
University Library 

•• Loughborough 
., University 

Author/FIling Title ..... ~~.P..~.'0:~.~~ ........................... . 
........................................................................................ -Class Mark ............•........... L ......................................... . 

Please note that fines are charged on ALL 
overdue items. 

FO RE~~REN(E C~.~ .. 



DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING 

LOUGHBOROUGH UNIVERSITY 

AN OPTIMAL NEPHELOMETRIC MODEL DESIGN 

METHOD FOR PARTICLE CHARACTERISATION 

BY 

APOSTOLOS ANDREADIS, DIPL.ENG. 

A Doctoral Thesis 

submitted in partial fulfilment of the requirements 

for the award of Doctor ofPhilosop,!.J.y of LO,ughborough University 

, " 

23 April 2002 - . 

,..- -, 

Supervisor: Professor Peter R..,Smith, Ph.D. 
~ - ~. ~ 

Department of Electronic and Electrical Engineering 

© BY APOSTOLOS ANDREADIS, 2002 



U Loughb.')~ 
University 
Pilk .. " I,'" : 'brary 

~ • # "'--"-.. 

Date Jj"",e1 

Class 

Ace 

Gy'O l.'1~H4-i No. 



To the open-minded 



ABSTRACT 

Scattering nephelometry is a particle characterisation method applicable to 

fluid suspensions containing impuritIes. Solutions derived by the method feature par­

ticle classification by size (diameter), volume or texture as well as continuous on-line 

and in-situ monitoring, The replacement of turbidimeters with nephelometers in many 

existing turbidity applications could result in suppression of side effects caused by 

limitations and uncontrolled parameter drifts and satisfaction of problem-defined con­

straints at virtually no change in implementation cost. 

A major issue of nephelometric model design is the selection of a mathemati­

cal tool suitable for the modelling of the data analysis system. The data fitting tech­

nique based on Multilayer Feedforward Artificial Neural Networks (MFANNs) is ad­

vantageous to any analytical approach for a number of reasons: accomplishment of 

functional approximation and classification tasks from databases of input-output data 

associations with no need of further problem or data knowledge, satisfaction of con­

straints imposed on inputs, outputs and internal complexity, distributed processing, 

low implementation cost and possibility of structural optimisation. MF ANN optimisa­

tion is distinctively significant because it reduces the number of data analysis system 

inputs to the absolute mimmum. As a matter of fact, the complexity of the 

nephelometric chamber is reduced and hence the sensing module is easier to design 

and less expensive to implement. 

This study focuses on the optimisation aspect of the scattering nephelometric 

model design. The novel Second Order Sensitivity Analysis optimisation algorithm is 

theoretically developed and incorporated to an innovative MF ANN optimisation 

scheme that gives excellent network pruning and generalisation results. The ISO 

12103-1 Arizona Fine (AF) dust is considered representative of the particles found in 

natural suspensions and examined for its light scattering properties. Theoretical scat­

tering profiles of water suspensions of filtered AF dust are calculated with the aid of 

an analytical nephelometric model derived from Mie scattering theory. Experimental 

scattering profiles of filtered AF dust samples dispersed in water are acquired by a 

commercial polar nephelometric device. Finally, two separate scattering nephelomet­

ric models are designed and optimised to classifY the theoretical and experimental 

suspensions by AF particle volume and size respectIvely. 
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CHAPTER! 

INTRODUCTION 

J' Give me a reason ... ~ 

(The Corrs, In blue, 2000) 



CHAPTER 1 

1.1 Chapter overview 

One of the aims of particle science and technology is the research and devel­

opment of new and improved ways of continuously measuring mass, size (diameter), 

volume and other physical properties of solid impurities suspended in fluids. The re­

sults obtained find application in many diverse areas. For example, food, drink, pota­

ble water, drug, pigment, powder and other consumer products can be processed un­

der more efficient control procedures that increase product throughput and quality and 

hence maximise manufacturing industry profits. Environmental pollution and climate 

change caused by industrial or land waste, chemicals, accidents and other human ac­

tivities can be controlled more effectively or challenged faster and hence natural life 

and environment are less affected. Finally, contamination of fluids used in mechanical 

systems with unwanted solid particles may be kept to minimum so that machine dam­

age is prevented. 

Like many others, solid impurity measurement techniques are intended to sat­

isfY two conflicting requirements: monitoring time and accuracy. The degree to which 

each of these goals is achieved determines the class the corresponding technique be­

longs to. Specifically, metrological techniques generally give the most accurate re­

sults but have poor sampling times, great complexity and high cost. As a matter of 

fact, these techniques are more suitable for off-line applications. Surrogate techniques 

attempt to extract solid particle information from appearance descriptors, such as tur­

bidity, colour, fluorescence and odour. These techniques are suitable for on-lme and 

in-situ monitoring because they are simple and inexpensive, but often fail to associate 

a surrogate measurement with a solid particle parameter of interest. On the other hand, 

characterisation techniques provide partial but reliable particle information from 

large collections of suspension parameters readily obtainable. Therefore particle char­

acterisation is mainly suitable for applications that demand on-line and in-situ moni­

toring and control of a small number of solid particle parameters regarded as critical. 

This chapter starts with a brief presentation of the main metrological and sur­

rogate techniques existing nowadays. After that, the characterisation technique of 

scanning nephelometry, an extension to turbidity and alternative to field scanning, is 

described and proposed as ideal for a number of turbidity applications. Finally, an 

overview of this study is provided for reference purposes. 
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INTRODUCTION 

1.2 Metrology 

The field of particle metrology encompasses a variety of techniques developed 

for the accurate determination of particle size (diameter), size distribution and mor­

phology (shape and texture). The particles of interest are usually, though not necessar­

ily, distinct inhomogenities placed in an otherwise homogeneous medium. A non­

exhaustive survey of metrological techniques follows. 

1.2.1 Microscopy 

Microscopy is based on the observation of visible light or electrons and radia­

tion returned from the particles concerned upon illumination by a diffused visible 

light source or bombardment with electrons respectively. The former method is called 

optical microscopy while the latter is named electron microscopy. 

Optical microscopy [1] is often used for examination of particles from about 3 

~m to 150 ~m. Electron microscopy usually takes one of the forms called transmis­

sion electron microscopy (TEM) [2] and scannmg electron microscopy (SEM). TEM 

floods particles in the 2 nm to 1 ~m size range with a high-energy electron beam and 

allows the analysis of bright field images formed on a fluorescent screen or a photo­

graphic plate by secondary electrons scattered elastically at forward angles. In SEM a 

fine beam of medium energy electrons is caused to scan across a sample of particles 

ranging from 20 nm to 1 mm in size in a series of parallel tracks. The elastically scat­

tered secondary electrons and in-elastically backscattered electrons emitted due to in­

teraction of the [me electron beam with the particles are displayed on CRT screens 

and examined. Other electron microscopy methods are the scanning transmission 

electron microscopy (STEM - see [3], page 148) and scanning tunnelling electron 

microscopy (STM) [4] ones. 

The most severe limitation of optical microscopy is its small depth of focus so 

that, for a sample having a wide range of particle sizes only a few particles are in fo­

cus in any field of view. Therefore the examination of a large number of fields is es­

sential in order to obtain a statistically significant particle size distribution. The tedi­

ous task is facilitated by the use of customised image processing systems. However, 

these systems carmot discriminate artefacts as readily as human operators. Most elec­

tron microscopy methods are unable to measure charged non-conducting particles cor­

rectly because the particle charge spreads the scanning electron beam around the par-
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CHAPTER 1 

ticles concerned and makes sharp focusing impossible. Also, electron microscopy is 

sensitive to gradual accumulation of dirt on the particle sample and thus requires high 

vacuum instruments to reduce this effect. 

Microscopy is often used as an absolute method of particle size analysis since 

it is the only technique in which individual particles are observed and measured. It is 

useful not only for particle size measurement but also for particle morphology (shape 

and texture) evaluation. Particle shape is defined either qualitatively (acicularity, 

roundness etc) or quantitatively, e.g., as shape factors obtained by comparison results 

of perpendicularly oriented diameters. Microscopy is sometimes performed on a pre­

pared particle sample prior to use of another metrological technique in order to exam­

ine the quality of particle dispersion in that sample and thus the effectiveness of the 

particle dispersing procedure that was applied. 

1.2.2 Sieving 

Sieving has been used since early Egyptian times for the preparation of food­

stuffs. The process is briefly described as follows. Firstly, a particle sample is placed 

on a sieve containing opeuings of a fixed size. Next, the sieve is agitated in such a 

manner that particles that can pass through the openings do so. Sieving is accelerated 

by the use of several sieves stacked on top of each other with the sieve containing the 

coarsest openings placed on top. The set of sieves is vibrated until the residue on each 

sieve contains particles that can pass through the upper sieve and cannot pass through 

the lower sieve. 

The technique can be applied for the determination of cumulative particle size 

distributions ranging from 5 J.lm up to 100 mm. Punched plate sieves are used for 

coarse size separation (I - 100 mm) [5], while woven wire sieves classifY medium­

sized particles (20 J.lm - 1 mm) [6] and electroformed sieves screen fine particles (5 -

500 J.lm) [7]. Woven wire sieves generally have pseudo-square apertures, but punched 

plate and electroformed sieves are available with round and rectangular apertures. 

Measuring particle size distributions by sieving is simple and inexpensive. 

However, the use of the method presents three major difficulties. Firstly, the aperture 

size of a typical sieve has considerable tolerance that worsens with size decrease. Sec­

ondly, sieves are easily damaged in use. Thirdly, the particles must be effectively 

presented to the sieve apertures; otherwise the finer particles may not pass through the 

sieve and block its openings. These problems are minimised when the sieves are cali-
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INTRODUCTION 

brated prior to use, the sieving procedure is standardised to provide accurate and re­

producible results (see [3], pages 169-175), and the sieves are checked on a regular 

basis for signs of wear and tear. 

Sieving is particularly useful since particles are sorted into categories solely on 

the basis of size, independently of other properties (density, surface etc). The tech­

nique can be used to classify dry or wet powders and generates narrowly classified 

fractions. 

1.2.3 Sedimentation 

The sedimentation technique is based on the settling behaviour of a single 

sphere in a fluid of infinite extent under the gravitational (or centrifugal) force and the 

opposing drag force. Specifically, a unique relationship between the settling velocity 

of the sphere and its diameter has been shown by a multitude of experiments and 

summarised into the Stokes equation (see [3], pages 227 and 283). The equation also 

applies to a distribution of particles settling together in a fluid of finite extent pro­

vided that the particle concentration is small (typically less than 0.2% per volume). 

The determination of particle size distribution by sedimentation is performed 

in practice by a variety of procedures that are classified according to the principles 

outlined in table 1-1. The particles may be homogeneously diluted in the fluid used by 

the measurement procedure (homogeneous suspension) or floating on top of it (line­

start suspension) when sedimentation begins. The particle-settling rate can be deter­

mined by monitoring either the concentration change at the measurement zone of a 

glass container drawn at a fixed depth below the surface of the particle suspension 

(incremental measurement) or the weight of particles settled out of the suspension 

(cumulative measurement). Finally, the field that makes the particles settle may be 

either gravitational or centrifugal as mentioned above. 

Gravitational sedimentation methods have limited worth for particles smaller 

than about a micron due to the long settling times required. In addition, most sedimen­

tation devices suffer from the effects of convection, thermal diffusion and Brownian 

motion. These difficulties are reduced and the settling process is accelerated substan­

tially by centrifuging the suspension. Particle size distributions ranging from 10 nm to 

500 J.1m can be measured within a reasonable time by advanced centrifuge apparati 

available nowadays (see [3], page 318); the wider the real particle size distribution, 

the less accurate the measured particle size distribution, however. 
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Table 1-1- Principles ofsedimentation techniques 

Suspension Type Measurement Principle Force Field 

Homogeneous Incremental Gravitational 

Line start Cumulative Centrifugal 

Sedimentation is widely used for particle size analysis since it provides parti­

cle size distributions that relate to unit operations (particle classification) and many 

end-use properties (the hiding power and gloss of pigments). The results obtained by 

the technique over a period of time may be of rather limited accuracy when viewed 

independently but they can definitely show size distribution changes when compared 

to each other. 

1.2.4 Stream scanning 

The stream scanning technique examines the interaction between each and 

every particle of a representative set and an external field in order to measure the size 

of that particle and hence the size distribution of the whole population. 

Depending on the kind of external field used and parameters monitored for 

possible changes, the technique is met in one of the forms displayed in table 1-2 (see 

page 8). If the Coulter principle is employed, the interrogating field is electrical and 

the particle volume is proportional to the change in the electrical impedance as parti­

cles pass through the field (table 1-2a). Alternatively, the amount of light blocked as a 

particle passes through a light beam allows the measurement of the particle's pro­

jected area (table 1-2b). With a rotating or scanning beam, smaller in size than the 

particles, the pulse length is a measure of a random chord length (table 1-2c). Light 

scattered in the forward direction or at right angles by a particle is dependent on parti­

cle size; the former can be collected by a photo-detector and measured (table 1-2d and 

table 1-2t). The signal received by the detector is greatly enhanced with the aid of an 

elliptical mirror (table 1-2e). Scanning beams, in collaboration with back-scattering 

detectors, are also used for chord size determination (table 1-2g). Interferometers [8, 

9] operate as a function of phase shift between a split laser beam, one passing through 

the particle and the other through the particle suspension (table 1-2h). The time it 

takes for accelerated particles to pass through two laser beams is a measure of their 
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aerodynamic size (table 1-2i) [10]. Finally, the phase Doppler method [11] can be 

employed to determine particle size from the interference pattern of a particle passing 

through the intersection of two laser beams (table 1-2j). 

Stream scanning is generally limited to low concentration suspensions. Fur­

thermore, the conversion of a number distribution returned by the technique to mass 

(volume) distribution can result in gross errors unless the width of the former is nar­

row or millions of small particles are measured. Therefore stream scanning is usually 

applied off-line so that both aforementioned limitations of the technique can be over­

come. Stream scanning measures particle sizes spanning the 50 nm to 10 mm range. 

1.2.5 Field scanning 

The field scanning technique infers the size distribution of an assembly of par­

ticles from the interaction between the assembly and an external field. The particle 

size range that can be detected by the technique extends from 1.5 nm to 3.5 mm. 

The simplest way field scanning is applied is by classification of the particles 

concerned into two (or more) size bins and sensing of the mass percentage of every 

bin by static noise measurement, X-ray or ~-ray [12] field attenuation, flow rate com­

parison [13, 14], or even air pressure changes (single pomt analysers). The low angle 

laser light scattermg (LALLS) method [15] is a more sophisticated application of the 

field scanning principle which calculates the size distribution of an assembly of 

opaque or large (compared with the wavelength of light) particles by deconvolution of 

the diffraction pattern projected on a planar detector array as soon as the particles are 

illuminated by a collimated laser beam [16]. Alternatively, the ultrasonic attenuation 

method works out the size distribution and concentration of a particle assembly by 

deconvolution of the energy losses ultrasonic waves of different frequencies suffer 

upon interaction with the particles. Finally, the photon correlation spectroscopy 

(peS) method [17] performs particle sizing of sub-micron particles by (a) deconvolu­

tion of the autocorrelation functIon of the radiation scattered at right angle from the 

assembly due to interaction with a collimated laser beam (through dynamic light scat­

tering) [18] or (b) power spectrum analysis of the sum of a reference laser beam with 

its back-scattered version generated by the asse~bly (controlled reference) [19]. 

Field scanning instruments are ideally suited to on-line analysis because they 

provide fast results that can be updated quickly enough for monitoring purposes. 

However, particle concentration is a matter of concern for all optical field scanning 
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methods, as high concentrations result in multiple light scattering effects that make all 

reported particle size distributions biased towards the fme size end. Additionally, the 

outcomes reported by two instruments employing the same deconvolution-based 

method may differ significantly as a result of the numerical algorithm and initial as­

sumptions selected to perform the deconvolution operation in each instrument [20]. 

Therefore any results obtained should always be interpreted or even corrected appro­

priately. 

Table 1-2 - Stream scanning methods 

a. Electrical resistance b. Light blockage 

Jilectrodeso AI .~ 
r-Shadow AI Flow 

CYIJL (parti:?e 

region 

LIght 
Volume beam Particle Area 

aperture 

c. Dwell time d. Low-angle forward scatter o Light beam n ~- AI •• ) 
Light detector 

beam Light 
PartIcle 

DIrectIon of rotation Chord length PartIcle trap Area 

e. Solid angle scatter f. Right angle scatter 

Li: @:I;a; mrrror AI Photo-~ AI beam 
LIght 
beam 

Light trap Photo-detector SIZe Particle Light trap Size 

g. Back-scatter dwell time h. Interferometry 

c::::!.EI n Polansed laser beam Test beam 

Llght_ ~artlcle ~'.' .. 1IIIIIIm!lllllm 11 
beam 

A<lI et; SIze ITi 

Chord length Particle PCs IIIIIIIIIIIIIIIII[ 
Detectors Ref beam 

i. Time of flight j. Phase Doppler method 

Dua! ~ Photo- -W """'"1t: lliL laser detectors beam 
Detectors 

Accelerating rl et; Aerody- Measurement / 
partIcle namic dIameter volume I Frequency 
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INTRODUCTION 

1.3 Surrogates 

Surrogates are appearance descriptors of fluids often contaminated with solid 

particle impurities. Apart from their significance for the aesthetic perception of the 

suspension considered, surrogates are empirical indicators of suspended matter prop­

erties such as mass, volume or size distribution. The popularity of these descriptors is 

proved by the commercial availability of numerous instruments that are able to per­

form surrogate measurements under virtually any environmental condition and use 

empirical models to compute estimates of the suspended particle properties of interest. 

The main surrogates are turbidity and colour; more details about them are given in 

§1.3.l and §1.3.2. 

1.3.1 Turbidity 

1.3.1.1 Overview 

Turbidity, cloudiness in water, is the reduction of clarity or transparency of a 

fluid sample due to the presence of suspended and colloidal matter such as clay, silt, 

organic and inorganic matter and microscopic organisms. Turbidity should not be 

confused with colour (a darkly coloured liquid can still be clear and not turbid), how­

ever it is affected by intensity and hue of colour, direction of illumination, back­

ground, and optical path length. 

Turbidity is optically based and hence not subject to non-optical parameters 

like temperature, viscosity, pH or conductivity. However, turbidity is not empirical, 

i.e., cannot be filtered out and measured separately from any particle suspension. 

Therefore turbidity is not absolute. Only similar instruments employing similar tech­

niques can give comparable turbidity measurements. The main turbidity acquisition 

methods met in practice are the following: 

a) The Jackson candle method was the first ever used at waterworks and waste­

water treatment plants for measuring turbidities of incoming raw waters and 

treated wastewater effluents. The associated equipment consisted of a long 

glass tube supported over a so-called standard candle. Water was added to or 

removed from the tube until the image of the candle flame became indistinct. 

The depth of the water in the tube was read off a calibrated scale etched into 

the side of the tube, and results were reported numerically as Jackson Turbid-

9 



CHAPTER 1 

ity Units (ITV). The lowest turbidity that could be obtained with this method 

was 25 NTU (see [21] for NTU defInition). 

b) Comparative methods are used in shallow water and determine turbidity by 

matching the turbidity of a water sample to a standard of known turbidity ei­

ther with a target at the bottom of the tube or with a turbidity comparator. 

c) The Secchi disk method is often used to measure turbidity in the deeper waters 

of lakes, ponds, rivers and estuaries. The disk is either white or marked with 

black and white quadrants and its diameter is about 8 inches. The disk is low­

ered into the water on a calibrated line and the depth is noted where the disk 

just disappears from sight. The disk is then raised until it is visible. The aver­

age of these two distances is known as the Secchi depth and used as a distinct 

turbidity measure. 

d) The optical turbidimeter method is the most applied one nowadays. The asso­

ciated devices being commercially available are divided in two categories re­

garding their principle of operation. Attenuation turbidimeters measure the 

loss in irradiance of a narrow parallel light beam passing through a known 

path length of the solid particle suspension considered. Turbidity is expressed 

in units of percent transmittance or Parts Per Million (pPM) of Si02 con­

tained in a reference suspension called Diatomaceous Earth (DE). 

Nephelometric turbldlmeters have the detector aligned at right (or another) an­

gle to the beam, and therefore measure scattered light. The scattered irradiance 

is often divided by the irradiance detected at line of sight to compensate for ir­

radiance losses not attributed to suspended particles. Turbidity is often re­

ported in Nephelometric Turbidity Units (NTU) in agreement with ISO 7027 

standard [21]. The brewing industry prefers the European Brewery Convention 

(EBU) and American Society of Brewing Chemists (ASBC) turbidity units es­

tablished by the European and American brewing societies respectively. How­

ever, all these units are derived from procedures based on standard formazine 

solutions [22]. As a matter of fact, constant rates between the three units can 

be established. These rates are taken from [23] and displayed in table 1-3. 

Nephelometric turbidimeters are preferred when the impurities suspended in a 

fluid are of low concentration, while attenuation turbidimeters are employed at higher 

impurity concentrations. The reasoning behind this is simple. At low concentrations, 

the light scattered by the suspended particles has room to propagate freely, hence the 

10 
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angular detector is more sensitive to particle concentration change and the signal re­

turned by the nephelometric turbidimeter is proportional to that concentration (single 

scattering regime). In contrast, the light loss of the transmitted beam is limited due to 

the presence of only few scattering particles in the medium, thus hardly detectable by 

an attenuation turbidimeter. At higher impurity concentration, however, the situation 

changes abruptly. The suspended particles closer to the light source tend to screen off 

the incident light, and the scattered light can no longer propagate freely (multiple scat­

tering regime). As a result, the scattered irradiance no longer increases in proportion 

to the concentration and nephelometric turbidimeters give meaningless turbidity val­

ues. On the other hand, the irradiance loss of transmitted light becomes considerable 

and hence detectable by attenuation turbidimeters. Attenuation turbidimeters apply the 

Lambert-Beer law [24] to convert turbidity measurements to suspended particle con­

centrations, while nephelometric turbidimeters perform the same conversion based on 

Mie scattering theory [25]. Typical detection ranges for nephelometric and attenuation 

turbidimeters are 0-10 NTU (electronic linearisation increases the upper limit to 2000 

NTU) and 50-20000 NTU respectively [26]. 

Table 1-3 - Comparison offormazine-based turbidity units 

INTU lEBC 1 ASBC 

NTU 1 4 0.057 

EBC 0.25 1 0.014 

ASBC 17.5 70 1 

Turbidimeters are simple and inexpensive instruments that are able to measure 

turbidity continuously, on-line or off-line, ID laboratory or process environments. As 

mentioned above, turbidity is proportional to suspended particle concentration under 

certaln conditions. The surrogate can also be used for the estimation of mono-modal 

particle size distributions and refractive indices of suspended solids [27]. Therefore it 

comes to no surprise that turbidity has become so popular in the industrial, health and 

safety sectors, to name only a few. A representative set of applications employing tur­

bidity nowadays follows. 
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a) The potable water treatment industry uses turbidity for raw water quality 

monitoring, raw water flocculation control and sand filtration monitoring of 

treated water [28]. When raw water comes from the surface of earth, the tur­

bidity value obtained is used to control the amount of flocculent added at the 

next processing stage. If spring water is tapped, natural phenomena like _snow 

break and thunderstorms can render the spring temporarily unusable. In this 

case, turbidity allows real-time decisions to be taken whether raw water Will 

be accepted for treatment or discarded [29]. Other turbidimeters placed be­

tween the settling tank and sand filters monitor the efficiency of a crucial 

treatment step for solid impurity elimination, i.e., the flocculation process. Fi­

nally, turbidity measurement immediately after the sand filters is performed 

for two purposes: monitoring of the actual filtration for breakthroughs, and op­

timisation of the sand purging (backwash) process [30]. Sand filtration is es­

sential not only because it improves the efficiency of the previous flocculation 

step, but also precipitates iron salts dissolved in mineral raw waters [31]. If 

present, these salts can oxidise and precipitate as hydroxide to form unattrac­

tive sediments in water bottles and blocking sediments in water pipes. 

b) Electricity producers that use fossil fuels (oil, gas, coal) or nuclear fuels as en­

ergy source employ turbidity in their plants for a number of different purposes 

[32]. Firstly, the treatment equipment that feeds the water and steam circuits 

includes the same treatment steps before the ion exchangers that are found in 

potable water treatment, and hence incorporates the same detection systems 

for turbidity. Secondly, the iron concentration of the water flowing in the wa­

ter circuit is constantly monitored via turbidimeters to detect early signs of 

pipe corrosion. Finally, the efficiency of filtration equipment built to prevent 

pollutants from entering the atmosphere is determined by turbidity monitoring 

of the soot (solid) [33] and sulphuric acid (droplet) [34] concentration in the 

flue gas that leaves the combustion chambers. 

c) One of the interests of oceanography is the concentration measurement of sub­

stances such as inorganic matter from land drainage, plankton, disintegrated 

cells and humic organics that are found suspended in seawaters [35]. The ef­

fect of these impurities on aqueous life is critical for many reasons. Suspended 

particles absorb light and emit thermal energy, thus increase the overall sea­

water temperature. The reduction of light penetration efficiency due to in-
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creased light absorption in the sea surface causes a decrease in the rate of pho­

tosynthesis and a decrease III the amount of oxygen dissolved in the seawater. 

As suspended particles settle, they can impair the habitat needed for fish 

spawning and aquatic macro-invertebrates. They can also clog the gills of fish 

and the breathing apparatus of invertebrates Miniature backscatter turbid/me­

ters are available for ocean profiling, i.e. estimation of plankton density and 

total suspended solid particle concentration, at sea depths up to 6 km [36, 37]. 

d) A common objective of hydrological and enviromnental sciences is to deter­

mine the quality of water found in rivers and lakes [38]. Natural water quality 

is affected by a number of factors such as temperature, microbes, agricultural 

chemicals, natural dissolved substances, industrial effluents, suspended sedi­

ment derived from the land bordering the river (lake) or the river (lake) bed, 

and other suspended material coming from natural or anthropogenic sources. 

As far as the suspended sediment is concerned, its total mass and size distribu­

tion are the two important factors. Increased sediment load transported in riv­

ers means enhanced land erosion with major consequences not only in agricul­

ture and forestry (both directly through loss of soil and indirectly through 

problems caused by reduction of the capacity of irrigation reservoirs), but also 

in navigation in both rivers and harbours, in hydroelectric power generation 

(through siltation of reservoirs), and in fisheries. Sediment transport also af­

fects the efficiency of river channels and hence the chances of flooding. On 

the other hand, the particle size distribution of suspended sediment affects the 

total particle surface area being able to absorb toxic chemicals and pollutants 

such as phosphate, pesticides, organic industrial effluents, heavy metals and 

radio-chemicaIs. Particles smaller than 63 !lm are more effective in absorbing 

these pollutants and transporting them over long distances, and thus seriously 

deteriorate water quality and endanger aqueous life. A currentometer monitors 

the velocity of natural water in-situ and a turbidimeter placed next to curren­

torneters estimates the concentration of transported sediment in the water. The 

two outcomes are multiplied and the product is integrated over time in order to 

obtain the total sediment mass transported at a given time period. Natural wa­

ter samples are gathered occasionally by an automatic sampler and analysed in 

the laboratory at a later time to find the sediment size distribution. 

13 
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e) Alcoholic beverages such as wine, whiskey and cognac contain small amounts 

of fatty acids, which tend to precipitate at low temperatures (during transport, 

in the refrigerator) and cause turbidity [39]. To prevent this undesired event, 

the beverage industry cools and filters the spirits prior to bottling. A turbidi­

meter is used to monitor the filtration step continuously and thus ensure both 

product quality and optimal filter utilisation. 

f) Breweries employ turbidity in the sectors of brewing water treatment, waste­

water treatment and beer production [40]. Depending on the quality of the 

available raw water, treatment of the brewing water may require the same tur­

bidimeter-controlled techniques as potable water treatment (flocculation, sand 

filtration). In wastewater treatment, turbidity measurement is used before and 

after the physical and biological treatment steps. Specifically, turbidimeters 

monitor the solid particle concentration in the raw wastewater and the turbidity 

of the effluent before it is released to the sewer. In the actual production proc­

ess, turbidity is used to check the wort lautering, the yeast addition, and the 

beer filtration steps. Wort lautering is the process of separation of the mesh 

into the clear liquid wort and residual grain, and is done by means of mash fil­

ters or by sedimentation in the lauter tab [41]. Yeast is added to wort liquid 

immediately after wort lautering for fermentation; the amount of yeast added 

is controlled via turbidity measurement [42]. Beer filtration is perfonned im­

mediately before beer barrelling, bottling or canning and then shipping. The 

process removes protein and tannin colloids, yeast cells and filtration auxiliary 

particles that are responsible for shelf life shortening and appearance (clarity 

and brightness) damaging of the end product [43]. 

g) The detection of oil mist in all engine rooms of ocean-going tankers is another 

practical application of turbidity [44]. In the event of leakage in one of the 

high-pressure lines feeding oil to the big diesels, fine diesel oil mist is created. 

Because the mist is highly explosive, it is a matter of life and death to detect 

even tiny amounts quickly and signal their presence. This is possible with tur­

bidimeters fitted with multiple-sampling equipment for simultaneous monitor­

ing of all critical points. 

h) The sugar production industry is another turbidity user [45]. The thin juice ex­

tracted from the sugar-beet passes through three purification steps: addition of 

milk of lime for preliminary and main separation, precipitation of the calcium 
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carbonate with carbon dioxide (saturation), and removal of the resulting sludge 

by sedimentation or filtration. If a defect occurs in the filtration step, the solids 

suspended in the sugar juice will be deposited in the ion exchangers of the 

subsequent softening step or in the evaporators, thus necessitating time­

consuming cleaning work. Turbidimeters are in place to detect any filtration 

defect early and signal filter replacement to the operator. 

i) The CO concentration and visibility are used to describe the air quality in road 

tunnels [46]. The former parameter increases due to the combustion process 

that takes place in gasoline engines, while the latter is reduced by roadway 

dust and by the soot spewed out by diesel engines. Maintenance of the pre­

scribed limits is crucial in terms of driver safety: CO concentration because of 

the toxicity of this gas, and visibility because of accident danger. Because the 

values of both parameters are used to control the speed of tunnel ventilation 

fans, they are largely responsible for driver safety and also for keeping down 

the tunnel's running costs. The CO concentration was critical in the past, but 

the introduction of catalytic converters and the popularity of diesel engines 

have increased the importance of visibility. Turbidimeters placed at accessible 

spots outside the traffic zone and connected with air-feeding systems of pow­

erful pumps and long pipes obtain measurements convertible to standard visi­

bility values by Koschmeider formula [47]. 

1.3.1.2 Limitations 

Unfortunately for the users of turbidity, there are many theoretical as well as 

practical drawbacks and limitations associated with the surrogate. These problems 

arise from the fact that scattered light, thus turbidity, depends on the concentration of 

impurity particles in a suspension sample (that is fmally the parameter which should 

be measured with turbidity units in most applications) but also on the scattering angle, 

wavelength of light, solvent colour, properties of the scattering particles (size, shape, 

colour, refractive index) and practical constraints (reflection and absorption and coat­

ing losses at turbidimeter windows, ageing of light source, stray light). Therefore: 

a) Turbidimeters are calibrated using linear fits between the scattered light irradi­

ance and the particulate matter concentration determined by a reference 

method. ISO 7027 compliant instruments are calibrated with standard formaz­

ine suspensions [21]. However, the adoption of formazine as reference stan-
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dard has several disadvantages. First of all, formazine requires careful han­

dling because it is toxic. Next, the preparation temperature of formazine sus­

pensions must be kept to the limits prescribed by the ISO standard, or the par­

ticle size distribution offormazine changes noticeably (1-2% per OK) [48]. The 

purity of the water used for the preparation of formazine suspensions is also 

critical, as it contributes to light scattering (water treated in accordance WIth 

ISO 7027 has a residual scatter of about 0 02 FTU) and thus affects both in­

strument calibration and accuracy of very low turbidity measurements [48]. 

After that, formazine suspensions are stable for only one week [22], which 

makes them unsuitable for sporadic recalibration of portable turbidimeters. Fi­

nally, the optical properties of formazine are often quite different from those 

of the turbidity substances found in natural water [38] and other fluids of in­

terest. As a matter of fact, two ISO 7027 compliant turbidimeters with differ­

ent optical arrangements will give identical results for standard forrnazine sus­

pension samples but slightly different turbidity outcomes for real samples. Us­

ing an instrument outside the turbidity standard might result in deviations of a 

factor of two or even more [49]. 

b) Turbidity values obtained by a given instrument are linearly related to the con­

centration of impurity particles suspended in the sample provided for meas­

urement as long as the properties of these particles do not change. This as­

sumption does not hold in some applications, however, especially the ones 

with a wide span of concentration or a variety of dispersed substances (natural 

water quality [38], oil mist detection). In these cases the best-fit method for the 

calibration curve of the instrument is non-linear and has to be assessed sepa­

rately for each installation, e.g. tanker A or B, not just application, e.g. tankers 

[50]. As a matter off act, the manufacturing cost of the installation-oriented in­

strument increases considerably. 

c) Turbidity is affected by the colour of the solvent containing the impurities un­

der consideration. Attenuance turbidimeters record increased turbidity due to 

the direct absorbance of the incident light beam. In contrast, nephelometric 

turbidimeters give reduced turbidity because the incident and scattered light is 

partly absorbed. Time-changing factors (window contamination, light source 

ageing) also affect turbidity and render distant in time measurements unreli­

able for comparison. Solvent colour and stochastic parameters should not be 
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regarded as a problem for the measurement of turbidity per se, but rather as 

parasitic factors that alter the relationship drawn between turbidity and sus­

pended particle concentration in a manner hard to predict [38]. The ISO 7027 

standard aims to eliminate these parasitic effects in nephelometric turbidime­

ters by suggesting the use of infrared (860 nm) light and the expression of tur­

bidity as the ratio of 900 scattered light irradiance by transmitted light irradi­

ance. However, research fmdings have shown that there is no instrument that 

measures turbidity independent of solvent colour, let alone anything else [51]. 

d) Turbidimeters are subject to the inherent brightening effect, i.e. they give 

small positive turbidity values for solvents entirely free of impurities [52]. 

This effect is the result of three independent factors, namely molecular scatter, 

residual particle scatter and stray light. Molecular scattered light occurs be­

cause of scatter on the solvent molecules, or strictly speaking the density fluc­

tuations created by molecular motion. The residual particle scattered light is 

created by particles remaining in the solvent because they cannot be filtered 

out. The instrument stray light is the quantity of light produced in the cell of 

the instrument even in the case of a theoretically pure solvent at absolute zero 

temperature because of reflection at the cell windows. The inherent brighten­

ing effect reduces the sensitivity and increases the error margin of turbidime­

ters that detect extremely low impurity particle concentrations in fluid suspen­

sions. The monitoring of drinking water filtration, the monitoring of iron oxide 

content in power plant water circuits and the measurement of dust particles in 

exhaust gases are examples of applications where turbidimeters show their se­

vere limitations due to this effect. A technique to overcome these limitations is 

the zero-point correction of the turbidity vs. concentration characteristic with 

''ultra-pure water". Nevertheless, the zero point obtained by this method is un­

certain (the residual particle concentration and the instrument stray light can 

change) and can yield negative particle concentration values for certain sus­

pensions. 

e) The ISO 7027 standard requires that all nephelometric turbidimeters should 

measure scatter light irradiance at 900 with respect to the direction of transmit­

ted light. However, it is not always possible or desirable to collect scattered 

light at right angle. Oceanographic turbidity sensors must be structura1ly rigid 

and small to sustain high water pressures at deep sea levels and this is the rea-
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son why they are designed to measure backscatter light irradiance [36]. Over­

flow cell turbidimeters employed in water treatment plants require less fre­

quent servicing when they measure scattered light irradiance at 1350 [53]. 

Dust (flue gas, sulphuric acid mist, oil mist, road tunnel visibility) measure­

ment turbidimeters [54] detect scattered light irradiance at 150 to reduce their 

sensitivity to refractive index variations of the dust particles (see [3], pages 

358-360). The importance of scatter angle selection in nephelometric turbidity 

measurement is a matter that deserves consideration and should be addressed 

in future turbidity standards. 

f) Turbidity is a cumulative effect caused by all particles dispersed in a fluid sus­

pension. As a matter of fact, the surrogate alone cannot classify the impurity 

particles by size or origin. Nevertheless, particle classification information is 

important in a number of turbidity applications. For example, the brewer needs 

to know whether the turbidity of filtered beer is due to the presence of protein 

and tannin colloids alone, or yeast cells and filtration auxiliaries alone, or both 

particle groups and their analogies [43]. The environmentalist should be aware 

of the percentage of small (under 63 Ilm) and large (over 63 Ilm) particles sus­

pended in a turbid natural water sample so that it is possible for them to esti­

mate the associated environmental pollution risks. The potable water treatment 

engineer wants to know the concentration of cryptosporidium (an ocyst) and 

giardia (a protozoon), microorganisms smaller than 5 Ilm, in filtered water in 

order to prevent the appearance of gastroenterital illnesses to water consumers 

[55]. In these and other similar cases the classification information required is 

obtained by metrological techniques. 

The aforementioned turbidity drawbacks and limitations are reduced by the 

particle characterisation method explained later in this chapter. 

1.3.2 Colour 

Colour is the perceptual result of light in the visible (A.=390-780 nm [56]) re­

gion of the electromagnetic spectrum that is incident upon the retina of human eye. 

The colour of an object being illuminated by an external light source is determined by 

three factors: the irradiance profile of the source, the absorbance characteristic of the 

object and the wavelength dependence of the eye's response to visible light. The 

measurement of colour is the subject of colourimetric analysis, while the measure-
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ment of absorbance as a function of visible wavelength is the subject of absorption 

spectroscopy. As far as fluid suspensions of solid particles are concerned, colour is a 

parameter of aesthetic perception while absorbance is an estimator of solid particle 

concentration (see Lambert-Beer law [24]). 

The human retina has three types of colour photoreceptor cone cells, which re­

spond to incident radiation with somewhat different spectral response curves. (A 

fourth type of photoreceptor cell, the rod, is also present in the retina. However, rods 

are effective only at extremely low light levels; they play no role in image reproduc­

tion.) As a matter of fact, three numerical components are necessary and sufficient to 

describe a colour, providing that the spectral response curve of each cone cell is 

known. In 1931, the Commission Internationale de L' Eclairage (CIE) adopted stan­

dard spectral response curves for a hypothetical standard observer. Also, CIE has is­

sued a number of generic CIE systems, with every particular system being a mapping 

of the three aforementioned object colour factors (spectral characteristics) to a triple 

of numerical components. CIE systems differ in the coordinate system used to per­

form the mapping of the three colour characteristics to the three-dimensional colour 

space. The CIE systems used nowadays for colour specification include CIE XYZ, 

CIE xyY, CIE L*u*v* and CIE L*a*b*. On the other hand, empirical systems are 

based on visual or other comparisons to defme object colours; these systems have 

specific applicability. The American Public Health Association (APHA) and Ameri­

can Society for Testing and Materials (ASTM) standards describe (potable and waste) 

water colour in Hazen units, where 1 Hazen is the colour of a standard water solution 

with suspended platinum and cobalt chloride salts of molar ratio 2: 1 and total plati­

num concentration of Imgllt (the stock solution recipe is described in [57]). The 

ASTM standard D156-53T defines how the colour of petroleum products can be ex­

pressed in Saybolt units. The Munsell system describes textile colour as the index 

number of the best-matching colour sample included in the Munsell swatch book. The 

PANTONE system defines an ink colour by specifying the proportions of standard (or 

secret) inks that can be mixed to make the colour. Transformations mayor may not 

exist between CIE and empirical systems. 

The CIE colour triple of a fluid suspension is usually determined by trzstimu­

Ius colourimeters regardless of the CIE system adopted. These instruments employ a 

CIE standard illuminant to emit a collimated light beam of known spectral character­

istic to a sample of the suspension under consideration. Three optically filtered 

19 



CHAPTERl 

photodetectors whose spectral responsivities match the ones of the standard ob­

server's cones measure the irradiance of light passing through the sample in the direc­

tion of beam propagation and return the associated CIE colour coordinates. Visual 

comparison and single wavelength (390 nm for water, 430 nm for beer) absorption 

methods are used to express suspension colour in empirical (Hazen, Saybolt) units. 

Human operators perform the visual comparison and monochromatic colourimeters 

(tristimulus colourimeters with a single photodetector that measures the irradiance of 

transmitted light at a single wavelength) measure colour by single wavelength absorp­

tion analysis. All colourimeters are calibrated with a blank (colourless) sample whose 

absorbance characteristic is standardised by the CIE. 

The colour of a fluid solution with impurities is dependent on many factors. 

First and foremost, suspended and colloidal particles cause turbidity that contributes 

to the total attenuation profile of the solution [58]. The effect of turbidity on colour is 

so important that the latter is designated apparent if measured with all impurities pre­

sent in the suspension or true when measured after filtration of the suspension through 

0.45 /.lm membranes to remove the insoluble substances. (True colour is perceived to 

be turbidity-free, however reality tells otherwise. In fact, the filtration of the suspen­

sion under consideration is not sufficient to remove colloids of diameter less than 0.45 

/.lm, i.e. particles being comparable to the wavelength of incident light and thus caus­

ing scattering and turbidity that is dependent on their size and concentration [59].) 

Colour is also dependent on factors that affect the solubility and stability of the dis­

solved and dispersed substances of the suspension such as temperature, age and pH 

[60]. Finally, the suspension colour is affected by the accuracy of the instrument or 

human operator used to obtain the measurement; human operators are obviously more 

susceptible to measurement errors than instruments. 

The colour of particle solutions is a parameter of interest for many industrial 

applications. For example, the potable water treatment industry monitors the colour of 

filtered water to determine its aesthetic quality (colour values of 15 Hazen units or 

less are undetectable in a glass of water and agree with the World Health Organisation 

guidelines [61]). The wine production and brewery industries consider colour an im­

portant factor for the determination of product quality and the distinction of different 

product types. The sugar production industry detects any colour residues in the thick 

sugar-beet juice that follows the decolourisation step [45]. Colour measurement is of-
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ten associated with turbidity monitoring in an effort to quantify or minimise the effect 

of turbidity on colour. 

1.4 Particle characterisation 

Particle characterisatIOn is the technique of grouping a particle population 

with regard to one of their physical dimension or property (diameter, volume, texture 

etc) in accordance with the problem specifications. When a single group is defmed or 

assigned to all particles, the outcome of a characterisation method degenerates to a 

statistical parameter of the population (total concentration, average size, total volume 

etc). Otherwise the outcome is expressed as a set of fractions or percentages associ­

ated with the particle groups. 

A particle characterisation method gives solutions that feature: 

• Low cost 

• Immunity to variations of "parasitic" parameters (colour, temperature, pH etc) 

• Suppression of side effects caused by theoretical and practical limitations 

• Adaptability to problem-defmed constraints like oval instrument shape [36] 

• Calibration with materials similar to the particles considered 

• Continuous on-line and in-situ monitoring of all particle properties of interest 

• Functionality linked to application than installation 

Particle characterisation is suitable for applications that require low-resolution 

particle size information in real time. Certain turbidity applications could also benefit 

from the replacement of turbidimeters with particle classification instruments, for ex­

ample: 

a) In potable water treatment plants, particle characterisation would enable the 

on-line measurement of the fraction of impurities smaller than 5 /lm in potable 

water and hence the early detection of harmful concentrations of pathogenic 

microorganisms. Also, particle classification instruments are more successful 

in the suppression of the inherent brightening effect than ordinary turbidime­

ters. Therefore classification instruments would be more sensitive and accurate 

in obtaining small impurity concentration measurements (less than 0.5 NTU in 

turbidity terms). The same reason can be given to recommend the employment 

of particle characterisation in fossIl and nuclear electricity plants for the early 

detection of iron particles in circulating water. 
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b) In natural water quality monitoring applications, particle characterisation 

would make the continuous measurement of particles smaller than 63 /lm pos­

sible. As mentioned earlier, these tiny particles are most likely to absorb and 

transport pollutants. Furthennore, particle classification instruments are less 

sensitive to water colour and other physical parameters (temperature, pH etc) 

than turbidimeters. As a matter of fact, classification instruments would give 

more accurate measurements of total impurity concentration in river, lake and 

ocean waters. 
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Figure 1-1 - A typical scattering nephelometer 

c) In breweries, the on-line classification of impurity particles in filtered beer by 

texture (colloids, yeast cells, filtration auxiliaries) would become a reality if an 

appropriate particle characterisation method was employed. Moreover, the 

amount of yeast added to wort liquid could be controlled by a particle classifi­

cation instrument instead of a turbidimeter to avoid inaccuracies attributed to 

beer colour and inherent brightening effect. The employment of particle char-
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acterisation in brewing water treatment in a role similar to the one recom­

mended to potable water treatment plants is another possibility. 
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Figure 1-2 - Particle sizing, characterisation and surrogate techniques 
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d) In alcoholic beverage production industries, a classification instrument would 

provide colour-independent concentration measurements of fatty acids re­

mained in the final product. The same argument can also be used to justify the 

employment of particle characterisation in the filtration of sugar juice that 

takes place in sugar production industries. 

e) In oil mist detection applications, the replacement of turbidimeters by classifi­

cation instruments would eliminate the need of complicated and installation­

oriented calibration procedures. Particle characterisation methods are designed 

to provide pre-calibrated solutions that target a particular application. 

Scattering nephelometry is a method applicable to characterisation problems 

of particles dispersed in fluids. Its principle of operation is relatively simple. A limited 

number of light sources WIth known emission spectra characteristics are used one at a 

time to illuminate a representative volume of the particle suspension of interest within 

a closed chamber (figure 1-1). The irradiances of light scattered at predetermined an­

gles by the suspension are measured by optical sensors and reported to a data analysis 

system together with the irradiance and spectrum of the emitted light beam. The 

analysis system processes the available data and retl!rns the answer to the classifica­

tion problem specified in advance. 

Scattering nephelometry is not new science. The method has been known for 

some time as an extension of turbidity that offers better accuracy and less sensitivity 

to time-varying factors [38]. The similarities between scattering nephelometry and 

field scanning methods such as LALLS and PCS are also apparent. Figure 1-2 illus­

trates the main particle sizing, characterisation and surrogate techniques mentioned so 

far together with their dependencies and associations. 

Two major issues of scattering nephelometric model design are the modelling 

of the data analysis system and the selection of calibration material. As far as the data 

analysis system is concerned, the choice of a proper mathematical tool is of funda­

mental importance. The empirical data fitting technique called Multilayer Feedfor­

ward Artificial Neural Network (MFANN) is advantageous to many analytical ap­

proaches for a number of reasons: accomplishment of functional approximation and 

classification tasks from databases of input-output data associations without any addi­

tional knowledge, satisfaction of constraints imposed on inputs, outputs and internal 

complexity, distributed processing, low implementation cost and possibility of struc­

tural optimisation are only a few. MF ANN optimisation is distinctively significant 
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because it reduces the number of data analysis system inputs to the absolute mini­

mum. The minimisation of input dimensionality simplifies the design and reduces the 

cost of the scattering nephelometer (figure 1-1). Besides, a calibration material whose 

physical and optical properties (size, texture, refracting index etc) are similar to the 

ones of the particles of interest increases the precision and measurement range of the 

nephelometric model. 

This study focuses on the optimisation aspect of the scattering nephelometric 

model design. The novel Second Order Sensitivity Analysis (SOSA) optimisation al­

gorithm is theoretically developed and incorporated to an innovative MF ANN optimi­

sation scheme that gives excellent network pruning and generalisation results. The 

ISO 12103-1 Arizona Fine (AF) dust is considered representative of the particles 

found in natural suspensions and examined for its light scattering properties. Theo­

retical scattering profiles of water suspensions of filtered AF dust are calculated with 

the aid of an analytical nephelometric model derived from Mie scattering theory. Ex­

perimental scattering profiles of filtered AF dust samples dispersed in water are ac­

quired by a commercial polar nephelometric device. Finally, two separate scattering 

nephelometric models are designed and optimised to classifY the theoretical and ex­

perimental suspensions by AF particle volume and size respectively. 

1.5 Thesis overview 

Chapter 2 introduces Artificial Neural Networks as a candidate modelling tool 

for the realisation of non-linear mappings between scattering data and suspended par­

ticle characterisation parameters. Special attention is given to Multilayer Feedforward 

Artificial Neural Networks (MF ANNs) due to their functional simplicity and univer­

sal applicability to problems of function approximation and classification. Data pre­

conditioning methods and training algorithms that improve the accuracy and minimise 

the learning time of a MFANN model are discussed in adequate detail. A novel 

MF ANN node optimisation algorithm called Second Order Sensitivity Analysis 

(SOSA) is mathematically described and compared with other algorithms in terms of 

pruning efficiency and computational complexity. The SOSA algorithm is included 

with the established Levenberg-Marquardt backpropagation (LMBP) and Optimal 

Brain Surgeon (OBS) algorithms in an innovative modelling scheme that systemati­

cally trains and optimises a MF ANN until a fine balance between the opposing goals 

of acceptable accuracy and essential feature extraction is reached. The scheme is ap-
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plied to two trivial nonlinear function approximation problems and the results ob­

tained are examined for consistency and accuracy. 

Chapter 3 provides the theoretical background that is necessary for the de­

scription of light and the explanation of light scattering phenomena. The Mie scatter­

ing theory that describes the interaction of light with a single homogeneous sphere 

placed in an otherwise simple medium is fully deployed. The irradiance and turbidity 

measured by an ideal scattering nephelometric device for a tenuous fluid suspension 

of solid spherical particle impurities are derived analytically. Nephelometric scatter­

ing and turbidity profiles of tenuous water suspensions ofISO 12103-1 [62] Arizona 

Fine (AF) dust are calculated theoretically. The sensitivity of these profiles to adjust­

able scattering parameters such as concentration, chamber radius and acceptance an­

gle is carefully examined. The inverse scattering problem is briefly explained with 

special focus on the inappropriateness of conventional mathematical tools to give a 

unique solution. 

Chapter 4 demonstrates a theoretical and a practical application ofMFANNs 

in particle characterisation. A trained and optimised network model estimates the vol­

ume fraction per size bin of filtered AF dust dispersed in water from scattering data 

obtained by a simple scattering nephelometric model. The apparatuses used and pro­

cedures followed to obtain experimental nephelometric scattering measurements from 

a set of water suspensions of two filtered AF dust types are described in appropriate 

detail. The scattering nephelometric model developed in the previous chapter is ap­

plied to the same set of suspensions used in the experiment. The theoretical scattering 

profiles are compared to the associated experimental profiles in order to verify the ap­

propriateness of the model and estimate the deviation factors between experiment and 

theory. A second trained and optimised MFANN model is built to recoguise the type 

of AF dust dispersed in an arbitrary experimental sample from the corresponding ex­

perimental data. 

