J. Roy. Statist. Soc., Vol. 20, series B, pp. 361-372, 1958; addendum, vol. 22, pp. 372-375, 1960.
 - 146. PEASE M.C., "An adoption of the fast Fourier transform for parallel processing", J. Assoc. Comput. Nach., vol. 15, pp 252-264, Apr. 1968.
 - 147. RADER C.M., "Discrete Fourier transforms when the number of data samples is prime", Proc. IEEE, vol. 56, pp. 1107-1108 June 1968.
 - 148. SANDE G., "Arbitrary radix one-dimensional fast Fourier transform subroutines", University of Chicago, Ill., 1968.
 - 149. SINGLETON R.C., "On computing the fast Fourier transform", Commum. Assoc. Comput Mach., vol. 10, pp 647-654.
 - 150. SINGLETON R.C., "Algorithm 338, Algol procedure for the fast Fourier transform", Commum. Assoc. Comput. Mach., vol. 11, pp 647-654, Nov. 1968.
 - 151. SINGLETON R.C., "Algorithm 339, an Algol procedure for the fast Fourier transform with arbitrary factors", Commun. Assoc. Comput. Mach., vol. 11, pp 776-779, Nov. 1968.
 - 152. SINGLETON R.C. "Algorithm 345, an Algol convolution procedure based on the fast Fourier transform", Commum. Assoc. Comput. Mach, vol. 12, Mar. 1969.

- 153. YAUNE R. "An economical method for calculating the discrete Fourier transform", 1968 Fall Joint Computer Conf., IFIPS Proc., vol. 33. Washington D.C. Spartan Books, pp 115-125.
- 154. BERGLAND G.D., "Fast Fourier transform hardware implementations - a survey", IEEE Trans. Audio and Electroacoustics, vol. AU-17, June 1969.
- 155. ROBINSON E.A., "Multichannel Time Series Analysis", Holden-Day 1967.
- 156. BOGNER R.E., and CONSTANTINIDES A., "Introduction to Digital Filtering", Wiley (to be published).
 - 157. CONSTANTINIDES A., "Synthesis of Chebyshev Digital Filters". Electronic Letters, vol. 3, No. 3, March 1967, pp 124-126.
 - 158. CONSTANTINIDES A., "Elliptic Digital Filters" Ibid, vol. 3, No. 6, June 1967, pp 255-256.
 - 159. SEEBECK T.J., Konigl. Akad. Wiss., Berlin 265 (1822-1823).
 - 160. DIKE P.H., "Thermoelectric Thermometry"(Leeds and Northrup Company, Philadelphia, Pensylvania 1958) 3rd. ed.

- 161. ROESER W.F., "Temperature, Its Measurement and Control in Science and Industry" (Reinhold Publishing Corporation, New York 1941), p. 180.
- 162. BRIDGMAN P.W., "Thermodynamics of Electrical Phenomena in Metals"(The Macmillan Company, New York, 1934) p. 39.
- 163. MOTT W.F. and JONES H., "The Theory of the Properties of Metals: and Alloys" (Clarendon Press, Oxford, 1936) p.308.
- 164. CRUSSARD C., "Report of a Conference on Strength of Solids"(The Physical Society, London, 1948) p. 119.
- 165. MILLER J.T., "Instrument Practice" May 1960, Jan. 1964.
- 166. B.S. 1041: Part 4: 1966.
- 167. COXON W., "Temperature, Measurement and Control," London, Heywood and Co. Ltd. (1960).
- 168. FINCH D.I., "General Principles of Thermoelectric Thermometry"Leeds and Northup, North Wales Pa., seen in Temperature, its Measurement and Control in Science and Industry"(Reinhold Publishing Corporation, New York 1962) p. 3.
- 169. I.S.A. (Instrument Society of America, Pittsburgh, Pensylvania) "Recommended Practice for Thermocuples and Extension wires." I.S.A. - RP 1.1 - 7 (July 1959).

170. MILLER J.T., "Instrument Practice," Jan. 1964.

- 171. SHULZE A., "Metallic materials for thermocouples".J. Inst. Fuel, vol. 12 (1939) p. 541.
- 172. KUTZ M., "Temperature Control," John Wiley and Sons: Inc. (1968).
- 173. SANDERS V.D., "Review of high-temperature immersion thermal sensing devices for in-flight engine control", Rev. Sci. Instr. 29, 217 (1958).
- KUETHER F.W., "Uniqueness of Thermal e.m.f.'s measured in Molybdenum, Rhenium, Tungsten, Iron and Copper". High-Temperature Thermometry Semenar, Oak Ridge National Laboratory, Oct. 1-2, 1959, TID 7586 (pt 1).
 p. 23.
- 175. LACHMAN J.C. and KUETHER F.W., "Stability of Rhenium/ tungsten thermocouples in hydrogen atmospheres" I.S.A. Journal 7, 67 (1960).
- 176. LACHMAN J.C. and KUETHER F.W. "How reliable are the two new high-temperature thermocouples in vacuum?", I.S.A. Journal 7, 66, (1960).
- 177. LACHMAN J.C. and McGURTY J.A. "Thermocouples for 5,000°F using Rhenium alloys", presented at the Electrochemical Society Symposium on Rhenium, Chicago, Illinois, May 4, 1960.

178.	THEILKE N.R. and SHEPARD R.L. "High - Temperature
,	Thermocouples Based on Carbon and its Modification"
L	High Temperature Thermometry Seminar, Oak Ridge
,	National Laboratory, Oct. 1-2, 1959, TID - 75 86
	(Pt. 1.).

- UBBELHODE A.R., BLACKMAN L.C.F. and DUNDES P.H.,
 "A graphite/graphite thermocouple for high temperatures"
 Chemistry and Industry 595 (May 9, 1959).
- 180. BIDWELL, C.C., "Thermojunctions of carbon and graphite" Phys. Rev. Ser. 3, <u>38</u>, 450 (1914).
- 181. WATSON H.L. and ABRAMS H., "Thermoelectric measurements of temperatures above 1500°C", Trans. Am. Electrochem. Soc. <u>54</u>, 19 (1928).
- 182. FILTERER G.R., "A new thermocouple for the determination of temperatures up to at least 1800°C" Trans. Am. Inst. Mining Met. Engnrs. <u>105</u>, 290 (1933).
- 183. SHEPARD R.L. and WESTBROOK R.D. and PATTIN H.S. "A high-temperature boron - graphite - graphite thermocouple". Bull. Am. Phys. Soc. 1. Ser. 11 No. 3, G.A.4 (1956).
- 184. B.S. 1041: 1943.
- 185. CALDWELL F.R. "Thermocouple Materials" Temperature, Its Measurement and Control in Science and Industry vol. 3 (1962) pp 81-134.

[,] 331

ZYSK E.D. "Platinum Metal Thermocouples" Ibid pp 135-186. 156. 187. BENNETT E.H. "Noble Metal Thermocouples" Johnson and Matthey and Co. Ltd. (1961). MORTLOCK A.J., J. Sci. Instr. 35, 283 (1958). 188. SOURDILLON A. and ROLET, Metallurgist, 1928, 189. 4 pp 109-110. 190. HUTTER C., Korrosion (Supple to Chem. Apparatus). 1929, <u>4</u> pp 49 - 50; (1930) <u>5</u> pp 5-6. HOUGEN O.A. and MILLER B.L., Chem. Net. Eng. 1923, 29, 191. pp» 662-663. . GAT J.D., Chem. Met. Eng. 1923, 29, p 806. 192. 193. CHAUSSAIN M. Proc. Inst. Brit. Foundrymen 1951, 44, pp 60-77. CROOKS W. Proc. Roy. Soc. (London) <u>A86</u>, 461 (1912). 194. McQUILLAN M.K., J. Sci. Instr. 31, 329-331 (1949). 195. BRENNER B. "Temperature, Its Measurement and Control 196. in Science and Industry (Reinhold Publishing Corporation, New York 1941) Vol. 1 pp 1267-1271. 332

HOMEWARD C.F. Temperature, Its Neasurement and 197. Control in Science and Industry"(Reinhold Publishing Corporation New York 1941 Vol. pp 1272-1279).

- 198. JEWEL R.C. and KNOWLES E.G., J. Sci. Instr. 28, 353 (1951).
- 199. SVEC H.J. AECU 1804 (1952).
- 200. Quatorly Report, "High Temperature Properties and Alloying Behaviour of the Refractory Platinum Group" Oct. 1 to Dec. 31, 1959, Contract No. Nonr 2547 (00), N.R. 039-067, Office of Naval Research.
- 201., POWELL A.R., Platinum Metals Rev. 2, No. 3 (1958).

202. NEVILLE R.P. Am. Electrochem. Soc. (1923).

- 203. KOSTOWSKI, Proceedings of the International Symposium on High Temperature Technology (McGraw-Hill Book Company Inc., New York, 1960).
- 204. DAHL A.I., "The Stability of Base Netal Thermocouples in Air from 800 to 2200°F" Temperature, Its Measurement and Control in Science and Industry (Reinhold Publishing Corporation, New York, 1941) p. 1238.
- 205. McELROY D.L., "Progress Report 1, Thermocouple research report for the period No. 1 1956 to Oct. 31 1957" ORNL - 2467.

333
- 206. POTTS J.F. and McELROY D.L., "Thermocouple Research to 1000° C Final report No. 1, 1957 through June 30 1959"ORNL - 2773, UC - 37 - Instruments, TID - 4500 (15th ed).
- 207. FENTON A.W., Proc. I.F.E. vol. 116, No. 7 pp (1277 - 1285).
 - 208. ROESER W.F. and DAHL A.L., "Reference tables for iron v constantan and copper v constantan thermocouples." J. Research Natl. Bur. Standard <u>20</u>, 337. (1938), RP1080.
- 209. NEAVERSON A.G., Rolls Royce Ltd. Derby (Private Communication).
- 210. High Temperature Thermometry Seminar, Oct. 1959,
 Oak Ridge National Laboratory, TID 7586 (Pt. 1).
- 211. ARBITER W., Nuclear Development Corporation of America.
- 212. WEAVING A.H. Proceedings of the Symposium of some developments in Techniques for Temperature measurement. Communications. London 26th April 1962. Published by the Inst. Eech. Engnrs. pp 91-93.
- 213. CLARK R.D. National Engineering Laboratory, East Kilbride, Glasgow (Private Communication).

- 214. Instructions for Taylor fixed range differential pressure transmitter. Taylor Instrument Companies
 IB 2B205 (GB) issue 3.
- 215. HOLZBOCK W. "Instruments for Measurement and Control" Reinhold Publishing Corp., New York, 1955 pp 350-351.
- 216. FINNERAN J.A. et al "Start up performance of large Amonia plants", Chem. Eng. Prog. Vol. 64, No. 8 Aug. 1968 . pp 191-194.
- 217. HO'ROYD R. "Ultra large single stream chemical plants: their advantages and disadvantages", Chem. and Ind., Aug. 5, 1967, pp 1310-1315.
- 218. LANDAN R. "The Chemical Plant", Reinhold Publishing Corp., New York, N.Y., 1966.
- 219. GILLILAND G.J. "Planned replacement: some theory and its applications" Journal of Quality Tech., Vol. 1, No. 2, April 1969, pp 110-119.
- 220. ONGE G.H. "Power system reliability in petroleum and petrochemical plants" Procs., 7th reliability and maintainability conference, SAE, ASME and AIAA, 1968 pp 133-147.

221. VACCARO D.J. "Reliability of power and control systems in a chemical plant" paper (preprint 28D) presented at the symposium on Loss Prevention in Process Industries - part IV of 64th National Meeting of A.I. Ch. E., New Orleans, La., March 16-20, 1969.

222. GOLDMAN S.F. and SARGENT R.W.H. "Applications of linear estimation theory to chemical processes A feasibility study", paper presented to Inst. Chem. Eng. Symposium London, 1969.

- 223. CLEMENTSON A.T. "Statistical determination of plant yields" British Chem. Engng. Vol. 8, No. 8, August 1963, pp 564-565.
- 224. BECK M.S., KHANDURI S.C and MEHTA R.G., "Control valve hysteresis can be reduced by dither" Instrument practice, Sept. 1968 pp 773 - 775.

225. THOMPSON A. "Operating experience with direct digital control" The Chemical Engineer, May 1965 pp 96 - 101.

APPENDIX 1

Differential pressure transmitter data and spectral analysis results.

The data in Tables A5 to A6 are the actual voltage output from the computer.

The units of power P_w are **vot**ts/hertz.

The units of Standard deviation calculations of table A4 are volts.

For tables A5 and A6, the first reading of each column of readings is the time interval and the second is the voltage output from the computer. The amplification of the signals from the fast pressure to current transducer was 300.

The Fortran program used for the FFT calculations, reads a sequence of N complex numbers x_0, x_1, \dots, x_{N-1} and computes the discrete Fourier transform (DFT) given by

$$A_{k} = \sum_{l=0}^{N-1} W^{kl} X_{l}$$
, K=0, 1, ..., N-1

where $W = e^{-j2\pi/N}$

If the X_k are the N samples of a periodic signal (sampled at the Nyquist rate, or above) then the A_k , computed using the DFT, are the Fourier coefficients of the corresponding exponential series.

A١

If the X are real, the A display real-even, imaginary - odd symmetry about zero frequency.

Limitation N must be an integer power of 2.

ہ

Data are in free format; the real part of a complex number followed by its imaginary part.

Table A.1 (a) <u>Power Spectra Estimations Corresponding to</u> <u>Table 8.3 (a)</u>

Po	wer	X1	0 + 9
		~~~	<u>v</u>

Fractions of highest detectable	Correspo	Corresponding number in table 8.3 (a)							
in ¹ / ₈ th	1	2	3	· 4	5	6			
С	677.9	322. 43	832.06	257.67	992. 34	1725. 4			
_1	3685.8	1161. 2	<b>1763.</b> 4	1418. 1	1968.9	2138. 7			
2	3297.9	3247. 3	1994. 0	2513 <b>.</b> 4	<b>1557.</b> 0	474- 42			
3	340.34	419. 37	1962. 7	<b>17</b> 19. 4	553 <b>-</b> 01	959 <b>-</b> 32			
4	17.729	• 90 <b>.</b> 752	42.487	83.483	46.332	92.559			
5	11.681	45.761	62,578	194. 73	33-524	• 44•505			
6	49.377	134. 86	3.3575	30.294	9•4383	<b>16</b> 5. 50			
7	56.056	28,957	282. 77	75.367	14.569	25.304			
- 8 -	18.906	33.994	74.508	88.087	16.826	93.789			

## Table A.1 (b) <u>Power Spectra Estimates Corresponding</u> tor <u>Table 8.3 (b)</u>

Power X 10⁺⁹

Fractions of highest detectable frequency in $\frac{1}{6}$ th	Carresponding number in table 8.3 (b)					
	1	2	3	4	5	6
0	34.136	13. 024	31.401	16.341	16. 344	70.972
1	18.369	54.930	46.310	94.040	24- 775	33.333
2	79.033	37. 253	36.680	30.728	45- 508	38.479
3	10.067.	49.878	46.680	18.948	26. 275	71.631
4 '	50.409	,7.8125	19.531	28.203	72. 249	21.133
5.	24.590	58. 269	20.279	12.427	54.964	38.715
6	14.951	43.955	36.953	57.659	15. 704	49 <b>.772</b>
7	88.711	42• 276	18.879	26•524	40. 737	14-463
8	86.289	56. 406	30.625	15.625	4.7266	7.208

### TABLES A.2(a) and A.2(b) Power spe

Power spectra estimates corresponding to

tables 8.4(a) and 8.4(b)

# Power X10⁴⁹

Fraction of highest detectable frequency in ¹/₈th

٠Ô

1

2

3

8

328

Correspond	ing number in t	table 8.4(a)
1	2	3 -
428,53	293.20	570.89
588.76	3441.5	102.22
416.71	3666.4	258.86
58.686	1333.7	3.9703
23.11	150.99 ·	8.9087
27.882	6.8501	31.486
14.590	222.19	22.9044
5.240	52,932	°26.843
47.852	13.369	1.5259

Correspondin	ng number in t	able 8.4(b)
1	2	3
49,519	38.175	23.434
18.076	47.493	50.464
24,904	15.417	59 <b>.</b> 936 _.
39,273	2.0251	8.870
23.127	' 11.182	4.883
18.321	16.499	13.018
50.063	45.579	16.626
13.581	39.257	1.4761
63.282	43.838	0.976

;

### TABLES A.3(a) and A.3(b)

Power spectra estimates corresponding to

## tables 8.5(a) and 8.5(b)

# Power x $10^{+9}$

Fraction of highest detectable frequency in  $\frac{1}{8}$ th

**'**0'

2

3

4

5

() () ()

Correspond	ing number in	table 8.5(a)
32	- 64	128
257.67	992.30	1036.4
1418.1	1968.9	2136.1
2513.4	1557.0	1204.5
1719.4	997.05	2127.5
±83,483	200.88	56,762
194.73	117.90	. 74.280
30.294	44.561	40.279
75.367	54.369	23.760
88.087	95.506	60,178

Correspond	ling number in	table 8.5(b)		
32 - 1	<b>_</b> 64	128		
83,071	37.306	10,967		
20.658	76.698	. 56.863		
13.860	30.122	20.139		
29.727	52.232	29.710		
20.444	. 48,174	35.733		
22,571	23,951	- 27,903		
24.215	48.459	33,589		
24.674 ·	24.604	13.197		
17.227	9.3808	11,585		

	·····	
Sample Number	Normal Signal	Impulse lines
		Frozen
32	0.0022	0.0005
64	0.0013	0.0005
• 96	0.0017	0.0010
128	0.0021	. 0.0006
. 160	0.0014	0.0005
192	0.0018	0.0006
224	0.0014	0.0006
256	0.0016	0.0008
288 .	0.0018	0.0005
320	0.0021	0.0007
352	0.0016	0.0006
384	0.0019	0.0011
416	0.0014	0.0004
448	0.0021 、	0.0006
480	0.0022	0.0006
512	0.0014 ·	0.0011
544	0.0011 7	0.0007
576	0.0015	0.0007 *
608 ,	0.0024	0.0007
640	0.0015	0.0007
672	0.0018	0.0007
704	0.0015	0.0006
736	0.0017	0.0006
768 •	0.0009	0.0005
800	0.0011	0.0008
832	0.0012	0.0008
864	0.0019	0.0005
896	0.0012	0.0005
928	0.0020	0.0008

Table A.4 Standard deviation for the normal Instrument signal and Ingulse lines fromen.

¥

340

``





TABLE A.5. Logged Data for normal differential transmitter signal pressure

_									. 1
T	Ø	ؕ3364	1 (	0.3354	20	• 3345	3 Ø	• 3354	ĺ
	4	ؕ3354	⁻ 5	0.3354	6	ؕ3335	7	0.3354	
L	8	ؕ3335	9	0.3345	ʻ 10	ؕ3354	1 11	0.3345	
L	12	ؕ3354	13	0.3364	i i 14	ؕ3345	15	ؕ3364	
	16	0.3345	17	ؕ3345	~ 18	ؕ3364	· 19	ؕ3345	
	20	ؕ3345	21	ؕ3364	22	ؕ3345	23	0.3345	
1	24	0.3364	25	0.3345	26	ؕ3345	27	0.3345	
	28	0.3345	29	0.3345	30	ؕ3354	31	ؕ3345	Į
	32	ؕ3345	33	ؕ3354	34	0.3354	35	ؕ3354	
	36	ؕ3335	37	0.3345	38	0.3345	<b>39</b>	ؕ3345	
Ţ	40	ؕ3345	41	ؕ3345	42	ؕ3345	43	0.3354	
	44	ؕ3345	45	0.3335	46	0.3354	47	ؕ3354	
	48	0.3354	49	ؕ3345	50	0.3354	51	0.3345	
	52	ؕ3345	53	ؕ3345	54	0.3345	55	ؕ3364	
Ł	56	ؕ3345	57	0.3354	58	0.3345	59	0.3354	
1	60	ؕ3335	61	0.3354	62	ؕ3354	63	ؕ3345	
	64	0.3345	65	0.3345	66	0.3354	67	ؕ3335	
	68	0.3345	69	0.3345	70	ؕ3345	71 (	0.3354	
	72	0.3345	73	0.3345	74	ؕ3345	75	0.3345	
	76	ؕ3354	77	0.3345	78	ؕ3335	. 79	0.3345	
	80	ؕ3345	81	0.3345	82	0.3345	83	ؕ3345	
	84	0.3345	85	0.3354	86	0.3345	87	0.3354	
1	88	ؕ3345	89	0.3345	90	0.3345	1		ł
	91	0.3345	92	0.3364	93	0.3335	94	0.3345	
	95	0.3354	96	0.3364	97	Ø.3354	98	ؕ3345	
	99	0.3345	100	0.3345	101	0.3354	102	0.3345	
ļ	103	0.3354	104	Ø.3335	-105	0.3345	106	0.3345	
	107	0.3364	108	0.3335	109	0.3335	110	0.3335	1.
	111	0.3345	112	0.3345	113	0.3345	114	0.3335	ľ
1	15	0.3345	116	Ø.3345	117	0.3354	118	0.3345	
`	119	Ø.3345	120	0.3345	121	0.3354	122	Ø.3364	[
	123	0.3345	124	0.3345	125	0.3345	126	0.3354	
	127	0.3403	128	0.3345	129	Ø.3335	130	9.3364	
Ì.	131	0.3345	132	0.3345	133	0.3335	134	0.3345	1
1	35	Ø 3345	136 0	7.3354	137 0	1.3345	138 0.	.3335	ľ
Ι-	1.39	Ø.3345	140	0.3335	141	Ø.3345	142	Ø.3354	
	143	0.3345	144	0.3345	145	0.3345	146	0.3345	l
Į	147	0.3345	148	0.3345	149	0.3364	150	0.3345	ļ
١,	51	0.3345	152	0.3354	153	0.3345	154	0.3345	
-	155	0.3345	156	0.3345	157	Ø.3335	158	0.3345	Į
I	159	0.3354	160	0.3345	161	Ø.3364	162	0.3345	L
ł	163	0.3354	164	0.3345	165	0.3345	166	0.3345	
	167	0.3354	168	0.3354	169	0.3335	170	Ø.3345	1
ł	171	Ø.3345	172	0.3345	173	Ø.3345	174	0.3345	
	175	0.3345	176	0.3354	177	0.3354	178	0.3345	ł
ł	179	0.3354	180	0.3345	181	0.3345		0.0042	ł
	182	0.3354	183	0.3345	184	0.3345	185	0.3364	
	186	0.3354	187	0.3345	188	0.3335	189	0.3345	l
1	190	0.3345	191	0.3345	192	0.3354	193	0.3345	ł
1 1	94	0.3354	195	0.3364	196	0.3345	197	0.3345	1
1	198	Ø.3345	199	0.3345	200	0.3335	201	0.3335	Į
	202	0.3345	202	0.3345	204	0.3345	205	0.3345	ĺ
	206	0.3345	207	0.3335	208	0.3335	209	0.3345	
	210	0.3345	211	0.3345	212	0.3345	213	0.3345	ſ
	214	0.3335	215	0.3345	216	0.3335	217	0.3345	L
	218	ؕ3335	219	ؕ3345	220	ؕ3335	** 221	ؕ3335	1
						· · · ·			

343

ł

~

÷

۰

• 1

pressure

į,

) <del>~~~</del> ~		·						
222	ؕ3345 ⁴	223	ؕ3335	224	ؕ3364	225	ؕ3345	I f
226	ؕ3325	227	ؕ3335	228	Ø.3345	229	0.3345	
230	0.3345	231	0.3325	232	ؕ3335	233	ؕ3345	
234	0.3345	235	ؕ3335	236	ؕ3345	237	ؕ3335	
238	ؕ3335	239	0.3354	240	ؕ3345	241	ؕ3345	
242	0.3345	243	0.3335	244	0.3345	245	ؕ3335	
246	ؕ3335	247	ؕ3345	248	ؕ3335	249	0.3335	ł
250	0.3345	251	ؕ3335	252	ؕ3335	253	ؕ3345	1
254	ؕ3335	255 Ø	• 3345	256	ؕ3345	257	ؕ3345	
258	ؕ3335	259	ؕ3345	260	ؕ3315	261	ؕ3345	ł
262	0.3345	263	ؕ3335	264	ؕ3345	265	ؕ3335	
266	ؕ3335	267	0.3335	268	ؕ3335	269	0.3345	
270	ؕ3354	271	Ø+3345	272	ؕ3335	273	0.3345	
274	0.3335	275	ؕ3335	276	0.3315	277	ؕ3345	ł
278	0.3345	279	Ø.3335	280	Ø.3354	281	0.3335	
282	0.3345	283	0.3325	284	0.3345	285	0.3335	
286	0.3345	287	0.3345	288	0.3335	289	Ø.3335	
290	0.3335	291 Ø	.3335	292	0.3335	293	0.3335	
294	0.3345	295	0.3345	296	Ø.3335	297	Ø.3335	
298	0.3335	299	0.3335	300	0.3345	301	0.3345	
392	0.3345	303	0.3345	304	0.3325	305	1.3335	
306	0.3345	307	0.3345	308	0.3345	300	0.3345	l
310	0-3345	311	0.3345	210	0.3335	212	0.3345	
314	0.3335	315	0.3335	316	0.3354	317	0.3345	
319	0.3345	319	0.3345	320	0.3345	301	0.3345	ļ
300	0.3364	302	0.3245	- 204	0.3335	305	0.3335	
206	0.3304	307	0.3343	200	0.3353	200	0.3345	
220	0 3345	321	0+3335	220	0 2225	222	0 3345	
330	Ø • 3304	331	0.3345	302	0.3335	333	0 2254	
234	0.3345	335	0+3345	330	0.3335	331	0+3354	1
330	0.000	339	0.3345	340	0.3335	241	0.0045	
346	0.0004	343 Ø	• JJ45 7 JJ45	344	0.3345	345	0.0045	
340	0.3335	347	0.3345	340	0+3354	349	0 3345	
000	0.3345	351	0+3345	352	0.3345	353	0.3345	1
354	0.3345	355	0.3345	356	0.3354	351	0.3345	ļ
350	0.3345	359	0.3345	300	0+3345	200	a 00%5	
361	0+3345	362	0+3345	363	0.3335	364	0.3345	ł
305	0.3335	366	0.3345	30/	0+3345	368	0.3345	ŀ
309	0.3345	370	0+3345	3/1	0+3345	312	0.3354	ļ
3/3	0.3345	374	0.3345	315	0.3335	3/6	0*3345	
317	0.3335	378	0.3335	3/9	0.3354	300	0+3345	
381	0.3354	382	0.3335	383	0.3345	384	0.3315	
385	0+3335	386 0	•3325	387	0.3335	388	0.3345	
389	0.3345	390	0.3354	391	0+3354	392	0.3335	
393	0+3345	394	0.3335	395	0+3345	396	0.3345	
397	0.3335	398	0.3335	399	0.3354	400	0.3345	
401	0.3335	402	0.3403	403	0.3345	404	0.3345	
405	0.3364	406 0	•3345	407	0.3354	408	0.3335	
409	0.3345	410	0.3354	411	ؕ3345	412	0.3345	
413	0•3345	414 Ø	•3354	415	0.3345	416	0.3335	
417	0•3345	418	0•3345	419	0.3354	420	ؕ3335	
421	0.3345	422	0.3345	423	ؕ3345	424	ؕ3345	
425	ؕ3345	426 Ø	• 3345	, 427	ؕ3335	428	ؕ3335	1
429	ؕ3345	430	0•3345	431	ؕ3335	432	ؕ3345	
433	ؕ3335	, 434	0•3345	435	ؕ3354	436	ؕ3354	ļ
437	ؕ3345	438 Ø	• 3345 💡	439	0.3345	440	0.3345	ł
441	ؕ3345	442	ؕ3345	443	0.3345	444	ؕ3354	ł
		`			<u>N</u>			)

344

1

•

'n

TABLE A.5. (cont'd) Logged Data for normal differential transmitter signal

pressure

445	0.3345	446	0.3345	447	ؕ3345	448	ؕ3345	ļ,
449	0.3354	450	ؕ3345	451	ؕ3354			Ĭ.
452	ؕ3345	453	0.3345	454	ؕ3345	455	ؕ3354	1
456	0.3335	457	0.3345	458	0.3354	459	0.3345	
460	ؕ3354	461	ؕ3364	462.	ؕ3364	463	0.3335	1
464	0.3364	465	0.3345	466	ؕ3354	467	0.3345	1
468	ؕ3345	469	0.3345	470	ؕ3364	471	ؕ3345	1
472	ؕ3354	473	ؕ3345	474	ؕ3364	475	0.3345	
476	0.3364	477	ؕ3345	478	0•3345	479	ؕ3345	Ì.
480	ؕ3364	481	ؕ3345	482	ؕ3335	483	ؕ3364	
484	ؕ3354	485	ؕ3354	486	ؕ3345	487	ؕ3345	
488	ؕ3364	489	ؕ3345	490	0.3335	491	0.3364	
492	ؕ3345	493	ؕ3345	494	ؕ3354	495	ؕ3354	ŀ
496	ؕ3354	497	ؕ3354	498	ؕ3354	499	ؕ3345	
500	0.3345	501	ؕ3345	502	Ø•3345·	503	ؕ3345	
504	0.3345	505	0.3345	506	ؕ3345	507	ؕ3345	I.
508	ؕ3345	509	ؕ3354	510	0.3345	511	0.3345	1
512	ؕ3345	513	ؕ3345	514	ؕ3335	515	ؕ3345	
516	ؕ3364	517	ؕ3335	518	ؕ3345	519	ؕ3345	I.
520	ؕ3335	521	ؕ3354	522	ؕ3345	523	0.3335	
524	ؕ3335	525	0.3345	526	0.3335	527	0.3335	Į.
528	ؕ3335	529	ؕ3354	530	ؕ3345	531	ؕ3345	
532	0.3345	533	ؕ3335	534	Ø.3345 .	535	0.3325	
536	ؕ3345	537	ؕ3335	538	0.3345	539	0.3345	1
540	ؕ3345	541	ؕ3345	542	0-3345	543	0.3335	
544	0.3345	545	ؕ3345	546	0.3345	547	0.3354	1
548	0.3335	549	ؕ3315	550	0.3325	551	ؕ3345	
552	0.3345	553	0.3403	554	0.3345	555	ؕ3335	
556	ؕ3345	557	ؕ3345	558	0.3345	559	ؕ3335	
560	ؕ3335	561	0.3335	562	0.3345	563	ؕ3325	
564	ؕ3345	565	0.3345	566	ؕ3335	567	0.3345	1
568	ؕ3345	569	ؕ3345	570	ؕ3335	571	ؕ3345	ł
572	0.3345	573	ؕ3335	574	ؕ3325	575	ؕ3345	ľ
576	ؕ3335	577	ؕ3364	578	ؕ3345	579	ؕ3354	ł
580	ؕ3335	581	ؕ3335	582	ؕ3335	583	ؕ3345	
584	0.3345	585	ؕ3335	586	ؕ3364	58 <b>7</b>	ؕ3345	1
588	0.3345	589	ؕ3354	590	ؕ3345	591	0.3345	
592	ؕ3325	593	0.3345	594	ؕ3335	595	ؕ3345	1
596	ؕ3335	597	ؕ3354	598	ؕ3354	599	ؕ3345	
600	0.3345	601	0•3345	602	ؕ3354	603	ؕ3345	
604	0.3345	605	ؕ3335	606	ؕ3335	607	0.3345	
608	ؕ3345 .	609	0.3335	610	ؕ3345	611	0.3345	1
612	ؕ3345	613	0.3345	614	0.3345	615	ؕ3345	Ĩ
616	ؕ3335	617	ؕ3345	618	ؕ3345	619	0.3345	
620	0.3345	621	Ø+3345	622	ؕ3345	623	ؕ3335	
624	0.3345	625	ؕ3345	626	ؕ3335	627	0.3335	
628	0.3335	629	ؕ3364	630	0.3345			
631	0.3345	632	0.3345	633	ؕ3345	634	ؕ3345	
635	0.3335	636	0.3335	637	Ø3345	638	0.3345	
639	0.3364	640	0.3345	641	0.3345	642	0.3345	
643	ؕ3335	644	0.3345	645	Ø.3335	646	ؕ3335	
647	0.3345	648	0.3345	649	0.3345	650	ؕ3335	ł
651	0.3345	652	0.3345	653	ؕ3345	654	0.3364	1
655	0.3345	656	0.3345	657	0.3345	658	0.3354	
659	ؕ3345	660	0.3345	661	0.3345	662	0.3364	I
663	0.3345	664	0.3354	665	ؕ3315	666	0.3345	ł
1000		004	5-0004	000				1

345

、

Here and the signal differential transmitter signal

pressure

o

									t i
1	667	0.3345	668	0.3345	669	ؕ3354	67Ø	ؕ3335	
	671	ؕ3335	672	ؕ3345	673	ؕ3345	674	•3354	1
	675	ؕ3345	676	0.3345	677	0.3354	678	0.3345	
	679	0.3345	680	0.3345	681	ؕ3345	682	ؕ3345	
	683	0.3345	684	ؕ3335	685	0.3345	686	ؕ3345	11
	687	0.3345	688	0.3335	689	0.3345	690	0.3345	1
	691	0.3345	692	0.3345	693	0.3345	694	0.3345	
	695	0.3354	696	0.3364	697	0.3345	698	0.3335	
	699	0.3345	700	0.3345	701	0.3364	702	0.3345	
Ì	703	0.3345	704	0.3345	705	Ø.3345	706	0.3345	
	707	0.3364	708	0.3345	709	0.3345	710	0.3345	
	711	0.3345	712	0.3354	713	0.3345	714	0.3335	ſ
	715	0.3345	716	0.3345	717	0.3345	- 718	0,3335	
	719	0.3345	700	0.3354	701	0.2345	110	2.0000	1
	700	0.3345	702	0+0004	70/	0.3345 7.3245	705	a . 2225	
	706	0.3345	707	0.3325	709	0.3345	700	Ø • 3335	ł.
ļ	720	0.3345	721	0.3345	720	Ø+3365	722	0.3345	
İ	730	0.00054	731	0.3345	132	0.3325	133	0.3364	
	734	ؕ3335 Ø 3345	135	ؕ3354 G 3245	130	0.3345	131	0+3345	
	130	ؕ3345	739	0.3345	740	0.3345	741	0.3345	1
	742	0.3345	143	0.3364	744	0.3345	745	0.3345	
	746	0.3354	747	0.3345	748	0.3345	749	0.3345	
	750	0.3335	751	• 3335	752	0.3345	753	0+3354	
	754	0.3345	755	0.3335	756	0.3335	757	0.3345	1
	758	0.3364	759	0.3354	760	ؕ3345	761	0.3335	
	762	0.3335	763	0.3345	764	0.3315	765	0.3345	
	766	0.3354	767	0.3345	768	0.3335	769	0.3345	
	770	0.3345	771	0.3315	772	ؕ3345	773	0.3345	
	774	0.3345	775	0.3354	776	0.3335	777	0+3345	ł
	778	ؕ3345	779	ؕ3345	780	0.3345	781	0.3345	ł
	782	ؕ3354	783	ؕ3345	784	ؕ3364	785	0.3345	
	786	ؕ3354	787	0.3345	788	0.3345	789	ؕ3335	ļ
	790	ؕ3364	791	ؕ3345	792	ᯥ3335	793	0.3345	•
	794	ؕ3335	795	0.3345	796	ؕ3345	797	ؕ3345	
	798	ؕ3345	799	ؕ3345	800	ؕ3354	801	ؕ3345	1
	802	ؕ3345	803	ؕ3345	804	ؕ3345	805	Ø.• 3335	
	806	ؕ3345	807	0.3345	808	0.3354	809	ؕ3335	
	810	ؕ3335	811	ؕ3345	812	ؕ3345	813	ؕ3345	
	814	ؕ3345	815	ؕ3364	816	ؕ3345	817	ؕ3335	Į
	818	ؕ3345	819	ؕ3354	820	ؕ3335	821	ؕ3345	•
	822	ؕ3335	823	ؕ3335	824	0.3354	825	ؕ3345	
	826	ؕ3345	827	ؕ3345	828	ؕ3345	829	0.3345	ļ
ļ	830	ؕ3354	831	ؕ3364	832	0.3345	833	ؕ3345	ł
	834	ؕ3354	835	ؕ3345	836	ؕ3335	837	ؕ3345	
	838	ؕ3335	839	ؕ3345	840	0.3345	841	ؕ3345	
ļ	842	ؕ3345	843	ؕ3345	844	Ø.3345	845	ؕ3345	
	846	ؕ3345	847	0.3335	848	ؕ3335	849	0.3345	
	850	ؕ3345	851	ؕ3345	852	ؕ3335	853	ؕ3345	
	854	ؕ3335	855	ؕ3345	856	0.3335	857	ؕ3354	
	858	0•3345	859	0.3345	860	0.3335	861	ؕ3335	I
	862	0.3364	863	ؕ33`2`5	864	ؕ3335	865	ؕ3325	1
	866	ؕ3345	867	ؕ3345	868	ؕ3345	869	0.3345	ſ
	870	ؕ3345	871	0.3345	872	ؕ3335	873.	ؕ3335	1
	874	0.3345	875	ؕ3335	876	ؕ3345	877	ؕ3335	
	878	0.3335	879	ؕ3345	880	ؕ3325	881	0.3345	1
	882	ؕ3335	883	ؕ3335	884	0.3345	885	0.3345	1
	886	0.3345	887	0.3354	888	ؕ3345	889	ؕ3335	ł
,	► ⁻		-		*		<u> </u>		<u>1</u>

							-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0.3296	1	0.3267	2	0.3257	3	ؕ3267	~
8 $0.3267$ 9 $0.3276$ 10 $0.3267$ 11 $0.3267$ 11 $0.3267$ 12 $0.3286$ 13 $0.3257$ 14 $0.3247$ 15 $0.3276$ 24 $0.3286$ 21 $0.3237$ 22 $0.3247$ 23 $0.3267$ 24 $0.3286$ 25 $0.315$ 26 $0.3326$ 27 $0.3286$ 28 $0.3267$ 29 $0.3267$ 30 $0.3276$ 31 $0.3276$ 32 $0.3266$ 27 $0.3286$ 42 $0.3315$ 46 $0.3276$ 36 $0.3267$ 37 $0.3247$ 38 $0.3287$ 39 $0.3276$ 40 $0.3286$ 41 $0.3366$ 42 $0.3315$ 43 $0.3315$ 46 $0.3267$ 57 $0.3267$ 58 $0.3276$ 56 $0.3276$ 56 $0.3276$ 54 $0.3267$ 59 $0.3276$ 56 $0.3277$ 61 $0.3267$ 58 $0.3227$ 79 $0.3276$ 68 $0.3257$ 69 $0.3277$ 78 $0.3227$ 71 $0.3276$ 68 $0.3257$ 69 $0.3277$ 78 $0.3267$ 79 $0.3276$ 78 $0.3286$ 61 $0.3267$ 79 $0.3276$ $0.3267$ 79 $0.3276$ $0.3287$ 79 $0.3276$ $0.3287$ $0.3286$ 70 $0.3287$ 78 $0.3287$ 79 $0.3276$ $0.3287$ 78 $0.3286$ 73 $0.3286$ 73 $0.3286$ $0.3297$ 79 $0$	4	0.3267	5	0.3276	6	0.3286	7	0.3276	
12 $0.3267$ 13 $0.3257$ 14 $0.3247$ 15 $0.3267$ 16 $0.3286$ 17 $0.3237$ 22 $0.3247$ 23 $0.3267$ 20 $0.3286$ 21 $0.3237$ 22 $0.3247$ 23 $0.3257$ 24 $0.3286$ 25 $0.3217$ 22 $0.3247$ 23 $0.3257$ 24 $0.3266$ 21 $0.3267$ 30 $0.3276$ 21 $0.3276$ 28 $0.3276$ 29 $0.2267$ 34 $0.3286$ 35 $0.3276$ 36 $0.3267$ 37 $0.3247$ 38 $0.3257$ 39 $0.3276$ 36 $0.3267$ 49 $0.2286$ 50 $0.3276$ 51 $0.3286$ 40 $0.3267$ 49 $0.2286$ 54 $0.3267$ 55 $0.3267$ 56 $0.3267$ 51 $0.3267$ 56 $0.3267$ 56 $0.3267$ 56 $0.3267$ 61 $0.2277$ 76 $0.3267$ 76 $0.3267$ 57 $0.3267$ 66 $0.327$ 71 $0.3276$ $0.3267$ 58 $0.3277$ 77 $0.3267$ 78 $0.3267$ $0.3267$ 59 $0.3276$ 80 $0.3277$ 78 $0.3267$ $0.3267$ 50 $0.3276$ 81 $0.2277$ 78 $0.3267$ $0.3266$ 50 $0.3276$ 90 $0.3277$ $0.3277$ $0.3276$ $0.3276$ 50 $0.3276$ 90 $0.3277$ $0.3277$ $0.3267$ $0.3267$ 71 $0.3267$ <td< td=""><td>8</td><td>0.3267</td><td>9</td><td>0.3276</td><td>10</td><td>ؕ3267</td><td>11</td><td>0.3276</td><td>Ŧ</td></td<>	8	0.3267	9	0.3276	10	ؕ3267	11	0.3276	Ŧ
160.3286170.3315180.3315190.3366200.3286210.3237220.3247230.3257240.3286250.3315260.3306270.3286280.3276390.3276340.3286350.3276320.3286410.3306420.315430.3286400.3286410.3306420.3315430.3276400.3286410.3306420.315430.3276430.3257490.3286500.3267510.3286440.3267530.3276540.3267590.3276560.3257570.3267580.3267590.3276560.3257690.3237700.3237710.3257760.3257770.3257780.3267790.3266760.3267890.3247900.3336940.3296710.3257920.3306930.3336940.3296790.3267890.32671090.32671100.3257910.3257920.3306930.3336940.3296920.3276960.32671090.32671100.3257990.32761000.32671090.32671100.3257 <td>12</td> <td>ؕ3267</td> <td>13</td> <td>0.3257</td> <td>14</td> <td>0.3247</td> <td>15</td> <td>0.3257</td> <td></td>	12	ؕ3267	13	0.3257	14	0.3247	15	0.3257	
20         0.3286         21         0.3237         22         0.3247         23         0.3257           24         0.3266         25         0.3315         26         0.3306         27         0.3266           32         0.3276         29         0.3267         30         0.3276         31         0.3276           32         0.3267         37         0.3247         38         0.32876         31         0.3276           36         0.3267         37         0.3247         38         0.32876         51         0.3286           40         0.3267         49         0.3286         50         0.3276         51         0.3286           52         0.3267         53         0.3276         54         0.3267         59         0.3276           64         0.3267         65         0.3276         62         0.3277         10.3276         62         0.3276         63         0.3267           64         0.3267         77         0.3257         78         0.3267         63         0.3276           64         0.3267         63         0.3276         79         0.3276         79         0.3286           86	16	0.3286	17	0.3315	18	ؕ3315	19	0.3306	
24         0.3286         25         0.3215         26         0.3396         27         0.3286           28         0.3276         29         0.3267         30         0.3286         31         0.3276           32         0.3267         37         0.3276         34         0.3286         31         0.3276           34         0.3286         41         0.3306         42         0.3315         43         0.3276           40         0.3287         49         0.3286         50         0.3276         51         0.3286           44         0.3257         57         0.3267         58         0.3267         59         0.3276           56         0.3257         57         0.3257         62         0.3267         79         0.3267           64         0.3257         69         0.3237         70         0.3287         79         0.3267           70         0.3266         73         0.3276         80         0.3267         79         0.3267           70         0.3267         69         0.3277         70         0.3287         79         0.3287           70         0.3287         79         0.3287 <td>20</td> <td>ؕ3286</td> <td>21</td> <td>0.3237</td> <td>22</td> <td>0.3247</td> <td>23</td> <td>0.3257</td> <td>•</td>	20	ؕ3286	21	0.3237	22	0.3247	23	0.3257	•
28         0.3276         29         0.3267         30         0.3276         31         0.3276           32         0.3296         33         0.3276         34         0.3286         35         0.3276           40         0.3286         41         0.3267         36         0.3287         38         0.3287         43         0.3286           44         0.3286         41         0.3286         42         0.315         43         0.3276           44         0.3267         49         0.3286         50         0.3276         51         0.3286           52         0.3276         53         0.3276         54         0.3267         59         0.3276           64         0.3267         61         0.3237         62         0.3247         63         0.3267           70         0.3257         70         0.3267         70         0.3286         79         0.3267           64         0.3266         81         0.3276         82         0.3276         70         0.3286           70         0.3257         72         0.3306         93         0.3306         94         0.3286           84         0.3267 <td>24</td> <td>ؕ3286</td> <td>. 25</td> <td>0.3315</td> <td>26</td> <td>0.3306</td> <td>27</td> <td>0.3286</td> <td></td>	24	ؕ3286	. 25	0.3315	26	0.3306	27	0.3286	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	0.3276	29	ؕ3267	30	0.3276	31	0.3276	ļ
36 $0.3266$ 37 $0.3247$ 38 $0.3257$ 39 $0.3276$ 40 $0.3286$ 41 $0.3306$ 42 $0.3315$ 43 $0.3315$ 44 $0.3267$ 49 $0.3286$ 50 $0.3276$ 51 $0.3286$ 52 $0.3267$ 53 $0.3276$ 54 $0.3267$ 55 $0.3267$ 56 $0.3257$ 57 $0.3267$ 58 $0.3267$ 59 $0.3276$ 64 $0.3267$ 65 $0.3276$ 62 $0.3247$ 63 $0.3257$ 64 $0.3267$ 65 $0.3277$ 70 $0.3237$ 71 $0.3267$ 76 $0.3257$ 77 $0.3257$ 78 $0.3267$ 79 $0.3276$ 76 $0.3257$ 77 $0.3257$ 78 $0.3267$ 79 $0.3276$ 76 $0.3267$ 69 $0.3276$ 79 $0.3276$ 79 $0.3276$ 76 $0.3267$ 80 $0.3247$ 90 $0.3237$ 79 $0.3276$ 76 $0.3267$ 80 $0.3276$ 100 $0.3276$ 100 $0.3237$ 79 $0.3276$ 100 $0.3276$ 100 $0.3237$ 93 $0.3286$ 80 $0.3267$ 100 $0.3267$ 100 $0.3237$ 93 $0.3286$ 79 $0.3276$ 100 $0.3267$ 100 $0.3287$ 100 $0.3287$ 10 $0.3276$ 100 $0.3267$ 100 $0.3287$ 100 $0.3287$ 110 $0.3276$ 120 $0.3267$ 130 $0.3287$ <td>32</td> <td>0.3296</td> <td>33</td> <td>0.3276</td> <td>34</td> <td>0.3286</td> <td>35</td> <td>0.3276</td> <td></td>	32	0.3296	33	0.3276	34	0.3286	35	0.3276	
40 $0.3286$ 41 $0.3306$ 42 $0.3315$ 43430.331544 $0.3285$ $45$ $0.3315$ 46 $0.3306$ 47 $0.3286$ 52 $0.3267$ $53$ $0.3276$ $54$ $0.3267$ $55$ $0.3286$ 56 $0.3257$ $57$ $0.3286$ $58$ $0.3267$ $59$ $0.3276$ 66 $0.3267$ $65$ $0.3276$ $66$ $0.3267$ $67$ $0.3287$ 68 $0.3257$ $69$ $0.3237$ $70$ $0.3237$ $71$ $0.3276$ 76 $0.3286$ $81$ $0.3276$ $78$ $0.3287$ $79$ $0.3276$ 76 $0.3286$ $81$ $0.3276$ $78$ $0.3287$ $79$ $0.3276$ 76 $0.3286$ $81$ $0.3276$ $79$ $0.32876$ $83$ $0.3296$ 84 $0.3296$ $85$ $0.315$ $86$ $0.3306$ $87$ $0.3286$ 84 $0.3267$ $92$ $0.33267$ $97$ $0.3237$ $93276$ $96$ $0.3276$ $100$ $0.3276$ $101$ $0.3326$ $192$ $0.3287$ $91$ $0.3276$ $100$ $0.3276$ $110$ $0.3287$ $110$ $0.3287$ $91$ $0.3276$ $102$ $0.3277$ $110$ $0.3287$ $110$ $0.3287$ $91$ $0.3276$ $102$ $0.3277$ $110$ $0.3287$ $110$ $0.3287$ $103$ $0.3277$ $110$ $0.3277$ $110$ $0.3287$ $110$ $0.3287$ <td>36</td> <td>0.3267</td> <td>37</td> <td>0.3247</td> <td>38</td> <td>0.3257</td> <td>39</td> <td>0.3276</td> <td>ĺ</td>	36	0.3267	37	0.3247	38	0.3257	39	0.3276	ĺ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	0.3286	41	0.3306	42	ؕ3315	43	0.3315	ł
48 $0.3267$ 49 $0.2286$ 50 $0.3276$ 51 $0.3286$ 52 $0.3276$ 53 $0.3276$ 54 $0.3267$ 55 $0.3267$ 64 $0.3267$ 61 $0.3257$ 62 $0.3247$ 63 $0.3257$ 64 $0.3267$ 65 $0.3276$ 66 $0.3296$ 67 $0.3267$ 76 $0.3257$ 69 $0.3237$ 70 $0.3237$ 71 $0.3267$ 72 $0.3286$ 73 $0.3297$ 78 $0.3267$ 79 $0.3276$ 76 $0.3257$ 77 $0.3257$ 78 $0.3267$ 79 $0.3276$ 80 $0.3286$ 81 $0.3276$ 82 $0.3276$ 83 $0.3296$ 84 $0.3296$ 85 $0.315$ 86 $0.3306$ 87 $0.3286$ 86 $0.3267$ 92 $0.30276$ 93 $0.3306$ 94 $0.3296$ 91 $0.3276$ 96 $0.3267$ 97 $0.3257$ 98 $0.3257$ 99 $0.3276$ 100 $0.3276$ 101 $0.3306$ 102 $0.3315$ 103 $0.3276$ 120 $0.3267$ 101 $0.3267$ 110 $0.3286$ 111 $0.3276$ 120 $0.3247$ 113 $0.3247$ 114 $0.3286$ 111 $0.3276$ 120 $0.3247$ 121 $0.3286$ 110 $0.3286$ 111 $0.3276$ 120 $0.3247$ 113 $0.3247$ 114 $0.3286$ 111 $0.3276$ 120 $0.3247$ 121 $0.3$	44	ؕ3325	45	ؕ3315	46	0.3306	47	0.3286	ĺ
52 $0.3276$ 53 $0.3267$ 55 $0.3267$ 56 $0.3267$ 57 $0.3267$ 58 $0.3267$ 59 $0.3267$ 64 $0.3267$ 61 $0.3257$ 62 $0.3247$ 63 $0.3257$ 64 $0.3257$ 69 $0.3237$ 70 $0.3237$ 71 $0.3267$ 76 $0.3257$ 69 $0.3237$ 70 $0.3237$ 71 $0.3267$ 76 $0.3257$ 69 $0.3237$ 70 $0.3237$ 71 $0.3267$ 76 $0.3257$ 77 $0.3257$ 78 $0.3276$ 83 $0.3296$ 84 $0.3266$ 81 $0.3276$ 82 $0.3276$ 83 $0.3296$ 84 $0.3267$ 89 $0.3247$ 90 $0.3237$ $0.3286$ $0.3286$ 91 $0.3276$ 96 $0.3267$ 97 $0.3257$ 98 $0.3286$ 95 $0.3276$ 96 $0.3267$ 101 $0.3306$ 102 $0.3315$ 107 $0.3276$ 100 $0.3276$ 101 $0.3267$ 110 $0.3267$ 111 $0.3276$ 128 $0.3247$ 121 $0.3267$ 110 $0.3267$ 111 $0.3276$ 128 $0.3276$ 127 $0.3267$ 138 $0.3267$ 111 $0.3277$ 128 $0.3267$ 138 $0.3267$ 138 $0.3267$ 111 $0.3276$ 128 $0.3267$ 138 $0.3267$ 138 $0.3267$ 111 $0.3267$ 128 $0.3267$ 138 $0.3267$ 138 $0.$	48	0.3267	49	0.3286	50	0.3276	51	ؕ3286	