Chapter 5 reiterates the main scientific conclusions drawn in this study. Hints 

for further research on the basis of facts and findings of this work are also included 

for the benefit of science. 

1.6 Original contributions 

• Introduction of the Second-Order Sensitivity Analysis algorithm as an altema­

tive to the existing First-Order Sensitivity Analysis algorithm for the minimi-
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sation of the number of inputs or hidden nodes in Multilayer Feedforward Ar­

tificial Neural Networks (MFANNs). 

• Presentation of a complete optimisation scheme employing the novel Second­

Order Sensitivity Analysis algorithm for MPANN input and node pruning and 

the established Optimal Brain Surgeon algorithm for MP ANN weight elimina­

tion. 

• Theoretical study of the infrared light scattering properties of tenuous water 

suspensions of ISO 12 I 03-1 Arizona Fine sand that fill the chamber of an ISO 

7027 compatible polar nephelometer. 

• Design of two optimal nephelometric models for the solution of a theoretical 

particle volume fraction estimation problem and an experimental particle clas­

sification problem that consider tenuous water suspensions of filtered ISO 

12103-1 Arizona Fine sand. 
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ARTIFICIAL NEURAL NETWORK MODELLING 

2.1 The generic modelling procedure 

The mathematical tools an experienced engineer would choose to model a par­

ticular physical problem are dictated by the nature of the facts already known about it. 

Those facts are usually expressed in the form of "rules" or "features" governing the 

underlying mechanisms of the problem and, when applied together, predicting its be­

haviour at a reasonable accuracy. The main difficulty, however, lies exactly there. In 

most cases those features cannot be detected and extracted from the physical problem 

"at a glance"; it usually requires laborious and persistent work to be able to identify 

some of them. Even if we manage to do so, it may hardly be possible to state them in 

a universal, unambiguous manner. Furthermore, their relative weight to the formation 

of responses given by the problem under certain circumstances is another question 

that cannot be answered until the very late stages of the model construction in the 

general case. So, what procedure should be followed to fulfil the modelling construc­

tion task of an arbitrary physical problem in the most appropriate manner? 

An answer to our puzzle may be extracted from a closer reading of the above 

paragraph. At first, all facts and features associated with a given problem that can be 

identified and precisely expressed have to be collected before any modelling attempt 

is made. Existing knowledge about the mechanisms governing certain parts of the 

problem, or previous research on the ways the problem responds under well-known 

conditions are the most common resources of assistance in this matter. The next step 

involves the building of a preliminary, or "guiding" model that should comply with 

the following terms: 

a) It has to rely upon most, if not all, the features and "findings" collected by ap­

plication of all existing knowledge to the problem (see above). 

b) It should be flexible to further modifications, supervised or unsupervised, 

which attempt to make its responses more accurate, i.e. be closer to the ones 

given by the actual problem under the same conditions. 

c) It ought to be open to interpretations aiming to the detection of new features 

driving the physical problem that could not be identified at first glance. New 

features help to improve the initial understanding of the problem in hand. 

d) It should be adaptive to any possible changes occurred in the behaviour of the 

real problem progressively over time, so that it can always stay within the ac­

curacy requirements imposed to it from the beginning. 
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e) It ought to allow optimisations of its structure at any modelling stage (usually 

the last ones) aiming to improve its efficiency in giving faster responses with 

fewer known conditions whilst it maintains its accuracy requirements. 

When the first model has been devised successfully and shown to give re­

sponses reasonably close to the ones observed by the real problem, its evolution is a 

rather straightforward process. The engineer tries to include more features to the ini­

tial model that come from a variety of sources, such as thorough examination of the 

structure of the existing model for their identification, previous experience of the 

model's supervisor, or model evolution algorithms. In every case, any further progress 

achieved in the development of the first model is the result of a slow "trial and error" 

process: various modification ideas are applied to the initial model, to become perma­

nent only if the modified model is shown by routine tests to be a better fit of the actual 

problem. The fmal steps of the model evolution process include model clarification 

and optimisation for efficiency. Their significance is justified by the fact that they re­

move all unimportant - for the generation of responses - features from the final model, 

as well as apply appropriate relative weights to the importance of the remaining fea­

tures hidden in the details of the model structure. Of course, the final model (as well 

as its predecessors in the evolution chain) should still comply with all terms imposed 

for the very first model and mentioned above. As a matter of fact, an important by­

product emerging from the final model is a better understanding of the mechanisms 

governing the response formation of the actual problem. 

2.2 Why Artificial Neural Networks? 

Having presented the general modelling procedure as above, the interest is 

now moved to fmding the right tools for the modelling of the main problem this work 

deals with: inverse optical scattering. Chapter 3 covers adequately the optical scatter­

ing theory and shows why a complex, tedious mathematical model has to be built to 

explain the theory even for the simplest, marginal cases. It also demonstrates why the 

inverse problem does not have a unique solution in general, a fact that makes any di­

rect moqelling attempt meaningless. Is there any hope for a solution to be achieved 

then, to start with? 

To understand the inverse scattering problem further without having to discuss 

its details until the next chapter, it is sufficient to compare this problem with the one 

of identifying an animal from its footprints. Similarly, the latter problem carmot be 
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given a unique solution either, unless more information IS additionally provided (ani­

mal size, weight, class etc.). However, the footprints may uniquely identify certain 

animal properties without any need for further information, e.g., a small, shallow 

footprint corresponds to a small, light animal while a big, deep footprint belongs to a 

big, heavy animal. Following the parallels drawn between the two problems, it is pos­

sible to state that the inverse scattering problem can provide unique solutions under 

given conditions for certain properties of the medium that caused the light scattering, 

even if the cause carmot be unambiguously identified. Is it purposeful then to model 

the inverse scattering problem? Yes, when specific properties of the scattering me­

dium are of importance, those properties can be found by solving the inverse scatter­

ing problem, and all conditions that assure uniqueness for the final solution are met. 

If we try to apply the modelling guidelines mentioned in §2.1 to the inverse 

scattering problem, the first objective is to collect and unambiguously express all 

given facts. However, the inverse scattering theory can give exact solutions only in 

marginal and trivial cases of the problem. Nevertheless, those theoretical solutions 

may be used to obtain as much numerical data as we need for both the optical and 

physical properties of the medium that causes the light scattering. Another source of 

information comes from the laboratory, as it is possible to perform a limited number 

of experiments in order to produce more numerical data for the optical and physical 

properties of interest When both pieces of information are combined together, and 

extra care is taken to remove any ambiguity sprung from spurious cross-links of one 

data set of physical properties with many data sets of optical properties, we result in 

the formation of two groups of data (optical and physical) linked by one-to-one asso­

ciations. Although this initial information is too little to give a direct final solution, it 

can describe by itself afunctional mappmg from the optical parameter domain to the 

physical parameter one. This mapping is our very first, "guiding" model in the effort 

to solve the inverse optical scattering problem. 

The next step to be taken is the most important for the success of the whole 

modelling project. That is, the right mathematical tool has to be selected for the reali­

sation of the functional mapping formed by the two groups of data sets already avail­

able and their associations. That realisation has to be implemented in such a way that 

the "guiding" model obtained from it satisfies all necessary terms described by the 

generic modelling guidelines above. Furthermore, it should offer good chances for 

further evolution of the initial model to its fmal form, Le., the one that will optimisti-
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cally provide the answers for the subset of the physical properties of the scattering 

medium that is of high interest depending on the application circumstances. There­

fore, which is the best choice to be made to this case? The author's answer is: Artifi­

cial Neural Networks. Why? Because, as the remaining of this chapter will demon­

strate among others, these networks are designed in such a marmer that allows them to 

realise any functional mapping regardless of complexity that is defmed merely by 

numerical data associations, while any such realisation possesses all characteristics 

required by the generic modelling procedure and mentioned above. 

This chapter is determined to provide the reader with all knowledge that is ab­

solutely necessary for the comprehension and manipulation of Artificial Neural Net­

works (ANNs). A brief historical overview of the research carried out in the ANN 

field comes first to be followed by a light coverage of the functionality of the biologi­

cal neuron and the associated neural network, Le., the inspirations that led researchers 

to the design of the artificial counterpart. A detailed presentation of the artificial neu­

ron and as single element and then as the sole structural unit of the most common 

network architectures encountered in scientific literature comes next As soon as the 

method of operation of the ANN architectures of interest is adequately explained to 

the reader, the next step is the presentation of the learning concept as the key feature 

of all ANN structures and the passage from conceptuality to implementation via well­

described numerical algorithms. These training algorithms are compared to each other 

against efficiency defined in terms of probability of success in achieving training of 

an arbitrary ANN as the result of the learning process and of the average time required 

for that process to emerge successful. The notion of data preconditioning is described 

later as a useful procedure required to increase considerably the chances of successful 

learning for the ANN structure of interest After that, the concept of model generalisa­

tion is introduced as an important property of any acceptable ANN model solution, 

and is shown that such a property is obtained or improved by the application of ANN 

optimisation algorithms. The main optimisation algorithms are adequately discussed, 

and as a conclusion a novel optimisation algorithm is proposed to significantly im­

prove optirnisation accuracy at the cost of modestly increasing computational and re­

source requirements. Chapter 2 ends with a couple of illustrative examples that dem­

onstrate how the ANN mathematical tool can be applied for the modelling of func­

tional mapping problems as function approximations. These examples also demon: 
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strate the involvement of training and optimisation algorithms as well as data precon­

ditioning in the modelling process. 

It has to be stressed that despite the somewhat generic coverage of the ANN 

theory in §2.3 to §2.6, the main focus will always remain on the use of ANNs as 

mathematical tools for function approximation purposes due to their application to the 

inverse scattering problem in chapter 3 and chapter 4. 

2.3 Historical overview 

Two elements are required at least for the advancement of any technological 

field to become reality: concept and implementation. By the former we usually defme 

any novel, revolutionary way of thinking or view of a topic that opens new scientific 

horizons by the clarity it offers. Instances of concepts may take the form of simple 

ideas or be expressed more specifically in mathematical terms. The latter element, 

implementation, is equally important for any concept to find practical application, 

though. A good example of a concept being the driving force for advancement may be 

encountered in the history of the heart. That human organ was thought to be the centre 

of the soul or a source of heat for many centuries until the 17th when medical practi­

tioners fmally begun to view it as a pump and designed experiments to design its 

pumping operation. On the other hand, one would reasonably stress that despite all 

theoretical knowledge necessary for a man travel to the moon existed for long time in 

fragments belonging to a disparity of fields like astronomy, physics, engineering and 

medicine, such a travel was not performed until 1969 when all means to implement it 

existed and were put together. As a matter of fact, the history of any scientific field, 

let alone ANNs, should include records of conceptual innovations and implementation 

developments perplexed together. 

One would expect that the history of ANNs is relatively long; another would 

assume that the field has progressed through steady evolution steps, i.e. in a "slow and 

sure" fashion; a third would think that the major contributors in the advancement of 

ANN technology were of limited specialty in this field alone. None of them is right 

however. As it emerges from the study of the following brief reference, the history of 

ANNs is filled with colourful, creative individuals from many different fields who 

have struggled since the late 19th century to develop new concepts and test them at 

times that may easily be grouped to form "intensive" and "recessive" advancement 

periods. A detailed documentation of ANN history is found in [63]. 
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Pioneering scientists of the late 19th and early 20th centuries, such as William 

James [64], Hermann von Helmholtz, Emst Mach and Ivan Pavlov, offer some of the 

background work for the ANN field. This early work is rather of interdisciplinary na­

ture as it is consisted primarily of elements taken from physics, physiology and neu­

rophysiology. It emphasised general theories of learning, vision, conditioning etc., but 

did not include any specific mathematical models of neuron operation. 

Warren McCulloch and Walter Pitts are widely acknowledged as the founders 

of the ANN field in its modem view due to their work dated back in the 1940s [65]. 

Specifically, they showed that networks of artificial neurons could, in principle, com­

pute any arithmetic or logical function. Later in that decade the ANN field experi­

enced another major contribution by Donald Hebb. In his book titled "The Organiza­

tion of Behavior" [66] he suggested that classical conditioning (as discovered by Pav­

lov) is present because of the properties ofindividual neurons, and proposed a mecha­

nism for learning in biological neurons. All of those achievements were fundamental 

for the technological progress of the field, but they were strictly limited in theoretical 

findings. 

Frank Rosenblatt was the first to show a practical application of ANNs in the 

late 1950s with his invention of the perceptron network and its associated learning 

rule [67]. He and his colleagues built a perceptron network and demonstrated its abil­

ity to perform pattern recognition. At about the same time, Bemard Widrow and Ted 

Hoff introduced a new learning algorithm and used it to train adaptive linear neural 

networks that were similar in structure and capability to Rosenblatt's perceptron [68]. 

Those two advancements triggered a great deal of interest in ANN research for about 

a decade. 

The dark ages for the evolution of the ANN field started in 1969 with the fa­

mous publication of "Perceptrons" by Marvin Minsky and Seymour Papert [69]. That 

book demonstrated both in theory and with illustrative examples that the networks 

created by Rosenblatt and Widrow suffered from the same inherent limitations, i.e. 

they could solve only a limited class of problems known as "linearly separable". Of 

course, the aforementioned ANN inventors were aware of these limitations and pro­

posed new networks that would overcome them. However, they were not able to suc­

cessfully modify their learning algorithms to train the more complex networks. That 

failure to overcome the limitations imposed by Minsky and Papert in the performance 

of all ANN structures known in the late 1960s combined with the absence of powerful 
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digital computers on which promising researchers could experiment caused the col­

lapse of interest in the ANN field by the scientific community for more than a decade. 

Although the ANN area remained in the sidelines of scientific research per­

formed worldwide during the 1970s, a few romantic researchers continued their ef­

forts and managed to contribute some important work to that area. Teuvo Kohonen 

[70] and James Anderson [71] independently and separately developed new ANN ar­

chitectures that could act as memories in 1972. Stephen Grossberg was another active 

researcher who investigated and designed self-organising networks. None of those 

inventions, however, was able to give a fresh start in the mainstream research of the 

ANN field. Did that attribute to the absence of new ideas or non-availability of power­

ful digital computers? Probably both. 

The 1980s saw the dawn of the new digital computer era in the form of new 

powerful digital personal computers and workstations that rapidly grew in capability 

and became widely available. That technological progress soon provided all creative 

researchers worldwide with the right tools to test and implement their novel concepts 

for the rapid advancement of the ANN field. When the implementing means were 

coupled with the inspirations of talented individuals, new exciting technological 

achievements were expected to follow. And they came faster than expected, attribut­

ing to the rebirth of ANNs. Physicist John Hopfield described in a 1982 seminar paper 

[72] how statistical mechanics could be used to explain the operation of a certain class 

of recurrent network, which in turn could be used as an associative memory. Few 

years later, several different researchers discovered independently the backpropaga­

tion algorithm for training multilayer perceptron networks, giving an answer to the 

criticisms Minsky and Papert had made in the 1960s. The invention of that newalgo­

rithm is attributed to David Rumelhart and James McClelland due to their publication 

[73] being the most influential among others, another publication about the same topic 

is met in [74]. Those two key developments were more than sufficient to spark enthu­

siasm among ANN researchers worldwide and justify the rapid expansion of knowl­

edge contributed to the field by thousands of new publications and novel practical ap­

plications seeing the light until nowadays. 

How the ANN field will progress and develop in the future is something diffi­

cult to predict, especially given the field's turbulent evolution history. However, all 

signs of today are very encouraging, suggesting that ANNs will not only have their 

day but will have a permanent place, not as a solution to every problem, but as a tool 
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to be used in appropriate situations. Given that the field pwnps new ideas from devel­

opments in the research ofhwnan brain functionality where findings are rather modest 

nowadays, it is expected that the most important advances in ANNs lie in the future. 

Possible ways offuture advancement of the ANN field are presented and discussed in 

[75]. 

2.4 The biological neuron and neural network 

The exact anatomy of a biological neuron cannot be given in a single manner 

due to significant differences existing between them due to their position in the bio­

logical neural network and thus their specialised functionality. However, a typical 

simplified description of such a neuron may be summarised in figure 2-1. Three prin­

cipal components are identified in that schematic diagram: the dendrites, the cell body 

and the axon. The dendrites are tree-like receptive networks of nerve fibres that carry 

electrical signals originating from hundreds of thousands of neighbouring neurons 

into the cell body. The cell body effectively swns these incoming signals by suitably 

adjusting the membrane potential, i.e., the continuous internal potential of the neuron 

cell. When that potential exceeds a certain threshold, the neuron can propagate an all­

or-none action potential for long distances down its single long fibre called the axon 

to hundreds of thousands of other neurons. However it has to be mentioned that bio­

logical neurons are not binary, that is, having only an on or off state as their output. 

Outputs are continuous valued and the membrane potential is converted into firing 

rate in a voltage-to-frequency-converter fashion. Anyway, the function that maps the 

membrane potential to action potential, no matter how, is one of the two key features 

of the biological neuron. The application of this feature to the design of the artificial 

neuron is discussed in §2.5. 

The actual transmission of the electrical signal carried into a neuron's axon to 

another cell's dendrite terminal is performed in the points of contact of the two com­

ponents known as synapses. Synapses come in a nwnber of different forms, but two 

basic varieties are of particular note: excitatory synapses, which make it more likely 

that the receiving neuron will fire action potentials, and inhibitory synapses which 

make the receiving neuron less likely to fire action potentials. Also, synapses come in 

different strengths initially determined at birth and continuously modified during life­

time by learning knowledge and experiences. The kind and strength of synapses 

formed by any individual neuron with its predecessors in the complex biological neu-
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ral network determine the outcome of the summation process performed in the body 

cell, and as such they are defmed as the second of the two key features that control the 

operation of that neuron cell. §2.5 will give more details on how the latter feature ap­

plies in the construction of the artificial neuron. 

Axon 

Figure 2-1 - Schematic drawing of biological neurons 

The biological neural network can be described in macroscopic level as a 

complex system consisting of three major functional units: the sensory system, the 

signal transmIssion system and the brain. The sensory (visual, auditory etc) system 

receives information from the outside world and breaks it down into certain parame­

ters that can be represented by an appropriate set of values or symbols. Furthermore, 
\ 

the system pre-processes the parameterised information locally in ways such as noise 

reduction, gain control, colour separation, motion detection or edge enhancement, and 

passes that information to the next functional block, the signal transmission system. 

The latter converts the incoming information into electrical signals and transmits them 

to the brain with the least attenuation possible. Finally, the brain processes all its input 

parameters via its massive structure of hundreds of billions of highly interconnected 

neurons to form a coherent perception of the cause that generated the information cap­

tured by the sensory system in the beginning. 

The three key features of the biological neural network that can be extracted 

from its description above are mput representatIOn, input pre-processing and brain 

network connectiVIty. The first of them is a major research area in the ANN field by 
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itself and hence its detailed presentation would go far beyond the scope of this work. 

However, it is useful to mention the three common-sense rules that should apply in 

any representation case: 

a) Similar inputs usually should give rise to similar representations 

b) Inputs to be separated should be given different representations 

c) If a property or feature of an input is important, it should be embodied in the 

representation of that input 

These rules are applied during the ANN modelling procedures taking place through­

out this study and therefore their use will not be explicitly mentioned from this point 

on unless absolutely necessary. The second feature, input pre-processing, is a vital 

operation because it removes most of the mput data complexity that is uncorrelated 

with the adaptive and learning parts of the problem modelled by the neural network 

and hence accelerates significantly the learning and retrieval times required for the 

construction and function of that network. The application of that feature in ANN de­

sign is the subject of §2.8. The last feature, brain network connectivity, is the demon­

stration of the power of parallelism in the design of efficient computational architec­

tures which give answers to a wide range of problems much faster than today's 

conventional computers - despite the great difference in the speeds of their computing 

elements that strongly favours the opposite outcome in that comparison. The study of 

the neural network connectivity of the brain has produced incredible, though moderate 

still, results in the design of artificial neuron interconnection architectures capable of 

solving certain sets of problems quickly and accurately. A subset of those connectivity 

architectures are briefly presented in §2.6, and the architecture applied to function ap­

proximation problems in particular is the focus of an exhaustive analysis covering 

§2.7 to §2.9. 

2.5 The artificial neuron model 

A typical artificial neuron resulting from the direct realisation of the basic 

components and implementation of the major features present in a representative bio­

logical neuron is displayed in figure 2-2. The relations between the two neural models 

are sununarised as follows: 

a) The R incoming signals to the biological neuron from nearby cells have been 

substituted by the column vector p of scalar inputs Plo 1:9gt, to the artificial 

model. 
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Figure 2-2 - A typical multiple-input artificial neuron 

b) The strengths of the synapses fonned an the points of contact of the biological 

neuron with its input-feeding neighbouring cells have been replaced by the 

row vector w of scalar weights w" 1:S~ each assigned to every input of the 

artificial model. Similarly, the excitatory or inhibitory nature of those synapses 

is now represented in the polarity of the respective weights - positive for the 

fonner kind and negative for the latter. 

c) The threshold value that the membrane potential has to overcome in order for 

the biological neuron to activate its output is now represented by the scalar 

bias value, b, in the artificial counterpart. The bias is introduced in the model 

as an additional fixed input associated with a fixed weight. Part of ANN litera­

ture assigns values b and 1 to those two parameters, while the rest prefers to 

assign the same values the opposite way. Both conventions, however, are 

mathematically equivalent and therefore interchangeable. 

d) The membrane potential that is raised within the cell body of the biological 

neuron is represented by the scalar net input value, n, that is calculated as the 

outcome of the weighted algebraic sum of the artificial model's inputs includ­

ing the bias, i.e. n = wp + b. 

e) The action potential that is propagated down the axon of the biological neuron 

as a result of the cell's activation triggered by its input signals, or the absence 

of such a potential when the neuron cannot be activated by its inputs, are states 

both detennined in the associated artificial neuron model by the outcome of 

the transfer function f. That function accepts a single scalar argument, the net 

input value n, to produce its scalar output, a, which is considered as the artifi­

cial neuron's output, too. In mathematical tenns: a = f(n). 
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Table 2-1 - Common transfer functions of artificial neurons 

Name Input/Output Relation 

f(n)={~ n<O 
Hard Limit 

n~O 

{-I n<O 
Symmetrical Hard Limit f(n) = 

n~O +1 

Linear f(n)=n 

[(H)' 1; 
n<O 

Saturating Linear O~n~I 

n>I 

r n<-I 

Symmetric Saturating Linear fen) = n -I~n~I 

+1 n >1 

Log-Sigmoid 
1 

fen) = 1 -n 
+e 

Hyperbolic Tangent Sigmoid 
en _e-n 

fen) = n -n 
e +e 

f(n)={~ n<O 
Positive Linear 

n~O 

f(n)={~ neuron with max x 
Competitive 

all other neurons 

Following as a direct result of the above discussion, the operation performed 

by the artificial neuron as a whole is described by the equation: 

a=f(wp+b) (2-1) 

The independent parameters of the model are therefore identified as p, w, b and fO. 

The input vector is determined both in size and value by the problem the neuron, 
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alone or with other neurons in an arbitrary ANN structure, is a model for, or the posi­

tion of that particular neuron in the whole structure, or both. The weight and bias vari­

ables are assigned random initial values and then adjusted by some learning rule so 

that the neuron input/output relationship meets some specific goal. More about learn­

ing algorithms are discussed in §2.7. Finally, the transfer fimction is typically chosen 

by the model designer to satisfy some specification of the problem that the neuron is 

trying to solve. 

Table 2-1 summarises the transfer fimctions used in the vast majority of ANN 

structures encountered in the ANN literature. All of them apply to single neurons with 

the exception of the competitive transfer fimction that is meaningful when applied to a 

layer of two or more neurons. A few of those transfer fimctions have been introduced 

as candidate choices for the design of the artificial neuron because they happened to 

reflect the existing knowledge about the fimctionality of the biological neuron, a piece 

of knowledge that has evolved throughout the history of ANN research area with 

moderate success so far. Other fimctions were defined simply because the neurons 

designed upon them showed improved modelling efficiency when used as members of 

certain ANN architectures. Although the second approach could be branded as "un­

biological", it is perfectly acceptable for ANN model design purposes. After all, if we 

want to construct a useful device rather than model the brain, there is no reason what­

soever to be bounded by the way the brain works! 

Three of the transfer fimctions listed in table 2-1 are more commonly used 

than the rest and therefore deserve some attention. 

a) The hard limit transfer function sets the output of the neuron to 0 if the fimc­

tion argument is less than 0, or 1 if its argument is greater than or equal to O. It 

has been introduced in the 40's as a direct substitute to the binary behaviour of 

the biological neuron's activity. The fimction is used to create neurons that 

classify inputs into two distinct categories. 

b) The log-sigmoid transfer fimction takes the input (which may have any value 

between plus and minus infinity) and squashes the output into the range 0 to 1 

in a continuous and constantly increasing manner. It has been introduced after 

the hard limit transfer fimction as a more accurate model of the biological neu­

ron's activity. The log-sigmoid fimction is widely used in multi-layer networks 

that are trained using the backpropagation algorithm, in part because this fimc-
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tion is differentiable (more about the backpropagation learning algorithm to 

follow). 

c) The linear transfer function assigns its output as equal to its input. Despite the 

absence of equivalent or similar function in the biological world, the linear 

function is very useful when the weighted sum of input signals to the associ­

ated neuron is needed as an output. Such cases frequently arise in neurons that 

belong to the output layer of a multi-layer ANN structure targeted to function 

approximation use. On the other hand, a neuron that incorporates a linear 

transfer function degenerates to a pure linear system. Therefore, the function 

carmot be used in every neuron of a feedforward ANN structure to avoid the 

build-up of a linear model unsuitable to give solutions for most, if not all, 

problems. 

All kinds of transfer functions mentioned so far are characterised by their de­

terministic outputs. However, certain neurons may be designed to have stochastlc 

transfer functions as in Boltzmarm machines [76] and stochastic automata [77]. In the 

stochastic case the transfer function computes probabilities and the output of the neu­

ron is a random value based on that probability. ANN architectures consisted of sto­

chastic neurons are more difficult to study and train than the others, but they usually 

give more accurate modelling solutions as it emerges from the discussion of training 

algorithms in §2.7. 

The choice of transfer functions for the individual neurons of a given ANN ar­

chitecture together with the connectivity of those neurons are the two important as­

pects that determine the range of problems the ANN is able to model to a sufficient 

degree. Having described the functionality of the artificial neuron in sufficient detail, 

it is high time we moved our focus to the ANN structures and their connectivity pat­

terns. 

2.6 ANN architectures 

Commonly one artificial neuron, even with many inputs, is not sufficient to 

model a particular problem. The early acknowledgement of this fact by the research­

ers of the field has forced them to design new models consisting of many neurons 

carefully chosen and connected together in topologies that exploit the benefits of par­

allel computation in the best possible marmer, much alike the biological neural net­

work. These new models are known as ArtifiCial Neural Networks (ANNs) and the as-
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sociated neuron selection and interconnection topology are described altogether by the 

tenn ANN architectures. 

There are two fundamental methods by which all ANNs developed over the 

years may be classified. The first method divides those ANNs (and the corresponding 

architectures) into feedforward, competitive and associative memory ones, while the 

second method separates them into time-independent and time-dependent networks. 

In feedforward networks the output is computed directly from the input in one 

pass, i.e., no feedback is involved. These networks are used for function approxima­

tion and classification purposes in applications spanning a variety of fields such as 

adaptive filtering, automatic control, and - as this work proves - applied optics. More 

about feedforward networks will follow after the brief presentation of the remaining 

network classes. 

Competitive networks are solely designed as pattern recognition models. First, 

they compute some measure of distance between stored prototype patterns and the 

input pattern. Second, they perfonn a competition to determine which neuron repre­

sents the prototype pattern closest to the input. Moreover, competitive networks may 

be designed to be adaptive, i.e., adjust their prototype patterns as new inputs are ap­

plied to them. In effect, these adaptive networks learn to cluster their inputs into dif­

ferent categories. Examples of competitive network architectures are the Hamming 

network [78, 79], the counterpropagation network (CPN) [80, 81], the neocognitron 

[82, 83] and the ART network family [84-89]. 

The associative memory networks are characterised by their ability to recog­

nise and recall temporal, as well as spatial, patterns (stored in their internal parame­

ters) by association with input data rather by an address as in conventional memories. 

They may be divided further into autoassociative memories, which retrieve a com­

plete data pattern given either a sub-pattern or a slight variation thereof, and heteroas­

sociative memories, which store bidirectional associations between patterns of activa­

tion of their input and output units. Examples of associative memory networks are the 

Hopfield network [72, 90], the Li-Michel network [91, 92], the Boltzmann machine 

[76, 93], the Bidirectional Associative Memory (BAM) [94, 95] and the Brain-State­

in-a-Box (BSB) memory model [96]. 

All time-independent networks share the property of output invariance with 

time assuming that their inputs remain constant for the same time period. On the other 

hand, time-dependent networks exhibit arbitrary transient but absolutely constant 
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steady-state responses when they are provided with constant stimuli and their time­

critical internal variables are assigned to certain initial condition values. 

ANN time-dependence is achieved either by the addition of time-dependent 

functional blocks in the network's neuron interconnections or by the inclusion of 

feedback connections that back-propagate internal signals to earlier (in processing or­

der) functional units. Figure 2-3 presents two popular time-dependent functional 

blocks, the delay block for discrete-time ANN systems and the integrator block for 

continuous-time ANN systems. Their operation is described by the equations: 

a(t) = u(t-l) 

t 

a(t) = Iu('r)dHa(O) 
o 

for the time-delay and integrator functional blocks, respectively. 

u(t) r---, a(t) 
D 

a(O) 

u(t) 
.. 

a(O) 

a(t) 

Figure 2-3 - Delay block (left) and integrator block (right) 

(2-2) 

(2-3) 

Table 2-2 lists some typical feedback connectivity patterns used in the design 

of time-dependent ANN architectures together with their graphical illustrations. All 

functional units in the diagrams of that table are represented with circles, all unidirec­

tional connections with directed edges, and all bidirectional connections with undi­

rected edges. 

It is apparent from the discussion above that the ANN architectural class that 

is suitable for function approximation purposes is the feedforward one. If the addi­

tional assumption that no time dependency exists between the inputs and outputs of 

the problem to be modelled is made, it becomes evident that there is absolutely no 

reason to include time-dependent functional blocks in the feedforward ANN model 

constructed for that particular problem. As the aforementioned assumption is true for 

all inverse scattering problems falling within the scope of this study, all time­

dependent ANN architectures available in the literature such as the Time-Delay Neu­

ral Network (TDNN) [97, 98], the Finite Impulse Response (FIR) MultiIayer Percep-
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tron [99-101], the PipeIined Recurrent Neural Network (pPRN) [102], the Nonlinear 

Autoregressive Moving Average (NARMA) network [103], the Elman network [104] 

or the Real-Time Recurrent Network (RTRN) [105] are deemed unsuitable. After all 

these exclusions, the only ANN architecturaI class still available for the modelling of 

the problems falling within this work's interest is the feedforward time-independent 

class. To simplify the terminology used from this point on, all references to feedfor­

ward ANN s and their associative architectures will imply time independence unless 

explicitly mentioned otherwise. 

Table 2-2 - Typical feedback connectivity patterns 

Connectivity Pattern Graphical Illustration 

Bidirectional connections 

Self-connections 

Recurrent connections 

If the term layer is introduced to describe a subset of neurons that belong to 

the same ANN structure and operate in parallel, then the name single-layer feedfor­

ward ANN can be appointed to the network shown in figure 2-4. That network is the 

simplest feedforward one that can ever be designed. It accepts R inputs, includes S 

neurons and outputs the same number of variables. Its operation is fully described by 

the set of equations: 

n=Wp+b (2-4) 

45 



CHAPTER 2 

a =f(n) (2-5) 

where IS~R, 1:j~S and: 

• p is the input column vector of elements p( i) = p, , 

• W is the weight matrIX of elements W(j,i) = w
J
.,' 

• b is the bias column vector of elements bO) = b
J 

' 

• n is the net mput vector of elements nO) = n
J

, 

• f is the transfer jimctlOn column vector of elements fO ) = f
J 
0, and 

• a is the output column vector of elements aO ) = a J • 

If the notation R-Sl-oo.-SL is introduced to describe any feedforward ANN by the 

number of its inputs and layers' outputs in left-to-right sequence, the network of 

figure 2-4 is alternatively mentioned as R-S network for short. 
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Figure 2-4 - Single-layer feedforward ANN 
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The selection of the transfer function vector f for the R-S network may be ar­

bitrary. However, two specific choices for that vector are considered to be significant 

for both historical and practical reasons. The first attempt ever made was to assign all 

transfer functions of the R-S network to the hard limit transfer function; the result is 

described by the term perceptron [67]. Two years later all hard limit transfer functions 

were replaced by linear functions and the new network was given the name 

ADALINE (Adaptive Linear Neuron) [68]. The two networks have been applied to 

similar problems: the perceptron was applied in pattern recognition and logical func­

tion simulation problems, while the ADALINE has been used in adaptive signal proc­

essing applications such as echo cancellation in long distance held phone calls. How­

ever, the ADALINE network was proved to have better performance than the percep­

tron due to the superiority of its learning algorithm. ADALINE's Least Mean Squared 

(LMS) learning algorithm tries to minimise the network's mean-squared error and 

therefore moves the decision boundaries as far from the training patterns as possible, 

while perceptron's simpler learning algorithm stops as soon as an acceptable decision 

boundary is found and therefore leaves the trained network potentially vulnerable to 

noisy inputs. Despite the differences in performance, both networks are capable of 

modelling only classification problems whose patterns are linearly separable [69]. In 

such problems there exists at least one hyperplane that divides the space of patterns 

into two subspaces, each including only patterns that correspond to outputs of either 

the same value (perceptron) or sign (ADALINE). Figure 2-5 demonstrates how a lin­

ear decision boundary is drawn and how the planar pattern space is subsequently di­

vided in an arbitrary 2-1 network. In general, the exact position of the linear decision 

boundary in the pattern space is always dependent entirely upon the values of the 

connection weights and biases obtained by the application of a learning algorithm to 

the single-layer feedforward network. Such a decision boundary, however, is always 

orthogonal to the weight vector because (2-4) is always zero at the boundary. 

A conceptually straightforward extension of the single-layer feedforward 

ANN involves two or more layers connected in cascade, i.e., the outputs of a certain 

layer are the inputs of the next (in predetermined sequence) layer until all available 

layers have been used. The new architecture is described by the term Multilayer Feed­

forward ArtificIal Neural Network (MF ANN) and presented in figure 2-6. In general, 

an MF ANN accepts R inputs, has L layers of S, (1:sIg.) neurons each and returns SL 

outputs. The set of input points to the structure are collectively described as the input 
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~ layer, the next L-l layers of neurons are called hidden layers, and the final neuron 

layer is known by the name output layer. The operation of any MF ANN is completely 

determined by the set of recursive equations: 

aD =p 

where l:Si:SSI_I. l~:SSI, l:sI:SL and: 

• p is the input column vector of elements p(i) = P., 

• WI is the weight matrix oflayer I with elements W/(j,i) = lW"., 

• bl is the bias column vector of layer I With elements b I (j) = I b" 

• nl is the net input vector of layer I with elements n l (j) = In" 

• fj is the transfer jUnction column vector oflayer I: fl (j ) = l, (-) , 

(2-6) 

(2-7) 

(2-8) 

(2-9) 

• a, is the output column vector oflayer I with elements a/(j ) = la" and 

• a is the output column vector of elements a(j)= La,. 

Following the notational convention introduced as a short reference to the sin­

gle-layer feedforward ANN, the MFANN described above will also be referred to as 

R -S 1-••• -SL network for short. 

-, 

o 

, Classf!-' , 
'-nel~;O' - -

Class 2 
net < 0" 

Figure 2-5 - Two-input linear decision boundary (w,>O, wz>O, b<O) 
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Is the MNANN able to model function approximation and classification prob­

lems that do not have to satisfY strict conditions such as linear separation of patterns? 

Hornik et al. have proved that a sufficiently large MF ANN with arbitrary transfer 

functions assigned to its neurons can approximate any Borel integrable, i.e. virtually 

any, function from one finite dimensional space to another finite dimensional space 

[106]. Moreover, Lippmann has shown that a sufficiently large three-layer MFANN 

can precisely define an arbitrary number of classes of arbitrary shape in the pattern 

space, and therefore classifY all its input patterns exactly into these classes [79]. 

Therefore the answer to the aforementioned question is positive if the condition "suf­

ficiently large" is met. Unfortunately, there is no precise numerical formula that en­

sures that for a given problem the MFANN size condition is satisfied and the network 

generalisation property is not sacrificed. The topic is and active area of research and 

as such it will be discussed in more detail in §2.9. 

Even if the question oflayer size is left aside for the time being, there still ex­

ist an overwhelming number of choices to be made in specifYing a MF ANN model 

suitable for a given problem. Essential guidelines that address the remaining MFANN 

design specification issues are the following: 

a) The number of inputs to the MF ANN network and the number of outputs from 

it is defined by the specifications of the problem that is modelled. 

b) The number oflayers necessary for the MF ANN to model function classifica­

tion or classification problems is known a priori for the vast majority of those 

problems. Kolmogorov's Mapping Neural Network Existence Theorem proves 

that any continuous function f: [0,1 r ~]Rm , can be modelled exactly by an n­

(2n+1)-m MFANN [107]. Although the theorem itself does not provide a de­

sign method for the transfer functions included in the neurons of the hidden 

and output layers of the "ideal" network, it offers a strong indication that a 

single hidden layer is sufficient for the approximation of continuous functions. 

However, continuity is a rather weak condition met by most functions encoun­

tered in practice. Therefore, it is reasonable to consider single hidden-layer 

MF ANNs as suitable function approximation models unless all attempts to de­

sign such a model under certain circumstances lead to failure. In classification 

problem modelling a two hidden-layer MF ANN is sufficient in all cases as al­

ready mentioned, while a single hidden-layer network is also sufficient in 
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problems where all class regions happen to be convex open or convex closed 

[79J. 

c) The desired characteristics of the output signals assist the selection procedure 

for the transfer functions assigned to all output layer neurons. The linear trans­

fer function is usually chosen in function approximation problems because it is 

simple, continuous and of infinite range. In contrast, the hard limit transfer 

function, or even better the log-sigmoid one, is used in classification applica­

tions because both functions saturate quickly enough to a binary set of values. 

The log-sigmoid function is more preferable than the hard limit one only be­

cause the first function is differentiable everywhere in its domain and therefore 

can be handled more easily by learning and optimisation algorithms developed 

for the MF ANN architecture. 

d) The ideal choice of transfer functions included in the neurons of the hidden 

and output layers of a MF ANN would be the one that matches more closely to 

the properties of the problem the network models. Such a choice, however, is 

very difficult to make in most cases. A widely followed compromise is the se­

lection of the log-sigmoid transfer function for all neurons of concern. The 

preference of the log-sigmoid function is justified for biological and analytical 

reasons: it emerges from the study of the biological neuron operation, it is 

non-linear, continuous, and all its derivatives exist and are continuous. As a 

matter of fact, the log-sigmoid function will be preferred for the design of all 

MF ANN models presented in this work unless there are strong indications in 

the nature of a problem that suggest an alternative choice to be made. 

e) All weights and biases appearing in a MFANN are assigned values as a result 

of the learning process governed by a suitable learning algorithm. More about 

the matter are discussed in §2.7. 

Further evolution of the MF ANN has produced more complex architectures, 

some of which are worth mentioning here. 

The Radial Basis Function (RBF) networks are single hidden-layer MFANNs 

where all neurons of the hidden layer work as localised receptive fields instead of 

non-linear mappings of weighted sums. In other words, the neurons of the hidden 

layer return values determined by the distances between the network inputs and the 

"centre" of their basis functions: as an input moves away from a given centre, the as­

sociated neuron's output is reduced quickly to zero. Examples of variants of the RBF 
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network are the Cerebellar Model Articulation Controller (CMAC) network [108, 

109] and the Modular Network [110, 111]. The RBF networks and their family train 

usually faster than the MF ANNs but require many neurons for high-dimensional input 

spaces [112-115]. 

The Polynomial Networks are single-layer ANNs or MFANNs where the ele­

ments summing up weighted inputs in the networks' neurons have been substituted by 

other elements that calculate and return polynomial functions of those inputs. Exam­

ples of polynomial networks are the Functional Link Network [116], the Group 

Method of Data Handling (GMDH) network [117] and the Sigma-Pi network [118, 

119]. Polynomial networks serve the same purpose as MFANNs as generic models to 

function approximation and classification problems at the cost of additional complex­

ity that is not but sometimes necessary. 

After the short presentation of the main ANN structures mentioned in scien­

tific literature, it should have become apparent why the family of networks most suit­

able to model the problems presented in this study are the MF ANNs. In titles, the 

MFANNs can perform function approximation and present simple arclntectures that 

promise ease and efficiency in learning and optimisation. The last two procedures will 

be presented in sufficient detail and mainly in conjunction with the MFANNs in §2.7 

to §2.9. 

2.7 ANN learning algorithms 

A learning rule implemented by its corresponding learning algorithm (or 

training algorithm) is defmed as a procedure for modifying all non-predetermined, 

adjustable variables of an ANN model, e.g. weights and biases, with the aim to train 

the model to perform some useful task, e.g., function approximation or data classifica­

tion. Learning rules fall into three broad categories: supervised learning, reinforce­

ment (or graded) learning and unsupervised learning. 

A supervised learning rule is always provided with a set of examples of proper 

network behaviour in the form {Ph tl}, {P2, t2}, ... {PQ, iQ}, where pq is an input to 

the network and tq is the corresponding output for 1~::SQ. This set known as the 

training set is obtained directly by the environment of the problem the ANN structure 

tries to model. The supervised learning rule applies a subset of the inputs pq to the net­

work and then adjusts a subset of the non-predetermined, adjustable parameters of the 

ANN in order to minimise the "distance" between the desired outputs tq and the actual 
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actual outputs aq• Examples of supervised learning rules are the ones developed for 

use in the perceptron, the ADALINE and MF ANNs. 

The reinforcement learning rules are similar to the supervised ones. The dif­

ference between the two is that the former kind of rules is provided with a grade (or 

score) as a measure of the ANN performance over some sequence of inputs instead of 

being given the correct outputs for the same input sequence as it happens in super­

vised learning. Reinforcement learning is more complex than either supervised or un­

supervised learning because it is not clear what the correct output is for each input is, 

and as such is much less common than the other two learning rule categories. Exam­

ples of reinforcement learning rules are met in control system applications [77, 120]. 

An unsupervised learning rule modifies a subject of non-predetermined, ad­

justable parameters of a certain ANN in response to network inputs only. There are 

neither target outputs nor performance measures available. Although unsupervised 

learning rules might seem to be impractical at a first glance, they manage to adapt the 

network towards optimisation of an internal (built-in) criterion that must be specified 

ahead of time. Most of unsupervised learning rnles perform some kind of clustering 

operation, i.e., categorisation of input patterns into a finite number of classes. This is 

especially useful in such applications such as vector quantisation [121, 122]. 

Most learning rules encountered in the ANN literature are deterministic, i.e., 

they always change all non-predetermined, adjustable ANN variables in the direction 

of improving the overall performance of the model. In contrast, stochastic learning 

rules have also been developed which allow the change of certain ANN variables in 

the "wrong" direction of reducing overall modelling performance, albeit with a small 

probability. There is a trade-off between the efficiency and ease of analysis in deter­

ministic schemes and the possibility of achieving "globally maximum" modelling per­

formance using stochastic schemes. Stochastic learning is usually applied as an alter­

native method when all deterministic learning approaches to a given ANN architec­

ture provably fail [123]. 

As it has already been stated above, the MF ANN is the most probable network 

architecture to successfully model the real problems presented in this study. Neverthe­

less, all common learning rules applied to MF ANNs belong to the deterministic su­

pervised class. This fact facilitates the presentation of these learning rules and their 

particular use in MF ANN architectures in the remaining of this section. 
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The first parameter that has to be decided in the design of a learning rule that 

can be applied to MFANNs is the performance index, i.e., the quantitative measure of 

network performance which is small when the network performs wen and large when 

the network performs poorly. A usual choice for the performance index of all learning 

rules of interest is the mean-squared error (MSE) between the actual and target output 

vectors associated with input vectors applied one at a time to the MFANN model. Fol­

lowing and extending the notation presented in the definition of supervised learning 

rules, the mean-squared error index is mathematically defined as: 

(2-10) 

where Q is the number of MF ANN training patterns, e is the error or distance vector 

associated with the network: 

(2-11) 

eq is an element of e for 19I:SQ dermed as: 

(2-12) 

and 11·111' 11·112 are the first- and second-order norm operators defined for an arbitrary 

vector x as follows: 

IIxlll == L Ix,1 

IIxll2 ==~(XT .x) 

(2-13) 

(2-14) 

The performance index defined above is dependent only on the actual output 

values 3 q obtained at every iteration of the learning algorithm when the set of exam­

ples of proper network behaviour {Pt. tl}' {P2, t2}, ... {PQ, to} is given. However, the 

actual outputs themselves are functions of all non-predetermined, adjustable variables 

of an MF ANN as it emerges from (2-6) to (2-9) Therefore, the performance index is a 

complex non-linear vector function of the variables the learning rules try to find opti­

mal values. In other words, the learning algorithms sought for MFANNs are indeed 

optimlsation algorithms applicable to the performance index defmed in (2-10). 

The mean-squared error index has a lower bound of zero reached when all ac­

tual values coincide with the desired ones for the given set of examples of proper net­

work behaviour. Furthermore, the same index is minimised when all respective error 

elements in (2-10) are minimised and hence the performance of the MFANN is maxi-
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maximised. As a matter of fact, it looks straightforward to define the objective of any 

MF ANN learning rule as the minimisation of the mean-squared error index. Neverthe­

less, the definition of a minimum in non-linear functions is not unique. Instead, three 

possible alternatives exist for such a minimum, which are precisely defined as fol­

lows: 

a} Local (or strong) minimum. The point x* is a local minimum ofF(x} if a scalar 

0>0 exists such that F(x*}<F(x* +ill} for all ill such that 0 > 11 ill 11 > o. In other 

words, ifthere is a move away from the local minimum x* for a small distance 

in any direction, the function F(} will increase. However, it is possible for the 

same function to take values smaller than F(x*} outside a small neighbourhood 

ofx*. 

b} Global minimum. The point x* is a unique global minimum of F(x} if 

F(x*}<F(x*+ill} for all ~x..o. For a global minimum x* the function FO will 

be larger than the minimum point at every other point in its multidimensional 

domain. 

c} Weak minimum. The point x* is a weak minimum of F(x} if it is not a local 

minimum, and a scalar 0>0 exists, such that F(x*}:5F(x*+~x} for all M such 

that 0 > 11 ~x 11 > o. No matter which direction of movement is taken away from 

a weak minimum for a small distance, the function FO cannot decrease, al­

though there may be some directions in which the function does not change. 

Ideally, a learning algorithm designed for the MFANN class should be able to 

optimise the mean-squared error function towards its global minimum if it exists. Un­

fortunately, such performance cannot be achieved under all circumstances. Practice 

has shown indeed that MF ANN learning algorithms are likely to be trapped in a local 

minimum point of the performance index that results to an unsatisfactory performance 

value. A well-known workaround solution to this problem is to apply the learning al­

gorithm many times to the same network structure, each time though with different 

initial conditions, and choose the solution that corresponds to the best performance 

obtained. Another approach is the addition of complexity to the learning algorithms 

that makes them capable of performing more accurate searches for optimal points at 

every step of theirs. Such an approach, however, comes at the cost of additional exe­

cution time due to the increase in either the number of steps required for a solution to 

be found, or the increase of arithmetic operations required for the execution of every 
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step of the algorithm, or both. The efficiency of MF ANN learning algorithms is dis­

cussed further below as each candidate algorithm is presented in turn. 

Three major optimisation (i.e., minimisation) algorithms have been discov­

ered since the 17th century for the minimisation of non-linear vector functions. These 

are the steepest descent algorithm, the Newton's algorithm and the conjugate gradient 

algorithm All optimisation algorithms are provided with an initial guess Xo for the 

global minimum point of the function FO and then update the guess in stages accord­

ing to an equation of the form: 

(2-15) 

or: 

(2-16) 

where dk is the search direction vector and Uk the scalar, positive learning rate that 

determines the length of the algorithmic step. Different search direction vector 

choices distinctively characterise the basic algorithmic lines mentioned above, while 

different learning rate selection schemes simply add variety to these lines. 

The steepest descent algorithm is based on the approximation of the vector 

function F() at any point Xk by the first two terms of the Taylor series expansion of 

F() around Xk to choose as search direction vector the negative of the gradient of F() 

at Xk: 

d k = -gk 

where the gradient is defmed by: 

gk '" V'F(x)I •••• 

(2-17) 

(2-18) 

The learning rate for steepest descent is chosen to minimise FO along the search line 

and is found in two steps. The fust step is called interval location and returns some 

initial interval of Uk that contains a local minimum for F(xk+ukdk). After that, the in­

terval reduction step reduces the size of the initial interval until the minimum Uk is 

located to the desired accuracy. ThejUnction comparISon method described in [124] is 

suitable for interval location purposes, while the Golden Section search [124] can be 

used for interval reduction in every case. 

Steepest descent has the advantage that is very simple, requiring calculation 

only of the gradient. It is also guaranteed to converge to a stationary (i.e. minimum) 

point if the learning rate is small enough. The main disadvantage of steepest descent is 

that it has only linear termination, i.e., it minimises a linear vector function exactly in 
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a fInite number of steps but it does not necessarily do the same for quadratic or 

higher-order vector functions. As a matter of fact, steepest descent generally requires 

many more iterations to complete than the other two major optimisation algorithms 

discussed below. 

Newton's optimisation algorithm is based on the approximation of the vector 

function FO at any point Xk by the second-order Taylor series expansion of FO 

around Xk to choose as search direction vector the expression: 

dk =-A;lgk (2-19) 

where Ak is the Hessian matrix evaluated at the point Xk: 

Ak '" V
2 

F(x)I •• " (2-20) 

and assign the learning rate Uk to unity. This algorithm has the property of quadratic 

termmation, i.e., it minimises a quadratic vector function in a fInite number of steps 

(in fact, in a single step). Therefore, it is generally much faster than steepest descent. 