56 $0.3257$ 57 $0.3267$ 58 $0.3267$ 59 $0.3276$ 64 $0.3267$ 65 $0.3276$ 66 $0.3247$ 63 $0.3257$ 68 $0.3257$ 69 $0.3237$ 70 $0.3237$ 71 $0.3267$ 76 $0.3257$ 69 $0.3237$ 70 $0.3237$ 71 $0.3276$ 76 $0.3257$ 77 $0.3257$ 78 $0.3267$ 79 $0.3276$ 80 $0.3266$ 81 $0.3276$ 82 $0.3276$ 83 $0.3296$ 84 $0.3267$ 89 $0.3247$ 90 $0.3237$ $0.3286$ 86 $0.3267$ 89 $0.3247$ 90 $0.3237$ $0.3286$ 91 $0.3257$ 92 $0.3306$ 93 $0.3306$ 94 $0.3296$ 95 $0.3276$ 96 $0.3267$ 97 $0.3257$ 98 $0.3267$ 90 $0.3276$ 100 $0.3276$ 101 $0.3306$ 102 $0.3315$ 103 $0.3315$ 104 $0.3267$ 109 $0.3267$ 110 $0.3267$ 111 $0.3247$ 112 $0.3247$ 113 $0.3247$ 114 $0.3267$ 111 $0.3276$ 120 $0.3247$ 121 $0.3267$ 110 $0.3267$ 111 $0.3276$ 120 $0.3247$ 121 $0.3267$ 110 $0.3267$ 111 $0.3276$ 120 $0.3277$ 121 $0.3267$ 130 $0.3267$ 114 $0.3267$ 120 $0.3276$ 120 $0.3267$ 130 </td <td>52</td> <td>0.3276</td> <td>53</td> <td>0.3276</td> <td>54</td> <td>ؕ3267</td> <td>55</td> <td>0.3267</td> <td>l l</td>	52	0.3276	53	0.3276	54	ؕ3267	55	0.3267	l l
60 $0.3267$ 61 $0.3257$ 62 $0.3247$ 63 $0.3257$ 64 $0.3267$ 65 $0.3276$ 66 $0.3296$ 67 $0.3267$ 72 $0.3257$ 73 $0.3237$ 74 $0.3237$ 71 $0.3276$ 72 $0.3257$ 77 $0.3257$ 78 $0.3267$ 79 $0.3276$ 76 $0.3257$ 77 $0.3257$ 78 $0.3267$ 79 $0.3276$ 84 $0.3296$ 85 $0.3315$ 86 $0.3267$ 83 $0.3266$ 84 $0.3296$ 85 $0.3247$ 90 $0.3237$ $0.3286$ 91 $0.3257$ 92 $0.3306$ 93 $0.3306$ 94 $0.3296$ 95 $0.3276$ 100 $0.3276$ 101 $0.3306$ 102 $0.3315$ 103 $0.3276$ 100 $0.3276$ 101 $0.3267$ 110 $0.3267$ 111 $0.3276$ 100 $0.3276$ 109 $0.3267$ 110 $0.3267$ 112 $0.3247$ 120 $0.3247$ 121 $0.3267$ 118 $0.3286$ 123 $0.3247$ 124 $0.3276$ 117 $0.3267$ 136 $0.3276$ 131 $0.3267$ 136 $0.3276$ 137 $0.3267$ 136 $0.3267$ 135 $0.3267$ 136 $0.3276$ 137 $0.3267$ 136 $0.3267$ 139 $0.336$ 140 $0.3267$ 136 $0.3267$ 136 $0.3267$ 139 $0.336$ 140 $0.3267$ 137 $0.32$	56	ؕ3257	57	ؕ3267	58	ؕ3267	59	0.3276	
64 $0.3267$ 65 $0.3276$ 66 $0.3296$ 67 $0.3267$ 72 $0.3257$ 73 $0.3237$ 70 $0.3237$ 71 $0.3276$ 76 $0.3257$ 77 $0.3257$ 78 $0.3267$ 79 $0.3276$ 80 $0.3286$ 81 $0.3276$ 82 $0.3276$ 83 $0.3296$ 84 $0.3266$ 85 $0.3315$ 86 $0.3267$ 87 $0.3286$ 81 $0.3267$ 89 $0.3247$ 90 $0.3237$ $0.3286$ 91 $0.3257$ 92 $0.3306$ 93 $0.3306$ 94 $0.3286$ 95 $0.3276$ 96 $0.3267$ 97 $0.3257$ 98 $0.3257$ 99 $0.3276$ 100 $0.3276$ 101 $0.3306$ 102 $0.3315$ 103 $0.3315$ 104 $0.3267$ 109 $0.3267$ 110 $0.3267$ 111 $0.3276$ 108 $0.3267$ 109 $0.3267$ 114 $0.3286$ 129 $0.3247$ 112 $0.3247$ 113 $0.3267$ 138 $0.3286$ 129 $0.3247$ 124 $0.3276$ 120 $0.3267$ 130 $0.3257$ 131 $0.3267$ 132 $0.3237$ 133 $0.3267$ 134 $0.3267$ 131 $0.3267$ 136 $0.3276$ 140 $0.3267$ 130 $0.3257$ 131 $0.3267$ 136 $0.3267$ 137 $0.3267$ 136 $0.3257$ 131 $0.3267$ 136 $0.3267$ 137 $0.$	60	ؕ3267	61	ؕ3257	62	0.3247	63	0.3257	ĺ.
68 $0.3257$ 69 $0.3237$ 70 $0.3237$ 71 $0.3276$ 72 $0.3286$ 73 $0.3296$ 74 $0.3296$ 75 $0.3267$ 76 $0.3257$ 77 $0.3257$ 78 $0.3267$ 79 $0.3276$ 80 $0.3286$ 81 $0.3276$ 82 $0.3267$ 83 $0.3296$ 84 $0.3296$ 85 $0.3315$ 86 $0.3267$ 83 $0.3296$ 86 $0.3267$ 89 $0.3247$ 90 $0.3237$ 94 $0.3296$ 91 $0.3257$ 92 $0.3366$ 93 $0.3306$ 94 $0.3296$ 95 $0.3276$ 96 $0.3267$ 97 $0.3267$ 98 $0.3257$ 99 $0.3276$ 100 $0.3276$ 101 $0.3267$ 110 $0.3267$ 107 $0.3276$ 108 $0.3267$ 109 $0.3267$ 110 $0.3267$ 115 $0.3247$ 112 $0.3247$ 121 $0.3276$ 118 $0.3228$ 123 $0.3247$ 124 $0.3276$ 125 $0.3315$ 126 $0.3257$ 131 $0.3267$ 136 $0.3267$ 137 $0.3267$ 138 $0.3267$ 131 $0.3267$ 136 $0.3267$ 137 $0.3267$ 138 $0.3267$ 133 $0.3267$ 136 $0.3276$ 144 $0.3267$ 138 $0.3267$ 134 $0.3267$ 136 $0.3276$ 145 $0.3276$ 146 $0.3267$ 144 $0.3267$ 145 $0.3267$ 156<	64	0.3267	65	0.3276	66	ؕ3296	67	0.3267	İ.
72 $0.3286$ 73 $0.3296$ 74 $0.3296$ 75 $0.3267$ 76 $0.3257$ 77 $0.3257$ 78 $0.3267$ 79 $0.3276$ 80 $0.3286$ 81 $0.3276$ 82 $0.3276$ 83 $0.3296$ 84 $0.3296$ 85 $0.3315$ 86 $0.3306$ 87 $0.3286$ 84 $0.3257$ 92 $0.3306$ 93 $0.3306$ 94 $0.3296$ 91 $0.3257$ 92 $0.3306$ 93 $0.3306$ 94 $0.3296$ 95 $0.3276$ 96 $0.3276$ 100 $0.3276$ 100 $0.3276$ 100 $0.3276$ 100 $0.3276$ 100 $0.3267$ 110 $0.3267$ 111 $0.3276$ 108 $0.3267$ 109 $0.3267$ 110 $0.3286$ 112 $0.3247$ 112 $0.3247$ 113 $0.3247$ 114 $0.3286$ 113 $0.3247$ 114 $0.3276$ 128 $0.3286$ 129 $0.3286$ 123 $0.3276$ 128 $0.3276$ 128 $0.3267$ 130 $0.3257$ 131 $0.3267$ 132 $0.3276$ 140 $0.3267$ 134 $0.3267$ 135 $0.3267$ 136 $0.3276$ 144 $0.3267$ 134 $0.3267$ 136 $0.3276$ 146 $0.3276$ 144 $0.3267$ 134 $0.3267$ 137 $0.3267$ 136 $0.3267$ 145 $0.3267$ 156 $0.3306$ 143 $0.3276$ 146 $0.3267$ <	68	0.3257	69	0.3237	70	ؕ3237	71	0.3276	
76 $0.3257$ 77 $0.3257$ 78 $0.3267$ 79 $0.3276$ 84 $0.3286$ 81 $0.3276$ 82 $0.3276$ 83 $0.3296$ 84 $0.3266$ 85 $0.3315$ 86 $0.3206$ 87 $0.3286$ 91 $0.3257$ 92 $0.3306$ 93 $0.3306$ 94 $0.3296$ 95 $0.3276$ 96 $0.3267$ 97 $0.3257$ 92 $0.3306$ 93 $0.3306$ 95 $0.3276$ 96 $0.3267$ 97 $0.3257$ 98 $0.3257$ 90 $0.3276$ 100 $0.3276$ 101 $0.3306$ 106 $0.3257$ 103 $0.3315$ 104 $0.3267$ 109 $0.3267$ 110 $0.3267$ 111 $0.3276$ 108 $0.3267$ 113 $0.3267$ 114 $0.3267$ 115 $0.3247$ 116 $0.3276$ 127 $0.3276$ 138 $0.3286$ 127 $0.3276$ 128 $0.3276$ 129 $0.3267$ 130 $0.3276$ 131 $0.3267$ 132 $0.3276$ 137 $0.3267$ 134 $0.3276$ 132 $0.3267$ 136 $0.3276$ 144 $0.3286$ 142 $0.3306$ 143 $0.3276$ 144 $0.3267$ 133 $0.3267$ 134 $0.3267$ 135 $0.3267$ 136 $0.3276$ 145 $0.3267$ 134 $0.3267$ 147 $0.3286$ 149 $0.3267$ 145 $0.3267$ 146 $0.3267$ 147 $0.3286$ <	72	0.3286	73	0.3296	74	ؕ3296	75	ؕ3267	i i
80 $0.3286$ $81$ $0.3276$ $82$ $0.3276$ $83$ $0.3296$ $84$ $0.3296$ $85$ $0.3215$ $86$ $0.3306$ $97$ $0.3286$ $86$ $0.3267$ $92$ $0.3267$ $90$ $0.3237$ $92$ $0.3267$ $97$ $0.3257$ $98$ $0.3296$ $95$ $0.3276$ $96$ $0.3267$ $97$ $0.3257$ $98$ $0.3257$ $98$ $0.3257$ $99$ $0.3276$ $100$ $0.2276$ $101$ $0.3306$ $102$ $0.3315$ $103$ $0.3315$ $104$ $0.3315$ $105$ $0.3306$ $106$ $0.3315$ $107$ $0.3276$ $108$ $0.3267$ $110$ $0.3267$ $110$ $0.3267$ $111$ $0.3247$ $112$ $0.3247$ $113$ $0.3267$ $118$ $0.3286$ $119$ $0.3267$ $122$ $0.3276$ $125$ $0.3315$ $126$ $0.3215$ $123$ $0.3247$ $124$ $0.3276$ $125$ $0.3315$ $126$ $0.3286$ $123$ $0.3267$ $132$ $0.3237$ $133$ $0.3267$ $134$ $0.3267$ $131$ $0.3267$ $136$ $0.3276$ $144$ $0.3266$ $142$ $0.3306$ $147$ $0.3286$ $142$ $0.3267$ $145$ $0.3267$ $136$ $0.3257$ $134$ $0.3276$ $146$ $0.3257$ $147$ $0.3267$ $150$ $0.3306$ $143$ $0.3276$ $146$ $0.3267$ $150$ $0.3306$	76	0.3257	77	ؕ3257	78	ؕ3267	79	0.3276	
84 $\emptyset \cdot 3296$ 85 $\vartheta \cdot 3315$ 86 $\vartheta \cdot 3066$ 87 $\vartheta \cdot 3286$ 88 $\vartheta \cdot 3267$ 89 $\vartheta \cdot 3247$ 90 $\vartheta \cdot 3237$ 91 $\vartheta \cdot 3257$ 92 $\vartheta \cdot 3306$ 93 $\vartheta \cdot 3306$ 94 $\vartheta \cdot 3296$ 95 $\vartheta \cdot 3276$ 96 $\vartheta \cdot 267$ 97 $\vartheta \cdot 3257$ 98 $\vartheta \cdot 3296$ 99 $\vartheta \cdot 3276$ 100 $\vartheta \cdot 3276$ 101 $\vartheta \cdot 3306$ 102 $\vartheta \cdot 3315$ 107 $\vartheta \cdot 3276$ 108 $\vartheta \cdot 3267$ 109 $\vartheta \cdot 3267$ 110 $\vartheta \cdot 3267$ 111 $\vartheta \cdot 3237$ 112 $\vartheta \cdot 3247$ 113 $\vartheta \cdot 3247$ 114 $\vartheta \cdot 3237$ 115 $\vartheta \cdot 3247$ 116 $\vartheta \cdot 3276$ 121 $\vartheta \cdot 3268$ 122 $\vartheta \cdot 3286$ 127 $\vartheta \cdot 3276$ 124 $\vartheta \cdot 3276$ 125 $\vartheta \cdot 3267$ 130 $\vartheta \cdot 3267$ 131 $\vartheta \cdot 3267$ 132 $\vartheta \cdot 3276$ 129 $\vartheta \cdot 3267$ 134 $\vartheta \cdot 3267$ 131 $\vartheta \cdot 3267$ 136 $\vartheta \cdot 3266$ 141 $\vartheta \cdot 3266$ 144 $\vartheta \cdot 3266$ 139 $\vartheta \cdot 3267$ 136 $\vartheta \cdot 3267$ 137 $\vartheta \cdot 3267$ 136 $\vartheta \cdot 3267$ 147 $\vartheta \cdot 3266$ 144 $\vartheta \cdot 3267$ 145 $\vartheta \cdot 3267$ 150 $\vartheta \cdot 3267$ 159 $\vartheta \cdot 3266$ 144 $\vartheta \cdot 3267$ 146 $\vartheta \cdot 3267$ 150 $\vartheta \cdot 3267$ 163 $\vartheta \cdot 3266$ 144 $\vartheta \cdot 3267$ 150 $\vartheta \cdot 3267$ 150 $\vartheta \cdot 3267$ 174 $\vartheta \cdot 3266$ 146 $\vartheta \cdot 3267$ 156 $\vartheta \cdot 326$	80	ؕ3286	81	0.3276	82	0.3276	83	0.3296	
88 $0.3267$ 89 $0.3247$ 90 $0.3237$ 94 $0.3296$ 91 $0.3257$ 92 $0.3306$ 93 $0.3306$ 94 $0.3296$ 95 $0.3276$ 96 $0.3267$ 97 $0.3257$ 98 $0.3257$ 99 $0.3276$ 100 $0.3267$ 101 $0.3306$ 102 $0.3315$ 103 $0.3315$ 104 $0.3267$ 109 $0.3267$ 110 $0.3267$ 111 $0.3276$ 108 $0.32276$ 113 $0.3247$ 114 $0.3267$ 115 $0.3247$ 116 $0.32276$ 120 $0.3276$ 118 $0.3286$ 119 $0.3276$ 120 $0.3276$ 120 $0.3276$ 120 $0.3276$ 120 $0.3276$ 120 $0.3276$ 120 $0.3267$ 130 $0.3267$ 131 $0.3267$ 132 $0.3267$ 134 $0.3267$ 134 $0.3267$ 131 $0.3267$ 136 $0.3276$ 147 $0.3267$ 136 $0.3276$ 147 $0.3266$ 140 $0.3267$ 153 $0.3267$ 136 $0.3267$ 147 $0.3286$ 156 $0.3315$ 157 $0.3315$ 158 $0.3366$ 143 $0.3276$ 144 $0.3267$ 153 $0.3267$ 154 $0.3267$ 153 $0.3267$ 164 $0.3267$ 156 $0.3315$ 157 $0.3366$ 143 $0.3276$ 146 $0.3267$ 156 $0.3276$ 166 $0.3267$ 154 $0.3267$ 164 <td< td=""><td>84</td><td>0.3296</td><td>85</td><td>0.3315</td><td>86</td><td>0.3306</td><td>87</td><td>0.3286</td><td>1</td></td<>	84	0.3296	85	0.3315	86	0.3306	87	0.3286	1
91 $0.3257$ 92 $0.3306$ 93 $0.3306$ 94 $0.3296$ 95 $0.3276$ 100 $0.3267$ 97 $0.3257$ 98 $0.3257$ 99 $0.3276$ 100 $0.3267$ 101 $0.3306$ 102 $0.315$ 103 $0.315$ 104 $0.3315$ 105 $0.306$ 106 $0.315$ 107 $0.3276$ 108 $0.3267$ 109 $0.3267$ 110 $0.3267$ 111 $0.3237$ 112 $0.3247$ 113 $0.3247$ 114 $0.3237$ 115 $0.3247$ 120 $0.3276$ 120 $0.3276$ 120 $0.3276$ 120 $0.3276$ 120 $0.3276$ 120 $0.3276$ 120 $0.3276$ 121 $0.3267$ 124 $0.3276$ 126 $0.3315$ 126 $0.3315$ 127 $0.3315$ 128 $0.3276$ 129 $0.3267$ 130 $0.3257$ 131 $0.3267$ 132 $0.3276$ 137 $0.3267$ 134 $0.3267$ 135 $0.3267$ 136 $0.3276$ 137 $0.3267$ 138 $0.3267$ 139 $0.3306$ 140 $0.3296$ 141 $0.3286$ 142 $0.3306$ 143 $0.3257$ 164 $0.3267$ 153 $0.3267$ 154 $0.3267$ 147 $0.3286$ 156 $0.3315$ 157 $0.3315$ 158 $0.3315$ 159 $0.3286$ 166 $0.3267$ 165 $0.3267$ 164 $0.3267$ 159 $0.3296$ 164	88	0.3267	89	0.3247	90	0.3237			i i
95 $\emptyset \cdot 3276$ 96 $\emptyset \cdot 3267$ 97 $\emptyset \cdot 3257$ 98 $\emptyset \cdot 3257$ 99 $\vartheta \cdot 3276$ $100$ $\vartheta \cdot 3276$ $101$ $\vartheta \cdot 3306$ $102$ $\vartheta \cdot 3315$ $103$ $\vartheta \cdot 3315$ $104$ $\vartheta \cdot 3315$ $104$ $\vartheta \cdot 3306$ $106$ $\vartheta \cdot 3315$ $107$ $\vartheta \cdot 3276$ $108$ $\vartheta \cdot 3267$ $110$ $\vartheta \cdot 3267$ $110$ $\vartheta \cdot 3267$ $111$ $\vartheta \cdot 3237$ $112$ $\vartheta \cdot 3247$ $113$ $\vartheta \cdot 3247$ $114$ $\vartheta \cdot 3237$ $115$ $\vartheta \cdot 3247$ $116$ $\vartheta \cdot 3276$ $1120$ $\vartheta \cdot 3267$ $1130$ $\vartheta \cdot 3267$ $123$ $\vartheta \cdot 3247$ $124$ $\vartheta \cdot 3276$ $129$ $\vartheta \cdot 3267$ $130$ $\vartheta \cdot 3267$ $132$ $\vartheta \cdot 3276$ $120$ $\vartheta \cdot 3276$ $129$ $\vartheta \cdot 3267$ $134$ $\vartheta \cdot 3267$ $131$ $\vartheta \cdot 3267$ $132$ $\vartheta \cdot 3276$ $144$ $\vartheta \cdot 3267$ $134$ $\vartheta \cdot 3267$ $131$ $\vartheta \cdot 3267$ $136$ $\vartheta \cdot 3296$ $141$ $\vartheta \cdot 3267$ $138$ $\vartheta \cdot 3267$ $139$ $\vartheta \cdot 3267$ $136$ $\vartheta \cdot 3267$ $144$ $\vartheta \cdot 3267$ $136$ $\vartheta \cdot 3276$ $143$ $\vartheta \cdot 3266$ $144$ $\vartheta \cdot 3267$ $145$ $\vartheta \cdot 3267$ $150$ $\vartheta \cdot 3267$ $147$ $\vartheta \cdot 3266$ $148$ $\vartheta \cdot 3306$ $149$ $\vartheta \cdot 3267$ $150$ $\vartheta \cdot 3267$ $147$ $\vartheta \cdot 3266$ $146$ $\vartheta \cdot 3267$ $153$ $\vartheta \cdot 3267$ $150$ $\vartheta \cdot 3267$ $147$ $\vartheta \cdot 3266$ $160$ $\vartheta \cdot 3267$ $1$	91	0.3257	92	0.3306	93	0.3306	94	0.3296	
99 $0.3276$ $100$ $0.3276$ $101$ $0.3306$ $102$ $0.3315$ $103$ $0.3315$ $104$ $0.3315$ $105$ $0.3306$ $106$ $0.3315$ $107$ $0.3276$ $108$ $0.3267$ $109$ $0.3267$ $110$ $0.3267$ $111$ $0.3237$ $112$ $0.3247$ $113$ $0.3247$ $114$ $0.3237$ $115$ $0.3247$ $116$ $0.3276$ $117$ $0.3276$ $118$ $0.3286$ $119$ $0.3276$ $120$ $0.3247$ $121$ $0.3208$ $122$ $0.3288$ $123$ $0.3247$ $124$ $0.3276$ $125$ $0.3315$ $126$ $0.3315$ $127$ $0.3315$ $128$ $0.3276$ $129$ $0.3267$ $130$ $0.3257$ $131$ $0.3267$ $132$ $0.3276$ $137$ $0.3267$ $134$ $0.3276$ $140$ $0.3296$ $140$ $0.3296$ $141$ $0.3286$ $142$ $0.3306$ $143$ $0.3276$ $144$ $0.3267$ $153$ $0.3267$ $154$ $0.3267$ $137$ $0.3286$ $152$ $0.3267$ $153$ $0.3267$ $154$ $0.3267$ $147$ $0.3286$ $152$ $0.3267$ $153$ $0.3267$ $154$ $0.3267$ $147$ $0.3286$ $156$ $0.3315$ $157$ $0.3315$ $158$ $0.3315$ $159$ $0.3306$ $160$ $0.3276$ $165$ $0.3267$ $166$ $0.3267$ $171$ $0.3257$ $172$ <	95	ؕ3276	96	0.3267	97	0.3257	98	0.3257	
103 $0.3315$ $104$ $0.3315$ $105$ $0.3306$ $106$ $0.3315$ $107$ $0.3276$ $108$ $0.3267$ $109$ $0.3267$ $110$ $0.3267$ $111$ $0.3237$ $112$ $0.3247$ $113$ $0.3267$ $114$ $0.3267$ $115$ $0.3247$ $116$ $0.3276$ $120$ $0.3247$ $114$ $0.3267$ $119$ $0.3276$ $120$ $0.3247$ $121$ $0.3208$ $122$ $0.3288$ $119$ $0.3276$ $124$ $0.3276$ $125$ $0.3315$ $126$ $0.3288$ $123$ $0.3277$ $124$ $0.3276$ $125$ $0.3315$ $126$ $0.3288$ $127$ $0.3315$ $128$ $0.3276$ $129$ $0.3267$ $134$ $0.3257$ $131$ $0.3267$ $136$ $0.3276$ $137$ $0.3267$ $138$ $0.3276$ $139$ $0.3267$ $136$ $0.3276$ $144$ $0.3286$ $142$ $0.3306$ $143$ $0.3276$ $144$ $0.3267$ $144$ $0.3267$ $150$ $0.3306$ $151$ $0.3286$ $152$ $0.3267$ $153$ $0.3267$ $154$ $0.3267$ $155$ $0.3286$ $156$ $0.3315$ $157$ $0.3276$ $166$ $0.3227$ $163$ $0.3257$ $164$ $0.3276$ $165$ $0.3267$ $166$ $0.3267$ $159$ $0.3266$ $156$ $0.3276$ $177$ $0.3267$ $166$ $0.3267$ $171$ $0.3257$ $17$	99	0.3276	100	0.3276	101	0.3306	102	ؕ3315	[
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	103	ؕ3315	104	0.3315	105	0.3306	106	ؕ3315	
111 $\emptyset \cdot 3237$ 112 $\emptyset \cdot 3247$ 113 $\vartheta \cdot 3247$ 114 $\emptyset \cdot 3237$ 115 $\vartheta \cdot 3247$ 116 $\vartheta \cdot 3276$ $\cdot 117$ $\vartheta \cdot 3276$ 118 $\vartheta \cdot 3286$ 123 $\vartheta \cdot 3247$ 124 $\vartheta \cdot 3276$ 125 $\vartheta \cdot 3215$ 122 $\vartheta \cdot 3286$ 123 $\vartheta \cdot 3247$ 124 $\vartheta \cdot 3276$ 125 $\vartheta \cdot 3315$ 126 $\vartheta \cdot 3287$ 127 $\vartheta \cdot 3315$ 128 $\vartheta \cdot 3276$ 129 $\vartheta \cdot 3267$ 134 $\vartheta \cdot 3257$ 131 $\vartheta \cdot 3267$ 136 $\vartheta \cdot 3276$ 137 $\vartheta \cdot 3267$ 136 $\vartheta \cdot 3276$ 139 $\vartheta \cdot 3267$ 136 $\vartheta \cdot 3276$ 141 $\vartheta \cdot 3286$ 142 $\vartheta \cdot 3267$ 139 $\vartheta \cdot 3276$ 144 $\vartheta \cdot 3267$ 153 $\vartheta \cdot 3276$ 146 $\vartheta \cdot 3276$ 143 $\vartheta \cdot 3276$ 144 $\vartheta \cdot 3267$ 153 $\vartheta \cdot 3276$ 146 $\vartheta \cdot 3276$ 147 $\vartheta \cdot 3286$ 152 $\vartheta \cdot 3267$ 153 $\vartheta \cdot 3267$ 154 $\vartheta \cdot 3267$ 155 $\vartheta \cdot 3286$ 156 $\vartheta \cdot 3315$ 157 $\vartheta \cdot 3276$ 166 $\vartheta \cdot 3267$ 159 $\vartheta \cdot 3257$ 164 $\vartheta \cdot 3276$ 165 $\vartheta \cdot 3276$ 166 $\vartheta \cdot 3267$ 163 $\vartheta \cdot 3257$ 164 $\vartheta \cdot 3276$ 167 $\vartheta \cdot 3267$ 178 $\vartheta \cdot 3267$ 171 $\vartheta \cdot 3257$ 172 $\vartheta \cdot 3267$ 173 $\vartheta \cdot 3267$ 178 $\vartheta \cdot 3267$ 179 $\vartheta \cdot 3267$ 178 $\vartheta \cdot 3267$ 178 $\vartheta \cdot 3267$ 178 $\vartheta \cdot 3267$ 179 $\vartheta \cdot 3257$ <td< td=""><td>107</td><td>0.3276</td><td>108</td><td>ؕ3267</td><td>109</td><td>0.3267</td><td>110</td><td>0.3267</td><td></td></td<>	107	0.3276	108	ؕ3267	109	0.3267	110	0.3267	
115 $0.3247$ 116 $0.3276$ $\cdot 117$ $0.3276$ 118 $0.3286$ 119 $0.3276$ 120 $0.3247$ 121 $0.3208$ 122 $0.3286$ 123 $0.3247$ 124 $0.3276$ 125 $0.3315$ 126 $0.3215$ 127 $0.3315$ 128 $0.3276$ 129 $0.3267$ 130 $0.3257$ 131 $0.3267$ 132 $0.3237$ 133 $0.3267$ 134 $0.3257$ 135 $0.3267$ 136 $0.3276$ 141 $0.3267$ 138 $0.3276$ 143 $0.3276$ 144 $0.3267$ 145 $0.3276$ 146 $0.3257$ 147 $0.3286$ 148 $0.306$ 149 $0.3296$ 150 $0.3306$ 150 $0.3286$ 152 $0.3267$ 153 $0.3267$ 154 $0.3267$ 155 $0.3286$ 156 $0.3315$ 157 $0.3315$ 158 $0.3315$ 159 $0.3286$ 156 $0.33276$ 161 $0.3267$ 162 $0.3237$ 163 $0.3257$ 164 $0.3276$ 165 $0.3276$ 166 $0.3267$ 171 $0.3296$ 168 $0.3276$ 177 $0.3286$ 174 $0.3267$ 172 $0.3267$ 173 $0.3286$ 174 $0.3267$ 174 $0.3296$ 168 $0.3276$ 184 $0.3267$ 179 $0.3247$ 180 $0.3276$ 184 $0.3267$ 180 $0.3257$ 181 $0.3267$ 189 $0.3267$ 190 $0.3$	111	0.3237	112	0.3247	113	0.3247	114	ؕ3237	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	115	0.3247	116	0.3276	- 117	0.3276	118	0.3286	ł
123 $0.3247$ $124$ $0.3276$ $125$ $0.3315$ $126$ $0.3315$ $127$ $0.3315$ $128$ $0.3296$ $129$ $0.3267$ $130$ $0.3257$ $131$ $0.3267$ $132$ $0.3237$ $133$ $0.3267$ $134$ $0.3257$ $135$ $0.3267$ $136$ $0.3276$ $137$ $0.3267$ $136$ $0.3276$ $139$ $0.3306$ $140$ $0.3296$ $141$ $0.3286$ $142$ $0.3306$ $143$ $0.3276$ $144$ $0.3267$ $145$ $0.3276$ $146$ $0.3257$ $147$ $0.3286$ $148$ $0.3267$ $153$ $0.3267$ $154$ $0.3267$ $155$ $0.3286$ $152$ $0.3267$ $153$ $0.3267$ $154$ $0.3267$ $155$ $0.3286$ $156$ $0.3315$ $157$ $0.3315$ $158$ $0.3315$ $159$ $0.3306$ $160$ $0.3306$ $161$ $0.3267$ $162$ $0.3237$ $163$ $0.3257$ $164$ $0.3276$ $165$ $0.3247$ $170$ $0.3267$ $171$ $0.3257$ $172$ $0.3267$ $173$ $0.3286$ $174$ $0.3267$ $179$ $0.3247$ $180$ $0.3276$ $184$ $0.32267$ $178$ $0.3267$ $182$ $0.3257$ $183$ $0.3276$ $184$ $0.32267$ $178$ $0.3267$ $190$ $0.3257$ $191$ $0.3276$ $184$ $0.32267$ $189$ $0.3267$ $190$ $0.3267$	119	0.3276	120	0.3247	121	0.3208	122	0.3228	F
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123	0.3247	124	0.3276	125	ؕ3315	126	ؕ3315	!
131 $\emptyset \cdot 3267$ 132 $\emptyset \cdot 3237$ 133 $\vartheta \cdot 3267$ 134 $\vartheta \cdot 3267$ 135 $\vartheta \cdot 3267$ 136 $\vartheta \cdot 3276$ 137 $\vartheta \cdot 3267$ 138 $\vartheta \cdot 3276$ 139 $\vartheta \cdot 3306$ 140 $\vartheta \cdot 3296$ 141 $\vartheta \cdot 3267$ 138 $\vartheta \cdot 3276$ 143 $\vartheta \cdot 3276$ 144 $\vartheta \cdot 3267$ 145 $\vartheta \cdot 3276$ 146 $\vartheta \cdot 3257$ 147 $\vartheta \cdot 3286$ 148 $\vartheta \cdot 3306$ 149 $\vartheta \cdot 3296$ 150 $\vartheta \cdot 3306$ 151 $\vartheta \cdot 3286$ 152 $\vartheta \cdot 3267$ 153 $\vartheta \cdot 3267$ 154 $\vartheta \cdot 3267$ 155 $\vartheta \cdot 3286$ 156 $\vartheta \cdot 3315$ 157 $\vartheta \cdot 3315$ 158 $\vartheta \cdot 3237$ 163 $\vartheta \cdot 3257$ 164 $\vartheta \cdot 3276$ 165 $\vartheta \cdot 3267$ 166 $\vartheta \cdot 3296$ 167 $\vartheta \cdot 3257$ 164 $\vartheta \cdot 3276$ 165 $\vartheta \cdot 3247$ 170 $\vartheta \cdot 3267$ 171 $\vartheta \cdot 3257$ 172 $\vartheta \cdot 3267$ 173 $\vartheta \cdot 3267$ 174 $\vartheta \cdot 3267$ 179 $\vartheta \cdot 3257$ 172 $\vartheta \cdot 3276$ 177 $\vartheta \cdot 3267$ 178 $\vartheta \cdot 3267$ 179 $\vartheta \cdot 3257$ 180 $\vartheta \cdot 3257$ 181 $\vartheta \cdot 3267$ 178 $\vartheta \cdot 3267$ 182 $\vartheta \cdot 3257$ 183 $\vartheta \cdot 3267$ 184 $\vartheta \cdot 3267$ 178 $\vartheta \cdot 3267$ 190 $\vartheta \cdot 3257$ 183 $\vartheta \cdot 3267$ 184 $\vartheta \cdot 3267$ 189 $\vartheta \cdot 3267$ 194 $\vartheta \cdot 3257$ 193 $\vartheta \cdot 3267$ 193 $\vartheta \cdot 3267$ 193 $\vartheta \cdot 3267$ 194 $\vartheta \cdot 3267$ 293	127	ؕ3315	128	0.3296	129	ؕ3267	130	ؕ3257	
135 $0.3267$ $136$ $0.3276$ $137$ $0.3267$ $138$ $0.3276$ $139$ $0.3306$ $140$ $0.3296$ $141$ $0.3286$ $142$ $0.3306$ $143$ $0.3276$ $144$ $0.3267$ $145$ $0.3276$ $146$ $0.3257$ $147$ $0.3286$ $148$ $0.3306$ $149$ $0.3296$ $150$ $0.3306$ $151$ $0.3286$ $152$ $0.3267$ $153$ $0.3267$ $154$ $0.3267$ $155$ $0.3286$ $156$ $0.3315$ $157$ $0.3315$ $158$ $0.3315$ $159$ $0.3306$ $160$ $0.3306$ $161$ $0.3267$ $162$ $0.3237$ $163$ $0.3257$ $164$ $0.3276$ $165$ $0.3276$ $166$ $0.3296$ $167$ $0.3296$ $168$ $0.3296$ $169$ $0.3247$ $170$ $0.3267$ $171$ $0.3257$ $172$ $0.3267$ $173$ $0.3286$ $174$ $0.3306$ $175$ $0.3296$ $176$ $0.3276$ $177$ $0.3267$ $178$ $0.3267$ $179$ $0.3247$ $180$ $0.3257$ $181$ $0.3267$ $189$ $0.3267$ $190$ $0.3257$ $183$ $0.3276$ $184$ $0.3267$ $193$ $0.3247$ $190$ $0.3257$ $191$ $0.3276$ $184$ $0.3267$ $193$ $0.3247$ $194$ $0.3267$ $199$ $0.3267$ $200$ $0.3267$ $201$ $0.3267$ $202$ $0.3267$ $20$	131	0.3267	132	0.3237	133	0.3267	134	0.3267	1
139 $\emptyset \cdot 3306$ 140 $\vartheta \cdot 3296$ 141 $\vartheta \cdot 3286$ 142 $\vartheta \cdot 3306$ 143 $\vartheta \cdot 3276$ 144 $\vartheta \cdot 3267$ 145 $\vartheta \cdot 3276$ 146 $\vartheta \cdot 3257$ 147 $\vartheta \cdot 3286$ 148 $\vartheta \cdot 3306$ 149 $\vartheta \cdot 3296$ 150 $\vartheta \cdot 3306$ 151 $\vartheta \cdot 3286$ 152 $\vartheta \cdot 3267$ 153 $\vartheta \cdot 3267$ 154 $\vartheta \cdot 3267$ 155 $\vartheta \cdot 3286$ 156 $\vartheta \cdot 3315$ 157 $\vartheta \cdot 3315$ 158 $\vartheta \cdot 3267$ 163 $\vartheta \cdot 3257$ 164 $\vartheta \cdot 3276$ 165 $\vartheta \cdot 3276$ 166 $\vartheta \cdot 3296$ 167 $\vartheta \cdot 3296$ 168 $\vartheta \cdot 3276$ 165 $\vartheta \cdot 3247$ 170 $\vartheta \cdot 3267$ 171 $\vartheta \cdot 3257$ 172 $\vartheta \cdot 3267$ 173 $\vartheta \cdot 3286$ 174 $\vartheta \cdot 3306$ 175 $\vartheta \cdot 3296$ 176 $\vartheta \cdot 3276$ 181 $\vartheta \cdot 3267$ 178 $\vartheta \cdot 3267$ 179 $\vartheta \cdot 3257$ 183 $\vartheta \cdot 3257$ 181 $\vartheta \cdot 3267$ 178 $\vartheta \cdot 3267$ 182 $\vartheta \cdot 3257$ 183 $\vartheta \cdot 3276$ 184 $\vartheta \cdot 3325$ 185 $\vartheta \cdot 3315$ 186 $\vartheta \cdot 3257$ 191 $\vartheta \cdot 3276$ 192 $\vartheta \cdot 3267$ 193 $\vartheta \cdot 3267$ 190 $\vartheta \cdot 3257$ 191 $\vartheta \cdot 3267$ 200 $\vartheta \cdot 3267$ 201 $\vartheta \cdot 3267$ 194 $\vartheta \cdot 3267$ 199 $\vartheta \cdot 3267$ 200 $\vartheta \cdot 3267$ 201 $\vartheta \cdot 3267$ 202 $\vartheta \cdot 3267$ 203 $\vartheta \cdot 3267$ 204 $\vartheta \cdot 3296$ 205 $\vartheta \cdot 3267$ 204 $\vartheta \cdot 3267$ 209	135	0.3267	136	0.3276	137	0.3267	138	ؕ3276	1
143 $0.3276$ $144$ $0.3267$ $145$ $0.3276$ $146$ $0.3257$ $147$ $0.3286$ $148$ $0.3306$ $149$ $0.3296$ $150$ $0.3306$ $151$ $0.3286$ $152$ $0.3267$ $153$ $0.3267$ $154$ $0.3267$ $155$ $0.3286$ $156$ $0.3315$ $157$ $0.3315$ $158$ $0.3257$ $163$ $0.3257$ $164$ $0.3276$ $165$ $0.3267$ $162$ $0.3237$ $163$ $0.3257$ $164$ $0.3276$ $165$ $0.3276$ $166$ $0.3296$ $167$ $0.3296$ $168$ $0.3296$ $169$ $0.3247$ $170$ $0.3267$ $171$ $0.3257$ $172$ $0.3267$ $173$ $0.3286$ $174$ $0.3306$ $175$ $0.3296$ $176$ $0.3276$ $177$ $0.3267$ $178$ $0.3267$ $179$ $0.3247$ $180$ $0.3257$ $181$ $0.3267$ $189$ $0.3267$ $182$ $0.3257$ $183$ $0.3276$ $184$ $0.3225$ $185$ $0.3315$ $186$ $0.3257$ $191$ $0.3276$ $192$ $0.3267$ $193$ $0.3247$ $190$ $0.3267$ $199$ $0.3267$ $200$ $0.3267$ $201$ $0.3267$ $202$ $0.3267$ $203$ $0.3267$ $200$ $0.3267$ $201$ $0.3267$ $204$ $0.3267$ $203$ $0.3267$ $200$ $0.3267$ $201$ $0.3267$ $204$ $0.3267$ $20$	139	0.3306	140	Ø:3296 ·	141	ؕ3286	142	0.3306	
$147$ $\emptyset \cdot 3286$ $148$ $\vartheta \cdot 3306$ $149$ $\vartheta \cdot 3296$ $150$ $\vartheta \cdot 3306$ $151$ $\vartheta \cdot 3286$ $152$ $\vartheta \cdot 3267$ $153$ $\vartheta \cdot 3267$ $154$ $\vartheta \cdot 3267$ $155$ $\vartheta \cdot 3286$ $156$ $\vartheta \cdot 3315$ $157$ $\vartheta \cdot 3315$ $158$ $\vartheta \cdot 3267$ $159$ $\vartheta \cdot 3286$ $160$ $\vartheta \cdot 3306$ $161$ $\vartheta \cdot 3267$ $162$ $\vartheta \cdot 3237$ $163$ $\vartheta \cdot 3257$ $164$ $\vartheta \cdot 3276$ $165$ $\vartheta \cdot 3276$ $166$ $\vartheta \cdot 3296$ $167$ $\vartheta \cdot 3296$ $168$ $\vartheta \cdot 3296$ $169$ $\vartheta \cdot 3247$ $170$ $\vartheta \cdot 3267$ $171$ $\vartheta \cdot 3257$ $172$ $\vartheta \cdot 3267$ $173$ $\vartheta \cdot 3267$ $178$ $\vartheta \cdot 3267$ $179$ $\vartheta \cdot 3296$ $176$ $\vartheta \cdot 3276$ $181$ $\vartheta \cdot 3267$ $178$ $\vartheta \cdot 3267$ $182$ $\vartheta \cdot 3257$ $183$ $\vartheta \cdot 3276$ $184$ $\vartheta \cdot 3225$ $185$ $\vartheta \cdot 3267$ $186$ $\vartheta \cdot 3257$ $183$ $\vartheta \cdot 3276$ $184$ $\vartheta \cdot 3225$ $185$ $\vartheta \cdot 3267$ $190$ $\vartheta \cdot 3257$ $191$ $\vartheta \cdot 3276$ $192$ $\vartheta \cdot 3276$ $193$ $\vartheta \cdot 3247$ $194$ $\vartheta \cdot 3267$ $199$ $\vartheta \cdot 3267$ $200$ $\vartheta \cdot 3267$ $201$ $\vartheta \cdot 3267$ $202$ $\vartheta \cdot 3267$ $203$ $\vartheta \cdot 3267$ $200$ $\vartheta \cdot 3267$ $201$ $\vartheta \cdot 3267$ $198$ $\vartheta \cdot 3267$ $203$ $\vartheta \cdot 3267$ $204$ $\vartheta \cdot 3247$ $209$ $\vartheta \cdot 3267$ $210$ $\vartheta \cdot 3267$ $207$ $\vartheta \cdot 326$	143	0.3276	144	0•3267	145	ؕ3276	146	ؕ3257	
151 $0.3286$ $152$ $0.3267$ $153$ $0.3267$ $154$ $0.3267$ $155$ $0.3286$ $156$ $0.3315$ $157$ $0.3315$ $158$ $0.3315$ $159$ $0.3306$ $160$ $0.3306$ $161$ $0.3267$ $162$ $0.3237$ $163$ $0.3257$ $164$ $0.3276$ $165$ $0.3276$ $166$ $0.3296$ $167$ $0.3296$ $168$ $0.3296$ $169$ $0.3247$ $170$ $0.3267$ $171$ $0.3257$ $172$ $0.3267$ $173$ $0.3286$ $174$ $0.3306$ $175$ $0.3296$ $176$ $0.3276$ $177$ $0.3267$ $178$ $0.3267$ $179$ $0.3247$ $180$ $0.3257$ $181$ $0.3267$ $189$ $0.3267$ $186$ $0.3315$ $187$ $0.3276$ $188$ $0.3267$ $189$ $0.3247$ $190$ $0.3257$ $191$ $0.3276$ $192$ $0.3267$ $193$ $0.3247$ $194$ $0.3237$ $195$ $0.3208$ $196$ $0.3228$ $197$ $0.3237$ $198$ $0.3267$ $203$ $0.3267$ $200$ $0.3267$ $201$ $0.3267$ $202$ $0.3267$ $203$ $0.3267$ $204$ $0.3296$ $205$ $0.3286$ $206$ $0.3267$ $203$ $0.3267$ $204$ $0.3267$ $201$ $0.3267$ $204$ $0.3267$ $203$ $0.3267$ $204$ $0.3267$ $209$ $0.3257$ $210$ $0.3267$ $20$	147	0.3286	148	0.3306	149	ؕ3296	150	0.3306	1
155 $0.3286$ $156$ $0.3315$ $157$ $0.3315$ $158$ $0.3315$ $159$ $0.3306$ $160$ $0.3306$ $161$ $0.3267$ $162$ $0.3237$ $163$ $0.3257$ $164$ $0.3276$ $165$ $0.3276$ $166$ $0.3296$ $167$ $0.3296$ $168$ $0.3296$ $169$ $0.3247$ $170$ $0.3267$ $171$ $0.3257$ $172$ $0.3267$ $173$ $0.3286$ $174$ $0.3267$ $175$ $0.3296$ $176$ $0.3276$ $177$ $0.3267$ $178$ $0.3267$ $179$ $0.3247$ $180$ $0.3257$ $181$ $0.3267$ $178$ $0.3267$ $182$ $0.3257$ $183$ $0.3276$ $184$ $0.32257$ $185$ $0.3315$ $186$ $0.3257$ $191$ $0.3276$ $192$ $0.3276$ $193$ $0.3247$ $190$ $0.3257$ $191$ $0.3276$ $192$ $0.3267$ $193$ $0.3247$ $194$ $0.3267$ $199$ $0.3267$ $200$ $0.3267$ $201$ $0.3267$ $202$ $0.3267$ $203$ $0.3267$ $204$ $0.3296$ $205$ $0.3286$ $206$ $0.3267$ $207$ $0.3276$ $208$ $0.3247$ $209$ $0.3257$ $210$ $0.3267$ $207$ $0.3276$ $208$ $0.3267$ $201$ $0.3267$ $210$ $0.3267$ $207$ $0.3276$ $212$ $0.3276$ $213$ $0.3276$ $214$ $0.3267$ $2$	151	ؕ3286	152	0•3267	153	0.3267	154	0.3267	
159 $0.3306$ $160$ $0.3306$ $161$ $0.3267$ $162$ $0.3237$ $163$ $0.3257$ $164$ $0.3276$ $165$ $0.3276$ $166$ $0.3296$ $167$ $0.3296$ $168$ $0.3296$ $169$ $0.3247$ $170$ $0.3267$ $171$ $0.3257$ $172$ $0.3267$ $173$ $0.3286$ $174$ $0.3306$ $175$ $0.3296$ $176$ $0.3276$ $177$ $0.3286$ $174$ $0.3267$ $179$ $0.3247$ $180$ $0.3257$ $181$ $0.3267$ $178$ $0.3267$ $182$ $0.3257$ $183$ $0.3276$ $184$ $0.3257$ $185$ $0.3315$ $186$ $0.3257$ $191$ $0.3276$ $192$ $0.3276$ $193$ $0.3247$ $194$ $0.3237$ $195$ $0.3208$ $196$ $0.3228$ $197$ $0.3237$ $198$ $0.3267$ $203$ $0.3267$ $200$ $0.3267$ $201$ $0.3267$ $202$ $0.3267$ $207$ $0.3276$ $208$ $0.3247$ $209$ $0.3267$ $210$ $0.3267$ $207$ $0.3276$ $208$ $0.3267$ $201$ $0.3257$ $210$ $0.3267$ $211$ $0.3267$ $213$ $0.3276$ $214$ $0.3267$ $211$ $0.3267$ $212$ $0.3276$ $214$ $0.3267$ $219$ $0.3267$ $220$ $0.3276$ $221$ $0.3276$ $218$ $0.3276$ $219$ $0.3267$ $220$ $0.3276$ $22$	155	0.3286	156	0.3315	157	ؕ3315	158	0.3315	1
163 $0.3257$ $164$ $0.3276$ $165$ $0.3276$ $166$ $0.3296$ $167$ $0.3296$ $168$ $0.3296$ $169$ $0.3247$ $170$ $0.3267$ $171$ $0.3257$ $172$ $0.3267$ $173$ $0.3286$ $174$ $0.3267$ $175$ $0.3296$ $176$ $0.3276$ $177$ $0.3267$ $178$ $0.3267$ $179$ $0.3247$ $180$ $0.3257$ $181$ $0.3267$ $178$ $0.3267$ $182$ $0.3257$ $183$ $0.3276$ $184$ $0.3267$ $185$ $0.3315$ $186$ $0.3315$ $187$ $0.3306$ $188$ $0.3267$ $189$ $0.3247$ $190$ $0.3257$ $191$ $0.3276$ $192$ $0.3276$ $193$ $0.3247$ $194$ $0.3237$ $195$ $0.3208$ $196$ $0.3228$ $197$ $0.3237$ $198$ $0.3267$ $203$ $0.3267$ $200$ $0.3267$ $201$ $0.3267$ $202$ $0.3267$ $203$ $0.3276$ $208$ $0.3247$ $209$ $0.3267$ $210$ $0.3267$ $207$ $0.3276$ $208$ $0.3247$ $209$ $0.3257$ $210$ $0.3257$ $211$ $0.3267$ $212$ $0.3276$ $213$ $0.3276$ $214$ $0.3267$ $215$ $0.3286$ $216$ $0.3296$ $217$ $0.3276$ $218$ $0.3276$ $219$ $0.3267$ $220$ $0.3276$ $221$ $0.3257$	159	0.3306	160	0.3306	161	ؕ3267	162	0•3237	
$167$ $\emptyset \cdot 3296$ $168$ $\emptyset \cdot 3296$ $169$ $\emptyset \cdot 3247$ $170$ $\emptyset \cdot 3267$ $171$ $\emptyset \cdot 3257$ $172$ $\emptyset \cdot 3267$ $173$ $\emptyset \cdot 3286$ $174$ $\emptyset \cdot 3306$ $175$ $\vartheta \cdot 3296$ $176$ $\vartheta \cdot 3276$ $177$ $\vartheta \cdot 3267$ $178$ $\vartheta \cdot 3267$ $179$ $\vartheta \cdot 3247$ $180$ $\vartheta \cdot 3257$ $181$ $\vartheta \cdot 3267$ $178$ $\vartheta \cdot 3267$ $182$ $\vartheta \cdot 3257$ $183$ $\vartheta \cdot 3276$ $184$ $\vartheta \cdot 3225$ $185$ $\vartheta \cdot 3315$ $186$ $\vartheta \cdot 3315$ $187$ $\vartheta \cdot 3306$ $188$ $\vartheta \cdot 3267$ $189$ $\vartheta \cdot 3267$ $190$ $\vartheta \cdot 3257$ $191$ $\vartheta \cdot 3276$ $192$ $\vartheta \cdot 3276$ $193$ $\vartheta \cdot 3247$ $194$ $\vartheta \cdot 3237$ $195$ $\vartheta \cdot 3208$ $196$ $\vartheta \cdot 3228$ $197$ $\vartheta \cdot 3237$ $198$ $\vartheta \cdot 3267$ $203$ $\vartheta \cdot 3267$ $200$ $\vartheta \cdot 3267$ $201$ $\vartheta \cdot 3267$ $202$ $\vartheta \cdot 3267$ $203$ $\vartheta \cdot 3267$ $204$ $\vartheta \cdot 3296$ $205$ $\vartheta \cdot 3267$ $206$ $\vartheta \cdot 3267$ $207$ $\vartheta \cdot 3276$ $208$ $\vartheta \cdot 3247$ $209$ $\vartheta \cdot 3257$ $210$ $\vartheta \cdot 3267$ $211$ $\vartheta \cdot 3267$ $212$ $\vartheta \cdot 3276$ $213$ $\vartheta \cdot 3276$ $214$ $\vartheta \cdot 3267$ $215$ $\vartheta \cdot 3286$ $216$ $\vartheta \cdot 3296$ $217$ $\vartheta \cdot 3276$ $218$ $\vartheta \cdot 3276$ $219$ $\vartheta \cdot 3267$ $220$ $\vartheta \cdot 3276$ $221$ $\vartheta \cdot 3257$	163	0.3257	164	ؕ3276	165	0.3276	166	0•3296	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	167	0.3296	168	0.3296	169	ؕ3247	170	0.3267	ļ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	171	0.3257	172	0.3267	173	0.3286	174	0.3306	
179 $0.3247$ $180$ $0.3257$ $181$ $0.3267$ $182$ $0.3257$ $183$ $0.3276$ $184$ $0.3257$ $185$ $0.3315$ $186$ $0.3315$ $187$ $0.3206$ $184$ $0.3267$ $189$ $0.3267$ $190$ $0.3257$ $191$ $0.3276$ $192$ $0.3276$ $193$ $0.3247$ $194$ $0.3237$ $195$ $0.3208$ $196$ $0.3228$ $197$ $0.3237$ $198$ $0.3267$ $203$ $0.3267$ $200$ $0.3267$ $201$ $0.3267$ $202$ $0.3267$ $203$ $0.3267$ $204$ $0.3296$ $205$ $0.3286$ $206$ $0.3257$ $211$ $0.3267$ $212$ $0.3276$ $213$ $0.3276$ $214$ $0.3267$ $215$ $0.3286$ $216$ $0.3296$ $217$ $0.3276$ $218$ $0.3276$ $219$ $0.3267$ $220$ $0.3276$ $221$ $0.3257$	175	ؕ3296	176	0.3276	177	0.3267	178	ؕ3267	1
$182$ $0 \cdot 3257$ $183$ $0 \cdot 3276$ $184$ $0 \cdot 3325$ $185$ $0 \cdot 3315$ $186$ $0 \cdot 3315$ $187$ $0 \cdot 3306$ $188$ $0 \cdot 3267$ $189$ $0 \cdot 3267$ $190$ $0 \cdot 3257$ $191$ $0 \cdot 3276$ $192$ $0 \cdot 3276$ $193$ $0 \cdot 3247$ $194$ $0 \cdot 3237$ $195$ $0 \cdot 3208$ $196$ $0 \cdot 3228$ $197$ $0 \cdot 3237$ $198$ $0 \cdot 3267$ $199$ $0 \cdot 3267$ $200$ $0 \cdot 3267$ $201$ $0 \cdot 3267$ $202$ $0 \cdot 3267$ $203$ $0 \cdot 3267$ $204$ $0 \cdot 3296$ $205$ $0 \cdot 3286$ $206$ $0 \cdot 3267$ $207$ $0 \cdot 3276$ $218$ $0 \cdot 3276$ $213$ $0 \cdot 3276$ $210$ $0 \cdot 3257$ $211$ $0 \cdot 3267$ $212$ $0 \cdot 3296$ $217$ $0 \cdot 3276$ $214$ $0 \cdot 3267$ $215$ $0 \cdot 3267$ $220$ $0 \cdot 3276$ $211$ $0 \cdot 3257$ $218$ $0 \cdot 3276$ $219$ $0 \cdot 3267$ $220$ $0 \cdot 3276$ $221$ $0 \cdot 3257$	179	0.3247	180	0.3257	181	ؕ3267			1
$186$ $0 \cdot 3315$ $187$ $0 \cdot 3306$ $188$ $0 \cdot 3267$ $189$ $0 \cdot 3267$ $190$ $0 \cdot 3257$ $191$ $0 \cdot 3276$ $192$ $0 \cdot 3276$ $193$ $0 \cdot 3247$ $194$ $0 \cdot 3237$ $195$ $0 \cdot 3208$ $196$ $0 \cdot 3228$ $197$ $0 \cdot 3237$ $198$ $0 \cdot 3267$ $199$ $0 \cdot 3267$ $200$ $0 \cdot 3267$ $201$ $0 \cdot 3267$ $202$ $0 \cdot 3267$ $203$ $0 \cdot 3267$ $204$ $0 \cdot 3296$ $205$ $0 \cdot 3286$ $206$ $0 \cdot 3267$ $207$ $0 \cdot 3276$ $208$ $0 \cdot 3247$ $209$ $0 \cdot 3257$ $210$ $0 \cdot 3257$ $211$ $0 \cdot 3267$ $212$ $0 \cdot 3276$ $213$ $0 \cdot 3276$ $214$ $0 \cdot 3267$ $215$ $0 \cdot 3267$ $220$ $0 \cdot 3276$ $217$ $0 \cdot 3276$ $218$ $0 \cdot 3276$ $219$ $0 \cdot 3267$ $220$ $0 \cdot 3276$ $221$ $0 \cdot 3257$	182	0.3257	183	0.3276	184	ؕ3325	185	0.3315	1
1900.32571910.32761920.32761930.32471940.32371950.32081960.32281970.32371980.32671990.32672000.32672010.32672020.32672030.32672040.3296.2050.32862060.32672070.32762080.32472090.32572100.32572110.32672120.32762130.32762140.32672150.32862160.32962170.32762180.32762190.32672200.32762210.3257	186	0.3315	187	0.3306	188	0.3267	189	0.3267	
1940.32371950.32081960.32281970.32371980.32671990.32672000.32672010.32672020.32672030.32672040.3296.2050.32862060.32672070.32762080.32472090.32572100.32572110.32672120.32762130.32762140.32672150.32862160.32962170.32762180.32762190.32672200.32762210.3257	190	ؕ3257	191	0•3276	192	ؕ3276	193	0.3247	
1980.32671990.32672000.32672010.32672020.32672030.32672040.3296.2050.32862060.32672070.32762080.32472090.32572100.32572110.32672120.32762130.32762140.32672150.32862160.32962170.32762180.32762190.32672200.32762210.3257	194	0.3237	195	0.3208	196	ؕ3228	197	0.3237	
2020.32672030.32672040.3296.2050.32862060.32672070.32762080.32472090.32572100.32572110.32672120.32762130.32762140.32672150.32862160.32962170.32762180.32762190.32672200.32762210.3257	198	0.3267	199	ؕ3267	200	ؕ3267	201	ؕ3267	
2060.32672070.32762080.32472090.32572100.32572110.32672120.32762130.32762140.32672150.32862160.32962170.32762180.32762190.32672200.32762210.3257	202	0.3267	203	ؕ3267	204	ؕ3296.	205	ؕ3286	
2100.32572110.32672120.32762130.32762140.32672150.32862160.32962170.32762180.32762190.32672200.32762210.3257	206	0.3267	207	0•3276	208	0.3247	209	0.3257	1
214       0.3267       215       0.3286       216       0.3296       217       0.3276         218       0.3276       219       0.3267       220       0.3276       221       0.3257	210	0.3257	211	ؕ3267	212	0.3276	213	0.3276	1
218 0.3276 219 0.3267 220 0.3276 221 0.3257	214	ؕ3267	215	0.3286	216	ؕ3296	217	0.3276	1
	518	0.3276	219	ؕ3267	220	0.3276	221	0.3257	]

TABLE A.6. (cont'd) Logged data for frozen impulse line

,

222	0.3257	223	0.3267	224	ؕ3286	225	0.3296
226	0.3296	. 227	ؕ3276 *	228	0.3276	229	0.3276
230	0.3267	231	ؕ3257	232	ؕ3267	233	0.3286
234	ؕ3296	235	0.3306	236	0.3306	237	0.3267
238	0.3267	239	0.3257	240	ؕ3257	241	ؕ3267
242	0.3267	243	ؕ3276	244	0.3306	245	0.3315
246	ؕ3315	247	0•3286	248	0.3257	249	0.3247
250	0.3247	251	0.3267	252	0.3257	253	0.3286
254	0.3306	255	ؕ3276	256	0.3267	257	ؕ3267
258	ؕ3257	259	ؕ3276	260	0.3257	261	0.3267
262	0.3286	263	ؕ3276	264	0.3296	265	0.3306
266	0.3315	267	ؕ3325	268	0.3296	269	0.3257
270	0.3237	271	ؕ3228	272	ؕ3247	273	0.3247
274	0.3296	275	ؕ3296	276	0.3296	277	0.3276
278	0.3276	279	ؕ3276	28Ø	ؕ3276	281	0.3247
282	0.3267	283	ؕ3267	284	ؕ3267	285	0.3296
286	0.3286	287	0.3296	288	0.3257	289	0.3267
290	0.3286	291	ؕ3296	292	0.3306	293	0.3325
294	0.3315	295	ؕ3296	296	ؕ3306	297	0.3247
298	0.3237	299	ؕ3237	300	ؕ3247	301	0.3286
302	ؕ3315	303	ؕ3335	304	ؕ3335	305	ؕ3286
306	0.3267	307	ؕ3267	308	ؕ3257	309	0.3286
310	0.3296	311	ؕ3296	312	ؕ3276	313	ؕ3257
314	0.3276	315	0.3276	316	0.3276	317	0.3306
318	0.3315	319	0•3286	320	0.3286	321	ؕ3257
322	0.3267	323	ؕ3276	324	ؕ3296	325	0.3296
326	ؕ3315	327	ؕ3296	328	0.3276	329	0.3267
330	0.3257	331	0.3267	332	0.3247	333	ؕ3257
334	0.3267	335	0.3276	336	ؕ3296	337	ؕ3276
338	0.3296	339	ؕ3296	340	0.3306	341	0.3315
342	0.3276	343	0.3237	344	0.3247	345	0.3267
346	0.3276	347	ؕ3276	348	Ø*3286	349	0.3296
350	0.3306	351	0.3296	352	0.3276	353	0.3267
354	0.3306	355	0.3306	356	0.3315	357	0.3306
358	ؕ3267	359	0.3237	360	ؕ3247		
361	ؕ3257	362	0•3267	363	0.3306	364	0.3306
365	0.3276	366	ؕ3267	367	ؕ3257	368	0.3257
369	0.3267	370	0.3296	371	0.3306	372	ؕ3315
373	0.3306	374	ؕ3296	375	0.3296	376	ؕ3276
377	0.3247.	378	ؕ3247	379	ؕ3247	380	ؕ3276
381	0.3286	382	0.3296	383	Ø•33Ø6	384	0.3296
385	ؕ3286	386	0.3257	387	ؕ3237	388	ؕ3237
389	0.3276	390	ð•3306	391	ؕ3315	392	ؕ3306
393	0.3267	394	0.3286	395	ؕ3276	396	ؕ3276
397	0.3296	398	0.3306	399-	0•3286	400	ؕ3296
401	0.3296	402	ؕ3276	403	0.3276	404	ؕ3286
405	0.3286	406	0.3296	407	ؕ3296	408	ؕ3276
409	ؕ3276	410	0.3276	411	ؕ3257	412	ؕ3276
413	ؕ3286	414	ؕ3276	415	ؕ3267	416	ؕ3276
417	ؕ3276	418	0.3267	419	ؕ3257	420	ؕ3257
421	ؕ3267	422	0.3267	423	ؕ3286	424	ؕ3306
425	0.3296	426	0.3286	427	ؕ3267	428	ؕ3267
429	0.3286	430	0.3306	431	0.3325	432	ؕ3315
433	ؕ3286	434	0.3267	435	0.3208	436	ؕ3237
437	0.3257	438	0.3286	439	ؕ3315	440	ؕ3335
441	ؕ3315	442	0.3306	443	ؕ3257	444	0.3247

.

ł

÷

	445	0.3257	446	0.3267	447	0.3267	448	ؕ3267
	449	0.3286	450	0.3286	451	0.3306	4.5.F	0.0007
'	452	0.3296	453	0.3257	454	ؕ3247	455	0.3231
	430 420	0.3247	457	0.3231	450	0.3210	459	0.3200
'	400	0.3313	401	0.3057	402	0.3290	403	0.3201
	404 728	0.3251	400	0.3451	400	0.3201	407	0.2200
[ `	400	0.3200	409	0.3300	410	ؕ3300 ؕ3367	471	4 2009
	416 176	0.3290	413	0.3200	414	0+3251	4/5	0.2205
	470	0.3220	4//	0.3251	410	0.3490	419.	0.3325
	400	0.3335	401	Ø+3315 a 2067	402	0.3270	403	0.3201
1	404	0.3207	40,0	0.3267	400	0.3210	401	0.3200
	400	0.3290	409	0.3200	490	0.0210	491	0+3201
<b>1</b>	492	0.3276	493	0.3276	494	0.3210	490	0.3200
	470 Eaa	0.3290	491	0.3300	498	0.3200	499	0.3257
	500	0.3257	501	0.3286	502	0.3315	503	0.3325
	5104 E 010	0.3315	505	0.3315	500	0.3300	507	0.3210
	500	0.3276	509	0.3200	510	0.3280	511	0.3200 a 2004
	514	0.3210	513	0.3210	514	0.3200	515	0.3290
	510	0.3296	517	0.3276	518	0.3210	213	0.3200
	520	0.3276	521	0.3276	522	0.3267	523	0.3201
	364 600	0.3200	525	0.3290	520	0.3290	521	0.3210
1	520	0.3210	529	0.3207	530	0.3210	531	0.3300
	532	0.3315	533	0.3315	534	0.3300	535	0.3210
	530	0.3210	531	0.3251	530	0.3201	539	0.3200
1	540 540	0.3200	541	0.3276	542	0.3210	543	0.3200
1	544 549	0.3276	545	0.3276	546	0.3315	547	0.3300
	540 550	0.3300	549	0.3276	550	0.3610	221	0.3200
	552	0.3296	553	0.3276	554	0+3201	555	0.3231
	556	0.3247	557	0.3276	. 558	0.3286	559	0.3200
	500	0+3286	501	. 0 • 3296	562	0.3276	563	0.3296
ł	564	0.3296	565	0.3296	. 566	0.3286	567	0.3276
1	568	0+3276	509	0.3257 -	570	0.3257	571	0.3201
	572	0.3296	5/3	0.3315	574	0.3325	5/5	0.3300
	5/6	0.3267	5/7	0.3251	5/8	0.3251	5/9	0.3210
1	500	0.3286	501	0.3315	582	0+3296	503	0+3290
	504 6 <i>64</i>	0.3276	505	0.3257	586	0.3257	507	10+3216
	500	0.3306	589	0.3345	590	0+3345	591	0.3300
	592	0.3276	593	0.3247	594	0.3210	595	0.3247
	270	0.3006	591	0.3315	590	0.3315	299	0.3323
	600	0.3290.	CURE .	0+3201	602	0.3651	603	0 + 3251
	004 200	0.3210	600	0.3300	600	0.3300	607	0.3047
	610 610	0.3004	612	0.3200	010	0.3251	011	0.3004
	616	0.3290	613	0.3067	614	0.3300	615	0 + 3270
1	610 400	U + 3201	601	0 2067	610	0.3076	402	0 3276
	600	0.3270	205	0.3201	622	0.2047	643	0.2267
	024 200	0.3210	620	0.3067	626	0.3201	021	0.3201
	060 691	U + 3201 A - 2004	629	0.3201 0.3204	632	0.2074	634	0.2074
	63E	0.3057	632	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	633	0.2010	034 624	0.2057
	600 600	0.2044	640	Ø • JZJ1 Ø · 2004	2/1	0.2004	030 640	0.3204
	037 643	0 · 3200	640	Ø+3270 0 2077	041	0 · J 2 7 0	042	0 2047
	043 277	0+3210 0 3057	244	U+3210 A. 2047	043	W. 3200	040 260	0.3001
	041	0.3231	040	Ø + 3201 Ø - 3201	649	0.3201	000	U + J 200
	001 465	0+3315 0 2047	252	0.3300	000	Ø · J270	004 250	0.3047
	222	U + 3201 a 2077	600	U+3210 (1 2094	05/	0.2004	220	0.2201
1	007 440	0.3270	000	0.3200	001	0 3200	002	0+3323 A. 2004
10	იია	10 • 3335	004	10 • 3 3 3 5	600	0+3315	000	0.0200

ť

TABLE A.6. (cont'd) Logged data for frozen impulse line

667	0.3267	668	0.3267	669	0.3267	670	0.3306
671	0.3325	672	0.3335	673	0.3315	674	ؕ3286
675	0.3267	676	0.3267	677	0.3276	678	0.3286
679	0.3276	68ذ	0.3267	681	0.3276	682	ؕ3257
683	0.3286	684	0.3296	685	0.3306	686	ؕ3315
687	0.3315	688	0.3286	689	ؕ3286	. 690	ؕ3267
691	0.3257	692	0.3267	693	0.3286	694	0.3296
695	0.3296	696	0.3296	697	0.3286	698	0.3296
699	0.3296	700	0.3306	701	Ø.3325 ·	702	0.3306
703	0.3276	704	0.3247	705	0.3228	706	0.3247
707	0.3267	708	0.3306	709	0.3335	710	ؕ3315
711	0.3315	712	ؕ3286	.713	0.3276	714	ؕ3286
715	0.3276	716	0.3257	717	0.3257	718	ؕ3257
719	ؕ3267	720	ؕ3276	721	ؕ3286	r	
722	ؕ3306	723	0.3296	724	0.3306	725	0.3306
726	0.3296	727	0.3306	728	ؕ3296	729	ؕ3286
730	ؕ3267	731	ؕ3267	732	ؕ3267	733	0.3267
734	0.3267	735	ؕ3276	, 736	0.3257	737	0.3276
738	ؕ3286	739	0.3267	740 '	0.3276	741	0.3276
742	0.3276	743	ؕ3276	744	0.3306	745	ؕ3286
746	0.3276	747	0.3257	748	0.3267	749	ؕ3286
750	0.3267	751	0.3267	752	0.3276	753	ؕ3267
754	0.3286	755	0.3276	756	ؕ3276	757	ؕ3257
758	ؕ3257	759	0.3257	· 760	0.3276	761	0.3276
762	0.3276	763	0.3276	764	0.3276	765	0.3276
766	0.3276	767	0.3296	768	ؕ3286	769	0.3267
770	ؕ3267	771	0.3267	772	0.3276	773	0.3276
774	ؕ3276	775	0.3276	776	0.3286	777	0.3276
778	0.3306	779	0.3306	. 780	0.3296	781	0.3286
782	0.3267	783	0.3257	784	ؕ3257	785	ؕ3257
786	0.3276	787	ؕ3267	788	0.3296	789	ؕ3296
790	0.3296	791	ؕ3286	792	0.3286	793	0.3276
794	ؕ3276	795	ؕ3267	796	0.3276	797	ؕ3286
798	0.3276	799	0.3257	800	0.3276	801	0.3276
802	0.3286	803	ؕ3296	804	0.3306	805	ؕ3315
806	0.3306	807	ؕ3296	808	0.3296	809	ؕ3267
810	ؕ3276	811	0.3296	812	ؕ3296	813	ؕ3286
814	ؕ3276	815	ؕ3286	816	Ø•3296 ·	817	ؕ3296
818	0.3267	819	0.3286	820	ؕ3267 .	821	0.3296
822	0.3267.	823	0.3247	824	0.3228	825	0.3257
826	0.3257	827	0.3267	828	0.3267	829	0.3267
830	0.3257	831	0.3267	832	0.3257	833	0.3276
834	0.3296	835	0.3306	836	0.3296	837	0.3276
838	0.3276	839	0.3267	840	0.3267	841	0.3276
642	0.3306	843	0.3315	844	ؕ3315	845	0.3296
646	0.3267	847	0.3247	848	0.3237	849	0.3267
850	0.3286	851	0.3315	852	0.3315	853	0.3306
054	0.3306	855	0.3276	856	0.3257	857	0.3267
050	0.3237	859	0.3247	860	0.3247	861	0.3276
002	0.3296	863	0.3286	864	0.3276	865	0.3267
000	9•3257 9-2007	867	0.3267	868	0.3267	869	0.3267
070	ؕ3296	071	0.3306	672	0.3306	873	0.3296
0/4	0.3257	875	0.3267	876	0.3276	877	0.3306
010	Ø • 3296 Ø • 3077	079	0.3296	000	0.3276	881	0+3276
002	Ø • 3276 Ø 2076	003	0.3207	004	0 · J200	005	0.3286
1000	0.3276	007	0.3276	888	0.3286	889	0.3580

Fortran coded program for the Fast Fourier Transform analysis
MARTED EET
MANIFK FFI
NTHENSTON AMONEAO261 DULLAO261
A THIE BOAGDAN CONDUTES THE DISADETE
C FALLDTED TOANCEADEM (NET) AB THE INVERSE .
C DISCOUTER FUIDIED TRANSCOM (INCT) OF A
C SECHENCE OF COMPLEY NUMBERS HELNG THE
C FAST COURTER TRANSCORM METHON
C THE NET TO GTVEN BY
C . N=1
C = A(K) = SUU = X(K) + W + + K = 0.1 + + N = 1
C THE INFT IS GIVEN BY
C •
6 N-1
C X(L)=1/N SUM A(K)+V++(-+K1)+1=0.1N=1
C K=0
C N MUST BE AN ITEGER POWER OF 2
C REFERENCE: JEEE TRANSACTIONS ON AUDIO AND
C ELECTROACOUSTICS, VOL. AU-15, NO.2, JUNE
C 1967, (SPECIAL ISSUE ON THE FET)
C*****************
¢′
C DATA IS IN FREE FORMAT AS FOLLOWS
с — — — — — — — — — — — — — — — — — — —
C DIR (-1.0 FOR DFT, 1.0 FOR IDFT,
C 4.0 AFTER LAST PROBLEM TO STOP)
C M (RASE-2 LOG OF NUMBER OF DATA POINTS)
A(0) A(1) A(N=1) (DATA POINTS)
1 READ(1,100)DIR -
<u>100 FOPMAT(FO.O)</u>
IF(DIR.GT.2.0)STOP
TF(91R,LT.0.0)WRITE(2,101)
101 FORMAT(17H1DIRECT_TRANSFORM)
TF(DIR, GT. 0, 0) WRITE(2, 102)
102 FORMAT (18H1 INVERSE TRANSFORM)
2 COMATESTANIMAED OF OCTATE TEN
0FAD(3.3)(A(1), T=1.HD)
3 EODMAT (2048ED 0)
78 IS THIS LARGE & REPEAT COUNT INTENDED AT ABOUT COL 16, LINE 0060 2
PC 4 I =1, NP
4 WRITE(2,5)I,A(1)
5 FURIAT (13H INPUT SAMPLE, 15, 2(19814.4))
CALL HLOGN(N, A, NP, DIR)
7 FORMAT(1H , 15, 4(1PE14, 4))
DO 6 I#1,NP _ 1
<pre>/ (1)=A(1)/ NP</pre>
XY=REAL(A(I))
X7=AINAG(A(I))
P%(I)=XY*XY+XZ*XZ
A"DD(I) + SQRT(XY+XY+XZ+XZ)
6 URITE(2,7)I,A(1),AMOD(1),PW(1)
K=6?
· · · · · · · · · · · · · · · · · · ·

9 () G( F	DNTINIF TO 1		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
GMENT, LENGTH	243, NAME F	F <u>T</u>	COMMENTS	• y	
	· · · · · · · · · · · · · · · · · · ·	······································			¶
		2 2	······································	· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·	··· ··································	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			······································
		1 		*	
	1 0 1	······································	······································		······································
		· · · · · · · · · · · · · · · · · · ·	3	······································	
			t 1 4		• · · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		3	1		
•	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •		······································	
		£			· · · · · · · · · · · · · · · · · · ·
		352		· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·		1		
	· · · · · · · · · · · · · · · · · · ·			···· · · · · · · · · · ·	

,

•

	SUBROUTINE NLOGN (N.X.LX.DIR)
<u> </u>	COMPUTES D.F.T. OF X(LX) BY F.F.T. METHOD.
C	DIR: -1.0 DIRFCT TRANSFORM
C	+1.9 INVERSE TRANSFORM IN MAIN PROGRAM N MUST BE SET TO LOG2(LX).
Č	4.8.5. 16/3/71
<u>c</u>	
• · · · · · · · · · · · · · · · · · · ·	DIMENSION M(20), X(LX)
	FLX=FLOAT(1X)
<u> </u>	VAxDIR+6.2831853070/FLX
	n() ; In1, N
· · · · · · · · · · · · · · · · · · ·	N(1)=K
· · · · · · · · · · · · · · · · · · ·	1 K=K/2 ·
· · · · · · · · · · · · · · · · · · ·	NS1.0CK=2++(L=1)
	LBLOCK=LX/NBLOCK
	DC 4 IBLOCK=1,NBLOCK
	FK##LOAT(K)
-	WK#CHPLX(COS(V), SIN(V))
	ISTAPT=LBLOCK+(IBLOCK-1)
	JH#J+LBHALF
	HGLD=X(J)
	0 = X (JH) + UX
t	2 X(J)=HOLD+Q
· · · · · · · · · · · · · · · · · · ·	3 K=K+M(I)
	4 K=K+H(I)
	- ビカウ 
	TF(K.LT.J) GAETO 5
	HOLD=X(J)
	X(K-1)=HOLD
	5 NO 6 I#1,N
	<u>IF(K, LT, M(I)) GO TO 7</u>
	7 KnK+M(I)
	TF(DTR.LT.O.O) RETURN
,	
	A Y(I)=X(I)/HOLD
۰۰ میں میں میں میں میں میں میں میں میں میں	
CMENT. LENG	
	TH 440 FRAME NLUGN
- 4	
· · · · · · · · · · · · · · · · · · ·	
• · ·	
4	

Thermocouple data for the figures given in the main text Chapter 7. Enough data are given in each case to show the trend demonstrated in the figures in the main text.

The data in Tables A7 to A20 are the actual e.m.f. outputs of the thermocouples amplified by a factor of 100.

In each column of 3 readings, the first is the time, the second is the e.m.f. in millivolts x 100 and the third is the Standard deviation in millivolts x 100. Astral coded program for thermocouple logging and on-line calculation of

#### Standard deviation

ş #TITL2:"T/C LOGGING & ON-LINE STD-DEVIATION(4-CHANNELS)" #UAIT #DATA:THERMO NUMBER:ALPHA:ALPHACOMP:SAMPLE SIZE:SAMPLING TIME:COUNTER #DATA:INTERVAL:DATA(4):READING:DUMP:ESTIMATE(2):ERROR:STD_DEVIATION:SUM #L(IADAT: *10020 INT PRUG **fGI) TU: TIMER** SCUEURI IE PRINTER #LUADAT:*10110 START SCHANGE WRITE TO:PRINTER STEXT:";:SUT TAPE READER REVERSING SWITCH UP AND LUAD TAPE OF" STEXT:";: THERMOCOUPLE REQD -ALPHA-SAMPLE SIZE-AND SAMPLING TIME;:" SCHANGE WRITE TH: PUNCHS SCLIAR BUFFER **\$PAUSE** \$RCADINT: THURMD NUMBER 3 SBC 1 3 SID X2 ZOPY FOR USE TO PICK OUT READ THERMOCOUPLE \$READFL:ALPHA \$LIIADFL: !+1F \$SUBFL: ALPHA \$STUFL:ALPHA CHMP SREADINT: SAMPLE SIZE \$READINT: SAMPLING TIME \$CLEAR :SUM SCLEAR:X1 MAKE LEADER SBLANKS:300 LUG 0 STO INTERVAL 0 SIN COUNTER 0 SIU X5 READ SIGNAL SANALOG FRAC:*101 6 SIU DATA SANAL JGFRAC: *102 6 STU DATA+1 \$ANALUGFRAC: *103 6 STO DATA+2 \$ANALOGFRAC: *104 6 STH DATA+3 \$FLUAT:DATA:+0:2 **3STUFL:**KEADING \$PYFL:ALPHA \$STOFL:DUMP **\$LUADFL:READING** SMPYFL: ALPHACUMP SADDFL: DUMP **\$STAFL:ESTIMATE** 

ROUIINE SANALUGFRAC:*101 6 STU DATA \$ANALIGFRAC: *102 6 SIH DATA+1 SANALOGFRAC:*103 6 STIL DATA+2 \$ANALOGFRAC: *104 6 STU DATA+3 CALCULATE SFLOAT:DATA:+0:2 /PICK REQD READING **\$STUFL:READING MPYFL:ALPHA** SSTOFL: DUMP \$LOADFL: ESTIMATE \$MPYFL:ALPHACOMP \$ADDFL:DUMP \$STOFL:ESTIMATE+1 FIND ERRUR \$LUADFL:READING **\$SUBFL:ESTIMATE** \$STOFL: DRHOR \$SQUAREFL:ERROR \$ADDFL:SUM \$STOFL:SUM \$LOADFL: ESTIMATE+1 **\$STOFL:ESTIMATE** 6 LDX INTERVAL 6 SRA 23 6 DIV !+60 6 JZE PRINT TIME SNEW LINE PRINT TIME \$PRINT:INTERVAL:V60:+23 \$PRINT: DATA: F24:+0 **SPRINT: DATA+1: F24:+0** \$PRIN1:DATA+2:F24:+0 SPRINT:DATA+3:F24:+0 SPRINTFL: ERROR: F24 7 LDX HSW 7 SLC 1 7 JGE INCREASE INT MAKE TAIL STEXT:";:L;:" **#BLANKS:20** \$ERASES:20 \$BLANKS:100 SPAUSE SGU TO:MAKE LEADER INCREASE INT 4 LDC 1 4 ADS INTERVAL WAIT TILL INT 0 LDX *25 0 LDX *11 0 JZE V

¢

TIMER 0 LDX *25 4 LDX COUNTER 4 ADC 1 4 STO COUNTER 4 SUB SAMPLING TIME 4 JNZ WAIT TILL INT 0 STO COUNTER LFBR 1 ADC 1 1 STO X5

5 NEQ SAMPLE SIZE 5 JNZ ROUTINE

FIND DEVIATION \$FLUAT:SAMPLE SIZE:+23 \$SUBFL:!+1F \$RDIVFL:!+1F \$MPYFL:SUM /FIND VARIANCE \$SQRTFX \$STOFL:STD DEVIATION \$PRINTFX:F24 \$CLEAR:X1 \$CLEAR:SUM \$CLEAR:SUM \$CLEAR:SUM \$CLEAR:X5 \$GU TO :ROUTINE

. .