On the other hand, Newton's algorithm has two main disadvantages. Firstly, it re­

quires calculation and storage of the Hessian matrix, as well as its inverse, at every 

step. Secondly, its convergence is hard to be guaranteed in any circumstance other 

than a quadratic vector function optimisation: the Hessian matrix may be single (i.e., 

non-invertible) at some stage, or the algorithm may converge to a saddle point (i.e., a 

point which can be regarded as either local minimum or local maximum depending on 

the direction by which it is approached), or the algorithm may not converge at all. A 

number of modifIcation ideas have been proposed for the basic Newton's algorithm to 

alleviate some of its disadvantages, one of which is to be discussed in detail later in 

this section. 

The conjugate gradient algorithm has taken its name from the fact that all 

search direction vectors dk assigned at every one out of n consecutive iterations of the 

algorithm, where n is the number of inputs to function F(), are mutually conjugate 

with respect to a positive defInite matrix A. In mathematical terms: 

diAdJ=O l~jS,n,l~kS,n,j;t.k (2-21) 

Conjugate search direction vectors are derived in practice by the recurrent formula: 

k=c(n+l) 

k=c(n+l)+l, c(n+l)+2, .. , c(n+l)+n 
(2-22) 

where c is a nonnegative integer and ~k a scalar obtained by one of the equations: 
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(2-23) 

(Hestenes and Ste!fol method), 

T 

fJ - gk gk 
k - T 

gk-I gk-I 
(2-24) 

(Fletcher and Reeves method), or 

fJ - LlgL gk 
k - T 

gk-I g.-I 
(2-25) 

(Polak and Ribiere method). In equations (2-23) to (2-25): 

(2-26) 

The optimal learning rate ak at every step is always found by following the same 

methods as the ones presented for the steepest descent algorithm case. 

It can be shown that if a sequence of exact linear searches along any set of 

conjugate directions {db d2, ... do} is made, then the exact minimum of any quadratic 

function FO with n inputs will be reached in at most n searches. In other words, the 

conjugate gradient algorithm features quadratic termination like Newton's algorithm. 

Despite the fact that Newton's algorithm is usually faster in convergence that the con­

jugate gradient in applied minimisation problems (but definitely much faster than 

steepest descent), the second algorithm does not require calculation and storage of the 

Hessian matrix nor its inverse. Therefore, conjugate gradient is well suited to minimi­

sation problems with large numbers of parameters. 

The next and fundamental step in the development of MF ANN learning algo­

rithms is the implementation of the generic optirnisation algorithms presented above 

in the minimisation of carefully selected vaT/ants of the mean-squared error index 

(2-10). For the implementation of the steepest descent and conjugate gradient algo­

rithms, one must calculate the gradients of the performance index with respect to 

every non-predetermined, adjustable MFANN parameter. For the implementation ofa 

variant of Newton's algorithm, details of which are discussed below, a pseudo­

Hessian invertible matrix has to be calculated first as a function of the gradients of all 

individual network output errors with respect to every non-predetermined, adjustable 

MFANN parameter. No matter which optimisation algorithm is actually implemented 

for MF ANN training, the result is always defmed as backpropagation algorithm due 
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to the fact that all necessary gradients are always processed from the last layer of the 

network to the first. 

Given a set of examples of proper network behaviour {Ph tl}, {P2, t2}, ... {PQ, 

to}, the first step of every MF ANN learning rule presented in this work is to calculate 

the set of network outputs {aI, a2, ... aQ} by repeated use of the equations (2-6) to 

(2-9). The next step is the update of either the margmal-squared error or the sum­

squared error performance index defined in turn by the following equations: 

Fq(e)Elleqll: (2-27) 

F(e};=llhelll~ "e2"~ ... hll: ... IleQII: r III (2-28) 

The marginal-squared error (2-27) is an approximation of, while the sum-squared er­

ror (2-28) is directly proportional to, the mean-squared error (2-10). The marginal­

squared error performance index chosen as performance index for the implementation 

of steepest descent and conjugate gradient in MF ANN learning, while the sum­

squared error performance index allows for straightforward implementation of the 

Levenberg-Marquardt algorithm, a variant of Newton's algorithm, in MFANN leam­

ingtoo. 

For the calculation of all gradients of the marginal-squared error with respect 

to all adjustable, non-predetermined variables of a MFANN (Le., weights and biases) 

it is necessary to introduce two new network variables. These variables are the net in­

put sensitivity vector SI of a network layer I (1:Slg.): 

(2-29) 

and the diagonal matrix F, of all first-order derivatives of transfer functions assigned 

to neurons oflayer I: 

(2-30) 

By use of the chain rule it can be shown that the gradients of the marginal-squared 

error function with respect to all MF ANN weights and biases are derived from the net 

input sensitivities as follows: 
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(2-31) 

RumeIhart et al. showed that all net input sensitivities of any MF ANN could 

be calculated exactly by the following recursive formula: 

_{-2Fl eq I=L 
SI -. T 

FI WI+! SI+! I =L-l, L-2 ... 1 
(2-32) 

where eq E!tq -aq • This discovery was applied to the generic steepest descent mini­

misation algorithm in order for the first MP ANN learning algorithm, the Steepest De­

scent Backpropagation algorithm (SDBP), to be born [74]. It has to be mentioned 

though that the original SDBP algorithm does not modify its learning rate a during 

network training, thus featuring a small difference from the classical steepest descent 

algorithm. A few years later, Charalambous [125] applied the same principle to the 

generic conjugate gradient algorithm in order to construct the Conjugate Gradient 

Backpropagation algorithm (CGBP). SDBP influenced the resurgence of interest in 

the neural network field during the 1980s; while CGBP provided significant speedup 

over SDBP on many MFANN leaming occasions. 

After the discovery of the SDBP learning algorithm a number of heuristic 

techniques were developed which tried to increase the algorithm's convergence speed. 

These techniques include such ideas as varying the learning rate, using 'momentum 

and rescaling variables. The main heuristic modification algorithms are: 

a) Momentum Backpropagation (MOBP). The very last network parameter up­

date is weighted by a factor 'Y and the resulting term known as momentum is 

then added to the current parameter update pre-multiplied with the constant 1-

'Y. This modification allows for a larger learning rate a, i e. greater conver­

gence speed, to be used while the stability of the algorithm is maintained. An­

other feature of MOBP is that it tends to accelerate convergence even more 

when its trajectory drawn on the performance index surface is moving in a 

constant direction. More about MOBP can be found in [126]. 

b) Variable Learning Rate Backpropagation (VLBP). This algorithm tries to 

speed up SDBP convergence by suitably adjusting its learning rate a during 

the course of training. Specifically, if the performance index increases by more 

than some set percentage I; after a network parameter update, then the update 

60 



ARTIFICIAL NEURAL NETWORK MODELLING 

is discarded, the learning rate is multiplied by some factor O<p<l, and, if a 

momentum term is included in the network parameter update formula of 

VLBP, its coefficient'Y is set to zero. On the contrary, if the performance index 

decreases after a network parameter update, then the update is accepted and 

the learmng rate u is multiplied by some factor 1]> 1 (if'Y has been previously 

set to zero then it is reset to its original value). Finally, if the performance in­

dex increases by less than 1;;, then the network performance update is accepted 

but the learning rate u (and the momentum coefficient 'Y) are left unchanged. 

More about VLBP are discussed in [126]. 

c) QUlckProp. This algorithm assumes that the performance index surface drawn 

in the network parameter space is parabolic and concave upward around the 

minimum point. Also, QuickProp assumes that the effect of each network pa­

rameter can be considered independently. More about the topic can be found 

in [127]. 

Other examples of successful heuristic SDBP modifications are the Delta-Bar-Delta 

VLBP [128], SuperSAB [129], and RPROP [130] algorithms. 

Unfortunately, all heuristic modifications to SDBP suffer from two main prob­

lems. The first is that the modifications require that several (up to five or six) parame­

ters be set (e.g., p, 1;;, 1] and 'Y), while the ouly parameter required for SDBP is the 

learning rate u. Often the performance of the algorithm is sensitive to changes in these 

parameters, and even worse the choice of parameters is also problem dependent. The 

second drawback is that these SDBP modifications can sometimes fail to converge to 

problems for which the old plain SDBP can eventually find a solution. In conclusion, 

heuristic modifications can achieve good results for certain MP ANN learning tasks 

but their performance on the average is rather unpredictable. 

Another technique that has been applied to CGBP, SDBP and its heuristic 

modifications with considerable success is called batching. The batching technique 

requires all network parameter updates be calculated individually for every example 

of proper network behaviour {Pq, tq} available in the training set. Next, the average of 

all parameter updates calculated during an iteration of the learning algorithm is cho­

sen as the eventual parameter update of that iteration. Batching produces more accu­

rate parameter updates at the cost of additional complexity. 

Perhaps the most powerful MF ANN learning algorithm in terms of conver­

gence speed and stability is the Levenberg-Marquardt (LM) one. LM is derived di-
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rectly from another quasi-Newton optirnisation algorithm known as Gauss-Newton, 

thus it is proper to present the latter algorithm first. 

Gauss-Newton can be applied only to functions that are sums of squares of 

other non-linear functions, i.e. of the form: 

F{x}="v{x}"~ (2-33) 

where X=[XI X2 ... X.JT and VO=[VIO V20 ... VNOt The gradient ofFO in (2-33) is: 

VF{x}= 2JT {x} V (x) (2-34) 

where 

Cv, {x} Ov,{x} Cv, {x} 

ax, ax2 axn 

Cv2{x} Ov2{x} Cv2(x} 

J {x} '" ax, ax2 axn (2-35) 

is the Nxn Jacobian matrIX. The Hessian ofFO is given by: 

V2 F{x} = 2JT {x} J{x}+2R{x} (2-36) 

where 

(2-37) 

is the remaining term. Gauss-Newton assumes that R(x) is a small term that can be 

removed from (2-36) without major consequences. The resnlt is an approximation for 

the Hessian that depends only on the Jacobian, i.e., the first-order derivatives ofFO: 

(2-38) 

Finally, Gauss-Newton substitutes (2-34) and (2-38) into the search direction 

vector expression (2-19) of Newton's algorithm and sets its learning rate ak to unity. 

Therefore (2-16) gives the following minimum guess update ~k for Gauss-Newton: 

(2-39) 

The main problem with the Gauss-Newton algorithm is that the Hessian ap­

proximation H"'.JTJ is not always invertible. This can be overcome by using the modi­

fication G=H+!1kI to the approximate Hessian matrix. If scalar !1k is sufficiently large, 
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it can be proved that matrix G is positive defInite and hence invertible. This leads to 

the following expression of the guess update LUk for LM: 

(2-40) 

The LM algorithm has the very useful feature that as its momentum Ilk is in­

creased it approaches the steepest descent algorithm with smallleaming rate, while as 

Ilk is decreased to zero the algorithm becomes Gauss-Newton. Therefore LM provides 

a nice compromise between the speed of Newton's algorithm and the guaranteed con­

vergence of steepest descent. 

The generic LM algorithm presented above can be used for MF ANN training 

purposes if the sum-squared error (2-28) is chosen as the performance index and the 

vectors x and v are defIned as: 

(2-42) 

L 

where So=R, n = ISm (Sm_1 + I), I~SL, I~~Q, ek,q the k-th MFANN output error 
m-I 

when the vector pq is applied to the network as input, and N=SLQ. Then, it can be 

shown that each element of the lacobian matrix J is computed by the expression: 

J ={Cs},JLa,..) 
h,r S 

/ }.h 

for weights of layer 1 

for biases of layer 1 
(2-43) 

where: 

• i, j are neuron indices for layers SI.I and SI. i.e., l~i~SI.1 and I~~SI. 

• h=(q-I) SL +k is the row index ofJ, I~, 

• r= 

/-1 

I [Sm (Sm_1 + 1)]+ (j -I) SI-l + i 
m_I 

1-1 

I [Sm(Sm_1 +I)]+S/S/_I + j 
m-I 

is the column index of J, I~, 

for weights of layer 1 

for biases of layer 1 

• I.!a.,q is the output value of the i-th neuron belonging to layer (1-1) when the 

MF ANN is subject to input vector Pq, and 

- BVh Bek •• th 11 d . .. f MFANN / s j h == --= --'- IS e 1Vlarquar t senSitiVIty 0 output error 
. B/n},. B/n},. 

• 

~q with respect to net input / n} when the network is subject to pq. 
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Hagan et al. [131] were the first to show how Marquardt sensitivities could be 

calculated directly from other MF ANN variables of known values by application of 

the backpropagation principle. They considered I s1.h as the (j,h)-th element of S,xN 

Marquardt sensitivity matrix S, created by augmenting the Q Marquardt sensitivity 

matrices S, .• of size SIXSL obtained when each input vector pq is individually applied 

to the network: 

(2-44) 

If the symbol F/.• is used instead of F, to represent the matrix defined in 

(2-30), where the additional index q is a reminder that vector pq has been applied to 

the network as input, then it is possible to summarise Hagan's findings for the calcula-

tion ofMarquardt sensitivity matrices S". in the following recursive fonnula: 

S '·· - { -F 
I. =. T -
. F/ .• W/+1 S 1+1,. 

I=L 
I=L-l,L-2 ... 1 

(2-45) 

The Levenberg-Marquardt Backpropagation algorithm (LMBP) begins with 

its momentum J.l. set to some small value. The first step in every iteration of the algo­

rithm is to present all inputs pq to the MFANN and compute the corresponding net­

work outputs a',q by applying (2-6) to (2-9), the network output errors eq=tq-aL,q, and 

the sum-squared error perfonnance index (2-28). The second step of the same itera­

tion is the calculation of the elements of the lacobian matrix J by (2-43) with the aid 

of (2-44) and (2-45). The third step requires the update of all adjustable-non­

predetennined MFANN variables by substitution of (2-41), (2-42) and (2-43) into 

(2-40). The perfonnance index (2-28) is recomputed in the fourth step using the up­

dated network variable values and compared with the perfonnance index value before 

the update took place. Steps three and four are repeated - with previous variable up­

date rejected and J.l multiplied by some factor 9>1 - as long as the comparison shows 

that the perfonnance index has not been reduced due to the variable update. Eventu­

ally the perfonnance index should decrease, since a smaller network variable update is 

taken in the direction of steepest descent by continually increasing J.l.. As soon as the 

performance index is reduced due to the last network variable update, the update is 

accepted, momentum J.l is divided by the same factor 9 so that LMBP approaches 

Gauss-Newton that should provide faster convergence, and the algorithm proceeds to 
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its next iteration. LMBP continues until the SSE performance index reaches a prede­

termined e"or goal SSEgoah the SSE gradient becomes smaller than a limit V mm, the 

momentum J.l becomes too larger than a constant J.lmax, or the predefined maximum 

number of iterations EPmax has been reached. 

The key drawback of the LMBP algorithm is its storage requirement. The al-

L 

gorithm must store the nxn Hessian matrix G, where n = L Sm (Sm_1 + 1) is the num-
m-I 

ber of all adjustable, non-predetermined MF ANN variables subject to learning. In 

contrast, every other MF ANN backpropagation algorithm discussed in this section 

requires only the storage of the gradient that is an n-dimensional vector. As a matter 

of fact, LMBP becomes impractical to use when n is very large and preference to the 

other learning algorithms is necessarily given. 

A final, worth-mentioning issue that concerns all MF ANN learning algorithms 

presented in this section (SDBP and variants, CGBP and LMBP) is the initialisation 

of all network parameters affected by training, i.e., weights and biases. First, as every 

MF ANN is horizontally symmetrical by definition, zero is found to be a saddle point 

of the performance surface drawn in the adjustable, non-predetermined MF ANN pa­

rameter space, and as such it troubles the learning algorithms. Hence the network 

weights and biases should not be initially set to zero altogether in order to avoid pre­

mature problems in MF ANN learning process. Second, the aforementioned perform­

ance index surface tends to have very flat regions (where optimisation progress is 

painfully slow) away from its optimum points. Given that input data are usually pre­

processed to small values (see §2.8), it would be unwise to initialise the network pa­

rameters affected by training to large values. In view of the two potential troubles 

mentioned above, initial weights and biases are usually chosen to be small random 

values. Nevertheless, it is far from certain that a single set of values selected for 

weight and bias initialisation would always guarantee learning algorithm convergence 

to a global minimum, or al least a good local minimum, of the performance index. 

Therefore a common practice is the choice of several different initial guesses for net­

work parameter initialisation, separate network training with each individual guess, 

and comparison of results obtained by every training session. 

The optical scattering problems dealt by this study are characterised mostly by 

intrinsic rather than input complexity. Therefore, the most suitable learning algorithm 

for all MFANNs models of these problems is one that guarantees fast and efficient 
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convergence without great concern about storage requirements, i.e., the LMBP algo­

rithm. No matter which algorithm is chosen for a particular MF ANN learning problem 

though, its name and parameters will be explicitly mentioned wherever necessary for 

clarity purposes. 

2.8 ANN input pre-processing 

Albeit being ignored in the discussion of many ANN modelling problems en­

countered in scientific literature, ANN input pre-processing is a vital process that 

originates from biological neural networks and assists both ANN learning and ANN 

optimisation procedures. The aim of input pre-processing is to reduce the range of in­

put data to the network into intervals that coupJe with the intervals of weight and bias 

values of the network. These intervals ought to be small around zero as explained in 

§2.7 and §2.9. 

Two main methods have been developed and followed in ANN literature for 

input pre-processing: uniform normalisation and Gaussian normalisation. Uniform 

normalisation finds the minimum min{q PI) and maximum max{q PI) of each element 
q q 

q PI (15i:sR) belonging to a vector pq taken from the ANN input data set {Ph P2, ... 

pq, ... PQ} that is available. After that, the method forces all inputs to lie within the 

range [0, 1] by use of the formula: 

__ qPI- mmPI 
qP, = 

max: Pi - mmPi 

Pmm =[mJnCPI) mJnCP2) ... mjnCpJ ... mjnCPRW 

Pmax =[max(.pl) max{qP2) ... max(.pJ ... max(.PRf 
q q q q ~ 

and Pmax '" Pmm· Finally, the uniformly normalised vector: 

Pq = [qPI qP2 ... qPI ... qPRY 
is derived from the initial input vector by this pre-processing method. 

(2-46) 

(2-47) 

(2-48) 

(2-49) 

A variant of (2-46) restricts of all inputs within [-0.5, O.S] instead of [0, 1]: 

__ qP,-O.S(m""P,+ mmP,) 
qP,= 

max PI- mmP, 
(2-S0) 
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Albeit insignificant at first glance, the variant plays a critical role in the success of the 

novel network optimisation algorithm explained in §2.9. Therefore all references to 

uniform normalisation made in this work will implicitly assume that (2-50) instead of 

(2-46) applies. 

The Gaussian normalisation pre-processing method calculates the mean value 

P, = E( qPJ and standard deviation u , = E[Lpl - p,)2 ] of each element q P, 
q q 

(l:Si~) that belongs to a vector pq taken from the ANN input data set {Ph P2, ... pq, 

... pQ}. After that, the method encloses about 95% of input data within a hyper-sphere 

of radius 2 by use of the formula: 

qP, -ELpl) 
qP, '" q (2-51) 

E[( qP, - P, )2] 
q 

1 N 
where 19~ 1:sq:SQ and E{x) '" N LX, the expected value jUnction. Finally, the 

I-I 

Gaussian normalised vector ii q is derived by substitution of (2-51) to (2-49). 

Each data pre-processing method has its merits. Uniform normalisation fixes 

the range of values data can take in absolute limits, while Gaussian normalisation en­

sures that no outliers, i.e., vectors that fall significantly outside the clusters formed by 

groups of other vectors in the vector space, are left as a result of pre-processing. 

Hence uniform normalisation is usually applied in function approximation problems 

and Gaussian normalisation in classification problems respectively. Input data pre­

processing by uniform normalisation is applied to every ANN modelling problem pre­

sented in this work unless otherwise stated. 

Apart from input pre-processing, uniform normalisation is also used for target 

data pre-processing when the transfer functions assigned to neurons of the output 

layer in an ANN model have bounded ranges. This situation is common with network 

models constructed to solve classification problems, as log-sigmoid is typically se­

lected as the transfer function for neurons belonging to their output layers. However, 

target data pre-processing can be mandatory for function approximation modelling as 

well, depending on the function's range characteristics. In brief, uniform normalisa­

tion of target vectors is conceptually and mathematically similar to the one described 

for input data pre-processing. The only difference between the two implementations 
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of the same method is that a linear transformation of (2-49) may be used instead of 

(2-46) so that the dynamic range of all normalised target vectors returned by the first 

implementation matches the range of every corresponding transfer function assigned 

to a neuron of network's output layer. Target data pre-processing will apply, and its 

use will be explicitly mentioned, whenever deemed necessary for any ANN modelling 

problem that is presented in this study. 

2.9 ANN optimisation algorithms 

2.9.1 Overview 

As already mentioned in §2.1, optimisation is the procedure of transforming a 

generic mathematical model into another that exhibits efficiency in terms of accuracy 

and complexity defined in the context of computation and implementation. Specifi­

cally in the ANN field, optimisation techniques are applied during or after network 

training to shape or modify any aspect of network topology. As a matter of fact, opti­

misation may either interfere with or complement existing learning rules. Details of 

the major optimisation algorithms applied to feedforward ANNs and specifically 

MFANNs are provided in this section. The main principles of these algorithms can be 

applied to optimisation of other ANN classes, such as associative networks [132] or 

tree structures [133J, but details of their application fall outside the scope of this study 

and therefore will not be discussed further. 

The aim ofMFANN optimisation is to help the network learn only the abso­

lutely essential features of input-output training examples and generalise them in or­

der to be able to give sufficiently accurate outputs to input data not present at any 

MFANN modelling phase. How this can be achieved though? If the network is too 

large, it has more internal parameters (known as "degrees of freedom") than the nec­

essary ones and it uses them to learn the unimportant, possibly spurious features of the 

training data together with the important ones. The result of this over fitting behaviour 

is a MFANN that memorises the training examples quite well and fast but fails mis­

erably when presented with similar but slightly different inputs. In contrast, a too 

small network fmds it difficult to leam its training examples to an acceptable degree, 

as it may have less than necessary degrees of freedom or be highly sensitive to initial 

conditions and learning parameters. Even if learning eventually succeeds in small 

networks, it may well be due to the learning algorithm being trapped in a less than sat-
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isfactory local minimum of the performance index. Since the brute-force method of 

designing and training networks of arbitrarily different size by a large number of ini­

tial conditions is way too slow and thus impractical, automated solutions had to be 

devised instead to tackle the MFANN optimisation problem in order to achieve 

maximum accuracy and minimum computational overhead. 

MF ANN optimisation algorithms are broadly classified into constructional al­

gorzthms and prumng algorithms. Constructional optimisation builds a network model 

from scratch by starting from a very primitive structure and progressively adding 

more complexity in a controlled and automated manner until the network has learnt 

the actual mapping to a sufficient degree of proximity [134-13 6]. On the other hand, 

pruning optirnisation starts from a larger than necessary MFNN and then tries to sim­

plifY that network by measuring the relative importance of each of its parameters and 

progressively removing the unnecessary ones. Pruning continues until no more pa­

rameters can be removed without irreparable harm to model's accuracy [137]. Pruning 

algorithms are encountered more frequently in ANN literature for both practical and 

psychological reasons. Network pruning is comparatively simpler than network con­

struction, and pruning produces poor but constantly improving modelling solutions in 

every step while construction provides no solution until the very end. 

MF ANN pruning is a process mainly achieved by either sensitivity analysis or 

penalty-term algorithms. Sensitivity analysis measures the contribution, or sensitivity, 

of every removable network parameter to network output or performance index after 

training has taken place, and the parameters given small sensitivity values are 

trimmed from the network. Alternatively, penalty-term algorithms add extra terms to 

the performance index that enhance and diminish the more and less important network 

parameters respectively during training. Sensitivity analysis requires more computa­

tional resources for sensitivity calcnlations but offers no interference with the learning 

algorithm in return. Therefore sensitivity analysis does not increase the risk of learn­

ing failures unlike penalty-term algorithms [137-139]. Other pruning algorithms, like 

interactive pruning [J 40], local or distributed bottlenecks [141, 142] or pruning by 

genetic algorithms [143], fmd only limited application due to their lack of automation 

or increased complexity. 

A typical MF ANN sensitivity analysis algorithm operates in three basic steps. 

Firstly, the algorithm assigns a sensitivity parameter to every MFANN parameter that 

can be considered for removal. The sensitivity is usually defmed as the performance 
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index or network output change that can result from either a network parameter's per­

turbation around its initial value or the parameter's setting to a fixed value (usually 

zero). Secondly, sensitivity analysis calculates exactly or even approximately the sen­

sitivity of each removable network parameter based upon a subset of all internal and 

external variables that can be defined for the MFANN. Finally, the algorithm calcu­

lates the significance of every removable network variable as a function of MF ANN 

sensitivity values calculated in the previous step. The variables assigned the least sig­

nificance values are removed from the network and the remaining MF ANN variables, 

removable or not, are updated, directly or by network retraining, to minimise the ef­

fect of pruning to network's accuracy [137,144]. 

MFANN sensitivity algorithms are divided into weight elimination and node 

eliminatIOn ones. The first class concentrates its efforts on the removal of network 

weights and biases, while the second class is concerned with the removal of inputs or 

hidden neurons from the network. However, it is impossible to separate the tasks of 

weight and node elimination completely. If a node is pruned, all weights and biases 

attached to it are automatically removed. Alternatively, the removal of all input or 

output weights to a node effectively eliminates the node itself. Therefore it is essential 

to apply sensitivity algorithms of both classes, as well as detect possible variable 

cross-eliminations as early as possible, in order to obtain the best network optimisa­

tion results possible. 

The main weight elimination (thus weight optimisation) algorithms available 

for MFANNs are the magnitude-based pruning (MBP) [145], optimal brain damage 

(OBD) [146] and optimal brain surgeon (OBS) [147]. MBP detects and eliminates 

weights that have the smallest magnitude. However, this simple and naively plausible 

idea often leads to the elimination of the wrong weights, because small weights can be 

necessary to maintain network's accuracy. In contrast, OBD and OBS use the crite­

rion of minimal performance index increase for weight elimination. That criterion re­

quires the calculation of index's Hessian with respect to every weight to give accurate 

results, however. OBD calculates only the diagonal elements of the Hessian to reduce 

computational and storage requirements, while OBS uses more resources to obtain a 

good approximation of the inverse Hessian by recursion. Other weight elimination 

algorithms, such as [148], rely on rather heuristic approximations of performance in­

dex change occurred after forcing an arbitrary set of weights to zero. In any case, OBS 
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remains the most accurate and hence suitable weight elimination algorithm for small­

and middle-sized MF ANNs. 

The early days of node elimination saw efforts to estimate performance index 

changes arisen from possible pruning of sets of inputs or hidden neurons, such as the 

attentionaI strength algorithm [138]. However, it was discovered later that network 

output change was a more indicative measure of node siguificance than performance 

index change because the former does not include averaging and thus It does not 

smooth out important node features [144]. In fact, implementations of output-change­

based sensitivity algorithm in C++ can be found as early as in 1991 (see reference 

[149]). The establishment of network output change as node siguificance measure fol­

lowed the invention of the first-order sensitIvIty analysis (FOSA) algorithm a few 

years later by Zurada et al. [150, 151]. 

Firstly, FOSA calculates all sensitivity parameters, defined as first-order de­

rivatives of each MF ANN output with respect to every node of the network, by recur­

sion. After that, the algorithm calculates the node siguificance from the sensitivity pa­

rameters calculated in the first step, and sorts the nodes in descending siguificance 

order. Finally, FOSA eliminates simultaneously all nodes clustered at the bottom of 

the siguificance table and retrains the network to compensate for the node removals. 

The algorithm was initially tested for input pruning only in a variety of typical 

MFANN modeIling applications, such as decision support systems [152], symbolic 

rule extraction [153] and machine learning [154], with considerable success. Later, 

FOSA was extended to perform hidden node elimination as well [155]. 

FOSA has two main advantages. Firstly, the algorithm calculates first-order 

sensitivities only and hence requires rather moderate storage resources. Secondly, 

FOSA has a single effective pass, Le., it detects and removes many redundant 

MFANN nodes after its first application to the network but only few nodes, if any, 

after subsequent applications [151]. Therefore, the algorithm terminates relatively 

quickly in comparison with other node elimination algorithms. FOSA has an impor­

tant disadvantage, however. Specifically, the simplistic assumption that every node 

contributes to network's input-to-output mapping independently from the others, an 

assumption upon which FOSA is based to prune any set of nodes altogether, does not 

hold in general. Instead, every network output is dependent on both single instances 

and sets of nodes. It is perfectly possible to encounter situations in which a set of 

nodes is considered insignificant when each node is examined separately, while the 
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same set is indeed necessary for the representation of basic features of the modelled 

problem if considered as a whole. Or, certain nodes may provide their successors in 

the network structure with contrary data, and hence are redundant when considered 

collectively, while each of these nodes returns considerable significance measure­

ments when examined independently. Although the previous two cases may be ex­

treme, it is still likely to encounter partial cross-correlations of node significances in 

any network that are impossible to be detected and dealt with successfully by first­

order sensitivity measurements only [137]. Even worse, the simultaneous elimination 

of many network nodes dictated by FOSA involves the risk of driving a few of the 

remaining nodes into their non-linear or totally saturated regions in the network re­

training phase of the algorithm. Should this happen, the affected nodes exhibit fatally 

distorted responses to the remaining inputs, and consequently the network's modelling 

accuracy deteriorates quickly [144]. 

This study introduces the novel second-order sensitivity analysis (SOSA) algo­

rithm as an enhancement to FOSA. SOSA avoids the limitations and inefficiencies of 

FOSA mentioned above by approximating the changes in every MP ANN output 

caused by the elimination of any network node, pair of nodes or set-of-three nodes. 

The accuracy of output change approximations calculated by SOSA is comparable to 

the one obtained by second-order Taylor approximations to analytic functions, thus 

quite satisfactory in most cases. Because SOSA calculates the significance of each set 

of one, two or three network nodes directly from MPANN output change approxima­

tions before it decides which and how many nodes to prune altogether, the new algo­

rithm manages to detect and tackle cross-correlations of node significances much bet­

ter than FOSA. Furthennore, SOSA is capable of undoing earlier node pruning deci­

sions and reducing its elimination speed should the resulting simplified network be 

found unable to recover from the last node-pruning step, a very important feature that 

is non-existent in FOSA. Despite its obvious additional computational and storage 

requirements compared to FOSA, the SOSA algorithm demonstrated excellent node 

elimination results within reasonable time intervals when applied to small- and mid­

dle-sized MF ANNs. 

Both OBS and SOSA algorithms base their pruning decisions on perfonnance 

index or network output change approximations that involve both the gradient and 

Hessian matrices. Therefore a properly combined action of these algorithms to any 

MP ANN model considered in this study can provide excellent network optimisation 
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results. §2.9.2 and §2.9.3 discuss OBS and SOSA, while §2.9.4 demonstrates a novel, 

fully automated MF ANN optimisation scheme involving both pruning algorithms. 

2.9.2 Second-Order Sensitivity Analysis Algorithm 

To explain the SOSA algorithm it is essential to define and calculate the first­

and second-order sensitivities of network outputs with respect to each removable 

node. In the following discussion, the term node will be used to collectively describe 

MF ANN inputs, hidden signal processing units, or outputs. 

First of all, the first-order derivative I i. (-) and second-order derivative I it (-) 
of the transfer function If. (-) assigned to the i-th neuron of the I-th layer and assumed 

to be twice differentiable are defined as follows: 

. ( ) dCal) 
d'l n

, dCnJ 

.. ( )_d2C a,) 
d; In, = dCnJ 

(2-52) 

(2-53) 

where 1:sI~ and l~i~SI. It is implied that I it C n,) and I J; C n,) are dependent on the 

input vector pq to the network for l~~Q, where Q is the number of MF ANN training 

patterns. These derivatives are given by simple non-Imear expressions of node outputs 

I a I when the transfer function is linear, log-sigmoid or hyperbolic tangent sigmoid, as 

L 

table 2-3 shows. As a matter of fact, if storage space of Q. ~SI floating-point num-
1-) 

bers is provided at the end of the MFANN training procedure, the derivatives are cal­

culated from node outputs at a typical cost of o( Q. t.SI) floating-point operations. 

The first-order sensitivity ImSk' and second-order sensitivity 1mB; of the k-th 

node output belonging to layer m, m ak , with respect to i-th node output I a, (and j-th 

node output la J for second-order sensitivity) oflayer I, are defmed as: 

(2-54) 

(2-55) 
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Table 2-3 - Derivatives of common transfer functions 

Name First-Order Derivative Second-Order Derivative 

Linear J'(ln,) =1 J,Cn,)=O 

Log-Sigmoid Ii.Cn,)= lal ·(I- la,) I.i:Cn,)= la,.(I- la,).(1-2 I a,) 

Hyperbolic 
1 i. C n,) = (1-1 a,). (1+1 a, ) 1 j, (, n,) = (-21 a, ). (I-,a,). (l+,a,) Tangent 

Sigmoid 

where O~<m::;L, l::;i::;S), 1~::;S), io'j and I::;k::;Sm. It is implied that Im SId and Im il; are 

dependent on the input vector pq to the network for 1::;q::;Q. If 1=0 and m=L, (2-54) 

resembles the first-order sensitivity definition given in [150-154]. When O<I<L and 

m=L, (2-54) takes a form similar to the fust-order sensitivity definition found in 

[155). For 1=0, m=L and log-sigmoid transfer functions assigned to every MFANN 

neuron, the second-order sensitivity definition (2-55) is presented analytically in 

[156). Contrary to limited definitions of first-and second-order sensitivities encoun­

tered in the seven references mentioned above, (2-54) and (2-55) are of universal 

value and therefore can be applied directly to any MFANN of twice-differentiable 

transfer functions assigned to each of its neurons. 

When MF ANN signal propagation rules (2-6) to (2-9) and transfer function 

derivative definitions (2-52) to (2-53) are applied to sensitivity definitions (2-54) and 

(2-55), it finally emerges that all fust- and second-order sensitivities of the network 

are computed by the following recursive formulas: 

(.-I)m SId = 

{
I i=k 

o io'k 

s. 
L .i,(.nr)·' w,.,· .mS", 
r_1 

o 

u=m+l 

(2-56) 

u=m,m-l, ... I+1 

u=m+l 

(2-57) 
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where So=R (if necessary). As a matter of fact, the fIrst- and second-order sensitivities 

of a MF ANN are calculated by backpropagation like the network's performance index 

sensitivities (see (2-32) and (2-45». Both network output sensitivities are dependent 

on network weight and transfer function derivative values, while second-order sensi­

tivity calculation requires previous knowledge of its first-order counterpart in addi­

tion. 

Scalar sensitivity formulas (2-56) and (2-57) can be tabulated for notational 

and implementation ease into the following recursive matrix expressions: 

S =. . u=rn+1 . {I 
(.-l)m S.F. W 

um It Il u = rn, rn -I, ... 1 + I 

o 
u=rn+l 

• k 

H(._l)m = W[ .diag(S:..).F •. W. + 
u = rn, rn -I, ... I + I • T'" k • 

(F.· W.) ·H.m ·(F.· W.) 

where: 

F. == diag(. .i;(.I1) • j;(.~) 

F. == diag(. .i; (.11 ) • h (. n2) 

.is. (.nsJ) 
• is, (. ns, )) 

(2-58) 

(2-59) 

(2-60) 

(2-61) 

(2-62) 

(2-63) 

(2-64) 

and S:.. is a row vector. Equivalent first-order sensitivity matrix formulas are also 

stated in [150-152, 154] (for single-hidden-Iayer MFANNs only) and [153, 155]. The 

non-trivial floating-point operations and storage space requirements for the calcula­

tion of first-and second-order sensitivities by (2-58) and (2-59) are given in table 2-4. 

In the following discussion of the SOSA algorithm, layer indices I and m are 

fixed in value. Also, it is assumed that I points to the input layer and m to the output 

layer of the network, so that the algorithm's scope of action is voluntarily limited to 

an arbitrary section of the original network. If the input vector pq is applied to the in-

put layer of the original network, let a, ",Cal ,a2 ••• ,as,Y denote the output 

vector of layer I, a m '" (m a l m a 2 ••• m as. Y the output vector of layer m, and 

75 



CHAPTER 2 

am '" (m a. m a2 ••• m as. Y the target vector tq of the original network reduced to 

layer m. Vectors ai' am and am are therefore the input, output and target of the 

MP ANN section 81-81+1-•.. -8rn and correspond to the input-target vector set {Pq, tq} of 

the original network. 

Table 2-4 - Floating-point requirements for MFANN sensitivity calculation 

Sen sitivity Order Operations Storage Space 

First o( Q,Sm' i;s.s._.) o( Q·Sm . ts.) 
"==1+1 

Second o( Q,Sm' IS.S.jS'_1 +S.)) o( Q,Sm' ~(S.)2) 
u_I+1 

If one, two or three nodes, indexed i, ri, j} (h"j) and {i, j, h} (h"j, j .. h, i .. h) re­

spectively, are removed together from input layer I, then al will change accordingly 

to a~, ay or a1h
• Each of the three new input vectors differs from al only in elements 

considered removed, or, equivalently, forced to zero. In mathematical terms: 

r = 1, 2, .,. i-I, i + 1, ... SI 

r =i 

I' {la, re {I, 2, .,. SJ- {i, j} la; '" 0 re{i, j} 

ayh ={/a, re{I,2""S/}-{i,j,h} 
I , - 0 re {i, j, h} 

The input vector change due to input elimination is represented by: 

Aa/yh =_ yh _ A yh {-la, re {i, j, h} 
L> al -al --.' lua, = { } {. . } Ore 1, 2, .,. SI - I, J, h 

(2-65) 

(2-66) 

(2-67) 

(2-68) 

(2-69) 

(2-70) 

An alternative way to consider the MP ANN section defined between layers 1 

and m and having twice-differentiable transfer functions assigned to its neurons is as 
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being a twice-differentiable non-linear mapping from lRs, to lRs,. Therefore the si­

multaneous elimination of a number of nodes from input layer I could be regarded as 

changes to zero of the corresponding elements in all input vectors of the equivalent 

mapping. If Taylor series approximations are used to measure the changes in all out­

put vectors oflayer m due to selective input pruning, the first- and second-order sensi­

tivity parameters defined for the MF ANN section SI-SIW ... -Srn are applied as coeffi­

cients to these approximations. Specifically: 

I I s-k .' 1 (. ')T H- k • I R(' ') mal = mal + Im ·ual +-. ua l . Im ·aal + aal 2 
(2-71) 

I - I -aY = a +Sk ·AaY +_.(AaY)T ·Hk ·AaY +R(Aa") mk mk Im 12 I Im I I (2-72) 

(2-73) 

where laY =(/a" m m I and 

I a~ = (~afh ~a~h ... ;a~: Y are the output vectors oflayer m after the simulta-

neous elimination of one, two and three inputs from layer I, and RC) is the remainder 

term of Taylor series [157]. To claim that RC) is small and thus equations (2-71) to 

(2-73) become accurate second-order approximations without it, it is essential to en­

sure that input change vectors Aa;, AaY and Aayh have as small non-zero elements as 

possible. Indeed, uniform normalisation of all vectors Pq, 1~::;Q, before they are ap­

plied as inputs to the original network is sufficient to fulfil the aforementioned re­

quirement when 1=0. Should O<I<L, the assignment of transfer functions having nar­

row ranges around zero, such as log-sigmoid or hyperbolic tangent sigmoid, to all 

neurons of layer I serves the same purpose of fulfilment. As a matter of fact, the uni­

form normalisation of input vectors pq ensures the validity of Taylor approximations 

arisen from equations (2-71) to (2-73) for the vast majority of MF ANNs. 

To determine the significance of each node belonging to MFANN section be­

tween layers I and m, it is necessary to define and use a proper function of network 

output change. When all inputs of layer I are present, the output prediction error in the 

k-th output oflayer m is defined as: 

(2-74) 

If one, two or three inputs of layer I are removed altogether, the corresponding output 

prediction error for every such case is defined as: 
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(2-75) 

(2-76) 

(2-77) 

When defInitions (2-74) to (2-77) are applied to equations (2-71) to (2-73) and the 

outcomes are then turned into approximations by elimination of their remainder terms, 

the following results are fInally obtained: 

/ / SA k • I 1 ')T HA k • I mEk:::'mEk+ Im·aa/+-·(Aal . Im'aal 
2 

(2-78) 

(2-79) 

(2-80) 

Approximations (2-78) to (2-80) demonstrate how the SOSA algorithm has managed 

to combine the ease of relative sensitivity (S~, iI~m) calculation with the accuracy of 

absolute network sensitivity i.e. the new network output error after input pruning. 

This fact is indeed the algorithm's beauty. 

Two facts oUght to be clarified before the presentation of SOSA continues. 

Firstly, the algorithm measures the sensitivity of node elimination to network output 

error, i e., a linear function of the network output change. However, the network out­

put error approximations (2-78) to (2-80) should not be confused with performance 

index functions like mean- or sum-squared error. The former function class acts on 

every network output individually, while the latter class treats network outputs en 

masse and thus smoothes out any existing behavioural variations between them. Sec­

ondly, simultaneous elimination of four or more inputs is not dealt with by SOSA. 

Should this be attempted, the additional Taylor approximations would require more 

terms, i.e. sensitivities of higher order, to remain accurate. However, the calculation 

of higher-order sensitivities would require too many additional computational and 

storage resources that could make SOSA unfeasible even for moderate-sized net­

works. Moreover, simultaneous elimination of many cross-correlated inputs from the 

network could result in hidden nodes driven into non-linear or totally saturated re­

gions from which they are unable to represent useful input-output associations of the 

modelled mapping [144]. That scenario would definitely jeopardise the network's 

modelling efficiency if it ever came into play. 
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The approximations of network output error due to input node pruning (2-78) 

to (2-80) can be tabulated for elegance purposes. For this reason the updated output 

errors are grouped into vectors and matrices defmed as follows: 

(2-81) 

(2-82) 

(2-83) 

The proposed tabulation scheme can be combined with the substitution of 

common expressions present in approximations (2-78) to (2-80) by intermediate vari­

ables. That way, the overall computational and storage resources required for the cal­

culation of network output errors defmed in (2-75) to (2-77) are reduced considerably. 

The introduced variables are defmed as scalar products of first- and second-order sen­

sitivities by the outputs of their associated input-layer nodes and presented below for 

clarity purposes. 

(2-84) 

(2-85) 

If the matrix symbol 1 is used to denote any vector or matrix of suitable dimensions 

having all its elements equal to one and the operator symbol 0 is introduced to denote 

vector or matrix element-by-element multiplication, scalar definitions (2-84) and 

(2-85) can easily be tabulated as follows: 

(2-86) 

(2-87) 

The calculation of Sa Im from (2-84) requires O(Q S m SI) non-trivial floating-point 

operations and as much floating-point storage space, while the computation of Ha!" 

by (2-85) requires O(Q Sm S/) additional operations and storage space. 

"'ki"k Ak 
Three more variables, the row vectors Sa /m , Halm and column vector Haa1m , 

are introduced for elegance only and defined as follows: 

• k() • k Haa /m I == ImHa" 

(2-88) 

(2-89) 

(2-90) 
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By applying approximations (2-78) to (2-80) to the corresponding definitions (2-81) 

to (2-83) and inserting variables (2-86) to (2-90) to that first outcome by substitution, 

it is derived that the network output errors for all input pruning scenarios considered 

by SOSA are given by the following compact approximations: 

(2-91) 

~E~ ;:~E~ .1+1.(~E~Y -mEk .1+Ha:m (2-92) 

m Ek - mEk (IEh E) 1 1 hH" k (h H" k) T 1 I 3 .. = I 2 + m k -m k • +. aim + aim . (2-93) 

These final approximations have been stated in a manner that allows utilisation of al­

ready obtained error results to the calculation of other output errors. This identity is 

known as encapsulation and reduces even'further the computational requirements for 

the expressions sharing it. Assuming that the set of iuitial network output errors mE k 

defmed in (2-74) and all intermediate variables appearing in (2-91) to (2-93) have al­

ready been computed and stored, the fmal error approximations require O(QSm Sl) 

non-trivial floating-point operations and O(Q S m Sl) floating-point numbers storage 

space each (g equals the number of nodes pruned together from layer I). 

At this point it is interesting to see why the updated network output errors 

~ E:, ~ E~ and ~ E~. are calculated by second-order Taylor approximations rather 

than directly from the network section between layers I and m. The latter method re­

moves one to three nodes from layer I simultaneously and then applies the remaining 

inputs to measure the new output errors. However, the propagation of all Q input vec-

tors a 1 available through the I-to-m network section costs o( Q. '~IS'_IS, ) floating­

point operations. For output error calculation due to three-node elimination, the input 

propagation has to be repeated O(S;) times to cover all possible three-node combina­

tions. The result is that the brute-force method of direct error calculation requires 

o(Q.s;. fA-IS.) floating-point operations. In contrast, the error approximation 
"=1+1 

method followed by SOSA requires O(Q.Sm. i:S.S._I(S._1 +S} floating-point 
u-l+1 ) 

operations at worst for the calculation of all second-order sensitivity matrices H:" for 
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l~u:9n and I~Sm. A comparison of the two results shows clearly that the error ap­

proximation method is an order of magnitude less expensive regarding the number of 

nodes Su existing in a given network. This comparison outcome agrees with the intui­

tive feeling that the approximation of three-node elimination, a problem of three inde­

pendent parameters and thus of third-order complexity, by terms of up to second order 

ant hence of similar degree of complexity, would eventually produce computational 

savings of one order of magnitude. These savings come at the cost of uncertainty in­

herent in all approximations and extra storage space required for the variables partici­

pating in the error approximation method, but this cost is tolerable as far as small- or 

medium-sized MFANNs are concerned. 

The next goal of SOSA algorithm is to assign a significance value to every set 

of input nodes that can be considered for simultaneous pruning. To achieve that goal, 

the algorithm begins with the network outputs ~ E: , ~ E~, ~ E~. and then removes the 

dependency of these variables on the input vector pq applied to the original network as 

well as the m-layer output node k. That elimination task is actually performed in two 

steps, the first being against input vector dependency and the next tackling output 

node reliance. 

Elimination of input vector dependency from ~E: , ~E~, ~ E~. is achieved by 

selective averaging of all error elements that correspond to the same input and output 

node combination but calculated for different input vectors otherwise. The associated 

averaged errors are denoted as ~Eavg:, ~EavgL ~Eavg~. and defined as follows: 

I 

'E'I r ~Eavg:(i)5 Q-; . [ 'E'I 'E'I 'E'I (2-94) 
m le PI 111 le P2 m le P

q m k PQ 
r 

I 

'EYI r mE k(" )_Q-; [ 'Eul I E!l1 I Eul (2-95) I avg2 I,J = • 
m k PI m k P2 m le P" m k Pe 

r 

I 

IEuhl r mE k (" .)_Q-; [ IEYhl I EUh I IEYhl (2-96) I avg3• I,J = . 
m k PI m k P1 

... 
m k P

q m le Pe 
r 

where integer r can be 1,2 or 00. The names given to the averaging methods followed 

by (2-94) to (2-96) for each value r can take is absolute mean for r=I, Root Mean 

Square (RMS) for r=2 and absolute maximum for r=oo. The norm operator 1/·11", is de-

fmed for an arbitrary vector x as: 
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Ilxll~ ,.m~(lxll) (2-97) 

Also, definition (2-96) remains valid for r=oo as x-l/~ ,. 1 'ix E R.' . No matter which 

averaging method being selected, deftnitions (2-94) to (2-96) require O(QSm S,B) 

non-trivial floating-point operations and O(S m Sl) floating-point numbers storage 

space each, where g equals the number of nodes considered for simultaneous pruning 

from layer I. 

RMS averaging is preferred when no assumptions about the updated output er­

ror disparity can be made mainly because the formula of that method resembles the 

performance index functions usually chosen for MF ANN training, i.e., linear func­

tions of square output errors obtained for the whole training vector set. Alternatively, 

the absolute mean averaging method is us~d when output errors are quite disparate in 

nature. Finally, absolute maximum averaging is applied when it is of great interest to 

prevent the elimination of nodes belonging to layer I and being signiftcant only for a 

small subset of input vectors applied to the original network [151]. Any future refer­

ence to SOSA algorithm in this study without explicit indication to the method se­

lected for output error averaging will assume RMS averaging by default. 

A side effect of the use of norm in deftnitions (2-94) to (2-96) is that their av­

eraged outcomes are always non-negative and always measure the average magnitude 

of output errors without paying any attention to the signs of those errors. TIlls effect is 

welcome by SOSA because it is the magnitude of error, not its direction, which 

should determine whether a set of nodes could be pruned from a MF ANN without 

causing irreparable damage to its modelling accuracy and efficiency. 

Removal of output node dependence from input-averaged errors ~Eavg~, 

~ Eavg~, ~ Eavg~. is accomplished by linear averaging of these error elements that 

correspond to the same input node combination but calculated for different output 

nodes instead. The result is called the significance of the associated input node set and 

defmed as follows: 

1 s. 
4lI' ,. _. " m Eavgk 

Im S L.."I r 
m Act 

r = 1,2,3h (2-98) 

The set of signiftcance matrices 4lI:~ is used next to produce the augmented matrix 

4lI:m deftned as follows: 
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ell:m '" [ell:~ I ell:~ I ... I ell:! I ... I ell;~1 ] (2-99) 

whose elements are denoted by: 

Im<t>!h ",ell:m(i,(h-I)SI + J) (2-100) 

Significance variables ell~, ell:m and ell:m require O(S m S{ ) non-trivial floating-point 

operations and O(S{) floating-point number storage space, where g equals the num­

ber of input nodes considered for simultaneous elimination. 

The significance values of interest as far as SOSA is concerned are the mini­

mal significances. Each minimal significance value represents the smallest average 

output error expected by the network section defmed between layers I and m when a 

certain number of nodes are removed from section's input layer and no retraining has 

taken place yet. Three minimal significance parameters are thus defmed for the pur­

poses of SOSA algorithm, and these definitions are. 

Im tJ; '" minCm <t>: ) 
IJ 

Im tJ3"Y' '" minCm <t>:h ) 
I,J,h 

(2-101) 

(2-102) 

(2-103) 

Number sets s, {t, v} and {x, y, z} displayed in (2-101) to (2-103) point to node(s) of 

layer I whose (joint) significance equals the minimal significance value associated 

with them. 

The ultimate task of SOSA is to decide which nodes should be pruned from 

layer I of the original network, if any, so that the pruned network suffers the least 

damage and thus is most likely to recover that damage by retraining. This decision is 

entirely based on criteria involving only rninima1 significances and heuristically as­

signed numerical constants. The first criterion determines whether three nodes can 

safely be pruned altogether from layer I, and takes the form of the following ratio 

comparison: 

ImtJ;'" < C 
.!.' - 3 

lmY'1 

(2-104) 

If Im tJt is non-zero and (2-104) succeeds, the set of nodes {x, y, z} are pruned and the 

remaining network is retrained to compensate for the node loss. Otherwise, SOSA 
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seeks to eliminate two nodes together from layer I by checking whether Im tPt is non­

zero and the following minimal significance ratio comparison holds: 

Iml/J; < C 
- 2 

lm (JlS 
(2-105) 

If so, the set of nodes {t, V} are pruned and the remaining network is retrained. Oth­

erwise, the node-pruning algorithm does the following last check to determine 

whether it would be safe enough to remove a single node from the network: 

A.S < 
Imlf'l _Cl (2-106) 

If (2-106) is true, the node s is pruned and the remaining network is retrained, or else, 

SOSA comes to a permanent halt. 

A fair choice of constants C3 and C2 in (2-104) and (2-105) respectively is c3=3, 

c2=2. TIlls choice has produced good results in a number of MF ANN node optimisa­

tion tests including the ones presented in this work. Constant Cl in (2-106) can be as­

signed to either a positive number when a good guess for it is somehow available to 

the network designer, or infinity otherwise. The latter choice for Cl virtually disables 

comparison (2-106) so that a single node at least is pruned from the MFANN and the 

coming network retraining phase finally determines whether the last pruning decision 

was correct or not. As far as this study is concerned, Cl=«>. A more a~curate alterna­

tive to comparison constant assignments would involve the use of hypothesis testing 

in a manner similar to the ones encountered in [158-161]. That alternative is definitely 

promising but far too complicated to be considered by this work. 

As already mentioned, the MFANN pruned by SOSA algorithm's decision is 

retrained in an effort to recover the node loss. If retraining is unsuccessful, a scheme 

called backtracking is adopted by SOSA. That is, the trained network version before 

the last pruning decision was taken is restored and inequalities (2-104) to (2-106) are 

checked again to produce a different pruning decision involving fewer nodes or none. 

Backtracking is repeated if necessary until either the pruned MF ANN eventually 

passes the retraining phase successfully or no pruning decision is taken by SOSA and 

node optimisation stops. TIlls way it is ensured that SOSA algorithm produces an ac­

curate and smaller network in every node-pruning step. 

A flowchart diagram of SOSA node-pruning algorithm is presented in figure 

2-7. The diagram is grossly simplified to avoid congestion of its elements in the lim­

ited space provided by a single page, but it still includes the basic parts of the algo-
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rithm. The flowchart variables not explained in the detailed presentation of SOSA are 

the index of successful iterations r, the number of nodes pruned per iteration N _ , and 

the total number of nodes pruned from layer I, N~/' The node-pruning algorithm ac­

cepts an MFANN section bounded by layers indexed as I and m, O~<mg" as well as 

all input vectors al defined for that section and derived from the associated input vec­

tors p of the original network. The algorithm tries to eliminate up to three nodes from 

layer I per iteration, and stops when training fails in either the initial or most recently 

pruned I-to-m network section. SOSA returns the updated (pruned) set of input vec­

tors, the total number of nodes pruned from layer I, and the total number of nodes re­

maining layer I after pruning. 

2.9.3 Optimal Brain Surgeon Algorithm 

The OBS algorithm described originally in [147] considers the performance 

index F() of an arbitrary MF ANN as being half of the mean-squared error function 

defined in (2-10), i.e.: 

(2-107) 

where e '" [el 'e2 , ... ,e. , ... , eQ ] is the error vector of the network, 

e. '" t. -aq is the error element that corresponds to the input-target training pair {pq, 

tq} for 1:5q~Q, and aq is the associated network output vector. Also, the algorithm 

assumes that the MF ANN has already been trained to a local minimum of (2-1 07). 

When an arbitrary weight Xr disappears from the network, it causes an overall 

weight change Ax given by: 

(2-108) 

where: 

is the vector including all MFANN weights and biases, Vr is the unit vector in weight 

L 

space corresponding to xr, 1~, So=R, and n = L Sm (Sm_l + 1). Furthermore, the 
m=l 

aforementioned weight elimination leads to a performance index change given by a 

Taylor series around Xr: 
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(2-110) 

where H "'" [;2 F /( os/ is the Hessian matrix of FO with respect to weight vector x 

defmed in (2-109), and " '//3 is the third-order norm function defmed as: 

(2-111) 

For a MF ANN trained to a local minimum in (2-107), the fIrst (linear) term in 

(2-110) vanishes. Moreover, the third and higher order terms of Taylor approximation 

(2-11 0) are ignored because they are assumed to be quite small. Therefore OBS ap­

proximates the performance index change I:!.F due to pruning of weight Xr as follows: 

I:!.F =L,uT ·H·Ax 
2 

(2-112) 

The optimal weight pruning decision according to OBS algorithm is the one 

that minimises (2-112) subject to condition (2-108) being satisfIed. The optimal solu-

tion is actually found by minimisation of the Lagrangian function L() given by: 

(2-113) 

where A. is a Lagrange undetermined multiplier. The solution is: 

. ( __ .) x, H-1 mm ux =---. ·v , H-1 , 

" 
(2-114) 

1 x2 

min(L}=-.-' , 2 H-1 

" 
(2-115) 

The outcome of (2-115) is called the saliency of weight xr• 

The inverse Hessian matrix H-1 and element H;..l terms of (2-114) and 

(2-115) can be computed efficiently if the set of vectors X: defIned as: 

.. , ~ JT 
P, 

(2-116) 

are calculated fIrst for I~L and 1~:SQ. This task, however, requires previous 

knowledge of all fIrst-order sensitivities /LS/d as defIned by (2-54) for 1:sI:sL. When 

these sensitivities are computed by (2-56) for every training input vector Pq, vectors 

X: can be calculated by defInitions (2-109) and (2-116) as well as the equations: 
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(2-117) 

(2-118) 

where l:Si:SSI and I~:SSI.I. Finally, the inverse Hessian is calculated by recursion that 

starts from initial condition (2-119) and continues with repetitive use of equations 

(2-120) for 1:sq:SQ, 1:sk<SL (and (q, k) = (I, 0)) and (2-121) for 1:sq<Q until fmal 

condition (2-122) is reached: 

H -1 - -1·1 10 -a 

H-1 xq (Xq)T H-1 
H-1 - H-1 qk' k+I' k+1 • qk 

q(k+l) - qk - Q (Xq )T. H-1 • Xq 
+ hJ qk k+1 

H - 1 -H-I 
- QS, 

(2-119) 

(2-120) 

(2-121) 

(2-122) 

The term a in (2-119) is a small constant (1O'8:sa:S1O-4, typically a=IO·6) needed to 

make H~~ meaningful and to which OBS is insensitive. 

The OBS algorithm considers a weight x, as being optimal for'pruning if it 

gives the smallest saliency value from any other weight of the trained network. When 

the smallest saliency is less than a predetermined tolerance parameter Lmax, the algo­

rithm permanently deletes weight and updates all remaining weights by (2-114), i.e. 

wIthout retraining of the network. Otherwise OBS does not prune any weight and 

waits until the network is retrained to take another pruning chance. The algorithm 

stops running when it fails to eliminate any weight between two successive network­

retraining attempts. 

2.9.4 Complete MFANN optimisation scheme 

The SOSA and OBS algorithms presented above deal primarily with the node 

and weight optimisation of any MF ANN structure. However, a network can be ac­

knowledged as truly optimal only if it is shown to have the least complexity possible 

in order to model adequately the problem for which it is designed. Such a network is 

assembled by an optimal number of nodes and weights (node interconnections), and 

thus it has to be the outcome of a process that involves both node and weight optimi-
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sation algorithms acting in a hannonious, precisely determined sequence. The process 

of mUltiple network optimisations is described by the term optimisation scheme and a 

novel example of that process designed to act on MFANNs only and involving both 

SOSA and OBS algorithms is the main subject of this subsection. 

The original SOSA algorithm has been designed in such a way that it performs 

node optimisation on any (but the output) MF ANN layer independently from the oth­

ers. The order by which SOSA is applied on network layers is therefore important for 

its pruning performance as far as the complete modelling structure is concerned. The 

less the redundancy in between the layer considered for node optimisation and the 

output layer of the MF ANN, the fewer the adjustable internal parameters that assist 

the model to compensate for the node loss by retraining, and hence the more difficult 

to achieve good node pruning results. For best results, the node elimination strategy 

followed in the case of SOSA has to be based on these guidelines: 

a) Node elimination should be performed on network layers sequentially, i.e., 

beginning with the input layer and ending with the hidden layer next to the 

output one. That way it is ensured that the best possible optimisation job is 

done regarding the input layer while hidden layer pruning results remain at 

satisfactory levels. Besides, it is much more preferable in economic and prac­

tical grounds to build a model with some internal redundancy stilI in residue 

rather than build another model that requires more variables of the associated 

problem to be known or measured in advance. The importance of this state­

ment will be seen clearly when a model for the inverse optical scattering will 

be developed in chapter 3. 

b) The node-pruning algorithm should allow the controlled addition of nodes in 

the hidden layers lying between the layer considered for optimisation and the 

output layer when further node elimination in the layer currently under optimi­

sation looks impossible. When this element of strategy is combined with the 

previous one that dictates the layer optimisation order, it can only result in 

overall improved pruning performance. The more redundancy remains in the 

hidden layers of a MF ANN section, the more likely the further pruning of the 

section's input layer will be. Even if the hopes for further pruning gains re­

garding the section's input layer are proved to be futile, the redundancy added 

to the hidden layers of that section will be removed anyway, as these layers 

will be the next ones considered for node optimisation. 
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A flowchart of the modified SOSA algorithm that incorporates the redundant 

node addition feature suggested above is shown in figure 2-8. The additional variables 

of the modified algorithm are the number of nodes added between two consecutive 

and successful node elimination attempts, N+, the maximum number of nodes al­

lowed for addition between two consecutive and successful node pruning attempts, 

N: ... , and the total number of nodes added to layers 1+1 to m-I, N;/I. The new algo­

rithm adds one redundant node per hidden layer numbered from 1+1 to m-I in the 

original MF ANN when the minimal significance criteria (2-104) to (2-106) fail to 

suggest a set of nodes to be pruned from layer 1, and the augmented network is re­

trained only to be examined again for node elimination at layer 1. As soon as node ad­

dition at hidden layers 1+1 to m-I results in further node pruning at layer I, the added 

node counter N+ is reset to allow further node additions at a later stage of the modi­

fied SOSA algorithm. Otherwise the new algorithm halts when node counter N+ 

reaches or exceeds counter N: ... . The latter variable has to be empirically assigned to 

a multiple of m-(l+ I) that maximises the prospects of efficient pruning of nodes be­

longing to layer 1; a value of 2 to 3 times m-(l+1) usually suffices. As mentioned ear­

lier, any redundant nodes remaining in layers 1+ I to m-I after the end of node optimi­

sation at layer I will be removed when the same node optimisation procedure is ap­

plied to each of the former layer set and in ascending layer order. 

The complete MF ANN optimisation scheme is summarised in the flowchart of 

figure 2-9. The additional monitored parameters are the total number of nodes re­

moved from the input layer of the original network structure (layer 0), N,:p, the total 

number of nodes pruned from all hidden layers, N;'d' and the total number of nodes 

added to hidden nodes as node optimisation progresses from a layer to another, NZd • 

Beginning with the MF ANN input layer, the scheme optimises the number of nodes 

of each but the output layer in ascending layer order. Although the scheme itself does 

not name an algorithm for node optimisation, it is implied that the modified SOSA 

algorithm is employed for the task. After node optimisation phase is complete, the 

network is optimised for weights by the OBS (or another suitable) algorithm. If node 

optimisation succeeded in pruning at least one node from the input layer, the node­

and weight-optimisation cycle is repeated for the remaining network structure. The 

same course of action is followed in case there were no input node eliminations but 

90 



ARTIFICIAL NEURAL NETWORK MODELLING 

the number of hidden nodes pruned from the network is bigger than the number of 

redundant nodes added to it during the last optimisation cycle. Otherwise the optimi­

sation scheme comes to a halt and returns the trimmed network as its outcome. 

Unless otherwise stated, the scheme of figure 2-9 is implied to be the one used 

for optimisation of a MF ANN model developed and discussed from this point on. 

2.10 ANN Modelling Examples 

2.10.1 Overview 

Multi-Forward Artificial Neural Networks can deliver modelling solutions to a 

plethora of real problems that can be stated in a form or another as functional map­

pings of unknown mathematical description but well-known input-to-output data cou­

pling examples. Network training, data preconditioning and network optimisation are 

procedures that have already been discussed independently as key steps to the con­

struction of an efficient MF ANN model for a given problem. This section demon­

strates how these procedures can be used together to build network models for a cou­

ple of illustrative problems. The first problem is the design of an optimal Fourier se­

ries generator model that can alternatively be derived by ordinary mathematical 

analysis The second problem is the finding of the optimal approximation model to a 

function whose mathematical description is known in advance when noisy input 

sources are mixed up with the important ones. 

2.10.2 Fourier Series Generator 

A Fourier series generator is a mathematical tool that approximates a periodic 

signal by a finite set of sinusoidal terms contained in the discrete Fourier series de­

rived by Fourier analysis of the original signal. The accuracy of that tool has a margin 

that is defined by the Fourier theorem and depends on the number and order of terms 

applied as inputs to the generator. 

The modelling task is the design of an optimal MF ANN that can perform as a 

Fourier series generator of a given periodic signal when Fourier terms of that signal 

mixed with irrelevant sinusoidal functions are provided as candidate input sources to 

the network model. The periodic signal is a square-wave pulse train defined as: 

_ _{+0.5 nT~t<nT+7iand (n+l)T-7i~t«n+l)T 
~OO- d d 

-0.5 nT+ 12 ~t «n+l)T-12 
(2-123) 

91 



a/=Ca1 ••• laS,)T, 

r=O, N_ =0, N+ =0, 

N~, =0, N;, =0 

Train ANN 

y.l:--_-....J 

Approximate 

E: == El ,8/=0 , 

EU '" El 2 ,8/",0. ,8)=0' 

Eyh =EI 3 - ,8,~0. ,a )-0. ,a,l,"'O 

a, =a;, N~, =N~, +N_, 

S, = S, - N _, r = r + 1 

a~ =a/-{/aX' lay' laz} 
• N_ =3 

a~ =a/-{,a,,}, 
N_ =1 

Train ANN 

Train ANN 

Train ANN 

N 

N 

N 

~: '" min(CIJ.) = m,in~IEnl), 
~; "'min(ClJ2)=min~IEgll), 

&-________________ +-______________________ ~ N 

1,1 

~3ryz '" min(ClJ3 ) = If.1JJ~IEgh 11) 

STOP - Answer: a" N~" N;" S. V I ::; u < m 

S. = S. + I, I < u < m , 

a;=a"N_=O, 
N+ =N+ +m-(I+I), 

N;, =N;, +m-(I+I) 

Train ANN 

Figure 2-8 - Modified Second-Order Sensitivity Analysis (SOSA) flowchart 

N 

Success? 

y 



1=0, N~ =0, 

Nhuf =0, N:'d =0 

ANN 0(/-1) : So - SI - .•. SI_I 

ANN/L : SI - SI+I - ... SL 

Optimise ANN /L forlayerl 

Result: Opt (ANN IL ) 
I 

Removed nodes: N~I 

Added nodes: N~I 

y 

N 

y 

Update ANN: 

[ ANNO(i-I) Oft (ANN/J] 

Update So, SI' ... SL 

:;:-N _______ -.,f STOP "\ 

Answer: ANN ) 

y 

I>O? 
N 

\.. / 

Remove all discon-
nected nodes ~ 

Update So, SI' ... SL 

N huf = N huf + N~I , 
N:'d = N:'d + N~I 

N 

N~p = N~p + N~I , 

N;/d = N;/d + N~I t-

Optimise 
ANN for 
weights 

y 

I<L? 

/=/+1 I 

Figure 2-9 - Flowchart of MF ANN optimisation scheme 



CHAPTER 2 

for 't = 0.2 and T = 1. The available input sources are: 

(2-124) 

(2-125) 

(2-126) 

for 1~~. The MFANN model sought has to approximate the periodic signal by using 

efficiently the first four inputs only and rejecting the others as redundant. 

Due to the apparent simplicity of the modelling problem, the preliminary 

MFANN model is designed without hidden layers, i.e. as a 12-1 network, and its sin­

gle output node is given a linear transfer function. Both input and output signals to the 

network are sampled at 100 uniformly spaced time instants that span a time interval 

defined by the period T of the square-wave pulse train signal. However, the samples 

taken are not pre-processed because they are guaranteed to fall within the interval [-

0.5,0.5] by definitions (2-123) to (2-126). Nevertheless, these samples are combined 

in input-output pairs to form the training vectors of the network model. The Leven­

berg-Marquardt backpropagation (LMBP) algorithm is chosen for network training, 

and the sum-squared error (SSE) function defined in (2-28) is selected as the perform­

ance index of the training algorithm. The LMBP parameters used are: SSEgoal = 2, 

EPmax = 100, V'mm = 10-16
, 110 = 10-6, I1max = 106

, and e = 10: Finally, the original 

SOSA algorithm is applied to the trained network in order to remove all redundant 

input nodes and return the optirnised Fourier series generator MF ANN. 

The optimised network obtained by the aforementioned design procedure is a 

4-1 MF ANN. That structure meets the first optimality criterion, i.e., it accepts input 

only from the sources described as sinusoidal functions of frequencies being multiples 

of 1fT, the frequency of the square-wave pulse train. Moreover, the weights and bi­

ases of the network are found to match the first five coefficients of the discrete Fou­

rier series corresponding to (2-123) and proven in theory to be: 

-r 
ao =--0.5 

T 
(2-127) 

(2-128) 
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Table 2-5 - Fourier series coefficients vs. optimised MF ANN parameters 

Fourier Term Fourier Coefficient 
Optimised 

Relative Error % 
MFANNWeight 

0 -0.3000 -0.3000 0.00 

I 0.3742 2*0.3741 0.03 

2 0.3027 2*0.3023 0.13 

3 0.2018 2*0.2012 0.30 

4 0.0935 2*0.0931 0.53 

Table 2-6 - Optimisation results for Fourier series generator MF ANN 

Optimisation Training Removed 
IErrorlavg SSE 

SSE% 
Step Epochs Inputs Change 

I (training only) I - 0.0889 1.8182 -

2 0 5,7, 12 0.0799 1.9106 +5.08 

3 0 6,8,11 0.0788 1.9468 +1.89 

4 (I backtrack) I 9,10 00796 1.9757 +1.48 

Table 2-5 illustrates this point. Notice the gain of 2 next to MP ANN weights that 

compensates for the factor 0.5 inherent to input source defInitions (2-124) to (2-126). 

As a matter of fact, the fInal network meets the second optimality criterion, i.e., it has 

adequately generalised from the training vectors to universally approximate the pulse 

train signal by the fIrst fIve terms of the discrete Fourier series associated with that 

signal. 

The impact of node optimisation on the remarkable increase of accuracy in 

square-wave pulse train function's approximation obtained by the MPANN model is 

manifested by side-to-side comparison of fIgure 2-10 and fIgure 2-11. The fust fIgure 

shows the function approximation obtained by the trained network model before op­

timisation against the ideal system response, while the second fIgure displays the 

same function pair for the optimised network. 
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Last but not least, the speed by which the original SOSA algorithm eliminates 

nodes from the initial trained MF ANN is quickly realised by observation of table 2-6. 

As shown, SOSA eliminates three (the maximum allowed) redundant input nodes in 

all but the first and last steps, while the two remaining needless nodes are removed by 

the last iteration of the algorithm. Hence SOSA manages to achieve the best optimisa­

tion result for this modelling example at astonishingly little time and effort. 

2.10.3 Multi-dimensional function generator 

A multi-dimensional junction generator approximates a well-defined function 

over a closed, compact domain from a limited number of input-output data pairs 

known to satisfy the relationship concerned. However, the inputs available to the gen­

erator usually come from a variety of sources whose degree of correlation with the 

mapping rule in question may vary arbitrarily. Therefore, a modelling procedure that 

makes optimal use of available inputs is essentially the only one that can deliver both 

optimal size and sufficient degree of accuracy for the function generator. This section 

demonstrates how a MF ANN can be used as function generator in a typical situation 

and how the complete MF ANN optimisation scheme discussed earlier can be applied 

in combination with efficient data pre-processing and network training techniques to 

produce excellent modelling solutions. 

The function considered for approximation in this example is two-dimensional 

and described by the following expression: 

_ 2{ I I I 1+ sin [271" (XI +X2 )] { • [ (2 2)~ }} 1 
YI =- V 4 X l oX2 + [( )].exp sm 271"\xl +X2 ~-1 --(2-129) 

3 3+cos 271" XI -x2 2 

Each of the independent variables XI, X2 appearing in (2-129) is dermed over the in­

terval [-0.5, 0.5]. It can be shown that for that limited domain the dependent variable 

YI is bounded within the same interval. Therefore none of these parameters require 

pre-processing before they are considered eligible to participate in the associated, 

MF ANN-implemented function genemtor. 

The independent variables of (2-129) are not supposed to be the only input 

sources available for the generator. Instead, the variables are mixed with ten more in­

put sources that involve Xl, X2 in the following ways: 

X'+2 =X, +u 

X'+4 =x,·u 

(2-130) 

(2-13l) 
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(2-132) 

(2-133) 

(2-134) 

(2-135) 

where l:Si~. Variables u, g represent uniform and Gaussian noise sources respec­

tively. Specifically, source u returns unifonnIy distributed random numbers that fall 

within interval [0,1], i.e. u '" V(O,I), while source g returns normally distributed ran-

dom numbers whose statistical properties indicate zero mean and unit standard devia­

tion, i.e., g '" N (0,1). Therefore input sources (2-130) to (2-133) can be regarded as 

severely corrupted duplicates of the independent variables XI, X2, while sources 

(2-134) and (2-135) are totally uncorrelated with the dependent variable )I •• The ques­

tion arisen at this point is whether the design procedure of a MFANN generating 

(2-129) would be able to detect the "obviousness" of input redundancy without any 

external intervention and pick the absolutely necessary sources from the lot. This 

question will be answered together with the one considering the final model's accu­

racy in the next few paragraphs. 

An initial 12-18-1 MFANN is constructed to generate the function (2-129) 

from all available inputs. The log-sigmoid transfer function is assigned to all hidden 

neurons, while the linear transfer function is selected for the single output neuron. 

Both input and output data used in the network design procedure are generated by uni­

fonnIy sampling the independent variables XI, X2 at 20x20 points over their domains 

and passing the samples obtained to functions (2-129) to (2-135). The outcomes of 

these input generators are unifonnIy nonnalised to the interval [-0.5 0.5], and then 

combined with the samples taken from XI, X2 and paired with the associated output 

samples to fonn the network training and testing patterns. Half of the patterns ob­

tained are used for network training purposes while the other half is employed in the 

measurement of the degree of generalisation exhibited by the trained network at the 

end of every ANN optimisation step. The Levenberg-Marquardt backpropagation 

(LMBP) algorithm is selected for the MF ANN training task, and the mean-squared 

error (MSE) function defmed in (2-10) is chosen as the perfonnance index of the 

training algorithm. The LMBP parameters used are: MSEgoal = 0.01%, EPmax = 350, 

Vmm = 10·\ /10 = 10-2, /1max = to lO
, and 9 = 1.25. Finally, the complete MFANN opti-
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misation scheme described in §2.9.4 and involving both the modified SOSA and OBS 

algorithms is followed throughout the model design process to ensure accuracy and 

efficiency for the function generator network obtained in the end. 

Table 2·7 - MF ANN training and optimisation results (Case 1) 

Optimisation Training Removed Training Testing Test.RMSE 
Step Epochs Nodes RMSE% RMSE% % Change 

1 (training only) 17 - 0.97 17.83 -

2 22 7', 8', 12' 0.99 17.40 -0.43 

3 56 4' 10' 11' , , 0.97 10.11 -7.29 

4 243 5' 6' 9' , , 0.99 2.45 -7.66 

5 184 3' 1.00 2.10 -0.35 

Table 2-8 - MF ANN training and optimisation results (Case 2) 

Optimisation Training Removed Training Testing Test.RMSE 
Step Epochs Nodes RMSE% RMSE% % Change 

1 (training only) 17 - 0.97 17.83 -

2 22 7',8', 12' 0.99 17.40 -0.43 

3 56 4' 10' 11' , , 0.97 10.11 -7.29 

4 243 5', 6', 9' 0.99 2.45 -7.66 

5 184 3' 1.00 2.10 -0.35 

6 (1 backtrack) 136 added 19h 0.98 2.11 +0.01 

7 (training only) 0 - 0.98 2.11 +0.00 

8 0 5h 0.98 2.12 +0.01 

9 (1 backtrack) 30 4\ 16h 1.00 2.17 +0.05 

10 (2 backtracks) 306 ISh 1.00 2.52 +0.35 

II (OBS) - w.2'-19h 1.00 2.52 +0.00 
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The first modelling effort was designed to exclude the option of adding redun­

dant nodes to hidden layers (N:'" = 0) and yielded the results sununarised in table 

2-7. RMSE is the square root of the MSE function and superscripts i, h stand for the 

layer the corresponding node/weightlbias belong or used to belong to, namely input or 

hidden layer. The function generator network created in this case accepts input from 

the undisturbed independent variable sources only and provides excellent generalisa­

tion results. However, the network design procedure failed to remove any amount of 

redundancy possibly existing in either the set of hidden layer nodes or the set of 

weights and biases. 

The second modelling effort relaxed the restriction on node redundancy addi­

tion by allowing up to one node to be added to the hidden layer per input layer opti­

misation attempt (N:'" = 1). Although this optimisation strategy obviously failed to 

prune any more inputs from the network than the one followed in the first optimisa­

tion case, it undoubtedly succeeded in offering hidden layer and weightlbias pruning 

gains. The results obtained in every optimisation step for this second function genera­

tor design case are sununarised in table 2-8. RMSE stands for the root mean-squared 

error function and superscripts i, h are used to denote layer names as in the first mod­

elling situation. The final MFANN accepts the undisturbed independent variables Xl. 

X2 as the only inputs, has 15 instead of 18 hidden layers, and has lost one redundant 

weight. The only drawback is a slight but rather insignificant degradation of net­

work's generalisation capability from the level obtained by the first function generator 

modelling case. 

No matter how attractive the controlled addition or redundancy during optimi­

sation may seem, the reality is that such a strategy is controversial. Certain optimisa­

tion problems may benefit from its application, others may suffer considerable losses. 

Much depends on the problem'S nature and the values chosen for the remaining net­

work training and optimisation parameters. Therefore it is entirely upon the model 

designer to decide whether to employ the strategy and under what conditions to do so. 

2.11 Summary 

The purpose of this chapter was to provide the reader with essential knowl­

edge about Artificial Neural Networks (ANNs) and their use as generic modelling 

tools to a multitude of problems. From the biological neuron to the complex artificial 
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neuron structure, the principle of operation is the formation of an output signal with 

certain characteristics in response to a set of inputs Attempts to shape the output ob­

tained by ANNs in order to meet problem specifications resulted in the generation of a 

range of network structures and associated training algorithms. Among them, the kind 

of MuItiIayer Feedforward Artificial Neural Networks (MFANNs) was distinguished 

for its inherent ability to model function approximation and classification problems. 

The most efficient training algorithm for small- to middle-sized MFANNs was proved 

to be the Levenberg-Marquardt Backpropagation (LMBP) algorithm. Data precondi­

tioning techniques were developed to ease training with no or little loss of information 

stored in input-output data relationships defmed by the problem concerned. The novel 

Second Order Sensitivity Analysis (SOSA) optimisation algorithm for MF ANN input 

and hidden node optimisation was presented in detail and a new, complete MF ANN 

optimisation scheme involving SOSA and Optimal Brain Surgeon (OBS) algorithms 

was carefully designed. Finally, the preferred ANN architecture, training algorithm, 

data preconditioning method, and optimisation scheme elements were exploited to 

form excellent modelling solutions for two carefully selected function approximation 

problems. 
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INTRODUCTION TO MIE SCATTERING THEORY 

l ... sunshine on a rainy day 

makes my soul trip away ... JJ 

(Emma BunIon, A girl like me, 2001) 



INTRODUCTION TO MIE SCATTERING 1HEORY 

3.1 Introduction 

This chapter provides the theoretical background that is necessary for the 

comprehension of the light scattering problem and its inverse. The former problem 

deals with the description of visual phenomena, such as the blue colour of the sky at 

daytime or the observation of clouds, which are caused by the interaction of light with 

heterogeneities of its propagation medium. In fact, the term scattering strictly refers to 

the re-radiation of light incident to the heterogeneity, while the term absorption de­

scribes the (associated with scattering) effect of incident light energy transformation 

into other forms, and the term extinction expresses the combined process of light scat­

tering and absorption. On the other hand, the inverse scattering problem investigates 

the properties of light scattered by one or many propagation medium heterogeneities 

(i.e., particles) in an attempt to describe the physical and optical properties of these 

heterogeneities. Both problems are hard to solve analytically, even in special cases, 

with the inverse scattering one being the hardest of them. 

After a brief overview of the major research efforts and achievements made in 

the light scattering field throughout its history, the chapter provides the pieces of elec­

tromagnetic theory that are essential for the description of light and its properties. 

Next, the fundamental problem of light scattering by a single spherical particle placed 

in a simple non-absorbing medium, known as the Mie scattering problem, is solved 

analytically in its general case. The solution obtained is subsequently exploited in the 

analytic calculation of scattered light irradiance a typical polar nephelometric device 

would measure at an arbitrary scattering angle under certain conditions. The outcome 

of the previous calculation is used next to gather theoretical measurements of the scat­

tered irradiance and turbidity derived from a tenuous suspension of Arizona Fine dust 

in water. Finally, the unfeasible conditions under which a unique inverse scattering 

solution could be found, the requirement for non-analytic modelling approaches and 

the reasonable expectation of ouly partial solutions to the inverse scattering problem 

are all explained in qualitative but meaningful termS. 

3.2 Historical overview 

The history of the light scattering field is an indistinguishable part of the his­

tory of optics. A detailed overview of the latter extended throughout the period of 

human history is available in a series of optical textbooks, e.g., [56]. However, the , 
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two fundamental concepts the scattering theory relies upon, the description of light by 

waves and the explanation of light polarisation, were established in the 19th century. 

Fresnel explained light diffraction phenomena observed earlier by Young by combin­

ing the interference theory of the latter scientist with the secondary wave principle 

speculated in the 17th century by Huygens. Young gave a final explanation of light 

polarisation by suggesting that light propagates in a medium as a transverse wave. 

Fresnel exploited Young's idea to derive theoretically the irradiances of the polarised 

light components after reflection at any angle of incidence; his results matched the 

experimental data obtained earlier by Brewster. Later in the century, MaxweIl linked 

together electric, magnetic and optical phenomena by his electromagnetic theory 

[162]. 

The second half of the 19th century was the era of the great mathematical 

physicists such as Poisson, Cauchy, Green, Kirchoff, Stokes, Rayleigh, Lamb and 10-

renz. The last four scientists made personal contributions to the finding of an analytic 

solution to the problem of light scattering by a spherical particle in a homogeneous 

medium, although such a solution had arguably been submitted earlier by Clebsch 

[163]. Specifically, Clebsch solved the three Cartesian scalar wave equations that had 

been derived from the elastic wave equation (the one that scientists used to describe 

light as a wave before MaxweIl's theory) a few years earlier by Stokes [164]. In the 

following decades, Rayleigh published an approximating solution to the light scatter­

ing problem under consideration by assuming small spheres [165]. Lamb solved the 

vector wave equation of light after accepting Maxwell's theory [166]. Lorenz simpli­

fied and refined Clebsch's solution by excluding the generality ofIongitudinal waves 

and assuming a spherical polar instead of Cartesian coordinate system [167]. Finally, 

Mie published in 1908 a full solution to the scattering problem concerned in a paper 

that explains the varied colours exhibited by small colloidal particles of gold sus­

pended in water [25], and for that reason he was honoured by naming the scattering­

by-a-sphere problem after his name. 

Debye was the last scientist to study complex scattering problems before the 

interest in the field was apparently lost for many years. The reason was the popularity 

of quantum mechanics pioneered by Planck in 1900 that made many great mathemati­

cal physicists devote their time to advance the new field. However, the light scattering 

field regained some interest in the recent years due to advancements in associated re­

search areas such as astronomy, chemistry and quantum mechanics. Furthermore, the 
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advancement of digital computers made possible for applied scientists and engineers 

to obtain formulas and numerical results for a variety of light scattering applications 

like the one being the subject of this study. Van de Hulst and Bohren are two re­

searchers among the many who work actively in scattering field nowadays. 

3.3 Electromagnetic theory elements 

Light can be described as either a stream of photons ("particles" of energy) or 

an electromagnetic wave (self-sustaining disturbance of an electric and an induced 

magnetic field moving together in space) travelling at constant speed in a homogene­

ous medium or the vacuum. The former hypothesis allows light properties to be ex­

plained by the quantum mechanics theory while the latter assumption calls for the 

relatively older electromagnetic field theory to give answers to light phenomena. Ei­

ther modelling approach leads to the same result for a given light-related problem, yet 

one of them is usually much easier to develop and explain than the other. This study 

treats light scattering as electromagnetic waves interacting with matter in order to be 

consistent with the majority of related publications and maintain theoretical complex­

ity at reasonable levels. 

An electromagnetic field is macroscopically described at any point by the fol­

lowing Maxwell equations (in SI units): 

V'.D=PF 

V'xE+ aB =0 
at 

V'·B=O 

oD 
V'xH=JF +­at 

(3-1) 

(3-2) 

(3-3) 

(3-4) 

where D is the electric displacement, PF the free charge density, E the electric field, B 

the magnetic induction, H the magnetic field and JF the current density of free moving 

charges. Moreover, variables D and H are defmed by: 

D"'EoE+P 

H "'.!.-M 
Po 

(3-5) 

(3-6) 

where P is the electric polarisation (average electric dipole moment per unit volume), 

eo the permittivity of free space, M the magnetisation (average magnetic dipole per 

unit volume), and 110 the permeability offree space. An implicit assumption made for 
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(3-5) to be valid is that quadrupole and higher moments are negligible compared with 
I 

the dipole moment. Both polarisation and magnetisation vectors vanish in free space. 

Not all electromagnetic field vectors that appear in equations (3-1) to (3-6) are 

independent, as JF, M and P are actually provided by the following constitutive rela­

tions determined by the propagation medium: 

J F =f;(E) 

M=fM(H) 

P = fp(E) 

(3-7) 

(3-8) 

(3-9) 

When functional relationships fiO, fMO and fpO are independent of the electromag­

netic field vectors (the medium is linear), independent of position (the medium is ho­

mogeneous), and independent of direction (the field is isotropic), the propagation me­

dium is said to be simple. In that case the constitutive relations (3-7) to (3-9) can be 

simplified to take the form: 

JF =uE (3-10) 

M = XmH (3-11) 

P = &oX,E (3-12) 

The phenomenological coefficients cr, Xm and ~ are the conductivity, the magnetic 

susceptibility and the electric susceptibility of the medium under consideration. All 

wave propagation media regarded in this study are simple unless explicitly mentioned 

otherwise. 

When free charges are absent in the region of wave propagation ( P F = 0), the 

electric and magnetic fields of an electromagnetic wave are divergence-free: 

V·E=V·H=O (3-13) 

and satisfy the following wave (Helmholtz) equations: 

2 ( oE ( X )o2E V E=u,uo I+Xm)-+&O,uo I+X, I+Xm-2 
at at 

(3-14) 

v2H = u,uo(1 + Xm)oH +&o,uo(1 + X.XI + Xm)02~ 
at at 

(3-15) 

A field vector F is said to be time-harmonic when it has the form: 

F = xcos(OJt)+ysin(OJt) (3-16) 

Vectors x, y in (3-16) are real and independent of time (not position), while scalar ro is 

the angular frequency. The field vector F is related to the (complex) phasor vector if: 
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i? = (x + iy) exp(-ilVt) (3-17) 

in tenns of: 

F=Re(i?) (3-18) 

Phasors can substitute time-harmonic fields in vector analysis if linear operators L() 

are the only ones applied on these fields. In such cases, the real part of the last phasor 

vector obtained is always equal to the result that would have been obtained by the 

same vector analysis procedure if phasors had not been considered. This happens be-

cause: 

L(F) = L[Re(i?)] = Re[L(F)] (3-19) 

Phasor vectors are more convenient to work with and therefore will be used exten­

sively in this work for the representation of time-harmonic fields. All phasor variables 

will be denoted by the circumflex symbol (-). 

A time-harmonic electromagnetic field is macroscopically described at any 

point of a simple medium by the following phasor Maxwell equations: 

V.E= PF 
&0(1 + X.) 

VxE=ilV,uH 

V·H=O 

VxH=-ilV&E 

where PF defined by: 

PF '" PFexp(-ilVt) 

is thefree charge density phasor, E given by: 

is the (complex) permittivity of the medIUm, and 11 detennined by: 

,u '" ,uo(1 + Xm) 

is the permeability of the medium. 

(3-20) 

(3-21) 

(3-22) 

(3-23) 

(3-24) 

(3-25) 

(3-26) 

When free charges are absent in the region of wave propagation ('PF = 0), the 

fields of a time-harmonic, electromagnetic wave are divergence-free: 

(3-27) 

and satisfy the wave equations: 
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(3-28) 

(3-29) 

A plane electromagnetic wave is characterised by its time-hannonic field vec­

tors E, H associated with phasors E, H of the form: 

E = Eo exp~(k.x-OJt)l 

H = Ho exp~(k.x-OJt)l 

(3-30) 

(3-31) 

where Eo, Ho are constant vectors and k is the (complex) wave vector. The latter vec­

tor may be written as: 

k '" k' +ik" (3-32) 

with k' and k" being real vectors. The amplitudes of the electric and magnetic fields 

are Eo exp(-k" .x) and Ho exp(-k" .x) respectively, and the common phase of these 

fields is k'· x - OJ t . Vector k' is perpendicular to the surfaces of constant phase, and 

k" is perpendicular to the surfaces of constant amplitude. The velocity of propagation 

of surfaces of constant phase is called phase velocity u and is given by: 

OJ 
V=-

k' 
(3-33) 

If vectors k' and k" in (3-32) are parallel, or k" = 0, the surfaces of constant ampli-

tude and phase coincide and the plane wave is said to be homogeneous. In that case 

the wave vector k is given by: 

(3-34) 

where k' and k" are nonnegative, e is a real unit vector in the direction of wave 

propagation and k is the nonnegative wave number. Planar waves propagating in vac­

uum are homogeneous. 

The necessary and sufficient conditions for a plane wave defined by (3-30), 

(3-31) to be compatible with Maxwell equations (3-20) to (3-23) when it propagates 

through a medium without free charges (PF = 0) are: 

k·Eo =k·Ho =Eo ·Ho =0 

kxEo =OJ,uHo 

(3-35) 

(3-36) 

(3-37) 

(3-38) 
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The wave number of a homogeneous plane wave can thus be found by substitution of 

equation (3-34) to (3-38), and the following result is obtained: 

k = 0).J&ji (3-39) 

If the complex refractive index N of the propagation medium is defmed by: 

N '" ~ &Jl = c.J&ji = n + ilC (3-40) 
&oJlo 

where n and IC are the nonnegative optical constants and c is the speed of light In vac­

uum (c=3108 mls), equation (3-39) requires that: 

N = kc = kA (3-41) 
0) 27r 

holds for plane homogeneous waves. Variable A. is called the wavelength in vacuum 

and is defined by: 

A",2m: 
0) (3-42) 

If z '" e . x is the projection of position vector x in the direction of wave 

propagation, the expressions of field phasors defining a plane homogeneous wave can 

be written as follows: 

E=Eo exp[i{Az-O)t)]=Eo exp( - 27 }x{(27 -O)t)] 

ii= Ho exp[i (Az - 0) t )] = Ho ex{ - 27 }xp[{ 27 - 0) t) ] 

(3-43) 

(3-44) 

Thus, the imaginary part of the complex refractive index N determines the attenuation 

of the wave as it propagates through the medium, while the real part determines the 

phase velocity v = cl n . All plane waves considered in the remaining of this study are 

homogeneous unless otherwise stated. 

The instantaneous Poynting vector Set) of an arbitrary electromagnetic wave is 

defmed by: 

S{t) '" E{t)x H{t) (3-45) 

and specifies the magnitude and direction of the rate of transfer of electromagnetic 

energy at all points of space and all times. As a matter of fact, the net rate at which 

electromagnetic energy is transferred into a volume V enclosed by a closed surface A 

is given by: 
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W(t) = -{S(t).ncU (3-46) 

where n is the unit vector normal to the element dA of the closed surface and point­

ing outwards the surface. 

Unfortunately, the instantaneous Poynting vector is a rapidly changing func­

tion of time when light as an electromagnetic wave is considered. Most instruments 

are not capable of tracking the instantaneous Poynting vector, but respond to the time­

averaged Poynting vector S defmed by: 

1 Hr 

S =-. fS(t')dt' 
r 

(3-47) 

where 'r is a time interval dependent on the instrument and long compared with the 

time it takes for S(t) to change. The time-averaged Poynting vector for time-harmonic 

fields is given by: 

1 (- -) S=-ReExH' 
2 

(3-48) 

When plane waves are considered in particular, the time-averaged Poynting vector 

takes the form: 

(3-49) 

The irradiance (or intensity) 1 of an electromagnetic wave is a scalar quantity 

defined by: 

(3-50) 

As it emerges from equation (3-49), the irradiance of a plane wave is exponentially 

attenuated in the sense: 

where a is the absorption coefficient defmed by: 

47lX a=--
A. 

(3-51) 

(3-52) 

and 10 is the irradiance at z=0. However, attenuation formula (3-51) excludes attenua­

tion phenomena attributed to absorption and scattering due to impurities of the propa­

gation medium. 

The electric field of a plane wave in a particular plane, e.g. z=0 for conven­

ience, is derived from equation (3-43) and given by: 
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E{z = 0) = Re[ 'E{z = 0)] = Re(Eo)cos{alt)+ Im{Eo)sin{alt) (3-53) 

A similar expression is derived for the magnetic field by equation (3-44): 

H{z = 0)= Re[ iI{z = 0)] = Re(Ho) cos{aI t)+ Im{Ho)sin{alt) (3-54) 

As vectors Eo, Ho are constant in both time and space by defmition, so do their real 

and imaginary parts. Therefore equations (3-53) and (3-54) describe two vibration el­

lipses. If Re(Eo) = 0 or Im(Eo) = 0, the vibration ellipse of the electric field is just a 

straight line, and the plane wave is said to be linearly polarzsed. If IRe(Eo)1 = IIm(Eo)1 

and Re(Eo) Im(Eo) = 0, the vibration ellipse of E is a circle, and the wave is called 

circularly polarised. In general, a plane wave is elliptically polarised. 

The vibration ellipse of the electric field of an elliptically polarised plane wave 

is shown in figure 3-I. That wave is uniquely specified by a set of four ellipsometrlc 

parameters, namely handedness (right-handed if the ellipse is traced out clockwise as 

viewed by an observer who is looking toward the source of wave or left-handed oth­

erwise), ellipticity b/a, azimuth y (O::::y::::1t) and irradiance I. However, these parameters 

(with the exception of irradiance) are difficult to be measured directly. Moreover, the 

ellipsometric parameters of two or more or two plane waves interfering incoherently 

(Le., without fixed relationship among phases) cannot be added together to give the 

parameters of the superimposed plane wave. Finally the ellipsometric parameters can­

not be adapted to describe partially polarised light that is formally defmed later on. 

An alternative way to uniquely describe a plane wave is by the four Stokes pa­

rameters I, Q, V, V. These parameters are related to the eIIipsometric ones by the ex­

pressIOns: 

y 

Figure 3-1 - Vibration ellipse 
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1=a2 +b2 

Q = (a 2 +b2
) cos(217) cos(2r) 

U = (a 2 +b2 )cos(217) sin(2r) 

V=(a 2 +b2 )sin(217) 

where: 

b 
Itan 17I=-

a 

(3-55) 

(3-56) 

(3-57) 

(3-58) 

(3-59) 

for -nl4~1]:9r14 and the sign of V determines the handedness of the vibration ellipse 

(positive denotes right-handed and negative denotes left-handed). The Stokes parame­

ters of a monochromatic (i.e. time-harmonic) plane wave are not all independent, as: 

12 = Q2 + U 2 + V2 (3-60) 

An assumption made in definitions (3-30), (3-31) of a monochromatic plane 

wave was that vectors Eo and Ho are constant. If that assumption is relaxed and the 

aforementioned vectors are allowed to vary slowly over time intervals of the order of 

2n1(£), the wider class of quasi-monochromatic plane waves is derived. The field vec­

tors of these waves are given by the following expressions: 

E = Eo(t) exp[i(kz-mt)] 

H = Ho(t) exp[i(kz-mt)] 

where: 

Eo(t)= Eu(t).eu +E.l(t).e~ 

Ho(t) = Hu(t).e: + H.l (t).e1 

(3-61) 

(3-62) 

(3-63) 

(3-64) 

and ( ej , e~) and ( e:, e1) are two arbitrarily selected pairs of unit vectors that define 

two orthogonal coordinate systems, each in the plane of vibration of E and H re­

spectively. 

The Stokes parameters of a quasi-monochromatic plane wave are defmed by: 

1= (EuE; +E.lE~) (3-65) 

Q=(EIIEI~ -E.lE~) 

U=(EuE~ +E.lE;) 

V=I(EJIE~ -EA') 

(3-66) 

(3-67) 

(3-68) 
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where the angular brackets indicate time averages over an interval long compared 

with the period T=21t1ro of the wave. These definitions can be applied for strict mono­

chromatic waves (with the exception of time-averaging) and their results are in accor­

dance with definitions (3-55) to (3-58). 

The Stokes parameters of a (quasi)-monochromatic plane wave satisfy the fol­

lowing inequality: 

(3-69) 

If the complex amplitudes Ell (.) and E.l (.) are completely uncorre1ated, the wave is 

said to be un polarised; so-called natural light (e.g. light from the sun, incandescent 

and fluorescent lamps) is unpolarised. All Stokes parameters but irradiance of an un­

polarised wave vanish by definition: 

Q=U=V=O (3-70) 

If En (.) and E.l (.) are completely correlated, the wave is called polarised and its 

Stokes parameters satisfy equality (3-60) like a strictly monochromatic wave. The last 

possibility is for Ell (.) and E.l (.) to be partially correlated. In that case, the wave is 

partially polarised and its Stokes parameters satisfy inequality (3-69) in the strict 

sense. 

The Stokes parameters can be grouped together to form the Stokes vector S: 

S=[1 Q U VY (3-71) 

The new vector can represent a plane wave of arbitrary polarisation, including par­

tially polarised waves. When the state of polarisation of a plane wave is changed on 

interaction with impurities or changes of the propagation medium, the Stokes vector 

changes accordingly. A 4x4 matrix M can always be found that relates the Stokes vec­

tors before and after wave interaction, Sx and Sy respectively, in the following man-

ner: 

(3-72) 

Matrix M is called the Muller matrix and depends only on the properties of the matter 

interacting with the plane wave. 

This completes the theoretical framework necessary for the comprehension of 

the theory of light scattering caused by either a single spherical particle (Mie scatter­

ing) or a small concentration of solid particles (single scattering) in simple matter. 

§3.4 and §3.5 provide thorough cover to these tough subjects. 
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3.4 Scattering by a single spherical particle 

The problem of scattering by a spherical particle placed on a simple, non­

absorbing medium without free charges is presented in figure 3-2. An arbitrarily po­

larised monochromatic light beam travelling at long distance from its source can be 

described as a plane wave (E .. H,). That wave is called incident when it reaches the 

surface of the particle concerned and consumes part of the energy it carries to oscillate 

electric charges (electrons and protons) being inside that particle. The excited particle 

develops an internal plane wave (Eh HI) and reradiates part of the energy it absorbed 

from the incident wave in all directions to form the scattered plane wave (Es, Hs). The 

answer sought is the mathematical description of the internal and the scattered fields 

from the incident wave, particle size and electromagnetic properties of the particle and 

surrounding medium. The scattering problem explained above is usually called the 

Mie scattering problem and the theory that has to be developed to solve it is said to be 

the Mie scattering theory. Both names are given to honour Gustav Mie as the first sci­

entist who published a complete solution for the scattering problem explained above 

[25]. 

Due to the spherical symmetry of the Mie scattering problem, it is much easier 

to express all related fields in spherical polar coordinates (r, e, cp). The relationship 

between these coordinates and the ones of the Cartesian coordinate system (x, y, z) 

drawn in the centre of the spherical particle considered by the scattering problem is 

iIIustrated in figure 3-3. However, the conversion of a field expression from Cartesian 

to spherical polar coordinates is a complicated task that deserves special attention in 

the next few paragraphs. 

The incident and scattered waves propagate through a simple, non-absorbing 

medium without free charges. The same assumption can be made for the internal 

wave when the scattering particle is viewed macroscopically. All waves therefore 

must satisfy the Maxwell equations (3-20) to (3-23) for PF = 0 and vector wave 

equations (3-28), (3-29). However, the set of phasor vectors M and N , defined by: 

M", VX (rg) (3-73) 

- VxM N",--
k 

(3-74) 
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where k is the wave number of the incident wave, r the radius vector of the spherical 

polar coordinate system illustrated in figure 3-3, and gO a scalar function that satis­

fies the scalar wave equation: 

(3-75) 

satisfy all Maxwell and vector wave equations mentioned above. Thus, any physically 

realisable plane wave can be expanded in polar coordinates as an infinite series of the 

vector harmonics M and N by the principle of superposition derived from the linear­

ity of the Maxwell and vector wave equations. 

Exact solutions for the vector harmonics cannot be given unless (3-75) is 

solved for the generating jimctlOn gO first. That scalar wave equation can be written 

in spherical coordinates as follows: 

I a ( 2 ag) I a (. Bag) 1 a
2 
g k2 0 -- r - + sm - + + g = r2 ar ar r2 sinB aB aB r2 sine arp2 (3-76) 

The partial differential equation (3-76) can be solved by the variable separation 

method. If the generating function gO depends on the single-variable functions RO, 

00 and q,O in the following manner: 

then (3-76) splits into three ordinary differential equations: 

d 2q, 
--+m2<I>=0 drp2 

--- sine- + n(n+l)--- 0=0 I d ( de) [ m
2 

] 

sinB dB dB sin2 e 

(3-77) 

(3-78) 

(3-79) 

(3-80) 

where the separation constants m and n are determined by subsidiary conditions that 

g() must satisfy. 