```
#BREAK
#END
```

356

.

٩

٠

¢

.

•

,

1

٠

•

Ø	0.5220	1	0 • 49 37	
2	0•5034	3	0•5005	
4	0•5044	5	0.5073	
6	0•5044	7	0•5063	
8	0•5005	9	0.5005	0.0087
10	0.5005	11	0.5005	
12	0.5005	13	0.5005	
14	0.5005	15	0.5005	
16	0.4927 .	17	0.5005	
18	0.5054	19	0.5054	0.0040
20	0.5063	21	0.5005	
22	0.5063	23	0.5073	
24	0.50/3	25	0.5013	
20	0+5083 0 5005	21	0.5003	a aaka
20	0 • CUUC • CUUC • CUUC	29	0+5005	0.0040
30 20	0 - 4917	31	0 • 5005 0 = 5005	
34	0.5000 0.5005	35	0.5005 0.5005	
34	0.5005	33	0.5005	
30	0.5003	30	0.5199	0.0058
50	0.5083	3 <del>9</del> //1	0.5112	0.0000
40	0.5083	41	0.5083	
42	0.5005	40	0.5005	
46	0.5005	43	0.5005	
40	0.5005	47	0.5132	0.0055
-10 50	0.4927	51	0.5122	0.00000
52	0.5132	53	0-5132	
54	0.5093	55	0.5093	
56	0.5093	57	0.5093	
58	0.5103	59	0.5093	0.0065
60	ؕ5112	61	0.5161	
62	ؕ5142	63	0.5005	
64	ؕ5161	65	0 5161	
66	0 • 5171	67	0.5024	
68	0.5015	69	0.5181	0.0081
70	0•5024	71	0.5151	
72	0.5151	73	0.5151	
74	0+5151	75	0-5171	
76	ؕ5161	77	ؕ5171	
78	ؕ5171 .	79	0.5063	0.0055
8Ø	0•5054	81	0.5063	
82	ؕ5034	83	0.5044	
84	ؕ5229	85	0•5239	
86	0.5220	87	0+5210	
88	0.5220	89	0.5210	0•0085
90	0.5190	91	0.5171	
92	ؕ5181	93	ؕ5239	
94	0+5190	95	0+5190	•
96	0.5120	97	0+5190	a
98 1 <i>0</i> 0	0 • 5190	99	ؕ5190	0.0050
100	0.5100	101	0.5000	
102	0 - 5900	105	0,5050 0,5050	
104	0 - 5939	103	U+3437 A.59/0	
100	0.5239	100	0.5040	0.0027
110	0+3237	111	0.5050	0.00001
110	0+3013		0 - 36,32	

.

112	ؕ5259 ؕ5240	113 115	ؕ5249 ؕ5239	
116	0.5210	117	0.5210	
118	0.5210	119	0.5210	0.0062
120	0.5229	121	0.5210	0.0000
122	0.5220	123	0.5249	
124	0.5259	125	0.5249	
126	0.5259	197	0.5259	
128	0.5259	129	0.5200	0.0025
130	0.5200	131	0.5190	0-0025
130	0.5900	133	0.5900	•
134	0-5200	135	0.5190	
136	0.5010	137	0.5259	
138	0.5950	130	0.5950	a.aa39
1 40	0.5073	141	0.5259	0.0032
140	0.50/0	142	0 5209	
146	0+J249 0.59/0	145	0.5247	
144	0.5020	145	0.5050	
140	0.5020	147	0.5030	0.0060
150	0.5151	147	0-5050	0+0002
150	0.5020	152	0.5259	
154	0.5040	155	0.5259	
154	0.5200	157	0.5210	
158	0.5900	150	0.5200	0.0041
160	0.5000	1.57	0.5949	0.0041
140	0.5200	162	0.5010	
164	0+5200	105	0.5000	
164	0.5210	163	0.5000	
120	U + J 4 4 7	140	0 5220 0 5000	0 0015
100	Ø • 5620	109	0+5220	0+0015
170	0 + 5220	171	0.5010	
116	0.5010	175	0+5210	
174	Ø • 5210 Ø • 5010	173	0.5210	
170	0.5000	170	0+5200	0 0007
1970	0 • 5200 a 598a	177	0.5200	0.0001
100	0.5000	101	0.5200	
106	0.5200	105	0+5190	
104	0.5190	100	Ø • 5190	
100	0+5190	107	0.5190	0 0006
100	Ø+5170 Ø.5010	109	0.5190	0.0000
100	0 5210	191	0+5190	
176	Ø • 5404 Ø - 5191	193	0.5101	
174	Ø • J 10 1 Ø • E 10 1	193	0.5101	
190	Q 2000	197	0.5101	a aaoo
130	0.5000	199	0.5101	0.0022
200	0 5 2 0 0	201	0+5101	
202	Ø • 5101	203	0.5190	
004	Ø = 5101	205	0+5161	
200	0+5101	102	0 5101	a aaaa
500 910	0.5000	209 011	0.5101	00000
010 010	0.5181	013	0,5101 (),5121	
014	0+5101	61J 015	0.5000	
614 014	N - 2304	213	0.5000	
010 010	0-5460 0-5990	217	0.5000	0.0010
210	0 + 5260 0 - 5005	213	0.5010 0.5010	610019
200	0.5010	221	0.5010 0.5010	
666	0126.0	223	01200	

•

•
-

.

-

224	0.5220	225	0.5220	
226	0.5220	227	0.5210	
228	0.5229	229	0.5229	0.0074
230	0.5044	231	0.5220	2-22-1
232	0.5210	233	0.5220	
234	0.5210	235	0.5220	
236	0.5171	237	0.5171	
238	0.5171	239	0.5171	0.0064
240	0.5190 *	241	0.5181	0-000.
242	0.5181	243	0.5171	
244	0.5181	245	0.5181	
246	0.5181	247	0.5181	
248	ؕ5171	249	0.5200	0.0009
250	ؕ5112	251	0.5229	
252	0.5220	253	ؕ5229	
254	0.5210	255	0.5220	
256	ؕ5239	257	Ø • 5229	
258	0.5229	259	0.5220	0.0039
260	Ø•521Ø	261	ؕ5239	
262	0•5190	263	ؕ5181	
264	ؕ5171	265	Ø•522Ø	
266	0.5171	267	ؕ5181	
268	0.5190	269	ؕ5181	0.0026
270	0.5210	271	ؕ5181	
272	ؕ5181	273	0.5181	
274	ؕ5181	275	0.5181	
276	ؕ5181	277	0.5229	
278	ؕ5181	279	ؕ5181	0.0019
28Ø	0.5200	281	0.5181	
282	Ø-5171	283	ؕ5171	
284	ؕ5171	285	ؕ5171	
286	ؕ5171	287	ؕ5171	
288	ؕ5161	289	ؕ5161	0.0012
290	Ø•519Ø	291	ؕ5161	
292	Ø•522Ø	293	ؕ5161	
294	ؕ5171	295	0.5171	
296	ؕ5171	297	ؕ5181	
298	ؕ5171 -	299	ؕ5181	0.0020
300	ؕ5181	301	ؕ5181	
302	ؕ5181 .	3Ø3	ؕ5181	
304	ؕ5181	305	ؕ5171	
306	ؕ5181	307	0.5210	
308	0.5210	309	0•5220	0.0016
31Ø	ؕ5142	311	0•5220	
312	ؕ5229	313	0.5220	
314	Ø•521Ø	315	0.5220	
316	0.5210	317	0.5210	<b>•</b> •••
318	Ø•522Ø	319	Ø•521Ø	0.0027
320	0.5054	321	0.5210	
322	0.5210	323	0.5210	
324	0.5210	325	0.5210	
326	0.5210	327	0.5200	
328	0.5200	329	0.5200	0•0056
330	0.5024	331	0.5200	
332	0.5044	333	0.5034	
334	Ø•52ØØ	335	0.5190	

336	0.5190	337	0.5024	
220	0 - 51 70 0 - 50 4 4	220	0.5010	a. a1a0
330	0+3044 a calc	3.67	0+3210 a 5000	0.0103
340	0.5015	341	ؕ5200	
342	0.5200	343	0.5200	
344	0.5200	345	0.5101	
346	0.5200	347	0.5034	
348	0.5024	349	0.5034	0.0095
350	0.5093	351	0.5044	
352	0.5034	353	0.5015	
354	0.5005	355	0.5005	•
356	0•5005	357	0.5005	
358	0.5005	359	0.5005	0•0039
360	0.5972	361	0•5005	
362	0.5005	363	0•5005	
364	0.5005	365	0.5005	
366	0.5005	367	0.5005	
368	0•5005	369	0.5005	0.0343
37Ø	ؕ4927	371	0.5005	
372	0.5005	373	0.5005	
374	0 • 4927	375	0•4888	
376	0.4614	377	0.4614	
378	0.4595	379	0.4575	0.0179
380	0 • 6597	381	ؕ4536	
382	ؕ4497	383	0.4507	
384	0.4468	385	0.4468	
386	ؕ4448	387	0.4468	
388	0.4429	389	0.4419	0.0719
390	0.4927	391	0.4438	
392	0.4390	393	0.4380	
394	0.4380	395	0.4341	
396	0.4253	397	0.4253	
398	0.4243	399	0.4233	0.0199
400	Ø•562Ø	401	0.5640	
402	0.5620	403	0.5620	
404	0.5610	405	0.5620	
406	0.5620	407	0.5620	
408	0.5610	409	0.5601	0.0664
410	0.5562	411	0.5571	
412	0.5562	413	0.5542	
414	0.5532	415	0.5532	
416	Ø 5532	417	0.5522	
418	0.5522	419	0.5513	0.0018
490	0.5532	421	0.5522	0-0010
400	0.5532	403	0.5532	
466	0.5520	425	0+5542	-
464	ؕ5532 Ø-5539	425	0.5590	
420	0.5500	461	0.3862	0.0555
	0-5571	431 431	0.5540	0-0000
430	0.5559	433	0.5550	
134	0 - 5550	435	0.5550	
-134 /134	0-5559	433	0,5550	
430	0-332 0-5549	430	0.5520	0.0223
-+30 /////	0-3346	437 ///1	0.5540	0-0460
-140 ///0	0-5539	 ///2	0 0 0 0 46	
-146 ////	0-356A	440 775	0.3540	
	0-000		0.000	

,

446 Ø.3511

¥

٠

447

0.3560

Ŧ

r

448	0.3540	449	0.3530	0.1309
450	0.5015	451	0.3481	
452	0.3384	453	ؕ3413	
454	0.3442	455	0.3267	
456	0.3276	457	0.3286	
458	0.3286	459	0.3237	0.0549
460	ؕ3198	461	0.3179	
462	ؕ3237	463	Ø 3228	
464	0.3208	465	Ø.3198	
466	0.3198	467	0.3140	
468	0.3110	//69	0.3120	ล่. สุดจว
470	Ø.6479	402	0.3022	0.0012
170	0.3071	473	0.30022	
476	0.00/1	475	0.2012	
414	0+2744	415	0 00 0 0	
470	0-2714	470	0+2903	a 1011
410	0.3003	477	0 2012	0+1211
400	0.3940	401	0.0013	
402	0.2000	403	0.2914	
484	0.5896	485	0+2905	
486	0.2983	487	0+2983	a
488	0.2944	489	0.2905	0.0342
490	0+5815	491	0+2954	
492	0+2993	493	0.5815	
494	0.5806	495	0.5786	
496	0•5786	497	ؕ5767	
498	ؕ5757	499	0.6050	ؕ1577
500	0.6001	501	ؕ6362	
502	0.6362	503	0.6353	
504	0.6372	505	0.6343	
506	0•6401	507	ؕ6362	
5Ø8	0•6362	509	ؕ6353	0.0395
510	0•6470	511	0.6470	
512	ؕ6489	513	0.6450	
514	0•6479	515	0.6470	
516	0•6460	517	0•6460	
518	0•6479	519	0.6489	0.0083
520	0.6567	521	ؕ6538	
522	0.6538	523	ؕ6538	
524	ؕ6528	525	0.6548	
526	ؕ6548	. 527	ؕ6558	
528	0.6538	529	0.6548	0.0043
530	ؕ6646	531	0.6665	-
532	0.6694	533	0.6714	
534	0.6772	535	-0.1597	
536	-0-1616	537	-0.1597	
538	-0.1558	539	-0.1597	0.4049
540	-0-1626	541	-0-1655	0- 10-17
540	-0.1733	543	-0.1685	
544	-0.1794	540 5/5	-0-0171	
5/14	0.0910	545	-0-1675	
5/10	0-0610	547	0-6665	0.33790
560	0.6404	547	0.6794	0.00127
550	0 = 0074 0 - 6769	201	0. 2000	
552	0103 A 2000	553	-0.1675	
554	00000	555	-0+10/5 a 1970	
220	-0+1851	557	-0.1010	a
558	-0.1870	559	-0.1899	0.4276

¥

560	Ø.3218	561 -0+1929	
562	-0.1851	563 -0.1890	
564	-0.1938	565 0.6704	
566	0.679/	567 0.6782	
568	0.6802	569 0.6821	0.4178
570	0.6860	571 0.60/21	0.4110
570	Ø • 00 00	571 0.0707	
516	0.0919	575 0+0950	
5/4	0.1036	575 0+7046	
576	-0.2104	577 -0.2124	
578	-0.2173	579 -0.2124	ؕ4299
580	-0.0024	581 -0.2192	
582	-0.2144	583 -0.2085	
584	-0.2192	585 -0.2104	
586	-0.2144	587 -0.2144	
588	-0.2153	589 -0.2173	0.1336
590	ؕ4829	591 -0.2124	
592	0.6812	593 ؕ6851	
594	0.6860	595 0.6870	
596	Ø•688Ø	597 Ø•69Ø9	
598	ؕ6919	599 ؕ6938	0•4469
600	ؕ6987	601 0.7046	
602	-0.2222	603 -0.2192	
604	-0.2163	605 -0.2173	
606	-0.2173	607 -0.2144	
608	-0.2134	609 -0-2163	0.4381
610	-0.1646	611 -0.2163	0.001
612	-0.2065	613 0.6880	
61/	Ø-6899	615 0.6929	
616	0.6948	617 0.6997	
619	0.70/6	610 0.7026	0.4206
610	0 7040	619 0.7036	0+4320
620	- 0 0 0 0 0	621 ؕ1015	
022	-0.2200	623 -0+2113	
624	-0.2183	625 #0+2261	
626	-0.2231	627 -0.2222	a
628	-0.2251	629 -0.2251	0+4347
630	-0.2261	631 -0.2212	
632	-0.2222	633 -0.2300	
634	-0.2222	635 0.7065	
636	Ø•7Ø65	637 0.7075	<b>.</b>
638	0•7046	. 639 0.7085	0•4477
640	ؕ7114	641 ؕ7144	
642	0.7153	643 ؕ7153	
644	-0.2358	645 -0.2310	
646	-0.2368	647 -0.2300	
645	-0.2372	649 -0.2261	ؕ4479
<b>6</b> 5Ø	-ؕ2261	651 -0.2300	
652	0.7075	653 Ø•7Ø26	
654	0.7075	655 ؕ7114	•
656	0.7114	657 0.7114	
658	-0+2358	659 -0.2397	0.5403
660	ؕ3999	661 -0.2378	
662	-0.2358	663 -0.2358	
664	-0.2261	665 0.7075	
666	0.7114	667 0.7183	
668	0.7134	669 -0.2397	0.5066
670	-0.1655	671 -0.9358	5-5600
<b>U</b>   <b>D</b>			

Ŧ

672	-0.2251	673 -0.2368	
674	-0.2300	675 0.7075	
676	0.7104	677 Ø•7Ø65	
678	0.7144	679 ؕ7124	0.4680
68Ø	0.7114	681 Ø.7114	
682	0.7114	683 ؕ7153	
684	0.7153	685 ؕ7192	
686	0.7163	687 0.7134	
688	-0.2456	689 -0.2466	0.4043
690	0 • 4097	691 -0.2495	
692	-0.2476	693 -0.2397	
694	-0.2476	695 -0.2495	
696	-0.2407	697 -0.0591	
698	-0.2495	699 -0.2437	0.2876
700	- <u>0</u> - <u>2</u>	701 -0.9497	0-2010
700	-0.2446	703 -0.0/37	
704	-0.0495	705 -0.0405	
704	-0.2475	703 -0.2495	
700	-0.0200	700 -0 0524	a 0200
700	-0.2495	709 -0.2534	0.2322
710	-0.1050	711 0.7212	
712	0.7310	713 0.7192	
714	0.7153	715 0.7173	
716	ؕ7153	717 0.7124	
718	0.7134	719 ؕ7144	ؕ4554
720	ؕ7114	721 ؕ7134	
722	ؕ7134	723 -0.0474	
724	-0.0356	725 -0.0435	
726	-0.0396	727 -0.0415	
728	-0.0278	729 -0.0396	ؕ3639
<b>7</b> 3Ø	0•4800	731 -0.0630	
732	-0.0786	733 -0.0708	
734	-0.0366	735 -0.0415	
736	-0.0591	737 -0.0552	
738	0.7231	739 Ø.7212	0.3601
740	0.7212	741 0.7173	
742	ؕ7163	743 0.7192	
744	ؕ7163	745 0.7173	
746	0.7144	747 ؕ7144	
748	0•7183	749 Ø.7124	0.2096
750	0.4546	751 -0.0415	
752	-0.0767	753 -0.0649	
754	-0.0864	755 -0.0786	
756	-0.0796	757 -0.0669	
758	-0.0698	759 -0.0552	0.3601
760	-0.0786	761 -0.0903	5-0054
762	-0.0493	763 -0.0942	
764	-0-04737	765 -0.0903	
764	0-7961	767 0.7182	•
100 720	0.7931	769 0-7100	0.2710
100	0.7919	771 A-7010	0.0112
770	U + 1616 A - 79A1	111 U+1616 772 A 7031	
112	U • 1 G 4 1 G 70 4 1	113 U+1231 775 A 7100	
114	U•1641 A 7010	113 U+1172 777 _0 0707	
110	W • 1 4 1 4 - A A9 4 4	770 -0 0600	0. 2712
110	-U0004 G 4014	117 TU+0030	0+3/13
780	ؕ4214	101 -0.0004	
785	-0.0202	183 -0.0991	

Ŧ

.

Ø	0•4380		1	0•4380	
2	0•4390		3	0•4380	
4	0 • 4409		5	0.4419	
6	0•4399		7	0.4419	
8	0.4429		9	0 • 4409	0.0018
10	0.4390		11	0.4390	
12	0.4399		13	0.4399	
14	0.4399		15	0.4409	
16	0.4409	•	17	0.0409	
18	0.4399		19	0.4399	0.0009
20	0.0000		01	0-4409	4.0007
00	0.4409		23	0-4422	
66 04	0.4422		23	0-4427	
04	0.4427		23	0 4417	
20 00	0 4900		21	0 4417	0 0015
20	0 4377		29	0 4377	0.0012
30	0 4399		31	0 • 4399	
32	0.4399		33	0 • 4399	
34	0 • 4390		35	0.4390	
36	0+4390		37	0.4390	
38	0.4399	•	39	0•4429	0.0014
40	0.4409		41	0•4429	•
42	0•4438		43	0•4448	
44	0•4448		45	0•4448	
46	0•4429		47	0•4438	
48	0•4429		49	0•4448	0.0019
50	0•4438		51	0•4438	
52	0•4448		53	0•4438	
54	0-4438		55	0•4458	
56	0.4448		57	0•4448	
58	ؕ4458		59	0.4448	0.0008
60	0.4419		61	0.0448	
62	0.4419		63	0.4419	
64	0.4419		65	0.4419	
66	0.4419		67	0.4419	
68	0.4409		69	0.4419	0.0016
70	0.4419		71	0.4438	
72	0.4429		73	0.4438	
74	0.4438		75	0.4438	
76	0.4429		77	0.4419	
78	0.4399		79	0.4438	0.0015
80	0.1409	•	81	0.4419	
82	0.4438		83	0.4429	
87	0.4438		85	0.4458	
84	0.4458		05	0.4450	
00	0.4450		01	0 4450	0 0017
00	0 4430		07	0 4430	0.0011
20	0 4400		71	U • 4400	
72	0 4430		93	0.4438	
94	0 4448		75	0.4438	
76	0.4448		97	0.4438	0 0040
78	0.4448		99	0.4438	0.0018
00	0.4438		101	0.4438	
102	0.4429		103	ؕ4458	
104	0•4468		105	0.4458	
106	0•4468		107	ؕ4468	
108	0•4487	. ,	109	0•4497	0.0050
110	0•4478		111	0.4478	

-

٤

*

112	0•4478	113	0.4478	
114	ؕ4478	115	0•4487	
116	0•4497	117	ؕ4487	
118	0•4497	119	0•4497	0.0009
120	0•4487	121	0.4517	
122	ؕ4517	123	0 • 451 7	
124	0•4517	125	ؕ4526	
126	0.4526	127	ؕ4526	
128	Ø•4536 •	1 29	0•4536	0.0017
130	0•4507	1 3 1	ؕ4517	
132	ؕ4526	133	0•4526	
134	ؕ4526	135	0 • 4517	
136	ؕ4517	137	0 • 4517	
138	ؕ4556	1 3 9	ؕ4546	0.0016
140	0 • 4556	141	0 • 4565	
142	0•4565	143	0 • 4595	
144	0•4585	145	0.4595	
146	ؕ4585	147	0.4595	
148	0•4575	1 49	0.4585	0.0024
150	0•4585	151	0.4575	
152	0•4546	153	ؕ4546	
154	0•4536	155	0.4546	
156	0•4546	157	ؕ4546	
158	0•4546	1 5 9	ؕ4575	0•0020
160	ؕ4565	161	۵•45 <b>7</b> 5	
162	ؕ4585	163	0•4614	
164	0•4604	165	ؕ4614	
166	0•4614	167	0•4604	
168	ؕ4614	1 69	0•4614	0.0024
170	0•4614	171	0•4604	
172	0•4565	173	0.4575	
174	ؕ4575	175	0.4585	
176	0•4585	177	0.4585	
178	0•4585	179	0 • 4595	0.0017
180	ؕ4595	181	ؕ4585	
182	0.4604	183	0.4614	
184	0.4614	185	0.4604	
186	0•4604	187	ؕ4614	
188	0.4624	189	0.4644	0.0017
190	0.4634	• 191	0.4614	
192	0.4624	193	0.4634	
194	0.4634	195	0.4624	
196	0•4624	197	0.4644	
198	0.4653	199	0•4644	0.0013
200	0•4644	201	ؕ4644	
202	0•4663	203	0.4644	
204	0•4653	205	0.4644	
206	0•4653	207	0.4634	• •
208	ؕ4663	209	ؕ4653	0.0012
210	0•4624	211	0.4653	
212	ؕ4624	213	0.4624	
214	10 • 4624	215	0.4614	
216	0.4604	217	0.4614	
218	0.4614	219	0.4604	0.0018
220	0.4604	221	0.4604	
222	ؕ4595	223	0•4624	
•

Ø	0.4556	1	0.4634	
2	0.4634	3	0.4644	
4	0-4644	5	0.4644	
6	0.4644	9 7	0.4692	
g	0.4673	9	0.4663	0.0053
10	0.4719	11	0.4663	0.00000
10	0.4652	12	0 4652	
16	0+4055	10	0.4655	
14	$0 \cdot 4014$	15	0.4634	
10	0 4634	17	0.4692	0 0000
18	0-4673	19	0+4692	0.0033
20	0+4673	21	0.4683	
22	0+4673	23	0.4692	
24	0-4702	25	0.4712	
26	0•4702	、 27	0•4702	
28	0•4692	<u></u> 29	0.4702	0.0016
30	0•4741	31	0•4692	
32	0•4692	33	0•4692	
34	0•4673	35	ؕ4673	
36	0.4692	37	0.4702	
38	ؕ4731	39	0.4702	0.0024
40	0.4702	41	ؕ4731	
42	0 • 4712	43	0.4722	
44	0.4702	45	0.4731	
46	0.4741	47	0.4741	
48	0.4702	49	0.4702	0.0020
50	0.4702	51	0.4731	
52	0.4692	53	0.4712	
5/1	0.1799	55	0.4731	
54	0-4722	57	0.4731	
50	0 4766	50	0.4751	0.0019
50	0 4712	09 61	0 4731	0.0010
60	0+4/61	10	0.4731	
62	0+4731	63	0.4722	
64	0.4731	65	0.4702	
66	0+4673	67	0.4692	
68	0•4683	69	0.4692	0.0025
70	0.4692	71	ؕ4692	
72	0 • 4702	73	ؕ4692	
74	ؕ4692	75	0•4702	
76	ؕ4741	. 77	ؕ4722	
78	0•4722	. 79	ؕ4731	0.0017
80	ؕ4771	81	0•4741	
82	0•4731	83	0.4692	
84	0•4692	85	0•4683	
86	ؕ4692	87	ؕ4692	
88	ؕ4692	89	0.4692	0.0028
90	ؕ4692	91	ؕ4673	
92	0.4712	93	0.4702	
94	0.4702	95	0.4692	•
96	0.4702	97	ؕ4692	
98	Ø • 4692	99	0.4692	0.0012
100	0.4692	101	0.4692	
102	0.4702	103	0.4692	
104	A 4692	105	0.4683	
104	0.4673	103	0.4692	
100	0-1673	100	0.4672	0.0010
110	0 . 4013	109	0.4700	0+0010
110	0+4013	111	0+4106	

•

٠

,

114 $0.4712$ 115 $0.4712$ 116 $0.4712$ 117 $0.4702$ 118 $0.4702$ 119 $0.4702$ 120 $0.4673$ 121 $0.4692$ 122 $0.4692$ 123 $0.4692$ 124 $0.4692$ 125 $0.4673$ 126 $0.4692$ 127 $0.4673$ 128 $0.4692$ 127 $0.4673$ 128 $0.4692$ 127 $0.4673$ 132 $0.4712$ 133 $0.4692$ 134 $0.4712$ 135 $0.4712$ 135 $0.4712$ 137 $0.4731$ 138 $0.4722$ 139 $0.4692$ 140 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 146 $0.4741$ 147 $0.4722$ 150 $0.4722$ 151 $0.4722$ 152 $0.4780$ 155 $0.4780$ 156 $0.4780$ 157 $0.4810$ 158 $0.4829$ 159 $0.4829$ 164 $0.4860$ 167 $0.4829$ 170 $0.4731$ 171 $0.4829$ 170 $0.4830$ 177 $0.4860$ 174 $0.4849$	110	1.4719	112	0.4702	
114 $0.4712$ 117 $0.4702$ $0.0015$ 118 $0.4702$ 119 $0.4702$ $0.0015$ 120 $0.4673$ 121 $0.4672$ $0.0015$ 122 $0.4692$ 123 $0.4692$ 124 $0.4692$ 125 $0.4673$ 126 $0.4692$ 127 $0.4673$ 128 $0.4692$ 129 $0.4673$ 128 $0.4692$ 127 $0.4673$ 130 $0.4673$ 131 $0.4702$ 132 $0.4712$ 133 $0.4692$ 134 $0.4712$ 135 $0.4712$ 136 $0.4722$ 139 $0.4692$ 136 $0.4722$ 139 $0.4692$ 136 $0.4722$ 139 $0.4692$ 140 $0.4722$ 143141 $0.4712$ 145142 $0.4673$ 141147 $0.4722$ 148 $0.4722$ 149 $0.4722$ $0.0019$ 150 $0.4722$ 151150 $0.4722$ $0.0019$ 155 $0.4780$ 157154 $0.4790$ 155156 $0.4780$ 157158 $0.4829$ 153164 $0.4868$ 165165 $0.4810$ 176 $0.4830$ 167178 $0.4830$ 179 $0.4800$ 174 $0.4810$ 175 $0.4810$ 176 $0.4839$ 188 $0.5005$ 189 $0.4849$ 184 $0.4868$ 185	114	0 4710	115	a 4710	
116 $0.4712$ 117 $0.4702$ $0.0015$ 120 $0.4673$ 121 $0.4692$ $0.0015$ 122 $0.4692$ 123 $0.4692$ 124 $0.4692$ 125 $0.4673$ 126 $0.4692$ 127 $0.4673$ 128 $0.4692$ 129 $0.4692$ 130 $0.4673$ 131 $0.4702$ 132 $0.4712$ 133 $0.4692$ 134 $0.4712$ 135 $0.4712$ 136 $0.4712$ 137 $0.4731$ 138 $0.4722$ 139 $0.4692$ 140 $0.4673$ 141 $0.4712$ 142 $0.4692$ 143 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 147 $0.4722$ 146 $0.4780$ 157 $0.4810$ 154 $0.4790$ 155 $0.4780$ 155 $0.4780$ 157 $0.4810$ 156 $0.4849$ 163 $0.4829$ 164 $0.4868$ 165 $0.4810$ 158 $0.4829$ 173 $0.4810$ 174 $0.4810$ 175 $0.4810$ 174 $0.4810$ 175 $0.4810$ 174 $0.4819$ 183 $0.4858$ 184 $0.4868$ 185 $0.4829$ 190 $0.4224$ 191 $0.4927$ 192 $0.4800$ 195 $0.4849$ <td>114</td> <td>0.4712</td> <td>115</td> <td>0.4712</td> <td></td>	114	0.4712	115	0.4712	
118 $0.4702$ 119 $0.4702$ $0.0015$ 120 $0.4673$ 121 $0.4692$ 122 $0.4692$ 125 $0.4673$ 126 $0.4692$ 127 $0.4673$ 128 $0.4692$ 127 $0.4673$ 130 $0.4673$ 131 $0.4702$ 132 $0.4712$ 133 $0.4692$ 134 $0.4712$ 135 $0.4712$ 136 $0.4712$ 137 $0.4731$ 138 $0.4722$ 139 $0.4692$ 140 $0.4673$ 141 $0.4712$ 140 $0.4673$ 141 $0.4712$ 142 $0.4692$ 143 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 146 $0.4722$ 151 $0.4722$ 148 $0.4722$ 151 $0.4722$ 150 $0.4722$ 151 $0.4722$ 152 $0.4712$ 153 $0.4771$ 154 $0.4780$ 157 $0.4810$ 155 $0.4780$ 157 $0.4810$ 156 $0.4780$ 157 $0.4829$ 160 $0.5151$ 161 $0.4829$ 162 $0.4849$ 163 $0.4829$ 164 $0.4868$ 165 $0.4810$ 174 $0.4868$ 165 $0.4810$ 174 $0.4860$ 177 $0.4800$ 174 $0.4868$ 185 $0.4849$ 18	116	0+4712	117	0.4702	
120 $0.4673$ 121 $0.4692$ 122 $0.4692$ 123 $0.4692$ 124 $0.4692$ 125 $0.4673$ 126 $0.4692$ 127 $0.4673$ 128 $0.4692$ 129 $0.4692$ 130 $0.4673$ 131 $0.4702$ 132 $0.4112$ 133 $0.4692$ 134 $0.4712$ 137 $0.4712$ 136 $0.4712$ 137 $0.4692$ 134 $0.4712$ 137 $0.4692$ 134 $0.4712$ 137 $0.4692$ 134 $0.4712$ 137 $0.4692$ 140 $0.4673$ 141 $0.4712$ 142 $0.4692$ 143 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4722$ 149 $0.4722$ 146 $0.4741$ 147 $0.4722$ 146 $0.4780$ 155 $0.4780$ 152 $0.4712$ 153 $0.4771$ 154 $0.4790$ 155 $0.4780$ 156 $0.4780$ 157 $0.4810$ 158 $0.4829$ 159 $0.4829$ 164 $0.4868$ 165 $0.4810$ 165 $0.4849$ 163 $0.4829$ 172 $0.4829$ 173 $0.4810$ 174 $0.4829$ 173 $0.4810$ 174 $0.4829$ 183 $0.4849$ 180 $0.4839$ 183 $0.4849$ 182 $0.4839$ 183 $0.4849$ 182 $0.4839$ 183 $0.4849$ 190 $0.4224$	118	0•4702	119	0•4702	0.0015
122 $0.4692$ $123$ $0.4692$ $125$ $0.4673$ $126$ $0.4692$ $127$ $0.4673$ $128$ $0.4692$ $127$ $0.4673$ $130$ $0.4673$ $131$ $0.4702$ $132$ $0.4712$ $133$ $0.4692$ $134$ $0.4712$ $135$ $0.4712$ $136$ $0.4712$ $137$ $0.4731$ $138$ $0.4722$ $139$ $0.4692$ $140$ $0.4673$ $141$ $0.4712$ $140$ $0.4673$ $141$ $0.4712$ $142$ $0.4692$ $143$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4722$ $151$ $0.4722$ $150$ $0.4722$ $151$ $0.4722$ $152$ $0.4712$ $153$ $0.4771$ $156$ $0.4780$ $157$ $0.4810$ $156$ $0.4780$ $157$ $0.4810$ $156$ $0.4780$ $163$ $0.4829$ $164$ $0.4868$ $165$ $0.4810$ $164$ $0.4868$ $165$ $0.4810$ $170$ $0.4829$ $173$ $0.4810$ $170$ $0.4829$ $173$ $0.4800$ $170$	120	ؕ4673	121	ؕ4692	
124 $0.4692$ $125$ $0.4673$ $126$ $0.4692$ $127$ $0.4673$ $128$ $0.4692$ $127$ $0.4673$ $130$ $0.4692$ $129$ $0.4692$ $132$ $0.4712$ $133$ $0.4692$ $134$ $0.4712$ $135$ $0.4712$ $136$ $0.4712$ $137$ $0.4731$ $138$ $0.4722$ $139$ $0.4692$ $140$ $0.4673$ $141$ $0.4712$ $142$ $0.4692$ $143$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4712$ $153$ $0.4712$ $150$ $0.4722$ $0.0019$ $150$ $0.4722$ $0.0019$ $150$ $0.4722$ $0.0019$ $150$ $0.4722$ $0.0019$ $150$ $0.4722$ $0.0019$ $150$ $0.4722$ $0.0019$ $150$ $0.4730$ $157$ $0.4829$ $153$ $0.4730$ $156$ $0.4730$ $157$ $0.4829$ $153$ $0.4829$ $166$ $0.4780$ $167$ $0.4829$ $173$ $0.4829$ $172$	122	ؕ4692	123	0•4692	
126 $0.4692$ $127$ $0.4673$ $128$ $0.4692$ $129$ $0.4692$ $0.0014$ $130$ $0.4673$ $131$ $0.4702$ $132$ $0.4712$ $133$ $0.4692$ $134$ $0.4712$ $135$ $0.4712$ $136$ $0.4712$ $137$ $0.4731$ $138$ $0.4722$ $139$ $0.4692$ $140$ $0.4673$ $141$ $0.4712$ $142$ $0.4692$ $143$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $146$ $0.4741$ $147$ $0.4722$ $148$ $0.4722$ $149$ $0.4722$ $148$ $0.4722$ $149$ $0.4722$ $150$ $0.4722$ $155$ $0.4772$ $150$ $0.4722$ $155$ $0.47780$ $155$ $0.4780$ $157$ $0.4810$ $156$ $0.4780$ $157$ $0.4829$ $160$ $0.5151$ $161$ $0.4829$ $164$ $0.4868$ $165$ $0.4810$ $170$ $0.4731$ $171$ $0.4829$ $173$ $0.4810$ $175$ $0.4810$ $176$ $0.4839$ $179$ $0.4800$ $0.77$ $0.4800$ $177$ $0.4800$ $177$ $0.4839$ $183$ $0.4839$ $188$ $0.5005$ $189$ $0.4839$ $188$ $0.5005$ $189$ $0.4849$ $0.4800$ $195$ $0.4839$ $188$ $0.5005$ $197$	124	ؕ4692	125	0.4673	
128 $0.4692$ $129$ $0.4692$ $0.0014$ 130 $0.4673$ 131 $0.4702$ 132 $0.4712$ 133 $0.4692$ 134 $0.4712$ 135 $0.4712$ 136 $0.4712$ 137 $0.4731$ 138 $0.4722$ 139 $0.4692$ 140 $0.4673$ 141 $0.4712$ 142 $0.4692$ 143 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 149 $0.4722$ 150 $0.4722$ $1.60019$ 150 $0.4722$ $0.0019$ 150 $0.4722$ $0.0019$ 150 $0.4780$ 155151 $0.47722$ $0.0012$ 152 $0.4712$ 153154 $0.4790$ 155155 $0.4780$ 157154 $0.4790$ 155 $0.4810$ 158 $0.4829$ 159 $0.4829$ 159 $0.4829$ 173 $0.66$ $0.4839$ $164$ $0.4868$ 165 $0.4810$ 174 $0.4810$ 174 $0.4810$ 175 $0.4819$ 182 $0.4839$ 184 $0.4868$ 185 $0.4839$ 186 $0.5005$ 197 $0.4800$ 198 $0.4800$ 198 $0.4800$ 199 $0.4$	126	0.4692	127	Ø-4673	
120 $0.4673$ 121 $0.4702$ 132 $0.4712$ 133 $0.4702$ 132 $0.4712$ 135 $0.4702$ 136 $0.4712$ 137 $0.4731$ 138 $0.4722$ 139 $0.4692$ $0.0018$ 140 $0.4673$ 141 $0.4702$ 144 $0.4673$ 141 $0.4702$ 144 $0.4712$ 145 $0.4702$ 146 $0.4712$ 145 $0.4702$ 146 $0.4712$ 145 $0.4702$ 146 $0.4722$ 151 $0.4722$ 152 $0.4712$ 153 $0.4771$ 154 $0.4722$ 159 $0.4829$ 155 $0.4780$ 157 $0.4810$ 156 $0.4780$ 157 $0.4810$ 158 $0.4829$ 163 $0.4829$ 164 $0.4868$ 165 $0.4810$ 165 $0.4780$ 167 $0.4829$ 166 $0.4800$ 167 $0.4839$ 167 $0.4829$ 173 $0.64810$ 174 $0.4810$ 175 $0.4800$ 178 $0.4839$ 183 $0.4849$ 182 $0.4839$ 183 $0.4858$ 184 $0.5005$ 189 $0.4849$ 190 $0.4224$ 191 $0.4927$ 192 $0.4800$ 195 $0.4800$ 194 $0.4866$ 205 $0.4849$ 206 $0.4858$ 205 $0.4849$ 206 $0.4858$ 205 $0.4849$ 206 $0.4858$ 213 $0.4849$ 2	128	Ø - 4692 ·	129	0.4692	0.0014
130 $0.4712$ 131 $0.4702$ 134 $0.4712$ 133 $0.4692$ 134 $0.4712$ 137 $0.4731$ 138 $0.4712$ 137 $0.4731$ 138 $0.4722$ 139 $0.4692$ $0.0018$ 140 $0.4673$ 141 $0.4712$ 142 $0.4692$ 143 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 146 $0.4741$ 147 $0.4722$ 150 $0.4722$ 151 $0.4722$ 152 $0.4712$ 153 $0.4771$ 154 $0.4790$ 155 $0.4780$ 156 $0.4780$ 157 $0.4810$ 158 $0.4829$ 159 $0.4829$ 164 $0.4849$ 163 $0.4829$ 164 $0.4840$ 167 $0.4810$ 172 $0.4829$ 173 $0.4810$ 174 $0.4780$ 175 $0.4810$ 175 $0.4839$ 163 $0.4858$ 186 $0.4839$ 179 $0.4800$ 178 $0.4839$ 179 $0.4800$ 178 $0.4839$ 183 $0.4858$ 186 $0.5005$ 189 $0.4849$ 188 $0.5005$ 189 $0.4849$ 192 $0.4800$ 195 $0.4830$ 194 $0.4800$ 195 $0.4800$ 195 $0.4800$ 197 $0.4800$ 196 $0.5005$ 197 $0.4800$ 197 $0.4800$ 195198 $0.4858$	120	D = 4072 A /272	121	0 4700	0.0014
132 $0.4712$ 133 $0.4692$ 134 $0.4712$ 135 $0.4712$ 136 $0.4712$ 137 $0.4731$ 138 $0.4673$ 141 $0.4731$ 142 $0.4692$ 143 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 146 $0.4712$ 145 $0.4702$ 146 $0.4722$ 149 $0.4722$ 148 $0.4722$ 150 $0.4722$ 152 $0.4712$ 153 $0.4771$ 154 $0.4722$ 153 $0.4771$ 154 $0.4722$ 159 $0.4829$ 160 $0.5151$ 161 $0.4829$ 162 $0.4849$ 163 $0.4829$ 164 $0.4868$ 165 $0.4810$ 172 $0.4829$ 173 $0.4810$ 174 $0.4810$ 175 $0.4810$ 175 $0.4810$ 177 $0.4800$ 176 $0.4839$ 163 $0.4829$ 180 $0.4839$ 181 $0.4849$ 182 $0.4839$ 183 $0.4858$ 184 $0.4868$ 185 $0.4830$ 178 $0.4819$ 181 $0.4839$ 188 $0.5005$ 189 $0.4849$ 190 $0.4224$ 191 $0.4927$ 192 $0.4917$ 193 $0.4956$ 194 $0.4800$ 195 $0.4839$ 188 $0.5005$ 197 $0.4800$ 196 $0.4800$ 201 $0.4897$ 206 $0.4810$	130	0.4073	101	0 4/02	•
134 $0.4712$ 135 $0.4712$ 136 $0.4712$ 137 $0.4692$ $0.0018$ 140 $0.4673$ 141 $0.4712$ 142 $0.4692$ 143 $0.4702$ 144 $0.4712$ 145 $0.4702$ 144 $0.4712$ 145 $0.4702$ 146 $0.4712$ 145 $0.4702$ 148 $0.4722$ 151 $0.4722$ 150 $0.4722$ 151 $0.4722$ 152 $0.4712$ 153 $0.4712$ 154 $0.4790$ 155 $0.4780$ 156 $0.4780$ 157 $0.4810$ 158 $0.4829$ 159 $0.4829$ 164 $0.4368$ 165 $0.4829$ 164 $0.4368$ 165 $0.4810$ 170 $0.4731$ 171 $0.4829$ 172 $0.4810$ 175 $0.4810$ 174 $0.4810$ 175 $0.4810$ 175 $0.4810$ 177 $0.4800$ 178 $0.4829$ 173 $0.4810$ 178 $0.4839$ 183 $0.4849$ 182 $0.4839$ 183 $0.4849$ 188 $0.5005$ 189 $0.4849$ 190 $0.4224$ 191 $0.4927$ 192 $0.4800$ 195 $0.4849$ 204 $0.4800$ 195 $0.4849$ 206 $0.4830$ 199 $0.4849$ 206 $0.4858$ 205 $0.4849$ 206 $0.4858$ 205 $0.4849$ 206 $0.4858$ 213 $0.4849$ 20	132	0.4712	133	0+4092	
136 $0.4712$ 137 $0.4731$ 138 $0.4672$ 139 $0.4692$ $0.0018$ 140 $0.4673$ 141 $0.4712$ 142 $0.4692$ 143 $0.4702$ 144 $0.4712$ 145 $0.4702$ 145 $0.4711$ 147 $0.4722$ 148 $0.4722$ 151 $0.4722$ 152 $0.4712$ 153 $0.4771$ 154 $0.4720$ 155 $0.4780$ 156 $0.4780$ 157 $0.4810$ 158 $0.4780$ 157 $0.4829$ 160 $0.5151$ 161 $0.4829$ 162 $0.4849$ 163 $0.4829$ 164 $0.4868$ 165 $0.4839$ 165 $0.4780$ 167 $0.4839$ 166 $0.4849$ 163 $0.4829$ 170 $0.4731$ 171 $0.4829$ 172 $0.4829$ 173 $0.4810$ 174 $0.4839$ 167 $0.4800$ 177 $0.4810$ 175 $0.4800$ 178 $0.4839$ 183 $0.4868$ 186 $0.4868$ 185188 $0.5005$ 189 $0.4849$ 190 $0.4224$ 191 $0.4927$ 192 $0.4800$ 195 $0.4819$ 204 $0.4868$ 203 $0.4849$ 206 $0.4810$ 201 $0.4849$ 206 $0.4810$ 201 $0.4849$ 206 $0.4819$ 211 $0.4829$ 206 $0.4858$ 215 $0.5005$ 216 $0.4858$	134	0.4712	135	0.4712	
138 $0.4722$ 139 $0.4692$ $0.0018$ 140 $0.4673$ 141 $0.4712$ 142 $0.4692$ 143 $0.4702$ 144 $0.4712$ 145 $0.4702$ 146 $0.4722$ 149 $0.4722$ 148 $0.4722$ 149 $0.4722$ 148 $0.4722$ 151 $0.4722$ 150 $0.4722$ 151 $0.4722$ 152 $0.4712$ 153 $0.4771$ 154 $0.4790$ 155 $0.4820$ 156 $0.4780$ 157 $0.4829$ 166 $0.4829$ 163 $0.4829$ 167 $0.4829$ 163 $0.4829$ 168 $0.4780$ 167 $0.4829$ 166 $0.4800$ 167 $0.4829$ 170 $0.4731$ 171 $0.4829$ 172 $0.4829$ 173 $0.4810$ 174 $0.4810$ 175 $0.4810$ 175 $0.4839$ 183 $0.4849$ 182 $0.4829$ 183 $0.4849$ 184 $0.4868$ 185 $0.4869$ 188 $0.5005$ 189 $0.4849$ 190 $0.4224$ 191 $0.4927$ 192 $0.4800$ 195 $0.4849$ 206 $0.4810$ 201 $0.4849$ 206 $0.4858$ 205 $0.4849$ 206 $0.4858$ 205 $0.4849$ 206 $0.4858$ 213 $0.4849$ 206 $0.4858$ 213 $0.4849$ 206 $0.4858$ 213 $0.4849$ 21	136	ؕ4712	137	ؕ4731	
140 $0.4673$ $141$ $0.4712$ $142$ $0.4692$ $143$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $146$ $0.4712$ $145$ $0.4702$ $148$ $0.4722$ $149$ $0.4722$ $148$ $0.4722$ $149$ $0.4722$ $150$ $0.4722$ $151$ $0.4722$ $150$ $0.4722$ $153$ $0.4771$ $154$ $0.4790$ $155$ $0.4780$ $156$ $0.4780$ $157$ $0.4810$ $156$ $0.4780$ $157$ $0.4810$ $158$ $0.4829$ $163$ $0.4829$ $164$ $0.4863$ $165$ $0.4810$ $166$ $0.4800$ $167$ $0.4790$ $166$ $0.4780$ $169$ $0.4839$ $170$ $0.4731$ $171$ $0.4829$ $172$ $0.4829$ $173$ $0.4810$ $176$ $0.4810$ $175$ $0.4810$ $176$ $0.4839$ $163$ $0.4839$ $180$ $0.4839$ $183$ $0.4838$ $184$ $0.4868$ $185$ $0.4868$ $186$ $0.5005$ $189$ $0.4839$ $188$ $0.5005$ $197$ $0.4839$ $196$ $0.4800$ $199$ $0.4800$ $192$ $0.4800$ $201$ $0.4849$ $204$ $0.4800$ $201$ $0.4849$ $206$ $0.4819$ $201$ $0.4849$ $206$ $0.4858$ $207$ $0.4849$ $206$ $0.4858$ $207$	138	0.4722	139	ؕ4692	0.0018
142 $0.4692$ $143$ $0.4702$ $144$ $0.4712$ $145$ $0.4702$ $146$ $0.4712$ $147$ $0.4722$ $148$ $0.4722$ $151$ $0.4722$ $150$ $0.4722$ $151$ $0.4722$ $152$ $0.4712$ $153$ $0.4771$ $154$ $0.4790$ $155$ $0.4780$ $156$ $0.4780$ $157$ $0.4829$ $156$ $0.4780$ $157$ $0.4829$ $160$ $0.5151$ $161$ $0.4629$ $162$ $0.4849$ $163$ $0.4829$ $164$ $0.4868$ $165$ $0.4839$ $166$ $0.4800$ $167$ $0.4790$ $168$ $0.4780$ $169$ $0.4839$ $170$ $0.4731$ $171$ $0.4829$ $172$ $0.4800$ $177$ $0.4800$ $174$ $0.4810$ $175$ $0.4810$ $176$ $0.4800$ $177$ $0.4800$ $0.4839$ $181$ $0.4849$ $182$ $0.4839$ $183$ $0.4858$ $184$ $0.4868$ $185$ $0.4849$ $182$ $0.4800$ $195$ $0.4937$ $196$ $0.5005$ $197$ $0.4800$ $199$ $0.4800$ $195$ $0.4849$ $200$ $0.4856$ $205$ $0.4849$ $200$ $0.4858$ $207$ $0.4849$ $200$ $0.4858$ $207$ $0.4849$ $200$ $0.4858$ $213$ $0.4849$ $200$ $0.4858$ $207$ $0.4849$ </td <td>140</td> <td>ؕ4673</td> <td>141</td> <td>0.4712</td> <td></td>	140	ؕ4673	141	0.4712	
144 $0.4712$ $145$ $0.4702$ $146$ $0.4712$ $147$ $0.4722$ $148$ $0.4722$ $149$ $0.4722$ $150$ $0.4722$ $151$ $0.4722$ $152$ $0.4712$ $153$ $0.4771$ $154$ $0.4790$ $155$ $0.4780$ $156$ $0.4780$ $157$ $0.4810$ $158$ $0.4829$ $159$ $0.4829$ $160$ $0.5151$ $161$ $0.4829$ $164$ $0.4868$ $165$ $0.4810$ $166$ $0.4300$ $167$ $0.4790$ $168$ $0.4780$ $169$ $0.4839$ $170$ $0.4731$ $171$ $0.4829$ $172$ $0.4829$ $173$ $0.4810$ $176$ $0.4839$ $179$ $0.4800$ $0.70$ $0.4731$ $177$ $0.4800$ $176$ $0.4839$ $179$ $0.4800$ $0.4839$ $179$ $0.4800$ $0.0035$ $180$ $0.4839$ $183$ $0.4653$ $184$ $0.4868$ $185$ $0.4839$ $186$ $0.5005$ $189$ $0.4849$ $0.4917$ $187$ $0.4839$ $0.0061$ $190$ $0.4224$ $191$ $0.4927$ $192$ $0.4917$ $193$ $0.4869$ $194$ $0.4800$ $195$ $0.4849$ $202$ $0.4800$ $203$ $0.4800$ $204$ $0.4800$ $203$ $0.4800$ $204$ $0.4800$ $203$ $0.4800$ $204$ $0.4800$ $20$	142	0 • 4692	143	0.4702	
146 $0.4741$ $147$ $0.4722$ $0.0019$ $150$ $0.4722$ $149$ $0.4722$ $0.0019$ $150$ $0.4722$ $151$ $0.4722$ $152$ $0.4712$ $153$ $0.4771$ $154$ $0.4790$ $155$ $0.4780$ $156$ $0.4780$ $157$ $0.4810$ $156$ $0.4829$ $159$ $0.4829$ $160$ $0.5151$ $161$ $0.4829$ $164$ $0.4868$ $165$ $0.4810$ $166$ $0.4849$ $163$ $0.4829$ $166$ $0.4730$ $169$ $0.4839$ $166$ $0.4730$ $169$ $0.4839$ $170$ $0.4731$ $171$ $0.4829$ $172$ $0.4829$ $173$ $0.4810$ $176$ $0.4839$ $179$ $0.4800$ $0.4839$ $179$ $0.4800$ $0.0035$ $180$ $0.4839$ $181$ $0.4839$ $182$ $0.4839$ $183$ $0.4858$ $184$ $0.4868$ $185$ $0.4849$ $188$ $0.5005$ $197$ $0.4839$ $194$ $0.4800$ $195$ $0.4849$ $202$ $0.4800$ $203$ $0.4849$ $204$ $0.4868$ $205$ $0.4849$ $204$ $0.4868$ $205$ $0.4849$ $204$ $0.4800$ $195$ $0.4849$ $204$ $0.4800$ $203$ $0.4849$ $204$ $0.4800$ $203$ $0.4849$ $204$ $0.4800$ $203$ $0.4849$ $204$	144	0.4712	145	0.4702	
148 $0.4722$ 149 $0.4722$ $0.0019$ 150 $0.4722$ 151 $0.4722$ 152 $0.4712$ 153 $0.4771$ 154 $0.4790$ 155 $0.4780$ 156 $0.4780$ 157 $0.4810$ 158 $0.4829$ 159 $0.4829$ 160 $0.5151$ 161 $0.4849$ 162 $0.4868$ 165 $0.4810$ 164 $0.4868$ 165 $0.4810$ 165 $0.4780$ 167 $0.4790$ 166 $0.4800$ 167 $0.4790$ 168 $0.4780$ 169 $0.4839$ 170 $0.4800$ 177 $0.4800$ 174 $0.4810$ 175 $0.4810$ 176 $0.4839$ 183 $0.4858$ 180 $0.4839$ 183 $0.4858$ 184 $0.4868$ 185 $0.4889$ 182 $0.4839$ 183 $0.4858$ 184 $0.4868$ 185 $0.4889$ 188 $0.5005$ 189 $0.4849$ 190 $0.4224$ 191 $0.4927$ 192 $0.4917$ 193 $0.4927$ 192 $0.4800$ 195 $0.4800$ 193 $0.4860$ 195 $0.4800$ 204 $0.4800$ 203 $0.4849$ 205 $0.4800$ 203 $0.4849$ 206 $0.4810$ 201 $0.4819$ 211 $0.4858$ 213 $0.4849$ 206 $0.4858$ 213 $0.4849$ 214 $0.5005$ 215 $0.5005$ 21	146	0 - 4741	147	0.4722	