The linearly independent solutions of (3-78) are: 

q,em = cos (mrp) 

q,om = sin(mrp) 

(3-81) 

(3-82) 

where subscripts e and 0 denote even and odd. Due to the fact that g() must be a sin­

gle-valued function of the azimuthal angle cp, Le.: 

lim g(rp + v) = g(rp) 
v--.2i1' 

(3-83) 
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y 

Figure 3-3 - Spherical polar coordinate system centred on a spherical particle 

the separation constant m has to be an integer. Positive values of m are sufficient to 

generate all the linearly independent solutions to (3-78). 

The solutions to (3-79) that are finite at 9=0 and 9=x are the associated Legen­

drefunctions of the first kind, degree n and order m (see [168], pp. 326-327): 

8 mn =P:(cosB) (3-84) 

where n=m, m+l, ... When m=O the associated Legendre functions degenerate to 

Legendre polynomials and they are denoted by p.O. 
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The linearly independent solutions to (3-80) are the spherical Bessel jUnctions 

of order n and fIrst kind, j.(), second kind, Yn(), or third kind, hn(): 

R" =z. (kr) (3-85) 

where znO stands for either of functions j.(), YnO and hnO. The spherical Bessel 

functions of first and second kind are defIned with respect to the ordinary Bessel func­

tions of fIrst kind, Jv(), and second kind, Y vC), in the following way: 

j. (kr) EO! ~ 2: I n+1/2 (kr) (3-86) 

Y. (kr) EO! ~ 2: Yn+1/2 (kr ) (3-87) 

while hnO, also known as the spherical Hankel jUnction, is defIned in terms of j.() 

andYnOby: 

hn(kr} EO! jn(kr}+IYn(kr} (3-88) 

The fIrst two orders of the three spherical Bessel functions are given by the equations: 

jo(kr}= sin(kr} 
kr (3-89) 

. (kr) = sin(kr} cos(kr} 
(3-90) 

h (krY kr 

Yo(kr) = 
cos(kr} 

(3-91) 
kr 

y.(kr }= 
cos(kr } sin(kr} 

(3-92) 
(krY kr 

ho(kr)=-~ exp(ikr} (3-93) 

h. (kr) = - ~ )2i exp(ikr} (3-94) 

while the higher-order functions can be generated by use of the following recursive 

equation: 

Zn (kr) = 2'; 1 z._. (kr)- zn_2 (kr) (3-95) 

The functions Yn() and hn() become infInite at the origin for all orders n. Besides, j.() 

remains fInite at the same point and order set 00(0)=1 and j.(0)=0 for n>O). 
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When the solutions of differential equations (3-78) to (3-80) are combined to­

gether, they produce two sets of generating functions that satisfY the scalar wave 

equation (3-75). These functions are denoted by g.,mnO and !lomnO and have the forms: 

g,mn (r,B,j6) = cos (mj6). p.m (cos B). z.(kr) (3-96) 

gom.(r,B,j6) = sin(mj6). p.m(cosB)' z. (kr) (3-97) 

Hence the vector spherical harmonics generated by gemnO and gomnO are: 

Memn =Vx(rgemn) 

N = 'V'xM,m. 
emn k 

Nomn 

which, in component form, may be written as: 

Mom. = ",;:-.cos(mj6). p.m(cosB). z.(kr ).eo smB 
. ( j6) dP.m (cos B) (,_). -sm m . ·z IV ·e; dB • 

N,m. = n·t+ l
) . cos (mj6). p.m(cosB). Z. (kr). er 

1 () dp.m(cosB) d [ ()] • 
+ kr ·cos mj6· dB . d(kr) kr·z. kr ·eo 

-~.sin(m'/'). p.m(cosB) '~[kr'z (kr)].e 
kr 'I' sinB d(kr) • ; 

Nom. n t + 1). sin(mj6). p.m (cosB). z. (kr). er 

+ J.... sin(m'/'). dP.m(cosB).~[kr.z (kr)l.e 
kr 'I' dB d(kr) • 1 0 

+~.cos(m'/'). p.m(coSB)'~[kr.z (kr)].e 
kr 'I' sinB d(kr) • ; 

(3-98) 

(3-99) 

(3-100) 

(3-101) 

(3-102) 

(3-103) 

(3-104) 

(3-105) 

Not only these harmonics are capable of generating any solution to the MaxweII equa­

tions (3-20) to (3-23) for PF = 0 and vector wave equations (3-28), (3-29), but also 

they are found to be mutually orthogonal sets of functions (see [169], pp. 90-91). In 
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other words, an arbitrary but physically realisable plane wave propagating through the 

medium or being sustained inside the particle considered by the Mie scattering prob­

lem has an electric field phasor E that can be expanded as an infinite series of vector 

spherical harmonics: 

E= ff{BemnMemn + BomnMomn + AemnN"emn + AomnN'omn) (3-106) 
m-On=m 

with coefficients Bemn, Bomn, Aemn and Aomn given by: 

2 •• 

I IE-M,mn -sinBdBdrp 
B =~o~o ____________ __ 

emn 2% tr 

I IIM,mnI2 
-sinBdBdrp 

(3-107) 

o 0 
2 __ 

I IE-Momn -sinBdBdrp 
B =~o~o ______________ _ 

omn 28 tr 

I fl Momnl
2 

-sinBdBdrp 

(3-108) 

o 0 
2 __ 

I IE-N,mn -sinBdBdrp 
A =~O~O ____________ __ 

emn 2". tr 

I IIN,mnI2 

-sinBdBdrp 

(3-109) 

o 0 
2 __ 

I IE-Nomn -sinBdBdrp 
A = ~O~O ____________ _ 

omn 2lf If 

I flNomnr -sinBdBdrp 

(3-110) 

o 0 

and a magnetic field phasor H obtained by (3-21)_ 

The incident plane wave of the Mie scattering problem propagates in the direc­

tion of z-axis_ Without loss of generalisation, the incident wave will be considered as 

x-polarised_ The electric field phasor of the incident wave is written in spherical polar 

coordinates as: 

(3-111) 

where: 

ex =sinBcosrp-e, +cosBcosrp-ee -sinrp-e; (3-112) 
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If that electric field is expanded in an infinite series of vector spherical harmonics as 

described by (3-106), it follows from (3-102), (3-105) and (3-112), together with the 

orthogonality of the sine and cosine functions, that Bemn=Aomn=O for all m and n. 

Moreover, the remaining series coefficients vanish unless m=1 for the same reason. 

Also, the only spherical Bessel function appropriate in the generating functions gemn() 

and gomn() is the one of the first kind, j.(), because the incident electric field is finite 

at the origin. Thus, the expansion of E, takes the form: 

(3-113) 

where the superscript j has been appended to vector spherical harmonics as a reminder 

that the radial dependence of the generating functions is specified by j.(). 

The fmal expressions of the expansion coefficients in (3-113) are obtained by 

(3-108) and (3-109) to be: 

B ·n 2n+l E 
DIn = 1 n{n + 1) 0 

(3-114) 

A n 2n+l ( 'E) 
eln = 1 ( ) -I 0 n n+l 

(3-115) 

Hence the electric field phasor of the incident wave is finally expressed in vector 

spherical harmonics by: 

(3-116) 

and the corresponding magnetic field phasor is obtained by (3-21): 

H- - ~E ~.n 2n + 1 (M-J 'N-J ) 
,-- - oL,.l ( ) eln +1 oln 

P n-I n n+l 
(3-117) 

where E, I.l are the (real) permittivity and permeability of the surrounding medium. 

The field phasors of the internal and scattered electromagnetic waves shown in 

figure 3-2 can also be expanded in vector spherical harmonics by techniques similar to 

the one followed in the incident wave case. These expansions, however, ought to sat­

isfy the following condition (imposed by the axiom of electromagnetic energy conser­

vation) at the boundary between the sphere and the surrounding medium: 

(3-118) 

The boundary condition (3-118), the orthogonality of the vector harmonics, 

and the form of the expansion of the incident fields require that the coefficients in the 
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internal and scattered field expansions vanish for all m;tl. Furthermore, the only ap­

propriate spherical Bessel function in the generating functions for the vector harmon­

ics inside the particle is the one of first kind, j.(), because the internal wave fields are 

finite at the origin. Thus, the expansions of El and HI are: 

- _ ~ n 2n + 1 ( -}I _. - JI ) 
El -Eo£..1 ( )~CnMOln idnNdn 

n-I n n+l 
(3-119) 

H- - t:1 E ~.n 2n + 1 (d M-JI . N-}I) 
1-- - o £..1 ( )~ n eln +ICn oln 

III n_1 n n+l 
(3-120) 

where Cn, dn are coefficients whose values are derived later in this section, and 81, III 

are the complex permittivity and permeability of the particle. The superscript j 1 has 

been appended to vector spherical harmonics as a reminder that the radial dependence 

of the generating functions is specified by jnO and kI, the wave number of the internal 

wave, replaces k in equations (3-102) to (3-105). 

The field expansions of the scattered wave do not require any restrictions im­

posed on the kind of spherical Bessel function used in !lemnO and gomnO, as either of 

functions jnO, YnO and hnO is well behaved in the region outside the particle. How­

ever, the spherical Hankel function is the one selected for the vector harmonic genera­

tion task due to its excellent asymptotic behaviour (see [169], pp. 93-94). Therefore, 

the field expansions of the scattered wave take the form: 

(3-121) 

(3-122) 

where an, bn are coefficients whose values are derived later in this section, and the su­

perscript h has been appended to vector spherical harmonics as a reminder that the 

radial dependence of the generating functions is specified by hnO. 

The vector harmonics Meln , Moln ' Neln and Noln appearing in field expan-

sions (3-116), (3-117), and (3-119) to (3-122) can be written in more concise form 

once the functions ltnO and TnO defined by: 

7r .[f(O)] == P~ ~f~ )] 
sm 

(3-123) 

T n [f(O)] == dP~ J~(O )] (3-124) 

121 



CHAPTER 3 

are used in equations (3-102) to (3-105). The simplified expressions for the vector 

harmonics are: 

Mel• = -sintP '11". (cos B). z. {la} eo 
-costP ·T. (cos B). z.(kr). e; 

Mol. = costP·1I".(cosB).z.(kr).eo 
-sintP ·T. (cosB). z.(kr ).e; 

- n(n + 1) . ( ) (). Nel• = kr . costP· smB '11". ,cosB . z. kr . er 

+_1 'COS"\'T (cosB)'~[kr'z (kr)].e kr 'f'. d(kr) • 0 

__ 1 .sintP'1I".(cosB). (d )[kr.z.(kr)].e; 
kr dkr 

Nol• n(; 1) 'sintP. sinB . 11". (cosB). z. (kr ).e r 

+_1 .sintP'T.(cosB). (d )[kr.z.(kr)].eo 
kr dkr 

+ ~ ,costP·1I".(cosB). d~)[kr.z.(kr)].e; 

(3-125) 

(3-126) 

(3-127) 

(3-128) 

where znO and k are determined exactly by the superscripts appended to the individ­

ual vector harmonics of the field expansions mentioned above. 

The angle-dependent functions 1tnO and tnO can be computed by upward re­

currence from the relations: 

11". (cos B) = 2n -I. cosB '11"._1 (cosB)-~ . 11"._2 (cos B) 
n-l n-l 

T. (cos B) = n· cosB '11". (cosB)- (n + 1)'11"._1 (cos B) 

beginning with: 

11"0 (cos B) = 0 

11"1 (cos B) = 1 

The functions 1tn( )+tn() and 1tn( )-tn() are mutually orthogonai, i.e.: 

~ # 

(3-129) 

(3-130) 

(3-131) 

(3-132) 

f(T. + 11". XTm +1I"m)sinBdB = f(T. -1I".XTm -1I"m)sinBdB = 0 m*" n (3-133) 
o o 

A complete solution to the Mie scattering problem can only be found if the 

scattering coefficients !\n, bn and internal coefficients en, dn that appear in field expan­

sions (3-121), (3-122) and (3-119), (3-120) are derived first. The coefficient determi-
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nation task is facilitated by the introduction of the Riccati-Bessel functIOns of order n 

and kind first ('I'n()), second (/;nO), or third (!;n0)0 These functions are defined by: 

If/n (x) '" Xo jn{x) (3-134) 

';n{x)", Xo Yn{x) (3-135) 

;n (x) '" Xo hn (x) (3-136) 

The derivatives of the Riccati-Bessel functions are given by: 

dq;x) =qnAx)-: qn{x) (3-137) 

where qnO stands for 'l'nO, /;nO, or ~nOo Equation (3-137) can also be used to com­

pute the Riccati-Bessel derivatives in vector hannonic expressions (3-127), (3-128)0 

The boundary condition (3-118) can be written in field component form as a 

set of four linear equations: 

(3-138) 

(3-139) 

(3-140) 

(3-141) 

satisfied at the spherical surface r=a, where a. is the radius of the particle (see figure 

3-3)0 The four expansion coefficients are finally obtained from the orthogonality of 

sine and cosine, the identity (3-133), the boundary conditions (3-138) to (3-141) to­

gether with the expansions (3-116), (3-117), (3-119) to (3-122), and the expressions 

(3-125) to (3-128) for the vector harmonicso The results are: 

pomolf/n{mz)o d~;X) PI olf/n(z)o d~(~:)) 
an 

pomolf/n{mz)o d;d~) -PI o;n(z)o d~{::~) 

PI olf/n{rnz)o dV;;X) pornolf/n(z)o d~(~:)) 

b
n 

PI olf/n{rnz)o d;d~) -pomo;n(z)o d~(~)) 
PI ornolf/n(z)o d;;(z) - PI orno;n(z)o d~(z) 

Z ,z 

(3-142) 

(3-143) 

(3-144) 
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A 

is the size parameter and 
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(3-145) 

(3-146) 

(3-147) 

is the relative refractive index. Variables N h N in equation (3-147) are the refractive 

indices of particle and medium respectively. 

Two problems of numerical nature arise when the expansions (3-119) to 

(3-122) are used to obtain quantitative results for the internal or scattered fields at a 

point in space under Mie scattering conditions. The fust difficulty is the infInite num­

ber of tenns required for the exact calculation of the series expansions. Fortunately, 

these series are uniformly convergent [169-171], and thus can be terminated after a 

sufficiently large number of tenns while the resulting approximation error remains 

arbItrarily small regardless of the point in space considered. An estimate of a series 

expansion tennination point that provides good approximation results in most practi­

cal applications was proposed in [172] and given by: 

ne = r X + 4.05·Vx + 21 (3-148) 

This limit will be implied in all numerical field solutions to Mie scattering problems 

presented by this study unless otherwise stated. 

The second numerical problem is the unacceptably high round-off error ob­

served if the upward recurrence fonnula (3-95) is used to obtain all orders of interest 

(0:5n:5nc) of the spherical Bessel function of the first kind, j.(). The solution to this 

computational instability is the computation of all necessary j.() orders by downward 

recurrence. Specifically, the function sequence 1 n (.) is calculated first for an arbitrary 

argument x",O by the initial conditions: 

lno (x) = W-10 

lno+1 (x) = 0 

and the recurrence fonnula: 

(3-149) 

(3-150) 
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(3-151) 

The index nst of the ;. (.) sequence is always assigned a sufficiently higher integer 

value than Ilc, e.g.: 

(3-152) 

Provided that Jo(x);< 0, the spherical Besse1 functions jnO are derived from the func­

tion sequence J. (.) by the relation: 

. () jo (x) '() 
J.x=,().J.x 

Jo x 
(3-153) 

where joO is given by (3-89). Should Jo (x) = 0, another small value is assigned to 

J.
o 
(x) in (3-149) and the whole procedure is repeated. 

If the number of terms required to approximate the series expansions (3-119) 

to (3-122) is nc>50, the calculation of the first Ilc orders ofjnO at point x is performed 

in segments to avoid high round-off errors. As jo(x) is given by (3-89), the numerical 

algorithm described above may be used to calculate the first 50 orders of j.(x) by set­

ting Ilc = 50 in (3-152). As soon as jso(x) is computed, the next 50 orders of j.(x) are 

calculated by executing the algorithm as before with the only exception that io(x) is 

substituted for iso(x) in (3-153). The last algorithmic step is repeated continuously to 

get 50 more orders of j.(x) per iteration (the nth iteration substitutes jo(x) for jsOn.so(x) 

in (3-153) and returns orders 50n-49 to 50n) until order Ilc is fmally reached. 

The scattered wave (Es, H,) given by (3-121), (3-122) is approximately trans­

verse (er· E, == 0, er· H, == 0) at sufficiently large distances from the origin, Le. in 

the far-field region (kr» n;). The transverse components of the scattered electric 

field phasor E, at a point (r, 9, cp) in that region have the asymptotic forms: 

(3-154) 

(3-155) 

where: 

(3-156) 
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(3-157) 

If the incident plane wave propagates in the direction of z-axis but is no longer 

required being x-polarised, it has an electric field phasor E, that lies in the (x, y) 

plane. It is convenient to resolve E, into components parallel (Ell,) and perpendicular 

(E.1I) to the scattering plane, i.e. the (r, z) plane: 

E, = ~llelll +E.1,e.11 = [Eo cos~exp('kz)]elll + [Eo sin~exp(ikz)]e.1' 

where ( en I' e.1l) given by: 

(3-158) 

(3-159) 

(3-160) 

is a pair of orthogonal unit vectors lying in the (x, y) plane, z = rcos(}, and k is the 

(real) wave number of the incident wave in the medium surrounding the particle. 

The scattered electric field phasor E, in the far-field region can also be re-

solved into components parallel (Ens) and perpendicular (E.is) to the scattering plane: 

(3-161) 

(3-162) 

(3-163) 

is a pair of orthogonal unit vectors lying in the (0, cp) plane. The complete axis and 

orthonormal basis vector geometry is illustrated in figure 3-4. 

If the unit vector pairs (ell,' e.1l) and (ell,' e.1') are substituted for the triple 

(e" eo, e;) in (3-158) and (3-161) and the transverse electrical field components of 

the substitution outcome are compared with (3-154) and (3-155), it emerges that: 

(3-164) 

The 2x2 diagonal matrix of (3-164) is called the amplitude scattering matrix and is 

independent of the radial component r. 
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Figure 3-4 - Scattering by a spherical particle 

The relation between the incident and far-field scattered Stokes parameters S, 

and Ss follows from definitions (3-65) to (3-68) and equation (3-164): 

~=M .~ 

where the matrix M given by: 

SIl(O) S'2(0) 0 0 

1 S'2(0) SIl (0) 0 0 
M=-· k2r2 0 0 S33(0) S34(0) 

0 0 -S34 (0) S33(0) 

is the (far-field) Muller matrix of the Mie scattering problem and: 

S,2(0)=.!.·[IS2(OW -IS,(0)12
] 

2 

S33(0) = L [s;(o)S, (0)+ S2 (O)st (0)] 
2 

S34 (O)=!... [S;(O)s, (0)- S2(0)St(0)] 
2 

(3-165) 

(3-166) 

(3-167) 

(3-168) 

(3-169) 

(3-170) 

are the elements of M expressed as functions of the truncated series (3-156) and 

(3-157). Only three of these four matrix elements are independent because: 

127 



CHAPTER 3 

(3-171) 

The lengthy but straightforward Mie scattering theory is now complete for the 

purposes of this work. The next problem considered is the calculation of light irradi­

ance scattered from illuminated tenuous suspensions of particles and measured at an 

arbitrary angle by a polar nephelometric device. The modelling procedure and solu­

tion of this problem are the subjects of §3.5. 

3.5 Nephelometric scattering and turbidity measurements 

A generic polar nephelometric device (or polar nephelometer) is illustrated in 

figure 3-5. The device consists of an arbitrarily long cylindrical chamber of radius R 

that contains particles suspended in a simple medium. The nephelometric arrangement 

also includes a light source and set of light detectors placed at fixed positions in the 

perimeter of a single chamber cross-section plane, the nephelometric plane. All light 

sources and detectors of the nephelometer face the centre of the circular chamber 

cross-section. The light source emits an infinite number of plane waves whose (visual) 

wavelengths ;\. span the interval [AmIn' Amaxl. The amount of electromagnetic irradiance 

I, emitted by the light source is constant and distributed over the set of transmitted 

plane waves according to the spectral intensity function src(;\.) of that source. The 

emitted polychromatic (Le., multi-frequency) light forms a perfectly collimated cylin­

drical beam of radius w/2 (w«R) that originates from the light source and illuminates 

only the part of particle suspension that falls within the beam volume. The light detec­

tor placed at a scattering angle e with respect to the chamber cross-section point op­

posite the light source receives light scattered from the illuminated suspension volume 

that falls within its detection cone. The cone is centred at the detector considered and 

has an opening determined by the detector's acceptance angle o. The total scattered 

light irradiance I, measured by the detector is given by the weighted sum of irradian­

ces carried by the scattered plane waves the detector intercepts. The irradiance weigh­

ing is performed over the scattered wave frequency domain with respect to the spec­

tral senSItivity function rec(;\.) of the light detector. 
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rec(A.) 

src(A.) .... '1----~±-_J.---~1_T 

Figure 3-5 - Light scattering measurement by a polar nephelometer 

The total scattered irradiance measured by the detector of the nephelometric 

model described above can be derived analytically under the following conditions: 

a) The scattered light has the same wavelength or wavelength range as the inci­

dent light. This condition is met by the Mie scattering problem and most prac­

tical scattering applications. 

b) The suspended particles are sufficiently far from each other so that the scatter­

ing by one particle can be studied without reference to the other ones. This is 

called the independent scattering condition and has the direct consequence 

that the irradiances scattered by the various particles must be added without 

regard to phase to obtain the total irradiance at any point in space that does not 

fall in the line of incident light propagation. A mutual particle distance of three 

times their average radius is sufficient to assmne independent scattering and 

met by the most practical scattering problems. 

c) Each scattering particle is predominantly exposed to light originating from a 

distant source (or forming a collimated beam) and negligibly to light scattered 

by the other particles. This is the single scattering condition and is met by 

tenuous particle suspensions. The condition is practically demonstrated when 

the scattered irradiance measurements double by doubling the particle concen­

tration in the investigated suspension. 

d) The particle suspension is macroscopically homogeneous, i.e., there is no sta­

tistical preference of particle shape, size and nmnber contained within an in­

finitesimal volmne centred at any point of the suspension. 

e) The suspended particles are spherical (i.e., LATEX spheres). If the particles do 

not satisfy this condition, the analytical solution of scattered irradiance ob­

tained in this section can only be considered as first-order approximation. 
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The first step in the scattered irradiance derivation procedure is the considera­

tion of an infmitesimal cylinder of radius w/2 and height dz. The cylinder falls en­

tirely within the detection cone of a light detector. The centre of the cylinder sees the 

detector at an angle e' with respect to the cylinder's line of symmetry; the latter is per­

fectly aligned to the line of symmetry of the light beam emitted by the source. As a 

matter off act, the infmitesimal particle suspension volume dV(B,B') enclosed by the 

cylinder is entirely illuminated by the nephelometric light source. Figure 3-5 illus­

trates a typical cylinder placement within the nephelometric chamber. 

The particles contained by the suspension volume dV(B,B') occupy a total 

volume dVp(B,B') that is given by: 

dVp(B,B') = ~m .dV(B,B') 
m 

(3-172) 

where Cm is the (bulk) mass concentration of particles suspended in the nephelometric 

chamber and dm is the (bulk) mass density of these particles. 

Let dp E [dmm, dmax] and Vp E [Vmm, Vmax] denote the diameter and volume of 

an arbitrary (spherical) particle in the suspension within the nephelometric chamber. 

The two particle variables are random and hence described by their associated prob­

ability density functions (Pdfs), namely particle diameter pdJ, Pd,(dp ), and particle 

volume pdJ, PVp (Vp). These two functions are independent of position within the 

chamber due to the homogeneity property of the suspension. Therefore the total vol­

ume ~Vp(B,B',Vp,~Vp) occupied by particles lying within the suspension volume 

dV(B,B') and having individual volumes in the interval [Vp, Vp+~Vp] is given by: 

V,+AV, 

~VAB,B',Vp,~Vp)= dVp(B,B'). Jpv
P 
(x) dx (3-173) 

The integral on the right-hand side of (3-173) is the volume fraction assigned to the 

particle volume range [Vp, Vp+~Vp]. 

Due to the spherical shape of particles suspended in the chamber, the particle 

diameter dp can be obtained from particle volume V p by the following relation: 

(3-174) 

Therefore equation (3-173) may be expressed in the particle diameter domain as: 
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d,+Mp 

!lVp(O,B',d p,Mp)= dVp(O,O'). fPd, (x) dx (3-175) 
d, 

If the particle diameter range !ldp is infinitesimal, equation (3-175) degenerates to: 

(3-176) 

where dVp(O,O',dp) denotes the total volume occupied by particles lying within the 

suspension volume dV(B,O') and having effective diameters equal to dp• 

The total number of particles of effective diameter dp that are contained in 

dV(O,O') is denoted by dNp(B,O',dp) and derived by: 

dN (00' d )= dVp(B,O',dJ 
p , 'p dVp(dp) 

(3-177) 

where dVp (d p) is the average volume of particles of effective diameter dp given by: 

dV (d )= m:/; 
p p 6 (3-178) 

due to the spherical particle shape considered. Equations (3-176) to (3-178) yield: 

dN (00' d )= 6Pd,ld
p

).dV 'OO').dd (3-179) 
p ~, 'p nd3 P \1 , P 

P 

The irradiance dI, (A) emitted by the light source and carried by plane waves 

of effective wavelength A (or real wavelengths in the interval [A, J..+dA] where dA is an 

infinitesimal wavelength range) is given by: 

dI,(A) = I, srcn(A) dA (3-180) 

where srcn(/,.) is the normalised spectral intensity function. The emitted irradiance is 

attenuated as it traverses the simple medium to reach the volume dV(O,B'). The at­

tenuated irradiance is derived by (3-51) and given by: 

dI, (A,O,O') = dI,(A). exp[-a(A). D(O, 0')] (3-181) 

where 

(3-182) 

is the absorption coefficient of the medium and K(A) the imaginary part of the com­

plex refractive index N(A) of the medium. The distance between the light source and 

the centre of volume dV(O,O') is denoted by D(O,O') in(3-181) and is given by: 
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D(B,B') = (I+COSB- :;.}R (3-183) 

The irradiance di, (A,B, B', d p) scattered by a single spherical particle of effec­

tive diameter dp contained in dV(O,B') is the fIrst parameter of the scattered Stokes 

vector Ss that is nonnally derived by (3-165) for the far-fIeld region. However, the 

outcome of (3-165) does not take into account the attenuation of scattered irradiance 

in the simple medium, nor does it include the effect of irradiance modulation by the 

spectral sensitivity function recQ..) at the detector. Therefore, a more accurate fonnula 

for the irradiance intercepted by the detector is the following: 

di,(A,B,O',dp )= k(~~'2~:~,~~y .[811 (A,O',dp )+ 

812 (A,B',d) Q,]. exp[-a(A)' R'(B,B')]. recn (A) 
I, 

(3-184) 

where rec,.(A.) is the nonnalised spectral sensitivity function and k(A.) is the real wave 

number of the plane waves of effective wavelength A. propagating in the medium: 

k{A)= 27r n{A) 
A 

(3-185) 

with nO.) being the real part of the complex refractive index N(A.) of the medium. 

Also, the distance R'(B,B') between the centre of volume dV{B,B') and the light de­

tector is given by: 

R'(BB')= sinB. R 
~ , sinB' 

(3-186) 

Moreover, the scattering coefficients S110 and S120 in (3-184) are given by equations 

(3-167) and (3-168). Finally, the overall analytic expression of di,(A,B,B',dp ) is ob­

tained by equations (3-180) to (3-186) and takes the fonn: 

di (A B B' d )= A2 src.{..l,)recn {A).{sinB')2 .[s (A B' d )1 
, , , , p 47r2R2n{AY{sinO)2 11" p ,+ 

SI2(A,B',d
p

)Q,].exp[ - 47rRK{A)i1 + cos B)} (3-187) 

[ 
47rRK{A)tan(B'/2)SinBJ d" exp- 'A-

A 

where the product of the nonnalised spectral intensity and sensitivity functions is 

given with respect to src(A.) and rec(A.) by: 
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(A) (A) _ src(A )rec(A) src. rec. - ..... (3-188) 

Jsrc(A )rec(A )dA 
.l",. 

Due to the single scattering hypothesis, the total irradiance dl, (A, B, B', d p ) 

scattered by all particles of volume dV(B,B') having effective diameter dp is given by 

the irradiance scattered by a single particle of size dp, di,(A,B,B',dp), times the num­

ber of these particles in the infinitesimal suspension volume, Le.: 

dI,(A,B,B',dp)= dNp (B,B',d p).d].(A,B,B',dp) 

The volume dV(B,B'), however, is given by the following expression: 

2 

dV(B,B') = nw . dz(B,B') 
4 

while the infinitesimal height dz(B,B') of that volume is given by: 

dz(B,B')= 2.sin(B).sin(dB') .R 
cos(dB')-cos(W') 

(3-189) 

(3-190) 

(3-191) 

Due to the fact that dB' is infinitesimal, the following two approximations apply: 

sin(dB')= dB' (3-192) 

cos(dB') = 1 (3-193) 

Therefore equation (3-191) can be simplified to: 

dz'B B')= RsinB . dB' 
~ , (sinB'Y (3-194) 

The overall analytic expression of dNp(B,B',dp) is obtained by equations (3-172), 

(3-179), (3-190) and (3-194) and takes the form: 

~ ) 
3W2 RC P Id )sinB 

dN B B' d = m d, ~ P • dd . dB' 
p , , p 2d;d

m 
(sinB'Y p (3-195) 

Finally, equations (3-187), (3-189) and (3-195) yield the infinitesimal total irradiance: 

dl, (A,B,B',d p) 32C
m w?, .[SII (A,B',x )+S12(A,B',x)Q, ]. 

811' dmRsmB I, 

src. (A)rec.(A)A
2 

[41Z'RK(A)(1 + cos B)] -'::"':"'-'-:-:-:-''-'-- . exp . 
n(A)2 A 

(3-196) 

Pd, (x) .exp[ 411'RK(A)tan(B'/2)SinB] .dd .dB' .dA 
x 3 A p 
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The total irradiance I,(B) received by a detector placed at an angle a other 

than 0 or 1t radians with respect to the direction of propagation of emitted light is ob­

tained by triple integration of (3-196) over the suspended particle size range, the emit­

ted light wavelength range and the angle 9' range as determined by the intersection of 

the total illuminated suspension volume with the detector's detection cone, i.e.: 

B' (B)={B-O/2 B~o 
mm B/2 B<o 

(3-197) 

B' (B) = { B+o/2 Bs,n-o 
max (n +B)/2 B > n-o 

(3-198) 

Therefore I,(B) is given by the expression: 

I (B) = 3Cmw
2
/, • f srcn(A)recn(A)A2 .exp[ 47rRK(A)il+COSB)]. 

, 8n 2dmRsinB A.... n(AY 

""-I(8) [4nRK(A)tan(B'/2)SinB].d-
I 

Pdp(X).rS (, /11 ) 

exp A X3 ~ II "',U ,x + 
~OO ~ 

(3-199) 

S12(A,B"X)~ ]dxdB' dA 

The irradiance measured by a detector placed at the line of sight (LOS), i.e. 

opposite to the nephelometric light source, can be approximated by integration of 

(3-51) over the emitted light wavelength range [A.nIO' A.n.,J for emitted irradiance 10=1" 

absorption coefficient a(A.) given by (3-182) and travelled distance z=2R. Thus: 

Iws == II} srcn(A)recn(A)exp[ - 8nR;(A)] dA 
... 

(3-200) 

This approximation is accurate if the light extinction (Le., light absorption and scatter­

ing) effects caused by particles contained in the illuminated suspension volume are 

small. That assumption is valid for all tenuous suspensions exhibiting the single scat­

tering property mentioned earlier, and therefore (3-200) should apply to the 

nephelometric model under consideration. 

The ratio between scattered light at nl2 radians and received light at the LOS 

defines the turbidity T of the suspension contained in the nephelometric chamber: 

T 1,(nI2) 
(3-201) 
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This defInition of turbidity agrees with the non-calibrated one given by the ISO 7027 

[21] for A=860±30 nrn, c'i=25±5 degrees, R=35±25 mm and W::;0.05 R. The turbidity is 

often used as a quick measure of the suspension clarity and expressed in formazine 

nephelometric units (FNUs). The FNU is defIned as the 11400 of the turbidity of a 

prototype formazine (C~12N4 and N2~S04 in water) solution (see [21]) measured by 

an arbitrary instrument (the turbidity meter). 

The description and operation modelling of a polar nephelometer provided in 

this section are sufficient to allow the theoretical acquisition of nephelometric scatter­

ing and turbidity measurements for a well-defmed particle suspension that fulfIls the 

modelling requirements. §3.6 gives an example of how such a procedure can be ap­

plied by considering tenuous suspensions of Arizona Fine dust in water. 

3.6 Scattering and turbidity of ISO Arizona Fine dust 

The Arizona Fine (AF) dust is one of the four grades of test dusts specifIed by 

the ISO 12103-1 standard [62]. This kind of dust is composed of roughly textured, 

randomly shaped particles spanning a size range of 0-120 J.lm. Nevertheless, it will be 

assumed for the sake of simplicity that the scattering properties of this material can be 

sufficiently approximated by considering its particles as spherical and homogeneous. 

Therefore the Mie scattering theory and the associated polar nephelometric model ex­

plained in §3.4 and §3.5 can be applied to water suspensions of the dust subject to 

previous knowledge of chemical composition, refractive index, mass density and par­

ticle size distribution of AF. The remaining of this section deals with the aforemen­

tioned preconditions fIrst and the application of the polar nephelometric model next. 

Table 3-1 (page 138) summarises the chemical composition of AF that is pro­

vided by the ISO 12103-1 standard. The dust is composed of eight inorganic com­

pounds, namely Si02 (silica), Ah03 (alumina), Fe203 (rust), Na20 (soda), CaO (lime), 

MgO (magnesia), Ti02 (titania) and K20 (potash). The actual mass fraction of any of 

these compounds in AF varies between dust samples as described by the ISO standard 

and the third column of table 3-1. However, it would be practical for the purposes of 

this study to lock the mass fractions of AF compounds to the average values listed in 

the fourth column of the table. The mass fraction values are necessary to determine 

the concentration of each AF compound for a given concentration Cm of bulk AF dust. 

Each AF compound has its own refractive index profIle over the domain of 

visual and near-infrared frequencies (i.e., 390-940 nrn [56]). These profIles were con-
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structed by interpolation of refractive index values extracted from a variety of sources. 

Refractive indices for Si02 and Ti02 were obtained from the literature [173], namely 

tables X and XIV, pages 760 and 800, respectively. Alumina and magnesia have their 

refractive indices mentioned in book [174], tables I and 11, pages 770 and 950, respec­

tively. The refractive index values of monodispersed hematite hydrosols listed in table 

Ion page 1625 of paper [175] were extrapolated to construct the refractive index pro­

file of Fe203. Extrapolation of refractive index values mentioned in references [176] 

and [177], pages 814 and 287, gave the profiles of soda and lime, respectively. Fi­

nally, refractive index values for K20 could not be found anywhere in the scientific 

literature due to the fact that the compound concerned is unstable. Therefore it will be 

assumed that potash and soda have identical refractive indices throughout this study. 

The assumption is fair because the two compounds have similar electromagnetic prop­

erties at radio frequencies (see book [178], Chapter IV). 

The refractive index profile of water at visual/near-infrared frequencies is also 

of importance since the material is used as dissolver in all AF suspensions under con­

sideration. This profile is obtained from table I, page 1071 of[174]. 

The real and imaginary parts of the refractive indices of water and all AF 

compounds in visual and near-infrared frequencies are presented in figure 3-6 and 

figure 3-7 respectively. Rust and titania have the biggest real refractive indices, fol­

lowed by the group of lime, a1umina and magnesia, followed by the set of soda, pot­

ash and silica, and leaving water with the smallest real refractive index. As far as the 

imaginary refractive indices are concerned, rust is dominant with titania and magnesia 

following suit but restricted to the upper visual frequency range only (390-550 nm). 

Water exhibits the smallest imaginary refractive index both in relative and absolute 

terms. Therefore any light absorption within an illuminated AF suspension by water 

alone is expected to be negligible. 

The bulk mass density of AF dust is given by the ISO 12103-1 standard to be 

900 kg/m3. However, the mass densities of the eight chemical compounds the AF dust 

is composed of are not given by the standard. This study assumes that the bulk mass 

density is approximately equal to the mass densities of the compounds. Therefore the 

bulk mass concentration of AF divided by the bulk mass density of the dust and mul­

tiplied by the mass fraction of an AF compound should equal the volume concentra­

tion Cv of that compound to the water suspension under consideration. 
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Table 3-1- Chemical content of Arizona Fine dust 

Chemical Empirical Name Mass Fraction (%) Avg. Mass Fraction (%) 

Si02 Silica 68-76 72 

Ah0 3 A1umina 10-15 12.5 

Fe20 3 Rust 2-5 3.5 

Na20 Soda 2-4 3 

CaO Lime 2-5 3.5 

MgO Magnesia 1-2 1.5 

Ti02 Titania 0.5-1 0.5 

K20 Potash 2-5 3.5 

Table 3-2 - Particle size and volume fraction details of Arizona Fine dust 

Particle Size Cumulative Volume Volume Fraction Average V.F. 
Range (flm) Fraction (%) Distribution (%) Distribution (%) 

0-1 2.5-3.5 2.5-3.5 3 

1-2 10.5-12.5 7-10 8.5 

2-3 18.5-22 6-11.5 8.75 

3-4 25.5-29.5 3.5-11 7.25 

4-5 31-36 1.5-10.5 6 

5-7 41-46 5-15 10 

7-10 50-54 4-13 8.5 

10-20 70-74 16-24 20 

20-40 88-91 14-21 17.5 

40-80 99.5-100 8.5-12 10.25 

80-120 100 0-0.5 0.25 
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The particle size probability density function (pdf) of each AF compound can­

not be uniquely determined by data included in the ISO 12103-1 standard. However, a 

single particle size pdf can be extracted from these data, and that pdf will apply to all 

AF compounds collectively as well as each of them separately by assumption. The 

pdf sought can be derived from the volume fraction distribution of the binned (by par­

ticle size) AF that is listed in the first and third columns of table 3-2. That distribution 

is obtained directly from the cumulative volume fraction distribution function men­

tioned in the ISO standard and repeated in the first two columns of table 3-2. The vol­

ume fraction distribution of table 3-2 is ambiguous however, as it allows the volume 

fraction of every AF particle size bin considered to vary within well-described limits. 

Therefore a proper mathematical model should be built that is capable of transforming 

the ambiguous volume fraction distribution to a set of well-defined volume fraction 

distribution functions. The description of such a model readily follows. 

Let {k vlt, k v12, ••• k ViNo} be a set of volume fractions associated with the Nb 

AF particle size bins and satisfying the ambiguous distribution of the first and third 

columns of table 3-2 for every k?:l. The elements of that set can be tabulated to form 

a volume fraction dIstribution function VFk defined by: 

VFk '" [k vlt ... k vI, ... k ViNo Y 
where: 

by definition of the notion of volume fraction. 

(3-202) 

(3-203) 

The ith element ofVFk (1~~b) is actually a bounded variable with minimum 

and maximum values being the volume fraction limits that are listed in the ith row (ex­

cluding the heading row) and third column of table 3-2. These limits can be tabulated 

to form vectors VFmm and VFmax as follows: 

VF mm '" [~inC vlt) 

VFmar '" [mf'{k vlt) 

~in(k vI, ) ... m}n(k ViNo f 
mf'{k vI,) .. , mf'(k ViNo )] T 

(3-204) 

(3-205) 

It can be shown that the volume fraction distribution function VF k defined by 

(3-202) and satisfying (3-203) can be generated by the following formula: 

(3-206) 
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1 
VFm "''2.(VFmax +VFm,n) 

is the average volume fraction distrIbution, and the vector VF s defined by: 
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(3-207) 

(3-208) 

is the volume fraction deviation. The average volume distribution VF m happens to sat­

isfY (3-203) for the values ofVFmm and VFmax assumed before, thus it is an acceptable 

volume fraction distribution function and.will be alternatively denoted by VFo. The 

values ofVFm are listed in the fourth column of table 3-2. 

The vector Ak in (3-206) is called the volume fraction distribution generator 

and is defmed by: 

(3-209) 

where the NbXl vector ~Uk has random numbers uniformly distributed in the range 

[0, 1] as elements. The volume fraction distribution generator must always satisfY the 

condition: 

(3-210) 

so that the associated volume fraction distribution function always satisfies (3-203). If 

the definition ~ U 0 =0.5 1 is added, (3-209) produces Ao=O and (3-206) generates VF o. 

Let the volume occupied by an AF particle that belongs to the ith particle size 

bin be denoted by p~ for 1:si~b. That particle volume belongs to the interval 

[minC~), min(p~)+ pa~], where: , , 
(3-211) 

The limits min(p~) and max(p~) are derived from the associated particle size limits , , 
of the ith bin min(p d,) and max(p d, ) by the equation: , , 

m13 

V =-p 
P - 6 (3-212) 

The particle volume ranges pa~ defmed by (3-211) can be tabulated to form the 

binned particle volume range vector a Vp : 

a v '" [av,1 ... aY. ... av] T 
p P P J P N, (3-213) 
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The probability that an AF particle volume Vp E [min(/';), min(pf';)+ p!if';] 
, I 

and satisfies the volume fraction distribution function VFk is equal to k vI, and pro­

portional to the particle volume range of the ith bin, i.e., v: PI· p!if';. Therefore the 

bmned volume probability denSIty function v Pk , defmed mathematically by: 
p 

P = [kp' ... kp' ... 
Vp k - Vp 1 V, i (3-214) 

is obtained by the formula: 

VpPk =VFkl!!J.Vp (3-215) 

where the symbol I denotes element-by-element vector division. The elements of v Pk p 

are constant throughout the range of the particle size bin they refer to. 

The binned particle size probability denSIty function d P k' defmed by: 
p 

(3-216) 

is obtained from v Pk by application of the particle diameter-volume relation: 
p 

(3-217) 

to the probability density function transformation equation: 

pdf,(vJ= L [dg(X,)]-1 .pdf.(x,) 
I dx, 

(3-218) 

where XI denotes a root of y=g(x) at Y=Ys. Hence: 

(3-219) 

i.e. the elements of d Pk follow parabolic trajectories within the limits of the particle 
p 

size bin they refer to. Besides, the binned particle size pdf satisfies the condition: 

N. "';"'(dp ) 

L J d:p.(x)dx = 1 (3-220) 
1=1 ,\",,(dp ) 

for every !eO due to equations (3-203) and (3-219). 

The binned particle size and volume pdf of the Arizona Fine dust for O~OO 

are illustrated in figure 3-8 and figure 3-9 at logarithmic coordinates for both axes. 
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The solid lines in these graphs represent d Po and v Po respectively, while the dashed 
p p 

and dash-dotted lines describe the upper and lower limits of grey-shaded areas within 

which the remaining 200 dIthered versions of binned AF pdf, i.e. d Pk and v Pk for 
p p 

I~OO, could have been drawn. 

It is apparent from figure 3-8 and figure 3-9 that the binned probability density 

functions are very unlikely to be realisable due to their sharp discontinuities at particle 

size bin limits. Therefore two new sets of functions should be derived from d Pk and 
p 

V Pk that satisfy the unit area condition of a typical pdf, are good approximations of 
p 

the corresponding binned sets of functions, and are continuous, and are continuous 

throughout their domains. These new sets will be called the particle size probabIlity 

density jUnction and volume probability density jUnction of AF dust, and will be de­

noted by the symbols d: p{d p) and v: p(Vp) respectively with leO. 

There are two favourite alternatives to the design of the AF particle size and 

volume pdf sets from the associated binned pdf sets. The first samples d Pk at the 
p 

centres of particle size bins and then produces an interpolated curve of unit area from 

these samples that extends to the whole AF particle size domain. After that, the con­

structed d:p(dp ) is applied to (3-218) for g(x) given by (3-212) in order to calculate 

v: p(Vp ). The second alternative follows the same interpolation procedure as the first 

but applies to v Pt rather than d i\. Next, the produced / p(Vp ) is applied to (3-218) 
p p p 

for g(x) given by (3-219) only to obtain d:p(dp ). Although the two alternatives give 

similar results, it is the first one that produces the smoothest and more likely to be re­

alisable pdf curves. As a matter of fact, the first approach is the one adopted by this 

study for the AF particle size and the generation of volume pdf. Furthermore, the in­

terpolation method chosen for the generation of volume pdfwas linear for simplicity 

reasons. The produced particle size pdf and volume pdf sets are illustrated in figure 

3-10 and figure 3-11 at logarithmic coordinates for both axes. The solid lines in these 

graphs represent d;p(dp) and v;P(vp) respectively, while the dashed and dash-dotted 

lines describe the upper and lower limits of grey-shaded areas within which the re-
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maining 200 dIthered versions of AF pdf, i.e. d:p(dp) and v:P(vp) for 1~00, 

could have been drawn. 

The scattering profile of a tenuous water suspension of Arizona Fine dust that 

is obtained by a typical polar nephelometer can be calculated theoretically by using 

equation (3-199) to find the scattering profile of each AF compound separately from 

the rest and summing the results afterwards. Four AF profiles were computed overall 

from four sets of nephelometric and AF parameters compatible with the ISO 7027 

turbidity standard. The common parameters to all four AF scattering simulations are: 

• e = 5°,10°, ... 175° 

• A. = 830, 835, ... 890 nm 

• I, = 1 W/m2, Q, = 0 (unpolarised light source of unit emitting power) 

• w=lmm 

• dm =900 g/l 

• srcn(.~) = rec.(,~,)= 108/6 

• N(A.) = n(A.) + K(A.) and N 1(1..) = n1(A.) + K1(A.) as in figure 3-6 and figure 3-7 

• Pd, (dp ) = d;p(dp ) as in figure 3-10 

• Mass fraction of each AF compound as in table 3-2, fourth column 

The additional parameters applying to the first simulation are: 

• Cm = 10,20 ... 60mg/l 

• I) = 25° 

• R=35mm 

• k = 0 (no dithered versions of AF particle size pdf considered) 

These parameters change for the second simulation to: 

• Cm =35mg/l 

• I) = 20°, 22°, ... 30° 

• R=35mm 

• k = 0 (no dithered versions of AF particle size pdf considered) 

The additional parameters of the third scattering simulation are: 

• Cm =35mg/l 

• I) = 25° 

• R = 10, 20, ... 60 mm 

• k = 0 (no dithered versions of AF particle size pdf considered) 
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These parameters change for the fourth scattering simulation are: 

• Cm =35 mg/l 

• /) = 25° 

• R=35mm 

• 0~<20 (19 dithered versions of AF particle size pdf considered) 

The fmal scattering profiles were converted to dB units by use of the relation fdB(x) = 
10IoglO(X). 

Figure 3-12 illustrates the AF scattering profile for a set of small but linearly 

increasing values of the bulk mass concentration Cm. As easily predicted from equa­

tion (3-199), an increase of Cm causes a proportional increase of the AF profile level 

but does not alter its shape. The result is consistent with the assumption of single scat­

tering made during the building phase of the polar nephelometric model. 

Unlike Cm, changes of the acceptance angle /) of the nephelometric detector 

usually cause alterations of the AF scattering profile. TIlls effect is observed in the 

results of the second simulation displayed in figure 3-13. The profile shape changes 

are more pronounced at the scattering angles of 20°, 140° and 160°, and can be ex­

plained by the following reasons: 

a) Greater acceptance angles can be interpreted as more AF particles "seeing" the 

nephelometric detector at an increasingly different number of angles. There­

fore the scattering profile smoothens progressively with increasing /) due to the 

extension of the detector averaging of irradiances scattered from individual AF 

particles to a wider range of angles. 

b) The effective acceptance angle is physically limited at scattering angles near 

the line of sight according to equations (3-197) and (3-198). Therefore the 

scattering profiles obtained for different acceptance angles are expected to 

converge in the small and large scattering angle range. 

The scattering profile level is also affected by /), as greater values of acceptance angle 

result to more AF particles contributing their individual scattered irradiances to the 

detector and thus higher scattered irradiance overall. However, the effect of /) to the 

profile level is much weaker than the similar effect caused by changes to Cm. 

The scattering profiles of AF for increasing values of the nephelometric cham­

ber radius R are stacked in figure 3-14. As expected, the profile level drops propor-
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tionally to R due to the existence of the llR factor in (3-199). No apparent modifica­

tions of the profile shape are caused by chamber radius variance. 

The variation of a typical AF scattering profile due to particle size pdf dither­

ing is the subject of the fourth scattering simulation. Figure 3-15 illustrates the AF 

scattering profile that is related to d;p(dp ) on top of the uncertainty area of that pro­

file. The scattering profile is drawn as a solid line while the uncertainty area is shaded 

grey and bounded from above by a dashed line and from below by a dash-dotted line. 

All AF scattering profiles that correspond to d: p(d p) for 1::Sk<20 could have been 

drawn within the uncertainty area. The maximum deviation of scattered irradiance Is 

from its nominal value due to particle size pdf dithering is about ±1 % in dB units. 

The turbidity T of all water suspensions of Arizona Fine dust assumed by the 

last three scattering simulations can be estimated theoretically by application of all 

relative nephelometric and AF parameters to equation (3-199) and approximations 

(3-200) and (3-201). The only difference between the simulation parameters for scat­

tering and turbidity is the particle size pdfthat is now given by Pd, (d p) = d:p(dp) for 

0::Sk<20. This change allows the additional observation of the effect of AF particle 

size pdf dithering to turbidity measurements from a purely theoretical point of view. 

The pdf dithering effect will be visualised in the following AF turbidity plots by a pair 

of dashed and dash-dotted lines carving the upper and lower limits of grey-shaded ar­

eas that represent the uncertainty range of turbidity. Solid lines in these plots will only 

be drawn to signify turbidity values calculated for P d, (d p) = d;p(d J 
Figure 3-16 illustrates the turbidity profile for increasing values of the AF bulk 

mass concentration in the water suspension. The turbidity function that corresponds to 

Pd, (dp ) = d;p(dp ) follows an ideall010glO(aoc+bl) trajectory where al = 5.8610.12 

and bl = _1.2910-26. Therefore T is proportional to Cm in linear scale. The uncertainty 

margin of turbidity due to AF particle size pdf dithering is about ±1 % in dB units. 

The AF turbidity changes with respect to the acceptance angle of the 

nephelometric detector in a manner displayed by figure 3-17. The turbidity function 

for Pd, (dp ) = d;p(dp ) is an approximate IOloglO(a2x+b2) curve where a2 = 8.0210.12 

and ~ = 4.2110.12. Hence T is proportional to /) in non-logarithmic units for a relative 
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approximation error of nearly 1 %. The uncertainty margin of turbidity due to AF par­

ticle size pdf dithering is again close to ±I % in dB units. 

Finally, the turbidity profile for increasing values of the nephelometric cham­

ber radius is presented in figure 3-18. The turbidity function for Pd, (dp ) = d>(dp ) is 

approximately equal to 10 loglO(a3/x+b3) with a3 = 7.9410.9 and b3 = -2.20 10-11
• Thus 

T is inversely proportional to R in non-logarithmic units for a relative approximation 

error of almost 1 %. The uncertainty margin of turbidity due to AF particle size pdf 

dithering is once again near ±I % in dB units. 

The modelling procedure and results obtained so far for the physical and opti­

cal properties of Arizona Fine dust related to Mie scattering and the polar nephelome­

ter are useful for two reasons. Firstly, they demonstrate how the Mie scattering theory 

can be exploited to first-degree estimations of the scattering and turbidity of physi­

cally realisable particle suspensions. Secondly, they provide the necessary background 

for the estimation of light scattered by tenuous water suspensions of arbitrarily filtered 

AF dust derivatives. Chapter 4 utilises that background to estimate the scattering pro­

files of filtered AF dust suspensions and attempt to train and optimise a number of 

ANNs WIth them. 
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Figure 3-8 - Binned size probability density function for Arizona Fine 
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Figure 3-11 - Particle volume probability density function for Arizona Fine 
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3.7 The inverse scattering problem 

The inverse light scattering problem can be stated in its most generic case as 

the accurate identification of a set of particles that is responsible for the creation of a 

scattered electromagnetic field from an incident field when partial or complete infor­

mation for the scattered field is available. Examples of practical inverse scattering 

problems are: 

a) Description of the composition of interstellar dust from the analysis of light of 

various wavelengths that transverses the dust without undergoing scattering or 

absorption and, less frequently, light scattered in various directions by the dust 

b) Determination of the size of particles whose shape and composition is already 

known from light scattering techniques 

c) Exploitation of radar backscattering data to discriminate between rain and hail 

The necessary information to specify a set of scattering particles uniquely is 

the incident field that interacts with the scattering particles the internal field that is 

created inside the scattering particles, and the vector amplitude and phase of the scat­

tered field. Moreover, that information must be available at all points in space the 

three fields are defined [179]. However, precise knowledge of the three fields is rarely 

gained in practice. The incident field is the easiest to be determined but caution is re­

quired. The internal field cannot be measured directly in many practical circum­

stances, although under certain conditions, which are most likely to be met in the 

laboratory, this field can be approximated by the incident field (see [169], Chapter 6). 

The most difficult task though is the description of the amplitude and phase of the 

scattered field: although this is not impossible in principle, it is rarely achieved in 

practice. Therefore the inverse scattering problem is almost always an ill-posed one as 

less than the necessary amount information can be obtained to solve it. 

Is the turbidity parameter defined in (3-201) sufficient to provide some kind of 

information about the scattering particles? Consider the simple case of two sets of 

homogeneous, spherical particles of the same material. Each set contains particles of 

unique size but the particle number and size differs significantly between the two sets. 

Specifically, the first set is made of small particles while the second one contains sub­

stantially larger particles. Small identical mass quantities are collected from the two 

sets and diluted in two different containers of equal volumes of the same dissolver. 

The two tenuous suspensions made are said to be monodispersed because they have 
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diluted particles of unique size. Turbidity measurements are obtained for the two sus­

pensions using two identical nephelometric devices. According to (3-189), the scat­

tered light at 1tI2 is proportional to the number of scattering particles and the irradi­

ance scattered by every individual particle. The suspension of small particles owns a 

considerably higher amount of particles per unit volume that scatter light. On the 

other hand, every large particle of the alternative suspension scatters a substantially 

higher amount of irradiance at 1tI2. This effect can be adequately explained by the Mie 

scattering theory. A greater particle size a gives a bigger X; parameter according to 

(3-146) and thus an increased lie constant due to (3-148). The higher lie is, the more 

terms are required to obtain parameters SI and S2 from (3-156) and (3-157) and the 

greater the latter set of parameters become. Finally, higher values of SI and S2 yield a 

bigger S 11 term by (3-167) which triggers an increase to the irradiance scattered by the 

particle as (3-184) suggests. According to approximation (3-200), the scattered irradi­

ance at LOS is insensitive to the number and size of suspended particles. As a matter 

of fact, it is very likely that the two substantially different suspensions in terms of the 

number and size of suspended particles give equal or very similar turbidity values by 

definition (3-201). When that happens, it is virtually impossible to discriminate the 

two suspensions on turbidity grounds only. In conclusion, turbidity may be easy to 

obtain but insufficient to describe suspended particle size or related information in all 

but few problems [180,181]. 

An interesting and still open for research question is whether partial or com­

plete knowledge of the scattering pattern of a set of particles is sufficient to solve the 

inverse scattering problem. The findings up to date suggest that it is likely to gain par­

tial information for particles of a given scattering pattern subject to previous knowl­

edge or assumption of important particle properties by means other than light scatter­

ing techniques. More about the topic can be found in [182]. 

As already mentioned in chapter 1, this study is focused on the exploitation of 

scattering information to characterise sets of particles according to size or a derived 

quantity rather than describe the particles in fine detail. Chapter 4 performs the task of 

particle characterisation for a number of cases with the assistance of ANN s, the Mie 

scattering theory and the nephelometric model presented so far. 

153 



CHAPTER 3 

3.8 Summary 

The aim of this chapter was provide the reader with the fundamentals of light 

scattering theory and apply the theory to a reference material described by an interna­

tional standard. Aspects of the classical electromagnetic theory explaining the basic 

properties of light were reviewed in sufficient detail. The interaction of light with a 

single spherical particle placed in a simple, non-absorbing medium was rigorously 

examined and all fields created as a result of the interaction were analytically deter­

mined. The operation of a typical polar nephelometer was explained and a model of 

the device was developed to estimate the scattered irradiance and turbidity of a tenu­

ous suspension of homogeneous particles in a simple medium. The physical and opti­

cal properties of small quantities of Arizona Fine dust diluted in water were extracted 

from the ISO 12103-1 standard and other sources and applied to a polar nephelometric 

model compatible with the ISO 7027 turbidity standard. The scattering and turbidity 

profiles obtained were compared to each other in order to illustrate their degree and 

kind of dependency on core Arizona Fine and nephelometric parameters. Finally, the 

inverse scattering problem was discussed, the unfeasible conditions under which the 

problem is guaranteed a unique solution were mentioned, and the inability of turbidity 

to discriminate particle sets of substantially different size was illustrated by an in­

structive counterexample. 
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SCATTERING NEPHELOMETRY ApPLICATIONS 

I ... there's an ordinary world 

Jl somehow I have to find ... I 

(Duran Duran, Wedding album, 1993) 



CHAPTER 4 

4.1 Introduction 

The ANN modelling and light scattering theories explained in chapter 2 and 

chapter 3 provide the essential background for the comprehension, modelling and so­

lution of many particle characterisation problems. This chapter utilises the aforemen­

tioned knowledge base to solve two of these problems: volume fraction estimation 

and suspended matter detection. Water suspensions of filtered AF sand, polychro­

matic light sources and polar nephelometers are assumed in both problems. The solu­

tions obtained are structuraIly optimal MF ANN models that require the smallest num­

ber of nephelometric detector signals possible to give the answers sought. These re­

sults are indicative of the appropriateness and usefulness of the ANN modelling ap­

proach to the field of particle characterisation as a whole. 

4.2 Binned AF sand volume fraction estimation problem 

This theoretical particle characterisation problem assumes that three AF sand 

types can be created from the separation of the ISO 12103-1 AF sand particles into 

three bins according to particle size (0-1 !-tm, 1-3 !-tm, 3-10 !-tm). A set of distinct but 

equiponderant mixtures of the three binned AF types is assumed to be prepared and 

dispersed in water. The suspensions formed are inserted in the polar nephelometric 

model of §3.5 and illuminated by a member of a predefmed set of light sources. Fi­

nally, the theoretical scattering data calculated for every suspension are~used to train, 

optimise and test a MF ANN model that estimates the volume fraction of every binned 

AF type in all suspensions under consideration. 

4.2.1 Theoretical sample preparation 

Three virtual types of filtered AF sand are supposedly available for the prepa­

ration of sample suspensions. These types originate from the ISO 12103-1 AF sand by 

separating its particles in four size bins (0-1 !-tm, 1-3 !-tm, 3-10 !-tm and 10-120 !-tm) 

and rejecting the last bin. Hereafter the three sand types will be called binned AF sand 

types and denoted by the initials AF .. AF2 and AF3• 

The particle size probability density jUnctions d PlO, d P20 and d pJ) of " , 
the three binned AF sand types are illustrated in figure 4-1 (see page 159). These 

functions are derived from the particle size pdf of the ISO 12103-1 AF sand (see 

figure 3-10) by cutting the latter into pieces consistent with the particle size ranges of 
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three binned AF sand types and nonnalising every piece to unity with respect to inte­

gral. The unfeasibility of the derived pdfs (the shape of a feasible pdf is usually simi­

lar to a lognonnal distribution curve) does not affect in any way the validity of the 

solution method that is explained in §4.2.3. 

The bulk mass density of each of the binned AF types is assumed to be equal 

to the bulk mass density of the ISO 12103-1 AF sand, i.e. dm = 900 kg/m3
• 

Two hundred and thirty one water suspensions of mixtures of the three binned 

AF sand types are hypothetically prepared for the solution of the volume fraction es­

timation problem. Every suspended mixture satisfies the following conditions: 

a) The contribution of every binned AF sand type to the mixture is either a mul­

tiple of 1 mg or nonexistent. 

b) The analogy of the three binned AF sand types that participate in the mixture 

is unique as far as the set of231 mixtures is concerned. 

c) The total mass of the mixture is 20 mg. 

The volume of water used for the dilution of the binned AF sand mixture is as­

sumed to be Vw = 1 litre in every sample. 

4.2.2 Nephelometric model setup 

The virtual device employed to acquire the scattering profiles of the aforemen­

tioned sample suspensions is the polar nephelometric model of §3.5. The values as­

signed to the nephelometric parameters are the following: 

a) The chamber radius is R = 10 mm. 

b) The width of the illuminating beam is w = 0.5 mm. 

c) The numerical aperture of all nephelometric detectors is NA = 0.1. The accep­

tance angle 1) of the detectors is related to the numerical aperture by: 

O=2sin-I(~~) (4-1) 

where nw is the real part of the complex refractive index of the sample solvent, 

i.e. water (nw"" 4/3). Therefore the acceptance angle is 1) "" 8.6°. 

d) The light source belongs to a set of three LEDs denoted by the capital letters 

A, B and C. The total irradiance emitted from every source is 10. = 1 W/m2
• 

The spectral intensity functions src,O of these sources are Gaussian distribu-
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tions limited to the frequency domains [/l,-5a" /l,+5a,] (i = A for LED A, B for 

LED B and C for LED C), Le.: 

src,(1) '" 
---;==1 exp[- .!.(1 _ P, )2] 
a,.J2i 2 0', 

o 
The mean value /l, satisfies the identity: 

src, (P,) '" max[src l (1)] 
~ 

p, - 50', !> 1 !> P, + 50', 

otherwise 

and the standard deviation a, is given by the formula: 

HMBW, 
0', = -2..J"2=ln=2o!: 

(4-2) 

(4-3) 

(4-4) 

The variable HMBW, in equation (4-4) is the Half Maximum Beam Width of 

the ith LED source and is derived from src,O as follows: 

HMBW, "'~' --1" 

-1" !> ~, 

src, (-1,,) = src, (~,) "'.!.. max[src l (1)] 
2 ~ 

(4-5) 

(4-6) 

(4-7) 

Figure 4-2 illustrates the spectral intensity functions of the three LED sources 

in pdf format. The mean values and Half Maximum Beam Widths of these 

curves are /lA = 565 um, /lB = 635 nm, /le = 770 nm, HMBW A = 25 nm, 

HMBWB = 45 nm and HMBWc = 80 nm. 

e) All light detectors are characterised by the same spectral sensitivity function 

rec(.) that is uniform over the visible and near-infrared frequency domain 

(390 - 940 nm). Figure 4-3 illustrates recO in pdf format (the total irradiance 

on the detector is assumed to be equal to 1 W/m2 for graphical purposes only). 

4.2.3 Theoretical results 

According to the sample preparation procedure described in §4.2.1, the total 

mass concentration of binned AF sand is Cm = 20 mg/l in every sample suspension. 

Due to the modesty of that concentration value, the scattering conditions of §3.5 are 

satisfied and the analytical scattering solution derived in that section is applicable to 

this classification problem. As a matter of fact, the scattered irradiance I siB) meas-

ured by a nephelometric detector placed at angular position e is given by: 
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Figure 4-1- Particle size probability density functions of AFl,2,3 
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Figure 4-2 - Spectral intensity functions of the three nephelometric sources 
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(4-8) 

where: 

• j is the sample suspension index (l:;si:5231) 

• The volume fraction of binned AF sand type I suspended in the jth sample, vt;b 
is equal to the associated mass concentration fraction C~I because the bulk 

mass density dm and water volume Vware independent of I and j. The sand 

mixing conditions of §4.2.1 require that ~I = 0.05n where 091:520. Also: 

(4-9) 

• The set of eight (average) mass fractions mfk that correspond to the chemical 

compounds of the filtered and ISO 12103-1 AF sand is stated in table 3-1. 

• The complex refractive index Nk(J..) = nk(J..) + lCk(A.) of the k-th chemical com­

pound of the filtered AF sand is assumed to be identical to the associated in­

dex of the ISO 12103-1 AF sand. Refractive indices nk(J..) and lCk(J..) are dis­

played in figure 3-6 and figure 3-7. 

• The normalised spectral functions src .. (A) and rec .. (A) are determined by 

figure 4-2, figure 4-3 and equation (3-188). The integration limits are deter­

mined by the second figure (Amm = 390 mn, Amax = 940 mn). 

• The integration limits 9;'" (8) and 9:'" (0) are given by equations (3-197) and 

(3-198). 

• The integration limits dmm and dmax can be extracted from figure 4-1. 

• The scattering functions Sll(A,O',X) and SI2(A,0',X) are calculated exactly 

with the aid ofMie scattering theory (see §3.4). 

• The Stokes parameter QOI is assumed to be zero because the three nephelomet­

ric sources are LEDs emitting unpolarised light. 
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Figure 4-3 - Spectral sensitivity function of the nephelometric detectors 
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The numerical calculation of I sy (0) is greatly simplified by the introduction of 

the normalised particle scattering per umt mass concentration sAo) defmed by: 

(4-10) 

and expressed in inverse mass concentration units (Vmg). According to equation (4-8), 

the scattered irradiance function is linearly proportional to the total mass concentra­

tion of suspended AF sand and the total irradiance emitted by the nephelometric 

source. Therefore the tiny set of functions sAo) calculated by (4-10) and (4-8) gen­

erates the full set of 3 (see §4.2.2) x 231 (see §42.1) scattering profiles by the linear 

expression: 

3 

Isy(O)=CmloILV!/1 SU(O) (4-11) 
I-I 

Figure 4-4 to figure 4-6 demonstrate the normalised particle scattering per unit 

mass concentration functions for the three nephelometric sources. According to these 

figures, Sd(O) satisfies the following inequalities: 

8,,/(0» 8,,/(0) 

8", (0» 8,1, (0) 

(4-12) 

(4-13) 

The scattering function Su(l,O',x) is proportional to the size parameter X de­

fmed by (3-146). However, X is inversely proportional to wavelength A.. These re­

marks and the domains of spectral functions srcJ) justify (4-12). Also, inequality 

(4-13) is satisfied because binned AF sand types of smaller particle sizes contain more 

scattering particles per unit volume and hence factor IIx3 in (4-8) is increased accord­

ingly. Finally, the shape of SiB) becomes more irregular as the ordinal number of 

binned AF sand type increases. This is due to the additional terms required for the 

calculation of truncated series (3-156) and (3-157) according to equation (3-148). 

4.2.4 Volume fraction estimation model 

Two data sets, one of input and another of target vectors, are required to train, 

test and optirnise an ANN model of particle classification problem considered. The set 

of 51 xl raw input vectors {Ph P2, ... Pq, ... Pm} is constructed by sampling the scat­

tered irradiance functions I sit (0) at all angular positions 9n at which nephelometric 
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detectors can be placed according to predetermined geometrical and physical con­

straints. If it is assumed that en is given by: 

en = n·IO' 1!>n!>17 (4-14) 

it emerges that three 17x1 vectors P'q defined for every nephelometric source by: 

p,. = [1,/. (el) I,Iq(eJ ... I,Iq(e.) ... I".(el,W (4-15) 

assemble the 51x1 raw input vector pq by augmentation: 

p. =[p;. I p~. I p;.r (4-16) 

The set of3xl raw target vectors {th t2, ... tq, ... t231} is formed by grouping the mass 

concentrations of the three binned AF sand types dispersed in every individual sample 

suspension. Every target vector is linearly proportional to the vector of volume frac­

tions that refers to the same suspension and suspended matter. In mathematical terms: 

(4-17) 

Once tq is estimated, an approximation of the corresponding volume fraction vector 

can be obtained by (4-17) and the value of Cm stated in §4.2.3 (Cm = 20 mgll). 

The raw input and target vector sets are uniformly normalised to the interval [-

0.5, 0.5] by applying the appropriate pre-processing algorithm of §2.8. The 462 nor­

malised vectors Pq, ~ are grouped in 231 pairs of the form {Pq, tJ Eleven vector 

pairs are randomly selected for network training use (training pattern set) and the re­

maining 220 pairs are destined to measure the degree of generalisation exhibited by 

the trained network at the end of every ANN optimisation step (testing pattern set). 

An initial 51-2-3 MFANN is constructed to estimate the mass concentrations 

of the three binned AF sand types. The hidden and output nodes of that network are 

assigned log-sigmoid and linear transfer functions respectively. The network training 

task is performed via the LMBP algorithm, and the network optimisation goal is 

achieved via the modified SOSA and OBS algorithms. The performance index of the 

training algorithm is the MSE function dermed by (4-10). The LMBP parameters are: 

MSEgoal = 10-6, EPmax = 100, Vmm = 10-6, Ilo = 10.3, Ilmax = 1010
, and 9 = 10. The opti­

misation parameters are: Cl = +00, C2 = 2, C3 = 3, a = 10-6 and N;'" = O. The training 

and optimisation of the initial network are performed together by applying the com­

plete MFANN optimisation scheme described in §2.9.4. The outcome of the model­

ling procedure is a 2-2-3 MFANN having 9 weights and 3 biases. 
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Table 4-1- MFANN training and optimisation results 

Optimisa- Ep- Removed Optimisation Ep-
Removed Nodes 

tion Step ochs Nodes Step ochs 

1 (training) 21 - 12 1 90A 90B IS0A , , 

2 1 20B, 80A, 100A 13 2 20A SOB 90C , , 

3 1 30B, 60c, 170c 14 2 40B 80c 160A , , 

4 1 40c, 130c, 140c IS 2 BOA, IS0B, 160B 

S 1 SOA, 100c, 170A 16 2 60B, 1 lOB, IS0c 

6 1 SOC 60A 100B , , 17 SO loA,lOc,120A 

7 1 20c, 110A, 1l0c 18 (1 backtrack) II 70c 

8 2 30c, 80B, 120B 19 (training) 0 -

9 2 30A 120c 140B , , 20 (OBS) - bias 2h 

10 2 40A, 70A, 160c 21 (OBS) - bias 1 h 

11 1 lOB, BOB, 170B 22 (OBS) - weight 2h _ 3° 

1~---r--'---~~--~--~-'---r~'---~-' 
-+- Bin 1 (Train) ! 1! w I I I 1 
-+- Bin 2 (Train) 
- Bin 3 (Train) 

09 

-G Bin 1 (Test) 
-4.. Bin 2 (Test) 08 
-G' Bin 3 (Test) 

Figure 4-7 - RMS error change per MF ANN optimisation step 
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Figure 4-9 - Structurally optimal nephelometric sensor configuration 
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Table 4-I lists the number of training epochs performed and the types and po­

sitions of ANN elements removed per optimisation step. Input nodes are denoted by 

the associated scattering angles 9n and source indices i (A, B or C) in the form B~. 

Hidden and output nodes are represented by superscripts h or 0 placed next to their 

ordinal numbers (e.g. I h = first hidden node, 10 = first output node). Most optimisation 

steps remove the maximum number of nodes (3) in fewer than 5 epochs. 

Figure 4-7 and figure 4-8 demonstrate the Root Mean Squared (RMS) and ab­

solute maximum errors of the mass concentration approximations obtained by the 

MFANN after each optimisation step. The generic error function: 

t 

F,(e/)=Q-' '1lLet /e2 ••. /eq ••• /eQ]Tt (4-18) 

with Q standing for the number of network patterns and I denoting the output node 

index, defmes the RMS error when r = 2 and the absolute maximum error when r = 

+00. Both errors drop quickly at the final input layer optimisation steps when the test­

ing pattern set (Q = 220) is applied to the network, while the same errors do not 

change significantly between optimisation steps when they are calculated with respect 

to the training pattern set (Q = II). The final RMS and absolute maximum errors as­

sociated with the testing pattern set are less than 0.2% and 0.5% respectively. 

The angular positions of the two nephelometric sources and the single 

nephelometric detector displayed in figure 4-9 and supplying the final network model 

with scattering data are obtained from the (9, i) associations of the final MF ANN in­

put nodes. LED A is placed at 110°, LED B at 180° and the detector at 70° with re­

spect to the direction of propagation of light emitted by LED B. When a sample sus­

pension is placed in the nephelometer, the two light sources start flashing alternatively 

and the signal returned by the detector is time-division demultiplexed. The derived 

signals are rectified, sampled and uniformly normalised before they are applied to the 

network model. Finally, the MF ANN returns uniformly normalised approximations of 

the mass concentrations of the AF sand dispersed in the nephelometric sample. 

4.3 Filtered AF sand type detection problem 

This experimental particle characterisation problem considers two sets of sus­

pensions, one of small «10 Ilm) and another of small and bigger (<35 Ilm) AF parti­

cles dispersed in water. A polar nephelometric system coupled with an instance of a 
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predefined set oflight sources is used to acquire the scattering profile of every sample 

under consideration. An analytical procedure is applied to the acquired profiles so that 

all contributions not associated to light scattering by the AF particles are removed. 

The processed experimental profiles are compared with the theoretical counterparts 

returned by the polar nephelometric model of §3.5 and the differences between the 

two are explained and proved analytically. Finally, the experimental scattered irradi­

ance measurements are utilised to train, optimise and test a MF ANN model that clas­

sifies the trial samples according to suspended AF sand type. 

4.3.1 Experimental sample preparation 

Two filtered AF sand types were used to prepare the suspensions for the scat­

tering experiments. These types are commercially available by Particle Technology 

Ltd and have particle volume probability distribution functions v PFO and v PcO as , , 
shown in figure 4-10 [183]. The first (fine) type has particles in the 250 nrn - 10 Jlm 

size range and will be denoted by AFF, while the second (coarse) type has a wider 

particle size range (60 nrn - 35 Jlm) and will be denoted by AFe. 

The particle volume probability distribution function is oflittIe importance for 

the act of modelling the scattering experiment. What matters more is the particle size 

probability density function (pdf) or the equivalent particle volume pdf of the two fil­

tered AF sand types. The requested pdfs can be derived from the distribution func­

tions v PFO and v PcO of figure 4-10 in four steps. Firstly, the inverse trapezoidal 
, p 

integration method differentiates the two distributions and gives the binned particle 

volume probability density jUnctions v PF and v Pc of figure 4-11. Secondly, the 
p , 

binned particle volume pdfs are transformed to binned particle size probability density 

functions d PF and d Pe of figure 4-12 via the conversion algorithm described in , , 
§3.6 and applied in a similar case (no dithered pdf versions are assumed this time). 

Thirdly, the binned particle size pdfs are linearly interpolated at the centres of the par­

ticle size bins and give the smooth particle size probability density jUnctions d p F 0 , 

and d PeO of figure 4-13. Finally, the pdfconversion algorithm of §3.6 is applied , 
once again to the particle size pdfs and produces the associated particle volume prob­

ability density jUnctions v PFO and v Pc(') of figure 4-14. It is implied that all 
p p 
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probability density (distribution) functions mentioned above are normalised to unity 

with respect to integral (sum) calculated over their domains. 

Small quantities of the AFF and AFc sand were dispersed in distilled water and 

formed three sets of tenuous suspensions for experimental use. Every set was prepared 

to take part in scattering experiments involving the same light source. The mass dis­

tnbution of the dispersed substance in a set of suspensions was planned to satisfY the 

following conditions: 

a) Linearity. The linear relationship between the dispersed mass concentration 

and the scattered irradiance measured at a fixed angle is better demonstrated if 

the former is distributed in linear progression (equal increments). The selec­

tion of the progression step and initial value should guarantee the clear distinc­

tion between the scattering profiles acquired by the suspension set under con­

sideration. Mass concentrations smaller than 10 mgll do not satisfY the profile 

distinction requirement. 

b) Small-value domain. The single and independent scattering conditions stated 

in §3.5 are met if the suspensions to be used in the experiment are tenuous, i.e. 

the dispersed mass concentration is smaller than 60 mgll. 

The procedure followed in the preparation of a set of suspensions required a 

millilitre-graded water tank, a milligram-graded scale, a bag of AFF sand and a bag of 

AFc sand. Firstly, the scattering profile ofVw litres of distilled water poured into the 

tank and the sample was obtained experimentally. Secondly, the AFF mass of IOVw 

mg was dispersed in the tank water and the scattering profile of the suspension was 

acquired. The second step was repeated until the mass concentration of AFF in the 

suspension exceeded 60 mgll. After that, the tank was emptied and washed. The 

aforementioned procedure was followed once more with AFF sand replaced by AFc. 

Table 4-2 lists the mass concentrations of filtered AF sand in the suspensions 

that participated in the scattering experiments. The concentration values were meas­

ured by multiplying the change in suspension volume due to filtered AF dispersion by 

the bulk mass density of the substance (dm = 2400 kg/m3 for AFF and AFc). The de­

viations of mass concentration values from multiples of 10 mgll should be mainly at­

tributed to inaccuracies in the measurement of substance mass prior to dispersion. The 

LED types mentioned in table 4-2 are the light sources used in the scattering experi­

ments (see §4.3.2 for details). 

169 



CHAPTER 4 

, 
I 

, , 
I 

I 

, , , 

, , 
I 

, 
, , , , 

, , 

- FlneAF 
- _. Coarse AF 

------- ... ---- "", , , , , , , , , , , , , , , , , 
\ 

I 
10·2t......."""'"":_~_~~~~_'_::_-~~~~~.....L;__-~......J 

10·' 10· 10' 

PartIcle S,ze (~m) 

Figure 4-10 - Particle volume probability distribution functions of AFF.e 

--------

10" 

- FlneAF 

'-" -,-
" -, . -, -, -,-,-,-

I -, 
" I -, 

1-
I ,-
'. 

I ,-
- -. Coarse AF 

10~'L---------~----____ ~~ ________ ~ __________ ~ 

1~ It 1~ 1~ 

PartIcle Volume (~m"l 

Figure 4-11 - Binned particle volume probability density functions of AF F.e 

170 



10
3 

10
2 

~ ,.,.--
~ , , 
~ 10' , , 
'" 

, 
<: , , 
" , 
Cl 

~ 10° 
:is co 
.0 
2 
a. 10·' 

10.2 

- FlneAF 

10" 
- _. Coarse AF 

10·' 

SCA TIERING NEPHELOMETRY APPLICATIONS 

',,'" .. '" ... ", .... '" • .. ,"""I .. , ,,. ... 
VJ.. ...... "V1"!A ' 1,' 

I" 

10° 

Parilde SIZe (~m) 

1" , , , , 
", 

I 

'" I 
I , 
'1 

I 
I, 
, 1 

1 , . 

Figure 4-12 - Binned particle size probability density functions of AF F,C 

~ 

~ 
~ 

~ 
'" <: 

" Cl 

~ 
:is co 
.0 
2 
a. 

10
3 

10' 

,,--

10' 
, , , , -- ....... 

~~~ 

, , , , 
10° 

10·' 

10.2 

- FIOeAF 

10" 
- _. Coarse AF 

10·' 10° 

Parilde Size (~m) 

~~~ 
~~ -- ...... " 

, , , 

10' 

, , 
\ 
\ , 

\ 
\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 

Figure 4-13 - Particle size probability density functions of AF F,e 

171 

" 



"""""'" 

, 
" 

100 

PartIcle Volume (I'm,,) 

, , , , , , , , , 
\ 

\ 

CHAPTER 4 

\ 
\ 
\ 

\ 
\ , 

\ 
\ 
\ 

Figure 4-14 - Particle volume probability density functions of AF F,e 

Table 4-2 - Mass concentration of AFF,e in experimental suspensions 

Filtered AF Sand Type Fine Coarse 

10 14 
20 24 

Green 
36 34 (RS 2281879) 
48 45 
58 56 

.. 21 15 
c. 
t: Red 34 27 
~ (RS 826701) 44 38 
f;<l 
...:l 57 55 

12 10 

24 21 
Infrared 37 32 (RS 2678380) 

49 42 

59 55 
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4.3.2 Experimental setup 

The basic apparatus used to obtain light scattering measurements from water 

suspensions of AFF and AFc was the fibre optic polar nephelometer sited at IROE 

headquarters in Florence, Italy [184]. The front and side views of the device are dis­

played in figure 4-15 and figure 4-16 respectively. The main parts of the nephelome­

ter, most of which are distinguishable in figure 4-15, are the following: 

a) Light illuminator. It is composed ofa piece of optical fibre FT-200-EMT [185] 

terminating in an SLW-1.8-0.25-0.63 GRIN lens [186]. The fibre has been 

manufactured by 3M and its core diameter is 200 I1m. The lens has been made 

by Nippon Sheet Glass Co. Ltd, and is connected to the fibre via an FCM-OOF-

200-0.63 fibre-to-GRIN assembly also made by NSG. The lens-terminated end 

of the fibre is housed in a silicon-sealed receptacle of the illumination arm of 

the nephelometer to avoid any accidental contact between the optical circuit 

and the suspension sample during the data acquisition process. The front end 

of the receptacle is made of a glass window so that light emitted by the GRIN 

lens can reach the suspension. The other end of the fibre is coupled to an LED 

source via two components: an SMA-compatible LED receptacle and an LED­

to-fibre spacer. The receptacle is commercially available by OFT! while the 

spacer is made by IROE [187]. 

b) Light detector. It is a fibre-lens system identical to the light illuminator. The 

lens-terminated end of the fibre is placed in a silicon-sealed receptacle of the 

detection arm of the nephelometer for the same reason as the illuminator. The 

front end of the receptacle is made of a glass window so that light scattered by 

the suspension can be collected by the GRIN lens. The other end of the fibre is 

coupled to a solid-state detector (a photodiode followed by a trans-impedance 

amplifier of variable gain) that converts light energy to weak electrical current. 

c) Rotating stage. It turns the detection arm of the nephelometer around the rigid 

illumination arm in a circular trajectory. Both arms remain in the same plane 

in space at all times. The detection arm is aligned to the illumination arm at its 

original position with the transparent ends of the arms facing each other. This 

coaxial arrangement of the arms is shown in figure 4-15. 

d) Glass container. It is used to hold the particle suspension from which light 

scattering measurements are about to be obtained. 
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e) Stirrer. It is the base of the glass container as shown in figure 4-15. The stirrer 

agitates the suspension during the scattering data acquisition process so that 

most dispersed particles remain in motion and hence they are kept in the sus­

pension. The effect of particle settling in the bottom of the container due to 

gravity has to be avoided since it reduces the number of particles contributing 

to light scattering. 

f) Holder. It allows the movement of the rotating stage and the illumination and 

detection arms attached to it between two predetermined vertical positions. 

The stage has to move to "Iow" position and immerse its arms into the suspen­

sion held by the glass container before the scattering experiment can begin. 

The stage moves back to "high" position at the end of the experiment so that 

the container can be removed or replaced if necessary. 

A set of auxiliary instruments had to be used with the IROE nephelometer in 

order to make that device work and log scattering data. These instruments are the fol­

lowing: 

a) Micro Controle IP28 control unit. It controls the stepper motor that drives the 

rotating stage and detection ann of the nephelometer (see [188] for details). 

b) Micro Controle TL78 power unit. It supplies the stepper motor that drives the 

rotating stage and detection ann of the nephelometer. 

c) Princeton 5208 two-phase lock-in amplifier. It amplifies the photocurrent re­

turned by the light detector of the nephelometer and converts it to voltage in 

the mVrange (see [189] for details). 

d) Personal Computer (PC). It initialises and manages the control unit and the 

lock-in amplifier remotely via customised software written in Quick Basic 4.5. 

The computer is also responsible for the real-time processing and logging of 

the scattering data returned by the nephelometer. The communication between 

the PC and the controlled devices is compliant with the IEEE488-1978 GPIB 

protocol. 

Three LED types were distinctively coupled with the light iIluminator of the 

IROE nephelometer and formed the light sources of the scattering experiments. These 

LEDs are commercially available by RS with model names RS 2281879 [190], RS 

826701 and RS 2678380 [191] and emit light of green, red and infrared (IR) colour 

respectively. 
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Figure 4-17 - Spectral intensities of the three nephelometric illumination systems 

~ e 
~ 
c: 
Q) 

c 
~ 
i'i 

'" .0 e a. 

03 

02 

01 

390 440 490 540 590 640 690 740 790 840 890 940 

A (nm) 

Figure 4-18 - Spectral sensitivity of the nephelometric detection system 
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Three different optical arrangements can be constructed by coupling the light 

illuminator of the IROE nephelometer with one of the LED sources selected for the 

experiment. Each of these arrangements is characterised by a spectral intensity func­

tion src, (-) over the visible and near-infrared frequency domain (i = G for green, R for 

red or IR for infrared light source). Figure 4-17 illustrates these functions in probabil­

ity density function format (total emitted irradiance = 1 W/m2). The functions were 

acquired by a photometer placed in front of the transparent side of the illumination 

arm while the LED sources were exposed to 20 mA [187]. 

The peaks of src,(-) shown in figure 4-17 appear at ApG = 521 nm, ApR = 669 

nm and AplR = 851 nm. These peak values deviate only slightly from the theoretical 

peak values of 525 nm, 654 nm and 850 nm given by the LED source manufacturer. 

Therefore it is reasonable to assume that the spectral intensity functions of figure 4-17 

have been measured accurately. 

The light detector of the IROE nephelometer is also characterised by the spec­

tral sensitivity function rec{.). The optical window placed in front of the detection 

arm attenuates light uniformly over the visible and near-infrared frequency domain. 

The power losses in the coupling points of lens to fibre and fibre to solid-state detec­

tor are also independent of frequency. Furthermore, the GRIN lens of the detector 

shows negligible preference on regions of the frequency domain under consideration 

and therefore can be regarded as insensitive to light frequency. The same conclusion 

can be drawn about the fibre optic element of the detector due to its small length (a 

few meters only compared to a few kilometres required for frequency-specific light 

attenuation to be detectable). Therefore the spectral sensitivity function of the detector 

can be fairly assumed to be uniform over the frequency domain of interest. Figure 

4-18 illustrates rec{.) in probability density function format (the total irradiance on 

the detector is assumed to be equal to I W/m2 for graphical purposes only). 

4.3.3 Experimental procedure 

Every scattering experiment was managed by the same software routine run­

ning on the PC described in §4.3.2. The managing routine is divided in six parts ac­

cordingto [184]: 

a) Micro Controle IP28ITL78 initialisation. Firstly, the control unit is set to 

transmit all future data and error messages to the PC. Secondly, the unit is in-
• 
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structed to control the stepper motor of the IROE nephelometer so that the de­

tection arm rotates 0.001° per motor step (full step mode). Thirdly, the power 

unit is programmed to send 3000 pulses/sec to the stepper motor during the 

data acquisition phase (high speed mode). In other words, the rotation speed of 

the detection arm is adjusted to 3° per second. Finally, the control unit is in­

structed to control the spinning direction of stepper motor axis so that the de­

tection arm rotates counter-clockwise during the acquisition phase. 

b) Prmceton 5208 imtialisation. The lock-in amplifier is set to work at remote 

mode, i.e. interact with the PC. That setting implies a number of internal pa­

rameter initialisations for the amplifier. Firstly, the time constant and roll-off 

rate of the low-pass filters built in the amplifier are adjusted to 10 ms (that 

makes the filter cut-off frequency equal to 16 Hz) and 6 dB per octave. Sec­

ondly, the amplifier is instructed to wait for synchronisation signals coming 

from the PC. Thirdly, the lock-in parameter of the device is set to polar mode. 

Finally, the amplifier is set to autorange mode so that the device automatically 

adjusts its input range to fit the scattering data. 

c) Initialisation of software parameters. The main variables of the managing rou­

tine are tmin (first scattering angle in degrees), tmax (last scattering angle in 

degrees), nstep (number of scattering angles excluding the first angle), dth 

(number of motor steps required for the movement of the detection arm be­

tween two adjacent scattering angles), nome$ (name of file used for averaged 

data storage), and dat$ (data acquisition date). The first four variables are as­

signed the values 0, 100, 20 and 5000 respectively. The reason the maximum 

scattering angle is set to 100° instead of 180° is that previous experience has 

shown that scattering measurements obtained at angles greater than 100° are 

severely affected by noise and thus have little statistical significance. 

d) IROE nephelometer initialisation. The rotating stage is moved to holder's 

"Iow" position. 

e) Scattering data acquisition. The detection arm is moved to the first angular 

position and an integer hall(i) E [-2000,2000] is acquired from the first chan­

nel of the lock-in amplifier. The integer is converted to voltage number by: 

va/f(i)=hall(I).L 
2000 

(4-19) 
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where valf(i) is the voltage in m V that corresponds to the scattered light irradi­

ance acquired at angle th(i): 

h(')- . (. I) tmax-tmin t I =tmm+v- .---­
nstep 

(4-20) 

i is the scattering angle index that satisfies the inequality I:si~tep+ 1 (i=1 for 

the first angle) and fs is the maximum allowable input voltage expressed in 

mY. The last variable is assigned a value that belongs to a predefined set of21 

numbers and comes from the lock-in amplifier (see explanation of amplifier's 

autorange mode given above). After the first scattering measurement the sus­

pension is strongly stirred and the detection arm is moved to the next angular 

position. The integer value returned from the lock-in amplifier is converted to 

voltage and stored in computer memory as before. The last two steps are re­

peated until the detection arm takes all angular positions derived from expres­

sion (4-20). The whole scattering data acquisition process takes about 4 min­

utes to complete. The process is repeated another 4 times and the 5 measure­

ment sets obtained are averaged and stored in vector pow. 

f) Data storage. A text file with name specified by variable nome$ is created on 

a PC storage device, e.g. hard disk drive. The text file is then opened for writ­

ing. The number of angles (nstep+ 1) and the date stamp (dat$) of the scatter­

ing experiment are written on the first line. The following lines are filled with 

the pairs (th(i), pow(i») for l:Si:9lstep+ 1. Finally, the text file is closed and its 

contents are permanently saved. 

g) Return to idle state. The detection arm is driven back to the default position, 

i.e. opposite to the illumination arm. The rotating stage is moved to holder's 

"high" position. 

4.3.4 Experimental results 

The experimental scattering data recorded in the PC manager as m V values are 

illustrated in figure 4-19, figure 4-20 and figure 4-21 for the three experimental light 

sources. The following remarks can be made about these results: 

a) The measurements obtained at the angular range 0°_10° are severely affected 

by light coming directly from the transparent side of the nephelometric illumi­

nation arm. These measurements do not add much information about the scat-

179 



CHAPTER 4 

tering effect caused by the suspended AF particles and hence they will be dis­

regarded in the following discussion. 

b) The measurements corresponding to angles greater than 700 (550 in the case of 

green LED) are undermined by noise to such a degree that the single scattering 

law "more scattering particles = more scattering irradiance" is no longer valid. 

Therefore these measurements will also be omitted in the following analysis. 

The recorded experimental data are not irradiances of scattered light; they are 

rather voltages returned by the lock-in amplifier. However, a linear relationship be­

tween the two quantities exists and is mathematically described by the formula: 

VIJ (e,cmJ )= Gy10I B,(e) exp(-2RO'yCmJ+GJo, Sy (e,cmJ+ GIJK (4-21) 

(see [183]), where: 

• i is the light source index (i = G for green, R for red or IR for infrared). 

• j is the filtered AF sand type index (j = F for fme, C for coarse). 

• a is the scattering angle returned by expression (4-20) (OO~a~IOOO). 

• Cm) is the mass concentration of filtered AF sand type j in the suspension. The 

values this variable assumes are listed in table 4-3 in mg!! units. 

• R is the radius of the nephelometric chamber, Le. half distance between the 

GRIN lenses of the aligned nephelometric illuminator and detector. The face­

to-face distance was set to 17 mm before the scattering experiment and was 

not changed during the experimental process. 

• 0'1) is the average scattering cross-section of the j-type AF particles dispersed 

in the experimental solution. The term is also dependent on the spectral char­

acteristic of the nephelometric illuminating system including light source L 

The value of 0'1) can be analytically determined by Mie scattering theory and 

expressed in m2/kg units. However, knowledge of this term is not necessary 

thanks to the following analysis. 

• 101 is the total irradiance of light emitted by the GRIN lens of the nephelomet­

ric illuminator in combination with light source L The term can be modified to 

include any power losses in the elements and coupling points of the illuminat­

ing system. 101 can be accurately determined and expressed in W/m2 units. 

Nonetheless, the following analysis clearly shows that this task is not required. 
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Figure 4-19 - Raw experimental scattering profiles of AF F,e (green LED) 
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Figure 4-20 - Raw experimental scattering profiles of AFF,e (red LED) 
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Figure 4-21- Raw experimental scattering profiles of AFF,c (IR LED) 

• K is the bias term arisen from the dark currents of the lock-in amplifier and the 

photodiode element of the solid-state detector. K is a random variable of W/m2 

units whose properties are not known. 

• 0u is the variable gain of the trans-impedance amplifier multiplied by the gain 

of the lock-in amplifier when light source i is used to illuminate the suspension 

of j-type AF particles. The term can be modified to include any power losses 

in the windows of the nephelometric arms as well as the elements' and cou­

pling points of the nephelometric detector (adjustment of the value of bias 

term K is also required). O'J can be measured and expressed in m2/A units. 

Nonetheless, this task is unnecessary (see analysis below). 

• B,(B) is the scattered irradiance of distilled water at angular position a per to­

ta! emitted irradiance 10,. This term represents the inherent brightening effect 

explained in §1.3.1.2 and is affected by the nephelometric geometry and the 

spectral characteristics of the light source, the nephelometric illuminator and 

the associated detector. B,(B) is a dimensionless stochastic function whose 

properties are unknown. 
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• vy(e,cmJ is the average voltage returned by the lock-in amplifier when light 

source i is used for the illumination of the suspension containing j-type AF 

particles at mass concentration Cm) and the nephelometric detector is at angu­

lar position 9. In other words, this function represents the recorded experimen­

tal data expressed in m V units. 

• SIJ (e,cmJ is the dimensionIess particle scattering associated with the suspen­

sion containing j-type AF particles at mass concentration Cm) and denotes the 

scattered irradiance at angular position 9 per total emitted irradiance 10,. This 

term represents the scattering caused by AF particles alone and its value can 

be estimated by the polar nephelometric model of §3.5. 

Unfortunately, Sy(e,cmJ ) cannot be calculated from vlJ(e,cmJ via (4-21) di­

rectly due to lack of reliable estimates for the stochastic variables B,(8) and K. How­

ever, a ratio involving sAe,cmJ ) is computable under fair assumptions for the magni­

tudes of the unknown parameters. Firstly, the constant term in the right-hand side of 

(4-21) is close to the minimum voltage recorded in distilled water (no AF particles): 

GljK = mjn~Jn[vy{e,O)]} (4-22) 

Secondly, the exponential factor of (4-21) may be approximated by the ratio ofunbi­

ased voltages measured at 9=00 (LOS) when AF particles are present or not: 

Vy(O,CmJ-GyK B,(0)exp(-2RCTyCmJ+Sy(0,CmJ ) ( ) 
• -exp-2RCTIiCmJ (4-23) 

Vy{O,O)-GIJK B,{O)+Sy(O,O) 

because the inherent brightening effect is stronger than particle scattering at LOS: 

B,{O)>> Sy(O,CmJ ) (4-24) 

and by definition: 

'v' e E lR. (4-25) 

Thirdly, the following relations can be derived from equations (4-21) and (4-25): 

vlJ{e,O)-GyK 

vy(e,,/,o)- GyK 

(4-26) 

(4-27) 
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where areris the reference angle that is equal to one of the scattering angles. If the di­

mensionIess normalised particle scattering Sy (0, CmJ is defined by: 

then equations (4-22) to (4-23) and (4-26) to (4-28) lead to the final result: 

_ ( )_ Vy(O,Cmj )-mjnhin[vu(O,O)]} 
S!J ~O,CmJ = f It 

Vu (0,,/ ,0)- min~in[Vlj (0,0 )]f 
J 8 

Vy(o'Cmj )-minkn[Vy(O,O)]} 
J 8 

Vu (0,0)- minhin[Vy (0,0 )]} 
j 8 

(4-28) 

(4-29) 

Figure 4-22 to figure 4-24 display Sy(O,CmJ as a function of scattering angle 

a for a,ef = 15°. The angular domain in these plots corresponds to all statistically sig­

nificant measurements obtained but excludes the reference angle (20°::::9::::55° for the 

green light source and 20°::::990° for the other two sources). The difference between 

the normalised scattering profiles of AFF and AFc suspensions of similar mass con­

centration is small but visible. Specifically, an amount of AFc sand dispersed in water 

scatters more light than a similar amount of AF F sand under the same conditions. This 

observation is consistent with the corollary of Mie scattering theory that bigger parti­

cles scatter light more effective than smaller particles of identical optical properties. 

S lj (0, C mj) is plotted as a function of the AF mass concentration CmJ in figure 

4-25 to figure 4-30 for aref = 15°. The angular domain in all these figures is 25°::::a::;45° 

at 5° increments to avoid plot congestion. Nevertheless, the linear dependency of 

S AO, C mJ) to CmJ is apparent no matter which light source, filtered AF sand type and 

scattering angle is selected. Therefore all suspensions of filtered AF prepared for the 

scattering experiment satisfy the single scattering condition set in §4.3.1. Table 4-3 

lists the average (over all statistically significant scattering angles excluding the refer­

ence angle) correlation coefficient pm of the normalised particle scattering samples 

and the associated linear function that relates Su(O,CmJ ) to CmJ• As expected, Pm ex­

ceeds 98% in every possible combination of light source and filtered AF sand type. 
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Figure 4-22 - Processed experimental scattering profiles of AF F,e 

(green LED, OnC = 15°) 
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Figure 4-23 - Processed experimental scattering profiles of AFF,C 

(red LED, O,er = 15°) 
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Figure 4-24 - Processed experimental scattering profiles of AF F,e 

(IR LED, Orer = 15°) 
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Figure 4-25 - Experimental scattering vs. AF F mass concentration 

(green LED, Orer = 15°) 
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Figure 4-26 - Experimental scattering vs. AF c mass concentration 

(green LED, Orer= 15°) 
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Figure 4-27 - Experimental scattering vs. AFF mass concentration 

(red LED, Orer= 15°) 
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Figure 4-28 - Experimental scattering vs. AF c mass concentration 

(red LED, 9rer= 15°) 
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Figure 4-29 - Experimental scattering vs. AF F mass concentration 

(IR LED, 9rer = 15°) 
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(IR LED, O ... r = 15°) 

Table 4-3 - Correlation coefficient of scattering linearity with concentration (%) 

Filtered AF Sand Type Fine Coarse 

Green 98.54 98.83 
~ .. 
f;IiI Co Red 99.64 9929 ....:It: 

Infrared 99.76 99.68 

4.3.5 Modelling the experiment 

The first goal a theoretical model of the scattering experiment should achieve 

is the determination of the scattered irradiance I,,} ((},Cm)) at the coupling point of the 

nephelometric detector with the solid-state detector. An equivalent goal is the calcula­

tion of the dimensionIess theoretical partIcle scattering I Sy ((},Cm)) that is defined by: 

A ( ) = I,y ((},Cm)) 
I Sy (), Cm} - ....:.."'--.....:..:.. 

101 

(4-30) 

where 101 is the total irradiance produced by source i and emitted by the GRIN lens of 

the nephelometric illuminator. I,u ((},Cm}) is the weighted sum of scattered irradiances 
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computed by equation (3-199) for every chemical compound of the filtered AF sand 

(see table 3-1). Therefore ,Sy(O,CmJ ) is given by: 

(4-31) 

where: 

• The set of eight (average) mass fractions mfk that correspond to the chemical 

compounds of the filtered and ISO 12103-1 AF sand is stated in table 3-1. 

• dm = 2400 kg/m3
, R = 8.5 mm, w = 1.5 mm and I) = 4.70 according to meas­

urements taken before the experiment. 

• The filtered AF mass concentration Cm) is listed in table 4-2. 

• The complex refractive index Nk(A) = nk(A) + lCk(A) of the ktb chemical com­

pound of the filtered AF sand is assumed to be identical to the associated in­

dex of the ISO 12103-1 AF sand. Refractive indices nk(A) and lCk(A) are dis­

played in figure 3-6 and figure 3-7. 

• The normalised spectral functions src.,(.l) and rec.,(A.) are determined by 

figure 4-17, figure 4-18 and equation (3-188). The integration limits are de­

termined by the second figure (Amm = 390 nm, Amax = 940 nm). 

• The integration limits 9:"" (0) and 9:"" (0) are given by equations (3-197) and 

(3-198). 

• The particle size pdfs of the two filtered AF sand types are displayed in figure 

4-13. The integration limits dmm and dmax are extracted from the same figure. 

• The scattering functions Sll(A.,O',x) and S12(A.,O',x) are calculated exactly 

with the aid ofMie scattering theory (see §3.4). 

• The Stokes parameter QOI is assumed to be zero because the nephelometric 

sources in the scattering experiment are LEDs emitting unpolarised light. 
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To make the theoretical and experimental scattering outcomes comparable, 

,Su(O,CmJ has to be normalised with respect to B,(O,./) and the reference angle 9tef 

should be identical to the one selected for the calculation of Sy(O,cmJ (9tef =15°). 