150 $0.4722$ 151 $0.4722$ 152 $0.4712$ 153 $0.4771$ 154 $0.4790$ 155 $0.4780$ 156 $0.4780$ 157 $0.4810$ 158 $0.4829$ 159 $0.4829$ 160 $0.5151$ 161 $0.4829$ 164 $0.4868$ 165 $0.4810$ 166 $0.4800$ 167 $0.4790$ 168 $0.4730$ 169 $0.4839$ 172 $0.4829$ 173 $0.4810$ 174 $0.4830$ 177 $0.4800$ 175 $0.4810$ 175 $0.4810$ 176 $0.4839$ 179 $0.4800$ 177 $0.4800$ 177 $0.4800$ 178 $0.4839$ 181 $0.4839$ 182 $0.4839$ 183 $0.4858$ 184 $0.4868$ 185 $0.4888$ 186 $0.5005$ 189 $0.4839$ 190 $0.4224$ 191 $0.4927$ 192 $0.4917$ 193 $0.4819$ 194 $0.4800$ 195 $0.4819$ 206 $0.4810$ 201 $0.4819$ 206 $0.4858$ 205 $0.4849$ 206 $0.4858$ 205 $0.4849$ 206 $0.4858$ 207 $0.4849$ 206 $0.4858$ 213 $0.4849$ 210 $0.4858$ 213 $0.4849$ 214 $0.5005$ 215 $0.5005$ 215 $0.5005$ 219 $0.4857$ 216 $0.4858$ 210 $0.4858$ 216 $0.4858$	148	0.4722	149	0.4722	0.0019
1 50 $0.4722$ 1 53 $0.4721$ 1 52 $0.4712$ 1 53 $0.4771$ 1 54 $0.4780$ 1 55 $0.4780$ 1 56 $0.4780$ 1 57 $0.4810$ 1 58 $0.4829$ 1 59 $0.4829$ 1 60 $0.5151$ 1 61 $0.4829$ 1 64 $0.4849$ 1 63 $0.4829$ 1 64 $0.4868$ 1 65 $0.4810$ 1 66 $0.4800$ 1 67 $0.4790$ 1 68 $0.4731$ 1 71 $0.4829$ 1 72 $0.4829$ 1 73 $0.4810$ 1 74 $0.4810$ 1 75 $0.4810$ 1 74 $0.4800$ 1 77 $0.4800$ 1 78 $0.4839$ 1 81 $0.4853$ 1 80 $0.4839$ 1 83 $0.4853$ 1 84 $0.4839$ 1 83 $0.4853$ 1 84 $0.4868$ 1 85 $0.4888$ 1 86 $0.5005$ 1 89 $0.4849$ 1 90 $0.4224$ 1 91 $0.4927$ 1 92 $0.4917$ 1 93 $0.4937$ 1 96 $0.5005$ 1 97 $0.4800$ 2 90 $0.4800$ 2 03 $0.4800$ 2 91 $0.4800$ 2 03 $0.4849$ 2 92 $0.4858$ 2 07 $0.4849$ 2 92 $0.4858$ 2 09 $0.4849$ 2 94 $0.4858$ 2 09 $0.4849$ 2 92 $0.4858$ 2 1 0.48582 10 $0.4858$ 2 1 0.48582 10 $0.4858$ 2 1 0.48582 10 $0.4859$ 2 1 0.48582 1	150	0 - 4700	151	0.4722	0.0001
152 $0.4712$ 153 $0.4771$ 154 $0.4790$ 155 $0.4780$ 156 $0.4780$ 157 $0.4810$ 158 $0.4829$ 159 $0.4829$ 160 $0.5151$ 161 $0.4849$ 162 $0.4849$ 163 $0.4829$ 164 $0.4868$ 165 $0.4810$ 166 $0.4800$ 167 $0.4790$ 168 $0.4780$ 169 $0.4839$ 172 $0.4829$ 173 $0.4810$ 174 $0.4829$ 173 $0.4810$ 176 $0.4800$ 177 $0.4800$ 178 $0.4839$ 183 $0.4858$ 184 $0.4839$ 183 $0.4858$ 184 $0.4868$ 185 $0.4889$ 182 $0.4839$ 183 $0.4858$ 184 $0.4868$ 185 $0.4839$ 188 $0.5005$ 189 $0.4849$ $0.4800$ 195 $0.4937$ 196 $0.5005$ 197 $0.4800$ 204 $0.4800$ 203 $0.4849$ 205 $0.4839$ 207 $0.4849$ 206 $0.4858$ 209 $0.4849$ 208 $0.4858$ 213 $0.4849$ 210 $0.4858$ 213 $0.4849$ 214 $0.5005$ 215 $0.5005$ 216 $0.4858$ 217 $0.4878$ 218 $0.5005$ 219 $0.4857$ 218 $0.5005$ 219 $0.4857$ 218 $0.5005$ 219 $0.4857$ 219 $0.4859$ 22	150	0 4720	101	0 4771	
154 $0.4790$ $155$ $0.4780$ $157$ $0.4810$ $156$ $0.4780$ $157$ $0.4810$ $158$ $0.4829$ $159$ $0.4829$ $160$ $0.5151$ $161$ $0.4829$ $164$ $0.4868$ $165$ $0.4810$ $166$ $0.4868$ $165$ $0.4839$ $166$ $0.4800$ $167$ $0.4839$ $166$ $0.4800$ $167$ $0.4839$ $170$ $0.4731$ $171$ $0.4829$ $172$ $0.4829$ $173$ $0.4810$ $176$ $0.4800$ $177$ $0.4800$ $178$ $0.4839$ $179$ $0.4800$ $178$ $0.4839$ $183$ $0.4858$ $186$ $0.5005$ $189$ $0.4849$ $182$ $0.4868$ $185$ $0.4868$ $186$ $0.5005$ $189$ $0.4849$ $0.4800$ $195$ $0.4839$ $190$ $0.4224$ $191$ $0.4927$ $192$ $0.4800$ $195$ $0.4819$ $202$ $0.4800$ $203$ $0.4800$ $204$ $0.4800$ $293$ $0.4849$ $206$ $0.4858$ $205$ $0.4849$ $206$ $0.4858$ $207$ $0.4849$ $206$ $0.4858$ $213$ $0.4849$ $210$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $213$ $0.4857$ $214$ $0.5005$ $219$ $0.4857$ $214$ $0.5005$ </td <td>152</td> <td>0.4712</td> <td>155</td> <td>0.4771</td> <td></td>	152	0.4712	155	0.4771	
156 $0.4780$ $157$ $0.4810$ $158$ $0.4829$ $159$ $0.4829$ $0.0042$ $160$ $0.5151$ $161$ $0.4829$ $164$ $0.4868$ $165$ $0.4810$ $166$ $0.4800$ $167$ $0.4790$ $168$ $0.4730$ $169$ $0.4839$ $0.0124$ $170$ $0.4731$ $171$ $0.4829$ $172$ $0.4829$ $173$ $0.4810$ $174$ $0.4830$ $177$ $0.4800$ $176$ $0.4839$ $179$ $0.4800$ $176$ $0.4839$ $183$ $0.4858$ $180$ $0.4839$ $183$ $0.4858$ $184$ $0.4868$ $185$ $0.4868$ $186$ $0.505$ $189$ $0.4839$ $188$ $0.5005$ $197$ $0.4839$ $192$ $0.4917$ $193$ $0.4927$ $192$ $0.4800$ $195$ $0.4839$ $194$ $0.4800$ $195$ $0.4839$ $200$ $0.4800$ $203$ $0.4800$ $204$ $0.4800$ $203$ $0.4800$ $204$ $0.4800$ $203$ $0.4800$ $204$ $0.4858$ $205$ $0.4849$ $206$ $0.4858$ $209$ $0.4849$ $206$ $0.4858$ $213$ $0.4849$ $206$ $0.4858$ $213$ $0.4849$ $210$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $214$ <td>154</td> <td>0.4790</td> <td>155</td> <td>0.4780</td> <td></td>	154	0.4790	155	0.4780	
158 $0.4829$ $159$ $0.4829$ $0.0042$ $160$ $0.5151$ $161$ $0.4829$ $164$ $0.4868$ $165$ $0.4810$ $166$ $0.4860$ $167$ $0.4829$ $166$ $0.4800$ $167$ $0.4790$ $168$ $0.4780$ $169$ $0.4839$ $0.0124$ $170$ $0.4731$ $171$ $0.4829$ $173$ $172$ $0.4829$ $173$ $0.4810$ $176$ $0.4800$ $177$ $0.4800$ $178$ $0.4839$ $179$ $0.4800$ $178$ $0.4839$ $183$ $0.4858$ $180$ $0.4839$ $183$ $0.4858$ $184$ $0.4868$ $185$ $0.4839$ $182$ $0.4868$ $185$ $0.4839$ $184$ $0.4868$ $185$ $0.4839$ $186$ $0.5005$ $189$ $0.4849$ $0.5005$ $197$ $0.4877$ $192$ $0.4917$ $193$ $0.4927$ $192$ $0.4800$ $195$ $0.4937$ $196$ $0.5005$ $197$ $0.4800$ $200$ $0.4800$ $203$ $0.4840$ $204$ $0.4800$ $203$ $0.4849$ $206$ $0.4839$ $207$ $0.4849$ $206$ $0.4858$ $209$ $0.4849$ $210$ $0.4858$ $213$ $0.4849$ $210$ $0.4858$ $213$ $0.4849$ $210$ $0.4858$ $213$ $0.4856$ $210$ $0.4858$ $217$ $0.4878$ $216$ </td <td>156</td> <td>Ø•478Ø</td> <td>157</td> <td>0-4810</td> <td></td>	156	Ø•478Ø	157	0-4810	
160 $0.5151$ $161$ $0.4849$ $162$ $0.4849$ $163$ $0.4829$ $164$ $0.4868$ $165$ $0.4810$ $166$ $0.4800$ $167$ $0.4790$ $168$ $0.4780$ $169$ $0.4839$ $0.0124$ $170$ $0.4731$ $171$ $0.4829$ $173$ $172$ $0.4829$ $173$ $0.4810$ $174$ $0.4810$ $175$ $0.4810$ $176$ $0.4800$ $177$ $0.4800$ $178$ $0.4839$ $179$ $0.4800$ $180$ $0.4839$ $181$ $0.4858$ $184$ $0.4868$ $185$ $0.4839$ $182$ $0.4839$ $183$ $0.4858$ $186$ $0.4868$ $185$ $0.4839$ $188$ $0.5005$ $189$ $0.4849$ $0.4224$ $191$ $0.4927$ $192$ $0.4917$ $193$ $0.4956$ $194$ $0.4800$ $195$ $0.4937$ $196$ $0.5005$ $197$ $0.4800$ $204$ $0.4800$ $203$ $0.4800$ $204$ $0.4800$ $203$ $0.4849$ $206$ $0.4858$ $205$ $0.4849$ $210$ $0.4858$ $213$ $0.4849$ $210$ $0.4858$ $213$ $0.4877$ $210$ $0.4858$ $217$ $0.4878$ $216$ $0.4858$ $217$ $0.4878$ $216$ $0.4858$ $219$ $0.4857$ $216$ $0.4858$ $219$ $0.4858$ $216$ $0.4858$ </td <td>158</td> <td>ؕ4829</td> <td>159</td> <td>ؕ4829</td> <td>0.0042</td>	158	ؕ4829	159	ؕ4829	0.0042
162 $0.4849$ $163$ $0.4829$ $164$ $0.4868$ $165$ $0.4810$ $166$ $0.4800$ $167$ $0.4790$ $168$ $0.4780$ $169$ $0.4839$ $0.0124$ $170$ $0.4731$ $171$ $0.4829$ $173$ $0.4810$ $174$ $0.4829$ $173$ $0.4810$ $175$ $0.4810$ $176$ $0.4800$ $177$ $0.4800$ $0.0035$ $180$ $0.4839$ $179$ $0.4800$ $0.0035$ $180$ $0.4819$ $181$ $0.4839$ $182$ $0.4839$ $183$ $0.4858$ $184$ $0.4868$ $185$ $0.4888$ $186$ $0.4800$ $197$ $0.4839$ $188$ $0.5005$ $189$ $0.4849$ $190$ $0.4224$ $191$ $0.4927$ $192$ $0.4917$ $193$ $0.4956$ $194$ $0.4800$ $195$ $0.4937$ $196$ $0.5005$ $197$ $0.4800$ $200$ $0.4810$ $201$ $0.4819$ $202$ $0.4800$ $203$ $0.4800$ $204$ $0.4858$ $205$ $0.4849$ $206$ $0.4858$ $209$ $0.4849$ $210$ $0.4858$ $213$ $0.4849$ $210$ $0.4858$ $213$ $0.4877$ $200$ $0.4858$ $217$ $0.4878$ $216$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $220$ $0.4866$ $223$ $0.4858$ <td< td=""><td>160</td><td>Ø+5151</td><td>161</td><td>0•4849</td><td></td></td<>	160	Ø+5151	161	0•4849	
164 $0.4868$ $165$ $0.4810$ $166$ $0.4800$ $167$ $0.4790$ $168$ $0.4780$ $169$ $0.4839$ $0.0124$ $170$ $0.4731$ $171$ $0.4829$ $172$ $0.4829$ $173$ $0.4810$ $174$ $0.4810$ $175$ $0.4810$ $176$ $0.4800$ $177$ $0.4800$ $178$ $0.4839$ $179$ $0.4800$ $180$ $0.4839$ $183$ $0.4800$ $180$ $0.4839$ $183$ $0.4858$ $184$ $0.4868$ $185$ $0.4839$ $186$ $0.4877$ $187$ $0.4839$ $188$ $0.5005$ $189$ $0.4849$ $0.0061$ $9.4800$ $9.0061$ $190$ $0.4224$ $191$ $0.4927$ $192$ $0.4917$ $193$ $0.4956$ $194$ $0.4800$ $195$ $0.4800$ $195$ $0.4800$ $195$ $0.4800$ $200$ $0.4800$ $203$ $0.4800$ $204$ $0.4800$ $203$ $0.4800$ $206$ $0.4800$ $203$ $0.4800$ $206$ $0.4819$ $211$ $0.4829$ $210$ $0.4819$ $211$ $0.4829$ $210$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $216$ $0.4858$ $217$ $0.4878$ $216$ $0.4858$ $219$ $0.4858$ $220$ $0.4866$ $223$	162	0•4849	163	ؕ4829	
166 $0.4800$ $167$ $0.4790$ $168$ $0.4780$ $169$ $0.4839$ $0.0124$ $170$ $0.4731$ $171$ $0.4829$ $172$ $0.4329$ $173$ $0.4810$ $174$ $0.4800$ $177$ $0.4800$ $176$ $0.4800$ $177$ $0.4800$ $178$ $0.4839$ $179$ $0.4800$ $180$ $0.4839$ $181$ $0.4839$ $182$ $0.4839$ $183$ $0.4858$ $184$ $0.4868$ $185$ $0.4888$ $186$ $0.5005$ $189$ $0.4839$ $188$ $0.5005$ $189$ $0.4897$ $192$ $0.4917$ $193$ $0.4927$ $192$ $0.4917$ $193$ $0.4956$ $194$ $0.4800$ $195$ $0.4937$ $196$ $0.5005$ $197$ $0.4807$ $198$ $0.4800$ $203$ $0.4800$ $204$ $0.4800$ $203$ $0.4849$ $206$ $0.4839$ $207$ $0.4849$ $206$ $0.4858$ $209$ $0.4849$ $206$ $0.4858$ $213$ $0.4849$ $210$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $216$ $0.4858$ $217$ $0.4878$ $216$ $0.4868$ $223$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$	164	0•4868	1-65	0.4810	
168 $0.4780$ $169$ $0.4839$ $0.0124$ $170$ $0.4731$ $171$ $0.4829$ $173$ $0.4810$ $174$ $0.4829$ $173$ $0.4810$ $175$ $0.4810$ $174$ $0.4810$ $175$ $0.4810$ $177$ $0.4800$ $176$ $0.4839$ $177$ $0.4800$ $0.0035$ $180$ $0.4839$ $179$ $0.4800$ $0.0035$ $180$ $0.4839$ $183$ $0.4858$ $184$ $0.4868$ $185$ $0.4888$ $186$ $0.5005$ $189$ $0.4839$ $188$ $0.5005$ $189$ $0.4897$ $190$ $0.4224$ $191$ $0.4927$ $192$ $0.4917$ $193$ $0.4956$ $194$ $0.4800$ $195$ $0.4807$ $198$ $0.4800$ $199$ $0.4800$ $204$ $0.4800$ $203$ $0.4800$ $204$ $0.4800$ $203$ $0.4849$ $206$ $0.4839$ $207$ $0.4849$ $206$ $0.4858$ $209$ $0.4849$ $210$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $216$ $0.4858$ $217$ $0.4858$ $218$ $0.5005$ $219$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$	166	0.4800	167	0.4790	
170 $0.4731$ $171$ $0.4829$ $173$ $0.4810$ $172$ $0.4829$ $173$ $0.4810$ $175$ $0.4810$ $174$ $0.4810$ $175$ $0.4810$ $177$ $0.4800$ $176$ $0.4800$ $177$ $0.4800$ $0.0035$ $180$ $0.4839$ $179$ $0.4800$ $0.0035$ $180$ $0.4839$ $181$ $0.4849$ $0.0035$ $180$ $0.4839$ $183$ $0.4858$ $184$ $0.4868$ $185$ $0.4888$ $186$ $0.4839$ $183$ $0.4858$ $186$ $0.4805$ $189$ $0.4849$ $0.4800$ $195$ $0.4839$ $188$ $0.5005$ $189$ $0.4897$ $192$ $0.4917$ $193$ $0.4956$ $194$ $0.4800$ $195$ $0.4897$ $196$ $0.5005$ $197$ $0.4897$ $196$ $0.5005$ $197$ $0.4800$ $204$ $0.4868$ $203$ $0.4849$ $206$ $0.4858$ $207$ $0.4849$ $206$ $0.4858$ $209$ $0.4849$ $206$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4858$ $218$ $0.5005$ $219$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$	168	0.4780	169	0.4839	0.0124
170 $0.43731$ $171$ $0.4812$ $172$ $0.4829$ $173$ $0.4810$ $174$ $0.4810$ $175$ $0.4810$ $176$ $0.4800$ $177$ $0.4800$ $178$ $0.4839$ $179$ $0.4800$ $0.0035$ $180$ $0.4819$ $181$ $0.4849$ $182$ $0.4839$ $183$ $0.4858$ $184$ $0.4868$ $185$ $0.4888$ $186$ $0.4868$ $185$ $0.4839$ $188$ $0.5005$ $189$ $0.4849$ $190$ $0.4224$ $191$ $0.4927$ $192$ $0.4917$ $193$ $0.4956$ $194$ $0.4800$ $195$ $0.4937$ $196$ $0.5005$ $197$ $0.4897$ $198$ $0.4800$ $203$ $0.4800$ $204$ $0.4868$ $205$ $0.4849$ $206$ $0.4839$ $207$ $0.4849$ $206$ $0.4858$ $209$ $0.4849$ $206$ $0.4858$ $213$ $0.4849$ $210$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4849$ $221$ $0.4858$ $218$ $0.5005$ $219$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$	170	0.4731	171	0.4829	5-5-6.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	170	0 4 7 0 0	172	0 4027	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	172	0.4029	170	0+4010	
176 $0.4800$ $177$ $0.4800$ $0.0035$ $180$ $0.4839$ $179$ $0.4800$ $0.0035$ $180$ $0.4819$ $181$ $0.4849$ $182$ $0.4839$ $183$ $0.4858$ $184$ $0.4868$ $185$ $0.4888$ $186$ $0.4819$ $187$ $0.4839$ $188$ $0.5005$ $189$ $0.4849$ $0.0061$ $190$ $0.4224$ $191$ $0.4927$ $192$ $0.4917$ $193$ $0.4956$ $194$ $0.4800$ $195$ $0.4937$ $196$ $0.5005$ $197$ $0.4897$ $198$ $0.4800$ $203$ $0.4810$ $202$ $0.4800$ $203$ $0.4849$ $206$ $0.4839$ $207$ $0.4849$ $206$ $0.4858$ $209$ $0.4849$ $208$ $0.4858$ $209$ $0.4849$ $210$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $218$ $0.5005$ $219$ $0.4857$ $220$ $0.4868$ $223$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$	174	0.4810	1/5	0.4810	
178 $0.4839$ $179$ $0.4800$ $0.0035$ $180$ $0.4819$ $181$ $0.4849$ $182$ $0.4839$ $183$ $0.4858$ $184$ $0.4868$ $185$ $0.4888$ $186$ $0.4917$ $187$ $0.4839$ $188$ $0.5005$ $189$ $0.4849$ $0.0061$ $190$ $0.4224$ $191$ $0.4927$ $192$ $0.4917$ $193$ $0.4956$ $194$ $0.4800$ $195$ $0.4937$ $196$ $0.5005$ $197$ $0.4897$ $198$ $0.4800$ $203$ $0.4800$ $200$ $0.4810$ $201$ $0.4819$ $202$ $0.4800$ $203$ $0.4849$ $206$ $0.4858$ $205$ $0.4849$ $206$ $0.4858$ $209$ $0.4849$ $210$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $218$ $0.5005$ $219$ $0.4858$ $220$ $0.4849$ $221$ $0.4858$ $220$ $0.4866$ $223$ $0.4858$	176	0.4800	177	0.4800	
180 $0.4819$ $181$ $0.4849$ $182$ $0.4839$ $183$ $0.4858$ $184$ $0.4868$ $185$ $0.4888$ $186$ $0.4917$ $187$ $0.4839$ $188$ $0.5005$ $189$ $0.4849$ $0.0061$ $190$ $0.4224$ $191$ $0.4927$ $192$ $0.4917$ $193$ $0.4956$ $194$ $0.4800$ $195$ $0.4937$ $196$ $0.5005$ $197$ $0.4897$ $198$ $0.4800$ $201$ $0.4819$ $202$ $0.4800$ $203$ $0.4800$ $204$ $0.4868$ $205$ $0.4849$ $206$ $0.4858$ $205$ $0.4849$ $206$ $0.4858$ $209$ $0.4849$ $208$ $0.4858$ $213$ $0.4849$ $210$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $218$ $0.5005$ $219$ $0.4858$ $220$ $0.4849$ $221$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$	178	ؕ4839	179	0•4800	0.0035
182 $0.4839$ $183$ $0.4858$ $184$ $0.4868$ $185$ $0.4888$ $186$ $0.4917$ $187$ $0.4839$ $188$ $0.5005$ $189$ $0.4849$ $0.0061$ $190$ $0.4224$ $191$ $0.4927$ $192$ $0.4917$ $193$ $0.4956$ $194$ $0.4800$ $195$ $0.4937$ $196$ $0.5005$ $197$ $0.4897$ $198$ $0.4800$ $199$ $0.4800$ $200$ $0.4810$ $201$ $0.4819$ $202$ $0.4800$ $203$ $0.4800$ $204$ $0.4868$ $205$ $0.4849$ $206$ $0.4858$ $209$ $0.4849$ $208$ $0.4858$ $209$ $0.4849$ $210$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $218$ $0.5005$ $219$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$	18Ø	ؕ4819	181	ؕ4849	
$184$ $\emptyset \cdot 4868$ $185$ $\emptyset \cdot 4888$ $186$ $\emptyset \cdot 4917$ $187$ $\emptyset \cdot 4839$ $188$ $\vartheta \cdot 5005$ $189$ $\emptyset \cdot 4849$ $\emptyset \cdot 0061$ $190$ $\vartheta \cdot 4224$ $191$ $\vartheta \cdot 4927$ $192$ $\vartheta \cdot 4917$ $193$ $\vartheta \cdot 4956$ $194$ $\vartheta \cdot 4800$ $195$ $\vartheta \cdot 4937$ $196$ $\vartheta \cdot 5005$ $197$ $\vartheta \cdot 4897$ $198$ $\vartheta \cdot 4800$ $199$ $\vartheta \cdot 4800$ $200$ $\vartheta \cdot 4810$ $201$ $\vartheta \cdot 4819$ $202$ $\vartheta \cdot 4800$ $203$ $\vartheta \cdot 4800$ $204$ $\vartheta \cdot 4868$ $205$ $\vartheta \cdot 4849$ $206$ $\vartheta \cdot 4858$ $209$ $\vartheta \cdot 4849$ $208$ $\vartheta \cdot 4858$ $209$ $\vartheta \cdot 4849$ $210$ $\vartheta \cdot 4858$ $213$ $\vartheta \cdot 4849$ $214$ $\vartheta \cdot 5005$ $215$ $\vartheta \cdot 5005$ $216$ $\vartheta \cdot 4858$ $217$ $\vartheta \cdot 4878$ $218$ $\vartheta \cdot 5005$ $219$ $\vartheta \cdot 4897$ $220$ $\vartheta \cdot 4849$ $221$ $\vartheta \cdot 4858$ $220$ $\vartheta \cdot 4868$ $223$ $\vartheta \cdot 4858$	182	0.4839	183	ؕ4858	
$186$ $\emptyset \cdot 4917$ $187$ $\emptyset \cdot 4839$ $188$ $\vartheta \cdot 5005$ $189$ $\vartheta \cdot 4849$ $\vartheta \cdot 0061$ $190$ $\vartheta \cdot 4224$ $191$ $\vartheta \cdot 4927$ $192$ $\vartheta \cdot 4917$ $193$ $\vartheta \cdot 4956$ $194$ $\vartheta \cdot 4800$ $195$ $\vartheta \cdot 4937$ $196$ $\vartheta \cdot 5005$ $197$ $\vartheta \cdot 4897$ $198$ $\vartheta \cdot 4800$ $199$ $\vartheta \cdot 4800$ $200$ $\vartheta \cdot 4800$ $201$ $\vartheta \cdot 4819$ $202$ $\vartheta \cdot 4800$ $203$ $\vartheta \cdot 4800$ $204$ $\vartheta \cdot 4868$ $205$ $\vartheta \cdot 4849$ $206$ $\vartheta \cdot 4858$ $209$ $\vartheta \cdot 4849$ $208$ $\vartheta \cdot 4858$ $209$ $\vartheta \cdot 4849$ $208$ $\vartheta \cdot 4858$ $211$ $\vartheta \cdot 4829$ $214$ $\vartheta \cdot 5005$ $215$ $\vartheta \cdot 5005$ $216$ $\vartheta \cdot 4858$ $217$ $\vartheta \cdot 4878$ $218$ $\vartheta \cdot 5005$ $219$ $\vartheta \cdot 4897$ $220$ $\vartheta \cdot 4849$ $221$ $\vartheta \cdot 4858$ $220$ $\vartheta \cdot 4868$ $223$ $\vartheta \cdot 4858$	184	ؕ4868	185	0•4888	
188 $0.5005$ $189$ $0.4849$ $0.0061$ $190$ $0.4224$ $191$ $0.4927$ $192$ $0.4917$ $193$ $0.4956$ $194$ $0.4800$ $195$ $0.4937$ $196$ $0.5005$ $197$ $0.4897$ $198$ $0.4800$ $199$ $0.4800$ $202$ $0.4800$ $203$ $0.4810$ $202$ $0.4800$ $203$ $0.4800$ $204$ $0.4868$ $205$ $0.4849$ $206$ $0.4858$ $209$ $0.4849$ $206$ $0.4858$ $209$ $0.4849$ $208$ $0.4858$ $211$ $0.4829$ $210$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $218$ $0.5005$ $219$ $0.4897$ $220$ $0.4849$ $221$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$	186	0:4917	187	0 • 48 39	
190 $0.4224$ $191$ $0.4927$ $192$ $0.4917$ $193$ $0.4956$ $194$ $0.4800$ $195$ $0.4937$ $196$ $0.5005$ $197$ $0.4897$ $198$ $0.4800$ $199$ $0.4800$ $200$ $0.4810$ $201$ $0.4819$ $202$ $0.4800$ $203$ $0.4800$ $204$ $0.4868$ $205$ $0.4849$ $206$ $0.4858$ $207$ $0.4849$ $208$ $0.4858$ $209$ $0.4849$ $208$ $0.4858$ $211$ $0.4829$ $210$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $218$ $0.5005$ $219$ $0.4897$ $220$ $0.4849$ $221$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$	188	0.5005	189	0.4849	0.0061
192 $0.4917$ $193$ $0.4956$ $194$ $0.4800$ $195$ $0.4937$ $196$ $0.5005$ $197$ $0.4897$ $198$ $0.4800$ $199$ $0.4800$ $200$ $0.4810$ $201$ $0.4819$ $202$ $0.4800$ $203$ $0.4800$ $204$ $0.4868$ $205$ $0.4849$ $206$ $0.4858$ $207$ $0.4849$ $206$ $0.4858$ $209$ $0.4849$ $208$ $0.4858$ $211$ $0.4829$ $210$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $218$ $0.5005$ $219$ $0.4897$ $220$ $0.4849$ $221$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$	190	0.4224	191	0.4927	
192 $0.4917$ $195$ $0.4937$ $194$ $0.4800$ $195$ $0.4937$ $196$ $0.5005$ $197$ $0.4897$ $198$ $0.4800$ $199$ $0.4800$ $0.0252$ $200$ $0.4810$ $201$ $0.4819$ $202$ $0.4800$ $203$ $0.4800$ $204$ $0.4868$ $205$ $0.4849$ $206$ $0.4858$ $207$ $0.4849$ $208$ $0.4858$ $209$ $0.4849$ $208$ $0.4858$ $211$ $0.4829$ $210$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $218$ $0.5005$ $219$ $0.4897$ $220$ $0.4868$ $223$ $0.4858$	100	0.4917	193	0.4956	
194 $0.4800$ $193$ $0.4957$ $196$ $0.5005$ $197$ $0.4897$ $198$ $0.4800$ $199$ $0.4800$ $0.0252$ $200$ $0.4810$ $201$ $0.4819$ $202$ $0.4800$ $203$ $0.4800$ $204$ $0.4868$ $205$ $0.4849$ $206$ $0.4858$ $207$ $0.4849$ $208$ $0.4858$ $209$ $0.4849$ $208$ $0.4858$ $211$ $0.4829$ $210$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $218$ $0.5005$ $219$ $0.4897$ $220$ $0.4868$ $223$ $0.4858$	104	0 4900	105	0.4937	
196 $0.5005$ $197$ $0.4897$ $198$ $0.4800$ $199$ $0.4800$ $0.0252$ $200$ $0.4810$ $201$ $0.4819$ $202$ $0.4800$ $203$ $0.4800$ $204$ $0.4868$ $205$ $0.4849$ $206$ $0.4839$ $207$ $0.4849$ $208$ $0.4858$ $209$ $0.4849$ $208$ $0.4858$ $211$ $0.4829$ $210$ $0.4858$ $213$ $0.4849$ $212$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $218$ $0.5005$ $219$ $0.4897$ $220$ $0.4868$ $221$ $0.4858$ $222$ $0.4868$ $223$ $0.4858$	174	0.4000	107	0.4757	
198 $0.4800$ $199$ $0.4800$ $0.0252$ $200$ $0.4810$ $201$ $0.4819$ $202$ $0.4800$ $203$ $0.4800$ $204$ $0.4868$ $205$ $0.4849$ $206$ $0.4839$ $207$ $0.4849$ $208$ $0.4858$ $209$ $0.4849$ $210$ $0.4819$ $211$ $0.4829$ $212$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $218$ $0.5005$ $219$ $0.4897$ $220$ $0.4849$ $221$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$	190	0.5005	197	0+4091	a
200 $0.4810$ $201$ $0.4819$ $202$ $0.4800$ $203$ $0.4800$ $204$ $0.4868$ $205$ $0.4849$ $206$ $0.4839$ $207$ $0.4849$ $208$ $0.4858$ $209$ $0.4849$ $210$ $0.4819$ $211$ $0.4829$ $212$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $218$ $0.5005$ $219$ $0.4897$ $220$ $0.4849$ $221$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$	198	0.4800	199	0.4800	0.0252
202 $0.4800$ $203$ $0.4800$ $204$ $0.4868$ $205$ $0.4849$ $206$ $0.4839$ $207$ $0.4849$ $208$ $0.4858$ $209$ $0.4849$ $210$ $0.4819$ $211$ $0.4829$ $212$ $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $218$ $0.5005$ $219$ $0.4897$ $220$ $0.4849$ $221$ $0.4858$ $222$ $0.4868$ $223$ $0.4858$	200	0.4810	201	ؕ4819	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	202	0•4800	203	ؕ4800	
206       0.4839       207       0.4849         208       0.4858       209       0.4849       0.0029         210       0.4819       211       0.4829         212       0.4858       213       0.4849         214       0.5005       215       0.5005         216       0.4858       217       0.4878         218       0.5005       219       0.4897       0.0080         220       0.4849       221       0.4858         222       0.4868       223       0.4858	204	0•4868	205	0•4849	
208       0.4858       209       0.4849       0.0029         210       0.4819       211       0.4829         212       0.4858       213       0.4849         214       0.5005       215       0.5005         216       0.4858       217       0.4878         218       0.5005       219       0.4897         220       0.4849       221       0.4858         220       0.4868       223       0.4858	206	ؕ4839	207	0•4849	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	208	ؕ4858	209	0.4849	0.0029
212 $0.4858$ $213$ $0.4849$ $214$ $0.5005$ $215$ $0.5005$ $216$ $0.4858$ $217$ $0.4878$ $218$ $0.5005$ $219$ $0.4897$ $220$ $0.4849$ $221$ $0.4858$ $220$ $0.4868$ $223$ $0.4858$	210	0.4819	211	0.4829	
214       0.5005       215       0.5005         216       0.4858       217       0.4878         218       0.5005       219       0.4897       0.0080         220       0.4849       221       0.4858         222       0.4868       223       0.4858	010	0.4858	212	0.4849	
214       0.5005       215       0.5005         216       0.4858       217       0.4878         218       0.5005       219       0.4897       0.0080         220       0.4849       221       0.4858         222       0.4868       223       0.4858	014	0.5005	015	0.5005	
210       0.4058       217       0.4070         218       0.5005       219       0.4897       0.0080         220       0.4849       221       0.4858         222       0.4868       223       0.4858	614	0 40E0	613	0.7002	
218       0.5005       219       0.4897       0.0080         220       0.4849       221       0.4858         222       0.4868       223       0.4858	216	W • 40 30	217	Ø + 40 / 0	a
220       Ø • 4849       221       Ø • 4858         222       Ø • 4868       223       Ø • 4858	218	0.5005	517	0.4897	0.0000
222 ؕ4868 223 ؕ4858	220	ؕ4849	221	0 • 48 58	
	222	ؕ4868	223	0•4858	

•

224	0.4849	225 0	.4946	
226	0.5005	227 0	5005	
000	0.4899	200 0	1.4946	0.0073
020	0+4027			0.0013
230	0.0020	231 6	4049	
232	0+4849	233 4	.4810	
234	0 • 48 39	235 Ø	+4810	
236	0•5005	237 Ø	•4819	
238	ؕ4878	239 Ø	1.5005	ؕ0422
240	ؕ4438 .	241 Ø	1.5103	
242	0.5073	243 Ø	1.5005	
244	0.5005	245 Ø	.5103	•
246	0.5005	247 Ø	.5005	
248	0.5093	249 0	.5015	0.0212
250	0.6167	251 0	1.5073	
250	0.5005	253 0	.5005	
054	0.5005		5005 5 5005	
654	0.5005	200 1	+ 5435	
256	0.5005	257 0	1.5005	0.0400
258	0.5005	259 0	+5005	0.0429
260	0.5005	261 0	1.5005	
262	Ø•5Ø63	263 Ø	• 49 37	
264	0•5063	265 Ø	) • 48 39	
266	ؕ5229	267 Ø	1.5005	
268	0.5005	269 Ø	1.5005	0.0116
270	0.5034	271 Ø	• 5005	
272	0.5005	273 0	.5005	
274	0.5112	275 0	.5005	
276	0.5190	277 0	5073	
278	0.5054	279 0	4956	0.0075
280	0.5044	281 0	5005	
282	0.5024	283 0	1.5103	
202 28A	0-5024 0.5003	285 0	1.5054	
204	0.5910	200 6	5/015	
200	0.5171	201 8	1.5005	0.0070
600 00a	0+3171	207 £	- 5005	0.0013
290	0+0041	271 2	+ 5073	
292	0.5063	293 4	) • 5269	
294	0+5073	295 4	1+5054	
296	0.5278	297 0		~ ~ ~ ~ ~ ~
298	0.5396	299 0	• 5269	0.0635
300	0•6733	301 0	1.5073	
302	Ø•5Ø24	303 0	1•5044	
304	0•5024	305 0	) <b>•</b> 5Ø54	
306	0.5181	3Ø7 Ø	• 5229	
308	0.5073	309 e	1.5308	0.0574
310	0•5073	311 Ø	1•5063	
312	0.5044	313 Ø	J•5Ø54	
314	0.5073	315 Ø	.5093	
316	ؕ5112	317 0	.5073	
318	0.5073	319 0	.5005	0.0074
320	0.5054	321 0	1.5142	
322	0.5142	323 0	.5132	
324	0.5063	325 0	1.5122	
324	0.5073	397 0	1.5151	
300	A.5990	200 0	3.5910	0.0064
334	0+J667 0.7017	007 K 001 n	1.5120	
220	a =100	331 V 331 V	1.5304	
332	Ø • 5122	333 K	1 E G 7 7 7	
JJ4	0+2101	335 K	1• 32/13	

¥

Ŧ

.

4

`P

Ø	ؕ2417	1	ؕ2417	
2	ؕ2417	3	ؕ2417	
4	ؕ2417	5	0.2417	
6	ؕ2427	7	0.2427	
8	ؕ2427	9	ؕ2427	0.0005
10	0.2397	11	0.2427	
12	0.2427	13	0.2427	
14	Ø 2417	15	Ø.2427	
16	0.2427	• 17	× Ø.2/27	
19	0.0407	19	0.9407	0-0010
10	0.6461	17	0+2421	0.0010
, 20	0.2417	21	0.2407	
22	0.2427	23	0.2407	
24	0.2427	25	0.2417	
26	0.2427	27	0.2427	
28	0.2427	29	0.2427	0.0001
30	0.2427	31	0.2417	
32	ؕ2427	33	0.2427	
34	0.2417	35	0.2437	
36	0.2427	37	0.2427	
38	0.2427	39	0.2427	0.0006
40	0.2407	41	0.2427	
42	0.2427	43	0.2427	
44	0.2437	45	0.2407	
46	0.2407		0.2417	
40	0.0417	41	0.0417	0.0011
40 5 a	0.0417	47	0+2417	0+0011
50	0.2417	51	0+2431	
52	0.2427	53	0.2417	
54	0.2437	55	0+2427	
56	0.2427	57	0.2427	
58	0.2417	59	0.2397	0.0015
60	0.2437	61	0.2417	
62	0.2427	63	0.2427	
64	ؕ2437	65	0.2407	
66	ؕ2437	67	0.2437	
68	0.2427	69	0.2427	0.0010
70	ؕ2427	71	ؕ2437	
72	0.2427	73	ؕ2417	
74	0.2427	75	0.2437	
76	0.2407	77	0.2407	
78	0.2417	. 79	0.2427	0.0011
80	0.2427	80	0.2427	
82	0.2427	83	0.2427	
84	0.2427	85	0.2437	
86	0.2437	87	Ø.2427	
88	0.2407	20 80	0.2/37	0.0000
90	0.2417	91	0.2407	0.0000
90	0.0427	21	0.0417	
76	0+6431 0-0407	93	W+G411 0.0407	
94	0.2421 0.0407	30	0.2427	•
70	0+2427	97	0.2427	a aaa.
98	0.2427	99	0.2427	0.0000
100	0.2417	101	0.2397	-
102	0.2427	103	0.2437	
104	0.2417	- 105	ؕ2427	
106	0.2427	107	0.2437	_ • <i>(*</i> )·
108	ؕ2427	109	ؕ2446	0.0014
110	0.2437	111	0.2417	

•	

112	0•2437	113	0.2437	
104	0.2446	115	0.2437	
116	0.2437	117	0.2446	
118	0.2417	119	0.2417	0.0012
120	0.2427	121	0.2427	
122	0.2437	123	0.2437	
124	0.2417	125	0.2437	
196	0.0497	197	0.2407	
100	0.0407	100	0.0427	0.0007
120	0 0 407	127	0 0 4 1 7	0.0001
130	0.2421	131	0.2417	
132	0.2427	133	0.2427	
134	0.2427	135	0.2427	
136	0.2417	137	0.2446	
138	0.2427	139	0.2437	0•0009
140	0.2417	141	0.2427	
142	0.2437	143	0.2427	
144	ؕ2437	145	0.2466	
146	0.2437	147	0.2437	
148	0.2437	149	0.2427	0.0014
150	0.2427	151	0.2427	
159	0.2427	153	0.2437	
15/	0.2437	155	0.2407	
154	0+2431	157	0-6467	
150	0 + 4 4 4 0	157	0.2431	a aaao
100	0.2417	159	0.2427	0.0003
160	0+2427	161	0.2437	
162	0.2417	163	0.2427	
164	0.2417	165	0.2446	
166	0.2427	167	0.2437	
168	0•2446	169	0.2437	0.0011
170	0.2437	171	0.2437	
172	0.2446	173	0.2437	
174	0.2437	175	0.2446	
176	0.2437	177	0.2437	
178	0*2427	179	0.2446	0.0008
180	0.2446	181	0.2437	
182	0.2437	183	0.2427	
184	0.2497	185	0.2466	
196	0.0427	187	0.2497	
100	0+6431	107	0+2461	a. aa 10
100	0.2431	109	0.2437	0.0012
190	0.2427	. 191	0.2421	
192	0.2427	193	0.2437	
194	0.2437	195	0.2437	
196	0.2437	197	0.2437	
198	0•2446	199	ؕ2446	0.0007
200	0•2427	201	0.2446	
202	ؕ2437	203	ؕ2446	
204	0•2446	205	ؕ2437	
206	0.2437	207	0.2427	
208	ؕ2446	209	0.2437	0.0000
210	0.2437	211	0.2466	
212	0.2437	213	0.2446	
214	0.2437	215	0.2456	
216	0.2437	217	0.2437	
210	0-0437	<u>217</u> 910	0.0444	0.0010
004 610	U+4401 (1.9497	617	0.0407	0-0016
220	U+2431 0 0427	221	0+2421	
222	0.2437	223	0.2437	

Ø	0.2466	1	0.2466	
2	ؕ2466	3	0.2446	
4	0.2466	5	0.2476	
6	0.2466	7	0.2466	
8	0.2476	9	0.2466	0•0008
10	ؕ2466	11	0.2466	
12	0.2456	13	0.2446	
14	0.2456	15	0.2466	
16	0.2466 .	17	0.2446	
18	0.2476	10	0.2440	0.0011
24	0.0466	17	0.0466	
20	0 4400	21	0.2400	
22	0+2400	23	0.2400	
24	0.2466	25	0.2400	
26	0.2466	27	0.2456	
28	0.2466	29	0.2456	0.0004
30	0.2456	31	0.2466	
32	0.2446	33	0.2466	
34	ؕ2466	35	0.2466	
36	ؕ2456	37	0.2456	
38	0.2476	39	0.2466	0•0009
40	ؕ2466	41	0.2466	
42	ؕ2466	43	ؕ2466	
44	0.2476	45	0.2466	
46	0.2466	47	0.2466	
48	0.2456	49	0.2456	0.0006
50	0.2456	51	0.2466	******
52	0.2466	-53	0.2466	
52	0.2400	-00	0.2466	
54	0.0476	55	0.2400	
50	0 0 4 6 6	51	0+2430	0 0007
20	0.2400	57	0.2410	0.0001
60	0.2456	61	0.2400	
62	0.2466	63	0.2466	
64	0.2476	65	0.2466	
66	ؕ2456	67	0.2466	
68	0•2476	69	0.2466	0.0007
70	0•2456	71	ؕ2466	
72	ؕ2466	73	0.2456	
74	ؕ2466	75	ؕ2456	
76	0.2456	77	ؕ2466	
78	ؕ2466	. 79	0.2466	0.0006
80	ؕ2456	81	ؕ2456	
82	0.2446	83	0.2456	
84	0.2456	85	0.2466	
86	0.2476	87	0.2466	
88	9.2476	89	0.2476	0.0010
90	0.2466	91	0.2485	
áõ	0.2476	93	0.2485	
9 <u>6</u> 0 /	0.2485	25	0.2476	
24	0-6403	70 07	Ø. 9/66	•
70	Ø+6400 Ø.0466	71	0.0144	0.0011
70	0+2400	99	Ø 6400	1100+0
100	0.2476	101	ؕ2405	
102	0.2466	103	0.2485	
104	0.2476	105	0.2476	
106	0.2485	107	0.2476	
1Ø8	0.2466	109	0.2485	0.0010
110	0.2476	111	0.2476	

ş

ŧ

Ø	0•2905	1	0,2905	
2	0•2905	3	ؕ2915	
4	0•2905	5	Ø•29Ø5	
6	0•2896	7	0•2905	
8	0.2905	9	ؕ2896	0.0006
10	0 • 2896	11	0.2905	
12	0.2905	13	0 • 2905	
14	0.2915	15	0.2905	
16	0.2905	17	0.2896	
18	0.2896	19	0.2896	0.0007
200	0.0994		0.2905	
20	0.0005	21	0.0005	
22	0.0005	20	0.2703	
24	0 2905	25	0.2705	
26	0+2886	21	0.2886	
28	0.2886	29	0.2896	0.0002
30	0 • 2896	31	0 • 2896	
32	ؕ2896	33	0 • 2896	
34	ؕ2896	35	ؕ2896	
36	ؕ2896	37	ؕ2896	
38	0•2905	39	0•2905	0.0004
40	0•2905	41	0.2905	
42	0.2905	43	0 • 289 6	
44	0 • 2896	45	0.2896	
46	0 • 2896	47	0 • 2896	
48	0 • 2905	49	0 • 2896	0.0005
50	0.2886	51	0.2896	
52	0.2896	* 53	0-2905	
54	0.2905	55	0.2905	
54	0.2905	57	0.2905	
50	0.0004	50	0.0905	0.0007
20	0.0007	57	0 0994	0+0001
60	Ø + 2070	10	0+2070	
02	Ø • 2070	0.0 (F	0.2070	
64	0 • 2896	65	0 2905	
66	0.2905	67	0 • 2896	
68	0 • 2896	69	0.2905	0.0006
70	0 • 2905	71	0 • 2896	
72	ؕ2896	73	0.2905	
74	0•2896	75	0•2896	
76	ؕ2886	77	0•2886	
78	0•2896	• 79	0•2886	0.0007
8Ø	0•2886	81	0•2886	
82	ؕ2886	83	0•2886	
84	0•2886	85	ؕ2886	
86	0.2896	87	0.2896	
88	0 • 2886	89	0.2896	0.0005
90	Ø • 2896	91	0.2896	
92	0.2886	93	0.2886	
94	0.2886	95	0.2886	
96	0.2876	97	0.2886	
98	0.9874	00	0.0074	0.0007
100	0.0202	101	0,0002	0-0001
100	0 · 2070	, 101	U + 2070	
102	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	103	0.2705	
104	0.2876	105	0.5402	
106	0.2905	107	0.2896	
108	0.2896	109	0 • 2905	0.0011
110	ؕ2915	111	ؕ2896	

ş

•

112	0 • 2896	113	0:2896	
114	0.2905	115	Ø • 2915	
116	0 • 2896	117	0.2905	
118	0.2905	119	0.2915	0.0010
120	Ø • 2896	121	0.2905	
122	0.2905	123	0.2905	
124	0.2896	125	0.2896	
126	0.2896	127	ؕ2886	
1 28	0.2896	129	0.2896	0.0007
130	0.2896	131	0.2896	
132	0.2896	133	0.2896	
134	0.2915	135	0.2905	
136	0.2905	137	0.2905	
1 38	0 • 29 0 5	139	0.2896	0.0007
140	0 • 2896	141	ؕ2896	
142	ؕ2886	143	ؕ2896	
144	0 • 2886	145	0 • 2896	