However, B,(0"'f) is a random variable of unknown statistical properties and hence 

carmot be estimated analytically. An alternative approach is the use of a dimensionless 

normalisation factor /3. for the derivation of the dimensionless theoretical normalised 

particle scattering ,sAo,cmJ from ,Su(O,CmJ In mathematical terms: 

(4-32) 

The comparison of ,Su(O,CmJ with S.(O,CmJ can be facilitated if the func­

tional dependency on the filtered AF mass concentration Cm) is removed. The single 

scattering condition set in the experimental sample preparation and verified by the 

plots of figure 4-25 to figure 4-30 implies that both scattering functions are linear to 

Cm). Therefore the normalised particle scattering per unit mass concentration func­

tions: 

(4-33) 

(4-34) 

are independent of Cm) and have inverse mass concentration units. The expected value 

jUnction EO returns the mean value of its input variable over the mass concentration 
c"' 

domain. 

The only problem that prevents function, Sy(O) from being computed numeri­

cally by (4-31) to (4-33) is the determination of /3. in (4-32). The normalisation factor 

is selected to be optimal in the sense that the Relative Mean-Squared Error (RMSE) 

between, S. (0) and Sy (0) defined by: 

(4-35) 

is minimised. Therefore /3. is given by: 

191 



P, = ~([sAO>Y }~[, 8/C(0)SAO)]+~{[S,C(0>Y }~[, 8",(0)s;Ao)] 

~{[S;AOW }~{[,8.c(0)Y }+~{[sAO>Y }~{[,8'F(OW} 

CHAPTER 4 

(4-36) 

where the theoretical particle scattering per unit mass concentration ,8.(0) defmed 

by: 

- ( )_ 'S!i(o,cmJ , Sy ,0 = -'-''-'---'-':..:. 
Cm} 

(4-37) 

is independent of Cm) and has inverse mass concentration units. The expected value 

function EO appearing in (4-35) and (4-36) returns the mean value of its input vari­
e 

able over the scattering angle domain. 

The theoretical normalised scattering profiles derived by equations (4-31) and 

(4-32) are displayed in figure 4-31 to figure 4-33 for the three nephelometric illumina­

tion systems. The optimal values of the normalisation factor are ~G = 2.8108
, ~R = 

1.8108 and ~IR = 3.61010
• The angular domains of ,Sy (O,CmJ in these figures are 

identical to the ones of Sy{O,Cm}) for comparison purposes. A side-to-side compari­

son of the two scattering profiles shows that, Sy (0, C"") decays more smoothly than 

Sy(O,Cm}) and AFp suspensions scatter more light than AFc suspensions of similar 

mass concentrations. These differences are the subject of the following analysis. 

Functions ,S.(O) and Sy(O) are presented together in figure 4-34 to figure 

4-36 according to light source type. The intervals of 9 displayed in these figures are 

the statistically significant parts of the scattering angle domain for each source type. 

The correlation coefficients pe and relative errors RMSE between the theoretical and 

experimental scattering curves are listed in the first data rows of table 4-4 and table 

4-5. The correlation of these functions is strong (>93%) no matter which filtered AF 

and light source type is considered. However, RMSE is unacceptably large for the 

AFc suspensions (>64%). Moreover, the experimental curves are always steeper than 

the theoretical ones. Another noticeable difference between theoretical and experi­

mental analysis is that ,S",(O», S/C(O) but s;Ao)<s/C(O) V (i, 9). Consequently, the 

theoretical model of the scattering experiment explained so far is reasonably accurate 

but there is still room for improvement. 
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Figure 4-33 - Theoretical scattering pronIes of AF F,e (IR LED) 

-15 

-20 

-25 

-30 

-35 

-40 

-45 

20 

, , , , , 

............ 
-'-

- Fine, Theory 
- - Coarse, Theory 
- Fine, Expenment 
- _. Coarse, Expenment 

------ ... -. ...... ----

25 30 35 40 45 50 

e (deg) 

Figure 4-34 - Normalised scattering pronIes of AFF,e 

per AFF,e mass concentration (green LED) 

55 

194 



-15 

-20 " 

-25 

-30 

-35 

-40 

-45 

20 

-15 

-20 

~ 
§ -25 

~ 
I'l -30 Cl) 

III 

" -5 -35 % 
0 

-40 

-45 

20 

SCA TIERING NEPHELOMETRY APPLICATIONS 

- Fine, Theory 
- _. Coarse, Theory 
- Fme, Expenment 
- - Coarse, Expenment 

, , , 

25 30 35 40 45 50 55 60 65 

e (deg) 

Figure 4-35 - Normalised scattering profIles of AFF,C 

per AFF,C mass concentration (red LED) 

- Fine, Theory 
- - Coarse, Theory 
- Fme, Expenment 
- _. Coarse, Expenment 

25 30 35 40 45 50 55 60 65 

e (deg) 

Figure 4-36 - Normalised scattering profIles of AFF,C 

per AFF,c mass concentration (IR LED) 

70 

70 

195 



CHAPTER 4 

Table 4-4 - Correlation coefficient of theoretical and trial scattering profIles (%) 

LED Type Green Red Infrared 

Filtered AF Sand Type Fine Coarse Fine Coarse Fine Coarse 

No limits 95.2 96.2 93.6 94.8 93.4 95.3 

'""' 
<5 95.1 95.6 93.5 94.2 93.3 94.8 

a ,:, > 0.5 95.7 97.3 94.7 96.5 93.8 96.6 .. 
101) 
Cl 

~ 0.5 - 5 95.6 96.9 94.5 96.2 93.7 96.1 .. 
• !::l >1 99.4 96.2 98.5 94.8 98.6 97.9 rI.l .. -.. 1-5 99.1 98.0 98.0 96.9 98.8 98.4 1: 
01 

=- >2 96.2 95.0 94.3 93.8 94.0 94.8 

2-5 96.2 96.3 94.3 94.7 94.0 93.9 

Table 4-5 - Relative error between theoretical and trial scattering profdes (%) 

LED Type Green Red Infrared 

Filtered AF Sand Type Fine Coarse Fine Coarse Fine Coarse 

No limits 17.5 66.8 18.5 69.0 21.7 64.7 

'""' 
<5 18.0 59.6 19.1 62.1 22.3 59.4 

a =. 
>0.5 12.8 75.4 13.6 77.1 17.9 70.7 '-' .. 

101) 
Cl 

~ 0.5 - 5 13.7 69.5 14.4 71.6 18.7 65.7 .. 
• !::l >1 9.9 27.6 11.3 30.6 8.7 23.2 rI.l .. -.. 1-5 9.1 13.0 10.9 14.4 6.3 8.7 .~ 

t 
01 

=- >2 31.5 21.7 30.3 21.3 33.6 19.1 

2-5 20.8 17.8 21.0 17.8 21.7 19.0 
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The small difference between S,AB) and S,AB) in figure 4-34 to figure 4-36 

implies that the particle size pdfs of AFF and AFc sands are actually similar. This ob­

servation conflicts with figure 4-13 which shows the two pdfs being quite different. 

The contradiction can be resolved by assuming that particle aggregation and particle 

sedimentation have taken place before the scattering experiment. Specifically, the ag­

gregation of small AF particles clips the left tails of the two pdfs, while the sedimen­

tation oflarge AF particles cuts off the right ends of the same functions. The problem 

of estimating the size distribution of particles created by aggregation of smaller parti­

cles can be avoided by assuming further that aggregated particles sediment to the bot­

tom of the nephelometric glass container and thus do not scatter light. The combined 

effect of aggregation and sedimentation on the size pdf of filtered AF sand is therefore 

the application of a size filter to that pdf and the decrease of suspended mass concen­

tration by the percentage of pdf area removed due to filtering. 

Seven cases of AF particle aggregation and sedimentation were studied in to­

tal. A different rectangular window filter was applied to the volume probability 

distribution functions illustrated in figure 4-10 in every individual case. The 

passbands of these filters are stated in the first data columns of table 4-4 and table 4-5. 

Functions d
p 
pi) and t Si) were recalculated for every filtering case by the same 

analytical procedures explained in §4.3.l and this section. The correlation coefficients 

and relative errors between the modified t S!I (.) and Sa (.) are listed in the remaining 

data columns of table 4-4 and table 4-5. The tabular data demonstrate that: 

a) The sedimentation hypothesis oflarge AF particles does not alter the theoreti­

cal scattering profiles significantly. In contrast, the aggregation hypothesis of 

small AF particles has much greater influence on the shape of these profiles. 

b) The fifth pdffiltering case (1-5 J.tm) gives the smallest RMSE regardless offil­

tered AF and light source type. The same instance features the highest Pe val­

ues in four out of six filtered AF and light source type combinations. 

The limited particle volume probability distribution function Vp p; (-) and the 

associated limited particle size probability density function d
p 
P~ (.) of the fifth pdf 

filtering case are displayed in figure 4-37 and figure 4-38. As expected, the trimmed 

pdfs of AFF and AFc sand types are quite similar. However, the hypothetical sedimen-
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tation of small «1 ).Un) and large (>5 ).Un) particles before the scattering experiment 

leaves only 27% (44%) of the dispersed AFF (AFe) sand volume to suspension. 

The theoretical normalised particle scattering function ,S~ (.) that is derived 

from d, pj 0 by equations (4-31) and (4-32) is illustrated in figure 4-39 to figure 4-41 

for the three nephelometric illumination systems and the statistically significant scat­

tering angles. The optimal values of the normalisation factor are P~ = 5.6109
, Pi = 

3.7109 and P~ = 4.610 11
• Theory and experiment now agree that most AFc suspen­

sions scatter more light than AFF suspensions of similar mass concentrations. 

The theoretical normalised particle scattering per unit mass concentration 

,S;O that is derived from ,8!0 by equation (4-33) is displayed in figure 4-42 to 

figure 4-44 for the three nephelometric illuminator types and the statistically signifi­

cant parts of the scattering angle domain. Function ,S; 0 is much closer to S!I 0 than 

the original, SuO 'if (i, j) as expected (p!297%, RMSE<15%). The only noticeable 

difference between the modified theoretical and experimental scattering profiles is 

that Su (-) decays faster than ,S; (-) in all circumstances. That difference however is 

small and can be attributed to errors in measurement that increase at higher scattering 

angles because of lower signal-to-noise ratios. Therefore ,S; (-) is an excellent theo­

retical approximation of the associated experimental scattering profile. 

4.3.6 Filtered AF sand type detection results 

The normalised particle scattering approximation (4-29) does not require in­

formation about the type index j and mass concentration Cm) of the filtered AF dis-

persed in any experimental sample. Therefore SuO can be computed directly from 

the raw experimental scattering profiles of a given sample and then employed in the 

training and optimisation of an ANN structure that estimates either filtered AF pa­

rameter (j or Cm) in the sample. This principle is applied in §4.3.6.1 and §4.3.6.2 to 

solve the filtered AF sand type detection problem in two ways. The first method re­

quires a single MF ANN to perform the sample classification task directly from ana-

lytical Sl) approximations. The second approach leads to a pair of cascaded 

MF ANNs that provide both Cm) estimation and filtered AF sand type information. 
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Figure 4-37 - Limited particle volume probability distribution functions of AF F,e 
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Figure 4-38 - Limited particle size probability density functions of AFF,c 
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Figure 4-39 - Theoretical scattering profiles of suspended AF F,e (green LED) 
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Figure 4-40 - Theoretical scattering profiles of suspended AFF,e (red LED) 
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Figure 4-41- Theoretical scattering profiles of suspended AFF,e (IR LED) 
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Figure 4-43 - Normalised scattering profiles of suspended AF F,e 
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4.3.6.1 First solution 

An initial 30-1-1 MFANN is constructed to solve the filtered AF sand type de­

tection problem. Every MF ANN input node corresponds to a pair (e, i) where e repre­

sents a statistically significant scattering angle and i stands for the light source index 

(i = G, R, or IR). The hidden node is assigned the log-sigmoid transfer function while 

the output node is designed to have a linear transfer function. The output node returns 

a uniformly normalised value that indicates the type of filtered AF sand being dis­

persed in a given experimental sample (negative for AFF and nonnegative for AFc). 

The input and output vector sets required to train, test and optimise the afore­

mentioned ANN structure include 28 elements each. The set of 30xl raw input vec­

tors {Ph P2, ••. Pq, ... P2s} is made from the colwnns of30x28 matrix P given by: 

P=[MF IMc] (4-38) 

The 30xl4 matrices MF, Mc in (4-38) are derived by the definition: 

(4-39) 

where the normalised particle scattering samples SAB,Cm}) are arranged in three ma­

trices of sizes 8xS, lIx4 and lIxS in light source order. The set of Ixl raw target vec­

tors {t(, t2, ... tq, ... hs} is consisted of the elements of Ix28 row vector T given by: 

T=[O 11] (4-40) 

with 0 and 1 being two Ixl4 row vectors of elements equal to zero and one respec­

tively. In other words, the existence of fme AF sand in the experimental sample 

should minimise the MFANN output (tq<O.S), while the presence of coarse AF sand 

in the suspension is expected to maximise the single network output (t~O.S). 

The raw input and target vector sets are uniformly normalised to the interval [-

0.5, O.S] by applying the appropriate pre-processing algorithm of §2.8. The S6 nor­

malised vectors Pq , 1. are grouped in 28 pairs of the form {pq , tq }. Fourteen vector 

pairs are randomly selected for network training use (training pattern set) and the re­

maining 14 pairs are destined to measure the degree of generalisation exhibited by the 

trained network at the end of every ANN optimisation step (testing pattern set). 

The complete MFANN optimisation scheme described in §2.9.4 is employed 

in the processing of the initial network structure. The ANN training task is performed 
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with the aid of the LMBP algorithm and the network optimisation goal is achieved via 

the modified SOSA and OBS algorithms. The performance index of the training algo­

rithm is the MSE function defined by (4-10). The LMBP parameters are: MSEgoal = 

10-6, Epmax = 100, VmlD = 10-6,!!0 = 1003,!1max = 1010, and a = 10. The optimisation pa­

rameters are: Cl = +00, C2 = 2, C3 = 3, a = 10-6 and N;;'" = o. The final model is a com-

plete 6-I -1 MF ANN having 7 weights and 2 biases. 

Table 4-6 lists the number of training epochs performed and the positions of 

ANN input nodes removed per optimisation step. All removed nodes are denoted by 

the associated scattering angles a and source indices i in the form a'. Most optimisa­

tion steps remove the maximum number of nodes allowed (3) in less than 20 epochs. 

Table 4-6 - MFANN training and optimisation results 

Optimisation Step Training Epochs Removed Nodes 

1 (training only) 19 -

2 3 20R,40R,55R 

3 1 50R 

4 3 35IR, 501R, 70R 

5 8 20°,25°, 30° 

6 7 25IR 40IR 65IR , , 

7 3 35R 

8 11 25R,60R,65R 

9 10 20IR, 30IR, 55IR 

10 (2 backtracks) 31 45lR 

11 19 35°,50°, 55° 

The relative number of patterns classified erroneously by an arbitrary ANN 

model is called Relative Classification Error and denoted by the acronym RCE. In the 

case of the network structure described above, a RCE corresponds to every MF ANN 

output state. These errors are denoted by the acronyms RCEF (for fine AF) and RCEc 

(for coarse AF), and they are mathematically defmed by the formulas: 
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(4-41) 

t[(to ~O)I\(Do <0)] 
RCE

c 
== .1.0=::1_-,,-___ _ 

t(to ~o) 
(4-42) 

where: 

• Do is the unifonnIy nonnalised output vector associated with the set {Po' to} 
• the outcome oflogical operators <, ;::: and " (AND) is 0 for false and 1 for true 

• Q = 14 for either pattern set (training or testing) 

Figure 4-45 illustrates the values of RCEj for the MF ANN model described above af­

ter each network optimisation step. The applied optimisation scheme always manages 

to adapt perfectly the network model to the training pattern set (RCEj = 0 for that set). 

As far as the testing pattern set is concerned, RCEF drops to zero after the fourth op­

timisation step while RCEc converges to 28.6% at the final step. The large RCEc 

value implies that more scattering measurements of coarse AF sand suspensions are 

required to train the MF ANN further in detecting both sand types correctly. 
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Figure 4-45 - Relative classification error change per MF ANN optimisation step 
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The angular positions of the three nephelometric sources and four nephelomet­

ric detectors displayed in figure 4-46 and supplying the fmal network model with scat­

tering data are obtained from the (e, i) associations of the final MF ANN input nodes. 

Green LED is placed at 170°, red LED at 180°, IR LED at 150°, and the detectors at 

30°,35°,40° and 45° With respect to the direction of propagation of light emitted by 

the red light source. When a sample suspension is placed in the nephelometer the light 

sources start flashing alternatively. The signal returned by the detector at 30° is time­

division demultiplexed, while the signals returned by the remaining detectors are ac­

cepted only at times the associated light sources are on (35° <-+ green LED, 40° <-+ IR 

LED, 45° <-+ red LED). The derived signals are rectified, sampled and uniformly 

normalised before they are passed as inputs to the network model. Three 6xl input 

vectors are made from the six values obtained (PI= 30°, P2= 35°, P3= 30R
, P4= 

45R
, Ps = 301R

, P6 = 401R
). Every input vector includes data related to a particular 

source (PI = [PI P2 000 O]T, P2= [0 0 P3 P4 OO]T, P3= [0000 Ps P6]\ The input 

vectors are sequentially applied to the MFANN. If most of the uniformly normalised 

values returned by the network are negative, the dispersed material in the experimen­

tal sample is recognised as AFF; otherwise the dispersed material is detected as AFc. 

180 o 

Figure 4-46 - Structurally optimal nephelometric sensor configuration 
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4.3.6.2 Second solution 

Two MFANNs are constructed, trained and optimised independently to per­

foOll different but interrelated modelling tasks. The fIrst network accepts samples 

from the noOllalised particle scattering profIles of the experimental samples and re­

turns an approximation Cm} of the total mass concentration Cm) of fIltered AF sand for 

every sample concerned. Next, the inputs of the fIrst network are divided by its out­

puts and the outcomes Sy(O,Cm})/Cm} are used as inputs to the second network. As 

Sy(O,CmJ has a linear relationship with Cm) (see fIgure 4-25 to fIgure 4-30, pages 

186-189), the aforementioned ratios are considered independent of Cm) but dependent 

on the fIltered AF sand type. Therefore the second network that is trained to detect the 

type of fIltered AF sand dispersed in a sample is more likely to give better results than 

the single MF ANN model of the fIrst solution because it does not have to consider 

mass concentration from the start. That judgment is demonstrated by the following 

analysis. 

An initial 30-1-1 MF ANN is constructed to become the fIrst part of the overall 

solution to this particle characterisation problem. Every input node corresponds to a 

light source index i and a statistically significant scattering angle 9. The hidden node 

is assigned the log-sigmoid transfer function while the output node is designed to have 

a linear transfer function. The output node returns unifoOllly noOllalised approxima­

tions of the total mass concentration of fIltered AF sand in every experimental sample. 

The input and output vector sets required to train, test and optimise the fIrst 

MF ANN include 28 elements each. The set of 30xl raw input vectors {Ph P2, •.• Pq, 

... P28} is made from the columns of 30x28 matrix P given by equation (4-38) - see 

also approximation (4-29) and definition (4-39). The set of lxl raw target vectors rh, 
t2, ... tq, ..• t28} is consisted of the elements of lx28 row vector T given by: 

(4-43) 

where CrnF and Crne are two 14xl vectors having as elements the values of the second 

and third column of table 4-2 (see page 172). 

The raw input and target vector sets are unifoOllly noOllalised to the interval [-

0.5, 0.5] by applying the appropriate pre-processing algorithm of §2.8. The 56 nor­

malised vectors Pq , tq are ~ouped in 28 pairs of the foOll {p q' tJ Fourteen vector 
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pairs are randomly selected for network training use (training pattern set) and the re­

maining 14 pairs are destined to measure the degree of generalisation exhibited by the 

trained network at the end of every ANN optimisation step (testing pattern set). 

The complete MFANN optimisation scheme described in §2.9.4 is employed 

in the processing of the first network structure. The ANN training task is performed 

with the aid of the LMBP algorithm and the network optimisation goal is achieved via 

the modified SOSA and OBS algorithms. The performance index of the training algo­

rithm is the MSE function defined by (4-10). The LMBP parameters are: MSEgoal = 

10-2
, EPrnax = 100, Vrnm = 10-6, /lo = 10-3

, /lrnax = 1010
, and 9 = 10. The optimisationpa­

rarneters are: Cl = +00, C2 = 2, C3 = 3, a. = 10-6 and N:"" = O. The final network is 3-1-

1 with 4 weights and 2 biases (complete MF ANN). 

Table 4-7 lists the number of training epochs performed and the positions of 

ANN input nodes removed per optimisation step. All removed nodes are denoted by 

the associated scattering angles 9 and source indices i in the form 9'. Most optimisa­

tion steps remove the maximum number of nodes (3) in fewer than 5 epochs. 

Table 4-7 - Training and optimisation results (first MF ANN) 

Optimisation Step Training Epochs Removed Nodes 

1 (training only) 4 -

2 0 4sR
, sOlR, 55° 

3 0 35R 4slR 60lR , , 

4 0 25°, 30°, 6sR 

5 0 20lR, 40lR, sslR 

6 0 30lR, 55R
, 6slR 

7 1 25R
, 60R

, 70R 

8 1 20°,35°,40° 

9 1 30R, 40R
, sOR 

10 3 2sIR,35lR 

11 2 50° 
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Figure 4-47 and figure 4-48 demonstrate the Root Mean Squared (RMS) and 

absolute maximum errors of the total mass concentration approximations returned by 

the first MF ANN structure after each optimisation step. Both errors are defined by 

expression (4-18) for r = 2 (RMS) and r = +<Xl (absolute maximum), and they are cal­

culated independently for the lth output node (1 = 1 in this case) and pattern set. The 

RMS errors of the training (Q = 14, solid line, plus marks) and testing (Q = 14, dashed 

line, star marks) pattern sets converge to 10% and 10.7% at the fmal optimisation 

steps. The corresponding absolute maximum errors are 17.9% and 22.3%. All error 

values are high because the number of training patterns is small. Nevertheless, error 

curves of both pattern sets and either error type converge to each other as network op­

timisation proceeds. Also, the differences between similar error figures are relatively 

small (0.7% for RMS and 4.4% for absolute maximum error). As a matter of fact, the 

final version of the first MFANN may be considered as a universal model of the func-

tional mapping that returns Cnu from Sy (e,cmJ ) samples. 

An initial 30-1-1 MF ANN is built to solve the second part of the particle char­

acterisation problem concerned. Every input node corresponds to a light source index 

i and a statistically significant scattering angle 9. The hidden node is assigned the log­

sigmoid transfer function while the output node is designed to have a linear transfer 

function. The output node returns a uniformly normalised value that indicates the type 

of filtered AF sand being dispersed in any experimental sample (negative for AFF and 

nonnegative for AFc). 

The input and output vector sets required to train, test and optimise the second 

MF ANN include 28 elements each. The set of 30xl raw input vectors {Pt. P2, .•• pq, 

... P28} is made from the columns of30x28 matrix P2 given by: 

(4-44) 

where 1 is a 30xl vector having all its elements equal to one, P is the 30x28 matrix 

returned by equation (4-38), the matrix ratio denotes e1ement-by-element matrix divi­

sion and CmF , Cmc are two 14xl vectors defined by: 

(F .... 1 and C .... 2) with elements qO, derived by: 

qO. = m", t. (qo. +0.5) - mm t. LO. -0.5) 

(4-45) 

(4-46) 
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Figure 4-47 - RMS error change per optimisation step (first MFANN) 
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where qO, is the qth unifonnIy normalised output of the first MFANN (l~~8) and 

mm tt, max t, are the minimum and maximum values of row vector T set by (4-43). The 

set of Ixl raw target vectors {tl> t2, ... tq, ... t28} is consisted of the elements of 1x28 

row vector T2 given by: 

(4-47) 

with 0 and 1 being two Ixl4 row vectors of elements equal to zero and one respec­

tively. The existence of fme AF sand in the experimental sample should minimise the 

output value of the second MFANN (tq<O.5), while the presence of coarse AF sand in 

the suspension is expected to maximise the output value concerned (tq2:0.5). 

The raw input and target vector sets are uniformly normalised to the interval [-

0.5, 0.5] by applying the appropriate pre-processing algorithm of §2.8. The 56 nor­

malised vectors Pq , tq are grouped in 28 pairs of the form {pq , tJ Fourteen vector 

pairs are randomly selected for network training use (training pattern set) and the re­

maining 14 pairs are destined to measure the degree of generalisation exhibited by the 

trained network at the end of every ANN optimisation step (testing pattern set). 

The complete MFANN optimisation scheme described in §2.9.4 is employed 

in the processing of the second network structure. The ANN training task is per­

formed with the aid of the LMBP algorithm and the network optimisation goal is 

achieved via the modified SOSA and OBS algorithms. The performance index of the 

training algorithm is the MSE function defmed by (4-10). The LMBP parameters are: 

MSEgoal = 10.2, Epmax = lOO, V'mm = 10-6, Ilo = 10.3, J.lmax = 1010
, and a = 10. The opti­

misation parameters are: Cl = -too, C2 = 2, C3 = 3, a = 10-6 and N~ .. = I. The final net­

work is 6-2-1 with 8 weights and 3 biases. 

Table 4-8 lists the number of training epochs performed and the types and po­

sitions of ANN elements removed per optimisation step. Input nodes are denoted by 

the associated scattering angles El and source indices i in the form a'. Hidden and out­

put nodes are represented by superscripts h or 0 placed next to their ordinal numbers 

(e.g. Ih = first hidden node, 1° = first output node). Most optimisation steps remove 

the maximum number of nodes (3) in fewer than 5 epochs. 

The performance of the second MFANN is measured by the values of the rela­

tive classification errors RCEj obtained by definitions (4-41) and (4-42). Figure 4-49 

illustrates how ReEF and RCEc change per network optimisation step for every indi-
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vidual pattern set. The applied optimisation scheme always manages to adapt per­

fectly the network model to the training pattern set (RCEj = 0 for that set). As far as 

the testing pattern set is concerned, both RCEF and RCEc converge to 14.3% at the 

fourteenth optimisation step, i.e. when the first hidden layer optimisation procedure 

terminates. The positive values of RCEj imply that more scattering measurements of 

filtered AF sand suspensions are required for further training of the second MF ANN 

(one out of seven suspensions is miscIassified). Nevertheless, the error figures ob­

tained are moderate and perfectly balanced between the two filtered AF sand types. 

This is one reason why the cascaded MFANN model developed in this section is bet­

terthan the single MFANN model described in §4.3.6.1. 

The angular positions of the three nephelometric light sources and detectors 

displayed in figure 4-50 and supplying the final set of MF ANNs with scattering data 

are obtained from the (9, i) associations of the input nodes of the final network model. 

Green LED is placed at 160°, red LED at 180°, 1R LED at 135°, and the detectors at 

20°, 25° and 45° with respect to the direction of propagation of light emitted by the 

red light source. This structuraIly optimal nephelometric sensor configuration requires 

a detector less than the corresponding sensor configuration of §4.3.6.1 (see figure 

4-46). This is another reason why the cascaded MF ANN model is favourable. 

Table 4-8 - Training and optimisation results (second MFANN) 

Optimisation Ep- Removed Optimisation Ep- Removed 
Step ochs Nodes Step ochs Nodes 

1 (training) 7 - 13 (training) 0 -

2 0 20IR, 2SIR, 40IR 14 43 Ih 

3 1 25°, 30R, SSR 15 (training) 0 -

4 0 35°, 50°, 55° 16 (2 backtr.) 12 added Ih 

5 I 3SR, SOIR, 60IR 17 (training) 0 -
6 I 2SR,6SR,70R 18 (OBS) - weight 45° - 2h 

7 3 20°, 3SIR, SOR 19 (OBS) - weight 6SIR _ I h 

8 2 30IR, 40R, SSIR 20 (OBS) - weight 4SR _ 1 h 

9 1 4SIR 21 (OBS) - weight 40° - 2h 

10 11 30° 22 (OBS) - weight 70IR _ 1 h 

11 5 60R 23 (OBS) - weight 20R _ I h 

12 (2 backtr.) 24 added2h - - -
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When a sample suspension is placed in the nephelometer, the three light 

sources start flashing alternatively. The signal returned by the detector at 20° is time­

division rnultiplexed, while the signals returned by the remaining detectors are ac­

cepted only at times the associated light sources are on (25° +-+ green and IR LEDs, 

45° +-+ red LED). The derived signals are rectified and sampled in order to obtain the 

numerical values XI = 20°, X2 = 25°, X3 = 20R
, l4 = 45R

, Xs = 20IR and X6 = 25IR that 

are necessary to create the raw input vectors of the two MFANNs. The 3xl raw input 

vectors PI = [X20 0] T, P2 = [0 X3 0] T and P3 = [0 0 X6] T are uniformly normalised and 

applied to the first network. The uniformly normalised outputs /i, (1:=oq9) of the 

first network are applied to equation (4-46) to obtain the associated raw output data 

qOI. The 6xl raw input vectors PI =IO~I [XI X2 0 0 0 0] T, P2 =20~1 [00 X3l4 0 0] T 

and P3 = 30~1 • [0 0 0 0 Xs X6] T are uniformly normalised and applied to the second 

network. If most of the uniformly normalised output values returned by the second 

network are negative, the cascaded MF ANN model recognises the filtered AF sand 

that is dispersed in the experimental sample as AF F; otherwise the dispersed sand is 

detected as AFc. 

4.4 Summary 

Two typical particle characterisation problems were solved in this chapter by 

modelling methodologies that make full use of the ANN modelling and particle scat­

tering theories developed in chapter 2 and chapter 3. The first problem considered 231 

tenuous water suspensions of equiponderant mixtures of binned AF sand and dealt 

with the estimation of the distribution of total suspended volume per sand type by 

theoretical scattering data. The solution obtained is consisted of a plain polar 

nephelometer with three optical elements and a small MFANN structure. The second 

problem considered 28 tenuous water suspensions of AFF and AFc sand types and 

dealt with the classification of these suspensions per dispersed sand type by experi­

mental scattering data. The instmments used and procedure followed to gather the ex­

perimental data of the problem were adequately explained. The similarities and differ­

ences between these data and the associated theoretical data obtained from the appli­

cation of the polar nephelometric model of §3.5 are revealed and discussed. The solu­

tions to the classification problem are two and require similar resources. The first so­

lution is consisted of a polar nephelometer with seven optical elements and a small 
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MFANN, while the second solution includes a polar nephelometer with six optical 

elements and two small network structures connected in cascade. The second solution 

was preferred because it requires fewer optical elements and gives slightly better re­

sults. 
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CONCLUSIONS AND RECOMMENDATIONS 

5.1 Theoretical conclusions 

Particle characterisation is a technique that - unlike surrogate measurement - is 

able to provide low-resolution particle size information in real time. The wide appli­

cability of the technique is the motivation for the development of methods that model 

and solve related problems. Scattering nephelometry is a method that promises sim­

ple, robust and inexpensive solutions under all circumstances. Two major aspects of 

the method, scattering data analysis and selection of nephelometric calibration mate­

rial, are the subjects of research for this study. 

Scattering nephelometry considers amplitude measurements of the scattered 

electromagnetic field at a limited number of positions around the scattering particles. 

However, the necessary condition for a set of particles to be uniquely identifiable is 

the precise knowledge of the incident, internal and scattered electromagnetic fields at 

all points in space. Therefore a unique analytical system that converts nephelometric 

data to particle descriptions does not exist. The existence of customised analytical sys­

tems for all possible particle arrangements carmot be guaranteed either. Therefore 

mathematical analysis is not suitable for nephelometric data conversion. 

An alternative approach to the scattering data analysis problem is the employ­

ment of a data fitting method. These methods build mathematical models that ap­

proximate an unknown continuous function f(x) to another function F(a,x) by a repre-

sentative set of data pairs (x" f(x,» so that If(x)-F(a,x)l<e V'XElR". The set of 

data pairs is usually obtained by experiment while the value of the parameter vector 

a E lRm is determined by the fitting method. However, the formation of the parametric 

function F() usually requires some knowledge about the form (polynomial, rational, 

exponential, logarithmic etc) of the unknown function fO. That is the reason why 

most data fitting methods are inapplicable to nephelometric data conversion problems. 

Data fitting methods employing Artificial Neural Networks (ANNs) are spe­

cialised in retuning universal approximations of completely unknown functions from 

representative sets of data mapping examples. Furthermore, the methods can be easily 

adapted to solve classification problems by sets of typical data associations. Therefore 

ANN fitting is a viable approach to the scattering data analysis issue. Multilayer Feed­

forward Artificial Neural Network (MFANN) modelling solutions are particularly at­

tractive in this case thanks to their architectural simplicity and operational efficiency. 
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The supervised learning algorithm that performs the MFANN training task in 

every network modelling case of this study is the Levenberg-Marquardt backpropaga­

tion (LMBP). The choice is based on the computational efficiency of the algorithm 

and the moderate sizes of the models. The algorithm is complemented by the mean­

squared error (MSE) or sum-squared error (SSE) performance index. The MFANN 

input and output vector pre-processing by the modified uniform normalisation method 

protects network nodes from saturation whenever necessary. 

The novel Second-Order Sensitivity Analysis (SOSA) and Optimal Brain Sur­

geon (OBS) algorithms remove all redundant MFANN nodes and weights from the 

trained network. The innovative SOSA algorithm removes up to three nodes per itera­

tion subject to the average output error of the trimmed network being sufficiently 

small. Furthermore, SOSA cancels automatically any node pruning step that leads to a 

trimmed and probably retrained network of output error higher than a goal figure set a 

priori. OBS completes the MFANN optimisation task of SOSA by repeatedly remov­

ing weights and biases from the remaining MF ANN structure until the predetermined 

network output error goal is no longer achieved. OBS is quite fast because it does not 

require network retraining between iterations. 

An innovative MFANN optimisation scheme that employs LMBP, SOSA and 

OBS algorithms in the training and optimisation of any MFANN structure is another 

major contribution of this study to academic research. The scheme starts from the 

node optimisation of the input layer, continues with the node optimisation of hidden 

layers in ascending layer order, goes on with the weight and bias optimisation of the 

whole network and returns to the input layer for another optimisation cycle. Provision 

is made for the addition of extra nodes to all hidden layers that follow the layer under­

taking node optimisation when better node elimination results can be achieved. The 

optimisation scheme halts after a complete optimisation cycle when no more input 

nodes are pruned and equal or more network nodes are added than removed in total. 

MF ANN modelling leads to excellent particle characterisation results only if 

the experimental scattering data used for the tasks of network training and optimisa­

tion are precise. Therefore it is essential to calibrate the nephelometric instrument 

with a material representative of the unknown particles that need to be characterised. 

The ISO 12103-1 Arizona Fine (AF) sand is better than formazine as calibration mate­

rial because it has similar texture and particle size range to other substances existing 

in many natural and industrial suspensions. Tenuous water suspensions of AF sand in 
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polar nephelometers give profiles of scattered irradiances proportional to the mass 

concentration of the sand and inversely proportional to the nephelometric chamber 

radius. The same profiles are amplified and smoothened as the acceptance angle of the 

nephelometric detector increases. The turbidity curves extracted from these profiles 

show turbidity being proportional to mass concentration and acceptance angle and in­

versely proportional to nephelometric chamber radius. The AF particle size pdf dither­

ing effect described in the ISO 12103-1 standard results to the similar dithering of all 

scattering and turbidity curves mentioned above by the relative magnitude of I % in 

dB units. 

The estimation of the binned particle volume distribution of a mixture of three 

binned AF sand types (denoted by AFt for i = I, 2 or 3) is the subject of the theoretical 

particle characterisation problem considered in this study. Only tenuous suspensions 

of the mixture are assumed because their scattering profiles can be estimated by the 

single scattering theory and the polar nephelometric model described in §3.5. The op­

timal solution obtained is a polar nephelometer of two optical elements (two light 

sources, one light detector) and a 2-2-3 MFANN structure of 9 weights and 3 biases. 

The first component of the solution is similar to a standard turbidimeter in terms of 

complexity. 

5.2 Experimental conclusions 

The classification of water suspensions of filtered AF sand in two groups with 

respect to the type of dispersed substance (AFF or AFc) is the motivation to conduct a 

number of scattering trials and describe them in this study. The experimental data are 

acquired and recorded via a commercial nephelometric system consisted of a polar 

nephelometer, a control unit, a power unit, a lock-in amplifier and a PC. The acquired 

voltages Vu are converted to normalised particle scattering values Sy which are line­

arly proportional to the mass concentration Cm) of suspended matter. The relation be­

tween Sy and Cm) as well as the moderate mass concentration values in all experimen­

tal samples indicate that the scattering experiment may be simulated by an analytical 

model based on single scattering theory and nephelometric geometry. In fact, the cor­

relation coefficient Pe of the theoretical and experimental normalised particle scatter­

ing per unit mass concentration functions t Sy and Sy is high (>93%). However, the 

Relative Mean-Squared Error (RMSE) of these functions is high (>64%) for samples 
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containing dispersed AFc sand. RMSE and Pe figures are significantly improved by 

assuming that particle aggregation and particle sedimentation take place at sample 

preparation time so that filtered AF particles smaller than 1 JlIll and bigger than S JlIll 

do not scatter light during the experiment. The comparison of the new normalised par­

ticle scattering per unit mass concentration function t S: with Sy gives higher corre­

lation coefficient and smaller RMSE values in all cases (pIJ2:97%, RMSE<IS%) and 

thus it justifies the aforementioned non-scattering particle assumption. The remaining 

differences between the two functions can be attributed to measurement errors due to 

the presence of noise. 

The experimental particle characterisation problem has two structura1ly opti­

mal solutions. The first solution is a polar nephelometer of 7 optical elements (3 light 

sources, 4 light detectors) and a complete 6-1-1 MFANN structure of7 weights and 2 

biases. The model makes no mistake in detecting the presence of AFF sand in the 

samples, but it mistakenly classifies 2 out of 7 test samples containing AFc sand. The 

second solution is a polar nephelometer of 6 optical elements (3 light sources, 3 light 

detectors) and two MFANN structures connected in cascade. The first 3-1-1 network 

with 4 weights and 2 biases estimates the mass concentration of filtered AF sand, 

while the second 6-2-1 network with 8 weights and 3 biases detects the type of sus­

pended matter. The second model is better than the first because it requires fewer op­

tical elements and classifies correctly 6 out of 7 test sample suspensions of either AF 

sand type. 

5.3 Recommended extensions 

Plenty of ideas exist to improve or extend the novel Second-Order Sensitivity 

Analysis (SOSA) algorithm explained in §2.9.2 and the innovative MFANN optimisa­

tion scheme described in §2.9.4. For example: 

a) The efficiency of SOS A algorithm is measured by the average number of net­

work nodes removed per iteration and the number of backtracked iterations. 

Both figures depend on the values of algorithmic constants Ch C2 and C3. If the 

constants are set too high, many nodes are removed in the first iterations but 

many pruning attempts are cancelled as the network reaches its optimal size. If 

the constants are set too low, the frequency of backtracking is minimised but 

more iterations are required to remove all redundant nodes from the network. 
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A compromise would be to choose constants C2 and Cl being high in the begin­

ning but decaying smoothly as the algorithm progresses. As far as constant Cl 

is concerned, hypothesis testing can lead to accurate assigrlIDents that mini­

mise the possibility of backtracking in the fmal SOSA iterations (see [158-

161]). 

b) Node counter N:;'" determines how many nodes can be added to a network 

before one or more nodes are removed from the layer SOSA optimises. If the 

counter is set to zero or a small value, the network may fail to achieve the pre­

determined error goal during the training phase because it has fewer hidden 

nodes than necessary. This results to either rejection of the initial network or 

premature halt of SOSA algorithm. On the other hand, setting N:;'" too high 

prolongs the op~imisation phase and leads to suboptimal and overtrained net­

works due to the addition of too many hidden nodes. The introduction of em­

pirical rules for the optimal value of N;'" would reduce the MF ANN model­

ling effort considerably. 

c) The addition of nodes by SOSA is followed by the resetting of all network 

weights and biases to random values. This strategy is simple to implement but 

prolongs the training of the trinuned network. Weight and bias initialisation 

rules taken from constructional optimisation algorithms (see [134-136]) and 

modified appropriately for use by SOSA algorithm would reduce the MFANN 

training time significantly. 

d) The selection of network training parameters is often critical for the optimal 

training of the network considered. The SOSA algorithm and the MF ANN op­

timisation scheme do not alter these parameters between subsequent training 

phases. However, the alternative of modifying the training parameters as the 

optimisation scheme progresses is worth examining becanse it can lead to bet­

ter optimisation results. 

A significant contribution to the design of better nephelometric models that 

characterise solid particles dispersed in fluids at small or no error is the development 

of experimental procedures that minimise the scattering acquisition time and maxi­

mise the number of solid particles kept in suspension throughout the experiment. 

More and reliable scattering measurements give more ANN training and testing pat­

terns which in turn can lead to nephelometric models that give more precise particle 
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characterisation results. Scattering data collected from field trials could also be help­

ful in the design of structurally optimal nephelometric models that meet the specifica­

tions of practical particle characterisation applications. 

Ultrasound scattering methods that deal with the characterisation of bigger 

particles than the ones considered by light scattering methods could be benefited from 

the MF ANN modelling and optimisation techniques discussed earlier in this study. 

Statistical optics may replace Mie scattering theory in nephelometric model design. 

When the ultrasound nephelometric model is complete, a MF ANN structure attached 

to the nephelometric sensors can be trained to perform the particle characterisation 

task and then optimised with respect to its number of input nodes (nephelometric sen­

sors), hidden nodes and weights. 

Finally, the study of the scattering properties of AF sand in dense suspensions 

as a straightforward extension of the material covered in §3.6 is of particular interest. 

The first-order multiple scattering (FOMS) theory [192] accepts that light incident to 

a particle may have been scattered by another particle instead of coming directly from 

the light source. However, only particles that do not send scattered light to other parti­

cles are taken into account for the calculation of scattered irradiance at a certain angle. 

Foldy-Twersky scattering theory [193, 194] goes even further by accepting that scat­

tered irradiance measured at an angle may be coming from particles that illuminate 

other particles. Both theories are applicable to dense suspensions of AF and new scat­

tering profiles can be obtained by fitting the polar nephelometric model of §3.S to 

these theories. Theoretical particle characterisation problems may be solved by as­

suming dense suspensions of AF sand and using the scattering data returned by the 

modified polar nephelometric model to train and optimise MFANN structures. Ex­

perimental scattering profiles from dense suspensions of AF sand may be acquired in 

order to verify the multiple scattering theories and solve practical particle characteri­

sation problems. Those exercises would demonstrate the appropriateness of scattering 

nephelometry and ANN theory to deal with virtually every particle characterisation 

case. 
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C.1 Symbols 

11·111 First-order norm function 

11·112 Second-order norm function 

V mm Minimum value of performance index gradient 

A Hessian matrix of a vector function at a given point 

aO Output of time-dependent functional block 

a ANN output vector (or pattern) 

Ak Particle volume fraction distribution generator (kth version) 

a, MFANN output vector (layer I) or reduced MFANN input vector (I is the 

MFANN input layer) 

a: MF ANN Ith layer vector (node i oflayer I removed) 

a1 MFANN Ith layer vector (nodes i,j oflayer I removed) 

a1h MFANN Ith layer vector (nodes i,j, h oflayer I removed) 

am Reduced MF ANN output vector (m is the MF ANN output layer) 

am Reduced MF ANN target vector (m is the MF ANN output layer) 

'a' MF ANN mth layer output vector (node i oflayer I removed) m 

'aif MF ANN mth layer output vector (nodes i, j oflayer I removed) m 

'aljh MF ANN mth layer output vector (nodes i, j, h oflayer I removed) m 

lIn, b. Mie scattering coefficients 

B Magnetic induction 

b Artificial neuron bias 

b ANN bias vector 

Bemn, Bomn, Vector spherical harmonics coefficients of electric field phasor infinite series 

Aem., Acm. 

B, (-) Scattered irradiance of distilled water per total emitted irradiance by the light 

source (light source i) 

bl MF ANN bias vector (layer I) 

c Speed oflight in vacuum (3 108 m/s) 
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Cm) 

Cm} 

Cm) 

Cm} 

Cv 

D(o) 

D 

d 

dat$ 

dIlO 
dIsO 
alsO 

dNAo) 

dp 

dth 

dV(o) 

dVpO 

d~O 

dz 

EO 
E 

e 

~II 

NOTATION 

Mass concentration fraction of binned Arizona Fine sand type I suspended in 

the jth sample 

Bulk mass concentration of particles in a nephelometer 

Mass concentration of filtered Arizona Fine type j 

Estimated mass concentration of filtered Arizona Fine type j 

Subset ofMFANN raw target vectors (filtered Arizona Fine type j) 

Second subset of MF ANN raw input vectors (filtered Arizona Fine type j) 

Mie internal coefficients 

Volume concentration of particles in a nephelometer 

Distance between a light source and the centre of an infinitesimal volume 

Electric displacement 

Search direction vector 

Data acquisition date 

Irradiance emitted by a light source at a single wavelength 

Total irradiance scattered by all particles in an infinitesimal volume 

Irradiance scattered by a single spherical particle in an infinitesimal volume 

Bulk mass density of particles in a nephelometer 

Total number of particles in an infmitesimal volume 

Diameter of an arbitrary particle in a nephelometer 

Number of motor steps required for the movement of the detection arm be­

tween two adjacent scattering angles 

Volume ofinfmitesimal cylinder 

Total volume of particles within an infmitesimal volume 

Average volume of particles in an infinitesimal volume 

Height of infinitesimal cylinder 

Expected value function 

Electric field 

ANN error (or distance) vector 

Incident electric field phasor component that is parallel to the scattering 

plane 
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eRI Orthogonal unit vector parallel to the scattering plane and lying in the (x, y) 

plane 

E- Scattered electric field phasor component that is parallel to the scattering 
11' 

plane 

eo, Orthogonal unit vector parallel to the scattering plane and lying in the (9, <p) 

plane 

if il Incident electric field phasor component that is perpendicular to the scatter­

ing plane 

e il Orthogonal unit vector perpendicular to the scattering plane and lying in the 

(x, y) plane 

if u Scattered electric field phasor component that is perpendicular to the scatter­

ingplane 

e u Orthogonal unit vector perpendicular to the scattering plane and lying in the 

(9, <p) plane 

m Eavgk , 1 

~Eavg~ 

Internal plane wave 

MFANN mth layer output prediction error (node i oflayer I removed) 

MF ANN mth layer output prediction error (nodes i, j oflayer I removed) 

MFANN mth layer output prediction error (nodes i, j, h oflayer I removed) 

Average of MF ANN mth layer output prediction error (node i of layer I re­

moved) over the MF ANN pattern population 

Average of MFANN mth layer output prediction error (nodes i, j of layer I 

removed) over the MF ANN pattern population 

m Eavgk Average ofMFANN mth layer output prediction error (nodes i,j, h oflayer I 
I '. 

removed) over the MF ANN pattern population 

E (-) Expected value function with respect to mass concentration (filtered Arizona 
c'" 

'El 
m k 

Finetypej) 

Incident plane wave 

MFANN kth node (mth layer) output prediction error 

MFANN kth node (mlb layer) output prediction error (node i of layer I re­

moved) 

:E[ MFANN kth node (mth layer) output prediction error (nodes i, j oflayer I re­

moved) 
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(Es, Hs) 

E(.) 
8 

FO 

F 
f() 

r 
fJO 

F, 

F, 

dO 
tiO 

dO 

fs 

G 

gO 
g 

NOTATION 

MFANN ktb node (mtb layer) output prediction error (nodes i, j, h of layer I 

removed) 

Maximum number of ANN learning algorithm iterations (epochs) 

Orthogonal unit vectors of spherical coordinates 

Scattered plane wave 

Orthogonal unit vectors of Cartesian coordinates 

Expected value function with respect to scattering angle 

ANN performance index 

Phasor vector 

Artificial neuron transfer function 

ANN transfer function vector 

First constitutive relation (current density, electric field) 

Diagonal matrix of MF ANN transfer function derivatives (layer I) 

Diagonal matrix of the second-order derivatives of MF ANN transfer func­

tions (layer I) 

MFANN transfer function (layer I) 

First-order derivative ofMFANN transfer function (layer I) 

Second-order derivative ofMFANN transfer function (layer I) 

MFANN transfer function vector (layer I) 

Second constitutive relation (magnetisation, magnetic field) 

Third constitutive relation (electric polarisation, electric field) 

MF ANN prediction error function (r = 2 or +00) 

Maximum input voltage that can be acquired 

Hessian matrix approximation 

Generating function of plane waves 

Gradient vector of a vector function at a given point 

Variable gain of the trans-impedance amplifier times the gain of the lock-in 

amplifier (light source i, filtered Arizona Fine type j) 

H Hessian matrix of performance index after MFANN weight pruning or mag­

netic field 
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HMBW, 

hoO 

I 

I 

I, 
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The main diagonal of the MF ANN second-order sensitivity times the re­

duced MF ANN inputs 

Value acquired from the first channel of the lock-in amplifier 

MF ANN second-order sensitivity times reduced MF ANN inputs 

The ith row of MF ANN second-order sensitivity times the reduced MF ANN 

inputs 

MF ANN second-order sensitivity matrix (layers I, m - output k) 

Half Maximum Beam Width oflight source i 

Spherical Bessel function of order n and the third kind (or Hankel function) 

Irradiance (or intensity) - First Stokes parameter 

Identity matrix 

Total irradiance emitted from every light source 

Irradiance emitted by a polar nephelometric light source 

Total scattered irradiance measured by a polar nephelometric light detector 

at line of sight 

Is 0 Total scattered irradiance measured by a polar nephelometric light detector 

J 

jnO 

1v() 

K 

k 

kO 
k 

k' 

k" 

kl 

L 

LO 

LO 

at a given angle 
/ 

Scattered irradiance measured by a nephelometric detector 

lacobian matrix 

Current density offree moving charges 

Spherical Bessel function of order n and the first kind 

Ordinary Bessel function of the first kind 

Bias of acquired light scattering values 

Wave number 

Real wave number of plane waves propagating in the dissolver 

(complex) wave vector 

Real part of wave vector 

Imaginary part of wave vector 

Wave number of the internal plane wave 

Number ofMFANN layers 

Lagrangian function of the performance index change 

Linear operator 
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M Magnetisation 

M Muller matrix 

m Relative refractive index 

M, N Plane wave harmonics 

M N Vector spherical harmonics (phasors) 
emn' emn' 

Momn ' Nomn 

mfk 

MJ 

MSEgoal 

N 

NO 

N 

n 

n,T< 

N(.u,u) 

Mass fraction of the ktb chemical compound of binned Arizona Fine sand 

Subset ofMF ANN raw input vectors (filtered Arizona Fine type j) 

Mean-squared error goal 

(complex) refractive index 

Complex refractive index of the dissolver 

ANN net input vector 

Artificial neuron net input 

Real part of the complex refractive index of the dissolver 

Number of nodes pruned per SOSA iteration 

Number of MFANN nodes added between two consecutive and successful 

node elimination attempts 

Optical constants 

Gaussian noise source of mean /.l and standard deviation (J 

Complex refractive index of the spherical particle 

Numerical aperture oflight detector 

Total number of nodes pruned from layer I after node pruning 

Total number ofMFANN nodes added to layers (1+1) - (m-I) 

Number of Arizona Fine particle size bins 

Mie series expansion termination point 

Total number ofMFANN nodes pruned from all hidden layers 

Total number of MF ANN nodes added to hidden nodes as node optimisation 

progresses from a layer to another 

N~p Total number ofMF ANN nodes removed from the input layer 
, 

NkO Complex refractive index of the ktb chemical compound of binned Arizona 

Fine sand 
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nkO. lCkO Optical constants of the kth chemical compound of binned Arizona Fine sand 

nl MF ANN net input vector (layer I) 

N+ Maximum number ofMFANN nodes allowed for addition between two con-
""" 

nome$ 

Ost 

nstep 

nw 

p 

p 

p 

secutive and successful node pruning attempts 

Name of file used for averaged data storage 

Starting point of the downward recurrence calculation of the spherical BesseI 

function of the first kind 

Number of scattering angles excluding the first angle 

Real part of the complex refractive index of water 

Uniformly normalised MF ANN output scalar (qth pattern) 

Uniformly normalised MFANN output vector (qth pattern) 

Electric polarisation or set ofMF ANN raw input vectors 

ANN input vector (or pattern) 

Normalised ANN input vector (or pattern) 

Second set of MF ANN raw input vectors 

Binned particle size probability density function of filtered Arizona Fine 

sand type "coarse" 

Particle size probability density function of filtered Arizona Fine sand type 

"coarse" 

Particle volume probability distribution function of filtered Arizona Fine 

sand type "coarse" 

I' Pc Binned particle volume probability density function of filtered Arizona Fine , 

v,PcO 

sand type "coarse" 

Particle volume probability density function of filtered Arizona Fine sand 

type "coarse" 

Particle diameter (or size) probability density function 

Particle size probability density function of Arizona Fine dust (kth dithered 

version) 

d P F Binned particle size probability density function of filtered Arizona Fine , 
sand type "fine" 

Particle size probability density function of filtered Arizona Fine sand type 

"fine" 
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Particle volume probability distribution function of filtered AF sand type 

"fme" 

v P F Binned particle volume probability density function of filtered Arizona Fine 
p 

pmax 

pmm 

Q 

Qo. 