146	0 • 2915	147	0•2886	
1 48	0 • 2886	149	ؕ2876	0.0012
150	ؕ2896	151	0.2905	
152	0 • 2896	153	0.2896	
154	0 • 2896	155	ؕ2896	
156	0 • 2896	157	ؕ2896	
158	0 • 2896	159	0.2896	0.0005
160	0 • 2896	161	0•2886	
162	0 • 2896	163	0.2905	
164	0 • 2896	165	ؕ2896	
166	ؕ2896	167	0•2905	
168	0 • 2896	169	ؕ2896	0.0006
170	0 • 2896	171	ؕ2886	
172	0•2886	173	0•2886	
174	0 • 2896	175	ؕ2886	
176	0 • 2896	177	ؕ2896	
178	0•2886	179	ؕ2896	0.0007
180	ؕ2886	181	ؕ2886	
182	0 • 2886	183	0•2896	
184	0•2896	185	0•2896	
186	0 • 2896	187	ؕ2896	
188	0 • 2896	189	0 • 2896	0.0005
190	0.2886	191	ؕ2886	
192	0.2896	193	0.2886	
194	0 • 2896	195	0 • 2896	
196	0.2896	197	0.2896	
198	0 • 2896	199	0.2905	0.0006
200	Ø • 2896	201	0.2905	
202	0.2905	203	0.2896	
204	0.2896	205	0.2905	•
206	0.2896	207	0 • 2896	
200	10 + 20 7 0 A - 02 0 4	209	0902905	00000
210	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	211	Ø • 2076	
212	V • 2000	213	8 0207 6	
012	N • 207 0 A . 090 2	213	0.000/	
C10	10 + 207 0 A . 099 4	21/	0000	0.0001
200	0-2000 0.0896	217	2000 A. 0202	00000
328	a. 2905	300	0-2020	0.0009
020	U - C/UU	567	U - C7 I J	00000

•

Ø 2 4	0 • 29 25 0 • 29 44 0 • 29 25		1 3 5	0 • 2935 0 • 2935 0 • 2925	
6 8 10	0 • 29 35 0 • 29 25		9 11	ؕ2944 ؕ2915	0.0010
12	Ø • 2935 Ø • 2935		13	Ø • 2935 Ø • 2935	
16	Ø • 2935	•	17	ؕ2935	
18	Ø • 2935		19	ؕ2935	0.0005
20	Ø • 2935 Ø • 2925		23	0 • 2935	
24	0 • 2935		25	ؕ2935	
26	Ø • 29 25 Ø • 29 44		27	Ø • 2935 Ø • 2935	0.0006
30	0 • 29 25		31	0 2935	0.0000
32	0 • 29 35		33	ؕ2935	
34	0 • 2915		35	Ø • 2925 Ø • 2915	
38	0 • 2935		39	0 • 29 25	0.0010
40	ؕ2915		41	0•2935	
42	ؕ2925		43	0 • 2935	
46	Ø • 2935 Ø • 2935		45 47	0 • 2954	
48	ؕ2925		49	0.2935	0.0013
50	0 • 29 25		51	0 • 29 25	
52	0.2925		53	0.2944	
56	0 • 2915		57	0 2925	
58	0.2915		59	0 • 2915	0.0010
60	0.2905		61	0.2915	
64	0 • 2935		63	0.2905	
66	0 • 29 25		67	0 • 2915	
68	0 • 2915		69	0 • 2915	0.0010
70 70	Ø • 2915 Ø • 2925		71	0 • 2905	
74	0 • 2915		75	0 • 2915	
76	ؕ2915		77	0•2905	
78	Ø • 2905	•	79	0.2925	0.0010
82 82	0 • 2905		83	0 • 2905 0 • 2905	
84	0 • 2915		85	0 • 2915	
86	0 • 2915		87	0.2915	
88	0.2905		89	0.2905	0.0006
92	0 • 2915		93	ؕ2915	
94	0.2905		95	0 • 2915	
96	ؕ2915		97	0.2896	0 0010
98 100	0 • 2915		99 101	0+2876 0+2905	0.0010
102	0.2905		103	0.2915	
104	0 • 29 25		105	0 • 2905	
106	0.2886		107	0 · 2896	0.0010
110	0.2905		111	0 • 2915	L/ + L/ K/ I C.

¥

-

٠

•

Ø	0.2954	1	0 • 29 25	
2	ؕ2925	3	0.2915	
4	0.2915	5	0.2925	
6	0.2925	7	0.2915	
8	0.2915	9	0.2905	0.0013
10	0.2915	11	0.2925	
12	0.2935	13	0.2915	
14	0.2915	15	0.2925	
16	0.2925	17	0.2915	
18	0.2915	19	0.9915	0.0008
20	0.2905	• 91	0.0905	0.0000
20	M. 29.25	21	0.0015	
01	0.0015	<i>CO</i>	0.0015	•
04	0.0005	ر ع ص	0+2713	
<i>ς</i> ς ου	0.0005	<i>C1</i>	0+2713	0 0010
20	0.2935	27	0 0 2 7 1 5	0.0010
30	0.2905	31	11+2915	
32	0.2915	33	0 • 2925	
34	0.2915	35	0.2905	
36	0.2915	37	0 • 2905	0.0000
38	0.2915	39	0 • 2915	N•0NNR
40	0.2915	4]	0 • 2905	
42	0 • 2915	43	0•2905	
44	0.2915	45	0•2915	
46	0.2905	47	0•2905	
48	0.2915	49	12 • 2935	0•0010
50	0•2896	51	0.2905	
52	0.2915	53	0•2905	
54	0 • 2915	55	0.2915	
56	0.2915	5-7	0•2905	
58	ؕ2915	59	0.2915	0.0009
60	0•2905	61	0.2915	
62	0.2905	63	0.2915	
64	0.2905	65	0.2905	
66	0.2915	67	0.2905	
68	0.2905	69	0.2915	0.0006
70	0.2905	71	0.2915	
72	0.2905	73	0.2915	
74	0 • 2896	75	0.2915	
76	0.2896	77	0.2905	
78	0.2905	79	0.2886	0.0010
80	0.2896	81	0.2896	
82	0.2905	. 83	0.2905	
84	0.2896	85	0.2896	
86	0.2915	87	0.2896	
88	0.2886	89	0.2896	0.0009
90	N-2896	91	0.2896	
92	0.2886	93	0.0896	
97	0.2905	25	0.0894	
94	0-2205	/ J 10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.0004	
02	0.0884	00	0.0005	0.0007.
100	0.0841	27	N + 2783 N, 0802	ושששית
100	0.0071	101	0 = 207 C	
106	N. CO TO	103	0 · 2000	
104	81 · 2076	100	0 000 C	
100	0 - 2707	107	0 4 207 h	0 0410
168	W+2006	109	0.2876	010010
110	N•2886	111	0 • 2896	

÷

٠

,

Ø	0.2896	1	0•2896	
2	0•2896	3	0.2896	
4	0 • 2896	5	0•2886	
6	0 2905	7	0 • 2896	
8	0•2886	9	0 • 2876	0.0009
10	0.2876	11	0 • 2876	
12	0.2886	13	0.2876	,
14	0.2886	15	0.2876	,
16	0.2856	17	0.2866	
10	0.0874	19	M- 2876	0.0011
00	0.0976	01	0.0844	
00	0.0994	21 02	0.0876	
20	N + 2000	23	0+2010	
24	W + 207 C	23	0.0994	
20	U + 207 C	21	U • 2000	0.0011
20	0 0000	27	0 0 0 0 0 0	0+0011
30	0+2886	31	0 • 2876	
32	0 • 2896	33	0.2886	
34	0+2876	35	0+2876	
36	0 • 2876	37	0.2876	
38	0•2876	39	0 • 2866	0.0009
40	0•2876	41	0.2866	
42	0•2886	43	0•2886	
44	0•2866	45	0•2876	
46	0•2866	47	0•2866	
48	0•2856	49	ؕ2856	0.0011
5Ø	0•2866	51	0•2847	
52	0•2856	-53	0•2856	
54	0•2856	55	0•2856	
56	0•2856	57	0•2847	
58	0•2847	59	0•2866	0.0009
60	0.2847	61	0•2837	
62	0.2856	63	0•2847	
64	0•2847	65	0•2847	
66	0•2847	67	0.2847	
68	0•2847	69	ؕ2856	0.0008
70	ؕ2866	71	0•2866	
72	ؕ2886	73	0•2886	
74	Ø:2876	75	0•2935	
76	0 • 2905	77	0•2896	
78	0.2905	. 79	0.2905	0.0027
80	0.2905	81	0•2896	
82	0.2905	83	0•2905	
84	0.2925	85	0•2925	
86	0.2925	87	ؕ2915	
88	0 • 2915	89	0 • 2935	0.0013
90	0 • 29 25	91	0.2925	
92	0.2925	93	0.2915	
94	0.2905	95	0.2905	
96	0.2915	97	0 • 2896	
98	0.2905	99	0.2915	0.0010
100	0.2915	101	0.2915	
100	0.0915	103	0.2925	
102	0.2915	105	0.2935	
104	0.0905	107	0.2915	
102	0-2225	109	0.2935	0.0009
110	0.2915	111	0.2915	
L 5 Y /	いっこくょう			

ŧ

٠

Ø	0.2495	1	ؕ2495	
2	ؕ2495	3	0.2495	
4	0.2495	5	0.2495	
6	0.2495	7	0.2495	
8	0.2495	9	0.2495	
10	0.2495	11	0.2495	
12	0.2495	13	0.2495	
14	0.2495	15	0.2495	
16	0.2495	17	0.2495	
19	0.0405	10	0.0405	
•0 0a	0.0405		0.0405	
20	0.0405	21	0.2475	
22	Ø • 2495	23	0.2475	•
24	0.2495	25	0.2495	
26	0.2495	21	0.2495	
28	0.2495	29	0.2495	0.0000
30	0.2495	31	0.2495	
32	0.2495	33	0.2495	
34	0.2495	35	ؕ2495	
36	0.2495	37	ؕ2495	
38	0.2495	39	0.2495	
40	ؕ2495	41	0.2495	
42	0.2495	43	ؕ2495	
44	0.2495	45	0.2495	
46	ؕ2495	47	0.2495	
48	0.2495	49	0.2495	
50	0.2495	51	ؕ2495	
52	0.2495	53	ؕ2495	
54	0.2495	55	ؕ2495	
56	Ø.2495	57	0.2495	
58	0.2495	59	Ø • 2495	0.0000
60	0.2495	61	0.2495	
62	0.2485	63	0.2495	
64	0.2495	65	0.2495	
66	0.2495	67	0.2495	
68	0.2495	69	0.2495	
70	0.0405	71	0.2405	
70	0.0405	73	0+2475	
12	0+2495	13	0.0495	
74	0+2495	13	0+2475	
10	0+4475 0 0405	70	0.2495	
10	0+6495	17	0.0405	
90	0.2495	01 20	0.2495	
82	0.2465	· 63	0.2495	
84	0.2495	85	0+2495	
86	0.2495	87	0.2495	
88	0.2495	89	0.2495	0.0003
90	0+2485	91	0.2495	
92	0.2495	93	0.2485	
94	0.2495	95	ؕ2495	
96	0.2495	97	ؕ2495	
98	0.2495	99	ؕ2495	•
100	0.2495	101	0.2495	
102	ؕ2495	103	0.2495	
104	0.2495	105	ؕ2495	
1Ø6	ؕ2495	107	0.2495	
108	0.2495	109	0.2485	
110	0.2495	111	ؕ2495	

112	0.2495	113	0.2495	
114	0.2495	115	ؕ2495	
116	0.2495	117	0.2485	
118	0.2495	119	0.2495	0.0004
120	0.2485	121	0.2495	
122	Ø-2495	123	0.2495	
124	0.2495	125	0.2495	
126	0.2495	197	0.0495	
100	0.0405	100	0.0/05	
120	0.0405	121	0+2475	
120	0+6475	. 100	0+4475	
132	0+2495	133	0+2495	
134	0+2495	135	0.2495	•
136	0.2495	137	0+2485	
138	0+2495	1 39	0.2495	
140	0+2495	141	0+2495	
142	0.2495	143	0.2495	
144	0.2495	145	0.2495	
146	0.2495	147	ؕ2495	
148	0.2495	149	ؕ2495	0.0003
150	0.2495	151	ؕ2524	
152	0.2495	153	0.2495	
154	0.2495	155	ؕ2495	
156	0.2495	157	0.2495	
158	0.2495	159	0.2495	
160	ؕ2495	161	0.2495	
162	0.2495	163	0.2495	
164	0.2495	165	0.2495	
166	Ø.2495	167	0.2495	
168	0.2495	169	0.2495	
170	0.2495	171	0.2495	
172	0.2505	173	0.2495	
174	Ø • 2495	175	0.2495	
176	0.2495	177	0.2495	
178	0.2495	179	0.2425	0.0006
180	0.2495	181	0.2495	0.0000
180	0.0405	193	0.2495	
192	0.0/05	105	0+2475	
192	0.0495	103	0 • 2475	
100	0.2495	190	0+2475	
100	0+2475	107	0.0495	
100	0+2495	191	0.2495	
192	0.2495	193	0.2495	
194	0.2495	195	0+2495	
190	0.2495	197	0+2495	
198	0.2495	199	0.2495	
200	0.2495	201	ؕ2495	
205	0.2495	203	0.2495	
204	0•2495	205	0.2495	
206	0.2495	207	0.2495	
208	0.2495	209	0.2495	0.0000
210	ؕ2495	211	0.2495	•
212	ؕ2495	213	0.2495	
214	ؕ2495	215	0.2495	
216	ؕ2495	217	ؕ2495	
218	0.2495	219	0.2495	
220	ؕ2495	221	0.2495	
222	0.2495	223	0.2495	

٢

.

*

 $\sum$ 

Ø	0.0876	1	0. 2886
ש ס	0.2010	1	0+2000
2	0.2876	3	0.2880
4	ؕ2896	5	0.2876
6	ؕ2896	7	0.2915
8	0.2925	9	0.2925
10	0.2925	11	0.2915
10	0.2935	13	0.2915
14	a. 00a5	16	a. 0005
14	0+2905	15	0.2723
16	0.2915	17	0+2896
18	ؕ2925	19	ؕ2896
20	0.2905	21	ؕ2896
22	0.2905	23	0.2905
24	0.2915	25	0.2915
04	0.0015	27	0.0896
20	0.2713	21	0.2090
28	0.2905	29	0.2090
3Ø	0.2905	31	0.2915
32	0.2925	33	0.2925
34	0.2935	35	0.2944
36	0.2935	37	0.2944
20	0.0005	39	0.2035
50	Ø+272J	57	0 0015
40	0.2925	41	0.2915
42	0.2935	43	ؕ2935
44	0.2915	45	ؕ2925
46	0.2935	47	0.2905
48	0.2915	49	0.2915
50	0.2915	51	0.2905
50	0 0004	51	a 0904
52	0.2090	53	0.2090
54	0+2896	55	0.2880
56	ؕ2896	57	ؕ2896
58	0•2876	59	ؕ2876
60	0.2896	61	ؕ2886
62	0.2876	63	0.2876
64	Ø.2896	65	0.2886
64	0.0976	67	a 0974
00	0.0210	67	0.2010
68	0+2866	69	0.2866
7Ø	ؕ2876	71	ؕ2876
72	0.2856	73	ؕ2866
74	ؕ2856	75	0.2856
76	0.2866	77	0.2837
78	0.28/7	79	a.2876
<i>a</i> a	0 0966	1 01	a 0994
00	0+2000	01	0.000
82	0.2876	83	0.2866
84	ؕ2876	85	0.2896
86	0.2896	87	0.2915
88	0.2905	89	ؕ2896
90	0.2905	91	0.2915
00	0.2915	93	a. 2915
0.4	0.0015	75 0 E	0.0005
94	C142+0	30	COC2+0
96	0+2915	97	0.2902
98	0.2905	99	ؕ2915
100	0.2905	101	0.2905
102	0.2886	103	0.2896
104	0.2876	105	0.2876
104	0.2005	107	0.9866
100	0 0072	100	A 0002
100	0.02.0	109	0.000
110	0+2886	111	0+2886

0.0014

ş

•

2

.

*

•

112	ؕ2896	113 Ø.2876	
114	0.2896	115 ؕ2896	
116	0.2886	117 0.2886	
118	0.2886	119 0.2896	0.0013
100	0 • 2000 a 0006	101 0 0996	0.0010
120	0.2090		
155	0.2866	123 0.2856	
124	0.2876	125 0.2866	
126	ؕ2866	127 ؕ2856	
128	ؕ2866	129 0.2876	
130	0.2876	131 Ø.2896	
132	0.2886	133 Ø.2886	•
134	0.2876	135 0.2876	
136	A-2896	137 0.9886	
120	0 0 0 7 6	120 @ 0876	
130	0+2010	137 0.2010	
140	0.2856		
142	0.2866	143 0.2856	
144	0•2856	145 0.2847	
146	ؕ2866	147 ؕ2847	
148	0.2856	149 0.2837	
150	ؕ2856	151 Ø.2847	
152	0.2856	153 0.2847	
154	0.2847	155 0.2856	
156	0.2847	157 0.2847	
158	0.2866	159 0.2866	
160	0.0947		
100	0.2041		
165	0.2856	163 0.2876	
164	0 • 2847	165 0.2847	
166	ؕ2856	167 0.2847	
168	0•2866	169 0.2876	
170	0.2866	171 Ø.2876	
172	0.2876	173 Ø.2896	
174	0.2896	175 ؕ2896	
176	0.2905	177 0.2905	
178	0.2896	179 0.2905	0.0013
180	0.2035	181 0-2905	0.00.0
100	20.2255	183 8.0985	
102	0+2915		
104	0.2915		
190	0.2905	187 0.2905	
188	0+2915	189 0+2905	
190	0.2905	191 0.2896	
192	0•2896	• 193 Ø•2876	
194	ؕ2886	195 Ø.2886	
196	0.2886	197 Ø.2896	
198	0.2886	199 Ø.2896	
200	0.2896	201 0.2896	
202	0+2866	203 0.2886	
204	0.2886	205 0.2876	
206	0.2876	207 0.2896	
200	0-2010	000 A-0004	
014	U+6070	647 Ø+2090	
510	0.2090	511 0.5880	
815	0.5876	213 0.2905	
214	0.2896	215 ؕ2886	
216	0.2896	217 Ø.2896	
218	ؕ2896	219 Ø.2896	
220	ؕ2896	221 Ø.2905	
222	0.2905	223 ؕ2876	

£

٠

0	0+2495	1	0.2495
2	ؕ2495	3	0.2495
4	0 2485	5	0.2495
6	0.2495	7	0.2495
8	ؕ2495	9	0.2495
10	0.2485	11	0.2495
12	0.2495	13	0.2495
14	0.2495	15	0.2495
16	0.2495 *	17	Q-0425
19	0.0405	10	0.0495
10	0+2495	19	0.2495
20	0.2495	15	0.2495
22	0.2495	23	0.2485
24	0.2495	25	0.2495
26	0.2495	27	0.2485
28	0.2495	29	0•2485
30	Ø+2495	31	0.2485
32	0.2495	33	0.2495
34	0.2495	35	0.2495
36	0.2495	37	0.2495
38	Ø.2495	39	0.2495
40	0.2495	41	0.2495
42	0.2495	43	0.2495
44	0.2495	45	0.2495
75	0.2425		0.2495
40	0.0/05	40	0.2495
40	0.0405	47	0.0495
50	0.2495	51	0.2495
52	0+2495	53	0.2495
54	0.2495	55	0.2495
56	0.2495	57	0.2495
58	ؕ2495	59	0.2495
60	0.2495	61	0.2495
62	ؕ2495	63	0•2495
64	0.2495	65	0.2495
66	ؕ2495	67	0.2495
68	0.2495	69	0.2495
70	0.2495	71	Ø.2495
72	0.2495	73	0.2485
74	0.2495	75	Ø.2495
76	0.2485	75 77	0.0495
70	0.0/05	70	0.0405
00	0 0405	. 17	0 0 495
20	0+2475	01	0+6495
02	0+2495	03	0.2495
84	0.2495	85	0.2495
86	0.2495	87	0.2495
88	0.2495	89	0.2495
90	0.2495	91	0.2495
92	0.2495	93	ؕ2495
94	0.2495	95	ؕ2495
96	0.2495	97	0.2495
98	0.2495	99	0.2495
100	0.2485	101	0.2495
102	0.2495	103	Ø • 2495
104	0.2495	105	0.2495
106	Ø 2495	107	0.2495
108	0.2495	100	Ø.9495
110	0.0/05	111	0.0105
1 I U	ショムペノノ		ルッムルアゴ

->

.

0.2495

0.2495

0.2495

0.2495

0.2495

0.2495

0.2495

0.2495

0.2495 0.2495

0.2495

0.2495

0.2495

0.2495

0.2495

0.2495

0.2495

0.2495

0.2495

0.2495

0.2476

0.2485 0.2495

0.2476

0.2495

0.2495

0.2495 0.2495

0.2495

0.2495

0.2485

0.2495

0.2495

0.2495

0.2495

0.2495

0.2495

0.2495

0.2495

0.2495

0.2485

0.2485

0.2495

0.2495

0.2495

0.2495

0.2495

0.2476

0.2485

0.2485

0.2485

113

115

117

119

121

123

125

127

129

131

133

135

137

139

141 143

145

147

149

151

153

155

157

159

161

163

165

167 169

171

173

175

177

179 181

183

185

187

189

191

193

195

197

199

201

203

205

207

209

211

213

215

217

219

221

223

112	ؕ2495	
114	0.2495	
116	0.2495	
118	ؕ2495	
120	ؕ2495	
122	0.2495	
124	ؕ2495	
126	0.2495	
128	ؕ2495 -	
130	ؕ2495	
132	0.2495	
134	ؕ2495	
136	ؕ2495	
138	0.2495	
140	0.2495	
142	0.2495	
144	ؕ2495	
146	0.2495	
148	0.2495	
150	0•2495	
152	ؕ2495	
154	0•2495	
156	0.2495	
158	ؕ2495	
160	0.2495	
162	0.2495	
164	ؕ2495	
166	0.2495	
168	ؕ2495	
170	0.2495	
172	0.2495	
174	0.2495	
176	0.2495	
178	0.2495	
180	0.2495	
182	0.2495	
184	0.2495	
186	0+2495	
188	0.2495	
100	0.0495 0.0495	
192	0.0495 0.0495	
104	Ø • 6473 Ø • 9495	
100	0 • 6 473 0 • 9 /95	
170	U+6473 (1.9495	
200	0+6473 0.9495	
200	0.2405	

206

208

210

212

214

216

218

220

222

0.2495

0.2485

0.2495

0.2495

0.2485

0.2485

0.2495

0.2485

0.2466

ŧ

0.2495 0.2495 0.0003 0.2495 0.2495 0.2495

۶

ŧ

•

-

Ø	0•1060	1	0.1030	
2	0.1030	3	0.1030	
4	0.1030	5	0.1030	
6	0•1040	7	0.1030	
8	0.1030	9	0.1030	
10	0.1030	11	0.1030	
12	0.1030	13	0.1030	
14	0.1040	15	0.1030	•
16	0.1040	17	0.1000	
18	0.1030	10	0.1020	0.0012
20	0.1030	21	0.1030	0-0010
20	0-1000	21	0.10.0	
04	0 1000	23	0 1000	
24	0.1030	25	0 1030	
20	0.1000	27	0.1030	•
20	0.1030	29	0 • 1030	
319	0.1040	31	0.1030	
32	0+1030	33	0.1030	
34	0.1030	35	0.1030	
36	0.1030	37	0.1030	
38	0.1030	39	0.1030	0•0003
40	0•1050	41	0.1040	
42	0•1030	43	0•1030	
44	0.1030	45	0•1030	
46	ؕ1030	47	0•1040	
48	0.1030	49	0•1030	
50	0.1030	51	0.1030	
52	0.1030	53	0.1030	
54	0.1030	55	0.1030	
56	0.1030	57	0.1030	
58	0.1030	59	0.1030	0.0006
60	0.1040	61	0.1030	4
62	0.1030	63	0.1030	
64	0.1030	65	0.1030	,
66	0.1030	67	0.1030	
68	0.1030	69	0.1030	
70	0.1030	71	0.1030	
72	0.1030	73	0.1030	
74	0.1030	75	0.1030	
76	0.1030	77	0.1030	ł
78	0.1030	79	0.1030	0.0002
80	0.1030	81	0.1030	000002
80	0-1030	83	0.1030	
84	0-1030	00	0.10.00	
04	0 1030	. 07	0-1040	
00	0 1030	01	0 1030	
00	0 10.00	07	0 1030	
90	0.1040	91	0.1030	
92	0.1030	93	0.1030	
94	0.1206	95	0.9995	
96	0.9995	97	0.9995	0 000 0
98	0.9995	99	0.9995	0.3006
100	0.9995	101	0.9995	
105	0.9995	103	0.9995	
104	ؕ9995	105	0.9995	
106	0-9995	107	ؕ9995	
108	0•9995	109	0•9995	
110	ؕ9995	111	0.9995	

£

.

*

.

ı.

112	ؕ9995	113	0.9995	
114	0.9995	115	0.9995	
116	0.9995	117	0.9995	
118	0.9995	119	0.9995	0.0734
120	0.9995	121	0.2388	
122	0.9995	123	Ø.9995	
124	0.1245	125	0.1040	
104	0-1040	123	0.1030	
108	0-10-0	109	0-1000	
120	0 1040	127	a 1030	
120	0+1040	101	0.1000	
132	0-1030	133	0 1030	• •
134	0.1030	. 135	0.1040	
136	0.1040	137	0+1030	
138	0.1040	1 39	0.1021	0.3275
140	0.1021	141	Ø•1Ø3Ø	
142	0•1030	143	0•1030	
144	ؕ1030	145	0.1030	
146	0•1040	147	0.1030	
148	0•1030	1 49	0.1030	
150	0•1030	151	0.1030	
152	0.1030	153	0.1030	
154	0.1030	155	0.1030	
156	0.1030	157	0.1030	
158	0.1030	159	0.1040	0.0029
160	0.1040	161	0.1030	
162	0.1040	163	0.1030	
164	0.1030	1.45	0.1030	
166	0.1030	167	0.1030	
148	0.1040	1 4 9	0.1030	
170	0.10.40	107	0.1030	
170	0.1020	170	0+1030	
176	0.1030	175	0.1040	
174	0.1030	110	0.1030	
176	0.1040	177	0.1030	a
178	0.1030	179	0.1030	0.0002
180	0.1060	181	0.1030	
185	0.1030	183	0.1030	
134	0.1030	185	0•1030	
186	0•1030	187	0•1030	
188	ؕ1030	189	0•1030	
190	0•1040	191	Ø•1Ø3Ø	
192	0.1030	193	0.1040	
194	0•1030	195	0•1030	
196	ؕ1030	197	0•1030	
198	0.1030	• 199	0.1040	0.0008
200	0.1030	201	0.1040	
202	0.1030	203	0.1030	
204	0.1030	205	0.1030	
206	0.1030	207	0.1021	
208	0.1040	209	0.1040	
210	0.1030	911	0.1030	
21.2	0.1020	01 2	0-1030	
214	0.1030	015	0.1030	•
012	0.1000	610	0.1000	
010	0.1000	217	0 10 40	a acar
210	0.1030	219	0 1040	CONDO
220	0.1030	221	0.1030	
222	0•1030	223	0•1030	

Ŧ

224	0.1030	225	0.1030	
001	a 1000	223	0-1000	
226	0.1030	221	0.1030	
228	0.1030	229	0.1030	
230	0.1030	231	0•1030	
232	0•1030	233	0•1030	
234	0.1030	235	0.1030	
236	0.1040	237	0.1030	
238	0.1030	239	0.1040	0.0003
200	0.1050	201	0.1030	0.0000
040	0.1000	2.41	0.1000	
242	0.1030	243	0.1030	
244	0 • 1030	245	0.1040	
246	0.9995	247	0.9995	
248	ؕ9995	249	0•9995	
250	0-9995	251	ؕ9995	•
252	0.9995	253	ؕ9995	
254	ؕ9995	255	0.9995	
256	0.9995	257	0.9995	
258	0.9995	259	(1.9995	0.3107
244	Ø-9995	261	0.9995	0.0101
200	0 0005	201	0.0005	
202	0.7775	263	0.7775	
264	0.9995	265	0.9995	
266	0-9995	267	0.9995	
268	0•9995	269	0•9995	
270	0•9995	271	0•9995	
272	ؕ9995	273	0•9995	
274	0.9995	275	ؕ9995	
276	ؕ9995	277	ؕ9995	
278	0.9995	279	0.9995	0.0055
280	0.9995	281	0.1060	
080	0.1040	201	<i>a</i> .9995	
202	0-1040	200 005	0.0497	
204	0 10 40	203	0 1000	
206	0.1040	281	0.1099	
288	9.1030	289	0.1030	
290	ؕ1382	291	0.1040	
29 S	0•9995	293	ؕ1567	
294	0 • 10 40	295	0.1030	
296	0.1030	297	0.1030	
298	0.1030	299	0.1030	0•4124
300	0.1040	301	0.1030	
302	0.1030	303	0.1040	
304	0.1040	305	0.1040	
306	0.1030	307	0.1030	
200	0.1020	2001	0.1030	
000	0 1000	307	0+1030	
310	0.1030	311	0.1030	
312	0.1030	313	0.1026	
314	0•1040	315	0•1030	
316	0.1030	317	0•1040	
318	0.1030	319	0.1030	0.0147
320	0•1030	321	0.1040	
322	0.1030	323	0.1030	
324	0-1040	325	0.1030	
324	0.1030	327	0.1040	•
202	0.1020	300	0.1020	
220	0-10/0	221	0.1000	
220	0 1000	201	0.1000	
332	0 • 1032	333	0.10.0	
334	0.1030	335	0•1040	

Ø	0.0972	1	0.0972	
2	0.0972	3	0.0972	
4	0 • 09 72	5	0.0972	
6	0.0972	7	0.0972	
8	0.0972	9	0.0981	· · ·
10	0.0972	11	0.0981	
12	0.0972	13	0.0972	
14	0.0981	15	0.0972	
16	0.0972	17	0.0972	
18	0.0972	19	0.0972	0.0004
20	0.0972	21	·0•0972	•
22	0.0972	23	0.0972	
24	0.0981	25	0.0981	L
26	0.0972	27	0.0981	
28	0.0972	29	0.0972	
30	0.0972	31	0.0972	
32	0.0981	33	0.0972	
34	0.0981	35	0.0972	
36	0.0981	37	0.0972	
38	0.0493	. 39	0.0229	0.0181
<u>2</u> 0	0.0190	41	0.0239	
A2	0.0269	43	0.0298	
44	0.0308	45	0.0308	
46	0.0298	47	0.0308	
48	0.0308	49	0.0337	
50	0.0366	51	0.0376	
50	0.0386	53	0.0386	
54	0.0396	55	0.0415	
56	0.0425	57	0.0435	
58	0.0405	59	0.0405	0.0157
60	0.0425	61	0.0435	
62	0.0435	63	3 0.0444	
64	0.0444	65	0.0454	
66	0.0425	67	0.0425	
68	0.0435	69	0.0435	
70	0.0435	71	0.0435	
79	0.0444	73	3 0.0444	
74	0.0435	75	5 0.0425	
76	0.0435	77	7 0.0425	
78	0.0435	79	0.0435	0.0014
80	0.0435	. 81	0.0435	
82	0.0435	83	0.0425	
8 A	0.0425	89	5 0.0425	
84	0.0425	83	7 0.0435	
88	0.0435	89	0.0444	
90	0.0454	91	0.0435	
90	0.0425	9	3 0.0435	
26	0.0425	90	5 0.0435	
94	0.01010	9.	7 0.0444	
20 QQ	0-0444	90	9 0.0454	0.0009
70 100	0-0434 0.0777	101	1 0.0435	
100	0.01	101 101	3 0.0444	
104	0-0444	10	5 0.0444	
104	0.015444	10.	7 0.0451	
100	0.0424	100	, 0,0404 9 0,0764	
11/0	0.0464	1.00	/ 0.0404 1 0.0///	
110	0•0444	11.	* N*X4444	

Ŧ

112	0.0454	113	0.0444	
114	0•0444	115	0.0454	
116	0•0454	117	0.0454	
118	0.0454	119	0.0464	0.0008
120	0•0444	121	0.0464	
122	0•0454	123	0.0444	
124	0•0444	1 25	0.0464	
126	0.0464	127	0.0464	
128	0•0483	1 29	0.0474	
130	0.0464	1 31	0.0474	
132	0.0474 .	133	0.0474	
134	0•0474	135	0.0474	
136	0.0474	137	0.0474	•
138	0.0474	1 39	0.0474	0.0009
140	0.0474	141	0.0474	
142	ؕ0483	143	0.0474	
144	0.0483	145	0.0483	
146	0.0493	147	0.0493	
148	ؕ0493	149	0.0483	
150	0.0493	151	0.0493	
152	0 • 0 4 9 3	153	0.0493	
154	0.0493	155	0.0503	
156	0.0503	157	0.0513	
158	0.0522	159	0.0513	0.0009
160	0.0532	161	0.0513	
162	0.0513	163	0.0522	
164	0.0513	165	0.0513	
166	0.0522	167	0.0522	
168	0.0532	1.69	0.0532	
170	0.0542	171	0.0542	
172	0.0542	173	0.0542	
174	0.0542	175	0.0542	
176	0.0532	177	0.0552	
178	0.0552	179	0.0552	0.0011
180	0.0552	181	0.0552	
182	0.0562	183	0.0562	
184	0.0571	185	0.0562	
186	0.0571	187	0.0562	
188	0.0562	189	0.0562	
190	0:0571	191	0.0581	
192	0.0581	193	0.0581	
194	0.0581	195	0.0581	
196	0.0591	197	0•0591	
198	0 • 0 5 9 1	199	0.0601	0.0010
200	0.0610	201	0.0610	
202	0.0610	203	0.0601	
204	0-0601	205	0 • 0 60 1	
206	0.0610	207	0.0610	
208	0•0610	209	0.0620	
210	0.0620	211	0.0620	
212	0.0620	213	0.0650	
214	0.0620	215	0.0620	
216	0.0620	217	0•0640	
218	ؕ0649 /	219	0.0649	0.0012
220	ؕ0649	221	0.0659	
222	0.0659	223	Ø•Ø659	

ŧ

-

•

4

Ŧ

224	0.0659	225 Ø•Ø620	
226	-0.0552	227 -0.0581	
228	-0.1060	229 -0.0962	
230	-0-4106	231 -0.4302	
232	-ؕ4331	233 -0.4282	
234	-0.4146	235 -0.4009	
236	-0.3940	237 -0.3774	
238	-0.3638	239 -0.3491	0.1396
240	-0.3452	241 -0.3335	
242	-0.3276	243 -0.3237	
244	-0.3130	245 -0.3101	
246	-0.3022	247 -0.3003	
248	-0.2964	249 -0.2974	•
250	-0.2915	251 -0.2905	
250	-0.2866	251 0+2705	
251-	-0-2897	255 -0.2700	
254	= 11 - 27 49	255 0+2100	
2.JC 050	-0+2147	251 -0+2147	0.0191
200	-0.0(0)	$237 = 0 \cdot 2727$	0+0101
200	-0.2603	261 -0.2681	
202	-0.2642	263 -0+2622	
264	-0.005	265 -0.2622	
266	-0.2495	267 -0.2563	
268	-0.2583	269 -0.2495	
270	-0.2534	271 -0.2515	
272	-0.2524	273 -0.2534	
274	-0.2554	275 -0.2485	
276	-0.2524	277 -0.2495	
278	-0.2495	279 -0.2466	0•0073
280	-0.2466	281 -0.2476	
282	-0.2466	283 -0+2368	
284	-0.2397	285 -0.2417	
286	-0.2427	287 -0.2319	
288	-0.2358	289 -0•2437	
290	-0.2397	291 -0.2397	
292	-0.2476	293 -0.2407	
294	-0.2407	295 -0.2339	
296	-0.2407	297 -0.2319	
298	-0.2329	299 -0.2300	0.0056
300	-0.2231	301 -0.2349	
302	-0+2368	303 -0.2310	
304	-0.2231	305 -0.2280	
306	-0.2368 .	307 -0.2368	
308	-0.2280	309 -0.2222	
310	-0.2222	311 -0.2261	
312	-0.2339	313 -0.2202	
314	-0.2163	315 -0+2095	
316	-0.2114	317 -0.2271	
318	-0.2378	319 -0.2349	0.0090
320	-0.2261	321 -0.2095	
322	-0.1938	323 -0.1772	
324	-0.1636	325 -0.1636	'n
326	-0.1743	327 -0.1948	
328	-0.2329	329 -0.2983	
330	-0.6597	331 -0-4712	
332	-0.2944	333 -0-1724	
334	-0.0425	335-0.0396	
004	0 - 0 - C - C - C - C - C - C - C - C -		-

#### TABLE A .21. (a)

#### 1967 Valve data standard deviation of error

Bottom cooling valve Bottom cooling valve Top cooling valve Bottom cooling valve Top cooling valve (Sluggish and zero error) (Sluggish and zero error) (Sluggish and zero error) (Sluggish and zero error) (Zero error only) 39,4014 6,6671 5.3526 16.0640 15,5242 74.6602 12,27815,2488 11,0409 20,5647 47,6719 21,7910 6.1401 2,1331 11.0454 58.8853 23,6030 6.3600 11,7968 6.2729 39.7529 4.8010 11,4434 7,4700 13.1416 . 43.7885 23.0413 13,9768 25,2339 16,7092 62,6489 18,1797 5,5046 . 16,4089 20,9929 46,5644 5.3898 14,0089 17.6453 12.1346 44.3892 13,8906 . 12,0209 10,3851 9.3274 63.0405 68,4922 = 42,5049

#### APPENDIX 3

Industrial control valves data and Standard deviations for Measuring instruments data.

For Tables A22 to A30, the first column represents the valve demand, the second column represents the valve position, the third represents the error between the valve and the valve position and the fourth column represents the change in valve demand. All the values are in parts per 1000.

A3

TABLE A. 21(b)	1970	Valve	data	standard	deviations	of	error
							_

Top cooling valve number							
1	2	3					
2.8810	3.4496	6.0745					
3,3912	3,7914	6.1401					
3,4929	2.6268	3.7283					
3.4929	3.4059	2.5691					
4.4944	2,8983	3.4205					
3.1464	3.1305	5.0990					

CVL valve number         1       2       3         9.1707       5.6921       5.7533         4.8477       6.7082       5.3759         7.4297       4.2072       5.8907         3.5777       4.9396       5.7620         6.0498       5.6480       4.9498			
1	2	3	
9.1707	5,6921	5.7533	
4.8477	6,7082	5.3759	
7.4297	4.2072	5,8907	
3.5777	4.9396	5,7620	
6.0498	5.6480	4.9498	
5.2631	3.8210	5,8052	

ş

Bottom cooling valve number						
1	2	3				
8,5322	4.3930	5,0000				
9,2358	5.8395	3,6606				
11,5586	4.4944	2.8983				
7,9120	3,6606	5,8052				
9.0554	16.9912	6.3404				

Draw valve number							
1	2	3					
22.7444	12.0499	12,1121					
25.8457	9.5552	5.4406					
25,9963	10,4880	5.8822					
26,1975	8.4794	6,1725					
21.7578	10,4737	6.2928					

TABLE A.22 1967, Valve data for Fig. 8.19 Bottom cooling valve

with zero error

647 644 -3 0	[ f	632	629	- 3	-4
644 637 -7 3		632	629	-3	0
640 637 -3 4		636	630	-6	-4
640 637 -3 0		628	629	1	8 -
640 641 1 0		632	632	Ö	-4,
640 643 3 0		628	630	2	4 ·
644 642 -2 -4		632	624	-8	-4
636 641 5 8		632	624	-8	0
647 635 -12 -11		624	624	0	8
640 639 -1 7		624	626	2	0.
647 637 -10 +7		636	626	-10	-12
683 641 -42 -36		624 ′	626	2	12-
647 643 -4 .36		628	617	-11	· -4-
647 640 -7 0		632	620	-12	-4 -
647 681 34 0		620	626	6	12
647 639 , -8 0		624	623	-1	-4-
644 680 36 3		620,	623	3	4-
647 650 3 -3		620	623	3	0 -
651 642 -9 -4		628	624	-4	-8.
647 642 -5 4		620	6Ż3	3	8.
647 643 -4 0.		620	608	-12	0.
651 647 -4 -4		616	623	7	4
647 650 3 4		616	616	0	0_
647 644 -3 0		620	617	-3	-4.
644 645 1 3	1	. 620	616	-4	0 - 1
647 647 0 • 3 •		617	617	0	3.
647 600 -47 0 -		616	614	-2	1.
644 638 -6 3		616	613	- 3	0
644 . 600 -44 . 0		612	615	3	4
683 638 -45 -39		616	616	0	-4.
651 639 -12 32		624	655	31	-8
647 640 -7' 4		620	612	<b>~</b> 8	4
647 642 -5 · . 0 -		612	615	3	8-
651 633 -184		620	619	-1	-8 -
647 644 -3 4.		624	626	2	-4 -
644 644 0 3		628	612	-16	-4.
604 644 40 40		628	621	-7	0.(
644 645 1 -40.	[	624	624	0	4.
644 651 7 0.		628	620	<del>-</del> 8 ·	-4,
647 647 0 -3	ļ	663	620	-43	- 35 - (
647. 645 -2 0.		628	626	-2	35 *
651 635 -16 -4	'	632	625	<del>-</del> 7	-4 -
647 646 -1 4	.	632	627	<del>-</del> 5	0 -
683 639 -44 -36		632	623	-9	0 -
644 641 -3 '39-		628	623	-5	4.
644 642 -2 0.		620	624	4	8.
644 647 3 0-		628	623	- 5	-8
644 636 <del>-</del> 8 0-		.620	623	3	. 8
640 634 -6 4		624	573	<del>-</del> 51	-4.
. 632 633 1 8-		624	624	, O	0 *
632 635 3 0 -	•	624	622	- 5	0
636 635 -1 '+4		624 `	623	1	0 • 1
632 639 7 4.	f i	628	624	-4	-4.
632 631 -1 0.		6,28	625	- 3	0
632 634 2 0		663	621	-42	<del>-</del> 35 · ·
628 629 1 4		628	624	-4	35
	L (	632	662	30	- 4 -

391

ן ייין •

4 1 E

ł

)

TABLE A.22. (cont'd) 1967 Valve data for Fig. 8.19 Bottom cooling

with zero error

4									
E	593	664	71	39	+	644	648	4	• 3
1	632	630	-2	- 39		651	644	-7.	-7
	636	627	-9	-4		644	644	Ū.	7
	640	631	-9	- 4		647	644	-3	-3
	640	635	-5	0 -	•	644	645	1	3
	640	639	- 1	0	` (	647	648	1	-3
	679	633	-46	- 39	1	651	651	0	-4
	644	641	- 3	35		655	653	-2,	-4
	679	641	<del>-</del> 38	- 35		651	647	- 4	4
ł	644	631	-13	35	4.	651	647	-4	0
	640	634	- 6	4		655	⁷ 647	-8	-4.
	636	639	3	4		659	647	-12	-4 -
	647	641	- 6	-11					
	644	644	0	3		•			
1	670	639	, = 31	-26					1
	644	598	<b>-</b> 46	26					1
	640	643	3	4					1
	640	639	-1	0	· 1_		<u>\</u>		
	640	641	1	0 I					
	644	642	-2	-4					
Ļ	640	639	- 1	4					
1	604	594	-10	36					
	632	626	<del>-</del> 6	- 28 -					
	636	630	-6	-4 .	•				
1	593	631	38	43 -	• •				
	632	631	- 1	- 39 -					
	636	587	• = 49	-4.					
I	593	630	37	43.					
	632	020	-6	- 39 -					
ſ	628	623	- /						
	632	621		4-			-	•	
	636	664	~0	-4.			_		
1	636	630		-4-					
I	636	627	-0	0					
	632	627	-5	<u> </u>		•			•
	632	. 585	- 47						
	632	627	-5	ň				~	ι.
	636	673	37	-4		,			
	644	635	-9	-8.					
	636 .	635	-1	8					
	640	635	<del>-</del> 5	× -4.					
ł	640	634	· <del>-</del> 6	0					
	640	635	<del>~</del> 5	0					
	636	637	1	4				•	
	636	639	3	0_					t
	640	639	-1	-4					
	636	628	-8	4			1	,	•
	640	635	-5	-4.					
	636	635	-1	4 · ;					
	64U	635	-5	-4 - ]			•		
	044 4 A D	638	<b>~</b> 6	-4				ĩ	
	04U ፈአኦ	041 6 40	- 1	4				,	r
	044 688	04U 4 40	-4	=4 • 1				;	
	679	04U 6A1	-4	0.				1	<
-	647	647	- 30 N	30	l				

# TABLE A.23. 1967 Valve data for Fig. 8.20. Sluggish top cooling

,

ī

## with zero error

.

•

٠

`

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0.0.				- 4	<u> </u>				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F (	335	285 '	-50	0			0.00	- n -	[~] ^ ^ ~	}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	:	304	268	<del>-</del> 36	31		207	202	U	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		265	268	3	39		212	212	U	-3	l
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		265	267	ŏ			272	· 273	1 *	0	[
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.00	070	<u>د</u>	U I		272	303	31	0	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			210	1	-4	*	272	273	1	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	269	261	8	0		280	276	- /1	-8	{
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2	265	269	4	4		979	274	-1	2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		269	268	-1	-4		070	073		ο.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		269 É	266	-3	n 1		212	213	l	U	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		269	299	30	ő		269	273	4	3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2	202	070	50			269	272	3	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		609 641	210	1	0		269	257	-12	Ο.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	è	201	261	0	8.		269	265	- /4	۵	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· 2	265	266	1	-4	ſ	269	270	1	<u>0</u> -	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		261	266	5	4,		269	265	- /1	ň	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2	261	265	. 4	0			200			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		257	261	4	4		· 209	269	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		265	262	- 3			269	270	1	0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		265	267	ő			265	269	4	4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	50 <b>5</b>	065	6	<u> </u>		269	266	-3	-4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		200 201	200	U A T	Ų,		265	270	5	4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2	401 	244	-17	4		265	270	5	n	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	253	256	3	8, 1		269	260	0 0	_ //	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2	253	261	8	0 - 1		272	072	1	-4	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	253	256	3	0		000	613		- 3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		253	254	1	o I		200	212	39	39	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		253	254	1	n		265	264	-1	-32	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		253	255	•	ő		269	267	-2	- 4	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		261	255	- 2 - 2			269	270	1	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			230	-3	0		269	273	4	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	i i	201	254	- /	U		269	270	1	n -	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	296	259	-37	-35		269	273	4	ñ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	261	258	3	35		269	270	1	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	261	266	5	0	ĺ	269	260	· ·	0.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2	265	266	1	-4		202	209	U	U	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2	261	267	6	4		209	270	1	U	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		269	298	29	- 8	ł	272	270	-2	-3-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		260	260				272	273	1	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			202		0		272	273	1	0 .	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		209	209	U	U	Î	272	274	2	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	369	269	ប	U		315	319	4	-43	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	, a	269	270	1	0		288	299	11	27	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	269	272	3	0	i	288	280	1	21	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	269 .	270	1	0	1	088	210	20	U	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	l 2	269 🕠	270	1	Ô۰	:	200	000	<u> </u>	υ.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	269	272	3	NO I		004	677 000	3	-8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		269	272	` - <u>3</u>	ñ		296	299	3	Ο.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		269	270	ĩ	ň,	ĺ	896	•299	3	0	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		020	970	1	, N		296	299	3	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		202	67U 070		N I	÷	296	299	3	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		209 209	212	3	U.		296	295	- 1	ñ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2	:05	266	1	4 '		300	299	- 1	- <i>7</i> 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2	265	266	1	0.		300	303	• २		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	269	269	0	-4	ĺ	300	200	_ 1	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	265	269	4	4		200	202	-1	Ű	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	269	270	1	- 4		300	303 202	3	U	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		261	263	2	g		300	307	7	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		261	266	ם ג			304	307	3 '	- 4	
261       262       1       0       300       303       3       4         265       266       1       -4       296       298       2       4         265       266       1       0       288       259       -29       8         269       266       -3       -4       253       291       38       35		261	200	1	·		• 304	303	-1 '	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		.01 .01	202	1	U I		300	303	3	4	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		:00	200	1	-4		296	298	2	4	
269 266 -3 -4253 291 38 35	²	:65	266	1	0.	1	288	259	-29	8.	
	f 5	269	266	-3	-4	-	253	291	38	35	
• • • • • • • • • • • • • • • • • • • •	ــــــــــــــــــــــــــــــــــــــ					-				i	)

393

,

•

### TABLE A.23 (cont'd) 1967 Valve data for Fig. 8.20. Sluggish top

i

•

•

۰.

;

cooling valve with zero error

A								
249	277	28	4	~	004	000	0	
284	273	-11	-35		290	670 008	2	
245	269	24	39		296	298	2	U A
2/11	276	35	4		292	288	- <b>f</b> i	4 .
280	261	=19	- 39	•	296	299	3	-4
200	691 691	11	11		292	294	2	4.
209	200	11	- 2.	1	292	295	3	0 -
212	213	1	-3	ĩ	292	295	3	0
276	273	-3	-4	)	292	295	3	0
280	270	-10	-4		292	295	3	Ο.
280	274	-6	0	•	292	295	3	0
280	284	4	8 -		292 ′	295	3	0
315	284•	-31	-35		257	285	28	35
284	285	1	31		292	288	+4	-35
284	288	4	0		292	291	- 1	00
323	320	-3	-39		202	295		ő
331	289	-42	-8		222	2/3	-03	о. С
331	295	-36	0		272	209	-23	0,1
296	303	7	35		292	295	3	0
300	332	32	- 4		292	295	3	0.
304	303	- 1	-4		288	200	U	, 4, •
304	307	3	n	'	292	291	-1	-4.
304	307	3	n n	1	288	289	1	2 <u>1</u> ·
308	307	-1	- /1		296	291	-5	-8
200	211	- 7			292	294	2	4
504	207	2			292	295	3	0 ′
304	307	ు - జ	<u> </u>					
304	299	-5	U .					
257	255	. = 2	47,					
288	284	-4	-31					
284	254	-30	4					
284	277	-7	• 0					
284	276	-8	0 -				•	
284	288	4	0 -					
288	291	3	-4					
288	289	1	0					
288	291	3	0	]				
288	320	32	0	-				
288	295	7	0					
296	289	-7	-8					
296	319	23	0					
296	306	10	ñ					•
304	295	-9	-8					
296	299	3	, я́					
304	307	. 3		1	۲			
308	307	-1	<u>-</u> 4.	}			,	
304	303	- 1	- <u>-</u>	1				
304	200	۰ د	n	1.				
204	311	с С	U ·	1	ı.			
200	211	ა ი	-1.					
200	202	<u>່</u>	U	1 1				
300	303	-5	U '					
308	307	-1	U					
304	311	7	4.			•		
304	310	6	Ο.			ν.		
308	295	-13	-4.	ł				
304	307	3	4 -	1				
265	307	42	· 39 '-	1				
296	294	-2	-31 '-					
296	299	3	0	<u> </u>	* *			
1				-				/

ł

## TABLE A.24. 1967 Valve data for Fig. 8.21. Sluggish top cooling

#### valve with zero error

274 N

^{ر ورو} بو ------

٢

-					,					
N	431	436	5	0	**************************************	438		 6		
1.	431	436	5	0	•	400	449	6	- ^	
	435	440	5	-4		442	443	š	-4	
	431	434	3	4 .		442	449	7	0-	
1,	431	437	6	0	1	442	448	6	0.1	
	431	436	5	0	· ~		· ~~0	2	- 1	
1	431	436	5	0.		440	440	5		
	431	436	5	0		442	441	10		
	431	436	5	0		446	~4JZ ^4JZ	<u>د</u> ب		
1	435	440	5	-4		442	440	6		
4	435	440	5	0		442 ,	440	. 4		
	435	440	5	0		442	440	- 2	0 7	
	435	440	5	0		442	440	- 2		
Ι,	431	440	9	4		442	440	6	. 0	
ľ	435	440	5	-4-}		442	440	5	ů l	
1	435	439	4	0 •		442	441	5	ů l	
	431	440	9	4		442	441	5		
;	435	440	5	-4		442	448	0 6	U	
	431	428	3	4		438	443	5	4	
ł	427	431	4	4		435	444	- 2	3	
k	427	439	12	0		399	396	-3	30	
	427	428	1	0		438	442	4	- 39	
	431	429	-2	-4		431	444	13		
	427	436	9	4		435	440	5	-4	
<b>.</b>	423	427	4	4-		438	440	2	-3	
ł	431	436	5	-8-		438	440	2	<u> </u>	
	431	428	· -3	0 -		438	444	Б — (		
ľ	431	436	5	0 ~		442	430	-0	-4	
	438	440	2	-7.	1	438	447	7	4	
i,	435	440	5	- 3		438	442	4	ů j	
ł.	438	440	2	-3 -	+	438	445	• 6	0	
	438	444 ·	6	0	'	442.	444	2	-4	
	438	444	6	0 - 1		442	450	8	<u>u.</u>	
	438	441	3	0.		442	448	0	0	
	438	442	4	0 - )	4	442	448	-1	· _ ^	
	438	440	2	0 \		446	445	-1	-4	
ţ	438	444	6	0 <		446	452	0	0	
ł	438	444	6	0 •		446	490	44	U I	
I	442	444	2	-4	;	440	452	6	U I	
j	442	448	6	0 )	i	446	452	-10		
1 ·	442	449	7	0 - 0		450	440	-10		
	442	448	6	0 •		450	438	6	• 0	
	442	445 `	· 3	0 -		450	430	6	0	
	442	444	2	0.		450	436	6	0.	
	438	448	10	4 -		450	430	6	0 0.	
1	438	442	4	0 - [	1	450	430	10	0-	
	438	444	6	• 0		440	450	10	-7	
	442	448	6	-4		450	433	- 2	- <del></del> -	
	438	448	10	. 4	1	450	440	-2	, n	
1	438	445	7	• 0		450	440 ///	- 2	· 7	
	438	444	6	0 .	1	440 250	440	-0	- / .	
	438	445	7	0 . 1		450	440	- 2		
	442	448	6	-4		440	440	2		
	438	440	2	• 4 -		400	440	2	-4	
	438	445	7	0		404	430	. 2		
1	438	444	6	0		404	437	-0		
1 -	438	444	6	_ * _ 0 - <u>  _</u>	-	434	472	-2	U A	_
4		. <u>.</u>				4711	. 434	4	<b>4</b>	
• t				205						

395

,

ł

.

Ń

top cooling valve with zero error

		·····		<u> </u>	•				<u> </u>
-1	450	456	6	0 1		100-			- <u>-</u>
1	446	456	10	4		128	ግግ ፡ ፈላዩ	10	4
	450	456	6	-4		4.50	394	1-48	-4
	450	408	-42		•	112	442	40	Δ.
	446	452	6	4 .		438	448	10	n
	411	452	41	35		438	442	.0	õ
	442	451	9	-31		435	C 244	9	3
	450	452	2	-8		433	444 444	6	-3
	450	455	5	U .		438	440	ő	n l
	450	453	3	0		438	445	7	õ
	454	452	- 5	-4		435	440 440	5	3
	454	458	4	U ·		438	441	3	-3
	450	456	6	4	•	400	448	6	· - 4
	454	456	2	-4		435	444	- 9	7
	454	459	5	U		431	440	9	4
1	454	459	5	U `		435	444	9	-4
	454	459	5	U		438	444	6	- 3
ľ	454	448	-6	0		438	442	4	0
	454	448	-6	U 0		438	443	5	0
	454	453	••••	- 0		438	443	5	0
į	454	465	11	0 -		438	444	6	0
	458	462	4	-4	ľ	435	444	9	3
	454	457	3	4.	•	435	440	5	0
	450	454	4	4	I.	· 		-	
	450	459	, 9	U I					•
	450	456	. 6	U					
	450	452	2	U 0					
	450	451	1	U n					
	450	430	6	+ U n				-	
	430	430	- 37	ں ار				*	
	440	A07 A48	51						
	446	452	6	- 4 .					
	446	452	6	0					
	442	451	9	4					
	442	445	3	0					
	407	449	42	35					
	438	448	10	-31					
	446	452	6	-8					
	440	452	12	6 -					
	446	452	6	-6,					
	442	450	8	4.				,	
	446	454	<b>`</b> В	-4.					
	446	452	6	0 -					
	442	448	6	4`、					
	446	447	1	-4					
	446	451	5	0					
	446	448	2	Û					
	446	452	6	0					
	450	452	2	-4					
	446	449	3	4.	ļ				
	442	448	6	4					
	446	448	2	<b>-</b> 4`	· ·				
	442	447	5	- 4					
	442	448	6	U -	]			•	
-	438	445		• 4 n	1				
1	<u>t 438</u>	440	2	U	L				

## TABLE A.25. 1967 Valve data for Fig. 8.22. Sluggish bottom

## cooling valve with zero error

4						<del></del> _		<u> </u>		
	6821	820	-1	0	• •	864	870	6	0 .	
ļ	825	833	ธี	- 4		864	874	10	0 -	
	856	866	10	-31		864	866	51	0 •	1 -
- [	860	860	0	- 4	•	864	806	-58	0 l	2
1	860	870	10	0		860	819	-41	4	•
	817	815	-2	43	[	817	864	47	43	;
ſ	849	858	9	-32	. 1	817	866	49	0	
	849	858	9	0	1	-892	861	-31	-75	<b>.</b>
	849	849	0	0	1	817	819	2	75	
ł	849	848	-1	0		860	864	4	-43	
- {	853	859	6	-4		845	848	3	15	
	853	848 •	-5	0		845	853	8	0_	4
	853	866	13	0		845	849	4	• 0.	1
ľ	853	864	11	0		845	853	8	0	4
1	856	858	2	-3	<b>1</b>	841	847	6	4	'
	856	861	5	U	١	841	845	4	0	
Į	856	860	4	U		841	842	1	0	
	6 856	860	4	U		841	838	-3	C	
- 1	856	862 •	6	Ŭ	ŀ	837	844	7	4	
	860	803	10	-4	ĺ	837	846	9	0 -	
	860	07U 849	10	0	ĩ	837	846	9	0-	
	000 840	870	0 10	U . 0	5 1	837	845	8	· 0 /	
	860	870	10	0	1	833	837	4	4	
1	1 000 864	866		- (1		837	845	8	-4	
Î	864	865	1	14 () •		833	837	4	4	
	864	864	• ຄ	. 0	) )	833	834	1	U .	
	864	864	0 N	0		833	835	2	U .	
	868	864	- 4	-4		833	834	1	U.	
į	868	877	-	 10		829	833	4	- 4 - [	
	868	874	6	0	1	829	832	3 2	0	1
	868	870	• 2	0,		800	002 830	2	0.	
	868	870	2	0		805	032 897	2	0.	
	872	878	6	-4.		805	833	g	n	
	872	872	0	0		825	833	8	0	
i	872	882	10	0	1	821	826	5	4	
	876	874	-2	- 4	1	821	823	ž	0 -	1
	837	885	48	39 _	Į	821	824	3	ō.	1
	876	885	6	-39 ·		821	823	2	0	
	872	877	5	41	1	821	829	8	0	
	872	877	5	0	1	817	824	7	4	
	876	877	1	-4.		817	820	3	ο.	
	872	874	2	4.		817	823	6	0 -	1
	872	874	2	0,	1	829	815	-14	-12	1
ļ	872	841	-31	U	1	813	819	6	16	L.
ļ	864	877	13	8	1	813	816	3	0	,
	185	814	88	18 -79	1	825	825	0	-12	•
i	864	870	1	-18·	· ·	825	828	3	0	
	004 864	070 977	10	U N	1	825	825	0	0	
	86/	874	10	, , n	1	825	.782	-43	0	,
	148 148	866	÷0	n		829	829	0	-4	
ļ	864	866	2	û		825	831	6	4	1
i	864	872	ĸ	n	į	860	782	-78	-35	
	864	874	10	Û.	ł	821	824	3	39	
	864	870	6	Ū,	1	025	020	ა იი	-4 .	
_	864	866	2	ů x		810	811	20	3	
	<b>•</b>						· · · ·	-	I	

397

.

.

•

TABLE A.25. (cont'd)

ì

1967 Valve data for Fig. 8.22. Sluggish

bottom cooling valve with zero error

4						r		<u> </u>		•
7	<u>໌ 810</u> ້	811	1	0		806	5(11		/ I	
	810	812	2	n		000	011	5	••	
	010	010				810	807	-3	- 4	
	774	816	42	36 -	4	841	838	-3 1	-31	
1	806	815	9	-32		806	811	5	35	
- {	806	806	0	Ο.		000	011		55	1
	000	000		0 1		806	817	11	U	
1	806	807	1	U		806	761	-45	0	
	806	806	0	0		208	ጸስን	1	n	
	806	811	5	ο.		000	001	•	0	
	000	011	5			810	848	38	-7	· ·
	802	806.	4	21		806	807	1	4	
- {	802	815	13	Ο.	1	800	761	- /11	4	1
- 1	813	781	-20	-11		002	101	-41	-1.	
	013	701	-52	-11		790	, 811	21	12	
	813	812 •	2	U ·	1	802	808	6	-12	i i
	770	820	50	43 -		800	804	j.	_ n	!
	813	811	- 2	-/3 .	'	002	000			,
1	a10	0		-10	[	759	791	32	43	l
	813	826	43	U	l	798	792	-6	-39 ·	
	806	820	14	7		790	793	۲ ۲	g -	
	នាំព	816	6	- 4		1.20	770	ů,		
	Ø10	V10	Ň			180	189	3	4	i
	010	010	U	U		782	798	16	4	'
- [	810	814	4	0		786	795	9	- /1	i i
ł	810	817	7	n		700	200			<u>ا</u>
ł	912	Q16		- 3		182	195	13	4	
	013	015	2	- 3		782	790	8	0	
	845	820	-25	-32		778	789	11	4	
1	813	815	2 -	32 1		700	701		_ /	
ŀ	812	<b>R15</b>	0		,	102	191		- 4	
- #	_013_	~ 010			¹	778	788	10	4	
	813	815	2	0		1 778	784	6.	۵	1
	810	819	0	3	3	770	700	10	0	1
	010		~	5		1 1 10	100	10	U	
	813	815	2	-3	1	<b></b>				4
	813	816	3	0		•	(			
	813	815	2	Û	1	s •	•	,		
	010		<u>.</u>							
1	813	815	2	Ű.	]					
	813	815	2	Û	í			•		
	810	890	12	3	ł		•			
1	010	220	12	5	1					
ſ	813	855	9	-3	1					
	813	816	3	0	1					
1	8131	817	4	Ω	l					
	010	011	-							
- 1	013	010	3	U	i					
1	813	816	3	0		•				
	813	815	2	n	ſ	~~				-
	412	911	- 0	0	1					
1	013	011	, <b>-</b>	U	1					
- {	810	816	6	3	1					
	810	815	5	0						
	810	817	7	n					,	
	010	011	,	0						
	813	822	-v	<del>ຸ =</del> 3 -	1			ł		
	813	816	3	Ċ Č						
1	813	821	8	n	!					
	010	219		0	1					
	813	817	4	U	l I	-				
	813	818	5	0	1		′ <b>.</b>			
	813	816	3	0-						,
ł	812	217	4	ů.						
	013	017	4	U	ł					
l	810	815	5	3-	Į –			1		
	813	816	3	- 3 ·			*	-		
-	010	0.1.	ž	~	1					
l	013	010	2	Ų	1					
	810	807	-3	3	1					
	806	814	к	Δ.	1					
	806	0 1	1	- <b>-</b> , ·		ı				
-{	000	007	1	U	1					
	806	812	6	٥·	1					
	810	811	1	- 4					••••••••	
			-	-						

\$

-

### TABLE A.26 1967 Valve data for Fig. 8 23. Sluggish bottom

#### cooling valve with zero error

				F '	<			
497	<b>550</b>	53	Ū		67e			
450	501	51	47		575	282	10	94.
1 400	548	55	- 13		704	741	37	-129
473	740	33	40		708	741	33	-4
442	400	30	51	•	591	608	17	117
474	479	5	-32		673	683	10	-82
524	<u></u> ,557	33	-50		665	647	-18	
520	487	-33	4		716	719	.0	- 5 1
478	483	5	42		499	117	3	-21
524	503	-21	-46		500	694	6	28
493	504	11	31		595	643	48	93
	504	40	47		751	643	-108	-156
440	508	- 02	41		634	643	9	117
524	495	- 29	- 18		712	717	5	- 78
493	536	43	31		720	65.6	- 64	-8
493	527	34	0		673	670	= 2	
497	499	2	-4		747	722	-3	47
493	502	9	4			733	-34	-94
493	536	43	0		540	749	209	227 -
520	456	- 64	- 27	1	700	704	4	<del>-</del> 160
520	514	29	74.	1	700	709	9	0 · 0
440	514	00	747		704	711	7	-4
489	495	6	-43		708	709	1	- 4 -
524	492	-32	- 35	ŧ	712	722	1 0	- 1
395	478	83	1 29	{	696	624	- 70	
470	510	40	- 75 '	ŧ.	452	624	- 12	10
552	458	-94	-82	ļ,	7.7	2053	12	43
520	534	14	32 .		747	185	38	-94
474	480	6	46		513	596	83	234
) <u></u>	527	• 91	28	Ē	603	588	-15	-90
440	402		10	ľ	634	615	-19	-31
421	423	-4	- 07	1	630 -	635	5	4
454	464	10	-21		536	577	41	94
466	465	- 1	-12	Į	595	573	- 22	-59
466	522	56	0 `	ł	638	594	- 44	- 43
466	510	· 44	0	ł	591	602	11	43.
552	553	1	-86	ł	620	602	11	41.
466	445	-21	86		604	043	11	-43
548	472	-76	<b>~-</b> 82	ł	503	688	85	31
185	527	42	63	<b>,</b>	599	608	9	4.
517	· 521	-76	+ 32 \	ŧ.,	548	582	34	51.
	991	70 AE	20		638	643	5	-90 -
485	530	45	52		513	543	30	125 -
368	576	228	117		587	644	· 57	-74
384	1 492	108	-16		571	543	- 28	161
524	r 536	12	-140		610	543	- 67	- 20
552	2 565	13	· <b>-</b> 28 .		560	571	11	50
- 599	600	. 1	-47		571	599	11	50,
485	615	130	114		571	500	17	-11 -
591	526	- 65	-106		5/1	5/6	5	U
AUX	612		-15		520	ວວປ	10	51 -
542	. 5.6A		43		563	643	80	-43
210	, JU4 2 200			ļ	560	609	49	3- [
	, 023		- 33 -	1	571	583	12	-11 - 1
657	632	: -25	- 37	1	552	561	9	19.
634	646	12	23	1	563	600	37	-11
642	2 691	49	-8		560	565	5	3
595	5 687	92	47		591	510	- Q 1	- 21
681	697	16	•86	.	512	541	<u> </u>	= 31 10
606	5 703	3 97	· 75 ·	1	540	501	40	18 -
642	2 651	9	-36	1	540	545	5	•27 ·
694	5 694	-2	+54	1	402	218	56	78 ·
	- C/ -	2 <u>2</u>	27	· ·	532	541	9	-70
+		<u> </u>	· 6. 1	÷	532	541	_ 9	0

لر

# TABLE A.26. (cont'd) 1967 Valve data for Fig. 8.23. Sluggish

bottom cooling valve with zero error

579	620	· 41	-47		474	499	25	· · 31†	
497	550	53	82 -		Δ7Δ	481			
528	531	3	- 31	1	454	461	. 7	201	
571	527	-44	-43	1	ላናበ እናበ	401 494	- 26	20	
489	584	95	82	•	520	424	- 29	-90	
532	543	11	-43		502	474	- 38	-02	
513	462	-51	19		201	200	5	31	
513	623	110	- <u> </u>		384	483	99	11/	
435	483	48	78		434	464	10	- 70	
431	623	192			501	514	13	-47	
587	578	-5	-150	-	509	527	18	-8	
427	522	95	156	-	470	492	22	39	
579	202	23	130		345	480	135	125	
450	45 4	27	-152		. 345	521	176	0	
4.70	434	4	129		501	459	-42	-156	
470	437	-19	- 28		466	495	29	35	
1 520	403	-37	-42		466	479	13	0	
517	417	9	50	1	501	428	- 73	<del>-</del> 35	
511	538	21		· · 1	423	499	76	78	
481	553	72	36 1		552	573	21	-129	
520	521	1	- 39		474	482	8	78	•
478	526	48	42		474	<b>_ 483</b>	9	0	•
478	483	5	. 0		474	· 483	9	0 (	
474	482	8	4		474	483	9	0	
474	481	7	οļ		392	481	89	82	
470	479	9	4		454	430	-24	<del>,</del> 62	
435	504	69	35 -		501	459	-42	-47	
431	465	34	4.		423	488	65	78	
517	489	- 28	-86.		505	523	18	-82	
517	495	-22		· · ·	501	495	-6	· 4	`
4/4	501	27	• 43	1	470	475	5	31	
395	419	84	79.		474	472	•-2	-4	
513	230	23	-118	ļ	474	481	7	0	
400	481	15	41.		474	481	<b>7</b>	0	•
400	4/4	8	U-		388	480	92	86	
402	467	5	. 4		376	420	44	12	
509	510	1	-47		435	413	- 22	-59	
470	400	10	31	ι (	532	606	74	-97.	
400	472	6	12.		458	496	38	74 -	
474	4/9	5	-8	· ·	419	506	87	39 -	
470	504	34	4	1	501	506	5	-82	
- 423	4/1	48	47		384	479	95	117	
403	374	-9	20		450	454	4	-66	
435	441	. 6	- 32		458	424	<del>-</del> 34	-8	
431	433 605	140	_ 24		458	583	125	0	
402	020	103	-31		579	420	<del>-</del> 159	-121	
544	283 E17	39	-82		560	529	-31	19 ·	
513	510 704	3	31		560	448	-112	° 0	
433	487	52	18		489	• 546	57	71	
300	447 30 *	61 0 4	47		497	518	21	-8	
270	384 ***	У4 О	784		540	527	-13	-43	
438	441	ۍ م	-148 - 47		493	508	15	47 .	_
485	217	34	-4,1		505	502	-3	-12.	-
404	401 850	دد 1 – 1	15	•	509	550	41	-4 '	
454	400 520	~ I	U • 2 0		505	523	18	· 4 ·	
330	528	4 ∠∩	-02	1	509	530	21	-4,	•
505	204 1/20	0U ● 7 つ	02 - 21	ļ	513	572	. 59	-4	
1	452		-31	<u>t</u>	•				
#### bottom cooling valve with zero error

¢

517	525	8	-4
513	517	4	4
517	529	12	-4
517	527	10	0.
435	499	64	82
466	471	5	-31
505	501	-4	- 39
509	503	-6	-4
548	561	13	- 39
466	534	68	82
544	510	-34	-78
548	55.4	6	-4
388	527	1 39	160
501	526	25	-113
579	578	-1	-78 (
552	561	9	27
505	495	-10	47
			• •

**.** . .

## TABLE A.27. 1970 Top cooling valves data

VALVE NUMBER 1 224	VALVE NUMBER 2 224	2 'VALVE NUMBER 3 224
658 651 -7 0	492 491 -1	0 623 617 1-6 -8
658 670 12 0	492 491 -1	-4 615 617 2 4
658 644 -14 0	488 491 3	0 619 617 -2 0
658 670 12 -47	488 491 3	74 619 617 -2 4
611 604 -7 32	562 551 -11	-74 623 620 -3 4
	488 486 -2	0 627 620 -7 4
	488 486 -2	4 631 627 -4 4
	492 486 -6	
639 644 D U		
6/3 639 =/ =/	488 486 -2	
639 632 = 7 0	1492 400 -0	
639 646 7 -4	348 346 -2	62 646 647 1 4
635 625 -10 0	410 401 -9	63 650 647 -3 4
635 641 6 0	473 471 -2	15 654 647 -7 0
635 614 -21 0	488 478 -10	0 654 648 -6 4
635 632 -3 15	488 482 -6	0 658 659 1 4
650 659 9 0	488 482 -6	0 662 659 -3 0
650 656 6 0	488 482 -6	-4 662 659 -3 0
650 656 6 0	484 482 -2	0 662 662 0 -43
650 656 6 43	484 482 -2	75 619 615 -4 43
693 700 7 -43	559 559 0	-59 662 659 -3 -8
650 635 -15 0	500 500 0	0 654 651 -3 4
650 632 -18 0	500 504 4 •	-12 658 659 1 0
650 639 -11 0	488 475 -13	12 658 659 1 4
650 635 -15 0	500 499 -1	0 662 666 4 0
650 653 3 0	500 499 -1	0 662 666 4 4
650 663 13 U	500 499 -1	66 666 666 U U
650 647 -2 0	500 509 3	
650 642 -8 0	508 507 -1	
650 656 6 12	508 508 0	0 674 669 =5 0
662 666 4 -12	508 507 -1	4 674 669 -5 4
650 655 5 12	512 508 -4	0 678 669 -9 -32
662 643 -19 -4	512 507 -5	-4 646 641 -5 0
658 663 5 8	508 508 0	4 646 643 -3 51
666 669 3 0	512 508 -4	0 697 692 -5 4
666 671 5 0	512 510 -2	4 701 693 -8 35
666 670 4 4	516 510 -6	0 736 737 1 -27
670 677 7 0	516 510 <del>-</del> 6	-4 709700 -9 4
670 664 <del>-</del> 6 0 [.]	512 510 -2	4 713 708 -5 4
670 655 -15 0	516 510 -6	-4 717 711 -6 0
670 674 4 0	512 516 4	
	510 510 0	
670 651 -19 0	516 516 0	
670 662 -8 -/	59/1 506 2=	
	363 416 53	63 729 731 9 -75
623 621 -2 35	426 423 -3	62 654 648 -6 71
658 663 5 -4	488 485 -3	-4 725 722 -3 -4
654 648 -6 -78	484 486 2	0 721 715 -6 -32
576 585 9 31	484 487 3	-4 689 682 -7 32
607 620 13 32 1	480 485 5	8 721 717 -4 -75
639 635 -4 0	488 486 -2	-8 646 637 -9 36
639 625 -14 0	480 483 3	0 682 676 -6 31
639 643 4-639	480 483 3-4	480 713 708 -5-713

'TABLE A.28. 1970 CVL Valves data

VALVE NUMBER 1 232	VALVE NUMBER 2 232	VALVE NUMBER 3 232
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
550 518 -32 0 550 522 -28-550	647 649 2 8 .655.6478-655	569 561 -8-569

TABLE A.29. 1970 Bottom cooling valves data

- - -

<b>'</b>	VALVE NUMB 248	ER 1		VAL VE	<u>NUM</u>	BER	2		VAL VE 248	NUM	BER	3
ł			+		<b>.</b>							
	412 412	0 0	1		365	-8	35		420	412	-8 n	~8 8
ļ	412 412	0 0 N N	ľ	408	400	U Lá	0		• 420	412	-8	-8
ł	412 410	-2 0		408	407	-1	Û		412	4121	Õ	Ō
	412 412	0 0		408	406	-2	Ó		412	412	Û	8
	412 413	1 0	1	408	408	0	Û		420	412	-8	0
	412 414	2 0	ļ:	408	409	1	0		420	412	-8	0
ĺ	412 409	-3 U -4 0	4	408	413	5 0	บ ก		420	412	-8 0	-8 8
	412 405		ļ	408	410	2	U N		420	413	-7	0
1	412 408	-4 0	ľ	408	412	4	Õ		420	412	-8	Ō
	412 408	-4 0	li -	408	413	5	0		⁻ 420 [.]	412	-8	O
	412 411	-1 0		408	410	2	0		420	412	-8	-8
	412 412 *	0 0	ľ	408	410	2 ·	· 0		412	412	U	8
	412 416	4 U 2 N	ŀ	400	411	ა 5	0		420	412	- o - g	-4
	412 416	4 0		408	411	<u></u> 3	Ö		416	412	-4	· 0
	412 416	4 -4		408	410	2	Ō		416	413	-3	0
	408 405	-3 0		408	4120	4	0		416	412	-4	0
	408 405	-30 -20	1.	408	413	5	4	{	416	412	-4	0
	400 405 208 205	-3 U -3 N		412	405 486	-1 -2	~-4 ก		416	412	- <u>4</u>	n
	408 405	-3 0		408	407	-1	-8		416	413	-3	Ő
	408 403	-5 0		400	402	2	Ō		416	412	-4	0
	408 405	-30		400	402	2	4		416	412	-4	0
1	408 409	1 0		404	403	-1	0		416	412	-4	0
	408 409	1 U	ł		403	-1	U n		416	413	-3 -7	U N
	408 413	5 0	1	404	405	1	0	-	416	412	-4	Ö
	408 413	5 0	ľ	404	406	2	0		416	412	- 4	0
	408 413	50		404	409	5	Û		416	412	- 4	0
	408 413	5 0		404	405	1	0		416	41.3	-3	0
	408 413	5 0		404	406	2	0		416	412	-4 	U N
	408 412	4 U 4 N	ŀ	404	400 410	6	0		416	413	-3	+4
	408 410	2 0		404	405	1	Õ		412	412	0	Û
	408 408	00	í	404	404	0	0		412	412	0	0
	408 409	1 0		404	405	1	0		412	412	0	0
	408 409	1 0		404	408	4	U		412	412	บ ก	n I
1	408 411	2 0	Į	404	403	-1	0		412	412	Ö	0
	408 412	4 0		404	403	- 1	Õ		412	413	1	0
	408 412	4 0		404	403	- 1	0	1	412	413	1	0
·	408 412	4 '0		404	403	-1	0	t.	412	413 419	· 1 n	U n
	408 413	5 U 5 N		404	404	2	U N		412	412	0	ő
	408 413	5 0		404	409	5	Õ		412	413	1	Ō
	408 413	5 Û		404	409	5	-4		412	412,	0	. 0
	408 413	5 0		400	405	5	-4		412	405	-7	0
	408 413	5 0		396	397	1	4		412	404 ⊿05	-8 -7	U n
	400 412 408 406	-4 U -2 ∩	1	393	396	- J 3	- 1	1 ·	412	404	-8	-8
	408 406	-2 0	.	400	396	-4	- 7		404	404	Õ	8
	408 404	-4 0		393	396	3	0		412	405	-7	-4
	408 407	-1 0		393	396	3	0		408	405	-3	0
	408 405	-3 0		393	396	3	0	6	408	404 705	₹4 ⊑	-8 2
	408 406 202 202	-2 -4 2 n		373	397	4 ⊿	U N		408	404	- 4	0
	404 408	4 0	1	393	391	-2	-4		408	404	-4	ō
	404 409	5 0		389	390	1	7		408	404	-4	0 -
1	404 409	5 0	1	396	391	- 5	0		408	404	-4	0
ł	404 397	-7-404	_ل_	1 <u>396</u>	390	-6-	396	Ł	408	404	- 4-	408

----

		HALLE ANDER 2
VALVE NUMBER 1 240	240	240
9995 $-4$ $-24$ 7549 $-26$ 1287903271141140 $-8$ 106103 $-3$ 121181224 $-4$ 114107 $-7$ $-8$ 106105 $-1$ 4110102 $-8$ 4114113 $-1$ 39153149 $-4$ $-47$ 1061104 $-3$ 10394 $-9$ $-4$ 991023 $-36$ 6357 $-6$ 861491534 $-15$ 1341362 $-28$ 106102 $-4$ 8114110 $-4$ 31145140 $-5$ 414916314 $-39$ 110106 $-4$ 8118107 $-11$ 20138142 $4$ $-16$ 122121 $-1$ $-8$ 114113 $-1$ 4138130 $-8$ $-39$ 99100139138137 $-1$ 27165170 $5$ $-16$ 149152320169166 $-3$ 23192198 $6$ $-27$ 165170 $5$ $-16$ 149152320169166 $-3$ 23<	161 163 2 12   173 169 -4 -31   142 134 -8 -4   138 141 3 27   165 166 1 -23   142 135 -7 -4   138 130 -8 11   149 151 2 4   153 145 -8 -19   134 127 -7 4   138 131 -7 43   181 177 -4 -16   165 158 -7 27   192 187 -5 -23   169 156 -13 .47   216 221 5 -16   200 194 -6 4   204 198 -6 55   259 256 -3 -31   228 222 -6 23   251 248 -3 -70   181 183 2 86 </td <td>81$77 - 4$08188$7 - 23$58$57 - 11$15$73$$77 4$0$73$$78 4$5$73$$65 - 8$$43$$116$$116$$0 - 35$$81$$81 0$$4$$85$$81 - 4$$31$$116$$104 - 12$$0$$116$$117 1 - 19$$97$$92 - 55$$7$$104 92 - 12$$40$$144$$140 - 4$$0$$144$$144$$0 - 28$$116$$116$$0$$147$$144 - 3 - 11$$136$$130 - 6 - 4$$132$$135$$3$$140$$137 - 3 - 32$$108$$101 - 7$$120$$114 - 6 - 12$$108$$109 - 1$$32$$140$$136 - 4$$19$$159$$152 - 7$$8$$167 - 164 - 3 - 8$$159$$155 - 4$$20$$179 - 9 - 4$$175 - 166 - 9 - 4$$171 - 164 - 7$$194$$194 - 4$$198$$194 - 4$$198$$190 - 8$$167 - 164 - 7$$194$$194 - 4$$198$$194 - 4$$202$$29 - 5 - 16$$198$$191 - 7 - 4$$206$$208 - 2$<!--</td--></td>	81 $77 - 4$ 08188 $7 - 23$ 58 $57 - 11$ 15 $73$ $77 4$ 0 $73$ $78 4$ 5 $73$ $65 - 8$ $43$ $116$ $116$ $0 - 35$ $81$ $81 0$ $4$ $85$ $81 - 4$ $31$ $116$ $104 - 12$ $0$ $116$ $117 1 - 19$ $97$ $92 - 55$ $7$ $104 92 - 12$ $40$ $144$ $140 - 4$ $0$ $144$ $144$ $0 - 28$ $116$ $116$ $0$ $147$ $144 - 3 - 11$ $136$ $130 - 6 - 4$ $132$ $135$ $3$ $140$ $137 - 3 - 32$ $108$ $101 - 7$ $120$ $114 - 6 - 12$ $108$ $109 - 1$ $32$ $140$ $136 - 4$ $19$ $159$ $152 - 7$ $8$ $167 - 164 - 3 - 8$ $159$ $155 - 4$ $20$ $179 - 9 - 4$ $175 - 166 - 9 - 4$ $171 - 164 - 7$ $194$ $194 - 4$ $198$ $194 - 4$ $198$ $190 - 8$ $167 - 164 - 7$ $194$ $194 - 4$ $198$ $194 - 4$ $198$ $194 - 4$ $198$ $194 - 4$ $198$ $194 - 4$ $198$ $194 - 4$ $198$ $194 - 4$ $198$ $194 - 4$ $202$ $29 - 5 - 16$ $198$ $191 - 7 - 4$ $206$ $208 - 2$ </td

405

Temperature					
1	2				
0.6928	0.5477				
0.7348	0,5099				
0,7483	0.5292				
0.7211	0.5292				
0,6633	0.7348				
0.4000	0.6481				
0.4243	0.6928				
0.6481	0.5099				
0.4472	0.9274				
0,6000	0.6633				
0.7746	0.5099				
0.7746	0,6325				

-

Flow					
1	2				
8,4829	11.3868				
9.3209	6.5666				
7,4377	4,9880				
12.2915	13.7273				
9.0266	12.4668				
11,9950	8,9933				
8.3798	13.4260				
11.4149	10.0965				
10,0010	11.8364				
8,5790	6.2657				
10,1341	6.4761				
7,4391	9,6685				

ş

Pressure					
1	2				
10,5109	7.2194				
12.6285	8.1793				
9,5676	6.9914				
8.7761	8,1780				
5.6125	9.0266				
10.0430	10.2235				
8,0299	7.6967				
8.0212	7.9019				
7.7278	6.7409				
8,1179	12.0731				
7.7291	8.4994				
12.5292	10,7406				

· · · · · · · · · · · · · · · · · · ·						
Gas pressure						
1	2					
4.2450	4.9437					
6.4777	4,5475					
7.1916	12,7914					
6.3859	10,4307					
6.8279	8,9833					
7.2291	11.5569					
7.7614	. 6.1401					
7.9031	6.1693					
7.0753	6.4715					
7.3946	8,5697					
7,8230	7,1456					
6.6182	4.5056					

Ad

•

.

Data for Industrial example.

٠

٤,

### Table A.32.

ĺ

-	
•	

r		Dece atoms -	Menerina an	· · · · · · · · · · · · · · · · · · ·	Baaratance	Monour an
l		Resistance	Mercury in		Resistance	Mercury in
I	_	thermometer	steel thermometer		thermometer	steel thermometer
	Time	logging	reading	Time	logging	reading
L	. Mins	°C	° C	Mins	°C	° C
F	0	40	37.5	160	144.5	147.5
	10	49.4 .	50.0	170	151	153
	20	56.8	55.0	180	·156.8	159
	30	63.5	60.0	190	162.2	165
	40	69,8	69.0	200	167.9	169.0
Į	50	75.6	75.0	210	171	170.5
	60	81.5	80.0	220	170.2	170.0
	70	87	86.5	230	170.2	170.0
ļ	80	93.3	95.0	240	170.5	170.0
	90	104.1	102.5	250	170.5	170.0
	100	114.7	113 _	260	171.3	171.0
	110	121.1	120	270	172.1	171.5
	120	125.6	125	280	171.7	171.5
	130	129.8	129	290	171.3	171.5
	140	133.6	135	300	171.5	171.5
	150	137.9	140			
L		•		1		

.

Table A: 33 Resistance thermometer malfunction data for Fig. 9.3

Time	Resistance thermometer logging	Mercury in steel thermometer reading	Time	Resistance thermometer logging	Mercury in steel thermometer reading
Mins.	° C	° C	Mins	°C	°C
0	115.9	180.0	250	198.4	183.5
10	145.4	180.0	260	199.9	187.0
20	163.2	180.0	270	201.4	188.5
30	167.5	180.0	280	202.8	190.5
40	163.3	180.0	290	204.1	193.0
50	159.6	180.0	300	205.3	195.0
60	157.3	180.0	310	206.8	198.0
70	157.0	180.0	320	208.6	200.0
80	159.9	180.0	330	209.3	201.5
90	163.1	160.0	340	207.8	202.5
100	166.3	130.0	350	208.2	202.5
110	169.6	115.0	360	208.8	201,5
120	172.3	102.5	370	210.2	200.5
130	174.6	102.0	380	212.4	200.0
140	176.9	102.0	390	214.3	200.0
150	179.1	102.0	400	214.7	200.0
160	181.3	135.0	410	215.8	200.0
170	183.4	157.5	420	216.7	200.0
180	185.0	162.0	430	206.4	200.0
190	187.3	171.5	440	197.4	200.0
200	189.0	173.5	450	190.0	200.0
210	191.0	175.0	460	183.4	200.0
220	193.0	177.5	470	178.6	200.0
230	195.0	179.5	480	177.6	201.5
240	197.1	182.0	490	173.3	202.0

Table A.33

Resistance thermometer malfunction data for Fig. 9.3 (continued)

Tıme	Resistance thermometer logging	Mercury in steel thermometer reading	Time	Resistance thermometer logging	Mercury in steel thermometer reading
 Mins	°C	°C	Mins	° C.	°Č
500	172.3	202.5	750	128.1	200.5
510	171.7	204.0	760	129.8	203.0
520	171.2	205.0	770	133.6	203.5
530	171.1	205.0	780	137.5	204.0
540	170.4	205.0	790	141.5	202.5
550	169.2	205.0	800	144.9	202.5
560	164.7	205.0	810	148.4	201.0
570	160.4	205.0	820	151.7	191.0
580	151.1	204.0			
590	24.5	203.5			
600	22.5	203.0			
610	23.5	204.0			•
620	24.2	205.0			
630	25.9	205.0			
640	27.5	205.0			
650	39.9	205.0			
660	53.7	205.0			
670	64.1	. 205.0			
680	73.4	205.0			
690	77.7	204.0			
700	78.5	203.0			
710	79.4 `	202.5		•	
720	84.6	202.0			
730	95.6	201.0			
740	115.9	201.0			

•

Table A. 34Resistance thermometer malfunction data for Fig. 9.4

	Resistance thermometer	Mercury in steel thermometer		Resistance thermometer	Mercury 1nf steel thermometer
Time	logging	reading	Time	logging	reading
Mins	°C	°C	Mins	°C	°C
0	60.5	113,0	250	51.2	197.0
10	33.7	112.5	260	48.9	198.0
20	77.9 .	112.0	270	46.7	200.0
30	151.9	111.0	280	• 44.5	203.0
40	20.8	115.0	290	42.6	205.0
50	40.5	135.0	300	40.8	206.0
60	87.0	155.0	310	39.3	208.0
70	71.8	171.0	320	132.0	209.0
80	68.4	170.0	330	89.6	210.0
90	84.9	165.0	340	91.1	212.0
100	111.9	162.0	350	90.9	214.0
110	74.0	160.0 .	360	90.2	215.0
120	26.6	162.5	370	89.7	215.0
130	114.8	167.0	380	88.8	215.0
140	81.2	170.0	390	87.7 -	215.0
150	111.6	174.0	400	§ 86.7	215.0
160	86.4	176.0	410	85.7	215.0
170	81.0	180.0	420	84.7	215.0
180	40.2	· 182.0	430	84.7	218.0
190	58.3	184.0	440	83.5	220.0
200	87.1	186.0	450	82.5	220.0
210	70.9	187.5	460	82.0	221.0
220	148.4	190.0	470	80.8	222.0
230	129.6	193.0	480	80.3	215.0
240	257.5	195.0	490	79.2	205.0

410

J

<u>Table A</u>.34

.

# Resistance thermometer malfunction data for Fig. 9.4 (continued)

•

Ŧ

	Resistance thermometer	Mercury in
Time	logging	reading
Mins	°C	<u> </u>
500	78,4	195.0
510	77.6	192.0
520	76.8	185.0
530	75.9	184.0
540	75.1	180.0
550	74.5	177.0
560	73.7	176.0
570	72.9	176.0
580	72.2	176.0
590	70.9	175.0
600	70.8	175.0
610	70.1	175.0
620	69.5	167.0
630	68.7	162.5
640	68.1	75.0
650	67.3	30.0
660	66.9	25.0

.

٠

.

•

Table A.35Resistance thermometer malfunction data for Fig. 9.5

<u>Time</u> Mino	Resistance thermometer logging °C	Mercury in steel thermometer reading °C	<u>Time</u>	Resistance thermometer logging °C	Mercury in steel thermometer reading
0	24.4	45.0	270	24.4	183.0
10	25.4	55.0	280	24.9	185.0
20	25.8 •	65.0	290	29.9	188.0
48	26.6	95.0	300	. 36.0	190.0
55	26.6	98,0	310	36.8	192.0
70	26.9	100.0	320	45.2	195.0
80	-	-	330	54.1	196.0
90	-	-	340	63.7	198.0
100	-	-	350	74.5	199.5
110	25.8	140.0	360	84.7	201.0
120	24.7	142.0	370	91.5	203.0
130	24.4	145.0 -	380	97.1	205.0
140	24.3	149.0	390	106.0	206.0
150	24.3	152.0	400	116.5	207.0
160	24.4	156.0	410	126.0	210.0
170	24.5	160.0	420	131.0	210.0
180	24.7	162.0	430	134.8	212.0
190	24.9	163.0	440	137.7	214.0
200	25.0	165.0	450	140.5	215.0
210	25.02	168.0	460	143.2	217.0
220	25.3	170.0	470	146.4	217.5
230	25.8	173.0	480	150.2	217.5
240	25.5	176.0	490	153.4	217.5
250	24.1	179.0	500	156.4	217.5
260	24.1	181.0	510.	156.8	217.5

Table A. 35

-1

Resistance thermometer malfunction data for Fig. 9.5 (continued)

1						
	Фъ то	Resistance thermometer	Mercury in steel thermometer	• •	Resistance thermometer	Mercury in steel thermometer
	<u>IIMe</u> Mins	LORRTHR TORRTHR	° C	Mins	<u>•C</u>	° C
	520	159.0	217.5	770	204.7	195.0
	530	161.0	217.5	780	206.4	186.0
	540	160.6	218.0	790	, 206.9	183.0
ļ	550	164.1	219.0			
	560	167.2	220.0			
l	570	170.3	220.0			
	580	170.1	220.0			
	590	172.4	220.0			
	600	173.9	220.0			
	610	176.3	220.0			
	620	178.3	220.0			
	630	180.1	220.0			*
	640	182.5	221.0			
	650	185.3	221.0			
	660	184.7	221.0			
	670	181.5	222.0			
	680	180.8	222.5			
	690	188.0	, 222.5			
	700	194.0	222.5			
	710	195.7	223.0			
	720	197.2	223.0			
	730	198.4	223.0			
	740	200.2	223.0			
	750	201.7	212.0			
	760	203.0	203.0			