Q. 

sand type "fme" 

Particle volume probability density function of filtered Arizona Fine sand 

type "fine" 

Limited particle size probability density function (fifth pdf filtering case, 

filtered Arizona Fine type j) 

Limited particle volume probability distribution function (fifth pdf filtering 

case, filtered Arizona Fine type j) 

Binned particle size probability density function (kth dithered version) 

Binned particle volume probability density function (kth dithered version) 

Particle size probability density function of binned Arizona Fine sand type I 

Vector of maximum pattern values in every ANN input 

Vector of minimum pattern values in every ANN input 

Legendre polynomials of the first kind and degree n 

Legendre functions of the first kind, degree n and order m 

Average scattered light irradiance acqnired in rn V units 

Uniformly normalised input vector (qth pattern) 

Particle volume probability density function 

Particle volume probability density function of Arizona Fine dust (kth dith­

ered version) 

Number of ANN input vectors (patterns) or second Stokes parameter 

Second Stokes parameter oflight emitted by light sources 

Second Stokes parameter of light emitted by a polar nephelometric light 

source 

R Number of ANN inputs or nephelometric chamber radius 

R Remaining term of Hessian matrix approximation 

R' (-) Distance between a light detector and the centre of an infinitesimal volume 

RCEj Relative Classification Error (filtered Arizona Fine type j) 
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rec() Spectral sensitivity function of a nephelometric light detector or spectral 

sensitivity function oflight source i 

reCnO 

recm (-) 

RMSE, 

S 

SO 

5 

Normalised spectral sensitivity function 

Normalised spectral sensitivity function oflight source i 

Relative Mean-Squared Error (light source i) 

Time-averaged Poynting vector 

Instantaneous Poynting vector 

Stokes vector 

MF ANN first-order sensitivity times reduced MF ANN input 

The ktb row of MFANN fIrst-order sensitivity times the reduced MFANN 

input 

Elements of the (far-field) Muller matrix of the Mie scattering problem 

Particle scattering by Arizona Fine particles only (light source i, fIltered Ari­

zona Fine type j) 

Sy (-) Normalised particle scattering by Arizona Fine particles only (light source i, 

filtered Arizona Fine type j) 

S () Normalised particle scattering per unit mass concentration (light source i, y • 

filtered Arizona Fine type j) 

SS () Limited theoretical particle scattering (fifth pdf fIltering case, light source i, , ij. 

fIltered Arizona Fine type j) 

,S; (.) Limited theoretical particle scattering per unit mass concentration (fifth pdf 

fIltering case, light source i, fIltered Arizona Fine type j) 

Theoretical particle scattering by Arizona Fine particles only (light source i, 

filtered Arizona Fine type j) 

Theoretical normalised particle scattering by Arizona Fine particles only 

(light source i, fIltered Arizona Fine type j) 

Theoretical normalised particle scattering per unit mass concentration (light 

source i, fIltered Arizona Fine type j) 

Theoretical particle scattering per unit mass concentration (light source i, 

fIltered Arizona Fine type j) 

Normalised particle scattering per unit mass concentration (light source i, 

binned Arizona Fine sand type I) 
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srcO 

srcl) 

srcnO 

srcnl (.) 

SSEgoal 

T 

T 

tmax 

tmin 

U 

U(x,y) 

uO 

V 

valf 

vtjl 

VFmax 

Number ofMFANN nodes (layer 1) 

Marquardt sensitivity matrix (MP ANN layer 1) 

MP ANN net input sensitivity vector (layer 1) 

MP ANN first-order sensitivity matrix (layers 1, m) 

NOTATION 

MP ANN fust-order sensitivity (row) vector (layers 1, m - output k) 

Spectral intensity function of a nephelometric light source 

Spectral intensity function of light source i 

N ormaIised spectral intensity function 

Normalised spectral intensity function of light source i 

Sum-squared error goal 

Turbidity of suspension in a polar nephelometer 

Set of MP ANN raw target vectors 

Time variable 

ANN target vector (or pattern) 

Second set of MP ANN raw target vectors 

Angular position of the detector at data acquisition time 

Last scattering angle in degrees 

First scattering angle in degrees 

Uniformly normalised target vector (qth pattern) 

Third Stokes parameter 

Uniform noise source that returns values in the interval [x, y] 

Input of time-dependent functional block 

Vector of numbers uniformly distributed in [0, 1] (km version) 

Fourth Stokes parameter 

Scattered light irradiance acquired in m V units 

Volume fraction of binned Arizona Fine sand type 1 snspended in the jth 

sample 

Particle volume fraction distribution (kth dithered version) 

Average particle volume fraction distribution 

Vector of maximum particle volume fraction limits 

Vector of minimum particle volume fraction limits 
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VF, Particle volwne fraction deviation 

Vif 0 Average voltage returned by the lock-in amplifier (light source i, filtered 

Arizona Fine type j) 

pV; Volwne of an arbitrary particle (particle size bin i) 

V p Volwne of an arbitrary particle in a nephelometer 

Vr Unit vector in MPANN weight space corresponding to the pruned weight 

Vw Volwne of water (dissolver) 

W() Net electromagnetic energy transfer rate into a volwne 

W ANN weight matrix 

w Diameter of a perfectly collimated cylindrical light beam 

w ANN weight (row) vector 

WI MP ANN weight matrix (layer I) 

x, (-) Set of inputs available for the two-dimensional function approximation 

XZ Vector of the first-order derivatives of kth MP ANN output with respect to 

MP ANN inputs (q is the MP ANN pattern index) 

y.(x.,x2) Two dimensional function to be approximated by aMPANN 

Yn() Spherical Bessel function of order n and the second kind 

YvO Ordinary Bessel function of the second kind 

a Artificial neuron output or ANN learning rate or absorption coefficient 

a(.) Absorption coefficient of the dissolver 

~ Conjugate search direction scalar 

~, Normalisation factor (light source i) 

y Azimuth 

o Acceptance angle of a light detector 

Aa: MP ANN lib layer vector change (node i of layer I removed) 

Aa? MP ANN lib layer vector change (nodes i, j oflayer 1 removed) 

Aarh MPANN lib layer vector change (nodes i,j, h oflayer 1 removed) 

AV p Binned particle volwne range vector 

Ax MP ANN weight change due to pruning of another weight 

E (complex) permittivity of a mediwn 

Eo Permittivity of free space 
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El Complex permittivity of the spherical particle 

~() Riccati-Bessel function of order n and the second kind 

e Momentum multiplication (or division) factor or scattering angle 

en Angular position of a light detector in a polar nephelometer 

e,er Reference angle in manipulation of acquired measurements 

1C{) Imaginary part of the complex refractive index of the dissolver 

A. Wavelength in vacuum or wavelength of emitted (scattered) light 

Il Momentum term or permeability of a medium 

Ilo Initial value of momentum term or permeability of free space 

III Complex permittivity of the spherical particle 

III Mean value of the normally distributed spectral intensity function of light 

source i 

Ilmax Maximum value of momentum term 

1;.0 Riccati-Bessel function of ordern and the third kind 

1tn0, TnO Functions of Legendre functions of the first kind (degree n, order 1) and 

scattering angle 

PF Free charge density 

PF Free charge density phasor 

pm Correlation coefficient between the theoretical and experimental scattering 

functions vs, mass concentration 

pe Correlation coefficient between the theoretical and experimental scattering 

functions vs, scattering angles 

cr Conductivity 

crI Standard deviation of the normally distributed spectral intensity function of 

light source i 

crlJ Average scattering cross-section of the jth type Arizona Fine particles (light 

source i) 

u Phase velocity 

"" Minimal significance of single lth layer node pruning 
Im'l1 

J." Minimal significance of double lth layer node pruning 
Im'l'2 

",xyz Minimal significance of treble lth layer node pruning 
Im'l'3 

""r Sigru'ficance matrix of the rremoved MF ANN lth layer nodes 
""'I .. 
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X Size parameter 

AA Electric susceptibility 

Xm Magnetic susceptibility 

Ijfn() Riccati-Bessel function of order n and the first kind 

C.2 Acronyms 

ADALINE 

AF 

ANN 

APHA 

ASBC 

ASTM 

BAM 

BSB 

CGBP 

CIE 

CMAC 

CPN 

dB 

DE 

EBU 

FIR 

FNU 

FOMS 

FOSA 

GMDH 

IR 

ISO 

JTU 

LALLS 

LED 

LM 

Adaptive Linear Neuron 

Arizona Fine 

Artificial Neural Network 

American Public Health Association 

American Society of Brewing Chemists 

American Society for Testing and Materials 

Bidirectional Associative Memory 

Brain-State-in-a-Box 

Conjugate Gradient Backpropagation 

Commission Internationale de l' Eclairage 

Cerebellar Model Articulation Controller 

Counterpropagation Network 

Decibel 

Diatomaceous Earth 

European Brewery Convention 

Finite Impulse Response 

Formazine Nephelometric Unit 

First-Order Multiple Scattering 

First-Order Sensitivity Analysis 

Group Method of Data Handling 

Infrared 

International Organisation for Standardisation 

Jackson Turbidity Unit 

Low Angle Laser Light Scattering 

Light Emitting Diode 

Levenberg-Marquardt 

APPENDIXC 
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LMBP 

LMS 

LOS 

MBP 

MFANN 

MOBP 

MSE 

NARMA 

NTU 

OBD 

OBS 

PC 

PCS 

PDF 

PPM 

PPRN 

RBF 

RCE 

RMS 

RMSE 

RTRN 

SDBP 

SEM 

SI 

SOSA 

SSE 

STEM 

STM 

TDNN 

TEM 

VF 

VLBP 

Levenberg-Marquardt Backpropagation 

Least Mean Squared 

Line of Sight 

Magnitude-Based Pruning 

MuItiIayer Feedforward Artificial Neural Network 

Momentum Backpropagation 

Mean-Squared Error 

Nonlinear Autoregressive Moving Average 

Nephelometric Turbidity Unit 

Optimal Brain Damage 

Optimal Brain Surgeon 

Personal Computer 

Photon Correlation Spectroscopy 

Probability Density Function 

Parts Per Million 

Pipelined Recurrent Neural Network 

Radial Basis Function 

Relative Classification Error 

Root Mean Squared 

Relative Mean-Squared Error 

Real-Time Recurrent Network 

Steepest Descent Backpropagation 

Scanning Electron Microscopy 

Systeme Internationale 

Second Order Sensitivity Analysis 

Sum Squared Error 

Scanning Transmission Electron Microscopy 

Scanning Tunnelling Electron Microscopy 

Time-Delay Neural Network 

Transmission Electron Microscopy 

Volume Fraction 

Variable Learning Rate Backpropagation 

NOTATION 

257 



APPENDIXD 

SOFTWARE OVERVIEW 



SOFTWARE OVERVIEW 

D.1lntroduction 

The algorithms described in this study have been implemented by proprietary 

software written in MATLAB (version 5.2) or ANSI C. The source code of that soft­

ware is consisted of function or script files (filename m for MA TLAB and filename c 

for ANSI C code) grouped in separate folders for every single application. The out­

comes of a software application are stored in text (filename.txt) or MATLAB binary 

(filename mat) files for future reference. The following sections list the names of 

source code files and outcome files by application with brief explanations of the func­

tion performed at execution time by the contents of a source code file or the kind of 

data stored in an outcome file. 

The source code of an application is executed by typing main (or main2, 

main3 when applicable) followed by the required arguments (in brackets) on the 

MATLAB command window. Alternatively, the function mainO described in §D.4, 

§D.5 and §D.6.1 can be executed by typing main and the required arguments sepa­

rated by hyphens (-) on the operating system's command line window if the associ­

ated function compile() that compiles and links together all relevant pieces of source 

code to a single file is typed first on a MATLAB command window (the MATLAB 

compiler module is required for that option). 

All pieces of software built for the purposes of this study and the outcomes of 

that software are included in the attached CD-ROM. 

D.2 Fourier series generator 

• afterprn m: Runs after a MFANN node pruning iteration is confirmed (see op­

timise.m). 

• aftertrn m: Runs after a successful MFANN training step (see optimise.m). 

• aftrbackm: Runs after a backtracking attempt to MFANN node pruning is 

made (see optimise.m). 

• aftrsens.m: Runs after the MF ANN input-output sensitivities have been calcu­

lated and saved (see optimise.m). 

• anntrnph m: Responsible for the MFANN training (see optimise m). 

• antrnimp.m: Updates certain variables of function anntrnphO with pre­

selected constants or initialises the same constants. 
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• backcand m: Runs after a successful backtracking attempt and deals with the 

new MP ANN nodes selected for pruning (see optimise.m). 

• backrema m: Runs after an unsuccessful backtracking attempt and deals with 

the remaining MFANN nodes (see opt/mise. m). 

• beJrbackm: Runs before a backtracking attempt to MPANN node pruning is 

made (see optimise.m). 

• beJrsens.m: Runs before the next MPANN optimisation iteration starts (see op­

timise.m). 

• calcoeffm: Calculates the Fourier coefficients of the square-wave pulse train 

generated by the Fourier series generator. 

• candprun.m: Deals with the MFANN nodes selected for pruning (see opti­

mise.m). 

• cos JJen.m: Calculates the sinusoidal input signals to the Fourier series genera­

tor. 

• err _ avg.m: Calculates the mean absolute MF ANN output error. 

• estJem m: Calculates the estimated mean absolute MFANN output error per 

pruning decision after each MPANN optimisation step. 

• ev _ dbpr. m: Calculates the second-order derivatives for all transfer functions of 

a MF ANN layer for the entire MF ANN input vector population. 

• evfinc.m: Calculates the outputs of a MFANN layer for the entire MFANN 

input vector population. 

• eV"'pr.m: Calculates the first-order derivatives for all transfer functions of a 

MP ANN layer for the entire MP ANN input vector population. 

• ev _SSE.m: Calculates the sum-squared error that is associated with an error 

matrix. 

• firsttrn.m: Runs before the fIrst MPANN training takes place (see optim/se.m). 

• glob _var.m: Defmes and initialises all global variables. 

• init _F. m: Makes a structure that describes a MF ANN architecture from partial 

information. 

• init _ Wb m: Initialises all MF ANN weights and biases. 

• initfimc.m: Initialises the MP ANN training and optimisation variables. 

• main.m: Implements the MFANN modelling and optimisation solution to the 

Fourier series generator example. 
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• make_ANN m: Creates and initialises all variables of a new MF ANN. 

• mFSOsen2.m: Calculates the MFANN first-order and second-order input sen­

sitivities (multi-input version). 

• mfwd yrp m: Calculates the MF ANN outputs in forward mode (multi-input 

version). 

• mklststr.m: Makes an integer list string from an integer vector. 

• norm_inp.m: Normalises all MFANN input training vectors assuming normal 

distribution. 

• notraindm: Runs when the MFANN cannot be trained from the very begin­

ning (no MFANN node pruning has been attempted yet) (see optimise.m).· 

• optimise.m: Trains a MFANN and prunes neurons from its specified layer up 

to the optimal minimum. 

• plot_err. m: Plots the new (or updated) MFANN learning error during the 

MF ANN training procedure. 

• plot_TO. m: Plots the ideal and MFANN-approximated square-wave pulse train 

signals of the Fourier series generator. 

• pruning. m: Prunes the set of nodes from a MF ANN layer that is of the smallest 

significance. 

• pulsetrn m: Generates the square-wave pulse train of the Fourier series genera­

tor. 

• remaprun m: Deals with the remaining MF ANN nodes after an unsuccessful 

MFANN optimisation iteration and end of pruning procedure (see optimise.m). 

• saveaprn. m: Saves MF ANN parameters after a successful training and pruning 

iteration (see optimise.m). 

• savesens.m: Saves MFANN input-output sensitivity information (see opti­

mise. m). 

• svprnimp m: Updates certain variables of function saveapmO with pre­

selected constants or initialises the same constants. 

• svsenimp.m: Updates certain variables of function savesensO with pre-selected 

constants or initialises the same constants. 

• tr jmbp.m: Implements the Levenberg-Marquardt backpropagation algorithm. 

• unorminp.m: Uniformly normalises a set of MFANN input vectors to the in­

terval [-0.5, 0.5]. 
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• wrJoefm: Stores the Fourier coefficients of the square-wave pulse train to a 

file or displays them to the standard output. 

• wr del m: Stores the mean absolute and the estimated mean absolute MFANN 

output errors to a file or displays them to the standard output. 

• wr _FWb m: Stores the MF ANN weights and biases to a file or displays them 

to the standard output. 

• wr _out. m: Stores the MFANN output vectors to a file or displays them to the 

standard output. 

• wr Jemin m: Stores the candidate MFANN nodes for pruning to a file or dis­

plays them to the standard output. 

• wr Jslt m: Stores the average values of MF ANN first-order and second-order 

input sensitivities to a file or displays them to the standard output. 

• wr _SSE.m: Stores the sum-squared errors of MFANN outputs to a file or dis­

plays them to the standard output. 

• coeffile txt: Lists the set of Fourier coefficients of the square-wave pulse train. 

• de1.file.txt: Lists the mean absolute and the estimated mean absolute MFANN 

output errors per pruning decision after each MF ANN optimisation step. 

• FWb .file. txt: Lists all MF ANN weights and biases after each MFANN optimi­

sation step. 

• out.file.txt: Lists all MFANN output vectors after each MFANN optimisation 

step. 
, 

• rem.file.txt: Lists the candidate MFANN nodes for pruning after each 

MF ANN optimisation step. 

• sen.file.txt: Lists the average values ofMFANN first-order and second-order 

input sensitivities after each MF ANN optimisation step. 

• SSE.file.txt: Lists the sum-squared errors of MFANN outputs after each 

MF ANN optimisation step. 

D.3 Multi-dimensional function generator 

• adjgoals.m: Potentially increases the MFANN error goal after a successful 

MF ANN training phase. 

• afbakimp.m: Updates certain variables of function aftrbackO with pre-selected 

constants or initialises the same constants. 

262 



SOFTWARE OVERVIEW 

• ajjJrnimp.m: Updates certain variables of function afterpmO with pre-selected 

constants or initialises the same constants. 

• afsenimp m: Updates certain variables of function aftrsens{) with pre-selected 

constants or initialises the same constants. 

• afterprn.m. aftertrn m. aftrbackm: See §D.2. 

• aftrnexp.m: Stores certain variables of function aftertrnO for future use. 

• aftrnimp m: Updates certain variables of function aftertrn{) with pre-selected 

constants or initialises the same constants. 

• aftrsens m. anntrnph m: See §D.2. 

• antrnexp m: Stores certain variables of function anntmph{) for future use. 

• antrnimp.m: See §D.2. 

• augment. m: Updates all MFANN variables to include all MFANN nodes that 

have been pruned in successive MF ANN node optirnisation iterations. 

• backcandm. backrema m. befrbackm. befrsens.m: See §D.2. 

• bfbakimp.m: Updates certain variables of function befrbackO with pre­

selected constants or initialises the same constants. 

• bfsenimp. m: Updates certain variables of function befrsens{) with pre-selected 

constants or initialises the same constants. 

• bkcndimp.m: Updates certain variables of function backcandO with pre­

selected constants or initialises the same constants. 

• bkremimp m: Updates certain variables of function backremaO with pre­

selected constants or initialises the same constants. 

• calc_TO.m: Calculates the MFANN mean-squared error and (incrementally) 

the MFANN max-squared error. 

• candprun.m: See §D.2. 

• caprnimp.m: Updates certain variables of function candprunO with pre­

selected constants or initialises the same constants. 

• estJem.m. ev_dbpr.m. evJunc.m: See §D.2. 

• ev _MSE.m: Calculates the mean-squared error that is associated with an error 

matrix. 

• eV"'pr.m.firsttrn.m: See §D.2. 

• fnd_Xidx.m: Finds the MFANN weight of the smallest saliency (see OBS.m). 
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• jrtrnimp m: Updates certain variables of function firsttrn() with pre-selected 

constants or initialises the same constants. 

• glob_var.m, init_F.m, init_Wh.m, initfimc.m: See §D.2. 

• it _ make.m: Generates the input signals available for the multi-dimensional 

function generator. 

• lrn_test.m: Separates the set of MFANN patterns in two groups (training and 

testing MF ANN pattern sets). 

• main.m: hnplements the MFANN modelling and optirnisation solution to the 

multi-dimensional function generator example. 

• make_ANNm, mFSOsen2.m, mfwdyrp m, notraind.m: See §D.2. 

• notrnimp m: Updates certain variables of function notraind() with pre-selected 

constants or initialises the same constants. 

• OBS m: hnplements the Optimal Brain Surgeon algorithm that eliminates 

MFANN weights. 

• obsimp m: Updates certain variables of function OBS() with pre-se!ected con-

stants or initialises the same constants. 

• optimise.m, plot _err.m, pruning. m: See §D.2. 

• randwblr.m: Assigns small random values to MFANN weights and biases. 

• remaprun m: See §D.2. 

• rmprnimp.m: Updates certain variables of function remaprunO with pre-

selected constants or initialises the same constants. 

• saveaprn m, savesens.m: See §D.2. 

• shownode.m: Displays MFANN-node-related messages to the standard output. 

• show.Jr.m: Displays the title of the next iteration ofMFANN optirnisation to 

the standard output. 

• show_wgt.m: Displays the set ofMFANN weights pruned by the last iteration 

ofMF ANN optimisation to the standard output. 

• shrink m: Updates all MFANN variables to exclude all MFANN nodes that 

have been pruned in successive MF ANN node optimisation iterations. 

• svprnimp m, svsenimp.m, tr _lmbp.m: See §D.2. 

• unorm.m: Uniformly normalises a given set ofMFANN patterns to [-0.5, 0.5]. 

• wIHess m: Calculates the inverse matrix of the second-order derivatives of 

MFANN half-MSE with respect to MF ANN weights (see OBS.m). 
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• wr _err.m: Stores the MF ANN root mean-squared and root max-squared errors 

to a file or displays them to the standard output. 

• wr_FWb m, wr_out m, wrJemin.m: See §D.2. 

• wr_RMSE.m: Stores the MFANN root mean-squared error history to a file or 

displays them to the standard output. 

• wr Jslt.m: See §D.2. 

• optimal. mat: Keeps all variables of the multi-dimensional function generator 

example for future use. 

• erlJile.txt: Lists the MFANN root mean-squared and root max-squared errors 

for the set of MF ANN training patterns. 

• er2 Jile txt: Lists the MF ANN root mean-squared and root max-squared errors 

for the set ofMF ANN testing patterns. 

• FWbJile.txt: See §D.2. 

• MSE Jile.txt: Lists the MF ANN root mean-squared error history. 

• outJile.txt: See §D.2. 

• param.txt: Holds the most important parameters of the multi-dimensional 

function generator example for reference purposes. 

• remJile.txt, senJile.txt: See §D.2. 

D.4 Scattering and turbidity of ISO Arizona Fine dust 

• alegendr.m: Returns the sets of the scattering angle dependent functions nO 
and TO. 

• compile.m: Compiles main 0 and all relevant functions to make a single ex­

ecutable file out of them. 

• existfile.m: Tells whether a file bearing a given name is on MATLAB's search 

path ornot. 

• iso "'pdlm: Returns the binned particle size and particle volume pdfs (typical 

and dithered) oflSO 12103-1 AF dust. 

• los3cat.m: Returns the irradiance measured by a nephelometric detector 

placed at line of sight. 

• main m: Calculates the theoretical scattering and turbidity profiles of ISO 

12103-1 AF dust. 
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• main2.m: Displays the theoretical scattering and turbidity profiles of ISO 

12103-1 AF dust. 

• mrbl.m: Returns the sets of the spherical Bessel functions jO and the Riccati­

Bessel functions v() of the first kind. 

• mrb2 m: Returns the sets of the spherical Bessel functions yO and the Riccati­

Bessel functions ~() of the second kind. 

• mrb3.m: Returns the sets of the spherical Bessel functions hO and the Riccati­

Bessel functions ~O of the third kind. 

• mscatc. m: Returns the sets of Mie scattering coefficients a, b. 

• mu_lamda.m: Returns the complex refractive indices of AF compounds and 

water at the visual and near-infrared frequency domains. 

• nephscat.m: Returns the total irradiance received by a nephelometric detector 

placed at a positive angle. 

• pdflpdj.m: Returns the particle size and particle volume pdfs (typical and dith­

ered) of AF dust. 

• plotydfm: Plots the (binned or regular) particle size and particle volume pdfs 

(typical and dithered) of AF dust. 

• plotscat m: Plots AF scattered irradiance vs. bulk mass concentration, accep­

tance angle or nephelometric chamber radius. 

• plotscdt.m: Plots the dithering area of AF scattered irradiance due to the dith­

ering of AF particle size pdf. 

• plotscer.m: Plots the absolute and relative errors of all but the first AF scat­

tered irradiance function with respect to the first function. 

• plotturb.m: Plots AF turbidity vs. bulk mass concentration, acceptance angle 

or nephelometric chamber radius. 

• plrefidx. m: Plots the real and imaginary refractive indices of water and all AF 

compounds vs. wavelength. 

• scrcnorm.m: Returns the nonnalised product of the spectral sensitivity func­

tion by the spectral intensity function. 

• trimzero.m: Returns the indices of all leading and trailing zero elements of a 

vector. 

• turbscrc.m: Returns the nonnalised spectral intensity and spectral sensitivity 

functions. 

266 



SOFTWARE OVERVIEW 

• Mexistfile c: Tells whether a file bearing a given name is on the current work­

ing directory or not. 

• mstr2cstr c: Copies a MATLAB string to a C++ string variable. 

• params.mat: Keeps all variables of function mainO for future use. 

D.5 Binned AF sand volume fraction estimation problem 

• adjgoals.m, ajbakimp.m, afprnimp m, afsenimp m: See §D.3. 

• afterprn m, aftertrn.m, aftrbackm: See §D.2. 

• aftrnexp.m, afirnimp.m: See §D.3. 

• aftrsens.m: See §D.2. 

• alegendr.m: See §DA. 

• ang2idx.m: Converts sets of scattering angles to equivalent sets of MFANN 

input node indices. 

• ang2msg m: Displays the scattering angles being pruned or selected for prun-

ing. 

• anntrnph m: See §D.2. 

• antrnexp.m: See §D.3. 

• antrnimp.m: See §D.2. 

• augment.m: See §D.3. 

• backcandm, backrema.m: See §D.2. 

• bar_TO. m: Plots the current MF ANN (training or testing) RMS and absolute 

maximum errors (or the current RCE). 

• befrbackm, befrsens.m: See §D.2. 

• bjbakimp m, bfsenimp.m, bkcndimp.m, bkremlmp.m: See §D.3. 

• calc_inp.m: Returns the set of uniformly normalised MFANN input vectors. 

• calc_tar.m: Returns the set of uniformly normalised MFANN target vectors. 

• candprun m: See §D.2. 

• caprnimp.m: See §D.3. 

• complle.m: See §DA. 

• dlsp _ msg.m: Displays a message on a static text frame of a MA TLAB figure. 

• drw _ msen.m: Plots the current nephelometric sensor configuration. 

• estJem.m, ev_dbpr.m, ev..fonc.m: See §D.2. 

• ev_MSE.m: See §D.3. 
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• eV"'pr m: See §D.2. 

• ev RCE.m: Returns the MFANN relative classification error for the MFANN 

pattern set considered. 

• existfile m: See §DA. 

• firsttrn.m: See §D.2. 

• /nd_Xidx m,frtrnimp.m: See §D.3. 

• glob_var m: See §D.2. 

• gui.m: Initialises the GUI that displays the status of the MFANN optimisation 

procedure. 

• idx2ang.m: Converts a set ofMFANN input node indices to the equivalent set 

of scattering angles. 

• init F.m: See §D.2. 

• initJig.m: Initialises the subplots of the GUI that displays the status of the 

MF ANN optimisation procedure. 

• init_ Wb.m, initfunc m: See §D.2. 

• iso"'pdfm: See §DA. 

• iso2bp4f.m: Returns the particle size pdfs of the three binned AF sand types. 

• loaddata.m: Loads from file a subset of variables required by the MFANN 

optimisation procedure. 

• loadrslt.m: Loads from file a subset of variables returned by the MFANN 

optimisation procedure. 

• Irn_test.m: See §D.3. 

• main.m: Calculates the scattering profiles of the three binned AF sand types 

for every nephelometric light source. 

• main2 m: Implements the MF ANN modelling and optimisation solution to the 

binned AF sand volume fraction estimation problem. 

• main3.m: Displays the structuraIly optimal nephelometric sensor configuration 

and the MF ANN output prediction error history. 

• make_ANN.m, mFSDsen2 m, mfwd...prp m: See §D.2. 

• mrbl.m, mrb2.m, mrb3.m, mscatc.m, mu_lamda.m, nephscat.m: See §DA. 

• notraind m: See §D.2. 

• notrnimp.m, DES. m, obsimp.m: See §D.3. 

• optimise.m: See §D.2. 
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• pdj2pdj m: See §D.4. 

• plot_bin.m: Initialises a plot that displays MF ANN output prediction errors per 

particle size bin. 

• plot_err. m: See §D.2. 

• plot"'pdjm: See §D.4. 

• plotbpdfm: Plots the particle size pdfs of the three binned AF sand types. 

• plotscrc m: Plots the current nephelometric sensor configuration. 

• plotspec.m: Plots the normalised spectral intensity and spectral sensitivity 

functions. 

• pltnscat.m: Plots the normalised scattering profiles of binned AF sand per unit 

mass concentration for a given nephelometric light source. 

• pltoptst.m: Plots the MFANN RMS error, absolute maximum error or relative 

classification error history. 

• pruning. m: See §D.2. 

• randwblr.m: See §D.3. 

• read_err.m: Reads the MFANN root mean-squared and absolute maximum er-

rors from a file. 

• remaprun.m: See §D.2. 

• rmprnimp.m: See §D.3. 

• row perm m: Returns all unique row permutations of a matrix. 

• saveaprn m, savesens.m: See §D.2. 

• scrcnorm.m: See §D.4. 

• scrcspec. m: Returns the normalised spectral intensity and spectral sensitivity 

functions. 

• sec2hms.m: Converts a nonnegative number of seconds to llli:MM:SS format. 

• show _ ang.m: Displays the sensor angles or hidden MF ANN nodes being pre-

sent, selected for pruning or pruned. 

• show_lr.m, show_wgf.m, shrink.m: See §D.3. 

• svprnimp m, svsenimp m, tr _lmbp.m: See §D.2. 

• trimzero.m: See §D.4. 

• unormmat.m: Uniformly normalises a MFANN pattern matrix to [-0.5, 0.5]. 

• wIHess.m: See §D.3. 
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• wr_del.m: See §D.2. 

• wr _err. m: Stores the MF ANN root mean-squared and absolute maximum er-

rors to a file or displays them to the standard output. 

• wr _FWb.m, wr _out. m, wr Jemin.m: See §D.2. 

• wr_RMSE.m: See §D.3. 

• wr Jslt.m: See §D.2. 

• wr _ wgt.m: Stores the MF ANN weight or bias removed per OBS iteration to a 

file or displays them to the standard output. 

• Mexistjile.c, mstr2cstr.c: See §D.4. 

• gui mat: Keeps all variables required for the initialisation of the GUI that dis-

plays the status of the MF ANN optirnisation procedure. 

• optimal. mat: Keeps all variables of function main2() for future use. 

• params mat: See §D.4. 

• erlJzle.txt: Lists the MFANN root mean-squared and absolute maximum er­

rors for the set ofMF ANN training patterns. 

• er2Jzle txt: Lists the MFANN root mean-squared and absolute maximum er-

rors for the set ofMFANN testing patterns. 

• FWbJzle.txt: See §D.2. 

• MSEJzle txt: See §D.3. 

• OBSJzle.txt: Lists the MFANN weight or bias removed per OBS iteration and 

the associated saliency and training I testing RMSE values. 

• outJzle.txt, remJzle.txt, senJzle.txt: See §D.2. 

D.6 Filtered AF sand type detection problem 

0.6.1 Experimental results 

• alegendr.m, compile.m, existjile.m: See §D.4. 

• expdata.m: Returns the raw and processed experimental scattering profiles of 

the two filtered AF sand types. 

• fcydfm: Returns the binned particle size and volume pdfs and the particle 

volume probability distribution functions of the two filtered AF sand types. 

• jisoydfm: Returns the binned particle size and particle volume pdfs of the 

two filtered AF sand types. 
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• get_cmth m: Returns the mass concentrations of the filtered AF sand types and 

the experimental scattering angles. 

• iroescrc.m: Returns the nonnalised spectral intensity and spectral sensitivity 

functions. 

• main. m: Calculates the theoretical scattering profiles of the two filtered AF 

sand types. 

• main2. m: Displays the theoretical and experimental scattering profiles of the 

two filtered AF sand types. 

• mrbl.m, mrb2 m, mrb3.m, mscatc.m, mu_lamda.m, nephscat.m: See §D.4. 

• pdf-'dndm: Returns the filtered AF sand type used in the experiment and all 
, 

associated data stored in variables or files. 

• pdj2pdfm, plot..pdfm: See §D.4. 

• plot_se.m: Plots the nonnalised and averaged scattering per unit mass concen­

tration profiles of the two filtered AF sand types. 

• plotalsc.m: Plots the processed scattering profiles of the two filtered AF sand 

types. 

• plotconc.m: Plots the experimental nonnalised particle scattering over mass 

concentration for every filtered AF sand type. 

• plotrwsc.m: Plots the raw experimental scattering profiles of the two filtered 

AF sand types. 

• plotscat.m: Plots the scattering profiles of the two filtered AF sand types for a 

given nephelometric light source. 

• plotspec.m: See §D.5. 

• plotturb m: See §D.4. 

• pltsccon.m: Plots the experimental nonnalised scattering per unit mass concen­

tration profiles of the two filtered AF sand types. 

• pltvfpdfm: Plots the particle volume probability distribution functions of the 

two filtered AF sand types. 

• randwblr.m: See §D.3. 

• scatcomp.m: Returns the nonnalised particle scattering functions of the two 

filtered AF sand types. 

• scrcnorm.m: See §D.4. 

• simdata. m: Returns the main parameters and outcomes of function main(). 
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• trimzero m. Mexistflle.c. mstr2cstr.c: See §D.4. 

• anninp mat: Keeps all variables of this section's function main20 for future 

use (the filtered AF sand types are not modified in any way). 

• anninpJmat: Keeps all variables of this section's function main20 for future 

use (the filtered AF sand types have particles of diameters ~ 0.5 Ilm). 

• anninp_m mat: Keeps all variables of this section's function main20 for fu­

ture use (the filtered AF sand types have particles of diameters E [0.5, 5] Ilm). 

• anninp_s.mat: Keeps all variables of this section's function main20 for future 

use (the filtered AF sand types have particles of diameters ~ 5 Ilm). 

• anninpnm.mat: Keeps all variables of this section's function main20 for fu­

ture use (the filtered AF sand types have particles of diameters E [1, 5] Ilm). 

• anninptm mat: Keeps all variables of this section's function main20 for fu­

ture use (the filtered AF sand types have particles of diameters E [2,5] J.Iffi). 

• anninpul.mat: Keeps all variables of this section's function main20 for future 

use (the filtered AF sand types have particles of diameters ~ 2 Ilm). 

• anninpvl.mat: Keeps all variables of this section's function main20 for future 

use (the filtered AF sand types have particles of diameters ~ I Ilm). 

• fcaf"'pdfmat: Keeps the sampled particle volwne probability distribution func­

tions of the two filtered AF sand types. 

• green led mat: Keeps the experimental mass concentration and scattering an­

gle data associated with the green LED being used as light source. 

• ir led mat: Keeps the experimental mass concentration and scattering angle 

data associated with the infrared LED being used as light source. 

• led_spec.mat: Keeps the sampled spectral inteusity functious of the three ex­

perimental nephelometric iIIwnination systems. 

• params.mat: Keeps all variables of function mainO for future use (the filtered 

AF sand types are not modified in any way). 

• params Jmat: Keeps all variables of function mainO for future use (the fil­

tered AF sand types have particles of diameters ~ 0.5 Ilm). 

• params _ m.mat: Keeps all variables of function mainO for future use (the fil­

tered AF sand types have particles of diameters E [0.5, 5] Ilm). 

• params_s.mat: Keeps all variables of function mainO for future use (the fil­

tered AF sand types have particles of diameters ~ 5 Ilm). 
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• paramsnmmat: Keeps all variables of function main() for future use (the fil­

tered AF sand types have particles of diameters E [1,5] Ilm). 

• paramstm.mat: Keeps all variables of function mainO for future use (the fil­

tered AF sand types have particles of diameters E [2, 5] Ilm). 

• paramsul.mat: Keeps all variables of function mainO for future use (the fil­

tered AF sand types have particles of diameters ~ 2 Ilm). 

• paramsvl.mat: Keeps all variables of function mainO for future use (the fil­

tered AF sand types have particles of diameters ~ 1 Ilm). 

• red led mat: Keeps the experimental mass concentration and scattering angle 

data associated with the red LED being used as light source. 

0.6.2 Filtered AF sand type detection results 

D.6.2.1 First solution 

• adjgoals.m, ajbakimp.m, afprnimp.m, aJsenimp.m: See §D.3. 

• ajierprn.m, ajiertrn.m, aftrbaek.m: See §D.2. 

• ajirnexp.m, aftrnimp m: See §D.3. 

• aftrsens m: See §D2. 

• ang2idx m, ang2msg.m: See §D.5. 

• anntrnph m: See §D.2. 

• antrnexp.m: See §D.3. 

• antrnimp m: See §D.2. 

• augment. m: See §D.3. 

• baekcandm, baekrema m: See §D 2. 

• bar _TO m: See §D.5. 

• befrback.m, befrsens m: See §D.2. 

• bjbakimp.m, bJsenimp m, bkcndimp m, bkremimp m: See §D.3. 

• cale _inp m, cale Jar m: See §D.5. 

• eandprun.m: See §D.2. 

• eaprmmp m: See §D.3. 

• disp_msg.m: See §D.5. 

• estJem m, ev_dbprm, ev..fone.m: See §D.2. 

• ev _ MSE.m: See §D.5. 
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• eV"'pr.m: See §D.2. 

• ev_RCEm:See§D.5. 

• existfile.m: See §D.4. 

• firsttrn.m: See §D.2. 

• jndjadx.m,jrtrnimp.m: See §D.3. 

• glob_var.m: See §D.2. 

• gui m, idx2ang.m: See §D.5. 

• init_F.m: See §D.2. 

• initJig.m: See §D.5. 

• init_Wb m, initfimc m: See §D.2. 

• Idoptdat m: Loads from file a subset of variables required by the MF ANN op-

timisation procedure. 

• loadrslt.m: See §D.5. 

• IrnJest.m: See §D.3. 

• main.m: Implements the single MFANN modelling and optimisation solution 

to the filtered AF sand detection problem. 

• main2 m: Displays the structurally optimal nephelometric sensor configuration 

and the single MFANN output prediction error history. 

• make_ANN.m, mFSOsen2.m, mjwd"'prpm, notraindm: See §D.2. 

• notrnimp.m, OBS.m, obsimp m: See §D.3. 

• optimise.m: See §D.2. 

• pdfJdndm: See §D.6.1. 

• plot_bin.m: See §D.5. 

• plot_err. m: See §D.2. 

• plotscrc.m, pltoptst.m: See §D.5. 

• pruning. m: See §D.2. 

• randwblr.m: See §D.3. 

• read err.m: Reads the MF ANN relative classification error from a file. 

• remaprun m: See §D.2. 

• rmprnimp m: See §D.3. 

• saveaprn m, savesens m: See §D.2. 

• show_angm: See §D.5. 

274 



SOFTWARE OVERVIEW 

• showjr.m, show_wgt.m, shrink m: See §D.3. 

• svprnimp.m, svsenimp.m, tr _lmbp m: See §D.2. 

• unormmat.m: See §D.5. 

• wIHess.m: See §D.3. 

• wr _del m: See §D.2. 

• wr_err.m: Stores the MFANN relative classification error to a file or displays 

it to the standard output. 

• wr _FWb.m, wr _out. m, wr Jemm m: See §D.2. 

• wr_RMSE.m: See §D.3. 

• wr Jslt.m: See §D.2. 

• wr_wgt.m: See §D.5. 

• anninp.mat, anninpJmat, anninp_m.mat, anninp_s.mat, anninpnm.mat, 

anninptm mat, anninpul.mat, anninpvl.mat: See §D.6.1. 

• annoutnm.mat: Keeps all variables of function rnainO for future use (the fil­

tered AF sand types have particles of diameters E [1,5] I!rn). 

• gui mat: See §D.5. 

• er l.Jile.txt: Lists the MF ANN relative classification error for the set of 

MF ANN training patterns. 

• er2.Jile.txt: Lists the MF ANN relative classification error for the set of 

MF ANN testing patterns. 

• FWb.Jile txt: See §D.2. 

• MSE.Jile.txt: See §D.3. 

• out.Jile.txt, remJile.txt, senJile.txt: See §D.2. 

D.6.2.2 Second solution 

D.6.2.2.1 First MFANN 

• adjgoals.m, ajbakimp m, afprnimp.m, afsenimp m: See §D.3. 

• afterprn.m, aftertrn.m, aftrbackm: See §D.2. 

• aftrnexp.m, aftrnimp m: See §D.3. 

• aftrsens.m: See §D.2. 

• ang2idx.m, ang2msg m: See §D.5. 

• anntrnphm: See §D.2. 
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• antrnexp.m: See §D.3. 

• antrnimp m: See §D.2. 

• augment. m: See §D.3. 

• backcand m, backrema.m: See §D.2. 

• bar TO m: See §D.S. 

• befrback.m, befrsens m: See §D.2. 

• bjbakimp m, bfsenimp m, bkcndimp m, bkremimp m: See §D.3. 

• calc_inp m, calcJar.m: See §D.S. 

• candprun.m: See §D.2. 

• caprnimp m: See §D.3. 

• disp_msg m, drw_msen.m: See §D.5. 

• estJemm, ev_dbpr.m, evJunc.m: See §D.2. 

• ev_MSE.m: See §D.3. 

• eV"'pr.m: See §D.2. 

• ev_RCEm: See §D.S. 

• existfile.m: See §D.4. 

• firsttrn m: See §D.2. 

• jiJd_Xuix.m,frtrnimp.m: See §D.3. 

• glob_var.m: See §D.2. 

• gui m, idx2ang m: See §D.5. 

• init_F.m: See §D.2. 

• initJig m: See §D.5. 

• imt_Wh.m, initfonc.m: See §D.2. 

• ldoptdat.m: See §D.6.2.1. 

• loadrslt.m: See §D.S. 

• lrn_test.m: See §D.3. 

• main.m: Implements the cascaded MFANN modelling and optimisation solu­

tion to the filtered AF sand detection problem (first MF ANN considered). 

• main2.m: Displays the intermediate nephelometric sensor configuration and 

the first MF ANN output prediction error history. 

• make_ANN.m, mFSOsen2.m, mjwd...Prp.m, notraindm: See §D.2. 

• notrnimp.m, OBS m, obsimp m: See §D.3. 
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• optimise.m: See §D.2. 

• pdfJdndm: See §D.6.1. 

• plot_bin.m: See §D.5. 

• plot_err. m: See §D.2. 

• plotscrc m, pltoptst.m: See §D.5. 

• pruning. m: See §D.2. 

• randwblr.m: See §D.3. 

• read_err. m: See §D.5. 

• remaprun.m: See §D.2. 

• rmprnimp m: See §D.3. 

• saveaprn.m, savesens.m: See §D.2. 

• show_angm: See §D.5. 

• show _Ir m, show _wgt m, shrmkm: See §D.3. 

• svprnimp.m, svsenimp m, tr _Imbp m: See §D.2. 

• unormmat.m: See §D.5. 

• wIHess m: See §D.3. 

• wr_del.m: See §D.2. 

• wr _err.m: See §D.5. 

• wr_FWb.m, wr_out.m, wrJemin.m: See §D.2. 

• wr _RMSE.m: See §D.3. 

• wr Jslt.m: See §D.2. 

• wr _wgt.m: See §D.5. 

• anninp mat, anninp _I. mat, anninp _ m mat, anninp _s mat, anninpnm mat, 

anninptm.mat, anninpul mat, anninpvl.mat: See §D.6.1. 

• annmidnm.mat: Keeps all variables of this section's function mainO for future 

use (the filtered AF sand types have particles of diameters E [1,5] !lm). 

• gui.mat, er 1 Jile.txt, er2 Jile txt: See §D.5. 

• FWbJile.txt: See §D.2. 

• MSEJile.txt: See §D.3. 

• outJile.txt, remJile.txt, senJile.txt: See §D.2. 
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D.6.2.2.2 Second MFANN 

• adjgoals m, ajbakimp m, afprnimp m, afsenimp.m: See §D.3. 

• afterprn m, aftertrn.m, aftrbackm: See §D.2. 

• aftrnexp.m, aftrnimp m: See §D.3. 

• aftrsens.m: See §D.2. 

• ang2idx.m, ang2msg.m: See §D.5. 

• angc2idx.m: Converts sets of scattering angles (stored in cell arrays) to equiva-

lent sets ofMF ANN input node indices. 

• anntrnph m: See §D.2. 

• antrnexp.m: See §D.3. 

• antrnimp.m: See §D.2. 

• augment m: See §D.3. 

• backcandm, backrema m: See §D.2. 

• bar_TO.m: See §D.5. 

• befrbackm, befrsens m: See §D.2. 

• bjbakimp.m, bjsenimp.m, bkcndimp.m, bkremimp m: See §D.3. 

• calc_inp m, calcjar.m: See §D.5. 

• candprun.m: See §D.2. 

• caprnimp.m: See §D.3. 

• disp_msg.m, drw_msen m: See §D.5. 

• estJem m, ev_dbpr.m, ev..JUnc.m: See §D.2. 

• ev_MSE.m: See §D.3. 

• ev "'pr.m: See §D.2. 

• ev_RCE.m: See §D.5. 

• existfile.m: See §D.4. 

• jirsttrn.m: See §D.2. 

• fnd_Xidx.m,frtrnimp.m: See §D.3. 

• glob_var.m: See §D.2. 

• gui.m, idx2ang m: See §D.5. 

• init_F.m: See §D.2. 

• init.fig.m: See §D.5. 

• init_Wb.m, initfonc.m: See §D.2. 
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• ldoptdat.m: See §D.6.2.1. 

• loadrslt m: See §D.5. 

• lrn_test m: See §D.3. 

• mainm: Implements the cascaded MFANN modelling and optimisation solu­

tion to the filtered AF sand detection problem (second MFANN considered). 

• main2.m: Displays the structurally optimal nephelometric sensor configuration 

and the second MF ANN output prediction error history. 

• make_ANN.m, mFSOsen2.m, mjWdyrp.m, notraindm: See §D.2. 

• notrnimp m, OBS m, obsimp m: See §D.3. 

• optimise m: See §D.2. 

• pdf-'dndm: See §D.6.1. 

• plot_binm: See §D.5. 

• plot_err.m: See §D.2. 

• plotscrc.m, pltoptst.m: See §D.5. 

• pruning. m: See §D.2. 

• randwblr.m: See §D.3. 

• read3rr.m: See §D.6.2.1. 

• remaprun m: See §D.2. 

• rmprnimp m: See §D.3. 

• saveaprnm, savesens.m: See §D.2. 

• show _ ang.m: See §D.5. 

• show _lr.m, show _wgt m, shrink m: See §D.3. 

• svprnimp m, svsenimp m, tr _lmbp m: See §D.2. 

• unormmat.m: See §D.5. 

• wIHess.m: See §D.3. 

• wr _del m: See §D.2. 

• wr_err.m: See §D.6.2.1. 

• wr_FWh.m, wr_out.m, wrJemin.m: See §D.2. 

• wr_RMSE.m: See §D.3. 

• wr Jslt.m: See §D.2. 

• wr_wgt.m: See §D.5. 

• annmidnm mat: See §D.6.2.2.1. 
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• annoutnm.mat: See §D.6.2.1. 

• gui mat: See §D.S. 

• erlJile.txt, er2Jile txt: See §D.6.2.1. 

• FWb Jile txt: See §D.2. 

• MSEJile txt: See §D.3. 

• OBSJile.txt: See §D's. 

• outJile.txt, remJile txt, senJile txt: See §D.2. 
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